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Abstract

Modeling and simulation of signal transduction pathways facilitate the integration of ex-

perimental knowledge into a coherent picture and is increasingly regarded as a valuable

complement to wet-lab experiments. However, despite its importance, the implications

of space (e.g. diffusion, molecular crowding or active transport) have traditionally been

neglected in common models of signal transduction. Seizing on this problem, the aim of

this thesis is to elucidate the biological as well as methodological implications that arise

from modeling the spatio-temporal dynamics of lipid rafts, particularly in the context of

signal transduction. Lipid rafts are small, dynamic structures that are crucially involved

in the spatial organization of the cell membrane, hence play a central role in signaling.

Notably, lipid rafts are involved in almost all central physiology-related signaling path-

ways and are associated with a continuously growing list of diseases, including immune

disorders, degenerative diseases and cancer. Though, the actual impact of lipid rafts

on downstream signaling components and their exact role in the majority of signaling

pathways is still largely unknown.

Therefore the effect of raft-dependent receptors dynamics on both, individual signal-

ing events as well as an entire signaling transduction pathway, is explicitly analyzed

here. First, a Cellular-Automata based membrane model is developed to explore the

effect of lipid rafts on individual signaling events, such as the association of peripheral

proteins to membrane-integral receptors and the subsequent formation of a ternary re-

ceptor complex. After that, the specific involvement of lipid rafts in Wnt/β-catenin

signaling during neural differentiation is explored by means of an integrated in silico

and in vitro approach. Accordingly, based on experimental data retrieved from human

neural progenitor cells an extended model of the canonical Wnt signaling pathway in-

cluding membrane-related processes and lipid rafts is developed.

However, the level of abstraction, i.e. the spatial scale required to describe certain as-

pects of spatial membrane dynamics, strongly depends on the subject of interest, the

concrete addressed scientific questions and eventually on the experimental data avail-

able. Therefore a particular focus is laid on the close interplay between the formal

representation of cellular or subcellular dynamics and experimental investigation.





Zusammenfassung

Computergestützte Modellierung und Simulation von Signaltransduktionswegen erle-

ichtert es experimentelle Daten in einen kohärenten Zusammenhang zu bringen und gilt

zunehmend als wertvolle Alternative zu Laborexperimenten. Allerdings wird in den

meisten Signaltransduktionsmodellen der Einfluss räumlicher Aspekte (wie bspw. Dif-

fusion, Molecular Crowding, oder aktiver Transport) vernachlässigt, obwohl diese von

großer Wichtigkeit sind. Dieses Problem wird in der vorliegenden Arbeit aufgegriffen.

Ziel der Arbeit ist es, die biologischen als auch die methodischen Implikationen zu er-

fassen, die während der Erforschung von Raum/Zeit Dynamiken von Lipid Rafts und

insbesondere im Kontext von Signaltransduktion auftreten. Lipid Rafts sind kleine,

dynamische Strukturen, die einen wesentlichen Einfluss auf die räumliche Organisation-

sstruktur von Zellmembranen und dadurch eine wichtige Rolle in der Signaltransduktion

spielen. Bemerkenswerterweise sind Lipid Rafts in den Signalwegen fast aller physiolo-

gischen Funktionen involviert und zudem werden sie mit einer wachsenden Vielzahl von

Krankheiten assoziiert, wie bspw. Immundefekte, degenerative Krankheiten oder aber

auch Krebs. Jedoch ist der tatsächliche Einfluss von Lipid Rafts auf die konkreten Signal-

wege oder einzelne Signaltransduktionsereignisse noch größtenteils unklar. Aus diesem

Grund soll im Rahmen dieser Arbeit der Einfluss von Lipid-Raft abhängigen Rezeptor-

dynamiken sowohl bezüglich einzelner Signaltransduktionsschritte, als auch bzgl. eines

kompletten Signaltransduktionsweges analysiert werden. Zunächst wird ein Membran-

model basierend auf einem Zellulären Automaten implementiert. Dieses Membranmodell

wird genutzt, um den Einfluss von Lipid Rafts auf einzelne Signaltransduktionsschritte,

wie z.B. die Assoziation von peripheren Proteinen an Membranrezeptoren und die an-

schließende Bildung eines ternären Komplexes, zu untersuchen. Anschließend wird der

spezifische Einfluss von Lipid Rafts auf den kanonischen WNT Signalweg während der

Embryonären Entwicklung untersucht. Dies geschieht im Rahmen einer kombinierten

Labor- und Simulationsstudie. Basierend auf experimentellen Daten aus humanen,

neuralen Progenitorzellen wurde ein erweitertes Modell des kanonischen WNT Signal-

wegs entwickelt, welches räumliche Membranedynamiken und den Einfluss von Lipid

Rafts beschreibt. Allerdings ist das Abstraktionsniveau, d.h. die verwendete räumliche

Auflösung/Skalierung, die benötigt wird, um die entsprechenden Aspekte der räumlichen

Membrandynamiken darzustellen, stark von den eigenen Forschungsinteressen, der wis-

senschaftlichen Fragestellung und letztlich auch von den verfügbaren experimentellen

Daten abhänigig. Aus diesem Grund wird ein besonderer Fokus der Arbeit auf das

Zusammenspiel zwischen formaler Repräsentation von zellulären und subzellulären Dy-

namiken und experimentellen Versuchen gelegt.
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Chapter 1

Introduction

Cellular signal transduction enables cells to sense changes in their environment and to

initiate the cellular response by regulating gene expression, target protein modifications,

or metabolism. The proper functioning of these pathways is crucial for adaptation and

survival under varying conditions, but also for differentiation and cell fate. However,

the exploration of signal transduction pathways by classical biochemistry and molecular

biology techniques is often problematic, due to limited spatial and temporal resolution,

unspecific side effects of chemical or genetic treatments or the inability to deal with

emergent properties [24]. Bottom-up systems biology approaches, i.e. kinetic model-

ing, could fetch up these limitations by complementing the available experimental data

with model-based quantitative analyses. Thereby modeling and simulation provide ad-

ditional insights about the mechanisms and dynamics of signal transduction and helps

to integrate experimental knowledge into a coherent picture [20]. Indeed, with a de-

tailed kinetic model one can perform time-course simulations, derive, support, or falsify

hypotheses about underlying mechanisms of the signal transduction and predict the

cellular response to varying stimuli. Therefore, in silico experiments are increasingly

regarded as a valuable complement to wet-lab experiments. Accordingly, computational

modeling and simulation of signal transduction pathways is obtaining growing attention

from researchers with experimental or theoretical background [49, 105].

1.1 Motivation and Problem Statement

To understand the complex behavior of signaling networks, numerous computational

modeling approaches have been developed, typically with a specific application in mind.

1
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Each of these approaches employs a different level of detail, ranging from abstract mod-

els that emphasize some key features of signaling pathways [82, 156] over detailed

models that represent the dynamics of specific pathways in specific organisms, e.g.

[38, 102, 106, 116], down to micro-scale models that describe the molecular interac-

tions, trying to approximate the exact physical processes [146, 157, 198].

Thereby model reusability and readability should be considered as key features when

developing and specifying models. This is where modeling languages come in, i.e. formal-

ized approaches for writing model components and interactions. The model is detached

from the simulation and it may even be possible to use the same model description

with different simulation approaches, e.g. ordinary differential equations (deterministic)

as well as the Stochastic Simulation Algorithm. [13, 66]. This separation of concerns

is of great importance, as it allows to annotate, store, exchange and combine models,

independently of the simulation algorithm and its configuration used execute the model

[26, 40, 93, 100, 178, 179, 209]. Within the last decade sophisticated modeling for-

malisms were established that are capable of describing complex properties of proteins,

their interactions within the signal transduction networks and the corresponding ki-

netics. Thereby means for describing attribute species, hierarchical nesting (multi-level)

including dynamics structures as well as constrains and arbitrary functions are currently

considered as the most important modeling features required to represent any process

involved in signal transduction. Attributed species allow for the definition of multi-

state components. Multi-level approaches describe causal relationships, i.e. upward-

and downward causation between different hierarchical layers and dynamic structures.

Lastly constraints and arbitrary functions make it possible to formulate reaction kinetics

other than mass action.

Despite these advances in computational modeling methodology, research efforts have

traditionally been concentrated on exploring signal transduction networks and focus on

the involved proteins and their reaction kinetics. Though, yet too little attention has

been paid to the actual spatial properties of the surrounding environment, that con-

tribute to overall signaling characteristics of the system by introducing non-linear signal

delays [197]. However, spatial processes are difficult to capture with standard experimen-

tal techniques, because neither qualitative nor quantitative data can provide sufficient

insight to capture the spatial dynamics of processes like receptor clustering, molecular

crowding, endocytosis. For that reason spatial processes can particularly benefit from

insights obtained by computational modeling.

To seize on the issues of considering spatial processes in cellular as well as computa-

tional biology, this thesis focusses on the lipid rafts/receptor interaction and its impact

on signal transduction. Lipid rafts are small, dynamic structures that are crucially in-

volved in the spatial organization of the cell membrane, hence play a central role in signal

transduction. The small-scale, dynamic nature of lipid rafts hampers their exploration in
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vitro, but also leads to severe difficulties when it comes to modeling their dynamics in the

context of signal transduction. With lipid rafts dynamics and their involvement in signal

transduction being the central scope of this thesis, this work provides ample evidence

why neglecting spatial aspects of signal transduction is problematic and addresses the

challenges that arise from the need of spatial representations in computational modeling.

1.2 Biological Background - Initial events in signal trans-

duction and the role of lipid rafts

Ligand binding and receptor activation are the initial steps in cellular signal transduction

and provide the opportunity to capture extracellular signals and transduce them inward

to control target proteins or gene expression [114]. To actually induce an intracellular

signaling cascade the ligand has to be successfully bound by the receptor established

and the resulting ligand-receptor complex has to be maintained for a certain amount of

time. This means the strength/effectiveness of the signal transduction depends on how

many ligand can be bound by receptors and how stable the complex is, i.e. how long

the interaction between receptor and ligand lasts.

However, the formation as well as the stability of the receptor complex is not only af-

fected by the ligand-receptor affinity, but also by the interaction with other membrane-

associated proteins, such as G-proteins, coated pit adaptors, cytoskeletal elements or

other receptors. Thereby the interaction may eventually lead to the formation of a

ternary complex, consisting of ligand, receptor and peripheral protein. As a result the

binary ligand-receptor complex additionally binds to the peripheral protein yielding a

ternary complex. The impact of such receptor coupling interactions and the formation

of a ternary complex is two-fold. On the one hand, the association and dissociation rates

for receptor-ligand binding can vary significantly between binary and ternary complexes

- a fact that has to be taken into close consideration when analyzing experimental

data. Renown examples for this effect are receptor/G-protein coupling and EGF re-

ceptor/adaptor coupling [45, 84, 115, 117]. On the other hand, the interaction with

membrane-associated proteins induces further signaling events, like internalization (en-

docytosis) and recycling processes or receptor accumulation (see Fig. 1.1).

Note, that the kinetics of these cellular regulation mechanisms are determined by the

signal transduction reactions on the one hand and the molecules’ mobility (e.g., diffusion

and active transport) on the other. According to the classic fluid mosaic model of the

cell membrane, introduced by Singer and Nicolson in 1972, the lipid bilayer is a neutral

two-dimensional solvent in which proteins diffuse freely [187]. Therefore it has long been
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Figure 1.1: The ligand receptor pathway.

common sense, that membrane-associated proteins have a similar lateral diffusion coef-

ficient and are homogeneously distributed throughout the membrane. This lead to the

general assumption that the impact of molecular mobility on the signal transduction and

in particular on receptor dynamics can be neglected when studying signal transduction

pathways. Within the last two decades, however, it became apparent, that the membrane

comprises a complex and highly compartmentalized structure, characterized by large

stable multi-receptor-complexes (often termed signalosome), actin-mediated cytoskele-

ton fences, and mobile lipid rafts [207]. The ascribed static and dynamic organization of

the membrane significantly alters the diffusional properties of membrane-bound particles

thus leads to highly inhomogeneous spatial distribution, having major implications for

the dynamics of receptor interactions. Indeed an increasing number of studies manifest

the understanding, that the impact of the molecules’ mobility on signal transduction is

much larger than originally assumed. Meanwhile it has become well accepted, that the

assumption of homogeneity does not apply in the cytoplasm and particularly not in the

plasma membrane. This work aims to contribute to the understanding of how spatial

membrane dynamics influence signal transduction processes. Thereby the primary focus

is set on lipid rafts and the question why they have such a significant effect on receptor

signaling.
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1.2.1 Lipid Rafts as essential feature of spatial membrane dynamics

Lipid rafts are small, mobile local assemblies in the cell membrane composed of highly

concentrated saturated sphingolipids, cholesterol and proteins [122, 153]. They are mo-

bile entities, most likely performing lateral diffusion within the membrane. Moreover

lipid rafts possess a very dynamic life cycle, i.e. depending on the local lipid composi-

tion as well as protein density, lipid rafts may spontaneously emerge, disappear or be

internalized and recycled; further they are also subject to growth, shrinkage or merging

processes [205]. In fact, the lipid composition of the membrane determines the amount

and the characteristics of lipid rafts, i.e. the average size, life span and concentration

of lipid rafts. Therefore lipid rafts are the most dynamic feature of spatial membrane

dynamics and therefor extremely difficult to study in vitro.

However, the spatial dynamics of lipid rafts are of particular interest for a number of

reasons. Due to their specific composition, they exhibit a reduced fluidity. This means,

the movement of receptors inside rafts is significantly slowed down, which in turn influ-

ences the general diffusion and localization of transmembrane receptors [19, 122]. The

slow down of the protein’s diffusion by rafts is considered as moderate on the short time

scale but strong on the long time scale [151]. Thereby receptors and other membrane-

bound molecules are temporarily localized and enriched inside rafts, which heavily in-

fluences the signal transduction, as demonstrated in several in vitro and in silico studies

[58, 139, 150, 163].

Likewise, lipid rafts are involved in the regulation of various signaling pathways and

have been related to a continuously growing list of diseases, including immune disorders,

Alzheimer’s and Parkinson’s diseases as well as viral and bacterial infections (for a com-

prehensive review, see [185]). Another important property is their ability to specifically

include and exclude proteins. Thereby lipid rafts are capable of selectively concentrat-

ing proteins in order to facilitate the assembly of signaling complexes [74]. However,

not only the interaction between membrane-bound molecules may be facilitated by lipid

rafts, but also the binding of cytosolic molecules to transmembrane receptors and the

subsequent formation of a ternary complex [29, 67].

1.2.2 Approaches to studying Lipid Rafts

The previously described static and dynamic characteristics of lipid rafts illustrated the

impact of the membrane’s spatial organization on receptor dynamics and prove that a

thorough consideration of space is required when studying signal transduction pathways

[164].
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While the structural organization of the membrane and the heterogeneous distribution

of membrane proteins is undisputed, researchers have long been and still are struggling

to determine lipid rafts characteristics and to evaluate their actual impact on receptor

interactions and signal transduction [2]. Even though a number of complementary ap-

proaches has been available to study lipid rafts and their potential involvement in signal

transduction, the resulting experimental data are often unambiguous [149]. Moreover

the size of lipid rafts in unstimulated, resting cells is smaller than the optical diffraction

limit (∼ 300nm) rafts can and have only been visualized either after crosslinking/ligating

raft molecules or at low temperatures [112]. Therefore the very existence of lipid rafts

has long been questioned and controversially discussed. Eventually, recent advances

particularly in the field of microscopy have confirmed the existence of nanoscale liquid-

ordered and liquid-disordered microdomains predicted by the raft hypothesis and allowed

to determine essential characteristics, like life span and size of lipid rafts in vitro [16, 74].

In vitro approaches

Notably, a number of important insights about lipid rafts are the result of computa-

tional studies. Modeling and simulation offers the opportunity to test, support, or falsify

hypotheses about underlying mechanisms of lipid rafts mediated signaling. Therefore

in-silico experiments provide a valuable alternative to wet-lab experiments. In the fol-

lowing we shortly evaluate what experimental approaches are available to analyze lipid

rafts, what data they yield and why modeling indeed proves a complementary approach,

in particular when studying the impact of lipid rafts on signal transduction.

Detergent resistant membranes (DRM)

There are various experimental techniques to study lipid rafts in vitro, each with different

scope, advantages and pitfalls. One of the most common approach is to identify proteins

that are located within detergent resistant membranes (DRM). Thereby lipid rafts are

set equal with membrane domains, that cannot be extracted by non-ionic detergents.

Accordingly proteins found within DRMs are considered as raft-associated. Undoubtedly

this method is very usefulness and easy to apply, however it also has several pitfalls, as it

strongly depends on the experimental conditions and often leads to controversial results

[2, 186].
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Lipid rafts disruption

Another effective and commonly used approach is the disruption of lipid rafts by manip-

ulating the cholesterol content of the membrane. Thereby pharmacological agents, like

nystatin and methyl-β-cyclodextrin are applied to either attenuate cholesterol produc-

tion or directly deplete cholesterol from the membrane. This method is primarily used

to study the physiological relevance of certain raft-associated proteins or the general role

of lipid rafts in signal transduction pathways. However, as with any pharmacological

agent, the cholesterol manipulation may have severe side affects, resulting in altered

cellular physiology and biased experimental results [132].

Biophysical and Imaging techniques

Lastly, imaging and biophysical techniques have provided valuable data regarding lipid

rafts characteristics in dependence of the cellular state (active or inactive) and the

lipid composition of the membrane [47, 194, 195]. In fact, lipid rafts diameters in the

wide range of 10nm - 700nm have been reported using different techniques including

fluorescence resonance energy transfer (FRET) [70, 74], electron microscopy [109, 163],

fluorescence correlation spectroscopy [120], to name only a few. The same variability has

been observed for the life time of lipid rafts spanning from milliseconds [52], to seconds

[16] and even minutes, as e.g. seen in the case of T-cell microclusters [23, 25].

Even though these methods are powerful approaches with the major advantage of not

relying on cell disruptions, they are not free of pitfalls. Notably, most of the visualization

techniques require fixatives, protein labels or crosslinkers like antibodies and cholera

toxin. Each of these compounds influence lipid rafts constitution and typically induce

or at least promote the clustering of raft molecules. After all, there is still a need for

an improved methodology to further elucidate the nature of these nanoscale, dynamic

membrane structures [2]

In silico approaches

Similar to the experimental techniques there exists various modeling and simulation ap-

proaches that have been applied to study lipid rafts. Each method employs a different

level of abstraction and typically the level of detail scales with the computational com-

plexity, i.e. one has to trade speed for accuracy.
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Molecular Dynamics

The most detailed in silico approach is based on molecular dynamics simulations. Such

high-detailed simulation approaches consider individual membrane-integral proteins and

the surrounding lipid bilayer on atomistic scale. This provides not only means for the

isolated investigation of the molecular mechanisms underlying the formation of lipid rafts

and their association with membrane proteins, but also to analyze the consequences of

individual environmental factors, like varying lipid composition and local protein con-

centrations [47, 157]. Recent simulation studies explored the effects of protein clustering

on diffusive behavior of lipids and membrane proteins and on the formation of raft-like

assemblies (e.g. [27–31]). Dissecting the individual impact of the diverse environmental

factors that influence raft protein interaction contributes in resolving conflicting behav-

ior observed in some experiments [157].

Grid-based approaches

To explore the impact of lipid rafts on the diffusion and distribution of receptors on

longer time scales (like milliseconds or seconds) a more coarse-grained approach is re-

quired. Studies addressing this question typically employ particles based approaches,

where proteins are characterized by a position, a center of mass and their random move-

ment being modelled as Brownian motion within a two-dimensional grid (the membrane).

Most often the two dimensional grid resembles is scaled, such that the size of an indi-

vidual grid cell approximates the diameter of a protein and only one protein may reside

on a grid cell. Lipid rafts are considered as confined areas within the grid that [wield-

/comprise] slightly different environmental characteristics, such as a reduced diffusion

coefficient. This means particles located within a raft-associated grid cell are e.g. sub-

ject to a reduced mobility. With this approach a nonlinear impact of varying lipid rafts

characteristics, like density, size and fluidity on protein diffusion and accumulation was

revealed and anomalous diffusion coefficients for different lipid rafts regimes were deter-

mined [150, 151].

Mathematical Modelling

While mathematical approaches, typically based on ordinary differential equations (ODE),

are most commonly used to study signal transduction networks, there are only a few

studies, that more or less fall in this category. Turner et. al. used a sophisticated

mathematical model to determine the life time of lipid rafts in dependence of lipid rafts
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growth and recycling processes. Whereas Saitou et. al. performed a combined analysis

that included mathematical modeling and in vitro experiments, to analyze the involve-

ment of lipid raft in the regulation c-Src activation. Interestingly their results provided

evidence that c-Src function is dependent on the lipid-raft volume [171] Lastly, ODE

models that describe subsequent signaling events in EGF signaling have been coupled

with stochastic MC approaches, like the one described before [58]. Intriguingly, the

results of this study suggest an ambivalent role of lipid rafts in G-protein coupled re-

ceptor signaling (GPCR), i.e. rafts can either enhance or attenuate GPCR signaling.

This hybrid approach was apparently the first to embed receptor-raft dynamics in an

actual model of receptor signaling, hence analyzing the effect of raft-mediated receptor

organization on a signal transduction pathway.

Pathway-related studies

In fact models that consider lipid rafts dynamics in the context of signal transduction

are surprisingly rare. There exists numerous computational and mathematical studies

analyzing the impact of receptor co-localization and clustering on signaling, whereas,

to our knowledge, there exist only the two studies that explicitly include the effect of

lipid rafts on the actual level of signal transduction [58, 171]. Intriguingly both studies

revealed a crucial, but nonlinear impact of lipid rafts on the signal transduction pathway

under study.

Apparently there is a great discrepancy between the ambiguous role that lipid rafts play

in signal transduction and the nominal attention it currently receives in systems biology.

1.3 Summary and aim of this work

Lipid raft-dependent receptor dynamics have been well characterized by small scale

computational as well as biophysical and imaging-based approaches. As a result, it is

meanwhile well accepted that the spatial organization of membrane bound proteins in

terms of diffusion, localization and protein-specific aggregation is tightly regulated by

lipid rafts. These effects crucially depend on environmental factors like lipid composition

and local protein density within the membrane.

At the same time, lipid rafts have been reported to be involved in a large number of

central signaling pathways, such as differentiation (Wnt), proliferation (EGFR) and

immune response (T-cell signaling). This means, the regulation of lipid rafts actually

affects numerous physiological processes. However, the actual impact of lipid rafts on

subsequent signaling events is poorly explored compared to the knowledge gained about
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receptor-raft interaction. Only a handful of experimental and even less computational

studies actually consider the effects of receptor-lipid rafts interaction on signal trans-

duction.

This apparent discrepancy is the primary motivation for this thesis. Here we aim to

explicitly analyze how raft-dependent receptors dynamics affect on both, individual sig-

naling events as well as an entire signaling transduction pathway. In other words, we

aim to study lipid rafts-dependent signaling on the micro- and on the macroscopic scale.



Chapter 2

Modeling the diffusion dynamics

of plasma membrane receptors

under the influence of lipid rafts

In this chapter a detailed, spatial model of the plasma membrane is developed to capture

lipid rafts and receptor diffusion dynamics, as well as the spatial effects resulting from

their interaction. The goal is to arrive at a model that represents varying lipid rafts

characteristics, such as density, size, mobility and fluidity and the interdependent diffu-

sion of lipid rafts and receptors. This allows to analyze the impact of the aforementioned

lipid rafts characteristics on the spatial organization of receptors and on subsequent sig-

naling events, like the formation of a ternary complex between activated receptors and

peripheral proteins.

2.1 Modeling small scale lipid rafts dynamics

As described in Section 1.2, the cell membrane plays a significant role in signal transduc-

tion, as it directly interacts with the extracellular space by transmembrane receptors.

The static and dynamic organization of plasma membranes leads to highly inhomoge-

neous spatial distributions, demanding a thorough consideration of space when modeling

and simulating such systems [38]. Thereby one of the key player in spatial membrane

dynamics are lipid rafts. They imped the diffusion of membrane-bound molecules, such

as membrane integral receptors. As a result lipid rafts promote the dimerization, activa-

tion and aggregation (clustering) of receptors [37, 44, 58]. To study lipid rafts dynamics,

its impact on receptor diffusion and the arising consequences for subsequent signaling

11
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events, a detailed spatial model of the plasma membrane is required.

When modeling receptor and lipid rafts dynamics it is generally important to take the

availability of the reaction volume, i.e. excluded volume effects into account. Excluded

volume effects can only be captured by individual based approaches that track the

movement of individual particles and their size in space [12]. There exists a plethora of

individual-based approaches and each method employs a different level of abstraction.

Typically the level of detail scales with the computational complexity, i.e. one has to

trade speed for accuracy. However, the level of abstraction required to describe spa-

tial dynamics strongly depends on the subject of interest and the addressed scientific

questions. Therefore we will first carefully consider, what level of detail, i.e. spatial

resolution and what model features are required to capture the interdependent spatial

dynamics of lipid rafts and receptors, before we actually describe the plasma membrane

model that has been implemented.

2.1.1 Model features of microscopic lipid rafts dynamics

However, in addition to the excluded volume effect, the interaction between receptor

and lipid rafts is characterized by complex spatial interdependencies that have to be

described properly in an individual-based model. First, a representation is required

for the localization of particles inside a lipid raft. Second, due to their composition,

lipid rafts reduce the diffusion coefficient of raft-associated particles. Accordingly the

diffusion coefficient depends on the location of the particle. Third, we consider rafts as

moving entities. This has two major consequences. First the movement of lipid rafts has

to be represented in the model; and second, particles that are contained within lipid rafts

are not only subject to their own movement, but also to the movement of the raft they

are located in. This means, the modeling and simulation approach has to provide means

to 1. describe a nesting of particles as well as for the shuttling of the receptors into and

out of the lipid rafts 2. account for the reduced diffusion coefficient of raft-associated

particles 3. incorporate combined movement of raft and receptor.

2.1.2 Individual-based approaches to model microscopic raft/receptor

dynamics in the context of signal transduction

Individual-based approaches employ the highest level of detail by considering each in-

dividual molecule, i.e. its shape, its position (coordinates) and motion (trajectory) in

continuous space. The spatial and temporal scale strongly vary between different ap-

proaches, reaching from nanometers to centimeters or millimeters and femto- or picosec-

ond to simulated seconds or minutes. Highly realistic simulation approaches incorporate
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explicit representations of the position and energy of every atom in the system and and

consider detailed chemical reactions, like formation and breaking of bonds between single

atoms. Such fundamental approaches mainly operate on very low spatial and temporal

scales (pico- or nanometer/seconds) yielding a very accurate and realistic representation

of the molecular processes under study. Of particular interest for this work are recent

studies that analyze the mobility, dimerization and clustering of individual membrane

proteins with regard to the physical properties of the surrounding lipid environment, i.e.

considering lipid packing, lipid rafts or protein crowding), like [69, 140, 157]. However,

due to their computational complexity, these high-resolution approaches are infeasible

to simulate the interaction of a larger amount of receptors and lipid rafts over time scales

of seconds to minutes, like it is required for the scope of this work.

On the other hand, individual-based simulation approaches can also employ a very

simplistic particle-based representation, in which all molecular properties, despite the

position, the size and diffusive motion of the involved molecules are disregarded and

chemical reactions, if considered at all, are solely diffusion-limited. Therefore particle-

based approaches seem equally suited regarding their temporal and spatial scale.

Corresponding modeling and simulation methods can be narrowed down to approaches

that fall into one of the two categories: continuous and discrete/grid-based.

Individual continuous-based approaches

In continuous approaches particles are associated with real-valued coordinates, a shape

and a manner of movement (most often diffusion in terms of Brownian Dynamics (BD)).

However, in continuous space it is challenging to implement the localization of particles

within lipid rafts and in particular the shuttling process, i.e. consumption of a particle

by the larger lipid rafts. For particles having a distinct shape and a real valued position

in continuous-based approaches, the transition of a particle into or out the lipid raft

requires two crucial steps. First the collision has to be detected between particle and

lipid raft; second the particle has to be placed at some location at the in- or outside

of the raft in terms of a well defined jump procedure. Accordingly for crowded environ-

ments the involved steps, like collision detection, are computationally exhausting, since

the frequency of collision events will be significantly increased yielding exceedingly small

time steps between individual collisions and very high computational costs. This is a

general drawback of BD simulation with explicit particle representation in space, i.e.

with position, momentum and shape. With a physiological concentration of receptors

within the plasma membrane of about 30 %, we are indeed faced with a large number



Chapter 2 Lipid Rafts Modeling 14

of particles in a crowded environment, which renders a continuous individual-based so-

lution impractical for a combined lipid raft/receptor model.

Individual grid-based approaches

In grid-based approaches, i.e. Cellular Automata (CA), each grid-site is characterized by

a finite number of states, that evolve in discrete time according to a set of local transition

rules (state automata) depending on its own state and the state of its neighbors. Thereby

spatial information can only be provided in terms of lattice coordinates. Accordingly,

any information about the molecule’s shape and exact size is disregarded. However, a

coarse representation of the molecular size can be retained, if the exclusion principle

applies, i.e. if lattice cells may be occupied by at most one particle at a time and if

the lattice cell size is set to the approximate diameter of the (smallest) molecule in the

system. Thereby volume exclusion and anomalous diffusion effects are still accurately

represented, which allows for detailed micro-scale simulations of diffusion processes. As

a consequence grid-based approaches are typically more efficient than continuous-based

dynamics. Furthermore due to the lattice-based discretization of space, the boundaries of

particle and rafts can be directly assessed in terms of neighborhood. Also the transition

of a particle into or out of rafts simply refers to the transition of one grid to a neighboring

one according to the transition rules equally defined for all grid-sites. As a result both

steps involved in the localization and shuttling of particles and lipid rafts, i.e. collision

detection and particle placement are clearly defined, hence easy to handle in grid-based

approaches.

Summary

After all, Cellular Automata/grid-based approaches are apparently best suited to de-

scribe the combined spatial dynamics of receptor and lipid rafts. Indeed, this is in line

with the numerous amount of studies, that apply individual, grid-based approaches to

study non-linear diffusion effects on the membrane, like sub-diffusion and raft-association,

and their impact on receptor localization, cell polarization and eventually signal trans-

duction [37, 38, 148, 150].

However, the large majority of these studies did not implement their models according

to the CA-formalism, but with an almost identical approach termed lattice-based Monte

Carlo (MC). The main difference between these individual grid-based approaches is that

in lattice-based MC approaches particles are considered individually from a global view.

This means, the state of a grid cell is changed according to global rules, instead of local



Chapter 2 Lipid Rafts Modeling 15

transition rules that apply for all individual cells, as done in CA. Also, the update of the

lattice is performed asynchronously, i.e. state changes are not applied synchronously for

all grid cells, but one after another. Moreover, in most of the implementations model and

simulator are closely intertwined, which makes it difficult to distinguish and compare

between individual models, and to reproduce simulation results.

In this work however, we stick to the CA formalism and provide a model that represents

all model features we identified to model and simulate the micro-scale lipid rafts dynam-

ics. In the following the concept and the main components of the CA-based membrane

model will be described in detail.

2.2 A Plasma Membrane Model based on Cellular au-

tomata

The main requirements to model spatial membrane dynamics in terms of the CA for-

malism are rule schemata that allow the specification of random movement and collision

handling as well as group behavior to represent the lateral diffusion of particles and

lipid rafts dynamics, respectively. Due to synchronous update scheme of the CA formal-

ism, dependencies may arise from concurrent collisions in neighboring cells. Common

way to circumvent this problem, is to introduce a multi step evaluation of the CA, i.e.

to distinguish between collision and movement step. Thereby potential conflicts are

avoided.

2.2.1 Lattice-Gas Cellular Automata: Particle Movement for cellular

automata

Modeling microscopic particle movement is not straightforward in traditional CA. Typ-

ically, each cell in the CA lattice possesses one of the two possible states: occupied

or empty, i.e. each cell can contain at most one individual particle at a time. As a

result, random movement and particularly collisions can hardly be resolved with the

traditional (synchronous) update scheme of CA without additional information. There

exist a number of cellular automata models that represent individual particle movement

[30]. However, the Lattice Gas Cellular Automata (LGCA) provides the most natural

representation of lateral diffusion, as it considers the discrete dynamics of gas parti-

cles moving and colliding on a two-dimensional lattice conserving mass and momentum.

We thus adopt the basic idea of LGCA to model the lateral movement of membrane-

integral proteins (e.g. receptors). In the following the concepts of LGCA are briefly
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introduced and followed by a discussion of how these concepts can be used to model

spatial membrane dynamics.

Basic Introduction of Lattice Gas Cellular Automata

LGCA were introduced in 1973 by Hardy, Pomeau and dePazzis (also known as HPP

model) to study classical particle dynamics and transport phenomena in fluids [77]. The

idea was to model motion and interaction of individual particles with a simple, discrete

approach that conserves mass and momentum and eventually follows the Navier-Stokes

equation of hydrodynamics. However, only the subsequent extension of the model by

Frisch, Hasslacher, Pomeau (FHP model) was sufficient to yield the Navier-Stokes equa-

tion in the macroscopic limit [62]. Fritsch et. al. (1986) revealed that besides mass and

momentum conservation another third condition is crucial for the correct simulation of

the Navier-Stokes equation in terms of LGCA: The lattice has to possess a certain sym-

metry. While the quadratic lattice employed by the HPP model failed to reproduce the

Navier-Stokes equation due to the inadequate symmetry, the hexagonal lattice employed

by the FHP model is sufficient for simulations in 2D. Notably, for (random) diffusional

processes, on the other hand, it is sufficient to consider the HPP [30]. The LGCA is an

extension of the classical CA approach with specific state space and transition rules. A

CA can be described as a tuple C = {L,S,N ,B,Φ} [48], consisting of a regular lattice L
of autonomous cells, and a transition rule Φ defining the state change of an individual

cell c ∈ L during an update step according to the cell’s state s ∈ S and the local neigh-

borhood N . CAs allow to mimic complex system dynamics in terms of simple transition

and interaction rules (e.g., [81, 133, 158]). However, as explained above, modeling par-

ticle movement as done in LGCA, is not straightforward in traditional CA.

The LGCA approach circumvents the limitations of traditional CA approaches by ex-

tending each cell c ∈ L by a number of velocity channels (c,vi), i = 1, .., b, that specify

the direction and the momentum of a particle. Typically, there is one velocity channel

for each adjacent cell and a number of additional resting channels (β) with zero veloc-

ity. In general, a variable number of rest-channels may be introduced, yielding a total

number of b̃ = b + β velocity channels per cell. However, we restrict our approach to

exactly one zero-velocity channel per cell β = 1. That means for any cell in a quadratic

lattice, as employed in the HPP model, there are five velocity channels, whereas cells in

the hexagonal lattice of the FHP model comprise six velocity channels (cf. Figure 2.1B).

In general, for two-dimensional lattices, as considered here, the set of velocity channel

can be represented as 2D vectors indicating the direction of moving particles. In case of
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Figure 2.1: Representation of (unoccupied) velocity channels of an individual cell according
to the (a) HPP and (b) FHP model, i.e. LGCA with quadratic and hexagonal lattice.

the HPP model, the velocity channels are defined as follows:
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(see Figure 2.1A). Further, the state of an arbitrary cell at time t, s(c, t), can be described

by the cell configuration η(c, t), which relates to the occupation of the velocity channels:

s(c, t) = η(c, t) (2.1)

η(c, t) := (η1(c, t), . . . , ηb̃(c, t)) (2.2)

with ηi(c, t) ∈ {0, 1}, i = 1, . . . , b̃ being the occupation numbers of the velocity channels

(c, vi) indicating the presence (ηi(c, t) = 1) or absence (ηi(c, t) = 0) of a particle. The

total number of particles present at cell c, also referred to as particle density, is defined

as

n(c, t) =

b̃
i=1

ni(c, t). (2.3)

Further, in contrast to classical CA, the transition rule of LGCA is split into two distinct

parts: a local interaction, or collision step and a neighborhood-dependent propagation

step. Accordingly the transition operator is defined as the composition of interaction/

collision and propagation:

η(c, t+ 1) = ΦP

ΦC (η (c, t))


(2.4)

This allows the propagation of particles between individual cells with due regard to mass

and momentum conservation while keeping the corresponding update rules as simple as
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Figure 2.2: Collision handling according to HPP model. Velocity channels occupied by
particles are gray-colored.

possible, as explained in the following.

