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Abstract

In the seventies, László Babai has classified all finite groups isomorphic to Euclidean
symmetry groups of vertex transitive polytopes. In the same paper, Babai asked
for a related classification of the affine symmetry groups of orbit polytopes. The
present dissertation introduces an algebraic theory of “generic symmetries” of group
representations which is capable not only to reprove Babai’s classical result, but also
to answer Babai’s question.

To any representation D : G→ GL(V ) of a finite group, we associate a permutation
group Sym(G, V ) on G which is connected to the linear symmetry groups of G-orbits
in V . Under some mild hypotheses, we show that Sym(G, V ) ∼= GL(Gv) holds for
“almost all” v ∈ V . Over fields of characteristic zero, we derive an explicit formula
characterizing Sym(G, V ) only in terms of the character of D. In this way, any character
of a real representation explicitly gives rise to the affine symmetry group of an orbit
polytope (up to isomorphism).
Babai’s question is answered by constructing specific characters. We show that the

only finite groups not isomorphic to affine symmetry groups of orbit polytopes are the
abelian groups of exponent greater than two, the generalized dicyclic groups, and the
elementary abelian groups of order 4, 8, and 16.
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1 Introduction

This dissertation is inspired by geometrical questions on the symmetries of orbit
polytopes. We develop an algebraic theory on “generic symmetries” of modules over
group algebras which is capable to answer not only these geometrical questions, but
also more general algebraic questions which arise naturally in this context. We primarily
use methods from (finite) group theory, representation theory, and algebraic geometry.

1.1 Motivation

For the moment, an orbit polytope P is defined as the convex hull of an orbit of a finite
matrix group G ≤ GL(n,R). That is, we have

P = Orb(G, v) = conv{gv : g ∈ G}

for some v ∈ Rn (a more general definition will be given later). The vertex set of
P is precisely the orbit Gv. Evidently, the multiplication by any element of G is a
permutation on P . Let us call a matrix A ∈ GL(n,R) a linear symmetry of P if it
satisfies AP = P . The set of all linear symmetries of P is a subgroup of GL(n,R)
which we (for now) simply call the linear symmetry group of P . This group permutes
the vertices of P , so it is finite provided that Gv is a generating set of Rn. Now we
see that, independently of v, G is always contained in the linear symmetry group of
Orb(G, v). However, it depends both on G and on v to which extent an orbit polytope
Orb(G, v) can have symmetries not contained in G.
Let us consider a very simple example. Let G ≤ GL(2,R) be the cyclic rotation

group of order four which is generated by the matrix

r =
(

0 1
−1 0

)
.

Among the orbit polytopes of G, there is the trivial polytope Orb(G, 0) for which of
course any matrix is a linear symmetry. For all nonzero points v ∈ R2, the polytope
P = Orb(G, v) is a square centered at the origin. In any case, P has further linear
symmetries not contained in G. As in Figure 1.1, we consider the points v = (2, 2)t
and w = (2, 1)t. It is easy to check that Orb(G, v) has an additional linear symmetry
A, and Orb(G,w) has an additional linear symmetry B, where

A =
(

0 1
1 0

)
, and B = 1

5

(
3 4
4 −3

)
.

Note that neither is A a linear symmetry of Orb(G,w), nor is B a linear symmetry of

1



2 1 Introduction

v

rvr2v

r3v

Orb(G, v)

w

rw

r2w

r3w

Orb(G,w)

Figure 1.1: Nontrivial orbit polytopes of the cyclic rotation group of order four.

Orb(G, v). So different orbit polytopes of G can have different linear symmetry groups
(which is actually the usual case). However, by regarding symmetries of a polytope as
permutations of its vertices, we can see that A acts on Orb(G, v) in the same manner
as B acts on Orb(G,w). As can be observed in Figure 1.1, the vertices of any nontrivial
orbit polytope P of G can be labeled by the elements of G. Therefore, the linear
symmetry group of P can (as it permutes the vertices of P ) always be regarded as
a permutation group on the group G itself. With that point of view, both A and
B are naturally identified with the permutation (r, r3) on G which interchanges the
elements of order four, while leaving the other two elements fixed. In fact, the linear
symmetry group of an arbitrary nontrivial orbit polytope of G is isomorphic to the
permutation group 〈(1, r, r2, r3), (r, r3)〉 ≤ Sym(G) which is a dihedral group of order
eight. In conclusion, the linear symmetry groups of “almost all” orbit polytopes of G
are isomorphic to the dihedral group of order eight. (For now, we use the term “almost
all” just as a vivid phrase. Later on, we will give a precise mathematical meaning to it.)

In the last example we have observed only one orbit polytope which was exceptional
in some sense (namely the trivial orbit polytope at the origin). To see other phenomena
which may occur in this setting, we need to consider a slightly more complicated
example (which is actually a linear symmetry group occurring in the last example).
We consider the dihedral group G ≤ GL(2,R) of order eight generated by the matrices

r =
(

0 1
−1 0

)
and s =

(
1 0
0 −1

)
.

