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Identification of letters within a cursive line requires locating the begin-
ning and the end points of individual letter-inscriptions. It is common
to think of this as a task to be accomplished before the individual in-
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1 Introduction

Digital texts have many advantages over physical ones: They are easy to copy, easy
to distribute and searchable. But many handwritten documents only exist in form of
physical letters, papers or books. There is an incredible amount of such documents
that public and private libraries sometimes measure their inventory in bookshelf
kilometers. The majority is not yet digitalized. In the recent years, a need is arisen
to digitize and to transcribe them, i.e., to convert images of texts into a sequence of
machine-encoded characters, to make them accessible to the general public. Since
2004, Google tries to digitize and read at least printed documents which is commonly
regarded as an easier task than handwritten text recognition (Vincent [2007]). For
handwritten texts this task is called offline handwritten text recognition (HTR).
This thesis investigates a subtask of HTR.

In recent years, artificial Neural Networks (NNs) have been evolved to the state-of-
the-art solution for a broad class of real world problems under the label Deep Learn-
ing: Speech recognition, image and object classification, neural language models and
translation systems are only the most prominent examples since they are already
integrated in everyday software by high tech companies like Facebook, Google or
Apple (LeCun et al. [2015]). The breakthrough of Neural Networks in the field
of HTR was a bit less perceived although it was not less spectacular. At ICDAR
2009 competitions on Arabic and French HTR a Neural Network based recognition
system outperformed the other submissions by halving the error rate of the next
best system (Grosicki and Abed [2009]). This system was proposed in Graves and
Schmidhuber [2009] and the approach is entirely discriminative, that means, the
character sequences are modeled depending on the observations (which is an image
of the writing in case of HTR). In contrast, most of the competing HTR systems were
based on Hidden Markov Models (HMMs) – a generative sequence labeling model.
That means, HMMs model the sequence of observations depending on the latent
character sequence. Since then, many research groups adapted the ideas of Graves
and Schmidhuber by combining Hidden Markov Models and such Neural Networks.
Although the training, i.e., the parameter adaptation, is still discriminative, the
decoding, i.e., the search for the most likely character sequence, is accomplished in
a generative manner (Bideault et al. [2015a], Moysset et al. [2014], Bluche et al.
[2014]).

It seems to be curious to train a model according to one objective function and
decode according to another objective function. HMMs are a very popular decoding
approach probably because there are many convenient software tools available and
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the theory is well understood. Compared to the sophisticated methods for Hidden
Markov Models, discriminative decoding as it was proposed in Graves et al. [2006] is
still at an early phase of its development. The decoding of HMMs is usually applies
Automata to describe the set of feasible character sequences. The rules to describe
these feasible sequences can be very complex, especially, if they are derived from
natural language. Fortunately, these rules can be split up into different levels of
abstraction each of them represented by a Finite State Transducer (FST) which is
an extension of Automata. An FST models relations between two sequences over
potentially different alphabets. For example, one Transducer relates sequences of
HMM states to sequences of characters and another one relates sequences of charac-
ters to words. These two Finite State Transducers can be composed. The resulting
Finite State Transducer relates sequences of states to words. The set of feasible state
sequences defined by such FST contains only those elements which correspond to fea-
sible words (Mohri et al. [2008]). Besides the theoretical advantages, this approach
has been transferred to software implementations such that nearly all state-of-the-
art HMM software is based on or at least supports Finite State Automata and Finite
State Transducers (e.g. Rybach et al. [2009], Povey et al. [2011]).

The considered Neural Networks of this thesis label the input as shown in Figure
1.1: The finite input sequence is an image of a writing (Figure 1.1(a)) and the
Neural Network outputs a confidence of each label at each position (Figure 1.1(b)).
The rows correspond to a specific character and the columns represent a specific
area in the input image. Hence, the column index is called position or time step
in the following. The brightness represents the confidence. The highest activity
in this output matrix is in the center, at the very first and at the last row. The
center contains the activations of the small letters over the time and the last row
represents the space ␣. The first row represents an additional output label � and
is active if none of the character labels is active. Loosely spoken it means: At this
position there is no character. Thus, the labels provided by the Neural Network are
A′ = A ∪ {�} where A is the alphabet of characters potentially displayed in the
image.
Definition 1.1 (ConfMat). Let Y ∈ [0, 1]T×|A′| a matrix with the elements yi,j.
We call Y Confidence Matrix (ConfMat) iff ∑|A′|j=1 yi,j = 1 for each i ∈ {1, . . . , T}.

The number T of rows of Y is the number of ConfMat positions and |A′| is the
number of labels (i.e., classes) the NN can distinguish. Figure 1.1(b) represents such
a (transposed) ConfMat. In this thesis, we investigate the discriminative decoding
of ConfMats for handwritten text recognition as it is suggested in e.g. Graves et al.
[2006, 2008], Graves and Jaitly [2014]. These articles describe the feasible label
sequences directly by the rules which label is allowed after another. We show that
Automata and Finite State Transducers yield a convenient way to describe these
label sequences. The decoding process itself can be formulated as an optimization
problem on Weighted Automata.

Generally speaking, decoding is the process of converting information from one
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(a) Line of handwritten text: “our Author’s absurd definition of”. Positions between two
words highlighted in green.

(b) The corresponding output of a Neural Network. Black means high confidence, white
means very unlikely. Rows correspond to labels, columns correspond to positions in the
image. Active positions of the space (last row) which are highlighted in yellow coincide with
the green areas above.

Figure 1.1: Textline and the corresopnding output of the Neural Network. Textline
from HTRtS data set (Sánchez et al. [2015]).
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representation to another. In this thesis, the information is encoded in the network’s
output and it is converted to a character sequence over the alphabet A. The feasible
subset X of the set of all possible character sequences A∗ may contain e.g. words of
a specific language, numbers from a certain range, syntactically correct sentences,
etc.

Definition 1.2 (Decoding). For any T ∈ N and any alphabet A, let Y ∈ RT×|A′| be
a ConfMat. Let X ⊂ A∗ be a set of feasible character sequences over some alphabet
A. Given a confidence function O : [0, 1]T×|A′| × A∗ → R, the optimization problem

O(Y , z)→ max
s.t. z ∈ X

(OP)

of finding the most confident z ∈ X with respect to Y and O is called decoding.

The function O will typically be any kind of likelihood of z given Y but we also
investigate other metrics.

We investigate elementary decoding strategies with different Automata, for different
situations and show how to prune branches of the search space to stay efficient. As
a major result of this thesis, we propose a method which decodes the ConfMat of a
Neural Network constrained to Regular Languages. This method is convenient for
information retrieval tasks such as keyword spotting since a broad class of patterns
which form the feasible character sequences X can easily be described by Regular
Expressions. Its ability to align parts of the Regular Expression to parts of the Conf-
Mat Y facilitates the analysis of the result. We show that the proposed methods
are capable of solving real world tasks as keyword spotting and full text recognition.
Since HTR inherently involves a natural language, the tools from Natural Language
Processing potentially improve the recognition accuracy. One such tool is a Lan-
guage Model. We give a method to integrate Language Models into the decoding
which is a generalization of the method proposed in Graves et al. [2008] and is also
linked to methods used for decoding of NN-HMM combinations.

In the remainder of this chapter, we introduce a basic notation which will be impor-
tant for the thesis. The next two chapters introduce (Finite State) Automata, their
connection to Regular Expressions, Finite State Transducers, Weighted and Prob-
abilistic Automata and efficient methods for optimization problems on Weighted
Automata. Chapter 4 gives a brief introduction to the two most common sequence
labeling approaches: Hidden Markov Models and Neural Networks. Both algorithms
are strongly related to Language Models which are introduced very briefly. In the
same chapter, we also introduce a popular training procedure called Connectionist
Temporal Classification (CTC) which is assumed throughout the thesis as training
procedure for Neural Networks. Afterwards, we start investigating discriminative
approaches for decoding of single words. We investigate slight modifications of the
CTC decoding, review a keyword spotting approach and show effective speed-up
mechanisms. In Chapter 6, the feasible character sequences are restricted to Regu-
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lar Languages. We derive an efficient decoding heuristic which is proven to be exact
under mild conditions. We confirm these results experimentally. In Chapter 7, we
apply the derived methods to recognition tasks such as keyword spotting and full
text recognition. To improve the results, we derive a method to integrate Language
Models into the decoding.

Notation

In the following, we introduce some notation to simplify the description.

A finite sequence will be denoted by its elements o1, . . . , on ∈ O or equivalently by
the sequence vector o1:n∈ On. To specify the subsequence from s to e, we abbreviate
os:e = os, os+1, . . . , oe. Vectors v ∈ Rn are usually written in bold font. A matrix
M ∈ Rm×n is written bold and in upper-case. The elements are scalars and as such
they are written in lower case and plain font, i.e., the element at row i and column
j is mi,j.

Let S be a set. We denote S∗ = ⋃∞
i=0 S i the set of finite sequences of S. S∗ is called

the Kleene star or Kleene closure on S.

Discrete probability distributions will be important in this thesis. The discrete
probability measure P of a discrete probability space (Ω,A,P) will be denoted in
upper case. We also denote the probability mass function by P. In contrast, we
denote probability density functions by p for any continuous probability space.

Let f : R → R be any function. For any x ∈ Rn, f(x) denotes the function which
maps (x1, . . . , xn) 7→ (f(x1), . . . , f(xn)) component-wise.

If f(x) = c g(x) for some constant c and two functions f, g, we typically write
f(x)∝ g(x).





2 Automata Theory

Finite State Automata are widely used for example in theoretical computer science
and text editing software. They can be used to describe a set of character sequences
following a specific structure called Regular Language. This Regular Language may
be described compactly by so called Regular Expressions. We will introduce Finite
State Automata and consider minimal Automata in the first two sections. Weighted
Automata will be introduced in Section 2.3. A simple method to combine Automata
with an additional output tape is given in Section 2.4.

2.1 Finite Automata

Regular expressions define specific Regular Languages, i.e., specific subsets of the set
of character sequences A∗. There is a correspondence between these languages and
Finite State Automata – a model of computation of that language. We use both – the
Regular Expression to describe the set of expected sequences and the Automaton to
exploit the transition graph. This section gives a brief introduction into the field of
Regular Expressions and Finite State Automata which mainly follows Sipser [2006]
and Hopcroft et al. [2001].

Definition 2.1 (Regular Expression). For any alphabet A, the empty word (ε)
is the character sequence over A∗ of length 0. Then a ∈ A, ε and ∅ are Regular
Expressions which represent the Regular Languages L(a) = {a}, L(ε) = {ε} and
L(∅) = ∅, respectively. Furthermore, if r1 and r2 are Regular Expressions, also

• r1r2 (concatenation),
• r1|r2 (alternation) and
• r∗1 (Kleene closure)

are Regular Expressions representing the Regular Languages

• L(r1r2) := {wv ∈ A∗ | w ∈ L(r1),v ∈ L(r2)},
• L(r1|r2) := L(r1) ∪ L(r2) and
• L(r∗1) := (L(r1))∗.

Thus, Regular Expressions define Regular Languages containing specific sequences
of literals from A. Those expressions can be represented by a model of computation:
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Definition 2.2 (Finite State Automaton). The Nondeterministic Finite Au-
tomaton (NFA) N is a 5-tuple (Q,A, δ, q0, F ), where Q is the finite set of states, A
is the alphabet, δ : Q× A ∪ {ε} → P(Q) is the state transition function, q0 ∈ Q is
the initial state and F ⊆ Q is the set of final states.

We call N a Deterministic Finite Automaton (DFA) iff ∀q ∈ Q : δ(q, ε) = {q} and
∀q ∈ Q, a ∈ A : |δ(q, a)| ≤ 1.

Thus, the transition function defines not only the successor states but also the
feasible next characters of any state. We typically do not explicitly write that
δ(q, ε) = {q} while defining the state transition function.

Definition 2.3 (ε-closure of states). Let A = (Q,A, δ, q0, F ) be an NFA. The
ε-closure E(q) of a state q ∈ Q is defined as

E(q) := {q̂ ∈ Q | ∃p1, . . . , pk ∈ Q : p1 = q ∧ pk = q̂ ∧ ∀i pi+1 ∈ δ(pi, ε)}.

The ε-closure of a set of states S ⊆ Q is simply the union of the individual closures:
E(S) = ⋃

q∈S E(q).

Hence, E(q) is the set of states which can be reached from q by reading only ε. Note
that E(q) always contains q itself.

Definition 2.4 (Extended transition function δ∗). Let A = (Q,A, δ, q0, F ) be
an Automaton and δ∗(q, ε) := E(q) for any q ∈ Q. Then

δ∗(q,w1:n) :=
⋃

q̄∈E(δ∗(q,w1:n−1))
δ(q̄, wn)

for any w1:n ∈ A∗ and w1:0 = ε.

In other words: δ∗ follows the transitions reading w1:n possibly interrupted by ε-
transitions.

Definition 2.5 (Accepted word). An Automaton A is said to accept a word
w ∈ A∗ iff

E(δ∗(q0,w)) ∩ F 6= ∅.

For any state q ∈ δ∗(q0,w), w is a prefix which can be completed to an accepted
word v if there is a w̄ such that v = ww̄ and E(δ∗(q, w̄)) ∩ F 6= ∅.

Theorem 2.6 (Thompson [1968]). For any Regular Expression r there is an NFA
A accepting the corresponding language L(r) (i.e., A excepts exactly the words from
L(r)).

Thompson gave a construction method for this problem, commonly known as Thomp-
son’s Construction Algorithm. This algorithm exploits a hierarchical composition of
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Nr1 Nr2
ε

(a) r1r2

Nr1

Nr2

ε

ε

ε

ε

(b) r1|r2

Nr1
ε

ε

ε

ε

(c) r1
∗

Figure 2.1: Schematic representation of atomic NFAs resulting from Thompson’s
Algorithm. r1 and r2 are Regular Expressions and Nr1 and Nr2 are the
related NFAs. Other quantifiers or operators can be expressed by those
three. Only if Nr is marked as initial (final), the initial (final) state is
also initial (final) in the composition.

the Regular Expression. It starts by constructing NFAs for the elementary Regular
Expressions a, ε and ∅: For any a ∈ A, the NFA accepting L = {a} is

a

The arc without a start state marks the initial state and the double circles mark
the final state. If L = {ε}, replace a by ε. If L = ∅, remove the arc. Commonly the
arcs in Automata are denoted as transitions. Due to Definition 2.1, any more com-
plex Regular Expression can be expressed by combining “smaller” expressions via
concatenation, alternation and Kleene closure. Analogously, Thompson’s Construc-
tion combines “smaller” NFAs corresponding to “smaller” expressions as depicted in
Figure 2.1. Let Nr1 and Nr2 be two such smaller NFAs. Any transition from Nr1 to
Nr2 connects the final state of Nr1 and the initial state of Nr2 . The algorithm yields
only one initial and one final state. Two intermediate steps of this construction are
shown in Figure 2.2. A more detailed description may by found in [Hopcroft et al.,
2001, Theorem 3.7].

There may be more than one Automaton accepting a Regular Language. For exam-
ple, an equivalent1 DFA is obtained by the Subset Construction Algorithm (see e.g.
[Hopcroft et al., 2001, Theorem 2.11]). Analogously, there may be more than one
Regular Expression describing the same language.

Generally, the Subset Construction Algorithm generates a DFA with 2n states if n is
the number of NFA states. Meyer and Fischer [1971] showed that there are languages
which also require exactly 2n DFA states, i.e., the NFA can be exponentially more
succinct than the DFA. Therefore, we prefer NFAs over DFAs for infinite languages.
For finite languages the minimal Automaton is given in Section 2.2.

Definition 2.7 (ε-closure of Automata). For any NFA A = (Q,A, δ, q0, F ), the
1Two Finite State Automata are equivalent if they accept the same language.
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c a

t b

a t

(a) Create Automata accepting the
individual character.

c a t

b a t

ε

ε
ε

εε

ε
ε

ε

(b) Combine these Automata using the combinations from
Figure 2.1(b) and 2.1(a).

Figure 2.2: Thompson’s Construction for the Regular Expression bat|cat .

ε

a

ε

a

ε

ε

b

a

(a) Automaton accepting
aaa* and b*.

a

b

a

b

a

(b) ε-closure of the Automa-
ton in Figure 2.3(a).

c
a t

b
a t

(c) ε-closure of the Automaton
in Figure 2.2(b) without un-
reachable states.

Figure 2.3: Two examples of an ε-closure. The example in Figure 2.3(b) shows
that the closure typically yields some unreachable states which can be
removed. Figure 2.3(c) shows the ε-closure of the previous example of
Figure 2.2(b).

ε-closure E(A) of A is defined as E(A) := (Q,A, δ, q0, F̄ ) where

∀q ∈ Q,∀a ∈ A : δ(q, a) := {q′ ∈ Q | ∃r ∈ E(q) : q′ = δ(r, a)}

and F̄ := {q ∈ Q | E(q) ∩ F 6= ∅}.

The ε-closure of any Automaton A does not contain any transition between two
distinct states reading an empty word ε. Especially, E(A) = A for any DFA A.
Sometimes the ε-closure yields non-reachable states which can be omitted (see Figure
2.3).

Neither [Sipser, 2006, Theorem 1.19] nor [Hopcroft et al., 2001, Section 2.5.5] intro-
duce the ε-closure individually. Both treat it as a sub-procedure of creating a DFA
from an NFA. Further, we also modified the transition slightly to omit redundant
states. Thus, we have to prove that any A and E(A) are equivalent:
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Lemma 2.8. Any Automaton A is equivalent to E(A), i.e., for any w ∈ A∗, A
accepts w if and only if E(A) accepts w.

Proof. By definition, A accepts w1:n iff E(δ∗(q0,w1:n)) ∩ F 6= ∅. Then, there is
a sequence q0 = p0, p1, . . . , pn ∈ Q,

(
∀i ≤ n,∃r ∈ E(pi−1) : pi ∈ δ(r, wi)

)
and

E(pn) ∩ F 6= ∅. Then and only then it holds that
(
∀i ≤ n : pi ∈ δ(pi−1, wi)

)
and

pn ∈ F̄ , i.e., E(A) accepts w.

Thus, E(A) results from A by “substituting” all ε-transitions between distinct states
by appropriate transitions such that E(A) sometimes is called Automaton with-
out ε-transitions. Subsequently, we only consider Automata without ε-transitions.
Those Automata simplify several previous definitions since E(q) = {q}: Let A =
(Q,A, δ, q0, F ) be an Automaton without ε-transitions. Then for any q, δ∗(q, ε) =
{q} and for w ∈ A∗

δ∗(q0,w1:n) =
⋃

q∈δ∗(q0,w1:n−1)
δ(q, wn).

Further, A accepts w iff δ∗(q0,w) ∩ F 6= ∅.

Definition 2.9 (Path). A path denotes a sequence of states p0, . . . , pn ∈ Q such
that there is a w ∈ An with pi ∈ δ(pi−1, wi) and pn ∈ F .

2.2 Minimal Automata

2.2.1 Minimal NFAs

Definition 2.10 (Minimal Automaton). An Automaton A = (Q,A, δ, q0, F )
accepting L is called minimal iff there is no Automaton with less states accepting
L.

For DFAs, efficient minimization techniques were proposed (see e.g. Hopcroft et al.
[2001] Section 4.4.3). Unfortunately, for NFAs the minimization is hard:

Theorem 2.11 (Jiang and Ravikumar [1993], Theorem 3.2). Converting an
NFA into a minimal NFA is PSPACE-complete.

Regular Expressions can be formulated such that Thompson’s Construction gener-
ates more or less states. Thus, we leave it up to the person which formulates the
Regular Expression to find an efficient Automaton.
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Example 2.12 (The number of states depends on the formulation of r). We
construct an Automaton accepting the language L = {cat, bat}. The naïve alterna-
tion cat|bat of both words leads to an Automaton with 7 states using Thompson’s
Construction and the ε-closure (see Figure 2.3(c)). We could save 2 states and tran-
sitions by alternating only the first letters. The Regular Expression (c|b)at will
generate two states for c and b and share the states of at. Then, the Automaton
will be:

b

c

a

a

t

If we aggregate the labels c and b like [bc]at, we could save one additional state
and transition since also c and b are accepted by the same state:

b

c
a

t

Although a minimization of NFAs is combinatorial hard, a careful formulation of
Regular Expressions may save many redundant operations.

2.2.2 Minimal Automata of Finite Languages

The minimum DFA accepting a finite set of words (such as a vocabulary) is well
known. It was developed independently by several authors (see Daciuk et al. [2000]).
We mainly follow Mihov [1998].

Definition 2.13 (Lexicographical order). Let A be a totally ordered alphabet.
Given two sequences a1:n 6= b1:n ∈ A∗ of the same length. Then a1:n < b1:n iff there
is an index i s.t. ai < bi and aj = bj for each 0 < j < i (otherwise a1:n > b1:n). If a
and b are of different length, then a special symbol smaller than any other character
from A is appended to the shorter sequence until the both sequences have the same
length and can be compared.

Definition 2.14 (Equivalence of states). The right language −→L (q) of q ∈ Q is
defined by −→

L (q) := {w ∈ A∗ | δ∗(q,w) ∩ F 6= ∅}.

Two states are equivalent (denoted by ≡) if they have the same right language.

DFAs without cycles (except for ε-cycles) are denoted as Deterministic Acyclic (Fi-
nite State) Automaton (DAFSA) by Daciuk et al. [2000].
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Definition 2.15 (Minimal except for w). Let A = (Q,A, δ, q0, F ) be a DAFSA
with language L. Then A is said to be minimal except for w iff the following
conditions hold:

• For each state q ∈ Q, there are w1,w2 ∈ A∗ such that q ∈ δ∗(q0,w1) and
δ∗(q,w2) ∩ F 6= ∅. (Hence, q is reachable from q0 and there is a final state
reachable from q.)
• w is a prefix of the last word of L in lexicographical order. We denote: q0 =
t0, t1, . . . , tk ∈ Q with k = |w|, ∀i > 0 : ti ∈ δ(ti−1, wi) and T := {t0, . . . , tk}.
• There are no states q, p ∈ Q \ T s.t. q 6= p and q ≡ p.
• For any q ∈ Q, any i ∈ {1, . . . , k} and any a ∈ A, δ(q, a) = ti if and only if
i > 0 and q = ti−1 and wi = a. (T is only reached by w.)

In other words: If A is minimal except for w, the only states which can potentially
be saved are the elements of T (which form path that reads w). The “rest” of A
cannot further be reduced. Thus, A is minimal iff A is minimal except for ε.

Theorem 2.16 (Mihov [1998]). Let A be a minimal DAFSA except for w, let
ti ∈ δ(ti−1, wi) for each i ∈ {1, . . . , |w|} with t0 = q0 and w̄ > w ≥ v in the
lexicographical order for any v which is accepted by A. Then Algorithm 1 yields a
minimal DAFSA Ā except for w̄ which accepts also the words accepted by A.

Proof. Is a direct consequence of Lemma 9, Lemma 10 and Theorem 11 of the cited
article.

For two equivalent states q, p ∈ Q, q is replaced by p if any transition ending in q is
redirected to p, i.e, for any r ∈ Q and for any a ∈ A with q ∈ δ(r, a) remove q from
δ(r, a) and add p. According to Mihov [1998], a redirection of transitions starting
in q is not necessary in Algorithm 1 since these transitions will be equal.

For any lexicographically sorted vocabulary V ( A∗, the following procedure will
generate a minimal DAFSA:

• Start with a minimal DASFA A which accepts only the first word w1 of V .
Then A is minimal except for w1 with T = Q.
• For i = {2, . . . , |V|}, apply Algorithm 1 to A and wi ∈ V in the correct order.
• Finally, apply Algorithm 1 to A and the empty word ε.

In our tests, the number of arcs decreases dramatically compared to alternating the
vocabulary words naïvely (i.e., the Automaton which is generated from the Regular
Expression z1|z2|...|zn where z1, . . . ,zn are all the vocabulary words, see Figure
2.3(c)).
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Algorithm 1: Automation minimal except for w̄
input : A = (Q,A, δ, q0, F ) minimal except for w, T = {t0, t1, . . . , tk}, w̄
output: A minimal except for w̄, T = {t̄0, t̄1, . . . , t̄k}
c← max{i ∈ N | w1:i = w̄1:i}; // index of maximum common prefix
for i = |w| to c+ 1 do

if ∃p ∈ Q : ti ≡ p then
replace ti by p in A;
Q← Q \ {ti};

for i = 1 to c do
t̄i ← ti

for i = c+ 1 to |w̄| do
Q← Q ∪ {t̄i}; // t̄i is a new state s.t. Q ∩ {t̄i} = ∅
δ(t̄i−1, w̄i)← {t̄i};

F ← F ∪ {t̄|w̄|};

2.3 Weighted and Probabilistic Automata

The main ideas follow Mohri et al. [2008] and Dupont et al. [2005] in this section
although the notation is adapted to our requirements.

Definition 2.17 (Weighted Automaton). A (time dependent)Weighted Automa-
ton (WA)W = (Q,A, λ, q0, F ) is specified by a finite set of states Q, the alphabet A,
the initial state q0 ∈ Q, the time dependent reward function λ : Q×A×Q×N→ R≥0
and F ⊆ Q the set of final states.

The transition from q to q′ reading a at time t gets a reward λ(q, a, q′, t) ≥ 0. We call
λ(q, a, q′, t) reward instead of weight since we will define a maximization problem
on the Weighted Automaton: Find the path with the highest reward from q0 to
any final state. In contrast, the term “weight” indicates a minimization problem.
Additionally, the rewards are time dependent. For transitions which are not allowed,
the reward is simply 0. The reward of a path is the product over the rewards of all
its transitions such that a path containing a 0-reward transition imitatively yields
reward 0.

Definition 2.18 (Greatest and Total Reward). Let W be a WA, then the
reward function can be extended to λ+ : Q × A∗ × Q × N → R≥0 for any 0 < n ∈
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N,w ∈ An, q, q′ ∈ Q and t ∈ N by

λ+(q, ε, q′, t) :=

1 if q = q′,

0 otherwise,

λ+(q,w, q′, t) :=
∑

p0,...,pn∈Q
p0=q
pn=q′

n∏
i=1

λ(pi−1, wi, pi, t+ i− 1).

