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Abstract

Knowing how scientific results are obtained, meaning to know which methods,
techniques, algorithms, software etc. were used, is important for those scientific
results to be credible. Documentation and provenance data provide exactly this
information. However, providing documentation and provenance data is not triv-
ial. In the domain of Modeling & Simulation a multitude of different building
blocks take part in conducting a simulation study. Those blocks range from soft-
ware products, over mathematical models, to analysis and interaction methods.
Keeping track of all this information manually is nearly impossible. Thus, a
suitable computer-based support is needed.

This thesis proposes a workflow-based approach for conducting simulation
studies, using software aided automated documentation of workflow executions.
In order for this to work a simulation study is divided into two layers, one dealing
with the creation, verification and validation of a simulation model while the other
deals with the execution of a simulation experiment with this model.

In this thesis workflows for both layers, covering a broad range of different
types of simulation studies are presented and a framework for executing those
workflows as well as automatically collecting provenance data and documenta-
tion is developed and implemented. Additionally, an approach is presented and
evaluated that aims at improving workflow execution in distributed environments
by adaptively reacting to environmental changes optimizing execution, e.g., by
speed and resource usage, utilizing machine learning techniques.





Zusammenfassung

Wissenschaftliche Resultate gelten als zuverlässig, wenn man weißwie diese
zu Stande gekommen sind, d.h. man kann z.B. nachvollziehen welche Methoden,
Algorithmen und Softwareprodukte wurden verwendet, um besagte Resultate zu
erzeugen. Dokumentation und Provenienz stellen genau solche Informationen be-
reit. Allerdings ist das Bereitstellen der Dokumentation oder Provenienz nicht
immer einfach. Im Bereich der Modellierung und Simulation existieren z.B. eine
Vielzahl von unterschiedlichen Komponenten, die an einer Simulationsstudie be-
teiligt sind. Diese reichen von verschiedenen Softwareprodukten, über mathema-
tische Modelle und Analysen bis hin zu interaktiven Methoden. Einen Überblick
über all diese Informationen per Hand zu behalten, ist schwierig bis unmöglich.
Hier können automatische computergestützte Methoden helfen.

In dieser Arbeit wird ein workflow-basierter Ansatz vorgestellt, um Simulati-
onsstudien abzubilden und mit Hilfe von Software auszuführen und automatisch
zu dokumentieren. Damit dies funktioniert wird eine Simulationstudie in zwei
Stufen unterteilt, zum Einen in die Erstellung und Validierung des Simulations-
modells und zum Anderen in die Ausführung eines Simulationsexperiments mit
diesem Modell.

Diese Arbeit stellt dabei für beide Stufen Workflows vor, die genutzt werden
können, um eine Vielzahl von verschiedenen Simulationsstudien abzubilden. Für
die Ausführung der Workflows und automatische Dokumentation derer Ausfüh-
rung wird ein Framework konzipiert und umgesetzt. Zusätzlich wird ein Ansatz
präsentiert und untersucht, der die Ausführung von Workflows in verteilten Um-
gebungen verbessern kann, indem auf Änderung in der Umgebung adaptiv, unter
Einsatz von Techniken aus derm Bereich maschinelles Lernen, reagiert wird und
die Ausführung in z.B. in Richtung Geschwindigkeit oder Resourcenverbrauch
optimiert wird.
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1
Introduction

A day without sunshine is like, you
know, night.

Steve Martin

1.1 Motivation
Where does this information come from? What statistical method was used for
the analysis? Questions like this or similar often arise when evaluating scientific
results. Whereby it makes no difference whether the results are self conducted
or conducted externally, e.g., found in literature. Interestingly, it is often not
possible to answer those question because necessary information is simply not
available in the documentation and provenance data provided with the scientific
results. This is especially surprising, as important decisions are made based
on such scientific results. Ideally, the results are correct and of high quality,
whereby this cannot be ensured, e.g., it might not be impossible to determine
if the appropriate analysis method was used if that information is not given in
the documentation. Missing or insufficient documentation or provenance data for
that matter, leads to results that are difficult or impossible to reproduce.

The credibility of results highly dependents on the techniques used to produce
them. For instance, in the domain of network simulation Pawlikowski et al.
identified two important aspects that simulation results need to be credible. On
the one hand the use of an appropriate pseudo-random generator of independent
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2 CHAPTER 1. INTRODUCTION

uniformly distributed numbers is needed. On the other hand the simulation
results need to be analyzed by appropriate analysis techniques. Thus, in order
to assess the credibility and quality of simulation results it is imperative to know
how those results were obtained. Therefore, incomplete or missing documentation
and provenance data ultimately lead to a crisis of credibility (Pawlikowski et al.,
2002; Kurkowski et al., 2005; Kurkowski, 2006).

However, typically this information is not missing on purpose. Firstly, in-
formation could simply be missing because of an incomplete documentation of
the scientific process, although the necessary information was available at the
time. Secondly, even with the right intention it is sometimes impossible to pro-
vide sufficient documentation because necessary information is not available to
the scientist, e.g., software used to conduct scientific analyses or experiments,
does not reveal internal information, such as the used analysis method, its pa-
rameters or used algorithms. For instance, the Modeling & Simulation framework
JAMES II can be used to conduct simulation experiments or create simulation
models. However, by default it does not provide documentation, hiding most of
the internal information from the user, e.g., used plug-ins during simulation. This
is even more amplified as JAMES II supports an arbitrary number of plug-ins
which can be selected automatically by JAMES II if needed, making it hard to
determine which plug-ins were used during experimentation.

Thus, when information is available but is not used it directly falls into the
responsibilities of the scientist. A possible approach to cope with this issue is
to provide a system that guides and assists the scientist during generation of
documentation. However, even with guidance the resulting documentation might
not be sufficient, therefore ideally the scientist does not need to be involved in the
documentation process at all. The second problem, if information is not available
but needed for documentation this needs to be addressed on the software side.
The software needs to be able to provide all the desired information that is
imperative for the documentation.

In the industry workflow systems provide support for documentation, execu-
tion, monitoring and controlling of processes described using workflows. They
help to find and eliminate problems in a production process that might induce
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errors in the final product (Van Der Aalst and Van Hee, 2004). Thus, the appli-
cation of workflows and their workflow management systems for Modeling & Sim-
ulation processes poses a viable option for addressing the documentation issue
and additionally helps to structure and well-define involved processes at the same
time.

Introducing workflows for the entire simulation study process would ideally
lead to a seamless documentation from end to end. Thus, leading to results of
higher quality, more credibility and results that simply are reproducible.

1.2 Contributions

This thesis focuses on the architecture and implementation of reproducible simu-
lation studies with JAMES II. Herein workflows are identified as means to reach
this goal.

The first step in the direction of reproducibility is the structuring of the simu-
lation study process. This is achieved by firstly introducing a two layer separation
of this process. Layer one deals with the creation of a valid and verified simu-
lation model, whereby for the validation and verification simulation experiments
handled by layer two can be used. Since this layer is of interactive nature with
a lot of human interaction that requires a high degree of freedom in terms of
the order of task execution during execution, a declarative workflow approach
is proposed and used to implement a general workflow covering the creation of
a simulation model utilizing conceptual model, formal model and different data
artifacts.

Additionally, a conceptual prototype is presented that uses the rule system
Drools as foundation for the implementation of a workflow management system,
easily integrable into JAMES II and specifically tailored to support artifact-
based workflows, in particular the one developed in this work.

Layer two deals with the execution of a simulation experiment. For this layer
a general workflow for executing simulation experiments with focus on replacing
the experimentation layer of JAMES II was developed utilizing, in contrast to
layer one, an imperative task-based workflow approach. The developed workflow
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exhibits a flexible design using the concept of templates and frames in order to
cover a wide range of different simulation experiments.

In order to manage and execute the workflow for layer two and similar
workflows a framework was developed, called WorMS (Workflows for Model-
ing & Simulation). As the name suggests, it facilitates the integration of such
workflows into Modeling & Simulation software, e.g., JAMES II. WorMS sup-
ports the parallel and distributed execution of workflows out of the box. To
provide a better work item distribution behavior across distributed nodes com-
pared to methods such as round robin, an adaptive work item scheduling policy
was developed. Adaptation is based on machine learning, determining suitability
of specific nodes for specific work items, optimizing performance by constantly
learning and adapting suitability over time.

Finally, by providing all the aforementioned contributions the whole process
of conducting a simulation study becomes documentable, hence reproducible,
which allows answering questions such as What task was executed when? and
What algorithm, hardware, system, software, etc. facilitated the execution of a
specific task?. This in return leads to more credible scientific research conducted
with JAMES II.

To summarize, the following contributions are made by this thesis.

• structuring of the simulation study process, to be documented for repro-
ducibility with the support of workflows

• identification of two layers of the processes that need to be handled by dif-
ferent workflow approaches due to their nature (interactive with high degree
of freedom versus non-interactive, automatable and rigid)

• a general workflow representing the process of creating a valid and verified
simulation model based on established life-cycle models in the domain of
Modeling & Simulation, based on an artifact-based workflow

• a general workflow representing the process of executing a simulation exper-
iment, that is flexible enough to support a wide range of different experi-
ments, similar to experiments JAMES II supports, based on an imperative
task-based workflow
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• conceptional prototype of a workflow manangement system supporting
artifact-based workflows, using a rule system internally for executing and
documenting those workflows

• WorMS a framework that supports the integration of imperative task-
based workflows into Modeling & Simulation software, which exhibits auto-
matic parallel and distributed execution capabilities and documentation

• in concert with WorMS an adaptive work item scheduling policy, based on
machine learning technology was developed that manages work item distri-
bution across nodes optimizing performances by learning which node exe-
cutes which work item best

• documentation and provenance of executed workflow can be gathered and
questions like What task was executed when, with what data and what was
the output? and What was used, such as software, hardware, system config-
uration or algorithm to execute a specific task? can be answered

1.3 Outline
This thesis comprises two main parts. The first part deals with the structuring
of the simulation study process and the derivation of suitable workflow repre-
sentations for the resulting structure. Chapter 2 presents concepts from the
domain of workflow management. Those range from terminology and relations
between terms, over workflows and their dominant application and workflow rep-
resentation options, to how flexibility in workflows can be achieved. Chapter 3
covers established processes in the domain of Modeling & Simulation, called life-
cycle models as well as existing workflow approaches already applied in Model-
ing & Simulation and finishes with the structuring of a simulation study. Chap-
ter 4 focuses on JAMES II and its current state regarding workflow support.
Furthermore, Chapter 4 presents the proposed approaches and later developed
workflows for the previously introduced structuring of a simulation study.

The second part covers the development and implementation of the introduced
workflows. Chapter 5 deals with the presentation of two different developed
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architectures, needed to support the workflows previously developed. Firstly, a
conceptual architecture is given with a possible integration path into JAMES II,
while secondly WorMS and its development and implementation is discussed.
Additionally, in the context of WorMS a newly created adaptive work item
scheduling policy is developed and also covered in this chapter.

Chapter 6 discusses the previous chapters and gives a brief outlook of possible
future work, before Chapter 7 concludes and summarizes this thesis.

1.4 Bibliographic Note
The idea of using workflows in the domain of Modeling & Simulation, which is
used throughout this thesis was proposed in the following publication, discussing
and evaluating requirements for those workflows.

Rybacki, S., Himmelspach, J., Seib, E., and Uhrmacher, A. (2010).
Using workflows in m&s software. In Winter Simulation Conference
(WSC), Proceedings of the 2010, pages 535–545. IEEE

A first architectural overview of WorMS, the framework for integrating work-
flows into Modeling & Simulation software, presented in Section 5.2.1 and intro-
duced in Section 4.2.2.1 was firstly published in the following publication.

Rybacki, S., Himmelspach, J., Haack, F., and Uhrmacher, A. (2011).
Worms-a framework to support workflows in m&s. In Simulation Con-
ference (WSC), Proceedings of the 2011 Winter, pages 716–727. IEEE

The first application of WorMS as a proof of concept for the feasibility of re-
placing parts of the experimentation layer of JAMES II with workflows using
WorMS was presented in the following publication.

Rybacki, S., Himmelspach, J., and Uhrmacher, A. M. (2012a). Using
workflows to control the experiment execution in modeling and simula-
tion software. In Proceedings of the 5th International ICST Conference
on Simulation Tools and Techniques, SIMUTOOLS ’12, pages 93–102,
ICST, Brussels, Belgium, Belgium. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering)
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2
Workflows

Get your facts first, then you can
distort them as you please.

Mark Twain

2.1 Terminology and Concepts
In this section the terminology that is later used throughout this thesis as well as
the concept of how those terms relate and interact with each other is established.
This is necessary because there are a multitude of terms that are used through-
out different sources (WfMC, 1999; Center of Excellence, 2015; Van Der Aalst
and Van Hee, 2004) in the domain of workflow management.. However, the main
concepts those sources identify are very similar or equal to each other. The terms
used for them can however differ. To illustrate, the Workflow Management Coali-
tion (WfMC) defines a workflow as: “The automation of a business process, in
whole or part, during which documents, information or tasks are passed from one
participant to another for action, according to a set of procedural rules.” (WfMC,
1999). While the Business Process Management - Center of Excel-
lence (BPM - CoE) describes it as: “An orchestrated and repeatable pattern
of business activity enabled by the systematic organization of resources into pro-
cesses that transform materials, provide services, or process information.” (Center
of Excellence, 2015). And last but not least Van der Aalst and van Hee define a
workflow as: “A workflow comprises cases, resources and triggers that relate to a

9
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particular process.” (Van Der Aalst and Van Hee, 2004). All these definitions are
very similar and make use of the notion of a (business) process that is to be de-
scribed, orchestrated or automated by a workflow. By looking at the definitions
of the involved process for each of the sources: “A set of one or more linked pro-
cedures or activities which collectively realise a business objective or policy goal,
normally within the context of an organisational structure defining functional
roles and relationships.” (WfMC, 1999), “[. . . ] a collection of related, structured
activities or tasks that produce a specific service or product [. . . ].” (Center of
Excellence, 2015). and “A business process is one focused upon the production
of particular products.” (Van Der Aalst and Van Hee, 2004). The use of different
terms can be identified for the following concepts. Firstly, there is the concept
of product, which is the result of performing a business process, also called goal,
objective or service. Secondly, there is the concept of process, also called pattern
or procedural rules. Thirdly, there is the concept of task, that builds up a process,
also called procedure, activity or action.

In the following, the terminology and relations between terms used throughout
this thesis is presented. Generally, there is a distinction between two phases the
terms belong to. Firstly, there is the description phase in which Work, i.e., the
real world process, is transformed into a workflow. Secondly, there is the instanti-
ation/execution phase in which a Workflow Management System instantiates and
then executes a workflow.

In Figure 2.1 p. 11 the terms are shown and their relation and dependencies
to each other is depicted using differently styled edges. Solid arcs represent a
sequential timely relation, meaning for instance that Work is firstly transformed
into a Workflow description which can then be instantiated before execution.
Edges with a diamond describe a composed of relation, where the term closest
to the diamond is composed of the related term. If no cardinality is provided, a
one-to-one relation ship is assumed. Dashed arcs represent instantiation relations,
e.g., a Workflow is instantiated as Workflow Instance by a Workflow Management
System, while a Task is instantiated as Work Item in the context of an instantiated
Process (Case). The terminology presented is inspired by Van Der Aalst and
Van Hee (2004). The terms are used as follows:
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Figure 2.1: Terminology and relationships between terms

Work When using the term Work a real world process, sometimes referred to
as business process that is to be transformed into a Workflow that can be
handled (instantiated and executed) by a Workflow Management System is
meant. The work consists of linked, structured and related Task s described
as a Process. The work revolves around a thing, called Product, that is
produced or modified over time as a Case according to a Process.

Product The thing Work revolves around. The Product is not necessarily a
physical item such as a boat or house but can be of more abstract form,
e.g., an insurance claim, a statistical analysis or an objective, such as the
optimization of model parameters.

Workflow A Workflow is a means to describe, to orchestrate or to automate
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Work. It comprises Resource Types and the Process describing the Work in
terms of Tasks.

Process A process is used to describe the work to be performed. It consists of
tasks, where a task might be a sub-process. It specifies which tasks and sub-
processes need to be carried out. Conditions and constraints determine the
order of tasks and sub-processes within the process. A process is instantiated
as case for execution by a workflow management system. It defines the life-
cycle of a case.

Resource Type Resource types specify classes of resources, such as person,
machine or group of persons. However, types can be more specific, basically
being sub-types of other resource types. For instance, a specific resource
type can be manager or administrator, which in turn are sub-types of person.
Resource types are associated to tasks of a process by a workflow and specify
which resources are allowed or required to be associated with work items of
an actual case.

Workflow Instance Before a workflow can be executed, it is instantiated by a
workflow management system. The workflow instance comprises a case with
work items and actual resources available through the workflow management
system, which are associated to resource types defined in the associated
workflow.

Case The case is a process instantiation for an actual Product that is produced
or modified over time according to that Process. A case is also known as
process instance. The case itself has a limited lifetime and working on a case
is discrete in nature. It is represented by an internal state which consists
of case attributes, conditions and content. The internal state makes a case
unique and makes it possible to refer to a specific case for a given process.
A case belongs to a single process while a process can have multiple cases.

Workflow Management System A workflow management system is respon-
sible for defining, creating and managing the execution of workflows using
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one or more workflow engines. It is responsible for the instantiation of work-
flows, the management of workflow instances, cases, work items, available
resources and activities and the assignment of resources to work items, which
will build up an activity. Furthermore, it is responsible for error handling,
monitoring and controlling of the execution of a workflow instance.

Task A task is the main building block of a process and is used to structure it.
A task describes work as a logical unit which is eventually carried out by a
resource as a whole (also referred as an atomic process). However, a task is
a generic piece of work within a process but not bound to a specific case.
Tasks can be of automatable or of manual nature, which means they can
be performed by a computer without human interference or require human
intelligence (for judgment call, decision making) respectively.

Work Item Unlike a task which is of generic nature, a work item represents
a task within the context of a case. It can be seen as the actual work to
be performed for a specific case, hence it is sometimes referred to as task
instance. The work item is bound to a specific case.

Resource The resource is an entity that is able to perform a specific task of a
process in general. Technically speaking a resource is used to carry out a
specific work item. Here, a resource can be a machine, a person, a group
of persons or machines (think Grid or Cluster). A resource does not nec-
essarily carry out a work item independently, it is however responsible for
the execution of the work item. Resources can be put into resource classes
which in return are used in the workflow definition as constraint on what re-
sources can execute what task for a given process. This avoids the necessity
of specifying actual resources in workflow definitions.

Activity The activity is the part where all comes together and a task for a case
is actually executed by a resource. A work item turns into an activity once
a resource is assigned to that work item and the resource starts carrying out
the work item.
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2.2 Classes of Workflows - Dominant Application Ar-
eas

2.2.1 Business Workflows

Receive
Paper

Distribute
for Review

Receive
Review

Receive
Review

Receive
Review

Assess
Paper

 Accept as
full paper

Accept as
short paper

Notify
Authors

Figure 2.2: Example of a business workflow using control-flow pattern

As an example for a business process Figure 2.2 p. 14 shows a paper reviewing
process. The process revolves around a scientific paper, which is submitted by
authors, reviewed by multiple reviewers before it is accepted as either full or
short paper and eventually authors are notified. This is described via tasks such
as Receive Paper, Assess Paper and Notify Authors, to name just a few. However,
for simplification reasons, special cases such as rejecting a paper as well as having
multiple revisions going back and forth between authors and editor are omitted
(see Figure 2.13 p. 36 in Section 2.4.1 p. 35 for this extension).

The purpose of a business workflow is to model business processes by defining
a partial order over tasks and to coordinate tasks by automating their execution
including scheduling, monitoring and controlling. The goal is to define clear busi-
ness rules within an organizational hierarchy providing an orchestration of the
people (resources) involved in the business process, as well as the efficient execu-
tion of the workflow in a heterogeneous technical and organizational environment
(Yildiz et al., 2009; Ludäscher et al., 2009). It tries to capture the interaction
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among different operating human entities (resources) (Migliorini et al., 2011). It
contains the automatable parts of the business process (Ludäscher et al., 2009).

The workflow is more or less continuously reengineered, meaning verified, ana-
lyzed, optimized and eventually changed according to the optimization and anal-
ysis results. In order to re-engineer a workflow, information collected during
execution is used and analyzed (mined) to identify which parts of the workflow
can be optimized further (Yildiz et al., 2009). Optimization can refer to, e.g.,
adding or removing tasks from the process and changing the order of tasks.

Many tasks are provided as web-services, making a business workflow typically
service oriented. Here an activity invokes a service during execution with a given
input which returns the output of the web-service (Ludäscher et al., 2009).

Business workflow systems can handle numerous independent workflow in-
stances. They are complex systems that have to support different types of work-
flows, involving different resource types and different tasks (Sonntag et al., 2010c).
Additionally, workflow systems are part of a larger business organization which
interacts with other organizations, where it is important to comply to specific
standards, e.g., ISO 9001 (International Organization for Standardization (ISO),
2008; Jahnes and Schüttenhelm, 2008) and where interoperability between soft-
ware tools, departments and external agencies is crucial. This requires, the use of,
e.g., standardized methods according to the desired standard and standardized
process definitions, such as BPMN or workflow nets.

2.2.2 Scientific Workflows

 Capture
Video

Frames

 Filter
Video

Frames

 Convert
Video

Frames

 Encode
Video

Frames  Multiplex
Video & Audio

Frames Capture
Audio

Frames

 Filter
Audio
Frames
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Audio
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 Encode
Audio
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Figure 2.3: Example of a scientific workflow using data-flow pattern
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An example of a scientific workflow is shown in Figure 2.3 p. 15. The workflow
describes a video recording process, which produces a video stream including au-
dio, which is captured, e.g., by a video recorder. The process starts with capturing
video and audio frames, which are then filtered (e.g., sharpened), converted (e.g.,
scaled) and encoded (e.g., compressed). Encoded video and audio frames will be
multiplexed into a single stream, which is eventually shown on a screen.

The purpose of a scientific workflow is to implement an e-Science process and it
is used in the field of scientific knowledge discovery (Ludäscher et al., 2009; Yildiz
et al., 2009). An e-Science process is characterized as a large-scale, complex,
data-centric and computational intensive process, involving the management of
large-scale data (Yildiz et al., 2009; Ludäscher et al., 2009; Zinn, 2010; Goble and
De Roure, 2009). It requires an environment to chain specialized applications,
services and components to solve a computational problem (Migliorini et al.,
2011; Zinn, 2010). It is used for the automation and optimization (resource-wise)
of error-prone and repetitive tasks, such as: data access, data transformation,
analysis and visualization (Wassink et al., 2008; Ludäscher et al., 2009; Migliorini
et al., 2011; Zinn, 2010; Goble and De Roure, 2009). They provide systematic
and automated means for conducting analyses across datasets and applications.
Therefore, saving human cycles as well as machine cycles (Goble and De Roure,
2009).

A scientific workflow is a precise description of a scientific procedure as a
multi-step process to coordinate multiple tasks and resources. Here a task is
typically of computational nature (Goble and De Roure, 2009; Romano, 2008).

The process is usually characterized as involving very few interactions with
humans. If interactions are required by the workflow it usually involves sim-
ple things like providing credentials for, e.g., accessing web-services that need
authentication (Weske, 2007; Yildiz et al., 2009; Migliorini et al., 2011).

The nature of scientific workflows is exploratory, because they rapidly evolve
over time, e.g., with the introduction of new analysis methods and new hypotheses
to test, the workflow is changed to reflect this. Consequently, a scientist typically
executes and builds the workflow in a trial and error manner (Sonntag et al.,
2010c). This makes it crucial for scientific workflows to be easily modifiable and
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reusable (Ludäscher et al., 2009).
An established scientific method is, to provide a record of how results were

obtained, including methods used, resource information (e.g., machine specifica-
tions) and parameters, together with the results itself (Pawlikowski et al., 2002;
Kurkowski, 2006; Fomel and Claerbout, 2009). In e-Science, even more informa-
tion is collected, e.g., workflow activities invoked, services and databases accessed,
data sets used, and so forth. Such information is useful for a scientist to interpret
their workflow results and for other scientists to establish trust in the experimen-
tal result (Barga and Digiampietri, 2008). So capturing provenance information
of execution as well as the ability to query such information is very important
in scientific workflow systems (Zinn, 2010). It allows for reproducible and re-
peatable results. Making them more credible and of higher quality (Pawlikowski
et al., 2002; Kurkowski et al., 2005; Kurkowski, 2006; Fomel and Claerbout, 2009;
Dalle, 2012). Provenance is a very active research field and considering the fast
evolving nature of scientific workflow, provenance of the change history of a work-
flow is also an important field of research and necessary to provide reproducible
results and is particularly challenging in a dynamic scientific environment where
resources come and go and workflows are modified on the go (Freire et al., 2006;
Ludäscher et al., 2009; Anand et al., 2009; Sonntag et al., 2010c).

Requirements for systems for scientific workflow as proposed by (Ludäscher
et al., 2006; Gil et al., 2007; Rybacki et al., 2010) or listed in the following.

Seamless access to resources and services in a distributed and/or remote
environment, tasks and data sources can be remote and distributed as well
(e.g., call to web-service or machine within a network and a database respec-
tively). Access to them and local data sources should be supported by the
system out of the box and should be accessible through a unified interface.

Service composition & reuse and workflow design A scientific workflow
system should provide means to easily compose different tasks with het-
erogeneous interfaces and different data formats. To support different data
formats data transformation between tasks should be supported directly in
the workflow system. At the same time reusing existing compositions should
be equally easy.
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Smart semantic links The system should assist the design of a process by sug-
gesting compatible tasks, that might possibly fit together (interface-wise).
Ideally semantic information of the interfaces that tasks provide is available
and automatic match making of compatible tasks or automatic transforma-
tion (shims) of data can be provided.

Scalability Scientific workflows can involve a large amount of data or many
parallel tasks to execute or both. The workflow system should support such
data- and compute-intensive workflows, e.g., by providing interfaces to Grid
environments (DataGrid and ComputeGrid respectively)

Detached execution Scientific workflows can be long running by nature. The
workflow system should provide an execution mode that runs the workflow
execution in background without the need of a client continuously connected
to it. Consequently, the engine must be reattachable to a client or monitor-
ing application at any time.

User-interaction Usually user interaction is rare in scientific workflows. They
are mainly used to make decisions on alternative branches or provide cre-
dentials for specific data sources, e.g., database credentials. However, as
workflows get more complex further user interaction might be desired, e.g.,
incorporating visual analytics techniques to inspect data and provide derived
data based on those inspections for further processing. Especially challeng-
ing is the integration of the user when dealing with detached executions, as
there needs to be a mechanism to notify the user that interaction is required
before continuing the workflow execution.

Reliability and fault-tolerance/System stability Computational environ-
ments can be unreliable. For instance, a service used by a task can break or
be unavailable at some point. So scientific workflow systems should provide
means to deal with failures during execution and provide means to compen-
sate, e.g., by providing alternative services in case of service unavailability.

Data provenance Scientific workflows are used to conduct computational ex-
periments. Analogously to a conventional experiment, which should be
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documented for reproducibility, an experiment conducted using a scientific
workflow system should be reproducible as well. The system should capture
activities performed, methods and parameters used as well as intermediate
results if applicable automatically. It should provide means to generate re-
ports as well as use this data to rerun those experiments, e.g., ideally using
the Smart-Rerun feature when for instance changing parameters.

Smart reruns Scientific workflows are usually run multiple times, either from
the beginning or starting from a specific task, typically involving changing
some parameters or input data. The system should be able to determine the
influence those changes have when a workflow is rerun. It should reuse as
much already computed and generated data and only rerun affected parts
of the workflow.

Workflow Roles Rybacki et al. propose additionally to User-interaction the
support for specific user roles provided as special resource types in order
to control who is allowed to perform which user-interaction in a scientific
workflow (Rybacki et al., 2010). The idea is to involve experts for specific
tasks of the workflow to be able to make decisions, ideally leading to a more
founded decision than a non expert would make.

For instance, in a process that involves accreditation of previously created
data, results or predictions, such as needed in medical studies, e.g., studies
involving selection of appropriate medications. The accrediting entity usu-
ally needs to be an independent party authorized and certified for issuing
accreditation. In this case restricting the accreditation to be performed by
only certified accreditation entities would lead to a viable accreditation.

2.2.3 Control-flow vs Data-flow

Different execution patterns for process definitions exist. Execution patterns
determine or restrict the order of tasks in which they can be executed.

The execution model used in the application field of business processes focuses
on the execution state of tasks rather than data availability when defining the
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order of tasks. Which means, that the executability of a task is determined by the
finished state of other tasks. For instance, let’s take the tasks called Assess Paper
and Notify Authors which are part of the example business process shown in
Figure 2.2 p. 14. Executability is defined based on finished tasks. In this case
it is defined that Notify Authors can only be carried out once Assess Paper has
finished This type of description is referred to as control-flow based or control-
flow oriented. Control-flow establishes a partial order of tasks based on their
finished status. The partial order is established on a temporal basis and makes
no assumption on data availability. It only implies data availability but does not
necessary explicitly specify it (Yildiz et al., 2009; Migliorini et al., 2011).

In a control-flow oriented description concurrency between tasks is modeled
explicitly using independent partial orders of tasks (refer to Figure 2.6 p. 27) or
by allowing multiple instances of tasks (Yildiz et al., 2009; Migliorini et al., 2011).

In contrast to control-flow based descriptions, the application field of scientific
workflows prefers a description based on data being exchanged between tasks.
Such descriptions are referred to as data-flow oriented or data-centric descriptions.
This means, execution order or executability of tasks is achieved by defining data
dependencies between them.

For instance, let’s look at the tasks Capture Video Frames and Fil-
ter Video Frames from the scientific workflow example shown in Figure 2.3
p. 15. Obviously there is a dependency between Filter Video Frames and Cap-
ture Video Frames, because without capturing video frames there is nothing Fil-
ter Video Frames can be applied to.

At first glance this seems describable using control-flow oriented descrip-
tions. Specifying that Filter Video Frames can only be executed after Cap-
ture Video Frames has finished should be sufficient. However, while this works in
theory in practice this indicates that the capturing task Capture Video Frames
has to be finished first, which means the entire video is captured before the filter
task can be executed. But this might come at a great cost, as all frames have to
be temporarily stored between Capture Video Frames and Filter Video Frames.
This is true between all tasks if a control-flow oriented description is used. In the
example in Figure 2.3 p. 15 the end product is the display of a video stream on
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a screen, which means in case the video source provides a fixed number of video
and audio frames that all frames will be filtered, converted and encoded before
they appear on screen. Additionally, to the memory overhead this introduces, it
also delays the output to the screen depending on the number of video and audio
frames as well as computational expense of the filter, convert and encode tasks.
Going even further, assuming the video source is a live feed (e.g., a surveillance
camera) continuously providing video and audio frames, the control-flow oriented
approach wouldn’t produce an output on the screen because the capturing tasks
would never finish.

However, by using a data-flow oriented approach only the data dependency
between Filter Video Frames and Capture Video Frames would be defined. This
means Filter Video Frames can be executed as soon as Capture Video Frames
produces data, that captures the first frame. This will eliminate the need to
store all captured frames temporarily. Only frames that are not yet filtered need
to be stored and can be discarded as soon as Filter Video Frames consumes them.

Since tasks only depend on data but not on the finish state of other tasks,
data-flow oriented descriptions are concurrently executable by nature. Basically
all tasks are executed in parallel (Yildiz et al., 2009; Zinn, 2010; Migliorini et al.,
2011).

To achieve this, data depended tasks are connected through unbounded chan-
nels, sometimes also referred to as streams or pipes. Data is exchanged between
tasks over those channels. Tasks push data onto channels and a dependent task
consumes data from them blocking if data is needed and not yet available (see
Figure 2.4 p. 22 for a sample partial UML sequence diagram for the process shown
in Figure 2.3 p. 15). Data tokens are used to indicate data availability and data
boundaries and are not shared between channels and are directly consumed. This
isolates tasks and their data, which in return avoids side-effects when accessing
and working with it (Yildiz et al., 2009; Migliorini et al., 2011).

However, data-flow makes it harder to express control-flow like behavior, such
as selecting between options, which needs to be modeled with data-flow patterns
using specialized control tasks which in return clutter the process. This would
lead to overly complex models, making it harder to maintain and to understand
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Capture Video Frames

Capture Video Frames

Frame Channel

Frame Channel

Filter Video Frames

Filter Video Frames

Start

loop [until no more frames]

capture frame

push to channel

Done

loop

blocking read

data available

filter frame
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Figure 2.4: A partial sequence diagram for the process shown in Figure 2.3 p. 15.
Here only Capture Video Frames and Filter Video Frames and the
connected channel are depicted. The procedure is as follows, both
tasks are started (as activity for a case). While there is no data on
the channel available the filter activity waits, e.g., by using a blocking
read from the channel. The capture activity captures a frame and
pushes it asynchronous onto the channel and immediately loops back
capturing the next frame, before pushing it again asynchronously
onto the channel. Meanwhile, the channel forwards the first frame
to the waiting filter activity, which in return filters the frame before
asynchronously pushing it onto its output channel and loops back
waiting for the next frame on the channel.
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them (Bowers et al., 2006; Wassink et al., 2008; Yildiz et al., 2009; Migliorini et al.,
2011). However, this is alleviated in some systems by providing explicit control-
flow constructs as part of their feature set to reduce this complexity (Migliorini
et al., 2011).

2.2.4 Tool Support

control-flow data-flow Business
Workflows

Scientific
Workflows

YAWL (FlexY) × ×
Activiti × ×
IBM Business Process Manager × ×
Kepler × ×
Taverna × ×
Pegasus/DAGMan × ×
Microsoft Trident × ×
eBioFlow × ×
Sedna × ×
BioFlow × ×

Table 2.1: Workflow Management Systems, their application field and flow pat-
tern used. Interestingly, Business Workflows use Control-flow, whereas
Scientific Workflows utilize both Control-flow and Data-flow pattern,
depending on the system at hand.

In order to create, manage and execute workflows a workflow management
system is needed. A number of such workflow systems exist. They range from
commercial, free to open source systems, each with its own strengths, weaknesses
and feature set. Some systems are of general nature trying to support most of
the workflows out there, while others specialize in a specific application field or
specific type of workflows.

However, it appears that workflow systems are divided into two camps. One
camp supports business workflows while the other camp supports scientific ori-
ented workflows. This stamps from the fact, that the requirements for supporting
business workflows is quite different from supporting scientific workflows.