During the interaction/collision step the configuration of the velocity channels of all

c ∈ L are changed according to a model-specific interaction/collision rule ΦC , i.e.

ηCi (c, t) = ΦC
i (η(c, t)) , i = 1, . . . , b̃,

In LGCA the interaction/collision rule is used to resolve potential particle collisions

according to the collision handling scheme of the current model. In the HPP model, for

instance, there is only one collision configuration, i.e. if two particles occupy opposite

velocity channels of the same cell. In this case the collision handling is straight forward

as the directions of the involved particles are swapped by 90 degrees (Figure 2.2). In

contrast, the collision handling of the FHP model is much more complex. When consid-

ering one rest channel per cell as well as all collisions that conserve mass and momentum

at each site, one obtains a total number of 76 possible collisions. A complete list of the

collision rules of the FHP model can be found in [22].

During the deterministic propagation step, the state of each cell is propagated to a

neighboring cell ΦP
i (c, t) : ηCi (c, t) → ηi(c + vi, t + τ) , i.e. each particle is moved

according to its direction, which is described by the propagation operator. Hence all

particles are transferred simultaneously to the corresponding neighboring node and,

following momentum conservation, placed on the same cell/velocity channel again (cf.

Figure 2.3). Combining both interaction and propagation rule the changes of a cell’s

configuration during one time step τ is described as:

ηi(c+ vi, t+ τ) = ηCi (c, t), i = 1, . . . , b̃. (2.5)

Note, that in this approach particles can only alter the direction of their movement by
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Collision Propagation

t+1t

Figure 2.3: Collision and Propagation step according to HPP model during one time step on
an arbitrary section of a square lattice. Occupied velocity channels are indicated by gray color.
Note, that particles may be transferred to neighboring cells, that are outside of the displayed
section and hence excluded from the illustration. Due to this, the number of particles displayed

may vary between different time steps

means of collisions and otherwise perform ballistic motion. However, there also exist

stochastic implementations of the LGCA that allow the simulation of random movement.

A probabilistic LGCA model for random movement

The previously described deterministic dynamics of lattice gas cellular automata al-

low the modelling of ballistic movement, i.e. particles change their direction only after

colliding with another particle. However, movement of membrane-associated proteins

is characterized by brownian motion, i.e. particles change direction in a probabilistic

way. Therefore we have to consider probabilistic LGCA approaches that model random

motion instead, such as [48, 81] In probabilistic LGCA the deterministic collision/inter-

action operator ΦC is typically replaced by a probabilistic reorientation (shuffling) rule

ΦS , while the subsequent propagation (ΦP ) remains unchanged. This means, before

particles are transferred to the neighboring cells as explained in the previous section,

the configuration of each cell, i.e. the occupation of the velocity channels is permuted

randomly (see Fig. 2.5). The cell configuration after shuffling is defined by:

η′(c, t) =

ΦS
i (η(c, t))

b
i=1

, with P(η → η′)(c, t) (2.6)
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1 channel (1/4)

2 channel (1/6)

3 channel (1/4)

4 channel (1)

Figure 2.4: Possible cell configurations depending on the number of channels
occupied

where P is the state- and time dependent transition probability that transforms the given

channel configuration η into a certain permution η′ [30, 48]. For random walk models,

the corresponding transition probabilities are defined as:

P(η → η′)(c, t) =
1

Z
δ(n(c, t), n′(c, t)),

where the normalization factor Z corresponds to the number of all possible configura-

tions that retain the particle density n(c, t) of the given cell c with due regard to mass

conservation (cf. Fig. 2.4) [80]:

Z =


η′(c,t)

δ

n(c, t), n′(c, t)


=


b

n(c, t)


.

LGCA incorporating randommovement are promising models for studying and analyzing

transport and interaction processes in biological systems [30, 48]. In particular these

model have been extensively used in the context of cell migration [80], tumor growth

[144, 158] and tumor invasion [81]. Further, in contrast to cellular automata based fluid

models, it is sufficient to consider square lattices here, since diffusional processes do not

require a fourth-order tensor for their description [30, 81].
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Shuffling Propagation

t+1t

Figure 2.5: Shuffling and Propagation step according to a probabilistic LGCA model during
one time step on an arbitrary section of a square lattice. Occupied velocity channels are
indicated by gray color. Note, that particles may be transferred to neighboring cells, that are
outside of the displayed section and are hence excluded from the illustration. Due to this, the

number of particles displayed may vary between different time steps

Why common LGCA models are not sufficient to represent spatial membrane

dynamics

LGCA indeed form a promising basis for the modeling of lateral diffusion in spatial

membrane dynamics as they provide a concise way of representing (random) movement

in the context of CA. However, deterministic and probabilistic LGCA models operate

on a mesoscopic scale, as they consider only one particle type1 and no individual-based

collision handling. This is a major shortcoming when modeling detailed receptor and

lipid rafts dynamics. To illustrate this issue, let’s refer to a situation, where two individ-

ual particles are located in neighboring cells at directly adjacent velocity channels. In

common LGCA models, both particles would simply switch positions (cells) during the

propagation step, instead of being reflected due to a collision. Such collision handling is

unproblematic, as long as the system only refers to uniform particles that are not fur-

ther attributed or specified. In our approach, however, we aim to distinguish between

different types of membrane proteins and receptors and therefore require an individual

based representation of particles. In this case common LGCA models cannot be applied

one-on-one for simulating spatial membrane dynamics, because they contradict the ex-

clusion condition of individual-based approaches.Nevertheless, the general concept of

1Note, that multi-component LGCA are capable of representing different types of particles, which,
however, reside on separate lattices and therefore the exclusion principle is not implied/applied between
different types of particles
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probabilistic LGCA provides a sound basis that we adopt to create a 2D lattice-based

membrane model that is specifically tailored to our needs.

2.2.2 Modeling individual-based random motion in LGCA

To construct a spatial membrane model incorporating individual receptor movement, we

need to distinguish between the individual (particle) entities. To stick to the notation

used to this point, the term particle is further used to refer to any individual membrane

entity with the approximate size of a protein (2nm). To represent the two-dimensional

membrane layer, we employ a two-dimensional lattice and, following the notation of the

2 dimensional HPP model, attribute each cell with five velocity channels, each for one

direction and a resting channel. Any channel can be occupied by exactly one individual

entity.

Individual-based collision handling

When modeling the particles’ dynamics, however, one has to account for the exclusion

principle of individual based approaches. Therefore, instead of one collision, we need to

consider two different types of collisions: either when two individual particles approach

the same cell (cf. Fig. 2.6a), or when neighboring particles move in opposite direction

(c.f. Fig. 2.6b). In the following we denote the first type as field collision and the

latter as direct collision. While the first type of collision (field collision) resembles the

collision propagator of common deterministic LGCA models, the second type (direct

collision) is neglected in the common LGCA models, because neighboring particles that

move in opposite directions as depicted in Figure 2.6b do not collide, but rather jump

over each other, literally spoken. For our model, however, we assume, that particles are

always reflected when colliding with one another, i.e. after the collision the involved

particles return to their previous cell. This means, for direct collisions the particles’

movement is directly rejected, and particles are located at the same cell at the end

of the current update step, see Figure 2.7a. In contrast, during field collisions, the

particles are actually transferred to the neighboring cell, but immediately assigned to

the velocity channel of the opposite direction. Hence only when the next update step

has been successfully executed, the particles return to their original position/cell (see

Fig. 2.7b for clarification). This approach resolves both collision types on an individual-

based level and further ensures that the traveled distance during collisions is kept equal

for direct and field collision events. However, as a consequence, the proposed individual-

based collision scheme has major implications not only for the collision handling, but

for the transition operator in general.
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(a) Direct Collision (b) Field Collision

Figure 2.6: The two different kinds of collisions that may occur in the implemented syn-
chronous CA approach under due regard of exclusion effects

  

Shuffling Collision/Propagation

t+1t

(a) Direct Collision

  

t+2t+1t

Shuffling Collision/Propagation Collision/PropagationShuffling

(b) Field Collision

Figure 2.7: The two different kinds of collisions that may occur in the implemented syn-
chronous CA approach under due regard of exclusion effects

Transition Operator for random movement of individual particles

To realize the individual-based collision handling as outlined above , we adopt the basic

ideas of the previously described deterministic and probabilistic LGCA approaches. In

doing so, we combine the collision handling of the deterministic HPP model with the

random motion approach of probabilistic LGCA and apply some modifications.

Basically the update rule of the presented membrane CA consists of a propagation and a

combined collision and shuffling operator. For the detailed description of the update rule

and the individual propagators, it is useful to extend the state of the velocity channels

in terms of incoming and outgoing slots, ηin(c, t) and ηout(c, t) to better distinguish



Chapter 2 Lipid Rafts Modeling 24

between incoming and outgoing information [31]. To account for the restriction that

channels can take up exactly one particle, only one slot per velocity channel may be oc-

cupied by a particle at a time. In the following the individual steps of the update rule,

and particularly the individual-based collision handling of our approach are explained

in detail.

As described above, and in accordance with the HPP model, the update routine starts

with the shuffling/collision step. At the initial situation, all particles are either placed

on a resting channel or on an incoming slot of a velocity channel. Based on the random

motion approach of probabilistic LGCA, during the shuffling/collision step all particles

are assigned to the outgoing slot of a randomly chosen velocity channel. However, if

several particles (up to the number of velocity channels) occupy a single cell concur-

rently, a field collision is caused in the respective cell. In this case, the distribution of

the particles, i.e. the shuffling of the particles, is not random, but deterministic. Con-

sequently, instead of randomly placing each particle on an unoccupied velocity channel,

particles are now switched from their current incoming slot to the outgoing slot of the

same velocity channel:

ηout(c, t) =



ΦS
i


ηin (c, t)

b
i=1

, n(c, t) = 1

ηin(c, t), else

(2.7)

Thereby particles are scheduled to move in reverse direction during the subsequent

propagation (c.f. Fig 2.7B), which accounts for the reflecting collision behavior. Note,

that the shuffling operator ΦS is only applied, when the cell c contains exactly one

particle. Consequently the corresponding transition probability P has a fixed value of

1/4 (cf. 2.6):

P

ηin → ηout


(c, t) = 1/4. (2.8)

The movement of individual particles thus only follows the random walk of Brownian

motion, when it is not subject to a (field) collision. In this case, the particle’s move-

ment is determined by a shuffling operator that resembles the orientation operator of

probabilistic LGCA. In the other case, i.e. for multi-particle movement in terms of a

field collision, a variant of the collision propagator of the HPP model is applied, with a

modified collision rule to account for the reflective collision behaviour. Accordingly, in

contrast to the 90◦ rotation applied in the HPP model, in our approach the particle’s

direction is always changed by a 180◦ rotation upon (field) collisions.

Similar to deterministic LGCA, the subsequent propagation operator transfers all parti-

cles from one cell to the neighboring one according to the particle’s direction. However,
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in our model the propagation operator does not only perform the actual transition of

particles, but it is also responsible for detecting and resolving direct collisions. We

thereby incorporate the particle transitions and the handling of direct collisions in one

operator. What might seem unusual from first view, becomes evident, when regarding

the dynamics in terms of outgoing and incoming slots. For this consider a pair of [neigh-

boring/contiguous] cells with (c,vi) and (c+ vi,vk) being adjacent velocity channels in

c and c + vi respectively. Given one of the velocity channels is occupied by a particle,

i.e. ηouti (c) = 1 and ηoutk (c + vi) = 0, the propagation operator simply transfers this

particle to the incoming slot of (c+ vi,vk):

ΦPT
i (c, t) : ηouti (c, t) → ηink (c+ vi, t+ τ)

(2.9)

k = i+ 2 ·
d=2
l=0

vil ,

Note, that this propagation rule slightly differs from that of common LGCA models (cf.

2.2.1).

However, in the case when both outgoing slots of the adjacent velocity channels are

occupied, i.e. ηouti (c) = ηoutk (c + vi) = 1, the movement of both particles causes a

direct (head-on) collision and ought be rejected (c.f. Fig 2.7a). Accordingly, instead of

transferring both particles, the colliding particles are reassigned from the outgoing slot

to the corresponding incoming slot of the same velocity channel:

ΦPC
i (c, t) : ηouti (c, t) → ηini (c, t+ τ). (2.10)

The same applies to ηoutk (c+ vi). In this way the reflecting effect of a direct collision is

represented.

During propagation, particles are now either transfered to the neighboring cells or re-

flected in terms of a direct collision, depending on the occupation of the local velocity

channel and its adjacent neighbor. The change in the occupation of a cell’s velocity

channel after propagation reads as:

ηink (c+ vi, t+ τ) =


ηouti (c, t) : δ


ηouti (c, t), ηoutk (c+ vi, t)


= 0

ηoutk (c+ vi, t) : else

(2.11)

After propagation, the time advances by the given time step τ and the particles are

immediately rescheduled for the next movement/update step.

In summary, to model the lateral diffusion of individual receptors in cell plasma mem-

branes, we combine basic concepts of common LGCA models. Thereby the transition
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operator Φ is composed of the two steps shuffling/collision and propagation. The shuf-

fling routine schedules the direction of the subsequent movement and thereby processes

field collisions, while the propagation step is used to detect and handle direct collisions

as well as to execute particle transitions.

2.2.3 Modeling Lipid Rafts - Multi-Scale modelling with Cellular Au-

tomata

The previously described approach allows the representation of random motion of in-

dividual particles associated or bound to plasma membranes. However, the lateral dif-

fusion of membrane-bound proteins is significantly influenced by lipid rafts with major

implications on their localization, activation and eventually on the subsequent signal

transduction (cf. 1.2). To characterize the impact of lipid rafts on these processes, the

current membrane CA model needs to be extended with an explicit representation of

lipid rafts including raft diffusion and raft/receptor interaction. Though, when modeling

lipid rafts and in particular their diffusion in the framework of CA we are faced with

severe difficulties for a number of reasons.

Rafts are moving entities that are significantly larger than common membrane particles,

like receptors. Accordingly rafts span a number of lattice cells, that have to change their

state in a coordinated and concurrent manner to account for arbitrary state changes of

rafts, in particular regarding motion. In addition, lipid rafts follow the same exclusion

principle as membrane particles, i.e. one cell cannot be occupied by more than one raft

at the same time. Obeying the exclusion principle for rafts requires sophisticated lo-

cal update rules, that are capable of handling the motion and collision of rafts properly.

However, the exclusion principle does not apply to the interaction of membrane particles

and rafts, i.e. receptors may be located within rafts (termed raft-associated receptor),

hence rafts and receptors can occupy the same lattice cell at the same time. In conse-

quence, the effects that rafts exert on raft-associated particles have to be incorporated

in the model as well.

Basically there exist plenty (multi-level) CA approaches that are capable of handling

objects larger than common lattice cell size and interacting objects on different spatial

levels. However, the huge majority of the approaches either applies asynchronous update

schemes that resemble agent-based systems [151, 204] or an hybrid approach, where the

diffusion of smaller particles like ions is modeled implicitly [30, 48]. Whereas non of

the given approaches obeys the interaction and collision scheme outlined above while

being based on a clear CA formalism with synchronous update scheme. Therefore,

following the ideas of multi-scale Complex Cellular Automata (CxA) [88] we develop

an new implementation that is tailored to the simulation and analysis of receptor/raft
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interaction in the context of signalling transduction. In the following the basic definition

of Complex Cellular Automata will be shortly introduced before describing the developed

receptor/raft model.

Complex Cellular Automata (CxA)

The basic idea of complex Cellular Automata (CxA) is to decompose a multi-scale

model into several (n) CA-based submodels, such that each submodel contains solely

processes that operate on the same or on a similar spatio-temporal scale. The individaul

submodels are coupled through communication channels and may dynamically exchange

information, while being executed separatly. All submodels are executed sequentually

and exchange information after each individual update. A CxA can thus be considered

as a set of coupled, self-contained cellular automata C = {C1, . . . Cn}, whose individual

dynamics depend on the input-output relations between the coupled/connected CA.

Accordingly the original definition of CA has to be extended, to allow an exchange and

processing of external information. Notably, for the sake of consistency, the definition

of CxA presented here follow the notation of Hoekstra et. al. (2010) [88]:

C = {A(δ,L, τ, T ),S,Φ, sinit ∈ S,u,O} (2.12)

where A is a more general description of the temporal and spatial domain of the CA.

The domain A is further specified by the formerly defined lattice L, the cell size δ as well

as the temporal scale T and the time step τ . Also, the initial state of each CA can be

explicitly defined by Sinit. In addition a field u and the functional O are included in the

definition. The field u provides additional information that has been passed from other

coupled CA or the environment in the course of each iteration, whereas the functional

O : S → Rd defines an observable, that specifies the quantity that shall be observed

during the execution of the CxA.

Based on the general description of the state of a CA at a certain time point s(t) ∈ S,
all CA submodels of a CxA evolve according to

s(0) = sinit[u0] (2.13)

s(t+ τ) = Φ[u; s(t)]. (2.14)
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The implementation of the submodel specific transition operator Φ basically resembles

the previously introduced collision-propagation update rule of LGCA, where:

Φ [u; s(t)] =

ΦB[uB] ◦ ΦP ◦ ΦC [uC ]


[s(t)]. (2.15)

Accordingly the collision operator ΦC and the newly introduced boundary condition ΦB

depend on external field parameters uC and uB. The additional operator ΦB allows to

modify the boundaries, hence the topology of the domain, with regard to the external

field parameter uB. This means, the domain of an individual CA Ci ∈ C is not fixed,

but may be changed through the interaction with other coupled CA. Thererby two fully

coupled, single-scale CA-submodels, that evolve according to the transition operator

defined in (2.15) have the following form:

s1(0) = sinit,1[s2]

s1(t+ τ) =

ΦB
1 [s2] ◦ ΦP

1 ◦ ΦC
1 [s2]


[s1(t)].

(2.16)

s2(0) = sinit,2[s1]

s2(t+ τ) =

ΦB
2 [s1] ◦ ΦP

2 ◦ ΦC
2 [s1]


[s2(t)].

In the given example both CAs are coupled in all the components and the external field

parameters contain the corresponding state of the coupled CA, i.e. the initial condition

as well as the boundary and collision operator of C1 depend on the state of the C2 and

vice versa. In a concrete implementation, the depicted general coupling concept might

lead to cyclic interaction between the submodels. Thus, the execution scheme has to be

carefully adapted to avoid a possible deadlock situation, which could e.g. occur when

each model depends on the initialization of the other.

However, the concept of CxA provides a suitable theoretical framework to represent

the ascribed raft/receptor dynamics. Thereby we aim to couple the cellular automata

model of individual receptor diffusion outlined above with one or more additional CA-

submodels that represent the raft dynamics. Though before we can introduce a submodel

describing lipid rafts dynamics, it has to be clear, what scales and processes can be con-

sidered in a separate CA model. Therefore, we first recapitulate the dynamic interaction

between lipid rafts and membrane-bound particles, in particular with regard to the dif-

ferent spatio-temporal scales involved, before introducing the basic ideas of the coupled

receptor/raft model.
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Spatio-temporal scales in a combined receptor/raft model

Lipid rafts and receptor dynamics are closely intertwined and most processes occur on a

similar, if not the same temporal and spatial scale. For a start, even though rafts are sig-

nificantly larger than receptors and span an arbitrary number of lattice cells, they have

the same step size (one cell) with regard to diffusion. Accordingly, in a coupled recep-

tor/raft model, both submodels have to be executed on the same temporal scale. At the

same time, raft-associated particles are hampered in their diffusion, which is reflected by

a reduced diffusion coefficient. Further the movement of raft-associated particles is also

coupled to the rafts’ motion. This means in addition to their own, reduced movement,

raft-associated particles are dragged along with the diffusing raft. This effect is termed

sweeping effect.

As a consequence, information about the spatial expansion and the (movement) direc-

tion of rafts has to be available for each individual lattice cell. Apparently, this is best

incorporated in a separate lattice-based submodel, with groups of lattice cells being as-

sociated to an individual raft entity according to its expansion (diameter) and under

consideration of the exclusion principle. Thereby the spatial information of rafts, like

position and expansion of each individual raft is implicitly stored/represented in the

raft lattice. The raft and receptor lattices have equivalent spatial domains, allowing a

simple, cell-weise coupling between both lattices. According to the CxA framework the

raft and particle submodels may continuously exchange information during the stepwise

execution of the update rule. Thereby the raft lattice may provide the information to the

particle model required to realize the impeded movement of raft-associated particles de-

scribed above. These two models are well suited to express the raft-receptor interaction,

but insufficient for representing individual rafts dynamics. However, to express state-

related raft properties, like neighborhood, direction of movement and collision status, a

further mechanism for the global coordination of raft-associated cells is required. As a

consequence a third, more abstract CA-submodel is introduced that describes the global

properties of rafts and their neighborhood, which is particularly required for modelling

lipid rafts movement and collision handling. This model is closely coupled with the raft

lattice, but also interacts with the particle lattice as we will see later.

Lipid Rafts Submodel(s)

To describe raft-specific properties and dynamics we introduce two additional CA-

models, Crl and Crg, that are closely coupled in terms of Complex Cellular Automata

(CxA). Both models [function] on the same temporal, but on a different spatial scale.

While the first submodel (Crl) relates to the spatial properties of the lipid rafts, like
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position, spatial extension and also the handling of movement updates, the second sub-

model (Crg) considers global, state-related parameters like neighborhood, direction of

movement and collision status. Accordingly we term both models local and global raft

model, respectively.

As mentioned in the previous paragraph, the local raft model is based on a lattice

domain, closely related to the lattice of the particle model. This means, the raft lattice

(Crl) has the same spatial domain, i.e. expansion and cell size, as the particle lattice.

Each individual cell of the raft lattice comprises five velocity channels and the state of

an arbitrary cell at time t can be described in terms of the cell configuration η(crl, t)

that relates to the occupation of the velocity channels, c.f. 2.4. For the raft lattice,

however, we modify the definition of the cell configuration. Instead of specifying a

general occupation of the velocity channel, we use an identifier to address the individual

raft (entity) that is associated to the current cell:

ηi(c
rl, t) = ν, ν ∈ {0, . . . , nrg}, i = 1, . . . , b̃, (2.17)

where nrg is the total number of rafts available in the system. We thus combine the

information of which raft occupies the velocity channel vi of the current cell and what

is the direction of the raft’s movement. For this, the definition particle density n(crl),

that refers to the total number of rafts present at cell crl, has to be adapted accordingly:

ni(c
rl) =


1 if ηi(c

rl) ̸= 0

0 else
(2.18)

n(crl) =

b̃
i=1

ni(c
rl) (2.19)

In contrast, the global raft CA-model (Crg) is not lattice based, but [uses] a more

abstract representation of the interaction between rafts. That is, the domain of the

global raft CA-model is loosely defined as directed graph (V, E), where V corresponds

to a set of cells, that are connected by a set of edges E. Thereby each cell crg ∈ V relates

to an individual raft entity. To specify the direction of the next movement, a global raft

cell crg constitutes five velocity channels. An edge ei ∈ E between two global raft cells

crg1 and crg2 indicates a pair of contiguous rafts and is specified as a tuple:

ej = {vi(crg1 ),vk(c
rg
2 )} (2.20)

where vi and vk determines the relative position of the neighborhood in raft 1 and raft

2 respectively. In general rafts are considered as contiguous, if they occupy two or more
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Figure 2.8: Neighborhood information in raft graph (Crg) based on the positional informa-
tion contained in the raft lattice (Crl).

adjacent cells in the local raft lattice (see Fig. 2.8 for further clarification).

Accordingly the relative position results from the position of the adjacent lattice cells.

The relative position of contiguous rafts plays a crucial role for the movement and

collision handling.

Collision handling of Lipid Rafts

Basically, lipid rafts follow the same exclusion principle and thus perform the same ran-

dom walk dynamics as described for particles. Accordingly, moving rafts are also subject

to the two different types of collisions, i.e. direct and field collision, we previously de-

fined in Section 2.2. However, the handling of raft collisions is far more complicated

than for particles. Due to the spatial extension of rafts, any collision event has to be

communicated through all lattice cells associated with the raft and multiple collision

events might occur simultaneously/concurrently in a single raft.

In our model, we assume that any collision of rafts leads to a rejection of the scheduled

move. This simplification is required to avoid a number of potential conflicts, in par-

ticular with regard to the interaction between rafts and particles. Due to the coupled

motion of rafts and particles, a field collision of two individual rafts e.g. might result in

an excessive accumulation of particles on a lattice cell, i.e. a situation when the number

of particles approaching a cell exceeds the number of available velocity channels.

Field collisions of rafts are caused the same way as for particles, i.e. if two non-contiguous

rafts approach the same lattice cell. In the example configuration, depicted in Figure 2.8,
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a field collision would occur, if raft R3 and raft R4 were concurrently scheduled to move

downwards and upwards, respectively. However, since field collisions occur between

non-contiguous rafts, the neighborhood information required for collision detection is

not available in the global raft model. This makes field collisions only detectable on the

raft lattice.

Whereas, direct raft collisions may be detected on the global raft model solely. In our

model a direct raft collision occurs as soon as a raft moves into the direction of a con-

tiguous raft - except this particular raft moves into the same direction. Therefore we

need the information about the local neighborhood and the scheduled directions of the

involved rafts, which are stored in the global raft model. Consequently the collision de-

tection for rafts has to be performed on both, the local (direct particle collisions and field

collisions) and the global raft (raft collision) model and therefore demands an elaborate

communication between both raft models during execution.

Transition operator of the coupled CxA model

Basically, the entire membrane model is composed of three coupled CA-based submodels

in terms of CxA: the particle lattice, the raft lattice and the global raft model. Thereby

the particle lattice defines the random movement of particles, while the remaining two

models are required for the representation of the raft’s random walk. However, the

combined (individual-based) movement of rafts and particles cannot be incorporated in

a single operator. This is due to the sweeping effect, according to which rafts impede

the position of particles, i.e. particles are moved, independently of their own random

movement. Since our individual based approach is restricted to m = 1 step length, raft

and particle dynamics cannot be executed at the same time and have to be considered

separately. Consequently, the entire membrane model evolves according to a consecutive

execution of the raft (involving/including the particle drift due to sweeping effect) and

particle movement. For each raft submodel Crl and Crg we thus apply similar variants

of the shuffling, collision and propagation operators as for the individual-based particle

model. Except that the individual operators now depend on the state of the related raft

submodels. In the following the stepwise execution of the raft movement in terms of the

transition operator Φr will be discussed in detail. Due to the close coupling between

the local and global raft submodel, we will describe the execution of the update rule

according to the shuffling, collision and propagation scheme, instead of describing each

individual operator separately.

Initialization At first, however, both models have to be initialized accordingly. The

basic goal of the initialization of the membrane model is to place the rafts (randomly)



Chapter 2 Lipid Rafts Modeling 33

on the grid without violating the exclusion principle. Accordingly we first initialize the

local raft lattice by associating group of cells to a certain lipid raft entity and, based on

that, subsequently build the raft graph of the global raft model:

srl(0) = srlinit

(2.21)

srg(0) = srginit[s
rl].

The initialization of the global raft model thus depends on the initial state of the raft

lattice. Since rafts are assumed a circular shape, the group of cells we associate to an

individual raft during initialization has the form of a discretized circle (c.f. Fig. 2.8).

Shuffling After the initialization or a completed update of the model, the connectiv-

ity of the global raft graph, i.e. the neighborhood information, is updated according

to the configuration of the raft lattice. Following this, the succeeding update routine

starts with the shuffling operator determining the direction of the next rafts movement.

Thereby a new cell configuration is first calculated for each raft cell in the global model

and subsequently transfered to all cells of the raft lattice that are associated with the

respective raft entity:

ηout(crlν , t) = ηout(crgν , t) (2.22)

where

ηout(crgν , t) =

ΦS
g(i)


ηin (crgν , t)

b̃

i=1
, with P


ηin → ηout


(crgν , t) = 1/4

and ν specifying the global raft cell crgν , to which the respective raft lattice cell crl is

associated. Note, that the shuffling step in the combined raft model is only responsible

for scheduling the subsequent raft move and, in contrast to the particle model, does

not contain any collision handling routine. This is because any movement resulting

in a collision is rejected, which guarantees that any raft lattice cell is associated to at

most one raft entity. However, the rejection of field collisions also requires an elaborate

collision detection, before the actual raft move can be executed.

Collision Detection (local raft model) The first step of the collision detection rou-

tine is to check the system for field collisions. This is because any rejected movement due
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to a field collision may lead to additional direct collisions. Moreover, field collisions can-

not be detected in the global raft model, as they are caused by a pair of non-contiguous

rafts, i.e. the corresponding global raft cells are not connected by an edge and thus do

not possess any neighborhood information, which is required for collision detection in

the global raft model, though. Consequently we have to use the raft lattice to detect and

resolve potential field collisions. In case a field collision was detected, the information

is propagated from the lattice to the global raft model, where the state of the involved

raft entities is changed accordingly. The corresponding collision operator of the local

raft model ΦC
rl(i) is thus defined as:

ΦC
rl(i)(c

rg
ν , t) : ηouti (crgν , t) → ηini (crgν , t) |

∃crlν ∈ Lrl :

ni(c

rl
ν , t) + nk(c

rl
ν + 2vi, t)


> 1

(2.23)

k = i+ 2 ·
d=2
l=0

vil ,

where ν again specifies the raft entity, to which the respective raft lattice cell crl is

associated.

Collision Detection (global raft model): As a result of the field collision detection

routine, for all rafts that cause a field collision in the subsequent propagation step the

scheduled movement has been rejected. However, we still have to detect and handle all

direct collisions between rafts. For this we need the direct neighborhood information

stored in the global raft model. As outlined before, any movement of a raft into the

direction of a contiguous raft/direct neighbor is considered to cause a direct collision,

despite the situation, when the contiguous rafts move in the same direction. Accord-

ingly not only the directly adjacent raft, but all contiguous rafts in the direction of the

scheduled movement have to be checked. We therefore apply the collision operator of

the global raft model ΦC
rg(i) as follows:

ΦC
rg(i)(c

rg
ν , t) : ηouti (crgν , t) → ηini (crgν , t) | (2.24)

∃crg ∈ Ni(c
rg
ν , t) : (ni(c

rg
ν , t) + ni(c

rg, t)) ̸= 2
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where

Ni(c
rg
ν ) = {crgν +mvi | m ∈ N,

∃e ∈ E : e (vi(c
rg
ν + (m− 1)vi),vk(c

rg
ν +mvi)) }

The neighborhood thus contains all raft cells crg that are contiguous to the movement

direction of the raft under consideration (crgν ).

Raft Propagation After the successful collisions detection, the scheduled raft move-

ment can be propagated to the raft and the particle lattice. However, before the actual

propagation on the raft lattice is executed, the state of each raft-associated lattice cell

is updated according to the result of the collision detection, i.e. η(crgν , t) → η(crlν , t).

Based on the updated raft lattice, the configuration of each raft lattice cell is transferred

to neighboring cell according to the movement of the associated raft.

ΦP
rl : ηouti (crl, t) → ηini (crl + vi, t+ τ) (2.25)

Eventually the particle lattice is also updated according to the raft lattice.

η(cp + vi, t+ τ) =

η(cp, t) | nout

i (crl, t) = 1
b

i=1
(2.26)

Thereby the raft movement is finalized and in the following the normal particle movement

of the particle lattice, described in the previous section, is executed.

2.3 Concluding remarks

A CA-based membrane model has been implemented, that explicitly describes the com-

bined diffusion dynamics of lipid rafts and membrane particles, i.e. receptors. Thereby

local transition rules have been successfully designed and implemented to capture com-

plex processes, like coordinated group movement and multi-level collision detection to

represent lipid rafts diffusion. To achieve this, two concepts that extend the original CA

formalism, i.e. Lattice Gas Cellular Automata (LGCA) and complex Cellular Automata

(CxA) have been adopted. As a result, we demonstrated, that the CA formalism is ca-

pable of representing highly interdependent multilevel processes, such as the processes

involved in the lipid rafts mediated receptor diffusion, as presented in this chapter.
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Despite being a powerful modeling formalism with a resolution perfectly fitted for the

dynamics addressed in this work, it has to be acknowledged that in terms of expres-

siveness,cellular automata are only partly suited for multilevel modeling. Especially the

coordinated movement of lipid rafts implied rather complicated transition rules, which

diminishes the reusability of the model and hampers potential extensions of the model.



Chapter 3

Studying raft-dependent receptor

distribution and binding kinetics

In the previous section, a CA-based approach has been introduced, tailored to repre-

senting the dynamics of lipid rafts and their interaction with membrane-bound particles.

Based on the presented approach we built a spatial membrane model, parametrized ac-

cording to literature values, to perform various simulation studies exploring the impact

of lipid rafts on membrane particle localization and signal transduction. Thereby the

main emphasis is laid on receptor/raft interaction, as receptors and their spatial distri-

bution within the membrane plays a crucial role in signal transduction (c.f. Section 1.2).

Recent studies have already shown, that receptor clustering promotes protein receptor

couplings [90, 202]. However, the influence of lipid rafts on the protein receptor binding

rate has not been explored in detail yet. The aim of this study is to address this lack of

knowledge and to explore the binding of cytosolic proteins to activated receptors with

respect to varying binding conditions and lipid raft characteristics through modeling

and simulation. Therefore we employ slow and fast dissociation/binding kinetics as well

as considering raft properties such as size, fluidity and mobility. For simplicity, in the

following we refer to membrane-bound particles as receptor, even though the insights

gained by the simulation studies are not restricted to receptors, but may apply for any

membrane-bound protein that can be associated with rafts.

3.1 Model and Parameters

In the following we give a short description of the lipid raft model applied to study the

role of lipid rafts on the receptor aggregation (see Figure 3.1). The model setup with re-

spect to the applied parameter is similar to the one proposed by Nicolau et. al. [150]. A

37
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complete overview of the employed parameters can be found in table 3.1. All simulations

were performed on a L = (500nm× 700nm) lattice, with step size δ = 2nm to approxi-

mate the average protein size and the volume exclusion effect. Periodic boundaries are

applied. Receptors and Rafts are represented as described in previous section: Lipid

rafts are represented as two-dimensional, discretized disks with diameter dlr that oc-

cupy an approximate area of Alr =
πd2lr
4 . Receptors are considered as membrane-bound

particles. The model assumes only one type of receptor whose size and shape is solely

represented by the dimension of a single grid cell (2nm × 2nm). For simplicity further

details, such as protein topology, structural properties or thermodynamic interactions

are omitted. However, it should be noted, that these factors might have a strong impact

on the partitioning of proteins into and out of rafts. Studying their influence on the

model outcome, such as the binding kinetics would go beyond the scope of this work,

but is of major interest for subsequent studies. In all simulation experiments performed,

the standard diffusion speed of receptors is set to Dr = 1, i.e. one particle lattice cell

per simulation time step (τ = 1). This corresponds to a diffusion rate of D = 0.5δ2/τ .

Assuming a diffusion rate of 10−9 cm2/s (0.1µm2/s) for a receptor performing undis-

turbed lateral movement, the unit time step τ is equivalent to 2µs.

As illustrated before, diffusion in rafts is limited by the raft fluidity (ρ), i.e. a reduced

diffusion coefficient of D⋆
r = ρ ·Dr applies within rafts. Further all raft associated recep-

tors are subject to the raft’s movement (Dlr) in addition to their own, reduced, mobility

(D⋆
r). Depending on the parametrization of the model, rafts may either be immobilized

mobilelr = false, or may perform lateral diffusion according to a size-dependent dif-

fusion coefficient Dlr, that is determined according to the Saffman-Delbrück equation

[170].