As before, we will determine the linear symmetry groups of the orbit polytopes of G.
For a “generic point” v ∈ R2, the orbit polytope Orb(G, v) is a non-regular octagon
with two different alternating lengths of edges, as shown in Figure 1.2. It can be shown
that for these polytopes, G is the full linear symmetry group, and the permutations on
G induced by linear symmetries are precisely the left multiplications by elements of G.
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Figure 1.2: Orbit polytopes of G at “generic” points.

In contrast to the previous example, we can now distinguish three classes of ex-
ceptional orbit polytopes. To begin with, there is of course the trivial orbit polytope
Orb(G, 0) which does not contain a generating set of R2, which means that its linear
symmetry group has infinite order. It is the only orbit polytope of G which is not
full dimensional. Since G has order eight, all orbit polytopes of G have at most eight
vertices. Among the two dimensional orbit polytopes, there is an exceptional class of
polytopes Orb(G, v) with less than |G| vertices. This happens precisely if the stabilizer
Gv of v (and then also the stabilizer at any other vertex of Orb(G, v)) in G is nontrivial.
Figure 1.3 shows the orbit polytopes of G at v = (2, 2)t and at w = (2, 0)t which
both are squares. As we have seen before, the linear symmetry groups of squares

v = srv

rv = svr2v = sr3v

r3v = sr2v

Orb(G, v)

w = sr2w

rw = srw

r2w = sw

r3w = sr3w Orb(G,w)

Figure 1.3: Exceptional class of orbit polytopes with nontrivial stabilizers at the vertices.

are always dihedral groups of order eight, so G is in fact the full linear symmetry



4 1 Introduction

group of both Orb(G, v) and Orb(G,w). However, as we can see in the picture, the
vertices of Orb(G, v) and Orb(G,w) are not in one to one correspondence with the
elements of G anymore. Instead, each vertex is labeled by a left coset of Gv, or of Gw,
respectively. For this reason, linear symmetries can still be described by permutations
on G, but not in a unique manner. For example, the identity permutation and the
permutation π = (r, s) ∈ Sym(G) both describe the trivial symmetry of Orb(G, v).
Also note that there is no linear symmetry of Orb(G,w) which is described by π. In fact,
the permutations on G describing linear symmetries for all exceptional orbit polytopes
of this class, are the left multiplications by elements of G.

By looking at the pictures, one might guess that by choosing a point v ∈ R2 carefully,
we might get an orbit polytope Orb(G, v) which is a regular octagon, and so has further
linear symmetries. This is indeed the case. These polytopes form the last exceptional
class consisting of all those orbit polytopes Orb(G, v) which have full dimension, and
trivial stabilizers at the vertices, but strictly more linear symmetries than the “generic”
orbit polytopes. One such example, P = Orb(G, v) = Orb(G,w) for v = (1 +

√
2, 1),

and w = sr2v = (−1−
√

2, 1), is shown in Figure 1.4. Up to dilation, P is the only orbit

v

rv

r2v

r3v

sv

srv

sr2v

sr3v

Orb(G, v)

sr2w

srw

sw

sr3w

r2w

rw

w

r3w

Orb(G,w)

Figure 1.4: Two different labelings of an orbit polytope with extra symmetries.

polytope of G with additional linear symmetries. All exceptional orbit polytopes of this
type have the same linear symmetry group, a dihedral group of order 16 (generated
by s and by a rotation matrix of order 8). However, different labelings of the vertices
of P lead to different permutation groups on G. For example, the labeling given by v
(on the left side in Figure 1.4) has a linear symmetry described by the permutation
π = (1, s, r, sr3, r2, sr2, r3, sr), and in fact the full linear symmetry group of P is
generated as a permutation group on G by the left multiplications and by π. But π
does obviously not describe a linear symmetry of P with respect to the labeling given
by w (see the right side in Figure 1.4). So we see again that the linear symmetry groups
of exceptional orbit polytopes may induce different permutation groups on G. We shall
see later that this obstruction does not occur for “generic” orbit polytopes.
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Figure 1.5 gives an overview about the distribution of generic and exceptional points
of G in the plane. The red colored points have a nontrivial stabilizer in G, and so their

Figure 1.5: Generic and exceptional regions for the dihedral group of order eight.

orbit polytopes have fewer vertices than G has elements. The blue colored points are
those whose orbit polytopes have extra symmetries (in comparison to the other full
dimensional orbit polytopes). Finally, the green colored points are those which we will
call “generic” points. As a permutation group on the vertices, the linear symmetry
group of any generic orbit polytope is isomorphic to a specific permutation group on
the group G itself. In the picture, we see that the generic points cover almost the entire
plane. So, as in the previous example, we see that almost all orbit polytopes of G have
isomorphic (in this case even identical) linear symmetry groups.

