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Abstract

Predicting human behavior is desirable in many application scenarios in smart
environments. Gaze represents one of the essential cues, which is important to
understand these behaviors. In this thesis, we consider eye movements and the
spatial location of visual attention in different behavioral context as a model
system. Behavioral eye movements data in a different context is presented to-
gether with predictive models of visual saliency. The existing models for eye
movements do not take contextual factors into account. This addressed using
a systematic machine-learning approach, where user profiles for eye movements
behaviors are learned from data. Machine learning models and the analysis of
behavioral data show the limitations of current predictive models describing
human eye movements behaviors and reveal the influences of task on gaze se-
lection. The analysis furthermore demonstrates the relative importance given
to the individual visual features, and it shows that simple predictive "one-fits-
all"-models will not work for eye movements prediction. This part of the work
used model-based systematic data analysis.

Human studies have shown that eye movements behaviors are mostly ef-
fected by the task at hand. For that, human vision has to learn how to move
the eyes to the relevant information. In this part of the work a theoretical
innovation is presented, which goes beyond pure data analysis. The thesis pro-
posed the modeling of eye movements as a Markov Decision Processes (MDPs).
Then it use Inverse Reinforcement Learning (IRL) paradigm to infer the reward
function. The examined IRL approaches used information about the possible
eye movement positions. We found that it is possible to automatically extract
reward function based on effective features from user eye movement behaviors
using IRL. We found that the reward function was able to extract expert be-
havior information that fulfill to predict eye movements behaviors. By using a
new inverse reinforcement learning paradigm that constructs the parameters of
the learning model to best match the observed human behavior, the connection
between model and empirical data is obtained. The application of this method
to the empirical data shows that this model can be used in eye movement
predictions, and in human behavior modeling in general.

Keywords: human behavior models, visual attention, gaze prediction, nor-
mative models.

i



Zusammenfassung

Die Vorhersage menschlichen Verhaltens in intelligenten Umgebungen ist für
viele Anwendungsszenarien wünschenswert. Einer der wichtigsten Hinweise für
die Vorhersage menschlichen Verhaltens ist die Blickrichtung des Menschen. In
dieser Arbeit betrachten wir Augenbewegungen und die räumliche Verteilung
der visuellen Aufmerksamkeit in verschiedenen Kontexten als Modellsystem.
Die Augenbewegungsdaten von Menschen in verschiedenen Kontexten werden in
dieser Arbeit zusammen mit Vorhersagemodellen der visuellen Aufmerksamkeit
präsentiert. Bereits existierenden Modelle für die Vorhersage der Augenbewe-
gungen berücksichtigen keine Kontextfaktoren. Um die Kontextfaktoren zu
berücksichtigen, nutzen wir einen systematischen Ansatz des Maschinellen Ler-
nens, wo Nutzerprofile für die Augenbewegungen gelernt werden. Modelle des
maschinellen Lernens und die Analyse der Verhaltensdaten zeigen die Grenzen
aktueller Vorhersagemodelle zur Beschreibung menschlicher Augenbewegungen
und zeigen den Einfluss der jeweiligen Aufgabe. Die Analysen in dieser Arbeit
zeigen darüber hinaus die relative Bedeutung spezifischer visueller Merkmale.
Auwird gezeigt, dass es für die Vorhersage von Augenbewegungen kein ein-
faches Modell für alle Daten gibt („one-fits-all“-Modell). Dieser Teil der Arbeit
verwendet stark modell-gestützte systematische Datenanalysen.

Studien am Menschen haben gezeigt, dass Augenbewegungen am meisten
durch die jeweilige Aufgabe beeinflusst sind. Um dies zu erreichen, musste
die menschliche visuelle Wahrnehmung lernen, den Blick auf die jeweils rele-
vante Information zu lenken. In diesem Teil der Arbeit wird eine theoretis-
che Innovation präsentiert, die über reine Datenanalyse hinausgeht. Es wird
vorgeschlagen, die Modellierung der Augenbewegungen als Markov Entschei-
dungsproblem zu verstehen. Dann wird inverses Belohnungslernen („Inverse
Reinforcement Learning“) angewendet, um auf Grundlage von beobachtetem
Verhalten (den Augenbewegungen) eine Belohnungsfunktion abzuleiten. Eine
solche Belohnungsfunktion wird dann als Teil eines prädiktiven Modells verwen-
det werden, um Augenbewegungen vorherzusagen. Dies zeigt, dass das Modell
in der Vorhersage genutzt werden kann und damit auch der gesamte neue in
der Modellierung menschlichen Verhaltens generell.
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Chapter 1

Introduction and Motivation

1.1 Motivation
Predicting user behavior is desirable in many application scenarios in smart
environments. This includes the use of user models, which take into account
internal states of the user such as the focus of attention. The motivation for my
work is to build systems, which can infer and predict the attention/intention of
users based on signals collected from various sensors so that smart environments
can react in a proactive manner in order to assist the user. However, the signals
delivered by sensors in such smart environments are usually not informative
enough to simply read of the internal states of users as, for example, one can
read of the body temperature from a thermometer. Prior knowledge about how
humans reason, decide, and act needs to be employed in order to disambiguate
the signals and infer attention/intentions with a limited amount of data.

The general problem is to best predict the actions of users in smart environ-
ments in collaborative scenarios such as a smart meeting room or a situation
room, where they have to jointly make decisions based upon incomplete and
unreliable information under time constraints. One approach, which is also
pursued in MuSAMA1, is to move beyond the recognition of activities to the
recognition of internal states of users such as intentions, current goals, or the
focus of attention, because based on recognized internal states the activity pre-
diction may be easier.

In smart environments users are often interrupted, manage very large quan-
tities of information, and they switch between the contents of different displays,
for example on tiled Large High-Resolution Displays (LHRDs). In order to ad-
dress interaction in a more realistic manner, it is essential to investigate the
processes that govern for example human attentional processes in that settings.
Attention plays a fundamental role in interaction and task execution. Attention
helps us to reason, decide, act and communicate with our environments that

1http://www.informatik.uni-rostock.de/musama_homepage.html

1

http://www.informatik.uni-rostock.de/musama_homepage.html
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offer us a massive amount of stimuli. Selective attention exists for all senses,
because of the need to deal with this massive amount of sensory data. It enables
people to extract the relevant information at an early processing stage. In this
thesis, I consider eye movements and the spatial location of visual attention as
the model system.

Although attention recognition is certainly a desirable property of any com-
puting system interacting with humans, it may come as a surprise that it is
largely absent from the most existing systems [91, 208, 165]. Why is this the
case? I argue that current visual attention recognition systems are using cogni-
tive models, which are not grounded enough in empirical research. Therefor, in
my thesis I address this shortcoming. More specifically, in my thesis I conduct
work on two converging lines of research: First, I explore recent findings from
cognitive social neuroscience and decision making, because researchers in these
fields are investigating how humans visual attention system work and how hu-
mans form attention/intentions and recognize the intentions of others. Then, I
exploit existing models in these fields. I used this models in real-world settings,
where I applied various methods of computing saliency maps for predicting
eye movements in smart environments in different scenarios and determining
(by combinatorial exploration) which features are relevant as a function of the
context. Second, I develop models for predicting eye movements in the smart
environment. Here I used machine learning technique and a normative theory.
In order to constrain my work, I focus on a few selected application scenarios,
but my aim is the use of these methods and tools generalize to other applica-
tions.

Eye movements and the visual field locations during fixation periods are
often considered as an informative observable, but eye movements are at best
an indirect measure of attention. It is known for a long time that task-demands
affect the patterns of eye movements [213]. Hence, properly predicting eye
movements is still a challenging task, in particular for more natural scenarios
[22] such as those encountered in ubiquitous computing.

The notion of a saliency map has been helpful in visual attention research:
Here, certain locations in the visual field are determined as “salient” if they are
– in statistical terms – outliers relative to the surrounding visual field locations.
Computational modeling of the visual system was quite successful in the sense
of predicting saliency maps based on image properties, which closely match the
experimentally measurable maps of eye movements and fixation periods [97].
Such saliency maps reflect bottom-up attentional processes, in other words, the
attraction of attention by external cues.

The existing computational models of visual saliency rely only on 2D scene
features and need to be extended to the 3D world. These models do not con-
sider task demands or the user’s internal state. Also, the limitation to use these
models in real world application need to be investigated in order to make them
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more robust to noise, and illumination changes. Here we2 argue that based on
information processing principles where saliency models derivable from, com-
bined with learning mechanism or the theory of decision making, a notion of
optimal processing could be predicted.

1.2 Problem
This thesis addressed the problem of predicting human gaze behavior in smart
environments. Internal states of users such as visual attention, intentions and
the cognitive load are important for predictions, but can not measure them
directly. Attentional models can find interest regions that attract our attention.
The existing models for eye movements not satisfying, in particular for more
natural scenarios such as those encountered in smart environments. Also, the
existing models for eye movements rely only on low-level features and do not
take contextual factors or top-down into account.

Therefor the goals of this thesis is to: (1) empirically investigates how differ-
ent visual features are relevant for predicting human eye movements in different
behavioral context in smart environments; and (2) introduce a theory of nor-
mative modeling as a paradigm for human behavior prediction, and used it to
predict user eye movement behavior in interaction scenario in smart environ-
ments.

To achieve (1), the work uses a systematic machine-learning approach, where
user profiles for eye movements are learned from data in different contexts,
and determining by combinatorial exploration which features are relevant for
behavioral context.

To achieve (2), the work proposes the modeling of eye movements using
principles from normative theory. The approach taken here is to formulate eye
movements as a Markov decision process (MDP) problem, but with the use of
Inverse Reinforcement Learning (IRL) to infer the reward function.

1.3 Contribution of the Thesis
The contributions of this thesis are summarized below:

1. We determine by combinatorial exploration which features are relevant
for eye movements prediction in different behavioral contexts.

We investigate meeting scenarios in terms of how relevant different fea-
tures are for eye movements prediction in different behavioral contexts.

2Throughout the thesis, the personal pronoun ”we” is used for simplicity in the sentence
structure, and not as an indication that the work was completed by multiple persons.
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We used a machine-learning approach to find out which features are im-
portant in meeting scenarios. The details described in Chapter 4. The
main result of this study is that the prediction differed according to the
type of features we selected. As a consequence, simple predictive "one-
fits-all"-models will not work for eye movements prediction. This finding
points towards including context information about the scene and situa-
tion into the computation of saliency maps as important towards develop-
ing models of eye movements, which operate well under natural conditions
such as those encountered in smart environments settings. This work is
published in [135].

2. We investigate, how relevant depth features are for eye movement predic-
tion.

(a) We analyze the scene dependency in saliency map in luminance and
depth images features in natural scenes
Here we explore, for the first time, statistical properties of saliency in
natural luminance and depth images, and it is described in Chapter
5. We first analyze the dependency between luminance and depth
images features in natural scenes using information-theoretic mea-
sures. We did this using a database of natural images and depth
images. Then we measure the scene-dependency in saliency map
in luminance and depth images features in natural scenes. We find
that certain oriented filter responses convey more information about
relevant depth features than other oriented filters. Also, we find
that saliency in depth images is bimodally distributed with highly
salient locations corresponding to low salient 2D image locations.
The results published in [131, 136].

(b) We develop a system called BatGaze system to measure depth fea-
tures in the center of gaze
In Chapter 5 we present the BatGaze system, which we have built
to measure depth at the center of gaze in free-viewing scenarios. We
argue that it will become a tool for mapping the visual environment
of free viewing humans in an unprecedented way. The rationale for
building such a system is to inform computational vision research
about these features, so that generative models of visual signals could
be learned. We have described in depth the technical aspects of this
system, the software we have developed, and the analysis procedures.
In addition, we have also performed an experimental validation. This
work is published in [130].

(c) We use machine learning techniques to learn models based on depth
features
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We used machine learning techniques to train a bottom-up, top-
down model of saliency based on 2D and depth features/cues. More
detail about this work described in Chapter 5. Briefly, we find that
the depth information improves prediction and hence it should be
included in predictive models. This work is published in [132].

3. We explore how well existing bottom-up visual saliency models perform
compare to human eye movements behavior in real world scenarios (i.e.,
in the interaction scenario with tiled Large High-Resolution Displays).

Here we investigate the effects of bezels LHRDs on human eye movements
and on saliency algorithm predictions. Our results presented in Chapter
6. The results published as a short paper in [133].

4. We propose a new model using a normative approach for eye movements
predictions on LHRD.

In Chapter 7 we present our approach of modeling eye movements on
tiled Large High-Resolution Displays (LHRD) using inverse reinforcement
learning. We have examined two different inverse reinforcement learning
algorithms. The presented approach used information about the possible
eye movement positions. We found that it is possible to automatically ex-
tract reward function based on effective features from user eye movement
behaviors using IRL. The results published in [134].

1.4 Outline of the Thesis
The thesis is structured as follows.

Chapter 2 outlines the background of my work and reviews the current
work on modeling human eye movements.

Chapter 3 introduces specific approaches to modeling human behavior,
which is necessary to position my conceptual and empirical contributions.

Chapter 4 introduces the use of machine learning for predicting eye move-
ments in smart environments based on context.

Chapter 5 practically illustrates how relevant are depth features for pre-
dicting human eye movements.

Chapter 6 illustrates the effects of interior bezels of tiled-displays on
saliency algorithms prediction and human eye movements Behaviors.

Chapter 7 introduces our proposed model for predicting eye movements
via inverse reinforcement learning in the interaction scenario with the LHRD.

Finally, Chapter 8 presents the thesis conclusion and the future work.
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1.5 Publications Resulting from this Dissertation
Portions of this thesis have previously appeared as conference publications:

Peer reviewed publications

1. Redwan Abdo A. Mohammed and Oliver Staadt. Learning Eye Move-
ments Strategies on Tiled Large High-Resolution Displays using Inverse
Reinforcement Learning. In Proceedings of the IJCNN 2015, Killarney,
Ireland, July 2015, published in IEEE Xplore Digital Library. Available
from: doi:10.1109/IJCNN.2015.7280675. The details presented in Chap-
ter 7.

2. Redwan Abdo A. Mohammed and Oliver Staadt. Effects of Interior
Bezels of Tiled Large High-Resolution Displays on Saliency Prediction and
Human Eye Movement Behavior. In Yuki Hashimoto, Torsten Kuhlen,
Ferran Argelaguet, Takayuki Hoshi, and Marc Erich Latoschik, editors,
ICAT-EGVE 2014 - Posters and Demos. The Eurographics Association,
2014. Available from: doi:10.2312/ve.20141369. The results presented in
Chapter 6.

3. Redwan Abdo A. Mohammed, Lars Schwabe and Oliver Staadt. Towards
Context-Dependence Eye Movements Prediction in Smart Meeting Rooms.
In Proceedings of the 24th International Conference on Artificial Neural
Networks (ICANN 2014) Springer LNCS, Hamburg, Germany, September
2014. Available from: doi:10.1007/978-3-319-11179-7_32. The details
presented in Chapter 4

4. Redwan Abdo A. Mohammed, Lars Schwabe and Oliver Staadt. Gaze
Location Prediction with Depth Features as Auxiliary Information. In
Proceedings of the 16th International Conference on Human-Computer
Interaction (HCII 2014) Springer LNCS, Crete, Greece, June 2014. Avail-
able from: doi:10.1007/978-3-319-07230-2_28. The details presented in
Chapter 5.

5. Redwan Abdo A. Mohammed, S. Mohammed and Lars Schwabe. BatGaze:
A New Tool to Measure Depth Features at the Center of Gaze During Free
Viewing. In Proceedings of the 2012 International Conference Brain In-
formatics pages 85-96 Springer LNCS 7670, Macau, China, Dec 2012.
Available from: doi:10.1007/978-3-642-35139-6_9. The details presented
in Chapter 5.

6. Redwan Abdo A.Mohammed, S. Mohammed and Lars Schwabe. A Brain
Informatics Approach to Explain the Oblique Effect via Depth Statistics.
In Proceedings of the 2012 International Conference Brain Informatics

http://dx.doi.org/10.1109/IJCNN.2015.7280675
http://dx.doi.org/10.2312/ve.20141369
http://dx.doi.org/10.1007/978-3-319-11179-7_32
http://dx.doi.org/10.1007/978-3-319-07230-2_28
http://dx.doi.org/10.1007/978-3-642-35139-6_9
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pages 97-106 Springer LNCS 7670, Macau, China, Dec 2012. Available
from: doi:10.1007/978-3-642-35139-6_10. The details presented in Chap-
ter 5.

7. Lars Schwabe and Redwan Abdo A. Mohammed. Scene-Dependence of
Saliency Maps of Natural Luminance and Depth Images. In Fifth Baltic
Conference "Human Computer Interaction", 2011, pages 29-36, Riga,
Latvia, 2011. Available from: http://basoti.uni-rostock.de/index.
php?id=1149. The details presented in Chapter 5.
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Chapter 2

Background and Related Work

This thesis address the general problem of predicting human gaze behavior in
order adapt smart environments to the goals of humans and their anticipated
actions. Human behavior prediction is a rather young research field with many
connections to other related fields (Sec. 2.1). In this Chapter, we introduce a
few key concepts (Sec. 2.2) that serve as the background for our work, namely
concepts from cognitive and social neuroscience, decision theory, and proba-
bilistic machine learning. Cognitive science investigates the basis of human
decision making and thus should be considered as a potentially valuable source
of information and inspiration for this thesis. It is related to decision and prob-
ability theory, because current cognitive neuroscience uses them extensively to
explain human behavior as being optimal (or rational) under certain constrains.
Of course, these concepts are also of relevance to our methods for analyzing the
data from our experiments. We describe in greater detail the work on modeling
eye movements in Sec. 2.3, because this is the domain of human behavior that
we selected to explore in greater detail in the rest of this thesis. Then, we
recapitulate the state-of-the-art in related fields briefly in Sec 2.4.

2.1 Position of this Thesis
This thesis is about using predictive user models in smart environments. This
includes the use of user models, which take into account internal states of the
user such as the focus of attention. The latter is widely acknowledged as an
important factor to be considered in the design of the human-centric applica-
tion. Besides the need for visual attention models that are more robust to noise,
and environmental changes. With this viewing direction, this work investigates
visual attention modeling in term of the relevant of visual features for gaze
prediction in different behavioral context. Different models were investigated;
Also, this thesis presents a new method for modeling human eye movements
using inverse reinforcement learning.

8
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By the nature of my work, I need to connect to a few and currently still
largely distinct fields of research, namely i) cognitive and social neuroscience,
i.e., both their empirical branches and the theories developed within these fields,
which are largely rooted in ii) decision theory. In Artificial Intelligence (AI) the
discipline of iii) cognitive modeling became an established field, where cognitive
architectures are developed and applied. As compared to the mainly theoretical
and minimalistic models from decision theory the cognitive architectures are
usually much more complex and aimed at accounting for many aspects of human
cognition, whereas decision theory is more focused on decision making itself.
The field of iv) machine learning provides the methodological toolbox for both
the user modeling and the integration of these models into smart environments.

2.2 Key Concepts

2.2.1 Cognitive and Social Neuroscience

The study of how a human behaves is becoming important as the understand-
ing grows that much of human information processing and behavior appears
in social interaction. The magnificent amount of work done in recent years in
cognitive neuroscience, and social psychology has yielded new anticipation into
the processes involved in attention and intention understanding and task shar-
ing. Exploring the relationship between perception and action understanding
became serious due to the discovery of mirror neurons that fire when animals
execute actions and when they observe the same actions done by other individ-
uals.

2.2.1.1 Social Neuroscience

Classical cognitive neuroscience and social psychology have formed a new dis-
cipline field called social neuroscience.

In last years, classical cognitive neuroscience has much improved our un-
derstanding of how the brain processes information that we perceive, such as:
color, shape, smells, and motion. Also, it advanced our knowledge about how
our brain enables us to perform higher-order cognitive operations as short- and
long-term memory tasks, speech generation and recognition, and the executive
functions involved in planning. Such approaches govern by the implicit hy-
pothesis that understanding one brain is adequate for realizing the behavior
of all humans [180]. Obviously, such methods ignore the fact that humans are
natural social rather than individualists. In fact, the social environment which
surrounding the brain affects its basic actions.

In general, social neuroscience devoted to understanding the complex inter-
actions between social factors and their influence on behavior. Furthermore,
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studying the cognitive processes underlying these behaviors (see also [148] and
[180]).

Currently, many researchers are interested in understanding the nature of
human social interaction and its relation to human decision-making, in order
to determine the neural mechanisms underlying these complex social skills (see
for example [63] [124] [181]).

2.2.1.2 Theory of Mind

First introduced by Premack and Woodruff [154], while discussing whether
chimpanzees have the ability to attribute mental states of other in term of
their desires, intentions, and beliefs. In the same year the philosopher Daniel
Dennett [52] suggested that the most stringent test for the presence of theory
of mind would be to see whether someone can predict someone else’s actions on
the basis of that person’s false belief. Later Wimmer and Perner [210] developed
the false-belief paradigm to test and understand another person’s wrong belief.

This paradigm was widely used to examine children’s mentalizing abilities.
In this paradigm, subjects observe how an actor put an object into a location
x and then noticed that in the absence of the actor the object was moved from
x to position y. Then subjects had to find out where the actor will look for
the object [210]. Many studies funded that children age four and older start
to correctly attribute false beliefs to others and provide a valid demonstration
when asked.

The study of our capacity to reason about other people’s minds become
the focus of cognitive neuroscience research. Because of the development of
modern imaging techniques, theory-of-mind studies have shown different area
of brain network involved in theory of mind, which are: the posterior superior
temporal sulcus (STS) extending into the temporoparietal junctions (TPJ), the
medial prefrontal cortex (mPFC), and sometimes also the temporal poles (TP).
A graphical drawing of the mentalizing brain network is illustrated in blue in
figure 2.1 taken from [180] (see also [28]). Also, the mental states have been
studied in decision-making task [124] and game theoretical paradigms [69, 125].
In [69, 125] subjects in MRI scanner played strategy games against someone
sitting outside the scanning room and against a computer. The brain areas
activation compared between computer and human conditions. These studies
have found involvement of the medial prefrontal lobe.
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Figure 2.1: Brain networks involved in understanding others. graphical rep-
resentation of the brain areas typically involved in theory of mind (blue) and
empathy (red) tasks (from [180]).

2.2.1.3 Simulation theory

Theory of mind enables one to understand the mental states that cause others’
behavior. So that it allows one to explain and predict the observed actions
produced by others [37, 205, 180, 77]. Simulation theory is one of the accounts
given by psychologists for the mechanism underlying this ability [37].

Breazeal et al. [31] argued that by simulating other individual’s actions
and the stimuli they are facing with using our own behavioral and stimulus
manipulation mechanisms. We can predict the behaviors and mental states of
others based on the behaviors and mental states that they would possess if they
were in the other’s situation.

Simulation theory approaches recently used in the field of understanding
other people’s intention by simulate other people movements using our motor
program, and feelings by simulating their feelings using our affective motor
programs [51, 104], taking into accounts the specific role of mirror neurons in
the understanding of others motor actions and action-related intentions. In
case of feelings understanding, Iacoboni et al. [36] and Dapretto et al. [49]
suggested a motor theory of empathy. According to the broader role of mirror
neurons in social cognition.Where their role is not only to action understanding
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but also to understand the emotions and minds of others.

2.2.1.4 Mirror neurons

Mirror neurons where discovered in the frontal and parietal cortex of the mon-
key brain [163], which activated not only when monkey execute actions, but
also when they observe the same actions done by other individuals. In human,
it is possible to measure the activity of single neurons [93]. However, the mirror
system applies to the brain imaging data where a brain region is considered to
be part of a mirror system. The discovery of mirror neurons has a huge impact
on social cognitive neuroscience. The existence of mirror neurons can extend
our ability to understand other people’s goals and intentions. Recently, it was
suggested that mirror neurons may represent the basis for imitation.

Since the discovery of mirror neurons, several studies have demonstrated a
generation of motor actions and similar common coding of the perception in the
human brain using imaging techniques. In these studies, people were scanned
while they watched movies depicting short motor actions. The observed activa-
tion was then compared to that observed when the scanned subjects performed
the same motor action themselves.

Currently, researchers are debating about the exact function of the mirror
neuron system and its role in social cognition. It has been proposed that besides
action recognition [70]. The mirror neuron system might play a general role
in understanding other people’s intentions and goals [65], understanding of the
functioning of imitation [66] and emotions [49], as well as to other theory of
mind such as simulation theory [71].

2.2.2 Decision Making Theory

Decision making theory models individual decision makers who have to choose
between a set of options by processing actions, plans or strategies [152]. This
section presents the decisional framework and introduces the notation used to
model decision problems.

Situations with uncertainty are the most interesting from a decision theo-
retic point of view. An example of situations with uncertainty, consider buying
a lottery ticket. In this situation, we can not choose to buy the winning ticket.
In this situation, agent’s actions depend on random or nondeterministic occur-
rences in the environment. Models of decision making under this uncertainty
would then be represented as an action that gives the agent a certain probabil-
ity of winning. Another sort of uncertainty could arise when the outcomes of
the agent’s decisions depend on the actual state of the world, which he has only
partial information. In uncertain situations, maximization of expected payoffs
is the most widely accepted framework to solve this decision problem.
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2.2.2.1 The Basic Elements of a Decision

The basic elements of a decision problem are [59, 147]:
(1) the choices space, which represent the alternatives available to the deci-

sion maker;
(2) the state space, which represent the state of nature which is not con-

trolled by the decision maker;
(3) the outcome or the payoff that needed to compare each combination of

decision choices and state of nature;
(4) Utility evaluation that represent the quantification of a decision maker

preferences.

2.2.2.2 The Rational Choice

The rational choice theory states that rational agents always make reasonable
and logical decisions. These decisions provide the rational agent with the great-
est benefit or satisfaction, given the set of options available, and are also in their
highest self-interest.

The rational decision makers are assumed to have ranking over the set of
choices, which usually represented as a choice function. This function reflects
the way the agents would choose between pairs or sets of options.

In Situations where there is no uncertainty, usually it is clear how to recon-
struct the agent’s preferences over outcomes. From the rational perspective,
given that each action yields a certain outcome, about which the agent has
some preferences, the rational agent will choose the actions that yield a most
preferred outcome. The rational agent also assumes to the account of the utility
functions and probability distributions in determining preferences and interac-
tions between individuals [59, 147].

2.2.2.3 Probability vs. Utility

In decision research, in a situation where we deal with uncertainty, we will need
to make use of probabilities, and utility. We will, therefore, review the basic
concepts of probabilities and utility theory.

Probability Theory Probability theory presents a consistent framework for
the quantification and manipulation of uncertainty. In situations where events
are uncertain, a probability measures the likelihood that a particular event (or
set of events) occurs [27] (see Sec. 2.2.3.2 for more details).

Utility Theory Utility theory provides a consistent framework for the judg-
ment of alternative choices made by individuals. The notion of utility is intro-
duced to quantify preferences among various choices that a decision maker may
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faced. Utility theory based on the assumption that any decision made on the
basis of the utility maximization principle, where the best choice is the one that
provides the highest utility(score) to the decision maker. Also, in application
utility theory is used to represent preferences among potential (or obtained)
outcomes of a decision.

Yates [215] pointed out that, there are two ways to relate preferences to the
objective values of the outcome. The first one is called value function. This
function represents the increase in the strength of the decision maker’s prefer-
ences as a function of the outcomes’ objective value. This function produces
various outcomes outlined on a scale of higher values and lower values, where
the higher values are called higher preference. The second way is called a utility
function, where the assumption is that preference reflects both the value of the
outcome and the feelings of the decision maker about risk. For example, the
uncertainty about whether the outcome will occur or not.

In all situations, the utility function U used to measure the utility that
the decision maker gets from selecting a specific choice. This function is a
mathematical representation of the decision maker’s system of references. For
example U(x) > U(y), where the choice x is preferred over choice y or U(x) =
U(y), where both choices preferred equally. In this case, the utility function
represents the utility of the choice and used to derive a numerical score for
each choice. In this case, the utilities (scores) assigned to different choices are
comparable.

Irrespective of the type of utility function, according to [215] utility theory
make three fundamental assumptions:

• Connectivity: that assume that the decision maker can judge his or her
preferences (or indifference) when faced with two choices.

• Transitivity: They assume that preferences among multiple choices is
transitive. For example: if any three choices x, y, z such that x favored
over y, and y is favored over z, it is concluded that x is favored over z.

• Summation: Which assume that the preference for a sequence of choices
is greater than the preferences for any of its parts [215].

2.2.2.4 Matching vs. Maximization Strategies

Decision-making theory concern on studying different behavioral strategies such
as maximizing and matching strategies in various behavioral circumstances.

Matching Strategy Some experiments show that animals and humans of-
ten exhibit matching behavior in a variety of decision-making tasks [188, 89].
Herrnstein et al. [88] studied this phenomenon and expanded it into a general
principle of choice that he named the matching law.
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The matching law states that fraction choices made to any option is pro-
portional to the amount of past income (i.e., total reward) earned from that
option or

Ik
I
=

Ck
C
,

where Ik and Ck represent the total amount of income and total choices
on option obtained on option k, respectively, and the summations are over all
available options.

There are several decision-making models proposed to reproduce the match-
ing behavior (see for example ([188, 89]). Sugrue et al. [188] argued that, in
order to match behavior to income for particular behaviors, first the animals
must integrate the earned rewards, and then, the brain must maintain an ap-
propriate representation of the reward value of competing alternatives. Sugrue
et al. [188] studied matching in the context of visually based eye movement
behavior. They used Macaca monkeys to carry out a dynamic version of a
conventional matching task in which saccadic eye movements to a pair of com-
peting visual targets are rewarded at different rates. They found that a simple
model based on reward history could duplicate this behavior. That neurons in
the parietal cortex represent the relative value of competing actions predicted
by this model (see [188] for more details).