The fraction of the membrane that is covered by rafts is defined by the raft coverage

(coverlr). The same applies to the receptor coverage (coverr). The initial distribution

of receptors and lipid rafts is based on a normal distribution. Thus the grid is randomly

seeded with receptors and lipid rafts, such that no receptor or raft occupies the same

grid cell and according to the given coverage values (coverr and coverlr respectively).

Values for raft properties, like size, mobility and fluidity are varied according to the

ranges given in Table 3.1. However, during any simulation run, these parameters re-

main fixed. To analyse, how the system behaves under certain conditions, we applied

parameter values within the ranges listed in Table 3.1. Simulations are run until either

equilibrium or a maximum of 2000 time steps is reached. This corresponds to 4 seconds

in real time, which is in agreement with the average life time of long-lived raft structures

[16]. In fact, for some configurations equilibrium is not reached within 2000 time steps.

However, in these cases the simulation run time to reach equilibrium would clearly ex-

ceed the average life time of long-lived raft structures. The number of replications for

each simulation configuration has been chosen, such that the variance is below 0.1%.
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Figure 3.1: A schematic view of the plasma membrane illustrating the formation of a
receptor-protein complex. Membrane-integral, activated receptors may overlap with cytosolic
proteins that are localized at the membrane. When co-localized with an activated receptor, it
depends on the time of overlap and the binding rate, whether the protein binds to the activated

receptor or dissociates into the bulk solution.

Further simulation studies with varying grid sizes (doubled and quadrupled each side,

particle lattice cell size constant 2nm x 2nm) showed no difference in the results (results

not shown). Therefore the chosen grid size of 500x700 nm appears reasonable, as it

obviously captures the essential membrane dynamics, while the computational effort is

still manageable. The choice of a significantly smaller grid size would already be prob-

lematic, as not sufficiently many large lipid rafts of, for example, 25nm diameter can be

mapped onto the grid.

3.2 Characterizing lipid rafts and receptor interaction

To explore the characteristics of the receptor/raft interaction under a wide range of

different conditions we performed several simulation experiments with varying sets of

parameter configurations. Therefore parameters referring to lipid rafts and receptor

concentrations (in particular with regard to molecular crowding) as well as miscellaneous

raft properties, like fluidity, mobility and diameter were varied within the ranges listed in

table 3.1. The main focus of the first experiments was laid on studying the impact of lipid

rafts on receptor localization. Accordingly the equilibrium mean receptor concentration

within rafts [R]� = [R]
[Rlr]

1 is defined as the main observable.

1if the equilibrium is not reached within 2000 time steps, we consider the model configuration after
2000 ts as equilibrium state (c.f. Sec. 3.1)
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3.2.1 Raft fluidity controls extend of receptor enrichment

Figure 3.4 shows the mean receptor concentration within rafts for decreasing values of

ρ and different raft sizes reaching from 6 to 50 nm, based on a low (A & B) and a high

receptor density (C & D). Obviously lower values of ρ lead to a higher concentration of

receptors within lipid rafts. The high concentration is caused by the reduced fluidity

inside the rafts. Thereby, the mobility of receptor is hampered, i.e. the probability

of leaving the raft is reduced. Eventually this results in a localization, hence receptor

enrichment inside the rafts.

However, we also observe that the receptor enrichment effect is slightly higher for mobile

rafts compared to immobilized rafts. This difference is caused by the sweeping effect of

mobile lipid rafts that has also been observed in earlier experiments [150]. This means

receptors are picked up by diffusing rafts and subsequently dragged along with them.

Table 3.1: Parameters of Membrane Model

parameter description value range of model

xdimm,
ydimm

dimension of the two dimensional mem-
brane in nm

fixed: xdimm = 500
ydimm = 700

xdimv,
ydimv

size of particle lattice cell inside the grid
in nm

fixed: xdimv = ydimv = 2

coverlr degree by which the membrane is covered
by lipid rafts

coverlr ∈ [0..0.5]

coverr degree by which the membrane is covered
by receptors

coverr ∈ [0.03..0.3]

Dlr diffusion coefficient of Lipid Rafts Dlr = 0 or Dlr =
normal(x) with x ∈ R+

Dr diffusion of receptors Dr = 1

dlr diameter of the lipid raft in nm dlr ∈ [6..50]

mobilelr mobility of lipid rafts mobilelr ∈ {true, false}
ρ raft fluidity that reduces diffusion of re-

ceptors within the raft
ρ ∈ [0.01..1]

ka association rate of cytosolic proteins at a
mesh-site

ka ∈ [0.01..0.0001]

kd disassociation rates of cytosolic proteins kd ∈ [0.01..1]

tbind time that a cytosolic protein is required to
stay at a receptor so that a binding can
take place

tbind ∈ [1..2]

tunbind time that a cytosolic protein is in complex
with a receptor before dissociating into the
cytosol

tunbind = 1
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T = 0 T = 5 T = 10

Figure 3.2: The figure depicts a small section of a larger grid, to illustrate the sweeping
effect of moving rafts (14nm diameter and ρ=1, i.e. the diffusivity inside and outside rafts is
the same for receptors). Lipid rafts are colored blue as well as their trails, which represent
the previous 20 time steps. Whereas the trails of moving receptors are colored orange/red
and represent the last 30 simulation time steps. The color is enhanced, if a cell is occupied
multiple times by a receptor during these last 30 steps. The marked trail illustrates how the
movement of a single receptor is influenced by both – the moving raft and the movement of

the receptor itself.

The captured receptors are thus not only subject to their own movement but also to the

lipid raft’s movement (Figure 3.2). Consequently, the number of receptors entering rafts

is slightly increased compared to immobile rafts, while the number of receptors leaving

the raft remains unchanged. Likewise the concentration of receptors within mobile lipid

rafts is slightly higher than in immobile rafts.

This accounts also for the case ρ = 1, where lipid rafts have no effect on the diffusion

speed of receptors. Accordingly, the receptor concentration in rafts should approach a

value of 25% that corresponds to the proportion of rafts on the membrane. Neverthe-

less, we still observe a minor aggregation of receptors in mobile rafts as shown in figure

3.4. This accounts in particular for larger raft sizes. What seems to be an apparent

discrepancy in our results is due to the previously described sweeping effect of moving

rafts which results in an increased uptake of receptors [128].

3.2.2 Under physiological conditions, receptor enrichment is raft size

dependent

However, when seeding the membrane with a higher, more appropriate physiological

concentration of receptors (∼ 30%) [220] we observe a size-dependent receptor accu-

mulation. As depicted in figure 3.4 the concentration of receptors in small rafts is

significantly higher than in larger rafts and the difference observed increases as ρ → 0.

This applies to both immobile and mobile rafts, i.e. the effect on receptor accumulation

that we observe referring to differently sized lipid rafts cannot be solely caused by the



Chapter 3 Raft-dependent receptor distribution and binding kinetics 42

Figure 3.3: Equilibrium receptor concentrations inside lipid rafts with regard to raft fluidity
(ρ) and lipid raft size. In the upper two figures (A & B) the results for a receptor density
of 3% are depicted whereas the lower figures (C & D) show the results for a general receptor

density of 30%.

sweeping effect. In fact, larger lipid rafts have a significantly smaller circumference-to-

area ratio. As a result receptors have fewer raft boundaries to potentially collide with

and so the rate of receptor uptake decreases with growing raft size. Additionally, as

ρ → 0 receptors become increasingly immobilized inside lipid rafts. As a consequence,

receptors may also block the way for others as they become immobilized immediately

after entering the raft. It is thus harder to obtain an even distribution of receptors inside

larger lipid rafts, i.e. the area available to receptors is extremely reduced.

In summary the results of our study are in general agreement with the aforementioned

publications [58, 150]. Further experiments in the physiological range of 20% - 35%

receptor density [220] show only minor differences (results not shown). We therefore

apply a fixed receptor concentration of 30% for the subsequent simulation studies.

3.3 The role of lipid rafts on Binding of peripheral proteins

to membrane-bound receptors

The impact of lipid rafts on the diffusion and co-localization of membrane-bound re-

ceptors is meanwhile well accepted and has been underlined by several in vivo and in

silico studies [58, 139, 150, 163]. Additionally rafts may also facilitate the interaction

between membrane-bound receptors and membrane-anchored or peripheral proteins. [At

first glance this seems not intuitive], since the movement of peripheral proteins is not
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Raft Diameter 6nm Raft Diameter 50nm

3% Receptor 
Coverage

10% Receptor 
Coverage

30% Receptor 
Coverage

20% Receptor 
Coverage

Figure 3.4: Equilibrium Plots showing the evolution of the receptor concentration inside
rafts with simulation time and varying values of raft fluidity ρ, size and receptor coverage.

impeded by rafts. Though recent studies have already shown, that receptor clustering

promotes protein receptor couplings [90, 202]. Accordingly, not only the interaction be-

tween membrane-bound molecules may be facilitated by lipid rafts, but also the binding

of cytosolic molecules to transmembrane receptors under certain conditions. Protein

receptor binding plays a pivotal role in this context, being the initial step in activat-

ing the intracellular signalling cascade [29, 181]. Once a receptor has been activated

by extracellular signalling molecules (ligands), adaptor proteins, scaffolds and enzymes

are immediately recruited and bound to the cytoplasmic side of the activated receptor.

The time scale of the recruitment and binding process, however, strongly varies between

different protein receptor couplings [90]. The recruitment of cytosolic proteins to the

membrane, for instance, can be mediated by membrane-targeting domains and specific

protein-lipid interactions [29, 67]. These interactions lead to a temporal localization of

cytosolic proteins to the membrane (peripheral proteins)[67, 94, 192]. Thus, proteins re-

cruited to the membrane exhibit slow or fast dissociation kinetics. The binding process,

on the other hand, requires the correct mutual orientation of the involved molecules,

such that potentially reactive groups are properly aligned [64, 134]. Depending on the

electrostatic, steric or hydrophobic interactions between the binding partners, this pro-

cess can be either accelerated or slowed down. Additionally, multiple state reactions

may further slow down the formation of the protein receptor complex [147]. It should

be noted that the lateral diffusion of membrane-bound receptors plays an increasing role
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for the binding process the longer cytosolic proteins are localized to the membrane. Ac-

cordingly, for dissociation kinetics faster than lateral diffusion, the binding process solely

depends on the local receptor density. But in the case of slow binding and dissociation

kinetics of peripheral membrane proteins the protein receptor binding may indeed be

influenced by the structural properties of the membrane and, in particular, by lipid raft

dynamics.

Recent studies have already shown, that receptor clustering promotes protein receptor

couplings [90, 202]. However, the influence of lipid rafts on the protein receptor binding

rate has not been explored in detail yet. The aim of this study is to address this lack of

knowledge and to explore the binding of cytosolic proteins to activated receptors with

respect to varying binding conditions and lipid raft characteristics through modeling

and simulation. Therefore we employ slow and fast dissociation/binding kinetics as well

as considering raft properties such as size, fluidity and mobility.

3.3.1 Extending the model description

To represent the association of peripheral proteins to the membrane, the model was

extended by incorporating cytosolic proteins and their respective association ka and dis-

association kd rate constants. Accordingly, in the following any particle lattice cell of

our CA-based model can be additionally associated with a cytosolic protein. Therefore

we introduce three further parameters: the association rate constant ka defining the

probability that any particle lattice cell is marked as associated with a cytosolic protein;

the dissociation rate constant kd determining how long an associated protein stays at

the respective particle lattice cell; and the binding rate constant tbind, representing time

needed to accomplish the binding complex. Further details can be found in the model

description in the previous Section.

Cytosolic binding partners are considered as peripheral proteins being temporarily local-

ized at the inner leaflet of the membrane (see Figure 3.1). The association rate constant

ka defines the probability of a cytosolic protein being recruited to the membrane. The

time that the proteins reside at the membrane is determined by the dissociation rate

kd. Receptors may thus overlap with a cytosolic protein for a certain amount of time,

i.e. occupy the same particle lattice cell, to which a protein is associated. Note that

cytosolic proteins do not necessarily bind instantaneously upon contact with receptors,

but after some time of being co-localized. In order to cover this fact a binding rate tbind

is introduced. A binding between protein and receptor is thus only accepted, if the time

of overlap between receptor and protein is larger then the time needed to achieve the

binding. We further assume a binding reaction rate of 1 (tunbind = 1), i.e. cytosolic

proteins dissociate into the bulk immediately after a successful binding event. Thus
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Figure 3.5: Plots showing the number of successful receptor-protein bindings per time step
compared between a system with and without Lipid Rafts and in dependence of varying A)
dissociation and B) association rate constants. Raft specific parameters are set to: Raft Size:
14 nm, ρ = 0.25. Lines marked with “no delay” and “delay” correspond to a binding time

constant of 1 and 2, respectively.

receptors are not “bound” or occupied for certain amount of time.

Unfortunately, there is a lack of experimental data concerning dissociation and binding

rate constants. Also these parameters will differ considerably between different biolog-

ical systems. We therefore evaluate the impact of lipid rafts on the protein receptor

binding, by applying various parameter values within the ranges given in Table 3.1 . In

the following the results of several simulation experiments studying the impact of lipid

raft characteristics as well as raft and receptor densities on the receptor protein binding

will be presented. Thereby different recruitment and binding kinetics are applied to

study the general influence of lipid rafts on the binding process. Finally we present the

influence of varying lipid raft characteristics on the binding process.

3.3.2 Lipid Rafts play ambivalent role in the protein-receptor binding

We now investigate the impact of global parameters, such as the association ka, dissocia-

tion kd and binding time constants tbind on the formation of protein receptor complexes.

Therefore we varied these parameters according to the ranges listed in table 3.1 and

observed the number of successful binding events per time step. The experiments are

executed on a system containing mobile lipid rafts of diameter 14 nm and medium flu-

idity of ρ = 0.25 and a system without lipid rafts.
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3.3.3 Lipid rafts promote slow binding kinetics

The results of the study are depicted in figure 3.5. The average number of protein

receptor bindings per time step is shown for different dissociation kd and association

ka rate constants. The solid and dashed lines represent protein receptor bindings per

time step for no rafts and rafts, respectively. Different values of the binding rate con-

stants are indicated by the colour. In general, the protein receptor binding is greatly

enhanced by a higher association rate and slightly promoted by smaller dissociation rate

constants. Both parameters mainly control the number of cytosolic proteins localized at

the membrane. However, the dissociation rate also controls the time, peripheral proteins

reside in the proximity of the membrane, once associated. A longer residence time in

turn increases the probability that diffusing receptors encounter associated proteins, and

likewise increase the chance of a binding event.

In contrast, a binding rate larger than 1 significantly reduces the number of binding

events. In this case protein and receptor must be co-localized for at least two time steps

in order to accomplish a binding. However, since the step size of receptors equals 1

for freely diffusing receptors, this can only be achieved, if receptors are slowed down

somehow. In raft-containing systems, receptors are slowed down when located inside

raft regions. But in raft-free simulations, receptors can only stay at a certain particle

lattice cell for more than one time step, if its movement is rejected due to a collision

with neighbouring receptors. Therefore, a binding can be accomplished albeit by the

unlikely event, when a receptor is overlapping with a peripheral protein and subject to

a collision at the same time. Accordingly, in a system without lipid rafts and tbind = 2,

we observe very few but still some binding events for dissociation rates smaller than 0.1

(see fig. 3.5).

Interestingly, the impact of rafts on protein receptor binding is not consistent. While the

impact of lipid rafts is slightly negative in the case of instantaneous bindings (tbind = 1),

we observe a significant promoting effect for tbind = 2. This effect becomes more evident

with increasing association and decreasing dissociation rate constants. Note that for a

system with ρ = 0.25 the diffusion coefficient of receptors in raft regions is four times

less compared to non-raft regions. Accordingly, receptors are significantly slowed down

when located inside a raft. This is beneficial for the system with tbind = 2, as it increases

the chance that receptor and associated proteins overlap ”long enough” to achieve an

actual binding. This accounts especially for low dissociation rates.
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3.3.4 Raft properties have significant impact on binding kinetics

The previously described experiments showed an ambivalent impact of lipid rafts on

the receptor-protein binding. However, it remains unclear whether and how raft-specific

parameters, such as fluidity, mobility or size affect the binding process. We therefore

perform a sensitivity analysis to identify which of these parameters significantly influ-

ence the outcome of the model. As model outcome we define a ratio of mean binding

events per time step for raft models to that of raft-free models (binding ratio). Values of

global and raft-specific parameters are varied according to the ranges listed in table 3.1.

For the sampling of parameter values, we apply the NOLH (nearly orthogonal Latin

hypercube) approach, an extension of the Latin Hypercube sampling method, which

provides a good space-filling experiment design already for low numbers of parameter

combinations (design points) [32, 174]. Thereby a combination of 34 design points is

sufficient to cover most relevant parts of the parameter space. To measure the corre-

lation between parameter values and the model outcome (binding ratio) we compute

partial ranked correlation coefficient (PRCC) values. The ranked correlation coefficient

(like PRCC) is a robust sensitivity measure, particularly for non-linear, but monotonic

relationships [135]. As for normal correlation coefficients, PRCC values vary between

-1 and +1 indicating perfect negative and perfect positive correlation, respectively. To

assess if a PRCC is significantly different from zero, p-values derived from Student’s t

test have to be calculated according to [4].

Table 3.2 lists all model parameters that yielded a significant PRCC value (p-value <

0.001) for models with undelayed/delayed binding -reactions and mobile/immobile rafts.

Obviously the raft fluidity (ρ) has the most prominent influence on the receptor-protein

binding. In all model configurations tested, ρ significantly correlates with the binding

ratio, but depending on the binding delay the impact is either positive or negative. Note,

that a positive correlation of ρ is not equivalent to a promoting effect of lipid rafts on

the binding ratio. Considering the high equilibrium receptor concentration inside rafts

for ρ → 0 (see Fig. 3.4), a positive correlation of ρ rather indicates a disturbing effect

of the presence of lipid rafts that diminishes with increasing raft fluidity. Whereas the

opposite holds true for negative correlation of ρ, i.e. lower raft fluidity values strengthen

the promoting effect of rafts on the binding process. This is supported by the fact that

the correlation values for ρ and raft concentration (coverlr) are of exactly opposite sign.

Accordingly for delayed binding reactions we observe a beneficial effect for increasing

raft concentrations (indicated by the positive correlation values), but negative correla-

tion values for ρ and vice versa for undelayed bindings. This is in agreement with the

ambivalent results described before (cf. Figure 3.5).

Besides the raft fluidity, several other parameters, such as dissociation rate and receptor
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Table 3.2: PRCC values for input parameters significantly correlated with
model outcome (binding ratio)

no binding delay binding delay

immobile mobile immobile mobile

ρ 0.840 ρ 0.507 ρ -0.689 coverr -0.702

kd 0.557 coverr -0.524 ρ -0.535

coverlr -0.511 coverlr 0.464 coverlr 0.549

concentrations influence the binding ratio given different model configurations. Interest-

ingly, the receptor concentration is significantly negatively correlated with the binding

ratio, but solely for delayed binding reactions. This negative effect can be explained by

the ratio of raft coverage to receptor coverage. As depicted in Figure 3.4, the equilibrium

concentration of receptors within rafts decreases with receptor density, in particular for

large lipid rafts. Consequently, the influence of rafts on the receptor-protein binding

declines with an advanced receptor concentration.

3.3.5 Characterizing the ambiguous effects of raft properties on pro-

tein receptor bindings

The sensitivity analysis revealed a distinct, but ambiguous impact of raft-specific pa-

rameters on the binding of cytosolic proteins. However, the individual role of each raft

parameter and its specific impact on the model outcome is still unclear. We therefore

perform a full factorial experiment with all raft-specific parameters, i.e. raft coverage,

size, mobility and fluidity. The values are chosen from the ranges defined in table 3.1,

but aim to cover most of the realistic configurations with respect to lipid raft character-

istics [163, 184] as well as dissociation and binding kinetics [90, 147].

In the previous simulation experiment the binding rate constants tbind heavily influenced

the results, in particular for the raft model. We therefore varied tbind according to the

previous experiment, i.e. tbind = 1 and tbind = 2 and kept the association as well as

the dissociation rate constants fixed (ka = 0.001, kd = 0.01). Similar to the previous

experiment we measured the binding ratio.

The results depicted in figure 3.6 suggest a complex and ambiguous interplay of differ-

ent lipid rafts characteristics and their impact on the receptor protein binding process.

Each graph in figure 3.6 illustrates how the binding kinetics evolve with decreasing raft

fluidity (ρ → 0), depending on varying raft diameter and raft coverage. In the case of

moving lipid rafts (fig. 3.6 A-C), a change in the raft size directly implies a change in

the diffusion speed of the rafts themselves. In contrast, for immobilized rafts (fig. 3.6
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D-F) the diffusion coefficient is zero for all lipid rafts and thus not affected by the raft

size.

The general impact of lipid rafts on the binding kinetics is limited by the raft coverage.

In the case of low concentrated rafts (e.g. 5%), we observe only minor changes in the

binding kinetics, regardless of any modification in the raft characteristics (see fig. 3.6 A

& D). Whereas higher raft coverages, such as 25% or 50%, show a distinct, but similar

pattern for the binding kinetics with respect to variations of raft parameters, although,

the observed effects are more pronounced for 50% coverage, than for 25%. However, for

subsequent discussion we will mainly consider the results for higher raft concentrations

(25% - 50%).

As shown by the solid lines in figure 3.6, lower values of ρ hamper protein receptor

bindings for tbind = 1. The decline of binding events is directly related to the reduced

mobility of receptors within lipid raft. Thereby the global lateral diffusion of receptors

is considerably reduced [151]. As a result receptors cover a smaller area in a certain

amount of time compared to freely diffusing receptors, which leads to less protein recep-

tor interactions. Due to the “touch and bind” regime of undelayed bindings (tbind = 1)

any interaction automatically results in a binding event. Therefore a reduced amount of

protein receptor interaction directly results in less binding events. This negative effect of

lipid rafts (in the case of instantaneous binding) is even higher for immobilized rafts (3.6

E-F). While receptors located in a mobile raft are still subject to the lateral movement

of the raft itself, they are almost completely immobilized in non-diffusing rafts, if ρ → 0.

On the other hand, in the case of tbind = 2 (figure 3.6, dashed lines), lipid rafts clearly

promote the protein receptor bindings. Again the impact of lipid rafts on the binding

process mainly depends on the parameter ρ. As previously described, the reason can be

found in the slow-down of receptors within rafts, which is now beneficial for the binding

process. The reduced receptor mobility increases the chance of a successful binding,

once receptors are in contact with membrane associated proteins. Surprisingly we also

observe an enhanced binding rate for mobile lipid rafts with ρ = 1 (fig. 3.6 B-C). Again,

this is due to the sweeping effect, that rafts exert on the receptors they contain. This

may also cause opposite movement directions (of raft and receptor) forcing the respective

receptor to stay at its position. The resulting delay facilitates the binding of associated

proteins.

However, not only the lipid raft fluidity plays a major role, but also the mobility of

rafts. As depicted in figure 3.6 (E & F), immobile rafts only promote the binding up to

a value of ρ = 0.25. This is due to the diminishing number of protein receptor interac-

tions with decreasing ρ. For ρ → 0, the main fraction of receptors becomes completely

immobilized inside non-diffusing rafts (see fig. 3.4). Due to their immobilization, recep-

tors cannot co-localize with membrane associated proteins by lateral diffusion. Instead

cytosolic proteins have to associate directly to a particle lattice cell, that is occupied by
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Figure 3.6: Binding Ratio with regard to lipid raft fluidity (ρ), size, mobility, coverage and
binding delay. The upper and low rows (A-C & D-F) depict the results for mobile and immobile
rafts, respectively. Whereas the three columns show the results for varying raft coverages.
The dashed and solid lines correspond to delayed tbind = 2 and undelayed tbind = 1 binding
reactions. The line colours indicate the size of the rafts. The simulations were performed
with a dissociation rate constant of 0.01 and a fixed receptor concentration of 30% in all

experiments.

a receptor. Thus, for immobile raft, lower values of ρ lead to a decline of binding events,

even though the actual binding process is promoted.

To summarize, our results emphasize that the analysis of lipid rafts and their role on

protein binding requires a differentiated approach. Specific lipid raft characteristics can

either have beneficial or unfavourable effects depending on the chosen parameters. Espe-

cially, the parameter lipid raft fluidity (ρ) and the binding rate (tbind) strongly influence

the results.

3.4 Concluding remarks

In the former part of this work, the impact of lipid rafts on signal transduction has

been studied on a high-detailed scale and valuable insights in particular regarding the

formation of ternary signaling complexes under the influence of lipid rafts have been

gained. Our simulation studies revealed, that lipid rafts have indeed a significant im-

pact, not only on the accumulation of receptors, as shown in earlier studies, but also on

the recruitment and binding of cytosolic proteins by the receptors. However, the impact

depends on a variety of parameters, such as binding and dissociation kinetics as well as
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lipid rafts characteristics.

Generally the impact of lipid rafts on the binding kinetics is limited by the raft concen-

tration within the membrane. Thus a certain raft coverage is required to observe the

raft related effects described in this study. In general fast binding reactions are slightly

hampered by lipid rafts, while slow binding reactions are considerably enhanced. The

extend to which lipid rafts influence protein receptor bindings becomes more prominent

for proteins with slow dissociation kinetics.

With respect to raft characteristics, we observe the strongest impact when the fluidity

of lipid rafts is low (ρ → 0). Since the raft fluidity is mainly controlled by the choles-

terol content of the membrane, our findings are consistent with recent studies showing

that cholesterol depletion alters specific cellular responses in different cells (see [185] for

review). In contrast to earlier studies we are able identify an impact of the raft size on

receptor accumulation and consequently also on protein binding. Due to excluded vol-

ume effects at the border of lipid rafts, we observed a diminishing receptor accumulation

with increasing raft sizes, e.g. 25nm or 50nm. Note, that the size-dependent effects can

only be observed at physiological receptor density (∼ 30%) and if rafts are rigid, that

is if receptors are significantly slowed down inside rafts. Considering the crucial role of

protein recruitment and binding for the assembly and activation of receptors, the results

underline the diverse, but pivotal role of lipid rafts during signal transduction.





Chapter 4

Modeling raft-dependent WNT

signaling

WNT signals are one of the five signal transduction pathways that shape virtually all cell

fates and its malfunction is related to a wide range of pathologies, such as developmen-

tal disorder, degenerative or metabolic diseases and cancer. In the upcoming chapters

we develop a model of raft-dependent WNT/β-catenin signaling to analyze the role

that lipid rafts play in canonical WNT signaling during early differentiation. Thereby

we seize on a computational and numerous experimental studies previously done at the

University of Rostock [119, 137, 138, 166]. These investigations demonstrated that WNT

signaling is constantly active during the early cell fate commitment phase in human neu-

ral progenitor cells (hNPCs) (1-12h) [137] and provided strong evidence, that neuronal

differentiation in hNPCs is regulated by WNT signaling [92]. In addition, simulation

studies based on a computational model of the intracellular WNT/β-catenin pathway,

indicated that the WNT/β-catenin pathway is activated in a auto-/paracrine manner

[138]. The experimental results as well as the already existing WNT model provide

a profound working basis to pursue our question of how lipid rafts influence WNT/β-

catenin signaling.

Several studies have confirmed a crucial involvement lipid rafts in canonical WNT sig-

naling [155, 173, 183, 215]. However, the exact mechanism by which lipid rafts influence

the signal transduction are still unclear. At the same time the lipid rafts have been

completely disregarded in the existing WNT pathway models.

To tackle this deficiency we develop a detailed computational model of canonical WNT

signaling that connects membrane-related and lipid rafts/receptor dynamics with the

intracellular signal transduction chain. Notably, we first develop a purely qualitative

model, that only describes the interaction and the corresponding kinetics, whereas the

parametrization is done in the next chapter based on in vitro data derived from human

53
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neural progenitor cells. With this approach we account for the dynamic nature of lipid

rafts and their ambiguous effects on signaling. Depending on environmental factors, like

the composition and the structural organization of the membrane, the actual impact

of lipid rafts on signaling events may vary significantly between individual signaling

pathways, as shown in the previous chapters and e.g. in [97]. Therefore, a general

model of lipid rafts-dependent canonical WNT signaling will particularly contribute to

the understanding of raft-dependent WNT signaling as it is independent of any cell-type

specific dynamics and may be parametrized according to the cellular and environmental

conditions that are used in the respective study. However, before actually developing

the WNT/β-catenin model, it is important to first assess the processes and dynamics

that are of importance for our scientific question, i.e. raft-dependent WNT/β-catenin

signaling and to consider the already existing models. Based on this we evaluate con-

templable modeling formalisms and select the modeling and simulation approach most

suitable to capture the essential dynamics of the target system. After that the actual

model is implemented.

4.1 Biological Background - Key regulatory aspects of

WNT/ β-catenin pathway

Canonical WNT signaling is a central pathway in embryonic development and adult

homeostasis, while its aberrant form is involved in a number of human cancers and de-

velopmental disorders [35, 126, 145]. The WNT/β-catenin signal transduction is char-

acterized by a reaction cascade, that is initiated by extracellular WNT molecules and

eventually leads to an accumulation of cytosolic β-catenin and its subsequent shuttling

into the nucleus. Beta-catenin is the key regulatory factor of WNT signaling. Once

shuttled into the nucleus it associates with the Lef/Tcf transcription factors and trig-

gers a pathway-specific gene response relevant for the regulation of various physiological

and developmental processes [86, 126].

β-catenin levels - constant expression, dynamic degradation

Interestingly, β-catenin levels in canonical WNT signaling are regulated in a particular

way. In most signaling pathways key regulatory proteins are kept at a certain con-

centration (stock level). Upon activation, the key regulatory protein is then activated,

typically through phosphorylation, and the protein level rises due to an increased ex-

pression rate. In canonical WNT signaling however, the key regulatory or target protein
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β-catenin is being constantly produced and, as long as there is no WNT stimulus, im-

mediately phosphorylated and thereby targeted for degradation. Once canonical WNT

signaling is activated the phosphorylation, hence degradation of β-catenin is disrupted,

leading to an immediate increase of the intracellular β-catenin level while the expression

rate remains unchanged. Accordingly, intracellular β-catenin levels in canonical WNT

signaling are regulated by controlling its degradation instead of its targeted expression.

However, this raises the question, why the cell expends such an astonishing effort in

keeping a constant, but transient pool of its key regulatory key protein β-catenin? In

fact, the described mechanism has one major advantage over the typical expression-based

regulation of protein levels: it permits a much more rapid and versatile regulation of β-

catenin levels in response to WNT signals. Due to the high expression rate of β-catenin

already in the inactive state, the increase of β-catenin levels in response to WNT stimu-

lation is almost instantaneous. The same applies to the negative regulation - as soon as

the WNT stimulation diminishes the destruction complex is reactivated and β-catenin

is immediately degraded, decreasing its protein level. In contrast to that, expression-

based regulation of protein levels is rather ponderous. This is due to the number of

time consuming and elaborately regulated processes involved in the regulation of gene

expression, translation, protein folding and post-transcriptional modifications. Indeed

the degradation-based regulation of β-catenin facilitates a precise temporal activation

or inhibition of WNT target genes that is necessary during development [193].

Structure and regulation of the destruction complex

The proteasomal degradation of β-catenin is mainly controlled by a large, dynamic

multi-protein assembly, termed destruction complex. Apart from β-catenin itself, the

destruction complex comprises the tumor suppressors AXIN and adenomatosis polyposis

coli (APC), the kinases glycogen synthase kinase 3 (GSK3) and casein kinase 1 α (CK1α)

as well as the E3-ubiquitin ligase β-TrCP [193], as depicted in Fig. 4.1.

The key components of the destruction complex and their binding interactions are well

understood, yet several molecular mechanisms underlying β-catenin degradation remain

unclear. In particular the relationship between the destruction complex and the ubiqui-

tination machinery as well as the crucial role of APC (APC mutations occur in >80%

of all colon cancers) in the destruction complex are largely unknown [167, 193].

The mechanism best understood is the phosphorylation of β-catenin, which marks β-

catenin molecules for ubiquitination, hence degradation. The β-catenin phosphorylation

crucially depends on the scaffold protein AXIN [41, 72, 95], even though AXIN has no

apparent effect on the catalytic capabilities of the involved kinases [190, 193]. In fact,
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Figure 4.1: Schematic representation of the structure and function of the Destruction
Complex.

the function of AXIN is purely based on the scaffolding effect , i.e. the correct assem-

bly of the destruction complex. AXIN provides several binding sites for CK1α, GSK3

and β-catenin, allowing a simultaneous binding of these components [95, 123, 169, 214].

Thereby kinases and substrate are brought in close proximity, such that CK1α and

GSK3 may sequentially phosphorylate β-catenin at several phosphorylation sites at the

carboxy terminus [3, 123]. Note, that GSK3 and CK1α are also involved in various other

signal pathways. Thus, the binding to AXIN does not only promote phosphorylation

of β-catenin, but also prevents the interaction of GSK and CK1α with other regulatory

proteins not involved in canonical WNT signaling. Thereby GSK3 and CK1α are un-

coupled and shielded from interacting with other signal pathways. [50].

Dvl and LRP6 as main transducer of canonical WNT signals

In addition AXIN comprises binding sites for DVL and LRP6, which are of particular

relevance for the inhibition of the β-catenin degradation machinery, hence activation

of WNT/β-catenin signalling. LRP6 is a cell surface receptor that initiates the signal

cascade upon an extracellular WNT stimulus whereas cytosolic DVL functions as a re-

lay between receptor and downstream signaling effectors. Even though LRP6 and DVL

do not directly interact with each other (see Table 1 [65]), both proteins are the main

transducer of canonical WNT signaling. Note that Dvl is also involved in a number

of different WNT pathways, whereas LRP5/6 induces no other WNT signal pathway

than the canonical. The crucial role of Dvl and LRP6 for the activation of canonical
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Figure 4.2: Schematic representation of the structure and function of the formation of
the protein-receptor complex, that forms the signalosome. Note, that the clustering of
several protein-receptor complexes into the actual macroscopic signalosome is omitted

in the figure

WNT/β-catenin signaling is explained in the following.

LRP6 Signalosome formation upon WNT binding

Secreted WNT proteins initiate canonical WNT signaling by interacting with LRP6 and

its co-receptor Frizzled (Fz). In response to the extracellular WNT stimulus, LRP6

co-localizes with its co-receptor Frizzled (Fz). In the following Dvl is recruited by Fz

and oligomerizes at the cell membrane (c.f. Fig. 4.2). The oligomerization of Dvl

leads to a clustering of LRP6 and Fz receptors and further promotes the recruitment of

AXIN as well as other cytsololic proteins, like CK1γ and GSK-3β [11, 36]. The resulting

receptor-protein complex is termed signalosome. The stable aggregation of the signalo-

some triggers the phosphorylation of several intracellular phosphorylation sites (mainly

PPSPXS motifs) in the cytosolic tail of LRP6, primarily through CK1γ and GSK-3β

(c.f. Fig. 4.2). The phosphorylation of the cytosolic tail of LRP6 generates high-density

platforms for the recruitment of AXIN [142, 152, 218]. Due to the binding of AXIN (and

GSK-3β) to LRP6, key components of the destruction complex are inhibited, which in

turn leads to an accumulation and translocation of β-catenin into the nucleus and even-

tually to the well known gene transcription signal (see right hand side of Fig. 4.3).

Dvl polymers act as binding plattform

However, Dvl does not only promote the clustering of LRP5/6 and Fz to form signalo-

somes. It is also crucially involved in the phosphorylation of LRP6 and the subsequent

binding of AXIN [11]. Active Dvl molecules form dynamic protein assemblies that in-

teract with WNT pathway components, like GSK3β, CK1α and AXIN. Accordingly,
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Figure 4.3: Schematic representation of the inactive and active state of canonical
WNT signaling.

in response to a WNT stimulus dynamic Dvl polymers are recruited to the membrane

where they bind to FZ. However, Fz-bound DVL polymers also interact with LRP6,

which is bridged to FZ by WNT molecules. Thereby Dvl-bound GSK3β, CK1α and

AXIN get in close proximity to LRP6, which promotes their interaction. After its bind-

ing to FZ, Dvl thus acts as a binding plattform providing a major part of the kinases

required for LRP6 phosphorylation. Thus, the stable accumulation of the signalosome

driven by LRP6 and Dvl is vital for the activation of canonical WNT signaling [11].