1.2 Some main results

The previously introduced geometrical observations were communicated to me by Achill
Schürmann, who conjectured that similar phenomena occur for arbitrary matrix groups
in any dimension. I have worked on these questions in cooperation with Frieder Ladisch.
To a large extent, the results presented here are already published in [8, 9, 10, 19].
My objective is to present the essential part of our theory in a straight-lined, and self
contained way. Many definitions and results are generalized, some results are even
improved. Most of the matrix-theoretic arguments are replaced by coordinate-free
arguments, and some proofs are simplified.
In the following chapters, we will show that the previous observations actually

generalize to arbitrary finite matrix groups G ≤ GL(n,R) in any dimension. (We will
also consider other fields than the real numbers, but for simplicity, we keep considering
this example in the present section.) It is always true that almost all points of the space
are generic in the sense that their orbit polytopes have linear symmetry groups which
are isomorphic to a specific permutation group on G (Theorem 3.5.2). We call this
permutation group the generic symmetry group of G. Moreover, the linear symmetry
groups of generic orbit polytopes are conjugated (not merely isomorphic) in GL(n,R)
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(Proposition 3.8.2). Recall that the dihedral group we considered in the second example
(which was constructed as the linear symmetry group of an orbit polytope in the first
example) has the property that its generic orbit polytopes admit no further linear
symmetries. We call a matrix group with that property generically closed. It is a
general fact that linear symmetry groups of orbit polytopes are generically closed
(Theorem 3.8.6).

Another interesting fact is that the generic symmetry group of G is uniquely deter-
mined by the character χ of G (that is, by the traces of the matrices in G). This is
where representation theory comes into play. Later on, we drop the geometric viewpoint,
and we define the generic symmetry group of any character of an abstract finite group
G to be the generic symmetry group of a corresponding representation. Among many
other structural results, we give a characterization of the generic symmetry group of a
character χ of G in terms of a formula only depending on χ (Theorem 5.1.10). This
characterization allows us to compute the linear symmetry groups (as permutation
groups) of the generic orbit polytopes of some matrix group G just by looking at the
traces of the matrices in G. On the other hand, Theorem 5.1.10 also has stunning
theoretical consequences. We use it to classify all finite groups which are isomorphic to
the affine symmetry group of an orbit polytope (Theorem 6.4.4). Thereby, we answer a
question of Babai from 1977 who classified the finite groups isomorphic to Euclidean
symmetry groups of vertex transitive polytopes (so Theorem 6.4.4 is the affine analog
to Babai’s classification) [1]. To demonstrate the power of the theory developed here, we
give a new proof of Babai’s classification (Theorem 7.2.2). Finally, in Theorem 7.3.1, we
answer an analogous question on unitary matrix groups, which is not about polytopes
anymore, but which comes up naturally in our setting.

It is worth noting that, in contrast to the previous examples, different generic orbit
polytopes of a matrix group do not necessarily have the same combinatorial type. In
[29, Theorem 5.5], Onn gave an example of two orbit polytopes of the symmetric group
S4 acting on a 5-dimensional Euclidean space, which are generic in our sense but which
have different numbers of facets. But anyway, we drop the notion of polytopes later on,
as we merely study the linear symmetries of the orbits of a group. This perspective
allows a generalization to arbitrary fields. Since there is no notion of convexity over
arbitrary fields, we shall not address questions on the combinatorial type of orbit
polytopes.

1.3 Related work

It is probably folklore that any finite group is isomorphic to the (affine or Euclidean)
symmetry group of some polytope. A result of Isaacs [16] implies that any finite group
can be realized as the symmetry group of a polytope having at most two orbits of
vertices. Moreover, Schulte and Willems have shown that any finite group can be
realized as the combinatorial symmetry group of some polytope [32]. A shorter proof
of a slightly stronger statement has been given by Doignon [6].

Orbit polytopes can be seen as the building blocks for polytopes with symmetries in
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general. They turn up for example in (integer) convex optimization problems, where
the exploitation of their symmetries can be effectively used to reduce computation
time [13, 14, 20]. Orbit polytopes have been studied by a number of authors [2, 28,
29, 31, 34]. An important subclass of orbit polytopes is the class of representation
polytopes. A representation polytope is the convex hull of a finite matrix group over
the real numbers. If the group consists of permutation matrices, the polytope is
called a permutation polytope. Representation polytopes and permutation polytopes
have received considerable attention [3, 12, 15, 27]. The determination of their linear
symmetries is called a linear preserver problem, which has been studied especially in
the case of finite reflection groups [24, 25, 26].
As already mentioned before, Babai has classified the finite groups isomorphic to