Analogously, let λmax : Q× A∗ ×Q× N→ R≥0 with

λmax(q, ε, q′, t) :=

1 if q = q′,

0 otherwise,

λmax(q,w, q′, t) := max
p0,...,pn∈Q

p0=q
pn=q′

n∏
i=1

λ(pi−1, wi, pi, t+ i− 1)

for any 0 < n ∈ N,w ∈ An, q, q′ ∈ Q and t ∈ N. For a certain w ∈ A∗ and WA
A, the total reward ρ+

W (w) and the greatest reward ρmax
W (w) of w and WA W are

defined as

ρ+
W (w) :=

∑
q′∈F

λ+(q0,w, q
′, 1) and ρmax

W (w) := max
q′∈F

λmax(q0,w, q
′, 1).

Definition 2.19 (Support). Let W = (Q,A, λ, q0, F ) be a Weighted Automaton.
An Automaton A = (Q,A, δ, q0, F ) is called Support of W if

∀q ∈ Q ∀a ∈ A : δ(q, a) = {q′ ∈ Q | ∃t ∈ N : λ(q, a, q′, t) 6= 0}.

Lemma 2.20. If the Support ofW = (Q,A, λ, q0, F ) is a DFA, then λ+(q,w, q′, t) =
λmax(q,w, q′, t) for any t ∈ N,w ∈ A∗ and q, q′ ∈ Q.

Proof. Let A = (Q,A, δ, q0, F ) be the Support of the WA W . If A is a DFA, there
is at most one sequence p0, p1, . . . , pn with pi ∈ δ(pi−1, wi) for any w ∈ An. Thus,
λmax(p0,w, pn, t) = ∏n

i=1 λ
max(pi−1, wi, pi, t + i− 1) = λ+(p0,w, pn, t). If there is no

such state sequence, λ+(p1,w, pn, t) = λmax(p1,w, pn, t) = 0 anyway.

Definition 2.21 (Probabilistic Automaton). A Probabilistic Automaton (PA)
P is a 5-tuple (Q,A, φ, ι, τ) where Q is a finite set of states, A is the alphabet,
φ : Q × A × Q → [0, 1] is the transition probability function, ι : Q → [0, 1] defines
the initial probabilities and τ : Q→ [0, 1] define the final probabilities. Additionally,



16 2.3 Weighted and Probabilistic Automata

for any q ∈ Q, ∑
q∈Q

ι(q) = 1

τ(q) +
∑
a∈A

∑
q′∈Q

φ(q, a, q′) = 1

and for any reachable q (i.e., ι(q̂)φ(q̂,w, q) > 0 for some q̂)∑
w∈A∗

φ(q,w, q′)τ(q′) > 0

where φ(q, ε, q′) = δq,q′ (Kronecker delta) and φ(q,wa, q′) = ∑
q̂∈Q φ(q,w, q̂)φ(q̂, a, q′)

for any a ∈ A and w ∈ A∗.

Definition 2.22 (PA without final probabilities). A Probabilistic Automaton
without final probabilities (NFPA) is a PA where τ(q) = 0 for any q ∈ Q.

Remark 2.23. We additionally assume that any NFPA has only one initial state,
i.e., ι(q) = 1 iff q = q0 and 0 otherwise. Such NFPA P = (Q,A, φ, ι, τ) form a proper
subclass of the set of WAs since there isW = (Q,A, λ, q0, F ) where ι(q0) = 1, F = Q
and λ(q, a, q′, t) = φ(q, a, q′).

Definition 2.24 (Probability). Let W = (Q,A, λ, q0, Q) be a NFPA. The total
probability PW (w) of w ∈ A∗ is defined by

PW (w) :=
∑
q′∈Q

λ+(q0,w, q
′, 1) = ρ+

W (w).

The total probability of a set W ⊆ A∗ of words is

PW (W ) :=
∑
w∈W

PW (w).

Lemma 2.25 (Dupont et al. [2005]). Let A be a NFPA. For any integer n, we
have

PW (An) = 1.

In contrast, PA define probability distributions over A∗ such that

PW (A∗) :=
∑
w∈A∗

∑
q,q′∈Q

ι(q)λ(q, a, q′, t)τ(q′) = 1

(Dupont et al. [2005]). We mainly consider WA in the following. Probabilistic
Automata have strong connections to Hidden Markov Models which will appear in
Section 4.2.
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2.4 Composition

Definition 2.26 (Finite State Transducers). The Finite State Transducer (FST)
T is a 6-tuple (Q,A,B, δ, I, F ), where Q is the finite set of states, A is the input
alphabet, B is the output alphabet, δ : Q × A → P(Q × B) is the state transition
function, I ⊂ Q is the set of initial states and F ⊆ Q is the set of final states.

If there is only one initial state I = {q0}, FSTs can be seen as extension to Automata
where each transition additionally outputs a value from B. Sometimes we regard
such an FST as an Automaton by ignoring its output. The other way around way:
An Automaton can be regarded as an FST where each transition outputs only the
empty word. The reason for introducing yet another kind of Automaton is that
two simple FSTs can be combined to form a more complex one in a very natural
way. This enables us to decompose a complex Automaton into different layers of
abstraction.

Definition 2.27 (Composition of FSTs). Let T1 = (Q1,A,B, δ1, I1, F1) and T2 =
(Q2,B,C, δ2, I2, F2) two FSTs. Then T̊ = (Q̊,A,C, δ̊, I̊ , F̊ ) is the composition of T1
and T2 iff

• Q̊ ⊆ Q1 ×Q2 and
• I̊ = I1 × I2 and
• F̊ = F1 × F2 ∩ Q̊ and
• for any q1, p1 ∈ Q1, for any q2, p2 ∈ Q2 and for any (a, b, c) ∈ A× B× C :

(p1, b) ∈ δ1(q1, a) ∧ (p2, c) ∈ δ2(q2, b)⇒
(
(p1, p2), c

)
∈ δ̊

(
(q1, q2), a

)
.

If Automata define feasible subsets of A∗, FSTs define relations between A∗ and B∗
of the accepted words and their outputs, obviously. If the FSTs T1 and T2 define
the relations R1 ⊂ A∗ × B∗ and R2 ⊂ B∗ × C∗, then the composition defines the
relation R1 ◦ R2 = {(a, c) ∈ A∗ × C∗ | ∃b ∈ B∗ : (a, b) ∈ R1 ∧ (b, c) ∈ R2}. In
other words, the composition of T1 and T2 accepts a sequence a ∈ A∗ and outputs
a corresponding sequence c ∈ C∗ if there is a sequence b ∈ B∗ which is output of T1
while accepting a and if T2 accepts b while outputting c. Algorithm 2 provides the
pseudo code of the composition which is a simplified version of the composition of
Weighted FSTs published in Mohri et al. [2008].

Figure 2.4 shows two finite state transducers T1, T2 and their composition T1 ◦ T2.
In later chapters, we will also introduce FSTs which occasionally output the empty
word ε. Although the higher level FST T2 may have no explicit ε-transition, it is
always possible to stay in a certain state while reading and outputting the empty
word, as for example in Figure 2.4: The transition (1, 1) to (2, 1) in Figure 2.4(c)
makes use of this property: T2 stays in state 1 while reading the output ε of the
transition from state 1 to state 2 of T1.
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Algorithm 2: Composition of two FST
input : T1 = (Q1,A,B, δ1, I1, F1), T2 = (Q2,B,C, δ2, I2, F2)
output: T1 ◦ T2 = (Q̊,A,C, δ̊, I1 × I2, F̊ )
Q̊← I1 × I2;
S ← I1 × I2;
while S 6= ∅ do

(q1, q2)← get and remove first element of S;
if q1 ∈ F1 and q2 ∈ F2 then

F̊ ← F̊ ∪ {(q1, q2)};
for (a, b, c) ∈ A ∪ {ε} ×B ∪ {ε} × C ∪ {ε} do

for (q̂1, q̂2) ∈ Q1 ×Q2 with (q̂1, b) ∈ δ1(q1, a) and (q̂2, c) ∈ δ2(q2, b) do
if (q̂1, q̂2) 6∈ Q̊ then

Q̊← Q̊ ∪ {(q̂1, q̂2)};
S ← S ∪ {(q̂1, q̂2)};

δ̊((q1, q2), a)← δ̊((q1, q2), a) ∪ {((q̂1, q̂2), c)};

0 1 2 3 4a : a b : ε c : ε d : d

(a) T1

0 1 2 3a : d ε : e d : a

(b) T2

0,0 1,1 2,1 3,1

1,2 2,2 3,2

4,3

a : d b : ε c : ε

ε
:
e

b : ε

b : e

ε
:
e

c : ε

ε
:
e

c : e

d : a

(c) T1 ◦ T2

Figure 2.4: Two finite state transducers T1, T2 and their composition T1◦T2 (example
from Mohri et al. [2008]). The colon separates the input (left) and the
output (right) of a transition.
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2.5 Conclusion

This section introduces Automata and related concepts which are necessary for this
thesis. Automata accept a subset of A∗, the so-called Regular Language. This
language can be described by Regular Expressions, conveniently. We briefly show
how to create a corresponding NFA and how to “delete” uninteresting ε-transitions.
We also introduce Weighed Automata which additionally put weights or rewards
on each transition. Later, we will search for paths of specific WA with maximum
reward. We also mention that it is computationally hard to calculate the minimum
NFA with respect to any Regular Expression. For the practically interesting case
of finite sets of words, the minimum Automaton is known. Below, it will be helpful
to divide different levels of abstraction, each of them represented by an Automaton.
A composition of Automata is not defined but a composition of Finite State Trans-
ducers which additionally output a letter at each transition. We also provide the
algorithm to compose FSTs. The composed FST accepts a sequence if and only if
it is feasible according to the lower level FST and the output of the lower level FST
is accepted by the higher level FST.





3 Dynamic Programming

Dynamic Programming is a method to reduce a complex calculation to a sequence of
simpler calculations. Typical applications are special kinds of optimization problems
which can be split into different stages and the value of each stage depends only on
the previous stage. An example for such optimization problem is given in Section
3.1.

Many authors (e.g. Russell et al. [2003]) introduce Dynamic Programming while
solving the objective function of a Markov decision process. The formulation of our
optimization problems as Markov Decision Processes appears to be awkward. Since
we apply Dynamic Programming to maximize the reward of Weighted Automata,
we introduce Dynamic Programming only for this case although the basic idea is
much more general. Additionally, we provide a classical application of Dynamic
Programming in Section 3.3.

3.1 Maximum Reward

First, consider the maximization problem

ρmax
W (w)→ max

s.t. w ∈ X1 × · · · × XT ⊆ AT
(3.1.1)

for any WA W = (Q,A, λ, q0, F ). If Xi := {ai}, (3.1.1) maximizes the reward of the
sequence a1:T ∈ AT which is ρmax

W (a1:T ). If Xi := A, (3.1.1) yields the maximum
reward of any sequence. Both cases will be important in later chapters.

A necessary condition is that the objective function is decomposable into a sequence
of smaller objectives such that each of the smaller objectives only depends on the
directly preceding objective values but not on other past or future values. This
property allows to solve the objective function stagewise as the following lemma
shows:

Lemma 3.1. Consider the optimization problem (3.1.1). For any q′ ∈ Q, let

α0(q′) :=

1 if q′ = q0

0 else
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and for t ≥ 1

αt(q′) := max
q∈Q,a∈Xt

αt−1(q)λ(q, a, q′, t).

Then for any 1 ≤ t ≤ T

αt(q′) = max
w∈X1×···×Xt

λmax(q0,w, q
′, 1). (3.1.2)

Especially,
max

w∈X1×···×XT
ρmax
W (w) = max

q∈F
αT (q).

Proof. Induction over t. For t = 1:

max
a∈X1

λmax(q0, a, q
′, 1) = max

a∈X1
max
q∈Q

α0(q)λ(q, a, q′, 1) = α1(q′).

For t > 1: Let Eq. (3.1.2) be true for t− 1. Then

max
w∈X1×···×Xt

λmax(q0,w, q
′, 1)

= max
w∈X1×···×Xt

max
p0,...,qt∈Q
p0=q0
pt=q′

t∏
i=1

λ(pi−1, wi, pi, i)

= max
a∈Xt

max
q∈Q

max
w′∈X1×···×Xt−1

max
p0,...,pt−1∈Q

p0=q0
pt−1=q

t−1∏
i=1

λ(pi−1, wi, pi, i)

︸ ︷︷ ︸
=αt−1(q)

λ(q, a, q′, t)

=αt(q′)

Obviously, each αt(q) is an optimal solution to the subproblem of finding the maxi-
mum path from q0 to q reading any w1, . . . , wt ∈ X1 × · · · × Xt . This is known as
Bellman’s Principle of Optimality (Bellman and Dreyfus [1962]):

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

Translated to our situation: Independent of the choice of the t-th state, the first
t− 1 states must be chosen optimally.

Algorithm 3 calculates the maximum reward for any Weighted Automaton. The
complexity of the algorithm is in O(|Q|2 |A| T ) if Xi = A for each i. For Sparse
Automata (i.e., the number of transitions with λ(q, a, q′, t) > 0 is bounded by a
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Algorithm 3: Dynamic Programming for maximum reward.
input : WA W = (Q,A, λ, q0, F )
output: maxq∈F αT (q)
α0(q0)← 1;
for q ∈ Q \ {q0} do

α0(q)← 0
for t← 1 to T do

for q′ ∈ Q do
αt(q′)← maxq∈Q maxa∈Xt λ(q, a, q′, t)αt−1(q)

constant c � |A||Q| for any q ∈ Q) the algorithm might be optimized by omitting
0-reward transitions in advance. This leads to a complexity in O(|Q|T ).

3.2 Total Reward

Dynamic Programming is sometimes also denoted as Dynamic Optimization. How-
ever, the basic idea is more general and can be applied to more than optimization
problems. For example, Dynamic Programming provides a very efficient way to
calculate the sum of the total rewards∑

w∈X1×···×XT
ρ+
W (w)

given the WA W = (Q,A, λ, q0, F ).

Lemma 3.2. Let A = (Q,A, λ, q0, F ) be a WA. For any q, q′ ∈ Q, let

α+
0 (q) :=

1 if q = q0,

0 else,
β+
T (q′) :=

1 if q′ ∈ F,
0 else ,

and for t ≥ 1, t′ ≤ T − 1

α+
t (q′) :=

∑
q̄∈Q,a∈Xt

α+
t−1(q̄)λ(q̄, a, q′, t) , β+

t′ (q) :=
∑

q̄∈Q,a∈Xt′+1

β+
t′+1(q̄)λ(q, a, q̄, t′ + 1).

Then for any 1 ≤ t ≤ T

α+
t (q′) =

∑
w∈X1×···×Xt

λ+(q0,w, q
′, 1) (3.2.1)
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and for 0 ≤ t′ ≤ T − 1

β+
t′ (q) =

∑
w∈Xt′+1×···×XT

∑
q′∈F

λ+(q,w, q′, t′ + 1).

Especially, ∑
w∈X1×···×XT

ρ+
W (w) =

∑
q∈F

α+
T (q) = β+

0 (q0).

Proof. The proof is analogous to the proof of Lemma 3.1 if we substitute max by
the sum.

Theorem 3.2 states that α+ and β+ calculate the sum of the total rewards of any
feasible character sequence in opposite directions. Algorithm 4 calculates the total
reward for any Weighted Automaton backwards starting from T to 0. An equivalent
forward calculation can be derived from Algorithm 3 essentially by substituting max
by the sum. Due to Eq. (3.2.1), α+

t (q) is the sum of the rewards up to t of any
feasible sequence w which is in state q at time t. Thus, α+

t (q) can be interpreted as
the reward of any feasible prefix from X1×· · ·×Xt through q at time t. Analogously,
β+
t (q) represents the reward of any feasible suffix through q at time t.

Algorithm 4: Dynamic programming for total reward.
input : WA W = (Q,A, λ, q0, F )
output: β+

0 (q)
for q ∈ F do

β+
T (q)← 1

for q 6∈ F do
β+
T (q)← 0

for t← T − 1 to 0 do
for q ∈ Q do

β+
t (q)← ∑

q′∈Q
∑
a∈Xt+1 β

+
t+1(q′)λ(q, a, q′, t+ 1)
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3.3 Distance of Character Sequences

Definition 3.3 (Levenshtein Distance). For any n,m ∈ N, let a1:n, b1:m be two
sequences from the alphabet A. Let d : A∗ × A∗ → N be defined by

d(a1:i, b1:j) :=



i if j = 0,
j if i = 0,
min{ d(a1:i, b1:j−1) + 1,

d(a1:i−1, b1:j) + 1,
d(a1:i−1, b1:j−1) + 1− δai,bj}

otherwise,

for i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . ,m} where δai,bj denotes the Kronecker-delta.
The Levenshtein Distance of a1:n, b1:m is defined as d(a1:n, b1:m).

The Levenshtein Distance yields the minimal number of the operations: substitution,
insertion and deletion, needed to convert one sequence into another where the edit-
operations deletion, insertion and substitution are defined in a natural way, e.g. for
any sequence z ∈ A∗, any x ∈ A and any position i ≤ n the substitution is defined
as

subsi(z, x) := z1, . . . , zi−1, x, zi+1, . . . , zn.

The Levenshtein Distance is widely used in HTR since it is a standard performance
measure of a recognition:

Definition 3.4 (Character error rate). Let t be the true character sequence
(typically called ground truth) and let z∗ be the result of the decoding process
defined by (OP). Let d : A∗×A∗ → N be the Levenshtein Distance on sequences of
characters. Then the character error rate (CER) of z∗ is defined by

CER(z∗, t) := d(z∗, t)
|t|

.

The CER over a whole data set with ground truth t1, . . . , tn and the corresponding
recognition results z∗1, . . . ,z∗n is defined by the average

CER
(
(z∗1, t1), . . . , (z∗n, tn)

)
:=

∑n
i=1 d(z∗i , ti)∑n

i=1 |ti|
.

If not sequences of characters but sequences of words are compared, we obtain the
word error rate:

Definition 3.5 (Word error rate). Let V ⊂ A∗ be the vocabulary of feasible
words and Θ : A∗ → V∗ the function which decomposes a character sequence in
a sequence of words (typically called tokenizer). Let d : V∗ × V∗ → N be the
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Levenshtein Distance on sequences of words1. Then, the word error rate (WER) of
z∗ is defined by

WERΘ(z∗, t) := d(Θ(z∗),Θ(t))
|Θ(t)| .

The WER over a whole data set with ground truth set t1, . . . , tn and the corre-
sponding recognition results z∗1, . . . ,z∗n is defined by the average

WERΘ
(
(z∗1, t1), . . . , (z∗n, tn)

)
:=

∑n
i=1 d(Θ(z∗i ),Θ(ti))∑n

i=1 |Θ(ti|)
.

3.4 Conclusion

This Chapter provides the basic calculation techniques of this thesis. Algorithms
3 and 4 immediately yield the maximum and total reward for any Weighted Au-
tomaton. Both algorithms will be fundamental for the decoding process. Only the
Weighted Automata needs to be specified.

Furthermore, Dynamic Programming also yields the standard performance measure
for handwritten text recognition, WER and CER.

1That means, the alphabet from Definition 3.3 is the set of feasible words V in this case.



4 Sequence Labeling Approaches

Given a sequence of observations, a sequence labeling algorithm assigns a label to
each of the observations. A lot of real world tasks are sequence labeling tasks such
as speech recognition or part-of-speech tagging where the words of a given sentence
have to be classified. Also the main application of this thesis, the handwritten
text recognition, is a sequence labeling task. Several techniques were proposed to
solve such kind of problems. In this chapter, we introduce two of the most popu-
lar techniques: Hidden Markov Models and Neural Networks. Since practically all
recognition systems for handwritten text recognition integrate a Language Model
(LM), we start with a brief introduction of LMs. Afterwards, we introduce Hid-
den Markov Models and Neural Networks. In Section 4.4, a special approach of
training Neural Networks for sequence labeling tasks is introduced. In contrast to
the standard literature, we reformulate the known results in the notion of Weighted
Automata.

4.1 Language Models

This section introduces the most popular Language Model estimation technique:
n-grams.

Definition 4.1 (Language Model). Let V⊆ A∗ define the set of feasible words
(vocabulary). A Language Model (LM) assigns each sequence of words z1, . . . ,zm ∈
V a probability P(z1, . . . ,zm) ∈ [0, 1].

Note that we did not define the term “word” precisely since there is an ongoing
discussion which of the various definitions is correct in which situation (Manning
and Schütze [1999]). In this thesis, we use two meanings of the term word: Unless
specified otherwise, a word is an arbitrary sequence of characters over an alphabet A.
The second meaning of the term refers to the intuitive definition: A word is contained
in an official dictionary such as Stevenson [2010]. In ambiguous situations, we will
refer to these words as vocables.

Due to the chain rule of probability, P(z1, . . . ,zm) can be expanded by

P(z1, . . . ,zm) = P(z1)
m∏
i=2

P(zi | z1, . . . ,zi−1). (4.1.1)
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Definition 4.2 (n-gram). An n-gram over a certain set D ⊂ P(V∗) of word se-
quences is a Language Model which assumes the Markov property of n-th order, i.e.,
for i ≥ n

P(zi | z1, . . . ,zi−1) := P(zi | zi−n+1, . . . ,zi−1)

The precise value of P(zi | zi−n+1, . . . ,zi−1) is calculated using the frequency of
zi−n+1, . . . ,zi−1 followed by zi. Let c(zk:m) be the number of appearances of zk:m =
zk, . . . , zm as subsequences of any character sequence from D. Then

P(zi | zi−n+1, . . . ,zi−1) :=


c(zi−n+1,...,zi)
c(zi−n+1,...,zi−1) if c(zi−n+1, . . . ,zi−1) 6= 0,
0 else.

For i < n, one typically uses i-grams in Eq. (4.1.1). However, one substitutes Eq.
(4.1.1) for practical applications by

P(z1, . . . ,zm) ≈
m+1∏
i=1

P(zi | zi−n+1, . . . ,zi−1)

whereas zj = <BoS> for j < 1 and zm+1 = <EoS> denote the Begin-of-Sentence
token and the End-of-Sentence token, respectively. The advantage of the above
approximation is that it extends the n-gram to model a probability distribution
on V∗ instead of Vn (Vidal et al. [2005]). Typically, this modified n-gram model is
denoted as extended n-gram model. Equivalently, one could define LMs and n-grams
on character sequences instead of word sequences.

The precise n-gram probability strongly depends on the training corpus D which
requires a careful selection of D. Moreover, many meaningful sequences of length n
will practically not appear in the training corpus and thus get a zero probability.
To circumvent this problem several smoothing techniques where proposed to also
assign an (at least small) probability to unseen sequences. We refer to Chen and
Goodman [1996] for a fundamental overview of classical smoothing techniques.

The most common Language Models are n-grams. Recently, Neural Networks (which
will be introduced in Section 4.3) seem to outperform the classical n-grams (De Mul-
der et al. [2015]). Neural Networks are known to do a better smoothing than n-grams
(Bengio et al. [2003]). However, the training is very time expensive. Fast stable
training methods for a high number of output neurons is an active research area and
evolved over the last few years (see Mnih and Teh [2012], Mnih and Kavukcuoglu
[2013], Vincent et al. [2015]).
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4.2 Hidden Markov Models

Hidden Markov Models (HMM) are the classical, state-of-the-art segmentation-free
sequence labeling approach. In the following, we often compare our methods to
standard HMM methods and thus we will give a brief introduction into Hidden
Markov Models.

4.2.1 Definition

HMMs assume two discrete-time stochastic processes St and Xt. The first latent
process St satisfies the Markov property of first order. Thus, the transition proba-
bility at time t only depends on St and St−1. The observable process Xt, basically
the inputs to the model, is not directly modeled but depends on the latent process.
HMMs are classified based on these observations: If the set of observations is finite,
we call the HMM discrete. Otherwise, the HMM is continuous. We define discrete
HMMs only. The extension to continuous HMMs is very natural.

Definition 4.3 (Hidden Markov Model). The (discrete) Hidden Markov Model
(HMM) H = (S,X,A, b,p0) is a 5-tuple with the components

• S = {s1, . . . , sn} the set of hidden states,
• X the finite observation space,
• ai,j := P(sj | si) the probabilities of the transition from state si to sj,
• bi(x) = P(x | si) the emission probability of x ∈ X in state si and
• p0 : S → [0, 1] the initial distribution of the states

with the additional restrictions:

∀si ∈ S :
∑
sj∈S

ai,j = 1, ∀si, sj ∈ S : ai,j ≥ 0,

∀si ∈ S :
∑
x∈X

bi(x) = 1, ∀sj ∈ S,∀x ∈ X : bj(x) ≥ 0,
∑
s∈S

p0(s) = 1, ∀s ∈ S : p0(s) ≥ 0.

The emission probabilities bi(x) = P(x | si) model the observables given the hidden
states. This is called a generative model in contrast to discriminative models which
model the target variables given the observables (P(si | x)). Since X and S are finite
in the discrete case, these probabilities can be represented as a matrixB with entries
bi(x). For continuous HMMs, bi(x) are functions X × S → [0, 1] which cannot be
represented by a matrix anymore. At least the decoding presented in the following
holds for the continuous HMMs in this general notation.



30 4.2 Hidden Markov Models

4.2.2 Decoding

Due to the dependence of the observables on the hidden states, we can draw some
inference on the current state. The probability of the sequence of states si1 , . . . , siT ∈
S given the sequence of observables x1:T is:

P(si1 , . . . , siT | x1:T ) = P(x1:T | si1 , . . . , siT ) P(si1 , . . . , siT )
P(x1:T )

∝ P(x1:T | si1 , . . . , siT ) P(si1 , . . . , siT )
= P(x1:T , si1 , . . . , siT )

= p0(si1) P(x1 | si1)
T∏
t=2

P(sit | sit−1) P(xt | sit).

The denominator P(x1:T ) is just a scaling factor and constant for any choice of
si1 , . . . , siT . Thus, the objective function to find the most likely state sequence is

O(x1:T ) = max
si1 ,...,siT

P(x1:T , si1 , . . . , siT ) = p0(si1)bi1(x1)
T∏
t=2

ait−1,itbit(xt). (4.2.1)

The optimal solution can be found by Dynamic Programming. The following theo-
rem states how to obtain an equivalent Probabilistic Automaton.