In the application field of business workflows a number of business work-
flow systems exist, e.g., YAWL (FlexY), Activiand IBM Business Process Man-
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ager (Russell and ter Hofstede, 2009; Schick et al., 2011; Rademakers, 2012; Dyer
et al., 2012). All of which focus on the control-flow between tasks when defining
the process. They use different languages for the process definition. Some of
those languages are BPMN, XPDL, YAWL and BPEL, with BPMN being the
most popular one these days in the domain of business process modeling (An-
drews et al., 2003; Shapiro and Marin, 2008; White and Miers, 2008; Russell and
ter Hofstede, 2009; Van Gorp and Dijkman, 2011). These languages provide a
concise, elegant, and well readable representation of well structured processes.
A comparative study of languages for business processes and rules can be found
in zur Muehlen and Indulska (2010) and Ko et al. (2009).

In the application field of scientific workflows, different approaches exist. For
instance, a special way of defining scientific processes is through scripts. Script-
based approaches were used before the term scientific workflow was crafted. They
required programming expertise, had no automatic provenance and little to no
design support. Furthermore, it was hard to use parallel and distributed resources
without extensive programming knowledge let alone to support this on a multi-
tude of different platforms, systems and in heterogeneous environments (Zinn,
2010).

However, there are also scientific workflow systems and languages, such as
Kepler, Taverna, Pegasus/DAGMan, Microsoft Trident, Triana, Sedna, BioFlow
and eBioFlow, just to name a few (Altintas et al., 2004; Hull et al., 2006; Deelman
et al., 2005; Barga et al., 2008b; Taylor et al., 2007; Wassermann et al., 2007;
Jamil and El-Hajj-Diab, 2008; Wassink et al., 2008). A comparative overview of
scientific workflow tools might be found in Curcin and Ghanem (2008); Deelman
et al. (2009) and Talia (2013).

Each of those systems provides its own ecosystem, including modeling lan-
guage, design suite, software components and execution model. Different plat-
forms have various capabilities and different purposes and they have little com-
pliance with standards. This makes it hard to reuse workflows outside of the
platform it was specified for. This is even more amplified when scientists use
their own software components which makes workflows not even reusable by oth-
ers on the same platform (Goble and De Roure, 2009).
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Scientific platforms typically use the data-flow paradigm when specifying pro-
cesses. Microsoft Trident and eBioFlow are scientific workflow systems based on
business workflows, employing the control-flow pattern rather then the data-flow
pattern when defining processes (Sonntag et al., 2010c). Sedna even uses BPEL
for describing scientific processes (Wassermann et al., 2007; Goble and De Roure,
2009).

Scientific workflow systems are developed for long running computational in-
tensive tasks with a huge amount of data (Migliorini et al., 2011). Dealing with
this amount of data and computational requirements, scientific workflow systems
are developed with Grid or Cluster environment in mind and are usually first-
class citizen of those systems, providing ready to use components for data/code
shipping, job scheduling, authentication, authorization etc. (Sonntag et al., 2010c;
Zinn, 2010; Migliorini et al., 2011).

Scientific workflow systems usually consist of three components (Roure et al.,
2008; Goble and De Roure, 2009):

Execution platform executes the workflow including monitoring and optimiza-
tion of the execution (resource-wise). Additionally, it is responsible for han-
dling data, logging and security. In case of failure it is also responsible for
recovering from that failure.

Visual design component is a visual scripting application for authoring and
sharing workflows. It shields the author (scientist) from complexities of
the used applications. Additionally, it allows for an easier understanding of
workflows without specialists and allows scientist to build their own data
pipelines.

Development kit which lets you add new functionality and or embed work-
flows into other applications. When embedded into another application the
workflow functions as explicit and reusable specification.
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2.3 Description of Workflows

2.3.1 Imperative Description

Processes can be described in different ways. One way is to use imperative de-
scriptions (Pesic et al., 2007).

Imperative descriptions provide information on what to do and how to do it.
For instance, to define that Task 2 has to be executed some time after Task 1, it
has to be explicitly specified what can happen between the end of Task 1 and the
start of Task 2, e.g., all the possible tasks that are allowed to execute in between
or in parallel.

Imperative descriptions and their constructs are mainly driven by the under-
lying execution model that is later used to execute that description. Different
execution models in both control-flow and data-flow oriented process descriptions
exist.

For control-flow oriented processes typical execution models base on petri
nets (Petri, 1966; van der Aalst, 1998; Ludäscher et al., 2009; Migliorini et al.,
2011) and its extension color petri nets (Jensen, 1986). A workflow specific vari-
ant of colored petri nets, the workflow nets were introduced in Van Der Aalst and
Van Hee (2004). High-level petri nets extend a colored petri net by hierarchy and
time and are used as basis of a workflow net which additionally adds special rout-
ing constructs (explicit AND split/join, explicit OR split/join) to them. Petri net
based descriptions usually model tasks as transitions (boxes) and preconditions,
such as task finished or resource availability using places (circles). Tokens in
places represent fulfilled preconditions. The use of a formalism such as workflow
nets, allows for analysis and verification of process definitions, e.g., evaluating
soundness or check for dead/live locks. It also allows for optimization of the
described process.

In order to imperatively describe a control-flow oriented process, common
routing pattern are used to specify task execution order. Tasks can be optional,
can be executed in parallel, can be executed after each other or might be executed
multiple times. This can be achieved by selective, parallel, sequential and iterative
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routing respectively. In the following those routing constructs are explained and
depicted using the notion of workflow nets as found in Van Der Aalst and Van Hee
(2004).

Task 1 Task 2

Figure 2.5: Sequential Routing depicted in the notion of a workflow net

AND Join

AND Split Task 1

Task 2

Figure 2.6: Parallel Routing depicted in the notion of a workflow net. Dashed
arcs are not part of the workflow net, they simply indicate the type
of Join or Split used.

Sequential Routing Sequential routing is used where tasks need to be per-
formed after each other, possibly having some kind of dependency. For
instance, in Figure 2.2 p. 14 the tasks Receive Paper and Distribute for Re-
view are modeled using sequential routing, because distributing a paper for
review cannot be carried out if a paper is not received. There is clearly a
dependency between both tasks. Modeling a sequential routing in workflow
nets is shown in Figure 2.5 p. 27, here Task 1 is carried out before Task 2.
A place between Task 1 and 2 indicates whether Task 1 is finished (a token
is present).
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OR Join

OR Split

Task 1

Task 2

Figure 2.7: Selective Routing depicted in the notion of a workflow net. Dashed
arcs are not part of the workflow net, they simply indicate the type
of Join or Split used.

Parallel Routing Parallel Routing is used where tasks can be performed con-
currently to each other, so having no dependency to each other. For instance,
the multiple tasks Receive Review in Figure 2.2 p. 14 can be considered to
run in parallel as reviews are usually conducted by multiple assets indepen-
dently from each other and are independently submitted and received. In
workflow nets parallel routing as shown in Figure 2.6 p. 27 is introduced
by an AND Split, which indicates that all outgoing arcs are to be followed.
This means the split simultaneously activates the paths with Task 1 and
Task 2 which enables them to be carried out concurrently. Eventually, par-
allel routes are joined using an AND join. Both AND split and AND join
are modeled using transitions.

Selective Routing In contrast to parallel Routing, selective routing selects a
specific route from a multitude of possibilities. For instance, in Figure 2.2
p. 14 only one of the tasks Accept as full Paper and Accept as short paper
should be executed. This can be achieved using selective routing. In work-
flow nets selective routing can be modeled as shown in Figure 2.7 p. 28.
Here an OR split is responsible for selecting one route only. Routes are later
join using an OR join. Both OR split and OR join are modeled as places.

Iterative Routing A special routing pattern is the iterative routing, as it can al-
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OR split

Task 1

Task 2Task 3

Task 4

Figure 2.8: Iterative Routing depicted in the notion of a workflow net. Dashed
arcs are not part of the workflow net, they simply indicate the type
of Join or Split used.

ready be described using selective routing. It is used to specify the repeated
execution of one or more tasks. In order to model iteration in a workflow
net a dedicated OR split transition is used that selects either the iterative
route or the iteration break route (see Figure 2.8 p. 29). The OR split is an
explicit or split and a feature of the workflow net formalism compared to
the implicit OR split seen in Figure 2.7 p. 28.

Since data-flow oriented or data centric descriptions are concurrent in nature
and focus on data dependencies a number of other execution models are used.

Models based on Directed Acyclic Graphs (DAGs) are typically used where
the target is the execution on grid environments. DAG based execution models
capture serial and task parallel execution workflows, where loops are not sup-
ported and each activity is executed only once (Ludäscher et al., 2009; Zinn,
2010). Other execution models that are not restricted by a DAG are based on
Kahn’s Data-flow Process Networks (KPN) (Gilles, 1974; Lee and Parks, 1995;
Migliorini et al., 2011), Synchronous Data-flow (SDF) (Lee and Messerschmitt,
1987) or Collection Oriented Modeling And Design (COMAD) (Zinn, 2010).

Data-flow Process Networks based on Kahn’s process networks are popular
when modeling data-flow oriented processes. A KPN models a process with
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tasks and channels between tasks that are unbounded. There can only be one
producer per channel and one consumer. Pushing a data token onto a channel
is non-blocking while reading a token is, which means a task does not need to
wait for its output to be accepted by another task to continue working, while a
task can only read one token at a time. A special form of KPN is SDF, which
schedules tasks statically. Here for each task it is specified how many data token it
generates and how many data token it consumes. That is, SDF based descriptions
can always be converted into an implementation that is guaranteed to take finite-
time to complete all tasks and use finite memory. For instance, having three
tasks A, B, C (see Figure 2.9 p. 30), where A produces 20 tokens in total, while
B produces 20 tokens for each 10 token it consumes and C consumes 10 tokens
per run. This information allows to determine how often each task has to run to
finish. A runs once, B runs twice and C has to run for times until all tokens are
consumed. Based on this information and knowledge about data dependencies
between A and B as well as B and C a scheduling algorithm can determine a
valid execution order, such as ABBCCCC or ABCCBCC.

A B10  20 C10  20

Figure 2.9: Synchronous Dataflow (SDF) example in SDF notation

2.3.2 Declarative Description

Control-flow oriented workflow approaches model workflows (Van Der Aalst and
Van Hee, 2004) as a set of tasks that are arranged using various control-flow
oriented patterns that permit sequential, parallel, or alternative execution and
can be structured using complex tasks that represent sub-processes. Data-flow
oriented approaches model workflows as tasks that are put into relation using data
dependencies between them. Here the structure is defined by those dependencies.
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Both approaches provide concise, elegant and readable representations, e.g.,
when using modeling languages like BPMN, Workflow Nets or Synchronous
Dataflow, for highly structured processes, be it data or control-flow driven. How-
ever, they have well-known limitations when expressing workflows with a large
amount of flexibility during execution, also referred to as loosely structured pro-
cesses.

Such processes usually involve many non-dependent tasks which can usually
take place in any order with only some tasks depending on data of or the execution
of another task. Often such processes involve multiple unordered iterations of
tasks. For instance, an example loosely structured process is shown in Pesic
et al. (2007) and depicted in Figure 2.10 p. 31.

register client data

bill

room
service

laundry
service

additional
cleaning check out

charge

Figure 2.10: Declarative description of a hotel room renting process. It consists
of seven tasks with constraints between them. Tasks are depicted
as boxes and arcs are constraints symbolizing that the arcs target
task needs to be executed some time after the arcs source task has
been executed. Constraints are defined for tasks involving hotel ser-
vices (room service, laundry and cleaning), which need to be billed
eventually. Also, after checking out the hotel room occupant must
be charged the billed services and room rental.

It models a hotel room renting process, consisting of seven tasks:

register client data which needs to be executed once when the client or guest
arrives at the hotel and collects client name and address as well as payment
information
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bill which is used to add items to the overall bill of the client

room service registers room service for the client

laundry service registers laundry service for the client

additional cleaning registers additional cleaning on top of regular cleaning in
special cases

check-out client checks out of the hotel

charge client is charged with the accumulated bill

The tasks are loosely coupled as they can appear in arbitrary order and arbi-
trary often, except for the tasks register client data, check-out and charge. Also
there are dependencies between tasks, for instance room and laundry service need
to be put on the bill after execution, as well as the client needs to be charged
after check-out. In order to describe such a process using imperative methods
all possible scenarios would have to be modeled explicitly and would lead to
over-specification of the process making modeling, reading and maintaining the
process hard. Using declarative descriptions, e.g., using constraints to describe
task dependencies and order, allows for an easy modeling of such processes (Pesic
et al., 2007). Constraint based approaches describe relations between tasks using
rules and constraints. For example, if there are two tasks A and B and A cannot
be executed if B is executed and vice-versa, an imperative description might look
like Figure 2.11(a) p. 33, however this over-specifies the process. A declarative
approach just defines a constraint stating A and B can never be executed both
(see Figure 2.11(b) p. 33).

Another loosely structured process is presented in Jablonski (2010) and shown
in Figure 2.12 p. 34. Here, an agenda is to be written by an assistant which in
turn is reviewed by a manager. The agenda is used to write a letter, again by an
assistant, in order to invite people and publish the agenda. Before the letter can
be sent out however, it needs to be reviewed and signed by the manager.

At first glance this scenario seems quite structured and Figure 2.12(a) p. 34
shows a straight forward imperative description of the process. However, in re-
ality this description puts too many restrictions on the process. For instance,
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... ...

...

A

B

(a) imperative description of exclusive A or B
(every possible path can only have A, B or
no A and no B)

// BA

(b) declarative description of exclusive
A or B (notation based on
DECLARE)

Figure 2.11: Imperative vs. Declarative description of a process where A and B
cannot be executed both

what if during reviewing the letter, the manager decides that the agenda needs
to be changed. This is not possible with the shown model. Of course an ad-
ditional connection between review letter and write agenda can be inserted to
model this edge case. However, what if this happens during writing letter or
sign letter, all possible edge cases need to be explicitly modeled which for this
example, leads already to a complex over-specified process description. Using a
declarative approach similar to the one shown in Figure 2.11(b) p. 33, simply
specifying constrains, such as the agenda needs to be reviewed, after writing it,
the letter needs to be reviewed, after writing it and the letter needs to be signed,
after reviewing it, will be sufficient to include the edge case presented while still
maintaining a straight forward easy to read description (see Figure 2.12(b) p. 34).

Several declarative workflow approaches exist (Pesic et al., 2007; Dourish et al.,
1996; Mangan and Sadiq, 2002; Cohn and Hull, 2009). Besides the already men-
tioned DECLARE, which uses constraints based on linear temporal logic (LTL)
on tasks (Pesic et al., 2007), another approach is to use descriptions based on ar-
tifacts (Fritz et al., 2009; Cohn and Hull, 2009; Eckermann and Weidlich, 2011).
In artifact centric process constraints are derived from business relevant artifacts,
e.g., documents or manufactured items that are created, evolved and archived as
they pass through a business. An artifact has an inherent life-cycle. They com-
bine both, data and process aspects and serve as building blocks for processes.
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write agenda review agenda

write letter review letter sign letter

(a) imperative description of the letter/agenda writing and reviewing process

write agenda review agenda

write letter review letter sign letter

(b) declarative description of the letter/agenda writing and reviewing process with
constraints depicted as arcs implying a must execute some time after constraint.

Figure 2.12: Secretary process example not very well suited for imperative process
descriptions

Activities cause progress in that life-cycle of one or several artifacts. In this sense,
the life-cycle of an artifact imposes constraints on the execution order of tasks.
Consequently, an artifact centric process is mainly controlled by the artifacts.

2.3.3 Tool Support

A reasoning (or planning) component in a process engine derives execution orders
of tasks from the artifacts.
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imperative declarative
YAWL (FlexY) ×
Activiti ×
IBM Business Process Manager ×
Kepler ×
Taverna ×
Pegasus/DAGMan ×
Microsoft Trident ×
eBioFlow ×
Sedna ×
DECLARE ×
BioFlow ×

Table 2.2: Workflow Management Systems and their type of description.

2.4 Flexible Workflows

2.4.1 Structural Flexibility

Imperative task-based process descriptions provide a concise, elegant, and well
readable representation of well structured routine procedures but have well-known
limitations when processes with a large amount of flexibility need to be expressed.

There are attempts to provide adaptation capabilities into task-based busi-
ness workflow models such as the ADEPT approach (Reichert and Dadam, 1998;
Dadam and Reichert, 2009; Dadam et al., 2010) but they mainly focus on the
adaptation of the process definition during execution. They support punctual
modifications such as insertion and deletion of tasks rather than major rear-
rangements in the control logic. For instance, taking the example process shown
in Figure 2.2 p. 14, during the processing of a paper there is a decision to support
a multi-step reviewing process, e.g., requesting alterations of a paper according to
reviews from the authors before acceptance of the paper. Figure 2.13 p. 36 shows
the process while the paper is currently under review and the changed elements of
the process (outlined with dashed lines). Here the process is extended by insert-
ing additional tasks. However, there are limitations and requirements in order
not to compromise integrity of the process. For instance, it might not be allowed
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to remove a currently running activity, as well as inserting tasks arbitrarily into
the process definition may cause a dead or live lock.

Other systems such as case management systems (Reijers et al., 2003; van der
Aalst et al., 2005) try to soften the imperative structure of task-based workflows
systems by allowing the re-execution of already finished activities or skipping of
unnecessary ones. However, when re-executing an activity all subsequent work
items need to be re-executed as well.

Receive
Paper

Distribute
for Review

Receive
Review

Receive
Review

Receive
Review

Assess
Paper

 Accept as
full paper

Accept as
short paperNotify

Authors

Request
Improvement

Receive
improved
Version

Assess
improved
Version

Accept
final

Version

Figure 2.13: Extension of paper reviewing process to support revisions

Declarative process descriptions, be them constraint- or artifact-based also
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allow for structural changes to the process during execution. For constraint-based
descriptions such as the ones of DECLARE this means, tasks can be added or
removed and constraints can be added, removed or changed. Here DECLARE will
perform analyses on new, changed or deleted constraints and execution history
in order ensure integrity and consistency of the process (Pesic et al., 2007). For
artifact-based descriptions, tasks can be added and removed and artifacts can be
added, removed and changed (Cohn and Hull, 2009).

2.4.2 Flexibility in Execution

2.4.2.1 Least Commitment by Templates

Additional to structural changes to processes, providing flexibility to the execu-
tion of a process, the least commitment approach can also be used (Weld, 1994).
In least commitment or partial-order planing approaches the ordering of tasks is
left open as long as possible and is determined iteratively during runtime. How-
ever, in the case of using templates, the planning does not affect the order of tasks
but rather the exchange of template tasks with actual tasks. A process is defined
by tasks and template tasks, which are evaluated and exchanged by actual tasks
during runtime. Exchange can happen based on execution history of the process
until the template task is reached, as well as based on initial configuration, which
might define the actual task to be used for a specific template task, or it can also
be selected by a user if there are multiple matching tasks for a template task.

For data-flow and control-flow oriented processes, the usage of template tasks
provides adaptation capabilities by being able to exchange template tasks during
execution by actual tasks (Ngu et al., 2008; Rybacki et al., 2012b).

However, since templates do not change the structure of the process flexibility
is limited. Template task based flexibility is typically used in scenarios where
there are a multitude of options which might change over time for a specific task
in a process which otherwise would have to be modeled explicitly and changed
with each option available or added. For instance, in Figure 2.14(a) p. 38 a process
that can convert data of different type (2D, 3D), visualizes it and eventually stores
it is depicted using a workflow net as description.
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receive
Data

convert
2D Data

convert
3D Data

visualize
2D Data

visualize
3D Data

Visualization 1

visualize
3D Data

Visualization 2

store
2D Data

Backend 1

store
2D Data

Backend 2

store
3D Data

Backend 1

store
3D Data

Backend 2

(a) normal description

convert
Data

convert
2D Data

convert
3D Data

visualize
Data

visualize
2D Data

visualize
3D Data

Visualization 1/2

store
Data

store
2D Data

Backend 1/2

store
3D Data

Backend 1/2

receive
Data

(b) template-based description

Figure 2.14: Sample workflow illustrating Least Commitment using Templates
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Here conversion of the supported data types is modeled explicitly using convert
2D Data and convert 3D Data tasks that are selected based on the source data
type. The visualization also models a data path explicit for 2D and 3D data,
where for 3D data there are two different visualizations modeled. Similarly, for
the storing 2D and 3D data, different storage back ends are available and explicitly
modeled for each data type. In order to support additional visualizations, data
types or storage backends the process needs to be extended to integrate those.

Using the template based approach the shown process can be simplified as
shown in Figure 2.14(b) p. 38. Template tasks are depicted using a double lined
border and tasks that can be used in a template task are connected with a dashed
line. Here a template task is introduced for convert Data, visualize Data and store
Data, each of which has actual tasks attached to choose from, convert 2D/3D
Data, visualize 2D/3D Data Visualization 1/2 and store 2D/3D Data Backend
1/2 respectively. Which task is used for conversion and visualization is deter-
mined during runtime based on data type that is received (2D or 3D) as well as
by the user in case of 3D data, because two different visualizations for this data
type exists. The storage task can also be determined by the data type plus user
preference on the storage backend.

2.4.2.2 Least Commitment by Declarative Descriptions

Declarative process descriptions provide an intrinsic support for flexibility during
the execution of a process based on the least commitment paradigm. By using
constraints or artifacts a partial order of tasks is defined. This order might change
during runtime depending on defined rules or constraints and is typical addressed
with least commitment or partial-ordering planning approaches (Weld, 1994).

For instance, given the process shown in Figure 2.12(a) p. 34, which defines
five tasks, write letter, review letter, sign letter, write agenda and review agenda.
The process defines a partial order between the first three tasks and the latter two.
In order to execute that process a partial-ordering approach would initial allow
the tasks write letter and write agenda for execution, reevaluating which tasks
can be executed next after each executed task ensuring given order constraints.
Assuming write letter was executed then after replanning the write agenda, write



40 CHAPTER 2. WORKFLOWS

letter and review letter tasks are executable next and so on.
Using a planning based approach that continuously evaluates the order and

executability of tasks allows for adding and removing of tasks, constraints or
artifacts, providing structural flexibility and adaptability. However, similar to the
imperative description based process descriptions supporting structural flexibility,
additional consistency and integrity checks or analyses need to be performed
in order to ensure a concise process model, meaning e.g., constraints that are
modified or added are not violated by prior actions or previously executed tasks
in that very case. Such a violation easily occurs, e.g., when there are two ordered
tasks such as write letter and review letter and both are already executed in that
order and a new task for instance spell check letter is added with the constraint
that it has to be executed in between the previously mentioned tasks.

2.5 Summary

Workflows are used to describe work or a procedure involving different tasks that
are carried out by resources. The work is described in a process using tasks,
sub-processes and information on how those tasks and sub-processes relate to
and depend on each other. Workflow management systems are used to execute,
monitor, design and analyze workflows. A process turns into a case when it is
instantiated for execution by workflow management system, where all the tasks
associated with that process turn into work items. A work item itself is the
task associated with a specific case and turns into an activity once a resource is
assigned responsible for execution.

There are different application domains of workflows resulting in different
requirements to workflow management systems and process descriptions.

Workflows were introduced in the business world to describe tasks to be exe-
cuted by a human entity (resource) throughout an organization and their inter-
relation, derived from office automation systems. Those workflows were used to
control and monitor human work and to analyze human performance. Later,
workflow management systems emerged helping to automate and orchestrate
workflow between the humans involved even further, incorporating computation-
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ally automated tasks such as the invocation of web-services. Workflows involving
humans, which orchestrate tasks within organizational structures are called busi-
ness workflows. Business workflows describe the work as a process built of tasks
and their partial order using control-flow constructs, such as sequential, parallel,
iterative and selective flow.

Typically, activities are invoked with input data, executed and output data
is generated before the next activity is invoked. An activity’s action is typically
implemented as a web-service or human interaction.

The other application domain involves scientific computational tasks also
called computational experiments. Here, scientists conduct computations, such
as transformations, analytics and visualization, based on data leading to new data
in return. Computations are used to gain insights and knowledge in data, which
are used to base decisions on, such as to invalidate or verify a hypothesis. This
computation based processes are generally present in the domain of e-Science
and can be computational and data intensive, repetitive and error-prone. Au-
tomation of such tasks is a desired goal. First attempts used scripts to automate
calculations, transformation and so on. While this worked, it usually requires
programming skills, does not allow for automated documentation, error handling
and recovery as well as using distributed and parallel resources is hard. Therefore,
scientific workflows were introduced to cope with these special kind of scientific
work, alleviating some shortcomings of a script-based approach. For instance,
scientific workflow systems typically provide means for automating the documen-
tation of the workflow execution, including which steps taken, what input data
and parameter used as well as which resources and methods were employed as
well as automated error handling and recovery. Further, they provide automated
optimization of execution, e.g., distributing the execution of activities to free
resources and automatically making use of parallel resources such as multi-core
architecture and grid or cluster environments.

Comparing business and scientific processes, an apparent observation is the
different focus on how work is described using tasks and sub-processes. Most
business workflows focus on the description of tasks and their interrelation using
control-flow constructs, such as sequential, parallel, iterative and selective flow
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patterns. Scientific workflows on the other hand typically use a data-flow oriented
description of tasks and their interrelation. Control-flow describes a partial tem-
poral order of tasks based on already finished tasks, leaving the data perspective,
e.g., the data that flows between tasks, typically as a secondary issue. Data-flow
describes the order of tasks based on data dependencies between tasks while not
implying a specific order of tasks. For instance, given the tasks Task1 and Task2

and a dependency between them Task1 → Task2.

In business workflows this dependency means Task2 is directly executed after
Task1 has finished. In scientific workflows this dependency means Task2 depends
on data from Task1 at some point in time. This allows the execution of Task1

and Task2 concurrently with an established data channel from Task1 to Task2.

With some exceptions (Trident uses control-flow, DAGMan uses a directed
acyclic graph based task oriented description), scientific workflow systems treat
all tasks as concurrently executable, exchanging data through channels between
them. In contrast, in business workflows concurrent execution of tasks has to be
explicitly modeled as parallel flow or through multiple instances of the same task
during runtime (tasks that are invoked multiple times at the same time, e.g., if
there is multiple input data).

Workflow systems use different execution models. Business workflow systems
typically employ a petri net based execution model. Scientific workflow systems,
execution models such as directed acyclic graphs, Kahn’s process model, Syn-
chronous Dataflow and even business workflow oriented computation models are
used. This typically restricts scientific workflows in describing control flow, e.g.,
DAG-based systems do not allow loops which is needed for the iterative control-
flow pattern.

Another difference between business and scientific workflows is the involve-
ment of humans in the completion of a workflow execution. Humans are an
integral resource in the completion of a business workflow. The workflow con-
sists of a process with automatable tasks and usually a number of tasks only
executable by a human resource, e.g., evaluation of an application for a loan.
In scientific workflows the involvement of humans is limited and typically only
requires human interaction when a task, e.g., needs credential information for
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authentications or when selecting a analysis method. The remaining tasks are
completely automatable in scientific workflows.

When designing workflows, business and scientific workflow systems provide
visual designers aiding the design process. In the domain of business workflows
standards, such as BPMN and BPEL exist to describe workflows and allow for
reusing of workflows designed in one system, or switching from one system to
another. Scientific workflow systems provide their own languages and tools for
describing and designing workflows. This is partly because there are no estab-
lished standards and because different computational models are employed for
the execution of their workflows, e.g., DAG, KPN, SDF or Petri Nets.

Classical workflow systems, business as well as scientific ones, are rigid in terms
of workflow execution as well as workflow definition. Adaptive workflows that al-
low changing of a workflow or the involved process during execution and flexibility
on task order and execution, particularly for business workflows is scarcely sup-
ported in workflow systems. The ability to adapt to changes during execution,
means adding a task, removing a task or moving a task within the process while it
is running, e.g., to add another analysis task to the process of a scientific workflow
or an additional verification task to a loan approval business process.

Flexibility issues also arise when designing or executing workflows. In tradi-
tional workflow systems the workflow is rigid and follows an imperative descrip-
tion of the work as process which implies that each possible task order needs
to be explicitly described. This can lead to over-specified workflow descriptions,
while specific patterns are still very hard to express, e.g., the exclusive execution
of task A or B (if A was executed B can never be executed, and vice versa as
well as A and B are not executed at all) is difficult to express imperatively.

However, systems exist that try to address these issues. Some tools, e.g.,
ADEPT and FlexY enable imperative workflows to be adaptive. Changes of
workflows during execution are allowing by insertion, exchange or removal of
tasks. In the scientific workflow domain, tools such as Kepler provide flexibility
by adding templates to their workflows allowing exchange of tasks during runtime.

Other approaches that allow for flexible design and execution of workflows
without over-specifying processes exist. There exist extensions for classical busi-
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ness workflow systems, e.g., case-handling systems that allow skipping of un-
necessary tasks as well as the reexecution of already completed tasks, rewinding
the workflow if you will. However, when reexecuting an already completed task
the reexecution of all subsequent tasks is necessary in those systems. Other ap-
proaches choose to describe workflows declaratively rather than using imperative
descriptions. For instance, systems such as DECLARE, establish a partial or-
der and dependency of tasks by defining constraints using linear temporal logic
(LTL) over them. This allows for an easy description of a workflow where task
order and task execution count is only important for a small subset of tasks. This
is usually the case when human entities are heavily involved and the process to
model is loosely structured. However, one downside of this approach is that the
workflows are hardly automatable because of the freedom of choice of possible
tasks to execute. Another downside is that in highly structured processes where
task order is important this can lead to numerous constraints which makes the
workflows harder to understand and maintain.

An artifact-based workflow is built using artifacts, which consists of a data
model and a life-cycle model. Additionally, tasks are defined that are orchestrated
by constraints or rules on an artifact’s data and its life-cycle state. The artifact
changes between its life-cycle model states during workflow execution, storing
data from associated executed tasks in its data model.
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Chairdrobe: (n) piling cloth on a
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Daniel Dalton

3.1 Quality
Quality is a frequently used term and is considered to be a multi-faceted term
(Garvin, 1984). Garvin distinguishes between transcendence, product based, user
based, manufacturing based, and the value based views on quality.

Transcendent The transcendent view assumes that quality cannot be defined
or measured precisely but merely be recognized through experience and
expertise. This means, that only domain experts (someone with experience
and expertise in a specific field) can decide on the quality of a product
in that domain. In the domain of Modeling & Simulation a transcendent
assessment of quality can be made, e.g., for a simulation model using its
abstraction level because it is typically judged by domain experts.

45
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Product Based The product based view implies that quality can be measured.
The measurement is based on the quantity or quality of a desired ingredient
of the product, e.g., in Modeling & Simulation the use of verification and
validation as ingredient during model development can lead to a higher
quality model. For instance, Balci describes in more detail a method to
measure the quality of models (Balci, 2004).

User Based The user based view refers to a subjective definition of quality.
Different users might have a different impression about the quality of a
selection of products and make different choices among these. Most users
regard the product that meets their preferences best as the product with
the highest quality.

In Modeling & Simulation this can refer to simulations or simulation tools
that provide visualizations and animations alongside simulations to have a
higher subjective quality.

Manufacturing Based The manufacturing based view defines quality by how
well a product creation process followed a specific specification (one that is
regarded as high quality specification). This means that a product created
with a well-defined process (according to a specification), which is well-
documented, is of higher quality. This notion of quality has become an
industry and certification standard (reflected in the ISO 9001 norm (Inter-
national Organization for Standardization (ISO), 2008; Jahnes and Schüt-
tenhelm, 2008)).

In the field of Modeling & Simulation such well-defined processes or life-
cycle models exist for conducting studies (Balci, 2003; Brade, 2004; Law
and Kelton, 2007; Lehmann, 2008; Rabe et al., 2009).

Value Based The value based view defines quality as the performance for an
acceptable price. The ratio between performance and price is the main
driving force for value based quality. So the quality of a product is always
in relation to the cost it took to produce, also known as affordable excellence.
In the domain of Modeling & Simulation a value based quality definition can
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be applied to models on different levels of abstraction. While in theory the
quality of a higher resolution model is higher the cost of computation in
terms of time or resources might render a lower resolution model of higher
quality based on the cost performance ration.

In Modeling & Simulation all the aforementioned views on quality can be
applied to judge the quality of a product (Himmelspach and Uhrmacher, 2009).
This includes the process of developing Modeling & Simulation software, the
conducting of a simulation study as well as the creation of a simulation model.

In order to provide products, such as simulation results or simulation models
of high quality, a precondition is a well defined process for creating that product.
With such a process the creation of the product is reproducible and transparent
and it allows pinning down production errors or error sources that relate to the
process at hand. If a simulation study, experiment, the creation of a simulation
model or even the creation of a simulation algorithm is described as and supported
by a process high efficiency and repeatability can be achieved.

By focusing on the manufacturing based view of quality, the process that is
used to create a product is taken, as indication of a product’s quality. This can
be combined with the product based view, making a product also dependent
on intermediate product quality and quantity. By reviewing life-cycle models
and workflow approaches used in the field of modeling and simulation common
structures and requirements for high quality Modeling & Simulation products are
derived.

3.2 Modeling & Simulation Products

The aforementioned quality views always refer to a product. In Modeling & Sim-
ulation, products comprise results of intermediate steps that are created by a
modeler, a simulation performer or other people involved.

Products in Modeling & Simulation can refer to:

Modeling & Simulation Software The Modeling & Simulation software cre-
ated is a product which is used, e.g., to conduct simulation experiments, to
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support the creation of a simulation model or to analyze simulation results.
In order to provide credible results, the software needs to meet desired qual-
ity standards, e.g., by following a software development process according
to a specification.

Quality in software development is addressed by using life-cycle models for
software development and by employing techniques to improve the quality
(i.e., validation, verification, and code analysis). Albeit those techniques and
life-cycle models exists they have to be used in order to work. However, this
is not always the case as shown in Merali (2010), stating that the product
quality of Modeling & Simulation software could be better. Another way
to improve the software development process in Modeling & Simulation is
to exploit reuse (Himmelspach, 2012). If software was created with reuse
in mind, separation of concerns will inherently take place, meaning that
software will be composed of smaller elements (Himmelspach, 2009).

The Problem Definition The problem definition is the question about a sys-
tem that should be answered. It needs to be well formulated because it
impacts subsequent products such as the models, the experiment and the
analysis. Quality of the problem definition directly impacts the quality of
further products (product based view of quality).

The Model In Modeling & Simulation there exist different types of models,
herein the focus lies on simulation models. Those typically comprise con-
ceptual model, formal model and implemented/executable model.

The quality of each of these models plays an important role because subse-
quent products, e.g., the experiment (simulation) are based on them.

The Experiment The experiment conducts simulations including replications if
needed for one or more configurations (e.g., parameter scan, optimization).
Simulation results will pass over to analysis and interpretation. Well defined
and documented when executed experiments are mandatory for achieving
credible and reliable results. An experiment is designed to answer the ques-
tion of the problem definition. Albeit, it should produce a reliable answer
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efficiently, meaning with as few numbers of obsolete computations as possi-
ble.

The Analysis (and Interpretation) After simulation of a model an analysis
of the results, considering the initial problem definition is usually performed.
This typically implies the application of a number of mathematical (statis-
tical) methods on the results produced and the interpretation of them using
those methods.