Euclidean symmetry groups of vertex transitive polytopes [1]. It is easy to see (by
choosing an appropriate inner product) that the affine symmetry group of any orbit
polytope is isomorphic to the Euclidean symmetry group of a vertex transitive polytope
(the converse does not hold). Babai’s classification is closely related to the GRR-problem.
It asks whether a finite group G admits a graphical regular representation, that is, a
simple graph Γ with vertex set G such that G is the full automorphism group of Γ
acting regularly on itself. Babai has shown directly that any finite group admitting a
GRR is isomorphic to the Euclidean symmetry group of a vertex transitive polytope
(in fact, a certain simplex). The finite groups not admitting a GRR have been classified
in [11]. It follows from this classification, and our Theorem 6.4.4 that there are exactly
ten finite groups (up to isomorphism) which are isomorphic to the affine symmetry
group of an orbit polytope, but admit no GRR. Only three of them are not isomorphic
to the Euclidean symmetry group of a vertex transitive polytope.
By dropping the notion of convexity, one might consider more generally the linear

symmetry groups (that is, the setwise stabilizers) of the orbits of finite matrix groups
G ≤ GL(n,k) over arbitrary fields k. A classical result of Isaacs states that G is the
full linear symmetry group of one of its orbits (that is, G = GL(Gx) for some x ∈ kn)
provided that k has infinite order, and G is absolutely irreducible on kn [16]. We
generalize that statement in Theorem 4.5.4. As an immediate application, we conclude
that any non-abelian finite group G embeds as a subgroup into GL(n,C) for some n
such that G = GL(Gx) for some x ∈ Cn (see Theorem 6.1.1).

1.4 Outline

The dissertation is organized as follows. The following Chapter 2 introduces some
standard techniques from algebraic geometry which will be used continuously.

In Chapter 3, we introduce all concepts mentioned in the motivational examples in a
very general context. Initially, we consider an arbitrary finite group G, and an arbitrary
field k of infinite order (later on, finite fields are considered as well). We give a precise
mathematical meaning to the phrase “almost all”, which we used in an informal way
so far. Using this terminology, we associate to any finitely generated kG-module V a
finite permutation group Sym(G, V ) on G, which only depends on the isomorphism
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type of V . We call Sym(G, V ) the generic symmetry group of V . We show that the
linear symmetry groups (when appropriately defined) of almost all G-orbits in V are
isomorphic to (a certain quotient of) Sym(G, V ), which leads to the notion of generic
points. The finite groups isomorphic to the affine symmetry groups of orbit polytopes
are characterized as those groups G admitting a generically closed RG-module, that is,
an RG-module V on which G acts faithfully satisfying | Sym(G, V )| = |G|.
In Chapter 4, we take a completely different view on generic symmetries. The

key observation is that the generic symmetries of a kG-module are precisely those
permutations on G fixing a corresponding isomorphism class of left ideals in kG. By
studying these ic-symmetries separately, we finally obtain structural results on generic
symmetry groups. Most importantly, we obtain (with some restrictions) an abstract
characterization of the generic symmetries of a module just in terms of its isomorphism
type. It implies a strong sufficient criterion for being generically closed, generalizing
the result of Isaacs mentioned before.

In Chapter 5, we restrict the attention to fields k of characteristic zero, where all kG-
modules are determined up to isomorphism by their characters. We translate the main
definitions and the main results to the character-theoretic language. Most importantly,
we associate to any character χ of G the generic symmetry group Sym(G,χ), which
is characterized by a formula in terms of two certain constituents of χ. We develop a
foundation, allowing the application of that characterization to induced characters in
several situations.
In Chapter 6, we study which finite groups admit generically closed modules over

the fields of real and complex numbers. In the complex case, this question is positively
answered for all non-abelian groups, but it remains open for most abelian groups. In
the real case, we give a complete classification. Thereby, we also classify all finite groups
isomorphic to affine symmetry groups of orbit polytopes. This answers a question
of Babai (1977) who classified the Euclidean symmetry groups of vertex transitive
polytopes.
Finally, in Chapter 7, we show that the theory on generic symmetries can be

easily extended to achieve results about orthogonal symmetries of orbits (and about
Euclidean symmetry groups of vertex transitive polytopes). In complete analogy to
the considerations of Chapter 3, we associate to any finitely generated RG-module V
(or equivalently, to its character χ) a permutation group OSym(G, V ) (OSym(G,χ),
respectively) on G which we call an orthogonal generic symmetry group. If G acts on
V by orthogonal transformations then the orthogonal symmetry groups of almost all
G-orbits in V are isomorphic to (a certain quotient of) OSym(G, V ). That is, we have
an analog of generic points also in the orthogonal setting. As an immediate application,
we give a new proof of Babai’s classification. We also consider the case of unitary
symmetries of orbits, which turns out to be particularly simple.



2 Prerequisites

In this chapter, we recall some basic facts from algebraic geometry which are needed in
the following chapters. The literature is usually divided into classical algebraic geometry
which studies zero sets of polynomials over algebraically closed fields, and into modern
algebraic geometry which is the geometry of schemes. We need some topological aspects
of algebraic geometry which are closely related to the classical theory, but we need to
consider arbitrary fields (of infinite order) instead of algebraically closed fields only.
There are textbooks covering this setting to a certain extent (such as [7]), but there are
still some basic facts which seem to be folklore but which are hard to find in literature.
We present such standard facts here with proofs included.

