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Summary 

Mineral phosphorus (P) fertilizers, produced from mined rock phosphate, a depleting non-

renewable resource, fuel today’s intensive agriculture, however, they contain impurities such 

as cadmium (Cd) and uranium (U). Consequently, their repeated application results in serious 

accumulation of toxic metals in soils. Sustainable agriculture, using renewable and eco-

friendly fertilizers, can provide secure nutrients availability for an optimal crop production 

avoiding environmental hazards. 

Bone char (BC), a clean, renewable and slow-release P-fertilizer, has been proved effective 

for promoting crop production and Cd-immobilization. One still unsolved problem is the 

relatively small P-solubility from the BC making precise forecasts of P-dissolution in relation 

to demands of growing crops difficult. This is a constraint to the general acceptance in 

agricultural practice. Surface modification of BC with sulfur (S) containing compounds may 

be an approach for improving the P-solubility. A relevant technology has been developed by 

scientists of the University of Rostock, and the intellectual property rights have been saved, 

but the agronomic impact of this technology is unknown. The most important aim of this 

project was to lay a scientific basis for the novel BC as an effective and safe P-source by 

improving the knowledge about (i) modified BC-dissolution and related Cd-immobilization 

mechanisms, (ii) the effect of BCs-particle size and non-equilibrium conditions on P- and Cd-

release in contaminated soils and (iii) P-speciation of BCs particles and relevant treated soils 

by sequential fractionation and X-ray absorption near edge structure (XANES) spectroscopy. 

The results of individual experiments of this dissertation project are summarized as follows: 

The P-dissolution and Cd-immobilizing effects of BC, surface modified BC (BCplus) and 

diammonium phosphate (DAP) amendments in five soils, varying in pH and Cd-

contamination, were evaluated by three extractants (NH4NO3, NaHCO3 and H2O) over 145 

days of incubation. In comparison with other extraction methods, the NH4NO3 appeared well-

suited to simultaneously assess the P- and Cd-availability. The addition of BC increased the 

pH in all soils whereas BCplus and DAP lowered the pH in soils with pH > 5. Similar trends 

for NH4NO3-P-differences between treatments and control were observed for BC and BCplus 

during the incubation period although BCplus resulted in much larger P-concentrations. The 

highest Cd-immobilization was obtained in BC-treated soils. The addition of BCplus and DAP 

decreased the Cd-concentration until 34 days of incubation in all soils and remained effective 

in Cd-immobilizing in soils that showed a pH raise over 145 days of incubation. 
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A combined incubation-leaching experiment clarified the effect of BC and BCplus at different 

particle size fractions on P- and Cd-mobilization. Two soils each with BCs treatments were 

leached five times during 70 days of incubation. Over the incubation period, the P-contents in 

leachates were significantly increased by BC and BCplus particles of 0.5-1 mm size. P-release 

from BCs was larger under non-equilibrium conditions in this experiment compared with a 

previous continuous incubation experiment. The lowest Cd-concentrations in leachate were 

found in soils amended with the smallest BC particles. BCplus significantly increased Cd 

leaching, and highest amounts of Cd were leached at the smallest particle size. 

Changes in chemical composition of BCs particles and treated soils of two different 

experiments, “incubation-leaching” and “ryegrass cultivation”, were investigated by 

sequential P fractionation and XANES spectroscopy. The most P-increase significantly 

occurred in the NaOH-P and resin-P fractions in response to BCplus application in both 

experiments. This increase of the readily available P fraction in BCplus-treated soils was 

confirmed by linear combination fitting (LCF) analysis on P K-edge XANES spectra of BCs 

particles and amended soils. The proportion of Ca-hydroxyapatite decreased, whereas the 

CaHPO4 increased in BCplus-particles after amended soils had been incubated and leached or 

cropped by ryegrass. Based on P-XANES speciation as determined by LCF analysis, the 

proportion of inorganic Ca(H2PO4)2 increased in amended soils by BCplus application.  

In summary, the enhanced P-dissolution achieved by surface modification of BC, reflected by 

higher P-concentrations in extractions, leachates and enriched soluble P-species in BCplus 

particles and treated soils, can be explained by a combination of 1) improved intrinsic 

properties of BCplus including lower pH and Ca-hydroxyapatite contents in favor of more 

soluble CaHPO4, and 2) oxidation of elemental sulfur after applying BCplus to the soil, which 

is mainly caused by microorganisms activities, resulting in the formation of protons and 

continuous conversion of less soluble hydroxyapatite to relatively soluble CaHPO4, even after 

long time-periods. As the acidity of Cd-contaminated soils treated with BCplus was raised, the 

mobilization of Cd increased. Therefore, the Cd-immobilization benefit of BC can be lost at 

the expense of P dissolution in BCplus fertilizer, mostly depending on the pH aftereffect. 

Finally, the results may conclude that BCplus can be offered as a clean, renewable and S-

enriched P-fertilizer, which has been improved in P-dissolution compared to the original BC. 

The presented results may motivate further future studies exploring long-term effects of 

BCplus on P- and Cd-speciation and response of different crops directed toward optimized 

fertilization efficiency and sustainable agriculture evolution. 
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Zusammenfassung 

Mineralische Phosphor (P)-Düngemittel, die aus abgebautem Rohphosphat - einer begrenzt 

verfügbaren und nicht erneuerbaren Ressource - gewonnen werden, sind eine Grundlage der 

heutigen intensiven Landwirtschaft. Sie enthalten aber Verunreinigungen wie Cadmium (Cd) 

und Uran (U), die bei wiederholter Anwendung zu toxischen Schwermetallanreicherungen in 

Böden führen können. Eine nachhaltige Landwirtschaft, die erneuerbare und 

umweltfreundliche Düngemittel verwendet, muss eine sichere Nährstoffverfügbarkeit für eine 

optimale Pflanzenproduktion bieten und Umweltgefahren vermeiden. 

Knochenkohle (KK) ist ein sauberer, erneuerbarer und langsam freisetzender P-Dünger, der 

sich als wirksam zur Förderung der Pflanzenproduktion und der Cd-Immobilisierung 

erwiesen hat. Ein noch ungelöstes Problem ist die relativ geringe P-Löslichkeit aus der KK, 

die exakte Vorhersagen der P-Lösung entsprechend der Anforderungen der wachsenden 

Pflanzenbestände schwierig macht. Dies schränkt die Akzeptanz in der Landwirtschaft ein. 

Eine Oberflächenmodifikation von KK mit Schwefel (S)-haltigen Verbindungen kann ein 

Ansatz zur Verbesserung der P-Löslichkeit sein. Eine relevante patentierte Technologie 

wurde von einer Gruppe von Wissenschaftlern der Universität Rostock entwickelt, aber die 

agronomische Wirksamkeit der mit dieser Technologie hergestellten KK ist vollständig 

unbekannt. Das wichtigste Ziel dieses Projektes war es, die neuartige KK als eine effektive 

und sichere P-Quelle zu etablieren, indem das Wissen über (i) die modifizierte KK-

Auflösung und damit verbundene Cd-Immobilisierungsmechanismen erweitert wird, (ii) die 

Wirkung der KK-Partikelgröße und von Ungleichgewichtsbedingungen auf die P- und Cd-

Freisetzung in kontaminierten Böden erforscht wird und (iii) eine P-Speziierung von KK-

Partikeln und relevanten damit behandelten Böden durch sequenzielle Fraktionierung und 

Röntgenstrahlabsorptions-Nahkantenspektroskopie (XANES) erreicht wird. Die Ergebnisse 

einzelner Experimente dieses Dissertationsprojektes sind wie folgt zusammengefasst: 

Die P-Auflösung und Cd-immobilisierenden Effekte von KK, oberflächenmodifizierter KK 

(KKplus) und Diammoniumphosphat (DAP) wurden in fünf Böden, die sich in pH und Cd-

Kontamination unterscheiden, durch drei Extraktionsmittel (NH4NO3, NaHCO3 und H2O) 

nach 145 Tagen Inkubation untersucht. Im Vergleich zu anderen Extraktionsmethoden 

erschien das NH4NO3 gut geeignet, um gleichzeitig die P- und Cd-Verfügbarkeit zu 

bestimmen. Die Zugabe von KK erhöhte den pH-Wert in allen Böden, während KKplus und 

DAP den pH-Wert in Böden mit pH >5 verringerten. Ähnliche Trends für NH4NO3-P-
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Unterschiede zwischen Behandlungen und Kontrolle wurden für KK und KKplus während der 

Inkubationszeit beobachtet, obwohl KKplus zu viel größeren P-Konzentrationen führte. Die 

höchste Cd-Immobilisierung wurde in KK-behandelten Böden festgestellt. Die Zugabe von 

KKplus und DAP verringerte die Cd-Konzentration bis zu 34 Tagen Inkubation in allen Böden 

und blieb wirksam bei der Cd-Immobilisierung in den Böden, die über 145 Inkubationstage 

einen pH-Anstieg aufwiesen. 

Ein kombiniertes Inkubations-Auswaschungs-Experiment untersuchte die Wirkung von KK 

und KKplus verschiedener Partikelgrößenfraktionen auf die P- und Cd-Mobilisierung. Zwei 

Böden mit KK-Behandlungen wurden fünfmal während 70 Tagen Inkubation perkoliert. 

Während der Inkubationszeit wurden die P-Gehalte in den Sickerwässern durch Zugabe von 

KK und KKplus-Partikeln mit einer Größe von 0,5-1 mm signifikant erhöht. Die P-Freisetzung 

aus KK war in diesem Experiment größer als in einem früheren kontinuierlichen 

Inkubationsexperiment unter Gleichgewichtsbedingungen. Die niedrigsten Cd-

Konzentrationen im Sickerwasser wurden in Böden mit den kleinsten KK-Partikeln 

gefunden. KKplus erhöhte signifikant die Cd-Auswaschung, und bei der kleinsten 

Partikelgröße wurden die höchsten Cd-Mengen ausgetragen. 

Änderungen der chemischen Zusammensetzung von KK-Partikeln und behandelten Böden 

von zwei verschiedenen Experimenten, "Inkubation-Auswaschung" und "Weidelgras-

gefäßversuch", wurden durch sequentielle P-Fraktionierung und XANES-Spektroskopie 

untersucht. Die stärksten P-Erhöhungen traten signifikant in den NaOH-P- und resin-P-

Fraktionen als Reaktion auf die KKplus-Anwendung in beiden Experimenten auf. Dieser 

Anstieg der leicht verfügbaren P-Fraktion in KKplus-behandelten Böden wurde durch linear 

combination fitting (LCF) an P K-Kanten-XANES-Spektren von KK-Partikeln und 

behandelten Böden bestätigt. Der Anteil von Ca-Hydroxyapatit nahm ab, während CaHPO4 

in KKplus-Partikeln zunahm, nachdem die behandelten Böden inkubiert und ausgewaschen 

oder mit Weidelgras bewachsen waren. Basierend auf P-Speziierung mit XANES und LCF-

Analyse, erhöhte sich der Anteil an anorganischem Ca(H2PO4)2 in den behandelten Böden 

durch KKplus-Anwendung. 

Zusammenfassend kann die verbesserte P-Lösung infolge der Oberflächenmodifikation von 

KK, die durch höhere P-Konzentrationen bei Extraktionen, Sickerwässern und angereicherten 

löslichen P-Spezies in KKplus-Partikeln und behandelten Böden nachgewiesen wurde, durch 

eine Kombination von 1) verbesserten intrinsischen Eigenschaften von KKplus, einschließlich 



ZUSAMMENFASSUNG 

xi

niedrigerer pH-Werte und Ca-Hydroxyapatit-Gehalte zugunsten von löslicherem CaHPO4, 

und 2) Oxidation von elementarem Schwefel nach dem Aufbringen von KKplus auf den Boden 

erklärt werden. Die S-Oxidation durch Mikroorganismen führt zur Bildung von Protonen und 

kontinuierlicher Umwandlung von weniger löslichem Hydroxylapatit zu relativ leichter 

löslichem CaHPO4. Als die Acidität von mit KKplus behandelten Cd-kontaminierten Böden 

erhöht wurde, nahm allerdings auch die Mobilisierung von Cd zu. Daher kann der Vorteil der 

Cd-Immobilisierung von KK zu Gunsten der P-Lösung in KKplus-Düngern verloren gehen, 

was größtenteils von der pH-Wert-Nachwirkung abhängt.  

Schließlich charakterisieren die hier berichteten Ergebnisse KKplus als sauberen, erneuerbaren 

und S-angereicherten P-Dünger, der im Vergleich zur ursprünglichen KK hinsichtlich der P-

Lösung verbessert wurde. Die vorliegenden Projektergebnisse können als Motivation für 

weitere zukünftige Studien dienen, in denen die langfristigen Auswirkungen von KKplus auf 

die P- und Cd-Speziation und die Reaktion verschiedener Anbaukulturen für eine optimierte 

Düngungseffizienz und nachhaltige Landwirtschaft insgesamt untersucht werden. 
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Introduction 
 _______________________________________________________________ 
 

 

 

1.1 Justification of the research 

Increasing world population instigates raise in food demand and consequently in agricultural 

production that should come from more intensive and precise practices (Tilman et al., 2002). 

Modern farming systems have increased production mainly through greater mineral fertilizer 

inputs posing many risks to terrestrial ecosystems and sustainable food production (Vitousek 

et al., 2009). Phosphorus (P) is one of the most extensively used agricultural inputs and 

fundamentally required for crop growth and development due to its crucial function in plant 

metabolism, structure of nucleic acids and expression of information (DNA and RNA) and 

energy transfer pathways (Elser, 2012). Manufacturing of commercial P fertilizers is mainly 

based on chemical processing of mined phosphate rocks excavating from sedimentary (95%) 

and igneous (5%) ores estimated by U.S. Geological Survey to last for a maximum of 200 to 

300 years (Pufahl and Groat, 2017). The global distribution of phosphate rock reserves is 

geographically restricted even more than oil in six countries (about 90%) including Morocco, 

China, Algeria, Syria, Jordan and South Africa (currently Morocco alone controls nearly 75% 

of the global reserves). The concentrated supply in few countries with unstable political 

situation and high demand makes importing countries vulnerable to geopolitical crises and 

raises concerns about availability and price of phosphate rock on the global market (Cordell 

and Neset, 2014). Owing to these reasons, the European Commission classified P as a critical 

raw material in 2014 (EU Commission, 2014). In response to growing P fertilizer demand, 

increasing concerns about resource depletion, mining expenses and supply risks, the global 

1 
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price of rock phosphate rocketed 800% in 2008 (World Bank, 2008) causing world food 

crisis and many protests, disturbances and riots in developing countries (The Guardian, 

2008). In addition, environmental concerns related to quality of rock phosphate and 

contribution of potentially hazardous trace elements such as cadmium (Cd), uranium (U), 

arsenic (As) and lead (Pb) are an increasingly important challenge (Mulla et al., 1980; 

Mortvedt, 1996; Franklin et al., 2005; Kratz and Schnug, 2006; Chen et al., 2007; Luo et al., 

2009; Molina et al; 2009; Kratz et al., 2016). Consequently, repeated application of these 

mineral fertilizers have been reported to cause heavy metals accumulation in the soil, 

enhancement of potentially toxic contaminants availability to plants, transport to 

groundwater, and to food and ecological chains (Mendes et al., 2006). For instance, the 

German Federal Protection Agency estimated the addition of more than 160 t/a U to German 

farmlands by mineral P fertilizers (UBA, 2012). The emission of these potentially harmful 

substances to the soil could be reduced by setting upper thresholds for trace elements in 

fertilizers and also economic and policy mechanisms such as extra taxes to encourage 

application of eco-friendly fertilizers. Subsequently, the limited, non-replaceable and 

contaminated reserve of rock phosphate in the world and excessive consumption, growing 

demand and increasing price P has stimulated the research for recycling techniques and 

introducing alternative renewable sources for P-fertilizers production. 

Recovering large P losses through wastewater and municipal solid waste is recently 

considered to be a practical option. Mihelcic et al. (2011) reported that approximately 22% of 

global P fertilizer demand can be achieved through P recycling from human urine and feces. 

Sewage sludge, a by-product of municipal, industrial and agricultural wastewater 

managements, is rich in N, P and organic matter (depending on its origin) which can be 

considered as a fertilizer if an appropriate treatment technology delivers a product of quality 

(Krüger et al., 2016). Over 10 million tonnes of sewage sludge are generated annually in the 

EU (Milieu Ltd, 2008) and Austria, Germany and Switzerland have now made a mandatory 

P-recovery from municipal sewage sludge (Platform E.S.P., 2017). Despite of relatively high 

P content (about 2 to 13% w/w depending on wastewater source and applied treatments; 

Günther 1997; Franz 2008; Atienza–Martínez et al., 2014; Krüger et al., 2014), sewage 

sludge usually contains many contaminants including heavy metals (Lundin et al., 2004; 

Nguyen et al., 2013), organic contaminants (Harrison et al., 2006; Loos et al., 2013) and 

pathogens (Sahlström et al., 2004; Cai and Zhang, 2013). Sewage sludge generally requires 

different recovery treatments such as composting, mesophilic and thermophilic digestion, 
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precipitation or crystallization as struvite, combustion and pyrolysis or combination of these 

procedures to maintain P in a safe and solid form that can be used as fertilizer (Dumontet et 

al., 1999; Pettersson et al., 2008; Guedes et al., 2014; Krüger et al., 2016; Kleemann et al., 

2017). However, the agricultural use of sewage sludge is restricted by legislations due to 

environmental risks in several European countries such as Switzerland where the sewage 

sludge application in agriculture has been already banned (Franz, 2008). Thus, the 

exploration of new alternatives for clean and renewable P-fertilizers would be the most 

favorable. 

In recent years remarkably interest has been focused on biochars for various environmental 

and agricultural advantages such as carbon sequestration (Windeatt et al., 2014), pollutants 

immobilization/removal (Cao et al., 2009; Beesley and Marmiroli, 2011; Cui et al., 2016) and 

soil fertilization (Lehmann et al., 2011). Biochar is a general term for a group of different-

origin carbon-processed materials generated by thermochemical decomposition of different 

feedstocks biomass, e.g. agricultural lignocellulosic residues and municipal/industrial wastes, 

under oxygen-limited conditions. Carbon sequestration in order to improving ecological 

systems in agriculture and climate change mitigation has received more attention than other 

beneficial properties of biochars (Lehmann et al., 2008; Sohi et al., 2010). Two different 

approaches were followed in investigations on P-recycling performance of biochars. First, the 

sorption capacity of biochars for removing P from over P-loaded aqueous and terrestrial 

systems and second as a soil amendment to increase fertility (Streubel et al., 2012; Trazzi et 

al., 2016), both depending on precursors properties (Spokas et al., 2012) and pyrolysis 

conditions (Morales et al., 2013). Furthermore, activation processes can improve adsorptive-

removal characteristic of biochars for many environmental pollutants such as sulfur dioxide 

(Guo and Lua, 2003), nitrate (Ota et al., 2013), chemical oxygen demand (Bansode et al., 

2004) and heavy metals (Kadirvelu et al., 2001; Bohli et al., 2013; Ribeiro et al., 2015). 

Activation methods involve chemical impregnation agents such as ZnCl2, H3PO4, KOH or 

H2SO4 (Caturla et al., 1991; Molina-Sabio et al., 1995; Fierro et al., 2006; Legrouri et al., 

2005) and physical carbonization and gasification using oxygen, carbon dioxide and steam  

(Miguel et al., 2003; Ribeiro et al., 2015). Moreover, P-bearing biochar after adsorption and 

recovery process can be used in agricultural production as slow-release P fertilizer (Yao 

et al., 2013; Shepard et al., 2016). Biochars could enhance the plant availability of P in 

agricultural soils through promoting bioavailability of already existing P or supplying a new 

source of P into the soil. Blackwell et al. (2015) reported that biochars coupled with mineral 
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fertilizers increased mycorrhizal colonization, plant growth, and P uptake of wheat providing 

better P use efficiency. Similarly, biochar produced from timber residues in combination with 

poultry litter increased citrate-extractable P in soil which was reflected in P concentration of 

harvested dry beans (Gao et al., 2016). In addition, it is also expected that biochars contain 

different P contents depending on feedstock (e.g., poultry litter biochar = 18.2 g P kg−1; 

wastewater sludge biochar = 20 to 40 g P kg−1; Algal biochar = 3.6 g P kg−1, rice husk 

biochar = 4.7 g P kg−1, sugarcane bagasse biochar = 6.1 g P kg−1, Miscanthus x giganteus 

biochar = 2.5 g P kg−1; Tagoe et al., 2008; Hossain et al., 2011; Bird et al., 2011; Qian et al., 

2013; Yin et al., 2013; Monterumici et al., 2015). However, the evaluation and development 

of biochars in order to use as P-fertilizer is not well investigated. 