Theorem 4.4. Let H = (S,X,A, b,p0) be an arbitrary discrete HMM and let
x1:T ∈ XT be the observation sequence. The NFPA W = (S ∪{s0},X, λ, s0, S) with

λ(s0, x1, sj, 1) = bj(x1)p0(sj)

and for i > 1

λ(si, xt, sj, t) = bj(xt)ai,j

for any si, sj and xt is equivalent to H in the sense that P(x1:t, si1 , . . . , sit) =∏t
j=1 λ(sij−1 , xj, sij , j) for any sequence si1 , . . . , sit ∈ S, si0 = s0 and x1:t ∈ Xt.

Proof. The claim follows directly from the definitions

P(x1:t, si1 , . . . , sit) = p0(si1)bi1(x1)
t∏

j=2
aij−1,ijbij(xj) =

t∏
j=1

λ(sij−1 ,xj, sij , j).

Thus, the set of observations X serves as alphabet for the corresponding NFPA. The
emission probabilities together with the transition probabilities yield the rewards.
In contrast to Dupont et al. [2005], the above NFPA yields the same reward for any
path. Any path in H is prefixed by s0 inW and thus one state longer. Dupont et al.
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[2005] showed that there is an NFPA such that the probability PW (x1:T ) equals∑
si1 ,...,siT

P(x1:T , si1 , . . . , siT ). The PA suggested there cannot be used to decode
the most likely state sequence, the so-called Viterbi-Approximation in Eq. (4.2.1)
(Forney Jr [1973]).

Due to Lemma 2.25, ∑x∈XT P(x) = ∑
x∈XT PW (x) = 1 for any HMM (P(x) is the

marginal distribution). However, there are alternative definitions of HMMs which
additionally introduce initial and final probabilities. These HMMs are equivalent to
PAs such that ∑x∈X∗ P(x) = 1 (Dupont et al. [2005]).

Since any NFPA is also a WA, Algorithm 3 can be applied to the NFPA from
Theorem 4.4 to calculate the optimal solution of Eq. (4.2.1) for Xi = {xi} for each
i. The joint probability can be split up into the state transition probabilities from
the emission probabilities: P(x1:T | si1 , . . . , siT ) P(si1 , . . . , siT ). This formulation
yields a convenient way to integrate a LM as we will show in Section 4.2.4.

4.2.3 Parameter Optimization of HMMs

The most popular training method for HMMs is the Baum-Welch-Algorithm (Baum
et al. [1970]), a special variant of the expectation–maximization (EM) algorithm.
It was first described for discrete HMMs and for a single observation sequence.
Soon, it was extended to continuous HMMs, to handle e.g. a mixture of Gaussian
distributions, and multiple observation sequences. For sake of simplicity, we only
introduce the simple classical method. The algorithm calculates the probabilities of
being in state sj at time t by summing up all the joint probabilities of sequences
x1:t and si1 , . . . , sit ending in sit = sj.

The Baum-Welch-Algorithm introduces the so-called forward variables which denote
the probability that the t-th state sit is sj. These forward variables correspond to
the α+ from Lemma 3.2:

α+
t (sj) = P(x1:t, sit = sj)

=
∑

si1 ,...,sit−1∈S
P(xt, sj | sit−1) P(x1:t−1, si1 , . . . , sit−1)

Let W = (S,X, λ, s0, S) be the NFPA defined in Theorem 4.4. Then α+
t (sj) can be

calculated efficiently using Lemma 3.2 (Xi = {xi} for each i.). Obviously, P(x1:T ) =∑
s α

+
T (s). Analogously, the backward variables β+ of Lemma 3.2 calculate

β+
t (sj) = P(xt+1:T , sit = sj).

In the HMM literature, the calculation of α+ and β+ is called the Forward-Backward-
Algorithm. To calculate the new parameter, the algorithm makes use of two addi-



32 4.2 Hidden Markov Models

tional variables:

ξt(j, k) = P(sit = sj, sit+1 = sk | x1:T )

= P(sit = sj, sit+1 = sk,x1:T )
P(x1:T )

= α+
t (sj) P(sk | sj) P(xt+1 | sk)β+

t+1(sk)∑
s α

+
T (s)

γt(j) = P(sit = sj | x1:T )

= α+
t (sj)β+

t (sj)∑
s α

+
T (s)

Instead of a direct optimization of the likelihood, HMMs usually optimize the inter-
mediate function of the following theorem.

Theorem 4.5 ([Baum et al., 1970, Theorem 2.1]). Let Λ := (A, b,p0) be a
configuration of model parameters, let Λ be another configuration and let x1:T ∈ XT

be an observation sequence. Let

Q(Λ,Λ) :=
∑

si1 ,...,siT ∈S
P(si1 , . . . , siT ,x1:T | Λ) ln P(si1 , . . . , siT ,x1:T | Λ).

If Q(Λ,Λ) ≥ Q(Λ,Λ), then∑
si1 ,...,siT ∈S

P(si1 , . . . , siT ,x1:T | Λ) ≥
∑

si1 ,...,siT ∈S
P(si1 , . . . , siT ,x1:T | Λ).

In other words: Increasing the intermediate function Q(Λ,Λ) increases P(x1:T | Λ).
The above theorem is a simplification to discrete X (which is sufficient for discrete
HMMs) of the original theorem.

Theorem 4.6 ([Baum et al., 1970, p. 8]). The unique maximum of Q(Λ,Λ) is
given by Λ = (A, b,p0) where for any i, j

ai,j = P(si | sj)

=
∑
t ξt(i, j)∑
t γt(i)

bi(x) =
∑T
t=1 δx,xtγt(i)∑T
t=1 γt(i)

p0(i) = γ1(i).

The proof is a straight forward minimization of Q(Λ,Λ) with Lagrange Multipliers
to constrain the resulting parameters according to Definition 4.3.
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The computationally expensive part, the Forward-Backward-Algorithm, makes ef-
fectively use of the Dynamic Programing approach. It calculates the α+ and β+

values in O(Tn2). A naïve summation of all possible state sequences of the objec-
tive needs O(TnT ) operations1.

Dempster et al. [1977] prove the convergence to the optimal value of P(x1:T | Λ) of
the “classical” Baum-Welch-Algorithm. The theoretical analysis and the impressive
experimental results made it the most popular training method for HMMs. However,
it is very limited in the type of estimator for the posterior probabilities it can train.
Hence, several iterative methods are published to train a broader class of posterior
probability estimators such as Neural Networks. A detailed survey can be found in
Khreich et al. [2012].

4.2.4 HMMs in Handwritten Text Recognition

Speech recognition was one of the first applications of HMMs (Rabiner [1989]). They
became very popular because of the automatic time alignment and the probabilistic
formulation. These two characteristics are also desirable in HTR. Due to the au-
tomatic alignment the plain transcription is sufficient in contrast to a position-wise
labeling as it is required for segmentation-based methods.

Like speech recognition, handwritten text recognition requires a lot of domain knowl-
edge. The input undergoes several preprocessing steps before it is applied to HMMs:
Slant correction, baseline normalization, binarization or contrast enhancement, fea-
ture generation among others. These aspects are very complex and there are various
approaches published. Since this is out of scope of this thesis, we refer to Plötz and
Fink [2009] and Bluche [2015].

HMM systems typically distinguish between at least two different levels:

• The character level: Character HMMs model the various feasible characters.
They work directly with features resulting from the input image. Transition
probabilities are related to the expected length of a specific character. Fig.
4.1 shows the shape of such a character HMM.
• The character sequence level: A Weighted Automaton accepts feasible char-

acter sequences. The transition probabilities typically result from external
language resources such as vocabularies or n-grams.

The lowest level is typically covered by the actual HMMs which recognize the most
basic shapes of the model. Instead of characters, the basic shape may be graphem
models. Graphems are the smallest writing units. The corresponding concept in
speech is called phoneme. Since HMMs can be interpreted as Weighted Automata /
Weighted FSTs, two levels can be combined by the Weighted FST composition (see
Mohri [2009]). For instance, a composition of such graphem HMMs and a character

1Recall that n = |S|.
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Figure 4.1: Possible shape of a left-to-right character HMM. Each state generates
a probability of the current observation. Thus, a valid interpretation is
that the detection of a character is split into the detection of a sequence
of parts of the character.

s1 s2 s3 s4

T:0.4 H:0.01 E:0.01

t:0.6 h:0.99 e:0.99

Figure 4.2: Possible shape of the Weighted Automaton at word level accepting dif-
ferent spellings of “the”. The colon seperates the emitted character and
its character bigram probability.

FST which reads graphems and outputs a character is able to recognize characters.

Either the character sequences are modeled directly using an n-gram at character
level to determine the transition weights or the character sequence level is subdivided
into a word level (also called lexical level) and language level (also called syntactical
level): Different feasible character sequences of the same word constitute a word level
Automaton (e.g. the, The and THE) representing the different spellings (see Figure
4.2). For the syntactical level, the corresponding Automaton accepts sequences of
words and weights them according to a Language Model (typically an n-gram).

As already mentioned, the different levels are formulated as Finite State Transducers.
The composition of the layers yields the entire system. The transition probabilities of
each of the levels sum to one such that the underlying Automaton is an NFPA. Many
authors, especially in the handwritten text and speech recognition such as Vidal et al.
[2005] or Mohri et al. [2008], propose additional initial and finial probabilities such
that the corresponding Automata of these FSTs are PA instead of NFPAs. This
enables to model extended n-grams correctly, for example.
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According to Plötz and Fink [2009] “practically all current recognizers are derived by
applying (variants of) Baum–Welch training on sample data [...] resulting in most
cases in (semi-) continuous output models. They are usually based on Gaussian
mixture densities”. Gaussian mixtures imply continuous HMMs with the emission
probability

bj(x) := p(x | sj) =
∑
i

cj,iN (x;µj,i,Σj,i)

where N (x;µ,Σ) is the density of the multivariate normal distribution

N (x;µ,Σ) = 1√
(2π)k det(Σ)

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
.

The coefficients cj,i ∈ [0, 1] must sum to 1, i.e., ∑i cj,i = 1. Among the best HMM
handwriting systems there are also combinations of HMMs and Neural Networks:
Hybrid systems use Neural Networks as posterior probability estimators (Doetsch
et al. [2014]). Tandem systems usually rely on Gaussian mixtures but the features
are generated by Neural Networks. Well performing tandem systems were proposed
in e.g. Bluche et al. [2013] (Convolutional Neural Network-GMM-HMM tandem
system) or Kozielski et al. [2013a] (BLSTM-GMM-HMM tandem system).

It is a great advantage that HMMs include Language Model probabilities into the
probability of the final label sequence in an inherent way. However, it was reported
that some scaling is necessary in order to optimize the performance: For z1:n words,
HMM decoders practically calculate

s∗1:T = arg max
si1 ,...,sit

p(x1:T | si1 , . . . , siT )P(si1 , . . . , siT )ρ
γn

.

The parameter ρ is called Grammar Scale Factor and γ is know as Word Insertion
Penalty (e.g. Plötz and Fink [2009], Zimmermann and Bunke [2004]). Although
Dynamic Programming is applied, the search space can be exhausting especially for
higher-order Language Models. Pruning techniques such as Beam Search reduce the
search space to keep the decoding practically tractable. A Beam Search variant is
introduced in Section 6.3.2.

4.3 Neuronal Networks

Neural Networks are an abstract model of the brain. They are successfully used for
regression and classification tasks. Here we introduce the basic concepts which are
necessary to understand the experiments of the following chapters.
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4.3.1 Definition and Architecture

Classical Models

The first article dealing with Artificial Neural Networks is commonly cited as Mc-
Culloch and Pitts [1943]. It investigates neural behavior of an ideal simplified neural
model and counts also as inception of Finite State Automata. Further research of
these Neural Networks by Kleene (Kleene [1956]) lead to the formulation of Regular
Expressions which we introduced in Chapter 2.

The modern neural model as we know it today is commonly attributed to Rosen-
blatt [1958]. In contrast to previous works its synaptic connections were weighted.
The following definition is closer to Minsky and Papert [1969] although they used
the threshold function (1>0(x) := 1 if x > 0 and 0 else) instead of a (piecewise)
continuous, monotonously increasing function which is commonly used nowadays.

Definition 4.7 (Perceptron). For a given function ψ : R→ R, w ∈ Rd and θ ∈ R
the function

Ψ : Rd → R; x 7→ ψ(wTx+ θ)

with the standard scalar product wTx is called Perceptron and ψ is called the
activation function.

The Perceptron is the classical model of a neuron. However, there is a huge amount
of neural models such that there is no precise definition of Neural Networks. In this
thesis, a (Artificial) Neural Network (NN) consists of a set of Perceptrons which
process input and generate an output. In the simplest case, several Perceptrons
processing the same input form a layer, several consecutive layers form the Multi-
Layer Perceptron:

Definition 4.8 (Multi-Layer Perceptron). For a given number n ∈ N of layers
Λl and for each 1 ≤ l ≤ n, let dl ∈ N be the number of Perceptrons in layer l. For
each i ≤ dl, Ψl,i(x) := ψl,i(wT

l,ix + θl,i) denotes the i-th Perceptron in layer l with
the parameters wl,i ∈ Rdl−1 and θl,i ∈ R. A Multi-Layer Perceptron (MLP) with
n ∈ N computed layers is a function Λn : Rd0 → Rdn such that the l-th layer is
calculated by

Λl(x) :=
(

Ψl,1(Λl−1(x)), . . . ,Ψl,dl(Λl−1(x))
)
,

where Λ0(x) := x. The layer Λ0 is called input layer, Λn is called ouput layer and
x is the input.

An exemplary Multi-Layer Perceptron with one hidden layer is given by Figure 4.3.

Definition 4.9 (Squashing function). An activation function ψ : R→ R is called
squashing function (also sigmoid function) if it is bounded, monotonically increasing
and continuous.
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Perceptron Ψl,i with wl,i = (wi)4
i=1

Figure 4.3: Multi-Layer Perceptron with 2 computed layer. d = (4, 5, 3)

Typical examples are ψ(x) = tanh(x), ψ(x) = arctan(x) or ψ(x) = (1 + e−x)−1.
Besides squashing functions there are other popular activation functions e.g. ψ(x) =
max{0, x} (the so-called rectifier). A natural extension of the ordinary activation
function of a Perceptron is a layer-wise activation function. A popular example is
the following function:

Definition 4.10 (Softmax function). The Softmax function σ : Rn → Rn is
defined by

σ(x)j := exp(xj)∑n
i=1 exp(xi)

.

Softmax is very popular as an activation function since the values sum to one and
are all positive such that NNs with Softmax activation function of the last layer are
able to model probability distributions.

Up to now, we introduced only forward structured Neural Networks (Feed-Forward
Networks) without circles and independent of the previous input. A simple recurrent
extension of Definition 4.8 is the following:

Definition 4.11 (Recurrent Multi-Layer Perceptron). Assume the notation
of Definition 4.8. For a given time series x(1),x(2), . . . ,x(T ) ∈ Rd0 of inputs, a
Recurrent Multi-Layer Perceptron Λn is a function Λn : Rd0×T → Rdn×T . It is
calculated iteratively: Let Λl(0) := 0 2 for any 1 ≤ l ≤ n and Λ0(t) = x(t) for

2The initialization with zero is quite common. Nevertheless, any other initial Λl(0) ∈ Rdl is
possible.
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. . .

y1(t + 1) y2(t + 1)

Λ2(t− 1) Λ2(t) Λ2(t + 1)

Λ1(t)Λ1(t− 1) Λ1(t + 1)

Λ0(t)Λ0(t− 1)

t-1 t t+1

Ψ1,i

Λ0(t)
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Figure 4.4: Recurrent Multi-Layer Perceptron with 2 computed layer, 2 output Per-
ceptrons and 3 input Perceptrons unfolded in time. Bold gray arcs indi-
cate multi-connections between many Perceptrons.

1 ≤ t ≤ T . With xl(t) := (Λl−1(t),Λl(t− 1)),

Λl(t) :=
(
Ψl,1(xl(t)), . . . ,Ψl,dl(xl(t))

)
.

Compared to a Multi-Layer Perceptron, the Recurrent Multi-Layer Perceptron has
additional connections (i.e., dependencies) to the same layer of the previous time
step. Figure 4.4 shows a scheme of a Recurrent Multi-Layer Perceptron. Generally,
a NN with recurrent connections is typically denoted as Recurrent Neural Network
(RNN).

Modern Approaches

Recently, several neural models with many layers were proposed under the common
label Deep Learning. Many articles confirm a high capability of approximation for a
large class of functions. Various approaches were proposed like Convolutional Neural
Networks, Autoencoders or Restricted Boltzmann Machines which are out of scope
of this thesis. The parameter optimization of such “deep” structures is not trivial
and requires advanced learning techniques. A survey on Deep Learning reviewing
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the above mentioned models and many others can be found in Schmidhuber [2015].
In this thesis, we focus on Neural Networks containing so-called Cells. These neurons
are more advanced compared to Perceptrons and became popular in HTR:

Definition 4.12 (Cell). A Cell is a function c : Rd → R2. We denote c(x) :=(
s(x), o(x, s(x))

)
. The functions s and o are composed of k Perceptrons Ψi(x)

(i = 1, . . . , k), the so-called gates: For two specific functions f, g with f : Rk → R
and g : Rk+1 → R, let

s(x) := f(Ψ1(x), . . . ,Ψk(x)) and o(x, s(x)) := g(Ψ1(x), . . . ,Ψk(x), s(x)).

The first component s(x) is typically referred to as internal state, the second com-
ponent is typically referred to as output value.

Cells are usually defined as recurrent neurons such that the input x consists of the
output values from a predecessor layer, in addition to values (internal state and
output values) from the same layer one time step before.

Definition 4.13 (Recurrent Layer of Cells). Let cl,i = (sl,i, ol,i) (i = 1, . . . , dl)
be the Cells of the l-th Recurrent Layer of Cells Λl within a Neural Network. Then

Λl(t) :=
(
ol,1(t), . . . , ol,dl(t)

)
where

sl,i(t) :=sl,i
(
xi,l(t)

)
,

ol,i(t) :=ol,i
(
xi,l(t), si(t)

)
where xi,l(t) :=

(
Λl−1(t),Λl(t−1), si(t−1)

)
and Λ0(t) := x(t) provides the external

input (t = 1, . . . , T ).

That means, the Cell input also comprises its own internal state sl,i(t − 1) besides
the output Λl(t−1) of layer l and the output Λl−1(t) of layer l−1. Figure 4.5 shows
an exemplary structure of such Recurrent Layer of Cells.

Example 4.14. To better understand the specific structure of the Cells it is reason-
able to introduce ul(t) := (Λl−1(t),Λl(t− 1)) since typically the outputs of the layer
below and the outputs of the same layer at the previous time step are processed in
the same way while si(t) has a different functionality.

• The Long Short Term Memory Cell (LSTM) from Hochreiter and Schmidhuber
[1997] is the classical Cell with the ability to memorize, forget and output
information:

si(t) = Ψi
1(ul(t)) Ψi

2(ul(t)) + Ψi
3(ul(t)) si(t− 1)

oi(t) = ψi4(si(t)) Ψi
5(ul(t))
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t− 1 t t+ 1

Λl−1(t− 1) Λl−1(t) Λl−1(t+ 1)

oi

Ψi
dl

Ψi
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Λl−1(t)
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si(t− 1)

Λl(t− 1)

si

Ψi
2Ψi

1

Λl−1(t)Λl(t− 1)

si(t− 1)

Figure 4.5: Recurrent Layer of Cells unfolded in time. Broad arcs indicate multi-
connections.
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where Ψi
1 is the input, Ψi

2 is the input gate, Ψi
3 is the forget gate, Ψi

5 is the
output gate which are standard Perceptrons. ψi4 is a squashing function. The
activation functions ψi1 and ψi4 are usually chosen to be tanh. ψi2, ψi3 and ψi5
are usually the logistic function f(x) = (1 + exp(−x))−1.
• For the LeakyLP Cell (LeakyLP) from Leifert et al. [2014b], the new internal

state is a convex combination of the new information Ψi
1(u(t)) and the internal

state si(t− 1) (from a previous time):

si(t) =
(
1−Ψi

2(ul(t))
)
Ψi

1(ul(t)) + Ψi
2(ul(t))si(t− 1)

oi(t) = ψi3
(
si(t)Ψi

4(ul(t)) + si(t− 1)Ψi
5(ul(t))

)
where Ψi

1 is the input, Ψi
2 is the forget gate, Ψi

4 and Ψi
5 are the two output

gates. Again, all gates are standard Perceptrons. The activation functions ψi1
and ψi3 are defined as tanh(x). ψi2, ψi4 and ψi5 are usually the logistic function.
• The Gated Recurrent Unit, introduced in Cho et al. [2014], is a popular Cell

which does not follow the Definition 4.12 since it needs an additional interme-
diate Feed-Forward layer to compute the internal state. Let r1(t), . . . , rdl(t)
denote the output of this additional layer. Then

rj(t) = Ψr
j(ul(t)).

The output ri scales the output oi(t− 1):

xl(t) =
(
Λl−1(t), r1(t)o1(t− 1), . . . , rdl(t)odl(t− 1)

)
si(t) = Ψi

1(xl(t))
oi(t) =

(
1−Ψi

2(ul(t))
)
oi(t− 1) + Ψi

2(ul(t))s(t)

where Ψr
j (j = 1, . . . , d) are the reset gates, Ψi

2 is called the update gate. The
activation function ψi1 is usually chosen to be tanh. ψrj and ψi2 are usually the
logistic function.

The above Cells are the most popular in the literature. Note that for all Cells there
are further details which are practically relevant but not introduced. We provide
only the conceptional background here.

We will use the first two and extend them to multi-dimensional input sequences.

Remark 4.15 (Multidimensional Cells). In many practical applications, the
input time series is q-dimensional with q > 1, i.e., the time (or equivalently position)
p ∈ Nq is q-dimensional instead of a scalar t. Hence, there are q directly preceding
time steps or positions instead of one which directly contribute to the input of the
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Cell input via recurrent connections. That means,

xl,i(p) :=
(
Λl−1(p),Λl(p−1 ), . . . ,Λl(p−q ), si(p−1 ), . . . , si(p−q )

)
sl,i(p) :=sl,i

(
xl,i(p)

)
,

ol,i(p) :=ol,i
(
xl,i(p), si(p)

)
where p−j is the position p minus 1 in dimension j. The LSTM and the LeakyLP
Cells generalize in a natural way to higher dimensions (see Graves et al. [2007] and
Leifert et al. [2014b]). Multidimensional LSTM Cells are commonly referred to as
MD-LSTM Cells.

Definition 4.16 (Truncated Gradient). Let x(p) be the input of the j-th Per-
ceptron Ψi

j of Cell ci at position p and ok(p−l ) any previous output activation from
the same layer. The Truncated Gradient differs from the exact gradient only by
setting recurrent weighted gradient propagation ∂Ψij(x(p))

∂ok(p−
l

) to zero.

For two positions p, p′ ∈ Nq, p′ < p iff p′i ≤ pi for any i and p′j < pj for at least one
j.

Theorem 4.17 (Leifert et al. [2014b]). For MD-LSTM Cells, the Truncated
Gradient of an internal state at position p with respect to the internal state at
position p′ with p′ < p is not necessarily in [0, 1]. For LeakyLP cells, the Truncated
Gradient is bounded by [0, 1].

See Theorem 15, Theorem 20 and the remark after Definition 21 of the cited article
for the proof.

If the gradient is bounded, the influence of the internal states cannot grow over
time. Thus, the internal memory is stable. For multi-dimensional LSTM Cells
(MD-LSTM) the memory is not bounded. Thus, the impact of the internal state at
a certain position may increase for subsequent positions such that it superimposes
all new information. We prefer the LeakyLP Cells especially for lower layers and
MD-LSTMs for higher layers as it is suggested in Leifert et al. [2014b].

In addition, many systems introduce a so-called subsampling from some layer Λl−1
to Λl. In a one dimensional case that means, the output of s > 1 time steps of the
(l − 1)-th layer form the input of the l-th layer. For example, a subsampling rate
of s = 2 means Λl−1(1) and Λl−1(2) serve as input for Λl(1), Λl−1(3) and Λl−1(4)
serve as input for Λl(2), etc. So, the number of time steps in which the l-th layer
generates an output is down sampled to only dT/se if T is the output number of
the (l − 1)-th layer.

Another very important concept for HTR is the multi-directional RNN. Such an
RNN contains a layer Λl which comprises 2q sublayers where q is the dimension of the
time. In case of a one-dimensional time, let us denote these two sublayers by Λ1

l and
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Λ2
l . Then one sublayer, w.l.g. Λ1

l (t), depends on Λ1
l (t− 1) via recurrent connections

as sketched in Figure 4.5. The other sublayer Λ2
l (t) depends on the Λ2

l (t + 1) in
positive time direction such that it is able to remember and process information
from the opposite direction. But that means Λ2

l (t + 1) has to be calculated before
Λ2
l (t). This concept obviously assumes a finite input. The output of layer Λl(t) is

the combined output of both sublayers (Λ1
l (t),Λ2

l (t)) and contains information from
both directions. NNs with such an LSTM Cell layer are called bi-directional LSTM
Networks (BLSTM). For time dimensions greater than 1, this concept transfers in
a natural way to 2q possible directions. Then such NNs are called multi-directional
LSTM Networks3.

Remark 4.18. In HTR, the two dimensional input sequence is finite and all se-
quence elements are known in advance. We represent them as a matrix X ∈⋃
m,nRm×n in the following.

4.3.2 Parameter Optimization of Neural Networks

Traditionally, the parameters W of a NN4 are optimized iteratively using Gradient
Descent. Other learning techniques could not compete in general and are limited to
specific conditions (Echo-State-Networks Jaeger [2002], Hebb’s rule Hebb [2005]).
A good overview of gradient learning techniques is given by Ruder [2016] which we
follow here. Let D be the data set (of input samples X and corresponding target
samples z ∈ A∗) used for training. Assume the following optimization problem:

E(D,W )→ min

where E is the so-called error function. To apply Gradient Descent, E has to be at
least piecewise continuously differentiable. The so-called Batch Gradient Descent
updates the parameter by

∆n :=η ∇WE(D,W n)
W n+1 :=W n −∆n,

where η denotes the learning rate. That means the gradient is calculated over the
whole data set which can be exhausting for huge data sets. The opposite is Stochastic
Gradient Decent where the gradient is calculated andW is updated only for a single
date instead of the whole data set D. A compromise of both variants is the Mini-
Batch Gradient Descent where the gradient is calculated for a reasonable small but
sufficient large subset of D.