The Process of the Modeling & Simulation Study All the aforementioned
products can be created during the performance of a Modeling & Simulation
simulation study. They depend on each other and have at least a partial
order (i.e., an analysis cannot be performed before data, e.g., simulation
results, is available, which is not available without a simulation model and
so on). So the generation of those products follow some kind of process,
which itself can be considered a Modeling & Simulation product itself.

3.3 Life-Cycle Models

3.3.1 Life-Cycle Models for Modeling & Simulation Soft-
ware development

Life-Cycle models are a common means in software engineering to define the
procedure of developing software. Models such as the waterfall model (Royce,
1970; Bell and Thayer, 1976), which describes a sequential procedure of tasks
such as Conception, Design, Implementation, Verification and Maintenance, have
been around for decades.

However, alternative models still emerge, e.g., models that follow the paradigm
of agile software development, which focus on early delivery and continuous im-
provement, such as Scrum, as one of the recent approaches (Sims and Johnson,
2011).

Additionally, standards or norms such as the ISO 9000-3 (Hoyle, 2009), that
are dedicated to software development process quality (Sommerville, 2007) guide
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developers through their software development process (waterfall, scrum, etc.)
and help with the identification of work done.

This can be extended by detailed descriptions, e.g., test methods that must
be performed and can help to increase the quality of the software developed.

Such software development models if used for creating Modeling & Simula-
tion software can help to improve the quality of Modeling & Simulation prod-
ucts (Sommerville, 2007).

When performing a modeling and simulation study it is often needed to also
perform a software development. For instance, this might be the case when a con-
ceptual model needs to be transformed into an executable model, interpretable
by computers. This transformation can either be done by using a domain specific
language (modeling language, e.g., ML-Rules (Maus et al., 2011), by a simula-
tion language, such as CSSL (Nilsen and Karplus, 1974)) or by using a general
programming language. Independently from the transformation approach in use,
intrinsically a software development process is assumed. This can either be the
software process that is used to create the domain specific language and com-
ponents that interpret and execute it or the process involving a general purpose
programming language when implementing the executable model. The aforemen-
tioned software development processes can be employed for those as well to ensure
quality products.

3.3.2 Life-Cycle Models for Modeling & Simulation stud-
ies

Similar to the process of software development, the process of conducting a simu-
lation study has a multitude of proposed life-cycle models available. Comparable
to software development those life-cycle models try to guide users through a study.

Among those life-cycle models are those proposed by Balci, Brade, Law, Sar-
gent, Lehmann, Sawyer and Rabe (Balci, 2003; Brade, 2004; Law and Kelton,
2007; Sargent, 2008; Lehmann, 2008; Sawyer and Brann, 2008; Rabe et al., 2009).

The classical life-cycle models by Balci, Sargent, Law and Rabe are depicted
in Figures 3.1 p. 51, 3.2 p. 52, 3.3 p. 53,3.4 p. 54 and 3.5 p. 55 respectively.
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Figure 3.1: Life-cycle Model for Modeling proposed by Balci (taken from (Balci,
2003))
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Figure 3.2: Life-cycle Model for Modeling proposed by Brade (taken from (Brade,
2004))

A different approach is taken by Sawyer and Brann (2008), they propose to
employ an agile software development method for the creation of simulation mod-
els and simulations. They also point out that in early phases frequent feedback
pays off if customers and model or simulation developers are different persons.

A salient feature of those life-cycles is their iterative nature (see Figure 3.1
p. 51, 3.4 p. 54 and 3.5 p. 55), in which typically the model is successively refined
by elaboration and enrichment (Shannon, 1975, 1998). However, some life-cycles
do not provide explicit iterative descriptions. For instance, the life-cycle models
of Law and Brade focus on a single pass per simulation study only (see Figures 3.3
p. 53 and 3.2 p. 52).

An intrinsic and important part of each modeling and simulation life-cycle
are validation and verification (V&V) processes (Sargent, 2013). Rabe et al.
argue that each product of each phase within the life-cycle should be tested Rabe
et al. (2009). For instance, conceptual model, formal model, executable model,
simulation results, raw data, and prepared data should all be subject to validation
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Figure 3.3: Life-cycle Model for Modeling proposed by Law (adapted from (Law
and Kelton, 2007))
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Figure 3.5: Life-cycle Model for Modeling proposed by Rabe (taken from (Rabe
et al., 2009))
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and verification. Albeit, some analyses refer to a single result, often analyses
refer to results or products of different phases. This also implies that if a result is
revised based on the analysis all depending phases need to be revisited, too. The
life-cycle by Brade (2004) shown in Figure 3.2 p. 52 shows the V-model applied to
the field of Modeling & Simulation. It clearly shows the dependency of products
in subsequent phases on results produced in the phases before.

Actual methods, such as verification methods, analysis methods or methods
for executing models, are not part of the life-cycle but are reserved for the concrete
instantiation of a life-cycle, because they highly depend on the application and
question at hand. However, intelligent techniques can help to select concrete
methods for the problem at hand, e.g., selecting suitable methods for executing
models (Ewald et al., 2010b; Lattner, 2013; Leye, 2014).

3.4 Workflow Approaches in Modeling & Simulation

Workflows are recently receiving more and more attention in the scientific do-
main. So it is not surprising that workflow systems that specifically support sci-
entific processes are emerging, such as Project Trident (Barga et al., 2008a), Tav-
erna (Hull et al., 2006; Oinn et al., 2006), Kepler (Altintas et al., 2004; Ludäscher
et al., 2006).

Albeit, those systems focus on the support of arbitrary scientific processes and
let scientists create their own workflows, they can be used to express and execute
Modeling & Simulation processes, e.g., Taverna is used by Ribault and Wainer
(2012) and Wang and Wainer (2015) to deploy simulations into the cloud for
emergency planning or to perform crowd simulation in a service oriented manner
respectively. Also, there exist extensions (Lee and Neuendorffer, 2007) and sys-
tems, such as Sycamore (Weidemann et al., 2008), SwanTools (Perrone et al.,
2008) and SAFE (Perrone et al., 2012) to explicitly support Modeling & Simu-
lation processes. Furthermore, Sonntag et. al employ workflow techniques from
the field of business processes and apply them to scientific processes and Model-
ing & Simulation processes in particular (Sonntag et al., 2010b,a; Görlach et al.,
2011; Sonntag et al., 2011).
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The SwanTools provide a web based framework for the automation of the
entire simulation workflow with SWAN (Liu et al., 2001). It assists and guides the
scientist when configuring models with parameters by using an information rich
interface that should enhance the understanding of what each parameter does.
It also helps the scientist to manage and create simulation experiments and their
configuration by letting the user define data for simulation runs and also to select
or provide a specific simulator. Additionally, simulation runs are generated for
the scientist and can automatically be distributed in, e.g., a cluster.

Sycamore is a web based front end supporting, e.g., Copasi (Hoops et al.,
2006) as simulation engine, different online resources like databases, and locally
available tools. It guides through the process of setting up a model by selecting
kinetic data from a connected database, adjusting parameters, model checking,
parameter estimation, sensitivity analysis, and simulation execution using Co-
pasi.

The simulation automation framework for experiments (SAFE) (Perrone
et al., 2012) is explicitly designed to support simulation experiment specifica-
tions using a XML based format. It is build around the network simulator engine
NS-3 (NS-3 Consortium, 2013). The SAFE workflow is implicit and the process
supports the following tasks: experiment specification, model configuration and
model execution as well as data collection and data analysis. In addition, different
guiding schemes are supported based on user profiles, e.g., novice or expert user.

While SwanTools, SAFE and Sycamore provide explicit guidance through
a simulation process the actual workflow is hidden and predefined. However,
the underlying processes are inspired by classic Modeling & Simulation life-cycle
models.

In the workflow approach for simulation using business process modeling tech-
niques the modeled process is tailored to a specific question, model and simulation
algorithm, such as solid body simulation using OPAL (Binkele and Schmauder,
2003) or simulating the diffusion of ink in a box of water using DUNE (Blatt and
Bastian, 2007) using the workflow shown in Figure 3.6 p. 58.
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Figure 3.6: Simulation workflow using business process modeling techniques
(adapted from (Görlach et al., 2011))

3.5 Anatomy of a Simulation Study

Life-cycle models lend themselves as entry point for determining which tasks con-
stitute a simulation study. Generally, a simulation study can be divided into two
main layers. Layer one deals with the creation of a simulation model, that can be
used with layer two to conduct simulation experiments. Layer one itself comprises
different phases, such as conceptual modeling or conceptual model V&V phase.
Similarly, layer two itself is also divided into multiple phases, e.g.,experiment
specification, model configuration and model execution phase. Interestingly, the
presented Modeling & Simulation Life-Cycle models mainly deal with layer one,
with conducting an experiment (layer two) being typically only one atomic task
in that Life-Cycle. However, the presented workflow approaches and tools mainly
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deal with layer two and typically expect an already validated and verified model
to begin with.

3.5.1 Layer One — The Model Creation

The model is the primary product of the modeling and simulation life-cycle.
However, when referring to model, different terms like abstract model, conceptual
model, communicative model, formal model, programmed model, computational
model, executable model, operational model (Nance, 1986; Balci, 2003; Sargent,
2008; Rabe et al., 2009; Robinson, 2011; Chwif et al., 2013) can be found. Not all
proposed life-cycle models and workflow approaches distinguish between models
at the same granularity, e.g., in Rabe et al. (2009) the terms conceptual model,
formal model, and executable model are used. Albeit the same terms are used, the
meaning of those terms varies. Sometimes, abstract or conceptual model means the
not yet expressed perception that a person has about a system. Sometimes, the
terms conceptual or communicative model are used to refer to a model, which uses
variables and inter-dependencies between those variables to describe a system.
Programmed model, computational model, or executable model typically refer to an
implementation of a model on a computer. However, an explicit phase for creating
an executable model can be neglected in cases where the formal model can and
is automatically transformed into an executable model. The operational model
refers to a successfully validated executable model, ready to use for simulation
experiments.

Despite the diversity of the terms used, most of the approaches distinguish
between conceptual, formal, and executable model. Thereby, a clear distinction
between conceptual and formal model is of central importance. The conceptual
model is an integral part of the modeling process and builds the foundation of
the formal and executable model. It is one of the very first products and it shall
be independent from the simulation formalism or the simulation algorithm that
will be used later for simulation (Chwif et al., 2013).

Albeit conceptual and formal model being distinguishable, diverse methods
are proposed to support conceptual modeling that use formal approaches like
Petri Nets and DEVS (Heavey and Ryan, 2006; Chwif et al., 2013). However, in
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Figure 3.7: Model creation Life-Cycle used for Layer One

this case conceptual and formal model would not be distinguishable anymore. In
addition, using such a formal approach for describing a conceptual model, would
restrict implementation and simulation algorithm to that formalism or it would
make it hard to transform it into another formal or executable model using a
different formalism, e.g., using Petri Nets for conceptual modeling and partial
differential equations (PDE) to describe the formal model.

A modeling formalism constrains what can be described and how it can be
described. The answers to the questions what should be formally described and
how should it be described are one result of the conceptual modeling phase.

Based on the presented Life-Cycle models as well as workflow approaches
shown, the following tasks and products for layer one, the model creation layer
(see also Figure 3.7 p. 60) are derived:
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Problem Definition The problem definition is the question about a system
that should be answered. It needs to be well formulated because it builds
the foundation for subsequent products and tasks such as the conceptual,
formal and executable model as well as the various verification & validation
(V&V) tasks.

Conceptual Modeling Based on the problem definition and its requirements a
model is created that can be used to help people (scientists and stakeholders)
to understand and communicate the system modeled. The resulting model
is a conceptual model. A conceptual model sometimes represents the not yet
expressed perception that a person has about a system. However, typically
the model uses variables and inter-dependencies between those variables to
describe the system to be modeled.

Conceptual Model V&V Once the conceptual modeling task is finished and
a conceptual model is present, it needs to be verified and validated accord-
ing to the problem definition as well as to the system that is modeled. For
instance, this can be done by reviewing variables used as well as the de-
fined dependencies between variables. If verification or validation fails, the
conceptual model needs to be revised.

Formal Modeling The next task turns the conceptual model into a formal
model using a suitable formalism, e.g., DEVS, Petri Nets or MLRules. The
result is a formal model according to the conceptual model.

Formal Model V&V Similar to conceptual model V&V, the formal model
needs to be verified and validated as well and if either fails at least the
formal model needs to be revised.

Executable Model Creation Once the formal model is available an computer
executable version, the executable model, needs to be created. This can be
done manually, by using, e.g., a generic programming language or a tool-
box such as Matlab (MathWorks, 2005). However, in case where the formal
model is specified using a domain specific language for a given formalism,
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e.g., MLRules, the transformation of formal to executable model can be au-
tomated. Assuming that the executable model can be automatically derived
from the formal model a V&V task for it should not be necessary as long as
the transformation algorithm was verified.

Executable Model V&V In order to ensure verifiability and validity across
the modeling process, the executable model needs to be verified and vali-
dated as well. However, this task might be skipped in cases in which the
executable model is created using an automated transformation based on
the formal model and the transformation algorithm itself was verified.

Data Collection Alongside the modeling tasks data can be collected that relate
to the problem definition and is necessary to conduct validation on e.g., the
formal or executable model.

Data Preparation The data collected might not directly be usable for, e.g.,
validation or modeling. For instance it might be needed to derive additional
data, such as kinetic rates based on some analysis methods, before it can be
used for validation or modeling.

Data V&V When using data, it needs to be ensured, that it is valid, e.g.,
that it was obtained using appropriate methods and prepared using proper
analysis methods.

It should be noted that as shown in Figure 3.7 p. 60, the presented tasks are
not necessarily performed in sequence, the entire model creation process is merely
an iterative process. For instance, if a conceptual model V&V fails the conceptual
model needs to be revised. The same is true for the formal model, if formal model
V&V fails. However, it might even be necessary to revise the conceptual model
in that case, as the problem in the formal model stems from a problem in the
conceptual model. In addition, tasks such as data collection and preparation
as well as executable model creation or formal model V&V can be performed
concurrently. However, proper actions have to be taken in failure cases, e.g., a
task such as executable model creation is executed on a not yet validated formal
model and formal model V&V fails, in which case the executable model needs
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to be revised or discarded. This also implies that V&V tasks only need to take
place once previous V&V tasks succeeded, e.g., formal model V&V makes only
sense if conceptual model V&V succeeded.

Eventually, layer one is completed when an executable model was created and
all used intermediate products, such as conceptual model, formal model and data
were successfully passing V&V.

3.5.2 Layer Two — The Simulation Experiment

Specification

Configuration Model
Execution

Data
Collection Analysis Evaluation

Figure 3.8: The Six Tasks of a Simulation Experiment and their interaction
adapted from (Leye, 2014)

In the Modeling & Simulation life-cycle models the simulation experiment is
typically considered only after model creation as a black box task. The presented
workflow approaches, however, try to also distinguish between different tasks
involved in a simulation experiment in order to provide clearly defined process
of how to conduct a simulation experiment. Leye identifies the common tasks
that make up a simulation experiment based on life-cycle models and workflow
approaches. Six common tasks are identified, the “Six Tasks of a Simulation Ex-
periment” (Leye, 2014), which layer two (Simulation Experiment) of conducting
a Simulation Study is based on. Those tasks are Specification, Configuration of
Model Parameters, Model Execution, Data Collection, Analysis and Evaluation,
and are briefly described in the following and depicted in Figure 3.8 p. 63.
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Specification The specification is an essential task of a simulation experiment
because it connects the experiment’s goal with the actual execution. All
subsequent tasks of a simulation experiment have to work according to that
specification which ideally is described formally. In addition, the speci-
fication creates the foundation of reproducible simulation experiments by
providing clear and sufficient information about the experiment to conduct.

Configuration of Model Parameters The configuration of model parameters
is similar to defining test cases in software development. Model parameter
settings are being selected that are to be investigated during the perfor-
mance of the simulation experiment. Different methods exist to create such
parameter settings. On the one hand, those parameter settings can be se-
lected statically, such as when conducting a parameter scan. On the other
hand, parameter settings can be generated using parameter search methods.
Parameter search methods typically require a feedback loop from the simula-
tion execution because they use data or analysis results to generate further
parameter settings if necessary. They are typically used in optimization
experiments.

Model Execution Using a simulation algorithm the model execution is per-
forming the computation of the simulation model using given parameter
setting. The algorithm should be accurate and efficient, however some al-
gorithms trade accuracy for efficiency.

Data Collection The data collection task is responsible for collecting data dur-
ing model execution, which is needed in subsequent tasks, such as analysis.
It builds the foundation for evaluating the results of the simulation experi-
ment. However, similar to model execution this task should be efficient and
only collect necessary data to save memory on the one hand and compu-
tation cycles on the other in order to not slow down model execution too
drastically.

Analysis Data from data collection is analyzed, e.g., to detect a steady state.
Knowledge gathered through analysis can be used to steer the model exe-
cution, e.g., stopping or continuing. In addition, it can further be used in
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subsequent tasks. The analysis itself is a complex task which can be divided
into two phases. Phase one involves the analysis of only a single model ex-
ecution. Phase two involves the analysis of multiple model executions (for
the same parameter setting), e.g., using aggregated collected data. However,
phase two is only necessary in stochastic simulations.

Evaluation The evaluation is the final task of a simulation experiment. It bases
on results from the previous analysis task or tasks. The purpose is two fold.
On the one hand it can give feedback to other tasks such as the configu-
ration task, in case more parameter settings are necessary. On the other
hand, it provides the results generated by the simulation experiment e.g.,
visualization and sensitivity information of parameters, on which decisions
concerning the objective of a simulation study can be based.

3.6 Summary
When conducting a simulation study a number of different products are used,
created and altered over time. They range from software products, over problem
definitions or experiment specifications, simulation model, analysis methods to
the used process during execution of the study. Since each product is created
differently involving different processes, it exhibits a different indication of its
quality.

Quality is a desired property of every product involved in the performance of
a simulation study. However, quality depending on the product at hand is a more
or less tangible metric. Thus, different views on quality exists, e.g., proposed by
Garvin those are the transcendence, product-based, user-based, manufacturing-
based, and value-based view. However, a common understanding of quality of a
product is that it is directly related to the process used to create that product.
In other words, a well defined process is essential in order to provide products of
quality. When employing a well defined process reproducibility and transparency
can be ensured. Errors can be pinned down to their sources within the process
more easily improving the process over time. An underlying process that is tested,
established and well defined directly reflect on the products quality positively.
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Those established, tested and applied processes can be found in so-called life-
cycle models of specific product groups. For instance there exist different life-cycle
models for the development of software products, such as the waterfall model
or more recent scrum model from the domain of agile software development.
Developing software based on those life-cycle models ensures a certain quality of
software taking part in a simulation study constituting to the overall quality of
the simulation study. There even exist dedicated norms, e.g., ISO 9000-3, dealing
with process quality of software development processes.

Moreover, life-cycle models can also be found in the domain of Model-
ing & Simulation. Among classic established models are the ones proposed by
Balci, Sargent, Law and Rabe. Alternative models similar to the ones from the
area agile software development are also proposed, e.g., by Sawyer and Brann.
Nevertheless, all of them exhibit an iterative nature in which the simulation
model is successively refined, verified and validated. The verification and vali-
dation (V&V) of each phase and product is a salient feature of those life-cycle.
Albeit V&V plays an intrinsic part in those life-cycles, actual V&V methods and
techniques are not part of the definition of the life-cycle models. They are rather
specific for each instance of such a life-cycle as V&V varies with the specific
problem and question at hand.

Additional to life-cyle models, workflows and workflow systems tailored for
the scientific domain are emerging. Systems include for instance Taverna, Kepler
and Trident, which are generally targeted at scientific processes but can also
be applied in the particular domain of Modeling & Simulation. Furthermore,
systems dedicated to support Modeling & Simulation processes exist, e.g., SAFE
and Sycamore. There are even systems from the domain of business process
management that are applied to Modeling & Simulation processes. However, the
workflow used internally by those systems is hidden but is based on established
life-cycle models for Modeling & Simulation.

In order to create a well defined process for conducting a simulation study,
it is imperative that the anatomy of a simulation study is clear. Generally, a
simulation study can be divided into two layers. On the one hand there is the
model creation layer, denoted as layer one. On the other hand there is the
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simulation experiment performance layer, denoted as layer two.
Interestingly, the aforementioned Life-Cycle models deal with layer one in a

rather detailed way while they cover layer two typically as one atomic task. On
the other side the workflow approaches deal with layer two and assume that
a valid and verified model from layer one is already present, hence neglecting
layer one in their consideration.

In layer one the model is the primary product. It exists in different forms
throughout this layer, e.g., conceptual and formal and executable model. The
proposed process model for the creation of model is based on the aforementioned
life-cylce model, unifying and abstracting terms. The resulting process is still iter-
ative in nature and involves different phases. It starts with the problem definition
and iterates over conceptual modeling, conceptual model V&V, formal modeling,
formal model V&V, executable modeling, executable model V&V, data collection,
data preparation and data V&V.

Layer two on in contrast deals with the simulation experiment and its execu-
tion. Albeit it is a separate layer it might already take intrinsic part in layer one,
e.g., when a V&V method uses simulation. However, it is typically considered
taking part after model creation. The proposed process for layer two closely ori-
ents itself towards the six common tasks of a simulation experiment proposed
by Leye. Those tasks are specification, configuration of model parameters, model
execution, data collection, analysis and evaluation.





4
Workflows in the

Modeling & Simulation framework
JAMES II

I can resist everything except
temptation.

Oscar Wilde

4.1 Overview of the Modeling & Simulation frame-
work JAMES II

JAMES II is a framework for conducting simulation experiments and is devel-
oped in Java. It allows developing models in different modeling formalisms and
running simulations using different simulation algorithms.

A plug-in-based architecture makes JAMES II highly extensible and cus-
tomizable. By following the paradigm of separation of concerns components are
clearly defined, exchangeable and used throughout the entire framework. For in-
stance, there are plug-ins for random number generators, seed generators, event
queues, simulation algorithms, modeling formalisms, data storages, model and
simulation instrumenters, optimization algorithms, steady state detectors, repli-
cation criteria, simulation stop policies, model editors, model descriptions lan-
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Figure 4.1: The experimentation layer of JAMES II

guages, experiment editors and so on. Although JAMES II can be used stan-
dalone, it can also be used as pure library providing reusable components to build
a custom modeling and simulation environment.

4.1.1 Layer One — The Model Creation

In terms of model creation JAMES II does not restrict model development by
any predefined patterns. Developing a model in JAMES II is done on the one
hand, by using one of the available model editors. Those range from graphical
editors, e.g., for cellular automata, to textual editors supporting different syn-
taxes, highlighting and instant error reporting when using one of the modeling
languages supported by JAMES II, such as MLRules (Maus et al., 2011) or
the Attributed π Calculus (John et al., 2008). On the other hand, models can
be directly developed using the Java-based formalisms model API, e.g., for ad-
vanced cellular automata models (Kossow et al., 2015) or DEVS (Concepcion and
Zeigler, 1988) models.

However, as far as guidance or user assistance during model development goes
JAMES II provides no means besides syntax highlighting and error reporting
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when using text-based model editors. JAMES II models, when created can be
seen as formal models regarding the life-cycle models presented in Chapter 3
p. 45. They are transformed into executable models automatically by the exper-
imentation layer of JAMES II.

Nevertheless, JAMES II provides abilities, e.g., to validate model using vali-
dation experiments. Even so, a user is not directly assisted or encouraged to run,
e.g., validation during model creation. Also, the model creation process is not
documented, hence no provenance data of how a model evolved over time and
what validation procedures where applied to a model is available.

4.1.2 Layer Two — The Simulation Experiment

As far as what simulation experiments are concerned JAMES II provides a
flexible experimentation layer backed by many plug-ins, which is not limited to
a specific modeling formalism or simulation algorithms. It can handle arbitrary
modeling formalisms and simulation algorithms, such as MLRules (Maus et al.,
2011), the Attributed π Calculus (John et al., 2008) and DEVS (Concepcion and
Zeigler, 1988) as well as multitude of experiment types, such as parameter scan,
optimization or validation experiments (Himmelspach et al., 2008).

The experimentation layer and its workflow is fixed and implicit and driven by
its components and their dependencies. An experiment and its basic components
are depicted in Figure 4.1 p. 70. Basically, an experiment is made of one or more
simulation run configurations, which each having a number of simulation runs
(replications). Each simulation run employs a model and a simulation algorithm
(simulator) applying to a specific formalism. Internally, the simulation algorithm
can use further components such as random number generators, event queues and
so on. Moreover, a simulation run can be instrumented using observers and data
can be stored using data storages, which can output to, e.g., XML, databases,
CSV and more. Ultimately, different analyses can be applied on simulation results
using results from one or more simulation runs. This can be achieved using
previously stored data or in a streaming fashion (Schützel et al., 2014). Therefore,
the experimentation layer resembles the six tasks of a simulation experiment
presented in Section 3.5.2 p. 63.
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Listing 4.1: A simple simulation experiment conducting a parameter scan speci-
fied in Java using JAMES II as a framework. Herein an MLRules
model (Line 3) is simulated, either for one second (Line 15) or until
the simulation time reached 10× 104 (Line 20), whatever comes first.
The model will be simulated with varying parameter configurations
for r1 with 0.5, 1 and 1.5 (Line 7) and each parameter configuration
will be replicated ten times (Line 41). During simulation species A
is observed over time and outputted to the console whenever the
simulation time passes a multiple of 50 (Line 33–36).

1 BaseExperiment exp = new BaseExperiment();
2
3 exp.setModelLocation(new URI("file-mlrj:///./model.mlrj"));
4
5 //set parameter r1 to be scanned at 0.5, 1 and 1.5
6 ExperimentVariables vars=new ExperimentVariables();
7 vars.addVariable(new ExperimentVariable<Double>("r1", new SequenceModifier<Double>(0.5d, 1d,

1.5d)));
8 exp.setExperimentVariables(vars);
9
10 //set stop criterion to either wall clock time or simtime
11 List<Pair<ComputationTaskStopPolicyFactory<?>, ParameterBlock>> factories = new ArrayList<>();
12
13 //wall clock time stop policy setup
14 ParameterBlock stopParam = new ParameterBlock();
15 stopParam.addSubBl(WallClockTimeStopFactory.SIMEND, 1);
16 factories.add(new Pair<ComputationTaskStopPolicyFactory<?>, ParameterBlock<>(new

WallClockTimeStopFactory(), stopParam));
17
18 //sim time stop policy setup
19 stopParam = new ParameterBlock();
20 stopParam.addSubBl(SimTimeStopFactory.SIMEND, 10e4);
21 factories.add(new Pair<ComputationTaskStopPolicyFactory<?>, ParameterBlock>(new

SimTimeStopFactory(), stopParam));
22
23 //Build a combined stop policy based on above policies
24 ParameterBlock params = new ParameterBlock();
25 params.addSubBl(DisjunctiveSimRunStopPolicyFactory.POLICY_FACTORY_LIST, factories);
26 exp.setComputationTaskStopPolicyFactory(new

ParameterizedFactory<ComputationTaskStopPolicyFactory<?>>(new
DisjunctiveSimRunStopPolicyFactory(), params));

27
28 //set instrumenter to observe A, every 50 time steps (0, 50, 100, 150, etc.)
29 ParameterBlock parameters = new ParameterBlock();
30 parameters.addSubBl(MLRulesModelInstrumenterFactory.PARAM_OBSERVER_FACTORYNAME,

MLRulesModelObserverFactory.class.getName());
31
32 //set the query that is used during observation
33 parameters.addSubBl(MLRulesModelInstrumenterFactory.PARAM_QUERY_STRING, "INSTRUMENT model

SELECT COUNT(species.absquantity) WHERE species.name = 'A' GROUP BY species.name EVERY 50
T;");

34
35 //define output destination of observed data
36 parameters.addSubBl(MLRulesModelInstrumenterFactory.PARAM_LOGGING_STREAM, System.out);
37
38 exp.setModelInstrumenterFactory(new ParameterizedFactory<ModelInstrumenterFactory>(new

MLRulesModelInstrumenterFactory(), parameters));
39
40 //do ten replication for each parameter configuration
41 exp.setRepeatRuns(10);
42
43 exp.execute();
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Listing 4.2: A simple SESSL experiment using JAMES II as simulation provider
mirroring the same experimentation setup as shown in the Java ver-
sion (see Figure 4.1 p. 72).

1 import sessl._
2 import sessl.james._
3
4 execute {
5 new Experiment with Observation {
6 model = "file-mlrj:///./model.mlrj"
7 scan("r1" <∼ (0.5, 1, 1.5))
8 replications = 10
9 stopCondition = AfterWallClockTime(seconds=1) and AfterSimTime(10e4)
10 observe("A")
11 observeAt(range(0, 50, 10e4))
12 withRunResult {
13 result => println(result ∼ "A")
14 }
15 }
16 }

Experiments are controlled by an experiment steerer that also defines the type
of the experiment (parameter scan, optimization, etc. ). A steerer can act auto-
matically, but can also be driven manually using visual analytics techniques (Lu-
boschik et al., 2012, 2014). In order to describe experiments there are two op-
tions in JAMES II. Firstly, experiments can be described programmtically using
JAMES II’ Java API, for instance to set up a simple parameter scan experiment
the code shown in Listing 4.1 p. 72 can be used. Secondly, SESSL (Simulation
Experiment Specification via a Scala Layer), a Domain Specific Language (DSL)
can be used (Ewald and Uhrmacher, 2014). It uses a declarative approach to
describe simulation experiments including analysis, data storage, replication cri-
teria, stop policies and so on. A sample SESSL experiment is shown in Listing 4.2
p. 73 defining the same parameter scan experiment shown in Listing 4.1 p. 72).

Nevertheless, while the experimentation layer is flexible and covers a multi-
tude of different experiment scenarios, it makes it hard to control, document
and provide provenance information automatically. In fact, no documentation or
provenance information is provided for the execution of a simulation experiment
by JAMES II other than data that can be obtained using instrumentation or
analysis. However, this information does contribute very little if at all to prove-
nance information.
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4.2 Extending JAMES II with workflows
In order to cope with the demand for provenance information and documenta-
tion, accompanied by the need for user guidance and assistance workflows map-
ping the modeling and simulation life-cycle to workflows should be integrated
into JAMES II. Herein, documentation and provenance information should be
provided for the whole range from model creation to conducting a simulation
study. In fact, user assistance should be seamlessly derivable from the integrated
workflows.

4.2.1 Layer One — The Model Creation

The process of model creation is a process with a lot of degrees of freedom in terms
of task order, task iterations and task selection. It is highly human interaction
driven with little automatable tasks. However, constraints for a high quality and
credible model still apply. For instance, it is imperative to verify and validate
a model during all stages of modeling, ranging from conceptual, over formal to
executable model. Moreover, if a valid model is changed its valid flag needs to
be revoked and the model has to be revalidated. This revocation also needs to
propagate to subsequent models in order to be concise. Therefore, a declarative
workflow description approach is chosen for defining the process of model creation.

In fact, an artifact-based workflow description is used to specify the model-
ing process derived from the life-cycle models presented in Section 3.5.1 p. 59.
An artifact-based workflow description directs its focus onto the involved arti-
facts and their life-cycle. The life-cycle is subject to restrictions defined through
constraints which influence tasks that can be executed and interact with arti-
facts. Using the artifact-based workflow description allows defining constraints
declaratively.

Defined constraints can be interpreted, e.g., by forward planning algorithms.
Albeit it is possible to generate an imperative workflow based on the artifact-
based description precautions dealing with adaptation have to be taken as arti-
facts with their constraints can easily be added, deleted, or modified. It is up to
the workflow engine to evaluate this description and to derive a sound workflow
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execution.
The artifact notation employed is the one of Guard, Stage and Milestone

(GSM) as presented by Hull et al. (2011).
An artifact represents an entity in a process as a whole, including data and

a life-cycle. The data corresponds to the artifact’s information model which
describes what data an artifact comprises. Each artifact’s life-cycle consists of
stages, guards and milestones. During the life-cycle an artifact goes through
different stages and achieves specific milestones. Stages in turn are activated
by guards, where a guard acts as precondition for stage activation depending
on milestones, data or other active/inactive stages of the artifact. Milestones
summarize the results of a stage, for instance a milestone can indicated whether
a stage completed successfully or not. Stages can be nested and stages on the same
level of nesting can be, as long as their guards allow it, activated simultaneously.

Moreover, the GSM notation also includes the notion of sentry. Sentries can
be seen as global guards that can access multiple artifacts. They can be triggered
internally or externally, due to changes within one or more artifacts, for artifacts
are able to react to milestones and stage activation as well as are able to directly
manipulate milestones. This is particularly helpful when milestone need to be
cascaded between artifacts, e.g., if the validation of a previously successfully val-
idated conceptual model fails the milestone of successful validation of the formal
model needs to be reset to invalid as well.

In order to evolve an artifact’s life-cycle tasks are executed. Which task are
executable, depends on active stage information from artifacts. The result of a
task execution is used to determine milestones for stages. In other words, tasks
are used to change the life-cycle state an artifact is in.

4.2.1.1 Artifacts, Guards, Stages & Milestones

The artifact-based workflow model of the modeling process includes three arti-
facts, the Conceptual Model artifact, the Formal Model artifact, and the Data
artifact. In the following those artifacts and their responsibilities are described.
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Figure 4.2: The stages of the Conceptual Model artifact. A guard is represented as
diamond and is attached to a stage. A stage is represented as rounded
rectangle. Stages can be nested and stages on the same level of nesting
can be activated simultaneously. Milestones are represented as circles
and are used to summarize the results of a stage, e.g., successfully
completed.
The artifact comprises two main stages, capturing model creation and
model verification and validation (V&V). The creation stage is di-
vided further into defining variables and defining dependencies stages.
Moreover, the creation stage has two guards allowing the activation
of that stage and two milestones indicating whether a model is com-
plete or incomplete. The V&V stage has only one guard allowing
the activation only in case of the Complete Model milestone and also
two milestones indicating whether V&V was successful or not.

Conceptual Model The Conceptual Model artifact represents instances of con-
ceptual models during their creation, change, verification and validation (V&V).
It is depicted in Figure 4.2 p. 76. It distinguishes between two main stages, the
creation stage and the V&V stage. Whereas the creation stage is sub-divided into
a Defining Variables and a Defining Dependencies stage. They are defined with
empty guards and no specific milestones, meaning both are active simultaneously,
as long as the model creation stage is active allowing the definition of variables
and dependencies interchangeably.

Both the V&V stage and the creation stage provide two milestones they can
finish with. The latter provides a milestone for an Incomplete Model or Complete
Model. Herein a complete model is a model that can be verified and validated,
meaning variables used in dependencies are defined and variable definition is
sound and complete. However, a complete model milestone does by no means
imply that the model is complete with respect to the question of interest and
the system under study. Moreover, the stage has two guards, whereas either of
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which can activate it. Firstly, the Initiate Model Creation guard activates on
artifact creation. Secondly, the Revise Model guard is active as long as the model
is incomplete or V&V failed.