The highest content of P (130-200 g P kg−1; Warren et al., 2009; Siebers and Leinweber, 

2013; Rojas-Mayorga et al., 2015; Zwetsloot et al., 2016) among all biochars has been 

observed in the pyrolysis product of defatted animal bone chips, so called bone char (BC). 

Nutritional value of bone meal for agricultural purposes has always been recognized in last 

centuries (Smith, 1959). Despite of environmental and health concerns arisen with spread of 

disease through raw bone materials (e.g. bovine spongiform encephalopathy) and subsequent 

restrict EU regulations (Commission of the European Communities, 2006), it is still being 

used in domestic gardening and organic farms (Royal Horticultural Society, 2002; Ylivaino et 

al., 2008). Annual assessment of the P-budget revealed that recycling of associated P with 

slaughterhouse residues (meat/bone meal) and municipal sewage sludge could replace about 

70% of the total P applied as mineral fertilizer in Austria (Egle et al., 2014). This illustrate 

that pyrolysis of animal bones can help to prevent about 339 × 106 kg of P in food sector of 

EU 27-countries (van Dijk et al., 2016) from being wasted, to achieve a better closed-loop P 

cycle and sustainably meet future P demand.  

Physico-chemical properties of BC may vary widely depending on characteristics of animal 

bone sources and pyrolysis conditions. The light yellow colour of bone turns to brown and 

black during the pyrolysis at low to high temperatures (300 to 900 °C) (Reidsma et al. 2016) 

but Rojas-Mayorga et al. (2015) reported colour changes from black to grey and white at 800 

°C and 900 °C, respectively. These colour changes originate from thermal degradation of 

organic matter of the bone matrix (Patel et al. 2015; Rojas-Mayorga et al. 2015). Bone chars 

are characterized by a mesoporous structure with a specific surface area between 42 and 114 

m2 g-1 (Warren et al., 2009; Siebers and Leinweber, 2013; Patel et al. 2015). The porosity and 

crystal structure of bone chars depend on the mineral composition (Rothwell et al., 1980), 
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animal species and age (Wu et al., 2003) and pyrolysis conditions (Larsen et al., 1994). The 

interlocked porous network remains after removal of organics from heated bones (Etok et al., 

2007; Ooi et al., 2007). According to Figueiredo et al. (2010) elevated temperatures can result 

in higher crystallinity degrees, larger crystallite sizes and a less porous structure. Patel et al. 

(2015) obtained the maximum porosity at 400 °C pyrolysis temperature and with three hours 

residence time. Apart from common variations in basic constituents, originating from 

different bone sources and treatment processes, the major chemical elements of BCs are 

calcium (Ca: 20 to 40%), phosphorus (P: 13 to 20%) and carbon (C: 8 to 13%) (Cheung et al., 

2001; Warren et al., 2009; Rojas-Mayorga et al., 2015; Zwetsloot et al., 2016). The elemental 

contents and ratios of BC can be influenced by the temperature and residence time of the 

pyrolysis. Zwetsloot et al. (2015) reported a total P enrichment with increasing pyrolysis 

temperature. Patel et al. (2015) obtained a mean Ca/P ration of 2.2 at pyrolysis temperatures 

of 400 to 600 °C and one hour residence time which increased to 2.6 at two hours residence 

time. Dissimilar to most biochars, BC has only about 10% w/w of C (Cheung et al., 2002; 

Fuller et al., 2003; Wilson et al., 2003; Medellin-Castillo et al., 2007). Based on ash-free dry 

matter, the C-content and the C/H and C/N ratios increased with increasing pyrolysis 

temperature, indicating the progressive formation of cyclic C-compounds (Rojas-Mayorga et 

al., 2015). Other elements such as N, Mg and S occur in low concentrations. Moreover, BC is 

almost free of heavy metals and contaminants (Deydier et al., 2005; Siebers and Leinweber, 

2013). 

The solubility of BC in soil can be influenced by 1) manufacturing processes which create 

different physicochemical properties 2) a wide range of soil characteristics leading to the 

chemical key reactions and 3) cropping system and field management. BC is characterized by 

its biological apatite-base and controlled-release properties. The lower crystalline structure 

and higher carbonate concentration of bone apatite directly result in greater solubility in 

comparison to the mineral hydroxyapatite (Wopenka and Pasteris, 2005; Pan and Darvel, 

2010). The effect of pyrolysis temperature on P chemistry of BC has been evaluated by 

different thermal treatments. The results showed that elevated temperatures promote the 

decomposition of organic compounds (Ayllón et al., 2006) where the solubility decreases 

with increasing hydroxyapatite content (Novotny et al., 2012). The P-extractability from BC 

is low in water (3 to 20% of total P) but larger in formic acid (92 to 95% of total P), with a 

general tendency of a lower solubility in water but a larger solubility in formic acid with 

increasing pyrolysis temperature between 220 and 750 °C (Zwetsloot et al. 2015). The 
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proportions of Ca- and Mg-compounds result in alkaline pH of BC in the range of about 7 to 

10 while BC dissolution is restricted at pH-values above 6. Several studies have evidenced 

soil pH as the most effective parameter for BC dissolution. In this regard, BCs were appeared 

likely insoluble in neutral and alkaline soils towards moderately soluble in acidic ranges 

(Warren et al., 2009; Siebers and Leinweber, 2013). Consistent with these findings, 

Zwetsloot et al. (2016) reported that the P availability in P-fixing soils was stimulated by 

root-mycorrhizae-BC interactions which may be explained by acidification in the soil 

rhizosphere. Warren et al. (2009) showed in an incubation experiment that the P sorption 

capacity of soil had an important influence on BC dissolution. This was supported by Siebers 

and Leinweber (2013) who revealed a positive correlation between P release from BC and the 

P sorption capacity of studied soils. Since BCs are essentially slow-release fertilizers highly 

dependent on P sorption capacity of soil, discharge of the P-saturated soil solution can lead to 

further P release via BC dissolution (Siebers and Leinweber, 2013). Moreover, different 

particle-sizes of fertilizer can cause various patterns of distribution and consequently P-

availability in the soil (Sleight et al., 1984) and also different particle surface areas which 

influence fertilizer-soil reactivity (Bouldin and Sample, 1958). Thus, providing proof of 

optimum BC particle-size is of essential importance to insure achieving greater efficiency and 

higher crop yields with given fertilizers. Many studies have revealed the particle-size effects 

on P-release properties of different phosphate fertilizers (Sander and Eghball, 1988; Bolland 

and Gilkes, 1989; He et al., 2005) whereas comparatively no information exists on particle-

size aspects influencing BC-dissolution. 

There are few publications available about crop yield effects of BCs, and almost all are from 

short-term pot experiments. Siebers et al. (2012) reported yield decreases and increases for 

potato and wheat and yield decreases for onions compared to the controls (0 mg P kg-1 soil). 

In a forthcoming study by Siebers et al. (2014) the yield of wheat heads responded positive to 

BC application but lettuce and potato tubers yielded indifferent results for two soils with 

moderate and high P levels. Little et al. (2015) investigated the effect of BC on the growth of 

various weeds and arable crops in comparison to composted poultry manure in biological 

farming systems. They reported that BC did not adequately mimic the P supply from 

composted poultry manure. Zwetsloot et al. (2016) reported positive effects of BC in 

combination with composted poultry manure arbuscular mycorrhizae inoculation on maize 

yield in P-fixing soil. In summary, it is evident that BC sometimes but not always has a 

positive fertilization effect. However, reasons for inconsistent findings are not clear. 
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Sulfur (S) is an essential nutrient for plant metabolism and S deficiency in agricultural soils 

has been recognized in many European countries during the last decades (Ercoli et al., 2012). 

The most common form of inorganic S in soil is sulfate and can be present as SO4
2− either 

dissolved in soil solution or adsorbed to soil particles (Barber, 1995). Leaching is potentially 

one of major contributors to S depletion. Thus, providing a sustainable S fertilizer is 

generally valuable. The oxidation of S decreases soil pH, mostly caused by soil micro-

organisms activities. Many studies have reported S-oxidation by A. ferrooxidans and A. 

thiooxidans enhanced the solubilization of P from phosphate rock due to sulfuric acid 

production and in turn uptake by plants (Pathirathna et al., 1989; Besharati et al., 2007; Chi et 

al., 2007). In this line, Rajan (2002) found the effective dissolution of phosphate rock as a 

result of elemental S oxidation by Acidithiobacillus bacteria in alkaline soil. Bhatti and 

Wasim (2010) improved the P-release from phosphate rock supplemented with S-mud which 

was mainly attributed to the concentration of bacterially produced sulfuric acid by acidophilic 

iron- and sulfur-oxidizing bacteria (Acidithiobacillus ferrooxidans and Acidithiobacillus 

thiooxidans). In order to find a way to improve P dissolution from BC, addressing the crucial 

role of pH, we hypothesized that blending BC with reduced S-containing compounds 

(approx. 30 to 50% S w/w) may promote the BC-dissolution and P-release in soils. This 

surface-modified bone char (BCplus) can be a promising approach to meet the crop P and S 

demands and introduce BCplus as an eco-friendly fertilizer. However, exactly how the surface 

modification may possibly influence important properties of BC has not yet been studied. 

Several studies have proven that water soluble P compounds applied to the soil may 

redistribute mobile soil Cd into less mobile fractions and reduce the Cd uptake by plants 

(Naidu et al., 1994; Bolan et al., 1999; Bolan et al., 2003; Chaiyarat et al., 2011). The 

retention of contaminants by BC has been successfully tested for the removal of fluoride from 

water (Medellin-Castillo, 2007), and the adsorption increased with decreasing pH as 

explained by electrostatic interactions (Medellin-Castillo, 2014). Since the point of zero 

charge of BC is around 7.7 it can be also used for the removal of cationic contaminants from 

water. Experiments with Cr (III) (Flores-Cano, 2016), Cu and Zn (Wilson et al., 2003), Cd, 

Cu and Zn (Cheung et al. 2001, 2002), and U (Fuller et al., 2003) demonstrated the 

adsorption capacity of bone chars and its potential use in water purification. Thus, not 

surprisingly, BC has also been tested for the retention of contaminants from soil. For instance, 

Chen et al. (2006) showed that Pb uptake by Chinese cabbage was significantly reduced in 

the presence of 1.6% (w/w) of BC in soil. Siebers and Leinweber (2013) showed a reduced 
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Cd mobility in BC-amended soils and explained this by the increased pH. Studies on S 

fertilizer effects on Cd-immobilization in soil revealed no consistent results. Some 

researchers have reported that S application increases Cd availability in soil and Cd 

concentration in plants (Salardini et al., 1993; Nocito et al., 2002). Other studies, however, 

showed that S application could immobilize Cd in soil and decrease plant uptake (Hassan et 

al., 2005). It was also reported that S supply could restrain Cd uptake in rice due to the 

formation and precipitation of inseparable Cd-S in waterlogged paddy soils (Daskalakis and 

Helz, 1992; Kashem and Singh, 2001). Not surprising, the fate of Cd in following Cd-

contaminated soils amended with novel BCplus is completely unknown.  

The critical part of soil management in modern agriculture systems is soil testing method and 

the ideal ones are those that narrowly reflect plant nutrient uptake, in addition, independent of 

soil properties. When slow release P-fertilizers are being used, extraction procedures using 

acidic or alkaline extractants under/overestimate the P-availability (Menon and Chien, 1995). 

One of the most widely used soil P tests is Olsen method (Olsen et al., 1954) that is generally 

accepted as an index for plant available P in both acidic and calcareous soils. Extracting 

solution, sodium bicarbonate (NaHCO3), reacts with and dissolves P from the soil 

components. Some other soil P extraction methods like water and NH4NO3 solutions which 

run at approximately the original pH of the soil characteristically attain close correlations to 

available P values for plants when compared to other soil extraction procedures. In some 

European countries like Netherlands, water extraction procedure is used to approximate plant 

available P in the soil solution. Furthermore, the precise determination of P species is crucial 

for assessing the reactivity, solubility and adsorbing capability of BC and relevant treated 

soils. The results can improve insights into agricultural and environmental aspects of BC 

application. Sequential P fractionation proposed by Hedley et al. (1988) is the most 

commonly used procedure to characterize availability of selective organic and inorganic P 

pools including 1) readily available (resin-P), 2) labile (NaHCO3-P), 3) fixed by Al- and Fe-

oxide minerals and organic P from humic substances (NaOH-P) and 4) insoluble P bound to 

Ca-minerals and apatite (H2SO4-P). A study conducting sequential P fractionation on BC 

particles revealed that the majority of P was associated to the Ca and apatite fraction (72% by 

weight) followed by labile fraction (NaHCO3-P, 1.2%), readily available fraction (resin-P, 

0.3%) and adsorbed to Al- and Fe-oxide minerals (NaOH-P, 0.04%) (Zimmer, D. and Kruse, 

J., personal communication). In this line, Siebers et al. (2013) reported that BC application to 

the soil increased the H2SO4 extractable P fraction, mainly consisting of Ca- and Mg-
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phosphates. To overcome some analytical limitations of sequential fractionations (e.g. 

chemically alteration of samples during successive extraction and lack of selectivity to 

present chemically well defined species) various novel methods were developed recently for 

the chemical speciation of plant nutrients and soil pollutants, among which synchrotron-based 

X-ray absorption near edge structure (XANES) spectroscopy has proven to be a particularly 

sensitive nondestructive speciation technique (Kruse et al., 2015). XANES spectroscopy 

enables element specific in situ speciation in solid and heterogeneous mediums and requires 

only minimal sample preparation (Beauchemin et al., 2003; Lobi and Susini, 2009). The P- 

and Cd-speciation in a BC-amended soil was investigated by Siebers et al. (2013) for the first 

time. The XANES results indicated that proportion of hydroxyapatite (main component of 

BC) increased in soil after BC application. Furthermore, Cd-immobilization observed in 

sequential extraction was confirmed as an increase in proportion of insoluble Cd3(PO4)2 in 

XANES spectra. Therefore, speciation of relevant P-compounds can be well-evaluated by 

bringing together various analytical methods such as sequential extractions with advanced 

XANES technique to get new insights into the complex interactions of soil-plant system and 

potential use of BCplus as an alternative clean P-fertilizer. To the best of our knowledge, there 

has been no previous study to use these multi-methodological approaches investigating P-

speciation of BC and BCplus particles and treated soils. 

 

1.2 Research objectives 

Since there is an urgent need to develop non-contaminated P-fertilizers from renewable 

resources, the present dissertation project aimed to find out the potential of newly modified 

BC for improving soil fertility and provide a scientific and practical reference point on BCs 

application as P-fertilizer and Cd-immobilizer soil amendments. More specific objectives 

were to: 

 Evaluate the capability of surface modification in P-release promotion from   

BC-amended soils without losing the Cd-immobilization potential by three 

extraction methods for estimating P and Cd-availability 

 Explore the effect of non-equilibrium condition on the P-release from BC and 

BCplus as slow-release P fertilizers  
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 Assess the effect of particles size of BC and BCplus on the P- and Cd-release in 

moderately Cd-contaminated soils 

 Track the changes in P-speciation of BC and BCplus particles and relevant 

treated soils after incubation-leaching and ryegrass cultivation practices by 

XANES spectroscopy and sequential fractionations 
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2.1 Abstract 

Foreseen P shortage and contamination problems have stimulated the search for renewable 

and contaminant-free P-fertilizers and amendments that immobilize cadmium (Cd). We 

investigated the P-dissolution and Cd immobilizing effect of bone char (pyrolyzed de-fatted 

bone chips; BC) and bone char with added reduced S compounds (BCplus). Five soils varying 

in pH and low to high Cd-contamination were incubated with slow-release P-fertilizers (BC 

and BCplus) and the fast P-release diammonium phosphate (DAP) and extracted with 

NH4NO3-, NaHCO3-solutions and H2O. The P-concentrations obtained by the three 

extractants were well correlated and NH4NO3 well suited to simultaneously assess the P- and 

Cd-solubility. The addition of BC increased pH in all soils whereas BCplus and DAP lowered 

the pH in soils with pH > 5. Similar trends for NH4NO3-P differences between treatments and 

control were observed for BC and BCplus during the incubation period although BCplus 

resulted in much larger P-concentrations. The highest Cd-immobilization efficiency was 

obtained in BC treated soils. The addition of BCplus and DAP decreased the Cd-

concentrations until 34 days of incubation in all soils and remained effective in Cd-

immobilizing in soils that showed a pH raise over 145 days of incubation. Thus, the results 

indicate that surface modification of BC may promote the P-dissolution along with a 

concomitant Cd-immobilization largely through its pH-effect but this must be confirmed in 

studies under non-equilibrium conditions. 

 

Keywords: fertilizer, phosphorus release, extractant, incubation, cadmium immobilization 
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2.2 Introduction 

Mineral P fertilizers produced from rock phosphate are limited, finite and non-renewable 

resources (Cordell and Neset, 2014), and they usually contain impurities such as cadmium 

(Cd), arsenic (As) and lead (Pb) (Franklin et al., 2005). Continuous use of these P-fertilizers 

may cause accumulation in soils, and enhance the contaminant availability to plants, transport 

to groundwater, and as a consequence to food and ecological chains (Mendes et al., 2006). 

Slight to moderate Cd-contamination, reflecting the legacy of intensive use phosphate 

fertilizers, is widespread throughout Europe (Pan et al., 2010). Since intensive crop 

production with high yields requires periodic P fertilization (Cordell and White, 2014), 

renewable but also clean alternatives to rock phosphate-based P-fertilizers are urgently 

needed. Thermal processing products of animal bones like bone char (BC) comprise many 

environmental and economic benefits to establish a sustainable agriculture (Vassilev et al., 

2013). Potentially, BC is an eco-friendly alternative P-fertilizer but the P solubility is 

relatively small in comparison to commercial products and depends on soil pH (Warren et al., 

2009). Consequently, smaller and larger effects on P uptake and crop yield were observed in 

different soils and in comparison to different commercial P fertilizers (Siebers et al., 2012, 

2014). The P-solubility perhaps can be improved by a surface modification by adding 

microorganisms (Postma et al., 2010) or P-solubilizing chemicals but the fate of such surface-

modified BC in Cd-contaminated soils is completely unknown. 

Phosphate fertilization was found to reduce Cd-uptake by crops in heavily contaminated soils 

(Chaiyarat et al., 2011). In moderately contaminated soils (0.3 to 19.6 mg Cd kg-1 soil) the 

addition of BC immobilized up to 75% of mobile Cd, and this was explained by an increase 

in pH from the concomitant release of  calcium (Ca) and magnesium (Mg) (Siebers and 

Leinweber, 2013). Furthermore, there is initial evidence for the precipitation of a P-Cd-phase 

following amendment with BC (Siebers et al., 2013) but the complex BC-P-Cd interactions in 

soil are far from being understood.  

Soil testing methods are subject to ongoing debates and research because the ideal ones are 

those that narrowly reflect plant nutrient uptake and contaminant behavior. One of the most 

widely used soil P-tests is the sodium bicarbonate-extraction (Olsen et al., 1954) as an index 

for plant available P in both acidic and calcareous soils but its extraction efficiency for Cd 

has not yet been tested. Other extractants, e.g. H2O or NH4NO3 solution, likely can be used to 

remove and determine plant available P along with mobile Cd. For instance, in the 
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Netherlands the H2O-extraction is applied to approximate plant available P in soil 

(Vanderdeelen, 2002), and the NH4NO3-extractions is the standard method for mobile heavy 

metals in the German soil protection legislation (Blume et al., 2011). It is unknown, how 

these widely used extractants reflect the fate of P and Cd in soil after amendment with 

various BCs.   

Therefore, the aims of present study were 1) to evaluate the three above extraction methods 

for estimating P- and Cd-dissolution in BC-amended soils, and 2) to find out if a surface 

modification of BC (BCplus) enhances the P-dissolution without losing the Cd immobilization 

potential. Overall we want to provide a basis for developing guidelines for the application of 

BCs in sustainable plant production and soil amendment. 

