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Abstract

Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids
give rise to many new fascinating phenomena, not at all accessible to quantum me-
chanics textbook perturbation theory. A full numerical solution of the time-dependent
Schrödinger equation (TDSE) for such strong-field problems is also impossible for more
than two electrons. Hence, powerful time-dependent quantum many-body approaches
need to be developed. Unfortunately, efficient methods such as time-dependent density
functional theory (TDDFT) fail in reproducing experimental observations, in particular
if strong correlations are involved. In TDDFT, the approximation not only lies in the
so-called exchange correlation potential but also in the density functionals for the observ-
ables of interest. In fact, with just the single-particle density alone it is unclear how to
calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse,
correlated photoelectron spectra, as measured in nowadays experiments.

In general, the simple structure of the time-dependent many-body Schrödinger equation
for a highly-dimensional many-body wavefunction can only be traded for more compli-
cated equations of motion for simpler quantities. In this thesis, a theory is examined
that goes one step beyond TDDFT as far as the complexity of the propagated quantity is
concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic
quantities that are propagated in time are the eigenvalues and eigenstates of the one-body
reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the
eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the
knowledge of the NOs and the ONs relax the problem of calculating observables in prac-
tice because they can be used to construct the 1-RDM and the two-body reduced density
matrix (2-RDM).

After the derivation of the equations of motion for a combination of NOs and ONs, the
so-called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help
of a numerically exactly solvable model helium atom in laser fields. In the special case of
time-dependent two-electron systems the two-particle density matrix in terms of ONs and
NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable
truncation of the number of RNOs per particle taken into account in the simulation.

It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states,
Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high
harmonic generation, non-sequential ionization, and single-photon double ionization in
excellent agreement with the corresponding TDSE results.
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Zusammenfassung

Die Wechselwirkung intensiver, ultrakurzer Laserpulse mit Atomen, Molekülen, Clus-
tern und Festkörpern bringt viele neue, faszinierende Phänomene hervor, die nicht den
aus Quantenmechaniklehrbüchern bekannten Näherungsverfahren zugänglich sind. Auch
eine volle, numerische Lösung der zeitabhängigen Schrödinger-Gleichung (TDSE) für
solche Starkfeldprobleme ist für mehr als zwei Elektronen nicht möglich. Daher müssen
mächtige zeitabhängige Quantenvielteilchenmethoden entwickelt werden. Leider sind ef-
fiziente Verfahren wie zeitabhängige Dichtefunktionaltheorie (TDDFT) nicht in der Lage
die experimentellen Beobachtungen zu reproduzieren, insbesondere wenn starke Korrela-
tionen involviert sind. Die Näherung in TDDFT besteht nicht nur im sog. Austauschkor-
relationspotential, sondern auch in den Dichtefunktionalen für die interessierenden Ob-
servablen. In der Tat ist unklar, wie man mit der Einteilchendichte alleine beispielsweise
Vielfachionisationswahrscheinlichkeiten oder Photoelektronenspektren berechnen kann.
Noch schwieriger wird dies bei differentielleren Observablen, wie z.B. bei den heutzuta-
ge messbaren korrelierten Photoelektronenspektren.

Im Allgemeinen handelt man sich im Gegensatz zur einfachen Struktur der zeitabhängi-
gen Vielteilchen-Schrödinger-Gleichung für eine hochdimensionale Vielteilchenwellen-
funktion eine kompliziertere Bewegungsgleichung ein, wenn man eine einfachere Größe
zeitentwickeln möchte. In dieser Arbeit wird eine Theorie untersucht, die einen Schritt
über TDDFT hinsichtlich der zu propagierenden Größe hinausgeht. In der Theorie der
zeitabhängigen, renormalisierten natürlichen Orbitale (TDRNOT) werden die Eigenwer-
te und die Eigenvektoren der reduzierten Einteilchendichtematrix (1-RDM) in der Zeit
propagiert. Die Eigenvektoren heißen natürliche Orbitale (NOs), die Eigenwerte sind die
zugehörigen Besetzungszahlen (ONs). Die Kenntnis der NOs und ONs entspannt im Ver-
gleich zu TDDFT in der Praxis das Problem, Observable zu berechnen, da sie zur Kon-
struktion der 1-RDM und der reduzierten Zweiteilchendichtematrix (2-RDM) verwendet
werden können.

Nach der Herleitung der Bewegungsgleichung für eine Kombination aus NOs und ONs,
den sog. renormalisierten natürlichen Orbitalen (RNOs), wird TDRNOT mithilfe eines
numerisch exakt lösbaren Modellheliumatoms in Laserfeldern getestet. Im Spezialfall von
zeitabhängigen Zweielektronensystemen ist die Zweiteilchendichtematrix, ausgedrückt
durch ONs und NOs, exakt bekannt. Daher ist in diesem Fall TDRNOT exakt, abgesehen
von der unvermeidlichen Beschränkung in der Anzahl der RNOs pro Teilchen, die in der
Simulation berücksichtigt werden.

Es wird gezeigt, dass im Unterschied zu TDDFT, TDRNOT in der Lage ist, doppelt
angeregte Zustände, Fano-Profile in Elektronen- und Absorptionsspektren, Autoionisati-
on, Rabi-Oszillationen, die Erzeugung hoher Harmonischer, nichtsequentielle Ionisation
sowie Einphotonen-Doppelionisation in exzellenter Übereinstimmung mit den entspre-
chenden TDSE-Resultaten zu beschreiben.
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1. Introduction

If one wants to describe an atom or molecule interacting with light “exactly” one has to
solve the time-dependent Schrödinger, or, in the relativistic case, Dirac, Pauli, or Klein-
Gordon equation, possibly in second quantization and with a quantized electromagnetic
field. Unfortunately, in full dimensionality and with strong, long-wavelength lasers even
the simplest case of the time-dependent Schrödinger equation (TDSE) and non-quantized,
linearly polarized electromagnetic field in dipole approximation is solvable at most for
two particles [102]. However, most experiments in the intense-laser, ultra-short pulse
regime are performed on many-electron targets [85, 93]. Thus, efficient time-dependent
many-body methods are in great demand.

In practice, there are approximate methods like time-dependent density functional the-
ory (TDDFT) which allows to treat moderate-sized molecules interacting with strong and
short laser pulses [93]. However, there are several effects which are not properly de-
scribed in practice within TDDFT. One example is that doubly excited states [68] are
missing with standard exchange-correlation functionals available in the literature. There
are other wavefunction-based approaches which perform generally better [45, 49]. How-
ever, such methods are more demanding. One of them is multi-configurational time-
dependent Hartree-Fock (MCTDHF) [46, 101], or variants of it, which allow to treat small
molecules made of few-electron atoms (in Born-Oppenheimer approximation) [82, 84].
Another one is time-dependent configuration interaction (TDCI) [38, 50, 74] and related
approaches [6, 44, 47].

In this thesis, we introduce time-dependent renormalized natural orbital theory
(TDRNOT) as a novel method. TDRNOT is based on the propagation of the one-body re-
duced density matrix (1-RDM), more precisely its eigenvalues and eigenstates. TDRNOT
is also an in principle exact method. One can formally relate this method to TDCI and
MCTDHF, as one can always formally expand any wavefunction in terms of the eigen-
states of the 1-RDM. Thus TDRNOT should perform quite similar to TDCI and MCT-
DHF. It could be more efficient though because natural orbitals should be a particularly
adequate single-particle basis [35].

This cumulative thesis is outlined as follows: after a brief introduction of (TD)DFT in
Sec. 1.1, reduced density matrices and their equations of motion are discussed in Sec. 1.2.
Renormalized natural orbitals (RNOs) are introduced in Sec. 1.3. In this section, also
equations of motion for RNOs are derived, and known approximations for the two-body
reduced density matrix in terms of these RNOs are given. The model helium atom, its
ground state and the linear response spectrum are described in Sec. 1.4. There are also
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1. Introduction

TDRNOT results for the helium model presented that are not included in the published
papers, summarized in Sec. 1.5. A conclusion and an outlook is given in Sec. 1.6.

Atomic units (a.u.) are used throughout, unless noted otherwise.

1.1. Density functional theory

Nobel prize-winning [54] density functional theory (DFT) has become the most utilized
method for groundstate property calculations of many-body systems such as atoms and
molecules [24]. The main advantage over earlier techniques, such as Hartree–Fock (HF)
and other approaches based on the many-body wavefunction, is the lower computational
cost, which allows to treat much larger systems.

DFT is based on the Hohenberg-Kohn theorem [48], published in 1964, which states
that, for a given particle interaction, the external potential Vext(r) determines uniquely
the single-particle groundstate density n0(r). As a consequence, all observables are, in
principle, determined by n0(r). Kohn and Sham [55] proposed a practical scheme to
calculate n0(r) by introducing a fictitious non-interacting system, generating the same
single-particle density.

Suppose we have a system of N interacting particles with the Hamiltonian

Ĥ =
N∑
i=1

T̂i +
N∑
i=1

Vext(r̂i) +
N∑
i<j

Vee(r̂i, r̂j), (1.1)

where T̂i is kinetic energy of the i-th electron, Vext(r̂i) is the external potential, and
Vee(r̂i, r̂j) is the electron-electron interaction potential. The Hohenberg-Kohn theorem
states that for any such system—given the particle interaction Vee(r̂i, r̂j)—the external
potential Vext(r̂i) is determined uniquely (up to a constant) by the groundstate single-
particle density n0(r), and vice versa. This means that the single-particle density of
the groundstate determines the Hamiltonian up to a constant energy shift. Therefore the
single-particle density of the groundstate uniquely determines all properties of the system
completely, and any groundstate observable is a functional of the single-particle density.

Following Kohn and Sham, we assume that one can construct a system without
electron-electron interaction that generates the same single-particle density. The prob-
lem then separates into N single-electron TDSE-like equations(

−1

2
∇2 + V̂KS(r)

)
ϕi(r) = εiϕi(r), for i = 1, 2, . . . , N. (1.2)

Here, V̂KS(r) is the Kohn-Sham potential, i.e., the external potential for this fictitious
system, εi is the eigenvalue, called the Kohn-Sham orbital energy, and ϕi(r) is the eigen-
function, known as the Kohn-Sham orbital. The single-particle density in terms of the

2



1.1. Density functional theory

Kohn-Sham orbitals reads

n0(r) =
N∑
i=1

|ϕi(r)|2. (1.3)

The “task” of the Kohn-Sham potential is to yield the same groundstate density n0(r)
as the original, interacting system. Unfortunately, it is unknown how to calculate the
Kohn-Sham potential in general. Formally it is defined as

V̂KS(r) = Vext(r) + VH(r) + V̂xc(r), (1.4)

where Vext(r) is the external potential of the original system,

VH(r) =

∫
d3r′

n0(r
′)

|r − r′| (1.5)

is the Hartree potential, and the exchange-correlation potential is the variational derivative
of the exchange-correlation energy density functional Exc[n0(r)],

V̂xc(r) =
δExc[n(r)]

δn0(r)
. (1.6)

The exact exchange-correlation energy functional is unknown so that one has to use ap-
proximations in practice. This is the point where, although DFT in principle is exact, in
practice it becomes an approximation.

1.1.1. Time-dependent density functional theory

Since DFT is so successful in describing groundstate properties, a natural question arises
regarding whether this concept is also extendable to time-dependent problems. This
question is answered affirmatively by the Runge-Gross theorem [80], which led to time-
dependent density functional theory (TDDFT) [92, 94].

The Runge-Gross theorem shows that, given an initial state |Φ(0)〉, there exists a unique
one-to-one mapping between the external potential Vext(r, t) and the single-particle den-
sity n(r, t) if the external potential Vext(r, t) can be expanded in a Taylor series around
the initial time t0,

Vext(r, t) =
∞∑
i=0

vi(r)

i!
(t− t0)k . (1.7)

If the system is initially in the groundstate, then the initial-state dependence simplifies to
a groundstate-density dependence, thanks to the Hohenberg-Kohn theorem.

Also the Kohn-Sham approach can be extended to the time-dependent case. This is
possible due to the van-Leeuwen theorem [62], which states that for every density n(r, t),
evolving from a given initial state |Φ(0)〉 under a given electron-electron interaction Vee

3



1. Introduction

and external potential Vext(r, t), there exists another external potential V ′ext(r, t), another
particle interaction V ′ee, and some initial state |Φ ′(0)〉 leading to the same density n(r, t).
This is a generalization of the Runge-Gross theorem, but it requires that not only the
external potential but also the density is expandable in a Taylor series around the initial
time t0. One may argue that densities n(r, t) which cannot be expanded in a Taylor
series around the initial time t0 can be considered as pathological cases. However, it turns
out that this situation is actually common in real-world systems [66, 99] so that a more
general proof would be desirable. Ignoring these mathematical subtleties for the moment,
the time-dependent Kohn-Sham approach amounts to solve the equations

i∂tϕj(r, t) =

[
−∇

2

2
+ V̂KS(r, t)

]
ϕj(r, t), (1.8)

with

V̂KS[n(r′, t′),Φ0,Φ
′
0](r, t) = Vext(r, t) + VH(r, t) + V̂xc[n(r′, t′),Φ0,Φ

′
0](r, t), (1.9)

and

n(r, t) =
N∑
i=1

|ϕi(r, t)|2. (1.10)

Here, Φ0 is the initial state of the interacting system and Φ ′0 is the initial state of the
Kohn-Sham system. The exchange-correlation potential V̂xc[n(r′, t′)](r, t) is, in general,
onlocal in space and time, as indicated by different time and space arguments r′, t′. If
one starts from the groundstate the situation is simplified as the exchange-correlation
functional can be written as a density functional only, V̂xc[n(r′, t′)](r, t). However, even
for this case the exact exchange-correlation functional is unknown and one has to apply
approximations.

In the so-called adiabatic approximation nonlocality in time is ignored, i.e.,

V̂xc[n(r′, t′)](r, t) = V̂ gs
xc [n0(r

′)]
∣∣∣
n0(r′)=n(r′,t′)

. (1.11)

V̂ gs
xc is the groundstate exchange-correlation potential, evaluated at the instantaneous den-

sity. However, adiabatic approximations are known to have certain deficiencies, e.g., a
lack of doubly-excited states [68], improper charge transfer [29, 31], or Rabi oscillations
[30, 43, 79]. There are very few functionals with memory effects, i.e., with dependence
on density (or Kohn-Sham orbitals) at earlier times [58, 59, 95, 96], which illustrates the
difficulty in “designing” such functionals. As there is the more memory involved the
more reduced quantities are propagated [67], the obvious idea would be to propagate less
reduced quantities than Kohn-Sham orbitals. The most obvious candidates are reduced
density matrices.

4



1.2. Reduced density matrices

1.2. Reduced density matrices

Even if one could solve the N -particle TDSE

i∂t|Φ(t)〉 = Ĥ(t)|Φ(t)〉 (1.12)

of a large system, it is not desirable in practice as the wavefunction is a by far too high-
dimensional object to store and analyze for larger N .

The N -particle density matrix (DM) of a pure state is defined as

γ̂N(t) = |Φ(t)〉〈Φ(t)|. (1.13)

Assuming that all particles are of the same type, the q-th order RDM (q-RDM) for 0 <
q < N is

γ̂q(t) =

(
N

q

)
Trq+1,...,N γ̂n(t), (1.14)

where Trq+1,...,N means that all degrees of freedom of particles q + 1, . . . , N are traced
out. Note that the (1.14) implies a recurrence relation between RDMs,

γ̂q−1(t) =
q

N − q + 1
Trqγ̂q(t). (1.15)

RDMs are especially useful in calculations of observables. For example, the energy of
the system’s groundstate can be expressed as

E = Tr
(
Ĥγ̂N

)
, (1.16)

where Tr means that all degrees of freedom are traced out. Equation (1.16) simplifies if
the Hamiltonian contains up to q-particle interactions. Then knowledge of the q-RDM is
sufficient to calculate the energy. In fact, this statement can be generalized. If a q-RDM
originates from the non-degenerate groundstate of a system whose Hamiltonian contains
at most q-particle interactions, the q-RDM is sufficient to determine the groundstate wave-
function uniquely (up to a phase) and therefore also all groundstate observables. The last
statement is known as Rosina’s theorem [78]. We will demonstrate it on a simple example
of a system with N identical particles with two-particle interactions (e.g., electrons with
Coulomb interaction). The corresponding Hamiltonian can be written as

Ĥ(t) =
N∑
i=1

ĥ(i)(t) +
N∑

i<j=2

V̂ (i,j)
ee , (1.17)

where ĥ is the single-particle Hamiltonian, and V̂ee is the two-particle interaction poten-
tial. The superscript indices in brackets indicate the particles on which the operator is

5



1. Introduction

acting. Then the total energy of the system in the groundstate is

E = Tr
(
Ĥγ̂N

)
= NTr

(
ĥγ̂N

)
+
N(N − 1)

2
Tr
(
V̂eeγ̂N

)
, (1.18)

which, with help of (1.14), simplifies to

E = Tr
(
ĥγ̂1

)
+ Tr

(
V̂eeγ̂2

)
. (1.19)

This, and more generally, Rosina’s theorem shows the importance of 1-RDM and 2-RDM
in physics as systems with 2-particle interactions are most abundant. Also despite the fact
that all observables are, in principle, functionals of the single-particle density (i.e., the
diagonal of the 1-RDM), it is much easier to calculate observables if one has access to the
2-RDM.

As γ̂1, with the help of (1.15), can be expressed in terms of γ̂2, one can consider (1.19)
as a functional of γ̂2, and thus perform a variational calculus to find the groundstate. In
fact, this was already proposed in 1955 by Mayer [69] and Löwdin [65] independently.
However, only a couple of years later [4, 10, 72, 91] it was noted that such variational cal-
culus leads to energies which are significantly below the experimental values. The reason
for this is that not all possible 2-RDMs which are encountered in a variational minimiza-
tion of the groundstate energy correspond to an N -particle DM that originates from a
pure fermionic state. Therefore one has to add non-trivial constraints to the variation, in
order to ensure that γ̂2 is representable by a pure-state N -particle DM. These constraints
are known as N -representability conditions [21]. Despite the fact that formal solutions
of the N -representability problem were developed already in the 1960s [32, 57], practi-
cally they require knowledge of the N -particle DM [21, 70]. Although for pure states not
all N -representability conditions in terms of γ̂2 are known, a systematic classification of
N -representability conditions has been developed [71] for ensemble-representable RDMs
[60]. Applying these constraints for moderate-sized molecules one obtains only slightly
lower-than-experimental energies [81] and provides a lowest energy bound.

1.2.1. EOM for RDMs

Applying the time derivative to both sides of (1.13) one obtains,

∂tγ̂N(t) = |Φ̇(t)〉〈Φ(t)|+ |Φ(t)〉〈Φ̇(t)|, (1.20)

which, with the help of the TDSE (1.12) and the Hamiltonian (1.17), can be written as

i∂tγN(t) =

[
N∑
i=1

ĥ(i)(t) +
N∑
i<j

V̂ (i,j)
ee , γ̂N(t)

]
. (1.21)

6



1.2. Reduced density matrices

Similarly, the EOM for the q-RDM can be obtained by applying the time derivative to
both sides of (1.14) and performing partial traces. Alternatively one can also perform
partial traces of (1.21). Using either method, one attains

i∂tγ1(t) =
[
ĥ(t), γ̂1(t)

]
+ 2Tr2

[
V̂ee, γ̂2(t)

]
,

i∂tγ2(t) =
2∑
i=1

[
ĥ(i)(t), γ̂2(t)

]
+
[
V̂ee, γ̂2(t)

]
+ 3

2∑
i=1

Tr3

([
V̂ (i,3)
ee , γ̂3(t)

])
,

...
...

i∂tγq(t) =

q∑
i=1

[
ĥ(i)(t), γ̂q(t)

]
+

q∑
i<j

[
V̂ (i,j)
ee , γ̂q(t)

]
+ (q + 1)

q∑
i=1

Trq+1

([
V̂ (i,q+1)
ee , γ̂q+1(t)

])
,

...
...

i∂tγN (t) =
N∑
i=1

[
ĥ(i)(t), γ̂N (t)

]
+

N∑
i<j

[
V̂ (i,j)
ee , γ̂N (t)

]
.

(1.22)
This system of coupled equations is called BBGKY (Bogoliubov, Born, Green, Kirk-

wood, Yvon) hierarchy [8, 9, 11, 51, 52, 100]. Any application in practice aims at trun-
cating the hierarchy at some level q � N . The most obvious truncation is to consider
only the first equations of the hierarchy up to level q and to set γ̂r with r ≥ q + 1 equal
to zero. However, this provides only a very crude approximation. A much better ap-
proach is to express γ̂q+1 as functional of γ̂q. Often the BBGKY is truncated by making
an approximation for γ̂3 [1, 60], e.g., via the so-called cluster expansion [16–19, 88].

There is also an option to close the hierarchy after the first equation, although one
finds only very few attempts in the literature. Quite recently, P. Elliot and N.T. Maitra
[25] demonstrated a method to truncate this hierarchy after the first equation using the
semi-classical approximation for electron correlations and time-dependent Hartree-Fock
(TDHF) for propagation. In this way, however, N -representability was violated in the test
case of a 1D helium model atom.

The reason why it is not an easy task to close the BBGKY hierarchy after the first equa-
tion is that the functional for γ̂2 in terms of γ̂1 is unknown. It is definitely a non-adiabatic
one, and may not even exist. The Runge-Gross theorem [80] of TDDTF ensures that,
given an initial state, the single-particle density determines the many-electron wavefunc-
tion up to a purely time-dependent phase and therefore, using (1.13) and (1.14), one is
able to determine the 2-RDM. The problem with this statement is that the Runge-Gross
theorem requires that time evolution of the single-particle density occurs in a potential
that is local in position space. The one-to-one mapping between potentials and 1-RDMs
only holds if one allows for non-local potentials as well [34, 36]. The van-Leeuwen the-
orem is not applicable in this case as well. Therefore currently there is no proof in the
literature that such functional has to exist. But there is a formal way to overcome this
problem, even if such a functional does not exist. It can be overcome by replacing the 1-

7



1. Introduction

RDM propagation with the propagation of its eigenstates and eigenvalues. This approach
is explained in the following section.

1.3. Renormalized natural orbitals

The natural orbitals (NOs) |k(t)〉 and occupation numbers (ONs) nk(t) are defined as
eigenstates and eigenvalues of the 1-RDM, respectively,

γ̂1(t)|k(t)〉 = nk(t)|k(t)〉. (1.23)

As γ̂1(t) is hermitian, the nk(t) are real, and the |k(t)〉 are orthogonal. If one requests that
the |k(t)〉 are normalized to unity, then {|k(t)〉} forms a complete, orthonormal basis. The
ensemble N -representability conditions for the 1-RDM can be easily expressed via ONs
[20], ∑

k

nk(t) = N, (1.24)

0 ≤ nk(t) ≤ 1, ∀k. (1.25)

Since 2006, due to work of A. Klyachko [53], also N -representability conditions of 1-
RDM for pure states are known. Compared to the ensemble N -representability condi-
tions there are additional linear inequality constraints, and geometrically these constraints
define a convex polytope. Unfortunately, the number of constraints grows exponentially
with the number of NOs, therefore in practice they are still not very useful. Fortunately,
due to the minimization principle, the ensemble N -representability conditions are suffi-
cient to guarantee that the minimizing 1-RDM corresponds to a pure state, i.e. the ground
state, in all cases without ground-state degeneracy [90].

The 1-RDM expressed in NOs reads

γ̂1(t) =
∞∑
k=1

nk|k(t)〉〈k(t)|. (1.26)

As NOs form a complete basis set, one can formally express not only the 1-RDM but
any p-RDM (0 < p ≤ N ) in terms of NOs [3]. For example, expansion of the 2-RDM
reads

γ̂2(t) =
∑
ijkl

γ2,ijkl(t)|i(t)j(t)〉〈k(t)l(t)|, (1.27)

where the shorthand notation for tensor products |i(t)j(t)〉 = |i(t)〉(1)|j(t)〉(2) =
|i(t)〉(1) ⊗ |j(t)〉(2) is used, and a superscript index indicates the particle to which states

8



1.3. Renormalized natural orbitals

refers. The expansion coefficients

γ2,ijkl(t) = 〈k(t)l(t)| γ̂2(t) |i(t)j(t)〉 , (1.28)
γ2,ijkl(t) = γ∗2,klij(t), (1.29)

are generally unknown, apart from two-particle systems like the two-electron case of
interest of this thesis.

By inserting (1.28) and (1.26) into (1.22) one is able to derive EOMs for NOs and ONs
(illustrated in Sec. A.1 of the Appendix). However, it appears that the EOM for renormal-
ized NOs (RNOs) is numerically more stable. The RNO |k̃(t)〉 is the corresponding NO,
normalized to its occupation number,

|k̃(t)〉 =
√
nk|k(t)〉, 〈k̃(t)|k̃(t)〉 = nk(t). (1.30)

The expansion of the 1-RDM and 2-RDM in RNOs reads

γ̂1(t) =
∞∑
k=1

|k̃(t)〉〈k̃(t)| (1.31)

and
γ̂2(t) =

∑
ijkl

γ̃2,ijkl(t)|̃i(t)j̃(t)〉〈k̃(t)l̃(t)|, (1.32)

where the expansion coefficients

γ̃2,ijkl(t) =
γ2,ijkl(t)√

ni(t)nj(t)nk(t)nl(t)
(1.33)

have the same symmetry property (1.29) and are formally defined as

γ̃2,ijkl(t) =

〈
k̃(t)l̃(t)

∣∣∣ γ̂2(t) ∣∣∣̃i(t)j̃(t)〉
ni(t)nj(t)nk(t)nl(t)

. (1.34)

Note that there is a problem when the ON number of some NO becomes exactly zero,
leading to ill-defined γ̃2,ijkl involving that orbital. This is a direct consequence of the fact

that
{
|k̃(t)〉

}
does not form a complete orthogonal basis, when at least one ON is equal

to zero. The fact that
{
|k̃(t)〉

}
is not a complete basis, however, does not matter if there

is an infinite number of NOs with non-zero ONs.

For an electronic groundstate there exists a proof [28] that there is an infinite number
of NOs with non-zero ONs. However, to the best of our knowledge there is no proof
in the literature for NOs during time propagation. Fortunately, in all NO propagations
[12–14, 42, 77, 83] and TDSE propagations in which ONs were calculated [2], until now

9



1. Introduction

no indications were observed. Clearly, if one uses the HF approximation for γ̃2,ijkl(t) or
any other approximation, which results in pinned ONs (ONs ∈ {0; 1}) one should not use
RNOs.

1.3.1. EOM for RNOs

NOs as eigenstates of the 1-RDM are defined only up to a phase. However, if one wants
to propagate NOs, one has to fix the phase for each NO, otherwise the time-derivative of
an NO is not defined. The means to fix the phase convention is to choose some possibly
time-dependent real value for i〈k(t)|k̇(t)〉(t), or i〈k̃(t)| ˙̃k(t)〉(t) in case of RNOs. One
option is to set this value to zero, as in [12], which means that in free evolution NOs
do not change. By choosing the particular phase convention introduced in [77] (see also
Appendix A.1) and inserting (1.31) and (1.34) into (1.22) one obtains

i∂t|ñ(t)〉 = ĥ(t)|n(t)〉+ Ãn(t)|ñ(t)〉+
∑
k 6=n

B̃nk(t)|k̃(t)〉+
∑
k

ˆ̃Cnk(t)|k̃(t)〉, (1.35)

with

Ãn(t) = − 1

nn(t)
<
∑
jkl

γ̃2,njkl(t)〈k̃l̃|V̂ee|ñj̃〉, (1.36)

B̃nk(t) =
2

nk(t)− nn(t)

∑
jpl

[
γ̃2,kjpl(t)〈p̃l̃|V̂ee|ñj̃〉−γ̃2,plnj(t)〈k̃j̃|V̂ee|p̃l̃〉

]
, nk(t) 6= nn(t)

(1.37)

and

ˆ̃Cnk(t) = 2
∑
jl

γ̃2,kjnl(t)〈l̃|V̂ee|j̃〉. (1.38)

Here, the time dependence of RNOs is suppressed for brevity. One also readily observes
that matrices Ãn(t), B̃nk(t) and ˆ̃Cnk(t) are hermitian, which is ideal for unitary-time prop-
agation.

Besides the problem of ONs in the denominator, now a vanishing denominator in (1.37)
may also arise if two ONs become equal. The reason for this is that if at time t two orbitals
are degenerate one has the freedom to choose any orthogonal pair from the subspace they
span. Suggestions of what to do in this case are provided in [14].
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1.3. Renormalized natural orbitals

1.3.2. Approximations for expansion coefficients γ̃2,ijkl(t)

The EOM for RNOs is quite useless unless the expansion coefficients γ̃2,ijkl(t) are known.
As already noted previously they are known exactly only for systems with up to two parti-
cles. Therefore if one wants to investigate larger systems, one has to use approximations.
In this section, we will examine functionals γ̃2,ijkl(t) that are available in the literature.

Hartree-Fock (HF) functional

One of the simplest approximations is the HF functional. The HF functional reads

γ2,ijkl(t) =
1

2
ni(t)nj(t) (δikδjl − δilδjk) ; γ̃2,ijkl(t) =

1

2
(δikδjl − δilδjk) . (1.39)

The advantage is that this functional is N -representable as there is the HF wavefunction
which generates this 2-RDM. Another positive property, which surprisingly is not fulfilled
by the majority of functionals in the literature, is contraction consistency, i.e, by tracing
out all degrees of freedom of the second particle and using proper normalization, one
recovers the 1-RDM as

γ̂1 =
2

N − 1
Tr2γ̂2 =

2

N − 1

∑
n

〈n| γ̂2 |n〉

=
1

N − 1

∑
ij

ninj|i〉〈i| −
1

N − 1

∑
i

n2
i |i〉〈i|

=
N

N − 1

∑
i

ni|i〉〈i| −
1

N − 1

∑
i

n2
i |i〉〈i|

=
∑
i

ni|i〉〈i|,

(1.40)

where it was used that n2
i = ni since ni ∈ {0; 1}. However, one finds that ONs are pinned:

ni(t) = 1 if i ≤ N and ni(t) = 0 if i > N . Therefore this functional ignores correlations
completely, as the amount of correlation can be characterized with correlation entropy
[3, 103]

s(t) =
1

N

∑
i

ni(t) log ni(t), (1.41)

which vanishes if ni ∈ {0; 1}. Also Bnk(t) = 0 in (A.7) is zero. Further, one can choose
the phase convention

i〈n|ṅ〉 = 〈n| ĥ(t) |n〉+
N∑
j=1

[
〈nj| V̂ee |nj〉 − 〈nj| V̂ee |jn〉

]
(1.42)

such that An(t) = 0, and the TDHF equations are recovered.
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1. Introduction

Müller functional

A frequently used functional leading to non-pinned ONs was introduced by Müller [73]
and Buijse and Baerends [15]. The Müller functionals for NOs and RNOs read

γ2,ijkl(t) =
1

2
ni(t)nj(t)δikδjl −

1

2

√
ni(t)nj(t)δilδjk,

γ̃2,ijkl(t) =
1

2
δikδjl −

1

2
√
ni(t)nj(t)

δilδjk.
(1.43)

It is also contraction consistent as

γ̂1 =
2

N − 1
Tr2γ̂2 =

2

N − 1

∑
n

〈n| γ̂2 |n〉

=
1

N − 1

∑
ij

ninj|i〉〈i| −
1

N − 1

∑
i

ni|i〉〈i|

=
∑
i

ni|i〉〈i|.

(1.44)

Occupation numbers are not pinned, but as ṅi(t) = 0, as follows from (A.5), i.e., they
remain constant during propagation. The Müller functional is not N -representable except
the case where one truncates EOMs after N NOs, thus obtaining the HF functional. As
a consequence one obtains energies significantly below the true value. In fact, there is
a proposal [27] to correct Müller’s functional by adding a correction of N

8
to the energy,

although for helium and hydrogen this correction is overestimated.

Power functional and other corrections to the Müller functional

The HF functional provides too high energies and the Müller functional provides too low
energies. Actually both of them belong to a larger class of functionals of the form

γ2,ijkl(t) =
1

2
ni(t)nj(t)δikδjl −

1

2
[ni(t)nj(t)]

α δilδjk. (1.45)

For the HF case, α = 1 and for the Müller case, α = 1
2
. Therefore, as energy values

for both cases are quite far from the exact one, one may conclude that with some values
1
2
< α ≤ 1 one will obtain better results. The functional (1.45) with 1

2
≤ α ≤ 1 is

called the power functional [87]. However, the optimal value of α will differ from system
to system. In practice it has been optimized for some groups of molecules. The power
functional is neither contraction consistent nor N -representable. ONs do not change over
time.

The Goedecker and Umrigar functional [37] is a self-interaction-corrected version of
Müller’s functional where all terms γ2,iiii(t) are set to zero. In corrections BBC1–3 [39]
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1.4. TDRNOT applied to helium model atom

of the Müller functional the sign or power of α is changed from 1
2

to 1 in (1.43) for some
NOs. Note that these functionals are optimized to produce better energy values and thus
may perform worse than the Müller functional for other variables.

Piris natural orbital functionals

Piris’ natural orbital functionals (PNOFs) and anti-symmetrized products of strongly or-
thogonal geminals (APSGs) [89] are the only classes of functionals for which ONs can
change with time. Moreover, it turns out that these functionals are N -representable and
contraction consistent. The most recent functionals are PNOF5e [76] and PNOF6(Nc)
[64]. These functionals utilize an orbital pairing approach. They divide all electrons in
pairs with opposite spins and require that the sum of occupation numbers for each pair
is 2. Therefore, it can be applied only to systems with an even number of electrons in
a singlet state. PNOF5e describes only correlations within an electron pair and ignores
correlations with all other electrons. PNOF6 can describe both intra-pair and inter-pair
correlations. As both functionals match with APSGs and the exact functional in the he-
lium case anyway we will not examine them deeper in this thesis.

