
University of Rostock

Toward Composing Variable Structure
Models and Their Interfaces

A Case of Intensional Coupling Definitions

Dissertation

zur
Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)
der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

betreut durch:
Prof. Dr. rer. nat. habil. Adelinde M. Uhrmacher

vorgelegt von:
Dipl.-Inf. Alexander Steiniger, geb. am 25.03.1983 in Bad Muskau
Satow, den 1. März 2018

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2018-0141-0

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

Verteidigung: 23. Juli 2018, Rostock

Gutachter:

� Prof. Dr. rer. nat. habil. Adelinde M. Uhrmacher, Institut für Informatik, Universität
Rostock

� Prof. Hans L. M. Vangheluwe, Ph.D., Department of Mathematics and Computer Science,
University of Antwerp

� Bernard P. Zeigler, Ph.D., Professor Emeritus, Electrical and Computer Engineering
Department, University of Arizona

In memory of
Eberhard Walter Steiniger

Abstract

Modeling and simulation are well established tools to study intriguing systems, both real and
imaginary. For this, systems of interest need to be represented by formal models capturing
the systems’ essential behavior, while abstracting from irrelevant aspects.

Many systems of interest are inherently complex, i. e., they consists of numerous homogeneous
or heterogeneous components, where each component can be viewed as a system of its own.
The behavior of such a complex system emerges from the interaction of its components and can
often not be understood by studying the components in isolation. In addition, the structure
of complex systems is often variable, i. e., can change over time. Systems with a time-variant
structure are, e. g., socio-technical systems or biological systems.

Component-based modeling and simulation takes the structural complexity of systems under
study as well as the correctness and consistency of model compositions representing these
systems into account. Creating a model of a complex system by pursuing a component-based
approach (i. e., by composition) allows the modeler to reduce (i) the complexity of individual
model units, and (ii) the development costs by reusing already existing components. Variable
structure modeling, on the other hand, deals with the structural variability of systems, by
allowing the modeler to explicitly reflect structure changes in the models representing those
systems (i. e., system specifications). Variable structure modeling, similar to component-based
modeling, enables the modeler to reduce the complexity of system specifications.
Both component-based modeling and variable structure modeling describe and focus on a

similar aspect of a model, that is its structure. However, traditional component-based modeling
assumes a static model structure, whereas variable structure modeling often does not provide
means as sophisticated as those provided by component-based modeling to specify complex
models as an assembly of reusable, self-contained, replaceable, retrievable, customizable, and
interoperable components, which can be used in different contexts or by third parties.
In this thesis, we investigate a combination of both kinds of modeling approaches and

discuss its implications and limitations. The focus is on a structural consistent specification
of couplings in modular, hierarchical models with a variable structure. For this, we exploit
intensional definitions, as known from logic, and introduce a novel intensional coupling
definition, which allows a concise yet expressive specification of complex communication and
interaction patterns in static as well as variable structure models, without the need to worry
about structural consistency. The intensional coupling definition is frequently translated into
a concrete coupling scheme by the respective simulation algorithm, which takes the current
state and structure of the model into account and guarantees the correctness of the derived
concrete couplings. Furthermore, we emphasize model (component) interfaces based upon
which couplings are defined intensionally. As a proof of concept, the introduced intensional
coupling mechanism is realized as a part of ML-DEVS, a modular-hierarchical, system-
theoretic modeling formalism, which allows variable structure and multi-level modeling. The
abstract simulator, i. e., simulation algorithm, of ML-DEVS illuminates how an intensional
coupling definition can be translated into a concrete coupling scheme during simulation while
ensuring structural consistency.

At the end of this thesis, we briefly discuss how intensional definitions can help modelers to
streamline their models further.

v

CSS-Classification (2012)

� Computing methodologies�Modeling and simulation�Model development and analysis�Modeling method-
ologies

� Computing methodologies�Modeling and simulation�Simulation theory�Systems theory

� Computing methodologies�Modeling and simulation�Simulation types and techniques�Discrete-event
simulation

� Theory of computation�Formal languages and automata theory�Formalism�Algebraic language theory

� Applied computing�Life and medical science�Systems biology

� Applied computing�Law, social and behavioral sciences�Sociology

Keywords

modeling and simulation, modeling methodology, modeling formalism, closure under coupling,
system theory, extensional definition, intensional definition, componentbased modeling and
simulation, model composition, composability, modular modeling, hierarchical modeling,
variable structure modeling, structure modeling, structure simulation, multi-level modeling,
variable structure models, model components, composition, interfaces, complex models, smart
environments, mitochondrial networks

vi

Zusammenfassung

Modellierung und Simulation sind etablierte Werkzeuge um interessante Systeme zu studieren,
sowohl reale als auch imaginäre. Dafür müssen diese Systeme durch formale Modelle repräsen-
tiert werden, welche das grundlegende Verhalten dieser Systeme widerspiegeln, während sie
von irrelevanten Aspekten abstrahieren.

Viele Systeme von Interesse besitzen eine inhärente Komplexität, d. h. sie bestehen aus einer
Vielzahl homogener oder heterogener Komponenten. Jede dieser Komponenten kann selbst
wieder als ein System betrachtet werden. Das Verhalten solcher komplexen Systeme emergiert
aus der Interaktion seiner Komponenten und kann oft nicht verstanden und nachvollzogen
werden, wenn die Systemkomponenten in Isolation betrachtet werden. Des Weiteren ist die
Struktur von komplexen Systemen oft variabel, d. h. sie kann sich mit der Zeit verändern.
Beispiele für Systeme mit zeitveränderlicher Struktur sind z. B. sozio-technische Systeme oder
biologische Systeme.
Komponentenbasierte Modellierung und Simulation berücksichtigt die strukturelle Kom-

plexität von Systemen sowie die Korrektheit und Konsistenz von Modellen, die diese Systeme
repräsentieren. Modelle komplexer Systeme durch einen komponentenbasierten Ansatz zu
erstellen (d. h. durch Komposition), erlaubt es, (i) die Komplexität der individuellen Modell-
teile zu reduzieren und (ii) die Entwicklungskosten durch die Wiederverwendung von schon
existierenden Modellkomponenten zu reduzieren. Die Modellierung von variablen Strukturen
beschäftigt sich mit der Strukturvariabilität von komplexen Systemen, in dem sie es dem
Modellierer erlaubt, im System auftretende Strukturänderungen explizit in den Modellen
dieser Systeme zu reflektieren. Ähnlich wie komponentenbasierte Modellierung, erlaubt es
die variable Strukturmodellierung dem Modellierer, die Komplexität von Systemmodellen zu
reduzieren.
Sowohl die komponentenbasierte Modellierung als auch die variable Strukturmodellierung

beschreiben ähnliche oder gleiche Aspekte eines Modells: deren Struktur. Dennoch nimmt die
traditionelle komponentenbasierte Modellierung statische Modellstrukturen an, wohingegen
variable Strukturmodellierung oft nicht so ausgefeilte Mittel, wie die komponentenbasierte
Modellierung, zur Spezifikation von komplexen Modellen als eine Komposition von wiederver-
wendbaren, in sich geschlossenen, austauschbaren, abrufbaren, konfigurierbaren und interoper-
ablen Komponenten zur Verfügung stellt, welche in verschieden Kontexten oder durch Dritte
benutzt werden können.
In dieser Dissertation untersuchen wir die Kombination beider Arten der Modellierung

und diskutieren deren Auswirkungen und Limitierungen. Dabei liegt der Fokus auf einer
strukturell-konsistenten Spezifikation von Kopplungen in modular-hierarchischen Modellen
mit einer variablen Struktur. Dafür nutzen wir intensionale Definitionen, wie sie aus der
Logik bekannt sind, und führen eine neuartige intensionale Definition von Modellkopplungen
ein, welche eine kompakte, dennoch ausdrucksstarke Spezifikation von Kommunikations- und
Interaktionsmustern in Modellen mit sowohl statischer als auch variabler Struktur ermöglicht,
ohne dass sich der Modellierer Gedanken über strukturelle Konsistenz machen muss. Die in-
tensionale Kopplungsdefinition wird ständig von dem entsprechenden Simulationsalgorithmus
in ein konkretes Kopplungsschema übersetzt, welcher den aktuellen Zustand und die aktuelle
Struktur des Modells berücksichtigt und die Korrektheit der erzeugten konkreten Kopplungen
garantiert. Des Weiteren heben wir die Bedeutung und Rolle von (Modell-)Schnittstellen
hervor, basierend auf welchen intensionale Kopplungen definiert werden können. Als Mach-
barkeitsstudie haben wir das Konzept von intensionalen Kopplungsdefinitionen als Teil von

vii

ML-DEVS realisiert. ML-DEVS ist ein modular-hierarchischer, system-theoretischer Model-
lierungsformalismus, welcher variable Strukturen und Mehrebenenmodellierung erlaubt. Der
abstrakte Simulator, d.h. der Simulationsalgorithmus, von ML-DEVS, verdeutlicht, wie eine
intensionale Kopplungsdefinition in ein konkretes Kopplungsschema während der Simulation
und unter Zusicherung von struktureller Konsistenz umgewandelt werden kann.

Am Ende der Dissertation diskutieren wir kurz, wie intensionale Definitionen Modellierern
dabei weiterhelfen können, ihre Modelle weiter zu verschlanken.

CSS-Klassifikation (2012)

� Computing methodologies�Modeling and simulation�Model development and analysis�Modeling method-
ologies

� Computing methodologies�Modeling and simulation�Simulation theory�Systems theory

� Computing methodologies�Modeling and simulation�Simulation types and techniques�Discrete-event
simulation

� Theory of computation�Formal languages and automata theory�Formalism�Algebraic language theory

� Applied computing�Life and medical science�Systems biology

� Applied computing�Law, social and behavioral sciences�Sociology

Schlagwörter

Modellierung und Simulation, Modellierungsmethodik, Modellierungsformalismen, Closure
under Coupling, Systemtheorie, extensionale Definitionen, intensionale Definitionen, kompo-
nentenbasierte Modellierung und Simulation, Modellkomposition, Komponierbarkeit, modulare
Modellierung, hierarchische Modellierung, variable Strukturmodellierung, Mehrebenenmodel-
lierung, variable Strukturmodelle, Modellkomponenten, Komposition, Schnittstellen, komplexe
Modelle, smarte Umgebungen, Mitochondriennetzwerke

viii

Acknowledgements

First, I want to thank my supervisor Prof. Adelinde “Lin” Uhrmacher who not only gave me
the chance to start my doctoral studies but also the opportunity to work with some great and
kind people. I am also grateful for Lin’s endless patience and that she never lost hope that
the day of the submission will finally come.
Another thanks go to my reviewers Bernard P. Zeigler and Hans L. M. Vangheluwe, who

were willing to review my thesis and whose seminal work, after all, had a huge influence on
the content of the thesis.
A very special thanks go to all my former colleagues from the modeling and simulation

group at the University of Rostock, especially to Stefan Rybacki, Roland Ewald, Stefan Leye,
Fiete Haack Johannes Schützel, Tobias Helms, Danhua Peng, Tom Warnke, Jan Himmelspach,
and Carsten Maus. They provided my with the best help and support anyone could wish for.

I also want to thank Prof. Thomas Kirste who gave me the change to become a scholarship
holder in the research training group “MuSAMA.”

Furthermore, I am grateful to my former colleagues from the research training group. With
a special mention to Michael Zaki, Kristina Yordanova, René Leistikow, Redwan Mohammed,
Till Wollenberg, David Gassmann, Anke Lehmann, Enrico Seib, René Zilz, and Axel Radloff.

A very special thanks go to my financée, who supported me in her inspiring, understanding,
and affectionate manner.

And finally, last but by no means least, I want to thank my parents and grandparents, who
supported me throughout my whole life and made this possible in the first place.
Thanks for all your encouragement. If I missed someone, please don’t be mad at me.

ix

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Recurring Examples . 4
1.3 Contribution . 7
1.4 Structure and Notations . 9

I Basics and Background 11

2 Basic Terminology 13
2.1 Systems . 14
2.2 Models . 15
2.3 Simulation . 16
2.4 Modeling . 17
2.5 Validity . 18
2.6 Simulators . 18
2.7 Modeling Formalisms . 18

3 Extensional and Intensional Definitions 21
3.1 Terms and Definitions . 22
3.2 Extensional Definitions . 24

3.2.1 Ostensive definitions . 24
3.2.2 Enumerative Definitions . 25
3.2.3 Definitions by Subclasses . 26
3.2.4 Recursive Definitions . 26

3.3 Intensional Definitions . 27
3.3.1 Synonymous Definitions . 27
3.3.2 Etymological Definitions . 28
3.3.3 Operational Definitions . 28
3.3.4 Definitions by Genus and Difference 29

3.4 Summary and Discussion . 30

4 Discrete Event Simulation 33
4.1 Basics . 34
4.2 Discrete Event System Specification and its Variants 35

4.2.1 Parallel DEVS . 37
4.2.2 Structured Systems and Structured Paralled DEVS 41

4.3 Summary . 44

5 Component-Based Modeling and Simulation 45
5.1 Evolution and Basics . 46

5.1.1 Component-Based Software Engineering 47
5.1.2 Modular-Hierarchical and Object-Oriented Modeling 48
5.1.3 Component-based Modeling . 50

5.2 Composability and Interoperability . 51
5.3 Component-based Simulation . 53

xi

Contents

5.4 COMO . 55

5.5 Summary . 56

6 Dynamic Structure Systems and Variable Structure Models 59
6.1 Dynamic Structure Systems . 60

6.2 Variable Structure Models and Variable Structure Modeling 60

6.2.1 Aspects of Variable Model Structures 61

6.2.2 Structure Changes, Structure Transitions, and Structure Transition
Functions . 65

6.3 Related Work . 65

6.3.1 Variable Structure Variants of DEVS 66

6.3.2 Classification and Discussion . 68

6.4 Summary . 70

II Concept and Implementation 71

7 Composition of Variable Structure Models 73
7.1 Commonalities and Differences . 74

7.2 Combination and Contradiction . 75

7.3 Hiding Structure Variability . 77

7.4 Supersets, Loose Connections, and the Revision of COMO 78

7.4.1 Description of Variable Interfaces . 79

7.4.2 Description of Variable Communication Structures 80

7.4.3 Description of Variable Compositions 81

7.4.4 Correctness and Composability . 82

7.5 Summary . 82

8 Interfaces, Interface Instances, and Intensional Couplings 83
8.1 Attributes . 84

8.2 Models . 85

8.3 Extensional Couplings . 86

8.4 Intensional Couplings . 89

8.5 Interfaces . 93

8.6 Attribute Assignments and Interface Instances 95

8.7 Intensional Interface Couplings . 98

8.8 Translation of Intensional Interface Couplings 100

8.9 Summary . 101

9 Revision of Multi-Level-DEVS 103
9.1 ML-DEVS . 104

9.2 Model Specification . 105

9.2.1 Micro-DEVS Models . 107

9.2.2 Macro-DEVS Models . 110

9.2.3 Consistency of Model Specifications in ML-DEVS 122

9.3 Abstract Simulator . 123

9.3.1 Simulator . 125

9.3.2 Coordinator . 128

9.3.3 Root-Coordinator . 136

9.4 Closure under Coupling . 137

9.5 Systems Specified . 143

9.6 Summary . 145

xii

Contents

III Conclusion and Future Work 147

10 Conclusion 149
10.1 Conclusion and Discussion . 150

11 Future Work 153
11.1 Usability Evaluation of Modeling Approaches 154
11.2 Intensional Definitions . 155
11.3 Improvements on ML-DEVS . 156

11.3.1 Activation Events . 156
11.3.2 Model Specification . 156

IV Appendices 159

A Mathematical Notations and Concepts 161
A.1 Set- and Function-Theoretic Concepts . 161

A.1.1 Supersets . 161
A.1.2 Families of Sets and Indexed Families of Sets 162
A.1.3 Disjoint Unions or Disjoint Sums . 164
A.1.4 Bags and Bag Sets . 164
A.1.5 Domains, Ranges, Co-Domains, and Images 166
A.1.6 Partial Functions . 168
A.1.7 Projections and Projection Functions 169

A.2 Structuring Sets . 169
A.2.1 Multivariable Sets . 170
A.2.2 Generalized Cartesian Products . 172
A.2.3 Partial Cartesian Products . 174

B Finite State Automata 175
B.1 Basic Automata . 175
B.2 Moore Machine . 176

C Abstract Simulator of P-DEVS 177
C.1 Simulator . 177
C.2 Coordinator . 178
C.3 Root-Coordinator . 178

Publications

xiii

List of Figures

1.1 The SmartLab of the University of Rostock. 6

2.1 Different categories of models. 16
2.2 Studying a system of interest. 17

3.1 Extension and intension of a term. 22
3.2 Components of a definition. 23

4.1 Trajectory with piecewise constant segments. 35
4.2 Relationship between closure under coupling and a model hierarchy. 36
4.3 Classic coupling scheme in DEVS. 42
4.4 Port-to-port couplings. 44

5.1 Relationship between composability and interoperability. 53
5.2 Transforming a multi-formalism model composition by making use of closure

under coupling. 55

6.1 Change of a composition during model execution. 63
6.2 Replacement of a component during model execution. 63
6.3 Transitions between different incarnations of a variable structure model. . . . 64

7.1 Contradiction between traditional compsition and variable structures. 75
7.2 A component that hides structure variability. 77
7.3 Configuration, instantiation, and translation in COMO. 79
7.4 Using intensional loose connections to achieve a communication structure of

arbitrary complexity in COMO. 81

8.1 Two different incarnations of a model of a mitchondrial network. 88
8.2 Two different model interfaces. 97
8.3 Distance-based coupling in a model of a mitochondrial network 99

9.1 Two approaches to model the macroscopic behavior of an eukaryotic cell. . . 106
9.2 A hierarchy of multiple levels of behavior in ML-DEVS. 106
9.3 Different kinds of state transitions in Micro-DEVS. 110
9.4 Simplified trajectories of a Micro-DEVS model. 111
9.5 Inhibation of mitochondria. 119
9.6 State sharing in ML-DEVS. 120
9.7 Mapping between a hierarchical ML-DEVS models and their corresponding

processor trees. 124
9.8 Simulation protocol of ML-DEVS . 124
9.9 The relationship between port-to-port maps and port-to-port couplings in

ML-DEVS. 132
9.10 Closure under coupling . 138

A.1 Euler diagram showing a subset and superset relation 161
A.2 Superset of components of a variable composition. 162

xv

List of Tables

3.1 Techniques for defining terms, i. e., creating definitions. 30

4.1 List of some variants and extensions of DEVS. 38

5.1 Comparison of approaches for component-based simulation. 56

6.1 Comparision of DEVS variants with variable structures. 70

9.1 The messages the communication protocol of the abstract simulator of ML-
DEVS consists of. 124

xvii

List of Algorithms

8.1 Translation of intensional model couplings . 92
8.2 Translation of intensional interface couplings. 101

9.1 Simulator of ML-DEVS for Micro-DEVS models. 126
9.2 Coordinator of ML-DEVS for Macro-DEVS models. 128
9.3 Initialization of the Coordinator. 129
9.4 Processing of an incoming *-message by the Coordinator. 130
9.5 Translation of multi-couplings into a concrete coupling scheme in ML-DEVS. 131
9.6 Processing of an x-message by the Coordinator. 134
9.7 The Root Coordinator of ML-DEVS. 136

C.1 The Simulator of P-DEVS . 177
C.2 The Coordinator of P-DEVS . 179
C.3 The Root-Coordinator of P-DEVS. 180

xix

1 Introduction

For, usually and fitly, the presence of
an introduction is held to imply that
there is something of consequence and
importance to be introduced.

Arthur Machen, 1915

This chapter starts with setting up a basic terminology that is used throughout the remainder
of the thesis, before it gives a motivation for the major part of the work that was done
during my doctoral studies. At the same time, the underlying problems and questions are
identified and briefly described. Then, we list the major contributions, especially in terms of
publications, that were created as a result of my research. Finally, the chapter gives a short
overview of the structure of this thesis.

1

1 Introduction

1.1 Motivation

Typically, systems that are of interest as research subjects for modeling and simulation, e. g.,
socio-technical systems such as smart environments, biological systems such as living cells, or
demographic systems such as populations of geographical regions, are complex, by nature.
They comprise a number of distinctive, often heterogeneous entities (system components), such
as technical devices (smart environments), cell organelles (cells), or individuals (populations),
which can range from a few dozens up to millions. Most of these system components can be
viewed as systems on their own (systems of systems), because they can be further decomposed
into smaller components, i. e., these system components are complex themselves (cf. Jamshidi
[2008, pp. 1–2]1). For instance, smart environments contain different kinds of sensors in
large numbers, which, in turn, usually consists of batteries, transceivers, and sensing units
[Steiniger & Uhrmacher 2010]. The behavior of such complex systems emerges from the
interaction of their components, i. e., constituent parts. This emergent behavior of a complex
system may not be traceable when only observing the involved components in isolation and
it (the emergent behavior) may even surprise the observer [Zeigler & Muzy 2016]. Many
modeling approaches focusing on modeling complex systems, which consists of a large number
of components, intrinsically support a modular, hierarchical model construction out of smaller
model units (model components) that interact with each other. This allows the modeler to
reflect the organizational structure of the system of interest on the one hand and to reduce
the complexity of the individual model components on the other hand. So instead of creating
a huge monolithic model, modular, hierarchical modeling allows us to create smaller, less
complex model units that can be coupled with each other. Examples of such modeling
approaches are DEVS (Discrete Event System Specification) [Zeigler, Praehofer, & Kim 2000],
SysML (Systems Modeling Language2), Modelica3, or process algebras [Baeten 2005; Hoare
1985; Milner 1982]. As we will see later, there are differences between the various approaches,
i. e., in the way models are defined.

Going one step further, component-based modeling emphasizes the notion of self-contained,
interoperable, replaceable, reusable, and customizable building blocks, which can be composed
regardless of their implementations via some sort of composition methodology/formalism
(see [Verbraeck 2004]4). One, if not the most important aspect of component-based modeling
is the reuse of building blocks or components, also by third parties [Chen & Szymanski
2002; Röhl 2008; Verbraeck & Valentin 2008]; for instance, by storing components in a
publicly accessible repository, from which they can be retrieved by other modelers. Reusing
prefabricated, validated, and reviewed model components reduces the costs and effort of
developing models [Sarjoughian & Elamvazhuthi 2009; Szabo & Teo 2007; Valentin, Verbraeck,
& Sol 2003], significantly. A public accessibility of components also facilitates the repeatability
and reproducibility of simulation studies and thus the traceability of their results. However, to
be usable in unforeseen contexts and for different purposes, a component5 has to announce its
functionality and possible configuration capabilities (parameters) by a well-defined interface
[Röhl & Uhrmacher 2008]. Using such interfaces, allows us to keep composition descriptions
separate from the components’ implementations, i. e., the specifications of the involved
components. In addition to making components exchangeable and reusable, assuring the
correctness of simulation models by the respective, underlying composition methodology,

1 Jamshidi [2008, p. 2] defines a system of systems as “large-scale integrated systems that are heterogeneous
and independently operable on their own, but are networked together for a common goal.”

2 http://sysml.org; last accessed Februrary 2018
3 https://www.modelica.org; last accessed February 2018
4 In contrast to Verbraeck [2004], we use the terms “building block” and “component” interchangeably.

Verbraeck defines a component as the implementation of a building block in a software environment.
5 Note the difference between system components, model components in modular, hierarchical formalisms

such as DEVS, and (model) components from the point of view of component-based modeling. At this
point, we focus on the latter.

2

http://sysml.org
https://www.modelica.org

1.1 Motivation

at least at a syntactic level (syntactic composability), is another defining characteristic of
component-based modeling [Petty & Weisel 2003a; Szabo & Teo 2007].

Many systems of interest also exhibit structural changes on top of behavioral changes [Zeigler
& Praehofer 1990], i. e., their composition and the interaction and behavior patterns of their
components can change over time [Uhrmacher 2001]. For instance, populations are made up of
individuals that can reproduce and ultimately die. Similarly, in healthy cells, new organelles
are created regularly (biogenesis), whereas dysfunctional cellular components are degraded
or recycled (autophagy). When modeling such systems it is only natural to capture their
time-invariant structure, thus allow modelers to model structure changes explicitly, as part
of the system specification (i. e., model). Several modeling approaches have been developed,
to address this structure variability, either by extending existing formalisms, e. g., variants
of DEVS such as presented by Barros [1995a]; Hagendorf, Pawletta, and Deatcu [2009]; Hu,
Zeigler, and Mittal [2005]; Pawletta, Lampe, Pawletta, and Drewelow [1996]; Uhrmacher
[2001], or by offering variable structures as salient feature from the outset, e. g., the π-calculus
[Milner 1999] or the rule-based modeling language ML-Rules [Maus 2012; Maus, Rybacki, &
Uhrmacher 2011]. All of these approaches support a kind of composition over time (which we
call temporal composition), as they provide structure in the temporal dimension, i. e., they
determine under which circumstances a model incarnation replaces another. This allows the
modeler to explicitly reflect structure changes of the modeled system by structure transitions
in the model of the system (system model). Moreover, introducing different incarnations of a
model reduces the complexity of each incarnation, similar to the decomposition of a complex
model into smaller units. Structure variability of a system may not only be manifested in a
variable composition, but “some systems are characterized by the plasticity of their interfaces”
[Uhrmacher, Himmelspach, Röhl, & Ewald 2006] to their surroundings (system environment).
For instance, molecules have different binding sites that can become active or inactive and
thus allowing or prohibiting bindings with other molecules, respectively. Modeling this kind
of structure variability requires dynamic and variable model interfaces (e. g., by introducing
variable model ports6).

Conventional or traditional model composition, as described at the beginning of this
section, i. e., the construction of correct, consistent simulation models out of prefabricated,
self-contained components based on a composition methodology or formalism, is done at
configuration time [Petty & Weisel 2003a], before the simulation model is executed (simulation).
Whereas variable structures and interfaces are runtime phenomena, i. e., structure changes
occur during model execution [Hu et al. 2005]. Although the modeler specifies the circumstances
under which structure changes occur beforehand7, it is not foreseeable if and when they take
place during the simulation at configuration time. Moreover, like state transitions, structure
transitions are part of the internal behavior of a model, which we want to keep separate
from the definition of the component that encapsulates this model, because a component
“hides its internal structure” [Verbraeck 2004]. Components shall only be composed via the
well-defined interfaces. For this reason, traditional composition usually assumes a static model
structure, which is not changing once a simulation model is created and configured (cf. Chen
and Szymanski [2002], Szabo and Teo [2007] Röhl [2008], or Lau and Ntalamagkas [2009]).

Since both kinds of composition, traditional and temporal, refer to the specification of
model structure; and both are appealing for modeling the systems we are focusing on (i. e.,
socio-technical, biological, and demographic systems) intuitively and naturally, we explore the
possibilities and limitations of combining both kinds of composition, which seems to be at
odds with each other, in this thesis.

When we think about components that encapsulate variable structure models whose

6 A port is a point of communication via which a model can send or receive values.
7 Structure transitions become part of the model specification in modeling formalism that support a variable

model structure or interfaces.

3

1 Introduction

interfaces may also be dynamic on the one hand and variable composition and communication
schemes at the other hand, among others, the following questions arise:

� How and to what extent can structure variability be captured or reflected in a composi-
tion methodology, while keeping compositional descriptions and the implementations of
components separate?

� What are the implications of structure variability on checking and assuring the correctness
and consistency of model compositions at configuration time?

In this thesis we give answers to these and other questions. As starting points for our work,
i. e., combining both kinds of compositions, we chose:

1. The platform- and modeling-formalism-independent composition framework COMO (Com-
ponent-based Modeling) and its underlying interface and composition descriptions [Röhl
2008; Röhl & Uhrmacher 2008].

2. Ideas of the modular, hierarchical modeling formalism ML-DEVS (Multi-Level-DEVS)
for (parallel) discrete event, variable structure, and multi-level modeling and simulation
[Maus 2008; Uhrmacher et al. 2007; Uhrmacher, Himmelspach, & Ewald 2010].

The former approach does not only allow a platform- and modeling-formalism-independent
specification of model compositions [Röhl 2006], in a compact set-theoretical notation (which
is implemented by using XML), but it also incorporates component interfaces as first-class
abstractions, emphasizing their role in component-based modeling (cf. Verbraeck [2004]).
However, Röhl [2008, p. 113] assumes a static model structure and time-invariant interfaces
(i. e., static ports), similar to other conventional composition methodologies or frameworks such
as CODES8 [Szabo 2010; Szabo & Teo 2007; Teo & Szabo 2008] or CoSMoS9 [Sarjoughian &
Elamvazhuthi 2009]. Röhl notices that all checks for analyzing the (syntactic) correctness
of a composition are carried out before the actual model execution; in the case of a variable
composition and dynamic interfaces, this would mean to analyze all possible incarnations of
the model structure and interfaces.
The modeling formalism ML-DEVS, on the other hand, incorporates variable structures

and interfaces as well as multi-level modeling concepts into parallel discrete event simulation in
the tradition of P-DEVS (Parallel DEVS) [Chow & Zeigler 1994]. Both structure variability
and multi-level modeling are relevant for modeling complex adaptive systems, such as smart
environments, cells, or entire populations.
Multi-level modeling concepts such as modeling systems of interest at different levels of

organizational or behavioral abstraction interacting with each other (up- and downward
causation) (cf. Maus [2012, pp. 9–39]) played also a role in my doctoral studies (e. g., Steiniger
and Uhrmacher [2010], Steiniger, Zinn, Gampe, Willekens, and Uhrmacher [2014], or Steiniger
and Uhrmacher [2016]) and are thus reflected in some sections of this thesis.

1.2 Recurring Examples

Throughout the thesis, we focus on two different systems of interest, i. e., modeling subjectives,
which, at a first glance, appear to be quite different but share similar characteristics.

Smart Environments The first systems of interest are smart environments. Smart envi-
ronments are socio-technical systems, i. e., man-made, open systems in which humans and
machines (technical devices) interact with each other, “in such a way that efficiency and
humanity would not contradict each other” [Ropohl 1999]. The idea of smart environments

8 COmposable Discrete-Event scalable Simulation
9 Component-based System Modeler and Simulator

4

1.2 Recurring Examples

has emerged from research driven toward the fulfillment of Mark Weiser’s vision of ubiquitous
computing10 [Nixon et al. 2004, p. 249]. Cook and Das [2004, p. 3] define a smart environments
as

one that is able to acquire and apply knowledge about an environment and also
to adapt to its inhabitants [the users of smart environments] in order to improve
their experience in that environment [the users’ surroundings].

With respect to their purpose, Kirste [2006, p. 322] gives a more specific definition: “smart
environments are physical spaces that are able to react to activities of users, in a way that
assist the users in achieving their objectives in this environment.” Both definitions describe
rather the behavior of smart environments from a macroscopic point of view than their
structure or internal functioning. Detailing the actual composition of smart environments,
Poslad [2009, p. 30] writes:

A smart environment consists of a set of networked devices that have some con-
nection to the physical world. [...] the devices that comprise a smart environment
usually execute a single predefined task [...]. Smart environment devices may also
be fixed in the physical world at a location [stationary] or mobile [...].

Such devices can be sensors, controllers, or computers that are embedded or operate in the
respective physical environment [Poslad 2009, p. 7]. In other words, a smart environment is a
“region of the real world that is extensively equipped with sensors, actuators, and computing
components” [Nixon et al. 2004, p. 249, attributed to Nixon, Lacey, and Dobson [2000]].
In Steiniger and Uhrmacher [2010], we describe the different, heterogeneous components of
smart environments, in more detail. The structure or composition of smart environments
is time-variant, i. e., can change over time. For instance, users can enter or leave smart
environments and new devices can be embedded into the device ensemble ad-hoc or battery-
powered devices can run out of power. Herein, we focus on small-scale smart environments, in
particular on smart meeting rooms that support their inhabitants in conducting collaborative
and interactive meetings (cf. Heider and Kirste [2005], Park, Moon, Hwang, and Yeom [2007],
Hein, Burghardt, Giersich, and Kirste [2009], or Steiniger, Krüger, and Uhrmacher [2012]).
Figure 1.1 shows such an smart meeting room11.

Eukaryotic Cells The other systems of interest herein are eukaryotic cells, which are biological
or natural systems (in contrast to smart environments). Eukaryotic cells are the cells of
eukaryotes, which are single-celled or multicellular organisms whose cells contain a membrane-
bound nucleus [van der Giezen 2011], a special cell organelle12. In addition to cell nuclei,
eukaryotic cells contain other organelles such as mitochondria [Patel, Shirihai, & Huang
2013]. Mitochondria are of crucial importance, since they produce the energy—in form
of ATP (adenosine triphosphate)—that is necessary to keep the cells working and sustain
life. Therefore, mitochondria are also widely know as the “powerhouses” of cells [van der
Giezen 2011]. During the lifetime of an eukaryotic cell, new mitochondria can be produced
(biogenesis) and existing ones can be degraded (autophagy), especially when their functionality
is impaired. Mitochondria can also be actively transported along cytoskeletal structures,
such as microtubules [R. L. Morris & Hollenbeck 1995]. Mitochondria that are close to

10 Weiser coined the term “ubiquitous computing” in his seminal article “The Computer for the 21st Century”
[Weiser 1999], in which he described his vision of a world in which computers support the users in their
everyday life unobtrusively and eventually “disappear.” The term pervasive computing is often used as
a synonym for ubiquitous computing. According to Nixon, Wagealla, English, and Terzis [2004], other
synonyms are ambient computing, active spaces, or context-aware computing.

11 Despite almost two decades of research, smart environments are not mass-market products yet, that can be
bought and configured ad-hoc. Existing environments are often custom-made or of experimental nature.

12 Cell organelles are one essential type of building blocks of eukaryotic cells.

5

1 Introduction

Figure 1.1: The Smart Appliance Lab (SmartLab) of the University of Rostock, which is
equipped with numerous, heterogeneous devices such as projectors, microphones, cameras,
passive and active location sensors, temperature sensors, notebooks, and air-conditioning.

each other form networks and interact directly and indirectly [Patel et al. 2013]. More
precisely, a mitochondrion can fuse with another one in its vicinity and “exchange both
soluble and membrane-bound components,” which has an influence of the overall health of the
mitochondrial network. Fused mitochondria will fission after a while, resulting in a “frequent
cycles of fusion and fission” [Patel et al. 2013]. Indirect interaction between cells takes place,
e. g.,, when a mitochondrion is producing reactive oxygen species (ROS) that are inhibiting
other mitochondria in the mitochondrial network [Park, Lee, & Choi 2011], where the cell
cytoplasm, the basic substance within a cell excluding the nucleus, serves as the interaction
medium13. We conclude that the structure of eukaryotic cells is extremely dynamic, like the
structure of other biological systems.

Toward the end of my doctoral studies, we were also investigating demographic systems in
cooperation with the Max Planck Institute for Demographic Research14 (cf. Steiniger et al.
[2014] and Warnke, Klabunde, Steiniger, Willekens, and Uhrmacher [2015]). Of particular
interest were the hypotheses underlying the linked lives model [Noble et al. 2012], i. e., that
the lives of individuals can be linked and that these links have an influence on the individuals’
life courses. The purpose of the model is the prediction of the supply of and demand for social
care in modern UK based on basic demographic processes, including mortality, fertility, health
changes, migration, and the formation and dissolution of partnerships and households. Like
in biological systems, the structure inherent to demographic systems (e. g., the population
of a geographic region) is dynamic. However, the structure is different from the structure
of smart environments or living cells in the way that organizational and communicational
relationships between the entities in demographic systems form complex networks rather than
hierarchies with exclusive memberships (cf. Steiniger et al. [2014] or Warnke et al. [2015]). For
instance, individuals can be members of different organizations, such as associations, unions,
or sport clubs, at the same time. Therefore, demographic systems do not play a role in the
main body of this thesis; only in the last part, we come back to them, when writing about
domain-specific languages and their role in modeling.

13 For a general introduction about the concept of direct and indirect interaction refer to Odell, Van Dyke
Parunak, Fleischer, and Brueckner [2003] and Weyns, Helleboogh, Holvoet, and Schumacher [2009].

14 https://www.demogr.mpg.de/en/; last accessed February 2018

6

https://www.demogr.mpg.de/en/

1.3 Contribution

1.3 Contribution

The main contribution of my doctoral studies and this thesis is twofold:

1. The revision of the composition framework COMO and its underlying formalism to cope
with variable interfaces and structures.

2. The revision, formal definition, and extension of the modular, hierarchical modeling formal-
ism ML-DEVS for discrete event, multi-level, and variable structure modeling, whereby a
particular focus was on the introduction of a novel, intensional coupling mechanism, called
multi-couplings15.

Starting from the composition framework COMO and its underlying formalism for describing
interfaces and compositions in a modeling-formalism-independent manner (see Himmelspach,
Röhl, and Uhrmacher [2010]; Röhl [2006, 2008]; Röhl and Morgenstern [2007]; Röhl and
Uhrmacher [2006, 2008]), which assumes static model structures, we extended the underlying
formalism and adapted the framework to reflect variable interfaces and interfaces. This
extension included:

� The usage of supersets of ports and components, in interface, component, and composition
descriptions. These supersets contain all potential ports and components that can become
available during model execution, respectively.

� The introduction of an intensional coupling definition, called loose connections, which is
frequently translated into a concrete coupling scheme during simulation, whenever structure
changes occur.

� The further decoupling of interfaces and components descriptions, so that different compo-
nents can “implement” the same interface.

� The introduction of criteria for analyzing the syntactic correctness of a model composition
(and thus the correctness of the derived model) with variable interfaces and structures,
beyond the initial model state and configuration (which is known when deriving and
configuring the executable simulation model).

� A corresponding adaptation of the underlying composition and analysis methodology.

� A proof-of-concept implementation that makes use of (i) the modeling formalism ML-DEVS
as a target for the transformation of compositional descriptions and component imple-
mentations into executable simulation models; (ii) XML as a machine-interpretable and
exchangeable representation of the set-theoretically defined formalism; and (iii) the mod-
eling and simulation framework JAMES II [Himmelspach & Uhrmacher 2007, 2009] as a
simulation engine on top of which COMO resides16.

The following publication was a result of our work on COMO:

Steiniger, A. and Uhrmacher, A. M. (2013). “Composing Variable Structure Models: A
Revision of COMO.” In Proceedings of the 3rd International Conference on Simulation
and Modeling Methodologies, Technologies and Applications (SIMULTECH 2013). pp.
286–93.

The second, more important aspect of my work refers to the revision and extension of the
modeling formalism ML-DEVS, which served as means for specifying almost all of the models
that we have developed in the course of my doctoral studies and research. This revision is

15 Please note that we keep the term “multi-couplings” for historic reasons. However, the multi-couplings of
the first iteration of ML-DEVS are different from the coupling concept developed during my doctoral
studies.

16 COMO is not limited to JAMES II for executing models.

7

1 Introduction

motivated by the characteristics of the systems of interest17 and substantial, which we see
when comparing the original definition of the formalism, as introduced by Uhrmacher et al.
[2007], with the iteration presented herein. More specifically, the work on ML-DEVS includes
the following aspects:

� The revision of the entire formal specification and notation of ML-DEVS and its underlying
concepts.

� The introduction of publicly accessible states that are used for upward causation and
propagating information between neighboring levels (global information); and that are
separate from the regular ports.

� The introduction and elevation of model interfaces and their runtime instances as first-class
concepts in the model specification, where the public state of a model is also part of its
interface.

� The introduction of a powerful, expressive, and intensional coupling mechanism, which is
based upon the interface definitions.

� The implementation of a reference algorithm for the translation of the novel coupling
definition into concrete and consistent coupling schemes during simulation (correctness by
construction), while adhering to the intensional definitions and taking the current model
state into account.

� A respective adaptation and extension of the abstract simulator of ML-DEVS.

� The provision of a formal proof of the closure under coupling of ML-DEVS (see the
supplementary material to Steiniger and Uhrmacher [2016]).

� The demonstration of a system morphism between ML-DEVS and general I\O system, as
defined by Zeigler et al. [2000, pp. 108–16], showing that a arbitrary Micro-DEVS model
can be translated in a behaviorally equivalent I\O system that ML-DEVS is a system
specification formalism.

� A proof-of-concept implementation of the model specification in the high-level programming
language Java and the abstract simulator of ML-DEVS in the open-source, Java-based
modeling and simulation framework JAMES II.

The proof of the closure under coupling for ML-DEVS also provides a blueprint for showing
that ML-DEVS is behaviorally equivalent to static structure models, e. g., specified in P-
DEVS (Parallel Discrete Event System Specification) [Chow & Zeigler 1994; Chow, Zeigler, &
Kim 1994]. It also indicates that an arbitrary, hierarchical ML-DEVS model can be flattened.
The results of this work were presented and elaborated in the following two publications, with
a special focus on the latter of both.

Steiniger, A., Krüger, F., and Uhrmacher, A. M. (2012). “Modeling Agents and their En-
vironment in Multi-Level-DEVS.” In Proceedings of the 2012 Winter Simulation Con-
ference (WSC’12). Article No. 233.

Steiniger, A. and Uhrmacher, A. M. (2016). “Intensional Couplings in Variable Structure
Models: An Exploration Based on Multilevel-DEVS.” In ACM Transactions on Modeling
and Computer Simulation (TOMACS), 26(2). pp. 9-1–9-27.

We also explored the suitability of ML-DEVS for creating continuous time, multi-level models
in the domain of computational demography in:

Steiniger, A., Zinn S., Gampe J., Willekens F., and Uhrmacher A. M. (2014).
The Role of Languages for Modeling and Simulating Continuous-Time Multi-Level

17 Chapter 9 elaborates on this subject.

8

1.4 Structure and Notations

Models in Demography (invited paper). In Proceedings of the 2014 Winter Simulation
Conference (WSC ’14), pp. 2978–89

In addition to the aforementioned work that is presented in this thesis, we also cooperated
with colleagues from the chair of Mobile Multimedia Information Systems (MMIS) of the
Institute of Computer Science at the University of Rostock18 on simulation-based testing
and the evaluation of context-aware applications, such as probabilistic activity recognition or
proactive user assistance in smart environments19. Similar to approaches such as Bylund and
Espinoza [2001, 2002], Vijayaraghavan and Barton [2001], Barton and Vijayaraghavan [2002],
Sanmugalingam and Coulouris [2002], Huebscher and McCann [2004], Nishikawa et al. [2006],
M. Martin and Nurmi [2006], Park et al. [2007], McGlinn, O’Neill, Gibney, O’Sullivan, and
Lewis [2010], Helal et al. [2011] or Campuzano, Garcia-Valverde, Garcia-Sola, and Botia [2011],
we used modeling and simulation as a means to test applications20. Instead of “plugging”
the application under test into a real-life environment inhabiting human test subjects, we
plugged the application into a simulation or we used simulation to systematically create test
data, if the feedback of the modeled system to the application was not of interest. For this,
we used the modeling formalisms ML-DEVS [Krüger, Steiniger, Bader, & Kirste 2012] and
PepiDEVS21 [Nyolt, Steiniger, Bader, & Kirste 2013, 2015] to model smart environments (i. e.,
the context). Again, JAMES II served as simulation environment with which the application
under test was interacting. The results of this work were presented and discussed in the
following publications, to which I contributed:

Krüger, F., Steiniger, A., Bader, S., and Kirste, T. (2012). “Evaluating the robustness of
activity recognition using computational causal behavior models.” In Proceedings of the
2012 ACM Conference on Ubiquituous Computing (UbiComp 2012). pp. 1066–74.

Nyolt, M., Steiniger, A., Bader, S., and Kirste, T. (2013). “Describing and Evaluating As-
sistance using APDL.” In Proceedings of the 2013 International SSMCS Workshop. pp.
38–49

Nyolt, M., Steiniger, A., Bader, S., and Kirste, T. (2015). “Describing and Evaluating As-
sistance using APDL.” In Smart Modeling and Simulation for Complex Systems: Practice
and Theory. pp. 59–81

1.4 Structure and Notations

The remainder of the thesis is divided into three main parts.
The first part introduces the basic terminology, which is supposed to serve as a basis for a

common understanding, and all relevant concepts and previous work, with a particular focus
on extensional and intensional definitions. Part I surveys related work from discrete event,
component based, and variable structure modeling and simulation, where the focus is rather
on modeling than simulation.

The second part of the thesis describes the underlying problems and research questions and
it contains the main contribution of my work: the introduction and implementation of an
intensional coupling mechanism easing the definition of couplings, particularly in variable
structure models, when using a modeling approach that is based on the reactive systems
metaphor.

18 https://www.mmis.informatik.uni-rostock.de/en/; last accessed February 2018
19 First ideas of using modeling and simulation for testing were already discussed in Steiniger and Uhrmacher

[2010]
20 The aforementioned approaches are sometimes called context simulation or context simulators, since they

“simulate” the context information that an context-aware application is reacting and adapting to.
21 Parallel external process interface DEVS; a DEVS variant that allows integrating external processes into

simulation [Himmelspach 2007]

9

https://www.mmis.informatik.uni-rostock.de/en/

1 Introduction

Finally, the third and last part of the thesis draws a conclusion and outlines potential topics,
we came across my doctoral studies, for future work.

Relevant terms are written in quotes or in italic at the first occurrence in a chapter. We
also use italics to emphasize other interesting terms and words. Direct quotes are put into
quotation marks or they are indented and separated from the surrounding text, particularly
when we are using longer quotes. Remarks on formal notations, as used throughout the thesis,
can be found in Appendix A.

10

Part I

Basics and Background

11

2 Basic Terminology

Much of the discussion about socialism
and individualism is entirely pointless,
because of failure to agree on
terminology.

Theodore Roosevelt, Jr., 1915

Although different attempts were made to establish a common terminology in the realm of
modeling and simulation (M&S), such as the “IEEE Standard Glossary of Modeling and
Simulation Terminology” [1989]1, the DoD Modeling and Simulation Glossary [Department of
Defense 1998], or the ACM SIGSIM Modeling and Simulation Glossary2, no such uniform
and universal terminology exists—unfortunately. Even fundamental terms, such as simulation
or simulator, are used differently in the literature. Moreover, different terms are used to
refer to the same or similar concepts (e. g., symbiotic simulation and hardware-in-the-loop
simulation3), or terms are used whose meanings remain vague due to the absence of clear-cut
definitions. For this reason, the following chapter gives a brief overview and definitions of
the most central terms and concepts used throughout the thesis. Other important terms and
concepts will be defined or characterized when they first occur in the text.

1 This standard is already withdrawn.
2 http://www.acm-sigsim-mskr.org/glossary.htm; last accessed February 2018
3 Both terms refer to a simulation paradigm in which the simulation system (simulation) interacts with a

physical system (hardware), i. e., the physical system is embedded into the simulation.

13

http://www.acm-sigsim-mskr.org/glossary.htm

2 Basic Terminology

2.1 Systems

The first and one of the most fundamental terms is system. Systems in general or phenomena
occurring in certain systems in particular are the subjects of interest in M&S. Law and Kelton
[2000, p. 3, attributed to Schmidt and Taylor [1970]] define a system as

a collection of entities, e.g., people or machines, that act and interact together
toward the accomplishment of some logical end,

where “an entity is an object of interest in the system” [Banks, Carson II, Nelson, & Nicol
2000, p. 10] and “relationships among those entities exists” [Miller 1978, p. 16]4. At this
point, we already assume that systems consist of some sort of interacting entities, parts,
objects, elements, constituents, or components (called system components in the following).
Each system component can be viewed as a system of its own, i. e., is a subsystem of the
composed system. We call such a composed system also complex system5, whose complexity
is defined not only by the number of their homogeneous or heterogeneous components but
also by the dynamic interaction between them [Maus 2012, p. 9]. Gallagher and Appenzeller
[1999] describe a complex system as “one whose properties are not fully explained by an
understanding of its component parts [components].” In complex systems, “we observe group
or macroscopic behavior emerging from individual actions and interactions” [Hoekstra, Kroc,
& Sloot 2010, p. 3].

When talking about systems and their dynamics (i. e., behavior), the systems’ states and
their evolution over time are of particular interest. The state of a system (system state) is
defined as a “collection of variables necessary to describe a system at a particular time” [Law
& Kelton 2000, p. 3]. These state variables can be related to the composition of the system
(e. g., the number of certain entities) or to the internal functioning of an individual entity
(e. g., a characteristic property). Generally and most often, systems change their states over
time, e. g.,. as a result to extrinsic or intrinsic factors. A system whose state (state variables)
does not remain constant over time is called dynamic system, whereas static systems are those
whose states are assumed to remain constant in time (cf. Karnopp, Margolis, and Rosenberg
[2012, p. 3]). Depending on how and when state variables of a system change over time, Law
and Kelton [2000, p. 3] and Banks et al. [2000, p. 12] categorize a system to be either discrete
or continuous. A discrete system is one for which the state variables change instantaneously
at separated points in time [Law & Kelton 2000, p. 3], where the overall set of such points in
time is discrete6 [Banks et al. 2000, p. 12]. In contrast, “a continuous system is one for which
the state variables change continuously with respect to time” [Law & Kelton 2000, p. 3]. Even
though, in practice, most systems are neither entirely discrete nor entirely continuous, often
one type of change predominates so that we can categorize the system either as being discrete
or continuous [Law & Kelton 2000, p. 3]. Note that this categorization does not make any
assumptions about the types of the state variables.

A term closely related to the notion of a system is system environment, as “a system is often
affected by changes [events] occurring outside the system [i. e., in the system environment]”
[Banks et al. 2000, p. 9]. “Each system has its own environment and is in fact a subsystem of
some broader system” [Shannon 1975, p. 37]. Based on the considerations of Gaines [1979],
Cellier [1991, p. 2] concludes:

The largest possible system of all is the universe. Whenever we decide to cut out
a piece of the universe such that we clearly say what is inside that piece (belongs

4 These relationships exist not only in living systems, on which Miller [1978] is focusing, but in systems in
general, including non-living systems (e. g., purely technical systems).

5 In fact, many systems of interest can be considered as complex. Hence, when we talking about systems in
the thesis, we usually refer to complex systems.

6 Here, a discrete set is either finite or countable infinite.

14

2.2 Models

to that piece), and what is outside that piece (does not belong to that piece), we
define a new ‘system.’

The question of what belongs to a system or is already part of its environment (i. e., how to
define the boundary between both), depends on the purpose of studying a certain system of
interest [Banks et al. 2000, p. 9].

2.2 Models

This brings us to the second fundamental term: model. Banks et al. [2000, p. 13] define a
model as “a representation of a system for the purpose of studying.” Instead of representation,
often the term “abstraction” is used to describe a model (e. g., by Smith and Smith [1977]).
Cellier [1991, p. 5, attributed to Minsky [1965]] gives the following, more specific but still
rather general definition of a model:

A model (M) for a system (S) and an experiment (E) is anything to which E can
be applied in order to answer questions about S.

However, this definition introduces another term, i. e., experiment, that yet has to be defined,
which is done below. In both definitions, a model refers to a certain system that the model
represents and has a purpose, which is answering questions about the system of study. Banks
et al. [2000, p. 3] give the following, more concrete characterization of a model, to which we
will stick:

The behavior of a system as it evolves over time is studied by developing a
simulation model. This model usually takes the form of a set of assumptions
[hypotheses] concerning the operation of the system. These assumptions are
expressed in mathematical, logical, and symbolic relationships between the entities,
or objects of interest, of the system.

Furthermore, Karnopp et al. [2012, p. 5] write that

It is important, then, to realize that no system can be modeled exactly and that any
competent system designer needs to have a procedure for constructing a variety of
system models of varying complexity so as to find the simplest model capable of
answering the questions about the system under study.

Leye [2013, pp. 3–4] concludes that a model has the following three properties:

� Reference: the model represents a system of interest.

� Abstraction: the model reflects a subset of the system’s features.

� Purpose: the model shall answer one or more questions about the system of interest.

Another interesting implication is that a model itself is qualified to be called a system [Cellier
1991, p. 5]. Thus, the boundaries between system and model are blurred. Moreover, the above
definitions do not imply the nature of a model. Models can, for instance, be:

� mental/conceptual (they exist only in the mind of the modeler),

� physical/iconic (they are tangible),

� verbal/textual (they are described informally by natural language),

� mathematical/formal (they are specified mathematically or in a formalism),

� computational/executable/programmed (they can be directly executed on a computer in
terms of a program that is usually defined in a high-level programming language).

15

2 Basic Terminology

Note that every computational model specified as a computer program can be considered as a
formal model at the same time. However not every formal model may be directly executable
on a computer without further ado. Moreover, the term “conceptual model” is used differently
in the literature. For instance, Banks [1998, pp. 15–7] implies that a conceptual model is
already somehow formalized. Herein, we adhere to the definition of Nance [1994], according
to which a conceptual model exists in the mind of the modeler. Further types and categories
of model are distinguished in M&S, such as discussed by Leemis and Park [2006, p. 2]7 and
depicted in Figure 2.1.

Discrete
Time

Continuous
Time

Model

Discrete
Event

Differential
Equation

Discrete State
Continuous

State

Model

Mixed/
Arbitrary

State

Stochastic/
Probabilistic

Deterministic

Model

a) Time Base (Time Flow) b) State

c) Stochasticity (Uncertainty)

Figure 2.1: Different categories as given by Zeigler [1976, p. 22] according to which models
can be categorized, i. e., the time base, the nature of the state, and the incorporation of
random variables.

Like systems, the models we are focusing on have a state that can change, reflecting the
dynamics of the modeled systems (dynamic systems). Moreover, models have often, but not
necessarily, inputs and outputs.

The definition of a model given by Cellier makes use of the term “experiment.” Cellier
[1991, p. 4] defines an experiment as follows:

An experiment is the process of extracting data from a system by exerting it
through its inputs.

This rather general definition does neither imply the nature of an experiment nor does it make
a connection to the term “model.”

2.3 Simulation

This leads us to the next fundamental term “simulation,” for which different definitions can
be found in the literature. We adhere to a concise definition given by Korn and Wait [1978,
as cited by Cellier [1991, p. 6]]:

A simulation is an experiment performed on a model.

7 Leemis and Park [2006, p. 2] distinguish between deterministic and stochastic, dynamic and static, and
continuous and discrete models.

16

2.4 Modeling

System of
Interest

Experiment with the
Actual System

Experiment with a
Model of the System

Mathematical/Formal
Model

Physical/Iconic Model

SimulationAnalytical Solution

Figure 2.2: Different ways to study a system of interest (adapted from [Law & Kelton
2000, p. 4]).

This definition finally relates a simulation to an experiment and a model (of a system). In other
words, in a simulation we experiment with a model instead of the system of interest, where
the model surrogates or mimics the actual system in the simulation. Still, the above definition
does not imply that a simulation is conducted or executed on a computer. However, similar
to Cellier [1991], our focus is on computer simulation (also called computational simulation or
mathematical simulation), hence experiments that are performed on a computer8. Therefore,
we concentrate on conceptual formal models that can be translated into computational models;
and we occasionally refer to computer simulation simply as the execution of such models on a
computer. “The computational paradigm [simulation] plays a fundamental role in situations
where analytical descriptions of the observed phenomena are not tractable and/or out of reach
of direct experimentation” [Hoekstra et al. 2010, p. 2]. So in general, simulation is used when
the model is too complex, excluding the possibility of an analytical solution [Law & Kelton
2000, p. 5]. More information on when simulation is appropriate and when it is not can be
found in Banks et al. [2000, pp. 1–7]. Figure 2.2 shows the different ways to study a system
of interest and illuminates the relationship between the terms defined so far.

2.4 Modeling

Eventually, modeling or system modeling (as systems are our subjects to model) can be
considered as the process of building, developing, constructing, or creating models, while
having certain questions about a system of interest in mind that shall be answered by the
models to create. However, creating models is anything but simple. Shannon [1975, p. 19]
notes that the process of creating a model of a system “can best be described as an intuitive
art.” In contrast, Savory and Mackulak [1994] argue that modeling is a science that can
be taught and that the need of a certain amount of intuition to create models “does not
constitute an art.” Banks et al. [2000, p. 15] write that the process of creating models “is
probably as much art as science.” Regardless of whether we consider modeling as science or
art, it is the most difficult part of a simulation study [Rybacki, Haack, Wolf, & Uhrmacher
2014] and the question of how to create models remains. In general, modeling requires “an
ability to analyze a problem, abstract from its essential features, select and modify basic
assumptions that characterize the system, and then enrich and elaborate the model until a
useful approximation results” [Shannon 1975, p. 20]. So modeling can be considered as an

8 Experiments that are performed on a computer are also called in-silico experiments, where the computer
serves as laboratory, or rather as dry lab.

17

2 Basic Terminology

evolutionary, iterative process, in which we often start with a simple model and increase its
complexity gradually. However, the complexity does not need to “exceed that [complexity]
required to accomplish the purposes for which the model is intended” [Banks et al. 2000, p.
15]. W. T. Morris [1967] propose seven general guidelines for creating appropriate models.

2.5 Validity

But when is a model appropriate? Or, more importantly, when not? In other words, we want
to know whether a given model really represents (the behavior of) a certain system of interest.
This question is closely related to the term “model validity.” Balci [1997] describes validity
simply as behavioral accuracy. Based on Zeigler et al. [2000, pp. 30–1], we define the validity
of a model as follows:

The validity is the degree to which the behavior of a model agrees with the observed
behavior of its system counterpart (i. e., the system represented by the model)
with respect to a certain question in mind and an experiment.

As Cellier [1991, pp. 5–7] points out, statements on the validity of a model can only be made
in context of a certain experiment. A model of a system that is valid for a certain experiment,
may not be valid for another experiment. However, validity is only one dimension of the
appropriateness of a model. A model may be valid but not easy to understand by anyone else
than the modeler, i. e., a third party. For a discussion about criteria for a good model refer to
[Shannon 1975, pp. 21–2].

2.6 Simulators

When we have created a model (valid or not), a simulator is responsible for executing the
model. Zeigler et al. [2000, p. 30] give the following definition of a simulator:

A simulator is any computation system (such as single processor, a processor
network, the human mind, or more abstractly an algorithm) capable of executing
a model to generate its behavior.

The behavior of a model is its outer manifestation (input/output behavior) or, in simple
terms, “the behavior is what the model does” [Zeigler 1976, p. 5]. As our focus is on
computer simulation, by simulator we refer to a simulation algorithm, which eventually
will be implemented as some sort of computer program. According to Zeigler et al. [2000,
p. 30] the separation of simulator and model provides several benefits, such as the same
model can be executed by different simulators. Moreover, this kind of separation of concerns
allows the modeler to concentrate on building models, whereas simulation experts can focus
on developing efficient simulation algorithms, i. e., simulators. In the context of computer
simulation, the term “simulator” sometimes refers not only to a simulation algorithm but to
an entire simulation system, including auxiliary and additional functionality that is not part
of the actual simulation algorithm. Here we distinguish between simulation algorithm and
simulation system9.

2.7 Modeling Formalisms

Another term that plays an important role in this thesis is modeling formalism. A modeling
formalism allows us to translate conceptual or informally given models into formal models.

9 We use the term “simulation system” in a rather general sense. In particular, a simulation system can
be a simple library, an environment, or a comprehensive framework. A discussion on different kinds of
simulation systems is given by Himmelspach [2012].

18

2.7 Modeling Formalisms

Sarjoughian [2006, attributed to Sarjoughian and Zeigler [2000]] characterize a modeling
formalism as follows:

A modeling formalism can be defined to consists of two parts: model specifcation
and execution algorithm. The former is a mathematical theory describing the
kinds of structures and behavior that can be described with it. The latter specifies
an algorithm that can correctly execute any model that is described in accordance
with the model specification.

The execution algorithm corresponds to the aforementioned simulation algorithm. It defines
the operational semantics of the model [Vangheluwe, de Lara, & Mosterman 2002]. Hence, a
modeling formalism reflects the separation between model and simulator promoted by Zeigler
et al. The same modeling formalism can have several implementations on computers based
on the choice of a programming language or platform. For instance, a mathematical model
can be designed and implemented using object-oriented model concepts and programming
languages.

A “model” is not tied to a certain modeling formalism. Instead, the “same model” can be
given or specified in different modeling formalisms. “The particular formalism and level of
abstraction [of the model] depends on the background and goals of the modeller as much as
on the system modelled” [Vangheluwe et al. 2002].
We conclude this section with some final words on the nature of systems, our modeling

subjects. Some authors, such as Zeigler [1976] or Banks et al. [2000], indicate that a system
we want to model is something that is real and exists (real system). However, this point of
view seems to be rather restrictive. In addition to real systems that can be natural or artificial
(man-made), also hypothetical/imaginary systems, i. e., systems that do not exist (yet), can
be of interest for M&S, especially when using simulation to test the design of a future system
(simulation-based testing).

19

3 Extensional and Intensional Definitions

The Beginning of wisdom is the
definition of terms.

Socrates (470–339 B.C.)

When talking and reason about words, concepts, or terms, a common and clear understanding
of their meaning1 is essential. Such a common and clear understanding can be established by
definitions, which can be understood and accepted by all parties. For that, definitions need
to alleviate vagueness and ambiguity that can impair the conveyance of meaning (cf. Hurley
[2006, pp. 72–6]). So in other words, the goal of a definition is to convey the meaning of a
certain word, concept, or term to others comprehensibly, concisely, and unambiguously.
Sometimes, more than one definition for a certain word, concept, or term can exist, such

as stated in Chapter 2. These definitions may assign more or less different meanings to the
same term. In this case, it is important to agree on one definition, which then serves as the
foundation for further elaboration.
In this chapter, we briefly define the term “definition” itself and outline two different

approaches to create definitions (i. e., to define words, concepts, or terms):

1. Extensional definitions and

2. Intensional definitions.

Both, but particularly the latter, play an important role for the remainder of this thesis and
the contribution described herein. We discuss this role at the end of this chapter, where we
apply both approaches in a more formal, set-theoretical context.

1 Hurley [2006, p. 72] distinguishes between cognitive meaning and emotive meaning. The former corresponds
to terminology that conveys information, whereas the latter refers to terminology that expresses or evokes
feelings. Herein we usually refer to cognitive meaning rather than emotive meaning.

21

3 Extensional and Intensional Definitions

"Inventor"

Term

Clever
Intui�ve
Crea�ve
Imagina�ve

Intension

(A�ributes)

Thomas A. Edison
Alexander Graham Bell
Samuel F. B. Morse
Wright brothers

Extension

(Class members)

connotesdenotes

Figure 3.1: Excerpts of the extension and intension of the term “inventor.” The figure is
adapted from Hurley [2006, p. 83].

3.1 Terms and Definitions

In this thesis, we often use the word “term” to refer to a “thing” or concept that is of interest
and about to be defined. Hurley [2006, p. 82] defines a term as follows:

Definition 3.1.1 (Term)
A term is any word or arrangement of words that may serve as the subject of a statement.
Terms consist of proper names, common names, and descriptive phrases. [. . .] Words that
are not terms include verbs, nonsubstantive adjectives, adverbs, prepositions, conjunctions,
and all nonsyntactic arrangements of words.

According to Hurley [2006, p. 83], the (cognitive) meaning of a term can be divided into:
intensional meaning and extensional meaning. Hurley describes both as follows:

The intensional meaning consists of the qualities or attributes that the term
connotes, and the extensional meaning consists of the members of the class that
the term denotes.

This brings us to the intension and extension of a term, which are of interest for the remainder
of this chapter. “The intensional meaning of a term is otherwise known as the intension, or
connotation, and the extensional meaning is known as the extension, or denotation” [Hurley
2006, p. 83]. More precisely, Copi, Cohen, and McMahon [2014, p. 91] give the following two
definitions:

Definition 3.1.2 (Extension)
The collection (or class or group) of all the objects to which a term may correctly be
applied.

Definition 3.1.3 (Intension)
The attributes shared by all and only the objects in the class that a given term denotes;
the connotation of the term.

Figure 3.1 elucidates the difference between the intension and extension of a term by giving
an example. Both intension and extension are used when talking about definitions.

A definition can be a statement as referred to in Definition 3.1.1, in which a term is being
defined, i. e., the subject of the definition. At the beginning of this chapter, we briefly and
informally characterize the purpose of a definition, which is to convey the meaning of a certain
word, concept, or term. Based on the characterization of Hurley [2006, p. 87], we derive the
following “definition of a definition:”

22

3.1 Terms and Definitions

Definition 3.1.4 (Definition)
A definition is a group of words that assigns a meaning to a term, i. e., some other word
or a group of words.

Furthermore, Hurley writes that “every definition consists of two parts: the definiendum and
the definiens,” where “the definiendum is the word or group of words [i. e., the term] that
is supposed to be defined, and the definiens is the word or group of words that does the
defining.” Like Hurley, we clarify the relationship between both, definiendum and definiens,
by an example and Figure 3.2:

Example 3.1.1 (Definition)
In the following definition

A mitochondrion is a membrane-bound and energy-producing organelle of eu-
karyotic cells.

the word “mitochondrion” is the definiendum and everything that follows the verb “is”
is the definiens, i. e., “a membrane-bound and energy-producing organelle of eukaryotic
cells.” However, it also becomes apparent that readers of the above definitions need an
understanding for the words that are part of the definiens, such as “eukaryotic.” In other
words, it is hard to convey the meaning of the word mitochondrion to someone who does
not know membranes, cell organelles, or eukaryotes.

Definiendum Definiens

Term to be

defined
Words that do

the defining

=

Defini�on

Figure 3.2: The composition of a definition comprising the definiendum and the definiens.
The figure is adapted from Hurley [2006, p. 87].

One fundamental requirement for a proper definition is: a definition must not be circular,
i. e., the definiendum itself must not appear in the definiens, otherwise “the definition can
explain the meaning of a term being defined only to those who already understand it” Copi et
al. [2014, p. 100].

Example 3.1.2 (Circular Definition)
The following definition is circular, according to Copi and Cohen:

A compulsive gambler is a person who gambles compulsively.