Maximization Strategy Examples of the maximizing strategy can be seen
in the stochastic process of solving Markov decision process. It is considered
that subjects attempt to choose a behavioral policy that will maximize the
amount of reward under a given environmental condition. Also, there are many
developed frameworks for representing decision-making situations with a goal
of reward maximization. or slightly more generally, optimization of a given cost
function (see section 2.2.2.5 for more details). Another example of the maxi-
mizing strategy can be seen in expected payoff maximization in game theory
[150].

2.2.2.5 Decision-Theoretic Models

There are many developed frameworks for representing decision-making sit-
uations with the goal of representing the factors that influence the optimal
decision. Almost of these frameworks describe behaviors as a sequence of inter-
actions with a stochastic process that maximize expected utility. We introduce
these normative decision-theoretic frameworks to use it to predict user behavior
later in this thesis.
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2.2.2.6 Markov Decision Processes (MDPs)

One typical framework for representing decision-making and planning is the
Markov Decision Processes (MDPs), which represent the decision processes in
term of states, actions, rewards associated with those states, and transition
probabilities.

Definition 1. A Markov decision process (MDP) is a tuple, M = (S,A, T, γ, R)
where

• S is the set of possible states.

• A is the set of possible actions.

• T : S × A × S −→[0, 1] is a transition probability function

• γ is a discount factor, controls the comparative worth of reward at various
points in the future.

• R : S × A−→ R is a reward function, with absolute value bounded by
Rmax.

MDP works under the assumption that the agent interacts with the world in
discrete time steps. The state St at timestep t is generated from the probability
function based on St−1 and At−1. The discount factor 1 ≥ γ ≤ 0 , make the
future rewards are worthless than the current reward. MDPs allow states and
actions to have discrete or continuous values. In this chapter, we consider only
discrete spaces.

Choosing the actions that maximize the expected discounted sum of rewards
is the goal. This could be solved by defining a policy for action selection as
(π(s) → A), which represents a mapping from states to actions. For a broader
overview of MDPs refer to [155].

Optimal policies We can solve the MDPs by finding a policy (π(s) → A)
determining which actions to take in specific states in order to achieve a goal
which maximizes the expected discounted sum of rewards E [

∞
t=0 γ

tRt p π] [21].

Theorem 1. The optimal policy can be computed by solving the Bellman equa-
tion,

π (s) = argmax
a


R(s, a) + γ


s′

Pr(s′ | s, a)V (s′)


(2.1)

V ∗ (s) = max
a


R(s, a) + γ


Pr(s′ | s, π(s))V ∗(s′)


. (2.2)
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For the optimal value function V ∗(s) we can define the optimal action value
function Q∗(s, a):

V ∗(s) = max
a

{R(s, a) +Q∗(s, a)}

Q∗(s, a) = γ


Pr(s′ | s, a)V ∗(s′).

The Bellman equations can be solved recursively using dynamic program-
ming by updating theV ∗(s) values and policies π(s) iteratively. The value
iteration algorithm [21] repeatedly updates V (s) by developing its formula to
be in terms of V ∗(s) terms. The policy iteration algorithms uses equation 2.1
to compute a policy and then iteratively uses the updates of equation 2.2 until
it converge [155].

Even though MDPs can be used to model a large number of simplistic tasks,
in modeling real world tasks, MDPs assume that the agent has the complete
knowledge about the state of the world at all times, but this assumption not
realistic in many tasks.

2.2.2.7 Partially Observable Markov Decision Processes (POMDPs)

As mentioned above, MDPs assume that the agent has the complete knowl-
edge about the state of the world every time step. In real-world tasks, this
assumption is unrealistic. For example in situations where the agent’s sensors
are limited and noisy. Which means that the agent only perceives part of the
world and because of sensors noise the perceived information is just a projection
of the real world state.

The POMDPs framework extend the MDPs to settings with uncertain
States [56]. A POMDPs models an agent decision process in which the full
state S may only partially be known.

Definition 2. A partially noticeable Markov decision process (POMDP) is a
tuple, (S,A,O, T,Ω, R), where

• S is the state space.

• A is a set of actions.

• O is a set of observations.

• T is a set of conditional transition probabilities.

• Ω is a set of conditional observation probabilities.

• R : S × A−→R is the reward function.
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The state St at timestep t is generated from the probability function based on
St−1 and At−1, but the observation variable, Ot, distributed according to the
state is observed before the next action (At) is selected.

In POMDPs sitting the state s is not completely observable so that the
agent has to estimate, based on the observations O, a posterior distribution
over all possible states. This posterior distribution is known as the belief state
or information state. It is difficult to develop exact algorithms for solving
POMDPs that is the problem. The most common algorithms just approximate
an optimal solution [38, 167].

2.2.2.8 Game Theory

Game theory, which was originally developed in economics has come to provide
a very effective quantitative framework for studying how different sources of
information, social knowledge, and economic incentives impact optimal strate-
gies for social interaction. In general, game theory in the context of economic
decision-making is based on the assumption, that people can predict other peo-
ple’s actions when they understand their motivations, preferences, and beliefs
(for a similar argument, see [180]).

Game theory aims to help us understand situations in which decision makers
interact [150, 74]. Game theory studies strategic decision making, when many
rational decision makers determine the outcome of a decision situation.

In a situation with strategic interaction, each agent - similar to decision
theory- chooses among various actions, plans or strategies. The main differ-
ence from decision theoretic is that uncertainty in strategic interaction come
from choices of other agents and the outcomes in games are determined by a
combination of the choices of all agents. The game theory usually divided into
cooperative and non-cooperative branches. In cooperative games, communica-
tion among players is allowed but it’s not allowed in the non-cooperative game.
In the strategic game, it is assumed that the agents are rational, which mean
that they choose in order to maximize their expected payoffs. The main dif-
ficulty is now to specify what are the expected payoffs of an action when its
outcome depends on the actions of others.

In situations with incomplete information, the agent might not be able to
expect the choices of others, Because they are uncertain about each other’s
preferences. In such situations each agent forms expectations about the others’
decisions before making his own. But each agent also knows that the other will
do the same. Which mean that an agent’s expectations about the others’ actions
take into account the fact that the others choose on the basis of what they think
he will do. Expected payoff maximization in game theory provides a variety
of solution concepts, such as iterated elimination of dominated strategies and
Nash equilibrium. For a broader overview of game theory the reader is referred
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to [150, 74].

Definition 3. A strategic game G is a tuple (I, Si, X, π,≽) such that:

• I is a finite set of agents.

• Si is a finite set of strategies or actions for each i. A strategy profile
σ ∈ πi∈ISi denotes a vector of strategies, one for each agent in I.

• X is a finite set of outcomes.

• π : Πi∈ISi → X is an outcome function that assigns to every strategy
profile σ ∈ Πi∈ISi an outcome x ∈ X.

• ≽i is a reflexive, transitive and total preference relation on X.

The definition of the outcome function captures the idea that outcomes deter-
mined by the choices of all agents [150].

2.2.3 Probabilistic Machine Learning

Machine learning is the study of methods of getting computers to act by learning
from experience. Machine Learning methods are suitable in situations where
people are unable to present accurate specifications for desired program behav-
ior; instead the examples of target behavior are available. In the past decade,
machine learning was successful in situations such as automated steering of
automobiles, effective web search, speech recognition, handwriting recognition
and quickly better understanding of the human genome. Also, machine learning
have been applied in situations where the task is changing over time or across
different users, where it is difficult to anticipate exactly how the program should
behave. For example predicting user browsing behavior on the world-wide web,
refining information retrieval queries and filtering news articles [27, 185, 139].
In this section, I discuss an important concept from machine learning.

2.2.3.1 Learning Problems

The range of learning problems is large. There are several ways an algorithm can
model a problem based on its interaction with the experience or environment
[27, 185, 139]. There are few examples of algorithms and problem types that
machine learning algorithms can categorized to:
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Classification The problem of constructing a model of a process from sam-
ples of the process’s input and output - where the output is one of a discrete
set - called classification. Binary classification is the most studied problem in
machine learning. In a simple form, we can reduce it to the argument: Given
a pattern x selected from a domain X , we want to find out the value of an
associated binary random variable y ∈ {+1,−1} [27].

In this thesis, I use a learning approach to train a classifier directly from
human eye tracking data. We used a support vector classifier (see section 2.2.3.7
) to learn the difference between positive and negative examples.

Regression In Supervised learning when the output is one or more real num-
bers, it is called regression. In general the regression algorithm creates a model
f̃ that accurately approximates a target function f .The algorithm is given a
set of training data set X = {(−→x1, y1), (−→x2, y2), ..., (−→xn, yn)} of samples of input
and output from f . When the model f̃ is learned, it can be used to predict to
predict outputs f̃(−→xq) for any unlabeled query −→xq [27].

Structured Estimation Structured prediction problems go beyond simple
multiclass estimation. It deals with hidden variable discovery. This problem
appears in many problems where multiple decisions must be weighed against
each other to find a globally satisfactory and consistent solution. With the
assumption that the labels y have some additional structure that can used in
the estimation process. For examples, when attempting to classify web pages,
y might be a path in an ontology and when attempting to match objects y
might be a permutation. Each of those tasks has its properties in terms of the
set of labels y that we might consider admissible, or how to search this space.
Max-margin training of structured models as HMMs and PCFGs has become
popular for this type of problem in recent years (For a broader overview refer
to [185, 139]).

Novelty Detection This problem describes the issue of determining unusual
observations given a set of past measurements. It is one of the basic require-
ments of a good classification system. Novelty detection is a difficult problem
in machine learning. A commonly accepted notion is that unusual events occur
rarely (see [185, 139] for more details).

2.2.3.2 Probability Theory

Probability theory presents a consistent framework for the quantification and
manipulation of uncertainty. In situations where events are uncertain, a prob-
ability measures the likelihood that a particular event (or set of events) occurs
[27].
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The probability of an event defines as the fraction of times that event occurs
out of the total number of trials. Here we will introduce the basic concepts of
probability theory by considering random variables, X takes the values xi where
i = 1, ...,M , and Y takes the values yj wherej = 1, ..., L. Take into account
a total of N trials where we sample both of the variables X and Y . Let nij
represent the number of trials in which X = xi and Y = yj.

The probability distribution of a random variables, such as X and Y , is
denoted by P (X) and P (Y ) . The random variable X can be either continuous
or discrete. Although, both cases are described, here we focus on the discrete
case.

A joint probability measure is written as P (X, Y ) = P (Y | X)P (X) . This
joint probability represents the possibility space and can be used to determine
other probability measure:

• The marginal probability measure denoted by: P (X) =


Y P (X, Y )
which obtained by marginalizing the other variable in this case Y .

• The conditional probability measure denoted by: P (Y = yj | X = xi).

• If we consider the symmetry property of the joint probability function
P (X, Y ) = P (Y,X) we can obtain the Bayes’ theorem:

P (Y | X) =
P (X | Y )P (Y )

P (X)
,

which plays a primary role in machine learning and decision making.

In the Bayes’ theorem P (Y ) called the prior probability and P (X | Y ) called the
likelihood probability. Then we multiply the prior probability by the likelihood
to obtain the posterior probability P (Y | X).

If X and Y are said to be independent, the joint distribution of two indepen-
dent variables factorizes as the product of the marginals, P (X, Y ) = P (X)P (Y )
[27].

2.2.3.3 The General Setting of the Learning Problem

The learning problem can be described as the problem of minimizing the risk
functional based on empirical data. Vapnik [198] described the general learning
problem as follows:

Let the probability measure P (z) defined on the space Z. Consider the set
of functions Q(z, α), α ∈ Λ.

The goal is: to minimize the risk functional

R(α) =

ˆ
Q(z, a) dP (z), α ∈ Λ (2.3)
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if probability measure P (A) is unknown but an i.i.d. sample

z1, ..., zl (2.4)

is given. Where z describes a pair (x, y) and Q is the specific loss function.

2.2.3.4 Empirical Risk Minimization Principle

In order to minimize the functional risk 2.3 for the probability measure P (z)
, usually the expected risk function is replaced by the empirical risk function
[198].

R(α) =
1

l

l
i=1

Q(z, α) (2.5)

contracted on data set presented in 2.4.
This principle called the empirical risk minimization induction principle.

Which approximate the function Q(z, α0) to minimizes risk of 2.3 by using 2.5.
In order to specify the regression problem, one could introduce an n + 1

dimensional variable z = (x, y) = (x1, ...., xn, y). Then by use the loss function,
the empirical risk will be:

Remp(α) =
1

l

l
i=1

(yi − f(x, α))2 (2.6)

which we want to minimize, to find the regression estimate by using, for
example, the least square method [198].

2.2.3.5 Generative vs. Discriminative Learning

In probability and statistics, a generative classifier learns a model of joint prob-
ability P (x, y) over observation x and label y sequences. The prediction of the
generative model make use of Bayes theory to calculate P (x | y), and picking
the most likely y [139].

Discriminative classifiers are a class of models used in machine learning for
modeling the dependence of an unobserved variable y on an observed variable
x. In other words it model the posterior P (y | x) directly, or learn direct map
from input x to the class labels [139].

Application specific details prescribe the convenience of selecting a discrim-
inative versus generative model.There are different reason for using discrimina-
tive rather than the generative model. For example, Vapnik [198] articulated
that: ”one should solve the classification problem directly and never solve a
more general problem as an intermediate step (such as modeling P (x | y))”.
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2.2.3.6 Supervised Learning

In supervised learning, the task is to infer a function from supervised training
examples. In supervised learning, each example is a pair of the form (xi, yi)
consisting of an input object xi usually an n-dimensional vector and each output
value yi is a scalar. A supervised learning algorithm takes a set of training
examples as input and produces an inferred function as output. If the output
is discrete, the inferred function called a classifier, and it called a regression
function if the output is continuous. The prediction of the inferred function
should be the correct value for any valid input object. Therefore, the learning
algorithm requires generalizing from the training data to unseen situations in
a reasonable way [27].

In the next section, we discuss the linear support machine as an example
of the supervised learning algorithm, which we used later in the thesis to learn
eye movements models.

2.2.3.7 Support Vector Machines (SVM)

Here we discuss standard SVM problem (See [45, 33] for more details). We first
consider a linear machines trained on separable data, where we are given the
labeled training data (xi, yi), i = 1, .., l , xi ∈ R , yi ∈ {1,−1}. Our aim is to
define the “margin” of a separating hyperplane. Assume we have a separating
hyperplane that separates the positive from the negative examples, where all
the points x that lay on the hyperplane fulfilling: w.x+b = 0, where w represent
the normal vector to the hyperplane, |b|

∥w∥ is the orthogonal distance from the
hyperplane to the origin and ∥ w ∥ is the Euclidean norm of w. In our case, the
support vector algorithms look for the separating hyperplane with the largest
margin.

Assume that the training data satisfy the following constraints:

xi.w + b ≥ +1 , yi = +1 (2.7)

xi.w + b ≤ −1 , yi = −1 (2.8)

which could be combined into the following inequalities:

yi(xi.w + b)− 1 ≥ 0 ∀i (2.9)

The points for which the Equation 2.7 holds lie on the hyperplaneH1 : xi.w+
b = 1 with normal w and orthogonal distance from the origin | 1 − b | / ∥ w ∥
. Similarly, the points for make the Equation 2.8 holds lie on the hyperplane
H2 : xi.w + b = −1 , with normal w and orthogonal distance from the origin
| −1 − b | / ∥ w ∥ . While H1 and H2 are parallel and they have the same
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normal. One can find the pair of hyperplanes which gives the maximum margin
by minimizing ∥ w ∥2, subject to constraints (2.9).

By introducing positive Lagrange multipliers αi, i = 1, · · ·, l, for each in-
equality constraints in (2.9). One can write as :

we solved the standard SVM problem

LP =
1

2
∥ w ∥2 −

l
i=1

αiyi(xi.w + b) +
l

i=1

αi (2.10)

We must now minimize LP with respect to w, b. Requiring that, the gradi-
ent of LP with respect to w and b be small given the conditions:

w =

i

αiyixi (2.11)

l
i=1

αiyi = 0 (2.12)

The solution of 2.10 take form of:

LD =

i

αi −

i,j

αiαjyiyjxixj (2.13)

In the separable case (linear case) Support vector training, therefore, amounts
to maximizing LD with respect to the αi, subject to constraints (2.12) and pos-
itivity of the αi, with solution given by (2.11).

If we applied the above algorithm to separable data, will find no feasible
solution. Because the objective function (i.e., the dual Lagrangian) will be
growing arbitrarily large. Cortes and Vapnik [45] extend the idea to handle
non-separable data by introducing positive slack variables ξi, i = 1, · · ·, l in the
constraints of Equations. 2.7 and 2.8. The dual Lagrangian become:

Maximize:

LD =

i

α− 1

2


i,j

αiαjyiyjxi.xj (2.14)

subject to:

0 ≤ α ≥ C
i

αiyi = 0

The solution is given by:
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w =
Ns
i=1

αiyixi. (2.15)

where NS is the number of support vectors. So the only difference from the
optimal hyperplane case is that the αi now have an upper bound of C [45].

In general the SVM have some important properties: It has a unique solution
for the constructed optimization problem, and the learning process is quite
fast. Also, It obtains a set of support vectors together with constructing the
decision rule. Also, it is possible to implement a new set of decision functions
by changing only one function (i.e., the kernel function).

2.2.3.8 Controlling the Generalization of Learning Machines

The theory for controlling the generalization of a learning machine described
in details in [198]. Such theory dedicated to forming an induction principle
for minimizing the risk functional, where the size of the training set should be
considered. The goal is to identify methods that are appropriate for a given
sample size.

The empirical risk principle applies to a large sample size. Another principle
called the principle of structural risk minimization (SRM), intended to minimize
the risk functional with respect to both empirical risk and VC-dimension of the
set of functions. The concept of VC-dimension is based on relevant properties
of the growth-function [198].

Let S represents the set of functions Q(z, α), α ∈ Λ, be provided with
structure: so that S is composed of the nested subsets of functions Sk =
{Q(z, α), α ∈ Λk} so that

S1 ⊂ S2 ⊂ ... ⊂ Sn ⊂ ... (2.16)

and S∗ = ∪kSk.
An admissible structure should satisfy the following three properties:

1. The set S is everywhere dense in S∗.

2. The VC-dimension hkof each set Sk of functions is finite.

3. Any element Sk of the structure contains totally bounded functions 0 ≤
Q(s, α) ≤ Bk,α ∈ Λk.

In general the SRM principle suggests a tradeoff between the quality of the
approximation and the complexity of the approximating function (For a broader
overview of SRM principle refer to [198]).
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2.2.3.9 Why Can Support Vectors Machines Generalize?

The generalization ability of the support vectors networks is based on the factors
described in the previous section.

According to the theory of controlling the generalization of the learning
processes [198], to ensure a high percentage of generalization of the learning
machine. First one has to construct a structure S1 ⊂ S2 ⊂ ... ⊂ Sn on the
set of decision functions Sk = {Q(z, α), α ∈ Λk}. and then select a convenient
element Sk of the structure and a function Q((z, αkl ) ∈ Sk which minimizes the
bound. The bound can be formulated simply as follow

R(αkl ) ≤ Remp(α
k
l ) + Ω(

l

hk
) (2.17)

where the estimation of the risk represented in the first term, and the con-
fidence interval for this estimation represented in the second term.

In support vector methods, we can control both properties. Where In the
separable case one obtains the unique solution that minimizes the empirical
risk using a margin separating hyperplane with the maximal margin (which is
a subset of the smallest VC dimension). In the general case, it obtains the
unique solution when one chooses the value of the trade-off parameter C [198].

2.3 Computational Visual Attention Models
Information manipulation and interpolation is one key problem in perception.
The rich streams of visual information continuously enter our visual system
from the surrounding environment. Processing this much information in real
time can be very expensive to our brain. Thus, with the help of a clever
mechanism, our brain makes decisions on which information will be selected for
further processing. This mechanism called selective attention.

Attention is a general concept covering all important factors that influ-
ence selection mechanisms. There are two types of processing visual attention
have been suggested in many visual attention studies, which are: scene-driven
bottom-up and expectation-driven top-down.

Saliency maps identify important regions of a scene that seem to an observer
as an out-layer relative to their neighboring parts. Saliency map models are
often considered in the context of bottom-up computations. Computational
models of visual saliency are widely used to predict gaze locations. Usually,
these models vary in details but they have a similar structure.

In this section, we first present the common structure to the most visual
saliency models in section 2.3.2. We then review some important existing com-
putational attention systems 2.3.3. We then introduce a set of applications of
visual attention models in section 2.3.5.
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2.3.1 Eye Movements and Visual Attention

The inhomogeneity of the retina is the most important property of human eye.
The central part of the retina known as the fovea has a high-resolution central
and a low-resolution periphery. Also, the fovea represents a very small region of
the retina, with an angular diameter between 0.3◦and 2◦ [186]. Because to this
property the eyes move in order to obtain a detailed view of the whole scene.
There exist numerous types of eye movements. The saccadic eye movements
were the most studied ones. The goal of saccades is to shift the fovea onto
a given target to obtain high resolution samples. When we exploring a given
scene, we shift our fovea to a set of targets, creating the so called scan path.

Psychophysical studies of humans eye movements have demonstrated how
these saccades are generated. One of the earliest studies was made by Yarbus
in 1967. Yarbus [214] hypothesis was that fixation duration and gaze patterns
vary according to the current cognitive goals or the task being performed by
the subject. In his study, the subjects were asked to watch the same scene with
different conditions such as “find out the material circumstances of the family”,
“What are the ages of the people?”, or simply to freely examine the scene. Eye
movements differed considerably see Figure 2.2.

Figure 2.2: Eye movements paths of subjects whilst scanning a picture with
different questions (from [214]) .
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2.3.2 General Structure

In this section, we illustrate the common structure for the most computational
visual saliency models. The basis of many attention models goes back to Fea-
ture Integration Theory introduced by Treisman & Gelade [196]. The first
algorithmic model for a computational architecture of visual attention was in-
troduced by Koch and Ullman [107]. The main concept is that different features
are extracted in parallel, and their conspicuities are collected in a saliency map
(see Figure 2.3).

More specifically, the following steps are included in the models processing:

Figure 2.3: The general structure of the bottom-up attention model (from [97]).

First visual input is decomposed into a set of topographic feature maps based
on one or several image pyramids. Different pre-attentive feature detection
mechanisms (sensitive to color, intensity, orientation and so on), which operate
in parallel over the entire visual scene. Each feature map is discomposed into
several features types (such as r, g, b maps of color).

Followed by a center-surround mechanism or differences of Gaussian which
extracts extract local spatial discontinuities for each features types. This op-
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eration computes the average value of the center region and compares it with
the average value of a surrounding region. Then the features maps are summed
together to generate the conspicuity maps. Finally, the conspicuity maps are
normalized and combined together to form the saliency map.

The saliency map gives the saliency for each region of a scene. But some
application interested in the trajectory of image regions. This could be repre-
sented through the interplay between a winner-take-all network, which finds the
point of highest saliency at any given time, and inhibition-of-return, which sup-
presses the last attended location from the saliency map. So that that attention
can focus on the next most salient location [98, 97].

Most models consider only bottom-up mechanism described above and ig-
nore the important significance of top-down cues. Including top-down knowl-
edge also possible by modulating the weight of the conspicuity maps before
they are combined with other top-down knowledge such as context information
[97].

In the next section, we discuss specific examples of computational models
of visual saliency.

2.3.3 Overview of Existing Computational Models

The basis of many attention models goes back to Treisman & Gelade’s [196].
They stated that visual features are combined to direct attention. Then, this
informal concept was formalized as a saliency map by Koch and Ullman [107].
Later, Itti et al. [98] proposed the first computer implementation of this model,
where the visual input is decomposed into a set of different feature maps (color,
intensity, and orientation). Different spatial locations compete within each
map, and then maps are combined into a master saliency map.

This idea behind saliency maps that used in other studies, where it was
extended and further developed. For example, Mahadevan and Vasconcelos
[72] presented a discriminant formulation of center-surround saliency for static
images. Indeed, one can view their work as a normative approach, because
they first formulate the saliency map computation as a problem, and then
derive their algorithm as the solution to this problem. More specifically, they
consider saliency as a decision-making task informed by natural image statistics.
The outcome of their work is an automatic selection of the important features.
This improves the original Itti & Koch model, where the features selection
and combination was done in a heuristic way. This was later also extended to
dynamic scenes and movies using dynamic textures [121]. However, the original
Itti & Koch model was also improved recently using graphs to compute saliency
[85]. This shows that the concept of the computational saliency maps is still
very fruitful and can guide research in predicting eye movements.

These saliency-based models are all based on low-level image features. De-
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spite this limitation, they often predict gaze well, but mid- and high-level fea-
tures also affect gaze. Therefore, Judd et al. [101] pursued a machine learning
approach: They learned gaze points based on measured eye movements using
a linear SVM. They report better predictions than Itti & Koch on 1003 images
observed by 15 subjects [101].

All these previous works predicted gaze using only information from the
images. It is known since the early days of eye movement research that the
task-demands affect the patterns of eye movements [214]. A more recent study
re-investigated and confirmed this: Hayhoe et al. [86] proposed that there is a
strong relationship between eye movements and visual cognition when dealing
with complex tasks. Subjects performing a visually-guided task were found to
direct the majority of fixations toward task-relevant locations.

2.3.3.1 Itti and Koch

The Itti and Koch model was inspired by biological concepts from cognitive sci-
ence and based on a bottom-up computational model [98]. We introduced the
computational architecture of visual attention proposed by Koch and Ullman
[107] in Sec. 2.3.2. Itti et al. [98] proposed the first computer implementation
of this model. This model has been the basis for later models and is a standard
benchmark for comparison. An input image is subsampled into a Gaussian
pyramid, and each pyramid level is decomposed into channels for color, inten-
sity, and local orientations. From these channels, center-surround feature maps
for different features are constructed and normalized. Finally, conspicuity maps
are linearly combined once more to generate the saliency map.

2.3.3.2 Torralba Saliency (T-Saliency)

This model combines sensory evidence with prior constraints. Prior knowledge
(e.g., scene context or gist) and sensory information (e.g., target features) are
combined according to Bayes’ rule. The presented architecture for attention
guidance consists of three parallel modules extracting different information:
bottom-up saliency, object-centered features, and contextual modulation of at-
tention. The focus was on showing how to introduce global scene factors to
model the contextual modulation of local saliency. The proposed model learns
the relationship between global scene features and local object properties (iden-
tity, location, and image scale). The drawback of this method is that it need
a priori assumptions about features that contribute to salience (See [195] for
more detail).
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2.3.3.3 Graph-Based Visual Saliency (GBVS)

This model is based on a probabilistic framework in which a graph denotes
the conditional independence structure between random variables. This model
treats eye movements as a time series. Since there are hidden variables in-
fluencing the generation of eye movements, a Hidden Markov Models (HMM)
approach was been incorporated. In this model, feature maps are extracted at
multiple spatial scales. Then, a fully-connected graph over all grid locations
of each feature map is built. Weights between two nodes are assigned pro-
portionally to the similarity of feature values and their spatial distance. The
resulting graphs are treated as Markov chains by normalizing the weights of
the outbound edges of each node to one and by defining an equivalence relation
between nodes and states, as well as between edge weights and transition prob-
abilities. The activation maps are finally normalized to emphasize conspicuous
detail, and then combined into a single overall map. Graphical models could
be viewed as a generalized version of Bayesian models. That enables them to
model more complicated attention mechanisms. The disadvantages lie in model
complexity, especially when it comes to training and readability (See [85] for
more detail).

2.3.4 Performance Measures

To better understand the relationship between a viewer’s fixation locations and
the predictions of the saliency models, we have to evaluate it quantitatively
by comparing it with eye movement data. We used the following four perfor-
mance measures that are widely used in the state of the art of visual attention
literature, to evaluate the performance saliency models. Because the evalu-
ation measures for attention modeling can be classified into point-based and
region-based, we used four performance measures to deal with this perspective.

2.3.4.1 Kullback-Leibler (KL) Divergence

KL divergence measures the distance between distributions of saliency values
between human and random eye positions [29, 97]. We used KL because it is
sensitive to differences between histograms, where other measures essentially
calculate the rightward shift between two histograms. Furthermore, KL is in-
variant to reparameterizations, such that applying any continuous monotonic
non-linearity to estimated saliency map values. Let i = 1 . . . N be N human eye
positions in the experimental session. For a given saliency model, the estimated
saliency map is sampled at the human saccade Xi,human and at a random point
Xi,random. First, the saliency magnitude at the sampled locations is normalized
to the range [0,1]. Then, a histogram of these values in q = 10 bins across
all eye positions is calculated. Pr (Xhuman (i)) and Pr (Xrandom (i)) are the sub-
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sets of points in bin i for salient and random points, respectively. Finally, the
difference between these histograms was measured using KL divergence

KL (Xhuman;Xrandom) =

q
i

Pr (Xhuman (i)) log


Pr (XHuman (i))

Pr (Xrandom (i))


. (2.18)

Models show higher KL divergence, are better in predicting human fixa-
tions, because usually human gaze towards the regions with the highest model
responses and avoiding the low model responses regions.

2.3.4.2 Area Under Curve (AUC)

AUC is the area under the Receiver Operating Characteristic (ROC) curve [79].
ROC is used for evaluating a binary classifier system with a variable thresh-
old. Using this measure, the model’s ESM is treated as a binary classifier on
every pixel in the image. Considering Pixels with larger saliency values than
a threshold are classified as fixated while the rest of the pixels are classified as
non-fixated. Human fixations are then utilized as ground truth. Via changing
the threshold, the ROC curve is drawn as the false positive rate vs. true positive
rate and the area under this curve indicates how well the saliency map predicts
actual human eye fixations [32]. Perfect prediction corresponds to a score of
one. This measure has the desired characteristic of transformation invariance:
the area under the ROC curve does not differ when applying any monotonically
increasing function to the saliency measure (See [92] for further details about
ROC calculation).

