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Abstract

Computer models and simulations of micro-biological processes facilitate structuring
knowledge and making testable predictions about their behavior. Methods that treat
cells like well-stirred systems are well established in that regard, but the spatial distri-
bution of key actors often cannot be neglected. Spatio-temporal dynamics of cellular
processes can be simulated at different levels of detail, from (deterministic) partial dif-
ferential equations via the spatial Stochastic Simulation algorithm to tracking Brownian
trajectories of individual particles.
In this thesis, a spatial simulation algorithm for multi-level models, including dy-

namically hierarchically nested cellular compartments and entities is presented. The
approach, called ML-Space, combines stochastic spatial algorithms in discretized space,
i. e. population- and subvolume-based simulation, with individual particles moving in
continuous space that have spatial extensions and can contain other particles. For a
formal description of the systems to be simulated spatially, ML-Space provides a rule-
based specification language. It incorporates spatial properties of the model actors via
named attributes and supports concise and compact descriptions of models and allows
easy adaptation of the spatial resolution, while abstracting from the concrete simulation
algorithm as much as possible.
ML-Space has successfully been used to model disease-relevant aspects of various cel-

lular processes, including mitochondrial fission dynamics and actin filament formation.
Additionally, existing spatial models with multi-level aspects were successfully repro-
duced and an abstract multi-level model was developed to explore the simulation ap-
proaches’ capabilities and performance.



Zusammenfassung

Computermodelle und Simulationen mikrobiologischer Prozesse erleichtern es, das Wis-
sen über diese zu strukturieren und falsifizierbare Vorhersagen über deren Verhalten zu
machen. Insbesondere Methoden, bei denen eine homogene Verteilung von Molekülen
innerhalb einer Zelle angenommen wird, sind gut etabliert. In vielen Systemen ist die
räumliche Position der Akteure aber eben doch relevant.
Räumlich-zeitliche Dynamiken zellulärer Prozesse können mit verschieden Detailgra-

den simuliert werden, von (deterministischen) partiellen Differentialgleichungen über den
Räumlichen Stochastischen Simulationsalgorithmus bis hin zu individuellen Partikeln
mit jeweils eigener Trajektorie, der Brownschen Molekularbewegung folgend. In dieser
Arbeit wird ein räumlicher Simulationsalgorithmus für Mehrebenenmodelle vorgestellt,
der auch dynamische hierarchische Strukturen von Zellen und Entitäten darin abdeckt.
Dieser ML-Space genannte Ansatz vereint stochastische räumliche Algorithmen in diskre-
tisiertem Raum, d.h. Populations- und Subvolume-basierte Simulation, mit individuellen
Partikeln mit kontinuierlichen Koordinaten, die andere Partikel enthalten können.
Zur formalen Beschreibung der räumlich zu simulierenden Systeme bietet ML-Space

eine regelbasierte Modellierungssprache. Räumliche Eigenschaften der Akteure werden
über Attribute mit speziellen Namen spezifiziert, was präzise und kompakte Beschrei-
bungen der Modelle und einfache Anpassung der räumlichen Auflösung erlaubt, aber
gleichzeitig von der eigentlichen Umsetzung des Simlationsalgorithmus abstrahiert.
Mit ML-Space wurden krankheitsrelevante Aspekte verschiedener zellulärer Prozes-

se erfolgreich modelliert und simuliert, insbesondere die Regulierung mitochondrialer
Teilung und die Bildung von Aktinfilamenten. Außerdem wurden existiertende Modelle
erfolgreich reproduziert und ein abstraktes Modell zur Veranschaulichung der Simulator-
Einsatzmöglichkeiten und Performance entwickelt.
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Glossary / Terms and Acronyms

𝜏-leaping

Approximate realization of the chemical master equation (CME) where several
reactions (happening in a time interval 𝜏) are applied before propensities are re-
calculated (Gillespie 2001). Sacrifices accuracy for simulation speed compared to
other implementations of the Stochastic Simulation algorithm (SSA). 14, 74, 86

chemical master equation

Differential equation (or a set thereof) describing the time evolution of the prob-
abilities for a system to be in a certain (discrete) state when regarding chemical
reactions as Markov processes (see also CTMC; Gillespie 1992). In contrast ODEs
usually describe the time evolution of the state itself (then a continuous variable).
4, 12, 14, 19

CME

chemical master equation → v

combinatorial explosion

Macromolecules often can be modified at several different positions and some re-
action may modify one single position independently of the state of the others.
Such a reaction would then apply to many different forms of the actual macro-
molecules (a multi-state species), and would require specification of many rules
or equations in approaches without special considerations for this combinatorial
explosion. The term is also used more generally for problems where increasing
the number of dimensions (here: the number of modifications positions) increases
some (cost) function rapidly. 25, 30, 116

continuous-time Markov chain

A stochastic process with a finite or countable state space and a continuous time
base whose future behavior depends only on the current state, not on any past
state (“Markov property”). The time spent in each state follows an exponential
distribution. 4, 11, 27, 28

CTMC

continuous-time Markov chain → v



Glossary / List of Terms and Acronyms v

Direct method

Exact realization of the CME by Gillespie (1976) and Gillespie (1977), along with
the First Reaction method (FRM). 13, 45, 48, 50

First Reaction method

Exact realization of the CME by Gillespie (1976) and Gillespie (1977), along with
the Direct method. 13

FRM

First Reaction method → vi

Law of Mass Action

Kinetic law for elementary reactions roughly in equilibrium. Here used for rate
laws where the rate of a reaction is directly proportional to (the product of) the
concentration of reactant(s), or the amounts or reactants in stochastic simulation.
10, 20, 23, 33, 54, 55, 113

Michaelis-Menten kinetics

Kinetic law for reactions mediated by an enzyme whose amount is constant. As-
suming the enzyme E can reversibly bind a substrate S, that the concentration of
enzyme-substrate complex is roughly constant (quasi-steady-state or equilibrium
assumption) and that the enzyme-substrate complex may eventually react, non-
reversibly, to a product and a free enzyme, the overall reaction from substrate to
product can be described by two constants (the maximum reaction rate 𝑉𝑚𝑎𝑥 and
the Michaelis constant 𝐾𝑀 giving the substrate concentration at which the actual
rate will be 𝑉𝑚𝑎𝑥/2) instead of four (three mass action rates for the three relevant
reactions and the total enzyme concentration). 20, 23, 26, 55

Next Reaction method

Exact realization of the CME introduced by Gibson and Bruck (2000), optimized
for higher performance by using a priority queue structure to schedule reactions
(i. e. store their times and efficiently retrieve those) and a reaction dependency
graph to avoid some propensity recalculations, as well as by rescaling some random
numbers (avoiding generation of new ones). 14, 45

NRM

Next Reaction method → vi

ODE

ordinary differential equation → vii



vi Glossary / List of Terms and Acronyms

order of a reaction

Number of entities (usually molecules) required for a reaction to happen. Corre-
sponds to the sum of exponents of species concentrations/amounts in the reaction
rate. For example, the reaction 1𝐴 + 2𝐵 → ... has order 3, and the rate would be
𝑘[𝐴]1[𝐵]2 for some rate constant 𝑘 (the right hand side, i. e. the products, do not
matter for the order). For individual-based simulation, reactions of order higher
than 2 are usually broken down into steps of order 2 with intermediate reactants.
20, 43

ordinary differential equation

An equation describing the change in one variable, here usually concentrations
over time as a function of this variable (and possibly others): d𝑓

d𝑥
= 𝑓(𝑥). Systems

of ODEs dx
d𝑡

= 𝑓(x) are often used for non-spatial modeling and simulation of
processes where concentrations are assumed to be high. These models are deter-
ministic. 4, 10, 12, 23, 26, 28, 49

partial differential equation

Differential equation involving a multivariate function and its partial derivatives.
While ODEs are used, for our purposes, to describe a quantity’s change over time,
PDEs can be used to specify spatio-temporal changes. They are then based on
functions of time and space, i. e. coordinates. 18, 74, 115

PDE

partial differential equation → vii

RDME

reaction-diffusion master equation → vii

reaction-diffusion master equation

Extension of the chemical master equation (CME) from a state space {𝑋𝑗} to
{𝑋𝑗,r} covering species quantities in lattice cells (subvolumes), with an additional
(diffusion coefficient 𝐷𝑗 and lattice size ℓ dependent) term for diffusion events
from one subvolume r to a neighboring one r′ (Gardiner et al. 1976; Nicolis and
Prigogine 1977). 19, 27, 34, 44, 45, 50, 57

SBML

Systems Biology Markup Language → viii

Separation of concerns

Specification of model and simulator independently, i. e. the modeler does not
need to know about the exact implementation of the simulation algorithm, as



Glossary / List of Terms and Acronyms vii

the model is specified in a defined modeling formalism. This also facilitates model
reuse and composition. Properties (numerical or qualitative) to be observed during
the simulation may also be separated from both model description and simulator
specification. In spatial cell biological simulation, separation of concerns can also
be applied to species, reactions and their parameters (which represent parts of the
modeled real system) and the spatial resolution like subvolume size or movement
steps (which are parameters of the simulator). 2, 22, 55, 73

Separation of scales

Method for analyzing complex systems by grouping processes by their relevant
time scales into fast, dynamic and slow, then assuming slow processes to be fixed
and studying the fast processes first in isolation and using their average behavior
when investigating their interactions with the other dynamic processes. (Bar-Yam
2011) 3

SSA

Stochastic Simulation algorithm → viii

Stochastic Simulation algorithm

“A General Method for Numerically Simulating the Stochastic Time Evolution of
Coupled Chemical Reactions” popularised by Gillespie (1976) in a paper of that
name, also used as umbrella term for different exact realizations of the CME (e. g.,
FRM, Direct method, NRM, but not 𝜏 -leaping). 4, 11, 19, 26, 44

Systems Biology Markup Language

Standardized exchange format for models in systems biology based on XML (Hucka
et al. 2003). SBML is supported by the vast majority of tools for simulating non-
spatial and compartmental models. It was not designed to be human-readable,
and support for spatial models beyond discrete compartments is limited (packages
extending the SBML 3 core exist in draft status as of summer 2016). 22
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1 Introduction

1.1 Why Model Cell Biological Systems?

Since the first quantitative description of a chemical reaction in the 19th century (Wil-
helmy 1850), tremendous progress has been made towards understanding the interplay
of chemical agents in biological cells. The life sciences, however, are still far from a
thorough explanation of mechanisms that have evolved over thousands, if not millions
of generations. Reasoning about cellular function bottom-up, i. e. from first principles,
is hampered by the huge number of involved actors (molecules) and the complexity of
their interaction network.
Prominent systematic investigations in the other direction, i. e. top-down, date back

more than a century, too, as exemplified by what is now known as Mendelian inheri-
tance laws (Mendel 1866), where the outward appearance of organisms (the phenotype)
was explained by information carrying agents (genes) whose exact nature and function
became clear only much later.
However, thorough investigations of biological organisms to this day are not possible

by observation alone. On the level of chemical reactions, even tracking the amount of
one chemical species in one cell can be a time- and/or money-consuming process that
delivers results with not always high accuracy, and this is before possible cell-to-cell
variations are taken into account. Therefore, models of the studied processes are needed
not only as abstract explanations of directly observed phenomena (as customary in the
scientific method), but already as means to simulate parts of the system whose direct
measurement is impractical or impossible (Kitano 2002).
The models of interest in cell biology are thus executable in nature (as opposed to

merely conceptual), meaning that given certain, possibly quantitative, inputs they should
make testable predictions about the future state of the modeled system. We are thus
talking about mathematical or computational models.1

With computational models, it is not uncommon to see the actual model, i. e. the con-
ceptual part regarding the rules of the interactions of model components, implemented
directly in a programming language, i. e. intertwined with the simulator. This may
1When considering a computer as a deterministic system executing a list of rules, mathematical models
can be considered to be a superset of computational models. However, the former is often used for
models that can best be described in the form of mathematical equations that may even have an
analytic solution, while the latter is used for models whose complexity and/or nonlinearity requires
investigation by simulation, i. e. execution of the model on a computer. Mathematical models in the
former sense, however, are often analyzed by, numerically integrated on and even formulated using
a computer.
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be unavoidable when the approach taken is sufficiently new or the model is large and
incorporates aspects not usually modeled with the same formalism (Karr et al. 2012;
Waltemath et al. 2016). However, when using established approaches, separation of con-
cerns, i. e. of model and simulation, facilitates not only understanding of the model by
outsiders, but also model reuse and composition.

1.2 Multi-Level, Multi-Scale and Multi-Resolution

Simulation

One of the most useful abstraction in describing complex systems is to split them into
parts that can be described rather independently of other parts and where the interac-
tions among parts then are described without direct consideration of their inner life. The
interactions among parts and the mechanisms inside parts are then considered different
organizational levels.
Multi-level modeling will thus reflect the structure of the knowledge in the domain.

This interpretation of the term is in line with its use in organizational research, social
sciences, and the statistics where multi-level refers to study interacting processes taking
place at different organizational levels of society (Tilly 1997), or to the modeling and
simulation of a society at individual and population level (Möhring 1996).
For biological examples, consider a mammalian organism. It can be roughly under-

stood as a composition of organs of different function without knowing the details of how
a liver or a brain works (cf. Figure 1.1, right). Similarly, once the function of a protein
(enzyme) is established with reasonable certainty, its exact molecular composition and
formation are not directly relevant for the overall role of the enzyme in a cellular en-
vironment (although knowing the amino acid composition of two enzymes may explain
why they can or cannot interact; Figure 1.1, left).
In this view, a complex system is decomposed into a graph structure similar to a

tree. However, there may be actors relevant to several components on the level above,
for example enzymes having a role in different pathways (which are abstract groups of
enzymes and reactions relevant for a certain cellular function), a notion also termed
crosstalk. When reasoning from dynamics at one level to the level above or below, the
metaphors of upward and downward causation are commonly used (Noble 2012).
It is often the case that components at different levels differ in size. The time frame of

interest for their interactions is also smaller on the lower organizational levels. Multi-scale

modeling or simulation refers to a scale in, e. g., size, numbers, time, or space and requires
to take widely spread areas of this scale in the phenomena being studied into account, for
example both small inorganic molecules and large protein complexes, processes working
on nanoseconds and hours, or some molecules available in vast abundance whereas others
are rare. Since these scales are a straight-forward way to categorize similar or related
system components, the term multi-scale is often encountered without explicit reference
to organizational levels, even when different scales could be interpreted such. Specifically,
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Figure 1.1. Structures relevant in biology, their spatial extension and the time scales
at which they are often considered, exemplifying the use in the terms level and scale in
systems biology.

separation of scales means taking an implicit multi-level view of a system where parts
that are interesting at a small time scale are first studied in isolation and their average
behavior stands in for them when processes at large time scales are studied.
The term multi-resolution, finally, may be found associated with simulation algorithms

that combine several approaches, which may encompass multi-level or multi-scale models
(Takahashi et al. 2004) or may not, e. g., when entities at the same level are simulated
with different levels of granularity (Jeschke and Uhrmacher 2008). ML-Space, the ap-
proach laid out in this thesis, targets all aspects: multi-resolution or single-algorithm
simulation of single or multi-level models.
Note that models with multi-level aspects may still be “flattened” and simulated in

classic, single-level approaches, for example when reactions in the cytosol and those in
the nucleus are expressed in the same set of differential equations, distinguished only by
variable names (e. g., Lai et al. 2009).

1.3 Models, Formalisms and Languages

Each model about a real system must be encoded in some formal framework to allow
predictive, repeatable experiments on the model. This may simply be done by finding
appropriate data structures to represent model entities and implementing their interac-
tions on a computer. Then, the programming language used could be considered the
formal framework. However, this means mixing implementation detail (what can be
represented on a computer and how the data structures can be manipulated) with the
model detail, which can be especially inconvenient when scientists from different fields
come together, i. e. when the modeler or the domain experts and target audience for the
model’s predictions have no computer science background.
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Thus, a suitable layer of abstraction has to be found. A modeling formalism must
therefore provide two things: a model specification format and an execution algo-
rithm (Sarjoughian and Zeigler 2000). In the words of Sarjoughian (2006), “[t]he former
is a mathematical theory describing the kinds of structure and behavior that can be de-
scribed with it. The latter specifies an algorithm that can correctly execute any model
that is described in accordance with the model specification.”
Ordinary differential equations (ODEs) can be considered such a formalism: They

are expressed in, essentially, the language of mathematics and describe changes in one
variable in relation to other variables, and executing them simply means solving them
mathematically. When nonlinearity forbids analytical solutions, different algorithms for
deriving numerical approximations are available. Differential equations, however, are
not a particularly intuitive way of describing systems of interacting entities. Rule-based
modeling languages (Hlavacek et al. 2006; Chylek et al. 2015), an approach that gained
popularity for being able to deal with multi-state entities like proteins with different
modification sites, are a convenient alternative. Here, entire models can be expressed
basically by transformation rules giving substrates (input), products (output) and a rate.
These models can be translated to differential equations for deterministic execution (with
some limitations regarding combinatorial complexity) or be executed stochastically with
continuous-time Markov chain (CTMC) semantics.

1.4 Determinism, Stochasticity and Space

Simulations of deterministic models will always predict the same system trajectory for
the same set of model inputs (parameters, initial state).2 This also makes them relatively
easy to fit to a limited amount of data. They are most popular in the form of ODEs,
where systems are assumed to be continuous.
This assumption is not always reasonable, for example when copy numbers (naturally

discrete values) of some molecules are low, or (not mutually exclusive) when bi- or multi-
stability of a system is not adequately captured or when inherent noise in the system
can induce different outcomes, e. g., cell fates (Pahle 2009).
Stochastic models are most commonly based on the assumption of chemical systems

as memoryless processes: reactions happen in random time intervals with the time to
each next reaction independent of the time since the last reaction, only dependent on
the current system state (McQuarrie 1967). This CTMC interpretation gives rise to a
probabilistic description of the system evolution via the chemical master equation (CME)
and simulation via variants of the Stochastic Simulation algorithm (SSA) (Bortz, Kalos,
and Lebowitz 1975; Gillespie 1976; Gillespie 1977). (For an overview of hybrid methods
combining stochastic and deterministic approaches, see Pahle (2009), Table 1. Note that
we will subsequently use the term hybrid differently, i. e. to refer to our combination of
two stochastic spatial approaches.)

2except when the limitations of the numerical integration are reached, e. g., for stiff systems
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Common to these approaches as described so far is the assumption of a well-mixed
system. However, some molecules may localize to certain regions, e. g., near the cell
wall or near the nucleus, and thus be less likely to encounter certain others, or be
located in different compartments entirely. (The latter case may be covered by coarse-
grained compartmentalization already indicated at the end of section 1.2; cf. Kholodenko,
Hancock, and Kolch 2010.) Spatial dynamics are relevant, for example, in processes
where an extracellular signal is sensed at the cell’s boundary and triggers a cascade of
reactions eventually resulting in transcription of some DNA segments to produce certain
proteins as a response to the signal. It should also be noted that the cell is a crowded
environment including large entities that do not move easily towards a well-mixed state.
Spatial dynamics can be covered with deterministic or stochastic approaches. In the

former case, they are expressed via gradients of concentrations and described via partial
differential equations. A somewhat analogous approach for stochastic models is to split
the region of interest into virtual subunits, each presumed well-mixed, with appropriate
interchange of components between them. Alternatively, one may consider molecules
individually, with a position in continuous-space for each. Their movements and interac-
tions can then again be simulated deterministically (via the physical forces the molecules
exert on each other; Molecular dynamics) or stochastically (starting from random move-
ment of large molecules in a solvent of smaller molecules; Brownian motion). As spatial
simulation is an integral part of this thesis, these methods are compared in more detail
in the next chapter.

1.5 Contributions of ML-Space

For this dissertation (and a few publications that preceded it, cf. section 1.7), I developed
a modeling language for spatial and multi-level phenomena. Key part of a model descrip-
tion are entities of different types and attribute configurations, and their interactions as
expressed by reaction rules. The language is based on ML-Rules (Maus, Rybacki, and
Uhrmacher 2011; Maus 2013), but due to its spatial aspects has significantly different
execution semantics.
For this part, the language was aimed not only to abstract from the implementation

of its simulator, but from the actual simulation algorithm used therein. This allows us
to provide different types of simulators, specifically one based on stochastic reaction-
diffusion simulation of dimensionless entities ( which alone is not applicable to models
with dynamics on multiple levels, however; Stundzia and Lumsden 1996; Elf and Ehren-
berg 2004) as well as one based on particle-tracking, Brownian motion approximating
simulation. The key aspect of the ML-Space simulator is then the developed hybrid ap-
proach, a combination of these two with adaptations for the models’ potential multi-level
structure.
The implementation is aimed to allow for relatively easy combination with other spatial

simulation strategies, e. g., deterministic concentration changes over space and time (via
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partial differential equations or a suitable approximation; Kossow et al. 2015), but this
was not yet the focus of this work.
ML-Space has successfully been applied to two different biological problems, firstly

patterns in the growth of actin filaments and secondly mitochondrial interactions. For
these two cases (unlike the more abstract test problems also introduced later), the focus of
ML-Space had to be shifted a bit to binding operations between entities, which now offer
a possible extension point for eventually describing molecule formation and Molecular
Dynamics models in ML-Space as well.

Availability

ML-Space’ source code is available at bitbucket.org/jamesii as part of James II under
the latter’s open source license (BSD/GPL dual license). A simple, stand-alone version,
i. e. a zip file containing a runnable jar, a short pdf guide and examples, is avail-
able as supplementary material of Bittig and Uhrmacher (2016) or at dropbox.com/s/
wauhdyy345on272/MLSpace-Sandbox-201608.zip.

1.6 Structure of the Thesis

In the next chapter, the foundations for ML-Space will be briefly summarized, first the
approaches usually applied for simulation cell biological system, with a focus on spatial
methods, then the modeling approaches useful for specifying cell biological models, with
a focus on rule-based languages.
ML-Space’ contribution to these two aspects, modeling and simulation, will be investi-

gated in the two chapters that follow. Chapter three introduces the developed rule-based
modeling language for spatial simulation and the semantics as far as rule evaluation is
concerned, i. e. the non-spatial aspects. The fourth chapter is devoted to the spatial
semantics and the hybrid simulation algorithm developed. It also briefly covers the the
software architecture of the implementation and how it is reconciled with the modular,
plug-in based framework James II upon which it is based.
Applications of ML-Space, both the modeling language as well as various aspects of

the simulator, are presented in chapter 5. The thesis concludes with a summary and
discussion of what ML-Space is and what it is not.

1.7 Previous Publications on ML-Space

An overview of modeling approaches that involved or could potentially be adapted for
spatial aspects was presented at the Winter Simulation Conference 2010. It forms the
basis for two sections in the (following) background chapter: Modeling Formalisms and
Languages (2.4), which, however, is more focused on rule-based languages in particular,
and Simulation: Adding Space (2.3).

https://bitbucket.org/jamesii/
https://www.dropbox.com/s/wauhdyy345on272/MLSpace-Sandbox-201608.zip?dl=0
https://www.dropbox.com/s/wauhdyy345on272/MLSpace-Sandbox-201608.zip?dl=0
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2 Background

2.1 Basics: Reaction Networks

In this chapter, I will briefly revisit the methodological foundations for simulating models
of biological systems, and approaches for describing such models.
The dynamics of the modeled systems are, for our purposes, abstracted to reaction

networks, i. e. sets of chemical reactions, each consisting of reactants and products where
the set of all reactants usually intersects the set of all products.
Formally, we have a set of species 𝑆 = {𝑆1, ..., 𝑆𝑛} in a system volume 𝑉 , a state

vector x(𝑡) = (𝑥1(𝑡), ..., 𝑥𝑛(𝑡))
𝑇 containing the quantity of each species over time, and a

set of reactions 𝑅 = {𝑅1, ..., 𝑅𝑚}. Each reaction is a description of conversion of some
species into others given by stoichiometric coefficients 𝑦 with a certain rate depending
on a constant 𝑘𝑖:

𝑅𝑖 :
𝑛∑︁

𝑗=1

𝑦𝑟𝑖𝑗𝑆𝑗
𝑘𝑖−→

𝑛∑︁
𝑗=1

𝑦𝑝𝑖𝑗𝑆𝑗. (2.1)

Simulating the reaction network then means to deduce the time evolution of x(𝑡) given
𝑆, 𝑉 , 𝑅 and an initial state x(0).
As a simple reaction network example, consider an enzyme 𝐸 catalyzing the conver-

sion of a substrate S into a product P where the enzyme-substrate complex can also
decompose back into enzyme and unconverted substrate.

𝑅1 : 𝐸 + 𝑆
𝑘1−→ 𝐸𝑆

𝑅2 : 𝐸𝑆
𝑘2−→ 𝐸 + 𝑆

𝑅3 : 𝐸𝑆
𝑘3−→ 𝐸 + 𝑃

(2.2)

Regarding the species set {𝐸, 𝑆,𝐸𝑆, 𝑃}, the first reaction here decreases the quantity
of 𝐸 and 𝑆 and increases the quantity of 𝐸𝑆. Then, assuming the state vector refers
to the species’ quantities in the given order, yr

1 = (1, 1, 0, 0) and yp
1 = (0, 0, 1, 0), giving

an overall stoichiometry of y1 = (−1,−1, 1, 0) – the (consumed) reactants are included
with a negative sign. The stoichiometric matrix N is the 𝑛 × 𝑚 matrix composed of
these y𝑖 as columns.
Note that the overall stoichiometry does not give full information about the reaction

when a reactant is also a product, i. e. unchanged. Examples would be translation of
of mRNA to a protein, after which the mRNA is usually still available (𝑅 : 𝑚𝑅𝑁𝐴 →
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𝑚𝑅𝑁𝐴+ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛), or the presence of a mediating actor (like the enzyme in the overall
reaction of the above network, 𝐸 + 𝑆 → 𝐸 + 𝑃 ).

Note also that one side of a reaction may be empty, i. e. either yp = 0 or yr = 0,
when one does not wish to include a reactant that is assumed to be constant or a product
that is irrelevant. An example of the former would be translation of a gene to mRNA
(intuitively, 𝑅 : 𝑔𝑒𝑛𝑒 → 𝑔𝑒𝑛𝑒 + 𝑚𝑅𝑁𝐴): the number of genes encoding each mRNA
sequence is usually constant, thus one may simply write 𝑅 : ∅ → 𝑚𝑅𝑁𝐴 (with a
different interpretation of the associated rate constant).

While reaction networks often describe dynamics at the level of molecules, they are also
applicable at different scales (and levels), for example for population dynamics covering
birth and death rates of biological species in response to external conditions, e. g., food
availability, or when one species preys on another.

2.2 Simulation: Stochastic or Deterministic

2.2.1 Deterministic Simulation

An ordinary differential equation (ODE) describes the change of a variable over time
in relation to this and possibly other variables. Assuming the reacting species are dis-
tributed homogeneously in space, reaction networks can be directly translated to systems
of ODEs by interpreting the state vector in terms of species concentrations and the re-
action rate constants as constant factors for the rate of change. The enzyme catalysis
network of Equation 2.2 would be expressed (with square brackets denote the (time-
dependent) concentrations of the respective species, i. e. x(𝑡) = ([𝐸], [𝑆], [𝐸𝑆], [𝑃 ]))

d[𝐸]
d𝑡

= − 𝑘1[𝐸][𝑆] + 𝑘2[𝐸𝑆] +𝑘3[𝐸𝑆]
d[𝑆]
d𝑡

= − 𝑘1[𝐸][𝑆] + 𝑘2[𝐸𝑆]
d[𝐸𝑆]
d𝑡

= 𝑘1[𝐸][𝑆]− 𝑘2[𝐸𝑆] −𝑘3[𝐸𝑆]
d[𝑃 ]
d𝑡

= 𝑘3[𝐸𝑆],

(2.3)

or, more generally, dx
d𝑡

= N · v(𝑡), where N is again the stoichiometric matrix and
v = (𝑣1, ..., 𝑣𝑚)

𝑇 is a column vector of reaction rates 𝑣𝑖, which are a function of the
kinetic rates and substrate concentrations for the respective reactions (more complex
kinetics than the above mass action kinetics are discussed in section 2.3.6).

Solving a set of ordinary differential equations (usually numerically, i. e. by approxi-
mating computations, as analytic, let alone closed form solutions are usually unavailable)
gives one time course for the variables per vector of initial conditions, in terms of real-
valued concentrations.
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Figure 2.1. Deterministic and stochastic simulation of a Lotka-Volterra- (predator-
prey)-system. The deterministic system produces stable oscillations of population sizes,
the corresponding stochastic simulations result in somewhat oscillatory behavior until
one species eventually dies out (i. e. its population size reaches 0).

2.2.2 Stochastic Simulation

Stochastic methods capture the effects of random fluctuations. A straightforward way
to achieve this is adding a noise term, i. e. a continuous random variable 𝜉, usually
normally distributed, to the right side of a differential equation. Numerically solving
these stochastic differential equations then leads to different solutions, called realizations,
per attempt (i. e. simulation run). The mean of many runs converges to the deterministic
solution ideally, i. e. when the variance of the random noise is sufficiently small.

In the kind of stochastic approach more relevant to the present work, however, species’
quantities are represented by particle amounts (copy numbers), i. e. integer numbers, and
not approximated by concentrations. This is particularly relevant when copy numbers
are low (cf. Figure 2.1).

Current popular stochastic simulation methods are based on what is now known simply
as the Stochastic Simulation algorithm (SSA) or Gillespie’s method after the author who
popularized them (Gillespie 1976). It is similar to an earlier method by Bortz, Kalos,
and Lebowitz (1975) for an application outside cell biology (which may be better known
in the physics community, where it is also referred to as Kinetic Monte Carlo (KMC) or
BKL after the authors, who called their method "the n-fold way"), although its roots
go back even further (Kolmogoroff 1931; Feller 1940; Doob 1945; Kendall 1950).

In these approaches, the system is essentially a continuous-time Markov chain (CTMC),
changing its state in jumps with exponentially distributed time between them. From the
probability 𝑎𝑖(x)∆𝑡 of reaction 𝑖 happening in a small time interval [𝑡, 𝑡 + ∆𝑡] given a
current state x(𝑡), one can derive the probability function for the system to be in a state
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x at time 𝑡+∆𝑡 as

𝑃 (x, 𝑡+∆𝑡) = 𝑃 (x, 𝑡)
[︀
1−

𝑚∑︁
𝑖=1

𝑎𝑖(x)∆𝑡
]︀
+

𝑚∑︁
𝑖=1

𝑃 (x− y𝑖, 𝑡)𝑎𝑖(x− y𝑖)∆𝑡, (2.4)

where the first summand on the right hand side corresponds to the probability that the
system was in the same state before and did not change, while the following sum covers
the cases where a reaction fired and the system was previously in the state that differed
from the current one by the relevant stoichiometry vector y𝑖. The reaction propensities

𝑎𝑖 = ℎ𝑖𝑘𝑖 are the product of the number of distinct molecular reactant combinations for
reaction 𝑅𝑖 in the system at the current time, ℎ𝑖 (dependent on the current state x;
omitted for shorter notation), and the reaction rate (or reaction parameter) 𝑘𝑖 related to
the probability 𝑘𝑖∆𝑡 that a single particular reactant combination will react in the next
time interval ∆𝑡.

Taking the limit ∆𝑡 → 0 in Equation 2.4 and mathematical transformations eventually
yield the chemical master equation (CME), which gives the state probability density over
time:

𝜕𝑃 (x, 𝑡)

𝜕𝑡
=

𝑚∑︁
𝑖=1

𝑃 (x− y𝑖, 𝑡)𝑎𝑖(x− y𝑖)− 𝑃 (x, 𝑡)
𝑚∑︁
𝑖=1

𝑎𝑖(x) (2.5)

While there is no established format for describing stochastically modeled systems math-
ematically like ODEs for deterministic models, some form of rule representation like in
Equation 2.2 is common. Note that while it is fairly straight-forward to derive ODE
systems from such rules (e. g., Equation 2.3), the reverse is not true. Consider the ODEs
behind Figure 2.1 (left):

d𝑃𝑟𝑒𝑦
d𝑡

= 𝛼 · 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 − 𝛽 · 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 · 𝑃𝑟𝑒𝑦 𝛼 = 1 𝛽 = 0.05
d𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟

d𝑡
= − 𝛾 · 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 + 𝛿 · 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 · 𝑃𝑟𝑒𝑦 𝛾 = 0.5 𝛿 = 0.02

(2.6)

Here, the interaction of predator and prey has effects of different magnitude on each
population (𝛽 ̸= 𝛿). Intuitively, predator reproduction depends on prey availability, but
not every time a predator consumes a prey a new predator is created, so this interaction
must be covered by multiple rules (assuming 𝛽 > 𝛿):

𝑅1 : 𝑃𝑟𝑒𝑦
𝛼−−→ 𝑃𝑟𝑒𝑦 + 𝑃𝑟𝑒𝑦

𝑅2𝑎 : 𝑃𝑟𝑒𝑦 + 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟
𝛿−−→ 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 + 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟

𝑅2𝑏 : 𝑃𝑟𝑒𝑦 + 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟
𝛽−𝛿−−→ 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟

𝑅3 : 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟
𝛾−−→ ∅.

(2.7)

In the following subsections, we will have a brief look at the most relevant SSA ap-
proaches. Overviews or comparisons of several related methods can be found in (Cao,
Li, and Petzold 2004; Pahle 2009). In each case, a basic simulation step consists of
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generating a random duration 𝜏 after which the next event will occur and an index
𝑖 ∈ {1..𝑚}, then advancing the simulation time 𝑡 by this sojourn time 𝜏 and executing
reaction 𝑅𝑖 by changing the state vector by the respective stoichiometry vector. This
step is repeated until a desired stop condition, often 𝑡 > 𝑡𝑠𝑡𝑜𝑝 for some user-defined 𝑡𝑠𝑡𝑜𝑝,
is fulfilled. The methods differ in how the (𝜏, 𝑖) pairs are derived. .

Direct Method

In the Direct method (Gillespie 1976), the sum of propensities

𝑎0 =
𝑚∑︁

𝛼=1

𝑎𝛼 (2.8)

is used to calculate the time step

𝜏 = − 1

𝑎0
ln 𝑟1, (2.9)

where 𝑟1 is a random number from the uniform distribution on (0, 1] (and hence − ln 𝑟1
is a random number from the exponential distribution with parameter 1, and getting
random numbers from an exponential distribution with (rate) parameter 𝜆 (its inverse
mean) only requires division by this 𝜆).
The reaction is determined by roulette-wheel selection, i.e. finding 𝑖 such that

𝑖−1∑︁
𝛼=1

𝑎𝛼
𝑎0

≤ 𝑟2 ≤
𝑖∑︁

𝛼=1

𝑎𝛼
𝑎0

(2.10)

for another uniformly generated random number 𝑟2 ∈ (0, 1] (or, equivalently, finding the
smallest 𝑖 that fulfills the right part of the inequality).

First Reaction Method

In the First Reaction method (FRM) (Gillespie 1976), next reaction times 𝜏𝛼 = − 1
𝑎𝛼

ln 𝑟𝛼
are calculated for each reaction independently, requiring generation of𝑚 (pseudo-)random
numbers. Then the time 𝜏 and index 𝑖 of the next executed reaction are

𝜏 = min
𝛼∈1..𝑚

𝜏𝛼

𝑖 = argmin
𝛼∈1..𝑚

𝜏𝛼 (i. e. 𝛼 for which 𝜏𝛼 = 𝜏).

The result is equivalent to that of the Direct method since for exponentially distributed
variables 𝑋1 ∼ 𝐸𝑥𝑝(𝜆1) and 𝑋2 ∼ 𝐸𝑥𝑝(𝜆2), min(𝑋1, 𝑋2) ∼ 𝐸𝑥𝑝(𝜆1 + 𝜆2) and hence

𝐸𝑥𝑝(𝑎0) ∼ min
𝛼∈1..𝑚

{𝐸𝑥𝑝(𝑎𝛼)}.
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Compared to the Direct method, more random numbers are generated. The method
can be advantageous, however, when reaction frequencies differ by orders of magnitudes.
Then, the discrete resolution of floating point numbers in computers may lead to round-
ing when calculating

∑︀
𝑎𝛼
𝑎0

and erroneous omissions of slow reactions with a higher index
than fast reactions.

Next Reaction Method

In Gillespie’s Direct and First Reaction method, each step’s time complexity is in the
order of number of reactions (all 𝑎𝑖 have to be calculated each time).
In Next Reaction method (NRM) by Gibson and Bruck (2000), the First Reaction

method is optimized by storing the initially calculated 𝑎𝛼 and recalculating, in each
step, only those affected by the last step’s reaction. For this, it uses a dependency graph
of which reaction’s stoichiometry vector affects which reaction’s reactants.
To find the next reaction, it uses an indexed priority queue data structure (subse-

quently also: event queue) that allows retrieval of the minimum element in 𝑂(ln𝑚)

instead of 𝑂(𝑚) in a simple loop (where 𝑚 is the number of entries, i. e. of reactions
here).
Further optimizations include re-use of random numbers by re-scaling 𝜏𝛼 of affected

reactions such that 𝜏𝛼,𝑛𝑒𝑤 =
𝑎𝛼,𝑜𝑙𝑑

𝑎𝛼,𝑛𝑒𝑤
(𝜏𝛼,𝑜𝑙𝑑−𝑡)+𝑡 (except for the reaction actually executed

last), where the 𝜏 ’s use an absolute time base, i. e. are relative to the beginning of
the simulation. Then, only one (pseudo-)random number 𝑟 is needed in each step, for
recalculating the next firing time of the last executed reaction: 𝜏𝑖 = − 1

𝑎𝑖
ln 𝑟 + 𝑡.