To understand this definition, we already need to know the meaning of compulsively gambling,
which, ultimately, is the term that is supposed to be defined.

It is also interesting to note that Hurley [2006, p. 87] concludes that “the definiens is not
itself the meaning of the definiendum; rather, it is the group of words that symbolizes (or
that is supposed to symbolize) the same meaning as the definiendum.” This subtle difference
between definiens and the actual meaning of the definiendum implies that the attempt to
symbolize the meaning can be insufficient or incorrect.

23

3 Extensional and Intensional Definitions

In logic, different kinds of definitions and techniques to create definitions are distinguished.
Here, the following two, which are based on the extension and intension of a term to be
defined, are of particular interest:

1. Extensional definitions (or denotative definitions), and

2. Intensional definitions (or connotative definitions).

The focus is on the latter, as the title of this thesis implies. The next two sections characterize
both extensional definitions and intensional definitions in more detail.

3.2 Extensional Definitions

As the name indicates, extensional definitions (or denotative definitions) “employ techniques
that identify the extension of the term being defined” [Copi et al. 2014, p. 93]. Hurley [2006,
p. 94] defines an extensional definition as follows:

Definition 3.2.1 (Extensional Definition)
An extensional definition is one that assigns a meaning to a term (i. e., the definiendum)
by indicating the members of the class that the definiendum denotes [which is the extension
of the term being defined].

Although extensional definitions are a very effective technique, they have a serious limitation:
“it is usually impossible to enumerate all the objects in a class” [Copi et al. 2014, p. 93]. Based
on how to identify a term’s extension and indicating its members, we can distinguish between
different kinds of extensional definitions. [Hurley 2006, p. 94] names three approaches to
indicate the members of the class the definiendum denotes (i. e., the extension): (i) pointing
to the members (in the literal sense), (ii) naming or listing the members individually, and
(iii) naming the members in groups. This distinction results in three kinds of extensional
definitions:

1. ostensive or demonstrative definitions,

2. enumerative definitions,

3. definitions by subclasses,

which we briefly discuss in the following. At the end of this section, we describe a further kind
of extensional definitions, i. e., recursive definitions, which is not mentioned by Hurley [2006].

3.2.1 Ostensive definitions

The first kind of extensional definitions are ostensive definitions (also demonstrative defini-
tions). Based on Copi et al. [2014, p. 94], we define an ostensive definition as follows:

Definition 3.2.2 (Ostensive Definition)
An ostensive definition is a kind of extensional definition in which the objects denoted
by the term (i. e., the definiendum) being defined are referred to by means of pointing [the
gesture], or with some other gesture.

In a nutshell, an ostensive definition is one that conveys the meaning of a term by pointing at
examples. As such, ostensive definitions are “probably the most primitive form of definition
[since] all one need know to understand such a definition is the meaning of pointing” [Hurley
2006, p. 94]. Moreover, Hurley states that “such definitions may be either partial or complete,
depending on whether all or only some of the members of the class denoted by the definiendum
are pointed to.”

24

3.2 Extensional Definitions

Example 3.2.1 (Ostensive Definition)
We can give an ostensive definition of a projector (an optical device for projecting images
or videos onto a surface) to someone by pointing to projectors in a smart meeting room (as
described in Section 1.2).

The above example indicates an obvious limitation of ostensive definitions, which is “that
the required objects [need to] be available for being pointed at” [Hurley 2006, p. 94]. If there
are no projectors around, we cannot point at them and thus give an ostensive definition of
a projector. However, rather than pointing to physical objects that serve as examples for a
certain term to be defined, we can also think about providing depictions of examples of this
term to which we refer in our definition, in a corresponding media (e. g., a publication). So
instead of pointing at projectors, we can provide pictures of different projectors, e. g., in a
book. But even this adaption does not overcome another fundamental limitation of ostensive
definitions, which is not considered by Hurley [2006] but becomes apparent in Aphorism 28 of
Wittgenstein [1958].

Now one can ostensively define a proper name, the name of a colour, the name
of a material, a numeral, the name of a point of the compass and so on. The
definition of the number two, “That is called ‘two’ ”—pointing to two nuts–is
perfectly exact.—But how can two be defined like that? The person one gives
the definition to doesn’t know what one wants to call “two”; he will suppose that
“two” is the name given to this group of nuts!—He may suppose this; but perhaps
he does not. He might make the opposite mistake; when I want to assign a name
to this group of nuts, he might understand it as a numeral. And he might equally
well take the name of a person, of which I give an ostensive definition, as that of a
colour, of a race, or even of a point of the compass. That is to say: an ostensive
definition can be variously interpreted in every case.

Simply put, there is an intrinsic ambiguity in ostensive definitions2. The person for whom we
want to define a term ostensively needs a sufficient understanding of the information being
given.

3.2.2 Enumerative Definitions

Another kind of extensional definitions are enumerative definitions. Based on Hurley [2006, p.
95], we define an enumerative definition as follows:

Definition 3.2.3 (Enumerative Definition)
An enumerative definition assigns a meaning to a term (i. e., the definiendum) by naming
the members of the class the term denotes.

An enumerative definition can be either partial or complete (exhaustive), just like an os-
tensive definition. Furthermore, Hurley states that “complete enumerative definitions are
usually more satisfying than partial ones because they identify the definiendum with greater
assurance.”

Example 3.2.2 (Enumerative Definition)
An enumerative definition of the decimal digits can be given as follows:

The symbols ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, and ‘9’ are decimal digits.

2 Copi et al. [2014, p. 94] mention quasi-ostensive definitions that resolve this ambiguity by using descriptive
phrases in conjunction with gestures.

25

3 Extensional and Intensional Definitions

In contrast to Hurley [2006], others describe an enumerative as an exhaustive listing of all the
members of the class the term denotes (cf. Wilson [1998, p. 13]), which refers to a complete
enumerative definition in Hurley’s terminology. It is obvious that “relatively few classes,
however, can be completely enumerated” [Hurley 2006, p. 95], especially if the number of
members of the class the term denotes is infinite. And even if the number of members is finite,
the class still may have too many members making an enumerative definition impractical.

This fundamental limitation brings us to a third kind of extensional definitions: a definition
by subclasses.

3.2.3 Definitions by Subclasses

Definitions by subclasses are quite similar to enumerative definitions. Hurley [2006, p. 95]
defines a definition by subclass as follows:

Definition 3.2.4 (Definition by Subclass)
A definition by subclass is one that assigns a meaning to a term (i. e., the definiendum)
by naming subclasses of the class denoted by the term.

Like the other kinds of extensional definitions, a definition by subclass can be either partial
or complete, “depending on whether the subclasses named, when taken together, include all
the members of the class or only some of them.”

Example 3.2.3 (Definition by Subclass)
According to Hurley [2006, p. 95], the following definition of cetaceans:

cetacean means either a whale, a dolphin, or a porpoise,

is a complete definition by subclass.

Still, definitions by subclasses suffer from the same limitation like enumerative definitions:
“because relatively few terms denote classes that admit of a conveniently small number of
subclasses, complete definitions by subclass are often difficult, if not impossible, to provide”
[Hurley 2006, p. 95].

3.2.4 Recursive Definitions

Wilson [1998, pp. 13–4] distinguishes a further, rather unusual kind of extensional definitions
“that is encountered in logic, mathematics, and other formal studies:” recursive definitions (or
inductive definitions). Wilson gives the following definition of a recursive definition:

Definition 3.2.5 (Recursive Definition)
A recursive definition proceeds in three stages:

1. the base clause characterizes a subclass of the extension of the definiendum;

2. the induction or recursion clause gives a rule for determining the remaining objects in the
extension of the definiendum by relating any such object to an object the definiendum
already applies to;

3. the closure clause states that the definiendum applies to no other objects.

So a recursive definition defines the member of a class by means of other members in this
class. The following example from Wilson [1998, p. 14] illustrates the three parts of a recursive
definition.

26

3.3 Intensional Definitions

Example 3.2.4 (Recursive Definition)
Ancestor can be defined recursively as follows:

1. A person’s parent are the person’s ancestors;

2. A parent of a person’s ancestor is a person’s ancestor;

3. Nothing else is a person’s ancestor.

Recursive definitions play a special role, since they are quite different from the other kinds
of extensional definitions3 and do not share their most prominent limitation. In contrast to
other extensional definitions, recursive definitions allow denoting the members of large or
infinite extensions. However, recursive definitions, unlike other extensional definitions, do not
indicate the members of the extension of the definiendum explicitly; they only provide the
means to determine whether an object belongs to the extension. As such, recursive definitions
share similarities with intensional definitions, which are described in the next section. This
makes a delimitation between them difficult.

3.3 Intensional Definitions

Section 3.2 indicates that all kinds of extensional definitions, except of recursive definitions,
suffer from serious limitations (cf. Hurley [2006, p. 96]). “Extensions can suggest intensions,
but they cannot determine them.” These limitations and deficiencies of extensional definitions
bring us to intensional (or connotative) definitions, which play a crucial role in the remainder
of this thesis. Hurley defines an intensional definition as follows

Definition 3.3.1 (Intensional Definition)
An intensional definition is one that assigns a meaning to a word (i. e., the definiendum)
by indicating the qualities or attributes that the word connotes (i. e., its intension).

Furthermore, Hurley distinguishes between (at least) four kinds of intensional definitions:

1. Synonymous definitions,

2. Etymological definitions,

3. Operational definitions,

4. Definitions by genus and difference;

all of which differ in the way, how the intension is being indicated.

In the following, all four kinds of intensional definitions are briefly described, where the
first two kinds of definitions (synonymous definitions and etymological definitions) are just
mentioned for the sake of completeness.

3.3.1 Synonymous Definitions

Hurley [2006, p. 96] defines a synonymous definition as follows:

Definition 3.3.2 (Synonymous Definition)
A synonymous definition is one in which the definiens is a single word that connotes
the same attributes as the definiendum.

3 In fact and based on the given example one could argue that recursive definitions are intensional definitions
rather than extensional definitions.

27

3 Extensional and Intensional Definitions

“In other words, the definiens is a synonym of the word being defined.” If such a synonym
exists, a synonymous definition is a “highly concise way of assigning a meaning” to a term.
However, to convey the meaning of a term by giving a synonym of that term, the meaning of
the actual synonym needs to be clear, i. e., the synonym must already been understood [Copi
et al. 2014, p. 96].

Example 3.3.1 (Synonymous Definition)
[Hurley 2006, p. 96] gives the following example of a synonymous definition:

Physician means doctor.

Hurley [2006, p. 97] writes that “many words, however, have subtle shades of meaning that
are not connoted by any other single word.” Hence, not all terms can be defined by giving
suitable synonyms conveying the exact meaning of the definiendum. Moreover, Copi et al.
[2014, p. 97] state that “synonyms are virtually useless [. . .] when the aim is to construct a
precising or a theoretical definition.”

3.3.2 Etymological Definitions

The second kind of intensional definitions are etymological definitions. Hurley [2006, p. 97]
defines an etymological definition as follows:

Definition 3.3.3 (Etymological Definition)
An etymological definition assigns a meaning to a word [i. e., the definiendum] by
disclosing the word’s ancestry in both its own language and other languages.

According to Hurley, etymological definitions “have special importance for at least two
reasons:”

1. “[. . .] the etymological definition of a word often conveys the word’s root meaning or
seminal meaning from which all other associated meanings are derived.”

2. “[. . .] if one is familiar with the etymology of one English word, one often has access to
the meaning of an entire constellation of related words.”

Example 3.3.2 (Etymological Definition)
“The word ‘principle’ derives from the Latin word ‘principium’, which means beginning or
source. Accordingly, the ‘principles of physics’ are those fundamental laws that provide the
‘source’ of the science of physics” [Hurley 2006, p. 97].

However, the above example makes apparent that it is hard to fit etymological definitions
into the existing taxonomy of extensional and intensional definitions. In fact, other authors,
such as Wilson [1998] or Copi et al. [2014], do not list etymological definitions as a kind of
intensional definition.

3.3.3 Operational Definitions

A more relevant kind of intensional definitions are operational definitions. Hurley [2006, p.
97] defines:

Definition 3.3.4 (Operational Definition)
An operational definition assigns a meaning to a word (i. e., the definiendum) by
specifying certain experimental procedures that determine whether or not the word applies
to a certain thing.

28

3.3 Intensional Definitions

Hurley gives the following example to illuminate operational definitions:

Example 3.3.3 (Operation Definition)
A subject has “brain activity” if and only if an electroencephalograph shows oscillations
when attached to the subject’s head.

The above example “prescribes an operation to be performed,” i. e., electroencephalography.
Without “such an operation, a definition cannot be an operational definitions” [Hurley 2006,
p. 98]. Furthermore, Hurley writes: “operational definitions were invented for the purpose
of tying down relatively abstract concepts to the solid ground of empirical reality.” One
limitation of operational definitions is that they “usually convey only part of the intensional
meaning of a term.” For instance, “‘brain activity’ means more than oscillations on an
electroencephalograph.”

3.3.4 Definitions by Genus and Difference

Definitions by genus and difference are an important type of intensional definitions, which
are going back to the ancient Greek philosopher Aristotle (384–322 B.C.E.). As the name
indicates, such definitions consist of two aspects: (i) genus and (ii) difference.

The genus (also kind or category) describes a general class or group to which an object
belongs, whereas the (specific) difference answers the question how an object differs from other
members of the object’s genus. In other words, the difference “is the attribute or attributes
that distinguish the various [members] within a genus” [Hurley 2006, p. 98]. More formally,
Hurley [2006, p. 98] defines a definition by genus and difference as follows:

Definition 3.3.5 (Definition by Genus and Difference)
A definition by genus and difference assigns a meaning to a term by identifying a
genus term and one or more difference words that, when combined, convey the meaning of
the term being defined. It [a definition by genus and difference] consists of combining a
term denoting a genus with a word or group of words connoting a specific difference.

“Definitions by genus and difference are also called analytical definitions” [Copi et al. 2014,
p. 98]. The following example illuminates the different aspect of a definition by genus and
difference.

Example 3.3.4 (Definition by Genus and Difference)
The following definition of a mitochondrion:

A mitochondrion is a membrane-bound, eukaryotic cell organelle that produces
energy (in the form of adenosine triphosphate or ATP), which is required for
the cellular respiration and other processes within the cells,

is a definition by genus and difference. Cell organelle is the genus of the mitochondrion,
whereas the difference is the combination of the following attributes:

1. membrane-bound: which distinguishes mitochondria from cell organelles such as chromo-
somes and ribosomes, which have no membrane.

2. eukaryotic: which distinguishes mitochondria from cell organelles that only exist in
prokaryotic cells, such as mesosomes, or that can exist in prokaryotic and eukaryotic
cells, such as ribosomes.

3. energy producing: which distinguishes mitochondria from other membrane-bound, eu-
karyotic cell organelles such as the reticulum or nuclei, which are not producing energy.

29

3 Extensional and Intensional Definitions

According to Hurley, a definition by genus and difference is “more generally applicable and
achieves more adequate results than any of the other kinds of intensional definition.” However,
it may be challenging to provide a specific difference so that only objects of the class the
definiendum denotes are covered by the definition.

3.4 Summary and Discussion

To conclude, a definition is supposed to convey the meaning of a term, unambiguously and
concisely. Each definition consists of two parts:

� The definiendum that is the term4 that is to be defined.

� The definiens that is the word or group of words that does the defining.

The definiens can include other terms that may, in turn, require further definitions to grasp
the original definition. Depending on what the definiens looks like, we distinguish between
two main techniques of defining a term:

1. Extensional definitions,

2. Intensional definitions.

An extensional definition indicates the members of the extension of the definiendum, whereas
an intensional definition describes the attributes shared by all and only the objects in the class
the definiendum denotes [Copi et al. 2014, p. 91], which is the intension of the definiendum.
Both definitional techniques can be further divided into subtypes of extensional and intensional
definitions, as shown in Table 3.1.

Table 3.1: Techniques for defining terms, i. e., creating definitions.

Extensional Definition Intensional Definition

Ostensive definition Synonymous definition

Enumerative definition Etymological definition

Definition by subclass Operational definition

Recursive definition Definition by genus and difference

As Section 3.2 and Section 3.3 state, each of these subtypes (kinds) of definitional techniques
has limitations; some techniques have more than others. The main shortcoming of extensional
definitions, apart from recursive definitions, is their impracticality if the extension of the
term to be defined is too big. However, if the number of members of the term’s extension
is quite small, extensional definitions are convenient, concise, and intuitive. It becomes
immediately apparent, which objects belong to the class a term denotes. Although more
practical for terms with bigger or infinite extensions, intensional definitions, on the other
hand, sometimes require an understanding of the terms that are used to describe the intension
of the definiendum. Moreover, we first need to verify whether an object possess the attributes
used in an intensional definition before we can decide whether or not this object belongs to
the class the definiendum denotes. Recalling the example given in Figure 3.1, we first need
to determine whether a certain person is clever, intuitive, creative, and imaginative before
we can tell that this person is an inventor. This can prove to be rather difficult. Intensional
definitions can also be subject to vagueness and ambiguity, if not carefully specified. A more
elaborate comparison of the different kinds of definitional techniques is given by Hurley [2006,
pp. 94–100].

4 We often use the words “term” and “definiendum” interchangeably.

30

3.4 Summary and Discussion

In modeling and simulation, definitions play a crucial role, particularly when specifying the
behavior and structure of models, such as the composition or coupling scheme. In this thesis,
the focus is on set-theoretical, algebraic model definitions, i. e., models that are defined by
means of tuples, sets, and relations on these sets (see Section 4.2). A typical definition of a
set often looks like:

A � ta, b, cu,

where A is the definiendum (the set to be defined) and everything right of the equal sign
is the definiens. Adapting the terminology introduced in this chapter to the definition of
sets, the extension of a set corresponds to all the members of this particular set, whereas
the intension of the set refers to attributes that all and only the members of this set share.
These attributes are often specified by using logical predicates, where a logical predicate is a
Boolean-valued function P : X Ñ tJ,Ku.

Example 3.4.1 (Definition of Sets)
Assume we want to define the set of single-digit, natural numbers (including the zero),
denoted by N 10. An extensional definition of this set would look as follows:

N 10 � t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u.

An intensional definition of the same set can look as follows:

N 10 � tx P N | x 10u,

where N is the set of natural numbers. Interestingly, the intensional definition makes use of
the set of natural numbers, which is only defined verbally. However, we can define the set
of natural numbers N recursively as follows:

1. 0 P N
2. @n P N : n� 1 P N
3. Nothing else is in N.

Again, the meaning of n� 1 needs to be clear to understand the above definition.

For such mathematical definitions, ostensive definitions, synonymous definitions, etymological
definitions, and operational definitions are not suited (cf. Hurley [2006, p. 100]), so we focus
on the remaining kinds of definitional techniques, particularly:

� Extensional definitions

– Enumerative definitions

– Recursive definitions

� Intensional definitions

– Definition by genus and difference

In Example 3.4.1, the extensional definition

N 10 � t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u

is an exhaustive enumerative definition. All members of the extension are explicitly listed
(i. e., enumerated) and can be immediately perceived just by looking at the definition. The
intensional definition

N 10 � tx P N | x 10u,

31

3 Extensional and Intensional Definitions

is a definition by genus and difference. The set N is the genus, whereas x 10 is the difference
that distinguishes members that belong to the set to be defined (single-digit, natural numbers)
from other natural numbers with more than one digit. Such an intensional definition is also
referred to as set-builder notation.

32

4 Discrete Event Simulation

Discrete-event simulation is alive and
kicking!

Sally Brailsford

This thesis mainly focuses on discrete event simulation rather than continuous or hybrid
simulation. Discrete event modeling provides an appropriate and sufficient abstraction for the
systems we have been investigating during my doctoral studies, ranging from smart environ-
ments [Krüger et al. 2012; Nyolt et al. 2013, 2015; Steiniger et al. 2012] over mitochondrial
networks in eukaryotic cells [Steiniger & Uhrmacher 2013, 2016] to populations and societies
[Steiniger et al. 2014; Warnke et al. 2015].

Furthermore, in this thesis, we introduce1 a modeling formalism that is based on a parallel
variant of the Discrete Event System Specification (DEVS) formalism for discrete event
simulation: Parallel DEVS (P-DEVS), which is rooted in systems theory. As discussed by
Zeigler et al. [2000, pp. 391–409] and indicated by Vangheluwe [2000], DEVS is a universal
formalism for modeling discrete event systems, meaning that all possible discrete event systems
can be expressed in DEVS. Moreover, the concept of state quantization allows approximating
continuous systems by discrete event systems [Kofman & Junco 2001]2.

This chapter starts with a brief overview of discrete event systems and discrete event
simulation before it details DEVS and its variants, particularly P-DEVS. This formalism
serves as a foundation for Chapter 9 and introduces the idea of defining a modeling formalism
based on structured sets, i. e., at the level of structured systems.
Parts of this chapter are based on:

Steiniger, A., Krüger, F., and Uhrmacher, A. M. (2012). “Modeling Agents and their En-
vironment in Multi-Level-DEVS.” In Proceedings of the 2012 Winter Simulation Con-
ference (WSC’12). Article No. 233.

Steiniger, A. and Uhrmacher, A. M. (2016). “Intensional Couplings in Variable Structure
Models: An Exploration Based on Multilevel-DEVS.” In ACM Transactions on Modeling
and Computer Simulation (TOMACS), 26(2). pp. 9-1–9-27.

1 see Chapter 9
2 The “quantization of the state variables [is] a method to obtain a discrete event approximation of a

continuous system [. . .],” which is done by “using a piecewise constant function” [Kofman & Junco 2001].
Zeigler et al. [2000, pp. 419–21] provide details on quantization.

33

4 Discrete Event Simulation

4.1 Basics

Abstraction is an important means of modeling and simulating systems of interest, either real
or imagined ones (cf. Chapter 2). Often it is sufficient to abstract a system in the way that it
changes its state or state variables only at certain instants of time, i. e., when certain events
occur. “An event is an abstraction used in the simulation to model some instantaneous action
in the physical [or imagined] system” [Fujimoto 2000, p. 32]. This is the underlying idea of
discrete event simulation.

More formally, Banks et al. [2000, p. 14] describe discrete event simulation as “the modeling
of systems in which state variables [or states] change only at a discrete set of points in time.”
In addition, in a finite time interval, only a finite (countable) number of events (such as state
changes) can occur Zeigler [1976, p. 22]. We call models of such systems discrete event models3.
Simply put, discrete event simulation deals with the execution of discrete event models.

Although events happen at discrete points in time, the time base of discrete event models is
continuous (real numbers), as discussed by Cellier [1991, p. 14]4. The state (or state variables)
of discrete event models can be arbitrary, i. e., of discrete or continuous nature (cf. Figure 2.1).
Regardless of the nature of the state, the state is changing instantaneously. Thus, the state
trajectory of a discrete event model consists of piecewise constant segments [Zeigler et al.
2000, p. 103], such as depicted in Figure 4.1.

When executing discrete event models, their event-drivenness has an impact on the flow
of simulation time, i. e., the abstraction of the physical time advancing in the system that is
being modeled [Fujimoto 2000, p. 27]. “In an event-driven simulation, simulation time does
not advance from one time step to the next but, rather, advanced from the time stamp of one
event to the next” [Fujimoto 2000, p. 33]. Between two consecutive events, no wall-clock5

time elapses, however the simulation time changes if the events have different time stamps.
When processing events and updating the model state consequently, wall-clock time elapses,
whereas the simulation time remains unchanged.

According to Fujimoto [2000, p. 34], a sequential discrete event simulation typically makes
use of the following three data structures:

1. State variables that describe the current state of the modeled system.

2. An event list (or event queue) that contains the events that can occur some time in the
future. The list is constantly being updated during a simulation, reflecting changes.

3. A global clock that indicates the current simulation time.

The processing of discrete event models as described above, i. e., “jumping” from one event to
another during simulation based on an event list, is also known as event scheduling. According
to Zeigler et al. [2000, p. 159], there are two further approaches (also called word views) to
discrete event simulation: activity scanning and process interaction, with “the last being a
combination of the first two.” Banks [1998, p. 9] describes activity scanning as follows:

Activity scanning is similar to rule-based programming. (If a specific condition is
met, a rule is fired, meaning that an action is taken.) [. . .] Scanning takes place
at fixed time increments at which a determination is made concerning whether or
not an event occur at that time [simulation time]. If an event occurs, the system
state is updated.

3 Note that depending on a certain question at hand, it may be appropriate to approximate a continuous
system (a system that changes it state continuously) by a discrete event system.

4 In contrast to Zeigler [1976, p. 22], Cellier [1991, p. 14] writes that the time axis of discrete event models
does not necessarily have to be continuous but usually is. Here, we assume that the time base of a discrete
event model is continuous.

5 Wall-clock time corresponds to the time that passes during the execution of a simulation [Fujimoto 2000,
p. 27], as perceived by the user running the simulation (execution time).

34

4.2 Discrete Event System Specification and its Variants

t0 t1

v1

v2

v3

t2 t3 t4 t5
�me

va
lu
e

Figure 4.1: An exemplary trajectory consisting of piecewise constant segments.

In the process interaction world view, each entity of the system is represented by a process and
their life cycle. These processes can interact with each other during simulation. In addition to
the three classic world views, i. e., events, activities, and processes, there is a fourth approach
for discrete event simulation: the three phase approach, which was first proposed by Tocher
[1963]. In the three phase approach, two different types of events or system activities are
distinguished (i) time-dependent bound events (B events) and (ii) state-dependent conditional
events (C events) [Roberts & Pegden 2017]. The occurrence of a bound event is predictable
and thus can be scheduled, whereas the occurrence of a conditional event depends on the
fulfillment of certain conditions (e. g., the availability of certain resources) [Lin & Lee 1993, p.
383]. As its name indicates, the execution of a three phase simulation consists of three phases:

1. the A phase (time scan),

2. the B phase (B calls), and

3. the C phase (C calls).

In the first phase, the simulation clock advances to the time of the next scheduled bound
event. Then, in the second phase, all bound events that are scheduled for the current time
are executed. Finally, all conditional events are evaluated and those whose conditions are
satisfied are also executed. We repeat these three phases constantly until a certain simulation
end criterion is fulfilled, e. g., there are no further bound events. The three phase approach is
closely related to activity scanning [Roberts & Pegden 2017]. In this thesis, we pursue the
event scheduling world view.

4.2 Discrete Event System Specification and its Variants

The Discrete Event System Specification (DEVS) is an established and well-studied modular,
hierarchical system specification formalism, i. e., modeling formalism, for discrete event
simulation. As such, “DEVS allows to represent all systems, whose input/output behavior
can be described by a sequence of events under the condition that the state [of the system]
undergoes a finite number of changes within any finite interval of time [such a system is
called discrete event system]” [Cellier & Kofman 2006, p. 524]. Bernard P. Zeigler introduced
the basic DEVS formalism already in the mid-seventies [Zeigler 1976]. Later, inspired by
Wymore [1967, pp. 194–292], Zeigler [1984] extended the basic formalism by a concept for a

35

4 Discrete Event Simulation

ED

CB

Coupled Model A

Atomic
Model C

Atomic
Model B

Coupled Model C

Atomic
Model E

Atomic
Model D

Closure
under

Coupling

A

Model Component TreeBlock Diagram

Figure 4.2: A block diagram (left-hand side) of a simple hierarchical model in which we
make use of closure under coupling leading to the model component tree depicted on the
right-hand side.

modular coupling of basic DEVS models6 and outlined the closure under coupling7 of the
formalism. A formalism is called closed under coupling, if a coupled system or a network of
systems specified in a certain formalism can also be specified as a basic (or atomic) system in
the same formalism [Zeigler et al. 2000, p. 149]. Thus, DEVS allows a hierarchical model
construction, where coupled models can become components of other coupled models (see
Figure 4.2).

DEVS is rooted in system theory [Castro, Kofman, & Wainer 2008] and follows the reactive
systems metaphor, i.e., DEVS views the modeled system as a reactive system that (i) changes
its state over time as a result of certain inputs (external stimuli) or the flow of time itself
and (ii) can create outputs. Vangheluwe [2001] describes the formalism as an extension of
finite automata (also finite state machines)—with a Moore-like output8. In contrast to finite
state machines (FSMs), DEVS allows, in principle, an infinite number of states and in-
and outputs, and thus is not limited to describing systems with a finite number of states
[Cellier & Kofman 2006, p. 524]. However, Hwang and Zeigler [2009] define a subclass of
DEVS, called Finite and Deterministic DEVS (FD-DEVS), in which infinite state behavior
is abstracted by a finite reachability graph9. Furthermore, classic FSMs have no notion of
time and describe discrete-time systems10. Whereas DEVS describes continuous-time systems
and has an explicit notion of elapsed (simulation) time.

As a modeling formalism in the tradition of Sarjoughian [2006], DEVS emphasizes a strict
separation between model definition (syntax) and execution semantics. The latter of which is
specified by an abstract simulator and determines how simulation trajectories are computed
based upon model definitions. Similar to automata theory, in DEVS and its variants, models
are defined set-theoretically or algebraically (cf. Cellier and Kofman [2006, p. 525]), i. e., by
defining characteristic sets (inputs, outputs, and states) and functions (or relations) on this
sets that determine the behavior of the modeled system in accordance with the execution
semantics.

Since its introduction, DEVS serves as basis for a plethora of variants and extensions. These
often focus on addressing and capturing certain characteristics or specifics of the systems
to be modeled (i. e., to be specified in the respective formalism). Furthermore, there exist
also variants and extensions of DEVS that were designed for special purposes, such as the

6 Zeigler already presented first ideas about networks of system specifications such as DEVS in Zeigler [1976,
pp. 241–7]. However, the concept of connecting models therein is non-modular and the term “couplings”
was first used by Zeigler in his 1984 book.

7 Zeigler et al. [2000, pp. 151–2] give a detailed construction of the closure under coupling of DEVS.
8 The output of a Moore machine, a special finite automaton named after Edward F. Moore, depends only

on its state but not on its input [Moore 1956]. However, as the state transition function of a Moore
machine is defined on its inputs, the inputs can be implicitly encoded in the states.

9 In more detail, the behavior of FD-DEVS networks can be abstracted by an isomorphic finite-vertex
reachability graph that makes no restrictions on the occurrence of external events.

10 There exist extensions of FSMs that allow describing discrete event systems with a continuous timescale,
such as described by Alur and Dill [1994] or Cassandras and Lafortune [2008].

36

4.2 Discrete Event System Specification and its Variants

integration of external processes in the simulation (in-the-loop simulation) or a model-driven
synthesis of executable programs. Uhrmacher et al. [2010, p. 140] identify three types of
variants that prevail: (i) variants that introduce continuous aspects to extend the discrete
nature11 of DEVS, (ii) variants that focus on real-time applications and the integration of
external processes, and (iii) variants that overcome the static (model) structure of DEVS.
Another type of DEVS variants, that should be added to the above classification, are those
that formally introduce nondeterminism to DEVS12. Table 4.1 gives an overview of some
more or less prominent variants and extensions of DEVS and their particularities (the list is
not exhaustive). Another brief overview of the vast universe of DEVS variants can be found
in Van Tendeloo and Vangheluwe [2017].

4.2.1 Parallel DEVS

A quite prominent and important variant of DEVS is the Parallel Discrete Event System
Specification (P-DEVS). Since P-DEVS serves as foundation for the formalism presented
later in the thesis (see Chapter 9), we focus on P-DEVS in the following. Chow and Zeigler
[1994] introduce P-DEVS as a parallel variant of DEVS, to ease the modeling of concurrent
systems13. In fact, classic DEVS14 and P-DEVS specify the same class of systems [Zeigler
et al. 2000, pp. 392–3]. Similar to DEVS, P-DEVS distinguishes between atomic models
(basic models) and coupled models (networks). Atomic models describe the “behaviour of a
discrete-event system as a sequence of deterministic transitions between sequential states as
well as how it [the described system] reacts to external input (events) and how it [the system]
generates output (events)” Vangheluwe [2001]. Coupled models, on the contrary, describe
the modeled system as a network of components that can influence each other according to
a specified coupling scheme, by exchanging events. In other words, coupled models define
structure [Van Tendeloo & Vangheluwe 2018]. The components of a network can be atomic
models or, due to the formalisms closure under coupling15, coupled models. Following Chow
and Zeigler [1994], we define an atomic P-DEVS model as follows:

Definition 4.2.1 (Atomic P-DEVS Model)
An atomic P-DEVS model (or basic P-DEVS model) is defined as the structure:

M � xX,Y, S, δint , δext , δcon , λ, tay

where

– X is an arbitrary set of inputs (external events);

– Y is an arbitrary set of outputs (output events);

– S is an arbitrary set of sequential states;

– δint : S Ñ S is the internal (state) transition function;

11 Here, “discrete” does not refer to the timescale, but to the fact that in a given time interval only a finite
number of state changes can happen at discrete points on a continuous timescale.

12 The classic DEVS formalism as well as many of its variants specify deterministic systems. However, Zeigler
[1976, pp. 131–4] describes, how probabilistic models (i. e., nondeterministic models) can be represented
by an equivalent deterministic model under certain assumptions and by exploiting pseudo-random number
generators.

13 In P-DEVS, parallelism refers to modeling and execution aspects rather than a property of the modeled
system. Already in the original DEVS formalism components (of a coupled model) are assumed to be
independent and concurrent to the rest [Syriani & Vangheluwe 2010]. Moreover, P-DEVS models can
also be executed sequentially [Himmelspach & Uhrmacher 2006].

14 Zeigler et al. [2000] provide a comprehensive definition of the “classic” DEVS formalism.
15 Zeigler et al. [2000, pp. 152–3] proof the closure under coupling of P-DEVS.

37

4 Discrete Event Simulation

Table 4.1: List of some variants and extensions of DEVS.

Formalism (Variant) Feature(s) and Notes Reference(s)

Extended DEVS (E-DEVS) Parallelism, parallel execution Wang [1992]; Wang and Zeigler [1993]

Parallel DEVS (P-DEVS) Parallelism, parallel exeuction Chow [1996]; Chow and Zeigler [1994];
Chow et al. [1994]

Fuzzy-DEVS Nondeterminism, uncertainty Kwon, Park, Jung, and Kim [1996]

Stochastic DEVS (STDEVS) Nondeterminism, uncertainty Castro et al. [2008]; Castro, Kofman,
and Wainer [2010]

iDEVS Nondeterminism, uncertainty Bisgambiglia, de Gentili, and Santucci
[2009]

Variable DEVS (V-DEVS) Variable structures Barros, Mendes, and Zeigler [1994]

Dynamic Structure DEVS (DSDEVS) Variable structures Barros [1995a, 1995b, 1996]

DSDE Parallel variant of DSDEVS Barros [1997, 1998]

Dynamic DEVS (dynDEVS) Variable structures (reflection) Uhrmacher [2001]

Parallel Dynamic DEVS (PdynDEVS)* Parallel variant of dynDEVS Himmelspach and Röhl [2009]; Uhrma-
cher et al. [2010]

ρ-DEVS Variable structures, parallelism, vari-
able ports, intensional couplings

Uhrmacher et al. [2006]

Self-reproducible DEVS (SR DEVS) Variable structures, instantiation “Self-reproducible DEVS formalism”
[2005]

Multi-Level DEVS (ML-DEVS) Multi-level modeling, variable struc-
tures, variable ports, intensional cou-
plings

Uhrmacher et al. [2007]

Multi-Resolution DEVS (MR-DEVS) Multi-level modeling, variable struc-
tures

Gao, Li, Wang, and Chen [2012]; Li, Li,
Hu, and Chai [2011]

Real-Time DEVS (RT-DEVS) Real-time execution of models Hong, Song, Kim, and Park [1997]

Parallel External Process Interface DEVS
(PepiDEVS)

Integration of external processes, par-
allelism

Himmelspach [2007]

Parallel Dynamic External Process Inter-
face DEVS (PdynEpiDEVS)

Combination of PdynDEVS and
PepiDEVS

Himmelspach [2007]

Cell-DEVS Spatial modeling Wainer [1998, 1999]; Wainer and Gi-
ambiasi [1998]

Parameterized DEVS Output-to-parameter integration of dif-
ferent perspectives of healthcare sys-
tems

Djitog, Aliyu, and Traoré [2017]

Vectorial DEVS (VECDEVS) large-scale modeling, visual modeling Bergero and Kofman [2014]

Generalized DEVS (GDEVS) Hybrid systems modeling Giambiasi and Carmona [2006]; Gi-
ambiasi, Escude, and Ghosh [2001]

Discrete Event and Differential Equation
Specified Systems (DEV&DESS)

Hybrid systems modeling Praehofer [1992]; Zeigler et al. [2000]

ΦDEVS Equation-based modeling, constraint-
based modeling

Honig and Seck [2012]

Synthesizable DEVS (SynDEVS) Model synthesis, model transformation,
VHDL

Molter [2012]; Molter, Seffrin, and
Huss [2009]

Conceptual Modeling Language for DEVS
(CML-DEVS)

Conceptual modeling, model transfor-
mation, formalism interoperability

Hollmann, Cristiá, and Frydman [2015]

ZDEVS Integration of formal methods, Z spec-
ification language

Traore [2006]

a also called DynPDEVS in Uhrmacher et al. [2010]

38

4.2 Discrete Event System Specification and its Variants

– δext : Q�Xb Ñ S is the external (state) transition function, where

– Q � tps, eq | s P S, 0 ¤ e tapsqu is the set of total statesa,

– Xb is a set of bags over the elements in X;

– δcon : S � X Ñ S is the confluent (state) transition function, where Xb is defined as
above;

– λ : S Ñ Y b is the output function, where

– Y b is a set of bags over the elements in Y ;

– ta : Sp Ñ R�
0 Y t8u is the time advance function.

a Note that Chow and Zeigler [1994] as well as Zeigler et al. [2000, p. 143] write 0 e tapsq instead of
0 ¤ e tapsq. This, however, seems to be a typographical error, as inputs can be received immediately
after (transitory) state transitions.

So an atomic P-DEVS model is defined by the sets X, Y , and S and the functions δext , δint ,
δint , λ, and ta. All elements of S, i. e., sequential states, together constitute the state space16

of the atomic model M . The sequentiality of the states implies that the next state of the
model depends solely on its current state and potential inputs (cf. Khoussainov and Nerode
[2001, p. 47]). Furthermore, we often assume that a certain oder is defined on the set S, i. e.,
that S is defined as follows:

S � ts0, s1, . . . , snu,

where s0 is the initial state (or start state) of the model M . We need to know the initial state
for the actual execution of a model. For this reason, the above definition of atomic P-DEVS
(or atomic models of other DEVS variants) is often generalized such that the initial state
becomes a part of the defining tuple of the model itself and the set S is defined as an ordinary
set, such as in Barros [1997]. Accordingly, we would define an atomic P-DEVS model M also
as follows:

M � xX,Y, S, sinit , δint , δext , δcon , λ, tay

with sinit P S being the initial state and X, Y , S, δint , δext , δcon , λ, and ta as in Definition 4.2.1.
Going one step further, Van Tendeloo and Vangheluwe [2018] argue that an initial state alone
is not enough for a proper model initialization, in addition we also need an initial elapsed
time einit leading to an initial total state qinit with:

qinit � psinit , einitq .

The functions δint , δext , δcon , λ, and ta define the actual behavior (dynamics) of the atomic
model M . The first three functions refer to the three different state transition functions,
which determine how the state of the model evolves during simulation. The time advance
function ta assigns a time17 (lifespan) to each state in S. The model remains in its current
state s P S for the time (interval) determined by ta, i. e., tapsq, if the model does not receive
an input bag18 meanwhile (external event). When this time has passed and the model has

16 Russel and Norvig [2010, p. 67] define the state space as “the set of all states reachable from the initial
state by any sequence of actions [state transitions].” Herein, we relax the reachability criterion and define
the state space as a set of states that at least includes the set of all states a state-based model may reach
in principle, where the actual reachability is of no further interest.

17 Since the timebase of DEVS is continuous, the time that is associated with each state by the ta-function
is a real number or 8. Please note that in Definition 4.2.1 we define R�

0 as the set of positive real numbers
including 0, i. e., R�

0 � tx P R | x ¥ 0u with R being the set of all real numbers.
18 As in P-DEVS, in contrast to DEVS, several components of a coupled model can perform internal state

transitions in parallel, influenced components can receive more than one input at the same time. Moreover,

39

4 Discrete Event Simulation

not received an input bag in the meantime (internal event), an internal state transition takes
place and the internal transition function δint determines the new state s1 P S of the atomic
model based on its current state s, i. e., s1 � δintpsq. If an input bag xb P Xb has been received
before the lifespan of the current state s has expired, an external state transition takes place
and the external transition function δext determines the new state s1 based on the current
state s; the time elapsed since the last state transition, denoted by e (with 0 ¤ e tapsq); and
the input bag xb; i. e., s1 � δextpps, eq, xq. If both internal event and external event collide, so
if e � tapsq, a confluent state transition takes place and the confluent transition function δcon
is invoked determining the new state of the atomic model. This function gives modelers the
control to resolve such collisions and leaves the decision how, to the atomic models19 [Zeigler
et al. 2000, pp. 143–4]. Zeigler et al. define the confluent transition function by default as
follows:

δconps, xbq � δextppδintpsq, 0q, xbq.

Immediately before an internal or confluent state transition takes place and the current state
of the model is changed, the output function λ is invoked and creates an output bag 20 based
on the current, yet unchanged state. This particularity of the operational semantics of DEVS
variants (i. e., outputs are created before the state is updates) makes it often necessary to
define additional, transitory state transitions whenever a model shall immediately create an
output as a result of an input.

Coupled P-DEVS models, on the other hand, allow us to couple atomic P-DEVS models21

and thus to describe a “system as a network of coupled components” [Vangheluwe 2001].
Hence, a coupled model is sometimes called network, in the literature. Based on Chow and
Zeigler [1994], we formally define a coupled P-DEVS model as follows:

Definition 4.2.2 (Coupled P-DEVS Model)
A coupled P-DEVS model (or P-DEVS network) is defined as the structure:

N � xX,Y,D, tMdu, tIdu, tZi,duy

where

– X is an arbitrary set of inputs,

– Y is an arbitrary set of outputs,

– D is a set of component references;

where for each d P D,

a P-DEVS component can receive the same input from different components. Thus, atomic P-DEVS
models receive input bags rather than single inputs. Still, a bag may contain only one element or no
element at all (empty bag). Zeigler et al. [2000, p. 90] define a bag informally as “a set with possible
multiple occurrences of its elements.” A formal definition of sets of bags (bag sets) can be found in
Section A.1.4.

19 In classic DEVS, collisions are resolved by a serialization of the model behavior via the tie-breaking
function Select at the level of coupled models (global decision) [Zeigler et al. 2000, p. 143].

20 In contrast to the usage of input bags, the usage of output bags is not clearly motivated in the literature.
Moreover, output bags are not consistently used in the formal theory on P-DEVS. For instance, Chow
and Zeigler [1994] assume, in their proof of the closure under coupling of P-DEVS, that the λ-function
returns single outputs rather than bags, although λ is formally defined in such a way that it returns bags.
We adhere to the original definition of P-DEVS here and use output bags.

21 Due to its closure under coupling, coupled models can be represented by atomic models in P-DEVS. Thus,
components of a coupled P-DEVS model can in turn be coupled P-DEVS models.

40

4.2 Discrete Event System Specification and its Variants

– Md is an atomic P-DEVS model (component) with

Md � xXd, Yd, Sd, δintd, δextd, δcond, λd, tady,

– Id is a set of influencers of component d with Id � ppD Y tNuqztduq and N being the
reference of the network itselfa;

and for each i P Id with d P pD Y tNuq,

– Zi,d is a function, the i-to-d output translation, with

Zi,d �

$'&'%
X Ñ Xd if i � N (external input coupling)

Yi Ñ Y if d � N (external output coupling)

Yi Ñ Xd otherwise (internal coupling)

.

The sets Xi and Yi refer to X and Y of the component whose reference is i, respectively.
In the following, we call a component reference also identifier or, simply, name.

a Here we assume that N is the definition of the coupled model as well as the reference to the coupled
model.

Like in atomic P-DEVS models, X and Y denote the set of inputs and the set of outputs
of the coupled P-DEVS model, respectively. Each component (submodel) of the coupled
model has a unique reference d P D by which the component can be identified and referenced.
The set tMdu contains the actual definitions of the components, where each definition is
associated with a component reference. By definition, a component is an atomic P-DEVS
model as in Definition 4.2.1. The communication between components is explicitly defined by
a coupling scheme that comprises two sets: a set of influencer sets tIdu and a set of translation
functions tZi,du [Zeigler et al. 2000, p. 128]. For each component with the reference d P D,
the set Id contains the references of all the other components (including the coupled model
and excluding component d) that can influence22 component d, i. e., that can send events23

to d. If Id is empty, component d is not influenced by the coupled model or its components.
Finally, for each pair of influenced component d (influencee) and influencing component i
(influencer) with i P Id, the function Zi,d translates events coming from component i (output
events) into events of component d (input events). Not only the components of a coupled
model can send events to each other, but also the coupled model can forward input events to
its components (external input couplings) and the components can send output events to the
coupled model (external output couplings). Couplings between components are called internal
couplings. Figure 4.3 illustrates such a classic coupling scheme as used in, e. g., P-DEVS.

Above, we defined the operational semantics of P-DEVS informally. A formal definition
of the semantics of P-DEVS is given by its abstract simulator, i. e., a simulation algorithm
usually specified in pseudocode. The abstract simulator of P-DEVS can be found in Chow et
al. [1994] and Zeigler et al. [2000, p. 284–7] or in the Appendix C.

4.2.2 Structured Systems and Structured Paralled DEVS

So far, we defined P-DEVS without making any assumptions about the nature of the states,
inputs, and outputs of the models, i. e., the elements of the sets X, Y , and S. However, the

22 Chow and Zeigler [1994] define the coupling scheme of P-DEVS differently. Instead of specifying a set of
influencers for each component of the coupled model (including the coupled model), a set of influencees
is specified. So for each component d, the set Id contains the identifiers of all components (including
the coupled model and excluding component d) that can be influenced by the component d. The output
translation functions are defined accordingly. However, both approaches are equivalent.

23 Sometimes the term “message” is used instead.

41

4 Discrete Event Simulation

Coupled Model N

Component A
ZN,A XA

Component B
ZA,B ZB,N

ZB,A

YA

IA = {B,N}, IB = {A}, IN = {B}

YBXBXN YN

Figure 4.3: Example of a simple coupled model (adapted from Zeigler et al. [2000, p.
129]). The sets IA, IB, and IN determine the influencers for the components “A” and
“B” and the coupled model “N”, respectively.

states, inputs, and outputs of the systems that we want to model are usually not opaque
or abstract, flat entities, but structured according to certain variables—state, input, and
output variables. Zeigler et al. [2000, p. 123] call such systems multivariable or structured
systems. In addition to the classic specification of P-DEVS, as given above, there exists also
a specification of P-DEVS at the level of structured systems, assuming the existence of, at
least, input and output variables24 (see, e. g., Zeigler et al. [2000, pp. 77–88]). In this, from a
modeling point of view, more sophisticated specification, the sets of inputs and outputs of
atomic and coupled models are refined by using input and output variables, which are called
ports25. Via these in- and output ports components communicate with their surroundings. A
first concept of ports was introduced to classic DEVS by Livny [1983, pp. B-1–B-2]. Zeigler et
al. [2000, p. 90] define the sets X and Y of an atomic P-DEVS models using ports as follows:

X �

pp, vq | p P InPorts, v P Xp

(
Y �

pp, vq | p P OutPorts, v P Yp

(
,

where InPorts and OutPorts denote the set of input ports and the set of output ports,
respectively, i. e., their names. For each input port p P InPorts, Xp denotes the range of
values that can be assigned to p, i. e., that can be sent to this port. Accordingly, for each
output port p P OutPorts , Yp denotes the range of values that can be sent or produced by the
port. An input or output of the atomic model is then an ordered pair

pp, vq

comprising a port p and a value v at this port. The rest of the specification of the atomic
P-DEVS model at structured system level is equivalent to Definition 4.2.1.

Remark. Note that also other approaches to structure the sets X and Y exist, such as
multivariable sets as proposed by Zeigler et al. [2000, pp. 123–25]. Depending on the
corresponding approach, the meaning of a single element of X and Y may vary. In the case
of multivariable sets, one in- or output corresponds to a value assignment for each in- or
output port.

At the level of coupled P-DEVS models, using ports lead to port-to-port couplings. Instead of
specifying sets of influencers and translation functions, the modeler simply connects ports of

24 A possible structuring of states is not (and does not need to be) explicitly captured in the definition of
the formalism. However, when specifying concrete models, we can, e. g., use an n-fold Cartesian product
S1�S2� . . .�Sn to define the set S, where n refers to the number of state variables and Si with i P r1, ns
refers to the value range of the corresponding variable.

25 Also in other modeling formalisms and approaches, such as UML, SysML, or Modelica, we find ports
serving as central points for interaction between model entities.

42

4.2 Discrete Event System Specification and its Variants

different components with each other, which then exchange events during simulation. Since no
translations have to be specified when using port-to-port couplings (values send by the source
are received unchanged by the target), they facilitate a more compact and natural specification
of coupling schemes. Port-to-port couplings are “almost exclusively used in modeling practice”
[Zeigler et al. 2000, p. 129] and a special case of the general coupling scheme [Zeigler et al.
2000, p. 130] as used in Definition 4.2.2. In fact, port-to-port couplings can be translated
back into a classic coupling scheme [Praehofer 1992, p. 43]. Following Zeigler et al. [2000, pp.
84–86], a coupled P-DEVS model at the structured system level (i. e., that makes use of ports
and port-to-port couplings) can be defined as follows:

Definition 4.2.3 (Structured Coupled P-DEVS Model)
A coupled P-DEVS model at the level of structured systems is defined as the
structure

N � xX,Y,D, tMdu,EIC ,EOC , IC y,

where

– X � tpp, vq | p P InPorts, v P Xpu is a structured set of inputs with

– InPorts being a set of input ports (i. e., their names),

– Xp being an arbitrary set of values (value range) that can be assigned to the input
port p;

– Y � tpp, vq | p P OutPorts, v P Ypu is a structured set of outputs with

– OutPorts being a set of output ports (i. e., their names),

– Yp being an arbitrary set of values (value range) that can be assigned to the output
port p;

– D is a set of component references;

where for each d P D

– Md is an structured atomic P-DEVS model (component) with

Md � xXd, Yd, Sd, δintd, δextd, δcond, λd, tady,

where

– Xd � tpp, vq | p P InPortsd, v P Xpu,

– Yd � tpp, vq | p P OutPortsd, v P Ypu;

and where

– EIC �

ppN, ipN q, pd, ipdqq | ipN P InPorts, d P D, ipd P InPortsd

(
is a set of external

input couplings connecting external input ports of the coupled model N to input ports of
components;

– EOC �

ppd, opdq, pN, opN qq | d P D, opd P OutPortsd, opN P OutPorts

(
is a set of

external output couplings connecting output ports of components with external output
ports of the coupled model N ;

– IC �

ppa, opaq, pb, ipbqq | a, b P D, opa P OutPortsa, ipb P InPortsb

(
is a set of internal

couplings connecting output ports of components to input ports of other components.

43

4 Discrete Event Simulation

Coupled Model N

Component BComponent A

Component C

in1

in2

in
out1

out2

in out

in out

out

EIC = { {(N, in1), (A, in)}, {(N, in2), (C, in)} }, EOC = { {(B, out), (N, out)}, {(C, out), (N, out)} },

IC = { {(A, out1), (B, in)} }

Figure 4.4: Example of a simple coupled model, in which the couplings are defined via
port-to-port couplings. The sets EIC , EOC , and IC refer to external input couplings,
external output couplings, and internal couplings, respectively.

Like in Definition 4.2.2, N refers to the actual definition of the coupled model as well as to
its identifier that is used for defining the couplings.

The structured coupled P-DEVS model is subject to the following constraint:

@ ppa, opaqpb, ipbqq P IC : a � b,

i. e., no direct feedback loops are allowed (no output port of a component shall be coupled
to an input port of the same component). Furthermore, the value range of a source port
(from-port) has to be a subset of the value range of the coupled target port (to-port), i. e.,

@ppN, ipN q, pd, ipdqq P EIC : range ipN
� range ipd

,

@ppd, opdq, pN, opN qq P EOC : rangeopd
� rangeopN

,

@ppa, opaq, pb, ipbqq P IC : rangeopa
� range ipb

.

So unlike classic coupling schemes, port-to-port couplings make restrictions on the value
ranges of the coupled port. These restrictions are formulated as constraints that we have
to adhere to in order to specify consistent models. Figure 4.4 shows an exemplary coupling
scheme made from port-to-port couplings.

4.3 Summary

This chapter gives a brief introduction of discrete event simulation and its characteristics.
Afterward, the chapter introduces the Discrete Event System Specification (DEVS) as
one, well-established example for a modeling formalism that allows us to create models for
conducting discrete event simulation. Furthermore, some important variants and extensions
of DEVS are listed. The focus is on Parallel DEVS (P-DEVS), a parallel variant of DEVS.
The chapter shows how models are specified in P-DEVS. Finally, a refinement of the definition
of P-DEVS is given by assuming that the inputs, outputs, and states of a P-DEVS model
are structured according to certain, interesting variables.
The modeling formalism presented in Chapter 9, i. e., Multi-Level DEVS (ML-DEVS), is
based on P-DEVS and also assumes structured sets of inputs, outputs, and states.

44

5 Component-Based Modeling and Simulation

Perfect reusable components are not
obtained at the first shot.

Bertrand Meyer

As noted in the introduction, many systems of interest—ranging from smart environments
over living cells to populations—consist of smaller, distinct parts: system components. Those
system components can be homogeneous or heterogeneous, and each component can be
considered as a system itself (cf. Chapter 2). The behavior of an overall system emerges
from the interaction of its components. Also, the behavior can often not be understood by
investigating the components in isolation. Like Aristotle said

The whole is greater than the sum of its parts.

This chapter introduces the basic ideas of component-based modeling and simulation and
outlines the differences between similar approaches concerning with the creation of models (of
complex systems) by using smaller “units,” either top-down or bottom-up.

45

5 Component-Based Modeling and Simulation

5.1 Evolution and Basics

“In modeling and simulation, there is a growing interest for developing larger and more complex
models [of complex systems] through model composition” [Szabo & Teo 2007], preferably
by composing predefined building blocks1 [Röhl 2008, p. 1]. The “composition of models is
considered essential in developing heterogeneous complex systems and in particular simulation
models capable of expressing a system’s structure and behavior” [Sarjoughian 2006]. This
leads us to the idea of component-based modeling and simulation. Intuitively, we can think of
component-based modeling and simulation as a paradigm or method for (i) building complex
models out of components (parts) by composing and connecting them and (ii) executing such
composed models; where the focus is often on model creation (component-based modeling)
rather than execution (component-based simulation). We call the parts of which a composed
model consists of model components to distinguish them from the system components, i. e.,
the constituent parts of the system that is mimicked by the model. Depending on the required
level of abstraction for a modeling problem at hand, a model component can represent an
individual system component or aggregate several system components, or, in turn, a system
component can be represented by several, interacting model components. However, often the
model composition reflects the actual organizational structure of the system of interest.

Although we find a lot of literature on the subject, there is a lack of a clear-cut definition
of the notion of component-based modeling and simulation. In fact, a lot of similar or equal
concepts exists that are closely related to the idea of creating models by assembling some sort
of building blocks or smaller units. Some of these related concepts are:

� Modular modeling, hierarchical modeling (cf. Zeigler [1984] or Röhl [2008]);

� Object-oriented modeling and simulation (cf. Zeigler [1990]);

� Composability, interoperability (cf. Petty and Weisel [2003a], “The Levels of Conceptual
Interoperability Model” [2003], Szabo and Teo [2007], P. K. Davis and Tolk [2007], or Tolk
and Miller [2011]);

� Compositionality (especially with respect to modeling languages, cf. de Roever, Langmaack,
and Pnueli [1998], Henzinger, Jobstmann, and Wolf [2009], or “MontiCore: A Framework
for Compositional Development of Domain Specific Languages” [2010]);

� Parallel, distributed modeling (cf. Fujimoto [2000], Verbraeck [2004] or Tolk [2013]),

� Multi-formalism modeling (cf. Sarjoughian [2006]),

� Multi-paradigm model (cf. Vangheluwe et al. [2002]); etc.

Since there exists, to our best knowledge, no comprehensive taxonomy relating all these
concepts and the differences between them are often rather subtle, it is not alway easy to keep
them apart. In the remainder of this chapter, we discuss some of the above concepts in more
detail, especially those that are of importance for the thesis. However, it is not subject of the
thesis to introduce a well-defined taxonomy or ontology that relates the different composition
methods and concepts.

Despite the absence of a clear-cut definition, we often find certain, recurring characteristics
that are associated with component-based model design and are used as a motivation for this
paradigm:

� Reduced complexity of individual components (cf. Valentin and Verbraeck [2002]);

� Reduced time and costs of the development of models, by reusing components (cf. Szabo
and Teo [2007]);

1 In contrast to Verbraeck [2004], we use the terms “building blocks” and “components” interchangeably.

46

5.1 Evolution and Basics

� Reusability of predefined, of-the-shelf, and customizable components (cf. Chen and Szy-
manski [2002]);

� Reduced effort of performing simulation studies (cf. P. K. Davis and Anderson [2004];
Valentin et al. [2003]);

� Increased credibility of the composed models (cf. P. K. Davis and Anderson [2004]).

The first bullet point resembles the idea of divide and conquer, an algorithm design paradigm,
in which a complex problem is broken down into simpler subproblems (top-down). Similarly, a
component-based model design allows representing a complex system by a number of smaller,
less complex components (instead of a large monolithic model). In addition, a component-
based approach allows the modeler to adhere to the general design principle separation of
concerns [Dijkstra 1982, pp. 60–66], in which different concerns are represented by different
components. For this reason, many modeling formalisms support a composition of models
from smaller units, in one way or another.

5.1.1 Component-Based Software Engineering

It is often noted that component-based modeling and simulation is related to or inspired by
component-based software engineering (CBSE), component-based development (CBD), and
component-oriented programming (COP) [Dalle 2007; Hu et al. 2005; Röhl 2006; Sarjoughian
& Huang 2005; Verbraeck 2004]. According to Jifeng, Li, and Liu [2005], component-based
software development (or component-based software engineering) can be viewed as using
“reusable components that interact with each other and fit into system architectures,” where
“the idea to exploit and reuse components to build and maintain software systems goes back
to ‘structured programming’2 in the 70s.” Heineman and Councill [2001, p. xviii] write that
CBSE mostly focuses on three aspects:

1. Developing software from preproduced parts (components),

2. The ability to reuse those components in other applications,

3. Easily maintaining and customizing those components to produce new functions and
features.

As a result, reusing predefined components allows programmers to reduce the costs of develop-
ing and maintaining software (reuse-based software engineering). Furthermore, CBSE “should
provide both a methodology and process for developing components that work continuously,
with the ability to return to previous stable state when encountering an error without cor-
rupting any components,” hence “CBSE is concerned less with building parts [components]
than providing users with constantly reliable parts that maintain continuously functioning
software” Heineman and Councill [2001, p. xix]. Component-oriented programming, on the
other hand, “focuses on the design and implementation of components—in particular, on the
concepts of encapsulation, polymoprhism, late binding and safety” [Szyperski 2002, p. 549].
As such, COP is closely related to object-oriented programming3. Components or software
components are the central ingredients of CBSE, CBD, and COP. Szyperski [2002, p. 548]
defines as software component as follows:

A [software] component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. Context dependencies are specified

2 Structured programing introduces subroutines that allow reusing certain functionalities by calling the
subroutines.

3 According to Szyperski [2002, p. 549, p. 561], both component-oriented programming and object-oriented
programming (OOP) focus on the design and implementation of entities, i. e., components and objects.
Both COP and OOP build on the concepts of encapsulation and polymorphism. In addition, COP focuses
on late binding and safety, whereas OOP focuses on implementation inheritance.

47

5 Component-Based Modeling and Simulation

by stating the required interfaces and the acceptable execution platform(s). A
[software] component can be deployed independently and is subject to composi-
tion by third parties. For the purposes of independent deployment, a [software]
component needs to be an executable unit. To distinguish between the deployable
unit and the instances it supports, a [software] component is defined to have no
observable state. Technically, a [software] component is a set of atomic compo-
nents, each of which is a module plus resources. A [software] component targets a
particular component platform. The composition of components follows one or
more composition schemes that are mandated by that component platform.

So software components are subject of composition, which Szyperski [2002, p. 550] defines as:

Assembly of parts (components) into a whole (a composite) without modifying
the parts. Parts have compositional properties if the semantics of the composite
can be derived from those of the components.

According to Szyperski, one essential aspect of a composition is that its parts are composed
without being modified. In addition, the assembly or composition of two or more software
components yields a new component behavior [Weinreich & Sametinger 2001, p. 42].

“As simulationists, we can learn from component-based theory from the software engineering
field to prepare our models for distribution, and parts of our models for reuse,” however “it is
not easy to create models in a componentized way” [Verbraeck 2004]. According to Verbraeck,
object orientation and component-based development appear to be natural approaches when
it comes to partitioning of software and thus models. This leads us to modular-hierarchical
and object-oriented modeling.

5.1.2 Modular-Hierarchical and Object-Oriented Modeling

In contrast to monolithic modeling formalisms such as finite state machines [Hopcroft, Motwani,
& Ullman 2001] or classic cellular automata [von Neumann 1966], many formalisms that focus
on modeling complex, multi-component systems intrinsically support a modular, hierarchical
model construction [Steiniger & Uhrmacher 2013]. Modular modeling describes models of
complex systems as being composed of smaller, self-contained, and interacting parts or units:
modules, where the emphasis is on the self-containment of the individual parts. In other words,
modular modeling deals with the modularization of models. A modular model specification
is necessary for a flexible model assembly and disassembly [Zeigler 1984, p. 132]. But what
are modules and what are their characteristics? From a more general perspective (software
engineer), Szyperski [2002, p. 559] defines a module as follows:

A closed static unit that encapsulates embedded abstractions. Such abstractions
include types, variables, functions, procedures, or classes. As a module is a closed
unit, its encapsulated domain is fixed and can be fully analyzed.

Zeigler [1984, p. 132] gives the following, more specific description of a module:

We shall understand a module to mean a program text that can function as a
self-contained autonomous unit in the following sense: Interaction of such a module
with other modules can occur only through predeclared input and output ports.
Except for such interface variables, all other variables referenced in the module
receive declarations local to it. This module may contain memory (saved) variables
which retain their values between invocations.

Furthermore, Zeigler notes that “a module is well characterized as an I/O system” that is
defined by: (i) an input and output interface via which the systems interacts with other
systems and (ii) a state representing the memory of the system. Thus, modules are not only

48

5.1 Evolution and Basics

characterized by their self-containment but also by their interfaces, which define the boundary
of a module to its environment. Pursuing this argumentation, modules can be considered as
models themselves.

Via their interfaces, modules can be coupled (connected) with each other forming composite
modules (often called coupled models). These composite modules may in turn become part4

of other composite modules at a higher level [Zeigler 1984, p. 133], leading to hierarchical
models. More formally, Zeigler describes a hierarchical model construction as a finite recursion
of couplings of modules at the same level and gives the following inductive definition of a
hierarchical model in Zeigler [1990, p. 29]:

1. an atomic model is a hierarchical model5

2. a coupled model whose components are hierarchical models is a hierarchical model

3. nothing else is a hierarchical model,

where an atomic model is a module that cannot be decomposed into further submodules.
“The starting point for hierarchical model construction is the closure of the systems formalism
[modeling formalism] under coupling” [Zeigler 1984, p. 149]. This means that coupled models
in a respective formalism can be also expressed as atomic models in this formalism. Hence,
closure under coupling provides the formal foundation for hierarchical modeling.

Prominent examples of modeling formalisms that facilitate a modular, hierarchical model
design are DEVS [Zeigler & Sarjoughian 1999] and many of its variants (see Section 4.2) as
well as Modelica [Elmqvist 1978; Elmqvist, Mattsson, & Otter 2001]. Modelica is an object-
oriented modeling language with a special focus on modeling physical systems consisting
of mechanical, hydraulic, or electrical components. In the language, models are defined by
parameterizable classes with typed ports via which models can be connected to form more
complex models and the substitution of submodels is based on inheritance (cf. Mattsson and
Elmqvist [1998], Otter and Elmqvist [2000], or Otter, Erik Mattsson, and Elmqvist [2007]).

Based on the above definitions, we can conclude that every modular model can also be
considered as a hierarchical model, even if all components of this hierarchical model are atomic.
However, not every hierarchical model may be a modular model according to the definition of
modules given by Zeigler. A special case of hierarchical models are non-modular, hierarchical
models. Similar as modular, hierarchical models, these models consist of smaller parts of some
sort that interact with each other. Furthermore, a coupled, non-modular model can be a part
of another coupled, non-modular model (closure under coupling). But these parts do not
or only partially interact with each other via clearly defined interfaces. Instead, parts can
directly change the state of other parts, because non-modular models do not encapsulate their
states, in contrast to modular models. Nevertheless, Zeigler [1984, pp. 137–41] and Zeigler
et al. [2000, pp. 161–2] present a procedure how non-modular, hierarchical models can be
translated into a modular form, by “identifying the dependencies between components and
converting them into input and output interfaces and modular couplings.”

One example of a modeling formalism that allows specifying non-modular, hierarchical
models is multiDEVS (multicomponent DEVS) as described by Zeigler et al. [2000, pp. 155–7]
or Shiginah [2006, pp. 25–7]. The state transition of each “component” in multiDEVS is
defined on the states of all components of the superordinate coupled model and can change the
state of the current component as well as all the other components. However, each component
of multiDEVS is a well-defined model that can be taken from the respective coupled model
and executed individually.