The decisive role of Dvl and LRP6 for the activation of the pathway is underlined

by a number of studies demonstrating that for both proteins the presence of extra-

cellular WNT molecules is not necessarily required to induce β-catenin accumulation

[10, 11, 36, 101, 124, 188]. Even though they bypass the need for WNT stimulation,

these artificially induced signaling events give valuable indication of the intricate regu-

lation of canonical WNT signaling.

Dishevelled competes with AXIN polymerization, thereby interfering with its regulatory

function.

As previously described, DVL has the ability to self-associate via its DIX domain, form-

ing elongated head-to-tail polymers, observable as regularly shaped cytoplasmic puncta

[60, 180, 216, 217]. Intriguingly AXIN has an almost identical domain (DAX), which is

also known to mediate self-association in vitro as well as in vivo [91, 104, 130, 168, 172].

DIX/DAX domains is highly conserved and essential for the effector function of both

Dvl and AXIN. NMR spectroscopy demonstrated, that the purified DIX/DAX domains
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of the two proteins interact with each other directly through their polymerization inter-

faces [60]. Thereby the same residues mediate homo- as well as heterotypic interactions.

This means, Dvl may potentially compete for the polymerization interface of AXIN.

Accordingly AXIN monomers copolymerize with Dvl into more dynamic Dvl-AXIN sig-

nalsomes instead of AXIN polymers [60, 180], which in turn disrupts the self-assembly

and thereby the effector function of AXIN. This process, however, is highly concentra-

tion dependent. AXIN polymers are relatively stable and Dvl-AXIN affinity is rather

low. Therefore only high-grade DVL polymers, that form upon WNT binding to its

Fz receptor and LRP6 coreceptor as described in the previous paragraph, generate a

binding avidity high enough to break up AXIN polymers in the cytosol [60]. This pro-

cess is further amplified by the binding sites presented by phosphorylated LRP6, after

DVL/AXIN polymers have been recruited to the membrane. Nevertheless it has to be

acknowledged that Dvl has the potential of inhibiting AXIN directly, given its local

concentration exceeds a certain threshold.

LRP6 self-accumulation and phosphorylation

LRP6 possesses a similar concentration-dependent self-activation mechanism as Dvl. As

soon as the local receptor density of LRP5/6 crosses a certain threshold, it starts to self-

aggregate into signalosomes. The oligomerization of LRP5/6 in turn promotes the phos-

phorylation of the cytoplasmic tail of LRP5/6 by CK1y and GSK3β. When accumulated,

phosphorylated LRP6 is capable of recruiting and binding AXIN, thereby inhibiting the

destruction complex. Intriguingly, the previously described artificial oligomerization and

subsequent phosphorylation of LRP6 is also completely independent of Dvl [11]. The

phosphorylation sites of LRP6 signalosomes apparently provide a local concentration of

binding sites high enough for AXIN recruitment and binding. Thus, a forced oligomer-

ization by mutation or simply a significant overexpression of LRP6 is sufficient to induce

canonical WNT signaling hence bypassing the need for Dvl polymers, Fz or even WNT

molecules [11, 18].

Given the central role of the WNT signaling, the local concentration levels of LRP6 and

Dvl have to be elaborately regulated. Experimental studies demonstrate that WNT-

induced phosphorylation of Dvl differentially regulates canonical and noncanonical WNT

signaling [9]. For instance, phosphorylation of WIP sites reduces the formation of DVL

polymers and attenuates β-catenin signaling [68]. Thereby DVL activity is shifted from

canonical to non-canonical WNT signaling. It should also be noted, that the general

availability of free Dvl is rather restricted due to its involvement in various other WNT

pathways and the high number of interaction partners [65].



Chapter 4 Model of Raft-dependent WNT Signaling 60

In contrast to that, LRP6 is exclusively involved in canonical WNT signaling. Ac-

cordingly LRP6 concentration and activation is tightly regulated through recycling, in-

hibitors (DKK) and most importantly an intricate regulation mechanism that is based

on lipid rafts [155, 173, 183, 215].

LRP6 phosphorylation is restricted to Lipid Rafts

In fact, the localization of LRP6 in lipid rafts is crucial for its successful phosphoryla-

tion, implying a major impact of lipid rafts on the activation of the signalosome, hence

WNT/β-catenin signaling [155, 173]. Interestingly, LRP6 is not raft-associated, but

evenly distributed throughout the membrane independent of the presence of WNT lig-

ands, whereas its main kinases, membrane-bound CK1y, is primarily located in lipid

rafts. This means receptor and kinase are seperated to a large extend, which effec-

tively reduces the interaction between LRP6 and CK1y attenuating the phosphorylation

of LRP6 and signalosome formation. However, additional mechanisms are required to

[completely] restrict the phosphorylation of LRP6 to lipid rafts as observed in the exper-

iments. Recent experimental results have identified LY6/PLAUR domain-containing 6

(Lypd6) as additional interaction partner of LRP6. Lybd6 is GPI-anchored to the mem-

brane and therefore partitions into lipid rafts, where it interacts with FZ and LRP6 and

promotes LRP6 phosphorylation upon WNT stimulation. However, the exact mech-

anism of raft-specific phosphorylation and the role of CK1y and Lybd6 still remains

elusive.

Endocytotic regulation of WNT/β-catenin pathway

An ever growing number of studies underline the various role of endocytosis for the

regulation of WNT/β-catenin pathway. Thereby endocytosis has been shown to have

inhibiting as well as promoting effects, depending on the endocytotic pathway, that is

activated [15]. Endocytosis induced by the inhibitor Dkk, e.g. is mediated by clatherin

and specifically depletes LRP6 from the lipid raft, hence attenuates the receptor and

signal activation. Whereas WNT induced endocytosis is controlled by caveolin and leads

to the inhibition of the destruction complex by transferring GSK3β to multivesicular

bodies, where it is separated from the cytosol and eventually targeted for lysosomal

degradation [173, 196].
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4.2 Existing WNT/β-catenin models

There exists a huge number of WNT models and each considers a specific aspect of

WNT/β-catenin signaling hence employs a different level of detail. Here we want to

focus on the models describing the detailed intracellular processes of canonical WNT

signaling. Therefore we particularly emphasize the Lee model and its extensions. For a

thorough survey of the existing WNT models, the interested reader is referred to one of

the excellent reviews of Kofahl and Wolf as well as LLoyd-Lewis et. al. [107, 125].

Lee et. al. (2003) The first mathematical model of canonical WNT signaling was

proposed in 2003 by Lee and Heinrich [116]. The model is deterministic and captures

the essential dynamics of β-catenin in the cytosol. It is considered as reference model

for the canonical WNT signal pathway, for the majority of the kinetic parameters and

protein concentrations are based on experimental measurements [125]. Lee et al used

Xenupus oocyte as experimental system, which is a decent choice, because in contrast

to e.g. cell populations, it provides a well-stirred cytosolic environment of a single cell

without compartmentalization. Thus Xenopus oocytes fulfill most of the assumptions

for deterministic models and therefore serve as a perfect reference system for the model.

The original model is composed of 15 ODEs, which describe the regulation of the tran-

scriptional activity of WNT target genes by β-catenin. Accordingly the model comprises

β-catenin, its target transscription factor TCF and the main species involved in the reg-

ulation of β-catenin levels, i.e. WNT, Dishevelled (Dsh in Xenopus) as positive regula-

tors and the main components of the β-catenin desctruction complex: GSK3β, APC and

AXIN. The reactions between the species describe the following processes: protein syn-

thesis and degradation, de-/phosphorylation, and protein complex dis-/assembly. Note,

that in the model only AXIN and β-catenin are subject to production and turnover

processes, whereas the concentrations of Dsh, GSK3β, APC and TCF are considered as

constant over time. WNT on the other hand is not represented as a species, but by a

rather abstract signal, which has a value between 0 and 1 and its decay is described by

an arbitrary exponential function.

Apart from the model, one of the main insights of the study by Lee et. al. is the cru-

cial role of AXIN for the assembly and function of the degradation complex. Indeed,

quantitative determination of all species concentrations revealed a significantly lower

concentration of AXIN compared to the other species of the degradation complex, i.e.

0.02 nM versus 50 nM for GSK3β and 100 nM for APC. Further in silico experiments

showed that the increase and duration of β-catenin accumulation in response to WNT

stimulation is directly affected by the turnover rate of AXIN. Thus, according to the
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Lee model AXIN is the limiting factor in β-catenin degradation process, hence canonical

WNT signaling.

Model analysis and simplifications The Lee model has been thoroughly analysed

in a number of studies and several simplifications have been proposed.

Kruger et. al.

Kruger and Heinrich were one of the first to perform a thorough analysis of the Lee

model. They identified varying time scales involved in the WNT pathway and the ex-

istence of conversion laws, which allowed them to reduce the model to 7 ODEs and 8

algebraic equations [111]. Further Kruger and Heinrich performed a sensitivity analysis

to analyse the robustness of the WNT model to variation of parameter values. Re-

markably, the robustness of the model differs between active and inactive state. In the

inactive state, i.e. without WNT stimulation, parameter variations resulted in inappro-

priate pathway activations, whereas in the active state, i.e. during WNT stimulation,

the model appeared rather robust against perturbations.

Mirams et. al.

In an attempt to reduce the amount of parameters used in the Lee model Mirams et

al performed a detailed asymptotic analysis of the Lee model to identify the dominant

component involved in WNT signaling. Based on their analysis they suggest to simplify

the Lee model to one single ODE describing the dynamics of active β-catenin under the

dependence of WNT signals. In this simplified model only three reactions are considered:

the basal production and decay reactions of β-catenin, which are preserved from the Lee

model, and the AXIN-dependent degradation of β-catenin. Finally the inclusion of

an additional equation for the formation of the β-catenin/TCF complex is suggested.

Remarkably the simplified model, consisting of the four reaction previously described

reactions, is capable of reproducing the essential dynamics of WNT/β-catenin signaling

[143].

Geontoro et al

Extended analysis of the Lee model revealed, that WNT-induced β-catenin fold changes,

i.e. the ratio of β-catenin concentration before and after WNT stimulation, are insensi-

tive to certain perturbations of pathway parameters (in a certain range). This means,

perturbations that affect the concentration values of certain key components of the

WNT/β-catenin pathway, affect the total β-catenin level, but not the WNT-induced

fold change of β-catenin. However, data from Xenopus and mammalian cells show that
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the robustness of the β-catenin fold change strongly varies between individual parame-

ters. While WNT-induced β-catenin fold changes are sensitive to β-catenin overexpres-

sion, the perturbations of the degradation of β-catenin has hardly any affect on the fold

change in β-catenin. Further in vivo and in vitro experiments in Xenopus and ROK cells

demonstrated, that cellular responses are coupled to WNT-induced fold changes, instead

of absolute β-catenin levels, i.e.not the absolute concentration of β-catenin/TCF, but

the fold change controls transcriptional outcome of WNT signaling. As a consequence

transcriptional and phenotypic responses to WNT signaling are robust to natural vari-

ations in proteins levels, either of genetic, environmental or stochastic nature.

Model extensions Apart from model simplifications, a number of studies have build

upon the Lee model and introduced additional components, such as feedback mecha-

nisms or compartments and the diffusion between them.

Feedback Mechanisms - (Cho 2006, Wawra 2008)

A key aspect for several WNT regulators is that they are positive or negative transcrip-

tional targets of the canonical WNT pathway, hence modulate WNT pathway activity

in terms of a feedback mechanisms [125]. Several extensions of the Lee model exist, that

include negative feedback loops by coupling the expression and production of pathway

inhibitors, like AXIN or Dkk with the WNT-induced β-catenin accumulation [28, 211].

The inclusion of feedback mechanisms can result in a robust oscillation of β-catenin

and its inhibitor [103]. Though, analyses of the extended models demonstrate, that

oscillation of the WNT/β-catenin pathway occurs only under certain conditions, i.e.

parameterizations of the model [28, 211]. For instance, the original configuration of the

Lee model cannot establish a stable oscillation under permanent WNT signal, despite

the inclusion of negative feedback [211]. Instead an increase between 2 and 20 fold of the

original parameter configuration is required to reach stable oscillation of β-catenin/TCF

and AXIN2.

Compartments / Subcellular models

A major limitation of the previous models is the assumption of homogeneity, i.e. the

models consider the cell as a homogeneous, well-mixed solution. This simplification
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neglects the facts, that cells comprise distinct compartments, like the nucleus or en-

dosomes, that proteins migrate between these compartments through active or passive

transport and that specific reactions can be localized to a particular compartment or

region. This also accounts for the canonical WNT pathway, where crucial processes are

spatially restricted to certain compartments, like the complexation of β-catenin and TCF

in the nuclues after the nucleo-cytoplasmic shuttling of β-catenin or the formation of the

ligand activated receptor complex (signalosome) in the membrane. Recent extensions

of the Lee model address this issue in a compartmental approach. Van Leeuwen et al’s

model was one of the first to consider different pools of β-catenin and their distribution

between the three compartments membrane, nucleus and cytosol. This work was fol-

lowed by several models that explicitly include the nucleo-cytoplasmic shuttling of WNT

pathway components, as done by Mazemondet et al for β-catenin [138] or Schmitz el al

for β-catenin and its regulator APC [176, 177]. Indeed Tan et al recently demonstrated

that compartmental models provide more realistic results than purely cytosolic models

[200].

However, to our knowledge only the model of Kogan et al includes receptor-ligand in-

teraction and receptor complex formation at the membrane [108]. The model is capa-

ble of not only describing the coordinated activation and formation of the WNT/Friz-

zled/LRP6 complex, but also the synergistic effect of common WNT inhibitors, like

secreted Frizzled-related protein (sFRP) and Dickkopf (Dkk) [108]. In view of these

results and the fact, that the WNT-induced formation of the receptor complex is a key

step in canonical WNT signaling, it remains illusive, why there exists only one model

that considers signaling at the receptor level.

4.3 Modeling membrane-related processes in signal trans-

duction

While in the two previous chapters of this thesis, the impact of lipid rafts on signal

transduction has been studied on the microscopic temporal and spatial scale, i.e. mi-

croseconds and micrometers, a much higher temporal and spatial scale is required to

explore the impact of lipid rafts on an entire signal transduction chain, like canoni-

cal WNT signaling. Indeed, the time that generally passes between the initial ligand-

receptor binding and the cellular response, e.g. in terms of gene expression or target

protein activation, lies in the range of seconds to minutes rather than microseconds.

The same applies to the spatial scale - typically a single or a colony of cells has to be

considered when studying signal transduction and cell communication, with an average

cell volume of V =∼ 2.25103 µm3, not to mentioned the enormous amount of proteins

involved. Therefore we need computational modeling approaches that have a much lower
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level of detail in terms of spatial and temporal scales. This section is focused on how to

construct a hierarchically structured model of WNT/β-catenin signaling that features

both the membrane-related and intracellular dynamics described in section 4.1. At the

same time, we address the problems and challenges that arise when developing models

of signaling pathways in general and in particular with regard to spatial aspects, such

as lipid rafts dependent signal transduction dynamics.

4.3.1 Modeling features required to capture membrane-related pro-

cesses in signal transduction

Cell biological models usually require different modeling features depending on the in-

teractions within the model network and the individual properties of the model compo-

nents [131]. In signal transduction, for instance, a low number of extracellular signaling

molecules is often sufficient to activate membrane-bound receptors, which in turn induce

an intracellular signaling cascade. Therefore features such as stochasticity, multi-state

components and compartments are important for signal transduction models. In the

following major modeling features are summarized, that are specifically required to cap-

ture membrane-related processes in signal transduction and in particular in canonical

WNT signaling, as described in Sec. 4.1. These modeling features help to derive the

requirements in search for the proper modeling formalism that is later used for the ac-

tual model implementation. The set of model requirements is based on the review of

Machado et. al. [131].

Multi-state components

Proteins are typically subject to several modifications, such as phosphorylation, ubiqui-

tination or glycosylation. This also applies for the proteins involved in canonical WNT

signaling. WNT-bound LRP6, for instance, has to be phosphorylated at several phos-

phorylation sites, before it can bind and inhibit AXIN [11, 142, 152, 218]. CK1γ is

palmitoylated, which anchors the protein at the membrane, where it preferably parti-

tions into lipid rafts [173]. Also WNT proteins are glycosylated, which is essentially

required for membrane localization and ligand receptor interaction [7]. These examples

already illustrate the major impact that protein modifications have on the protein’s

localization, its functionality and the reactions it participates in. Therefore different

modification states of proteins ought to be included in model descriptions. The easiest

approach for this, and most commonly used for mathematical modeling (in terms of

ODEs), is to represent each modification state by an individual entity. However, such a
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straight-forward approach results in a combinatorial explosion of entities and reactions

(a protein like LRP6 with n phosphorylation sites will have 2n possible states, hence

entities), and therefore becomes rapidly infeasible, in particular for models that contain

several multi-state components [56, 87]. The problem of combinatorial complexity can

be avoided by formalisms that allow the specification of attributed entities and state-

dependent reactions [131]. Since the majority of proteins involved in the regulation

of canonical WNT signaling possess multiple modification states, a modeling formalism

supporting multi-state components is apparently more suited for a combined membrane-

and intracellular model of canonical WNT signaling than a pure mathematical approach.

Spatial structure and compartmentalization

The cell is well structured in terms of static and dynamics compartments, such as or-

ganelles (e.g. nucleus, mitochondrium or endoplasmatic reticulum) and cytoplasmic

vesicles (e.g. endo -or lisosomes). Compartments are enclosed by a semi-permeable

membrane, which separates the compartments contents from the surrounding environ-

ment. Molecules, like proteins, nucleotides (RNA) or ions, migrate between these com-

partments in terms of active or passive transport, depending on the molecule’s size and

the porosity of the compartment. As a result, molecule concentrations, hence diffusion

and reaction kinetics may strongly vary between individual compartments. Note, that

the membrane itself is also considered as separate functional unit, because membrane-

bound proteins are restricted to lateral diffusion and therefore only interact with other

membrane-bound and peripheral proteins or ligands.

Compartments play a major role in canonical WNT signaling. β-catenin can only func-

tion as transcription factor, when present in the nucleus. Whereas the destruction

complex can degrade only cytoplasmic β-catenin. An even greater role plays the com-

partmentalization of the membrane in terms of lipids rafts. Thereby membrane-bound

proteins like, LRP6 and CK1y are not only heterogeneously distributed throughout the

membrane, but their interaction is completely restricted to lipid rafts. A model combin-

ing membrane-related and intracellular WNT/β-catenin models thus has to be realized

in a compartmental approach.

Modularity and hierarchy

As described in the previous paragraph, the cell is organized into a set of separate com-

partments, each with its own specific functionality [79, 165]. Shuttling molecules, driven
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by active or passive diffusion, interconnect the individual compartments. This modular-

ity provides the basis for composition-based approaches, meaning that a model can be

composed into separate submodels, which may be eventually aggregated into one model

without changes to any of the submodels. Taking advantage of the modular organization

of the cell in terms of model composition can help to reduce their complexity facilitating

the development, extension and analysis of models in general [160].

While modularity and compartmentalization represents the horizontal organization of

the cell, living systems also comprise a vertical, i.e. hierarchical organization [27, 131].

The most prominent example is the organization of any vertebrate organism into or-

gans, tissue, cells and molecules. However, already a single cell has multiple hierarchical

layers, reaching from the extracellular space, over the plasma membrane to intracellular

compartments, like the nucleus of mitochondria, each of which may be further hier-

archically structured (e.g. lipid rafts domains within the membrane). Capturing the

described complex, hierarchical organization of the cell poses a great challenge for the

modeling formalism. It has to support hierarchical, and [bestenfalls], dynamic nesting of

compartments and cope with the interaction across compartment boundaries. Let’s con-

sider the formation of the WNT/LRP6 receptor complex in canonical WNT signaling as

an illustrative example. In this reaction extracellular WNT molecules directly interact

with membrane-bound LRP6 receptors, which can further be located within lipid rafts.

The complex hierarchical nesting of the LRP6 receptor, being located in within three

compartments (Cell, Membrane, Lipid Rafts), is necessary due to the specific restric-

tion of LRP6 phosphorylation to Lipid Rafts (c.f. Sec. 4.1). At the same time WNT

directly interacts with LRP6, crossing several compartment boundaries. Therefore, the

formation of the WNT/LRP6 complex can best be represented by a model formalism

that supports hierarchical nesting of proteins and that connects the hierarchical layers

with a bottom up approach to allow direct ligand receptor interaction.

Dynamic Model Structures

Cells are dynamic systems, where not only molecules are being produced and degraded,

but also larger structures, i.e. compartments. Typical examples for dynamic structures,

that continuously emerge and disappear are endocytotic vesicles and endosomes. Endo-

cytotic vesicles emerge from or merge with the Golgi apparatus and the plasma mem-

brane and they are mainly responsible for trafficking, sorting and recycling processes in

cells. Another dynamics structure is the cell itself, as it is subject to growth, division and

also cell death/apoptosis. The modeling of dynamic model structures like endosomes or

cell devision provides one of the greatest challenge for modeling formalisms, for a num-

ber of reasons. First, endosomes and in particular cells, are compartments, that contain
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an arbitrary number of molecules. If modeling approaches support compartments at

all, the compartmental structure of the model is typically fixed and a dynamic handling

of compartments, like the emergence of new compartments, is not explicitly designated

in most of the formalisms. Also the dissection of model structures, for instance in cell

devision, requires a procedure for the distribution of the containing molecules to the

resulting structures/compartments. Lastly it would be desirable, if dynamic structures

could also be associated with individual properties, i.e. attributes. For instance, the

function of endosome changes with its characteristics, in particular with its pH value.

This means for normal (neutral) pH values, endosomes serve as trafficking vesicles, while

acidic endosomes transfer to the lysosomal pathway, which is responsible for the degra-

dation of proteins and the break down of cellular waste products.

Since endocytosis also plays a crucial role in canonical WNT signaling (cf. Section 4.1),

a proper modeling formalism should provide means for the representation of dynamic

and preferably attributed structures.

Stochasticity

Stochasticity becomes crucial, when very low molecule numbers are involved in the re-

action network of a model. The most prominent example is gene regulatory networks,

but this also applies for signal transduction, as signaling cascades are often triggered by

a low number of signaling molecules and then further amplified. In canonical WNT sig-

naling, a small concentration of WNT molecules are sufficient to induce a transient, but

robust activation of the WNT/β-catenin pathway [76, 116]. Furhter, AXIN and thereby

another key player in canonical WNT signaling is present in a comparably low con-

centration [116, 138, 152, 203]. Accordingly, for the simulation of signaling networks in

general and in particular of the WNT/βcatenin signaling network, a stochastic approach

should be preferred over a deterministic approach.

4.3.2 Rule-based modeling approaches

There exists numerous modeling formalisms, a lot of which provide an ever increas-

ing amount of extensions, each specifically addressing different aspects of the previously

elucidated challenges in modeling of canonical WNT signaling and complex signal trans-

duction pathways in general. According to the previously described model features that

are required to effectively capture the dynamics of canonical WNT signaling, rule-based

approaches appear to be the method of choice for a number of reasons. Rule-based for-

malisms are a specific class of modeling languages that employ sets of rules to describe
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state changes in the model. Thereby each rule comprises a precise formal statement

about the conditions that have to be fulfilled for the rule to be executed (or fired) and

the consequences of its execution. There exists numerous rule-based approaches that

are tailored to quantitative systems biology, such as BioNetGen Language (BNGL), κ,

which are probably the most prominent and commonly used approaches, and the recently

developed ML-Rules. In these approaches the model is typically described in terms of

chemical solutions, i.e. mappings from molecules to discrete numbers, while the rule

specification follows the notation of (bio)chemical reactions. Thereby the left-hand site

of each rule describes what condition have to apply for the rule to be executed/fired;

whereas the right hand site describes what happens, when the rule is executed/fired.

Due to the similarity of rule-based languages to chemical reaction systems, the descrip-

tion of transduction pathways in rule-based formalisms is rather intuitive. The main

advantage of rule based approaches, however, is that it can avoid the combinatorial ex-

plosion problem in the development and simulation of complex models. This is because

most rule-based formalisms provide means for a structured definition of model com-

ponents (or species) with multiple, arbitrary states (attributes). This allows to define

rules with reaction patterns, where a single rule represents a set of multiple reactions,

depending on the attribute values of the species [57, 99, 136]. On the one hand, this sig-

nificantly reduces the model complexity, because the interactions of an attributed species

can be defined by schematic rules instead of specifying reactions per each possible state

of the species. On the other hand, the computational complexity is also decreased, since

species and reactions only need to be instantiated as they become available. In the fol-

lowing BNGL, κ and ML-Rules will be shortly introduced and discussed whether they are

suited to implement the processes involved in canonical WNT signaling (cf. Section 4.1).

BioNetGen Language

BioNetGen is a framework and language for modeling and simulation of rule-based mod-

els. It is primarily dedicated to model biochemical systems, and has been particularly

applied in the modeling of different signaling pathways [8, 14, 201]. The basic building

blocks of BNGL models are molecules. Molecules are structured objects that are orga-

nized in terms of components. Components allow to specify molecule specific properties

(i.e. attributes), like phosphorylation or binding sites and may be associated with a

predefined list of possible/arbitrary state values. Components of different molecules can

be linked through bonds in order to describe the binding of molecules. This means, the

association of molecules is explicitly described in a binding-site specific way (example

WNT-LRP6).
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With respect to canonical WNT signaling, the attribution of molecules in terms of com-

ponents provides mean to describe the various phosphorylation states of e.g. LRP6

and in particular its interactions with its numerous binding partners, like WNT, CK1

and AXIN. Rules specify the formation and degradation of molecules as well as their

biochemical transformations, i.e. state changes of the molecule’s components. Like in

most common rule-based language, BNGL employs reaction patterns, i.e. a single rule

represents a set of multiple reactions. Thereby BNGL follows the premise ”don’t care,

don’t write”, which means, that if component/attribute values of a molecule/species are

not explicitly specified in the rule, it applies to all entities of the molecule/species, inde-

pendently of their attribute values. However, as soon as concrete component/attribute

values are specified, the rule is restricted to the set of molecules that matches the given

attribution/component values. This way the phosphorylation of LRP6 can be restricted

to LRP6 molecules that are bound to WNT or the AXIN-dependent degradation of

β-catenin is restricted to free, unbound AXIN molecules. BNGL further supports condi-

tional expressions as well as arbitrary rate kinetics. Arbitrary kinetics can be specified

by user-defined functions, which may further depend on global observables [189]. Ob-

servables relate to quantities of a set of chemical species that match a search pattern or

set of search patterns.

However, due to the need for global observables to access the total amounts of certain

molecular species, rule schemata can only be applied in a limited way. For instance, a

model with numerous compartments, e.g. several cells, or endocytotic compartments,

would require the definition of an own global observable as well as the respective reac-

tion rules for each of the modeled compartments, and therefore would soon become very

complex and cumbersome.

To encounter the apparent need to explicitly describe the hierarchical topology of the

cell, the BGNL formalism has been extended [78]. The compartmental BNGL (cB-

NGL) explicitly distinguishes between three-dimensional (compartment volume) and

two-dimensional (surface, i.e. membrane) compartments, taking into account their ef-

fects on reaction rates. This means in cBNGL the localization of molecules restricts the

scope of rule application, and the reaction rate is inherently scaled to the predefined

volume of the compartment. By explicitly specifying the compartment name, transport

rules may change the location of individual molecules and entire molecular complexes

respectively.

In summary BNGL and its extension compartmental extension cBNGL provide a pow-

erful modeling formalism that serves most of the modeling features, we identified earlier

as being crucial for the development of a canonical WNT signaling model. Namely,

BNGL allows the definition of multi-state model components, it supports an explicit
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notion for molecule binding and protein assemblies and with its extension cBNGL pro-

vides a mean to describe the hierarchical topology of cells in terms of compartments.

However, the major drawback of the BioNetGen formalism is its lacking support for dy-

namic structures. The restriction to a finite, predefined list of attribute values for each

component, hampers the description of dynamic entities. As a consequence e.g. growth

processes are difficult to capture, which might be important for modeling raft and cell

growth in the context of canonical WNT signaling. A way to circumvent this problem

is the specification of an observable, which can then be used for volume dependent rate

calculations. However, observables only capture species numbers, thus cannot replace

dynamic attributes.

The compartment topology of a model is fixed too, i.e., cBNGL does not provide means

for dynamic structures, and, apart from the volume, it is not possible to equip compart-

ments with an own state. Moreover, the volume of a compartment denotes merely a

constant model parameter rather than a state variable that may change over time. This

for instance hampers the description of newly emerging structures and abrupt volume

changes, e.g., due endocytosis/recycling or lipid rafts dynamics, such as growth, merge

and fission of rafts. Moreover, downward causation and certain high-level aspects of

the WNT signaling, such as varying diffusion regimes, for instance caused by molecular

crowding or increased viscosity in lipid rafts cannot be captured in the current BNGL

notation.

κ-calculus

A similar rule-based formalism as the previously described BNGL is the κ language

[42, 43, 59]. While BNGL was originally conceived as a language for describing ODEs in

a higher level fashion, the κ-calculus was early on intended as modeling language pro-

viding a direct and transparent formalization of molecular agents in signaling networks

[42]. Hence, κ follows an agent-based approach where species are defined by agents that

have a structured interface for the interaction with other agents. However, even though

their original motivation is completely different, κ and BNGL are astonishingly similar

regarding synthax and semantics. In the following we shortly describe the elemental

building blocks of the κ-calculus and evaluate, why this formalism is generally more lim-

ited than BNGL, particularly regarding its expressiveness, except for certain, tailored

modeling approaches.

κ description consists of a collection of agents and rules. Similar to the components

of molecules in BNGL, agents can be arbitrarily attributed in terms of labeled sites.

Sites describe the internal state of the agent and typically refer either to protein mod-

ifications, like phosphorylation, ubiquitination or binding sites. Thereby domain-level
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modifications and bindings can be presented in a similar way as in BNGL.

At the same time, rules provide concise descriptions of the interaction, i.e. under which

conditions agents may interact and what the result of this interaction is. Elemental

interactions refer to binding and unbinding of two agents or changes in the modification

state of a site of an agent, but also the creation and deletion of an agent. Similar to

BGNL κ also follows the ”don’t care don’t write“ convention, i.e. if sites are omitted

in the rule description, the rule applies for all agents, regardless of the current state of

the omitted site. Thereby rule schemta can be specified, representing a set of different

rule instances, that are generated when there exist agents that fulfill the conditions on

the left-hand site of the reaction. Rules are associated with reaction rate constants and

the set of reactions contained in a model is typically executed in terms of the Gillespie

algorithm. To this point the κ language provides a similar functionality as the native

BGN language (not cBNGL), hence covers a substantiative body of events sufficient

to describe a majority of mechanistic interactions in cellular signaling. Though more

sophisticated aspects of signaling, such as compartmentalization, space in general and

dynamic structures are not yet addressed. Another major drawback is the restriction

to mass action kinetics. In constrast to BNGL, no arbitrary rate calculations can be

defined in κ . Also explicit description for compartmentalization, like in the extended

version cBNGL, is not available.

However, also for κ a number of extension have been developed to represent agents in a

hierarchical way or to provide a spatial representation of compartments. [43, 191]

The hierarchical extension of κ allows the definition of generic species and rules. Thereby

agents can be derived from already specified agents in a similar way as in object-oriented

programming. This means newly defined agents may specifically modify, add or remove

individual sites of the agent from which it is derived from, while the remaining sites,

inherited from its ancestor agent remain unchanged. This implies an hierarchical orga-

nization of agent entities and allows the definition of generic rules that mention agents

that have many descendants in the hierarchy. [43] This allows a convenient exploration

of arbitrary model perturbations, as for instance ligands, mutations or drugs [43]. Also,

spatial aspects in terms of neighborhood can be easily expressed in a condensed and

concise manner. Thereby cell-to-cell communication in a cell colony can be represented

without suffering from combinatorial explosion as in BNGL. For these specific modeling

purposes κ provides crucial advances in comparison to BNGL. However, for the imple-

mentation of the canonical WNT signal pathway, these aspects only play a minor part.

Spatial Kappa is an extension of κ to embed Kappa-based models in space, i.e. that

captures the location and the movement of species [191]. For this, the formalism has

been extended in terms of voxel-based compartments, connections between them (known

as channels) and respective translocation rules for species. Spatial Kappa thus supports

the definition a purely compartment-based models, similar to cBNGL, as well as more
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spatially resolved models, where compartments are additionally discretized in terms of a

regular lattice, i.e. voxels. Agents can move along channels, that connect voxels within

or across compartments. The diffusion and transport dynamics of species shuttling be-

tween voxels is based on the next-subvolume approach [53]. Spatial Kappa thus provides

means to describe heterogeneous protein distributions within single compartments, given

the discretization of the compartment is sufficiently small. In addition, the reaction rate

of a rule may now contain agent descriptions, i.e. the rate of a diffusion rule may be

defined as a function of the size of the species being diffused. This is a major advance

compared to basic Kappa and BNGL. However, also in Spatial Kappa reactions rates

are still restricted to mass action kinetics, which limits its applicability severely.

Moreover, Spatial Kappa suffers from the lack of dynamic structures, which, similar to

BNGL, hampers the description of cellular processes like endocytosis, cytokinesis or the

merging and fission of lipid rafts.

ML-Rules

ML-Rules is the newest development in the line of rule-based model languages that are

tailored to bio-chemical systems. ML-Rules puts a special emphasis on representing

dynamics at different levels of a nested hierarchy [136, 210]. The basic model entities

in ML-Rulesare called species, which may represent any object of interest, e.g. a cell

or a protein. Each species consists of a name and a fixed tuple of attributes, i.e. in

the basic language concept attributes do not have names and are identified by their

position only. In addition, ML-Rules supports the concept of nested species to build

hierarchical model structures, i.e. species can be enclosed by other species and can

enclose other species themselves. That means, species are not only characterized by their

names and attributes, but also by their context (the species they are enclosed by) and

content (the set of species they contain, called solution). Note that species at any level

within such a hierarchy may still have assigned attributes. Since ML-Rulesbelongs to the

reaction-centric family of rule-based formalisms, the dynamics of a model are described

by rule schemata, each of which may encode for possibly infinitely many concrete rule

instantiations, helping to effectively reduce redundancy and thereby facilitating compact

model descriptions [43]. A rule schema can be instantiated at any (sub-)solution of the

current model state to which the set of reactants would match. The firing rate of a rule

determines the frequency with which a rule is being executed. To let the rate depend

on the amount of matched reactants, so called species identifiers can be defined through

which the according species population size can be dynamically accessed. In contrast to

many other formalisms, e.g. the κ-calculus, rate kinetics in ML-Rules are not restricted

to the law of mass-action, which is an important feature for multi-level modeling in
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general [136, 137]. Complex mathematical expressions and conditional constraints are

allowed to manipulate the reaction rate of a rule schema, e.g. to specify thresholds that

control a rule to only fire if a certain amount of reactants is available. To model upward

and downward causation between different hierarchical levels, ML-Rules supports the

specification of rule schemata that involve nested reactant and product species. Most

importantly, in ML-Rules it is possible to change the model structure dynamically, which

is another important feature for specifying biological multi-level models, since many

biological processes, e.g. endocytosis, cell division, and death, change the hierarchical

composition of the system. The support for variable model structures during runtime

and the fact that species are allowed to have attributes (states) at any organizational

level, distinguishes ML-Rules clearly from cBNGL and κ.

