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Abstract

English

The calculation of photoelectron spectra (PES) in the field of strong laser-matter
interaction is a great challenge for theoretical physics. For several decades now the
strong field approximation (SFA) has proven to be quite successful in that respect.
Additionally, thanks to its formulation in terms of quantum trajectories, it provides
deep insight into the dynamics of the ionization process. However, in the plain SFA
the influence of the Coulomb potential on the emitted electron is neglected. With
more and more sophisticated experimental techniques this approximation leads to
more and more features being missed by the SFA even on a qualitative level.

In this work we investigate different extensions of that theory to analyze spectral
features beyond the scope of the plain SFA. We consider different systems where
additional forces influence the emitted electron. The collective field of a laser-driven
metal cluster is observed to cause strong acceleration of emitted electrons near res-
onance. The Coulomb potential of the parent ion can for certain parameters lead to
unexpectedly high yield around the cutoff energy for direct ionization. And finally
the magnetic Lorentz force which appears when dropping the dipole approxima-
tion can cause asymmetries with respect to the laser propagation direction even for
non-relativistic laser parameters.

Appropriate methods are derived for each of these systems and used to calcu-
late PES. The results are compared on a qualitative level to the time-dependent
Schrodinger equation (TDSE) or reference results from the literature and analyzed
in terms of quantum trajectories which allow us to understand the underlying phys-
ical mechanisms leading to the effects under consideration.



Deutsch

Die Berechnung von Photoelektronenspektren (PES) im Bereich der starken Laser-
Materie-Wechselwirkung ist eine grofie Herausforderung fiir die theoretische Physik.
Bereits seit einigen Jahrzehnten ist die Starkfeldndherung (SFA) in dieser Hinsicht
sehr erfolgreich. Zudem vermittelt diese dank der Formulierung mittels Quantentra-
jektorien tiefe Einblicke in die Dynamik des Ionisationsprozesses. Allerdings wird
in der reinen SFA der Einfluss des Coulomb-Potentials auf das emittierte Elektron
vernachléssigt. Im Rahmen der fortschreitenden Entwicklung experimenteller Tech-
niken fiihrt diese Ndherung dazu, dass immer mehr Phinomene entdeckt werden,
die sich selbst auf qualitativer Ebene einer Beschreibung durch die SFA entziehen.

In dieser Arbeit untersuchen wir verschiedene Erweiterungen dieser Theorie, um
Merkmale von Spektren zu analysieren, deren Nachbildung jenseits der Méglichkeiten
der reinen SFA liegt. Wir befassen uns mit verschiedenen Systemen, in denen zusétz-
liche Kréfte die emittierten Elektronen beeinflussen. Zuerst das kollektive Feld ei-
nes lasergetriebenen Metallclusters, welches bei resonanter Anregung zu unerwartet
starker Beschleunigung der emittierten Elektronen fithren kann. Dann das Coulomb-
Potential des zuriickbleibenden Ions, aufgrund dessen bei bestimmten Parametern
die Elektronenausbeute im Bereich der cutoff-Energie fiir die direkte Ionisation weit
hoher ausfillt als erwartet. Zuletzt die magnetische Lorentzkraft, die erst dann
iiberhaupt in Erscheinung tritt, wenn die Dipolndherung aufgegeben wird. Diese
kann selbst bei nichtrelativistischen Parametern in den PES zu Asymmetrieeffekten
in Bezug auf die Propagationsrichtung des Laserpulses fiihren.

Fiir die verschiedenen Systeme werden passende Methoden von der trajektori-
enbasierten SFA abgeleitet und verwendet, um PES zu berechnen. Die Resultate
werden auf qualitativer Ebene mit der Losung der zeitabhidngigen Schrodingerglei-
chung (TDSE) oder Referenzresultaten aus der Literatur verglichen. Die Analyse der
Probleme mit Hilfe von Quantentrajektorien ermdglicht uns, die den betrachteten
Effekten zugrundeliegenden physikalischen Mechanismen besser zu verstehen.
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Vorwort

Im folgenden présentiere ich das Resultat meiner wissenschaftlichen Arbeit wahrend
der letzten fast sechs Jahre. An dieser Stelle mochte ich einen kurzen Abriss iiber
die Entstehungsgeschichte dieser Arbeit liefern und mich anschliefend bei denen
bedanken, die mir in dieser Zeit beigestanden haben.

Begonnen hat das ganze im September 2010 mit der Entscheidung, meine Diplom-
arbeit in der Arbeitsgruppe ’Quantentheorie & Vielteilchensysteme’ von Professor
Bauer anzufertigen. Nach dem erfolgreichen Abschluss derselben (erstaunlicherweise
innerhalb der Regelstudienzeit, was vor allem dadurch motiviert worden war, dass
wir bei der Ubergabe der Vordiplom-Zeugnisse von dem damaligen Dekan Professor
Schick darum gebeten worden waren, 'fiir die Statistik’ rechtzeitig fertig zu werden)
bot sich mir die Moglichkeit einer Stelle als wissenschaftlicher Mitarbeiter in ebenje-
ner Arbeitsgruppe zum Zwecke der Promotion. Da ich von der Arbeit sehr angetan
war, schon lange mit dem Gedanken an eine Doktorarbeit gespielt und dariiber
hinaus keine attraktive Alternative hatte, nahm ich die Stelle an.

Ab Mitte November 2011 war ich dann also offiziell Wissenschaftler. Zuerst ver-
suchte ich, das Thema meiner Diplomarbeit (Freeman-Resonanzen) aufzugreifen und
etwas daraus zu destillieren, was man verdffentlichen kénnte. Leider ohne Erfolg, also
ging ich im Sommer 2012 dazu iiber, mich mit der Simulation von Natrium-Clustern
zu befassen, unter Verwendung von zeitabhangiger Dichtefunktionaltheorie (DFT).
Im Rahmen dessen durfte ich auch eine Masterarbeit betreuen. Die Einladung an
Professor Bauer, einen Artikel fiir eine Special Issue des ’Journal of Physics B: Ato-
mic, Molecular and Optical Physics’ zu schreiben, fithrte mich dann letztendlich
zum Thema meiner Arbeit, den Quantentrajektorien. Die Erkenntnisse, die ich bis
dahin mittels der DFT gesammelt hatte, gingen ein in die Legitimation eines ver-
wendeten Modell-Potentials (das Rigid-Sphere Model), wurden dartiber hinaus aber
weitestgehend zu den Akten gelegt. Die Simulationen habe ich mit einem bereits
vorhanden Trajektoriencode (von Professor Bauer) durchgefiihrt, den ich auf das
Problem angeregter Metall-Cluster anpassen konnte.

Nachdem der Artikel fertig und eingereicht war, konnte ich mich ab Anfang 2014
eingehender mit der Trajektorienmethode befassen, um zu sehen, welches Potential
diese hat. Da mein Kollege Volker sich mit der Simulation von Molekiilen (auf Basis
der zeitabhéngigen Schrodingergleichung (TDSE)) befasste, lag es nahe, mich dem
gleichen Thema mittels der Quantentrajektorien zu ndhern. Die Resultate waren je-
doch nicht interessant genug, um auch veréffentlicht zu werden. Allerdings fiel schon
dabei auf, dass gewisse Merkmale der TDSE-Resultate in den Trajektorienrechnun-
gen viel schwécher ausgepragt waren. Um das genauer zu untersuchen, habe ich mich
dann auf den einfachsten Fall konzentriert, ndmlich das einzelne Wasserstoffatom.
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Da der verwendete Code durch das viele ausprobieren, modifizieren und erweitern
mittlerweile zu einem uniibersichtlichen Monstrum angewachsen war, habe ich ihn
Ende 2014 kurzerhand komplett neu geschrieben. Zuerst in Python wegen der ange-
nehmen Lesbarkeit, aber da diese Version etwa um einen Faktor 20 langsamer war
als mein vorheriger Code, habe ich alles nochmal in C+4 implementiert, wie zuvor.

Nach intensiver theoretischer Vorarbeit in Kooperation mit Sergey Popruzhenko
und Professor Bauer hatte ich dann endlich eine Grundlage, mit deren Hilfe ich das
scheinbar seltsame Verhalten meiner Trajektorien erkldren konnte. Zu diesem Zweck
musste ich allerdings auch noch einen eigenen Runge-Kutta-Solver implementieren,
da weder der Vorhandene noch die Varianten aus der GSL entlang beliebiger Pfade
in der komplexen Ebene integrieren konnten. Weitere theoretische Untersuchungen,
ein Haufen Literaturrecherche, viele Beispielrechnungen mit der TDSE und einiges
Herumprobieren mit den Trajektorien fiihrten dann letztendlich zu einem weiteren
Artikel, der dann im Dezember 2016 veroffentlicht wurde. Nicht zuletzt verantwort-
lich dafiir, dass das ganze so lange gedauert hat, waren die Geburt meiner Tochter
Rahel im September 2014 und die Tatsache, dass die Familie auf der Liste meiner
Prioritdten sehr weit oben steht.

Als letztes Projekt habe ich mich dann mit der Dipolndherung beschéftigt und
damit, wie sich das weglassen derselben auf die Spektren auswirkt. Dazu musste ich
zuerst ein wenig meine Kenntnisse beziiglich der speziellen Relativitdtstheorie auf-
frischen, da der magnetische Anteil der Lorentzkraft proportional zu ¢ ist und damit
relativistische Effekte nicht von vornherein vernachlissigt werden sollten. Als Refe-
renz fiir meine Untersuchungen dienten die Resultate aus einem 2014 verdffentlichten
Artikel, die ich mittels meiner Quantentrajektorien reproduzieren und anhand eines
einfachen Modells erkldren konnte. Der daraus hervorgegangene Artikel wurde be-
reits eingereicht und zur Veréffentlichung akzeptiert (Stand: 14. September 2017).

Danksagungen Niedergeschrieben habe ich diese Arbeit dann im Zeitraum von
Maérz bis August 2017. Da dies das Resultat der oben beschriebenen letzten sechs
Jahre ist, mochte ich an dieser Stelle denen danken, die mich in dieser Zeit begleitet
und unterstiitzt haben.

Allen voran danke ich meinem Chef und Betreuer Dieter Bauer, fiir die zahllo-
sen beantworteten Fragen, die vielen hilfreichen Ideen und Vorschldge, und immer
wieder die Toleranz gegeniiber meinen so vollig anderen Prioritdten. Einen besseren
Betreuer hétte ich mir nicht vorstellen kénnen. Aulerdem méchte ich meinem Kol-
legen und langjahrigen Schreibtischnachbarn Volker Mosert dafiir danken, dass er
mich zum einen so lange geduldig ertragen hat, und mir zum anderen als unser Grup-
penadministrator schon nach wenigen Monaten Admin-Rechte in unserem Netzwerk
eingerdumt hat. Dadurch hatte ich die Gelegenheit und auch die Motivation, neben
der Physik sehr viel praktisches iiber Linux und Linux-Netzwerke zu lernen.

In diesem Zusammenhang mochte ich auch all den anderen Kollegen (derzeiti-
gen und ehemaligen) danken, fiir viele anregende Gespréche, tiber physikalische und
auch nicht-physikalische Themen aller Art. Besonders hervorheben mochte ich dabei
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Tanja, mit der ich mir gern auch noch langer ein Biiro geteilt hdtte, und Adrian, mei-
nen Lehrling und Nachfolger als Administrator der Arbeitsgruppe. Dariiber hinaus
geht mein Dank an Yaroslav, Julius, Martins und meine gesamte Arbeitsgruppe, fiir
viele fachliche Diskussionen im Rahmen unserer group meetings und auch dariiber
hinaus; Sonja, Niels, Clemens, Andreas, Mandy und die ganze AG Redmer, fiir viele
gemeinsam verbrachte Mittagspausen und viel dabei gegessenes Eis; und nicht zu-
letzt Frau Hertzfeldt, unsere Sekretérin, fiir viel Hilfe bei sdmtlichen anstehenden
Formalitaten.

Desweiteren mochte ich hier Sergey Popruzhenko nennen, der mir eine grofle Hilfe
war beim Verstehen der SFA im Allgemeinen und der Herleitung der Coulomb-
Korrektur im Besonderen, und Emilio Pisanty, aufgrund dessen Arbeit ich die Kon-
sequenzen ebenjener Coulomb-Korrektur iiberhaupt erst einschéitzen konnte.

Nicht zuletzt, und ganz besonders, mochte ich meiner Familie danken. Vor allem
meiner Frau Christine und meinen T6chtern Rahel und Sophia, fiir viel Geduld und
Unterstiitzung in den letzten Jahren, und meinen Eltern und Schwiegereltern, die
immer zur Stelle waren, wenn wir es alleine nicht geschafft hétten.

Und zum Schluss mochte ich auler der Reihe all jenen Menschen danken, die sich
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1. Introduction

The topic of strong-field physics has attracted quite some attention in recent years,
which can be attributed both to the development of faster computers, which leads
to more and more precise numerical predictions of what happens at high intensities,
and to the development of more and more sophisticated experimental techniques,
which allows to test these predictions. In turn, this leads to more and more new
strong-field phenomena being found, examples being the low [1-3], very-low [4, 5]
and zero [6, 7] energy structures where surprisingly high yield was observed for
particular electron momenta, or measurable non-dipole effects [8, 9] at rather non-
relativistic intensities. All these effects call for the theorists to reproduce and, as far
as possible, explain them to expand our understanding of the underlying physics.

One of the most promising theories in this respect is the strong field approximation
(SFA). It dates back to the 1960s when Reiss applied the Volkov solution of the Dirac
equation for the description of free electrons in a field [10]. Using the same approach
a method to describe strong-field ionization was developed by Keldysh [11], Faisal
[12] and Reiss [13], hence being sometimes also called KFR theory. It is based on the
idea that the ionization process can be split into two parts separated by a singular
ionization event, where the first part describes a bound electron unaffected by the
laser field, and the second part describes a free electron in a laser field neglecting the
binding potential. While this is accurate for potentials with very small range (e.g.,
in the case of ionization of singly charged negative ions), it turns out to be a good
approximation in case of the long-range Coulomb potential as well. Furthermore,
the plain SFA is not limited to direct ionization but can by construction be extended
in a straightforward way towards hard rescattering [13-15]. This is quite fortunate
in so far as conventional perturbation theory is not applicable anymore once non-
linear (multiphoton) processes become important at higher intensities. However, in
recent years several phenomena have been found (e.g. the ones mentioned in the
first paragraph) that are beyond the scope of the plain SFA. Accordingly there are
many different approaches to extend the SFA to overcome its shortcomings, some of
which will be discussed in this work.

The literature provides us with several reviews, e.g. on the topics of tunneling
and multiphoton ionization [16], above-threshold ionization [17] and the Keldysh
theory in general [18], all of which elaborate on the further development of the SFA
in the last years. Therefore we will only highlight some aspects being of particular
importance for this work. The most prominent part is the application of the saddle-
point approximation (or the method of steepest descent) to the transition amplitude
which is the basic quantity resulting from the SFA. This method allows to view the
transition amplitude as a coherent sum over contributions of individual quantum
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trajectories, which in turn can be treated in analogy to classical electron trajecto-
ries. The major difference to classical trajectories, apart from the acquired complex
phase allowing for interference effects, is that the initial (ionization) times are com-
plex. However, for calculating the plain SFA transition amplitude this does not pose
a problem. The great advantage of the trajectory picture is the possibility to take it
seriously, and modify the laser-driven free electron propagation to include additional
influences like external potentials, where the Coulomb potential is the most obvious
example. Probably the very first application of this approach was the calculation
of ionization rates, i.e., the PPT rate named after Perelomov, Popov and Terent’ev
(henceforth referred to as PPT) [19, 20] and especially its Coulomb-corrected variant
[21], demonstrating the potential that lies within the SFA and its extensions. An-
other much more recent take on the topic is the trajectory-based Coulomb-corrected
strong field approximation (TCSFA) [22-25], which is discussed in detail in [26].
The latter was successfully used for example to reproduce the recently discovered
low-energy structures [24], and to analyze them in terms of trajectories. The TCSFA
differs from the PPT approach to a Coulomb-corrected strong field approximation
(CCSFA) mainly in the initial conditions used for the trajectory propagation. It
turns out that both variants have their advantages and disadvantages, hence they
are both discussed in more detail in the following chapters.

Another method that must be mentioned in this context is the analytical R-matrix
(ARM) theory [27-29] which is also outlined in [18], section 6.3, and compared to
the CCSFA. The ARM theory and its applications are discussed in great detail in
[30]. It is based on the idea that space can be partitioned into an inner and an
outer region, in analogy to the partitioning in time done in the SFA. While the
inner part describes the bound motion of the electron, for the outer part the eikonal
Volkov approximation [31] is used to incorporate the influence of the Coulomb po-
tential on the laser-driven electron motion. The results are similar to those from
the CCSFA, but not identical. It is readily extended towards rescattering, whereas
the CCSFA is limited to direct ionization (but the plain SFA is not, as mentioned
above). This limitation is overcome by the TCSFA where rescattering is included in
the numerical propagation of the electron trajectories. Additionally the ARM theory
can by construction be applied to many-electron systems in a straightforward way
[28]. However, here we restrict ourselves to problems that can be described in single
active electron (SAE) approximation, and thus consider only methods derived from
the trajectory-based SFA.

This work consists of four parts. Chapter 2 contains some theoretical basics
which build the foundation of the methods used here. Chapter 3 demonstrates the
application of a method derived from the TCSFA to collective fields in laser-driven
metal clusters where we analyze the emission of high energy electrons. In chapter
4 the unexpectedly high yield around the cutoff momentum for direct ionization in
photoelectron spectra (PES) obtained experimentally and from the time-dependent
Schrodinger equation (TDSE) is investigated using a method based on the same
ideas as the PPT approach. We first show how the behavior of the TDSE PES can
be described using two dimensionless parameters by scaling appropriately. Then the



observed effect is qualitatively reproduced and analyzed in detail using the CCSFA.
The last part (chapter 5) addresses non-dipole effects observed in experimental PES
for non-relativistic laser parameters. Using the TCSFA extended towards non-dipole
effects we reproduce asymmetric momentum shifts in and against the laser propa-
gation direction which are obvious signs of non-dipole effects. To explain these we
construct a simplified semi-analytical model where Coulomb and magnetic Lorentz
force are included perturbatively, showing that these can indeed be disentangled.

It is followed by some concluding remarks and the appendices where some lengthy
but instructive derivations as well as technical details are presented.






2. Theoretical Basics

2.1. Atomic Units

In most parts of this thesis Hartree atomic units are used unless noted otherwise.
This greatly simplifies calculations as ki, m,, e and 4meg are set to unity. Additionally
numbers in atomic units usually give a feeling whether the specified quantity can
be considered large or small on the atomic scale. For instance, the length of 1a.u.
equals the Bohr radius, i.e., the radius of a hydrogen atom in the ground state, and
the energy of 0.5a.u. is the respective ground state energy. This has the pleasant
side effect that most numbers can be written without having to use decimal powers
or prefixes like kilo or nano.
A broad, formal introduction to atomic units can be found in [32], section 7.1.

2.2. Strong Field Approximation

The strong field approximation (SFA) is a method to approximate the transition
matrix element of a single electron from a bound state into a continuum state under
the influence of a strong electromagnetic field. It is the theoretical workhorse for
strong-field ionization of atoms where conventional perturbation theory is not ap-
plicable. To simplify things where neither the laser field nor the binding potential
can be neglected at all times, the emission process is split into two parts. In the
first part the binding potential governs the electron motion and the laser field is
neglected, until after an ionization event the laser field takes over and the binding
potential is neglected.

The following derivation closely follows [32], section 7.3.4, but is presented here
nevertheless as it is considered essential for the understanding of this thesis.