4 Zeigler [1984, pp. 132–57] refers to modules also as components. Here we try to distinguish between both,
even though both concepts are closely related.

5 Zeigler et al. [2000, p. 93] describe a hierarchical model as coupled models that consists of atomic and
coupled models.

49

5 Component-Based Modeling and Simulation

Zeigler [1984, p. 133] notes that “we should be careful to distinguish the characterization of
a module in [a] system theoretic formalism from its realization in programming form.” In other
words: there can be a difference between a model specified in a formalism and the model that is
eventually executed on a computer adhering to the model specification given in the formalism
(executable model). This applies also for other modeling formalisms, especially those that
are based on some sort of mathematical notation or formal calculus. In fact, such modeling
formalisms “can have several implementations (i.e., software realizations) based on the choice
of programming languages—e.g., a mathematical model can be designed and implemented
using object-oriented modeling concepts and a programming language” Sarjoughian [2006].
Which brings us to object-oriented modeling.

“Object orientation and component-based development immediately spring to mind as
possible technologies to use when it comes to partitioning of software or models [dividing
the model into smaller parts]” [Verbraeck 2004]. “Object-oriented modeling is coined by the
encapselating [sic] of data and procedures in objects, which results in a modular design of
models” and interact with each other via messages [Uhrmacher & Zeigler 1996]. Herein, we
understand object-oriented modeling as a special case of modular modeling. Models that
are implemented by using an object-oriented programming language are directly executable,
whereas not all modular models are executable on a computer without further ado.

Modelica, as mentioned earlier in this section, is an example of an object-oriented modeling
formalism. In contrast, DEVS itself is not object-oriented, because the models are specified
set-theoretically. However, “DEVS [as well as other modeling formalisms] is most naturally
implemented in computational form in an object-oriented framework” Zeigler et al. [2000, p.
93]. For this reason, a number of object-oriented implementations of DEVS and its variants
exist, such as the modeling environment DEVSJAVA [Zeigler et al. 2000, pp. 93–5] or the
DEVS plugins for the simulation framework JAMES II6 [Himmelspach & Uhrmacher 2007].
The existence of different implementations of a modeling formalism such as DEVS can yield
the problem that models specified using different implementations are not interoperable with
each other (cf. Garredu, Vittori, Santucci, and Bisgambiglia [2013]). For instance models
created in the environment DEVS-Scheme [Zeigler 1990] cannot be coupled with models
created in DEVSJAVA.

5.1.3 Component-based Modeling

According to Verbraeck [2004] “object orientation does not guarantee reuse, nor does it
guarantee that objects easily communicate with each other,” but “component-based devel-
opment (CBD) [or component-based software engineering (CBSE)] has addressed this issue
for the software-engineering world by aiming at reusable building blocks with clearly defined
interfaces.” Component-based modeling (and simulation) adopts these ideas from CBSE and
transfers them to the model design, while emphasizing a separation between composition and
implementation. As such, component-based modeling goes one step further than modular-
hierarchical modeling, in which composition and implementation are inseparable. Verbraeck
distinguishes between building blocks and components. Verbraeck [2004] defines a building
block as follows:

A building block is a self-contained, interoperable, reusable and replaceable unit,
encapsulating its internal structure and providing useful services or functionality
to its environment through precisely defined interfaces. A building block may
be customized in order to match the specific requirements of the environment in
which it is ‘plugged’ or used.

As a building block hides its internal structure, customizing a building block should be done
without changing the internal structure. This can be done by defining the internal structure

6 http://jamesii.org; last accessed February 2018

50

http://jamesii.org

5.2 Composability and Interoperability

in a way that it depends on certain parameters, which can be set from the outside. Creating
building blocks in a customizable way has influence on the development of the building blocks.
Furthermore, Verbreack writes:

A building block is independent of its implementation and can therefore only [be]
described by its conceptual model and therefore by its function and interface with
other building blocks. This means that independent of the implementation, a
system consisting of a mixed implementation of different building blocks. For
instance a combination of a simulation and a real-time application building block
should function without problems.

According to Verbraeck [2004] building blocks have, among others, the following properties:

� different levels of granularity (abstraction),

� fulfill a clear function,

� have a well-specified (or well-defined) interface,

� are nearly independent of other building blocks, but rarely stand alone,

� can be used in unpredictable combinations,

� may change their state.

Verbraeck [2004] explicitly distinguishes between building blocks and components, where
“a component is the implementation of a building block in a software environment.” “The
interface (functionality) of the building block and the component are therefore different
representations of the same thing.” Similar to other works such as Himmelspach et al. [2010],
we will not make such a distinction and refer to components rather than building blocks.

A component-based modeling approach provides a methodology how to specify such compo-
nents, their interfaces, and how to configure and compose them. As Kasputis and Ng [2000]
write:

We are discovering that unless models [components] are designed to work together,
they don’t (at least not easily and cost effectively). Without a robust, theoretically
grounded framework for design, we are consigned to repeat this problem for the
foreseeable future.

Another, very important aspect of component-based modeling is the exchange and reuse of
predefined components by third parties [Röhl 2006; Verbraeck 2004]. Therefore, components
can be stored in and retrieved from component repositories (cf. Szabo and Teo [2007]).
Although, a component is supposed to be independent of its implementation and a com-

position can consist of mixed implementations (in terms of the implementation techniques)
[Verbraeck 2004], we find component-based modeling approaches that more or less restrict or
dictate the underlying implementation technique, such as Varga [2001], Chen and Szymanski
[2002] or Buss and Blais [2007], putting less emphasize on a clear separation of composition
and implementation.

5.2 Composability and Interoperability

The term composability is closely related to component-based modeling and simulation. Petty
and Weisel [2003a] define composability as follows:

Composability is the capability to select and assemble simulation components
in various combinations into valid simulation systems to satisfy specific user
requirements. The defining characteristic of composability is the ability to combine
and recombine components into different simulation systems for different purposes.

51

5 Component-Based Modeling and Simulation

Likewise, Szabo and Teo [2007] define composability as

the capability to select and assemble off-the-shelf model components in various
combinations to satisfy user requirements.

So composability does not simply correspond to the process of putting components together
but also to the validity (correctness) of and requirements to the outcome of a composition.
Furthermore, Petty and Weisel distinguish between syntactic composability and semantic
composability7. Syntactic composability answers the question whether “components can be
connected” (in principle), whereas semantic composability deals with the question “whether
the models that make up the composed simulation system can be meaningfully composed,
i. e., if their combined computation is semantically valid” [Petty & Weisel 2003a]. “To
be syntactically composable, [. . .] components have to be compatible with respect to data
passing mechanisms and timing assumptions” [Szabo & Teo 2007]. For this reason, the
notion of the compatibility of components, more specifically their interfaces, being connected,
as we can find in, e. g., P. C. Davis, Fishwick, Overstreet, and Pedgen [2000], Jifeng et al.
[2005], Röhl and Uhrmacher [2008], and Modelica Association [2012], corresponds to syntactic
composability. However, although syntactic composability is “by far easier to achieve than
semantic composability, syntactic composability still poses a number of problems such as
establishing a common component model by which all components involved in the syntactic
composability must abide, and, derived from the component model, the way in which syntactic
checking is done” [Szabo & Teo 2007].
Assuring semantic composability, on the other hand, solely based on component and

composition descriptions, when configuring an assembly of components, is an even more
challenging task, as semantic composability refers to the validity of the composition [Petty &
Weisel 2003a]. Traditional model validation, however, requires experiments to be conducted
and the “comparison” of the behavior of the model with the behavior of the actual system
with respect to a certain modeling problem (see Section 2.5). Therefore, addressing semantic
composability requires the use of additional “tools” such as ontologies. These challenges may
be the reason why there is—to our best knowledge—only few works that tackles semantic
composability explicitly, such as Petty and Weisel [2003b], Szabo and Teo [2009], or Peng,
Ewald, and Uhrmacher [2014]. In fact, we could ask ourselves why it is necessary to think
about semantic composability, since the validation is a crucial step in simulation studies,
which we may not want to or cannot skip.

Given a certain composition methodology allowing us to configure and assemble of-the-shelf
components, as characterized above, we can assume that at least syntactic composability can
be assured by using the respective methodology.
Another concept related to composability, we come across when dealing with component-

based modeling and simulation, is interoperability. Petty and Weisel [2003a] define interoper-
ability as follows:

For simulations, interoperability is the ability of different simulations [simulation
systems], connected in a distributed simulation system, to meaningfully collaborate
to simulate a common scenario and virtual world. Their collaboration is normally
based on run-time exchange of simulation data or services, typically using an
interoperability protocol, such as DIS [Distributed Interactive Simulation], ALSP
[Aggregate Level Simulation Protocol], or HLA [High-Level Architecture].

So interoperability is at a higher level than composability, since it involves the interaction
of simulation systems rather than the interaction of components, which are executed on the
simulation systems. Figure 5.1 illustrates the relationship between both.

7 Petty and Weisel [2003a] also use the terms “engineering composability” and “modeling composability”
instead of “syntactic composability” and “semantic composability,” respectively.

52

5.3 Component-based Simulation

Component A Component B

Composi�on A

Component A

Composi�on B

Composability
(Modeling)

Component A Component B

Composi�on A

Component A

Composi�on B

Simula�on System A Simula�on System B

Federa�on

Interoperability

(Simula�on)

Figure 5.1: Relationship between composability and interoperability.

Similarly as done for composability, Petty and Weisel [2003a] distinguish two types of in-
teroperability: technical interoperability and substantive interoperability (or meaningful in-
teroperability). The former covers the correct use of the interoperability protocol8, whereas
the latter assures that the information exchanged between the interoperating simulations is
mutually consistent with the simulation models’ semantics. “Essentially, interoperability is
the ability to exchange data or services at run-time, whereas composability is the ability to
assemble components prior to run-time”, where “interoperability is necessary but not sufficient
to provide composability” [Petty & Weisel 2003a]. Herein, we focus on composability rather
than interoperability.

5.3 Component-based Simulation

As the Introduction of this thesis emphasizes, we create model for the purpose of simulation.
Component-based simulation may refer to one or more of the following aspects:

� Component-based design of simulation systems, i. e., the simulation systems consist of
different interacting software components, which sometimes can be seen as software agents
(cf. agent simulation as described by Yilmaz and Ören [2007]).

� Component-based design of simulation algorithms, i. e., the simulation algorithms consist of
components that may be exchanged during simulation (cf. adaptive simulation algorithms
as discussed by Helms, Ewald, Rybacki, and Uhrmacher [2013]). A simulation algorithm
itself is a part (component) of a simulation system.

� The execution of component-based models (model compositions).

Herein, we focus on the latter, i. e., the execution of component-based models, when talking
about component-based simulation.
By definition, the internal structure of a component (building block) is hidden and inde-

pendent of its implementation [Verbraeck 2004]. In the most simple case, all components
of a composition and their interaction can be specified in the same, sufficiently expressive
modeling formalism, such as DEVS or SysML9. If so, executing the model composition
is straightforward, as we only need a simulation system that supports the corresponding
modeling formalism. For the actual execution the composed model may be partitioned into

8 The means by which the simulation systems interoperate.
9 At some occasions, we will call such a general purpose and expressive modeling formalism also super

formalism.

53

5 Component-Based Modeling and Simulation

smaller parts10 and distributed among different computation nodes by the simulation system
(parallel and distributed simulation).

However, often systems under consideration have parts (components) with dynamics that
are intrinsically different [Sarjoughian 2006]. Even though we may, in principle, be able to
describe all components in the same modeling formalism, that does not necessarily mean that
all components should be described in this formalism. Sometimes one formalism may be more
suitable than another to specify a certain component or type of components (no silver bullet
exists11). Thus, we should use different modeling formalisms to model composed systems
[Sarjoughian 2006], especially if they consist of heterogeneous components. However, the
“decomposition and composition of models are challenging when models are heterogeneous
in terms of their formal specification [as they] have different structural and behavioral
specifications” [Sarjoughian 2006]. Assembling components whose internal structure is defined
in different modeling formalisms is closely related to the ideas of multi-formalism modeling
and multi-paradigm modeling. Therefore, we can adopt strategies from both domains for the
execution of composed, multi-formalism models. Vangheluwe [2000] identifies three basic
approaches for executing multi-formalism models, which we can also apply for the execution
of model compositions:

� Meta-Formalism: The formalisms used to implement the different submodels (source
formalisms) are subsumed (combined) to a single meta-formalism. Thus, all submodels
are specified in the same formalism, i. e., the meta-formalism. This formalism is then used
to execute the coupled multi-formalism model on a simulation system that supports the
meta-formalism. However, “meaningful meta-formalisms which truly add expressiveness as
well as reduce complexity are rare” Vangheluwe [2000]. In addition to merge the model
specifications of the source formalisms, a meta-formalism also needs a well-defined execution
semantics to facilitate simulation. For this reason, the number of possible source formalisms
that can or should be subsumed to a meta-formalism is limited. The Discrete Event and
Differential Equation System Specification (DEV&DESS), introduced by Praehofer [1992],
is an example of such a meta-formalism that combines discrete event simulation with
continuous simulation12.

� Transformation: To execute a coupled multi-formalism model on a certain simulation
system, the components, which are specified in different formalisms, are transformed into a
suitable common formalism (target formalism). To do so, transformations from the source
formalisms to the target formalism have to exist. In addition, the target formalism needs
to support the coupling of model components. Vangheluwe [2000] shows that DEVS can
serve as such a target formalism (“common denominator”) for multi-formalism, hybrid
systems modeling. Furthermore, Vangheluwe suggest exploiting the possible closure under
coupling of the source and target formalisms to come up with flat models before and after
the transformation into the target formalism. Figure 5.2 illustrates the procedure suggested
by Vangheluwe, which leads to a single, flat model in the target formalism. This model can
eventually be executed on a simulation system that supports the target formalism. We have
a less restrictive view on the transformation of model compositions, as we do not demand
that the outcome of a transformation has to be a flat model.

� Co-Simulation: Each submodel of the coupled multi-formalism model is executed by
a source-formalism-specific simulator (simulation algorithm). These simulators can run

10 The individual parts can be greater than the components of which the model is composed of.
11 as postulated Brooks Jr. [1987]
12 DEV&DESS combines the formalism DEVS for discrete event simulation with the formalism DESS

(Differential Equation Specified Systems) [Zeigler 1976, pp. 229–31] for continuous simulation [Praehofer
1992; Zeigler et al. 2000]. Thus, DEV&DESS can be used for hybrid systems modeling and simulation
(multi-paradigm modeling). First ideas to combine DEVS and DESS were already introduced in Praehofer
[1991].

54

5.4 COMO

Composition

A
(Formalism 1)

B
(Formalism 1)

C
(Formalism 2)

D
(Formalism 3)

Cluster 1

Cluster 2 Cluster 3

Composition

AB
(Formalism 1)

C
(Formalism 2)

D
(Formalism 3)

Composition

AB
(Target Form.)

C
(Target Form.)

D
(Target Form)

Flat Model
(Target Form)

Clustering &
Closure under Coupling

Transformation

Closure
under

Coupling

Figure 5.2: The transformation of a coupled multi-formalism model as described by
Vangheluwe [2000]: After the consistency of the coupled model is checked, all submodels
(components) that are specified in the same formalism are clustered. Then, each cluster
of interacting submodels is flattened according to the closure under coupling property
of the respective formalism. Afterward, the flattened models and remaining submodels
are transformed into a suitable target formalism. Finally, the closure under coupling
property of the target formalism is used to come up with a single, flat model. In the case
that the coupled multi-formalism model is more complex, i. e., has more than one level,
we apply the above procedure recursively, starting from the bottom level.

on the same or different simulation systems, which can be distributed among different
computers. Interaction between submodels due to couplings is resolved at trajectory level,
thus questions can only be answered at this level [Vangheluwe 2000]. More specifically,
interaction is realized by the interoperation of simulators or simulation systems. This
interoperation is the basis for, e. g., the “IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)–Framework and Rules” [2010].

Due to the similarity of coupled multi-formalism models and model compositions, we can adopt
the above approaches, described by Vangheluwe [2000], for the execution of model compositions,
i. e., component-based simulation. In contrast to specifying the entire model composition in the
same modeling formalism in which the composition is executed, transforming the composition
into a common modeling formalism for execution allows us to use the “most suited” modeling
formalism for specifying each model component13. Still all model components may be specified
in the same formalism. Table 5.1 compares the different approaches with respect to source
and target formalism and the simulation system. In the first approach (super formalism), the
model composition is specified in the same formalism in which the composition is executed.
Similarly, all components of a model composition are specified in the same formalism, i. e.,
the meta-formalism, in the second approach. However, in contrast to the first approach,
the second approach provides more flexibility as components can be described in different
modeling formalisms if they are part of the meta formalism. In the co-simulation approach,
for each component the source formalism is also the target formalism in which the component
is executed.

If multiple formalisms are used this “requires that not only individual model specifications
are executed correctly, but also their compositions (i. e., the execution of multiple execution
algorithms are well-defined with respect to the composition of their model specifications)”
[Sarjoughian 2006].

5.4 Composition and Analysis Framework COMO

In the previous sections, we repeatedly mentioned the composition and analysis framework
COMO [Röhl 2006, 2008; Röhl & Uhrmacher 2006, 2008], which allows a component-based

13 As long as corresponding transformations between the different modeling formalisms exist.

55

5 Component-Based Modeling and Simulation

Approaches

S
u
p
er

fo
rm

al
is
m

M
et
a
fo
rm

a
li
sm

T
ra
n
sf
o
rm

a
ti
o
n

C
o
-s
im

u
la
ti
o
n

Source formalism(s) 1 1(*) 1 . . . n 1 . . . n
Target formalism 1 1 1 1 . . . n
Simulation systems 1 1 1 1 . . . n

Table 5.1: Comparison of the different approaches for specifying and executing model
compositions with respect to (i) the source formalisms in which the components are
specified, (ii) the target formalism in which the model composition is executed, and
(iii) the simulation system which executes the model composition.

model design as described in Section 5.1.3. Since COMO plays a role later on, we briefly
describe it in the following (cf. also Steiniger and Uhrmacher [2013]).

The interface and composition description formalism that underlies COMO allows the
modeler to specify interfaces of components, which encapsulate models, and their composition
explicitly, in a modeling-formalism- and platform-independent way. Thereby COMO allows
us to keep the implementations of components separate from their descriptions and interfaces.
The description formalism itself is defined set-theoretically and represented by XML. Hence,
composition descriptions consist of a number of XML documents that can be stored in or
retrieved from a repository. If this repository is accessible by third parties, components
can be reused by others. Addressing composability, COMO also analyzes the syntactic
correctness of compositions and allows us to make a statement on the correctness of a given
composition before executing it. For execution, COMO creates an executable simulation
model in a suitable target formalism from a composition description and the implementations
of the involved components by synthesizing parts of the simulation model automatically and
transforming the component implementations into the target formalism. The execution itself
is not carried out by COMO, as it does not provide an execution engine. However, COMO
can be added as an additional specification and analysis layer on top of a simulation system,
which is then used as the execution engine, such as JAMES II14.

COMO is using P-DEVS as a target formalism but is not limited to it. The individual
components can be “implemented” in different modeling formalisms as long as they support
the concept of ports and there exists a transformation from the modeling formalism into the
target formalism.

5.5 Summary

This chapter starts with giving a brief introduction and motivation of component-based
modeling and simulation and its evolution over the last decades, starting from its roots in
component-based software engineering. In doing so, the chapter lists different concepts that are
closely related to component-based modeling, such as modular-hierarchical modeling, object-
oriented modeling, multi-formalism modeling, and composability. The chapter shows that
there is a difference between modular-hierarchical modeling and component-based modeling.
The latter of which focuses on creating reusable, replaceable, retrievable, customizable, and

14 http://jamesii.org; last accessed February 2018

56

http://jamesii.org

5.5 Summary

self-contained components, which hide their implementation (separation between interface/-
component description and component implementation) and can be used in different contexts
or by third parties. The role of interfaces as a mean to decoupled composition descriptions
from component implementations is also highlighted. Afterwards, the chapter describes the
concepts of composability and interoperability, where the former plays a crucial role for
component-based modeling. Finally, the chapter gives some remarks on the execution of
composition made up of of-the-shelf components (component-based simulation) and describes
briefly the composition and analysis framework COMO and its underlying composition and
interface descriptions.

57

6 Dynamic Structure Systems and Variable
Structure Models

Nature means change, only some
things change faster than others.

Rick Marsi

Many interesting systems, real or imaginary ones, which should be studied by the means of
modeling and simulation, are characterized by a dynamic or variable structure, i. e., their
structure changes over time. We call such systems dynamic structure systems. Systems with
a variable structure range from socio-technical systems (such as smart environments) over
biological systems (such as eukaryotic cells) to demographic or sociological systems (such as
the population of a certain geographic region or country).
Capturing the structure variability of a system of interest in its model is the objective of

variable structure modeling, leading to variable structure models.
In this chapter, we take a closer look at the characteristics of dynamic structure systems

and illuminate the different aspects of a variable structure model, which include more than
just the composition of the model.
Parts of this chapter are based on and extend the following publications:

Steiniger, A. and Uhrmacher, A. M. (2016). “Intensional Couplings in Variable Structure
Models: An Exploration Based on Multilevel-DEVS.” In ACM Transactions on Modeling
and Computer Simulation (TOMACS), 26(2). pp. 9-1–9-27.

59

6 Dynamic Structure Systems and Variable Structure Models

6.1 Dynamic Structure Systems

When we are talking about the dynamics of a system, we usually think about how the system
behaves over time (cf. Zeigler et al. [2000, p. 13]). According to Zeigler et al. [2000, p. 4] the
behavior of a system is “the relationship it imposes between its input time histories [input
trajectories] and output time histories [output trajectories],” whereas the structure of a system
“includes its state and state transition mechanism (dictating how inputs transform current
states into successor states) as well as the state-to-output mapping.” The above definition of
the system behavior assumes that a system has tangible outputs, which may not always be
the case; or we may not be interested in the outputs of a system. Therefore, we will also refer
to state time histories (state trajectories) when talking about the behavior of a system. In
this thesis, we call systems that can change their state and possible outputs with respect to
the flow of time and exogenous stimuli (system inputs) dynamic systems1.

“Many kinds of real systems are most readily perceived as exhibiting changes simultaneously
at structural and behavioral levels” [Zeigler & Praehofer 1990], especially biological and other
adaptive systems [Zeigler & Ören 1986]. This means, such systems change not only their
state and possible outputs over time but also their internal structure. “Generally, where
living autonomous entities are involved, changes in interactions, composition, and behavior
patterns occur frequently” [Uhrmacher 2001]. For instance, organelles of living, eukaryotic
cells (e. g., mitochondria) can be degraded (autophagy) and reproduced (biogenesis) over the
cells’ lifespan (cf. Palikaras, Lionaki, and Tavernarakis [2015]); or connections between neurons
of an organism’s nervous system can change over time, allowing or prohibiting neurons to
interact with each other (synaptogenesis, cf. Huttenlocher and Dabholkar [1997]). A further
example of structure variability is the plasticity of the interfaces of some systems, such as
operons that are part of the DNA of prokaryotes2 and control the transcription of genes (gene
regulation as described by Jacob and Monod [1961]). If the operator region of an operon (e. g.,
the Tryptophan operon or Trp operon) is bound to an active repressor protein, the repressor
protein obstructs the RNA polymerase to bind to the operator region of the operon and thus
inhibits gene transcription (cf. Uhrmacher et al. [2006]). In the tradition of Barros [1997],
we call systems that can change their structure dynamic structure systems, which can be
considered as a subset of the aforementioned dynamic systems.

Definition 6.1.1 (Dynamic Structure System)
A dynamic structure system is a system that is able to change its structure, e. g., its
composition, autonomously or as an reaction to external inputs.

So each dynamic structure system is a system, by definition, but not all systems have a
dynamic structure. Man-made, technical systems, such as cars and other vehicles, are examples
for systems with a static structure (static structure systems).

6.2 Variable Structure Models and Variable Structure Modeling

When modeling dynamic structure systems, it seems to be intuitive and just natural to reflect
the structure variability of such systems by models that can also change their structure
during model execution, i. e., simulation [Deniz 2010; Hu et al. 2005]. According to Ören
[1975], Ören and Zeigler [1986], or Zeigler and Praehofer [1990], this reflection requires
a new simulation paradigm, structural simulation, which contrasts conventional trajectory

1 According to Ljung and Glad [1994, p. 40], “the present output value [of a dynamic system] depends, in
principle, on all earlier input values [of this system].” This can be achieved by encoding previous inputs in
the state of the dynamic system. In contrast, Ljung and Glad characterize a static system as one “whose
variations in the output [...] are directly coupled to the momentary value of the input.”

2 and some eukaryotes

60

6.2 Variable Structure Models and Variable Structure Modeling

simulation and prevents us to describe structure changes at the same level as behavior changes
[Zeigler 1990, p. 15]. This leads us, eventually, to variable structure models3 (or dynamic
structure models), which “lend structure to the temporal dimension in describing [dynamic
structure] systems” [Uhrmacher et al. 2006]. Although, “variable structure models can be
‘simulated’ by static structure models by expanding the state space in order to enfold all
possible structural changes and by equipping the transition functions with intricate conditional
structures” [Uhrmacher 2001], variable structures provide “a natural and effective way to
model those complex systems that exhibit structure and behavior changes to adapt to different
situations” [Hu et al. 2005]. “Encoding a variable structure model in a static frame makes
for a less elegant and coherent model design” Uhrmacher [2001]. In general, “it is less the
question whether a formalism is able to express certain phenomena, but how easily this can
be done” [Uhrmacher et al. 2006, attributed to Uhrmacher and Kuttler [2006]]. “Some models
are better represented by changes in their structure” [Barros et al. 1994].

In a variable structure model, only active model components need to be loaded dynamically
[Hu et al. 2005] and thus only those components need to be computed and hold in the memory
of the target computer on which the model is eventually executed. However, the adaptation
of the model structure during execution induces an additional overhead. Therefore, variable
structures may not prove beneficial for all kinds of models in terms of computational costs
in comparison with static structures. According to Hu et al. [2005], variable structures are
particularly useful for simulating complex systems with a huge number of components. We
can assume that the impact of variable structures on the computational costs is even bigger,
if only a few components of such systems are active at the same time and structure changes
happen infrequently.

Remark. In this section, when talking about components we refer to model components or
submodels rather than the components as described in Section 5.1.3.

So using variable structures when modeling dynamic structure systems has an influence on the
model development and the model execution. Whereas it is hard to objectively measure how
convenient and natural variable structure modeling are without extensive user studies and
suitable metrics, it is, relatively, easy to compare the computational costs of executing static
structure models with the computational costs of executing behaviorally equivalent variable
structure models. A first evaluation of the impact of a variable composition on the overall
performance of a simulation study can be found in Deniz [2010], which indicates that with
more complex models (i. e., an increasing number of components and events) the performance
gain of using variable structures instead of static structures increases. Bae, Bae, Moon, and
Kim [2016] also investigate the overhead of executing variable structure models; and conclude
that by using proper algorithms the simulation execution time of variable structure models
can be significantly reduced. However, if the computational costs of a simulation study are
the major concern, more elaborate investigations are required to identify characteristics of a
system of interest that indicate whether or not variable structures are beneficial. Here, we
focus on modeling aspects rather than performance or computational costs.

6.2.1 Aspects of Variable Model Structures

So far, the notion of a variable model structure has been introduced in a rather abstract
manner, i. e., a variable structure model is one that is able to change its structure [Zeigler
& Praehofer 1990]. Based on the concept of (general) systems and system specifications as
proposed by Zeigler et al. [2000, pp. 99–133], we now identify and describe the different aspects
a variable model structure may cover, in more detail. We distinguish between a variable

3 According to Zeigler [1987, p. 196], the term “variable structure model” was coined by Tuncer I. Ören in
the mid-seventies.

61

6 Dynamic Structure Systems and Variable Structure Models

structure at the level of coupled systems (system networks) and the level of basic systems,
where coupled systems and basic systems refer to coupled models and atomic models in the
DEVS realm, respectively.

Coupled Models

At the level of coupled models, structure variability may cover the following aspects:

� Variable composition: Capturing the variable composition of a system of interest (i. e.,
system components can be created, destroyed, or replaced), the composition of a coupled
model of such a system can change accordingly, during model execution. Possible changes of
the composition of a coupled model are the addition, deletion, or exchange of components
of the coupled model (cf. Pawletta et al. [1996]), where a component can be an atomic
model or, in case the system specification is closed-under-coupling, another coupled model.
Especially for the exchange of components, the unambiguous distinction between different
components is of importance. Assuming that model components are identified by identifiers
(names), we define an exchange as replacing one component with another that has the same
identifier as the component that is replaced. Thereby, an exchange can be reproduced by a
deletion followed by an addition. When exchanging components with each other during
model execution, we often want to copy at least some values of state variables from one
component to the other. This implies a dependency between the actual states of components
and structure transitions, as discussed by Pawletta et al. [1996].

� Variable couplings: In case the communication structure in a coupled model is specified
and constrained explicitly by couplings (or connections) between the components of the
coupled models, these couplings can be subject to changes during the execution of the
coupled model. All couplings together define the communication structure. Only model
components that are coupled can communicate and thus interact with each other. Note
that sometimes the communication structure is considered to be a part of the composition
(e. g., by Röhl and Uhrmacher [2008]). Here, we expressly distinguish between composition
and communication structure. For this reason, we sometimes simply refer to the couplings
or coupling scheme in a coupled model, when talking about the communication structure.

� Variable interface: A coupled model can have inputs and outputs. The set of admissible
inputs and the set of admissible outputs together define the interface of the respective model.
This interface may change. Hence, inputs accepted by the coupled model at a certain time
during execution may not be accepted at another time. Similarly, a coupled model may not
be able to produce all outputs at all times4. Often the inputs and outputs of a system of
interest are not opaque and plain but structured according to certain input variables and
output variables, respectively. These leads us to the notion of ports. Therefore, we also
refer to variable ports (cf. Uhrmacher and Priami [2005] or Uhrmacher et al. [2006]) when
talking about variable interfaces.

Figure 6.1 shows two “snapshots” of a simple coupled model whose composition and couplings
are changing during execution. We call a structure change at the level of a coupled model
also network transition. Since composition and communication structure come closest to
our intuitive understanding of the structure of a model, both aspects are often the primary
focus of a variable model structure or topology5. Additionally, we can expect that a variable
composition, in principle, has the most significant impact on the computational costs of
executing models (i. e., simulation).

4 Note that there is a difference between a model that, in principle, can produce a certain output but
practically does not and a model that cannot produce a certain output at all.

5 Barros [2012, 2014] uses the term “topology” to refer to the structure of a model, particularly model
compositions and networks. Herein, we use the term“ model structure”.

62

6.2 Variable Structure Models and Variable Structure Modeling

Coupled Model

Model
Component A

Model
Component B

Model
Component C

Coupled Model

Model
Component A

Model
Component B

Model
Component C

Runtime
t1 t2

Network

Transition

Figure 6.1: A simple coupled model that changes its composition during execution. At
time t2, model component “B” is removed from the composition and all couplings from
and to this component become inconsistent and are deleted. In addition, a new coupling
between model component “A” and “C” is established.

Component B
defined by MB

Coupled Model

Component A
defined by MA

Component B
defined by MB

Coupled Model

Runtime
t1 t2

Network

Transition

Component A
defined by MA'

Model definition of
Component A is changed

from MA to MA'

Figure 6.2: The coupled model changes its structure by changing the definition of
component “A” and its coupling scheme. From an external viewpoint, the composition
of the coupled model has not changed, i. e., at both instants component “A” and “B”
are available. However, as the definition of component “A” has changed, so can its state
space, interface, and characteristic functions. This perceptible structure variability at
the level of atomic components is a direct result of structure variability at the level of
coupled models.

The exchange of model components allows us to achieve structure variability at the level of
atomic models implicitly or mimicked. Figure 6.2 illustrates the correlation between structure
variability at the level of coupled models and the level of atomic models. From an external
observer’s perspective, the composition of the coupled model remains unchanged6, whereas
the component “A” seems to have a variable structure (see below). However, in Figure 6.2,
component “A” is defined by two different models at time t1 and time t2; or both instants
show different components with the same name.

Atomic Models

At the level of atomic models, structure variability may cover the following aspects:

� Variable interface: Similar to coupled models, the interface of an atomic model can
change during model execution. In the case the interface of the model comprises ports, we
also refer to variable ports.

� Variable behavior patterns: The behavior of an atomic model is defined by a set of
characteristic functions, especially by one or more state transition functions. Although the

6 At both depicted instants, the coupled model consists of two components: component “A” and component
“B.”

63

6 Dynamic Structure Systems and Variable Structure Models

Model
Transition

Model Incarnation 1

s1

Model Incarnation 2

s2

s1

s2 s3

Model Incarnation 3

s1

s2

Model
Transition

Model
Transition

Figure 6.3: Different incarnations of the same atomic, variable structure model. The
dotted arrows depict transitions between the incarnations and thus structure changes
at the level of the atomic model (structural transitions). The solid and dashed arrows
depict nonstructural transitions within the incarnations (here external and internal state
transitions). The figure is adapted from Uhrmacher [2001], neglecting potential in- and
outputs of the individual model incarnations.

outcome of these functions (function values) varies when executing the model (depending on
the functions’ arguments), the functions themselves remain unchanged. Variable behavior
patterns refer to a change of these functions during model execution. Barros [2002, 2014]
shows how such a change of the characteristic functions can be “emulated,” by using indexed
sets of functions and an index function that determines the currently active functions based
on the current state. A behavior pattern can then be understood as the combination of the
current incarnation of each characteristic function. Variable behavior patterns may reflect
different roles a model can play, in different situations.

� Variable state space: During simulation, the state of a state-based model changes.
However, its state space remains unchanged. Similar to a variable interface, an atomic
model may, in principle, also have a variable state space, i. e., one that is changing during
model execution. So each incarnation of a model may have its own state space and states
that may be accessible at one instant during execution may not be accessible at another
instant.

Especially the latter two aspects of structure variability at the level of atomic models lead to the
idea of model incarnations that can change into each other, as discussed by Uhrmacher [2001].
The behavior of an atomic model is then defined by the behavior of its incarnations and the
transitions between them (structural transitions or model transitions), where each incarnation
is a model itself. Figure 6.3 illustrates the difference between structural transitions, i. e.,
transitions between distinct model incarnations, and nonstructural transitions, i. e., regular
transitions such as state transitions that occur within a model incarnations.

Note that structure variability at the level of atomic models is more subtle and ambiguous
than at the level of coupled models, as we can mimic variable behavior patterns by a suitable
definition of model states and characteristic functions. For instance, we can extend the state
of a model by certain “flags” or “indicators,” which we then use to partition the state space
and define the behavior of the model upon, similar to step or indicator functions. However,
from a modeling point of view, it seems “easier” to model the behavior of a complex system
of interest by a set of distinct, less complex models (model incarnations) that can change into
each other—where each incarnation captures only some aspects of the behavior of the whole
system—than to specify an overall, merged model of the system. So we are decomposing the
behavior of a system within the temporal dimension in variable structure modeling.

In contrast to structure variability at the level of coupled models, the impact of structural
variability at the level of atomic models on the computational costs of simulation studies
is presumably negligible or even negative. If we are executing an atomic model that has
a variable state space and variable behavior patterns, then still one incarnation of this

64

6.3 Related Work

model is active at any time during model execution. Only if the complexity of the states
of the different incarnations varies drastically, we may have an perceivable influence on the
memory consumption. On the other hand, we introduce an additional overhead to the overall
computational costs for switching between and initializing the different model incarnations.
If we have to switch between model incarnations frequently, the computational costs of the
model execution may increase. However, for reliable statements about the impact of structure
variability at the level of atomic models on computation costs, further investigations and
evaluations are required.

6.2.2 Structure Changes, Structure Transitions, and Structure Transition
Functions

In the remainder of the thesis, we use the term “structure change” as a generalization for
the different aspects of structure variability discussed in Section 6.2.1. Thereby, a structure
change may refer to a change of the composition, interface, etc. “A variable structure changes
a component-based system during runtime” [Hu et al. 2005]. As our focus is on computer
simulation, runtime refers to the execution of a (variable structure) model, i. e., simulation. So
regardless of the different levels and aspects of structure variability, structure changes occur
during model execution [Steiniger & Uhrmacher 2013].

Corollary 1. Changes of the model structure, i. e., structure changes, are a runtime phe-
nomena, i. e., occur during simulation.

Structure changes in a model can be triggered by a state change or input; or, more generally,
by some sort of event that occurs during execution. Thus we cannot determine beforehand
(i. e., before the model execution) which concrete structure changes will eventually take
place at runtime. How and when the structure of a model is changing is often defined by
dedicated structure transition functions, such as the network transition function of dynDEVS
[Uhrmacher 2001] or the topology function of HFSS [Barros 2012, 2014]. From this viewpoint,
a structure change corresponds to a transition of the structure, i. e., a structure transition.

Structure transition functions are part of a model’s definition. Following Zeigler et al. [2000,
p. 4], we can argue that structure transition functions belong to the model structure and thus
can be changed as well. Nevertheless, the structure changes are part of the model’s behavior.
Thus, variable structure modeling is modeling rather than a configuration task, as traditional
model composition in static structure models7.

6.3 Related Work

The focus of my thesis is on formal models—especially those defined set-theoretically—that
may not be directly executable on a computer8. Often, executable models need to be derived
from formal models, before a simulation can take place. For this reason, we focus on modeling
formalisms and languages that allow us to specify models with a variable structure formally
(i. e., mathematically) rather than modeling approaches in which formal models refer to
executable programs, written in a high-level programming language (such as C# or Java).
In the latter, model entities are mapped onto objects of classes or onto templates of the
respective programming language (cf. Zeigler [1990]). These classes and templates can be
instantiated and destroyed on demand during runtime. Hence, structure changes can easily
be achieved in such, implementation-centric, modeling approaches.

7 In a hierarchical model with a static structure, the entire model composition and coupling scheme is just
defined once, independent of events that can happen during the model execution.

8 Still, formal models are executable at an abstract level, i. e., by some sort of execution semantics such as
an abstract simulator.

65

6 Dynamic Structure Systems and Variable Structure Models

In the early nineties, Zeigler and Praehofer [1990] and Barros et al. [1994] stated that
“conventional modeling theory” focuses on representing changes at the level of a model’s
behavior, but gives little support for describing changes of the model’s structure. In fact,
several classic modeling formalisms e. g., plain Cellular automata [von Neumann 1966; Wolfram
1984], DEVS [Zeigler 1976, 1984], finite state machines [Harel 1987; Hopcroft et al. 2001], or
Petri nets [Peterson 1981; Petri 1962] do not allow expressing structure changes explicitly.

Since the last decades, several classic modeling formalisms—those that did not support
variable structures from the outset—have been extended in a way that structure changes
became first-class abstractions, i. e., providing a support for variable structure modeling. In
the following, we elaborate on respective extensions and adaptations of DEVS and P-DEVS.

6.3.1 Variable Structure Variants of DEVS

Since the mid-nineties Fernado J. Barros et al. introduced a number of variable structure
variants and extension of DEVS and P-DEVS [Barros 1995a, 1995b, 1998, 2002; Barros et al.
1994]. All of these variants and extensions are based on similar ideas of how to specify variable
structure models: structure changes are reflected at the level of coupled models (networks) and
are carried out and controlled by a special atomic model component, the network executive
(or network controller); one associated with each coupled model.

Barros et al. [1994] outline first ideas for a variable structure variant of classic DEVS, called
Variable DEVS (V-DEVS), which serves as a blueprint for later variants and extensions
introduced by Barros. Coupled models are replaced by variable coupled models whose com-
position and couplings can change. Each variable coupled model includes a special atomic
model acting as a controller, which dictates structure changes for the coupled model. For this,
the controller keeps composition and coupling information. Structure changes can only be
triggered by internal or external transitions of the controller. Atomic models are defined just
like in classic DEVS (cf. Zeigler et al. [2000, pp. 75–7]).

Barros [1995a] and Barros [1995b] introduce Dynamic Structure DEVS (DSDEVS), refining
V-DEVS. A coupled model of DSDEVS is defined by an identifier of a network executive
and a model definition of the executive. Like a controller in V-DEVS, the network executive
is a special atomic model that controls and carries out structure changes, top-down. Each
state of an executive comprises a definition of a coupled model of classic DEVS and other
non-structural information. Changes of the structure-related state variables are automatically
mapped onto changes of the network structure. Each component of the coupled model can be
coupled to the network executive, allowing components to send events to the executive that
can trigger structure changes. However, events that are sent to the executive cannot be sent
to other components of the respective coupled model at the same time.

Barros [1997] introduces a modified and generalized version of DSDEVS, DSDE (Parallel
Dynamic Structure DEVS), which is based on P-DEVS (see Section 4.2.1), instead of DEVS.
The abstract simulator of DSDE is presented in Barros [1998]. Atomic DSDE models have a
general state transition function that is invoked when the model has to perform an internal,
external, or confluent state transition9. Like in DSDEVS, a coupled DSDE model consists
of an identifier and a model definition of a network executive. In contrast to DSDEVS, all
potential network structures, i. e., compositions and couplings, become a part of the defining
tuple of the network executive and a dedicated structure function is responsible for changing
the current network structure, based on the executive’s state. Barros [2004] introduces another
variable structure extension of P-DEVS, that is the Discrete Flow System Specification
(DFSS), which is almost equivalent to DSDE, particularly with respect to specifying variable
structure models.

9 This general state transition function combines the three state transition functions (internal, external, and
confluent) of atomic P-DEVS and is similar to the overall state transition function described by Zeigler et
al. [2000, p. 155]

66

6.3 Related Work

The Heterogeneous Flow System Specification (HFSS) [Barros 2002, 2003, 2012, 2014] is
another extension of P-DEVS that allows specifying variable structure models. Moreover,
HFSS facilitates the specification of continuous/discrete systems (hybrid systems) by using
a concept called sampling and multivariate integration methods. However, in terms of a
specifying variable model structure, HFSS is based on the same ideas as DSDE and DFSS.

A different approach to allow variable structure modeling based on DEVS was pursued by
Adelinde M. Uhrmacher et al., resulting in a series of variable structure variants of DEVS
and P-DEVS [Uhrmacher 2001; Uhrmacher et al. 2007, 2006]. In contrast to the top-down
approach of Barros, these variants capture “the intrinsic reflective nature of variable structure
models” [Uhrmacher 2001], in such a way that the models themselves, especially atomic models,
are in control of changing their structure, bottom-up, and models are defined recursively.
Moreover, these variants emphasize the ideas of model incarnations changing into each other,
where each incarnation can be viewed as a conventional static model10.

The first representative of these formalisms is Dynamic DEVS (dynDEVS), which is
introduced by Uhrmacher [2001] and based on classic DEVS. Atomic dynDEVS models
consists of sets of inputs and outputs, an initial model incarnation, and a set of possible
model incarnations at least containing the initial model incarnation. Each model incarnation
is similar to a classic atomic DEVS model, without the sets of inputs and outputs, which
are the same for each model incarnation. In addition, a model incarnation has an initial
state and a model transition function, which determines, based on the model state, the active
model incarnation. Similarly, a coupled dynDEVS model (network) is defined by sets of
network inputs and outputs, an initial network incarnation, and a set of possible network
incarnations at least containing the initial network incarnations. Each network incarnation is
defined similarly to a coupled DEVS model. However, a network incarnation has no inputs
or outputs but a network transition function, which determines a network incarnation for
the current state of all available components of the coupled dynDEVS model. For this, the
network transition function resolves possible conflicts11 regarding a change of the composition
and ensures, along with the select function of a network incarnation, a deterministic change
of the model/network structure.

Himmelspach [2007, pp. 89–97] and Himmelspach and Röhl [2009, pp. 514–20] introduce a
variant of dynDEVS: Parallel Dynamic DEVS (PdynDEVS), which is based on P-DEVS
instead of classic DEVS. In contrast to dynDEVS, PdynDEVS introduces two kinds of
explicit structure change requests (structure change events): incoming requests (received by
a model) and outgoing requests (sent to other models). These requests are separate from
regular in- and outputs. State transitions of an atomic PdynDEVS model can create both
kinds of requests. The model transition function of atomic PdynDEVS models operates on
incoming requests, not on the model state as in dynDEVS. Similarly, the network transition
function of a coupled PdynDEVS model considers incoming requests when determining the
next incarnation of the network. Structure change requests may not lead to structure changes,
since the requests can be “discarded” by the corresponding transition function. Due to its
definition at the level of structure systems (see Section 4.2.2), PdynDEVS makes use of
port-to-port couplings.

Uhrmacher et al. [2010, pp. 142–46] continue and revise the ideas of PdynDEVS and
introduce DynPDEVS (Dynamic Parallel DEVS). In DynPDEVS, incoming and outgoing
structure change requests (structure change events) extend the interfaces of atomic and coupled
models. The model transition function of an atomic DynPDEVS model determines its next
incarnation based on the model’s state and incoming change requests. Moreover, each atomic
model has an additional output function creating outgoing change requests based on the

10 see Figure 6.3
11 For instance, one component can initiate the removal of a another component, where at the same time the

initiating component shall be removed on behalf of a third component.

67

6 Dynamic Structure Systems and Variable Structure Models

current state. The network transition function of a coupled DynPDEVS model determines
the next network incarnation based on the states of all available components and, unlike in
dynDEVS, incoming change requests, received from the coupled model’s components and
parent. Like the atomic model, the coupled DynPDEVS model has a structural output
function that creates outgoing change events.

Uhrmacher et al. [2006] and [Uhrmacher et al. 2010, pp. 146–50] present another parallel
variant of dynDEVS, called ρ-DEVS, which is similar to DynPDEVS. However, in contrast
to dynDEVS and DynPDEVS, ρ-DEVS supports variable interfaces and ports (as it is
defined at the level of structured systems). Thereby, each incarnation of an atomic and
coupled ρ-DEVS model has its own in- and output interface, which can be subject to model
and network transitions. To define the couplings between model components with variable
ports consistently, Uhrmacher et al. [2006] introduce the concept of an intensional, directed
coupling mechanism, called multi-couplings, based on port names. A multi-coupling relates a
set of pairs of component and port names (sources) with another set of pairs of component and
port names (targets). In addition, a multi-coupling contains a special select function12 that
determines which target components will eventually receive inputs and allows realizing other
distribution strategies than a simple broadcast. The availability of ports during simulation
implies the existence of concrete, directed port-to-port couplings. This means that each
available source port specified in a multi-coupling is coupled to each available target port of
components that are returned by the select function. Similar to DynPDEVS, the interfaces of
atomic and coupled ρ-DEVS models also consist of incoming and outgoing structure change
events. In contrast to ports, the sets of structure change events are static, i. e., are not changed
by model nor network transitions.

6.3.2 Classification and Discussion

As shown above, several modeling formalisms and languages addressing variable model
structures exist, in the realm of DEVS. From the point of view of DEVS, Barros [2014]
distinguishes between two families of modeling formalisms for representing dynamic structure
systems: (i) centralized and (ii) distributed. Herein, we distinguish between three general
approaches that allow us to model dynamic structure systems, leading to the following three
classes:

1. Top-down (or centralized),

2. Bottom-up (or distributed), and

3. Implementation-centric.

Members of the first two classes provide the means to capture structure variability formally,
as intrinsic part of the modeling formalism itself. Members of the third class, on the other
hand, extend the simulation or execution environment by structure change operations, which
can then be used by the modeler when creating executable models of dynamic structure
systems for the respective environment (e. g., DEVSJAVA [ACIMS 2009], DEVS++ [Zeigler,
Moon, Kim, & Kim 1996], or JAMES II [Himmelspach & Uhrmacher 2009]). Examples for
implementation-centric approaches are Hu et al. [2005] or Deniz [2010]; Deniz, Alpdemir,
Kara, and Oğuztüzün [2012]; Deniz, Kara, Alpdemir, and Oğuztüzün [2009].

In top-down approaches, each network (coupled model) is associated with a special, central
model component: the network controller or network executive, which is responsible for
carrying out structure changes and maintaining the structural consistency of the network. As
an atomic model, the network executive has a state of its own, based upon which the network

12 This select function is not to be confused with the tie-breaking function known from variants of classic
DEVS.

68

6.3 Related Work

executive takes decisions about the structure13. Since the network executive is coupled with
all other model components of the respective network, these components can send events
to the network executive and thus trigger structure changes. Top-down approaches do not
allow carrying out structure changes at the level of atomic models explicitly, because only the
network executive is in charge of structure maintenance, whereas the regular atomic models
remain static. Especially in natural systems, we often do not find a central component that
is control of the structure, instead the “topology [structure] emerges without any dedicated
entity being responsible for topology [structure] maintenance” [Barros 2014]. For this reason,
top-down approaches may seem less natural than bottom-up or distributed approaches.

In bottom-up approaches, atomic models can change their own structure (in terms of model
transitions14) and initiate structure changes at the level of coupled models (in terms of network
transitions). Similar to top-down approaches, structure changes at the level of coupled model
are carried out by the respective coupled model. However, coupled models have no state of
their own based on which they can make decisions regarding structure changes. Instead, a
coupled model (i. e., the network transition function) takes the states of all its components
into account when it is about to change its structure. Recollecting Section 5.1.2, one could
think that this is a violation of modularity (cf. Barros [2014]). However, Zeigler et al. [2000,
pp. 149–62] describe non-modular modeling formalisms as those that employ non-modular
couplings, where components directly access the states of their siblings (i. e., the components
they coupled with).
Even if a modeling formalism allows variable structure modeling, the formalism does not

necessarily support all of the aspects of a variable model structure discussed in Section 6.2.1.
In fact, just a few of the considered DEVS-based modeling formalisms support variable
interfaces, whereas a variable composition and variable couplings are supported by all of
the modeling formalisms. Also, most of the discussed modeling formalisms do not support
variable behavior patterns and state spaces at the level of atomic models explicitly; more
specifically, top-down approaches generally lack of a support of these aspects of structure
variability. However, as mentioned in Section 6.2.1, structural variability at the level of atomic
models can be achieved implicitly by replacing model components with each other. Table 6.1
compares the modeling formalisms with respect to the support of the different aspects and
their membership to one of the three classes mentioned earlier.
Table 6.1 shows that different modeling formalisms support the same aspects of structure

variability (e. g., DSDE, DFSS, and HFSS). However, the way how these aspects are
supported can differ. Moreover, the modeling formalisms may have additional features beyond
the support of structure variability. Here, the focus is merely on the latter.
Allowing atomic models to change their interfaces requires a different approach to specify

couplings at the level of coupled models consistently. For instance, a port that is part of a
certain coupling can become unavailable without the knowledge of the respective coupled
model. This is the reason why just a few DEVS-based modeling formalisms support variable
interfaces explicitly (e. g., ρ-DEVS).
Supporting the different aspects of structure variability, as discussed in Section 6.2.1, is

just one prerequisite for creating variable structure models. Allowing models to actually
reason about their structure and the structure their are part of is another, important facet of
variable structure modeling. In strictly modular approaches such as classic DEVS, where the
knowledge of a module (i. e., model component) ends at its boundary (interface), structural
reasoning is hampered. While a model component can still reason about and change its own
structure, it cannot reason about the structure it is embedded into without further ado, as
the model component per se has no notion about its environment. For instance, a model

13 Barros [2014] distinguishes between decision making and decision enforcement when talking about modeling
dynamic structure systems. The former relates to gathering information and making decisions (e. g., about
structure changes), whereas the latter relates to enforcing decisions (e. g., structure changes).

14 see Figure 6.3

69

6 Dynamic Structure Systems and Variable Structure Models

Table 6.1: Comparison of DEVS-based modeling formalisms regarding their support of
different aspects of structure variability.

Aspects of structure variability

Level of atomic models Level of coupled models

st
at
e
sp
a
ce

b
eh

av
io
r

p
at
te
rn
s

in
te
rf
a
ce

co
m
p
o
si
ti
on

co
u
p
li
n
gs

in
te
rf
a
ce

m
o
d
el
in
g
fo
rm

al
is
m
s

V-DEVS ✗ ✗ ✗ ✓ ✓ ✗

DSDEVS ✗ ✗ ✗ ✓ ✓ (✗)

DSDE ✗ ✗ ✗ ✓ ✓ ✗

DFSS ✗ ✗ ✗ ✓ ✓ ✗

HFSS ✗ ✗ ✗ ✓ ✓ ✗

dynDEVS ✓ ✓ ✗ ✓ ✓ ✗

PdynDEVS,
DynPDEVS ✓ ✓ ✗ ✓ ✓ ✗

ρ-DEVS ✓ ✓ ✓ ✓ ✓ ✓

D-HFSS ✗ (✓) ✗ ✓ ✓ ✗

component may trigger the removal of another component that actually does not exist.
To improve and ease structural reasoning for the modeler at this point, each (atomic) model

needs to have and maintain an internal model of the structural context (environment or
world) in which the model exists; leading to endomorphic models as discussed by Zeigler
[1990]15. This internal model needs to be updated whenever structure changes occur to keep
it in synchrony with the actual model structure. The information about the environment
of a model can be provided as an input triggering an update of the internal model of the
environment. All DEVS-based variable structure variants discussed in this chapter support
such an approach; however, the modeler needs to implement it manually, which can be tedious
and error-prone. Here, additional support would be desirable from the modeler’s perspective.

6.4 Summary

The beginning of this chapter characterizes dynamic structure systems, i. e., systems that can
change their structure over time. Then the chapter describes variable structure models that
allow the modeler to capture structure changes of a system of interest explicitly, as a central
part of a model’s dynamics. In this context, the different aspects of structure variability at the
level of atomic and coupled models are illuminated. The chapter concludes with a survey of
modeling approaches that allow variable structures, with a focus on variable structure variants
of DEVS. In addition, the chapter outlines a way to classify the different variants of DEVS.

15 “Endomorphism is a hoary mathematical concept which refers to the existence of a homomorphism from
an object to a sub-object within it, the part (sub-object) then being a model of the whole” [Zeigler 1990,
p. 16]

70

Part II

Concept and Implementation

71

7 Composition of Variable Structure Models

Failure is the key to success; each
mistake teaches us something.

Morihei Ueshiba

This chapter recollects and elaborates on peculiarities of conventional component-based
modeling1 and variable structure modeling2 and discusses commonalities and discrepancies
between the both. In addition, the chapter examines ideas and approaches on how to bring
both paradigms together, at least to some extent.
This chapter recaps and takes up the discussion from Section 1.1. It is mainly based on

ideas presented in:

Steiniger, A. and Uhrmacher, A. M. (2013). “Composing Variable Structure Models: A
Revision of COMO.” In Proceedings of the 3rd International Conference on Simulation
and Modeling Methodologies, Technologies and Applications (SIMULTECH 2013). pp.
286–93.

These ideas are revisited and extended in the following.

1 as described in Chapter 5
2 as described in Chapter 6

73

7 Composition of Variable Structure Models

7.1 Commonalities and Differences

Existing formalism-independent component-based modeling approaches, such as COMO [Röhl
2008] or CODES [Szabo & Teo 2007], introduce an additional specification layer at which the
assembly and interaction of prefabricated, off-the-shelf components can be described using a
special composition methodology; e. g., a composition formalism that is usually different from
the underlying modeling formalisms used to specify the behavior of the individual components.
Often, these approaches (e. g., COMO) require the explicit definition of component interfaces,
based upon which a composition is then defined (interface-based composition). Thereby the
implementation of a component, defining the component’s internal behavior, has to adhere
to the component’s interface definition. Since components are accessed and composed via
their well-defined interfaces, we can keep composition descriptions separate from the actual
implementations of the components (cf. Verbraeck [2004] or Röhl and Uhrmacher [2008]). In
the following, we refer to these kind of component-based modeling as traditional composition
(or conventional composition).

Variable structure modeling allows the modeler to explicitly describe a system with a
variable structure (see Definition 6.1.1) by structure changes on top of behavioral changes,
where structure changes become first-order abstractions in the respective variable structure
models. In contrast to traditional composition, modeling variable structures is not done at an
additional specification layer, but is an integral part of the modeling formalism that is used
to create simulation models of dynamic structure systems. Often, the respective modeling
formalism is equipped with one or more structure change functions (see Section 6.2.2). In the
following, we refer to variable structure modeling as temporal composition, since it describes
the composition of a model at the temporal dimension and how the composition is changing
over time (based on certain events).

Section 1.1 has already outlined that both traditional composition and temporal composition
deal with specifying the structure of a model or model composition, by providing certain means
to do so. In traditional composition, we specify a system model as an assembly of distinct,
self-contained components interacting with each other via predefined interfaces, where each
component encapsulates one aspect of the behavior of the overall system. As we mentioned
above, the internal behavior of the involved components (i. e., their implementations) is kept
separate from the interface and composition descriptions. The composition itself can be done
just based on the components’ interfaces. However, for the execution we also need to know
the initial states and internal behavior of the corresponding components. In variable structure
modeling, we specify possible incarnations of a model with a variable structure and how and
when one incarnation changes into another. Each incarnation can be considered as a static
snapshot of the dynamic structure system, consisting of model components that interact
with each other via couplings. So both types of composition, describe the composition and
communication structure of an assembly of smaller model units, i. e., components.

Traditional composition, i. e., constructing syntactically (and semantically) correct simula-
tion models from prefabricated, off-the-shelf components, assumes a static model structure,
i. e., the model structure is not changing during execution. Or in other words, once a compo-
sition is assembled and configured, its structure remains unchanged. Furthermore, traditional
composition is done at configuration time [Petty & Weisel 2003a], before the execution. So
regardless of what happens during model execution, a composition methodology assures, if
applied correctly, at least syntactic correctness (syntactic composability) of the composed
model independent of the implementations of the the involved components3. To do so, the
components need to adhere to interface definitions (cf. the refinement relations as discussed
by Röhl and Uhrmacher [2008]). When using a composition approach such as COMO,
composition descriptions as well as the implementations of the involved components need to

3 cf. Section 5.2

74

7.2 Combination and Contradiction

 Initial Coupled Model @ t0

E

Model Composition

D

A B

C

F

G

H

D

A B

D C

Coupled Model @ t1

A B

E

Simulation Time

Composition

Transformation
Into Executable

Model

Composition Phase
(Configuration Time)

Execution Phase
(Runtime)

Figure 7.1: Relationship between traditional composition that is done before a model
is executed and a corresponding simulation model whose internal structure is changing
during execution.

be transformed into a platform-dependent target formalism4 for the execution of a model
composition, i. e., an executable simulation model has to be derived or synthesized. How the
states of the components are evolving during execution depends on their implementations
and cannot be determined at configuration time. In fact, the states of the components are
transparent to the composition layer, they are part of the components’ implementations.

In contrast, as Corollary 1 already stated, variable structures and structure changes are a
runtime phenomena. For this reason, we cannot determine which and when structure changes
take place at configuration time, when assembling a model composition. Nonetheless, the
modeler has to define beforehand, which structure changes can, in principle, take place and in
which situations, as one essential part of a model’s behavior. Therefore, variable structure
modeling is more like traditional behavior modeling5 than simply configuring a model before
the beginning of simulation; just like the name indicates. The syntactic consistency of a
variable structure model is assured by the actual modeling formalism, which is used, by
providing the means to create syntactically consistent models6. Semantic consistency, on the
other hand, has to be ensured by the modeler. Figure 7.1 illustrates the relationship between
the configuration phase (composition) and runtime phase (execution). So although both
traditional composition and temporal composition describe the structure of a model, they do
so at different times: at configuration time (traditional composition) and during execution
(temporal composition).

7.2 Combination and Contradiction

Section 1.1 and Chapter 6 state that many complex systems of interest exhibit a variable
structure, which we want to capture when modeling these systems. Therefore, it just seems to
be natural to ask: if and how we can bring traditional composition and temporal composition
together to benefit from the advantages of both? Ending up with self-contained components

4 In the case of COMO, the target formalism is P-DEVS (see Section 4.2.1) and the platform on which the
derived simulation model is eventually executed is JAMES II [Himmelspach & Uhrmacher 2007].

5 When talking about behavior modeling we refer to specifying how the state and potential outputs of a
model are changing based on certain events.

6 Of course, a modeler can also create inconsistent models either intentionally or by mistake.

75

7 Composition of Variable Structure Models

whose internal structure is not time invariant and that can be reused in different simulation
studies and contexts, also by third-parties.

When we were thinking in more detail about components encapsulating variable structure
models, whose interfaces may in addition be variable as well, the following questions came
into our minds:

� What aspects of a variable structure, as described in Section 6.2.1, can and should be
supported by a composition methodology?

� How and to which extent can we reflect variable structures and interfaces in a composition
methodology?

� What are the impacts of structure variability on the general notion of composability, i. e.,
assuring the correctness of a model by composition before the model is executed? Especially
since composability is typically defined without making any assumptions on the dynamics
of the model structure (cf. Petty and Weisel [2003a]).

� Can we, at all, assure correctness beyond the initial composition of a variable structure
model in the configuration phase?

� In the case that encapsulated models have variable interfaces, how can we define connections
between the corresponding components without knowledge about the availability of the
respective interaction points (ports) during execution?

� Is a variable interface well-defined according to traditional composition?

� Can we describe structure changes that occur during model execution independent of the
implementations of the composed components?

� Should the executable simulation model derived from a composition description and the
implementations of the composed components be a variable structure model itself?

� Since variable structure modeling often is different from traditional static structure modeling,
can we simply reuse components that were designed with a variable structure in mind in
another context?

In the remainder of the thesis, we will give answers to the above questions. However, for some
of them, there is more than one satisfying answer.
Section 7.1 already implies a fundamental contradiction between traditional and tempo-

ral composition. In traditional composition, we want to keep interface and composition
descriptions separate from the implementations of the involved components. Components
also often encapsulate atomic models rather than coupled models, since coupled models are
simple containers without a behavior that can be directly expressed as composite components
in the composition methodology. For the execution of such a model composition, coupled
models are then automatically synthesized from the composition descriptions, i. e., composite
components (cf. Röhl [2008]; Röhl and Uhrmacher [2008]). This is straightforward when
not facing variable structures or interfaces. In variable structure models, however, coupled
models are more than just plain containers (see Section 6.2.1). They also describe how
their components and the interaction between them is changing, based on certain events
and sometimes also on the coupled models’ states. Synthesizing coupled models with such a
behavior from a formalism-independent composition descriptions requires the incorporation of
structure change functions into the composition descriptions. Components would then not
only and simply be wired together, but the modeler would also need to specify influences
between these components and impacts on the composition, which is not done in traditional
composition. In fact, we would end up with re-specifying the structure variability of the
model at the composition layer. This, at least in the case of state induced structure changes7,
contradicts the separation between composition descriptions and component implementations.

7 For instance, as in the case of the modeling formalism DSDE [Barros 1997]

76

7.3 Hiding Structure Variability

ImplementsComponent

Coupled Model Incarna�on 1

Model
Component A

Model
Component B

Coupled Model Incarna�on 2

Model
Component A

Model
Component B

Variable Structure Model

Network Transitions

Figure 7.2: A component that is implemented by a simple variable structure model,
which only consists of two incarnations; for simplicity. Traditionally, components are
implemented by static structure models whose structure is not changing (i. e., there is
only one incarnation of the coupled model).

In general, since the interplay between the coupled model and its components in variable
structure modeling is more intricate than in the case of static structure models, we need to
ask ourselves the following questions:

� Can we reuse variable coupled models without their components?

� Can we reuse the components of a variable coupled model without the coupled model itself?

In this context, have in mind that the components in top-down approaches for variable
structure modeling are often defined as static structure models (i. e., without yielding any
structure variability), such as in Barros [1995a] or Barros [2004]. This would, in principle,
allow us to reuse these components, even in a static context. However, due to the reasons
listed above it often, in our opinion, makes no sense to tear variable coupled models and their
components apart. A variable coupled model cannot simply be used without components.
Instead, we may want to use the overall variable structure model, including behavioral and
structural dynamics, as a self-contained component.

At this point we could assume that we cannot combine traditional and temporal composition
at all. However, as we show in the following, their exist some approaches to bring both types
of composition together, at least to some extent.

7.3 Hiding Structure Variability

Although it may seem to be odd at the first sight, one simple approach to combine traditional
and temporal composition, especially when we do not have to consider variable interfaces,
is to hide structural variability and complexity within components. This complies with the
fundamental principle that a component is hiding its internal structure, as defined by Verbraeck
[2004]. In other words, a component is now implemented by a variable structure model instead
of a static structure model. This component can encapsulate a variable atomic model (see
Section 6.2.1) or a variable coupled model (variable structure network, see Section 6.2.1)
including its components. Figure 7.2 shows a component that is implemented by a variable
structure model instead of a static structure model.
The actual composition of components, regardless of whether they encapsulate static or

variable structure models, remains static. So a possible structural variability of components

77

7 Composition of Variable Structure Models

is hidden at the composition layer. No further adaptations of the composition methodology
are required. We only need to make sure that there exists a transformation from the source
formalism, which is used to implement the components, into the target formalism, which
is used to create executable simulation models from the composition descriptions and the
component implementations. Even if the target formalism does not support variable structures,
we still have all the benefits of variable structure modeling, as listed in Section 6.2, when
“implementing” the components8. Keep in mind, that the transformation into the target
formalism is done automatically by the composition framework, i. e., is not the responsibility
of the modeler. However, since we are restricted to execute static structures, we may loose
potential performance gains when executing variable structures (cf. Deniz [2010]).

Since only the interface of a component is know at the composition layer, structure changes
within components with a variable structure can only be triggered by interaction points declared
by the interface (i. e., inputs) or by the flow of time, as known from top-down approaches
discussed in Section 6.3, in which dedicated structure change events are propagated through
a model hierarchy. Reflective approaches to express structure changes, in the spirit of, e. g.,
Uhrmacher [2001], cannot be achieved by hiding structure variability within components.