 

2.3 Materials and methods 

2.3.1 Experimental soils 

Samples from the 0 to 30 cm-layer of five soils varying in chemical and physical properties 

and covering the low to high range of Cd contamination were taken from grasslands (soils 1, 

2 and 4) and arable sites (soils 3 and 5) in the Germany. The sources of Cd contamination 

(values >0.4 or >1 mg Cd kg-1, depending on soil texture; Bundesministerium der Justiz, 

1999), were mining activities (soils 3 and 4), industrial effluents settled in floodplains (soils 1 

and 2) and a sewage farm (soil 5). The soils samples were air-dried, crushed, homogenized 

and sieved < 2 mm for further analyses. Fundamental physical (soil texture) and chemical 

properties (pH, cation exchange capacity, elemental concentrations) of soils, and the soil 

amendments were determined by standard methods (Blume et al., 2011) (Table 2-1). 

 

2.3.2 Fertilizers and incubation experiment 

Three fertilizers, (1) BC, produced from de-fatted and de-gelatinized animal bone chips by 

pyrolysis at about 800°C; (2) BCplus, obtained by blending BC with reduced S-containing 

compounds (approx. 30 to 50% S w/w) and (3) diammonium phosphate (DAP), a commercial 

P fertilizer as a benchmark, were ground to pass a 90-μm mesh-sieve to minimize particle 

size effects. Total elemental concentrations of the fertilizers are shown in Table 2-2.  
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Table 2-1 Selected physical and chemical properties of the soil samples under study. 

 

aCation exchange capacity. 
bP sorption capacity (data from Siebers and Leinweber, 2013). 
 

 

Table 2-2 Chemical characteristics of bone char (BC), modified bone char (BCplus), and diammonium phosphate 
(DAP). 

 

 

 

 

 

 

 

 

Soils were incubated with 4 variants of P fertilization, control (0 mg P kg-1), BC, BCplus and 

DAP (P addition to reach 500 mg P kg-1 soil). Each soil x fertilizer variant was incubated for 

seven time periods (1, 3, 5, 13, 34, 70 and 145 days). For each variant (soil x fertilizer x time 

period, each 3 replicates) about 4 g of air-dry soil (< 2 mm) plus fertilizer were mixed and 

placed in 20 cm3 polyethylene containers. The moisture content of the mixture was adjusted 

between 60 or 70% of field capacity. The containers were covered with a perforated lid of 

parafilm to prevent moisture loss while allowing aeration and were incubated in a controlled 

temperature room at 20ºC in the dark. The containers were watered daily by weight to recoup 

Soil 
Texture 

pH CECa Organic C Total P Total Cd P sorptionb 
Sand Silt Clay 

 / mass% / cmol kg−1 / g kg−1 / mg kg-1 

1 62 14 24 6.5 30.7 56 1560 1.9 19.1 

2 51 32 17 6.4 30.6 62 1202 2.6 13.2 

3 50 33 17 5.9 16.6 25 1008 6.1 19.1 

4 48 40 12 4.9 8.3 68 1306 15.1 27.9 

5 8 89 3 4.2 6.0 32 2820 19.6 31.0 

Property BC BCplus DAP 

Total P (g kg-1) 149.4 141.2 206.5 

Total Cd (mg kg-1) 0.5 0.3 28 

Total Ca (g kg-1) 184.8 219.6 8.2 

Total Mg (g kg-1) 23.9 2.2 3.4 

Total N (g kg-1) 7.5 8.8 185.7 

Total C (g kg-1) 112.5 82.6 1.6 

Total S (g kg-1) 6.3 271.4 24.8 
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evaporated moisture. The triplicate samples of each treatment were removed from the 

incubation after 1, 3, 5, 13, 34, 70, and 145 days, air dried, ground to pass a 2 mm-sieve, and 

subdivided into representative subsamples before the subsequent extractions. 

 

2.3.3 Extraction procedures and Cd- and P-analyses 

The incubated soils were extracted by (1) distilled H2O (van der Pauw, 1971; Luscombe et 

al., 1979): Two g of dry soil (< 2 mm) were shaken with an end-over-end shaker with 20 ml 

of deionized water in a 50 mL centrifuge tube for one hour. After centrifugation for 10 

minutes, the supernatant was filtered through Whatman no. 42 filter and acidified to pH 2.0 

with HCl to prevent precipitation of phosphate compunds. (2) For extraction with NH4NO3 

(He and Singh, 1993; Siebers and Leinweber, 2013) soil samples (0.5 g dry soil < 2 mm) 

were placed in 15-mL polymer centrifuge tubes and shaken end-over-end with 12.5 mL of 1 

mol L−1 NH4NO3 solution at 20°C for 24 hours. After centrifugation at 3500×g for 10 

minutes, the supernatant was carefully decanted, filtered (Whatman no. 42 filter) and 

stabilized with 125 μL of concentrated HNO3. (3) For extraction with NaHCO3 (Olsen et al., 

1954) subsamples of 1 g of dry soil (< 2 mm) were shaken with 20 mL 0.5 M NaHCO3 

solution for 30 minutes. Samples were centrifuged for 10 minutes and filtered (Whatman no. 

42 filter). The supernatant was diluted and acidified with HCl to destroy HCO3
– for ICP-OES 

measurement.  

The concentrations of Cd and P were determined with inductively coupled plasma-optical 

emission spectroscopy (ICP-OES, JY 238, JobinYvon, France) at wavelengths of 228.802 nm 

(Cd) and 214.914 nm (P).  

 

2.3.4 Statistics 

The data were analyzed by STATISTICA version 10 software. The parameters NH4NO3-P 

H2O-P, NaHCO3-P NH4NO3-Cd, H2O-Cd, NaHCO3-Cd and soil pH were analyzed using 

one-way analysis of variance (ANOVA, Tukey test) with the factors “treatment” and “days of 

incubation”. Also a linear regression model was used to determine the significance of 

correlation between extraction methods. 
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2.4 Results and discussion 

2.4.1 Chemical properties of fertilizers 

The BC and BCplus had almost similar concentrations of total P, Cd, C and N (Table 2-2). 

However, BCplus contained much more S (27.1%) than BC and DAP (0.6 and 2.5%, 

respectively). DAP had much more Cd and N but less C and Ca than BC and BCplus. The 

latter were almost free of Cd (0.3-0.5 mg Cd kg-1) whereas DAP contained 28.0 mg Cd kg−1.  

The BC used in this study agrees in composition with those characterized by Warren et al. 

(2009) and Siebers and Leinweber (2013), even though slight differences were observed in 

the chemical properties such as Ca, Mg,  Cd and P contents. The BCplus is rich in S, an 

essential plant nutrient for which deficiency has been recognized in many European 

agricultural soils (Ercoli et al., 2012). As it is introduced here for the first time there are no 

data in the literature for comparison. 

 

2.4.2 Assessment of extraction methods 

The overall means of extracted P significantly varied between extractants and treatments as 

summarized in Fig. 2-1. The P-concentrations generally decreased in the order NaHCO3-P > 

NH4NO3-P > H2O-P. Large differences were observed for P extracted by NaHCO3 as 

compared to H2O-extraction in soils 1 and 2 (pH > 6). In general, the extracted P-contents in 

DAP largely exceeded those in BC and BCplus treatments, in which the differences between 

extractants were more pronounced as well. In the DAP treatment the NaHCO3–extaction of 

soil 1 at day 5 of incubation yielded the maximum P content (320 mg kg-1) (not shown). The 

H2O-P means were roughly half those for NH4NO3-P and about a quarter of NaHCO3-P in 

BC treatments. The NH4NO3 and NaHCO3 solutions extracted rather similar P-concentrations 

from soils 4 and 5 which had the lowest pH (Table 2-1).  

In more detail, the different P-extraction methods also showed the impact of fertilization 

treatments and duration of incubation (Table 2-3). Significant positive differences between 

each treatment (BC, BCplus and DAP) and the corresponding controls were more often 

reflected by NH4NO3-P (n = 15) than by NaHCO3-P (n = 8) and H2O-P. However, the 

additional P in the BC and BCplus treatments always yielded larger differences in the 

NH4NO3-P than in the NaHCO3-P, and this was restricted to soils with pH < 6 (soils 3, 4 and 
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5). Negative differences (P in control > P in treatment) were seldom significant. The H2O 

extraction showed a positive effect of bone chars only five out of six cases in soils 4 and 5, 

and the largest difference was obtained for BCplus in soil 5. 

 

  

 

Fig. 2-1 Extracted P-concentrations as the mean value of three independent replicates during incubation period 
(mg kg-1) using the extraction with NH4NO3, NaHCO3 and H2O for all soils treated with BC, BCplus and DAP. 

 

 

Linear regression involving all data (5 soils x 4 treatments x 7 sampling dates) revealed 

highly significant relationships between the contents of NaHCO3-P and NH4NO3-P (R2 = 

0.82, P < 0.001) and H2O-P and NH4NO3-P (R2 = 0.79, P < 0.001) (Fig. 2-2). The 

relationship between H2O-P and NaHCO3-P was significant as well at the 0.001 level (R2 = 

0.69) (not shown). 
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Table 2-3 Differences in P concentrations (mg kg-1) in the fertilization treatments and the control at selected 
incubation days as reflected by three extraction methods. Negative values mean P concentrations smaller in 
treatment than in the control.a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aTukey-Test: * Significant at P < 0.05; ** Significant at P < 0.01; NS Non-significant. 
 

 

Soil Treatment 
Method of 
extraction 

Incubation period  

Day 1 Day 34 Day 145  

1 

BC NaHCO3 -2.2 NS 3.9 NS 1.4 NS  
NH4NO3 0.3NS 3.0NS 4.9NS  
H2O -0.3 NS 0.4 NS -0.4 NS  

BCplus NaHCO3 -2.6 NS 6.6 NS 1.9 NS  
NH4NO3 6.9NS 4.0NS 3.5NS  
H2O 0.4 NS 1.0 NS -0.1 NS  

DAP NaHCO3 170.8** 99.4** 78.1**  
NH4NO3 153.3** 138.1** 87.9**  
H2O 73.9** 38.8** 27.1**  

2 

BC NaHCO3 2.3 NS 3.1 NS 3.6 NS  
NH4NO3 -0.2NS 2.4NS 2.2NS  
H2O -0.1 NS -0.1 NS 0.6 NS  

BCplus NaHCO3 16.2 NS 3.5 NS 6.2 NS  
NH4NO3 5.8NS 7.4NS 6.9NS  
H2O 0.7 NS 0.3 NS 1.5 NS  

DAP NaHCO3 164.8** 113.2** 101.4**  
NH4NO3 138.5** 107.8** 103.2**  
H2O 65.3** 45.2** 36.6**  

3 

BC NaHCO3 -0.7 NS 0.6 NS 1.3 NS  
NH4NO3 5.5NS 10.1** 4.8NS  
H2O -0.6 NS -0.4 NS -0.6 NS  

BCplus NaHCO3 0.8 NS 0.8 NS 2.4 NS  
NH4NO3 20.9** 25.9** 15.6**  
H2O 0.8 NS 1.0 NS 3.4*  

DAP NaHCO3 93.9** 105.1** 82.4**  
NH4NO3 165.0** 121.5** 79.1**  
H2O 107.2** 58.7** 43.9**  

4 

BC NaHCO3 1.4 NS -1.9 NS 4.8 NS  
NH4NO3 4.9 NS 7.1NS 4.6NS  
H2O 0.6 NS 0.7 NS 0.7 NS  

BCplus NaHCO3 11.5 NS 11.8** 19.9**  
NH4NO3 21.5** 28.0** 20.4*  
H2O 3.2** 2.9 NS 2.8*  

DAP NaHCO3 144.7** 83.3** 81.7**  
NH4NO3 74.3** 48.8** 36.3**  
H2O 69.2** 49.1** 28.8**  

5 

BC NaHCO3 -10.0 NS -22.0* 0.8 NS  
NH4NO3 5.0NS 18.3NS 4.9NS  
H2O -1.2 NS -1.6 NS -1.4 NS  

BCplus NaHCO3 10.9 NS 5.6 NS 28.2*  
NH4NO3 84.9** 76.0** 52.1**  
H2O 22.1* 17.4** 14.2**  

DAP NaHCO3 161.2** 81.1** 64.0**  
NH4NO3 189.4** 117.7** 88.8**  
H2O 168.4** 87.4** 64.6**  
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Fig. 2-2 The relationships between NH4NO3 extractable P (mg kg-1) and NaHCO3 and H2O extractable P (mg 
kg-1) for all soils and treatments. *** Significant at P < 0.001. 
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When comparing the P-extraction methods, the sequence for NaHCO3-P and H2O-P was 

expected and generally confirmed findings by other authors (Zhang et al., 2004; Wuenscher 

et al., 2015). The mean quantities of H2O-P below those extracted by NaHCO3 and NH4NO3 

affirmed that H2O as a weak extractant may not reveal all labile P but mainly reflects the 

intensity parameters, i.e. readily dissolved forms. In agreement with this, Sorn-Srivichai et al. 

(1988) reported that 240 mL H2O extracted considerably less P from 2 g soil than ryegrass 

took up although H2O-P was closely correlated with the plant P-uptake. The latter high 

correlation supports the view that represent H2O-P is a good indicator of P readily available 

to the plants in a wide range of soils (Van der Pauw, 1971; Kuo, 1996). Moreover, the H2O-P 

is an index for P-concentration in runoff (Pote et al., 1996) but it was not correlated with P in 

lysimeter leachates (Leinweber et al., 1999).  

NaHCO3 obviously extracts more P than H2O (Fig. 2-1) including fractions that are not 

necessarily as indicators of immediate plant availability (Otabbong et al., 2004). These 

authors further reported that NaHCO3 as a weak alkaline solution (pH 8.5) can potentially 

extract large amounts of organically bound P. Larger values for NaHCO3-P than for the other 

two fractions (Figs. 2-1 and 2-2) also can be due to NaHCO3 reduction effects on the Ca2+ 

and Al3+ activity, resulting in an elevated P-solubility in soils (Sims, 2000). In the same way, 

NaHCO3 solution releases P bound to calcium carbonate and Fe/Al-oxide surfaces (Schoenau 

and O’Halloran, 2007). The NaHCO3-P showed no induced P-dissolution from BC during 

incubation period while for DAP treatments it was and effective extractant in accordance 

with NH4NO3 (Table 2-3). Menon and Chien (1995) reported that the NaHCO3 extraction is 

proposed as a basis for fertilizer recommendations when water soluble P-fertilizers have been 

used and alkaline or acidic extractants under- or overestimate the P availability. Accordingly, 

the P-release pattern from the two BCs during incubation was well reflected by NH4NO3 

(Table 2-3). This extractant, used for the first time in P studies by Siebers and Leinweber 

(2013) revealed that the P-concentration in BC-amended soils continually increased within 34 

days and subsequently decreased until 145 days of incubation.  

In a study comparing 14 soil P extraction methods, Wuenscher et al. (2015) also reported that 

NaHCO3-P was significantly correlated with H2O-P which the correlation coefficient of the 

equation was 0.574 (P < 0.001). In agreement with this, Sorn-Srivichai et al. (1988) found 

strong correlations (r = 0.90) between NaHCO3-P, H2O-P and plant uptake of P. However, 

Neyroud and Lischer (2003) evaluated 16 P-extraction procedures and reported significant 

differences between uncorrelated P-levels extracted by NaHCO3 and H2O. In addition, the 
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large variability observed between results even for same methods if determined in different 

laboratories. 

Warren et al. (2009) assessed P bioavailability of the animal bone char by extraction with the 

NaHCO3 and reported a close correlation between NaHCO3-P and dissolved-P extracted by a 

two-step sequential procedure using NaCl and NaOH extractants. The authors concluded that 

dissolved-P could be a suitable guide for available P to the plants. However, it is well known 

(Saggar et al., 1992; Menon and Chien, 1995; Warren et al., 2009) that NaHCO3 

underestimates P-availability of gradually soluble fertilizers as BCs are. For these slow-

release materials (BC and BCplus) NH4NO3 is a good alternative P-test, especially for acidic 

soils, and this extractant also works for fast-release P-fertilizers such as DAP (Table 2-3). 

However, there is only little data in the literature for direct comparisons (Siebers and 

Leinweber, 2013).  

The most contaminated soil (soil no. 5) was selected to represent Cd-dissolution results 

obtained by the three extraction methods (Table 2-4). In this as well as in all other soils and 

treatments more Cd was extracted significantly by NH4NO3 than by H2O and NaHCO3. The 

widest range between extracted Cd-values with different methods was 6673 µg kg-1 in soil 5, 

where the highest measured concentration (NH4NO3-Cd = 7069 µg kg-1) was about 18-fold 

greater than the lowest value (NaHCO3-Cd = 396 µg kg-1). The concentration of H2O-Cd in 

most cases exceeded that of NaHCO3-Cd although differences were insignificant. Comparing 

Cd-extractability of the three extraction methods during incubation days indicated different 

trend patterns for each treatment which can be attributed to chemical properties of extractant, 

soil and amendments interference, notably pH changes and salt concentrations. 

Data in Table 2-4 show that NH4NO3 is an efficient extractant for soil Cd, and this can be 

explained by the slightly acidic effect of the NH4
+ ion and the formation of soluble Cd-amine 

complexes (Lebourg et al., 1998; Pueyo et al., 2004). According to Pueyo et al. (2004) 

NH4NO3 extracted more Cd than CaCl2 and NaNO3 in 7 alkaline and neutral out of 10 soils. 

Correspondingly, Symeonides and McRae (1977) assessed plant-available Cd in 25 soils by 

various methods (e.g. NH4NO3, EDTA, AcOH) and found the best correlation between Cd in 

top grown of radish plants and soil-extracted NH4NO3-Cd which simulates the soil pH near 

the plant roots. 
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Table 2-4 Concentrations of Cd (µg kg-1) in the control and different treatments during the incubation of soil 5 
extracted by NaHCO3, NH4NO3, and H2O.# 

 
#Significant differences (α = 0.05, Tukey-Test) between rows (extraction methods) within each variant 
(Control., BC, BCplus, DAP) at each day (day 1 to day 145) are marked by different upper case letters, and 
Significant differences (α = 0.05, Tukey-Test) between columns (day 1 to day 145) within each variant 
(Control., BC, BCplus, DAP) within each extraction method (NaHCO3, NH4NO3, H2O) are marked by different 
lower case letters. 
 

Menzies et al. (2007) reported that trace metal concentrations extracted by complex agents 

(e.g. DTPA and EDTA) or acid extractants (e.g. HCl and Mehlich-1: HCl/H2SO4) compared 

with un-buffered solutions (e.g. NH4NO3 and NaNO3) are poorly correlated to plant 

phytoavailability, indicating the changes in soil-solution pH and trace metal speciation. That 

corresponds well with findings of many authors (Brown et al., 2005; Meers et al., 2007; Zhu 

et al., 2012) that NH4NO3-Cd correlated significantly with crop tissue Cd-accumulation. 

Brown et al. (2005) studied the effect of soil remediation materials including phosphorus, 

lime, red mud, cyclonic ashes, biosolids, and water-treatment residuals on Cd- and Zn-

phytotoxicity and found the NH4NO3 extraction method could well predict the reduced metal 

phytoavailability. Thus we can summarize, that NH4NO3-P and NH4NO3-Cd are adequate 

predictors of available P and Cd in a wide range of soils after the slow-release P-fertilizers 

were applied. Nevertheless, the biouptake is the best evaluation the bioavailability estimates 

provided by different extractions. 