4.3.3 Multi-level, rule-based modeling in ML-Rules

For the following model implementations we apply ML-Rules, a multi-level, rule-based

modeling language [136]. The semantics of ML-Rules is based on continuous time Markov

chains (CTMC). ML-Rules models are executed by stochastic, discrete event execution

algorithms [66]. All entities are expressed in terms of concrete numbers, like molecules,

compartments or cells, instead of concentrations. In our model stochastic events play a

crucial role due to the comparatively low molecule number of the key player AXIN. In

this setting, a deterministic ODE based execution might miss important dynamics as has

been shown in [138]: in comparison to the ODE based execution, the stochastic execution

revealed artifacts in simulating β-catenin signaling within hNPCs-cells if adopting the

very low AXIN concentration as given by [116]. Therefore in [138], a still comparatively

low but ∼ 10 times higher number of AXIN molecules was determined as more realistic,

a result that was later confirmed for various mammalian cells by wet-lab studies [199].

The implemented WNT/β-catenin signaling model makes extensive use of rule-schemata

provided by the ML-Rules syntax. This is necessary, since the model contains several

hierarchical levels as well as protein specific binding and phosphorylation states, that

are in particular necessary for the representation of the signalosome.

Model description in ML-Rules

Next we shortly introduce the rule-schemata provided by the ML-Rules syntax. For

more details the interested reader is referred to Maus et. al. [136]. A model description

in ML-Rules typically consists of four different elements that are specified in a certain

order. We will introduce each of these elements with the help of exemplary ML-Rules
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model specifications, that represent a simple ligand-receptor interaction, i.e. extracel-

lular ligands bind to membrane-bound receptors and the degradation of the receptor,

independent of its binding state.

Parameter specification

At first a list of optional constant model parameters is defined, like initial molecule

number or reaction rate constants. The parameter definition consists of the parameter

name, a colon and its value. The values assigned to parameters can be a numerical value,

a string or even an expression, as shown in the example below. In this example, the

number of ligands is calculated based on the number of receptors and corresponds to 250:

k1: 2.3e-02;

k2: 1.0

nReceptor: 1e03;

nLigand: nReceptor / 4;

nCell : 1;

stateB: ’b’;

Species definition

Any entity in the model is defined as species type with a unique name and its number

of attributes. For example the rule specification below states, that the species receptor

is attributed with one attribute, whereas the species ligand does not contain any at-

tributes:

Receptor (1);

Ligand (0);

However, note that the species type definition does not contain any information about

the type or the value of the attributes. Attributes are explicitly specified when defining

the initial solution or the rule schemata. As seen in the next paragraph, the attribute

of receptor correspond to its binding state.

Initial solution

The initial model state is defined by the initial solution >>INIT[...]. Here, the species

that are initially present, their species count and attributes are (explicitly) specified.
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Distinct species are separated by a + symbol. Note that the same species type may

occur several times in the initial solution, if differently attributed. For example, in our

example the receptor may initially be present in the unbound and bound state. Ac-

cordingly the initial solution contains two species of type receptor - one with attribute

’ub’(unbound) and one with stateB , i.e. ’b’ (bound) with the corresponding molecule

counts:

>>INIT[

nReceptor Receptor(’ub ’) +

25 Receptor(stateB) +

nLigand Ligand

];

Note, that attributes are now explicitly specified. These values are changed during the

simulation according to the rules defined later on.

Since ML-Rules supports hierarchical nesting, the initial solution may also comprise

sub-solutions contained by certain species. The hierarchical structure is indicated by

square brackets, i.e. a nested species Cell that encloses a Nucleus and a Membrane is,

in the simplest case (without further attributes or nested structures), defined as follows:

Cell[Nucleus+Membrane]

Assume in our exemplary model the initial solution comprises extracellular ligand molecules

and a single Cell holding the nested species membrane, which in turn contains the two

differently attributed receptor species. The corresponding definition of the (extended)

initial solution is shown below:

>>INIT[

nLigand Ligand +

nCell Cell[

1 Membrane[

nReceptor Receptor(’ub ’) +

25 Receptor(stateB)

]

]

];

Rule schemata

Eventually the dynamics of the model are defined in terms of rules or rule schemata. A

rule (schemata) consists of an arbitrary number of reactants, products and a stochastic
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rate, that defines the reaction kinetics. Reactants and products are separated by an

arrow → followed by the rate definition after the @ symbol:

reactants -> products @ rate;

In our model we only consider biochemical reactions following mass action kinetics. The

stochastic rate of the reaction is thus determined by the amount of reactant species and

the speed of the reaction, i.e. the reaction rate constant. To access the amount of a

certain reactant, it can be assigned to an identifier x. The corresponding variable #x

then holds the current number of the assigned species, as depicted in the rule for the

ligand-receptor binding:

Ligand:l + Receptor(’ub ’):r -> Receptor(’b’) @ k1*#l*#r;

As indicated in the rule specification above, attribute values can easily be changed as a

result of a reaction. Accordingly, the binding of the ligand to the receptor is reflected

by the change in the receptor’s binding attribute (’ub’ → ’b’) and the consumption of

the ligand.

However, the given specification disregards the hierarchical nesting of the species and

is therefore incomplete yet. In its current form the rule would not be executed, since

ligand and receptor are not at the same hierarchical level. Instead, the nesting of the

species has to be specified explicitly:

Ligand:l + Cell[Membrane[Receptor(’ub ’):r + s_m?] + s_c?] ->

Cell[Membrane[Receptor(’b’) + s_m?] + s_c?] @ k1*#l*#r;

Please note, that when applying rules to nested species, one typically wants to preserve

the remaining molecules (sub-solution) within the nested species (e.g. cell, nucleus or

membrane) without specifying them explicitly. Therefore an additional, arbitrary vari-

able with the suffix ? occurs on the reactant and product site. In the example above,

s_m? and s_c? thus refer to the -unknown- sub-solution of the membrane and the cell

respectively, which remain unchanged, except for the change in the receptor’s attribute.

The next example illustrates the use of schematic rules. Instead of specifying each po-

tential (binding) state of the receptor (’ub’ and ’b’ ) explicitly for its degradation, one

can specify a schematic rule with a variable (bind) rather than a defined attribute value.

For example, the first order decay reaction with reaction rate constant k2 is described

by the following rule:

Receptor(bind):r -> @ k2*#r;
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where #r relates to the current amount of ligand molecules. This however also implies,

that the degradation rate constant is the same for unbound and bound receptors.

4.4 A rule-based model of raft-dependent WNT/β-catenin

signaling

In this section a detailed description is given how membrane-related and intracellular

processes are combined in a comprehensive WNT/beta-catein model and specified in

terms of the ML-Rules formalism. To evaluate what model could potentially be used in

our model, the existing WNT/β-catenin models are first described, before the model is

described that has been developed.

4.4.1 Membrane WNT Model in ML-Rules

This component represents lipid rafts-dependent receptor dynamics, receptor-ligand in-

teraction and receptor activation through kinase-dependent phosphorylation. Unfor-

tunately, there exists hardly any model that describes these processes for the canon-

ical WNT pathway. To our knowledge only the model of Kogan et. al. includes

receptor-ligand interaction [108]. However, the model neglects the impact of lipid rafts,

membrane-bound kinases which are apparently essential mechanism for canonical WNT

signaling. Therefore we have to develop the membrane WNT model basically from

scratch.

Model assumptions The model is compartment-based, but for rate calculation we

consider the membrane as a two-dimensional layer with lipid rafts being (immobile)

circular-shaped entities within the membrane, whose radius and coverage control the

rate of receptor-raft collision. Lipid rafts are included as individual compartments

within the membrane, similar to the nucleus being a single compartment within the

cell. Membrane bound proteins and receptors may enter and leave individual lipid rafts

by diffusion. Note that the mobility inside lipid rafts is reduced. Accordingly the dif-

fusion coefficient of raft-associated receptors is reduced by a constant factor Rρ. The

value of Rρ controls the extend of receptor aggregation inside lipid rafts [58, 73, 150]. In

addition to Rρ, the aggregation also depends on the protein’s specific raft affinity Rϕ.

The value of Rϕ is mainly determined by the structure and the hydrophobic character

of the membrane-bound protein, in particular of its membrane integral domain. This

corresponds to the observation, that only a specific set of proteins are accumulated by

lipid rafts [61, 207].
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With regard to the membrane compartment, we reduce the representation of the receptor-

complex and the signalosome. Accordingly, the FZ-LRP6 receptor complex is only rep-

resented by LRP6, such that in our model WNT directly binds to the LRP6 receptor.

This simplification is reasonable for canonical WNT signaling, because crucial events,

like AXIN binding, mainly depend on LRP6 and its activation through phosphorylation.

We further employ a simplified representation of LRP6 phosphorylation. LRP6 has to

be phosphorylated at several phosphorylation sites to recruit and bind AXIN. Thereby

the dual phosphorylation of the phosphorylation sites T1479 and S1490 by CK1γ and

DVL/GSK3β is crucial [152, 173, 219]. In our model, we consider solely the interaction

between CK1γ and LRP6, whereas a detailed representation of DVL mediated unspecific

phosphorylation of LRP6 by GSK3β is omitted. This assumption is justified by several

studies indicating that the LRP6 phosphorylation site targeted by GSK3β, S1490, is

constitutively phosphorylated and not or only weakly responsive to WNT stimulation,

while the phosphorylation of the CK1γ specific phosphorylation site, T1479, is clearly

induced by WNT stimulation [46, 152]. In addition several studies revealed accordantly

that CK1γ-mediated phosphorylation of LRP6 is confined to lipid rafts [155, 173]. We

include this finding in our model by restricting the phosphorylation to rafts-associated

proteins, i.e. only LRP6 that are located within a lipid raft may be phosphorylated by

CK1γ.

Eventually we allow two types of WNT stimulation. WNT molecules can either be ini-

tially provided (transient stimulation) or continuously synthesized and secreted by the

cell. Since WNT is a highly lipophilic protein that is localized at the membrane after

its secretion [39, 213], we assume, that released WNT molecules can directly induce the

WNT/β-catenin signaling at the cell surface in an autocrine manner. Note that in our

model we consider only one cell, instead of a heterogeneous cell population. As shown

in our aforementioned study, the impact of the cell cycle asynchrony on the average β-

catenin dynamics in cell populations is negligible [138]. Naturally, in a cell population,

the released WNT molecules will most likely induce WNT/β-catenin signaling in the

neighboring cells as well (paracrine activation).

Molecules and Interactions The membrane model of WNT signaling comprises

two subcomponents. The first model subcomponent represents the diffusion-driven re-

ceptor shuttling between raft and non-raft membrane regions, while the second model

subcomponent includes the receptor interactions with extracellular ligands (WNT) and

membrane-bound kinases (CK1y). Both subcomponents are depicted in Fig. 4.4. Each

labeled arrow in the figure refers to a specific rule in the model code 4.6. Note that,

if not stated otherwise, all reactions are reversible, e.g. the rules for WNT binding to

LRP6 (R7–8) relate to the respective binding and dissociation reaction. To illustrate
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the implementation of the membrane model components using ML-Rules, each individ-

ual process, such as receptor-raft shuttling or ligand-receptor binding, will be shortly

described with the aid of exemplary rule definitions.

Receptor-raft shuttling

To start with, we consider the raft-dependent diffusion dynamics of LRP6 and CK1γ.

LRP6 and CK1γ are located in the membrane, both diffusing into and out of Lipid

Rafts. This means LRP6 and CK1γ are either nested within the membrane or within

lipid rafts. At the same time, lipid rafts are a nested species of the membrane, which

itself is a nested species of the cell. The actual transition of LRP6 (or CK1γ) between

the nested compartments Membrane and LR is best illustrated in a reduced, exemplary

rule specification, that solely considers the nesting of LRP6 and disregards any other

attributes and additional nested structures:

// LRP6 diffusion into Lipid Rafts

Cell[Membrane[LR[] + LRP6]] -> Cell[Membrane[LR[LRP6 ]]]

// LRP6 diffusion out of lipid rafts

Cell[Membrane[LR[LRP6 ]]] -> Cell[Membrane[LR[] + LRP6]]

Listing 4.1: Simplified ML-Rules specification for LRP6-Raft shuttling

However, the specification of the shuttling process in ML-Rules requires not only hierar-

chical nesting but also attributed species. Let’s consider the exact specification of LRP6

shuttling into and out of lipid rafts, as shown below:
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// (R1) LRP6 diffusion into Lipid Rafts

Membrane(A)[LR(radius , p)[s?]:l + LRP6(d, ra, phos , bind):r ] ->

Membrane(A)[LR(radius , p)[LRP6(d*p, ra, phos , bind) ]] @ k_1*#l*#r*ra

// (R2) LRP6 diffusion out of lipid rafts

Membrane(A)[LR(radius , p)[LRP6(d, ra, phos , bind) + s?]:r ] ->

Membrane(A)[LR(radius , p)[s?] + LRP6(d/p, ra, phos , bindW) ] @ k_2*#l*#r

Listing 4.2: ML-Rules specification for LRP6 lipid raft shuttling. Please note, in this and

any of the following rule specifictations the rest solutions of the nested species, i.e. Cell,

Membrane and LR have been omitted for simplicity. The exact ML-Rules implementation can

be found in the model code at the end of the subsection

As depicted in rule 4.2 LRP6 is attributed with four different attributes:

1. d - diffusion rate

2. ra - raft affinity (corresponding to Rϕ(LRP6) )

3. phos- phosphorylation state

4. bindW- WNT binding state

For the raft shuttling, the diffusion rate and the raft affinity are of major relevance,

because they are required for the calculation of the kinetic rates k_1 and k_2. Further,

note that in rule 4.2 the diffusion rate d of LRP6 is modified during the transition by a

raft-specific factor p. p refers to the raft fluidity Rρ and determines how strong receptors

are slowed down within lipid rafts (c.f. model assumptions & Section 1.2). Therefore,

any receptor in the model is attributed with parameters for the diffusion rate d and the

raft affinity ra. Also the value of the diffusion rate is adapted whenever receptors enter

or leave lipid rafts.

The kinetic rates k_1 and k_2 correspond to the stochastic diffusion constant, that

describes the discrete event-based diffusion of a particle between separate compartments

[53]. In our case, however, we do not consider cubic sub-volumes, but concentric spheres,

where one sphere (the lipid rafts) is contained in the other (membrane). Accordingly

the kinetic rate corresponds to the analytical solution of the Smoluchowski rate equation

[208], which determines the rate at which a particle collides with the reaction surface of

another stationary particle:

ka = 4πD · a (4.1)

where D is the diffusion constant of the particle, and a is the reaction criterion, i.e. the

minimum separation required for the particles to interact.

We thus consider the receptors as moving particles that interact with stationary lipid

rafts of circular shape and the lipid raft’s radius serves as reaction criterion. Under

consideration of the surface of the compartment, where the particle/receptor starts (i.e.
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either raft or non-raft regions), the kinetic rates k_1 and k_2 are obtained:

k 1 =
4πD · rraft

Vm
(4.2)

k 2 =
4πD · rraft

Vraft
(4.3)

where rraft, Am and Araft correspond to the raft radius and the available surface of

the membrane and lipid rafts, respectively. Note that k_1 and k_2 only refer to the

stochastic diffusion constant of one receptor and one lipid rafts and that k_1 further

depends on the receptor specific raft affinity. Therefore these values are included in the

calculation of the kinetic rates, as depicted in rule 4.2.

Receptor Interactions

Next, we consider the receptor-protein interactions. As previously described (c.f. para-

graph assumptions), we employ a reduced model of the signalosome and solely consider

the dynamics of its key component LRP6. Accordingly extracellular WNT proteins bind

to LRP6 (R7–8) and subsequently LRP6 in complex with WNT gets phosphorylated by

CK1γ (R9–10). Importantly, we assume that CK1γ-mediated phosphorylation of LRP6

is restricted to lipid rafts, as indicated by experimental studies [155, 173]. In fact, this

restriction will be further confirmed by our simulation experiments as described in the

paragraph ”parameter adjustment” 5.3.1.

For the specification of the LRP6 interaction, both hierarchical nesting and species at-

tributes are required once again. The specification for the binding and dissociation

reaction of WNT and LRP6 in ML-Rules is shown below.

// (R7a) Binding of WNT to LRP6 (representing Fz,LRP6 receptor complex)

Wnt:w + Cell[Membrane(A)[LRP6(diff , ra, ’uP’, ’uB ’):l ]] ->

Cell[Membrane(A)[LRP6(diff , ra, ’uP’, ’B’) ]] @ k_7a*#w*#l;

// (R7b) Binding of WNT to raft -associated LRP6

Wnt:w + Cell[Membrane(A)[LR(radius , p)[LRP6(diff , ra , ’uP’, ’uB ’):l ]]] ->

Cell[Membrane(A)[LR(radius , p)[LRP6(diff , ra, ’uP ’, ’B’) ]]] @ k_7b*#w*#l;

Listing 4.3: ML-Rules specification for WNT-LRP6 binding.

Notably the binding reaction, as implemented in rule 4.3 stretches over several compart-

ment/species boundaries, i.e. extracellular WNT interacts with LRP6, which is nested

within three or two species depending on whether LRP6 is raft-associated or not. Also

the latter two attributes of LRP6, that represent phosphorylation and binding states,
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come into play. Note, that these attribute are LRP6 specific now. Consider the change

of the binding attribute of LRP6 (’uB’ → ’B’) in rule 4.3 indicating the binding of WNT,

which is thereby consumed in the reaction. However, the bound WNT protein is not ulti-

mately lost. The dissociation reaction is just vice versa, i.e. one WNT protein is released

(produced) in the extracellular space and the binding attribute of LRP6 is reverted to

’uB’ (c.f. 4.6). Note, that the dissociation reaction occurs only for unphosphorylated

LRP6, i.e. once LRP6 is phosphorylated, the receptor is committed to signaling and

WNT will eventually be consumed and degraded when the signalosome is recycled.

// (R11) Recycling of Wnt/LRP6 complex (representing signalosome)

LRP6(diff , ra, ’P’, ’B’):l ->

LRP6(diff , ra, ’uP ’, ’uB ’) @ k_11*#w*#l;

Listing 4.4: ML-Rules specification for dissociation/recycling of the activated WNT/LRP6

complex under the consumption of WNT.

The first order reaction depicted in rule 4.4 occurs independently of the localization of

LRP6. Therefore, the specification of the exact nesting of LRP6 can be omitted in this

rule. Next we consider the CK1γ mediated phosphorylation of the WNT/LRP6 complex:

// (R9) Phosphorylation of WNT/LRP6 complex in Lipid Rafts

LR(radius ,p)[CK1y(diff_ck ,ra_ck ):ck + LRP6(diff_l ,ra_l ,’uP’,’B’):l ]:r ->

LR(radius ,p)[LRP6(diff_l ,ra_l ,’P’,’B’) + CK1y(diff_ck ,r_ck ,ra_ck) ]

@ k_9*#l*#ck / (3.14* radius*radius *#r/vol) * p;

Listing 4.5: ML-Rules specification for CK1y mediated phosphorylation of LRP6.

As mentioned before, the phosphorylation of LRP6 solely occurs in lipid rafts. In ML-

Rules this is reflected by explicitly restricting the reaction to LR contained species, as

done in 4.5. Also this reaction applies only for “bound” LRP6 molecules, i.e. LRP6 re-

ceptors that are in complex with WNT proteins. As a result of the reaction the second

LRP6-specific attribute is changed (’uP’ → ’P’), indicating the phosphorylation of the

phosphorylation site in LRP6. Note that in constrast to WNT CK1γ is not consumed

in this reaction. Since this reaction is restricted to lipid rafts, the reduced diffusion

in lipid rafts and their reduced volume/surface have to be regarded when calculating

the kinetic rate. Since reaction rate constants are already scaled according to the cell

specific membrane volume/surface, the reaction rate constant has to be divided/scaled

by the relative raft surface, i.e. the raft coverage.
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// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

// +++++ species definitions (number of attributes) +++++

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

Cell ();

Membrane (1);

LR(2);

Wnt (0);

LRP6 (4);

CK1y (2);

// ++++++++++++++++++++++++++++

// +++++ initial solution +++++

// ++++++++++++++++++++++++++++

>>INIT[

nWnt Wnt +

nCells Cell[

(1) Membrane(A)[

nLR LR(radius , rho) +

nLRP6 LRP6(1, ra_lrp , ’uP’, ’uB ’) +

nCK1y CK1y(1, ra_ck)

]

]

];

// +++++++++++++++++++++++++++++++

// +++++ reaction rules ++++++++++

// +++++++++++++++++++++++++++++++

// **** Lipid Raft Dynamics ****

// (R1) LRP6 diffusion into lipid rafts

Membrane(A)[LR(radius ,p)[s?]:l +LRP6(d,ra ,phos ,bindW ):r +s_m?] ->

Membrane(A)[LR(radius ,p)[LRP6(d*p,ra,phos ,bindW) +s?] +s_m?] @ k_1*#l*#r*ra;

// (R2) LRP6 diffusion out of lipid rafts

Membrane(A)[LR(radius ,p)[LRP6(d,ra,phos ,bindW):r +s?]:l +s_m?] ->

Membrane(A)[LR(radius ,p)[s?] +LRP6(d/p,ra ,phos ,bindW) +s_m?] @ k_2*#l*#r;

// (R3) CK1y diffusion into lipid rafts

Membrane(A)[LR(radius ,p)[s_lr ?]:l +CK1y(d,ra):r +s_m?] ->

Membrane(A)[LR(radius ,p)[CK1y(d*p,ra) +s_lr?] +s_m?] @ k_3*#l*#r*ra;

// (R4) CK1y diffusion out of lipid rafts

Membrane(A)[LR(radius ,p)[CK1y(d,ra):r +s_lr ?]:l +s_m?] ->

Membrane(A)[LR(radius ,p)[s_lr?] + CK1y(d/p,ra) +s_m?] @ k_4*#l*#r;

// **** Membrane Signalling ****

// (R5) Wnt production

Cell[s?] -> Wnt + Cell[s?] @ k_5;
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// (R6) Wnt degradation

Wnt:w -> @ k_6*#w;

// (R7a) Binding of Wnt to LRP6 (representing Fz,LRP6 receptor complex)

Wnt:w+Cell[Membrane(A)[LRP6(diff ,ra,’uP ’,’uB ’):l +s_m?] +s_c?] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’B’) +s_m?] +s_c?] @ k_7a*#w*#l;

// (R7b) Binding of Wnt to raft -associated LRP6

Wnt:w+Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra ,’uP ’,’uB ’):l +s_lr?]

+s_m?] +s_c?] -> Cell[Membrane(A)[LR(radius , p)[LRP6(diff , ra , ’uP’, ’B’)

+s_lr?] +s_m?] +s_c?] @ k_7b*#w*#l;

// (R8) Dissociation of Wnt from LRP6 (representing Fz, LRP6 receptor complex)

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’B’):l +sm?] +s_c?] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’uB ’) +sm?] +s_c?]+Wnt @ k_8*#l;

// (R9) Phosphorylation of activated LRP6 in LR

Membrane(A)[LR(radius ,p)[CK1y(diff_ck ,ra_ck ):ck +

LRP6(diff_l ,ra_l ,’uP’,’B’):l +s_lr?] +s_m?] -> Membrane(A)[LR(radius ,p)[

LRP6(diff_l ,ra_l ,’P’,’B’) + CK1y(diff_ck , ra_ck) +s_lr?] +s_m?] @

k_9*#l*#ck / (3.14* radius*radius/A) * p;

// (R10) Dephosphorylation of LRP6

LRP6(diff ,ra ,’P’,’B’):l -> LRP6(diff ,ra,’uP’,’B’) @ k_10*#l;

// (R11) Recycling of Wnt/LRP6 complex (representing signalosome)

LRP6(diff ,ra ,’P’,’B’):l -> LRP6(diff ,ra,’uP’,’uB ’) @ k_11*#w*#l;

Listing 4.6: ML-Rules implementation of the membrane WNT model as depicted in Figure

4.4.

4.4.2 AXIN/β-catenin model

In the following the intracellular WNT model component is described. This model com-

ponent primarily describes the dynamics of β-catenin, i.e. its synthesis, its interaction

with the destruction complex and the resulting degradation process as well as its shut-

tling between nucleus and cytosol.

In contrast to the membrane WNT model, there already exist several experimentally

validated models capturing these dynamics (cf. Section 4.2). Most of the models ad-

dressing the WNT-dependent regulation of intracellular β-catenin levels are based on

the Lee model [116]. Interestingly, mathematical analyses have shown, that a reduced

version of the Lee model containing only three proteins (β-catenin, AXIN and WNT)

is capable of reproducing the essential dynamics of WNT-induced β-catenin signaling.

Accordingly [we will] employ a stochastic ML-Rules implementation of the reduced Lee

model, which will be subsequently discussed.
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Figure 4.5: Schematic representation of the intracellular WNT model. Two-sided
arrows indicate reversible reactions. Arrow labels correspond to rule numbers

Model assumptions As depicted in Fig. 4.5, the intracellular model provides three

different proteins, Beta-catenin, AXIN and WNT as well as two compartments, cytosol

and nucleus, with the nucleus being nested within the cytosolic compartment. AXIN

is considered as a condensed representation of the destruction complex, i.e. its remain-

ing components, like GSK3β, APC amd CK1α are disregarded. This simplification is

based on the fact, that AXIN is the main component of the destruction complex and is

present in a very low concentration [116]. Although AXIN has been found to be less rare

in mammalian cells than e.g. in Xenopus egg extracts, AXIN is still the rate-limiting

component in WNT/β-catenin signaling and its inhibition is one of the crucial events

for pathway activation [138, 152, 203].

To differentiate between single AXIN molecules and the fully assembled, functional

destruction complex (including the kinases required for β-catenin phosphorylation), a

phosphorylation site has been added to AXIN. This means the phosphorylation state of

cytosolic AXIN determines the activation state of the destruction complex, i.e. unphos-

phorylated AXIN is inactive, whereas its phosphorylated form is active and promotes

the degradation of β-catenin.

In accordance with the reduced Lee model, WNT proteins directly trigger the dephos-

phorylation of AXIN. Thereby AXIN is attenuated in its regulatory function in degrading

cytosolic β-catenin, which in turn leads to an immediate increase of the β-catenin levels.

Thus, WNT directly interacts with AXIN, neglecting any membrane-related processes,

like receptor ligand interaction or activation.

Note, that β-catenin is subject to nucleo-cytoplasmic shuttling and therefore located in

the cytosol as well as within the nucleus. The nucleo-cytoplasmic shuttling is regarded

as a simple diffusion process with rate constants based on experimental data (cf. [138]).
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When located in the nucleus, β-catenin promotes AXIN expression, i.e. the WNT-

induced accumulation of nuclear β-catenin promotes the synthesis of AXIN, resulting in

a negative feedback loop upon WNT stimulation.

Molecules and interactions Without WNT stimulation AXIN is subject to frequent

autophosphorylation and dephosphorylation (R3–4). In these first order reactions, the

attribute that represents the phosphorylation state of AXIN is simply changed, similar

to the phosphorylation of LRP6:

// (R3) Basal AXIN autophosphorylation

AXIN(’u’, ’f’):a -> AXIN(’p’, ’f’) @ k_3*#a;

// (R4) Basal AXIN dephosphorylation

AXIN(’p’, ’f’):a -> AXIN(’u’, ’f’) @ k_4*#a;

Listing 4.7: ML-Rules specification of autophosphorylation of AXIN.

Similar to the basal dephosphorylation, AXIN is also subject to WNT-induced dephos-

phorylation (R13). Thereby extracellular WNT crosses the cell boundary and interacts

with phosphorylated AXIN, inducing its dephosphorylation. Note, that in this reaction

WNT molecules are consumed:

// (R13) Wnt -induced AXIN dephosphorylation

Wnt:w + Cell[AXIN(’p’, ’f’):a] -> Cell[AXIN(’u’, ’f’)] @ k_13*#a*#w;

Listing 4.8: ML-Rules specification of WNT-induced dephosphorylation of AXIN.

AXIN and β-catenin are subject to production and degradation processes (R5 & R6,

R8 & R9). In addition to its basal degradation, β-catenin is subject to an AXIN me-

diated enhanced degradation (R7). While the degradation of β-catenin and AXIN is

unspecific regarding their attributation, the AXIN mediated degradation of β-catenin is

constrainted to phosphorylated AXIN and further restricted to the cytosol. This is also

reflected in the rule specifications:

// (R6) AXIN degradation

AXIN(phos , ’f’):a -> @ k_6*#a;

// (R7) Activated $\beta$ -catenin degradation

Cell[AXIN(’p’, ’f’):a + Bcat:b + s?]:c ->

Cell[AXIN(’p’, ’free) + s?] @ #c*(( k_7*#a*#b));

Listing 4.9: ML-Rules specification of degradation of AXIN and p-AXIN-mediated degra-

dation of β-catenin.
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The nucleo-cytoplasmic shuttling of β-catenin (R11–12) is included in the model and,

apart from the kinetic rate, its specification resembles the raft-shuttling of CK1γ and

LRP6. To obtain the kinetic rate of nucleo-cytoplasmic shuttling, equation 4.3 has to

be transformed from 2D (membrane layer) to 3D (cytosole):

k 11 =
4πD · r2nuc

Vcyt
(4.4)

k 12 =
4πD · r2nuc

Vnuc
(4.5)

where rnuc is the radius of the nucleus and Vcyt and Vnuc are the volumes of cytosole

and nucleus.

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

// +++++ species definitions (number of attributes) +++++

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

Cell ();

Wnt ();

AXIN (1);

bCat ();

Nuc ();

// ++++++++++++++++++++++++++++

// +++++ initial solution +++++

// ++++++++++++++++++++++++++++

>>INIT[

nWnt Wnt +

nCells Cell[

nAXINU AXIN(’u’) +

nAXINP AXIN(’p’) +

nbCat bCat +

1 Nuc[nbCatNuc bCat]

]

];

// +++++++++++++++++++++++++++++++

// +++++ reaction rules ++++++++++

// +++++++++++++++++++++++++++++++

// **** Membrane Signalling ****

// (R1) Wnt production

Cell[s?] -> Wnt + Cell[s?] @ k_1;
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// (R2) Wnt degradation

Wnt:w -> @ k_2*#w;

// **** Beta -catenin signalling ****

// (R3) Basal AXIN autophosphorylation

AXIN(’u’):a -> AXIN(’p’) @ k_3*#a;

// (R4) Basal AXIN dephosphorylation

AXIN(’p’):a -> AXIN(’u’) @ k_4*#a;

// (R5) Basal AXIN synthesis

Cell[s?]-> Cell[AXIN(’u’) + s?] @ k_5*#b;

// (R6) AXIN degradation

AXIN(phos):a -> @ k_6*#a;

// (R7) Activated $\beta$ -catenin degradation

Cell[AXIN(’p’):a + Bcat:b + s?]:c ->

Cell[AXIN(’p’) + s?] @ #c*((k_7*#a*#b));

// (R8) Beta -catenin synthesis

Cell[s?] -> Cell[Bcat + s?] @ #c*k_8;

// (R9) Basal $\beta$ -catenin degradation

Bcat:b -> @ k_9*#b;

// (R10) Beta -catenin driven AXIN synthesis

Nuc[Bcat:b + s?] -> Nuc[Bcat + s?] + AXIN(’u’) @ k_10*#b;

// (R11) Beta -catenin shuttling into the nucleus

Bcat:b + Nuc[s?] -> Nuc[Bcat + s?] @ k_11*#b;

// (R12) Beta -catenin shuttling out of the nucleus

Nuc[Bcat:b + s?] -> Bcat + Nuc[s?] @ k_12*#b;

// (R13) Wnt -induced AXIN dephosphorylation

Wnt:w + Cell[AXIN(’p’):a] -> Cell[AXIN(’u’)] @ k_13*#a*#w;

Listing 4.10: ML-Rules implementation of the intracellular AXIN/β-catenin model as de-

picted in Figure 4.5.

4.4.3 Putting it together - a combined lipid raft and β-catenin WNT

model

In the previous sections, the membrane and intracellular model components have been

discussed in detail. Now it is the question, how these separate components are best to be

composed into a single comprehensive model. Let’s consider the unrealistic assumption,

that WNT directly interacts with AXIN, as modeled in the intracellular model com-

ponent. Apparently, this assumption neglects any membrane-related processes and also
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Figure 4.6: Schematic representation of the combined intracellular and membrane
WNT model. Two-sided arrows indicate reversible reactions. Arrow labels correspond

to rule numbers

the membrane’s function as semi-permeable barrier which extracellular proteins can only

overcome in terms of active transport. These important aspects however, are addressed

in detail by the membrane model component. Thus, the membrane model component

provides a more detailed view on the processes occuring between WNT stimulation and

AXIN inhibition.

As described in 4.1, upon extracellular WNT stimulation, the destruction complex, can

be inhibited by the direct binding of AXIN to membrane-bound phosphorylated LRP6

(p-LRP6), which renders AXIN unavailable for other reactions. This particular reaction,

i.e. the interaction between AXIN and phosphorylated LRP6 connects the intracellu-

lar AXIN/β-catenin dynamics with the membrane-related dynamics. Fig. ?? shows a

schematic representation of the combined model, i.e. the two main model components

of membrane-related LRP6/CK1γ and axin/β-catenin signaling and their interaction.

Model assumptions Importantly, almost all assumptions made for the separate model

components also apply for the composed model. The only exception is the direct inter-

action of WNT and AXIN, which is not part of the composed model anymore. Instead

AXIN reversibly binds to p-LRP6, which attenuates the AXIN-dependent degradation

of β-catenin. Note, that the AXIN/p-LRP6 binding is independent of the phosphoryla-

tion state of AXIN. The impact of Dvl, which is supposed to be involved in this process,

is neglected.

In addition the recycling of the receptor complex is altered in the combined model. In
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contrast to the membrane model, not the phosphorylation of WNT-bound LRP6, but the

binding of AXIN leads to signal commitment, hence recycling and WNT consumption

(c.f. rule 4.4).

Molecules and interactions As depicted in Fig. 4.6, the rule numbering, particu-

larly for the intracellular model components changed. The specification of the rules, as

explained in Section ??, however, remains unchanged. Though, rule 4.8 specifying the

WNT-induced dephosphorylation of AXIN is obsolete and replaced by a rule specifying

the reversible binding of p-LRP6 and AXIN:

// (R21a) AXIN binding by LRP6 in membrane

AXIN(phos ,’f’):a + Membrane(A)[LRP6(diff ,ra,’P’,’B’,’f’):l] ->

Membrane(A)[AXIN(phos ,$link) +LRP6(diff ,ra,’P’,’B’,$link )] @ ((k_21a *#l*#a));

// (R21b) AXIN binding by LRP6 in lipid rafts

AXIN(phos ,’f’):a + Membrane(A)[LR(radius ,p)[LRP6(diff ,ra ,’P’,’B’,’f’):l ]]->

Membrane(A)[LR(radius ,p)[AXIN(phos ,$link) + LRP6(diff ,ra,’P’,’B’,$link )]] @

((k_21b*#l*#a));

// (R22a) Dissociation of receptor/AXIN complex (signalosome) in membrane

Cell[Membrane(A)[LRP6(diff ,ra,’P’,’B’,bind):la +AXIN(phos ,bind )]] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’uB’,’f’)] +AXIN(phos ,’f’)] @

if (bind==’f’) then 0 else (k_22a )*#la;

// (R22b) Dissociation of receptor/AXIN complex (signalosome) in LR

Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra,’P’,’B’,bind):la +AXIN(phos ,bind)]]]->

Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra,’uP’,’uB’,’f’)]] +

AXIN(phos , ’f’) ] @ if (bind==’f’) then 0 else (k_22b )*#la;

Listing 4.11: ML-Rules specification of p-LRP6 and AXIN binding.

According to the rule specification 4.11 p-LRP6 recruits and binds AXIN (R21a/b) which

is subsequently unavailable for the destruction complex, i.e. inhibiting the enhanced

degradation of β-catenin (R15). Thus β-catenin accumulates and is transported into

the nucleus (R18–19).