1.4. TDRNOT applied to helium model atom

If one desires to test a new theory, it is always advisable to benchmark it on models for
which one does not need to do too many approximations. Ideally, the “exact” solution
for the model is available for comparison. The perfect test object for our purpose is a
few-electron model atom for which we can solve the TDSE. The two-electron He case is
especially attractive as the expansion coefficients γ2,ijkl(t) are exactly known.

1.4.1. Helium

A helium atom or helium-like ions are composed of two electrons and a nucleus. The
electronic Hamiltonian reads

Ĥ(1,2)(t) = ĥ(1)(t) + ĥ(2)(t) + V̂ (1,2)
ee , (1.46)

where ĥ(t) is the single-particle Hamiltonian consisting of kinetic energy, electron-
nucleus interaction and electron interaction with external fields, e.g. the laser field. The
V̂ee is the electron-electron interaction potential, and the upper indices indicate that the
operator is acting on either electron 1, electron 2, or both.

The two-electron state |Φ(t)〉 is antisymmetric under particle exchange and therefore
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1. Introduction

can be expanded in a single particle basis as [77]

|Φ(t)〉 =
∞∑
k=1

dk(t)|k(t)〉|k′(t)〉 =
∑
k odd

dk(t) [|k(t)〉|k′(t)〉 − |k′(t)〉|k(t)〉] , (1.47)

where |k(t)〉 are NOs, the “prime operator” acting on a positive integer k is given as

k′ =

{
k + 1 if k odd
k − 1 if k even,

k > 0, (1.48)

and the expansion coefficients have the property di′(t) = −di(t).

If one now calculates the 1-RDM and compares with (1.23), one finds that

2|dk(t)|2 = nk(t); dk(t) =

√
nk(t)

2
eiϕk(t), (1.49)

where ϕk(t) = π+ϕk′(t) is some real function which depends on the phase convention for
the NOs. For a specific phase convention it is actually possible to choose ϕk(t) = ϕk(0)
and thus write

|Φ(t)〉 =
∞∑
k=1

√
nk(t)

2
eiϕk(0)|k(t)〉|k′(t)〉. (1.50)

By inserting (1.50) into (1.13), one obtains the 2-DM expansion in NOs from which
one immediately finds

γ̃2,ijkl(t) = (−1)k+j
ei [ϕi(0)−ϕk(0)]

2
√
ni(t)nk(t)

δij′δkl′ . (1.51)

If one requests that RNOs for groundstates are real, then one obtains the phase factors for
He-like ions

eiϕk(0) = ±(2δ1k + 2δ2k − 1). (1.52)

For the choice eiϕk(0) = 1 the groundstate RNOs will be complex. This choice is useful
for, e.g., the H2 molecule in Born-Oppenheimer approximation where the phase factors
change as a function of the internuclear distance.

Note that explicit expressions for γ̃2,ijkl(t) as in (1.51) are only known for two-particle
systems.

Model atom

To perform the benchmarking test, the widely used one-dimensional helium model atom
was used [7, 40, 41, 61, 63, 97, 98]. The Hamiltonian of the model helium atom has the
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1.4. TDRNOT applied to helium model atom

form (1.46). The single-particle Hamiltonian in dipole approximation and length gauge
reads

ĥE =
p̂2

2
− 2√

x̂2 + εne
+ E(t)x̂− i Γ̂, (1.53)

and in velocity gauge, with the purely time-dependent A2(t) term transformed away,

ĥL =
p̂2

2
− 2√

x̂2 + εne
+ A(t)p̂− i Γ̂. (1.54)

The electron-electron interaction reads

V (1,2)
ee =

1√
(x̂(1) − x̂(2))2 + εee

. (1.55)

We used two different values for parameters εne and εee. In the first two papers [12, 77],
where the main purpose was to demonstrate the capabilities of the method, the values
εne = εee = 1 were used. In the papers [13, 14] the values εne = 0.50 and εee = 0.33
were chosen to match the real, three-dimensional He and He+ ionization potentials. The
latter will be used for all examples in the introductory part of this thesis. The imaginary
potential −i Γ̂ is introduced to absorb outgoing electron flux [14].

1.4.2. Groundstate
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Figure 1.1.: Groundstate wavefunction of the helium model atom. The calculations were
performed on a square grid with Nx = Ny = 1000 spacial gridpoints and a resolution
dx = dy = 0.4.
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The TDSE (1.12) governs the time evolution of a state |Φ(t)〉 given an initial state
|Φ(t = t0)〉. In all examples of this thesis the groundstate is used as the initial state. To
find the groundstate one can apply imaginary-time propagation [5] where time is replaced
by imaginary time, t → −iτ , and the wavefunction is renormalized after each time step.
Starting with a guess at τ = 0 one attains the groundstate of the system in the limit
τ → ∞. By applying this procedure to our helium model atom one finds the groundtate
state wavefunction presented in Figure 1.1 with energy E0 = −2.9. To obtain excited
states one additionally projects out all states with lower energy after each time step.

One can apply the imaginary-time propagation also to TDRNOT for the N̄◦ RNOs with
highest ONs. Apart from renormalization after each imaginary time step (making sure
that

∑
i ni = 2) one has to perform Gram-Schmidt orthogonalization of the RNOs. The

helium singlet RNOs |̃i(t)〉 and |̃i′(t)〉 have the same spatial part but opposite spins. Thus
numerically one needs to propagate only N◦ = 1

2
N̄◦ RNOs.

Table 1.1.: Groundstate energy convergence with increasing number m of RNOs in the
propagation. For the calculation of the error the energy obtained with m RNOs (labeled
m-RNO) was compared with the one obtained by the TDSE.

N◦ ∆E [a.u.] rel. err. N◦ ∆E [a.u.] rel. err.
1 3.7·10−2 1.3·10−2 13 5.3·10−8 1.8·10−8

2 6.7·10−3 2.3·10−3 16 7.8·10−9 2.7·10−9

3 7.9·10−4 2.7·10−4 19 1.2·10−9 4.2·10−10

4 2.7·10−4 9.2·10−5 22 2.6·10−10 9.1·10−11

5 5.9·10−5 2.0·10−5 25 5.0·10−11 1.7·10−11

6 2.4·10−5 8.3·10−6 28 9.9·10−12 3.4·10−12

7 7.2·10−6 2.5·10−6 31 1.5·10−12 5.2·10−13

8 3.3·10−6 1.1·10−6 34 2.7·10−13 9.4·10−14

9 1.2·10−6 4.0·10−7 37 4.1·10−14 1.4·10−14

10 5.7·10−7 2.0·10−7 39 <1.0·10−15 <1.0·10−15

By applying the imaginary-time propagation to TDRNOT using the exact functional
for γ̃2,ijkl(t) (1.51) for different number N◦ of NOs one finds that the groundstate energy
monotonously converges with increasing N◦ to the value obtained from the TDSE cal-
culation. This convergence is shown in Table 1.1. The ONs rapidly drop, as shown in
Figure 1.2. Unfortunately, it is not an easy task to find excited states with TDRNOT. The
difference to the TDSE case is that groundstate RNOs are not orthogonal to excited state
RNOs, which means one has to add nontrivial constraints.

The groundstate obtained via imaginary-time propagation applied to TDRNOT does
not depend on the imaginary time step as long as it is small enough such that results
converge at all. Starting from a reasonable initial guess the results converge for N◦ < 40
with dτ ≤ 0.05 and N◦ ≤ 80 with dτ ≤ 0.005 using 4-th order Runge-Kutta propagation.
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Figure 1.2.: ONs of TRNOT groundstate with N◦ = 80 RNOs.

Also the 2-DM converges monotonously with increasing number of RNOs so that every
groundstate observable also converges. The convergence of the 2-particle density (diag-
onal part of the 2-DM) is shown in Figure 1.3. N◦ = 39 is sufficient to reach the point
where the TDRNOT results for the 2-DM match those of the TDSE up to a machine pre-
cision. Figure 1.3 also demonstrates how correlations build up with increasing number of
RNOs.

Müller functional

As the exact functional is known only for the two-particle case it is interesting to investi-
gate what happens when one uses an approximate function instead, e.g., Müller functional
(see Sec. 1.3.2 for definition). The first noticeable difference is that the EOM in imaginary
time is less stable with the Müller functional. Thus one has to use smaller time steps in
order to achieve convergence. The energy of the Müller-functional groundstate also con-
verges monotonously with increasing N◦, but it does not converges to the TDSE result.
It converges to a value which is significantly (0.7%) below the TDSE result. Already the
3-RNO calculation provides an energy which is below the TDSE value. Even worse with
the 2-DM: there are regions where the 2-particle density becomes negative for TDRNOT
calculations with N◦ > 3. The size of those regions increases with increasing N◦.

1.4.3. Linear response

The next step after finding the groundstate is to examine the excited states which can be
populated by laser excitations. To determine those states, one can apply a small, perturb-
ing field (hence, “linear response”) which contains all frequencies and then analyze which
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Figure 1.3.: Isolines of the 2-particle density of the helium groundstate. The red dashed
isolines indicate the TDSE solution while the solid black isolines represent the TDRNOT
solution with N◦ =1, 2, 9, 19, 29, 39 RNOs. On the top panel the isolines have the values
10−1, 10−2, ...,10−9, on the bottom panel 10−1, 10−2, ...,10−16.

states are populated. An example for such a perturbation is a vector potential of the form

A(t) = ÂΘ(t− t0) (1.56)

where Θ(x) is the Heaviside step function. The electric field E(t) = −∂tA(t) then is a
δ-like kick. To analyze which states are populated one can use the fact that during field-
free evolution all populated states evolve ∼ exp(−iEit), where Ei is the eigenenergy
of state i. Thus, to find the energies Ei one may Fourier-transform the auto-correlation
function [26]. Excitation energies, i.e., energy differences Ei − E0 in the linear-response
regime, can be inferred from the Fourier transform of the dipole or dipole acceleration.
The expectation value of the acceleration is computationally preferable, as the results
converge on smaller grids [14]. By applying a perturbation (1.56) with Â = 10−5 and
propagating the system until t = t0 + 5000 the linear response spectra in Figure 1.4 is
obtained. To eliminate box states due to the finite grid size an imaginary potential was
used. Because of this imaginary potential the Hamiltonian is not hermitian anymore. Thus
we cannot use the EOM (1.35) but have to use the ammended EOM which was derived
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Figure 1.4.: Comparison of linear response spectra calculated with TDSE and TDRNOT
with 1 to 10 RNOs. For the purpose of easier comparison, the spectra are vertically
shifted. The dashed black lines indicate the positions of the first, second, and third series
of peaks from the TDSE. The dashed red line shows the frequency corresponding to the
fully ionized ion, therefore one would not expect any peaks with larger frequencies. How-
ever, they are present in the TDRNOT case with more than three RNOs. The low-intensity
peaks in the TDSE spectrum (around the first series) are caused by splitting errors in the
numerical solution of TDSE. The positions correspond to frequency differences between
high intensity peaks visible in the graph.

in [14]. Alternative methods to suppress box states are mask functions [56] or complex
exterior scaling [86]. For the mask function case one may still use (1.35), but for complex
exterior scaling one has to modify the EOM as well.

The TDSE spectrum in Figure 1.4 shows several series of peaks. The positions where
the first three series start are indicated by dashed black lines. Five series of peaks (of the
infinitely many) are resolved up to the frequency ω = 2.9 that is sufficient to fully ionize
the helium atom. This is indicated by the dashed red line in Figure 1.4. The first series
of peaks corresponds to single excitations where one electron stays in the groundstate
and the other electron ends up in some excited state. The second series corresponds
to the transition to a final state where one electron is in the first excited state and the
other electron is in a higher excited state. The third series of peaks correspond to the
situation where the lowest electron is in the second excited state, and so forth. Thus,
all series except the first one represent transitions to doubly-excited states. If we look
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at the 1-RNO calculation, which is equivalent to TDHF or TDDFT in exact exchange-
only approximation, we notice that the double-excitations are missing. However, if we
increase the number of RNOs in the TDRNOT propagation, we observe additional series
of peaks. The positions of the previous peaks improve by adding extra orbitals, although
not monotonously. The position of the first series is already well described with the
3-RNO calculation, and the second series with the 6-RNO calculation. The problem,
however, is that each new series appears at increasingly larger frequencies. Already the
4-RNO calculation shows peaks in the double-ionization continuum (dashed red line) in
Figure 1.4). Thus one has to be cautios in simulations of He in laser fields using TDRNOT,
as one may excite these artificial states, which then can auto-ionize, altering observables
of interest in an unphysical way.

Müller functional
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Figure 1.5.: Comparison of the linear response spectra calculated with TDSE and
TDRNOT using the Müller functional with 1–10 RNOs. The vertical lines have the same
meaning as in Figure 1.4. The red ellipses mark extra peaks in the calculation for 2-5
RNOs.

Using the Müller functional (1.43) instead of the exact (1.51) the linear response spec-
trum in Figure 1.5 is obtained. Compared to Figure 1.4 obtained using the exact func-
tional, we observe a higher noise level for the Müller functional, despite the fact that a
more then ten times smaller time steps were used. There are also additional peaks, which
are quite similar to the results obtained using the “frozen” approximation [12]. But the
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1.4. TDRNOT applied to helium model atom

main difference is that the series of peaks converge to lower frequencies than in the TDSE
case. Only the first ionization continuum is well described. Given the fact that the TDSE
can be considered exact here, this means that the Müller functional does not work for
many RNOs.

1.4.4. Peak shifting problem

One artifact generated by all widely applied exchange-correlation functionals for
(TD)DFT available in the literature is that photoelectron peaks shift towards smaller ener-
gies as ionization proceeds during the laser pulse. The time-dependent ionization degree
in TDDFT corresponds to a variation of the fractional occupation numbers in DFT [75],
and most of the exchange-correlation potentials applied in practice vary smoothly as a
function of these fractional occupations. However, the exact exchange-correlation func-
tional is known to have so-called “derivative discontinuities” [63, 75]. Figure 1.6 shows
the total energy and the Kohn-Sham orbital energies as functions of the occupation for the
He model in exchange-only approximation.

Figure 1.6.: Total (green) and Kohn-Sham orbital energies (red) as functions of the or-
bital occupation for the helium model atom in exchange-only approximation (solid). Cor-
responding dashed lines show how the exact result should look like.

If the Kohn-Sham orbital energy decreases monotonously with increasing ionization
probability, the kinetic energy of emitted photoelectrons decreases monotonously as well.
Thus, when we apply laser pulses of different intensities in TDDFT calculations, we
observe photoelectron peaks at different positions. Consider, for instance, |EHe+

0 | > ~ω >
EHe+

0 − EHe
0 , where EHe

0 and EHe+

0 are groundstate energies of He and He+ and a laser
intensity that is small such that multi-photon processes are very improbable. Then, as
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ionization proceeds, at some time during the interaction, single-photon ionization is not
possible anymore because the Kohn-Sham orbital energy drops below ~ω.

The 1-RNO calculation is equivalent to TDDFT with exchange-only approximation.
Hence, for TRNOT with one RNO in Figure 1.7 we observe strong peak shifting. For the
3-RNO calculations we can still observe peak shifting, although less pronounced than in
the TDDFT case. The situation continues to improves if one adds more RNOs. For the
6-RNO calculations there is no peak shift on the energy scale shown in the plots.
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Figure 1.7.: Comparison of photoelectron momentum spectra calculated with TDSE and
TDRNOT using one, three, and six RNOs. A 50-cycle trapezoidal (2-cycle linear up-
ramping and down-ramping) laser pulse with ω = 1 and different peak intensities I0 was
used. The 1-RNO result is equivalent to the TDHF and TDDFT using exchange-only
approximation.

Müller functional

The position of the first ionization continuum is well described by the TDRNOT with the
Müller functional. Thus one may hope that the peak positions will improve as well if one
adds more RNOs in propagation, although probably more then six RNOs are required to
cure this effect. Unfortunately, in practice, one is not able to notice any improvement
at all. The shift is quite similar for 1-RNO, 2-RNO, 3-RNO, and 20-RNO calculations.
Thus, there is no point of using TDRNOT with the Müller functional, as we cannot go
beyond TDDFT, and TDDFT calculations are faster. Therefore, a good functional is es-
sential for TDRNOT, and probably theN -representability is the crucial property that must
be satisfied in order to improve on TDDFT.
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1.4. TDRNOT applied to helium model atom

1.4.5. Single-photon double ionization

Single-photon double ionization (SPDI) is another effect where TDDFT does not work in
practice, especially if one is interested in correlated photoelectron spectra, for which no
density functional is known.
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Figure 1.8.: Correlated photoelectron momentum spectrum calculated with the TDSE. A
7.6-nm 20-cycle sin2-shaped laser pulse of peak intensity I0 = 2.4 × 1014 W/cm2 was
used. The dashed green vertical and horizontal lines indicate the photoelectron momenta
after single ionization of He by absorbing one, two, and three photons. The dashed red
vertical and horizontal lines indicate the photoelectron momenta after ionization of He+

by absorbing one, two, and three photons. The dashed green circles are explained in the
text.

If ~ω > |EHe
0 | then one photon can fully ionize a helium atom. However, electron-

electron interaction is required, as the photon energy, absorbed by one electron, has to be
shared with the other electron. From energy conservation, one obtains

E
(1)
kin + E

(2)
kin = ~ω + EHe

0 , (1.57)
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where E(i)
kin is the kinetic energy of the i-th photoelectron. As a consequence, one expects

a ring with radius p =
√

2 (~ω + EHe
0 ) in correlated photoelectron momentum spectra.

If both electrons are emitted in the same direction it is very improbable that one will
measure both electrons with the same kinetic energy due to Coulomb repulsion. It is
more likely that one electron will have a higher kinetic energy than the other. Due to
Coulomb repulsion the second electron accelerates the first and slows down. Thus, we
expect the probability along the SPDI-ring to vary. In fact, this is seen in Figure 1.8.
There is a minimum on the inner SPDI-ring if both photoelectrons have the same energy
and are emitted in the same direction.

An atom can simultaneously absorb also two and more photons. If n is the number of
photons which are simultaneously absorbed then the atom can be fully ionized if n~ω >
|EHe

0 |. Thus, if the photon energy ~ω > |EHe
0 |, rings of radius p =

√
2 (m~ω + EHe

0 ) with
m ∈ {1, 2, 3, ...} are expected in correlated photelectron momentum spectra. The proba-
bility to simultaneous absorb multiple photons decreases exponentially with the number
of photons. Three rings can be identified in Figure 1.8, and some traces of a fourth one.
In order to observe more rings one has to increase the laser intensity.
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Figure 1.9.: Correlated photoelectron momentum spectra obtained from the first 60 NOs
(not all are shown) calculated from the TDSE wavefunction. The same laser pulse was
used as in Figure 1.8. The dashed lines also have the same meaning as in Figure 1.8.

The vertical and horizontal lines in features in Figures 1.8 and 1.9 indicate the photo-
electron momenta after single ionization of He (green) and He+ (red) by one, two, three
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1.4. TDRNOT applied to helium model atom

photons. An enhanced ionization probability is observed when lines of different color
cross the higher-order rings (m = 2, 3, . . .), corresponding to sequential double ioniza-
tion. The probability is “smeared out” due to electron-electron interaction, especially if
the electrons are emitted in the same direction. The correlated photoelectron momentum
spectra were calculated by applying a filtering method in position-space [13, 98] instead
of projecting out all bound and singly ionized states. As this is not a rigorous approach to
calculate photoelectron spectra, traces of bound and singly excited states are still visible
in Figure 1.8.

p
2
 [

a
.u

.]

1RNO

−8

−6

−4

−2

0

2

4

6

8
1 RNO 1RNO

10
−12

10
−10

10
−8

10
−6

10
−4

10 RNOs

p
2
 [

a
.u

.]

p1 [a.u.]

1RNO

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

20 RNOs

p1 [a.u.]

1RNO

−8 −6 −4 −2 0 2 4 6 8

10
−12

10
−10

10
−8

10
−6

10
−4

38 RNOs

Figure 1.10.: Correlated photoelectron momentum spectrum obtained by TDRNOT with
one to 38 RNO (not all are shown). The laser pulse has the same parameters and dashed
lines have the same meaning as in Figure 1.8

The correlation entropy (1.41) may be used to quantify the amount of correlation. How-
ever, to get a rough estimate, one can also examine how many NOs are needed (calculated
from TDSE) to describe a particular feature in the spectra. For instance, 60 NOs are
needed to reproduce the spectrum in Figure 1.8. Reproducing the SPDI-ring (m = 1) re-
quires 38 NOs. Clearly, SPDI is a very correlated process. Thus, it is interesting to inves-
tigate how many RNOs are necessary for TDRNOT to describe SPDI. In actual TDRNOT
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calculations one has to restrict the number of NOs, which introduces the so-called “trunca-
tion error” [13, 14, 42, 77]. Hence, more NOs are needed to reproduce the correlated pho-
toelectron spectra with TDRNOT than in Figure 1.9 where the NOs were calculated from
the TDSE wavefunction. Such TDRNOT calculations of correlated photoelectron spectra
in the context of nonsequential double ionization were pursued in Ref. [13]. TDRNOT
results for SPDI are shown in 1.10. 38 RNOs are sufficient to describe SPDI well.

26



1.5. Overview of the published results

1.5. Overview of the published results

In this section the key points of papers 1-5 are summarized.

1.5.1. Paper 1 - Time-dependent renormalized natural orbital
theory applied to the two-electron spin-singlet case:
Ground state, linear response, and autoionization[12]

In Paper 1, we introduced time-dependent renormalized natural orbital theory
(TDRNOT), derived equations of motion and tested the new theory on the two-electron
spin-singlet case. We calculate the groundstate RNOs but used just the groundstate
γ2,ijkl(t = 0) for time propagation, which is an approximation. This approximation
is similar to “freezing” the ground-state Kohn-Sham potential during time propagation
in time-dependent Kohn-Sham (TDKS) calculations. This is not uncommon and occa-
sionaly phrased “bare” Kohn-Sham response in the literature. Using γ2,ijkl(t = 0), we
calculated the linear response spectrum and demonstrated that the method is able of de-
scribing doubly-exited states. Moreover, those doubly-excited states autoionize, lead-
ing to Fano line-shapes in photoelectron momentum spectra. Thereby we showed that
TDRNOT is capable to describe effects which are missing in TDDFT with adiabatic
exchange-correlation functionals.

1.5.2. Paper 2 - Equations of motion for natural orbitals of
strongly driven two-electron systems [77]

In Paper 2, we present the derivation for the exact function γ2,ijkl(t) in the two-electron
case. We compared results calculated with the exact functional γ2,ijkl(t) and with the
“frozen” approximation from Paper 1. Unfortunately, it was revealed that the “frozen”
approximation becomes worse if we add more RNOs. There are extra peaks in the linear
response and peaks are shifted towards lower energy (similar to the results obtained with
the Müller functional in Sec. 1.4.3). In addition, we also showed that TDRNOT with the
exact functional is able to describe Rabi oscillations, unlike TDDFT. In this paper we also
discussed the effect of truncation errors in TDRNOT for the first time.
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1.5.3. Papers 3 and 4 - Nonsequential double ionization and
strong-field absorption and emission of radiation in
two-electron systems calculated with time-dependent
natural orbitals [13, 14]

In Papers 3 and 4, we went one step further and investigated the performance of TDRNOT
for processes which involve more than two RNOs. To achieve this, we optimized prop-
agations of RNOs. We abandoned the split-operator technique [26], as the splitting er-
ror increased if one increased the number of RNOs in the propagation. In Paper 4, we
also replaced the unitary Crank–Nicolson [22] propagation with the Dormand–Prince
RK54 method [23]. It turned out that the error for orthogonality of RNOs plays a much
larger role than the error in the norm. The error for the norm using Dormand–Prince
RK54 method is still small (10−12). With this, as one can see from Secs. 1.4.5 and
A.3, we were able to propagate more than 38 RNOs. We also extended TDRNOT to
non-hermitian potentials to allow imaginary potentials to reduce the grid sizes. Having
optimized TDRNOT propagation we tested it on non-sequential double ionization, Fano
profiles in absorption spectra, and high-order harmonic spectra. TDRNOT was able to
describe all those effects. The number of RNOs required depends on how correlated the
process is. For more differential observables one typically needs more RNOs. The effect
of the truncation error on the relevant observables was investigated in all cases.

1.5.4. Paper 5 - TDRNOT applied to laser-driven H+
2 [42]

For Paper 5, we extended the TDRNOT to multicomponent systems. The exact expres-
sions γ2,iJkL(t) for the case of (effectively) two distinguishable particles was employed.
The extended theory was tested on a 1D model of the H+

2 hydrogen molecular ion be-
yond the Born-Oppenheimer approximation. In order to benchmark the extended theory,
groundstate properties, linear response spectra, fragmentation, and high-order harmonic
generation were investigated. The exact groundstate energy was achieved with very few
orbitals. However, the linear response spectra were plagued by multiple sharp peaks
that only for very many orbitals would reproduce the correct, broad structure caused by
bound-continuum transitions. It was found that TDRNOT was able to reproduce disso-
ciation and Coulomb explosion, and high-harmonics spectra. In the case of high-order
harmonics spectra, it was found that 8 RNOs per particle yielded very good agreement
with the benchmark result from the TDSE. Here, similarly as in Paper 4, we noticed that
the noise level got larger if the number of RNOs in the propagation is increased.
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1.6. Conclusion and outlook

We introduced TDRNOT and benchmarked it on a numerically exactly solvable helium
model atom. As the exact functional γ2,ijkl(t) is known for two electrons, no approxima-
tions were necessary, apart from the necessarily truncated number of RNOs considered in
the simulations. For two electrons, in the limit of one RNO per spin, TDDFT in exchange-
only approximation is recovered. Adding more RNOs per spin is similar to adding Slater
determinants in MCTDHF.

We showed that the method correctly describes doubly-excited states, auto-ionization,
Fano profiles in photoelectron and absorption spectra, Rabi oscillations, single-photon
double ionization, and non-sequential double ionization. Depending on the observable of
interest, for some effects, as, e.g., single-photon double ionization, as many as 38 RNOs
are required.

Obvious next steps are (i) applying TDRNOT to “real” helium in three dimensions, and
(ii) extending TDRNOT to more than two particles. Step (i) is already taken by another
PhD student in the group, Julius Rapp. The exact knowledge of the 2-DM in terms of
RNOs holds in 3D as well. However, one RNO in the 1D He model corresponds to an
entire shell in 3D He, making TDRNOT simulations significantly more demanding in
3D. Selection rules and sum rules can be used to reduce the computational cost. In the
two-electron case, TDRNOT should be less demanding than MCDTHF.

Concerning step (ii), the EOM derived in this thesis actually applies to an arbitrary
number of electrons. The problem with more than two electrons will be to find a good
approximation for the γ̃2,ijkl(t) coefficients, i.e., the 2-RDM. A first, explorative investi-
gation in this derection was pursued in the BSc thesis of Nicolas Künzel in 2014, where
the ground state of a one-dimensional Li atom was studied. It was found that the exact
γ̃2,ijkl(t) obtained from the solution of the Schrödinger equation (which is possible for
this model) has a complicated structure, but an approximation based on an MCHF ansatz
for the wavefunction might be a reasonable. However, when it comes to the time evolu-
tion of driven three or more electron systems it is not clear at that point whether there is a
phase convention that renders γ̃2,ijkl(t) adiabatic.

The success of TDRNOT will rise and fall with the availability of approximate func-
tionals for γ̃2,ijkl(t) that are able to capture the phenomena of interest. Tests of the func-
tionals already available in the literature (see Sec. 1.3) should be performed. Certainly, a
promising functional must beN -representable, and, for strong-field applications, the ONs
must not be constant.
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Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density
functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly
correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the
one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is
capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the
photoelectron spectra, and strong-field ionization in general. Equations of motion (EOMs) for natural orbitals
and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals
(RNOs) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on
the two-electron spin-singlet system, known as being a “worst case” testing ground for TDDFT, and employ the
widely used, numerically exactly solvable, one-dimensional helium model atom (in a laser field) to benchmark
our approach. The solution of the full, nonlinear EOMs for the RNOs is plagued by instabilities, and resorting to
linear response is not an option for the ultimate goal to study nonperturbative dynamics in intense laser fields. We
therefore make two rather bold approximations: we employ the initial-state-“frozen” effective RNO Hamiltonian
for the time propagation and truncate the number of RNOs to only two per spin. Surprisingly, it turns out that
even with these strong approximations we obtain a highly accurate ground state, reproduce doubly excited states,
and autoionization.

DOI: 10.1103/PhysRevA.88.052514 PACS number(s): 31.15.ee, 31.70.Hq, 32.80.Zb

I. INTRODUCTION

The “holy grail” of computational many-body theory
is to overcome the so-called “exponential wall,” i.e., the
exponentially increasing numerical effort as a function of
the particle number to solve the many-body Schrödinger
equation [1]. It is an obvious idea that one should try to
replace the high-dimensional many-body wave function by
some simpler, lower-dimensional quantity, and then derive
equations governing this quantity because the “many-electron
wave function tells us more than we need to know” [2].
Reduced density matrices (RDMs) appear to be most suitable
for that purpose. In fact, extensive research has been devoted
to the properties and applications of RDMs, starting with
the classic work by Löwdin [3], already early summarized
in [4], and meanwhile covered in books and reviews [5–9],
and excellent thesis works [10,11].

For systems with two-body interactions, any observable can
be explicitly written down in terms of the two-body reduced
density matrix (2RDM). The Hohenberg-Kohn theorem [12] of
density functional theory (DFT) (see, e.g., [13]) even ensures
that any observable (of a system governed by a Hamiltonian
with a scalar, local, external potential) is in principle a
functional of the single-particle density, i.e., the diagonal of the
(spin-integrated) one-body reduced density matrix (1RDM).
However, these functionals are not known for all observables
of interest so that approximations have to be made in practice.
Quite reasonably, it seems that the more reduced the quantity
employed is, the more approximations have to be made in
the governing equations (such as the intricate exchange-

*Corresponding author: dieter.bauer@uni-rostock.de

correlation (xc) potential in the Kohn-Sham scheme [14]), and
for the observables. Employing the 1RDM as the basic “vari-
able” instead of the single-particle density brings us to reduced
density-matrix functional theory (RDMFT) [3–8,10,11]. In
RDMFT, the Bogoliubov-Born-Green-Kirkwood-Yvon chain
of equations needs to be truncated by a (sufficiently accurate)
approximation of the 2RDM as a functional of the 1RDM.
In the simplest form, this leads just to the Hartree-Fock (HF)
equations. Expressions for the 2RDM beyond HF have been
devised and applied (see, e.g., [15–19]), although relatively
few compared to the abundant literature on xc potentials
in DFT. Approaches using directly the 2RDM as the basic
variable have been proposed and applied as well [9]. A naive
minimization of the energy as a functional of the 2RDM will,
however, yield too low energy values, as not all two-matrices
(2Ms) originate from an N -electron state. Recent progress in
the solution of this so-called N -representability problem has
been made by formulating a hierarchy of conditions a 2M has
to fulfill in order to be a proper 2RDM (without resorting to
higher-order RDMs) [20].

It is computationally beneficial to expand the 1RDM and
2RDM in 1RDM eigenfunctions, the so-called natural orbitals
(NOs) [3], as they form the best possible basis set (in a
well-defined mathematical sense; see, e.g., [5,11] for details).
The resulting equations for these NOs form a set of coupled,
nonlinear Schrödinger-like equations [21], as in configuration
interaction calculations. The eigenvalue of the 1RDM to which
a NO belongs can be interpreted as its occupation number
(OCN). Unlike in, e.g., Hartree-Fock, these OCNs are, in
general, fractional ∈]0,1[ in correlated fermionic systems
(unless they are “pinned” to 0 or 1 [22,23]).

In this work, we investigate whether NOs can be efficiently
employed to describe the correlated dynamics of a two-electron
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spin-singlet system in an external, driving field such as that of
a laser. Of course, the study of the structure of correlated
two-electron systems has a long history that started soon
after the “invention” of quantum mechanics. In view of a
NO description it has been analyzed by Löwdin and Shull
in 1956 [24]. The two-electron spin-singlet ground-state wave
function has an exceptionally simple structure when expanded
in NOs, as the coefficient matrix turns out to be diagonal. This
means that the ground-state two-body density matrix (2DM)
needs not be approximated in terms of the NOs but is known
exactly in the two-electron case.

One may think that the two-electron case is a bit (too)
trivial to test a novel time-dependent many-body method.
However, this is not the case. While electronic structure
calculations are difficult enough, time-dependent quantum
dynamics beyond linear response with nonperturbative drivers
is by far more challenging. In fact, from a computational
point of view it is orders of magnitude more demanding
because on top of the ground-state problem one, subsequently,
needs to propagate the system for typically 103–104 time
steps on numerical grids typically 102–103 times larger than
that for the ground state. It is thus even more important to
develop efficient numerical methods capable of describing
such strongly driven quantum dynamics. Time-dependent
density functional theory (TDDFT) [25,26] works well in
many cases but fails (with known and practicable adiabatic
xc potentials) whenever the processes to be described rely on
strong correlation or involve resonant interaction [27–35]. As
the correlation energy (relative to the total energy) typically
increases as the number of electrons decreases (down to 2),
it is the few-body correlated electron dynamics that serve as
“worst case” benchmarks for methods beyond TDDFT with
adiabatic xc potentials. For instance, autoionization in strong
laser fields is currently investigated experimentally [36,37] and
particularly challenging for theory because it involves multiply
excited states. As multiply excited states are absent in TDDFT
using adiabatic xc potentials [25,38] it serves as an ideal testing
ground for novel ab initio methods going beyond “standard”
TDDFT.

An algorithm for propagating NOs and OCNs for two
coupled nonlinear oscillators has been proposed in [39]. The
general equations of motion (EOM) for the NOs and their
OCNs have been derived in [40] (see also [10]). However,
the volume of published work on time-dependent density
matrix functional theory (TDDMFT) is still very limited.
Different adiabatic approximations to TDDMFT have been
derived and applied to molecules [41–44] and a two-site
Hubbard model [45], respectively. Exact time-dependent NO
occupations have been investigated [46] using the same
numerically exactly solvable model atom employed in the
current work. It was found that common approximations for the
2RDM functional render the OCN constant, which is incorrect
for, e.g., atoms in strong laser pulses or resonant interactions
[33]. A semiclassical approach to propagate the 1RDM that
allows for changing OCNs has been proposed in [47] and
applied to Moshinsky’s two-electron model atom [48].