Treatment 
Method of 
extraction 

Incubation days  

1 3 5 13 34 70 145  

Control 

NaHCO3 378 bA 386 bA 396 bA 414 bA 353 abA 292 aA 379 bA  

NH4NO3 6637 bB 6262 abB 7069 bB 6869 bB 6178 abB 6430 bB 5370 aB  

H2O 537 aA 441 aA 532 aA 456 aA 510 aA 475 aA 447 aA  

BC 

NaHCO3 358 aA 321 aA 348 aA 341 aA 307 aA 303 aA 382 aA  

NH4NO3 4898 aB 4992 aB 4999 aB 3785 aB 4548 aB 4015 aB 3728 aB  

H2O 273 abA 201 aA 221 aA 286 aA 346 aA 282 abA 342 bA  

BCplus 

NaHCO3 401 bcA 459 cA 490 cA 377 abcA 290 abA 225 aA 388 abcA  

NH4NO3 4759 abB 5722 cB 5542 bcB 4351 aB 4319 aB 4437 aC 4764 abB  

H2O 379 aA 388 abA 390 abA 446 abA 457 abA 465 bB 386 abA  

DAP 

NaHCO3 463 bcA 511 cA 454 bcA 307 aA 263 aA 233 aA 350 abA  

NH4NO3 5115 bB 5239 bB 5379 bB 5151 bB 4592 abB 4425 abB 3868 aB  

H2O 240 cdA 119 aA 135 aA 197 aA 204 bcA 216 bcA 258 dA  
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2.4.3 Amendment effects on soil pH 

The application of BC significantly increased the soil pH in all soils immediately after one 

day of incubation but during the incubation period the extent of pH-increase differed (Table 

2-5). The soil pH was mostly increased within 34 days of incubation and afterwards it 

decreased to some insignificant differences between treatments and control until day 145. For 

BCplus, the pH decreased continuously relative to the control in soils 1, 2 and 3 (pH > 5) 

throughout the incubation. In soils 4 and 5 (pH < 5), the BCplus caused overall significant pH-

increases but differences were insignificant for some incubation days. In the DAP treatment, 

the pH declined in all soils except the most acidic one (soil no. 5) where pH significantly 

increased. The pH increase of BC treatment for soil 5 after five days of incubation was the 

highest among all treatments (0.4 pH units). On the other hand, the most effective treatment 

for soil pH reduction was found in the BCplus addition to soil 3 after 145 days of incubation 

(0.75 pH units). 

 

Table 2-5 Soil pH as affected by BC, BCplus and DAP fertilizers after 1 and 145 days of incubation. The pH was 
measured with 0.5 g soil in 1.25 ml of a 0.1 mol L-1 CaCl2 solution using a mini-pH-meter electrode.a 

Soil 
Day 1  Day 145 

Control BC BCplus DAP  Control BC BCplus DAP 

1 6.60 6.74** 6.51** 6.49**  6.56 6.64* 6.33** 6.21** 

2 6.44 6.55** 6.31** 6.39NS  6.34 6.48NS 6.08** 6.08** 

3 5.96 6.15** 5.88** 6.00NS  5.86 6.07** 5.11** 5.31** 

4 4.88 5.12** 4.90NS 5.07**  4.60 4.94** 4.77** 4.42** 

5 4.14 4.47** 4.24** 4.44**  4.24 4.81** 4.32** 4.68** 

 

aTukey-Test: * Significant at P < 0.05; ** Significant at P < 0.01; NS Non-Significance difference. 
 

For BC, the results in Table 2-5 confirm Siebers and Leinweber (2013) who found that the 

pH increase was significant in most soils after incubation for 34 days, and it was larger with 

higher BC application rates. These results agree closely with those reported by Ma and 

Matsunaka (2013) who described that soil pH increased with increasing BC application. In 

the BCplus treated soils, the pH decrease can be explained by the microbial oxidation of the 
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reduced, surface-bound S-compounds to H2SO4, which promoted the pH decline especially in 

soils with pH > 5. Fuente et al. (2008) also reported a moderate reduction in soil pH (by 0.5 

units) when elemental S was applied to a calcareous soil which was significantly correlated 

with the production of soluble sulfates and affected by the oxidation rate of S and the buffer 

capacity. Sulfate adsorption by soils mostly occurs at pH < 6 and the ability of S to decrease 

pH was influenced by the contents of clay, hydrous oxide of Fe and Al and exchangeable 

cations (Tabatabai, 2005). 

The influence of DAP on pH alterations depended on soil pH and incubation time (Table 2-

5). Similarly, McGowen et al. (2007) showed that DAP application lowered the soil pH from 

7.1 to 6.5 after two months of incubation and then remained constant. Because of previous 

buffering of the soil with limestone, the acidification potential of DAP decreased during 

incubation period. Thawornchaisit and Polprasert (2009) observed a similar pH reduction in 

DAP-treated soils compared to the control samples. Generally, the pH-reduction by DAP in 

Ca2+-containing soils can be explained by the below reactions (Spuller et al., 2007): 

(NH4)2HPO4 +Ca2+ +2H2O → CaHPO4.2H2O + 2NH4
+                                                      (2-1) 

4CaHPO4.2H2O + H2O→ Ca4H(PO4)3.3H2O + H3PO4                                                       (2-2) 

 

2.4.4 Release of soluble P-compounds 

None of the BC treatments significantly changed the concentrations of soluble P in all soils 

(Table 2-3). In the majority of cases (soil x sampling date) the BC application resulted in 

increased NH4NO3-P-concentrations compared to the control. The NH4NO3-P concentrations 

increased over 34 days of incubation and decreased then to constant values until day 145. In 

the BCplus treatments, the increase in P-concentrations was much larger but the trend in 

NH4NO3-P concentrations was similar to the BC treatments. In soils 3, 4 and 5 (pH < 6) 

elevated P-concentrations were obtained throughout the incubation period (Table 2-3). 

Including all soils and sampling dates significant negative correlations were found between 

the differences in NH4NO3-P (y = treatment minus control) and soil pH (x) (BCplus: y = 158.2 

– 24.3 x, R2 = 0.65, P < 0.001; BC: y = 19.3 – 2.5 x (R2 = 0.36, P < 0.001). All DAP 

treatments showed significantly increased concentrations of soluble P at day 1 of incubation 

but then they continuously declined during the incubation period (Table 2-3). 
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The P-dissolution data of the BC treatments revealed a strong dependency on the soil acidity 

which confirms that soil pH is a major parameter affecting P-dissolution from BCs (Warren 

et al., 2009; Siebers and Leinweber, 2013). However, Warren et al. (2009) found no 

significant differences between un-amended and treated soil with BC for higher soil pH than 

6.14. The study also reported that BC dissolution could be significantly controlled by the size 

of P sink. In addition, the dissolution of calcium phosphate fertilizers such as BC is affected 

largely by P, Ca and Mg concentrations in the soil solution (Chien and Menon, 1995). It 

could be therefore expected that acidic soils with a high total P content and P sorption 

capacity strongly absorb released P from BC (high Ca and Mg content) and, consequently, 

mask soil pH efficiencies in P-dissolution enhancement. In this line, He et al. (2005) showed 

for highly acidic soils that phosphate released from P-fertilizers were sorbed by sesquioxides 

or precipitated as Fe/Al phosphate leaving only a portion of dissolved P available.  

Modification of BC by surface-bound S compounds (BCplus) promoted the P-release in soils 

with pH > 6 (soils 1 and 2, Table 2-3). Moreover, BCplus application not only caused a pH 

increase in soil 5 (pH < 5) by liming effect but also improved amount and prolonged the time 

of P-dissolution for about 145 days compared to the control. Many studies have reported that 

pyrite oxidation by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans 

enhanced solubilization of P from rock phosphate due to the production of H2SO4 and, 

consequently, the P uptake by plants (Pathirathna et al., 1989; Besharati et al., 2007; Chi et 

al., 2007). Similarly, Bhatti and Wasim (2010) improved P-release from rock phosphate by 

adding a S-mud and explained this by the above bacterial acid production. In addition, the 

C/P ratio may have an influence on the P-release. The BCplus had a lower C/P ratio (0.58) 

than BC (0.75) (Table 2-2), and it always released more P (Table 2-3) confirming Gagnon 

and Simard (1999) who reported that compost with lower C/P ratio released more P during 

incubation of an acidic soil than compost with a higher C/P ratio. Therefore, influence of C-

source for microbial populations and corresponded P-fixation by microorganism activities 

could result in less P-dissolution during incubation period.  

 

2.4.5 Amendment effects on Cd concentrations 

The BC amendment significantly decreased NH4NO3-extracted Cd in all soils after 34 days of 

incubation which was generally not the case in the BCplus and DAP treatments (Table 2-6). 

For soils 3, 4 and 5, the BC application significantly lowered Cd concentration during the 
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whole incubation period. The addition of BCplus produced an immediate significant decrease 

in Cd concentration after one day in soils 3, 4 and 5 and, subsequently, at day 34 in soils 1 

and 2. The concentrations increased over that of control after 145 days of incubation in soils 

1, 2 and 3. For the most acidic and contaminated soil 5, the pattern of Cd changes over time 

was similar in all treatments. The order of Cd concentrations was BCplus < BC < DAP except 

for day 145 where the order was BC < DAP < BCplus (Table 2-6). 

 

Table 2-6 Differences in NH4NO3-Cd concentrations (µg kg-1) in the fertilization treatments and the control at 
selected incubation days. Negative values mean P concentrations smaller in treatment than in the control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Tukey-Test: * Significant at P < 0.05; ** Significant at P < 0.01; NS Non-Significant. 
 

The P-dissolution (Table 2-3) coinciding with increasing pH values (Table 2-5) indicate that 

these two processes may contribute to the Cd immobilization in the BC treatment (Table 2-6). 

Siebers and Leinweber (2013) found that BC immobilized Cd but triple superphosphate did 

not despite of its higher P concentrations even above optimal plant growth thresholds. 

Soil Treatment 
Incubation period 

Day 1 Day 34 Day 145 

1 

BC 2.7 NS -7.9** -11.8 NS 

BCplus 8.1 NS -7.1** 10.9 NS 

DAP -1.4 NS -7.5** -0.9 NS 

2 

BC -6.9 NS -25.0** -6.9 NS 

BCplus 11.5 NS -22.9** 21.6* 

DAP -14.5 NS -24.9** 14.4 NS 

3 

BC -182.7** -182.4** -217.9** 

BCplus -160.1** -8.7** 434.2** 

DAP -174.6** -24.7** 362.9** 

4 

BC -82.5** -28.6* -107.4** 

BCplus -65.9** -11.8 NS -106.5** 

DAP -58.4** -2.5 NS -19.6 NS 

5 

BC -1739.3** -1629.6** -1642.0** 

BCplus -1878.1** -1858.6** -605.4 NS 

DAP -1522.4** -1586.0** -1501.8** 
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Hodson et al. (2000) reported that bone meal application suitably reduced metal release from 

contaminated soil through the pH-increases of soil and formation of metal phosphates. The 

Cd-immobilization in acidic soils depends on the amount of phosphates, soluble organic 

substances, Fe- and Mn-oxides/hydroxides, and in alkaline soils precipitation/co-precipitation 

of Cd-minerals can contribute to the Cd-immobilization (Kabata, 2001). Such a newly formed 

Cd-P-phase (Cd3(PO4)2) was detected by XANES spectroscopy of a strongly Cd-

contaminated soil that was incubated with BC (Siebers et al., 2013).  

Generally, soils can be separated into two groups according to alteration in soluble Cd after 

amendment. Acidic soils (4 and 5) showed the same trend of relatively constant decreases in 

Cd concentrations over the whole incubation period, irrespective of amendment type (Fig. 2-

3, soil 5). Alkaline soils (1, 2 and 3), having generally lower Cd-concentrations (factor about 

0.1) showed a similar positive amendment effect only for BC. By contrast, any Cd 

immobilization by BCplus and DAP was only temporarily up to days 13 to 34; thereafter the 

Cd concentrations increased to a level above starting concentrations (Fig. 2-3, soil 3). This is 

explained by the pH decrease (Table 2-5) and, in case of DAP, by additional Cd inputs (28 

mg Cd kg-1 DAP = 271 µg Cd kg-1 experimental soil, Table 2-2). 

We tested the hypothesis that S-containing compounds in BCplus may improve the BC-

dissolution without losing the Cd-immobilization capacity. The results indicate that this is 

true for moderately acidic soils with pH ≤ 4.9 only (Fig. 2-3). The great pH-influence 

disagrees with Thawornchaisit and Polprasert (2009) who reported that Cd-stabilization 

performance of chemical P-fertilizers was correlated positively with concentration of 

phosphate released but not on the pH reduction in the range of pH 6 to 4. A significant pH 

effect was also reported by Basta and McGowen (2004) who applied limestone to prevent 

acidification from DAP and then found highly decreased Cd and Zn concentration in 

leachates from DAP treatments. Therefore, the increased Cd concentrations in the BCplus and 

DAP treatments after 34 days (Table 2-6) may be explained by the simultaneous decrease in 

P-dissolution and soil pH. A Cd stabilization or precipitation by phosphate supply only may 

be achieved by P- applications as high as 800 mg P kg-1 (Hong et al., 2008) but this may 

produce high amounts of water soluble P and eutrophication problems. 
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Fig. 2-3 Effect of BC, BCplus and DAP treatments on NH4NO3 extractable Cd-concentrations of soils 3 and 5 

during 145 days of incubation. 

 

2.5 Conclusions  

In this study we provided evidence that NH4NO3 is an efficient extractant to simultaneously 

estimate P- and Cd-solubility in soils amended with slow- (BC and BCplus) and fast-release 

(DAP) P-fertilizers as it extracted more Cd and P than NaHCO3 and H2O. Since the P-

concentrations extracted by the three methods were well correlated the novel NH4NO3 may 

be applied for different purposes such as fertilizer recommendations or soil conservation 

practices that traditionally rely on conventional soil P tests such as NaHCO3- (Olsen) and 
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H2O-extractions. However, testing the suitability of NH4NO3-extraction for fertilizer 

recommendations needs to establish how well it predicts bioavailability by correlating 

extraction results to plant P uptake and yield. 

Furthermore, the present study introduced BCplus for the first time and proved that surface 

modification by adding S resulted in an increased P-release from soils over a wide pH range 

but the effect was less pronounced in soil with pH >6. Since the Cd-immobilization by-effect 

was proven for moderately acidic soils (pH <6) we can recommend BCplus as a slow P-

release, uncontaminated and renewable fertilizer, especially for weakly Cd-contaminated 

soils and vulnerable crops or food products. 

However, hitherto these studies were done under equilibrium conditions which incompletely 

represent field conditions. Therefore, the preliminary results must be confirmed in non-

equilibrium laboratory studies and pot and field experiments that involve P and Cd leaching 

as well as plant uptake and yield determinations. 
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3.1 Abstract 

The benefits of bone char (BC) application may include both the mobilization of P for plant 

nutrition and immobilization of contaminant Cd in the soil. However, previous studies were 

conducted under equilibrium conditions that do not adequately reflect field conditions. 

Therefore, the objective was to study the effect of BC, surface-modified BC (BCplus) and 

sulfur-enriched activated char (ACS) application at different particle sizes on P- and Cd-

mobilization under non-equilibrium conditions in a combined incubation-leaching 

experiment. Two soils each with the treatments (i) BC, (ii) BCplus, (iii) BC + ACS, (iv) control 

(0 mg P kg-1 soil), and (v) ACS were leached five times during 70 days incubation. Over the 

complete incubation P-contents in leachates were significantly increased by BC and BCplus of 

0.5-1 mm size. P-release from BCs was larger under non-equilibrium condition in this 

experiment compared with a previous continuous incubation experiment. ACs application 

reduced the P-release from BC of all particle sizes. The lowest leachate Cd-concentrations 

were found in soils amended with the smallest BC particles. Addition of BCplus and ACS 

significantly increased Cd leaching and the highest amounts of Cd were leached at the 

smallest particle size. In conclusion, the 0.5-1 mm size class of BCs performed best and 

should be introduced in practical agriculture using standard machinery. 

 

Keywords: bone char, incubation-leaching, non-equilibrium conditions, particle size fraction, 

renewable fertilizer 
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3.2 Introduction  

Modern agricultural production greatly relies on costly phosphorus (P) fertilizers from 

phosphate rock reserves that are being depleted (Van Kauwenbergh et al., 2013) and which 

may contain potentially toxic elements such as Cd, As and Pb (Jiao et al., 2012). P-recycling 

from human and animal waste is urgently needed to obtain contaminant-free P-fertilizers, 

preserve P-reserves and avoid future crises of P-fertilizer scarcity (Rhodes, 2013). Bone chars 

(BC) are beneficial soil amendments for safe, clean and sustainable crop production (Vassilev 

et al., 2013). They are biological, apatite-based P-fertilizers with low and pH-dependent 

solubility and slow P-release (Warren et al., 2009). Several studies, investigating the effect of 

BC application on labile P in soil, have provided evidence that P release differs between 

insoluble bone meal at soil pH >6 and moderately soluble commercial P-fertilizer at soil pH 

<5 (Warren et al., 2009; Siebers et al., 2012; Siebers and Leinweber, 2013; Nogalska and 

Zalewska, 2013). An innovative approach for promoting P-solubility from BCs in neutral to 

alkaline soils was a surface modification of the BC by adding sulfur (S) containing 

compounds (Morshedizad et al., 2016). The idea was to decrease the pH around or at the 

surface of BC particles by soil microbial S oxidation (Gu et al., 2011), thus promoting the 

particle dissolution and P release as shown for rock phosphate (Aria et al., 2010). Indeed, an 

incubation experiment with surface-modified BC (BCplus) under equilibrium conditions 

revealed larger P dissolution than treatments with BC in all studied soils, even those with pH 

>6 (Morshedizad et al., 2016). 

Particle-size can influence the P-release properties of phosphate fertilizers (Sander and 

Eghbal, 1988; Bolland and Gilkes, 1989; He et al., 2005). Different sizes of fertilizer particles 

may result in uneven distributions in soil (Sleight et al., 1984) and different particle surface 

areas modify reactions at fertilizer-soil-interfaces (Bouldin and Sample, 1959). Furthermore, 

the particle size of a fertilizer influences occupational health and safety considerations and 

the opportunity to use farm machinery (Hofstee and Huisman, 1990; DüMV, 2012). So far no 

information exists about how BC particle size affects its reactivity in soil and safety and agro-

technological suitability. 

Batch incubation experiments under equilibrium conditions (Warren et al., 2009; Siebers and 

Leinweber, 2013; Morshedizad et al., 2016) do not accurately assess the P status in fertilized 

soils for both agronomic (crop P fertilization) and environmental (P leaching risk) issues. 

This may arise because the P release and BC particle dissolution may be reduced by P 
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saturation and resorption (McDowell and Sharpley, 2003; Shariatmadari et al., 2006; Verloop 

et al., 2010). Moreover, drying and grinding of soil samples after incubation may increase the 

pH, resulting in precipitation and sorption of soluble and plant-available P species (Penn and 

Bryant, 2006). Furthermore, plant and microbial P uptake and leaching continuously maintain 

non-equilibrium conditions (Shariatmadari et al., 2006; Penn and Bryant, 2006; Verloop et 

al., 2010) that should be adapted in BC fertilization experiments. 

Leaching techniques are widely used in routine soil testing such as for the determination of 

cation exchange capacity (CEC) (Sumner and Miller, 1996), for P-release/loss risk 

assessment (McDowell and Sharpley, 2001) and the determination of trace elements (Hall et 

al., 1998; MacDonald et al., 2004). In analogy to these methods, we developed a new 

laboratory-scale incubation-leaching method to test effects of different BCs on soils under 

non-equilibrium conditions. We hypothesize that repeated removal of P by leaching will 

maintain a non-equilibrium distribution between P in the solid phase and P in soil solution 

which, over a period of 70 days, will result in an increased P-mobilization. This can be tested 

comparing the results with analogous data from a previously published study (Morshedizad et 

al., 2016) with comparable soil samples and the same BC amendments. 

Activated chars (AC) can adsorb and remove many environmental pollutants such as sulfur 

dioxide (Guo and Lua, 2003), nitrate (Ota et al., 2013), organics with high chemical oxygen 

demand (Bansode et al., 2004) and heavy metals (Kadirvelu et al., 2001; Bohli et al., 2013; 

Ribeiro et al., 2015). AC can be produced by treating high-carbon precursors (e.g. 

agricultural wastes) at high temperature and with chemical impregnation agents such as 

ZnCl2, H3PO4, KOH or H2SO4 (Caturla et al., 1991; Molina-Sabio et al., 1995; Legrouri et 

al., 2005; Fierro et al., 2006) or by physical activation using carbonization and gasification 

with oxygen, carbon dioxide and steam (Miguel et al., 2003; Ribeiro et al., 2015). S-loaded 

AC (ACS) is left as a waste after AC is used to remove hydrogen sulfide from biogas, and we 

hypothesize that adding ACS to BC-treated soil may raise the P-release by mechanisms 

similar to those in BCplus. Moreover, AC has a great sorption affinity for heavy metals and, 

thus might be more effective for Cd-immobilization in soil than BCs. However, S-addition 

(ACS) could also decrease pH and reduce Cd-immobilization. These possible reactions have 

not yet been investigated. 
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The objectives of this study were to investigate the effects of (1) different particle sizes of BC 

and BCplus, (2) non-equilibrium conditions in leached soil columns, and (3) ACS on the P- and 

Cd-release from moderately Cd-contaminated soils. 