The V&V stage has a V&V succeeded and a V&V failed milestone, indicating
whether the validation or verification of the conceptual model was successful
or not. In case it failed it is expected that the model is revised and artifact
milestones that require a successful validated and verified conceptual model need
to be revoked. The stage features a guard that allows V&V to be active in case
a complete model is available, meaning the Complete Model milestone is set.

V&V Formal 
Model

V&V succeeded
V&V

Complete
Model

V&V failed

Creating Formal Model

Incomplete
Model

Revise
Model

Selecting
Formalism Building Model

Initiate
Model

Creation

Complete
Model

Figure 4.3: The stages of the Formal Model artifact. The artifact comprises
two main stages, capturing model creation and model verification and
validation (V&V). The creation stage is divided further into selecting
a formalism and building model stages. Moreover, the creation stage
has two guards allowing the activation of that stage and two mile-
stones indicating whether a model is complete or incomplete. The
V&V stage has only one guard allowing the activation only in case
of the Complete Model milestone and also two milestones indicating
whether V&V was successful or not.

Formal Model The Formal Model artifact depicted in Figure 4.3 p. 77 captures
the process of creating, revising, verifying and validating of a formal model.

Analogously to the Conceptual Model artifact, it distinguishes between
two main stages, the creation stage and the V&V stage. Whereas the creation
stage is also sub-divided into a two sub-stages, namely Selecting Formalism and a
Building Model stage. The former is defined with an empty guard and a milestone
indicating that a formalism is selected. The latter defines a guard that expects
the selected formalism milestone of the previous stage before it can be activated.

Again, similar to the Conceptual Model both the V&V stage and the creation
stage provide two milestones. The creation stage provides a milestone for an
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Incomplete Model or Complete Model. A complete model is a model that can be
verified and validated, i.e., no syntactic errors exist. Though, a complete model
milestone does not imply that the model is complete or semantically sound with
respect to conceptual model it resembles. Additionally, the stage has two guards,
either of which can activate it. On the one hand there is the Initiate Model
Creation guard activates on artifact creation. On the other hand there is the
Revise Model guard which active as long as the model is incomplete or V&V
failed.

The V&V stage has a V&V succeeded and a V&V failed milestone, indicating
whether the validation or verification of the formal model was successful or not.
In case it was not successful, it is expected that the model is revised. The
stage features a guard that allows V&V to be active in case a complete model is
available, meaning the Complete Model milestone is set.

Collecting 
Data

Annotating
Data

Analyzing/Preparing
Data

Figure 4.4: Stages of the Data artifact. The artifact comprises three stages, cap-
turing the collection of data, the annotation of collected data and the
analysis and preparation of data. The collecting data stage maps the
process of data collecting, e.g., from literature, wet-lab experiments,
etc. . Whereas the annotation stage and analysis stage base on col-
lected data. Those stages are used to provide data that can be used
in simulation experiments, verification or validation.

Data The Data artifact, shown in Figure 4.4 p. 78, is responsible for handling
data that is associated with and its stages map any kind of external data that
is important for the creation of Conceptual Model or Formal Model. It refers to
heterogeneous information sources, whereas such sources can be, e.g.,:

• specific literature, for instance about the system to be modeled

• other already existing models, for instance self-created, retrieved from liter-
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ature or model repositories, e.g., the BioModels Database (Le Novere et al.,
2006),

• experiment description, for instance retrieved from literature, self-created or
from experiment repositories, e.g., the myExperiment Project (Roure et al.,
2008; Goble et al., 2010),

• data obtained in experiments, wet-lab or in silico experiments, such as sim-
ulation experiments,

• notes and media such as images and video, e.g., taken during conducting
experiments

Each instance of those types becomes its own Data artifact instance.
The Data artifact consists of three stages, the Collecting Data, Annotating

Data and Analyzing/Preparing Data stage. The first is meant for retrieving and
collection data, by e.g., studying literature, querying a model repository or con-
ducting a wet-lab experiment. Its guard activates this stage directly on artifact
instantiation. Once data is collected the collected milestone of that stage is set
and the other two stages can be activated. Data can be annotated, analyzed
and prepared interchangeably and multiple times. Prepared data can be used by
other artifact stages such as the V&V stages of the Formal Model or Conceptual
Model artifact, for instance wet-lab data can be used in the V&V stage of the
Formal Model artifact in order to validate simulation trajectories with the real
system.

4.2.1.2 Artifacts and their interaction

Each artifact has a life-cycle of its own. However, artifacts can influence each
others’ life-cycle as well as interact with each other.

Figure 4.5 p. 80 illustrates a selection of interaction and dependencies be-
tween artifacts. Herein, different interaction and dependencies are marked using
different colors. Brown arrows indicate a local interaction between stages of one
artifact, while green arrows indicate an interaction between stages of different
artifacts. Lastly, blue arrows indicate the possible use of an artifact that has
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Figure 4.5: Some interactions between artifacts are shown. Brown arrows indi-
cate a local interaction between stages of one artifact, e.g., a guard
relying on a specific milestone. Green arrows indicate an interaction
between stages of different artifacts, here it is shown for the Con-
ceptual Model and Formal Model artifact and depicting the influence
of a failed and succeeded V&V stage of the Conceptual Model stage
on milestones and guards of the Formal Model stage. Blue arrows
indicate the use of an artifact in a specific milestone state by other
artifacts, for instance Prepared Data as input to the V&V stages of
the Conceptual Model and Formal Model artifact.

reached a specific milestone by other artifacts. The illustration is not exhaustive
to avoid cluttering. For instance, the local interaction between the milestone
of Collecting Data and the guards of Annotating Data and Analyzing/Preparing
Data of the Data artifact is not shown.

Local interactions, i.e., indicated by brown arrows are realized using guards
and milestones. In the Conceptual Model artifact, the Creating Conceptual Model
stage is activated on artifact instantiation. It allows tasks able to define a concep-
tual model, e.g., interactively using a graph based editor, to be executed. Also,
when this stage activates the two sub-stages, Defining Variables and Defining De-
pendencies are also active. The task that is executed during one of those stages
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will return an incomplete or complete model eventually. This will trigger the
corresponding milestone to be set. As long as the Incomplete Model milestone is
set, the V&V stage’s guard prevents the activation of that stage. The only option
left is to revise the Conceptual Model further, reentering the first stage until a
complete model emerges.

Once the Complete Model milestone is set the V&V stage’s guard releases
that stage to be activated. There can be multiple tasks that are applicable to
the active V&V stage, depending on the model and additional Data artifacts.
Each of those tasks can be selected to be executed simultaneously. The tasks
will report on the outcome of the V&V and result in the V&V succeeded or V&V
failed milestone accordingly.

In case of a failed V&V stage an incomplete milestone of the creation stage is
triggered, automatically triggering the revise model guard allowing the option of
revising the Conceptual Model. Note that the triggers and dependencies like this
are defined using sentries.

The Formal Model artifact exhibits similar local interaction. It automatically
activates the Creating Formal Model stage on artifact instantiation. However,
only one of the two sub-stages will be also activated automatically, namely the
Selecting Formalism stage. The other stage, Building Model, has a guard that
allows activation only after a formalism is selected in the other stage. Once a
formalism is selected, hence the Building Model stage is active, tasks that support
the selected formalism and creation of a formal model can be used to build it.
Those tasks will result in an Incomplete or Complete Model, setting the corre-
sponding milestone of the model creation stage.

Analogously to the Conceptual Model artifact, the V&V of the Formal Model
artifact is only activated once the Complete Model milestone is set, leaving only
the revision of the model until the complete model emerges. Consequently, once
the complete model milestone is set the V&V stage is activated. V&V tasks
can be executed during this stage and will result in either successful or failed
verification or validation. Milestones of the V&V stage will be set accordingly
to those results. If the V&V failed, the incomplete model milestone is set and
results in the revision of the model. The last interaction is again handled using
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a sentry.
Sentries can be used for local interactions but are also used when artifacts need

to interact with each other, as indicated using green arrows in Figure 4.5 p. 80. As
an example, the Formal Model artifact depends substantially on the Conceptual
Model artifact. That is, the V&V stage of the Formal Model artifact can only be
active if the V&V stage of the Conceptual Model succeeded. Consequently, the
Incomplete Model milestone of the Formal Model artifact is triggered by a failed
V&V stage of the Conceptual Model. The same happens if the Conceptual Model
is incomplete the Formal Model is so too. Moreover, the Formal Model is also
incomplete if the Conceptual Model reaches a complete milestone after the Formal
Model was completed, indicating a revision of the Conceptual Model which should
automatically lead to a revision of the Formal Model, too.

Finally, there are the dependencies between artifacts that indicate the use of
an artifact by another, represented as blue arrows. In Figure 3.7 p. 60 such a
dependency can be observed between the Data artifact, which can be used, by
each of the V&V stages of the Formal Model and Conceptual Model artifacts.
This can happen, e.g., when a Data artifact captures data obtained in a wet-
lab experiment and this data is used as comparison data set for validation of
the developed Formal Model. However, this is only one use case of using a Data
artifact. Since the Data artifact can also represent another formal model described
in literature, it could be used as starting point for deriving an extended formal
model created by the Formal Model artifact.

4.2.1.3 Tasks

Until now the artifact-based workflow description uses Guards, Stages and Mile-
stones and acts as a meta-model to the process described. However, the life-cycle
of an artifact is driven by tasks that can take place during specific stages and
trigger specific milestones. Execution order and executability is controlled by the
GSM meta-model whereas tasks can interact (read, change and add) with the
artifact’s data.

Tasks can be categorized as local or global tasks. The former are only executed
in the context of one artifact only relying only on information and stages from
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that artifact. Local tasks only affect that artifact in terms of milestones it triggers
and data. On the other hand, global tasks are able to interact with one or more
artifacts, i.e., requiring specific stages of different artifacts to be active. Global
tasks can in return also affect milestones in multiple artifacts.

In general, there can be any number of tasks, each of which relying on condi-
tions under which it can be executed. Those conditions can be:

• a specific stage is active

• a specific milestone of a specific artifact is reached or not yet reached

• specific data in one or more artifact is available

• a combination of the above (i.e., one ore more artifacts with multiple active
stages, multiple reached milestone and specific data available)

The integration of the workflow model presented here into JAMES II com-
prises the following possible tasks:

• a graph editor/mind map editor for building the conceptual model

• Editor for building the formal model, e.g., the MLRules model editor

• V&V techniques as presented by Balci (1998) and in particular the ones
provided by JAMES II using the FAMVal framework (Leye and Uhrmacher,
2010)

• V&V techniques, e.g., statistical model checking, face-validation and cross-
validation for the formal model (Leye and Uhrmacher, 2010; Leye et al.,
2010)

• analysis techniques for data preparation

• model retrieval techniques to access model repositories
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4.2.2 Layer Two — The Simulation Experiment

4.2.2.1 The WorMS Workflow Management Framework

WorMS (Workflows for Modeling & Simulation) is a framework that allows the
integration of workflows in modeling and simulation software (Rybacki et al.,
2011). It uses techniques and concepts from business process modeling as well as
scientific workflow. For example the description of workflows is more control-flow
oriented than it is data-flow oriented, however it provides means to handle data-
flow as well. The underlying workflow representation bases on workflow nets (Van
Der Aalst and Van Hee, 2004), allowing easy verification and workflow analysis.

WorMS is built using exchangeable components (see Figure 5.3 p. 108), al-
lowing the extension and adaptation of the system. In a nutshell the framework
consists of a Workflow Engine, different Monitoring components, a Workflow Ex-
ecutor , a Data Store and a workflow model represented in the Intermediate Rep-
resentation. Herein the Workflow Engine manages and controls the scheduling
and execution of workflows, while the Workflow Executor in orchestration with
a Data Store are responsible for the actual execution of a workflow. Essential to
provide documentation and provenance for the execution of a workflow are the
Monitoring components that are responsible for recording necessary information,
such as system information, software used, work item execution order, work item
input/output data and so on.

Additionally, WorMS provides components and extension points to provide
Security and User/Role Management, Converter , Administration, Analysis and
Workflow Repository functionality. WorMS uses plug-ins to integrate and ex-
change those components similarly to JAMES II. However, the plug-in mecha-
nism is also exchangeable and abstracted by the Plug-in Provider . This mech-
anism allows actual plug-in systems, e.g., the registry of JAMES II can be in-
tegrated, keeping the framework flexible within different Modeling & Simulation
systems.

WorMS is used for integrating workflows into JAMES II in order to provide
documentation, reproducibility and provenance to simulation studies conducted
with JAMES II. A more technical and thorough description of WorMS can be
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found in Section 5.2.1 p. 107.

4.2.2.2 Simulation Workflow with Template and Frames

Execute
Simulation Configuration

Specification

Evaluation
Generate

Configuration

(a) Example of a workflow describing an exper-
iment for evaluating a simulation algorithm

Execute
Simulation Configuration

Specification

Parameter 
Sweep Step

Generate Sweep
Configuration

(b) Example of Workflow describing a plain pa-
rameter sweep experiment

Figure 4.6: Experiment workflows for (a) evaluating a simulation algorithm and
(b) a Workflow describing a plain parameter sweep experiment

As already mentioned, JAMES II provides implicitly defined workflows hid-
den inside its experimentation layer implementation. In general, there are two
different options for integrating workflows into the experimentation layer of
JAMES II. Firstly, specific parts of the existing experimentation layer could be
replaced by workflows, e.g., the calculation of experiment variables or the orches-
tration of experiment execution (Rybacki et al., 2012a). Secondly, the entire ex-
perimentation layer could be replaced by a workflow-based experimentation layer
implementation, making the experimentation process explicitly representable as
workflow. A workflow based experimentation layer would exhibit flexibility, ease
of changability, adaptation and extension. Additionally, it would also lead to an
automatically documentable simulation experiment.

Herein the latter is chosen because it closes the gap between layer one and
layer two, making guidance and documentation seamless. It also provides a more
detailed and more complete documentation trace throughout an entire simulation
study. In order to achieve this, WorMS is introduced as it is specifically tailored
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to support workflows in Modeling & Simulation software.
The presented workflow description is oriented towards the Six Tasks of a

Simulation Experiment presented in Section 3.5.2 p. 63 and bases on the implicit
experimentation process that is already present in the existing experimentation
layer (see Figure 4.1 p. 70 for the different levels and interacting components).

Specification Having a workflow covering the Six Tasks of a Simulation Exper-
iment, i.e., specification, configuration, data collection, model execution, analysis
and evaluation allows its reuse in any experiment workflow.

For instance, assuming an experiment for evaluating a simulation algorithm
the workflow shown in Figure 4.6(a) p. 85 would be used, whereas for a simple
parameter sweep experiment the workflow shown in Figure 4.6(b) p. 85 is applied.
An apparent observation is the similarity of the shown workflows for two different
experiments. It clearly exhibits three of the six tasks, i.e., specification, config-
uration and evaluation at the top level of the workflows covering the experiment
and simulation configuration level in the current experimentation layer. They
also show the Execute Simulation Configuration task as a crucial part of the en-
tire experiment workflow, comprising the remaining three tasks, model execution,
data collection and analysis.

However, an essential part of any simulation experiment is the simulation
experiment specification describing the objectives and goals of the actual exper-
iment to conduct, without which a simulation experiment cannot be conducted.
Which makes it a perfect entry point for the experimentation layer workflow.

Configuration Task Based on the specification different simulation configu-
ration can be derived and executed, e.g., configurations evaluating a simulation
algorithm by testing different executable models for accuracy or different simu-
lation algorithms for performance or sweeping over a model’s parameter space.
Hence, the configuration task is placed right after the specification in the top-level
experimentation workflow. It is also connected to the workflow task responsible
for the evaluation of already executed simulation runs in order to provide more
or adjusted configurations for further simulation runs.
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Evaluation Task Also, at the top-level workflow, the evaluation workflow task,
responsible for mapping the evaluation task of the Six Tasks of a Simulation Ex-
periment onto the experimentation layer workflow. It evaluates simulation data
from one for multiple runs and configurations according to the experiment’s spec-
ification, that is the objectives and goals. It directly influences the generation of
subsequent simulation configurations, hence works in concert with the configura-
tion workflow task.

Reserve

Resources

Replications

Execute
Simulation Run

Done
Replications

Figure 4.7: The workflow handling the execution of a specific simulation config-
uration as presented in (Rybacki et al., 2012a). Execution resources,
which can be, e.g., machines on a grid, are explicitly modeled.

Model Execution Task Part of the Six Tasks of a Simulation Experiment is
the model execution, which is represented within the Execute Simulation Con-
figuration task in concert with Data Collection and Analysis. It comprises the
experimentation layer level Simulation Run. A workflow description to repre-
sent the level of Simulation Run was already been proposed in (Rybacki et al.,
2012a). It features the explicit handling of available compute resources within
the workflow and is depicted in Figure 4.7 p. 87. Compute resource can be, e.g.,
another computer or a CPU-core on the current machine. This workflow is used
as starting point for extending it further to also include the remaining tasks of a
simulation experiment.

However, resource handling such as allocation, scheduling and so on is pulled
out from this workflow. Resource management is instead explicitly handled by
the workflow management system WorMS. In particular this is handled by the
Workflow Executor (see Section 5.2.1.3 p. 122 and Section 5.2.2 p. 147). Which
results in the simplified workflow shown in Figure 4.8 p. 88 as starting point for
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Replications Execute
Simulation Run

Done
Replications

Figure 4.8: The same workflow as shown in Figure 4.7 p. 87 with explicit execu-
tion resource handling removed.

Replications Execute
Simulation Run

Simulation
Step Stop CriterionSimulation Run

Setup

Figure 4.9: The Execute Simulation Run activity refined as a more detailed work-
flow.

further extension.
The workflow can further be extended using a sub-workflow for the Execute

Simulation Run task as depicted in Figure 4.9 p. 88. The sub-workflow replaces
the Execute Simulation Run by another workflow that describes the simulation
experiment at the level of detail of a Simulation Step. It also incorporates ad-
ditional tasks such as checks whether more simulation steps need to be taken
using a simulation Stop Criterion and the Simulation Run Setup task, which is
responsible for instantiating the executable model and for providing a suitable
simulation algorithm used by the Simulation Step task. A simulation algorithm
can be chosen using different strategies from the set of simulation algorithms
applicable for the execution of the model at hand.

Firstly, an algorithm can be selected randomly from the set of simulation algo-
rithms. Secondly, an algorithm is specified in advance in the Specification Task.
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Replications Execute
Simulation Run

Replication
Criterion

Configuration
Setup

Execute
Simulation Configuration

Figure 4.10: Extending the workflow from Figure 4.8 p. 88 with the tasks Con-
figuration Setup and Replication Criterion. Thereby, a new task for
the given sub-workflow is defined, i.e., Execute Simulation Configu-
ration.

Lastly, an algorithm can be selected based on performance. This can happen
statically using a performance index specified by developer of the simulation al-
gorithm, dynamically using previous simulation runs as reference (Ewald, 2012)
or adaptively during runtime (Helms et al., 2013, 2015).

The previous step refined the Execute Simulation Run. Next the workflow is
extended by additional tasks, i.e., the Configuration Setup task and the Replica-
tion Criterion task (see Figure 4.10 p. 89). The latter is responsible for deter-
mining whether enough replications (i.e., simulation runs for one configuration)
are already executed or whether more are needed. The first is responsible for
configuring the simulation run, which includes, e.g., selecting model parameters
based on the experiments specification and evaluation tasks.

Data Collection Task In order to cope with the responsibilities of the
Data Collection Task the experimentation workflow is extended further. In par-
ticular the simulation run sub-workflow is extended by a data collection task
which is inserted between Simulation Step and Stop Criterion as shown in Fig-
ure 4.11 p. 90. It is responsible for instrumenting the current simulation run,
observing model and simulation behavior or data according to the experiment’s
specification.
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Replications Execute
Simulation Run

Simulation
Step Stop Criterion

Simulation Run
Setup

Data
Collection

Figure 4.11: Extending the workflow further by incorporating a Data Collection
template task

Simulation
Step Stop Criterion

Simulation Run
Setup

Data
Collection

Single Run Analysis
Stop Determinator

Single Run
Analysis

Figure 4.12: Replacing the Stop Criterion task by a sub-workflow incorporating
a Single Run Analysis template task
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Replications Execute
Simulation Run

Replication
Criterion

Configuration
Setup

Multi Run Analysis
Replication Determinator

Multi Run
Analysis

Figure 4.13: Replacing the Replication Criterion task with a sub-workflow incor-
porating a Multi Run Analysis template task

Analysis Task The analysis task is addressed by replacing the Stop Crite-
rion and Replication Criterion workflow tasks by sub-workflows as shown in
Figure 4.12 p. 90 and Figure 4.13 p. 91. The sub-workflow replacing the Stop
Criterion task handles the analysis for single simulation runs, meaning that for
analysis purposes only the data from the current simulation run is used. Results
from the analysis can then in return be used by the Single Run Analysis Stop
Determinator, which functions as Stop Criterion. The sub-workflow replacing
the Replication Criterion task is responsible for handling analysis that may use
data from multiple simulation runs. The Multi Run Analysis Replication Deter-
minator replaces the Replication Criterion and may make use of results provided
by the previous multi run analysis.

Putting it all together leads to the overall experimentation workflow depicted
in Figure 4.14 p. 93. It exhibits all necessary constructs to implement the
Six Tasks of a Simulation Experiment represented as a WorMS workflow.

To avoid the creation of a dedicated workflow for each possible experiment
conductible in JAMES II and to cope with different algorithms for the same
experiments, without redefining the experiments workflow, the concept of tem-
plates and frames is employed (Bowers et al., 2006). The presented workflow
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depicts template tasks with an additional dashed inside border. Using templates
and frames allows to create one experiment workflow template covering a broad
range of experiments. Further information about templates and frames and its
implementation in WorMS can be found in 5.2.1.1 p. 117.

4.3 Summary

In this chapter the Modeling & Simulation framework JAMES II was introduced
and determined how well it supports the process of creating valid simulation
models as well as conducting simulation experiments with regard to providing
assistance, documentation and provenance information. It also dealt with the
extension of JAMES II by proposing workflows for layer one and layer two of a
simulation study.

JAMES II is a framework for conducting simulation studies, ranging from
creating models to executing simulation experiments and is written in Java
and can be used standalone or as library. It supports different modeling for-
malisms and simulation algorithms employing a plug-in-based architecture, ren-
dering JAMES II highly extensible and customizable.

The model creation process (layer one) is supported in a highly unconstrained
fashion in JAMES II. In fact, JAMES II does not restrict model development
to any specific pattern. It however provides different options to create models.
There are textural and graphical editors as well as a Java-based model API for
specifying simulation models. Assistance during model creation is provided by
each of those options independently, e.g., by highlighting syntax and syntax or
semantic checks. Besides that, there is no further assistance or predefined process
defined in JAMES II for developing simulation models. Nevertheless, it provides
all the necessary tools to create valid and verified simulation models. For instance,
JAMES II supports a wide range of validation experiments and methods.

For layer two, which deals with the execution of a simulation experiment
given a simulation model, JAMES II ships with a flexible experimentation layer.
Which enables the execution of different types of experiments, e.g., validation and
optimization experiments. The experimentation layer follows the six tasks of a
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Figure 4.14: Overall workflow template including sub-workflows for a simulation
experiment in JAMES II.
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simulation experiment and represents an experiment on three different levels. On
the top level the experiment with its specification and evaluation is handled,
before it is divided into a number of different simulation configurations that
then again are divided into a number of replications or simulation runs on the
third level.

Experiments can be defined programmatically or declaratively using a dedi-
cated domain specific language (SESSL) in JAMES II. Albeit the flexibility of
the existing experimentation layer of JAMES II, the involved process is only
implicitly defined and only depends on the used plug-ins and their dependen-
cies. This makes it hard to control, document, monitor and provide provenance
information automatically and completely.

To cope with those drawbacks, processes for layer one and layer two explicit
defined as workflows are proposed to be integrated into JAMES II. For layer one
dealing with the process of creating a simulation model, which is a highly flexible
process with a lot of degrees of freedom and highly human interaction driven, a
declarative workflow approach is employed. In fact, the GSM (guards, stages and
milestones) artifact-based notation is used to describe a workflow for layer one
oriented towards established life-cycle models. GSM focuses on involved artifacts
and their life-cycle, which is constrained using milestones and guards. An artifact
itself represents an entity in the described process as a whole including data and
different stages throughout its life-cycle. During its life-cycle, an artifact can
be in different stages and fulfill multiple milestones, where the latter summarize
results of the stages they belong to.

In order to drive the life-cycle forward tasks are executed which depend on
active milestones, stages or data of an artifact and can lead to milestones after
execution, affecting the life-cycle of an artifact. Tasks are loosely coupled to
the life-cycle of an artifact and are responsible for the actual data processing,
data generation or data alteration. For instance, such tasks could be the editing,
verifying and validating of a model or collecting and preparing data for further
use in simulation experiments or for validation purposes.

The herein proposed artifact-based workflow for layer one bases on established
life-cycle models from the domain of Modeling & Simulation and involves the
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Conceptual Model artifact, the Formal Model artifact and the Data artifact. The
Conceptual Model artifact captures the creation of a valid and verified conceptual
model, distinguishing between model creation, model alteration and model vali-
dation stages. The Formal Model artifact represents the creation of a valid and
verified formal model based on the associated conceptual model, distinguishing
between model creation, model alteration and also model validation. Lastly, the
Data artifact deals with the collection, preparation and validation of data. Data
can be collected, e.g., from literature, wet-lab experiments or other simulation
experiments.

The process of executing a simulation experiment (layer two) involves in con-
trast to the model creation process little to no human interaction and the exe-
cution pattern is rather strict. Thus, a task-based workflow description is more
suited than an artifact-based workflow description. In order to integrate such
workflows into JAMES II, WorMS was developed.

WorMS is a framework allowing the integration of task-based workflows into
Modeling & Simulation software. In particular WorMS builds on an extension
of workflow nets internally, which combines techniques from business process
modeling and scientific workflows, providing means to manage control and data
flow. Similar to JAMES II, it builds on plug-ins and consists of components such
as, e.g., Workflow Engine, Workflow Executor , Data Store and components for
Security and User/Role Management, Converter and Analysis. Using WorMS
enables the creation of documentation and provenance information for executed
workflows automatically.

In order to extend JAMES II to capture the execution of a simulation ex-
periment as workflow, a workflow based on workflow nets supporting templates
and frames is proposed. Templates and frames allow for a definition of workflow
tasks that do not need to be defined during workflow definition but can be filled
with actual tasks during execution, based on e.g., parameters, a specification or
an objective, allowing to define one workflow covering a multitude of different
experimentation scenarios. The herein proposed workflow resembles the entire
functionality of the existing experimentation layer of JAMES II making the
process clearly defined and explicit. Nevertheless, leaving room for easy adap-
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tation and extension and making guidance and documentation seamless between
layer one and layer two. The experiment workflow comprises tasks, templates,
frames and sub-workflows for specification, configuration, evaluation, model ex-
ecution, data collection and analysis. Thus orienting itself towards the six tasks
of a simulation experiment which is also already used as basis in the current
experimentation layer.



5
Implementation

Unlightening: (v) learning
something that makes you dumber

Daniel Dalton

5.1 Layer One — Artifact-based workflow implemen-
tation

The workflow for layer one is described using artifacts. An implementation man-
aging such workflows and supporting the execution has to deal with the declara-
tive nature of the artifact-based approach. It also has to cope with the interaction
with human entities which perform activities of the workflow and therefore are
not controllable by the management system.

An interesting option for implementing such a system poses the use of rule
based systems. In Java the Java Specification Request (JSR) 94 (Toussaint, 2003)
lends itself as starting point for using rule based engines in Java. JSR 94 provides
a unified API for accessing and using rule based engines allowing different engines
supporting JSR 94 to interoperate with each other.

Using a rule based engine allows declarative programming, which fits the
declarative nature of an artifact-based workflow well. It helps to specify what to
do instead of how to do it, leaving the execution up to the used rule engine. This
in return leads to solutions for difficult problems that are easy to express, easy

97
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to understand and easy to read by others.
Moreover, rule based engine separate logic and data, putting the logic into

rules and data into domain objects or facts. This allows for easier maintaining
of logic and makes it easy to define cross domain logic, which would be harder
if the logic was integrated directly into the domain object. Furthermore, by
separating logic and data, logic is centralized and bundled at one point, typically
in a rules repository, rather than hidden within domain objects and distributed
across different source files.

Typically using the Rete algorithm or a variation of it rule engines are very
efficient and scalable in matching rule patterns in domain objects or facts (Forgy,
1982).

Ultimately, a rule based engine is perfectly equipped for collecting provenance
information by providing an explanation facility. It monitors all decisions it
made and why it made them during execution, basically logging which rules were
applied for a given set of facts and why in which order.

There exists a number of rule engines that support the JSR 94, e.g., JESS,
ILOG JRules, RuleML and Drools (Orchard, 2001; Friedman-Hill, 2003; Boyer
and Mili, 2011; Boley et al., 2010; Proctor, 2012). They all support JSR 94 and
share a common base of functionality only differing in specific areas, for a general
comparison on rule engines and their performance please refer to Liang et al.
(2009).

5.1.1 Architecture

From the list of available rule engines this implementation architecture uses
Drools as it is also used by other implementations of artifact-based workflow
systems (Ngamakeur et al., 2012). However, exchanging it for any of the other
engines should be possible without too much effort, because of JSR 94.

When using a rule engine to create a framework for the management of artifact-
based workflows that follow the Guard-Stages-Milestone paradigm, entities of the
artifact-based workflow need to be understandable and usable by the rule engine.
An artifact-based workflow consists of artifacts and tasks, where the first consist
of guards (sentries), stages, milestones (see Section 4.2.1 p. 74). In order to use
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Figure 5.1: Overview of framework for executing artifact-based workflows
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Listing 5.1: Drools Rule Examples for a guard enabling and disabling the stage
of verification and validation for the conceptual model artifact using
the Drools DSL.

1 rule "guard: verification validation conceptual model stage enable"
2 when
3 // get the conceputal model artifact and bind it
4 $artifact: ConceptualModel()
5 // get the milestone "Complete Model" for the conceptual model artifact and bind it
6 $milestone: Milestone( type == "Complete Model", artifact == $artifact )
7 // check that the stage "Verifiaction Validation" is not enabled
8 not(Stage( type == "Verification Validation", artifact == $artifact ))
9 then
10 // enable stage
11 insert(new Stage("Verification Validation", $artifact));
12 end
13
14 rule "guard: verification validation conceptual model stage disable"
15 when
16 // get the conceptual model artifact and bind it
17 $artifact: ConceptualModel()
18 // check that the milestone "Complete Model" is not set for the conceptual model
19 not(Milestone( type == "Complete Model", artifact == $artifact ))
20 // get the "Verification Validation" stage of the conceptual model
21 $stage: Stage( type == "Verification Validation", artifact == $artifact )
22 then
23 // disable stage
24 retract($stage);
25 end

this in a rule engine those entities need to be mapped to entities of the rule engine.
Drools works with a set of rules, which work on a set of facts called knowledge.

It also supports events which essentially are translated into facts rules react on.
Drools executes rules on facts generating or changing facts, which may trigger
more rules until no more rule can be applied.

In Figure 5.1 p. 99 the architecture of the framework is depicted. It shows
the mapping between entities with a dashed arrow and interaction with solid
arrows. The main component poses the rule engine Drools and its entities Facts
and Rules.

The components of an artifact-based workflow, i.e., artifacts, milestones and
stages are represented as facts and guards are converted to rules. Tasks however
are separated into two types of tasks. Firstly, there are tasks that are triggered
and executed directly using facts or rules and are called Actions hereafter. Sec-
ondly, there are tasks that are only activated by facts or rules but their execution
needs to be explicitly triggered, e.g., by a human. Albeit tasks and actions are
part of the artifact-based workflow they are not mapped to entities of the Drools
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Listing 5.2: Drools Rule Example for a guard enabling and disabling the stage
of verification and validation for the formal model artifact across
artifacts using the Drools DSL.

1 rule "guard: verification validation formal model stage enable"
2 when
3 // get the conceptual model artifact
4 $conceptualModel: ConceptualModel()
5 // get the formal model artifact
6 $formalModel: FormalModel()
7 // get the "Complete Model" milestone for the formal model
8 $milestoneFormalModel: Milestone( type == "Complete Model", artifact == $formalModel )
9 // get the "V&V successful" milestone for the conceptual model
10 $milestoneVVConceptualModel: Milestone( type == "V&V successful", artifact ==

$conceptualModel )
11 // check that the "Verification Validation" stage for the formal model is not enabled
12 not(Stage( type == "Verification Validation", artifact == $formalModel ))
13 then
14 insert(new Stage("Verification Validation", $formalModel));
15 end
16
17 rule "guard: verification validation formal model stage disable"
18 when
19 // get the conceptual model artifact
20 $conceptualModel: ConceptualModel()
21 // get the formal model artifact
22 $formalModel: FormalModel()
23 // check that ther milestone "Complete Model" for the formal Model or "V&V successful" for

the conceptual model is not set
24 not(Milestone( type == "Complete Model", artifact == $formalModel )) or
25 not(Milestone( type == "V&V successful", artifact == $conceptualModel ))
26 // get the "Verification Validation" stage of the formal model
27 $stage: Stage( type == "Verification Validation", artifact == $formalModel )
28 then
29 // disable stage
30 retract($stage)
31 end

rules engine. They are kept separately.

The transformation from milestones and stages to facts is straightforward,
however guards need to be expressed using rules written in the Drools rules
API, e.g., using the Drools DSL (domain specific language). Listings 5.1 p. 100
and 5.2 p. 101 illustrate how the guard that enables the V&V of the conceptual
and formal model respectively is written using the Drools rules DSL. A rule
has a name and consists of a when and a then part. Firstly, the when part
specifies the pre-condition, that is built using facts, under which the rule can be
applied. Secondly, the then part specifies what happens when the pre-condition
is met, i.e., changing or adding facts. For instance, in Listing 5.1 p. 100 two
rules are defined. The first rule manages the activation of the V&V stage, while
the second rule is responsible for disabling that stage. A stage or milestone is
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defined as enabled if the matching fact is present and is disabled if the fact is
missing. Rule one expects the following facts, i.e., the conceptual model artifact,
the Complete Model artifact associated to that artifact and that the V&V stage
is not already enabled (designated by the absence of a matching stage fact). If
all conditions hold, a new stage fact is inserted. Rule two disables the V&V stage
in case the milestone for Complete Model is missing (absent fact) but the V&V
stage is enabled.