The initial state is an eigenstate W) of the field-free Hamiltonian Hy with binding
energy & < 0. The transition from |¥y) (assuming the laser is not yet switched on at
the initial time ¢;) to the final state |¥}) (which is a continuum state with asymptotic
momentum p) is described by the matrix element

Mp(t) = (Up|U(t, t:)|To) (2.1)

where ff(t, t;) is the time-evolution operator corresponding to the full time-dependent

Hamiltonian

A A2 A A
AH(t) = % F V() + W (). (2.2)

Here V(r) represents the binding potential and W(t) is the coupling to the laser
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field. The Hamiltonian can be split in two different ways,

Ht)=Hy+W(t)=HY () +V(r) (2.3)

with
Hy = ﬁ; +V(r) (2.4)
HV)(t) = ﬁ; +W(t). (2.5)

Hj is the Hamiltonian describing the unperturbed atom and H(V) (t) is the so-called
Gordon-Volkov-Hamiltonian [33, 34] which describes the free motion of an electron
in a laser field. These can be used to rewrite the time-evolution operator U (t,t;).
The latter obeys the Schrodinger equation

i%@'(t, "y = Ht)U(t,t') = [Hy + W (1)U (t,t) (2.6)

and thus the differential equations

A A t A A A
Ut,t) =U(t,t')—i | A" U "YW H"Us(t", 1) (2.7)
tl
A t A A A
=Up(t,t')—i [ dt" Up(t,t" YWU', 1) (2.8)

t/

which is readily confirmed via equation (2.6). Up(t,#') is the time-evolution operator
corresponding to Hy. The expression (2.7) is now inserted into the matrix element
(2.1) to find

My(t) = i [t (W00, )W ()| o(t) (2.9

where |Wo(t)) = Up(t, ;)| Wo) and (¥,|Wo(t)) = 0 are used. The latter comes from
|Wp) being a scattering state corresponding to a free electron whereas [Wq(t)) is a
time-evolved bound state orthogonal to [¥p).

Similar to the splitting of the evolution operator in equation (2.7) one can use
H(t) = HV)(t) + V(r) to arrive at the following equations:

A A t A A A
Ut,t)y =0ty —i [ a" U)WV (oM@ t) (2.10)
t/

A t A A A
=0Vt =i [ "V, "YWV (O, t). (2.11)

¢/

Here U(Y) t,t') is the evolution operator corresponding to the Gordon-Volkov-Hamil-
tonian H(V)(t). Equation (2.10) is now plugged into the matrix element (2.9) which
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yields [14]

t R t R . R .
My(t) = —i / at' (0, [U(V)(t,t’) i ar U(V)(t,t”)V(r)U(t”,t’)] W ()| o))
t; t

(2.12)
Using the identity
t t t t t t"
/ dt’ | dt" = / dt” | e -t) = / dt” dt (2.13)
t; 4 t; t; t; t;

and renaming the integration variables in the second term appropriately leads to

My(t) = =i [ at (@ 0, [Vv(t’wo(t’»

—i ’ at" v (r)U (¢, t”)W(t”)]\I!g(t”»] (2.14)

t;

which is still exact and gauge invariant (the problem of gauges is discussed in [35], or
[32], section 7.3.4). This equation is already quite interesting in terms of the physical
interpretation it allows. The first term describes a bound state, a single interaction
with the laser field and a free propagation in the latter. The second term additionally
contains a propagation under the influence of both Coulomb potential and laser field
and another interaction with the atomic potential. This second term can be (and
indeed is) interpreted as the rescattering part of the transition amplitude. It contains
the full time-evolution operator which remains unknown. The first term includes
the part of the transition amplitude corresponding to direct ionization and shall be
the one of interest here.

A necessary ingredient for the approximations applied to equation (2.14) is the

expansion of UMY)(¢,#') in so-called Gordon-Volkov waves |‘11§,V) (t)) which obey the
Schrédinger equation

i%mg) (t)) =AM (1) w (1)) . (2.15)

This equation can be solved for \\Il](f,v) (t)) using a specific notation for HMV)(¢).
This is equivalent to the choice of a specific gauge, here the velocity gauge where
HV)(t) = [P+ A(t))?. A solution to equation (2.15) can easily be found consider-
ing that the Gordon-Volkov-Hamiltonian is diagonal in momentum space:

WOt 1)) = e p) (2.16)
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with momentum eigenstates |p) (plane waves), (r|p) = e /(27)3/2, and the action
Lt "2
Sp(t,ti) = 3 dt' [p+ A(t)]”. (2.17)
ti

The expansion for the time-evolution operator is now
OV (¢, 1) = / 0NV (1 4)) (WY (1) (2.18)

where t; is arbitrary since it cancels out.

The next step is to apply approximations to the matrix element (2.14). The final
momentum state |¥,,) is replaced by a momentum eigenstate |p). The second term
containing the rescattering part is simply neglected. This leads to the well-known
SFA or Keldysh amplitude

ME () = —i / At (U (@' 6)[W (1) [ Wo (1)) - (2.19)

We could now continue with this equation and insert W (t) = p- A(t) + s A%(t) (in
velocity gauge) to find the asymptotic ionization rate as in [13]. However, another
possibility is to recast equation (2.19) in length gauge. Then the interaction operator

W (t) and the Gordon-Volkov waves |\IJ§,V) (t,t;)) read

~

W(t)=7-E(t) (2.20)
and
(WD (t, 1)) = e 500 |p 4 A(1)) (2.21)
respectively. The time evolution of the bound state |¥() is known as well,
o (1)) = e 01 a) (2.22)

which is inserted into the matrix element (2.19), leading to

t

M () = —i [ ar e 5P (e E W=t (p 4+ A(H)|7 - E(t')|Wo) . (2.23)
Here, special care has to be taken of the choice of the time variable in (p + A(t)]
as this is not immediately clear from the notation. Closer inspection shows that
it must be the integration variable ¢. Multiplying this equation with a constant
phase factor el€o(t—ti) (which vanishes when calculating the absolute square, i.e., the
transition probability) and considering that the laser field is present only between
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t; = 0 and t = T}, yields the total transition matrix element

T, .
MEP) = i [ at (p+ A(D)F - B(1) o) 5o T (2.24)
0
with the action

t 1

Spay () = [ at" (Glp+ AWIP +1,) (2.25)
t,

Here I, = |&| is the ionization potential of the bound state. The remaining matrix

element can be evaluated assuming a hydrogen-like bound state |¥g) (see [17] or

[32], section 7.3.5),

(k|7 - E(t)|Wo) = iVi(k|Vq) - E(1)
k- E(1)

— 7/2 5/4
i2 (QIp) 71‘(]{}2 + 2Ip)3 )

(2.26)

where we used that in momentum space # = iV and (k|Uo) being the projection
of |Wy) into momentum space. The full derivation of equation (2.26) is given in
appendix A.2. This result is plugged into equation (2.24) to find the final result for
the transition matrix element of direct ionization

T,
(SFA) _ _o7/2(07 \5/4 [ F p+AWD]-E({) _is,, (1,0
M 2220, [ a S e R

T, .
= — [ 7 dt fpz, (D) S Tt (2.27)
0

with

P+ A®)] - E@)

o (0) = 20 2L B S 2L,

(2.28)

Equation (2.27) can be evaluated numerically, finding the transition probability

2
wp = ’M,(,SFA)‘ (see appendix B.2 for details on the latter) for any p and thus
building up a momentum-resolved photoelectron spectrum.

In the previous paragraphs only direct emission was considered. However, in
many cases it is important to include rescattering effects. This can be done in the
framework of the SFA starting from equation (2.14) which is still exact and can be
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split into two terms,
Mp(t) — M}()SFA,dir) (t) + M}(’SFA,resc) (t) (229)

. t kol 2
MSFAIN) () — _j /t dtf (| TN (8, 8" YW ()| Wo (#')) (2.30)
t t’ . . N A
M}()SFA,resc)(t) _ _ /t d¢ /t ar” <\I’p‘U(V)(t,t,)V(’l")U(tlvt”)W(t,/)|\Ifo(t”)> ’ (2‘31)

where the first term Mz(,SFA’dir) (t) has already been evaluated above. The second term

can be simplified in a similar way (see [14, 32]). We replace the full time-evolution
operator U(t' ") by UN)(#',¢") which means that we restrict the calculations to a
single rescattering event. This yields

t t R ~ o
MI()SFA’reSC) (t) — _/ dtl dt” <\Il§)v) (t/,t)|V(T')U(V) (t/,t//)W(t”)‘\I/()(t/,» (232)

t; t;

where an integration over the intermediate momentum k appears due to the expan-
sion of the Gordon-Volkov time-evolution operator U(V) (¢, #"). This integration can
be approximated via saddle-point analysis. After appropriately transforming the
integration variables the rescattering matrix element reads

T, t 3/2 .
MSEArese) — / * dt eiSprp (80) / dr (277) Vi pos(timye Setmtp (67)
0 0

iT

X (ks(t,7)+ At —7)|r - E(t — 7)|¥) (2.33)
where the intermediate momentum k is determined using the saddle-point condition

at)—a(t—71)

VS, (t,t—7) =0 — ks(t,7) = — (2.34)

with the excursion a(t) = [*dt’ A(#') . The scattering matrix element Vj,_j = (p|V|k)
for scattering potentials of the form

Vir) = — <b + i) o (2.35)

reads
Vise = —%  C=(p—k)> 4. (2.36)
The numerical evaluation of M,(,SFA’dir) (2.27) and M,(,SFA’reSC) (2.33) yields mo-

mentum-resolved photoelectron spectra as shown exemplarily in figure 2.1 for a
sin?-shaped laser pulse linearly polarized in z-direction given by the vector potential

A(t) = e, Agsin®(wt/(2n,)) sin(wt) . (2.37)

10



2.2. Strong Field Approximation

20, dir —— |

resc ———
dir4resc

IMI(,SFA) ‘2 (a.u.)

p. (a.u.)

Figure 2.1.: Photoelectron momentum spectrum for a single hydrogen atom initially
in the ground state irradiated by a six-cycle sin?-shaped laser pulse
linearly polarized in z-direction with wavelength A = 800nm and in-
tensity I = 1 x 10" W/em2. The spectrum is obtained by numerically
evaluating equations (2.27) and (2.33). Shown are the contributions of
direct (dir) and rescattering (resc) matrix element and their coherent
sum (dir4resc). Indicated are the cutoff momenta for direct emission
(2U,) and rescattering (10U,).

From the electric field E(t) = —%A(t) we find Ag = —Ey/w where Ej is the ampli-
tude of the electric field. The laser pulse has n. = 6 optical cycles with wavelength
A = 800nm and intensity I = 1 x 104 W/em2. Target is a hydrogen atom initially

in the ground state. The figure shows the direct contribution M,(,SFA’dir) (dir), the

rescattering contribution Mz(,SFA’reSC) (resc) and the coherent sum of both (dir+resc).
Indicated are the direct cutoff at 2U,, and the rescattering cutoff at 10U}, (see sec-
tion 2.4 on how these cutoffs are derived). Uy, is given in terms of the laser parameters
as

_ B

b= p (2.38)

The graphs visualize several features that are common to most strong-field ionization
spectra. Up to 2U, the direct part dominates the spectrum. That part shows two
different interference patterns, the large-scale intra-cycle interference and the small-
scale inter-cycle interference (both of which are well understood, see e.g. [36]). After
the cutoff the rescattering part takes over and extends the spectrum in a plateau up
to 10U,. Beyond that energy the yield rapidly decreases.

11
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2.3. Quantum Trajectories

Apart from straightforward numerical evaluation the matrix element (2.24) provides
the opportunity for physical interpretation in terms of trajectories. To achieve this,
another approximation must be made, in particular the saddle-point approximation
(SPA). It states that a contour integral of the form

/C f(x)eM@dg (2.39)

where C' is the contour and \ is large can be approximated (see appendix A.3 for a
sketch of the derivation) by a sum over saddle-points =5 of S(x) as

AS(zs)
(2.40)

AS(@) g~ /O ¢
/Cf(m)e dxwﬁ%:f(xs) o

The saddle-points x5 are defined by S’(xs) = 0 where S’ denotes the derivative of
S.

This method shall be applied to equation (2.27). The saddle-point equation (SPE)
S’(xzs) = 0 in this case reads

TP
Sen®)] - [jt [ ae (Glp+ A@R+ 1) (2.41)
Sl A (2.42)
=0 (2.43)
or equivalently
[p+ A(t,)]% = —2I, . (2.44)

This equation has two severe consequences. First, the right-hand side is strictly
negative for non-vanishing I, so the term in the parentheses on the left-hand side
must be complex. As p is an observable and thus real by definition, A(t¢s) and
accordingly t; must have a non-vanishing imaginary part.

Second, we need to plug ts into the matrix element (2.27) in SPA,

(SFA) 7iSp7[p (Tp,ts)
M \/ Z fp’[p W 5 (245)
pP)ip

with the same prefactor (2.28) as before (but neglecting a constant phase factor).
The problem becomes obvious when considering the denominator of the prefactor,
which vanishes at t;. This poses a difficulty in applying the SPA to equation (2.27)
in a straightforward way. A possible solution to this is presented in [17], section 6.3,

12
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where the method is modified to circumvent the emerging divergence. The resulting
equation for the matrix element (2.27) in SPA finally reads!

(SFA) —1/2 5jax— e ori(ts)
MP™ = 27122124y " ———— (2.46)
s Sp[ (tS)
»p
with the action defined as
o / 1 12
Spap(®) = [ at (Glp+ AP+ 1, ) (2.47)

The upper boundary 7}, € R is arbitrary as it only accounts for an overall phase
factor in (2.46) which vanishes when calculating the probability ~ |Mp|2 (see ap-
pendix B.2).

A possible physical interpretation of equation (2.46) is that every ¢, is the starting
point for an electron trajectory tunneling out of the atomic potential and propagat-
ing to the detector. For any momentum p several of these starting (or ionization)
times ¢s can be found from the SPE (2.44) depending on the laser pulse defined by
A(t). Note that the drift momentum p is constant which means that the momentum
p in the SPE is equal to the final momentum p at the detector. The contributions
of these trajectories are added up coherently following equation (2.46), thereby de-
termining the spectrum. For typical laser pulses these contributions can even be
evaluated analytically, except for the saddle-point equation (2.44) which must be
solved numerically or graphically due to its transcendental nature.

Weight of a single trajectory Let us consider a linearly polarized flat-top pulse
which is defined as A(t) = e,Apsin(wt) but also satisfies A(t — +o0) = 0. The
ramping up and down may for now be neglected. For each optical cycle and speci-
fied momentum p there are two different solutions ¢s to the SPE (2.44) with equal
imaginary parts Imt, which repeat every cycle. This changes when using a finite
pulse, e.g. A(t) = e, Agsin?(wt/(2n.))sin(wt) for 0 < wt < 270, and 0 otherwise,
with a finite number of optical cycles n.. For a long pulse many different solutions
ts can contribute to the transition matrix element M,()SFA). To reduce the effort it
is useful to know beforehand which solutions have the largest contribution to the
spectrum. The importance of this will become clear in chapter 3. To that end we
estimate the weight wp(ts) corresponding to a single solution t; by analyzing the
exponential term in the transition matrix element (2.46),

Mp(ts) oc exp {—iSp 1, (ts)} - (2.48)

'Please note that in the denominator we have S” instead of v/S (as in equation (2.45)) as a result
of the derivation in [17].

13
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The weight of a single trajectory can thus be expressed as
wp(ts) o< |exp {~iSp,1, (t5)}]? (2.49)
oc exp {2Im Sp 1, (ts)} - (2.50)

Since the integration contour for the integral in equation (2.47) is arbitrary we can
calculate the imaginary part of .S,

Im Sy 1, (ts) = Im {/tTp dt’ (;[p-i- A2 + Ip)} . (2.51)

We replace t' = Rets + it and the limits accordingly since the integration along the
real axis does not contribute to Im .S,

0
Sy, (1) = [ drRe (;[p+A(RetS+iT)]2+Ip> (2.52)

Imtg

0
1
:—(2p2—|—Ip> Imts+p- / dr Re A(Rets +1ir)

Imts

0
1
t5 / dr Re A*(Ret, +iT). (2.53)

Imts

For further evaluation we need the form of the vector potential. As we only need an
approximate result it is sufficient to use the flat-top expression from above,

A(t) = e, Apsin(wt) (2.54)
= e, Ap [sin(Rewt) cosh(Im wt) + icos(Rewt) sinh(Im wt)] . (2.55)

Assuming that the imaginary part of ts is small we can linearize the former expression
in Im ¢ leading to cosh(Imwt) =~ 1, sinh(Im wt) ~ Im wt and thus

A(t) = e, A [sin(Rewt) +icos(Rewt)Im wt] . (2.56)

Plugging this into equation (2.53) and neglecting all terms O ((Im 7)?) yields
1
Im Sy 1, (ts) = — <2p2 + Ip> Imts — p-e,Apsin(Rewts) Im t,
L2 (Rewty) 1 2.57
5 §5sin”(Rewts) Im . (2.57)

14
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For the flat-top pulse and under the assumption that Im ¢, is small we can also solve
the SPE (2.44) in linear approximation to find

p~ —e,Apsin(Rewts) . (2.58)

Using this to simplify equation (2.57) we find that all but one term cancel, leading
to the final estimate?

Im Sp 1, (ts) = —I,Imt,. (2.59)

The result is linear in Imt,, and always negative for Im¢; > 0. This allows us
to eliminate saddle-point times with negative imaginary part since in that case the
weight would increase with increasing ionization potential I,, which is unphysical.
By combining equations (2.50) and (2.59) we can conclude that the weight of a single
trajectory always decreases with increasing imaginary part of the saddle-point time.
This simple result has very convenient consequences. It allows to sort the saddle-
point times for a specified momentum by their imaginary part and select the most
relevant solutions without having to evaluate the corresponding individual transition
matrix element in the first place.

2.4. Simple Man’s Theory

As already mentioned above, equation (2.46) can be interpreted as a sum over quan-
tum trajectories. These are close to classical trajectories as used in e.g. [37]. Theo-
ries based on these classical trajectories are so-called simple man’s theories (SMT).
In analogy to the SFA in SPA photoelectron spectra (PES) are obtained by summing
over trajectory contributions of classical trajectories. The weight of a single trajec-
tory is determined by a tunneling rate formula (as from [16] or similar) considering
the instantaneous electric field at ionization time ¢i,,. The initial conditions are

T(tion) =0,  V(tion) =P+ A(tion) =0 (2.60)

where p is constant and denotes the initial drift momentum. This means the electron
starts at the position of the ion (or at the “tunnel exit”) with zero kinetic energy. As
in tunneling rate formulas the weight follows the absolute value of the electric field,
the most probable trajectory is the one with p = 0. The motion of the electron is

2In order to reproduce ionization rates (without Coulomb correction) known from the literature
[16] linearization in Im 7 is not sufficient.

15
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governed by the laser field,

t

v(t) = — | dt' E(t') = A(t) — A(tion) = p + A(t) (2.61a)
r(t) = 't dt’ v(t') = 4t dt’ A(t') — A(tion)(t — tion)
= Otl(otn) — a(tion) — X(tion)(t — tion) (2.61b)

where the elongation

t

a@:/MAM (2.62)
has been used. Assuming that

A(0)=A(T,) =0 (2.63)

where T}, is the pulse duration we find that the final velocity of the electron is
determined by the vector potential at ionization time, v(1},) = —A(tion) . From this
we can infer the maximum kinetic energy of directly emitted electrons,

ir 1
Elg(ijn) = §A2(tion) <20, (2.64)

which reflects in the PES (see figure 2.1) as the famous 2U, cutoff® for direct ion-
ization. The ponderomotive energy
E§ _ 14

= _ A2 (2.65)

Up=12 "1

used here is the kinetic energy of an electron in a laser field averaged over one optical
cycle.

The cutoff energy for electrons rescattering once at the parent ion can be calcu-
lated by using the rescattering condition

‘T(trescﬂ <e (266)

at the rescattering time tpesc > tion for some small € > 0. At the instant of rescatter-
ing the modulus of the momentum is conserved but the direction is changed, where
the extreme case is 180° back-reflection. The maximum kinetic energy resulting
from this can be found numerically or graphically as

EE) <100, , (2.67)

3The SMT predicts vanishing probability for electrons emitted with maximum kinetic energy 20U,
and thus fails dramatically to reproduce the features depicted in figure 2.1. A solution to this
problem is presented in chapter 4.
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which is also visible in the PES in figure 2.1. Details for its derivation are given in
[32], section 7.3.6.

Classification of Trajectories The trajectories used above can be classified into two
different species, called long and short trajectories. This is due to their behavior
in position space close to the ionization time t¢j,,. The short trajectories leave the
ion directly towards the detector, while the long ones first propagate in the opposite
direction and pass the ion (at least) once before reaching the detector. Mathemati-
cally this can be seen in equation (2.61a). The velocity is initially zero. Depending
on whether t;,, lies on the rising or falling edge of the vector potential A(t), the
velocity of the electron right after ionization has the same direction as p (short) or
the opposite direction (long). This is visualized in figure 2.2 where equation (2.61b)
has been plotted for two different ionization times within the same half-cycle corre-
sponding to the same momentum p. We assume a plane wave linearly polarized in
z direction, the laser parameters are the same as in figure 2.1.