7.4 Supersets, Loose Connections, and the Revision of COMO

Our first approach to combine traditional and temporal composition, which is more extensive
than the one discussed in the previous section, resulted in the extension of the composition
and analysis framework COMO and its underlying composition methodology, as presented by
Röhl [2008] and Röhl and Uhrmacher [2008]. This approach was published in Steiniger and
Uhrmacher [2013]. The basic ideas presented therein were, among other things, the use of:

� supersets (as defined in Section A.1.1) and

� an intensional coupling mechanism, called loose connections.

We showed how both concepts can help us to (i) incorporate structure variability, including
variable interfaces, at the composition layer to some extent and (ii) allow us to make statements
about the consistency beyond the initial configuration (at configuration time). Furthermore,
we changed the target formalism, which is used by COMO to come up with executable
simulation models, from P-DEVS9, which is limited to static model structures, to the first
version of ML-DEVS, as presented by Uhrmacher et al. [2007]. The latter of which allows
variable structures. Hence and in contrast to Section 7.3, a composition is transformed into a
model that can, in principle, change its structure during execution (simulation). This, however,
does not necessarily mean that we now can express variable structures at the composition
layer, without further ado and to full extent.

Before a composition is transformed into an executable simulation model, components are
instantiated and configured according to a given parameterization, leading in component
instances. A single component can serve as a blueprint for an arbitrary number of component
instances. These component instances are eventually translated into the target formalism by
COMO (see Figure 7.3).

In the following, we discuss the general ideas presented in and insights gained from Steiniger
and Uhrmacher [2013] in more detail. However, as the focus of this thesis is on the concepts
presented in Chapter 8, we are not going into too much details and foregoing the formal
definitions presented in the paper.

8 Section 6.2 indicates that a variable structure model can be represented by a behaviorally equivalent static
structure model.

9 see Section 4.2.1

78

7.4 Supersets, Loose Connections, and the Revision of COMO

Component

Component
Instance

Component
Instance

Component
Instance

Model
Component

Model
Component

Model
Component

Configura�on
& Instan�a�on

Transla�on

Transla�on

Transla�on

Configura�on Phase Execu�on Phase

Figure 7.3: A component description serves as a blueprint for component instances in
COMO, like classes in object-oriented programming language. Before an executable
simulation model is derived, a component is instantiated and configured, according to a
given parameterization. Finally, each component instance is translated into a component
of the executable simulation model in the target formalism.

7.4.1 Description of Variable Interfaces

As noted in Chapter 5 and Section 7.1, well-defined interfaces play an important role in
traditional composition approaches; leading to an interface-based composition. They serve as
central contracts between components and their surroundings and allow hiding and abstracting
from implementation details of the components. Therefore, interface descriptions contain all
information that are required for composing components and checking the consistency of the
resulting compositions, at least when dealing with static model structures.

We call the different information that is declared by an interface attributes. Beside less
obvious attributes such as parameters via which a component can be customized, ports are
of crucial importance for creating compositions by assembling and connecting components.
Ports are a well-known concept in the realm of modeling and simulation for describing the
inputs and outputs of a model or model component. These ports serve as communication
points through which a component can send outputs and receive inputs to and from other
components, respectively.

Variable ports refer to ports that can change their availability during time, e. g., ports
that are available at a certain time may not be available at another time. A variable or
dynamic interface is then one whose ports are variable. At this point, we are not considering
other interface attributes, such as parameters, to be variable. The concrete incarnation of an
interface, i. e., the availability of its ports, depends on the internal state of the corresponding
component, the flow of time, and potential inputs.

When thinking about variable interfaces in the context of traditional composition the
question arise, whether or not a variable interface is well-defined or well-specified according
to Verbraeck [2004]? In Steiniger and Uhrmacher [2013], we argued that if we neglect the
possibility to create new and arbitrary ports during simulation, we can assume that the
superset of the variable ports, i. e., all ports a component can in principle exhibit during
its lifetime, can be known before the execution. During model execution, ports from this
superset can be selected or become available, whereas others ports can be deselected or become
unavailable. Regardless of the actual availability of the ports, the superset of the ports remains
unchanged and can be defined. So we can use this superset of ports to define the interface of a
component encapsulating a model with a variable interface. The specification of how and when

79

7 Composition of Variable Structure Models

ports are changing are part of its internal structure and is not reflected at the composition
layer. This does not violate the notion of a well-defined interface, in accordance with Verbraeck
and Valentin [2008], since all possible communication capabilities of the respective component
are part of its interface. However, to execute the component properly, we need to extend its
interface so that it also declares the initially available ports. This information can also be
considered as a part of the initial state of the respective component, which needs to be known
as well when we want to execute the component.

From the outside, the component can be viewed as one with a static interface that comprises
all the potential ports that can become available at one point or another. Within the model
execution, the execution engine can make sure that the model encapsulated by the surrogating
component only receives inputs that are sent to currently available ports. In turn, the
execution engine can make sure that only outputs of available ports are forwarded to other
components in a composition.

In Steiniger and Uhrmacher [2013], we had an extensional definition of supersets of ports in
mind, in which each port is listed or enumerated individually (cf. Section 3.2). This approach,
as already indicated by Section 3.2, can be rather tedious and inflexible. Alternatively, a
superset of ports can be defined intensionally (cf. Section 3.3). In other words, we define the
members of this superset based on shared attributes, such as names or value ranges. For this,
we could make use of the set-builder notation and predicates. Chapter 8 gives more details on
this matter.

Either way, although an interface definition that uses supersets of ports (defined extensionally
or intensionally) to declare its communication capabilities can be viewed as static, there is a
difference to static interfaces. Variable ports have a direct impact on the definition of the
communication structure in an assembly of components (i. e., model composition) and, thus,
the ability of checking the correctness by composition at configuration time. We just know
for sure which ports are available initially.

7.4.2 Description of Variable Communication Structures

Structural variability at the level of the communication structure includes two major aspects:

� variable communication channels as a result of variable interfaces (to maintain structural
consistency) and

� communication channels that can change on their own.

In Steiniger and Uhrmacher [2013], we were focusing on the former aspect, as a result of dealing
with variable interfaces. For this, we introduced a new way of specifying communication
channels at the composition layer intensionally, by using so-called loose connections. These
adopt and extend the idea of multi-couplings as described in Uhrmacher et al. [2007] and
Steiniger et al. [2012]. At its core, a loose connection can “encode” an arbitrary number of
communication channels between two components that are specified as pairs of names, where
the first name corresponds to the name of the source port and the second name corresponds
to the name of the target port, based upon the interfaces of the respective components.
When deriving an executable simulation model, loose connections are transformed into multi-
couplings, which ultimately need to be resolved into concrete couplings during execution.
Hence, to make use of such an intensional coupling mechanism, the underlying target formalism
has to be equipped with an equally expressive coupling mechanism, into which loose connections
can be translated.
As with ports, we need to know the initially available loose connections, for a proper

execution. However, we can still specify the communication structure consistently by a static
set of loose connections that is not changing during execution. This is possible because
loose connections are translated into concrete couplings ad hoc, while discarding inconsistent
concrete couplings. Chapter 8 provides more information on this matter.

80

7.4 Supersets, Loose Connections, and the Revision of COMO

Macro:mRNA

C1:Nucleotide A2:Nucleotide
3' 5'5'

G38:Nucleotide
5'3' 3'

...

mRNA

Nucleotide

base:Nucleobase pos:Int

3'5'

pair

#nucleotides:Int

addNT

Instantiation &
Initialization

addNT codoncodon

pos = 1base = C pos = 2base = A pos = 38base = G

#nucleotides = 38

Figure 7.4: The extension of COMO, as described by Steiniger and Uhrmacher [2013],
allows us to derive a composition as depicted on the right side from the a component,
interface, and composition description as depicted on the right side by instantiation and
configuration. The communication structure on the right side, connecting the 3’ site of
one nucleotide with the 5’ site of the subsequent nucleotide, is specified by a single loose
connection and works independently of the concrete number of nucleotides that should
be instantiated (denoted by “#nucleotides”).

Steiniger and Uhrmacher [2013] demonstrate how a single loose connection can be used to
specify an arbitrary complex coupling scheme, such as the bi-directional bindings between
two binding sites of nucleotides, organic molecules that form nucleic acids, in the mRNA
(messenger ribonucleic acid). Figure 7.4 illustrates the example.

7.4.3 Description of Variable Compositions

One of the most obvious aspects of a variable model structure and the model structure in
general, is the actual composition of a complex model (see Section 6.2.1), which specifies the
constituent parts (i. e., components) of the model. In traditional composition, we usually
distinguish between two types of components: atomic and composite. The latter of which are
composed of components themselves, allowing the modeler to (i) express is-part-of-relationships
between components at different levels of abstraction or detail and (ii) create component
hierarchies of arbitrary depths, since a component of a composite component can be a
composite component itself.

Similar to variable ports, we can often assume that the superset of all potential components
of a composite component can be known beforehand and remains unchanged, regardless of
the availability of the individual components during execution.
In Steiniger and Uhrmacher [2013], we, again, had an extensional definition in mind,

when talking about supersets of components of composite components, where the individual
components become available or unavailable at one point or another during execution, as
depicted in Figure 6.1. Herein, we also argue for an intentional definition of supersets of
components constraining the components that can be part of a composite component. This is
less tedious and more flexible than enumerating all possibly available components extensionally.

As with variable ports, regardless of the actual definition of a superset of potential compo-
nents, we also need to know the components that should be available initially for a proper
execution of the corresponding composite component. In the case of a static composition,
the set of the initially available components corresponds to the superset of all potential
components, because all of them are available from the beginning and their availability does
not change during execution. Whereas, in the case of a variable composition, the set of
the initially available components can be a proper subset of the superset of all potential
components; but does not necessarily have to be. In any case, the following relation holds:

set of initially available components � superset of all potential components.

Both the superset of potential components and the set of initially available components need
to become a part of the description of a composite component, so we can make use of this
information, when assembling and configuring components.

81

7 Composition of Variable Structure Models

7.4.4 Correctness and Composability

As mentioned in Section 5.2, allowing to check the composability, at least at a syntactic level,
at configuration time, is another important aspect of traditional composition. In other words,
once an executable model is derived from a composition description, we can assume that this
model is at least syntactically correct.
When dealing with variable interfaces and structures, we only know the initially available

components, connections, and ports for sure. Thus, one could think, that we can only check
the consistency of the initial state at configuration time. However, since we also know the
supersets of potential components, connections, and ports, which can become available or
unavailable during execution, we can check the consistency of all possible couplings which
can be created. In Steiniger and Uhrmacher [2013], we adapt the notions of well-formed
connections and complete component descriptions as introduced by Röhl and Uhrmacher
[2008] by incorporating the corresponding supersets. As we will see later, some kinds of
inconsistencies with respect to variable ports and couplings cannot occur, if the mechanism
that translates intensional couplings into concrete model couplings during execution assures
correctness by construction, by preventing inconsistent couplings from being established during
execution. More details can be found in Chapter 8 and Chapter 9.
Although the component implementations are decoupled from the component interfaces

and descriptions, due to the separation between component implementation and component
description, both have to relate to each other. Therefore, the composition framework has to
make sure that an implementation adheres to a respective interface and component description
and vice versa. Röhl and Uhrmacher [2008] are using the term “refinement” for this bilateral
relationship. More specifically, we have to make sure that all ports declared in an interface
are actually part of the encapsulated model. In terms of models with a variable interface,
we also have to make sure that all ports that can be exhibited by the model are part of
the superset of ports of the corresponding component. In turn, all ports that are used in
the model implementation have to be reflected in the interface description of the respective
component. In the case of variable interfaces, we have to make sure that the model is not
creating new port during execution that are not part of the interface. Accordingly, Steiniger
and Uhrmacher [2013] modifies both refinement relations to work with our adaptations of
COMO and its underlying composition descriptions.

7.5 Summary

This chapter motivates the appeal of traditional component-based and variable structure
modeling approaches when modeling complex systems that are characterized by a complex
composition and a variable structure. Afterward, the chapter identifies fundamental differences
between both types of modeling, which make a combination of them rather difficult and
have implications on aspects such as composability, especially syntactic composability. In
the following, two general approaches are presented that show how these differences can be
overcome, at least to some extent. The second approach is the revision of the composition
and analysis framework COMO. In a nutshell, both approaches rely on the use of supersets
and intensional (coupling) definitions, as described in Chapter 3. Using supersets of ports and
components as well as intensional coupling definitions allows us to make statements about the
composability of a variable composition, if the involved components adhere to their interface
descriptions.
Chapter 8 revives and extends the ideas presented in this chapter.

82

8 Interfaces, Interface Instances, and
Intensional Couplings

I think complexity is mostly sort of
crummy stuff that is there because it’s
too expensive to change the interface.

Jaron Lanier

This chapter introduces general concepts and definitions of attributes, attribute assignments,
interfaces, interfaces instances, and intensional couplings, which all can be used to define
couplings in variable structure models consistently. These concepts and definitions serve as a
foundation for the introduction of the modeling formalism ML-DEVS in Chapter 9.

The chapter makes use of the ideas discusses in Chapters 3 and 7 and is based on concepts
and definitions presented in our TOMACS article:

Steiniger, A. and Uhrmacher, A. M. (2016). “Intensional Couplings in Variable Structure
Models: An Exploration Based on Multilevel-DEVS.” In ACM Transactions on Modeling
and Computer Simulation (TOMACS), 26(2). pp. 9-1–9-27.

Here, however, we revise and extend some of the definitions given therein.
More details about the mathematical concepts and notations used within this chapter can

be found in Appendix A.

83

8 Interfaces, Interface Instances, and Intensional Couplings

8.1 Attributes

The states, inputs, and outputs of systems of interest can often be imagined or perceived
as being structured according to certain variables (i. e., state, input, and output variables)
rather than being flat, abstract, or opaque (cf. structured systems as described by Zeigler et
al. [2000, p. 123]). In other words, a state, input, or output of such a system can be described
as a vector of values rather than a scalar value, where each coordinate of the vector refers to
a characteristic variable. When modeling structured systems, we may have some knowledge
about these variables or at least some assumptions about them, which we want to confirm by
using simulation. The former is often the case when modeling purely technical, man-made
systems (e. g., sensors or wireless access points), whereas the latter often applies to biological
systems that include living organisms (e. g., cells or cell organelles).
In the following, we generalize the idea of variables and introduce attributes as a more

general and abstract concept. An attribute of a model is “something,” some characteristic,
property, or feature of interest, which is usually subject to changes over time. In the most
common case, variables characterizing or defining the state of a model are attributes, like
in the rule-based modeling language ML-Rules [Maus et al. 2011]. Other, prominent model
attributes are (i) ports that are points of interaction and (ii) parameters that enable the
modeler to configure and customize a model [Röhl & Uhrmacher 2008] without redefining its
characteristic functions (i. e., changing the model).

In the remainder of this chapter, let N be a set of names or identifiers (i. e., strings) and A
be a superset1 of relevant attributes. We then define an attribute as follows:

Definition 8.1.1 (Attribute Definition)
An attribute definition (or simply attribute), denoted by attr and with attr P A, is
defined by the ordered pair

pan, Xq,

where

– an is the name of the attribute with an P A;

– X is a set of values (value range) that can be assigned to the attribute; and

– A is a set of attribute names with A � N .

Given an attribute with attr � pan, Xq, we access an and X by writing attr .an and attr .X,
respectively. Furthermore, we assume that:

@attr , attr 1 P A : attr � attr 1 ô attr .id � attr 1.id . (uniqueness of attribute names)

In other words, an attribute (definition) consists of a name and a value range. The name of
an attribute needs to be unique to allow referencing the attribute unambiguously.

Remark. According to Definition 8.1.1, there is a difference between an attribute and its
name. The latter is part of the attribute, i. e., its definition.

From the modeler’s perspective, it is often useful to distinguish between different kinds of
attributes explicitly, such as state variables or ports. Therefore, we sometimes adapt the
notation from Definition 8.1.1. For instance, let P be a superset of relevant ports, we define a
port as follows:

1 Section A.1.1 gives a formal definition of supersets and its relationship to universal sets.

84

8.2 Models

Definition 8.1.2 (Port Definition)
A port definition (or simply port), denoted by port with port P P, is defined by the
ordered pair

ppn, Xq,

where

– pn is the name of the port with pn P P;

– X is a set of values (value range) that can be assigned to the port; and

– P is a set of port names with P � N .

Given a port with port � ppn, Xq, we access pn and X by writing port .pn and port .X,
respectively.

As with attributes, we assume that port names are unique. When we compare Definition 8.1.2
to Definition 8.1.1, it becomes apparent that both definitions are isomorphic.

8.2 Models

Attributes and ports are associated with models or submodels between which we want to
define couplings.

In the following, let M be a superset of models, usually the components of a certain
composition, and let P be a superset of relevant ports (i. e., port definitions), where each port
is as in Definition 8.1.2. Then we define each m PM as follows:

Definition 8.2.1 (Model Definition)
A model definition (or simply model), denoted by m with m P M, is defined by the
ordered pair

pid ,Σq,

where

– id is the identifier (or name) of the model with id PM;

– Σ is a model specification (or model implementation); and

– M is a set of model identifiers with M � N .

Given a model with m � pid ,Σq, we access id and Σ by writing m.id and m.Σ. Furthermore,
we assume that:

@m,m1 PM : m � m1 ô m.id � m1.id . (uniqueness of model identifiers)

Since we are interested in coupling definitions, we assume that a model exhibits ports, via which
it communicates with other models, and can be composed of submodels (model components),
where a composition forms a tree or hierarchy, i. e., an undirected, acyclic graph, in which
any two vertices are connected by exactly one edge2. Apart from this, we make no further
demands on a model specification at this point. For instance, a model can be specified by
a n-tuple of sets and relations on this sets such as finite state machines. Furthermore, we

2 This reflects the natural structure of complex systems, where one component cannot be a component of
itself or a component of one of its subcomponents. In contrast, Dalle, Zeigler, and Wainer [2008] introduces
a variation of DEVS in which instances of model components are shared within a model composition.

85

8 Interfaces, Interface Instances, and Intensional Couplings

suppose the existence of the following two auxiliary functions:

getPorts : MÑ 2P

and

getSubmodels : MÑ 2M,

where the first function, getPortspmq, returns all ports that belong to a given model m and
the second function, getSubmodelspmq, returns the set of submodels the model m is composed
of. The actual implementation of both functions depends on the modeling formalism in which
the models are specified and is of no further interest at this point.

8.3 Extensional Couplings

Ports, as a special kind of model attributes, allow us to define port-to-port couplings between
different models extensionally. This means that each, existing port-to-port coupling is listed
or enumerated in the overall coupling definition (cf. extensional definitions in Section 3.2).
Port-to-port couplings are well-known in the modeling realm (see, e. g., Zeigler et al. [2000])
and used in modeling formalisms such as DEVS, SysML3, or Modelica4.
Given port and model identifiers from the previous sections, we now define extensional

couplings as follows:

Definition 8.3.1 (Extensional Couplings)
An extensional coupling definition for a coupled model n PM (also composed model or
network) is defined as the set

Cplgext � Cplg�ext with Cplg�ext �

ppids, pnsq, pid t, pntqq P pMn � Pnq � pMn � Pnq

(
,

where

– ids and id t are the identifiers of the source and target model and

– pns and pnt are the names of the source and target port.

Mn � N is the set of the identifier of n and of all its possible submodels and Pn � N is
the set of the names of all possible ports of n and of all its possible submodels with

Mn �
¤

m P tnuYgetSubmodelspnq

m.id

(
,

Pn �
¤

m P tnuYgetSubmodelspnq

¤
p P getPortspmq

p.pn

(
.

The sets Mn and Pn define the namespace in which couplings can be defined. Each ele-
ment ppids, pnsq, pid t, pntqq of Cplgext is called extensional coupling or concrete coupling.
Cplg�ext is the superset of all possible extensional couplings that can be defined for n.

So an extensional coupling definition is a set of (1:1) port-to-port couplings, where each
coupling specifies which port of a certain model shall be coupled to which port of another
model, using identifiers as references. In other words, an extensional coupling definition lists
or enumerates all existing couplings individually and explicitly. All couplings together form
the extension of the overall coupling scheme (cf. Section 3.1).

3 http://sysml.org; last accessed Februrary 2018
4 https://www.modelica.org; last accessed February 2018

86

http://sysml.org
https://www.modelica.org

8.3 Extensional Couplings

Remark. In the tradition of DEVS and its variants, we denote a coupled model by n rather
than m, where n PM such as m.

The above coupling definition is very permissive, as only names are taken into consideration
when defining couplings. However, it often makes sense to define further constraints on
couplings or coupling sets. For instance, to ensure that values sent by a source port are
accepted by the target port (compatibility or type coherency) or to restrict the direction of
message flow. For two coupled ports ps and pt we typically expect that ps.X � pt.X, so that
all values originated from the source port ps are accepted by the target port pt (cf. Zeigler
et al. [2000, p. 130]). In type theory, this relation corresponds to the subtype relation or the
principle of safe substitution (cf. Pierce [2002, pp. 182–7] or Röhl and Uhrmacher [2008]). So
in addition to Definition 8.3.1, we can define further constraints on a given coupling set that
need to be met. But before we define such constraints, we define another auxiliary function

getRange : N Ñ 2
�

port P Ptport .Xu (8.1)

that returns the value range for a given port name, denoted by pn with pn P N , from the set
of ports P with:

@pn P N : getRangeppnq �

#
X if Dppn, Xq P P,
∅ else.

By using the above function, we can define useful constraints on extensional coupling definitions,
such as:

Definition 8.3.2 (Compatible Ports)
Let cext be an extensional coupling of a coupled model n PM, i. e., cext P Cplgext , with

cext � ppids, pnsq, pid t, pntqq

as in Definition 8.3.1, then the source port and target port referenced by the names pns

and pnt, respectively, are compatible, if and only if:

Xpns
� Xpnt

with

Xpns
� getRangeppnsq, (value range of source port)

Xpnt
� getRangeppntq, (value range of target port)

and getRangeppnq as in Equation 8.1.

Definition 8.3.3 (Compatible Components)
Let cext be an extensional coupling of a coupled model n PM, i. e., cext P Cplgext , with

cext � ppids, pnsq, pid t, pntqq

as in Definition 8.3.1, then the source model and target model referenced by the identifiers
ids and id t, respectively, are compatible, if and only if:

ids � id t.

In other words, two components are compatible if they are different.

The following example illustrates how couplings can be defined extensionally, according to
Definition 8.3.1.

87

8 Interfaces, Interface Instances, and Intensional Couplings

Cell

out

out

in

Cell

Simulation Time

in

in

out
Mito1

Mito2

Mito3
out

out

in

in

in

out
Mito1

Mito2

Mito3

Figure 8.1: A simple variable model composition representing a mitochondrial network
at two different instants of simulation time. (Left) The composition comprises four
components (incl. “Cell”) and two port-to-port couplings at time t1. (Right) At time t2,
the component “Mito1” and its coupling to component “Mito3” are removed.

Example 8.3.1 (Extensional Couplings)
As Section 1.2 describes, mitochondria, cell organelles of eukaryotic cells, that a close to each
other can form networks. When modeling such dynamic mitochondrial networks, defining
the couplings between mitochondria is of particular interest. Suppose a composition as shown
in Figure 8.1 (left)—mimicking a mitochondrial network at a certain time—consisting of
three components representing mitochondria. Each of which has two ports (one input and
one output port) used for interacting with other mitochondria in the network. Following
Definition 8.3.1, an extensional definition of the depicted coupling scheme can now be
specified by the following set:

Cplgext �

pp“Mito1”, “out”q, p“Mito3”, “in”qq, pp“Mito2”, “out”q, p“Mito3”, “in”qq

(
,

where the sets Pn and Mn, based upon which the set Cplg�ext is defined, are defined as
follows:

Pn � t“in”, “out”u,

Mn � t“Cell”, “Mito1”, “Mito2”, “Mito3”u.

If the model changes its structure, e. g., as shown in Figure 8.1 (right), the coupling definition
Cplgext may need to be adapted as well to reflect the structure change. In this case, the
coupling set would be defined by the following singleton set:

Cplgext �

pp“Mito1”, “out”q, p“Mito3”, “in”qq

(
.

Notation 8.3.1 (Variables vs. Values). To distinguish between the names of (bound) vari-
ables and values (or literals), we put values into double quotation marks (except numerical
values).

Example 8.3.1 already shows a limitation of an extensional coupling definition: This kind
of coupling definition can only describe a static snapshot of the actual coupling scheme. In
the case of static structure models, this limitation is negligible, as the coupling scheme is
not changing during simulation. In variable structure models, however, the coupling scheme
can change and the extensional coupling definition thus needs to change as well, otherwise it
eventually yields structural inconsistencies.

Moreover, listing all existing couplings exhaustively can become tedious, even for static
structure models, especially when there is a great number of components that have to be
couple. This brings us to the idea of defining couplings and coupling schemes intensionally.

88

8.4 Intensional Couplings

8.4 Intensional Couplings

Instead of explicitly listing or enumerating all concrete couplings that exist either throughout
the whole simulation or within a certain structural context (i. e., at a certain instant of
simulation time), an intensional coupling definition describes couplings by certain attributes
(properties) of the model and by constraints from which concrete couplings can be derived
during simulation. Therefore, the intensional coupling definition has to be translated into
a concrete coupling scheme, whenever events occur. For this translation, the respective
attributes and coupling definitions have to be evaluated. This is the responsibility of the
simulator, as the simulator tracks the state and other properties of a model during simulation.
Adapting intensional definitions as described in Section 3.3 to coupling schemes, the

intension of a coupling definition (the entire scheme) refers to the attributes or characteristics
shared by the couplings that are part of the scheme. As a basis for an intensional coupling
definition, we propose to use functions, i. e., coupling functions, that determine, given the
current composition, the concrete coupling scheme.

Definition 8.4.1 (Intensional Couplings)
An intensional coupling definition for a coupled model n PM is defined as the following
set of functions

Cplg int � Cplg�int with Cplg�int �
!
cint

�� cint : 2Mn Ñ 2Cplg�ext

)
,

where

– cint is an intensional coupling (or intensional coupling function);

– Mn is the superset of all submodels of n and n itself, i. e.,

Mn � tnu Y getSubmodelspnq

with Mn �M;

– Cplg�int is the superset of all possible intensional couplings that can be defined for n;

– Cplg�ext is the superset of all possible extensional couplings as in Definition 8.3.1.

Each argument of such an intensional coupling function of a coupled model, i. e., M P 2Mn

or M � Mn, can be interpreted as a concrete incarnation of the coupled model, i. e., the
network, at a certain time. Only models that are available at that time, i. e., their identifiers
and definitions, appear in the respective argument representing that instant.
The intensional coupling functions, i. e., the concrete mapping, can be specified, e. g., by

using predicates defined on the functions’ argument and their components. The following
example illustrates how an intensional coupling function could look like.

Example 8.4.1 (Intensional Couplings)
Based on Example 8.3.1, suppose we now want to specify a coupling scheme for all possible
incarnations of a mitochondrial network, in which all mitochondria are coupled intensionally.
Following Definition 8.4.1, such an intensional coupling definition, i. e., the set Cplg int ,
could consist of the function

cintpMq �

ppids, “out”q, pid t, “in”qq

�� m,m1 PM

^ ids � m.id ^ id t � m1.id ^ “out” P Pm ^ “in” P Pm1

(

89

8 Interfaces, Interface Instances, and Intensional Couplings

with

Pm �
¤

p P getPortspmq

p.pn

(
,

Pm1 �
¤

p P getPortspm1q

p.pn

(
,

where M �Mn. The set M shall only contain the definitions of available mitochondria (incl.
the definition of the cell). To be more specific, for the two instants depicted in Figure 8.1,
denoted by t1 (left-hand side) and t2 (right-hand side), the corresponding arguments, denoted
by Mt1 and Mt2 with Mt1 ,Mt2 �Mn, are defined as follows:

Mt1 � tp“Cell”,ΣCellq, p“Mito1”,ΣMito1q, p“Mito2”,ΣMito2q, p“Mito3”,ΣMito3qu ,

Mt2 � tp“Cell”,ΣCellq, p“Mito1”,ΣMito1q, p“Mito3”,ΣMito3qu ,

where ΣCell, ΣMito1, ΣMito2, and ΣMito3 are the specifications of the respective models (see
Definition 8.2.1). Furthermore,

for m � p“Cell”,ΣCellq : getPortspmq � ∅

and

for all m P tp“Mito1”,ΣMito1q, p“Mito2”,ΣMito2q, p“Mito3”,ΣMito3qu :

getPortspmq � tp“in”, Xinq, p“out”, Xoutqu

with Xin and Xout being the value ranges of the two respective ports, assuming that the
ports of the corresponding mitochondria have the same value ranges, i. e., Xin and Xout.

This rather simple coupling definition works for this example, because the cell model has
no ports and contains only models of mitochondria. For a more elaborate example, the
identifiers of the models would need to be taken into account to prevent unintended couplings,
e. g., between mitochondria and the cell. Furthermore, based on the above intensional
coupling, all mitochondria are coupled regardless of their actual distance to each other,
which does not reflect the nature of mitochondrial networks as described in Section 1.2. The
above coupling does also not prevent direct feedback loops or type incoherences of the coupled
port. Such constraints can be considered by the actual translation mechanism, which derives
concrete, consistent couplings from the intensional coupling definition and the network
structure.

For the two incarnations of the mitochondrial network, encoded in Mt1 and Mt1, the
above intensional coupling function cint returns the following sets of extensional couplings:

cintpMt1q �

pp“Mito1”, “out”q, p“Mito1”, “in”qq, pp“Mito1”, “out”q, p“Mito2”, “in”qq,

pp“Mito1”, “out”q, p“Mito3”, “in”qq, pp“Mito2”, “out”q, p“Mito1”, “in”qq,

pp“Mito2”, “out”q, p“Mito2”, “in”qq, pp“Mito2”, “out”q, p“Mito3”, “in”qq,

pp“Mito3”, “out”q, p“Mito1”, “in”qq, pp“Mito3”, “out”q, p“Mito2”, “in”qq,

pp“Mito3”, “out”q, p“Mito3”, “in”qq
(

90

8.4 Intensional Couplings

and

cintpMt2q �

pp“Mito1”, “out”q, p“Mito1”, “in”qq, pp“Mito1”, “out”q, p“Mito3”, “in”qq,

pp“Mito3”, “out”q, p“Mito1”, “in”qq, pp“Mito3”, “out”q, p“Mito3”, “in”qq
(
.

To understand the power of this approach, we have to realize that the actual coupling scheme
is automatically derived whenever necessary, based on the given coupling functions and the
current network structure, i. e., composition. It is possible to specify a coupling between the
port “out” of every single mitochondrion with the port “in” of every other mitochondrion
by a single intensional coupling, regardless of the actual number of available mitochondria
during simulation. This allows us to reduce the specification effort drastically.

Still, Definition 8.4.1 per se does not prevent the modeler to specify mappings of inconsistent
couplings, since the range of an intensional coupling function is not constrained by its
arguments. The following example illustrates the situation:

Example 8.4.2 (Inconsistent Couplings)
Suppose the following intensional coupling function:

cintpMq �

#
tpp“Mito2”, “out”q, p“Mito3”, “in”qqu if M �Mt2,

tpp“Mito1”, “out”q, p“Mito3”, “in”qqu else,

where Mt2 as in Example 8.4.1. So for the argument Mt2 , the coupling function returns the
following singleton set:

cintpMt2q � tpp“Mito2”, “out”q, p“Mito3”, “in”qqu,

which is an element of the power set 2Cplg�ext , thus complies with Definition 8.4.1. However,
the singleton set violates our interpretation, since it establishes a coupling between the
mitochondria “Mito2” and “Mito3”, although mitochondrion “Mito2” is not present in the
argument Mt2, which reflects the situation on the right-hand side of Figure 8.1.

Taking this shortcoming into account, we introduce an additional mechanism that translates
intensional couplings into concrete, consistent couplings, which can be used to forward events
during simulation. This mechanism (i) evaluates all intensional couplings of a coupled model
and (ii) checks certain constraints that need to be fulfilled by the derived concrete couplings
so that structural consistency is maintained. Extensional couplings that are returned by an
intensional coupling and violate one or more of these constraints are discarded. Hence, the
translation of intensional couplings into a concrete coupling scheme ensures correctness by
construction, without the need for the modeler to take care about structural consistency when
defining intensional couplings. One essential constraint refers to the availability of models
between which an extensional coupling should be establishes by using the models’ identifiers
as references.

Definition 8.4.2 (Consistent Coupling)
Let cext be an extensional coupling of a coupled model n PM with cext P Cplg�ext , Cplg

�
ext

as in Definition 8.3.1, and

cext � tppids, pnsq, pid t, pntqqu,

then cext is consistent with respect to a set M with M � Mn, where Mn as in Defini-

91

8 Interfaces, Interface Instances, and Intensional Couplings

tion 8.4.1, if and only if:

Dm,m1 PM : m � m1 ^ ids � m.mid ^ id t � m1.mid

As mentioned in Section 3.2, we may also want to consider further constraints when deriving
concrete coupling schemes from an intensional coupling definition and the current model state.

Algorithm 8.1: Simple reference algorithm for translating intensional couplings
into a concrete, consistent coupling scheme based on the actual network structure

Input: M {M is the set of currently available models}
Output: result {result is the set of concrete, consistent extensional couplings}
1: result Ð ∅;
2: for all cint in Cplg int do
3: Cplgext Ð cintpMq;
4: for all cext � ppids, pnsq, pid t, pntqq in Cplgext do
5: if cext is consistent for M and pns is compatible with pnt and ids is compatible

with id t then
6: add cext to result
7: end if
8: end for
9: end for

10: return result

Now, Algorithm 8.1 shows how such a translation of an intensional coupling definition into a
concrete, consistent coupling scheme can look like. This algorithm checks whether couplings
are consistent according to Definition 8.4.2 (line 5). In addition, the algorithm also checks
whether the value ranges of the coupled ports are coherent (i. e., compatible according to
Definition 8.3.2) and the coupled submodels are different (see Definition 8.3.3).
Depending on the actual application domain, i. e., the domain for which models should

be created, more consistency constraints may be necessary. If so, Algorithm 8.1 needs to be
extended accordingly (particularly line 5). Herein, we focus on classic consistency constraints
as known from the DEVS realm (cf. Zeigler et al. [2000, p. 86]).
Example 8.4.3 shows how an intensional coupling definition is translated into a concrete,

consistent coupling by Algorithm 8.1.

Example 8.4.3 (Translation of Intensional Couplings)
Assume an intensional coupling definition as in Example 8.4.1. For the set Mt1 with Mt1

as in Example 8.4.1, the Algorithm 8.1 returns the following set of concrete, consistent
couplings:

pp“Mito1”, “out”q, p“Mito2”, “in”qq, pp“Mito1”, “out”q, p“Mito3”, “in”qq,

pp“Mito2”, “out”q, p“Mito1”, “in”qq, pp“Mito2”, “out”q, p“Mito3”, “in”qq,

pp“Mito3”, “out”q, p“Mito1”, “in”qq, pp“Mito3”, “out”q, p“Mito2”, “in”qq
(

For the set Mt2 with Mt2 as in Example 8.4.1, the algorithm returns the following set of
concrete, consistent couplings:

pp“Mito1”, “out”q, p“Mito3”, “in”qq, pp“Mito3”, “out”q, p“Mito1”, “in”qq
(
.

Now assume the intensional coupling definition given in Example 8.4.2. Algorithm 8.1
returns the empty set for Mt1 , i. e., ∅, since the set Mt1 does not contain a model with the

92

8.5 Interfaces

identifier “Mito2”, so the extensional coupling returned by the function cint is discarded by
the translation algorithm.

In a nutshell, an intensional coupling definition along with a corresponding translation
mechanism allows modelers to address structure variability, at a more general level, without
considering each possible incarnation of the model structure.
Now the questions are:

� What model attributes should be accessible to determine concrete couplings?

� How can such attributes be accessed?

Example 8.4.1 already gives us an idea of attributes that are of interest for defining couplings,
such as names of models and ports and their availability during simulation. For accessing
these attributes, we, so far, rely on the existence of auxiliary functions, which return the
corresponding attributes from given model definitions and whose implementations are tailored
to the underlying modeling formalism. To get rid of such functions, we generalize and
emphasize the notion of interfaces, based upon which we want to define couplings.

8.5 Interfaces

The idea of defining model interfaces explicitly and utilize them for constructing complex,
composed models is not new. Already Thomas [1994] introduced a formal definition of model
interfaces on top of the in- and output sets of classic, static DEVS models. Interfaces allow
us to “separate communication from behavior” [Rowson & Sangiovanni-Vincentelli 1997]
and are a prerequisite for a component-based design [Verbraeck 2004; Verbraeck & Valentin
2008], be it software or model design5. As such, interfaces form the basis of component-based
approaches—e. g., Varga [2001], de Alfaro and Henzinger [2001], Brim, Černá, Vařeková,
and Zimmerova [2005], Röhl and Uhrmacher [2008], Rogovchenko and Malenfant [2010], or
Peckham, Hutton, and Norris [2013]—for (i) model composition in general and (ii) checking
and assuring syntactic and, eventually, semantic composability of composition of model
components or models6.
According to the system-theoretic world view, which we focus on, a system (and thus its

representation as a model) is characterized by an internal state (or internal structure), a
system boundary, and a system environment, where the internals of the system is not directly
accessible from the outside (system as a black box). Consistently, some attributes of a system
model are not visible to or observable from the outside (system environment), whereas other
attributes are. These accessible attributes of a model define its interface, which is the system
(model) boundary from a system-theoretic point of view. Or, in other words, the interface of
a model declares those of its attributes that shall be accessible from the outside.
Let, in the following, I be a superset of relevant interfaces. Pursuing and extending the

ideas of Thomas [1994] and Röhl and Uhrmacher [2008] on the one hand and the concept of
attributes described in Section 8.1 on the other hand, we define an interface of a model as
follows:

Definition 8.5.1 (Interface Definition)
An interface definition (or simply interface), denoted by i with i P I, is defined by the
ordered pair

pid ,Attrq,

5 Simulation models that can directly be executed on a computer (i. e., executable models) are software.
6 Note that a model component can be viewed as a self-contained model. Thus, we will use the terms

“model” and “model component” interchangeably.

93

8 Interfaces, Interface Instances, and Intensional Couplings

where

– id P I is a unique identifier, i. e., the interface’s name;

– Attr is a set of attribute definitions, which can be published or declared by a model
implementing the interfac, where Attr � A with A as in Definition 8.1.1; and

– I is a set of interface identifiers with I P N .

Given an interface with i � pid ,Attrq, we access id and Attr by writing i .id and i .Attr ,
respectively. Furthermore, we assume that:

@i, i1 P I : i � i1 ô i.id � i1.id . (uniqueness of interface identifiers)

Now, different models can implement the same interface, which then declares a set of common
attributes shared by the corresponding models. In case that the declared attributes refer solely
to ports exhibited by the respective model, our definition of interfaces is equivalent to the
notion of model interfaces introduced by Thomas [1994]. In the tradition of DEVS, Thomas
explicitly distinguishes between input ports and output ports. We can achieve a similar
distinction between different kinds of attributes by allowing the set Attr in Definition 8.5.1
to be defined as a disjoint union (see Section A.1.3) of different sets of attribute definitions,
where each set represents a different kind of attribute. For instance, if we distinguish between
two types of attributes representing input ports and output ports, we can define the set Attr
as follows:

Attr � Attr inputports `Attroutputports .

This way of defining the set of attributes allows us to reuse attribute names for attributes of
different types. We will come back to this idea later.

Example 8.5.1 (Interface Definition)
If we recap the mitochondria described in Example 8.3.1 and depicted in Figure 8.1, all
mitochondria realizing the same interface that consists of two ports: “in” and “out.” If we
assume that natural numbers can be assigned to both ports, this simple interface is, according
to Definition 8.5.1, defined by the tuple�

“mito”, tp“in”,Nq, p“out”,Nqulooooooooooooomooooooooooooon
Attr

�
,

where “mito” is the identifier of the interface.

If we explicitly defining an interface for an already existing model, as described above, we
have to make sure that the model actually adheres to the interface. This means that a model
has all the attributes that are declared in its interface. On the other hand, all accessible
attributes of a model have to be a part of the model’s interface. For this purpose, Röhl and
Uhrmacher [2008] and Röhl [2008] introduce special refinement relations, which are used to
check whether a model refines its interface and vice versa. In Chapter 9, we show how we can
derive interface definitions automatically, without the need to define them by hand. In doing
so, the refinement relations hold by construction.

So far, interface definitions neither address structure variability, such as a changing availabil-
ity of accessible attributes (e. g., variable ports), nor do they allow us to draw any conclusions
on the concrete values that are assigned to the accessible attributes during simulation. How-
ever, based on these values, we want to define and restrict couplings; which brings as to
attribute assignments and interface instances.

94

8.6 Attribute Assignments and Interface Instances

8.6 Attribute Assignments and Interface Instances

At a certain instant of time, an attribute is characterized by a value that is assigned to the
attribute, where the value is an element of the value range of the attribute, i. e., the set X in
Definition 8.1.1. We formally express the relation between attributes and their current values,
by a set of attribute assignments.

Definition 8.6.1 (Attribute Assignments)
Given a set of attributes, denoted by Attr , in which each attribute is as in Definition 8.1.1,
we define a set of assignments for Attr , denoted by AssgAttr , as follows:

AssgAttr � AssgAttr
� with AssgAttr

� � tpan, v,Xq | pan, Xq P Attr ^ v P X Y tεuu ,

where

– an is the name of an attribute from the set Attr , i. e., an P A, to which the value v from
the value range X or ε is assigned and

– ε represents the null value, i. e., that the corresponding attribute has no value.

Each element of the above set is an attribute assignment assigning a value to a certain
attribute of the set Attr by referencing the attribute’s name. We access an, v, and X of an
assignment assg with assg P AssgAttr by writing assg .an, assg .v, and assg .X, respectively.
Furthermore, we assume that

@assg , assg 1 P AssgAttr : assg � assg 1 ô assg .an � assg 1.an,

so that to each attribute from the set Attr , at most, one value is assigned.

In a nutshell, for an attribute pan, Xq an assignment is the triple pan, v,Xq, where v is any
element of the attribute’s value range X or ε.

Example 8.6.1 (Attribute Assignments)
Following Example 8.5.1, let the set Attr contain two attributes, denoted by “in” and “out”,
whose value ranges are the set of natural numbers, i. e.,

Attr � tp“in”,Nq, p“out”,Nqu .

Then, according to Definition 8.6.1, the following sets are consistent attribute assignments
for the above set of attributes:

AssgAttr � ∅, (no attribute is available)

AssgAttr � tp“in”, 42qu , (only one attribute is available)

AssgAttr � tp“in”, 12q, p“out”, 23qu , (both attributes are available)

AssgAttr � tp“in”, 12q, p“out”, εqu . (one attribute is empty)

To address structure variability at the level of interfaces and assignments to interface at-
tributes, we introduce the notion of interface instances, which are runtime (during simulation)
instances of interfaces implemented by certain models. Interface instances are similar to
object instances as known from the object-oriented programming paradigm. For each model
or model component only one of these instances exists at a time.

95

8 Interfaces, Interface Instances, and Intensional Couplings

Definition 8.6.2 (Interface Instance)
An interface instance of a model m implementing the interface i is defined by the 3-tuple

pmid , iid ,Assgq,

where

– mid � m.id is the unique identifier of the model m;

– iid � i.id is the unique identifier of the interface i;

– Assg is a set of attribute assignments with

Assg � Assg i.Attr ,

where Assg i.Attr as in Definition 8.6.1.

Interface instances are derived and updated by the simulator, which is responsible for executing
a given model according to its definition and the respective execution semantics and for keeping
track of the model’s state, which evolves during simulation.

Now let n be a coupled model with n PM, then In denotes the set of all potential interface
instances of n and all of its possible submodels and is defined as follows:

Definition 8.6.3 (Set of Interface Instance Sets)
Given a set of models as in Section 8.3 and Definition 8.2.1, denoted by M and a set of
interface definitions as in Definition 8.5.1, denoted by I, and given a coupled model n with
n PM, we define the superset of all possible interface instance sets for n, denoted by In, as
follows

In � 2

pmid ,iid ,Assgq | mPMn^mid�m.id^iPI^iid�i.id^Assg�Assgi.Attr

(
,

where Mn �M is the set of submodels of n including n, i. e.,

Mn � getSubmodelspnq Y tnu,

and where

– Mn �M is the set of submodels of n including n, i. e.,

Mn � getSubmodelspnq Y tnu;

– Assg i.Attr as in Definition 8.6.1 for the model m and the interface i.

Furthermore, we assume that

@in P In @i, i1 P in : i � i1 ô i.mid � i1.mid , (uniqueness of interface instances)

so that each element of In, which is a set of interface instances, contains, at most, one
interface instance for each model, i. e., model identifier. Keeping the idea of well-defined
model interfaces in minda, we also assume that

@in, in1 P In @i P in Ei1 P in1 : i � i1 ^ i.mid � i1.mid ^ i.iid � i1.iid ,

96

8.6 Attribute Assignments and Interface Instances

age:ℕ age:ℝ volumne:ℝ

organism cell

Figure 8.2: The figure shows two different interfaces, denoted by “organism” and “cell.”
Both interfaces have an attribute with the name “age,” however, the value ranges of both
attributes is different, i. e., incompatible. The interface “cell” has an additional attribute
with the name “volumne.”

or, in other words, that each model implements exactly one interface. Still, several models
can implement the same interface.

a Only if an interface is well-defined, i. e., we know its potential communication and interaction capabil-
ities beforehand, we can make statements about composability based solely upon the interface. See
Section 7.4.1.

Since the actual composition of a model is not an explicit part of the model according
to Definition 8.2.1, the above definition still relies on the existence of an auxiliary function
getSubmodels , which returns the submodels of a given coupled model, if there are any. Although
Definition 8.6.3 prohibits models to change their interfaces, it still allows changing the
availability of interface attributes from one interface instance to another (cf. variable ports).
All attributes whose names do not appear in the set Assg of a particular interface instance
are not available. In contrast, changing its interface would allow a model to change the value
ranges of its interface attributes in addition to their availability (see Figure 8.2). Whether
or not changing interfaces is desirable or makes sense, shall not be further discussed at this
point. If necessary, the respective constraint can simply be removed from Definition 8.6.3, so
that models can change their interfaces.

Each element of the set In can be interpreted as a snapshot of the interface instances of all
submodels of a coupled model available at a certain time during simulation (incl. the instance
of the coupled model’s interface); reflecting a particular incarnation of the model structure,
i. e., the including model interfaces. Example 8.6.2 illustrates this interpretation of the set
In:

Example 8.6.2 (Interface Instances)
Recreating the model described by Patel et al. [2013], in which mitochondria in close
proximity exchange “health units,” we define a corresponding interface that is implemented
by all mitochondria, denoted by imito, as follows:

imito � p“mito”, tp“fuse”, N0q, p“pos”, R� Rquq

The interface consists of two attributes: “fuse” and “pos.” The first attribute represents
a bidirectional port via which a number of abstract health units can be exchanged between
interacting mitochondria within the same mitochondrial network. The second attribute
indicates the spatial location of a mitochondria in the cell, where, for simplicity, we assume
two-dimensional locations. Furthermore, let there be the following interface:

icell � p“cell”, ∅q ,

97

8 Interfaces, Interface Instances, and Intensional Couplings

which is implemented by the cell containing the mitochondria and has no attributes, i. e.,
icell.Attr is the empty set, since we are only interested in intracellular activities.

Now suppose the two different situations depicted in Figure 8.3 (left and right side), the
corresponding sets of interface instances would look as follows:

It1 �

p“Mito1”, “mito”, tp“fuse”, 0q, p“pos”, p1.9, 2.3qquq,

p“Mito2”, “mito”, tp“fuse”, 0q, p“pos”, p1.8, 2.4qquq,

p“Mito3”, “mito”, tp“fuse”, 0q, p“pos”, p1.9, 2.4qquq,

p“Cell”, “cell”, ∅q
(

and

It2 �

p“Mito1”, “mito”, tp“fuse”, 0q, p“pos”, p1.9, 2.3qquq,

p“Mito2”, “mito”, tp“fuse”, 0q, p“pos”, p8.0, 7.8qquq,

p“Mito3”, “mito”, tp“fuse”, 0q, p“pos”, p1.9, 2.4qquq,

p“Mito4”, “mito”, tp“fuse”, 0q, p“pos”, p8.0, 7.9qquq,

p“Cell”, “cell”, ∅q
(
,

where ‘0’ is assigned to all the ports and both sets It1 and It2 are proper subsets of the
respective set In, i. e., It1 , It2 � In, with

M �

p“Mito1”, ΣMito1q, p“Mito2”, ΣMito2q,

p“Mito3”, ΣMito3q, p“Mito4”, ΣMito4q,

p“Cell”, ΣCellq
(

and

I �

p“mito”, tp“fuse”, N0q, p“pos”, R� Rquqloooooooooooooooooooooooooomoooooooooooooooooooooooooon

imito

, p“cell”, ∅qlooooomooooon
icell

(
,

where

n � p“Cell”,ΣCellq

In the above cases, all attributes are available at both instants of simulation time (i. e., t1
and t2). Another consistent interface instance, which illustrates a change of the availability
of attributes in interface instances, would be

p“Mito1”, “mito”, tp“pos”, 4.2quq .

The above interface instance indicates that the port “fuse” of the model “Mito1” is currently
not available and thus cannot be used for exchanging health units, even if the model is in
direct proximity to models of other mitochondria.

Although interface instances can change during simulation, we can use them to revise the
above definition of intensional couplings. Furthermore, attributes of an interface instance can
reflect state variables of the respective model and their current values.

8.7 Intensional Interface Couplings

Using interface instances as introduced in the previous section, we can revise Definition 8.4.1
and define intensional couplings based upon time-variant interface instances rather than static

98

8.7 Intensional Interface Couplings

Cell @ t1

fuse

fuse

fuse

Cell @ t2

Simulation Time

pos = (1.9,2.3)

pos = (1.8,2.4)

pos = (1.9,2.4)

fuse

fuse fuse

pos = (1.9,2.3)

pos = (8.0,7.8)

pos = (1.9,2.4)

fuse

pos = (8.0,7.9)

Mito1

Mito2

Mito3

Mito1

Mito2

Mito3

Mito4

Figure 8.3: The coupled model “Cell” comprises mitochondria whose locations in the cell
can change and which can form a mitochondrial network. Only mitochondria close to
each other belong to the same spatial cluster and can communicate, i. e., are coupled.

model definitions, where interface instances reflect the availability of certain model attributes
and their values during simulation.

Definition 8.7.1 (Intensional Interface Coupling)
Given a set of models denoted by M, as in Section 8.1, and a set of interface definitions
denoted by I, as in Section 8.5, an intensional coupling definition for a coupled model
n PM, denoted by Cplg int , is defined as a set of functions:

Cplg int � Cplg�int with Cplg�int �
!
cint | cint : In Ñ 2Cplg�ext

)
,

where

– Cplg�int is the superset of all possible intensional interface couplings for n;

– I is the superset of interface instance sets for n as in Definition 8.6.3; and

– Cplg�ext is the set of all possible extensional couplings for n as in Definition 8.3.1.

Each function cint is an intensional interface coupling (or short intensional coupling),
where both Cplg�int and cint are defined different than in Definition 8.4.1.

An intensional interface coupling maps sets of interface instances of a coupled model, each
of which represents a specific incarnation of the structure of the coupled model, to concrete
coupling schemes consisting of extensional couplings. In other words, an intensional interface
coupling determines a concrete coupling scheme based on the current model structure, which
is the argument of the coupling function. These concrete, derived coupling schemes may still
be subject to further constraints (see Section 9.2.2)7.
Since we are now dealing with runtime instances of interfaces of available models8 rather

than static model definitions, we can take changes of interesting attributes, i. e., their values,
or their availability during simulation into account when defining coupling schemes for variable
structure models.
The following example illustrates, how an intensional interface coupling can be used to

define a complex coupling scheme for a variable structure model concisely.

Example 8.7.1
As indicated in Example 8.6.2, Patel et al. [2013] describe a model in which mitochondria

7 For this reason, not all extensional couplings that are returned by an intensional coupling may be used by
the simulator of the respective modeling formalism to forward events.

8 The interface instances of models that are not available at a certain time do not appear in the respective
set of interface instances.

99

8 Interfaces, Interface Instances, and Intensional Couplings

that are close to each other can exchange health units, representing the influence of impaired
mitochondria on healthy ones. Mitochondria that are far away from each other cannot
interact in such a manner. Consistently, when we want to define a coupling scheme that
“connects” only mitochondria that are close to each other, we need to incorporate their
current spatial location in the cell, which can change over time, into the coupling definition.

Using interface instances and intensional interface couplings allows us to achieve such
a distance-based coupling scheme, without the need to consider each possible situation
individually. Given the two interfaces defined in Example 8.6.2, we can define a distance-
based interaction between mitochondria, e. g., by the following intensional coupling:

cintpIq �

ppids, “fuse”q, pid t, “fuse”qq | i, i1 P I ^ i � i1 ^ ids � i.mid ^ id t � i1.mid

^ asg , asg 1 P i.Assg ^ asg2, asg3 P i1.Assg ^ asg .an � asg2.an � “fuse”

^ asg 1.an � asg3.an � “pos”^ distpasg 1.v, asg3.vq ¤ 1.0
(
,

where I P In with In as in Definition 8.6.3 and the binary function distpx, yq calculates the
Euclidean distance between the two locations x and y.

Now suppose the two situations depicted in Figure 8.3 (left and right side) represented
by the interface instances sets It1 and It2 as defined in Example 8.6.2. For It1, the above
intensional interface coupling cint returns the following set of extensional couplings:

cintpIt1q �

pp“Mito1”, “fuse”q, p“Mito2”, “fuse”qq,

pp“Mito1”, “fuse”q, p“Mito3”, “fuse”qq,

pp“Mito2”, “fuse”q, p“Mito1”, “fuse”qq,

pp“Mito2”, “fuse”q, p“Mito3”, “fuse”qq,

pp“Mito3”, “fuse”q, p“Mito1”, “fuse”qq,

pp“Mito3”, “fuse”q, p“Mito2”, “fuse”qq
(
.

Accordingly, for It2, cint returns the following set of extensional couplings:

cintpIt2q �

pp“Mito1”, “fuse”q, p“Mito3”, “fuse”qq,

pp“Mito2”, “fuse”q, p“Mito4”, “fuse”qq,

pp“Mito3”, “fuse”q, p“Mito1”, “fuse”qq,

pp“Mito4”, “fuse”q, p“Mito2”, “fuse”qq
(
.

So from a single coupling function that considers the spatial locations of the available
mitochondria, concrete coupling schemes for all possible situations can be derived. The
actual location of a mitochondrion during simulation is accessible via its interface, i. e., is
part of the interface instance that can change during simulation, capturing the movement
of mitochondria (cf. Park et al. [2011]). The set In defines the domain for all intensional
interface couplings that can be defined for a coupled model n (see Definition 8.6.3).

In the remainder of this thesis, we refer to intensional interface couplings as in Definition 8.7.1
when talking about intensional couplings.

8.8 Translation of Intensional Interface Couplings

Similar to the intensional couplings as in Definition 8.4.1, Definition 8.7.1 per se does not
prevent the modeler to violate our interpretation of concrete couplings derived from intensional
interface couplings. For this reason, we adapt the translation mechanism introduced in
Section 8.4 to cope with interface instances instead of model definitions.

100

8.9 Summary

Definition 8.8.1 (Consistent Concrete Couplings)
Let cext be an extensional interface coupling of a coupled model n PM with cext P Cplg�ext ,
Cplg�ext as in Definition 8.7.1, and

cext � tppids, pnsq, pid t, pntqqu,

then cext is consistent with respect to a set of interface instances in with in P In, where
In as in Definition 8.6.3, if and only if:

Di, i1 P in : i � i1 ^ ids � i.mid ^ id t � i1.mid .

The actual translation algorithm needs to be adapted accordingly. Algorithm 8.2 shows the
result of this adaption.

Algorithm 8.2: Reference algorithm for translating intensional interface couplings
into a concrete, consistent coupling scheme based on a set of interface instances

Input: in, Cplg int
Output: result {set of concrete, consistent extensional couplings}
1: result Ð ∅;
2: for all cint in Cplg int do
3: Cplgext Ð cintpinq;
4: for all cext � ppids, pnsq, pid t, pntqq in Cplgext do
5: if cext consistent for i

n and pns compatible with pnt and ids compatible with id t

then
6: add cext to result
7: end if
8: end for
9: end for

10: return result

In contrast to Example 8.4.3, Algorithm 8.2 will not discard any extensional couplings returned
by the intensional coupling function cint from Example 8.7.1, since the function already ignores
the same components. Note that this constraint does not need to be part of the intensional
coupling, because it is already part of the translation algorithm. However, it shows that we
can encode such constraints in the intensional coupling itself.

8.9 Summary

This chapter presents a fundamental concept for defining couplings in variable structure
models based on interface instances (which can change) and by exploiting intensional definition
techniques as presented and discussed in Chapter 3. The concept itself is not bound to a
certain modeling formalism, instead it can be incorporated into any modeling formalism that
supports the notion of ports and emphasizes on a clear separation between model specification
and simulation algorithm. Structural consistency is maintained by the fact that intensional
couplings are translated into concrete couplings during execution while checking and enforcing
certain consistency rules (correctness by construction). Thereby intensional couplings do
not correspond to concrete couplings, instead they serve as blueprints for deriving concrete
couplings during execution. This chapter represents algorithms that translate intensional
couplings into concrete couplings for a given state and model incarnation. Furthermore, the
chapter provide some examples that illuminate the potential of intensional coupling definitions.

101

9 Revision of the Multi-Level Discrete Event
System Specification

The computing scientist’s main
challenge is not to get confused by the
complexities of his own making.

Edsger W. Dijkstra

This chapter introduces a major revision of the modeling formalism Multi-Level Discrete Event
Systems Specification (ML-DEVS), which is one of the primary outcomes and contributions of
this thesis. In general, we use the formalism to model and simulate systems of interest and their
constituents (system components1), such as smart environments and their components or cells
and their organelles. With respect to the component-based modeling methodology presented
in Chapter 8, ML-DEVS is used to specify the behavior of model components on the one
hand (as source formalism2) and as a suitable target formalism for deriving and synthesizing
executable simulation models from composition descriptions and model specifications on the
other hand.
Major parts of this chapter are based on and adopted from the following publications,

especially the last one:

Steiniger, A., Krüger, F., and Uhrmacher, A. M. (2012). “Modeling Agents and their En-
vironment in Multi-Level-DEVS.” In Proceedings of the 2012 Winter Simulation Con-
ference (WSC’12). Article No. 233.

Steiniger, A. and Uhrmacher, A. M. (2016). “Intensional Couplings in Variable Structure
Models: An Exploration Based on Multilevel-DEVS.” In ACM Transactions on Modeling
and Computer Simulation (TOMACS), 26(2). pp. 9-1–9-27.

1 A system component can be considered as a system itself.
2 As Chapter 5 describes, we may also want to use different modeling formalisms to specify the behavior of

different model components (multi-formalism modeling).

103

9 Revision of Multi-Level-DEVS

9.1 Multi-Level Discrete Event System Specification

ML-DEVS—at its core—is based on Parallel DEVS (P-DEVS), a parallel variant of the
modular, hierarchical modeling formalism for parallel discrete event simulation (see Section 4.2).
As a member of the DEVS family, ML-DEVS describes a system of interest as a reactive,
discrete event system. Uhrmacher et al. [2007] and Uhrmacher et al. [2010] proposed first
ideas and concepts of ML-DEVS in the domain of computational systems biology, where
the following aspects of particular interest: (i) the seamless combination of different levels of
behavior and organization ranging from proteins over cells to cell populations and (ii) the
interrelations and interactions between those levels [Maus et al. 2011]. Consequently, ML-
DEVS addresses the above interests by allowing the modeler to model and combine multiple
levels of behaviors and by providing dedicated mechanisms to specify interdependencies
between the different levels of behavior explicitly (up- and downward causation). To capture
the structural variability intrinsic to biological systems, ML-DEVS supports—in the tradition
of other DEVS variants such as Variable DEVS (V-DEVS) [Barros et al. 1994], Dynamic
Structure DEVS (DSDEVS) [Barros 1995a, 1996], or Extended Dynamic Structure DEVS
[Hagendorf et al. 2009]—variable structures3 in a top-down manner4. However, especially in
our latest revision of ML-DEVS, models at lower levels of behavior can trigger structure
changes at higher levels (via upward causation). As we will see later, we can also mimic the
decentralized, bottom-up approach of changing the model structure as realized in DEVS
variants such as dynDEVS [Uhrmacher 2001] or ρ-DEVS [Uhrmacher et al. 2006]. Moreover,
ML-DEVS supports variable ports5 as discussed by Uhrmacher and Priami [2005] or Hu et
al. [2005] and proposed in ρ-DEVS [Uhrmacher et al. 2006].

So far, ML-DEVS has been used in computational systems biology [Maus 2008; Uhrmacher
et al. 2007, 2010], computational demography [Zinn 2011], and business informatics [Stiffel
2014]. As part of this thesis, ML-DEVS has been explored for modeling and simulation in
the area of ubiquitous computing, especially for modeling and simulating smart environments
[Krüger et al. 2012; Steiniger et al. 2012], which are closely related to multi-agent systems.
Furthermore, we evaluated the applicability and suitability of ML-DEVS for continuous-
time, demographic microsimulation [Steiniger et al. 2014]. In smart environments as well as
demographic systems, the accessibility to certain, often global information plays a central role.
In addition, we are also dealing with macro behavior that is emerging from micro behavior
(micro-macro effect or upward causation) in ubiquitous computing [Poslad 2009, p. 333]. As
a result of the exploration of ML-DEVS, we revised and extended the original formalism (as
presented by Uhrmacher et al. [2007]) to (i) increase its suitability for modeling and simulating
multi-agent systems such as smart environments, (ii) ease the specification of multi-level
and variable structure models in general, and (iii) provide a sound, consistent, and rigorous
definition of the formalism. The question, how to ease the specification of variable structure
models, especially their communication structure, in a system-theoretic modeling approach
such as ML-DEVS is addressed by the introduction of a novel, flexible coupling scheme,
which is the central concept in our revision of the formalism6. In general, our revision of
ML-DEVS, presented in the remainder of this chapter, includes, among other things:

� An overhaul and adaptation of the formal definition of ML-DEVS;

� The fusion of input ports and output ports;

3 also called dynamic structures (cf. Barros [1995a])
4 Section 6.3 gives a more comprehensive overview of variable structure variants of DEVS.
5 In contrast to static ports, the availability of variable ports can change during simulation. Thereby,

variable ports mimic the plasticity of interfaces that is characteristic for some systems [Uhrmacher et al.
2006] resulting in variable model interfaces.

6 The proposed coupling mechanism is not limited to ML-DEVS, but can also be adapted for other,
system-theoretic modeling approaches (e. g., other DEVS variants or SysML).

104

9.2 Model Specification

� The introduction and emphasis of interface incarnations (i. e., interface instances);

� The introduction of a novel, more expressive intensional coupling mechanism;

� The separation between public states and private states of ML-DEVS models;

� A formal proof of the closure under coupling of ML-DEVS;

� The adaption of the abstract simulator and simulation protocol of ML-DEVS.

Whenever necessary, we motivate the individual changes regarding the original version of
ML-DEVS in more detail in the following sections. The original definition of ML-DEVS
and its abstract simulator can be found in Uhrmacher et al. [2007].

According to Sarjoughian [2006, attributed to Sarjoughian and Zeigler [2000]] a modeling
formalism consists of a model specification and an execution algorithm (i. e., the execution
semantics). In the next section, we first show how models are specified in our major revision
of ML-DEVS.

9.2 Model Specification in Multi-Level DEVS

As stated in Section 4.2, DEVS and its variants usually distinguish between atomic models
and coupled models (also called networks). The former are basic models of the respective
formalism, whereas the latter describe networks of interacting basic models and/or coupled
models (if the formalism is closed under coupling). Similarly, ML-DEVS distinguishes
between two types of models: Micro-DEVS models and Macro-DEVS models7. The former
correspond to the atomic models (leaves of a composition hierarchy8) of other DEVS variants,
whereas the latter correspond to the coupled models (inner nodes of a composition hierarchy).
However, in contrast to traditional coupled models, which merely serve as containers for their
components (submodels), Macro-DEVS models have a state and behavior of their own. In
contrast to dynDEVS, PdynDEVS, or ρ-DEVS, the state and behavior of a Macro-DEVS
model can cover more than the states of its components and changing the network structure,
respectively. Realizing such kind of central control in traditional DEVS variants, would
require the specification and addition of extra components that represent certain dynamics
exhibited by coupled models and beyond the behavior that emerges from the mere interaction
of the coupled models’ components. Such an additional component usually becomes a central
component through which all other components of a coupled model have to communicate (see
Figure 9.1).

Remark. In our previous publications on ML-DEVS, we used, for brevity, the terms “micro
model” and “macro model” as short forms for Micro-DEVS model and Macro-DEVS
model, respectively. However, as we see below, this may be confusing with respect to the
common understanding of the terms “micro model” and “macro model.” To avoid confusion
and ambiguities, we will not use these terms interchangeably herein. Instead we will use
atomic model and coupled model as short forms for Micro-DEVS model and Macro-DEVS
model, respectively, according to the established terminology in the realm of DEVS.

With respect to multi-level modeling, a Macro-DEVS model (short coupled model) usually
represents a macroscopic level of behavior (macro level), e. g., a group of individuals or an
ensemble of devices. The behavior of the coupled model’s components and their interaction,

7 The naming is inspired by the formalism’s focus on modeling and simulating multiple levels of behavior
and their interdependencies, i. e., multi-level modeling. These different levels reflect microscopic and
macroscopic views on the system of interest at the same time.