Our paper is organized as follows. In Sec. II we review
the basic density matrix and NO theory for the two-electron
case and introduce renormalized NOs (RNOs), which allow
us to unify the EOMs for the OCNs and the NOs. Further,

we specialize in the spin-singlet case, briefly discuss the
time-dependent Hartree-Fock limit, and derive variationally
the equations governing the RNO ground-state configuration.
In Sec. III we present results for two RNOs per spin. After
the ground state is obtained, the linear-response spectrum and
autoionization in a laser field are investigated. We conclude
and give an outlook in Sec. IV. Details of the derivation of
the EOMs for the NOs are given in Appendix A, the relation
between the expansion coefficients of the ground-state 2DM
and those of the two-electron spin singlet ground state is given
in Appendix B. Atomic units are used throughout.

II. THEORY

The hermitian 2DM for a two-electron system with wave
function �(12; t) reads

γ2(12,1′2′; t) = �∗(1′2′; t)�(12; t), (1)

where the arguments 1, 2, 1′, etc., comprise spatial and spin
degrees of freedom (x1,σ1), (x2,σ2), (x ′

1,σ
′
1) . . .. The hermitian

1RDM is

γ1(1,1′; t) = 2
∫

d2 γ2(12,1′2; t). (2)

Given a Hamiltonian for the two-electron time-dependent
Schrödinger equation (TDSE),

i∂t�(12; t) = Ĥ (12; t)�(12; t), (3)

of the form

Ĥ (12; t) = ĥ0(1; t) + ĥ0(2; t) + vee(12), (4)

where vee is the electron-electron interaction, the 2DM fulfills
the von Neumann equation, while the 1RDM obeys the EOM

−i∂tγ1(1,1′; t) = [ĥ0(1′) − ĥ0(1)]γ1(1,1′; t)

+ 2
∫

d2 {vee(1′2) − vee(12)}γ2(12,1′2; t).

(5)

The hermitian 1RDM can be written in terms of an
orthonormalized set of NOs, φk , k = 1,2,3, . . ., and real,
positive-definite OCNs nk as

γ1(1,1′; t) =
∑

k

nk(t)φ∗
k (1′; t)φk(1; t), (6)

∑
k

nk(t) = 2,

∫
d1 |φk(1; t)|2 = 1. (7)

In other words, φk is the eigenvector of γ1 with respect to the
eigenvalue nk ,∫

d1′ γ1(1,1′; t)φk(1′; t) = nk(t)φk(1; t). (8)

As the NOs form a complete basis one can expand the 2DM
in them,

γ2(12,1′2′; t) =
∑
ijkl

γ2,ijkl(t)φi(1; t)φj (2; t)φ∗
k (1′; t)φ∗

l (2′; t).

(9)
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A. Equation of motion for renormalized natural orbitals

We find it numerically beneficial to incorporate the OCNs
into the NOs by renormalizing them,

φ̃k(1; t) =
√

nk(t) φk(1; t), (10)∫
d1 |φ̃k(1; t)|2 = nk(t). (11)

Inserting the NO expansions of the density matrices γ1 and
γ2, (6) and (9), respectively, into the EOM for the 1RDM (5),

coupled EOMs for the NOs and OCNs have been derived and
reviewed in the literature [10,11,40].

We have derived a single EOM that is particularly useful
for our purposes. It has the form

i∂t�̃(1; t) = Ĥ(1; t)�̃(1; t) (12)

with a hermitian Hamiltonian Ĥ and a column vector �̃(1; t)
with the RNO φ̃k(1; t) in it. The derivation is given in Appendix
A, the result being

i∂t φ̃n(1; t) = − 1

nn(t)

⎧⎨
⎩2 Re

∑
jkl

γ̃2,njkl(t)〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉 + 〈ñ(t)|ĥ0(t)|ñ(t)〉
⎫⎬
⎭ φ̃n(1; t)

+
∑
k �=n

2

nk(t) − nn(t)

∑
jpl

{γ̃2,kjpl(t)〈p̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉 − [γ̃2,njpl(t)〈p̃(t)l̃(t)|vee|k̃(t)j̃ (t)〉]∗}φ̃k(1; t)

+ ĥ0(1; t)φ̃n(1; t) + 2
∑

k

∑
j l

γ̃2,kjnl(t)〈l̃(t)|vee|j̃ (t)〉(1; t) φ̃k(1; t). (13)

Here, we used the abbreviations

γ̃2,njkl(t) = γ2,njkl(t)√
nn(t)nj (t)nk(t)nl(t)

, (14)

〈l̃(t)|vee|j̃ (t)〉(1; t) =
∫

d1′ φ̃∗
l (1′; t)vee(11′)φ̃j (1′; t), (15)

〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉
=
∫

d1 φ̃∗
k (1; t)〈l̃(t)|vee|j̃ (t)〉(1; t)φ̃n(1; t). (16)

With (11), Eq. (13) is a set of coupled EOMs for the RNOs
alone.

Multiplication of (13) by φ̃∗
n(1; t) and integration

∫
d1

yields

ṅn(t) = −4 Im
∑
jkl

γ̃2,njkl(t)〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉, (17)

which, expressed in terms of NOs instead of RNOs, has
been derived earlier [40]. This equation is useful to see
whether a certain approximation of γ̃2,njkl will lead to time-
varying OCNs or constant OCNs. For instance, common
approximations of the form

γ̃
(approx)
2,njkl (t) = fnjkl(t)δnkδjl − gnjkl(t)δnlδjk (18)

with fnjkl(t) and gnjkl(t) real will lead to constant OCNs,
ṅn(t) ≡ 0, because all NO phases that could lead to an
imaginary part on the right-hand side of (17) cancel. From
the exact numerical solution of the two-electron TDSE we
know that for, e.g., resonant interactions (Rabi floppings) and
in other scenarios, the OCNs do change in time [33,46,47].

If the total number of particles is conserved,

0 = Im
∑
njkl

γ̃2,njkl(t)〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉 (19)

follows from (17) upon summing over n. Moreover, one finds
that the RNOs stay mutually orthogonal if

Dnm(t) = D∗
mn(t) (20)

holds, where

Dnm(t) =
∑
kj l

γ̃2,kjnl(t)〈m̃(t)l̃(t)|vee|k̃(t)j̃ (t)〉. (21)

As the RNOs, being ∀t eigenfunctions of a hermitian matrix,
should stay orthogonal, Eq. (20) poses a condition any
approximation of γ̃2,kjnl(t) has to fulfill.

B. Two-electron spin-singlet case

If the two-electron wave function is ∀t of the spin-singlet
form

�(12; t) = �(x1x2; t)
1√
2

(δσ1+δσ2− − δσ1−δσ2+), (22)

�(x1x2; t) = �(x2x1; t) (with “+” and “−” for “spin up” and
“spin down,” respectively), we have with (1) and

γ1(x1,x
′
1; t) = 2

∫
dx2 �∗(x ′

1x2; t)�(x1x2; t) (23)

that

γ1(1,1′; t) = 1
2γ1(x1,x

′
1; t)(δσ1+δσ ′

1+ + δσ1−δσ ′
1−). (24)

We switch temporarily back to NOs normalized to unity.
Making the ansatz

φk(xσ ; t) = φk(x; t) (akδσ+ + bkδσ−), (25)

|ak|2 + |bk|2 = 1,

∫
dx |φk(x; t)|2 = 1, (26)
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one simply finds the same form for the spin-reduced 1RDM as
in (6),

γ1(x,x ′; t) =
∑

k

nk(t)φ∗
k (x ′; t)φk(x; t). (27)

Because of orthonormality of the NOs, for k �= k′

(a∗
k′ak + b∗

k′bk)
∫

dx φ∗
k′(x; t)φk(x; t) = 0 (28)

need to be fulfilled so that either the spatial part of the
NOs must be orthogonal or the spin part. For a given spin
part of φk with coefficients ak and bk one can always find
(up to an irrelevant phase factor) a normalized spin part
(ak′δσ+ + bk′δσ−) of φk′ that is orthogonal to (akδσ+ + bkδσ−).
A convenient choice is ak = 1, bk = 0, ak′ = 0, bk′ = 1 while
φk′(x; t) = φk(x; t). In other words, the spatial NOs appear
pairwise equal, with opposite spin parts. This is probably the
most trivial example of a pairing phenomenon. One may order
the NOs such that for odd k the following equations hold:

φk(xσ ; t) = φk(x; t) δσ+, k = 1,3,5, . . . , (29)

φk(x; t) = φk+1(x; t), (30)

φk+1(xσ ; t) = φk+1(x; t) δσ− = φk(x; t) δσ−. (31)

Then we can write instead of (27)

γ1(x,x ′; t) = 2
∑
k odd

nk(t)φ∗
k (x ′; t)φk(x; t), (32)

and we need to consider only half of the NOs (i.e., those with,
e.g., the odd indices, i.e., spin up) in the following.

Because the spatial spin-singlet wave function is symmetric
it can be shown [11] that its expansion in NOs is diagonal,

�(x1x2; t) =
∑
i odd

Di(t) φi(x1; t)φi(x2; t), (33)

where, because of (23) and (27),

|Di(t)|2 = ni(t). (34)

We can thus use the NO expansion coefficients for the wave
function Di(t) instead of resorting to the NO expansion
coefficients γ2,njkl(t) for the 2DM. How both are connected
is discussed in Appendix B. Formally, in Eq. (33) the time-
dependent spatial two-electron wave function is written as a
single geminal [49], expanded in time-dependent NOs.

The EOMs for the spatial RNOs in terms of the time-
dependent geminal expansion coefficients Di can be written as
(from now on all time arguments are suppressed for brevity)

i∂t φ̃n(x) = Ĥ0
n(x)φ̃n(x) +

∑
k odd �=n

H1
nk(x)φ̃k(x), (35)

where

Ĥ0
n(x) = An + K̂0

n(x), (36)

H1
nk(x) = Bnk + K1

nk(x) (37)

with

An = − 1

nn

[
Re

(∑
k odd

DnD
∗
k

nnnk

〈k̃k̃|vee|ññ〉x
)

+ 〈ñ|ĥ0|ñ〉x
]
,

K̂0
n(x) = ĥ0(x) + 〈ñ|vee|ñ〉x(x)

nn

, (38)

Bnk = 1

nk − nn

∑
p odd

(
Dk D∗

p

nknp

〈p̃p̃|vee|ñk̃〉x

−
[
Dn D∗

p

nnnp

〈p̃p̃|vee|k̃ñ〉x
]∗)

,

K1
nk(x) = Dk D∗

n

nknn

〈ñ|vee|k̃〉x(x), (39)

and the potentials 〈ñ|vee|k̃〉x(x) and matrix elements
〈p̃p̃|vee|ñk̃〉x defined as in (15) and (16) but all integrals
with respect to position space only. Here we exploit that the
electron-electron interaction does not directly involve the spin
degrees of freedom.

C. Time-dependent Hartree-Fock limit

Equations (35)–(39) reduce to the two-electron spin-
singlet Hartree-Fock limit for n1 = n2 = 1, φ̃1(x) = φ1(x) =
φ̃2(x) = φ2(x), and all other OCNs (and thus RNOs) zero. The
(in the NO index) off-diagonal part of the Hamiltonian H1

nk(x)
in (35) therefore vanishes, and

A1 = −〈11|vee|11〉x − 〈1|ĥ0|1〉x,

K̂0
1(x) = ĥ0(x) + 〈1|vee|1〉x(x)

so that

i∂tφ1(x) = [ĥ0(x) + 〈1|vee|1〉x(x) + A1]φ1(x),

which is indeed the time-dependent Hartree-Fock (TDHF)
equation for the two-electron spin-singlet system (where the
Fock term cancels half of the Hartree). In the case of the
two-electron spin-singlet system TDHF is equivalent to a time-
dependent Kohn-Sham (TDKS) treatment in “exact-exchange
approximation” (EXA) and the correlation potential set to zero.
Note that, unlike in the general case with more than one NO per
spin, the purely time-dependent term A1 can be eliminated via
a contact transformation φ1(x) → φ1(x) exp[−i

∫ t
A1(t ′) dt ′]

here.

D. Ground state

A time-dependent calculation most often starts from the
ground state. As we need anyway a code that propagates the
RNOs in time according (35) it would be convenient to use
imaginary-time propagation for finding the ground state, as is
commonly done in TDSE solvers. On the other hand, it must
be possible to derive the ground state in terms of RNOs via
a minimization approach. We show now that both ways will
indeed lead to the same result.
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The ground-state energy to be minimized is

E =
∫

d1[ĥ0(1′)γ1(1′,1)]1′=1

+
∫

d1
∫

d2 vee(|1 − 2|)γ2(12,12). (40)

Expressed in RNOs, the energy becomes

E = 2
∑
i odd

〈ĩ|ĥ0|ĩ〉x +
∑
i odd

∑
j odd

ei(ϕj −ϕi )√
〈ĩ|ĩ〉x〈j̃ |j̃ 〉x

〈ĩ ĩ|vee|j̃ j̃ 〉x,

(41)

where we introduced the phases ϕi via [cf. Eq. (34)]

Di = √
ni e

iϕi (42)

and explicitly write

ni = 〈ĩ|ĩ〉x. (43)

We define a functional Ẽ[{|ĩ〉},{〈ĩ|}] that takes the constraint∑
i odd〈ĩ|ĩ〉 =∑i odd ni = 1 via the Lagrange parameter ε into

account, the orthogonality of the RNOs via λij , λii = 0, the
condition ni � 0 via ε0

i , and ni � 1 through ε1
i (Karush-Kuhn-

Tucker conditions, see, e.g., [11,50]),

Ẽ = 2
∑
i odd

〈ĩ|ĥ0|ĩ〉 +
∑
i odd

∑
j odd

ei(ϕj −ϕi )√
〈ĩ|ĩ〉〈j̃ |j̃ 〉

〈ĩ ĩ|vee|j̃ j̃〉

− ε

(∑
i odd

〈ĩ|ĩ〉 − 1

)
−
∑
i odd

∑
j odd �=i

λij 〈ĩ|j̃〉

−
∑
i odd

[
ε0
i 〈ĩ|ĩ〉 + ε1

i (1 − 〈ĩ|ĩ〉)]. (44)

Here, we dropped the index x at 〈·|·〉x . The “slackness
conditions” are [11]

ε0
i ni = ε0

i 〈ĩ|ĩ〉 = 0, ε1
i (1 − ni) = ε1

i (1 − 〈ĩ|ĩ〉) = 0.

(45)

Actually, the energy functional Ẽ depends not only on the
RNOs but also on the phases {ϕj } of the geminal expansion
coefficients. We suppress this dependence here because the
values of these phases for the He spin-singlet ground-state
case are already known [see Eq. (73) below]. A more general
approach to the ground-state problem based on geminals
(where these phases are part of the minimization procedure)
has been proposed and applied in [49,51].

A variation of Ẽ with respect to 〈k̃| and |k̃〉 leads with

εk = ε + ε0
k − ε1

k (46)

to

εk|k̃〉 =
⎧⎨
⎩2

[
ĥ0 + 1

nk

〈k̃|vee|k̃〉(x)

]

− 1

nk

Re

⎡
⎣∑

j odd

DjD
∗
k 〈k̃k̃|vee|j̃ j̃ 〉
nknj

⎤
⎦
⎫⎬
⎭|k̃〉

+
∑

j odd �= k

{
2
DjD

∗
k

njnk

〈k̃|vee|j̃〉(x) − λkj

}
|j̃〉, (47)

and the hermitian conjugate of it. Multiplying by 〈ĩ| from the
left (and the hermitian conjugate by |ĩ〉 from the right) leads
for i = k to

εi = 1

ni

⎛
⎝2〈ĩ|ĥ0|ĩ〉 +

∑
j odd

{
2
DjD

∗
i

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉

− Re

[
DjD

∗
i

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉
]}⎞⎠, (48)

∀i 0 = Im
∑
j odd

DjD
∗
i

nj

〈ĩ ĩ|vee|j̃ j̃〉, (49)

and for i �= k to

λki = 2

ni

⎡
⎣〈ĩ|ĥ0|k̃〉 +

∑
j odd

DjD
∗
k

nknj

〈k̃ĩ|vee|j̃ j̃ 〉
⎤
⎦ = λ∗

ik, (50)

λik = 2

nk

⎡
⎣〈k̃|ĥ0|ĩ〉 +

∑
j odd

DjD
∗
i

ninj

〈ĩ k̃|vee|j̃ j̃ 〉
⎤
⎦ . (51)

From this follows

〈k̃|ĥ0|ĩ〉 = 1

ni − nk

∑
j odd

1

nj

× (DkD
∗
j 〈j̃ j̃ |vee|k̃ĩ〉 − DjD

∗
i 〈ĩ k̃|vee|j̃ j̃ 〉), (52)

which can be used to remove ĥ0 entirely from the off-diagonal
(with respect to the NO index) part of the Hamiltonian.

Putting Eqs. (47)–(52) together we can write

0 = Ĥ00
n (x)φ̃n(x) +

∑
k odd �=n

H01
nk(x)φ̃k(x),

Ĥ00
n (x) = A0

n + K̂00
n (x), (53)

H01
nk(x) = B0

nk + K01
nk(x)

with

A0
n = − 1

nn

(
〈ñ|ĥ0|ñ〉 + Re

∑
k odd

DkD
∗
n

nnnk

〈ññ|vee|k̃k̃〉
)

,

K̂00
n (x) = ĥ0 + 1

nn

〈ñ|vee|ñ〉(x), (54)

Bnk = 1

nk − nn

∑
p odd

(
DkD

∗
p

nknp

〈p̃p̃|vee|k̃ñ〉

− DpD∗
n

nnnp

〈ñk̃|vee|p̃p̃〉
)

,

K01
nk(x) = DkD

∗
n

nknn

〈ñ|vee|k̃〉(x). (55)

Hence, we obtain by this variational method indeed the
time-independent, ground-state analog of Eqs. (35)–(39). This
allows for finding the RNO ground-state configuration (for
a given set of OCNs) by imaginary time propagation of the
time-dependent Schrödinger-like, nonlinear equation (35) (see
Sec. III A below).

The εk in (47) play the role of orbital energies. Unless the
OCNs are pinned to nk = 0 or 1 we have noninteger 0 < nk <

1 for correlated systems. In such cases Eqs. (45) imply ε0
k = 0,
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ε1
k = 0 so that

εk = ε, (56)

i.e., all orbital energies are equal. The ground-state RNOs and
wave-function expansion coefficients Dj can be chosen real.
Thus we have with (48)

∀i ε = εi = 1

ni

(
2〈ĩ|ĥ0|ĩ〉 +

∑
j odd

DjDi

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉
)

(57)

and thus ∑
i odd

εini = ε
∑
i odd

ni = ε = E (58)

because the total energy is, according to (41),

E = 2
∑
i odd

〈ĩ|ĥ0|ĩ〉 +
∑

i,j odd

DjDi

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉. (59)

As already noticed in [52], the aesthetically appealing result
(58) is puzzling, at least at first sight. All orbital energies are
equal and equal to the total energy of the system. Only with
NOs and their fractional OCNs does the simple additive form
E =∑i εini—commonly known only from noninteracting
systems—persist here for interacting systems.

E. Two orbitals per spin

In our code that actually solves (35) we work on a numerical
grid representing the discretized space variable x and the RNO
index n = 1,3, . . . NRNO (see Fig. 1). All sums over the RNO
indices have to be terminated at some finite NRNO in practice.
Let us consider the simplest yet nontrivial case of two RNOs
(per spin), i.e.,

n1 = n2 �= 0, n3 = n4 �= 0, ni = 0 for i > 4, (60)
T

D
D

F
T

T
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O
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FIG. 1. (Color online) Sketch of the numerical grid. Each row
corresponds to one of the RNOs. Horizontal flux of probability density
represents motion in position space with the OCNs kept constant. Flux
in vertical direction implies a change in the OCNs. Because we work
with RNOs instead of NOs, the time evolution on this grid is unitary.
In the two-electron spin-singlet case the restriction to a single RNO
(per spin) corresponds to TDHF or TDDFT in EXA approximation
(red). In time-dependent RNO theory (TDRNOT, green) more than
one RNO is allowed.

which implies

φ̃1 = φ̃2, φ̃3 = φ̃4, φ̃i ≡ 0 for i > 4. (61)

As a single NO (per spin) is equivalent to TDHF (cf.
Sec. II C), allowing for two RNOs per spin is just “one
small step beyond TDHF.” However, we shall see below that
two RNOs per spin are already enough to describe some of
the correlated two-electron dynamics completely missed by
TDHF (or TDKS in EXA). The relevant terms in (35) in this
case are

Ĥ0
1(x) = A1 + K̂0

1(x), Ĥ0
3(x) = A3 + K̂0

3(x), (62)

H1
13(x) = B13 + K1

13(x), H1
31(x) = H1

13
∗
(x). (63)

We find, making use of (34),

A1 = − 1

n1

[
Re

(
〈1̃1̃|vee|1̃1̃〉 + D1 D∗

3

n1n3
〈3̃3̃|vee|1̃1̃〉

)
+ 〈1̃|ĥ0|1̃〉

]
, A3 = A1[1 ↔ 3], (64)

K̂0
1(x) = ĥ0(x) + 〈1̃|vee|1̃〉(x)

n1
, K̂0

3(x) = K̂0
1(x)[1 ↔ 3], (65)

B13 = 1

n3 − n1

(
D3 D∗

1

n1n3
〈1̃1̃|vee|1̃3̃〉 + 〈3̃3̃|vee|1̃3̃〉

n3
−
[
D1 D∗

3

n1n3
〈3̃3̃|vee|3̃1̃〉 + 〈1̃1̃|vee|3̃1̃〉

n1

]∗)
, B31 = B∗

13, (66)

K1
13(x) = D3 D∗

1

n1n3
〈1̃|vee|3̃〉(x), K1

31(x) = K1
13

∗
(x), (67)

and the equation of motion has the simple structure,

i∂t

(
φ̃1(x)

φ̃3(x)

)
=
(

Ĥ0
1(x) H1

13(x)

H1
31(x) Ĥ0

3(x)

)(
φ̃1(x)

φ̃3(x)

)
. (68)

Here, the off-diagonal elements determine whether or not the OCNs are constant,

ṅ1 = 2 Im 〈1̃|H1
13|3̃〉, ṅ3 = 2 Im 〈3̃|H1

13
∗|1̃〉. (69)

Furthermore, it is easy to show that the RNOs φ̃1 and φ̃3 stay orthogonal at all times.
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III. RESULTS AND DISCUSSION

The results in the following are obtained for the well-
known model heliumlike atom introduced in [53] and used
extensively ever since (see, e.g., [32,33,46,54]). In the spin-
singlet configuration the full two-body TDSE reads

i
∂

∂t
�(x1x2; t) =

⎡
⎣ 2∑

i=1

⎛
⎝−1

2

∂2

∂x2
i

− 2√
x2

i + 1
− iA(t)

∂

∂xi

⎞
⎠

+ 1√
(x1 − x2)2 + 1

]
�(x1x2; t). (70)

We employ the velocity gauge to couple an external field with
vector potential A(t) in dipole approximation to the model
atom (with the purely time-dependent term ∼A2 “transformed
away”). The corresponding one-body Hamiltonian for the
RNO equations reads accordingly

ĥ0 = −1

2

∂2

∂x2
− iA(t)

∂

∂x
− 2√

x2 + 1
(71)

and

vee(x1x2) = 1√
(x1 − x2)2 + 1

. (72)

For the real spin-singlet ground-state wave function of the He
atom the geminal expansion coefficients Di are

D1 = √
n1, Di = −√

ni for i = 3,5,7, . . . , (73)

or, in terms of the phases introduced in Sec. II D,

ϕ1 = 0, ϕi = π for i = 3,5,7, . . . . (74)

A two-fermion system is the fortunate case where these phases
are typically known for stationary configurations. However, it
is in general not known how the Di (or ϕi) change in time with
an external driver A(t) switched on (unless we solve the full
two-electron TDSE and extract this information).

A. Ground-state RNOs

We applied imaginary-time propagation in combination
with Gram-Schmidt orthogonalization to (68) with the Di

according (73) inserted in (64)–(67) in order to find the ground-
state configuration for given OCN. A grid with Nx = 500
spatial points and a resolution of 
x = 0.4 was found to be
sufficient for that purpose.

From Sec. II D we know that if we try all combinations

n1 = 1.0 − y, n3 = y, n1 + n3 = 1, y ∈ [0,1], (75)

the ground-state configuration will be the one for which

ε1 = ε3 = ε = E. (76)

Figure 2 shows the orbital energies ε1, ε3 and the total
energy E according (48) and (59), respectively, vs n1.
Condition (76) is fulfilled for

n1 = 0.991 27, n3 = 8.73 × 10−3, (77)

with a total energy

ENRNO=2 = −2.2366. (78)

The two NOs are shown in Fig. 3.
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FIG. 2. (Color online) Orbital energies ε1 (dotted blue), ε3

(dashed red), and total energy E (solid black) vs the dominant OCN
n1. The physically relevant RNOs are obtained when the three curves
cross [cf. (56) and (58)]. Panel (b) shows a zoom into the narrow n1

region where all energies cross in one point. The curves cross in the
minimum of E.

From the full TDSE solution on a spatial 500 × 500 grid,
also with 
x = 0.4, we obtain the reference value for the
ground-state energy,

ETDSE = −2.2384 (79)

and, via diagonalization of the 1RDM calculated from the
two-body Schrödinger wave function, for the first five OCNs
n1 = 0.990 96, n3 = 8.297 × 10−3, n5 = 7.063 × 10−4, n7 =
3.127 × 10−5, n9 = 7.392 × 10−6. The relative error in the
total energy is thus only 0.08%. The HF ground-state energy
of the system is EHF = 2.2243, i.e., with 0.6% relative error.

The OCNs n1 and n3 we obtain for NRNO = 2 are slightly
above the exact values because the two alone are already forced
to sum up to unity.

The logarithmic ground-state contour plot of the full TDSE
two-body electron density |�(x1x2; t)|2 shows characteristic
kinks along the diagonal x1 = x2 [see Fig. 6(a) below]. These
kinks are not reproduced with only two RNOs since they are
visible only on a probability density level governed by higher-
order RNOs which have a much smaller OCN and which are
spatially more extended. Nevertheless, we will see that two
RNOs are already sufficient to describe, e.g., doubly excited
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FIG. 3. Ground-state orbitals φ̃1 (a) and φ̃3 (b) for NRNO = 2.

states and autoionization, not captured by (TD)DFT employing
adiabatic xc potentials.

B. “Frozen” Hamiltonian

The full nonlinear system (35) [and even its truncated
form (68)] is numerically difficult to handle because of
instabilities. The time evolution of the RNOs and the OCNs
(i.e., the RNO norms) is extremely sensitive to the phases ϕi(t).
Although we apply an unconditionally stable (i.e., exactly
unitary) propagation algorithm (including predictor-corrector
steps) to our Schrödinger-like equation (68) (with a hermitian
Hamiltonian), the individual OCNs ni(t) = 〈ĩ(t)|ĩ(t)〉—while
still adding up to unity—tend to develop an unphysical,
rather erratic behavior after some time of propagation. Such
a behavior is actually to be anticipated from Eqs. (69): the
phases of the Di and the phases of the RNOs determine
the changes in the OCNs ni which, in turn, are fed back
into the Hamiltonian. One way to mitigate these instabilities
is to make approximations to γ̃2,ijkl that keep the OCNs
constant. However, the change of the OCNs is often crucial
to capture strongly driven, correlated, or resonant electron
dynamics [33,46,47].

In TDKS calculations it is not uncommon to “freeze” the
ground-state Kohn-Sham potential during time propagation,
leading to the so-called “bare” Kohn-Sham response. The
result can be compared to the full TDKS calculation. In
this way one may identify the effect of the nonlinearity in
the full Kohn-Sham potential. For instance, the peaks in the
linear-response spectrum obtained from the bare Kohn-Sham
Hamiltonian correspond to the (allowed) transitions between
the eigenstates of this Hamiltonian. The nonlinearity in the
full Kohn-Sham potential typically moves the peaks from the
frozen transition energies towards the correct position (see [32]
for the case of the model He atom studied here). We expect
something similar for the differences in the linear-response
spectrum calculated with the full, nonlinear Hamiltonian in
(35) [or, for two RNOs, (68)] and the ground-state RNO-frozen
Hamiltonian. Let us denote the ground-state RNOs, OCNs,
etc. by the corresponding underlined quantities. Then, for two
RNOs per spin, Eqs. (64)–(67) become

A1 = − 1

n1

[
〈1̃1̃|vee|1̃1̃〉 − 1√

n1n3
〈3̃3̃|vee|1̃1̃〉 + 〈1̃|ĥ0|1̃〉

]
, K̂0

1(x) = ĥ0(x) + 〈1̃|vee|1̃〉(x)

n1

, (80)

B13 = 1

n3 − n1

( 〈3̃3̃|vee|1̃3̃〉
n3

+ 〈3̃1̃|vee|3̃3̃〉 − 〈1̃1̃|vee|1̃3̃〉√
n1n3

− 〈3̃1̃|vee|1̃1̃〉
n1

)
, K1

13(x) = − 1√
n1n3

〈1̃|vee|3̃〉(x), (81)

where we have used (73). The only remaining time dependence
in the Hamiltonian in

i∂t

(
φ̃1

φ̃3

)
=
(
Ĥ0

1 H1
13

H1
31 Ĥ0

3

)(
φ̃1

φ̃3

)
(82)

then is in ĥ0 through the vector potential A(t), i.e., only in the

diagonal parts Ĥ0
1 and Ĥ0

3.
Equations (82) and (80) and (81) can be easily generalized

to more than two RNOs per spin. It is simple to prove that
the sum of all OCNs is conserved, ∂t

∑
i ni = 0. With the

frozen Hamiltonian the individual ni may not stay constant,
which is a good feature, as remarked on above. A drawback of

the frozen Hamiltonian, however, is that ∂t 〈ĩ|ñ〉 = 0 is not
strictly fulfilled anymore. This means that different RNOs
may not stay orthogonal during time propagation although,
as eigenfunctions of a hermitian 1RDM, they should.

C. Bare linear response

Figure 4 shows linear-response spectra for the He model
system. All spectra were calculated by Fourier transforming
the dipole after disturbance of the system with a minute
electric-field kick, corresponding to a steplike vector potential.

The exact TDSE result shows the dominating series
of peaks starting around a frequency ω = 0.5. In the
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FIG. 4. (Color online) Linear response of the He model system
obtained form the full TDSE (70) (upper, black, labeled “TDSE”),
with a single RNO per spin, i.e., equivalent to bare TDHF or TDKS
in EXA (center, blue, labeled “bare 1 RNO”), and two RNOs (lower,
red, labeled “bare 2 RNO”). The single-electron continuum threshold
is indicated by “SECT,” doubly excited series of peaks by “DE.”
The little arrow indicates the first double-excitation peak in the bare
two-RNO result, discussed in Sec. III D.

independent-electron picture, these peaks correspond to
single-electron excitations: one electron stays in its ground
state, the other one is excited to the first, second, etc. (dipole-
allowed) state, up to the single-electron continuum threshold
(SECT). Series of peaks corresponding to doubly excited
states follow around ω � 1.3 and greater. As in the “real”
He atom, all double excitations are embedded in the single-
ionization continuum and thus are autoionizing. Ultimately,
with excitations of frequencies ω > |E|, both electrons can be
lifted into the two-electron continuum [55].

The linear-response spectrum obtained with just one RNO
(per spin) is equivalent to the result of a bare TDHF (or
TDKS-EXA) calculation [56]. One can show that doubly
excited states are not even covered by full TDDFT (i.e.,
without frozen Kohn-Sham potential) as long as adiabatic
exchange-correlation (xc) potentials are employed (see, e.g.,
[25]). With a frozen Hamiltonian and just a single RNO
it is immediately clear that double excitations cannot exist.
And indeed, the peaks corresponding to transitions to doubly
excited states are absent for the “bare 1 RNO’ result in
Fig. 4. The single-excitation series is there but a bit redshifted
as compared to the TDSE reference spectrum.

The first main result of this paper is that the first series of
double-excitation peaks is present when Eq. (82) is solved.
In order to reproduce double excitations in TDDFT one
would have to use xc potentials with memory [38]. Even
if useful potentials with memory were known they would
very likely be computationally expensive. Instead, with our
time-dependent RNO theory (TDRNOT) we cover double
excitations even with a frozen Hamiltonian and just two
RNOs. This is because we allow for more than one orbital per
spin (or, in the single-particle picture, per particle), like in a
configuration interaction calculation or in multiconfigurational
Hartree-Fock. However, the advantage of TDRNOT over such
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FIG. 5. (Color online) The two RNOs φ̃1(x) and φ̃3(x) of the
autoionizing state indicated by the small vertical arrow in Fig. 4 for
the bare two-RNO calculation.

methods is that the RNOs constitute automatically the most
adequate time-dependent basis, as mentioned already in the
Introduction. This is the reason why we get along with only
two RNOs. Thanks to this small number of necessary RNOs
we have only little computational overhead compared to the
corresponding TDHF or TDKS-EXA simulation.

The single-excitation peaks in the bare two-RNO spectrum
are even more redshifted compared to the TDSE than in
the bare one-RNO result, while the peaks corresponding to
double-excited states are slightly blueshifted. We have checked
that with three RNOs the next series of double excitation peaks
(seen in the TDSE result starting around ω � 1.7) is also
reproduced, although even more blueshifted. “Unfreezing”
of the Hamiltonian should cure these shifts and improve the
quantitative agreement between TDSE and TDRNOT results
but, as mentioned above, we first have to overcome the
instability problems before we can check this assertion.