The gradient itself is calculated by extensive exploit of the chain rule for differ-
3Do not confuse multi-directional LSTM with multi-dimensional LSTM which both may be ab-
breviated by MD-LSTM. However, MD-LSTM mainly abbreviates multi-dimensional LSTM in
the literature (and this thesis).

4The parameters are basically the weight vectors wl,i of the Perceptrons.
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entiation which is called Backpropagation. Extensions for RNNs incorporating the
additional time-dependency are called Backpropagation Through Time or Realtime
Recurrent Learning.

Besides these elementary approaches there were several adaptations proposed: The
Momentum method also takes previous directions into account to prevent for fluc-
tuation in the gradient: ∆n := γ ∆n−1 + η ∇WE for some γ, η ∈ [0, 1). Nesterov
Accelerated Gradient builds up on the Momentum method: Since the major part of
the direction is typically given by the Momentum ∆n−1, W n := W n − γ ∆n−1 can
be used as an estimate for the future direction. Hence, the gradient ∇WE is calcu-
lated at W n instead of W n. Adagrad, Adadelta, RMSprop and Adam are advanced
optimization techniques which change the learning rate of each component ∂E

∂wi,j
of

the gradient individually depending on past gradients of the specific component.
This is an approach to tackle the problem of vanishing gradients which states that
the gradient of lower layers is almost zero such that the training of those layers lasts
longer. A more detailed introduction to these techniques can be found in Ruder
[2016]. This article also covers a basic introduction to parallelization techniques.

A very important aspect of learning the parameters of a NN is the regularization:
The problem of adapting to the training data without generalization is commonly
referred to as overfitting. Different suggestions are proposed to tackle this problem:
Small transformations of the input (e.g. a morphological transformation in case of
HTR) or adding small random perturbations to the activations or weights are the
classical approaches. Recently, several authors investigated a concept calledDropout.
There a proportion of the hidden neurons (i.e., not from the input or output layer)
is removed randomly during the training phase (Srivastava et al. [2014]). It has
been shown to improve the generalization and the training speed. Equivalently, one
could remove a random percentage of the weights which is called DropConnect (see
Wan et al. [2013]).

4.3.3 Estimating Probabilities by Neural Networks

The problem of estimating conditional probabilities may refer to two tasks: Either
there is a given parameterized family of distributions whose parameter are unknown
and have to be estimated by the NN. Or second, the output of the NN itself is
interpreted as probability. We only consider the second case. We first show that NNs
are capable of estimating probabilities and show how to train them subsequently.

Neural Networks are Universal (Probability) Approximators

Minsky and Papert [1969] showed that a single layer of Perceptrons is not able to
reproduce a simple XOR function which lead to the abandonment of connectionism
until the early 1980s. The following result states that a Multi-Layer Perceptron with
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one hidden layer and identity function as output activation function is sufficient to
reproduce any function from the practically relevant class of continuous functions
with arbitrary exactness on compact subsets of the Rr:
Theorem 4.19 (Hornik et al. [1989]). For any r, s ∈ N and any squashing
function ψ, the set

Σr,s(ψ) :=

f : Rr → Rs

∣∣∣∣ ∀u ∈ Rr : f(x)i =
N∑
j=1

βi,jΨj(x), N ∈ N, βi,j ∈ R


(where the activation function of any Ψj is ψ) is ρK dense in the set Cr,s of continuous
functions f : Rr → Rs for any compact set K ( Rr. That means, for any ε > 0 and
for any g ∈ Cr,s there is a ϕ ∈ Σr,s such that ρK(g, φ) := supx∈K ‖g(x)−ϕ(x)‖∞ < ε.

The same result also holds for NNs with squashing functions at the output layer
(Castro et al. [2000]). To the best of our knowledge, the result was not extended to
MLPs with Softmax activation function at the output layer. Let Cr,s

1 be the set of
discrete (finite) conditional probability distributions which depend continuously on
the conditioned argument:

Cr,s
1 :=

{
f ∈ Cr,s

∣∣∣∣ ∀x ∈ Rr :
s∑
i=1

f(x)i = 1 ∧ ∀i : f(x)i ≥ 0
}
.

Let further for L ⊂ [0, 1]s

Cr,s
1 (L) := {f ∈ Cr,s

1 | ∀x ∈ R : f(x) ∈ L}.

Corollary 4.20. For any squashing function ψ and any r, s ∈ N, the set

Υr,s(ψ) :=
{
g : Rr → Rs

∣∣∣∣ ∃f ∈ Σr,s(ψ) : g = f ◦ σ
}

of MLPs with Softmax output activation function is ρk dense in Cr,s
1 for any compact

set K ( Rr.

Proof. Let

Lδ :=
{
x ∈ [δ, 1− δ]s

∣∣∣∣ s∑
i=1

xi = 1
}
.

For any y ∈ [0, 1]s with ∑i yi = 1,

min
x∈Lδ
‖y − x‖∞ ≤ min

x∈Lδ
‖ei − x‖∞ = min{1− (1− δ), δ} = δ

where ei is the i-th unit vector or equivalently the i-th column of the identity matrix.
Hence, for any ε there is a δ such that for any y ∈ [0, 1]s with ∑i yi = 1

min
x∈Lδ
‖y − x‖∞ ≤

ε

2 .
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This means in particular that for any compact K ( R for any ε > 0 and for any
g ∈ Cr,s

1 there are a δ > 0 and a h ∈ Cr,s
1 (Lδ) such that

sup
x∈K
‖g(x)− h(x)‖∞ <

ε

2 .

Note that h ◦ ln ∈ Cr,s for h ∈ Cr,s
1 (Lδ). Since Σr,s(ψ) is ρk dense in Cr,s, for any

h ∈ Cr,s
1 (Lδ) and any ε > 0 there is ϕ ∈ Σr,s(ψ) such that

ε > sup
x∈K
‖ ln(h(x))− ϕ(x)‖.

Hence, for any x ∈ K and i ∈ {1, . . . , s}

exp(−ε) < h(x)i
exp(ϕ(x)i)

< exp(ε).

Elementry operations lead to

max
i

sup
x∈K
|h(x)i − σ(ϕ(x))i| = max

i
sup
x∈K

∣∣∣∣∣h(x)i −
exp(ϕ(x)i)∑
j exp(ϕ(x)j)

∣∣∣∣∣
< max

i
sup
x∈K

∣∣∣∣∣h(x)i −
hi(x) exp(−ε)

exp(ε)∑j h(x)j

∣∣∣∣∣
= max

i
sup
x∈K
|h(x)i|(1− exp(−2ε))

≤ (1− δ)(1− exp(−2ε)).

Hence for sufficiently small ε, we find a ϕ such that ε/2 > supx∈K ‖h(x)−σ(ϕ(x))‖.
Finally, for any compact K ( Rr, for any g ∈ Cr,s

1 there is a ϕ ∈ Υr,s(ψ) such that

sup
x∈K
‖g(x)− σ(ϕ(x))‖ < sup

x∈K
‖g(x)− h(x)‖+ sup

x∈K
‖h(x)− σ(ϕ(x))‖ < ε.

This especially means, that any discrete conditional probability distribution from
Cr,s

1 can be approached by an MLP with one hidden layer and Softmax output layer
activation function on any compact K ( Rr. By setting all recurrent connections
to 0 the above corollary also holds for Recurrent Multi-Layer Perceptrons. Even
LSTM and LeakyLP Cells are able to cover the traditional Perceptron behavior
which allows to extend the statement to such NNs.

Neural Probability Estimators

Corollary 4.20 states that NNs are theoretically capable of approximating conditional
probability distributions and in fact Recurrent Neural Networks are also successfully
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trained to maximize the conditional likelihood in practice.

The classical approach to fit the underlying distribution of the data D is the maxi-
mum likelihood estimation. For a Neural Network with parameters W this means

E(D,W ) =
∏

(X,u)∈D
P(u |X;W )→ max (4.3.1)

where u is the target label sequence and X is the corresponding input (observation
in terms of HMMs). For given X, the Neural Network’s likelihood estimate is

P(u |X,W ) =
T∏
t=1

yt,ut

where yi,j is the output at position i and label j and the number of rows of Y (i.e.,
the number of positions) T equals |u|. The plain maximum likelihood estimation
requires position-wise labeled training data. Section 4.4 introduces an approach how
to apply maximum likelihood without explicit alignment which is a typical scenario
for speech recognition or HTR.

Since we exclusively deal with probabilities given by the family defined by the net-
work, we omit the parametersW below and abbreviate P(u |X;W ) by P(u |X).

4.4 Sequence Labeling by Connectionist Temporal
Classification

This section introduces the Connectionist Temporal Classification (CTC) training
scheme for Neural Networks and some basic aspects of its decoding. The results
of this section are well known in the literature but we reformulate them as an
optimization problem on Weighted Automata. Here, terms are introduced which
are fundamental for the rest of this thesis. We mainly follow the notation of Graves
et al. [2006].

Some of the currently most successful HTR systems were trained with CTC as shown
in several competitions. To give just one example, one of the most challenging real
world tasks is the Maurdor project which was won by A2iA in 2014 using CTC
to train LSTM-Cell RNNs (see Moysset et al. [2014]). CTC is not limited to text
recognition. Recently the performance of several speech recognition systems trained
with CTC equaled those of other state-of-the-art methods (e.g. Graves and Jaitly
[2014], Sak et al. [2015]).

Definition 4.21 (not-a-character symbol, extended alphabet). Let A be the
alphabet. Let �6∈ A denote an artificial garbage label called not-a-character (NaC)
(also denoted as blank). Then, the extended alphabet is A′:= A ∪ {�}. An element
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of A is called character. Sequences from A∗ are called words. Elements of A′ are
labels.

The NNs described below predict likelihoods of the labels from A′ at any position
for a specific input X. The NaC has two functionalities: It indicates that none of
the labels from A is present and it separates consecutive identical letters as we will
see below.

As already mentioned, we assume a Neural Network with Softmax activation in the
last layer such that the output Y ∈ ⋃∞T=1[0, 1]T×|A′| is a ConfMat which satisfies the
laws of probability at each position t. That means, for any t, ∑`∈A′ yt,` = 1 and
yt,` ≥ 0 for any t and any ` ∈ A′. Thus, yt,` is interpreted as the probability of label
` at time t. The probability of the label sequence π ∈ (A′)∗ is simply the product
of the individual probabilities:

P(π |X) :=


∏T
t=1 yt,πt if |π| = T,

0 otherwise

which assumes conditional independence of any two labels `1, `2 ∈ A′ at distinct
time steps t1 and t2.

If the Automaton A accepts any feasible label sequence, the corresponding Weighted
Automaton defined in the next lemma yields the reward P(π |X) for any π ∈ (A′)T
if and only if π is accepted by A and 0 otherwise.

Lemma 4.22. For any NFA A = (Q,A′, δ, q0, F ), let WX(A) denote the WA
WX(A) := (Q,A′, λ, q0, F ) with

λ(q, `, q′, t) :=

yt,` if q′ ∈ δ(q, `) ∧ t ≤ T,

0 else

for ` ∈ A′. Then for |π| ≤ T ,

max
q∈F

λmax(q0,π, q, 1) =


∏|π|
t=1 yt,πt if δ∗(q0,π) ∩ F 6= ∅,

0 else.

Proof. Let π ∈ (A′)∗ be accepted by A and |π| ≤ T . Then there is a sequence p0:|π|
in Q s.t. p0 = q0, p|π| ∈ F , for each i, pi ∈ δ(pi−1, πi) and λmax(p0,π, p|π|, 1) =∏|π|
t=1 λ(pt−1, πt, pt, t) = ∏|π|

t=1 yt,πt .

For any π ∈ (A′)∗ with |π| > T or which is not accepted by A, any state se-
quence p0:|π| with p0 = q0, p|π| ∈ F and pi ∈ δ(pi−1, πi) contains at least one pt with
λ(pt−1, πt, pt, t) = 0 (since either δ(pt, πt) = ∅ or t > T ) such that λmax(p0,π, p|π|, 1) =∏|π|
t=1 λ(pt−1, πt, pt, t) = 0.
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This means, Algorithm 3 applied to WX(A) calculates the likelihood P(π | X) of
any π ∈ (A′)T accepted by A. Lemma 4.22 will be the standard procedure to create
a WA from any Automaton which accepts the specific feasible label sequences. The
most likely label sequence for any z ∈ A∗ is called best path (β).

To map a label sequence π to a word z, one merges consecutive identical πt and
deletes the NaCs. More precisely, we define

Definition 4.23 (Collapse function (F)). For any π ∈ (A′)∗, let {s1, . . . , sn} be
the largest set of indices where πsi 6∈ {�, πsi−1}. W.l.g. let si < si+1 for any i. Then
F(π) := (πs1 , . . . , πsn).

Definition 4.24 (Extended word). For any z ∈ A∗, let z′∈ (A′)∗ be the extended
word which has an additional NaC before z, after z and between each pair of
characters.

Example 4.25. For example, F(�aa�aabb�) = aab with the corresponding indices
(s1, s2, s3) = (2, 5, 7). The corresponding extended word is �a�a�b� .

Definition 4.26 (TF). Let TF= (Q,A′,A∪{ε}, δ, q�, Q) be an FST with Q := {q` |
` ∈ A′} and

δ(q, `) :=


{(q`, `)} if ` ∈ A ∧ q 6= q`,

{(q`, ε)} if ` ∈ A ∧ q = q`,

{(q�, ε)} if ` = �.

The states of TF correspond to the labels A′. The initial state is the “NaC-state”
(q�). Any state is final. Reading any character a ∈ A for the first time yields an
output a and forces a transition to qa. A consecutive identical read of a generates no
output and TF stays in its current state. Also, reading a NaC generates no output.
Thus, TF defines the relation {(π,F(π)) | π ∈ (A′)∗}. Figure 4.6(a) shows TF for
the alphabet A = {a, b}. The Automaton given in the next lemma is a composition
of TF and the ε-free Automaton which accepts z ∈ A∗.

Lemma 4.27. For any z ∈ A∗, let Åz = (Q,A′, δ, q1, F ) be an Automaton with
Q := {q1, . . . , q|z′|} and F := {q|z′|−1, q|z′|}. The accepted language of Åz is F−1(z)
if for any q ∈ Q

δ(qi, a) =


{qi} if z′i = a

{qi+1} if i < |z′| ∧ z′i+1 = a

{qi+2} if i < |z′| − 1 ∧ z′i+2 = a 6= z′i
∅ else

.

Proof. Let n := |z|. Let {q̂0, q̂1, . . . , q̂n} be the states of the ε-free Automaton Az
from Figure 4.6(b) where q0 is the initial state and the transition from qi−1 to qi
reads zi. Let {q̄` | ` ∈ A′} be the states of TF . Then Åz results directly from
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{(π,F(π)) | π ∈ (A′)∗} for A =
{a, b}.

. . .
z1 z2 zn−1 zn

(b) Az accepting z ∈ An.

Figure 4.6: FST TF and Automaton Az.
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Figure 4.7: Automaton Åz accepting F−1(z) for single words z. Dashed arcs indi-
cate a repetition of labels.

the composition TF ◦ Az (see Algorithm 2) with q1 = (q̄�, q̂0), q2k = (q̄zk , q̂k) and
q2k+1 = (q̄�, q̂k) (for k ∈ {1, . . . , n}). This is a straight forward procedure: TF reads
` ∈ A′ and outputs either ` (only if ` ∈ A) or ε. The result is read by Az. Az
remains in its current state by reading ε or moves one state forward by reading
`. Exemplarily, we show that there is no connection between q2k = (q̄zk , q̂k) and
q2k+2 = (q̄zk+1 , q̂k+1) if zk = zk+1. The reason is that {(q̄zk , ε)} = δF(q̄zk , zk+1) where
δF is the transition function of TF . Since Az has no ε-transitions, Az remains in q̂k
by reading ε. Thus, the only transition from (q̄zk , q̂k) by reading zk = zk+1 is the
loop.

A visual representation of the Automaton is given in Figure 4.7. It shows the allowed
transitions and which labels they read. Loops are dashed to indicate a repetition of
the previous label. For the moment there is no difference between dashed and solid
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arcs. The dashed arcs will have a special role in the Weighted Automaton when
different labels reach the same state as shown in Chapter 6 below. Note that the
states are numbered according to the index of the accepted label in z′. This means
qi is reached from q1 only by π ∈ (A′)∗ with F(π) = F(z′1:i) and ends on π|π| = z′i.
Obviously, qj is reachable from qi iff i < j.

Furthermore, the Åz is obviously a DFA. Recall that according to Lemma 2.20,
λmax(q,π, q′, t) = λ+(q,π, q′, t) for WA whose support is a DFA. Then the maximum
and the total reward of the WA WX(Åz) are equal: ρmax

WX(Åz)(π) = ρ+
WX(Åz)(π) and

yield P(π | X) = ∏T
t=1 yt,πt for any label sequence π ∈ F−1(z) with |π| = T . The

rewards of any other label sequence are zero.

Since ∑`∈A′ yt,` = 1 for any t,

∑
π∈(A′)T

P(π |X) =
∑

π∈(A′)T

T∏
t=1

yt,πt =
T∏
t=1

∑
`∈A′

yt,` = 1. (4.4.1)

Thus, P(π |X) yields a probability distribution of (A′)T .

4.4.1 Training

The naïve approach to train a NN by the maximum likelihood estimation is to
maximize P(π | X) for a precise labeling π ∈ (A′)∗. Unfortunately, the training
set typically contains only the transcription z ∈ A∗ of an image X of a writing
but not position-wise labeling π. Analogously to the Baum-Welch-Training, CTC
maximizes the sum over all the label sequences collapsing to z instead:

E(D,W ) :=
∑

(X,z)∈D
P(z |X) :=

∑
(X,z)∈D

∑
π∈F−1(z)

P(π |X)→ max . (4.4.2)

Taking the logarithm of the maximum likelihood error function of Eq. (4.4.2) is a
typical way to convert the product into a sum and keeping the maxima: Let D be
the data set, then we take the logarithm of the original error function such that
ln E(D,W ) = ∑

(X,z) ln P(z | X). Now the gradient can be calculated for each
sample (X, z) ∈ D, individually. Then, ln P(z | X) is the contribution of the
sample (X, z) to the logarithmic error with the derivative:

∂ ln P(z |X)
∂wi,j

=
∑
t,`

∂ ln P(z |X)
∂yt,`

∂yt,`
∂wi,j

.

It is well known how to calculate ∂yt,`
∂wi,j

(e.g. by Backpropagation Through Time for
RNNs). The first term ∂ ln P

∂yt,`
is given by the following theorem:

Theorem 4.28. For any z ∈ A∗, let Åz be the Automaton from Lemma 4.27 and
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WX(Åz) be the corresponding WA as in Lemma 4.22. Then with α+ and β+ as in
Lemma 3.2 (Xi = A′),

∂ ln P(z |X)
∂yt,`

= 1
P(z |X)

|z′|∑
i=1
z′i=`

α+
t (qi)β+

t (qi)
yt,`

.

Proof.

∂ ln P(z |X)
∂yt,`

= 1
P(z |X)

∑
π∈F−1(z)
πt=`
|π|=T

T∏
t′=1
t′ 6=t

yt′,πt′

= 1
P(z |X)

∑
π∈F−1(z)
πt=`
|π|=T

∑
q∈F

λ+(q0,w, q, 1)
yt,`

= 1
P(z |X)

∑
π∈(A′)T
πt=`

∑
q∈F

λ+(q0,w, q, 1)
yt,`

= 1
P(z |X)

|z′|∑
i=1
z′i=`

 ∑
π̄∈(A′)t

λ+(q0, π̄, qi, 1)
yt,`

 ∑
π̂∈AT−t

∑
q′∈F

λ+(qi, π̂, q′, t)


= 1
P(z |X)

|z′|∑
i=1
z′i=`

α+
t (qi)β+(qi)

yt,`

where A0 := {ε} contains only the empty word for which λ+(q, ε, q′, t) = 1 if q = q′

and 0 else.

Hence, ∂ ln P
∂yt,l

can be calculated efficiently using the intermediate steps α+ and β+

from Algorithm 4. A standard Backpropagation algorithm propagates errors into the
network and optimizes its parameters. The original description without Automata
can be found in Graves et al. [2006].

4.4.2 Decoding

To decode the label at position t which is most likely encoded, it is obvious to take
the label π∗t with the greatest output confidence. If we decode for each position
βt = arg max`∈A′ yt,` and collapse the best path to z∗ = F(β), this is called best
path decoding. This obviously may lead to infeasible results since typically only a
sparse subset of A∗ is feasible.
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Due to Lemma 4.22, we know that for any specific z ∈ A∗ the WA WX(Åz) accepts
any label sequence π in F−1(z) with probability P(π |X) and any other sequence
with 0 probability. Thus, Algorithm 3 calculates

P(π∗(z) |X) := max
π∈F−1(z)

P(π |X)

for Xi = A′ for each i. This approach returns the likelihood of the optimal label (or
state sequence, equivalently) sequence which collapses to z. Thus, this corresponds
to the Viterbi approximation of HMMs.

However, it is also very natural to decode the character sequence with the highest
training objective value: P(z | X) = ∑

π∈F−1(z) P(π | X) which can be calculated
analogously using Algorithm 4 (Xi = A′ for each i). Note, that the corresponding
Automaton has to be a DFA in order to sum any label sequence only once.

Definition 4.29. For any z ∈ A∗ and any input X, we call P(π∗(z) |X) the path
probability and P(z |X) is called the CTC (word) probability.

The path probability yields an alignment of positions and class labels, it speeds up
the calculation and – since there is typically one dominant label sequence – it is a
reasonable approximation to P(z |X) as we will see in the next chapter.

4.4.3 Decoding with Language Models

Up to now, we composed TF and the Az which accepts a word z ∈ A∗ to accept any
feasible label sequence collapsing to z. This corresponds to the word level decoding.
Let AV be the Automaton which is composed of each Az where z ∈ V by sharing
the initial state (such as in Figure 2.3(c)). Let TV be an FST of the Kleene closure
(Figure 2.1(c) and ε-closure subsequently) of AV which outputs the word when
reaching the corresponding final state and the empty word ε for other transitions.
Thus, TV relates a character sequence from A∗ to the corresponding word sequence
from V∗. Thus, TF ◦ TV is sufficient to model label sequences collapsing to feasible
word sequences.

Consider a Language Model which assumes the Markov property with a history of
n − 1 words. A WA which models such a n-gram must be able to “remember” the
last n− 1 words while reading the next word:

Definition 4.30. Let ALM = (Q,A, δ, q0, F ) where Q = ⋃n−1
i=0 V i, F = Q, q0 = ε

and for any (v1, . . . ,vm) ∈ Q and z ∈ V

δ
(
(v1, . . . ,vm), z

)
=

{(v1, . . . ,vm, z)} if m < n− 1,
{(v2, . . . ,vm, z)} otherwise.
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The composition ÅLM := TF ◦ TV ◦ ALM still accepts any label sequence which
collapses to a sequence of feasible words. At the same time, any state corresponds
to a history of the last n− 1 words such that a LM can be applied.

At this point, the theory of Weighted FSTs yields an elegant way to integrate also the
weights / rewards into the composition (see Mohri [2009]). Instead of introducing
yet another theory, we define the rewards “manually”: The Weighted Automaton
WX(ÅLM) only makes use of the NN output yt,` for the specific label ` at position t
such that Algorithm 4 on WX(ÅLM) yields maxz1:n∈V∗ P(z1:n |X).

To integrate also LM probabilities, Graves et al. [2008] suggested a reestimation
of the likelihood P(z1:n | X) given by the NN using the prior probability P(z1:n)
defined by the Language Model:

P(z1:n |X) P(z1:n) (4.4.3)

for any word sequence z1:n ∈ Vn. They obtained this “score” as a consequence of
Bayes’ Law and as an omission of terms which are constant for all label sequences by
assuming that X and the Language Model are independent. They mentioned that
this is obviously not true and thus the score is an approximation. We will derive a
generalization of the above formula in Section 7.1.

The score of Eq. (4.4.3) can easily be integrated into the Weighted Automaton: The
states of ÅLM have the form (q, q̄, q̂) where q is a state of TF , q̄ is a state of TV and
q̂ is a state of TLM. We obviously reached a new word through the transition from
r1 := (q1, q̄1, q̂1) to r2 := (q2, q̄2, q̂2) if

• (q1, q̄1) 6= (q2, q̄2),
• q̄2 corresponds to the first character of any word and
• q2 6= q�.

The latter two points ensure that (q2, q̄2) is a first character state of any word in
TF ◦ TV and the first item states that it is not the same state as before. Only
for these transitions, we replace the rewards λ(r1, `, r2, t) := yt,` of WX(ÅLM) by
λ(r1, `, r2, t) := yt,` P(zi | zi−n+1, . . . ,zi−1) if q̂1 represents the history zi−n+1, . . . ,zi−1
and the transition q̂1 to q̂2 reads zi.

The resulting Automaton reads any accepted label sequence only once (since (q, q̄, q̂)
corresponds to a unique label of a unique word with a unique history) and thus
Algorithm 4 calculates

max
z1:n∈V∗

P(z1:n |X) P(z1:n).

Thus, it is equivalent to the CTC-Token-Passing Algorithm proposed in Graves
et al. [2008] if P(z1:n) is given by a bigram. The authors gave an explicit Dynamic
Programming scheme to solve the above optimization problem.
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4.5 Conclusion

In this chapter, we introduce the state-of-the-art sequence labeling methods: HMMs
and Neural Networks. First, the basic concepts of Language Models are presented
since they are an essential part of the decoding process of the sequence labeling
methods in case of HTR. The Hidden Markov Models yet provide the fundamental
ideas of CTC which is a discriminative version of the Forward-Backward Algorithm.
Thus, also the decoding follows similar approaches: It can be split up into different
layers of abstraction each of them represented by an FST which are composed to
obtain a Automaton which models all the feasible label sequences. Training and
decoding of HMMs and NNs can be reduced to the same two algorithms on WA.