2.1 Zariski topology

We introduce the Zariski topology which can be defined on any finite dimensional
vector space. Let k be a field, and let V be a finite dimensional k-vector space with
basis B = {b1, . . . , bn}, say. A map f : V → k is said to be polynomial if there is a
polynomial p ∈ k[X1, . . . , Xn] such that

f(λ1b1 + · · ·+ λnbn) = p(λ1, . . . , λn) for all λi ∈ k.

This definition does not depend on the actual choice of the basis B, so polynomial
maps are defined intrinsically on V . The set of all polynomial maps V → k is denoted
by k[V ]. With respect to the usual addition and multiplication of functions, k[V ] is
a finitely generated commutative k-algebra (generated by any dual basis of V ). By
Hilbert’s basis theorem [7, 15.1 Corollary 5], k[V ] is a Noetherian ring, that is, all
ideals of k[V ] are finitely generated.

For any set of polynomial maps I ⊆ k[V ] on V , we consider the corresponding zero
set in V , that is, the set

zeros(I) = {v ∈ V : f(v) = 0 for all f ∈ I}.

It is easy to see that the ideal of k[V ] generated by I has the same zero set as I,
so we may restrict to the zero sets of ideals. Of course, we have zeros({0}) = V , and
zeros(k[V ]) = ∅. Moreover, we have

zeros(I) ∪ zeros(J) = zeros(IJ), and
⋂
k

zeros(Ik) = zeros
(∑

k

Ik

)

for all ideals I, J ⊆ k[V ], and for all (possible infinite) families of ideals (Ik)k. So the
zero sets of ideals of k[V ] form the closed subsets of a topology on V , which is called

9
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the Zariski topology on V . For any polynomial map f ∈ k[V ] there is a corresponding
principal open set Vf = {v ∈ V : f(v) 6= 0}. As the name suggests, all principal open
sets are open in the Zariski topology. Conversely, any open set of V is a union of
principal open sets (in fact a finite union, as we will see soon). So the principal open
sets form a basis of the Zariski topology.

Many properties of the Zariski topology ultimately rely on the following well known
fact.

Lemma 2.1.1. Let E be a field, let k ⊆ E be a subfield of infinite order, and let n
be any positive integer. Then the only polynomial p ∈ E[X1, . . . , Xn] vanishing on all
elements of kn is the zero polynomial p = 0.

Proof. This is proven by induction on n. For n = 1 we are done by the well known fact
that any nonzero polynomial in one indeterminate has only finitely many zeros. For
n > 1, we consider p as

p =
m∑
i=0

pi(X1, . . . , Xn−1)X i for certain pi ∈ E[X1, . . . , Xn−1],

where pm 6= 0. By the inductive hypothesis, there are elements λ1, . . . , λn−1 ∈ k such
that pm(λ1, . . . , λn−1) 6= 0. Now p(λ1, . . . , λn−1, Xn) is a nonzero polynomial in one
indeterminate, which does not vanish on some λn ∈ k.

Let V be an n-dimensional vector space over an infinite field k. As an immediate
consequence of Lemma 2.1.1, we get that any morphism k[X1, . . . , Xn] → k[V ] of
k-algebras sending the indeterminates to a dual basis of V is an isomorphism. In
particular, k[V ] is a factorial integral domain.

Lemma 2.1.2. Let V be a finite dimensional vector space over a field k carrying the
Zariski topology. Then the following holds.

(1) All finite subsets of V are closed (that is, V satisfies the T1-axiom).

(2) Any subset of V is compact.

(3) If k has infinite order then V is an irreducible topological space, that is, the
intersection of any two nonempty open subsets is nonempty again.

Here we call a topological space X compact if any open cover of X has a finite
subcover. We do not impose a compact space to satisfy the Hausdorff property.

Proof. Concerning (1), it suffices to show that all singletons are closed. This comes
down to show that for any two distinct points v, w ∈ V , there is a polynomial map
f ∈ k[V ] such that f(v) = 0 and f(w) 6= 0. There is certainly a linear form λ : V → k

such that λ(v) 6= λ(w). Then f can be chosen as the map x 7→ λ(x)− λ(v).
Concerning (2), let X ⊆ V be any subset, and let X ⊆ ⋃f∈I Vf be a covering of X

by principal open sets, where I ⊆ k[V ]. We have to show that X is already covered
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by a finite subcollection of these sets. By Hilbert’s basis theorem, there is a finite
set I0 ⊆ I such that I and I0 generate the same ideal of k[V ]. Therefore, we have
zeros(I) = zeros(I0), and hence ⋃f∈I Vf = ⋃

f∈I0 Vf . In particular, X is already covered
by the finitely many sets Vf for f ∈ I0.

Concerning (3), we may also restrict to principal open sets. Since we have Vf∩Vg = Vfg
for all f, g ∈ k[V ], the claim follows immediately by Lemma 2.1.1 (and by the subsequent
observation that k[V ] is an integral domain).