8 As ML-DEVS allows hierarchical modeling, we can view a ML-DEVS model as a tree whose nodes are
model components; where each model component is either a Micro-DEVS or Macro-DEVS model and
only Macro-DEVS models can have child nodes.

105

9 Revision of Multi-Level-DEVS

Cell Cell

Cell
Behavior

... ...

...

Up‐ & Downward
Causation

(Behavior)

Figure 9.1: Modeling the macroscopic behavior of an eukaryotic cell. (Left) The behavior
of the cell is represented by the additional, central atomic component “Cell Behavior”
that can interact with the components of the cell reflecting up- and downward causation
between the macro and micro level. (Right) The coupled model “Cell” itself has a
state and behavior of its own. Up- and downward causation are explicitly expressed by
mechanisms additional to the classic (horizontal) couplings.

Macro
Model

Macro
Model

Micro
Model

Micro
Model

Micro
Model

Macro Level

Micro Level Macro Level

Micro Level

Up- and
Downward
Causation

Up- and
Downward
Causation

Figure 9.2: A hierarchy of multiple levels of behavior in ML-DEVS. The hierarchy is
structured into pairs of micro and macro levels. According to its location in the hierarchy,
a Macro-DEVS model can be part of the micro level of its parent.

on the other hand, usually represent a microscopic level of behavior (micro level)—from the
point of view of the superordinate macro level. Note that due to the closure under coupling of
ML-DEVS, the components of a coupled model can be coupled models themselves, leading to
a hierarchy of multiple levels of behaviors structured into pairs of micro and macro levels9 (see
Figure 9.2). Depending on the desired level of abstraction for a modeling problem at hand, a
Micro-DEVS model (short atomic model) can represent a certain individual or an entire
population whose internal structure is of no further interest. In the former case, the atomic
model can be viewed as a micro model in the classic sense. In the latter case, the atomic
model can be viewed as a traditional macro model aggregating the behavior and interaction
of its components. In the following, both types of models, Micro-DEVS and Macro-DEVS,
are formally defined and their operational semantics is described informally. Section 9.3 gives
a formal definition of the semantics of ML-DEVS by means of an abstract simulator. Both
types of models are defined at the level of structured systems10, assuming that states, inputs,
and outputs of the models are structured according to certain variables—state variables, input
variables, and output variables. As characteristic for the DEVS realm and automata theory11

in general, Micro-DEVS and Macro-DEVS are defined set-theoretically, by a number of

9 Poslad [2009, p. 333] also uses the terms “global level” and “local level” as synonyms for “macro level”
and “micro level”, respectively.

10 Note that the structured system level does not correspond to the level of structure systems of the System
Specification Hierarchy presented by Zeigler et al. [2000, p. 13].

11 As Section 4.2 describes, we can view a DEVS model as an extension of finite state automata.

106

9.2 Model Specification

characteristic sets and functions or relations on these sets.

9.2.1 Micro-DEVS Models

As in Chapter 8, let N denote a superset of names and identifiers. In the most general case,
N consists of all possible strings, like a universal set. A Micro-DEVS model (short atomic
ML-DEVS model) is then formally defined as follows:

Definition 9.2.1 (Micro-DEVS)
A Micro-DEVS model is defined as the structure

xid ,XY , Sp, Sa, sinit , p, δ, λ, tay

where

– id is an identifier with id P N ;

– XY is a structured set of in- and outputs that is defined as the partial Cartesian product
�±

pnPP XY ε
pn of a family of arbitrary sets tXY pnupnPP indexed by the nonempty set P,

where

– P � N is a set of port names (ports),

– XY pn denotes the value range of the port whose name is pn,

– XY ε
pn � XY pn Y tεu with ε being the non-value indicating an empty port,

– for all pn P P : ε R XY pn ;

Sp is a structured sets of private states that is defined as the generalized Cartesian product±
psvnPVp

Spsvn of a family of arbitrary sets tSpsvnupsvnPVp indexed by the nonempty set
Vp, where

– Vp � N is a set of names of private state variables,

– Spsvn denotes the value range of the private state variable whose name is psvn;

– Sa is a structured sets of accessible states that is defined as the generalized Cartesian prod-
uct

±
asvnPVa

Sasvn of a family of arbitrary sets tSasvnuasvnPVa indexed by the nonempty
set Va, where

– Va � N is a set of names of accessible (or public) state variables,

– Sasvn denotes the value range of the accessible state variable whose name is asvn;

– sinit is an initial state with sinit � psp,i, sa,iq, where

– sp,i P Sp is the initial private state,

– sa,i P Sa is the initial accessible state;

– p : Sp Ñ 2P is the port selection function;

– δ : Q � XY b Sp � Sa is the state transition function with Q being the set of total
states tpsp, sa, eq | sp P Sp, sa P Sa, 0 ¤ e ¤ tapspqu, e being the time elapsed since the last
state transition, and XY b being a set of bags (i. e., bag set) over the elements in XY ,
where

dompδq �
!
ppsp, sa, eq, xybq P Q�XY b | @xy P xyb : dompxyq � ppspq

)
;

– λ : Sp Ñ XY b is the output function;

– ta : Sp Ñ R�
0 Y t8u is the time advance function.

107

9 Revision of Multi-Level-DEVS

The Micro-DEVS model is subject to the following constraints:

1. For all sp P Sp holds |ppspq| � k with k P N (finiteness of selected port names);

2. For all sp P Sp and xy P λpspq holds dompxyq � ppspq (only selected ports can be used
for outputs)a.

Given a Micro-DEVS model m with m � xid ,XY , Sp, Sa, sinit , p, δ, λ, tay we may access
the different elements of m (i. e., the sets and functions) by writing m.id , m.XY , m.Sp,
m.Sa, m.sinit , m.p, m.δ, m.λ, and m.ta.

a The unary function dompq returns the domain of a function (see Definition A.1.12).

Thus each Micro-DEVS model is defined by: (i) a unique identifier id , that is the model’s
name12; (ii) the structured sets XY , Sp, and Sa; (iii) an initial state sinit ; and (iv) the
functions p, δ, λ, and ta. The set XY denotes the structured set of in- and outputs of an
atomic ML-DEVS model, where ports are used as central points of interaction via which
the atomic model communicates with its surroundings, i. e., input and output variables refer
to ports13. Different from other DEVS variants, ML-DEVS does not explicitly distinguish
between in- and output ports. Instead, ports can be used for both receiving inputs and
sending outputs (see Section 9.3), similar to bidirectional ports in UML and SysML. The
set Sp denotes the set of all private states an atomic model might enter (private state space).
The set Sa, on the other hand, denotes the set of all accessible (or public) states of an atomic
model (accessible state space). The accessible state of an atomic model can be accessed by its
parental coupled model. Thereby, changes of the accessible state can cause changes at the
macro level (more details on up- and downward causation can be found in Section 9.2.2). In
contrast to Steiniger et al. [2012], the accessible state space of an atomic model is now defined
by a distinct set, i. e., Sa, and is not included in the set XY . Thus we are not using ports to
announce the accessible state anymore, instead public states are separate from the regular
outputs of an atomic model. The sets P, Vp, and Va denote the sets of port names, private
state variable names, and accessible state variable names, respectively, according to which the
sets XY , Sp, and Sa, are structured. The initial state of an atomic model is defined by sinit
and comprises an initial private state sp,i and an initial accessible state sa,i.

Remark. In contrast to previous iterations of ML-DEVS, we use generalized Cartesian
products14 instead of multivariable sets, as defined by Zeigler et al. [2000, pp. 123–5], to
refine the sets of states, inputs, and outputs, i. e., to explicitly structure the characteristic
sets according to certain variables. Unlike multivariable sets, generalized Cartesian products
allow us to work with ordinary sets instead of ordered sets, while they still make the relation
between variables (indices) and their values explicit. Furthermore, generalized Cartesian
products are well-established in mathematical set-theory. Appendix A.2 elaborates on
structuring sets and Appendices A.2.1 and A.2.2 define multivariable sets and generalized
Cartesian products, respectively.

The functions p, δ, λ, and ta define the actual behavior (dynamics) of an atomic model. The
variability of ports of ML-DEVS is made explicit by the port selection function p determining
which port names, and thus ports, are available (selected) in a given private state. Since not
all ports of an atomic model may be available in a certain private state, unavailable ports can
neither be used for sending outputs nor for receiving inputs (and thus trigger external state
transitions). To capture the variability of ports formally, we define XY as a set of partial

12 In ML-DEVS, each model (Micro-DEVS and Macro-DEVS) holds its own name, i. e., the model’s
name is part of the model definition. Whereas in other DEVS variants, only coupled models hold a set of
names, labels, or references of their components (see Section 4.2).

13 However, in contrast to state variables, ports are not scalar as they may contain multiple values at once.
14 also called infinite or arbitrary (Cartesian) products

108

9.2 Model Specification

functions—a partial Cartesian product—that map subsets of port names to admissible values
the corresponding ports accept (including the special literal ε). Let xy P XY be an in- or
output and pn P P, then xyppnq � ε indicates that the port with the name pn is available
but empty15.

Remark. The introduction of a partial Cartesian product is a simplification of the notation
in Steiniger and Uhrmacher [2016], which allows a more compact definition of Micro-DEVS
(and Macro-DEVS). Appendix A.2.3 defines such partial Cartesian products.

As ML-DEVS is a variant of P-DEVS, in which more than one model component can create
an output at the same time, we are dealing with bags of in- and outputs rather than single
in- and outputs. A bag (or multiset) is a generalization of a set in which elements can occur
multiple times16.

The time advance function ta assigns a time interval (lifespan) to each private state, in
which an atomic model resides if no external event (the model receives an input bag) occurs.
If the lifespan has expired and no input bag has been received in the meantime, an internal
event takes place, i. e., an internal state transition is triggered. If an external event occurs at
the very end of the current private state’s lifespan, a confluent event takes place instead. In
both cases, internal event and confluent event, the output function λ is invoked right before
the actual state transition takes place and creates an output bag for the current private state
of the atomic model. Afterwards or when an external event has occurred, the state transition
function δ is invoked and determines the new private and accessible state of the atomic
model. For the clarity of the formalism, only one, general state transition function δ exists in
ML-DEVS [Uhrmacher et al. 2007], comparable to the state transition function presented by
Zeigler et al. [2000, p. 155]. This state transition function is invoked whenever an atomic
model is about to perform an internal, external, or a confluent state transition. Thereby, the
modeler has to explicitly distinguish between the different kinds of state transitions when
specifying the state transition function δ based upon its arguments17. Figure 9.3 illustrates
the different kinds of state transitions depending on the elapsed time e and an input bag xyb,
which are passed to the function δ.

The variability of ports has also an impact on the definition of the state transition function
δ, which is defined as a partial function instead of a total function, since not all inputs can
occur in each total state q P Q of the atomic model. For each state of the atomic model,
the port selection function determines the set of admissible inputs; hence the domain of the
function δ depends on the function p.

Finally, Figure 9.4 shows the input trajectory (top), private and accessible state trajectories
(middle), and output trajectory of an exemplary atomic model. For the sake of illustration,
inputs, outputs, and states are considered as plain elements of the respective sets, ignoring
their structuring according to certain variables. Also note that visualizing in- and output bags
as done in the figure is ambiguous, as a bag can contain elements, such as xy1, not only once
but several times. As characteristic for DEVS variants, the input and output trajectories
are event segments, whereas the two state trajectories are piecewise constant segments. A
particularity of ML-DEVS is the fact that the accessible state of an atomic model can
be altered by the superordinate Macro-DEVS model as a result of upward causation—as

15 Please note the difference between an empty port and an empty input (nonevent). In the former case
other ports may not be empty, whereas in the latter case all ports are empty.

16 Appendix A.1.4 gives more details on and a definition of bags and bag sets.
17 So unlike Mittal [2013] indicates, there exists not only an external state transition function (i. e., δext) in

ML-DEVS, instead the state transition function δ combines the external, internal, and confluent state
transition functions of other P-DEVS variants. Still, it is reasonable to argue that having only one state
transition function makes the definition of this function more verbose and the overall model definition less
structured. However, we can easily adapt the model definition of ML-DEVS and its abstract simulator to
distinguish between different kinds of state transitions functions.

109

9 Revision of Multi-Level-DEVS

δ((sp, sa, e), xyb)

e = ta(sp)

xyb ≠ ᴓxyb ≠ ᴓ

Non-Transition

Model Component
Is Influenced

Model Component
is Neither Imminent

nor Influenced

Model Component
is Imminent

and Influenced

Model Component
is Imminent

Internal State
Transitions

Confluent State
Transitions

External State
Transition

yesno

yesnoyesno

Figure 9.3: Different kinds of state transitions in a Micro-DEVS model. The abstract
simulator of ML-DEVS assures that the first case (e � tapspq ^ xyb � ∅) cannot occur
(see Section 9.3).

depicted in the Figure 9.4 at simulation time t3. Section 9.2.2 gives more details on how up-
and downward causation are realized in ML-DEVS.

9.2.2 Macro-DEVS Models

Macro-DEVS models correspond to coupled models (networks of components) of other
DEVS variants, because Macro-DEVS models comprise submodels (components) and allow
coupling them. For this reason, we also use the term “coupled model” to refer to a Macro-
DEVS model in the following. However, in contrast to traditional coupled models that merely
serve as container for their components, Macro-DEVS models have a state and behavior of
their own [Uhrmacher et al. 2007] and can communicate and interact with their components
and vice versa—beyond regular external couplings. A Macro-DEVS model is formally
defined as follows:

Definition 9.2.2 (Macro-DEVS)
A Macro-DEVS model is a structure

xid ,XY , Sp, Sa, C,MC , sinit , δ, λ, p, ta, sc, λdown , vdown , actupy

where id , XY , Sp, Sa, λ, p, and ta are as in Definition 9.2.1 and where

– C is a superset of potential components that are of type Micro-DEVS;

– MC is a superset of potential multi-couplings that are as in Definition 9.2.3;

– sinit is the initial state with sinit � psp,i, sa,i, Cinit ,MC initq, where

– sp,i P Sp is the initial private state,

– sa,i P Sa is the initial accessible state,

– Cinit � C is a finite set of initially available components (initial components),

– MC init � MC is a finite set of initially available multi-couplings (initial multi-
couplings);

– δ : Q � Sn � XY b Sp � Sa is the state transition function with Q and XY b as in
Definition 9.2.1 with

dompδq �
!
ppsp, sa, eq, sn, xyb, abq P Q� Sn �XY b | @xy P xyb : dompxyq � ppspq

)
;

110

9.2 Model Specification

si,p

XY b

t

s1,p

xy1

xy2

ta(si,p)

xy2

t1t0

s2,p

Sp

xy1

XY b

t2

ta(s2,p)

ta(s1,p)

t4
e

e

e

t

t

Sa

si,a

s1,a

t

Ø

Ø

δ(si,p,si,a,e,Ø)

δ(s1,p,si,a,
 e,[xy1])

t0 t1 t2 t4

t0 t1 t2 t4

t0 t1 t2 t4

λ(s1,p) λ(s2,p)

δ(s2,p,si,a,
 e,[xy1,xy2])

downward
causation

t3

t3

t3

t3

Figure 9.4: Simplified trajectories of a Micro-DEVS model: (Top) Input trajectory with
events at t2 and t4. (Middle) State trajectories (public and private) with three state
transitions (directed edges). (Bottom) Output trajectory with regular outputs.

– sc : Sp � Sn Ñ 2C � 2MC is the structure change function;

– λdown : Sp � In Ñ XY n is the downward activation function, where

– In is the superset of interface instances as in Section 9.2.2,

– XY n is defined as below;

– vdown : Sp Ñ 2Vp is the value coupling downward with Vp � variablespSpq;

– actup : Sp � Sn Ñ B with B � tJ,Ku;

and where

– Sn � 2

pid ,saq | D c Pn.C: id�c.id^saPSc

a

(
is the set of all possible network states with

@sn P Sn @ pid , saq, pid 1, sa1q P sn :
�
id � id 1

�
ñ

�
sa � s1a

�
;

– XY n � 2

pid ,xyq | Dc Pn.C: id�c.id^xy PXY c

(
is the set of all possible network in- and outputs

111

9 Revision of Multi-Level-DEVS

with

@xyn P XY n @pid , xyq, pid 1, xy 1q P xyn :
�
id � id 1

�
ñ

�
xy � xy 1

�
;

and where for each c P C:

– Sc
a � 2

pvn,v,Xq | vn P variablespc.Saq^X�rangevn pc.Saq^v PXYtεu

(
with

@sca P Sc
a @pvn, v,Xq, pvn

1, v1, X 1q P sca :
�
vn � vn 1

�
ñ

��
v � v1

�
^
�
X � X 1

��
.

– XY c � 2

ppn,v,Xq | pn P variablespc.XY q^X�rangepn pc.XY q^v PXYtεu

(
with

@xyc P XY c @ppn, v,Xq, ppn 1, v1, X 1q P xyc :
�
pn � pn 1

�
ñ

��
v � v1

�
^
�
X � X 1

��
;

The functions variablespq and range pq that take a generalized Cartesian product as argument
are defined as in Appendix A.2.2. Furthermore, a Macro-DEVS model is subject to same
constraints as a Micro-DEVS model and, in addition, to the following constraints:

1. For all sp P Sp and in P In holds: dompλdownpsp, inqq � dompinq (only available
components can be activated);

2. For all sp P Sp, vn P dompvdownpspqq, sn P Sn, c P π1pscpsp, snqq, and vn 1 P Va,c holds:
pvn � vn 1q ñ prangevn 1pc.Saq � rangevnpSpqq with Va,c � variablespc.Saq (compatibility
of value coupled state variables);

3. For all sp P Sp and sn P Sn holds:

|π1pscpsp , snqq| � k

|π2pscpsp , snqq| � l
with k, l P N.

So all subsets of components and multi-couplings returned by the structure change
function sc have to be finite;

4. For all c P dompsc rSp � Snsq holds: id � c.id (no available component has the same
identifier as the Macro-DEVS model).

Let n be a Macro-DEVS model, then we may access the different elements of the structure
that defines the model n by writing n.id , n.XY , n.Sp, n.Sa, n.C, n.MC , n.sinit , n.δ, n.λ,
n.p, n.ta, n.sc, n.λdown , n.vdown , and n.actup .

If we compare Definition 9.2.1 and Definition 9.2.2 models, it becomes apparent that Micro-
DEVS and Macro-DEVS have a number of sets and functions in common. Thereby a
Macro-DEVS model can be considered as a combination of a Micro-DEVS model and an
extended, traditional coupled model—as known from other DEVS variants—that is equipped
with further functions to carry out structure changes and realize up- and downward causation.
A Micro-DEVS model, on the other hand, can be viewed as a stunted version of a Macro-
DEVS model, i. e., one without components, couplings, and up- and downward causation.
Consistently, one could argue that we do not need Micro-DEVS models, as we can use solely
Macro-DEVS models instead. However, as “syntax matters” (cf. Henzinger et al. [2009] or
Winsberg [2009]), we distinguish between Micro-DEVS and Macro-DEVS models, which
eases the modeling and leads to more compact, less cluttered model specifications. In addition,
the distinction between two different types of models18 is important for a sound and rigorous
definition of the modeling formalism, as we discuss in Section 9.4.

18 No matter whether we distinguish between atomic and coupled ML-DEVS models or between coupled
ML-DEVS models with and without components.

112

9.2 Model Specification

In addition to the sets and functions already defined for a Micro-DEVS model (with the
exception of the state transition function δ that is defined differently for Macro-DEVS), a
coupled ML-DEVS model is also defined by: (i) the sets C and MC and (ii) the functions
sc, λdown , vdown , and actup . The sets Sn and XY n that were introduced in Steiniger and
Uhrmacher [2016] as well as the new sets tSc

a | c P Cu and tXY c | c P Cu do not need to
be specified by the modeler explicitly, instead they are derived according to Definition 9.2.2.
The set Sn contains sets of pairs of unique component identifiers and sets of accessible state
variable assignments of the associated components, denoted by Sc

a. Similar to Uhrmacher
[2001], we call an element of Sn the network state, although Sn only covers the accessible
states of the components but not their private state. The set XY n contains sets of pairs
of unique component identifiers and sets of value assignments to available ports of the
associated components, denoted by XY c. Thus, XY n captures the availability of ports.
During simulation, for each private state sp P Sp of the Macro-DEVS model, sn P Sn and
xyn P XY n are derived based on the state transitions and port selection functions of the
respective components (see Section 9.3.2). Also the set In, which denotes the superset of
interface instances, does not need to be specified. In the following subsections we will explain
the functions and remaining sets of a Macro-DEVS model in more detail.

Variable Composition

The set C (in Definition 9.2.2) contains all potential components (submodels) of a coupled
ML-DEVS model, which can be available during simulation. However, only a finite subset of
these potential components can be available at all time, otherwise a coupled model would
not be executable on a computer with limited resources. The structure change function sc
determines which components19 and multi-couplings are available. In contrast to our previous
work on ML-DEVS, e. g., Uhrmacher et al. [2007] or Steiniger et al. [2012], the structure
change function takes, in addition to the current private state of the coupled model sp P Sp,
also the corresponding network state sn P Sn into account. This allows the modeler to adapt
the network structure without the necessity of a “detour via the private state of the coupled
model” by reflecting certain structure-related information in the private state of the coupled
model20, but directly based upon the network state21.

Since the structure change function sc maps into a Cartesian product that includes the power
set of C and C is part of the defining tuple of a Macro-DEVS model, the definition of C itself
is, also from a formal point of view, of particular interest. Insights we gained from creating
models in computational systems biology (e. g., a model of self-replicating mitochondria) let us
conclude that an extensional definition of C (listing all components explicitly and in advance)
does not cope well with the desired flexibility of “creating components on demand,” during
simulation. Instead, we propose an intensional definition of C. In the most general case, the
set C contains all consistent Micro-DEVS and Macro-DEVS models (the latter due to
the closure under coupling of ML-DEVS) and thus does not need to be specified at all22.
However, from the modeler’s perspective it is desirable to constrain the kind of submodels
that can be created (e. g., only eukaryotic cells have mitochondria). This, however, requires a
notion of different types or classes of models, in addition to the traditional distinction between
atomic and coupled models; for instance, as discussed by Uhrmacher [1995] or similar to the
ideas of aspects and specializations in the System Entity Structure (SES) [Rozenblit & Zeigler

19 With this regard, the structure change function sc of ML-DEVS is comparable to the network transition
function ρN in dynDEVS and ρ-DEVS or the γ-function in DSDE and its extensions.

20 As done in, e. g., Barros [1997].
21 The size of the overall state space of the Macro-DEVS model remains unaffected by this design decision,

as the overall state of a Macro-DEVS model includes its private state as well as the corresponding
network state (see Section 9.4).

22 In this case C can be viewed as a universe or universal set of all possible, consistent ML-DEVS models.

113

9 Revision of Multi-Level-DEVS

1993; Zeigler 1984; Zeigler & Hammonds 2007]. Distinguishing between such different classes
of models is subject of future work and briefly discussed in Section 11.2.
For the execution of a coupled model, the initial composition (i. e., the initially available

components) has to be made explicit by the modeler. This is done by specifying the set
Cinit , which is part of the initial state of the coupled model. Note that the initially available
components are not determined by calling the structure change function sc with the initial
private state of the Macro-DEVS model. In fact, the available components returned by the
function sc for the initial private state and the corresponding network state can differ from
those in the set Cinit .

Interfaces and Interface Instances

Interfaces and their instances are central for realizing the concept of intensional couplings
between model components (horizontal couplings), as proposed in Chapter 8. In addition,
interfaces and interface instances are used for achieving up- and downward causation (vertical
couplings) in ML-DEVS. Traditionally, the interface of a DEVS model (atomic or coupled)
consists of the set of inputs X and the set of outputs Y of the model23. In the case the model
is defined at the level of structured systems, we often refer to input and output ports when
talking about the interface of a model. In ML-DEVS, the interface of Micro-DEVS and
Macro-DEVS model comprises its identifier, accessible state variables, and ports.

Let c be a ML-DEVS model, Micro-DEVS or Macro-DEVS, with

c � xid ,XY , Sp, Sa, sinit , p, δ, λ, tay

or

c � xid ,XY , Sp, Sa, C,MC , sinit , δ, λ, p, ta, sc, λdown , vdown , actupy,

where c.id is the model’s identifier, c.XY is a structured set of the model’s in- and outputs, and
c.Sa is a structured set of the model’s accessible states and where c.XY and c.Sa are defined
as generalized Cartesian products according to Definition 9.2.1. Following our terminology
proposed in Chapter 8, the ports and accessible state variables are the attributes of the model
component c that shall be made accessible to the outside via the interface of c and that can
be derived from the structured sets c.XY and c.Sa, respectively. As we distinguish between
two types of attributes: ports and accessible state variables, we define the set of interface
attributes of the model c, denoted by Attr c, as follows:

Attr c , Attr cp `Attr ca (9.1)

with

Attr cp � tpan, Xq | an P variablespc.XY q ^X � rangeanpc.XY qu ,

Attr ca � tpan, Xq | an P variablespc.Saq ^X � rangeanpc.Saqu ,

where Attr cp and Attr ca refer to the ports and accessible state variables of the model c,
respectively, and where Attr cp `Attr ca denotes the disjoint union of the sets Attr cp and Attr ca.
Because of the disjoint union of two “subsets” of attributes, the model c can have accessible
state variables and ports with the same names. Please note that this is a relaxation of the
definition of a plain set of attributes in Chapter 8, which however ease the model specification.
From the above definitions of Attr cp and Attr ca follow:

dompAttr cpq � variablespc.XY q,

dompAttr caq � variablespc.Saq.

23 cf. Section 4.2

114

9.2 Model Specification

Given a ML-DEVS model c, the interface of c, denoted by ic, would, according to Defini-
tion 8.5.1, be defined as follows:

ic , pc.id ,Attr cq ,

where Attr c is the set of interface attributes of c as defined in Equation 9.1. The identifier
of the interface is the identifier of the model c itself, implying that each model has its own
interface. This is because ML-DEVS does not bother the modeler with specifying interfaces
explicitly, instead ML-DEVS derives the interface of each model from its defining tuple
individually24.

According to Definition 8.6.2, an instance of an interface assigns actual values to all interface
attributes, which are available at a certain instant of simulation time (in which this instance
exists). In ML-DEVS, this corresponds to assigning values to the available ports and all
accessible state variables. Similar to the set of interface attributes Attr c of the model c, we
now define the set of assignments for Attr c, denoted by AssgAttrc , such that the set consists
of two “subsets,” i. e.,

AssgAttrc , AssgAttrcp `AssgAttrca (9.2)

with

AssgAttrcp �

pan, v,Xq | pan, Xq P Attr cp ^ v P X Y tεu

(
,

AssgAttrca � tpan, v,Xq | pan, Xq P Attr ca ^ v P X Y tεuu ,

where

@asg , asg 1 P AssgAttrcp :
�
asg .id � asg 1.id

�
ñ

��
asg .v � asg 1.v

�
^
�
asg .X � asg 1.X

��
,

@asg , asg 1 P AssgAttrca :
�
asg .id � asg 1.id

�
ñ

��
asg .v � asg 1.v

�
^
�
asg .X � asg 1.X

��
.

Based on Definition 8.6.2, an instance of the interface ic of a model c, denoted by iic, is then
defined by

iic ,
�
c.id , c.id ,AssgAttrc

	
, (9.3)

where AssgAttrc is defined as in Equation 9.2. As model and interface identifier are equal
and interfaces do not need to be explicitly defined in ML-DEVS, we define, for notational
convenience and consistency, the interface instance ii c of a ML-DEVS model c also directly
based on the defining tuple of c as follows:

iic , pc.id , pxyc, scaqq (9.4)

with xyc P XY c and sca P Sc
a and XY c and Sc

a as in Definition 9.2.2. If we compare the above
definitions of xyc and sca with the definitions of AssgAttrcp and AssgAttrca carefully, it becomes
apparent that we can transform xyc and sca into AssgAttrcp and AssgAttrca , respectively, and
vice versa.

Now for defining intensional couplings, i. e., multi-couplings, in a coupled model n with

n � xid ,XY , Sp, Sa, C,MC , sinit , δ, λ, p, ta, sc, λdown , vdown , actupy,

based upon the interface instances of n and its components, we define the superset of all
possible sets of interface instances, denoted by In, as follows:

In � 2tii
c | c Pn.CYtnuu (9.5)

24 As we will see later, ML-DEVS directly makes use of interface instances without deriving interfaces first.

115

9 Revision of Multi-Level-DEVS

with iic as defined in Equation 9.4 and

@in P In @
�
id ,

�
xyc, sca

��
,
�
id 1,

�
xyc1, sca

1
��

:
�
id � id 1

�
ñ

��
xyc � xyc1

�
^
�
sca � sca

1
��

. (9.6)

Pleas note that we denoted the superset of interface instances by IC or IC in our previous
publications on ML-DEVS. However, to keep consistency with other names of sets used
for defining Macro-DEVS, we changed the name to In, where n is the definition of the
corresponding Macro-DEVS model from which the superset is derived.

Multi-Couplings

A direct consequence of the variable composition of ML-DEVS is the necessity to adapt
the communication structure (i. e., the coupling scheme) accordingly to preserve structural
consistency (i. e., a consistent model specification). This necessity is addressed by:

1. The intensional multi-couplings and their translation into an transitory, concrete coupling
scheme;

2. The structure change function sc that can add and remove multi-couplings.

Taking (i) the variable composition of a coupled model and (ii) the changing interface instances
of the coupled model and its components into account, the horizontal communication between
the components of a coupled model (inter-level communication) is enabled and constrained by
a flexible coupling mechanism called multi-couplings. Multi-couplings25 are an implementation
of the ideas of an intensional coupling definition and intensional coupling functions based on
interface instances as proposed in Chapter 8. Multi-couplings cover both internal couplings and
external couplings26, which are usually distinguished in DEVS variants (especially in those
that employ port-to-port couplings). Due to their intensional definition, multi-couplings have
to be evaluated and translated into concrete coupling schemes during simulation, whenever the
model composition or interfaces are changing. Each of the derived coupling schemes captures
one particular structural context, i. e., one incarnation of the composition including the
concrete interface instances of all available components. Note that although the composition
of a coupled model may not change between two instants of simulation time, the interface
instances of the involved components can. The evaluation and translation of multi-couplings
into concrete coupling schemes is done by the abstract simulator of ML-DEVS and explained
in more detail in Section 9.3.2. Informally we can summarize the translation of multi-couplings
as follows: The availability of components with properties (including the component’s name
and ports) defined in a multi-coupling at a certain time in a simulation implies the existence of
concrete couplings between available and compatible ports (i. e., port-to-port couplings); into
which multi-couplings are eventually translated. These concrete couplings are then used by
the abstract simulator of ML-DEVS to forward events. The availability of ports is determined
by the port selection functions of the coupled model and those of its components, whereas the
availability of components is determined by the structure change function sc.
The original definition of multi-couplings given by Uhrmacher et al. [2007] and modified

in Steiniger et al. [2012] was based solely on port names, meaning that concrete ports were
coupled if their names match those in the coupling definitions and their value ranges are

25 We call the intensional coupling functions in ML-DEVS multi-couplings due to historical reasons. Uhrma-
cher et al. [2007] adopt the term from ρ-DEVS [Uhrmacher et al. 2006]. In contrast to classic 1:1 couplings
as known from the real of DEVS, a single multi-coupling can represent multiple concrete couplings between
different components at the same time.

26 Internal couplings are those between the components of a coupled model, whereas external couplings are
those from the coupled model to its components (external input couplings) or from the components to
their coupled model (external output couplings). As external couplings link the components of a coupled
model with the coupled model and vice versa, external couplings can be viewed as a special kind of vertical
coupling.

116

9.2 Model Specification

“compatible.” No further constraints could be made by the modeler and exclusive couplings
between two components could only be achieved by using port names that were globally
unique27. In Steiniger and Uhrmacher [2016], we adapt this rather generic but still intensional
definition to come up with a more expressive and powerful mechanism to specify couplings
within variable structure models intensionally, following Definition 8.7.1.

Definition 9.2.3 (Multi-Coupling)
Let n be a Macro-DEVS model with

n � xid ,XY , Sp, Sa, C,MC , sinit , δ, λ, p, ta, sc, λdown , vdown , actupy,

where for each c P C, c is defined as a Micro-DEVS model as in Definition 9.2.1. Following
Definition 8.7.1, a multi-coupling mc P MC is defined as a function

mc : In Ñ 2Cplgnext with Cplgnext � pMn � Pnq � pMn � Pnq,

with In as defined in Equation 9.5. Each tuple

ppids, pnsq, pidt, pntqq P Cplgnext

corresponds to a concrete, directed port-to-port coupling, which may exist during simulation,
with ids and pns being the names of the source component and source port and idt and
pns being the names of the target component and target port. The sets Mn � N and
Pn � N denote the sets of potential model identifiers and port names (i. e., a namespace),
respectively, which can be used to define concrete couplings upon, where

Mn �
¤

c P tnuYn.C

tc.idu,

Pn �
¤

c P tnuYn.C

variablespc.XY q.

Accordingly, the set Cplgnext denotes the superset of all possible port-to-port couplings (i. e.,
extensional couplings) that can be defined for the model n.

In a nutshell, a multi-coupling is an unary function that maps a set of incarnations of the
interfaces of the Macro-DEVS model and its components to a set of potential port-to-
port couplings, which may or may not exist due to certain consistency constraints. These
constraints are necessary as port-to-port couplings relate ports simply based on their names,
but do not make any statements about the coherence of the ports’ value ranges. Similar to
Zeigler et al. [2000, p. 86 and 130], we formulate certain requirements for the consistency
of port-to-port couplings that are returned by a multi-coupling. However, we can asses the
consistency of a port-to-port coupling only with respect to a certain structural context but not
in general, as the availability of components and their ports can change. A concrete structural
context is given by a set of interface instances of a Macro-DEVS model and its components,
i. e., in P In.

Definition 9.2.4 (Consistency of a Concrete Coupling)
Let n be a Macro-DEVS model, mc P n.MC be a multi-coupling of n, and in P In be a
set of interface instances of n and its components, where In is defined as in Equation 9.5,
then a port-to-port coupling, denoted by cplg , with cplg P mcpinq and

cplg � ppids, psq, pidt, ptqq,

27 or at least unique for a pair of micro and macro level

117

9 Revision of Multi-Level-DEVS

is called consistent, denoted by consistentpin, cplgq, if:

1. ids, id t P dompinq (respective components are available),

2. ids � id t (no direct feedback loop to prevent algebraic loops),

3. pns P dompxycq with pids, pxyc, scaqq P in

4. pnt P dompxyc1q with pid t, pxyc1, sca
1qq P in

5. X � X 1 with ppns, v,Xq P xyc and pids, pxyc, scaqq P in and with ppnt, v
1, X 1q P xyc1 and

pid t, pxyc1, sca
1qq P in (subset relation holds, i.e., ports are compatible).

(respective ports are available),

Note that we do not require that all port-to-port couplings returned by a given multi-coupling
have to be consistent, instead only consistent couplings are considered when deriving a
transitory, concrete coupling scheme according to which events are exchanged. However, we
can argue that a violation of the last requirement in Definition 9.2.4 (subset relation) may
indicate a poor model design or even a faulty model, about which the modeler should be
informed. Such a feedback can be given by a suitable model editor or modeling environment
that supports ML-DEVS.
Although the overall communication structure of a coupled model can, in principle, be

defined by a single multi-coupling, we decided to derive the concrete coupling schemes from
a number of multi-couplings—the set MC . This set can still be a singleton, if desired. The
motivation for allowing the modeler to define a set of multi-couplings is threefold:

1. Representing an entire coupling scheme by only one multi-coupling may be impractical
due to the resulting complexity of this very multi-coupling, especially in complex systems
with divers communication paths.

2. Breaking the coupling scheme down to several multi-couplings allows reducing the com-
plexity of the individual multi-couplings (divide and conquer), where each multi-coupling
can focus on a certain aspect of the overall coupling scheme (separation of concerns).

3. The modeler can easily extend or curtail the coupling scheme by adding or removing
multi-couplings during simulation via the structure change function sc. Thus the modeler
neither has to consider nor resolve every possible ambiguity that can result from defining
contradicting multi-couplings, if such multi-couplings are not active at the same time.

The structure change function sc allows the modeler to add and remove multi-couplings
in addition to change the availability of components during simulation. Only active multi-
couplings are considered, when deriving a concrete coupling scheme. However, a well thought
out definition of the multi-couplings and their intensional character should make it only seldom
necessary to add or remove multi-couplings. In other variable structure variants of DEVS
such as DSDEVS, DSDE, or dynDEVS, we have to define a consistent coupling scheme for
each incarnation of a network (i. e., structural context) extensionally. In ML-DEVS, on the
other hand, a consistent model specification is not the result of the structure change function
(i. e., adding and removing multi-couplings) but the intensionality of multi-couplings and their
translation into concrete, consistent coupling schemes during simulation.

For a given private state sp of a coupled model n and the corresponding structural context
that is encoded in the set of current interface instances in P In, the concrete coupling scheme,
denoted by Cplgconc , is defined by the union of all consistent extensional couplings returned
by the currently available multi-couplings, i. e.,

Cplgconc �
¤

mc Pπ2pscpspqq

�� ¤
cplg P tcplg 1 Pmcpinq | consistentpin,cplg 1qu

cplg

(�
 (9.7)

The following example illuminates how the output of a multi-coupling can be compactly and
flexibly specified based on the multi-coupling’s argument, by using a set-builder notation.

118

9.2 Model Specification

Cell

O2
‐

O2
‐

Cell

Simulation Time

pos = (1.9,2.3) type = mito pos = (2.0,2.3) type = mito

CuZu‐SOD

type = sod
O2

‐

O2
‐ O2

‐

pos = (1.7,2.3) type = mito pos = (2.2,2.3) type = mito

CuZu‐SOD

type = sod
H2O2 O2

‐ H2O2

Figure 9.5: If mitochondria are close to each other they can inhibit each other by exchang-
ing O2

-. Otherwise, O2
- is reduced to H2O2 by the antioxidant enzyme CuZn-SOD.

Example 9.2.1 (Multi-Coupling)
Damaged mitochondria produce and release reactive oxygen species (ROS), e. g., O-

2 (super-
oxide anion), which inhibit nearby mitochondria and potentiate the mitochondria-driven
ROS propagation Park et al. [2011]. However, there are also antioxidant enzymes in the cell,
such as CuZn-SOD or Gpx1 , which can reduce ROS before they reach other mitochondria,
especially when mitochondria are distant. Now we want to specify a distance-based coupling
that connects mitochondria either with others if their distance is below a certain threshold or
with the enzyme CuZn-SOD that reduces O-

2 to H2O2 (hydrogen peroxide). Such a coupling
could look like the following:

mcpinq �

ppids, pnsq, pidt, pntqq | Dpids , pxy , saqq, pidt , pxy

1, sa
1qq P in Dat, ap P dompsaq

Dat1, ap1 P dompsa1q Dpns P dompxyq Dpnt P dompxy 1q : pns � pnt � “O2
-”

^
�
pap � ap

1 � “pos”^ distpsapapq, sa1pap1qq ¤ 0.1q

_ pat � “mito”^ at
1 � “sod”q

�(
,

where in is a subset of In of the coupled model “Cell” and the binary function distp. . .q
calculates the Euclidean distance between two two-dimensional coordinates. Figure 9.5
shows two concrete coupling schemes (left and right) that can be derived from the above
multi-coupling. Note that a direct feedback loop between one and the same mitochondria is
prevented when translating the multi-coupling into concrete couplings (see Section 9.3.2).

Although still rather “simple,” Example 9.2.1 gives us an impression about the potential and
expressivity of the novel definition of multi-couplings. A single multi-coupling can encode an
arbitrary number of n:m port-to-port couplings, while incorporating the structural variability
and other information at the same time. In contrast to Uhrmacher et al. [2007] and Steiniger et
al. [2012], where multi-couplings are only defined based upon port names, our revision of multi-
couplings allows establishing exclusive couplings between specific components more easily, by
using their identifiers (i. e., names) to discriminate between components. Furthermore, we can
call special domain-dependent selection-functions as introduced by Uhrmacher et al. [2006]
that select a subset from a set of potential target components. By doing so, we can model the
exchange of consumable resources rather than the classic information broadcast in DEVS.

Up- and Downward Causation

In addition to a flexible definition of horizontal couplings between the components of a
coupled model (by the means of multi-couplings), ML-DEVS allows expressing vertical
interdependencies between different levels of behavior. In systems biology, these inter-level
dependencies are typically referred to as up- and downward causation, e. g., by Campbell
[1974]. ML-DEVS provides, on top of multi-couplings, mechanisms for modeling up- and

119

9 Revision of Multi-Level-DEVS

1xy1v 2v ... nv 2xy nxy

1xy1v 2v ... nv 2xy nxy

...

... 1.xym 2.xym nxym....

Upward
Information

m (Micro Model)

Private State S Public State XY

...

Component Interfaces IC

n (Macro Model)

Private State S Public State XY

Downward Information

... ...

Upward
Information

m (Micro Model)

Private State sp ϵ Sp Public State sa ϵ Sa

...

Components‘ Public States sn ϵ Sn

n (Macro Model)

Downward Information

v1 v2 vn vn+1 vn+2 vn+m

...v1 v2 vn
...vn+1 vn+2 vn+m

...m.vn+1 m.vn+2 m.vn+m

2 5 3 2 3 a 6

t e t

...

2 t 4 6 2 3 a 6

...

Upward
Information

m (Micro Model)

Private State Public State

...

Components‘ Public States

n (Macro Model)

Private State Public State

Downward Information

v1

nn Ss pp Sns . aa Sns .

v2 vn vn+1 vn+2 vn+m

...v1 v2 vn

pp Sms .

...vn+1 vn+2 vn+m

aa Sms .

...m.vn+1 m.vn+2 m.vn+m

Private State sp ϵ Sp Public State sa ϵ Sa

v 1
n v n

2 v n
n v n

n+1 v n
n+2

v n
n+3

v n
n+m

v 1
m vm

2 vm
n vm

n+1 vm
n+2 vm

n+2

a
2vn

a
3vn

a
1vn

av 1
av 2

av 3

1
pv 2v p

3v p

...

2 5 3 ... e 3 a ...

t e x ...

...

2 t 4 ... e 3 a ...

Upward
Information

m (Micro Model)

Private State Public State Components‘ Public States

n (Macro Model)

Private State Public State

Downward Information

nn Ss pp Sns . aa Sns .

pp Sms . aa Sms .

...
av 1

av 2
av 31

pv 2v p
3v p

...1
pv 2v p

3v p
...

av 1
av 2

av 3

<<if = >>
2n.v p am.v1

am.v1
am.v2

am.v3 ...

Figure 9.6: State sharing in ML-DEVS: The macro model can read the accessible states of
its components (upward information) and assign values to some accessible state variables
of its components via value coupling in return (downward information).

downward causation between a macro level and the components at its micro level explicitly.
To the best of our knowledge, this kind of “vertical coupling” cannot be found in other DEVS
variants and is, along with states and behavior at each level of the organizational hierarchy, a
prerequisite for multi-level modeling, beyond traditional hierarchical modeling. However, due
to the modularity of ML-DEVS, i. e., only the interfaces of ML-DEVS models are accessible,
multi-level modeling is inevitably more restrictive than in other non-modular multi-level
modeling languages, such as ML-Rules [Maus et al. 2011] and ML-Space [Bittig, Haack, Maus,
& Uhrmacher 2011; Bittig, Matschegewski, Nebe, Stählke, & Uhrmacher 2014]. Therefore, we
cannot model interdependencies across arbitrary levels, instead up- and downward causation
is defined between a macro level and the associated micro level (cf. Figure 9.2).

Up- and downward causation are split into information transfer and activation, which leads
to the following four schemes of inter-level interdependencies:

1. Upward information;

2. Upward activation;

3. Downward information;

4. Downward activation.

The two information schemes establish a kind of state sharing, where the accessible states of
the components at the micro level are accessible by the corresponding Macro-DEVS model
and private state variables of the Macro-DEVS model are readable by its components at the
micro level (see Figure 9.6). In a more traditional sense, this state sharing can be viewed as a
non-modular interaction between components and the Macro-DEVS model, as the state
transitions of the components affect the overall state of the Macro-DEVS model and vice
versa. This relation becomes more apparent in Section 9.4.

Upward Information is the ability of a Macro-DEVS model to read the accessible states
of its components, which constitute the set Sn in Definition 9.2.2. The accessible state of
a component is determined by its state transition function δ and part of the component’s
interface instance (see Section 9.2.2). The Macro-DEVS model makes use of the accessible
states of its components in the upward activation function actup , the structure change function
sc, the state transition function δ, and the downward activation function λdown (the accessible
states of the components are included in the set In). The abstract simulator of ML-DEVS
ensures that for each private state sp P Sp of the Macro-DEVS model, only the available
components are considered in sn P Sn.

120

9.2 Model Specification

Example 9.2.2 (Upward Information)
As indicated in Example 9.2.1, the distance between mitochondria is of interest, when,
e. g., examine the mitochondria-driven ROS propagation. To determine the (Euclidean)
distance between two mitochondria, their position (or location) need to be known to the
superordinate coupled model. Instead of sending the coupled model its position whenever it
changes, a mitochondrion can declare its position as an accessible state variable that can
then be accessed by the corresponding coupled model. So we add an indexed set denoted by
Spos with

Spos � R� R

and pos P N to the indexed family of sets based upon which the set Sa of a mitochondrion
is defined. In addition, the name “pos” becomes a part of the set Va.

Upward Activation refers to the ability of the micro level to initiate changes at the macro
level by changing accessible state variables; but not ports as in our previous work [Steiniger et
al. 2012; Uhrmacher et al. 2007]. In a Macro-DEVS model, upward activation is realized by
the upward activation function actup . The function actup guards the fulfillment of invariants
defined on the components’ accessible states. If one or more invariants are violated, the
function actup returns ‘J’ (activation event) and triggers as a result the Macro-DEVS
model, i. e., its state transition function is called. An activation event can represent one or
more incidents (requests) such as the request to add or remove a component, which requires
a specific reaction of the Macro-DEVS model in return, e. g., a structure change. Such a
structure change is carried out by the structure change function sc, which is called after the
Macro-DEVS model has performed a state transition.

Example 9.2.3 (Upward Activation)
Based on the model described by Patel et al. [2013], suppose the macro model “Cell” shall
become active whenever the health of more than the half of its mitochondria drops below a
threshold. Each mitochondrion announces its current health status via an accessible state
variable “health,” which can take values between 0.0 and 1.0. A corresponding upward
activation function can be specified by:

actuppsp, snq �

$'&'%
J if |D| ¥ 0.5 � |dompsnq| with D � tid | Dpid , saq P sn

Dv P dompsaq : v � “health”^ sapvq ¤ 0.5u

K otherwise.

Downward Information is the ability of a Macro-DEVS model to make certain information
readable for its components, via a mechanism called value coupling [Uhrmacher et al. 2007].
For a given private state of the Macro-DEVS model, the value coupling function vdown
determines private state variables of the Macro-DEVS model actual values of which should
be readable as long as the Macro-DEVS model is in the state. If a component of the
Macro-DEVS model has an accessible state variable whose name matches that of a readable
private state variable of the Macro-DEVS model, the value of this private state variable is
assigned to the matching accessible state variable of the component (see Figure 9.6). Therefore,
the range of values that can be assigned to the component’s accessible state variable has to be
a subset of the value range of the corresponding private state variable of the Macro-DEVS
model (see the respective constraint in Definition 9.2.2). Affected components can afterwards
use this “global information” when determining their new states (cf. global attributes in
John, Lhoussaine, and Niehren [2009]). However, value coupling itself does not trigger the
components at the micro level, i. e., leads to state transitions in the components. In contrast

121

9 Revision of Multi-Level-DEVS

to Uhrmacher et al. [2007], value coupling is no longer defined on ports but on state variables.
Thus it is not necessary to formulate the constraint that a port that is used for value coupling
cannot be an input port. Additionally, value coupling can change during simulation in our
revision of ML-DEVS. For instance, when a Macro-DEVS model changes its private state, a
private state variable that was readable before the state change occurred may not be readable
afterward.

Example 9.2.4 (Downward Information)
In the case mitochondria are modeled as coupled models themselves, comprising components
of their own (e. g., DNA, ATP, or granulesa), certain information about the mitochondrion
may be of interest for its components. Suppose we want to establish the private state
variables “health” and “volume” of a mitochondrion as global information that is accessible
by the components of the mitochondrion, as long as it alive. We can achieve this by defining
the function vdown of a mitochondrion as follows:

vdownpspq �

#
t“health”, “volume”u if sppphaseq � “alive”

∅ otherwise.

Note that components of such a mitochondrion have only access to the global information,
if they have accessible state variables with matching names and value ranges.

a small particles that are visible by a microscope

Downward Activation is the ability of a Macro-DEVS model to initiate state changes at
its micro level based on the Macro-DEVS model’s current private state and a set of interface
instances of all the components of the Macro-DEVS model. To initiate state changes, the
downward output function λdown allows the Macro-DEVS model to create inputs for its
components, denoted by XY n in Definition 9.2.2, by directly accessing their ports. The result
is a simultaneous activation of the corresponding components. The interface instance of each
available component indicates which ports are selected and thus can be used for downward
activation. As a set of the interface instances of all available components is an argument of
the function λdown , the modeler can directly access the information which ports are currently
available when specifying λdown .

9.2.3 Consistency of Model Specifications in ML-DEVS

In DEVS and most of its variants we find none or only few constraints regarding a consistent
and correct model specifications, such as the subset-relation between coupled ports when
models are defined at the level of structured systems [Zeigler et al. 2000, p. 130]. In
contrast, when defining Micro-DEVS models (Definition 9.2.1) and Macro-DEVS models
(Definition 9.2.2), we formulate a number of different constraints, mainly as a result of up-
and downward causation and the variability of the composition and ports and inter-level
couplings. Since it is somehow easy for a modeler to specify an inconsistent models (e. g.,
by using ports for generating outputs that are actually not available in the current state of
the model), consistency plays a more prominent role in ML-DEVS than in other DEVS
variants. However, it is impractical or not possible to check whether or not certain constraints
hold before the actual model execution, in particular those regarding the domains of the
characteristic functions. The constraints that can be checked before the model execution,
should be monitored by the modeling environment that supports ML-DEVS to inform the
modeler about potential design flaws.

As we will see in the next section, the abstract simulator of ML-DEVS takes care about
the adherence of most of the constraints, formulated in this section, and the translation of

122

9.3 Abstract Simulator

the intensional multi-couplings into concrete couplings. So even if a model has violated a
constraint that does not necessarily mean that the model cannot be executed properly.

9.3 Abstract Simulator of Multi-Level DEVS

ML-DEVS describes discrete event systems28, i. e., systems whose state only changes at
discrete points in continuous time and remains constant in the meantime. As characteristic
for DEVS variants, an abstract simulator (a simulation algorithm [Zeigler et al. 2000, p. 26])
specifies the execution semantics of ML-DEVS, in an operational manner29. Thereby the
abstract simulator defines how a model specified in the formalism is executed, i. e., how (state
and output) trajectories are produced according to a given model specification and an input
trajectory resulting from this specification. The simulator is abstract because it provides
information about what has to be done to execute a model, but not necessarily how it has
to be done exactly [Zeigler et al. 2000, p. 176] on a certain target machine. This makes an
abstract simulator technology and platform agnostic. In fact, an abstract simulator can be
implemented rather differently (cf. Himmelspach and Uhrmacher [2006]).

Similar to other DEVS variants, the abstract simulator of ML-DEVS consists of three
types of (so-called) processors30: Simulators, Coordinators, and a Root-Coordinator.

Remark. Please note that despite the ambiguous naming, a processor of type Simulator is
only a part of the abstract simulator of ML-DEVS and not the abstract simulator itself.

Simulators are responsible for executing Micro-DEVS models, whereas Coordinators are
responsible for executing Macro-DEVS models. The Root-Coordinator initiates and controls
the simulation cycles (simulation steps) and keeps track of the time elapsed during simulation
(simulation time). The processors are arranged in a tree: the processor tree, which reflects
the compositional hierarchy of the model to be executed. From a given, hierarchical ML-
DEVS model that is composed of atomic and coupled models we derive the corresponding
processor tree by associating a Simulator with each atomic model and a Coordinator with
each coupled model. Thereby, Coordinators form the inner nodes of the resulting processor
tree, whereas Simulators form the leaves of the tree. The root of the processor tree is the
Root Coordinator, which has only one child node: the processor associated with the topmost
model component. As the model composition in ML-DEVS can change during simulation,
the corresponding processor tree has to change accordingly. Figure 9.7 shows the mapping
between two incarnations of a hierarchical ML-DEVS model and the associated processor
trees (left and right side of the figure).

The processors of the abstract simulator communicate top-down and bottom-up throughout
the processor tree by exchanging a predefined set of messages each simulation cycle. Table 9.1
lists the different kinds of messages that all together constitute the communication protocol
(also called simulator protocol) of ML-DEVS. Figure 9.8 shows the communication protocol
with its different messages and their content. The depicted protocol adapts that of P-
DEVS as presented by Himmelspach and Uhrmacher [2006] and extends the i-, y-, x-, and

28 This does not mean that we can use ML-DEVS only for modeling discrete event systems. We can also
represent or approximate a continuous system by a discrete event system, e. g., as a quantized state system
(QSS) [Cellier & Kofman 2006, pp. 542–8].

29 The execution semantics is operational because the abstract simulator can be viewed as an abstract
machine whose state and behavior is defined in terms of the transition and other functions of ML-DEVS
(cf. operational semantics as described by Pierce [2002, pp. 32–3]). However, the abstract simulator is not
described by using the structural operational semantics, which is a well-known and established approach
to describe the operational semantics of programs or languages introduced by Gordon D. Plotkin (see,
e. g., Plotkin [2004a] or Plotkin [2004b]).

30 In this context, a processor can be viewed as a virtual processing unit, e. g., an algorithm, that is responsible
for processing a well-defined task.

123

9 Revision of Multi-Level-DEVS

Macro

Macro Micro

Micro Micro

C

C S

S S

RC

Macro

Macro Micro

Micro

C

C S

S

RC

Simulation Time

Figure 9.7: Mapping between two incarnations of a hierarchical ML-DEVS model and
the corresponding processor tree responsible for executing the model. “RC,” “C,” and
“S” denote a Root Coordinator, Coordinator, and Simulator, respectively.

Table 9.1: The messages the communication protocol of the abstract simulator of ML-
DEVS consists of.

Message Purpose

i-message or initialization message initializes the receiver

*-message or star message requests outputs from the receiver

y-message or output message contains the outputs of the sender

x-message or input message triggers a state transition in the receiver

done-message signals that the sender finished the cur-
rent simulation step

Parent ML-DEVS-Coordinator or
ML-DEVS-Root Coordinator

Subordinate ML-DEVS-Coordinator or
ML-DEVS-Simulator

i(t,g) done(id, sa
c , xyc, tn) *(t) y(id, yb, t) x(id, xb, g, t) done(id, sa

c , xyc, tn)

Figure 9.8: Communication protocol of the abstract simulator of ML-DEVS.

done-messages by additional information that is necessary for achieving up- and downward
information. Thereby, the information that is propagated up- and downward—i. e., model
identifiers (denoted by id), global information (denoted by g), accessible states (denoted by sca),
and available ports (denoted by xyc)—is separated from regular input bags (denoted by xb)
and output bags (denoted by yb) of models. A similar extension of messages can, e. g., be found
in Uhrmacher [2001] and Uhrmacher et al. [2007]. In addition, the communication protocol of
ML-DEVS incorporates an explicit initialization message, the i-message (cf. Zeigler et al.
[2000, p. 176 ff.]).

The i-message is used to initialize processors with the current simulation time t and the
currently valid global information g. Note that due to the modularity of ML-DEVS, global

124

9.3 Abstract Simulator

information is defined between a macro level and its micro level31 and is thus not accessible
from arbitrary levels of a complex composition hierarchy without further ado. If information
shall be made available throughout the entire composition hierarchy (in the proper meaning
of the word “global”), the modeler has to take care about an appropriate propagation of the
information from one level to another. Also note that due to the variable composition of
ML-DEVS models and in contrast to P-DEVS, i-messages are not only sent at the beginning
of a simulation run, but whenever new model components are added to a composition, during
simulation. For this reason, the i-message plays a special role in Figure 9.8. After receiving
an i-message, the corresponding processor sends a done-message back to its parent processor.
The done-message (i) contains the identifier id , available ports xyc, accessible state sca, and the
time of the next internal event tn of the sender and (ii) indicates that the sender finished the
initialization. The *-message is sent from a Coordinator or Root Coordinator to its imminent
child processors, i. e., those processors the associated models of which are about to perform an
internal state transition at the current simulation time t. In return, each imminent processor
sends a y-message to its parent containing the outputs of the associated model. The x-message
is used to trigger all processors whose models are imminent and/or influenced (receive inputs).
In addition to an input bag (which can be empty), an x-message contains global information,
which may have changed in the previous simulation cycle. At the end of a simulation cycle,
each active processor that received an x-message sends a done-message to its parent processor
in return, just like when receiving an i-message. These done-messages contain updates of the
accessible states and available ports of the associated models.

Next, the different parts of the abstract simulator of ML-DEVS, i. e., the different kinds of
processors, are described in more detail. The description revises and refines the one given in
Steiniger et al. [2012] and is based on Steiniger and Uhrmacher [2016]. The presented abstract
simulator and a Java-based representation of the ML-DEVS model specification are imple-
mented as plug-ins for the modeling and simulation framework JAMES II32 [Himmelspach
2007; Himmelspach & Uhrmacher 2007].

9.3.1 Simulator

Algorithm 9.1 shows the Simulator of ML-DEVS, which is rather simple in comparison with
the Coordinator of ML-DEVS and which is similar to the one of P-DEVS presented by
Zeigler et al. [2000, p. 285]. A Simulator is responsible for executing a given specification
of a Micro-DEVS model, denoted by m, associated with the Simulator. Where m is as in
Definition 9.2.1, i. e.,

m � xid ,XY , Sp, Sa, sinit , p, δ, λ, tay.

During execution, the model m is characterized by its private state, accessible state, and
outputs and by the time of the last event (denoted by tl) and the time of the next internal
event (denoted by tn), which change according to the semantics described in the following.
All these information form the runtime model of m. In addition, the Simulator holds certain
variables that are necessary to determine subsequent states and outputs.

At first, a Simulator receives an i-message (initialization message) with the current simula-
tion time t and information that is propagated downward (global information), denoted by g,
from its parent (Algorithm 9.1, line 2). Afterward, the private state sp and accessible state sa
of the model m are set to the initial private state and initial accessible state, respectively33,
which are part of the initial state sinit of the model m. As a result of downward information,
the accessible state sa is updated based upon the global information g sent from the parent

31 for which the information is global
32 http://jamesii.org; last accessed February 2018
33 πipq refers to the i-th projection as defined in Appendix A.1.7

125

http://jamesii.org

9 Revision of Multi-Level-DEVS

Algorithm 9.1: Simulator of ML-DEVS for Micro-DEVS models.

variables:
m // atomic model associated with this Simulator
sp, sa // the atomic model’s current private and accessible state
P // currently available ports with P � P
sma // set of accessible state variable assignments
xym // set of available ports
tl , tn // time of last event and time of next internal event

1 // initialization
2 when receive i-messagept, gq at time t with global information g
3 sp Ð π1pm.sinitq
4 sa Ð π2pm.sinitq
5 update sa according to g
6 P Ð m.ppspq
7 xym Ð tppn, v,Xq | pn P P ^X � rangepnpm.XY q ^ v � εu

8 sma Ð tpvn, v,Xq | vn P variablespm.Saq ^X � rangevnpm.Saq ^ v � sapvnqu
9 tl Ð t

10 tn Ð tl �m.tapspq
11 send done -messagepm.id , xym, sma , tnq to parent
12

13 // generate output bag
14 when receive *-messageptq at time t

15 yb Ð m.λpspq

16 update yb according to P

17 send y-messagepm.id , yb, tq to parent
18

19 // perform state transition

20 when receive x-messagepid , xb, g, tq at time t with input bag xb and global
information g

21 update xb according to P
22 update sa according to g

23 psp, saq Ð m.δppsp, sa, t� tlq, xbq
24 P Ð m.ppspq
25 xym Ð tppn, v,Xq | pn P P ^X � rangepnpm.XY q ^ v � εu

26 sma Ð tpvn, v,Xq | vn P variablespm.Saq ^X � rangevnpm.Saq ^ v � sapvnqu
27 tl Ð t
28 tn Ð tl �m.tapspq
29 send done -messagepm.id , xym, sma , tnq to parent

(line 5). For this, the global information, which is a set of name-value pairs (see Section 9.2)
with unique names, is examined. If there is an accessible state variable whose name also
appears as a name in g, the associated value in g is used to update the value of the matching
accessible state variable. Thus we obtain the updated accessible state sa

1 P m.Sa based on
the current accessible state sa and the global information g as follows:

@vn P variablespSaq : sa
1pvnq �

#
v if D pvn, vq P g ^ v P rangevnpm.Saq

sapvnq otherwise.
(9.8)

Note that the value of an accessible state variable is only updated if the corresponding value
from the global information is within the actual value range of the accessible state variable,
which is a relaxation of the second constraint in Definition 9.2.2. In line 6, the port names that
are available in the current private state sp are determined by the port selection function of
the model m. Then the Simulator initializes the two sets xym and sma based on the currently
available ports P and the current accessible state sa, respectively (lines 7 and 8). When
recalling the definitions of the sets XY c and Sc

a from Definition 9.2.2 it becomes apparent that

126

9.3 Abstract Simulator

xym P XY c and sma P Sc
a with m � c, if m is in some C of a Macro-DEVS model for which

XY c and Sc
a shall be defined. In lines 9 and 10 the time of the last event tl and the time of

the next internal event tn (also often referred to as tonie) are initialized. At the end of the
initialization, the Simulator sends a done-message to its parent (line 11), which contains the
identifier of the model m, the time of the next internal event tl , and the two sets sca and xyc.
The latter two sets and the model identifier represent the current instance of the interface of
the model m, which is made accessible to the parent.

The processing of a *-message (lines 14 to 17) is similar to the processing of a *-message
in traditional P-DEVS (cf. Zeigler et al. [2000, p. 285]). However, as ML-DEVS supports
variable ports, not all ports may be available in the current state. Therefore, the output bag
yb returned by the output function of the model m (line 15) is updated in a way that only
ports that are available, i. e., whose names are element of P , appear in the elements of the
output bag that is actually sent to the parent. We obtain the updated output bag yb

1
from a

given output bag yb P pm.XY qb and the currently available port names P as follows:

yb
1
�

¥
y P yb

y1 : P X dompyq Ñ ranpyq; p ÞÑ yppq

(
. (9.9)

As P X dompyq � variablespm.XY q and the range of y1 is the range of y with y P m.XY , y1

is an element of m.XY as well34. After the update, the set yb is overwritten by yb
1
(line 16).

This update ensures that the second constraint from Definition 9.2.1 is enforced, even if the
modeler has violated the constraint, intentionally or unintentionally (see Section 9.2.3). In
addition, ML-DEVS makes no distinction between input ports and output ports. When
creating an output bag all available ports that contain values are considered as output ports.
After an output bag has been created and updated, the bag is sent within a y-message to the
Simulator’s parent (line 17).

Finally, the x-message, which contains an input bag xb and global information g, triggers
an actual state transitions (internal, external, or confluent). Sending the global information g
via the x-message and not whenever the corresponding information changes at the macro level
has the advantage that global information is only sent on demand, i. e., when the Simulator
of model m becomes active35. After receiving an x-message, the input bag xb is updated
according to the currently available ports (line 21), similar to the update of an output bag as
described above. We obtain the updated input bag xb

1
from a given input bag xb P pm.XY qb

and the currently available port names P as follows:

xb
1
�

¥
x Pxb

x1 : P X dompxq Ñ ranpxq; p ÞÑ xppq

(
. (9.10)

Each function x1 is—by definition—an element of m.XY . Next, the accessible state sa is
updated according to the global information g sent within the x-message (line 22), just like
during the initialization (see Equation 9.8). In line 23, the Simulator determines the new
private and accessible state by invoking the state transition function of the model m. The new
states does not necessarily have to be different from the previous states. Afterward, the port
names available in the new public state are determined by the port selection function. As the
accessible state and the available ports may have changed as a result of the state transition,
the sets xym and sma are updated (lines 25 and 26). Before the done-message is sent to the
parent (line 29), the time of the last event tl and the time of the next internal event tn are
updated based upon the current simulation time and the time advance function of the model
m (lines 27 and 28), such that the simulation can advance.

34 Within its domain, a partial function can be viewed as a total function (see Appendix A.1.6).
35 Note that in P-DEVS the x-message is used to trigger state transitions in general and not only external

state transitions as in the case of classic DEVS.

127

9 Revision of Multi-Level-DEVS

Algorithm 9.2: Coordinator of ML-DEVS for Macro-DEVS models.

variables:
parent // parent processor
n // associated model (coupled model)
sp, sa // current private and accessible state of n
C, MC // currently available components and multi-couplings
P // currently available port names with P � P
yb // output bag to parent
sna // set of accessible state variable assignments
xyn // set of available ports
xact // downward activation message (with xact P n.XY n)
gdown // information propagated downward to children
msg // message container for outputs from components
inp // input message bag for children
tl , tn // time of last event and next internal event
tIcu // is the set of influencers for c, with c P tnu Y n.C
tPi,cu // is the set of port-to-port mappings, with i P Ic and c P C
in // component interface instances with in P In

IMM , INF ,ACT // imminent, influenced, and activated children
events // queue of elements pid , tn idq sorted by tn id (ascending order)

1 when receive i-messagept, gq at time t with global information g
2 initializationpt , gq
3

4 when receive *-messageptq at time t
5 processStarMessageptq
6

7 when receive x-messagepid , xb, g, tq at time t with input bag xb and global
information g

8 processXMessagept , x b , gq

9.3.2 Coordinator

Algorithm 9.2 shows the Coordinator of ML-DEVS, which revises and extends the one
presented in Steiniger et al. [2012] and Steiniger and Uhrmacher [2016]. Due to its complexity
and for the sake of clarity, we break down the Coordinator into special functions, which
are called by the Coordinator and operate on its global variables, listed at the beginning of
Algorithm 9.2.