2.3.4.3 Linear Correlation Coefficient (CC)

This error measure is widely used to compare the relationship between two
images for applications such as disparity measurement, object recognition, and
image registration [99, 156]. Clearly the linear correlation coefficient measures
the strength of a linear relationship between two variables:

CC (G,S) =


x,y (G (x, y)− µG) . (S (x, y)− µS)

σ2
G.σ

2
S

, (2.19)

Where G and S represent the fixation map (a map with 1’s at fixation
locations, usually convolved with a Gaussian kernel) and the estimated saliency
map, respectively. µ and σ represent the mean and the variance of the values
in these maps. An attractive advantage of CC is the capacity to compare
two variables by providing a single scalar value between −1 and 1. When
the correlation is close to 1 there is essentially a perfectly linear relationship
between the two variables.
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2.3.4.4 Mean Squared Error (MSE)

In statistical modeling, the MSE is representing the difference between the
actual observations and the observation values predicted by the model [94]. This
measure is widely used to compare the various image compression techniques.
We used to measure the difference the between actual human fixation map and
the saliency map. The mean-squared error (MSE) between two maps G(x, y)
and S(x, y) is:

MSE(G,S) =
1

MN

M
m=1

N
n=1

[G (n,m)− (S(n,m)]2 (2.20)

Where G and S represent the fixation map and the saliency map, respec-
tively.

2.3.5 Applications of Visual Attention Models

By using computational attention models, we can build a smart application.
Also, we can improve technical systems in many field such as computer vision,
robotics, human-computer interaction and computer graphics. In this section,
we discuss several application scenarios for attention models.

2.3.5.1 Computer Vision

Image segmentation and detecting regions of interest are important methods
in computer vision. In automatic segmentation of images, we need first to set
the starting points for segmentation (seeds) and then choosing the similarity
criterion to segment regions. Achanta et al. [5] present an approach where the
saliency regions of the attention system work as expected candidates for the
seeds and the homogeneity criterion is adapted according to the features that
discriminate the region to be segmented from its surroundings.

Visual saliency model can be used to enhance object recognition. One ex-
ample of a combination of an attentional front-end with a biological object
recognizer is presented in [129]. The biologically object recognizer HMAX [162]
focuses on simulating processes in human cortex, and it is able only to recog-
nize simple artificial objects such as circles or rectangles. Miau et al. [129]
used support vector machine algorithm to detect objects in natural images. A
similar system proposed by Walther and Koch [203], where the visual attention
model combined with an object recognizer based on SIFT features [120] and it
found that the recognition results are improved.

Another interesting application scenario presented in [151] is the use of
saliency algorithms in the application of image compression. Image compression
algorithms could be enhanced by compressing not interesting regions more than
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regions that are attended. In [96] saliency model is used for video compression.
Gue et al. [84] used multiresolution spatiotemporal saliency model in image
and video compression.

2.3.5.2 Computer Graphics

Model of saliency can help in automatic image cropping techniques. Santella et
al. [169] presented an interactive method for image cropping given information
about gaze location, provided by eye tracking.

Suh et al. [189] and Chin et al. [40] used visual saliency models to identify
important image areas and built automatic image cropping systems that require
no user input. These systems identify important image content and compute
the best crop for any given size or aspect ratio. Which could be used in many
applications such as automatic snapshot re-composition, adaptive documents
and thumbnailing.

Grbli et al. [78] used saliency data to identify regions of intensest which help
to determine the level of details appropriate to stylize and abstract photographs
to make them more understandable.

In content aware media, where we have a variable of platform and display
sizes. Images and videos should be changed to fit the aspect ratio of that
platform. In Holtzman et al. [90] used saliency map in the re-targeting methods
as a cost function to define which pixels are the least important to prioritize
them to be removed before the important pixels. The same idea was suggested
by [75].

2.3.5.3 Robotics

Directing a camera to interesting scene regions and/or zooming these regions
are of interest for active vision research. The goal is to acquire data that is as
suitable as possible for the current task and to reduce the processing complexity
by actively guiding the sensors (usually the camera) to reasonable regions. In
these scenarios using attentional models that highlight most salient locations
in the video streams are essential. [128] the active vision system NAVIS is
presented that uses an attention system to guide the gaze. It is evaluated on a
fixed stereo camera head as well as on a mobile robot with a monocular camera
head. Other approaches that use attention systems to direct the gaze of an
active vision system are described in [42].

Another application scenario of an attention system is in the process of
robot localization. The robot had to determine its positions by manipulating
its sensor date. Usually using laser scanner fail in outdoor environments. At-
tentional mechanisms can facilitate the search of landmarks during operation
by selecting interesting regions in the sensor data. By concentrating on these
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regions and comparing the candidates with trained landmarks, the most prob-
able location can be determined. Siagian and Itti [177] used salient objects in
the environments for localization landmarks.

2.3.5.4 Design and Marketing

Models of saliency can be useful in Market research. Companies are interested in
knowing how the consumers view with their websites, advertisement or images.

Eye tracking sensors allows the companies to see how the consumers view
their websites and advertisements. Models of saliency could be used to predict
where people look and reduce the need for using eye tracking devices.

2.4 State of the Art in Related Fields

2.4.1 Cognitive Architectures and Models

A cognitive architecture refers to a theory that specifies the underlying struc-
tures for an intelligent system. The goal cognitive architecture is to summarize
different aspects of a cognitive agent that does not change over time in a com-
prehensive computer model, which includes:

• the short-term and long-term memories that reserve information about
the agent’s beliefs, goals, and knowledge.

• the representation of components that are enclosed in these memories and
their structuring into expansive mental structures;

• The functional operations that work on these structures, and its content of
the performance mechanisms that use them and the learning mechanisms
that change them.

Different cognitive architectures can differ in the specific assumptions they make
about these aspects. Also, different architectures can make different commit-
ments about how to characterize and obtain knowledge and beliefs. Newell
[142] has argued that we should seek to unify many findings into a single theo-
retical framework and refine that theory, instead of conduct micro-studies that
address only one issue at a time. In his claiming ”You can’t play 20 questions
with nature and win" [142].

Many researchers have proposed and studied cognitive architectures over
the past three decades. In the next subsection, I review the most important
cognitive architectures.



CHAPTER 2. BACKGROUND AND RELATED WORK 36

Examples of Cognitive Architectures

ACT-R

ACT-R (Adaptive Control of Thought—Rational) [12, 11] the most recent cog-
nitive architecture developed by John Robert Anderson, which concerned pri-
marily with understanding how people organize knowledge and produce intelli-
gent behavior. ACT-R has continuous development since the late 1998s. ACT-
R distinguish between declarative and procedural representation. Procedural
knowledge is a set of all productions, and declarative knowledge is represented
in the form of chunks or memory.

ACT-R is structured into a set of modules; each works with a different type
of information. The most common modules are sensory modules for visual
processing, a declarative module for long-term declarative knowledge, motor
modules for action and the goals represented by an intentional module. A
short-term memory buffer holds a declarative relational structure associated
with each module. The processing of the modules coordinates by a long-term
production memory. The activation of each declarative chunk reflects its past
usage, and it impacts its retrieval from long-term memory, given that each
production has an expected cost and probability of success.

On every cycle, ACT finds out matching productions versus the contents
of short-term memory. After that, the system selects the production with the
highest utility and executes its actions.

Learning in ACT-R involves creating new facts and productions in addition
to updating base activations and utilities associated with these structures.

SOAR

SOAR [111, 112, 143] is a cognitive architecture that has continuous develop-
ment since the early 1980s. Soar is based on a production system, where the
long-term procedural knowledge in Soar takes the form of production rules,
which can be described as operators in a problem space. These operators de-
scribe simple actions that modify the internal state of the agent or generate
primitive external actions, and also describe more abstract activities. Recently
separate episodic and semantic memories have been added to Soar to represent
these long-term knowledge [111].

Problem solving in Soar formulated as a search through a problem space
for a goal state. The basic processing cycle consists of a decision cycle that
repeatedly proposes, selects, and applies operators of the current problem space
to a problem state, together with a decision procedure. Learning in Soar has
multiple mechanisms for different types of knowledge: for example chunking and
reinforcement learning need procedural knowledge, but episodic and semantic
learning need their corresponding types of declarative knowledge [112].
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ICARUS

ICARUS [113, 114] is cognitive architecture works with two distinct forms of
knowledge. The concept knowledge encodes classes of environmental situations
in terms of other precepts, and skills knowledge determine how to reach goals
by decomposing them into ordered subgoals. The performance element first
infers all beliefs, which is implicit in its concepts and its perceptions of the
environment, then finds applicable path downward through the skill hierarchy
to execute. The problem solving occurs when Icarus can find no applicable
path whereas learning creates new skills based on traces of successful problem
solving.

PRODIGY

PRODIGY [35] encodes two kinds of long-term structures, which are domain op-
erators and control rules. Domain operators describe the effects of actions and
the control rules specify when the system should select, prefer, or reject a given
operator, binding, state, or goal. The structures of the short-term memories
include representations of states and contents of a goal stack. Problem solving
use means-ends analysis. Means-ends analysis repeatedly selects an operator to
reduce differences between the current goal and state until it finds a sequence
that achieves the top-level goal. Learning involves an explanation-based module
that analyzes the problem-solving traces and creates a new selection, rejection,
and preference rules to reduce search on future tasks. Other modules con-
trol search by analogy with earlier solutions, learn operator descriptions from
experimentation, and learn to improve the quality of solutions.

CLARION

CLARION [190] used an explicit and implicit form to represents both action-
centered and non-action knowledge. By using multi-layer neural networks in the
implicit representation and using symbolic production rules in the explicit rep-
resentation. Corresponding short-term memories carry activations on nodes in
addition to the symbolic elements that the architecture matches against long-
term structures. Problem solving involves: first passing sensory information
into the implicit layer to produce alternative high-value actions, and to the ex-
plicit layer to propose actions using the production rules. Then the CLARION
architecture selects the candidate that has the highest expected value. Learn-
ing involves weight correction by using a combination of back propagation and
reinforcement learning to estimate value functions in the implicit system. Also,
construction of production rules by extraction from the implicit layer, error-
driven revision, and instantiation of rule templates.
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2.4.2 Smart Meeting Rooms

The process of human-human interaction during meetings and their technolog-
ical support have been a subject of research for a long time. In 1987, there
was a project called CoLab [187] at Xerox PARC in Palo Alto, California. The
focus was to make meetings more effective and to provide the opportunity for
research on how computer tools affect the meeting process. Two types of tools
were developed, namely to support the group interaction and to provide parallel
access to shared objects. A first tool allowed for brainstorming, the collective
preparation of a presentation, and for the organization of the meeting agenda.
A second tool facilitated the organization and evaluation of arguments for pro-
posals.

In 2001, the NEEM project [60, 61] at the University of Colorado was con-
cerned with improving distributed multimedia meetings. A major novel aspect
of the NEEM project was the use of intelligent artificial agents as meeting
participants. Goals of this project included the enhancement of distributed
group interaction understanding, and the creation and testing of prototype dis-
tributed meeting environments. Thus, this system helped in the organization of
meetings, in collecting and organizing information, and in facilitating the social
interaction between the meeting participants. Some of these projects focused
more on collecting meeting data (AMI meeting corpus [126], NIST meeting
room pilot corpus [73]), and others on modeling human behavior in meetings
(ICSI project [137]).

2.4.3 Human Social Interaction

In human social interaction, meetings are important life activities. It is the
place where a group of people comes together, share information, engage in
discussions, and make decisions. There have been many improvements in
technology-oriented tools to make meetings more efficient. For example, brows-
ing elements of interest within a recorded meeting [206]. Also the usage of tools
that allowed parallel access to shared objects [61] or create abstractive sum-
maries [106] (see Sec. 2.4.2). Regarding the social aspects of meetings requires
the analysis of different nonverbal communication cues. For example, recogniz-
ing meeting activities cues [127] or recognition of roles in meetings [62]. That
can lead to the design of efficient tools for computer-enhanced human-to-human
interactions (see Sec. 2.4.4).

2.4.4 Activity and Intention Recognition Systems

Work on activity and intention recognition has been done for more than thirty
years. Bratman [30, 43] described an important aspect of intentions, which
is future-directedness. They even argue that an agent needs to have a course
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of actions available to achieve something in the future. Cohen et al. [43] in-
vestigate principles dominating the rational balance among an agent’s beliefs,
goals, actions, and intentions. Those principles provide specifications for ar-
tificial agents and approximate a theory of human action. By making precise
conditions under which an agent can drop his goals, i.e., by stipulating how
the agent is committed to his intentions, the formalism captures some impor-
tant properties of intention. Specifically, the formalism provides analysis for
Bratman’s three characteristic functional roles played by intentions [30].

Currently, meeting scene analysis has emerged as research area focusing
on peoples’ interaction. Several approaches have been made to achieve au-
tomatic recognition of group actions in meetings and use statistical methods.
For example using Hidden Markov Models (HMMs) [127], layered-HMM [217],
coupled-HMM [20], and dynamic Bayesian networks [53].

Helaoui et al. [87] describe the usage of Markov logic as a declarative frame-
work for recognizing interleaved and concurrent activities incorporating both
inputs from pervasive light-weight sensor technology and common-sense back-
ground knowledge. In particular, they evaluate its capability to learn statistical-
temporal models from training data also to integrate these models with the
background knowledge to enhance the overall recognition accuracy.

Miquel RamÃrez et al. [158] extend the model-based approach to plan
recognition to the Partially Observable Markov Decision Process (POMDP)
setting, where states are partially observable, and the actions are stochastic.
The task is to indicate a probability distribution over the possible goals of an
agent. The POMDP model is shared between agent and observer except for
the true goal of the agent that is hidden to the observer. The last approach
using POMDP is of special interest for this thesis, because many normative
approaches to decision making and planning use POMDPs.

2.4.5 Models of Decision Making and Planing

Bratman [30] have been concerned with the role intentions play in directing
rational decision making and guiding future actions, and then Rao et al. [159]
proposed an agent model, which models this in a decision-making framework us-
ing a symbolic reasoning. However, one important aspect to consider in models
of decision making and planning is how agents learn to decide. Reinforcement
learning (RL) is a natural framework for that.

Going beyond the classical RL setting, Ng et al. [145] argue that the re-
ward function from RL must be considered as an unknown when examining
the animal and human behavior. They proposed algorithms to solve the prob-
lem of this inverse reinforcement learning (IRL), i.e., of constructing a reward
function given observed optimal behavior. This reward function, which cannot
be observed directly, can be considered as part of the internal state of a user,
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similar to the state of the attentional system, or the current goal state.
The proper way of including such uncertainties into RL is Bayesian RL

(BRL). Baker et al. [17] argue that action understanding is much like visual
perception, they characterize vision as inverse graphics and action understand-
ing as inverse planning or IRL. They propose a framework based on Bayesian
inverse planning for modeling human action understanding. The underlying
assumption here is that agents are rational, and they deal with uncertainties in
the optimal way, which is the Bayesian approach.

Most previous decision-making models ( i.e., classical RL, IRL, and Bayesian
RL) all assume that the agents are learning the parameters of a model. How-
ever, the structure of a model may be even more important for human agents
than the values of their parameters. Recently, Acuna et al. [6] formulated
the problem of structure learning in sequential decision tasks using BRL, and
demonstrate qualitative differences in the behavior of optimal learning agents
between parameter and structure learning. Thus, a full normative model of
decision making in learning agents needs to by a BRL of structure learning.
When an agent is observed (by another agent or a smart room), then the re-
ward function should be estimated based on the observed behaviour. This can
be considered as a combination of IRL, BRL, and online structure learning.

2.4.6 Interaction with Large High-Resolution Displays

The problems of interacting with Large High-Resolution Displays (LHRDs)
have been investigated in HCI. Shoemaker et al. [176] introduced interaction
technique that makes use of a perspective projection applied to a shadow rep-
resentation of a user. This system was designed to facilitate manipulation over
large distances. Bezerianos et al. [24, 23] presented how current software does
not support users on managing large amounts of dynamic visual information on
large displays and they proposed a set of tasks that are relevant to wall display
interaction. Tan et al. [193] investigated how LHRD effect performance in spa-
tial orientation tasks. Czerwinski et al. [47] studied the effects of a larger field
of view on user performance. Jota et al. [100] tested four ray pointing variants
on a wall display with varying viewing angles. Lehmann et al. [115] introduced
bimanual interaction techniques that enable users to manipulate virtual content
with the suitable accuracy. Grudin et al. [81] proposed that the increase in
available information has increased our requirement to split our digital worlds
into different places, so that multiple monitors can be used in this case.

2.4.7 Bezel Effects on Tiled-Display Walls

The effects of interior bezels on tiled displays have been considered previously.
Earlier work on desktops using multiple screens has discussed the effect of Bezels
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in viewing and work practices [192, 81]. Bi et al. [25] studied the effects of tiled-
displays interior bezels on visual search, straight-tunnel steering, and target
selection tasks. They showed that interior bezels do not affect visual search
time or error rate, but, splitting objects across bezels is detrimental to search
accuracy. Also, interior bezels are disturbing to straight-tunnel steering, but
not to target selection. Wallace et al. [202] investigated how the presence and
width of interior bezels impact visual search performance across tiled displays.
They found that the presence or width of interior bezels did not reveal any
negative effects on a person’s ability to perform the visual search across tiled
displays. Another studies [18, 164] show that a large high-resolution display
affords a number of advantages and disadvantageous: these bezels improved
user performance for task switching or viewing large documents and increased
ability to spatially position applications and shortcuts for quick access and
recall, on the other hand, bezels distort images and documents confusing users.

2.4.8 Models of Eye Movements and Visual Attention

Models of saliency are used to predict fixation locations. Almost of these mod-
els [98, 121] are a bottom-up model where different low-level features such as
color, intensity, orientation, texture, and motion are derived from the image
at multiple scales. A saliency map then is determined for each of the features
and combined together to generate a master saliency map, which indicates the
saliency of each pixel. This idea of saliency maps was extended and further
developed in other studies. For example, Gao and Vasconcelos [72] proposed
a discriminant formulation of center-surround saliency for static images. The
outcome of their work is an automatic selection of the important features. This
improves the original Itti & Koch model, where feature selection and combina-
tion was done in a heuristic way. This was later extended to dynamic scenes
and movies using dynamic textures [121]. Torralba et al. [195] used Bayesian
approach to combines sensory evidence with prior constraints. Where prior
knowledge (e.g., scene context or gist) and sensory information (e.g., target
features) are combined according to Bayes’ rule. The drawback of this method
is that it need a priori assumptions about features that contribute to saliency
prediction.

Harel et al. [85] improved the original Itti & Koch model using graphs to
compute saliency. This model treats eye movements as a time series. Since there
are hidden variables influencing the generation of eye movements, a Hidden
Markov Models (HMM) approach was been incorporated. Graphical models
enable to model more complicated attention mechanisms. The disadvantages
of this approach lie in model complexity, especially when it comes to training
and readability. Judd et al. [101] used a data-driven approach to learn classifier
based on eye movements data and various visual features as inputs.
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Most models of saliency rely only on low-level 2D scene features such as
color, orientation, contrast, and intensity. Unfortunately, it is unclear which of
the feature channels are most important in generating predictions. Furthermore
what other features should be included? Although some studied investigated
that [109, 16], this is still not fully answered. Kootstra et al. [109] introduced
local symmetry as a measure of saliency. They found that the symmetry models
better match the human data than the contrast model. Overall there is still
need for further research to determine which features are most relevant in which
contexts. Thus, this thesis address this problem by investigating which features
are relevant for eye movements prediction in different behavioral contexts (See
Chapter 4). Baddeley et al. [16] used a Bayesian system to explore whether
high-frequency edges affect human eye movement behaviors. They found that
the characteristics of fixated locations were dominated by high-frequency edges.
But, simple questions such as “Do humans look more often to high contrast
edges due to depth gaps than to edges due to texture borders?” have not been
addressed yet. Therefore, this thesis explores how relevant depth features are
for eye movement prediction (See Chapter 5).

In order to have a model able to obtain the contribution of different fea-
tures (such as: contrast, luminance, color, edges, etc.), in various spatial scales,
a potentially very large number of parameters requires to be identified [97, 16].
Baddeley et al. [16] found that standard maximum likelihood system identi-
fication techniques fail to give good predictions (i.e., the models overfits the
dataset, fitting both the signal and noise, and consequently fails to generalize
to new dataset). Therefore, we used a linear Support Vector Machine (SVM)
[45, 33] approach to finding out the contribution of different features in different
contexts. We used models with linear kernels because it is faster to compute
and the resulting weights of features are easier to understand. This approach
does not need a priori assumptions about features that contribute to saliency.
Other methods used previously to constrain high dimensional mappings (such
as: principal component analysis, singular value decomposition, and Fourier-
based techniques) essentially bias the recognized model to distributed, which is
difficult to interpret the solutions even if the problem is simple.

Other interested questions revolve around how top-down cues such as the
affect of different tasks and internal states of the observers, influence the com-
putation of visual saliencies? and how humans might select the next gaze
location. Previous research has suggested that human eye movement behav-
ior is consistent with decision-making mechanisms for fixation selection that
attempt to maximize reward [168, 140]. Also, there is a gap to fill between
models performance in real world scenarios and human performance. In this
thesis, we investigating how existing predictive gaze models perform in real
world scenarios compare to human eye movements behaviors (i.e., in the inter-
action scenario with tiled Large High-Resolution Displays). Then, the connec-
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tion between model and empirical data is made, by using IRL paradigm that
constructs the parameters of the learning model to best match the observed
human behavior.



Chapter 3

Concept of Predictive User
Modeling

In Chapter 2 we introduced key concepts and reviewed the state-of-the-art in
related fields. We also reviewed the current work on modeling eye movements.
In this Chapter, we present specific approaches to modeling human behavior,
but now from a more abstract point of view. The goal of this Chapter is to
present conceptually important approaches.

More specifically, we start with considering human behavior prediction as
yet another prediction task that could be solved using inductive learning (Sec.
3.2). Then, we emphasize the notion of "normative models" as compared to
"descriptive models" (Sec. 3.3). This distinction is common in biology, in par-
ticular in neuroscience, and to some extend also in physics. Descriptive models
rephrase observations in a more compact form. They may or may not refer to
causes and effects. In short: Descriptive models describe the observations, and
the models (their structure and/or parameters) are usually fit to data. Norma-
tive models can even be formulated without given data. In short: Normative
models state how things should be, given some a priori assumptions that may
or may not be true. Then, comparing predictions of normative models with
data can give insights into why humans behave as they do as compared to only
treating human behavior prediction as yet another prediction task.

In Secs. 3.4 and 3.5 we introduce Reinforcement Learning (RL) as a paradigm
for human behavior prediction. While RL has been used to train adaptive smart
meeting rooms, our contribution is to highlight to this community that RL is
a valuable paradigm from which human behavior models can be deduced. One
innovation in this Chapter is to propose Inverse Reinforcement Learning (IRL)
as a promising approach.

44
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3.1 A Concise Overview of the Main Concepts
This thesis addressed the problem of predicting human gaze behavior in smart
environments. As a results of the discussion in Sec. 2.4.8, we decide to investi-
gate these problems by:

1. The thesis uses systematic machine-learning approach, where user pro-
files for eye movements are learned from data in different context, and
determining by combinatorial exploration which features are relevant for
behavioral context. We used a linear Support Vector Machine (SVM)
[45, 33] approach to finding out the contribution of different features in dif-
ferent contexts. This approach does not need a priori assumptions about
features that contribute to saliency models. In this approach, the pro-
gram is fed labeled training data (xi, yi), i = 1, .., l , xi ∈ R , yi ∈ {1,−1},
and tries to learn the unknown model parameters that underlies it (see
Sec. 2.2.3.7 for a broader overview of SVM). Figure 3.1 illustrates how
to use machine learning approach for gaze location prediction, where user
profiles for eye movements are learned from user data.

2. The thesis proposes the modeling of eye movements using normative mod-
els. The prediction of these models are based on decision-making theory.
Previous research has suggested that human eye movement behavior is
consistent with decision-making mechanisms for fixation selection that
attempt to maximize reward [168, 140]. Our approach formulated eye
movements as a Markov Decision Process (MDP) problem, with the use
of Inverse Reinforcement Learning (IRL) to infer the reward function.
Figure 3.2 illustrates how to use Inverse Reinforcement Learning for eye
movements prediction. Given an exact model of the environment and the
measurement of the agent’s behavior over time. Instead of predefining
the reward function, we seek to identify it from human eye movements
behavior.

In the following sections, we discuss the use of machine learning to support
user modeling, and we discuss the problems of human behavior modeling in
decision making processes.

3.2 Predicting User Behavior with Inductive Learn-
ing

Inductive learning methods have been widely used in human behavior model-
ing. There are a plenty of algorithms exist that can learn the structure from
a given data set and some prior information about the originality of the data
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Figure 3.1: Illustration of how to use machine learning approach for gaze
location prediction, where user profiles for eye movements are learned from
user data in different context.
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Figure 3.2: Illustration of the use of Inverse Reinforcement Learning for eye
movements prediction. Given an exact model of the environment and the mea-
surement of the agent’s behavior over time. Instead of predefining the reward
function, we seek to identify it from human eye movements behavior.
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by minimizing an error criterion. Early machine learning researchers in user
modeling focused on user’s behavior modeling without seeking to describe the
internal processes that produce behavior. Another line of research focusing
modeling agent’s cognitive processes i.e. models of the internal processes that
underlie the user behavior for example [10, 41, 44, 95, 149, 122]. Feature Based
Modeling (FBM) [204], an example of user modeling based on feature-value ma-
chine learning, has shown that it is possible within reasonable computational
constraints to produce models of users’ competencies with high predictive ac-
curacy. Some previous works have examined aspects of user modeling based on
FBM for example ([173, 26, 9, 110]). Modeling the internal operations of the
cognitive system is challenging because the precise mechanisms of how our cog-
nitive system operates is still not well understood. In addition to the inability
to observe internal cognitive operations.

In situations where the user repeatedly performs a task that involves select-
ing among various predefined options appear appropriate for using standard
machine learning methods to frame a model of the user. One example of such a
task are the human eye movement strategies that have been chosen as the model
system for this thesis. In such situations, we consider understanding where peo-
ple look as straightforward standard classification learning tasks. The visual
information available to the users influence them to move their eyes to the most
salient locations, so the gaze positions and the stimulus can serve as the train-
ing data for a learning algorithm. The algorithm will create a model of a user’s
eye movements that can then be used to predict the user’s behavior on future
problems.

In this thesis, we use a learning approach to train a classifier directly from
human eye tracking data (see chapters 4 and 5). We use a linear Support Vector
Machine (SVM) [45, 33] to find out which features are relevant to different
behavior context. We used models with linear kernels because it performed
well for our specific task. Linear models are also faster to compute, and the
resulting weights of features are easier to understand (see Sec. 2.2.3.7 for more
details about the SVM).

Nevertheless, user modeling brings a set of challenges for machine learning
applications especially for our considered scenarios where eye movements are
known to be a very dynamic modeling task. In the following subsections, we
address key concepts and some of the key challenges.

3.2.1 The Need for Large Data Sets

In user behavior modeling situations, it is reasonable that learning algorithms
require many training examples to be accurate. To study user eye movement
behaviors in smart environments, one needs a set of ground truth data of user
fixations in a different context. Many eye movement datasets have been col-
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lected using eye tracking experiments. These data sets differ according to the
types & numbers of images presented to the users, the task demand was given
to the users and also the number of users in each experiment.

In this thesis, we collected a database of eye tracking data in smart envi-
ronment for three different scenarios:

Eye Movements In Meeting Scenarios: The First scenario is a meet-
ing scenario, where we collected a database of eye tracking data in a meeting
room in two scenarios (giving a talk vs. listening). In which three people were
involved, each of them makes a presentation. At the beginning the three par-
ticipants enter the room, one of them goes to the stage to give a talk for four
minutes where he was wearing a head-mounted eye tracker and the other go
to their respective seat. After the presentation is over, the presenter repeats
his talk without wearing the eye tracker, but one of the audience was wearing
the head-mounted eye tracker. The same procedure was repeated for the other
participants. During these meetings, people had natural behaviors (For more
details refer to Chapter 4).

Eye Movements Data On LHRD: The second scenario is an interaction
scenario with the tiled Large High-Resolution Displays (LHRDs). We collected
a database of eye tracking data for the user when performing a free viewing
task with a LHRD and with DLP TV with a 67 inch screen diagonal. Eight
users participated in this study. The goal of this study was to find out how well
visual saliency algorithms perform with LHRD and to investigate the effects of
tiled display (interior horizontal and vertical) bezels on human eye movements
and on saliency algorithms predictions (For more details refer to Chapter 6).

3D Eye Movements Data: The last scenario is a free viewing task with
3D natural scenes where we collected a database of eye tracking data on nat-
ural scenes where we also have depth information, because all other published
database never included depth information. The rational for investigating depth
images is that they may reveal the saliency that matters because when inter-
acting with the environment, we evolved by interacting with objects in a three-
dimensional (3D) world. This dataset used to improve the computation of
saliency maps, by using luminance and depth image features (For more details
refer to Chapter 5).

3.2.2 The Need for Labeled Data

A major concern in using machine learning for user modeling tasks is that the
supervised machine learning approaches used require explicitly labeled data.
Also finding the correct labels may not be easily visible from a simple inspection



CHAPTER 3. CONCEPT OF PREDICTIVE USER MODELING 49

of the user’s behavior. We consider again the example of eye movement data.
Even though the class of salient locations is well defined by the set of fixations
(i.e., the positions where saccades land), the selection of non-fixed locations is
not easy. While generating random locations from a uniform distribution from
regions that were not fixated is not effective. Because, it has been found that
users fixate more on the central part of the display rather than in the periphery
[194]. This could be due to the photographer’s bias of keeping objects at the
center of the image. Therefore, it has been proposed that negative examples
should also be drawn from this specific distribution of human fixation locations
[105]. To avoid this effect, we used the approach proposed in [105], which
suggest that the negative samples should be collected from the same locations
such as the positives, but with the image data taken from different images.
To represent fixations and non-fixed locations accordingly, for each location,
we can get a square patch and saved the pixel values in a feature vector xi
together with a label yi ∈ [1,−1], indicating fixation or background. From
each image, we chose 200 positively labeled pixels randomly from the top 40%
salient locations of the human ground truth saliency map and 200 negatively
labeled pixels from the bottom 60% salient locations. We noted that expanding
the number of examples collected per image more than 200 did not improve the
performance of the learned model. In order to have examples that were strongly
positive and strongly negative, we collected examples from the top 40% and
bottom 60%; we avoided samples on the boundary between the two. In order
to have zero mean and unit variance we normalized the features of our training
set and used the same normalization parameters to normalize our test data.