As before, let V be any finite dimensional k-vector space carrying the Zariski topology.
If E is any extension field of k, we may consider the E-vector space V E = E⊗kV which
is called the scalar extension of V to E. Since dimE(V E) = dimk(V ), the extended
space V E is finite dimensional again, and so carries a Zariski topology (over E). By
considering the canonical injective k-linear map V → V E, v 7→ 1⊗ v, we may regard V
as a subset of V E. The following lemma shows that V is actually a topological subspace
of V E in that way.

Lemma 2.1.3. Let E/k be any field extension, let V be a k-vector space carrying the
Zariski topology over k, and let V E be the scalar extension of V carrying the Zariski
topology over E. Then the natural map κ : V → V E, v 7→ 1 ⊗ v is an embedding
of topological spaces (that is, the induced map V → κ(V ) is a homeomorphism). If,
moreover, k has infinite order then κ(V ) is dense in V E.

Proof. By fixing a k-basis {b1, . . . , bn} of V , any polynomial p ∈ k[X1, . . . , Xn] can
be regarded as a polynomial map V → k. The corresponding principal open set is
denoted by Vp. We use the E-basis {1⊗ b1, . . . , 1⊗ bn} of V E to relate polynomials p ∈
E[X1, . . . , Xn] to principal open sets V E

p in the same way. Now we have Vp = κ−1(V E
p )

for all p ∈ k[X1, . . . , Xn], which already shows that any (principal) open subset of V is
also open in the subspace topology inherited by V E.

To prove the first claim, it remains to show that any (principal) open set of V E has
an open pre-image in V . Let p ∈ E[X1, . . . , Xn] be any polynomial. It can be written as

p =
m∑
i=1

λipi with λi ∈ E, and pi ∈ k[X1, . . . , Xn],

where λ1, . . . , λm are linearly independent over k. So p vanishes on an n-tuple x ∈ kn

if and only if each pi vanishes on x. Consequently, we have κ−1(V E
p ) = Vp1 ∪ · · · ∪ Vpm ,

proving that the Zariski topology on V coincides with the subspace topology inherited
by V E.
Now suppose that k is a field of infinite order. Proving that κ has a dense image

in V E means to show that any nonempty (principal) open set of V E has a nonempty
pre-image in V . This follows by Lemma 2.1.1.

It is well known that, when it comes to the Zariski topology, the product topology is
not the “right topology” on a Cartesian product of vector spaces (and other algebraic
varieties). For example, over the field C of complex numbers the product topology on
the Cartesian product C× C of one dimensional spaces is different from the Zariski
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topology on the two dimensional space C2. To keep things simple, we shall agree that a
direct sum V1 ⊕ V2 of vector spaces V1, V2 does always carry the Zariski topology. Any
open subset O ⊆ V of a vector space V will be regarded as a topological subspace of V .
In particular, if O1 ⊆ V1 and O2 ⊂ V2 are open subsets, O1 ×O2 carries the subspace
topology inherited by the Zariski topology on V1 ⊕ V2. For linear subspaces W ≤ V
there is no ambiguity since the Zariski topology on W coincides with the subspace
topology inherited by V .

2.2 Rational maps

As usual in topology, we will frequently use continuous maps to construct open sets
as pre-images of other open sets. However, when it comes to the Zariski topology,
continuous maps are not as well behaved as one would expect from elementary calculus
for example. A prominent example is the complex conjugation C → C. This map is
continuous in the Zariski topology of C, but the map C→ C, x 7→ x+ x is not. So we
see that the sum of two continuous maps does not need to be continuous anymore. To
fix that problem, we restrict to a subclass of continuous maps which is closed under
taking sums, products, etc.

Definition 2.2.1. Let O ⊆ V be an open subset of a finite dimensional vector space V .
A map f : O → k is called rational if there are polynomial maps g, h ∈ k[V ] such that
h vanishes nowhere on O, and

f(x) = g(x)
h(x) holds for all x ∈ O.

If, more generally, W is another finite dimensional vector space, a map f : O → W is
called rational if the compositions p ◦ f : O → k are rational for all p ∈ k[W ].

Note that if f : O → W is a map between an open subset O ⊆ V of a vector space
V and another vector space W then f is rational provided that the (finitely many)
maps p1 ◦ f, . . . , pm ◦ f are rational, where p1, . . . , pm ∈ k[W ] is any dual basis of W .
In particular, there is no ambiguity in the definition of rational maps O → k for open
subsets O ⊆ V .

Lemma 2.2.2. Let V,W be finite dimensional vector spaces, and let O ⊆ V be open.
Then all rational maps O → W are continuous.

Proof. Let f : O → W be a rational map. We show that any (principal) open subset of
W has an open pre-image in O. Let p ∈ k[W ] be a polynomial function. Then p ◦ f is a
rational function O → k by definition. So there are polynomial maps g, h ∈ k[V ] such
that h vanishes nowhere on O, and p(f(x)) = g(x)/h(x) holds for all x ∈ O. Therefore,
we get that f−1(Wp) = Vg ∩O is open in O.