In general, a Coordinator in ML-DEVS is responsible for executing the specification of an
associated Macro-DEVS model, denoted by n, with n as in Definition 9.2.2, i. e.,

n � xid ,XY , Sp, Sa, C,MC , sinit , δ, λ, p, ta, sc, λdown , vdown , actupy.

The Coordinator combines the functionality of other P-DEVS coordinators (cf. Zeigler et al.
[2000, pp. 284–7]) and the Simulator of ML-DEVS, as Macro-DEVS models can comprise
other ML-DEVS models and both Micro-DEVS and Macro-DEVS models have certain
sets and functions in common. However, in contrast to coordinators of other DEVS variants,
which are comparatively “simple,” the Coordinator of ML-DEVS has, in addition to receiving
and forwarding events, (i) to frequently translate the intensional couplings into concrete
coupling schemes before events can be forwarded and (ii) to decide whether or not n or its
components have to be triggered as a result of up- or downward causation.
After receiving an i-message with the current simulation time t (Algorithm 9.2, line 1),

the Coordinator initialized its internal state36 (Algorithm 9.3, lines 2 and 3) and internal
structures that are required later (line 1). Of particular interest is the set of the available

36 Which is the state of the associated Macro-DEVS model, denoted by n.

128

9.3 Abstract Simulator

Algorithm 9.3: Initialization of the Coordinator.

method name: initialization
inputs:

t // current simulation time
g // information propagated downward from parent

1 events, in Ð ∅
2 sp Ð π1pn.sinitq
3 sa Ð π2pn.sinitq
4 C Ð π3pn.sinitq
5 MC Ð π4pn.sinitq
6 P Ð n.ppspq
7 update sa according to g
8

9 // initialize components
10 gdown Ð tpvn, vq | vn P n.vdownpspq ^ v � sppvnqu
11 send i-messagept, gdownq to all c P C
12 wait for done -messagepidc, xyc, sac , tncq from each c
13 enqueue pidc, tncq in events
14 add pidc, pxyc, sac qq to in

15

16 xyn Ð tppn, v,Xq | pn P P ^X � rangepnpn.XY q ^ v � εu

17 sna Ð tpvn, v,Xq | vn P variablespn.Saq ^X � rangevnpn.Saq ^ v � sapvnqu
18 tl Ð t
19 tn Ð minpn.tapspq,mintnpeventsqq
20 send done -messagepm.id , xyn, sna , tnq to parent

components’ interface instances in P In with In as defined in Equation 9.5, which is used for
translating the multi-couplings into concrete port-to-port couplings and from which sn and
xyn are derived. The initially available components and multi-couplings are given as part of
the initial state of the coupled model n (lines 4 and 5). After the state of the Coordinator is
initialized, the available port names, denoted by P , are determined (line 6). In line 7, the
accessible state sa is updated according to Equation 9.8 based on the global information g
sent within the i-message from the parent of the Coordinator. Before all initially available
components of the coupled model n are initialized (i. e., their associated processors) the global
information that shall be propagated downward, denoted by gdown , is determined based on the
vdown -function of n and the initial public state (line 10)37. In general, the global information
gdown is defined as a set of name-value pairs that refer to names and values of private state
variables of n. For a given private state sp, we define gdown as follows:

gdown � tpvn, vq | vn P n.vdownpspq ^ v � sppvnqu (9.11)

Next, the Coordinator sends an i-message to each available component c P C and waits
for a done-message from each component in return (lines 11 and 12). Each done-message
contains, among other things, the identifier (denoted by id c) and the time of the next internal
event (denoted by tnc) of the sender. The Coordinator uses both information to initialize its
internal event queue38, which schedules the internal events of the available components in C
(line 13). In addition, each incoming done-message of a component c contains the available
ports (denoted by xyc) and accessible state (denoted by sac) of c. Together with the identifier
of c, the sets xyc and sac are used to initialize the set of interface instances in by adding the

37 The function vdown returns the names of the private state variables whose values are made accessible.
38 At any time during simulation, the event queue contains exactly one event for each component available at

this time. This event indicates when—from the current simulation time on—the corresponding component
performs an internal state transition, if the component does not receive any inputs in the meantime. Due
to the variable composition of ML-DEVS, the event queue can grow and shrink during simulation.

129

9 Revision of Multi-Level-DEVS

Algorithm 9.4: Processing of an incoming *-message by the Coordinator.

method name: processStarMessage
inputs:

t // current simulation time
local variables:

yb // output bag to parent of n

1 // initialize required variables

2 msg , yb Ð ∅
3 sn Ð tpidc, sa,cq | Dpidc, pxyc, sa,cqq P inu
4

5 // translate multi-couplings
6 ptIcu, tPi,cuq Ð translateCouplingspin Y tpn.id , pxyc, scaqquq
7

8 // trigger all imminents and forward their outputs
9 IMM Ð tc P C | Dpid , tn idq P events : id � c.id ^ tn id � tu

10 send *-messageptq to all c P IMM

11 wait for y-messagespidc, y
b
c, tcq from each c

12 // remove corresponding internal event from event queue
13 dequeue pidc, tcq from events
14 // buffer output bag of current child c

15 add pidc, y
b
cq to msg

16

17 // check if n is imminent as well
18 if tn � t then

19 yb Ð n.λpspq
20 xact Ð n.λdownpsp, i

nq

21 update yb according to p
22 update xact according to in

23

24 // add outputs of children directed to n to output bag

25 for each pid i, y
b
i q P msg with Di P C : i.id � id i ^ i P In do

26 for each y P yb
i do

27 for each ppn, vq P y do

28 add pPi,nppnq, vq to yb

29

30 // send merged outputs to parent

31 send y-messagepn.id , yb, tq to parent

tuple pid c, pxyc, sac qq to the set, which is empty at the beginning. As a done-message is only
sent once per component, the constraint defined in Equation 9.6 cannot be violated. Similar to
the Simulator, the Coordinator determines the information that shall be propagated upward
(lines 16 and 17) and updates tl and tn (lines 18 and 19) at the end of the initialization
phase. The initialization of the Coordinator ends with sending a done-message to the parent
processor (line 20).

In DEVS variants such as ML-DEVS, a regular simulation cycle is initiated by a *-message.
When the Coordinator receives such a message from its parent (either another Coordinator or
a Root Coordinator), first, the available, intensional multi-couplings MC have to be evaluated
and translated into a concrete coupling scheme consisting of consistent port-to-port couplings
and based on the interface instances of the currently available components and the coupled
model n (Algorithm 9.4, line 6). The Coordinator can then use the derived coupling scheme
to forward in- and output events.

Algorithm 9.5 shows a naive reference implementation of the translation of intensional
multi-couplings, which assures that the result of the translation are consistent couplings
(correctness by construction). To sum-up Definition 9.2.4, a port-to-port coupling is consistent

130

9.3 Abstract Simulator

Algorithm 9.5: Optimistic translation of all active multi-couplings into a concrete
coupling scheme.

method name: translateCouplings
inputs:

in1 // interface instances of all available components and n
// with in1 � In

outputs:
tIcu // set of sets of influencers of c with c P C
tPi,cu // set if port-to-port mappings with i P Ic, c P C,

// and where for each i and c Pi,c : Pi Ñ Pc

variables:
Cplgext // set of potential port-to-port couplings
id , id 1 // identifiers of the source and target component
c, c1 // source and target component
pns, pnt // names of the source and target port
X, X 1 // value ranges of the source and target port

1 // initialization
2 tIcu, tPi,cu Ð ∅
3 Cplgext Ð

�
mc PMC

mcpin1q

(

4

5 // iterate all possible combinations of existing component pairs
6 for each id P

ids | ids P dompin1q ^ ppids, pnsq, pid t, pntqq P Cplgext

(
do

7 for each id 1 P

id t | id t P dompin1q ^ ppids, pnsq, pid t, pntqq P Cplgext

(
do

8 // check if there is no direct feedback loop
9 if id � id 1 then

10 // get the corresponding components for additional consistency checks ||
11 cÐ getComponentpid ,C q
12 c1 Ð getComponentpid 1,C q
13 // iterate all potential port-to-port couplings to consider
14 for each ppid , pnsq, pid

1, pntqq P
�

mcPMC tmcpin1qu do
15 // check availablility of respective ports
16 if pns P dompdompxycqq with pid , pxyc, scaqq P in1 then
17 if pnt P dompdompxycqq with pid 1, pxyc, scaqq P in1 then
18 // check value ranges
19 X Ð getRangeppns, xy

cq with pid , pxyc, scaqq P in1

20 X 1 Ð getRangeppnt, xy
c1

q with pid 1, pxyc1

, sc
1

a qq P in1

21 if X � X 1 then
22 // update corresponding influencer set
23 add c to Ic1

24 // initialize corresponding mapping if necessary
25 if Pc,c1 � ∅ then @pn P variablespc.XY q : Pc,c1ppnq � ∅
26 // update corresponding mapping
27 add pns ÞÑ pnt to Pc,c1

28

29 // return updated sets
30 return tIcu and tPi,cu

131

9 Revision of Multi-Level-DEVS

Component A Component BPA,B

out1

out2 in2

in1

Component A Component B

out1

out2 in2

in1

IB = {A}, IB = { }, PAB = {(out1, in1), (out2, in2)}

PA,B (out1) = in1

PA,B (out2) = in2

Cplg = {((A, out1), (B, in1)), ((A, out2), (B, in2))}

Figure 9.9: The relationship between a port-to-port map as used by the Coordinator
(left-hand side) and port-to-port couplings as returned by the intensional multi-couplings
of ML-DEVS (right-hand side).

if (i) the referenced components and ports are available in a given state, (ii) the value range of
the source port is a subset of the value range of the target port, and (iii) the source component
is not the target component (as direct feedback loops are not allowed like in other DEVS
variants). Internally, the resulting concrete coupling scheme is represented by the two sets:

� tIc | c P C Y tnuu a set of sets of influencers of the coupled model n and its components,
where for each c P C : Ic � C Y tnu and for c � n : Ic � C;

� tPi,c | c P C Y tnu ^ i P Ic ^ c R Icu a set of port-to-port maps with for each i and p

Pi,c : Pi Ñ Pc Y t∅u,

where Pi and Pc denote the sets of port names of the model components i and c, respectively,
i. e., Pi � variablespi.XY q and Pc � variablespc.XY q.

Figure 9.9 illustrates the relationship between such a coupling scheme that is used internally
and the concrete port-to-port couplings as defined in Section 9.2.2.
At the beginning of the translation (Algorithm 9.5), each available multi-coupling in MC

is applied to the current set of interface instances including the interface instance of the
coupled model n. All port-to-port couplings, i. e., coupling candidates, returned by the
different multi-couplings are collected in the set Cplgext (Algorithm 9.5, line 3). Whether
these port-to-port couplings are part of the eventual coupling scheme that is returned by the
translation algorithm depends on their consistency. Therefore, for each port-to-port coupling
candidate, which consists of two model identifiers and two port names, the following questions
are answered (lines 6 to 25):

1. Do the model identifiers reference currently available components including the coupled
model (line 6 and 7)?

2. Are the referenced components different (line 10)?

3. Do the corresponding components have ports whose names match those of the coupling
candidate and that are currently available (lines 16 and 17)?

4. Is the value range of the source port a subset of the value range of the target port (line 21)?

If all these questions are answered in the affirmative, the source component is added to the set
of influencers of the target component (line 23) and a mapping from the source to the target
port is added to the respective port-to-port map (line 27). For this, the auxiliary function
getComponent : N � 2C Ñ C Y t“undef”u is used (lines 11 and 12), which returns for a given
model identifier the corresponding model specification or ‘undef’ if there is no model whose
identifier matches the given one, i. e.,

getComponentpid , Cq �

#
c if Dc P C : id � c.id

“undef” otherwise.

132

9.3 Abstract Simulator

The proposed translation algorithm is optimistic as it assumes that the set in1 reflects the
actual state of the composition, so that the function getComponent does not return ‘undef’ for
c or c1. After all consistent port-to-port couplings have been identified, the derived coupling
scheme is returned (line 30) and can be used by the Coordinator to forward events, in the
current simulation cycle.

Next, the Coordinator sends a *-message to each of its imminent children (Algorithm 9.4,
lines 9 and 10) and waits for y-messages in return (line 11). These messages contain the
output bags of the imminents. The corresponding internal events will be removed (dequeued)
from the event queue of the Coordinator and the output bag of each imminent component is
buffered in the message container msg for later usage (line 15). As a coupled model n can have
outputs of its own, the Coordinator checks whether n is imminent itself (line 18). If so, the
output bag of n, denoted by yb, is determined by the coupled model’s output function λ and
the current private state sp (line 19). In addition, the downward activation events, denoted
by xact are determined by the downward activation function λdown (line 20). Afterward, the
output bag yb is updated according to the currently available port names p (see Equation 9.9).
Furthermore, the activation message xact is updated according to the set of the interface
instances of the currently available components. We obtain the updated downward activation
message xact

1 from the set in as follows:

xact
1 � tpid , xyq P xact | pid , pxyc, scaqq P in ^ dompdompxyqq � dompdompxycqqu . (9.12)

Next we overwrite the value of xact with the value of xact
1. This update ensures that the first

constraint in Definition 9.2.2 is not violated. Concluding the processing of the *-message from
the parent of the Coordinator, all values of ports of components that are coupled to ports of
the coupled model n are added to the output bag yb (lines 25 to 28), which is finally sent to
the parent of the Coordinator within a y-message (line 31).

At the end of each simulation cycle, x-messages are sent downward to all active processors,
i. e., processors that are imminent, influenced, or activated. When a Coordinator receives such
a message with an input bag xb and the global information g from its parent (Algorithm 9.2,
line 7), the input bag xb is updated according to the currently available port names (see
Equation 9.13) and the accessible state sa is updated according to the global information sent
via the x-message (see Equation 9.8) (Algorithm 9.6, lines 37 and 3). Before the Coordinator
sends x-messages to its active children (line 12), the global information gdown that shall be
propagated downward is determined based on the function vdown of the coupled model n and
the current private state sp. Which of the available child processors are active is determined
based on (i) the current simulation time t and tn of the child processors39, (ii) the input bag
xb of the coupled model n and the external input couplings in the derived coupling scheme
(line 7), and (iii) the downward activation message xact (line 8). The Coordinator has then to
bundle all inputs that are directed to each of the active child processors (line 11). The input
bag xbc of a child processor, i. e., of an active component c, includes: (i) inputs of the model
n which are delegated to the model component c via external input couplings, (ii) inputs of
other, imminent components of the model n that are forwarded to component c via internal
couplings, and (iii) activation events of the model n as a result of the downward output
function λdown . The auxiliary function inpp. . .q undertakes the task of collecting all inputs
and creating an input bag for each active component c as follows:

inppc, n, xb,msg , xact , Ic, tPi,c | i P Icuq �inpEIC pn, x
b, Ic, Pi,cq

Z inpIC pn,msg , Ic, tPi,c | i P Icuq

Z inpACT pc, xactq

(9.13)

39 Notice that although the internal event queue is already cleaned up, the set IMM still contains all imminent
children.

133

9 Revision of Multi-Level-DEVS

Algorithm 9.6: Processing of an x-message by the Coordinator.

method name: processXMessage
inputs:

g // information propagated downward from parent
t // current simulation time

1 // update accessible state and input bag
2 update sa according to g

3 update xb according to p
4

5 // execute all imminent, influenced, and activated children
6 gdown Ð tpvn, vq | vn P n.vdownpspq ^ v � sppvnqu

7 INF Ð tc P C | Di P C Dpid i, y
b
i q P msg Dy P yb

i Dppn, vq P y : i.id � id i ^ i P Ic ^ Pi,cppnq � ∅u
8 ACT Ð tc P C | Dpid , xyq P xact : c.id � id ^ xy � ∅u
9 for each c P IMM Y INF YACT do

10 // merge all inputs for current component

11 xb
c Ð inppc, n, xb,msg , xact , Ic, tPi,c | i P Icuq

12 send x-messagepn.id , xb
c, gdown , tq to c

13 wait for done -messagepidc, xyc, sa,c, tncq from each c
14 enqueue pidc, tncq in events
15 update in with pidc, pxyc, sa,cqq
16

17 // check if macro model has to be executed
18 // update network state
19 sn Ð tpidc, sa,cq | Dpidc, xyc, sa,cq P inu

20 if n.actuppsp, s
nq or xb � ∅ or tn � t then

21 // change model state and update global information and port names

22 psp, saq Ð n.δppsp, sa, t� tlq, sn, xb, abq
23 gdown Ð tpvn, vq | vn P n.vdownpspq ^ v � sppvnqu
24 pÐ n.ppspq
25 // change model structure
26 C� Ð C
27 pC,MC q Ð n.scpsp, s

nq
28 // initialize new components
29 send i-messagept, gdownq to all c P CzC�

30 wait for done -messagepidc, xyc, sa,c, tncq from each c
31 enqueue pidc, tncq in events
32 add pidc, pxyc, sa,cqq to in

33 // update event queue and interface instance set
34 remove all c P C�zC from in and events
35

36 xyc Ð tpn, v,Xq |n P p^X � rangenpm.XY q ^ v � εu
37 sca Ð tpn, v,Xq |n P variablespm.Saq ^X � rangenpm.Saq ^ v � sapnqu
38 tl Ð t
39 tn Ð t�minpn.tapsq,mintnpeventsqq
40 send done -messagepm.id , xyc, sca, tnq to parent

134

9.3 Abstract Simulator

where

inpEIC pn, x
b, Ic, Pn,cq �

$&%
�

x Pxb

 �
Pn,cppnq, xppnq

�
| pn P dompxq ^ Pn,cppnq � ∅

(
if n P Ic

∅ else

and where

inpIC pn,msg , Ic, tPi,c | i P Icuq �

$&%
�

i P Ic

tinpIC ipout ipi,msgq, Pi,cqu if Icztnu � ∅

∅ else

with

out ipi, msgq �

#
ybc if D!

�
id c, y

b
c

�
P msg : id c � i.id

∅ else

and

inpIC ipy
b
i , Pi,cq �

¥
y P ybi

 �
Pi,cppnq, yppnq

�
| pn P dompyq ^ Pn,cppnq � ∅

(
and where

inpACT pc, xactq �

#
xy if D!pid , xyq P xact : id � c.id

∅ else.

On closer inspection it becomes apparent, that

inppc, n, xb,msg , xact , Ic, tPi,c | i P Icuq P c.XY b.

In the case that an active component c is only imminent but not influenced or activated, the
input bag of c will be empty, i. e., xbc � ∅. After the Coordinator has sent an x-message to
each of its active components (line 12), it waits for done-messages of the active components in
return. Each done-message is used to update the internal event queue and the set of current
interface instances in (lines 14 and 15). We obtain the updated set of interface instances in1

from the current set of interface instances in and the available ports xyc and the accessible
state sa,c of a component c with the identifier id c as follows:

in1 �

pid c

1, pxyc
1, sa,c

1qq P in | id c
1 � id c

(
Y

pid c, pxyc, sa,cqq

(
. (9.14)

Afterward the network state sn is updated according to the changed set of interface instances
(line 19). Hence, the Coordinator operates on the updated interface instances and network
state in the remainder of the current simulation cycle. As the coupled model can change it’s
state as well, the Coordinator checks whether or not the state transition function δ has to be
invoked, i. e., whether the coupled model is activated upwards, the input bag xb is not empty,
or the lifespan defined for the current private state is exceeded (line 20). If so, the private and
accessible state are updated by calling the state transition function of n (line 22). As a result
of the state transition, the global information that shall be propagated downward gact and the
available port names P have to be updated as well (lines 23 and 24). Then, the new model
structure is changed according to the structure change function sc. Thereby, the Coordinator
initializes all newly available components by sending them i-messages (line 29). In return, the
internal event queue is updated by adding internal events for the new components to it and
the interface instances of the new components are added to the set of interface instances in

135

9 Revision of Multi-Level-DEVS

Algorithm 9.7: The Root Coordinator of ML-DEVS.

variables:
child // subordinate processor
c // model associated with subordinate processor
t // simulation time

parameters:
t0 // start time of the simulation

1 // initialization
2 tÐ t0
3 send i-messagept,∅q to child
4 wait for done -messagepidc, xyc, sa,c, tncq from child
5 tÐ tnc

6

7 // simulation loop
8 loop
9 // start current simulation cycle

10 send *-messageptq to child
11 wait for y-messagepidc, xyc, tcq from child
12

13 send x-messagepid ,∅,∅, tq to child
14 wait for done -messagepidc, xyc, sa,c, tncq from child
15 tÐ tnc

16 until *end* *of* simulation

(lines 30 to 32). The adaptation of the model structure is completed by removing the interface
instances of all recently deleted components from in (line 34). At the end of the processing of
a x-message updates the information that is propagated upwards (lines 36 and 37) and the
internal times. Finally, the Coordinator sends a done-message to its parents, which contains
its available ports and public state as well as the time of the next internal event of the coupled
model n.

9.3.3 Root-Coordinator

The last type of processor the abstract simulator of ML-DEVS consists of is the Root Coor-
dinator. This processor is special in the way that, in contrast to a Simulator or Coordinator,
their is no model associated with the Root Coordinator. Any processor tree that is derived
from a given ML-DEVS model has only one Root Coordinator, which forms the root of the
respective processor tree that is responsible for executing the model.

Algorithm 9.7 shows the Root Coordinator of ML-DEVS, which is rather simple in
comparison to the other two types of processors. The Root Coordinator is responsible for
initiating and controlling the simulation loop consisting of cycles (simulation steps40) while
advancing the global simulation time, by jumping to the time of the next event.

Before an actual simulation (run) is started, i. e., during initialization (Algorithm 9.7,
lines 2 to 5), the Root Coordinator sets the current simulation time t to the given start time
t0 (line 2). This start time t0 is a parameter of the Root Coordinator and set externally.
How this is exactly done is not of interest at this point, instead it is subject to a concrete
implementation of the abstract simulator. Next, the Root Coordinator sends an i-message to
its child processor with the current simulation time t and without global information (i. e., an
empty set), as the child processor is already associated with the topmost model component

40 In the literature (e. g., Himmelspach and Uhrmacher [2006]), also the term “pulse” is used to denote a
single simulation cycle, which is initiated by sending and propagating *-messages downward the processor
tree.

136

9.4 Closure under Coupling

in a hierarchical ML-DEVS model (line 3). In return, the Root Coordinator waits for a
done-message from its child processor (line 4). Afterward, the simulation time is set to the
time of the next internal event sent within the done-message (line 5). Notice that whereas
a Root Coordinator sends an i-message only once at the very beginning of a simulation
run, Coordinators at lower levels of the processor tree can also send i-messages during a
simulation run, as Coordinators can change their composition due to the variable composition
in ML-DEVS.
As long as the current simulation run is not ended (lines 8 and 16), a simulation cycle

(lines 10 to 15) is initiated by sending a *-message with the current simulation time t to the
child processor of the Root Coordinator (line 10). The information propagated upward by the
child processor within the y-message (line 11), which is sent in response to the *-message, is
ignored, as there is no processor, i. e., model, above the Root Coordinator. Before a simulation
cycle ends, the Root Coordinator sends an empty x-message to its child processor (line 13).
The identifier id that is sent in the incoming y-message is afterward used as identifier in the
x-message sent back to the child processor. That way we avoid the necessity to reserve a
special, unique identifier for the Root Coordinator itself. Finally, at the end of each simulation
cycle, the current simulation time t is set to the time of the next internal event (line 15) sent
in the done-message (line 14). The Root Coordinator stops the simulation run, when its “end”
is reached. However, how the end is defined can differ. For instance, a simulation run can end,
if the simulation time exceeds a certain threshold (simulation stop time) or is set to infinity
(i. e., all models become passive). Other simulation stop criteria are conceivable and subject
of the implementation of the abstract simulator of ML-DEVS and the simulation system it is
embedded into.
Although ML-DEVS supports a variable composition, the child of the Root Coordinator

remains available during the entire simulation, as the Root Coordinator is not associated
with any model that can carry out structure changes. However, the same applies for other
variable structure variants of DEVS, such as DSDEVS, DSDE, dynDEVS, or DynPDEVS.
If the modeler wants to specify a hierarchical ML-DEVS model the topmost component of
which can change as well, the modeler has to introduce an additional Macro-DEVS model
that takes care of the desired structure changes and becomes the new root of the hierarchical
model. This additional component will, however, again remain unchanged during simulation.

9.4 Closure under Coupling of Multi-Level DEVS

If a coupled system or network of systems (i. e., system components) specified in a certain
formalism can be specified as a basic or atomic system in the same formalism, then the
formalism is closed under coupling [Zeigler et al. 2000, p. 149]. Recollect that system
specification is a synonym for the term “model.” So in other words: A modeling formalism is
closed under coupling, if we can express any coupled model of the formalism by an behaviorally
equivalent atomic model in that formalism (see Figure 9.10). This property allows us to use
networks of systems (i. e., coupled models) as components in larger coupled systems (coupled
models) and thus leads to a modular, hierarchical model construction in the first place.

As the abstract simulator of ML-DEVS already indicates and in contrast to claims of other
authors such as Li et al. [2011], ML-DEVS is, in fact, closed under coupling.

Theorem 1 (Closure under coupling of ML-DEVS). ML-DEVS is closed under cou-
pling. Any Macro-DEVS model that couples model components specified as basic Micro-DEVS
models can itself be specified as a Micro-DEVS model in ML-DEVS.

So although the components of a Macro-DEVS model are—by Definition 9.2.2—Micro-
DEVS models, we can also use Macro-DEVS models as components of other Macro-DEVS
models in ML-DEVS. Notice that defining a Macro-DEVS model in the way that it can

137

9 Revision of Multi-Level-DEVS

Component A

Atomic Model

Component B

Atomic Model

Coupled Model

Hierarchical Model

Representa�ve

Atomic Model

Closure

under

Coupling

simula�on �me

in
p

u
ts

simula�on �me

o
u

tp
u

ts

simula�on �me

in
p

u
ts

simula�on �me

o
u

tp
u

ts

Figure 9.10: Closure under coupling allows us to replace an arbitrary hierarchical model
by an behaviorally equivalent atomic model (here the model “Representative”). For a
given input trajectory the respective atomic model produces the same output trajectory
as the hierarchical model would do. In other words, we cannot distinguish between the
atomic and original coupled model just based upon their output trajectories. Closure
under coupling is a prerequisite for flattening hierarchical models and executing them
more efficiently.

consist of Micro-DEVS andMacro-DEVSmodels at the same time would yield fundamental
circularities in the definition of Macro-DEVS (cf. circular definitions in Section 3.1). For
instance, we have to define a Macro-DEVS model in terms of its components in the set C,
however, if the Macro-DEVS model can consist of other Macro-DEVS models, we have to
define the set C in terms of Macro-DEVS models, which we cannot do, as we have to define
C first. This is another, more subtle reason, why closure under coupling is important for a
sound and rigorous definition of a modeling formalism that allows hierarchical coupling.

When we contemplate the closure under coupling of ML-DEVS, the couplings and influence
schemes of Macro-DEVS models are of particular interest. In addition to the horizontal
couplings (defined by multi-couplings), we have to consider the vertical couplings (up- and
downward causation) between the micro and macro level as well. To formally prove the
closure under coupling of ML-DEVS, we have to construct a Micro-DEVS model that is
behaviorally equivalent to a given and arbitrary Macro-DEVS model or, in other terms, to
demonstrate that any Macro-DEVS model can be expressed as a well-defined Micro-DEVS
model (cf. Chow and Zeigler [1994]). Therefore, in the tradition of other DEVS variants, we
systematically define all characteristic sets and functions of a given Macro-DEVS model in
terms of a Micro-DEVS model, which can replace the given Macro-DEVS model.

Note that although a Macro-DEVS model can represent a Micro-DEVS model, i. e., as
a stunted Macro-DEVS model without any components and up- and downward causation,
we still have to show that we can construct a behaviorally equivalent Macro-DEVS model
without components for any Macro-DEVS model with components (see also Section 9.2.2
for a motivation of the distinction between Micro-DEVS and Macro-DEVS models). In
contrast to closure under coupling proofs of other DEVS variants, such as presented by Zeigler

138

9.4 Closure under Coupling

et al. [2000, pp. 149–55], Chow and Zeigler [1994], Barros [1995a], or Uhrmacher [2001], the
proof for ML-DEVS is rather verbose and complex41. The reason for this is twofold: First,
we define ML-DEVS at the level of structured systems and with variable ports, thus we have
to deal with structured sets and their variables in the proof. Second, Macro-DEVS models
have a variable composition, whereas Micro-DEVS models are static except of their ports.

Proof. Given an arbitrary Macro-DEVS model n with

n � xid ,XY , Sp, Sa, C,MC , sinit , δ, λ, p, ta, sc, λdown , vdown , actupy

with components that are Micro-DEVS models, we associate a Micro-DEVS model with
n, called resultant :

resultant � xid ,XY , Sp, Sa, sinit , p, δ, λ, tay,

where

id � n.id

and

XY � n.XY .

So the identifier and the in- and output interface of the resultant are equivalent to those of
the Macro-DEVS model n.

Remark. Please note that in the following we write id , XY , Sp, Sa, sinit , δ, λ, p, and ta
rather than resultant .id, resultant .XY , resultant .Sp, resultant .Sa, and so on to refer to the
corresponding components of the resultant ’s defining tuple.

In contrast to coupled models of other DEVS variants, Macro-DEVS models have a state
and behavior of their own, which have to be considered when constructing the resultant .
Furthermore, the ability of a Macro-DEVS model to access the interfaces of its components
has also to be taken into account. Hence, this information and the overall state of n become a
part of the resultant ’s private state. In addition, the set of the currently available components
are part of the state, as they are necessary to determine the network state (see below). So the
private state space Sp of the resultant is defined by

Sp � QC �Qn � 2n.C ,

where QC �
±

c Pn.C Qc and for each c, Qc is defined as follows:

Qc � tps, a, xy , eq | s P c.Sp, a P c.Sa, xy P c.XY , 0 ¤ e ¤ c.tapspqu

and with

Qn � tps, a, xy , eq | s P n.Sp, a P n.Sa, xy P n.XY , 0 ¤ e ¤ n.tapspqu.

Reflecting the absence of an intrinsic order in C, the set QC is defined as a generalized
Cartesian product of the family of sets tQcucPC indexed by the set C, so as a set of functions

41 Please also notice that, if given at all, we often find short outlines of closure under coupling proofs for
different DEVS variants, e. g., Li et al. [2011] or Muzy and Zeigler [2014], rather than fully elaborated proofs.
However, if a sound abstract simulator can be defined for a DEVS variant and concrete implementations
of that simulator exist, we can assume that the respective variant of DEVS is closed under coupling, even
though a formal proof is not given explicitly.

139

9 Revision of Multi-Level-DEVS

(see Appendix A.2.2). By specifying a function as a set of ordered pairs (see Notation A.2.2),
for qc P QC we can, for notational convenience, also write

qc � tpc, ps, a, xy , eqq | c P C ^ qcpcq � ps, a, xy, eq ^ qcpcq P QCu

or simply

qc � t. . . , psc, ac, xyc, ecq, . . .u.

For an element qn P Qn we also write

qn � psn, an, xyn, enq.

Then, a private state sp P Sp of the resultant can be written as follows:

sp �
�
t. . . , psc, ac, xyc, ecq, . . .uloooooooooooooomoooooooooooooon

qcPQC

, psn, an, xyn, enqloooooooomoooooooon
qnPQn

, comploomoon
�n.C

�
. (9.15)

Remark. For notational convenience and clarity, we write, in the following, s and a (instead
of sp and sa) for private and accessible states, respectively. Furthermore, given a private
state s P Sp of the resultant with s �

�
t. . . , psc, ac, xyc, ecq, . . .u, psn, an, xyn, enq, comp

�
we

simply write sc, ac, xyc, ec, and so on to access the different components. Accordingly, we
use also qc to refer to the set of all component-related tuples.

The accessible state space Sa of the resultant is equivalent to the accessible state space of the
macro model:

Sa � n.Sa.

As a result the private state of the resultant contains also its accessible state, which is for
keeping the proof as simple as possible. The initial state sinit of the resultant is psi,p, si,aq,
where the initial private state si,p P Sp is defined by

si,p � pqi,c, qi,n, compiq

with

qi,c �

pc, pπ1pc.sinitq, π2pc.sinitq, portspc.ppπ1 pc.sinitqqq, 0qq | c P C

(
qi,n � pπ1pn.sinitq, π2pn.sinitq, portspπ1 pn.sinitqqq, 0q

compi � π3pn.sinitq

and πip. . .q being a projection on the i-th coordinate of an n-fold Cartesian product with
1 ¤ i ¤ n (see Appendix A.1.7) and where the initial accessible state si,a P Sa is defined by

si,a � π2pn.sinitq.

The function ports returns a set of key-value pairs for a given component c (incl. the macro
model n) based on the component’s port selection function, such that only available ports
appear as keys in the set and the symbol ε is the value in each pair, i. e.,

portspP 1q �

ppn, εq | pn P P 1

(
(9.16)

with P 1 being a set of port names that is returned by the port selection function of the
corresponding component, i. e., P 1 � c.ppscq.

140

9.4 Closure under Coupling

Although ML-DEVS allows a variable composition, the set n.C contains all potential
components of n regardless of their actual availability during simulation. However, at each
time in the simulation, only a finite number of available components exists. The availability
of components is determined by the structure change function sc of n based upon its current
private state. Only those can act and thus change their state and influence the macro model.
Now given a resultant ’s private state s P Sp, as defined in Equation 9.15, we define the set of
active (available) components ACT psq � n.C in state s by

ACT psq � comp.

As we will see later, comp contains the currently available components.

Both Micro-DEVS model and Macro-DEVS model have variable ports whose availability
during simulation is determined by their port selection functions p. We define p : Sp Ñ 2P of
the resultant by

ppsq � n.ppsnq.

So the available ports of n are the available ports of the resultant . The time advance function
ta : Sp Ñ R�

0 Y t8u is defined by

tapsq � mintσc | c P tnu YACT psqu with σc � c.tapscq � ec, (9.17)

where σc is the time remaining to the next internal event in c.

For defining the remaining functions of the resultant, up- and downward activation are of
particular interest, as they can lead to the activation of n and its components. Thus, these
activation schemes have to be considered when determining how the resultant’s overall state
is evolving. Also, the intensional multi-couplings of n have to be translated into a concrete
coupling scheme to identify influencing and influenced components for a given private state s
of the resultant. For this, the current interface instances of the available components have to
be determined given a resultant ’s private state s, which contains all the required information
(see above):

ifacespsq �
¤

c P tnuYACT psq

pc.id , pxyc, acqq

(
, (9.18)

where ifacespsq � In (see Equation 9.5) of the Macro-DEVS model. Algorithm 9.5 shows
how multi-couplings are then resolved. The result is, for each available component c, a set of
influencers Ic � tnuYACT psq with c P tnuYACT psq and for each combination of influencing
component i and influenced components c a port-to-port mapping Pi,c : Pi Ñ Pc Y t∅u with
c R Ic. The latter determines which port of an influencing component is coupled to which port
of the influenced component or is not coupled (indicated by ∅, i. e., Pi,cppnq � ∅) according
to the multi-couplings. In contrast to other DEVS variants with extensional couplings, the
derived concrete coupling scheme in ML-DEVS is not invariant and has to be determined for
each private state s of the resultant .

In ML-DEVS exists only one state transition function that is invoked when an external,
internal, or confluent transition has to be performed. Before we construct the state transition
function δ: Q� XY b Ñ Sp � Sa of the resultant with Q � tps, a, eq | s P Sp, a P Sa, 0 ¤ e ¤
tapsqu, we partition the available components into further subsets based on the given private

141

9 Revision of Multi-Level-DEVS

state s of the resultant and an input bag xb P XY b:

IMM psq � tc P tnu YACT psq |σc � tapsqu (imminent components incl. n)

DOWN psq � tc P ACT psq |σn � tapsq ^ xc,n � ∅u (components activated by n)

INF ps, x bq �
!
c P ACT psq |xbc � ∅

)
YDOWN psq (influenced components)

INT psq � IMM psqzINF ps, x bq (imminent, but not influenced components)

EXT psq � INF ps, x bqzIMM psq (influenced, but not imminent components)

CONF psq � IMM psq X INF ps, x bq (imminent and influenced components)

UN psq � ACT psqzIMM psqzINF ps, x bq (not imminent, not influenced components)

where σc as defined in Equation 9.17 and

with xc,n �

#
xy if D!pid , xyq P n.λdownpsn, snpqc, compqq : c.id � id

∅ otherwise
(9.19)

where snpqc, compq returns the current network state and is defined by

snpqc, compq �
¤

cPcomp

pc.id , acq

(
(9.20)

and where the input bag xbc of a component c is defined by

xbc �
�¥

iPIMM psqXInflc

¥
xPi.λpsiq

¤
ppn,vqPx

pPi,cppnq, vq |Pi,cppnq � ∅

(
Z xbc,n (9.21)

with

xbc,n �

#�
xPxb

�
ppn,vqPx

pPn,cppnq, vq |Pn,c � ∅

(
ifn P Infl c

∅ otherwise
(9.22)

and where Z refers to the sum of two bags (see Appendix A.1.4). Components that are
activated downward by the downward output function λdown of n are treated as influenced
models, complementing those components that receive regular inputs. Thus, downward
activation is considered as classic external event (cf. Section 9.3.2).

Now, given a private state s �
�
t. . . , psc, ac, xyc, ecq, . . .u, psn, an, xyn, enq, comp

�
and c P

n.C, an accessible state a P Sa, an elapsed time e with 0 ¤ e ¤ tapsq, and an input bag
xb P XY b, we can define the resultant ’s state transition function as follows:

δpps, a, eqloomoon
qPQ

, xbq �
��
t. . . , psc1, ac1, xy

1

c, ec
1q, . . .uloooooooooooooooomoooooooooooooooon

qc1PQC

, psn1, an1, xy
1

n, en
1qlooooooooomooooooooon

qn1PQn

, comp1
�

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon
s1PSp

, a1
�
,

where for each c P C:

psc1, ac1, xy
1

c, ec
1q �

$''''''&''''''%

pc.δppsc, a�c , ec � eq, xbc Z xc,nq, xy�c , ec � eq if c P EXT psq

pc.δppsc, a�c , ec � tapsqq,∅q, xy�c , 0q if c P INT psq

pc.δppsc, a�c , ec � tapsqq, xbc Z xc,nq, xy�c , 0q if c P CONF psq

psc, a�c , xyc, ec � eq if c P UN psq

psc, ac, xyc, ecq otherwise

142

9.5 Systems Specified

with xbc as defined in Equation 9.21, xc,n as defined in Equation 9.19, and a�c P c.Sa being the
accessible state of component c merged with the global information announced by the macro
model n (see value coupling in Section 9.2.2) defined by

@v P c.Va : a�c pvq �

#
snpvq if Dv1 P n.vdownpsnq : v � v1

acpvq otherwise

and with xy�c being the information about the ports available in the new state defined by

xy�c � portspc.ppπ1 psc 1qqq, (9.23)

where the function ports is defined as in Equation 9.16. The updated port information of each
active component xy�c is used to determine ifacesps1q. The last case—labeled with otherwise—
refers to all components that are not available in the current state, i.e., c P n.CzACT psq. For
n we define:

psn1, an1, xyn
1, en

1q �$''''&''''%
pn.δppsn, an, en � eq, xb, snpqc1, compqq, xy�n, 0q if n R IMM psq ^ pxb � ∅q

_n.actuppsn, snpqc1, compqq � Jq

pn.δppsn, an, en � tapsqq, xb, snpqc1, compqq, xy�n, 0q if n P IMM psq

psn, an, xy�n, en � eq otherwise.

Please note that for brevity we directly use the new private state sc
1 of component c and the

new qc
1 instead of invoking the respective state transition functions again. For qc

1 and comp
we define snpqc1, compq as in Equation 9.20 and xy�n is defined as in Equation 9.23. Please
remember that the macro model is accessing the public state of its components, which are
part of the resultant ’s state. The new composition comp1 is defined by

comp1 � π1pn.scpsn1, snpqc1, compqqq.

Finally, the new accessible state of the resultant is the new accessible state of the macro
model n, i. e.,:

a1 � an
1.

We obtain the output of the resultant for a given private state s by collecting all the external
outputs (those that are routed to the original macro model) of the imminent components and
the output of the Macro-DEVS model itself in a bag:

λpsq �

�� ¥
iPpIMM psqztnuqXInfln

¥
yPi.λpsiq

¤
ppn,vqPy

pPi,nppnq, vq |Pi,nppnq � ∅

(�
Z n.λpsnq.

As shown above, we can construct a well-defined Micro-DEVS model for a given Macro-
DEVS model, so ML-DEVS is closed under coupling.

9.5 Systems Specified by Multi-Level-DEVS

As done for DEVS (and P-DEVS) by Zeigler et al. [2000, pp. 139–44], we illustrate the
meaning of ML-DEVS as a formalism for systems specification by describing the systems
that is specified by ML-DEVS from a more general, system-theoretic point of view. However,
as we define ML-DEVS at the level of structured systems, we assume that the in- and
outputs of the general system, specified by ML-DEVS, are structured in similar way like in

143

9 Revision of Multi-Level-DEVS

ML-DEVS (e. g., by using Cartesian products) or that there exists a meaningful mapping
from the unstructured (“flat”) in- and outputs of the general system to the structured in-
and outputs of ML-DEVS. Please note that the same applies for other DEVS variants that
are defined at structured system level, even if the ports (in- and output variables) of these
variants are not variable.

Now let m be a Micro-DEVS model—the basic model of ML-DEVS—with

m � xid ,XY , Sp, Sa, sinit , p, δ, λ, tay.

Then m describes a general input/output system (see Zeigler et al. [2000, pp. 99–132] for
more details on I/O systems and the hierarchy of system specifications), denoted by S, with

S � xT,X,Ω, Y,Q,∆,Λy

that is time invariant, has a Moore-like output function (see Appendix B.2), and that has the
following characteristics (cf. Zeigler et al. [2000, pp. 139–44]):

1. The time base T is the set of real numbers R (or a subset of R).
2. The input set X is

X � m.XY b Y t∅u,

where m.XY b is a set of bags over the elements in m.XY , ∅ R m.XY and ∅ denotes the
nonevent.

3. The output set Y equals the input set X.

4. The state set Q is a set of total states with

Q � tpsp, sa, eq | sp P m.Sp, sa P m.Sa, 0 ¤ 0 ¤ m.tapspqu.

5. The set Ω of admissible input segments is the set of bags of all discrete event segments
over m.XY and T .

6. The state trajectories are piecewise constant segments over m.Sp �m.Sa and T .

7. The output trajectories are bags of discrete event segments over m.XY and T .

8. The state trajectory is defined as follows: Let

ω : xti, tf s Ñ X

with ω P Ω and X � m.XY b Y t∅u be a discrete event segment and let

q � psp, sa, eq

with q P Q be the state of the system S at time ti. Then we define

∆: Q� ΩÑ Q

by

∆pq, ωxti,tf sq �$''''''''''''''&''''''''''''''%

psp, sa, e� tf � tiq

if e� tf � ti m.tapspq ^ pEt P xti, tf s : ωptq � ∅q
∆ppm.δppsp, sa, e�m.tapspqq,∅q, 0q, ωrti�m.tapspq�e,tf sq

if e� tf � ti ¥ m.tapspq ^ p@t P xti, ti �m.tapspq � es : ωptq � ∅q
∆ppm.δppsp, sa, e� t� tiq, ppωptq, qqq, 0q,∅rt,ts
 ωxt,tf sq

if pDt P xti,minptf , ti �m.tapspq � eqq @t1 P xti, tq : ωpt1q � ∅q ^ ωptq � ∅
∆ppm.δppsp, sa, e�m.tapspqq, ppωptq, qqq, 0q,∅rt,ts
 ωxt,tf sq

if e� tf � ti ¥ m.tapspq ^ p@t1 P xti, ts : ωptq � ∅q ^ ωptq � ∅

144

9.6 Summary

with t � ti �m.tapspq � e and where the function

p : X �QÑ X

returns a bag of inputs taking the availability of ports into account with

ppωptq, qq �
¥

xPωptq

¤
ppn,vq Px

tppn, vq | Dpn P m.ppspqu. (9.24)

The first case refers to the absence of any event, where simply the elapsed time is advanced.
The second, third, and fourth case refer to an internal, external, and confluent (internal
and external event at the same time) event, respectively. Note that in all of the three latter
cases the state transition function of the model m is invoked, however different arguments
are passed to the function. In addition, global information—if used—plays a special role,
as it is set by the superordinate Macro-DEVS model. Alternatively, the Micro-DEVS
model can be adapted in a way that global information is provided as an additional input
by the environment, similar to the procedure of translating nonmodular multicomponent
DEVS models into modular DEVS models as described by Zeigler et al. [2000, pp. 161–2].

9. The output function Λ with Λ : Q Ñ Y of the system S is defined as follows: Let
q � psp, sa, eq be a state of the system S with q P Q, then we define

Λpqq �

#
p�pm.λpspq, qq if e � m.tapspq

∅ otherwise,

where the function p� : Y � Q Ñ Y returns a bag of outputs taking the availability of
ports into account and is defined just like the function p in Equation 9.24, because X � Y .

Due to the closure under coupling of ML-DEVS, the general system described by a Macro-
DEVS model can be specified as above, if we specify the Macro-DEVS model by the means
of a behaviorally equivalent Micro-DEVS model, as shown in Section 9.4.

9.6 Summary

This chapter presents our substantial revision of the modeling formalism ML-DEVS for
multi-level and variable structure modeling and its rigorous formal foundation. For this, the
chapter first describes how models are specified in the formalism and explains informally how
the models are executed. Then the execution semantics of ML-DEVS is described formally by
the means of an abstract simulator, as characteristic of a DEVS-based modeling formalisms.
Finally, the closure under of coupling of ML-DEVS is proven and the general I/O systems
specified by ML-DEVS are briefly outlined.
In my doctoral studies, ML-DEVS served, among other things, as a vehicle for the

implementation of the concept of intensional interface couplings as introduced in Section 8.7
in the form of multi-couplings. We show that intensional coupling definitions and interfaces
can be exploited for variable structure modeling and that they are an expressive and powerful
tool, particularly when it comes to maintaining structural consistency in variable structure
models. In addition to multi-couplings, ML-DEVS has further vertical coupling schemes that
allow a communication between different levels by the means of up- and downward causation
(multi-level modeling). These “vertical couplings” also have an intensional nature, since they
are evaluated and translated during simulation. However, the intensional coupling definitions
are not restricted to ML-DEVS. They can also be used in other modeling formalism, especially
when they are defined in a similar way (system theoretically) or make use of the reactive
systems metaphor.

145

Part III

Conclusion and Future Work

147

10 Conclusion

We simply don’t have enough data to
form a conclusion.

Mike A. Lancaster

This chapter concludes the thesis by summarizing and discussing the results. By doing so, we
come full circle.

149

10 Conclusion

10.1 Conclusion and Discussion

During my doctoral studies, we have investigated and evaluated possibilities as well as limita-
tions of combining traditional model composition1 —which assumes static model structures—
and a composition over time, as it occurs in variable structure models. Traditional model
composition, i. e., the construction of correct, executable simulation models from prede-
fined, exchangeable, retrievable, and often customizable model components via a composition
methodology or formalism, takes place at configuration time [Petty & Weisel 2003a], before
the execution of the respective model composition (simulation). Variable model structures
and interfaces, on the other hand, are a runtime (or execution time) phenomenon, i. e.,
structure changes can only occur during the execution of variable structure models [Hu et
al. 2005]. Although the modeler specifies the concrete circumstances under which a variable
structure model changes its structure, i. e., makes a transition from one structure incarnation
to another, the modeler does not know beforehand when these model transition exactly take
place during simulation2; How and when a model changes its structure in a simulation is
determined by the initial state and structure3 as well as its behavior, i. e., its state, input,
and output trajectory. The latter of which (the model behavior) we want to keep separate
from compositional descriptions in traditional model composition (cf. Röhl and Uhrmacher
[2008]). When thinking about components encapsulating models with a variable structure or
interface as well as time-variant composition and communication patterns, among others, the
following questions come to mind:

� How and to which extent can we reflect structure variability by a composition methodology
or formalism?

� What impact has structure variability on the assurance of correctness and structural
consistency of a model composition beyond the initial model state and configuration? Or in
other words: Can we still make statements on the correctness and structural consistency of
a model composition at configuration time, when the model structure can change during
simulation?

Another focus of my doctoral studies was the development, implementation, and evaluation
of a flexible, yet expressive coupling mechanism that allows specifying couplings in variable
structure and interface models concisely, without taking care about structural consistency
during model execution.
As starting points for our studies, i. e., the combination of traditional model composition

and models with time-variant structures and interfaces, we used the following two approaches:

1. The composition framework COMO (Component-based Modeling) and its underlying
formalism/language for specifying and analyzing components, component interfaces, and
compositions [Röhl & Uhrmacher 2008; Steiniger & Uhrmacher 2013].

2. Ideas about the modular-hierarchical modeling formalism ML-DEVS for (parallel) discrete
event, multi-level, and variable structure simulation [Steiniger et al. 2012; Steiniger &
Uhrmacher 2016; Uhrmacher et al. 2007].

The former approach does not only allow a platform- and modeling-formalism-independent4

specification of model compositions [Röhl 2006], in a compact, set-theoretical notation, it

1 That is a model composition as described by Verbraeck [2004] and others.
2 Please note that one of the main reasons for using simulation is that the corresponding model cannot be

examined analytically (cf. Law and Kelton [2000, p. 5]).
3 The ports, components, and couplings that are available at the beginning of a simulation.
4 The composition methodology shipped with COMO is virtually independent of a concrete modeling

formalism. However, the actual component models, i. e., the models that are encapsulated by the
components, need to be implemented in suitable source formalisms, so that an executable simulation model
in a target formalism can be derived from the compositional descriptions and the model implementations.
These source formalism has at least to support the concept of ports.

150

10.1 Conclusion and Discussion

also incorporates component interfaces as first-class abstractions, emphasizing the role of
interfaces in modeling complex systems. The explicit specification of such interfaces allows
us to (i) compose components that adhere to their interface specification regardless of their
actual implementation following Verbraeck [2004] and (ii) check the correctness of a model
composition before an executable simulation model is derived and executed [Röhl & Uhrmacher
2008]. However, the approach assumes a static model structure and time-invariant interfaces
(i. e., static ports) [Röhl 2008, p. 113]. The author notices that all checks for analyzing the
(syntactic) correctness of a composition are carried out before the actual model execution. In
the case of a variable composition and dynamic interfaces, this would mean to analyze all
possible incarnations of the model structure and interfaces.
The modeling formalism ML-DEVS, on the other hand, incorporates variable structures

and interfaces as well as multi-level modeling into parallel discrete event simulation, in the
tradition of P-DEVS [Chow & Zeigler 1994]. Both structure variability and multi-level
modeling are promising for modeling complex adaptive systems, such as smart environments,
eukaryotic cells, or entire populations.

In Chapter 7 and Steiniger and Uhrmacher [2013] we show that, if we exclude the opportunity
to create new, arbitrary ports and components during model execution, the superset of potential
ports and components that can become available during execution is know beforehand and
thus can be specified at that time. Therefore, we can specify the interface of a component
with a variable interface by defining all its ports regardless of their availability during model
execution. Making use of a superset of ports in an interface specification does not conflict
with the idea of a well-defined interface, since all possible communication capabilities of a
component are part of its interface specification and thus can be analyzed before and when
deriving executable simulation models. We pursue the same approach when specifying the
potentially available subcomponents of a composite component, the internal composition
of which can change during simulation. In addition, the initially available components and
ports need to become a part of the compositional description to allow us deriving executable
simulation models from these descriptions and the implementations of the corresponding
component models5. Based on the initially available components and ports, we can derive
the initial model structure, which is necessary for executing the derived model properly, i. e.,
running a simulation.

Another important aspect of compositions with a variable structure are the “communication
channels” between the components, as these channels (i. e., couplings or connections) can
change as well; either as a direct result of the variable composition (a model component
that serves as a communication partner for another model component may exist at a certain
time but not at another) or by the desire of the modeler (who may want to model non-
permanent couplings or connections). To reflect this structure variability in the specification
of a communication structure, we introduced the novel concept of an intensional coupling
definition, which is based on port names [Steiniger & Uhrmacher 2013] and inspired by
multi-couplings as used in ρ-DEVS [Uhrmacher et al. 2006] and the original ML-DEVS
[Uhrmacher et al. 2007]. These intensional coupling definitions do not describe explicit,
concrete couplings, but serve as templates from which concrete couplings can be derived
during model execution. The availability of ports with matching names and value ranges
implies the existence of concrete couplings, into which intensional couplings are eventually
transformed. This transformation of intensional couplings need to be done by the simulation
algorithm whenever the structure of the model compositions changes during simulation,
so whenever events occur; which is and cannot be the responsibility of COMO. Hence,
the target formalism for the transformation of compositional descriptions and component

5 This implies that there is a transformation between each source formalism and the target formalism, which
creates a behaviorally equivalent model. Vangheluwe [2000], Feng, Zia, and Vangheluwe [2007], Syriani
and Vangheluwe [2010], or Syriani and Vangheluwe [2013] show that transformations between various
modeling formalisms exist and DEVS variants are particularly suitable as a common target formalism.

151

10 Conclusion

implementations needs to incorporate such an intensional coupling mechanism as well. At this
point, the original version of ML-DEVS came into play, because it served as a suitable target
formalism that already made use of an intensional couplings. Since only consistent couplings
are derived and established during simulation (see below), structural consistency is guaranteed,
already at configuration time (correctness by construction)6, as long as the implementations
of the involved components adhere to the corresponding compositional descriptions7. The
fact that the superset of ports and the superset of components are known at configuration
time, allows us to analyze the consistency of potential coupling candidates regardless of their
actual existence during execution. This is useful to indicate potential modeling errors, which
will be otherwise unnoticed, since inconsistent couplings are not established.

Another, crucial contribution of my work is the fundamental revision and extension of
the multi-level modeling formalism ML-DEVS and its formal foundation, as described in
Chapter 9. As mentioned earlier in this section, ML-DEVS served as a target for the model
transformations and synthesis carried out by the also revised composition framework COMO
(see Section 7.4), when creating executable simulation models. The formalism was also used
as a suitable source formalism for “implementing” the components, which were eventually
composed. In addition, we also used ML-DEVS detached from COMO to directly create
multi-level, discrete event, and variable structure models based upon which simulation studies
were conducted (see Krüger et al. [2012] and Steiniger et al. [2012]). The extension of ML-
DEVS primarily involved the elevation of interfaces and the introduction of a more expressive
intensional coupling definition, i. e., multi-couplings, which is based on runtime instances of
interfaces and which reflects and surpasses the aforementioned coupling mechanism introduced
in COMO. Although this mechanism is based on ideas from ρ-DEVS [Uhrmacher et al.
2006], the original ML-DEVS [Uhrmacher et al. 2007], and our revision of COMO [Steiniger
& Uhrmacher 2013], it extends these ideas considerably. In the revision of COMO, we
merely use port names for defining couplings, whereas in the revised ML-DEVS we can make
use of identifiers and public states of model components to define and constrain couplings.
Moreover, we can incorporate arithmetic and other functions in the coupling definition (see
the examples in Section 9.2.2). This allows the modeler to specify variable structure models
more naturally and concisely, without the need to introduce auxiliary “marker ports” or
encode semantic information about the model state into port names on the hand and taking
care about structural consistency at the other hand, which is otherwise hard to achieve and
assure (cf. Muzy and Zeigler [2014]). As described earlier, the concrete coupling scheme is
derived from the intensional coupling definition by the simulation algorithm during mode
execution, whenever the structure of the composed model changes. For this, only model
components and ports that are available after a structure change are considered when deriving
the new concrete coupling scheme from the intensional coupling definition. The consistency
of a derived concrete coupling scheme is guaranteed by the corresponding transformation,
which takes all constraints and conditions into account. A coupling that would violate any of
these constraints and conditions is not created in the first place (e. g., if the value ranges of
ports are not matching). Although the coupling mechanism described above was implemented
in ML-DEVS, it can be used by any other system-theoretic model approach following the
metaphor of reactive systems, such as SysML. In addition, an intensional coupling definition
can also be used in static structure models. Here, the transformation of an intensional coupling
definition into a concrete coupling scheme has to be performed only once, at the beginning of
the model execution.

6 For instance, a concrete coupling between ports whose names match is only established if all other coupling
conditions are fulfilled, i. e., the ports are compatible and their directions are correct.

7 This adherence refers to the refinement relationships described by Röhl and Uhrmacher [2008].

152

11 Future Work

The limiting surface of one thing is the
beginning of another.

Leonardo da Vinci

This chapter mentions and discusses interesting topics and questions that arose during my
doctoral studies, which, however, I was not able to follow-up and address due to the focus of
the thesis and the limited time.
Some of these topics, such as the usability and intelligibility of modeling approaches, are

research topics on their own, worth of further investigations and studies, e. g., comprehensive
user studies. In addition, the usability and intelligibility of a modeling approach concerns
other disciplines such as behavioral science just as much as computer science, if not more,
asking for an interdisciplinary cooperation of experts from the respective disciplines.

153

11 Future Work

11.1 Usability Evaluation of Modeling Approaches

When developing a novel modeling approach, the creators face the challenge of motivating and
evaluating this novel approach, properly and unbiasedly, to show that it offers benefits with
respect to the existing modeling methodology (scientific principles and research practices).
This task is anything but easy or convenient.

From a rather theoretical or technical perspective, we can analyze the “expressive power”
of a modeling approach; in the sense whether phenomena of interest can in principle be
expressed in a certain modeling approach or methodology. Since modeling can be considered
as a computational problem, we can determine the underlying formal model of computation,
for a given modeling approach (modeling formalism). The Church–Turing thesis basically
asserts that any function that can be computed by a computer can also be computed by a
Turing machine (cf. Kleene [1967, p. 232] or Copeland [2015])1. For instance, the π-calculus,
a general-purpose modeling formalism for modeling concurrent processes, is Turing complete
[Milner 1992]. However, “beware of the Turing tar-pit in which everything is possible but
nothing of interest is easy” [Perlis 1982]. Hence, assessing a modeling approach by its mere
expressive power, in terms of computability, is often not useful, especially when the modeling
approach is (already) Turing complete.

As modelers we are more interested in the practical expressivity as defined by Farmer [2007],
i. e., “the measure of how readily ideas can be expressed in the logic [modeling approach].”
In other words, practical expressivity allows us to express the significant model hypotheses
easily and concisely and is closely related to the notion of conciseness or succinctness (see
also Warnke et al. [2015]).

Often modeling methodologists argue that their modeling approaches are more intuitive or
easier to use2, cf. Huhns and Singh [1998], Kasputis and Ng [2000], Silverman et al. [2001], Bar-
ros [2003], or Maus et al. [2011], without, however, elaborating on these personal assessments.
This does not necessarily mean that these assessments are incorrect or incomprehensible
from the perspective of the methodologists, it simply makes it hard to verify these claims
impartially. To evaluate the intuitiveness, usability, or ineligibility of a modeling approach
unbiasedly, extensive user studies are required, which are costly. Designing such user studies
is not trivial and requires additional psychological expertise on top of knowledge about the
modeling approach at hand. Aggravating this situation, not just any users can be asked to
participate in such user studies, but users with a background in modeling. Moreover, some
users may already have worked with similar modeling approaches, whereas other may have
worked with entirely different modeling metaphors. For instance, modeling in the π-calculus
or its variants (concurrent processes) is quite different from modeling in DEVS or its variants
(reactive systems). Regardless of the users’ background, there will also always be a learning
curve when using a novel modeling approach for the first time. However, the steepness of this
learning curve may differ from modeling approach to modeling approach.

We think that the aforementioned challenges and considerations are the reason why we do
not find much work dedicated to an empirical evaluation of the usability or ineligibility of
modeling approaches, especially in the realm of modeling and simulations. Figl, Mendling,
and Strembeck [2009] or Schalles [2013] are some exceptions, which, however, focus on visual
modeling approaches. We think that these visual modeling approaches as well as domain-
specific modeling languages are easier to learn and understand, also by novice modelers, than
more formal or general-purpose modeling approaches (cf. Steiniger et al. [2014] or Warnke et
al. [2015]); where ML-DEVS has to be counted as a representative of the latter group.

1 Even more, Kaye, Laflamme, and Mosca [2007, p.6̃] state that “a quantum Turing machine can efficiently
simulate any realistic model of computation.”

2 than existing or established modeling approaches

154

11.2 Intensional Definitions

11.2 Intensional Definitions

In Chapter 9, we have briefly discussed that an extensional definition of a set of potential
components of a coupled model in a hierarchical modeling formalism, such as ML-DEVS,
does not cope well with the desired flexibility by “creating model components on demand,”
when we are dealing with variable structures. So instead of enumerating the defining tuples
of all potential components of a coupled model explicitly and in advance, we propose an
intensional definition of a set of (sub-)components, denoted by C in the following. This means,
by defining properties all admissible components (elements of the set C) must satisfy; in
terms of a set-builder notation in set theory (cf. Rosen [2007, pp. 111–2]) and similar to the
intensional definition of couplings in hierarchical models as introduced in Section 9.2.2. In the
most general case, the set C contains all conceivable and valid model definitions in a certain
modeling formalism, such as ML-DEVS. Hence, C can be considered as a universe as known
from set theory; a universe of models. From a modeler’s perspective, however, it is desirable to
constrain the kind of (sub-)models that can be created and work with a subset of this universe
rather than the universe itself. For instance, mitochondria—eukaryotic cell organelles—do not
contain technical components such as lithium-ion batteries. This limitation can be achieved
by using predicates (Boolean-valued functions) that take the “types” or other properties of
models into account and indicate which model belongs to the set C. By types we refer to
a different concept than the traditional distinction between atomic and coupled models in
the realm of DEVS. Here, types shall refer to classes of models the members of which share
common properties, such as the availability of certain ports, or similar behavior patterns.
Moreover, such types are specific to the application domain; in a cell we find different types
of submodels than in a smart environment. In ML-DEVS, we can make use of the runtime
interfaces and accessible states of models for defining such types or predicates.

Example 11.2.1
Suppose we want to model a mitochondrial network (such as described in Chapter 9) of
an eukaryotic cell, while ignoring all other cell components (i. e., other organelles of this
cell that are not mitochondria). In this case, the set of components, denoted by C, of the
coupled model representing the cell should only consists of mitochondria and nothing else.
To achieve this, we can define the set C as follows:

C � tc P C� | mitopcqu, (11.1)

where C� is the superset of all conceivable and consistent Micro-DEVS models (and Macro-
DEVS models due to the closure under coupling of ML-DEVS) and

mito : C� Ñ tJ,Ku (11.2)

is a unary predicate determining whether or not a Micro-DEVS model is a mitochondrion
and thus a member of the set C. The actual definition of the predicate, i. e., the mapping,
is not easy and thus omitted here intentionally.

Here, a higher-level constraint language, in the style of OCL3, could be helpful for modelers
to easily define such predicates.

As Section 7.4.1 indicates, intensional definition techniques can also be employed for defining
the superset of ports, i. e., the interface of model components.

3 Object Constraint Language

155

11 Future Work

11.3 Improvements on Multi-Level DEVS

When introducing ML-DEVS and an intensional coupling mechanism in Chapter 9, we were
focusing on a sound and rigorous formal definition4 rather than on providing a particularly
intuitive modeling formalism. Although ML-DEVS is powerful and allows us to explicitly
and concisely express phenomena such as variable structures and emergent behavior, we
acknowledge that the learning curve of creating executable simulation models by using the
formalism can be rather steep, due to the formalism’s complexity, especially for modelers
without a background in DEVS. In addition to the idea outlined in Section 11.2, we briefly
discuss, in the following, two further ideas that may can help to decrease the steepness of the
learning curve.

11.3.1 Activation Events

In ML-DEVS, upward activation is achieved by the actup-function of Macro-DEVS models.
This function checks the fulfillment of invariants that are defined on the accessible states of
the components of a Macro-DEVS model and the Macro-DEVS model’s private state
(see Section 9.2.2). When such invariants are violated the upward activation function actup
returns “J” (i. e., true) and the state transition function of the respective Macro-DEVS
model is triggered (i. e., the Macro-DEVS model is activated). However, the information
about which invariants are violated is not passed to the state transition function. If necessary,
the modeler needs to re-evaluate the invariants in the state transition function to determine
which of the invariants were violated. This ultimately leads to a duplication of the evaluation
logic (in the upward activation and state transition function), which makes the definition of
the state transition function more verbose than necessary and can lead to inconsistencies.

To ease the modeling, we can introduce another type of events, i. e., activation events, which
can occur in Macro-DEVS models. The upward activation function can then be defined in
the way that it maps to bags of these activation events instead of truth values, i. e.,

actup : Sp � Sn Ñ Ab,

where A is a set of activation events. If invariants are violated the bag of activation events is
nonempty and the Macro-DEVS model is triggered (i. e., the empty bag is returned if the
Macro-DEVS model is not activated upward). At the same time, the signature of the state
transition function δ of a Macro-DEVS model can be extended by these activation events:

δ : Q� Sn �XY b �Ab Sp � Sa.

Each activation event represents one invariant that is violated, i. e., the event that causes
the upward activation of the Macro-DEVS model. Thus, the modeler does not need to
re-evaluate invariants. The information about violated invariants, in terms of activation events,
is directly accessible in the state transition function, making upward activation even more
explicit in ML-DEVS than it already is.