Approximate Solutions: Tau-Leaping

A high copy number of certain species and a high reaction rate constant may lead to
one reaction being executed many times in a row before any other reaction happens. It
may then be tempting to calculate the number of times this reaction happens, or in fact
any group of non-dependent reactions (in the sense of the NRMs dependency graph).
However, each single state change may affect rates of other reactions. The basic idea
behind approximate methods (as opposed to the above, which are exact realizations of
the CME) is to determine when the state changes due to multiple reactions executed
in one step result in only infinitesimal changes in the reaction propensities 𝑎𝑖 such that
these changes can be ignored. This is usually called the leap condition, and the 𝜏 -
leaping method (Gillespie 2001) is concerned with finding the largest time interval 𝜏 at
each step for which this condition is fulfilled given a parameter 𝜖 that quantifies when a
propensity change should be considered “effectively infinitesimal”. When 𝜆 is the state
change resulting from the reactions in interval 𝜏 (not to be confused with the – here
irrelevant – exponential distribution parameter usually denoted 𝜆) and 𝑎0 is the sum of
reaction parameters 𝑎𝑖 again (Equation 2.8), the parameter 𝜖’s influence is described by

|𝑎𝑖(x+ 𝜆)− 𝑎𝑖(x)| ≤ 𝜖𝑎𝑜(x) for each 𝑖 ∈ 1...𝑚.
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Other approximate variants include 𝑘𝛼-leaping (Gillespie 2001), which, instead of a
time step 𝜏 , determines the maximum number of times each reaction can fire before
the leap condition is violated, implicit 𝜏 -leaping targeting stiff systems (Rathinam et al.
2003), the slow-scale SSA (Cao, Gillespie, and Petzold 2005), R-leaping (Auger, Chate-
lain, and Koumoutsakos 2006) and L-leap (Peng and Wang 2007). All these approximate
methods have at least one parameter determining the granularity of the approximation,
where the aformentioned exact methods are parameter-free.

Further Optimizations

Many implementations of the SSA with optimizations for the general or for special cases
exist. In the Optimized Direct method (ODM; Cao, Li, and Petzold 2004), for exam-
ple, a reaction-dependency graph is used, too, and the model is pre-simulated to find
frequent reactions. This information is then used to order the reaction such that the
computational costs of recalculating the propensity sum can be reduced, especially in
multi-scale systems (i.e. with widely differing reaction rates). The Sorting Direct method
(McCollum et al. 2006) follows a similar idea but eliminates the pre-simulation required
by the ODM by sorting on-the-fly. The Logarithmic Direct method (Li and Petzold
2006) employs binary search on the list of reactions such that the complexity of finding
the next reaction is logarithmic in the number of reactions – 𝑂(ln𝑚) – independent of
any sorting. As a final example, the Partial-propensity Direct method (Ramaswamy,
González-Segredo, and Sbalzarini 2009; Ramaswamy and Sbalzarini 2010) is an opti-
mization whose computational costs scale with the number of species, not the number
of reactions, and thus is appropriate for large-scale networks with relatively few species.

2.3 Simulation: Adding Space

The aforementioned methods are all based on the assumption that the system is well-
mixed, i. e. that for each molecule the probability of encountering a reaction partner is
the same as for all other molecules of the same species. When this is not a reasonable
assumption, space must be incorporated into the model. Different approaches of varying
complexity, both in terms of modeling and computational execution, exist, which are now
briefly introduced (mostly taken from our previous work Bittig and Uhrmacher (2010),
incl. Figure 2.2).

2.3.1 Compartments

If one species has different reaction partners in different compartments of a cell, it is
necessary to know its quantity in each compartment for proper representation of its
reaction dynamics. One can then use a non-spatial modeling approach for the dynamics
inside each compartment and add additional terms for the transfer of species between
them.
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(a) compartments (b) discrete – lattice (grid)

(d) continuous – gradients (e) continuous – particles

(c) discrete – subvolumes

(f) continuous – particles

Figure 2.2. Different ways of representing space in a model or a simulation. (a)
molecules/species can be in different compartments and interactions happen only within
one compartment, apart from transport between compartments that has to be modeled
explicitly; (b/c) space is divided into equal blocks of a defined neighborhood relation,
usually a lattice of cubes, either (b) small cubes occupied by no more than one parti-
cle or (c) subvolumes taking several (up to arbitrary many); (d) model describes not
particles, but concentrations and their gradients across space via appropriate boundary
conditions; (e/f) particles are associated with position and motion in space, collisions
between particles trigger reactions. Individiual-based, continuous-space motion may be
modeled following the physical interaction between moving bodies (Molecular Dynamics)
or by a fine sampling of random trajectories exhibited by larger particles colliding with
surrounding solvent molecules (Brownian Dynamics) (e). In non-crowded environments,
position changes can be sampled more coarsely such that particles cannot, in each time
step, move beyond a sphere of influence chosen such that each particle can interact with
at most one other, lowering computational costs (GFRD) (f).
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This most basic, qualitative approach to incorporating (discrete) spatial features does
not need to represent actual molecule positions. Compartments may be nested, i. e. each
compartment may contain one or more sub-compartments, as depicted in Figure 2.2 a.
However, the simple distinction of, for example, nucleus and cytosol would also qualify
here. Typically, the compartmental approach of representing space is used at the level
of pathways and interaction networks up to cells and tissues. They are less common for
molecules and protein complexes, although examples do exist (Maus 2008).

2.3.2 Continuous Space: Particles

For most realistic modeling of molecular motions in space, each particle is represented
individually using rules arising from fundamental physics with coordinates and a trajec-
tory in a continuous space. A many-body problem with only computationally expensive
solutions or approximations arises. The most fundamental approach, molecular dynam-
ics (MD; Adcock and McCammon 2006, Figure 2.2 e), tackles this by numerically solving
Newton’s laws, which is feasible only for very small scales both in time and space, as com-
putation effort required is proportional to the number of possible particle interactions.
Dissipative particle dynamics (DPD) is a coarse-grained approximation of MD (Heyes
et al. 2004), but does not permit biochemical interactions and is thus not suitable for
simulation of biochemical systems.

A non-deterministic approach, i. e. one representing random noise in particle move-
ments, is that of Brownian dynamics, relying on the Langevin equation (Ermak and
McCammon 1978; Northrup, Allison, and McCammon 1984). Like in molecular dynam-
ics, a continuous differential equation system has to be solved numerically, and it is also
computationally expensive, especially the more crowded the environment is.

Brownian motion of particles moved by collisions with (much smaller molecules of)
a solvent can be approximated by displacing particles in time steps ∆𝑡 by

√
2𝐷∆𝑡𝜉,

where 𝜉 is a vector of normally distributed random numbers with mean 0 and variance 1
(also called Smoluchowski dynamics; Andrews and Bray 2004). The diffusion constant is
derived from the Einstein relation 𝐷 = 𝑘𝐵𝑇/𝛾, where 𝑇 is the absolute temperature, 𝑘𝐵
the Boltzmann constant and 𝛾 is a (species-dependent) friction coefficient, alternatively
given as mobility 𝜇 = 1

𝛾
.

Assuming that, when choosing time steps of sufficiently small size, no more than two
molecules react at the same time, the many-body problem can be reduced to two-body
problems, for which an analytical solution exists. Green’s function reaction dynamics

(GFRD; van Zon and ten Wolde 2005b, Figure 2.2 f) thus approximates the solution of
Brownian dynamics, turning it into a discrete event type problem. These computations
are faster especially when distances between molecules are not too small (allowing larger
time steps).
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2.3.3 Continuous Space: Gradients

Whereas ordinary differential equations describe time-dependency of one variable (here
usually species concentration) on other variables of the same type, partial differential
equations (PDEs) allow description of dependency on more than one variable, e. g., spa-
tial position besides time. However, individual particles are not represented here, only
concentration gradients across space. This has been applied to microbiological phenom-
ena like the behavior of receptors on a membrane (Haugh 2002), but also to whole cells
(Kholodenko 2006). Numerical integration of the PDEs will focus on approximating the
solution for a discrete number of points in the usually continuous domain. This is known
as mesh generation – the finer the mesh (Slepchenko et al. 2003), the more accurate the
approximation, but the higher the computational costs. From the modelers point of
view, this approach thus offers a continuous representation of space (as depicted in Fig-
ure 2.2 d), but the simulation traditionally treats space as an irregular grid generated on
the fly (the mesh; cf. Takahashi, Arjunan, and Tomita 2005, fig. 1 e).
PDE-based simulations are deterministic and thus do not cover stochastic effects from

random noise. Noise terms could be added, yielding stochastic partial differential equa-
tions (SPDEs), whose applications so far, however, seem to lie outside the realm of
biological simulation.

2.3.4 Discrete Space: Single-occupancy Lattice

Whereas the previous approaches represent spatial aspects by real-valued coordinates,
space can also be discretized by splitting it into regions considered separately, i. e. pro-
jecting a lattice onto it with certain assumptions about each lattice element. Cellular

automata (Gardner 1970) are the most prominent representative of this group. The lat-
tice here consists of appropriately small uniform blocks, each of which may be occupied
by one or no model entity (Figure 2.2 b). These entities may be proteins (Kier et al. 1996)
for intra-cellular processes, cells in a tissue or organ (Moreira and Deutsch 2002; Deutsch
and Dormann 2004) up to individual organisms in population dynamics (Dewdney 1984).
Cellular automata of the Lattice Gas CA variety usually employed in such simulation

takes place in (usually equidistant) discrete time steps. Movement of particles is realized
as propagation to a nearby block in the lattice (the original definition is about living
and dying at each grid cell in response to the neighbors’ state, not movement). Thus
one block’s state depends only on the previous state of its neighbors and itself. When
two particles are to move into the same block, special treatment of a collision or reaction
type event is triggered.
These approaches have the potential to drastically reduce computational complexity

compared to continuous-space individual-based simulation, but require the block size
to reflect average entity distance and average entity diameter. It moves small fractions
of space itself into the focus of interest, i. e. their occupancy or non-occupancy by a
key player of cellular dynamics. This micro-scale approach thus does not cope well
with differences in molecule numbers and sizes (i. e., multiple scales), although it can be
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extended or incorporated into methods that do so, for example by adding smaller entities
of which many can be located in one grid cell (Dynamic CA; Wishart et al. 2005) or
larger entities occupying multiple grid cells and potentially encompassing grid-cell-sized
molecules (Haack et al. 2013), or by allowing first-order reaction events at random times
according to the SSA/Gillespie’s algorithm (Spatiocyte; Arjunan and Tomita 2010).

A further extension, the cellular Potts model, considers (biological) cells or tissue com-
ponents that occupy multiple neighboring lattice sites and may grow into free adjacent
sites or push other cells/tissue out of them (Alber et al. 2002).

2.3.5 Discrete Space: Subvolumes (Spatial Gillespie, RDME)

The aforementioned problem of coping with varying numbers can be overcome by using a
more coarse-grained lattice and allowing several molecules in each lattice element, i. e. in
a subvolume (Figure 2.2 c). Differing spatial dimensions of species are still not covered,
as molecules are considered to be dimensionless entities.

This can be implemented by appropriate adaptations of cellular automata (Shimizu,
Aksenov, and Bray 2003), or by extending the SSA spatially, considering the molecules
to be distributed uniformly in each lattice cell and letting them react according to Gille-
spie’s algorithm, but also diffuse into neighboring subvolumes with diffusion event times
exponentially distributed like the reaction events. The behavior of such simulations, also
known as Spatial Gillespie, are thus governed by the reaction-diffusion master equation
(RDME) (Stundzia and Lumsden 1996), an extension of the CME (Equation 2.5) to a
state set X = {𝑋𝑗, r} that contains species (indexed by 𝑗) in subvolumes (indexed by
r) (Gardiner et al. 1976; Nicolis and Prigogine 1977; Baras and Malek Mansour 1996),
although special attention must be paid in the limit of small subvolumes for the method
to exhibit consistent microscopic behavior (Fange et al. 2010). A popular example of an
RDME approach is the Next Subvolume method (Elf, Doncic, and Ehrenberg 2003; Elf
and Ehrenberg 2004).

These major approaches to spatial simulation offer varying granularity in the approx-
imation of the physical processes. From the computationally very expensive molecular
dynamics to the rather elementary discrete grid of cellular automata that allows much
faster simulation, the main trade-off is between accuracy and calculation time, making
each approach more or less fitting for different types of phenomena. The PDE approach
sticks out as it does not cover individual particles but rather distribution gradients, the
purely compartmental approach deviates from the others in that it does not describe
motion in the continuous space or a discretization thereof, but only movements between
a finite number of compartments. The applicability of approaches depending on model
properties is illustrated in Figure 2.3.
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Figure 2.3. Applicability of modeling and simulation approaches in relation to system
properties.

2.3.6 Reaction Rates in Well-mixed Systems and in Space

Reaction Kinetics

The speed of a chemical reaction in a well-mixed environment is proportional to the
amount of each available reactant (Wilhelmy 1850). The proportionality constant is
usually called rate constant, as the reaction rate is then simply the product of this
constant and the concentration of each reactant raised to their stoichiometric coefficient’s
power if several of the same reactant are needed (e. g., for a reaction 𝐴 + 2𝐵 → ...

and rate constant 𝑘, the actual rate would be 𝑘[𝐴][𝐵]2).1 For this product to be a
dimensionless number, the units of the rate constants differ between reactions of different
order, i. e. different number of required reactants.
These simple reaction kinetics, known as mass action, can also be applied to intra-

cellular reactions (and form the basis of the examples given previously in section 2.2;
compare, for example, the ODE terms in Equation 2.3). However, abstractions and hid-
den assumptions in cell biology may require more complex descriptions. For example,
consider a protein-catalyzed reaction where the enzyme binds reversibly to the substrate,

𝐸+𝑆
𝑘1


𝑘2

𝐸𝑆
𝑘3−→ 𝐸+𝑃 (which is a condensed version of Equation 2.2). If the total amount

of enzyme is constant and so is the amount (or concentration) of the enzyme-substate
complex (quasi steady-state assumption), the overall rate of product formation can be
described by 𝑣 = 𝑉𝑚𝑎𝑥[𝑆]/(𝐾𝑀 + [𝑆]) where 𝑉𝑚𝑎𝑥 = 𝑘3[𝐸𝑡𝑜𝑡] = 𝑘3([𝐸] + [𝐸𝑆]) is the
maximum rate and 𝐾𝑀 = (𝑘1 + 𝑘3)/𝑘2 the Michaelis constant. These Michaelis-Menten

1Note that in stochastic simulation, particle numbers have to be converted to concentrations first as
this product encompasses the likelihood of particles to be close enough for reaction, which is volume-
dependent. Note also that when two reactants of the same species are required, one would usually
include

(︀
#𝐵
2

)︀
𝑉 −2 = 1

2
#𝐵
𝑉

#𝐵−1
𝑉 , i. e. the number of possibly reacting pairs as factor instead of [𝐵]2,

so the rate constant has to be adjusted by a factor of two for similar behavior.
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kinetics, one of several enzyme kinetic approaches, apply to a single reaction with two
parameters that subsume three mass-action reactions and four parameters (three rates
and total enzyme concentration).
Other reasons to use different kinetics may include the desire to fit a model to exper-

imental data where a detailed mechanism is unknown, or where one suspects crowding
effects to play a role (mass action kinetics require the assumption of free diffusion).
Power-law models (Vera et al. 2007) are an extension of mass-action kinetics designed
for this, where in the rate product 𝑘

∏︀𝑛
𝑗=1[𝑆𝑗]

𝑔𝑗 the exponents 𝑔𝑗 need not correspond to
the (integer) stoichiometric coefficients of the reactants, but may instead be real num-
bers (usually in the range of the common stoichiometric coefficients 0. . . 2, but in general
power-law models, negative values are allowed and used to cover inhibitory effects).

Macroscopic and Microscopic Rates

For reactions involving multiple reactants, the actual rate depends on, and the rate
constants used above comprise, the likelihood of reactants to get into sufficient proximity,
which is determined by their movement and the available volume, and their likelihood
to react when close enough. In individual-based spatial simulation, movement is an
explicit part of the simulation and if reasonable estimates of rate constants in well-
mixed conditions are known (macroscopic rates), they need to be related to reaction
parameters needed for spatial simulation.
The maximum possible reaction rate constant for particles of two species 𝐴 and 𝐵 with

radius 𝑟𝐴 and 𝑟𝐵 diffusing randomly with diffusion constants 𝐷𝐴 and 𝐷𝐵, respectively, is
𝑘𝐷 = 4𝜋(𝑟𝐴+𝑟𝐵)(𝐷𝐴+𝐷𝐵) (von Smoluchowski 1917). When regarding particles as hard
spheres, one may be tempted to use the ratio 𝑘𝑎

𝑘𝐷
of the macroscopic (association) rate

and this diffusion-limited rate constant as probability of a reaction in case of a collision.
However, the actually observed rate may deviate from the desired rate depending on
crowding and position update step size as a non-reactive collision will usually leave
particles closer than average and thus more likely to react subsequently (Noyes 1956).
The macroscopic rate relates to the diffusion-limited rate according to 1

𝑘𝑎
= 1

𝑘𝐷
+ 1

𝑘𝑚𝑖𝑐𝑟𝑜
,

or 𝑘𝑎 = 𝑘𝐷𝑘𝑚𝑖𝑐𝑟𝑜

𝑘𝐷+𝑘𝑚𝑖𝑐𝑟𝑜
(Collins and Kimball 1949) where the microscopic rate 𝑘𝑚𝑖𝑐𝑟𝑜 leads

to the probability of an A and B less than 𝑟𝐴 + 𝑟𝐵 apart reacting in a time step ∆𝑡:
𝑃 = 3𝑘𝑚𝑖𝑐𝑟𝑜Δ𝑡

4𝜋(𝑟𝐴+𝑟𝐵)3
. This approach relies on point-based particles that can be closer together

than the sum of their radii (e. g., Klann and Koeppl 2012) and tracking of the time
particles spend close to each other, or using sufficiently short fixed time steps ∆𝑡 (such
that 𝑃 ≪ 1).
An alternative is to ignore particles’ individual radii entirely and only consider inter-

action radii, i. e. the choosing a reaction-specific value in place of 𝑟𝐴+𝑟𝐵 such that when
two respective particles (represented by their center points) are closer than this value,
the reaction is executed directly as in Smoldyn (Andrews and Bray 2004; Andrews et al.
2015) or with a some probability. Effects of step-wise sampling of a Brownian trajectory
are relevant as “collisions” (i. e. reactive proximity) may be missed with larger steps.
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Listing 2.1. SBML reprentation of a single reaction of the predator-prey model
1 <reaction id="predation" reversible="false">

2 <listOfReactants>

3 <speciesReference species="Prey" stoichiometry="1"/>

4 <speciesReference species="Predator" stoichiometry="1"/>

5 </listOfReactants>

6 <listOfProducts>

7 <speciesReference species="Predator" stoichiometry="2"/>

8 </listOfProducts>

9 <kineticLaw>

10 <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply>

11 <times/> <ci> Prey </ci> <ci> Predator </ci> <ci> delta </ci>

12 </apply></math>

13 <listOfParameters>

14 <parameter id="delta" name="delta" value="0.02" units="substance"/>

15 </listOfParameters>

16 </kineticLaw>

17 </reaction>

2.4 Modeling Formalisms and Languages

Orthogonal to the problem of how to represent a system’s properties in a model is the
question of how to describe or specify the model itself. Simply coding the model’s be-
havior (and thus, model and simulator) in a computer programming language is not
uncommon. However, having a formal model description independent of the simulator is
preferable as it can improve understandability of the model by separating this concern
from the computer implementation and also aid debugging (by allowing an easier dis-
tinction whether unexpected model behavior is due to bad model assumptions or faulty
software implementation). Some modeling formalisms also aid formal reasoning about a
model’s behavior, e. g., state reachability analysis.
Standardized model description formats are also important for model reuse, compo-

sition and exchange between tools. For non-spatial simulation, the Systems Biology
Markup Language (SBML) has become the de facto standard for storing and exchang-
ing models targeted at both deterministic and stochastic simulation. It is not designed to
be human-readable and thus not suitable for model specification (see Listing 2.1), which
is done in many popular tools via a graphical user interface (e. g., COPASI – Hoops
et al. 2006 – or CellDesigner –Funahashi et al. 2007; Funahashi et al. 2008). How-
ever, a “shorthand” notation exists, where the description resembles some rule-based
approaches. Capabilities for spatial or multi-level models are limited, only fixed com-
partments are supported (although drafts exists for “packages”, i. e. extensions of the
SBML “core”, that would add multi-state and multi-compartment species, and spatial
processes). Establishing a standard for multi-level, multi-scale modeling is still an open
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challenge (de Back et al. 2015).
The following sections contain a brief overview of selected model description ap-

proaches.

2.4.1 Differential Equations

With differential equations, there is no clear separation between formalism and interpre-
tation, as the term comprises both a well-defined way to specify the equations (syntax)
and their mathematical meaning (semantics). While it may be argued that differential
equations describe a model in the language of mathematics, the actual input format
for the respective tools and the visual presentation can differ widely (hence the rise of
SBML, for example). Since abstractions regarding the reaction dynamics have to be
made when modeling on the population level, the reaction kinetics, e. g., mass action,
Michaelis-Menten or detailed enzyme kinetics, are thus incorporated into the equations’
structure, i. e. the formal part.
There are other modeling formalisms with ODE semantics, i. e. while the model is

specified in some other manner, the respective simulation amounts to ODE integration
again. Sometimes these semantics are the results of adaptation of an existing modeling
formalism to the continuous realm, e. g., continuous petri nets (Recalde, Haddad, and
Silva 2007), sometimes they are just alternatives and approximations of other, often
stochastic semantics, while some were created specifically to allow easier or more general
description of reaction rules.

2.4.2 Process Algebras

In computer science, process calculi have long been used for modeling concurrent systems
formally. They provide syntactic constructs to describe processes, usually computations
performed on some device, and algebraic rules (hence the synonymous term process
algebras) allowing formal reasoning about the descriptions. For more than a decade
they are applied to biological systems. A few variants include some form of spatial
representation, e. g., the ambient calculus for modeling concurrent processes on mobile
devices organized in a network of variable topology (Cardelli and Gordon 2000). Others
have been adapted to take spatial properties or other special features of biological systems
into account.
The approach is often termed molecules-as-computation, where model entities are indi-

vidual particles or species described in terms of their interaction capabilities. While the
origin of process algebras is the analysis of concurrent processes (e. g., running on a com-
puter) communicating with each other, reacting particles can also be described (Regev
and Shapiro 2004). The 𝜋-calculus (Milner 1999) and specifically its stochastic exten-
sion (Priami 1995) serve as the basis for many.
Particles of one species are considered processes of the same kind running in parallel

(an initial configuration of processes, i. e. initial amounts of each species, has to be
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given). Reactions consist, broadly speaking, of processes sending or receiving messages
via dedicated channels, indicating, respectively, willingness to react or availability of a
reaction partner, and continuing as certain different processes after successful communi-
cation (i. e. a reaction).
Spatial extensions of these process algebras were mostly devised with compartments in

mind, only few deal with actual coordinates assigned to processes. Process algebras that
cover compartmentalization, nested or not, but no further spatial attributes, and thus
assume homogeneous distribution of species within a compartment, include BioAmbients
(Regev et al. 2004), Beta Binders (Priami and Quaglia 2005), Brane Calculi (Cardelli
2005), and others (John, Lhoussaine, and Niehren 2009).
Bio-PEPA (Ciocchetta and Hillston 2008) is a process-algebra based modeling lan-

guage for which a variant with explicit compartments is also available (Ciocchetta and
Guerriero 2009). It follows, in its authors’ words, a "processes as species and not pro-
cesses as molecules" abstraction, i. e. the model entities are abstractions of molecule
species and the model describes changes in the amount of each species. Reactions are
still not represented explicitly, only by shared channel names. Aside from stochastic
simulation it is also possible to convert species amounts to concentrations and derive
ODEs approximating the stochastic solutions (Galpin 2010).
The attributed 𝜋 calculus 𝜋(ℒ) with priorities (John et al. 2010) also allows definition

of an arbitrarily large (but finite) number of parameterized compartments. The param-
eters allow establishing a neighborhood relation and facilitate definition of a function for
movement between neighbors, although these attributes can be of any type and at the
simulation level it is not known whether they actually represent coordinates. In addi-
tion to the processes as molecules view common with the 𝜋 calculus, here a processes as
reactions approach is also possible, i. e. processes change attributes representing species
amounts (or concentrations) in line with the actual reactions.
Neither of these approaches allows representation of continuous space. In Space-𝜋

(also: SpacePi; John, Ewald, and Uhrmacher 2008), processes are equipped with actual
coordinates in a two- or three-dimensional space, direction (i. e. a movement function)
and radii to indicate the range of their communication potential. Processes are still
able to send and receive messages, but only within the given radius instead of the global
space or the whole compartment, ensuring that only entities close to each other can react.
The formalism thus has hybrid semantics, combining continuous motion of particles with
discrete events like collisions and reactions. While the original description of SpacePi
covers only rather simple forms of stochastic and directed motion, Brownian motion can
also be covered (Haack, Leye, and Uhrmacher 2010).
Whereas entities in Space-𝜋 are circular or spherical, Shape Calculus (Bartocci et al.

2010a, b) was a proposed formal approach with molecules with a more complex 3D struc-
ture in mind (which did not reach maturity in form of a usable simulator). The modeled
entities are 3D shapes moving in space, communication channels represent potential
binding sites, and while a binding reaction yields a new process like in the other calculi,
the new process’ name is not an abstract one but still contains the original components
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Figure 2.4. Petri net representation of a Lotka-Volterra-Model. Places/states are
round, transitions/reactions rectangular. Marking (i. e. tokens) on places indicated by
numbers or small filled circles. The transitions predation and pred_repro differ only
in the weight of their outgoing edge, i. e. the number of tokens produced (which is 1 if
not explicitly given; cf. 𝑅2𝑎 and 𝑅2𝑏 of Equation 2.7).

and the binding site they are linked with. Movement of shapes necessitates the applica-
tion of sophisticated (and computationally expensive) collision detection techniques as
investigated in the field of computer graphics.

2.4.3 Rule-based Languages

Rule-based modeling languages do not focus on the species themselves, but rather the
interactions and conversions between them given by explicit rules (Hlavacek et al. 2006).
Many, e. g., 𝜅 (“Kappa”, also known as the 𝜅-calculus; Danos et al. 2007; Danos et al.
2009) and BioNetGen (Blinov et al. 2004; Faeder, Blinov, and Hlavacek 2009), were de-
signed to address combinatorial explosion associated with multi-state species, i. e. many
different variants of a protein being able to participate in reactions with another protein
of which also many different subtypes exist, e. g., MAP-kinases and MAPKKs, and deal
with this by establishing generic and concrete agents and rules inspired by object-oriented
programming. Approaches that allow representation of at least compartmental space in-
clude cBNGL (Harris, Hogg, and Faeder 2009), the Language for Biological Systems
(LBS; Pedersen and Plotkin 2008; Pedersen and Plotkin 2010) and ML-Rules (Maus,
Rybacki, and Uhrmacher 2011; Maus 2013).
Rules may be represented in text-based form (e. g., equations 2.2 and 2.7 in section 2.1)

or in a graph-based format (Faeder, Blinov, and Hlavacek 2009). Details of the above
approaches will be discussed in the next chapter since the key approach developed for
this thesis is also rule-based.

2.4.4 Petri Nets

Petri nets are an approach that originally gained popularity in computer science and was
later adapted for biological system (although they were arguably invented for represent-
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ing chemical reactions; Petri and Reisig 2008). Formally, a petri net consists of places
and transitions with directed edges between them (Figure 2.4). Places may be occupied
by a number of tokens, and transitions fire by consuming tokens from all places with
incoming edges to the respective transition and producing tokens on places connected
by outgoing edges. One of the first applications of Petri nets was modeling concurrent
processes on computers. Starting from there, a variety of methods for formal analysis
was developed, e. g., for exploring which states were reachable given an initial marking,
i. e. an assignment of token amounts to the places.
There is an intuitive correspondence of species and reactions as used in reaction net-

works to places and transitions, so Petri nets are also used for simulation of biological
systems, especially for exploring the structure of larger networks (Sackmann, Heiner,
and Koch 2006; Heiner, Gilbert, and Donaldson 2008).
The exact semantics of a Petri net model depend on the variant. There are contin-

uous Petri nets, where markings are interpreted as continuous values and transitions
“fire” continuously, consuming and producing according to an associated rate, which es-
sentially means ODE semantics, and stochastic Petri nets, where transition firing order
is determined by expontially distributed random numbers also depending on transition
rate parameters, leading to SSA semantics.
With colored nets (Jensen 1981; Gilbert et al. 2013), tokens are associated with dis-

tinguishing properties and reactions may fire only for certain “color” combinations of
tokens, essentially introducing the features of an attributed formalism to Petri nets.

2.4.5 Others

Cellular Automata (CA) are a discrete, step-wise modeling approach based on a large
lattice (grid) of identical cells. A cell and its neighbors current state determines the cell’s
next state. In one of the basic and most well-known examples, Conway’s Game of Life,
there are only two possible states (live and dead) and very simple rules, however, complex
patterns can result (Gardner 1970). They have been used to describe diverse biological
phenomena (Materi and Wishart 2007), for example liquid solutions containing enzymes
and substrates exhibiting known enzyme kinetics in the simulation (e. g., Michaelis-
Menten; Kier et al. 1996) or formation of patterns (Deutsch and Dormann 2004), e. g.,
in tumor growth (Moreira and Deutsch 2002).
For simulation of intracellular dynamics, a variant called Dynamic Cellular Automata

(DCA) has been developed (Wishart et al. 2005), taking in aspects of agent-based model-
ing. An explicit notion of time is added. Choosing an appropriately small lattice element
size close to that of an average protein and a time step size so small that molecules do
not travel farther than one block at a time, macromolecules (e. g., proteins and RNA)
are indeed modeled spatially akin to the original Cellular Automata. DCA also allow
small molecules, of which several can be located inside one cell (unlike macromolecules),
and non-mobile “supermolecules” to model membranes (and DNA, interestingly). With
these and other extensions of cellular automata (e. g., Haack et al. 2013), however, one
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again leaves the territory of formal models and gets close to ad-hoc implementations in
the authors’ programming language of choice.
The discrete event systems specification DEVS is another modeling approach used for

hierarchical (Degenring, Röhl, and Uhrmacher 2004; Uhrmacher et al. 2007; Maus et al.
2008) and even for spatial simulation of biological systems (Goldstein and Wainer 2009).
However, in the later case the laws of continuous movement as well as the model itself
are specified as DEVS and executed by the discrete event simulation machine.
Similarly to DEVS, statecharts (Harel 1987), whose origin lies in software engineering,

support a hierarchical modeling of cell biological systems (Holcombe and Bell 1998; Kam,
Cohen, and Harel 2002), but in a more visual way. They have even been applied to cover
basic spatial phenomena involving the fate of adjacent cells and the interplay with gene
regulation within them (Fisher et al. 2005). Like DEVS, they, too, do not support an
easy modeling of biochemical reactions. Biocharts (Kugler, Larjo, and Harel 2010) are a
visual framework for representing "what a biological system does (specification) how it
does it (mechanism) and systematically compare to data characterizing system behavior
(experiments)" (Kugler 2013).
Formalisms especially suitable for hierarchical modeling are also discussed in more

detail in Maus (2013, ch. 5).

2.4.6 Spatial Formalisms

Formalisms with numeric attributes, e. g., some rule-based approaches like ML-Rules,
the aforementioned Attributed 𝜋, or colored Petri nets, allow explicit encoding of spatial
positions as an attribute, e. g., a subvolume index for RDME-based simulation. Spatial
simulation is then possible by two adaptations. First, adding an appropriate condition
concerning this attribute to rules, communications, or transitions affecting more than one
entity, i. e. requiring entities to be in the same subvolume. Second, adding movement, i. e.
first-order changes to the spatial attribute that reflect a changing position, e. g., diffusion
into neighboring subvolumes. This way, the models need to be extended quite a bit for
the addition of the relatively intuitive concepts of “spatial proximity” and “movement”,
making them inelegant and rather verbose.
In discrete event based formalisms with CTMC semantics, using attributes for spatial

properties does not fit well with continuous-space coordinates and Brownian motion
(i. e. random diffusion where the distance traveled is proportional to the square root of
time passed) or directed movement (where a constant speed is difficult to express in a
framework of event intervals with exponentially distributed time).
Table 2.1 provides a brief overview of targeted approaches, or adaptations of other

approaches, with capabilities for expressing space in a less verbose manner. There are
also approaches that use a formalism, mostly a rule-based language, for reactions, and
their own format for spatial properties like system or particle geometry (e. g., Smoldyn;
Andrews 2016 ch. 11, or SRSim; Gruenert et al. 2010).
Similar overviews with a focus on spatial simulation tools can be found in Arjunan
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Table 2.1. Modeling formalisms and their capabilities regarding spatial modeling.

modeling formalism

model
description
format ex

pl
ic
it
co
m
pa
rt
m
en
ts

dy
na
m
ic
ce
ll
st
ru
ct
ur
es

co
m
pl
ex

ge
om

et
ri
es

space
repre-
senta-
tion

temporal
evolution

Cellular Automata (custom) - - - lattice1 fixed time steps
Bio-PEPA (Ciocchetta
and Hillston 2009)

calculus o - - (quali-
tative)

discr. ev. (CTMC)/
cont. (ODEs)

Space 𝜋 (John, Ewald, and
Uhrmacher 2008)

calculus - - - conti-
nuous

continuous
(step-wise approx.)

cBNGL (Harris, Hogg, and
Faeder 2009)

rule-based o - - (quali-
tative)

discrete event
(CTMC)

spatial 𝜅 (Sorokina et al.
2013)

rule-based * - o lattice discrete event
(CTMC)

CSMMR (Oury and
Plotkin 2013)

rule-based o o - (quali-
tative*)

discrete event
(CTMC)

ML-Rules (Maus, Rybacki,
and Uhrmacher 2011)

rule-based o o - (quali-
tative*)

discrete event
(CTMC)

ML-Space (this work) rule-based o o - lattice &
cont.

discr. ev. (CTMC)+
cont. (step-wise a.)

PDEs equations - - - continu-
ous/mesh

continuous (PDEs)

Entries: o: explicitly supported by formalism. *: supported with limitations, e. g., by
explicitly describing relevant structures in the model. -: not supported.
Columns: dynamic cell structures : ability to change/create compartments at run time,
e. g., for describing a virus docking to a cell, releasing its content into the host cell.
complex geometries : supports shapes other than circles/spheres or rectangles/cuboids.
space representation: “(qualitative)” denotes compartments-only approaches (with
homogeneous distributions inside these), * here marks where lattice structures can be
explicitly encoded via attributes in the model; lattice1 denotes single-occupancy lattice,
otherwise lattice cells contain populations of particles.

and Tomita (2010, Table 1) or Burrage et al. (2011, Table 2.1).
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Language in Space

In this chapter, basic concepts for expressing spatial properties in rule-based languages,
including ML-Space, will be introduced step-by-step first, followed by a more thorough
look at ML-Space’ syntax and semantics as far as the rules are concerned.
An algorithmic (pseudocode-based) format will be used rather than formal (opera-

tional) semantics, as the spatial constraints would be difficult to incorporate and result
in a dense complex description not very suitable for an introduction to the method.
ML-Space will support subvolume-(RDME-) and individual-based simulation, requiring
distinction of entities based on what type they are and where they are, making the
rule application algorithms alone necessarily more complex than those of non-spatial
languages (cf. Maus 2013, fig. 6.4 for ML-Rules’s basic algorithm in pseudocode or
Warnke, Helms, and Uhrmacher 2015 for formal semantics).
The simulation’s spatial aspects themselves are left for the next chapter.

3.1 Introducing Attributes

C + O2 → CO2 is a common way to describe one common chemical reaction. It can be
interpreted as describing the conversion of two individual molecules – a carbon atom C

and an oxygen molecule O2 identified by the atoms it consists of – into another molecule
– carbon dioxide CO2. It can also be viewed as postulating the ability of any carbon
atom to react, together with some oxygen molecule, to carbon dioxide. The distinction
between these interpretations – a transformation of concrete instances of molecules, or
the reaction pattern that any molecules of a given type can follow – is of little relevance
in basic inorganic chemistry, where molecules occur in bulk and distinction of individuals
is neither possible nor reasonable.
However, in organic chemistry involving much larger molecules, there are reactions

for which only small parts of the molecules are relevant. It is common to omit the
irrelevant rest of the molecule and leave a placeholder R (with superscript if several
different placeholders are used), e. g., RCOOH + R2OH � RCOOR2+ H2O (a process known as
Fischer-Speier esterification (Fischer and Speier 1895) – a carboxylic acid and an alcohol
reacting to an ester in presence of a dehydrating agent not included in the description).
An interesting question for computer simulation of such reactions is then the matching
of actually present entities to the patterns specified in these reactions.
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A

Figure 3.1. A: Reaction rules (top) may apply to entities (bottom) of the same species
(illustrated by shape) with an attribute value from a given set (illustrated by color) or
to all entities of a species regardless of attribute values (second rule, second reactant);
based on Maus, Rybacki, and Uhrmacher (2011, fig. 1). B-D: A seemingly simple reaction
rule for binding between two entities may in fact affect several other bound entities that
become part of a bigger complex; from Hogg et al. (2014, fig. 2)

In cell biology, the entities of interest are usually macromolecules where even the
modification sites have names because their actual chemical composition is complex
and irrelevant for the result. Common modifications include binding of proteins (i. e.
macromolecules) to form arbitrary large protein complexes or smaller modifications like
exchanges of phosphate groups or binding of small molecules that may not even be
included explicitly in a model. The key point here is that modification of one site need
not depend on other sites’ modification states (henceforth also called configuration), and
a useful description format for modification reactions should take this into account and
not require separate specifications of one reaction for each possible configuration.
The view of molecules as laid out above follows a pattern of abstractions made in

object-oriented programming (OOP). Similar to the categorization of individuals into
species in biology, in OOP items of the same category are considered instances of the
same class, with the distinguishing properties called members or fields, whose values may
differ between instances. Cell biological modeling formalisms, especially rule-based ones
like BioNetGen (Faeder et al. 2005), Kappa (Danos et al. 2007) and ML-Rules (Maus,
Rybacki, and Uhrmacher 2011) address this by distinguishing general molecule types
(we will use the term species here) with attributes representing modification sites that
can have different values. (We will let attributes have names just like fields in OOP, and
will usually refer to them by name:value pairs.)
A key addition of cell-biological modeling formalisms are abstractions of the changes

to and interactions between entities of the same or different species/classes – the rules.
These interaction patterns address the problem of combinatorial explosion in model
specification by only including those attributes of involved entities directly relevant to the
interaction and omitting the others – "don’t care, don’t write" – which means they may
be applicable to entities with different configurations (see also Figure 3.1; an overview
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Table 3.1. Classes-instances distinction and terminology of similar concepts in various
formalisms.
concept

name in...
category property

concrete

entity

property

value

interaction

pattern

concrete

interaction

OOP
class

or type

member

or field

instance

or object
value n/a

biology

(taxonomy)
species n/a individual (misc.) n/a

Attrib. 𝜋
(process

definition)
(attribute) (process) attribute (channel)

communi-

cation

colored

Petri nets
(place) (color) token color transition

(activated

transition)

BioNetGen
molecule

type
component

seed

species
value

reaction

rule
reaction

ML-Rules entity attribute species value
rule

schema

rule (or rule

instance)

ML-Space species attribute
entity (or

individual)
value rule

(rule

match)
n/a: not available (no generalized abstraction). (...): related, but not equivalent concept.

of the terminology used to refer to the OOP-related concepts and interaction patterns
in different rule-based approaches is given in Table 3.1).