 

3.3 Materials and methods 

3.3.1 Soils 

The study was performed on two top soils (A and B) of Dystric Cambisols (based on the 

FAO soil classification system) collected from an agricultural research farm of the Julius 

Kühn Research Institute at Braunschweig, Lower Saxony, Germany (10°27’E; 52°18’N). 

Soils A and B were moderately contaminated by Cd (2.0 and 2.4 mg Cd kg–1 soil, 

respectively) from previous sewage sludge application. The soils were air-dried and passed 

through a 2 mm sieve before physical and chemical routine analyses (Blume et al., 2011) and 

setup of the incubation-leaching experiments. Selected properties of the studied soils are 

given in Table 3-1. 

 

Table 3-1 Selected physical and chemical properties of the soils. 

 

 

3.3.2 Chars used as soil amendments 

Three different amendments (BC, BCplus and ACS) were used in the incubation-leaching 

experiment. BC, produced by pyrolyzing bovine bone chips at 800°C, was purchased from 

BONECHAR Carvao Ativado do Brasil, Brasil. To obtain BCplus with a better P-solubility the 

above BC was loaded with S-containing compounds in a biogas-desulfurization process 

(patent application DE 212012000046U1; https://www.google.com/ patents/DE2120120000 

 
Texture 

Texture pH Organic C Total S Total P 
Available P 

(NH4NO3) 
Total Cd 

Available Cd 

(NH4NO3) Sand Silt Clay 

Soil g/100g   ----------g kg−1--------- --------mg kg-1---------- -----------µg kg-1----------- 

A 46.2 45.3 8.5 Loam 5.4 21.2 0.6 1661 33 2002 169 

B 33.0 58.5 8.5 
Silt 

Loam 
4.7 35.7 0.5 1594 14 2421 497 
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46U1?cl=en&hl=de). The S in the BCplus was composed of 60% elemental S, 30% calcium 

sulfate dehydrate and 10% methansulfonate; D. Zimmer et al. unpublished results of S-X-ray 

absorption near-edge fine structure spectroscopy. These two BC-materials were each crushed 

and sieved to make batches of the following particle size fractions: 0.2-0.5, 0.5-1, 1-2 and 2-4 

mm. As a second approach to improve the P solubility of BC we tested a sulfur-enriched AC 

(ACS). This originated from a commercial AC (Gebr. Honnens, Tarp, Germany). It had been 

used to remove hydrogen sulfide (H2S) from a commercial biogas operation, and thus loaded 

with S-compounds similar to BCplus. Samples of ACS were ground to pass a 200 µm sieve to 

minimize the possible particle size effects. Some chemical properties of the studied chars for 

soil amendment are shown in Table 3-2. 

 

Table 3-2 Chemical properties of bone char (BC), modified bone char (BCplus) and sulphur-enriched activated 
char (ACS). 

 
Property

Total P Total Cd Total Ca Total Mg Total C Total S Total N pH 

Material ------------------------------------------------------g kg-1-----------------------------------------------------  

BC 149.4 5×10-4 184.8 23.9 112.5 6.3 7.5 7.83 

BCplus 122.8 3×10-5 264.5 3.5 82.6 198.6 8.2 4.91 

ACS 2.2 2×10-5 9.7 2.9 660.9 199.8 2.4 7.28 

 

 

3.3.3 Experimental design 

The amendments (BC, BCplus, BC + ACS, ACS) were added to 30 g air-dried soil, thoroughly 

homogenized and placed in glass columns (2cm id × 10cm height) (Supporting Information 

Fig. S1). A P-free filter paper had been placed at the bottom of each column to prevent loss of 

solid particles. The amount of applied P (500 mg P kg-1 soil) was chosen as a moderate 

fertilization rate for slow release P fertilizers such as rock phosphate (Bolan and Hedley, 

1990; He et al., 1999) and bone char (Warren et al., 2009; Siebers et al., 2012; Siebers and 

Leinweber, 2013) and also to achieve comparable results with our previous study 

(Morshedizad et al., 2016). BC and BCplus were both tested in four particle size fractions (0.2-

0.5, 0.5-1, 1-2, 2-4 mm). The 14 treatments were control (0 mg P kg-1 soil), BC (four size 

fraction), BCplus (four size fractions), BC (four size fractions) + ACS and ACS alone. ACS was 

always < 0.2 mm and added at 10 g kg-1 soil. Each treatment had five replicates.  
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The soil moisture content between leaching events was maintained at 60-70% field capacity 

by adding deionized water by weight, after permitting drainage and evaporation during the 

leaching process. All treated soils were incubated for 70 days. During this period, three pore 

volumes of deionized water were passed through each column on days 1, 5, 13, 34, and 70. A 

droplet irrigation system consisting of a regulated water supply and each five injection 

needles was used to apply water gradually to the top of the soil columns with a constant flow 

rate of 0.2 mL min-1 (Supporting Information Fig. S1). The water formed a shallow pond at 

the soil surface and was allowed to drain completely. The volumes of leachates were 

determined by weight (approximately 14-16 mL) and their P and Cd concentrations 

determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). 

 

3.3.4  Statistical analysis 

The Shapiro-Wilk test was performed to confirm normal distribution of the data. One-way 

analysis of variance (ANOVA) followed by Tukey-test was used to examine significant 

differences between treatments. All statistics were performed using SPSS (IBM SPSS 

Statistics 21, 2012). Differences between means were considered to be statistically significant 

if P ≤ 0.05. 

 

3.4 Results and discussion 

3.4.1  Effect of BC particle size on P- and Cd-leaching 

Compared to the control, all BC particle size fractions in both soils significantly increased the 

cumulatively leached P-contents over the incubation period of 70 days (Fig. 3-1). After 70 

days of incubation, BC treatments of the 0.5-1 mm size fraction released the largest P-

amounts only in soil B while the BCplus treatment released significantly larger P-amounts in 

both soils. If the particle size was larger than 1 mm, the P-release decreased in BC and BCplus 

treatments (Fig. 3-1). The enhancing effect of the 0.5-1 mm fraction on P-release from BCplus 

was highest after 13 days of incubation compared with the other incubation periods. The 

BCplus treatment showed a higher dependency of P-release on particle size and incubation 

period than BC. In 0.5-1 mm size fractions, the BC amendment increased the P-concentration 

in the leachate more than BCplus after 1 day in soil A and after 13 days in soil B. In other 

cases, especially after 70 days of incubation, the P-release into the leachate was much higher 
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in the BCplus-amended soils. However, although the BCplus caused a pH decrease in all 

treatments, the P-release exceeded that of BC only for two finer size fractions in soil A and 

the 0.5-1 mm-fraction in soil B. 

 

 

Fig. 3-1 The cumulative leached P-concentrations as the mean value of five independent replicates (mg P kg-1 
soil) after 1, 5, 13, and 70 days of incubation for soils A and B treated with different size fractions of BC and 
BCplus. Significant differences (α = 0.05, Tukey-test) between particle size fractions within BC or BCplus 
amendments are marked by different letters. Asterisks indicate differences of each treatment compared with the 
control. * Significant at P < 0.05 level; ** Significant at P < 0.01 level; *** Significant at P < 0.001 level. 
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Although there were moderate differences in chemical properties of BC and BCplus (Table 3-

2) all treatments jointly showed similar trends on P-release in response to particle size. In the 

case of slow/controlled release fertilizers such as BCs, it was expected that a smaller particle 

size would increase fertilizer dissolution. Trenkel (1997) reported that nitrogen release rate 

from urea-crotonaldehyde (slow release N-fertilizer) was the larger the finer the particles 

were. The effect of particle sizes on the fate of P-fertilizers in the soil is perhaps more 

complicated because many factors influence the fate of applied P in soils, e.g. contents of 

calcium carbonate and Fe-/Al-oxides, pH, redox potential, organic matter which all influence 

the sorption, desorption and precipitation mechanisms. Sander and Eghball (1988) 

investigated the effect of different ammonium polyphosphate particle sizes (particle weights 

of 0.00019, 0.0009, 0.025, 0.93, and 22 mg) on winter wheat yield. The maximum fertilizer 

efficiency was obtained at intermediate particle size (0.025 mg) which is comparable with our 

results. This might be related to the optimum conditions for continuous P-release during 

growth season with minimal P-fixation in the soil (adsorption and/or precipitation reactions). 

However, nano- or micro-sized P-fertilizers provide large specific surface areas that promote 

their possible attachment to solid soil surfaces (He et al., 2013). The results of the present 

incubation-leaching study are also consistent with those from Ma and Matsunaka (2013) who 

examined three size fractions (<1 mm, 1-2, and 2-4 mm) of biochar (pyrolyzed meat and 

bone meal from dairy cattle) in a pot experiment. The <1 mm size-fraction of biochars was 

most effective to increase P-dissolution and subsequently promote plant growth. Our findings 

provide more detailed information on the <1 mm size fraction since we investigated two sub-

classes of particle sizes. Results showed larger P-release from 0.5-1 mm BC-particles than 

from the 0.2-0.5 mm fraction. 

The total leachable Cd contents were affected by particle size in BC and BCplus treatments 

(Fig. 3-2). Compared to the control, all BC amendments in soil A and the 0.2-0.5 and 0.5-1 

mm size fractions in soil B significantly decreased Cd-release into the leachates. The addition 

of BCplus with the two finer particle size fractions (0.2-0.5 and 0.5-1 mm) increased the Cd-

release but the coarse size fractions had no influence (1-2 and 2-4 mm). For BC and BCplus 

treatments, leached Cd contents and particle size fractions followed different trends: no size 

effect (soil A) or increased Cd-release with increasing particle size (soil B) in the BC 

treatment vs. reduction in Cd-release with increasing particle size in the BCplus-treatment. The 

BC treatments with 0.2-0.5 mm particle size gave the lowest Cd release. In the BC treatment, 

the leached Cd was reduced by the factor ~1.3 compared to the control, meaning that this 
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amount of Cd was immobilized. Conversely, the highest Cd-release was obtained at 0.2-0.5 

mm sized BCplus after 70 days of incubation. In this treatment the mobilized Cd amount is 

reflected by the Cd-leaching larger by factor 1.7 (soil A) and factor 1.4 (soil B) compared to 

the controls. 

 

Fig. 3-2 The cumulative leached Cd-concentrations as the mean value of five independent replicates (µg Cd kg-1 
soil) after 1, 5, 13, and 70 days of incubation for soils A and B treated with different size fractions of BC and 
BCplus. Significant differences (α = 0.05, Tukey-test) between particle size fractions within BC or BCplus 
amendments are marked by different letters. Asterisks indicate differences of each treatment compared with the 
control. * Significant at P < 0.05 level; ** Significant at P < 0.01 level; *** Significant at P < 0.001 level. 
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The contrasting effects of BC and BCplus on Cd-release were expected. Many studies reported 

the pH as a main factor controlling the Cd-availability in soil (Seaman et al., 2001; Basta et 

al., 2005). The liming effect of BC, measured as pH increase (Fig. 3-2), probably activated 

the Cd-adsorptive capacity of soil surfaces (Siebers and Leinweber, 2013; Siebers et al., 

2013). These results are in agreement with a laboratory leaching experiment with 

contaminated soils from mine tailings, in which Sneddon et al. (2006) observed Cd 

immobilization and significantly reduced Cd-concentrations in leachates following bone meal 

application. Morshedizad et al. (2016) reported that surface modification of BC by reduced S-

compounds weakened the immobilizing effect of BC or even mobilized Cd due to a slight 

acidification of treated soils. In agreement with that previous study, assessment of leachates 

and amended soils after incubation with BC and BCplus revealed the same pattern of pH 

alterations. Importantly, as the particle size of BC and BCplus was reduced, the corresponding 

expected effects on soil pH were intensified (Figs. 3-1 and 3-2). This means that the highest 

pH increase was associated with the smallest BC particle size fraction and the highest pH 

decrease was found in soils with the smallest BCplus particle size fraction (Fig. 3-2). 

 

3.4.2  Evaluation of the incubation-leaching method 

To evaluate the incubation-leaching method used in the present study, proportions of released 

P determined by the new method described here were compared with results of the previous 

incubation-extraction method described in Morshedizad et al. (2016). In that study, two soils 

were investigated which had similar physico-chemical properties (pH, total P and texture) 

and the same BC treatments under same incubation conditions (between leaching events) as 

described in the present study. Comparison of the P-proportions released by the two different 

methods revealed the effects of the method (equilibrium vs. non-equilibrium), incubation 

period and soil amendments (Fig. 3-3). On the first day of incubation, the P-proportion 

extracted by H2O from soil 4 (1.2 and 0.61% of total P (Pt) for amendment with BC and 

BCplus, respectively (Morshedizad et al., 2016)) exceeded the P-proportion that was leached 

from the corresponding soil B (0.34 and 0.2% of Pt for amendment with BC and BCplus, 

respectively). After 13 days of incubation, a higher proportion of P was released by 

incubation-leaching compared with incubation-extraction. On day 70 of the incubation-

leaching experiment, BC and BCplus released approximately twice as much P as in the 

previous incubation-extraction experiment. These differences occurred in both comparable 
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soil pairs (soils 3 and A, soils 4 and B) and seemed to be more pronounced in soils 3 and A 

with larger pH values. Irrespective of incubation time, the incubation-extraction method 

resulted in larger P-proportions in the BCplus treatment compared with the BC treatment. 

 

Fig. 3-3 Proportions of released P (as percentage of total P added) from BC-amended soils obtained by 
incubation-extraction in a previous study (soils 3 and 4, Morshedizad et al., 2016) and by incubation-leaching in 
the present study (soils A and B). 
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The differences found at the start of the experiment (day 1: extraction > leaching) can be 

explained by the physically more vigorous extraction by shaking (Matschonat and Vogt, 

1996; Muukkonen et al., 2009). After a longer period of time, the P-proportions released with 

the extraction method remained relatively constant because of increased ionic strength of the 

solution under equilibrium conditions. Furthermore, drying and disaggregation by grinding at 

the end of incubation prior to extraction may have resulted in a reduced H2O-extractability of 

P that may have been mobilized before (Olsen and Court, 1982; Horn and Taubner, 1989; 

Arai and Sparks, 2007). In contrast, larger P-proportions obtained by the leaching method in 

the longer term (days 13 and 70) indicate that keeping the soil wet and its aggregate structure 

undisturbed most likely prevents re-sorption or precipitation of released P. Furthermore, 

complete renewal of the soil solution by the five leaching events during 70 days created 

temporary non-equilibrium conditions which promote the P-release from BCs. These findings 

are in agreement with McDowell and Sharpley (2003) who reported two steps of P-release, a 

first rapid and short step with greater release rate followed by a second slower and longer P-

release, which is controlled by diffusion kinetics and resorption processes. The P-release 

results of the present study (Fig. 3-3) are in agreement with Hantschel et al. (1988) who 

reported that the solution obtained by percolating water through undisturbed soil cores was 

more realistic for evaluation of chemical soil-solution composition than saturation extracts. 

Although the soil columns for incubation-leaching were disturbed and re-packed, and not 

intact like those of Hantschel et al. (1988), it is considered that the chemical composition of 

water leached through incubated soil aggregates in the present study better represents field 

conditions than H2O-extracts from dried, considerably altered and dispersed soils after the 

incubation-extraction procedure of the previous experiment (Morshedizad et al., 2016). 

Furthermore, the incubation-leaching method would be better suitable to include field 

conditions such as preferential placement of fertilizer particles in large pores and inter-

aggregate spaces as well as growth of plant roots in voids/aggregates-interfaces with weak 

strength (Dexter, 1978). 

 

3.4.3  Amendment with Sulfur-loaded activated char (ACS) 

The addition of ACS to BC amended soils generally decreased the P-release, whereas it 

increased the Cd-removal (Table 3-3). The P-decrease in relation to the treatments without 

ACS ranged from 0.66 mg kg-1 soil (control) to 4.46 mg kg-1 soil (BC size fraction of 0.5-1 

mm) in soil A. In soil B, there was a small P-increase in the control (0.56 mg kg-1 soil) but 
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not in BC treatments where the reduction of P-release peaked at the 0.5-1 mm of BC size 

fraction (4.20 mg kg-1 soil). ACS increased the cumulative contents of leached Cd in all 

treatments, ranging from 1.87 to 4.68 µg kg-1 soil (soil A) and 3.18–7.50 µg kg-1 soil (soil B). 

Unexpectedly, the H+ concentrations decreased in all treatments, meaning that the pH values 

were larger at the end of the incubation period. 

 

Table 3-3 Differences in the cummulative leached P (mg kg-1 soil) and Cd (µg kg-1 soil) and [H+] concentrations 
(mol L-1) from treatments with and without ACS application after 70 days of incubation.  
 

 

Negative quantites mean the values were smaller in ACS treatments than in those without ACS. 

* Significant at P < 0.05; ** Significant at P < 0.01; *** Significant at P < 0.001. 

NS, non-significant. 
 

The lower values of leached P caused by ACS application can be explained by the increase in 

pH values. However, this pH effect shown by negative differences in [H+] (Table 3-3) was 

unexpected considering the large S-concentration of ACS (Table 3-2). One reason for [H+] 

reduction may be the leaching of soluble acidic S-compounds followed by the well-known 

liming effect of biochars (Hartley et al., 2006; Houben et al., 2013). Another unexpected 

result was the elevated amounts of Cd-release despite the pH increases. The reason for this 

discrepancy is not known, but it could be attributed to the facilitated transport of Cd bound to 

ACS-colloids, which may pass the filter at the bottom of the column. This suggestion arises 

from observation of a high sorption affinity of AC for Cd (Kadirvelu et al., 2001) and 

obvious S-concentrations observed in the ICP-OES spectra of ACS-leachates (data not 

shown). 

   

  Treatment 

  

Control 

BC particle size fraction 

Soil Parameter 0.2-0.5 mm 0.5-1 mm 1-2 mm 2-4 mm 

A 

ΔP -0.66NS -3.92*** -4.46*** -4.15*** -2.91*** 

ΔCd 2.91*** 1.87*** 2.58*** 2.42*** 4.68*** 

Δ[H+] -1.8×10-7 -3.5×10-7  -3.7×10-7  -8.2×10-7  -5.7×10-7  

B 

ΔP 0.56* -2.47** -4.20*** -3.15*** -2.67*** 

ΔCd 5.84*** 6.71** 7.50** 3.18* 6.04** 

Δ[H+] -11.2×10-7  -7.3×10-7  -9.3×10-7  -11.0×10-7  -16.1×10-7  
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3.5 Conclusions  

Since in the medium and long term more P was mobilized under non-equilibrium than under 

equilibrium conditions of previous studies, the new incubation-leaching approach better 

reflected the fate of fertilizer P in aggregated soils and plant P requirements during the 

growing season. This research showed that the optimum particle size of BCs to release a 

maximum of P along with relatively small Cd concentrations into soil solution was not 

necessarily the smallest size fraction, but the 0.5-1 mm particle size, for both BC and BCplus.  

Particles of this size are acceptable for use in commercial fertilizer machinery. A smaller 

particle size would require pelleting according to German occupational health and safety 

regulations (DüMV, 2012). Therefore, along with ongoing pot experiments to simulate plant 

P uptake and leaching, the experimental basis is established for testing BCs as clean, 

renewable P-fertilizer under field conditions. S-loaded AC (ACS) so far cannot be 

recommended for amendment of Cd-contaminated soils because it mobilizes Cd and may 

increase the risk of Cd uptake by agricultural crops and Cd transfer into the food chain or Cd 

leaching to groundwater.    
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4.1 Abstract 

Acceptability of novel bone char fertilizers depends on their P release but reactions at bone 

char surfaces and impacts to soil P speciation are insufficiently known. By sequential 

fractionation and synchrotron-based X-ray absorption near edge structure (XANES) 

spectroscopy we investigated whether and how the chemical composition of bone char 

particles has been altered in soil and, consequently, has affected the P speciation of amended 

soils. Therefore, two different kinds of bone char particles (BC, produced by pyrolysis of 

degreased animal bone chips at 800 ºC and BCplus, a BC enriched with reduced sulfur 

compounds) were manually separated from the soil at the end of two different experiments: 

“incubation-leaching” and “ryegrass cultivation”. Sequential P-fractionation of amended soils 

showed P-enrichment in all fractions as compared to the control. The most P increase 

between all treatments significantly occurred in the NaOH-P and resin-P fractions in response 

to BCplus application in both, incubation-leaching and ryegrass cultivation experiments. This 

increase of the readily available P fraction in BCplus treated soils was confirmed by linear 

combination fitting (LCF) analysis on P K-edge XANES spectra of BCs particles and 

amended soils. The proportion of Ca-hydroxyapatite decreased, whereas the proportion of 

CaHPO4 increased in BCplus particles after amended soils had been incubated and leached and 

cropped by ryegrass. Based on P XANES speciation as determined by LCF analysis, the 

proportion of inorganic Ca(H2PO4)2 increased in amended soils after BCplus application. 