20 \

15 Zlong(t) ——

10 + Zshort(t) -
—~ 5l A(t)
2 o0n .
N —5 L ,
~10 b | 105
15 | S ]
—20 - | I I -1

0 0.2 0.4 0.6 0.8 1

wt/(2m)

A, (a.u)

Figure 2.2.: Two different trajectories z(t) in polarization direction following equa-
tion (2.61b) for different ionization times (indicated by black vertical
lines) corresponding to the same momentum p = 0.29. The laser pa-
rameters are the same as in figure 2.1. The black horizontal line is
the graphical interpretation of —p = A(tion) following from the initial
condition (2.60) for v(tion).

These two different classes of trajectories from the same half-cycle give rise to
the well-known intra-cycle interference pattern [36]. Although they yield identical
contributions to the spectrum in the plain SFA, they can behave quite differently
when extending the SFA towards external potentials. Some cases where this is
important are discussed in the following chapters.
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3. Single Electrons in a Time-Dependent
External Potential

3.1. Motivation

In the introductory part the strong field approximation (SFA) was presented which
considers the emission of a single electron from a single atom. However, topic of this
work is the calculation of photoelectron spectra (PES) beyond the plain SFA. One
example for looking beyond a single electron emitted from a single atom are metal
clusters. Previous ionization experiments with silver clusters [38] show features in
the PES at energies far beyond the expected 2U,, (or 10U, when rescattering once)
known from atomic spectra [17, 32]. The conclusion is that the collective field
within the cluster, which arises due to coherent oscillations of the valence electrons
with respect to the ionic background, can significantly influence the energy emitted
electrons gain in rescattering events. In [38] this effect is termed surface-plasmon
assisted rescattering in clusters (SPARC).

The experiment uses a pump-probe setup where the pump pulse excites the cluster
which leads to expansion of the latter. The measured photoelectrons are generated
by the probe pulse ionizing the cluster. We simplify the situation by assuming the
cluster to consist of two homogeneously charged spheres with equal but opposite
charges. The positively charged ion sphere is fixed while the negative electron cloud
can oscillate due to the laser pulse. This model is called rigid-sphere model (RSM).
The validity of the RSM is supported by simulations within the framework of time-
dependent density functional theory (TD-DFT). The pump pulse is not simulated,
but the expansion of the cluster is assumed to be slow compared to the laser period,
so that during the probe pulse the cluster diameter does not change. The pump-
probe delay is then included through variation of the cluster diameter.

This chapter includes results already published in [39] but adds further details
and in-depth explanations.
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3.2. Rigid Sphere Model

As already mentioned above, the metal clusters are modeled using two rigid homo-
geneously charged spheres with opposite charges and equal radii. The ideas leading
to this model have already been used in [40-44]. Here we assume that the cluster in
total stays neutral. This greatly simplifies the calculations and furthermore allows
us to discriminate collective effects from the static Coulomb corrections which result
from the charging of the cluster due to ionization. Taking this into account would
be straightforward and, in general, necessary to achieve quantitative agreement with
experimental results. However, in this chapter we want to illustrate the application
of collectively generated potentials to the trajectory-based SFA and qualitatively an-
alyze the mechanism leading to the observed electron acceleration. Hence we neglect
the charging of the cluster.

The positively charged sphere is fixed in space as it models the significantly heavier
ions. Here we use sodium atoms since they have only one valence electron. However,
the model applies to all materials with tightly bound core electrons and delocalized
valence electrons. The negative sphere models the valence electrons. This sphere
can move with respect to the ion sphere. Any displacement d of the electron sphere
away from the initial position leads to an attractive force between the spheres due to
the opposite charges. A derivation of the force is given in appendix A.l. Including
the electric field E(t) of the laser and a damping factor v the equation of motion
(EOM) for the displacement d reads

9 1

d=—-w?. (d———d|d
“Mle< e+ 2pe

dyd|3> _E(t)—~d. (3.1)

Important parameters are the cluster radius R and the Mie frequency wyije which
are both related to the electron density ng within the cluster via

R= N3 (3.2)

47 _
wntie = |/ 5 1m0 = 73 3/2 (3.3)

where NV is the number of valence electrons. The Wigner-Seitz radius rg describes
the mean volume available per electron.

Equation (3.1) describes a driven, damped anharmonic oscillator. Damping needs
to be included to prevent divergence at resonance. For linear polarization of the
laser field Elle, the problem becomes one-dimensional, d, = e, - d. For small
excursions d, < R the anharmonic terms ~ d? and ~ d? can be neglected. For a
monochromatic driver

E(t) = e,Eycoswt (3.4)
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the problem becomes analytically solvable with the solution

d,(t) = dosin(wt + @) (3.5a)
dy = —Lo (3.5b)
\/(wl%/[ie — w2)2 4 22
2 2
¢ = arctan (W) (3.5¢)

as known from classical mechanics textbooks.

18
16
14
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do (a.u.)

O N = O 0o

Figure 3.1.: The behavior of dy and ¢ from equation (3.5) as a solution of the
EOM (3.1) for fixed field parameters Ey and w when varying the Wigner-
Seitz radius rg. For the parameters used in section 3.4 the system be-
comes resonant at rq ~ 6.75.

For a slow driver, w < wpie, we find ¢ = 7/2 and |dy| = Ey/ wI%/Iie, whereas for a
very fast driver, w >> wye, the values are ¢ = —7/2 and |dg| = Eo/w? — 0. The
behavior of dy and ¢ versus rg is shown in figure 3.1. The asymmetry seen in the

: . . —2/3
figure is due to the non-linear relation rg = wy,;.".

Having described the motion of the driven electron sphere we now need the com-
bined electrostatic potential of electron and ion sphere. A homogeneously charged
sphere has the potential

R (2 -3 forr<R
+ 2R3 2R
=4+— 3.6
Viphere () = £75 {_i for r > R (30
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with £ indicating the sign of the charge. The combined potential follows as

Vz:luster('ra t) = V+ (|TD + V;;here(’/r - d(t)’) . (37)

sphere

30
-4 20
10 B
0
0o £
D
4 =10 =
4 =20
_30 I I I 1 1 _30
—60 —40 —20 0 20 40
z (a.u.)

Figure 3.2.: Sketch of the RSM potential (3.7) with d.(t) = R. The blue circle
depicts the ion sphere, the red circle the displaced electron sphere. In
black the potential Vijuster(2,t) along the z-axis is shown.

Here we can plug in the analytical solution (3.5) from above. However, this result
is only valid for the flat-top pulse (3.4), whereas we want to use finite pulses. For
slowly varying pulse envelopes E(t) this can nevertheless be used by replacing Ey
by Ey(t) in the solution (3.5). It turns out that this approximation is sufficiently
valid for our purpose.

Comparison with TD-DFT simulations To verify the validity of the RSM we con-
ducted simulations within the framework of TD-DFT [45, 46] using the software
package QPROP [47, 48] for the same parameters as in section 3.4. The simulation
of sodium clusters within QPROP using the jellium model is described in [49]. Here
we use an expanded neutral sodium cluster consisting of 20 atoms which is irradi-
ated by a laser pulse as defined in section 3.4 below. Figure 3.3 shows the potential
governing the motion of the electrons at different times. Since QPROP uses spher-
ical harmonics as basis functions a multipole expansion is applied to the effective
electron-electron interaction potential, where all terms beyond the quadrupole are
neglected. The potentials plotted in figure 3.3 contain the background (jellium) po-
tential, the interaction potential —r - E(t) with the laser and the electron-electron
interaction potential up to the monopole, dipole or quadrupole term. For compari-
son the potential resulting from the RSM is added. As this comparison shall be on
a qualitative level, the latter is scaled to match the density functional theory (DFT)
potentials. The scaling depends on the damping factor + which is a free parameter.
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3.2. Rigid Sphere Model
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Figure 3.3.: Multipole potentials up to monopole, dipole or quadrupole from TD-
DFT simulations for the parameters from section 3.4. (a) & (c) show
the potentials for E,(t) ~ 0 while (b) displays the maximum FE,(t) ~ Ej
in between. The RSM potential is added for comparison.

The three cases shown in figure 3.3 correspond to the laser field crossing zero
twice and the maximum in between. We see that in all cases the RSM potential
resembles the overall shape of the DFT potential quite well. The potential well in
the center shown by the monopole is not reproduced. This is not surprising at all
as it represents the binding potential of the cluster which is neglected in the RSM.
We found that adding terms to reproduce this provides no further insight into the
mechanism under consideration. The difference between the potentials up to dipole
and quadrupole is rather small so that the dipole potential is sufficient to describe
the situation and restricting the motion to one dimension is thus well justified.
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3. Single Electrons in a Time-Dependent External Potential

3.3. Quantum Trajectories and External Potentials

The method we use to treat the problem introduced in section 3.1 is an extension
of the trajectory-based SFA as presented in 2.2 and 2.3. The plain SFA cannot de-
scribe influences of external potentials on spectra as it uses Gordon-Volkov waves for
the outgoing electrons which only include the laser field. However, the interpreta-
tion of (2.46) as a sum over trajectory contributions allows us to intuitively include
corrections due to external potentials. In this section one possibility for such a
correction is derived from the trajectory-based Coulomb-corrected strong field ap-
proximation (TCSFA) [22-25] where this approach was applied to the Coulomb
potential. A different method to include corrections to the plain SFA (also for the
Coulomb potential) is presented in chapter 4.
The matrix element (2.46) may be rewritten as
MI()EFA) — _9-1/2 (2L,) 5/4 Z 5// ( ) f dt' (v (t)+1p)
Po,Ip
2—1/2(2_,p)5/40(p0) Z ﬁefif;d at’ (Lv2(t)+1p) (3.8)

S pO»Ip( S)

where C(pg) = exp {i Joddt (%U% (t) + Ip>} is a constant phase factor only depend-
ing on pg, vo(t) = po + A(t) is the velocity of the electron (which is equal to its
kinetic momentum due to me = 1 in atomic units) and ¢4 — oo is the detection time.
Here it is important to note that pg is the canonical momentum in velocity gauge
and vg(t) is the kinetic momentum. However, since we work in length gauge here,
this difference only amounts to a coordinate transformation which separates the drift
momentum pg from the laser-induced quiver momentum A(t). Notation-wise we use
v for the velocity or kinetic momentum and p for the drift momentum.

Equation (3.8) is a sum over contributions from individual trajectories. Apart
from the prefactor, these individual contributions consist of an integration over
the kinetic energy %v%(t) of the electron from the saddle-point time ¢, (which can
be termed ionization time as well) to the detector. Considering the origin of the

integrand, the kinetic energy can also be written as a Hamiltonian!,

Svg(t) = Ho(t), (3.9)

where the subscript “0” denotes the “uncorrected” nature of a variable. This Hamil-
tonian can now be corrected for any external potential V' (r,t),

H(t) = %UQ(t) V(). (3.10)

When, in contrast, considering the related method of path integrals, we have to use the Lagrangian
instead. This is indeed done in appendix A.4 where a perturbative Coulomb correction is derived.
There the difference between Hamiltonian and Lagrangian formulation is important due to the
approximations made, as discussed in appendix B of [18]. Here the results are the same.
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3.3. Quantum Trajectories and External Potentials

Note the missing subscript for the velocity. Changing the Hamiltonian by adding a
potential also changes the trajectory of the electron, so that we have to replace the
uncorrected velocity vo(t) — v(t) by a corrected one. This applies to the position
ro(t) — r(t) as well. r(¢), v(t) and H(t) are connected via Hamiltonian mechanics
which lead to Newtons EOM:

7= p(t) + A(t) (3.11a)
p=-VV(rt). (3.11b)

Note that the drift momentum p(¢) acquires time dependence here as well in contrast
to the plain SFA where pg is a constant of motion.

Regardless of the simplicity of this ansatz we have to face some issues that arise
when trying to replace Hy(t) — H(t) in equation (3.8). First, C(pg) contains
vo(t) = po + A(t) where py has been a conserved quantity until now. Replacing
vo(t) by v(t) = p(t) + A(t) here as well invalidates the assumption that C(p) stays
constant as stated above. However, here we neglect this change by keeping v (t)
in the integrand, as it was done in [24, 25]. Doing so, the integrand (and thus the
whole integral) in C'(py) stays purely real, and C(pg) amounts only to a phase factor
that cancels out when calculating the transition probability.

The other issue is the non-vanishing imaginary part of the lower limit ts of the
integration and the closely related problem of initial conditions for r(¢). To achieve
a better understanding for the situation we look at the detector at time ¢4. There we
want to measure the final drift momentum p(t4) = v(t4) of the incoming electron.
This must be real since it is an observable. On the other hand ts is complex, and
assuming for the moment r(t;) = 0, this leads via the EOM (3.11) to complex
position and velocity for ¢t = ts + At for small At, and there is no guarantee that
v(t) will ever become real again. If, on the other hand, we can ensure that at some
purely real time ¢’ position r(¢') and velocity v(t’) are real as well, all variables will
stay real for all times ¢ > ¢/, which follows directly from the EOM (3.11). This goal
can be achieved by splitting the time propagation in the exponent of equation (3.8)
into two parts (dropping the indices po, I, for brevity),

tq 1
So(td,ts):/ dt’ (zvg(t’)JrIp) (3.12)
ts
Rets 1 tq 1
= /dt’ (2v§(t’)+1‘p>+ / dt’ (2v§(t’)+lp). (3.13)
ts Rets

The integration path is visualized in figure 3.4.

The first part contains the purely imaginary propagation from complex ts to the
real time axis (termed “sub-barrier part”), the second part is the propagation from
the “tunnel exit” (this term will be further discussed in section 4.4) at Rets to the
detection time t4. The sub-barrier part will not be corrected at all (see [50] for the
possibility of sub-barrier Coulomb corrections). This has the advantage that without
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3. Single Electrons in a Time-Dependent External Potential
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Figure 3.4.: Sketch of the integration path in the complex time plane from the ion-
ization time t4 to the detection time t,.

corrections the action and also the position r¢(¢) can be evaluated analytically. As
a consequence, To(ts) can be chosen such that Im (ro(Rets)) = 0. The correction is
applied to the second term which now becomes a purely real integral. The resulting
action reads

S = So(Re ts, ts) + S(td, Re ts) (3.14)
tq

S(ta, Rety) — /‘dﬂ<;v2@@—%VTr@%t)+—@). (3.15)
Rets

The initial conditions for r((¢) must be calculated from the EOM. Without exter-
nal potential the latter is simply

7o = po + A(t) (3.16)

where pg is the uncorrected drift momentum and thus constant. A single time
integration leads to

ro(t) =po (t —ts) + [ dt' A(t') + 70 ini (3.17)
= Po (t — ts) =+ Ol(t) — O{(ts) + T0,ini (318)

with the excursion a(t) as in equation (2.62), see section 2.4. The condition for a
real trajectory at the tunnel exit, Im (ro(Rets)) = 0, reads

Im (ro(Rets)) = Im [pg (Rets — ts) + a(Rets) — a(ts) + 1o ini) =0 (3.19)
= Im T0,ini = PO Im ts + Im a(ts) (320)

where we used that Impy = 0 and Ima(Rets) = 0. As we want the electron
trajectory to start at the center, we set the real part Rergin = 0. Using this we
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3.3. Quantum Trajectories and External Potentials

can calculate the position of the electron at ¢ = Ret, i.e. the tunnel exit,

ro(Rets) = po (Rets — ts) + a(Rets) — a(ts) + ipo Imts + ilm a(t5) (3.21)
= a(Rets) — Rea(ts). (3.22)

Having found the proper initial condition for r at the tunnel exit we can cal-
culate the action (3.14). The first term can, as already mentioned, be evaluated
analytically,

Rets
So(Rets, ts) = / dt’ (;vg(w - Ip> (3.23)
lt:{setS 1
= / dt’ (2[po+A(t’)}2+Ip) (3.24)
_ %p% (Ret, — t,) + po - (@(Rety) — alty))
+ %(a@) (Rets) — a@(ty)) + I,(Rets — t), (3.25)

where we defined a(t) as above and o?)(t) as
t
o (1) = / dt' A(#)? . (3.26)
Both a(t) and o) (t) are in most cases known analytically and thus easily calculated.

The second term in equation (3.14) contains the real-time propagation of the
electron from the tunnel exit to the detector. Setting the initial conditions for the
trajectory r(Rets) = ro(Rets) and v(Rets) = pg + A(Rets) allows us to perform a
numerical propagation of r(t) and v(t) according to the EOM (3.11). S(t4,Rets) is
evaluated along that trajectory.

The denominator in the matrix element (3.8) is the second time derivative of the
action. In accordance with the preceding derivations the uncorrected action Sy is
used here. This results in

1 d2 t / 1 24!
j0) =3 [ 4t (581 + 1)

d /1
— 4 (G0 + 1)

= —E(t)- (po + A(1)) (3.27)

where E(t) = —%A(t) was used. Dropping the phase factor C'(pg) the equation for
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3. Single Electrons in a Time-Dependent External Potential

the transition matrix element for a single trajectory now reads

(21,)%* exp {—i(So(Rets, ts) + S(tq, Ret,))}
V2 —E(ts) - (po + A(ts))

M, (ts) = — (3.28)

Numerical Implementation Equation (3.28) describes the transition from a hydro-
genic ground state to a continuum state with asymptotic momentum at the detector
p(tq — 00) = Poo. Due to the numerical propagation? this significantly differs from
the initial drift momentum pg. However, p is the point in momentum space where
a trajectory contributes to the PES. This has considerable consequences for the nu-
merical implementation. In the plain SFA the matrix element (3.8) contains a simple
summation over saddle-point times found numerically® from (2.44) to find the con-
tribution to the spectrum at momentum pg. On the contrary, here the summation
needs to run over all trajectories with the same asymptotic momentum p.,. As the
relation between py and p, is unknown, we need to calculate many trajectories for
different py and gather their contributions Mpy,(ts) on a momentum grid p,, Ap
according to their individual ps, in the fashion of

M(pa)= Y, My(ts), (3.29)
|Poo—pPn|<Ap

details can be found in the appendix B.2. As a result, the resolution of the spectra
depends on the number of trajectories, which leads to diverging numerical effort.
Therefore it is useful to select only the most relevant solutions of (2.44) as described
in section 2.3. This is applicable here as well since the sub-barrier part, which fully
determines the weight of a trajectory, is not modified.

The actual numerical calculation of the asymptotic momentum and action de-
pends on the range of the potential V(r,t). Obviously a numerical propagation
is limited to finite times tqfnite. For short-range potentials (as from section 3.2)
it is sufficient to choose the upper integration limit ¢4 gnite large enough to allow
the electrons to leave the range of the potential after the laser is off. In that case
DPoo = P(td finite). The remaining action S(00, ¢y finite) can then be calculated analyt-
ically. The usually divergent upper limit can be neglected as a constant phase factor
as it is the same for every trajectory with the same p.,. For long-range potentials
this is more complicated as p(t) changes even for large distances. For the Coulomb
potential this problem can be solved using Kepler’s equations (see appendix B.1 for
details).

2The EOM (3.11) are solved with an adaptive-step Runge-Kutta solver based on the algorithm
RK5(4)7M from [51].
3The saddle-point equation (SPE) (2.44) is solved using the ACM TOMS algorithm 365 [52].
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3.4. Photoelectron Momentum Spectra

3.4. Photoelectron Momentum Spectra

The method presented in section 3.3 is applied using the potential from section 3.2
to numerically obtain PES for ionization from laser-driven metal clusters. Below
details about the implementation are given and resulting spectra are shown.

First we need to review the setup described in [38] that is to be modeled. There
neutral metal clusters consisting of several hundred atoms are irradiated with pairs
of laser pulses (pump and probe) with a wavelength of A = 800 nm and intensities
around I = 1013 W/em?, pulse duration of T, = 1001fs each and adjustable time delay
At between the pulses. The kinetic energy distribution of the emitted electrons is
measured.