By choosing a basis, we may always identify a finite dimensional k-vector space with
a standard space kn of appropriate dimension n. If O ⊆ kn is any open subset, the
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rational maps O → km are precisely those maps of the form

x 7→
(
g1(x)
h1(x) , . . . ,

gm(x)
hm(x)

)
,

where gi, hi ∈ k[X1, . . . , Xn] are polynomials such that the hi vanish nowhere on O.
With that argument in mind, it is utterly routine to prove the following properties of
rational maps.

Lemma 2.2.3. Let V,W and V1, . . . , Vn be finite dimensional vector spaces, and let
O ⊆ V and Oi ⊆ Vi be open subsets for all i.

(1) All constant maps O → W are rational.

(2) All multilinear maps V1 × · · · × Vn → W are rational.

(3) Compositions, sums, differences, and dilations of rational maps are rational.

(4) Let f : O → W and g : O → k be rational. Then g · f : O → W is rational.
Moreover, if g vanishes nowhere on O then 1

g
· f : O → W is rational.

(5) If f : O1 × · · · × On → W and gi : O → Oi are rational maps for all i then the
composed map O → W , x 7→ f(g1(x), . . . , gn(x)) is rational.

We finish this chapter with a gluing property of rational maps. Recall that if X is a
topological space covered by open sets X = ⋃

iOi, and if fi : Oi → Y are continuous
maps into a space Y such that any two of them agree on the intersection of their
domains, there is a unique continuous map f : X → Y extending all fi. This elementary
fact, which appears in similar fashions in many geometric theories (including algebraic
geometry and differential geometry), is called gluing of maps. In the case of rational
maps between vector spaces over infinite fields, we have an even stronger property. It is
ultimately due to the fact that the polynomial functions on a finite dimensional vector
space form a factorial domain.

Lemma 2.2.4. Let V,W be finite dimensional vector spaces over an infinite field k,
and let O1, . . . , On ⊆ V be nonempty open subsets. If fi : Oi → W are rational maps
which agree on a nonempty open subset of ⋂ni=1 Oi then there is a unique rational map
f : ⋃ni=1 Oi → W extending all fi.

Proof. By choosing a basis of W , and by considering each coordinate separately, we can
restrict to the one dimensional case W = k. For all i, let gi, hi ∈ k[V ] be polynomial
maps such that hi vanishes nowhere on Oi, and fi(x) = gi(x)/hi(x) holds for all x ∈ Oi.
Since k[V ] is a Noetherian domain, we can assume without loss of generality that gi
and hi are coprime for all i. For any 1 ≤ i, j ≤ n, we consider the set

Ai,j = {x ∈ V : hi(x)gj(x) = hj(x)gi(x)}.
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This set is closed in V by definition, and by the assumption, it has a nonempty interior
in V . Since V is an irreducible topological space by Lemma 2.1.2, we conclude Ai,j = V ,
whence we get an equation higj = hjgi in k[V ]. Since k[V ] is a factorial domain, and
since the elements gi, hi have been chosen to be coprime for all i, we get that each
pair (gi, hi) equals (gj, hj) up to a nonzero scalar factor. Since i, j were arbitrarily
chosen, we see that the polynomial map h1 vanishes nowhere on O = ⋃n

i=1 Oi, and that
O → W , x 7→ g1(x)/h1(x) is a (necessarily unique) rational extension of all fi.
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In this chapter, we develop a mathematical framework capable of handling the questions
raised in the introduction. In the motivational examples, we have considered finite
matrix groups G ≤ GL(n,R) acting on the Euclidean space Rn. From now on, we aim
for a greater generality. We consider finite dimensional vector spaces V over arbitrary
fields k. Instead of matrix groups, we consider abstract finite groups G acting linearly on
V in terms of representations, that is, by homomorphisms G→ GL(V ). It is convenient
to use the module theoretic language here. Recall that if k is an arbitrary field, and if G
is any finite group then there is a finite dimensional (unital, associative) k-algebra kG
which is called a group algebra. The elements of kG are the formal linear combinations∑

g∈G
λgg, λg ∈ k,

of the elements of G. So G is a basis of kG as a k-vector space, and we have dimk kG =
|G|. The multiplication on kG is uniquely given as the bilinear extension of the
multiplication of the group G. Although group algebras can be defined more generally
for coefficient rings which are not fields and for infinite groups, the term kG will
throughout be reserved for the group algebra corresponding to a field k and to a finite
group G.
If V is a k-vector space then any representation G → GL(V ) of groups extends

uniquely to a homomorphism kG→ End(V ) of k-algebras, whence V can be regarded
as a left module over kG. In that way, the representations of G on k-vector spaces are
in one-to-one correspondence with the left modules of kG. As usual, a representation
D : G→ GL(V ) is called faithful, and we say that G acts faithfully on the kG-module
V , if D is an injective map (or equivalently, if the only element g ∈ G satisfying gv = v
for all v ∈ V is the identity).
Since G is finite, a left kG-module V is finitely generated if and only if V is finite

dimensional over k. The module V is called cyclic if V is generated by one element
over kG (that is, if V = kGv for some v ∈ V ). (There is also a correspondence between
the G-representations over k and the right modules of kG, but we have no reason to
consider modules of different type.) From now on, a module over kG will be always
understood to be a left module. For a comprehensive view on the representation theory
of finite groups, we refer to [17] and to [4].
For any set X the symmetric group (that is, the group of all permutations) on X

will be denoted by Sym(X). If X ⊆ V is a subset of some k-vector space V , we define
the linear symmetry group GL(X) ⊆ Sym(X) of X as the group of all permutations on
X arising as restrictions of linear maps V → V . This definition agrees with the usual
notion of the general linear groups of vector spaces. In particular, if X ≤ V is a linear
subspace then GL(X) is just the group of all invertible linear maps X → X.