These results indicated that soil amendment with BCplus particles leads to elevated P 

concentration and maintains more soluble P species than BC particles even after 230-days of 

ryegrass cultivation. 

 

 

Keywords: bone char, P speciation, sequential fractionation, X-ray absorption near edge 

structure spectroscopy 
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4.2 Introduction 

At the global scale readily-available sources of phosphorus (P), a crucial macro-nutrient 

element for agricultural production, are being faced with scarcity and overpricing (Scholz et 

al., 2013; Van Vuuren et al., 2010). Environmental pollutions frequently arise from their 

impurities (Cd, U) (Hartley et al., 2013; Kratz et al., 2016), and from over-fertilization 

(Rubaek et al., 2013). Further problems are the quick formation of stable and inaccessible 

compounds that limit plant P uptake (Shen et al., 2011) and the low agronomic efficiency of 

not more than 15% of fertilizer P in the first year of application (Schnug et al., 2003). Many 

recent studies have targeted sustainable agriculture through improving P-availability from 

applied fertilizers (Delgado et al., 2002; Schröder et al., 2011), increasing P-uptake efficiency 

from organic and inorganic P-pools in the soil (Kaur and Reddy, 2014) and developing new 

technologies for P-recycling from human and animal waste (Siebers and Leinweber, 2013; 

Herzel et al., 2016). Particular attention has been paid to the oxidation process, e.g. by 

thiobacilli of elemental sulfur to sulfuric acid, in order to enhance the solubility of non water-

soluble P from rock phosphates (Powers, 1923; Lee et al., 1987; Fan et al., 2002) or meat and 

bone ashes (Schnug et al., 2003). 

As an economically and environmentally attractive example, pyrolyzed animal bone chips 

branded as “bone char” (BC), a slow-release apatite-based P-fertilizer, have been surface 

modified by sulfur (S) compounds to enhance its solubility in neutral to alkaline soils. 

Incubation-leaching and pot experiments confirmed that surface-modification was an 

effective approach in P-release promotion from BC fertilizer (Morshedizad et al., 2016; 

Zimmer, D. and Panten, K., personal communication). Such an "in situ" digestion of an 

apatitic phosphate with elemental S was first described by Fan et al. (2002; 2012). 

Despite these attempts to raise dissolution and use-efficiency of BC in supplying P for crop 

requirements, a considerable fraction of applied BC-P to the soil remains insoluble in the 

short term and is not taken up by plants over the entire cropping period. A detailed P 

speciation can clarify the fate of insoluble P from BC which has not been done before. 

Chemical speciation is described as analytical identification of chemical species of defined 

elements and measuring their quantities in the system (Templeton et al., 2000). The precise 

characterization of various P species in the soil as a dynamic response to non-equilibrium 

conditions imposed by human activities such as fertilization can support a better 

understanding of reactivity, stability and particularly plant-accessibility of different P-forms 



4 PHOSPHORUS SPECIATION OF BONE CHARS AND TREATED SOILS 

60

and provide a basis for best management practices. Several techniques such as sequential 

fractionation (Dieter et al., 2010; Condron and Newman, 2011), nuclear magnetic resonance 

(NMR) spectroscopy (Liu et al., 2009; Vestergren et al., 2012; Ahlgren et al., 2013), Raman 

spectroscopy (Lanfranco, 2003; Vogel et al., 2013) and chromatography coupled to mass 

spectroscopy (De Brabandere et al., 2008; Paraskova et al., 2015) have been developed for P 

speciation analysis in soil and sediments. Each one of these techniques can offer specific 

advantages and disadvantages depending on phase and complexity of sample matrixes (Kruse 

et al., 2015). Complementarily, X-ray absorption near edge structure (XANES) spectroscopy 

is well-suited for identification of various P species through fingerprinting of molecular 

structures in solid and heterogeneous mediums based on fine feature and position of 

absorbing edges (Kelly et al., 2008; Kizewski et al., 2011). The advantages of XANES 

spectroscopy for soil samples make it a promising technique for direct and in situ P-

speciation with no pretreatment and minimum sample manipulation (Toor et al., 2006; Kelly 

et al., 2008). 

According to the best of our knowledge, no studies have characterized P-speciation changes 

in BC particles over non-equilibrium conditions in the soil system, and only few 

investigations have been reported on the P-release from BC and alteration in P-species of the 

soil. Siebers et al. (2013) investigated K-edge XANES spectroscopy on BC-incubated soil 

samples and provided evidence that the increase in extractable Ca- and Mg-phosphate 

fractions were related to the contribution of hydroxyapatite (HAP) increase after BC 

application. Accordingly, the objective of this study was to provide practical information on 

the fate and alteration of P-species in BC and novel surface modified BC (BCplus) particles 

and their treated soils under incubation-leaching and ryegrass cultivation practices, using 

sequential P-fractionation and P-XANES spectroscopy. 

 

4.3 Materials and methods 

4.3.1 Incubation-leaching experiment 

Two particle size fractions(1-2 and 2-4 mm) of bone chars (BC, produced by pyrolysis of 

degreased animal bone chips at 800ºC and BCplus as a surface modified BC obtained by 

blending with reduced S-containing compounds composed of 60% elemental S, 30% calcium 

sulfate dehydrate and 10% methanesulfonate (Zimmer et al. unpublished results of S X-ray 

absorption near-edge fine structure spectroscopy) in a commercial biogas desulfurization 
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process; patent application DE 212012000046U1;www.google.com/patents /DE21201200004 

6U1?cl=en&hl=de)were incubated with a silt loam soil. The soil was classified as Dystric 

Cambisol (FAO) with pH of 4.7 (measured in 0.01 mol L-1 CaCl2 solution) and total 

(digestion with HNO3 and analyzed using ICP-OES; USEPA, 1997) and available (extracted 

by 1 mol L-1 NH4NO3 and analyzed using ICP-OES; He and Singh, 1993) P-contents of 1.6 g 

P kg-1 and 14 mg P kg-1, respectively. The BC and BCplus contained total P of 149 and 123 g 

kg-1, total calcium (Ca) 185 and 265 g kg-1, total S 6 and 199 g kg-1 and had average of 

pHCaCl2 values 7.8 and 4.9, respectively. 

The BCs were added to 30 g of air dry soil (<2mm) at the levels of 0 mg P kg-1 soil (control) 

and 500 mg P kg-1 soil in five replicates. The soil and BCs mixture was homogenized and 

packed into glass columns with 10 cm length and inner diameter of 2 cm. A P-free filter (MN 

616 G; Macherey-Nagel GmbH & Co., KG Düren, Germany) was placed at the bottom of 

each column to avoid any particle losses. The amended soils were incubated for 70 days at 

20ºC in the dark and constant soil moisture between 60-70% of soil water holding capacity. 

During the incubation period, the soil columns were leached with three pore volumes of 

deionized water added by a droplet irrigation simulator system. The leaching process was 

repeated in five steps, each one after 1, 5, 13, 34 and 70 days. The P-concentrations in 

collected leachates were measured using inductively coupled plasma-optical emission 

spectrometry (ICP-OES). Outcomes of the leaching experiment were described in 

Morshedizad and Leinweber (2017). After the incubation-leaching experiment, the treated 

soil samples were carefully removed from the glass columns, air dried and BCs particles were 

manually separated from the soils very gently. The BCs particles were delicately washed with 

deionized water to remove adhered soil particles, allowed to dry completely at ambient 

conditions and finely ground for further analyses. 

 

4.3.2 Pot experiment with annual ryegrass 

The same BC and BCplus as described for the incubation-leaching experiment were used in 

original sizes (mostly between 1 to 5 mm) for P fertilization of annual ryegrass in a pot 

experiment. The experiment was set-up using an acidic sandy silt soil with available P-

content of 24.2 mg P kg-1 and pH of 5.2. The pot experiment was set up by adding BC and 

BCplus at the levels of 0 mg P kg-1 (control) and 280 mg P kg-1 into the 6 kg of the soil dry 

matter in each pot and in four replicates arranged in a complete randomized block. After four 
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weeks of incubation at field capacity water content and ambient temperature conditions, 30 

seeds of annual ryegrass per each pot were sown on 13th of May 2016. The experiment was 

conducted in a glasshouse under ambient air and temperature conditions and the soil moisture 

was maintained at field capacity during the whole experiment. All other essential nutrients 

were sequentially added at sufficient levels before seeding and after each six cuts of ryegrass 

between 23rd of June and 3rd of November 2016. Finally, after the last harvest (7th), plant 

parts (shoots and roots) were dried at 60 °C and BCs particles were manually separated from 

the soils as they could be detected visually by their size and dark color very gently, using 

tweezers. Then these particles were washed delicately with deionized water to remove 

attached soil particles, allowed to dry completely at ambient conditions and finely ground to 

fine powders for further analyses. 

 

4.3.3 Sequential phosphorus fractionation 

Soil samples were sequentially extracted based on chemical solubility in order according to a 

modified Hedley et al. (1982) procedure. After BC particles detachment, duplicate 0.5 g fine-

ground and air-dried soil samples were weighed into 50-mL centrifuge tubes. In summary, 

chemical P fractionation includes the following steps:  

1) The mobile and readily available P fraction was extracted with resin strips (saturated in 0.5 

M NaHCO3) after 18 hours end-over-end shaking in 30 mL deionized water. The resin strips 

were separated from solids/solution and washed using 50 mL of 1 M HCl to remove absorbed 

P. The soil suspension was centrifuged at 2500 × g for 20 minutes and the supernatant was 

decanted.  

2) Next, the labile inorganic and organic fractions weakly absorbed to mineral surfaces and 

some microbial P were extracted by 30 mL of 0.5 M NaHCO3, 18 hours end-over-end 

shaking and centrifugation at 2500 × g for 20 minutes. The supernatant was filtered 

(Whatman no. 42 filter) and collected for measurements. 

3) The inorganic P adsorbed and bound to Al- and Fe-oxide minerals and organic P from 

humic substances were extracted using 30 mL of 0.1 M NaOH solution and repeating the 

second step procedure as described above. 
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4) The relatively insoluble fraction of P bound to Ca and Mg minerals and apatite was 

extracted by 30 mL of 1 M HCl in the same way as for the previous steps. 

Total P concentrations (Pt) and inorganic P (Pi) in all extracts were measured by ICP-OES 

and colorimetrically (molybdenum blue method; Murphy and Riley, 1962), respectively. The 

organic P (Po) concentrations were calculated by Pt – Pi. 

 

4.3.4 Phosphorus K-edge XANES analysis 

The XANES data collection for characterizing P-species in all soil samples and BCs particles 

was acquired at the Synchrotron Light Research Institute (SLRI) in Nakhon Ratchasima, 

Thailand, on the beamline 8 (BL8) of the electron storage ring with a covering photon energy 

from 1.25 to 10 KeV, electron energy operated at 1.2 GeV and beam current of 80-150 mA 

(Klysubun et al., 2012). The P K-edge XANES spectra were collected from dried and very 

finely ground treated soils and particulate BCs samples which had been diluted to P 

concentrations < 10 mg P kg-1 with SiO2 powder (to eliminate self absorption effects; Prietzel 

et al., 2013), again ground in agate stone mini-mortar and spread uniformly as a thin layer on 

P-free kapton tape (Lanmar Inc., Northbrook, IL, USA). Data collection was operated in 

standard conditions comprising the energy calibration by standard pure elemental P and 

allocating the reference energy (E0) at 2145.5 eV using the maximum peak of spectrum. All 

spectra were recorded at photon energies between 2045.5 and 2495.5 eV in step sizes of 5 eV 

(2045.5 to 2105.5 eV and 2245.5 to 2495.5 eV), 1 eV (2105.5 to 2135.5 eV and 2195.5 to 

2245.5 eV) and 0.25 eV (2135.5 to 2195.5 eV) with a 13-channel germanium detectorin 

fluorescence mode. At least three scans were collected and averaged for each sample. 

The P-XANES spectra were normalized and after merging replicates, a linear combination 

fitting (LCF) was performed using the ATHENA software package (Ravel and Newville, 

2005). All XANES spectral data were baseline corrected in the pre-edge region between 

2115–2145 eV and normalized in the post-edge region of 2190–2215 eV. The same ranges 

were used for the reference P K-edge XANES spectra to achieve consistency in the following 

fitting analysis (Prietzel et al. 2016). To achieve the best compatible set of references with 

each specified sample spectrum, LCF analysis was performed in the energy range between -

20 eV and +30 eV relative to the E0 using the combinatorics function of ATHENA software 

to attain all possible binary, ternary and at most quaternary combinations between all 
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nineteen P reference spectra. The following set of reference P K-edge XANES spectra, all 

recorded in SLRI under the same adjustments by Werner and Prietzel (2015) and Prietzel et 

al. (2016), were used for fitting and calculations; Ca-, Al- and Fe-phytate, non-crystalline and 

crystalline AlPO4, non-crystalline and crystalline FePO4.2H2O, Ca-hydroxyapatite 

(Ca5(OH)(PO4)3), inositol hexakisphosphate (IHP), ferrihydrite-IHP, montmorillonite-Al-

IHP, soil organic matter (SOM)-Al-IHP, ferrihydrite-orthophosphate, montmorillonite-Al-

orthophosphate, SOM-Al-orthophosphate, bohemite-IHP, bohemite-orthophosphate, 

CaHPO4, Ca(H2PO4)2 and MgHPO4. To select the best possible combination fit between the 

sample spectrum and the P-reference spectra, the lowest reduced chi value (χ2) and R-factor 

were chosen. 

 

4.4 Results 

4.4.1 Effect of BCs on sequentially extracted P after incubation-leaching 

After 70 days of incubation-leaching, the sequential P-fractionation of amended soils showed 

variations in the amount and distribution of various P-fractions between different treatments 

(Table 4-1). For all treatments, NaOH extracted the majority of fractionated P (62.4 to 66.5% 

of total fractionated P), followed by the labile P fraction (NaHCO3, 19.2 to 20.0%), HCl-P 

(9.5 to 13.9%) and the readily available P (resin strips, 4.1 to 4.8%). The BCs addition 

increased the total soil P pools although the difference was significant only for the  

BCplus
1-2 mm and BC1-2mm treatments. The largest increase in total fractionated Pt (resin-Pt + 

NaHCO3-Pt + NaOH-Pt + HCl-Pt) occurred in BCplus
1-2 mm (133.8 mg P kg-1 soil) followed by 

BC1-2 mm (118.6 mg P kg-1 soil), BC2-4 mm (67.1 mg P kg-1 soil) and BCplus
2-4 mm (35.7 mg P  

kg-1 soil), compared to the control soil. 

The proportion of P-enrichment in each fraction varied between different treatments in the 

order NaOH-P > HCl-P > NaHCO3-P > resin-P for BCplus
1-2 mm and BCplus

2-4 mm. For the  

BC1-2 mm and BC2-4 mm treatment the order was HCl-P > NaOH-P > NaHCO3-P > resin-P. In 

all treatments, the Pi proportions in each of the P fractions were greater than the Po 

proportions. Compared to the control soil, the most Pi increase was observed in NaOH-Pi and 

resin-Pi in response to BCplus
1-2mm application (Table 4-1). Moreover, after 70 days of 

incubation-leaching, soil pH increased in BC treatments whereas BCplus amendments had an 

acidifying effect. Soil pH levels of BC1-2mm and BC2-4 mm increased by 0.07 and 0.05 units and 
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decreased for BCplus
1-2 mm and BCplus

2-4 mm treatments by 0.21 and 0.15 units compared to 

unamended control soil (pH = 5.06). 

 

Table 4-1 Distribution of inorganic P (Pi), organic P (Po) and total P (Pt) concentrations (mg P kg-1 soil) of 
sequentially extracted P-fractions in the soils as affected by different treatments (treated with two particle size 
fractions (1-2 and 2-4 mm) and original sizes of BC and BCplus or unfertilized soils (control) after incubation-
leaching and ryegrass cultivation experiments. 

 

* Significant at P<0.05; ** Significant at P< 0.01. 
NS Non-significant difference (treatment vs. control; Tukey-Test). 
 

 

4.4.2 Effect of BCs on sequentially extracted P after ryegrass cropping  

Sequentially extracted P fractions in soil varied between different treatments after 230 days 

of ryegrass cropping (Table 4-1). In all treatments (control, BC and BCplus), NaOH-P was the 

largest P pool mainly associated with Al- and Fe-oxide minerals and humic substances (65.0 

to 67.5% of total fractionated P) followed by the NaHCO3-P (18.2 to 19.0%), HCl-P (11.5 to 

12.6%) and resin-P (2.2 to 3.4%) fractions. Enrichments of P fractions in BCplus treatments 

were more pronounced than in treated soils with BC particles. In this treatment the 

concentrations of readily available and labile inorganic P fractions were insignificantly 

smaller than in the control. Additionally, a significant increase in P concentration was 

obtained only in resin-Pi and NaOH-Pi fractions of the BCplus treated soil (Table 1). The 

maximum increase of total fractionated P was obtained in BCplus treatment (37.6 mg P kg-1 

soil). In comparison to incubation-leaching results, a similar sequence was observed for the 

Treatment 
 Resin-P  NaHCO3-P  NaOH-P  HCl-P  

 Pi Po Pt  Pi Po Pt  Pi Po Pt  Pi Po Pt  

Incubation-leaching               

Control  47 5 52  160 99 259  565 294 859  113 10 123  

BC1-2  56NS 7NS 63NS  163NS 108NS 271NS  578NS 303NS 881NS  140NS 56NS 196NS  

BC2-4  50NS 7NS 57NS  161NS 105NS 266NS  574NS 301NS 875NS  121NS 40NS 161NS  

BCplus
1-2  61* 7NS 68NS  172NS 111NS 283NS  593* 313NS 906*  131NS 37NS 170NS  

BCplus
2-4  50NS 7NS 57NS  160NS 104NS 264NS  574NS 298NS 872NS  115NS 21NS 135NS  

Ryegrass cropping experiment               

Control  4 4 8  25 27 52  75 121 196  28 5 33  

BC  2NS 5NS 7NS  24NS 32NS 56NS  79NS 125NS 204NS  30NS 6NS 36NS  

BCplus  6* 5NS 11*  35NS 27NS 62NS  85** 128NS 213NS  34NS 7NS 41NS  
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order of increasing magnitude of P fractions in response to BC and BCplus amendments 

(NaOH-P > NaHCO3-P > HCl-P > resin-P). However, for BC treatment, the total P extracted 

by resin strips was lowered in comparison with the control. In the control and BC treatments, 

Po was the predominant form in NaOH-P and NaHCO3-P fractions while for BCplus it was 

only in the NaOH-P fraction. Each P fraction was highest under BCplus application, except for 

NaHCO3-Po of BC treatment. 

Separately, the effect of BC and BCplus application on ryegrass yield parameters was 

examined in the 230-days pot experiment. The results indicated that P uptake, ryegrass yield 

and apparent nutrient recovery efficiency (ANR) of BCplus treatments exceeded that of BC 

and control treatments and increased to values comparable with triple super phosphate (TSP) 

fertilizer (Zimmer, D. and Panten, K., personal communication). Addition of BC and BCplus 

did not significantly change the bulk soil pH, although local acidification around BCplus 

particles (pH 4.9; Morshedizad and Leinweber, 2017) probably can lower soil pH in small 

scale areas compared to BC treatments (pH about 8). 