For example, the mitogen-activated protein kinase 1 (MAPK1) is a protein, i. e. a
chain of amino acids, that can be phosphorylated at a threonine at position 183 and
a tyrosine at position 185 in the chain, usually abbreviated T183 and Y185, respec-
tively. For our purposes, the species MAPK has two attributes which each can have two
different values: MAPK1(T183:{p,u},Y185:{p,u}). Phosphorylation of one site – by a
MAPK kinase, MKK – need not depend on the state of the other site, allowing specifica-
tion of T183 phosphorylation by a single rule MAPK(T183==u)+ MKK ->MAPK(T183=p)+ MKK

instead of two (for MAPK(T183==u,Y185==p) and MAPK(T183==u,Y185==u), respectively) or
many more if either involved entity had more attributes.

The example rule follows ML-Space’ concrete syntax, using the == operator to test for
equality, i. e. that the attribute whose name appears left of it has the value to the right,
and = for assignment, i. e. the respective attribute will have the subsequent value after
the rule was applied. (This is analogous to their use in common programming languages
such as C++ and Java.)
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3.2 Using Attributes for Spatial Properties

In the following section, we will look at how attributes are used, especially for spatially
relevant properties, in ML-Space and two closely related approaches.

3.2.1 Typed Attributes

In the MAPK example above, if the distinction between the two phosphorylation sites
is not relevant, but only the number of present phosphorylations, one can simplify them
to a single attribute with numerical value MAPK(np:{0,1,2}) and a single modification
rule for either site MAPK(np<2)+ MKK ->MAPK(np+=1)+ MKK (with comparison operator <

and increment-by assignment operator +=). This introduces a numeric type for attribute
values to the description language, with the possibility of performing common compu-
tations.
The BioNetGen language (BNGL) offers no such numeric attributes, but has quali-

tative types where all possible values of an attribute are given with the molecule type
definition, e. g., MAPK1(t183~u~p,y185~u~p) . The other type of attributes BNGL allows
is used to express binding sites for other species, which will be discussed later (subsec-
tion 3.2.5).
In ML-Rules, attribute values may be numeric or qualitative (i. e. strings, effectively),

but entity type definitions contain only the number of attributes with no name and no
information on its type, e. g., MAPK1(2). The type of the attributes’ values is only implicit
from the initial state definition and rules.

3.2.2 From Compartments Attributes to Organizational Levels

Biological functions may involve processes in different biological compartments. For
example, transcription factor proteins regulate processing of DNA segments (gene tran-
scription to mRNA) in the nucleus, but proteins generally are produced outside the
nucleus in the cytosol (translation from mRNA). In simple modeling formalisms, entities
in different compartments are simply represented as different species, e. g.,

gene -> gene + mRNA_nucleus

mRNA_nucleus -> mRNA_cytosol

mRNA_cytosol -> mRNA_cytosol + Protein_cytosol

Note that genes occur only in the nucleus.
With an attributed language, the compartment can be encoded as a qualitative at-

tribute, making it clearer that there is only one type of mRNA involved.

gene -> gene + mRNA(location:nucleus)

mRNA(location:nucleus) -> mRNA(location:cytosol)

mRNA(location:cytosol) -> mRNA(location:cytosol)+ Protein(location:cytosol)
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Strictly speaking, however, location is not a property of the species or molecules
themselves. Additionally, the hierarchy of the compartments (the nesting, i. e. that
the nucleus is surrounded by the cytosol) does not become apparent from the model
description. ML-Rules (Maus, Rybacki, and Uhrmacher 2011) was developed to address
this and treats compartments as first-class objects, i. e. with attributes and semantics
just like other model entities. Our language ML-Space is based on ML-Rules and follows
the same approach.

gene -> gene + mRNA

Cell[Nucleus[mRNA]] -> Cell[mRNA + Nucleus]

Cell[mRNA] -> Cell[mRNA + Protein]

Here, Cell[Nucleus[...]] makes it clear that the nucleus is expected to be inside the
cell and to contain other entities. Cell[mRNA] refers to mRNA in the cytosol, i. e. the
part of the cell that is not the nucleus here. (Note that the second rule above is not
actually useful in ML-Rules for lack of a rest solution discussed later in subsection 3.5.1).
Because all model entities can be contained in and can contain other model entities,
the hierarchical structure of compartments is dynamic, so one could specify a rule for
the nucleus including its content to leave the cell entirely (not a realistic biological
proposition).
In compartmental BioNetGen (cBNGL; Harris, Hogg, and Faeder 2009), a static hi-

erarchy of compartments is defined up front and names of biological compartments are
mentioned once in front of rules that only apply in them or next to the reactants.

Cell 3 vol_cell #three-dimensional top-level (outermost) compartment
Nucleus 3 vol_nuc Cell #three-dimensional compartment inside Cell

gene -> gene + mRNA #universal reaction rule

mRNA@Nucleus -> mRNA@Cell #transport rule

mRNA@Cell -> mRNA@Cell+ Protein@Cell #scope-restricted rule

This language supports both three- and two-dimensional compartments in the same
model, the latter for explicit representation of membrane surfaces as boundaries between
three-dimensional compartments. This is relevant for the calculation of reaction rates
from (mass action) rate constants (omitted above). ML-Rules effectively allows this,
too, by always requiring the reaction rate calculation to be given explicitly (possibly
including the volume of the surrounding compartment given as an attribute value). In
ML-Space, entities are positioned in actual 2D or 3D space, which makes several aspects
of rule application and rate evaluation different from the above approaches where space
is not an explicit consideration (aside from the given qualitative, i. e. compartmental
part), so compartments of different dimensions in the same model is not (yet) supported.
For a full ML-Space model, one always needs to define the volume and shape of the

system in which the model interactions take place. This is done by defining an immobile,
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large entity that contains all the others. This entity can also have attributes that change
via first-order reactions or along with reactions inside it.

3.2.3 Attributes for Discretized Space

As outlined previously (subsection 2.4.6 "Spatial Formalisms"), with numerical attributes
one can express mesoscopic (i. e. RDME-based) spatial simulation (subsection 2.3.5) ex-
plicitly in the model by adding a location attribute in form of a subvolume index and
limiting all other reactions to entities in the same subvolume. For (a single-compartment)
example, consider

mRNA(svIndex<max) -> mRNA(svIndex+=1)@D

mRNA(svIndex>0) -> mRNA(svIndex-=1)@D

mRNA(n=svIndex) -> mRNA + Protein(svIndex=n)@r

The first two rules model diffusion from one subvolume to a neighbor, assuming that
adjacent subvolumes have numerically adjacent indices. The final rule is a translation
reaction as before, where n=svIndex assigns the current value of mRNA’s svIndex attribute
(which is left unchanged on the right) to a local variable n, whose value is then assigned
to the newly created Protein’s attribute of the same name.
With compartments as first-class model entities like in ML-Rules, subvolumes can also

be made explicit entities (with an index attribute so the contained model entities do not
need one):1

SV(n=index)[mRNA]+ SV(index==n+1)[] -> SV[] + SV[mRNA] @ D

SV(n=index)[mRNA]+ SV(index==n-1)[] -> SV[] + SV[mRNA] @ D

mRNA -> mRNA + Protein @ r

This approach requires no adaptations of the usual reaction rules compared to a non-
spatial, non-compartmental approach – when each mRNA is located in some SV, but the
latter is not explicitly mentioned, all relevant rule entities are supposed to be in the same
compartment.
The above approaches to encoding space via explicit subvolumes (or subvolume at-

tributes) in the model has major downsides. First, a known diffusion constant 𝐷 would
not actually be a useful rate as shown above, but would have to be adapted to sub-

1Here, the local variable n is used already on the left rule side to assert that the other involved SV is
a neighbor. Explicit boundary checks (like "index<max") are not necessary this way because when
the first reactant pattern (first rule) is matched to the subvolume with highest index, there cannot
be any matching subvolume for the second reactant pattern.
This is ML-Space-like syntax again for consistency with other examples here, although the "diffu-

sion" reactions would not be valid in an ML-Space model (where reactions across several non-nested
compartments are more diffcult to handle than in not-explicitly-spatial ML-Rules). For entities of
the same species on both sides of a reaction, the order is assumed to be the same, i. e. the first entity
on the left would be associated with the first entity on the right.
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volume size (to be exact, to be divided by the current subvolume side length’s square,
or more generally for subvolumes of rectangular/cuboidal shape but different sizes, the
side length and the distance of centers of diffusion source and target; (Bernstein 2005)),
as a smaller subvolume grid corresponds to a finer sampling of space where movement
of a diffusing entity is observed more often. (Interestingly, at constant concentration of
entities, the lower amount of entities in smaller subvolumes exactly cancels this effect
out in a way that the number of diffusions per time between a pair of subvolumes is
size-independent.) Second, and more importantly, the above examples show two rules
for diffusion – in one dimension. Twice or thrice as many are needed for diffusion on a
2D or 3D grid, and twice as many again if periodic boundary conditions are used (and
even more for a von Neumann instead of Moore neighborhood).
Rule-based languages were developed precisely to avoid a large number of rules to

express a single conceptual change (here, diffusion). Spatial Kappa (Sorokina et al. 2013)
is an extension of the 𝜅 language (which is very similar to BNGL) to a subvolume-based
spatial domain with a notion of (fixed, not hierarchically structured) compartments.
Diffusion is specified via rules that can reference the geometry to allow some species
to move only along a certain layer representing a membrane and others freely along or
across it. Our language ML-Space addresses diffusion by special interpretation of any
attribute named diffusion. Its value will be interpreted as the usual diffusion coefficient
(with length squared over time as unit) and for entities to be simulated in subvolumes
handled appropriately.

3.2.4 Attributes for Continuous Space

ML-Space started as an attempt to extend ML-Rules into space, where entities containing
other entities are a key feature. In a spatial approach, any entity containing something
should have a size (larger than zero). The derivation of the Chemical Master equation,
and subsequently the RDME, does not involve particle’s extension, i. e. there is no
notion of excluded volume. For a consistent representation of a hierarchy of nested
spatial entities, each entity should either be contained in another or not overlap it at
all. These compartments thus have unique positions (whether in continuous space or
a discretized version thereof), giving them distinct properties and making population-
based simulation inapplicable.
Individual-based simulation of entities with continuous-space coordinates will be dif-

ficult to express in an existing rule-based framework without special spatial constructs.
For movement, one could add position attributes and update them by rules, so Brown-
ian motion behavior could be achieved at least in the long run (e. g., by fixed distance,
random direction steps in equidistant or exponentially distributed time steps). Spatial
proximity of reacting particles could be ensured by conditions involving the particles’
position attribute values. However, avoiding collisions, i. e. making particles move into
space not occupied by other, would be very difficult to express. Additionally, this way
of adding space via the model specification would again lead to more rules and need-
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Table 3.2. Special attributes with spatial interpretation.
attribute value type required? changeable in rule?

position vector
only for top-level entity
(otherwise randomly
in surrounding entity)

no

size real number yes (pending implementation)
shape keyword if size> 0.0 no
diffusion real number no (default: 0) yes
drift vector no (default: 0⃗)
- velocity real number no yes
- direction real number(s) no yes (2D only so far)
Drift is directed movement that can alternatively be specified via its components velocity
and direction (in case only one changes at a time). For some shapes, additional attributes
may be required (e. g., an aspect ratio for rectangles/cuboids – the only applicable case
implemented so far).

lessly complicated rules that are much harder to understand than the concept they are
supposed to express.

In ML-Space, the named attributes allow specification of spatially relevant properties
(like diffusion as above, but also shape and size) of entities quite easily. Table 3.2 shows
attributes with spatial interpretation and the respective expected value types. The
handling of movement and non-overlap is then left to the simulator without the need for
further specification in the model. One key difference to the subvolume-based spatial
approach is that the collision detection establishes proximity, which is conceptually part
of the rate for second-order reactions (higher-order reactions should be broken down into
second-order reactions with intermediate products as three or more particles are unlikely
to collide at the same point). While some approaches handle this by letting particles
closer than separately determined interaction radii react with the macroscopic rates (cf.
section 2.3.6), in ML-Space in second-order rules involving spatial entities (i. e. those
with size > 0), the rate expression is interpreted to be a probability of reaction in case
of collision. (While interaction radii of some kind could in principle be added to the
ML-Space language via another attribute with spatial interpretation or a rule modifier,
the chosen approach simply turned out to be sufficient for the applications so far.) Note
that second-order reactions between entities in subvolumes as in the previous section
are still interpreted and timed as in the SSA, only when spatial entities are involved the
reactions become collision-triggered.

A slightly different approach is pursued in SRSim (Gruenert et al. 2010), a tool that
connects BioNetGen and a Molecular Dynamics simulator, LAMMPS (Plimpton 1995).
The model species and reactions are defined in the (non-compartmental) BNGL format
and supplemented by xml-based definition of relevant particle properties like size and
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mass. Applications of SRSim are geared more towards physically accurate simulation of
macromolecule formation and the interactions of very few macromolecules, i. e. towards
a smaller physical (and time) scale than ML-Space.

3.2.5 Binding

BioNetGen and 𝜅 primary focus is on binding between entities (as exemplified by most
BNGL example models that use attributes with values from a fixed set – cf. subsec-
tion 3.2.1 – using these to express some form of binding, e. g., of a phosphate group not
explicitly present as model entity2). For a simple example, consider a receptor protein
that can dimerize, which is expressed by a binding site attribute: R(d). Binding is ex-
pressed in a rule by (an exclamation mark and) an identifier as attribute value that is
common to both entities bound:

R(d) + R(d)-> R(d!1).R(d!1)

The advantage of explicit bindings between existing entities over a separate dimer
species R + R ->D is, of course, that the R retain their identity and attribute values
(if there are any other attributes). If they have other binding sites, previously bound
entities would stay bound and form part of a larger complex (as in Figure 3.1 right part).
The above rule specifies binding independent of the state of any other binding site of R,
whereas R(l,d)+ R(d)-> R(l,d!1).R(d!1) would require a binding site l of the first R

to be free (and stay free) and R(l!+,d)+ R(d)-> R(l!+,d!1).R(d!1) would require it to
have something bound. Unbinding, in any case, would be expressed by exchanging both
sides of the arrow (in fact, <-> can be used in BNGL for reversible reactions, hence even
attributes whose state does not change must be mentioned on both sides of a rule).
ML-Rules as initially published (Maus, Rybacki, and Uhrmacher 2011) did not have

explicit treatment of bindings, but has a 𝜈 (“new”) operator (a concept taken from private
channels in the 𝜋 calculus) that generates a (numeric) value not previously assigned to the
respective attribute of any species, which then serves as identification for the generated
dimer. The binding and unbinding then conceptually work as follows:

R(d==0)+ R(d==0)-> (𝜈x) R(d==x)+ R(d==x)

R((x=d)!=0)+ R(d==x)-> R(d==0)+ R(d==0)

For the second (i. e. unbinding) reaction, the bound entities need to be matched by the
value of their d attribute. (The term (x=d)!=0 is used here to mean “assign the value of
attribute d to local variable x and test that it is not 0”, which here is the value indicating
a free binding site. This syntax is again closer to ML-Space than actual ML-Rules.)
When treating these attributes like all numeric attributes, matching this rule requires
processing all present pairs of Rs, and dimers cannot be grouped either for population-
based simulation as their values of d all differ. A version of the ML-Rules simulator that
2Example(s) at bionetgen.org/index.php/BioNetGen_Tutorial#molecule_types

http://bionetgen.org/index.php/BioNetGen_Tutorial#molecule_types
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explicitly accounts for attributes that express binding and storing bound entities explic-
itly has since been developed, which is an order of magnitude faster than the original
simulator.

Binding as discussed so far does not have spatial implications, it only creates an
(implicit) graph of which entity is connected to which. In spatial simulation, bindings
have implications about how the involved entities are positioned relative to each other.
One approach to avoid dealing with this is to represent a complex in space by a sphere
with a volume corresponding to the combined volume of its parts, and keep the graph
representation of actual bindings internal to each complex (Klann et al. 2013). It has
been applied to MAPK dynamics in presence of scaffolding proteins, but is not suitable
if the geometric structure of the bound entities itself is to be investigated.

In SRSim, the aforementioned xml-based spatial information supplementing the BNGL
model also includes binding sites’ relative position to each other on the surface of each
particle (assumed to be spherical) and forces arising from bonds and volume-exclusion
effects, which are also considered in Molecular Dynamics simulation.

In ML-Space, binding between entities was a feature added for a study of actin fila-
ments, long chains of actin molecules that provide scaffolding for the cell. Representation
of actual spatial arrangement was thus required. We chose to syntactically separate the
binding sites from the other attributes, as the “value” assigned to them is in fact another
entity, which is conceptually different from the other types of values. We also use special
keywords to identify the state of a binding site, occupied (or, shorter, occ) and free

on the left rule side (like, in BNGL, !+ and a binding site name without qualifications,
respectively) and binding site actions (changes) on the right rule side, release and bind.

R()<d:free> + R()<d:free> -> R()<d:bind>.R()<d:bind>

R()<d:occupied> -> R()<d:release>

The unbinding reaction is specified like a first order reaction (in fact, for scheduling
purposes it is one), but also affects the bound entity in that it also loses its binding
partner. Instead of simply declaring that a binding site must be occupied, one may also
require a binding partner of a certain species and also with some given attribute values by
inserting the reactant pattern in place of the occupied keyword (which can be regarded
as a universally matching reactant pattern), e. g., R()<d:R()> ->R()<d:release>. (Note
that the binding in the first rule above is sufficiently specified by the bind keyword, the
dot separating bound entities in ML-Space is syntactic sugar, unlike in BNGL. It was
originally intended to be enforced to allow bound entities on the left rule side without
specifying the site at which they were bound, but this was not useful for any study using
ML-Space so far. Using a unique identifier instead of keywords to allow identification of
several bindings was also considered, but not required so far.)
Section 3.5.2 contains further examples and a discussion of limitations of this approach.
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3.2.6 Spatial Abstraction Levels Example

ML-Space is designed to simulate entities with spatial positions and allows the modeler
to focus on species and their interactions without the need to worry about the detail of
the spatial behavior. However, sometimes a fine-grained spatial resolution may not be
desired for all kinds of entities in a model.

Consider a protein that can bind several copies of a nucleotide, or, for a larger scale
example, a species of cellular organelles O that can bind several copies of the same protein
P on their surface.

A direct translation of this description using explicit binding sites as in the previous
section would require the number of every possible binding site to be named explicitly
and a rule for the change of each in ML-Space. (This is because binding sites were
originally introduced to allow expressing the geometry of larger structures. Multiple
equally treated binding sites are another feature that was not needed for any application
so far but whose addition to ML-Space should not be too difficult.)

If P has no state other than its binding status that needs to be kept, one can describe
its binding or unbinding as consumption or production by O, which stores the number
of bound P as a numeric attribute (similar to the phosphorylation example in subsec-
tion 3.2.1, with a constant max for the maximum number of bound P):

O(boundP<max)+ P()-> O(boundP+=1)@ pBind.

The Os may then be simulated as small entities with volume and positions in continuous
space, or as populations of dimensionless entities in certain virtual subdivisions. Which
of the two approaches is used in ML-Space simulation then only depends on the defined
size of entities of species O, i. e. whether the size is larger than zero or exactly zero. Note
again that for the simulator, a binding probability in case of collision is relevant, not a
macroscopic rate.

If one can also assume a spatially homogeneous distribution of P, one can leave out
the explicit species P and instead model their amount as an attribute of the surrounding
entity, here the Cell. Recruitment of P by O is then a first-order reaction with a rate
calculated from the expected collision frequency (which depends on the system volume;
cf. section 2.3.6) and this surrounding entity’s attribute:

Cell(n=availableP)[O(boundP<max)]->Cell(availableP=n-1)[O(boundP+=1)]@rBind*n.

Here, the Cell[...] on both sides gives the context, i. e. surrounding entity in which the
rule applies, which means it would no longer apply in other compartments if any were
present. The (first-order, mass-action) reaction rate is proportional to the number of P,
which is not the number of the reactant on the left hand side of the reaction and hence
explicitly included in the rate expression given.

When P is so abundant that the change to its total is not significantly affected by the
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binding reactions, one may as well use a global constant nP for its amount:

O(boundP<max)->O(boundP+=1)@ rBind*nP.

Thus, attributes offer a way to incorporate non-spatial behavior to a certain extent.

3.3 ML-Space’ Language Syntax

A full ML-Space model is a self-contained description of all information necessary to
simulate the modeled system. Not included are parameters relevant to the simulation
only, but not to the described model system, e. g., the granularity of the spatial resolu-
tion. Table 3.3 contains a simplified version of the ML-Space syntax (see appendix A.1
for the full EBNF). Listing 3.1 contains an example model of a transcription factor pro-
tein that can bind to the gene encoding it and prevents its transcription and thus its
own production. Binding is not represented via an explicit binding site but rather an
attribute of the gene, representing its repression state.

3.3.1 Constants

An ML-Space model usually starts with definition of some numeric constants that can
be used in every place where numbers are expected, e. g., for entity sizes and amounts or
for reaction rates. Defining these separately via initially given constants separates the
model parameters from the rest of the model description. The experimental framework
in which ML-Space models will be simulated also allows constants’ values to be replaced
(overridden) by externally given ones, e. g., to allow parameter scan experiments without
requiring a separate model file with manual changes for each run.

3.3.2 Species Definitions

Species definitions follow the constants section. The types of all entities used in the
model are defined here along with the names of their attributes and default values of
these. One of these default values will be used when an entity of the species is supposed
to be produced (in the initial state definition or on the right hand side of a rule) and
not all attribute values are explicitly given. It is not strictly enforced that no other
values are ever assigned to the attribute in any rule (but we will assume just that for
the examples in this chapter) except when the default size is 0. This interpretation
was simply most convenient in the modeling efforts with ML-Space so far, but could be
changed in the implementation rather easily. The size attribute is an exception because
the model reader/parser distinguishes species that have a spatial extension and those
that do not. The latter are designated for subvolume-(RDME-) based simulation and
hence population-based treatment and this distinction is made on a per-species basis.
Binding capabilities were added to ML-Space initially for the purpose of modeling

actin filaments, which consist of straight chains of actin molecules possibly with branches
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Listing 3.1.ML-Space example model
of a gene regulatory network like the
Hes1 oscillator system (Sturrock et al.
2013) shown schematically on the right.
Double slashes // start a comment, i. e.
the symbol and the remainder of the
line are ignored when the model is read
for simulation. The second-order re-
action rate 1.66µm

3

min
in line 20 is per

interacting pair, calculated from the
concentration-based value 109

M·min by di-
viding by Avogadro’s number and con-
verting the volume units to µm3.

transcription transcription
(repressed)

tr
an
sl
at
io
n

transfer

transfer

unbinding

binding

Cytosol

1 D = 0.6 // molecular diffusion; unit: µm2/min

2 rCell = 7.5; rNucleus = 3; // radii, unit: µm

3

4 Cell(shape:ball,size:4/3*pi*rCell^3,position:(0,0,0));

5 Nucleus(shape:ball,size:4/3*pi*rNucleus^3,position:(0,0,0));

6 Gene(size:0,position:(0,0,0),site:{"free","occ"});

7 Protein(size:0,diffusion:D);

8 mRNA(size:0,diffusion:D);

9

10 1 Cell[1 Nucleus[1 Gene + 10 mRNA] + 60 Protein];

11

12 Nucleus + Protein -> Nucleus[Protein] @ p=1 // transfer into nucleus

13 Nucleus[Protein] -> Nucleus + Protein @ p=1 // transfer out of nucleus

14 Nucleus + mRNA -> Nucleus[mRNA] @ p=1

15 Nucleus[mRNA] -> Nucleus + mRNA @ p=1

16

17 Gene(site=="free") -> Gene + mRNA @ 3 // transcription, unit 1/min

18 Gene(site=="occ") -> Gene + mRNA @ 0.1 // repressed transcription

19 // repression and repressor release:

20 Gene(site=="free") + Protein -> Gene(site="occ") @ r=1.66 // µm3/min

21 Gene(site=="occ") -> Gene(site="free") + Protein @ 0.1 // 1/min

22

23 Cell[mRNA] -> Cell[mRNA + Protein] @ 1 // translation; 1/min

24 mRNA -> @ 0.015 // mRNA degradation; 1/min

25 Protein -> @ 0.043 // Protein degradation; 1/min
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Table 3.3. Sketch of the ML-Space syntax.
Construct Grammar rule

Model M : :=C+S+ I R+

Constant C : := ident ’=’ numexpr
Species definition S : := ident 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ’ ( ’ ( ident 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ’ : ’ range )

* ’ ) ’
’< ’ ( ident 𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝑖𝑡𝑒 ’ : ’ ( numexpr | ’ any ’ ) ) * ’> ’

Initial state I : := (numexpr EP ’ [ ’ I * ’ ] ’ )+ ’ ; ’
Reaction rule R : := ( ident 𝑟𝑢𝑙𝑒 ’ : ’ ) ? RL ’−>’ RR ’@’ RE

Rule left hand side RL : := ES+ | ES ’ [ ’ ES* ’ ] ’ ( ’+ ’ ES) ?
Rule right hand side RR : := EP* | EP ’ [ ’ EP* ’ ] ’ ( ’+ ’ EP) ?
Rate expression RE : := ( ’ r=’ | ’p=’ ) ? numexpr

Entity pattern ES : := ident 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ’ ( ’ (AM|AV) ) * ’ ) ’
(substrate) ’< ’ ( ident 𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝑖𝑡𝑒 ’ : ’ ( ’FREE ’ | ’OCC’ |ES) ) * ’> ’

Attribute match ex- AM ::= ident 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ( (OpC numexpr ) | ( ’ in ’ range ) )
pression

Attr. ex. with variable AV : := ’ ( ’ ident 𝑙𝑜𝑐𝑎𝑙𝑣𝑎𝑟 ’= ’ ident 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ’ ) ’ (OpC numexpr ) ?
Entity pattern EP : := ident 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ’ ( ’ ( ident 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒OpA numexpr )* ’ ) ’

(product)

Comparison operator OpC : := ’< ’ | ’<=’ | ’==’ | ’>=’ | ’> ’
Assignment operator OpA : := ’=’ | ’−=’ | ’+=’ | ’/= ’ | ’*= ’

Items in quotation marks are elements of the concrete syntax. X | Y denotes “either X or
Y”, X? denotes 0 or 1 occurrences of X, X* 0 or more, X+ 1 or more. For the latter cases,
separators between repeated occurrences of the same syntactic construct have been omitted
(e. g., ’+ ’ between entities on the same side of a rule, ’ , ’ between attribute-range-/attribute-
value-pairs, or optional semicolons between constants, species definitions and reaction rules,
respectively). Also, parenthesis pairs not enclosing any content, e. g., for entities without spec-
ified attributes, are actually optional. Syntactic constructs omitted above includefor loops in
the initial state definition for several similar (e. g., equidistantly placed) entities. See A.1: The
ML-Space Language’s Full Grammar for a complete EBNF.
numexpressions are mathematical terms containing numbers, previously defined constants and,
in reaction rules, local variable identifiers, parentheses for grouping and the common operation
symbols (+,−,*,/ and ^ for exponentiation). Ternary operations known from various program-
ming languages for use as if-then-else expressions are also supported. A range is an interval
with one numeric expression each for the lower and upper bound or a set of explicitly given
values.
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with fixed angles relative to the main filament. Binding sites in species definitions are
thus given as name:angle pairs separate from the qualitative and quantitative attributes.
When “looking” from one entity’s center at two binding partner’s centers, the angle
between the implied vectors should correspond to the difference of the values given in
the species definition. The angles are thus interpreted relative to each other and it is
usually reasonable to use a value of 0 for the first defined one.

3.3.3 Initial State

The initial state definition that follows consists of entities preceded by their amount and
followed by their content (in brackets, []), which (recursively) follows the same pattern.
Only entities with a non-zero size can have a content. The top-level entity defines the
dimensions of the simulated system and must have a fixed position. The number of
coordinates of the position vector specifies the spatial dimensions of the system, i. e.
whether it is 2D or 3D. In the example (Listing 3.1 line 10) the position is given as
default attribute at the species definition, knowing that there will be only one entity of
type Cell. While given initial positions (centers) of all entities must be chosen such that
the entities do not overlap, entities at different organizational levels can have the same
coordinates (in the example, Cell and Nucleus are concentric spheres). It is possible in
principle to have several top-level entities (at different positions) but since they cannot
interact due to being immobile there is no advantage over running separate simulations
for each of them.
When an attribute of a species is not mentioned in the initial state definition and an

interval or several values are defined in the species definition, uniform random sampling
is employed (e. g., for the initial repression state in Listing 3.1 line 10).

3.3.4 Reaction Rules

The final and crucial part are the rules, each consisting of entity patterns to match on
the left and entity modification patterns to the right of an arrow, followed by a rate
expression (omitted in most examples in previous sections). Several aspects of rules can
be distinguished by syntax features.

� If one side consists of an entity pattern inside another and the other side consists
of two patterns for the same two species on the same level, we have a transfer

rule describing the inner entity crossing the boundary of the outer one (Listing 3.1
lines 12-15).

� If both sides consists of one or more entity pattern(s) inside another and this
surrounding entity is of the same species on both sides, we have a rule with context
(line 23).

� If there is no nesting on either side, we have universal rule applicable wherever the
entities matching the reactant patterns can occur (all others in the example).

Other useful rule distinctions between non-transfer rules can be made by their order.
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1. Zero-order rules (none in example) must have a context, i. e. ML-Space requires
explicit mention in which compartments they can happen.3

2. First-order rules are universal or context rules with one entity pattern on the left
(in a context – Listing 3.1 line 23 – or without one). On the right, there may be a
pattern of the same species (possibly with changes to the original entity), a different
one (replacement), none (consumption/degradation) or several (production), all in
the same context if there was one on the left.

3. Higher-order (≥ 2) rules between dimensionless entities have several entity pat-
terns of species with default size 0 on the left (again with context or without;
line 17). These three rule types so far are time-triggered and their rate expression,
when evaluated and multiplied with the number of applicable reactants, gives the
reaction propensity used in the classical SSA.

4. Higher-order rules involving at least one entity with spatial extensions must in-
volve exactly two entities, as they are collision-triggered, i. e. the spatial proximity
required arises from their movement. Here, the rate expression’s value will be inter-
preted as probability that the matching entities react when they collide. Transfer
rules are also collision-triggered and a rule for transfer into something differs syn-
tactically from a second-order rule only on the right hand (i. e. product) side.

Since reactions in space require spatial proximity, we do not allow reactions of entities
that are located in different compartments (and hence separated by a barrier, e. g., a
membrane) and there may be only one level of nesting on each side of a rule. Un-
like ML-Rules, we do not allow transfers across two entity boundaries at once like in
Cell[Endosome[P]]->Cell[]+ P (which includes destruction of one entity), or any other
rule affecting entities two or more organizational levels apart.

3.3.5 Differences to ML-Rules

While ML-Space is inspired by ML-Rules, certain differences emerged from necessity and
partly convenience. These are (as partly mentioned previously):

Named attributes

Adding spatial attributes to species increases their arity (attribute number). Since
spatial attributes are fundamental properties for ML-Space’ simulation and since at
least some of them are common to all entities, it is natural to write them first in the
species definition, while they are not usually relevant in the reaction rules. It would
therefore be much more inconventient in ML-Space to require placeholder variables for

3This is because zero-order rules happening at all organizational levels were considered unrealistic,
and to make explicit that no rule can happen outside the top-level compartment, i. e. the overall
system dimensions are fixed throughout a simulation of an ML-Space model. It also helps avoiding
accidentally allowing nested entities of the same species (which is still possible if made explicit, e. g.,
S[] -> S[S], which may happen if an interval to pick random values from is given as default size
for S).
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each attribute as it is in ML-Rules, so ML-Space adopted the “don’t care don’t write”
approach of referencing used attributes by name and omitting the others as used in 𝜅 or
BNGL.
Having named attributes also allows us to specify conditions on attribute values of the

reactants directly instead of relying on if-then-else constructs in the rate expressions.

Rules crossing at most one level

In ML-Rules, rules can completely rearrange the hierarchical composition of the solution
(system). Entities in ML-Rules then should not be considered to move but to be con-
sumed and created (another reason why requiring placeholder variables for all attributes
of rule reactants makes things easier in ML-Rules, but not in ML-Space). In ML-Space’
spatial simulation, particles are tracked individually or via diffusional jumps between
neighboring subvolumes. Transferring model entities from one place to a completely
different one in the system (by position or place in the organizational hierarchy) is then
not a realistic proposition. ML-Space’ rules were therefore restricted to cross at most
one boundary. (Note that it is still possible for a particle to cross multiple boundaries
in one simulation step, but more than one rule needs to be applied for this.)

Mass-action rates by default

Due to the previous point, most interactions in ML-Space are local. Two colliding par-
ticles should therefore not be aware how many similar particles are in their surrounding
(apart from the particle density’s influence on collision frequency, which is already ac-
counted for). It was therefore not reasonable to allow reactant amounts to be bound to
variables (like the n in ML-Rules’s C(x,y,z):n) that can be used on the right hand rule
side or the rate expression. This simplifies ML-Space’ rate expressions and makes ML-
Space a bit less flexible in this regard (but also avoids some pitfalls; cf. subsection 3.5.4).
Note that rate dependence on entity counts can still be expressed by incorporating an
attribute value of the surrounding (context) entity and changing that value whenever
the respective entity count changes.

Rest solution

Due to the previous two points, the equivalent to ML-Rules’s rest solution is always
implicit in ML-Space’ rules: a rule regarding the interaction of some entities applies
regardless of whether there are other entities in the same compartment. This does not
allow modeling of reactions like “a compartment and everything in it dissappear” or “two
compartments merge into one containing the content of both of them”. While the former
could easily be added (but can already be handled via multiple rules), the latter would
require repositioning particles in ways that are not obvious, or dynamic shapes for the
new merged compartment’s boundary.
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Bindings

Bindings can be expressed in ML-Rules by assigning attributes a unique id as a value –
entities with the same unique id as some attribute value are considered bound. In ML-
Space, where attributes can have a specific type, bindings are special: their “attribute”
value is essentially a link to another entity’s (which has a link back). It increases model
readability significantly by making that property explicit.
Additionally, for an ML-Space application, binding sites with explicit angles were

needed. This information needed to be provided in the species definition, for which a
syntactic constructs not necessary for any other attributes had to be created. Thus,
ML-Space defines binding sites separately from other attributes.

To convert an ML-Rules model to an ML-Space model, some effort is therefore un-
avoidable. Such a process should probably follow the sections above: adding names for
existing attributes (which should be doable via regular expression search-and-replace;
it will help to identify attributes used only for binding right here) and adding spa-
tial attributes, transforming each multi-level rule into rules crossing at most one level,
simplifying rate expressions or making population effects explicit via a context entity
attribute, adding an explicit rest solution to every rule side with a context and finally
identify binding reactions and rewrite them with explicit binding sites.

3.4 Semantics Without Space

3.4.1 Initialization and Basic Simulation Steps

The simulation of an ML-Space model proceeds in discrete steps with a continuous time
base like other stochastic simulations of rule-based models. In non-spatial simulation, all
of those steps deal with timed reactions. In RDME-based simulation, timed events for
diffusion between subvolumes are added. In our spatial approach, movement of spatial
entities is approximated in discrete time steps as well.
ML-Space uses an event queue (i. e. a data structure for efficient storage and retrieval

of data with a total order, here an event time; a.k.a. indexed priority queue, f uture event
l ist, pending event set, and similar names) like the NRM (Gibson and Bruck 2000), but
for different reasons. Spatial entities are treated individually as they inevitably differ
in at least their position attribute. A population-based treatment of them for timed
reactions would require an extra grouping step initially and a recalculation of reactions
for two groups when an entity changes. It makes more sense here to calculate timed
reaction rates for spatial entities on an individual basis so that a change of one entity
requires recalculation of applicable rules for this single entity only. Event times for
non-affected entities stay correct and thus should stay on record, hence the event queue.
Also, the RDME-based simulation supported by ML-Space was implemented following

the Next Subvolume method (NSM; Elf and Ehrenberg 2004, suppl. methods), where the
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Algorithm 3.1. Event scheduling for a new spatial entity at simulation time 𝑡. Applied
to the top-level entity (or entities) at 𝑡 = 0 and then recursively on all others.