As already mentioned we do not directly simulate the expansion of the cluster due
to the pump pulse. Instead we mimic an expanded cluster by changing the size of
the cluster while leaving the atom number constant, i.e., we change the Wigner-Seitz
radius 75 used in the RSM. This modifies the resonance frequency of the oscillation
(see section 3.2 and especially figure 3.1) and thus the interaction between cluster
and laser pulse. The probe pulse is represented by a vector potential of the form

A(t) = e, Agsin®(Qt) sin(wt) = e, A, (t) (3.30)

for 0 < Qt < 7 and zero otherwise. Here Q = w/(2n,) is the envelope frequency, n.
the number of optical cycles under the envelope and Ay = —Fy/w the amplitude of
the vector potential. The laser frequency w = 0.057, the number of cycles n, = 3
and the electric field amplitude Ey = 0.01688 are chosen to match the experimental
values stated above. The only remaining free parameter in the RSM is the damping
factor v = 0.017. Here it is chosen such that for the mentioned laser parameters
electron and ion sphere always overlap?. The cluster we use in our simulations con-
sists of 20 sodium atoms (Nagg) with one valence electron each. This is significantly
smaller than in the experiment, nevertheless qualitatively the same effects are ob-
served as demonstrated below. The initial electronic state enters in equation (3.28)
as a pre-exponential factor. As a full description of the valence band of a sodium
cluster is not within the scope of this work, we have to find a suitable approximation
for that state. Besides the hydrogenic ground state used in section 2.3 we tried a
Gaussian wave function of width ~ R and a short-range J-potential like state. We
found that the qualitative structure of the resulting spectra is not affected by that
choice. In particular, the cutoffs we want to observe are determined by the action,
not by the prefactor. In the following we show results using the hydrogenic ground
state. The only property of the ground state that enters the action is the ionization
potential I,. This is set to the experimental value of I;, = 0.14 for the ground state
of Nagg [53]. Changes of the ionization potential due to the expansion of the cluster
are neglected. Another ingredient for the calculation of the action is the tunnel exit

4Within this restriction we deliberately minimized the strength of the damping to maximize the
effect of the collective potential. This does not lead to qualitative changes but solely increases
the visibility of the effects under investigation.
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3. Single Electrons in a Time-Dependent External Potential

r(Rets) that enters via the electron trajectory. For the potential from the RSM this
has to be modified to ensure that the electron appears outside the cluster after tun-
neling. To that end, the atomic tunnel exit r(Rets) calculated from equation (3.22)
is shifted outwards by three times the cluster radius R from equation (3.2). For the
linearly polarized laser field defined by equation (3.30) this means

z(Rets)

/ _
Z'(Rets) = z(Rety) + 3R|z(Ret5)|

(3.31)

with r(Rets) = e,z(Rets). This procedure seems rather ad hoc. However, the
features seen in the PES prove to be robust with respect to changes in this shift.
The boundary conditions are that (i) the electron must start outside the cluster, i.e.,
|2'(Rets)| > |d.(Rets) + R|, and (ii) the laser is still on while the electron passes the
cluster. The reason for this robustness is that the acceleration mechanism (as seen
in section 3.5 below) is not very sensitive to the emission time. If for one emission
time t5 and corresponding momentum pg the electron is not accelerated due to the
shift of z(Rets), another pair of p; and ¢/ exists for which it does get accelerated,
within the limits mentioned above.

8 | | | | | | | re=4 ——

10 J re— 6.5 —
TS == 8 1
108 plain SFA ——— -
<~  10% 1
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Figure 3.5.: Momentum-resolved photoelectron spectra from Nagg clusters for differ-
ent expansions. For comparison a plain SFA spectrum is shown in black.
The resonance condition is reached at rs =~ 6.5. For rg = 4 (value for
bulk sodium, no expansion) the Mie frequency is larger than the laser
frequency, for ry = 8 it is smaller. The laser parameters are w = 0.057,
n. = 3 and Ey = 0.01688. Only positive momenta are shown due to
symmetry reasons.

For the calculation of PES we evaluate equation (3.28) as described in section 3.3.
PES for different expansions (different Wigner-Seitz radii rs) of the cluster are shown
in figure 3.5. For Np, = 2 x 10° momenta in the range py = [—2, 2] we use the four
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3.5. Trajectory Analysis of the Acceleration Mechanism

most relevant saddle-point solutions per momentum. For comparison a plain SFA
spectrum is included as well. The feature we want to analyze is the maximum pho-
toelectron momentum pyax in polarization direction (or the corresponding kinetic
energy Fiyin max) before the sharp drop in the yield |M (pz)lz, and its dependence
on the cluster expansion. Only positive momenta are considered as the situation is
similar in the opposite direction (although the obtained cutoff energies are different).
As mentioned in section 3.1 the expected maximum kinetic energy is 2U,, for directly
emitted electrons or 10U, when considering a single rescattering event. These values
follow directly from the simple man’s theory (SMT) as presented in section 2.4. The
spectra for rg = 4 (value of bulk sodium, no expansion) and rg = 8 show only mod-
erate enhancement of ppa with respect to the plain SFA spectrum. For r¢ = 6.5
the kinetic energy reaches 50U, which is far beyond the expected values®. Obviously
the maximum kinetic energy behaves non-monotonously with the expansion. This
is consistent with the oscillation of the background electron cloud as described by
the RSM where the peak oscillation amplitude is reached at r{**™ = 6.75. This
indicates that the observed behavior is a resonance effect.

3.5. Trajectory Analysis of the Acceleration Mechanism

The beauty of the SFA in saddle-point approximation (SPA) lies in the possibility
to analyze spectral features in terms of electron trajectories. This is preserved when
adding external potentials as done above. It is used here to identify the mechanism
leading to the features shown in section 3.4.

We focus on the resonance case for rs = 6.5 as seen in figure 3.5. To analyze
the mechanism which accelerates the electrons we first need to find the electron
trajectories contributing most in the high energy part of the spectrum. To that end
we gather all trajectories with final momentum p., - €, = ps > 0.8 in polarization
direction on a grid for Ret, and incoherently® sum up the inidiviual contributions
|Mp, (ts)|? from equation (3.28) within time bins of width At = 2. The resulting
distribution is shown in figure 3.6 where the vector potential A,(Ret,) is added as
a reference frame.

It shows that most of the trajectories contributing to the high energy part of the
spectrum are emitted within a very short time window, 120 < Rets < 130. That
means the mechanism considered here applies to trajectories with specific initial
conditions only. From the emission time and the vector potential one can deduce
that these are long trajectories, which means that plain SFA trajectories with the
same initial conditions pass the center at least once before reaching the detector (see
section 2.4 for details).

5Although this number has to be regarded with care as the magnitude of the effect depends on
the damping factor v which was chosen arbitrarily. However, the quality of the effect remains
unaffected.

5The summation must be performed incoherently to exclude any artificial interference between
trajectories with different momenta.
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Figure 3.6.: Incoherent sum over the individual trajectory contributions |Mp, (ts)|?
for trajectories with final momenta py, > 0.8 gathered in bins of similar
initial times Rets. The vector potential A,(Ret;) is added to guide the
eye.

This is illustrated in figure 3.7 where the trajectories selected in figure 3.6 are
plotted as position z(t) versus real time. Due to the large number of propagated
trajectories only a small fraction is shown for clarity. A part of these indeed crosses
the cluster center. Other trajectories are reflected from the boundary and leave in
opposite direction. This is one example for the sometimes chaotic relation between
the initial momentum py and the final momentum p. (the consequences of which
are outlined in appendix B.2). When additionally the momentum is restricted to
Poo > 0.8 (figure 3.7, green lines) we see that all corresponding trajectories cross the
cluster once in a narrow time window. The cluster boundaries indicate that within
this time window the electron sphere is significantly displaced with respect to the
ion sphere. As depicted in figure 3.2 this results in a very steep potential inside the
cluster which in turn accelerates the crossing electrons.

This acceleration can be observed in detail when plotting momentum as a func-
tion of time for the respective trajectories as done in figure 3.8. There the final
momentum is restricted to pso > 1.2 for clarity. Note that the drift momentum
p-(t) (violet) is shown, not the kinetic momentum v, (t) = p,(t) + A.(t). As seen
from the EOM (3.11) any change in the drift momentum is a direct consequence
of the external potential. The most prominent feature of p,(t) shown here is a
strong increase around the time the trajectories cross the cluster center (see fig-
ure 3.7). The reason for this acceleration becomes clear when looking at the total
force F, total(t) = %Uz(t) = —dd—ZV(z,t) — E.(t) on the electrons (figure 3.8, green
lines). This strongly deviates from the force exerted by the laser F jaser = —FE (1)
(shown in black) within the same time window. The kinks in the total force are
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Figure 3.7.: Trajectories z(t) (violet lines) emitted within the time window found in
figure 3.6. Black (dotted) lines denote the boundaries of the electron
(ion) sphere, green lines show trajectories with large final momenta,
Poo > 0.8.

caused by the structure of the cluster potential (3.7) which is defined piecewise. As
a consequence the force as the spatial derivative of the potential is continuous but
not continuously differentiable. This could be lifted by modifying the RSM towards
spheres with smooth boundaries, but the qualitative behavior of the trajectories
would not change.

The positive force observed in figure 3.8 leads to an increase of p,(t) for the selected
trajectories and thus to final momenta much larger than predicted by the plain SFA.
This has fundamental consequences for the PES as shown in figure 3.5. Remember
that the weight of a single trajectory is determined at the tunnel exit. Following
the approximations made in the SMT (section 2.4) we know that smaller momenta
correspond to larger weight. Thus we arrive at the following interpretation: the
trajectories discussed above are refocused and thus shift their weight from the low-
energy part of the spectrum to higher energies, that way generating an extended
plateau in the spectrum.

Another observation made in figure 3.8 is that the momenta of the selected trajec-
tories do not exceed a certain peak momentum where an accumulation of trajectories
can be noticed. This leads to a distinct peak at the cutoff momentum in the PES
shown in figure 3.5. Such caustics are known to appear in semi-classical descriptions
of quantum dynamics. In full quantum calculations these are usually smoothed out,
however, in some cases they are still observable [24].
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Figure 3.8.: Trajectories emitted within the time window found in figure 3.6 and
with final momenta po, > 1.2. The drift momentum p,(¢) is shown in
violet. Additionally the total force (green) acting along the selected
trajectories and the contribution of the laser field (black) to the total
force is shown.

3.6. Conclusions

In this chapter we applied the concept of the trajectory-based SFA to metal clusters
where the collective field of the bound valence electrons significantly alters the mo-
tion of emitted electrons. To that end we combined the ideas of the TCSFA as used
in [24, 25] with the RSM to include the collective field of the cluster. We showed
that this approach is capable of explaining the emission of high energy electrons
from laser-irradiated metal clusters close to resonance. Thanks to the formulation
in terms of quantum trajectories we could analyze the mechanism leading to this
phenomenon. We found that some of the so-called long trajectories revisiting the
cluster interior within a certain time window can be significantly accelerated by the
collective field. This effect depends on the oscillation of the valence electrons with
respect to the ion sphere and is therefore strongest at resonance.

One consequence of the trajectory analysis performed in this chapter is that the
spectral phenomenon under consideration should also be accessible to purely classical
methods as it only relies on the momentum shift of the electrons. However, in
comparison to classical simulations our method has the advantage that it allows for
interference. This is essential for effects like above-threshold ionization peaks and
holographic side-lobes [54], or for structural analysis where information about the
internal structure is reconstructed from interference patterns [55].
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4. Enhanced Direct Photoelectron
Emission at High Energies

4.1. Motivation

The strong field approximation (SFA) [11-13] is the work horse of theoretical strong-
field physics due to its high predictive power and the additional insight it provides
thanks to its formulation in terms of quantum orbits [17, 18, 56, 57]. However,
neglecting the Coulomb potential after the ionization event leads to several effects
not covered by the plain SFA, especially in the low-energy regime. Here the low [1-3],
very low [4, 5] and zero energy [6, 7] structures were found which exhibit surprisingly
high yield at particular final electron momenta. These structures originate from soft
laser-driven recollisions [3, 58] with the parent ion. Their positions in momentum
space are encoded in the SFA when including the rescattering matrix element [59,
60] but do not exhibit increased probabilities.
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Figure 4.1.: Comparison of momentum-resolved PES from TDSE and TCSFA for
the same I, = 0.14 (3.8eV) and laser parameters as in Ref. [54], i.e.,
w = 0.0065 (7 microns), Ey = 0.0045 (I = 7.1 x 10" W/em?), a¢ ~ 12.4
(see section 4.2, with asymptotic charge Z = 1), oy, ~ 8.6, using a six-
cycle sin’-shaped pulse envelope, linear polarization in z direction and
the effective potential from equation (4.9). The 2U,, cutoff positions are
indicated by white dashed lines.

Here we examine another energy regime where the so-called “2U, cutoft” is lo-
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4. Enhanced Direct Photoelectron Emission at High Energies

cated. Up, is the ponderomotive energy, i.e. the kinetic energy of a free electron
oscillating in a laser field, averaged over one optical cycle. The cutoff energy of
2U,, is predicted by the simple man’s theory (SMT) (see section 2.4) as the max-
imum kinetic energy for electrons emitted directly (without rescattering events)
upon photoionization. Following the SMT and using tunneling rate formulas [16]
these electrons would acquire zero weight. On the other hand, photoelectron spec-
tra (PES) obtained from the plain SFA, apart from the well understood intra- and
intercycle interference patterns, just roll off featureless, exhibiting no sign of a 20U,
cutoff at all. However, spectra obtained as numerical solutions of the time-dependent
Schrodinger equation (TDSE) clearly show enhanced yield around that energy for
certain parameters as shown in section 4.2. A prominent example can be seen in [54]
where experimental data is shown in comparison to TDSE and Coulomb-corrected
SFA simulations. In figure 4.1 we show the result from a TDSE calculation ob-
tained from QPROP [47, 48, 61] compared to a simulation using the trajectory-based
Coulomb-corrected strong field approximation (TCSFA) [22-25, 39] with the param-
eters from [54]. The direct cutoff on the polarization axis (p, = 0) is expected at a
momentum of |p,| ~ 0.7 as indicated. The TDSE spectrum shows a plateau which
starts to drop significantly just after the cutoff momentum, whereas the TCSFA
spectrum decreases much earlier. This becomes even more visible in figure 4.2 where
TDSE and plain SFA PES in polarization direction are compared, demonstrating
significant differences around the cutoff momentum.
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1071
1072 [
1073 £
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107 [ SFAresc f
[ SMT —— \ ]
10*8 1 . 1 . 1 . 1 . L 1
0.2 0.4 0.6 0.8 1 1.2
p. (a.u.)

20, ]
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Figure 4.2.: TDSE spectra around the 2U}, cutoff compared to the plain SFA includ-
ing rescattering (SFAresc) calculated from equations (2.27) and (2.33),
same parameters as in figure 4.1. The shaded area between TDSE and
SFA spectrum highlights the order-of-magnitude discrepancy. Vertical
lines indicate 1, 2, and 4U,. The SMT prediction for direct emission is
plotted bold black.
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4.2. Scaling the Time-Dependent Schrédinger Equation

The corresponding TCSFA spectrum is not shown as it qualitatively follows the
plain SFA one. The SMT prediction added in black deviates even more from the
TDSE result as it approaches zero at the cutoff. How the observed enhancement
in the yield depends on the laser and target parameters and how this effect can be
incorporated into the SFA will be shown in this chapter. The main results have
already been published in [62] but are presented here in more detail.

4.2. Scaling the Time-Dependent Schriodinger Equation

The theory of reference on which we gauge the validity of the SFA is the TDSE,
which is considered exact in this regime!. To study the parameter dependence of
spectral features it is therefore useful to analyze the scaling behavior of the TDSE.
Assuming an electron in a linearly polarized laser field

E(t) = e, By f(t) sin(wt) (4.1)

with 0 < f(¢) < 1 being a dimensionless envelope function the TDSE in SI units
reads

K2 A e/

d
W) = |- LA,
T (r:?) [ 2Me dmegr

+7r-e,eEyf(t) sin(wt)] U(r,t) (4.2)

where we purposefully dropped atomic units to allow for unambiguous dimensional
analysis. This equation can be expressed in dimensionless time and position,

T = wt (4.3)
P = m;wr , (4.4)
leading to
. d _ 1 me €2 Z eFky _ . _
IE‘IJ(T, T) = [2Af — %47‘(‘50 ? + WT c €y f(t) Sln(T)] \II(’I", T) . (45)

The scaling is chosen such that the left-hand side and the kinetic energy term on the
right-hand side keep their form, i.e., do not acquire extra prefactors. The conversion
to atomic units simplifies above equation to

i%w, 7) = {_ % Ay - ¢Zar * %z /() Sm(”} v o

! Apart from the dipole approximation, which has only minor effects in this regime, see chapter 5,
and higher order relativistic effects, which are negligible here. For many-electron atoms addi-
tionally the single active electron (SAE) approximation is applied, which is valid to sufficiently
high accuracy in all cases considered here.
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4. Enhanced Direct Photoelectron Emission at High Energies

with Z = 7 - e, . Consequently the Coulomb potential scales with a¢ = Z/+/w and

2 2
the laser field with af = Eg/w3/2 = /zZp where zp = nieiggg (in SI units) is the
strong-field parameter [13]. For hydrogen-like ions a simple relation is found. Using
I, = Z?/(2n?) the ratio between the two scaling parameters yields

ac/ap =ny/I,/(2Up) (4.7)
=ny (4.8)

with the principal quantum number n and the Keldysh parameter ~ [11].
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Figure 4.3.: Two TDSE PES versus dimensionless momentum, both for the ground
state as initial state and with ac = a1, = 4, but one for 7 = 1,
w = 0.0625, Ey = 0.0625 (violet) and the other for Z = 2, w = 0.25,
Ey = 0.5 (green, shifted for better comparison). The SFA result is
included (blue).

The validity of this scaling is demonstrated in figure 4.3 where two spectra from a
hydrogen-like target are shown for n = 1 and ac = o, = 4 and thus ac/ar = 1 but
different laser and target parameters, see figure caption. The spectra are obtained
from numerically solving the TDSE using QPROP [47, 48, 61], and shifted vertically
for better comparison. They are identical within the accuracy of the simulation.
The SFA spectrum was obtained by direct numerical evaluation of equations (2.27)
and (2.33), the results of which are added up coherently. It is known that the
SFA depends only on two dimensionless parameters, e.g., any pair of the set zp,
7, the reduced electric field F = Fy/(2I,)%? and the multiquantum parameter
Ko = I,/w. Accordingly in figure 4.3 only one SFA spectrum is shown as the other
one is identical. It shows a pronounced intracycle interference pattern which is
responsible for a strong disagreement slightly above the momentum corresponding to
2U,. However, apart from that the overall slope matches quite well. The agreement
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4.2. Scaling the Time-Dependent Schrédinger Equation

becomes even better when increasing the laser parameter to a;, = 6 (a¢/ar, = 0.67)
which is shown in figure 4.4. Here both TDSE and SFA spectrum show a plateau-like
feature up to 2U,. Again the disagreement comes from the intracycle overemphasized
interference pattern in the SFA.
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Figure 4.4.: TDSE and SFA PES in good agreement for H(1s) as in figure 4.3 but
for ap, = 6 (w = 0.0625, Ey = 0.09375).

The situation is different when considering targets which are not hydrogen-like or
prepared in an excited state. The former are usually many-electron targets which
are often simulated within SAE approximation with an effective potential to obtain
the desired ionization potential I;, and asymptotic charge Z. Here we use an effective
potential of the form

Z + (Zpay — Z)e 7/
Vn(r) = - 2+ B = Z)e (4.9)

r

where Z and Zpy are the charges for 1 — oo and r — 0 respectively, and ry is the
screening length which is tuned to obtain I,. For the TDSE spectrum in figure 4.2
the parameters are Z7 = 1, Zgn = 54 and rg = 0.026. In the case of effective
potentials equation (4.7) does not hold anymore as the dependence of I, on n is
more complicated than for hydrogen-like ions. However, we can analogously define
an effective principal quantum number neg = Z//2I, which leads to

ac/ar = Negy - (4.10)

Figure 4.5 demonstrates that both hydrogen-like ions and many-electron systems
in SAE approximation can be treated on an equal basis for the purpose of this work.
There TDSE PES for hydrogen in the excited 2s state (I, = 0.125) and cesium
in the ground state (SAE approximation, 6s state, I, = 0.143 obtained using the
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Figure 4.5.: Two TDSE PES for similar I, realized via an excited state (violet)
and an effective potential (green), respectively (see text). In both cases
ac = 11.3 and ap = 5.7. The corresponding SFA spectrum is in striking
disagreement.

parameters Z = 1, Zpy = 0.1 and rg = 3.13) are compared, including the plain SFA
spectrum for hydrogen. The laser parameters are w = 0.0078 and FEy = 0.0039,
leading to the scaling parameters ac = 11.3 and ay = 5.7. Both TDSE spectra are
quite similar although the targets are qualitatively different (while having similar
I,), but deviate significantly from the SFA spectrum, as expected from the large
ratio ac/ar = 1.98. It also demonstrates that the Keldysh parameter alone (which
is v = 1 here as in figure 4.3) is not sufficient to characterize the importance of
Coulomb effects.