Such an introduction of activation events entails a corresponding adaptation of the abstract
simulator of ML-DEVS or the demonstration of how to transform a ML-DEVS model with
activation events into one without (as introduced in Section 9.2).

11.3.2 Model Specification

As Section 9.3 mentions, there exists a Java-based representation of the ML-DEVS model
specification, which is implemented as a plug-in for the modeling and simulation framework

4 In the tradition of other DEVS variants or DEVS-based modeling formalism.

156

11.3 Improvements on ML-DEVS

JAMES II [Ewald, Himmelspach, Jeschke, Leye, & Uhrmacher 2010; Himmelspach & Uhrma-
cher 2009]. Hence, creating executable simulation models in ML-DEVS means to implement
and extend specific interfaces and abstract classes in Java, respectively. This may be “easier”
than using the set-theoretic notation described in Section 9.2, but still requires a certain skill
set and some training.

In our opinion, there are two promising approaches that could ease the model creation and
improve the overall modeling experience, particularly for novices in the DEVS realm:

� Enabling modelers to create models through a sophisticated graphical model editor (i. e.,
visual modeling).

� Incorporating more natural and intuitive modeling languages to create models that are
eventually transformed into the actual modeling formalism; here ML-DEVS.

Over the last decades a lot of work was dedicated to enabling the graphical specification
of models, using some sort of GUI. Some of this work directly focuses on DEVS-based
modeling [Fard & Sarjoughian 2015; Ighoroje, Mäıga, & Traoré 2012; Praehofer & Pree 1993;
Risco-Mart́ın, de la Cruz, Mittal, & Zeigler 2009; Sarjoughian & Elamvazhuthi 2009; Wainer
2002; Wainer & Liu 2009], whereas other work is more general [Buss 1996; Buss & Blais 2007;
Rivera, Duran, & Vallecillo 2009]. Most of these approaches use a metaphor of components5

that can be interconnected with each other through connections 6 to express the structure
of a complex model This is rather straightforward and especially when defining the model
structure at the level of coupled systems. However, the challenging part is enabling the
modeler to specify the actual behavior of the individual model components by using suitable
visual metaphors. Especially since we have to keep in mind, that DEVS and its variants only
provide the theoretical frame for manipulating the state or state variables of a model, but
do not provide specific instructions on how to do so. In fact, the modeler can incorporate
arbitrary functions to change state variables within state transitions.

The second general approach to ease the model creation is to use a more intuitive modeling
language on top of the set-theoretic model specification of ML-DEVS. For Cell-DEVS
[Wainer, Frydman, & Giambiasi 1997], a DEVS-variant that allows spatial modeling, such a
specialized, high-level modeling language exists [Ameghino, Troccoli, & Wainer 2001; Rodriguez
& Wainer 1999] allowing the modeler to specify Cell-DEVS models more conveniently. Such
a modeling language can be more general or specific to a certain domain. The latter leads us
to domain-specific modeling languages, which are gaining more and more popularity in recent
years. A domain-specific (modeling) languages make use of idioms and abstractions used and
established in the corresponding domain, for a better understanding and easier modeling in
the domain [Walter, Parreiras, & Staab 2014]. Examples of such domain-specific modeling
languages are ML3 [Warnke et al. 2015] from computational demography and ML-Rules Maus
et al. [2011] from systems biology.
However, both approaches, visual modeling and specialized modeling languages, need to

be thoroughly evaluated before we can draw objective conclusions on their intuitiveness and
convenience (see Section 11.1).

5 depicted as rectangles
6 depicted as connection lines

157

Part IV

Appendices

159

A Mathematical Notations and Concepts

As noted in Chapter 2, the subject of modeling are systems, which can be real or imaginary.
“The general formal properties of systems, closed and open systems, etc., can be axiomatized in
terms of set theory” [von Bertalanffy 1969, p. 21]. Therefore, “set theory provides the means
to construct [modeling] formalisms” Zeigler [1984, p. 22] and, thus, modeling formalisms, such
as the one presented in this thesis, are often defined by using concepts from set theory and
algebra (algebraic specification). So in the words of Wymore [1967, p. 3]:

Only if mathematical rigor is adhered to, can systems problems be dealt with effec-
tively, and so it is that the system engineer must, at least, develop an appreciation
for mathematical rigor if not also considerable mathematical competence.

For this reason, we describe and define, in the following, the most important mathematical
concepts, especially those whose meanings may not always be clear or vary in the literature.
Additionally, we introduce the notation that we use in the remainder of the thesis (particularly
in the Chapters 8 and 9). For more details about fundamental mathematical concepts, e. g.,
sets, relations, or functions, refer to standard textbooks such as Devlin [1993] or Jech [1997].

A.1 Set- and Function-Theoretic Concepts

In the following section, we introduce set- and function-theoretic concepts that play a crucial
role for defining DEVS-based modeling formalisms, especially those that are based on P-DEVS
or defined at the level of structured system.

A.1.1 Supersets

In set theory, a superset is the antonym of a subset. According to Hrbacek and Jech [1999,
p. 6], a set X is a subset of Y , denoted by X � Y , if and only if every element of X is an
element of Y , i. e.,

@z : z P X ñ z P Y .

At the same time, Y is the superset of X, denoted by Y � X, meaning that Y contains at
least all elements of X. If X � Y , X is a proper subset of Y and Y is a proper superset of X
denoted by X � Y and Y � X, respectively. Figure A.1 illustrates the relation between a
subset and superset in terms of an Euler diagram.

YX

Figure A.1: An Euler diagram showing that X is a proper subset of Y , i. e., X � Y and
conversely Y is a proper superset of X, i. e., Y � X.

161

A Mathematical Notations and Concepts

A B

Coupled Model

C A

Coupled Model

C A

Coupled Model

C D E

Composi�on at �me t Composi�on at �me t Composi�on at �me t

Coupled Model

A B C D E

Superset of components

Structure

Change

Structure

Change

1 2 3

Figure A.2: Three different possible compositions of a coupled model with a variable
composition at three different instants (top). The superset of all possible components for
the three depicted compositions (bottom).

From a certain point of view, supersets are quite similar to universal sets (or universes),
which are sets containing all elements under consideration1. These universal sets are the
supersets of more specific sets that are of interest in a certain domain and which are often
defined explicitly.

In the context of time-variant model structures, supersets prove to be useful. For instance,
even if the composition of a composed model (or coupled model) changes during time, we
often know the set of all possible components that may exist at some point beforehand. In
such cases, we can define a superset of components regardless of their availability during
simulation. The actual availability of the different components then needs to be determined
for each possible situation, i. e., model state, by a dedicated function. Figure A.2 shows the
relation between the availability of components and the superset of components.

Even if components shall be created more dynamically or in great numbers, there are often
certain constraints that can be used for defining or refining a superset of components, e. g., by
using intensional definition techniques as described in Section 3.3. For instance, eukaryotic
cells do not contain other cells. However, the question is, how these constraints can be defined
conveniently and concisely.

We can also use supersets when defining models with variable ports. Similar to a variable
composition, we often know beforehand which ports can, in principle, become available. Hence,
we can define the superset of all possible ports regardless their availability during simulation.

A.1.2 Families of Sets and Indexed Families of Sets

A set whose elements are sets themselves, i. e., a set of sets, is often called a family of sets.
So, in set theory, a family is simply a set of sets, such as a power set. Given an arbitrary set
A, the power set of A, denoted by P pAq or 2A, is the family of all subsets of A (including the
empty set, denoted by ∅ or t u).

1 A universal set does not need to contain all elements, which leads to Russell’s paradox [Russell 1903, §106]
implying that a universe cannot exist in naive set theory.

162

A.1 Set- and Function-Theoretic Concepts

Example A.1.1 (Power Set)
Let A be the set ta, bu. The power set of A, 2A, is defined by the following family of sets:

t u, tau, tbu, ta, bu
(
.

Based on this description, a family of sets is a proper set, in which each element occurs exactly
once. However, sometimes families of sets are described as collections of sets (rather than sets
of sets), as they may contain certain elements (also called members) more than once, which
violates the notion of a set. This brings us to the idea of indexed families of sets. Adapting
Sundstrom [2013, p. 268], we define an indexed family of sets as follows:

Definition A.1.1 (Indexed Family of Sets)
Let I be a nonempty set and suppose that for each i P I there exists a corresponding set
Ai. The family of sets

tAiuiPI or tAi | i P Iu

is called an indexed family of sets indexed by I. Each i P I is called index and I is the
indexing set (or index set).

In contrast to the previous notion of a family of sets, an indexed family of sets does not
exclude the possibility that for two different indexes i and j, with i � j, the corresponding
sets Ai and Aj are equal. However, the following has to hold:

@i, j P I : i � j ñ Ai � Aj .

Remark. The idea of attaching indices to elements of a set (which can be sets) allowing
these elements to occur more than once is similar to the underlying idea of disjoint unions
(cf. Appendix A.1.3), but different from the idea of bags (cf. Appendix A.1.4).

Since there is a mapping between indices and sets, i. e., each index of the indexing set is
associated with a member of a regular family of sets, we consider an indexed set of families as
a function that maps indices to corresponding sets (cf. Halmos [1960, p. 34]). This view leads
to the following, alternative definition, which is based on Goodfriend [2005, pp. 58–9]:

Definition A.1.2 (Indexed Family of Sets as a Function)
Let I be a nonempty set and let A be a nonempty set of sets, i. e., a regular, non-indexed
family of sets. An indexed family of sets indexed by the set I is a function A with

A : I Ñ A.

This means that, for each index i in I, Apiq P A. For notational convenience, we also write
Ai instead of Apiq. Similar to Definition A.1.1, we also write tAiui P I to denote the indexed
family of sets A indexed by the set I.

Definition A.1.2 allows us to map different indices to the same member of the family A.
However, an indexed family of sets can still describe an injective function such that:

@i, j P I : i � j ô Ai � Aj .

Remark. Some authors do not explicitly distinguish between families of sets and indexed
families of sets and often refer to the latter when talking about families of sets. Herein, we
distinguish between both concepts explicitly.

163

A Mathematical Notations and Concepts

A.1.3 Disjoint Unions or Disjoint Sums

A disjoint union (or disjoint sum) is a binary operator, denoted by `, that takes two arbitrary
sets and combines all elements of both sets while retaining the original set membership as
a distinguishing characteristic (usually some sort of index) of the resulting union set (cf.
Uhrmacher [2001]).

Definition A.1.3 (Disjoint Union)
Let A and B be two arbitrary sets. The disjoint union of A and B, denoted by A`B is
defined as follows:

A`B � pA� t1uq Y pB � t2uq .

Instead of A`B, we also find the notations A\B or AY� B to denote the disjoint union
of A and B in the literature. Here, we adhere to the `-notation.

Please note that we can also choose other, possibly non-numerical, values (e. g., strings) as
distinguishing characteristic, i. e., to discriminate between the memberships to the underlying
sets.

Example A.1.2
Given the sets A � ta, b, c, du and B � ta, b, e, fu, the disjoint union of A and B is then,
according to Definition A.1.3, defined as follows:

A`B �

pa, 1q, pb, 1q, pc, 1q, pd, 1q, pa, 2q, pb, 2q, pe, 2q, pf, 2q

(
.

Based on indexed families of arbitrary sets (see Section A.1.2), we can generalize a disjoint
union to an n-ary operation.

Definition A.1.4 (Disjoint Union of an Indexed Family of Sets)
Let tAiuiPI be an indexed family of arbitrary sets indexed by the set I, then the disjoint
union of this indexed family, denoted by

À
iPI Ai, is defined byà

iPI

Ai �

pa, iq | a P Ai

(
.

A.1.4 Bags and Bag Sets

A bag or multiset is a generalization of the concept of a set, in which elements can occur
multiple, but finite times [Syropoulos 2001]. According to Syropoulos, a bag is defined as
follows:

Definition A.1.5 (Bag)
A bag A over a set A is a pair

xA, fy,

where A is the set of elements that can occur in the bag and f: AÑ N0 is a function that
indicates the multiplicity of the elements of A in the bag A, i. e., the number of occurrences
of the elements, where N0 denotes the set of natural numbers including 0.

Let A � xA, fy be a bag; we will call the set A also the base set of the bag A. A set B � A is
called the support of the bag A, if @a P A : fpaq ¡ 0ñ a P B and @a P A : fpaq � 0ñ a R B.

Notation A.1.1 (Bags). Like Syropoulos [2001], we also use the square bracket notation
to write down bags and distinguish them from ordinary sets. For instance, we write

164

A.1 Set- and Function-Theoretic Concepts

A � ra, a, a, b, c, cs for the bag A � xta, b, cu, tpa, 3q, pb, 2q, pc, 1quy, where the set ta, b, cu is
the support of A. Please note that the above notation is ambiguous in a way that we can only
derive the support of the respective bag but not the base set. The bag A � ra, a, a, b, c, cs
could also represent the bag xta, b, c, du, tpa, 3q, pb, 2q, pc, 1q, pd, 0quy, whose support is also
the set ta, b, cu.

If the multiplicity of all elements of the base set A of bag A is 0, then A refers to the empty
bag, denoted by ∅ or r s. By definition, the support of an empty bag is the empty set.
In addition to bags, Syropoulos [2001] defines a number of operations on bags. Such an

operation is the sum of two bags, which we will use later.

Definition A.1.6 (Sum of Two Bags)
Let A � xA, fy and B � xA, fy be two bags with the same base set (A). The sum of A
and B, denoted by AZ B, is another bag

C � xA, hy,

where

@a P A : hpaq � fpaq � gpaq.

The sum operation has the following properties:

– Commutative, i. e., AZ B � B ZA;

– Associative, i. e., pAZ Bq Z C � AZ pB Z Cq;
– Their exists a bag, the empty bag ∅, such that AZ∅ � A.

In addition to the sum of two bags, we define the sum of n bags with n ¡ 2.

Definition A.1.7 (Sum of n Bags with n ¡ 2)
Let A1 � xA, f1y, A2 � xA, f2y, . . . , An � xA, fny be n bags, with n P N, that have the
same base set A. The sum of these bags, denoted by

�n
i�1Ai, is the bag

A � xA, fy,

where

@a P A : fpaq �
ņ

i�1

fipaq.

Let A be an arbitrary, nonempty set. We define Ab as a set of all possible bags (bag set)—
including the empty bag—that have A as base set. Thus, Ab formally defines a proper set
whose elements are bags.

Notation A.1.2. Instead of using calligraphic letters, such as A, to denote elements of a bag
set, we also write ab P Ab.

Note that the aforementioned bag set Ab is different from the set PA defined by Syropoulos
[2001] (which can be viewed as a power set of a bag), as the latter is restricted to bags whose
support is the set A, i. e., PA � Ab.

Remark. Bag sets were introduced in the DEVS realm by the need to express the inputs of
models in P-DEVS variants (cf. Chow and Zeigler [1994] or Zeigler et al. [2000, pp. 142–3]),
which can contain the same input several times (see Section 4.2). However, the respective
literature presents a rather informal definition of a bag set (set of bags). In addition, Xb is
sometimes erroneously described as a bag over the elements in the set X and not as a set of
bags.

165

A Mathematical Notations and Concepts

A.1.5 Domains, Ranges, Co-Domains, and Images

Domains and ranges of relations and functions play a crucial role in the following chapters,
especially in Chapters 8 and 9. Relations and their domains and ranges can be used to give a
formal, set-theoretic definition of a function (cf. Devlin [1993, p. 12]).

Definition A.1.8 (Domain of a Binary Relation)
Let R be a binary relation with R � A�B and A and B being arbitrary sets. We define
the domain of R, denoted by dompRq, by

dompRq �

a P A | D b P B : pa, bq P R

(
.

The domain of a relation R is sometimes also denoted by domainpRq or Domainpfq.

Similarly, we can define the range of a binary relation:

Definition A.1.9 (Range of a Binary Relation)
Let R be a binary relation with R � A�B and A and B being arbitrary sets. We define
the range of R, denoted by ranpRq, by

ranpRq �

b P B | D a P A : pa, bq P R

(
.

The range of a relation R is sometimes also denoted by rangepRq or RangepRq.

The above definitions of the domain and range of a binary relation can be generalized for
pn� 1q-ary relations with n ¡ 1, as done by Devlin [1993, pp. 12–3].

Definition A.1.10 (Domain of a n-ary Relation with n ¡ 2)
Let R �

�n
i�1Ai be an n-ary relation on the n-fold Cartesian product of the arbitrary sets

A1, A2, . . . , An with n ¡ 2 and n P N. The domain of R is defined by

dompRq :�

#
pa1, a2, . . . , an�1q P

n�1¡
i�1

Ai

���� Dan P An : pa1, a2, . . . , an�1, anq P R

+
.

Hence, we can still think of an n-ary relation (with n ¡ 2) such as above as a set of ordered
pairs, where the first component is a pn� 1q-tuple and the second component a single value,
i. e.,

R �

ppa1, a2, . . . , an�1q, anq | @i P r1, ns : ai P Ai

(
.

Notation A.1.3 (Finite Cartesian Products). In case we are talking about a finite, n-fold
Cartesian product of the sets A1, A2, . . . , An with n P N, such as in Definition A.1.10, we
also write

n¡
i�1

Ai

instead of

A1 �A2 � . . .�An.

The range of an n-ary relation is defined correspondingly:

166

A.1 Set- and Function-Theoretic Concepts

Definition A.1.11 (Range of a n-ary Relation with n ¡ 2)
Let R �

�n
i�1Ai be an n-ary relation on the n-fold Cartesian product of the arbitrary sets

A1, A2, . . . , An with n ¡ 2 and n P N. The range of R is defined by

ranpRq :�

#
an P An

���� Dpa1, a2, . . . , an�1q P
n�1¡
i�1

Ai : pa1, a2, . . . , an�1, anq P R

+
.

In addition to relations, functions are of particular interest in the remainder of the thesis.
Functions are relations with certain characteristics, more specifically: “An n-ary function on
a set x is an pn� 1q-ary relation, R, on x [x is an pn� 1q-fold Cartesian product] such that
for every a P dompRq there exits exactly one b P ranpRq such that pa, bq P R” [Devlin 1993,
p. 13]. Instead of pa, bq P R, we write Rpaq � b. We can define the domain and range of a
function similarly as done above.

Definition A.1.12 (Domain of a Function)
Let f be a (total) function with

f : AÑ B,

then the set A is the domain of the function f , denoted by dompfq, i. e.,

dompfq � A.

Note that the set A in the above definition could also refer to an n-fold Cartesian product,
then the domain of the function would be this product. According to Khoussainov and Nerode
[2001, p. 7], we define the range of a function as follows:

Definition A.1.13 (Range of a Function)
Let f be a (total) function with

f : AÑ B.

The range of the function f , denoted by ranpfq, is a subset of the set B, i. e., ranpfq � B,
that is defined by

ranpfq �

fpaq | a P A

(
.

So the range of function f in the above definition does not have to equal set B (however it
can). We call the set B also the co-domain of the function f , which is often distinguished
from the function’s range.

Definition A.1.14 (Co-Domain of a Function)
Let f be a (total) function with

f : AÑ B,

then the set B is the co-domain of the function f , denoted by cdmpfq, i. e.,

cdmpfq � B.

Please note that the range of a function sometimes refers the function’s co-domain (i. e.,
ranpfq � B). Herein, we will use the range in the more common meaning of the image of a
function (cf. Halmos [1960, p. 31]), which is another function-theoretic concept.

167

A Mathematical Notations and Concepts

Definition A.1.15 (Image of a Function)
Let f be a (total) function with

f : AÑ B.

If U � A, we define the image of U under f , denoted by f rU s, by

f rU s �

fpaq | a P U

(
.

When we compare the definition of a function’s range with that of its image, it becomes
apparent that, for a function f with f : AÑ B:

ranpfq � f rAs,

thus the image of A under f is the range of f [Halmos 1960, p. 31].

A.1.6 Partial Functions

In a function, each argument, i. e., element of the function’s domain, has to be mapped to a
value of the function’s co-domain (in other words: a function describes total mapping). Hence,
we call such a function also a total function.

Partial functions generalizing the concept of total functions by relaxing the totality of their
definition (i. e., a total function is defined for all elements of the function’s domain). Based on
Pierce [2002, p. 16], we define a partial function as follows:

Definition A.1.16 (Partial Function)
A partial function f from A to B is, denoted by

f : A B,

is said to be defined on an argument a P dompfq with dompfq � A and fpaq P B, otherwise
the function is undefined, denoted by

fpa1q � undef

with a1 P Azdompfq.

So at a first glance, both kinds of functions seem to be similar, as they are both defined for
all elements of their respective domains. However, the subtle difference between total and
partial functions lies in their domains.

Definition A.1.17 (Domain of a Partial Function)
Let f be a partial function with

f : A B.

The domain of the partial function f , denoted dompfq, is some subset of the set A,
i. e.,

dompfq � A.

If dompfq � A, then the partial function f is a total function.

The range and co-domain of a partial function are defined just like for total functions (see
Section A.1.5).

168

A.2 Structuring Sets

Since a partial function is a total function regarding its domain, we can turn any partial
function f with f : A B into a total function f 1 that is defined by

f 1 : A1 Ñ B; f 1paq ÞÑ fpaq

with A1 � dompfq. Alternatively, we can define the partial function f by the total, piecewise
function

f2 : AÑ Bundef

with

f2paq �

#
fpsq if s P dompfq

undef otherwise,

where Bundef � B Y tundefu and undef is a special element that is not in B. So all elements
of A that are not in the domain of f are mapped to the special element undef. Note that
instead of undef any other element that is not in S can be used.

A.1.7 Projections and Projection Functions

In general, a projection refers to a mapping of a set or structure into a subset or a substructure.
Jech [2002, p. 34] writes that

[. . .] a set B is a projection of a set A if there is a mapping of A onto B. Note
that B is a projection of A if and only if there is a partition P of A such that
|P | � |B|. If |A| ¥ |B| ¡ 0, then B is a projection of A.

Cartesian products are one of this structures on which we can define a projection.

Definition A.1.18 (Projection on Cartesian Product)
Let X be a Cartesian product with

X � X1 �X2 � . . .�Xn

with n P N, then we define the i-th projection on elements of X, denoted by πipxq with
x P X, as an unary function, where

@px1, x2, . . . , xnq P X @i P ti | 0 i ¤ nu : πippx1, x2, . . . , xnqq � xi.

In a nutshell, the projection allows us to access elements of an ordered n-tuple individually.
In the literature, we also find the notation πipxq rather than πipxq.

A.2 Structuring Sets According to Variables

Often the states of systems of study are not opaque or flat, but can be described as a collection
of different variables, i. e., state variables (cf. Law and Kelton [2000, p. 3]). Similarly, we may
describe the inputs and outputs of a system as vectors of input variables and output variables,
respectively. Zeigler et al. [2000, p. 123] call such systems multivariable or structured systems.

When creating models of such systems, especially mechanistic models, it is natural that we
want to capture our additional knowledge about the systems’ states, inputs, and outputs in
the process. This leads us to structured system specifications [Zeigler 1976, pp. 247–55]. One
possibility to model structured systems is to structure the states, inputs, and outputs of the
corresponding models according to certain variables—state, input, and output variables.

169

A Mathematical Notations and Concepts

A simple, straightforward approach is to define the sets of states, inputs, and outputs of a
model as n-fold Cartesian products, where n corresponds to the number of the respective
descriptive variables. For each of the three sets a certain number in the interval r1, ns refers to
a certain state, input, or output variable. An element of such an n-fold Cartesian product (i. e.,
state, input, or output) is an n-tuple, where the i-th projection of the tuple (with i P r1, ns)
returns a concrete value of a state, input, or output variable (see Appendix A.1.7). Hence,
the sets upon the Cartesian products are defined correspond to ranges of values that can be
assigned to the respective variables.

Example A.2.1 (State Set as Cartesian Product)
Suppose the state of a simple model shall consists of a physical phase, a real number that
indicates the time elapsed since the last state transition (in seconds), and a natural number
that represents some abstract information that the model can store. The state set S of such
a model can now be defined as follows:

S � t“on”, “off”uloooooomoooooon
phase

� R�
0loomoon
σ

� N0loomoon
store

,

where the variable names (phase, σ, or store) are just displayed for illustration purposes
Then, the triple

p“on”, 2.5, 1q

represents the state when the model is in phase on, 2.5 seconds have passed since the last
state transition, and the model stores the information 1.

Note that the state space described by S is infinite, since S contains all positive real
numbers.

The above approach of structuring sets is pursued, e. g., by Zeigler et al. [2000, pp. 77–84] for
defining the state sets of simple DEVS models.
A drawback of using regular Cartesian products is the implicit relation between variable

names and values; variable names are not part of the definition. So if a modeler defining
such Cartesian products does not provide information about the meaning of the sets in the
Cartesian products (implicit knowledge), it may hinder other modelers in understanding the
corresponding model.
In the following, we briefly describe two other approaches to structure sets according to

certain variables while making the relation between variable names and values more explicit
than in the approach above.

A.2.1 Multivariable Sets

Zeigler et al. [2000, pp. 123] introduce multivariable sets (or structured sets2) as a “system
theoretic mechanism for representing the use of variables in modeling and simulation practice,”
especially in the DEVS realm3. Multivariable sets can be used to model the states, inputs,
and outputs of a system in a structured manner.

2 Since we present other approaches to structure sets, we use the term “multivariable sets” rather than
structured sets to refer to the approach introduced by Zeigler et al.

3 Please note that the structured sets defined by Zeigler et al. [2000, pp. 124–5] look quite different from
the structured sets as originally introduced in Zeigler [1976, pp. 248–51] and Zeigler [1984, pp. 40–1].
However, the more recent variant of structured sets has prevailed.

170

A.2 Structuring Sets

Definition A.2.1 (Multivariable Sets)
Let V be an ordered set of n variables (variable names) with

V � pv1, v2, . . . , vnq

and let

S1, S2, . . . , Sn

be n arbitrary sets. A multivariable set (or structured set) of the ordered set V and the
sets S1, S2, . . . , Sn is defined as the pair

S � pV, S1 � S2 � . . .� Snq.

Each coordinate i P r1, ns is denoted by the variable v1 P V , i. e., for an element s P S with
s � ps1, s2, . . . , snq the value of vi equals si [Zeigler et al. 2000, p. 124]

a.
According to Zeigler et al. the multivariable set S can also be written as follows:

S �

pv1, v2, . . . , vnq | v1 P S1, v2 P S2, . . . , vn P Sn

(
.

a Note that from a set-theoretical point of view, s P S is not defined since S is an ordered pair, not a set.

The latter notation is mathematically more sound and corresponds to simple n-fold Cartesian
products, because

pv1, v2, . . . , vnq | v1 P S1, v2 P S2, . . . , vn P Sn

(
� S1 � S2 � . . .� Sn.

However, it is important to note that in this simplified notation the tuple pv1, v2, . . . , vnq does
not correspond to the actual ordered set of variables V .

Remark. The type of ordering on the set of variables V is not further defined by Zeigler et
al. [2000]. However, as the variables are given as a sequence (or chain), we assume a linear
or total ordering on V . For instance, we can define V as the total ordered set pV �,¤q, where

V � � tv1, v2, . . . , v3u

is a proper set that contains all elements of V and ¤ � V � � V � is a total ordering (binary
relation) that orders the elements of V � as they occur in V :

¤ �

pv1, v1q, pv1, v2q, . . . , pv1, vnq,

pv2, v2q, . . . , pv2, vnq,
...

pvn, vnq
(

Given a multivariable set S � pV, S1 � S2 � . . . � Snq, Si denotes the range of vi, i. e., the
values that can be assigned to the variable vi. We also write rangevipSq � Si. To make use of
multivariable sets, Zeigler et al. [2000, pp. 124–5] define a few operations on these sets. The
following operations are of particular interest for this thesis:

� The operation variables returns the ordered set of variables of a given multivariable set. So
given a multivariable set S as defined in Definition A.2.1, variablespSq � pv1, v2, . . . , v2q or
variablespSq � V . Note that this operation formally does not return a proper set but an
ordered n-tuple.

171

A Mathematical Notations and Concepts

� The (cross) product of two multivariable sets is, again, a multivariable set with all the
coordinates ordered in a sequence. Let A � tpa1, . . . , anq | a1 P A1, . . . , an P Anu and
B � tpb1, . . . , bmq | b1 P B1 . . . bm P Bmu be two multivariable sets and let variablespAq � VA

and variablespBq � VB. The product of A and B is then defined by

A�B �

pa1, . . . , an, b1, . . . bmq | a1 P A1, . . . , an P An, b1 P B1, . . . , bm P Bm

(
.

If we specify VA and VB as the totally ordered sets VA � pV �
A ,¤Aq and VB � pV �

B ,¤Bq,
respectively, and assume that V �

A XV �
B � ∅, then the product of A and B boils down to the

sum of the totally ordered sets VA and VB, denoted by VA � VB . According to Khoussainov
and Nerode [2001, p. 16], the sum of the two totally (linearly) ordered sets VA and VB can
be obtained as follows:

– The set of all elements of VA � VB is V �
A Y V �

B ;

– The order ¤ on the sum is defined as the union:

¤A Y ¤B Y

pa, bq | a P V �

A , b P V �
B

(
.

� Given a multivariable set S as defined in Definition A.2.1, the projection operation � :
S � V Ñ

�n
i�1 Si allows accessing a given coordinate—referred to by a variable (name)—of

an element of the multivariable set S with

s � vi � si,

where s P S, vi P V , and si P Si.

Notation A.2.1. For the projections, we will also write s.vi instead of s �vi to keep consistency
with the notation used in this thesis.

For more details on multivariable sets refer to Zeigler et al. [2000][pp. 124–5].

A.2.2 Generalized Cartesian Products

As the previous section already indicates, a multivariable set, as defined by Zeigler et al. can
be mapped to a traditional n-fold or finite Cartesian product (also called cross product) of n
sets S1 � S2 � . . .� Sn, where (i) n equals the number of variables that are used to structure
the multivariable set and (ii) for each n, the set Sn refers to the range of values that can be
assigned to the n-th variable. Thereby, the order of the variables dictates the order of the
corresponding sets in the Cartesian product and the relation between variables and value
ranges is established only implicitly, via the coordinates in the ordered set of variables and
the Cartesian product. Generalized Cartesian products, on the other hand, provide a more
sophisticated mean to structure sets while establishing an explicit, unambiguously relation
between variable names and values.

Remark. In the literature, different names exists that refer to the concept described below.
Other terms are arbitrary Cartesian product, infinite (Cartesian) product [Jech 1997, pp.
43–6], indexed Cartesian product [Pirotte 1982], or Cartesian product of an indexed family of
sets [Devlin 1993, p. 15]. Although the term generalized Cartesian product as used by Pirotte
[1982] or Borzyszkowski, Kubiak, Leszczylowski, and Sokolowski [1988] is not established, we
stick to the term in this thesis.

A generalized Cartesian product is “general definition of a Cartesian product of an arbitrary
(possibly infinite) family of sets” [Devlin 1993, p. 15], i. e., a generalized Cartesian product is
a generalization of a traditional n-fold Cartesian product.

172

A.2 Structuring Sets

Definition A.2.2 (Generalized Cartesian Product)
Let tXiuiPI be an indexed family of sets (indexed by the set I) and let I be a nonempty index
set. The Cartesian product of the indexed family tXiuiPI , called generalized Cartesian
product and denoted by ¹

iPI

Xi,

is defined as follows:

¹
iPI

Xi �

#
f
��� �f : I Ñ

¤
iPI

Xi

�
^
�
@i P I : fpiq P Xi

�+
.

Hence, a generalized Cartesian product is a set of functions and each element of the product
is a (total) function that maps an index i to an element of the family member (i. e., set)
that is indexed by i.

In the case that the index set I is finite, the above generalized Cartesian products offers a
quite different definition of a traditional n-fold Cartesian product, which is however closely
related to the original definition [Devlin 1993, p. 15]
When we think of the index set I as a set of variables (or variable names), like the set V

of multivariable sets, the elements of a generalized Cartesian product can be considered as
variable assignments, where each variable a value is assigned to. However, in contrast to the
set V , the index set I is a proper set. In other words, using generalized Cartesian products
instead of multivariable sets allows us to get rid of the need to implicitly or explicitly define
an order on the variables. The members of the underlying indexed family of sets can be
considered as value ranges of the associated variables.
Let, in the following, f be an element of the generalized Cartesian product

±
iPI Xi. For

each index i P I we get its assigned value by applying f to i, i. e., fpiq. By Definition A.2.2,
the domain of f equals the index set I:

dompfq � I,

and the co-domain of f is the union of the underlying indexed family of sets, i. e.,

ranpfq �
¤
iPI

Xi.

Notation A.2.2. For notational convenience, we also write an element of a generalized
Cartesian product

±
iPI Xi as a set of ordered pairs:

pi, fpiqq
�� i P I

(
.

For each i P I the projection function (i-th projection), denoted by πipfq,

πi :
¹
jPI

Xj Ñ Xi

is defined by

πipfq � fpiq.

Like Zeigler et al. [2000, p. 124], we define two auxiliary functions on generalized Cartesian
products: variablesp. . .q and rangeipp. . .qq. The function variables returns the index set of an
arbitrary generalized Cartesian product

±
iPI Xi, i. e.,

variables
�¹

iPI
Xi

	
� I.

173

A Mathematical Notations and Concepts

Let i P I, where I is the index set of the arbitrary generalized Cartesian product
±

jPI Xj ,
then the function rangei returns the set Xi (the value range of i), i. e.,

rangei

�¹
jPI

Xj

	
� Xi.

Moreover, we define the cross product of two generalized Cartesian products
±

iPI Xi and±
jPJ Yj with I X J � ∅ as follows:¹

iPI

Xi �
¹
jPJ

Yj �
¹
kPK

Zk

with

K � I Y J

and

tZkukPK � tXiuiPI Y tYjujPJ .

A.2.3 Partial Cartesian Products

The in- and outputs of models with ports and a static structure (incl. the interface) can readily
be specified by using generalized Cartesian products (as defined in the previous section).
Each index of the product corresponds to a port (name) and each element of the products
corresponds to a value assignment for each port. However, since one focus of the thesis is on
models whose interfaces are variable, we have to consider the consequent variability of ports
when specifying the in- and outputs of such models. As generalized Cartesian products define
total functions, i. e., each port has to map to a value from its value range, we need a further
generalization of these Cartesian products that allow us to capture the variability of ports
more explicitly4. In the case of variable ports, we actually want to specify partial functions
instead of total functions, in which only a subset of all potential ports is assigned to values
(namely the currently available ports).

For this reason, we introduce partial Cartesian products.

Definition A.2.3 (Partial Cartesian Product)
Let tXiuiPI be an indexed family of sets (indexed by the set I) and let I be a nonempty
index set. The partial Cartesian product of the indexed family tXiuiPI , denoted by

�¹
iPI

Xi,

is defined as follows:

�¹
iPI

Xi �
¤
I 1�I

#
f
��� �f : I

¤
jPI

Xj

�
^
�
dompfq � I 1

�
^
�
@j P I 1 : fpjq P Xj

�+
.

Hence, each element of a partial Cartesian product is a partial function that maps a subset
I 1 of the index set I (incl. I) to elements of the corresponding family members, i. e., the
sets indexed by I 1.

Let f be a partial function from the partial Cartesian product�±i P IXi then we define, similarly
to a generalized Cartesian product, the projection πjpfq by

πjpfq � fpjq.

4 Without the necessity of introducing special elements—not part of any value range—to which a port will
map in case it shall not be available.

174

B Finite State Automata

Finite state automata are closely related to the modeling formalism DEVS and its variants,
as discussed in Section 4.2. In simple terms, a “finite automaton has a [finite] set of states,
and its control moves from state to state in response to external inputs” [Hopcroft et al. 2001].

B.1 Basic Automata

Definition B.1.1 (Deterministic Finite Automaton)
A deterministic finite automaton is a5-tuple

A � pQ,Σ, δ, q0, F q,

where:

1. A is the name of the automaton.

2. Q is a finite set of states.

3. Σ is a finite set of input symbols, i. e., the input alphabet.

4. δ : Q� ΣÑ Q is the (state) transition function.

5. q0 is the start (or initial) state with q0 P Q.

6. F is a set of final or accepting states with F being a subset of Q.

In the literature, variations of the above notation can be found (e. g., Khoussainov and Nerode
[2001]). The state transition function δ is often given as a graph or transition table, illustrating
the transition between states.
In a deterministic finite automaton (DFA), each state has exactly one subsequent state,

except final states (they have no subsequent states). A nondeterministic finite automaton
(NFA) loosens this restriction. Khoussainov and Nerode [2001, p. 48] give the following
definition of a nondeterministic finite automaton:

Definition B.1.2 (Nondeterministic Finite Automaton)
A nondeterministic finite automaton over the alphabet Σ is a quadruple

A � pS, I, T, F q,

where

1. S is a finite nonempty set called the set of states.

2. I is a subset of S called the set of initial states.

3. T � S �Σ� S is a nonempty set called the transition table or transition digram.q

4. F is a subset of S called the set of final states.

Often the input alphabet Σ becomes part of the actual definition of the automaton, i. e.,
A � pΣ, S, I, T, F q.
By using the powerset or powerset or subset construction algorithm, we can show that,

despite different definition of NFA and DFA, for any NFA a DFA can be constructed that

175

B Finite State Automata

recognizes the same formal language (cf. J. C. Martin [2010, p. 108]). In other words, NFA
are unabble to recognize a language that cannot be recognized by some DFA.

B.2 Moore Machine

A Moore machine is a finite automaton, i. e., a model of a sequential machine, whose output
“at a given time depends only on the current state of the machine” [Moore 1956]. More
concretely, a Moore machine is a certain kind of a deterministic transducer, as does not allow
random elements, the transition of the state is defined by a function, and the machine has an
output. The first idea of such a machine was proposed by Edward F. Moore, after which the
machine is named, in 1956 Moore [1956]. From the rather informal characterization of Moore
we can derive the following formal definition of a Moore machine:

Definition B.2.1 (Moore Machine)
A Moore machine AMoore is defined by the 6-tuple

AMoore � pQ,Σ,Ω, q0, F, δ, λq,

where:

1. Q is a finite nonempty set of states.

2. Σ is the input alphabet.

3. Ω is the output alphabet.

4. q0 P Q is the initial state.

5. F is a subset of Q called the set of final states.

6. δ : Q� ΣÑ Q is the state transition function.

7. λ : QÑ Ω is the output function.

Please note that the notation follows the one of general systems as used by Zeigler et al.
[2000].

176

C Abstract Simulator of Parallel DEVS

In the tradition of DEVS, the execution semantics of P-DEVS is formally described by
means of an abstract simulator. The abstract simulator consists of processors that can be of
the following three types: (i) Simulator, (ii) Coordinator, and (iii) Root-Coordinator.

C.1 Simulator

Algorithm C.2 shows the Simulator of P-DEVS that is responsible for executing an atomic
P-DEVS model.

Algorithm C.1: The Simulator of P-DEVS, which adapts the one presented by
Zeigler et al. [2000, p. 285].

variables:
m // the atomic model associated with the Simulator
s // the atomic model’s current state
tl // time of the last event
tn // time of the next internal event

1 // initialization
2 when receive i-message pi, tq with time t then
3 sÐ sinit
4 tl Ð t
5 tn Ð tl �m.tapsq
6 send done -message pd, tnq to parent
7

8 when receive *-message p�, tq with time t then
9 if tn � t then

10 yb Ð m.λpsq

11 send y-message pyb, tq to parent
12

13 // update the state

14 when receive x-message pxb, tq with input bag xb then

15 if xb � ∅ and tn � t then
16 // internal state transition
17 sÐ m.δintpsq

18 else if xb � ∅ and tn � t then
19 // confluent state transition

20 sÐ m.δconps, x
bq

21 else if xb � ∅ and tl ¤ t tn
22 // external state transition
23 eÐ t� tl

24 sÐ δextpps, eq, x
bq

25 else
26 error: illegal state
27

28 // update times
29 tl Ð t
30 tn Ð tl �m.tapsq
31 send done -message pd, tnq to parent

177

C Abstract Simulator of P-DEVS

C.2 Coordinator

Algorithm C.2 shows the Coordinator of P-DEVS that is responsible for executing coupled
P-DEVS models. For each coupled model one Coordinator is instantiated.

C.3 Root-Coordinator

The Root Coordinator of P-DEVS is shown in Algorithm C.3. In contrast to a Simulator
or Coordinator, the Root Coordinator is not associated with a model. Instead, the Root
Coordinator is in control of the general simulation loop and keeps track of the time elapsed in
the simulation.

178

C.3 Root-Coordinator

Algorithm C.2: The Coordinator of P-DEVS, which adapts the one presented by
Zeigler et al. [2000, pp. 285–7] and neglects checks for synchronization problems.

variables:
n // the coupled model associated with the Coordinator
tl // time of the last event
tn // time of the next internal event
parent // parent processor
events // queue of elements pd, tndq sorted by tnd (ascending order)
msg // message container for outputs from components

1 // initialization
2 when receive i-message ptq with time t then
3 // initialize all components
4 send i-message ptq to each d P n.D
5 wait for done -message ptndq from each d P D
6 enqueue pd, tndq in events
7 // update times
8 tl Ð t
9 tn Ð mintnpeventsq

10 send done -message ptnq to parent
11

12 // collect outputs from all imminents
13 when receive *-message ptq with time t then

14 msg , yb Ð ∅
15 IMM Ð td P D | pd, tq P eventsu
16 send *-message ptq to each d P IMM

17 wait for y-message pyb
d, tdq from each d P D

18 // remove internal event from event queue
19 dequeue pd, tq from events
20 // buffer output bag of current child d

21 add pd, yb
dq to msg

22 // create y-message for parent and send it

23 for each pd, yb
dq P msg with d P n.In do

24 for each y P yb
d with n.Zd,npyq � ∅ do

25 add n.Zd,npyq to yb

26 send y-message pyb, tq to parent
27

28 // forward external events and execute the imminent and influenced children

29 when receive x-message pxb, tq with input bag xb and time t

30 INF Ð tr P D | Dpd, yb
dq P msg Dy P yb

d : d P n.Ir ^ y � ∅u
31 INF Ð INF Y tr P D |n P n.Ir ^ Dx P xb : n.Zn,dpxq � ∅u
32 for each r P INF Y IMM do
33 // determine potential inputs

34 xb
r Ð ∅

35 for each pd, yb
dq P msg with d P n.Ir do

36 for each y P yb
d with n.Zd,rpyq � ∅

37 add n.Zd,rpyq to xb
r

38 if n P n.Ir then

39 for each x P xb with n.Zn,rpxq � ∅ do

40 add n.Zn,rpxq to xb
r

41 send x-message pxb
r, tq to r

42 wait for done -message ptnrq from r
43 // update event queue
44 enqueue pr, tnq in events
45 // update times
46 tl Ð t
47 tn Ð mintnpeventsq
48 send done -message ptnq to parent

179

C Abstract Simulator of P-DEVS

Algorithm C.3: The Root-Coordinator of P-DEVS.

variables:
child // subordinate processor
t0 // simulation start time
t // current simulation time
tnc // time of the next internal event of the child processor

1 // initialization
2 tÐ t0
3 send i-message pi, tq to child
4 wait until done -message pd, tncq received from child
5 tÐ tnc // update simulation time (jump to first internal event)
6

7 // simulation loop
8 repeat
9 send *-message p�, tq to child

10 wait until y-message pyb, tq received from child
11 send x-message p∅, tq to child
12 wait until done -message pd, tncq received from child
13 tÐ tnc // update simulation time (jump to next internal event)
14 until end of simulation

180

Acronyms

ADP Adenosine diphosphate

ATP Adenosine triphosphate

CBD Component-Based Development

CBSE Component-Based Software Engineering

CODES COmposable Discrete-Event scalable Simulation

COMO Component-based Modeling or Component Models

COP Component-Oriented Programming

CoSMoS Component-based System Modeler and Simulator

DES Discrete Event Simulation

DEVS Discrete Event System Specification

DFA Deterministic finite automaton

DNA Deoxyribonucleic acid

FSM Finite State Machine

HLA High-Level Architecture

JAMES II Java-based Multipurpose Environment for Simulation; before that Java-based
Agent Modeling Environment for Simulation

ML-DEVS Multi-Level Discrete Event System Specification

NFA Nondeterministic finite automaton

OCL Object Constraint Language

PDES Parallel Discrete Event Simulation

P-DEVS Parallel Discrete Event System Specification

QSS Quantized State System

SES System Entity Structure

SysML Systems Modeling Language

UML Unified Modeling Language

VHDL Very High Speed Integrated Circuit Hardware Description Language

XML Extensible Markup Language

181

References

ACIMS. (2009). DEVSJAVA. Retrieved 2005-07-20, from https://acims.asu.edu/software/
devsjava/

Alur, R., & Dill, D. L. (1994, April). A Theory of Timed Automata. Theoretical Computer
Science, 126 (2), 183–235. doi: 10.1016/0304-3975(94)90010-8

Ameghino, J., Troccoli, A., & Wainer, G. A. (2001). Models of Complex Physical Systems
Using Cell-DEVS. In Proceedings of the 34th Annual Simulation Symposium (pp.
266–273). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc.

Bae, J. W., Bae, S. W., Moon, I.-C., & Kim, T. G. (2016, February). Efficient Flattening
Algorithm for Hierarchical and Dynamic Structure Discrete Event Models. ACM
Transactions on Modeling and Computer Simulation, 26 (4), 1–25. doi: 10.1145/2875356

Baeten, J. C. M. (2005, May). A Brief History of Process Algebra. Theoretical Computer
Science, 335 (2-3), 131–146. doi: 10.1016/j.tcs.2004.07.036

Balci, O. (1997, December). Verification, Validation and Accreditation of Simulation Models.
In S. Andradóttir, K. J. Healy, D. H. Withers, & B. L. Nelson (Eds.), Proceedings of the
1997 Winter Simulation Conference (pp. 135–141). Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Inc. doi: 10.1145/268437.268462

Banks, J. (1998, September). Principles of Simulation. In J. Banks (Ed.), Handbook of
Simulation: Principles, Methodology, Advances, Applications, and Practice (1st ed., pp.
3–30). Hoboken, NJ, USA: John Wiley & Sons, Inc.

Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. (2000). Discrete-Event System
Simulation (3rd ed.). Upper Saddle River, NJ, USA: Prentice Hall.

Barros, F. J. (1995a, December). Dynamic Structure Discrete Event System Specification: A
New Formalism for Dynamic Structure Modeling and Simulation. In C. Alexopoulos,
K. Kang, W. R. Lilegdon, & D. Goldsman (Eds.), Proceedings of the 1995 Winter
Simulation Conference (pp. 781–785). Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, Inc. doi: 10.1145/224401.224731

Barros, F. J. (1995b). Dynamic Structure Discrete Event System Specification: Formalism and
Abstract Simulators (Technical Report). Coimbra, Portugal: University of Coimbra.

Barros, F. J. (1996, March). The Dynamic Structure Discrete Event System Specification
Formalism. Transactions of the Society for Computer Simulation International , 13 (1),
35–46.

Barros, F. J. (1997, October). Modeling Formalisms for Dynamic Structure Systems. ACM
Transactions on Modeling and Computer Simulation, 7 (4), 501–515. doi: 10.1145/
268403.268423

Barros, F. J. (1998, December). Abstract Simulators for the DSDE Formalism. In
D. J. Medeiros, E. F. Watson, J. S. Carson, & M. S. Manivannan (Eds.), Proceed-
ings of the 1998 Winter Simulation Conference (pp. 407–412). Piscataway, NJ, USA:
Institute of Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.1998.745015

Barros, F. J. (2002). Modeling and Simulation of Dynamic Structure Heterogeneous Flow
Systems. SIMULATION , 78 (1), 18–27. doi: 10.1177/0037549702078001198

Barros, F. J. (2003). Dynamic Structure Multiparadigm Modeling and Simulation. ACM
Transactions on Modeling and Computer Simulation, 13 (3), 259–275. doi: 10.1145/
937332.937335

Barros, F. J. (2004). Describing the HLA Using the DFSS Formalism. In T. G. Kim (Ed.),
Artificial Intelligence and Simulation, 13th International Conference on AI, Simulation,

183

https://acims.asu.edu/software/devsjava/
https://acims.asu.edu/software/devsjava/

References

and Planning in High Autonomy Systems, AIS 2004, Jeju Island, Korea, October 4-6,
2004, Revised Selected Papers (Vol. 3397, pp. 117–127). Berlin, Germany: Springer-
Verlag Berlin. doi: 10.1007/978-3-540-30583-5 13

Barros, F. J. (2012, December). A Compositional Approach for Modeling and Simulation
of Bio-molecular Systems. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose,
& A. M. Uhrmacher (Eds.), Proceedings of the 2012 Winter Simulation Conference.
Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc. (Article No.
235) doi: 10.1109/WSC.2012.6465260

Barros, F. J. (2014, April). On the Representation of Dynamic Topologies: The Case for
Centralized and Modular Approaches. In Proceedings of the Symposium on Theory of
Modeling & Simulation - DEVS Integrative (DEVS ’14). San Diego, CA, USA: Society
for Computer Simulation International. (Article No. 40)

Barros, F. J., Mendes, M. T., & Zeigler, B. P. (1994). Variable DEVS - Variable Structure
Modeling Formalism: An Adaptive Computer Architecture Application. In Proceedings
of the 5th Annual Conference on AI, and Planning in High Autonomy Systems (AIS
1994) (pp. 185–191). Los Alamitos, CA, USA: IEEE Computer Society. doi: 10.1109/
AIHAS.1994.390474

Barton, J. J., & Vijayaraghavan, V. (2002). UBIWISE, A Ubiquitous Wireless Infrastructure
Simulation Environment (Tech. Rep.). Palo Alto, CA, USA: HP Laboratories. Retrieved
from http://www.hpl.hp.com/techreports/2002/HPL-2002-303.pdf

Bergero, F., & Kofman, E. (2014, May). A Vectorial DEVS Extension for Large Scale System
Modeling and Parallel Simulation. SIMULATION , 90 (5), 522–546. doi: 10.1177/
0037549714529833

Bisgambiglia, P.-A., de Gentili, E., & Santucci, J.-F. (2009, August). iDEVS: New Method to
Study Inaccurate Systems. In Proceedings of the 2009 IEEE International Conference
on Fuzzy Systems (pp. 300–307). Piscataway, NJ, USA: IEEE. doi: 10.1109/FUZZY
.2009.5277046

Bittig, A. T., Haack, F., Maus, C., & Uhrmacher, A. M. (2011). Adapting Rule-Based
Model Descriptions for Simulating in Continuous and Hybrid Space. In F. Fages (Ed.),
Proceedings of the 9th International Conference on Computational Methods in Systems
Biology (pp. 161–170). New York, NY, USA: ACM. doi: 10.1145/2037509.2037533

Bittig, A. T., Matschegewski, C., Nebe, J. B., Stählke, S., & Uhrmacher, A. M. (2014).
Membrane Related Dynamics and the Formation of Actin in Cells Growing on Micro-
topographies: A Spatial Computational Model. BMC Systems Biology , 8 (106), 19. doi:
10.1186/s12918-014-0106-2

Borzyszkowski, A. M., Kubiak, R., Leszczylowski, J., & Sokolowski, S. (1988). Towards a
Set-theoretic Type Theory (Tech. Rep.). Gdańsk, Poland: Polish Academy of Sciences.

Brim, L., Černá, I., Vařeková, P., & Zimmerova, B. (2005). Component-interaction Automata
as a Verification-oriented Component-based System Specification. In Proceedings of
the 2005 Conference on Specification and Verification of Component-Based Systems -
SAVCBS ’05. New York, New York, USA: ACM Press. (Article No. 4) doi: 10.1145/
1123058.1123063

Brooks Jr., F. P. (1987, April). No Silver Bullet Essence and Accidents of Software Engineering.
Computer , 20 (4), 10–19. doi: 10.1109/MC.1987.1663532

Buss, A. H. (1996, December). Modeling with Event Graphs. In J. M. Charnes, D. J. Morrice,
D. T. Brunner, & J. J. Swain (Eds.), Proceedings of the 1996 Winter Simulation
Conference (pp. 153–160). Washington, DC, USA: IEEE Computer Society. doi:
10.1145/256562.256597

Buss, A. H., & Blais, C. (2007, December). Composability and Component-based Discrete
Event Simulation. In S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew,
& J. J. Barton (Eds.), Proceedings of the 2007 Winter Simulation Conference (pp.

184

http://www.hpl.hp.com/techreports/2002/HPL-2002-303.pdf

References

694–702). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc.
doi: 10.1109/WSC.2007.4419663

Bylund, M., & Espinoza, F. (2001). Using Quake III Arena to Simulate Sensors and Actuators
when Evaluating and Testing Mobile Services. CHI 2001 Extended Abstracts on Human
Factors in Computing Systems, 241–242. doi: 10.1145/634067.634210

Bylund, M., & Espinoza, F. (2002). Testing and Demonstrating Context-aware Services with
Quake III Arena. Communications of the ACM , 45 (1), 46–48. doi: http://doi.acm.org/
10.1145/502269.502294

Campbell, D. T. (1974). Downward Causation in Hierarchically Organised Biological Systems.
In F. J. Ayala & T. G. Dobzhansky (Eds.), Studies in the philosophy of biology: Reduction
and related problems (pp. 179–186). Berkeley: University of California Press.

Campuzano, F., Garcia-Valverde, T., Garcia-Sola, A., & Botia, J. A. (2011, April). Flexible
Simulation of Ubiquitous Computing Environments. In P. Novais, D. Preuveneers,
& J. M. Corchado (Eds.), Ambient Intelligence - Software and Applications: 2nd
International Symposium on Ambient Intelligence (ISAmI 2011) (pp. 189–196). Berlin,
Germany: Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-19937-0 24

Cassandras, C. G., & Lafortune, S. (2008). Introduction to Discrete Event Systems (2nd ed.).
Springer-Verlag Berlin.

Castro, R., Kofman, E., & Wainer, G. (2008, April). A Formal Framework for Stochastic
DEVS Modeling and Simulation. In H. Rajaei (Ed.), Proceedings of the 2008 Spring
Simulation Multiconference (pp. 421–428). San Diego, CA, USA: Society for Computer
Simulation International.

Castro, R., Kofman, E., & Wainer, G. A. (2010, June). A Formal Framework for Stochastic
Discrete Event System Specification Modeling and Simulation. SIMULATION , 86 (10),
587–611. doi: 10.1177/0037549709104482

Cellier, F. E. (1991). Continuous System Modeling. New York, NY, USA: Springer-Verlag
New York, Inc. doi: 10.1007/978-1-4757-3922-0

Cellier, F. E., & Kofman, E. (2006). Continuous System Simulation. Springer.
Chen, G., & Szymanski, B. K. (2002, December). COST: A Component-oriented Discrete

Event Simulator. In E. Yücesan, C.-H. Chen, J. L. Snowdon, & J. M. Charnes (Eds.),
Proceedings of the 2002 Winter Simulation Conference (pp. 776–782). Piscataway, NJ,
USA: Institute of Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.2002
.1172960

Chow, A. C. (1996). Parallel DEVS: A Parallel, Hierarchical, Modular Modeling Formalism
and Its Distributed Simulator. Transactions of the Society for Computer Simulation
International , 13 (2), 55–67.

Chow, A. C., & Zeigler, B. P. (1994, December). Parallel DEVS: A Parallel, Hierarchical,
Modular Modeling Formalism. In J. D. Tew, M. S., D. A. Sadowski, & A. Seila (Eds.),
Proceedings of the 1994 Winter Simulation Conference (pp. 716–722). Piscataway, NJ,
USA: Institute of Electrical and Electronics Engineers. doi: 10.1109/WSC.1994.717419

Chow, A. C., Zeigler, B. P., & Kim, D. H. (1994, December). Abstract Simulator for the
Parallel DEVS Formalism. In Proceedings of the 5th Annual Conference on AI, and
Planning in High Autonomy Systems (AIS 1994) (pp. 157–163). IEEE Computer Society
Press. doi: 10.1109/AIHAS.1994.390488

Cook, D. J., & Das, S. K. (Eds.). (2004). Smart Environments: Technology, Protocols, and
Applications (1st ed.). Hoboken, NJ, USA: John Wiley & Sons, Inc.

Copeland, B. J. (2015). The Church-Turing Thesis. In E. N. Zalta (Ed.), The stanford
encyclopedia of philosophy (2015th ed.).

Copi, I. M., Cohen, C., & McMahon, K. (2014). Introduction to Logic (14th ed.). Harlow,
ESS, UK: Pearson Education Limited.

Dalle, O. (2007). The OSA Project: An Example of Component Based Software Engineering

185

References

Techniques Applied to Simulation. In Proceedings of the 2007 Summer Computer
Simulation Conference (pp. 1155–1162). San Diego, CA, USA: Society for Computer
Simulation International. doi: 10.1145/1357910.1358090

Dalle, O., Zeigler, B. P., & Wainer, G. A. (2008, December). Extending DEVS to Support
Multiple Occurrence in Component-based Simulation. In S. J. Mason, R. R. Hill,
L. Mönch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the 2008 Winter
Simulation Conference (pp. 933–941). Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, Inc. doi: 10.1109/WSC.2008.4736159

Davis, P. C., Fishwick, P. A., Overstreet, C. M., & Pedgen, C. D. (2000, December).
Model Composability as a Research Investment: Responses to the Featured Paper. In
J. A. Joines, R. R. Barton, K. Kang, & P. A. Fishwick (Eds.), Proceedings of the 2000
Winter Simulation Conference (pp. 1585–1591). Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.2000.899143

Davis, P. K., & Anderson, R. H. (2004, April). Improving the Composability of DoD Models
and Simulations. The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology , 1 (1), 5–17. doi: 10.1177/154851290400100101

Davis, P. K., & Tolk, A. (2007, December). Observations on New Developments in Com-
posability and Multi-resolution Modeling. In S. G. Henderson, B. Biller, M.-H. Hsieh,
J. F. Shortle, J. D. Tew, & J. J. Barton (Eds.), Proceedings of the 2007 Winter Sim-
ulation Conference (pp. 859–870). Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, Inc. doi: 10.1109/WSC.2007.4419682

de Alfaro, L., & Henzinger, T. A. (2001). Interface Theories for Component-based Design.
In T. A. Henzinger & C. M. Kirsch (Eds.), Embedded Software. EMSOFT 2001 (pp.
148–165). Springer, Berlin, Heidelberg. doi: 10.1007/3-540-45449-7 11

Deniz, F. (2010). Variable Structure and Dynamism Extensions to a DEVS Based Modeling and
Simulation Framework (Unpublished master’s thesis). Middle East Technical University.

Deniz, F., Alpdemir, M. N., Kara, A., & Oğuztüzün, H. (2012, June). Supporting Dynamic
Simulations with Simulation Modeling Architecture (SiMA): A Discrete Event System
Specification-based Modeling and Simulation Framework. SIMULATION , 88 (6), 707–
730. doi: 10.1177/0037549711428233

Deniz, F., Kara, A., Alpdemir, M. N., & Oğuztüzün, H. (2009, July). Variable Structure and
Dynamism Extensions to SiMA, A DEVS Based Modeling and Simulation Framework. In
O. Balci, X. Hu, M. Sierhuis, & L. Yilmaz (Eds.), Proceedings of the 2009 Summer Com-
puter Simulation Conference (pp. 117–124). Vista, CA, USA: Society for Modeling z&
Simulation International. Retrieved from http://www.proceedings.com/12872.html

Department of Defense. (1998). DoD Modeling and Simulation (M&S)
Glossary (DoD 5000.59-M). Washington, DC, USA: Retrieved from
http://www.dtic.mil/whs/directives/corres/pdf/500059m.pdf.

de Roever, W.-P., Langmaack, H., & Pnueli, A. (Eds.). (1998). Compositionality: The Signifi-
cant Difference (Vol. 1536). Berlin, Heidelberg, Germany: Springer Berlin Heidelberg.
doi: 10.1007/3-540-49213-5

Devlin, K. J. (1993). The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd
ed.; J. H. Ewing, F. W. Gehring, & P. R. Halmos, Eds.). New York, NY, USA:
Springer-Verlag.

Dijkstra, E. W. (1982). Selected Writings on Computing: A Personal Perspective (D. Gries,
Ed.). New York, NY, USA: Springer-Verlag.

Djitog, I., Aliyu, H. O., & Traoré, M. K. (2017, July). Multi-perspective Modeling of Healthcare
Systems. International Journal of Privacy and Health Information Management , 5 (2),
1–20. doi: 10.4018/IJPHIM.2017070101

Elmqvist, H. (1978). A Structured Model Language for Large Continuous Systems (Doctoral
dissertation, Lund University, Lund, Sweden). Retrieved from http://lup.lub.lu.se/

186

http://www.proceedings.com/12872.html
http://lup.lub.lu.se/record/8524888
http://lup.lub.lu.se/record/8524888

References

record/8524888
Elmqvist, H., Mattsson, S. E., & Otter, M. (2001). Object-oriented and Hybrid Modeling in

Modelica. Journal Européen des Systèmes Automatisés, 35 (1), 1–10.
Ewald, R., Himmelspach, J., Jeschke, M., Leye, S., & Uhrmacher, A. M. (2010). Flexible

Experimentation in the Modeling and Simulation Framework JAMES II—Implications
for Computational Systems Biology. Briefings in Bioinformatics, 11 (3), 290–300. doi:
https://doi.org/10.1093/bib/bbp067

Fard, M. D., & Sarjoughian, H. S. (2015). Visual and Persistence Behavior Modeling for
DEVS in CoSMoS. In DEVS ’15 Proceedings of the Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium (pp. 227–234). San Diego, CA, USA:
Society for Computer Simulation International.

Farmer, W. M. (2007). Chiron: A Multi-paradigm Logic. Studies in Logic, Grammar and
Rhetoric: The Journal of University of Bialystok , 10 (23), 1–19.

Feng, T. H., Zia, M., & Vangheluwe, H. L. M. (2007, July). Multi-formalism Modelling
and Model Transformation for the Design of Reactive Systems. In G. A. Wainer (Ed.),
Proceedings of the 2007 Summer Computer Simulation Conference (SCSC’07) (pp.
505–5012). San Diego, CA, USA: Society for Computer Simulation International.

Figl, K., Mendling, J., & Strembeck, M. (2009). Towards a Usability Assessment of Process
Modeling Languages. In 8th GI-Workshop Geschäftsprozessmanagement mit Ereignisges-
teuerten Prozessketten (EPK), CEUR-WS (pp. 138–156). Berlin, Germany: CEUR-WS.

Fujimoto, R. M. (2000). Parallel and Distributed Simulation Systems (1st ed.). New York,
NY, USA: John Wiley & Sons, Inc.

Gaines, B. R. (1979). General Systems Research: Quo Vadis? General Systems: Yearbook of
the Society for General Systems Research, 24 , 1–9.

Gallagher, R., & Appenzeller, T. (1999, April). Beyond Reductionism. Science, 284 (5411),
79. doi: 10.1126/science.284.5411.79

Gao, J., Li, Y., Wang, Y. G., & Chen, G. (2012, November). Micro-macro Modeling for
Systems Biology with MR-DEVS. Applied Mechanics and Materials , 220-223 , 2975–2982.
doi: 10.4028/www.scientific.net/AMM.220-223.2975

Garredu, S., Vittori, E., Santucci, J.-F., & Bisgambiglia, P.-A. (2013, July). From State-
transition Models to DEVS Models - Improving DEVS External Interoperability using
MetaDEVS - A MDE Approach. In T. Ören, J. Kacprzyk, L. Leifsson, M. S. Obaidat, &
S. Koziel (Eds.), Proceedings of the 3rd International Conference on Simulation and Mod-
eling Methodologies, Technologies and Applications (SIMULTECH 2013) (pp. 186–196).
SciTePress - Science and and Technology Publications. doi: 10.5220/0004494401860196

Giambiasi, N., & Carmona, J. C. (2006, January). Generalized Discrete Event Abstraction of
Continuous Systems: GDEVS Formalism. Simulation Modelling Practice and Theory ,
14 (1), 47–70. doi: 10.1016/j.simpat.2005.02.009

Giambiasi, N., Escude, B., & Ghosh, S. (2001). GDEVS: A Generalized Discrete Event
Specification for Accurate Modeling of Dynamic Systems. In Proceedings of the 5th
International Symposium on Autonomous Decentralized Systems (pp. 464–469). Pis-
cataway, NJ, USA: The Institute of Electrical and Electronics Engineer, Inc. doi:
10.1109/ISADS.2001.917452

Goodfriend, J. H. (2005). A Gateway to Higher Mathematics. Sudbury, MA, USA: Jones and
Bartlett Publishers.

Hagendorf, O., Pawletta, T., & Deatcu, C. (2009, September). Extended Dynamic Structure
DEVS. In R. Aguilar, A. Bruzzone, & M. Piera (Eds.), Proceedings of the 21st European
Modeling and Simulation Symposium (Vol. 1, pp. 36–45).

Halmos, P. R. (1960). Naive Set Theory. Princeton, NJ, USA: Van Nostrand Reinhold
Company.

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of Computer

187

http://lup.lub.lu.se/record/8524888
http://lup.lub.lu.se/record/8524888

References

Programming , 8 (3), 231–274. doi: 10.1016/0167-6423(87)90035-9
Heider, T., & Kirste, T. (2005). Multimodal Appliance Cooperation based on Explicit Goals:

Concepts & Potentials. In Proceedings of the 2005 Joint Conference on Smart Objects
and Ambient Intelligence Innovative Context-Aware Services: Usages and Technologies
(sOc-EUSAI ’05) (pp. 271–276). New York, NY, USA: ACM Press. doi: 10.1145/
1107548.1107614

Hein, A., Burghardt, C., Giersich, M., & Kirste, T. (2009, September). Model-based Inference
Techniques for Detecting High-level Team Intentions. In B. Gottfried & H. Aghajan
(Eds.), Behaviour monitoring and interpretation - bmi (1st ed., pp. 257–288). Amsterdam,
The Netherlands: IOS Press. doi: 10.3233/978-1-60750-048-3-257

Heineman, G. T., & Councill, W. T. (Eds.). (2001). Component-based Software Engineering:
Putting the Pieces Together. Addison-Wesley.