3.2.3 Drift Correction

Learning from user behavior in a very dynamic modeling task is not easy, such
as characterizing a user eye movement behavior, which is very likely to change
over time. Another concern in learning from eye movement data is the ac-
curacy of the gaze position measurements. The exciting eye tracker system
produces errors around 0.5 degrees of visual angle. This affects the learning
procedure, where even similar regions can seem uncorrelated when misaligned
by this amount. Therefore, we took great care to minimize and control measure-
ment errors. We follow the approach proposed in [195, 101]. Eye movements
smaller than predefined criteria were considered drift within a fixation.
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3.3 Predicting User Behavior with Normative The-
ories

Normative decision theory is occupied with identifying the best decision to take
by selecting between different choices. A normative model of user behavior shall
not only describe how humans behave and the role cognition plays in accounting
for such behavior. Instead, the model shall explain why humans behave as they
do and the role cognition plays in account for it.

To illustrate this distinction between describing and explaining cognition
consider game theory (see Sec. 2.2.2.8 ): A plain descriptive approach would
simply collect a lot of data about how humans decide in scenarios, which can be
formalized as a game. Then, a descriptive model (e.g., a statistical regression
model) would account for how the properties of a particular game affect the
decisions of humans, where accounting for the data is the main goal. Such
descriptive models could even have predictive power. However, game theory
does not start from actual data, but from so-called first principles. It first states
desirable properties of the outcome of games, it then predicts the outcome of
games, and only afterward it is checked if the predicted outcomes match the
data. Interestingly, it turns out that humans often make sub-optimal decisions
(see matching vs. maximization in Section 2.2.2.4). It is currently not clear if
these sub-optimal decisions may turn out to be optimal when considered from
an alternative perspective or within a richer definition of the task the humans
are performing as decide.

The existing decision-making and planning frameworks provides the neces-
sary formalisms for representing user observed behavior. There are many de-
veloped frameworks for representing decision-making situations with the goal
of representing the factors that influence the optimal decision. Almost of these
frameworks describe behaviors as a sequence of interactions with a stochastic
process that maximize expected utility (see Sec. 2.2.2.5). In the sections that
follow, the discussion will be about a few common use of these frameworks.

3.3.1 The Underlying Normative Agent-Environment Ar-
chitecture

Here we refine from the standard Reinforcement Learning (RL) notation by ex-
plicitly distinguishing between the states S of the environment and the internal
states Z of the agent. A presented in Figure 3.3, At each time an agent A
in some external environment E receive an observation and makes an action.
The agent also has internal states Z of the internal environment and the agent
selects action a ∈ A using it is policy π denoting the conditional probability of
selecting action a ∈ A if the agent is in the internal state z ∈ Z. Also, there is
a space of reward function R for every agent, which an agent is optimizing.
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Figure 3.3: Normative Agent- Environment interaction architecture.

3.3.2 The Environment Model for a Single Agent

We use a setting of defining an environment for a single agent that is very
similar to the setting used in RL. We consider a set of states S, where the
states s ∈ S denote states of the environment. The environment changes states
only in response to an agent’s action, and these state transitions are modeled
probabilistically.

Definition 4. Let S be a set of states of the environment and A be a set of
actions. Then, we define a model of the environment of an agent as a tupel
(S,A, P ), where P : S ×A → S → [0, 1] is a function with P (s, a) (s′) =
P (s′ | s, a) denoting the conditional probability of transitioning to state s′ ∈ S
if the agent has taken action a ∈ A in state s ∈ S.

Note that here we have not introduced any explicit notion of time yet but
refer only to state transitions. In other words, a model of the environment for
an agent is nothing but a probabilistic state transition system. The randomness
expressed by P shall model the randomness in the environment.

3.3.3 The Agent Model

From the perspective of RL an agent is represented by its policy, which is a prob-
abilistic action selection modeled as a conditional probability P (A = a |S = s)
to select the action a ∈ A in state s ∈ S. Here we refine from the standard RL



CHAPTER 3. CONCEPT OF PREDICTIVE USER MODELING 52

notation by explicitly distinguishing between the states S of the environment
and the internal states Z of the agent, but otherwise we define an agent model
as usual by referring to a policy π.

Definition 5. Let Z be a set of internal states of an agent and A be a set
of actions. Then, we define a model of an agent as tupel (Z,A, π), where
π : Z → A → [0, 1] is a function with π (z) (a) = P (a | z) denoting the
conditional probability of selecting action a ∈ A if the agent is in the internal
state z ∈ Z.

Note that the set of internal states Z can indeed be completely disjoint from
the set of states S of the environment, Z ∩ S = ∅, but this is not required.
For example, one is free to define the environment’s and the agent’s states such
that Z ⊂ S. The randomness expressed by π shall model the randomness in
the action selection of the agent.

Simply considering an agent as a “black box” with a some internal but
otherwise not further specified states Z is too abstract as a model for an agent’s
cognitive system. Thus, these states are first decomposed into a product

Z =

i∈C

Zi

over the sets of states Zi of the individual components C of the agents cognitive
system. In the following I consider these components individually, namely
the perceptual system with states Zp, the attentional system with states Za,
memory with states Zm, a subsystem for reasoning with states Zr, and the
decision-making component with states Zd.

3.3.4 Examples of Environment and Agent Models

3.3.4.1 Change Blindness

Change blindness usually defined as a surprising perceptual phenomenon that
happens when the observer of the visual stimulus does not observe a change
introduced to the visual environment [80, 184]. The phenomenon of change
blindness has greatly contributed to our understanding of visual attention, vi-
sual memory, and awareness (for more details review, see [54]). Grimes et al.
[80] noted that observers failed to detect large changes introduced to photos
during an eye movement, where 50% percent of the observers failed to notice
when two cowboys sitting on a bench exchanged heads.

Other studies found that these effects are even stronger when the changes
are unexpected. For example, Simons et al. [184] found that most observers
do not notice if an actor in a scene is changed during a changing in camera
position, even if the actor is replaced by another person.
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Also, It has been found that change blindness phenomenon is closely related
to visual attention in humans and is traditionally referred to attentional failures
[161]. Rensink et al. [161] studied the changes introduced during eye move-
ments. In Rensink’s flicker task [161], the original and changed image alternate
repeatedly and separated by a blank screen, until observers detect the change.
They found that the visual changes in meaningful details of a visual scene called
‘central interests’ are more easy-to-detect than changes in insignificant details
called ‘marginal interests’.

Figure 3.4: Schematic illustration of flicker paradigm used in Rensink’s task
(from [161]).

3.3.4.2 Probability Matching

To illustrate probability matching, we consider a simple selection task, where
players are asked to predict which of two events will take place, given that
the two events have different probabilities of occurring. One outcome appears
with a higher probability than the other. For example, event E1 could occur
with a probability of P (E1) = .75 while event E2 occurs with p(E2) = 1 −
p(E1) = .25. Assuming that the sequence of events is random, choosing the
most probable event E1 is the best strategy in terms of expected payoffs, the
average accuracy of 75% . This strategy is called maximizing. However, it has
been found that many people match their choice probabilities to the proper
outcome probabilities i.e. respond 75% of the time to the highest probability
choice. In the example above predicting E1 in 75% of the trials and E2 in 25%
of the trials. Because it would yield lower expected payoffs, this phenomenon,
called probability matching. There are plenty of approaches tries to explain
this choice anomaly (for more details review, see [58, 201, 57]). Almost of these
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approaches bind probability matching to cognitive limitations [207]. West et
al. [207] argued that the default processing strategy of most participants is a
nonnormative cognitive shortcut.

Recently Wolford et al. [211] proposed that probability matching occurs
because people do not take into account the randomness of the sequence and
attempt to be more successful than the optimal maximizing strategy. Goodnow
et al. [76] showed that if the task was framed as gambling instead of problem
solving people were more likely to maximize. Wolford et al. [211] found that if
the alternation rate was higher than chance people maximized more strongly.
Gaissmaier et al. [68] recently argued that probability matching may be “smart
strategy”, i.e., an adaptive response to the environments where the outcomes
potentially follow predictable patterns.

3.3.4.3 Reinforcement Learning(RL)

The problem of behavior learning through trial-and-error interactions with a
dynamic environment known as reinforcement learning [102]. The agent learns
how to map situations to actions. In RL the agent must find which actions
yield the most reward by trying them, instead of telling the agent which action
to take. Reinforcement learning is differed than supervised learning where we
learn from examples provided by the external supervisor. One major difference
is that a reinforcement-learner must be able to learn from its experience and
must explicitly explore its environment. Also, there is no presentation of input/
output pairs in Reinforcement learning setting [191, 102]. The agent can select
an action and observe the state change and may receive a reward.

The reinforcement learning framework The reinforcement learning is
considered to be the problem of learning from interaction to achieve a goal.
The agent interact with the environment. On each step of interaction, the
agent can select an action, a, and observe the state change of the environment
and may receive a reward r. The agent’s behavior should select actions that
tend to increase the long-run sum of values of the reward signal. It can learn
to do this over time by systematic trial and error, guided by a wide variety of
algorithms. At each time step, the agent’s job is to find a policy π, which is
a mapping from state representations to probabilities of selecting each possible
action, that maximize the sum of the reward signals it receives over the long
run [191]. Figure 3.5 shows the agent-environment interaction in RL.

The reinforcement learning framework is abstract and very flexible, which
allows it to be applied to many different problems in different ways [191].
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Figure 3.5: The reinforcement learning framework (from [191]).

3.3.5 The Problem Setting of Human Behavior Modeling

On the one hand, humans are surprisingly predictable. For example, models of
fluid dynamics are successful in accounting for the dynamics of large crowds,
i.e., the models of the individual agents are very simplistic. On the other
hand, predicting the behavior of a single human agent even in simple decision-
making tasks remains a challenge. We have reviewed that human agents in such
tasks often behave in an apparently suboptimal manner: the follow a matching
strategy as compared to a maximization, which is clearly optimal once the agent
has learned the model of the environment. What is the cause of this intrinsic
randomness? Is it imperfection? Or is there a rational explanation for behaving
in that apparently suboptimal manner?

It has recently been postulated that this randomness is due to the fact that
in real-world scenarios humans not only learn the parameterization of models
of the environment, but they also learn the structure and causal dependencies
of such model [6]. Acuna et al. [6] formulated the problem of structure learning
in sequential decision tasks using Bayesian Reinforcement Learning (BRL) and
demonstrate qualitative differences in the behavior of optimal learning agents
between parameter and structure learning. As the first step in the normative
modeling of users, which take into account how agents deal with uncertainty.
In [6] the task was designed, where users shall infer the structure of a model
environment in a sequential decision-making task. The model was so simple
that a closed-form solution for iterative BRL could be derived because the
prior distributions were conjugated priors.

The proper way of including such uncertainties into RL is Bayesian RL
(BRL). Baker et al. [17] argue that action understanding is much like visual
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perception: While action understanding is a kind of "inverse planning", or In-
verse Reinforcements Learning (IRL), and vision is a kind of "inverse graphics".
They propose a framework based on Bayesian inverse planning for modeling hu-
man action understanding. The underlying assumption here is that agents are
rational, and they deal with uncertainties in the optimal way, which is the
Bayesian approach.

However, another important factor not considered in many other cognitive
models is that agents usually have a limited access to the state of the world. For
humans, many cognitive resources are spent on organizing the sensory signals
into a meaningful interpretation upon which decision making is then based.
Attention is probably the most important such organizing principle. Thus, for
building more realistic models of higher cognitive function, the complexity of
the perceptual apparatus needs to be taken into account.

3.4 Predicting User Behaviour with Reinforce-
ment Learning

In Sec. 3.3.4.3 we have referred to RL as an example of the agent and environ-
ment model, but we have not employed a key concept of RL, namely rewards.
They were introduced as part of the examples (see Sec. 3.3.4.3). This shows
that the proposed model has been generic enough to allow for introducing con-
cepts such as rewards as part of the state definitions. One important aspect
to consider in models of decision making and planing is how agents learn to
decide. Reinforcement learning (RL) is a natural framework for that. The re-
inforcement learning framework is a considerable abstraction of the problem of
goal-directed learning from the interaction. Moreover, in the setting of the nor-
mative model for a multi-agent world, we explicitly use the notion of a utility
function, and the normativity of the model rests on this utility function.

In this section, we return to Reinforcement-Learning (RL) within the setting
of a single agent interacting with its environment. We present key concepts from
RL, namely the state value function for human behavior modeling in a smart
environment.

3.4.1 The Problem Setting of Reinforcement Learning

An agent is interacted with its environment via perception and action in the
standard reinforcement-learning model, as illustrated in Figure 3.5. More
specifically, at each time step, t = 0, 1, 2, 3, .. the agent receives indication of
the current state,s, of the environment, st ∈ S, Where S is the set of possible
states, the agent then chooses an action at ∈ A(st) where A(st) is the set of
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action available in the state st. As consequence of the agent action, it receives
a numerical reward, rt+1 ∈ R , and find itself in a new state St+1.

Beyond the agent and the environment, a reinforcement learning system
consist of the following sub-elements: a policy, a value function, a reward func-
tion, and, optionally, a model of the environment [191].

Reinforcement learning models with fully observable state usually concerns
solving tasks formulated as Markov Decision Processes (MDPs) problems with
delayed reinforcement are well modeled as Markov decision processes (See Sec.2.2.2.6
for more details about MDPs).

3.4.2 Value-Function based RL and Policy Search Meth-
ods

Reinforcement learning algorithms can be differentiated in one of two classes:
(1) Policy search methods: those that learn a controller without learning a
model [209]. (2) Value-function based methods: Learn a model and use it to
derive a controller.

Algorithms in this first class are called policy search algorithms, where it
learn policies directly without modeling a value function. Direct policy search
methods learn parameters for a policy, a way of acting in a particular task.
Agents using policy search methods, first explore policy space by adjusting
parameters of the policy and then evaluating candidate policies by the perfor-
mance of one or more trajectories resulting from the policy. So that, using
policy search algorithms require an objective function that evaluates whole
paths, such objective function not need to be built from a reward function,
that provides feedback for each step that can be added to evaluate a trajectory.

On the other hand, value-based methods learn to estimate a value function
for each situation that the agent could find itself in. The agent is then able
to take the action that it believes will give it the most value in the long run.
Over time, the learned value function estimated the true value of each state.
Therefore, the agent will build an accurate measure of how valuable each action.

Both value-based and policy search methods can find the optimal policy.
However, only value-based methods can provide an estimate of the goodness
of choosing a given action from a given state. In this thesis we are interested
more on value-based RL method, so in the following we consider this method
only.

Formally, for MDPs the value of state s when following policy π, denoted
V π(s) can define as

V π(s) = Eπ


∞
k=0

γkrt+k+1 | st = s


(3.1)
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where Eπ {} indicates the expected value under a policy π at any t time
step.

Similarly, we define Qπ(s, a) which is the value of taking action a in state s
under a policy π as:

Qπ(s, a) = Eπ


∞
k=0

γkrt+k+1 | st = s, at = a


(3.2)

The optimal value of a state, which is the the expected discounted sum of
rewards that the agent will gain if it start in that state and execute the optimal
policy is denoted by: V ∗ (s) = maxa {R(s, a) + γ


Pr(s′ | s, π(s))V ∗(s′)},∀s ∈

S , the optimal policy as: π∗ (s) = argmaxa {R(s, a) + γ


s′ Pr(s
′ | s, a)V ∗(s′)}.

3.4.3 Using the State Value Function to Guide Assistance

Some RL methods are interested in estimating value functions of states or
of state-action pairs. Such methods, for example, Temporal Difference (TD)
algorithms, use value function to assign a value to each state that is an estimate
of the amount of reward expected over the future after that state is visited.
Thus, the state value function determines how good it is for the agent to be in
a certain state or how good to execute a particular action in a specific state.
In other words, the state value function defines how valuable for the agent to
be in a certain state.

In Barto et. al. [19] the RL system that use the value functions as ”adaptive
critic”, which refer to the component that estimates values for evaluating on-
going behavior.

Moreover, it is possible to generalize state value function learned for some
set of environments to a new but similar environment. The Idea of using the
learned state value function in a new environment has been investigated for a
long time in Markov Decision Process (MDP) and reinforcement learning [191].

The problem here is how to translate the learned behavior obtained for one
domain to another. Many researchers investigated how to supply a learned
behavior with some initial simple behavior [144, 183, 174, 55, 13]. Selfridge et
al. [174] showed that it is possible to speed up the learning behavior on a task
if the learner has first learned on a simpler variation of the task. They argued
that the adaption to the new task would be faster using a policy trained on
a related task compare to learning from scratch. Russell et al. [13] explored
the process of eliminating features to reduce the effective state space in hier-
archical reinforcement learning. They found that state value function learned
in subroutines had been successfully transferred in a hierarchical reinforcement
learning framework. Guestrin et al. [83] employed linear programming to con-
struct value functions for classes of similar agents. Based on the presumption
that transition function and reward are similar with all agents of a class. Then
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such class-based value functions are placed into agents in a new environment
which have a different number of objects. They found that, Although no learn-
ing is conducted in the new environment, the previously learned value functions
performed better than a baseline hand-coded strategy.

Reward shaping [55, 123, 144] allows to modify a learning behavior by adding
in artificial rewards to the environmental rewards. In this setting, to ensure
that unintended behaviors are not established, it requires a priori appropriate
knowledge about the environment to guide the learner. Ng et al. [144] argued
that, While it is well understood how to add this type of guidance to a learner,
it would prefer to allow the agent to learn faster by training on different tasks.

In RL setting, rewards come from the agent’s environment. Recently, Ng
et al. [145] argued that the reward function from RL must be considered as
an unknown when examining the animal and human behavior. This reward
function, which cannot be observed directly, can be considered as part of the
internal state of a user, similar to the state of the attentional system, or the
current goal state. In this thesis, we proposed to use value function based on
learned reward function in an application with the smart environments. The
state value function can be used so that the application, on for example the
powerwall, can be adapted based on this state-value function, the policy of the
user, and the potential actions that can be taken.

3.5 Predicting User Behaviour with Inverse Re-
inforcement Learning Modeling

In user behavior modeling, the task often is less well defined and the goal is
to learn a policy, which determines which actions to take in specific states to
achieve a goal. In situations, where no direct data set exist which could be
used to learn a policy in a supervised way. The selection of actions can also
depend on the decisions and actions of others, especially when the possibility
of communication with other agents are available. Thus, using a normative
framework based IRL for modeling sequential decision-making task may be
helpful in these situations. Further, this paradigm is useful for learning how
to process a new task based on already learned tasks; where the transferred
behavior could be used to finish a new task more quickly.

In this section, we present key concepts of using Inverse Reinforcement
Learning (IRL) in modeling and explaining user observed behavior.

3.5.1 Learning from Demonstrated Behavior

Learning from demonstration is a powerful method of earning skill in humans
[171, 141]. Many Researchers have pursued to develop computational methods
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to learn by observing humans performing a task (See [171] for a survey of this
work). Precocious control approaches used to solve the problem of imitation
learning by modeling the near-optimal policy for future execution in similar
situations. But, It is known that it is more demanding for predicting long-term
decision-making behavior, but this approaches satisfy for predicting short-term
stimulus-response behavior. More recent approaches, seek to learn an underly-
ing reward function to explain human behavior rather than directly learning the
policy. The problem of finding the underlying reward function of the demon-
strator from its behavior is known as the Inverse Optimal Control problem or
Inverse reinforcement learning(IRL) [145], which was originally formulated by
Kalman [103].

3.5.2 The Problem Setting of Inverse Reinforcement Learn-
ing

Inverse Reinforcement Learning (IRL) [145] describes the problem of recovering
an agent’s reward function from demonstrated behavior. In an IRL setting, we
assume the setting of the Markov Decision Process (MDP) (Section 2.2.2.5),
the algorithm is presented with M/R, together with expert demonstrations
D = {ζ1, ..., ζN}, where ζi = {(si,0, ai,0) , ..., (si,T , ai,T )} (i.e., its trajectory or
path, ζ, of states si and actions ai). In combination with features of the form
f : S −→ R that can be used to represent the unknown reward R. Ng & Russell
[145] formulate IRL as the reconstruct of reward weights, θ, which make the
demonstrated behavior optimal.

Definition 6. Inverse Reinforcement Learning (IRL) problem is defined
in [145] as follows:

Given 1) Measurement of the agent’s behavior over time, in a va-
riety of circumstances 2) Measurements of the sensory information
inputs to the agent; 3) an exact model of the environment.

Determine the reward function that an agent is optimizing.

Remark 1. Ng & Russell [145] There are many solutions of R including R=0,
That may make the demonstrated behavior optimal.

Toward optimal reward function, one can turn to evolutionary optimization
[182] to generate reward functions if there is an effective way to evaluate the
appropriateness of the resulting behavior. One advantage of the evolutionary
approach is that, among the many possible reward functions that generate good
behavior, it can identify ones that provide helpful but not too distracting hints
that can speed up the learning process.
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Figure 3.6: Comparison between RL and IRL.

3.5.3 Learning the Reward Function from Demonstrated
Behavior

Reconstructing the agent’s reward functions is an ill- posed problem. Given an
exact model of the environment and the measurement of the agent’s behavior
over time, the goal of IRL is to determine a reward function that can justify the
demonstrated behavior. Ng & Russell [145] argue that the reward function from
RL must be considered as an unknown when examining animal and human be-
havior; They presents methods to solve the problem of the inverse reinforcement
learning (IRL). Abbeel & Ng et al. [4] propose a strategy of matching feature
expectations between an observed policy and a learner’s behavior; they show
that this matching is essential to achieving the same performance as the agent
if the agent were solving an MDP with a reward function linear in those fea-
tures. Other researchers provide further development to ameliorate the original
algorithms suggested by Ng et al. [145] and [4]. For example, Ramachandran
and Amir [157] explains how to combine prior knowledge and evidence from
the expert’s actions to infer a probability distribution over the space of re-
ward functions. Ziebart et al. [219] developed a probabilistic approach based
on the principle of maximum entropy. Levine et al. [117] used Gaussian pro-
cesses (GPs) to learn the reward as a nonlinear function while determining the
relevance of each feature to the expert’s policy.
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3.5.4 Feature Matching Optimal Policy Mixtures

Abbeel & Ng [4] introduce a novel approach based on Inverse Reinforcement
Learning (IRL) [145]. They propose a strategy of matching feature expecta-
tions between an observed policy and a learner’s behavior; they show that this
matching is essential to achieving the same performance as the agent if the
agent were solving an MDP with a reward function linear in those features.
They represent the reward function by a linear combination of m feature func-
tions fi with weights θi, which maps the features of each state, fsj ∈ Rm, to a
state reward value. Hence, the reward function is defined by:

reward(s, a) =
m
i=1

θ⊤i fi(s, a) = θ⊤f(s, a),

where θ ∈ Rm and f(s, a) ∈ Rm. The features functions fi are bounded and
mapped from S × A into R.

For a given trajectory ζi = {(si,0, ai,0) , ..., (si,T , ai,T )} the feature counts are
given by f̃ ζi =

H
t=1 γ

tfi(st, at) . The feature count fπi when following policy π
can be defined by

fπi (s) = E


∞
t=0

γtfi(st, at)
t p π, ζ


While the reward function is given by a linear combination of features fi,

the expected value function of a policy π can be defined as
V π
θ (s) =

m
i=1 θif

π
i (s) = θ⊤fπ(s) where fπ ∈ R m and holding entries of the

single feature counts fπi (s).
The reward value along a trajectory represented by the sum of the state

features along the path. Therefore, the agent observes single paths, and has
an expected feature count, f̃ = 1

m


i fi, based on many (m) demonstrated

trajectories.
Abbeel & Ng [4] showed that this representation is enough to achieve the

same performance as the agent were solving an MDP with a reward function
linear in those features (Equation 3.3).

pathζi

P (ζi)fζi = f̃ (3.3)

3.5.5 Maximum Entropy Inverse Reinforcement Learning
Method (Max Entropy IRL)

The Maximum Entropy Inverse Reinforcement method [219] reduces learning
to the problem of recovering a reward function; that makes the behavior in-
fluenced by a near-optimal policy that closely imitate demonstrated behavior.
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It is a probabilistic approach based on the principle of maximum entropy. A
maximum entropy IRL formulation finds a distribution P over all trajectories.
With respect to the eye movements behavior, it models the distribution over
all possible eye movement paths of length T starting from state s for a given
image as:

P (ζi | θ) =
1

Z(θ)
exp(θ⊤fζi) =

1

Z(θ)
exp


st∈ζi

θ⊤atf(st),∀ζ ∈ D (3.4)

where D = {ζ1, ..., ζN} , ζi = {(si,0, ai,0) , ..., (si,T , ai,T )}
and rθ(st, at) = θ⊤atf(st), so

P (ζi | θ) =
1

Z(θ)
exp


st∈ζi

rθ(st, at), ∀ζ ∈ D (3.5)

where rθ(st, at) is the reward function, θ are the model parameters and
Z(θ) is the partition function, for paths of length T starting with state s. The
reward function rθ(st, at) = θ⊤atf(st) is the product between a feature vector
f(st) extracted at image location st and a vector of weights corresponding to
action at.

Maximum Entropy IRL finds the weights θ that maximize the likelihood of
the demonstrated trajectories under the maximum entropy distribution.

θ∗ = argmax
θ
L(θ) = argmax

θ


examples

logP (ζ | θ, T ) (3.6)

This maximization problem can be solved using gradient-based optimization
methods, and it is convex for deterministic MDPs. Expected state visitation fre-
quencies, Dsi, can be expressed by the gradient, which is the difference between
expected empirical feature counts and the learner’s expected feature counts.

∇L(θ) = f̃ −

ζ

P (ζ | θ, T ) fζ = f̃ −

si

Dsifsi (3.7)

To deal with the exponential growth of paths with the MDP’s time horizon.
MaxEntropy IRL algorithm used a technique similar to the forward-backward
algorithm for Conditional Random Fields to compute the expected state Fre-
quency (See [219] for more details).

Efficient State Frequency Calculations

For optimization, the gradient can easily computed (Equation 3.7), given the
expected state frequencies. The expected state frequencies can be computed
using straight-forward approach based on enumerating each possible path.
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[0] Backward pass
1. Set ZSteminal = 1
2. Recursively compute for N iterations
Zai,j =


k P (sk | si, ai,i) ereward(si|θ)Zsk

Zsi =


ai,j
Zai,j + 1si = sterminal

Local action probability computation

3. P (ai,j | si)=
Zai,j

Zsi

Forward pass

4. Set Dsi,t = P (si = sinitial)

5. Recursively compute for t = 1 to N

Dsk,t+1
=


si


ai,j

Dsi,tP (ai,j | si)P (sk | ai,j, si)

6. Dsi =


tDsi,t

3.5.6 The Feature Construction for IRL (FIRL)

The feature construction for Inverse Reinforcement Learning method [116] con-
structs reward features from a large collection of component features, by build-
ing logical conjunctions of those component features that are relevant to the
example policy. The algorithm repetitively builds both the features and the
reward function. Each iteration consists of two step formulation:

An optimization step computes a reward function R(i) of the ith iteration
using the current set of features Φ(i−1) beginning with an empty feature set
Φ(0), and a fitting step determines a new set of features Φ(i).

The objective of the FIRL optimization step is to identify areas where the
current features are not enough, and must be able to step outside of the con-
straints of these features, and learn a reward function R(i) that best fits the
last feature hypothesis Φ(i−1). The reward function R(i) is constructed using
a constrained quadratic programming solver, using constraints that maintain
R(i) stable with D.

The fitting step generates a new feature hypothesis Φ(i) by inspecting the
reward function R(i) to better captures the variation in the reward function.
See [116] for more detail.

Optimization Step

For ith optimization step, FIRL compute a reward function R(i) using the exam-
ples D and the current feature set Φ(i−1). If the optimal policy under the reward
is consistent with the examples D then the reward function is chosen, and so
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that it minimizes the sum of squared errors between R(i) and its projection onto
the linear basis of features Φ(i−1).

Formally, let TR→Φ be a | Φ(i−1) | by | S | matrix for which TR→Φ(Ã, s) =
| Ã |−1 if s ∈ Ã , and 0 otherwise, and let let TΦ→R be a | S | by | Φ(i−1) | matrix
for which TR→Φ(s,Ã) = 1 if s ∈ Ã , and 0 otherwise. So that, TΦ→RTR→ΦR is
a vector where the reward in each state is the average over all rewards in the
feature that state belongs to. Letting πR denote the optimal policy underR,
the reward optimization problem can be expressed as:

min
R

∥TΦ→RTR→ΦR∥2

.
s.t. πR(s) = a ∀(s, a) ∈ D (3.8)

the constraint (3.8) is not convex, which make it difficult to solve this opti-
mization problem. We can equivalently express in terms of the value function
corresponding to R as:

V (s) = R(S, a) + γ

s′

Psas′V (s′) ∀(s, a) ∈ D

V (s) = max
a
R(S, a) + γ


Psas′V (s′) ∀s ∈ S (3.9)

These constraints are also not convex, by using a pseudo value function that
bounds the value function, we can construct a convex relaxation. By replacing
(3.9) with the linear constraint:

V (s) ≥ R(S, a) + γ

s′

Psas′V (s′) ∀s /∈ D

where Psas′ is the transition probabilities.
All of the constraints in the final optimization are sparse. While both TR→Φ

and TΦ→R are sparse, and contain | S || A | non-zero entries. By introducing
a new set of variables R defined as R = TR→ΦR , FIRL make the optimization
fully sparse, yielding the sparse objective ∥TΦ→RTR→ΦR∥2. To that end, it
construct a sparse matrix N , where each rowk of N corresponds to a pair of
features Ãk1 and Ãk2 (for a total of K rows).