D. Autoionization after excitation by a laser pulse

The small arrow in Fig. 4 indicates the lowest-lying
transition to a doubly excited state in the bare TDRNOT
He system employing two RNOs. The two RNOs for that
particular state were calculated via diagonalization of the bare
Hamiltonian in (82) on a grid with 500 spatial grid points.
The result is depicted in Fig. 5. The dominating RNO φ̃1(x)
has an OCN n1 = 0.733 and is delocalized, thus allowing for
outgoing electron flux. Indeed, the spatial oscillations fit to the
wave number k = √2(ω − Ip) � 1 expected for the outgoing
electron (with ω � 1.38 the energy required to populate the
autoionizing state and the ionization potential inferred from
the SECT in Fig. 4, Ip � 0.75). The second RNO φ̃3(x) is
localized close to the origin and has an OCN n3 = 0.267. If
one detunes from the autoionizing resonance the OCN of the
delocalized NO increases. Hence, the characterizing feature
of an autoionizing resonance (as compared to states in a
“flat” continuum) is the relative increase of the occupation
of localized NOs.

As an example for a TDRNOT calculation beyond linear
response we have simulated the interaction of the model
He atom with an Ncyc = 30-cycle sin2-shaped laser pulse of
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frequency ω, i.e.,

A(t) = Â sin2

(
ωt

2Ncyc

)
sin ωt, (83)

for 0 < t < NcycT with T = 2π/ω, and zero otherwise. The
frequency in one calculation was chosen resonant with the
transition to the first doubly excited, autoionizing state while
in another run, for comparison, we tuned it off-resonant. In all
cases the vector potential amplitude was Â = 0.01.

1. TDSE result in position space

Before showing the results obtained with the bare TDRNOT
equation (82), let us illustrate the exact dynamics we observe
by solving the full two-electron TDSE (70). The same model
atom has been employed to study autoionization in the
presence of an additional, optical laser pulse in [57].

For the off-resonant case we chose ω = 1.25. In this case,
we expect single-photon ionization while the laser is on and
no ionization thereafter. In fact, this can be clearly inferred
from the (logarithmically scaled) position space probability
density plotted in Fig. 6(a) for time t = 255, i.e., well after the
laser was off at 30T = 151. Around the origin, the remaining
ground-state density is visible. Around x1 � 180, x2 = 0 the
laser-generated photoelectron wave packet is seen. It travels to
the right with velocity (or wave number) k = √2(ω − Ip) � 1,
where the ionization potential (for the TDSE calculation) is
Ip = 0.751. Analogous wave packets travel in the −x1 and
±x2 directions (not shown).

The frequency ω = 1.36 for the resonant case can be read
off Fig. 4. Figure 6(b) shows the probability density, again at
time t = 255. Because the frequency is higher than in (a), the
photoelectron wave packet is faster and narrower (Ncyc was
kept constant). The major qualitative differences compared
to the off-resonant case is that (i) the system continues to
ionize after the laser is off, as is seen from the trailing edge
of probability density following the (directly) laser-generated
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FIG. 6. (Color online) Logarithmic probability density (over five
orders of magnitude) from (70) for a Ncyc = 30-cycle laser pulse
with Â = 0.01 at t = 255 for the off-resonant case ω = 1.25 (a) and
the resonant one ω = 1.36 (b). In (b), ionization continues after the
laser pulse, as can be seen from the probability density trailing the
(directly) laser-generated photoelectron wave packet.

direct direct

auto

FIG. 7. (Color online) TDRNOT result corresponding to the
TDSE two-electron density dynamics in Fig. 6. The off-resonant
frequency used was ω = 1.28 (other parameters as in the TDSE
runs), leading to the black, dotted density at t = 255. The resonant
frequency ω = 1.38 yields the red, solid density.

wave packet, and (ii) the different structure in the probability
density around the origin. The latter clearly shows that the
system is not left in the ground state after the interaction with
the laser pulse. Instead, it is in a superposition of ground and
autoionizing state. Similar patterns are shown in [57].

2. Bare two-RNO result in position space

The probability density |φ̃1(x)|2 + |φ̃3(x)|2 from the bare
two-RNO simulation at t = 255 is shown in Fig. 7. The laser
frequency for the resonant excitation of the autoionizing state
was tuned to the respective value ω = 1.38 indicated by an
arrow in Fig. 4. For the nonresonant run ω = 1.28 was chosen.
Again, left- and right-going photoelectron wave packets (with
their maxima at the expected positions) are observed. In the
case with autoionization (red, solid) a much higher probability
density level between the origin and the wave packets is
observed. This is the 1D analog of the TDSE density dynamics
in the x1,x2 plane in Fig. 6.

3. Momentum spectra

With autoionization involved, the electron spectra should
display Fano line shapes [58]. Strictly speaking, one should
calculate photoelectron spectra by projecting the final wave
function at a time when the laser is off on field-free continuum
eigenstates. When the final wave function is not available but
only the RNOs, one can, in principle, rewrite the expectation
value of the corresponding spectral projection operator in
terms of the 2DM γ2 or the coefficients Di . The latter need to
be approximated anyway in the general TDRNOT approach.
Hence, there is no conceptual problem in calculating any
observable for systems with two-body interactions because
the knowledge of γ2 suffices. Note that in TDDFT it is not
clear how to calculate photoelectron spectra in a rigorous
way because the density functional for this observable is
unknown [59].

Projection on field-free continuum states is computationally
expensive. Hence, it is quite common in practice to project out
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FIG. 8. (Color online) Linearly scaled photoelectron momentum
spectra obtained by Fourier transforming (FFT) the outgoing part of
the TDSE wave function (a) and RNO (b) for a Ncyc = 100 laser
pulse of the form (83) with Â = 0.01. The same resonant (solid, red)
and off-resonant (dotted, black) frequencies as in Figs. 6 and 7 were
chosen. The spectra were obtained at times t = 750. Fano profiles
are seen in the TDSE result at resonance and the TDRNOT result at
resonance when two RNOs are employed (red). In panel (b) the result
for a single NO and ω = 1.38 (dashed, blue) is also plotted, showing
no Fano profile.

the most populated bound states and Fourier transform the
“rest” in order to obtain momentum spectra. Alternatively,
one may filter out the region around the origin. While not
being a rigorous way to calculate photoelectron spectra, the
method yields sufficiently accurate spectra for our purposes.
Hence, we pursued the same strategy and Fourier transformed
the outgoing part of the wave function. In this way we obtain
the momentum spectra shown in Fig. 8.

The TDSE results for the modulus square of the Fourier
transform (integrated over px2 ) are presented in Fig. 8(a). The
off-resonant excitation by an Ncyc = 100 laser pulse of the
form (83) (the same frequency ω = 1.25 and field amplitude
as in Fig. 6) leads to a peak close to momentum px = 1, as
expected. The resonant excitation leads to a Fano “kink” in the
photoelectron peak at px � 1.1.

Figure 8(b) shows the bare two-RNO TDRNOT results. The
second main result of this work—after the existence of doubly
excited states—is that our approach also yields a resonance
peak with a Fano kink (solid, red). Although the detailed
shape of the Fano resonance differs from the TDSE result
it is remarkable that it is present at all. As emphasized already,
autoionizing states are not captured by a TDHF or TDKS
calculation (with adiabatic xc potentials). As a consequence,
Fano profiles will not be present there either. The black, dotted
peak in Fig. 8(b) is the result for the off-resonant frequency.
The dashed blue peak is obtained for ω = 1.38 but with one
NO only (equivalent to the bare TDHF result). As there are no

doubly excited states with one NO, there is no autoionization
and thus no Fano profile.

IV. CONCLUSION AND OUTLOOK

We have introduced time-dependent renormalized natural
orbital theory (TDRNOT) and tested it with a numerically
exactly solvable model helium atom. The main result is that
even with only two renormalized natural orbitals (RNOs) and
the bare (i.e., “frozen”) effective ground-state Hamiltonian
we observe correlation signatures impossible to capture
with time-dependent density functional theory (TDDFT)
using adiabatic exchange-correlation potentials, namely (i)
excitation of doubly excited states in the linear-response
spectrum and—beyond linear response—(ii) autoionization
and Fano profiles in the photoelectron spectra. The numerical
effort scales with the number of RNOs cubed but only linearly
with the number of spatial grid points required for one
particle. While in TDDFT exchange-correlation potentials
with memory are required to capture doubly excited states, the
effective Hamiltonian in TDRNOT is local in time. Moreover,
the problem in TDDFT concerning density functionals for
observables that are not explicitly known in terms of the
single-particle density is removed.

Future work will be devoted to other two-electron systems
in laser fields (in full dimensionality, spin triplet, H2), resonant
interactions, and three-electron model systems that are still
numerically exactly solvable. In full dimensionality, each
RNO will be expanded in spherical harmonics and with the
radial coordinate discretized as in this work. Then, one may
apply analogs of the central field approximation for ground-
state calculations and a multipole expansion of the effective
Hamiltonian for time-dependent simulations. In the spin-triplet
case the algebraic structure of the two-body density matrix (or
two-electron wave function) expansion is different from the
spin singlet but otherwise the approach is the same. The same
holds for H2. Three-electron systems such as the lithium atom
in intense laser fields is of interest as it is the simplest system
with “inner” electrons in a closed shell. The time-dependent
Schrödinger equation of one-dimensional model Li atoms in
intense laser fields is still possible to solve exactly [60] and thus
may serve as a benchmark for our method. Another research
direction will be the development of density matrix functionals
that allow one to go beyond the bare TDRNOT without
unleashing instabilities in the RNO equation of motion.
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APPENDIX A: DERIVATION OF EOM (13)

Inserting (6) and (9) into (5) yields (suppressing all time
arguments)

−i
∑

k

[∂tnk]φ∗
k (1′)φk(1) − i

∑
k

nk[∂tφ
∗
k (1′)]φk(1) − i

∑
k

nkφ
∗
k (1′)[∂tφk(1)]

= [ĥ0(1′) − ĥ0(1)]
∑

k

nkφ
∗
k (1′)φk(1) + 2

∫
d2
{
vee(|1′ − 2|) − vee(|1 − 2|)}∑

ijkl

γ2,ijklφi(1)φj (2)φ∗
k (1′)φ∗

l (2). (A1)
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Because the NOs form a complete basis we may introduce time-dependent coefficients αkm(t) [10] such that

i∂tφk(t) = αkk(t)φk(t) +
∑
m�=k

αkm(t)φm(t). (A2)

Here we drop the argument 1 as the equation holds for all position and spin degrees of freedom. With the transformation

φk(t) = e−i
∫ t

αkk (t ′) dt ′φ′
k(t) (A3)

[where αkk is real because of αkm(t) = α∗
mk(t)] we transform away the diagonal part of αkm and obtain

i∂tφ
′
k(t) =

∑
m�=k

α′
km(t)φ′

m(t), α′
km(t) = αkm(t)e−i

∫ t [αmm(t ′)−αkk (t ′)] dt ′ . (A4)

α′
km constitutes another hermitian matrix. The NOs are defined as the eigenfunctions of the hermitian 1RDM. We have the

freedom to choose the phase in such a way that (A4) holds. This is the analog of switching to the interaction picture, but now for
a nonlinear Hamiltonian. Dropping the primes, φ′ → φ, α′ → α, we have for (A1)

−i
∑

k

[∂tnk]φ∗
k (1′)φk(1) +

∑
k,m�=k

nkα
∗
kmφ∗

m(1′)φk(1) −
∑

k,m�=k

nkφ
∗
k (1′)αkmφm(1)

= [ĥ0(1′) − ĥ0(1)]
∑

k

nkφ
∗
k (1′)φk(1) + 2

∫
d2 {vee(|1′ − 2|) − vee(|1 − 2|)}

∑
ijkl

γ2,ijklφi(1)φj (2)φ∗
k (1′)φ∗

l (2). (A5)

Multiplying by φn(1′), φ∗
p(1), and integrating over 1 and 1′ gives

−iṅnδnp + npα∗
pn − nnαnp = (np − nn)〈p|ĥ0|n〉 + 2

∑
jkl

{γ2,pjkl〈kl|vee|nj 〉 − [γ2,njkl〈kl|vee|pj 〉]∗}. (A6)

For n = p we obtain (17)

ṅn = −4 Im
∑
jkl

γ2,njkl〈kl|vee|nj 〉. (A7)

For n �= p we have

αnp(np − nn) = (np − nn)〈p|ĥ0|n〉 + 2
∑
jkl

{γ2,pjkl〈kl|vee|nj 〉 − [γ2,njkl〈kl|vee|pj 〉]∗}. (A8)

If np �= nn we can divide by np − nn, which gives with (A4)

i∂tφn =
∑
p �=n

⎛
⎝〈p|ĥ0|n〉 + 2

np − nn

∑
jkl

{γ2,pjkl〈kl|vee|nj 〉 − [γ2,njkl〈kl|vee|pj 〉]∗}
⎞
⎠φp. (A9)

Equations (A9) and (A6) are EOMs for NOs and OCNs, respectively, but not useful for our purposes because truncating them
to a small number of NOs would yield extremely poor results [61]. Instead, it is more suitable to seek an EOM of the form of
Eq. (12), i∂t�(1) = Ĥ(1)�(1), where �(1,t) is a vector of NOs φk(1,t) and Ĥ acts in NO and position-spin space (see Fig. 1)
instead of only in NO space as in (A9). Multiplying (A1) by φn(1′) and integrating-out only 1′ (but not 1) leads to

i∂tφn(1) = 4i

nn

⎧⎨
⎩ Im

∑
jkl

γ2,njkl〈kl|vee|nj 〉
⎫⎬
⎭φn(1) − 〈n|ĥ0|n〉φn(1)

+
∑
k �=n

2nk/nn

nk − nn

∑
jpl

{γ2,kjpl〈pl|vee|nj 〉 − [γ2,njpl〈pl|vee|kj 〉]∗}φk(1) − 2

nn

∑
kjpl

γ2,kjpl〈pl|vee|nj 〉φk(1)

+ ĥ0(1)φn(1) + 2

nn

∑
kj l

γ2,kjnl〈l|vee|j 〉(1) φk(1). (A10)

In the first line on the right-hand side there are purely
time-dependent coefficients in front of φn(1). This part of
the total Hamiltonian Ĥ(1) is diagonal in both NO-index
and position-spin space. In the second line we have the
terms corresponding to the NO-index off-diagonal part of the

Hamiltonian. In the third line the first term does the “usual”
coupling in position (spin) space due to the single-particle
Hamiltonian ĥ0. This term is diagonal in NO space. The second
term in the third line couples the NOs through space-dependent
(though multiplicative) coefficients.
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It is simple to rewrite the EOM (A10) in terms of the RNOs
(10). Using (A7) and (14), the result (13) is obtained.

APPENDIX B: CONNECTION BETWEEN γ2,n j kl AND Di

For the 2DM in the two-electron spin-singlet case we find,
using (22),

γ2(12,1′2′) = �(x1x2)�∗(x ′
1x

′
2) 1

2

(
δσ1+δσ2− − δσ1−δσ2+

)
× (δσ ′

1+δσ ′
2− − δσ ′

1−δσ ′
2+), (B1)

and with (9)

�(x1x2)�∗(x ′
1x

′
2)

1

2

(
δσ1+δσ2−− δσ1−δσ2+

)(
δσ ′

1+δσ ′
2−− δσ ′

1−δσ ′
2+
)

=
∑
ijkl

γ2,ijklφi(x1)δσ1σi
φj (x2)δσ2σj

φ∗
k (x ′

1)δσ ′
1σk

φ∗
l (x ′

2)δσ ′
2σl

.

(B2)

Multiplication by NOs and integration allows us to solve for
the γ2 expansion coefficients,

γ2,mnop = 1
2

(
δσo+δσp− − δσo−δσp+

)
× (

δσm+δσn− − δσm−δσn+
)

γ
(x)
2,mnop (B3)

with the spatial part

γ
(x)
2,mnop =

∫
dx1

∫
dx2

∫
dx ′

1

∫
dx ′

2 φ∗
n(x2)φ∗

m(x1)

×�(x1x2)�∗(x ′
1x

′
2)φo(x ′

1)φp(x ′
2)

=
∫

dx1

∫
dx2

∫
dx ′

1

∫
dx ′

2 φ∗
n(x2)φ∗

m(x1)

×
∑
i odd

Di φi(x1)φi(x2)

×
∑
j odd

D∗
j φj (x ′

1)φj (x ′
2)φo(x ′

1)φp(x ′
2). (B4)

Now, one must not forget that, e.g., not only m = i contributes
but also m = i + 1 because φi = φi+1 for i odd. Hence

γ
(x)
2,mnop = (δm,i + δm,i+1)(δn,i + δn,i+1)Di D

∗
j (δo,j + δo,j+1)

× (δp,j + δp,j+1) for i,j odd (B5)

TABLE I. Nonvanishing γ2,mnop in the case of two NOs per spin
in the two-electron spin-singlet case and for approximations of the
form (18).

m n o p γ2,mnop γ
(approx)
2,mnop

1 2 1 2 1
2 |D1|2 = n1/2 f1212

1 2 2 1 − 1
2 |D1|2 = −n1/2 −g1221

1 2 3 4 1
2 D1D

∗
3 = 1

2

√
n1n3 eiϕ 0

1 2 4 3 − 1
2 D1D

∗
3 = − 1

2

√
n1n3 eiϕ 0

2 1 1 2 − 1
2 |D1|2 = −n1/2 −g2112

2 1 2 1 1
2 |D1|2 = n1/2 f2121

2 1 3 4 − 1
2 D1D

∗
3 = − 1

2

√
n1n3 eiϕ 0

2 1 4 3 1
2 D1D

∗
3 = 1

2

√
n1n3 eiϕ 0

3 4 1 2 1
2 D3D

∗
1 = 1

2

√
n1n3 e−iϕ 0

3 4 2 1 − 1
2 D3D

∗
1 = − 1

2

√
n1n3 e−iϕ 0

3 4 3 4 1
2 |D3|2 = n3/2 f3434

3 4 4 3 − 1
2 |D3|2 = −n3/2 −g3443

4 3 1 2 − 1
2 D3D

∗
1 = − 1

2

√
n1n3 e−iϕ 0

4 3 2 1 1
2 D3D

∗
1 = 1

2

√
n1n3 e−iϕ 0

4 3 3 4 − 1
2 |D3|2 = −n3/2 −g4334

4 3 4 3 1
2 |D3|2 = n3/2 f4343

and thus

γ2,mnop = 1
2

(
δσo+δσp− − δσo−δσp+

)(
δσm+δσn− − δσm−δσn+

)
× (δm,i + δm,i+1)(δn,i + δn,i+1)Di D

∗
j (δo,j + δo,j+1)

× (δp,j + δp,j+1) for i,j odd. (B6)

Because of the spin part and our indexing (odd index ↔
spin up, even index ↔ spin down, see Sec. II B), for γ2,mnop

not to vanish the index pair (o,p) must be (even, odd) or (odd,
even). The same holds for the index pair (m,n).

In the case of two NOs per spin this leads to the
nonvanishing γ2,mnop summarized in Table I. We not only
have the general property γ2,mnop = γ ∗

2,opmn here but also
γ2,mnop = −γ2,mnpo = −γ2,nmop = γ2,nmpo. We also show the
results for typical approximations of the form (18), which give
erroneously zeros for “cross-block” elements like mnop =
1234 or 3421 while they may give erroneously diagonal
contributions, e.g., f1111 − g1111 unless fmnop = gmnop, as in
Hartree-Fock.
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Natural orbital theory is a computationally useful approach to the few- and many-body quantum problems.
While natural orbitals have been known and applied for many years in electronic structure applications, their
potential for time-dependent problems started being investigated only recently. Correlated two-particle systems
are of particular importance because the structure of the two-body reduced density matrix expanded in natural
orbitals is known exactly in this case. However, in the time-dependent case the natural orbitals carry time-
dependent phases that allow for certain time-dependent gauge transformations of the first kind. Different phase
conventions will, in general, lead to different equations of motion for the natural orbitals. A particular phase
choice allows us to derive the exact equations of motion for the natural orbitals of any (laser-) driven two-electron
system explicitly, i.e., without any dependence on quantities that, in practice, require further approximations. For
illustration, we solve the equations of motion for a model helium system. Besides calculating the spin-singlet
and spin-triplet ground states, we show that the linear response spectra and the results for resonant Rabi flopping
are in excellent agreement with the benchmark results obtained from the exact solution of the time-dependent
Schrödinger equation.

DOI: 10.1103/PhysRevA.90.012518 PACS number(s): 31.15.ee, 31.70.Hq, 31.15.V−

I. INTRODUCTION

N -electron systems in full dimensionality that are strongly
driven by, e.g., an intense laser field, can be simulated on
an ab initio time-dependent Schrödinger equation (TDSE)
level only up to N = 2 (see, e.g., [1]). This embarrassingly
small number calls for efficient time-dependent “even-not-so-
many”-body quantum approaches that are applicable beyond
linear response.

In order to overcome the unpleasant exponential complexity
scaling of a correlated many-particle state |�(t)〉, quantities
of less dimensionality should be used [2]. An example for
such an approach is time-dependent density functional theory
(TDDFT). The Runge-Gross theorem of TDDFT [3,4] ensures
that the single-particle density n(�r,t) is, in principle, sufficient
to calculate all observables of a time-dependent many-body
quantum system. However, the—principally exact—equations
of motion (EOM) of TDDFT for the auxiliary Kohn-Sham
orbitals involve a generally unknown exchange-correlation
(XC) functional. It has been shown that the nonadiabaticity
of the XC functional is essential for the description of
correlated dynamics [5]. However, essentially all practicable
approximations to the unknown exact XC functional neglect
memory effects but make use of the numerically strongly
favorable adiabatic approximation. However, even if the exact
single-particle density n(�r,t) was reproduced there remains the
problem of extracting the relevant observables from n(�r,t) in
practice. For instance, it is unknown how multiple ionization
probabilities and photoelectron spectra, let alone differential
and correlated ones, can be explicitly calculated from n(�r,t)
alone [6–8].

Because of these practical difficulties with n(�r,t)-based
TDDFT it is an obvious idea to use less reduced quantities as
building bricks, e.g., reduced density matrices (or quantities
related to them; see, for instance, [9–19]). In fact, the

*Corresponding author: dieter.bauer@uni-rostock.de

knowledge of the two-body reduced density matrix (2-RDM) is
sufficient to explicitly calculate any observable involving one-
and two-body operators. However, as density matrices are still
high-dimensional objects, it is not attractive to solve the EOM
for them directly. Löwdin introduced so-called natural orbitals
(NOs) and occupation numbers (ONs) as eigenfunctions and
eigenvalues of the one-body reduced density matrix (1-RDM),
respectively [20], and investigated the stationary two-electron
case in great detail [21]. NOs have the same dimensionality
as single-particle wave functions and may be used as basis
functions for configuration interaction (CI) approaches, for
instance. In fact, one may hope that NOs form the best possible
basis set with respect to some measure, e.g., ‖� − �‖2,
where � is a CI approximation to the exact wave function
�. Recently, it has been shown that this is true only for special
cases (including two electrons) and how NOs may be used to
generate the best basis [22].

In the current paper we derive the general EOM for
NOs renormalized to the corresponding ONs [called time-
dependent renormalized natural orbital theory (TDRNOT)]
before we specialize on the time-dependent two-body problem.
For the interacting two-body system the structure of the
2-RDM expressed in terms of NOs is exactly known but
unique only up to certain combinations of time-dependent NO
phases. Different NO phase choices will lead to different EOM.
For a particular phase choice [17] the 2-RDM depends only
on the time-dependent ONs and NOs but not on additional
time-dependent phases, and the TDRNOT Hamiltonian in the
EOM is thus exactly and explicitly known. Hence, solving
the EOM for the NOs is equivalent to the solution of the
corresponding TDSE. In particular, the N -representability
(also called “quantum marginal”) problem (see, e.g., [9]) is
not an issue in this simplest time-dependent few-body case.

In practice, we wish (and need) to truncate the number
of NOs we take into account, which introduces propagation
errors in the numerical solution of the TDRNOT EOM. We
therefore benchmark our approach with a system for which
we can actually solve the TDSE numerically exactly: the
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widely used (laser-) driven one-dimensional helium model
atom (see, e.g., [23,24]). It has already been shown in [25] that
our approach—even with a ground-state “frozen” effective
Hamiltonian—covers highly correlated phenomena such as
double excitations and autoionization, both inaccessible by
practicable, adiabatic TDDFT [26]. The frozen-Hamiltonian
calculations (also known as the “bare” response) was used
in [25] because with the phase convention chosen there, the
time evolution of the above-mentioned phases, and thus the
consistent time-evolution of the 2-RDM, was unknown.

The paper is organized as follows. The basic theory of
reduced density matrices and NOs regarding two-electron
systems is introduced in Sec. II. The new phase convention
is introduced in Sec. II E; the respective EOM for the NOs is
discussed in Sec. III. Finally, we benchmark the performance
of TDRNOT in Sec. IV, before we conclude and give an
outlook in Sec. V. Some of the derivations and details are
given in Appendixes A–E.

II. TWO-BODY NATURAL ORBITAL THEORY

Atomic units (a.u.) are used throughout. In some cases,
operator hats are used to emphasize the nondiagonality of an
operator in some particular space.

A. Density matrices, natural orbitals, and occupation numbers

The starting point in the case of a two-body system is the
pure two-body density matrix (2-DM),

γ̂2(t) = |�(t)〉〈�(t)|. (1)

The 1-RDM γ̂1(t) then reads

γ̂1(t) =
2∑

i=1

Tri γ̂2(t) = 2 Tr1 γ̂2(t) = 2 Tr2 γ̂2(t), (2)

where the partial trace Tri means tracing out all degrees of
freedom of particle i. Both γ̂2(t) and γ̂1(t) are Hermitian.

The NOs |k(t)〉 and ONs nk(t) are defined as eigenstates
and eigenvalues of the 1-RDM, respectively,

γ̂1(t)|k(t)〉 = nk(t)|k(t)〉. (3)

As γ̂1(t) is Hermitian, the nk(t) are real, and the |k(t)〉 are
orthogonal. We further assume the |k(t)〉 to be normalized to
unity so that {|k(t)〉} is a complete, orthonormal basis. With this
convention, the spectral decomposition of the 1-RDM reads

γ̂1(t) =
∞∑

k=1

nk(t)|k(t)〉〈k(t)|. (4)

Because of the normalization of the two-particle state
〈�(t)|�(t)〉 = 1 we have Tr γ̂2(t) = 1 and Tr γ̂1(t) = N = 2,
where N = 2 arises as the number of particles in the system,
and Tr without subscript is understood to be the trace over
whatever degrees of freedom the operator to be traced has.
Evaluating the trace of γ̂1(t) leads to∑

k

nk(t) = N = 2. (5)

The 2-DM can be expanded in NOs as well,

γ̂2(t) =
∑
ijkl

γ2,ijkl(t)|i(t),j (t)〉〈k(t),l(t)|, (6)

where the shorthand notation for tensor products |i(t),j (t)〉 =
|i(t)〉|j (t)〉 = |i(t)〉 ⊗ |j (t)〉 is used, and the expansion coeffi-
cients γ2,ijkl(t) formally read

γ2,ijkl(t) = 〈i(t),j (t)|γ̂2(t)|k(t),l(t)〉. (7)

B. Renormalized natural orbitals

In TDRNOT, renormalized natural orbitals (RNOs)

|k̃(t)〉 =
√

nk(t)|k(t)〉, 〈k̃(t)|k̃(t)〉 = nk(t), (8)

are introduced because it is numerically beneficial to store and
unitarily propagate the combined quantity |k̃(t)〉 instead of
using the coupled set of equations for |k(t)〉 and nk(t) [25]. In
RNOs, the expansions (4) and (6) read

γ̂1(t) =
∑

k

|k̃(t)〉〈k̃(t)|, (9)

γ̂2(t) =
∑
ijkl

γ̃2,ijkl(t)|ĩ(t),j̃ (t)〉〈k̃(t),l̃(t)|, (10)

with renormalized expansion coefficients

γ̃2,ijkl(t) = γ2,ijkl(t)√
ni(t)nj (t)nk(t)nl(t)

. (11)

C. Peculiarities of the two-electron state

Based on the exchange antisymmetry,

P̂ (1,2)|�(t)〉 = −|�(t)〉, (12)

any two-electron state |�(t)〉 can be expanded in its RNOs
|k̃(t)〉 as

|�(t)〉 =
∑
k odd

eiϕk (t)

√
2nk(t)

[|k̃(t),k̃′(t)〉 − |k̃′(t),k̃(t)〉], (13)

with the “prime operator” acting on a positive integer k as

k′ =
{
k + 1 if k odd,

k − 1 if k even,
k > 0. (14)

A proof of (13) is provided in Appendix A. The conditions

nk(t) = nk′(t), nk(t) ∈ [0,1], (15)

for the ONs follow.
If we require |�(t)〉 to be an eigenstate of the spin operators

Ŝ2 and Ŝz at all times, we can write

|�(t)〉 = |�(t)〉x ⊗ |�〉σ , (16)

where |�〉σ is a time-independent spin component and |�(t)〉x
is the spatial part. The spin part needs not to be considered
explicitly as long as the Hamiltonian does not act on it.
However, it affects the exchange symmetry of |�(t)〉x .
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1. Spin singlet

In the spin-singlet case,

|�〉σ = 1√
2

[|↑↓〉σ − |↓↑〉σ ], (17)

so that

P̂ (1,2)|�〉σ = −|�〉σ , P̂ (1,2)|�(t)〉x = +|�(t)〉x.
The RNOs |k̃(t)〉 may be factorized,

|k̃(t)〉 = |k̃(t)〉x ⊗
{|↑〉σ if k odd,

|↓〉σ if k even,
(18)

with pairwise equal components,

|k̃(t)〉x = |k̃′(t)〉x. (19)

Insertion into (13) and comparison with (16) and (17) yields

|�(t)〉x =
∑
k odd

eiϕk (t)

√
nk(t)

|k̃(t),k̃(t)〉x, (20)

which, indeed, has the desired exchange symmetry.

2. Spin triplet

In the three spin-triplet cases we have

P̂ (1,2)|�〉σ = +|�〉σ , P̂ (1,2)|�(t)〉x = −|�(t)〉x.
Each of the three spin-triplet configurations is associated with
a different factorization of the RNOs. Consider, e.g.,

|�〉σ = |↑↑〉σ . (21)

In this case we choose

|k̃(t)〉 = |k̃(t)〉x ⊗ |↑〉σ , (22)

leading to the correct

|�(t)〉x =
∑
k odd

eiϕk (t)

√
2nk(t)

[|k̃(t),k̃′(t)〉x − |k̃′(t),k̃(t)〉x]

(23)

[without an additional condition like (19)]. The structure
(23) of |�(t)〉x also holds for the two remaining triplet
configurations, as shown in Appendix B. Moreover, the RNO
factorizations in spin and spatial components can be chosen
such that |k̃(t)〉x is invariant when switching between the
different spin triplets.

D. Exact 2-DM

The universal expansion (13) of any two-electron state
|�(t)〉 in terms of RNOs |k̃(t)〉 implies fundamental knowledge
about the connection between the 2-DM γ̂2(t) and the RNOs,
as revealed by inserting (13) into (1). As a result, γ̃2,ijkl(t) can
be calculated using (7) and (11),

γ̃2,ijkl(t) = (−1)i−k ei[ϕi (t)−ϕk (t)]

2
√

ni(t)nk(t)
δi,j ′δk,l′ . (24)

One sees that the renormalized expansion coefficients γ̃2,ijkl(t)
are only nonvanishing for paired index combinations. Both
the first index pair {i,j} and the second index pair {k,l} must

contain one odd and one even index. Moreover, the “distance”
between the paired indices is unity; i.e.,

|i − j | = 1, |k − l| = 1, if γ̃2,ijkl(t) 
= 0. (25)

E. Phase conventions

So far, no assumption has been made concerning the phases
of the NOs. Any phase transformation according to

|k(t)〉 = eiϑk (t)|k(t)〉 (26)

yields a new set of NOs {|k(t)〉} for the same 1-RDM γ̂1(t)
with the same ONs {nk(t)}. This phase freedom originates
from the definition of NOs as eigenstates of γ̂1(t), allowing
for arbitrary time-dependent NO phases because they vanish
in (4). However, the expansion (13) of |�(t)〉 requires phase
factors eiϕk (t) in order to compensate for the phase freedom in
the NOs. The transformation (26) thus also involves a phase
transformation,

ϕk(t) = ϕk(t) − ϑk(t) − ϑk′(t), k odd. (27)

This is in analogy of “gauge transformations of the first
kind” in field theory. However, the TDRNOT Hamiltonian
is, in general, not invariant under such phase transformations.
Observables are invariant.

In order to derive EOM for the NOs, one needs to choose
well-defined NO phases. Two choices are presented in the
following.

1. Time-dependent phases

In the first publication on TDRNOT [25], the NO phases
were fixed by

〈k(t)|∂t |k(t)〉 = 0, (28)

which can formally be fulfilled by the transformation

ϑk(t) = i

∫ t

〈k(t ′)|∂t ′ |k(t ′)〉dt ′. (29)

As a result, the phases ϕk(t) are time-dependent, which
requires the solution of coupled EOM for the NOs and {ϕk(t)}
because the time evolution of the RNOs depends on these
phases via γ̃2,ijkl(t) [see (24) and the EOM in Sec. III below].

2. Phase-including natural orbitals

The phase freedom can be utilized to transform away the
time dependence of ϕk(t). One easily verifies that, e.g., the
transformation

ϑk(t) = ϑk′(t) = 1
2 [ϕk(t) − ϕk,0], k odd, (30)

yields arbitrarily tunable constant phases ϕk(t) ≡ ϕk,0 ∈ R.
Depending on the spin configuration [singlet (S) or triplet
(T)], we choose the atomic He ground-state phase factors

eiϕ
(S)
k,0 = 2δk,1 − 1, eiϕ

(T)
k,0 = 1, k odd, (31)

so that a real ground-state wave function yields real NOs in
position space representation.

Based on this phase convention, one may derive EOM for
|k(t)〉 such that all time-dependence is incorporated in the
phase-including NOs (PINOs) [17,27,28] and the ONs. Note
that the transformation (30) does not remove all phase freedom
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because one can still distribute the phase between any pair
|k̃(t),k̃′(t)〉 in the triplet case. The missing constraint is given
by (C9) in the derivation of the respective EOM.