1 function scheduleEvents(spatial entity 𝑒, event queue 𝐹𝐸𝐿)
2 𝑑 := 𝑒.diffusion // value of 𝑒’s diffusion attribute

3 𝑣 := 𝑒.velocity // length of 𝑒’s drift attribute value

4 𝐹𝐸𝐿.enqueue(trigger=𝑒,type=move,time= 𝑡+𝑚𝑖𝑛(𝑙𝑠/𝑣, 𝑙
2
𝑠/𝑑),

additionalInfo=𝑡) // 𝑙𝑠-mean step length, add.info=time of last move

5 𝑠 := sum of rates of applicable reactions

6 𝐹𝐸𝐿.enqueue(trigger=𝑒,type=timed,time= 𝑡+ 1
𝑠 (− log 𝑟𝑎𝑛𝑑𝒰(0,1)),*)

7 for each contained spatial entity 𝑐𝑒
8 schedule events(𝑐𝑒)

“Applicable reactions” are first order reactions where the reactant pattern has the same
species as 𝑒 and zero-order reactions where the context pattern has the same species
as 𝑒. * When scheduling timed events (line 6), rates (and the respective reaction and
the matched entities, as returned by Algorithm 3.3) for each reaction with rate > 0 are
stored as additional information for eventual selection of the reaction taking place as in
the Direct method (Equation 2.10).

event queue is used to schedule, for each subvolume, the next event originating from it.
(Despite the name, NSM uses the Direct method to determine the actual next reactions
inside each subvolume.)
The event queue can thus contain three main types of events – a movement step

of a spatial entity, a timed reaction of a spatial entity, or an event in a subvolume
(which may be a timed diffusion or reaction event), and is filled initially as shown
in Algorithm 3.1. The overall simulation loop (including main parts of the spatial steps)
is depicted in Figure 3.2. The actual application of reaction rules will be examined in
the next subsection.

3.4.2 Matching Rules and Scheduling Events

Matching an Entity to a Pattern

Checking whether a concrete entity in the simulation matches a pattern specified on
a left side of a rule consists, intuitively, of testing whether species, attribute values
and binding partners of the entity match the name, ranges and entities given in the
pattern (see Algorithm 3.2). As already shown in previous examples, this matching may
involve storing attribute values of the concrete entity as local variables for subsequent
use in matching and modifications. For the former, consider a species with two numeric
attributes a,b and a rule where these attributes shall have the same value, no matter
which: E(x=a,b==x). For this, patterns and their attributes have to be matched in the
order they are given in the rule.
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Algorithm 3.2. Matching an entity pattern of a rule and a concrete entity.

1 function matchEntity(pattern 𝑝, entity 𝑒, local variables 𝑉 𝑎𝑟𝑠)
2 if 𝑝.species != 𝑒.species
3 return failure // i.e. exit early

4 for each (attribute name 𝑎𝑛, match expression 𝑒𝑥𝑝𝑟) pair of 𝑝
// e.g., a<=2, (x=a)<=2, a in [0...2], a==2x

5 𝑣𝑎𝑙𝑢𝑒 = value of 𝑒’s 𝑎𝑛 attribute

6 if not matchValue(𝑣𝑎𝑙𝑢𝑒,𝑒𝑥𝑝𝑟,𝑉 𝑎𝑟𝑠)
7 return failure

8 if attribute match contains variable name 𝑥 // e.g., x=a, (x=a)<=2

9 add (𝑥,𝑣𝑎𝑙𝑢𝑒) to 𝑉 𝑎𝑟𝑠
10 for each (binding site name 𝑏𝑛, entity pattern 𝑏𝑝) pair of 𝑝
11 if not matchEntity(𝑏𝑝, entity bound to 𝑒 at 𝑏𝑛, 𝑉 𝑎𝑟𝑠)
12 return failure

13 return success // changes to 𝑉 𝑎𝑟𝑠 are kept

The match expression 𝑒𝑥𝑝𝑟 consists of a comparison operator and a numeric expression
or the keyword in and an interval in the example given above (see Table 3.3 rule AM).
The numeric expression may contain variable names which are replaced by the values in
𝑉 𝑎𝑟𝑠 on evaluation. The model parser performs semantic checks to prevent variable use
before definition (binding). For the purposes of binding site matching (line 11), the free
keyword is supposed to match no entity, only the “unoccupied site” placeholder, while
the occ keyword matches everything but this placeholder.

Algorithm 3.3. Matching (a left hand side) of a rule. A mapping of actual entities to
rule patterns and one for values of local variables are returned for later application of
the rule’s changes to the entities and for evaluating the rate expression.

1 function matchReactionRule(rule 𝑟 of order 𝑛, context entity 𝑐𝑒, entities

𝑒1, ..., 𝑒𝑛)
2 𝑉 𝑎𝑟𝑠 = (name,value) mapping, initially empty

3 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 = entity list, initially empty

4 if 𝑟 has context

5 if not matchEntity(𝑟.context, 𝑐𝑒, 𝑉 𝑎𝑟𝑠) // may change 𝑉 𝑎𝑟𝑠
6 return failure

7 add 𝑐𝑒 to 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
8 for 𝑖 := 1 to 𝑛
9 if not matchEntity(𝑖th reactant pattern in 𝑟, 𝑒𝑖, 𝑉 𝑎𝑟𝑠) // -"-

10 return failure

11 add 𝑒𝑖 to 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
12 return (𝑀𝑎𝑡𝑐ℎ𝑒𝑑,𝑉 𝑎𝑟𝑠)
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Figure 3.2. Overview of the main simulation loop. Shaded (blue) boxes indicate
steps unavailable or skipped in continuous-space-only simulation. Subvolume simulation
without dynamic spatial entities, in turn, uses only the “subvolume” path (after the
“switch . . . ”).

To check applicability of a rule, the appropriate entities must be matched to the
pattern on its left hand side. In Algorithm 3.3, this is detailed for a single permutation
of the list of applicable entities. For higher order rules, matching must be attempted
for each permutation as, for example, a collision rule A+B->... may also apply when a
moving B collides with A.
Order (in terms of sequence) also matters for determining which modification will be

applied to which entity if entities of the same species occur on one side of a rule. In

E(a==1) + E(a==2) -> E(a=0) + E(a=3) @ ...

the entity matched to the first pattern will have its value of a set to 0 as a result and
the entity matched to the second will end up with a set to 3 (same order). In

E(a==1) + E(a==2) -> E(a=0) @ ...
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the entity matched to the second pattern will be consumed (and the other will be modified
as above). Ambiguity resolved by considering the sequential order can also arise from
patterns of the same species on the right rule side only:

E(a==1) -> E(a=0) + E(a=3) @ ...

Applying this rule will modify the matched entities attribute to 0 and produce a new
entity with attribute value 3. The general algorithm for matching a rule is shown in Al-
gorithm 3.3.

Rule Instantiation, Network Generation, Matching

Initially, the simulation state corresponds to the initial state given in the model descrip-
tion. In multi-level models like in ML-Rules and ML-Space, it consists of a hierarchy
(a tree in the graph-theoretical sense) of entities, which in the former is also called a
(nested) solution (and the multi-set of all entities on the same level, inside one entity or
the top level, is called a sub-solution).
In ML-Rules, identical subtrees are still grouped for population-based treatment by

the simulator. Rules can apply to arbitrary large subtrees. The result of matching such
a subtree to a rule is called a rule instance or an instantiated rule, where a concrete
entity in a solution is mapped to each reactant pattern in the rule. Since a change
somewhere in the tree by one rule might affect all previously evaluated rules, the process
of instantiating rules is repeated in each step and no event queue is used (as in the Direct
method).
In BioNetGen, with its capabilities to express bindings between entities, the simu-

lation state consists of graph-like structures as well, albeit with a focus on molecular
motifs rather than hierarchies. In the original simulator, the rules (with patterns) are
actually expanded to reactions (for each concrete entity configuration). The full reaction
network can actually be infinite: consider a polymerization where, for example, a styrene
monomer binds to the last styrene molecule in a polystyrene chain. This rule would sub-
sume a reaction each for monomer and a “chain” of length 1 (degenerate/initial case),
monomer and chain of length 2, 3, and so on. For this reason, the reaction network is
generated based on the initially present entities (seed species) and the entities produced
from them by the generated reactions, which is repeated until the process terminates or
a cutoff is reached. The generated reaction network can then be used, for example, as
input to static analysis tools or for ODE simulation (Blinov et al. 2004; Faeder et al.
2005). With NFsim (Network-Free Stochastic Simulator; Sneddon, Faeder, and Emonet
2011), however, there is also a simulator that does the network generation on the fly like
ML-Rules’ instantiation.
In ML-Space, the equivalent to a rule instance or generated reaction would be the

match consisting of the list of entities matched to a rule’s left side (and local variables,
and, in addition to what is shown in Algorithm 3.3, the modifications prescribed by the
reaction for each entity, the entities to be produced as well as propensity calculated by
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Algorithm 3.4. Rule matching for a spatial entity.

1 function matchSpatialTimedEvents(entity 𝑒, zero order rules 𝑅0, first

order rules 𝑅1)

2 𝑀 := list of (rule match,propensity) pairs, initially empty

3 for each rule 𝑟 ∈ 𝑅0

4 𝑚 := matchReactionRule(𝑟, 𝑒) // Algorithm 3.3; 𝑒 is the context (i.e.

surrounding) here

5 if 𝑚 not failure

6 𝑎𝑖 := evaluate(𝑟.rateExpr, 𝑚.𝑉 𝑎𝑟𝑠) * 𝑒.size // rule rate

expression’s unit is per time per volume (or per area in 2D)

7 if 𝑎𝑖 > 0 add (𝑚,𝑎𝑖) to 𝑀
8 for each rule 𝑟 ∈ 𝑅1

9 𝑚 := matchReactionRule(𝑟, 𝑠𝑢𝑟𝑟(𝑒), 𝑒) // 𝑒 is the reacting entity

10 if 𝑚 not failure

11 𝑎𝑖 := evaluate(𝑟.rateExpr, 𝑚.𝑉 𝑎𝑟𝑠)
12 if 𝑎𝑖 > 0 add (𝑚,𝑎𝑖) to 𝑀
13 return 𝑀

evaluating the rule’s rate expression). For timed reaction, the list of these matches is
what is actually stored in the event queue. This event scheduling happens for spatial
entities and on populations in a subvolume.

Scheduling for Spatial Entities

Spatial entities in ML-Space are always treated on an individual basis. Rules are thus
evaluated and reactions scheduled for each one individually (Algorithm 3.4). For sim-
plicity, an early version was designed such that each timed reaction would affect one
spatial entity only to minimize potential event invalidation, i. e. scheduled events in the
queue becoming obsolete due to changes to the affected entity. However, upward and
downward causation cannot be expressed with this limitation in place. Also, collision-
triggered reactions (arising from a move event) can change up to two entities in a way
that affects their scheduled reactions, e. g., due to an attribute value change making
some first-order rules no longer applicable.
Current ML-Space keeps the approach of regarding timed reactions as centered on one

trigger entity. This has the advantage of making invalid/obsolete events in the queue
identifiable by their trigger (many event queue implementations can be easily expanded
with an inverse lookup for efficient removal or requeue of specific events at arbitrary
positions in the queue). It supports upward causation by allowing attribute changes to
a context entity, if present. Consider, for example, an attribute counting the content of
a certain entity type changing in response to a change of one such entity:

Cell()[P(phos=="yes")] -> Cell(phosPCount-=1)[P(phos="no")] @ rDephos
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This reaction would be triggered by the individual P, but still require re-evaluation of
rules applicable to Cell. Now imagine a rule inside a context depending on an attribute
value thereof, e. g., reproduction depending inversely on the number of present entities:

Cell(n=totalPCount)[P] -> Cell(totalPCount+=1)[P+P] @ rRepro*(100-n)

This would constitute downward causation. Changes to the context entity’s attribute
value here affect all contained entities of the given species, meaning that all first-order
rules affecting Ps in this Cell (context) have to be re-evaluated (cf. Figure 3.2 last box
in loop, with double outline).

Rule Matching in Subvolumes

Reactions relevant for RDME-simulation, i. e. subvolumes, are
� zero-order reactions producing dimensionless entities
� first- and higher order reactions with only dimensionless entities on the left rule
side (and also on the right; except for the context, if present).

In ML-Space’ hybrid of meso- and microscopic simulation approach, each subvolume
is located inside a spatial entity (for reasons laid out in the next chapter), which pro-
vides the context entity for context-dependent rules. The subvolume content is stored
in pairs of entities and their amounts. The next reaction event in each subvolume is cal-
culated following the Direct method as shown in Algorithm 3.5, taking into account the
amounts for each reactant and also subvolume’s size (volume) as the volume determines
concentrations, which in turn determine collision frequency and thus likelihood to react.
When matching attributed entities to patterns that need not narrow down all the

entities’ attribute values, special handling is required for cases where reactant patterns
overlap, i. e. can match the same entities. For example, matching the rule E(a==0)+

E(b==1)-> ...in a subvolume that contains 4 E(a=0,b=0)+ 5 E(a=0,b=1)+ 6 E(a=1,b=1),
there would be 9 entities matching the first pattern and 11 matching the second, but
each number includes 5 entities matching both, so the number of possible collisions for
the reaction is smaller than 9 · 11, the product of amounts of entities matching each
reactant (it actually is 84 = 4 · 5 + 4 · 6 + 5 · 6 + 55−1

2
= 9 · 11− 5 · 5 + 55−1

2
).

3.5 Expressiveness Comparison

3.5.1 Contained Entities: Modification or Replacement

Reactions in ML-Space are events related to individual entities (zero/first order) or
interactions with some spatial constraints (collision or same subvolume), i. e. limited
locally. While rules may contain consumption and production, they are mostly about
changes to existing entities. They affect different organizational levels only in cases of
transfer rules or with a context whose attribute changes.
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Algorithm 3.5. Rule matching on subvolume, which contains a population of dimen-
sionless entities. The population 𝑆 (i. e. the subvolume 𝑠𝑡𝑎𝑡𝑒 or content) is given as
set of entity-amount pairs (𝑒, 𝑛). |𝑒 in 𝑆| denotes the 𝑛 for which (𝑒, 𝑛) ∈ 𝑆, i. e. the
amount of 𝑒 in 𝑆 (which can be interpreted as multiset or 𝑒𝑛𝑡𝑖𝑡𝑦 ↦→ 𝑎𝑚𝑜𝑢𝑛𝑡 mapping).

1 function matchSubvolumeRule(subvolume 𝑠𝑣, rule 𝑟)
2 𝑉 𝑎𝑟𝑠 := ∅
3 if 𝑟 has context and not matchEntity(𝑟.context,𝑠𝑢𝑟𝑟(𝑠𝑣),𝑉 𝑎𝑟𝑠)
4 return ∅
5 𝐶 := {(𝑉 𝑎𝑟𝑠,∅)} // set of pairs of matched variables and multiset of

contained entities 𝑒 already matched

6 for each reactant pattern 𝑝 in 𝑟
7 𝐶 := matchSubvolumeReactant(𝑝,𝑠𝑣.content,𝐶) // (see below)

8 𝑀 := ∅
9 𝑣 := 𝑠𝑣.size1−𝑟.order // mass-action volume adjustment

10 for each (𝑉, 𝑐) in 𝐶

11 𝑀 := 𝑀 ∪ {
(︁
𝑉, evaluate(𝑟.rateExpr, 𝑉 ) · 𝑣 ·

∏︁
𝑒∈𝑠𝑣.content

(︀|𝑒 in 𝑠𝑣.content|
|𝑒 in 𝑐|

)︀)︁
}

12 return 𝑀

1 function matchSubvolumeReactant(reactant p, subvolume content 𝑠𝑣𝑐, matches

so far 𝐶𝑏𝑒𝑓𝑜𝑟𝑒)

2 𝐶𝑛𝑒𝑤 := ∅
3 for each (𝑉𝑏, 𝑐𝑏) in 𝐶𝑏𝑒𝑓𝑜𝑟𝑒

4 for each 𝑒 ∈ 𝑠𝑣𝑐
5 if |𝑒 in 𝑐𝑏| = |𝑒 in 𝑠𝑣𝑐|
6 continue with next 𝑒 // all of this entity already matched here

7 𝑉𝑛𝑒𝑤 := 𝑉𝑏 // create copy because next method may modify it

8 if matchEntity(𝑝, 𝑒, 𝑉𝑛𝑒𝑤) // see Algorithm 3.2

9 𝑐𝑛𝑒𝑤 := 𝑐𝑏 ∪ 𝑒
10 𝐶𝑛𝑒𝑤 := 𝐶𝑛𝑒𝑤 ∪ {(𝑉𝑛𝑒𝑤, 𝑐𝑛𝑒𝑤)}
11 return 𝐶𝑛𝑒𝑤

1 function scheduleSubvolumeEvent(subvolume 𝑠𝑣, event queue 𝐹𝐸𝐿)
2 𝑀 := ∅ // for pairs of (rule match, reaction rate)

3 for each subvolume rule 𝑟
4 𝑀 := 𝑀 ∪ matchSubvolumeRule(𝑠𝑣, 𝑟)
5 𝐷 := ∅ // for pair of (entity type, diffusion rate)

6 for each (entity 𝑒, quantity 𝑛) ∈ 𝑠𝑣.content
7 𝐷 := 𝐷 ∪ (𝑒, 𝑛 · 𝑒.diffusion/𝑙2 · |𝑠𝑣.neighbors|)
8 𝑠 :=

∑︀
(_,𝑟)∈𝐷∪𝑀 𝑟

9 𝐹𝐸𝐿.enqueue(trigger=𝑠𝑣,type=subvolume,time=𝑡+ 1
𝑠 (− log 𝑟𝑎𝑛𝑑𝒰(0,1)),𝑀 ∪𝐷)

The scheduling (final lines) works analogously to Algorithm 3.1. 𝑙 is the subvolume
side length (line 7, assuming a uniform square grid; more complex subvolume and grid
patterns can be handled by the ML-Space RDME-based simulator, but not yet defined
via the modeling language).
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There are no spatial constraints in ML-Rules and BNGL, and the view of the system
state as a graph is more important. In the former, a rule schema describes the replace-
ment of the part of the hierarchy/tree that matches the pattern on the left with entities
defined on the right of the rule. In a solution (i. e. system state) of 1 C[2 A + 3 B]

the rule C[A] -> C[] would match because the sole C has an A in it, and on application
all of it would be replaced by a new, empty C, i. e. the other A and all Bs in the for-
mer C would disappear with it. To keep the content, one needs to explicitly specify the
so-called rest solution, e. g., C[A + sol?]-> C[sol?]. This construct allows reaction like
moving the whole content of a compartment out of it, and via the functions on solutions

extension (Nähring 2014; Nähring et al. 2014; Warnke, Helms, and Uhrmacher 2015)
also the splitting of content, e. g., on cell division.
In BioNetGen, where the graphs of interest represent molecule complexes, degrada-

tion rules for one molecule also have the effect of degrading a whole complex4, i. e.
A() -> Trash() would match any A regardless of binding state and would also eliminate
all current binding partners. If the rule explicitly mentions one binding partner, inter-
estingly, it would only match if there are no others, i. e. A().B()-> B() would not match
an A bound to a B and a C. A special keyword can be used to avoid this constraint and
delete individual molecules possibly inside a complex which itself is kept (but most likely
broken up): A() -> Trash() rate DeleteMolecules.
ML-Space instead is based on the intuition that an event in one spatial region should

affect only the immediate vicinity. Thus, rules can only affect the entities matching a
pattern explicitly mentioned, as the entities for side effects similar to the above might
be far away spatially. The only exception are releases of bonds, which may be specified
for one entity without mentioning the binding partner itself (which, however, is in the
immediate vicinity by definition).
For lack of an explicit rest solution, ML-Space cannot express splitting up content of

one entity. However, the example of cell division would lead to further complications with
respect to spatial handling, either requiring odd shapes (e. g., half-spheres) that gradually
change (to smaller spheres) or moving the content around when the surrounding entity
changes (e. g., when one sphere is replaced by two others with equal total volume). When
an entity with content is deleted in ML-Space, the content stays in place and the deleted
entity’s surrounding would become the content’s new surrounding entity. In other words,
the degradation would be interpreted as dissolution of the boundary only. (Attempted
degradation of the top-level entity would lead to an error.)

3.5.2 Binding: Entity or Complex View

With ML-Space allowing no higher than second-order reactions between spatial entities,
only one bond – between the colliding entities – can be established in one reaction, while
in BioNetGen there is no principal limitation preventing establishing multiple bonds
between entities pulled from the (well-mixed) population at once.

4Source: bionetgen.org/index.php?title=BNGManual:Delete_a_Molecule

http://bionetgen.org/index.php?title=BNGManual:Delete_a_Molecule&oldid=6780
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In BioNetGen, a reaction affecting bound entities is viewed as a reaction of the complex
and its definition, e. g., A(a!1).B(b!1)->... for species A and B, each with a binding site
of the same name, is considered a single pattern. In ML-Space, such a reaction is still
viewed as referring primarily to one single entity and the bound one is specified as binding
partner to be matched, e. g., A()<a:B()> ->... or B()<b:A()> ->.... This makes it easier
to schedule reactions along with other first-order reactions affecting either A or B.
ML-Space’ syntax extends the "don’t care – don’t write" approach to binding sites as

those entities mentioned only for matching binding partners do not have to be repeated
on the right of the rule (unlike in BNGL, or with ML-Rules’s 𝜈 workaround). A disad-
vantage is that they cannot actually be mentioned on the right even if this is desired,
i. e. these entities are unavailable for immediate modification.
For example, if the A and B as above each had a phosphorylation site ps, the state of

two molecules’ site can be changed at the same time in BNGL:

A(ps~u,a!1).B(ps~u,b!1) -> A(ps~p,a!1).B(ps~p,b!1)

In ML-Space, this cannot be equivalently expressed, but a workaround with a second
rule to be applied immediately after the first one can be used:

A(ps==u)<a:B(ps==u)> -> A(ps=p) @ ...

B(ps==u)<b:A(ps==p)> -> B(ps=p) @ Infinity

Here, B(ps==u)<b:A(ps==p)> is considered an indication for one half of the desired reac-
tion having taken place already, and the other half is completed by the confluent (infinite
rate) reaction. This is not as elegant as the BNGL format and gets even less so when
B(ps==u)<b:A(ps==p)> is in fact an allowed state (where an attribute indicating “incom-
plete pair phosphorylation” would have to be added to species A and its state set in the
first rule and reset in a third one).
Also, in the ML-Space expression A()<a:B()> the name of B’s binding site at which A

is bound is not and cannot be specified, but this is not a severe limitation as two entities
can have only one bond between them.
The bound entities can effectively also be nested, making matching of arbitrarily large

complexes possible, although not necessarily desirable. For example, if styrene monomers
S can bind other styrenes left and right, the following rules would all match polymer
chains of length three.

1 S()<right:S()<right:S()>> -> ...

2 S()<left:free, right:S()<right:S()<right:free>>> -> ...

3 S()<left:S(), right:S()> -> ...

4 S()<left:S()<left:free>, right:S()<right:free>> -> ...

To be exact, the first two rules would match the first S in the chain of three while the
latter two rules would match the middle one, and rule 1 and 3 would match any such S

in a three molecule segment of an arbitrary large chain while the even-numbered rules
would match only chains of length exactly three (requiring the left binding site of the
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leftmost and the right site of the rightmost molecule to be free).

3.5.3 Symmetric Second-Order Rules and Instantiation

Consider a second-order reaction that requires two entities whose attribute values may
or may not differ. Care must be taken regarding the mass action rate of the reac-
tion. As example for a species (i. e. molecule type in BNGL) S(a:{0,1}), the rule
S() + S() -> ... @ r sums up three reactions (Faeder, Blinov, and Hlavacek 2009, note
29):

1 S(a==0) + S(a==0) -> ... @ ?

2 S(a==0) + S(a==1) -> ... @ ?

3 S(a==1) + S(a==1) -> ... @ ?

If 𝑛0 and 𝑛1 are the amounts of reactants with the respective value of attribute a, then
there are 𝑛0𝑛1 possible collisions for the second reaction to happen, but only 𝑛0(𝑛0−1)

2
for

the first and 𝑛1(𝑛1−1)
2

for the third. BNG automatically corrects the rate of the symmetric
reactions to r/2 when expanding the rule to reactions. However, this is only appropriate
if the modeler did not consider the putative symmetry of the original rule and did not
adjust the rate accordingly already. In that case, it would be more appropriate to adjust
the unsymmetrical (middle) reaction’s rate by factor 2.
The latter would effectively happen in ML-Rules and ML-Space, where, in presence

of entities of both configurations, for the unsymmetrical case the rule would be instan-
tiated/matched twice:

1 S(a==0) + S(a==1) -> ... @ r

2 S(a==1) + S(a==0) -> ... @ r

(although in ML-Rules entity counts have to be incorporated explicitly into the rate,
which may lead to the following pitfall).

3.5.4 Non-linear Dependencies on Amounts

In ML-Space, rate expressions are assumed to give the mass action kinetic rate and the
rate constant is multiplied with the amount of matching reactant(s) when calculating
the time to the next reaction. In ML-Rules, arbitrary expressions are allowed and the
reactant amounts must be specified explicitly. Consider a species with at least one
attribute, for simplicity S(a:{0,1}) again. In the rule

S():n -> ... @ f(#n)

the :n is supposed to capture the (amount of) matching reactants, which can then be used
in the rate expression, e. g., @ r*#n for mass action kinetics. However, in ML-Rules such
a rule schema is instantiated to several rules matching specific reactant configurations,
effectively behaving like
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1 S(a==0):n0 -> ... @ f(#n0)

2 S(a==1):n1 -> ... @ f(#n1)

Now if f is a non-linear function of #n, e.g. involving saturation or squaring, the sum
of rates of the instantiated rules differs from what the modeler would expect from the
single rule (schema)5.
Remembering the example from the previous section, if the collision of two S changes

only one of them, i. e. S():s1 + S():s2 ->S()+ ... @r/2*#s1*#s2, it may be tempting
to omit the pattern occurring on both sides since its amount should also be captured
by the remaining one, shortening the rule to S():s ->... @ r*#s*(#s-1)/2, but this is
correct only if S has no attributes that can differ between entities in the same solution.
BioNetGen initially allowed only mass-action kinetics, but later Michaelis-Menten ki-

netics were added and eventually arbitrary functions6. Species/patterns whose amounts
shall be used as variables in functions must be specified separately (i. e. outside of rules)
as observables. (In James II-based simulators, observation is a concern separate from
the actual simulation steps and thus model properties to be observed are not usually
mixed with the model itself.) It is thus the modeler’s responsibility to correctly define
the amount used in the function, and even possible to use amounts of not directly related
entities.
In ML-Space, similar entity counts can be expressed as attributes of the surrounding

entity (as seen in subsection 3.2.6 and 3.4.2), whose changes need to be explicitly included
in rules, making it also the modeler’s responsibility to specify what is counted.

3.5.5 Collisions from Inside vs. Transfer Out

As mentioned in subsection 3.3.4, by looking at the left side of a rule alone, one cannot
necessarily distinguish transfer and reactions. For example,

1 E(a==0) + C -> E(a=1) + C @ ...

2 E(a==0) + C -> C[E(a=1)] @ ...

are rule with the same left hand side, (1) for a reaction rule for an attribute change of an
E that collides with C and (2) for a transfer rule for an E entering C, including an attribute
change. Both rules need to be evaluated on collision. In contrast, a single entity inside
another on the left hand side can start a transfer rule or a first order reaction rule with
context:

1 C[E(a==1)] -> C + E(a=0) @ ...

5F.Haack and A.M.Uhrmacher, personal communication. The actual example involved cells with a
cell cycle state attribute, among others, and a rule concerning proliferating cells whose rate depended
non-linearly on the total number of proliferating cells. For an ML-Space model, however, entire cells
with a complex internal state make unlikely candidates for representation as dimensionless (i.e. size
0) entities in spatial simulation.

6bionetgen.org/index.php/BNGManual:Functions; thanks to Tobias Helms for discussion of ML-
Rules’s behavior in equivalent cases.

http://bionetgen.org/index.php/BNGManual:Functions
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2 C[E(a==1)] -> C[E(a=0)] @ ...

The latter is a timed rule, while the former, a transfer out of something, can be applied
only when the entity to be transfered moves against the boundary of its surrounding
entity. The syntactic patterns shown – nesting on one side but not the other means
transfer, nesting on both sides gives a context and the actual reaction happens inside
it – was chosen simply because it was deemed the most intuitive way to express these
concepts.
However, this choice leaves no easy way to express a (non-transfer) reaction changing

an entity that moves against its surrounding entity’s boundary, i. e. a collision from
inside. While handling of such reactions could easily be added to the simulator, a
syntactic element to make the rules distinguishable from context reaction rules would
have to be chosen first. This is another example of an edge case requiring special handling
that was not needed for ML-Space’ applications so far.
Note that absorbing boundaries can still be expressed, albeit not very elegantly, by

surrounding everything with an (explicitly) all-consuming entity:

1 E(...) // example model entity

2 Cell(shape:...,size:...,position:(0,0,0)) // desired top-level entity

3 Absorber(...) // actual top-level entity, larger than Cell by at least

twice E’s diameter in each direction, same position as Cell

4 1 Absorber[1 Cell[n E + ...]];

5

6 Cell[E] -> Cell + E @ p=1 // E crosses "absorbing" boundary...

7 Absorber[E] -> Absorber[] @ r=Inifinity //...and is destroyed outside in

the immediately following step
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+ + = 

Figure 4.1. Illustration of spatial aspects (as in Figure 2.2) combined by ML-Space.

As we saw in the previous chapter, the ML-Space modeling language introduces spa-
tial aspects to rule-based languages’ relatively intuitive approach of reaction pattern
descriptions. In describing syntax and rule evaluation semantics, so far we mostly dis-
regarded actual spatial behavior. However, spatial constraints can be quite relevant, as
some reactions may alter the spatial positions of entities and fail when there is no space
at the target, e. g., for binding with given relative positions to already bound entities or
transfer across a boundary with other entities already on the other side. After briefly
revisiting and expanding on the main simulation loop, this chapter will be about the
dynamics of individual-based simulation in continuous space of entities with a size, and
possibly hierarchical nesting.

The ML-Space language is intended to separate the model of the actual system as
much as possible from the detail of the simulation approach, and thus, as stressed before,
applicable to both individual-based and subvolume-(RDME-)based simulation. After a
brief description of how ML-Space handles subvolume simulation alone, the other main
aspect of this chapter will follow: a hybrid method bringing subvolumes and multi-level
individual-based simulation together.

The developed approach is hybrid with respect to species, which can occur anywhere
in the simulated space but must be either of the dimensionless type (in subvolumes)
or spatial (with extensions and hence individuals). A different approach bringing these
two together is the Two Regime method (Flegg, Chapman, and Erban 2011), which is
hybrid with respect to space, i. e. all entities would be simulated as part of subvolume
populations in one part of the space and as individuals (still dimensionless, however) in
the other.
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4.1 Main Loop and Event Types

ML-Space is implemented in James II (Himmelspach and Uhrmacher 2007; Ewald et al.
2010), a Java-based framework for modeling and simulation with a focus on discrete
event methods. The events to process are stored in an event queue (future event list)
and the main loop of the simulation simply consists of taking the event with the least
time stamp from the event queue and handling it according to its type possibly resulting
in new events being scheduled (shown in Algorithm 4.1a and before as flowchart in
Figure 3.2). The initialization involves placing spatial entities and creating subvolumes

Algorithm 4.1a. Overview of symbols/abbreviations used in pseudo-code (top) and
simulation main loop (bottom).

𝐹𝐸𝐿 future event list (event queue)
𝑒𝑣 event from 𝐹𝐸𝐿
𝑡𝑒𝑣 time 𝑒𝑣 is scheduled to happen
𝑒𝑛𝑡, 𝑐𝑒, 𝑠𝑒, 𝑒 model/simulation entities (usually: 𝑠𝑒 – entity surrounding another

relevant entity, 𝑐𝑒 – colliding entity)
𝑒𝑛𝑡.x value of 𝑒𝑛𝑡’s attribute x
𝑠𝑢𝑟𝑟(𝑒𝑛𝑡) entity surrounding 𝑒𝑛𝑡
𝑠𝑝𝑎𝑐𝑒(𝑒𝑛𝑡) space occupied by 𝑒𝑛𝑡
𝑠𝑣 subvolume (grid cell containing dimensionless entities)
𝑠𝑢𝑟𝑟(𝑠𝑣) entity to which 𝑠𝑣 belongs
𝐶ℎ𝑎𝑛𝑔𝑒𝑠 collection of entity moves, attribute and subvolume state changes

during current step
Furthermore, capital initial letters usually denote sets or lists (except diffusion constant
𝐷) while symbol names in small letters denote single objects.

1 𝐹𝐸𝐿,𝐸,𝑆𝑉 := initialize(𝑚𝑜𝑑𝑒𝑙.initialState,...) // see Algorithm 4.1b

2 (𝑡𝑒𝑣, 𝑒𝑣):= 𝐹𝐸𝐿.removeFirst
3 advance simulation time to 𝑡𝑒𝑣
4 while not stop condition fulfilled

5 if 𝑒𝑣.type = move // of spatial entity

6 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑝𝑎𝑐𝑒 := moveEvent(𝐸,𝑒𝑣.trigger,𝑒𝑣.additionalInfo)
7 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑣 := subvolumeEffects(𝑆𝑉,𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑝𝑎𝑐𝑒)
8 else if 𝑒𝑣.type = timedReaction // of a spatial entity

9 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑝𝑎𝑐𝑒 := zeroOrFirstOrderEvent(𝐸,𝑒𝑣.trigger,𝑒𝑣.additionalInfo)
10 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑣 := subvolumeEffects(𝑆𝑉,𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑝𝑎𝑐𝑒)
11 else // 𝑒𝑣 is subvolume event

12 (𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑝𝑎𝑐𝑒, 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑣) :=

subvolumeEvent(𝑆𝑉 ,𝑒𝑣.trigger,𝑒𝑣.additionalInfo)
13 𝐹𝐸𝐿 := rescheduleEvents(𝐹𝐸𝐿, 𝑒𝑣, 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑝𝑎𝑐𝑒, 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑠𝑣)
14 (𝑡𝑒𝑣, 𝑒𝑣):= 𝐹𝐸𝐿.removeFirst
15 advance simulation time to 𝑡𝑒𝑣
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Algorithm 4.1b. Initialization of spatial entities, subvolumes and events.

1 function initialize(initial model state 𝐼, subvolume side length 𝑙𝑠𝑣)
2 𝑇𝐿𝐸 := top-level spatial entities in 𝑚𝑜𝑑𝑒𝑙.initialState
3 𝐸 := ∅
4 for each 𝑠𝑒 in 𝑇𝐿𝐸
5 𝐸 := 𝐸 ∪ placeContainedEntities(𝑠𝑒,𝐼)
6 𝑑𝑠𝑚𝑎𝑙𝑙 := diameter of smallest spatial entity in 𝑚𝑜𝑑𝑒𝑙

7 𝑙𝑠𝑣 := 𝑚𝑖𝑛(𝑙𝑠𝑣, 𝑑𝑠𝑚𝑎𝑙𝑙/
√
𝑑𝑖𝑚) // dim ∈ {2,3} (dimensions); ensures that each

spatial entity contains at least 1 subvolume

8 𝑆𝑉 := createSubvolumes(𝑙𝑠𝑣,𝐸,𝑚𝑜𝑑𝑒𝑙.initialState)
9 scheduleEvents(𝑇𝐿𝐸,𝐹𝐸𝐿) // Algorithm 3.1

10 scheduleSubvolumeEvents(𝑆𝑉 ,𝐹𝐸𝐿) // Algorithm 3.5

11 return 𝐹𝐸𝐿, 𝐸, 𝑆𝑉

1 function placeContainedEntities(entity 𝑠𝑒, initial state 𝐼)
2 𝐸 := ∅
3 for each spatial entity 𝑒 in 𝑠𝑒 as specified in 𝐼
4 if 𝑒.position is defined

5 check that 𝑒 is completely inside 𝑠𝑒
6 check that 𝑒 overlaps no entity in 𝐸
7 else

8 place 𝑒 randomly inside 𝑠𝑒 not overlapping any element of 𝐸
9 add 𝑒 to 𝐸

10 for each spatial entity 𝑒 in 𝐸
11 𝐸 := 𝐸 ∪ placeContainedEntites(𝑒,𝐼)
12 return 𝐸

1 function createSubvolumes(length 𝑙, spatial entities 𝐸, initial state 𝐼)
2 𝑏 := bounding box of top-level entities in 𝐸
3 𝑆𝑉 := split 𝑏 into equal boxes with all sides ≤ 𝑙
4 for each subvolume 𝑠𝑣 in 𝑆𝑉
5 𝑒 := smallest spatial entity in 𝐸 that contains 𝑠𝑣.center
6 if no such 𝑒 exists // top-level entity may be round

7 remove 𝑠𝑣 from 𝑆𝑉
8 else

9 𝑠𝑣.surroundingEntity := 𝑒
10 for each spatial entity 𝑒 in 𝐸
11 𝐶 := dimensionless entities in 𝑒 as specified in 𝐼
12 distribute 𝐶 randomly over all subvolumes surrounded by 𝑒
13 return 𝑆𝑉

Some data structures used internally are simplified above. For example, spatial entities
are not stored in a set 𝐸 but rather a tree-like structure for efficient lookup of top-level en-
tities and containment relations (including which nodes are leaves, for createSubvolumes’
line 5). ML-Space also maintains a mapping of spatial entities to subvolumes belonging
to each (final line).
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for hybrid simulation and is shown in Algorithm 4.1b.
The discrete events, for our purposes, are of one of the following types:
1. position update (i. e. move) of a spatial entity, which may trigger second-order

reactions between spatial entities (Algorithm 4.1a, line 6),
2. first or zero-order reaction involving a spatial entity (line 9))
3. subvolume event (i. e. reaction or diffusion between subvolumes; line 12)
Simulation ends when a certain stop condition is fulfilled. Using the James II frame-

work’s capabilities, this may relate to the execution of a fixed number of steps, the
passing of a given amount of real (i. e. wall clock) time, model-related criteria like the
amount of some species reaching a steady state, but most often the passing of a given
amount of simulation time. (For the latter case, the simulation time is updated and the
stop condition checked before the actual execution of the event as otherwise the simu-
lation would go one step too far and the final simulation state would be marginally off
the desired result.)