The conclusion is that the ratio ac¢/ar governs the difference between spectra
obtained from TDSE simulations and the predictions of the SFA. The existence
of a plateau, i.e., the difference of the slope of the PES below and above 2U,, is
associated with the laser parameter ar , or the strong-field parameter zp = aQL,
where for larger parameters the plateau is more distinct. This can be recognized
when comparing figure 4.3 with ap = 4 and figure 4.4 with oy, = 6, the latter having
a considerably more pronounced plateau structure.
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4.3. Phase-only Coulomb Correction for Quantum Trajectories

4.3. Phase-only Coulomb Correction for Quantum
Trajectories

Section 4.2 describes the scaling of the TDSE and the (dis)agreement of the plain
SFA with the latter. However, the effect leading to the displayed large discrepancy
for certain parameters is not revealed. This is the purpose of the next sections, via
analyzing the effect in question with the help of quantum trajectories. Our approach
is based on the ideas from [63], the foundation of which dates back to the 1960s [19—
21].

As basis we use the equations derived in section 2.3. The SFA matrix element
in saddle-point approximation (SPA), equation (2.46), is rewritten similar as in
section 3.3,

M) = 2 () Y e ATy
S pJD 8

with C(p) = exp {if(f‘i dt (%[p + A())? + Ip)} being a constant phase factor only
depending on p. Since the integral in the exponent of C'(p) is purely real, the latter
vanishes when calculating the probability w(p) = \MPIQ and thus can be dropped.

Here a Coulomb correction is applied solely to the action integral in the exponent
of equation (4.11) while the trajectory remains the same. A detailed derivation based
on a perturbative treatment is given in appendix A.4. The action integral (2.47) is
modified resulting in

S(ts) = /ttd dt’ <;[p + A - rf(t/) + Ip> (4.12)

which is evaluated along the plain SFA (i.e., uncorrected?) trajectory =(t). In con-
trast to section 2.3 the integrand is position-dependent, so we need the trajectory
r(t) explicitly. This is found from Newtons equations of motion,
r=p+ A(t) (4.13a)
p=0. (4.13Db)
Here we use a notation similar to section 3.3 where p denotes the constant drift

momentum and v is the velocity being identical to the kinetic momentum due to
the use of atomic units. The EOM can be evaluated analytically,

v(t) =p+ A(t) (4.14a)

r(t) = tt dt’ [p+ A(t)] + r(ts) , (4.14Db)

where we have to choose the initial condition r(¢s). The ionization time ¢, given

2The subscript “0” is omitted for brevity.
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4. Enhanced Direct Photoelectron Emission at High Energies

by the saddle-point equation (SPE) (2.44) is necessarily complex. This complicates
the choice of the initial conditions for »(t) as discussed in section 3.3. There it
was chosen such that r(Rets) € R3 which ensures a real trajectory for all times
t > Rets. However, this choice involves a non-zero imaginary part of r(ts) which
might seem a little arbitrary. Here we use r(ts) = 0 as initial condition. The
resulting divergence of the action integral (4.12) at the lower boundary is treated
by a matching procedure as derived in appendix A.5. The problem of complex
observables as encountered in section 3.3 does not apply here as the equations of
motion are not altered and thus the final electron velocity v(t — oo) equals the drift
momentum p which is real. The position acquires an imaginary part contributing to
the ionization probability, the consequences of which will be discussed in the next
section. As only the final momentum is “measured” in this method and not the final
position, having a complex r(¢) does not violate the requirement of real observables.

The prefactor 1/S) | (t) in equation (4.11) is calculated without the additional
term in S(t5), i.e., as in equation (3.27), so that the transition matrix element finally
reads
e~ 1S(ts)

M, — _2_1/2(21p)5/4z —E(t,) (p+ A(ty))

S

(4.15)

with S(¢s) as defined in equation (4.12). As before this has to be evaluated by first
determining the saddle-point times ts given by the SPE (2.44) with a chosen mo-
mentum p and then summing up the respective contributions. Here the main effort
lies within the evaluation of S(¢s) as this entails a contour integration in the complex
time plane. Contrary to the plain SFA (section 2.3) this cannot be circumvented due
to the position dependence of the additional Coulomb term —Z/+/r?(t) in the inte-
grand. The issues arising from this are discussed in section 4.4. When applying this
formalism to total ionization rates it is sufficient to consider only the most probable
trajectory which is the one for p = 0. In this case the resulting trajectory becomes
purely real and the transition amplitude can be calculated analytically [18], leading
to the famous Coulomb-corrected PPT rate [21].

4.4. Complex Integration Pathways

As stated in section 4.3 the most elaborate part in the evaluation of the transition
matrix element (4.15) is the contour integral in the action (4.12). The latter must
be integrated along a contour in the complex time plane starting from the complex
ionization time t;. The problematic part here is the position-dependent Coulomb
term

taq A
Sc = — dt’

ol (4.16)
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The trajectory r(t) is described analytically by equation (4.14). Due to ts € C it
acquires an imaginary part. Consequently we have to take the square root /r2(t) of
a complex number, which has two solutions, or branches, as illustrated in figure 4.6.
The solution with positive Re/z is defined as the principal value while the other

0.5

Reyz 0

-0.5

e —-0.5 Rez

Figure 4.6.: Illustration of the branch point at z = 0 and the branch cut for Re z < 0,
Im z = 0 of the complex square root y/z. The color indicates the imag-
inary part of the square root, Im /z (blue < 0, white = 0, red > 0).

solution carries the opposite sign. The Riemann sheets defined by these different sets
of solutions are connected via the branch cut at Re z < 0, Im z = 0 which terminates
in the branch point at z = 0. Mathematically speaking, the complex square root is
not holomorphic on the whole complex plane. This has severe consequences when
integrating over the square root along a complex contour. Starting with the principal
value the contour moves along the upper Riemann sheet. If the contour crosses
the branch cut the result is ambiguous. Either the integration stays on the upper
Riemann sheet but encounters a discontinuity in the derivative, or it switches to the
lower Riemann sheet. The latter leads to non-vanishing results when integrating
along a closed contour which is most undesirable as it spoils the free choice of the
integration path. Either way, integration contours crossing branch cuts must be
avoided.

This problem needs to be translated to the present case due to \/z = /72(t)
and the integration contour lying within the complex time plane t € C. The time
dependence of 7(t) is shown in equation (4.14b). It contains trigonometric functions
(depending on the choice of the vector potential) and is thus far from trivial. The
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topology of the resulting branch cuts in the complex time plane has been analyzed
in [29, 30, 63].

Examples for the “landscape” in complex time generated by /r2(t) are shown
in figure 4.7 for a short and a long trajectory (refer to section 2.4) with the same
momentum (p, = 0.69, p, = 0.02) in the vicinity of the 2U, cutoff. Parameters
are the same as in figure 4.2. For the short trajectory in panel (a) the situation is

700
600
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0

Re(wt) /27
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0.8

0.6
0.4
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300
200
100

3 3.2 3.4 3.6 3.8
Re(wt) /27

Figure 4.7.: Panels (a) and (b) show integration contours (cyan) in the complex
time plane for a short and a long trajectory at the cutoff momentum,
respectively (same parameters as in figure 4.2). The color scale shows
Re /72(t), the colored lines represent isolines of Im \/r?(t) (red < 0,
yellow = 0, green > 0). White lines show branch cuts terminating in
branch points (the relevant ones are indicated by white crosses). In
panel (b) cyan crosses show the solutions of equation (4.18) used to
determine the integration contour.

straightforward. Apart from ¢s being a branch point itself (which is treated using a
matching procedure as discussed in appendix A.5) there are no obstacles between t4
and tg. Accordingly the integration path can be chosen as in section 3.3 (indicated
by a cyan line in figure 4.7(a); see also figure 3.4). Panel (b) shows a long trajectory
which is emitted in the same half-cycle but on the opposite edge of the vector
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4.4. Complex Integration Pathways

potential as compared to panel (a). This trajectory revisits the ion before leaving
towards the detector as illustrated by Re /72(t) which is the real distance between
electron and ion. When flying past the ion branch cuts appear in the complex time
plane which prohibit the simple integration path as used for the short trajectory.
These branch cuts extend towards Im ¢ — 400 and leave only a small “gate” at finite
Im¢. Figure 4.7(b) shows one possible choice for the integration contour (cyan line)
which utilizes this gate to avoid crossing the branch cuts.

The Algorithm The task is now to find a valid integration contour for every tra-
jectory from the respective ionization time t; € C to the detection time t; € R
along which the action (4.12) can be evaluated. Doing this manually for a single
trajectory is simple, as can be gauged from figure 4.7. For the calculation of a whole
spectrum many (> 103 for a 1D calculation) trajectories have to be evaluated, a
task which by far exceeds the limit of reasonable effort when doing it manually.
Accordingly an algorithm must be found which automates the construction of valid
integration contours. One possibility for such an algorithm is presented in [29] where
the emergence of low-energy structures (LES) from complex trajectory calculations
is demonstrated. However, the topologies encountered there are much more com-
plicated than in our case since they concentrate on small momenta in polarization
direction. On the other hand, the algorithm detailed in [29] does not necessarily
handle all situations found for larger momenta which are in focus here.

Our algorithm utilizes the fact that the branch cuts in complex time are associated
with returns to the parent ion in real space. These are easily calculated® from
equation (4.14b) for any given p and ts. To that end we iteratively determine the
minima of Re v/72(t) on the real time axis for ¢ > Ret; — 127 leaving a little margin
for numerical reasons. The resulting minima are used as input for the calculation of
branch points as solutions of

% (tbranch) = 0. (4.17)

The solutions tyranch are indicated in figure 4.7 as white crosses. Note that branch
points always come in pairs as discussed in [63]. These form the gate which needs to
be passed by the integration contour. Having found one branch point, we calculate
the corresponding time of closest approach (as it is termed in [29]) which approx-
imately coincides with the center of the gate. The equation defining these points
is

r(tturn) : 'U(tturn) =0 (418)

in analogy to classical mechanics. This equation has two qualitatively different
sets of solutions. Omne describes the closest approach where the velocity vector is
perpendicular to the position vector as measured from the parent ion. The other

3This algorithm can only work with the analytically known trajectory =(t). As a consequence,
modifying the equations of motion as in chapters 3 and 5 is prohibitive here.
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set is characterized by vanishing velocity which in classical mechanics indicates a
turning point. In real space these can be easily distinguished as they are minima and
maxima of 72 (tyym), respectively. This holds true in complex spacetime, however,
we use the simple fact that times of closest approach are always associated with
branch points. On the contrary, turning points are far away (in complex time) from
any branch point. This condition is easy to implement and, as the topologies in
complex time for the relevant? trajectories are always similar to those figure 4.7,
entirely sufficient here.
In summary, the construction of a valid integration contour is done as follows:

e Find real return time t,¢ as minimum of \/r?(Ret)
e Determine branch point tpranch from 72 (tpranch) = 0 (with te as initial guess)

e Calculate associated gate center tgate by solving r(tgate) - V(tgate) = 0 (With
thranch as initial guess)

e Find intermediate turning point ¢y from 7 (tyurn ) v(tum) = 0 (about halfway
between ty and tgate)

The integration contour needs to include tiyr, and tgate as primary waypoints. Addi-
tionally some secondary waypoints are inserted to further reduce the probability of
crossing the branch cuts. One is tsecondary = Rets +ilm ¢ty assuring that the inte-
gration contour runs perpendicular to the branch cuts associated with t5. The other
ones are arranged around #g.t. in a way that the gate is crossed perpendicularly.
An example for the resulting integration contour is displayed in figure 4.7(b) where
crosses indicate the branch points ts, thranch (White) and saddle points tgate, tturn
(cyan). The secondary waypoints are visible as kinks in the integration contour.

Limitations As already mentioned the applicability of the algorithm detailed above
is limited. The first limitation to be named is the huge diversity of different topolo-
gies encountered. Our algorithm is designed for soft recollisions at medium to large
momenta in polarization direction and small perpendicular momenta. It might han-
dle multiple returns if they are “well-behaved”, i.e., similar to the ones considered
above. For more complicated topologies like the ones discussed in [29] for small drift
momenta, or in the case of large perpendicular momenta, one needs a more general
algorithm. Due to these difficulties our propagation routine includes checks whether
a branch cut was crossed accidentally and excludes these trajectories from the final
result.

Another limitation is the dependence on the drift momentum perpendicular to the
polarization direction. For vanishing perpendicular component of the drift momen-
tum the branch point pair merges into a single pole (cf. [63]) and the contribution of
the Coulomb integral (4.16) diverges. Accordingly this theory is only applicable for
non-zero perpendicular drift momenta. Spectra along the polarization direction are

1For the effect under consideration in this chapter.
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0 pz,max Pz

Figure 4.8.: Sketch of how momenta are selected in the two-dimensional momentum
plane for the calculation of PES according to equation (4.15). As the
momenta on the polarization axis e, are not accessible (see text), the
desired momenta (indicated by black crosses) are chosen on a line tilted
by the small angle ¥ against e, .

thus inaccessible. Unfortunately these are of utmost interest as the TDSE spectra
in section 4.2 are calculated on the polarization axis. This problem is solved by
choosing momenta on a line which is slightly tilted by some angle 9 with respect to
the latter as illustrated in figure 4.8. The resulting spectra quantitatively depend
on ¥ up to a divergence for ¢ — 0. Additionally for small ¥ the approximations
made in the derivation of equation (4.12) (see appendix A.4) break down as the dif-
ference between uncorrected and full trajectory becomes large. Thus an appropriate
¥ needs to be chosen to obtain reasonable results. This procedure might appear
somewhat arbitrary, however, the qualitative significance of the results presented
below remains unaffected.

Finally the action obtained above depends on the upper integration limit. The
integration to t; — oo cannot be carried out analytically as in chapters 3 and 5
due to the perturbative nature of the method® (as discussed in [18]). This results
in changing interference patterns and slight modulations in the trajectory weight
depending on the numerically chosen upper integration limit t;. Again, as the
discussions below happen only on a qualitative level, this problem is disregarded in
the following.

4.5. Spectral Analysis

The algorithm explained in section 4.4 can now be used to evaluate the action in-
tegral (4.12) and thus the matrix element (4.15). Doing that for many momenta in
the desired momentum range we find the momentum-resolved photoelectron spec-
trum predicted by our Coulomb-corrected SFA. As explained above the quantitative
significance of the results obtained here is limited since the weight of the trajectories
strongly depends on the angle ¥ with respect to the polarization axis (see figure 4.8).
This dependence is demonstrated in figure 4.9.

5For the analytical propagation to infinity it is necessary that the trajectory follows the equations
of motion that are reflected in the integrand of the action, which is not the case here.
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Figure 4.9.: Partial spectra for the same parameters as in figure 4.2. For every
momentum only a single trajectory (long or short, as indicated) has
been evaluated. In the plain SFA (including only the direct term) long
and short contributions are identical. For the long trajectories different
angles 9 (see text) are displayed. The peak structures at small momenta
are signatures of the LES which are discussed in great detail in [29, 30].

Here we show partial spectra obtained by limiting the real part of the ionization
time ¢4 to one quarter of an optical cycle. This allows us to select either long or short
trajectories as indicated in figure 2.2. For the plain SFA the contributions of both are
identical and need not be distinguished. For the Coulomb-corrected SFA these are
qualitatively different. The figure shows a plain SFA spectrum as reference. Since
only one single trajectory per momentum contributes to the spectrum no intra-cycle
interference pattern appears. The “short” spectrum qualitatively matches the plain
SFA spectrum but is shifted vertically due to the additional Coulomb term. This
resembles the main effect of the Coulomb correction for the PPT rate [21]. The
“long” spectrum is shown for two different angles ¥J. For the larger angle ¥ = 1027
a flat plateau up to 2U,, is visible. For the ten times smaller angle ¥ = 10737 the
yield above 2Uj, is increased by several orders of magnitude, thus demonstrating the
strong dependence on 1J. Nevertheless the result for the larger angle nicely produces
a flat plateau as seen in the TDSE spectra in figures 4.2 and 4.5. From that we can
conclude that the Coulomb correction we applied to the SFA indeed improves the
agreement with the TDSE, although only on a qualitative level. The formulation in
terms of trajectories allows us to analyze this qualitative change in detail.

Formally the only difference between the plain SFA in SPA as in section 2.3 and the
Coulomb-corrected SFA used here is the Coulomb integral (4.16). Accordingly the
increased yield around 2U}, is not caused by electrons shifted to larger momenta as
observed in chapter 3. Instead the ionization probability or weight of the trajectories
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is changed. As shown in section 2.3 the weight of a single trajectory is mainly
determined by the imaginary part of its action integral,

logwp o< —Im §'. (4.19)

The contribution of the Coulomb integral to the trajectory weight can thus be gauged
by taking a closer look at its imaginary part. As long and short trajectories are qual-
itatively different where the short ones behave similar to the plain SFA trajectories,
it is useful to compare the behavior of Im S (¢) along the integration contours for
both types. This is shown in figure 4.10 for the integration contours from figure 4.7.
For the long trajectory the saddle points tiym and tg.te determined by the algorithm
from section 4.4 as solutions of equation (4.18) are indicated by black crosses. We
observe the following behavior: the “short” curve rises up to a sharp kink which
indicates the change in direction of the integration contour when reaching the real
time axis, see figure 4.7(a). From there it monotonously decreases until it converges
to its final value (Im ST (¢;) = 6.67). The “long” curve rises until it passed the
gate at tgate, see also figure 4.7(b). Subsequently it decreases monotonously as well
until it reaches the final value (Im Sg’ng(td) = 12.85). This monotonous decrease is
caused by the imaginary part of the position 7(t) which is acquired along the prop-
agation to the real time axis and mainly depends on the imaginary part of t;. It is
essentially identical for long and short trajectories with the same drift momentum
p and thus not of interest here.

6 . I . I . I . I . I . I . I
0 2 4 6 8 10 12 14

Contour length

Figure 4.10.: The behavior of the imaginary part Im Sc(t) of the Coulomb inte-
gral (4.16) along the integration contours from figure 4.7. Note that
every kink here is related to a change of direction in the integration con-
tour. Black crosses indicate the respective solutions of equation (4.18).

Figure 4.10 shows that the observed huge difference emerges from the propaga-
tion of the long trajectory between ts and tgate, both of which are complex. The
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4. Enhanced Direct Photoelectron Emission at High Energies

SMT (see section 2.4) states that recollisions can be understood as ionization with
a certain probability which is then followed by a scattering event. This interpreta-
tion is applied in chapter 3 where the propagation is split into the tunneling step
determining the trajectory weight and the classical propagation to the detector, the
latter including rescattering events. Here the situation is considerably different. Be-
fore passing the gate the integration contour must stay complex. It is possible to
integrate partially along the real time axis, yet the gate must be passed at non-
vanishing® Imt. Afterwards the integration contour may stay on the real time axis
up to the detection time t;. This has serious consequences. Due to the integration
contour being forced into the complex time plane the weight of a trajectory is not
fixed after the tunneling step but determined by the whole propagation up to the
detector. Especially the soft recollisions severely change the weight which leads to
the probability enhancement for momenta around the 2U,, cutoff. This puts the
whole concept of a “tunnel exit” into perspective as it is not well-defined within
this concept. Here, on the contrary, the whole propagation up to the gate” can be
interpreted as being “under the barrier” motion as it still influences the ionization
probability.

4.6. Conclusions

We have demonstrated that orders-of-magnitude differences between TDSE and SFA
PES can occur at electron energies around the 2U,, cutoff. This disagreement is re-
duced to the ratio ac/ar, = ny of two scaling constants derived from the TDSE.
The greater this ratio, the bigger the expected disagreement, as shown in figures 4.2
(ac/ap = 1.44, disagreement), 4.3 (ac/ar = 1, agreement), 4.4 (ac/ar = 0.67,
good agreement) and 4.5 (ac/ar = 1.98, strong disagreement). This disagreement
was analyzed in terms of quantum trajectories. As the plain SFA is not sufficient
to reproduce this effect, we implemented a perturbative Coulomb correction for the
complex SFA trajectories, taking into account that the choice of the integration con-
tour is severely restricted by branch points and cuts in the complex time plane. We
found that the ionization probability of certain trajectories is significantly altered
when the integration contour is forced to cross gates between branch points at com-
plex times. Physically, these parts of the integration contours correspond to soft
recollisions.

We found that our method can reproduce the observed orders-of-magnitude en-
hancement in the probability. Thus we conclude that the whole time propagation
of the electron from the ionization time to the detector influences the weight of a
trajectory. Of course, this is a matter of physical interpretation of the mathematics
rather than of quantum mechanical observables. However, this argumentation allows
us to view the concept of a tunnel exit in a different light, as the ultimate approach

SAt least in some cases. This depends on the topology, i.e., on the vector potential, the drift
momentum and the corresponding ionization time.
"Or even the last gate, as there might be several returns.
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of the real time axis® does not necessarily happen at the real part of the ionization
time. On the contrary, in the case of soft recollisions this ultimate approach can
happen only after the last return, making the concept of a tunnel exit somewhat
arbitrary.