Besides these decoding concepts, we also define the basic architectures of HMMs
and Neural Networks which will be used in the experiments hereafter. Furthermore,
it is shown that these Neural Networks theoretically are able to reproduce any
conditional probability which is the fundamental justification to model conditional
probabilities with Neural Networks.





5 Single-Word Decoding

The aim of this part is to explore elementary decoding methods for single words,
i.e., the result of the decoding is only a single word. Typically, we also assume that
the input writing to the Neural Network contains only a single word. However, we
will also introduce a method to search effectively for a single word within a whole
line of text. The results of the current section are partially published in Strauß
et al. [2012, 2013]. Section 5.2 contains a result of Frinken et al. [2010]. Again, the
previous results are reformulated as optimization problems on Weighted Graphs.

We start with an investigation of the objective functions with respect to the decoding
error they produce.

5.1 Objective Functions

In this section, we compare different “confidence functions” which result in different
decoding times and performance.

5.1.1 Probabilistic Objectives

Already in Section 4.4.3, we introduced the path probability

OF(Y , z) := P(π∗(z) |X) = max
π∈F−1(z)

P(π |X)

and CTC probability

OCTC(Y , z) := P(z |X) =
∑

π∈F−1(z)
P(π |X)

as possible objectives of the optimization problem (OP). In the following, we will
modify the objectives and constraints.

All label sequences which contribute to P(π∗(z) |X) and P(z |X) are elements of
F−1(z). According to F , the NaC is necessary and sufficient to separate consecutive
identical letters. In case of high subsampling rate, there may be not enough ConfMat
positions to separate consecutive identical letters of the ground truth by a NaC.
Hence, the objectives will yield zero probability for the true label sequence. To
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Figure 5.1: Finite State Transducers TG and TH modeling the releation {(π, z) ∈
(A′)∗ × A∗ | z ∈ G(π)} and {(π, z) ∈ (A′)∗ × A∗ | z ∈ H(π)}, respec-
tively, for A = {a, b}.

circumvent this problem, we define a new collapse function G. Since the claims are
very similar to those of the Section 4.4, we omit the proofs.

For sake of convenience, we write Φ−1(b) := {a ∈ A | b ∈ Φ(a)} for any function
Φ : A→ P(B).

Definition 5.1. For any π ∈ (A′)∗, let {s1, . . . , sn} be a set of indices which contains
at least any i with � 6= πi 6= πi−1 and which does not contain indices j with � = πj.
W.l.g. let si < si+1 for any i. Then G : (A′)∗ → P(A∗) where G(π) contains
(πs1 , . . . , πsn) iff (s1, . . . , sn) satisfies the above conditions.

Loosely spoken: G may or may not delete some (but not all) of the consecutive
identical labels from π and delete all NaCs. For example,

G(�aa�aabb�) = {aaaabb, aaabb, aabb, aaaab, aaab, aab}.

Thus, NaCs are sufficient but not necessary to separate letters. The corresponding
FST TG has additional transitions compared to TF : (qa, a) ∈ δ(qa, a) for any a ∈ A.
Figure 5.1(a) shows TG for a binary alphabet.

Definition 5.2. Analogously to Lemma 4.27, let ÅGz be the composition of TG ◦Az.

ÅGz differs from Åz (see Lemma 4.27) only in one type of transition: Consecutive
identical labels (not the NaC) may change the state such that they are interpreted
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as different letters since the loop of qa in TG can output a or ε while reading a ∈ A.
Thus, ÅGz is not a DFA anymore if z contains consecutive identical letters.

If NaCs are ignored in the way that they do not change the state, we can even save
the NaC-states which will reduce the running time:

Definition 5.3. For any π ∈ (A′)∗, let S := {s1, . . . , sn} be a set of indices which
satisfies:

• S contains the minimum i with πi ∈ A,
• S contains the smallest index i > sj with πi ∈ A and πi 6= πsj for any sj ∈ S

and
• S does not contain any index j with � = πj.

W.l.g. let si < si+1 for any i. Then H : (A′)∗ → P(A∗) where H(z) contains
(πs1 , . . . , πsn) iff (s1, . . . , sn) satisfies the above conditions.

Loosely spoken: H first deletes all NaCs and afterwards it may or may not delete
consecutive identical labels from π. For example,

H(�aa�aabb�) = {aaaabb, aaabb, aabb, abb, aaaab, aaab, aab, ab}.

Thus, NaCs are neither sufficient nor necessary to separate letters. In other words:
A NaC has no influence on the number of letters which are decoded. Thus, we could
save some states:

Definition 5.4. Let ÅHz be the the composition of TH ◦ Az.

Once TH reaches a state qa corresponding to a character a ∈ A, it never returns
to q�. Thus, ÅHz has only |z| states besides the initial state since any character
of z corresponds to only one state in the composition. Once ÅHz is in the state
corresponding to zi, ÅHz moves to the next state only if it reads zi+1. Figure 5.1(b)
shows TH for a binary alphabet.

Let Å := ÅGz or Å := ÅHz be the Automaton accepting G−1(z) or H−1(z), respec-
tively. Let further WX(Å) be the corresponding Weighted Automaton from Lemma
4.22. Then, Algorithm 3 applied to WX(Å) calculates the path probability

OG(Y , z) := max
π∈G−1(z)

P(π |X)

or

OH(Y , z) := max
π∈H−1(z)

P(π |X),

respectively. However, for both mappings several words share some common la-
bel sequences such that there will be confusions if the decoded label sequence be-
longs to two distinct, feasible words. As a consequence, ∑z∈A∗

∑
π∈(A′)∗ ρ

+
WX(A)(π) =
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∑
z∈A∗

∑
π P(π | X) sums several label sequences multiple times which may yield a

sum greater than 1 in contrast to Eq. (4.4.1). Thus Algorithm 4 is not meaningful
for WX(A).

5.1.2 Non-Probabilistic Objectives

The overall performance is measured in CER and WER which both are based on
the Levenshtein Distance d(z1, z2) (see Section 3.3). Hence, it is very natural to
measure the confidence that a word z is encoded in the ConfMat Y by the negative
Levenshtein Distance between the collapsed best path F(β) and z:

OLev(Y , z) := − d(F(β), z).

Compared to the other decoding measures, Levenshtein is extremely fast. It is also
calculated by Dynamic Programming but the number of calculations depends on
the length of the two character sequences which are compared. In contrast, the
other measures compare label sequences with character sequences. Since there are
typically much more ConfMat positions than encoded characters, the comparison of
character sequences only is faster.

Definition 5.5 (Hamming Distance). Let π, π̂ ∈ (A′)T be label sequences. The
Hamming Distance is the number of distinct components of π and π̂ at any position:

ham(π, π̂) :=
T∑
t=1

1− δπt,π̂t

where δi,j is the Kronecker delta.

The objective function calculates the minimum Hamming Distance for any label
sequence from F−1(z) and the best path β:

OHam(Y , z) := − min
π∈F−1(z)
|π|=|β|

ham(β,π).

In contrast to the probabilistic objective functions, the Hamming Distance is additive
such that we have to define an additive reward:

Lemma 5.6. Let Åz = (Q,A′, δ, q0, F ) be the Automaton accepting any label se-
quence collapsing to z. Let the Weighted Automaton be defined as WX(Åz) :=
(Q,A′, λ, q0, F ) where

λ(q, a, q̄, t) :=

0 if a = z′t ∧ q̄ ∈ δ(q, a) ∧ t ≤ T,

−1 else.
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Then for any q̄ ∈ Q, let

α̂0(q̄) :=

0 if q̄ = q0,

−∞ else,

and for t ≥ 1

α̂t(q̄) := max
q∈Q,a∈A

α̂t−1(q) + λ(q, a, q̄, t).

Then for any 1 ≤ t ≤ T , the reward of a path is the sum of the transitions:

α̂t(q) = max
π∈At

max
p0,...,pt∈Q
p0=q0
pt=q

t∑
j=1

λ(pj−1, πj, pj, j).

The proof is analogous to the proofs of Lemma 3.1 and 4.22.

A slightly modified version of Algorithm 3, which updates and initializes α according
to Lemma 5.6, calculates the minimum Hamming Distance between the best path
and any label sequence from F−1(z) very efficiently.

5.1.3 Experimental Comparison of the Objective Functions

In this section, we compare the decoding methods on two datasets published at IC-
DAR in 2009. The entire software is written in JAVA. All experiments are executed
on a laptop with an i7 2.8 GHz CPU and 8 GByte memory.

Neural Networks with Conservative Sampling Rates

Setup: We test on the IFN/ENIT database of handwritten Arabic words (see
Pechwitz et al. [2002]) as well as on a subset of the RIMES database of handwritten
mail snippets (see Grosicki and Abed [2009]) published at ICDAR 2009. We choose
the vocabulary item with the best score:

z∗ := arg max
z∈V

O(Y , z)

where O(Y , z) is one of OLev(Y , z), OHam(Y , z), OH(Y , z) or OCTC(Y , z). Addi-
tionally, OF(Y , z) and OG(Y , z) are calculated for RIMES. The Neural Network
consists of three recurrent MD-LSTM Layers and two Feed-Forward Layers. The
architecture was provided by Graves (see [Graves, 2012, Section 9.2]). We omit a
detailed description and refer to the cited work where the interested reader will find
all important information. We train 10 randomly initialized Neural Networks on a
training set. The tests are only performed on a disjoint test set. Note that we use
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OLev OHam OH OCTC

average error 18.32% 17.68% 11.22% 10.77%
minimum error 13.84% 15.73% 7.95% 7.62%
maximum error 35.71% 34.23% 23.92% 22.83%

Table 5.1: Word error rate on the IFN/ENIT dataset. The average, minimum and
maximum error rates are calculated among 10 randomly initialized NNs.

OLev OHam OF OG OH OCTC

Vtest
average error 19.84% 19.78% 11.06% 11.11% 11.86% 10.80%
minimum error 17.05% 17.30% 9.36% 9.40% 10.04% 9.23%
maximum error 21.97% 21.45% 12.61% 12.65% 13.48% 12.34%

Vtot
average error 23.59% 23.86% 13.70% 13.74% 15.36% 13.36%
minimum error 20.53% 21.28% 11.51% 11.31% 13.14% 11.34%
maximum error 25.76% 25.64% 15.65% 15.66% 17.33% 15.30%

Table 5.2: Word error rate for the RIMES handwriting recognition tests. The av-
erage, minimum and maximum error rates are calculated among 10 ran-
domly initialized NNs.

exactly the same input to all decoding methods.

Data: The IFN/ENIT database contains 32492 different handwritten names and
zip codes of Tunisian places. Unlike the original task, we decode only the names of
the places and do not incorporate the zip codes. We divide the data into a training
set of 30,000 images and a test set containing 2492 items. The error measure is the
WER. The vocabulary was created from all words occurring in the whole data set
(union of training and test set). Thus, any word in the text lines is known which is
usually referred to as closed vocabulary. It contains 1508 different words.

The RIMES database contains French handwritten faxes and postal mails. Only
the data of the subtask is considered which targets at the recognition of snippets of
handwritten words. We divide the data into a training set of 44,196 images and a
test set which contains 7542 writings. Similarly to the original task, we test with
two different vocabularies: The first one (Vtest) contains all elements from the test
set (1636 words) and the second one (Vtot) was created from all words occurring in
the whole data set (4936 words). Hence, both are closed vocabularies.

Results: Table 5.1 and 5.2 show the average, minimum and maximum word error
rates over the 10 Neural Networks on the test set. Levenshtein and Hamming
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Distance yield the greatest error. Increasing the set of feasible sequences from F−1

to G−1 seems to have only slight impact on the error rate (Table 5.2, only). The
WER for OH increases compared to OF or OG. Calculating the objectives OCTC,
OF , OG and OHam needs about 30% more computation time than OH(z) since the
number of values α which are calculated is about twice as big but due to some
overhead we are only able to save 50% of that time. The OLev is the objective with
the lowest decoding time as expected which needs not even 10% of the time of OCTC,
OF , OG and OHam.

Independently from the decoding scheme, the RIMES experiment shows the impact
of a perfectly adapted vocabulary to the decoding process. The error of CTC with
Vtot for example increases by 24% compared to Vtest.

Decoding Neural Networks with High Subsampling Rate

Setup: The decoding strategies introduced in Section 5.1.1 differ in the set of label
sequences belonging to the same word. While F maps any π ∈ A∗ unambiguously
to one word, G and H map π to a set of words which may result in confusions if this
set contains two feasible words. The following experiment investigates the effect of
“fuzzy” mapping in case of high subsampling rate.

We train and test on the same partitions of the RIMES data as before and average
any result over 10 randomly initialized NNs. The vocabulary consists of 4936 words.
The NN architecture is similar to that one used in Graves [2012] but with a higher
subsampling rate (18 instead of 8). This decreases the time complexity by factor
≈ 2 which could be important in practical applications. Additionally, we compare
10 Neural Networks used in Leifert et al. [2013], again with the same subsampling
rate.

Results: Table 5.3 shows the results of the experiments. Due to the high subsam-
pling rate, it seems to be better to take some more label sequences into account: OG
seems to be a better score than OCTC and OF for both RNNs. The latter decoding
methods yield similar error rates for this tests. OH performs worst but also has a
notably smaller running time.

If the subsampling rate is too high, the number of positions T could be smaller
than the number of labels of any π ∈ F−1(z) of the ground truth z. Although
the theoretical bound is never violated for the test set, OG yields the lowest error
rates. Obviously, this is due to the high subsampling rate of the NNs (on average
2.1 positions per character) and the high proportion of duplicated letters per word
(around 10% of all words contain consecutive identical letters). If these conditions
are less pronounced, the exact decoding methods (restricted to F−1) will work better.
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Objective functions WER
Graves Leifert at al

OCTC 16.34% 12.24%
OF 16.36% 12.25%
OG 16.02% 12.05%
OH 17.46% 12.93%

Table 5.3: Word error rates on RIMES data set for different objective functions.
Besides the architecture described in Graves [2012], we also tested a NN
described in Leifert et al. [2013] both with a higher subsampling rate.
Error rates are averaged over 10 different initializiations.

Discussion

If only speed is important Levenshtein decoding should be the method of choice
since it is by far faster than all other decoding techniques (more than 10 times
faster than OF or OCTC). The objective OG seems to be an acceptable compromise
between speed and accuracy (30% less decoding time). Especially, if the decoding is
accomplished on saved confidence matrices, the running time of the decoding process
is very important.

In case of a complete transcription incl. Neural Network update and image prepro-
cessing, the decoding usually consumes only a fraction of the running time. Thus,
we use OF as the decoding objective in the following. We prefer it over CTC since
it allows an assignment of positions to characters. Thus, we are able to determine
the begin and the end of a word, for example. The experiments also indicate that
the error does not increase much from OCTC to OF .

To decode ConfMats of NNs with high subsampling rate, it might be beneficial to
use G since consecutive identical labels might cause problems while using OCTC or
OF .

5.2 Find Any Occurrence in the Output

One elementary question of information retrieval is whether or not the input image
contains a specific word. Frinken et al. [2010] proposed an efficient algorithm to
tackle this problem by calculating the probability

max
s≤e≤T

Ps:e(π∗(z) |X)
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where
Ps:e(π∗(z) |X) := max

π∈F−1(z)
|π|=e−s+1

e∏
t=s

yt,πt−s+1

for any given ConfMat. Thus, the resulting probability is the greatest probability
of any label sequence from F−1(z) in any sub-ConfMat from s to e. They derive an
algorithm from a simplification of the Token Passing Algorithm proposed in Graves
et al. [2008]. They show that their method is capable of doing keyword search in
handwritten documents.

Alternatively, the algorithm can be derived by a slight modification of the Weighted
Automaton WX from Lemma 4.22:

Lemma 5.7. For any z ∈ A∗, let Åz = (Q,A′, δ, q0, F ) be the Automaton corre-
sponding to z from Lemma 4.27. Let the WA WO

X(Åz) = (Q,A′, λ, q0, F ) with

λ(q, l, q̄, t) :=


1 if q = q̄ = q0,

yt,l if q0 6= q̄ ∈ δ(q, a) ∧ t ≤ T,

0 else.

Then
max
π∈(A′)∗

max
q∈F

λmax(q0,π, q, 1) = max
s≤e≤T

Ps:e(π∗(z) |X).

Proof. Since λmax(q0, `, q0, t) = 1,

max
π∈(A′)∗

max
q∈F

λmax(q0,π, q, 1) = max
π,π̂∈(A′)∗

max
q∈F

λmax(q0,π, q0, 1)λmax(q0, π̂, q, |π|+ 1)

= max
π,π̂∈(A′)∗

max
q∈F

λmax(q0,π, q0, 1)︸ ︷︷ ︸
=1

λmax(q0, π̂, q, |π|+ 1)

with s = |π|+ 1 and considering only π̂ which yield non-zero reward

= max
s

max
π̂∈F−1(z)
|π̂|≤T−s+1

max
q∈F

λmax(q0, π̂, q, s)

= max
s≤e≤T

Ps:e(π∗(z) |X)

In contrast to WX(Åz), the support of WO
X(Åz) is not Åz since λ(q0, `, q0, 1) = 1 for

any `. That means, the support of WO
X(Åz) stays in q0 reading any label, including

z1 which also moves to q1. Thus, the support is not a DFA anymore.

Due to Lemma 5.7, the intermediates αt(q) of Algorithm 3 (Xi = A′) calculate
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max
s≤e≤T

Ps:e(π∗(z) |X) efficiently: Since

max
s≤e≤T

Ps:e(π∗(z) |X) = max
π∈(A′)∗

max
q̄∈F

λmax(q0,π, q̄, 1)

= max
t≤T

max
q̄∈F

αt(q̄),

we have to maximize αt(q) over each q ∈ F and each t ≤ T instead of fixing t = T .
WO
X(Åz) has two finial states corresponding to the last character and an optional

NaC afterwards. The following lemma shows that the NaC-state will not take the
maximum. We need to introduce two new terms first:

Definition 5.8 (Predecessor, successor). Let A = (Q,A, δ, q0, F ) be an Au-
tomaton. We denote the predecessors of any state q̄ ∈ Q by:

pre(q̄) := {q ∈ Q | ∃π ∈ (A′)∗ : q̄ ∈ δ∗(q,π)}.

Analogously, the successors of q ∈ Q are defined by:

succ(q) := {q̄ ∈ δ∗(q,π) | π ∈ (A′)∗}.

Definition 5.9 (Mandatory Predecessor). Let A = (Q,A, δ, q0, F ) be an Au-
tomaton. A state q is a mandatory predecessor for his successors iff for any q̂ ∈
succ(q) any path from q0 to q̂ also contains q.

Especially, any character state1 of Åz is a mandatory predecessor for his successors.

Lemma 5.10. Let (Q,A′, λ, q0, F ) be a WA with 0 ≤ λ(q, `, q̂, t) ≤ 1 for any
q, q̂ ∈ Q, for any ` ∈ A′ and for any t. Let q ∈ Q be a mandatory predecessor for
his successors. Then,

max
t̄<t

αt̄(q) ≥ max
q̄∈succ(q)\{q}

αt(q̄).

Proof. Obviously, 0 ≥ λmax(q,π, q̄, t) ≤ 1. Thus,

max
t̄<t

αt̄(q) = max
t̄<t

max
π∈At̄

λmax(q0,π, q, 1)

≥ max
t̄<t

max
π∈(A′)t̄

λmax(q0,π, q, 1) max
q̄∈succ(q)\{q}

max
π̂∈(A′)t−t̄

λmax(q, π̂, q̄, t̄)

and since any path from q0 to q̄ contains q s.t.

≥ max
q̄∈succ(q)\{q}

max
π∈(A′)t

λmax(q0,π, q̄, 1)

= max
q̄∈succ(q)\{q}

αt(q̄).

1That means, q2k = (q`, qa) with ` 6= � where q` is a state of TF and qa is a state of Az.



Chapter 5. Single-Word Decoding 67

Thus, it is sufficient to consider only αt(q|z′|−1) of the second last state and return
the maximum over all time steps t:

max
s≤e≤T

Ps:e(π∗(z) |X) = max
t≤T

αt(q|z′|−1).

The corresponding maximizing bounds (s∗, e∗) yield an alignment of ConfMat and
keyword.

Small modifications lead to variants of the above algorithm searching a word at the
beginning (s∗ = 1) or at the end (e∗ = T ) of a ConfMat to search for words explicitly
starting or completing the line. We derive a more flexible algorithm in Section 6
which will be applied to keyword search in Section 7.2.

A modification of the above algorithm such that it returns the CTC probability
is more elaborate. The Weighted Automaton from Lemma 5.7 is designed for the
maximum reward (i.e., the path probability) only since the support is no DFA. In
fact, a CTC version which returns ∑π Ps:e(π |X) is not meaningful since CTC can-
not align labels and positions to determine s and e. An alternative target function,
which calculates the probability of the entire line, could be:∑

π∈(A′)T
F(π)∈L(.∗z.∗)

P(π |X).

However, the corresponding DFA which accepts L(.*z.*) has more connections
which directly influences the number of multiplications which are necessary to cal-
culate α. Furthermore, the result will be a probability of the whole line instead of
only the part containing the keyword.

5.3 Speed-Up Methods

In this section, we exploit redundancies and limiting effects occurring during the
calculation of

max
z∈V

P(π∗(z) |X)

for any vocabulary V ( A∗.

5.3.1 Vocabulary Automaton

The minimum Automaton accepting the finite vocabulary V is described in Section
2.2. However, an assignment of the winning state to the best vocabulary item is not
possible without tracking back the maximum state sequence. Furthermore, a top-n
list of the most likely words is not possible. For practical applications, it is typically
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necessary to return a list of the top-n vocabulary items to provide alternatives for
example for the user or a rescoring LM.

To enable a top-n list, we omit the substitution of equivalent states compared to
Algorithm 1. The resulting Automaton finally has more states but each accepting
state represents an individual word in the vocabulary. Algorithm 5 creates such a
tree-like Automaton where common prefixes are read by the same transitions.

Algorithm 5: Vocabulary Automaton
input : Vocabulary V in lexicographical order
output: A = (Q,A, δ, tε1, F )
F ← {};
w̄ ← ε;
Q← {tε1};
for w ∈ V do

c← max{i ∈ N | w1:i = w̄1:i}; // index of maximum commen prefix
for i = 1 to c do

twi ← tw̄i
for i = c+ 1 to |w̄| do

Q← Q ∪ {t̄wi }; // t̄wi is a new state s.t. Q ∩ {t̄wi } = ∅
δ(t̄wi−1, w̄i)← {t̄wi };

F ← F ∪ {t̄w|w̄|};
w̄ ← w;

The composition of TF and AV which is created by Algorithm 5 yields the Automaton
ÅV which accepts the label sequences that collapse to any z ∈ V since TF relates
labels to words and AV accepts only feasible words.

5.3.2 Limit

Most vocabulary items fit very poorly to the ConfMat such that the calculation of
certain branches of the search space can be pruned. This is the case, e.g., if we
already found a more likely word or if we are not interested in results with probabil-
ities smaller than a certain threshold. We give three different criteria when to stop
the calculation based on a threshold θ which represents the minimum likelihood of
interest. First of all, Lemma 5.10 yields such a criterion. Other criteria to detect
that the probability will not exceed θ will be given by the following lemma:

Lemma 5.11. Let (Q,A′, λ, q0, F ) be a WA with 0 ≤ λ(q, `, q̂, t) ≤ 1 for any
q, q̂ ∈ Q, for any ` ∈ A′ and for any t.

(a) The value max
q̂∈pre(q)

αt(q̂) decreases monotonously in t for any q ∈ Q.
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(b) If q is a mandatory predecessor for its successors, for any t < T ,

max
q̂∈succ(q)

αt(q̂) ≥ max
q̂∈succ(q)\{q}

αt+1(q̂).

Proof. (a)

max
q̂∈pre(q)

αt(q̂) = max
q̂∈pre(q)

max
π∈(A′)t

λmax(q0,π, q̂, 1)

≥ max
q̂∈pre(q)

max
π∈(A′)t

(
λmax(q0,π, q̂, 1) max

(q̄,`)∈Q×A′
λ(q̂, `, q̄, t+ 1)

)
≥ max

q̂∈pre(q)
max

π∈(A′)t+1
λmax(q0,π, q̂, 1) = max

q̂∈pre(q)
αt+1(q̂)

(b)

max
q̂∈succ(q)

αt(q̂) = max
q̂∈succ(q)

max
π∈(A′)t

λmax(q0,π, q̂, 1)

≥ max
q̂∈succ(q)

max
π∈(A′)t

max
(q̄,`)∈Q×A′

λmax(q0,π, q̂, 1)λ(q̂, `, q̄, t+ 1)

since q is a mandatory predecessor

≥ max
q̄∈succ(q)\{q}

max
π∈(A′)t+1

λmax(q0,π, q̄, 1) = max
q̄∈succ(q)\{q}

αt+1(q̄)

Remark 5.12. Let WX(A) be the WA for A = Åz or A = ÅV . Assume that any
result with probability smaller than θ is immediately rejected.

(a) Using Lemma 5.11 (a), the calculation of Algorithm 3 can be canceled if
maxq∈Q αt(q) < θ for any t since

max
q̂∈F

αT (q̂)≤max
q∈Q

αT (q) ≤ max
q∈Q

αt(q) < θ.

(b) Let q be character state. Due to Lemma 5.10, the calculation of αt(q̂) for any
q̂ ∈ succ(q) can be stopped if maxt≤T αt(q) < θ since

max
q̂∈F

αT (q̂) ≤ max
¯succ(q)

αT (q̄) ≤ max
t≤T

αt(q) < θ.

We exploit the above remark during the calculation of a whole vocabulary by up-
dating the threshold iteratively. If we are interested in the n most likely words, θ
is equal to the likelihood of the n-th most likely word up to the current vocabulary
item. The limit value θ is updated whenever the list of top-n words is updated. Ob-
viously, the above abort criteria are applied in opposite situations. While Remark
5.12(a) is applied if αt(q) is calculated for each q before moving to t + 1, Remark
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5.12(b) is applied if αt(q) is calculated for each t before moving to the next q. For
Åz both variants are more or less equivalent. For ÅV , we prefer Remark 5.12(b)
since whole branches can be cut at once.