 

4.4.3 XANES analysis of BCs particles 

All spectra from BCs were characterized by an intense white-line peak, post-edge position 

and without a distinct pre-edge which corresponded to calcium phosphate compounds 

including Ca-hydroxyapatite, dicalcium phosphate (CaHPO4) and Ca-phytate (Fig. 4-1). The 

P K-edge XANES results indicated no obvious alterations in spectral features of BCs 

particles after the incubation-leaching experiment. After 70-days of incubation-leaching, the 

BC spectra were shifted towards Ca-hydroxyapatite, and this was more pronounced for the 2-

4 mm than for the 1-2 mm BC-particles. The opposite trend was the case for BCplus particles 

where the white-line signal intensity decreased after incubation-leaching period and the post-

edge of spectra tended more to dicalcium phosphate. This effect was stronger for BCplus-

particle size reduction from 2-4 mm to 1-2 mm. 
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Fig. 4-1 Normalized P K-edge XANES spectra of different BC and BCplus particle sizes (1-2 and 2-4 mm) before 
(control) and after 70-days incubation-leaching experiment compared to the reference compounds selected using 
LCF method. 

 

To quantify the P speciation of BC and BCplus particles, LCF analyses using all possible 

combinations were performed on all P K-edge XANES spectra (Table 4-2). The fitting results 

indicated that untreated BC and BCplus particles before the experiment contained on average 

61 and 60% Ca-hydroxyapatite, 22 and 30% CaHPO4 and 18 and 10% Ca-phytate. After 70-

days of incubation-leaching, the proportion of Ca-hydroxyapatite increased to the average of 

80% in BC while it remained unchanged in BCplus particles. The CaHPO4 proportion 

increased in BCplus particles to the average of 34% whereas the lower content was assigned in 
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the spectra of BC particles accounting for 10% of total P species. Moreover, the Ca-phytate 

proportion decreased slightly in BC and BCplus particles from about 18 and 10% to averages 

of 11 and 7%, respectively. 

 

Table 4-2 Results of linear combination fitting (LCF) conducted on P K-edge XANES spectra of bone char (BC) 
and surface modified bone char (BCplus) particles before and after a 70-days incubation-leaching period. These 
best fits were achieved using all possible combinations with nineteen spectra of P reference compounds. 

 

 

Spectra of BC and BCplus particles, before and after 230-days of ryegrass cultivation, were 

characterized by a sharp white-line followed by a shoulder and then a post-edge feature 

between 2160 and 2175 eV which was divided into two peaks (Fig. 4-2). These features were 

most similar to P K-edge XANES spectra of Ca-hydroxyapatite, CaHPO4 and Ca-phytate 

standard compounds. Treated BC particles had a white-line with higher intensity which 

appeared more similar to the Ca-hydroxyapatite spectrum. In contrast, BCplus particles under 

ryegrass cultivation showed a weaker white-line exhibiting the shoulder and post-edge 

feature more comparable to the CaHPO4 spectrum. 

Some differences in proportions of P species observed between BCs particles before and after 

the cropping period in the ryegrass pot experiment are presented in Table 4-3. The LCF 

results revealed overall contributions of 63 and 70% Ca-hydroxyapatite, 29 and 29% CaHPO4 

and 8 and 1% Ca-phytate in the original BC and BCplus, respectively. After the cropping 

period, the percentage of Ca-hydroxyapatite was increased in BC particles. In the BCplus 

treatment, the percentage of CaHPO4 increased from 29 to 43, while the percentage of Ca-

hydroxyapatite was reduced from 70 to 49%. The Ca-phytate proportion remained unchanged 

in BC particles while that of BCplus increased from 1 to 8% after the ryegrass cultivation 

period. 

Reference compound 

Before experiment After 70 days incubation-leaching 

BC BCplus BC BCplus 

1-2 mm 2-4 mm 1-2 mm 2-4 mm 1-2 mm 2-4 mm 1-2 mm 2-4 mm 

Ca-hydroxyapatite (%) 58± 6 64±5 62± 5 58± 5 75± 4 85± 3 59± 5 60± 6 

CaHPO4 (%) 24± 5 19± 4 28± 4 32± 6 14± 3 5± 2 33± 4 35± 5 

Ca-phytate (%) 18± 4 17± 4 10± 3 10± 3 11± 3 10± 2 8± 4 5± 4 

R-factor 0.012 0.008 0.007 0.009 0.005 0.002 0.009 0.010 
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Fig. 4-2 P K-edge XANES spectra of BC and BCplus particles before (control) and after 230-days of ryegrass 
cultivation compared to the reference compounds selected by LCF method. 

 

Table 4-3 Results of linear combination fitting (LCF) conducted on P K-edge XANES spectra of bone char (BC) 
and surface modified bone char (BCplus) particles before and after 230-days of ryegrass cultivation in a pot 
experiment. These best fits were achieved using all possible combinations with nineteen spectra of P reference 
compounds. 

 

4.4.4 XANES analysis of soil samples 

The P K-edge XANES spectra of soil samples from the incubation-leaching experiment 

showed two dominant features including 1) a strong white-line lacking pre-edge and shoulder 

and 2) a tailed post-edge feature (Fig. 4-3). The most similarity to these features was seen in 

XANES spectra of amorphous AlPO4, FePO4 and SOM-Al-IHP compounds. Distinct 

differences appeared between the control and treated soil with BCplus, not with BC treatments. 

This was reflected by slightly lower intensities of both white-line and post-edge features. 

 

Reference compound 
Before experiment  After 230 days ryegrass cultivation 

BC BCplus  BC BCplus 

Ca-hydroxyapatite (%) 63± 6 70± 4  75± 4 49± 8 

CaHPO4 (%) 29± 5 29± 3  17± 4 43± 6 

Ca-phytate (%) 8± 4 1± 3  8± 3 8± 5 

R-factor 0.012 0.005  0.006 0.018 
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Fig. 4-3 P K-edge XANES spectra of unfertilized (control) and fertilized soils with BC and BCplus particles 
under 70-days incubation-leaching experiment compared to the reference compounds selected by LCF method. 

 

Table 4-4 Results of linear combination fitting (LCF) conducted on P K-edge XANES spectra of unfertilized 
(control) and fertilized soils with bone char (BC) and surface modified bone char (BCplus) particles in the 70-
days incubation-leaching experiment. These best fits were achieved using all possible combinations with 
nineteen spectra of P reference compounds. 

 

 

 

 

 

 

 

The P species of treated soils in the incubation-leaching experiment were determined by LCF 

analysis to select at most four reference compounds in combinatorics of all possible fitting 

combinations (Table 4-4). The fitting results indicated that P in the control soil and BC 

treatments occurred dominantly as AlPO4 amorphous (≈ 40%), FePO4 (≈ 30%) and SOM-Al-

IHP (≈ 20%) compounds. In BCplus treated soils, the average proportion of amorphous AlPO4 

Reference compound Control  
BC treatment BCplus treatment 

1-2 mm 2-4 mm 1-2 mm 2-4 mm 

Ca-hydroxyapatite (%) 8± 1 4± 1 8± 1 0 0 

AlPO4 amorphous (%) 42± 1 42± 2 40± 1 27± 1 24± 1 

FePO4 (%) 29± 1 31± 2 31± 1 27± 1 26± 1 

SOM-Al-IHP (%) 21± 2 23± 4 21± 3 26±2 21± 1 

Ca(H2PO4)2 (%) 0 0 0 20± 1 29± 1 

R-factor 0.0003 0.0007 0.0003 0.0005 0.0004 
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decreased to 26% and instead, Ca(H2PO4)2 was identified with an average of 25% which did 

not appear in the control and BC treatments. The LCF results showed that the soil treated 

with BCplus had no detectable Ca-hydroxyapatite which was found in the control and BC 

treatments. 

The XANES spectra recorded from treated soil samples in the ryegrass pot experiment 

showed the presence of an intense white-line in the energy range of 2152 to 2158 eV and a 

stretched post-edge feature approximately from 2165 to 2178 eV (Fig. 4-4). Decreases in 

white-line and post-edge intensities of the soil samples appeared as an effect of BCplus 

application. Visual inspection of P K-edge spectra revealed no indication of specific 

alteration in spectral features in response to the BC treatment. 

 

Fig. 4-4 P K-edge XANES spectra of unfertilized (control) and fertilized soils with BC and BCplus particles 
under 230-days of ryegrass cultivation compared to the reference compounds selected by LCF method. 
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Amorphous AlPO4 was identified by LCF analysis as dominant component (≈ 35%) in all 

treated soil samples from the ryegrass pot experiment (Table 4-5). The second major P form 

in the control soil was IHP (29%) followed by Ca-phytate (27%), with the latter also as 

pronounced as that observed for BC and BCplus treatments. All treated soils varied in 

proportions of free or bound IHP forms. The Mont-Al-PO4 and Ca(H2PO4)2 compounds were 

only assigned in the control and BCplus treatments, respectively. 

 

Table 4-5 Results of linear combination fitting (LCF) conducted on P K-edge XANES spectra of unfertilized 

(control) and fertilized soils with bone char (BC) and surface modified bone char (BCplus) particles under 230-

days of ryegrass cultivation in a pot experiment. These best fits were achieved using all possible combinations 

with nineteen spectra of P reference compounds. 

 

 

 
 

4.5 Discussion 

4.5.1 P availability as revealed by sequential fractionation 

The sequence of P distribution between sequentially extracted P-fractions was in accordance 

with findings by many studies (Cross and Schlesinger, 1995; McDowell and Stewart, 2006; 

Hashimoto and Watanabe, 2014), reflecting the general status of different P-pools in acidic 

soils. The results indicated that the largest P proportion was found in the NaOH fraction 

reflecting P fixed to Fe- and Al-oxides as followed by the NaHCO3-P fraction assigned to 

weakly P absorbed on crystalline Fe- and Al-oxides or surface of minerals. Guo et al. (2000) 

reported that the NaOH-P fraction may support the labile NaHCO3-P fraction as a buffering 

P-pool in highly weathered and acidic soils. According to soil pH values (4.7 and 5.2), the 

Reference compound Control  BC treatment BCplus treatment 

AlPO4 amorphous (%) 35± 3 35± 3 34± 1 

Ca-phytate (%) 27± 3 28± 3 27± 1 

IHP (%) 29± 5 21± 7 0 

Mont-Al-IHP (%) 0 16± 1 0 

SOM-Al-IHP (%) 0 0 25± 2 

Mont-Al-PO4 (%) 9± 1 0 0 

Ca(H2PO4)2 (%) 0 0 14± 2 

R-factor 0.0006 0.0008 0.0006 
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larger proportions of NaHCO3-P even than HCl-P can be explained by the abundance and 

surface loadings of Fe- and Al-oxides that support the electrostatic binding of phosphate ions 

and a scarcity of Ca and Mg minerals or soluble ions. As expected, the lowest P proportions 

were found in the mobile and readily available P fraction extracted by resin strips in 

agreement to many comparable studies (Cross and Schlesinger, 1995; Bauchemin et al., 

2003; Sharpley et al., 2004; Siebers et al., 2013). Among the two soils which were used in the 

two different experiments, the largest proportions of inorganic P were achieved in the soil 

after incubation-leaching experiment, while the organic P forms were considerably more 

abundant in the soil samples after ryegrass cultivation (Table 4-1). These differences may be 

due to the microbial activities in the rhizosphere of grasses and transformation of Pi to more 

stable Po fractions during longer plant cultivation period (230 days) than in the non-cropped 

incubation-leaching experiment (70 days). 

In general, all P fraction concentrations were elevated by adding BC and BCplus particles 

which appeared to follow the same pattern in both soils under two different experimental 

conditions. However, significant differences were found only between the control and BCplus 

treated soils (1-2 mm in the incubation-leaching experiment) for the resin-P and NaOH-P 

fractions. Since the BCs particles were separated from the soils before chemical analysis, it 

was expected that partly dissolved BCs would have a limited impact on different P-fractions 

rather than totally ground and mixed BCs. This is consistent with the study of Siebers et al. 

(2013) according to which the BC application (<90 µm BC thoroughly mixed to soil) 

significantly increased the insoluble P proportion (H2SO4-P). Additionally, our study 

confirmed previous findings concerning the effect of particle sizes on the P release from BCs 

(Morshedizad and Leinweber, 2017) and consequently the P status of treated soils (Ma and 

Matsunaka, 2013). Sequentially extracted P contents increased with decreasing size of BC 

particles whereby BCplus treatments appeared more dependent on particle size than BC 

treatments. The results of sequential P fractionation of BCplus treatments in the incubation-

leaching experiment indicated that the P increase was more pronounced for P fixed to Al- and 

Fe-oxides (NaOH-P) than other fractions, whereas for BC treatments the largest increase 

occurred in P bound to Ca and Mg minerals (HCl-P). It seems that local pH changes in soil 

associated with BCand BCplus amendments could eventually lead to a different distribution of 

released P into differently soluble or insoluble P-pools which are generally controlled by pH 

(Arai and Sparks, 2007). However, due to lower fertilization level and longer period of 

experiment in ryegrass cultivation compared to incubation-leaching, it appears that the 
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chemical equilibrium has been established in the soil (no significant change in bulk soil pH) 

and, accordingly, the soil P fractions were altered minimal. 

 

4.5.2 P speciation of BCs particles by XANES 

The predominance of Ca-hydroxyapatite in BCs as evidenced by P K-edge XANES analysis 

is consistent with findings reported by previous studies (Warren et al., 2009; Siebers et al., 

2013). The mineral phase of bone consists mainly of hydroxyapatite, and its contribution to 

bone and bone char compositions depends on species and the age of animals (Wu et al., 2003) 

and carbonization temperature and residence time (Novotny et al., 2012). Bone crystallinity 

might be improved through structural modifications on poorly crystalline fresh bone samples 

(such as mineral maturity over periods of time or intensive carbonization) which can also 

result in increased proportions of hydroxyapatite and accordingly a decrease in P solubility 

(Novotny et al., 2012). Based on LC fittings, the second major component of BCs particles 

was CaHPO4, in good agreement with the results of Rajendran et al. (2013) who indicated the 

heated bones at 400 ºC contained some more soluble phosphates such as CaHPO4 and 

CaH2PO4 in addition to the hydroxyapatite fraction. The authors reported that spectra of 

calcined bone samples at 700 ºC had white-line at 2154 eV and two post-edge peaks at 2162 

eV and 2169 eV with no pre-edge peaks and appeared similar to CaHPO4 and CaH2PO4 

spectra. Our LCF also assigned Ca-phytate in BCs samples which seems to be controversial 

as a component of animal bone materials. The P K-edge spectrum of Ca-phytate is very 

similar to other Ca-bound P compounds with a distinct white-line and lack of a pre-edge 

feature, although it is likely distinguishable due to specific shape of white-line tailing and 

absence of post-edge signal at 2164 eV (Prietzel et al., 2016). Moreover, some inaccuracies in 

LCF estimations have to be considered because of 1) uncertainty in speciation of organic P 

forms by K-edge XANES, 2) lack of reference compounds representing all P forms in BCs 

and 3) smaller Ca-phytate proportions than proposed 10 to 15% of Pt as detection limit for 

reliable XANES fittings (Beauchemin et al., 2003). Therefore, the P proportions assigned to 

Ca-phytate also could originate from a range of other CaP compounds. 

In both experiments, incubation-leaching and ryegrass cropping, changes in proportions of 

Ca-hydroxyapatite and CaHPO4 in BC particles followed an opposite trend than in BCplus 

particles. After placement of BC particles in the soil, Ca-phosphate seemed to be released 

gradually over time which provides a locally lime-saturated condition. Due to elevated pH 
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surrounding the BC particles, dissolved P can be resorbed to maintain solubility and the Ca-P 

equilibrium constant which likely resulted in a decreased proportion of soluble CaHPO4 and 

possibly the transformation into the relatively insoluble Ca-hydroxyapatite fraction. In 

contrast, if BCplus particles were applied to soils, larger proportions of CaHPO4 at the expense 

of Ca-hydroxyapatite could be explained by soil acidification through the microbial oxidation 

of released S (Lee et al., 1987; Fan et al., 2002). This effect was more pronounced over the 

longer time period in the ryegrass cropping pot experiment, favoring a greater CaHPO4 than 

Ca-hydroxyapatite fraction. This implies that BCplus can actively supply P with predominance 

of soluble over insoluble P forms in the long-term and, thus, meet crop requirements. 

 

4.5.3 P speciation of treated soils by XANES 

Differences between characteristics of two soils, dissimilar mechanisms of incubation-

leaching and plant uptake besides different experiment time durations complicate the joint 

interpretation of the P-XANES data. In unfertilized soil of the incubation-leaching 

experiment, the proportions of P species followed the order AlPO4 > FePO4 > SOM-Al-IHP > 

Ca-hydroxyapatite which did not vary despite partial changes in some proportions after 

application of both size fractions of BC particles. In general, these results concur with the 

findings by Siebers et al. (2013) that Ca-hydroxyapatite proportion was slightly increased by 

BC application. This could be attributed to irreversibly mixing finely-ground BC to the soil 

samples whereas in the present experiments the BC particles were separated from the soils 

before P speciation. Furthermore, these XANES data (Table 4-4 and Table 4-5) are in 

agreement with sequential P fractionation results (Table 4-1) which indicated the dominance 

of inorganic over organic P forms and showed the P fractions almost unchanged after BC 

application. Implications of low solubility of BC particles observed in this work are 

consistent with previous studies showing a slow release P from BCs (Warren et al., 2009; 

Siebers et al., 2013; Morshedizad et al., 2016). Besides reducing the AlPO4 and Ca-

hydroxyapatite proportions, BCplus particles introduced highly soluble Ca(H2PO4)2 to soils in 

the incubation-leaching experiment. These results imply that considerable changes in P 

speciation were more attributed to pH reductions and, accordingly, leaching out solubilized 

P-forms compared with P enrichment by BCplus dissolution. This is supported by results from 

a previous publication in which two particle sizes of BCplus gave a significant rise in the 

leached P-concentration after 1, 5, 13, 34 and 70 days of incubation along with reductions in 
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soil pH (Morshedizad and Leinweber, 2017). This is in line with Sato et al. (2005) who found 

that increasing soil pH in a naturally acidic soil (pH = 4.32) was an effective approach to 

minimize P leaching, while pH decrease resulted in transformation of stable to soluble and 

more leachable P species. Regarding the XANES results of the ryegrass cultivation 

experiment (Table 4-5), the effect of BCplus treatment can be explained better. In the control 

soil, the presence of AlPO4 and increasing abundance of organic P-forms (Ca-phytate and 

IHP compounds) (Table 4-5) were consistent with the appearance of NaOH-P and HCl-P 

fractions by sequential extraction (Table 4-1). In the BC treatment the proportions of AlPO4 

and Ca-phytate did not change compared to the control but the contribution of organic P 

increased by Mont-Al-IHP formation. The stability of different P fractions can be favored by 

the pH effect (Gustafsson et al., 2012) likewise the dependence of BC particles solubility on 

the soil pH (Siebers et al., 2013). In agreement with incubation-leaching results (Table 4-4), 

Ca(H2PO4)2 was detected as a result of BCplus amendment even though similar proportions of 

AlPO4 and Ca-phytate were observed between the control and BCplus treatment. However, the 

date in Table 4-5 on the presence/absence of Ca(H2PO4)2 in soils of ryegrass experiment may 

have been influenced by small proportions (<10-15%; reliable detection limit by XANES, 

Beauchemin et al., 2003) of other simple calcium phosphates that have a spectrum similar to 

the one of Ca(H2PO4)2 in LCF analysis. The results of sequential P fractionation and XANES 

analyses on treatments in the two different experiments presented here demonstrated that 

surface modification of BC particles effectively improved soluble P fractions in BCplus 

particles and, consequently, in amended soils. 

 

4.6 Conclusions 

In the present study, the P speciation by a sequential P fractionation and P K-edge XANES 

spectroscopy revealed the noticeable alteration in the P-pools of treated soil samples. Results 

of incubation-leaching and ryegrass cultivation experiments indicated that BCplus produced by 

surface-modification of BC through addition of S compounds provided more soluble and 

plant-available P than non-modified BC during the growth season. The S oxidation and 

thereby the soil pH decrease seems to stimulate the P release from BCplus particles. The P K-

edge XANES analyses of BCplus particles revealed more soluble CaHPO4 than in BC particles 

at the expense of Ca-hydroxyapatite. This was associated with the addition Ca(H2PO4)2 or 

similar simple Ca-P-compounds to amended soils, as indicated by sequential P fractionation 
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and XANES analyses. Future studies will be directed to validate the beneficial effects of 

BCplus at the field scale with different soils and to optimize the surface modification of BCs. 