Another effect that must be considered here is the so-called Coulomb focusing.
One could argue that the increased probability at the cutoff energy is generated by
many classical trajectories being focused into the considered energy range by the
Coulomb potential®. In our method this effect would then be encoded as increased
weight of a single guiding trajectory. This explanation is highly unlikely as it can
hardly produce changes of several orders of magnitude as observed here. Further-
more, previously used methods including Coulomb focusing (similar to the methods
used in chapters 3 and 5) failed to reproduce the effect considered in this chapter.

These conclusions challenge the validity of the three-step model, i.e., the sep-
arability of tunneling ionization into the tunneling step and the free propagation
afterwards, and all models derived from the latter. However, one should consider
that the visibility of the discussed effect in photoelectron spectra is only significant
within a certain parameter range as indicated above. In most cases the influence
on observables is negligible and consequently the three-step model is sufficiently
valid. What should be kept in mind is the conclusion that recollisions are inherently
quantum and should not lightly be treated as purely classical.

8Which is the usual definition of the tunnel exit in this context.
9This is the case for the caustics corresponding to the LES as demonstrated in [24].
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5. Photoelectron Spectra Beyond the
Dipole Approximation

5.1. Motivation

The dipole approximation is quite commonly applied in strong-field physics. How-
ever, its validity is rarely questioned. The assumption is usually that the dipole
approximation is sufficiently accurate when the wavelength is much larger than the
typical length scales of the problem, e.g. the electron excursion, or the electron ve-
locity is much smaller than ¢, the speed of light in vacuum (which is ¢ ~ 137a.u.).
Both conditions lead to the expression Ay/c < 1 with Ay being the amplitude of the
vector potential. For the parameters used below (the same as in reference [9]) we
find Ag/c ~ 0.02 which sufficiently fulfills the condition from above, thus one would
expect no observable non-dipole effects.

However, recent experiments [8, 9] show results that measurably deviate from the
expectations obtained using the dipole approximation. Most remarkable is the fact
that this happens for large wavelengths and rather non-relativistic intensities. The
observations are that photoelectron spectra (PES) are shifted with respect to the
direction of the propagation of the laser pulse. In dipole approximation the latter
does not enter the calculation of PES. Such shifts have been theoretically reproduced
using classical trajectory Monte Carlo (CTMC) and similar [9, 64], methods derived
from the strong field approximation (SFA) [65-67], time-dependent Schrodinger
equation (TDSE) calculations [68] and even the time-dependent Dirac equation [69].
It is consistently attributed to the transfer of photon momentum to the electrons
or, classically speaking, to the magnetic part of the Lorentz force, which are two
sides of the same coin, i.e., light pressure. It has been observed that the shift of the
spectrum can be in or (counterintuitively) against propagation direction, which has
been associated with Coulomb effects leading to momentum partitioning between
electron and ion. This has been discussed in some detail in [68] in terms of classical
trajectories where it was found that the long trajectories (see section 2.4) are the
main cause for this. In [67] a non-dipole SFA was developed using the exact non-
dipole Volkov solution for the Schrédinger equation and including Coulomb effects
via rescattering.

Despite the abundance of literature on this topic we show that the trajectory-based
Coulomb-corrected strong field approximation (TCSFA) can be adapted to repro-
duce this effect as well. The strategy is similar to that in section 3.3. Additionally
we derive relativistically corrected equations of motion and include the magnetic
field of the laser. Based on the results we construct a semi-analytical model in the
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5. Photoelectron Spectra Beyond the Dipole Approximation

spirit of the simple man’s theory (SMT) (see section 2.4) where we perturbatively
include the action of the magnetic field as well as the Coulomb interaction. We show
that this simple model is able to explain the observed counterintuitive shift of the
spectrum against propagation direction. This chapter contains results from [70], but
here more details are given.

5.2. Non-Dipole Quantum Trajectories

As in the previous chapters the basis for the method presented here is the SFA in
saddle-point approximation (SPA) from section 2.3. For the derivations presented
in this section SI units are used. The inclusion of the Coulomb potential happens in
analogy to section 3.3 where a cluster model potential was included instead. How-
ever, the most important difference to the previous considerations is the omission of
the dipole approximation and the hence necessary modification of the vector poten-
tial. The latter acquires a position dependence,

A(r,t) = Age,sin®(Ut — K - r)sin(wt — k-7 + ¢) (5.1)
= Age, sin?(®) sin(¢) (5.2)

where a sin?-shaped envelope function was chosen as in the previous chapters,
which is defined as above for 0 < ® < 7w and zero otherwise. The abbreviations
p=wt—k-r+¢and ® =0t — K - r are introduced, the carrier-envelope phase ¢
is set to 0 in the following. Ay = —Ep/w is the amplitude of the vector potential,
Ey the amplitude of the electric field and 2 = w/(2n.) the envelope frequency with
n. the number of optical cycles. The propagation direction is set by the wave vector
k = eyw/c and the corresponding envelope wave vector K = k/(2n.). The fields
E(r,t) = —%A(r,t) and B(r,t) =V x A(r,t) read

E(r.t) = Eye. sin(®) <; cos(®) sin(@) + sin(P) cos(¢)> (5.3)
B(r,t) = %ex sin(®) <; cos(®) sin(@) + sin(®) cos(¢)> (5.4)
_ %(E(r,@ e)es. (5.5)

Without position dependence the latter would not be present at all. In most cases

this is a good approximation due to |B| = % |E| as follows from the equations given
b

above.

The presence of a magnetic field calls for a modification of the equations of motion
to include its effects on the electron trajectory. In contrast to the previous chapters
we use the kinetic momentum p instead of the drift momentum. Accordingly the
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5.2. Non-Dipole Quantum Trajectories

EOM read

d d
=Y &p:F (5.6)

as known from classical mechanics. The force
F=—-e(E+vxB)-VV (5.7)
consists of the Lorentz force
F,=—-e¢(E+vxB), (5.8)

which now additionally contains the magnetic term v x B, and the Coulomb force

Fo=-VV (5.9)
Vir)=— ;Z(t) : (5.10)

Knowing the relation between B and FE we see that the magnetic part of the Lorentz
force is by a factor of ¥ smaller than the electric part. To incorporate this correctly
into the electron trajectory it is useful to take the relativistic relation between mo-
mentum and velocity,

P = YMev (5.11)

where m, is the rest mass of the electron and

!
7—7%1_%;

is the well-known Lorentz factor. As we want to write the EOM in terms of r and
p we need to express v as a function of p which can be done using the energy-
momentum relation

(5.12)

E = \/p?c? + m2ct (5.13)
= ymec? (5.14)
from which we find
2
p
=,/1 5.15
gl o (5.15)
and thus
D — (5.16)
Mey/1 + mp262
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5. Photoelectron Spectra Beyond the Dipole Approximation

Accordingly the rewritten EOM read

d p

R — (5.17a)
d Me+/ 1+ mp2202

d p

Cp=<|E+— P2 «B|-vv). (5.17b)
dt ( Me V 1+ mp;c2 )

One should note that these, although using the relativistic velocity-momentum rela-
tion, are not fully relativistic since we neglect retardation effects. However, it turns
out that this does not pose a problem for the effects considered here.

The trajectories can now be found by numerically evaluating the EOM (5.17).
To obtain PES it is necessary to calculate the action integral from equation (2.47)
including additional terms, which is performed similar to section 3.3. The time inte-
gration is split into the sub-barrier part and the real-time propagation (see figure 3.4
for an illustration of the integration contour). The sub-barrier part is calculated an-
alytically as in the plain SFA,

Rets . \12
Ssub(ts) = / dt’<[p d“ft; A)] +Ip> (5.18)
ts Me

where pyrify is the drift momentum at t5 and thus the one inserted into the saddle-
point equation (SPE) (2.44) which reads in SI units

[Pasite + eA(ts)]* = =21, . (5.19)

Here we used A(t) = A(r = 0,t), assuming that the tunneling process is not in-
fluenced by the magnetic field. It would as well be possible to include relativistic
tunneling effects [71] but since the parameters we use are non-relativistic the differ-
ence would be negligible.

The real-time propagation starting at Re t5 includes the changes made to the EOM
discussed above, the corresponding action reads

Sreal(ts) = /td dt’ <p2(t/) +V(r{)) + Ip> ) (5.20)

Rets 2me

This expression is identical to the classical expression obtained in section 3.3. Rela-
tivistic corrections to it could be derived with the relativistic kinetic energy expres-
sion

2 2
E—mec2=”2+0<” ) . (5.21)

c2

Using this yields above expression and higher order terms which are at least quadratic
in £. Since the effect considered here is caused by the influence of the magnetic field
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5.2. Non-Dipole Quantum Trajectories

which is linear in 2 we keep only terms O (%) and neglect those of higher order.

This allows the use of the non-relativistic TDSE (on which all theory in this thesis
is based) in the first place.
Finally expressions (5.18) and (5.20) are added up to the total action integral

S(ts) = Ssub(ts) + Sreal(ts) . (522)

This is inserted into the transition matrix element (3.28) for a single trajectory. To
obtain PES many trajectories are calculated as described in section 3.3. The initial
conditions for the real-time propagation are also derived in the same way which
yields

p(Rets) = pasits + e A(Rets) (5.23a)
r(Rets) = a(Rets) — Re a(ts) (5.23b)

with the elongation a(t) from equation (2.62) which in SI units reads

alt) = mi / arA). (5.24)

From there the propagation is performed to the detection time t; — oo as the
upper limit. For the numerical evaluation some finite time ¢; needs to be chosen
carefully. Whereas in the previous chapters it was sufficient to choose the end of the
pulse T}, = nc%r as the upper limit, here we have to ensure that for all considered
trajectories the laser pulse has completely passed by. As the electron velocities are
always much smaller than c it is sufficient to choose ¢4 significantly larger than T},
e.g., tqg = 2T, . Once the laser is off, A(r(t4),tq) = 0, the propagation to infinity
can be carried out analytically using Kepler’s laws (see appendix B.1), neglecting

L . 2
relativistic corrections O (2—2) as above.
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5. Photoelectron Spectra Beyond the Dipole Approximation

5.3. Photoelectron Spectra and Trajectory Analysis

To show that our method presented in section 5.2 is able to reproduce shifts of
PES in or against propagation direction we calculate a spectrum using parameters
from [9]. There it was observed that the spectra were on average slightly shifted
against polarization direction, both experimentally and in CTMC calculations. From
here on atomic units (see section 2.1) shall be used again unless noted otherwise.

0.5 103
g 10
S 0.25 100
& 0 10*;
10~
—0.25 10-3
—05 10—4

-2 =15 -1 =05 O 0.5 1 1.5 2
p. (a.u.)

Figure 5.1.: Momentum-resolved photoelectron spectrum for a model xenon atom
with I, = 0.447 irradiated by a six-cycle sin?-shaped laser pulse. The
laser intensity is I = 6 x 1013 W/em? | the wavelength A = 3.4 ym. p, is
the momentum in polarization direction, p, in propagatlon direction of
the laser pulse. The probability distribution w, = |3 Mp\ is plotted.

The obtained PES for a model xenon atom with I, = 0.447 is shown in fig-
ure 5.1. It is irradiated by a six-cycle sin®-shaped laser pulse with an intensity of
I =6 x 10" W/em? (Eg = 0.0413) and a wavelength of A\ = 3.4 ym (w = 0.0134). We
numerically propagated N = 6 x 107 trajectories to obtain the presented spectrum.
The 2U}, cutoff for direct electron emission is at p, ~ 3.1, accordingly the spectrum
covers only small momenta compared to the momentum ranges considered in chap-
ters 3 and 4. The shift is not visible in figure 5.1 although slight asymmetries with
respect to the propagation direction e, can be observed.

'* . I\
\ l.“‘i“' ‘,‘
l‘“ Aot LR L
l“‘ | .v'!l[“ v. il i || ‘ 100
',s 1, A i

1071

Figure 5.2.: Same as figure 5.1 but for a smaller momentum range and calculated
with higher resolution.
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Figure 5.3.: Same parameters as in figure 5.2 but integrated over p, and rescaled
so that the maximum value is 1. Additionally the spectrum has been
smoothed prior to integration.

When zooming into the central part (figure 5.2) the asymmetries are more distinct.
The most prominent features are the caustics for p, =~ 0.5 and p, ~ —0.55. These
can be identified as the so-called low-energy structures (LES) [1, 4, 72]. Evaluating
the equations given in [72] predicts LES from the strongest peaks of the used sin?-
pulse at p, = 0.487 and p, = —0.548 which matches the positions observed in
figure 5.2. Closer inspection shows that these structures are indeed slightly shifted
in negative p, direction, that is, against propagation direction. What can only be
guessed from that figure is that the center of the whole spectrum is shifted towards
negative py. As in [9] this can be illustrated by projecting the spectrum onto the p,
axis by integrating over p,. This is shown in figure 5.3.

0.04 L ]
—~ 002 | | | ]
=
= 0
& 002 | |
—0.04 - |
0 6

wt/(2m)

Figure 5.4.: The sin? pulse shape used for the numerical calculations. The figure
shows the electric field in z direction F.(t) and the corresponding vector
potential A,(t) scaled by the frequency w. The central optical cycle as
the relevant time window used for the calculation of the shift in figure 5.5
is indicated by vertical dashed lines.

The center of the distribution is shifted by Ap, ~ —0.025 which is on the same
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5. Photoelectron Spectra Beyond the Dipole Approximation

order as the shift observed in [9] for the same parameters. We conclude that our
method is able to reproduce the previously observed non-dipole effects with reason-
able accuracy.

Based on that we want to go one step further and analyze the effect of spectral
shift in terms of trajectories. This shift can be visualized very well by considering
the difference to the plain SFA. Every trajectory calculated to produce the spectra
shown above has some initial drift momentum pg.ig which in the plain SFA is the
final momentum for that trajectory as well. Accordingly the difference between pqyit
and the numerically obtained p., = p(t — o0) should give an impression on the shift
of the spectrum.

0.05 0.4
0.04 03 —~
0.03 e
=002 02 &
= 001 01 o
= 0 0o =
2 —0.01 01T
S _0.02
S _
—0.03 028
—0.04 _03 <
—0.05 04

-2 =15 -1 —-05 0 0.5

Dz drift (a.u.)

Figure 5.5.: Momentum shift p, o — py arift in direction of ey, plotted against payit;-
Color scale shows positive (blue) or negative (red) shift. The main figure
(inset) shows only long (short) trajectories. The color scale for the inset
spans only one twentieth of that in the main figure.

As we are interested in the shift in propagation direction we look at the compo-
nents in e, direction only. We also distinguish between long and short trajectories
as in [68] it was stated that the long trajectories are responsible for the counterintu-
itive shift against the laser propagation direction. Accordingly only one trajectory
(i.e., the most important solution of the SPE) per momentum is selected within the
time window depicted in figure 5.4. The result is shown in figure 5.5 where the main
figure (inset) shows the long (short) trajectories. The color scale is chosen such that
blue (red) shows positive (negative) shifts. The message of the figure might not be
accessible at first sight, however, its significance will become clear in the following.
The central part for [p, arift| < 0.5 shows chaotic behavior. This can be attributed to
trajectories which return several times to the parent ion and are therefore scattered
in basically random directions. The reason for the relatively sharp boundary of the
chaotic region is illustrated in figure 5.6 where three plain SFA long trajectories in a
flat-top laser pulse are plotted in position space for small perpendicular momentum
py = 0.1 and different parallel momenta p.. Note that the z axis spans 2000 atomic
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Figure 5.6.: Plain SFA long trajectories in position space in a flat-top laser pulse for
small perpendicular momentum p, = 0.1 and different parallel momenta
p.. Note the different scales in z and y direction.

units and the y axis only 10. The initial conditions are the same as in section 5.2. For
large parallel momentum the electron leaves the parent ion and passes it once (z =0
and y still small) before leaving for good. For small p, the electron passes the parent
ion several times as mentioned above. In between there is a threshold momentum
(here at p, ~ 0.668) where the electron passes the parent ion once and then visits it
again with very small velocity. It has been shown [24, 72] that these trajectories are
generating the LES. A quantitative comparison of the threshold momentum found
here and the boundaries observed in figure 5.5 is however not meaningful, since here
a flat-top pulse has been used instead of a finite pulse, and no Coulomb effects are
included. Taking both into account as in [72] is possible and yields the positions of
the LES in momentum space. Yet this mechanism explains how the observed sharp
boundaries emerge.

Thus disregarding the central part of figure 5.5 we see that in the upper half the
trajectories are shifted towards negative momenta in p, direction whereas in the
lower half the shift is positive. The boundary between these domains is however not
at zero perpendicular momentum but bent downwards and thus asymmetric with
respect to the reflection p, — —p,. The inset shows different behavior. First one
should note that the color scale spans only one twentieth of that in the main figure,
so the response of the short trajectories is much weaker. In the center the behavior
of the latter is also chaotic. Apart from that the short trajectories mainly exhibit
positive shifts, except for the upper central part where a parabola-shaped part is
shifted towards negative p,. The white vertical stripes in the center of the inset
indicate trajectories that end up in bound states and thus never reach the detector
(see appendix B.1 on how this is determined).

To understand this asymmetric behavior of the momentum shift we try to dis-
entangle the influence of the two forces acting in that direction, i.e., the Coulomb
force and the magnetic part of the Lorentz force. To that end we perform numerical
calculations where we switch on only one of these forces and show the same quan-
tity as in figure 5.5. This is shown for the Coulomb force in figure 5.7 and for the
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magnetic force in figure 5.8.
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Figure 5.7.: Same as in figure 5.5 but without the magnetic part of the Lorentz force.
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Figure 5.8.: Same as in figure 5.5 but without the Coulomb force. Here the color
scale for main figure and inset is identical.

The Coulomb force in figure 5.7 yields the intuitively expected picture. Apart
from the chaotic central part the shift is negative in the upper half and positive in
the lower half. The boundary is in the center at zero perpendicular momentum.
This reflects the attractive nature of the Coulomb potential slowing down electrons
that leave the system. It is also much stronger for the long trajectories as these
come close the parent ion at least once after the initial tunneling step. The response
of the short trajectories is also symmetric, although much weaker.

The shift induced by the magnetic force is presented in figure 5.8. It is much
smaller by magnitude than for the Coulomb force. Furthermore the response of long
and short trajectories is identical. We observe solely positive shifts which increase
with increasing |p.|. This matches the expectations from the picture of radiation
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pressure due to the v x B force where the absorption of photons leads to a change of
momentum. Faster electrons carry more kinetic energy and thus must have absorbed
more photons, i.e., more momentum in propagation direction.

Comparing the figures 5.7 (only the Coulomb force) and 5.5 (both forces) one
sees that the latter is very similar to the former but slightly distorted. For the long
trajectories the main difference is that the boundary line between the two domains
with different sign is bent downwards. It seems that the qualitative behavior of the
trajectories is conserved. Under this assumption one can infer from the difference
of the two figures that those trajectories originally representing the center of the
spectrum now end up at negative momentum in propagation direction. As these
trajectories carry most of the weight, the whole spectrum must be shifted. This
again matches the numerically observed shift towards negative p, in figure 5.3 very
well, rendering the respective assumption quite plausible.

Further implications from the observations made above are that neither the mag-
netic force nor the Coulomb force alone can induce shifts in propagation direction
which are asymmetric with respect to the reflection p, — —p,. This is in line with
the conclusions in the literature that the interplay of both forces can lead to coun-
terintuitive shifts against propagation direction. This interplay will be analyzed and
disentangled in the next section with the help of model calculations in the spirit of
the SMT.

5.4. Semi-Analytical Model Calculations

In this section we build a simplified perturbative model similar to the SMT to
reproduce the spectral shift visualized in figure 5.5. Following the argumentation in
section 5.3 we treat this quantity as a significant signature of the non-dipole effects
considered in this chapter.

Our model is based on the plain-SFA trajectories following the EOM (5.6) but
with F' = —F only as in section 4.3. This yields analytic expressions for momentum
and position by integration,

Po(t) = Parite + A(t) = vo(t) (5.25a)

t

To (t) = Pdrift (t — ts) + . dt/ A(t/) + Tinitial (525b)

for which we use the same initial conditions (5.23) as in section 5.2. The ionization

time is found from the SPE (5.19). The subscript 0 denotes the uncorrected nature

of the variables. One example for equation (5.25b) is shown in figure 5.9 (solid

black line), along with a graphical representation of the model calculation performed
below.