Remark 5.13. Let WO
X(Åz) be the WA of Lemma 5.7. If maxq̂∈succ(q) ≤ θ, then

αt+1(q̂) ≤ θ for any q̂ ∈ succ(q) due to Lemma 5.11(b). Since the first states q
are relatively likely, the conditions of the previous criteria will not be satisfied at
an early stage. Lemma 5.11 (b) does not yield a criterion to stop the calculation
of Algorithm 3 for entire branches but it could reduce the number of values αt(q)
which are calculated.

Initial Limit for the Vocabulary Automaton One way to quickly get a reasonable
initial limit value for the most likely vocabulary item is to search for the item with
the smallest Levenshtein Distance to the collapsed best path F(β) and use the
item’s probability to initialize the threshold. In our experiments the gain resulting
from this search was negligible or negative since this operation consumed more time
than it saved. Alternatively, we search for the position, F(β) would appear in
the vocabulary according to a lexicographical order and set the threshold to the
maximum of the probabilities of the neighboring items.

5.3.3 Experimental Validation of Speed-Up Strategies

The precise gain of the above strategies strongly depends on the given vocabulary.
To give an impression on the effects of the previous methods, we test on the RIMES
test dataset with the same Neural Networks as in the first experiment of Section
5.1.3. Again, the results are averaged over 10 different initializations.

We compare the decoding times of iteratively calculating P(π∗(z) | X) using Åz

for any z without any stopping criterion (referred to as “one-by-one”), using Åz

with stopping the calculation q if αt(q) cannot reach θ (“one-by-one & limit”) and
using ÅV with limit (Vocabulary Automaton & limit). The calculation is canceled
if maxt≤T αt(q) < θ (Remark 5.12(b)).

Table 5.4 shows the average time needed to decode the whole data set. Obviously,
many calculations can be avoided by stopping the calculation if there is no chance
to improve the result. The running time of the decoding with limit decreases to
one third of the decoding time without limit. The Vocabulary Automaton from
Subsection 5.3.1 saves almost half of the computation time compared to one-by-one.

As already reported, the above time reduction is obtained by searching for the most
likely element of the vocabulary. If we search for the top-n results, these time savings
will decrease. For n = 10, the limit-version of one-by-one takes 63.9% (instead of
33.7%) of the original time.

Applying the limit is always practical since the results do not differ and the decoding
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time (in ms)
Graves Leifert at al

One-by-one 162764.1 156537.4
One-by-one & limit 54932.9 52481.5
Vocabulary Automaton & limit 28683.9 27737.5

Table 5.4: Decoding times (milli seconds) of path probability without limit, with
limit and Voabulary Automaton averaged over 10 different initializations.
Net architectures from Graves [2012] and Leifert et al. [2014b]

time decreases dramatically. Even for a top-n search the time saving persists but
decreases if n increases. Further, the Vocabulary Automaton saves the calculation
of 60% of the αt(q) compared to the calculation without caching but with limit.
The Vocabulary Automaton needs some overhead such that we cannot transfer the
savings totally to the running time.

5.4 Conclusion

In this chapter, we consider single-word decoding. First, we investigated different
objective functions (and constraints) which differ in performance and running time.
We gave a precise description of the corresponding Automata which in combination
with Algorithm 3 calculate the maximum objective value. The most exact method
is CTC as long as the subsampling rate of the NN is not too high. In case of a highly
downsampled ConfMat, we suggested an alternative decoding approach. The path
version of CTC (which corresponds to the Viterbi approximation for HMMs) yields
error rates close to those of CTC but has other advantages such as an Automatic
assignment of labels to positions. This assignment is of interest, e.g. in case of key-
word spotting. The method provided in Section 5.2 yields such a keyword spotting
method. In the last section, we gave criteria to improve the running time of the
decoding process for OF . In the experiments, we could decrease the running time
down to 20%.





6 Decoding Constrained by Regular
Expressions

Handwritten text recognition is a complex task which requires advanced decoding
methods. For example, a typical subproblem in full text recognition is structuring
the recognizer’s output into a sequence of regions of words, punctuations and num-
bers to calculate the word error rate or to apply an LM. In many cases, the most
likely label sequence yields an acceptable segmentation. However, it happens that
this label sequence is not feasible, i.e., it does not match the expected structure and
has to be corrected. Finding the optimal feasible structure is one of many applica-
tions of this chapter. For this purpose, we describe feasible structures by Regular
Expressions and give the corresponding Automaton which accepts any label sequence
which collapses to the corresponding Regular Language.

Regular expressions can be very complex and the calculation of the probability of
all feasible sequences can be very time consuming. We give an approximation of the
most likely label sequence which we motivate theoretically and verify experimentally.
That means, we give a pruning heuristic which yields the optimal path under certain
conditions and we show that these conditions are satisfied in practical scenarios.

Beyond finding the optimal feasible label sequence, previously specified parts of the
Regular Expression can be aligned to the positions of the ConfMat immediately. In
the case of keyword spotting, this feature simplifies the computation of, e.g., the
likelihood of the keyword and the likelihood of the separating space.

The remainder of this chapter is organized as follows: First, we have a look at
previous decoding methods based on Regular Expressions. In Section 6.2, we analyze
the Automaton which accepts feasible label sequences. We introduce the RegEx-
Decoder in Section 6.4. Afterwards, we stress test the algorithm in an experimental
section. We combine Beam Search and the developed algorithm to handle larger
vocabularies in Section 6.6.

6.1 Previous Work

We already introduced connections between HMMs and Finite State Automata in
the Section 4.2 (Mohri [2009], Dupont et al. [2005], Vidal et al. [2005]). Although the
equivalence of HMMs and Automata is well known, there are only few approaches
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which link HMMs and Regular Expressions for practical applications.

Some links between Regular Expressions, their corresponding Automata and HMMs
are given in Krogh et al. [1998]. The authors showed how to create HMMs from
Regular Expressions to detect biological sequences. A similar but generalized ap-
proach is given in Kessentini et al. [2013]. Besides the standard keyword-filler-model
(introduced later in Section 7.2) for keyword search, they also proposed an enhanced
model where only the prefix or suffix of the keyword is given. This model allows a
set of feasible words containing the defined prefix or suffix.

Recently, Bideault et al. published a similar approach to ours in Bideault et al.
[2015b]. They proposed an HMM - BLSTM hybrid model for word spotting exploit-
ing Regular Expressions. Analogously to Kessentini et al. [2013], they build small
HMM models in advance (e.g. for a keyword, for digits or letters) and combine them
to a model capturing the Regular Expression. The authors then applied their model
to keyword and “regex” spotting.

The results of the current chapter are published in Strauß et al. [2016]. To keep this
chapter consistent with the previous, we adapt the notation to Weighted Automata.

6.2 Automaton of feasible label sequences

To decode any ConfMat according to a Regular Language L, the corresponding
Automaton has to be composed with TF :

Corollary 6.1. For any Regular Expression r, let Ar = (Q,A, δ, q0, F ) be the Au-
tomaton (NFA without epsilon transitions) accepting L(r) where Q := {q0, . . . , qn}.

Let År :=
(
Q̊,A′, δ̊, q�0 , F̊

)
be the Extended Automaton where Q̊ := {q`i | i ∈

{0, . . . , n}, ` ∈ A′}, for any a ∈ A, a 6= ` ∈ A′ and i ∈ {0, . . . , n}

δ̊(q`i , `) := {q`i}, (6.2.1)
δ̊(q`i , a) := {qaj ∈ Q̊ | qj ∈ δ(qi, a)}, (6.2.2)
δ̊(qai ,�) := {q�i } (6.2.3)

and F̊ := {q`i ∈ Q̊ | qi ∈ F}. Then År accepts π ∈ (A′)∗ if and only if F(π) ∈ L(r).

Proof. The proposition is a direct consequence from År = TF ◦Ar with q`i = (q`, qi) ∈
QF ×Q with TF = (QF ,A′,A, δF , q�, QF).

Interpretation: We split every state from Q into |A′| new states. Each of them is
reached by reading a specific label if there is a connection at all. If there is connection
from qi to qj in Ar via reading a ∈ A, q`i is connected to qaj in År for any ` 6= a.
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q�1

qb2 q�2

qa3 q�3 qa4 q�4
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b
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� a �
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aa ��

Figure 6.1: Automaton År with r =aaa*|b* (compare Figure 2.3(b)). Unreachable
states are not presented. If qj is final, any q`j ∈ Q̊ is final.

Thus, one transition qj ∈ δ(qi, a) in Ar corresponds to |A′| arcs in År. Furthermore,
any character state qai (a ∈ A) is connected to the corresponding NaC-state q�i .

Obviously, some states may be not reachable and can be ignored in the calculation
such that the precise number of meaningful states and connections strongly depends
on the considered Regular Expression. Throughout this section, we assume that Q̊
contains only the reachable states of the composition. Figure 6.1 shows the necessary
states and transitions for the Regular Expression aaa*|b* (compare Figure 2.3(b)).

Once År is generated, Algorithm 3 is applied to WX(År) to calculate the maximum
reward of any label sequence from F−1(z).

6.3 Naïve Approach

In this section, we give two naïve alternatives to Algorithm 3.

6.3.1 A∗ Search

The A∗ Search is a general search strategy which explores the search space by con-
sidering those candidates first which are the most promising. Algorithm 6 describes
a naïve A∗ Search algorithm on Regular Expressions that returns the most likely
label sequence. This algorithm guarantees an optimal solution but it can be time
consuming because of the huge number of possible label sequences. To cut unlikely
label sequences, we define an upper bound P(π|X) := P(πτ |X) as estimation of
the final probability of any label sequence with prefix π. In our experiments, we
used τ := β|π|+1:T such that P(π|X) := ∏|π|

r=1 yr,πr
∏T
s=|π|+1 ys,βs . Another heuristic

which appears to work well in practice is to sort the prefix list L by P(π|X)
t

. The
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precise decoding time for this algorithm depends heavily on the likelihood of the
optimal label sequence π∗. If P(π∗|X) ≈ 1, other candidates will be pruned soon
and the running time will be very small. If P(π∗|X) � 1 many label sequences
remain in the list and have to be evaluated.

Algorithm 6: A∗ Search
input : ConfMat Y , Extended Automaton Å = (Q̊,A′, δ̊, q̊0, F̊ )
output: most likely feasible label sequence π∗

for γ ∈ A′ do
for q ∈ δ̊(q̊0, γ) do

Add (q, γ, 1) to L; /* initialize L */

while L not empty do
(q,π, t)← Item from L with maximum P(π|X)

t
;

Remove (q,π, t) from L;
if t < T then

for γ ∈ A′ \ {πt} do
for q′ ∈ δ̊(q, γ) do

Add (q′,πγ, t+ 1) to L;

Add (q,ππt, t+ 1) to L;
else

if q ∈ F̊ and P(π |X) > P(π∗ |X) then
π∗ ← π;
Remove all (q′,π′, t′) ∈ L with P(π′|X) < P(π|X);

6.3.2 Beam Search

Since the number of feasible label sequences grows exponentially in T in the worst
case, there is a standard heuristic to reduce the search space called Beam Search
which allows only n prefixes1 at each position. In Graves and Jaitly [2014], for
example, the authors introduced a Beam Search algorithm for efficient decoding in
case of speech recognition. They maximize over the CTC-probability instead of the
path probability there.

Algorithm 7 contains the pseudo code of a Beam Search variant adapted to our
problem. Generally, Beam Search does not guarantee to find the optimal sequence.
The given algorithm has the additional drawback that it does not even guarantee to
find any feasible label sequence at all since the final list L could contain only those
(q,π, T ) with q 6∈ F̊ .

1n is called the Beam Width.
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Algorithm 7: Beam Search
input : ConfMat Y , Extended Automaton Å = (Q̊,A′, δ̊, q̊0, F̊ ), Beam

Width n
output: most likely feasible label sequence π∗ which survived in L
for γ ∈ A′ do

for q ∈ δ̊(q̊0, γ) do
Add (q, γ, 1) to L; /* initialize L */

for i← 2 to T do
L← the n most likely items of L;
L← {};
for (q,π, t) ∈ L do

for γ ∈ A′ \ {πt} do
for q′ ∈ Q : q′ ∈ δ̊(q, γ) do

Add (q′,πγ, t+ 1) to L;

Add (q,ππt, t+ 1) to L;

π∗ ← π from (q,π, t) ∈ L with maximum P(π|X) and q ∈ F̊ ;

6.4 Efficient Decoding of Regular Expressions

Given a Regular Expression r and the corresponding Extended Automaton År =
(Q̊,A′, δ̊, q̊0, F̊ ), we search for the most likely word z∗ in L(r):

z∗ = arg max
z∈L(r)

max
π∈F−1(z)

P(π|X).

Since even for simple Regular Expressions r, L(r) could contain an infinite number
of words whose likelihood cannot be calculated one after another. Thus, exploiting
the graphical structure is not only efficient but necessary to find the most likely z∗.

6.4.1 Preliminaries

We already mentioned that the maximum reward, i.e., the highest probability, can
be calculated using Algorithm 3 in combination with WX(År). The Extended Au-
tomaton contains up to |A′| times more states and transitions compared to the
original one and in fact many calculations can be saved. In Section 3, we mentioned
that Algorithm 3 needs O(|Q̊|2 |A|T ) multiplications. Thus, the running time seems
O(|Q|2 |A|3 T ) in the worst case since |Q̊| = |Q||A′| but this is not exact. The factor
|A| in the estimation of Algorithm 3 results from the assumption that the Automa-
ton could possibly move from state qi to qj by reading any character from A. The
Extended Automaton moves from q`i to qaj only by reading character a such that
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the complexity is rather O(|Q|2 |A|2 T ) in the worst case. Below, we analyze the
computations and show which of them can be avoided leading to an algorithm that
only needs O(|Q|2 T ) operations. More precisely, the resulting algorithm considers
only the three most likely labels per transition from any qi to qj and saves only three
different likelihoods for distinct prefixes per original state. The gain depends highly
on the actual Regular Expression.

To explain the new algorithm, we first need to introduce some notation on WX(År)
using terms from Ar:

Definition 6.2. (ξ,Ξ, γ,Γ) Let γkt (i, j) ∈ {γ ∈ A | qj ∈ δ(qi, γ)} denote k-th likely
characters at position t among any character which moves qi to qj in Ar:

yt,γ1
t (i,j) ≥ yt,γ2

t (i,j) ≥ yt,γ3
t (i,j) ≥ . . .

Let Γt(i, j) := {γ1
t (i, j), γ2

t (i, j), γ3
t (i, j)} denote the set of the three most likely

characters per transition. If the transition only reads one or two such characters,
Γ is accordingly smaller. Analogously, we sort the states qξi for fixed i according to
their reward at time t:

αt

(
q
ξ1
t (i)
i

)
≥ αt

(
q
ξ2
t (i)
i

)
≥ . . .

Let Ξt(i) := {ξ1
t (i), ξ2

t (i)}∪{�} denote the set containing the NaC and the characters
ξjt (i) with the greatest reward αt

(
q
ξjt (i)
i

)
at position t. If there is only one or no

transition in Ar which moves to qi, Ξt(i) is accordingly smaller2 .

Recall Algorithm 3 for År: The likelihood of the most likely label sequence is

max
π∈(A′)T

ρmax(π) = max
q`j∈F̊

αT
(
q`j
)
.

Obviously, it is sufficient to know the most likely state qξ
1
j (T )
j for any j at time T .

Unfortunately, we potentially need more than the most likely state at time T − 1 to
determine ξ1

j (T ):

αt(qγi ) = max
qξj∈Q̊

αt−1(qξj )̊λ(qξj , γ, q
γ
i , t)

According to Corollary 6.1 there is a direct transition between q`i and q`j reading any
` ∈ A′ if and only if i = j. Any other transition from qξi to qγj reading γ is valid
if γ 6= � and qj ∈ δ(qi, γ) or γ = � and i = j. Since λ̊(qξi , γ, q

γ
j , t) = yt,γ for any

2Especially, if there is no cycle in Ar which contains q0, Ξt(0) = {�}.
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connection which is valid in År and λ̊(qξi , γ, q
γ
j , t) = 0 otherwise,

αt(qγj ) = max
{

max
γ: qj∈δ(qi,γ)

max
ξ∈A′

αt−1(qξi )yt,γ(1− δξ,γ), αt−1(qγj )yt,γ
}

(6.4.1)

for γ ∈ A and

αt(q�j ) = yt,γ max
ξ∈A′

αt−1(qξj ). (6.4.2)

Unfortunately, the Kronecker delta δξ,γ prevents an individual maximization of αt−1
and yt,γ in Eq. (6.4.1). Recall that α0(q`i ) = 1 if ` = NaC and i = 0 and α0(q`i ) = 0
otherwise.

6.4.2 Pruning

In the following, we analyze the calculation of α and speed-up the process by avoiding
unnecessary computations. The speed-up is based on two theorems which finally
lead to a time complexity which is independent of the number of labels in A′. The
first theorem states that it is sufficient to know α of the two most likely states
q
ξ1
t (i)
i and qξ

2
t (i)
i and of the corresponding NaC-state q�i to calculate the contribution

to αt(q) of non-loop-transitions. Additionally, we only need the three most likely
probabilities yt,a (i.e., a ∈ Γt(i, j)) per transition. The second theorem justifies that
it is reasonable to do the same for the loop of qγi under certain conditions. To proof
the first theorem, we need the following Lemma:

Lemma 6.3. Let Ξ and Γ be finite sets which may have a non empty intersection.
Consider two functions f : Ξ → R≥0 and g : Γ → R≥0 and denote the elements
according to their value under f and g, respectively: f(ξ1) ≥ f(ξ2) ≥ . . . and
g(γ1) ≥ g(γ2) ≥ . . . . Then

max
ξ∈Ξ, γ∈Γ

f(ξ)g(γ)(1− δξ,γ) = max
ξ∈{ξ1,ξ2}

max
γ∈{γ1,γ2}

f(ξ)g(γ)(1− δξ,γ).

Again, δ symbolizes the Kronecker delta.

Proof. For sake of simplicity, we write O := maxξ∈Ξ maxγ∈Γ f(ξ)g(γ)(1 − δξ,γ). By
case distinction:

1: ξ1 6= γ1, i.e., δξ1,γ1 6= 1. Hence, the maximum is reached by combining the
maximum values:

O = f(ξ1)g(γ1)

2: ξ1 = γ1, i.e., δξ1,γ1 = 1. Thus, there are two candidate combinations which
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could maximize O:

O = max
{
f(ξ1)g(γ2) , f(ξ2)g(γ1)

}
This completes the proof.

Corollary 6.4. Let γ∗ := arg maxγ∈Γ maxξ∈Ξ f(ξ)g(γ)(1− δξ,γ). Then

max
γ∈Γ\{γ∗}

max
ξ∈Ξ

f(ξ)g(γ)(1− δξ,γ) = max
γ∈{γ1,γ2,γ3}\{γ∗}

max
ξ∈{ξ1,ξ2}

f(ξ)g(γ)(1− δξ,γ)

results from Lemma 6.3.

Theorem 6.5. Let WX(År) be the WA corresponding to a Regular Expression r.
For any state index j and any time step t

α1
t (j) := αt

(
q
ξ1
t (j)
j

)
= max

{
max

qi∈pre(qj)
max

ξ∈Ξt−1(i)
max

γ∈Γt(i,j)
αt−1(qξi )yt,γ(1− δξ,γ), max

γ∈A
αt−1(qγj )yt,γ

}

Analogously

α2
t (j) := αt

(
q
ξ2
t (j)
j

)
= max

{
max

qi∈pre(qj)
max

ξ∈Ξt−1(i),γ∈Γt(i,j)\{ξ1
t (j)}

αt−1(qξi )yt,γ(1− δξ,γ),

max
γ∈A\{ξ1

t (j)}
αt−1(qγj )yt,γ

}
α�t (j) := αt(q�j )

= yt,� max
ξ∈Ξt−1(j)

αt−1(qξj )

Interpretation: Since Ξt−1(i) contains the two most likely labels ξ1
t (i), ξ2

t (i) and
the NaC, the two greatest states values α1/2

t (j) can in most cases be calculated
using only the previous α1/2

t−1(i) and those of the NaC. Only the arcs continuing the
previous label (dashed in Figure 6.1) need more than the two most likely alphas.

Proof. The claim for α�t (j) is a direct consequence from Eq. (6.4.2) and the defini-
tion of Ξt−1(i).

For fixed i and j, Lemma 6.3 applies here with f(ξ) := αt−1(qξj ) and g(γ) := yt,γ
such that

max
ξ∈A′

max
γ:qj∈δ(qi,γ)

αt−1(qξj )yt,γ(1− δξ,γ) = max
ξ∈Ξt−1(i)

max
γ∈Γt(i,j)

αt−1(qξj )yt,γ(1− δξ,γ).
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α1
t (j) := max

γ∈A
αt
(
qγj
)

with Eq. (6.4.1)

= max
{

max
γ∈A

max
qi:qj∈δ(qi,γ)

max
ξ∈A′

αt−1(qξi )yt,γ(1− δξ,γ), max
γ∈A

αt−1(qγj )yt,γ
}

= max
{

max
qi∈pre(qj)

max
ξ∈Ξt−1(i),γ∈Γt(i,j)

αt−1(qξi )yt,γ(1− δξ,γ), max
γ∈A

αt−1(qγj )yt,γ
}

Analogously,

max
ξ∈A′

max
{γ:qj∈δ(qi,γ)}\{ξ1

t (j)}
αt−1(qξj )yt,γ(1−δξ,γ) := max

ξ∈Ξt−1(i),γ∈Γt(i,j)\{ξ1
t (j)}

αt−1(qξj )yt,γ(1−δξ,γ)

results from Corollary 6.4 which, finally, yields the proposition.

Consider a transition from q to q̂ of the original Automaton Ar with q 6= q̂. The
Extended Automaton creates multiple new (sub)states from q and q̂ depending on
the number of labels which lead to q and q̂, respectively. Theorem 6.5 states that
we only need to consider three substates from q and the three most likely characters
which move q to q̂ per time step. If there is an analogous proposition for loop
transitions from q to q, there is no need to consider all substates of the Extended
Automaton.

Unfortunately, pruning any transition except those starting in qξ
1
t
i , qξ

2
t
i and q�i also

for loop transitions prunes valid paths. The next theorem states that this should
not happen too often in practice. Therefore, let α̃ be the approximation of α which
also uses only the two most likely character states plus the NaC-state and the 3
most likely labels for reading consecutive identical labels. Let ξ̃t(i) and Ξ̃t(i) denote
the values which correspond to ξt(i) and Ξt(i), respectively, by substituting α by α̃.
Let Γt(j) contain the two most likely characters γkt (i, j) for any i, k at position t.
Then, we additionally restrict loops to read only characters from Γt(j).

α̃1
t (j) : = α̃t

(
q
ξ̃1
t (j)
j

)
= max

{
max

qi∈pre(qj)
max

ξ̃∈Ξ̃t−1(i)
max

γ∈Γt(i,j)
α̃t−1(qξ̃i )yt,γ(1− δξ̃,γ),

max
γ∈{ξ̃1

t−1(j),ξ̃2
t−1(j)}∩Γt(j)

α̃t−1(qγj )yt,γ
} (6.4.3)
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Analogously

α̃2
t (j) : = α̃t

(
q
ξ̃2
t (j)
j

)
= max

{
max

qi∈pre(qj)
max

ξ̃∈Ξ̃t−1(i)
max

γ∈Γt(i,j)\{ξ̃1
t (j)}

α̃t−1(qξ̃i )yt,γ(1− δξ̃,γ),

max
γ∈{ξ̃1

t−1(j),ξ̃2
t−1(j)}∩Γt(j)

γ 6=ξ̃1
t (j)

α̃t−1(qγj )yt,γ
} (6.4.4)

α̃�t (j) : = α̃t(q�j )

= yt,� max
ξ̃∈Ξ̃t−1(j)

α̃t−1(qξ̃j ) (6.4.5)

Theorem 6.6. Let π∗ = π∗(r) be the most likely feasible label sequence with
respect to the Regular Expression r. Assume the following conditions:

(a) ∀t : (π∗t , . . . , π∗t+n−1) = an ∈ An ⇒ n ≤ 2 (i.e., π∗ contains at most 2 consecu-
tive identical labels from A)

(b) ∀t : |{a ∈ A : yt,a ≥ yt,�}| < 3 (the NaC is one of the three most likely labels
at each position)

Then, maxqi∈F α̃1
T (i) = maxqi∈F α1

T (i) = P(π∗|X).

Interpretation: The approximation maxqi∈F α̃1
T (i) yields the same probability as

maxqi∈F α1
T (i) under the above assumptions. Since α̃1

t (j), α̃2
t (j) and α̃�t (i) only

depend on α̃1
t−1(i), α̃2

t−1(i) and α̃�t−1(i) of predecessor states qi of qj, the calculation
of the other sub-states qli with l 6∈ {ξ1

t (i), ξ2
t (i),�} can be omitted.

Proof. Note, that the approximation is exact for states reached by transitions read-
ing only one or two labels since in this case only transitions with λ(q, γ, q′, t) = 0
are pruned.

Let π∗ be the most likely feasible label sequence with respect to the Regular Ex-
pression r. Further, let qπ

∗
1
i1 , . . . , q

π∗T
iT

be the accepting state sequence. That means,

∀t : αt
(
q
π∗t
it

)
= αt−1

(
q
π∗t−1
it−1

)
yt,π∗t .

For a specific t > 1, it remains to show that α̃t
(
q
π∗t
it

)
= αt

(
q
π∗t
it

)
for π∗t = π∗t−1 ∈ A

(and thus π∗t−2 6= π∗t 6= π∗t+1 due to the Assumption (a)). Instead of π∗t ∈ A, Eqs.
(6.4.3) and (6.4.4) restrict π∗t to be an element of:

(1) π∗t = π∗t−1 ∈ {ξ̃1
t−1(it−1), ξ̃2

t−1(it−1)} and
(2) π∗t ∈ Γt(it).