By normalizing the two objectives by the number of entries, we get the
following sparse quadratic program:

min
R,RΦ,V

1

| S || A |
∥TΦ→RTR→ΦR∥22 +

wN
K

∥ NRΦ ∥1

s.t. RΦ = TR→ΦR
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V (s) = R(S, a) + γ

s′

Psas′V (s′) ∀(s, a) ∈ D

V (s) ≥ R(S, a) + γ

s′

Psas′V (s′) ∀s /∈ D

V (s) ≥ R(S, a) + γ

s′

Psas′V (s′) + ϵ ∀s /∈ D, (s, a) ∈ D

where in the implementation, this weight wN was set to 10−5.
This program can be solved efficiently with any quadratic programming

solver (See [116] for more detail).

Fitting Step

Once the reward functionR(i) for the current feature set Φ(i−1) is computed,
FIRL formulate a new feature hypothesis Φ(i) that is better able to represent
this reward function. The goal of the fitting step is to build a set of features that
gives greater resolution in regions where the old features are not good enough,
and lower resolution in regions where the old features are unnecessarily fine.
FIRL obtain Φ(i) by constructing a regression tree for R(i) over the state-space
S, using the standard intra-cluster variance splitting criterion (See [116] for
more detail).

3.5.7 Using the Reward Function to Predict Behaviour

IRL approaches interested in recovering a reward function, which can explain
observed behavior via the corresponding optimal policy. Ng et al. [144, 145]
argued that if the reward function for the target behavior is recognized, the
space of behavior preserving transformations to this reward function is well
understood. Inverse reinforcement learning applied to different problems such
as modeling goal-directed trajectories of pedestrians [220], helicopter control
[2], robot navigation across different environments [108], parking lot navigation
[3], routing preferences of drivers [219], learning strategies in table tennis [138]
and user simulation in spoken dialog management systems [39].

Once the reward function is constructed, the IRL method (e.g., the feature
construction method [4]) learn a mixed policy, or an ensemble of policies with
a certain probability whose feature expectation, on average, mimics the expert
behavior. For example, the smart room observes an agent acting in the environ-
ment and then determines the reward function. The learned function will then
be used to predict behavior. Such behavior form can be transferred to unknown
environments by changing the environment. Also, once several behavior styles
are learned, one can create a variety of styles that combines between them.
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In this thesis we focus on eye movements, but the idea of learning a reward
function for an agent could also lead to better user models in general: Since the
state value function of classical RL and BRL is defined in terms of the reward
function (and a model of the environment, if available), a smart room could
annotate various states with the value of the corresponding value function of a
user. This is valuable information for designing proactive smart rooms.



Chapter 4

Gaze Locations Prediction Based
on Context

For the empirical studies in this thesis we aimed at a balance between well-
controlled experimental conditions and more natural settings, where humans
behave as in everyday situations. Our first study, presented in this Chapter,
is well-controlled in the sense that we focus on a specific and repeatable sce-
nario: giving and listening to a presentation. However, we allow the subjects
in this experiment to move freely. We equipped the subjects with a mobile eye
tracker, recorded their eye movements and then analyzed them with respect to
the presence of visual features at the center of gaze. This first study already
exemplifies our general approach to empirical studies: While more classical
psychology or neuroscience studies would have characterized in great detail the
features at the gaze locations with descriptive statistics, we directly employ
predictive models as the prime analysis method and deduce insights from their
prediction performance.

The main result of this first study is that eye movement prediction depends
on the context (giving a presentation vs listening to a presentation). This
may not come as a surprise, but it already shows simple predictive "one-fits-
all"-models will not work for eye movements prediction. Thus, even though
eye movements appear to be simple compared to the full repertoire of human
behavior, they are still a major challenge for predictive models.

This chapter is organized as follows: First, we describe the material and
methods including the eye tracking experiment (Sec. 4.2) and the features we
extracted from our dataset (Sec. 4.2.5). Then, we present the results of our
analysis, we first compare the predictions for the individual features in both
scenarios (giving a talk and listening) and then we present the results from
features combined (Sec. 4.3).

The results of this chapter have previously appeared as conference publica-
tion [135].
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4.1 Introduction
In human social interaction, meetings are important life activities. It is the
place where a group of people comes together, share information, engage in
discussions, and make decisions. Understanding human behaviors that are pre-
sented during meetings are important. Among these behaviors, gaze represents
one of the important cues. Taking into account the social aspects of meet-
ings requires the analysis of different nonverbal communication cues, for exam-
ple, recognizing meeting activities cues [127] or recognition of roles in meetings
[62]. There have been many improvements in technology-oriented tools to make
meetings more efficient. For example, browsing elements of interest within a
recorded meeting [206], or the usage of tools that allowed parallel access to
shared objects [61] or create abstractive summaries [106].

Models of saliency are used to predict gaze locations. Most models of
saliency [98, 121] are biologically inspired and based on a bottom-up com-
putational model. These models does not take into account contextual factors
or the goal of a user in a visual task. These computational models are all based
on low-level image features. Although the saliency-based models were quite
successful in the sense of predicting saliency maps, the models have limited
use, as they frequently do not match actual human saccades from eye-tracking
data [101]. It was noted that combining all features produces the best eye fixa-
tion predictions [101]. However, it is known for a long time that task-demands
affect the patterns of eye movements [214], but neither saliency models nor the
data-driven approach takes that into account.

Figure 4.1 illustrates how saliency maps can be used within a so-called smart
lab (Figure 4.1a): Various sensors may extract the gaze direction of users in a
room. But even if the gaze direction is similar, as for user A and B (Figure
4.1b), the saliency maps can still differ due to different task demands. For
example, while user A aims at following the presentation, user B’s task might
be to spot spelling mistakes in slides, which shall make different visual field
locations salient. Moreover, saliency maps yield richer information than just
gaze direction, because they label the whole visual field of a user. This is
valuable information for estimating the internal states of users such as in, for
example, intention recognition, to adapt visual interfaces, or to place important
information.

In this work, we present the results of experimental study to improve the
prediction of saliency maps in smart meeting rooms. More specifically, we inves-
tigate meeting scenarios in terms of their context-dependence saliency based on
different image features. We used data-driven approach to derive models that
describe the features that play a role in these scenarios. We found that the pre-
diction differs according to the type of features we selected. Most interestingly,
we found that models trained on the face features perform better than models
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b) c)a)

Figure 4.1: Application scenario for using saliency maps in smart environ-
ments. a) A typical scenario in the smart meeting room. b) First abstraction
with a speaker in front of a presentation screen and two users looking at that
screen. c) Illustration of how to use a saliency predictor, which computes a
saliency map, in such a setting: Users A and B have approximately the same
visual input, but depending on their task demands, different locations in their
visual field are rendered as most salient (red crosses).

trained on other features in the ”giving a talk -speaker- ” scenario, but in the
listening scenario the models trained on competing saliency features from Itti
and Koch perform better than models trained on other features. The investiga-
tion of context in analyzing group interactions is a prominent approach, as the
same nonverbal behavior can have a different interpretation depending on the
context. For eye movement prediction, the task context (what are the people or
the group doing) affect the gaze of people. The knowledge of these contexts can
improve the gaze prediction. However, here we investigate which features are
important in each circumstance in meeting scenarios (giving a talk and listen-
ing) in term of predicting eye movements. Thus, we hypothesize that saliency
maps respecting this will ultimately outperform saliency maps computed only
on the basis of 2D pixel images.

4.2 Material and Methods
We collected eye movements data in two scenarios (giving a talk and listening).
One independent variable in the experiments is the task context. We hypoth-
esize that, based on the behavior context, different visual features will make
different contributions into gaze location predictions. Thus, predictive models
respecting this will ultimately outperform "one-fits-all"- saliency map models.
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4.2.1 Measuring Gaze Locations

We used an iView X HED 4 Eye Tracking System (SMI) to record eye position.
The system reports gaze positions with a sampling rate of 50 Hz and a reported
accuracy of 0.5◦-1◦. We used the default lens (f = 3.6 mm) for the scene camera
which provides a viewing angles of 31◦ horizontally and 22◦ vertically. The eye
tracker’ scene camera has a resolution 752 × 480 pixels.

4.2.2 Visual Stimulus

We designed ten slides presentation (which contain: text, charts, graphs, im-
ages, equations, etc.). The presentation duration was for four minutes. We
employed Microsoft PowerPoint to present the slides on a projector display.

4.2.3 Participants

Three participants took part in this study (Three males, 24-40 years). The
participants were with normal vision and no history of neurological problems.
All of them were researchers in the institute of computer science.

4.2.4 Eye Tracking Experiment

We collected a database of eye tracking data in a meeting room in two scenarios
(giving a talk vs. listening) in which three people were involved, each of them
supposed to make a presentation. At the beginning of the experiment, one of
the participant goes to the stage to give a talk for four minutes where he was
wearing a head-mounted eye tracker and the other go to their respective seat.
After the presentation is over, the presenter repeats his talk without wearing
the eye tracker but one of the audience was wearing the head-mounted eye
tracker. The same procedure was repeated for the other participants. During
these meetings, people had natural behaviors. We generate a saliency map of
the locations fixated by the viewer in each frame. Also, we convolve a Gaussian
low pass filter, with circular boundary conditions with parameters values similar
to [199, 195], across the user’s fixation locations in order to obtain a continuous
saliency map of an image from the eye tracking data of a user. Figure 4.2 shows
examples from the data collection in the giving a talk vs. listening scenarios
recorded with our setup.
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a) b)

Figure 4.2: Examples from the data collection in different scenarios (giving a
talk vs. listening) recorded with our setup. a) Frame from the scene camera of
the eye tracker and the corresponding gaze point (red cross) of an audience in
giving a talk scenario. b) Frame from the scene camera of the eye tracker and
the corresponding gaze point (red cross) of the speaker in the listening scenario.

4.2.5 Features of Luminance Image

For each image frame in the dataset, we compute a number of low-, mid- and
high- level features (See Figure 4.3 for an example) for every pixel within the
image and used them as input to the SVM algorithms similar to [101]. We
used the local energy of the steerable pyramid subbands (S-Features) in four
orientations and three scales [179]. We also include features used in the Torralba
saliency model (T-Saliency) [195]. In addition to, the intensity, orientation and
color contrast channels as calculated by Itti and Koch saliency method [98].
Also, we used a horizon line detector from mid-level gist features, because most
objects rest on the surface, besides a feature that indicates the distance to the
center for each pixel. Furthermore, we used the Viola Jones face detector [200]
to detect face features in the image frames and include it as an example of high
level features.

a) b)

Energy of oriented steerable filters:

Itti Features:

T-Saliency, Face detector, Horizon and Dist to center:

Figure 4.3: Features. a) A sample image (top left) and b) different low-, mid-
and high-level features we used in our analysis.
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4.2.6 Classifiers for Predicting Gaze Locations

Opposed to previous biologically inspired bottom-up computational visual saliency
model, we use a machine learning approach to train a classifier from human eye
tracking data. We use a linear Support Vector Machine (SVM) to find out
which features are informative. We used models with linear kernels because it
performed well for our specific task. Linear models are also faster to compute,
and the resulting weights of features are easier to understand (see Sec. 2.2.3.7
for more details about the SVM). We split our dataset into training images and
testing images in order to train and test our model.

In order to have zero mean and unit variance we normalized the features
of our training set and used the same normalization parameters to normalize
our test samples. We predict the saliency per pixel using a particularly trained
model, for each image in our dataset. The continuous saliency map, which
represents how each pixel is salient, represented by the values of wTx+ b (here
w and b represent the learned parameters and x is the feature vector). Then the
saliency map was thresholded at 40% percent of the image for binary saliency
maps.

4.2.7 Error Measure

We used the Kullback–Leibler (KL) divergence to measure the distance between
distributions of saliency values at human vs. random eye positions (see Sec.
2.3.4 for more details). Models show higher KL divergence, are better in pre-
dicting human fixations, because usually human gaze towards the regions with
the highest model responses and avoiding the low model responses regions.

4.3 Results : Gaze Location Prediction in Meet-
ing Scenarios (Giving a Talk vs. Listening)

We measured the performance of saliency models using KL divergence (see
Section 4.2.7). The results of the performance of different features models
averaged over all testing frames are shown in Figure 4.4. For each frame,
we predict the saliency per pixel using a specific trained model. We can see
that the prediction differ according to the type of features we selected in both
scenarios (giving a talk and listening scenarios) (see Figure 4.4). Furthermore,
the context dependence shows up: In the listening scenario, models trained on
competing saliency features from Itti and Koch perform better than the models
trained on other features (see Figure 4.4 red bars). This is not a surprise but
expected, because the presentation slides may contain many colored figures,
images or text that are more relevant for the audience. In the giving a talk
scenario, models trained on the face features perform better than the models
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trained on other single features (see Figure 4.4 blue bars). This may be due to
the fact that in the giving talk scenario the speaker intends to look on faces to
indicate whom they address and secure the listeners attention.

IttiFeatures T-Saliency S-Features FaceFeature DistToCenter Horizon
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L
)D
iv
e
rg
e
n
c
e

Figure 4.4: The KL divergence describing the performance of different SVMs
models trained on a set of features individually in two scenarios (speaker vs.
audience), averaged over all subjects.

Interestingly the model trained on Itti and face features combined outper-
forms models trained on other features combined in both scenarios (see Figures
4.5 and 4.6). This may be due to while listeners turn their gaze toward speakers
to show their attentiveness and find suitable time windows to interact, speakers
also find that time windows to gaze his / her presentation slides.

Finally, the overall summary of our analysis is shown in Figures 4.5 and 4.6.
We can see the KL divergence matrices describing the performances of different
SVMs models averaged over all testing images in the ”giving a talk-speaker-
” scenario (Fig.4.5) and ”listening -audience-” scenario (Fig. 4.6). The KL
divergence matrices are symmetric with respect to the main diagonal. The main
diagonals show the performance of SVMs models trained on individual features.
The lower/ upper triangular parts of the matrices show the performance for
SVMs models trained on pairs of features combined. The models performance
matrices for all subjects are presented in Appendix C.1.
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Figure 4.5: The KL divergence matrix describing the performance of different
SVMs models trained on a set of features individually and pairs of features
combined together, in the ”giving a talk-speaker-” scenario, averaged over all
subjects. The main diagonal shows the performances of the models trained on
individual features. The lower/ upper triangular parts of the matrix show the
performances of the models trained on pairs of features combined.
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jects. The main diagonal shows the performances of the models trained on
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performances of the models trained on pairs of features combined.
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4.4 Conclusion
We have examined the prediction of gaze locations in meeting scenarios using
different low, middle and high-level visual features. We trained a linear SVM
to find out which features are descriptive in various scenarios. We concluded
that the prediction differed according to the type of features we selected. Most
interestingly, we found that models trained on the face features perform better
than models trained on other features in the ”giving a talk” scenario. But
in the listening scenario the models trained on competing saliency features
from Itti and Koch performs better than models trained on other features.
This finding points towards including context information about the scene and
situation into the computation of saliency maps as an important step towards
developing models of eye movements, which operate well in the interactive
environments settings. Our results suggest that context dependent saliency
maps could become an integral part of any user model in ubiquitous computing
settings, where users are experiencing a much richer visual environment than
in the desktop computing settings. Our work is an important step towards
building generative models for recognition of gaze in meetings, which explicitly
take the context information into account. Most importantly, we suggest that
a new series of analysis can even empirically measure the corresponding prior
probabilities over latent variables in such models.



Chapter 5

Gaze Locations Prediction Based
on Depth Features

We have demonstrated that eye movements depend on the behavioral context
(Chapter 4), namely by the relative importance given to the individual visual
features. Given that predicting eye movements in free-viewing scenarios are
far from perfect, this raises the question: Can we do better in eye movement
prediction when using more or other features compared to the ones that are
commonly used? More specifically, will existing models perform better when
using depth features as well? If so, how relevant are depth features? If they
improve predictions this would suggest that humans consider depth as a relevant
cue for eye movements, and existing models need to extended to include depth
as a feature.

In this chapter, we start by first characterizing the statistical properties of
depth images in natural scenes, because it informs us about the surrounded
environment to which our visual system has been adapted, which form the a
priori assumptions the humans in the experiments will likely use as well (Sec.
5.2-5.5). Then, we present a system that we have build to measure depth at
the center of gaze in free-viewing scenarios (Sec. 5.6). We then conducted
two studies, where we explored as to whether depth features are relevant in eye
movement prediction (Sec. 5.7), namely in a free-viewing scenario with subjects
walking freely (see Sec. 5.8.1), and in a scenario with fixed head-position (Sec.
5.8.2). We find that in both settings the depth information improves prediction
and hence it should be included in predictive models.

The results of this chapter have previously appeared as conference publica-
tions [136], [130] and [131].
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5.1 Introduction
While machine vision is a mature field with many industrial applications, ar-
tificial vision systems still fall short in terms of generalization when compared
to the human visual system. The human visual system may be slow and built
with sluggish components, but it works well under various lighting conditions
and in many contexts. This is probably due to the vast amount of prior knowl-
edge humans bring into interpreting visual scenes. Most computational vision
researchers, who aims at reverse engineering the principles behind biological
visual systems, adopted the hypothesis that the environmental signals shape
biological visual systems [178, 218]. In other words, according to this approach
the goal is not build a biologically inspired vision system, but to engineer the
learning mechanisms of biologically inspired vision systems and then let them
learn based on natural signals.

Much work has been invested into the statistical modeling of natural lumi-
nance images [34, 64, 178, 218, 197]. The rational behind many such approaches
is that latent variables in generative probabilistic models of these luminance im-
ages will eventually correspond to meaningful scene descriptions in terms of, for
example, properties of surfaces, objects. etc. Thus, once a structure for a prob-
abilistic model of luminance images has been set up, the remaining task is to
perform a model selection given natural images using, for example, Maximum
Likelihood learning.

It was shown, however, that eye movements are far from a random sampling.
It was even suggested that the statistics of natural images differ at the center of
gaze when compared to random sampling [160]. Thus, taking into account eye
movements is essential for shaping artificial vision systems via natural images.
Another line of research has investigated the depth structure of natural scenes
using range sensors [153, 212]. This depth structure is not directly accessible to
the human vision system and needs to be inferred using stereo vision or other
depth cues. Some statistical aspects of depth images as well as the relation
between depth and luminance images have been investigated before [212], but
the statistical properties of depth images at the center of gaze during free
viewing are not clear. For example, simple questions such as “Do humans look
more often to high contrast edges due to depth gaps than to edges due to
texture borders?” have not been addressed yet.

We argue that characterizing the statistical properties of luminance and
depths images at the center of gaze during free viewing is an important step
in characterizing natural visual stimuli in order to learn, for example, better
generative models of visual signals, which artificial visual systems can then
invert to perform human-level visual computations.
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5.2 Why Investigate Natural Stimuli to Under-
stand the Human Brain?

Understanding how the brain is processing complex visual signals is a challeng-
ing problem in vision science. The investigation of natural images in terms of
their statistical properties is a prominent approach in vision research, because it
informs us about the environment to which our visual system has been adapted
during evolution and ontogenesis. Therefore, many researchers turned to inves-
tigate biological vision systems in order to reverse engineer them and implement
their principles into artificial vision systems. An important approach for devel-
oping a theory of vision is to characterize the visual environment in statistical
terms, because this may provide objective yard sticks for evaluating natural
vision systems using measures such as, for example, the information transmis-
sion rates achieved by natural vision systems. Then, with added “normative”
assumptions about the potential goal of visual processing such as redundancy
reduction, optimal coding, or optimal statistical inference predictions about the
organization of natural vision systems can be derived.

5.3 Material and Methods

5.3.1 Description of the 2D/ 3D Natural Scenes Datasets

Our first analysis is based on a collection of images obtained originally from
Stanford University (see Fig. 5.1) [170]. The total number of images in this
dataset is 400. The 2D color pixel images were recorded with a high resolution
1704× 2272 pixel (width × height), but the depth images with a resolution of
305×55 pixel (width × height). All images were inspected manually by us and
then labeled as either “forest scene”, “city scene”, or “landscape scene”. Only 12
images were labeled as landscape scenes, and we did not include them in our
analysis, because they have fewer 3D structures compare to the city and forest
scenes. 80 scenes were labeled as city scenes, and the remaining ones as forest
scenes. Therefore, we compared only forest and city scenes.
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b)a) c)

Figure 5.1: Examples from the image collection (from [170]). a) Pixel images
of city scenes. b) RGB luminance image. c) Depth map (yellow is closest,
followed by red and then blue).

5.3.2 Features in the Luminance Images

The luminance images were first transformed into gray scale images. Then, each
gray scale image is linearly decomposed into a set of edge feature responses to
Gabor filters with different orientations. Gabor filters [67] are widely used in
image processing for feature extraction and texture analysis [1]. The Gabor
function is given by

G (x, y) = exp


− x̂

2 + γ2ŷ2

2σ2


cos


2π
x̂

λ
− ψ


with x̂ = x cos θ + y sin θ and ŷ = −x sin θ.

We used orientations θ = {0◦, 15◦, . . . , , 165◦}, but only one spatial fre-
quency λ = 6.1 (and the standard deviation of the Gaussian σ = 3.4) and two
spatial phases ψ ∈ {0, π/2} and we set the spatial aspect ratio γ = 1, as rec-
ommended in [50] and [178]. Within each image we subtracted the mean from
the filter responses to each orientation, and normalized the responses to the
interval between −1 and 1. Figure 5.2 shows the histogram of such normalized
responses for selected orientations.
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Figure 5.2: Histograms of the Gabor filter responses with three different orien-
tations. a) Histogram of the Gabor filter responses in the vertical, b) oblique,
and c) horizontal orientation.

5.3.3 Features in the Depth Images

Gap Discontinuity

A gap discontinuity in the underlying 3D structure is a significant depth differ-
ence in a small neighborhood. We measure gap discontinuity µGD by computing
the maximum difference in depth between the depth of a pixel in the depth im-
age and the depth at its eight neighboring pixels. Here, we considered the
methods presented in [216]; µGD for a point (x, y) is defined as:

µGD (x, y) = max { | z(x, y)− z(x+ i, y + j) | : −1 ≤ i, j ≤ 1} , (5.1)

where z (x, y) represents a depth value. This quantity is then thresholded to
generate a binary gap discontinuity map. In our analysis, we have empiri-
cally chosen a threshold µGD (x, y) > Td where Td = 0.5. Fig. 5.3b shows an
illustration of a gap discontinuity map.

Surface Orientation Discontinuity

An orientation discontinuity is present when two surfaces meet with signifi-
cantly different 3D orientations. Orientation discontinuity was measured using
surface normal analysis. Here, we considered the methods presented in [7, 216].
The orientation discontinuity measure µOD is computed as the maximum angu-
lar difference between adjacent unit surfaces normal. First, a three-dimensional
point cloud was constructed from the x, y, z coordinates for each pixel in a depth
image. Then, each pixel is represented by a pixel patch P(x,y,z) compiled from
the eight neighboring points in the point cloud. Finally, the unit surfaces nor-
mal are computed for each patch P(x,y,z) using Singular Value Decomposition
(SVD).
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Figure 5.3: Examples for features in luminance and depth images. a) A gray-
scale image convolved with two Gabor filters selective for the same spatial
frequency, but different orientation. b) A depth map (left, where yellow is
closest, followed by red and then blue) decomposed into its discontinuity maps:
gap discontinuity map (middle) and orientation discontinuity map (right).

More specifically, for an image patch P(x,y,z) the orientation discontinuity is
defined as

µOD

P(x,y,z)


= max


α

n

P(x,y,z)


, n


P(x+ i, y + j, z+k)


(5.2)

for−1≤i,j, k≤1} ,

where n

P(x,y,z)


is a function, which computes the unit surface normal of a

patch P(x,y,z) in 3D coordinates using Singular Value Decomposition (SVD), α
is a function computing the angle between adjacent unit surfaces normal. It is
given by

α (P1, P2) = arccos (n (P1) · n (P2)) . (5.3)

max is function to compute the maximum angular difference between adjacent
unit surfaces normal. This measure is also thresholded, but based on two crite-
ria, namely i) an angular criterion: the maximum angular difference between
adjacent unit surfaces normal should be more than a threshold Tθ1 and less
than Tθ2, and ii) a distance-based criterion: the maximum difference in depth
between a point and its eight neighbor’s µGD should be less than a threshold
Td.

In our analysis, we have empirically chosen Tθ1 = 20◦ , Tθ2 = 160◦ and
Td = 0.5, respectively. These values work with our specific data set where
0 ≤ depth values ≤ 80m . Fig. 5.3b shows an illustration of an orientation
discontinuity map.
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5.3.4 Analysis Methods

Spatial Correlations

The correlation between pixels is probably the simplest statistical characteri-
zation of images. It reveals how spatial dependencies in images fall off with
distance. The luminance and depth values are each given by a single number.
Based on these numbers we estimated the correlation coefficient as a function
of the distance between any two pixels, i.e.,

corr (d) := corr(X1, X2) =
cov(X1, X2)

var (X1) var (X2)
, (5.4)

where X1 and X2 are two random variables representing two gray-scale/depth
values of two pixels separated by d pixel. Here,

cov [X1, X2] = E [X1X2]− E [X1]E [X2] (5.5)
var [X] = E


X2


− E [X]2 (5.6)

are the covariance and variance, respectively. E [·] denotes the expectation,
which we estimated by the sample mean.

Mutual Information

Mutual information (MI) typically measures the amount of information that
one variable contains about another [46]. It is a graded quantification of the
statistical dependencies between two random variables beyond second order.
We used MI as a dependency measure between luminance and depth images.
The luminance images are first linearly decomposed into a set of edge feature
responses to Gabor filters in different orientations (see Figure 5.3a). For the
depth images we computed gap and orientation discontinuities (see Figure 5.3b).
Then, we estimated the MI between the discretized filter responses for each
oriented filter and the binary discontinuity feature by sampling the Gabor filter
responses and the gap discontinuity feature at the corresponding image location.

More specifically, the responses of Gabor filters at orientation θ were com-
puted for all luminance images I1...In. This orientation response vector is de-
noted by Xθ = [Xθ (Ii=1) , ..., Xθ (Ii=n)], and the discontinuity maps (combined
gap and orientation discontinuity maps) of corresponding depth images are
denoted by Y = [Y (3Di=1) , ..., Y (3Di=n)], where Y (3Di) ∈ {0, 1}.

The dependency between all luminance responses for orientation θ and the
depth discontinuity maps is measured by the MI between Xθ and Y

MIθ (Xθ;Y ) =

x,y

Pr
Xθ,Y

(x, y) log


PrXθ,Y (x, y)

PrXθ
(x) PrY (y)


, (5.7)
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where PrXθ,Y (x, y) is the joint probability distributions calculated using a joint
histogram, and PrXθ

(x) and PrY (y) are the marginal probabilities. The θ
subscript emphasizes the fact that the MI is a function of orientation.

Local Standard Deviation as a Feature

We separated each image, i.e., both the luminance and the depth image, into
non-overlapping small patches of size 6 × 6 pixel. Given that the resolution
of these images is 305 × 55 pixel, a pixel-wise square patch corresponds to a
vertically elongated rectangular patch in visual space. Therefore, we report all
results for distances in pixel, which cannot be related directly to visual space,
but still allows for a fair comparison between 2D and depth images, because the
2D images were resized and aligned to the depth images. Then, we computed
the standard deviation of the 6×6 gray-scale values for each patch as the value
of a local feature. The same was done for the depth image. This yielded, for
each image I, the values f 2D (x; I) and fdepth (x; I) as the local feature for the
visual field location x.

The z-score to Quantify Saliency

Within an image I we consider a location x1 as more salient than another
location x2 in terms of the 2D image feature when f 2D (x1; I) > f 2D (x2; I);
the same applies to the depth images. In order to abstract from the absolute
values of these features, we consider the corresponding z-scores of these features
and not the values of the features itself. The z-score at a location x in an image
i is given by

z (x; I) =
f (x; I)− µ (I)

σ (I)
,

where µ (I) and σ (I) are the mean and standard deviation of the feature within
the i-th image, i.e., f (·) could be either f 2D (·) or fdepth (·). This way, saliency
is defined relative to an image not in absolute terms.

5.4 Statistical Analysis of Registered Luminance
and Depth Images

Some vision scientists turned to investigating the statistical structures of nat-
ural images in order to obtain statistical models of them for example [34, 64,
178, 218, 197]. A lot of feature statistics of natural images are discussed in [94].
Simoncelli et al. [178] explored sensory neural behaviors by investigating the
efficient coding hypothesis and its role in the environmental statistics and neu-
ral responses. They were interested in testing models of visual processing in the
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biological aspects. They presented in their work some of natural image statis-
tics like the intensity statistics and spatial correlation. Schwartz & Simoncelli
[172] proposed a nonlinear decomposition to build models of sensory control
directly from the natural signals properties. They found that some sensory
filters responses to natural signals are not statistically independent. The model
they proposed deals with physiologically observed nonlinearities. Rothkopf et
al. [166] showed that when learning basis function of a sparse generative models
the distribution of orientations when fitting Gabor functions to the obtained
basis functions shows an asymmetry, which may serve to explain the dominance
of horizontally and vertically oriented filters (the oblique effect) in the center
of the visual field with increasingly meridional directions in the periphery.

Most such studies focused on characterizing natural luminance images. Here
we go beyond the analysis of the 2D pixel images by incorporating depth images.
Those cannot be sensed directly by our visual system but need to be inferred.
We employ information-theoretic measures to quantify the dependence between
the oriented filter responses to luminance images and the features computed
from corresponding depth images. We will arrive at an alternative explanation
of the oblique effects, namely that it is rooted in the information from luminance
images about depth features. Our approach incorporates the luminance images
and depth images, similar to a few pioneering studies [153, 212]. We also find
an asymmetry between the orientations of the oriented filters, but compared to
other optimal coding theories our explanation of this asymmetry is different: In
our interpretation it emerges, because we think of the distribution of oriented
filters as being optimized to encode information about the depth features as not
as a code for the optimal reconstruction of the luminance images. This may
be important for image transmission, or the energy-efficient transmission of
information in nervous systems, but our results suggests that another optimality
criteria for information-based “normative” approaches to understand natural
vision systems shall be taken into account, namely the faithful representation of
relevant features, where here we consider properties of depth images as relevant.