For each guard and sentry of the artifact-based workflow rules must be cre-
ated and for each milestone, stage and artifact facts need to be defined. Drools
will then apply rules based on facts and change facts, e.g., enabling and dis-
abling stages and milestones, based on rules. Therefore, Drools is responsible for
controlling the life-cycle of the artifacts.

However, it is not responsible for executing actual tasks or actions. This is
handled outside of Drools. Here, tasks monitor specific facts, such as a stage or
milestone which they require to be executable. For instance, the task involving
the verification and validation of a conceptual model will only be executable if
the V&V stage fact is available, which does not imply it will be executed if that
stage is active. A user might decide to execute it later or not at all. However, if
tasks are supposed to be executed on specific facts, an action needs to be used
instead. Actions are tasks that depend on facts but are executed as soon as the
fact holds.

In order to interact with facts tasks and actions can trigger events which are
then turned into facts in Drools possibly triggering subsequent rules as a reaction
to it. For instance, the V&V task might trigger a V&V-failed or success event,
which will trigger the failed or success milestone facts. Additionally, events can
also be triggered externally, e.g., as a reaction to changes to the environment.

Putting it all together leads to the process illustrated in Figure 5.2 p. 103. In
a nutshell, for a given workflow there are a number of facts as well as a number
of rules to begin with. The Drools rules engine will then apply rules on those
facts, changing and creating new facts over time. While facts are changing and
emerge, tasks and actions can become enabled or disabled depending on those
facts. If an action is enabled it will be executed directly, while a task needs to
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artifact-based workflow management system
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be explicitly executed, e.g., by a user clicking a button in case of a computerized
task or executed directly as human task by the user. Both, action and task, might
trigger events, such as an event finished, which will end up as new or changed
facts in the Drools system, leading to a reevaluation of applicable rules and their
application.

5.1.2 Integration into JAMES II

When integrating the artifact-based workflow framework into JAMES II, a cou-
ple of changes need to be made to JAMES II. There are two areas that need
adjusting. Firstly, plug-ins of JAMES II need to be made aware of restrictions
that may occur to them based on facts available in the workflow system. This can
be achieved by hooking into the plug-in registry and proxying all plug-in requests
passing them to an additional filter pass based on the availability of facts. This
can be automated. However which plug-in depends on what facts needs to be
defined before-hand.

Secondly, the graphical user interface (GUI) of JAMES II needs to be adapted
to enable and disable buttons, menus, menu options and so on for specific tasks
based on available facts. For instance, a Validate Experiment button should only
be enabled, if the model artifact that represents the model to execute has the
V&V stage enabled. Moreover, combining this will lead to an enhanced user
experience, directly showing what options of interaction exists at any point in
time. Even further, the rules engine and facts can be used to create an execution
plan that in return can be used to guide the user through a series of tasks leading,
e.g., to a valid and verified model.

Nevertheless, a challenging part of the integration is the actual translation of
artifacts, milestones and stages to facts and more importantly guards and sentries
to rules. This can either be done automatically or manually, whereas the manual
translation can be tedious and error prone. When creating rules, it is important
that the plausibility and consistency of artifact guards and sentries is reflected
and hold when defining the rules. It needs to be ensured, e.g., that stages cannot
be enabled given the defined rules if they cannot be enabled using the artifact
based description, thus not violating established contracts.
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Moreover, once rules and facts are derived, preferably automatically from the
artifact-based workflow, tasks and actions have to be identified and adapted to
work with facts and events rather than with the artifacts directly.

5.2 Layer Two — Imperative task-based workflow
implementation

In order to support workflows from the domain of Modeling & Simula-
tion standards suggested for general workflow systems need to be consid-
ered (Hollingsworth et al., 2004). Also requirements specific to workflows as well
as scientific workflows and Modeling & Simulation workflows in particular need
to be taken into account, when designing and implementing a workflow system
for the use in Modeling & Simulation software (Rybacki et al., 2010).

On the one hand, adapting and using existing systems supporting workflows,
e.g., Project Trident (Barga et al., 2008a), Taverna (Hull et al., 2006; Oinn et al.,
2006), Kepler (Altintas et al., 2004; Ludäscher et al., 2006) is one way to integrate
workflows into Modeling & Simulation software. The benefits are that many
functionalities are already provided, although with a focus on features that reflect
the original motivation in developing that system. However, this results in the
user being restricted to a particular system and its functionality and constraints.
This makes it desirable to abstract from a particular system and allow different
ones to be used.

On the other hand, a system for supporting Modeling & Simulation work-
flows can be designed and implemented from scratch. The advantage is that the
system can be tailored specifically to the requirements of the domain of Model-
ing & Simulation and its workflows. However, as argued by Rybacki et al. (2010),
supporting workflows in Modeling & Simulation is still in an early stage, leading
to a possible refinement, adaptation and extension of those requirements in the
future. Thus, the software design should be flexible and extensible. A plug-in-
based design, e.g., as used in JAMES II, has already shown that it is suitable for
supporting Modeling & Simulation experiments, seamlessly integrating different
modeling formalisms, calculation algorithms, and validation methods in a flexible
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and extensible way (Ewald et al., 2010a).

To provide a comprehensive support for different systems the representation
of workflows is of high importance, as it governs the interaction between compo-
nents. In order to be able to abstract from a specific system a formalism with
clear semantics is required to ensure that each system knows exactly how the
workflow is to be interpreted. There exist a number of different workflow descrip-
tion options (see Section 2.3 p. 26), that fit this profile. In the area of task-based
workflows, High-level Petri Nets such as Workflow Nets constitute as such an
option, providing a workflow description which has been well established in the
workflow community (Ellis and Nutt, 1993; van der Aalst, 1996a; Van Der Aalst
and Van Hee, 2004).

WorMS (Workflows for Modeling and Simulation) follows the second idea of
creating a workflow management system from scratch basing managed workflows
on workflow nets. It provides a framework to integrate Modeling & Simulation
processes defined as workflows into Modeling & Simulation software such as the
Modeling & Simulation framework JAMES II (see Section 5.2.3 p. 168) (Rybacki
et al., 2010, 2011).

Orchestrating parts of the Modeling & Simulation software using workflows,
WorMS is able to provide user guidance based on the workflow at hand as well as
enables the automated creation of provenance data for the workflow execution.
During workflow execution every step is well-defined and encapsulated into a
task. This includes input and output data of tasks as well as the partial order in
which tasks can be executed and under which conditions. Having this information
available, allows for recording the workflow execution providing provenance data
and therefore means to reproduce the workflow execution. The recording itself
can be at different levels of detail yielding different levels of reproducibility (see
Section 6.1 p. 181).

The advantage of using WorMS and explicitly defined workflows is that the
mapped process does not need to be hard coded in the Modeling & Simulation
software — it can be adapted and changed to current needs independently with-
out needing to directly change the code of the Modeling & Simulation software.
Typically, the workflow is defined at a higher level of process abstraction, how-
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ever WorMS does not dictate at which level of abstraction a workflow is defined.
Processes at a rather low level, like the execution of an experiment (with configu-
rations and replications), are perfectly describable and integrable using WorMS
in Modeling & Simulation software (Rybacki et al., 2012a,b).

Integrating WorMS into the backend of Modeling & Simulation software sep-
arates the internal control logic of the application from the specialized application
functions, leading to a separation of concerns.

In the following the components of WorMS, their role, responsibility, inter-
action and interplay are presented.

5.2.1 WorMS — A Framework for Workflows in Modeling
& Simulation

The basic architecture of WorMS is plug-in-based. Technically this means that
it follows the strategy pattern (Gamma et al., 1995). The components present in
WorMS are depicted in Figure 5.3 p. 108. It provides extension points where
custom components (strategies) can be plugged in as needed (colored in blue).
Not all components are exchangeable through plug-ins, there are also internal
parts responsible for managing, organizing and orchestrating the plug-ins. Ad-
ditionally, there is the central component of Workflow Engine and its internally
used workflow format, the Intermediate Representation responsible for orches-
trating workflow execution and for providing a workflow description with clear
semantics. The Workflow Engine itself provides extension points for components
it interacts with internally, such as the actual Workflow Executor , Data Store or
Monitoring are exchangeable by plug-ins which in turn rely on the Intermedi-
ate Representation to provide concise implementation.

Generally speaking the framework comprises two parts. On the one hand,
there are the components responsible for providing plug-ins, workflow repositories
as well as security and user management (Security and User/Role Management,
Plug-in Provider and Workflow Repository). On the other hand, there are com-
ponents that are dedicated to the execution a workflow and its documentation
(Workflow Engine with Intermediate Representation, Administration, Analysis,
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Figure 5.3: Framework Overview. Fixed components are diagonally hatched, ex-
changeable components are of solid gray (Rybacki et al., 2011).

Data Store, Workflow Executor , Converter and Monitoring).
The components in the first part are not Workflow Engine specific and could

be reused with different systems. However, the Workflow Engine and the In-
termediate Representation, including its extension points can only be replaced
as a whole and there is no guarantee that another system provides the same
extensions points or uses the same Intermediate Representation for describing
workflows. Nevertheless, different system can also be integrated at the level of
the Workflow Executor .

This implies two strategies when using WorMS in Modeling & Simulation
software. Firstly, the extension of the provided Workflow Engine by adding,
removing and/or exchanging components (plug-ins), such as different Analysis
Tools or different Converter s. Secondly, reusing another existing workflow engine
or system and replace the provided Workflow Engine altogether.

However, WorMS comes already with a Workflow Engine implementation
that supports Workflow Nets based workflow descriptions (see Section 5.2.1.1
p. 109), supports different Data Stores (Memory-based, persistent, distributed,
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etc. ) , provides Workflow Executor implementations that can execute a workflow
parallel and distributed (see Section 5.2.1.3 p. 122) as well as different Monitoring
(performance or documentation) capabilities.

In the following an overview those components, including responsibilities, func-
tionalities and implementation details is presented.

5.2.1.1 Intermediate Representation

As already mentioned, in order to work together seamlessly, the components of
the workflow engine operate on a common internal representation of workflows.

Ideally, the workflow representation enables the execution of workflows with
clear semantics, the analysis of them as well as the conversion from other rep-
resentations, such as BPMN or BPEL, as they provide sophisticated workflow
modeling and reengineering tools, that could be leveraged this way.

As already stated in Section 2 p. 9, van der Aalst motivates in (van der Aalst
et al., 1994; van der Aalst, 1996b) and (Van Der Aalst and Van Hee, 2004) the
use of Petri Nets or Workflow Nets respectively for the description of workflows.
Other authors also promote the use of Petri Nets and its derivatives to represent
workflows (Merz et al., 1995; Oberweis et al., 1997; Russell et al., 2009).

Consequently, WorMS uses workflow nets, which are in fact derived from
Petri Nets, allowing using a well known and researched formalism with clear
semantics as well as many analysis techniques, that checks for certain properties,
e.g., soundness or dead locks (Murata, 1989; Schmidt, 2000; Jensen et al., 2007).

Using workflow nets as Intermediate Representation in WorMS does not
mean workflows have to be modeled as workflow nets. If there is a viable transfor-
mation from another workflow representation to a workflow net, e.g., as shown for
BPEL in (Hinz et al., 2005), and there is a Converter implementation available,
that other representation can be used to model workflows usable in WorMS.
This means the modeler can automatically benefit from the corresponding tools
for other workflow representation.

The workflow net implementation of WorMS is inspired by Van Der Aalst
and Van Hee (2004), but might slightly differ technically. It features the explicit
definition of Input and Output ports for each task, it supports the use of Sub-
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Figure 5.4: Visual Representation of a simple benchmark workflow that has
two main tasks, SleepTask and SoakTask. SleepTask takes a time
as input specifying how much time this tasks consumes and Soak-
Task stresses one core of a CPU using the PDP-11 soak test
(tan(tan(tan(tan(tan(tan(tan(tan(tan(tan(tan(x)))))))))))) in com-
bination with a prime number check. Additionally, this workflow
allows the execution of a specific number of SoakTask and SleepTask
in parallel as well as iterate over a specific number of batches of par-
allel executions, all specified using an input token with appropriate
colors (data) (see Figure 5.3 p. 111 for how to specify this workflow
in WorMS)

Workflows as well as Template & Frames (Rybacki et al., 2012b). Furthermore,
tokens can be filtered using Edge conditions and can be clustered fed to tasks
using Token selectors. Those features are explained in more detail in the following
paragraphs using the sample workflow depicted in Figure 5.4 p. 110 for illustration
purposes. At the same time the source code that is needed to create this workflow
is presented in Listing 5.3 p. 111 showing how workflows can be described fairly
straight forward in WorMS using the internal WorMS Java API.

Input/Output Values WorMS requires the explicit definition of input and
output ports for each task in the workflow. An input port is needed for each
separate data value (also known as color of a token) Without a specific input
port a task cannot access any data from previous tasks or initial data. This is
due to the security and efficiency concept employed by WorMS and is handled
by the Data Store (see Section 5.2.1.4 p. 131).
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Listing 5.3: Specification of the benchmark workflow shown in Figure 5.4 p. 110
in WorMS.

1 public class SimpleBenchmarkModel extends DefaultWorkflowModel {
2
3 public SimpleBenchmarkModel() {
4 start = new DefaultPlace("start");
5 end = new DefaultPlace("end");
6 IPlace tmp = new DefaultPlace("");
7 IPlace tmp2 = new DefaultPlace("");
8 ITask sleep = new SleepTask(1, true);
9 ITask soak = new SoakTask(1, false);
10 ITask batcher = new BatchTask();
11 ITask collect = new NullTask();
12
13 //adding places to net
14 addPlace(start, end, tmp, tmp2);
15 //adding Tasks to net
16 addTask(sleep, batcher, collect, soak);
17
18 //connecting places and tasks with edges
19 addEdge(start, tmp2);
20 addEdge(tmp2, batcher);
21 //adds an edge only passing tokens that contain finished property
22 addEdge(batcher, end, 0, new FinishedCondition());
23 //adds an edge only passing tokens that don't have the finished property
24 addEdge(batcher, sleep, new NotCondition(new FinishedCondition()));
25 addEdge(sleep, soak);
26 addEdge(soak, tmp);
27 //here an edge is created that has a special selector letting only letting all tokens

of one batch through at once
28 addEdge(tmp, collect, new CollectingTokenSelector());
29 addEdge(collect, tmp2);
30 }
31 }

Analogously, output ports must be specified for each data value a task pro-
duces and should be exchanged with other tasks. Without an output port no
data can be injected into the workflow.

If data is produced, there is the option of producing multiple records using
the same output values, multiple records each having different output values as
well as a combination of both. Records in return are transformed into tokens in
the workflow net by the Workflow Executor (see Section 5.2.1.3 p. 122). Inter-
estingly, records can be produced asynchronously during the execution of a work
item rather than once after the execution is finished. This allows for execution
schemes similar to streaming approaches or data-centric approaches such as pro-
cess networks. Producing records asynchronously, allows processing data as soon
as it is available rather than waiting for a task to finish before proceeding with
the execution (see Section 2.2.3 p. 19 specifically Figure 2.4 p. 22 for why this is
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helpful).
Albeit, input and output ports need to be specified when data processing

takes place in a task, they do not need to be specified for pass-through purposes.
Assuming a scenario involving Task1, Task2 and Task3 consecutively executed
(Task1 → Task2 → Task3). Task1 produces a data value on output port X

and Task3 requires a data value at its input port X. However, Task2 does no
data processing on X, so X basically passes through Task2. Now, Task2 could
define an input and output port for X but does not have to in WorMS, as data
passthrough is handled automatically by the Data Store. This makes modeling
workflows and reusing of tasks a lot easier.

Also, as already mentioned for efficiency and security purposes input data is
not directly provided to the task (or work item for that matter) on execution, but
is rather provided lazily. Access to data is handled using access tokens that are
issued by the Data Store for each execution of a task. With an access token a work
item can request data specified using input ports directly from the Data Store.
This has the advantage that data that is not needed (requested) does not have
to be loaded from the Data Store. It also allows the Data Store to control which
data is accessible via the access token and if necessary can deny access to wrongly
or unauthorized requested data, e.g., data no input port is specified for or by a
role that has no privilege to access that data (see Section 5.2.1.4 p. 131 and
Section 5.2.1.6 p. 140).

Tasks In workflow nets tasks equalize the transitions in the underlying petri
net. They build the foundation of each defined workflow in WorMS, while places
and edges (arcs) are connecting tasks with each other semantically (parallelly,
sequentially, iteratively and alternatively).

Contrary to other WfMSs WorMS is not web-service oriented and does not
require task to be represented by web-services, however they can represent web-
service invocations if desired. An advantage of not relying on web-services, is
that workflows are still executable in a local non-connected environment and by
being able to avoid the web-service overhead (connection as well as invocation)
the execution can be more efficient, particularly when the workflow is executed
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completely locally with no distribution (see Section 5.2.1.3 p. 124) within the
same Virtual Machine (VM). Additionally, workflow defintions suffer from decay
over time which is amplified when depending on external resources such as web-
services (Zhao et al., 2012; Hettne et al., 2012).

Consequently, WorMS comes with a Java API for the definition of tasks
implementing the task to execute directly in Java. Listing 5.4 p. 114 shows a
very basic task implementation, using an AbstractTask base class provided by
WorMS, which makes defining tasks very easy. Basically, a task provides input
and output ports (which are omitted in Listing 5.4 p. 114) as well as an imple-
mentation that provides an IWorkItem instance. The work item does the actual
work of the task in the context of the calling running workflow (see Section 2.1
p. 9). Listing 5.5 p. 114 shows the associated work item implementation for
DummyTask. The DummyTask also relies on a base class provided by WorMS
named AbstractWorkItem, which already implements most of the administra-
tive functionally of a work item, such as data listener management, event handling
and notification of progress and data to the Workflow Executor . The things that
need to be provided by an actual work item implementation is the actual work to
be performed (internalRun), cancellation handling (cancel, isCancelled)
as well as providing data to each output port on demand (getOutput).

In order to showcase input/output port, including data output as well as asyn-
chronous data output, the DummyTask and DummyWorkItem are extended and
shown in Listing 5.6 p. 115 and 5.7 p. 115. The task was extended by the decla-
ration of an output port named COUNT of type int. The work item now fire ad-
ditionally to the progress event a data generated event (fireDataAvailable)
during execution. Consequently, it now also provides an implementation for pro-
viding data values on the output port COUNT.

This shows that it is fairly straight forward to specify tasks and their work
items in WorMS using its Java API.

Sub-Workflows Another feature present in workflow nets is the concept of
sub-workflows. Sub-workflows can be used to structure complex workflows into
reusable parts, easier to maintain and extend, separate concerns by isolating
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Listing 5.4: Sample Task implementation. This task does not specify any input
or output ports and simply provides a work item implementation
showin in Listing 5.5 p. 114

1 public class DummyTask extends AbstractTask {
2
3 @Override
4 protected IWorkItem create(List<Map<String, Object>> input) {
5 return new DummyWorkItem(this);
6 }
7 }

Listing 5.5: Work Item implementation for the sample task shown in Listing 5.4
p. 114. The work item’s job is to count to 10 and report its progress
after each count.

1 class DummyWorkItem extends AbstractWorkItem {
2
3 public DummyWorkItem(ITask parent) {
4 super(parent, "Dummy Name");
5 }
6
7 @Override
8 protected void internalRun() {
9 final int maxCount=10;
10 for (int i=0;i<maxCount;i++) {
11 //update progress information
12 fireProgress((float)i/maxCount, String.format("%d of %d", i, maxCount));
13 }
14 }
15
16 @Override
17 public void cancel() {
18 //this is called when the current execution should be cancelled
19 }
20
21 @Override
22 public boolean isCanceled() {
23 //cancellation is not implemented for this work item so return false
24 return false;
25 }
26
27 @Override
28 public <E> E getOutputValue(long datasetId, String name, Class<E> type) {
29 //no actual data is produced from this work item
30 return null;
31 }
32 }
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Listing 5.6: Adapting the Sample Task (see Listing 5.4 p. 114) to support
streamed data output.

1 public class DummyTask extends AbstractTask {
2 public static final String COUNT="COUNT";
3 public static final Class<?> COUNT_TYPE=Integer.class;
4
5 public DummyTask() {
6 Map<String, Class<?>> outputMap=new HashMap<>();
7 //adding COUNT data to output
8 outputMap.put(COUNT, COUNT_TYPE);
9 setOutput(outputMap);

10 }
11
12 @Override
13 protected IWorkItem create(List<Map<String, Object>> input) {
14 return new DummyWorkItem(this);
15 }
16 }

Listing 5.7: Work Item implementation for the adapted sample task shown in
Listing 5.6 p. 115

1 class DummyWorkItem extends AbstractWorkItem {
2
3 public DummyWorkItem(ITask parent) {
4 super(parent, "Dummy Name");
5 }
6
7 @Override
8 protected void internalRun() {
9 final int maxCount=10;

10 for (int i=0;i<maxCount;i++) {
11 //update progress information
12 fireProgress((float)i/maxCount, String.format("%d of %d", i, maxCount));
13 //let the data listener know that there is 1 new data token identified by i
14 fireDataAvailable(i,1);
15 }
16 }
17
18 @Override
19 public void cancel() {
20 //this is called when the current execution should be cancelled
21 }
22
23 @Override
24 public boolean isCanceled() {
25 //cancellation is not implemented for this work item so return false
26 return false;
27 }
28
29 @Override
30 public <E> E getOutputValue(long datasetId, String name, Class<E> type) {
31 //check which data is requested and if it is type compatible
32 if (DummyTask.COUNT.equals("name") && type!=null &&
33 type.isAssignableFrom(DummyTask.COUNT_TYPE)) {
34 //for simplicity we return the id as it represents the count index in this example
35 return (E) Integer.valueOf((int)datasetId);
36 }
37 return null;
38 }
39 }
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business logic in extra sub-workflows. For instance, the simple benchmark work-
flow shown in Figure 5.4 p. 110 should be integrated into another workflow, it
can simply be added as sub-workflow, acting as ordinary task within the parent
workflow, as shown in Figure 5.5 p. 116.

Simple Benchmark Sub-Workflow

Another
task

Collecting
Selector

 n

batcher
sleep

soak

Finished

not
Finished

 n

Figure 5.5: Workflow integrating the simple benchmark workflow from Figure 5.4
p. 110 as sub-workflow

Sub-workflows are also fairly easily set up using the WorMS Java API, e.g.,
in Listing 5.8 p. 117 the sample workflow shown in Figure 5.5 p. 116 is described.
Please refer to line 9 p. 117, where a task is added that is represented by a sub-
workflow (SimpleBenchmarkModel) which are defined earlier (see Listing 5.3
p. 111) by simply calling addSubWorkflowTask. After that, the return ITask
encapsulating the sub-workflow can be handled as it was an ordinary task when
constructing the workflow further (see line 18 and 19). It automatically inherits
the input and output ports derived from the sub-workflow and handles token
hand-over from and to parent workflow including data requests from and to the
Data Store.

Interestingly, while it seems the sub-workflow concept is only used to structure
a complex workflow it also serves as means to simplify workflows that need to
describe a sub-process that can be performed multiple times in parallel. This is
achieved by the fact, that sub-workflows are executed in isolation in WorMS,
meaning that they are treated the same way as ordinary tasks when they are
executed multiple times in parallel. An ordinary task creates a new work item
instance whenever executed, which allows for a parallel execution of the same task
without interference. The same semantic is applied to the execution of a sub-
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Listing 5.8: Description of workflow example shown in Figure 5.5 p. 116
1 public class SampleModel extends DefaultWorkflowModel {
2
3 public SampleModel() {
4 start = new DefaultPlace();
5 end = new DefaultPlace();
6 IPlace tmp = new DefaultPlace("");
7 ITask anotherTask = new AnotherTask();
8 //adding a template task represented by another workflow model as sub-workflow frame
9 ITask benchmarkTask = addSubWorkflowTask(new SimpleBenchmarkModel());
10
11 //adding places to net
12 addPlace(start, end, tmp);
13 //adding Tasks to net
14 addTask(anotherTask);
15
16 //connecting places and tasks with edges
17 addEdge(start, anotherTask);
18 addEdge(anotherTask, benchmarkTask);
19 addEdge(benchmarkTask, end);
20 }
21 }

workflow task, which means the state of a sub-workflow is not shared between
executions.

For instance, assuming the workflow shown in Figure 5.6 p. 117 is executed
and having the shown token state. This means, that the simple benchmark sub-
workflow task will be executed twice in parallel. What happens is that there will
be two instances of that benchmark workflow each of which handling one of the
input tokens.

Another
task Simple Benchmark

Figure 5.6: Workflow integrating the simple benchmark workflow from Figure 5.4
p. 110 as sub-workflow

Template and Frames Template and frames are introduced as mean to add
flexibility to imperative workflows (see Section 2.4.2.1 p. 37). They are not part
of the workflow net definition. Other than the sub-workflow approach which
changes the workflow structurally, the Template and Frames approach introduces
template (placeholder) tasks, which are evaluated and exchanged by actual tasks
(wrapped in Frames) during runtime.



118 CHAPTER 5. IMPLEMENTATION

Exchange can happen based on execution history of the process until the
template task is reached, as well as based on initial configuration, which might
define the actual task to be used for a specific template task, or it can also be
selected by a user if there are multiple matching tasks for a template task.

Another
task

Benchmark
Template

(a) Workflow integrating a template task

Collecting
Selector

 n

batcher sleep

soak

Finished

not
Finished

 n

(b) Simple Benchmark Workflow usable as Frame

Figure 5.7: Example template-based workflow

Templates are typically used in situations where there are multiple options for
a task which might change over time in a process which otherwise would have to
be modeled explicitly (see Figure 2.14(a) p. 38).

Another example is shown in Figure 5.7 p. 118 which shows the sample work-
flow integrating a benchmark workflow as sub-workflow, changed to use a tem-
plate task for the benchmark task instead. The simple benchmark workflow is
then provided as Frame. Listing 5.9 p. 119 shows the necessary source code
to create such a workflow including the frame representing the simple workflow
benchmark using the WorMS Java API. As it can be seen, the code is not much
different from using the sub-workflow approach. However, the advantage is that
there can be a multitude of frames per template without the need to change the
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Listing 5.9: Description of workflow example shown in Figure 5.5 p. 116
1 public class SampleModel extends DefaultWorkflowModel {
2
3 public SampleModel() {
4 start = new DefaultPlace();
5 end = new DefaultPlace();
6 IPlace tmp = new DefaultPlace("");
7 ITask anotherTask = new AnotherTask();
8 //adding a task represented by another workflow model as sub-workflow
9 ITask benchmarkTask = addTemplateTask(SimpleFrameType.INSTANCE,

GUIFrameSelector.INSTANCE, new SubworkflowFrame(SimpleFrameType.INSTANCE,new
SimpleBenchmarkModel()));

10
11 //adding places to net
12 addPlace(start, end, tmp);
13 //adding Tasks to net
14 addTask(anotherTask);
15
16 //connecting places and tasks with edges
17 addEdge(start, anotherTask);
18 addEdge(anotherTask, benchmarkTask);
19 addEdge(benchmarkTask, end);
20 }
21 }

workflow model, because frames can be added and removed independently from
the workflow model.

Technically, a template task defines a IFrameType which defines the interface
(input and output ports) of the template task, which in turn must be met by
the provided frames. Frames are automatically matched based on the interface
(input and output port-wise) they provide. Additionally, a frame can filter itself
based on actual values on input ports. This allows for instance to provide a
number of analysis methods as frames for an analysis template task, without the
need to specify under which conditions which frame is available beforehand as a
frame can determine applicability e.g., by checking input distributions or initial
specifications.

Frames are provided by an IFrameProvider and an actual frame is selected
during runtime using an IFrameSelector, which can be a simple pop-up dialog
asking a user to select a frame or can be automatic selectors based on a policy,
e.g., a machine learning policy.

Once a frame type for a template and a set of frames for that template is
defined it can simply be added using addTemplateTask providing the frame
type, a selector and the available frames (see Listing 5.9 p. 119 line 9). Similar to
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a sub-workflow task, a template task can after being added used like regular task
within the workflow model. In this example, a static set based internal frame
provider is used fixing the available frames to the frames used during definition
in line 9. However, a separate frame provider can be specified instead in order to
e.g., provide a dynamic supply of frames based on plug-ins.

Edge Conditions and Token Selectors Edge conditions are used on outgo-
ing edges from tasks in order to control flow of produced tokens, e.g., implement-
ing a (X)OR-fork. Tokens only pass if the edge condition holds. Token selectors
are used on incoming edges for tasks and provide the ability to consume more
than one token at once even selecting specific token combinations, e.g., select
all tokens having the same value for field name. The security aspect already
discussed for tasks is also followed for conditions and selectors. Both need to
define input ports and only values from those input ports can be accessed from
the Data Store.

For instance, in the simple benchmark workflow (see Figure 5.4 p. 110) there
are two edge condition and one token selector applied. One edge condition is
found on the edge between batcher task and end place and the other between
batcher task and place leading to sleep task. Both conditions complement each
other, meaning if one condition is false for a token (not letting it pass) the other
is true (letting it pass). They are used to controlling the flow between the batch
iteration and finished paths taking a finished input value as condition. See List-
ing 5.3 p. 111 line 22 for the condition used on the path to the end place and
line 24 used on the alternative path, simply negating the finished condition (see
Listing 5.10 p. 121 for an example implementation).

The token selector is found on the edge labeled Collecting Selector and does
exactly what it says (see Listing 5.3 p. 111 line 28). As can be seen the batcher
task produced n tokens (parallel tokens) that pass through sleep and soak and the
collection selector refuses to forward any token as long as there are all n tokens
available and then forwards them at once. It functions as a AND-join in this
case.
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Listing 5.10: Implementaiton example of the FinishedCondition used in
Listing 5.3 p. 111

1 public class FinishedCondition extends AbstractCondition implements ICondition {
2
3 public FinishedCondition() {
4 //add input port in order to access the number of batches left provided by the output port

of the batcher task
5 addInput(BatchTask.BATCHES_LEFT, Number.class, -1);
6 }
7
8 @Override
9 public boolean check(Map<String, Object> input) {
10 //if there are no more batches left return true
11 return ((Number) input.get(BatchTask.BATCHES_LEFT)).longValue() < 0;
12 }
13 }

5.2.1.2 Workflow Engine

The Workflow Engine is the central component orchestrating the execution of a
workflows in WorMS. The organization includes the scheduling of workflows,
triggering and managing the execution of workflows. It also presents the central
place when it comes to attaching monitors or other workflow observers and pro-
vides information about workflow states, such as currently running, finished or
scheduled.

However, the Workflow Engine does not execute a workflow it uses a Work-
flow Executor , either specified when scheduling a workflow or the standard ex-
ecutor, in order to execute a workflow. Nevertheless, it monitors, observes the
workflow execution and handles Workflow Executor and associated workflow,
Data Store and Security and User/Role Management policy.

Listing 5.11 p. 122 shows how a workflow is scheduled using the default secu-
rity policy (which does not restrict any action). The returned workflowID is
used to identify the scheduled workflow throughout the workflows life-cycle. For
instance, as seen in Listing 5.12 p. 122 line 21 the workflowID is used to start
the previously scheduled workflow using the BasicMemoryDataStore and the
initial token mapping defined in map.

Once a workflow is finished executing its end state will be provided by the
Workflow Engine, allowing access to tokens, in e.g., the end place, and the
Data Store in order to access the token’s associated data.
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Listing 5.11: Adding of a workflow to the Workflow Engine for later execution.
1
2 //create the simple benchmark workflow model
3 IWorkflowModel benchmarkModel = new SimpleBenchmarkModel();
4
5 //add the workflow to the engine and get a workflow ID for later reference
6 String workflowID = WorkflowEngine.scheduleWorkflow(benchmarkModel,
7 DefaultSecurityModel.ALLALLOWEDINSTANCE, false);

Listing 5.12: Executing the previously added workflow using a specific
Data Store, Security and User/Role Management policy and initial
token mapping

8 //map represents a token and its data
9 Map<String, Object> map = new LinkedHashMap<>();
10
11 //set data of start token
12 map.put(BatchTask.BATCHES_LEFT, 5);
13 map.put(BatchTask.PARALLEL, 20);
14 map.put(SleepTask.SLEEP, 250);
15 map.put(SleepTask.DATA, "..."); //some big data to be added here
16 map.put(SoakTask.SOAK, 25);
17
18 //using the basic memory backed data store implementation
19 IDataStore dataStore = new BasicMemoryDataStore();
20
21 Pair<Map<IPlace, List<IToken>>, IReadOnlyDataStore> resultTokenMapping =

WorkflowEngine.start(workflowID, new SimpleDataProvider(DefaultRole.STANDARD, workflowID,
new Pair<>(benchmarkModel.getStart(), map)), dataStore);

5.2.1.3 Workflow Executor

The Workflow Executor is another central component of WorMS, responsible
for the actual execution of a workflow. It orchestrates the flow of data (tokens)
through the workflow involving activities and places as well as other components
such as Security and User/Role Management and Data Store.

Ultimately, the core of the Workflow Executor is a workflow net simulator,
which determines activities that are executeable at a given point in time, also
handling token consumption and production respectively. The execution of ac-
tivities responds to the firing of transitions in the workflow net, which triggers
the instanciation of an activity into a work item which in return is then executed.
Before a transition can fire all token selectors (see Paragraph 5.2.1.1 p. 120) must
be fulfilled.

Figure 5.8 p. 123 shows a simplified procedure the Workflow Executor applies,
omitting the determination of firable transitions and starts with one selected
firable transition and associated activity. It then invokes create on the asso-
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Work Item

Workflow Executor

Workflow Executor

Activity

Activity Work Item

create(role, dataStore, tokens)

Work Item

Work Item

addDataListener(this)

run()

n>0 times

dataPresent(this, id, amount)

loop [foreach output port]

getOutputValue(id, outputPort, outputPortType)

data

finished(this)

removeDataListener(this)

Figure 5.8: Execution of an Activity by the Workflow Executor assuming the de-
fault security policy, which does not restrict the execution of activities
by a specific role.

ciated activity resulting in a work item which is executed using its run method
after the Workflow Executor registers itself as data listener. During its execu-
tion, the work item may produce data, which is received by the Workflow Executor
and is handed over to the Data Store associated with the current execution. The
Data Store in return manages the data and captures it in a token which is then
placed into the workflow net for further processing. Data might be produced mul-
tiple times at any time during a single execution of a work item but at least once,
ensuring the production of at least one token after execution of a work item. After
the work item is finished executing it sends out a notification which is processed
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by the Workflow Executor .
The special feature of the workflow net simulator used by the Workflow Execu-

tor is that transitions and therefore activities can fire multiple times concurrently.
This is can happen if transitions are still fireable, after the consumption of tokens
from the previous transition firing or become fireable during the execution of the
activity associated with the transition (see Figure 5.9 p. 125). The simulation of
the workflow net does not pause during the firing of a transition. This ensures
that as long as there are resources fireable transitions are executed leading to an
automatic parallel execution schema.