In the following we omit the underline in |k(t)〉 for the
phase-including (R)NOs.

III. EQUATIONS OF MOTION FOR RENORMALIZED
PHASE-INCLUDING NATURAL ORBITALS

We consider a two-electron Hamiltonian,

Ĥ (1,2)(t) = ĥ(1)(t) + ĥ(2)(t) + vee
(1,2), (32)

where the single-particle part ĥ(t) incorporates kinetic energy,
binding potential, and, e.g., the coupling to (time-dependent)
external fields, and vee is the electron-electron interaction.
Superscripts indicate the particle indices. The time evolution
of the NOs is expanded as

i∂t |k(t)〉 =
∑
m

αkm(t)|m(t)〉.

We see that the phase convention (28) chosen in [25] is
equivalent to setting αkk(t) ≡ 0. Instead, for the PINO phase
convention of Sec. II E 2 we employ the diagonal elements
αkk(t) in order to modify the EOM such that the phases {ϕk}
stay constant. A useful expression for αkk(t) in terms of RNOs
is derived in Appendix C for the two-electron case considered
here. Adding the new contributions associated with αkk(t) to
the EOM for the RNOs derived in [25] yields (time arguments
of the RNOs suppressed)

i∂t |ñ〉 = ĥ(t)|ñ〉 + An(t)|ñ〉
+
∑
k 
=n

Bnk(t)|k̃〉 +
∑

k

Ĉnk(t)|k̃〉, (33)

with

An(t) = − 1

nn(t)
Re
∑
jkl

γ̃2,njkl(t)〈k̃l̃|vee|ñj̃ 〉, (34)

Bnk(t) = 2

nk(t) − nn(t)

∑
jpl

[γ̃2,kjpl(t)〈p̃l̃|vee|ñj̃〉

− γ̃2,plnj (t)〈k̃j̃ |vee|p̃l̃〉], k 
= n′, (35)

and

Ĉnk(t) = 2
∑
j l

γ̃2,kjnl(t)〈l̃|vee|j̃〉. (36)

Only An(t) is modified due to αkk(t) 
≡ 0, whereas Bnk(t) and
Ĉnk(t) are invariant under the phase transformation.

Special treatment is required regarding the Bnk(t) of the
pairs k = n′ because of the pairwise degeneracy nk(t) = nk′(t).
Recalling (A8) of [25],

αnp(t)[np(t) − nn(t)] = [np(t) − nn(t)]〈p|ĥ(t)|n〉
+ 2

∑
jkl

γ2,pjkl(t)〈kl|vee|nj 〉

− 2
∑
jkl

γ2,klnj (t)〈pj |vee|kl〉,

it follows that αnp(t) is undetermined for np(t) = nn(t) so
that Bnn′ (t) cannot be obtained by following the derivation
in [25]. This reflects the fact that, independent of the choice
of phase, eigenstates corresponding to degenerate eigenvalues
are not uniquely defined. In terms of NOs one finds that |k〉,
|k′〉 according to( |k〉

|k′〉
)

=
(

cos [θk(t)] sin [θk(t)]
− sin [θk(t)] cos [θk(t)]

)( |k〉
|k′〉
)

(37)

yield the same state |�(t)〉 for any choice of {θk(t)}. In practice,
this is not an issue for the spin singlet because the additional
freedom is removed by the particular choice of the product
ansatz (18). For the spin triplet we choose αnn′(t) ≡ 0. Hence,
we replace the corresponding coefficients Bnn′ (t) in the spin-
triplet case by

Bnn′ (t) = − 1

nn(t)

×
⎡
⎣〈ñ′|ĥ(t)|ñ〉 + 2

∑
jpl

γ̃2,plnj (t)〈ñ′j̃ |vee|p̃l̃〉
⎤
⎦.

(38)

A. Occupation numbers during imaginary-time propagation

It has already been shown [25] that the spin-singlet ground
state is a stationary point of the EOM when propagating
the RNOs in imaginary time. Unfortunately, using the phase
convention of Sec. II E 1 used in [25], the ONs are invariant
during imaginary-time propagation. As a consequence, one
needs to inject the correct ONs for the ground state. A useful
criterion for the ground-state configuration {nk} can be derived
by means of variational calculus minimizing the total energy
E � E0. In this work we supplement the variational calculus
with an additional constraint for finding the spin-triplet ground
state. Details are given in Appendix D. The result for the orbital
energies reads

εk = 1

nk

⎡
⎣〈k̃|ĥ0|k̃〉 +

∑
ij l

γ̃2,ijkl〈k̃l̃|vee|ĩ j̃ 〉
⎤
⎦.

The ONs in the ground-state configuration have to be such that

E = εk + εk′ , (39)

i.e., each sum of two associated orbital energies in the ground
state equals the total energy E. For the spin-singlet ground
state all orbital energies are equal; i.e., ε(S)

k = ε(S). In the spin-
triplet case, one additional Lagrange parameter εd

k for odd k is
introduced to ensure that nk = nk′ . Because of εd

k , individual
triplet orbital energies are generally not equal,

ε
(T)
k = ε(T) + εd

k δk odd − εd
k−1δk even.

Using the phase convention of Sec. II E 1, one may tune
the ONs nk such that the orbital energies εk fulfill (39) when
the RNOs |k̃〉 are converged to the stationary point of the
imaginary-time propagation. For more than four NOs this is a
multidimensional problem so that a Newton-Raphson scheme
may be employed to find the correct ground-state ONs. Details
are given in Appendix E.
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Fortunately, using the PINO phase convention of Sec. II E 2
simplifies the ground-state search because the ONs are
not constant during imaginary-time propagation but adjust
themselves. In fact, ∂tnn(t) can be calculated using

∂tnn(t) = [∂t 〈ñ|]|ñ〉 + 〈ñ|[∂t |ñ〉]. (40)

Replacing i∂t |ñ〉 with −∂t |ñ〉 on the left-hand side of the EOM
(33) one may insert the result and its adjoint into (40) to obtain

∂tnn(t) = −2nn(t)εn(t)

for real NOs. We conclude that in the desired ground-state
configuration, the relative change of ONs is constant for each
associated orbital pair, i.e.,

∂t [nn(t) + nn′(t)]

nn(t) + nn′(t)
= −E0.

As a result, the set of ground-state ONs is a stationary point
of the imaginary-time propagation if the restrictions (5) and
(15) are enforced after each time step. In practice, we find that
the ONs converge to this stationary point when propagating
in imaginary time. No additional criterion such as (39) needs
to be applied for finding the ground state via imaginary-time
propagation with the PINO phase convention.

B. Conservation of occupation-number degeneracies

Let us check whether the pairwise degeneracy of ONs (15)
is conserved when propagating the RNOs in real time. As the
pairwise degeneracy results from the exchange antisymmetry,
a violation of the ON degeneracies would imply a violation of
the Fermionic character of the electrons described. In the actual
numerical implementation we use an absorbing potential, i.e.,
ĥ†(t) 
= ĥ(t), in order to remove orbital probability density
approaching the grid boundaries. One then finds (suppressing
time arguments of the RNOs again)

∂tnk(t) = 2 Im〈k̃|ĥ(t)|k̃〉 + 4 Im
∑
ij l

γ̃2,ijkl(t)〈k̃l̃|vee|ĩ j̃〉.

If the time propagation is performed fully self-consistently, i.e.,
without freezing the effective Hamiltonian, and absorption is
negligible,

∂t [nk(t) − nk′(t)] = 0,

as can be shown by making use of the special structure (24) of
γ̃2,ijkl(t) in the case of two electrons.

If the absorbing potential significantly influences the ONs,
the condition for the conservation of degeneracies reads

Im〈k̃|ĥ(t)|k̃〉 = Im〈k̃′|ĥ(t)|k̃′〉. (41)

In the singlet case, (41) always holds because the spatial
components of the RNOs |k̃(t)〉 and |k̃′(t)〉 are equal due to
the factorization (18). In the triplet case, there is the freedom
to use superpositions (37) such that (41) is fulfilled for all
k. However, in this paper we do not show results where a
significant amount of probability density was absorbed so that
the application of criterion (41) was not necessary.

IV. RESULTS

Results are obtained for the one-dimensional helium model
atom [23,24] described by the Hamiltonian (32) with

ĥ(t) = p̂2

2
− 2√

x2 + 1
+ A(t)p̂,

vee
(1,2) = 1√

(x(1) − x(2))2 + 1
.

The interaction with an external (laser) field in dipole
approximation is incorporated in velocity gauge via the
vector potential A(t), with the purely time-dependent A2 term
transformed away. Numerical results are shown for both the
spin singlet and the spin triplet. As a first check, we confirm in
Sec. IV A that the EOM for the renormalized PINOs (33)–(36)
and (38) yield the exact ground-state energy and correct ONs if
enough RNOs are included in the propagation. The second step
is to employ the PINO EOM for a propagation in real time in
order to evaluate the advantages of the PINO phase convention
over the previously used [25] phase convention of Sec. II E 1.
For this purpose, linear response spectra considering a different
number of RNOs are discussed in Sec. IV B. Rabi oscillations,
as a prime example for highly resonant and nonperturbative
phenomena that bring quantum systems far away from their
ground state, are investigated in Sec. IV C.

In practice, the number of RNOs is truncated in order to
allow for a numerical treatment. In the following, No denotes
the number of spin orbitals so that No RNOs correspond to
No/2 different spatial orbitals for the spin singlet and No

different spatial orbitals for the spin triplet. Computational
details are given in [25].

A. Ground-state calculations

The ground state is obtained via imaginary-time propaga-
tion, as discussed in Sec. III A. Both phase conventions yield
the same ground-state configurations so that we do not need
to distinguish between the two in this section.

The total energy and the dominant ONs for both the spin-
singlet and the spin-triplet ground state are presented in Table I.
TDRNOT results for different No are compared to the exact
TDSE results. All TDRNOT results clearly converge to the
corresponding exact TDSE value for increasing No.

No = 2 is equivalent to a time-dependent Hartree-Fock
(TDHF) treatment or TDDFT in exact exchange-only approx-
imation. Results very similar to those in Table I have been
reported in [29] using a multiconfigurational time-dependent
Hartree-Fock (MCTDHF) approach. The strength of two-
electron TDRNOT compared to two-electron MCTDHF is the
choice of RNOs as a basis, which always guarantees the best
approximation to the exact solution |�(t)〉 for a given number
of orbitals [22] at all times during real-time propagation.

B. Linear response spectra

Starting from the spin-singlet or spin-triplet ground state,
the vector potential is switched to a finite but small value (A =
0.0005 was chosen for the results presented in the following),
and the RNOs are propagated in real time for tmax = 1000,
with an enabled imaginary potential. The Fourier transform
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TABLE I. Total energy and ONs of the spin-singlet and spin-
triplet ground states, respectively. Exact results obtained from the
direct solution of the TDSE are compared to TDRNOT results using
different No. Converged digits are underlined.

No. No Total energy Dominant occupation numbers
of RNOs E0 (a.u.) n1 n3/10−3 n5/10−5

Spin singlet
2 (TDHF) −2.224 318 1.000 000 0
4 (TDRNOT) −2.236 595 0.991 266 5 8.7335
6 (TDRNOT) −2.238 203 0.990 959 0 8.3142 72.683
8 (TDRNOT) −2.238 324 0.990 943 8 8.3221 70.229
∞ (TDSE) −2.238 368 0.990 947 3 8.3053 70.744

Spin triplet
2 (TDHF) −1.812 052 4 1.000 000 00
4 (TDRNOT) −1.816 079 8 0.997 640 48 2.359 52
6 (TDRNOT) −1.816 187 0 0.997 607 05 2.364 64 2.8298
8 (TDRNOT) −1.816 194 5 0.997 606 56 2.362 67 2.9581
∞ (TDSE) −1.816 195 4 0.997 606 77 2.362 20 2.9610

of the dipole expectation value then yields peaks at energy
differences E − E0 for all dipole-allowed transitions.

Figure 1 shows that the fully self-consistent TDRNOT time
propagation reproduces the exact linear response spectra (solid
line; labeled “TDSE”) for both the spin singlet (a) and the
spin triplet (b) if enough RNOs are taken into account. As
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FIG. 1. (Color online) Singlet (a) and triplet (b) linear response
spectra for a different numbers of RNOs No, compared to the exact
TDSE result. For comparison, bare (i.e., with ground-state frozen
Hamiltonian) TDRNOT results following the phase convention of
Sec. II E 1 are shown with dashed lines. To guide the eyes, vertical
lines indicate some of the distinct peaks in the exact TDSE spectrum.

already known from the bare evolution in [25], the description
of doubly excited states requires at least No � 4 so that the
ONs are not pinned to the integers 0 or 1.

As expected, the more series of doubly excited states are
sought, the more RNOs are needed. Interestingly, some peak
positions of the spin singlet show an alternating convergence if
one successively adds two RNOs more. For example, the peak
around E − E0 ≈ 1.35 is shifted to the wrong direction from
No = 4 to No = 6 but substantially shifts towards its correct
position for No = 8. Using No = 10, its peak position again
slightly worsens compared to the previous value, whereas for
No = 12 the energy matches almost perfectly with the TDSE
peak position.

The fully self-consistent time propagation using the PINO
phase convention of Sec. II E 2 (solid line) is clearly superior
to the bare evolution with the phase convention of Sec. II E 1
(dashed gray line): erroneous extra peaks are absent, and the
physical peaks are shifted to the correct TDSE positions. Both
effects are particularly important for more RNOs, say No � 6.
Especially for the triplet, the full propagation with PINOs
leads to much better results. The bare evolution generates
erroneous extra peaks for any number of RNOs, corresponding
to artificial states with nondegenerate ONs. Since degenerate
ONs are a consequence of the exchange antisymmetry, those
peaks indicate the breaking of the exchange symmetry by the
bare time evolution with the ground-state frozen Hamiltonian.
This deficiency is removed by the full propagation using
PINOs, as discussed in Sec. III B.

MCTDHF linear response spectra for the same model have
been obtained in [29]. Our Fig. 1(a) can be directly compared
with Fig. 3 there, where artificial extra peaks just above
the first ionization threshold are seen. The reason for the
erroneous peaks in the MCTDHF results is unknown to us.
The superior performance of our TDRNOT approach using
PINOs is presumably due to the built-in optimal choice of
basis set functions at all times.

It is to be expected that our promising results translate to
3D two-electron systems. In fact, in Refs. [27,28] it has been
shown already that only a few of the highest occupied PINOs
are sufficient to capture accurately the lowest excitations in the
response of the 3D two-electron systems H2 and HeH+.

C. Rabi oscillations

Linear response spectra are not enough to study strong-field
laser-matter interaction phenomena, which, by definition, are
nonperturbative in nature and rely on electron dynamics far
away from the ground state. A prime example for nonpertur-
bative laser-matter coupling is Rabi oscillations. It has been
shown that Rabi oscillations are not captured within “standard”
TDDFT [30] but that XC functionals with memory, i.e., XC
functionals beyond the adiabatic approximation, are required
[5]. It is important to understand that adiabatic TDDFT applied
to Rabi oscillations may reproduce a reasonable looking
position expectation value as a function of time [30], even
though the time-dependent density is not properly described,
especially at times of population inversion, e.g., after a π

pulse. Instead, the ONs nk(t) as a function of time are
very sensitive entities, which we use for benchmarking our
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FIG. 2. (Color online) ONs nk(t) vs time t for the spin singlet in
a laser field of frequency ω = 0.5337 resonantly tuned to the first
excited state. The four most significant ONs n1(t),n3(t),n5(t),n7(t)
obtained by TDRNOT with No = 16 RNOs (solid lines) correctly
reproduce more than two Rabi cycles of the exact TDSE propagation
(dotted lines). Due to the truncation to a finite number of RNOs in
TDRNOT, fewer significant orbitals are missing the proper coupling
to lower orbitals, leading to erroneous behavior of small ONs over
time. For longer propagation times, also higher ONs are affected
because the RNOs are coupled.

TDRNOT approach via a comparison with the exact TDSE
result.

We consider a Rabi oscillation between the spin-singlet
ground state and the first excited state, driven by a laser
of resonant frequency ω = 0.5337. The vector potential
amplitude A = 0.0125 of the flat-top part is linearly ramped
up over four periods. Propagating eight different spatial NOs,
we have No = 16. Due to the pairwise degeneracy, it follows
that n1(t) = n2(t), . . . ,n15(t) = n16(t) so that it is sufficient to
discuss nk odd(t).

The six most significant ONs n1(t),n3(t), . . . ,n11(t) pre-
dicted by the TDRNOT propagation (solid lines) are compared
with the exact TDSE result (dotted lines) in Fig. 2.

1. Truncation problem

Thanks to the proper ground-state description reported
in Sec. IV A, all TDRNOT ONs start on top of the exact
TDSE reference for t = 0 in Fig. 2. However, already for
small times 0 < t � 200 ONs n13(t) and n15(t) (not shown)
begin to deviate from the correct value. Instead of the
periodic oscillation with the Rabi period 2π/�R ≈ 850 and a
modulation on the time scale of the laser period 2π/ω ≈ 11.8,
they just approach their respective “upper-neighbor” NO’s
ON. The next ONs n11(t) and n9(t) become quantitatively
distinguishable from their respective TDSE values around
t � 400 and t � 800. After two Rabi cycles, i.e., t � 1700,
also their qualitative behavior is completely wrong, showing no
oscillation on the Rabi time scale any longer. Around that time
t ≈ 1700 the next-higher ON n7(t) is affected and shows some
small quantitative differences compared to the exact solution,
although it regains the proper behavior at later times.

The origin of these imperfections regarding the least
significant orbitals in the propagation lies in the truncation
to a finite number No = 16 of RNOs taken into account. The
EOM in Sec. III have been derived for an infinite number of

coupled RNOs. It turns out that the orbital coupling via Bnk(t)
is particularly strong for orbitals with nearby ONs so that the
truncation of the orbitals {|1̃7(t)〉,|1̃8(t)〉, . . . } is most severe
for the least significant orbitals. Once their dynamics is spoiled,
the truncation error subsequently propagates “upwards” due to
the coupling to the respective next higher orbitals.

2. Overall performance

The four most significant ONs n1(t), n3(t), n5(t), n7(t) in
Fig. 2 are in striking agreement with the exact TDSE result.
Their dynamics during more than two Rabi cycles, i.e., a time
period of 2300 atomic units in total, is well described. Overall,
the “well-behaved” RNOs represent more than 99.9 % of the
1-RDM so that the significant part of the Rabi dynamics is
captured by TDRNOT.

The remarkable gain of TDRNOT compared to, e.g.,
TDDFT, is that—despite the (numerically strongly favorable)
locality in time—TDRNOT is capable of describing the highly
resonant dynamics of Rabi oscillations. In fact, the exact
two-electron TDRNOT EOM are strictly memory free.

V. CONCLUSION AND OUTLOOK

In the current work, we have extended the previously
introduced [25] TDRNOT. We have derived the EOM for
RNOs, employing the phase convention in which the entire
time-dependence is carried by the NOs themselves. In the
two-particle case, this makes it possible to obtain the exact
EOM, without making any assumptions about (or any approx-
imations to) the expansion of the time-dependent two-body
density matrix in NOs. As an example, we have solved the
EOM for a widely used helium model atom. In practical
calculations, the number of NOs taken into account should
be as small as possible. As a truncation of the number of
NOs introduces numerical errors, we have benchmarked our
results by the corresponding exact solutions of the TDSE.
Excellent agreement has been found for the spin-singlet
and spin-triplet ground states (obtained via imaginary-time
propagation), linear response spectra, and Rabi flopping dy-
namics (as an example for a strongly nonperturbative, resonant
phenomenon).

We are mainly interested in laser-driven few-body cor-
related quantum dynamics. Besides Rabi flopping, we are
currently applying the TDRNOT method successfully to
other (strong-field) scenarios where “standard” TDDFT with
practicable XC potentials is known to fail, e.g., nonsequential
double ionization. Moreover, we are investigating the structure
of the exact 2-RDM expansion coefficients γ̃2,ijkl for three-
electron systems in order to derive useful expressions that can
be used to propagate the respective NOs using TDRNOT.
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APPENDIX A: EXPANSION OF A TWO-FERMION
STATE IN RNOS

Let the expansion of a two-fermion state |�(t)〉 in orthonor-
mal single-particle basis functions |ψi(t)〉 comprising spin and
spatial degrees of freedom be

|�(t)〉 =
∑
ij

�ij (t)|ψi(t),ψj (t)〉,

�ij (t) = 〈ψi(t),ψj (t)|�(t)〉.
Defining a matrix � = [�ij (t)] of expansion coefficients
�ij (t), the exchange antisymmetry can be expressed as �T =
−�. With

ψ =

⎛
⎜⎝

|ψ1(t)〉
|ψ2(t)〉

...

⎞
⎟⎠, ψ∗ =

⎛
⎜⎝

〈ψ1(t)|
〈ψ2(t)|

...

⎞
⎟⎠,

ψT = (|ψ1(t)〉,|ψ2(t)〉, . . .), ψ† = (〈ψ1(t)|,〈ψ2(t)|, . . .),
such that

ψ∗ψ† =

⎛
⎜⎝

〈ψ1(t)|
〈ψ2(t)|

...

⎞
⎟⎠(〈ψ1(t)|,〈ψ2(t)|, . . .)

=

⎛
⎜⎝

〈ψ1(t),ψ1(t)| 〈ψ1(t),ψ2(t)| . . .

〈ψ2(t),ψ1(t)| 〈ψ2(t),ψ2(t)| . . .
...

...
. . .

⎞
⎟⎠

the relation between a two-fermion state |�(t)〉 and its
coefficient matrix � in the basis {|ψi(t)〉} may be written as

� = ψ∗ψ†|�(t)〉, |�(t)〉 = ψT�ψ . (A1)

The skew-symmetric matrix � = −�T can be factorized into
unitary matrices U,U† and a block-diagonal matrix � as [31],
[Corollary 2.6.6. (b)]

� = U�UT, � = diag(�1,�3,�5, . . . ),

�i =
(

0 ξi(t)
−ξi(t) 0

)
, i odd.

Inserting this factorization into (A1), one obtains an expansion
in the transformed basis φ = UTψ ,

|�(t)〉 = ψT(U�UT)ψ = φT�φ.

In other words, any two-fermion state |�(t)〉 can be written in
the form

|�(t)〉 =
∑
i odd

ξi(t)[|φi(t),φi ′(t)〉 − |φi ′(t),φi(t)〉], (A2)

where the prime operator (14) was used. Inserting (A2) into
the 1-RDM (2) gives

γ̂1(t) =
∑
k odd

2|ξk(t)|2[|φk(t)〉〈φk(t)| + |φk′(t)〉〈φk′(t)|],

which proves that |k(t)〉 = |φk(t)〉; i.e., the set {|φk(t)〉} is a
set of NOs. The corresponding eigenvalues 2|ξk(t)|2 for odd

k, i.e., the ONs, are (at least) pairwise degenerate,

nk(t) = nk+1(t) = 2|ξk(t)|2, k odd.

Writing ξk(t) = 1√
2
eiϕk (t)√nk(t) for odd k, and switching to

RNOs {|k̃(t)〉}, a two-fermion state reads

|�(t)〉 =
∑
k odd

eiϕk (t)

√
2nk(t)

[|k̃(t),k̃′(t)〉 − |k̃′(t),k̃(t)〉]. (A3)

APPENDIX B: FACTORIZATION OF RNOS
IN THE TRIPLET CASES

Section II C 2 contains a brief discussion of the very simple
RNO factorization for the spin-triplet configuration |�〉σ =
|↑↑〉σ . The case |�〉σ = |↓↓〉σ is analogous. The factorization
of the NOs for the spin triplet

|�〉σ = 1√
2

[|↑↓〉σ + |↓↑〉σ ] (B1)

is more involved. Considering both positive and negative
indices k, one may define RNOs

|k̃(t)〉 =
{|k̃(t)〉x if k > 0
| − k̃(t)〉x if k < 0

⊗

⎧⎪⎨
⎪⎩

|↑〉σ if k > 0, k odd,

|↓〉σ if k > 0, k even,

|↓〉σ if k < 0, k odd,

|↑〉σ if k < 0, k even,

and a generalized prime operator acting on nonzero integer
numbers k according

k′ =

⎧⎪⎨
⎪⎩

k + 1 if k > 0, k odd,

k − 1 if k > 0, k even,

k − 1 if k < 0, k odd,

k + 1 if k < 0, k even.

Insertion into (13) (where now both positive and negative k

have to be considered in the sum) yields, again, the same
structure (23) and the same |k̃(t)〉x as the other triplet configu-
rations. If the Hamiltonian (32) does not act on spin degrees of
freedom, as is the case for the model He atom considered, the
sole significance of the spin component of the state |�(t)〉 is
its effect on the exchange symmetry of the spatial part, which
is the same for each of the three triplet configurations.

APPENDIX C: DERIVATION OF αkk FOR PINOS

Writing (13) as

|�(t)〉 =
∑
i odd

ξi(t)[|i,i ′〉 − |i ′,i〉], ξi(t) = eiϕi,0

√
ni(t)

2
,

(C1)

with the phase factors eiϕi given by (31), yields, upon insertion
into the right-hand side of the TDSE,

Ĥ (t)|�(t)〉 = i∂t |�(t)〉,
Ĥ (t)|�(t)〉 = i

∑
i odd

[ξ̇i(t)(|i,i ′〉 − |i ′,i〉) + ξi(t)(|i̇,i ′〉

− |i̇ ′,i〉 + |i,i̇ ′〉 − |i ′,i̇〉)]. (C2)
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Multiplying from the left by 〈k,k′| for an odd k gives

〈k,k′|Ĥ (t)|�(t)〉 = iξ̇k(t) + ξk(t)[〈k|∂t |k〉 + 〈k′|∂t |k′〉]

= i
ṅk(t)

2nk(t)
ξk(t) + iξk(t)[αkk(t) + αk′k′(t)].

(C3)

Insertion of (C1) into the left-hand side of the TDSE (C2)
gives

〈k,k′|Ĥ (t)|�(t)〉
= ξk(t)[〈k|ĥ(t)|k〉 + 〈k′|ĥ(t)|k′〉]

+
∑
i odd

ξi(t)[〈k,k′|vee|i,i ′〉 − 〈k,k′|vee|i ′,i〉]. (C4)

Combination of (C3) and (C4) yields

αkk(t) + αk′k′(t) = 〈k|ĥ(t)|k〉 + 〈k′|ĥ(t)|k′〉

+
∑
i odd

ξi(t)

ξk(t)
[〈k,k′|vee|i,i ′〉

− 〈k,k′|vee|i ′,i〉] − i
ṅk(t)

2nk(t)
. (C5)

Recasting the sum in (C5) in the form

2

nk(t)

∑
i odd

ei(ϕi,0−ϕk,0)
√

ni(t)

2

√
nk(t)

2
[〈k,k′|vee|i,i ′〉

− 〈k,k′|vee|i ′,i〉] = 2

nk(t)

∑
ij l

γ̃2,ijkl(t)〈k̃l̃|vee|ĩ j̃ 〉

(C6)

and making use of the analytically known expression for
ṅk(t) [25],

ṅk(t) = 4 Im
∑
ij l

γ̃2,ijkl(t)〈k̃l̃|vee|ĩ j̃ 〉, (C7)

gives

αkk(t) + αk′k′(t) = 〈k|ĥ(t)|k〉 + 〈k′|ĥ(t)|k′〉
+ 2

nk(t)
Re
∑
ij l

γ̃2,ijkl(t)〈k̃l̃|vee|ĩ j̃ 〉.

(C8)

Equation (C8) reflects the freedom to distribute the global
phase of |i,i ′〉 − |i ′,i〉 in (C1) among orbital i and orbital i ′.
Choosing

αkk(t) = αk′k′(t) − 〈k′|ĥ(t)|k′〉 + 〈k|ĥ(t)|k〉, (C9)

it is found that for both odd and even k the final result reads

αkk(t) = 1

nk(t)
[〈k̃|ĥ(t)|k̃〉 + Re

∑
ij l

γ̃2,ijkl(t)〈k̃l̃|vee|ĩ j̃ 〉].

(C10)

APPENDIX D: VARIATIONAL DETERMINATION OF THE
SPIN-TRIPLET GROUND STATE

As in [25], we define an energy functional Ẽ taking
into account the constraints

∑
i ni = N = 2, 〈i|j 〉 = δij ,

ni � 0, ni � 1 via the Lagrange parameters ε and λij as well
as the Karush-Kuhn-Tucker parameters [17,32] ε0

i and ε1
i ,

respectively. Additionally, the degeneracy ni = ni ′ is enforced
via the Lagrange parameter εd

i for odd i. The functional Ẽ

reads

Ẽ =
∑

i

〈ĩ|ĥ0|ĩ〉 +
∑
ijkl

�2,ijkl√
〈ĩ|ĩ〉〈k̃|k̃〉

〈k̃l̃|vee|ĩ j̃ 〉

− ε

[∑
i

〈ĩ|ĩ〉 − 2

]
−
∑

i

∑
j 
=i

λij 〈ĩ|j̃ 〉 −
∑

i

[
ε0
i 〈ĩ|ĩ〉 + ε1

i (1 − 〈ĩ|ĩ〉)]−
∑
i odd

εd
i [〈ĩ|ĩ〉 − 〈ĩ ′|ĩ ′〉], (D1)

where the slackness conditions [17] are 0 = ε0
i ni = ε1

i (1 − ni), and

�2,ijkl = (−1)i−k ei(ϕi,0−ϕk,0)

2
δij ′δkl′ ,

which is a constant regarding the variation of RNOs. Variation of the energy functional (D1) with respect to 〈m̃| and |m̃〉 yields

εm|m̃〉 =
⎧⎨
⎩ĥ0 + 2

∑
j l

�2,mjml

〈m̃|m̃〉 〈l̃|vee|j̃ 〉(x) − 1

〈m̃|m̃〉 Re

⎡
⎣∑

ij l

�2,ijml√
〈ĩ|ĩ〉〈m̃|m̃〉

〈m̃l̃|vee|ĩ j̃ 〉
⎤
⎦
⎫⎬
⎭ |m̃〉

+
∑
i 
=m

⎧⎨
⎩2
∑
j l

�2,ijml√
〈ĩ|ĩ〉〈m̃|m̃〉

〈l̃|vee|j̃ 〉(x) − λmi

⎫⎬
⎭ |ĩ〉 (D2)

and its Hermitian conjugate, respectively.
The orbital energies εm are defined as

εm = ε + ε0
m − ε1

m + εd
mδm odd − εd

m−1δm even.
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The phases ϕi,0 in (31) are defined such that the ground-state
NOs of the model system may be chosen real. Assuming
real ground-state NOs, (D2) and its Hermitian conjugate
yield

εk = 1

nk

⎡
⎣〈k̃|ĥ0|k̃〉 +

∑
ij l

γ̃2,ijkl〈k̃l̃|vee|ĩ j̃ 〉
⎤
⎦.

For correlated systems, i.e., in general noninteger ONs, we
have 0 = ε0

i = ε1
i so that εk = ε + εd

mδm odd − εd
m−1δm even.

Hence, each sum of two associated orbital energies in the
ground state fulfills

εk + εk′ = 2ε.

Moreover, the set of ground-state RNOs is a stationary point
of the imaginary-time propagation, as already pointed out for
the singlet in [25].

APPENDIX E: NEWTON SCHEME FOR FINDING
GROUND-STATE ONS

In this Appendix, a scheme for finding the correct ground-
state ONs is presented when the phase convention of Sec. II E 1
is chosen. Section III A contains a brief discussion of why
this “tuning” of ONs is necessary. The variational calculus in
Appendix D shows that the converged RNOs associated with
the correct ground-state ONs fulfill

εk + εk′ = E = E0. (E1)

For No RNOs, due to the pairwise degeneracy of ONs and the
constraint

∑
k nk = 2, there are (No/2 − 1) free parameters.

With

n1 = n2 = 1 −
∑

odd i 
=1

ni (E2)

and

n = (n3,n5, . . . ,nNo−1)T,

F(n) = (F3(n),F5(n), . . . ,FNo−1(n))T,

Fm(n) = εm + εm+1 − ε1 − ε2,

the root of F fulfills (E1) for all k. We thus search the root
of F using the Newton-Raphson scheme. One iteration step
from configuration n(i) to configuration n(i+1) is performed
according to

J(n(i+1) − n(i)) = −F(n(i)),

where J = [Jmn] = [∂nn
Fm] (for odd m 
= 1 and odd n 
= 1)

is the Jacobian matrix. The derivatives ∂nn
Fm are calculated

using

∂nn
|m̃〉 = |m〉∂nn

√
nm. (E3)

In practice, also the converged NOs |m0(n)〉 for a given ON
configuration n change if the ON nn (and thus also n1, n2,
and nn′ ) is modified. However, the approximation (E3) yields
smooth convergence.

Because of (E2) ∂nn
n1 = −1 for odd n 
= 1. Hence, for odd

n 
= 1,

∂nn
γ2,ijkl = [δni + δnj + δnk + δnl]

γ2,ijkl

2nn

− [δ1i + δ1j + δ1k + δ1l]
γ2,ijkl

2n1
.

Assuming real NOs for the ground state, one finds for odd
m 
= 1

Fm = 〈m|ĥ0|m〉 + 〈m′|ĥ0|m′〉 + 2
∑
ij

γ2,ijmm′

nm

〈mm′|vee|ij 〉

− 〈1|ĥ0|1〉 − 〈2|ĥ0|2〉 − 2
∑
ij

γ2,ij12

n1
〈12|vee|ij 〉.