Helal, S., Lee, J. W., Hossain, S., Kim, E., Hagras, H., & Cook, D. J. (2011). Persim -
Simulator for Human Activities in Pervasive Spaces. In Proceedings of the Seventh
International Conference on Intelligent Environments (pp. 192–199). Los Alamitos, CA,
USA: IEEE Computer Society. doi: 10.1109/IE.2011.34

Helms, T., Ewald, R., Rybacki, S., & Uhrmacher, A. M. (2013). A Generic Adaptive Simulation
Algorithm for Component-based Simulation Systems. Proceedings of the 2013 ACM
SIGSIM conference on Principles of advanced discrete simulation - SIGSIM-PADS ’13 ,
11–22. doi: 10.1145/2486092.2486095

Henzinger, T. A., Jobstmann, B., & Wolf, V. (2009, September). Formalisms for Specifying
Markovian Population Models. In O. Bournez & I. Potapov (Eds.), Reachability problems
(pp. 3–23). Springer-Verlag. doi: 10.1007/978-3-642-04420-5 2

Himmelspach, J. (2007). Konzeption, Realisierung und Verwendung eines allgemeinen
Modellierungs-, Simulations- und Experimentiersystems - Entwicklung und Evaluation
effizienter Simulationsalgorithmen (Dissertation). University of Rostock, Göttingen,
Germany.

Himmelspach, J. (2012, December). Tutorial on Building M&S Software Based on Reuse.
In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, & A. M. Uhrmacher (Eds.),
Proceedings of the 2012 Winter Simulation Conference. Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers, Inc. (Article No. 167) doi: 10.1109/WSC.2012
.6465306

Himmelspach, J., & Röhl, M. (2009, June). JAMES II - Experiences and Interpretation. In
A. M. Uhrmacher & D. Weyns (Eds.), Multi-agent systems: Simulation and application
(1st ed., pp. 509–533). Boca Raton, FL, USA: CRC Press.

Himmelspach, J., Röhl, M., & Uhrmacher, A. M. (2010, May). Component-based Models and
Simulations for Supporting Valid Multi-agent System Simulations. Applied Artificial
Intelligence, 24 (5), 414–442. doi: 10.1080/08839514.2010.481492

Himmelspach, J., & Uhrmacher, A. M. (2006). Sequential Processing of PDEVS Models.
In A. G. Bruzzone, A. Guasch, M. A. Piera, & J. Rozenblit (Eds.), Proceedings of the
3rd European Modeling & Simulation Symposium (EMSS) (pp. 239–244). Barcelona,
Spain: LogiSim. Retrieved from http://wwwmosi.informatik.uni-rostock.de/mosi/
veroeffentlichungen/inproceedingsreference.2006-06-27.0695819468

Himmelspach, J., & Uhrmacher, A. M. (2007). Plug’n Simulate. In Proceedings of the 40th
Annual Simulation Symposium (pp. 137–143). Washington, DC, USA: IEEE Computer
Society. doi: 10.1109/ANSS.2007.34

Himmelspach, J., & Uhrmacher, A. M. (2009, October). The JAMES II Framework for
Modeling and Simulation. In 2009 International Workshop on High Performance
Computational Systems Biology (pp. 101–102). IEEE. doi: 10.1109/HiBi.2009.20

Hoare, C. A. R. (1985). Communicating Sequential Processes. Upper Saddle River, NJ, USA:
Prentice Hall.

188

http://wwwmosi.informatik.uni-rostock.de/mosi/veroeffentlichungen/inproceedingsreference.2006-06-27.0695819468
http://wwwmosi.informatik.uni-rostock.de/mosi/veroeffentlichungen/inproceedingsreference.2006-06-27.0695819468

References

Hoekstra, A. G., Kroc, J., & Sloot, P. M. A. (2010). Introduction to Modeling of Complex
Systems Using Cellular Automata. In A. G. Hoekstra, J. Kroc, & P. M. A. Sloot (Eds.),
Simulating Complex Systems by Cellular Automata (pp. 1–16). Springer-Verlag Berlin
Heidelberg. doi: 10.1007/978-3-642-12203-3

Hollmann, D. A., Cristiá, M., & Frydman, C. (2015, September). CML-DEVS: A Specification
Language for DEVS Conceptual Models. Simulation Modelling Practice and Theory ,
57 , 100–117. doi: 10.1016/j.simpat.2015.06.007

Hong, J. S., Song, H.-S., Kim, T. G., & Park, K. H. (1997, October). A Real-time Discrete
Event System Specification Formalism for Seamless Real-time Software Development.
Discrete Event Dynamic Systems: Theory and Applications , 7 (4), 355–375. doi: 10.1023/
A:1008262409521

Honig, H. J., & Seck, M. D. (2012). ΦDEVS: Phase Based Discrete Event Modeling. In
G. A. Wainer & P. J. Mosterman (Eds.), Proceedings of the 2012 Symposium on Theory
of Modeling and Simulation - DEVS Integrative M&S Symposium. San Diego, CA, USA:
Society for Computer Simulation International. (Article No.: 39)

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to Automata Theory,
Languages, and Computation (2nd ed.). Addison-Wesley.

Hrbacek, K., & Jech, T. (1999). Introduction to Set Theory: Third Edition, Revised and
Expanded (3rd ed.; E. J. Taft & Z. Nashed, Eds.). Marcel Dekker, Inc.

Hu, X., Zeigler, B. P., & Mittal, S. (2005, February). Variable Structure in DEVS
Component-based Modeling and Simulation. SIMULATION , 81 (2), 91–102. doi:
10.1177/0037549705052227

Huebscher, M. C., & McCann, J. A. (2004, August). Simulation Model for Self-adaptive
Applications in Pervasive Computing. In Proceedings of the 15th International Workshop
on Database and Expert Systems Applications (SAACS 04) (pp. 694–698). Los Alamitos,
CA, USA: IEEE Computer Society. doi: 10.1109/DEXA.2004.1333555

Huhns, M., & Singh, M. (1998, September). Cognitive Agents. IEEE Internet Computing ,
2 (6), 87–89. doi: 10.1109/4236.735992

Hurley, P. J. (2006). A Concise Introduction to Logic (9th ed.). Belmont, CA, USA:
Wadsworth.

Huttenlocher, P. R., & Dabholkar, A. S. (1997, October). Regional Differences in Synap-
togenesis in Human Cerebral Cortex. The Journal of Comparative Neurology , 387 (2),
167–178. doi: 10.1002/(SICI)1096-9861(19971020)387:2x167::AID-CNE1y3.0.CO;2-Z

Hwang, M. H., & Zeigler, B. P. (2009, July). Reachability Graph of Finite and Deterministic
DEVS Networks. IEEE Transactions on Automation Science and Engineering , 6 (3),
468–478. doi: 10.1109/TASE.2009.2021352

IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)–
Framework and Rules. (2010). IEEE Std 1516–2010 , i–22. doi: 10.1109/IEEESTD.2000
.92296

IEEE Standard Glossary of Modeling and Simulation Terminology. (1989). IEEE Std
610.3-1989 , 19. doi: 10.1109/IEEESTD.1989.94599

Ighoroje, U. B., Mäıga, O., & Traoré, M. K. (2012). The DEVS-driven Modeling Language:
Syntax and Semantics Definition by Meta-modeling and Graph Transformation. In
Proceedings of the 2012 Symposium on Theory of Modeling and Simulation - DEVS
Integrative M&S Symposium. Retrieved from https://dl.acm.org/citation.cfm?id=
2346665 (Article No. 49)

Jacob, F., & Monod, J. (1961, June). Genetic Regulatory Mechanisms in the Synthesis of
Proteins. Journal of Molecular Biology , 3 (3), 318–356. doi: 10.1016/S0022-2836(61)
80072-7

Jamshidi, M. (2008). Introduction to System of Systems. In M. Jamshidi (Ed.), System of
systems engineering: Innovations for the twenty-first century (2008th ed., pp. 1–20).

189

https://dl.acm.org/citation.cfm?id=2346665
https://dl.acm.org/citation.cfm?id=2346665

References

Hoboken, NJ, USA: John Wiley & Sons, Inc.
Jech, T. (1997). Set Theory (2nd ed.). Berlin, Germany: Springer-Verlag Berlin Heidelberg.
Jech, T. (2002). Set Theory: The Third Millennium Edition, revised and expanded (3rd ed.).

Berlin, Germany: Springer.
Jifeng, H., Li, X., & Liu, Z. (2005). Component-based Software Engineering: The Need to Link

Methods and Their Theories. In D. V. Hung & M. Wirsing (Eds.), Theoretical Aspects
of Computing (ICTAC) (Vol. 3722, pp. 70–95). Springer. doi: 10.1007/11560647 5

John, M., Lhoussaine, C., & Niehren, J. (2009, September). Dynamic Compartments in the
Imperative pi-Calculus. In P. Degano & R. Gorrieri (Eds.), Computational methods in
systems biology (pp. 235–250). Berlin, Heidelberg, Germany: Springer-Verlag Berlin
Heidelberg. doi: 10.1007/978-3-642-03845-7 16

Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2012). System Dynamics: Modeling,
Simulation, and Control of Mechatronic Systems (5th ed.). Hoboken, NJ, USA: John
Wiley & Sons, Inc.

Kasputis, S., & Ng, H. C. (2000, December). Composable Simulations. In J. A. Joines,
J. J. Barton, K. Kang, & P. A. Fishwick (Eds.), Proceedings of the 2000 Winter
Simulation Conference (Vol. 2, pp. 1577–1584). Los Alamitos, CA, USA: Institute of
Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.2000.899142

Kaye, P., Laflamme, R., & Mosca, M. (2007). An Introduction to Quantum Computing.
Oxford, UK: Oxford University Press.

Khoussainov, B., & Nerode, A. (2001). Automata Theory and its Applications (2001st ed.).
Boston, MA, USA: Birkhäuser.

Kirste, T. (2006, August). Smart Environments. In E. Aarts & J. L. Encarnação (Eds.),
True Visions: The Emergence of Ambient Intelligence (2006th ed., pp. 321–337). Berlin,
Germany: Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-28974-6 17

Kleene, S. C. (1967). Mathematical Logic (2002nd ed.). Mineola, NY, USA: Dover Publications
Inc.

Kofman, E., & Junco, S. (2001, September). Quantized-state Systems: A DEVS Approach for
Continuous System Simulation. Transactions of the Society for Computer Simulation
International , 18 (3), 123–132.

Korn, G. A., & Wait, J. V. (1978). Digital Continuous-system Simulation. Prentice Hall.
Krüger, F., Steiniger, A., Bader, S., & Kirste, T. (2012, September). Evaluating the Robustness

of Activity Recognition Using Computational Causal Behavior Models. In A. K. Dey,
H.-H. Chu, & G. Hayes (Eds.), Proceedings of the 2012 ACM Conference on Ubiquitous
Computing (UbiComp ’12) (pp. 1066–1074). New York, New York, USA: ACM Press.
doi: 10.1145/2370216.2370443

Kwon, Y. W., Park, H. C., Jung, S. H., & Kim, T. G. (1996, March). Fuzzy-DEVS Formalism:
Concepts, Realization and Applications. In Proceedings of the 1996 Conference on AI,
Simulation and Planning in High Autonomy Systems (AIS 1996) (pp. 227–234).

Lau, K.-K., & Ntalamagkas, I. (2009, August). Component-based Construction of Concurrent
Systems with Active Components. In Proceedings of the 35th EUROMICRO Conference
on Software Engineering and Advanced Applications (pp. 497–501). Los Alamitos, CA,
USA: IEEE Computer Society. doi: 10.1109/SEAA.2009.45

Law, A. M., & Kelton, W. D. (2000). Simulation Modeling and Analysis (3rd ed.). McGraw-Hill
Higher Education.

Leemis, L. M., & Park, S. K. (2006). Discrete-Event Simulation: A First Course. Upper
Saddle River, NJ, USA: Pearson Prentice Hall.

The Levels of Conceptual Interoperability Model. (2003). In Proceedings of the 2003 Fall
Simulation Interoperability Workshop.

Leye, S. (2013). Toward Guiding Simulation Experiments (Dissertation, University of Rostock,
Rostock, Germany). doi: 10.18453/rosdok id00001365

190

References

Li, Y., Li, B. H., Hu, X., & Chai, X. (2011, March). Formalization of Multi-resolution
Modeling based on Dynamic Structure DEVS. In 2011 International Conference on
Information Science and Technology (ICIST 2011) (pp. 855–864). Institute of Electrical
and Electronics Engineers. doi: 10.1109/ICIST.2011.5765113

Lin, J. T., & Lee, C.-C. (1993, June). A Three-phase Discrete Event Simulation with EPNSim
Graphs. SIMULATION , 60 (6), 382–392. doi: 10.1177/003754979306000603

Livny, M. (1983). The Study of Load Balancing Algorithms for Decentralized Distributed
Processing Systems (Dissertation). Weizmann Institute of Science, Rehovot, Isreal.

Ljung, L., & Glad, T. (1994). Modeling of Dynamic Systems. Englewood Cliffs, NJ, USA:
Prentice-Hall, Inc.

Martin, J. C. (2010). Introduction to Languages and the Theory of Computation (4th ed.).
London, UK: McGraw-Hill.

Martin, M., & Nurmi, P. (2006, July). A Generic Large Scale Simulator for Ubiquitous
Computing. 2006 Third Annual International Conference on Mobile and Ubiquitous
Systems: Networking & Services, 1–3. doi: 10.1109/MOBIQ.2006.340388

Mattsson, S. E., & Elmqvist, H. (1998, April). An Overview of the Modeling Language
Modelica. In Proceedings of the 3rd EUROSIM Congress (Eurosim’98) (pp. 1–5).
Retrieved from http://user.asc.tuwien.ac.at/eurosim/index.php?id=44

Maus, C. (2008). Component-based Modelling of RNA Structure Folding. In M. Heiner
& A. M. Uhrmacher (Eds.), Computational methods in systems biology (Vol. 5307,
pp. 44–62). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. doi: 10.1007/
978-3-540-88562-7

Maus, C. (2012). Toward Accessible Multilevel Modeling in Systems Biology (Dissertation).
University of Rostock.

Maus, C., Rybacki, S., & Uhrmacher, A. M. (2011). Rule-based Multi-level Modeling of Cell
Biological Systems. BMC Systems Biology , 5 (166). doi: 10.1186/1752-0509-5-166

McGlinn, K., O’Neill, E., Gibney, A., O’Sullivan, D., & Lewis, D. (2010). SimCon: A Tool
to Support Rapid Evaluation of Smart Building Application Design Using Context
Simulation and Virtual Reality. Journal of Universal Computer Science, 16 (15), 1992–
2018. doi: 10.3217/jucs-016-15-1992

Miller, J. G. (1978). Living Systems (1st ed.). McGraw-Hill.
Milner, R. (1982). A Calculus of Communicating Systems (1980th ed., Vol. 92). Berlin,

Germany: Springer-Verlag. doi: 10.1007/3-540-10235-3
Milner, R. (1992, June). Functions as Processes. Mathematical Structures in Computer

Science, 2 (02), 119–141. doi: 10.1017/S0960129500001407
Milner, R. (1999). Communicating and Mobile Systems: The Pi-Calculus (1st ed.). Cambridge,

UK: Cambridge University Press.
Minsky, M. L. (1965). Models, Minds, Machines. In W. A. Kalenich (Ed.), Proceedings of

IFIP Congress (pp. 45–49). Spartan Books.
Mittal, S. (2013, March). Emergence in Stigmergic and Complex Adaptive Systems: A

Formal Discrete Event Systems Perspective. Cognitive Systems Research, 21 , 22–39.
doi: 10.1016/j.cogsys.2012.06.003

Modelica Association. (2012, May). Modelica - A Unified Object-oriented Language for
System Modeling (Language Specification). Modelica Association. Retrieved from
http://www.modelica.org

Molter, H. G. (2012). SynDEVS Co-Design Flow: A Hardware / Software Co-Design Flow
Based on the Discrete Event System Specification Model of Computation. Wiesbaden,
Germany: Springer Vieweg. doi: 10.1007/978-3-658-00397-5

Molter, H. G., Seffrin, A., & Huss, S. A. (2009). DEVS2VHDL: Automatic Tansformation of
XML-specified DEVS Model of Computation into Synthesizable VHDL Code. In Forum
on Specification & Design Languages (pp. 1–6). Piscataway, NJ, USA: The Institute of

191

http://user.asc.tuwien.ac.at/eurosim/index.php?id=44
http://www.modelica.org

References

Electrical and Electronics Engineer, Inc.
MontiCore: A Framework for Compositional Development of Domain Specific Languages.

(2010, September). International Journal on Software Tools for Technology Transfer
(SITT), 12 (6), 353–372. doi: 10.1007/s10009-010-0142-1

Moore, E. F. (1956, April). Gedanken-experiments on Sequential Machines. In C. E. Shannon
& J. McCarthy (Eds.), Automata studies (pp. 129–153). Princeton University Press.

Morris, R. L., & Hollenbeck, P. J. (1995, December). Axonal Transport of Mitochondria along
Microtubules and F-actin in Living Vertebrate Neurons. The Journal of Cell Biology ,
131 (5), 1315–1326.

Morris, W. T. (1967, August). On the Art of Modeling. Management Science, 13 (12),
B-707–B-717. doi: 10.1287/mnsc.13.12.B707

Muzy, A., & Zeigler, B. P. (2014, September). Specification of Dynamic Structure Discrete
Event Systems Using Single Point Encapsulated Control Functions. International
Journal of Modeling, Simulation, and Scientific Computing , 5 (3), 1450012–20. doi:
10.1142/S1793962314500123

Nance, R. E. (1994). The Conical Methodology and the Evolution of Simulation Model
Development. Annals of Operations Research, 53 (1), 1–45. doi: 10.1007/BF02136825

Nishikawa, H., Yamamoto, S., Tamai, M., Nishigaki, K., Kitani, T., Shibata, N., . . . Ito, M.
(2006). UbiREAL: Realistic Smartspace Simulator for Systematic Testing. In P. Dourish
& A. Friday (Eds.), Ubicomp 2006: Ubiquitous computing (Vol. 4206, pp. 459–476).
Berlin, Heidelberg, Germany: Springer Berlin Heidelberg. doi: 10.1007/11853565

Nixon, P. A., Lacey, G., & Dobson, S. (Eds.). (2000). Managing Interactions in Smart
Environments: 1st International Workshop on Managing Interactions in Smart Envi-
ronments (MANSE’99), Dublin, December 1999. London, UK: Springer-Verlag London.
doi: 10.1007/978-1-4471-0743-9 1

Nixon, P. A., Wagealla, W., English, C., & Terzis, S. (2004, November). Security, Privacy
and Trust Issues in Smart Environments. In D. J. Cook & S. K. Das (Eds.), Smart
environments: Technology, protocols, and applications (1st ed., pp. 249–270). Hoboken,
NJ, USA: John Wiley & Sons, Inc.

Noble, J., Silverman, E., Bijak, J., Rossiter, S., Evandrou, M., Bullock, S., . . . Falkingham, J.
(2012, December). Linked Lives: The Utility of an Agent-based Approach to Modeling
Partnership and Household Formation in the Context of Social Care. In C. Laroque,
J. Himmelspach, R. Pasupathy, O. Rose, & A. M. Uhrmacher (Eds.), Proceedings of
the 2012 Winter Simulation Conference (pp. 1–12). Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.2012.6465264

Nyolt, M., Steiniger, A., Bader, S., & Kirste, T. (2013, August). Describing and Evaluating
Assistance using APDL. In Q. Bai, T. Ito, M. Zhang, F. Ren, & X. Tang (Eds.),
Proceedings of the International SSMCS Workshop (pp. 38–49).

Nyolt, M., Steiniger, A., Bader, S., & Kirste, T. (2015). Describing and Evaluating Assistance
Using APDL. In Q. Bai, F. Ren, M. Zhang, T. Ito, & X. Tang (Eds.), Smart modeling
and simulation for complex systems: Practice and theory (Vol. 564, pp. 59–81). Tokyo,
Osaka, Japan: Springer Japan. doi: 10.1007/978-4-431-55209-3 5

Odell, J. J., Van Dyke Parunak, H., Fleischer, M., & Brueckner, S. (2003). Modeling
Agents and Their Environment. In F. Giunchiglia, J. Odell, & G. Weiß (Eds.), Agent-
Oriented Software Engineering III: Third International Workshop (AOSE 2002) (pp.
16–31). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. Retrieved from http://
dl.acm.org/citation.cfm?id=1754726.1754729

Ören, T. I. (1975, June). Simulation of Time-varying Systems. In J. Rose (Ed.), Advances
in cybernetics and systems (pp. 1229–1238). London, UK: Gordon & Breach Science
Publishers.

Ören, T. I., & Zeigler, B. P. (1986, January). From Stone Tools to Cognizant Tools: The Quest

192

http://dl.acm.org/citation.cfm?id=1754726.1754729
http://dl.acm.org/citation.cfm?id=1754726.1754729

References

Continues. In G. C. Vansteenkiste, E. J. H. Herkhoffs, L. Dekker, & J. C. Zuidervaart
(Eds.), Proceedings of the 2nd European Simulation Congress (pp. 801–807). Leiden,
The Netherlands: Brill Academic Pub.

Otter, M., & Elmqvist, H. (2000). Modelica - Language, Libraries, Tools, Workshop and
EU-Project. Simulation News Europe (SNE)(29/30), 3–8.

Otter, M., Erik Mattsson, S., & Elmqvist, H. (2007). Multidomain Modeling with Modelica.
In P. A. Fishwick (Ed.), Handbook of dynamic system modeling (pp. 36-1–36-27). Boca
Raton, FL, USA: Chapman & Hall/CRC. doi: 10.1201/9781420010855.pt5

Palikaras, K., Lionaki, E., & Tavernarakis, N. (2015, September). Balancing Mitochondrial
Biogenesis and Mitophagy to Maintain Energy Metabolism Homeostasis. Cell Death
and Differentiation, 22 (9), 1399–1401. doi: 10.1038/cdd.2015.86

Park, J., Lee, J., & Choi, C. (2011, August). Mitochondrial Network Determines Intracellular
ROS Dynamics and Sensitivity to Oxidative Stress through Switching Inter-mitochondrial
Messengers. PloS ONE , 6 (8), e23211. doi: 10.1371/journal.pone.0023211

Park, J., Moon, M., Hwang, S., & Yeom, K. (2007, August). CASS: A Context-aware
Simulation System for Smart Home. In H.-K. Kim, J. Tanaka, B. Malloy, R. Lee, C. Wu,
& D.-K. Baik (Eds.), Proceedings of the 5th ACIS International Conference on Software
Engineering Research, Management & Applications (SERA 2007) (pp. 461–467). Los
Alamitos, CA, USA: IEEE Computer Society. doi: 10.1109/SERA.2007.60

Patel, P. K., Shirihai, O., & Huang, K. C. (2013, January). Optimal Dynamics for Quality
Control in Spatially Distributed Mitochondrial Networks. PLoS Computational Biology ,
9 (7), e1003108. doi: 10.1371/journal.pcbi.1003108

Pawletta, T., Lampe, B. P., Pawletta, S., & Drewelow, W. (1996, September). A New
Approach for Simulation of Variable Structure Systems. In Z. Vukić (Ed.), Proceedings
of the 41th Annual Conference KoREMA ’96 (Vol. 4, pp. 83–87). Zagreb, Croatia:
KoREMA. doi: 10.1.1.54.1321

Peckham, S. D., Hutton, E. W., & Norris, B. (2013, April). A Component-based Approach
to Integrated Modeling in the Geosciences: The Design of CSDMS. Computers &
Geosciences, 53 , 3–12. doi: 10.1016/j.cageo.2012.04.002

Peng, D., Ewald, R., & Uhrmacher, A. M. (2014, May). Towards semantic model composition
via experiments. In J. D. A. Hamilton, Jr., G. F. Riley, & R. M. Fujimoto (Eds.),
Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (PADS’ 14) (pp. 151–162). New York, New York, USA: ACM Press. doi:
10.1145/2601381.2601394

Perlis, A. J. (1982, September). Special Feature: Epigrams on Programming. ACM SIGPLAN
Notices, 17 (9), 7–13. doi: 10.1145/947955.1083808

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice Hall.
Petri, C. A. (1962). Kommunikation mit Automaten (Dissertation, Technische Univer-

sität Darmstadt, Bonn, Germany). Retrieved from http://edoc.sub.uni-hamburg.de/
informatik/volltexte/2011/160/

Petty, M. D., & Weisel, E. W. (2003a, April). A Composability Lexicon. In Proceedings of
the Spring 2003 Simulation Interoperability Workshop (pp. 181–187).

Petty, M. D., & Weisel, E. W. (2003b). A Formal Basis for a Theory of Semantic Composability.
In Proceedings of the Spring 2003 Simulation Interoperability Workshop.

Pierce, B. C. (2002). Types and Programming Languages (1st ed.). Cambridge, MA, USA:
The MIT Press.

Pirotte, A. (1982, September). A Precise Definition of Basic Relational Notions and of the
Relational Algebra. ACM SIGMOD Record , 13 (1), 30–45. doi: 10.1145/984514.984516

Plotkin, G. D. (2004a). The Origins of Structural Operational Semantics. Journal of Logic
and Algebraic Programming , 60-61 (SUPPL.), 3–15. doi: 10.1016/j.jlap.2004.03.009

Plotkin, G. D. (2004b). A Structural Approach to Operational Semantics. The Journal of Logic

193

http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/

References

and Algebraic Programming , 60-61 (SUPPL.), 17–139. doi: 10.1016/j.jlap.2004.05.001
Poslad, S. (2009). Ubiquitous Computing: Smart Devices, Environments and Interactions

(1st ed.). Chichester, UK: John Wiley & Sons, Inc.
Praehofer, H. (1991). Systems Theoretic Formalisms for Combined Discrete-Continuous

System Simulation. International Journal of General Systems, 19 (3), 226–240. doi:
10.1080/03081079108935175

Praehofer, H. (1992). System Theoretic Foundations for Combined Discrete-Continuous
System Simulation (Dissertation). Johannes Kepler University Linz, Wien, Austria.

Praehofer, H., & Pree, D. (1993, December). Visual Modeling of DEVS-based Multiformalism
Systems Based on Higraphs. In Proceedings of the 1993 Winter Simulation Conference
(pp. 595–603). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers,
Inc. doi: 10.1145/256563.256737

Risco-Mart́ın, J. L., de la Cruz, J. M., Mittal, S., & Zeigler, B. P. (2009, November). eUDEVS:
Executable UML with DEVS Theory of Modeling and Simulation. SIMULATION ,
85 (11-12), 750–777. doi: 10.1177/0037549709104727

Rivera, J. E., Duran, F., & Vallecillo, A. (2009, September). A Graphical Approach for
Modeling Time-dependent Behavior of DSLs. In 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) (pp. 51–55). Piscataway, NJ,
USA: Institute of Electrical and Electronics Engineers, Inc. doi: 10.1109/VLHCC.2009
.5295300

Roberts, S. D., & Pegden, D. (2017, December). The History of Simulation Modeling.
In W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. A. Wainer,
& E. Page (Eds.), Proceedings of the 2017 Winter Simulation Conference (pp. 308–
323). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc. doi:
10.1109/WSC.2017.8247795

Rodriguez, D. A., & Wainer, G. A. (1999). Redefinition of a Specification Language for
Cell-DEVS Models. In Proceedings of Information Systems Analysis and Synthesis,
ISAS’99.

Rogovchenko, O., & Malenfant, J. (2010). Composition and Compositionality in a Component
Model for Autonomous Robots. In B. Baudry & E. Wohlstadter (Eds.), Software
composition (pp. 34–49). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-14046-4 3

Röhl, M. (2006). Platform Independent Specification of Simulation Model Components. In
W. Borutzky, A. Orsoni, & R. Zobel (Eds.), Proceedings of the 20th European Conference
on Modelling and Simulation (ECMS 2006) (pp. 220–225). Nottingham, UK: ECMS.

Röhl, M. (2008). Definition und Realisierung einer Plattform zur modellbasierten Komposition
von Simulationsmodellen (Dissertation, Universität Rostock). doi: 10.18453/rosdok
id00000298

Röhl, M., & Morgenstern, S. (2007, December). Composing Simulation Models Using
Interface Definitions Based on Web Service Descriptions. In S. G. Henderson, B. Biller,
M.-H. Hsieh, J. Shortle, J. D. Tew, & J. J. Barton (Eds.), Proceedings of the 2007 Winter
Simulation Conference (pp. 815–822). Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, Inc. doi: 10.1109/WSC.2007.4419677

Röhl, M., & Uhrmacher, A. M. (2006, December). Composing Simulations from XML-
Specified Model Components. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson,
D. M. Nicol, & R. M. Fujimoto (Eds.), Proceedings of the 2006 Winter Simulation
Conference (pp. 1083–1090). Los Alamitos, CA, USA: IEEE Computer Society. doi:
10.1109/WSC.2006.323198

Röhl, M., & Uhrmacher, A. M. (2008, December). Definition and Analysis of Composition
Structures for Discrete-Event Models. In S. J. Mason, R. R. Hill, L. Mönch, O. Rose,
T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the 2008 Winter Simulation Con-
ference (pp. 942–950). Piscataway, NJ, USA: Institute of Electrical and Electronics

194

References

Engineers, Inc. doi: 10.1109/WSC.2008.4736160
Ropohl, G. (1999). Philosophy of Socio-technical Systems. Techné: Research in Philosophy

and Technology , 4 (3), 186–194. doi: 10.5840/techne19994311
Rosen, K. H. (2007). Discrete Mathematics and Its Applications. McGraw-Hill Higher

Education.
Rowson, J. A., & Sangiovanni-Vincentelli, A. (1997). Interface-based Design. In Proceedings

of the 34th annual Design Automation Conference (DAC ’97) (pp. 178–183). New York,
New York, USA: ACM Press. doi: 10.1145/266021.266060

Rozenblit, J. W., & Zeigler, B. P. (1993, December). Representing and Constructing
System Specifications Using the System Entity Structure Concepts. In G. W. Evans,
M. Mollaghasemi, E. C. Russell, & W. E. Biles (Eds.), Proceedings of the 1993 Winter
Simulation Conference (pp. 604–611). New York, NY, USA: ACM Press. doi: 10.1145/
256563.256742

Russel, S. J., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd ed.).
Upper Saddle River, NJ, USA: Prentice Hall.

Russell, B. (1903). The Principles of Mathematics (1st ed.). Cambridge, UK: Cambridge
University Press.

Rybacki, S., Haack, F., Wolf, K., & Uhrmacher, A. M. (2014). Developing Simulation
Models - from Conceptual to Executable Model and Back - an Artifact-based Workflow
Approach. In Proceedings of the 7th International ICST Conference on Simulation Tools
and Techniques (SIMUTools) (pp. 21–30). doi: 10.4108/icst.simutools.2014.254650

Sanmugalingam, K., & Coulouris, G. (2002, September). A Generic Location Event Simulator.
In G. Borriello & L. E. Holmquist (Eds.), Proceedings of the 4th International Conference
on Ubiquitous Computing (UbiComp ’02) (pp. 308–315). Berlin, Germany: Springer-
Verlag. doi: 10.1007/3-540-45809-3 24

Sarjoughian, H. S. (2006, December). Model Composability. In L. F. Perrone, F. P. Wieland,
J. Liu, B. G. Lawson, D. M. Nicol, & R. M. Fujimoto (Eds.), Proceedings of the
2006 Winter Simulation Conference (pp. 149–158). Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.2006.323047

Sarjoughian, H. S., & Elamvazhuthi, V. (2009). CoSMoS: A Visual Environment for
Component-based Modeling, Experimental Design, and Simulation. In Proceedings
of the Second International ICST Conference on Simulation Tools and Techniques. ICST.
doi: 10.4108/ICST.SIMUTOOLS2009.5744

Sarjoughian, H. S., & Huang, D. (2005). A Multi-formalism Modeling Composability
Framework: Agent and Discrete-event Models. In A. Boukerche, S. J. Turner, D. Roberts,
& G. K. Theodoropoulos (Eds.), Proceedings of the 2005 Ninth IEEE International
Symposium on Distributed Simulation and Real-Time Applications (pp. 249–256). Los
Alamitos, CA, USA: IEEE Computer Society. doi: 10.1109/DISTRA.2005.4

Sarjoughian, H. S., & Zeigler, B. P. (2000, December). DEVS and HLA: Complementary
paradigms for modeling and simulation? Transactions of the Society for Computer
Simulation International , 17 (4), 187–197.

Savory, P., & Mackulak, G. (1994). The Science of Simulation Modeling. In C. E. Knadler
Jr. & H. Vakilzadian (Eds.), International Conference on Simulation in Engineering
Education: Proceedings of the 1994 Western Multiconference (pp. 115–119). Society for
Computer Simulation.

Schalles, C. (2013). Usability Evaluation of Modeling Languages. Wiesbaden, Germany:
Springer Gabler. doi: 10.1007/978-3-658-00051-6

Schmidt, J. W., & Taylor, R. E. (1970). Simulation and Analysis of Industrial Systems.
Richard D. Irwin, Inc.

Self-reproducible DEVS formalism. (2005, November). Journal of Parallel and Distributed
Computing , 65 (11), 1329–1336. doi: 10.1016/j.jpdc.2005.05.004

195

References

Shannon, R. E. (1975). Systems Simulation: The Art of Science. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc.

Shiginah, F. A. S. B. (2006). Multi-layer Cellular DEVS Formalism for Faster Model
Development and Simulation Efficiency (Unpublished doctoral dissertation). University
of Arizona.

Silverman, B. G., Might, R., Dubois, R., Shin, H., Johns, M., & Weaver, R. (2001). Toward
A Human Behavior Models Anthology for Synthetic Agent Development. In Proceedings
of the 10th Conference on Computer Generated Forces and Behavioral Representation
(pp. 277–285).

Smith, J. M., & Smith, D. C. P. (1977, June). Database Abstractions: Aggregation and
Generalization. ACM Transactions on Database Systems, 2 (2), 105–133. doi: 10.1145/
320544.320546

Steiniger, A., Krüger, F., & Uhrmacher, A. M. (2012, December). Modeling Agents and
their Environment in Multi-Level-DEVS. In C. Laroque, J. Himmelspach, R. Pasupathy,
O. Rose, & A. M. Uhrmacher (Eds.), Proceedings of the 2012 Winter Simulation
Conference. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc.
(Article No. 233) doi: 10.1109/WSC.2012.6465113

Steiniger, A., & Uhrmacher, A. M. (2010, December). Modeling and Simulation for User
Assistance in Smart Environments. In B. Johansson, S. Jain, J. Montoya-Torres, &
E. Yücesan (Eds.), Proceedings of the 2010 Winter Simulation Conference (pp. 490–
499). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc. doi:
10.1109/WSC.2010.5679138

Steiniger, A., & Uhrmacher, A. M. (2013, July). Composing Variable Structure Models:
A Revision of COMO. In T. Ören, J. Kacprzyk, L. Leifsson, M. S. Obaidat, &
S. Koziel (Eds.), Proceedings of the 3rd International Conference on Simulation and
Modeling Methodologies, Technologies and Applications (SIMULTECH 2013) (pp. 286–
293). SCITEPRESS. doi: 10.5220/0004486302860293

Steiniger, A., & Uhrmacher, A. M. (2016, January). Intensional Couplings in Variable-
Structure Models: An Exploration Based on Multilevel-DEVS. ACM Transactions on
Modeling and Computer Simulation, 26 (2), 9-1–9-27. doi: 10.1145/2818641

Steiniger, A., Zinn, S., Gampe, J., Willekens, F., & Uhrmacher, A. M. (2014, December). The
Role of Languages for Modeling and Simulating Continuous-Time Multi-Level Models
in Demography. In A. Tolk, S. D. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, &
J. A. Miller (Eds.), Proceedings of the 2014 Winter Simulation Conference (pp. 2978–
2989). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc. doi:
10.1109/WSC.2014.7020137

Stiffel, S. G. (2014). Simulating the Issue Lifecycle with Attached SLAs in the Context of an
IT Service Corporation (Unpublished master’s thesis). University of Rostock, Rostock,
Germany.

Sundstrom, T. (2013). Mathematical Reasoning: Writing and Proof (3rd ed.). CreateSpace
Independent Publishing Platform.

Syriani, E., & Vangheluwe, H. L. M. (2010, December). DEVS as a Semantic Domain
for Programmed Graph Transformation. In G. A. Wainer & P. J. Mosterman (Eds.),
Discrete-Event Modeling and Simulation: Theory and Applications (1st ed., pp. 3–28).
Boca Raton, FL, USA: CRC Press.

Syriani, E., & Vangheluwe, H. L. M. (2013, May). A Modular Timed Graph Transformation
Language for Simulation-based Design. Software & Systems Modeling , 12 (2), 387–414.
doi: 10.1007/s10270-011-0205-0

Syropoulos, A. (2001, August). Mathematics of Multisets. In C. S. Calude, G. Păun,
G. Rozenberg, & A. Salomaa (Eds.), Multiset processing: Mathematical, computer
science, and molecular computing points of view (pp. 347–358). Berlin, Heidelberg,

196

References

Germany: Springer-Verlag Berlin Heidelberg. doi: 10.1007/3-540-45523-X 17
Szabo, C. (2010). Composable Simulation Models and Their Formal Validation (Unpublished

doctoral dissertation). National University of Singapore.
Szabo, C., & Teo, Y. M. (2007, March). On Syntactic Composability and Model Reuse. In

D. Al-Dabass, R. Zobel, A. Abraham, & S. Turner (Eds.), Proceedings of the First Asia
International Conference on Modelling & Simulation (pp. 230–237). Los Alamitos, CA,
USA: IEEE Computer Society. doi: 10.1109/AMS.2007.74

Szabo, C., & Teo, Y. M. (2009, June). An Approach for Validation of Semantic Composability
in Simulation Models. In Proceedings of the 23rd Workshop on Principles of Advanced
and Distributed Simulation (pp. 3–10). Washington, DC, USA: IEEE Computer Society.
doi: 10.1109/PADS.2009.14

Szyperski, C. A. (2002). Component Software: Beyond Object-Oriented Programming (2nd
ed.). London, UK: Pearson Education Limited.

Teo, Y. M., & Szabo, C. (2008, April). CODES: An Integrated Approach to Composable
Modeling and Simulation. In 41st Annual Simulation Symposium (ANSS-41 2008) (pp.
103–110). IEEE. doi: 10.1109/ANSS-41.2008.24

Thomas, C. (1994). Interface-oriented Classification of DEVS Models. In Proceedings of the
5th Annual Conference on AI, and Planning in High Autonomy Systems (AIS 1994)
(pp. 208–213). IEEE Comput. Soc. Press. doi: 10.1109/AIHAS.1994.390472

Tocher, K. D. (1963). The Art of Simulation. London, UK: English Universities Press.
Retrieved from https://archive.org/details/TheArtOfSimulation

Tolk, A. (2013, October). Interoperability, Composability, and Their Implications for Dis-
tributed Simulation: Towards Mathematical Foundations of Simulation Interoperability.
In 17th IEEE/ACM International Symposium on Distributed Simulation and Real Time
Applications, {DS-RT} 2013 (pp. 3–9). Piscataway, NJ, USA: Institute of Electrical
and Electronics Engineers, Inc. doi: 10.1109/DS-RT.2013.8

Tolk, A., & Miller, J. A. (2011, August). Enhancing Simulation Composability and Interoper-
ability Using Conceptual/Semantic/Ontological models. Journal of Simulation, 5 (3),
133–134. doi: 10.1057/jos.2011.18

Traore, M. K. (2006, December). Analyzing Static and Temporal Properties of Simulation
Models. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, &
R. M. Fujimoto (Eds.), Proceedings of the 2006 Winter Simulation Conference (pp.
897–904). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc.
doi: 10.1109/WSC.2006.323173

Uhrmacher, A. M. (1995, March). Reasoning about Changing Structure: A Modeling Concept
for Ecological Systems. Applied Artificial Intelligence: An International Journal , 9 (2),
157–180. doi: 10.1080/08839519508945472

Uhrmacher, A. M. (2001, April). Dynamic Structures in Modeling and Simulation: A
Reflective Approach. ACM Transactions on Modeling and Computer Simulation, 11 (2),
206–232. doi: 10.1145/384169.384173

Uhrmacher, A. M., Ewald, R., John, M., Maus, C., Jeschke, M., & Biermann, S. (2007,
December). Combining Micro and Macro-modeling in DEVS for Computational Biology.
In S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, & R. R. Barton (Eds.),
Proceedings of the 2007 Winter Simulation Conference (pp. 871–880). Piscataway, NJ:
IEEE Press. doi: 10.1109/WSC.2007.4419683

Uhrmacher, A. M., Himmelspach, J., & Ewald, R. (2010, December). Effective and Efficient
Modeling and Simulation with DEVS Variants. In G. A. Wainer & P. J. Mosterman
(Eds.), Discrete-event modeling and simulation: Theory and applications (1st ed., pp.
139–176). Boca Raton, FL, USA: CRC Press.

Uhrmacher, A. M., Himmelspach, J., Röhl, M., & Ewald, R. (2006, December). Introducing
Variable Ports and Multi-couplings for Cell Biological Modeling in DEVS. In L. F. Per-

197

https://archive.org/details/TheArtOfSimulation

References

rone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, & R. M. Fujimoto (Eds.),
Proceedings of the 2006 Winter Simulation Conference (pp. 832–840). Los Alamitos,
CA, USA: IEEE Computer Society. doi: 10.1109/WSC.2006.323165

Uhrmacher, A. M., & Kuttler, C. (2006). Multi-level modeling in Systems Biology by
Discrete Event Approaches. IT Themenheft Systems Biology , 48 (3), 148–153. doi:
10.1524/itit.2006.48.3.148

Uhrmacher, A. M., & Priami, C. (2005, December). Discrete Event Systems Specification in
Systems Biology - A Discussion of Stochastic Pi Calculus and DEVS. In M. E. Kuhl,
N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 Winter
Simulation Conference (pp. 317–326). Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, Inc. doi: 10.1109/WSC.2005.1574266

Uhrmacher, A. M., & Zeigler, B. P. (1996, March). Variable Structure Models in Object-
oriented Simulation. International Journal of General Systems, 24 (4), 359–375. doi:
10.1080/03081079608945128

Valentin, E. C., & Verbraeck, A. (2002, December). Guidelines for Designing Simulation
Building Blocks. In E. Yücesan, C.-H. Chen, J. L. Snowdon, & J. M. Charnes (Eds.),
Proceedings of the 2002 Winter Simulation Conference (pp. 563–571). Piscataway, NJ,
USA: Institute of Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.2002
.1172932

Valentin, E. C., Verbraeck, A., & Sol, H. G. (2003). Advantages and Disadvantages of Building
Blocks in Simulation Studies. In A. Verbraeck & V. Hlupic (Eds.), Proceedings of the
15th European Simulation Symposium (pp. 142–148). Delft, Netherlands: SCS-European
Publishing House.

Van Tendeloo, Y., & Vangheluwe, H. L. M. (2017, December). Classic DEVS Modelling
and Simulation. In W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee,
G. A. Wainer, & E. Page (Eds.), Proceedings of the 2017 Winter Simulation Conference
(pp. 644–658). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers,
Inc. doi: 10.1109/WSC.2017.8247822

Van Tendeloo, Y., & Vangheluwe, H. L. M. (2018). Extending the DEVS Formalism
with Initialization Information (Tech. Rep.). University of Antwerp. Retrieved from
http://arxiv.org/abs/1802.04527

van der Giezen, M. (2011, August). Mitochondria and the Rise of Eukaryotes. BioScience,
61 (8), 594–601. doi: 10.1525/bio.2011.61.8.5

Vangheluwe, H. L. M. (2000). DEVS as a Common Denominator for Multi-formalism Hybrid
Systems Modelling. In Proceedings of the 2000 IEEE International Symposium on
Computer Aided Control System Design (pp. 129–134). Piscataway, NJ, USA: IEEE
Computer Society. doi: 10.1109/CACSD.2000.900199

Vangheluwe, H. L. M. (2001). The Discrete EVent System specification (DEVS) formalism.
Retrieved from https://www.cs.mcgill.ca/�hv/classes/MS/DEVS.pdf

Vangheluwe, H. L. M., de Lara, J., & Mosterman, P. J. (2002, April). An Introduction to Multi-
Paradigm Modelling and Simulation. In F. J. Barros & N. Giambiasi (Eds.), Proceedings
of the 2002 Conference on AI, Simulation and Planning in High Autonomy Systems (AIS
2002) (pp. 9–20). Retrieved from https://biblio.ugent.be/publication/158059

Varga, A. (2001). The OMNET++ Discrete Event Simulation System. In Proceedings of the
15th European Simulation Multiconference (ESM’2001) (pp. 319–324). SCS Europe.

Verbraeck, A. (2004). Component-based Distributed Simulations. The Way Forward? In
Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)
(pp. 141–148). Los Alamitos, CA, USA: IEEE Computer Society. doi: 10.1109/
PADS.2004.1301295

Verbraeck, A., & Valentin, E. C. (2008, December). Design Guidelines for Simulation
Building Blocks. In S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, &

198

http://arxiv.org/abs/1802.04527
https://www.cs.mcgill.ca/~hv/classes/MS/DEVS.pdf
https://biblio.ugent.be/publication/158059

References

J. W. Fowler (Eds.), Proceedings of the 2008 Winter Simulation Conference (pp. 923–
932). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc. doi:
10.1109/WSC.2008.4736158

Vijayaraghavan, V., & Barton, J. J. (2001). WISE – A Simulator Toolkit for Ubiquitous
Computing Scenarios. In Proceedings of the UbiTools’01: Workshop on Application
Models and Programming Tools for Ubiquitous Computing.

von Bertalanffy, L. (1969). General System Theory: Foundations, Development, Applications
(revised ed.). New York, NY, USA: George Braziller, Inc.

von Neumann, J. (1966). Theory of Self-reproducing Automata (A. W. Burks, Ed.). Champaign,
IL, USA: University of Illinois Press.

Wainer, G. A. (1998). Discrete-event Cellular Models with Explicit Delays (Unpublished
doctoral dissertation). Université d’ Aix-Marseille III.

Wainer, G. A. (1999). Abstract Cell-DEVS Simulators. In Proceedings of the 5th International
Conference on Information Systems Analysis and Synthesis.

Wainer, G. A. (2002, November). CD++: A Toolkit to Develop DEVS Models. Software:
Practice and Experience, 32 (13), 1261–1306. doi: 10.1002/spe.482

Wainer, G. A., Frydman, C. S., & Giambiasi, N. (1997). An Environment for Simulation of
Cellular DEVS Models. In Proceedings of the 1997 SCS European Simulation Multiconfer-
ence. Retrieved from http://cell-devs.sce.carleton.ca/publications/1997/WFG97

Wainer, G. A., & Giambiasi, N. (1998). Specification, Modeling and Simulation of Timed
Cell-DEVS Spaces (Tech. Rep.). Buenos Aires, Argentina: Universidad de Buenos Aires.

Wainer, G. A., & Liu, Q. (2009, March). Tools for Graphical Specification and Visualization
of DEVS Models. SIMULATION , 85 (3), 131–158. doi: 10.1177/0037549708101182

Walter, T., Parreiras, F. S., & Staab, S. (2014, February). An Ontology-based Framework
for Domain-specific Modeling. Software & Systems Modeling , 13 (1), 83–108. doi:
10.1007/s10270-012-0249-9

Wang, Y.-H. (1992). Discrete-event Simulation on a Massively Parallel Computer (Dissertation,
University of Arizona). Retrieved from http://arizona.openrepository.com/arizona/
handle/10150/185913

Wang, Y.-H., & Zeigler, B. P. (1993, July). Extending the DEVS Formalism for Massively
Parallel Simulation. Discrete Event Dynamic Systems: Theory and Applications , 3 (2-3),
193–218. doi: 10.1007/BF01439849

Warnke, T., Klabunde, A., Steiniger, A., Willekens, F., & Uhrmacher, A. M. (2015). ML3:
A Language for Compact Modeling of Linked Lives in Computational Demography.
In L. Yilmaz, I.-C. Moon, W. K. Chan, T. Roeder, C. Mascal, & M. Rossetti (Eds.),
Proceedings of the 2015 Winter Simulation Conference (pp. 2764–2775). Piscataway,
NJ, USA: Institute of Electrical and Electronics Engineers, Inc. doi: 10.1109/WSC.2015
.7408382

Weinreich, R., & Sametinger, J. (2001, June). Component Models and Component Services:
Concepts and Principles. In G. T. Heineman & W. T. Councill (Eds.), Component-Based
Software Engineering: Putting the Pieces Together (pp. 33–48). Upper Saddle River,
NJ, USA: Addison-Wesley.

Weiser, M. (1999, July). The Computer for the 21st Century. Mobile Computing and
Communications Review , 3 (3), 3–11. doi: 10.1145/329124.329126

Weyns, D., Helleboogh, A., Holvoet, T., & Schumacher, M. (2009, January). The Agent
Environment in Multi-Agent Systems: A Middleware Perspective. Multiagent and Grid
Systems, 5 (1), 93–108. doi: 10.3233/MGS-2009-0121

Wilson, W. K. (1998). The Essentials of Logic (revised ed.). Piscataway, NJ, USA: Research
& Education Association.

Winsberg, E. (2009, September). Computer Simulation and the Philosophy of Science.
Philosophy Compass, 4 (5), 835–845. doi: 10.1111/j.1747-9991.2009.00236.x

199

http://cell-devs.sce.carleton.ca/publications/1997/WFG97
http://arizona.openrepository.com/arizona/handle/10150/185913
http://arizona.openrepository.com/arizona/handle/10150/185913

References

Wittgenstein, L. J. J. (1958). Philosophical Investigations (3rd ed.). Englewood Cliffs, NJ,
USA: Prentice Hall.

Wolfram, S. (1984, October). Cellular Automata as Models of Complexity. Nature, 311 (5985),
419–424. doi: 10.1038/311419a0

Wymore, A. W. (1967). A Mathematical Theory of Systems Engineering: The Elements. New
York, NY, USA: John Wiley & Sons, Inc.

Yilmaz, L., & Ören, T. I. (2007). Agent-directed Simulation Systems Engineering. In
G. A. Wainer (Ed.), Proceedings of the 2007 Summer Computer Simulation Conference
(pp. 897–904). San Diego, CA, USA: Society for Computer Simulation International.
doi: 10.1145/1357910.1358050

Zeigler, B. P. (1976). Theory of Modeling and Simulation (1st ed.). New York, NY, USA:
John Wiley & Sons, Inc.

Zeigler, B. P. (1984). Multifacetted Modelling and Discrete Event Simulation (1st ed.).
Academic Press, Inc.

Zeigler, B. P. (1987, January). Toward a simulation methodology for variable structure
modeling. In M. S. Elzas, T. I. Ören, & B. P. Zeigler (Eds.), Modelling and simulation
methodology in the artificial intelligence era (pp. 195–210). Amsterdam, The Netherlands:
Elsevier Science Ltd.

Zeigler, B. P. (1990). Object-Oriented Simulation with Hierarchical, Modular Models: Intelli-
gent Agents and Endomorphic Systems (1st ed.). San Diego, CA, USA: Academic Press,
Inc.

Zeigler, B. P., & Hammonds, P. E. (2007). Modeling and Simulation-Based Engineering:
Introducing Pragmatics into Ontologies for Net-Centric Information Exchange (1st ed.).
Burlington, MA, USA: Academic Press.

Zeigler, B. P., Moon, Y., Kim, D., & Kim, J. G. (1996). DEVS-C++: a high performance
modelling and simulation environment. In Proceedings of HICSS-29: 29th Hawaii
International Conference on System Sciences (pp. 350–359). IEEE. doi: 10.1109/
HICSS.1996.495481

Zeigler, B. P., & Muzy, A. (2016, April). Some Modeling & Simulation Perspectives on
Emergence in System-of-Systems. In Proceedings of the Modeling and Simulation of
Complexity in Intelligent, Adaptive and Autonomous Systems 2016 (MSCIAAS 2016)
and Space Simulation for Planetary Space Exploration (Space 2016). San Diego, CA,
USA: Society for Computer Simulation International. (Article No. 11)

Zeigler, B. P., & Ören, T. I. (1986, December). Multifaceted, Multiparadigm Modeling
Perspectives: Tools for the 90’s. In J. Wilson, J. Henriksen, & S. Roberts (Eds.),
Proceedings of the 1986 Winter Simulation Conference (pp. 708–712). Piscataway, NJ,
USA: Institute of Electrical and Electronics Engineers, Inc. doi: 10.1145/318242.318513

Zeigler, B. P., & Praehofer, H. (1990). Systems Theory Challenges in the Simulation of
Variable Structure and Intelligent Systems. In F. Pichler & R. Moreno-Diaz (Eds.),
Computer Aided Systems Theory - EUROCAST’89 (pp. 41–51). Berlin, Germany:
Springer-Verlag. doi: 10.1007/3-540-52215-8 4

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation (2nd
ed.). San Diego, CA, USA: Academic Press.

Zeigler, B. P., & Sarjoughian, H. S. (1999, March). Support for Hierarchical Modular
Component-based Model Construction in DEVS/HLA. In Spring simulation interoper-
ability workshop.

Zinn, S. (2011). A Continuous-Time Microsimulation and First Steps Towards a Multi-Level
Approach in Demography (Dissertation, University of Rostock, Rostock, Germany). doi:
10.18453/rosdok id00000951

Eidesstattliche Erklärung

Hiermit erkläre ich durch eigenhändige Unterschrift, die vorliegende Dissertation selbststädnig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet zu haben.
Die aus den Quellen direkt oder indirekt übernommenen Gedanken sind also solche kenntlich
gemacht. Die Dissertation ist in dieser Form noch keiner anderen Prüfungsbehörde vorgelegt
worden.

Satow, 01.10.2018

Ort, Datum Unterschrift

Curriculum Vitae

Personal Data

Name: Alexander Steiniger

Date of birth: 25.03.1983

Place of birth: Bad Muskau, Germany

Nationality: German

Working Experience

since 08/2017 Application developer and software architect, comdirect bank AG,
Rostock, Germany

10/2015 – 01/2017 Software developer, Empora Group GmbH, Wismar, Germany

05/2013 – 08/2015 Research associate and assistant in the modeling and simulation group,
Institute of Computer Science, University of Rostock, Germany

Education

12/2009 – 07/2018 Doctoral student in the field of modeling and simulation at the Institute
of Computer Science, University of Rostock, Rostock, Germany

12/2009 – 03/2013 Scholarship holder in the research training group “MuSAMA,” Uni-
versity of Rostock, Rostock, Germany

10/2003 – 11/2009 Diploma studies of informatics with a specialization in computer
graphics and visualization at the University of Rostock, Rostock,
Germany

05/1995 – 06/2002 Abitur at the Friderico Francisceum Gymnasium, Bad Doberan, Ger-
many

Alternative Civilian Service

09/2002 – 06/2003 Alternative civilian service, rehabilitation clinic “Moorbad,” Bad
Doberan, Germany

Thesis Statements

Title: Toward Composing Variable Structure Models and Their Interfaces: A Case of
Intensional Coupling Definitions

Name: Alexander Steiniger

1. Many complex systems of interest consist of a number of homogeneous or heterogeneous
components and have a dynamic structure, i. e., their structure changes over time.

2. Component-based modeling allows us to reduce the complexity of a model by defining
it as a composition of smaller, interacting components. Furthermore, component-based
modeling allows us to reduce the costs of developing models by reusing already existing
components.

3. Traditional component-based modeling aims at a separation between component interfaces
and component implementations and assumes a static model structures.

4. Variable structure modeling allows the modeler to explicitly capture the structure variability
of a system of interest in its model. In variable structure modeling, structure changes
become first-order abstractions.

5. Since traditional composition takes place at configuration time and variable structures
are a runtime phenomena, there is a contradiction between both paradigms and their
combination has certain implications on aspects such as (syntactic) composability.

6. By using supersets and intensional couplings we still can make statements about the
composability of a composition beyond its initial state, if the involved components adhere
to their interface definitions.

7. Maintaining structural consistency when specifying couplings in variable structure models
is challenging, even more when variable interfaces are involved, since components and ports
that are available at a certain time may not be available at another time.

8. We can adopt and exploit intensional definition techniques for defining couplings in variable
structure models. Rather than enumerating each possible concrete coupling that can
exist within the different incarnations of a variable structure model, intensional coupling
definitions allow the modeler to define couplings in a more compact yet powerful way.

9. One intensional coupling definition can “encode” an arbitrary number of concrete couplings.

10. Intensional couplings have to be translated into concrete model couplings during simulation
(model execution).

11. The translation algorithm can check the consistency of each potential concrete coupling
that can be derived from an intensional coupling definition and discard all inconsistent
couplings. Thus the translation can guarantee correctness by construction (structural
consistency).

References

12. By exploiting intensional coupling definitions and a corresponding translation mechanism,
the modeler does not need to take care about maintaining structural consistency, with
respect to couplings.

13. The use of intensional coupling definitions is not confined to variable structure models.
Intensional couplings can also be used in static structure models enabling modelers to
streamline their model specifications.

14. Defining intensional couplings based on runtime instances of model interfaces allow us to
define even more complex and sophisticated communication patterns concisely, e. g., based
on concrete values of interface attributes.

15. The incorporation of an intensional coupling mechanism into the variable structure and
multi-level modeling formalism Multi-Level DEVS (ML-DEVS) proves the applicability
of the concept.

16. Intensional definitions cannot only be used to define couplings but also, e. g., to define and
constrain sets of components that can become available in a variable composition.

Publications

Book Sections

1. Martin Nyolt, Alexander Steiniger, Sebastian Bader, and Thomas Kirste. Describing
and Evaluating Assistance Using APDL. Smart Modeling and Simulation for Complex
Systems: Practice and Theory, pp. 59–81, 2015

DOI: 10.1007/978-4-431-55209-3 5

Journal Articles

1. Alexander Steiniger and Adelinde M. Uhrmacher. Intensional Couplings in Variable-
Structure Models: An Exploration Based on Multilevel-DEVS. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 26(2):9-1–9-27, 2016

DOI: 10.1145/2818641

Conference Contributions

1. Tom Warnke, Anna Klabunde, Alexander Steiniger, Frans Willekens, and Adelinde M.
Uhrmacher. ML3: A Language for Compact Modeling of Linked Lives in Computational
Demography (invited paper). In Proceedings of the 2015 Winter Simulation Conference
(WSC ’15), pp. 2764–2775, 2015

DOI: 10.1109/WSC.2015.7408382

2. Alexander Steiniger, Sabine Zinn, Jutta Gampe, Frans Willekens, and Adelinde M.
Uhrmacher. The Role of Languages for Modeling and Simulating Continuous-Time Multi-
Level Models in Demography (invited paper). In Proceedings of the 2014 Winter Simulation
Conference (WSC ’14), pp. 2978–2989, 2014

DOI: 10.1109/WSC.2014.7020137

3. Alexander Steiniger and Adelinde M. Uhrmacher. Composing Variable Structure Models:
A Revision of COMO. In Proceedings of the 3rd International Conference on Simulation and
Modeling Methodologies, Technologies and Applications (SIMULTECH 2013), pp. 286–293,
2013

DOI: 10.5220/0004486302860293

4. Alexander Steiniger, Frank Krüger, and Adelinde M. Uhrmacher. Modeling Agents and
their Environment in Multi-Level-DEVS. In Proceedings of the 2012 Winter Simulation
Conference (WSC ’12), Article 233, 12 pages, 2012

DOI: 10.1109/WSC.2012.6465113

5. Alexander Steiniger and Adelinde M. Uhrmacher. Modeling and Simulation for User As-
sistance in Smart Environments. In Proceedings of the 2010 Winter Simulation Conference
(WSC’10), pp. 490–499, 2010

DOI: 10.1109/WSC.2010.5679138

http://dx.doi.org/10.1007/978-4-431-55209-3_5
http://dx.doi.org/10.1145/2818641
http://dx.doi.org/10.1109/WSC.2015.7408382
http://dx.doi.org/10.1109/WSC.2014.7020137
http://dx.doi.org/10.5220/0004486302860293
http://dx.doi.org/10.1109/WSC.2012.6465113
http://dx.doi.org/10.1109/WSC.2010.5679138

Publications

Workshop Contributions

1. Martin Nyolt, Alexander Steiniger, Sebastian Bader, and Thomas Kirste. Describing
and Evaluating Assistance using APDL. In Proceedings of the International Workshop on
Smart Simulation and Modelling for Complex Systems (SSMCS’13), pp. 38–49, 2013

URL: http://www.uow.edu.au/�fren/SSMCS2013/SSMCS2013 Proceeding V3.pdf (last ac-
cessed February 2018)

2. Frank Krüger, Alexander Steiniger, Sebastian Bader, and Thomas Kirste. Evaluating
the robustness of activity recognition using computational causal behavior models. In
Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp ’12), pp.
1066–1074, 2012

Workshop: SAGAware 2012 (held in conjunction with UbiComp 2012)

DOI: 10.1145/2370216.2370443

Posters

1. Danuha Peng, Alexander Steiniger, Tobias Helms, and Adelinde M. Uhrmacher. Towards
Composing ML-Rules Models. In Proceedings of the 2013 Winter Simulation Conference
(WSC ’13), pp. 4010–4011, 2013

ISBN: 978-1-4799-2077-8

URL: http://informs-sim.org/wsc13papers/includes/files/397.pdf1

Extended Abstracts

1. Alexander Steiniger. Component-based Modeling and Simulation for Smart Environ-
ments. In Proceedings of the Joint Workshop of the German Research Training Groups in
Computer Science, Dagstuhl 2012, p. 242, 2012

ISBN: 978-3-8482-0022-1

2. Alexander Steiniger. Component-based Modeling and Simulation for Smart Environ-
ments. In Proceedings of the Joint Workshop of the German Research Training Groups in
Computer Science, p. 206, 2011

ISBN: 978-3-942183-36-9

3. Alexander Steiniger. Component-based Modeling and Simulation for Smart Environ-
ments In Proceedings of the Joint Workshop of the German Research Training Groups
in Computer Science, Algorithmic synthesis of reactive and discrete-continuous systems
(AlgoSyn 2010), p. 143, 2010

ISBN: 978-3-86130-146-2

1 last accessed February 2018

http://www.uow.edu.au/~fren/SSMCS2013/SSMCS2013_Proceeding_V3.pdf
http://dx.doi.org/10.1145/2370216.2370443
http://informs-sim.org/wsc13papers/includes/files/397.pdf

	Introduction
	Motivation
	Recurring Examples
	Contribution
	Structure and Notations

	Basics and Background
	Basic Terminology
	Systems
	Models
	Simulation
	Modeling
	Validity
	Simulators
	Modeling Formalisms

	Extensional and Intensional Definitions
	Terms and Definitions
	Extensional Definitions
	Ostensive definitions
	Enumerative Definitions
	Definitions by Subclasses
	Recursive Definitions

	Intensional Definitions
	Synonymous Definitions
	Etymological Definitions
	Operational Definitions
	Definitions by Genus and Difference

	Summary and Discussion

	Discrete Event Simulation
	Basics
	Discrete Event System Specification and its Variants
	Parallel DEVS
	Structured Systems and Structured Paralled DEVS

	Summary

	Component-Based Modeling and Simulation
	Evolution and Basics
	Component-Based Software Engineering
	Modular-Hierarchical and Object-Oriented Modeling
	Component-based Modeling

	Composability and Interoperability
	Component-based Simulation
	COMO
	Summary

	Dynamic Structure Systems and Variable Structure Models
	Dynamic Structure Systems
	Variable Structure Models and Variable Structure Modeling
	Aspects of Variable Model Structures
	Structure Changes, Structure Transitions, and Structure Transition Functions

	Related Work
	Variable Structure Variants of DEVS
	Classification and Discussion

	Summary

	Concept and Implementation
	Composition of Variable Structure Models
	Commonalities and Differences
	Combination and Contradiction
	Hiding Structure Variability
	Supersets, Loose Connections, and the Revision of COMO
	Description of Variable Interfaces
	Description of Variable Communication Structures
	Description of Variable Compositions
	Correctness and Composability

	Summary

	Interfaces, Interface Instances, and Intensional Couplings
	Attributes
	Models
	Extensional Couplings
	Intensional Couplings
	Interfaces
	Attribute Assignments and Interface Instances
	Intensional Interface Couplings
	Translation of Intensional Interface Couplings
	Summary

	Revision of Multi-Level-DEVS
	ML-DEVS
	Model Specification
	Micro-DEVS Models
	Macro-DEVS Models
	Consistency of Model Specifications in ML-DEVS

	Abstract Simulator
	Simulator
	Coordinator
	Root-Coordinator

	Closure under Coupling
	Systems Specified
	Summary

	Conclusion and Future Work
	Conclusion
	Conclusion and Discussion

	Future Work
	Usability Evaluation of Modeling Approaches
	Intensional Definitions
	Improvements on ML-DEVS
	Activation Events
	Model Specification

	Appendices
	Mathematical Notations and Concepts
	Set- and Function-Theoretic Concepts
	Supersets
	Families of Sets and Indexed Families of Sets
	Disjoint Unions or Disjoint Sums
	Bags and Bag Sets
	Domains, Ranges, Co-Domains, and Images
	Partial Functions
	Projections and Projection Functions

	Structuring Sets
	Multivariable Sets
	Generalized Cartesian Products
	Partial Cartesian Products

	Finite State Automata
	Basic Automata
	Moore Machine

	Abstract Simulator of P-DEVS
	Simulator
	Coordinator
	Root-Coordinator

	Publications