Parallel and Distributed Execution of Activities in WorMS Techni-
cally the Workflow Executor does not invoke the create, addDataListener,
removeDataListener, run or getOutputValue methods of an activity as
shown in the simplified Figure 5.8 p. 123. They are invoked, by one of the
Workflow Executor ’s workers. Workers allow the Workflow Executor to process
the workflow in parallel by delegating the actual execution, data monitoring and
work item instantiation.

There is the distinction between parallelism achieved within one system and
VM (local) and parallel and distributed execution across systems and VMs (dis-
tributed). From a technical point of view different techniques exist to achieve par-
allel and distributed execution, e.g., threads, Message Passing Interface (MPI),
Remote Method Invocation (RMI) and Akka (Walker, 1994; Downing, 1998;
Gupta, 2012).

Threads Threads can be used to enable concurrent execution locally within a
Java VM. Distributed execution (across machines) cannot be achieved using
threads. However, since everything is run within the same VM interaction,
communication and access of data between threads is directly supported
and fast.

If data needs to be exchanged between threads no serialization and dese-
rialization is needed making it fast but also error-prone as the concurrent
implementation using threads needs to take care of synchronization and
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Figure 5.9: Execution of an Activity twice simultaneously by the Workflow Ex-
ecutor
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Figure 5.10: Actor Concurrency Model
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parallel data access. Moreover, a thread-based implementation is memory-
bound and also bound by the maximum threads that can be created on a
single machine.

RMI In contrast to threads Remote Method Invocation or RMI can be used
to create a distributed execution environment. It allows the invocation of
methods and the retrieval of data from distant distributed instances running
on different machines.

However, parallelism is not directly supported but can be achieved using
threads locally on each of the connected machines. RMI simplifies the man-
agement, creation and deletion of data across multiple connected machines
providing a distributed garbage collection. Nevertheless, the same restric-
tions apply when only using threads, synchronization of threads and data
access needs to be handled and might also run into memory and thread
limits. On top, data needs to be serialized and deserialized when accessed
across machines.

MPI description MPI or Message Passing Interface is a portable language-
independent protocol used to program parallel computers. It is designed
to support the creation of parallel and distributed execution environments.
Communication between machines is handled using messages, hence Mes-
sage Passing Interface. Here MPI is focused on using global messages only
when necessary, falling back to internal communication if possible. MPI can
be used to implement concurrency schemes such as the actor concurrency
model used by Akka, however a lot of special cases that are already ab-
stracted by Akka, such as synchronization and threads need to be provided
for MPI.

Akka Akka is an open source library for building concurrent, distributed and
fault-tolerant systems. Akka is written in Scala, but also offers a Java
API. Getting concurrency right is intrinsically difficult and concurrency with
threads is even more difficult. Akka addresses this by using the actor con-
currency model introduced in Erlang (Agha, 1986). In principle it is based
on asynchronous message passing (similarly to MPI) and immutable state,
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Figure 5.11: Parallel and distributed execution of a workflow in WorMS using
Akka.Messages are used to transfer data between nodes (workers).
For each workflow instance there exists a Workflow Master Actor and
a number of Worker Actors and one Sub-Workflow Master Actor per
sub-workflow.

providing a higher level of abstraction than threads. Messages are passed
between actors and only one message is handled at a time by each actor.
New messages are delivered into a mailbox. After a message is processed
an answer message may be sent and the next message from the mailbox is
processed (see Figure 5.10(a) p. 126).

However, not all concurrent problems can be easily transformed to the actor
model. To address this, Akka also provides Software Transactional Memory
(STM), allowing the modification of many objects at once transactionally.
Moreover, Akka provides other concurrency abstractions, e.g., Agents and
Dataflow Concurrency.

Akka is used in WorMS and is responsible for the actual execution of ac-
tivities in a concurrent and distributed manner. In fact it is also used for dis-
tributed Data Stores (see Section 5.2.1.4 p. 131). For the implementation the
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Figure 5.12: Interplay of actors responsible for workflow execution in WorMS
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Workflow Executor uses three types of akka-actors are defined. Firstly, the Work-
flow Master Actor, which is responsible for executing or simulating the top-level
workflow net. There is exactly one master actor for each workflow that is exe-
cuted. Secondly, there is the Sub-Workflow Master Actor, which is responsible
for handling a sub-workflow. Managing sub-workflows involves the simulation
of the workflow net contained in the sub-workflow as well as communication
(token exchange from and to the sub-workflow) with the parent workflow, i.e.,
another sub-workflow master actor or the workflow master actor. If there are sub-
workflows defined in the workflow to execute there is at least one sub-workflow
actor per workflow execution. And lastly, there is the Worker Actor, which sole
responsibility is the actual execution of an activity including the instantiation of
the associated work item which is then executed. The more worker actors are
available to WorMS and therefore to the Workflow Executor the more activi-
ties can be performed concurrently. Except from the workflow master actor, the
sub-workflow master and worker actors can be distributed across machines (see
Figure 5.11 p. 128). Important to note is that there can be an arbitrary number
of worker and sub-workflow master actors on the same machine and worker actors
are optionally shared by workflow master and sub-workflow master actors across
workflow executions.

The typical execution procedure of a workflow without involving sub-workflows
is depicted in Figure 5.12(a) p. 129. The workflow master actor (WF Master)
starts the workflow execution and simulates one step in the workflow net given
the initial token markings and data. After this step a transition that can fire
is determined and its associated activity and consumed tokens, which refer to
the activities input data, are sent via an actor message to a worker actor (WF
Worker). Which worker actor is chosen depends on the worker selection pol-
icy (see Section 5.2.2 p. 147 for more information on selection policies). This is
repeated until no more transition is able to fire. Meanwhile, the receiving work-
flow worker starts to execute one scheduled activity at a time, by instantiating a
work item which is then executed. Produced data during execution is send back
to the master actor that scheduled the activity where it is turned into a token
by the Data Store and put back into the master actor’s workflow net simula-
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tion. Once the work item finishes the workflow master is also notified and the
worker actor proceeds with the next scheduled activity. Whenever a master actor
receives data or a finished message it performs another simulation step of the
workflow net and starts over with scheduling firable transitions.

In case an activity is represented as a sub-workflow it will not be scheduled for
execution by a worker actor but a sub-workflow master actor. The sub-workflow
master actor then executes the sub-workflow similarily to the master actor with
the difference that it also manages token and data flow from parent workflow to
the sub-workflow as well as propargating sub-workflow events such as the finished
event to the parent workflow (see Figure 5.12(b) p. 129).

5.2.1.4 Data Store

The execution of workflows involves the passing of tokens as well as possible data
attached to them between work items. Each work item consumes at least one
token and produces at least one token, with or without additional data attached.
The number of tokens produced during a workflow execution and the data as-
sociated highly depends on the workflow and the work items involved. Thereby,
the amount of data and number of tokens produced can be very high, albeit the
number of active tokens (tokens that are not yet consumed) is usually smaller.
For instance, referring to Figure 5.13 p. 134 during execution a total of ten tokens
is produced, however at any given time there are at most two active tokens.

There are two places where tokens are managed. Firstly, as shown in Sec-
tion 5.2.1.3 p. 122 the Workflow Executor orchestrates when tokens are created
and when they are consumed as well as what data to attach to tokens. The
position (place) of each active token is managed here, too. The Workflow Ex-
ecutor only manages active tokens. Secondly, tokens are also managed by the
Data Store. It is responsible for creating tokens for the use by the Workflow Ex-
ecutor , storing and retrieving data for tokens and ensuring that security policies
are followed when storing and retrieving data. The Data Store, in combination
with the Security and User/Role Management component has to provide only
the information which is actually accessible for a specific work item and a specific
user to ensure consistency and security.
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The amount and type of data to be stored varies from workflow to workflow,
therefore data management must be generic and robust. For instance, implemen-
tation can be based on e.g., Data Assembly Lines (Zinn et al., 2009), databases
(rational, document- or object-based) or be purely in-memory stores.

In general, the Data Store has three tasks. Firstly, create and manage to-
kens. Secondly, store data associated with a specific token. Thirdly, retrieve data
associated with a specific token.

Herein, the first two tasks are required by the Workflow Executor and the
third task is required by work items, edge conditions and token selectors.
In order to ensure that only specific components can read or write data the
Data Store introduces two proxies namely a IReadOnlyDataStore and a
IWriteOnlyDataStore, whereas the read only data store is provided to, e.g.,
a work item and the write only data store provided to, e.g., the Workflow Execu-
tor .

Internally, whenever a token is created the tokens that were consumed by
the work item that produced this token in the workflow net are linked as parent
tokens. This is important firstly, to provide a token history allowing for each token
to trace its creation (provenance). Secondly, this is also important to provide the
ability of not having to specify pass-through input and output ports for work items
as described in Section 5.2.1.1 p. 110. Instead of appending all data from previous
tokens to next tokens using pass-through input and output ports, data can be
traced back using the parent tokens information to the token that actually holds
the requested data. Using parent tokens, a workflow execution creates an acyclic
directed graph of tokens. For instance, taking the simple benchmark workflow
shown in Figure 5.13 p. 134 and execute it using the initial setup. On the right
hand side of the figure the token graph that is built by the Data Store over time is
depicted. As can be seen there are a total of ten tokens created during execution,
all leading back to the initial token.
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Workflow Token Graph

St
ep

7

Collecting
Selector

 2

batcher sleep

soak

Finished

not
Finished

 2

batcher

sleep

sleep

soak

soak

St
ep

8

Collecting
Selector

 2

batcher sleep

soak

Finished

not
Finished

 2

batcher

sleep

sleep

soak

soak

St
ep

9

Collecting
Selector

 2

batcher sleep

soak

Finished

not
Finished

 2

batcher

sleep

sleep

soak

soak

batcher

Figure 5.13: An example execution of the simple benchmark workflow used in
Section 5.2.2.2 p. 153 using one batch and two parallel runs within
the batch. The workflow execution consists of nine steps from start
to finish. For illustration purposes work items are executed sequen-
tially and whenever there are multiple active work items (work items
with consumable tokens) a work item is selected at random. This
means, the order of work items shown in this figure is one possible
order for the given workflow. Each step shows the current config-
uration of the workflow net with tokens on the left and the corre-
sponding token graph that is created within the Data Store on the
right. The token graph also indicates which tokens were produced
by which work item.

Figure 5.14 p. 135 shows the token graph and the associated data with each
token. The batcher work item needs the information of the number of batches left
as well as the number of parallel runs, which is provided by the initial token at
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Figure 5.14: Token graph created from the workflow execution shown in Fig-
ure 5.13 p. 134. Additional information of data associated with to-
kens, if data was associated during execution, is shown along side the
tokens (association is indicated with a dashed line). The work items
are shown at the same position as the token(s) they produced. Also,
the access of the data by the work items, is depicted using dotted
arcs from the data to the work item accessing that data through
a request to the Data Store handling the data and tokens. For in-
stance, the first batcher work item accesses data (batchesLeft and
parallel) from token 1, however on the second invocation it accesses
only parallel from token 1 and batchesLeft from token 3.
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Figure 5.15: Sequence chart of how the Data Store is used in general during the
execution of one work item of a workflow. It shows the indirect
access to the Data Store using the Readonly and Writeonly Data
Store respectively. For simplification the security component, more
internal detail of the Workflow Executor , WF Worker, Data Store
and Work Item are omitted.
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first. In order to provide this data the Data Store would traverse the token graph
backwards from token 2 (which is the input token for the first batcher work item
invocation) back to the token providing the necessary data, which in this case is
to token 1 for the batchesLeft and parallel data. For the second batcher work item
invocation the Data Store would traverse back from token 9 back to token 1 to
retrieve the parallel information as well as back to token 3 for the batchesLeft
information.

This example shows that the batcher produces two tokens containing the same
data, as specified by the parallel information. When the Data Store traces back-
wards to find a token providing the necessary data, it would find two tokens. In
this case which one to take does not matter, as both tokens have the same data
associated, however in other workflows this might not be the case. Multiple ways
exist for how this can be handled in WorMS. On the one hand the first found
token is used, which is the standard behavior. On the other hand an entity, e.g.,
a work item, can request all found tokens with that data and decide which one
to use. This also allows requesting data produced, e.g., in a loop. And a third
option is that an entity can explicitly specify from which work item the data
should origin.

Storing data is fairly simple as the Data Store only has to store the data
provided and associate it with the corresponding token.

During request as well as storage of data the Data Store works with the Se-
curity and User/Role Management component in order to restrict data access
to specific roles and it also verifies whether the entity (work item, edge condi-
tion, etc. ) requesting or storing data have corresponding input or output ports
defined. Figure 5.15 p. 136 illustrates a simple request and store of data.

WorMS supports the execution of workflows in a distributed manner spe-
cial data stores are needed that work in such a setup as well. Luckily, WorMS
ships with a component that can turn any Data Store into one that supports dis-
tributed scenarios. In order to use a Data Store that does not support distributed
executions, in a distributed environment the DistributedActorDataStore
can be used. The usage is remarkably simple. For instance, using
the memory based data store a changing something like IDataStore
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Figure 5.16: Distributed actor-based Data Store Wrapper. The distributed
Data Store wrapper enables the use of any Data Store, in
a distributed environment. In this example it wraps the
BasicMemoryDataStore, which does not support the use in a
distributed environment. The distributed data store wrapper uses
the actor based paradigm also employed by the Workflow Executor .
On the initiating node (Node 1) it creates a central actor, that talks
internally to the BasicMemoryDataStore in order to requesting
and storing data. On the other distributed nodes (Node 2–4) a proxy
actor is deployed that connects back to the central actor, request-
ing and storing data using actor messages. It basically works like
a client/server scheme leveraging the actor system that is already
provided by the Workflow Executor .

store=new BasicMemoryDataStore(); to IDataStore store=new

DistributedActorDataStore(new BasicMemoryDataStore()); is
sufficient to make the memory based data store work in a distributed scenario.

The distributed data store wrapper is a lightweight component employing
the Akka actor system and messaging between distributed store instances. Fig-
ure 5.16 p. 138 illustrates how this worker operates. It keeps the wrapped
Data Store on the initiating node only (Node 1), while distributing an actor
based proxy to the distributed nodes (Nodes 2–4) that connect back to the cen-
tral node. Data is then transfered using actor messages and only stored in the
initiating node using the wrapped Data Store.

Other implementations directly supporting distributed scenarios might make
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use of a distributed database, such as Cassandra/Dynamo (DeCandia et al., 2007;
Lakshman and Malik, 2010) or Project Voldemort (Feinberg, 2011). They pro-
vide means of replicating data efficiently across nodes which could improve per-
formance as data might be available locally on a node instead of only in central
node.

WorMS comes with a couple of different Data Store implementations. Firstly,
there is the BasicMemoryDataStore that stores data in memory providing
very good read and write performance, however it does not persist data, which
makes it less robust when it comes to memory errors or system crashes as the data
cannot be restored in those cases. Due to the pure use of memory the amount
of data that can be stored is limited to the available system memory. Secondly,
OutOfCoreDataStore is a memory based Data Store which is backed by disk
storage removing some restrictions, such as robustness when it comes to crash
recovery as well as the memory limit, and is based on MapDB (Kotek, 2015). By
persisting data, the Data Store is not just more robust, it also helps to support
workflow reruns based on previous workflow executions. Thirdly, a distributed
Data Store DistributedHazelcastDataStore based on Hazelcast (Johns,
2013) is available for the use in distributed scenarios. Furthermore, as already
mentioned there is also the DistributedActorDataStore wrapper available
that turns any Data Store into a distributed Data Store.

5.2.1.5 Converter

The intermediate representation of workflows in WorMS is based on workflow
nets. However, not always are workflows specified in workflow nets or using the
WorMS Java API. In that case, a workflow needs to be converted or transformed
into WorMS’ intermediate workflow representation.

The Converter component of WorMS is responsible for converting workflows.
There can be an arbitrary number of converters, each dealing with a possibly
different input representation of workflows, such as XPDL, BPMN or BPEL, the
output representation however is fixed. For instance, Zha et al. (2008) present
conversion rules for XPDL, Lohmann (2008) provides them for BPEL and Decker
et al. (2008) provide a method that could be used to derive transformation rules
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for BPMN.
Allowing other workflow representations enables the modeling and descrip-

tion of workflows in any way, leveraging existing tooling as well reusing existing
workflows from other systems, as long as a suitable converter exists.

5.2.1.6 Security and User/Role Management

The Security and User/Role Management component of WorMS takes care of
authorization and user/role management including authentication. It is reused
in different situations and by different other components, such as the Data Store
and Workflow Executor .

The components interface mainly comprises the IRole, ISecurityModel
and IPrivilege interfaces. Herein the IRole interface is used to handle
user/role management as well as authentication without restricting the imple-
mentation. This allows for instance the implementation of a role system based
on Kerberos (Miller et al., 1987) for authentication and authorization and LDAP
(Koutsonikola, 2004) for user management and therefore incorporate existing and
widely adapted technologies. However, WorMS provides a standard role that
does not need to be authenticated and can be used directly if no further roles are
required.

Another implementation might allow the exchange of the components provid-
ing further extension points, which would make it easy to use a database-based
user management in combination with the existing authentication and authoriza-
tion elements. Listing 5.13 p. 141

The ISecurityModel implementations together with IPrivilege imple-
mentations manage the authorization within WorMS. Thus, the execution of
a work item, the access of data and the execution of entire workflows can be
privileged to specific IRole instances. For instance, the Workflow Executor uses
the security model to check whether the current active role can execute a specific
workflow work item. The Data Store uses the security model to manage access
to data generated by work items, while the Workflow Engine uses the security
model to check whether the current active role is privileged to execute a specific
workflow.
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Listing 5.13: ISecurityModel implementation exemplified by the default im-
plementation in WorMS. The default security model in WorMS
does not restrict any data access, work item or workflow execution.
However, data access is still restricted by the Data Store as only
data advertised by input ports can be accessed by a work item,
edge condition or token selector

1 public class DefaultSecurityModel<T extends IInfo> implements ISecurityModel<T> {
2 public static final ISecurityModel<IInfo> ALLALLOWEDINSTANCE = new

DefaultSecurityModel<>(new DefaultPrivilege<IInfo>(true, new DefaultInfo("")));
3
4 private final IPrivilege<T> privilege;
5
6 public DefaultSecurityModel(IPrivilege<T> privilege) {
7 this.privilege = privilege;
8 }
9
10 @Override
11 public IPrivilege<T> canExecute(IRole role, ITask task) {
12 return privilege;
13 }
14
15 @Override
16 public IPrivilege<T> canAccessDataFrom(IRole role, ITask task, String id) {
17 return privilege;
18 }
19
20 @Override
21 public IPrivilege<T> canExecuteWorkflow(IRole role, IWorkflowModel model, String id) {
22 return privilege;
23 }
24 }

Listing 5.14: IPrivilege implementation exemplified by the default implemen-
tation in WorMS. The default privilege implementation either al-
lows or denies all access depending on initialization (see line 5).

1 public final class DefaultPrivilege<T extends IInfo> implements IPrivilege<T> {
2 private final boolean allowed;
3 private final T info;
4
5 public DefaultPrivilege(boolean allowed, T info) {
6 this.allowed = allowed;
7 this.info = info;
8 }
9
10 @Override
11 public boolean isAllowed() {
12 return allowed;
13 }
14
15 @Override
16 public T getInformation() {
17 return info;
18 }
19 }
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For an easier start with WorMS, it ships in concordance with the standard
user implementation with a default security model and privilege implementation
exemplifying a simple authorize all security model (see Listing 5.13 p. 141 and
Listing 5.14 p. 141).

5.2.1.7 Analysis

A benefit of using a formal Intermediate Representation as internal workflow
representation, is the availability of analysis methods for it. WorMS is prepared
to integrate analysis capabilities so that the quality of workflows can be increased
as well as their refinement can be supported. Since the framework uses a plug-
in-based design and components work on the same Intermediate Representation
it is possible for the analysis components to analyze a given workflow in any of
the representations supported by the Converter components.

By providing the Analysis infrastructure WorMS can be extended by meth-
ods and metrics tailored to process analysis such as (Wynn et al., 2009; Mao,
2010; peng XIU et al., 2010; Weißbach and Zimmermann, 2010) and (Zha et al.,
2011).

Model checking tools are also great to integrate into WorMS. A perfect can-
didate would be WofLAN (Verbeek and van der Aalst, 2000) as it focuses on work-
flow net analysis. Additionally, more general analyses focusing on the petri net as-
pect of the Intermediate Representation can be added to WorMS by integrating
the model checking tool LoLA (Schmidt, 2000). With those tools properties such
as the free-choice property as well as balanced AND/OR-splits and AND/OR-
joins (typically an AND-split should not be complemented by an OR-join) can
be checked. Especially the latter is important to ensure well-structuredness of a
workflow.

By preparing analysis and model checking capabilities in WorMS the relia-
bility and fault-tolerance as well as system stability of WorMS can be increased
and ensured. Also, workflows can be enhanced, optimized and fixed based on
results provided by the Analysis components.

Currently, WorMS is equipped with a well-structuredness analysis for work-
flows, ensuring exactly one start and one end place. This is a required property



5.2. LAYER TWO — IMPERATIVE TASK-BASED WORKFLOW IM‌ . . . 143

by WorMS in order to be able to reuse workflows as sub-workflows or frames.
Otherwise, it would not be possible to determine where a workflow starts and
where it ends which is crucial if embedded as sub-workflow or frame.

5.2.1.8 Monitoring

One of the key elements of the WorMS framework is the Monitoring extension
point. It allows implementations to track, trace and document what, when,
where, and how things are happening while executing a workflow. Thus, usage of
the monitoring facilities of WorMS can range from auditing, reengineering and
profiling (see Figure 5.17(b) p. 144 for a timing based profiling and Figure 5.17(c)
p. 144 for a monitor profiling the throughput of different scheduling methods used
in Section 5.2.2.2 p. 153) of workflows, for documentation, provenance generation
and reproducibility of workflow executions as well as visualizing executions (see
Figure 5.17(a) p. 144).

Important to note is, that although tracking the workflow execution is enough
for auditing and profiling but for provenance and reproducibility also the used
system, machine, and software components are needed to be tracked.

By providing a workflow monitor and additional system specific monitors (e.g.,
for monitoring architecture, software versions, operating system, machine speci-
fications, etc. ) provenance and documentation can be achieved at virtually any
level of detail. For instance, by providing a dedicated monitoring component for
a specific Modeling & Simulation system more information of the workflow run
can be recorded, such as model or simulation parameters, events, or used software
components, e.g., random number generators and event queues.

Also, not only can workflows be checked, reengineered, profiled and improved
using monitors (Park and Kim, 2010; Accorsi and Wonnemann, 2010), the gath-
ered information can also be used to profile, verify and improve the used Work-
flow Executor .

However, the most important responsibility of this extension point is the prove-
nance and reproducibility aspect which helps to ensure result quality and cred-
ibility of the product generated by the monitored workflow (Wong et al., 2005;
Davidson and Freire, 2008; Missier et al., 2008; Miles et al., 2008).
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 (1)

 (1)

SLEEPBATCHER SOAK

Finished

NOT (Finished)

(a) Visualization monitor

(b) Work item timing monitor

(c) Workflow Throughput monitor

Figure 5.17: Monitoring Examples: (a) Real-time visualization of a workflow ex-
ecution. Number of tokens per place and running work items are
highlighted as well as the width of an edge indicates the number of
tokens that passed over it over time normalized over all edges. (b)
Monitor that shows the number of invocations per work item and
the work items executions in a gantt chart. (c) Monitor that is used
in the evaluation of work item scheduling policies in Section 5.2.2.2
p. 153, the monitor additionally collects data about machine setups,
worker usage, etc.
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Implementation-wise, a monitor implements the IWorkflowEngineListener
interface and registers as listener for one or more workflows. Registering a monitor
is as simple as calling WorkflowEngine.addWorkflowEngineListener.
For instance, in order to use the visualization monitor shown in Figure 5.17(a)
p. 144 a call to WorkflowEngine.addWorkflowEngineListener(new

VisualizationStarter()) is sufficient. This monitor will show a separate
real-time workflow execution visualization for each workflow and sub-workflow.

The IWorkflowEngineListener combines methods for workflow started,
finished, scheduled events and a IWorkflowExecutorListener. The
IWorkflowExecutorListener provides methods for all the internal workflow
execution events, such as taskStarted, taskFinished, tokenAdded,

tokenRemoved, edgeUsed and more. Using those methods, it is possible
to record the execution of a workflow in every little detail, even accessing and
recording input and output data if needed.

5.2.1.9 Administration

The Administration extension point is meant for administrating different aspects
of WorMS while it is executed. In general implementations should provide some
kind of user interface, ideally a graphical user interface, to a running instance of
WorMS. Over that interface it is supposed to at least provide means to control,
e.g., pause, stop, and restart running and scheduled workflows as well as give an
overview over currently running workflows and their state.

Furthermore, an administration component could provide means to manage
security and user settings. For instance, it could manage, e.g., add, remove and
edit users and their role. It could then manage privileges a specific role has, such
as executing a workflow.

Another interesting task of an administration component is the management
of the distributed infrastructure of workflow execution workers, such as adding,
pausing or removing workers to a specific WorMS instance. Also, the start of
workers on remote machines poses a useful task.

There are more responsibilities thinkable, e.g., since the administration com-
ponent could also provide a list of monitor plugins that can be attached to
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workflow runs, scheduled or already running, removing the need to add them
programmatically.

5.2.1.10 Workflow Repository

A Workflow Repository has two facets. Firstly, it can be used to provide workflows
for execution. Such a workflow can be based on provenance or documentation
data of a previously workflow execution or it is simply based on workflow newly
added to WorMS.

Secondly, it can be used to store executed workflows possibly including docu-
mentation, data and provenance data. This is useful for increasing the credibility
of published results, if the workflow that created the results and its provenance
data is also available.

The repository holds meta-data along the workflow data, including version,
documentation and provenance data, workflow tool, etc. if available. A repository
allows for tracking evolution of workflows, gathering of feedback on results and
used workflows to obtain them (Littauer et al., 2012), provide provenance infor-
mation and documentation for published results, having a centralized storage for
workflows for simply backing up or sharing of workflows and associated data and
access to a workflow from anywhere, as long as the repository is accessible (e.g.,
interesting in distributed environments) (Goodman et al., 2014).

Herein, the idea of this extension point is to provide connections to established
workflow repositories, such as the myExperiment repository (Roure et al., 2008;
Goble et al., 2010).

5.2.1.11 Plug-in Provider

All the components in WorMS are extension points to be filled using actual
implementations called plug-ins. WorMS already comes with implementa-
tions for most extension points, such as implementations for Workflow Executor ,
Data Store, Monitoring, Security and User/Role Management and Analysis. In
order to manage available plug-ins the Plug-in Provider is used.

WorMS comes with an internally used implementation for the Plug-
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in Provider organizing WorMS specific and included plug-ins. This allows it to
be independent from external plug-in-system. Nevertheless, other providers can
be implemented integrating other plug-in-systems from other Modeling & Simu-
lation software such as the one used in JAMES II, connecting both system so
that they can work together to integrate workflows, documentation, and prove-
nance. To work with a Modeling & Simulation software using e.g., OSGi (OSGi
Alliance, 2003) a specific Plug-in Provider based on OSGi would be needed.

Basically the Plug-in Provider acts as a plug-in-system abstraction. The Plug-
in Provider is the main extension point which keeps the framework extensible and
flexible within different Modeling & Simulation systems. It combines implemen-
tations with the internal mechanism to provide plug-ins that are not part of
WorMS, e.g., plug-ins that are Modeling & Simulation system specific, such as
workflow tasks based on actions within the Modeling & Simulation system. Ad-
ditionally, the internal mechanisms can also be reused in Modeling & Simulation
systems that do not have a plug-in system, allowing them to use the concept of
plug-ins as well.

5.2.2 Adaptive Distributed Work Item Scheduling

In Paragraph 5.2.1.3 p. 124 the ability of executing work items in parallel or dis-
tributed, provided by WorMS is described. Performing work items in parallel
or distributed can increase the execution speed of a workflow or in other words,
reduce the total time needed to execute the workflow by leveraging computing
resources, such as multi-core architectures or multi-machine environments. As al-
ready seen, from an implementation point of view it makes no difference whether
a workflow is executed in parallel, having the workflow workers within the same
VM or distributed across VMs or machines. Nevertheless, an important factor,
particularly performance-wise, is the scheduling of a work item on a specific work-
flow worker, when it comes to the selection of that very worker. By scheduling
the work item on the right worker performance can be increased, while selecting
another worker for the same work item might lead to a considerable decrease in
performance. For instance, assuming two workers and four work items to execute.
For simplicity all work items are performing equally well on each of the worker.
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However, a scheduling scheme where worker one is selected for all work items is
the worst selection of workers that can be made in this case. Albeit, this is a
very simple setup, as workers do not perform different on work items, this already
shows how important it is to select the right worker for each work item (in the
above scenario a uniform distribution of work items across the workers would be
best).

Now, in reality not all work items behave the same on each worker, this is
particularly true for distributed workers, with different hardware or in virtual
environment. For the execution of a work item not only the computational as-
pect of a work item needs to be considered but also the data aspect, which deals
with how much data needs to be transfered from and to a work item and there-
fore from and to the worker executing that work item, e.g., across a network.
Scheduling a work item on th right worker is even more critical when there are
different connection types between workers, such as internet-based (slow), gi-
gabit local area network (fast) or direct connections using techniques such as
IniniBand (InfiniBand Trade Association, 2000) (very fast) or when workers have
different computational capabilities, such as a high-performance GPU.

So the question arises, how the scheduling of work items, hence the selection of
workers can be handled. If worker infrastructure and its setup (such as connection
speeds, hardware, etc. ) is known as well as all computing and data bandwidth
requirements of each work item, a hand optimized scheduling policy can work,
even though it is hard to estimate the work item order of a workflow and the
actual performance of a worker. However, in a dynamic environment, in which
information is incomplete or where information changes over time, e.g., workers
come and go, workers’ performances changes due to contingent policies (others use
the workers as well), unreliable connections between nodes and so on, a manual
scheduling policy is not available and different approaches that can adapt to such
dynamic environments are needed.

One option to address this problem is by employing adaptive systems that can
adapt to such dynamic environments in order to optimize towards an objective,
which in this case could be performance or energy usage. Adaptive systems
can be found, e.g., in the domain of Autonomous Computing. In autonomous
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computing systems have to deal with the following problems: self-configuration,
self-optimization, self-healing and self-protection, whereby the first two handle
performance and the latter two handle reliability of an adaptive system.

An adaptive system can be defined as “Self-adaptive software evaluates its
own behavior and changes behavior when the evaluation indicates that it is not
accomplishing what the software is intended to do, or when better functionality or
performance is possible.” (Laddaga and Veitch, 1997) and “Self-adaptive software
modifies its own behavior in response to changes in its operating environment.
By operating environment, anything observable by the software system, such as
end-user input, external hardware devices and sensors, or program instrumenta-
tion is meant.” (Oreizy et al., 1999). The first definition assumes the system to
only monitor itself and to adapt itself according to a specific objective such as
performance. The second definition adds the observation of the environment the
system operates in and takes that also into account when adapting itself towards
an objective, it basically allows reacting on its environment.

When designing adaptive software, there are two approaches. On the one
hand there is Parameter Adaptation, which changes parameters that influence
the behavior of the software or system, however not allowing the providing of
new algorithms after the adaptive system is developed. On the other hand,
there is Compositional Adaptation, which is able to change entire algorithms or
components of a software, allowing e.g., the creation and use of new algorithms
after the adaptive system was developed.

Herein, for adaptation the system employs techniques of reflection. Reflection
is decomposed into two parts: Introspection and Intercession. With introspection
the system observes and examines itself and its behavior, while with intercession
a system it modifies its behavior or state, reacting on information retrieved using
introspection.

Nevertheless, an adaptive system needs to be able to adapt itself towards an
objective. The problem is how this adaptation (intercession) determines how and
what to adapt depending on the introspection so that the changes made actually
lead to the desired objective. One approach is to use machine learning techniques,
in particular techniques from the area of reinforcement learning (Kaelbling et al.,
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1996). Using reinforcement learning techniques allows to automatically find what
to adapt and how to adapt it in order to optimize towards the desired objective.

5.2.2.1 Reinforcement Learning

Reinforcement learning is already used to solve adaptation problems in Model-
ing & Simulation (Ewald, 2012; Helms et al., 2013, 2015). The first tries to provide
the best performing simulation algorithm (performance can be measured in com-
putation time, memory consumption, etc. ) for a specific experiment based on
properties of that experiment, such as model and model parameters. Here, it uses
reinforcement learning to learn from already made algorithm selections and their
performance and adapts automatically in case a selection was sub-optimal. The
second approach extends the simulation algorithm selection to support simulation
algorithm adaptation during runtime, introspecting the algorithm’s performance
and adapting as needed on the fly.

The idea is to apply reinforcement learning in a similar fashion to schedule
a work item on a specific workflow worker at a specific time in a specific execu-
tion environment and introspect its performance and derive knowledge (learn) a
scheduling scheme.

Generally, reinforcement learning is an unsupervised machine learning ap-
proach which is iterative by nature and uses a reward system, where the learning
algorithm tries to maximize the overall reward. Algorithms can be categorized
into Model-based and Model-free. The first requires a model to operate on, which
contains world knowledge such as state transition probabilities or the reinforce-
ment function. A model-based algorithm basically learns a model beforehand
(e.g., using training data) and uses the model to derive a controller from it. An
example of such an algorithm is Dynamic Programming. Model-free algorithms
however, do not need a model to operate, they learn a controller without learn-
ing a model, an example algorithm is Q-Learning (Watkins, 1989; Watkins and
Dayan, 1992; Kaelbling et al., 1996).

Since it is difficult to derive training data for dynamically changing hetero-
geneous environment a model-free approach, in this case Q-Learning, is used to
create an adaptive workflow worker selection policy.
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Figure 5.18: Q-Learning scheme

Q-Learning Q-Learning belongs to the model-free reinforcement learning al-
gorithms. It consists of a set of Actions A = {a1, a2, . . . , an}, a set of states
S = {s1, s2, . . . , sm}, a rewards function R : S ×A→ R, (sj, ai) ↦→ R (sj, ai), and
the learned knowledge function Q : S×A→ R, (sj, ai) ↦→ Q(sj, ai). Additionally,
a state, an action, a reward as well as the knowledge at time t is denoted by st

j,
at

i, Rt(st
j, at

i) and Qt(st
j, at

i) respectively.
The learning procedure is as follows:

(i) Agent has knowledge at time t represented as Qt and the environment is in
a state st

j and there are the Actions a1 to an available.