Along these trajectories we want to evaluate the influence of magnetic and Coulomb

force. We know that the former basically acts along the whole trajectory while the

latter is strongest for small |ro(¢)|. Thus we first calculate the momentum change in
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Figure 5.9.: Sketch of the model calculations performed in section 5.4. It
shows the unperturbed trajectory ro(t) (solid black), the pertur-
batively corrected trajectory ro(t) + e,Ay~(t) (dashed violet), the
trajectory including the momentum shift from the Coulomb force
Apf, = Apyc’ﬂyby + Apg’long'range (dashed green) and the flyby trajec-
tory r¢(t) (dashed black). Other important quantities are indicated by
arrows and labels, for details see text. Note the different scales in z and
y direction.

propagation direction e, caused by the magnetic force. Starting at the tunnel exit!
at Retg, this can be written as

t

Apl(t) = — /R At fo(t) < B(rt)] e, (5.26)
Note that in principle the full trajectory has to be plugged in. However, assuming
that the magnetic force is small compared to the electric force (which is reasonable
due to the argumentation given in section 5.2) we can plug in the uncorrected tra-
jectory vo(t) and in this way find a first order perturbative result. Following the
same argument we neglect the position dependence in the magnetic field. We thus
have to calculate

t

ApL(t) = — /R At foo(t) < B(t)] e, (5.27)

This can be rewritten using the relation (5.5) between electric and magnetic field,
B(t) = e, L E.(t), the definition of the electric field E(t) = —3 A(t) and the unper-

1We assume that the under-barrier motion is not affected by the magnetic field.
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turbed trajectory (5.25a) to read

1t d
Apy(t) = /R L, A (peann + Ax(t) (dt,Az(t’)) . (5.28)

Applying integration by parts to the second term yields the expression
L 1 / 1 2041 !
Apy(t) = = |pzanit A= (1) + S AZ(Y) (5.29)
¢ 2 Rets

which can be directly evaluated. Due to A(t — oo) = 0 the total momentum shift
for t — oo caused by the magnetic field reads

1 1
Apijtotal = [pz’dri&Az(Re ts) + iAz(Re ts)} . (5.30)

We can determine the induced change of 7y(t) in e, direction from the momentum
shift,

M) = [ at k)

Rets
Dz, drift ’ 1 (2) 14/ L ’ t
= O[(t ) + 5« (t ) + Apy,totalt ) (531)
c 2c Ret,

where in analogy to equation (2.62)

a(t)—/tdt’Az(t'), a@)(t)_/tdt’Ag(t’). (5.32)

For the sin?-shaped laser pulse used above this can be evaluated analytically. In
figure 5.9 the perturbatively corrected trajectory ro(t) + eyAyL(t) is shown as a
violet dashed line.

The conclusion in section 5.3 was that the long trajectories are the ones respon-
sible for the counterintuitive shift of the spectrum against propagation direction.
Accordingly we focus on these in our investigations. The main difference between
long and short trajectories is that the former pass the parent ion (at least) once be-
fore leaving towards the detector whereas the latter do not. It is therefore reasonable
to assume that this flyby causes the observed qualitative differences. During flyby
the distance between electron and parent ion becomes small so that the Coulomb
force becomes large. The effect of this flyby on the total momentum in e, direction
can be estimated perturbatively. To that end we assume a linear flyby trajectory

’l“f(t) =yrey —I—pz7f(t — tf)ez (5.33)
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with constant distance y; in e, direction and constant momentum
Pz =pol(ty) - e (5.34)
in polarization direction e,. The flyby time is defined by
ro(tf) - e, =0. (5.35)

The flyby trajectory 7¢(t) is displayed in figure 5.9 as a black dashed line, coinciding
at z = 0 with the Lorentz-shifted trajectory ro(t) + e, Ay (t) mentioned above. The
Coulomb force F¢(r) = —VV(r) can be integrated along 7;(t) to determine the
resulting momentum shift in e, direction,

ty+At
ApSIrby — / dt vf (5.36)

. 32"
DAL (g3 4 p? (- 1))

This has to be restricted to a time interval [t; — At,tf + At] as the accuracy of
r¢(t) is only reasonable in a small region around ¢t ;. However, as the denominator of
the integrand exhibits a cubic divergence for large |t — t¢|, we can assume At — oo
without significantly changing the integral. The latter can be solved analytically,

tf+At
t—t
ApSPY — ! 5.37
Dy yr y2\/y2 +p2 (t — tf)2 ( )
f f z,f tffAt
2At
=— — , (5.38)
Yr\Jyf P A
which condenses to a very simple result when taking the limit At — oo,
2
Apg Y = —— (5.39)
YrA/ Pz 5
The distance yy at flyby time is taken from the Lorentz-shifted trajectory,
yp =rolty) - ey + Ay"(ty). (5.40)

For this and the flyby momentum (5.34) we need the flyby time ¢¢. This can only be
found numerically or graphically due to the transcendental nature of the respective
equation (5.35).

In addition to the considerations above we can estimate the effect of the long-range
Coulomb potential on the final momentum by a simple calculation. Assuming that
only the kinetic energy of the electron is affected without any change in direction
we can write the final kinetic energy as the initial kinetic (drift) energy plus the
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(negative) potential energy at the tunnel exit, which yields for the final momentum

[Pl = \/Phre + 2V (ro(Ret)). (5.41)

This amounts to a change of momentum in propagation direction,

\/Pan + 2V (ro(Ret,))
2 - Dy, drift -
\/ Padrift

Taking all changes of momentum calculated above into account, we arrive at the
final expression for the total momentum change due to magnetic field and Coulomb
potential,

Apg,long—range — ( (542)

ApZOtal _ Apglj,total + Apg,ﬁyby 4 Apg,long-range. (5.43)

This equation can now be evaluated on the same momentum grid as used for fig-
ure 5.5. We select the most important ionization time ¢; corresponding to a long
trajectory and calculate the first return time ¢;. The resulting total momentum shift
Apltftal is shown in figure 5.10.

0.05 0.4
0.04 0.3
0.03
5002 02 —
= 001 0.1 %
= 0 0 -
. _8.8é ~0.1%
Q‘ —VU.
—0.03 0.2
—0.04 0.3
—0.05 —0.4

-2 -15 -1 —-05 O 0.5 1 1.5 2

Dz drift (a-u-)

Figure 5.10.: Same as figure 5.5, but calculated from equation (5.43) instead of a
full numerical propagation. The main figure shows the shift for long
trajectories (assuming one flyby). The missing part for small positive
momenta is caused by trajectories which do not complete their flyby
during the pulse. The inset shows the momentum shift corresponding
to short trajectories (no flyby, so Apg’ﬂyby = 0). The color scale for
the inset spans only one twentieth of that in the main figure.

As for figure 5.5 we select trajectories with Rets within one optical cycle around
the center of the pulse as illustrated in figure 5.4. Apart from the central part which
looks different figure 5.10 can be directly compared to the numerically obtained shift
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5. Photoelectron Spectra Beyond the Dipole Approximation

in figure 5.5. Multiple returns are not included in the model so the chaotic behavior
in the center is not at all reproduced. The missing (blank) part for small |p, drif
is a signature of trajectories which do not complete their flyby before the end of
the pulse. This happens due to the finite pulse envelope. After the center of the
pulse the amplitude of the vector potential, and thus the oscillation amplitude of the
electrons, decreases rapidly (cf. figure 5.4). For electrons with small drift momenta
this leads to the phenomenon that the oscillation dies away before a flyby happens.
After the pulse is over, these electrons slowly drift past the ion instead of a fast
laser-driven flyby. As this is qualitatively different from what we assume for our
model, we do not take those trajectories into account.

For larger [p, drift| the agreement between figures 5.5 and 5.10 is good. The bound-
ary between positive and negative shift is much sharper in the model calculations.
This can be attributed to the large scattering angles up to 180° included in the
numerical propagation but not in the model calculations where we always assume a
linear flyby. The position of this boundary however is reproduced with good accu-
racy. This allows us to conclude that our simple model captures the main mechanism
responsible for the shift of the spectra in negative propagation direction.

=300 —-200 —100 0 100 200 300

z (a.u.)

Figure 5.11.: Same as in figure 5.9 but for different initial momentum. It illustrates
how a trajectory with negative initial momentum can be scattered into
the lower half of the momentum plane due to radiation pressure.

The inset of figure 5.10 shows the shift for short trajectories with Apyc’ﬁyby =0.
Note that the color scale for the inset only spans one twentieth of that in the main
figure, so the observed shift is much smaller. The structure seen in the inset of
figure 5.5 is qualitatively reproduced due to the estimate for the long-range Coulomb
shift Apg’long'ra“ge. Without this only the radiation pressure would be present, the
effect of which is shown in figure 5.8. On the other hand, for the long trajectories
the long-range Coulomb shift is negligible as it is by far dominated by the flyby
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shift Apgvﬂyby .

Finally we can use our model to visualize how trajectories can be shifted towards
negative p, despite negative initial p, qrir;. This is illustrated in figure 5.11 where
we see a trajectory with initially negative drift momentum in propagation direction.
Without the influence of the magnetic force (black line) it passes the ion at negative
y which would lead to Apg’ﬂyby > 0. However, due to the magnetic force the flyby is
shifted to positive y (violet dashed line), which in turn inverses the effect of the flyby,
Apg’ﬂyby < 0. We can conclude that this mechanism leads to the counterintuitive
spectral shift discussed in this chapter.

5.5. Conclusions

In this chapter we analyzed how non-dipole effects can influence photoelectron spec-
tra even for non-relativistic laser parameters. We focused on counterintuitive shifts
of final photoelectron momenta against the laser propagation direction as observed in
previous experiments [8, 9]. These shifts were reproduced by a full numerical solution
of the equations of motion including both Coulomb potential and magnetic Lorentz
force. Furthermore we found that the underlying effects can be explained within a
simplified semi-analytical model where both forces are included perturbatively. To
that end first the momentum shift due to the magnetic Lorentz force is evaluated
along the unperturbed trajectory, followed by a perturbative Coulomb correction.
The latter is based on the observation that mainly the long trajectories show coun-
terintuitive behavior. Accordingly the momentum shift due to the Coulomb force
is evaluated along an approximated flyby trajectory including the positional shift
induced by the Lorentz force. Doing so we confirmed that the mechanism leading
to the counterintuitive shifts is indeed the modification of soft recollisions by the
radiation pressure.

These results show that trajectory-based methods like the TCSFA can easily be
adapted to include non-dipole effects. As in the previous chapters this allows for
intuitive interpretations in terms of trajectories and thus leads to better understand-
ing of the underlying physics. In contrast to classical simulations the TCSFA also
includes interference effects and can thus be applied to a wide range of problems de-
pending on those, e.g. holographic imaging or the retrieval of structural information
from interference patterns.

69






6. Final Remarks

In this thesis we demonstrated how the trajectory-based strong field approximation
(SFA) can be extended to reproduce different effects that are otherwise inaccessible
to the plain SFA.

In chapter 3 we adapted the trajectory-based Coulomb-corrected strong field ap-
proximation (TCSFA) to include the collective field of a laser-driven metal cluster for
the electron propagation to analyze the emission of highly energetic electrons. We
found that long trajectories, when passing the cluster in phase with the oscillation
of the valence electron cloud, can acquire final momenta far beyond the expected
cutoff.

Another phenomenon beyond the scope of the plain SFA was presented in chap-
ter 4 where we analyzed the unexpectedly high yield around the 2U, cutoff for
certain parameters found in numerical solutions of the time-dependent Schrodinger
equation (TDSE) and experimentally acquired photoelectron spectra (PES) but not
reproduced by the SFA. We showed that by scaling the TDSE this behavior can
be described by two dimensionless parameters governing both the appearance of a
plateau structure as well as the difference to the plain SFA result. To incorporate
this effect into the trajectory-based SFA we developed a complex Coulomb correc-
tion based on the same ideas as already used in the 1960s. The occurring problem of
branch cuts in the complex time plane was solved by using the analytically known
electron trajectories to find a valid integration path. Doing so we found that the
weight of a single trajectory is (within this framework) determined by the full prop-
agation up to the detector instead of just up to the tunnel exit, thus putting the
whole concept of a tunnel exit into perspective.

In the last chapter 5 we demonstrated how non-dipole effects can be included into
the TCSFA to analyze experimentally observed counterintuitive momentum shifts
against the laser propagation direction. We incorporated the magnetic Lorentz force
into the electron propagation using relativistically corrected equations of motion
and so qualitatively reproduced the experimental findings. We further showed that
the effect of counterintuitive shifts against propagation direction can be explained
within a simplified semi-analytical model where the magnetic Lorentz force and the
Coulomb potential where included successively in a perturbative way. By that we
confirmed that the observed effect is caused by soft recollisions which are modified
due to the radiation pressure.

In conclusion we have shown the trajectory-based SFA to be a versatile tool in
gaining additional understanding of the underlying physical mechanisms for very
different effects in strong-field physics. Thanks to its derivation from the TDSE the
SFA itself already incorporates many effects found in strong-field physics. Its formu-
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lation in terms of trajectories allows for intuitive explanations and detailed analysis
of the latter. Additionally it gives us the opportunity to incorporate external poten-
tials or modify the equations of motion to analyze effects beyond the scope of the
plain SFA, as demonstrated in the previous chapters. Thanks to this flexibility it can
be applied not only to single atoms but also to molecules or clusters, as long as the
single active electron approximation is justified. In contrast to classical simulations
the trajectory-based SFA contains interference effects and hence can even be applied
to problems like holographic imaging or structural analysis where information about
the interior of an object is reconstructed from interference patterns.

However, there are still open problems to be solved. The most prominent one is
the applicability of the complex Coulomb correction for quantitative comparisons
with ab initio or experimental data. For this to be possible one would have to
circumvent the divergence for head-on recollisions and lift the dependence of the
result on the upper integration limit, as discussed in section 4.4. A possible solution
to this could be an effective treatment of the recollisions incorporated into the real
propagation used in chapters 3 and 5.

Further applications of the methods presented here could include the analysis of
interference patterns from diatomic (or more complex) molecules [55]. On the other
hand one could stay with single atoms as the target and consider more complex laser
fields, like bichromatic pulses with varying phase difference [73].
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A.1. Force Between Two Overlapping Oppositely Charged
Spheres

The following derivation was already published in [39]. It is reproduced here in
slightly more detail for the sake of completeness.

The rigid-sphere model (RSM) consists of two homogeneously charged spheres
with equal radii R and opposite charges. Here we assume one valence electron per
atom, but the model can easily be adapted to other cases. To describe the dynamics
of this system we need to know the electrostatic force between the spheres. Due
to the underlying physical situation that is to be modeled we assume the spheres
always overlap. We start with the force exerted on a charge distribution p1(r’) by a
potential ®9(r — r’) depending on the relative distance r,

Fr)=— / 1 () Vs (r — 1) (A.1)
The divergence of this force is
V. F(r)= —/pl(r’)Ar<I>2(r —r)d3 (A.2)

where we can plug in Poisson’s equation
Ap®y(r — 1) = Ay ®o(r — 1) (A.3)
= —dnpe(r — ') (A.4)

with pa(r) being the generating charge density for the potential ®o(7). This results
in the overlap integral

V, . F(r) = 4x / o1 () pa(r — 1) (A.5)

between the two charge distributions. For point charges this leads to Coulomb’s
law. Here we need to define the charge distributions of the homogeneously charged
spheres as p1(r) = —noO(R — |r|) (electron sphere) and pa2(r) = ngO(R — |r|) (ion
sphere) with the particle density ng and the Heaviside step function

O(z) = (A.6)

0 forz<O
1 forz>0

Note that in atomic units the electron charge is —1. Plugging the charge distribu-
tions as defined above into the overlap integral leads to

VY, F(r) = —4mn? / O(R — |r|)O(R — |r — ') (A7)
= —4mnd 2V (A.8)
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where V is the volume of a spherical cap

h2
V= %(33 —h) (A.9)
with h = |r| /2 being the height of the cap. This holds as long as |r| < 2R, i.e., as

long as the spheres overlap. Thus with r = |r| we find for the gradient of the force
4w R? 3r 13
_ 2
which only depends on r but not on the direction. Accordingly the motion is re-
stricted to one dimension and we can write the left-hand side as
107,
V. F(r)= 5o [72F,(r)] (A.11)

where F.(r) is the radial component of F'(r). This can now be calculated,

F.(r) = ;/T dr'r"V 0 - F(r') (A.12)
__47r3no47r7;oR3 <T_1i;7;+;312;> ’ (A.14)

or, using F(r) = FT(T)‘% ;
F(r)= —47;% 4W§)R3 (r — %r |r| + 321R3r |r|3> . (A.15)

To determine the equation of motion we fix the ion sphere in the origin and replace
T by the displacement d. As we want to know the motion of the electron sphere we
use

F=Md (A.16)
3 ..
- 4””30R d (A.17)

and the Mie frequency

Witie = 1/ 47;”“ (A.18)
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from section 3.2 to find the final result

. 9 1
= —wie (d— —5d|d dd3). A19
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A.2. Interaction Matrix Element (k|7 - E|V)

For the evaluation of the strong field approximation (SFA) matrix element in sec-
tion 2.2 we need the matrix element (k|7 - E(t)|Wp) . It can be calculated as follows,

(lf - B()|Wo) = iV (k| o) - B(1), (A.20)

where we used that the representation of the position operator in momentum space is
7 = 1V} . For this we need (k|¥() which is the ground state wave function projected
into momentum space. We start from the ground state wave function of hydrogen
in position space and SI units,

1
fa?’/Q

where ag is the Bohr radius. Its projection into momentum space is calculated via
a Fourier transform,

Uy(r) = ——=e "/, (A.21)

1 —ip-r/h
<p|\P0>:W g d3r e P/ (1) (A.22)

1 1
RO

d3pemiPr/h=r/ao (A.23)

and in spherical coordinates with d®r = r2dr sin¥9dd de,

1 1 o 2 [T : 2 —irpcos¥/h—r/a
(p|¥o) = (27rh)3/2\/7? 3/2/ drr / dv sm19/ dgpeirpeosd/h=r/ao (A 24)
1 irpcosd/h—r/a
= (27Th)3/2\/7? 3/2/ dr 2 / Ao sin ge1PeosV/h=r/ao (A.25)

and using sin9dv = dcos ¥,

(p|¥o) = o 3/2 3/2/ dcosﬂ/ dr 2~ r(ipcosd/ht1/ao) (A.26)
VTa
The integral over r can be solved by using [;° dzz"e™ = n!,
1 - 2
Vo) = dcos A.27
(p|¥o) (2rh)3 /2 ﬁag/2/1 cos (—ipczw —310)3 ( )
1 or  h AR
= e A.28)
3/2 3/2 _ 2 (
(2mh)32 \/rad! lp(h2+%>
23/235/2 1
= ; e (A.29)
0
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From the solution of the Schrédinger equation we know that

2 ZQ

E, = _&c s

4dmeg 2a0n?
with

47‘(’5077,2
ag —

mee?

For hydrogen in the ground state (Z =1, n = 1 and so I, = —E) follows

h

— =/2,m,

ag pm
and thus

1
7 (p? + QIpme)2 ‘

(p|Wo) = 2%/2(2;m)"/

Hence

(k|7 - E(1)|T) = —i27/%(21;,)>/* k- E(1)
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A.3. Saddle-Point Approximation
The problem considered here is an integral of the form
xp
M = / da f(z)e* @) (A.35)

which needs to be approximated. This shall be briefly sketched here for the case
of real variables where this approximation is known as Laplace’s method. For con-
tour integrals with complex variables the mathematical details are more involved,
however, the basic idea is similar, which is the reason for presenting the following
derivation. Details can be found in [17], the standard reference is [74].