Similar to the binding and dissociation reaction of WNT and LRP6 (c.f. rule 4.3), the

binding and dissociation reactions between AXIN and pLRP6 have to be defined for

raft-associated and non raft-associated p-LRP6 species separately. Also, please note

that in contrast to all previous binding complexes, the binding between LRP6 and

AXIN is represented by the binding operator $ (4.11). This means, instead of changing

changing LRP6-specific attributes, e.g. ’uB’ → ’B’ for LRP6/WNT binding (c.f. 4.3)

as done in the previous binding complexes, LRP6 and AXIN are both attributed with a

unique identifier, which explicitly connects both individual species. This specification of

a bimolecular binding is strongly related to the binding concept of BNGL. The reason
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for this is, that this time, the binding reaction involves species that are both attributed.

Therefore the binding operator is used here to capture all attributes, whose values are

not unique in rule R21a/b. In rule (4.11) the phosphorylation and binding state of LRP6

are unique, because their values are a requirement for the reaction, i.e. LRP6 has to be

in complex with WNT (’B’) and phosphorylated (’P’). In contrast, the phosphorylation

state of AXIN or the diffusion rate of LRP6 (depending on the location of LRP6) are not

relevant for the reaction and may thus have arbitrary values. Accordingly these values

have to be stored after the binding, so that these values are available for the dissociation

reaction (R22a/b).

Further, note that the dissociation of the LRP6/AXIN complex (R22a/b) is supposed

to mimic the recycling of the receptor/protein complex. Consequently in constrast to

LRP6 and AXIN, WNT is not released, but consumed in this reaction.
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// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

// +++++ species definitions (number of attributes) +++++

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

Cell ();

Membrane (1);

LR(2);

Wnt (0);

LRP6 (5);

CK1y (2);

AXIN (2);

bCat ();

Nuc ();

// ++++++++++++++++++++++++++++

// +++++ initial solution +++++

// ++++++++++++++++++++++++++++

>>INIT[

nWnt Wnt +

nCells Cell[

(1) Membrane(A)[

nLR LR(radius ,rho) +

nLRP6 LRP6(1,ra_lrp ,’uP ’,’uB’,’f’) +

nCK1y CK1y(1,ra_ck)

]

nAXINU AXIN(’u’,’f’) +

nAXINP AXIN(’p’,’f’) +

nbCat bCat +

1 Nuc[nbCatNuc bCat]

]

];

// +++++++++++++++++++++++++++++++

// +++++ reaction rules ++++++++++

// +++++++++++++++++++++++++++++++

// **** Lipid Raft Dynamics ****

// (R1) LRP6 diffusion into lipid rafts

Membrane(A)[LR(radius ,p)[s?]:l +LRP6(d,ra ,phos ,bindW ,’f’):r +s_m?] ->

Membrane(A)[LR(radius ,p)[LRP6(d*p,ra,phos ,bindW ,’f’) +s?] +s_m?] @ k_1*#l*#r*ra;

// (R2) LRP6 diffusion out of lipid rafts

Membrane(A)[LR(radius ,p)[LRP6(d,ra,phos ,bindW ,’f’):r +s?]:l +s_m?] ->

Membrane(A)[LR(radius ,p)[s?] +LRP6(d/p,ra ,phos ,bindW ,’f’) +s_m?] @ k_2*#l*#r;

// (R3) CK1y diffusion into lipid rafts

Membrane(A)[LR(radius ,p)[s_lr ?]:l +CK1y(d,ra):r +s_m?] ->

Membrane(A)[LR(radius ,p)[CK1y(d*p,ra) +s_lr?] +s_m?] @ k_3*#l*#r*ra;

// (R4) CK1y diffusion out of lipid rafts

Membrane(A)[LR(radius ,p)[CK1y(d,ra):r +s_lr ?]:l +s_m?] ->

Membrane(A)[LR(radius ,p)[s_lr?] + CK1y(d/p,ra) +s_m?] @ k_4*#l*#r;
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// **** Membrane Signalling ****

// (R5) Wnt production

Cell[s?] -> Wnt + Cell[s?] @ k_5;

// (R6) Wnt degradation

Wnt:w -> @ k_6*#w;

// (R7a) Binding of Wnt to LRP6 (representing Fz,LRP6 receptor complex)

Wnt:w+Cell[Membrane(A)[LRP6(diff ,ra,’uP ’,’uB’,’f’):l +s_m?] +s_c?] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’B’,’f’) +s_m?] +s_c?] @ k_7a*#w*#l;

// (R7b) Binding of Wnt to raft -associated LRP6

Wnt:w+Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra ,’uP ’,’uB ’,’f’):l +s_lr?]

+s_m?] +s_c?] -> Cell[Membrane(A)[LR(radius , p)[LRP6(diff , ra , ’uP’, ’B’,’f’)

+s_lr?] +s_m?] +s_c?] @ k_7b*#w*#l;

// (R8) Dissociation of Wnt from LRP6 (representing Fz, LRP6 receptor complex)

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’B’,’f’):l +sm?] +s_c?] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’uB’,’f’) +sm?] +s_c?]+ Wnt @ k_8*#l;

// (R9) Phosphorylation of activated LRP6 in LR

Membrane(A)[LR(radius ,p)[CK1y(diff_ck ,ra_ck ):ck +

LRP6(diff_l ,ra_l ,’uP’,’B’,’f’):l +s_lr?] +s_m?] -> Membrane(A)[LR(radius ,p)[

LRP6(diff_l ,ra_l ,’P’,’B’,’f’) + CK1y(diff_ck , ra_ck) +s_lr?] +s_m?] @

k_9*#l*#ck / (3.14* radius*radius/A) * p;

// (R10) Dephosphorylation of LRP6

LRP6(diff ,ra ,’P’,’B’,’f’):l -> LRP6(diff ,ra,’uP’,’B’,’f’) @ k_10*#l;

// (R11) Recycling of Wnt/LRP6 complex (representing signalosome)

LRP6(diff ,ra ,’P’,’B’,bind):l -> LRP6(diff ,ra,’uP’,’uB’,bind) @

if (bind==’f’) then 0 else k_11*#w*#l;

// **** Beta -catenin signalling ****

// (R12) Basal AXIN autophosphorylation

AXIN(’u’,’f’):a -> AXIN(’p’,’f’) @ k_12*#a;

// (R13) Basal AXIN dephosphorylation

AXIN(’p’,’f’):a -> AXIN(’u’,’f’) @ k_13*#a;

// (R14) AXIN degradation

AXIN(phos ,’f’):a -> @ k_14*#a;

// (R15) Activated $\beta$ -catenin degradation

Cell[AXIN(’p’,’f’):a + Bcat:b + s?]:c ->

Cell[AXIN(’p’,’f’) + s?] @ #c*(( k_15*#a*#b));

// (R16) Beta -catenin synthesis

Cell[s?] -> Cell[Bcat + s?] @ #c*k_16;

// (R17) Basal $\beta$ -catenin degradation

Bcat:b -> @ k_17*#b;



Chapter 4 Model of Raft-dependent WNT Signaling 95

// (R18) Beta -catenin shuttling into the nucleus

Bcat:b + Nuc[s?] -> Nuc[Bcat + s?] @ k_19*#b;

// (R19) Beta -catenin shuttling out of the nucleus

Nuc[Bcat:b + s?] -> Bcat + Nuc[s?] @ k_12*#b;

// (R20) Beta -catenin driven AXIN synthesis

Nuc[Bcat:b + s?] -> Nuc[Bcat + s?] + AXIN(’u’, ’f’) @ k_20*#b;

// **** AXIN LRP6 signalling ****

// (R21a) AXIN binding by LRP6 in membrane

AXIN(phos ,’f’):a + Membrane(A)[LRP6(diff ,ra,’P’,’B’,’f’):l] ->

Membrane(A)[AXIN(phos ,$link) +LRP6(diff ,ra,’P’,’B’,$link )] @ ((k_21a *#l*#a));

// (R21b) AXIN binding by LRP6 in lipid rafts

AXIN(phos ,’f’):a + Membrane(A)[LR(radius ,p)[LRP6(diff ,ra ,’P’,’B’,’f’):l ]]->

Membrane(A)[LR(radius ,p)[AXIN(phos ,$link) + LRP6(diff ,ra,’P’,’B’,$link )]] @

((k_21b*#l*#a));

// (R22a) Dissociation of receptor/AXIN complex (signalosome) in membrane

Cell[Membrane(A)[LRP6(diff ,ra,’P’,’B’,bind):la +AXIN(phos ,bind )]] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’uB’,’f’)] +AXIN(phos ,’f’)] @

if (bind==’f’) then 0 else (k_22a )*#la;

// (R22b) Dissociation of receptor/AXIN complex (signalosome) in LR

Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra,’P’,’B’,bind):la +AXIN(phos ,bind)]]]->

Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra,’uP’,’uB’,’f’)]] +

AXIN(phos , ’f’) ] @ if (bind==’f’) then 0 else (k_22b )*#la;

Listing 4.12: ML-Rules implementation of the combined WNT/β-catenin model as depicted

in Figure 4.6.

4.5 Concluding remarks

Here, we provide a rule-based model of WNT/β-catenin signaling that, for the first time,

combines intracellular and membrane-related processes including lipid rafts dynamics.

However, we are well aware, that our model is a simplified representation of WNT/β-

catenin signaling. As for instance, it does not include any endocytotic processes, like

recycling or the sequestration of the destruction complex inside multivesicular endo-

somes as currently discussed [141, 196]. Though our model does neither contradict nor

exclude these hypotheses. Instead we concentrate on the fact, that phosphorylation of

LRP6 is a raft-dependent process being crucial for canonical WNT/β-catenin signaling

as demonstrated by [173] and our investigations. LRP6 phoshporylation is a prerequisite

for WNT-mediated endocytosis [196, 215].
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Moreover, this model provides an ideal use-case to analyze how well model formalisms

cope with the challenges imposed by a complex, but typical signal transduction pathway.

This is because the WNT/β-catenin model comprises most of the motifs (or modeling

features), that occur in common signal pathways and that have been thoroughly dis-

cussed in Sec. 4.3.1. Notably, ML-Rules, the model formalism that has eventually been

chosen to implement model, provides all the modeling features that were required to

implement a hierarchical compartment-based model of raft-dependent WNT signaling.

However, it should be emphasized that the model in its current form could have also been

implemented in other rule-based formalisms as well. In particular BNGL provides so-

lutions for nearly all modeling features present in the WNT/β-catenin model. Though,

in contrast to ML-Rules, the expressivity of BNGL is already stretched to its limits

when it comes to the arbitrary rate kinetics that additionally depend on compartmental

properties or dynamic structures.

In the presented WNT model arbitrary rate kinetics are in particular required to depict

the change of the diffusion and reaction kinetics into and out of lipid rafts. This means

reaction kinetics within the membrane do not only depend on the localization of the pro-

teins, but in case of raft-associated proteins also on the lipid rafts characteristics, such

as fluidity and size. As discussed in Sec. 4.3.2, the compartmental extension of BNGL,

cBNGL, provides means for describing two dimensional compartments of arbitrary size

and the respective changes in the reaction kinetics. Therefore different reaction kinetics

between raft and non-raft regions can well be incorporated in cBNGL. However, since

it is not possible to equip compartments with an own state, representing the kinetic

changes due to the reduced mobility inside rafts appears already problematic and rea-

sonable extension, like dynamic lipid rafts characteristics in terms of growth, fusion and

fission give a cutting edge to this problem.

The same applies to dynamic compartments, which are e.g. required to represent pro-

cesses like endocytosis and recycling. The current WNT model does not contain the

endocytotic cycle - for reasons that will be explained in the following chapter. Its im-

plementation in ML-Rules is straight forward though:

Cell[Membrane[LR[LRP6(diff , ra , ’P’, ’B’, bind):rec + AXIN(phos , bind )]]] ->

Cell[Membrane[LR[s_l?] + s_m?] + Endosome[LRP6(diff , ra, ’P’, ’B’, bind) +

AXIN(phos , bind)] + s_c?] @ if bind == ’free ’ then 0 else kEndo*#rec;

Cell[Endosome[LRP6(diff , ra, ’P’, ’B’, bind):e + AXIN(phos , bind)] + Membrane]->

Cell[Membrane[LRP6(1, 0.15, ’uP’, ’uB ’) + s_m?] + s_c?]

@ if bind == ’free ’ then 0 else kRecycling *#e;

Listing 4.13: ML-Rules specification for a simplistic endocytotic cycle that controls the

recycling of the signalosome.
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Whereas in (c)BNGL, due to the missing support of dynamics structures, complicated

workarounds might be found that provide the desired functionality, but only at the great

cost of model complexity, readability and eventually usability.

In summary, the model of lipid raft-dependent WNT signaling developed here greatly

demonstrates two important aspects - 1. that considering spatial aspects and dynamic

structures in signal transduction is of prime importance, and 2. that sophisticated mod-

eling approaches are required to describe such complex model features in terms of as-

sessable and (re-)usable models.





Chapter 5

Studying Raft-dependent WNT

signaling in Neural Differentiation

using an integrative in-vitro and

in-silico approach

5.1 Background (Early differentiation in human neural pro-

genitor cells)

WNT/β-catenin signaling has been reported to be involved in the neuronal differenti-

ation process of human neural progenitors cells (hNPCs) [92]. NPCs provide a new,

promising basis for the in-vitro growth of neuron populations that can be used in re-

placement therapies for neurodegenerative diseases, such as Parkinson’s or Huntington’s

diseases [34, 121]. However, controlling NPC differentiation in stem cell engineering

demands a thorough understanding of neuronal and glial cell fate determination and its

endogenous regulation.

To investigate WNT-signaling during the in-vitro differentiation a new cell line of im-

mortalized human neural progenitor cells (ReNcell VM197) has been established [51, 89].

The ReNcell VM197 cell line was derived from the ventral mesencephalon region of a hu-

man fetal brain tissue and is characterized by a rapid differentiation. Upon growth factor

removal ReNcell VM197 cells differentiate into neurons and glial cells within a few days

and without any additional external stimulation. This allows to study WNT signaling in

the context of cell fate commitment in a time dependent manner. A first characterization

of ReNcell VM197 hNPC cell fate commitment uncovered a spatio-temporal regulation

of WNT/β-catenin key proteins, like LRP6, Dvl, Axin and β-catenin throughout the

99
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entire phase of early differentiation [137]. However, the exact mechanisms that drive

the WNT/β-catenin signaling and therewith control the cell fate commitment in hNPC

remain unclear.

To explore the potential mechanisms that drive the spatio-temporal regulation of β-

catenin signaling during cell fate commitment we analyze the impact of lipid rafts disrup-

tion on WNT/β-catenin signaling in untreated as well as raft-deficient human progenitor

cells during early differentiation using a combined in-vitro and in-silico approach.

5.2 In vitro Exploration

In the following we describe experimental data, retrieved from ReNcell VM197 human

progenitor cells. The ReNcell VM197 is a well-characterized cell line, that has been

successfully applied in several studies and proven to be a simple and accepted model

to investigate different aspects of neural differentiation [92, 113, 118, 119, 137]. The

major advantage of this cell line is its rapid differentiation. Within three days after

growth factor removal, ReNcell VM197 cells differentiate into neurons, astrocytes, and

oligodendrocytes without any additional exogenous stimulation. We evaluate the impact

of lipid raft disruption on WNT/β-catenin signaling during differentiation by measuring

the temporal progress of WNT signaling in terms of nuclear β-catenin concentrations in

methyl-β-cyclodextrin-treated and untreated cells in the process of cell fate commitment.

Accordingly proliferating ReNcell VM197 cells were used as reference (0h), whereas all

following time points were measured after initiating the differentiation by growth factor

removal. Note, that we only consider the first 12 hours after induction of differentiation.

Typically most of the cells commit themselves for differentiation within the first 12

hours. Also, at later time points the cell population of ReNcell VM197 is already so

heterogeneous due to differentiation, that potential signal activities may originate from

multiple sources.

5.2.1 Materials and methods

Culture of neural progenitor cells and lipid rafts Disruption Our experimental

results are retrieved from ReNcell VM 197 cells - a cell line, that is derived from the

ventral midbrain of a 10-week-old human fetus and immortalized by retroviral trans-

duction with v-Myc oncogene (ReNeuron Ltd, Guildford, UK). VM cells were culti-

vated according to the protocol described previously [89]. Briefly, cells were cultured in

laminin coated cell culture flasks and maintained at 37◦C with 5% in media containing

DMEM/F12 supplemented with B27 media supplement, glutamine, heparin sodium salt

and gentamycin (Invitrogen, Karlsruhe, Germany). Cells were kept in proliferative state
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by applying 10 ng/mL basic fibroblast growth factor (bFGF, Invitrogen) and 20 ng/mL

epidermal growth factor (EGF, Sigma-Aldrich, Steinheim, Germany). Every three to

four days the cells were passaged, i.e. when a confluency reached ∼ 80%. Differentiation

was initiated at a confluence of ∼ 70% according to a standard differentiation protocol,

i.e. cells were washed with HBSS, and new medium without growth factors EGF and

bFGF was added [51]. For the continuous lipid rafts disruption troughout differentiation

2mM M-β-cyclodextrin (MbCD) was added to the differentiation medium. To exclude

potential side effects caused by the MbCD treatment, proliferating cells were also treated

30 minutes in advance of fixation (Immunocytochemistry) or lysis (Western Blot).

Fixation and immunostaining for fluorescence microscopy Before fixation, lipid

rafts were labeled with Vybrant lipid rafts labeling kit (Invitrogen). Cells cultured

on coverslips were incubated with 0.5mM fluorescent Cholera Toxin B-Subunit (CT-B,

Alexa 594) for 10 minutes at 4◦C. After washing with PBS, cells were treated with

anti-CT-B antibody (dilution 1:200) for another 10 minutes at 4◦C. In the following

fixation and immunofluorescence staining was performed as described previously [1].

Accordingly, cells were washed with PBS and fixed with 4% paraformaldehyde for 20

min (Sigma-Aldrich). To reduce non-specific binding, cells were treated with 1% gelatin.

First, cells were labeled with rabbit anti-LRP6 (Santa Cruz, dilution 1:150) and subse-

quently incubated with Alexa Fluor 488 (Invitrogen, dilution 1:300). Afterwards, cell

membranes were permeabilised with 0.2% Triton X-100 (Sigma-Aldrich) followed by

labelling with mouse anti-active-β-catenin (Millipore, dilution 1:250) and subsequent

incubation with Alexa Fluor647-conjugated anti-mouse secondary antibody (Invitrogen,

dilution 1:300) and Hoechst for nuclei staining (Sigma-Aldrich, dilution 1:1000). Fi-

nally, cells were mounted on microscope slides using ProLong Gold antifade reagent

(Invitrogen).

Western blotting Protein concentration was determined by Western blotting. Briefly

cells cultured were washed twice with phosphate-buffered saline (PBS) and lysed in

29 sodium dodecyl sulfate (SDS) sample buffer followed by sub-cellular fractionation.

Cell fraction lysates were separated by SDS-polyacryl-amide gel electrophoresis (PAGE)

using a 10% SDS polyacrylamide gel and proteins were transferred onto nitrocellulose

membrane by electro blotting. For time-dependent β-catenin expression, the following

anti-bodies were used: Anti-rabbit IgG (Cat. A9169; Sigma-Aldrich, dilution 1 : 80 000)

and anti-mouse IgG (Cat. NA931V; GE Healthcare, Freiburg, Germany, dilution 1 : 10

000) antibodies conjugated with horseradish peroxidase were used and bound antibodies

were detected with ECL Western blot detection reagent (GE Healthcare). Membranes

were exposed to light-sensitive film and quantified by IMAGEJ software.
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Figure 5.1: Confocal microscopy images of LRP6 staining (no Lipid Rafts staining) in
proliferating and early differentiating cells. The first row shows untreated (control) cells,

while cells depicted in the lower row are treated with 2mM MbCD. Scale bar 10μm

5.2.2 Experimental Results

Lipid Rafts Disruption Before evaluating the potential impact of Lipid Rafts on

WNT/β-catenin signaling, we first show their existence in ReNcell VM197 cells and

whether they can be disrupted by methyl-β cyclodextrin (MbCD) treatment. MbCD

is commonly applied to disrupt the formation of lipid rafts by withdrawing cholesterol

from the membrane. Previous studies reported an involvement of lipid rafts in the

canonical WNT signaling pathway, but these studies were mainly based on detergent

resistant membranes (DRM) and applied to proliferating cells, like HEK293 [155, 173,

183, 215]. For differentiating cells, however, lipid rafts and their impact on WNT/β-

catenin signaling have not been documented so far.

Indeed, fluorescence microscopy images of ReNcell VM197 cells stained with Vybrant

lipid rafts labelling kit confirm the existence of lipid rafts also in human neural progenitor

cells (see Fig. 1A). Further, signal intensity of lipid rafts staining is clearly reduced for

cells treated with 2mM MbCD in comparison to untreated control cells. Treatment

with 2mM MbCD thus successfully disrupts lipid rafts in ReNcell VM197 cells. Also

MbCD has little to no effect on the lateral distribution of LRP6 in the membrane. LRP6

staining without application of Lipid Rafts staining shows a homogeneous distribution

of LRP6 throughout the entire membrane for both control and MbCD-treated cells 5.1

This is in line with previous studies, that reported no specific partition of LRP6 into

Lipid Rafts, but rather a homogeneous distribution among all membrane compartments

[173, 215].
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Figure 5.2: Impact of raft disruption on temporal regulation of nuclear β-catenin concentra-
tion after induction of differentiation in ReNCell VM197. (A) Confocal microscopy images of
Lipid Rafts staining (red) in control (upper row) and raft-deficient, MbCD treated cells (lower
row). Cell surface was stained with Vybrant Lipid Raft Labelling kit and nuclei were stained
with Hoechst staining. Scale bar 10µm. (B-C) Time-dependent relative concentration levels of
nuclear β-catenin during differentiation with (C) and without (B) MbCD treatment. Graphs
show data of four and three independent experiments for control and MbCD-treated cells,
respectively, as mean ± SEM, Student’s t-test (*p<0.05; **p<0.01; significant difference from
0h (proliferation); ‡p< 0.05; significant difference between control and MbCD treated cells
at specific time point), β-Actin was used a loading control. (D) Confocal microscopy images
of nuclear β-catenin signal intensity in control and MbCD treated cells during differentiation
confirm western blot data. Cells were labeled with anti-β-catenin antibody (red) and Hoechst
Nuclei staining. Scale bar = 10µm. For illustration purpose, only the β-catenin concentration
within the nuclei are shown and other cell compartments, like cytoplasm and membrane are

excluded from the view.

The impact of lipid raft disruption on β-catenin signaling in human neural

progenitor cells To determine the actual impact of lipid rafts on WNT signaling, we

treated ReNcell VM197 cells with 2mM methyl-β cyclodextrin and measured the nuclear

β-catenin concentration during early differentiation. Note that cholesterol depletion by

MbCD is a concentration dependent and reversible process [161]. To assure a stable

and continuous raft inhibition, we thus continuously exposed ReNcell VM197 cells to

2mM MbCD throughout the differentiation. The resulting effects in terms of the nuclear

β-catenin concentration have been studied qualitatively by fluorescence microscopy and
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quantitatively by Western Blot.

As a result we register a continuous β-catenin signal during differentiation for untreated

cells, i.e. for all time points from 1h to 12h the measured nuclear β-catenin concentration

is significantly higher as compared to proliferating cells (0h) (see Fig. 5.2 B, D). For the

MbCD treated cells, however, we observe a significant increase of nuclear β-catenin at

1h, but no signal activity after that, i.e. the nuclear β-catenin concentration returns to

its base line for the remaining time points (3 - 12 hours) (see Fig. 5.2 C, D). Apparently

WNT/β-catenin signaling is inhibited by raft disruption after 3 hours of differentiation,

but not during the early immediate cell response at 1h. As demonstrated by earlier and

recent studies, the deployment of lipid rafts from the plasma membrane prevents the

raft dependent LRP6 phosphorylation and thereby inhibits the WNT induced receptor

activation and subsequent signal transduction [155, 173]. This could explain the inhibi-

tion of WNT/β-catenin signaling by MbCD treatment after 3 hours of differentiation.

However, the early immediate activation at 1h in raft deficient cells remains puzzling.

A delayed raft inhibition cannot be held responsible because MbCD treatment has an

immediate effect on the deployment of lipid rafts from the plasma membrane [161].

From this we deduce that lipid rafts are successfully disrupted by MbCD treatment

throughout the entire differentiation process and further conclude that, in accordance

with previous studies, WNT/β-catenin signaling is inhibited by lipid rafts disruption

[155, 173], whereas the early immediate β-catenin activation at 1 hour was not affected

by MbCD treatment for unknown reasons.

5.2.3 Discussion

The aim of the formerly described experiments was to confirm the existence and regu-

latory impact of lipid rafts on WNT/β-catenin signaling in hNPCs as well as to obtain

experimental data required to parametrize the raft-dependent WNT/β-catenin model.

Indeed, our experimental results confirmed both - lipid rafts are expressed in human neu-

ral progenitor cells and WNT/β-catenin crucially depends on functioning lipid rafts. At

the same time, however, our experimental results showed an early immediate β-catenin

activation in raft-deficient cell, which is contradictory to the statements above.

What was thought as a control experiment now revealed further questions of what the

mechanisms are involved in the spatio-temporal regulation of β-catenin signaling. In

fact, chances are, that nuclear β-catenin levels are not exclusively regulated by canon-

ical WN signaling during the early phase of differentiation. Instead a second signaling

mechanism might be involved, that is independent of the raft-dependent WNT/β-catenin

pathway. To explore the signaling mechanisms of both, the continuous activation pattern

in untreated and in particular the inexplicable early immediate response in raft-deficient
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cells, we perform a number of simulation studies based on the formerly presented com-

putational model of WNT signaling.

5.3 In silico Exploration

To explore the signaling mechanisms of both, the continuous activation pattern in un-

treated and in particular the early immediate response in raft-deficient cells, we perform

a number of simulation studies. The simulation studies are based on a computational

model of WNT signaling that has been derived in the previous chapter. The model will

now be parametrized by using literature values and fitting routines, such that the model

parameterization yields simulation trajectories that fit the experimental data, i.e. the

measured nuclear β-catenin concentrations during the early phase of differentiation.

5.3.1 Experiment specification and execution

As indicated in the previous chapter, the WNT/β-catenin model is based on the multi-

level, rule-based modeling language ML-Rules. ML-Rules is implemented on top of the

modeling and simulation framework JAMES II [85]. JAMES II is implemented in Java

and provides various plug-ins to realize complex simulation experiments, e.g., for param-

eter optimization, sensitivity analysis, and output data storage [54]. In our experiments,

we used the approximative τ -leaping simulator for ML-Rules [83] to speed up the sim-

ulation. We set up most experiments with the domain-specific language SESSL [55].

SESSL is based on the Scala programming language [154] and allows to concisely spec-

ify JAMES II experiments. In the following two typical experiment setups (a parameter

scan and an optimization experiment) are described that illustrate the specification of

simulation experiments in SESSL.

Parameter Scan

A typical SESSL experiment specifying a parameter scan is shown in SESSL Code 1.

After importing basic language constructs (line 1) and the support for JAMES II (l.

2), we define a file to store the results (l. 4) and execute the simulation experiment

(l. 6–30). The experiment supports the observation of model variables and a parallel

execution, as declared in line 7. After specifying the model file to be used (l. 8), a

full factorial parameter scan is set up in lines 11–17. For each parameter either a list

of values is given (e.g. kLWNTBind), or an (inclusive) range of values is defined (e.g.



Chapter 5 Raft-dependent WNT Signaling in neural differentiation 106

execute {

new Experiment with Observation with ParallelExecution {

model = "file -mlrj :/." + dir + "/ Wnt_apCrine.mlrj"

// Set model parameters for parameter scan:

scan(" kLWNTBind" <$\sim$ (0.01 , 10, 1000))

scan(" kLWNTUnbind" <$\sim$ (0.05, 0.5, 5))

scan(" kApA_act" <$\sim$ (0.1, 0.5, 1, 5, 10))

scan(" kLA_diss" <$\sim$ (0.001 , 0.01, 0.1, 1))

scan(" kLWNTBind" <$\sim$ (0.1, 10, 50, 100))

scan(" kLphos" <$\sim$ range (0.1, 0.1, 1))

scan(" kLdephos" <$\sim$ range (0.01, 0.01, 0.1))

simulator = MLRulesReference ()

stopTime = 720

replications = 15

parallelThreads = 3

observe ("Cell/Nuc/Bcat ()") // Observe species Bcat

observeAt(range(1, 10, 720))

withRunResult { results =>

// Store results to file:

modelOutput << results.trajectory ("Cell/Nuc/Bcat ()")

}

}

}

Figure 5.3

kLphos. In line 19, JAMES II is configured to simulate the model with the ML-Rules

reference implementation (see [136]). Alternatively the faster τ -leaping variant from [83]

could be used as well. Then, the simulation time at which each run shall stop (l. 20), the

number of replications per parameter combination (l. 21), and the number of parallel

threads (l. 22) is specified. Lines 23–24 state that model variable Cell/Nuc/Bcat(),

i.e., the number of β-catenin molecules in the nucleus, shall be observed at fixed time

points, again given as a range of values. The last lines of the experiment specification (l.

25–28) write, for each run, the observations for Cell/Nuc/Bcat() into the file specified

in line 4.

Optimization

We use the Opt4J framework [129] to optimize the parameter values of our WNT model.

An exemplary optimization experiment specification is shown in SESSL Code 2. All

SESSL constructs shown in SESSL Code 1. have the same meaning as explained above.

The execution of the actual simulation experiment is defined in lines 11–40. It is now

embedded in the call to the optimization interface of SESSL, which allows to set up a

minimization experiment by defining an anonymous function that takes two arguments,

params and objectives (l. 10). The params object (l. 10) contains the current pa-

rameters of the objective function, retrievable via params("name") (l. 16), and can be

used to set parameters of the simulation model. The argument objectives represents a

container to store the values of the (potentially multivariate) objective function (l. 35).
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Here, the objective to be minimized is the mean squared error between the simulated

amount of β-catenin in the nucleus and the reference data from the wet lab (l. 8, 28–29),

averaged over all replications (l. 20, 35). Note that the anonymous function to handle

the results of all replications (l. 33–38) is called only once, after the last simulation

replication is complete.

The second part (l. 41–53) of the optimization experiment specification determines

which optimization software to use (l. 41), which parameters to optimize within which

bounds (l. 42–43), and which optimization algorithm to rely on (l. 45). Optionally,

Opt4J’s graphical user interface allows to display intermediate results (l. 46). Again,

event handlers are used to store the results of each optimization iteration (l. 47–49) and

to print the overall results to standard output (l. 50–52).

val ref = Set(0, 7561, 8247, 7772, 7918, 7814, 7702)

minimize { (params , objective) => // Minimize the following function

execute {

new Experiment with Observation with ParallelExecution {

model = "file -mlrj :/." + dir + "/ WNT_apCrine.mlrj"

// Set model parameters as defined by optimizer:

set(" kLphos" <$\sim$ params ("p"))

set(" kLdephos" <$\sim$ params ("d"))

stopTime = 721

replications = 10

observe ("Cell/Nuc/Bcat ()")

observeAt(range(0, 120, 720))

var runResults = 0.0 // Variables for result aggregation

var count = 0

withRunResult(results => {

val numbers = results.values ("Cell/Nuc/Bcat ()"). asInstanceOf[Iterable[Long]]

runResults += scala.math.sqrt(mse(numbers , ref))

count += 1

})

withReplicationsResult(results => {

// Store value of objective function:

objective <$\sim$ runResults /count

runResults = 0.0

count = 0

})

}

}

} using (new Opt4JSetup {

param("p", 0.1, 0.1, 10) // Optimization parameter bounds

param("d", 0.01, 0.001, 0.1)

// Configure optimization algorithm:

optimizer = sessl.opt4j.SimulatedAnnealing(iterations = 15)

// showViewer = true // Switches on Opt4J GUI

withIterationResults { results =>

optOutput << results

}

withOptimizationResults { results =>

println (" Overall results: " + results (0)) // print results to stdout

}

})

Figure 5.4



Chapter 5 Raft-dependent WNT Signaling in neural differentiation 108

5.3.2 Model Parametrization

We use literature values as often as possible and fit the remaining parameters to ex-

perimental measurements of nuclear β-catenin dynamics during in-vitro differentiation

of ReNcell VM 197 cells. To further test the calibrated/fitted model we apply cross-

validation by reproducing existing in-silico and in-vitro data (measurements of β-catenin

concentration under different WNT stimuli). However, we also have to verify whether

the model predictions are still in accordance with experimental data when it comes to

perturbations, like raft disruption.

Due to the lack of literature values, some parameter values, especially regarding the

membrane model, had to be fitted by simulation experiments. The values of the fitted

parameters are listed in italics in Table 5.1. The model itself is compartment-based,

but for rate calculation we consider the membrane as a two-dimensional layer with lipid

rafts being (immobile) circular-shaped entities within the membrane, whose radius and

coverage control the rate of receptor-raft collision. In our model we set the radius and

number of rafts such that RA = 25% of the membrane surface is covered by lipid rafts

[162]. First, we adjust the parameters related to the lipid raft/protein interaction, i.e.

determine the fraction of LRP6 and CK1γ that are associated to lipid rafts. Fortunately,

the concentrations for raft associated LRP6 and CK1γ have been determined in a previ-

ous study [173]. About 30% of LRP6 and 80-85 % of CK1γ have been found in detergent

resistent membranes (DRM). To match these experimentally measured values, we apply

different raft affinity values for LPR6 and CK1γ. Based on the values in 5.1, the sys-

tem almost immediately reaches a stable equilibrium with the desired concentration of

raft-associated proteins, as depicted in Fig. 5.5.

In addition several recent studies also revealed that CK1γ dependent phosphorylation

of LRP6 is confined to lipid rafts [155, 173]. We include this finding in our model by

restricting the phosphorylation to rafts-associated proteins, i.e. only LRP6 that are

located within a lipid raft may be phosphorylated by CK1γ. Interestingly, without

this constraint we were not able to determine a parameter configuration matching the

simulation results to in vitro measurements. This means, the restriction of LRP6 phos-

phorylation to lipid rafts in the model is not only motivated by the aforementioned

studies, but necessary to yield the dynamics observed in vitro.

In the following we fitted the remaining parameter values of the combined intracellular

and membrane model against in vitro measurements we derived from human neuronal

progenitor cells (ReNcell VM197). More details about the experimental data and in vitro

experimentation are described in the previous Section and in the Material and Methods

Section respectively. Briefly, we measured the temporal progress of endogenous WNT
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Figure 5.5: Simulation result for Raft/Receptor dynamics. Representative
simulation trajectory demonstrating the separation of membrane bound Ck1γ
and LRP6 molecules into lipid rafts and non-raft regions depending on their
individual raft affinity. In equilibrium ∼85% of Ck1γ molecules are located
within rafts (LR[Ck1γ]), whereas only∼25% LRP6 molecules are raft-associated

(LR[LRP6]), which corresponds to experimentally derived values in [173].

signaling in terms of nuclear β-catenin concentration fold changes during early differen-

tiation in ReNcell VM197 cells. Differentiation of ReNcell VM197 cells is induced solely

by growth factor removal and proceeds without any additional external stimulation. The

established parameter values of the fitting routine are listed in Table 5.1. As a result of

the parameter adjustment, we were able to reproduce the temporal dynamics of nuclear

β-catenin measured in ReNcell VM197 cells. Before we extensively discuss the simula-

tion results, we first thoroughly validate the model and its current parametrization.
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Table 5.1: Parameter Table of the WNT/β-catenin model.