Thus, if (1) and (2) hold, α̃t
(
q
π∗t
it

)
= αt

(
q
π∗t
it

)
assumed that α̃t−1

(
q
π∗t−1
it−1

)
= αt−1

(
q
π∗t−1
it−1

)
.
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If π∗t 6∈ Γt(it), the substitution of π∗t by � would yield a feasible (π∗t 6= π∗t+1, As-
sumption (a)), more likely (Assumption (b)) label sequence which is a contradiction
to the definition of π∗. For the same reason π∗t−1 ∈ Γt(it−1).

If π∗t = π∗t−1 6∈ {ξ̃1
t−1(it−1), ξ̃2

t−1(it−1)}, then there are qa1
it−1 and qa2

it−1 s.t. α̃t−1(qa1
it−1) ≥

α̃t−1(qa2
it−1) ≥ α̃t−1

(
q
π∗t−1
it−1

)
. Since π∗t−1 ∈ Γt(it−1), ai 6∈ Γt−1(it−1) for some i ∈ {1, 2}.

Now, α̃t−1(qaiit−1) can result from appending a new label or from continuing the
previews: If α̃t−1(qaiit−1) = α̃t−2(q`k)yt−1,ai with qaiit−1 6= q`k,

α̃t−2(q`k)yt−1,� ≥ α̃t−1(qaiit−1) ≥ α̃t−1

(
q
π∗t−1
it−1

)
since yt−1,� > yt−1,ai . That means, there is a prefix which can be feasibly continued
by π∗t:T which is more likely than π∗1:t−1. This is a contradiction to the definition of
π∗.

But α̃t−1(qaiit−1) = α̃t−2(qaiit−1)yt−1,ai contradicts the definition of α̃ since ai 6∈ Γt−1(it−1).
Hence, π∗t−1 ∈ {ξ̃1

t−1(it−1), ξ̃2
t−1(it−1)}.

Remark 6.7. α̃t(q) differs from αt(q) only for states q with incoming transitions
which read more than 2 characters. We call these states and transitions critical.

The conditions of Theorem 6.6 are not unlikely to occur in Recurrent Neural Net-
works trained with CTC. The NaC is always very probable (Assumption (b)) and
the likelihoods of other labels are often very spiky (Assumption (a)), i.e., one rarely
observes more than two consecutive identical labels in the best path except for the
NaC. (In Bluche et al. [2015], they call this the dominance of blank predictions.)

Remark 6.8. Due to Theorem 6.5 and 6.6, the description of the proposed al-
gorithm is easier with the Automaton Ar directly from Thompson’s Construction
instead of describing it based on the Extended Automaton. We only need to com-
pute three values for each of the states of Ar. Furthermore, the three most likely
labels per transition from qi to qj and per position can be preselected in advance
which further reduces the access time if several transitions read the same set of la-
bels. Algorithm 8 calculates the most likely path through the Automaton efficiently
using the above results.

Example 6.9. For r := [0− 9]{2}, the resulting Automata are given in Figure 6.2.
Algorithm 3 needs to compute and save αt(q`t) for each of the 23 states q`t of År

per position t. Calculating the α̃ from Eq. (6.4.3) - (6.4.5), we need to compute
only 7 values (in state q0 only α�t (0) is calculated). The precise gain depends on the
Regular Expression.

If for a specific Regular Expression there remain only qli for any i in Q since the
other sub-states are not reachable, the number of multiplications will be equal.
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Algorithm 8: RegExDecoder
input : Ar = (Q,A, δ, q0, F )
output: maxq∈F max{α1

T (q), α�T (q)}
for t ≤ T , qi ∈ Q, θ ∈ {1, 2,�} do

αθt (i)← 0;
ξθt (i)← ε;

α1
0(0)← 1;

for t = 1 to T do
for qj ∈ Q do

for qi ∈ pre(qj) do
/* Appending new chars of the trans. from qi to qj */
for a ∈ Γt(i, j) do

η ← yt,a max{αθt−1(j) | θ ∈ {1, 2,�}, ξθt−1(i) 6= a};
if α1

t (j) < η then
if a 6= ξ1

t (j) then
α2
t (j)← α1

t (j);
ξ2
t (j)← ξ1

t (j);
α1
t (j)← η;
η1
t (j)← a;

else if α2
t (j) < η and a 6= ξ1

t (j) then
α2
t (j) = η;
ξ2
t (j) = a;

/* Continuing previous labels of qj */
for a ∈ Γt(j) do

if a = ξθt−1(j) (θ ∈ {1, 2}) then
η ← yt,aα

θ
t−1(j);

if a 6= ξ1
t (j) then

α2
t (j)← α1

t (j);
ξ2
t (j)← ξ1

t (j);
α1
t (j)← η;
η1
t (j)← a;

else if α2
t (j) < η and a 6= ξ1

t (j) then
α2
t (j) = η;
ξ2
t (j) = a;

α�t (j)← max{α1
t−1(j), α�t−1(j)} yt,�;
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(a) Ar for r :=[0-9]{2}.
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(b) Corresponding År. Bold arc represents any
connection from q`

1 to qa
2 for ` 6= a (` ∈ A′, a ∈ A).

Figure 6.2: Automaton accepting L([0-9]{2}) (left) and Automaton accepting any
label sequence collapsing to an element from L([0-9]{2}) (right).

Capturing Groups

As already mentioned, information about a part of the Regular Expression can be
crucial. In the case of keyword spotting for example, the likelihood of the keyword
determines whether or not the current spot is accepted. But also the likelihood of
labels next to the keyword are important to decide whether or not the spotted word
is only a part of a larger word. To associate parts of the Regular Expression with
parts of the Automaton, we take advantage of the notion of Capturing Groups:

A Capturing Group g of a Regular Expression r is a connected part within a pair
of parentheses. Thus, the group is related to those transitions of the Automaton Ar
which directly result from the subexpression g. Hence, only if the most likely path
associated with r makes use of any transition related to g, g captures some part of
the current ConfMat Y . Then, the corresponding captured label sequence is the
part of the most likely label sequence π∗(r) read by the subautomaton related to
g. In a straightforward way, one calculates the probability or the bounds (start and
end position) of g according to π∗(r).3

6.5 Experiments

The aim of this section is to show that the decoding works properly and fast. We
show that Algorithm 8 works correctly in practical applications and analyze situa-
tions when the heuristic of Theorem 6.6 fails by comparing our decoding result to

3Since the NaC is not part of the Regular Expression, one may decide whether or not the likelihood
calculation and the optimal label sequence include the starting and trailing NaC-labels.
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Table 6.1: Statistics over the text recognition experiment: “size” denotes the number
of words of the vocabulary, “# total” (transitions) denotes the number
of transitions in Automaton and “# critical” (transitions) denotes the
number of transitions which read more than 2 labels. “greatest deviation
- absolute” denotes the difference between the exact negative logarithmic
probability and the result of the RegEx-Decoder. The “greatest devia-
tion - relative” is the deviation divided by the exact absolute logarithmic
probability.

vocabulary size transitions greatest deviation
# total # critical absolute relative

HTRtS 9273 12398 12 9.95E-14 2.1E-12
general English 21698 25997 32 9.95E-14 2.1E-12

the exact most likely label sequence. Further applications of the RegEx-Decoder
can be found in Strauß et al. [2014] and Leifert et al. [2014a]. The following results
are part of Strauß et al. [2016].

We did all time statistics on a laptop with Intel i7-4940MX 3.10GHz CPU, 32GB
RAM and SSD.

Text Recognition

First, we show that our approximation is reasonable for practical applications such as
the HTRtS competition from the ICFHR2014 (see Sánchez et al. [2014]). The data
consists of 400 handwritten pages. We train on 350 pages and validate on 50 pages.
The validation set is also used to evaluate the decoding. Each page consists of sev-
eral lines of text including words, punctuations, numbers and symbols. The Neural
Network used in Strauß et al. [2014] generates the ConfMats. We compare the most
likely word of a vocabulary obtained by the RegEx-Decoder4 with the result of the
Vocabulary Automaton from Section 5.3.1. For this purpose, the RegEx-Decoder is
used to split the ConfMats into regions of words and regions containing spaces, num-
bers etc. The evaluation is done on the resulting 4657 submatrices representing the
word regions. These matrices correspond (more or less) to ConfMats of subimages of
single words. We use two vocabularies: one containing 9273 words (generated from
HTRtS data) and one containing 21698 words (a modern, general vocabulary build
from two million English sentences from http://corpora.uni-leipzig.de/).

Table 6.1 shows the deviation of the negative logarithmic likelihood of the RegEx-
Decoder and the exact decoding. Clearly, the deviation is negligible. There is an

4The used Automaton is a DAFSA of Section 2.2.

http://corpora.uni-leipzig.de/
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intersection of both vocabularies which includes especially the most frequent words.
Thus, it is not surprising that both vocabularies show the same deviation since both
extrema (the greatest absolute and relative deviation) appear for the same words
(“General” and “of”). Since the number of critical transitions is very small, we
expected a small divergence due to our approximation. In fact there is no additional
confusion of words caused by our approximation. Thus, the experiment shows that
the approximation of Theorem 6.6 is reasonable in practical applications with few
critical transitions.

We evaluated the impact of the decoder empirically on the HTRtS test set. We
decreased the word error rate by 3 percentage points compared to the best path
decoding (i.e., F(β)) of the entire line (from 50.89% to 48.06%) just by defining an
appropriate Regular Expression for the expected line structure without any vocab-
ulary. Including a vocabulary, we further decreased the WER to 33.90%.

Number Recognition

The next experiment involves artificially generated writings and investigates the
correctness of Alg. 8 in case of a relatively large number of critical transitions.
By Remark 6.7, we know that errors only appear for states reached by transitions
which read more than two labels. We enforce this condition by searching only for
digits. Thus, any transition is critical since these transitions read more than two
labels. To enforce further continuation errors5, we vary the number of digits actually
depicted in the image while the search pattern remains 3 to 5 digits (i.e., the Regular
Expression is [0-9]{3,5}). If the number of digits actually displayed in the image
is greater than 5, the decoder has to suppress valid digits which also promotes errors
since the optimal label sequence provides a label for each row of the ConfMat.

We vary the number of digits from 4 to 9. For each number of digits, we generate
10,000 synthetic writings. The digits are narrowly written to enforce further confu-
sions (see Figure 6.3). The resulting images work as input to four Neural Networks
with different number recognition expertise. We will compare the decoding results
over the ConfMats generated by these NNs. The RegEx-Decoder searches in these
ConfMats for the most likely number with 3 to 5 digits. The resulting number and
probability is compared with the result from a traditional Vocabulary Automaton as
in Section 5.3.1 using a vocabulary of all numbers with 3 to 5 digits. Any difference
in the resulting optimal label sequence is regarded as an error.

Table 6.2 shows the number of errors per network and digits in the image. The more
the algorithm is forced to suppress digits the more errors occur. For 4 and 5 digits
there is no force to suppress any written digit since the corresponding Automaton
is allowed to accept the ground truth. The errors are negligible in this case. From

5Remember that one of the conditions for errors is that the optimal label sequence π contains
more multiple consecutive identical letters.
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Figure 6.3: Artificial writings of two numbers for the number recognition task.

Table 6.2: Number recognition task: Number of differences in the most likely la-
bel sequences of the RegEx-Decoder and the exact decoding for different
NNs and different number of digits in the image but a constant Regular
Expression of [0-9]{3,5}.

4 5 6 7 8 9
net1 0 0 1 12 9 27
net2 0 0 24 27 40 40
net3 0 0 6 3 4 4
net4 0 1 4 4 7 7

6 to 9 digits, the number of errors increases.

Even if there is a relatively high number of critical transitions, there will only be
little error if the Regular Expression fits to the image content. If the Regular
Expression does not fit to the number of digits in the image, there will be a moderate
risk of generating additional confusion errors due to our approximation. However,
even under exact decoding the best feasible label sequence then has a very low
probability which will be further underestimated by the approximation. Hence, the
approximation will likely not be harmful here since the decoding result can either
be rejected immediately or it is unlikely to be of any significance in downstream
processing steps.

Figure 6.4 shows the required decoding time for the images as describe above applied
to different decoding algorithms and for different numbers of digits in the image.
The RegEx-Decoder needs between 0.19 ms and 0.28 ms per ConfMat on average
depending on the number of digits. The conventional Vocabulary Automaton needs
at least 4.68 ms per ConfMat since it has to calculate the probabilities of more or
less all numbers with the specific number of digits under consideration. It naturally
reuses already calculated probabilities whenever the beginnings are the same. Ad-
ditionally, we applied the limit procedure of Section 5.3.2. Even with this speed-up
mechanism the RegEx-decoder is more than 22 times faster. The running time for
the A∗ Search is growing more than exponentially in the number of digits since the
likelihood of P(π | X) � 1 for n > 5 digits. For 4 and 5 digits it is likely that the
best path β is already the decoding result such that the bound is tight and prunes
any path.
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Figure 6.4: Decoding times of different decoding algorithms for the number recog-
nition task (10,000 ConfMats) averaged over all four NNs.
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The Beam Search with Beam Width 100 needs almost seven times more time for
the calculation than the RegEx-Decoder. A point of criticism might be that we
use no independent implementation to compare the time complexity and we may
not have implemented the Beam Search algorithm optimally. Let us count the
multiplications: Beam Search with Beam Width 100 calculates for each of the 100
prefixes at each time step 11 new prefixes (one for each digit plus one adding the
NaC) and thus 1100 multiplications per time step in total in the worst case. The
RegEx-Decoder needs for each of the 5 transitions at most 6 multiplications to
update α1 and α2 plus one additional for α�.6Thus, we have 35 multiplications in
total. Therefore, our theoretical analysis rather indicates that the RegEx-Decoder is
implemented suboptimally since Beam Search needs 31 times more multiplications
but the computation time is only seven times higher. Although Beam Search with
Beam Width 100 is much slower, it yields significantly more errors (round about
40 errors on average if the ground truth are 4 or 5 digits). To get a comparable
performance for the experiments with 4 and 5 digits, we needed a Beam Width of
at least 1000 in our experiments7.

6.6 Combined Vocabulary and Regular Expression
Constraints

In Section 6.4, we describe a method to calculate the most likely label sequence
constrained to Regular Expressions. This method is only efficient if the number
of transitions in the corresponding Automaton is not too large. If the Regular
Expression is very complex since it, e.g., contains a vocabulary, the number of
transitions is huge such that a complete search of the search space is intractable even
for the heuristic proposed in Theorem 6.6. To prune the search space, we suggest
a combination of Beam Search (introduced in Section 6.3.2) and the method from
Section 6.4. As a result, we will be able to incorporate large vocabularies8 into the
decoding.

The algorithm of Section 6 guarantees (under the assumptions of Theorem 6.6) the
calculation of the two most likely prefixes reaching any state which do not end on the
same character. For a large number of states, many of these will never contribute to
the result or the contribution is limited to a few time steps. Hence, it is an intuitive
approach to reduce the number of states calculated at a certain time step to stay
efficient.

Instead of expanding each state at each time step, we only keep the most promising
states and omit all the others. Algorithm 9 is the natural extension of Algorithm 8

6Compared to Strauß et al. [2016], we revised the description of the decoder which led to a
decrease of the required multiplications.

7The running time increases from round about 15 sec to 115 sec for all 10,000 ConfMats.
8Large in terms of several thousands of words.
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to Beam Search.

If the Beam Width n is sufficiently great, Algorithm 9 computes the same paths as
Alg. 8 and thus yields the same results e.g. for the Number Recognition experiment
of Section 6.5.

6.7 Conclusion

In this chapter, we considered Regular Expressions decoding constraints and effective
decoding methods. We show how to exploit Finite State Automata to find the
most likely feasible label sequence of a Regular Language. A further analysis of
the decoding procedure yields a pruning strategy of the search space such that it
also works fast for complex Regular Expressions and many ConfMats. We also
propose an approximation which is shown to be exact under conditions which are
commonly satisfied for CTC-trained NNs. This theoretical result was confirmed
by experiments. As a main result, we showed that the decoder is applicable in
practical scenarios. Even if the approximation fails to produce exact results, it is
likely that the ground truth does not fit to the Regular Expression. This results in a
low probability decoding result further underestimated by our approximation which
should not be harmful in most applications.

The proposed speed-ups only work for the path probability P(π|X) (instead of the
CTC probability). If the decoder should return the exact probability, all paths con-
tribute to the result and, thus, cannot be skipped. Hence, speed-ups seem to be
hard. Additionally, we have to take care about distinct paths through the Automa-
ton accepting the same label sequence. An Unambiguous FSA or even a DFA is
required to ensure that the Automaton accepts any label sequence only once. We
already discussed the disadvantages of DFAs in Chapter 2.

There are plenty of applications for the proposed algorithm. The method can be
applied e.g. to keyword spotting (compare Section 7.2) but also patterns of other
information retrieval tasks can be described conveniently.



92 6.7 Conclusion

Algorithm 9: RegExDecoderBeamSearch
input : ConfMat Y , Ar = (Q,A, δ, q0, F ), Beam Width n
output: maxq∈F max{α1

T (q), α�T (q)}
for t ≤ T , qi ∈ Q, θ ∈ {1, 2,�} do

αθt (i)← 0;
ξθt (i)← ε;

α1
0(0)← 1;

L← {q0};
for t = 1 to T do

L← n items of L with greatest value α1
t ;

L← {};
for qj ∈ Q do

for qi ∈ pre(qj) ∩ L do
/* Appending new chars of the trans. from qi to qj */
for a ∈ Γt(i, j) do

η ← yt,a max{αθt−1(j) | θ ∈ {1, 2,�}, ξθt−1(i) 6= a};
if α1

t (j) < η then
if a 6= ξ1

t (j) then
α2
t (j)← α1

t (j);
ξ2
t (j)← ξ1

t (j);
α1
t (j)← η;
η1
t (j)← a;

else if α2
t (j) < η and a 6= ξ1

t (j) then
α2
t (j) = η;
ξ2
t (j) = a;

/* Continuing previous labels of qj */
for a ∈ Γt(j) do

if a = ξθt−1(j) (θ ∈ {1, 2}) then
η ← yt,aα

θ
t−1(j);

if a 6= ξ1
t (j) then

α2
t (j)← α1

t (j);
ξ2
t (j)← ξ1

t (j);
α1
t (j)← η;
η1
t (j)← a;

else if α2
t (j) < η and a 6= ξ1

t (j) then
α2
t (j) = η;
ξ2
t (j) = a;

α�t (j)← max{α1
t−1(j), α�t−1(j)} yt,�;



7 Applications

In this chapter, we apply the proposed techniques to handwritten texts. Since the
words in natural language texts typically follow specific statistics, we first investi-
gate how to integrate Language Models into the decoding process. Afterwards, we
propose a keyword spotting method and also show that even full text recognition
can be processed using Regular Expressions.

7.1 Incorporating a Language Model

To our experience, the NN’s ability to learn dependencies of characters depends
highly on the training data: If many variations appear in the trained character
sequences, the ConfMat will depend only weakly on character transitions. Thus, the
NN will not be able to predict reliable prior word probabilities. It rather predicts
the character sequence as accurately as possible. To also incorporate prior word
probabilities, we borrow some basic ideas from domain adaptation (see, e.g., [Jiang,
2008, Section 6.2.1]): Let PS(Y | X) and PT (Y | X) be two conditional probability
distributions of the random variables X and Y . Domain adaptation then tries to
estimate the unknown target distribution PT from the known source distribution
PS . In our case, PS is the Neural Network probability of a character sequence z
given the image X and PT is the corresponding “true” probability. For the next
theorem, we attach the parameter W again to distinguish between the probability
given by the NN and those underlying the data.

Theorem 7.1. Let X ⊂ A∗ with |X | <∞ and let X be the input image. Assume
two discrete conditional probability distributions PT (z | X) and PS(z | X;W ).
Assume further PS(X | z;W ) = PT (X | z). Then for any z ∈ X

PT (z |X) = 1
N

PT (z)
PS(z |W ) PS(z |X;W ) (7.1.1)

where

N =
∑
z∈X

PT (z)
PS(z |W ) PS(z |X;W ). (7.1.2)

The proof is a direct consequence of Bayes’ law for PT (z |X) and PS(z |X;W ).
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For a given Neural Network, PS(z | X;W ) is given by CTC. Theorem 7.1 allows
us to correct PS(z | X;W ) by incorporating a Language Model PT (z) such that
we obtain a better estimate for the “true distribution” PT (z | X). Since z is an
abstract feasible character sequence which possibly could contain several words or
a whole sentence, PT (z) could be estimated by a higher order Language Model.

It remains to be shown whether or not the assumption PS(X | z;W ) = PT (X | z)
is correct. Typically, NN-HMM hybrid models assume that the observations are
modeled reliably. Many of these recognition systems work well in practice which
may serve as an indication that the assumption is reasonable.

Fortunately, we are not restricted to any word statistics from the training set which
typically is too small. Rather any Language Model capturing the expected statistics
can be applied. In principle, the above theorem allows to train and test on different
data, even data from different languages.

We have to estimate the source prior probability PS(z |W ) learned by the Neural
Network. Since the conditional distribution PS(z | X;W ) typically tends to have
only weak impact on inter-character dependencies or even ignores them, it is reason-
able to assume that PS(z |W ) is a character model of low order or even constant.
We will experimentally evaluate this in the context of keyword spotting.

Connection to HMMs Language Models have been integrated into HMM-Decoders
for a long time with great success. Hybrid RNN-HMM models, where the RNN is
trained in a discriminative manner, calculate the emission probability of an obser-
vation x under the HMM state s by

p(x | s) = P(s | x) p(x)
P(s)

where P(s | x) is given by the NN (see e.g. Doetsch et al. [2014]). Consider an
HMM which models the CTC topology, i.e., the support of the HMM which accepts
(only) z is Åz. Let xt be the input X at position t. Then the most likely state
sequence s∗1:T conditioned on X is decoded by

s∗1:T = arg max
s1:T

P(s1:T |X)

= arg max
s1:T

p(X | s1:T ) P(s1:T )
p(X)

= arg max
s1:T

T∏
t=1

P(st | xt) p(xt) P(s1:T )
p(X) P(st)

(7.1.3)

= arg max
s1:T

T∏
t=1

P(st | xt) P(s1:T )
P(st)

(7.1.4)
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where P(st) corresponds to the state prior and P(s1:T ) is given by the transition
probabilities including word (lexical) and LM (syntactical) probabilities as described
in Section 4.2.4. If we interpret ∏t P(st) as prior probability learned by the NN,
Eq. (7.1.1) and Eq. (7.1.4) yield the same state sequence and, hence, they share a
common probabilistic background.

If P(z) = c for some c and for each z ∈ ⋃N
n=1 Vn for some sufficiently great N ,

we obtain Eq. (4.4.3) (up to a constant) which is the fundamental equation of the
CTC-Token-Passing Algorithm.

7.2 Keyword Spotting

The term keyword spotting is ambiguously used for detecting words in both spoken
and written language. We exclusively focus on identifying regions in a collection of
handwritten texts which contain a specific given keyword. The keyword may either
be given as a string (query-as-string) or as an isolated example “snippet” (query-
as-example). Besides reading the textual information, another standard approach
to keyword spotting uses image processing methods and computes the similarity on
handcrafted features (see Pratikakis et al. [2014]). Typically, these approaches are
training free and thus they are the preferred approach if there is no or only few
training data available (Rath and Manmatha [2007]). These approaches are limited
to the query-by-example scenarios. If there are transcriptions available to train a
model to provide P(z |X), the training based systems outperform the training free
systems (see e.g. Vidal et al. [2015], Puigcerver et al. [2015a]). Many of the training-
free approaches require a previous segmentation into single words and suffer from
segmentation errors. Training based approaches based on HMMs or RNNs usually
do not need a predefined segmentation. We focus on the query-by-string method
into single words. The proposed procedure can be adapted to query-by-example
conditions by simply reading the input example and proceed as if the string was
given.

7.2.1 Previous Work

HMMs HMMs are a state-of-the-art approach to keyword spotting. The preferred
procedure is to model the keyword as a concatenation of the corresponding character
HMMs. Filler models cover the uninteresting parts of the text line. This model
consists of a complete digraph where the nodes correspond to the labels. Between
the filler and the keyword there is a space state to guarantee that the keyword is
not part of any larger word. Figure 7.1 shows a scheme of this HMM model. Let z
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Filler

␣

k e y w o r d

␣

Filler

Figure 7.1: Standard HMM keyword model as concatenation of character HMMs

be the keyword. The standard score for z as subsequence contained in X is

maxw∈L(.*z.*) ln p(w,X)−maxŵ∈L(.*) ln p(ŵ,X)
|z|

(7.2.1)

where .* is the Regular Expression notation of the filler. The denominator normal-
izes keywords of different length by the same number of states in the keyword. In
Puigcerver et al. [2015b] they derive this score from the probabilistic point of view.

Bideault et al. [2015a] compared HMM hybrid models with MLP, RNN, Conditional
Random Fields or BLSTM posterior estimators concluding that the combination of
BLSTMs and HMMs works best. They also reported very good results of a plain
CTC-BLSTM without an HMM stage.

RNNs Frinken et al. [2012] suggested a system based on BLSTM-NNs for keyword
spotting. They proposed a simplified version of the Token Passing Algorithm from
Graves et al. [2009] which calculates the probability of .*␣z␣.* as described in
Section 5.2. This leads to problems if the text line starts or ends with the keyword.
To circumvent this problem, the authors “add sequence elements to the beginning
and the end of each text line that represents extra white space.” They compared the
proposed system to a training free Dynamic Time Warping approach and an HMM
system from Fischer et al. [2010] and finally outperformed the reference systems by
an impressive margin.

A straight approach was proposed in Fernández et al. [2007]. The Neural Network
had one output neuron for each keyword plus an additional one for the not-a-keyword
label. It was trained by CTC and performed well in the context of speech recog-
nition. The resulting likelihoods served directly as confidence measures. This is a
clear advantage over previous approaches since the problem of uncertain keyword
matches is shifted to the Neural Network and optimized implicitly during the train-
ing procedure. The major drawback is that, in contrast to other training based
approaches, this method is limited to keywords which are trained to detect. Also
the detection of infrequent words might be a problem.



Chapter 7. Applications 97

7.2.2 Regular Expression Approach

Similar to Frinken et al. [2012], we assume a Neural Network trained with CTC. For
an exemplary architecture of the RNN and details of the corresponding preprocess-
ing, we refer to Strauß et al. [2016].