This section is organized as follows: First, we describe the material and
methods including the image material we used in this analysis (Sec. 5.3). Then,
we present the results of our analysis, where we first compare the spatial cor-
relations of the luminance and depth images for different types of scenes (Sec.
5.4.1) and then the dependency for responses of oriented filters and depth fea-
tures as quantified by the mutual information.
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5.4.1 Spatial Correlations in Luminance and Depth Im-
ages
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Figure 5.4: Illustration to compare the changes in luminance values and depth
values. a, b) Color image and depth image ( for depth image, yellow is closest,
followed by red and then blue for the depth image) of an example scene. c)
Gray-scale represents the average values of the color channels ((R+G+B)/3)
and depth values of the pixels along the black arrow in panels a, b.

The luminance and depth images clearly differ in terms of their spatial cor-
relations, which is illustrated in Figure 5.4a-c and summarized in Figure 5.5.
Consider the example luminance image and the corresponding depth image:
While the gray-scale values of the pixels in the luminance image along a hor-
izontal line (see arrow) is variable (Figure 5.4c, blue line) the corresponding
depths are almost constant (Figure 5.4c, green line). This suggests that the 3D
environment is spatially more homogeneous than it appears from the luminance
images.

The spatial correlation over many images reveals a scene dependence: The
correlations in the luminance and depth city scenes are more extended than in
forest scenes (Figure 5.5, green lines vs. blue lines). This is due to the presence
of many spatially extended surfaces in the city scenes such as walls, streets, etc,
while there are many depth discontinuities in forest scenes such as due to trees.
On the other hand, the correlation in the depth images in the city scenes are
more extended than in the corresponding luminance images (green dashed vs.
green solid line). The same is true for forest scenes (blue dashed vs. blue solid
line), which means that the 3D environment is generally more homogeneous
than evident from the luminance images.
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Figure 5.5: Spatial correlation as a function of distance measured in pixel. The
pixel pairs selected for estimating this function were selected randomly from all
possibly pixel pairs in an image with the corresponding distance in pixels.

5.4.2 Scene-Dependence of the Information about Depth
Features in Luminance Images

The results of the mutual information analysis for gap discontinuities are shown
in Fig. 5.6a,b for two different thresholds. The general pattern of the orientation-
dependence does not differ much between the two threshold values we selected
(Fig. 5.6a vs. Fig. 5.6b), but a scene-dependence shows up: In forest scenes
the responses of the vertically oriented filters are much more informative about
the gap discontinuities than for other oriented filters. This is not a surprise
but expected, because the forest scenes have many trees with vertically ori-
ented trunks, which are present in both the luminance and the depth images.
When considering the orientation discontinuities separately (Fig. 5.6c), we do
not find such a strong scene-dependence, but again a dominance of vertically
oriented filter responses, i.e., they are more informative about orientation dis-
continuities than responses of other oriented filters. It is interesting to note
that the information of the responses in horizontally oriented filters is lower
in forest scenes compared to oblique and vertically oriented filters (in particu-
lar when compared to city scenes), which is probably due to the presence tree
branches and trunks, but almost no horizontal gap discontinuities. Finally, the
overall summary of our analysis is shown in Fig. 5.6d, where we computed the
MI between the filter responses and a “joint” depth feature, i.e., the presence
of either a gap or an orientation discontinuity.
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b)

a)

All scenes Forest scenesCity scenes

c)

d)

Figure 5.6: Mutual information between oriented filter responses and orienta-
tion filter responses and 3D gap discontinuities with different thresholds Td. a)
Td=0.5 m and b) Td=0.1 m. c) Information about orientation discontinuities.
d) Information about a “joint” discontinuity, i.e., either a gap or an orientation
discontinuity.
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Our approach, which at this point does not use an explicit statistical model,
can be viewed as a hybrid of the efficient coding approach and the use of gener-
ative statistical models: We determine, using information-theoretic measures,
the potentially informative features in the luminance images and argue that
those should be encoded most reliable and robust, but we do not postulate
any particular neural code. Thus, while our results suggest an asymmetry in
orientation processing as evident in the oblique effect, we cannot yet predict
how exactly that should be reflected in the early human visual system. We
explicitly refer to the properties of depth images, and it may be tempting to
integrate such information directly into generative statistical models of the vi-
sual scenes. However, we intentionally did not formulate such models, because
the whole idea of vision being “inverse graphics” may serve as a good guidance
for computer vision, but it is still only a hypothesis as to whether biological
visual systems implement such models, or if they follow other strategies. We
argue that our results suggest that future natural image analysis may revitalize
and refine the pioneering studies of depth and the corresponding luminance im-
ages [153, 212], because this way important constraints for any theory of visual
processing can be obtained.

5.5 Scene-Dependence of Saliency Maps of Nat-
ural Luminance and Depth Images

From our analysis of the dependency between luminance and depth images
features in natural scenes using mutual information. We found that the depen-
dencies differed according to the type of visual environments. In this section
we consider the dependency of saliency map in natural luminance and depth
images. The notion of a saliency map has been turned out helpful in visual
attention research: Here, certain locations in the visual field are determined as
“salient” if they are – in statistical terms – outliers relative to the surrounding
visual field locations. Computational modeling of the visual system was quite
successful in the sense of predicting saliency maps based on image properties,
which closely match the experimentally measurable maps of eye movements and
fixation periods [98]. Here we report the results of a first experimental study to
further improve the computation of saliency maps, i.e., to make them ultimately
more predictive for eye movements. More specifically, we investigate a collec-
tion of natural scenes in terms of their saliency based on the two-dimensional
(2D) pixel images and the corresponding depth images. The rational for in-
vestigating depth images is that they may reveal the “saliency that matters”,
because when interacting with the environment we evolved by interacting with
objects in a three-dimensional (3D) world. Thus, we hypothesize that saliency
maps respecting this will ultimately outperform saliency maps computed only
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on the basis of 2D pixel images in terms of predicting eye movements.
Our analysis is based on a collection of images obtained from Stanford

University which described in Section 5.3. All analyses were repeated by taking
random subsets of size 80 from the forest scenes (as we had 80+ forest scenes).
The results reported here were not affected by this difference in the sample
sizes.

5.5.1 Distribution of Saliency in Natural and Depth Im-
ages

Figure 5.7: Example of saliency in a 2D and depth image. a) Color image
of a scene. b) Resized image in gray-scale and corresponding saliencies based
on the standard-deviation feature (see Section 5.3). Shown are the z-scores
(white=high z-score, black=low z-score). c) Same as b) but for the depth
image (but here blue is closest, followed by yellow and then red). d) Scatter
plot of the z-scores in b,c with each point corresponding to an image patch.
Saliencies in 2D appear to be unimodal, depth saliency is clearly bimodal.

To illustrate the computation of saliency maps we computed the saliency based
on the standard-deviation feature for an example image shown in Figure 5.7a.
Compare the z-scores shown Figure 5.7b,c (right panels). They are shown using
the same color-scale. It is obvious that the luminance image has much more
intermediate z-scores than the depth image, which has mainly small values with
some high values at the location of the depth discontinuities at the tree trunks.
This difference is also prominent in the scatter plot shown in Figure 5.7d, where
the 2D saliencies appear to be unimodal but the saliencies for the depth image
are bimodal, i.e., with either low or high values.



CHAPTER 5. GAZE PREDICTION BASED ON DEPTH FEATURES 91

a) b)

Figure 5.8: Joint and marginal distributions for the 2D and depth saliency.
a) Joint probability distribution for the 2D and depth saliency computed for
80 forest and city scenes, estimated using a two-dimensional histogram. Both
panels use the same (logarithmic) color-scale. Black corresponds to high prob-
abilities. b) Marginal distributions for the forest (solid line) and city scenes
(dashed lines).

We also performed this analysis for 80 forest and city scenes. The result-
ing joint distribution for the saliency in the 2D and depth images is shown in
Figure 5.8a. Interestingly, the locations with high saliency in the depth image
correspond to low salient locations in the 2D image. If the “saliency that mat-
ters” for our interaction with the 3D environment are the salient locations in
the depth images, then they are not spotted by our (certainly very simplistic)
2D saliency algorithm. The marginal distributions are shown in 5.8b and reveal
that 2D saliency is distributed unimodal, whereas depth saliency is bimodal.
By visually comparing the joint distribution for forest with city scenes, it ap-
pears as if depth saliency is “more bimodal” in forest than in city scenes, but
future studies need to explore this further. It is obvious that these two types of
scenes differ in terms of their depth structure, but our first analysis could not
make that distinction as clear as expected. We hypothesize that this is due to
the (intentionally) rather simple feature we used and the lack of local “center
surround interactions”, i.e., a cross-talk between neighboring image locations.

In the next section, we will introduce the BatGaze system, that we have built
to measure depth at the center of gaze in free-viewing scenarios. This enable
us to use more and different features (both 2D and depth features/cues) for
the computation of saliency maps, and systematically compare the predictions
with experimentally measured eye movements.
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5.6 BatGaze : A new tool to Measure Depth
Features at the Center of Gaze During Free
Viewing

In order to measure the depth features in the center of gaze we developed
the BatGaze system, which combines an eye tracker (Figure 5.9a) with the
lightweight depth sensor Xtion Pro Live from Asus (Figure 5.9b). The eye
tracker is equipped with a camera to record the eye movements and a scene
camera. After calibration, the gaze points are given in coordinates of this scene
camera. The depth sensor was mounted next to the eye tracker’s scene camera
(Figure 5.9c), and it records depth images and RGB luminance images. The
image streams of the Asus camera are already aligned to each other. We then
developed procedures and tools to align them to the scene camera in order
to obtain proper coordinates of the gaze point matched in space and time to
the image streams from the Asus camera. Here we describe the details of the
hardware setup, the software and processing, and the alignment in space and
time.

5.6.1 Hardware Setup

5.6.1.1 The Mobile SMI Eye Tracker

SensoMotoric Instruments (SMI, smivision.com) offers to researchers state-of-
the-art eye tracking systems [175]. It was our choice for recording the gaze
data, because of its easy access to the raw data (gaze location, pupil position,
pupil diameter, etc.). Our analysis were all done offline, but the eye tracker
also gives online access to this data. The eye tracker uses two cameras (Figure
5.9a): The first is used to track the pupil and the second camera records the
scene view. The gaze position is reported with a sampling rate of 50 Hz and
a reported accuracy of 0.5◦ − 1◦. The scene camera comes with three lenses
(8, 6 and 3.6mm). The default 3.6mm lens provides a viewing angle of ±31◦

horizontally and ±22◦ vertically. The scene camera resolution is 752×480. We
used the 3.6mm lens to record indoor scenes, where the observed objects are
within 3m distance. Then, to avoid parallax error, we calibrated in a distance
within 1−1.5m. We used a calibration with 5 points so that the SMI recording
software can compute the gaze location in scene camera coordinates from the
recorded pupil images.

5.6.1.2 The Asus Xtion Depth Sensor

Depth sensing technology is now widely applied in video games and computer
vision applications. As a side effect, new applications such as markerless full
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body tracking become available to many researchers via low price consumer
devices such as the Microsoft Kinect camera. Among the various sensors avail-
able the choice between different brands has to be made by respecting their
specifications and the requirements of our BatGaze system. Options available
to us were: the Asus Xtion Pro/Pro Live sensor, the Microsoft Kinect, and
a time-of-flight (TOF) camera from PMDTec (pmdtec.com). We selected the
the Asus Xtion Pro Live (Figure 5.9b) for two reasons: First, the camera does
not need an external power supply as it is powered via USB, unlike the Kinect
or the PMD TOF, which demand for external power supply. This makes the
Asus Xtion Pro Live much more mobile and portable. Second, the Asus cam-
era is much smaller than the Kinect and TOF and also weights less (170 g),
which makes it easier to mount it onto the head of a subject. The Asus Xtion
Pro Live has three sensors: an infrared (IR) emitter with IR receiver to sense
depth via the structured light principles and an RGB camera. The camera
supports registration of depth and RGB frames in hardware and synchronized
audio recording. It is most suitable for indoor environments. The camera has
an effective depth sensing distance between 0.8m and 3.5m while the lenses
effective angle is 58Âº horizontally and 45Âº vertically, which satisfies most
computer vision application requirements. Asus released it with a complete
SDK, which includes the OpenNI APIs1.

5.6.1.3 Combining the SMI Eye Tracker with the Asus Xtion Depth
Sensor

We first removed the base of the depth camera and mounted it on the front
upper part of the helmet of the eye-tracker. We adjusted its position so that
the RGB lenses of both cameras align vertically as much as possible. Then,
we fixed the depth camera on the helmet using a tape and ensured that during
free viewing the depth camera will not be moved or shacked. This is a very
important part of our system setup. Any shifting in the depth camera position
during an experiment will affect the alignment and registration process. To ease
the movement of the subject during the experiment, we built two shelves to be
carried on the back: one for a laptop connected to eye-tracker and the other
for another laptop connected to Xtion camera. Before starting the calibration
of the eye-tracker camera we checked the captured views from both cameras.
If necessary, we readjusted the cameras’ position to record the same view. The
next step is the calibration of the eye-tracker camera using SMI’s iViewX soft-
ware. The depth camera does not need any calibration, but we usually ensure
uniform light conditions.

1https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
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a) b) c)

Figure 5.9: Illustration of the BatGaze hardware setup. a) Eye tracker from
SMI (smivision.com). The field of view is not occluded as the eye tracking
camera and the corresponding scene camera are mounted out of sight from the
subject. b) Asus Xtion Pro Live camera, which captures depths images using
the structured-light principle as well as RGB images. c) Our setup with a depth
camera (here: the predecessor of the Asus Xtion Pro Live, which only recorded
depth but no RGB images) mounted on the mobile SMI eye tracker.

5.6.2 Software Setup: Recording Software and Processing
Tool chain

Asus ships the camera with the NiViewer tool, which records from all sensors
of the camera. It can be configures via a configuration file. The recorded
streams are saved in a custom file format (*.oni), which is accessible to OpenNI
software. In a previous version of the BatGaze system we used the predecessor
of the Asus camera and developed a custom recording software, but with the
new Asus Xtion Pro Live it turned out that the NiViewer software is sufficient
for our needs. We always recorded RGB images with a resolution of 640x480 at
25 fps. We developed a custom player for oni-files (OniPlayer), which can read,
process and render scenes and depth frames from oni-files. Most importantly,
it converts images into a custom binary format for further processing using
MATLAB. Finally we also developed a custom software called (XtionRecorder)
that can stream directly from the Xtion camera for online processing.

5.6.2.1 Temporal Synchronization

The depth camera delivers the depth map and the RGB frames already syn-
chronized with timestamps. The scene camera of the eye tracker also delivers
RGB frames as well as gaze locations, both with timestamps. All synchroniza-
tion was done offline. When both cameras were recording, we generated two
special events in time, which were recorded by both cameras: a “clapper board”
at the beginning and end of recording. More specifically, we did the alignment
using the timestamps of both cameras, where both are given in microseconds.
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For depth camera, let

• Z be a three-dimensional matrix of n depth frames from the Asus camera;
Z has size of 640 × 480 × n (width × height × frames),

• R be a matrix of n RGB frames from the Asus camera; R has a size of
640 × 480 × 3 × n (width × height × RGB channels × frames),

• TZ be set a function TZ : Frames → Timestamps to obtain the times-
tamps for each depth frame,

and for eye-tracker camera, let

• S be a matrix of m frames from the scene camera; S has size of 752 ×
480 × 3 × m (width × height × RGB channels × frames),

• G be a matrix of m gaze points from the SMI system, one for each frame
from the scene camera; G has size of 2 × m (x/y gaze point position ×
frames), and

• TS be a function TS : Frames → Timestamps to obtain the timestamps
for each frame.

The recording of depth data is started always some seconds later than the
recording with the eye-tracker camera, and stopped always first, so that we
have n < m. For each recording we identified reference frames irefZ and irefS for
the depth and scene camera, respectively, by manually inspecting the frames
around the first “clapper board” event. Then, a frame from the scene camera,
iS, was assigned to a frame from the depth camera, iZ , where the difference in
timestamps was smallest, i.e.,

iZ (iS) : = argmini |tZ (i)− tS (iS)|

tZ (i) = TZ (i)− TZ


irefZ


tS (i) = TS (i)− TS


irefS


Then, we generated a new pair of aligned streams with equal length. The results
of this temporal alignment were double-checked with the software “Kinovea”
(kinovea.org), which supports frame-by-frame inspection of videos. Finally, we
double-checked temporal alignment by inspecting the alignment of the second
“clapper board” event at the end of the recording. Failures of alignment for this
second event would be indicative of technical problems with the timestamps
from either the SMI or Asus system.
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5.6.2.2 Spatial Registration of Images

After the frames have been aligned temporally, they are also aligned spatially.
We aligned each pair of frames using a transformation obtained from a pair
of frames in the beginning of the recording, i.e., we assume that the spatial
relation of the two cameras does not change in the course of a recording. The
geometrical aligning of images is termed image registration, and many algo-
rithms are available for that. We registered the scene frames of both cameras
using a simple registration of two 2D images.

If (x, y) is a pixel in the eye trackers scene camera and (x′, y′) is a pixel in
the Asus scene camera, we can write:r1 r2 t1

r3 r4 t2
s1 s2 1

×

xy
1

 =

x′y′
1


where 

r1 r2
r3 r4


=


cos θ − sin θ
sin θ cos θ


is a rotation matrix, [t1 t2]

T is a translation vector, and [s1 s2]
T accounts for

scaling/shrinking. MATLAB already offers a solution to this transformation
problem (2D image registration), which is based on manually identifying pairs
of matching points in the two images. The resulting transformations are then
applied to the gaze positions, which are in the coordinates of the scene camera
form the eye tracker, in order obtain their coordinates in the Asus scene camera.
Figure 5.10 shows an example of a spatial registration. (See Appendix B.2 for
more details about the workflow of the BatGaze system).

5.6.3 Experimental Validation

Here we report the experimental validation of the BatGaze system. We explic-
itly instructed subjects, who were freely walking around a table with boxes on
top of the table, to direct their gaze to either the edges or the surfaces of the
boxes (“look at edges” vs. “look at surfaces”). The rational for these instructions
was to collect ground truth data: We expected that an analysis of the structure
of the depth images at the center of gaze will uncover a higher probability of
inspecting edges in the edge condition as compared to surfaces, and vice versa
in the surface condition.

5.6.3.1 Participants

Three participants took part in this study (one female, two male, 24-40 years).
The participants were with normal vision and no history of neurological prob-
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a) b)

Figure 5.10: Example of a spatial registration. a) Frame from the scene camera
of the eye tracker, after registration to the image from the Asus scene camera.
b) Corresponding image from the Asus scene camera. The small green dots are
the identified points for matching the images.

lems. All of them were daily computer users. They participated in the main
experimental validation of the BatGaze system.

5.6.3.2 Experimental Design

The three subjects executed the two task conditions “look to edges” and “look
to surfaces”, while they were freely walking around the table with boxes on top
of the table in a big hall. A total of three boxes were assembled on top of the
table. The eye tracker was calibrated before each experiment using a 5-point
calibration target. While the subjects were performing the task we recorded
the gaze positions, the scene frames and the depth frames on one computer.
The overall duration of a single recording was 80s on average. Subjects were
given verbal instructions. In the first condition (“look to edges”), subjects were
instructed to look only to the edges of the boxes. In the second condition
(“look to surfaces”), subjects were instructed to look only to surfaces. The
three subjects participated multiple times in each conditions.

5.6.3.3 Results: Depth Features at the Center of Gaze

The recorded data was analyzed by computing the probability of finding a
gap discontinuity in a neighborhood of 25, 49 and 81 pixel around the gaze
location. This was done for both conditions. Figure 5.11 shows the estimated
probabilities and confirms, as expected, that the probability of finding a gap
discontinuity in the “look at edges” condition is higher than in the “look at
surfaces” condition. Also note that the probability for a gap discontinuity
increases with increasing neighborhood size while is remains largely constant
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in the surface condition. This is due to the fact that the surfaces of the boxes
in our study was rather large compared to the largest neighborhood, and that
the subjects presumably looked at the center of the surfaces. These results
validate that the BatGaze system is working as anticipated. Future work can
now address the accuracy of the whole system, which will be only limited by
the accuracy of the eye tracker.

Figure 5.11: Bar plot for the depth features around the gaze point in the two ex-
perimental conditions. Shown are the probabilities of finding gap discontinuity
around gaze point.

5.6.3.4 Results: Luminance Features at the Center of Gaze

In order to characterize the features in the luminance images at the center of
gaze we first selected 500 consecutive frames from the middle of a block for
each condition. Then we transformed each frame into gray-scale images. Each
gray-scale image is linearly decomposed into a set of edge feature responses to
the Gabor filters with different orientations. In this analysis, however, we used
only the responses to horizontal and vertical filters.

We then compiled histograms for the responses to these Gabor filters from
the pixels around the gaze point in each condition. Figure 5.12a,b show these
histograms and reveal that the probability of horizontal or vertical edges being
present, i.e., non-zero filter responses, around the center of gaze is much higher
in the ”look at edges” compared to the “look at surfaces” condition. This hold
true for both horizontal (red bars) and vertical edges (blue bars).
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In order to further highlight this difference between conditions, we also
generated “combined histograms”, where we did not distinguish between the
orientations of the Gabor filters. Figure 5.13 shows clearly that in the “look at
edges” condition the non-zero filter responses are much more frequent for all
sizes of the neighborhood.
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Figure 5.12: Normalized histograms for the Gabor features in the vertical and
horizontal directions at the center of gaze in the two experimental conditions.
a) Condition “look at edges”. b) Condition “look at surfaces”.
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Figure 5.13: Normalized histograms for the combined Gabor features (vertical
and horizontal) in the experimental conditions. a-c) Different neighborhoods
(25, 49 and 81 pixel).

5.7 Gaze Location Prediction with Depth Fea-
tures

In this section we present the results of a first experimental study to improve the
computation of saliency maps, by using luminance and depth images features.
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More specifically, we have recorded the center of gaze of users when they were
viewing natural scenes. We first examined the statistical characterization of
depth features in natural scenes at the center of gaze. We then examined the
presence of depth features around gaze locations. We used machine learning
to train a bottom-up, top-down model of saliency based on 2D and depth
features/cues.

5.7.1 Eye Tracking Experiments

Because of the limitation to use our BatGaze system to collect eye movements
data from environments where we have a rich visual information. We have also
recorded the center of gaze of users when they were viewing natural scenes in
stationary setting.

The rational for investigating depth features for gaze location prediction is
that they may reveal the “saliency that matters”, because when interacting with
the environment we evolved by interacting with objects in a three-dimensional
(3D) world. Thus, we hypothesize that saliency maps respecting this will ul-
timately outperform saliency maps computed only on the basis of 2D pixel
images.

5.7.1.1 Stimulus Material

Forty images selected form our 2D/3D natural scenes dataset (see Sec. 5.3.1 )
were presented to five subjects. The 2D color pixel images were recorded with
a resolution of 1704 × 2272 pixels, but the depth images with a resolution of
305 × 55 pixels. They where 40 images from “forest scene”, “city scene”, and
“landscape scene”.

5.7.1.2 Measuring Gaze Locations

We used an iView X HED 4 Eye Tracking System (SMI) to record eye position.
The system reports gaze positions with a sampling rate of 50 Hz and a reported
accuracy of 0.5◦-1◦. We used the default lens (f = 3.6 mm) for the scene camera
which provides a viewing angles of 31◦ horizontally and 22◦ vertically. The eye
tracker scene camera has a resolution 752 × 480 pixels.

5.7.1.3 Participants

Five participants took part in this study (Five males, 18-40 years). Three of
the viewers were researchers in the institute of computer science and the others
were naive viewers.
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a) b)

Figure 5.14: Example of a gaze registration. a) Frame from the scene camera
of the eye tracker and the corresponding gaze point (Red cross) . b) Registered
gaze point (Blue cross) on the corresponding high resolution image.

5.7.1.4 Experiment Design

Each subject carried out a 9-point calibration procedure before the start of the
experiment. The stimuli presented to the viewers in similar presentations order
on a computer screen of resolution 1280x1024. All viewers sit at a distance of
approximately 1.5m from the computer screen in a dark room, this corresponds
to a distance where the subjects could comfortably view the display, and used
a chin rest combined with a bite bar to stabilize their head. An mobile eye
tracker recorded their gaze path on a separate computer as they viewed each
image at full resolution for ten seconds separated by two seconds of viewing a
gray screen. The scene camera of the eye tracker delivers RGB frames as well
as gaze locations, both with time stamps (Figure 5.14 a), Also we recorded
information about which and when each image have been presented to the
viewer.

Our analysis were all done offline. First we aligned the frames temporally
to the high resolution images using the information we recorded about when
each image have been presented to the viewer. Then we used normalized Cross-
Correlation [118] to register each part of interest in each frame to the corre-
sponding high resolution image. Using the transformation obtained to register
each gaze point to the high resolution image (Figure 5.14 b), we generated a
saliency map of the locations fixated by each viewer. Also, we convolve a Gaus-
sian filter similar to [199, 195] across the user’s fixation locations in order to
obtain a continuous saliency map of an image from the eye tracking data of a
user.

5.7.2 Features Used for Machine Learning

Different low-level features were collected. For example: the intensity, orien-
tation and color contrast channels as calculated by Itti and Koch’s saliency
method [98]. Also, each gray-scale image is linearly decomposed into a set of
edge feature responses to Gabor filters with different orientations. We used
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a) b)

c) d)

Figure 5.15: Examples for features in luminance and depth images. a) Natural
scene. b) Fixation map recorded with our stationary setup . c) Itti & Koch
features. d) Depth discontinuity features.

orientations θ = {0◦, 15◦, . . . , 165◦}, but only one frequency and two spatial
phases. Within each image we subtracted the mean from the filter responses to
each orientation, and normalized the responses to the interval between −1 and
1 ( Fig. 5.3 (a)). We used Gabor filters responses to compare the performance
with the 3D features.

We also extracted a gap discontinuity map and orientation discontinuity
map for each depth image using methods presented in the previous chapter
(see Sec. 5.3.3) and combine them together to generate the gap depth features.

5.7.3 Classifiers for Predicting Gaze Locations

Similar to the previous chapter, we use a machine learning approach to train
a classifier from human eye tracking data. We use a linear Support Vector
Machine (SVM) to find out how depth features are informative compare to other
features. Again we split our dataset into training images and testing images in
order to train and test our model. We selected randomly 200 positively labeled
pixels from the top 40% salient locations for each image, and 200 negatively
labeled pixels from the bottom 60% salient locations.In order to have zero
mean and unit variance we normalized the features of our training set and used
the same normalization parameters to normalize our test samples. Finally, we
predict the saliency per pixel using a particular trained model, for each image
in our dataset.
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5.7.4 Error Measure

Again we used the Kullback–Leibler (KL) divergence to measure the distance
between distributions of saliency values at human vs. random eye positions
(see Sec. 2.3.4 for more details). Models show higher KL divergence, are better
in predicting human fixations, because usually human gaze towards the regions
with the highest model responses and avoiding the low model responses regions.

5.8 Results

5.8.1 Depth Features at the Center of Gaze.

For each depth image we extracted square image patches around the subject’s
center of gaze. We also extracted image patches selected at random positions.

5.8.1.1 Depth Values around Gaze

We first compared the distribution of depth values of patches in the center of
gaze to that expected from random sampling. It is clear that, the distribution
of depth values of patches at the center of gaze statistically differ than from
random sampling. Figure 5.16 (a) shows that the normalized histogram of the
random sampling from 40 scenes, averaged over all subjects, differ than the
distribution of patches in the center of gaze (see Figure 5.16 (b)) (with P-value
= 1.091e-016 of the two-side Kolmogorov–Smirnov (K-S) test with significance
level of 0.05).

Figure 5.16(c) shows that the normalized histogram of patches in the center
of gaze over 40 scenes averaged over all subjects in the first three seconds of
viewing the scenes differ than the last seven seconds (see Figure 5.16(d)) (with
P-value = 8.6504e-065 of the two-side Kolmogorov–Smirnov (K-S) test with
significance level of 0.05).
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a) b)

c) d)
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Figure 5.16: a) Normalized histogram of depth values of random sampling over
40 scenes, averaged over all subjects. b) Normalized histogram of depth at
gaze locations, averaged over all subjects. c) Normalized histogram of patches
in the center of gaze over 40 scene for each subject in the first three seconds
of viewing the scenes, averaged over all subjects. d) Normalized histogram of
patches in the center of gaze over 40 scenes in the last seven seconds of viewing
the scenes, averaged over all subjects.

5.8.1.2 Depth Features around Gaze

Before we used depth features as new information for predicting gaze locations.
We examined the presence of depth features around the center of gaze locations.
The result of the distribution of depth features in a different neighborhoods
around the gaze location averaged over all subjects are shown in Figure 5.17(a)
and the distribution of depth features around gaze for individual subjects are
shown in Figure 5.17(b). It is clear that the presence of depth features around
gaze locations are high. This suggest that saliency maps models respecting this
will ultimately outperform saliency maps computed only on the basis of 2D
pixel images in terms of predicting eye movements.
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Subject 1 Subject 2
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Figure 5.17: The presence of depth features in a different neighborhoods around
the gaze points. a) Bar plot for the presence of depth features in a different
neighborhoods around the gaze points, averaged over all subjects. b) Bar plot
for for the presence of depth features in a different neighborhoods around the
gaze points for individual subjects.
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Figure 5.18: The KL divergence describing the performance of different SVMs
trained on each feature individually, for individual subject.