 

4.7 Data availability  

All compiled data of this study are published in figures and tables. Detailed primary data 

including the incubation-leaching and ryegrass cultivation results and the acquired XANES 

spectra will be saved and published in the BonaRes Data Center (https://www.bonares.de/ 

research-data) and get the BonaRes DOI prefix (10.20387). 
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5.1 Introduction 

This dissertation investigated and outlined several objectives to evaluate a novel BC fertilizer 

which aimed to address potentials of new recycling sources and help moving toward a closed-

loop P supply. In this chapter the obove mentioned objectives and hypothesis are followed by 

relevant results and combined with discussions on how this project has answered the research 

questions along with particular emphasis on rational and consistent connection between the 

chapters. The overall conclusion also highlights where forthcoming studies would improve 

knowledge and eliminate lack of certainty in areas that need more accurate analysis or even 

were beyond the scope of the present project. 

 

5.2 Surface-modified bone char as a new alternative P-fertilizer  

The increasing concerns about upcoming scarcity and high toxic-element concentrations of 

rock phosphate, the main source for the manufacturing of P-fertilizers, invigorate research 

efforts to discover clean and renewable P sources and develop innovative technologies for 

their introduction into agricultural practice. Consequently, P management policies have been 

focused more prominently on P-recovery and -recycling strategies. The application of bone 

char (BC; rich in P and almost free of contaminants) in soil for in-situ Cd-remediation and 

also in order to increase P fertility has been proved by recent studies (Warren et al., 2009; 

Siebers and Leinweber, 2013; Siebers et al., 2014). Despite these promising results, it 

remained a controversial issue to determine the ability and effectiveness of BC to release and 

supply crop-available P demand in a reliable way. Regarding the fact that P-release from BC 

(apatite-base material) is controlled by the ability of soil-biota to provide protons, a 

[technical] surface modification of BC with the aid of sulfur containing compounds and 

following oxidation by thiobacilli to sulfuric acid in soil can be a promising approach for 

improving the P-solubility in BCs. As the first and fundamental step for the assessment of 

surface-modification performance, the P-solubilizing and Cd-immobilizing abilities of a 

novel BCplus [provided to the doctoral candidate by the tutor] and the primary BC were 

compared in different soils that cover a wide range of pH-values and Cd-contamination. 

Moreover, the soil testing area, as a basis for appropriate fertilization/remediation practices, 

where information is lacking specially on application of BC fertilizers, was highlighted and 

characterized to some extent by evaluation of three routine extractants (Chapter 2). Results 

revealed that surface modification of BC lowered the pH in soils with pH> 5 during 
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incubation period and resulted in an excess of P-dissolution. Although the BCplus increased 

the pH of the two most acidic soils (pH values of 4.2 and 4.9), the most significant increase in 

P-concentrations also occurred in these soils compared to BC and control treatments. This 

was a result of BCplus improvement in both intrinsic properties and secondary aspects (after 

application) which would undoubtly determine its final soil amendment potential. While the 

pH effect has been demonstrated as the most important parameter regarding P-release from 

BCs, some discrepancies make the exact estimation of available P based on soil pH values 

difficult. Results of available P produced by BCs amendments in three comparable incubation 

experiments and over two different pH-ranges are shown in Table 5-1. It can be observed that 

the change trends of P-dissolution are not always consistent with soil pH alterations. This 

implies that the variability in released P from BCs in almost similar pH values can be related 

to other unknown mechanisms. However, the promising results obtained in Chapter 2 

indicate that surface modification promotes P-release in both pH ranges. 

 

Table 5-1 Change in available P in BCs-treated soils as a percentage of applied P (500 mg P kg-1 soil) compared 
to the control (0 mg P kg-1 soil) after 145 days of incubation. 

Fertilizer Soil pH ΔP [% of added P] Reference 

BC 6.8 + 0.4 Warren et al., 2009 
BC 6.4 + 1.3 Siebers and Leinweber, 2013 
BC 6.4 + 0.4 Chapter 2; Morshedizad et al., 2016 
BCplus 6.4 + 1.4 Chapter 2; Morshedizad et al., 2016 

BC 3.3 + 27.1 Warren et al., 2009 
BC 3.4 + 0.9 Siebers and Leinweber, 2013 
BC 4.2 + 3.7 Chapter 2; Morshedizad et al., 2016 
BCplus 4.2 + 15.2 Chapter 2; Morshedizad et al., 2016 

 

In Chapter 2, the highest Cd-immobilization efficiency was obtained in BC treated soils, and 

surface modification decreased the beneficial Cd-immobilizing effect largely through a pH-

decrease. The positive effect of soluble P-compounds on Cd-immobilization appeared in 

BCplus and DAP treatments in a similar pattern over 34 days of incubation but did not last 

until 145 days of incubation, except for most acidic soils as a consequence of raise in pH 

values (Table 2-6 and Fig. 2-3; Chapter 2). Nevertheless, in contrast with mineral fertilizers 

such as DAP, the BCplus can increase soil fertility and quality along with a concomitant Cd-

immobilization without any integration and input of contaminants. Regarding to well-

correlated P-concentrations achieved by NH4NO3 with results of routine P-extractants and 
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also high efficiency in Cd extraction, the application of NH4NO3 for simultaneous estimation 

of P- and Cd-availability in soil can help to decrease costs and save the time. 

According to these results, two further objectives were required to get a better impression of 

overall surface modification performance. First of all, since previous studies on BCs were 

performed under equilibrium conditions, which are simple to set up but eventually do not 

adequately reflect field conditions, the influence of non-equilibrium conditions on P- and Cd-

release from incubated BCs treatments were investigated by addition of leaching steps to 

remove dissolved products from equilibrated soil-solution phase and stimulate more BCs-

dissolution. Secondly, the effect of particle size, one of the most important physical 

properties which can influence surface area, reactivity, machinery application and distribution 

of BCs in soil, was evaluated to find an optimum size-fraction depending on P-dissolution 

and Cd-immobilization rates. The results demonstrated that non-equilibrium conditions 

mobilized more P from bone chars (essentially as slow-release fertilizers and highly 

dependent on P sorption capacity of soil) through repeated leaching steps and discharge of the 

P-saturated soil solution. Furthermore, this research also evidenced that the optimum size of 

both BC and BCplus particles, corresponding to most P-release into the leachates, was not 

necessarily the finest (0.2-0.5 mm) but the 0.5-1 mm size fraction. The effect of particle size 

on pH revealed that the most changes were associated with the smallest BC and BCplus size 

fractions. Accordingly, as a function of pH and in agreement with the previous study 

(Chapter 2), Cd-immobilization occurred in BC treatments and was intensified as particle 

sizes became smaller whereas BCplus increased the Cd-release from treated soils with two 

finer particle size fractions (0.2-0.5 and 0.5-1 mm) or remained unchanged in particle sizes 

>1 mm. The results indicated that particle size was more effective on P-release from BCplus 

than BC treatments. The results of Chapter 3 provided important information to make 

comparisons between laboratory and field conditions to some extent and achieve reliable 

estimation of BCs potential for P-fertilization and Cd-immobilization of soil.   

As the next and final step, assessing alteration in solubility and fractionation of P-species in 

BC, BCplus and relevant treated soils after an experimental incubation-leaching period and a 

long-term ryegrass cultivation was crucial to offer insights into how surface modification can 

improve BC-dissolution process. Therefore, in Chapter 4, sequential P fractionation and X-

ray absorption near edge structure (XANES) spectroscopy were applied and this approach 

successfully clarified P-speciation of BCs and revealed how treated soils were affected 

consequently. Sequential fractionation revealed P-enrichments in the studied fractions of BCs 
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treated soils. However, significant increases were observed in inorganic P bound to Al- and 

Fe-oxide (NaOH-P) and readily available P (resin-P) fractions in response to BCplus 

application. These results support the promoted P-dissolution of BCplus treatments as reported 

in Chapter 2 and provide evidence for enhanced P-uptake, ryegrass yield and apparent 

nutrient recovery efficiency (ANR) of BCplus treatments compared to BC and control 

treatments (Zimmer and Panten, unpublished). More pronounced P fixed to Al- and Fe-oxides 

(NaOH-P) and bound to Ca and Mg minerals (HCl-P) in BCplus and BC treatments, 

respectively, were associated with different pH changes by BCs (Table 2-5 and Fig. 3-1; 

Chapters 2 and 3). These changes in P-speciation were associated to the subsequent 

distribution of released P into different P-pools, which are generally controlled by pH values, 

as well. Consistent with previous findings and research hypotheses, the P K-edge XANES 

analysis evidenced that Ca-hydroxyapatite was the predominant mineral constituent of BC 

and BCplus particles. An improved quality of BCplus through surface modification was 

concluded from the enlarged proportion of soluble P-species (CaHPO4) at the expense of 

low-/in-soluble Ca-hydroxyapatite. Besides that, tracking the P-speciation changes of BCs 

particles, treated in incubation-leaching and ryegrass cropping experiments, revealed the 

continuous increase in CaHPO4-proportions along with reductions of Ca-hydroxyapatite 

proportions in BCplus particles while the opposite trend was found for BC. This improvement 

in P-solubility was reflected by Ca(H2PO4)2 and resin-P increases in BCplus-amended soils as 

identified by XANES and sequential fractionation analyses. The results demonstrate that 

BCplus can actively supply P with a predominance of soluble over insoluble P-species, even 

after long-term cultivation and meet crop requirements. In this line, the relative agronomic 

efficiency (RAE, yield of intended fertilizer compared to a standard fertilizer) was calculated 

from few available studies reporting BC effect on crop yields and very recent long-term pot 

experiment conducted on BC and BCplus fertilizers (Table 5-2). The results reveal that the 

addition of BC sometimes lead to an increased crop yield. The fertilization effect of BC 

seems to be more prominent for grasses and grain crops with relatively long vegetation period 

and intensive root system enabling the exploitation of slowly soluble P-sources more than 

vegetables and potato which stronger depend on fast P-supply from easily soluble sources 

such as TSP. Thus, an additional consideration for BCs application is the effect of cropping 

system on P efficiency. More importantly, the ryegrass cultivation results provide consistent 

evidence for improved solubility and plant availability of P after surface modification of BC. 
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Table 5-2 Effect of BCs fertilizers on relative agronomic efficiency (RAE) of different crops. RAE = (difference 
between yield of BCs-treated soil and non-fertilized soil / difference between yield of control fertilizer (TSP) 
treated soil and non-fertilized soil) × 100. 

Fertilizer Crop RAE [%] Reference 

BC Onion -22.9 – -3.4 Siebers et al., 2012 
BC Potato 2.6 – 61.9 Siebers et al., 2012 
BC Wheat -1.93 – 7.11 Siebers et al., 2012 
BC Lettuce -91.7 – 9.3 Siebers et al., 2014 
BC Potato -248.9 – 36.5 Siebers et al., 2014 
BC Wheat 11.3 – 173.0 Siebers et al., 2014 
BC Maize 60 – 65 Zwetsloot et al., 2016 
BC Ryegrass -44.4 – 45.5 Zimmer and Panten, unpublished 
BCplus Ryegrass 1.6 – 177.3 Zimmer and Panten, unpublished 

 

5.3 Implications for future research 

The present dissertation project considered a range of experimental works and analyses to 

assess the performance of surface modification on fertilization properties of bone char. 

However, those works were constrained by financial support and time period of study for a 

PhD thesis. In future, other important factors which can affect BCs in soil-plant system 

should be further explored in forthcoming studies in order to indentify how additional and 

advanced techniques can help to maintain, justify and improve the value of BC as a clean and 

renewable P-fertilizer. 

As we proved in Chapter 3 that results obtained by routine incubation-extraction 

experiments (equilibrium condition; Chapter 2) are imperfect to simulate field conditions, 

the innovative incubation-leaching method should be also improved by considering more 

parameters such as unsaturated water flow, exuded enzymes and microbial activities in the 

vicinity of the roots, temperature changes and mechanical forces in the soils. This can help to 

identify mechanisms of P- and Cd-adsorption/desorption under controlled laboratory 

conditions and achieve better simulation on fate of BCs in soil. Moreover, regarding the 

performance of NH4NO3 extractant in estimation of P- and Cd-availability in soil (Chapter 

2), it is advisable to perform pot/field experiments to verify the comparability of extraction 

results with crop uptake. Since different particle sizes of BCs influenced soil pH, P- and Cd-

dissolution differently, it would be of great interest to use different size fractions of BCs for a 

range of soil science approaches such as soil fertilization, conservation and contaminants 

remediation. More importantly, the 0.5-1 mm size class of BCs (performed best in P-release; 

Chapter 3) should be tested in field experiments using standard farm machinery to introduce 

into practical agriculture. Except of soil pH and P sorption capacity, the other soil parameters 
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responsible for the P- and Cd-release from BCs-treated soils require further investigations if 

advanced understanding of BCs effects in soil are required as well. Abundant amounts of 

activated chars loaded with P, S and other nutrient elements after different purification and 

filtration processes are attractive options that should be well characterized in order to 

improve soil fertility, physical quality, remediation and carbon sequestration strategies. 

The P-speciation results presented here evidenced some capacity of XANES analysis and 

sequential fractionation procedures to illustrate alteration of different P forms in BCs 

particles and relevant treated soils. There are potentials to improve XANES analysis through 

extension of standard set of spectra (additional P-references as predictor compounds) to 

represent major P species in BCs and treated soils. P-speciation approaches must also be 

improved by applying complementary NMR-investigations (31P NMR; a key analytical 

technique to identify P-compounds in complex environmental samples). The general 

knowledge about surface modified BC should be improved by XANES speciation of related 

P- and S-compounds which as a prerequisite it is necessary to build up and/or complete 

spectra libraries of S K-/L-edge spectra. The methodological study of detailed speciation of P, 

S and Cd in BCs-treated soils will eventually lead to a better understanding how these 

chemical parameters reflect the BCs properties and consequently to modified process for 

producing solubility-comparable BCs with commercial fast-release P-fertilizers. 

The proved potential of BCplus to release more P (immobilize less Cd) than BC should be 

explored further in a wide range of soil properties and long-term field experiments for various 

common agricultural crops with different root system and P-demand during growth stages in 

order to identify how long the effect of BC and BCplus amendments can persist. Also effects 

of BCs on soil quality, especially physical properties (aggregation and increase water holding 

capacity regarding to carbon sequestration), should be examined only over long time 

intervals. In addition, use of drainage lysimeters and concurrent evaluation of P-, S- and Cd-

leachability from these field experiments will be of high interest for contaminant 

management and sustainable agriculture practices. 

In summary, the present dissertation project has systematically clarified some important 

aspects of BC-surface modification, for the first time, and demonstrated that BCplus is a 

promising renewable P-fertilizer which due to improved P-solubility efficiency, economical 

advantages and being free of contaminants can be an outstanding alternative for mineral P 

fertilizers. 
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Nutrient-pollutant-interactions in cadmium-contaminated soils amended with 

surface-modified bone char 

 

Presented by Mohsen Morshedizad 

 

I Rationale and objectives of the research 

Phosphorus (P) is an indispensable vital element for living organisms, plant growth and food 

productions. The P-fertilizers are mostly derived from phosphate rock, a potentially 

critical non-renewable resource connected with major problems e.g. supply risks, 

price fluctuation, quantitative and qualitative depletion of resources, and concomitant 

toxic impurities such as cadmium and uranium. Recent concerns over future P 

scarcity and food security have sparked interests in P-recovery and -recycling 

strategies. 

Cadmium (Cd) is non-essential and highly toxic trace element to plants, animals, humans, 

and even micro-organisms (causing hazards e.g. disturbing enzyme activities, 

reduction in chlorophyll content, itai-itai disease and damaging human vital organs). 

Enrichment of Cd in agricultural soils mainly occurs from application of 

contaminated P-fertilizers posing high risk of Cd-uptake by plants and animals. 

Among several restoration and remediation strategies which have been proved to 

secure food safety and human health, in-situ Cd-stabilization by clean and organic 

amendments has shown great potential and cost-effective performance. 

8 
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Bone char (BC), a P-rich organic material, is emerging as a clean, renewable and economical 

substitute for rock phosphate origin P-fertilizers to improve soil fertility and 

immobilize Cd availability. However, appearing slow-release and highly pH-

dependent, may raise reasonable doubt about its sufficient capability to meet crop 

demand. Therefore, a surface modification approach with the aid of sulfur (S) 

containing compounds for promoting BC dissolution was developed to address this 

important issue. 

In order to establish the novel BC as non-contaminated P source, the surface modification 

effects on P-fertilizing and Cd-immobilizing characteristics of BC must be understood 

in detail, and this can be achieved by 1) evaluating the P- and Cd-dissolution in Cd-

contaminated soils incubated with BC, surface modified BC (BCplus), and 

diammonium phosphate (DAP) by means of NH4NO3, NaHCO3 and H2O extractants, 

2) simulation of field non-equilibrium conditions using a new-designed incubation-

leaching approach toward a better estimation of P- and Cd-release from soils treated 

with different particle sizes of BC and BCplus, and 3) employment of P-speciation 

methods to explore chemical alterations of BCs particles and relevant treated soils 

after incubation-leaching and ryegrass cultivation experiments. 

 

II Main research results 

The incubation experiment conducted on five soils with low to moderate Cd-contamination 

revealed that surface modification of BC was effective to increase P-dissolution over 

a wide range of soil pH. Besides significant correlation between P-contents extracted 

by different procedures, the NH4NO3 was well-suited to simultaneously assess the P- 

and Cd-availability. The highest Cd-immobilization efficiency as well as most pH 

increase occurred in BC treatments. The addition of BCplus and DAP reduced Cd-

concentration until 34 days of incubation in all soils and remained effective in Cd-

immobilizing in the soils with pH raise over incubation period. The results indicate 

that availability of both P and Cd in BC and BCplus treatments is strongly dependent 

on soil pH values. 

The novel combined incubation-leaching experiment clarified the effects of non-equilibrium 

condition and particle size on BCs efficiency. The cumulative P-release from BC and 
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BCplus after 70 days of incubation-leaching (non-equilibrium condition) was larger by 

factor 2 than in the previous incubation-extraction experiment. The treatment with 

0.5-1 mm BC- and BCplus-particles released the largest amounts of P into the 

leachates. Smallest BC-particles immobilized most Cd in soil resulting in minimum 

Cd-concentration in the leachates. The addition of BCplus significantly increased the 

Cd-concentration in the leachates so that the more Cd was leached as particle-size 

became smaller. Thus, the 0.5-1 mm size class of BCs must be prescribed for large-

scale field experiments using standard farm machinery to introduce this clean, 

renewable P fertilizer into practical agriculture. 

Synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy and 

sequential P fractionation methods revealed reliable evidence on P-species of BCs 

particles and relevant treated soils before and after incubation-leaching and ryegrass 

cultivation experiments. Application of BC and BCplus enriched all sequentially 

extracted P-fractionations compared to the control. A significant increase occurred 

only in resin-P and NaOH-P fractions of the BCplus-treated soil. Linear combination 

fitting (LCF) analysis on P K-edge XANES spectra proved increase of the readily 

available P fraction by detecting elevated proportions of CaHPO4 in BCplus particles as 

well as increased inorganic Ca(H2PO4)2 in amended soils. Overall, implications of P-

speciation results demonstrated that surface modification of BC effectively improved 

soluble P fractions in BCplus particles and, consequently, in treated soils over 

incubation-leaching and ryegrass cultivation experiments. 

 

III Conclusions and outlook 

The first ever surface modification of BC, relying on promoting P-release through S-

oxidation and thereby soil pH decrease, was introduced and successfully characterized 

over different experiments. The results of present dissertation project lead to the wider 

approval of “bone chars” as clean, renewable, cost-beneficial, fertility enhancer and 

Cd-immobilizer soil amendments. Depending on which advantage of BCs has been 

determined by priority and soil properties affecting BCs efficiency (i.e. pH, P sorption 

capacity, Cd-contamination level), an appropriate particle size of BC or BCplus would 

be wisely selected for optimizing P-fertilization and Cd-immobilization practices. 
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The future studies should consider three fundamental and highly interlinked research areas to 

evaluate, improve and establish BCs application. First, the long-term field 

experiments with taking into account different soil and crop properties should be 

conducted to assess soil-BC-plant interactions. The second line of forthcoming 

investigations must be improvement of methodological approaches for P, S and Cd-

speciation in BCs-treated soils e.g. extending standard set of XANES spectra and 

applying complementary techniques (e.g. 31P NMR) for identification of the complex 

mixture of P-compounds. Finally, the BC-modification approaches have to be 

optimized in order to enhance BCplus-efficiency as a clean alternative P-fertilizer in 

promoting crop yield, improving chemical and physical soil properties and balance 

agricultural and environmental functions. 
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