4.2 Brownian Motion and (Multi-Level) Interactions

in Continuous Space

As in other stochastic particle-based simulation, move events of spatial entities consist
of updating their position by a random vector and, if this results in a collision, finding
applicable reactions between the colliding entities (Algorithm 4.2). In case of failure, a
new move attempt is made, up to a fixed number of times (usually, four, unless a reaction
was matched but not executed due to having a probability <1). In case of successful
reactions, the moving entity is moved only far enough to touch the reaction partner,
such that there is no overlap at the end of each step. Nested entities, e. g., the content
of a mitochondria or proteins inside a lipid raft, are moved along, staying in the same
relative position to its surrounding (moveAttempt line 2).
Reactions between spatial entities may include
� changes of attribute values (e. g., gain or loss of a phosphorylation), but also
� changes in hierarchical composition, i. e. an entity leaving the compartment that
surrounded it or entering another, i. e. a transfer, as well as

� degradation (i. e. disappearance) and creation of spatial entities.
In case of transfers into (or out) of a compartment with a distinct boundary, e. g.,

cellular organelles, the transferred entity is moved far enough towards (away) from the
center of the entered (left) compartment that it only touches its boundary but does not
overlap it. This may result in collisions (i. e. overlap) with other entities it did not
originally collide with, so the algorithm for dealing with collisions including matching
and applying rules has to be applied recursively until arriving at a situation without or
with unresolvable collisions (see Figure 4.2).
If a move resulted in collision with several entities, the resolution is attempted first

with the largest thereof – if the moving entity enters a larger one, this will resolve
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previous collisions with entities outside the entered one. If the moving entity is larger
than the ones it collides with, an applicable rule must be found for each of those (e. g.,
a moving lipid raft taking up several receptor proteins on its way) or the move attempt
fails (moveAttempt line 33 ff). Newly created spatial entities are positioned in place of
consumed ones, if possible, or near the colliding entity (i. e. touching but not overlapping
it), as the originally moving entity may have moved further away from the original
collision site due to the aforementioned recursive calls. Creating the new entities before
the collision resolution is impractical as (a) collision resolution then might lead to further

Algorithm 4.2a. Move of spatial entities: Illustration of general approach (top; (red)
arrows indicate move of the entity above it; previous position with dotted (gray) and
subsequent position solid (red) outline) and loop for multiple attempts (below).

transfer out
C[E]->C+E

tr. in/uptake
E+C->E[C]

transfer in
E+C->C[E]

reaction
E+C->E+C 

1: Random move of entity (E)

2: Find colliding entities (C)

3: Match rule(s)

4: Resolve collision

1 function moveEvent(spatial entities 𝐸, moving entity 𝑒𝑛𝑡, time of last

move 𝑡𝑙𝑚)
2 Δ𝑡 := 𝑡𝑠𝑖𝑚 − 𝑡𝑙𝑚
3 𝐷 := 𝑒𝑛𝑡.diffusion
4 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝐶𝑜𝑢𝑛𝑡 := 0
5 do

6 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝐶𝑜𝑢𝑛𝑡 := 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝐶𝑜𝑢𝑛𝑡 + 1

7 𝑢⃗ := 𝑟𝑎𝑛𝑑𝑜𝑚𝑉 𝑒𝑐𝑡𝑜𝑟(𝐷,Δ𝑡)
8 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := moveAttempt(𝑒𝑛𝑡, 𝑢⃗, 𝐸)
9 while 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 = ∅ and 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝐶𝑜𝑢𝑛𝑡 < threshold

10 return (𝑚𝑜𝑑𝑒𝑙.𝑠, 𝑐ℎ𝑎𝑛𝑔𝑒𝑠)
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Algorithm 4.2b. Move of spatial entity: single attempt with collision detection.

1 function moveAttempt(entity to move 𝑒𝑛𝑡, move vector 𝑢⃗, other entities 𝐸)

2 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := move(𝑒𝑛𝑡, 𝐸, 𝑢⃗) // update position of entity and all contained

ones

3 if 𝑠𝑝𝑎𝑐𝑒(𝑒𝑛𝑡) ̸⊆ 𝑠𝑝𝑎𝑐𝑒(𝑠𝑢𝑟𝑟(𝑒𝑛𝑡))
4 // collision with surrounding boundary: transfer out or failure

5 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟 := transferOutAttempt(𝑒𝑛𝑡, 𝑠𝑢𝑟𝑟(𝑒𝑛𝑡), 𝐸)
6 if 𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑟 ̸= ∅
7 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟
8 else

9 undo(𝐶ℎ𝑎𝑛𝑔𝑒𝑠, 𝑒𝑛𝑡, 𝐸)
10 return ∅
11

12 𝐶𝑜𝑙 := collisions(𝑒𝑛𝑡,entities in 𝐸 also in 𝑠𝑢𝑟𝑟(𝑒𝑛𝑡))
13 if 𝐶𝑜𝑙 = ∅ // no collision: move successful

14 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠
15

16 𝐶𝑜𝑙 := sortBySizeDescending(𝐶𝑜𝑙)
17 𝑐𝑒 := 𝐶𝑜𝑙.first
18 // collision with other spatial entity: try same-level reaction first:

19 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑙 := reactionAttempt(𝑒𝑛𝑡, 𝑢⃗, 𝑐𝑒, 𝐸)
20 if 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑙 ̸= ∅
21 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑙
22

23 // second, try transfer of moving entity into larger one

24 for each 𝑐𝑒 in 𝐶𝑜𝑙 with 𝑐𝑒.size > 𝑒𝑛𝑡.size
25 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟 := transferInAttempt(𝑒𝑛𝑡, 𝑐𝑒, 𝐸)
26 if 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟 ̸= ∅
27 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟
28 if 𝑒𝑛𝑡.size ≤ 𝐶𝑜𝑙.first.size
29 undo(𝐶ℎ𝑎𝑛𝑔𝑒𝑠, 𝑒𝑛𝑡, 𝐸)
30 return ∅
31

32 // if only smaller colliding entities, try transfering these into 𝑒𝑛𝑡
33 do

34 𝑐𝑒 := 𝐶𝑜𝑙.removeFirst
35 (𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟 := transferInAttempt(𝑐𝑒, 𝑒𝑛𝑡, 𝐸) // note different order

36 if 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟 ̸= ∅
37 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟
38 while 𝐶𝑜𝑙 ̸= ∅ and 𝐶ℎ𝑎𝑛𝑔𝑒𝑡𝑟 ̸= ∅
39 if 𝐶𝑜𝑙 = ∅ // all others incorporated

40 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠
41 else

42 undo(𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
43 return ∅
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Algorithm 4.2c. Move of spatial entity: collision-triggered reaction handling.

1 function reactionAttempt(entity 𝑒𝑛𝑡,move 𝑢⃗, colliding spatial entity 𝑐𝑒,
other entities 𝐸)

2 𝑅𝑎 := ∅
3 for 𝑟 in CollisionRules

4 (𝑀,𝑉 ) :=matchReactionRule(𝑟, 𝑠𝑢𝑟𝑟(𝑒𝑛𝑡), 𝑒𝑛𝑡, 𝑐𝑒) // Algorithm 3.3

5 if 𝑟𝑎𝑛𝑑𝒰(0,1) <evaluate(𝑟.rateExpr,𝑉 )

6 𝑅𝑎 :=𝑅𝑎 ∪ 𝑟𝑢𝑙𝑒
7 𝑅𝑎 := randomizeOrder(𝑅𝑎)
8 while 𝑅𝑎 ̸= ∅ // try to apply rules

9 𝑟 := 𝑅𝑎.removeFirst

10 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := applyChanges(𝑟,𝑀)
11 if 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 does not involve degradation of 𝑒𝑛𝑡 or 𝑐𝑒
12 𝑣⃗ := correctPosReact(𝑒𝑛𝑡, 𝑢⃗, 𝑐𝑒) // resolve overlap from collision

13 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑟𝑟 := moveAttempt(𝑒𝑛𝑡, 𝑣⃗, 𝐸) // recursive call

14 if 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑟𝑟 = ∅
15 undo(𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
16 continue while loop with next rule (if any)

17 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑟𝑟
18 if 𝑟.toCreate = ∅
19 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠
20 else

21 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑟𝑒𝑎𝑡𝑒 := createEntities(𝑟.toCreate, 𝑐𝑒, 𝐸)
22 if 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑟𝑒𝑎𝑡𝑒 ̸= ∅
23 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑟𝑒𝑎𝑡𝑒
24 else

25 undo(𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
26 return ∅ // after trying every applicable rule: reaction failed

1 function transferInAttempt(entity 𝑒𝑛𝑡, colliding spatial entity 𝑐𝑒, other

entities 𝐸)

2 for each 𝑟 in TransferInRules

3 (𝑀,𝑉 ) :=matchTransferRule(𝑟, 𝑒𝑛𝑡, 𝑐𝑒) // analoguous to Algorithm 3.3

4 if 𝑟𝑎𝑛𝑑𝒰(0,1) <evaluate(𝑟.rateExpr,𝑉 )

5 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := applyChanges(𝑟,𝑀)
6 𝑣⃗ := correctPosTransIn(𝑒𝑛𝑡, 𝑐𝑒) // to move 𝑒𝑛𝑡 completely into 𝑐𝑒
7 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑟𝑟 := moveAttempt(𝑒𝑛𝑡, 𝑣⃗, 𝐸) // recursive call

8 if 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑟𝑟 ̸= ∅
9 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑟𝑟

10 else

11 undo(𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
12 return ∅ // after trying every applicable rule: transfer failed

Transfer out attempts are handled analogously. Resolving a collision (correctPos...)
here means finding a vector in the opposite direction of the recent move that resolves
the overlap, while for transfers into (out of) another it means finding a suitable move
vector towards (away from) the other entity’s center.
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Figure 4.2. Collision resolution after a reaction or transfer may result in collisions
with entities that the moving entity did not previously collide with. Hence, the move
resolving the original collision triggers a recursive call to the move attempt handling
(Algorithm 4.2c, reactionAttempt line 13 and transferInAttempt line 7).

collisions with just produced entities and (b) the recursive collision resolution may free
up space needed to place the new entities.
If a triggered spatial change results in an unresolvable collision, all previous changes in

the same step are rolled back and the original move attempt fails (lines 10, 30 and 43).
Therefore, information on all changes is kept until successful completion of the step
or definitive failure. In hybrid simulation, this “rollback information” is also used for
determining consequences on the subvolume level and for correct updating of reaction
and move events for all affected entities, i. e. re-evaluation of first-order events of, and
zero-order events in, entities whose attributes changed.

4.2.1 Reactive Sites and Reaction Probabilities for Interacting

Particles

In actual cells, whether two proteins that can interact actually do so depends on their
proximity and their orientation, as such interactions usually depend only on certain
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subunits or subsequences of the amino acid chain of each one and the respective regions
may not face each other in an appropriate manner for a reaction.

For interactions in well-mixed environments (i. e. in non-spatial or subvolume-based
simulation), the likelihood of particles getting close enough and having the right ori-
entation for reacting is comprised in the reaction rate constant 𝑘. For continuous-
coordinate based spatial simulation, when interaction radii and/or interaction probabili-
ties for point-based (dimensionless) or spherical particles are derived from the well-mixed
rates, the limited interaction area on each entities’ surface is already accounted for, too
(cf. section 2.3.6; the derivation of reaction probabilities after collisions indicated there,
however, are not directly applicable to ML-Space, where particles have hard boundaries,
i. e. are not allowed to come closer than the sum of their radii, and collisions are transient
occurrences, i. e. not associated with any time step or duration ∆𝑡).

For spherical particles, the probability of interaction when close enough can be con-
sidered proportional to the ratio of the reacting regions relative to the total surface of
each if the rotational orientation of each is random (unless the reactive regions have to
be aligned relative to each other in a certain way). If this proportion is known and rota-
tional diffusion1 is assumed to be sufficiently fast, the orientation of spherical particles
can be ignored in simulation without loss of physical accuracy.2

This is no longer true for particles of other shapes: consider a U-shaped particle,
where collision with a reactive site in the “valley” is much less likely than one with a side
at either end. Entity shapes in ML-Space are so far limited to spheres (circles in 2D)
and axis aligned boxes (i. e. cuboids, rectangles in 2D). The latter were needed to allow
rectangular system dimensions, but since system dimensions are specified via a model
entity that is like all other compartments, cuboids can be used for any of them. However,
cuboids in ML-Space, mobile or not, will always have the same orientation throughout
the simulation and reactive collisions happen with the same probability no matter where
on the cuboid surface the reaction took place. Entities with more elaborate shapes and
distinct reactive regions, however, can be represented by spatial entities bound to each
other, i. e. complexes.

1Throughout this work, the term diffusion is primarily used to refer to translational diffusion, i. e.
change of position, not rotational diffusion, i. e. change of orientation.

2In fluids with low Reynolds number (which gives the ratio of inertial to viscous or friction forces),
the mobility 𝜇 of the diffusion coefficient 𝐷 = 𝑘𝐵𝑇𝜇 (cf. subsection 2.3.2) is the inverse of the drag
coefficient 𝜁 = 6𝜋𝜂𝑟 for translational diffusion (Stokes-Einstein equation; 𝜂 is the viscosity of the
medium and 𝑟 the particle’s radius) and 𝜁r = 8𝜋𝜂𝑟3 for rotational diffusion. With mean squared
displacement over time in 𝑑 dimensions given by ⟨𝑥2⟩ = 2𝑑𝐷𝑡 and mean squared angular deviation
for rotational diffusion about a single axis being ⟨𝜃2⟩ = 2𝐷r𝑡, dividing and canceling terms common

in both 𝜁 and 𝜁r eventually leads to ⟨𝑥2⟩
⟨𝜃2⟩ = 4𝑑

3 𝑟2, which indicates that, for example, a particle in

three dimensions moves a distance equal to its diameter in the time it rotates by 1 rad on average.
For non-idealized conditions, the relationship will be less clear-cut, and additional complexity is
added if particles are not exactly spherical – they will rotate faster around axes along which they
are longer, meaning that they have different diffusion constants along different dimensions.
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free–free collision establishes
                  complex orientation

free entities: no orientation 

complex–complex collision: no orientation resolution

complex–free entity collision:
resolution by binding site angles

Figure 4.3. Complex formation for entities with two binding sites on opposite sides,
e. g., E<top:0,bottom:180∘>. Gray arrow arrows indicate a move (attempt) of the adja-
cent entity (old position with darker dotted outline, resulting intermediate position light
gray), light gray arrows indicate additional collision resolution.

4.2.2 Entity Complexes / Binding

With explicit bindings between entities, bound entities can still participate in reactions
independent of their binding status. However, as there is no object representing the
whole complex itself, reactions are local to a subunit of it, i. e. a single entity.
ML-Space’ binding capabilities and binding sites with fixed angles were developed for

an application involving actin molecules forming long straight chains, filaments (sec-
tion 5.4). Binding sites with angles can be given in the model description, and bindings
can be established by collision-triggered reactions (which means that for each entity the
occupied binding site and a link to the bound entity will be stored; included, but not
explicitly mentioned in Algorithm 4.2c reactionAttempt line 10). When the binding en-
tities do not have any other binding partners (i. e. are free), they are simply left where
they are after the original overlap has been resolved previously. The orientation of the
complex is thus established by the direction from which the original collision occurred
(Figure 4.3 bottom left).
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When a new bond is to be established between a free entity and an entity of the com-
plex, the collision resolution (Algorithm 4.2c reactionAttempt line 12) does not move the
free entity to the closest non-overlapping position but places it according to the binding
site angles: when seen from the center of an entity with multiple binding partners, the
angle between the vectors to two bound entities must correspond to the difference of the
angles specified for the respective binding sites (Figure 4.3 top right).
For a later application, mitochondrial networks (section 5.3), we used ML-Space’ bind-

ing capabilities to represent fusion (and fission) of mitochondria, where alignment in
fixed angles was not reasonable, so the capability to bind entities at arbitrary angles
(in the direction from which they approached) was added. However, in neither case
was it necessary to account for mobility of complexes (filaments do not move, and fused
mitochondria movement, if existing at all, was neglected). Movement of complexes is
possible nevertheless. By default (i. e. unless diffusion constants are explicitly set in
rules) a complex’ diffusion constant is the reciprocal of the sum of reciprocals of the
diffusion attribute values of the entities that make up the complex, i. e.

𝐷−1
𝐶𝑜𝑚𝑝𝑙𝑒𝑥 =

∑︁
𝑒𝑛𝑡∈𝐶𝑜𝑚𝑝𝑙𝑒𝑥

𝑒𝑛𝑡.diffusion−1,

which is the expected behavior if diffusion were solely a function of the size (mass) of
each particle.
No rotation is implemented so far in ML-Space, i. e. the orientation of a complex does

not change. This was appropriate for the filament studies, but limits the usefulness of
mobile complexes. Neither is binding between two colliding complexes supported, as
consistent handling of these cases may involve changing the orientation of one complex,
and hence the position of all its entities, even those not directly part of the reaction-
triggering collision. Also, angles (other than 180∘, i. e. straight chains) are currently
only supported for 2D. Angles in three dimensions would require minor changes in the
language’s grammar (more than one number is required for specifying them) and some
implementation for correct positioning of spheres and possibly other shapes.
However, for detailed studies of complex formation at molecular detail, other ap-

proaches will be more suitable, e. g., SRSim (Gruenert et al. 2010) which supports more
flexible angles and also takes forces involved into account.

4.2.3 Regions: Soft Entity Boundaries

Compartments, i. e. spatial entities containing other entities, so far have hard boundaries,
i. e. other entities are either completely inside or outside them. For the same application
that brought binding into ML-Space, we also wanted to express spatial areas where
different properties hold than in others (specifically, actin filaments growing differently
in regions where cells were in contact with a surface structure underneath it than where
they were not). Using compartments as before to model these regions was inconvenient,
as in the modeled system part there is no membrane or anything corresponding to the
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hard boundary that would need to be crossed. We therefore added entities with soft
boundaries, called regions, which means that other, smaller entities may overlap their
boundary after the end of a simulation step. As for the language, this is done via an
additional spatial attribute boundaries (cf. Table 3.2) with a keyword as value, either
soft or hard (the default used if the attribute is not specified).

Transfer rules still need to be given to specify whether an entity can move into or
out of a region. Transfer attempts, i. e. whether an entity moves out of or into a
region (w.r.t. the entity hierarchy), are then determined by whether its center moves
across the region’s boundary. The same criterion is used to determine collisions that
may trigger second-order reactions: a moving entity’s center must move into the region,
it is not enough for an entity to move such that its shape overlaps a part of it (cf.
Algorithm 4.2b line 12). After a successful transfer into or out of, or a reaction with a
region, no overlap resolution is performed (i. e. Algorithm 4.2c reactionAttempt line 12 ff.
and transferInAttempt line 6 ff. are skipped).

Since the regions were originally devised to represent static areas, support for spatial
interactions between is limited. Regions, unlike compartments (hard-bounded entities),
may not overlap other regions, unless one is contained within another to begin with.
Otherwise, for entities situated in the space where two regions overlap, it would be am-
biguous to which they belong. Also, regions will take their content (i. e. all entities
with center inside them) with them, which may lead to entities on their boundary col-
liding with other entities outside them. These will not result in successful reactions as
collision-triggered reactions can only be between the current event’s moving entity itself
and another one, not triggered by an entity that was just moved along.

4.3 Mesoscopic Reaction-Diffusion Simulation with

Non-moving Boundaries

One of ML-Space’ initial goals was to develop a language that is not limited to a par-
ticular spatial simulation method. Our corresponding simulator thus can be used for
reaction-diffusion simulation, too. Then, the simulated system (defined by one immobile
spatial entity with shape and non-zero size) is subdivided by a regular lattice where each
lattice site (subvolume) contains zero to many dimensionless entities (i. e. of size zero).
Positions of entities are thus not known exactly in continuous space, only with precision
up to subvolume size. Therefore, it does not make sense to distinguish between entities
of the same species and with equal attribute values in the same subvolume. Thus, the
simulator treats those groups of entities as populations rather than individuals. Diffusion
takes place as jumps between neighboring subvolumes and reactions are performed by
the classical stochastic simulation algorithm, treating each subvolume as a well-stirred
system. This part of the ML-Space simulator was realized in analogy to the Next Sub-
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Algorithm 4.3. Diffusion of an entity from a subvolume to a neighbor belonging to a
different spatial entity (dotted circle/ solid subvolume outline) can have three different
outcomes: transfer (with possible attribute changes for both participants; rule above the
illustration’s center), reaction (with attribute changes, consumption or replacement of
diffusing entity, but no actual change in subvolume; rule indicated below center), or no
effect, i. e. effectively a reflective boundary collision.

+

+

+

1 function boundaryCollision(origin subvolume 𝑠𝑣𝑜, target 𝑠𝑣𝑡,entity 𝑒)
2 if 𝑠𝑢𝑟𝑟(𝑠𝑣𝑜) = 𝑠𝑢𝑟𝑟(𝑠𝑢𝑟𝑟(𝑠𝑣𝑡))
3 𝑅 := 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐼𝑛𝑅𝑢𝑙𝑒𝑠 // e.g. E + S -> S[E]

4 𝑒𝑛𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 := 𝑠𝑢𝑟𝑟(𝑠𝑣𝑡)
5 else if 𝑠𝑢𝑟𝑟(𝑠𝑢𝑟𝑟(𝑠𝑣𝑜)) = 𝑠𝑢𝑟𝑟(𝑠𝑣𝑡)
6 𝑅 := 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑂𝑢𝑡𝑅𝑢𝑙𝑒𝑠 // e.g. S[E] -> S + E

7 𝑒𝑛𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 := 𝑠𝑢𝑟𝑟(𝑠𝑣𝑜)
8 else return ∅ // no transfer at all if several entity boundaries needed

to be crossed in the same step

9 for each 𝑟 in 𝑅
10 (𝑀,𝑉 ) := matchTranferRule(𝑟, 𝑒𝑛𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, 𝑒) // as in Algorithm 3.3

11 if 𝑟𝑎𝑛𝑑𝒰(0,1) <evaluate(𝑟.rateExpr,𝑉 )

12 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑢𝑟𝑟 := applyChanges(𝑟,𝑀, 𝑒𝑛𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)
13 𝑒𝑐ℎ𝑎𝑛𝑔𝑒𝑑 := applyChanges(𝑟,𝑀, 𝑒)
14 𝑠𝑣𝑜.content := 𝑠𝑣𝑜.content ∖ {𝑒}
15 𝑠𝑣𝑡.content := 𝑠𝑣𝑡.content ∪ {𝑒𝑐ℎ𝑎𝑛𝑔𝑒𝑑}
16 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑢𝑟𝑟 ∪ {𝑠𝑣𝑜, 𝑠𝑣𝑡}) // transfer in/out success

17 if 𝑠𝑢𝑟𝑟(𝑠𝑣𝑜).size >= 𝑠𝑢𝑟𝑟(𝑠𝑣𝑡).size // try reaction without transfer

18 𝑐𝑒 := 𝑠𝑢𝑟𝑟(𝑠𝑣𝑡) // colliding spatial entity (reaction partner)

19 for each 𝑟 in CollisionRules

20 (𝑀,𝑉 ) :=matchReactionRule(𝑟, 𝑠𝑢𝑟𝑟(𝑠𝑣𝑜), 𝑒, 𝑐𝑒) // Algorithm 3.3

21 if 𝑟𝑎𝑛𝑑𝒰(0,1) <evaluate(𝑟.rateExpr,𝑉 )

22 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑢𝑟𝑟 := applyChanges(𝑟,𝑀, 𝑐𝑒)
23 𝑒𝑐ℎ𝑎𝑛𝑔𝑒𝑑 := applyChanges(𝑟,𝑀, 𝑒)
24 𝑠𝑣𝑜.content := 𝑠𝑣𝑜.content ∪ {𝑒𝑐ℎ𝑎𝑛𝑔𝑒𝑑} ∪ createEntities(𝑟.toCreate) ∖

{𝑒}
25 return 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑢𝑟𝑟 ∪ {𝑠𝑣𝑜}) // reaction success

26 return ∅ // failure: no matching rule found
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volume method (Elf and Ehrenberg 2004, suppl. methods) with minor changes.3

The main addition here is that subvolumes may belong to different biological entities,
e. g., the (cytosol of a) cell or nucleus of a cell. In the ML-Space model, these may be
defined like spatial (i. e. non-zero size) entities for continuous-space simulation. Each
subvolume is then assigned to the spatial entity (called surrounding entity subsequently)
that includes its centre and which is lowest in the nesting hierarchy. When a diffusion
involves two subvolumes, 𝑠𝑣𝑜, 𝑠𝑣𝑡, belonging to different surroundings, the diffusing par-
ticle 𝑒 is considered to collide with their boundary and a reaction, uptake etc. may take
place (Algorithm 4.3 boundaryCollision; cf. Elf and Ehrenberg 2004, suppl. methods,
step 9 b/c).
The size of the lattice must thus be chosen such that the circumscribed sphere (or cir-

cle) of each subvolume is smaller than the smallest spatial entity to ensure that at least
one subvolume belongs to each entity. For spherical entities, this means that a subvol-
ume’s diagonal must be smaller than the respective sphere’s diameter (Algorithm 4.1b
initialize line 6).
In other words, all species in ML-Space must either be modeled as dimensionless enti-

ties covered by population-based simulation or as spatial entities larger than a subvolume.
There cannot be spatial entities that occupy a part of a single subvolume and take up
space otherwise available to the subvolume’s population. Direct interaction of spatial
and population-based entities happens only through the latters’ diffusion attempts.

4.4 Hybrid Spatial Entities and RDME Simulation

The key contribution of ML-Space is a combination of reaction-diffusion simulation with
the Brownian motion simulation of spatial, possibly nested entities. Spatial events
(moves and first/zero-order reactions of spatial entities) and non-spatial events (i. e.
triggered at the subvolume level) are now scheduled in the same event queue. In each
simulation step, the next event is dispatched to and handled by the respective part of
the simulator.
Moving spatial entities in our approach takes their content with them. This does not

only apply to nested spatial entities, but also to the content of the subvolumes that
belong to the entity. Therefore, the number of subvolumes belonging to (or overlapped
by) a spatial entity should not change by a move. For this, we move spatial entities
now only in steps corresponding to the grid size in each dimension (see illustration in
Algorithm 4.4a; cf. Algorithm 4.2 move line 7) and vary the time between movement
events accordingly, e. g., by recording position updates in a “virtual position” in continu-
ous space and changing each entity’s actual position only when it deviates by more than
half a grid cell side length in any direction.
3Most notably, a random number 𝑟 ∈ 𝒰 [𝑎, 𝑏] used only for a binary decision (i. e. to test whether it is
above a certain threshold, 𝑟 > 𝑡 or 𝑟 ≤ 𝑡) can be rescaled an re-used (i. e. 𝑟𝑛𝑒𝑥𝑡 = (𝑟 − 𝑡) 𝑏−𝑎

𝑏−𝑡 + 𝑎 or

(𝑟− 𝑎) 𝑏−𝑎
𝑡−𝑎 + 𝑎). This is not done in ML-Space as random number generation was never found to be

a significant part of the overall calculation time.
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When a spatial entity moves onto a subvolume that did not previously belong to it, this
is treated as if all non-spatial entities within this subvolume collided with the moving
entity (i. e. by invoking boundaryCollision from Algorithm 4.3 with effectively the same
source and target). Entities of the subvolume that cannot enter or cannot react with
the moving spatial entity are “pushed” into the closest neighboring subvolumes that still
belong to the original surrounding entity. This is outlined in Algorithm 4.4a. After that,
reaction and diffusion events need to be rescheduled for subvolumes in moved spatial
entities (marked with grid hatching in Algorithm 4.4a illustration, right), but also those
outside into which non-spatial entities were pushed (x-mark hatching) and those from
which a spatial entity moved away (diagonal hatching; since these are now empty, only
zero-order reactions in their new surrounding entity must be evaluated).
Subvolume events can have only limited effects on the spatial entity level, namely if

such an event involves a diffusion attempt between subvolumes with different surrounding
entities. If the involved spatial entity’s attribute values were changed in the process
(which can happen already in the subvolumes-with-fixed-boundaries simulator of the
previous section, cf. Algorithm 4.3 line 12), its respective first- and zero-order reaction
events must be recalculated. This is done only after all direct effects of an event on
the spatial entity and subvolume level have been applied (as shown in the flowchart of
Figure 3.2), with the changed model components (spatial entities, subvolumes) being
collected on the way (cf. 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 in all pseudocode snippets).
The architecture of the ML-Space does not allow subvolume events to trigger, for

example, the direct creation of spatial entities, as the part that handles continuous
space always comes before the subvolume part when handling a single event. A similar
effect like the creation of a spatial entity S from dimensionless entities N1, N2 in a context
C, i. e. C[N1 + N2]-> C[N1 + N2 + S]@r, could be achieved with a helper attribute of the
context, here createS, and an additional, immediate (confluent) rule,

Algorithm 4.4a. A move of a spatial entity results in content of newly reached sub-
volumes being either taken up (if there is an applicable reaction rule – dark filled circle
marked * in illustration) or being pushed away (bright cricles/arrows). The content of
the spatial entity is moved along (dark arrows).

+
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1 function subvolumeEffects(subvolumes 𝑆𝑉 , spatial 𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
2 // displacement of NSM entities by newly created entities

3 for each 𝑒𝑛𝑡 in 𝐶ℎ𝑎𝑛𝑔𝑒𝑠.createdSpatial
4 for 𝑠𝑣𝑜 𝑖𝑛 occupiedSubvolumes(𝑒𝑛𝑡, 𝑆𝑉 )
5 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ pushContentToCloseSVs(𝑠𝑣𝑜, 𝑠𝑢𝑟𝑟(𝑒𝑛𝑡))
6

7 for each (𝑒𝑛𝑡, 𝑢⃗) in 𝐶ℎ𝑎𝑛𝑔𝑒𝑠.moves
8 // first, treatment of subvolumes newly occupied by 𝑒𝑛𝑡
9 𝑆𝑉𝑜 := occupiedSVsBeforeMove(𝑒𝑛𝑡, 𝑆𝑉,−𝑢⃗)

10 𝑆𝑉𝑛 := occupiedSubvolumes(𝑒𝑛𝑡, 𝑆𝑉 ) ∖ 𝑆𝑉𝑜

11 for each 𝑠𝑣𝑛 in 𝑆𝑉𝑛

12 𝑠𝑣𝑡𝑚𝑝 := new sv(𝑠𝑣𝑛.content, 𝑠𝑢𝑟𝑟(𝑒𝑛𝑡)) // dummy sv to store old

content and previous surrounding entity

13 𝑠𝑣𝑛.content := ∅
14 for each 𝑒 in 𝑠𝑣𝑡𝑚𝑝.content // try uptake of previous sv content

15 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ boundaryCollision(𝑠𝑣𝑡𝑚𝑝, 𝑠𝑣𝑛, 𝑒) // code 4.3

16 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ pushContentToCloseSVs(𝑠𝑣𝑡𝑚𝑝, 𝑠𝑢𝑟𝑟(𝑒𝑛𝑡), 𝑢⃗)
17 // then, moving content of others along with 𝑒𝑛𝑡
18 for 𝑠𝑣𝑜 in 𝑆𝑉𝑜

19 𝑠𝑣𝑡 := moveTarget(𝑠𝑣𝑜, 𝑢⃗)
20 𝑠𝑣𝑡.content := 𝑠𝑣𝑡.content ∪ 𝑠𝑣𝑜.content
21 𝑠𝑣𝑜.content := ∅
22 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ {𝑠𝑣𝑡}
23

24 // dimensionless entities created by spatial rules

25 for each (𝑒𝑐𝑟𝑒𝑎𝑡𝑒𝑑, 𝑒𝑛𝑒𝑎𝑟, 𝑒𝑠𝑢𝑟𝑟) in 𝐶ℎ𝑎𝑛𝑔𝑒𝑠.createdDimensionless
26 𝑠𝑣𝑡 := random 𝑆𝑉 in 𝑒𝑠𝑢𝑟𝑟 close to 𝑒𝑛𝑒𝑎𝑟
27 𝑠𝑣𝑡.content := 𝑠𝑣𝑡.content ∪ {𝑒𝑐𝑟𝑒𝑎𝑡𝑒𝑑}
28 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 := 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∪ {𝑠𝑣𝑡}

For moving subvolume content along with a moving spatial entity (line 18), ML-Space
sorts subvolumes in a queue to start with those subvolumes next to those newly occupied
by the entity (line 10), continuing with subvolumes next to these, and so on, to avoid
erroneously moving content into subvolumes not yet updated (and thus mixing old and
new content). pushContentToCloseSVs first finds, for a given subvolume, the closest
subvolume(s) in the given surrounding entity and in the given direction, if present as
third parameter (where proximity is measured by their center’s distance and direction by
scalar product of the center-to.center and given vector; still there may be several “close”
subvolumes by this definition). Then, it distributes the original subvolume’s content
equally among these (with random placement of marginal entities).
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C[N1+N2] -> C(createS+=1)[N1+N2] @ r

C(createS>1)[] -> C(createS-=1)[S] @ Infinity

However, the newly created S would be placed randomly inside C, not necessarily near
the location of the original reaction, i. e. the subvolume containing the relevant N1 and
N2.

4.5 Implementation

4.5.1 Foundations

The ML-Space simulator was implemented as part of the James II framework (Him-
melspach and Uhrmacher 2007; Himmelspach 2007; Ewald et al. 2010) in The Java

Programming language, mostly while 1.7 (a.k.a. Java 7; Gosling et al. 2013) was the
current version, but has since been migrated to Java 8. ANTLR, ANother Tool for Lan-
guage Recognition, v3 (Parr 2007) was helpful for generating the parser that translates
models in the ML-Space language to Java code that serves as input for the simulator.
The James II framework was developed to aid the implementation of new simulation

algorithms with focus on proper separation of concerns, here the specification of the
model and the actual code of the simulator, and to help facilitate re-use of components
needed in many different types of simulation via a plug-in based architecture. There are,
as of 2016, more than 100 plug-in types in the core alone, not all relevant to ML-Space.
Relevant components include methods to generate random numbers from a given dis-
tribution (as pseudo-random number generators usually deliver only numbers uniformly
distributed on the interval [0, 1)) and event queues, also known as future event lists or
sets (Rönngren and Ayani 1997; Brown 1988).
For the simulation execution mechanism of James II, only a method for single simu-

lation steps needs to be implemented in a simulator-specific way, the loop for executing
the simulation step-wise and checking whether a stop condition is fulfilled is already part
of the framework (cf. Algorithm 4.1a line 4).4

4.5.2 Main Architecture

James II provides the basic interface (actually a base class) for the simulator and a whole
framework to run simulations. ML-Space consists of implementations of a common base
class (see Figure 4.4) for the continuous space simulator, for the subvolume simulator,
and for the hybrid simulator that contains one instance of each of the former, acting
like a coordinator (similar to Jeschke and Uhrmacher 2008, although the coordinated
components there were not made for stand-alone use).

4This may sound like it limits James II to discrete-event or discrete step-wise formalisms, but it should
be noted that, for example, numerically solving differential equations also involves small, discrete
steps for approximating points on a continuous curve that can usually not be given explicitly.
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Figure 4.4. UML diagram of the main components of ML-Space’ implementation
(simplified). Non-shaded (white): classes of the simulator implementation. Shaded (red)
left: plug-ins, i. e. exchangeable subunits of a part of the simulator. Shaded (green) top
right: classes related to the model representation.

The subvolume simulator is actually implemented via two classes, one simply repro-
ducing the Next Subvolume method of Elf and Ehrenberg (2004) ignoring spatial enti-
ties, and one that overrides the diffusion handling method, including a check whether
the involved subvolumes belong to different spatial entities and handling it according
to Algorithm 4.3. (In the actual code, the continuous space simulator is split into two
classes as well, one handling zero- and first-order reactions and event scheduling, and
one extending this handling the actual spatial aspects, but this separation was mainly
made to reduce code complexity per class, not from a conceptual point related to the si-
mulation algorithm. Also, for historic reasons, the term processor is used synonymously
with simulator in James II, including for ML-Space, unlike shown in Figure 4.4).

The hybrid simulator is composed of a continuous-space and a subvolume simulator,
i. e. contains an instance of each. This pattern allows for exchange of each part, e. g.,
replacing the current subvolume simulator by one employing spatial 𝜏 -leaping (Jeschke,
Ewald, and Uhrmacher 2011) or by a (deterministic) PDE-approximating scheme (e. g.,
as in Kossow et al. 2015).

Observation, e. g., recording of entity count trajectories or complex sizes, but also
graphical output, is handled via separate classes that are notified of changes by the sim-
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ulator after the simulation step has completed (i. e., here, passed the 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 structure
created in the respective step).

4.5.3 Plug-Ins: Customizable Simulator Parts

Several tasks to be executed during the simulation can be performed in different ways.
To accommodate this, James II contains a plug-in and dependency injection system as
well as implementations for tasks common to many different simulation approaches, e. g.,
generation of (pseudo-) random numbers for stochastic simulation or transformation of
these random numbers, customarily uniformly distributed on [0, 1), to a different random
distribution, e. g., the Gaussian distribution (see Table 4.1; for other transformations,
e. g., from 𝒰(0, 1) to 𝒰(𝑎, 𝑏) or to an exponential distribution, there is only one reasonable
way).