The phases ϕi in γ2,ijkl can be set to the frozen phases ϕi,0 of
the PINO phase convention (31) because the time-independent
ground state is sought. For odd n 
∈ {1,m}, it follows that

∂nn
Fm = 1

2(nnnm)3/2
〈m̃m̃′|vee[|ññ′〉 − |ñ′ñ〉]

− eiϕm,0

2(n1nm)3/2
〈m̃m̃′|vee[|1̃2̃〉 − |2̃1̃〉]

− eiϕn,0

2(nnn1)3/2
〈1̃2̃|vee[|ññ′〉 − |ñ′ñ〉]

−
∑

odd i 
=1

eiϕi,0

2
√

n5
1ni

〈1̃2̃|vee[|ĩ ĩ ′〉 − |ĩ ′ ĩ〉];

for the diagonal element,

∂nm
Fm = −

∑
odd i 
=m

ei[ϕm,0+ϕi,0]

2
√

n5
mni

〈m̃m̃′|vee[|ĩ ĩ ′〉 − |ĩ ′ ĩ〉]

−
∑

odd i 
=1

eiϕi,0

2
√

n5
1ni

〈1̃2̃|vee[|ĩ ĩ ′〉 − |ĩ ′ ĩ〉]

− eiϕm,0

(n1nm)3/2
〈m̃m̃′|vee[|1̃2̃〉 − |2̃1̃〉].
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Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is tested on nonsequential
double ionization (NSDI) of a numerically exactly solvable one-dimensional model He atom subject to few-cycle,
800-nm laser pulses. NSDI of atoms in strong laser fields is a prime example of nonperturbative, highly correlated
electron dynamics. As such, NSDI is an important “worst-case” benchmark for any time-dependent few and
many-body technique beyond linear response. It is found that TDRNOT reproduces the celebrated NSDI “knee,”
i.e., a many-order-of-magnitude enhancement of the double-ionization yield (as compared to purely sequential
ionization) with only the ten most significant natural orbitals (NOs) per spin. Correlated photoelectron spectra—as
“more differential” observables—require more NOs.

DOI: 10.1103/PhysRevA.90.053418 PACS number(s): 32.80.Rm, 31.15.ee, 31.70.Hq

I. INTRODUCTION

Nonsequential double ionization (NSDI) in intense laser
pulses has been experimentally observed in measurements of
ion yields as a function of the laser intensity, which deviate
from the yields expected from a sequential ionization scenario,
forming the so-called NSDI “knee” (see [1,2] for recent
reviews). In fact, the multiple ionization yields are typically
enhanced by several orders of magnitude. With ionization
yields being rather integrated observables, the mechanism
behind NSDI could not be unequivocally resolved until the
measurement of ion spectra [3,4] and correlated photoelectron
distributions has become feasible (see [5,6] for early and, e.g.,
[7] for very recent work). Meanwhile, NSDI is understood
in terms of a recollision process: one electron is emitted but
oscillates back to its parent ion to knock out the next electron.
If the return energy is not sufficient for collisional ionization,
the next electron might be excited and later emitted owing to
the laser field [8].

The described recollision scenario poses a huge challenge
for general many-body methods when applied to such a few-
electron test case. For example, in time-dependent Hartree-
Fock (TDHF) or time-dependent density functional theory
(TDDFT) applied to He starting from the singlet ground state,
there is only one spatial orbital describing both electrons (one
spin-up, the other spin-down). Not surprisingly, it was found
that such methods are not capable of describing NSDI [9],
although formally for different reasons. TDHF, as a mean-
field approach, does not incorporate correlation by definition.
TDDFT is in principle exact, but only in the sense that it gives
the exact time-dependent electron density. However, even if
the exact time-dependent electron density was known from a
TDDFT calculation employing the exact exchange-correlation
potential [10], the exact double-ionization probability could
still not be calculated because this observable is unknown
as an explicit functional of the electron density, and simple
approximations to it do not reproduce the NSDI knee [11,12].

Solving the full time-dependent Schrödinger equation
(TDSE) for He in full dimensionality and in strong, long-
wavelength (i.e., �800 nm) laser fields is still beyond what
is possible with current supercomputer technology [13].
Therefore it is essential to develop practicable time-dependent
many-electron methods beyond linear response that account

for correlation. Time-dependent configuration interaction
(TDCI) [14,15], multiconfigurational time-dependent Hartree
(MCTDH) [16] or multiconfigurational TDHF (MCTDHF)
[17–20] are exact in principle. However, the crucial question
in practice is how many configurations or determinants are
required to recover a certain strong correlation feature such
as the NSDI knee. General conclusions are difficult to draw,
as different TDCI and MCTDHF approaches may vary in the
single-particle basis functions chosen. It has been shown that
for He (or H2) a time-dependent variational approach using a
wave-function ansatz with two different single-particle orbitals
(time-dependent extended Hartree-Fock) [9,21] or an ad hoc
ansatz with an “inner” and an “outer” outer orbital [22] at
least generate kneelike structures in the double-ionization
yield. However, they are only in poor agreement with the
exact numerical results available for low-dimensional models.
To the best of our knowledge there are no systematic tests
of computational approaches that demonstrate a convergence
toward the exact NSDI knee. In fact, we are not aware of
any work that accurately reproduces the NSDI knee using
a many-body method that overcomes the “exponential wall”
[23]. In this work, we will provide such an analysis for
our recently introduced time-dependent renormalized-natural-
orbital theory (TDRNOT) [24,25].

II. THEORY

Before we present results on the NSDI knee (Sec. III A)
and on correlated photoelectron spectra (Sec. III B), we briefly
introduce the He model, review the essentials of TDRNOT,
particularly when applied to a two-electron system, and discuss
the observables to be calculated. Atomic units (a.u.) are used
unless otherwise indicated.

A. Model atom

The widely applied one-dimensional helium model atom
[9,10,12,20,26–29] in a laser field has the Hamiltonian

Ĥ (1,2)(t) = ĥ(1)(t) + ĥ(2)(t) + vee
(1,2), (1)

where upper indices indicate the action on either electron
1, electron 2, or both. The single-particle Hamiltonian reads
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ĥ(t) = ĤA + ĤL(t), with

ĤA = p̂2

2
− 2√

x2 + εne

, (2)

ĤL(t) = A(t)p̂ (dipole approximation and velocity gauge with
the A2 term transformed away), and the electron-electron
interaction

vee
(1,2) = 1√

(x(1) − x(2))2 + εee

. (3)

The electron-ion smoothing parameter εne = 0.50 is chosen
such that the ground-state energy of He+ EHe+

0 = −2.0 is
recovered. The electron-electron smoothing parameter εee =
0.33 is tuned to yield the neutral-He energy EHe

0 = −2.9.

B. Density matrices, renormalized natural orbitals,
and their equations of motion

The Hamiltonian (1) does not act on the spin, which—in the
two-particle case—allows one to factorize the wave function,

〈12|�(t)〉 = �(12; t) = �(x1x2; t)�σ1σ2 . (4)

Here 1 and 2 are shorthand notations for position and spin
(x1,σ1) and (x2,σ2), respectively. The two- and one-body
density matrices read

γ2(12,1′2′; t) = �(12; t)�∗(1′2′; t), (5)

γ1(1,1′; t) = 2
∫

d2 γ2(12,1′2; t). (6)

Natural orbitals (NOs) φk(1; t) = 〈1|k(t)〉 are defined as
eigenvectors of γ1:

γ1(1,1′; t) =
∑

k

nk(t)φk(1; t)φ∗
k (1′; t). (7)

The corresponding eigenvalues nk(t) ∈ [0,1] are called oc-
cupation numbers (ONs). NOs and ONs were introduced a
long time ago (see, e.g., [30–32]), but only recently has their
usefulness for time-dependent few- and many-body problems
been studied [33–38].

The coupled equations of motion for the ONs and the NOs
can be unified by introducing renormalized NOs (RNOs) [24]

〈1|k̃(t)〉 = φ̃k(1; t) =
√

nk(t)φk(1; t) (8)

so that

nk(t) = 〈k̃(t)|k̃(t)〉 (9)

and

γ1(1,1′; t) =
∑

k

φ̃k(1; t)φ̃∗
k (1′; t). (10)

The two-body density matrix expanded in RNOs reads

γ2(12,1′2′; t)

=
∑
ijkl

γ̃2,ijkl(t)φ̃i(1; t)φ̃j (2; t)φ̃∗
k (1′; t)φ̃∗

l (2′; t). (11)

The equation of motion (EOM) for the RNOs is [25]

i∂t |ñ〉 = ĥ(t)|ñ〉 + An(t)|ñ〉
+

∑
k �=n

Bnk(t)|k̃〉 +
∑

k

Ĉnk(t)|k̃〉 (12)

with

An(t) = − 1

nn(t)
Re

∑
jkl

γ̃2,njkl(t)〈k̃l̃|vee|ñj̃〉, (13)

Bnk(t) = 2

nk(t) − nn(t)

∑
jpl

[γ̃2,kjpl(t)〈p̃l̃|vee|ñj̃ 〉

− γ̃2,plnj (t)〈k̃j̃ |vee|p̃l̃〉], (14)

and

Ĉnk(t) = 2
∑
j l

γ̃2,kjnl(t)〈l̃|vee|j̃〉. (15)

One observes that the effective Hamiltonian in the TDSE-
like equation (12) consists of the usual one-body operator
ĥ(t), a diagonal part An(t) ∈ R, the part Bnk(t) ∈ C which
couples RNOs, and the operator Ĉnk(t), which also couples
RNOs. As the effective Hamiltonian in (12) is Hermitian, the
corresponding time evolution of the RNOs is unitary.

In general, there are infinitely many NOs required to
describe a correlated quantum system, even if it contains
only two particles. Ordered decreasingly according to their
ONs, the number of RNOs taken into account in an actual
numerical implementation of (12) is necessarily truncated,
which introduces errors in the propagation. The effect of this
truncation will be seen in the results in Sec. III below.

In the two-particle case the expansion coefficients γ̃2,ijkl(t)
are exactly known [25],

γ̃2,ijkl(t) = (−1)i+k ei[ϕi−ϕk ]

2
√

ni(t)nk(t)
δi,j ′δk,l′ . (16)

Here, the “prime operator” acts on the positive integer k

according to

k′ =
{
k + 1 if k odd

k − 1 if k even,
(17)

and the phase factors are [25]

eiϕ
(S)
i = 2δk,1 + 2δk,2 − 1, eiϕ

(T)
i = 1 (18)

in the spin-singlet and -triplet case, respectively. Note that the
EOM for the RNOs (12) is given here for phase-including
NOs [35] so that ϕi and ϕk in (16) do not depend on time.
Employing the factorization (4) we can write

γ2(12,1′2′; t) = �(x1x2; t)�∗(x ′
1x

′
2; t)�σ1σ2�

∗
σ ′

1σ
′
2
, (19)

γ1(1,1′; t) = γ1(x1,x
′
1; t)

∑
σ2

�σ1σ2�
∗
σ ′

1σ2
, (20)
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where

γ1(x1,x
′
1; t) = 2

∫
dx2 γ2(x1x2,x

′
1x2; t)

=
∑

k

nk(t)φ
k
(x1; t)φ∗

k
(x ′

1; t)

=
∑

k

φ̃
k
(x1; t)φ̃

∗
k
(x ′

1; t), (21)

γ2(x1x2,x
′
1x

′
2; t) = �(x1x2; t)�∗(x ′

1x
′
2; t)

=
∑
ijkl

γ̃
2,ijkl

(t)φ̃
i
(x1; t)φ̃

j
(x2; t)

× φ̃
∗
k
(x ′

1; t)φ̃
∗
l
(x ′

2; t). (22)

Here and in the following, spatial RNOs and quantities
calculated from them (e.g., ni(t) = 〈φ̃

i
(t)|φ̃

i
(t)〉) will be

indicated by underlining them. How the RNOs can be written
as a factorization in the spatial and the spin part is discussed
in detail in [25]. In this work we will only consider results for
the singlet configuration where the RNOs with k = 1,2,3, . . .

can be arranged as

〈x|k̃(t)〉 =
{|↑〉 φ̃

k′/2
(x; t) if k odd

|↓〉 φ̃
k/2

(x; t) if k even
(23)

so that any consecutive k-odd and k + 1-even RNOs share the
same spatial component φ̃

k′/2
(x; t).

C. Observables

We are interested in the double-ionization probability of
the model He atom as a function of the laser intensity and
in correlated photoelectron spectra, i.e., the probability to
find one electron being emitted with momentum p1 and the
other with p2, for laser intensities where NSDI occurs. Both
should in principle be calculated via the projection of the wave
function after the laser pulse on two-electron continuum states
of asymptotic momenta p1 and p2. However, this approach is
numerically unfeasible. We will shortly explain how the yields
and spectra are calculated in a less rigorous but sufficiently
accurate manner in this work.

1. Ionization probabilities

An efficient way to calculate ionization probabilities from
the two-electron wave function �(x1x2) after the laser pulse is
based on the integration of the probability density |�(x1x2)|2
over certain spatial regions,

P 0 =
∫∫

|x1|,|x2|<a

dx1dx2 |�(x1x2)|2 , (24)

P 2+ =
∫∫

|x1|,|x2|�a

dx1dx2 |�(x1x2)|2 , (25)

P 1+ =1 − P 0 − P 2+, (26)

where we made use of the fact that P 0 + P 1+ + P 2+ = 1.
The parameter a > 0 should be sufficiently large such that the
probabilities P 1+ and P 2+ are negligible for the ground-state
and singly excited eigenstates. On the other hand, a should

not be too large so that the probability density describing
ionization does not need too much time to leave the neutral-He
region |x1| , |x2| < a. For our model we chose a = 6.

As for a two-electron system |�(x1x2)|2 = γ2(x1x2,x1x2),
Eqs. (24) and (25) are read in terms of RNOs:

P 0 =
∑
ijkl

γ̃
2,ijkl

∫ a

−a

dx1 φ̃
i
(x1)φ̃

∗
k
(x1)

×
∫ a

−a

dx2 φ̃
j
(x2)φ̃

∗
l
(x2),

(27)

P 2+ =
∑
ijkl

γ̃
2,ijkl

∫
|x1|�a

dx1 φ̃
i
(x1)φ̃

∗
k
(x1)

×
∫

|x2|�a

dx2 φ̃
j
(x2)φ̃

∗
l
(x2).

(28)

Note that in the two-electron case this form is equivalent to
first reconstructing the wave function (which is possible for
two electrons [25]) and then using Eqs. (24) and (25).

2. Momentum distributions

A numerically efficient method to calculate correlated
double-ionization photoelectron spectra is to multiply the
two-electron wave function by a mask function f (x1x2), which
removes the parts representing He+ and neutral He:

�2+(x1x2) � f (x1x2)�(x1x2).

Here, we chose f (x1x2) = f (x1)f (x2), with f (x) =
1/

√
1 + e−c(|x|−a) and c = 1.25 [29]. After Fourier transform-

ing �2+(x1x2) to momentum space,

�2+(p1p2) = 1

2π

∫
dx1

∫
dx2 �2+(x1x2) e−i(p1x1+p2x2),

(29)

the double-ionization photoelectron spectrum is obtained as

ρ2+(p1p2) = 2|�2+(p1p2)|2.
In our TDRNOT treatment we proceed analogously by first

defining

γ 2+
2 (x1x2,x

′
1x

′
2) = f (x1x2)f ∗(x ′

1x
′
2)γ2(x1x2,x

′
1x

′
2), (30)

whose Fourier transform is γ 2+
2 (p1p2,p

′
1p

′
2). Then,

ρ2+(p1p2) = 2γ 2+
2 (p1p2,p1p2),

which can be written as

ρ2+(p1p2)

� 2
∑
ijkl

γ̃
2,ijkl

φ̃
+
i

(p1)φ̃
+
j

(p2){φ̃+
k

(p1)φ̃
+
l

(p2)}∗, (31)

where

φ̃
+
i

(pj ) = 1√
2π

∫
dxj f (x)φ̃

i
(xj ) e−ixj pj . (32)

We thus have an explicit construction for ρ2+(p1p2) in terms
of RNOs. Note that in TDDFT such a construction in terms of
Kohn-Sham orbitals is unknown [29].
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FIG. 1. (Color online) Double-ionization probability vs laser in-
tensity. TDRNOT results with N = 1,2,3,4,6,10 spatial RNOs (red,
+) are compared with the exact TDSE result (black, dots) and with
the ionization probability reconstructed using the first N exact NOs
calculated from the exact TDSE wave function (green, ×).

III. RESULTS AND DISCUSSION

We consider an 800-nm (ω = 0.058) linearly polarized
Ncyc = 3-cycle sin2-shaped laser pulse of duration T =
2πNcyc/ω. The vector potential in dipole approximation reads

A(t) = Â sin2

(
ωt

2Ncyc

)
sin(ωt) for 0 � t � T (33)

and zero otherwise. The numerical grids for both the TDSE-
benchmark and TDRNOT calculations covered ±1500 a.u. in
the spatial directions.

A. Ionization yields

Figure 1 shows the double-ionization probability P 2+ as a
function of the laser intensity for different numbers of spatial
RNOs N between 1 (upper-left panel) and 10 (lower-right
panel). For comparison, the exact TDSE result is included in
black in all panels. The nonmonotonic behavior of the first
derivative of this exact P 2+ curve in the region around 2 ×
1015 W/cm2 gives rise to the celebrated NSDI knee.

A TDRNOT calculation with N = 1 RNO per spin yields
a featureless P 2+ curve, as seen in the upper-left panel of
Fig. 1. In fact, in the case of a two-electron spin-singlet system,
a single NO per spin is equivalent to TDHF or TDDFT in
exchange-only approximation, for which it is already known
that the NSDI knee is not reproduced [9–12].

Truncating the number of RNOs in a TDRNOT calculation
introduces an error in the propagation of the RNOs [25]. This

error should be distinguished from the error that arises alone,
due to the fact that only a finite number of NOs is taken into
account for the calculation of an observable. We do this by
determining all exact NOs from the exact TDSE wave function
but consider only the N most dominant of them to calculate
the observable P 2+. The respective results are also shown in
Fig. 1. For N = 1 this procedure gives a result very different
from the TDRNOT with N = 1. There is even already a knee
in the TDSE-1-NO result, albeit a quantitatively wrong one.
Both TDRNOT with a single RNO and the TDSE-1-NO curve
show a wrong slope in the limit of low laser intensity.

For N = 2 NOs per spin (upper-right panel) a knee appears
also in the TDRNOT result. It is exaggerated and jaggedly
structured, and underestimates the P 2+ yield. A similar
behavior with two orbitals was observed in extended Hartree-
Fock treatments [9,21] and with the so-called “crapola” model
[22], where an “inner” and an “outer” orbital is postulated.

With increasing N the agreement between TDRNOT results
and TDSE improves. For N = 10 the truncation error in the
propagation of the RNOs is small enough to give almost the
same probability P 2+ as if it was calculated with the first
N = 10 exact NOs.

Clearly, our TDRNOT approach is only attractive if N can
be kept reasonably small. We have shown in Refs. [24,25] how,
with a few RNOs, doubly excited states, autoionization, and
Rabi flopping can be described using TDRNOT. Unfortunately,
NSDI is more demanding in N , meaning that NSDI is
highly correlated, and thus many more NOs than particles are
required. Moreover, note that although NSDI is a huge effect on
the P 2+ level, it is a small effect compared to the probability for
single-ionization P 1+, and small effects on an absolute scale
are captured by NOs with small ONs. The dominant NOs are
mainly “responsible” for single ionization, or no ionization at
all. In that respect it is remarkable to achieve an agreement such
as the one shown for N = 10 spatial RNOs in Fig. 1. We are
not aware of any TDCI or TDMCHF calculation that achieved
such an agreement, let alone with only ten basis functions.

B. Two-electron momentum distribution

Correlated photoelectron spectra contain more information
than ionization probabilities. In general, the “more differen-
tial” an observable is, the harder it is to reproduce by some ap-
proximate method because the dynamic range to be accurately
covered increases. An additional, conceptual challenge arises
with TDDFT because ρ2+(p1p2) is an unknown functional
of the single-particle density, and simple approximations
fail [29].

Figure 2 shows the TDSE benchmark result for ρ2+(p1p2)
at I = 2.25 × 1015 W/cm2, i.e., in the NSDI intensity regime.
The butterfly structure indicating electrons emitted into the
same direction is characteristic of NSDI [1,2] and has been
essential to identify rescattering as its origin.

From the TDSE benchmark we know that the first thousand
exact NOs have ONs > 10−15. The question is how many NOs
are needed to recover the butterfly structure seen in Fig. 2.
Figure 3 shows that with the first 15 exact NOs from the
TDSE simulation the butterfly structure of Fig. 2 emerges, but
details are still not accurately represented over the 4 orders of
magnitude dynamic range shown. However, it is sufficient for
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FIG. 2. (Color online) TDSE-benchmark two-electron photo-
electron spectrum ρ2+(p1p2) at I = 2.25 × 1015 W/cm2.

the purpose of validating TDRNOT with a reasonably small
number of RNOs. Up to N = 5, mainly uncorrelated, gridlike
horizontal and vertical structures are visible. From N = 6 on,
however, clear correlated structures appear, first in the first
quadrant p1,p2 > 0.
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FIG. 3. (Color online) ρ2+(p1p2) at I = 2.25 × 1015 W/cm2 ob-
tained from the N = 1,2,5,6,10,15 dominant, exact spatial NOs
calculated from the exact TDSE wave function after the laser pulse.
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FIG. 4. (Color online) ρ2+(p1p2) at I = 2.25 × 1015 W/cm2 ob-
tained from TDRNOT with N = 1,2,5,6,10,15 spatial RNOs.

Figure 4 shows the corresponding TDRNOT result with N

RNOs per spin propagated. Again, the differences between the
benchmark results in Fig. 3 and TDRNOT in Fig. 4 are due
to the truncation error in the number of propagated RNOs.
This truncation error severely spoils the correlation structure
in the first quadrant; only for N = 15 does the structure start
to emerge. In order to reproduce, say, the lower-right spectrum
in Fig. 3, one would need to propagate about 50 RNOs in
TDRNOT. This is prohibitive with our current implementation
of solving the nonlinear EOM (12). We found, for instance,
that apart from the expected increase of the numerical effort
there is the additional complication that the time step needs to
be reduced with increasing N .

Because of the truncation error, the N th of the (according
ON ordered) N dominant spatial RNOs is expected to be
most defective. Thus it may make sense to propagate more
RNOs than are actually used to calculate observables. Figure 5
shows results where N = 15 RNOs per spin were propagated
but only N = 5 and 6 were used for the calculation of the
photoelectron spectra. One sees that the agreement with the
two corresponding middle-row spectra in Fig. 3 is much better
than in Fig. 4.

C. Numerical effort

The computational time τ (N,Nx) required for a TDRNOT
propagation using N NOs on Nx spatial grid points
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FIG. 5. (Color online) ρ2+(p1p2) at I = 2.25 × 1015 W/cm2 ob-
tained from TDRNOT with N = 15 spatial RNOs propagated but only
N = 5 and 6 used to calculate ρ2+(p1p2).

scales as

τ (N,Nx) ∼ α N2 Nx log Nx + β N3 Nx (34)

for a fixed time step. The first term on the right-hand side arises
from the calculation of the potentials in (15) using the fast
Fourier transform, and the second term from the evaluation of
the required matrix elements in (14) [39]. The computational
costs of the corresponding operations are taken into account
by the constant factors α and β.

The computational times τ (N ) = τ (N,6000) required for
one laser intensity using 1 (equivalent to TDHF), 2, and
6 NOs were τ (1) ≈ 1.3 min, τ (2) ≈ 5.6 min, and τ (6) ≈
40 min, respectively, on a single core of an i5-3570 processor.
This shows that the N2 term in (34) is dominating. Compared
to the TDSE calculation, where τTDSE = 12 h, TDRNOT thus
performs faster by a factor of 550, 128, and 18, respectively.

Unfortunately, the time step in our present TDRNOT
implementation needs to be decreased with increasing N to

achieve converged results. For example, for N = 10 NOs,
�t(10) = 0.001 6 was used, whereas in the TDSE simulation
�t = 0.075 was sufficient. This leads to a total computation
time of τ (10) = 30 h > τTDSE and τ (15) = 22 d. Hence, im-
proving our TDRNOT scheme to allow for larger time steps is
desirable. However, note that for more than two particles the
small TDRNOT time step is harmless anyway compared to the
exponential scaling of the TDSE wave function.

IV. CONCLUSION AND OUTLOOK

In summary, we reproduced the nonsequential double-
ionization knee for a He-model atom starting from the
spin-singlet ground state using the recently introduced time-
dependent renormalized-natural-orbital theory. The equations
of motion for the renormalized natural orbitals are exact in the
two-electron case. This is because the expansion of the time-
dependent two-body density matrix in natural orbitals is known
exactly. Only the practical limitation in the number of spatial
orbitals N forces us to restrict ourselves to N < 20. Correlated
structures in the photoelectron spectra are also reproduced.
However, a quantitative agreement with the benchmark spectra
obtained from the solution of the corresponding two-electron
time-dependent Schrödinger equation can only be achieved
with more orbitals.

Current work is devoted to the application of time-
dependent renormalized-natural-orbital theory to He in full
dimensionality, to more electrons, and to the mitigation of the
truncation error via better-suited boundary conditions.
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Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is based on the equations
of motion for the so-called natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix. Exact
TDRNOT can be formulated for any time-dependent two-electron system in either spin configuration. In this paper,
the method is tested against high-order-harmonic generation (HHG) and Fano profiles in absorption spectra with
the help of a numerically exactly solvable one-dimensional-model He atom, starting from the spin-singlet ground
state. Such benchmarks are challenging because Fano profiles originate from transitions involving autoionizing
states, and HHG is a strong-field phenomenon well beyond the linear response. TDRNOT with just one natural
orbital per spin in the helium spin-singlet case is equivalent to time-dependent Hartree-Fock or time-dependent
density functional theory (TDDFT) in the exact exchange-only approximation. It is not unexpected that TDDFT
fails in reproducing Fano profiles due to the lack of doubly excited, autoionizing states. HHG spectra, on the
other hand, are widely believed to be well captured by TDDFT. However, HHG spectra of helium may display
a second plateau that originates from simultaneous HHG in He+ and neutral He. It is found that TDRNOT
with two natural orbitals per spin is already sufficient to capture this effect as well as the Fano profiles on a
qualitative level. With more natural orbitals (6–8 per spin), quantitative agreement can be reached. Errors due to
the truncation to a finite number of orbitals are identified.

DOI: 10.1103/PhysRevA.93.013404

I. INTRODUCTION

Time-dependent few- and many-body methods for driven
quantum dynamics beyond linear response are urgently needed
both to study the fundamental effects and for possible
technological applications (involving strong light fields, for in-
stance). Depending on the system studied, the “exact” solution
would involve the numerical solution of the time-dependent
Schrödinger, Pauli, Klein-Gordon, or Dirac equation, possi-
bly with quantized electromagnetic field. Unfortunately, this
is—in full dimensionality and with strong, long-wavelength
lasers—even in the simplest case of the time-dependent
Schrödinger equation (TDSE), possible only for (at most) two
particles.

The most widely used and favorably scaling approach
to electronic structure problems is density functional the-
ory [1,2]. Its time-dependent version, i.e., time-dependent den-
sity functional theory (TDDFT) [3,4], often misses important
correlation effects [5,6]. Other, more systematic approaches
such as multiconfigurational time-dependent Hartree-Fock
(MCTDHF) [7,8] and variants of it [9,10] or time-dependent
configuration interaction (TDCI) [11–13] and related ap-
proaches [14,15] are (much) more demanding but capture
correlation effects better [16,17]. Recently, we have in-
troduced time-dependent renormalized-natural-orbital theory
(TDRNOT) [18–20], which is based on equations of motion for
the so-called natural orbitals (NOs), i.e., the eigenfunctions of
the one-body reduced density matrix (1RDM) [21–25]. While
the proof that the natural orbitals form the best basis is re-
stricted to two electrons [26], the educated guess (and hope) is
that TDRNOT calculations with a very limited number of NOs
can well surpass TDDFT with relatively little computational
overhead. In recent papers, we have already demonstrated
that TDRNOT performs well in treating phenomena where
TDDFT with known exchange-correlation potentials fails, e.g.,

autoionization [18], Rabi flopping [19], and nonsequential
ionization [20]. In this work, we will continue along the
same line by focusing on the emission and absorption of
radiation. In fact, high-harmonic generation (HHG) and
absorption spectroscopy (AS) are of eminent importance in
strong-field laser physics. HHG is the basis of “attosecond
science” [27,28], while transient AS provides an all-optical
means to follow correlated processes in matter [29,30].

The paper is organized as follows. The theoretical methods
and the way to calculate spectra are described in Sec. II. In
Sec. III, we benchmark the performance of TDRNOT on HHG
spectra and Fano profiles before we conclude and give an
outlook in Sec. IV. Some of the detailed derivations are given
in Appendices A and B.

Atomic units (a.u.) are used throughout, unless noted
otherwise.

II. THEORETICAL METHODS

By numerically exactly solving the time-dependent
Schrödinger equation (TDSE) for a one-dimensional helium
atom in the laser field, we obtain a reference result for the
corresponding TDRNOT calculation involving N NOs. With
increasing N , the TDRNOT spectra should converge to the
TDSE results, as the TDRNOT equations of motion (EOM)
are exact for two electrons. In this section, the model atom,
the EOM, and the method to calculate the absorption spectra
are introduced.

A. Model helium atom

The Hamiltonian of the widely used [5,6,31–36] one-
dimensional helium model atom is

Ĥ (1,2)(t) = ĥ(1)(t) + ĥ(2)(t) + v̂(1,2)
ee − i�̂(1)

e − i�̂(2)
e , (1)
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where upper indices indicate the action on either electron 1,
electron 2, or both. The single-particle Hamiltonian reads
ĥ(t) = ĥA + ĥL(t) with

ĥA = p̂2

2
− 2√

x̂2 + εne

, (2)

ĥL(t) = E(t)x̂ (3)

(dipole approximation and length gauge), the electron-electron
interaction

v̂(1,2)
ee = 1√

(x̂(1) − x̂(2))2 + εee

, (4)

and −i�̂e is an imaginary potential to absorb outgoing electron
flux. The electron-ion smoothing parameter εne = 0.50 is
chosen such that the ground-state energy of He+, EHe+

0 =
−2.0, is recovered. The electron-electron smoothing parameter
εee = 0.33 is tuned to yield the neutral-He energy EHe

0 = −2.9.

B. Equations of motion (EOM)

For a helium atom, the TDSE

i
∂

∂t
|�(t)〉 = Ĥ (1,2)(t)|�(t)〉 (5)

describes the time evolution of the two-electron state |�(t)〉.
The starting point for TDRNOT in the two-electron case is the
pure two-body density matrix (2DM),

γ̂2(t) = |�(t)〉〈�(t)|. (6)

From the TDSE (5), the EOM for the 2DM,

i ˙̂γ2(t) = [
ĥ(1)(t) + ĥ(2)(t) + v̂(1,2)

ee ,γ̂2(t)
]

− i
[
�̂(1)

e + �̂(2)
e ,γ̂2(t)

]
+, (7)

results. The 1RDM γ̂1(t) reads

γ̂1(t) =
2∑

i=1

Tri γ̂2(t) = 2 Tr1 γ̂2(t) = 2 Tr2 γ̂2(t), (8)

where the partial trace Tri means tracing out all degrees of
freedom of particle i. The EOM for γ̂1 can be derived by
taking the time derivative of (8),

i ˙̂γ1(t) = [ĥ(t),γ̂1(t)] + 2Tr2[v̂ee,γ̂2(t)] − i[�̂e,γ̂1(t)]+
− 2iTr2

[
�̂(2)

e ,γ̂2(t)
]
+. (9)

The NOs |k(t)〉 and occupation numbers (ONs) nk(t) are de-
fined as eigenstates and eigenvalues of the 1RDM, respectively,

γ̂1(t)|k(t)〉 = nk(t)|k(t)〉. (10)

As γ̂1(t) is Hermitian, the ONs nk(t) are real and the NOs
|k(t)〉 form an orthonormal complete basis set. Renormalized
NOs (RNOs) are defined as

|k̃(t)〉 =
√

nk(t)|k(t)〉, (11)

so that

γ̂1(t) =
∑

k

|k̃(t)〉〈k̃(t)|, (12)

and γ̂2(t) can be expanded in RNOs as

γ̂2(t) =
∑
ijkl

γ̃2,ijkl(t)|ĩ(t)〉|j̃ (t)〉〈k̃(t)|〈l̃(t)|. (13)

The EOM for the RNOs read

i∂t |ñ〉 = [ĥ(t) − i�̂e] |ñ〉 + An(t)|ñ〉
+

∑
k �=n

Bnk(t)|k̃〉 +
∑

k

Ĉnk(t)|k̃〉, (14)

with

An(t) = − 1

nn(t)
Re

∑
jkl

γ̃2,njkl(t)〈k̃l̃|v̂ee|ñj̃ 〉

− 1

2nn(t)
(〈ñ|ĥ(t)|ñ〉 − 〈ñ′|ĥ(t)|ñ′〉)

− 2i
∑
j l

γ̃2,njnl(t)〈l̃|�̂e|j̃〉, (15)

Bnk(t) = 2

nk(t) − nn(t)

∑
jpl

[γ̃2,kjpl(t)〈p̃l̃|v̂ee|ñj̃ 〉

− γ̃2,plnj (t)〈k̃j̃ |v̂ee|p̃l̃〉] − 2i
1

nn(t) − nk(t)
〈k̃|�̂e|ñ〉

− 4i
nn(t)

nn(t) − nk(t)

∑
j l

γ̃2,kjnl(t)〈l̃|�̂e|j̃ 〉,

nk(t) �= nn(t), (16)

Ĉnk(t) = 2
∑
j l

γ̃2,kjnl(t)〈l̃|v̂ee|j̃〉, (17)

and the “prime operator” acting on a positive integer k as

k′ =
{
k + 1 if k odd

k − 1 if k even,
k > 0. (18)

For derivations, see Appendices A and B. Also, note that
the time argument of the RNOs is suppressed, and we can
apply (16) only if at time t ON nk(t) �= nn(t) (otherwise, see
Appendix A).