Molecule Numbers

Species Description Value Reference

WNT WNT 220

LRP6 (mem) membrane-bound LRP6 4000 [6]

CK1y (mem) membrane-bound CK1y 5000

Beta-cat (cyt) cytosolic β-catenin 12989 [116, 138]

Beta-cat (nuc) nuclear β-catenin 5282 [116, 138]

Axin (cyt) cytosolic AXIN 252 [138]

Axin-P (cyt) cytosolic phosphorylated AXIN 219 [138]

Raft Parameters

Raft Parameter Description Value Reference

R in % Raft coverage 25 [162]

Rr (a.u.) Raft radius 4 [162]

Rρ Raft fluidity 0.1

Rϕ(LRP6) Raft affinity LRP6 0.15

Rϕ(CK1y) Raft affinity CK1y 1

k 1 Raft entry of LRP6 25.12

k 3 Raft entry of CK1y 250.12

k 2/4 Raft exit 25,12

Reaction Rate Constants

Rule/Parameter Description Value Reference

R5 / k 5 WNT production 1.9

R5 /kW delay Delay for WNT production 90

R6 /k 6 WNT degradation 0.27

R7 /k 7 LRP6-WNT binding 100

R8 /k 8 LRP6-WNT dissociation 0.1

R9 /k 9 Phosphorylation of LRP6 by CK1y 6.73E1

R10 /k 10 Dephosphorylation of LRP6 4.7E-2

R11 /k 11 Dissociation of signalosome 3E-4

R12 /k 12 Basal dephosphorylation of AXIN-P 0.03 [138]

R13 /k 13 Basal phosphorylation of AXIN 0.03 [138]

R14 /k 14 AXIN degradation 4.48E-3 [138]

R15 /k 15 AXIN-driven degradation of β-catenin 2.1E-4 [138]

R16 /k 16 β-catenin synthesis 600 [138]

R17 / k 17 basal degradation of β-catenin 1.13E-4 [116, 138]

R18 /k 18 β-catenin shuttling into nucleus 0.0549 [110, 138]

R19 /k 19 β-catenin shuttling out of nucleus 0.135 [110, 138]

R20 / k 20 AXIN synthesis 4E-4 [138]

R21 / k 21 LRP6-AXIN association 5

R22 / k 22 LRP6-AXIN dissociation 6.5E-4

Parameter and reference values of the WNT/β-catenin model as depicted in Fig. 2.
Bold: literature values, Italics: fitted values.
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5.3.3 Validation of the model

We validated the presented model of WNT/β-catenin signaling against independent

in-silico and in-vitro data [76, 116]. Thereby, we evaluated how the model reacts on

transient and continuous WNT stimulation in comparison to already published data.

For the transient stimulation we assume an initial amount of 250 WNT molecules that

is degraded over time (see k 6 in Table 5.1). This resembles the simulation experiment

performed by Lee et. al. based on their mathematical model of WNT/β-catenin signal-

ing. When comparing the simulation outcome of Lee et. al. and our model, it appears

that the amplitude or excitation level of the transient signal activity, is similar in both

models, but the corresponding temporal resolution differs significantly: In our model the

peak of the activation curve (which translates to maximum β-catenin concentration) is

reached at about 90 minutes and the base line is reached within five hours, while in the

Lee model it takes about 5 hours to reach the peak and 16 hours to return to the base

line, respectively (cf. Fig. 5.6). Apparently, the two models relate to a different temporal

scale. However, we can adapt the temporal scale of our model by reducing all parame-

ter values by a constant factor. Thereby the system’s kinetics are slowed down, but the

inherent system dynamics remain unchanged. To match the temporal level of the Lee

model, we apply a constant factor of 2/7. The simulation results with the adapted model

are depicted in Fig. 5.6 B and show a good fit between β-catenin concentration in our

and in the Lee model over the course of time (Fig. 5.6 B). Thus our core model yields the

same increase of β-catenin concentration in response to a transient WNT stimulus, as

predicted by the Lee model when adapting the temporal scale. In this context, we would

like to emphasize the rapid differentiation process of ReNcell VM197 cells. This cell line

differentiates into neurons and glial cells within 72 hours after growth factor removal,

which might explain the faster time scale of our model compared to the Lee model. To

model the continuous WNT stimulation, however, we have to compensate the fact, that

in vitro a single cell is faced with a constant concentration of WNT molecules. This

means ligands consumed by the cell (e.g. by receptor binding, endocytosis or unspecific

decay) can be immediately replaced by new ones from the bulk solution. This is not

the case in our stochastic, single cell model, where we have molecule numbers instead of

concentrations. Therefore we apply a production rule for extracellular WNT molecules

(modeled as constant flux, R6) with varying rate values according to [76]. To avoid an

over saturation of the system, i.e. the number of produced molecules is greater than its

consumption, the execution of this production rule is restricted to WNT molecule num-

bers less than a given threshold. This restriction is reversible. Hence, the production

of WNT is suspended once the number of WNT molecules exceeds a previously defined

value (threshold ϵ), but resumed as soon as the molecule concentration falls below this

threshold. For the given validation experiment, the threshold always corresponds to the
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Table 5.2: Table of varying WNT stimuli.

[WNT] ng/ml k 1

1.56 0.3225
6.25 1.29
12.5 2.58
25 5.15
50 10.31
100 20.62
200 41.25
400 82.5

Varying WNT stimuli applied in vitro by Hannoush and corresponding input parameter (k 1)
for model simulations. Concentration values have been recalculated to molecule numbers per
available volume (membrane) (details see Text).

concentration of WNT molecules tested in the respective simulation run.

Given this slight modification of our model, we run several simulation experiments with

the WNT concentrations listed in Tab. 5.2 and measured the rate of β-catenin accumu-

lation after 2 hours of WNT stimulation [76].

Note, that Hannoush measured the accumulation in terms of fluorescence intensities

instead of concentration or fold changes. We thus scaled the simulated β-catenin con-

centration values by a linear scaling factor to compare our simulation results with the

experimentally derived values. Intriguingly our results (red line) almost perfectly match

the experimental data obtained by Hannoush (blue line). Regardless of the applied

WNT3a concentration, our model always predicts an equivalent β-catenin accumulation

as obtained in vitro (see Fig. 5.6C). This is underpinned by the fact, that both unscaled

data sets - in silico and in vitro - are significantly correlated (P = 0.9963, with p-value <

0.001)). To summarize, our WNT/β-catenin model, which has been fitted against exper-

imental data retrieved from ReNcell VM197 cells solely, is capable of exactly reproducing

β-catenin kinetics reported for different cell types and stimuli (transient and continuous

WNT3a stimulation) [76, 116]. Consequently our WNT/β-catenin model is not only in

agreement with data published earlier, but conclusions about WNT/β-catenin signaling

drawn from ReNcell VM197 cells do not appear to be cell line specific and, hence, seem

generally applicable.

5.3.4 Simulation results

Hidden biphasic activation pattern Before we analyze the effect of lipid rafts dis-

ruption on canonical WNT signaling and execute the corresponding simulations, let us

take a closer look at the simulation results achieved so far. As previously mentioned, all
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Figure 5.6: (A-B) Comparison of simulation results (β-catenin concentration
fold change) between the newly derived WNT/β-catenin signaling model (red
line) and the Lee model (blue, dashed line) [116] in response to a transient
WNT stimulus. Without adaptation both models expose a similar excitation
level, but the temporal scale differs significantly (A). Adopting the temporal
scale of our WNT/β-catenin signaling model yields similar simulation results

for both models (B).
(C) β-catenin accumulation after 2 hours of WNT stimulation with varying
concentrations, compared between our simulation results (red line) and experi-
mental in-vitro measurements by Hannoush (blue line)[76]. Parametrization of
the β-catenin model is exactly the same as listed in Table 3.1, despite the WNT
production rate (k1), which has been parameterized in accordance to the vary-
ing WNT stimuli applied by Hannoush, cf. Table 5.2. The simulation results
match almost perfectly with the experimental data for all WNT concentrations
applied. Note that the in-silico β-catenin concentration values are scaled by
a linear scaling factor to allow a comparison with the experimentally derived
values, that measure the β-catenin accumulation based on fluorescence intensi-
ties, instead of concentration or fold changes. Simulation results for our model
corresponds to mean simulation trajectory (red) with 95% confidence interval

(gray error bars).
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unknown parameter values were derived by fitting the model to our in vitro measure-

ments of endogenous WNT signaling in ReNcell VM197 cells.

Considering the input parameter values that are required to reproduce our experimen-

tal data, it appears that only a model parametrized with an initial amount of WNT

molecules (nWNT = 90 ) and a constant WNT synthesis rate (k 1 = 1.9 ) after a certain

delay of 90 minutes yields the desired simulation result. The corresponding reaction rule

was adapted as follows:

// (R5) Wnt production

Cell[s?] -> Wnt + Cell[s?] @ if (simtime()>k_Wdelay) then k_5 else 0;

Listing 5.1: ML-Rules specification of the delayed Wnt production.

This detail is of great importance, as it suggests that β-catenin accumulation is caused

by two different WNT stimuli - an initial, transient trigger and a continuous, autocrine

signal mechanism. It is the combination of these two WNT stimuli, that allows the cell

to first generate an immediate response to the perturbation (removal of growth factor)

and in the following to keep the activation on a constant, but moderately incremented

level (cf. Fig. 5.7A). With regard to the continuous autocrine signal, our findings are in

line with a previous study of our group, where we used a simplified computational model

to provide evidence for the self-induced autocrine/paracrine WNT signaling in hNPCs

[138]. Thus, our experimental and computational studies underpin our in silico derived

hypothesis. In addition, several other studies describe continuous autocrine canonical

WNT signaling in the context of neural stem cells [212] and cancer [71, 175].

In contrast, it is not entirely clear where the immediate, transient WNT stimulus might

originate from. Possible explanations are that cytosolic vesicles fuse with the membrane

in order to spontaneously release a certain amount of WNT molecules [39], and that the

initial stimulus is a direct result of crosstalk with growth factor pathways [96].

5.3.5 Discussion

For raft-deficient cells, the simulation trajectory does not show any signal intensity, i.e.

the nuclear β-catenin concentration stays at its base line (cf. Fig. 5.7B). This behaviour

seems only natural, because in our model the MbCD treatment translates to a complete

removal of lipid rafts, which in turn prevents the raft-dependent LRP6 phosphorylation

by CK1γ in response to a WNT stimulus [173]. Thus WNT molecules may still bind,

but the receptor activation and hence the transduction of the extracellular WNT signal

is blocked. As a result we would expect a complete inhibition of WNT signaling when

disturbing lipid rafts, as predicted by our model.
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Figure 5.7: Nuclear β-catenin concentration fold changes in comparison be-
tween experimental data and the validated WNT/β-catenin model. The sim-
ulation result (red) of the WNT/β-catenin model (cf. Fig. 2, parametrized
according to Table 1) matches all experimental values (blue) in untreated con-
trol cells (A). Though, in its current state it is not capable of reproducing the
immediate early β-catenin activation in raft-deficient cells (B). Simulation re-
sults correspond to the mean simulation trajectory (red) with 95% confidence

interval (gray error bars).

Though, western blot as well as fluorescence microscopy data indicate a significant in-

crease of nuclear β-catenin at one hour of differentiation for raft deficient cells (see

Fig. 5.2C-D). This implies a successful activation of WNT/β-catenin signaling for this

time point, despite lipid rafts disruption. As the deployment of lipid rafts primarily

affects membrane-related processes, like the WNT-induced phosphorylation of LRP6, it

stands to reason that the activation of β-catenin signaling in raft deficient cells is likely

caused by an alternative WNT/LRP6-independent signaling mechanism. Pursuing this

line of thought further: What if the early immediate cell response in raft-deficient and

control cells was triggered by one and the same signaling mechanism, that is completely

independent of membrane-related processes and therefore unaffected by raft disruption?

In such a scenario, we would find characteristic upstream WNT signaling components

already being inactive in untreated control cells with simultaneous (nuclear) β-catenin

accumulation. Indeed, earlier studies on the same cell line, provide experimental data,

that show these dynamics for the early immediate cell response in untreated ReNcell

VM197 cells: p-LRP6 was found to be NOT significantly increased during the early time

points (0-3 hours), while β-catenin shows the ascribed transient activation (cf. [137]).

At the same time, the positive control confirmed that cells are responsive to WNT stim-

ulation, i.e. transient WNT3a treatment yields a significant increase of p-LRP6 within

the membrane. This means in the undisturbed case, β-catenin stabilization is observed,

even though upstream WNT signaling components are inactive, but functional. This

apparent contradiction clearly underlines our hypothesis of WNT-independent signaling

stabilizing and translocating β-catenin into the nucleus. On the one hand, this result

corroborates our hypothesis that lipid raft dependent, autocrine WNT signaling induces
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the continuous β-catenin activation. On the other hand our results raise the question

what mechanism triggers the early immediate cell response at 1 hours?

5.4 Concluding remarks

Here we used the previously derived model of raft-dependent WNT signaling to inves-

tigate the mutual influence of lipid rafts on WNT-signaling in the process of cell fate

commitment in hNPCs. The model was fitted to experimental data derived from human

neural progenitor cells (ReNCell VM 197) and has been extensively validated against

in-vitro and in-silico data under a wide range of varying conditions. During our investi-

gations we found that lipid raft disruption by Methyl-β-Cyclodextrin (MbCD) effectively

inhibits WNT/β-catenin signal transduction. This implies that raft disruption serves as

an effective inhibitor for WNT/β-catenin signaling in our cell line.

Surprisingly we found that immediately after the initiation of differentiation, raft-deficient

cells still show a transient β-catenin signaling activity. This result has been confirmed

by our simulation studies and raises the question what triggers the early immediate

response despite the apparent WNT/β-catenin signaling inhibition? This question will

be answered in the following chapter, again based on a combined in vitro and in silico

approach.



Chapter 6

Endogenous Reactive Oxygen

Species induce early immediate

beta-catenin activation in a

WNT-independent manner

In the previous chapter we demonstrated, that the combined membrane and axin/β-

catenin model captures relevant processes of canonical WNT signaling and is able to

predict the WNT/β-catenin dynamics in response to arbitrary WNT stimuli of untreated

cells with undisturbed lipid rafts. Though, the model is not capable of reproducing the

transient activation in raft-deficient cells (see Fig. 5.7 B). To predict this apparently

WNT-independent signal, the present WNT/β-catenin model has to be extended by a

presumingly intracellular mechanism.

In fact, a recent study with the same cell line uncovered a transient endogenous, WNT-

independent activation of WNT/β-catenin signaling through reactive oxygen species

(ROS), that occurs in direct response to the initiation of differentiation through growth-

factor removal [166]. Thereby the removal of growth factors induces an increase of

intracellular ROS levels, which in turn releases a redox-sensitive binding between NRX

and DVL. The sudden increase of unbound DVL promotes a DVL-mediated stimulation

of the downstream WNT/β-catenin signal transduction, which eventually leads to the

well known β-catenin accumulation in the nucleus.

Apparently this newly uncovered ROS-mediated beta-catenin pathway could provide a

117
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suitable explanation for the immediate transient beta-catenin activation. In the fol-

lowing we evaluate, whether an interplay between the redox-dependent ROS/- and raft-

dependent WNT/β-catenin pathway is a suitable hypothesis to explain our data. There-

fore we extend the current WNT/β-catenin model by the ROS mediated beta-catenin

pathway proposed by [166] and perform further experiments in silico and in vitro.

6.1 Involvement of Reactive Oxygen Species in WNT sig-

naling

While extensive Reactive Oxygen Species (ROS) stimulation may cause oxidative stress

and cell damage, it is meanwhile well accepted, that ROS can also act as intracellular

messenger inducing redox-sensitive signal transductions when present at physiological

concentrations [75]. Apparently this also accounts for canonical WNT signaling. Sev-

eral experimental studies have demonstrated that ROS can induce a redox-dependent

activation of WNT/β-catenin signaling. Funato et. al. reported a robust activation

in response to exogenous ROS stimulation in proliferating cells [63], while Love et. al.

showed that injury-induced ROS is required to activate WNT/β-catenin pathway in the

context of cell regeneration [127].

Redox-dependent activation of beta-catenin through Reactive Oxygen Species

The first to report an involvement of ROS in the regulation of WNT/β-catenin signaling

were Funato et. al.. They found that exogenous ROS stimulation yields a robust beta-

catenin activation in proliferating cells [63]. According to the data of Funato et. al.,

a large cytoplasmic pool of DVL is kept inactive due to being [covalently] bound to

Nucleoredoxin (NRX), a ubiquitously expressed member of the thioredoxin antioxidant

superfamily. ROS treatment leads to a redox-dependent release of DVL from its complex

with NRX, which results in the stimulation of downstream WNT/beta-catenin signaling

events. The findings of Funato et. al therefore suggest that changes in intracellular

ROS levels might positively regulate WNT/β-catenin signaling by modulating DVL

availability in the cytosol.
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Related study reveals CA2+-induced ROS production in response to growth factor removal

in hNPC

In a recent study with the same cell line, an endogenous, WNT-independent activa-

tion of WNT/β-catenin signaling through reactive oxygen species (ROS) was discovered

[166]. Thereby growth factor removal, which induces differentiation in ReNCell VM197,

induces an 1,4,5-triphosphate receptor (IP3R)-dependent CA2+-efflux from the Endo-

plasmatic Reticulum (ER) [33, 206]. Consequently CA2+flood the cytosol and also enter

the mitochondria within the first half hour of differentiation [166]. The increase of mito-

chondrial CA2+levels stimulates the production ROS within the mitochondria. After 30

to 60 minutes the mitochondrial ROS levels significantly increase and ROS start to efflux

into the the cytosol, hence changing the cellular redox state. To neutralize the oxida-

tive stress resulting from the ROS influx, redox pathway related proteins, like NADPH

oxidase, superoxide dismutase and Catalase are activated [17, 98, 159]. However, ROS

are also targeted by a specific member of the thioredoxin-related redox-regulating pro-

tein family, termed Nucleoredoxin (NRX). This is particularly noteworthy, because the

reduced form of NRX has a strong affinity to DVL, i.e. a large pool of DVL is bound

to NRX in a redox-sensitive manner. The cytoplasmic ROS influx thus leads to the

oxidation of reduced NRX, therewith releasing the redox-sensitive binding of NRX and

DVL [63]. Accordinlg the concentration of NRX and DVL significantly increases in hN-

PCs after one hour of differentiation [166]. FRET studies further confirmed that the

measured concentration fold change of unbound NRX and DVL occurs concomitantly

with the ROS-dependent release of NRX/DVL complex. - In the following cytoplasmic

DVL leads to the activation of downstream beta-catenin signal pathway, yielding a tran-

sient accumulation of beta-catenin during 1-3 hours of differentiation. The spontaneous

release of DVL through ROS apparently mimics an overexpression of DVL, which has

been demonstrated to trigger WNT/β-catenin signaling, bypassing the requirement for

WNT ligands [63, 65, 181].

To summarize, an increase of the intracellular ROS level releases the redox-sensitive

binding between NRX and DVL, hence promoting a DVL-mediated stimulation of the

downstream WNT/β-catenin signal transduction, which eventually leads to the well

known β-catenin accumulation in the nucleus.
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6.2 In silico exploration - extending the WNT model

To evaluate, whether an interplay between redox- and lipid raft dependent, autocrine

WNT/β-catenin activation is a suitable hypothesis to explain our data, we extend our

model with a redox-dependent/β-catenin pathway. Since quantitative experimental data

is rarely available, we base our model upon the findings of Funato et. al. and the recent

experimental results of [166].

We refer to the model component, by which the current WNT/beta-catenin model will

be extended, as the ROS/DVL model. For the extension of the WNT model we follow

a similar approach as for the WNT model. Accordingly we first describe the qualita-

tive structure of the ROS/DVL model (in terms of ML-Rules rule sets) and on what

assumptions it is based on. Afterwards the ROS/DVL model is parameterized in or-

der to fit the dynamics determined by Rharass et. al. and gradually connected with

components of the WNT model while verifying that none of the original dynamics are

disrupted. Eventually the ROS/DVL model extension is completely integrated into the

existing WNT model allowing further simulation studies to analyze the dynamics of the

combined model.

6.2.1 Extending the existing WNT model by endogenous ROS signal-

ing

Model assumptions Due to the limited source of studies analyzing the impact of

ROS signaling on the canonical WNT pathway, we primarily base our model assump-

tions on the work of Funato et. al. and Rharass et. al.. Since there’s almost no

quantitative data available for the Ros/DVL pathway described by Rharass et al, al-

most all parameters of the model extension, like initial concentration and reaction rate

constants, have to be fitted. Therefore we aim to keep the ROS/DVL model as sim-

ple as possible, i.e. reducing the amount of unknown parameter values to the smallest

value, while retaining the essential dynamics. In the model we consider three processes

that are crucial for the ROS-mediated beta-catenin activation, apparently: 1. The ac-

tivation/increase of cytoplasmic ROS levels in response to initiation of differentiation;

2. the ROS-mediate release of the NRX-DVL complex; 3. the DVL-induced activation

of down-stream WNT/beta-catenin signaling. This means, we particularly omit the de-

tailed molecular mechanisms that lead to the transient increase of mitochondrial ROS

production and its subsequent release to the cytosol. Even though being thoroughly

studied and described in [166], the numerous processes involved in the CA2+mediated

pathway (as described in the previous section) would largely increase the complexity of

the model. Instead the transient increase in cytoplasmic ROS level is represented by a
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single first order reaction with a certain delay to account for the time required to pass

the CA2+mediated pathway.

Next we consider the redox-dependent binding of NRX to DVL. According to the avail-

able experimental data, in particular FRET studies in [166], a rather large pool of DVL

molecules is bound by NRX before and shortly after the initiation of differentiation.

As soon as the mitochondrial ROS floods the cytoplasm, the NRX/DVL complexes

get dissociated, spontaneously releasing the stored pool of cytoplasmic DVL molecules.

However, we assume that the oxidation of NRX and its release from DVL are reversible,

i.e. after a certain amount of time, NRX returns to its reduced state and rebinds DVL

with high affinity.

Finally, a mechanism has to be identified that connects the ROS/DVL model com-

ponent with the WNT/beta-catenin model. While the clear causal relation between

ROS signaling and nuclear beta-catenin accumulation has been demonstrated in vitro

[166], the mechanism by which the ROS-mediated increase of cytosolic DVL activates

down-stream WNT/beta-catenin signaling is yet unclear. Here we refer to the work

of Schwarz-Romond and Fiedler et. al. ([60, 180]) who uncovered the ability of DVL

molecules to self-accumulate and further compete for the Axin polymerization interface,

hence inhibiting its original effector function in the destruction complex (cf. 4.1). Ac-

cordingly we assume that unbound, cytosolic DVL molecules accumulate into polymers,

and that these activated DVL polymers are capable of binding and inhibiting Axin. As

consequence of the DVL/Axin binding, beta-catenin accumulate and shuttles into the

nucleus. This process circumvents the need for extracellular WNT molecules and the

signalosome formation.

To summarize, in our model we assume that approximately 30 minutes after the induc-

tion of differentiation, ROS molecules are (rapidly) released into the cytosole. Cytosolic

ROS interfere with the redox-sensitive binding of DVL and NRX, leading to a sudden

increase of unbound, cytosolic DVL molecules. The increased local concentration of

DVL in turn facilitates the formation of DVL polymers, which then bind and inhibit

Axin. This leads to a WNT-independent accumulation of beta-catenin in both cytosole

and nucleus.

Molecules and interactions In the following we give a detailed description of the

ROS/DVL model, its containing species, their interaction and how the model is inte-

grated in the current WNT/beta-catenin model. Similar to the previous chapters the

implementation in ML-Rules will be illustrated in terms of exemplary rule definitions.

ROS production
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As motivated in the previous paragraph, the events that lead to the cytoplasmic increase

of ROS particles after growth factor removal will be [omitted] in the current implementa-

tion. Instead, to initiate ROS/β-catenin signaling, we introduce a transient ROS signal

at the beginning of differentiation [166], which is described by the following rule.

// (R25) Release of Ros molecules from Mitochondria

Cell[Mito[ROS]:r] -> Cell[Mito[] + ROS] @

if (simtime () > k_Rdelay) then k_25*#r else 0;

Listing 6.1: Simplified ML-Rules specification for initial ROS activation

In fact, rule 6.1 does not produce, but rather activates a pool of existing, inactive ROS

species. Thereby, we can apply a first order reaction, that represents the spontaneous,

but transient increase of cytoplasmic ROS, that has been determined in the wet-lab

experiments.

Interaction of NRX and DVL

Next, we consider the interaction between NRX and DVL. The most important charac-

teristic of NRX in the context of the ROS/DVL model is its redox state. In the stable

(non-active) state, NRX is reduced (attribute values ’nO’ vs ’O’ represent the reduced

and non-reduced state of NRX respectively) and may bind to DVL.

// (R27) Binding of DVL by Nrx

Cell[DVL(a,’f’):d + Nrx(’nO ’):n] -> Cell[DVLNrx] @ k_27*#d*#n;

// (R28) Basal dissociation of DVL from Nrx

DVLNrx:dn -> DVL(’i’,’f’) + Nrx(’nO ’) @ k_28*#dn;

Listing 6.2: Simplified ML-Rules specification for the basal interaction, i.e.

binding and unbinding of reduced NRX and DVL

Note, that only reduced NRX has strong affinity to DVL, i.e. may bind to it, which is

why rule (R28 6.2) explicitly restricts the binding (reaction) of NRX to DVL to reduced

NRX species (Nrx(’nO’)).

The redox state of NRX is modified by ROS through oxidation. The oxidation of NRX

can either affect unbound NRX (R26a), or more importantly the NRX-DVL complex

(R26). The latter results in the dissociation of the NRX-DVL complex, yielding unbound

(inactive) DVL and (oxidized) NRX. After some time NRX returns to its reduced state
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(R26b, 6.3) and hence regains the ability of (re-)binding DVL (R27, 6.2).

// (R26) Dissociation of DVL from Nrx by Ros

Cell[DVLNrx:dn + Ros:r] -> Cell[DVL(’i’,’f’) + Nrx(’O’)] @k_26*#dn*#r;

// (R26a) Oxidation of Nrx by Ros

Cell[Nrx(’nO ’):n + Ros:r] -> Cell[Nrx(’O’)] @ k_26a *#n*#r;

// (R26b) Reduction of Nrx

Nrx(’O’):n -> Nrx(’nO ’) @ k_26b*#n;

Listing 6.3: Simplified ML-Rules specification for the impact of ROS on NRX

and its interaction with DVL

DVL activation and interaction with Axin

As mentioned previously, due to the property of DVL to self-associate in a reversible and

concentration-dependent manner (R29/R30, 6.4), DVL forms self-assemblies that serve

as dynamic recruitment platform for AXIN [60, 181]. However, activated DVL may also

be targeted and bound by reduced NRX. This reaction is implicated in rule (R27, 6.2)

due to the unspecified attribute of DVL.

// (R29) Activation (by e.g. aggregation) of DVL

DVL(’i’, ’f’):d -> DVL(’a’,’f’) @ k_29*#d;

// (R30) Dynamic deactivation of DVL

DVL(’a’,’f’):d -> DVL(’i’,’f’) @ k_30*#d;

Listing 6.4: Simplified ML-Rules specification for the activation and inactiva-

tion of DVL

Eventually activated DVL binds Axin in a reversible manner (R31/32, 6.5). The binding

of DVL and Axin interferes with the regulatory function of Axin. Thereby DVL crucially

influences the dynamics of the WNT/beta-catenin model. Thus, rule (R31/R32, 6.5)

connects the ROS/DVL model component and the remaining part of the WNT/beta-

catenin model.

// (R31) Axin binding by activated DVL

Cell[DVL(’a’,’f’):d + Axin(phos ,’f’,’f’):a] ->

Cell[DVL(’a’, $link) + Axin(phos , ’f’, $link )] @k31*#d*#a;

// (R32) Axin DVL unbinding

Cell[DVL(’a’,bind):da + Axin(phos ,’f’,bind)] ->

Cell[DVL(’a’,’f’) + Axin(phos ,’f’,’f’)] @ if (b==’f’) then 0 else k32*#da;

Listing 6.5: Simplified ML-Rules specification for interaction of activated DVL

and Axin
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Figure 6.1: Schematic view of the extended WNT/β-catenin model illustrating
the potential interplay between WNT/β-catenin- and DVL-mediated ROS/β-
catenin signaling. In addition to the previous model (cf. Figure 4.6), the newly
introduced WNT-independent redox-signaling is depicted in the lower right.
Two-sided arrows indicate reversible reactions. Dashed phosphorylation signs
indicate that the depicted protein complex (i.e. AXIN/DVL and AXIN/ DVL/
LRP6) and the corresponding reactions occur independently of the phosphory-
lation state. The corresponding reaction rate constants are listed in Table 5.1,

Table 6.1 and Table 6.2.

The entire model including the extension of the newly derived, redox-dependent model

component, is depicted in Fig. 6.1 and the entire model implementation in ML-Rules in

Listing 6.7. At this point, we’d like to emphasize another reaction that was additionally

introduced when connecting the ROS/DVL with the WNT/beta-catenin model. In the

WNT/β-catenin model the role of DVL involved in the recruitment and binding of

Axin to pLRP6 is neglected [11, 152]. However, due to the ROS/DVL extension, DVL

has become an explicit and crucial entity in the newly combined model and cannot be

disregarded anymore (cf. Fig. 6.1). Therefore we add an additional set of rules that

describes the DVL-mediated unspecific, reversible phosphorylation of LRP6 prior to the

binding of Axin. In fact, DVL does not directly interact with LRP6, but rather provides

the binding platform for kinases like GSK3β and CK1α. Nevertheless we represent this

process as direct interaction between DVL and LRP6 for the reason of simplicity.
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// (R23) Binding of DVL to LRP6/WNT complex

Cell[Membrane[LR(radius , p)[LRP6(diff , ra , ’uP’, ’B’, bind):l]] + DVL(a,’f’):d]

-> Cell[Membrane[LR(radius , p)[LRP6(diff , ra , ’dP’, ’B’, bind )]]] @ k_23*#l*#d;

// (R24) Unbinding of DVL from LRP6/WNT complex

Cell[Membrane[LR(radius , p)[ LRP6DVL(diff , ra, ’dP ’, ’B’):l]]] ->

Cell[Membrane[LR(radius , p)[LRP6(diff , ra , ’uP’, ’B’)]] + DVL(’i’,’f’)] @ k_24*#l;

Listing 6.6: Simplified ML-Rules specification for unspecific interaction of DVL

and LRP6 prior to Axin binding

Note, that the interaction between DVL and LRP6 occurs independently of the activa-

tion state of DVL (cf. rule (R23) in 6.6). Moreover, the rule specifying the subsequent

binding of Axin has to be adapted as well, as the DVL-mediated phosphorylation of

LRP6 is a prerequisite for the binding of Axin. A fact that could be neglected in

the WNT/beta-catenin model, because the DVL-mediated phosphorylation of LRP6 is

rather unspecific and does not necessarily depend on WNT stimulation [152].
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// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

// +++++ species definitions (number of attributes) +++++

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++

Cell ();

Mito ();

Membrane (1);

LR(2);

Wnt (0);

LRP6 (5);

CK1y (2);

AXIN (3);

bCat ();

Nuc ();

Dvl (2);

Nrx (1);

DvlNrx ();

Ros (1);

// ++++++++++++++++++++++++++++

// +++++ initial solution +++++

// ++++++++++++++++++++++++++++

>>INIT[

nWnt Wnt +

nCells Cell[

(1) Membrane(A)[

nLR LR(radius , rho) +

nLRP6 LRP6(1, ra_lrp , ’uP’, ’uB’, ’f’) +

nCK1y CK1y(1, ra_ck)

]

nAXINU AXIN(’u’, ’f’, ’f’) +

nAXINP AXIN(’p’, ’f’, ’f’) +

nbCat bCat +

(nDvl) Dvl(’i’, ’f’) +

(nNrx) Nrx(’nO ’) +

(nDvlNrx) DvlNrx +

(1) Nuc[nbCatNuc bCat] +

(1) Mito[(nRos) Ros] +

]

];

// +++++++++++++++++++++++++++++++

// +++++ reaction rules ++++++++++

// +++++++++++++++++++++++++++++++

// **** Lipid Raft Dynamics ****

// (R1) LRP6 diffusion into lipid rafts

Membrane(A)[LR(radius ,p)[s?]:l +LRP6(d,ra ,phos ,bindW ,’f’):r +s_m?] ->

Membrane(A)[LR(radius ,p)[LRP6(d*p,ra,phos ,bindW ,’f’) +s?] +s_m?] @ k_1*#l*#r*ra;

// (R2) LRP6 diffusion out of lipid rafts

Membrane(A)[LR(radius ,p)[LRP6(d,ra,phos ,bindW ,’f’):r +s?]:l +s_m?] ->
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Membrane(A)[LR(radius ,p)[s?] +LRP6(d/p,ra ,phos ,bindW ,’f’) +s_m?] @ k_2*#l*#r;

// (R3) CK1y diffusion into lipid rafts

Membrane(A)[LR(radius ,p)[s_lr ?]:l +CK1y(d,ra):r +s_m?] ->

Membrane(A)[LR(radius ,p)[CK1y(d*p,ra) +s_lr?] +s_m?] @ k_3*#l*#r*ra;

// (R4) CK1y diffusion out of lipid rafts

Membrane(A)[LR(radius ,p)[CK1y(d,ra):r +s_lr ?]:l +s_m?] ->

Membrane(A)[LR(radius ,p)[s_lr?] + CK1y(d/p,ra) +s_m?] @ k_4*#l*#r;

// **** Membrane Signalling ****

// (R5) Wnt production

Cell[s?] -> Wnt + Cell[s?] @ k_5;

// (R6) Wnt degradation

Wnt:w -> @ k_6*#w;

// (R7a) Binding of Wnt to LRP6 (representing Fz,LRP6 receptor complex)

Wnt:w+Cell[Membrane(A)[LRP6(diff ,ra,’uP ’,’uB’,’f’):l +s_m?] +s_c?] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’B’,’f’) +s_m?] +s_c?] @ k_7a*#w*#l;

// (R7b) Binding of Wnt to raft -associated LRP6

Wnt:w+Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra ,’uP ’,’uB ’,’f’):l +s_lr?]