Event Queues

As mentioned, ML-Space schedules event using a priority queue data structure, a.k.a.
future event list/set or queue. It stores elements (events) along with a numerical value
(priority, here: time stamp) and allows efficient retrieval of the highest priority (least
time stamp) element (dequeue). James II offers a wide variety of event queue im-
plementations (most of them developed when its focus was still on simulating DEVS
models). While some versions that can run dequeue and subsequent enqueue operations
in amortized constant time (𝑂(1), cf. Brown 1988), the rescheduling of existing events
(requeue) that we usually need with each collision and subvolume diffusion event is in
𝑂(log 𝑛) for requeue-optimized implementations (and in 𝑂(𝑛) otherwise, where 𝑛 is the
number of contained events; requeue-optimization here usually means adding an inverse
lookup from events to their previously scheduled time to subsequently remove them
from whichever data structure they are stored in). In our ML-Space experiments, we
saw little difference in simulation speed when exchanging the event queue as long as it
was requeue-optimized. In particular, we do not see a significant performance difference
between event queues with amortized 𝑂(1) dequeue and those with 𝑂(log 𝑛) dequeue
operations.

Position Updates

The handling of vectors, i. e. positions and displacements, to make the simulator im-
plementation independent of whether the actual model uses two- or three-dimensional
coordinates and whether periodic boundary conditions are used or not, is another aspects
for which generalized interfaces with several implementations exist (but here, different
implementations for different behavior).
ML-Space employs the strategy pattern, i. e. different implementations for achieving

one kind of behavior, for random vectors, i. e. move steps in ML-Space, for example.
Creating 𝑑-dimensional vectors with lengths following a given normal distribution and
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Table 4.1. Selected James II plug-in types and implementations relevant for ML-
Space simulation. Implementations selected by default (and used for most applications
of chapter 5) in bold. The first three types are part of the James II framework, the
latter two are specific to ML-Space.
Plug-in type Implementation Reference/Remarks

(Pseudo-) random Mersenne Twister Matsumoto and Nishimura (1998)
number generator Linear Congruential fast, long established, but not very

good (Park and Miller 1988), Java default
. . .many more, not all included public version of James II
e. g., WELL (Panneton, L’Ecuyer, and Matsumoto 2006)

Normal Polar method Marsaglia and Bray (1964)
(Gaussian) Box-Muller Box and Muller (1958)
distribution (CDF inversion) (approximating Φ−1 is either inaccurate

or slow, cf. Thomas et al. 2007)
Event queue Calendar queue Brown (1988, requeue-optimized version)

TreeMap-based own impl., sometimes marginally faster
Priority queue Java impl., not requeue-optimized
. . .many more, not all included public version of James II
e. g., MList (Goh and Thng 2003)

Position updater scaled uniform
(continuous space)

𝑥1. . .𝑥𝑑 ∈ 𝒰(−1, 1), vector scaled to
length from 𝒩 (0, 2𝑑𝐷∆𝑡)

independent (cont.) 𝑥1. . .𝑥𝑑 ∈ 𝒩 (0, 2𝐷∆𝑡)

polar/spherical
(continuous space)

length from 𝒩 (0, 2𝑑𝐷∆𝑡), angle from
𝒰(0, 2𝜋) (if 𝑑 = 3, another angle 𝜑 ∼
cos−1 𝒰(−1, 1)), conversion to Cartesian
coordinates

discrete step

(hybrid)
steps in line with subvolume grid size,
e. g., by wrapping a continuous space up-
dater and applying updates only when a
threshold distance is exceeded

Spatial index uniform grid (see text)
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random direction (cf. subsection 2.3.2) can be achieved generating 𝑑 normally distributed
(pseudo-) random numbers or 𝑑 uniform and one normal random number, possibly at
different computational costs, although in practice we find the time difference to be in
the single digits percentages.
The continuous-space simulator updates entity positions in fixed time steps by default.

Determining a reasonable time step, i. e. the time in which a particle with given diffusion
and drift (omitted in the last column of Table 4.1) would move a pre-defined distance
on average, is also a responsibility of the position update method. This is an extension
point that will be relevant if one wants to extend ML-Space by GFRD-like behavior,
where the position updates happen not in fixed-time, same-mean-displacement steps
but are flexible with distance and time depending on the proximity of reaction partners
(van Zon and ten Wolde 2005a, see also subsection 2.3.2). It also allows us to vary the
(then no longer fixed) time steps slightly to avoid many particles with the same diffusion
constant moving at the exact same time steps, alternating with groups of particles with
a different diffusion constant.
In hybrid simulation, on the other hand, spatial entities move only in steps corre-

sponding to the subvolume grid. Without this, the amount of subvolumes belonging to
an entity (determined by whether the entity’s shape includes a subvolume’s center) could
change due to a move, requiring special handling of the dimensionless entities contained
in the spatial entity (if at all possible in a realistic way). Discrete steps are achieved
by internally keeping track of an entity’s continuous-space position but returning only
discrete steps to the simulator, which may mean null vector "updates" as long as an
entity does not stray too much from its previous position. This approach requires us to
also discretize vectors generated by the simulator, e. g., those for resolving collisions (Al-
gorithm 4.2a line 12), i. e. adjust it (which, for the continuous-space position updaters,
is the identity operation).
An unfortunate but inevitable result of this adjustment is that the hybrid simulator

and bindings between spatial entities do not go well together, as it may introduce small
gaps between the (continuous-space) shapes of entities whose overlapped subvolumes
partially border each other. It will also interfere with correct binding angles as the
grid-related adjustment will very rarely be in the direction required of the binding-
angle-related correction determined by the continuous-space simulator.

Collision Detection

Finally, a component crucial for simulation speed is the collision detection. The im-
plementation of a collision check for two concrete entities is the responsibility of the
Shape class (cf. SpatialModelComponent in Figure 4.4), which is straight-forward for two
spheres (distance of centers < sum of radii) or box-box interactions and follows well-
established methods for box-sphere checks (Arvo 1990). When adding further shapes to
the implementation (e. g., ovals, cylinders/rods) it will be necessary to add collision tests
for all already implemented shape types. A naïve approach of pairwise collision checks
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between all 𝑛 entities on one organizational level has time complexity 𝑂(𝑛) per move of

an entity and thus does not scale well with the number of particles. Spatial indexing or
spatial partitioning methods are an important field of research in computer graphics and
game development and can help here as well. While ML-Space also contains an abstrac-
tion (i. e. an interface) that allows implementation of different approaches, so far there
is only one: a grid-based approach, using a static, implicit, uniform grid (cf. Ericson
2004, ch. 7.1; not to be confused with the subvolume grid). The continuous space here
is subdivided into a number of roughly square/cubic grid cells and for each grid cell,
the overlapping entities are recorded. Collision checks then need to be performed only
between entities in the grid cell(s) of the entity last moved or added. (Our rigid-body,
positive-size entities can belong to several grid cells when they are on a boundary – up to
2𝑑 in 𝑑 dimensions if smaller than box size. Smoldyn – Andrews and Bray 2004; Andrews
2012 – which uses point-based, dimensionless entities, also employs a grid for detection
of particles closer than their respective interaction radius but always needs to check for
interaction partners in all neighboring cells, and if an interaction radius exceeds the cell
size, some interactions may be missed.)
The collision check effort for each move can be reduced to . 𝑂(

√
𝑛) with this approach

if the entity density and sizes are not too inhomogeneous. To see this, take a grid of&
√
𝑛

cells and consider how many entities each will contain. With a smaller grid size, chosen
such that there is a small constant maximum number of entities in each cell, collision
detection for a single moving or created entity can theoretically be performed in constant
time (𝑂(1)), but the overhead for spatial entities located on the boundary of grid cells
increases, especially when there can be larger entities that can fill multiple cells entirely.
Methods that may address inefficiencies of the above collision detection approach for

wildly inhomogeneous entity densities or offer general speedup include dynamic grids
(quad-/octrees) or BSP-trees (Ericson 2004) or space-filling curves (e. g., Gargantini
1982; Hale and Youngblood 2014), but while micro-optimizations of this part of the
simulator are an interesting research sub-topic, they were not a priority so far.

4.5.4 Experimental Framework and Simulation Setup

The aforementioned simulator and its components are the means to simulate an ML-
Space model one single time. When running a simulation multiple times with the aim
of performing model parameter scans, component tests (e. g., to determine the effect of
the chosen spatial step size on the results) or simply averaging multiple simulation run
results – always an important aspect in stochastic approaches – we speak of a simulation
experiment.
Parts of what Kappa and BioNetGen include in the model is comprised in the experi-

ment setup here: the observables. The observation mechanism in James II is relatively
independent of the simulator, which would make it less convenient to intertwine observ-
ables with the model in the way the former languages do, where a pattern to observe can
be specified and the amount of entities matching the pattern can be used during model
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Listing 4.1. Example experiment configuration file for the gene regulary network model
of Listing 3.1, varying one model parameter (diffusion D) and one simulator parameter
(subvolume side length 𝑙𝑠𝑣, cf. Algorithm 4.1b) for a total of 6 simulation runs.

1 [Overridden model variables]

2 ; Variable name = comma-separated list of values

3 D = 0.01,0.6

4

5 [Simulation parameters]

6 parallelthreads = 2

7 simulationendtime = 1200

8 subvolumesize = 0.25,0.5,1

9

10 [Observation]

11 observationtargets = Protein,mRNA IN Nucleus,Cell;Gene=site

12 ; ^ count proteins in nucleus, proteins in cell, mRNA in nucleus and

13 ; mRNA in cell; also record attribute value of "site" for all genes

14 ; every ... sim time units:

15 snapshotinterval = 2

16 outputdirectory = Hes1sim

simulation directly, e. g., in reaction rate expressions.
The experiment setup also contains settings for the simulator, e. g., target step size

for continuous-space position updates and subvolume side lengths. One can also run
parameter scans by associating constants specified in a model with one or more values
(possibly) different from the one in the model. Doing this for several parameter values
will result in all combinations of these parameters being simulated (full factorial). (In
BNG, this is part of the actions also usually included in the model file.)
The simulation setup can be specified in a James II-specific Java file. However, this

is somewhat cumbersome and probably unintuitive for ML-Space users without a com-
putational background. The former, but not so much the latter is addressed by SESSL
(Simulation Experiment Specification via a Scala Layer; Ewald and Uhrmacher 2014),
which aims to generalize setups for various simulation tools. Limited SESSL bindings for
ML-Space were used only briefly for parameter optimization experiments. (ML-Rules’s
SESSL interface is significantly more advanced.) Instead, the current ML-Space simu-
lator accepts a simple configuration file (according to the somewhat standard .ini/cfg

format, see Listing 4.1 for an example) or the same key-value pairs as command line
arguments. (The downloadable version contains a short manual, and the tool displays a
list of options when run without argument.)
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The initial version of an ML-Space simulator was tested with a model of receptor pro-
teins on a membrane and lipid rafts, which are glycolipoprotein microdomains of the
membrane in which proteins may behave differently (Bittig et al. 2011; with subvolume
and continuous-space capabilities but not yet hybrid in the current sense).

The first novel biological application were investigations of actin filament formation,
specifically which assumptions can explain or contribute to an explanation of different
actin filament patterns when growing osteoblasts (bone cells) on titanium surfaces with
different patterns (Bittig et al. 2012; Bittig et al. 2014a). For this, explicit bindings sites
were added to the ML-Space language (subsection 3.2.5) and handling of fixed binding
angles to the simulator (subsection 4.2.2).

These binding capabilities also proved useful in a subsequent application on mitochon-
drial networks (Bittig et al. 2014b). Here, we build on an existing “ ‘agent-based” model
(not following a specific formalism; Patel, Shirihai, and Huang 2013) where mitochon-
dria are abstracted to round individuals that are mobile and form “networks” simply by
staying in proximity after collisions, extending it by regulatory proteins relevant for the
breaking of these network “bonds”.

For our more technical publication on ML-Space (Bittig and Uhrmacher 2016), finally,
we extended the aforementioned lipid raft model into a three-dimensional abstract model
of proteins and large organelles that slow these proteins down and “sweep” their surround-
ing when they move. We use this simple model for comparing results and performance of
a purely individual-based (continuous space) and a hybrid approach. Also for that pub-
lication, we reproduced an established spatial gene regulatory network model, the Hes1
oscillator already used as example in Listing 3.1, achieving broadly similar results to the
original RDME-based simulations both in our continuous-space and subvolume-based
simulator.

This chapter contains these applications in reverse chronological order, with each
section based on (and quoting liberally, mostly without further indication, from) the
respective original publication.
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5.1 Reproducing an Existing Model: Hes1 Gene

Regulatory Network Oscillations

5.1.1 Background

Proteins are produced in the cytosol by translation of an mRNA. mRNA is produced by
transcription of DNA in the nucleus. DNA transcription may be regulated by proteins
binding near the region to be transcribed, at a promoter site.
Hes1 is an example of a protein that can bind at the promoter site of its own gene,

effectively suppressing its own production. Expression levels of Hes1 have been found
to oscillate with two hour periodicity in a variety of cell types (Hirata et al. 2002).
Malfunction in the Hes1 feedback loop has been implicated in cancer development (Sang,
Coller, and Roberts 2008).
Previous non-spatial simulation efforts targeting the Hes1 network, stochastic as well

as deterministic, relied on explicitly introduced delays to reproduce the oscillatory beha-
vior. Sturrock et al. (2013) were able to produce oscillations with a spatial model relying
on mass-action kinetics only, without delays, obtained with URDME (Drawert, Eng-
blom, and Hellander 2012), a Next Subvolume method implementation on unstructured
meshes (which itself is freely available, but requires commercial software – MATLABr

and COMSOL Multiphysicsr – to run).

5.1.2 Model and Simulation Setup

The ML-Space representation of the model and its reactions were already used as example
in the language chapter – see Listing 3.1 (page 41).
Since the only model entities that can contain other entities, cell and nucleus, are not

mobile here, there is no need to use the full hybrid ML-Space simulator (meaning we use
either subvolume-based simulation with proteins and mRNA as dimensionless entities in
subvolumes belonging to different fixed compartments or continuous-space with proteins
and mRNA as mobile individuals). For the sole second-order reaction (protein binding
to promoter/gene), the bulk reaction rate was converted to a probability for continuous-
space simulation by dividing by the diffusion-limited reaction rate (cf. section 2.3.6)
calculated with the proteins’ diffusion constant (the gene is immobile) and the sum
of arbitrarily chosen protein and gene radii, to which our results were not sensitive.
Sturrock et al. (2013) had already found their results to be insensitive to changes to the
respective binding rate parameter.

5.1.3 Results

Our ML-Space model can reproduce the original results that the simulated cells show os-
cillations of differing period (see Figure 5.1) and amplitude. This is consistently observed
both in continuous-space and subvolume-based simulations.
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Figure 5.1. Left: Trajectories for a single simulation run (promoter state changes that
lasted <0.5 min not included). Right: Periods (of protein numbers) of 128 trajectories,
calculated with a Morlet continuous wavelet transform with Gaussian edge elimination
using WAVOS (Harang, Bonnet, and Petzold 2012) as in Sturrock et al. (2013, cf. fig. 5
and 4, respectively).

We can also reproduce the dependence of the oscillations on the diffusion coeffi-
cient (with slow diffusion, more simulation runs exhibit no stable oscillations – also for
continuous-space, side-promoter simulation, even although none happen to be present
in the runs randomly selected for Figure 5.1; while the mean period of slow-diffusion
runs that exhibit oscillations is higher than those from experiments with fast diffusion,
the difference is within either standard deviation) and that the oscillations are robust
to changes in the promoter position (which can be far from the nuclear membrane and
thus close to the nucleus’ center, or near a side of it and thus near the membrane).

5.2 Hybrid and Multi-level: Lipid Rafts and Sweeping

Organelles

5.2.1 Biological Motivation

To compare the simulation approaches covered by ML-Space with a model including
dynamic compartments, we consider proteins in three dimensions and mobile organelles
that can enclose them and slow them down. The example was inspired by lipid rafts on
membrane surfaces (Haack et al. 2013; Haack et al. 2015).
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5.2.2 The Model

The model, shown in Listing 5.1, consists of only three species (including one to spec-
ify the surrounding system) and two rules, for transfer of proteins into and out of the
organelles, where the former’s diffusion attribute is modified (by a multiplicative fac-
tor from [0, 1], which we simply call “slowdown”, corresponding to the ratio of protein
diffusion coefficient inside to their diffusion coefficient outside organelles). We initialize
the model with all proteins outside organelles and observe the ratio that ends up inside
organelles, which depends mostly on how much proteins are slowed down in organelles:
For no slowdown (factor 1), the ratio should correspond to the fraction of volume covered
by organelles. With actual slowdown (factor < 1) the organelles should “catch” a higher
fraction of proteins.

Listing 5.1. Sweeping organelles example model.
1 x=100; y=80; z=60; // arbitrary units, e.g. micro-m for length ...

2 sizeProt = 4/3*PI; diffProt = 2; // ... and min for time

3 sizeOrg = 4000; diffOrg = diffProt*(sizeProt/sizeOrg)^(1/3);

4

5 protAmount = 1000;

6 slowdown = 0.25; // factor from [0,1]

7

8 orgCov = 0.2; // organelle coverage, i.e. ratio of volume

9 orgAmount = x*y*z*orgCov/sizeOrg;

10

11 Cell(diffusion:0, size:x*y*z, shape:cuboid, aspectratio:(x,y,z));

12 Organelle(shape:sphere, size:sizeOrg, diffusion:diffOrg);

13 Protein(shape:sphere, size:sizeProt, diffusion:diffProt);

14

15 1 Cell(position:(0,0,0)) [protAmount Protein + orgAmount Organelle ];

16

17 Protein + Organelle -> Organelle [Protein(diffusion*=slowdown)] @ p=1

18 Organelle[Protein] -> Protein (diffusion/=slowdown)+Organelle @ p=1

5.2.3 Results

We indeed find that the ratio of proteins outside vs. proteins inside organelles approaches
the ratio of space outside vs. inside organelles multiplied by the slowdown factor. Put
differently, when 𝑠 is the slowdown factor and 𝑐 the fraction of space covered by or-
ganelles, the ratio of proteins inside organelles (relative to total) is 1/(1 + 𝑠(1

𝑐
− 1)).

Figure 5.2 contains example time courses for simulations with selected model parameter
combinations. With strong slowdown, reaching the predicted steady state value (single
marker at 𝑡 > 200) requires more time than shown.
We also find that with mobile organelles, the ratio of proteins inside organelles is
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Figure 5.2. Left/main: Uptake of proteins by organelles with different slowdown values.
Averages of 84-140 simulation runs each. Theoretical steady state values (for immobile
organelles) indicated by black marker after the curves. Right: Enlarged section of the
curves for slowdown 0.05 and mobile organelles when distinguishing different spatial
resolutions (subvolume side length or mean movement length, respectively). Finer reso-
lutions lead to faster uptake (curves more to the left), an effect that is less pronounced in
hybrid simulation (where the curves for the lower values almost coincide). Runs marked
with asterisks (*; lower granularity) were excluded from calculation of the average tra-
jectories in the main plot.

slightly larger than with fixed organelles. These simulation results are similar for hybrid
and continuous-space-only simulation with otherwise equal model parameters. However,
in both cases the granularity of the simulation (subvolume size or move step size, re-
spectively) makes a difference regarding how fast the steady-state ratio of proteins in
organelles is approached (Figure 5.2 bottom).
We can explain the difference in continuous space by two considerations. First, the

number of collisions between proteins that recently entered the organelles with proteins
trying to do the same will be higher. This is because the simulator tries to move all
spatial entities in steps of the same average length, so with slowdown in the model (factor
< 1), the intervals between updates of (slower) proteins inside organelles are higher than
of those (faster ones) outside organelles. At larger step sizes (and thus longer intervals
between position updates), proteins that just entered organelles stay near the boundary
for longer before eventually moving (in larger steps) further inside the organelles or out
again, potentially blocking others in the meantime. Second, if a Brownian trajectory is
sampled in larger steps, a brief crossing of a boundary may be missed or a permanent
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Figure 5.3. Performance experiments using the subvolume-based/hybrid simulator or
continuous-space simulation. Left: Varying resolutions (cf. Figure 5.2). Right: Varying
the number of simulated entities. Note the logarithmic scale of the quantitative axes.
Implied time complexities 𝑂(𝑛𝑐) were calculated from a linear fit of the log-log data
points. Model parameters as in Listing 5.1 unless otherwise noted, model time at end
of simulation 300 (left) and 600 (right) arbitrary units. Proportions are similar for
slowdown values other than 0.25. Performed on an Intel Core i7 X990 3.47GHz with 6
cores (Hyperthreading off, 5 parallel threads used), Windows 7 SP1, Java 7u65. left: 28
replications per bar. right: 4 replications per point.

crossing may be detected later compared to a finer sampling. However, while a fine
sampling may seem advantageous in general, in this model the sampling can be too fine,
since proteins are slowed down quite suddenly on entering the organelle (an unrealistic
proposition for a boundary that can be crossed with 𝑝 = 1) and then the next step,
which includes the possibility of immediately leaving the organelle again, will be made
much later, increasing the time proteins stay inside the organelle.

Whereas the curves for subvolume simulation seem to converge for smaller side length,
the continuous space step length has not been decreased far enough to see a similar effect.
While this is indeed possible, the curves for the finest two step sizes are above curve for
the “best” subvolume run (i. e. protein uptake is faster), indicating the aforementioned
effect is already at play here.

As for performance, in continuous space there is almost no difference in run time of
simulations with mobile and immobile organelles, whereas the hybrid simulations with
mobile organelles are computationally more expensive than the ones where organelles
are fixed, i.e. each subvolume belongs to the same spatial entity over the whole course
of the simulation (compare left two groups in Figure 5.3, left). Still hybrid simulation
is much faster than continuous-space simulation except when comparing a very fine
subvolume grid with large step sizes in continuous space (note that proteins with radius 1
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in continuous space have roughly the volume of a subvolume with side length 1.6).

Performance Discussion

Our experiments with the sweeping organelles example model show that performance
scales sub-linearly with the number of model entities for subvolume-based simulations
(if the number of dynamic compartments is constant in the hybrid case) and at least
sub-quadratically for continuous-space simulations with the same spatial resolution. The
performance-relevant simulator components here are the event queue, as mentioned pre-
viously, and, for continuous space, the collision check.
For continuous-space simulations, the number of scheduled events increases linearly

with the number of entities, whereas, more important for performance, the effort for
handling collisions increases in the order of . 𝑂(𝑛1.5) (section 4.5.3: Collision Detection).
For subvolume-based simulations with the same amount of subvolumes, increasing

the total number of entities increases the number of entities per subvolume and the
number of events per time interval proportionally (but the number of total scheduled
events stays constant). Thus, time complexity of the main simulator part is at most
linear in the number of entities. Note that approximate methods like 𝜏 -leaping (cf.
section 2.2.2; spatially extended by Iyengar, Harris, and Clancy 2010 and Jeschke, Ewald,
and Uhrmacher 2011) are particularly suitable when particle numbers are large, because
then larger approximation steps can be taken.
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5.3 Individual-based with Bindings: Mitochondrial

Fission

5.3.1 Background

Mitochondria are mobile organelles that exist in living cells as a tubular network. They
continuously join the mitochondrial network by fusion and divide by fission events. Mi-
tochondrial fission is mainly regulated by two nuclear-encoded proteins, fission protein 1
(Fis1) and dynamin related protein 1 (Drp1). Mitochondrial dynamics have been shown
to be an essential quality control mechanism in order to maintain mitochondrial health.
A proxy for mitochondrial health and integrity is the mitochondrial membrane poten-
tial (Schmitt, Lenzen, and Baltrusch 2011). Recent wet-lab studies have shown that the
mitochondrial membrane potential is disturbed by an imbalance of the mitochondrial
fission proteins. It is therefore the objective of this study to develop an in silico pre-
diction model for the influence of Fis1 and Drp1 on mitochondrial spatial structure and
health.
We here take an existing model of mitochondrial health maintenance (Patel, Shirihai,

and Huang 2013), where mitochondria move in a random direction for random intervals of
time (i. e. along not explicitly included microtubules) in an otherwise (for purposes of the
model) empty 2D cell. Abstract health units mimic the functional state of mitochondria
by representing the membrane potential. Mitochondrial fusion allows mitochondria to
exchange components (here: health units) in order to maintain health.

5.3.2 Model and Simulation Setup

Mitochondrial fusion is described in our ML-Space model as binding with probability
1 on collision of moving mitochondria, including exchange of two health units. Fission
is a first-order reaction with a given rate. Fused mitochondria become immobile here.
For simplicity, checks against exceeding the minimum and maximum for the health
attribute’s value are omitted here. See appendix A.2 for the full model including rate
parameter values.

1 Mito()<bs:free> + Mito()<bs:free> -> Mito(velocity=0,health-=2)

<bs:bind>.Mito(velocity=0,health+=2)<bs:bind> @ p=1

2 Mito()<bs:Mito()> -> Mito()<bs:release> @ rFission

Further rules include damage (a first-order reaction lowering health of a mitochon-
drion), autophagy (consumption of unhealthy mitochondria) and replication (creation
of a new, healthy mitochondrion, keeping the total number roughly constant.) We can
reproduce basic findings of the original (Patel, Shirihai, and Huang 2013) despite some
imprecision in the original model description, e. g., whether fused mitochondria are also
subject to damage and possibly autophagy.
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Figure 5.4. Left: Microscopic image of the mitochondrial network in a glucose-
responsive MIN6 beta cell. Scale bar 20 µm. Right: Simulation screenshot (cyan/-
green: healthy mitochondria, red: damaged; tiny circles/squares: recruited Fis1/Drp1
molecules of fused mitochondria).

More complex variations could include allowing transfers only from the less healthy
to the more healthy mitochondrion (a damaged mitochondrion “sacrificing” itself; first
reaction below) or only from the healthier to the less healthy one (a “healing” of the less
strong; second reaction below; it is not known which proposition is realistic biologically).

3 Mito(h=health>=3)<bs:free> + Mito(health in [h...8])<bs:free> ->

Mito(velocity=0,health-=2)<bs:bind>.Mito(velocity=0,health+=2)<bs:bind>

4 Mito(h=health)<bs:free> + Mito(health in [3...min(h,8)])<bs:free> ->

Mito(velocity=0,health-=2)<bs:bind>.Mito(velocity=0,health+=2)<bs:bind>

The maximum number of health units is 10 in this model, thus with 2 health units
exchanged in each fusion reaction, 8 is the maximum attribute value for being on the
receiving end of a health unit exchange (3 is the minimum for participation in health
exchange and also the threshold for autophagy).
We modified this model by representing the number of bound Fis1 and Drp1 molecules

of mitochondria as attributes (see also Figure 5.4) as follows.

5 Mito(f=nFis<maxFis)<bs:Mito(nFis<8-f)> -> Mito(nFis+=1) @ rFisRecruit

6 Mito(f=nFis,d:=nDrp)<bs:Mito(nFis>=4-f,nDrp<2-d)> -> Mito(nDrp+=1) @ ...

Only fused mitochondria facilitate Fis1 and Drp1 recruitment here and the number of
Fis1 (Drp1) per mitochondria pair cannot exceed the fission threshold 8 (2). Addition-
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ally, we only allow Drp1 recruitment when a certain number of Fis1 is already bound
(above: 4). The actual fission rule becomes more complex then:

7 Mito(f=nFis,d=nDrp)<bs:Mito(nFis>=8-f,nDrp>=2-d)>

-> Mito(nFis=0,nDrp=0)<bs:release> @ Infinity

8 Mito(nFis>0)<bs:free> -> Mito(nFis=0) @ Infinity

9 Mito(nDrp>0)<bs:free> -> Mito(nDrp=0) @ Infinity

The nFis and nDrp attributes of the first mitochondrion are set to 0 in the process,
indicating release of the previously bound Fis1 and Drp1. The final two reactions are
needed to “release” the remaining Fis1 and Drp1 entities from the formerly fused mito-
chondrion.
With the above rules, Fis1 and Drp1 are essentially treated as ubiquitous and the

recruitment rate constant choices are the only limitations to fusion. We also simulated a
slightly more realistic model where Fis1 and Drp1 numbers are limited (but constant) and
recruitment thus happens slower if there are already many fused mitochondria that have
some Fis1 and/or Drp1 bound, but not enough for a fission event. This can be expressed
ML-Space by attribute values for Fis1 and Drp1 numbers in the surrounding entity,
i.e. the cell, and rules where the context (and its attributes) are explicitly mentioned
(omitted due to spatial constrains).

5.3.3 Results and Outlook

Related wet-lab experiments have shown that cells with reduced Fis1 or Drp1 expres-
sions exhibited a significantly lower membrane potential and a heterogenic mitochondrial
network (Reinhardt et al. 2013).

Figure 5.5. Scatter plots of key results for the ubiquitous and limited Fis1/Drp1
scenario.
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In initial simulations of the simple model (Figure 5.5 left), Fis1 and Drp1 recruitment
were (predictably) negatively correlated with the ratio of fused against free mitochondria
(the closest analogy to network structure in the simulation results) and positively corre-
lated with mitochondrial health. This was when fused mitochondria did not loose health
on their own like free mitochondria (round markers in Figure 5.5), so fewer fission events
meant more mitochondria being safe from damage, which is not realistic. The positive
correlation disappeared when damage to fused mitochondria was allowed (triangular
markers), and became clearly negative when damaged parts of fused mitochondria could
also undergo autophagy (which allowed a new, healthier one to be generated; squares).
In the simple model, average health varied only slightly overall. In the model with

explicit Fis1 and Drp1 amounts, these amounts are also parameters influencing fission
frequency and thus the ratio of fused mitochondria. Changes in the Fis1 amount had
roughly the same effect as changes to the recruitment rate (w.r.t. multiplication by a
factor). By varying the amount and recruitment parameters, a much wider range of
average mitochondrial health values was covered, and a more pronounced correlation
of fused mitochondria ratio (and thus fission frequency) and average health could be
observed (Fig. 5.5 right). The parameter for the number of Fis1 required before Drp1
recruitment, interestingly, made no significant difference to the results.
Recent studies indicate that adapter proteins, namely Mff, MID49 and MID51 are

important for Drp1 regulated mitochondrial fission. Thus, future research in this direc-
tion will include not only expanding the model by explicit fission protein entities whose
spatial distribution may not be homogeneous (to be simulated also with our hybrid ap-
proach of continuous and discrete space), but also incorporating new wet-lab findings
regarding mitochondrial fission.
We also attempted to apply ML-Space to reactive oxygen stress related questions.

Presence of reactive oxygen species (ROS), e. g., 𝐻2𝑂2 and 𝑂−
2 radicals, are produced in

mitochondria during their normal function, but an abundance decreases their membrane
potential (i. e. health for the purposes of our model so far). Attempts to extend our ML-
Space model with an existing ROS-related spatial model by (Park, Lee, and Choi 2011),
however, were not met with success as the original simulations could not be performed
equivalently in ML-Space, i. e. the results could not be reproduced, partly due to insuffi-
cient information on how the ROS model’s simulation (an “agent-based” implementation
tailored for that model) proceeds, partly due to unclear parameter values.
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5.4 Individual-based with Bindings and Large

Structures: Actin Filaments

5.4.1 Background

Biological motivation1

Cells at the interface to an implant surface are able to sense mechanical and biochemical
changes in their environment, for instance induced by the interaction with chemical and
topographical characteristics of the biomaterial surface via their focal contacts (Selhuber-
Unkel et al. 2010). According to the distinct physico-chemical properties of the biomate-
rial surfaces, cells have the capacity to adapt to it via cell-specific morphological (García
2005; Schwartz et al. 1999; Schwarz and Safran 2013) and functional aspects, e. g.,
changes in cell morphology, intracellular architecture of adhesion components (Anselme
et al. 2000; Lüthen et al. 2005; Nebe et al. 2007) and/or gene and protein expres-
sion pathways. For bone cells that were growing on titanium surfaces with regular
micro-geometry (namely pillars or grooves), an adaptation of extracellular and intra-
cellular phenotypic traits, including significantly emerging actin filament patterns, has
been shown (Matschegewski et al. 2010; Matschegewski et al. 2012).
It could be recognized in diverse experiments that expression and appearance of intra-

cellular structures as well as overall cell shape are influenced by diverse environmental
parameters, especially the physical and geometrical properties of the extracellular ma-
trix, e. g., rigidity, dimensionality, composition and ligand spacing (Geiger, Spatz, and
Bershadsky 2009; Discher, Janmey, and Wang 2005; Spatz and Geiger 2007). In our
experiments human osteoblasts rearrange their actin cytoskeleton in typical patterns
mimicking the underlying micro-topography (5 µm dimensions, material surface in Fig-
ure 5.6 right). Those changes have so far emerged independently on several chemical
cues and variations (Nebe et al. 2014), e. g., usage of glass instead of the bulk material
titanium, micro-structured titanium surfaces modified with (i) fibronectin layer due to
fetal calf serum, (ii) collagen I coating of the pillars, (iii) sputtering with gold (Stählke
et al. 2010) as well as (iv) deposition of a plasma polymer nanolayer exhibiting positively
charges to cells (Nebe et al. 2007; Finke et al. 2007). However, the mechanisms behind
this restructuring of the actin-cytoskeleton are not clear.
Actin is an abundant and highly conserved eukaryotic cellular protein and the major

cytoskeletal component in all eukaryotic cells. It plays a central role in important cellular
processes, comprising the transduction of extracellular forces and tensions to the nucleus
as well as cell spreading and migration processes (Stricker, Falzone, and Gardel 2010). In
particular, many studies report that the structural arrangement of the actin cytoskeleton
is decisive for subsequent cellular events (Bershadsky, Kozlov, and Geiger 2006), like the
length control of cells or protein expression pathways (Pollard and Cooper 2009). Actin

1This section was written, and the figures therein were created, mainly by C.Matschegewski and
J. B.Nebe, i. e. the co-author of Bittig et al. (2014a) with a biological background.
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Figure 5.6. Cell morphology (top) and formation of actin filaments (bottom) of MG-63
osteoblasts on planar (left) and geometrically micro-pillared (right) titanium surfaces af-
ter 24 h. On the planar surface cells are closely attached to the surface with their entire
cell body and exhibit a flattened phenotype. On the pillared surface P-5Ö5Ö5, cells
are elongated and their adhesion is mainly restricted to the surface plateaus (FE-SEM
Supra 25, Carl Zeiss; bar=10µm), image in cooperation with Regina Lange, Institute
of Electronic Appliances and Circuits, University of Rostock). Long and well defined
filaments actin filaments form in cells on planar surfaces, whereas on the pillared struc-
ture P-5Ö5Ö5 the actin filaments are accumulated on top on the pillars in short fibers
(LSM 410, Carl Zeiss, green: reflexion mode from the surface, red: phalloidin-TRITC
for actin;Matschegewski et al. 2012).
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exists in two forms: as globular/monomeric G-actin and filamentous/polymeric F-actin,
which is self-assembled in linear filaments containing +/- ends (also known as barbed and
pointed ends, respectively) as growing and shrinking sites. The dynamic equilibrium of
the continuous reorganization of the actin network is based on its controlled polymeriza-
tion and depolymerization events, which are guided by a complex interplay of actin with
a huge number of regulatory molecules (131 listed in Ditlev, Mayer, and Loew 2013).
Among those, ADF/cofilin, Rho and ROCK (Etienne-Manneville and Hall 2002) play
a central role. These sustain the balance of actin polymerization and depolymerization
and therefore are strongly controlled in their expression and activity pattern (Stricker,
Falzone, and Gardel 2010; Pollard and Cooper 2009; Van Troys et al. 2008). Here, the
actin regulatory protein, actin depolymerization factor (ADF)/cofilin acts as a key player
by severing filaments (Tsai and Lee 2012). ADF/cofilin becomes inactive when it is phos-
phorylated at its serine 3 residue. ADF/cofilin activity is controlled by the Rho family
of small GTPases. Thereby the recruitment of Rho small GTPase and Rho-associated
protein kinase (ROCK) leads to subsequent ADF/cofilin phosphorylation (Pfaendtner,
de la Cruz, and Voth 2010; see also Figure 5.7). Also, PIP2 has been shown to influence
the activity of ADF/cofilin via different mechanisms, including a competitive binding of
actin and PIP2 on cofilin (Van Troys et al. 2008; van Rheenen et al. 2007).
Integrins, as transmembrane receptors consisting of an alpha and a beta-chain, are

known to provide physical linkages between the extracellular matrix and the actin cy-
toskeleton via adaptor proteins, e. g., talin, vinculin, paxillin, and 𝛼-actin (Zaidel-Bar
et al. 2004; Calderwood and Ginsberg 2003; Zamir and Geiger 2001; Dumbauld et al.
2013), thus building a bridge between extracellular space and the cell’s interior (Ya-
mada, Pankov, and Cukierman 2003; Brakebusch and Fässler 2003). In addition, they
initiate specific biochemical reactions that further regulate the formation of actin fila-
ments locally, e. g., by influencing PIP2 and the cycling of Rho being GTP and GDP
bound (Van Troys et al. 2008).
Our hypothesis is that transmembrane receptors like integrin might be affected me-

chanically by the micro-ranged geometry of the titanium surfaces, and successive bio-
chemical spatial-temporal mechanisms regulate actin polymerization locally. To explore
whether this could explain the observed actin filament patterns, i. e. on a planar surface
the growth of long, roughly aligned stress fibers, i. e. filament bundles, and in cells on
pillar structures only shorter filament segments on pillar tops and edges, we conduct a
computational study focusing on the interplay of membrane related dynamics and actin
formation.