(ii) Agent selects an Action at
i based on an action selection policy, explained

later. Action at
i influences the state of the environment triggering a state

transition from st
j to st+1

l . At the same time a reward is granted Rt(st
j, at

i)
and the Agent’s knowledge Qt is updated using the following equation:

Qt+1(st
j, at

i) = Rt(st
j, at

i) + γ max
{
Qt(st+1

l , a1), . . . , Qt(st+1
l , an)

}
,

where γ → [0, 1] controls the influence of previously gathered knowledge.
With γ the learning rate or adaptation rate is influenced. A larger γ means
learning rate is lower, but it is less prone to reward outliers or fluctuating
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rewards. Consequently, a lower γ leads to a quicker adaptation and higher
learning rate, but is prone for reward outliers or fluctuating rewards.

(iii) Continue with step i

Now, if this procedure is continued over and over selecting actions randomly,
over time Q-values for each combination (sj, ai) are accumulated and represent
the Agent’s learned knowledge. Q-Learning is proven to converge, being able to
provide an optimal decision making (Watkins and Dayan, 1992). In order to use
the learned solution a selection policy based on Q-values, e.g., greedy(Q) instead
of a random action selection must be employed.

Action selection policies — Using Knowledge while learning As
already stated, there are different ways for an Agent to select an action based
on environment state and Q-values. The following overview introduces some
common action selection policies that can be used with Q-Learning.

Random This policy selects actions randomly. This is useful for exploring dif-
ferent actions in different states in order to acquire knowledge about those
actions and their performance in specific environmental states. A random
action selection policy can also be used to train an Agent. Doing the learning
procedure until the following holds.

∀(sj, ai)
(
(sj, ai) ∈ S × A ∧

⏐⏐⏐Qt+1(sj, ai)−Qt(sj, ai)
⏐⏐⏐ < ϵ

)
.

Which basically means that over all state-action combinations is iterated
until the Q-values only change within an ϵ interval.

However, acquired knowledge is not used, to make informed decisions on
which action to select, using this policy.

greedy(Q) This policy uses Q-values in order to decide which action to select
in which environmental state. It makes sense to use this policy, e.g., after a
random action selection policy was used to already acquire knowledge. An
action ax is selected purely on the highest Q-value for a specific state sj
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with ax = ai, where Q(sj, ai) = maxn
k=1 Q(sj, ak). In case there are multiple

actions to choose from, one can be selected, e.g., randomly or by taking the
one with the lowest index. Exploration does not take place using this policy.

ϵ-greedy This policy combines the first two policies greedy(Q) and random. In
most cases it acts like the greedy(Q) policy, selecting an action based on the
highest Q-value for a given state. However, the ϵ parameter influences the
exploration rate p : S → [0,∞), (sj) ↦→ p(sj). For this policy the exploration
rate at time t is defined as pt(sj) = 1/ϵ and is used to determine when to
use the random action selection policy rather than the greedy(Q) policy.
Basically, this policy explores on average every 1/pt(sj) action selections for
a specific state sj and uses Q-values otherwise. It provides a fair amount
of exploration while still using already gained knowledge in order to make
informed decisions on actions.

ϵ-decreasing Similar to the ϵ greedy policy, but decreases the exploration rate
and therefore exploration over time. It starts with a specific ϵ, typically
ϵ > 1 and an state occurrence counter c : S → N, (sj) ↦→ c(sj) with initially

∀sj

(
sj ∈ S ∧ c(sj) = 0

)
.

The exploration rate at time t is defined as pt(sj) = ϵ/ct(sj), depending
on the current environmental state sj and after each action selection the
counter is increased with ct+1(sj) = ct(sj) + 1. Starting with an ϵ > 1
results in an exploration only phase for the first ϵ iterations per state.

5.2.2.2 Evaluation

A scheduling policy based on Q-Learning For the actual implementation
of a Q-Learning based scheduling policy, S (states), A (actions) and R (reward
function) need to be defined. Additionally, for the evaluation an action selection
policy needs to be selected, which in this case will be the ϵ-greedy policy, with
γ = 0.5 and ϵ = 0.1. This policy allows a fair amount of exploration while still
leveraging already learned knowledge from the beginning. A medium γ allows for
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a quicker adaptation to changes in the environment, while not being too prone
to exceptional behavior (outliers).

The definition of actions, states and reward used in the implementation is
described in the following.

States Generally, states are built from features that represent the current prob-
lem, e.g., solving a maze. Herein a state can be made of the agent’s position
in that maze. The agent’s environment can only be in one state and a state
transition is triggered by an action.

For the scheduling policy the environmental state consists of the work item
that is to be scheduled and the length of each workflow worker’s
work item queue. Assuming there are n workers (W = {w1, . . . , wn}) and
the workflow executed consists of m work items (T = {t1, . . . , tm}, a state
is defined as

sj = (tk, l(w1), . . . , l(wn)) ∧ tk ∈ T ∧ w1, . . . , wn ∈ W,

where l : W → N, (wk) ↦→ l(wk) and donates the length of the work item
queue of worker wk.

For the evaluation the following holds n = 4 and m = 5. In order to avoid
combinatorial explosion of the state space, which is built as T×N×N×N×N
for this scenario with four workers and five work items, a restricted queue
length function (l′) is used instead and defined as l′(wk) = min (3, l(wk)).
l′ only allows four different values that can be interpreted as actual queue
lengths for l′(wk) < 3 and as more than three queue length for l′(wk) = 3.

Using l′ results in a state sj =
(
tk, l′(w1), . . . , l′(w2)

)
, and reduces the state

space dramatically.

Actions Actions are used to trigger state transitions of the environment. There
can be multiple actions available.

For the evaluation the set of actions A is defined as

A = W = {w1, . . . , w2}.
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This means each available workflow worker represents one available action.

Q-Values and Rewards Knowledge is gathered in the agent’s Q-values through
rewards awarded for an action selected in a specific environmental state at
a specific time.

For the evaluation the reward is based on the time needed from scheduling
until work item completion and is calculated as

R(sj, ai) = −100 000− 100 000
max (− d(ai)/1000,−100 000) ,

with d: A → [0,∞), (ai) ↦→ d(ai) returning the time needed (duration) to
execute ai from the time of scheduling until the time ai is finished.

0 20000 40000 60000 80000 100000

-1
00
00
0

-4
00
00

0

d(ai)

R
(s
j,a
i)

Figure 5.19: The Reward R(sj, ai) over duration d(ai)

Consequently, the reward will be the lower the more time is needed for a
work item to complete (see Figure 5.19 p. 155). However, the lowest reward
is limited to −100 000 which is also the reward earned on work item failure.

Setup In order to evaluate the Q-learning based adaptive scheduling policy
introduced previously, it is compared against a selection of established scheduling
policies, that can also be used to select a workflow worker to schedule a work item
based on more or less complex internal rules. The policies the adaptive scheduling
policy competes with are:
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Random This policy is the simplest scheduling policy, selecting a worker ran-
domly. This policy is to be considered the worst case here, and other policies
should beat this one.

Round Robin Also a simple policy using a static selection scheme for scheduling
work items on workers. Each worker is selected one after the other in a
specific order, which does not change over time. Once each worker was
selected, the procedure restarts at the first worker in order. This results
in a uniform distribution of work items to workers. However, in a case
where worker performance differs or changes this is a suboptimal scheduling
scheme.

Minimal Queue This policy distributes work items to workers dynamically
based on the number of work items currently in queue for each worker.
It follows a simple idea which is also found, e.g., in situations where a queue
is selected in a supermarket. If there are multiple counters in the supermar-
ket, usually the counter with the shortest queue is picked. The same idea is
used here. A work item is scheduled for the worker with the shortest queue.

One Queue Free Worker This is an alternative version of the minimal queue
policy. Instead of having multiple queues per worker, there is only one global
queue and each worker can only be in the state of executing a work item
(being occupied) or not executing a work item (being free). A work item
is put onto the queue when scheduled and then a work item is picked from
the global queue if there is a free worker and is assigned to that free worker,
changing the state of that worker to occupied. This is repeated for each
work item to be scheduled.

The adaptive scheduling policy is evaluated in two scenarios and compared to
the results of those policies applied in the same two scenarios.

For the evaluation of the benchmark workflow shown in Figure 5.20 p. 157
is used. As already mentioned, the evaluation comprises two scenarios. Firstly,
a simple scenario is evaluated in which four distributed workflow workers are
used to perform the shown workflow. The distribution however takes place on a
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Figure 5.20: Benchmark Workflow Model used to evaluate different scheduling
policies in different worker scenarios

multi-core machine where each worker runs in its own VM. All workers occupy
one core each of a total of eight cores that are available on the test machine
and for this scenario each worker is assumed to be equal computational-wise.
Secondly, a scenario which simulates external load on two of the four workers,
which for instance can be caused by resource sharing in a virtual environment
such as cluster, or other activity on the node the worker runs on. Both workers
will become ten times slower after 20 seconds and stay slow until the workflow
execution is finished (see Table 5.1 p. 158 for a scenario overview).

All workflow executions are repeated ten times, the data transfered between
work items is 1MB, the Batcher creates 30 batches for each run and each batch
contains 24 tokens to be processed allowing up two 24 work items to be executed
in parallel simultaneously (depending on how many workers are present). Both
scenarios are conducted with a sleep time of 250 ms for the Sleep work item and
four workers are present for execution.

For the evaluation the following selection policies are compared: Round
Robin, Random, Minimal Queue, One Queue Free Worker and Adaptive (see
Section 5.2.2.2 p. 156)
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worker-0 worker-1 worker-2 worker-3
Scenario 1 (simple)

Slow Factor x1 x1 x1 x1
Slow Factor Time

Scenario 2 (load)
Slow Factor x10 x10 x1 x1
Slow Factor Time 20s 20s

Data Size 1MB
Replications 10

Batches 30
Parallel Work Items 24

Sleep Time 250ms
Selection Policies Round Robin, Random,

One Queue Free Worker, Minimal Queue, Adap-
tive

Action Selection Policy ϵ-greedy with γ = 0.5 and ϵ = 0.1
Reward function R(sj, ai) = −100 000− 100 000

max(− d(ai)/1000,−100 000)

Table 5.1: The setup for evaluating of scheduling policies. All workflow execu-
tions are repeated 10 times, the data transferred between work items
is 1MB, the Batcher creates 30 batches for each run and each batch
contains 24 tokens to be processed allowing up two 24 work items to
be executed in parallel simultaneously (depending on how many work-
ers are present). Both scenarios are conducted with a sleep time of
250 milliseconds for the Sleep work item and 4 workers are present
for execution. In scenario 1 all workers have the same specification
over time and none will be getting slower over time. In scenario 2,
external load is simulated for worker-0 and worker-1. Both will be-
come 10 times slower after 20 seconds and stay slow until the workflow
execution is finished.
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Results

work item time work items/second
Adaptive(ϵ greedy)

254 12.001 ± 0.163 21.92 ± 0.32
750 35.178 ± 0.132 20.99 ± 0.38
1485 73.892 ± 0.233 17.99 ± 0.26

MinimalQueue
254 10.505 ± 0.097 25.22 ± 0.20
750 30.393 ± 0.120 24.05 ± 0.07
1485 64.573 ± 0.264 20.38 ± 0.24

OneQueueFreeWorker
254 10.658 ± 0.027 24.70 ± 0.14
750 31.558 ± 0.056 23.23 ± 0.05
1485 66.862 ± 0.360 19.27 ± 0.46

Random
254 13.044 ± 0.228 19.79 ± 0.46
750 38.826 ± 0.691 19.07 ± 0.53
1485 81.507 ± 1.291 16.96 ± 0.42

RoundRobin
254 10.760 ± 0.244 24.77 ± 0.28
750 30.911 ± 0.391 23.70 ± 0.15
1485 65.540 ± 0.506 20.19 ± 0.17

Table 5.2: Evaluation Scenario 1: Overall time and Throughput

Scenario 1 — Homogeneous Environment In this scenario all workers
behave the same performance-wise. They run each within a dedicated VM on
the same machine using one CPU-core each. The scheduling policies which are
compared with the adaptive scheduling policy are expected to behave similar, the
random scheduling policy however is expected to perform a little worse than the
rest.

Ideally, the adaptive scheduling method should learn over time to distribute
work items evenly across available workers and exhibit similar performance values
as the other policies.

Figure 5.21 p. 160 shows two charts comparing scheduling policies based on
time needed to execute all work items as well as the throughput over time. Addi-
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Figure 5.21: The overall time and throughput for each of the scheduling poli-
cies for Scenario 1. Both charts exhibit the average of time needed
as well as of throughput over all replications and also shows the
standard error (see Table 5.2 p. 159 for a tabular overview). (a):
Shows the time needed to complete the work items over time. An
almost linear incline in time needed for all scheduling policies is ob-
served. (b): Shows the throughput (work items per second) for each
scheduling policy over time. The moving average is calculated using
a window of width 200, hence the first 200 work items are omitted.
A nearly constant throughput over time for all scheduling policies
can be observed.
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tionally, Table 5.2 p. 159 shows the time and throughput including standard error
values for three selected number of finished work items, which are also marked in
the mentioned figure.

The time chart shows a linear increase of time needed with work items to
be executed on all policies. Minimal Queue, One Queue Free Worker and Round
Robin scheduling policy perform very similar time-wise as well as throughput wise.
The Random scheduling policy performs the worst as expected. Interestingly, the
Adaptive scheduling policy already performs better than the Random at an early
stage needing 12.001 seconds vs. 13.044 seconds to execute 254 work items and
an average of 21.92 work items per second vs. 19.79 work items per second
after 254 work items. However, it does not reach the performance of the other
scheduling policies during the execution of the workflow. Nevertheless, all policies
perform very close to each other.

work item worker-0 worker-1 worker-2 worker-3
Adaptive(ϵ greedy)

254 23.25 ± 0.57 26.89 ± 0.48 25.27 ± 0.73 24.59 ± 0.98
750 23.30 ± 0.35 27.14 ± 0.37 24.50 ± 0.33 25.05 ± 0.59
1485 22.98 ± 0.25 27.60 ± 0.19 24.70 ± 0.20 24.72 ± 0.30

MinimalQueue
254 25.60 ± 0.11 23.81 ± 0.11 26.83 ± 0.25 23.75 ± 0.25
750 26.67 ± 0.18 23.47 ± 0.10 26.56 ± 0.25 23.30 ± 0.17
1485 26.93 ± 0.23 23.36 ± 0.19 26.65 ± 0.26 23.06 ± 0.12

OneQueueFreeWorker
254 24.09 ± 0.28 24.82 ± 0.42 25.10 ± 0.45 25.99 ± 0.34
750 25.00 ± 0.15 24.79 ± 0.25 24.88 ± 0.32 25.34 ± 0.30
1485 24.89 ± 0.17 24.97 ± 0.20 25.02 ± 0.24 25.12 ± 0.21

Random
254 24.54 ± 0.83 26.27 ± 1.39 23.70 ± 1.30 25.49 ± 0.92
750 25.05 ± 0.61 25.28 ± 0.49 25.01 ± 0.66 24.65 ± 0.48
1485 25.16 ± 0.54 25.16 ± 0.49 24.59 ± 0.59 25.10 ± 0.19

RoundRobin
254 25.10 ± 0.00 25.10 ± 0.00 25.04 ± 0.06 24.76 ± 0.06
750 25.03 ± 0.00 25.03 ± 0.00 25.03 ± 0.00 24.90 ± 0.00
1485 25.13 ± 0.02 25.20 ± 0.02 24.83 ± 0.00 24.83 ± 0.00

Table 5.3: Evaluation Scenario 1: Worker Usage

This is also shown in Figure 5.22 p. 162 and Table 5.3 p. 161 repectively. They
give an overview of how often workers were used over time. For instance, for the
Round Robin scheduling policy a ≈ 25% usage of each worker is exhibited, which
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Figure 5.22: Worker Usage Scenario 1
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is expected since this policy distributes work items evenly across all workers.
Interestingly, all other policies exhibit similar worker usage ratios, except the
Minimal Queue policy, which nevertheless performs reasonably well. Especially
noteworthy is the fact, that the Adaptive scheduling policy over time approaches
the same worker usage ratio as the other policies.

Over all, it can be seen that the Adaptive scheduling policy is able to learn a
good scheduling scheme based on the state information it has available and the
reward function that is used. There are a few possible reasons for why it did
not perform as well as the best performing policies in this scenario. Firstly, the
number of work items was not enough to learn the optimal scheduling scheme.
Secondly, the state does not contain enough information to learn a better schedul-
ing scheme, there could be other factors influencing the performance not reflected
in the current state implementation. Thirdly, a continuously exploring action se-
lection policy is used, which might lead to sub-optimal action selections once in
a while decreasing performance temporary on the one hand, however increasing
knowledge on the other.

Scenario 2 — Heterogeneous dynamic Environment The previous
scenario did not have a dynamic or heterogeneous environment the policies needed
to adapt to, which made it easier for policies that do not use environmental
information, such as Random or Round Robin to perform well.

This scenario starts with the same homogeneous environment as Scenario 1
does. However, the environment is changed into a heterogeneous worker envi-
ronment after 20 seconds of workflow execution, by slowing down worker-0 and
worker-1 by a factor of ten. This simulates a dynamic and heterogeneous environ-
ment at the same time. In reality this scenario is perfectly feasible in case workers
are executed in virtual nodes, where virtual nodes share a physical node and a
virtual node is using a lot of the capacity of the physical node. Another example
of such an environmental behavior is in case a work item performs different on
different workers.

Figure 5.23 p. 164 shows two charts comparing scheduling policies based on
time needed to execute all workflow work items as well as the throughput over
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Figure 5.23: The overall time and throughput for each of the scheduling policies
for Scenario 2. Both charts exhibit the average of time needed as well
as of throughput over all replications and also shows the standard
error (see Table 5.4 p. 166 for a tabular overview). (a): Shows the
time needed to complete the work items over time. For all scheduling
policies the effect of the slow down of two workers after 20 seconds
can be observed. However, the impact varies per scheduling pol-
icy. (b): Shows the throughput (work items per second) for each
scheduling policy over time. The moving average is calculated using
a window of width 200, hence the first 200 work items are omit-
ted. The impact of the slow down of two workers after 20 seconds
is clearly observable and affects each scheduling policy differently.
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Figure 5.24: Worker Usage Scenario 2
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work item time work items/second
Adaptive(ϵ greedy)

254 12.074 ± 0.214 21.96 ± 0.28
750 90.543 ± 2.139 4.59 ± 0.19
1485 261.146 ± 2.784 4.16 ± 0.12

MinimalQueue
254 10.584 ± 0.082 24.89 ± 0.28
750 107.240 ± 0.846 2.86 ± 0.02
1485 374.336 ± 2.413 2.60 ± 0.03

OneQueueFreeWorker
254 10.737 ± 0.068 24.51 ± 0.24
750 50.086 ± 0.991 9.28 ± 0.35
1485 135.833 ± 2.486 8.08 ± 0.40

Random
254 13.656 ± 0.259 18.97 ± 0.36
750 173.641 ± 3.876 2.45 ± 0.11
1485 511.436 ± 6.828 2.18 ± 0.05

RoundRobin
254 10.805 ± 0.333 24.75 ± 0.46
750 114.465 ± 7.128 2.86 ± 0.02
1485 396.834 ± 8.526 2.47 ± 0.01

Table 5.4: Evaluation Scenario 2: Overall time and Throughput

time. Additionally, Table 5.4 p. 166 shows the time and throughput including
standard error values for three selected number of finished work items, which are
also marked in the mentioned figure.

Both charts clearly show the slow down of the two workers resulting in a drop
in throughput and an increased incline of time needed to process work items.
Interestingly, the drop of throughput as well as the increase of incline varies a
lot between scheduling policies. The lease affected policy is the One Queue Free
Worker scheduling policy. It only shows a slight increase of time needed to pro-
cess work items and a smaller drop of throughput compared to the other policies.
The worst performing policy is the Random scheduling policy, but again this is
to be expected. However, the Minimal Queue and Round Robin scheduling poli-
cies follow closely behind Random. This is especially surprising for the Minimal
Queue scheduling policy as it considers queue lengths of workflow workers when
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task worker-0 worker-1 worker-2 worker-3
Adaptive(ϵ greedy)

254 24.93 ± 0.90 23.42 ± 0.51 22.80 ± 0.75 28.85 ± 0.85
750 19.63 ± 0.37 18.55 ± 0.35 29.26 ± 0.92 32.57 ± 0.74
1485 15.49 ± 0.29 14.84 ± 0.20 35.89 ± 1.03 33.78 ± 0.92

MinimalQueue
254 23.03 ± 0.27 25.99 ± 0.25 23.14 ± 0.27 27.84 ± 0.31
750 20.54 ± 0.12 22.75 ± 0.20 25.20 ± 0.14 31.50 ± 0.16
1485 17.64 ± 0.07 18.82 ± 0.10 27.56 ± 0.12 35.98 ± 0.18

OneQueueFreeWorker
254 25.32 ± 0.48 25.10 ± 0.21 24.26 ± 0.70 25.32 ± 0.75
750 18.47 ± 0.15 18.83 ± 0.17 31.06 ± 0.50 31.63 ± 0.32
1485 12.92 ± 0.14 13.06 ± 0.22 37.00 ± 0.50 37.02 ± 0.32

Random
254 25.60 ± 1.13 23.81 ± 0.57 25.38 ± 1.11 25.21 ± 0.94
750 25.22 ± 0.63 24.73 ± 0.47 25.39 ± 0.31 24.65 ± 0.44
1485 24.94 ± 0.53 25.13 ± 0.35 25.01 ± 0.19 24.91 ± 0.50

RoundRobin
254 25.10 ± 0.00 25.15 ± 0.06 24.76 ± 0.06 24.99 ± 0.07
750 25.03 ± 0.00 25.03 ± 0.00 24.90 ± 0.00 25.03 ± 0.00
1485 24.83 ± 0.00 24.81 ± 0.01 25.17 ± 0.00 25.19 ± 0.01

Table 5.5: Evaluation Scenario 2: Worker Usage

scheduling work items and it is expected that slower workers have longer queue
lengths. The Adaptive scheduling policy performs relatively well and places it-
self between One Queue Free Worker and Minimal Queue policy, having a 1.6×
higher throughput compared to Minimal Queue, however still having only half as
much throughput as One Queue Free Worker.

When comparing worker usages for Scenario 2 as depicted in Figure 5.24 p. 165
and Table 5.5 p. 167, it can be seen that Random and Round Robin exhibit
a very similar worker usage pattern to the pattern shown in Scenario 1. The
pattern shows a close to uniformly distribution of work items across workers.
The remaining scheduling policies, Minimal Queue, One Queue Free Worker and
Adaptive, show a clear adaptation pattern at time of worker slow down. Each of
the policies change the ratio of worker usage, reducing the amount of selections
for worker-0 and worker-1 while increasing the amount of selections for worker-2
and worker-3. The One Queue Free Worker policy performs best, almost halving
the ratio for worker-0 and worker-1 from ≈ 25% to ≈ 13%. Followed by the
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Adaptive scheduling policy reducing the ratio for the slow workers from ≈ 25% to
≈ 15%, placing it second performance-wise. The Minimal Queue policy reduces
the ratio to only ≈ 18%, which results in an inferior performance compared to
the other two policies.

Overall, in this case too, the Adaptive scheduling policy is able to adapt and
learn a good scheduling policy, beating all other policies but the One Queue
Free Worker policy. The performance of the Adaptive scheduling policy might
be improved further to close the gap to the One Queue Free Worker policy by a
different state definition using other environment information, more work items
to learn over in case the learning rate is low, a different action selection policy as
it affects learning rate and so on.

5.2.3 Integration into JAMES II

JAMES II exhibits a flexible experimentation layer that has been designed to
conduct simulation experiments with models incorporating many different tech-
niques (Himmelspach et al., 2008; Ewald et al., 2008). The experimentation layer
can be described as an implementation of the skeleton pattern (Gamma et al.,
1995). It defines all the possible experiments JAMES II can support, including
parameter scans, optimization and validation experiments.

When integrating WorMS into JAMES II the goal is to support as much
of the experiments as possible. Herein, the experimentation layer skeleton is
replaced by the workflow presented in Section 4.2.2 p. 84. For this workflow to
be integrated into JAMES II little effort is necessary.

Firstly, specific components have to be created in order to seamlessly connect
WorMS and JAMES II. This includes a component that realizes an imple-
mentation of a Plug-in Provider built on top of the plug’n simulate architecture
of JAMES II, which allows the use of JAMES II plug-ins within WorMS
if necessary. Another component that needs to be created is a Monitoring and
recording component that can monitor JAMES II specific information, such as
available plug-ins and setup as well as plug-in selections and parameters within
workflow tasks, e.g., used simulation algorithm, random number generator with
which seed and event queue. This is important to provide provenance and docu-
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mentation involving JAMES II internals. Provenance of the workflow execution
and JAMES II internal provenance can then be combined to a more detailed
and continuous overall provenance.

Secondly, a lot of what JAMES II already offers and uses in the current
experimentation layer can be reused. However, it has to be encapsulated in
either a WorMS task, WorMS template or WorMS frame. For instance, this
affects the simulation run configuration, simulation run, single or multiple run
analysis and so on. Special care has to be taken when turning existing JAMES II
components into WorMS tasks, as workflow tasks require state less execution
and immutable input and output data.

Thirdly, once all the JAMES II specific simulation and experimentation task,
templates and frames are created and the workflows themselves have to be created
and specified in WorMS.

Finally, in order to minimize migration overhead a BasicExperiment equiv-
alent class exhibiting the same methods and semantics is created allowing to reuse
already existing experiment setups by just changing from BasicExperiment

to BasicWFExperiment.
Thus, by integrating WorMS in JAMES II and adapting the experimenta-

tion layer with workflows the following benefits emerge:

• JAMES II is easier extended to support unforeseen experiments by extend-
ing the experimentation workflow

• the experimentation is no longer a black box and provenance information is
available

• documentation is automatically provided for the workflow-based experimen-
tation layer

• detailed control options and state views can be provided using an Adminis-
tration component

• resilience and robustness as well as automatic parallel and distributed exe-
cution of experiments are provided
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• the experiment workflow executions can be stored using one of the emerging
repositories for workflows such as myExperiment (Roure et al., 2008; Goble
et al., 2010), assuming a corresponding Workflow Repository component is
provided

• Security and User/Role Management support is added to experimentation

5.2.4 Challenges

During the development of WorMS a lot of challenging problems had to be
solved. Those range from parallelizing and distributing workflow execution seam-
lessly over providing a flexible extensible software architecture to integrating
flexible workflow descriptions based on templates and frames. However, there
are interesting challenges and problems that are not completely solved yet. A
selection and possible solutions is presented in the following. Moreover, they are
associated to the WorMS component it is related to.

Intermediate Representation In order to consume tokens based on content
or to consume more than one random token edges can define alternative
token selectors. An interesting application is the use of a token selector
that is shared across two or more edges leading to the same task selecting a
token for one edge based on a selected token on another edge. The problem
is however the explosion of token combinations to check for valid token
combinations to consume. A possible solution is to provide a query like API
for defining token selectors that can optimize the selection and reduce the
complexity using techniques from other query languages such as SQL (Horng
et al., 1994; Chaudhuri, 1998).

When designing workflows input and output port data types need to match
in order to exchange data between tasks. There is a problem in case the data
types do not match which results in an additionally needed transformation.
The problem is also known as the shimming problem. There are approaches
to deal with this problem, e.g., extending the descriptions of tasks providing
information for automatic shimming (Lin et al., 2009).
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Moreover, right now WorMS separates security model and workflow de-
scription. Nevertheless, in order to make informed decisions the security
model needs knowledge about the workflow and its tasks. So it makes sense
to integrate security constrains directly into the description of a workflow,
deriving a security model for the Security and User/Role Management com-
ponent automatically.

Workflow Executor The Workflow Executor is one of the main components
of WorMS and a lot of challenging problems were already addressed during
development. However, some enhancements and features are still open.

For instance, right now each token is handled as a separate entity by the
Workflow Executor . A problem arises if there are a lot of tokens at a time in
the workflow net during workflow execution, not including already consumed
tokens which are only dealt with by the Data Store. Tokens can accumulate
fast during execution, especially when executing the experiment workflows.
For instance, assuming in a simulation experiment there are a 100 configu-
ration with 1000 replications each to perform, could easily lead to 100 000
tokens present during workflow execution. Now 100 configurations can eas-
ily turn into 1000 or 10 000 and the number of replications can easily be
1 000 000. Handling this amount of data costs memory. An approach to
reducing the memory usage could be to introduce population based tokens.
What it does is to merge equal tokens present in a place, e.g., all the config-
uration tokens or replication tokens, storing only one actual token and how
often this token is present in that place. However, once the tokens travel
through the workflow net they are likely to diverge into individual tokens
over time which only delays the problem. An additional solution could be
to batch tokens, only allowing a maximum number of tokens present, the
challenge here is to ensure that the maximum number does not lead to live
or dead locks and that token selectors can still be satisfied. Moreover, using
out of core mechanisms such as the ones used by MapDB can help to deal
with high token count possibly sacrificing performance.

When executing a workflow distributed, work items need to be scheduled
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to workflow workers. In Section 5.2.2 p. 147 an adaptive scheduling policy
was introduced that employs machine learning techniques to find an optimal
scheduling scheme as well as adapt to changes to the distribution environ-
ment and infrastructure. First test and evaluations are promising, however
the policy can be improved further, e.g., by using more features to represent
the environment and utilizing adaptive state space implementations to cope
with state space explosion in case of more state space features.

Lastly, in order to distribute workflow executions and to ensure reproducibil-
ity all workflow workers need to run the same versions of WorMS, Java
and all the other libraries and classes, e.g., plug-ins from JAMES II. Right
now this is done by hand. However, an automatic way of distributing the
execution environment of WorMS including all necessary libraries, classes
and so on is desirable. A possible solution could be to use cloned virtual
machines on operating system level. Another solution might involve the
development of a custom distributed class loader implementation that can
synchronize classes and libraries from one central WorMS node to all the
other nodes, enhanced by only transferring necessary classes, e.g., based on
byte code checksums.

Data Store The Data Store already solves some problems, mainly memory ef-
ficiency, security and data management problems. For instance, instead
of having each token link to its parent tokens this information is handled
directly by the Data Store, reducing the memory footprint of a token dra-
matically, which in return increases token cloning performance as well as
reduces the amount of data that needs to be transfered when a token is sent
to, e.g., a distributed node and back to the Data Store.

This leads to another challenge that has to be mastered. Data size, the
larger the data the more it affects performance of the workflow execution
this is especially true when it comes to distributed executions, where large
data needs to be transfered between nodes. A possible approach to this
problem is to use monitoring statistics for work item executions, trying to
estimate data size and using this information to efficiently distribute those



5.2. LAYER TWO — IMPERATIVE TASK-BASED WORKFLOW IM‌ . . . 173

work items to a node that is connected to the Data Store over a fast con-
nection. This approach can be extended by analyzing the workflow before
execution estimating which work item gets data from which work item com-
bined with a distributed Data Store that can cache or prefetch data locally
having large data asynchronously transferred to the work item’s execution
node before execution.

Converter When using a Converter component, a runnable WorMS workflow
is expected. However, sometimes it is non-trivial to convert a task of another
workflow into a WorMS task. It works well when dealing with web-services
as they can easily be wrapped in a WorMS task, but poses a challenge when
workflow description specific or workflow system specific internal routines
are used or the task implementation is incompatible with Java out of the
box. A solution could be to provide wrappers and native connectors to the
other workflow system or task implementation but it has yet to be shown
and investigated.

Monitoring Monitoring is responsible for providing provenance information
and documentation. The question is how detailed should the documen-
tation or provenance be and does it include all intermediate data or just
input and output. Especially, in the case of simulation experiment work-
flows, a lot of data is produced over time. This is an interesting problem
in terms of replay and reproducibility, providing enough information to be
able to reproduce the results. Different approaches exist, for instance input,
output and intermediate results can all be stored together with the used
methods, workflows, software and hardware. Another approach could only
store fractions of intermediate results at specific predefined points, e.g., a
specific work item in the workflow or after a specific number of performed
work items. Moreover, this could be combined with an incremental ap-
proach that can recalculate missing intermediate results either backwards
or forward based on the recorded data, closing the gap between full record-
ing and recording only a subset of data. This can especially be beneficial
in case the amount of data is so high that storing would mean an enormous
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effort resource-wise as well as time-wise which makes it impractical. Even
if storing would be practical recalculating data might be faster than storing
and reading it back.

Workflow Repository A Workflow Repository is a necessary step to provide
credible results as it gives people access to information on how those results
were obtained. A problem poses the versioning of workflows, which not only
includes the evolution of the structure of a workflow but also the evolution of
each task implementation. It is essential that a workflow and the tasks and
services it uses are versioned in order to ensure reproducibility (Woodman
et al., 2011). However, an interesting challenge is to reapply existing prove-
nance or documentation information to an evolved workflow. Implications
and consequence need to be evaluated and investigated.

Another problem of a Workflow Repository is the possible decay of archived
workflows. Overtime resources that were originally used to execute a work-
flow are changed, moved or are not available anymore. This usually applies
to resources that are not controllable by WorMS or the Modeling & Simula-
tion software, such as special hardware, operating system or simply external
web services. In order to address those issues there are two ways. Firstly,
there is preventing decay in the first place. Secondly, there is the fixing of
decay once it occurred. For the first approach careful workflow planning and
building, testing, reuse and maintenance could work (Hettne et al., 2012),
while for the latter substituting missing services, adapting the workflow or
leveraging provenance data for reconstructing behavior might work (Zhao
et al., 2012).

5.3 Summary

The implementation has to consider two different scenarios when conducting a
simulation study. On the one hand, there is the process of creating a simulation
model (layer one). On the other hand, layer two deals with the execution of a
simulation experiment, typically using the simulation model created in layer one.
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Albeit both layers use workflows to describe the processes involved, they use
two different approaches to cope with representing and controlling processes using
workflows. In layer one an artifact-based approach is used which describes work-
flows declaratively. In contrast layer two uses a task driven imperative workflow
approach. Thus, the implementation is divided into two different implementation
approaches.

The presented implementation architecture for layer one is based on a rule-
based engine. A rule-based engine is an obvious choice since it allows declarative
descriptions of rules and condition, similar to the declarative nature of artifact-
based workflows. It helps to specify what to do instead of how to do it and
separate logic and data, representing logic as rules and data as facts or domain
objects rather. Internally a rule engine typically employs the Rete algorithm
which is efficient and scalable. Potential choices of rule engines comprise JESS,
ILOG JRules, RuleML and Drools.

For the actual proposed architecture Drools is chosen as it was already used
in another artifact-based workflow management system. Drools executes rules on
facts generating or changing facts, which may trigger more rules until no more
rule can be applied. Herein artifacts, milestones and stages are represented as
facts and guards need to be converted to rules. Activities however are separated
into activities that can be triggered directly using facts or by rules, called actions
and activities that are activated by facts but need to be explicitly executed, e.g.,
by a human, called tasks. Albeit tasks and actions are part of the artifact-based
workflow they are not mapped to entities of the Drools rules engine but kept
separately. Executing actual tasks or actions is handled outside of Drools. In
order to interact with facts tasks and actions can trigger events which become in
return turned facts usable by Drools.