C. Absorption spectra

Let the classical electric field of a laser be polarized in the
x direction and propagating in the y direction, Ein(t − y/c) =
Ein(t − αy), and the atom be placed at the origin. The laser
field Ein induces a dipole and the atom responds, generating a
field Egen(y,t) also polarized in the x direction. The spectral
distribution S(ω) reads

S(ω) = |E(ω)|2 = 1

2π

∣∣∣∣
∫ +∞

−∞
dt E(y,t)eiωt

∣∣∣∣
2

, (19)

where E(y,t) is the total field and E(ω) is its Fourier transform
at position y. The total electric field E(y,t) is determined by the
wave equation in the propagation direction with a polarization
term as a source [37],(

∂2

∂y2
− 1

c2

∂2

∂t2

)
E(y,t) = 1

ε0c2

∂2

∂t2
〈d(t)〉δ(y), (20)
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where 〈d(t)〉 is the expectation value of the x component of the
atomic dipole, which is the quantum mechanical single-atom
input obtained from the one-dimensional helium model. The
dipole is 〈d(t)〉 = −∑

i〈xi(t)〉 with 〈xi(t)〉 = 〈�(t)|x̂(i)|�(t)〉.
The relevant solution of (20) consists of an incoming

and two counterpropagating waves, generated by the induced
dipole in the atom,

E(y,t) = Ein(t − αy) − 2πα[θ (y)〈ḋ(t − αy)〉
+ θ (−y)〈ḋ(t + αy)〉], (21)

where θ (±y) is the Heaviside step function and 〈ḋ(t ± αy)〉
is the expectation value of the dipole velocity. The generated
wave traveling in the propagation direction of the incoming
pulse 〈ḋ(t − αy)〉 may interfere destructively with the latter
(absorption). In order to identify what is absorbed and what
is emitted, the spectrum of the incoming laser field Ein(ω) is
subtracted from the total one [37],

Sresp(ω) = S(ω) − |Ein(ω)|2

= 4π2α2

ω2
|d̈(ω)|2 + 4πα

ω
Im[E∗

in(ω)d̈(ω)], (22)

where d̈(ω) is the Fourier transform of the expectation value
of the dipole acceleration. Positive values of Sresp(ω) indicate
emission; negative values indicate absorption.

If |Egen| � |Ein| in the frequency range where the incoming
laser has components, one can approximate

Sresp(ω) ≈ SL
resp(ω) = 4πα

ω
Im[E∗

in(ω)d̈(ω)]. (23)

In HHG, we are rather interested in frequencies where the
incoming laser has no or negligible components, i.e.,

Sresp(ω) ≈ SNL
resp(ω) = 4π2α2

ω2
|d̈(ω)|2. (24)

Note that in the literature, one finds similar expressions derived
using different approaches leading, however, to different
prefactors and ω scaling. In [38,39], for instance, one finds
that SL

resp(ω) ∼ 1
ω2 Im [E∗

in(ω)d̈(ω)]. The “standard way” to
calculate HHG spectra is via SNL

resp(ω) ∼ |d̈(ω)|2 (derived from
Larmor’s formula). On the other hand, (24) is in agreement
with quantum-electrodynamical calculations [40].

Numerically, it is advantageous to evaluate d2

dt2 〈d〉 using
Ehrenfest’s theorem,

d2

dt2
〈d〉 = −2

〈
d

dxi

2√
x2

i + εne

〉
− 2Ȧ(t)

= 2

〈
2xi(

x2
i + εne

)3/2

〉
+ 2E(t). (25)

III. RESULTS

Results from TDRNOT calculations for AS and HHG,
together with the corresponding TDSE benchmarks, will be
presented in this section. All results were obtained starting
from the spin-singlet ground state, which was calculated
via imaginary-time propagation. Real-time propagation was
performed with enabled imaginary potential on a grid with
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FIG. 1. Absorption spectra Sresp(ω) (left vertical axis) calculated
using TDSE and TDRNOT with one and four RNOs. The dashed
curve indicates the spectrum |Ein(ω)|2 of the incoming laser field
(right vertical axis).

500 grid points (in each spatial direction) with a grid spacing
of 0.4.

A. Fano profiles in absorption spectra

A 25-nm (ω = 1.84) linearly polarized Ncyc = 3-cycle
sin2-shaped laser pulse of duration T = 2πNcyc/ω = 10.4 =
0.25 fs was applied to the model helium atom. The vector
potential in dipole approximation reads

A(t) = A0 sin2

(
ωt

2Ncyc

)
sin(ωt) for 0 � t � T , (26)

and zero otherwise. The chosen peak intensity I0 = (ωA0)2

corresponds to I0 = 1.0×1012 W/cm2. In order to obtain
a high-frequency resolution, the quantum propagation was
continued for Tfree = 10000 after the laser pulse. An ex-
ponential decay W (t) = e−βθ(t−T )(t−T ) with β = 2.5×10−5

was multiplied to ẍ(t) in order to mimic the decay of the
excited-state population due to spontaneous emission.

Figure 1 shows absorption spectra calculated with
TDRNOT using one and four RNOs per spin, together
with the exact TDSE benchmark result. The lines in the
frequency interval [0.6,0.9] correspond to transitions between
the ground state and singly excited states; the lines lying within
[1.8,2.2] correspond to transitions involving doubly excited
states where—in a single-particle picture—the lower-energetic
electron is in the first excited level. Note that the strength
of the lines in the frequency range [0.6,0.9] is sensitive to
the choice of the damping coefficient β. However, for the
purpose of benchmarking the TDRNOT results, that is not
important as long as the same β is used for both TDSE and
TDRNOT. While the lines involving singly excited states are
already present in the 1RNO calculation, the Fano line shapes
for ω ∈ [1.8,2.2] are only reproduced with more than one
RNO per spin. This is not surprising, as one RNO per spin is
equivalent to time-dependent Hartree-Fock, which is identical
to TDDFT in the exact-exchange-only approximation. The
latter is known to miss doubly excited states [41].

Figure 2 shows that the 2RNO result already reproduces
the Fano profiles, but their positions are not yet satisfactory.
We find that by adding more RNOs, the convergence to
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FIG. 2. Fano profiles due to doubly excited states calculated using
TDSE and TDRNOT with two, four, six, and eight RNOs.

the TDSE result is “quasimonotonous,” i.e., it transiently
worsens for odd numbers of RNOs per spin but then improves
for the subsequent even number. Six RNOs per spin give

reasonable spectra if the lowest series of doubly excited states
is relevant. We found that 14 RNOs are required if the next
series (with the lower electron in the second excited level) is
involved.

B. HHG spectra

One might expect that the calculation of HHG spectra is
an easy task, even for TDDFT in the simple exact-exchange-
only approximation. However, apart from possible correlation
effects, one has to keep in mind that the celebrated HHG
cutoff 3.17 Up + Ip (with Ip = |E0| the ionization potential
and Up = A2

0/4 the ponderomotive energy) [42] involves Ip.
Hence, a multiple steplike structure may arise because of the
different Ip for different charge states in multielectron systems.

In this HHG part of our work, we applied a rather long
(Ncyc = 15), flat-top 800-nm (ω = 0.057) pulse in order to
generate well-defined, sharp harmonic lines. The up and down
ramping was sin2 shaped over two cycles. The peak intensity
of the laser pulse was I0 = 1.0×1014 W/cm2.

Figure 3 shows the HHG spectra obtained with TDRNOT
using one, two, three, and six RNOs, together with the TDSE
benchmark. The 1RNO result (i.e., TDHF or exact-exchange-
only TDDFT) misses the proper extension of the plateau due
to HHG in He+. Instead, it gives an unphysical second plateau,
which is a replica of the first plateau due to the nonlinearities
in the EOM. Note that the laser parameters are not in the
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FIG. 3. Comparison of HHG spectra obtained with TDSE and TDRNOT with one, two, three, and six RNOs. For a better comparison, the
TDRNOT spectra are shifted to the right by half a harmonic order. The vertical lines in each panel indicate (from left to right) the ionization
potential Ip of neutral He, the cutoff 3.17 Up + Ip , the corrected cutoff 3.17 Up + 1.3 Ip obtained by Lewenstein et al. [42], and the He+ cutoff
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p .
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FIG. 4. Integrated error for HHG spectra, dipole accelerations
〈d̈〉, and densities in the TDRNOT results for one up to nine RNOs
per spin.

regime where a second plateau due to single-photon double
recombination occurs [43].

The 2RNO spectrum in Fig. 3 reproduces the He+ cutoff
very well. However, unphysical harmonic peaks emerge on
a level of 10−13 well above even the 100th harmonic. The
situation seems to worsen if more RNOs are added. The
reason for these unphysical high harmonics is truncation. By
adding more and more RNOs, TDRNOT is able to describe
transitions to more and more doubly excited states. However,
the energetic position of each new series of doubly excited
states is never correct in the first place. It only converges to
the right position if one adds even more RNOs (which bring
new, initially poorly positioned series). These wrong states
are responsible for the unphysical harmonics. Nevertheless
the quantitative agreement improves with increasing number
of RNOs because the harmonics up to the He+ cutoff match
better with the TDSE benchmark result. In fact, for six RNOs
per spin, the TDRNOT and TDSE HHG peaks up to the
63rd harmonic agree very well. Figure 4 shows the error of
the TDRNOT HHG spectra, i.e., the square of the difference
between the TDRNOT and the TDSE spectrum, integrated over
all frequencies. It is seen that the error decreases with number
of RNOs, although not strictly monotonously. Similarly, the
errors in the dipole acceleration 〈d̈〉 (integrated over the laser
pulse duration) and in the density (integrated over space and
the laser pulse duration) were calculated and are included in
Fig. 4.

C. Computational effort

As already stated in [20], the computation time τ (N,Nx)
required for a TDRNOT propagation using N NOs on Nx

spatial grid points scales

τ (N,Nx) = α1N
2Nx log(Nx) + α2N

3Nx (27)

when using the same fixed time step �t � �tconv small enough
to yield converged results. However, for an increasing number
N of NOs, one finds that the upper time-step limit �tconv =
�tconv(N ) decreases. This unpleasant behavior originates from
the minimal difference min |nn − nk| of ONs, which decreases

with increasing N because the (small) ONs of the less
significant NOs are more likely to come close on an absolute
scale. Fortunately, computational effort can be saved thanks to
the fact that any two ONs come close only occasionally during
real-time propagation. Hence, using an adaptive time step, the
scaling of the computation time becomes

τa(N,Nx) = [α3N
2Nx log(Nx) + α4N

3Nx]F (N ), (28)

with amended prefactors α4 � α2 and α3 � α1 and an
additional factor F (N ), describing the varying number of
time steps according to the adaptive scheme. We observed
a speedup of at least one order of magnitude for N > 6 when
using adaptive time steps and only a moderate increase of the
average time step with increasing N ∈ [1,9].

The computation times τa(N ) = τa(N,500) on a single core
of an i5-3570 processor required to obtain the high-harmonic
spectra using 1 to 9 RNOs were τa(1) � 6 , τa(2) � 14 ,
τa(3) � 27 , τa(4) � 45 , τa(5) � 71 , τa(6) � 169 , τa(7) �
241 , τa(8) � 352 , and τa(9) � 540 seconds, while the TDSE
calculation took τTDSE � 968 seconds. Thus, 1RNO, 2RNO,
4RNO, and 8RNO perform faster by a factor 161, 60, 21,
and 2.8. The computation times are too small for a thorough
scaling analysis, but there are indications of cubic scaling,
τa(8)/τa(4) = 7.8 � (8/4)3.

IV. CONCLUSION

In this work, we tested further the recently introduced time-
dependent renormalized-natural-orbital theory (TDRNOT).
The method is based on the equations of motion for the
renormalized natural orbitals (RNOs), i.e., the time-dependent
eigenfunctions of the one-body reduced density matrix, nor-
malized to their eigenvalues. TDRNOT was applied again to
a numerically exactly solvable model helium atom with the
focus on the absorbed and emitted radiation. Both absorption
and high-harmonic-generation (HHG) spectra are “simple
observables” in the sense that the single-particle density is
sufficient to calculate them. Hence, one could have expected
that time-dependent density functional theory (TDDFT) in the
exact-exchange-only approximation would work well. How-
ever, we showed that TDRNOT with just one RNO per spin
(which equals TDDFT in exact-exchange-only approximation)
fails to reproduce Fano line shapes in absorption spectra due
to the absence of doubly excited states. Adding more RNOs,
the Fano line shapes are captured well by TDRNOT. The
1RNO or TDDFT result for HHG spectra was qualitatively
wrong because it lacked the correct cutoff originating from
HHG in He+, while predicting an unphysical second plateau.
Again, with increasing number of RNOs, the agreement with
the benchmark result from the exact numerical solution of
the time-dependent Schrödinger equation improves. However,
unphysical HHG peaks at high frequencies emerge because of
the necessary truncation of the number of RNOs.

A TDRNOT implementation for helium in full dimension-
ality is under way. The computational effort can be kept
manageable if the laser is restricted to linear polarization
and the initial configuration is chosen with total magnetic
quantum number M = 0 with respect to the polarization
axis. Employing a spherical harmonics expansion with in-
dices l and m under these restrictions, each time-dependent
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three-dimensional (3D) RNO |ñ(t)〉 of helium contributes for
exactly one value of |m| = |mn|. For the ground state, one
even finds a single well-defined l = ln for each RNO. It is an
open question, though, as to how many RNOs are required to
describe the particular phenomena of interest.

For more than two particles, approximations for the two-
body reduced density matrix expansion coefficients γ̃2,ijkl(t)
in (13) are required. Testing such approximations will be the
subject of future work.
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APPENDIX A: DERIVATION OF EOM

Multiplying (9) from the right with |ñ〉 and using the 2DM
expansion in RNOs (13), one obtains

i ˙̂γ1(t)|ñ〉 = nn(t)(ĥ(t) − i�̂e)|ñ〉 −
∑

k

〈k̃|ĥ(t) + i�̂e|ñ〉|k̃〉

+ 2nn(t)
∑
ijk

γ̃2,ijnk(t)〈k̃|v̂ee|j̃〉|ĩ〉

− 2
∑
ijkl

γ̃2,ijkl(t)〈k̃l̃|v̂ee|ñj̃ 〉|ĩ〉

− 4inn(t)
∑
ij l

γ̃2,ijnl(t)〈l̃|�̂e|j̃ 〉|ĩ〉, (A1)

which multiplied from the left with 〈l̃| leads to

i〈l̃| ˙̂γ1(t)|ñ〉 = (nn(t) − nl(t))〈l̃|ĥ(t)|ñ〉
− i(nn(t) + nl(t))〈l̃|�̂e|ñ〉
+ 2nn(t)

∑
ijk

γ̃2,ijnk(t)〈l̃k̃|v̂ee|ĩ j̃ 〉

−
⎡
⎣2nl(t)

∑
ijk

γ̃2,ij lk(t)〈ñk̃|v̂ee|ĩ j̃〉
⎤
⎦

∗

− 4inn(t)nl(t)
∑
jk

γ̃2,ljnk(t)〈k̃|�̂e|j̃〉. (A2)

Multiplying

˙̂γ1(t) =
∑

k

| ˙̃k〉〈k̃| +
∑

k

|k̃〉〈 ˙̃k| (A3)

from the right with |ñ〉 and rearranging terms, one obtains

nn(t)| ˙̃n〉 = ˙̂γ1(t)|ñ〉 − 〈 ˙̃n|ñ〉|ñ〉 −
∑
k �=n

〈 ˙̃k|ñ〉|k̃〉. (A4)

Using the time derivative of the orthogonality relation
〈l̃(t)|ñ(t)〉 = δl,nnn(t),

〈 ˙̃l|ñ〉 + 〈l̃| ˙̃n〉 = δl,nṅn(t), (A5)

allows us to rewrite (A4) as

| ˙̃n〉 = ˙̂γ1(t)|ñ〉 + 〈ñ| ˙̃n〉|ñ〉 − ṅn|ñ〉 +
∑
k �=n

〈k̃| ˙̃n〉|k̃〉, (A6)

which is still implicit. However, multiplying (A6) from the left
with 〈l̃| for 〈l̃| = 〈ñ|,

ṅn(t) = 1

nn(t)
〈ñ| ˙̂γ1(t)|ñ〉

= 4 Im
∑
ij l

γ̃2,ijnl(t)〈ñl̃|v̂ee|ĩ j̃ 〉 − 2〈ñ|�̂e|ñ〉

− 4nn(t)
∑
j l

γ̃2,njnl(t)〈l̃|�̂e|j̃〉, (A7)

for nl(t) �= nn(t) at time t , results in

〈l̃| ˙̃n〉 = −〈 ˙̃l|ñ〉 = 〈l̃| ˙̂γ1(t)|ñ〉
nn(t) − nl(t)

, (A8)

and, for nl(t) = nn(t) at time t if l �= n, results in

〈l̃| ˙̂γ1(t)|ñ〉 = 0. (A9)

The last expression, with (A2), yields a conservation rule at
time t for nl(t) = nn(t) and 〈l|n〉 = 0:∑

ijk

γ̃2,ijnk(t)〈l̃k̃|v̂ee|ĩ j̃ 〉 − 2i〈l̃|�̂e|ñ〉

=
∑
ijk

γ̃2,lkij (t)〈ĩ j̃ |v̂ee|ñk̃〉 + 4inn(t)
∑
jk

γ̃2,ljnk(t)〈k̃|�̂e|j̃〉.

(A10)

The condition nl(t) = nn(t) for 〈l|n〉 = 0 means that these
orbitals at time t are degenerate, and one may choose any
orthogonal pair from the subspace they span.

The term 〈ñ| ˙̃n〉 depends on the phase choice for the RNOs.
In principle, one can use any value, keeping in mind that
γ̃2,ijnk(t) will depend on the choice. For the phase convention
introduced in [19] (with slight modifications to ensure that
during imaginary-time propagation, the norms of RNOs |ñ〉
and |ñ′〉 remain the same; see Appendix B),

i〈ñ| ˙̃n〉 = 1

2
〈ñ|ĥ|ñ〉 + 1

2
〈ñ′|ĥ|ñ′〉

+ Re
∑
ijk

γ̃2,ijnk〈ñk̃|v̂ee|ĩ j̃ 〉 + i
ṅn

2
. (A11)

Inserting (A1), (A11), (A7), and (A8) with (A2) into (A6), one
obtains the explicit EOM for the RNOs (14)–(17).

Note that we can use (16) to calculate Bnk(t) only if at time
t we have nk(t) �= nn(t). Otherwise,

Bnk(t) = i

nn(t)
〈k̃| ˙̃n〉 − 〈k̃|h(t)|ñ〉

nn(t)

− 2
∑
ij l

γ̃2,kij l(t)〈j̃ l̃|v̂ee|ñĩ〉
nn(t)

− i
〈k̃|�̂e|ñ〉

nn(t)

− 4i
∑
j l

γ̃2,kjnl(t)〈l̃|�̂e|j̃〉, (A12)

if nk(t) = nn(t). Without the imaginary potential, it is always
possible to choose such linear combination that Bnk(t) = 0.
However, with the imaginary potential, the situation is more
complicated. For two-electron systems, one can still set
Bnn′ (t) = 0 but, in general, it is advisable to use (A12) with
some value for 〈k̃| ˙̃n〉 which does not change γ2,ijnk(t), e.g., 0.
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APPENDIX B: RNO PHASE CONVENTION
AND PROOF OF (A11)

The two-electron state within a particular phase convention
for the RNOs can be written as [19]

|�(t)〉 =
∑
i odd

g̃i(t)[|ĩ ĩ ′〉 − |ĩ ′ ĩ〉], g̃i(t) = eiϕi

√
2ni(t)

. (B1)

The phase factors eiϕi for the helium singlet can be chosen,

eiϕi = 2δk,1 − 1, k odd, (B2)

leading to real expansion coefficients

γ̃2,ijkl(t) = g̃i(t)g̃k(t)δi,j ′δk,l′

= (−1)i−k ei[ϕi−ϕk ]

2
√

ni(t)nk(t)
δi,j ′δk,l′ . (B3)

Inserting (B1) into the left-hand side of the TDSE (5) leads to

Ĥ (1,2)(t)|�(t)〉 = i
∑
i odd

˙̃gi(t)[|ĩ ĩ ′〉 − |ĩ ′ ĩ〉]

+ i
∑
i odd

g̃i(t)[|˙̃iĩ ′〉 + |ĩ ˙̃i ′〉 − |˙̃i ′ ĩ〉 − |ĩ ′ ˙̃i〉].

(B4)

Multiplying from the left by 2g̃k(t)〈k̃k̃′| for an odd k and
making use of 2g̃2

k (t)nk(t) = 1 gives

2g̃k(t)〈k̃k̃′|Ĥ (t)|�(t)〉 = i
˙̃gk(t)

g̃k(t)
nk(t) + i(〈k̃| ˙̃k〉 + 〈k̃′| ˙̃k′〉)

= i

(
〈k̃| ˙̃k〉 + 〈k̃′| ˙̃k′〉 − ṅk(t)

2

)
. (B5)

Inserting (B1) into the right-hand side of (B5) gives

2g̃k(t)〈k̃k̃′|Ĥ (t)|�(t)〉
= 〈k̃|ĥ(t) − i�̂e|k̃〉 + 〈k̃′|ĥ(t) − i�̂e|k̃′〉

+ 2
∑
i odd

g̃i(t)g̃k(t)[〈k̃k̃′|v̂ee|ĩ ĩ ′〉 + 〈k̃k̃′|v̂ee|ĩ ′ ĩ〉], (B6)

which, using (A7) and (B3), simplifies to

2g̃k(t)〈k̃k̃′|Ĥ (t)|�(t)〉
= 〈k̃|ĥ(t)|k̃〉 + 〈k̃′|ĥ(t)|k̃′〉

+ 2 Re
∑
ij l

γ̃2,ijkl〈k̃l̃|v̂ee|ĩ j̃ 〉 + i
ṅk(t)

2
. (B7)

Combining (B5) and (B7), one arrives at

i〈ñ| ˙̃n〉 + i〈ñ′| ˙̃n′〉 = 〈ñ|ĥ(t)|ñ〉 + 〈ñ′|ĥ(t)|ñ′〉
+ 2 Re

∑
ij l

γ̃2,ijnl〈ñl̃|v̂ee|ĩ j̃ 〉 + iṅn(t).

(B8)

There is the freedom to distribute the right-hand side between
i〈ñ| ˙̃n〉 and i〈ñ′| ˙̃n′〉. We deviate slightly from the choice in [19]
and set

i〈ñ| ˙̃n〉 = i〈ñ′| ˙̃n′〉
= 1

2
〈ñ|ĥ(t)|ñ〉 + 1

2
〈ñ′|ĥ(t)|ñ′〉

+ Re
∑
ij l

γ̃2,ijnl〈ñl̃|v̂ee|ĩ j̃〉 + i
ṅn(t)

2
, (B9)

which has the advantage that the ONs of RNOs |n〉 and |n′〉 re-
main automatically equal during imaginary-time propagation.
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Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is extended towards
a multicomponent approach in order to describe H2

+ beyond the Born-Oppenheimer approximation. Two
kinds of natural orbitals, describing the electronic and the nuclear degrees of freedom are introduced, and
the exact equations of motion for them are derived. The theory is benchmarked by comparing numerically exact
results of the time-dependent Schrödinger equation for an H2

+ model system with the corresponding TDRNOT
predictions. Ground-state properties, linear-response spectra, fragmentation, and high-order harmonic generation
are investigated.

DOI: 10.1103/PhysRevA.93.043414

I. INTRODUCTION

Simulating laser-driven N -particle systems truly ab initio,
i.e., by solving the time-dependent Schrödinger equation
(TDSE), is only possible for very small N . As more and more
experiments are performed in the intense-laser, ultrashort-
pulse regime [1,2], efficient time-dependent many-body meth-
ods, applicable beyond linear response, are needed. A widely
used approach is time-dependent density functional theory
(TDDFT) [3–5], in which the single-particle density n(�r,t)
is used as the basic variable. This quantity is, in principle,
sufficient to calculate every observable of a time-dependent
quantum system [3,6]. However, while the scaling of the
computational effort is favorable for TDDFT, a generally
unknown exchange-correlation (XC) functional is involved
that needs to be approximated. Especially, the often-used
adiabatic XC functionals often miss correlation effects [7–9].
Additionally, not all observables are known as functionals
of n(�r,t) (an example being correlated photoelectron spec-
tra [10]), meaning that even if the exact single-particle density
n(�r,t) was reproduced by TDDFT, the interesting observables
measured in nowadays intense-laser matter experiments could
not be reproduced. Other approaches, e.g., multiconfigura-
tional time-dependent Hartree-Fock (MCTDHF) [11,12] or
time-dependent configuration interaction (TDCI) [13–17] do
not suffer from these difficulties, however, at a price of much
higher computational cost.

When applying many-body methods to molecular sys-
tems, the Born-Oppenheimer (BO) approximation is often
employed, or the nuclei are even treated classically. However,
for an accurate description of molecules in, e.g., strong laser
fields, the nuclei should be treated fully quantum mechanically
beyond BO. Especially in the case of fragmentation of
molecules in intense laser fields the adiabatic BO approx-
imation may break down as electronic and nuclear energy
scales are not well separated at avoided crossings or conical
intersections. Several approaches aiming at the description
of correlated electron-nuclear dynamics beyond the BO ap-
proximation were presented in the last few years, e.g., the
exact factorization of the molecular wave function [18–20], a

*Corresponding author: dieter.bauer@uni-rostock.de

multiconfigurational time-dependent Hartree (Fock) approach
[MCTDH(F)] [21–23], or a multicomponent extension of
(TD)DFT [MC(TD)DFT] [24–26], which, besides the single-
particle electron density, also takes the diagonal of the nuclear
density matrix into account.

In this paper, we extend the recently introduced
time-dependent renormalized-natural-orbital theory
(TDRNOT) [27–30] towards the simplest molecular system,
H2

+, taking both the electronic and nuclear degrees of freedom
fully quantum mechanically into account. We restrict ourselves
to a low-dimensional H2

+ model system [20,23,26,31–34]
in order to have the TDSE benchmark results readily
available. However, the TDRNOT equations derived in this
work are easily generalized to the real, three-dimensional
(3D) H2

+.
The basic quantities of our theory are the so-called natural

orbitals (NOs), introduced by Löwdin as the eigenfunctions
of the one-body reduced density matrix (1-RDM) [35].
Equations of motion (EOM) for the NOs can be derived.
However, as each NO is defined up to a phase factor
only, the EOM are not unique. This phase freedom can be
employed to the computational benefit and to remove seeming
singularities. Renormalizing NOs amounts to normalizing
them to their eigenvalues, which simplifies an exactly unitary
propagation [28]. TDRNOT has been applied to a model
two-electron atom and performed well in treating phenomena
where TDDFT with known and practicable XC functionals
fails [28–30]. As the NOs are proven to form the best possible
basis for two-electron systems [36], the hope is that TDRNOT
provides a means to treat bigger systems in a computationally
economic way as well.

The paper is structured as follows. The H2
+ model system

and the basic properties of the reduced density matrices
and NOs of a two-component system are introduced in
Sec. II. The EOM for the NOs are presented in Sec. III.
In Sec. IV we benchmark TDRNOT by first calculating
ground-state properties and linear-response spectra. Second,
the interaction with intense laser pulses is simulated, with
the focus on the fragmentation dynamics and high-order
harmonic generation (HHG). Finally, in Sec. V we give a
conclusion.

Atomic units (a.u.) are used throughout unless noted
otherwise.
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II. NATURAL-ORBITAL THEORY FOR
A TWO-COMPONENT SYSTEM

A. Model system

We apply TDRNOT to the widely used one-dimensional
H2

+ model system [20,23,26,31–34]. This collinear model
utilizes the fact that the ionization and dissociation dynamics of
H2

+ is predominantly constrained to the polarization direction
when interacting with a strong, linearly polarized laser field.
The reduced dimensionality permits the exact numerical
solution of the TDSE at relatively low computational cost,
and thus efficient benchmarking of TDRNOT.

The Hamiltonian of the H2
+ model system (in dipole

approximation and length gauge) reads

Ĥ (x,R,t) = ĥe + ĥn + Ven(x,R), (1)
where

ĥe(x,t) = − 1

2 μe
∂2
x + qe x E(t) (2)

ĥn(R) = − 1

2 μn
∂2
R + Vnn(R). (3)

x and R denote the electron coordinate and the internuclear
distance, respectively. We introduce ĥe and ĥn as the single-
particle Hamiltonians for the electronic and nuclear degree
of freedom, respectively. Furthermore, μe = 2 M/(2 M + 1)
(with the proton mass M � 1836) and μn = M/2 denote the
reduced masses of the electron and the nuclei, respectively,
and qe = (2 M + 2)/(2 M + 1) is the reduced charge.

The interaction potentials are modeled by soft-core poten-
tials in order to eliminate the singularities:

Ven(x,R) = − 1√(
x − R

2

)2 + ε2
en

− 1√(
x + R

2

)2 + ε2
en

, (4)

Vnn(R) = 1√
R2 + ε2

nn

. (5)

The softening parameters are set to ε2
en = 1 and ε2

nn = 0.03.
To describe the model system in terms of NOs it is useful

to expand the wave function in orthonormal single-particle
wave functions describing the electronic and nuclear degree of
freedom. The Schmidt decomposition [37] ensures that only a
single summation is necessary for this expansion,

�(x,R,t) =
∑

k

ck(t) ϕk(x,t) ηk(R,t). (6)

B. Density matrices and natural orbitals

Let us start from the pure density matrix

γ̂1,1(t) = |�(t)〉 〈�(t)| . (7)

Unlike in the two-electron case [28] the pure two-body density
matrix (2-DM) is a multicomponent object in the case of H2

+.
Due to the two distinguishable degrees of freedom, different
1-RDMs are obtained, depending on which degree of freedom
is traced out,

γ̂1,0(t) = Trn γ̂1,1(t), (8)

γ̂0,1(t) = Tre γ̂1,1(t). (9)

As the NOs and occupation numbers (ONs) are defined as the
eigenstates and eigenvalues of the 1-RDM, respectively, two
different kinds of orbitals are expected:

γ̂1,0(t) |k(t)〉 = nk(t) |k(t)〉 (10)

γ̂0,1(t) |K(t)〉 = NK (t) |K(t)〉. (11)

Throughout this paper, we will use lowercase letters for
electronic NOs and uppercase for nuclear NOs.

Inserting Eq. (6) into Eqs. (7)–(11) leads to the conclusion
that the single-particle wave functions in Eq. (6) are the
electronic and nuclear NOs,

ϕk(x,t) = 〈x|k(t)〉 , ηk(R,t) = 〈R|K(t)〉 , (12)

respectively. The expansion coefficients in Eq. (6) can be
expressed in terms of the ONs,

ck(t) =
√

nk(t) eiφk (t), (13)

i.e., they are defined up to a phase factor. Additionally, one
finds the constraint

nk(t) = NK (t). (14)

Hence, ONs of each pair of electronic and nuclear NOs have
to be equal at any time, despite their distinguishability.

For a numerical propagation it is beneficial to introduce
renormalized natural orbitals (RNOs)

|k̃(t)〉 =
√

nk(t) |k(t)〉 , |K̃(t)〉 =
√

NK (t) |K(t)〉 (15)

in order to unify the coupled equations of motion for the ONs
and NOs and thus propagate only one combined quantity. In
terms of RNOs

γ̂1,0(t) =
∑

k

|k̃(t)〉 〈k̃(t)| . (16)

In the same way γ̂0,1(t) can be expanded in nuclear RNOs. The
multicomponent 2-DM γ̂1,1 expanded in RNOs reads

γ̂1,1(t) =
∑
iJ kL

γ̃iJ kL(t) |ĩ(t),J̃ (t)〉 〈k̃(t),L̃(t)|. (17)

The expansion coefficients γ̃iJ kL(t) are exactly known in
the case of a two-particle system like helium [28]. But also for
any other systems with two degrees of freedom

γ̃iJ kL(t) = 1√
ni(t) nk(t)

δi,J δk,L (18)

holds.
By definitions (10), (11) the NOs are determined only

up to an orbital-dependent factor. Assuming the NOs to be
normalized (e.g., to unity) there remains still the freedom
to choose an orbital-dependent phase factor. Such a choice,
however, will affect the phase factors eiφk (t) in the expansion (6)
of �(x,R,t). The phase freedom of the NOs thus allows for a
phase transformation leading to tunable, constant phases (for
more details see Ref. [28]), and all time dependencies are then
incorporated in the so-called phase-including natural orbitals
(PINOs) [38–40]. Moreover, as already noted in Ref. [28], even
after shifting all time dependencies from the phase factor to the
NOs there is still the freedom to distribute this phase arbitrarily
between each pair of orbitals in the product ϕk(x,t) ηk(R,t).
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The time evolution of the electronic NOs can be formally
expanded as

i∂t |k(t)〉 =
∑
m

αkm(t) |m(t)〉 (19)

(analogously for the nuclear NOs). Different phase choices
translate to different diagonal elements αkk(t) and αKK (t).

III. EQUATIONS OF MOTION

Starting from the EOM of the 2-DM and with the knowledge
of the expansions of the 1-RDM and 2-DM in RNOs, exact
equations of motion for the two types of RNOs can be
derived. The electronic RNOs evolve (all time arguments are
suppressed for the sake of brevity) according to

i∂t |ñ〉 = ĥe |ñ〉 + An |ñ〉 +
∑
k �=n

Bnk |k̃〉 +
∑

k

Ĉnk |k̃〉 (20)

with the coefficients

An = βn − 1

nn

Re
∑
pJL

γ̃nJpL 〈p̃L̃|V̂en|ñJ̃ 〉 , (21a)

Bnk = 1

nn − nk

∑
pJL

[γ̃pLnJ 〈k̃J̃ |V̂en|p̃L̃〉

− γ̃kJpL 〈p̃L̃|V̂en|ñJ̃ 〉], (21b)

Ĉnk =
∑
JL

γ̃kJnL 〈L̃|V̂en|J̃ 〉 , (21c)

while the EOM for the nuclear RNOs is of a similar form:

i∂t |Ñ〉 = ĥn |Ñ〉 + AN |Ñ〉 +
∑
K �=N

BNK |K̃〉 +
∑
K

ĈNK |K̃〉

(22)

with

AN = − βn

NN

Re
∑
ijL

γ̃iNjL 〈j̃ L̃|V̂en|ĩÑ〉 , (23a)

BNK = 1

NN − NK

∑
ijL

[γ̃jLiN 〈ĩK̃|V̂en|j̃ L̃〉

− γ̃iKjL 〈j̃ L̃|V̂en|ĩÑ〉], (23b)

ĈNK =
∑
ij

γ̃iKjN 〈j̃ |V̂en|ĩ〉 . (23c)

In order to fulfill the constraint given in Eq. (14) at any time also
ṅi(t) = ṄI (t) has to hold. While this condition is automatically
fulfilled during real-time propagation, the distribution of the
phase between each pair of orbitals has to be chosen in a
particular way during imaginary-time propagation in order
to find the true ground state of the system. To that end the
parameters

βn = 1

2
Re

[
〈Ñ |ĥn|Ñ〉 − 〈ñ|ĥe|ñ〉∑

k,K
1√

nn nk
〈ñÑ |V̂en|k̃K̃〉 δk,K

+ 1

]
(24)

during imaginary-time propagation are introduced (arbitrary
real βn can be chosen during real-time propagation; we simply
took βn = 1/2).