Related computational models

Many efforts have been made to study actin dynamics at a macroscopic level, incorpo-
rating actin’s three nucleotide forms (ATP-, ADP·Pi-, ADP-bound), filament branching,
capping and severing at different levels of detail (Carlsson 2006; Roland et al. 2008;
Beltzner and Pollard 2008; Ditlev et al. 2009). For a comprehensive overview of ex-
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Figure 5.7. Simplified schema of signal transduction by which the topographical in-
fluence of the surface activates cofilin via the integrin-Rho-ROCK-pathway, finally in-
hibiting the actin polymerization. Blue arrows express the total protein expression on
the micro-pillared surface in relation to the planar reference (based on the data ob-
tained from the wet-lab experiments of Bittig et al. (2014a); down: significantly reduced
expression, horizontal: no significant change).

periments and models, exploring dynamics of filament formation and the regulation of
formation- and branching-enabling proteins, see (Ditlev, Mayer, and Loew 2013). Most
of the models are non-spatial.

The problem of representing spatial properties can be approached in different ways.
For example, BioNetGen has been applied to model actin filaments growth (Sneddon,
Faeder, and Emonet 2011), based on previous kinetic models of filament elongation, de-
polymerization (Roland et al. 2008) and branching (Beltzner and Pollard 2008). The
respective models allow studying length and branching structure of a single filament
representing its structure as a graph, i. e. in terms of which molecule is bound to which,
without positioning the actin filament in space. Microscopic simulations of actin fil-
aments, i. e. where every molecule is represented by an individual model entity with
its own position, include a Brownian dynamics simulation of ATP-actin polymeriza-
tion (Guo, Shillcock, and Lipowsky 2009; Guo, Shillcock, and Lipowsky 2010) with focus
on the process of treadmilling, i. e. filament growth on the barbed end and simultaneous
shrinking at the pointed end. The different polymerization schemes of lammellipodum
and lammellum are analyzed in (Huber, Käs, and Stuhrmann 2008). There, the com-
peting roles of ADF/cofilin and tropomyosin lead to two compartments in the cell, one
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dominated by ADF/cofilin and closer to the leading edge, and another dominated by
tropomyosin. As a result, with the distance to the leading edge, a steep increase of
filament length could be observed.
In Ditlev et al. (2009), a comprehensive spatial model incorporating many previous

efforts (cf. Ditlev, Mayer, and Loew 2013) is presented. Based on partial differential
equations, it is used to investigate the effect of the presence of N-WASp (nuclear Wiskott-
Aldrich syndrome protein; known to activate Arp2/3, which in turn mediates filament
branching) at the leading edge of migrating cells. By using differential equations, fil-
aments are not individually represented, but their presence and mean length can be
determined from the concentrations of filamentous actin and of barbed ends.
In our particle-based approach, we decided to leave many details of actin polymeriza-

tion and depolymerization processes aside. To shed some light on the mechanisms that
drive the observed actin filaments patterns on the micro-structured surface, processes at
the membrane have to be integrated. Integrin receptors and the forming of focal adhe-
sion complexes have been subject to a series of models, e. g., of focal adhesion-related
signaling with focus on RNA inference (Hoffmann and Schwarz 2013), or focusing on
mechanical aspects (Gao, Qian, and Chen 2011). In the above examples the simula-
tion approaches range from non-spatial deterministic population-based modeling (ODEs
in Carlsson 2006; Ditlev et al. 2009; Beltzner and Pollard 2008; Hoffmann and Schwarz
2013), discrete stochastic (Roland et al. 2008; Sneddon, Faeder, and Emonet 2011), via
mesoscopic (PDEs in Ditlev et al. 2009) to microscopic techniques (individuals with
Brownian motion in Huber, Käs, and Stuhrmann 2008, Browian dynamics in Guo, Shill-
cock, and Lipowsky 2009; Guo, Shillcock, and Lipowsky 2010).

Focus of this work

Whereas most actin models are aimed at analyzing physiological processes that drive
actin polymerization and depolymerization, our goal is to understand the impact of
a micro-topographic material structure. The focus of modeling turns towards spatial
temporal processes close to the membrane. For this, we need to describe geometric
structures in continuous space and their interaction with the cell.
As polymerization of actin filaments shall be described as concrete structures devel-

oping in continuous space, approaches that are based on discrete space, or assume no
volumes associated with the key players (e. g., as adopted in Sneddon and Emonet 2012)
do not appear suitable. The same hinders exploiting approaches based on partial differen-
tial equations (e. g., as in Ditlev et al. 2009). A definition as cellular automata (Deutsch
and Dormann 2004) would constrain the spatial dynamics to the chosen grid granular-
ity and shape. To represent structures emerging from moving molecules in the cell, we
thus pursue a microscopic, individual-based approach with movement of molecules ap-
proximated by Brownian motion, where molecules cease moving when binding to form
filaments. In other words, we apply the continuous-space part of ML-Space, which allows
placement of molecules in relation to their binding partners.
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Similarly as in Huber, Käs, and Stuhrmann (2008), we keep our model of filament
formation as abstract as possible in order to reduce both the number of unknown pa-
rameters and the number of simulated particles. Regarding the former, while kinetics
of regulatory proteins have been explored previously, conversion of these macroscopic
rates to microscopic rates for particle-based simulation would require knowledge of size
and diffusion constants of the involved species. Regarding the latter, particle-based si-
mulation is computationally expensive, so simulating a realistic amount of entities (i. e.
approaching the number of those present in the cell) becomes infeasible. Unlike models
that cover the actin dynamics at the leading edge during cell migration, in our study,
the processes of interest take place at the center of the osteoblasts growing on the micro-
topographies.
In the following sections, we first present wet-lab experiments done in addition to

previously published ones (Matschegewski et al. 2012). These experiments motivated
the modeling efforts and influenced the choices of abstraction in the model. In the next
section, we describe our choice of modeling and simulation approach and introduce the
key reactions of the model created here. The following section contains results of wet-lab
and dry-lab experiments. We conclude with model extensions and wet-lab experiments
planned in the future.

5.4.2 Model and Simulation Setup

Model abstractions

Since we will primarily focus on the interface of the (structured) surface and the mem-
brane of the cell growing on it, and since the cells ultimately are lying relatively flat on
the surface (see also the cell morphology shown in Figure 5.6), we use a two-dimensional
model to describe the system. Our model thus covers a section of the cell near the surface
and involves both entities that are actually mostly part of the membrane (e. g., receptor
complexes) as well as those from the cytoplasm (e. g., free actin). To keep computational
effort to a reasonable limit, our models only comprise a section of the center of the cell.
We chose an area large enough to fit 3Ö3 pillars of 5 µm width with an equally wide gap
between them.
Even this area can fit a much higher number of entities (many million proteins at a

diameter of 4–6 nm, for example) than can be simulated in reasonable time (usually
a five-digit number of steps per second depending on machine and scenario). We thus
needed to simulate fewer actin molecules than realistically present in the considered
area, usually a few thousand per run. Since what is observed in microscopic images of
filament formation are actually bundles of actin filaments, we chose the size of actin
particles larger than it should be relative to the surface structures. The simulation of
actin binding in silico can be thought of as representing the formation of several filaments
at once. We chose the remaining particle size parameters in proportion to the protein
sizes (measured in number of amino acids) for lack of authoritative information, and
their diffusion constants inversely proportional to the size’s square roots.
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Model components

Key model components, actin and integrin molecules, are represented in ML-Space code
like this:

1 Actin(shape:disk,size:actSize,diffusion:actDiff)

<pointed:0∘,barbed:180∘,branch1:110∘,branch2:250∘>;

2 Integrin(shape:disk,size:intSize,diffusion:intDiff,focal:{"yes","no"})<bs:0>

The pointed end binding site is for connecting to an existing filament and the barbed
end is where filament growth can subsequently continue. Two binding sites for branching
are given to allow for branches extending to either side of the filament chain (at an angle
of 70∘ relative to the growth direction).
In our model, the focal adhesion complexis represented solely by the integrin entity

that forms part of it (whose attribute “focal” has the value “yes”); further binding partners
of the complex are not explicitly represented in the model. Its sole binding site will later
be used to bind an actin to form the start of a filament.
A full model description including definitions of used constants, the branch-initiating

species’ definition and branching reactions is provided in appendix A.3.

Modeling surface structure

The model also explicitly includes the surface structures. As ML-Space supports hierar-
chical nesting, e. g., to represent a cell nucleus and proteins inside and outside of it, the
extra-cellular surface structure can be represented the same way as a cellular compart-
ment. With a soft boundary the structure represents a “region” whose boundary can be
overlapped (as described in subsection 4.2.3).

3 SurfStruct(shape:square,boundary:soft,size:5*5);

Still, rules have to be specified indicating which particles can enter and leave the region
and with which probability they do so when their center moves across the boundary.
Attribute values of the moving entities may be changed in the process.

Integrin() + SurfStruct() -> SurfStruct()[Integrin(focal="yes")] @ p=1

SurfStruct()[Integrin()] -> Integrin(focal="no") + SurfStruct() @ p=1

The example would express that integrins can enter the surface structure anytime (i. e.
with probability 1 given a collision) and that each integrin that moves onto a surface
structure is considered to immediately bind to an (excluded) surface-sensing agent and
become part of a focal adhesion complex (attribute change on the right). This may not
be a realistic assumption. It should also be considered that a complex of proteins would
in reality diffuse more slowly and thus the diffusion attribute should be changed along
the way. Moreover, slowing diffusion in distinct regions typically implies accumulation of
the slowed down entities in that region (Nicolau et al. 2006), while at the same time the
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slowdown of activated integrin at the surface structure might facilitate the recruitment of
cytosolic proteins (as indicated in Haack et al. 2013 for slow binding kinetics) and might
help clustering the focal adhesion complexes at the surface structure. The forming of the
focal adhesion/integrin receptor complex can thus alternatively be modeled to happen
on surface structures with a certain rate 𝑟𝐼𝑛𝑡𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛.

4 SurfStruct()[Integrin(focal=="no")] ->

SurfStruct()[Integrin(focal="yes",diffusion=intDiff*intSlowdownFactor)]

@ rIntComplexFormation

5 Integrin(focal="yes")<bs:FREE> -> Integrin(focal="no",diffusion=intDiff) @

rIntComplexDis

6 Integrin() + SurfStruct() -> SurfStruct()[Integrin()] @ pIntOntoStruct

7 SurfStruct()[Integrin()] -> Integrin(focal="no") + SurfStruct() @ 1

The above also includes a reaction of a focal adhesion complex dissolving, resulting in
a freely moving integrin. This shall only be allowed if the respective focal adhesion has
no actin (filament) bound, hence the requirement of an unoccupied binding site on the
rule’s left hand side.

Model reactions: filament growth

Since we aim to reproduce the observed growth pattern with as simple a model as
possible, we omit details unrelated to wet-lab observations like actin phosphorylation
state, also because more states or attributes would introduce more yet unidentified model
parameters and increase the risk of overfitting (Fernández Slezak et al. 2010). We start
with a very simple model where free actin exists in only one state (ready to bind to a
filament), filaments grow only at the barbed end and filament formation is dependent
on an activated integrin receptor / focal adhesion complex.

8 Integrin(focal=="yes")<bs:free> + Actin()<pointed:free> ->

Integrin(diffusion=0)<bs:new>.Actin(diffusion=0)<pointed:new>

9 Actin()<pointed:occ,barbed:free> + Actin()<pointed:free> ->

Actin()<pointed:occ,barbed:new>.Actin(diffusion=0)<pointed:new>

Again, occ (or occupied) indicates that something, no matter what, is bound at this
binding site, where free specifies the opposite and the keyword new (or a different one
that occurs exactly twice, e. g., “bind”) indicates establishing of a new bond if it occurs
on the right hand side of a rule. All our “filaments”, even those consisting of only two
molecules, are considered to be immobile, i. e. we do not model any filament movement.

Model reactions: filament severing

We include in our model a species filling the role of severing actin filaments on collision
at the impact site (i. e. the filamentous actin it collided with). This species, called
cofilin, can be active or not (although actual cofilin proteins influence actin filaments
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in significantly more complex ways –Ditlev et al. 2009; Roland et al. 2008; Tania et al.
2011; note that the actual cofilin is inactive when phosphorylated).

10 Cofilin(active=="yes") + Actin()<pointed:occ> -> Cofilin() +

Actin(diffusion=actinDiff)<pointed:free,barbed:free> @ pActRelease

11 Actin()<pointed:free,barbed:occ> ->

Actin(diffusion=actinDiff)<barbed:free> @ rFilDissolution

The first rule specifies that if active cofilin collides with an actin that has another entity
bound at the pointed end, all bindings of the actin are released (potential branching sites
omitted above) with given probability. As binding is a symmetric relationship, what is
bound at the pointed and barbed end will be affected by this rule, too: the value of
its respective binding site will be set to Free as well. The second rule says that the
remaining filament part starting with a free pointed end actin will be dissolve from the
pointed end (if the specified rate 𝑟𝐹 𝑖𝑙𝐷𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is > 0; in our simulations we used
an infinite rate, i. e. the whole chain will be converted to free actins in the same time
step, as the same rule will be applied successively to all actins in the remaining filament
trunk).
Wet-lab results indicated that cofilin activity is (negatively) regulated by actors re-

lated to the integrin receptor complex. We integrated two different potential regulatory
relations into our model.
First, we let cofilin be deactivated on every contact with the focal adhesion complex,

and get reactivated on its own (i. e. by agents assumed to be constant and not explicitly
in the model) with a given rate 𝑟𝐶𝑜𝑓𝑖𝑙𝑖𝑛𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛.

12 Integrin(focal=="yes") + Cofilin(active=="yes") -> Integrin() +

Cofilin(active="no") @ pCofDeactAtInt

13 Cofilin(active=="no") -> Cofilin(active="yes") @ rCofilinReactivation

Secondly, we represented the intermediate steps by an intermediate component called
CofReg, which stands in for several potential regulatory proteins possibly in a multi-step
cascade whose details, including kinetic parameters, i. e. reaction rates, are not known.
Our CofReg deactivates cofilin and is itself activated at the focal adhesion complex.
We let CofReg appear near the receptor complex and disappear with a certain rate.
Alternatively, one could simulate a fixed amount of CofReg entities that are activated
near the receptor and get deactivated on their own, like cofilin. Both variants should
lead to the same patterns with respect to amounts and distribution of active CofReg

during the simulation. The second alternative requires more simulation effort for the
inactive CofReg not present otherwise (and could also lead to more molecular crowding
effects due to molecules impeding each other’s movement more often, which is undesired
here since our 2-dimensional approach already leads to occasional spurious blocking of
particles).
By setting either 𝑝𝐶𝑜𝑓𝐷𝑒𝑎𝑐𝑡𝐴𝑡𝐼𝑛𝑡 or 𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 to 0 one can then select

the mechanism to be simulated.
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14 Integrin(focal=="yes") -> Integrin() + CofReg() @ rCofRegAppearance

15 CofReg() -> @ rCofRegDisappearance

16 CofReg() + Cofilin(active=="yes") -> CofReg() + Cofilin(active="no") @ 1

17 Cofilin(active=="no") -> Cofilin(active="yes") @ rCofilinReactivation

Simulation and experiments

We simulated models with differences in some mechanisms, e. g., regarding cofilin activ-
ity (holding active cofilin constant, having it deactivated as first-order reaction, cofilin
deactivation by the integrin/focal adhesion complex or by an intermediate entity that
is itself activated by the receptor complex). For lack of information on the amounts of
proteins of each type and the reaction probabilities, we tested different values for crucial
parameters.
We simulated our model with all possible combinations of values for key parameters

given in Table 5.1. In addition, we also ran simulations with cofilin activity regulation
directly at the integrin receptor complex (𝑝𝐶𝑜𝑓𝐷𝑒𝑎𝑐𝑡𝐴𝑡𝐼𝑛𝑡 = 1), i. e. without any
CofReg (𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 = 0). For collision-triggered reaction, a decrease in the
probability of the reaction happening on each collision and an increase in the amount of
a reactant by the same factor have opposite effects on the number of occurring reactions,
which roughly cancel each other. Probabilities of collision-triggered reactions were thus
set to 1 or near 1, unless otherwise noted.

Table 5.1. Key parameters in model simulations. Values were chosen after multiple
experiments with values outside the given ranges had lead to either behavior similar
to those reached with a combination of the above values, or to behavior not matching
the wet-lab observations (e. g., very short filaments, or very long filaments in both the
planar and the micro-structured setting). Cofilin activity regulation via intermediate
step CofReg has been assumed above, i. e. 𝑝𝐶𝑜𝑓𝐷𝑒𝑎𝑐𝑡𝐴𝑡𝐼𝑛𝑡 = 0. For actin, initial
amounts are given. Additional actin was generated during the simulation (at a constant
rate, such that there were 5000–6000 actin entities at the end of each simulation). Note
that our actin chains are supposed to represent filament bundles and thus the proportion
of actin to other actors, especially cofilin and integrin, need not correspond to realistic
conditions.
Parameter Type Values used

Actin amount 250, 500(1)

Cofilin amount 400, 800
Integrin amount 100, 200
rCofRegAppearance reaction rate (1st order) 0.5, 2
rCofRegDisappearance reaction rate (1st order) 0.5, 2
angle deviation distribution 𝒩 (0, 7.5∘2), 𝒩 (0, 15∘2), 𝒩 (0, 30∘2)
surface structure (qualitative) planar surface, (groves), pillars
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The simulations were repeated several times, with a very small variance. Thus, in the
following we will focus on one set of results. The simulation end time was the same for
all runs (48 a.u.) and chosen from experience with previous tests such that no significant
change in key model outcomes, especially average filament lengths, should be expected
anymore.
ML-Space model interpreter and simulator are implemented in Java and integrated

into the modeling and simulation framework James II (Ewald et al. 2010), which also
served as experimental framework for most of the parameter scan experiments. Some
optimization experiments were executed by using the simulation experiment specifica-
tion language Sessl (Ewald and Uhrmacher 2014). MATLAB version 7.10.0 (R2010a)

(2010) was also used for the evaluation of larger result sets.

5.4.3 Results

In our in silico experiments, we compare different strategies of activating integrin, ana-
lyze the impact of changing the amount of integrin, actin, or cofilin in the system, and
take a closer look at the impact of the severing mechanisms and the local distribution
of the severing agent.

Amounts of key players

The amount of actin is the most obvious determining factor of filament lengths. Too few
of them, and filaments eventually run out of free monomers to bind, staying short. Too
many actins, however, and many simulation steps consist of actin moves and possibly
collisions without reaction, especially at the beginning of the simulation when few nu-
cleation points or filament ends are available. Since actins in filaments are more tightly
packed than free actins, once enough actins are bound to filaments, the few left free
actins (or those freed again by depolymerization) move through larger patches of empty
space before occasionally encountering a filament to bind to again. Thus, we decided
to start with a comparatively low amount of actin and to create actin molecules during
the simulation to roughly maintain the density of free actin. This can be interpreted as
recruitment of free actin from the cytosol. Once we did this, the initial amount of actin
was no longer a key parameter for the length of filaments encountered later.
Since in our model filament formation starts at an integrin receptor complex and we

allow only one filament at each of them, the amount of integrins in the system limits the
number of filaments that can form. When integrins could easily turn into focal adhesions
(and thus filament nucleation points), their amount was indeed found to negatively
influence the resulting average filament length (as illustrated in Figure 5.8), at least
when keeping other parameters constant. Thus when actin is added at a constant rate
as above and filaments are severed, a simulation with more integrin must be run longer
to exhibit filaments of same average length as a simulation with fewer integrin. When
filament severing happens often, the integrin amount becomes less relevant: filaments
stay comparatively short independent of whether there are few or many of them.
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Figure 5.8. Simulation illustration with small single surface structure with a fixed
amount of actin and no limitation of filament orientation or severing (i. e. no cofilin).
Magenta circles represent actin entities with other entities bound at both ends (i. e. in
filament chains), light blue circles are actins at filement ends (i. e. occupied pointed end,
free barbed end), Purple/dark blue circles: free actin, smaller red circles: integrins at
start of filament, dark green and brown circles, free integrin on and outside of a surface
structure. Surface structure boundaries marked by green dashed lines. Too little actin
can lead to relatively short filaments (left), too little integrin and abundant actin to a
few long filaments and many free actins that have no room to bind to a filament (right).
Filament “growth” can also be impeded by the two-dimensional approach where filament
crossing or bending is not allowed (center right; note also several free actins trapped in
regions bound by different filament segments).

More cofilin, i. e. filament severing agent, in the simulation expectedly lead to shorter
filaments (again when keeping other parameters constant). However, it was the amount
of active cofilin that is relevant for filament lengths, and the amount of active cofilin
depends on these other parameters, i. e. the rates of reactions regulating cofilin activity
(see “Severing by cofilin” below and Figure 5.9), so the total cofilin amount alone is not
a key parameter.

Mechanisms of integrin activation

The mechanism by which free integrin turned into focal adhesions – with a certain
stochastic rate (but only when on surface structures) or instantly upon entering such a
surface structure (cf. “Modeling surface structure”) – made no difference to the simulation
results. In the former case, increasing this rate and increasing the amount of integrin
had the same effect – what mattered was the amount of active integrin / focal adhesions
available for filament formation.
The initially hypothesized slowdown of integrin on pillars in our simulations leads to

accumulation on these structures. When at the same time integrins cannot easily enter
a surface structure, a roughly homogeneous distribution of integrin can be achieved,
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Figure 5.9. Relation of filament size to amounts of active cofilin and other parameters.
Each marker indicates the result of a simulation run with different parameters. Colors
denote parameters related to the cofilin activation mechanism, marker types distinguish
simulations of pillar structure systems (triangles) and planar surfaces (circles), and larger
markers indicate simulations with 200 initial integrin entities vs. 100 for the smaller
markers (mostly to be found above the former). More active cofilin thus coincides with
shorter filaments.

too (Bittig et al. 2014a, fig. 4). However, in our simulation most integrins eventually
organize in focal adhesions. This is partly because we limited the number of integrins to
reduce calculation time. Nevertheless, the wet-lab observation of more activated integrin
on pillars than between them can thus also arise in models without a slowdown.

Severing by cofilin

We compared cofilin regulation directly at (i. e. on collision with) the focal adhesion com-
plex with a short cascade with an intermediate signaling entity, CofReg. The amount
of active cofilin in the whole system depends on the parameters of the cofilin-regulating
reactions (and the total amount of cofilin). With more CofReg (𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 >

𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐷𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒, purple markers in Figure 5.9), only a small fraction is ac-
tive and filaments grow longer on average, with little CofReg (𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 <
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Figure 5.10. Overrepresentation of active cofilin between pillars due to (de-)activation
mechanism tied to the focal adhesion complex. (Rate parameter names related to
CofReg, 𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 and 𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐷𝑖𝑠𝑠𝑎𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 slightly shortened.) A: The
fraction of cofilin that is active is higher in the region between surface structures than
on surface structures (all points are above the dotted line, where both would be equal).
B: The fraction of cofilin that is located on pillars (x-axis) is often slightly lower than
the pillars’ share of the system size (29.7%), but unrelated to the difference in activity
ratios of cofilin between the respective regions (note that each marker’s position on the
y-axis corresponds to the respective markers’ distance from the dotted line in the left
panel).

𝑟𝐶𝑜𝑓𝑅𝑒𝑔𝐷𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒, blue markers), filaments are severed earlier and/or more often.
Since we assume that a significant part of the cofilin regulation mechanism happens in

regions where the focal adhesion complexes reside, we compared the ratio of active cofilin
to total cofilin in the respective regions, i. e. on and between surface structures (pillars).
A small difference can be seen between the respective fraction for surface structures
and for regions between them, also when cofilin (de)activation does not depend on an
intermediate signaling entity (see Figure 5.10A; note that the comparison only makes
sense for experiments with pillared surface structures, not for planar surfaces). This can
go so far that there is almost no active cofilin on pillars, but at the same time the vast
majority of cofilin between pillars is also inactive. This is not an artifact of a skewed
overall distribution of cofilin (e. g., resulting from accumulation outside pillar regions;
Figure 5.10B).
Note that all shown results stem from simulations with the same rate at which deacti-

vated cofilin becomes active again (𝑟𝐶𝑜𝑓𝑖𝑙𝑖𝑛𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛). With higher or lower values
for this rate, the active cofilin ratios can be made higher (towards the blue markers in
Figure 5.10A) or lower (towards the purple markers), respectively.
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Table 5.2. Parameters and results of simulation runs shown in Figure 5.11. All four
runs had these parameter values in common: initial actin amount 500 (changes here did
not significantly change the results as most actin was “produced” during the simulation),
integrin amount 200 (a lower amount, 100, lead to 20% longer filaments in situations
where cofilin activity was low, i. e. corresponding to the top panels), cofilin amount 800
(lower values lead slightly longer filaments in all four settings).

Figure 5.11 panel Top left Top right
Bottom Bottom
left right

rCofRegAppearance 2.0 2.0 0.5 0.5
rCofRegDisappearance 0.5 0.5 2.0 2.0
angle deviation 𝒩 (0, 15∘2) 𝒩 (0, 15∘2) 𝒩 (0, 30∘2) 𝒩 (0, 30∘2)

Cofilin𝑎𝑐𝑡𝑖𝑣𝑒/𝑡𝑜𝑡𝑎𝑙

on pillars
0.028

0.021
0.22

0.26
between pillars 0.141 0.38

average filament length (# part.) 21.1 18.5 13.0 11.4
max. filament length (# particles) 69 58 29 33

Also, the pillared region experiments lead to slightly shorter actin filaments than
comparable experiments with a planar surface (Figure 5.11 right vs. left; cf. Table 5.2
and Table 5.3). As the ratio of active cofilin vs. total cofilin on pillars is roughly equal
to the one in comparable planar surface simulations, we attribute the shorter filaments
in pillar structure simulations to the higher chance of filaments being cut off between
pillars rather than on them.

Filament orientation and branching

Average filament length is slightly negatively correlated with our parameter angular
deviation, which lets the filaments grow in similar direction, again when holding other
parameters constant. More specifically, here the angle of each filament relative to the
horizontal is set to a normally distributed value with mean 0 and a certain standard
deviation (representing orientation dispersion). When filaments are more closely aligned,
they can become slightly longer on average, mostly because when we allow filaments
to grow in whichever direction they please (which would be the direction from which
the first bound actin approached the original focal integrin), they get in each other’s
way more often, limiting further growth (provided the other chosen parameters allow
long filaments in principle). This could be considered an artifact of the chosen two-
dimensional approach, assuming that one filament could simply grow above or below the
other for a small segment in a three-dimensional approach.
Occurrences of one filament segment preventing further growth of another one are

slightly more frequent in simulations where proteins are allowed to branch, i. e. where a
certain amount of Arp2/3 entities are available from the simulation start. Here, overall
filament sizes (when counting all entities in one filament complex, i. e. all branches of it)
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Figure 5.11. Simulation results with different severing agent amounts and orientation
dispersion values. See also Tables 5.2 and 5.3 and note that the difference in conditions
between upper left and lower right reflects wet-lab observations.
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Table 5.3. Quantification of wet-lab and simulation experiments. Ref and P-5Ö5 refer
to wet-lab experiments for planar and pillared surfaces (taken from Matschegewski et al.
2012, Table 1; 𝑝 < 0.001 for the changes in all three quantified properties; averages
and standard deviation of 30 cells per specimen). The final four columns refer to the
simulation experiments (averages and standard deviation of seven simulation runs for
each parameter combination; filament length calculated based on an actin diameter of
0.05 µm). The two columns in bold there best reflect the changes of conditions for the
actual cell. Changes in average filament length significant at 𝑝 < 0.001 planar vs. pil-
lar with same severing agent amount and angle deviation, all changes significant when
comparing the first and last experiment column. Note that length values in vitro and
in silico are not comparable – the FilaQuant software processing florescence microscopy
images has cutoff parameters (regarding length and thickness of lines to consider a fil-
ament) while for the simulation every integrin/focal adhesion with at least one bound
actin is considered a filament.

in vitro

(Matschegewski
et al. 2012)

in silico (Figure 5.11)
low angle dev. high angle dev.
low severing high severing

Ref P-5Ö5 planar pillar planar pillar
Average filament
length (µm) 9.7±1.5 3.1±1.5 1.09±.03 0.90±.03 0.64±.03 0.55±.03

Maximum filament
length (µm) 51.5±11.9 6.7±2.0 3.03±.33 2.86±.17 1.82±.35 1.77±.18

Orientation
dispersion (%) 66±14 84±10 36±1 36±1 65±1 65±1

become larger relative to simulations with otherwise equal parameters but only straight
filaments, although the longest segment chains in filaments seem shorter on average
(cf. Figure 5.12). The angular deviation model parameter then has little effect on the
orientation dispersion observed in the simulation, as branches always grow with an angle
of 70∘ relative to the filament from which they branch off, leading to differently oriented
branches.
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Figure 5.12. Simulation results with branching enabled. Other model parameters
correspond to the low orientation dispersion, low severing situation (Figure 5.11 top).
The amount of integrin (and thus maximum number of filaments) was 200.

5.4.4 Discussion and Conclusion

So far we focussed on the effect of changes to single or few parameters while keeping the
others constant. We also found that the “structure parameter”, i. e. the size of the area
where the cell has surface contact and thus where filament growth can start and where
the actin depolymerizing factor (cofilin) is regulated, can already explain part of the
lower filament length in systems with the pillar structure compared to planar surfaces
(Figure 5.11 left vs right).
Wet-lab experiments demonstrated that several of the aforementioned parameters

(e. g., orientation dispersion and severing agent regulation as exemplified by Rho and
vinculin expression) are different between the two situations, it is more appropriate to
compare the planar surface simulations with low dispersion and low severing with the pil-
lar structure simulation with high orientation dispersion and high severing agent (cofilin)
activity (Figure 5.11 top left vs. bottom right). Then, the difference in filament lengths
and patterns becomes more pronounced (see also Table 5.3).
Since we could establish that average filament lengths are sensitive to several param-

eters, some of which should be different between cells on planar surfaces and those on
micro-structured ones, tweaking these parameters in one of the two settings can make
the difference between their simulations larger or smaller.
Overall, our results indicate that sensing mechanisms and bio-chemical regulation of

actin filament severing via cofilin might play a central role in explaining the phenotypical
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differences between osteoblasts grown on planar vs. geometrically micro-structured sur-
faces, the former due to the apparent concentration of filaments in areas where the cells
had surface contact, the latter because of expression differences in regulatory proteins
upstream of cofilin.
Based on the wet-lab results, we developed a spatial computational model of actin

filament formation with several abstractions that lumped multi-step processes with yet
unquantified components into single steps. First, based on a hampered entry of integrin
into the pillar structure regions and a subsequent slowdown of integrins, the observa-
tion of homogeneously distributed integrin in wet-lab experiments could be reproduced.
Subsequent wet-lab experiments then showed that activated integrins are slightly clus-
tered on pillars. In earlier studies, it had already been shown that vinculin can be
found strongly clustered on pillars. From both finding, we hypothesized that the focal
adhesions, of which vinculin is a part, indeed form predominantly on pillars.
The spatial patterns of further selected members of the focal adhesion complex will

be analyzed in future studies, also to shed light on their role in regulating the actin
cytoskeleton. Our results indicate that filament growth pattern can result from the
receptor complex’ role in regulating the actin depolymerizing factor (ADF)/cofilin.
Due to deactivation of cofilin in the vicinity of focal adhesion complexes (containing

vinculin and activated integrin), which were clustered on the pillars, a higher concen-
tration of active cofilin could be found between the pillars in our simulations, which
increased the probability of actin filaments being cut off outside the pillar structures.
The resulting differences in our simulations, if we assume otherwise identical model

parameters (i. e. reaction rates and actor amounts) for structured and non-structured
surfaces, appear less pronounced than in in vitro observations. However, our findings in
wet-lab experiments suggest that these identical model parameters are not realistic. e. g.,
we find a higher alignment (i. e. orientation dispersion) of actin filaments and higher Rho
expressions on planar surfaces. The simulation results for pillar structure surfaces and
those for planar surfaces were even closer to the wet-lab observation if these measured
differences were added explicitly to the simulated models, i. e. orientation dispersion
and the regulation parameter for cofilin were adjusted accordingly. The effect of shorter
actin filaments on pillared structures compared to planar ones is, however, still more
prominent in vitro than observed in silico. processes that could induce the release and
activation of additional cofilin at the pillared surface.
On the computational side, ML-Space allowed to probe different hypothesis and a

successive extension of the model easily. Potentially useful expansions for studying actin
filament dynamics include movement of bound entities i. e. filaments, instead of fixing
their position in the event of binding, ways of representing the cellular stress to be the
source of orientation alignment, and to speed up the simulation to allow more simulation
runs with more realistic protein sizes and consequently many more proteins in the system.
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6.1 Limitations and Future Work

By bringing together entities with attributes, multi-compartmental semantics and spatial
aspects, ML-Space requires a much more complex simulator than one covering only one
or two of these issues, necessitating distinction of many special cases that require targeted
solutions rather than following a single overarching idea. For some of these cases, a line
had to be drawn for how complex a situation should be supported, e. g., by restricting
spatial effects of rules to the organizational level at which they were triggered, except for
explicit transfers. Here, pushing these lines by adding more special case handling will
allow ML-Space to cover an even wider range of possible processes. However, this may
also make the simulator behavior more complex in ways that might confuse potential
modelers who would need only a fraction of its capabilities.

6.1.1 Modeling Language

Multi-Level Rules Flexibility

Reasoning that a collision between entities should have an effect only on the immedi-
ate vicinity and only on these entities’ organizational level, a decision was made early
on to limit multi-level reactions to transfers of a single entity into or out of another,
possibly with attribute changes. This principle was eventually softened: to cover up-
ward causation, a collision can also change attributes of the surrounding entity, which
in turn may trigger immediate first- or zeroth-order reactions inside this entity, but
not necessarily in the vicinity of the original collision. This approach could be relaxed
further: implementation-wise, it is not difficult to let a particle colliding with a larger
particle’s boundary trigger the appearance of an entity of a different species on the
other side of the boundary (e. g., an outside signal making a receptor release some-
thing inside the cell). One might even want to allow endosome formation like this:
P + Cell ->Cell[Endosome[P]] (which is already possible in ML-Rules, where no spatial
constraints need to be considered).

Further BNGL or ML-Rules Features

BioNetGen and its language allow entities to be bound at multiple sites, or to be con-
nected via several different routes in a complex (e. g., circular molecules). This is difficult
to reproduce in ML-Space due to the imposed spatial constraints.
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Other features of BNGL, however, could conceivably be added to ML-Space and facil-
itate extensions of our mitochondria model. For example, entities can be created bound
to already existing ones, e. g., to express recruitment of abundant, and hence not explic-
itly modeled entities. Also, entities in the same complex can react even if not directly
bound to each other, which could be used for entities on mitochondrial surfaces.
Regarding bindings, ML-Space’ spatial resolution is currently focused on two-dimen-

sional applications and fixed angles. Flexible angles – e. g., specifying a mean angle and
a variance – and three-dimensional specification could be added, which would mainly be
a question of choosing a suitable representation of spatial angles for the language and
implementing the maths of aligning the center of spheres accordingly. However, flexible
binding angles are already handled by SRSim (Gruenert et al. 2010) and the underlying
Molecular Dynamics simulator in a more physically accurate way (but without entity
attributes other than binding sites and no multi-level dynamics).
Entity counts, e. g., to keep the number of mitochondria in a cell constant, can be main-

tained in ML-Space as an attribute of the context, i. e. surrounding entity, but need to
be explicitly incorporated into every rule affecting the respective number. BioNetGen’s
named observables and ML-Rules’s functions on solutions offer alternatives that some
modelers may find more elegant (but which are probably less efficient when applied to
ML-Space).

Spatially Dependent Rules

Space itself has no inherent properties in ML-Space. In the actin filament model, we used
regular, immobile model entities to represent regions to which some reaction rules were
limited. We also added special constants for orientation of bound entities to account for
the fact that actin filament orient themselves and grow towards the tip of a cell. This
concept of a preferred direction could be generalized, such that one could also express,
for example, that mitochondria predominantly move towards or away from the nucleus
if the (implicit) microtubule they move along in our model were oriented this way.
Also, some unicellular organisms are able to sense concentrations in their surrounding

and move according to the gradient, e. g., Dictyostelium discoideum moving towards
higher cAMP concentrations. In attributed formalisms where space can only be encoded
explicitly in the model, this can be directly incorporated into the rules (Beccuti et al.
2015). In ML-Space it would have to be established first whether a gradient exists – an
equivalent of funtions on solutions could help – and new syntactic constructs to make
movement dependent on it would be needed.

Asymmetrical Shapes and Particle Complexes

For future applications, one might actually wish to represent particles of more complex
shapes, e. g., rods with a given orientation to explicitly model micotubule along which
the mitochondria move. This can already be approximated by using a chain of bound
spheres instead (cf. actin filaments).



6.1 Limitations and Future Work 115

Interactions with molecule complexes in ML-Space, however, are always focused on
a single particle of that molecule. Thus it is not yet possible to express moving along
such a chain, which would involve unbinding from one molecule of the chain and binding
to the next one, i. e. the release of a particle P from a molecule C in a chain would be
expressed C<prev:C,next:C,side:P> → C<side:release> and neither P nor the C at the
next position would be available for further changes, as first-order rules have no direct
spatial effect beyond the bond now being considered released.

6.1.2 Physical Realism

Rates and Kinetics

Second-order reactions between spatial, individual entities in ML-Space require a prob-
ability for reactions between two particles when a collision occurs, i. e. when diffusive
movement of particles momentarily leads to the centers of two of them being closer than
the sum of their radii (which is “resolved” by moving a particle away from the other
before the end of the respective simulation step). As shown in section 2.3.6, reaction
probabilities can be derived from macroscopic rates for second-order reactions. These
derivations are only physically accurate if several conditions are fulfilled:

� The particles are roughly spherical.
� The diffusion constants of the involved particles in the given environment are known
with sufficient accuracy.