In the following, z denotes a single keyword. Since the text line probably contains
more than one word, uninteresting parts of the text line also have to be covered: An
arbitrary character in Regular Expression notation is a dot . and it is arbitrarily
often repeated by the Kleene Star *. Thus, .*z.* will match any occurrence of z in
the line, also these where z is only part a of longer word. To circumvent the part-of-
word problem, we enforce a separation of the “filler model” .* and the keyword by
separation characters such as “-”, “(” or “␣”. Putting these characters in brackets,
like [-(␣)], means that each of them can be read interchangeably. Hence, the
resulting Regular Expression for a single keyword is:

r :=
(
.*
[
␣(-

])
?z
([
␣)-

]
.*
)
?

This procedure can be extended to n-occurrences of the keyword:

r :=
(
.*[␣(-]

)
?z
(
[␣(-]

(
.*[␣(-]

)
?z
)
{n-1}

(
[␣)-].*

)
?

The separators at the beginning or end of a line are optional while separators between
two keywords are mandatory. The path probability of the keyword is given by

Ps:e(π∗(z) |X) = max
π∈F−1(z)
|π|=e−s+1

e∏
t=s

yt,πt−s+1 ,

where s and e are the start and end position of the submatrix within the ConfMat
corresponding to the Capturing Group of z as described in Section 6.4. The Captur-
ing Group directly yields the subsequence π∗s:e corresponding to z (i.e., F(π∗s:e) = z)
and the corresponding probability Ps:e(π∗(z) | X). We already mentioned in Sec-
tion 6.4 that π∗s:e (or rather s and e) are not well defined since NaCs may or may
not be included. To avoid ambiguity, we use the longest subsequence which includes
all NaCs. Alternatively, one may use

Ps:e(z |X) :=
∑

π∈F−1(z)
|π|=e−s+1

e∏
t=s

yt,πt−s+1 .

In contrast to the HMM score of Eq. (7.2.1), we do not normalize by the maximum
likelihood of any character sequence. Since yt,l < 1 for any t, l, the path probability
typically decreases if e− s increases. Thus, we prefer a score relative to the number
of positions rather than relative to the number of characters of the considered word
|z|. We obtain Ps:e(π∗(z)|X)

1
e−s+1 .
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The separation characters should ensure that the match is not merely a part of
a larger word. Unfortunately, there is always a small likelihood of such separation
characters even if the match is a smaller part of another word. To detect these cases,
the match is accepted only if the likelihood of each Capturing Group corresponding
to a separation character exceeds a certain threshold. We consider the likelihoods of
the separators and of the keyword separately to better identify whether the match
is only part of a larger word. A low likelihood of the separator immediately leads
to a rejection while a combined keyword-separator probability cannot differentiate
a badly written match from the part-of-larger-word case.

7.2.3 Integrating Language Models

Due to Theorem 7.1, the keyword likelihood Ps:e(z | X) can be rescored by a
Language Model according to Eq. (7.1.1). Since we deal with single words z in the
context of keyword spotting, the Language Model PT (z) will be a word unigram.

Typically, the vocabulary represents only a small fraction of all words of the con-
sidered language. Thus, it is impossible to sum the probabilities of all these feasible
words. Hence, any computed normalization constant N must be an approximation.
Words not contained in the vocabulary are called out-of-vocabulary words (OOV
words). A heuristic which worked well in our experiments is to include the collapsed
best path F(βs:e) temporarily as an OOV word into the vocabulary if it is not
already contained. The prior probability of the newly added word is a previously
determined constant which is equal for any OOV word.

7.2.4 Experimental Validation

The following experiment was done for the ImageCLEF 2016 Handwritten Scanned
Document Retrieval Task (Villegas et al. [2016]).

Data Set and Task

The data set comprises handwritten texts from Jeremy Bentham who was an im-
portant English philosopher of the 18th century. The texts were digitalized and
transcribed by the Transcribe Bentham project (see Moyle et al. [2011]).

The data set is divided into a training and development set of 363 and 433 pages
including transcripts and a test set of 200 pages without transcription. For the
development set, an additional list of 510 queries and the corresponding ground
truth results (including geometrical information) are provided for purpose of testing
& tuning the system.
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The task is to search in the development and test pages for queries from a new list (of
1000 queries) including multi-word queries, OOV words and hyphenated matches.
The whole query has to match in a segment of 6 consecutive lines in the correct
order. The segments overlap such that one single query match appears in up to 6
segments. The goal is to return the corresponding segments for any query.

Setup

A system overview including preprocessing methods and network architecture can
be found in Strauß et al. [2016]. We focus here on the decoding strategies reported
there.

In contrast to PT (z) which is reasonably a word unigram, the prior source probability
PS(z) is unclear. We estimate the character transition probability learned by the
NN in three different ways:

• PS(z) = PT (z): Target and source prior probabilities cancel each other such
that the likelihoods PS(z |X) and PT (z |X) are equal up to the normaliza-
tion. We refer to this prior scheme as abs.
• PS(z) ∝ 1: The prior source probability is assumed to be constant such that

only information of the target domain is used.1 We refer to this prior scheme
as prior.
• PS(z) ∝

(∏|z|
i=1 P(zi)

)c
: P(zi) is the prior character probability of zi and 0 <

c ≤ 1.2 We refer to this prior scheme as da.

In the last both schemes, prior and da, the prior probabilities are estimated up to
a constant factor 1/N ′ which is basically the reciprocal of the sum of the estimates
of PS(z) over the finite set of all words z. The prior normalization constant N ′ can
be merged with the normalization constant N from Eq. (7.1.2).

To sort a vocabulary according to the probability on a specific submatrix of a given
ConfMat, there is no need to calculate the normalization 1/N . The normalization
is only crucial for comparing the probabilities of two matches corresponding to
different submatrices and, thus, it directly determines the position in the list of the
results of all queries over the whole document. This position directly influences
the evaluation measure and therefore the performance of the system. As a rule of
thumb: the smaller the position of a certain match the greater the impact on the
performance.

The normalization is computational expensive since it requires to sum over all fea-
sible strings including word sequences and parts of words if the segmentation fails.
In our experiments, we approximate the sum by considering only the 10 (out of

1This corresponds to the Language Model integration used in Graves et al. [2008] and Graves and
Jaitly [2014] (see Eq. (4.4.3)).

2In the submitted system, this character priors are estimated on the training set and c = 0.5.
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12740) most likely vocabulary matches and, optionally, the additional OOV word as
described above. We ignore therefore many feasible combinations in the calculation
of the normalization constant N and assume a perfect segmentation. To analyze
the impact of the normalization, we submitted results with (normed) and without
(unnormed) normalization.

Typically, the word likelihoods are calculated using the path probability Ps:e(π∗(z) |
X). To investigate the impact of using the path probability as an approximation
of Ps:e(z | X), we submitted comparable systems for both likelihood estimates. To
distinguish them, we denote the schemes as path or ctc, respectively.

The performance is measured in Average Precision (AP) and Normalized Discounted
Cumulative Gain (NDCG). Additionally, both of them are applied in two ways:

(a) globally, i.e., to the whole set of results (gAP & gNDCG),
(b) individually to each query and average these individual measures (mAP &

mNDCG).

Thus, in total, there are 4 different benchmark measures. A description of these
performance measures is given in the appendix.

Results

This section reports the results which, again, are reported in Strauß et al. [2016]. The
experiments are designed to compare the different decoding components described
above:

• source likelihood (path and ctc)
• source prior probability (abs, prior and da)
• normalization (normed and unnormed)

We were restricted to submit only 10 systems. Since we usually use the path prob-
ability instead of the CTC probability, we skipped two decoding schemes which use
the CTC posterior and are not normalized at the same time.

For additional statistics on subsets of the results or on box level results we refer to
Villegas et al. [2016] were a detailed comparison of all submitted systems is available.

Normalization The Tables 7.1 and 7.2 show the impact of the normalization on
the four different measures. Normalizing the probabilities typically improves the
recognition score except for one configuration: If the source prior is equal to the
target prior (i.e., abs). Then the normalization can be counterproductive if the data
is different to the trained data. The NN is trained to optimize the unnormalized
CTC probability. So it is not surprising that the system works well if the data
fits to the training data and we only use the source posterior probability without
normalization as score. Even for the development set – where the data seems to fit



Chapter 7. Applications 101

Table 7.1: Results on the development set on segment level for the MDRNN trained
only on the training set. bl denotes the baseline system.

source prior abs prior da bl
source posterior path ctc path ctc path ctc

gAP normed 94.81 94.89 95.36 95.42 94.99 95.04 74.2
unnormed 94.77 91.73 91.87 92.58

mAP normed 89.71 89.90 89.58 89.76 89.63 89.82 49.9
unnormed 89.42 88.59 88.89 89.13

gNDCG normed 96.72 96.78 96.78 96.83 96.73 96.77 80.1
unnormed 96.69 96.34 96.41 96.46

mNDCG normed 90.77 90.97 90.66 90.85 90.70 90.89 51.7
unnormed 90.61 89.96 90.25 90.36

Table 7.2: Results on the test set on segment level for the MDRNN trained only on
the training set. bl denotes the baseline system.

source prior abs prior da bl
source posterior path ctc path ctc path ctc

gAP normed 33.89 33.98 43.20 43.72 46.74 47.13 14.4
unnormed 42.21 36.17 36.30 39.65

mAP normed 38.62 39.46 39.10 40.03 39.19 39.89 8.1
unnormed 38.18 36.50 37.13 37.91

gNDCG normed 59.39 60.03 61.40 62.14 61.98 62.70 27.5
unnormed 61.14 59.70 60.37 60.62

mNDCG normed 40.57 41.40 40.96 41.86 41.05 41.73 9.4
unnormed 40.22 38.85 39.51 40.04
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the training data well – the gain from the normalization is not significant. Thus,
the normalization can be omitted using the abs decoding scheme.

If source and target prior differ, the scores of different matches at distinct positions
are not comparable anymore without normalization. Therefore, the normalization
increases the recognition rate by around 7 gAP points for prior and da schemes at
the test set (Table 7.2).

Path vs. CTC Probability The NN is trained to optimize the CTC probability.
Thus, it is not surprising that the CTC probability is typically slightly better (less
than 0.6 gAP points on the test set, see Table 7.2) than the path probability.

Finally, the gap between path and CTC probability is small for all experiments.
Thus, the path probability is a good approximation for the CTC probability.

Priors The evaluation is less clear than the one above. The results do not only
depend on different experimental setups (i.e., different tables) but they also highly
depend on the measure. Considering the development set (Table 7.1) and gAP, the
prior scheme works slightly better (less than 0.6 gAP points) than abs and da.
The mAP measure puts more weight on infrequent words. Thus, the abs decoding
scheme works better than the prior decoding scheme which naturally favors frequent
words.

Compared to the development set, the results on the test set gain more from can-
celing the NN’s source prior probability. Especially, if the gAP value is considered,
the da scheme yields better results (greater than 3 gAP points) than the others.
Measuring the mAP, the prior decoding scheme is slightly better (less than 0.2
mAP points compared to da).

Considering only OOV words, the da scheme yields the lowest error rates inde-
pendent of the precise measure. This may be an indication that the da scheme
improves the probability although there will be better estimates of the precise prior
probability learned by the NN.

The Tables 7.1 and 7.2 also contain the results of the baseline system. Since base-
line systems are typically not optimized, the comparison should not be overstated.
Unfortunately, there was no other participant who beat the baseline.

7.3 Handwritten Text Recognition

We also applied the proposed methods to full text transcription.
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7.3.1 Previous Work

HMMs: As already stated in Section 4.2, a typical HMM-HTR engine divides
different levels of abstraction. Many authors distinguish the character, word and
Language Model level (see e.g. Gómez [2010]). The Language Model allows in
principle any combination of feasible character sequences. The set of character
sequences contains not only vocables3, it also includes punctuations, numbers etc.
Since the Language Model does not consider spaces, it is often modeled as optional
character appended to each “word” model. This might lead to problems as reported
in Toselli and Vidal [2015]. The authors there suggest two kinds of white spaces to
model e.g. a concatenation of vocables and punctuation marks more realistically.

Furthermore, it is difficult to incorporate OOV words into decoding basically because
these words are not provided by the Language Model. Different authors try to tackle
this problem by Language Models on subword units or even on the character level
(see e.g. Kozielski et al. [2013b]).

RNNs: Graves et al. [2009] proposes the CTC-Token-Passing Algorithm (see Sec-
tion 4.4.3). Unfortunately, they do not report how to integrate the space. In Graves
and Jaitly [2014] the authors extend this algorithm to higher-order Language Models
by a combination with Beam Search. To keep always the most promising candidates
they propose a clever strategy to convert the Language Model probability into a
telescoping series to add some piece of the Language Model probability at each time
step instead of adding the whole prior probability at the beginning or the end of a
word.

7.3.2 Segmentation

We assume a structure of the text lines which can be described by Regular Ex-
pressions: Several templates describe the atoms of natural language such as words,
dates, amounts of currency, punctuations etc. This structure can be derived directly
from the training set or set up manually. Character sequences which are not fitting
the expected structure will not be decoded.

The Regular Expression describing all atomic parts is used to “parse” the ConfMat.
Due to capturing groups, the resulting parts are automatically labeled as regions of
words, numbers, dates etc. which can be used for further analysis.

At this level of abstraction, a word region is defined as a concatenation of alpha-
betic letters which yields many infeasible words. To further constrain the decoding,
a search for the most likely vocables within the vocabulary is accomplished leading
to a Confusion Network, i.e., a Weighted Automaton (Q,V , λ, q0, F ) with only one

3That means, words from a dictionary rather than arbitrary sequences from A∗.
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final state where any path from the initial to the final state visits any other state.
Thus, this WA is a simple word graphs of word latticies of candidate word sequences.
Although the Confusion Network relies very much on the segmentation it has been
shown in several articles that is a good compromise between accuracy (of a com-
plete word graph) and speed (Hakkani-Tür et al. [2006], Bertoldi et al. [2007]). An
exemplary Confusion Network is given in Figure 7.2.

A typical CTC trained NN overestimates the NaC-likelihood. Thus, we modify the
path probability for the NaC-loop. Instead of the λ(q�,�, q�, t) = yt,�, we define
λ(q�,�, q�, t) = Cyt,� where C is a constant4. Now, the sum over the label se-
quences from (A′)T will not yield 1. Hence, we normalize the maximum reward by∑
π∈(A′)T P(π |X) where P(π |X) penalizes the NaC-loop as well. This normaliza-

tion can be efficiently calculated using the underlying Automaton of TF , generate the
WA according to Lemma 4.22 with the additional NaC-loop penalty and calculate
the total reward of Algorithm 4.

7.3.3 Integration of Language Models

Analogously to the case of keyword spotting, Language Models can be incorpo-
rated using Theorem 7.1. In contrast to keyword spotting where only single words
are decoded, the decoding process has to transcribe whole lines of text. Thus,
z := z1, . . . ,zn is a sequence of vocables, numbers, punctuations etc. (also spaces)
covered by the Confusion Network and PT (z) can profit from higher order Language
Models. For sake of simplicity, we set PS(z) ∝ 1 in this section. Then

P(π∗(z) |X) ∝ PT (z1) Ps1:e1(π∗(z1) |X)
n∏
i=2

PT (zi | z1, . . . zi−1) Psi:ei(π∗(zi) |X)

where n is the number of matching Capturing Groups and (si, ei) are the boundaries
of the ith Capturing Group. Alternatively, the analogous equation can be derived for
P(z |X) instead of P(π∗(z) |X). Again, PT (zi | z1, . . . zi−1) will be approximated
by an n-gram Language Model.

7.3.4 Experimental Validation

Data-Set

We demonstrate the practicability of the proposed method on a subset of the data
set of Section 7.2.4 published as ICDAR2015 Competition HTRtS (Sánchez et al.
[2015]). The training set contains of 433 pages for which a text-to-line alignment is
available. Additionally, the organizers provided 313 pages with a transcription at

4In the following experiment, C = 0.4.
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text block level without text-to-line level alignment. The testset contains 50 pages
(where the transcription was unknown to the participants).

Setup

Again, we do not report the NN’s architecture and the preprocessing methods and
refer to Leifert et al. [2016]. The decoding results of two NNs were submitted: One
NN trained only on the 433 pages with text to line alignment (Batch 1) and another
NN trained on all the whole training data (Batch 1 & 2). Here we focus on three
decoding strategies of different complexity to analyze the impact of each strategy:

Dec-BP: Best Path decoding The most simple decoding procedure is to calculate
the best path β = arg maxπ∈(A′)∗ P(π | X) without any restrictions. The resulting
character sequence is F(β). This is called Best Path Decoding in Graves [2012].

Dec-RE: Regular Expression decoding The Regular Expression for this decod-
ing scheme only models the atomic components such as amounts of money, dates,
punctuation, words5 etc. in a very flexible way. Especially, there is no vocabulary
incorporated in this step. Thus, there will be many word errors.

The precise Regular Expression is composed of 5 parts, which are too technical, and
is not presented here in detail. We only demonstrate exemplary simplified Capturing
Groups:

• the preword character group: [("]
• the word group: [A-Za-z][a-z]*
• the word alternatives: [0-9.,]+£? (currency, general number)
• the post-word character group: (’s)?[)".;:]?
• the separating character group: [␣&-]

Their combination forms the actual Regular Expression:

r :=
(
[("]?

(
[0-9.,]+£?

∣∣∣ [A-Za-z][a-z]* )
(’s)?[)".,:]? [␣&-]

)
+

The Algorithm 8 from Section 6.4 searches for the most likely label sequence col-
lapsing to an element from the Regular Language defined by the above Regular
Expression.

Dec-LM: Language Model decoding Based on the regions derived by the previous
decoding step, we obtain the Confusion Network by creating a transition for each
of the groups of the Regular Expression. For each transition corresponding to a

5Words in the sense of vocables now and further.
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6 . ␣ All ␣ public - houses ,

Figure 7.2: Schematic Confusion Network for the textline “6. All public-houses,”.
Multiple transitions symbolize alternative word transitions.

Table 7.3: Results of HTRtS-15 competion. Batch 1 refers to results generated by
the NN trained only on the 433 completly transcribed pages. Batch 1 &
2 referes to results generated by the NN which was trained using any of
the 746 pages.

Batch 1 Batch 1 & 2
WER CER WER CER

Dec-BP 50.35 19.82 51.16 19.96
Dec-RE 48.37 18.87 48.33 18.83
Dec-LM 33.89 15.17 33.77 15.10
A2IA 31.6 14.7
ROVER-5 30.2 15.5

word, we add alternative transitions between the same states for each word of the
vocabulary. We also include the “raw” decoding result of the word regions fitting
best to the Regular Expression. The likelihood for any word z is Ps:e(π∗(z) | X)
where s & e are the start and end indices of the word region. This leads to the
Confusion Network where only transitions that belong to words have alternatives.
Figure 7.2 shows a schematic Confusion Network used in HTR.

We simply approximate the prior probability of a word by a unigram Language
Model which is derived from the word frequency of the training data. The vocabu-
lary contains 12246 words. The prior probability of the “raw” decoding result is a
constant which is considerably smaller than the smallest prior of any word from the
vocabulary and which is obtained empirically.

Results

Table 7.3 shows the error rates of the HTRtS competition. Every fifth character
of the best path is either wrong or missing which leads to high error rates (≈ 50
WER and ≈ 20 CER). Already the application of Regular Expressions yields some
improvement although there is no stringent constraint associated with it. The inclu-
sion of the vocabulary and of the unigram clearly yield a significant improvement.

Table 7.3 shows two additional results: We finally submitted a combination of 5 NNs
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whose results are combined by ROVER (Fiscus [1997]) which additionally improved
the error rates. We refer to it as ROVER-5. A2iA also submitted a system based on
recurrent LSTM NN which incorporates a 3-gram. Their results are also included
in the table.

The results show that the segmentation of the text line is reliable enough to achieve
error rates which are comparable to the state-of-the-art approaches. It further shows
that many confusions appear within word regions and can be corrected by vocabulary
matching. Nevertheless, a higher-order Language Model will probably improve the
recognition. Also a Language Model integration into the decoder could improve the
results by fixing segmentation errors. The drawback of such an integration is that
it typically increases the running time dramatically.

7.4 Conclusion

In this section, we investigated more practical issues. First, we showed how to
integrate a Language Model into the decoding process. There are strong connections
to established decoding methods such as HMMs or CTC-Token-Passing algorithm.

We introduced a decoding scheme for keyword spotting. The application of Regular
Expressions makes the decoding very convenient. We also analyze the impact of the
Language Model integration and conclude that it drops the error rate significantly.
The calculation of the normalization constant is only a naïve approximation. More
precise calculations remain open for future research.

We also propose a simple and fast method for full text recognition. This approach
makes use of Regular Expressions and a (simple unigram) Language Model but
also of the single-word decoding methods introduced in Section 5. We expect a
higher order Language Model to further decrease the error rate which merits further
investigations. Besides the speed of the proposed method, another advantage is that
the feasible structure can be defined in beforehand which avoids for example missing
or unintended spaces. The proposed method relies on a previous segmentation. To
circumvent this problem, it is necessary to integrate the vocabulary into the Regular
Expression such that segmentation into words and the word decoding is done in one
step. To keep things tractable, the complex search space has to be pruned, e.g., by
the method proposed in Section 6.6. First tests did not lead to an improvement.
One possible reason is that we need to integrate scaling factors analogously to the
Grammar Scale Factor and the Word Insertion Penalty for HMMs which we did not
test yet.





8 Conclusion & Open Problems

We consider the output Y ∈ [0, 1]T×n of a complex Neural Network trained by Con-
nectionist Temporal Classification (CTC) for handwritten text recognition. For any
given writing X, the output Y yields a probability per character and per position.
The search for the most likely feasible character sequence is called decoding. CTC
is a discriminative training scheme, i.e., it maximizes the conditional likelihood
P(z | X) given a writing X of the corresponding character sequence z. In con-
trast, many state-of-the-art approaches combine such Neural Networks with Hidden
Markov Models (HMM) to accomplish the decoding. HMMs are generative mod-
els, that means, they internally use the probability P(X | z) of the observation X
given the character sequence z. To obtain this probability, they usually use Bayes’
theorem. The approach of this thesis is a discriminative decoding directly using the
output of the Neural Network which works analogously to the training.

The feasible character sequences (e.g., single-words, sequences of words or Regu-
lar Languages) can be described by Finite State Automata. Different Automata or
rather Finite State Transducers which model different layers of abstraction can be
composed to form the entire system. Since the decoding is obviously an optimization
problem, we formulate it as optimization problem on Weighted Automata. These
optimization problems are solved by Dynamic Programming. Different Automata
model different constraints. We review known results and reformulate them accord-
ing to the Weighted Automata notation. We show how to create such Automata for
certain kinds of constraints, we integrate Language Models, prune the search space
by canceling branches which will not contribute to the result.

If the constraints are given by Regular Expressions the corresponding Automaton
will be complex and has to save k + 1 values in each state if the state is reached
by reading k different characters. One major result of this thesis is an efficient
algorithm that can handle such constraints. An investigation of the paths of the
Automaton and their contribution to the final result leads to two theorems which
state that we only have to save at most three values per state independent of the
precise value of k which reduces the computational costs from O(n2T |Q|2) in the
worst case to O(T |Q|2) if Q is the set of states of the Automaton.

We test the proposed methods in real world applications at the HTRtS data set.
Especially in the case of keyword spotting, the feasible character sequences can
be formulated conveniently by Regular Expressions. Additionally, we propose an
approach for full text recognition although obvious issues remain for future research.
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The results of both practical applications originate from two competitions where we
successfully submitted a common software system of the research group including
the proposed methods and algorithms.

Several aspects of this thesis remain for future research: Especially, the effective
integration of Language Models into the decoder has to be investigated such that
higher order Language Models could be used. This is a very promising point since
previous articles reported a significant drop of the error rates after incorporating
Language Models. Recently, Neural Language Models have been reported to out-
perform n-grams. Thus, a comparison of both approaches applied to HTR could be
very interesting.

A more reliable normalization constant in case of keyword spotting which is still
tractable will surely improve the recognition results.

The analysis of the conceptional difference between discriminative and generative
decoding remains as an open problem. We already showed that the integration of a
Language Model leads to a similar decoding process assumed that the HMM states
have the same interpretation as the CTC states. Is there a discriminative equivalent
for a greater number of HMM states and what is its interpretation? Could this
modified topology improve the recognition capacity of a Neural Network?



Appendix

1 Evaluation Measures

In the following, we introduce the Average Precision (AP) and the Normalized Dis-
counted Cumulative Gain (NDCG) as it was used in Villegas et al. [2016].

Assume the result list is sorted according to the score. Let TP(i) (true positive) be
1 if match i is correct and 0 else. Then the Precision of the first k elements of the
result list is defined as

prec(k) :=
∑k
i=1 TP(i)
k

.

Let N > 0 be the number of matches and M > 0 be the number of keywords in the
ground truth (targets), then

AP := 1
M

N∑
k=1

prec(k) TP(k).

The competition organizers referred to the AP over the whole query list as gAP and
to the averaged AP over the individual queries as mAP. Since the latter case also
comprises situations where M or N are 0, they defined AP = 1 if M = N = 0 and
AP = 0 if M = 0 6= N or N = 0 6= M .

The mNDCG and gNDCG are defined analogously where NDCG is

NDCG :=


1
Z

∑N
k=1

2TP(k)−1
log2(k+1) if N > 0 ∩M > 0

1 if N = M = 0
0 else

where Z := ∑N
k=1

1
log2(k+1) is a normalization constant to keep the values between 0

an 1.

Obviously, the individual measures (mAP & mNDCG) put equal weight on each
keyword query which favors infrequent queries compared to the global ones (gAP
& gNDCG). Figure 1 shows the relation between NDCG and AP for a single query.
NDCG favors a few results with high rank and there is a big plateau with no signif-
icant decrease of impact. For AP, there a significant decrease of impact in k until



112 1 Evaluation Measures

0.94

0.95

0.96

0.97

0.98

0.99

0 20 40 60 80 100

A
P

k

0.95

0.96

0.97

0.98

0.99

1

0 20 40 60 80 100

N
D
C
G

k

Figure 1: AP and NDCG, respectively for N = M = 100 and only one false positive
at position k

the end of the result list.
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