The most challenging part however poses the actual translation of artifacts,
milestones and stages to facts and more importantly guards and sentries to rules.

Aside from being able to manage and execute an artifact-based workflow the
proposed system needs to be integrated into JAMES II. Thus, two areas need
adjustments. Firstly, plug-ins of JAMES II need to be made aware of restrictions
that may occur to them based on facts currently present in the current workflow
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execution. This is achieved by hooking into the plug-in registry of JAMES II
employing a proxy mechanism delegating the connection to available facts to the
proxy implementation. By using a proxy existing plug-ins do not need to be
directly altered or extended reducing integration effort dramatically. Secondly,
the user interface of JAMES II needs to be adapted adding a mechanism to
control the enable-state of buttons, menus, menu options and so on for specific
tasks based on available facts. In contrast to plug-ins this integration is more
complicated.

A completely different architecture and approach is used for the implementa-
tion of layer two. In principle existing generic workflow systems, originating from
the business process or scientific workflow domain could be employed in order
to implement the prensented experiment workflow. Alternatively, a system for
supporting Modeling & Simulation workflows can be designed and implemented
from scratch. The advantage of a new system is that it can be tailored specifically
to the requirements of the domain of Modeling & Simulation and its processes
at hand. In general, such a system should exhibit a software design that is flex-
ible and extensible and supports a workflow representation with clearly defined
semantics. Those semantics ensure that a workflow when executed by different
systems is interpreted correctly. Such a representation is given by Workflow Nets.

In order to execute and manage workflow based on Workflow Nets in the do-
main of Modeling & Simulation the framework WorMS was developed. WorMS
supports the integration of workflows in Modeling & Simulation software such as
JAMES II. Thus, WorMS on the one hand supports and assists the creation
and redefinition of workflows. On the other hand, it presents an architecture
which is used to execute Modeling & Simulation workflows which guides and as-
sists Modeling & Simulation scientist and produces reproducible and documented
results.

Technically, WorMS is plug-in-based and comprises different exchangeable
components, such as Security and User/Role Management, Plug-in Provider ,
Workflow Repository, Workflow Engine, Intermediate Representation, Adminis-
tration, Analysis, Converter , Monitoring and the most essential parts the Work-
flow Executor and Data Store. WorMS comes with different implementations
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for those components. For instance it ships with a Workflow Engine that sup-
ports Workflow Nets based workflow descriptions, different Data Stores imple-
mentations (Memory-based, persistent, distributed, etc. ), a Workflow Executor
implementation that is able to execute a workflow parallel and distributed as well
as different Monitoring (performance or documentation) implementations.

The implementation of the Workflow Executor realizes the parallel and dis-
tributed execution of a workflow by employing the actor-based concurrency
paradigm. In particular the implementation leverages the Akka actor frame-
work. Albeit Akka comes with schemes to distribute work across actors, such
as round robin or a minimal queue-based policy, it does not always lead to the
best distribution, leaving room for improvement. Herein, an adaptive distribu-
tion policy was presented, that uses machine learning mechanisms to learn an
optimal distribution scheme over time for a specific workflow. In order to be user
friendly, thus avoiding overly complicated or extensive configuration a model-
free reinforcement learning, Q-Learning, is used. Being model-free no knowledge
about the system is needed, hence configuration can be kept to a minimum. Q-
Learning uses a reward mechanism to distinguish good from bad decisions, that
is good or bad worker selection for a specific work item. If a good worker for a
specific work item was chosen a high reward is granted, a low reward otherwise.
Decisions are made based on features previously defined for the system, such the
work item’s id, worker queues, data size of input and output values and so on.

Evaluations have shown that an adaptive distribution policy based on Q-
Learning is able to adapt distribution of work across actors as good as or better
than standard distribution policies, such as round robin or minimal queue. How-
ever, performance of this method is highly dependent on the features used for
learning.

When integrating WorMS into JAMES II some changes to JAMES II
needed to be made. The idea is to replace the existing experimentation layer
by an equally powerful, flexible and extensible experimentation layer based on
WorMS and the herein presented experiment workflow, additionally providing
automated documentation and provenance information. However, additionally
to integrating WorMS special plug-ins for JAMES II needed to be created.
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Firstly, a Monitoring and recording component that can monitor JAMES II
specific information, such as available plug-ins and system setup as well as selected
plug-ins and parameters during the execution of workflow work items, e.g., used
simulation algorithm, random number generator with which seed and event queue.
Secondly, JAMES II specific simulation and experimentation task, templates
and frames were created. Thirdly, the presented experiment workflow itself had
to be created and specified in WorMS using previously created JAMES II
specific simulation tasks and frames.

During implementation different challenges arose and are only partly solved in
WorMS. For instance, control-flow in WorMS is partly achieved using edge con-
ditions and token selectors. As long as such edge conditions and token selectors
only refer to one place there is no difficulty, however when a token selector spans
more than one edge, therefore referring to multiple places to consume tokens
from, ways to avoid combinatorial explosion are needed to ensure efficient execu-
tion. Another interesting task is the efficient wiring of input and output values
of workflow tasks. Especially providing shimming functionality for values that
do not have compatible data types is a challenging endeavor. When executing a
workflow a trail of tokens is produced. Depending on the workflow the number
of tokens produced over time can reach a point where managing them becomes
challenging, memory, documentation and retrieval wise. Right now this is ad-
dressed by special Data Stores and by the workflow itself, e.g., producing tokens
in batches rather than all at once. Directly related to the number of tokens
present during workflow execution is the data associated to each token, that can
even quicker become a challenge to handle, with storage and retrieval being only
one problem and transferring that data across distributed nodes being the other.
Partly, on the one hand this can be addressed by Data Stores that do not hold all
data in memory. On the other by employing a work item distribution policy that
takes data transfer into account, avoiding transfers of huge data to distributed
nodes if not reasonable. Reason can for instance be determined by the herein
presented adaptive distribution policy. The learning rate is highly dependent
on the used features it is wise to further increase performance of the adaptive
work item distribution policy by utilizing even better suitable features and an
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adaptive state space representation avoiding state space explosion, leading to in-
creased learning rate. However, the challenge lies in selecting the right features
and the appropriate state space representation.





6
Discussion & Future Work

If this is coffee, please bring me
some tea; but if this is tea, please
bring me some coffee.

Abraham Lincoln

In this chapter the presented tools, frameworks and methods are put into
perspective with respect to how they help to overcome the crisis of credibility
of simulation studies. The basic idea of the solutions presented is to structure
the process of conducting a simulation study making it clearly defined. The
frameworks presented help to automate the documentation and provenance data
collection of that very process during the life-cycle of a simulation study as well as
the assurance that the process if followed as specified. Documentation and prove-
nance information can be used to reproduce, rerun, adapt and extend simulation
studies later on.

Ultimately, a clear understanding of reproducibility is needed.

6.1 Reproducibility

“[. . . ], reproducibility designates the ability to confirm the results of a previous
experiment by means of another similar experiment. ” (Dalle, 2012). Interest-
ingly, in physics a standard exists that defines criteria for reproducibility and
repeatability taking results of measurements into account (Taylor and Kuyatt,
1994).

181
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In the field of Modeling & Simulation reproducibility refers to the ability to
produce similar results by executing similar simulations. However, the results,
or data for that matter, are not necessarily identical but have to exhibit the
same properties according to a specific metric, e.g., a statistical property such as
distribution or the same trajectory just sampled at different points.

Dalle (2012) defines four levels of reproducibility in terms of scenario and
instrumentation. A scenario refers to a possible history of the system simulated
and can be produced using dedicated means such as a domain specific language
or simply use the same elements used to define the model. Instrumentation
however, defines variables that are of interest and need to be observed, during
the simulation task Data Collection and the computations that need to be applied
to the data produced by these variables, during the simulation task Analysis. In
the following the four levels of reproducibility are briefly described.

Level 1 Refers to the identical computation including completely deterministic
behavior. It is also known as repeatable. For instance, in case of a discrete
event simulation a level 1 reproduced or repeated simulation has to execute
the same exact simulation, which means it has to have the same series of
events which need to be processed in the very same order. This is especially
difficult to achieve in parallel distributed environments, because process-
ing has to be synchronized deterministically (Fujimoto, 2000). In addition,
level 1 also requires identical instrumentation. It is also recommended to use
the same source code, e.g., for simulation algorithm, for re-execution, but
not necessary. Level 1 aims at debugging and error analysis of simulation
experiments as well as simulation algorithm testing.

Level 2 This level is more relaxed than level 1. However, it still refers to an
identical computation when re-executing a simulation, but does not require
the deterministic nature level 1 exhibits. This means, for instance in cases
where events occur at the same time, the order can be different. Level 2
reproducibility is often found in parallel and distributed environments be-
cause of the lack of synchronization or from the inability to completely con-
trol execution, e.g., in real-time simulation (McLean and Fujimoto, 2000).
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An identical instrumentation is required in order to achieve level 2. This
level can be used to verify existing simulation results or compare simulation
algorithms to a reference implementation.

Level 3 Level 3 reproduces the scenario and does not necessarily require identical
computation. Re-execution if typically based on detailed specification, e.g.,
by recreating the model and experiment using different tools, frameworks
or formalism. This level occurs when the specification might not reveal all
details for a level 1 or level 2 reproducibility, e.g., the sequence of random
numbers cannot be reproduced without actual implementation and seed
details. The data produced in a level 3 reproduced simulation might not
produce the same data but still must inhibit the same properties according
to a metric. This means that a re-execution at level 3 should reproduce the
same phenomenon model, requiring that data is identical from a statistical
point of view, with the assumption that instrumentation is identical. This
level is what to aim for when conducting simulation experiments.

Level 4 This is the most relaxed and general form of reproducibility. It requires
the re-execution to be a similar scenario and is typically found where it is
impossible to reproduce the exact same experimental conditions, such as in
real-time simulations.

Which level can be achieved depends on the specification (documentation)
available and the elements used in the specification (model, algorithm source
code, technical environment). Availability of elements and the specification is
mainly influenced by two factors. On the one hand there is the human factor and
on the other technical issues.

The human factor typically influences the specification. For instance, due to
unawareness of hidden parameters and settings, e.g., which random number gen-
erator is used internally by a simulation algorithm, this is likely missing from
the specification. Further, insufficient documentation and specification may re-
sult from space and time limitations, e.g., when publishing work. It can also
stem from business limitations, for instance the model, or the source code of a
simulation algorithm used cannot be made public due to copyright restrictions.
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Additionally, the specification can be inaccurate or incomplete when manual tasks
during simulations are involved and are not sufficiently tracked or hard to repro-
duce.

Technical issues on the other hand refer to software bugs, software availabil-
ity, floating point number problems and hardware or operating system dependen-
cies. Software availability issues usually result from business limitations, where
software cannot be made available due to copyright or when a specific version
of the software is not available anymore due to new versions of that software.
This directly relates to the problem that software bugs pose to reproducibility.
Due to software bugs, valid models can produce erroneous or different behavior,
however after fixing these software bugs this might lead to different results and
referenced versions of the software exhibiting the bug are likely not available any-
more, which means level 1 or level 2 is not achievable anymore. Interestingly, the
results from calculations using floating point numbers highly depend on the inter-
nal implementation of the floating point numbers. Simple calculations can lead
to wrong and completely different results using different arithmetic implementa-
tions (floating point arithmetic and integer arithmetic) (Vicino et al., 2014). Long
term reproducibility might require obsolete computer hardware or architectures
not available anymore, this can also happen if a simulation has dependencies to
a specific OS or OS version, e.g., due to the use of Operating System specific
libraries which affects the level of reproducibility, if reproducible at all, in case
such versions or hardware is not available anymore.

6.2 Layer One — Model Creation

6.2.1 Example Model Creation

In Section 2.4 p. 35 difficulties describing processes using a task-based workflow
description are outlined, if the process involves a lot of freedom and flexibility,
which is usually found when dealing with processes with a lot of human inter-
actions requiring a large degree of freedom during execution. An alternative
approach presented is to use declarative workflow descriptions. In particular a
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Creating Conceptual Model V&VModel
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Figure 6.2: Application of artifact-based model to case study; top: states of the
artifacts at two selected points in time (Active, inactive and finished
stages are filled with horizontal lines, white color and a cross hatched
pattern respectively); bottom: tasks from case study over time
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model creation workflow was presented for layer one facilitating an artifact-based
description (see Section 4.2.1 p. 74).

In order to assess the suitability of the proposed model creation workflow for
real world application, an example modeling scenario, originating in the domain
of cellular biology, was used for evaluation (Rybacki et al., 2014).

It covers the creation of a simulation model investigating the influence of
cell membrane-related processes (lipid rafts) on a specific, intra-cellular signaling
pathway (Wnt-pathway). The model is based on existing models, experimental
measurements and additional data found in literature. Figure 6.1 shows the
activities that were carried out to create the simulation model over time. It
should be noted that the model creation process had no workflow support.

The observed activities can be separated into three parts. Firstly, there are
activities that dealt with the collection and gathering of data from which the
model was derived. The data was also used for verification and validation of the
model created as well as for simulation studies conducted later on. Secondly, there
are activities dealing with the creation of the conceptual model and its verification
and validation, applying the previously gathered data. Lastly, activities for the
creation of the formal model based on the conceptual model and its verification
and validation were performed.

Overall, this corresponds to the general modeling life-cycle, except that in this
scenario the explicit creation of an executable model is missing. This is due to
the fact that it can automatically be derived from the formal model.

The example modeling scenario aims at extending existing simulation mod-
els of the Wnt-pathway, instead of creating a completely new simulation model.
Therefore, literature is researched and information about already existing mod-
els, in-vitro data and in-silico data were gathered. Then based on literature and
the data available the conceptual model is created. For the conceptual model
creation, an existing model was used as reference model. In case there are more
than one models to start with available, typically the one that fits the objectives
of the new simulation study best is selected.

The next step experimental data for model parameterization was collected and
based on the goals and objectives of the simulation study a suitable formalism
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for the implementation of the formal model was chosen. In this example scenario
the formalism chosen was different from the formalism of the selected reference
model. Hence, the reference model had to be translated and validated, before the
formal model could be built based on the reference model.

While preparing conceptual and formal model a wet-lab experiment was con-
ducted evaluating the given conditions whether they fit the scientific question at
hand.

After having successfully transferred and implemented the reference model
(conceptual and formal model) to the new formalism the actual extension of the
model in order to evaluate the scientific question could be executed. For this,
further literature concerning lipid rafts had to be evaluated. Moreover, the newly
gathered information was used to extend the conceptual model accordingly. At
the same time the formal model was also extended by membrane-related processes
(i.e., lipid raft dynamics).

Concurrently, parameterization and information taken from literature, given
by in-silico and in-vitro data, had to be annotated and prepared in order to be
used for validation as well as for the simulation study. Meanwhile, the previously
started wet-lab experiments finshed and V&V was applied to both, conceptual
and formal model using face validation, fitting and cross validation techniques.

The model creation process proved to be highly iterative executing the same
phases multiple times. It is important to note that some activities took longer
than others, e.g., conducting a wet-lab experiment compared to gathering in-
formation from literature for revising the model. However, long-term activities
typically do not occupy the modeler the entire time giving time to perform other
activities, e.g., process and compile data or work on the conceptual or formal
model. Moreover, it seems that a typical modeling process comprises a variety of
closely intertwined and concurrent activities.

Figure 6.2 p. 186 illustrates how the modeling tasks from the example scenario
map to the artifacts. Over the course of the process six artifacts are created, i.e.,
a Formal Model, a Conceptual Model and four Data artifacts. The four data
artifacts resemble artifacts for literature, for the model extracted from literature,
for wet-lab data gathered from literature and for data generated by self-conducted
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wet-lab experiments respectively.
Moreover, the figure also depicts the state of the involved artifacts during the

modeling process at two points in time.
The artifact-based workflow fits the described modeling scenario well and is

able to reproduce the presented real world scenario. This is not surprising as
it bases on well known life-cylce models for the creation of valid and verified
simulation models.

Although, a goal was to provide a process that covers a broad range of differ-
ent simulation studies, ranging from simple parameter sweeps using an existing
model to creating a valid and verified model from scratch which is then used in
optimization experiments, it needs to be shown to what extend the presented
artifact-based workflow can handle other modeling scenarios. More user and
case studies from different fields involving modeling and simulation have to be
conducted in order to evaluate its applicability.

6.2.2 Documentation, Provenance & Reproducibility

The aim of using artifact-based workflows is to have a flexible workflow with a
clearly defined process to follow in order to provide a certain quality as well as
credibility and transparency. A by-product is that it can also be used to guide
a scientist through the process of model creation. However, the main reason
is to produce a valid and verified model with a documentation and provenance
data about the entire model creation process available alongside the model. This
is extremely useful to ensure reproducibility aiding to the quality, credibility
of the model and transparency, for the further use of the model in simulation
experiments.

In order to provide documentation and provenance data the model creation
process is monitored and audited each step of the way. This means, that each
change to an artifact’s data and state (milestones achieved, active stages, etc. )
is recorded.

The implementation approach presented in Section 5.1 p. 97 using Drools as
driving component provides the infrastructure to easily record those changes. It
allows auditing rule executions and changes to facts which directly relates to
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Figure 6.3: Example Drools audit trail of rule executions

data and state changes of artifacts (see Figure 6.3 p. 190). Triggered events
are transferred to facts internally and therefore are automatically covered by
this audit trail as well as activities directly invoked by Drools rules. However,
activities that simply rely on specific facts to hold for them to be executable, e.g.,
editor actions, need to be monitored using own mechanisms or those provided
with JAMES II.

Consequently, from the documentation recorded provenance information could
be derived and stored into an appropriate provenance format such (Missier and
Goble, 2011; Costa et al., 2013; Missier et al., 2013).

Given the provenance information and documentation available the repro-
ducibility levels 2, 3 and 4 are achievable. Level 1 is hard to achieve as a number
of things can happen which is out of reach of the workflow system, mainly the
human interaction as well as non-technical activities. For those activities doc-
umentation and provenance information purely rely on manual addition to the
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system.

6.3 Layer Two — Simulation Experiment

6.3.1 Example Simulation Experiment

In order to evaluate the developed simulation experiment template workflow
shown in Figure 4.14 p. 93 (see Section 4.2.2) a concrete simulation experiment
has been conducted applying the given workflow.

The simulation experiment computes a stochastic model using the ML-
Rules formalism. The model describes biochemical reactions in a MgCl2-
Solution (Phillips, 2007). The goal is to maximize the number of species Mg
in the equilibrium state.

Figure 6.4 p. 192 shows the actual experiment workflow with templates filled
with frames that match the specification and objectives of this example experi-
ment. Herein, the specification is given according to the optimization problem.
After specifying the experiment, the Configuration Setup task deals with the cre-
ation of parameter configurations for the model. In order to find the maximum
amount of Mg an optimization method is required. Various optimization methods
exist in JAMES II, e.g., for optimizing according to single or multiple objectives.
Here only one objective is to be optimized and for presentation purposes a stan-
dard Hill-Climbing method is used. The simulation algorithm that can also be
part of the specification or configuration is not specified further which results
in JAMES II selecting an appropriate simulation algorithm. Which simulation
algorithm was used eventually will be documented nonetheless.

After the configuration has been executed, the amount of Mg needs to be
estimated by calculating the steady state mean of Mg in the model. Typically,
there are two ways of estimating the steady state mean in stochastic simulations.
Firstly, one estimates the steady state mean of a single simulation replication
during the Single Run Analysis task, and then calculates the mean of those esti-
mates during the Multiple Run Analysis task. Secondly, the single run analysis
is skipped in favor of calculating the steady state mean over all replications dur-
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Figure 6.4: Specific workflow for analyzing the MgCl2-model. All template ac-
tivities have been assigned an actual frame.
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ing the Multiple Run Analysis directly. In this example the first approach is
applied, for which various techniques exist (Schruben, 1982; White Jr., 1997).
From the applicable methods available in JAMES II the MSER-5 algorithm is
selected (White Jr., 1997). This is combined with the Mean Steady State Con-
fidence Interval method which is applied to the means calculated by the MSER-
5 algorithm.

The value estimated will then be forwarded to the optimization evaluator
which in combination with the optimizer generates more simulation configurations
if need be.

Specifying all objectives, methods and algorithms beforehand makes sense if
this information is available. However, another option is to not specify, e.g., the
optimization method or the steady-state detection algorithm beforehand. It could
be specified automatically according to, e.g., previous simulation results or ques-
tion of interest. That gives the opportunity of an explorative optimization and
a quicker jump start on simulation experiments because the entire specification
does not need to be known and specified beforehand. Moreover, the specifica-
tion can be completed automatically once the workflow was executed using its
documentation and provenance data.

This in combination with the workflow support helps inexperienced users
conduct efficient and effective simulation studies, which are reproducible and
for which documentation and provenance information is automatically pro-
vided (Leye, 2014).

6.3.2 Documentation, Provenance & Reproducibility

If a simulation experiment is conducted in JAMES II the BaseExperiment
and its experimentation layer is used. Given that, a quick run on the example sim-
ulation experiment produces for one replication of one simulation configuration
the console output shown in Listing 6.1 p. 194. As can be seen, the output gives
some information about the simulation experiment. For instance, the used simu-
lation algorithm is disclosed as MLRulesPopulationProcessor and that it
performed 137 310 simulation steps spending 47.92 seconds on them. Addition-
ally, the IDs of the experiment and the simulation run are available. They can
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Listing 6.1: Console Output produced by the BaseExperiment after executing
the MgCL2 MLRules model. Not much information can be extracted
using this information.

1 Nov 05, 2015 2:16:52 PM
org.jamesii.simulator.mlrules.population.reference.MLRulesPopulationProcessor cleanUp
(Line: 1597)

2 INFO: Simulation steps taken: 137310
3 Overall time spent processing: 47.92127
4
5 Nov 05, 2015 2:16:52 PM org.jamesii.core.experiments.ExecutionMeasurements

stopComputationTask (Line: 162)
6 INFO: 802703478-1446729144711-278392507709844-4.802703478-1446729144711-278400701775685-6

Seconds needed for running the simulation: 48.037
7
8 Nov 05, 2015 2:16:52 PM org.jamesii.core.experiments.BaseExperiment runExperiment (Line: 783)
9 INFO: 802703478-1446729144711-278392507709844-4 Seconds needed for all runs: 59.5
10
11 Nov 05, 2015 2:16:52 PM org.jamesii.core.experiments.BaseExperiment execute (Line: 370)
12 INFO: About to stop the experiment 802703478-1446729144711-278392507709844-4
13
14 Nov 05, 2015 2:16:52 PM org.jamesii.core.experiments.BaseExperiment execute (Line: 374)
15 INFO: Stopped the experiment 802703478-1446729144711-278392507709844-4

be used to access data that was stored into a JAMES II data storage (not to
mistaken with the herein presented Data Store).

Moreover, assuming the BaseExperiment’s setup is known information
about the computed model, used stop criterion and replication policy can be
inferred.

Given this documentation and provenance information a reproducibility
level of 4 and maybe 3 can be achieved. When employing additional
IExperimentExecutionListener and a custom IExperimentSteerer

that monitor the experiment’s execution level 3 is definitely feasible and depend-
ing on the complexity of the experiment level 2 could be achieved. But then again
this just illustrates how hard it is in JAMES II to achieve documentation using
conventional methods, yet alone doing all this for each experiment automatically.

Conducting the simulation experiment using WorMS and the workflow shown
in Figure 6.4 p. 192 provides different information regarding available documenta-
tion and provenance information. Firstly, the experimentation process is clearly
defined and a trace of which work item of the workflow was executed when and
with which input and output data is available after execution of the workflow,
assuming a Data Store that persists tokens and associated data. In case of the
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use of the BasicMemoryDataStore this data is only available as long as the
Data Store instance is available, which requires an extra storing step of prove-
nance data and documentation based on the information available in the memory
datastore.

Figure 6.5: Example token graph after execution of the example experiment
workflow with five configurations, where each configuration ran
five replications and each replication was run for five simulation steps.
As expected there are 25 tokens in the end markings available after
workflow execution, each representing a finished replication (tokens
at the bottom of the graph). Each of those tokens has an execu-
tion trace, and traces form groups at different level in the graph.
Those levels are the level of configurations (second level), the level of
replications (tokens at the 4th level) and level of the start token (top
level). In other words, starting with one start token leads to the point
where five sub-graphs are spanned, each representing one configura-
tion and within each configuration sub-graph another five sub-graphs
are spanned each representing one replication.

Given the token markings of the workflow after execution provides all the
information needed to extract provenance data and documentation for executed
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work items and their input and output data. Each token has a history that
comprises all the tokens that were consumed on the way to produce it, including
all the data that is associated with each of those tokens. A token spans an
acyclic graph of tokens resembling the path it took through the workflow to create
it. For instance, in Figure 6.5 p. 195 a token graph is depicted that captures
the execution of the example experiment workflow. The experiment conducted
five configurations and five replications per configuration, leading to 25 simulation
runs in total, where each run was executed five steps (for illustration purposes).
Data can then be retrieved analogously to how the WorMS determines input
values for a work item (see Section 5.2.1.4 p. 131) by traversing the graph up
to the point of interest or data availability (see Figure 5.14 p. 135). Figure 6.6
p. 197 shows the same token graph but also showing for each token the name
of the activity the token originated from as well as the data that was produced
by the activity and attached to that token. In order to illustrate which data
is attached and which activities produced which data Figure 6.7 p. 198 shows a
zoomed in version depicting the start token and subsequent tokens. It can be seen
that the initial token contains information about model location, stop criterion
factory, number of configurations and replications. Additionally, it can be seen
that e.g., the execution of the Configuration Setup activity leads to a token that
has the actual configuration attached. Once a configuration is processed by the
Run Setup activity, a simulation algorithm and actual stop policy is attached to
the resulting token. This leads to the already mentioned token hierarchy and
data history, allowing the documentation of each workflow step using the given
token graph.

This allows restoring to any point in time of the workflow execution in order
to e.g., rerun it from there or rollback during execution due to errors. However,
special care needs to be taken if the workflow involves tasks that have side-effects
to data outside of the workflow, such as external databases, rerunning a workflow
with the very same input values may result in different output values due to the
different external data (which is not under the control of the workflow system).

Additionally, as seen in Figure 5.17 p. 144 execution can be monitored to
provide even more data. That data can range from execution timings, to de-
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Figure 6.6: Example token graph for the experiment workflow execution as seen
in Figure 6.5 p. 195 with additional annotations showing the token
producing activity as well as the produced output data that is at-
tached to that token.
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Figure 6.7: A close up version of a selected part of the token graph shown in
Figure 6.6 p. 197. It shows the data attached to the initial token, i.e.,
the model URI, the stop factory to use, the number of configurations
and replications. It also reveals the data attached to subsequent
tokens, such as the actual generated configuration, stop criteria and
used simulation algorithms.

termining which work items executed concurrently and which workflow worker
executed which work item, hence information about where and how work items
and data were distributed.

Regarding reproducibility levels, level 2, 3 and 4 are directly achievable using
just the provenance and documentation derivable from the tokens and associated
data. However, level 1 requires additional information, i.e., work item execution
order and ideally the workflow worker used for each work item execution.

It is easy to see, that using WorMS for executing simulation experiments
simplifies the creation and derivation of documentation and provenance informa-
tion about a simulation experiment tremendously by making it transparent and
automatic. This information is always available for each and every simulation
experiment executed without further hoops to jump through. Nevertheless, if
only parts or no information is needed or wanted it can simply be discarded after
workflow execution by clearing the Data Store and not requesting it. By explicitly
needing to clear the Data Store, assuming it to be persistent, it is always possible
to come back and retrieve documentation and provenance even if not intended
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previously or directly after workflow execution. Moreover, by always generating
this information a scientist cannot accidentally forget to enable documentation
generation. However, currently the work item execution order is not automati-
cally tracked and would need to add an explicit monitor in order to achieve level 1
reproducibility.

By using WorMS the workflow can be easily executed in parallel and dis-
tributed, according to the setup of WorMS without explicit activation or in-
teraction needed from the experiment conductor. In contrast to using the
BaseExperiment of JAMES II this does not involve additional efforts re-
garding documentation.

6.4 Future Work

This work lends itself as starting point of further research and future work.
Research and future work can diverge into different directions and range from
conducting user and case studies across various scientific domains, over efficient
implementation driven work to big data and machine learning domain.

A possible next step would be to implement and integrate the proposed
artifact-based workflow management system in JAMES II. Which then opens
up the opportunity to conduct extensive user and case studies, testing both the
proposed artifact-based workflow and the workflow management system.

The focus of this work lies on providing documentation and provenance infor-
mation, what is needed is a report generation facility which generates readable
(for machine as well as for humans) documentations which can be easily attached
to published data and results. In order to provide machine readable documenta-
tion and provenance data it makes sense to provide them in an open standard-
ized format such as the Open Provenance Model (OPM) and others (Missier and
Goble, 2011; Costa et al., 2013; Missier et al., 2013).

Persisting provenance and documentation data is important for rerunning and
reproducing experiments based on that information. However, how reruns can be
efficiently handled and implemented is to be researched. Questions arise on how to
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handle rerun and existing information from previous runs. What if results diverge,
how to deal with changing environments and how to manage the amount of data
that can build up when running experiments with a lot of data, replications and
configurations involved are questions that need to be considered and open up a
broad area of future work to pursue.

As shown the distribution and scheduling of activities smartly and efficiently
is important to the overall performance of the workflow execution. The presented
adaptive scheduling approach using machine learning is open for improvement re-
garding delivered performance. For instance, the use of deep learning approaches
could be used to automatically select feature sets that are then used by the rein-
forcement learning method, removing the need to select a suitable set of features
manually.

In concert with the previous ideas, an easier mechanism of setting up workflow
worker actors on other nodes could be investigated. An important and challenging
requirement is that all workflow worker actors work with the same versions of
software, e.g., specific versions of Java classes and libraries, per workflow, the
problem is elevated when software versions change from workflow to workflow.
This will need a dynamic isolation mechanism and exchange mechanism that can
switch software per workflow on demand, as workflow worker actors can be shared
across multiple concurrent workflow executions.

Once provenance data can be efficiently and standardized persisted the con-
nection to repositories, such as the myExperiment platform can be established.
However, workflow decay and workflow versioning pose a problem when it comes
to storing this information over time. Decay refers to the loss of the ability of
re-executing or reproducing a workflow execution over time, typically due to the
volatility of resources involved and required in the previous execution (Zhao et al.,
2012; Hettne et al., 2012). Counteracting the decay of workflows is a large field
of research and is interesting direction of research for future work.



7
Summary

All generalizations are false,
including this one.

Mark Twain

Credible and high quality scientific results are usually backed by a well-defined
and documented process and provide documentation and provenance informa-
tion about their creation, i.e., providing enough information for making them
reproducible. Documentation and provenance information is not always provided
which led to a Crisis of Credibility of scientific results. If documentation needs to
be done manually, it is likely to be incomplete or not as extensive at it could be.
In this work a workflow approach was taken to tackle the problem of automatable
documentation and provenance information generation for conducting simulation
studies with the Modeling & Simulation framework JAMES II.

Before using workflows, the general process of a simulation study needed to
be analyzed, deriving properties of the workflows later developed. However, the
analysis revealed that it makes sense that a simulation study is divided into
two layers, because both layers put different demands on the workflows and their
systems. Layer one involves the creation of the simulation model that is used
throughout the simulation study. It is a highly human driven process requiring
a lot of flexibility and freedom during execution. Layer two covers the technical
part of the simulation study, i.e., the execution of a simulation experiment. In
contrast to layer one, layer two is mainly an automatable rigid process.

For each layer a separate workflow approach was used to cope with the de-
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mands of that layer. For layer one an artifact-based declarative workflow was
introduced, while for layer two a task-based imperative workflow using a work-
flow net derivative was employed.

The artifact-based workflow approach used in this work allowed for the def-
inition of a generic workflow representing the creation of a valid and verified
simulation model. The workflow model bases on established Life-Cycle models
found in literature in order to comply to best practices of model creation in the
domain of Modeling & Simulation. For the management and execution of such a
workflow an architecture was presented, that uses a rule-based system internally
for the evaluation and execution of artifacts and their tasks and actions. It allows
for recording rule application and fact changes over time, providing provenance
and documentation automatically for each execution.

The simulation experiment execution workflow developed in this work pro-
vides a generic description of a wide range of simulation experiments, e.g., pa-
rameter scan, optimization and validation experiments. In order to achieve this
generic description workflow nets were extended by the concept of templates and
frames allowing placeholder tasks, which can be filled on demand during execution
with actual tasks. To evaluate this workflow a prototypical framework for work-
flow execution and management, called WorMS, specifically targeted at Model-
ing & Simulation and JAMES II was developed. It features a component-based
architecture, allowing easy exchange and extension of components and features.
Execution can automatically be parallelized and distributed if desired. Schedul-
ing of work items during parallel or distributed execution is handled by a herein
developed adaptive scheduling policy that uses machine learning techniques to
improve its distribution scheme in order to maximize performance. Workflow ex-
ecutions in WorMS can be monitored using the Monitoring component, allowing
recording and collecting arbitrary data, such as execution statistics, input/output
data of work items and used JAMES II plug-ins including their parameters.

Since both workflow architectures provide means to monitor and collect infor-
mation about their workflow execution automatically, this work paves the way
towards reproducible simulation studies with JAMES II. This eventually allows
the answering of questions such as What task was executed when, with what data
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and what was the output? and What was used, such as software, hardware, sys-
tem configuration or algorithm to execute a specific task?, leading to credible and
high quality scientific results.
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Theses

1. A lot of published results in the domain of Modeling & Simulation are not
reproducible, leading to a Crisis of Credibility.

2. Credible scientific results are obtained using a well-defined and documented
process and are reproducible.

3. Providing documentation and provenance data for a simulation study is a
complex endeavor.

4. Workflows pose an instrument for providing and collecting documentation
and provenance information automatically.

5. The process of performing a simulation study consists of two layers that
make different demands on the workflow description. The first layer, the
simulation model creation, is a highly interactive and human driven process.
The second layer, the execution of a simulation experiment, is rigid and
typically automatable.

6. A highly interactive process is easier described using a declarative workflow
description, while a mainly automatable rigid process is better described
using imperative workflow descriptions.

7. Using an artifact-based workflow description, in particular the Guard, Stages
and Milestones approach, allows describing the model creation process using
one generic workflow.

8. Using workflow nets with the template and frames extension, allows describ-
ing the process of executing a simulation experiment using one generic work-
flow. This workflow is integrable through and executable with WorMS.

9. Reinforcement learning, Q-Learning in particular, can be used for automat-
ically adapting the scheduling and distribution of workflow work items in a
parallel or distributed environment, optimizing the overall performance of
the workflow execution.
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