5.8.2 Gaze Location Prediction when Viewing Photos of
Natural Scenes

We measured the performance of saliency prediction using KL divergence (see
Section 5.7.4). Figure 5.18 describing the performance of different features
models for each subject averaged over all testing images. We predict the saliency
for each image using a specific trained model. We can see that the prediction
differ according to the type of features we selected. While the model trained on
competing saliency features from Itti and Koch perform better than the models
trained on other individual features (i.e. only Gabor or only depth features).
The averaged result over all subjects shows this finding (see the diagonal of
Figure 5.19).

Interestingly the models trained on Itti & Koch combined with depth fea-
tures outperform models trained on other individual features (i.e., only Gabor
or only depth features), or trained on combination of these features. (see Figure
5.19). It is interesting to note that, depth features combined with luminance
features improve the prediction of gaze locations.

Finally, the overall summary of our analysis is shown in Figure 5.19 where
we computed the KL performance for SVMs trained with different individual
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features and combined together, averaged over all subjects. We perform the
statistical test (t-test2) for all pairs of features ( i.e., KL_Itti vs. KL_Gabor,
KL_Itti vs KL_GapDepth and KL_Gabor vs KL_GapDepth) with signifi-
cance level of 0.05 the corresponding P-values were (0.3740, 0.9240 and 0.4488)
respectively.

In Figure 5.19, we see the KL divergence matrix describing the performance
of different SVMs models averaged over all subjects. The KL divergence matrix
are symmetric with respect to the main diagonal. The main diagonal shows the
performance for SVMs models trained on individual features. The lower/ upper
triangular parts of the matrix show the performance for SVMs models trained
on pairs of features combined. The models performance matrices for all subjects
are presented in Appendix C.2.

Figure 5.19: The KL divergence matrix describing the performance of different
SVMs models trained on set of features individually and pairs of features com-
bined, averaged over all subjects. The main diagonal shows the performance of
the models trained on individual features. The lower/ upper triangular parts
of the matrix show the performance of the models trained on pairs of features
combined.

5.9 Conclusion
In this Chapter, we first have analyzed the dependency between luminance and
depth images features in natural scenes using mutual information. We find that
the dependencies differ according to the type of visual environments. Most in-
terestingly, we find that response of vertical filters carry most information about
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3D discontinuities. This can explain the preferred processing of vertical orienta-
tions, but not because the corresponding orientations are more frequent in the
luminance images, but because they are more informative about ecologically
relevant depth features. This is in contrast to other efficient coding hypothe-
ses. More specifically, such hypotheses state that the visual system shall encode
the stimuli from the sensory periphery most efficiently. This could be done by
transforming these stimuli into neural representations, which are less redundant
such as factorial codes. Other hypotheses about the visual system state that
it implements statistical models of the environment. In that way of thinking
vision is “inverse graphics”, but finding and learning proper statistical models
and inverting them is a current research topic.

Also, we have analyzed the saliency in 2D pixel and depth images using
a rather crude and highly simplistic feature: the local standard deviation of
pixels. We find that saliency in depth images is bimodally distributed with
highly salient locations corresponding to low salient 2D image locations. We
also found differences between scenes in the spatial correlation functions and
a tendency for saliency being more bimodal in forest than in city scenes. It is
obvious that these two types of scenes differ in terms of their depth structure,
but our first analysis could not make that distinction as clear as expected.
We argue that this is due to the (intentionally) rather simple feature we used
and the lack of local “center surround interactions”, i.e., a cross-talk between
neighboring image locations.

Furthermore, we have analyzed the statistical of depth features in natural
scenes at the center of gaze. We found that the distribution of depth values of
patches at the center of gaze differ than from random sampling. Most interest-
ingly, we found that the presence of depth features around gaze locations were
high. This finding points us towards including depth cues into the computation
of saliency maps as a promising approach to improve their plausibility.

Then, we used machine learning to train a bottom-up, top-down model of
saliency based on 2D and depth features. We found that models trained on Itti
& Koch and depth features combined outperformed models trained on other
individual or combination of these features. As a consequence, we find that,
the depth information improves prediction and hence it should be included in
predictive models..

Our approach, of using joint luminance and depth features is an important
step towards developing models of eye movements, which operate well under
natural conditions such as those encountered in HCI settings.



Chapter 6

Eye Movements Prediction for
Wall-Sized Displays with Bezels

In chapters 4 and 5 we have demonstrated how relevant different features are
for eye movements prediction in different behavioral contexts. To fill the gap
between models performance in real world scenarios and human behaviors. In
this chapter, we investigate how existing predictive gaze models perform in the
interaction scenario with wall-sized displays compare to human eye movements
behaviors. Wall-sized displays with bezels are now frequently used in various
application domains. It has been recognized that interior bezels bring a new
set of interaction challenges from fundamental selection, manipulation to task
management [146]. But the performances of visual saliency algorithms on this
type of wall-sized display compare to human viewing behavior, have not been
studied yet. Given that, the bezels between the individual smaller displays
are striking visual features that cause high-contrast borders, this suggests the
questions: does bottom-up saliency predictive models will consider them and
adapt the predictions accordingly? Furthermore, is human viewing behavior
really that much affected by the bezels?

In this Chapter we report two studies that measure the effects of bezels on
human eye movements (Sec. 6.2) and on saliency algorithm predictions (Sec.
6.3). Subjects observe natural images on two different display systems, with
and without interior bezels. In short: we find that: (i) the effect of interior
bezels on the subjects’ gaze decreases after a short period of time. While eye
movement patterns of images presented on LHRDs vary (especially for the
images presented at the beginning of the experiments), eye movement patterns
of images presented on a single-screen display without interior bezels focus
on the most salient locations in the images. (ii) The interior bezels of tiled
displays affect the results of saliency prediction algorithms. This shows that
the investigated predictive models don’t work well for eye movements prediction
on tiled LHRD. One explanation is that some feature channels used in these

109
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model are less important for the prediction, and hence predictive models should
have inhibition mechanism (or scales) for the computation of features that are
less important in some scenarios.

6.1 Introduction
Large high-resolution displays (LHRD) are widely used in various application
domains, such as automotive design, geospatial imaging, scientific visualization,
telepresence, and astronomy [146]. With a larger capacity for visual informa-
tion, these display environments provide users with a significantly larger display
surface area compared with desktop displays. Combined with high pixel den-
sity, this facilitates collaborative interaction among multiple persons [29] and
prompts physical navigation, thus, improving performance in navigation tasks
[18].

However, it has been recognized that tiled-display systems bring a new set of
interaction challenges, from fundamental selection, manipulation to task man-
agement [146]. Previous work identified interior bezels as a possible limitation of
LHRDs based on tiled LCD panels. Interior bezels cause visual discontinuities
of displayed images as well as cursor trajectory. Several studies investigated
the effects of interior bezels on tiled displays [25, 164, 192, 202, 18, 81], but the
effects of interior bezels on human eye movements during free viewing, and on
saliency algorithms predictions, have not been studied yet.

Information about the user’s gaze and visual attention can improve the in-
teraction with LHRDs. Existing computational models of the visual attention
are able to predict saliency maps based on image properties that closely match
the experimentally measurable maps of eye movements and fixation periods.
Such saliency maps reflect bottom-up attentional processes, in other words,
the attraction of attention by external cues. Predictions of such models are
desirable in many HCI application scenarios such as the design of web pages,
adaptive user interfaces, interactive visualization, video compression, or atten-
tion management systems [165, 91].

In natural images, including both landscapes and man-made environments,
vertical and horizontal orientations are more frequent than diagonals [166, 136].
Considering that most saliency algorithms work on 2D image features (e.g., ori-
entation features) and that vertical and horizontal orientations have a strong
influence on perception in the human visual system, it is necessary to character-
ize the effects of the interior bezels on human eye movement and saliency pre-
diction algorithms. Primary results presented in poster abstract [14] suggested
that further investigation on the bezels effects on the subjects eye movements
for free-viewing tasks with images presented in different orders and on saliency
algorithm predictions is necessary.
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(a) (b)

Figure 6.1: a) LHRD with 24 LCD panels. b) Single-screen DLP TV with 67
inch display diagonal.

In this chapter, we present the results of two studies to quantify the effects
of interior bezels in LHRDs on human eye movements and image saliency algo-
rithms. In the first experiment, we recorded the subjects’ center of gaze and eye
movement when they were looking at natural images on a single-screen display
and a tiled LHRD (see Figure 6.1). In the second experiment, we compared
the performance of different state-of-the-art saliency prediction algorithms with
and without the presence of interior bezels.

6.2 Influence of Interior Bezels on Human Eye
Movements

We conducted a user study in order to explore the effects of interior bezels
on human eye movements when performing a free viewing task with a LHRD.
We compared the results with the patterns of eye movements of single-screen
display.

We have studied the following two hypotheses:

H1: The subjects’ eye movement patterns are affected by the type
of the display.

H2: The subjects will get used to the interior bezels after a short
time, so the effects of interior bezels will vanish over time.
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6.2.1 Material and Methods

6.2.1.1 Experiment Setup

In this section, we explain the details of our experiments. One independent
variable in the two experiments is the type of display. We used the following
display systems: (i) A tiled LHRD comprising 24 LCD panels with a resolution
of 1900 × 1200 pixels each, with a combined resolution of approximately 55
megapixles. The width of a pair of interior bezels from two neighboring panels
is 4.8 cm. The LHRD wall has dimensions of 378 cm (W) × 164 cm (H) and
(ii) a DLP TV with a 67 inch screen diagonal and Full HD resolution of 1920
× 1080 pixels. The two displays are depicted in Figure 6.1.

6.2.1.2 Measuring Gaze Locations

We used an iView X HED 4 Eye Tracking System (SMI) to record eye position.
The system reports gaze positions with a sampling rate of 50 Hz and a reported
accuracy of 0.5◦-1◦. We used the default lens (f = 3.6 mm) for the scene camera
which provides a viewing angles of 31◦ horizontally and 22◦ vertically. The eye
tracker scene camera has a resolution 752 × 480 pixels.

6.2.1.3 Visual Stimulus

We selected 20 images from the Microsoft Salient Object Dataset [119] and
from the York University Eye Fixation Dataset [32]. The images resolution
was different in the range of 700 - 1200 × 600 - 800 pixels. Each image was
presented to eight subjects with the two types of displays described above. We
employed Vrui toolkit1 to present the stimulus on the displays. Each image was
shown for ten seconds.

6.2.1.4 Participants

Eight participants took part in this study (one female, seven male, 18-40 years).
The participants were students with normal vision and no history of neurolog-
ical problems. All of them were daily computer users and two of them had
work experience with tiled-monitor displays. They participated in the main
eye tracking experiment.

6.2.1.5 Eye Tracking Experiment

For our study, we used a within-subjects design. Each subject carried out
a 9-point calibration procedure before the start of the experiment. We split
the subjects into two groups. The stimuli presented to the second group was

1http://idav.ucdavis.edu/okreylos/ResDev/Vrui/

http://idav.ucdavis.edu/okreylos/ResDev/Vrui/
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similar to what presented to the first group but with different presentations
order. Subjects sat at a distance of approximately 460 cm from the tiled display
wall and 160 cm from the single DLP display. This corresponds to a distance
where the subjects could comfortably view the entire display, using a chin rest
to fix their head position. Each subject performed two experiments, with the
presentation order of the experiments counter-balanced across the participants.
Throughout the experiments, the subjects’ right eye position was recorded.

Based on the eye-tracking data, we generated saliency maps of the loca-
tions fixated by the subjects for each frame. We filtered the subjects’s fixation
locations using a Gaussian kernel to obtain a continuous saliency map.

6.2.1.6 Bezels Features in Luminance Images

The color images captured by the eye tracker’s scene camera were first trans-
formed into gray-scale images. Then, each gray-scale image was linearly de-
composed into a set of edge-feature responses to Gabor filters. We used Gabor
filters with only vertical and horizontal orientations, θ = {0◦, 90◦}, with only
one frequency and two spatial phases. Within each image we subtracted the
mean from the filter responses to each orientation and normalized the responses
to the interval [−1, 1]. These filter responses were used later to characterize the
patches in the luminance images at the center of gaze (see Subsection 6.2.2.3).

6.2.2 Results

6.2.2.1 Participants Eye Movement Behaviors on the LHRD vs. on
the Single Display

We first compared the distribution of eye movements of individual subjects,
when they performed the free viewing task on images presented on the LHRD,
to that presented on a single display. We performed the two-sample t-test be-
tween the distribution of eye movements on the LHRD and the single DLP
display, across all images and subjects, using a significance level of 0.05. We
observed no significant difference between eye movements and displays types.
We also carried out a qualitative analysis. We found that the distribution of eye
movements of users on the LHRD doesn’t differ from that on the single display.
It is important to note that the eye movement patterns for the first images pre-
sented on the LHRD differ from the ones on the single display (see Figure 6.2).
This suggests that further investigation on the subjects’ eye movements for
free-viewing tasks with images presented in different orders is necessary.
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a)

b)

Last PresentedFirst Presented

Figure 6.2: The distribution of eye movements of individual subjects, on
images presented in different presentation orders on a) the tiled LHRD and b)
the single DLP display.

6.2.2.2 Participants Eye Movement Behaviors on Images Presented
in Different Time Slide (First vs. Last Presented)

We also compared the distribution of eye movements of individual subjects with
different presentation orders. Figure 6.3 depicts an example of eye movement
patterns of individual subjects, with images presented with different presenta-
tion orders on the LHRD. We can see that the distribution of eye movements
for images presented in varying presentation order is different. While the eye
movement patterns of images presented to the subjects at the beginning of the
experiment are distributed across the whole scene, the eye movement patterns
of images presented after a while are focused on the most salient locations in
the image.

A two-sample t-test between the distribution of eye movements of the first
five images presented to the subjects and final 15 images shows a significant
difference (p < 0.05).

Figure 6.2 shows an example of eye movement patterns of individual sub-
jects, on images presented with different presentation order on the LHRD and
on the single DLP display. We can see that, the distribution of eye movements
of the first image presented on the LHRD differ than on the first image pre-
sented on the single display. While the eye movement patterns of the image
from LHRD are variable (Figure 6.2(a), First Presented ) the corresponding eye
movements patterns of the image presented on single DLP display are focused
on the most salient locations in the images (Figure 6.2(b) First Presented). But
when the same images presented to other subjects in different time slide(i.e.
Last Presented), the eye movement patterns are focused on the most salient
locations in the image, for both displays (i.e. LHRD and on the single DLP
display, Figure 6.2(a,b) Last Presented).

We repeated the two-sample t-test between the distribution of eye move-
ments on the first five images presented to the subjects on the LHRD and on
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(a) (b) (c)

Figure 6.3: The distribution of eye movements of individual subjects, on im-
ages presented in different presentation orders on the tiled LHRD. a) Examples
Images presented on LHRD. b) The eye movement patterns when the images
presented in the beginning of the experiments. c) The eye movement pat-
terns when the images presented after a short time from the beginning of the
experiments.

the single DLP display. It reveals a significant difference (p < 0.05). But
there was no significant difference between the eye movement patterns on both
displays over the last 15 images.

6.2.2.3 Bezels Features at the Center of Gaze

We examined the presence of the interior horizontal and vertical bezels around
gaze locations. We first extracted the responses to Gabor filters for each frame
using the method presented in subsection 6.2.1.6. We then compiled histograms
from the responses to these Gabor filters form the pixels around the gaze point
in each condition. Figure 6.4 show these histograms and reveal that the prob-
ability of horizontal or vertical edges being present, (i.e. non-zero filter re-
sponses), around the center of gaze are more frequent in the first five images
compared to the final 15 images. This hold true for the LHRD (red bars in
Figure 6.4).
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Figure 6.4: Normalized histograms for the combined Gabor features (vertical
and horizontal directions) at the center of gaze in the two experimental condi-
tions, with different neighborhoods. a) The first five images. b) The last 15
images.

6.3 Influence of Interior Bezels on Visual Saliency
Models Predictions

The objective of this analysis is to investigate how interior bezels affect saliency
algorithms performances. We compare how well visual saliency models perform
when we have the bezels of tiled displays in the image compared to when they
are not there. Given that most saliency algorithms work on the 2D image
features (including orientation features), we hypothesize that interior bezels
are detrimental to the saliency algorithm predictions. To be specific, the major
hypotheses in this study is:

H3: The presence of interior bezels affects saliency algorithm perfor-
mance on tiled displays.

6.3.1 Computational Visual Saliency Models

To assess the performance of saliency algorithms under the presence of LHRD
interior bezels, we selected three visual attention models that differ in terms of
their mechanism of determining saliency.

Itti and Koch The Itti and Koch model was inspired by biological concepts
from cognitive science and based on a bottom-up computational model [98].
This model has been the basis for later models and is a standard benchmark
for comparison (See Sec. 2.3.3 for more detail).



CHAPTER 6. EYE MOVEMENTS PREDICTION FOR TILED LHRD 117

Graph-Based Visual Saliency (GBVS) This model is based on a proba-
bilistic framework in which a graph denotes the conditional independence struc-
ture between random variables. This model treats eye movements as a time
series. Since there are hidden variables influencing the generation of eye move-
ments, a Hidden Markov Models (HMM) approach was been incorporated [85]
(See Sec. 2.3.3 for more detail).

Torralba Saliency (T-Saliency) This model combines sensory evidence
with prior constraints. Prior knowledge (e.g., scene context or gist) and sensory
information (e.g., target features) are combined according to Bayes’ rule. The
proposed architecture for attention guidance consists of three parallel modules
extracting different information: bottom-up saliency, object-centered features,
and contextual modulation of attention [195] (See Sec. 2.3.3 for more detail).

6.3.2 Error Measures

To better understand the relationship between a viewer’s fixation locations and
the predictions of the saliency models, we have to evaluate it quantitatively by
comparing it with eye movement data. We used four performance measures
that are widely used in the state of the art of visual attention literature, to
evaluate the performance saliency models. Because the evaluation measures
for attention modeling can be classified into point-based and region-based, we
used four performance measures to deal with this perspective (for more details
about these measures, see Sec. 2.3.4 ).

6.3.3 Results

6.3.3.1 Comparing Visual Saliency Models Predictions

To evaluate the saliency models performances, we have to compare it with eye
movement data. In this analysis, we use the same eye movement data described
in the previous section (see section 4.2 for more detail).

We compared how well the classic Itti and Koch, GBVS and Torralba
saliency models perform when we have the bezels of tiled displays in the image
compared to when they are not there. We used subjects gaze locations to test
and validate the predictions of attention locations by each of the three mod-
els. Using each model, we generated a saliency map for each image in our test
images. Figure 6.5 (a) shows an image presented on the tiled LHRD and the
saliency maps generated by the Itti and Koch, GBVS, and Torralba saliency
models. Figure 6.5 (b) shows an image presented on the single-panel DLP dis-
play and the resulting saliency maps. We can observe that the bezels of the
LHRD affect the predictions of saliency algorithms, and this influence differs
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according to the contrast properties of the images. It is important to note that
this influence was less pronounced with the GBVS model predictor.

We carried out statistical tests using a two-sample t-test between the three
model predictions and the two types of displays. The statistical test revealed a
significant difference (p < 0.05).

We measured the performance of the saliency models using different methods
(see Section 4.2.7). We computed the distance between human fixation maps
and the saliency maps generated by Itti and Koch, GBVS and Torralba using
KL divergence and the area under ROC curve. The results of the performance of
different models averaged over all users and all images are shown in Figure 6.6(a
and b). We can see that the performance of visual saliency models is better
for the images on the single-panel DLP display compared with the LHRD. Also
we can see that, GBVS performs better than Itti and Koch and Torralba with
both display settings. The models performance results using linear correlation
coefficient and mean square error methods are presented in Appendix C.3.

Itti&Koch GBVS TorralbaSaliency
a)

b)

Figure 6.5: Sample saliency heat maps predicted by Itti and Koch, GBVS and
Torralba saliency models, superimposed on images from the tiled display wall
and the single display. a) Image presented on multi display walls along with the
saliency maps generated by Itti and Koch, GBVS and Torralba saliency models.
b) The original image presented on single display along with the saliency maps
generated by Itti and Koch, GBVS and Torralba saliency models.

6.4 Conclusions
We have investigated the effects of tiled display (interior horizontal and verti-
cal) bezels on human eye movements and saliency prediction algorithms. We
conducted two experiments for two types of display systems (i.e., single-panel
display and multi-tile LHRD). We first examined human eye movement be-
havior for the two types of displays. We then examined saliency algorithm
performance with and without the presence of interior bezels.

We conclude the first study with our results with respect to our two hy-
potheses:
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Figure 6.6: The performance of saliency models, averaged over all subjects.
a) The KL divergence describing the performance of Itti and Koch, GBVS and
Torralba saliency models in two scenarios (single DLP display vs. multiple
LHRD). b) The Area under ROC describing the performance of Itti and Koch,
GBVS and Torralba saliency models, in two scenarios (single DLP display vs.
multiple LHRD).

H1: The subjects’ eye movement patterns are affected by the type of
the display This hypothesis was not confirmed. Results showed that there
is no significant difference between the distribution of eye movements on the
LHRD and on the single display.

H2: The subjects will get used to the interior bezels after a short
time, so the effects of interior bezels will vanish over time This hy-
pothesis was confirmed. Results showed that the difference of eye movement
patterns for images presented on the LHRD for varying presentation orders is
significant. While the eye movement patterns of images presented to the view-
ers at the beginning of the experiment were distributed across the whole scene,
the eye movement patterns of images presented later were focused on the most
salient locations in the image.

In the second study, we hypothesis that:

H3: The presence of interior bezels affects saliency algorithm perfor-
mance on tiled displays. This hypothesis was confirmed. Our experiments
indicate that the presence of interior bezels affects saliency algorithm perfor-
mance on tiled displays. The results show a significant difference between the



CHAPTER 6. EYE MOVEMENTS PREDICTION FOR TILED LHRD 120

model predictions and the display system types, and this influence differs ac-
cording to the saliency algorithm we used and the contrast properties of the
images presented on the tiled displays.

Also, the results show that the GBVS performs better for predicting at-
tention location compared with Itti and Koch and Torralba. Since the visual
properties present in an image generate a visual saliency map that explicitly
marks regions that are different from their surround based on color, intensity,
contrast, and edge orientation, we can assume that models which ignore edge
feature in vertical and horizontal orientation will perform better with multi-tiled
LHRDs. Therefore, we suggest to use saliency-prediction methods directly on
the original (i.e., bezel-free) image data.

The limitations of this work are, here we considered static natural scenes
and fixed head positions, our results have shown that there is no significant
difference between eye movement patterns and display types. We suggest more
investigation with dynamic scenes and free head movements for future work.
Also by combining mobile eye tracking with a head tracking system we suggest
repeating the experiments with dynamic 3D scenes.



Chapter 7

Predicting Eye Movements
Strategies with Inverse
Reinforcement Learning

In this Chapter we return to the distinction between descriptive and normative
models that we introduced in the theoretical Chapter 3. We recapitulate IRL
and devise a simple experimental setting so that it becomes applicable to pre-
dicting eye movements. We have examined two different inverse reinforcement
learning algorithms. The presented approach used information about the pos-
sible eye movement positions. We showed that it is possible to automatically
extract reward function based on effective features from user eye movement
behaviors using IRL. The learned reward function was able to extract expert
behavior information that fulfill to predict eye movements. Thus, this study
serves as a proof-of-concepts for using IRL in eye movement predictions, and
in human behavior modeling in general.

This chapter is organized as follows: First, we introduce the motivation
of using IRL for modeling eye movement behaviors. Then, we describe the
material and methods including the eye tracking experiment and the features
we extracted from our dataset (Sec. 7.2 and 7.3). Then, we present the results
of our analysis, we first compared the reward feature weights for each of the
two methods, and then compared the performances of the two algorithms to the
user behaviors which runs separately on each eye movements trajectory (Sec.
7.4).

The results of this chapter have previously appeared as conference publica-
tion in [134].
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7.1 Introduction
Truly gaze represents one of the essential cues, which is important to under-
stand the behaviors that are exhibited during human-computer interaction.
Many researchers have considered the problem of predicting human eye move-
ments. Some of them describe eye movements using visual saliency perspective
[98, 121]. Other models eye movements as the future information gain using
the reward driving approach [168, 140]. This is an important information to
be considered in the interaction with the tiled Large High-Resolution Displays
(LHRD) [82, 8], and desirable in many application scenarios such as commer-
cials adaptive user interfaces, interactive visualization, or attention manage-
ment systems, to adapt visual interfaces, or to place important information.

In a Markov Decision Process (MDP) framework, an agent is represented
by its policy π, which is a probabilistic action selection modeled as a condi-
tional probability P (A = a |S = s) to select the action a ∈ A in state s ∈ S.
The agent can select an action and observe the state change and may receive
a reward. A policy determines which actions to take in specific states in or-
der to achieve a goal. One can find an optimal policy using optimal control
techniques [191]. In an MDP, we want to find a policy that maximizes the
expected reward. Thus the reward encodes the goal of the task. The accom-
plishment of a goal by an agent usually can be described by a sequence of actions
that agent has selected by interacting with the environment. The selection of
actions can also be depend on the decisions and actions of others especially
when the possibility of communication with other agents are available. Using
supervised learning we can learn a policy directly from demonstrations [15],
such approaches usually have limited generalization abilities because they are
limited to the demonstrated scenarios. As they do not consider the underly-
ing dynamics, they cannot be applied in a task with changing dynamics. In
the interaction with the tiled Large High-Resolution Displays (LHRD), the eye
movements change as the dynamics of the environment changes.

Given an exact model of the environment and the measurement of the
agent’s behavior over time. Instead of predefining the reward function, we seek
to identify it from human eye movements behavior. Finding a reward function
by learning it from an expert demonstration is referred to Inverse Reinforcement
Learning (IRL) or inverse optimal control [145]. Ng et al. [145] argue that the
reward function from RL must be considered as an unknown when examining
the animal and human behavior. They present methods to solve the problem of
the inverse reinforcement learning (IRL). This reward function, which cannot
be observed directly, can be considered as part of the internal state of a user,
similar to the state of the attentional system, or the current goal state. Inverse
optimal control applied to different problems such as modeling goal-directed
trajectories of pedestrians [220], helicopter control [2], robot navigation across
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Figure 7.1: A user wearing an eye tracker viewing an image on a 24-panel tiled
display wall.

different environments [108], parking lot navigation [3], routing preferences of
drivers [219], learning strategies in table tennis [138] and user simulation in
spoken dialog management systems [39].

Figure 7.2 illustrates the considered scenario we used in our lab (Figure
7.1): A user is viewing an image on tiled display walls. At time point t, he
decides to look at tiled display Nr.9, but at time point t+1, he decides to look
at tiled display Nr.12. In this scenario, various sensors can detect the gaze
direction of users in a room. In the interaction with the tiled Large High-
Resolution Displays even if the dynamics of the environment not changes, the
eye movements behavior changes(Figure 7.2).

In this work, we learn the reward function from demonstrated scenarios
and use this reward function to explain the observed behavior. Thus, here we
do not introduce new IRL methods for solving IRL problem, but we aim to
use available methods on modeling human eye movements behavior during the
interaction with tiled LHRD. Since modeling the dynamics of eye movements is
highly challenging, We rely on a maximum entropy IRL formulation [219] and
feature construction Inverse Reinforcement Learning method [116] to model the
distribution of all possible eye movement trajectories, across all the images in
the dataset.

7.2 Modeling Human Eye Movements Strategies
To use IRL, we need to represent the problem as a Markov decision problem
(MDP). A Markov Decision Process is described by a tuple M = (S,A, T, γ, R)
(See Sec.2.2.2.6 for more details). In an IRL setting, the algorithm is presented
with M \R, together with expert demonstrations D = {ζ1, ..., ζN}, where ζi =
{(si,0, ai,0) , ..., (si,T , ai,T )} (i.e., its trajectory or path, ζ, of states si and actions
ai). In combination with features of the form f : S −→ R that can be used to
represent the unknown reward R.

We represent the reward function by a linear combination of m feature
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(a) (b)

Figure 7.2: Considered scenario: A user viewing an image on tiled display
walls consisting of 24-panel LCD. a) At time point t, he has decide to look at
tiled display s9. b) but at time point t+1, he has decide to look at tiled display
s12.

functions fi with weights θi, which maps the features of each state, fsj ∈ Rm,
to a state reward value. Hence, the reward function is defined by:

reward(s, a) =
m
i=1

θ⊤i fi(s, a) = θ⊤f(s, a),

where θ ∈ Rk and f(s, a) ∈ Rk. The features functions fi are bounded and
mapped from S × A into R.

In this work, we construct the reward functions from human eye movements
behavior and use this reward function to predict eye movements strategies on
the tiled LHRD.

7.2.1 Learning the Reward Function

Going beyond the classical RL setting. Ng et al. [145] proposed algorithms to
solve the problem of the inverse reinforcement learning (IRL), i.e., of extracting
a reward function given observed optimal behavior. Abbeel & Ng [4] introduce
a novel approach based on Inverse Reinforcement Learning (IRL). They suggest
a procedure of coordinating feature expectations between an observed behavior
and a learner’s behavior (See Equation 1). In there work, they showed that
this representation is enough to achieve the same performance as the agent
were solving an MDP with a reward function linear in those features.
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Many researches provided further development in order to improve to the
original algorithms suggested by [145], For example [117, 219, 157, 116].

To compute the reward functions, we used two different methods. The first
method based on the principle of maximum entropy [219], while the second
algorithm is the feature construction for Inverse Reinforcement Learning [116].

Maximum Entropy Inverse Reinforcement Learning Method (Max
Entropy IRL): The Maximum Entropy Inverse Reinforcement method [219]
reduces learning to the problem of recovering a reward function; that makes the
behavior influenced by a near-optimal policy that closely imitate demonstrated
behavior. It is a probabilistic approach based on the principle of maximum
entropy. A maximum entropy IRL formulation finds a distribution over all
trajectories. With respect to the eye movements behavior, it model the distri-
bution over all possible eye movement paths of length T starting from state s
for a given image (See Sec.3.5.5for more detail).