+s_m?] +s_c?] -> Cell[Membrane(A)[LR(radius , p)[LRP6(diff , ra , ’uP’, ’B’,’f’)

+s_lr?] +s_m?] +s_c?] @ k_7b*#w*#l;

// (R8) Dissociation of Wnt from LRP6 (representing Fz, LRP6 receptor complex)

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’B’,’f’):l +sm?] +s_c?] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’uB’,’f’) +sm?] +s_c?]+ Wnt @ k_8*#l;

// (R9) Phosphorylation of activated LRP6 in LR

Membrane(A)[LR(radius ,p)[CK1y(diff_ck ,ra_ck ):ck +

LRP6(diff_l ,ra_l ,’dP’,’B’,’f’):l +s_lr?] +s_m?] -> Membrane(A)[LR(radius ,p)[

LRP6(diff_l ,ra_l ,’P’,’B’,’f’) + CK1y(diff_ck , ra_ck) +s_lr?] +s_m?] @

k_9*#l*#ck / (3.14* radius*radius/A) * p;

// (R10) Dephosphorylation of LRP6

LRP6(diff ,ra ,’P’,’B’,’f’):l -> LRP6(diff ,ra,’uP’,’B’,’f’) + Dvl(’i’) @ k_10*#l;

// (R11) Recycling of Wnt/LRP6 complex (representing signalosome)

LRP6(diff ,ra ,’P’,’B’,bind):l -> LRP6(diff ,ra,’uP’,’uB’,bind) @

if (bind==’f’) then 0 else k_11*#w*#l;

// **** Beta -catenin signalling ****

// (R12) Basal AXIN autophosphorylation

AXIN(’u’,’f’, ’f’):a -> AXIN(’p’,’f’, ’f’) @ k_12*#a;

// (R13) Basal AXIN dephosphorylation

AXIN(’p’,’f’, ’f’):a -> AXIN(’u’,’f’, ’f’) @ k_13*#a;

// (R14) AXIN degradation

AXIN(phos ,’f’, ’f’):a -> @ k_14*#a;
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// (R15) Activated beta -catenin degradation

Cell[AXIN(’p’,’f’, ’f’):a + Bcat:b + s?]:c ->

Cell[AXIN(’p’,’f’,’f’) + s?] @ #c*(( k_15*#a*#b));

// (R16) Beta -catenin synthesis

Cell[s?] -> Cell[Bcat + s?] @ #c*k_16;

// (R17) Basal beta -catenin degradation

Bcat:b -> @ k_17*#b;

// (R18) Beta -catenin shuttling into the nucleus

Bcat:b + Nuc[s?] -> Nuc[Bcat + s?] @ k_19*#b;

// (R19) Beta -catenin shuttling out of the nucleus

Nuc[Bcat:b + s?] -> Bcat + Nuc[s?] @ k_12*#b;

// (R20) Beta -catenin driven AXIN synthesis

Nuc[Bcat:b + s?] -> Nuc[Bcat + s?] + AXIN(’u’,’f’,’f’) @ k_20*#b;

// **** AXIN LRP6 signalling ****

// (R21a) AXIN binding by LRP6 in membrane

AXIN(phos ,’f’,b):a + Membrane(A)[LRP6(diff ,ra,’P’,’B’,’f’):l] ->

Membrane(A)[AXIN(phos ,$link ,b) +LRP6(diff ,ra,’P’,’B’,$link)] @ ((k_21a*#l*#a));

// (R21b) AXIN binding by LRP6 in lipid rafts

AXIN(phos ,’f’,b):a + Membrane(A)[LR(radius ,p)[LRP6(diff ,ra,’P’,’B’,’f’):l ]]->

Membrane(A)[LR(radius ,p)[AXIN(phos ,$link ,b) + LRP6(diff ,ra ,’P’,’B’,$link )]] @

((k_21b*#l*#a));

// (R22a) Dissociation of receptor/AXIN complex (signalosome) in membrane

Cell[Membrane(A)[LRP6(diff ,ra,’P’,’B’,bind):la +AXIN(phos ,bind ,b)]] ->

Cell[Membrane(A)[LRP6(diff ,ra,’uP’,’uB’,’f’)] +AXIN(phos ,’f’,b) + DVL(’i’, ’f’)] @

if (bind==’f’) then 0 else (k_22a )*#la;

// (R22b) Dissociation of receptor/AXIN complex (signalosome) in LR

Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra,’P’,’B’,bind):la+AXIN(phos ,bind ,b)]]]->

Cell[Membrane(A)[LR(radius ,p)[LRP6(diff ,ra,’uP’,’uB’,’f’)]] +

AXIN(phos ,’f’,b) + DVL(’i’, ’f’) ] @ if (bind==’f’) then 0 else (k_22b )*#la;

// **** Ros -Dvl Signalling ****

// (R23) Binding of DVL to LRP6/WNT complex

Cell[Membrane[LR(radius ,p)[LRP6(diff ,ra ,’uP’,’B’,bind):l]] + DVL(a,’f’):d]

-> Cell[Membrane[LR(radius ,p)[LRP6(diff ,ra,’dP’,’B’,bind )]]] @k_23*#l*#d;

// (R24) Unbinding of DVL from LRP6/WNT complex

Cell[Membrane[LR(radius ,p)[LRP6(diff ,ra ,’dP’,’B’):l]]] ->

Cell[Membrane[LR(radius ,p)[LRP6(diff ,ra ,’uP’,’B’)]] + DVL(’i’,’f’)] @ k_24*#l;

// (R25) Release of Ros molecules from Mitochondria

Cell[Mito[ROS]:r] -> Cell[Mito[] + ROS] @

if (simtime () > k_Rdelay) then k_25*#r else 0;;

// ( R26 ) Dissociation of DVL from Nrx by Ros
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Cell[DVLNrx:dn + Ros:r] -> Cell[ DVL(’i’,’f’) + Nrx(’O’)] @ k_26*#dn*# r;

// (R26a) Oxidation of Nrx by Ros

Cell [Nrx(’nO ’):n + Ros:r] -> Cell [Nrx(’O’)] @ k_26a *#n*# r ;

// (R26b) Reduction of Nrx

Nrx(’O’):n -> Nrx(’nO ’) @ k_26b*#n;

// (R27) Binding of DVL by Nrx

Cell[DVL(a,’f’):d + Nrx(’nO ’):n] -> Cell[DVLNrx] @ k_27*#d*#n;

// (R28) Basal unbinding of DVL from Nrx

DVLNrx:dn -> DVL(’i’,’f’) + Nrx(’nO ’) @ k_28*#dn;

// (R29) Activation (by e.g. aggregation) of DVL

DVL(’i’, ’f’):d -> DVL(’a’,’f’) @ k_29*#d;

// (R30) Dynamic deactivation of DVL

DVL(’a’,’f’):d -> DVL(’i’,’f’) @ k_30*#d;

// (R31) Axin binding by activated DVL

Cell[DVL(’a’,’f’):d + Axin(phos ,’f’,’f’):a] ->

Cell[DVL(’a’, $link) + Axin(phos , ’f’, $link )] @k31*#d*#a;

// (R32) Axin DVL unbinding

Cell[DVL(’a’,bind):da + Axin(phos ,’f’,bind)] ->

Cell[DVL(’a’,’f’) + Axin(phos ,’f’,’f’)] @ if (bind==’f’) then 0 else k32*#da;

Listing 6.7: ML-Rules implementation of the combined Wnt/β-catenin model includ-

ing the redox-pathway as depicted in Figure 6.1.

6.2.2 Methods and Parametrization

Again, we perform a number of simulation studies to find a suitable parametrization

of the composed model, and - once found - to explore the effects that result from the

composition of the ROS/DVL and the WNT/β-catenin model. Since the model exten-

sion is also implemented in ML-Rules, we can apply the same tools for the specification

and execution of the simulation experiments as before, i.e. we use SESSL to set up

the simulation experiments, like parameter scans and optimization routines and for the

individual simulation runs, the approximative τ -leaping simulator is used. For further

information regarding the experiment specification and execution we refer to Section

5.3.1.

6.2.3 Parameter Adjustment

In the following we aim to check, whether the composed model is capable of reproducing

the beta-catenin dynamics of hNPCs during early differentiation. This means, we look
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Figure 6.2: Simulation result for Redox model,. Representative simulation
trajectory demonstrating the dynamics of Dvl and Nucleoredoxin after transient

stimulation with ROS

for a parametrization such that the composed model fits the experimental results of [166]

as well as our previous simulation and experimental results.

Temporal kinetics of ROS/DVL model

We first calibrate the ROS/DVL model, such that the temporal kinetics of the cyto-

plasmic increase of ROS and the subsequent release of DVL are in agreement with the

experimental data [166]. According to experimental measurements the ROS increase

starts between 10 and 20 minutes after the initiation of differentiation. We therefore

set the delay for the ROS influx from the mitochondria into the cytosol to 15 minutes

(rule 6.1).

The change of the cellular redox state, resulting from the ROS influx, apparently in-

fluence the NRX/DVL complex immediately. FRET and Western blot measurements

indicate a sustained increase of DVL already after 1 hour of differentiation. However,

the amount of unbound DVL diminishes already after 3 hours.

The parameters used to successfully fit the temporal kinetics of the ROS/DVL are

listed in table 6.1. As depicted in Fig. 6.2, the initial concentration is restored for the

NRX/DVL complex as well as for unbound DVL after three hours of simulation run

time.
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Parametrization of the composed model

After successfully calibrating the temporal dynamics of the ROS/DVL model we try to

fit the composed model to the β-catenin dynamics in untreated cells during early dif-

ferentiation (cf. Figure 5.2). If our hypothesis, that ROS-mediated DVL/beta-catenin

signaling is the source of the immediate early β-catenin activation, is correct, it should be

possible to fit the composed model without changing any parameters of the ROS/DVL

and WNT/β-catenin model that have already been validated. Accordingly only input

parameters (such as initial WNT/ROS concentrations or delays) and those that connect

the ROS/DVL model with the WNT/β-catenin model (DVL accumulation or the inter-

action of DVL and Axin), may be modified in the process of fitting.

Intriguingly, there exists a parameter configuration that is indeed capable of reproducing

the kinetics in untreated cells and, more importantly the immediate β-catenin activation

in raft deficient cells (cf. Fig. 6.3). The parameter values are listed in Table 6.1.

In contrast to the previous model configuration we replaced the initial amount of WNT

molecules with a onetime release of ROS molecules (nRos = 10000) in response to

growth factor removal. Moreover, the parameter values for the delayed (90min) and

constant WNT production (k 5 = 1.9) are slightly changed, while all other remaining

parameter values of our earlier model remain the same. The necessity to include such a

delay can be explained by inspecting our results more closely: Note, that the increase

of β-catenin concentration during the immediate early response (1h) is not significantly

different between control and raft deficient cells. If WNT signaling was directly activated

Table 6.1: Parameter Table of the ROS/DVL model component.

Molecule Numbers

Species Description Value

ROS total initial ROS 10000
DVL (cyt) unbound cytosolic DVL 855
Nrx unbound cytosolic Nrc 18
DVLNrx cytosolic DVL bound to Nrx 36200

Reaction Rate Constants

Rule/Parameter Description Value

R26 /k 26 ROS oxidation of Nrx forcing release of DVL 3.2E2
R26a/k 26a (not shown) ROS oxidation of Nrx 5E2
R26b/k 26b (not shown) Nrx reduction 2E-2
R27 /k 27 DVL-Nrx Association 22.5
R28 /k 28 DVL-Nrx Dissociation 2.3E-2

Parameter and reference values of the ROS/DVL signaling model.
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Table 6.2: Parameter Table of the extended ROS/β-catenin model
component.

Molecule Numbers

Species Description Value

WNT total WNT 0

Reaction Rate Constants

Rule/Parameter Description Value

R5/k 5 WNT production 2.2
R6/k 6 WNT degradation 0.27
k delay Delay for WNT production 90
R23/k 23 LRP6-DVL association 2.8E4
R24/k 24 LRP6-DVL dissociation 3.5E-4
R29/k 29 Aggregation of DVL 5E-4
R30/k 30 Dissociation of DVL 0.65
R31/k 31 DVL-Axin Association 0.075
R32/k 32 DVL-Axin Dissociation 6.8E-2

Parameter and reference values of the DVL-mediated ROS/β-catenin signaling model
as depicted in Fig. 6.1. The remaining model parameter values listed in Table 5.1 and
Table 6.1 are kept fixed.

after induction of differentiation, the signal at 1 hour would add up with the β-catenin

activation induced by ROS, hence most likely be significantly higher in control than in

raft deficient cells. As this is not the case, we conclude, that the described autocrine,

raft-dependent WNT signaling can only be initiated after a certain delay. However, this

also implies that the signal after one hour is entirely based upon WNT/LRP6 indepen-

dent mechanisms like the presented redox-dependent DVL/β-catenin pathway.

6.2.4 Simulation results and Discussion

The intricate spatio-temporal interplay of redox- and WNT dependent β-catenin signal-

ing becomes even more evident, when considering the localization and binding state of

AXIN during signaling (cf. Figure 6.3 C).
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Figure 6.3: Experimental vs. Simulation results.
(A-B) Nuclear β-catenin concentration fold changes in comparison between ex-
perimental data and the extended WNT/ROS-β-catenin model. The simula-
tion result (red) of the extended WNT/ROS-β-catenin model (cf. Figure 6.1,
parametrized according to Table 5.1, Table 6.1 and Table 6.2) match all ex-
perimental values (blue) in untreated control (A) and raft deficient cells (B).
Simulation results correspond to the mean simulation trajectory (red) with 95%

confidence interval (gray error bars).
(C-D) AXIN concentration in comparison between bound (to DVL or LRP6)
and unbound state. Simulation mean trajectories of AXIN in its bound and

unbound states for untreated (C) and raft deficient cells (D).

Spatio-temporal regulation of AXIN

While unbound AXIN acts as inhibitor of WNT signaling, in place of the complete de-

struction complex, the (reversible) binding states of AXIN to DVL and membrane-bound

LRP6 relate to the two previously described mechanisms for activating β-catenin sig-

naling: During the first two hours, β-catenin activation solely results from DVL/AXIN

binding, i.e. the redox-dependent DVL/β-catenin pathway. Only after that, AXIN

starts getting recruited to the membrane and bound by the activated LRP6 receptor

complex. This process is driven by the auto-/paracrine WNT signaling, which, in the

long run, replaces the transient redox-dependent DVL/β-catenin pathway, such that

AXIN is eventually only bound to LRP6. Note, that due to negative feedback, the el-

evated concentration of nuclear β-catenin enhances the synthesis of AXIN. As a result,

in the long run, the binding of AXIN to LRP6 yields an unrestrained linear increase
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of LRP6/AXIN in control cells for late time points. This indicates that additional

mechanisms, like endocytosis and recycling, are required to maintain the continuous

auto-/paracrine WNT-signaling for a longer period of time.

In summary, our simulation results suggest a two-fold activation mechanism that drives

the early differentiation process in human progenitor cells. Accordingly, the cellular

response upon differentiation induction through growth-factor removal is characterized

by an immediate, transient response through redox-dependent DVL signaling, followed

by a constant, auto-or paracrine WNT signaling in a raft-dependent manner.

DVL as a concentration-dependent dual signal transducer

We would like to emphasize the dual role that DVL, a central component of both, canon-

ical and non-canonical WNT signaling, plays in this context [65]. On the one hand, DVL

is required for the phosphorylation and accumulation of LRP6 and is thus continuously

recruited to the membrane in response to WNT stimulation [11, 181, 183]. On the other

hand, DVL itself acts as an independent transducer for β-catenin signaling in a redox

dependent manner, independent of WNT molecules. Obviously the function of DVL is

characterized by a highly concentration dependent mechanism.

In the inactive state DVL is primarily bound by NRX [63]. The remaining fraction of

unbound DVL is too small to initiate self-aggregation, but sufficiently large to support

and enhance WNT-induced receptor activation at the membrane. In fact, this process

is enhanced by the localization of LRP6 and CK1γ in lipid rafts, which allows a local,

density-dependent activation despite the low concentration of unbound DVL [44].

The redox-sensitive release of DVL from NRX in response to the transient ROS signal,

however, results in a spontaneous increase of the cytosolic DVL concentration. As a

result DVL immediately gets activated by forming self-aggregates, that provide high

affinity binding sites for cytosolic AXIN [181] (cf. Figure 6.3 C&D). The binding of

AXIN by aggregated DVL in turn inhibits the destruction complex, hence activating β-

catenin signaling. Due to the dynamic nature of DVL aggregates, i.e., their association

and disassociation, the β-catenin activation is reversible: as soon as the DVL concen-

tration falls below a certain threshold, e.g. by NRX rebinding, AXIN-DVL binding and

thus β-catenin signaling is inhibited again. As a result, the nuclear β-catenin concen-

tration returns to its base-line, as illustrated in Figure 6.3.

To summarize, based on our computational model, we demonstrated, that DVL may

either act as amplifier or as direct inducer of canonical WNT signaling. Thereby the

state of activity is determined by the concentration and localization of DVL, i.e. low con-

centrated, membrane-associated DVL amplifies WNT-induced LRP6 receptor activation

and signalosome formation, whereas high concentrated DVL directly induces β-catenin
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signaling, e.g. in response to a ROS stimulus. This is in line with a number of in vitro

studies, that elucidate the role of DVL during WNT/β-catenin signaling [60, 63, 181].

6.3 In vitro validation

6.3.1 Material and methods

WNT inhibition, fixation and immunostaining ReNcell VM197 cells cultured on

coverslips were treated with with 50ng/ml Dkk-1 and 0.5µg/ml Wif-I. The compounds

were added to the differentiation medium, such that the treatment starts simultaneously

with the initiation of differentiation through growth factor removal. In the following

fixation and immunofluorescence staining was performed as described in the previous

chapter 5.2. Accordingly, cells were washed with PBS and fixed with 4% paraformalde-

hyde for 20 min (Sigma-Aldrich). At first cell membranes were permeabilised with 0.2%

Triton X-100 (Sigma-Aldrich). To reduce non-specific binding, cells were treated with

1% gelatin in the following. Afterwards cells were incubated with mouse anti-active-

β-catenin (Millipore, dilution 1:250) and subsequently with Alexa Fluor488-conjugated

anti-mouse secondary antibody (Invitrogen, dilution 1:300) and Hoechst for nuclei stain-

ing (Sigma-Aldrich, dilution 1:1000). Finally, cells were mounted on microscope slides

using ProLong Gold antifade reagent (Invitrogen).

Mitochondrial ROS Level For detection of intracellular ROS levels, proliferating

cells were incubated with 50nM Mitotracker Red CMXRos (Invitrogen) for 40min. Ac-

cording to [21] the dye strongly accumulates in mitochondria which results in fluorescence

quenching. A change in mito-ROS production then induces a dye release leading to a

reduction of the quenching with simultaneous rise in the fluorescence. Subsequently,

cells were induced to differentiate in the absence or presence of 2 mM cyclodextrine

(Sigma-Aldrich). To exclude a ROS-stimulating effect during proliferation, proliferating

cells were also treated with 2mM cyclodextrine. The ROS-increasing agent hydrogen

peroxide (2mM, Sigma-Aldrich) was used as positive control. Fluorescence was analyzed

by confocal microscopy using Nikon A1 confocal imaging system with a 60x/NA 1.4 oil

objectives (Nikon, Tokyo, Japan).

Quantification of nuclear beta-catenin fluorescence intensity To analyze the

nuclear beta-catenin accumulation we applied a 3D-image quantification approach ac-

cording to [5]. Accordingly confocal images of randomly chosen areas were acquired.

Semi-automatic 3D-reconstruction of Nuclei surfaces based on DNA staining (Hoechst)
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Figure 6.4: Upstream β-catenin inhibition with WIF-I (0.5µ g/ml) increases
nuclear beta-catenin levels significantly during the early phase of differentiation,
i.e. 1 hour after treatment and initiation, but decreases nuclear beta-catenin
levels during the later phase of differentiation, i.e. 3-12 hours after treatment
and initiation; Treatment with Dickkopf-1 (50 ng/ml Dkk-1) showed a WIF-I-
similar response, but beta-catenin levels only decreased to base level; n= ∼300

cells/nuclei per time point, unpaired t-test to control (0h): *, p ≤ 0.05.

was achieved using the Imaris software platform from Bitplane. Within the 3D-volumes

the mean-fluorescence intensity was quantified for beta-catenin staining, resulting in a

collection of mean-values that represent the average intra-nuclear protein quantity at

the moment of cell fixation. To increase experimental and statistical certainty, at least

three randomly chosen fields were selected per coverslip, containing between 80 and

120 cells each. 3D-Images were recorded with identical microscope hardware settings

and analyzed with identical software settings. For more details about the quantitative

3D-image cytometry approach, please see ([5] Chapter 3.2).

6.3.2 Experimental results

Early immediate beta-catenin activation is WNT independent In a previous

work [5], the impact of common WNT signaling inhibitors like Dickkopf-1 (Dkk-1) and

WNT-inhibitory-factor-I (Wif-I) on nuclear beta-catenin levels has been analyzed for

the later phase of cell fate commitment (3-12 hours) in ReNcell VM197. Both proteins

prevent the activation of WNT/beta-catenin signaling through different mechanisms:

Dkk-1 targets LRP6 and triggers its internalization [173], whereas Wif-I unspecifically

blocks free WNT-ligands. As shown in the work of [5], both compounds effectively

inhibit nuclear beta-catenin accumulation. Apparently WNT ligands as well as LRP6
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receptors play a crucial role in the later phase activation of WNT/beta-catenin signaling

in ReNcell VM197, suggesting a direct relationship between WNT signaling and the

nuclear beta-catenin accumulation we observed in our measurements.

However, to analyze the impact of Dkk-1 and Wif-I on nuclear beta-catenin accumu-

lation during the initial phase of differentiation (1 hours) in ReNcell VM197 cells, we

performed additional experiments as described in the following. We applied the same

conditions as in the previous experiments, i.e. cells were treated with 50ng/ml Dkk-

1 and 0.5µg/ml Wif-I, respectively. The compounds were added to the differentiation

medium, such that the treatment starts simultaneously with the initiation of differenti-

ation.

Figure 6.4 shows the nuclear beta-catenin levels in Dkk-1 and Wif-1 treated ReNcell

VM197 cells during proliferation (0h) and after 1h and 3h (and 6h) of differentiation. In

fact, after 1 hour of differentiation, we observe a marked increase of nuclear beta-catenin

levels in the case of Dkk-1 and a significant increase in the case of Wif-1 treatment, com-

pared to proliferating cells (0h). Whereas at the later phase of differentiation (3 and 6

hours) nuclear beta-catenin levels are either decreased or at the base level, which is in

agreement with our previous, aforementioned measurements. The beta-catenin activa-

tion in Dkk-1 and Wif-1 treated cells are also correlate with the dynamics obtained by

MbCD treatment, hence corroborating our claim that the nuclear beta-catenin accumu-

lation observed in our measurements appropriately reflects the activity of WNT/beta-

catenin signaling.

To summarize, we provide experimental measurements of nuclear beta-catenin levels in

ReNcell VM197 cells during differentiation in response to three different treatments,

each targeting different components of the WNT/LRP6 signaling complex, to analyze

the same specific hypothesis. Each of these experiments showed the same tendency, i.e.

a WNT/LRP6 independent early phase activation and a WNT/LRP6 dependent later

phase activation. However, the source of the WNT/LRP6 independent activation of

β-catenin signaling remains elusive.

Increased ROS production in response to initiation of differentiation is inde-

pendent of raft disruption Our simulation studies confirm that the presented model

of combined redox and raft-dependent wnt signaling provides a sustained explanation

to our experimental data. However, redox signaling and lipid rafts are closely related

to each other, since major components of redox signaling mechanism are found to be

raft-associated, like NADPH oxidase, superoxide dismutase and Catalase [17, 98, 159].

Accordingly, we have to re-evaluate our experimental data, as MbCD treatment may

have an additional impact on ROS signaling and might even induce the early immediate
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response in raft-deficient cells. To test whether the proposed ROS signaling mechanism

is independent of the MbCD treatment, we analyzed the mitochondrial ROS (mito-ROS)

production in control and raft deficient ReNcell VM197 cells during proliferation and

during the early hours of differentiation. To monitor the mito-ROS metabolism we ap-

ply MitoTracker Red according to [21]. More details are described in the Material and

Methods section.

In proliferating state, control and raft-deficient cells show no detectable changes in the

mito-ROS level, whereas H2O2 stimulation results in a significant increase (cf. Fig. 6.5).

Accordingly ROS metabolism is not induced or promoted by MbCD treatment in pro-

liferating cells. After one hour of differentiation we register a transient, marked increase

of mito-ROS production in differentiating cells compared to proliferating cells, that is in

accordance with the data reported in [166]. The transient increase of mito-ROS produc-

tion occurs in untreated control as well as in MbCD treated cells (cf. Fig. 6.5). After

three hours, we detect a decrease in the mito-ROS metabolism, that is slightly more pro-

nounced in control than in raft-deficient cells. Apparently MbCD treatment alters the

mito-ROS metabolism, but only after three hours of differentiation, whereas the changes

in the mitochondrial ROS metabolism in direct response to induction of differentiation

occur independenase or superoxide dismutase. Consequently, MbCD treatment does not

promote the activation of mito-ROS metabolism in response to the induction of differen-

tiation (as described in [166]), but hampers the subsequent elimination of the generated

ROS.

However, the increased ROS level at three hours has no apparent effect on β-catenin sig-

naling. While mito-ROS metabolism is still increased after three hours in raft-deficient

cells (cf. Fig. 6.5), the nuclear β-catenin concentration is returning to its base-line al-

ready (cf. Fig. 5.2). In fact, this insight further corroborates our hypothesis of a biphasic

activation pattern, where redox-dependent DVL/β-catenin signaling is only active dur-

ing the early immediate response (1h), while the subsequent continuous β-catenin accu-

mulation results from an autocrine/paracrine, raft-dependent WNT/β-catenin signaling

mechanism (3-12h).

6.4 Concluding remarks

In a combined in-vitro and in-silico approach we find strong evidence, that cell fate com-

mitment in human neural progenitor cells is driven by two distinct β-catenin signaling

mechanisms. According to our simulation results, only a concisely regulated interplay

between redox-dependent and self-induced auto-/paracrine WNT signaling can explain

the nuclear β-catenin dynamics observed experimentally during the initial phase of dif-

ferentiation:
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Figure 6.5: Confocal microscopy of mito-ROS levels for untreated (control)
cells and MbCD-treated cells. Proliferating cells have been treated with H2O2

as positive control and MbCD for 1 hour (first column). 1 hour after induction of
differentiation cells show a marked increase of mito-ROS levels, and subsequent
decrease after 3 hours. Images further confirm that neither proliferating nor
differentiating cells are subject to crucial changes in mitochondrial ROS level

due to raft disruption through MbCD treatment. Scale bar 20 µm.

In response to growth factor removal, a transient increase of the intracellular ROS level

activates DVL in a redox-dependent manner. While DVL is primarily bound by NRX

in the inactive state, ROS release the redox-sensitive association between NRX and Di-

shevelled (DVL). This leads to a spontanous increase of unbound DVL molecules, which

immediately get activated by forming self-aggregates. Activated DVL subsequently stim-

ulates downstream signaling components causing an immediate transient β-catenin sig-

nal [63, 181]. After a certain delay, a yet unknown mechanism triggers a continuous

production of WNT molecules, which results in a stable activation of WNT/β-catenin

pathway by auto-/paracrine signaling. The resulting continuous WNT signal is raft-

dependent, i.e. the disruption of rafts completely inhibits the signal transduction.

However, two additional things are important to consider here. On the one hand, the

reversible binding of Axin to activated LRP6, as described in our model, is sufficient

to accurately predict and reproduce in-silico and in-vitro measurements under varying
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conditions. This means our results indicate that, apparently, endocytosis and recycling

processes are not essentially required to maintain the activation level of nuclear β-catenin

in response to a constant autocrine Wnt stimulus throughout the initial phase of differ-

entiation (first 12h). On the other hand, in the current model intracellular AXIN levels

are continuously increasing during WNT signaling, due to the β-catenin dependent ex-

pression of AXIN (negative feedback) (cf. Figure 6.3). This means, β-catenin levels

can only be kept on an increased level, as long as enough LRP6 molecules are available

to bind AXIN, i.e. WNT signaling is only effective, if the LRP6/AXIN system is not

saturated. As a consequence, for longer time scales an additional mechanism, such as

the endocytotic cycle, is indeed required to keep WNT signaling running and effective.



Chapter 7

Summary and Concluding

Remarks

The results of this thesis demonstrate, that Lipid Rafts are perfectly suited to illustrate

• why the appropriate representation of spatial dynamics in computational modeling

is a challenging tasks and

• why spatial dynamics play a crucial role in cellular signal transduction.

In the following we shortly summarize the most important insights drawn from the

development of the two lipid rafts models (Chapter 2 and Chapter 4) and the subsequent

simulation studies (Chapter 3, Chapter 5 and Chapter 6). A detailed discussion of the

individual methodological approaches and biological insights can be found at the end of

the respective chapter.

7.1 Methodology / Model development

Here we provided two models of lipid rafts/receptor dynamics, each implemented with

a modeling formalism (Cellular Automata, ML-Rules) that is tailored to the scientific

question and the corresponding spatial resolution (individual, grid-based, compartmen-

tal). Regarding the expressiveness both modeling formalisms (CA and ML-Rules) were

able to cope with the modeling features required to represent the dynamics we sought to

analyze. However in terms of model complexity and re-usability we found strong distinc-

tions between the two formalisms. Even though the spatial resolution of the CA model

was perfectly fitted for the dynamics addressed in this work, it has to be acknowledged

141
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that in terms of expressiveness, CA-formalism was stretched to its limits. In particular

the representation of coordinated movement of lipid rafts and the resulting implications

for receptor diffusion, i.e. interdependent multilevel processes, were difficult to describe

in terms of local transition rules. As a result CA model comprises rather complicated

transition rules, which clearly diminishes the re-usability of the model and hampers po-

tential extensions of the model. Instead recent more sophisticated approaches, such as

ML-Space [12] or cellular pots models [182] are apparently more suited to describe lipid

rafts/receptor dynamics on the membrane.

On the other hand, the ML-Rules formalism used to implement the lipid rafts/WNT

model provides sufficient expressiveness to handle all essential modeling features. As a

result the ML-Rules model is comparably compact, easy of access and the implementa-

tion of potential model extensions is straight-forward. This has been demonstrated has

been demonstrated when extending the combined lipid rafts - Wnt/β-catenin with the

intracellular redox signaling (Chapter 6). Another good example for the expressiveness

of ML-Rules is the concise description of the endocytotic cycle, where only a pair of

rules was sufficient to describe endocytosis of the ternary complex, the dissociation of

the complex with subsequent recycling of the LRP6 receptor to the membrane and the

simultaneous degradation of the remaining proteins and ligands that were part of the

ternary complex (cf. Rule rule:endocytosis).

In summary, the models of lipid rafts dynamics developed here greatly demonstrate that

sophisticated modeling approaches are required to describe such complex model features

in terms of assessable and (re-)usable models.

7.2 Application / Biological insights

The result of the CA-based simulation studies revealed, that lipid rafts have indeed a

significant impact, not only on the accumulation of receptors, as shown in earlier studies,

but also on the recruitment and binding of cytosolic proteins by the receptors. Consid-

ering the crucial role of protein recruitment and binding for the assembly and activation

of receptors, our results thus underline the diverse, but pivotal role of lipid rafts during

signal transduction. Generally the impact of lipid rafts on the binding kinetics is limited

by the raft concentration within the membrane and its fluidity. Since the raft fluidity is

mainly controlled by the cholesterol content of the membrane, our findings are consis-

tent with studies showing that cholesterol depletion alters specific cellular responses in

different cells (see [185] for review). However, to retrieve pathway- and cell specific re-

sults on binding kinetics that can be incorporated into or combined with other models, a

membrane model needs to be specifically parameterized by dissociation and binding rate

constants, raft size and coverage distribution, receptor sizes, and raft affinities. Most
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often this is not possible due to the experimental limitations.

Unfortunately the lack of experimental data and technical limitations hampered the

coupling of the two computational studies performed in this thesis. However, if possible

at all, the technical limitations in particular regarding the financial effort and the time

required to obtain cell and pathway specific raft characteristics were clearly beyond the

scope of this work. This way, the impact of lipid rafts characteristics in the combined

lipid raft/WNT model had to be reduced to the essential and fitted to experimental

data. Nevertheless, we were able to develop an extended model of the canonical WNT

pathway including membrane-related processes and lipid rafts whose predictive ability

has been confirmed for various perturbations (e.g. transient and continuous Wnt stim-

uli) and in particular for lipid raft disruption. Since our model is realized in ML-Rules,

a multi-level rule-based language, that facilitates the extension and modification of the

model, it serves as a perfect basis for further in-silico investigations . Thus, our results

provide both new insights and means to further the understanding of canonical Wnt/β-

catenin signaling and its role in neural differentiation.

Intriguingly, the derived experimental results indicated the involvement of an additional,

Wnt-independent control mechanism, which was yet missing in the established signaling

network of the canoncial Wnt pathway.

The experimental and simulation studies revealed that β-catenin activation during cell

fate commitment of human neural progenitor cells (hNPCs) is regulated through a con-

cise spatio-temporal interplay of endogenous ROS and lipid raft dependent canonical

Wnt signaling. These findings emphasize the role of ROS as intracellular signaling me-

diator and further illustrate the elaborate spatio-temporal regulation of Dvl, which may

either act as amplifier or as direct inducer of Wnt/β-catenin signaling, depending on

its concentration and localization. Our results are in line with recent studies showing

that both WNT- and ROS-induced β-catenin signaling pathways, are essential positive

regulators for the neuronal differentiation as the inhibition of either one significantly

reduces the neuronal yield [92, 166].

While we were able to explore the general effect that lipid rafts have on WNT signaling

during neural differentiation, it also has to be admitted, that the essential mechanism

behind this regulatory effect is still unclear, i.e. why lipid rafts are essentially required

for the phosphorylation of LRP6. To explore this question, either further experimental

data could be performed to find additional regulatory factors, such as e.g. done in [155];

Or a more fine-grained modeling and simulation approach could be used to elucidate

whether the regulation of LRP6 and lipid rafts is due to steric, or hydrophobic interac-

tion between the LRP6 receptor and the raft specific lipids.
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All in all, on a personal note, in my eyes lipid rafts are still highly underestimated

regarding its regulatory function in signal transduction and human physiology. On the

one hand lipid rafts have been related to almost all central physiology-related signaling

pathways and associated with a continuously growing list of diseases, including immune

disorders, degenerative diseases and cancer (cf. Chapter 1, while on the other hand the

knowledge about the exact mechanism by which lipid rafts regulate signaling are still

unknown for most of the signal transduction pathways they are involved in. This obvious

discrepancy needs to be addressed in the near future. Since lipid rafts are difficult to

study in vitro and in vivo, insights obtained by computational modeling can give a

cutting edge to this problem.
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[116] E. Lee, A. Salic, R. Krüger, R. Heinrich, and M. W. Kirschner. The roles of apc

and axin derived from experimental and theoretical analysis of the wnt pathway.

PLoS Biol, 1(1):e10, 2003.

[117] R. J. Lefkowitz, S. Cotecchia, P. Samama, and T. Costa. Constitutive activity of

receptors coupled to guanine nucleotide regulatory proteins. Trends in Pharma-

cological Sciences, 14(8):303–307, Aug. 1993.

[118] H. Lemcke and S. A. Kuznetsov. Involvement of connexin43 in the EGF/EGFR

signalling during self-renewal and differentiation of neural progenitor cells. Cellular

Signalling, 25(12):2676–2684, Dec. 2013.

[119] H. Lemcke, M.-L. Nittel, D. G. Weiss, and S. A. Kuznetsov. Neuronal differentia-

tion requires a biphasic modulation of gap junctional intercellular communication

caused by dynamic changes of connexin43 expression. European Journal of Neu-

roscience, 38(2):2218 – 2228, 2013.

[120] P.-F. Lenne, L. Wawrezinieck, F. Conchonaud, O. Wurtz, A. Boned, X.-J. Guo,

H. Rigneault, H.-T. He, and D. Marguet. Dynamic molecular confinement in the

plasma membrane by microdomains and the cytoskeleton meshwork. The EMBO

Journal, 25(14):3245–3256, July 2006.

[121] O. Lindvall, Z. Kokaia, and A. Martinez-Serrano. Stem cell therapy for human

neurodegenerative disorders: how to make it work. Nature Medicine, 10:S42–S50,

July 2004.

[122] D. Lingwood and K. Simons. Lipid rafts as a membrane-organizing principle.

Science, 327(5961):46–50, Jan. 2010.

[123] C. Liu, Y. Li, M. Semenov, C. Han, G. H. Baeg, Y. Tan, Z. Zhang, X. Lin,

and X. He. Control of beta-catenin phosphorylation/degradation by a dual-kinase

mechanism. Cell, 108(6):837–847, Mar. 2002.

[124] C.-C. Liu, J. Prior, D. Piwnica-Worms, and G. Bu. LRP6 overexpression defines

a class of breast cancer subtype and is a target for therapy. Proceedings of the

National Academy of Sciences, 107(11):5136–5141, Mar. 2010.

[125] B. Lloyd-Lewis, A. G. Fletcher, T. C. Dale, and H. M. Byrne. Toward a quantita-

tive understanding of the wnt/β-catenin pathway through simulation and experi-

ment. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(4):391–

407, July 2013.

[126] C. Y. Logan and R. Nusse. The wnt signaling pathway in development and disease.

Annual Review of Cell and Developmental Biology, 20(1):781–810, 2004. PMID:

15473860.



Bibliography 157

[127] N. R. Love, Y. Chen, S. Ishibashi, P. Kritsiligkou, R. Lea, Y. Koh, J. L. Gallop,

K. Dorey, and E. Amaya. Amputation-induced reactive oxygen species are required

for successful xenopus tadpole tail regeneration. Nature Cell Biology, 15(2):222–

228, Feb. 2013.

[128] M. Luboschik, C. Tominski, A. Bittig, A. Uhrmacher, and H. Schumann. Towards

interactive visual analysis of microscopic-level simulation data. In Proceedings of

SIGRAD 2012 – Interactive Visual Analysis of Data, pages –, Växjö, Sweden,
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