The EOM are exact for an infinite number of RNOs.
However, in a numerical implementation it is necessary to
restrict the number of orbitals to a finite value No. This
truncation introduces errors in the propagation. We will
therefore analyze the effect of the truncation by comparing
to the corresponding exact results obtained by propagating
the full many-body wave function according to the TDSE. In
particular, we may extract the correct, truncation-free NOs by
diagonalizing the exact 1-RDMs.

IV. RESULTS

In this section, we first benchmark ground-state results for
the H2

+ model obtained with TDRNOT in imaginary time
against the TDSE result. Second, as the simplest real-time
propagation application, linear-response spectra are calculated
for different No and compared to the reference TDSE result.
Finally, we consider the interaction with a short, intense laser
pulse.

A. Ground state

The ground-state energies obtained from a TDRNOT
imaginary-time propagation of No orbitals per degree of
freedom are presented in Table I, together with the exact value
from the TDSE.

Clearly, the TDRNOT ground-state energy converges to
the exact value for increasing No, and only a few RNOs
are needed to obtain excellent agreement. The ONs show a
behavior expected for the ground state: The first orbital is
highly occupied with an ON close to one while the ONs for
higher orbitals decrease rapidly with increasing orbital index.

Using only one orbital per degree of freedom (No = 1)
TDRNOT corresponds to an uncorrelated time-dependent
Hartree (TDH) approach [41]. The ground-state energy is
already reasonably accurate. However, it is known that the
TDH approach fails to describe dissociation, as the nuclear
potential is only well approximated around the equilibrium
internuclear distance [23,26,41].

Not only the ground-state energy but also the correlated
ground-state probability density is in excellent agreement if
enough RNOs are taken into account, as shown in Fig. 1.

TABLE I. Energies and ONs of the ground state obtained from
imaginary-time propagation using different No. The exact TDSE
results are presented for comparison. With increasing No the values
converge to the exact results.

Total energy Dominant occupation numbers

No E0 [a.u.] n1 n2 /10−3 n3 /10−6 n4 /10−8

1 −0.774 84 1.000 00
2 −0.776 36 0.997 75 2.255
4 −0.776 38 0.997 70 2.291 8.330 4.685
8 −0.776 38 0.997 70 2.291 8.332 4.746
TDSE −0.776 38 0.997 70 2.291 8.332 4.746
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FIG. 1. Plot of the correlated ground-state probability density
|�(x,R)|2 for (a) No = 1, (b) No = 2, (c) No = 4, and (d) No = 8 for
negative values of x. For x > 0 the absolute difference to the exact
probability density is plotted.

A gridlike structure is apparent in the differences between
the TDRNOT ground-state probability densities and the exact
TDSE density. This structure is related to the location of the
nodal lines of the most significant RNO not included in the
TDRNOT calculation.

B. Linear-response spectrum

In order to obtain linear-response spectra, the initial ground-
state RNOs are propagated in real time for tmax = 2000
after a kick with a small electric field (E = 0.0001). An
imaginary potential is enabled to prevent reflection of the
density at the boundaries of the grid. Fourier transforming
the time-dependent dipole expectation value d(t),

d(t) = −〈�(t)|qex̂|�(t)〉 = −
∑

n

qe 〈ñ(t)|x̂|ñ(t)〉, (25)

leads to a spectrum which exhibits peaks at energy differences
E − E0 of dipole-allowed transitions. The resulting spectra
calculated from TDRNOT propagations with different No as
well as the reference spectrum from a TDSE calculation are
depicted in Fig. 2.

A severe difference between the exact and the TDRNOT
result is apparent. As the electronic first excited state (in
the BO picture) is dissociative, a broad continuous feature
is visible in the exact spectrum. This is also the case for other
electronic transitions. In contrast to HD+ [26], vibrational
excitations have vanishing dipole oscillator strengths. Hence,
no excitations at low energies are visible. The results from
the TDRNOT calculations show a different behavior: Discrete
peaks are observed instead of a continuum. The number of
peaks increases with the number of RNOs used in the calcula-
tion. In contrast to the helium model atom—where including
more RNOs leads to the appearance of peaks describing
series of doubly excited states [28]—in the molecular case
several of the emerging discrete peaks can be assigned to the
same electronic transition. The increasing number of discrete
transitions should finally result in a continuous spectrum if
enough orbitals are taken into account. For the TDH case No =
1 this behavior has already been observed [23,26,41]. Using the
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FIG. 2. Linear-response spectra obtained from TDRNOT calcula-
tions with different numbers of RNOs No compared to the exact TDSE
result. Each spectrum is normalized to one, and the spectra are shifted
vertically by factors of 10−5 in order to make them distinguishable.

Hartree approximation, only one sharp peak—corresponding
to a transition to a bound state—appears in the spectrum for
the first electronic transition. The reason for this erroneous
behavior is the wrong shape of the nuclear potential in this
case (see, e.g., Refs. [26,41]).

As stated before, the restriction to a finite number of RNOs
introduces a truncation error. Truncation-error-free reference
results for a given No can be obtained by diagonalization of
the exact 1-RDM (from the TDSE). The resulting spectrum
from only one truncation-error-free NO (labeled with TDSE
No = 1) is also shown in Fig. 2. It almost completely coincides
with the full exact result. One thus can conclude that almost all
important information is already included in the first dominant
RNO. However, due to the coupling between RNOs in the
TDRNOT EOM all other RNOs are important during the
propagation.

C. H2
+ in intense laser fields

Many different processes influence the fragmentation dy-
namics of molecules subjected to intense laser fields, e.g., bond
softening [42], above-threshold dissociation (ATD) [43], bond
hardening or vibrational trapping [44], charge-resonance-
enhanced ionization [45], and the retroaction due to the long-
range Coulomb potential [46]. We want to further benchmark
TDRNOT by investigating its ability to describe nonperturba-
tive phenomena far from equilibrium. As the theory is aiming
to describe strong-field laser-matter interaction, we study the
fragmentation of H2

+ upon the interaction with a short, intense
laser pulse. Furthermore, HHG spectra are calculated.

1. Dissociation and ionization

An infrared 800-nm four-cycle pulse with a sin2 envelope
and a peak intensity of I0 = 1014 W/cm2 was applied to the
H2

+ model system. Upon the interaction with an intense
laser pulse, fragmentation can occur due to dissociation or
dissociative ionization (DI). In the latter case the removal of
the electron leads to Coulomb explosion as the nuclei fly apart
due to their Coulomb repulsion. In order to judge whether
the different fragmentation processes can be reproduced with
TDRNOT, we analyze the time-dependent nuclear probability
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FIG. 3. Time-dependent nuclear probability density upon the interaction with an 800-nm four-cycle pulse with I0 = 1014 W/cm2. Again
different numbers of orbitals were used: (a) No = 1, (b) No = 2, (c) No = 4, (d) No = 8, and (e) No = 10. With more RNOs included, the
agreement with the exact result of the TDSE, given in (f), is considerably improved.

density,

Pnuc(R,t) =
∫

dx |�(x,R,t)|2 =
∑

k

|η̃k(R,t)|2. (26)

Figure 3 shows the logarithmically scaled, time-dependent
nuclear probability density Pnuc(R,t) resulting from TDRNOT
calculations. The TDSE reference result is included for
comparison in Fig. 3(f). In the latter figure a many-fold
jetlike structure becomes apparent, which can be attributed to
dissociation. Due to ATD—the absorption of more photons
than needed—dissociation channels with different kinetic
energies of the fragments appear. In the TDH case No =
1, however, the time-dependent nuclear probability density
shows no indication of dissociation at all [Fig. 3(a)]. This
erroneous behavior is due to the wrong shape of the effective
nuclear potential again (see Fig. 1 in Ref. [41]). Vibrations
around the equilibrium internuclear distance are already
reproduced though. A TDRNOT calculation with No = 2
does not lead to a much improved result. However, four
RNOs are sufficient for reproducing dissociation, as the most
prominent jet is clearly visible, although the broadening is
not yet in good agreement with Pnuc(R,t) obtained from the
TDSE. As expected, including more orbitals leads to a better
agreement with the exact result. A second jet corresponding
to dissociation upon the absorption of a different number of
photons is already clearly visible in the No = 8 density, and
with two more orbitals the broadening improves. However,
an erroneous structure emerges at intermediate internuclear
distances 10 < R < 20, which vanishes with even more RNOs
(not shown).

The kinetic energy release (KER) in the nuclear fragments
for dissociation and DI can be calculated from the RNOs by
means of the virtual-detector method [33,47]. To that end we
reconstruct the wave function from the RNOs and then follow
Ref. [33]. The resulting KER spectra obtained with ten RNOs
per degree of freedom are compared with the corresponding
TDSE benchmark results in Fig. 4(a).

Regarding dissociation, multiple peaks at energies Ekin <

0.2 are observed. The most distinct peaks are separated by
roughly the photon energy and can be assigned to three-
and four-photon ATD, respectively. These processes were
found to be dominant also for longer pulses of the same
wavelength and intensity [48]. The expected positions of
the peaks (using the BO-approximation and assuming the
vibrational ground state) in the spectrum can be calculated
using a simple energy conservation formula [32]. These
positions are depicted as vertical gray lines in Fig. 4(a).
The spectrum obtained from the TDRNOT calculation has
a structure similar to the exact one—heights and positions
of the peaks coincide approximately with the exact results.
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FIG. 4. Energy spectra for nuclei and photoelectrons, calculated
using the (extended) virtual-detector method. The laser parameters
are the same as in Fig. 3. (a) Kinetic-energy spectra of the nuclei for
dissociation (blue) and DI (red). The vertical gray lines denote 2ω, 3ω,
and 4ω absorption from the vibrational ground state. (b) TDRNOT
photoelectron spectrum for 10 RNOs per degree of freedom (red,
dashed) compared to the exact result from the TDSE (orange, solid).
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However, in the TDRNOT spectrum several discrete peaks
are visible for the three-photon dissociation instead of the
broad, continuous energy distribution in the exact spectrum.
Moreover, there are discrepancies for lower energies, and the
two-photon dissociation is missing completely.

The KER spectrum in the case of DI is, as the Coulomb
energy is released, centered around higher energies Ekin > 0.2.
Note the different scaling of the ordinate as the ionization
yield is several orders of magnitude below the dissociation
yield. There are slight deviations of TDRNOT from the
exact result—the spectrum obtained from TDRNOT is shifted
towards lower energies—but the general structure of the
spectrum is reproduced.

Furthermore, in the case of DI, we calculate electronic
kinetic-energy spectra using the extended virtual-detector
method [49]. Starting from the virtual detectors, classical
trajectories are calculated in order to obtain the final momen-
tum of the electron at the end of the laser pulse. The results
are presented in Fig. 4(b). For both the TDRNOT and the
TDSE results, a modulation in the yield, depending on Eel

kin, is
visible. This can be attributed to the interference of quantum
trajectories starting at different ionization times, which lead to
the same final momentum [50,51]. In the case of the electronic
kinetic-energy spectrum, the agreement between the results
from a TDRNOT calculation with No = 10 and the exact result
is clearly better than for the KER spectra. This shows that
different minimum numbers of RNOs are required, depending
on the observable to calculate.

2. HHG spectra

Harmonic spectra are obtained by Fourier transforming the
time-dependent dipole acceleration d̈(t) [52], which is given
by

μe

qe
d̈(t) =

∫
dx

∫
dR |�(x,R,t)|2 ∂Ven

∂x
+ qe E(t). (27)

An 800-nm 10-cycle pulse with sin2-shaped on and off ramping
over two cycles was employed. The peak intensity of the laser

pulse was I0 = 3.0 × 1014 W/cm2. In Fig. 5, TDRNOT HHG
spectra, calculated using 1–8 RNOs per degree of freedom, are
compared to the exact TDSE spectrum. In the inset, a part of
the spectrum is plotted on a linear scale.

With only one RNO the position of the cutoff is already in
good agreement with the exact result. However, the shape
of individual peaks, especially at high harmonic order, is
completely wrong. The TDRNOT calculation with No = 2
exhibits erroneous peaks in addition to the peaks at the odd
harmonics, especially pronounced in the region beyond the
cutoff. When adding more RNOs the quantitative agreement
improves, and the wrong peaks vanish. A similar improvement
with increasing number of single-particle functions has been
reported for calculations using an MCTDH approach [23].
For No = 8 the height and the shape of the peaks are well
reproduced up to the 60th harmonic order. At very high
harmonic orders some deviations in the spectra are still visible,
and the noise level of the TDRNOT results is two orders of
magnitude higher than for the TDSE. A similar behavior was
observed for HHG in a model He atom [30]. On a linear scale,
as often used in experiments, the agreement is excellent and
clearly improves with increasing No (see insets in Fig. 5).

V. CONCLUSION

We have investigated the performance of time-dependent
renormalized-natural-orbital theory (TDRNOT) when applied
to the simplest multicomponent system exhibiting electron-
nuclear correlation, i.e., H2

+. Different types of renormalized
natural orbitals (RNOs), describing the electronic and the
nuclear component, were introduced, and their coupled equa-
tions of motion derived. As in the case of helium investigated
earlier no approximations concerning the expansion of the
time-dependent two-body density matrix need to be made.

In order to benchmark the theory the ground state of a one-
dimensional H2

+ model system and linear-response spectra
were calculated using TDRNOT. While an excellent agreement
with the exact ground-state energy was achieved with very few
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FIG. 5. HHG spectra for an 800-nm 10-cycle flat-top pulse with I0 = 3.0 × 1014 W/cm2 calculated with TDRNOT using 1, 2, 4, and 8
RNOs per degree of freedom compared to the exact spectrum obtained from the TDSE. The insets show a section of each spectrum plotted on
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orbitals, the linear-response spectra were plagued by multiple
sharp peaks that only for very many orbitals would reproduce
the correct, broad structure caused by bound-continuum
transitions. This unpleasant feature is caused by the restriction
to a finite number of orbitals, which introduces a truncation
error. Future work will be devoted to improve on that aspect of
TDRNOT.

Finally, TDRNOT was applied to H2
+ interacting with

a short, intense laser pulse. The time evolution of the
nuclear probability density was studied, and features indicating
different fragmentation processes were identified. It was

found that TDRNOT is able to reproduce dissociation and
Coulomb explosion and the corresponding kinetic-energy-
release spectra if enough RNOs are taken into account. The
same applies to high-harmonics spectra where eight RNOs
were found to yield very good agreement with the benchmark
result from the time-dependent Schrödinger equation.
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A. Appendix

A.1. EOM for NOs and ONs

EOMs for NOs and ONs are derived by inserting (1.28) and (1.26) into (1.22), obtaining

i
∑
m

(
ṅm(t)|m〉〈m|+ nm(t)|m〉〈ṁ|+ nm(t)|ṁ〉〈m|

)
=
∑
m

nm(t)
(
ĥ(t)|m〉〈m| − |m〉〈m|ĥ(t)

)
+ 2

∑
ijklm

〈m|
[
V̂ee, γ2,ijkl(t)|ij〉〈kl|

]
|m〉 .

(A.1)

Multiplying from right with |n〉 one gets

inn(t)|ṅ〉 =nn(t)ĥ(t)|n〉 − i ṅn(t)|n〉 −
∑
k

nk(t)
(
〈k| ĥ(t) |n〉+ i〈k̇|n〉

)
|k〉

+ 2
∑
ijl

γ2,ijnl(t) 〈l| V̂ee |j〉 |i〉 − 2
∑
ijkl

γ2,ijkl(t) 〈kl| V̂ee |nj〉 |i〉,
(A.2)

which is already an implicit EOM for NOs. To write it in explicit form multiply (A.2)
from left with 〈m|, which gives

inn(t)〈m|ṅ〉 =nn(t) 〈m| ĥ(t) |n〉 − i ṅn(t)δmn − nm(t)
(
〈m| ĥ(t) |n〉+ i〈ṁ|n〉

)
+ 2

∑
ijl

γ2,ijnl(t) 〈ml| V̂ee |ij〉 − 2
∑
jkl

γ2,mjkl(t) 〈kl| V̂ee |nj〉 .
(A.3)

Taking the time derivative of 〈m|k〉 = δmn one finds 〈ṁ|n〉 = −〈m|ṅ〉, with which

−inn(t)〈ṁ|n〉 =nn(t) 〈m| ĥ(t) |n〉 − i ṅn(t)δmn − nm(t)
(
〈m| ĥ(t) |n〉+ i〈ṁ|n〉

)
+ 2

∑
jpl

(
γ2,pjnl(t) 〈ml| V̂ee |pj〉 − γ2,mjpl(t) 〈pl| V̂ee |nj〉

)
(A.4)
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follows. Further, for m = n one obtains EOM for ONs:

ṅn(t) = 4 Im
∑
ijl

γ2,ijnl(t) 〈nl| V̂ee |ij〉 , (A.5)

and for m 6= n, assuming nn(t) 6= nm(t),

〈m| ĥ(t) |n〉+ i〈ṁ|n〉 = −2
∑
jpl

γ2,pjnl(t) 〈ml| V̂ee |pj〉 − γ2,mjpl(t) 〈pl| V̂ee |nj〉
nn(t)− nm(t)

. (A.6)

By inserting (A.5) and (A.6) into (A.4) one obtains

i∂t|n(t)〉 = ĥ(t)|n(t)〉+An(t)|n(t)〉+
∑
k 6=n

Bnk(t)|k(t)〉+
∑
k

Ĉnk(t)|k(t)〉, (A.7)

with

An(t) = i〈n|ṅ〉 − 〈n| ĥ(t) |n〉 − 2

nn(t)

∑
jkl

γklnj(t) 〈nj| V̂ee |kl〉 , (A.8)

Bnk(t) =
2

nn(t)

∑
jpl

nk(t)γ2,pjnl(t) 〈kl| V̂ee |pj〉 − nn(t)γ2,kjpl(t) 〈pl| V̂ee |nj〉
nn(t)− nk(t)

, (A.9)

for nn(t) 6= nm(t), and

Ĉnk(t) =
2

nn(t)

∑
jl

γ2,kjnl(t) 〈l| V̂ee |j〉 . (A.10)

A phase convention for the NOs amounts to assigning a real number (or possibly time-
dependent function) to i〈n|ṅ〉. One particularly useful phase convention in the two-
electron case reads

inn(t)〈n|ṅ〉 = nn(t) 〈n| ĥ(t) |n〉+ <
∑
jpl

γ2,plnj(t) 〈nj| V̂ee |pl〉 , (A.11)

which inserted in (A.7) delivers the EOMs for NOs and ONs

i∂t|n(t)〉 = ĥ(t)|n(t)〉+An(t)|n(t)〉+
∑
k 6=n

Bnk(t)|k(t)〉+
∑
k

Ĉnk(t)|k(t)〉,

i ṅk(t) = 4
∑
ijl

γ2,ijnl(t) 〈nl| V̂ee |ij〉 ,
(A.12)
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with

An(t) = − 1

nn(t)

∑
jkl

(
2γ2,klnj(t) 〈nj| V̂ee |kl〉 − <γ2,klnj(t) 〈nj| V̂ee |kl〉

)
. (A.13)

This phase convention leads to an adiabatic expression for expansion coefficients
γ2,ijkl(t), depending only on the ONs at time t.

A.2. EOM from variation principle of NOs

The EOM for the two-electron case can be also derived via the variation of the action
[33]. The two-electron state expanded in NOs reads

|Φ〉 =
∑
i

di(t)|ii′〉, (A.14)

where the expansion coefficients

di(t) =

√
ni(t)

2
eiφi(t) = −di′(t) (A.15)

are connected to ONs via:

di(t)d
∗
i (t) =

ni(t)

2
= di′(t)d

∗
i′(t) =

ni′(t)

2
. (A.16)

Here, the explicit time dependence in states and NOs is suppressed. Since it is known
how to express the two-electron state in NOs, one can express also the Lagrangian in
NOs, which reads

L = 〈Φ| i ∂
∂t
− Ĥ(t) |Φ〉

=
∑
ij

〈jj′dj(t)| i
∂

∂t
− Ĥ(t) |di(t)ii′〉

=
∑
ij

(
idi(t)d

∗
j(t) 〈jj′|

∂

∂t
|ii′〉+ i ḋi(t)d

∗
j(t)〈jj′|ii′〉 − di(t)d∗j(t) 〈jj′| Ĥ(t) |ii′〉

)
=
∑
i

(
i ḋi(t)d

∗
i (t) + ini(t)〈i|i̇〉 − ni(t) 〈i| ĥ(t) |i〉

)
−
∑
ij

di(t)d
∗
j(t) 〈jj′| V̂ee |ii′〉 .

(A.17)
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The Lagrangian which takes into account that NOs are orthonormal via the Lagrange
multipliers λij(t) then is

L[|k〉, dk(t), 〈k|, d∗k(t)] =
∑
i

i ḋi(t)d
∗
i (t) + ini(t)〈i|i̇〉 − ni(t) 〈i| ĥ(t) |i〉

−
∑
ij

di(t)d
∗
j(t) 〈jj| V̂ee |ii〉 −

∑
i,j

λij(t) (〈i|j〉 − δij) ,

(A.18)

and the action is defined as the time integral

A =

∫ T

0

dtL[|k〉, dk(t), 〈k|, d∗k(t)]. (A.19)

The variation of the action with respect to 〈k| gives

0 =
∂A

∂〈k|
= ink(t)|k̇〉 − nk(t)ĥ(t)|k〉 −

∑
i

2di(t)d
∗
k(t) 〈k′| V̂ee |i′〉 |i〉 −

∑
i

λki(t)|i〉,
(A.20)

thus leading to

ink(t)|k̇〉 = nkĥ(t)|k〉+
∑
i

2di(t)d
∗
k(t) 〈k′| V̂ee |i′〉 |i〉+

∑
i

λki(t)|i〉. (A.21)

Multiplying from the left with 〈l| and rearranging terms yields

λkl(t) = ink(t)〈l|k̇〉 − nk(t) 〈l| ĥ(t) |k〉 −
∑
i

2di(t)d
∗
k(t) 〈lk′| V̂ee |ii′〉 . (A.22)

The variation of action with respect to |k〉 leads to

0 =
∂A

∂|k〉 −
d

dt

∂A

∂|k̇〉
=− i ṅk(t)〈k| − ink(t)〈k̇| − nk(t)〈k|ĥ(t)−

∑
i

2d∗i (t)dk(t) 〈i′| V̂ee |k′〉 〈i|

−
∑
i

λik(t)〈i|.

(A.23)
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A.2. EOM from variation principle of NOs

Complex conjugation gives

ink(t)|k̇〉 =− i ṅk(t)|k〉+ nk(t)ĥ(t)|k〉+
∑
i

2di(t)d
∗
k(t) 〈k′| V̂ee |i′〉 |i〉

+
∑
i

λ∗ik(t)|i〉.
(A.24)

Comparing (A.21) and (A.24), one notices that

λkk(t) = −i ṅk(t) + λ∗kk(t), (A.25)

and for l 6= k
λik(t) = λ∗ki(t). (A.26)

Inserting (A.22) into (A.25) one gets

ink(t)〈k|k̇〉 − nk(t) 〈k| ĥ(t) |k〉 −
∑
i

2di(t)d
∗
k(t) 〈kk′| V̂ee |ii′〉

=− i ṅk(t)− ink(t)〈k̇|k〉 − nk(t) 〈k| ĥ(t) |k〉 −
∑
i

2d∗i (t)dk(t) 〈ii′| V̂ee |kk′〉 ,
(A.27)

which, using that 〈l|k̇〉 = −〈l̇|k〉, leads to

ṅk(t) = 4 Im
∑
i

di(t)d
∗
k(t) 〈kk′| V̂ee |ii′〉 . (A.28)

Inserting (A.22) into (A.26) one gets for l 6= k, assuming that nk(t) 6= nl(t),

λkl(t) = ink(t)〈l|k̇〉 − nk(t) 〈l| ĥ(t) |k〉 −
∑
i

2di(t)d
∗
k(t) 〈lk′| V̂ee |ii′〉

= inl〈l|k̇〉 − nl(t) 〈l| ĥ |k〉 −
∑
i

2d∗i (t)dl(t) 〈ii′| V̂ee |kl′〉 ,
(A.29)

i〈l|k̇〉 = 〈l| ĥ |k〉+ 2
∑
i

di(t)d
∗
k(t) 〈lk| V̂ee |ii〉 − d∗i (t)dl(t) 〈ii′| V̂ee |kl′〉

nk(t)− nl(t)
, (A.30)

λkl = 2
∑
i

nl(t)di(t)d
∗
k(t) 〈lk′| V̂ee |ii′〉 − nk(t)d∗i (t)dl(t) 〈ii′| V̂ee |kl′〉

nk(t)− nl(t)
(A.31)

Inserting (A.22) and (A.29) into (A.20) one recovers (A.7) with γ2,ijkl = di(t)d
∗
k(t)δij′δkl′ .
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The variation of action with respect to d∗k(t) and dk(t) yields

0 =
∂A

∂d∗k(t)

= i ḋk(t) + 2idk(t)〈k|k̇〉 − 2dk(t) 〈k| ĥ(t) |k〉 −
∑
i

di(t) 〈kk′| V̂ee |ii′〉 ,
(A.32)

and its complex conjugate, respectively. The EOM for expansion coefficients dk(t) is

i ḋk(t) = −2idk(t)〈k|k̇〉+ 2dk(t) 〈k| ĥ(t) |k〉+
∑
i

di(t) 〈kk′| V̂ee |ii′〉 . (A.33)

By choosing some real expression for i〈n|ṅ〉 e.g. zero as was done in [82], one can prop-
agate NOs and expansion coefficients dn(t) by solving the system of coupled equations

i∂t|n(t)〉 = ĥ(t)|n(t)〉+An(t)|n(t)〉+
∑
k 6=n

Bnk(t)|k(t)〉+
∑
k

Ĉnk(t)|k(t)〉,

i ḋn(t) = −2idn(t)〈n|ṅ〉+ 2dn(t) 〈n| ĥ(t) |n〉+
∑
i

di(t) 〈nn′| V̂ee |ii′〉 .
(A.34)

One can obtain the groundstate of the system via propagation in imaginary time although
a smaller time step than for RNO propagation is required.

It is also possible to choose a phase convention for NOs such that the phases eiφi(t) for
the expansion coefficients do not change in time. In this case

ḋk(t) =
1

2

ṅk(t)

nk(t)
dk(t). (A.35)

Inserting this into (A.33) one gets

2idk〈k|k̇〉 = −i
1

2

ṅk(t)

nk(t)
dk(t) + 2dk(t) 〈k| ĥ(t) |k〉+

∑
i

di 〈kk′| V̂ee |ii〉 . (A.36)
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Multiplying with dk(t) and using that 2d∗k(t)dk(t) = nk(t) we get

ink(t)〈k|k̇〉 =− i
ṅk(t)

4
+ nk(t) 〈k| ĥ(t) |k〉+

∑
i

di(t)d
∗
k(t) 〈kk′| V̂ee |ii′〉

=− i Im
∑
i

di(t)d
∗
k(t) 〈kk′| V̂ee |ii′〉+ nk(t) 〈k| ĥ(t) |k〉

+
∑
i

di(t)d
∗
k(t) 〈kk′| V̂ee |ii′〉

=nk(t) 〈k| ĥ(t) |k〉+ <
∑
i

di(t)d
∗
k(t) 〈kk′| V̂ee |ii′〉 .

(A.37)

For this phase convention one obtains (A.12) with γ2,ijkl(t) = di(t)d
∗
k(t)δij′δkl′ . Un-

fortunately, the ONs then do not change in imaginary time so that in order to find the
groundstate one has to combine imaginary-time propagation with methods for searching
ONs [77].

In terms of RNOs, however, using

| ˙̃k〉 =
√
nk(t)|k̇〉+

ṅk(t)

2
√
nk(t)

|k〉 =
√
nk(t)|k̇〉+

ṅk(t)

2nk(t)
|k̃〉 (A.38)

leads to (1.35) with γ̃2,ijkl(t) = d̃i(t)d̃
∗
k(t)δij′δkl′ , and the groundstate can be obtained via

imaginary-time propagation.
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A.3. Improved figures of Paper 3 [13]

Results of higher resolution in momentum space for the TDSE calculation and with more
RNOs for TDRNOT than those shown in Paper 3 [13] are presented. Conclusions made
in [13] are unaltered.
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Figure A.1.: Improved Fig. 2 of [13]. The part of two-electron momentum distribution
when both electrons are ionized ρ2+(p1p2) obtained from TDSE in logarithmic scale over
4 orders of magnitude.
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Figure A.2.: Improved Fig. 3 of [13]. The part of two-electron momentum distribution
when both electrons left atom ρ2+(p1p2) obtained from first 30 NOs (not all are shown)
calculated from TDSE wavefunction after laser pulse in logarithmic scale over 4 orders
of magnitude.
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Figure A.3.: Improved Fig. 4 of [13]. The part of two-electron momentum distribution
when both electrons are ionized ρ2+(p1p2) obtained by TDRNOT with 1-30 RNO (not all
are shown) in logarithmic scale over 4 orders of magnitude.
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Figure A.4.: Improved Fig. 5 of [13]. The part of two-electron momentum distribution
when both electrons are ionized ρ2+(p1p2) obtained by TDRNOT propagation with 30
RNO when only first 5 and 6 RNOs were used for variable calculation in logarithmic
scale over 4 orders of magnitude.
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[65] LÖWDIN, Per-Olov: Quantum Theory of Many-Particle Systems. I. Physical In-
terpretations by Means of Density Matrices, Natural Spin-Orbitals, and Conver-
gence Problems in the Method of Configurational Interaction. In: Phys. Rev. 97
(1955), Mar, Nr. 6, S. 1474–1489. – URL http://dx.doi.org/10.1103/
PhysRev.97.1474. – ISSN 0031-899X

[66] MAITRA, N. T. ; TODOROV, T. N. ; WOODWARD, C. ; BURKE, K.: Density-
potential mapping in time-dependent density-functional theory. In: Phys. Rev. A
81 (2010), Apr, S. 042525. – URL http://link.aps.org/doi/10.1103/
PhysRevA.81.042525

107

http://scitation.aip.org/content/aip/journal/jmp/8/10/10.1063/1.1705122
http://scitation.aip.org/content/aip/journal/jmp/8/10/10.1063/1.1705122
http://link.aps.org/doi/10.1103/PhysRevB.73.075413
http://link.aps.org/doi/10.1103/PhysRevB.77.085121
http://link.aps.org/doi/10.1103/PhysRevA.91.023412
http://iopscience.iop.org/0953-4075/31/6/001/
http://link.aps.org/doi/10.1103/PhysRevLett.82.3863
http://dx.doi.org/10.1103/PhysRevLett.94.143003
http://dx.doi.org/10.1103/PhysRevLett.94.143003
http://dx.doi.org/10.1021/acs.jpca.5b01585
http://dx.doi.org/10.1021/acs.jpca.5b01585
http://dx.doi.org/10.1103/PhysRev.97.1474
http://dx.doi.org/10.1103/PhysRev.97.1474
http://link.aps.org/doi/10.1103/PhysRevA.81.042525
http://link.aps.org/doi/10.1103/PhysRevA.81.042525


Bibliography

[67] MAITRA, Neepa T.: Memory: History , Initial-State Dependence , and Double-
Excitations. In: MARQUES, Miguel A. (Hrsg.) ; MAITRA, Neepa T. (Hrsg.) ;
NOGUEIRA, Fernando M. (Hrsg.) ; GROSS, E.K.U. (Hrsg.) ; RUBIO, Angel
(Hrsg.): Fundamentals of Time-Dependent Density Functional Theory. Springer
Science + Business Media, 2012 (Lecture Notes in Physics), S. 167–184. –
URL http://dx.doi.org/10.1007/978-3-642-23518-4_8. – ISBN
http://id.crossref.org/isbn/978-3-642-23518-4

[68] MAITRA, Neepa T. ; ZHANG, Fan ; CAVE, Robert J. ; BURKE, Kieron: Double
excitations within time-dependent density functional theory linear response. In: J.
Chem. Phys. 120 (2004), Nr. 13, S. 5932. – URL http://dx.doi.org/10.
1063/1.1651060. – ISSN 0021-9606

[69] MAYER, Joseph E.: Electron Correlation. In: Phys. Rev. 100 (1955), Dec,
S. 1579–1586. – URL http://link.aps.org/doi/10.1103/PhysRev.
100.1579

[70] MAZZIOTTI, David A.: Two-Electron Reduced-Density-Matrix Theory:
With Application to Many-Electron Atoms and Molecules. Hoboken, New
Jersy : John Wiley & Sons, Inc., Mar 2007 (Advances in Chemical
Physics). – URL http://dx.doi.org/10.1002/0470106603. – ISBN
http://id.crossref.org/isbn/9780471790563

[71] MAZZIOTTI, David A.: Structure of Fermionic Density Matrices: Complete N -
Representability Conditions. In: Phys. Rev. Lett. 108 (2012), Jun, S. 263002.
– URL http://link.aps.org/doi/10.1103/PhysRevLett.108.
263002

[72] MIZUNO, Yukio ; IZUYAMA, Takeo: Remarks on Mayer’s Reduced Density Matrix
Method. In: Prog. Theor. Phys. 18 (1957), Jul, Nr. 1, S. 33–38. – URL http:
//dx.doi.org/10.1143/PTP.18.33. – ISSN 0033-068X
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