Feature Construction Inverse Reinforcement Learning Method (FIRL):
The feature construction for Inverse Reinforcement Learning method [116] builds
reward features from a large collection of essential features, by building logi-
cal conjunctions of those component features that are relevant to the example
policy. The algorithm repetitively builds both the features and the reward
function. Each iteration consists of two step formulation: an optimization step
computes a reward function R(i) of the ith iteration using the current set of
features beginning with an empty feature set, and a fitting step determines a
new set of features (See Sec.3.5.6 for more detail).

7.2.2 Computational Model for Representing Eye Move-
ments Strategies

The key concepts we build upon for modeling eye movements are Markov deci-
sion processes (MDPs). Our framework is based on learning the reward func-
tion that can explain observed eye movements behavior via the corresponding
optimal policy π∗ [145]. By employing policies that operate over long time
horizons, we learn the reward function directly from large amounts of human
eye movement data. We cast the problem as Inverse Reinforcement Learning
(IRL), where we aim to construct the reward function that stimulate human
eye movements behavior recorded from human subjects performing a free view-
ing task. Our learned model can imitate useful eye movement’s strategies on
LHRD. We now need to identify the states, actions and reward features of our
framework.
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States In MDPs state St = i ∈ S = [1, 2, ..., N ] represents the state of the
world at time t. In this paper, it represents the state of the tiled LHRD at
time t and indicates that the target is located at tiled display i. Concretely,
we present each image on tiled display walls consisting of 16-panel LCD (see
Figure 7.3), and assume that the location of the important object’s center is
inside one of those tiled locations. For this work, we chose to tile the frame from
eye tracker scene camera with a 4 × 4 LCD grid, meaning the eye movements
could be located at any of 16 locations, and each location represent one of the
tiled display.

Figure 7.3: A 4 × 4 tiled LCD grid used to present each image, forming the
basis of the hypotheses that are entertained about the possible eye movements
in the tiled LCD.

Actions action At = i ∈ A = [1, 2, ..., N ], is random variable that represents
the action taken by the agent at time t, where actions model eye movements
on tiled displays. In this work, we consider action space equals to state space.
We then encode all scanpaths in this discrete (state, action) space.

Reward features In order to determine the reward function, we suppose that
the reward function is given by a linear combination of observable features. We
choose the features as a combination of the state information.

• We used information of the intensity, orientation and color channels as
computed by Itti and Koch’s saliency method [98].

• We also include histograms of color features (Ho- Color): which represents
the probabilities of the red, green and blue channels as features. This
probability computed using color histograms of the image filtered with a
median filter at six different scales.
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(a) (b)

Figure 7.4: a) Eye movements trajectories for three users viewing an image
on LHRD. b) Eye movements path predicted using Itti model.

• Histogram of Oriented Gradients (HoG) features [48], we extracted 7 HoG
descriptors with different grid arrangements at each tiled and concatenate
them a with the output of our feature detector.

• We used the local energy of the steerable pyramid subbands in four ori-
entations and three scales [179].

• We also included a distance to the center as a prior feature which denotes
the distance to the center for each pixel in the image, we used this feature
because when humans take pictures, they spontaneously place the area of
interest near the center of the image.

All features are scaled to lie in an interval of [0 1].

7.3 Experiments and Evaluations

7.3.1 Eye Tracking Experiments

In order to extract basic eye movements strategic elements, we recorded eye
movements of users participated with free viewing task experiments on LHRD.
We used tiled display walls consisting of 24-panel LCD. The display surface
is subdivided into 24-panels by three horizontal and five vertical black plastic
bezels. Each interior bezel is 4.8 cm wide and represents the plastic bezels of
physical tiled-monitor displays. In this study, we consider only 16- Panel LCD
because of the eye tracker scene camera limitation. For this study, we used
the eye-tracking experiment described in Chapter 6 (see Sec. 6.2.1 for more
details), but here we consider only the eye movements data with tiled LHRD.
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7.3.1.1 Visual Stimulus

We used the visual stimulus described in Sec.6.2.1.3. They were 20 images,
each was presented to eight subjects. We employed Vrui toolkit1 to present the
stimulus on the LHRD displays. Each image was shown for ten seconds.

7.3.1.2 Experiment Design

Each subject carried out a 9-point calibration procedure before the start of
the experiment. Subjects sat at a distance of approximately 460 cm from the
tiled display wall. This corresponds to a distance where the subjects could
comfortably view the entire display, using a chin rest to fix their head position.
Based on eye tracking data, we first generated scanpaths “gaze locations” on
each image, for each user. Toward obtaining the same number of gaze locations
on each image with all users, we selected 300 gaze locations on each image, after
eliminating the out of range gaze locations. Then we generated eye movements
trajectories in term of (state, action) for each image, where we cover each image
frame by 4 × 4 grid for the state space( i.e. 4 × 4 tiled displays). We then
encode all scanpaths in this discrete (state, action) space.

7.3.2 Performance Evaluation

We evaluated the performance of each algorithm using the Expected Value
Difference (EVD) score, which measures of how optimal the learned policy
π compare to the expert optimal policies π∗. Using this score, we compute
the optimal policy under each learned reward, and subtract this value from the
expected sum under the true policy. Where π∗ is the agent’s ground truth policy
function, and π is the policy with the learned reward function. The expected
value difference estimates the difference in the performance between the agent’s
optimal policy and the policy induced by the learned reward function. We first
estimated the expected value difference between the true and learned policy
functions of each individual trajectory and calculated the expected average
difference of all trajectories in the behavior dataset.

7.4 Result
We carried out a leave-one-out testing scheme to evaluate the reward functions.
We computed the reward feature weights for each of the two methods. We
also evaluated the performance of each method in predicting eye movement
scanpaths compares to the user demonstrated behaviors.

1http://idav.ucdavis.edu/okreylos/ResDev/Vrui/

http://idav.ucdavis.edu/okreylos/ResDev/Vrui/
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Figure 7.5: The resulting reward weights of the individual features features for
Algorithm 1 (MaxEntropyIRL) and Algorithm 2 (FIRL), respectively.

7.4.1 Individual Reward Features

Figure 7.5 shows the calculated reward weights for the individual features. We
compared the learned weights for the individual features of the reconstructed
reward functions obtained by both algorithms. We found that, the two algo-
rithms revealed similar weights for the most important features. While the Itti
and HoG features show highest positive reward weights for both algorithms,
the distance to center feature had only a small positive rewards weight and
almost no influence. It is important to note that, the reward weights of the
histograms of color features with FIRL algorithm shows higher positive reward
weights compare to Max entropy IRL algorithm.

7.4.2 Comparison of the tested IRL methods

We compared the performances of the maximum entropy Inverse Reinforcement
(MaxEntropyIRL) and the feature construction Inverse Reinforcement Learning
(FIRL) algorithms to the expert behaviors which runs separately on each eye
movements trajectory. Fig. 7.6 displayed the performance scores for the learn-
ing reward functions from the demonstrated data over 20 images instances. We
can see that, when the size of the behavior data is small, the clustering perfor-
mances of both MaxEntropyIRL and FIRL were not performing well. However,
as we increased the size of the data, both MaxEntropyIRL and FIRL achieved
better EVD results. In addition, we can see that the maximum entropy IRL
learned a reward function that more precisely imitates the policy of the expert
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Figure 7.6: Evaluation of both methods with human demonstrations. Maxi-
mum entropy IRL learned a reward function that more precisely imitates the
policy of the expert behavior.

behavior.

7.5 Conclusion
In this work, we modeled eye movements on tiled LHRD as an MDP. We col-
lected eye movements of users participated with free viewing task experiments
on LHRD. We have examined two different inverse reinforcement learning al-
gorithms. The presented approach used information about the possible eye
movement positions. We showed that it is possible to reconstruct reward func-
tion based on effective features from user eye movement behaviors using IRL.
The reward function was able to extract expert behavior information that fulfill
to predict eye movements. The findings of the IRL methods we used support
each other and demonstrate that they are all suitable for the challenging task
context presented in this paper. This is important information for estimating
the internal states of users, and desirable in many application scenarios such
as commercials adaptive user interfaces, interactive visualization, or attention
management systems, to adapt visual interfaces, or to place important infor-
mation.

In the current model, we models eye movements on tiled LHRD as an MDP,
we assumed that the agent has complete information about the environment.
Also, we did not account for noisy sensory information, where POMDPs could
be useful to use.



Chapter 8

Conclusions and Future Work

This thesis addressed the problem of predicting human gaze behavior in smart
environments. For that, it approached two questions: (1) how different visual
features are relevant for predicting human eye movements in different behavioral
context in smart environments; and (2) how humans might select the next gaze
location. Previous research has suggested that human eye movement behavior is
consistent with decision-making mechanisms for fixation selection that attempt
to maximize reward [168, 140].

This thesis investigates these problems by:

1. It uses systematic machine-learning approach, where user profiles for eye
movements are learned from data in different context, and determining
by combinatorial exploration which features are relevant for behavioral
context.

2. The thesis proposes the modeling of eye movements using decision-making
mechanisms. For that, our approach formulated eye movements as a
Markov Decision Process (MDP) problem, with the use of Inverse Rein-
forcement Learning (IRL) to infer the reward function.

This chapter gives a summary of the results acquired in this thesis, accompanied
by some suggestions for future research.

8.1 Summary
Throughout the thesis, the predictive gaze models were evaluated by comparing
it with human eye movement data in different contexts. This section presents
our main results:

131
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8.1.1 Context Dependence of Human Gaze Prediction

In our first contribution, we investigated how relevant different features are
for gaze locations prediction in different behavioral contexts. We studied the
dependencies between the behavior context and the visual features selection in
meeting scenarios (giving a presentation vs. listening to a presentation). We
used a linear SVM to find out which features are descriptive in each scenarios.
The main result of this study is that gaze location prediction depends on the
context. The prediction differed according to the type of features we selected.
As a consequence, simple predictive "one-fits-all"-models will not work for eye
movements prediction. This finding points towards including context informa-
tion about the scene and situation into the computation of saliency maps as
important towards developing models of eye movements.

8.1.2 Relevance of Depth Features for Gaze Prediction

Most models of bottom-up attention rely on features from 2D images. Our
second contribution was an investigation of how relevant depth features for eye
movements prediction.

• We first analyzed scene dependency in saliency map prediction in 2D im-
ages and depth images. From our analysis of the dependency between
luminance and depth images features in natural scenes using mutual in-
formation. We found that the dependencies differed according to the type
of visual environments. Moreover, we found that saliency in depth images
bimodally distributed with highly salient locations corresponding to low
salient 2D image locations. As a consequence, low-saliency locations in
luminance images can be highly salient in depth-images. This first char-
acterization of joint luminance and depth saliency is an important first
step towards developing models of eye movements, which operate well
under natural conditions such as those encountered in HCI in ubiquitous
computing settings.

• We have also presented a new system, the BatGaze system, which we used
to measure luminance and depth features at the center of gaze in a free-
viewing scenarios. The rationale for building such a system is to inform
computational vision research about these features, so that generative
models of visual signals could be learned. Collecting such depth informa-
tion will also help to improve models for predicting eye movements, which
are currently based only on features obtained from luminance images even
though the human visual system certainly uses top-down post-recognition
information to guide eye movements.
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• We explored as to whether depth features were relevant to eye movement
prediction. We used machine learning techniques to train a bottom-up,
top-down model of saliency based on 2D and depth features/cues. We
found that the distribution of depth values at the center of gaze differ
than from random sampling. We used machine learning techniques to
train a bottom-up, top-down model of saliency based on 2D and depth
features/cues. We found that the depth information improves prediction
and hence it should be included in predictive models.

8.1.3 Performance of the Predictive Gaze Models in Real
World Scenarios

The third contribution was investigating how existing predictive gaze models
perform in real world scenarios compare to human eye movements behaviors
(i.e., in the interaction scenario with tiled Large High-Resolution Displays). We
conducted two studies, where we explored how good the saliency algorithms
perform on two different types of wall-sized displays compare to human eye
movements behaviors. We found that the presence of interior bezels affected
the performance of saliency prediction algorithms. But the effect of interior
bezels on the subjects’ gaze decreases after a short period of time. While eye
movement patterns of images presented on LHRDs vary (especially for the
images presented at the beginning of the experiments), eye movement patterns
of images presented on a single-screen display without interior bezels focus
on the most salient locations in the images. This shows that the investigated
predictive models don’t work well for eye movements prediction in this scenario.
This due to that some feature channels used in these model are less important
for the prediction in this scenario. Therefore, predictive models should have
inhibition mechanism (or scales) for the computation of features that are less
important in some scenarios.

8.1.4 Predicting Eye Movements on LHRD using IRL

The fourth contribution was applying IRL on eye movement data in an in-
teraction scenario with the tiled LHRDs. We modeled eye movements on tiled
LHRD as an MDPs. We collected eye movements of users participated with free
viewing task experiments on LHRD. We have examined two different inverse
reinforcement learning algorithms. The presented approach used information
about the possible eye movement positions. We proved that, it is plausible
to extract reward function based on effective features from user eye movement
behaviors using IRL. The learned reward function was able to extract expert
behavior information that fulfill to predict eye movements. Thus, this study
serves as a proof-of-concepts for using IRL in eye movement predictions, and
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in human behavior modeling in general.

8.2 Future Work
Our approach, of using joint luminance and depth features is an important
step towards developing models of eye movements, which operate well in the
3D world. So that work on extending exciting 2D saliency model to work with
the 3D word is still open.

In the smart meeting room, investigation of which feature makes a good
prediction is important. In the ”listening scenario”, in our work, we found
that models trained on the color, intensity and orientation features from Itti
and Koch performs better than models trained on other features. When we
examined our eye movements data, we found that there were a large amount of
fixations on text. We think include text detector could improve the prediction.

Another point comes to my mind finally when I was doing a presentation,
where I included some text from another language ( i.e. French language).
One of the listeners asked me after the presentation do you speak French. The
question here does include text from another language will effect the gaze of
people especially if there are native in that language?.

From our investigation of using existing models of visual saliency in real-
world setting. We have investigated the effects of tiled display (interior hor-
izontal and vertical) bezels on saliency prediction algorithms and human eye
movements. We found that the presence of interior bezels affects the perfor-
mance of saliency prediction algorithms. It is important to make these models
more robust to the real world scenarios. Also with static natural scenes and
fixed head positions, our results have shown that there is no significant dif-
ference between eye movement patterns and display types. We suggest more
investigation with dynamic scenes and free head movements for future work.
Also by combining mobile eye tracking with a head tracking system we will
repeat the experiments with dynamic 3D scenes.

This thesis modeled eye movements on tiled LHRD as an MDP, assuming
the agent has perfect knowledge about its environment. In the current model,
we did not account for noisy sensory information and incomplete knowledge.
Where, POMDPs could be useful to use. In future work, we will model the task
using an MDP, PoMDPs assume that the agent cannot completely observe its
environment. Also to simplify the problem presented in this work, we predicted
eye fixation locations on LHRD using IRL where each tiled display represented
by one cell grid. In future work, we will predict eye fixation locations using
multiple cells on each tiled display.

As applications for this work, we plan to propose a visual saliency mecha-
nism for rendering a scene on the tiled LHRD. The idea here to use saliency
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maps generated from bottom up saliency models, along with an adaptive strat-
egy, and applied it the tiled LHRD. The proposed system can present a high-
resolution rendition of the image in the most salient locations and a severely
reduced the resolution in the other locations to save computing resources with-
out the observer noticing artifacts. Furthermore, the state value function can
be used so that the application on the LHRD can be adapted based on this
state-value function, the policy of the user and the potential actions that can
be taken.
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Appendix A

Nomenclature

Acronyms

ACRONYM DESCRIPTION
SVM Support Vector Machines
RL Reinforcement Learning
IRL Inverse Reinforcement Learning
MDPs Markov Decision Processes
POMDPs Partially Observable Markov Decision Processes
LHRD Large High-Resolution Display
DLP TV Digital Light Processing TV
LCD Liquid-Crystal Display
2D Intensity image or luminance image
3D Range image or depth map
MI Mutual Information
KL Kullback-Leibler divergence
AUR Area Under Curve
CC Correlation Coefficient
MSE Mean Squared Error
EVD Expected Value Difference
HMMs Hidden Markov Models

Table A.1: Acronyms descriptions.
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Mathematical Notations

SYMBOL DESCRIPTION
corr correlation coefficient
cov covariance function
var variance function
i(x, y) Gray scale pixel value
d(x, y) Depth value
σ(x, y) Local standard deviation
Hx,y Local entropy
gθ (x, y) Gabor filter response
µGD (x, y) Gap discontinuity
µOD (x, y) Surface orientation discontinuity

Table A.2: Mathematical Notation.



Appendix B

Operations Details

B.1 Gabor Filters
The two-dimensional Gabor function consists of a complex sinusoidal plane
wave of some frequencies and orientations, modulated by a 2D Gaussian function[50],
and hence defined as follows:

gλθψσγ(x, y) = exp


−x

′2 + γ2y′2

2σ2


. cos


2π
x′

λ
+ ψ


(B.1)

where

x′ = x cos (θ) + y sin (θ)

y′ = y cos (θ)− x sin (θ)

In this equation, λ represents the wavelength of the sinusoidal wave, θ de-
notes the orientation of the normal to the parallel lines of the Gabor function
in degrees, ψ is the phase offset in degrees, γ is the spatial aspect ratio.

The spatial frequency of the sinusoidal wave is defined as f = 1
λ
. The ra-

tio σ
λ

determines the spatial frequency bandwidth. The half-response spatial
frequency bandwidth b (in octaves) and the ratio σ

λ
are related as it follows:
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We can process any Image I(x, y) by a Gabor filter g(x, y), the result is the
convolution of the image and the Gabor function, i.e., r(x, y) = g(x, y)∗I(x, y),
where ∗ denotes the two dimensional convolution [50]. .
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Choice of the filter parameters: We use orientation separation angles of
15◦, so that θ values are given as follow:

θ = {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦, 165◦, 180◦}

As recommended in [50] and other studies [178], we used only one spatial
frequency λ = 6.1 (and the standard deviation of the Gaussian σ = 3.4) and
two spatial phases ψ ∈ {0, π/2} and we set the spatial aspect ratio γ = 1.

B.2 Overview of the Processing Workflow of the
BatGaze System

Figure B.1 shows BatGaze system under the second version after recording and
saving to disk. This process also have five tasks to run over them.

Figure B.1: The BatGaze system workflow.
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First task (Data Conversion):

The files are read by MATLAB and then data are converted to MATLAB-
workspace variables. For example, the scene video file from SMI will be read
and converted to 4D matrix (752 x 480 x 3 x no. of frames). The binary file of
the depth values, which is in a vector form, will be converted to 3D matrix (640
x 480 x no. of frames). But this conversion depends on the recording duration
which should be given in seconds. Wrong entry of the recording duration is
checked with the length of the depth vector and the image resolution and then
an error of mismatching number of frames is returned. Artifacts correction of
the data is done in this task. To perform the next task, the depth images are
transformed to gray-scale and a video of them is generated and saved to disk. In
each task and for memory issues, the data under processing is saved to disk in
the end of the task and MATLAB workspace can be cleared or if desired can go
on to the next task. At any time one can start from any intermediate task and
process the proper data without the need to start from the beginning. In table
B.1, we summarize the conversion from raw data to MATLAB based data. The
files are read by MATLAB and then data are converted to MATLAB-workspace
variables.

After conversion to MATLAB workspace variable, the data are saved to
disk.

Second task (Frames Comparing):

Here we used an external program called “Kinovea1” (kinovea.org) to compare
the frames of the two videos; the SMI scene video and the generated Asus
depth video. As the frames are almost exceeding 1000 frames so we just moved
to compare the event-frames in the beginning or in the end of both videos.
We decide here on the matched frames (MatchedStartDepthFrame, Matched-
StartSceneFrame) and supply their values to the next task. This way we get
the proper position of the “event” frames, and we could check the timestamp
method. Here the external program “Kinovea” used to compare the frames of
the two videos; the SMI scene video and the Asus scene video.

Third task (Temporal Alignment):

We interpolated the timestamps here to find the matching frames and examined
the values from task two as a double check. We then trimmed the unmatched
frames from both data images to get in the final equal umber of frames where
each frame in the depth images is aligned temporarily to the corresponding
frame in the SMI scene images. Gaze data vector also trimmed consequently.

1http://www.kinovea.org/
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Here, all the data are trimmed to aligned number of frames, that is nf . All
data variables preserve its size.

Forth task (Spatial Alignment):

The temporal-aligned matrices of images are now registered spatially using
MATLAB registration tools. Transformation is performed on the raw depth
images as targets, not the gray-scale images, and on the scene images as refer-
ences. Using the transformation function the new positions of the gaze points
are computed. After the 2D spatial registration, the parts of images that are
mostly registered, are cropped and a new size of images results. Here the whole
data set is aligned temporarily and spatially and the depth value of each gaze
point is accurately computed. We can generate a movie of both scene views in
this task.

We here applied the registration on the two RGB images, by using either the
monomodal or multimodal registration method. The resulting transformation
is performed on both frames types: raw depth images and RGB images. Here
we can opt to correct the fisheye effect of eye-tracker frames and/or to correct
the shadow problem of the Asus depth camera. The process can include some
image processing such as cropping the most aligned parts of the scenes. For
each subtask here, the gaze data positions are computed and new gaze data
results. Then the whole data set is aligned temporarily and spatially and the
depth value of each gaze point is accurately computed. We can generate a
movie of both scene views in this task.

Fifth task (Analysis):

Resulting data from previous step comes in here. In each task the output is
saved to disk so one can later proceed from any task by loading those saved
data. It helps in dealing with memory problems.
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Table B.1: Description of the conversion of files to MATLAB variables.
File Description

Depth Values File
(.bin)

This is the binary file that saves the depth frames. It
contains one vector of unsigned short data types for
each depth value. It is then converted to matrix of (
640× 480× nfZ ) representing the depth resolution

used and nfZ is the number of depth frames.
Asus RGB (.avi) This is the video file that saves the RGB frames from

Asus XtionPRO Live camera. MATLAB reads it and
converts it to matrix of ( 640× 480× 3× nfR ) with
the resolution used and nfR is the number of scene

frames in unsigned 8 bit integers. nfR doesn’t always
equal nfZ.

Timestamps
File(.txt)

This is the text file that saves the depth frames
timestamps. It contains one vector of unsigned short
data types for each depth frame. It is then converted

to two vectors, each of ( nfT ) entry. nfT is the
number of depth frames and always equals nfZ. First

vector TData contains the timestamps, and the
second Tvec contains the system time format of those
timestamps. The recording time is also included in

this file.
SMIRGB (.avi) This is the video file that saves the RGB frames from

eye-tracker camera. MATLAB reads it and converts it
to matrix of (752× 480× 3× nfS ) with its

resolution. nfS is the number of scene frames in
unsigned 8 bit integers. nfS d differs than nfZ.

Gaze Data (.txt) This is the text file that saves the gaze data. It
contains one cell of arrays where each array has its

own type. Its size is of ( nfG× 4 ) , where nfG is the
number of sampled gaze data which is always twice

the size of nfS , and sometimes more. The first
column contains the timestamps. The second and

third columns contain the gaze data in pixels in x and
y direction. Finally the forth column contains the

frames counter. The recording time is also included in
this file.



Appendix C

Experiments and Analysis Results
Details

C.1 Models Performance for the Individual Sub-
jects in Meeting Scenarios

In chapter 4, we examined the prediction of eye movements in meeting scenarios
using different low, middle and high-level visual features. We trained a linear
SVM to find out which features are descriptive in two scenarios (giving a talk vs.
listening to a talk). We measured the performance of saliency models using KL
divergence. Here we present the results of the performance of different models
for the individual subject. Again, the context dependence shows up with all
individual subjects: In the listening scenario, models trained on competing
saliency features from Itti and Koch perform better than the models trained on
other features (see Figure C.1a). In the giving a talk scenario, models trained
on the face features perform better than the models trained on other single
features (see Figure C.1b).

Figures C.2 and C.3 show the KL divergence matrices describing the per-
formances of different SVMs models, for individual subject, in the ”listening
-audience-” scenario and ”giving a talk-speaker-” scenario.
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Figure C.1: The KL divergence describing the performance of different SVMs
trained on each feature individually, for individual subject, in two scenarios. a)
In the listening scenarios. b) In the given talk scenarios.
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Figure C.2: The KL divergence matrix describing the performances of different
SVMs models trained on a set of features individually and pairs of features
combined together, in the ”listening -audience-” scenario, for individual sub-
ject. The main diagonal shows the performances of the models trained on
individual features. The lower/ upper triangular parts of the matrix show the
performances of the models trained on pairs of features combined.
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Figure C.3: The KL divergence matrix describing the performances of different
SVMs models trained on a set of features individually and pairs of features
combined together, in the ”giving a talk-speaker-” scenario, for individual sub-
ject. The main diagonal shows the performances of the models trained on
individual features. The lower/ upper triangular parts of the matrix show the
performances of the models trained on pairs of features combined.
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C.2 Models Performance when using Depth Fea-
tures for the Individual Subjects

In chapter 5, we investigate, how relevant depth features are for eye movement
prediction. Here we present the results of the performance of different features
models for the individual subjects. Figure 5.19 compare KL performance for
SVMs trained with different individual features and combined together.

 Subject 5  Subject 4 

 Subject 2  Subject 1  Subject 3 

Figure C.4: The KL divergence matrix describing the performance of different
SVMs models trained on set of features individually and pairs of features com-
bined, for the individual subjects. The main diagonal shows the performance
of the models trained on individual features. The lower/ upper triangular parts
of the matrix show the performance of the models trained on pairs of features
combined.
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Figure C.5: a) The correlation coefficient used to compare the relationship
between the predictions of Itti and Koch, GBVS and Torralba saliency models
and the user fixation maps, in two scenarios (single display vs. multi tiled
displays), averaged over all subjects. b) The mean square error between the
predictions of Itti and Koch, GBVS and Torralba saliency models and the user
fixation maps, in two scenarios (single display vs. multiple LHRD), averaged
over all subjects.

C.3 Comparing Visual Saliency Models Predic-
tions

In chapter 6, we investigate the effects of bezels on human eye movements and
on saliency algorithm predictions. Here we compared the relationship between
human fixation maps and the saliency maps generated by Itti and Koch, GBVS
and Torralba using the correlation coefficient. In Figure C.5(a) we can see the
correlation between human fixation maps and the prediction maps averaged
across all users and all images. We can see that the correlations between the
human fixation maps and the saliency maps from the single DLP display are
higher than in multi tiled displays images. On the other hand, the correlation
between the human fixation maps and the GBVS predictions are higher than
in the Itti and Koch model and Torralba model, in both displays, which means
that, the GBVS model provides overall better performance than Itti and Koch
model and Torralba model. These results were confirmed when we used the
cumulative squared error between human fixation maps and the saliency maps
(see Figure C.5(b)).
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C.4 Examples of the Experiments Data
Examples of images that were shown in the experiments from the Microsoft
Salient Object Dataset [119] and from the York University Eye Fixation Dataset [32]
(see chapters 6 and 7):

Figure C.6: Examples of the images that were shown in the experiments.
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Examples of forest scenes from Stanford University 2D/3D Dataset [170],
used in the analysis of registered luminance and depth Images (see chapter 5).

Figure C.7: Examples of outdoor forest scenes.
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Examples of in city scenes from Stanford University 2D/3D Dataset [170],
used in the analysis of registered luminance and depth Images (see chapter 5).

Figure C.8: Examples of outdoor in city scenes.



Theses

1. Although ubiquitous computing and seamless human-computer-interaction
(HCI) require systems, which are human-centric in the sense of taking into
account a user’s internal states such as intentions, current goals, or the
focus of attention. It comes as a surprise that it is largely absent from the
most existing systems. This thesis address this shortcoming by explor-
ing the problem of predicting human gaze behavior in order adapt smart
environments to the goals of humans and their anticipated actions.

2. In smart environments users are often interrupted, manage very large
quantities of information, and they switch between the contexts of dif-
ferent displays and tasks. In these settings, selective attention plays a
fundamental role in interaction and task execution.

3. Computational modeling of the visual system was quite successful in the
sense of predicting saliency maps based on image properties. However,
accurately predicting eye movements remains a challenging problem in
real world scenarios. The investigated predictive gaze models don’t work
well for eye movements prediction on the tiled Large High Resolution
Displays (LHRDs).

4. The existing predictive models for eye movements do not take contextual
factors into account, where it rely only on low-level 2D scene features such
as color, orientation, contrast, and intensity, which is most important.
However, what other features should be included? Overall, there is a
need for investigating which features are most relevant in which settings.

5. These issues can be handled using a data-driven approach, where user
profiles for eye movements behaviors are learned from data in different
behavioral context. The machine learning model proposed by this thesis
represents both different low-, mid- and high- level features and depth
features together with different user behavioral context. That allows to
determine the relevance of different features in different situations.

6. Characterizing the statistical properties of luminance and depths images
at the center of gaze allows for better understanding of how relevance
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depth features are for gaze location prediction. Thus, predictive models
respecting this will ultimately outperform saliency maps computed only
on the basis of 2D pixel images.

7. Machine learning models and the analysis of behavioral data show the
limitations of current predictive models describing human eye movements
and reveal the influences of task on gaze selection. Additionally, the rele-
vance of different features was vary among different behavioral contexts.

8. Normative modeling of user behavior allows not only to describe how
humans behave. But also, the model explain why humans behave as they
do, and the role cognition plays in an account for it. Normative models
are suitable for modeling user behavior, even when there is no direct data
set exist that could be used to learn a policy in a supervised way. Also,
in situations when the selection of actions depend on the decisions and
actions of others especially when the possibility of communication with
other agents are available.

9. Inverse reinforcement learning paradigm allows to construct the param-
eters of the learning model to best match the observed human gaze be-
havior. Thus, the connection between model and empirical data is made.

10. Inverse reinforcement learning models enable to automatically extract
the reward function based on effective features from user eye movement
behaviors. The learned reward function was able to obtain user behavior
information that fulfill to predict eye movements.
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