� The mass action kinetic rate constant is known with sufficient accuracy.
� Mass action kinetics accurately describe the actual behavior of the reaction in the
given environment.

These could not be taken for granted in any model ML-Space was applied to up to now.
Also, particle numbers were not known or uncertain in our major applications.
When fitting both particle numbers (or concentrations) and reaction probabilities

(or rates) to observed system behavior (e. g., a known number of reactions occurring
in a given time interval), only the product of the two unknown parameters can be
estimated. In such a case, it is computationally convenient to use probability 1 because
fewer individual particles have to be simulated (as it has been done for the actin filament
model). The question of deriving probabilities then becomes moot.
However, future versions of ML-Space could provide assistance in converting macro-

scopic rate constants to probabilities, e. g., by dividing a given rate by the sums of
interacting particle’s radii and diffusion coefficients on the spot when encountering a
rate (...@ r=...) in a rule that requires a probability (if the participant’s diffusion at-
tributes are known at modeling time, this conversion can already be specified explicitly).
Conversion at simulation time has downsides: the modeler needs to be aware of this in-
tertwining when diffusion attributes can also change and if a larger step size is chosen
the probabilities would need to be adjusted upward to account for missed collisions.
However, the appropriate adjustment factor would also depend on the crowding of the
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environment and the dimensions of the system and is therefore most easily derived by
fitting again.
Adaptations to the simulation algorithm or even the spatial semantics would be needed

to apply other methods mentioned in section 2.3.6: the (Smoldyn) approach of reaction
radii, i. e. particle distances below which a reaction certainly happens, is inapplicable
to simulation with hard spheres (instead of point-based particles) as a reaction with an
attribute-dependent rate (e. g., E(x=nPhos)+S ->E+P @k*x) would lead to different values
for the sum of the reactant’s radii for different attribute values, but no reactant should be
expected to change size significantly on a minor modification. The approach of reaction
radii combined with probabilities for particles close enough would require keeping track
of the time particles have spent in each other’s proximity (the ∆𝑡 for the time between
Brownian “jumps” may differ between the two) or switching to the same fixed time
steps for all particles (instead of fixed average length steps), but this would lead to
unnecessarily many very small steps of larger (slower) particles.
Applying these methods to ML-Space could be done by introducing the concept of

reaction radii distinct from particle sizes or by not resolving overlap between particles in
each step (i. e. by allowing ||𝑥1 − 𝑥2|| < 𝑟1 + 𝑟2 for non-zero time intervals; which would
complicate positioning for binding at given angles, however).

6.1.3 Simulator

Small Spatial Entities in Large Subvolumes

So far we distinguish two types of entities in an ML-Space model: dimensionless entities
for subvolume-based simulation and spatial entities with extensions and individual po-
sitions, which may contain other entities (of either kind). ML-Space’ hybrid simulator
requires subvolumes to be smaller than the smallest spatial entity in the system such that
there can be no spatial entities sitting “between” subvolumes yet potentially containing
dimensionless entities that can be transfered out of them.
The hybrid approach by Klann, Ganguly, and Koeppl (2012) combines population-

based simulation and individual particles without hierarchical nesting (but with excluded
volumes, e. g., for cellular structures and membranes), where entity representation as
individuals or parts of a population can be switched during the simulation (in ML-Space,
the entity type is determined by their species definition).
Extending ML-Space by small individuals in subvolumes was briefly considered, mainly

while working on the actin filament model as it might have allowed representing free
actin, cofilin and other actors as populations with only bound actins, i. e. filamentous
structures made of individual particles. While such an extension might work without any
modification of the modeling language, semantics and simulator implementation would
be significantly affected:

� One would need to distinguish three types of entities: dimensionless ones, large
individuals that are potential compartments and small individuals that can never
contain other entities.
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� Interactions between subvolume populations and individual particles would need to
be handled (e. g., with second-order reactions considered like first-order reactions
of an individual in a fixed concentration of other particles).

� The subvolume’s volume fraction occupied by small individuals would need to be
accounted for (unless one went for point-based individual particles with reaction
radii but no hard boundaries). If the small individuals could form complexes, these
might actually create a barrier inside a subvolume to which the subvolume simula-
tor would be oblivious (e. g., an actin filament “cutting through” a 2D subvolume).

� Binding between large and small individuals would also be problematic as their
movement would be handled differently. (However, the current hybrid simulator
is not very suitable either when individuals can bind, as the movement in steps of
subvolume size conflicts with the positioning of bound particles according to given
angles.)

Changing Shapes

In relation to the language extensions for more complex shapes considered above, the
simulator would need to be adapted as well, e. g., when a particle bound to one molecule
in a complex switches “allegiance” to another in the same complex and thus needs to
move.
Additionally, we have so far avoided re-sizing of spatial entities, which would require a

policy to deal with compartments shrinking such that the content does not fit anymore or
trying to expand but being blocked by others. Splitting or unification of compartments
was not covered for similar reasons, especially when it would involve rather drastic
shape changes (replacing a sphere with two smaller, neighboring ones or vice versa)
where finding new positions for all previously contained entities would be difficult and,
more importantly, will lead to behavior the modeler may not expect. (“Spawning” new
compartments or destroying them on collision is still possible, but no content would be
created or absorbed, respectively.)

Exchanging Components: Continuous Approximations/PDEs

ML-Space was implemented in a component-based framework and is itself separated into
components (cf. Figure 4.4), the major of which are the individual-based, continuous-
space and the population based subvolume simulator. The latter, for example, could
be exchanged by one using spatial 𝜏 -leaping (Jeschke, Ewald, and Uhrmacher 2011) or
the (mostly) deterministic, PDE-approximating scheme of Kossow et al. (2015) with
appropriate adaptations.

Efficiency Investigations

The current ML-Space simulator should be considered a reference implementation build
with maintainability and extensibility in mind. Some possible shortcuts could be taken
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to make simulation faster in various practical scenarios.
For example, each subvolume is represented as an own object with a list of pointers

to its neighbors (and an associated factor for diffusion involving shared surface and
distance). This was build to allow adaptive splitting and uniting of subvolumes as done
in Jeschke and Uhrmacher (2008), which was, however, not used in ML-Space so far.
Simply using an 𝑛-dimensional array to represent the subvolume grid, with neighborhood
relations only implicit, may make processing diffusion events faster and allow for more
efficient collision detection in hybrid simulation as spatial-entity–subvolume overlap has
to be calculated anyway.
Another example involves each entity’s attributes: these are stored as name/value-

pairs in a dictionary (HashMap) data structure closely following how they are written in
the modeling language. Using arrays instead and identifying attributes internally by, for
example, their position in the species definition (similar to how the original ML-Rules
identifies attributes in the language as well) would make attribute value lookup more
efficient and thus speed up rule matching.

6.1.4 Applications

ML-Space’ development was significantly influenced by the actin filament investigations,
with several features integrated when they were needed for that modeling problem.
Possible extensions here include a more detailed regulatory mechanism regarding the
phosphorylation of (free and bound) actin and the filament severing (e. g., incorporating
results of Beltzner and Pollard 2008; Pollard and Cooper 2009; Ditlev, Mayer, and Loew
2013). However, appropriate spatially resolved experimental data to test such a model’s
validity will be hard to come by. Extending the model in a more phenomenological
way, e. g., to cover the directed growth of filaments towards one end of the cell (on flat
surfaces) and its effect on the overall cell, will likely require further targeted simulator
adaptations.
The mitochondrial fission model has been extended with a more complex interplay

of fission-enabling proteins. We used attributes of mitochondria entities to express the
number of bound proteins above. However, more entity states (i. e. possible attribute
values) as well as more species and interactions between them, e. g., activation or for-
mation of small complexes, were quite cumbersome to incorporate into this framework.1

Also, the expression of mitochondrial fusion is rather simplistic so far, and could be
extended to cover different shapes of mitochondrial networks observed, i. e. clusters in
some cells and long, elongated “networks” in cells treated differently.
Generally, many spatial models currently expressed in other frameworks or specially

tailored approaches could also be expressed and simulated in ML-Space, providing a
human-readable, easily extensible model description in rule-based form along the way.
However, if a model does not benefit from using an attributed language, explicit com-
partmental structures, or hybrid individual-based and spatial Gillespie simulation, e. g.,

1C.Mahler and A.M.Uhrmacher, personal communication
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because it contains only a few different species, only one (or two simple, fixed) compart-
ment(s), or is tailored to subvolume-based simulation in the first place, respectively, then
simply translating it to ML-Space and simulating it with the current reference implemen-
tation will likely be slower than using a simulator that focuses on one of these aspects
only. Then again, models where all three are important, i. e. multi-state species (giving
rise to combinatorial explosion), hierarchical nesting and multi-resolution simulation,
cover a wide array of biological processes and require data from various experimental
sources to fit and/or validate. Establishing such a model will itself be a long and complex
process. ML-Space now provides a unique tool aiding this process, but must always be
open for extensions to cover specific spatial aspects not yet generalized.

6.2 Conclusion

ML-Space is a modeling language and simulation approach targeting spatial aspects in
biology, mostly at the cellular level. The attributed, rule-based modeling language in-
corporates aspects of existing languages, particularly dynamic organizational hierarchies
of ML-Rules and explicit binding sites of BioNetGen and Kappa, and combines them
with spatial semantics. Spatial simulation can be individual-based, with rigid bodies of
different extensions diffusing randomly or drifting in given directions and interacting by
collisions. Alternatively, the spatial Gillespie approach of partitioning space into subvol-
umes can be used, where each subvolume is assumed to contain a well-mixed solution of
entities, with reactions among each other and diffusions into neighboring subvolumes.
ML-Space introduces a hybrid simulation approach combining the two, with enti-

ties that may contain others or at least take up space not available to other entities
represented as individuals and small entities at the lowest organizational level in sub-
volumes. Since the population-based simulation of subvolumes is less demanding both
computationally and in terms of required information, the hybrid approach has several
applications:

� With many small entities in a system and crowding not relevant, the hybrid sim-
ulator can be orders of magnitude faster than tracking all entities individually as
particles in continuous space.

� When details about amounts, sizes or diffusion constants of entities are uncertain or
unknown, representing them as dimensionless particles requires fewer assumptions
about (or less fitting of) parameters put into the model.

ML-Space has successfully been applied to reproduce existing simulation results (the
Hes1 oscillator) and to gain new insights into currently investigated spatial patterns in
cell biology (actin filaments and mitochondrial networks). All applications offer potential
for further research, and for expanding the expressiveness of the ML-Space language and
the capabilities of the simulator.
ML-Space is not the first approach to bring individual- and subvolume-based simula-

tion together. However, it is, to our knowledge, the first to combine individual, mobile
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compartments (even dynamic ones w.r.t. creation, destruction and hierarchical compo-
sition) and subvolume-based simulation.



A Appendix

A.1 The ML-Space Language’s Full Grammar

Listing A.1. ML-Space’ grammar in Extended Backus-Naur Form. The final four
constructs (obse rvat ionTarget s ff.) are not for parts of the model but enable the
separate specification of observables like the matching patterns in rules.

1 FLOAT ::= [0−9]+ | [0−9]+ EXPONENT

2 | [0−9]+ ’ . ’ [0−9]* EXPONENT? | ’ . ’ [0−9]+ EXPONENT?

3 | ’ I n f i n i t y ’

4 EXPONENT ::= ( ’ e ’ | ’E ’ ) ( ’+ ’ | ’− ’ ) ? [0−9]+

5 ID : := ( [ a−z ] | [A−Z ] ) ( [ a−z ] | [A−Z ] | [0−9] | ’_ ’ )*
6 STRING : := ’ " ’ ID ’ " ’ | " ’ " ID " ’ "

7

8 f u l lmode l

9 : := constant_defs spec i e s_de f s ( i n i t ( ’ ; ’ r u l e s ) ? |

r u l e s ’ ; ’ i n i t ) EOF

10 constant_defs

11 : := ( constant_def ’ ; ’ ? )*
12 constant_def

13 : := ID ’=’ valset_or_const

14 valset_or_const

15 : := i n t e r v a l | range | s e t | vec to r | numexpr | STRING

| ID

16 attr ibutes_match

17 : := attribute_match ( ’ , ’ attr ibute_match )*
18 attribute_match

19 : := ’ ( ’ ID ’=’ ID var_inte rva l ? ’ ) ’

20 | ID ( ’=’ ID var_inte rva l ? | var_inte rva l )

21 var_inte rva l

22 : := ’==’ varexpr | ’==’ STRING

23 | ’> ’ ’= ’ ? varexpr | ’< ’ ’=’ ? varexpr

24 | ( ’ IN ’ | ’ in ’ ) ( ’ ( ’ | ’ [ ’ ) varexpr ( ’ , ’ | ’ . . . ’ ) varexpr

( ’ ) ’ | ’ ] ’ )

25 numexpr : := expr // involving only numbers and constant identifiers

26 varexpr : := expr // possibly involving local (rule)variable names

27 expr : := multNode ( ’+’ multNode | ’− ’ multNode )*
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28 | ( ’ i f ’ | ’ I f ’ | ’ IF ’ ) boolNode ( ’ then ’ | ’Then ’ | ’THEN’ )

expr ( ( ’ e l s e ’ | ’ E l se ’ | ’ELSE ’ ) expr ) ?

29 multNode : := atomNode ( ’ * ’ atomNode | ’ / ’ atomNode )*
30 atomNode : := ( ’− ’ | ’+ ’ ) ?

31 ( numval | ID | ’ ( ’ boolNode ’ ) ’

32 | ’ ( ’ expr ’ ) ’ | ’ [ ’ expr ’ ] ’

33 | ( ’min ’ | ’Min ’ | ’MIN ’ ) ’ ( ’ expr ’ , ’ expr ’ ) ’

34 | ( ’max ’ | ’Max ’ | ’MAX’ ) ’ ( ’ expr ’ , ’ expr ’ ) ’

35 ) ( ’3 ’ | ’3 ’ | ’ \ t e x t c o l o r { str ingmauve }{\ degree s } ’

| ’^ ’ atomNode ) ?

36 boolNode : := expr compareOp expr

37 compareOp

38 : := ’< ’ ’=’ ? | ’> ’ ’=’ ? | ’<> ’ | ’==’

39 i n t e r v a l : := ’ [ ’ numexpr ( ’ . . ’ | ’ . . . ’ ) numexpr ’ ] ’

40 | ’> ’ ’= ’ ? numexpr

41 | ’< ’ ’= ’ ? numexpr

42 range : := numexpr ’ : ’ numexpr ( ’ : ’ numexpr ) ?

43 s e t : := numset | i d s e t

44 i d s e t : := ’ { ’ STRING ( ’ , ’ STRING )* ’ } ’

45 numset : := ’ { ’ numexpr ( ’ , ’ numexpr )* ’ } ’

46 vec to r : := ’ ( ’ numexpr ( ’ , ’ numexpr )+ ’ ) ’

47 intval_or_var

48 : := numexpr

49 numval : := FLOAT | ID // constant identifier, sometimes also variable name
(context-dependent)

50 spe c i e s_de f s

51 : := ( spec i e s_de f ’ ; ’ ? )+

52 spec i e s_de f

53 : := ID ’ ( ’ a t t r i bu t e s_de f ? ’ ) ’ b i n d i n g s i t e s d e f ?

54 a t t r i bu t e s_de f

55 : := at t r ibute_de f ( ’ , ’ a t t r ibute_de f )*
56 at t r ibute_de f

57 : := ID ’ : ’ valset_or_const

58 b i n d i n g s i t e s d e f

59 : := ’< ’ b i nd i n g s i t e d e f ( ’ , ’ b i n d i n g s i t e d e f )* ’> ’

60 b i nd i n g s i t e d e f

61 : := ID ’ : ’ ( ID | numexpr )

62 s p e c i e s : := ID

63 r u l e s : := ( ru l e ’ ; ’ ? )+

64 r u l e : := ( ID ’ : ’ ) ? rule_left_hand_side ARROW

rule_right_hand_side ? ’@’ ( ’p=’ | ’ r=’ ) ? varexpr

65 rule_left_hand_side

66 : := entity_match ( ( ’ [ ’ | ( ’+ ’ | ’ . ’ ) ) (

entity_match ( ( ’+’ | ’ . ’ ) entity_match )* ) ? (

’ ] ’ | ) ) ?
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67 rule_right_hand_side

68 : := en t i t y_r e su l t ( ( ’ [ ’ | ( ’+ ’ | ’ . ’ ) ) (

en t i t y_re su l t ( ( ’+ ’ | ’ . ’ ) en t i t y_re su l t )* ) ? (

’ ] ’ | ) ) ?

69 entity_match

70 : := s p e c i e s ( ’ ( ’ attr ibutes_match ? ’ ) ’ ) ? b i n d i n g s i t e s ?

71 b i nd i n g s i t e s

72 : := ’< ’ b i nd i n g s i t e ( ’ , ’ b i n d i n g s i t e )* ’> ’

73 b i nd i n g s i t e

74 : := ID ’ : ’ ( entity_match | ’ f r e e ’ | ’ occ ’ | ’ occupied ’

)

75 e n t i t i e s_ r e s u l t

76 : := ( en t i t y_re su l t ( ( ’+ ’ | ’ . ’ ) e n t i t y_re su l t )* ) ?

77 en t i t y_re su l t

78 : := s p e c i e s ( ’ ( ’ ( ID valmod ( ’ , ’ ID valmod )* ) ? ’ ) ’

) ? b ind ingac t i on s ?

79 valmod : := ’++’ | ’−− ’ | op ’=’ varexpr | ’= ’ varexpr

80 | ’= ’ STRING | ’=’ ID ’ ( ’ varexpr ’ ) ’

81 op : := ’+’ | ’− ’ | ’ * ’ | ’ / ’

82 b ind ingac t i on s

83 : := ’< ’ b ind ingac t i on ( ’ , ’ b ind ingac t i on )* ’> ’

84 b ind ingac t i on

85 : := ID ’ : ’ ( ’ bind ’ | ’ r e l e a s e ’ | ’ r e p l a c e ’ )

86 i n i t : := in i t_element ( ( ’+ ’ | ’ . ’ ) in i t_element )*
87 in i t_e lement

88 : := for_each

89 | intval_or_var ( en t i t y_re su l t | ’ [ ’ e n t i t i e s_ r e s u l t

’ ] ’ ) ( ’ [ ’ i n i t ’ ] ’ ) ? ’ ; ’ ?

90 for_each : := ( ( ’FOR’ | ’ f o r ’ ) for_var ’ { ’ i n i t ’ } ’ )+

91 for_var : := ID ’=’ ( range | s e t )

92

93 obse rvat ionTarget s

94 : := obsTargetEntry ( ’ ; ’ obsTargetEntry )*
95 obsTargetEntry

96 : := obs_matches ( ( ’ IN ’ | ’ in ’ ) obs_matches )* ( ’= ’

i d l i s t ) ?

97 obs_matches

98 : := ( entity_match ( ’ , ’ entity_match )* ) ?

99 i d l i s t : := ( ID | ’#’ ) ( ’ , ’ ID | ’#’ )*
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A.2 The Mitochondial Network Model

Listing A.2. Mitochondrial network model used in section 5.3 and Bittig et al. (2014b)
1 // "Optimal Dynamics for Quality Control in Spatially Distributed

Mitochondrial Networks" accoding to Patel, Shiriha, Huang; PLoS Comp

Biol 9(7), doi:10.1371/journal.pcbi.1003108, adapted and extended with

Fis1 and Drp1 for CMSB submission 39 (2014)

2

3 //// Constants ////

4 maxHealth = 10;

5 minNewHealth = maxHealth/2;

6

7 ExchangeDirSwitch = 0; // 1 -> up, 0 -> either, -1 -> down, -1.3 -> up and

down

8 pUp = [(ExchangeDirSwitch+0.25)^2];

9 pDown = [(-ExchangeDirSwitch+1)/2];

10 pEither = [1-ExchangeDirSwitch^2];

11

12 skipSameUp = 0; // flag (0 or 1) whether to skip "up"ward "healing" in

case of same-health collision

13 skipSameDown = 0;

14

15 rDamage = 5*10^-4;

16 // rFusion = 0.1; // fusion probabilities in case of collisions used

instead

17 // rFission = 0.1; // superseded by nFis & nDrp expressions

18 rAutophagy = 3.33*10^-3;

19 rMicrotubeAttach = 0.2; // not clear from original paper

20 rMicrotubeDetach = 0.2; // not clear from original paper

21

22 // all lengths in micro-m, all times in min (thus speed in micro-m/min)

23 mitoRadius = 0.5;

24 mitoDiff = 0.0;

25 mitoSpeed = 0.5;

26 healthExchange = 2;

27 cellSideLength = 25;

28 mitoNum = 150;

29 mitoNumVariability = 1;

30

31 rReplication = 0.02 * mitoNum / cellSideLength^2; // adjusted for

0th-order reaction instead of 1st-order

32

33 maxFis = 8;

34 maxDrp = 2;
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35 rFisRecruitment = 1.;

36 rDrpRecruitment = 1.;

37 DrpRecThreshold = 4;

38

39

40 fusionThreshold = 0.3*maxHealth;

41 autophagyThreshold = 0.3*maxHealth;

42 maxHealthForExchange = maxHealth-healthExchange;

43

44 switchFused = 2; // 0: no damage or autophagy of fused mitos, 1: damage,

but no autophagy, 2: damage & autophagy (incl. more likely fission)

45 switchFusedDamage = [(switchFused+1)/2]; // min(switchFused,1);

46 switchFusedAutophagy = [switchFused/2]; // max(switchFused,0);

47

48 fisdrpFactor = 1;

49 fisNum = mitoNum * maxFis * fisdrpFactor;

50 drpNum = mitoNum * maxDrp * fisdrpFactor;

51

52 tau = 2*PI;

53

54

55 //// Species definitions ////

56 Cell(shape:square,size:cellSideLength^2, nm:0,nFis:fisNum,nDrp:drpNum);

57 Mito(shape:circle,size:PI*mitoRadius^2,

diffusion:mitoDiff,direction:[0...tau],velocity:[0...mitoSpeed],

health:minNewHealth:maxHealth,nFis:0,nDrp:0)<bs:0>;

58

59

60 //// Initial state ////

61 1 Cell(position:(0,0),nm:mitoNum)[

62 mitoNum-1 Mito(velocity:0) + 1 Mito(velocity:mitoSpeed,direction:PI)

63 ];

64

65 //// Rules ////

66

67 // microtubule attachment and detatchment rules

68 Mito(velocity>0) -> Mito(velocity=0) @ rMicrotubeDetach

69 Mito(velocity==0)<bs:free> -> Mito(velocity=mitoSpeed,direction:[0...tau])

@ rMicrotubeAttach

70

71 // fusion rules (incl. health unit exchange)

72 Mito(h=health>=fusionThreshold)<bs:free> + Mito(health in

[h+skipSameUp...maxHealthForExchange])<bs:free>

73 -> Mito(velocity=0,health-=healthExchange)<bs:bind>

.Mito(velocity=0,health+=healthExchange)<bs:bind> @ pUp
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74 Mito(h=health<=maxHealth)<bs:free> + Mito(health in

[fusionThreshold...min(h-skipSameDown,maxHealthForExchange)])<bs:free>

75 -> Mito(velocity=0,health-=healthExchange)<bs:bind>

.Mito(velocity=0,health+=healthExchange)<bs:bind> @ pDown

76 Mito(health>=fusionThreshold)<bs:free> +

Mito(health<=maxHealthForExchange)<bs:free>

77 -> Mito(velocity=0,health-=healthExchange)<bs:bind>

.Mito(velocity=0,health+=healthExchange)<bs:bind> @ pEither

78

79 // Fis and Drp recruitment

80 Cell(cf=nFis>0)[Mito(f=nFis<maxFis)<bs:Mito(nFis<maxFis-f)>] ->

Cell(nFis-=1)[Mito(nFis+=1)] @ rFisRecruitment * cf

81 Cell(cd=nDrp>0)[Mito(f=nFis,d=nDrp)

<bs:Mito(nFis>=DrpRecThreshold-f,nDrp<maxDrp-d)> ] ->

Cell(nDrp-=1)[Mito(nDrp+=1)] @ rDrpRecruitment * cd

82

83 // fission; Mito().Mito() ->...would be interpreted as 2nd-order rule

84 Cell[Mito(f=nFis,d=nDrp)<bs:Mito(nFis>=maxFis-f,nDrp>=maxDrp-d)>] ->

Cell(nFis+=f,nDrp+=d)[Mito(nFis=0,nDrp=0)<bs:release>] @ Infinity

85 Cell[Mito(f=nFis>0)<bs:free>] -> Cell(nFis+=f)[Mito(nFis=0)] @ Infinity

86 Cell[Mito(d=nDrp>0)<bs:free>] -> Cell(nDrp+=d)[Mito(nDrp=0)] @ Infinity

87

88 // damage

89 Mito(h=health>0)<bs:free> -> Mito(health-=1) @ rDamage*h

90 Mito(h=health>0)<bs:occ> -> Mito(health-=1) @ rDamage*h*switchFusedDamage

91

92 // autophagy and biogenesis

93 Cell[Mito(health<autophagyThreshold)<bs:free>] -> Cell(nm-=1)[] @

rAutophagy

94 Mito(health<autophagyThreshold)<bs:occ> -> Mito(health=-1)<bs:release> @

rAutophagy*switchFusedAutophagy

95 Cell[Mito(f=nFis,d=nDrp,health==-1)] -> Cell(nm-=1,nDrp+=d,nFis+=f)[] @

Infinity

96 Cell(x=nm)[] -> Cell(nm+=1)[Mito(velocity=0)] @ rReplication * 1/(1+e^((x

- mitoNum)/mitoNumVariability))
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A.3 The Actin Filament Model

Listing A.3. Actin filament growth model used in section 5.4 and Bittig et al. (2014a).
Updated to current syntax of ML-Space compared to (Bittig et al. 2014a, add. file 2).

1 // "Membrane related dynamics and the formation of actin in cells growing

on micro-topographies: a spatial computational model" BMC Systems

Biology 2014, 8:106 -- http://www.biomedcentral.com/1752-0509/8/106

doi:10.1186/s12918-014-0106-2

2

3 // system surface structure properties

4 surfStructSwitch = 1; // 0: flat, 1: pillars, 2: groves

5 sysFlat = [1-surfStructSwitch / 2];

6 sysPillar = 1-(surfStructSwitch-1)^2;

7 sysGrove = [surfStructSwitch / 2];

8

9 // reaction probabilities/rates

10 filFormProb = 1.;

11 pActBind = 1.;

12 pActRelease = .3; // probability of cofilin hitting filament leading to

dissolution

13 rFilDissolution = Infinity;

14 rActinProd = 1; // two separate rate constants used later

15 rActinProdSys = 1 * rActinProd;

16 rActinProdSurf = 1 * rActinProd;

17 pCofDeact = 0.9; // probability of Cofilin deactivation on collision with

regulating entity

18 rCofReact = 0.1; // rate of cofilin reactivation ("no" external trigger)

19 rIntActivation = 9.;

20 rIntDeactivation = 3;

21

22 skipCofRegSwitch = 0;

23 cofRegProdMechanismSwitch = 1; // boolean parameter:

24 // CofReg always in System, activated on contact with Integrin,

deactivated stochastically anywhere,

25 // or CofReg appearing near Integrin, disappearing stochastically anywhere

26 rCofRegProdAtInt = 0.5 * cofRegProdMechanismSwitch * skipCofRegSwitch;

27 rCofRegDegr = 2. / rCofRegProdAtInt *

cofRegProdMechanismSwitch*skipCofRegSwitch;

28 rCofRegDeact = 0.7 * (1-cofRegProdMechanismSwitch) * skipCofRegSwitch;

29 pCofRegAct = 1 * (1-cofRegProdMechanismSwitch) * skipCofRegSwitch;

30 pCofDeactAtInt = pCofDeact * skipCofRegSwitch;

31

32 // species size/movement constants

33 actinDiam = 0.01;
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34 actinBaseSize = PI*actinDiam^2;

35 actinDiff = 0.3;

36 integrinSize = actinBaseSize / 377 * 988; // 788-1188

37 integrinDiff = 0.05;

38 cofSize = actinBaseSize / 377 * 166;

39 cofDiff = 0.6;

40 arpDiff = actinDiff;

41 arpSize = actinBaseSize / 377 * 406; // 394-418

42 cofRegDiff = (actinDiff + cofDiff) / 2;

43 cofRegSize = (actinBaseSize + cofSize) / 2;

44 actinScaling = 1;

45 actinSize = actinBaseSize * actinScaling; // for separate overriding

46

47 // initial amounts

48 totalActin = 1000; // total; "no"t all initially on surface structure

49 totalIntegrin = 200;

50 totalCofilin = 400;

51 totalArp = 50; // branch-enabling entity

52 totalCofReg = 200; // actual number dependent on switches, see next line

53 numCofReg = totalCofReg * (1-cofRegProdMechanismSwitch) * skipCofRegSwitch;

54

55 // system size properties

56 shortSize = 2;

57 longSize = 10;

58 gapSize = 0.5;

59 sysSize = (longSize+2*gapSize)^2;

60

61 pillarNum = 9;

62 idxP = ((pillarNum^0.5)-1)/2;

63 ridgeNum = 3;

64 idxR = (ridgeNum-1)/2;

65

66 // information for simulator:

67 initialAbsoluteAngle = 0; // horizontal default filament orientation

68 angleDevDeg = 30; // specified in degrees for easier overriding

69 initialAbsoluteAngleDeviation = angleDevDeg/180*PI; // degree->radians

conversion

70

71 postponedRegionInit = 1; // simulator switch for distributing entities

72 // initially defined outside of pillar regions between _and_ on them

73

74

75 // species definitions:

76 SurfStruct(shape:rectangle,aspectratio:(1,1),boundary:soft,size:[0...sysSize]);

77 System(shape:square,size:sysSize);
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78

79 Actin(shape:circle,size:actinSize,diffusion:[0...actinDiff])

<pointed:0,barbed:180/180*PI,branch1:110/180*PI,branch2:250/180*PI>;

// always bind-ready

80 Integrin(shape:circle,size:integrinSize,diffusion:[0...integrinDiff],

active:{"yes","no"})<bs:0>; // active only

81 Arp23s(shape:circle,size:arpSize,diffusion:[0...arpDiff])

<fil:0,straight:180/180*PI>; // for side branching

82 Cofilin(shape:circle,size:cofSize,diffusion:cofDiff, active:{"yes","no"});

83 CofReg(shape:circle,size:cofRegSize,diffusion:cofRegDiff,

active:{"yes","no"});

84

85

86 // initial state definition

87 0+sysPillar System(position:(0,0))[

88 totalActin Actin(diffusion:actinDiff) +

89 totalCofilin Cofilin(active:"yes") +

90 totalIntegrin Integrin(diffusion:integrinDiff,active:"no") +

91 totalArp Arp23s(diffusion:arpDiff) +

92 FOR x=-idxP:idxP {

93 FOR y=-idxP:idxP {

94 1 SurfStruct(size:shortSize^2,relpos:(x*2*shortSize,y*2*shortSize))

95 }

96 }]

97

98 +sysFlat System(position:(0,0))[

99 totalActin Actin(diffusion:actinDiff) +

100 totalCofilin Cofilin(active:"yes") +

101 totalIntegrin Integrin(diffusion:integrinDiff,active:"no") +

102 totalArp Arp23s(diffusion:arpDiff) +

103 1 SurfStruct(size:longSize^2,relpos:(0,0))

104 ]

105

106 +sysGrove System(position:(0,0))[

107 totalActin Actin(diffusion:actinDiff) +

108 totalCofilin Cofilin(active:"yes") +

109 totalIntegrin Integrin(diffusion:integrinDiff,active:"no") +

110 totalArp Arp23s(diffusion:arpDiff) +

111 FOR y=-idxR:idxR {

112 1 SurfStruct(size:shortSize*longSize,

aspectratio:(longSize,shortSize),relpos:(0,y*2*shortSize))

113 }];

114

115

116 // transfer rules: unimpeded migration onto/off surface structures
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117 Actin() + SurfStruct() -> SurfStruct()[Actin()] @ 1

118 SurfStruct()[Actin()] -> Actin() + SurfStruct() @ 1

119 Cofilin() + SurfStruct() -> SurfStruct()[Cofilin()] @ 1

120 SurfStruct()[Cofilin()] -> Cofilin() + SurfStruct() @ 1

121 Integrin() + SurfStruct() -> SurfStruct()[Integrin()] @ 1

122 SurfStruct()[Integrin()] -> Integrin() + SurfStruct() @ 1

123 Arp23s() + SurfStruct() -> SurfStruct()[Arp23s()] @ 1

124 SurfStruct()[Arp23s()] -> Arp23s() + SurfStruct() @ 1

125

126 SurfStruct()[Integrin(active=="no")] ->

SurfStruct()[Integrin(active="yes",diffusion=0)] @ rIntActivation

127 Integrin(active=="yes")<bs:free> ->

Integrin(active="no",diffusion=integrinDiff) @ rIntDeactivation

128

129 // filament formation:

130 Actin()<pointed:free> + Integrin(active=="yes")<bs:free>

131 -> Actin(diffusion=0)<pointed:bind>.Integrin(diffusion=0)<bs:bind> @

pActBind

132 Actin()<pointed:free> + Actin()<pointed:occ,barbed:free>

133 -> Actin(diffusion=0)<pointed:bind>.Actin()<barbed:bind> @ filFormProb

134

135 // Cofilin and CofReg activity regulation

136 Integrin(active=="yes") -> Integrin() + CofReg(active="yes") @

rCofRegProdAtInt

137 CofReg() -> @ rCofRegDegr

138 SurfStruct()[Integrin(active=="yes") + CofReg(active=="no")] ->

SurfStruct()[Integrin() + CofReg(active="yes")] @ pCofRegAct

139 CofReg(active=="yes") -> CofReg(active="no") @ rCofRegDeact

140

141 Integrin(active=="yes") + Cofilin(active=="yes") -> Integrin() +

Cofilin(active="no") @ pCofDeactAtInt

142

143 CofReg(active=="yes") + Cofilin(active=="yes") -> CofReg() +

Cofilin(active="no") @ pCofDeact

144 Cofilin(active=="no") -> Cofilin(active="yes") @ rCofReact

145

146 // filament destruction

147 Cofilin(active=="yes") + Actin()<pointed:occ>

148 -> Cofilin() +

Actin(diffusion=actinDiff)<pointed:release,barbed:release> @

pActRelease

149 Actin()<pointed:free,barbed:occ> ->

Actin(diffusion=actinDiff)<barbed:release> @rFilDissolution

150 // cutoff filament becoming mobile again
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151 Actin(diffusion==0)<pointed:free, barbed:free> ->

Actin(diffusion=actinDiff) @ Infinity

152 // Integrin(diffusion==0)<bs:free> -> Integrin(diffusion=integrinDiff) @

Infinity

153 // not if integrin complex is immobile itself, see above

154

155 // actin creation

156 System()[] -> System()[Actin(diffusion=actinDiff)] @ rActinProdSys

157 SurfStruct()[] -> SurfStruct()[Actin(diffusion=actinDiff)] @ rActinProdSurf

158

159 // side branching

160 Arp23s()<fil:free> + Actin()<pointed:occ,branch1:free,branch2:free>

161 -> Arp23s(diffusion=0)<fil:bind>.Actin()<branch1:bind> @ 1

162 Arp23s()<fil:free> + Actin()<pointed:occ,branch1:free,branch2:free>

163 -> Arp23s(diffusion=0)<fil:bind>.Actin()<branch2:bind> @ 1

164 Actin()<pointed:free> + Arp23s()<fil:occ,straight:free>

165 -> Actin(diffusion:0)<pointed:bind>.Arp23s()<straight:bind> @ 1

166 Arp23s(diffusion==0)<fil:free,straight:free> -> Arp23s(diffusion=arpDiff)

@ Infinity
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Theses

1. Modeling and simulation methods that consider biological cells systems with a
homogeneous distribution of entities are better established than those that do not.
However, there are many problems where the spatial distribution of actors matters.

2. There is a trade-off between simulation speed and level of detail in any model with
spatially distributed particles.

3. ML-Space combines two approaches with different levels of detail, individuals with
continuous space coordinates exhibiting Brownian motion, reacting by collisions,
and populations in subunits of discretized space (subvolumes), reacting within
these like in non-spatial simulation and diffusing between neighboring subvolumes.

4. ML-Space also comprises a rule-based modeling language that describes model
species and their spatial properties along with their reactions and a system’s initial
state in one concise format.

5. The modeling language also supports multi-level structures, i. e. a hierarchical
nesting of entities, like the language ML-Rules before it, but now with adherence
to spatial constraints.

6. Entity attributes in ML-Space’ language cannot only be used for multi-state species,
but also to express upward causation and (indirect) downward causation.

7. ML-Space has been used successfully to reproduce previously published spatial
models with multi-level aspects.

8. Through a cycle of in silico hypothesis generation using ML-Space and in vitro ex-
periments, a model of actin filament formation and related regulatory mechanisms
could be established.

9. Our ML-Space model of mitochondrial fission showed that limited availability of
fission-enabling proteins can have opposite effects on overall mitochondrial health
depending on further model assumptions w.r.t. the health regulation mechanism.

10. When subvolume-based simulation is applicable, it is generally orders of magnitude
faster than individual-based simulation. This is true also for ML-Space’ hybrid
subvolume/individual simulator compared to purely individual-based simulation.

11. Fewer model parameters are needed for subvolume-based simulation, which makes
the hybrid simulator also particularly suitable when details about amounts, sizes
or diffusion constants of entities are uncertain or unknown, as fewer assumptions
(or fewer parameter estimations) are required.

12. ML-Space is the first approach that combines individual, mobile compartments
(especially dynamic ones w.r.t. creation, destruction and hierarchical composition)
and subvolume-based simulation.
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