Here we assume that AS(z) is a function that has a maximum at S'(zs) = 0,
S"(xzs) < 0. The case of a single maximum is discussed, the extension towards
multiple maxima is straightforward. We expand the exponent AS(z) around the
maximum g,

0 1 02
AS(xz) = AS(xs) + %AS(JJ) . )(:c —x5) + 5@)\5’(33) . )(:c — 3+ ...
(A.36)
—AS(za) 4+ %)\S”(xs)(:n a4 (A.37)

where the second term vanishes due to S’(xz5) = 0. The exponential term can thus
be written as

AS(@) o o AS(25) o3 AS" (25) (2 —24)? (A.38)

and assuming that f(x) changes slowly with x, we can expand the whole integrand
as

F(2)eM@) ~ f(acs)e’\S(’”S)e%’\sﬂ(”“)(ﬂﬁ_gcs)2 . (A.39)
Plugging this into the integral above we find
Lo 1
M = f(xs)e*@) dz o2 (@s)(@—zs)? (A.40)

Ta

The limits of the integral can be extended towards +oo as the exponent in the inte-
grand $AS” (z5)(z — x,)? decreases rapidly for increasing |z — | due to S”(z,) < 0.
This yields a Gaussian integral which can be solved analytically,

M~ f(xs)e)‘s(:’:s)/oo dz 02" (@) (@ =ws)? (A.41)

~ Flag)eS@), | _A;ff(x) (A.42)
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For complex variables the simple one-dimensional integral becomes a contour integral
and the maxima z, are replaced by saddle points. In the special case of the strong
field approximation (SFA) (section 2.3) the prefactor f(z) vanishes at © = x5 which
calls for special treatment as well. This is discussed in detail in [17], the results
obtained there are used in section 2.3.
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A.4. Complex Coulomb Correction in First Order

There are different possibilities how to include corrections for external potentials
(e.g. the Coulomb potential) into the strong field approximation (SFA). One basi-
cally ad-hoc method is the trajectory-based Coulomb-corrected strong field approx-
imation (TCSFA) demonstrated in chapter 3 where the tunneling step is separated
from the real-time propagation while only the latter is modified to include an ex-
ternal potential. Here we want to give a derivation for a perturbative Coulomb
correction of the plain SFA trajectories in first order of the ion charge Z. It is
based on section 6.2.1 of [18] but comes to slightly different conclusions. The basic
ideas applied here are already used in the derivation of the Coulomb-corrected PPT
rate [21].

We start with the action as used in equation (4.11),

So = /t :d dt <;[p +AQR 4+ Jp) (A.43)
_ t:d dt (;vg(t) n Ip> (A.44)

where vy (t) denotes the uncorrected trajectory and Sy the uncorrected action. This
now shall be modified to include the Coulomb potential. To do this consistently we
need to have a look at the related method of path integrals. There the action is
always an integral over a Lagrangian function L which in our case reads
L o

LO = 5’1)0 —FE- To (A45>
where the time dependencies have been dropped for brevity. E = —%A is the
electric field of the laser.

One should note that the same formalism as used below can also be applied to the
Hamiltonian function. However, due to differences in the approximations made, the
result is different and, at least in our case, not useful at all as it only predicts a field-
and momentum-independent shift of the ionization probability. This is discussed in
detail in appendix B of [18].

Here the Lagrangian function can be identified in above equation for the action
by some identical transformations,

t 1
Sp = / *at (21;3@5) +Ip> (A.46)
ls
=70 vo| — / dt <2v0(t) + Vo1 — Ip> (A.47)
s Jts
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where for the uncorrected trajectory v9 = —F holds,
tq ta 1 9
=7y -vo| — / dt <2vo(t) —FE-ry— Ip> (A.48)
s ts
ta ta
=70 "V - dt (LO - Ip) . (A.49)
ts ts

Now we obtain the full action including the Coulomb potential by replacing the
uncorrected trajectory rg, vy by the corrected trajectory r, v and the uncorrected
Lagrangian Ly = Ty — Vg by its full counterpart L = T — V where T is the kinetic
energy and V the potential. This results in the full action

2] ta 1 5 Z
— S Eor+ 21 A.
.y /t dt (20 r+ = p> (A.50)

which cannot be evaluated directly as the full trajectory 7, v is unknown. Instead
we do a first order expansion in Z by expanding the full trajectory as

S=7r-v

!
s

r=r)+mr (A.51)
v=v+v. (A.52)

Here the notation is as in chapters 3 and 4, i.e., p denotes the canonical or drift
momentum and v the velocity or kinetic momentum. The final canonical momentum
p (which is time-independent) of r, v is by definition the same as the canonical
momentum corresponding to 7. Note that 7y # r(, and accordingly the canonical
momentum p’ and ionization time ¢, corresponding to r( are different. This is
necessary as the term v; does not vanish at detection time ¢; and thus leads to a
change in final momentum which can be written as

p=p +vi(ta) = v(ty). (A.53)

r(, vy is termed the zeroth order corrected trajectory and 7, vy the first order
correction. We assume that the latter are proportional to the ion charge, ry « Z,
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v1 x Z and ts — t, o« Z . The expanded action reads

tq

S =(ro+m1) (vp+v1)

tl

s

ta 1 A
—/ dt | ~(vy+v1)? = E - (r)+ 1) + ——moe— — I, (A.54)
) 2 (7 +71)2
/ td+ / ‘t 4 ta
=7r)-v rh v v
0" %ol, tTo 1|, FTL Y|,
td 1 Z
—/ dt (22 +vh-vi—E-vh—E-r 4 ——o — I, (A.55)
K 2 (ro +71)?
t t tq VA
=S4+ 7h-m| | 47 d—/ dt (vh-vi—E-r+—2— | (A56)
60 e (rp 72

where we neglected terms of quadratic or higher order in Z. S|, denotes the zeroth
order action (A.48) evaluated along the zeroth order corrected trajectory r(. The
term v, - v; under the integral can be integrated by parts, yielding

ta / / ta ta /
dtvy-vi =vy-7r1| — / dtoy -1 (A.57)
U ts U
taq tq
= v, - rl‘ + dtE -1 (A.58)
ts t,

which can be plugged into the action (A.56). Thus we have

t tq 7
S = S(') + r6 . 'vl’: — dt ——. (A.59)

- I (rg+71)?
The Coulomb integral can be simplified when expanding the integrand,

Z _Z 7
N R 7 I

where we need to keep only the first term as already the second term is quadratic
in Z. Additionally we want to evaluate this integral along 7 instead of 7. To that

.1 +0(2°) (A.60)
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end we write

ro(t) = [ darip' + A
=p'(t—t,)+ /t/t dr A(7)

t ts
—p(t—t)—(p-p)(t—t)+ [ dr A+ [ drA(r)
ts t;

= p(t 1)+ plts — )~ (Pt~ £ + [ ar A+ [ ar A

ts !

=ro(t) +p(ts — 1)) = (P —P)(t —15) + ;S dr A(r)

= ro(t) + O (2) (A.61)

where we also used that

ts
dr ~ts—th o< Z. (A.62)
t

Following this argumentation we can write the action (A.59) as

¢
S PV
t. Ji \/%

For the sake of completeness one has to take care of the boundary conditions. As we
set ro(ts) = ro(ty) = 0, replacing the lower limit of the time integrals is nontrivial
due to the occurring divergence. However, since this divergence at the lower bound-
ary is lifted using a matching procedure (see appendix A.5), it is simply neglected

here. To remove the dependence of S on the zeroth order corrected trajectory we
expand S = Sy(p/, t,) around p and ¢,

S:S(')+’r6-v1

(A.63)

05y
Ot

(th —ts) + 95 (' —p). (A.64)

/t/ ~ ts
SO(pv s) SO(p, )+ 6}) -

Dits

The time derivative of Sy vanishes at p and ¢ by definition of the saddle-point time
ts via the saddle-point equation (SPE) (2.44). The momentum derivative reads

? (' —p)=® -p)- “ar [p+ A(t)] (A.65)
p p,ts ts
= —V1 (td) . ’I"()(td) (A66)

where the initial condition r¢(ts) = 0 was used. Plugging this into the action (A.63)
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yields
ta A , td
S=8y— [ dt—2—+7)- 'vl‘ "~ wi(ta) - molta) (A.67)
ts A /1”(2) ts
taq A
=So— [ dt —=+r((ta) - vi(ta) — ro(ts) - vi(ty) —vi(ta) -To(ta)  (A.68)
ts /T'%

where the two boundary terms at ¢, are equal and thus vanish due to equation (A.61)
and v « Z. The remaining term 7{(t}) - v1(¢;) is more complex to evaluate as
r((t,) = 0 and vy (t,) exhibits a divergence due to its definition as the integral over
the Coulomb force,

t Zr!
vty =- [ dar =10 (A.69)
6o ()Y
Thus we take the limit
t Zr{(T)
li 2t - vi(t) = i ") = dr —— 9 A.
tlgtl’s rO( ) vl( ) tigl’s TO( ) ( " T (T62(T))3/2> ( 70)

which can be simplified using the expansion

ro(t = t) = th [p'+ A(7)] (A.71)

2

~[p + AWt —-t). (A.72)

The integral over the Coulomb force can be approximated as well due to the limit
t — t/,, leading to

. / . / Zry(t) /
tlgi ro(t) - vi(t) = tlg% ro(t) - (—W(f - ts)> (A.73)

~ lim [+ AU 1)) (— AW AT —t;>)

t—t!, ([p’ 4 A(tg)]Q(t o t’s)2)3/2
(A.74)
. Z
e (_[19’+A(t’5)]2> (A.75)
== flp (A.76)

where in the last step again the SPE (2.44) was used. The final expression for the
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action thus reads

S—so— [“a-Z o (A.77)

F

The last term only shifts the yield of the whole spectrum by a momentum-independent
factor and thus can be dropped when doing only qualitative analysis. The only re-
maining term in first order is the time integral over the Coulomb potential along the
uncorrected zeroth order trajectory. This is quite convenient as the latter is known
analytically. How this is evaluated in practice and which numerical problems have
to be considered is discussed in chapter 4. The divergence of the Coulomb term
at the lower boundary which occurs when using the initial condition r¢(ts) = 0 (as
already used above) can be circumvented by a matching procedure as discussed in
appendix A.5.
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A.5. Matching Procedure

The Coulomb integral

T VA
Se=— [ dt——— (A.78)

te r5(t)

from equation (A.77) diverges at the lower boundary due to the initial condition
ro(ts) = 0 and needs to be regularized. This can be done by matching to the
asymptotic phase of the atomic wave function as described in [18], an ansatz already
used in the derivation of the Coulomb-corrected PPT rate [21]. It shall be presented
here in a more detailed fashion.

We start by expanding the trajectory ro(t) around the initial time s,

ro(t — ts) = tdt’ [p+ A(t)] (A.79)

ts

~[p+ Ats)(t —ts) (A.80)

o(t = ts) = \/re(t — ) 2, (t — ts) = ik(t — ts) (A.81)

where we used the saddle-point equation (SPE) (2.44) and defined x = /21, . Now
we choose some matching time t, under the condition that the electron is far from
the atom, i.e., that the Coulomb force is small compared to the laser field, but the
time passed since t; is still much less than one optical cycle. This is realized by the
relation

1
— L wlty —ts| < 1 (A.82)
Ky

from [63] with the multiquantum parameter Ky = I;,/w. More detailed discussions
of this condition can be found in [18, 21] where the electron position is compared
to the width of the tunneling barrier. We now evaluate the Coulomb integral at its
lower boundary where we replace ts by t. and plug in the expansion for ry(t) to find

A

St = — dt —— A.83
© t.  To(t) ( )

@z

t. ik(t —ts)

dt — !
t.  (t—ts)
= —in, In(t, — ty)

= —in,In (j{r(&))

= in, In(ix?) — in, In(kr(t)) . (A.84)
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Here we defined an effective quantum number n, = Z/, /21, . This result now needs
to be matched with the asymptotic phase of the atomic wave function. We assume
that the asymptotic behavior of the radial ground state wave function is [21]

Doy (1) ~ ()" e (A.85)
— o Hrtns In(kr) (A86)
= el (A.87)

from which we infer the action of the atomic wave function
Sat = ikr — iny In(kr) . (A.88)

Note that the second term matches the divergent part of the Coulomb integral at
its lower boundary. Thus we can subtract this term from the full Coulomb integral
to obtain a finite result,

T
SV = [ at

. + iny In(kr(ty)) . (A.89)

For the numerical evaluation it is useful to rewrite this using the calculations from
above,

1

in. In(kr(ty)) = ing In(is?) —in. [ dt — (A.90)

ta — s
i In(in?) —in. [ dt—— in, [ dt L A91
= in, In(ik®) — in. 5 tt—ts+1n*/ tt—ts (A.91)

T

= in, In(ix?) —in, [ dt +in, In(T — t5) (A.92)

t — Us

T
= —in, dt + iny In(ik?(T — t5)) (A.93)
[ — s
so that the regularized Coulomb integral can be written as
ST = in, In(iKA(T — t,)) — /T dt [ Z_4 m] (A.94)
© tx TO(t) t—ts

with ro(t) = 1/72(t) . The matching time ¢, needs to be chosen numerically, but since
the integrand in equation (A.94) approaches 0 as t, — t, this choice has negligible
impact on the result as long as |t. — 5| is small. In the present implementation we
use |t —ts| = 10751 which is bound to the upper limit of condition (A.82). This
condition proved to be sufficient as the results did not change even under significant
variations.
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B.1. Applying Kepler's Laws to Find the Asymptotic
Momentum

The initial conditions are that an electron trajectory r(t), v(t) has been propagated
to some finite time t4 at which Kepler’s laws shall be used to calculate the final
velocity vg, = v(t — 00). This happens under the assumption that the only force
influencing the electron is a conservative central force F(r) = —VV (r) with r = v/r2
like gravity or, as in this case, the Coulomb force. For convenience we introduce the
short forms r(t4) = r and v(t4) = v. The laser pulse is assumed to be off/far away

at time t4, thus kinetic and canonical momentum are equal here.

First we calculate the total energy of the electron to know whether its trajectory
is bound (Eg, < 0) or free (Eg, > 0),

Bin =5 = = (B.1)

Bound trajectories are not considered as they will not reach the detector and thus
can not contribute to the spectrum, they are simply discarded. Free trajectories are
treated using Kepler’s laws.

First we define the mass equivalent
w=2z. (B.2)
The electron velocity is split into a radial and a tangential part,

r
Uradial = Ur = ; v (B3)

r 2
Utangential = Ut = ('U — Ur ’I") . (B.4)

For the Kepler formulas we need some specific quantities,

a= Qgﬁn (semi-major axis) (B.5)
202
p=—>- (semi-latus rectum) (B.6)

2 22E
c— \/7 4 UL in —z fin (eccentricity) . (B.7)

Another quantity is the angle of the position r in polar coordinates,
v = arctan2(ry, ) , (B.8)

the function with two parameters is used to obtain the solution in the correct quad-
rant. Here we assume that the motion takes place in the y-z-plane and the centers of
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the Coulomb field and the coordinate system coincide. ¥ is now the running variable
in a Kepler orbit, it describes the angle w.r.t. the point of closest approach and is
negative when approaching and positive when leaving (the so-called true anomaly),

¥ = + arccos L— (B.9)
er
The sign of ¥ depends on the radial velocity and the angular momentum,
l=rxv, l;=1le,;. (B.10)

Using this we arrive at

¥ = sgn(vyly) arccos (

(ff - 1)) (B.11)
( - )) B.12
I

M= O]

= sgn(v;l,) arccos (

where we defined the sign function as

1 x>0
sgn(z) =<0 x=0. (B.13)
-1 =<0

We need the final true anomaly at infinite distance as well,

1
Yan = sgn(l,) arccos (—6) . (B.14)

Finally we want to know the angle of the final momentum in polar coordinates which
is found from geometric arguments to be

0=V +09+7. (B.15)
The magnitude of the final momentum is known,
Vin = V 2Ffn - (B.16)

These two quantities now define the final velocity vector in polar coordinates which
are easily converted into a Cartesian vector.
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Action The action associated with the propagation to infinity must be determined
as well. We know that once the laser is off/far away the action integral simply
condenses to

t2
So(t1,t2) = /

t1

(pz(t) - V(r)) dt (B.17)

t
— [ EBat (B.18)

t1
= E(ty — t1) (B.19)
where the ionization potential has been left out. The additional action thus reads
Sik{ep = Soﬁ(td, OO) (B20)
= Fgn(oo — tg) . (B.21)

The first term is infinite but only amounts to a phase factor which vanishes when
calculating the probability wp, = |M (p)|* from the corresponding matrix element.
Accordingly the final result for the additional action according to Kepler’s laws can
be written as

Skep = —Efintq - (B.22)
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B.2. Binning on the Final Momentum Grid

The evaluation of equation (3.28) is numerically much more challenging than the
plain strong field approximation (SFA) in saddle-point approximation as repre-
sented by equation (2.46). This is due to the unknown (and sometimes chaotic)
relation between the initial momentum p and the final momentum p,,. To calcu-
late a one-dimensional photoelectron momentum spectrum in a momentum range
Dz.00 = |—Pmax; Pmax] We need to consider initial momenta from the larger range
Pz = [—d Pmax, d Pmax] Where d > 1 accounts for possible long-range interactions
with the potential V' (7, ¢). This needs to be tuned by hand for the specific situation.
Furthermore for every final momentum several different initial momenta can con-
tribute. Thus the evaluation of (3.28) becomes a problem of statistics. To achieve
good resolution in the final spectrum (both in momentum space and in the yield) we
need to ensure that every final momentum is represented by many trajectories. It is
not unusual to take 100 to 1000 times more trajectories than desired final momenta
for the spectrum.

Every trajectory can be represented by the initial momentum p, the emission time
ts, the final momentum p., and the individual transition matrix element M,(ts)
from (3.28). It should be noted that for one initial momentum p usually many
solutions t4 of the saddle-point equation (2.44) exist, depending on the laser pulse
represented by the vector potential. Here it is useful to select only the most relevant
solutions as described in section 2.3 to reduce the numerical effort.

For plotting the individual trajectory contributions need to be gathered on a final
momentum grid. The quality of the resulting spectrum is surprisingly sensitive on
how this binning is performed.

Simple binning method There is a very simple way to do the binning. Let us
for now restrict the problem to one dimension, the extension to higher dimen-

sions is straightforward. Define a final momentum grid p%bm) with n = [0, Pmax],
p((]bm) = —Pmax and pgf:lg,)( = Pmax, the grid constant is
(bin) (bin)
gpdin) = Prmex “P0 (B.23)
nmax

The resulting spectrum is represented by the coherent sum of all individual transition

matrix elements, M (pT(lbm)). For some final momentum p., the bin i is selected via
(bin)
. Poo — Do 1
1= \‘nmaxpg::rilg))( B p((]bin) + QJ (B24)
(bin)
| Peo — Py 1
= {Ap(bin) + QJ (B.25)
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which just locates the closest bin momentum pz(-bin). The individual transition matrix

M, (ts) is added to the spectrum at the selected momentum bin,
M@y = MEP™) + M, (1) (B.26)

This is repeated for all trajectories.

Smooth binning method The method described above neglects the difference be-
tween pso and pl(-bm). This can be improved by splitting the contribution M, _(ts)
between the two neighboring momentum bins. The momentum grid is the same as

above. The nearest neighbors 7 and 7 + 1 are then found from

Do — p(()bin)
i= Ap(bm)J (B.27)
without the shift by % The splitting factor f; is calculated as
Poo — p(bin)

which denotes the fraction of the contribution to grid point ¢. The contribution to
i+ 1is fiy1 = 1 — fi. The individual transition matrix M,_(ts) is then split up
between ¢ and i + 1 as

M(pP™) = MpP™) + V/FiMy, (t) (B.29a)
MEEYY = MEEY) + V1= fiM,. (L) (B.29b)

From our experience this method significantly increases the contrast in the spectra
and thus reduces the number of trajectories that have to be calculated, i.e., the
numerical effort. However, this becomes relevant only when calculating spectra in
two dimensions as there the number of trajectories to be calculated reaches 107 or
even 10® when considering large momentum ranges.

Final Spectrum The final result is a momentum-resolved photoelectron spectrum,

i.e. the probability W (bin) = Wp to find an electron within the momentum bin
represented by p%bm) = p. This is described by the transition matrix element

M (p%bin)) = M (p) calculated above via

wp d®p = |M(p)|* d®p (B.30)

so that w, = |M(p)|*. However, this depends on the coordinates used. When
considering a two-dimensional cut through a three-dimensional Cartesian coordi-
nate system the probability stays the same as above. When calculating spectra for
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linearly polarized laser fields it is often useful to convert to cylindrical coordinates
(p parallel to the polarization direction and p, in perpendicular direction) where
due to cylindrical symmetry one can integrate over the angle ¢. In that case the
probability is different,

w(py,p1) dpydpy = |M(p)|* &®p = |M(p)|* prdp, dpj de
= |M(p)|* 27 p.dpydp. (B.31)
so that w(p,p1) = 27 p1 |M(10)]2 Another important case is the energy-resolved
photoelectron spectrum in spherical coordinates where w(&p, §)p) is the probability
to find an electron with energy &, = %p2 at a certain emission direction which

corresponds to the solid angle element df2,. Here the relation is as follows ([17],
or [32], section 7.3.5):

w(Ep, Qp) dEp dQp = |M (p)|* dp® = |M(p)|* p*dp Yy = |M (p)]* p dép .
=pdp
(B.32)

leading to w(&p, Qp) =p |M(p)|*.
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