15
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As already illustrated in the introduction, we are mainly interested in the linear
symmetry groups GL(Gv) of the orbits of a finite group G with respect to the elements
v ∈ V of a finitely generated kG-module V . The main object of our investigations is
the generic symmetry group which we associate to any finitely generated kG-module V .
This group, which we denote by Sym(G, V ), is a certain subgroup of Sym(G) only
depending on the isomorphism type of V . As Sym(G, V ) will always contain the left
multiplications by all elements of G, we will regard G as a subgroup of Sym(G, V ). The
name “generic symmetry group” comes from the fact that (assuming k is infinite and
G acts faithfully on V for simplicity) Sym(G, V ) is isomorphic to the linear symmetry
groups GL(Gv) for “almost all” v ∈ V (Theorem 3.5.2). This result leads to the notion
of generic points.
We also introduce the notion of generically closed kG-modules which is a central

aspect of our theory. A finitely generated kG-module is called generically closed if G
acts faithfully on V and if Sym(G, V ) = G (that is, if the generic symmetry group of V
is as small as possible). In Theorem 3.8.5 and in Proposition 3.8.8, we give two sufficient
criteria for recognizing generically closed modules (Proposition 3.8.8 is essentially a
reformulation of a classical result of Isaacs).
Finally, we show how orbit polytopes and their affine symmetry groups fit into our

theory. In Theorem 3.9.6, we characterize the affine symmetry groups of orbit polytopes
as those finite groups G for which generically closed RG-modules exist. This is the
starting point of our classification of all affine symmetry groups of orbit polytopes.

Most results of the present chapter have already appeared in [9] and [10] in a similar
fashion. However, the focus was originally on cyclic RG-modules (as those are most
closely related to the geometric questions raised in the introduction), and later on
cyclic kG-modules over infinite fields k. In the following, we aim for a maximal degree
of generality. We impose restrictions on k and V only when necessary, and we give new
examples illustrating the advantages of such restrictions in some cases. Moreover, many
proofs have been replaced by coordinate free arguments using the algebraic geometric
concepts of Chapter 2.

3.1 Orbit symmetries

In the following, we consider an arbitrary field k, a finite group G, and a kG-module V .
Our objective is the study of the linear symmetry groups of the orbits of G in V . As
already illustrated in the motivational examples, these groups GL(Gv) can be quite
different for distinct points v ∈ V when regarded as groups of linear operators. In order
to make linear symmetry groups comparable, we regard them as permutation groups
on the group G itself.

Definition 3.1.1. Let V be a kG-module. A permutation π ∈ Sym(G) is called an
orbit symmetry of v ∈ V if there is a linear symmetry α ∈ GL(Gv) such that

α(gv) = π(g)v for all g ∈ G.
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This unique map α is called the realization of π as an orbit symmetry of v. The set of
all orbit symmetries of v is denoted by Sym(G, v).

It is routine to check that Sym(G, v) is a subgroup of the symmetric group Sym(G)
for all v ∈ V , and that the map Dv : Sym(G, v)→ GL(Gv) sending an orbit symmetry
to its realization is a homomorphism. In Proposition 3.1.4, we show that Dv is always
surjective but, as already observed in the second motivational example, it needs
not to be injective. We will see that the kernel of Dv depends on the stabilizer
Gv = {g ∈ G : gv = v} of v in G.

Definition 3.1.2. A permutation π ∈ Sym(G) is called an irrelevant orbit symmetry
of some point v ∈ V if π fixes all left cosets of Gv in G as sets. The set of all irrelevant
orbit symmetries of v is denoted by Iv(G, v).

In Proposition 3.1.4, we show that Iv(G, v) = Ker(Dv), so Iv(G, v) is a normal
subgroup of the orbit symmetry group Sym(G, v). It is evident from the definition that
Iv(G, v) is isomorphic to a power of a full symmetric group (it is straightforward to
show that Iv(G, v) ∼= Sym(Gv)|G:Gv |).
Before proving the precise relations between the groups Iv(G, v), Sym(G, v), and

GL(Gv), we need a technical lemma on permutation groups. Recall that a homomor-
phism ϕ : G→ H of groups is called a split epimorphism if ϕ has a right inverse, that
is, if there is a homomorphism ψ : H → G such that ϕ ◦ ψ = idH . Recognizing split
epimorphisms is important as they give rise to semidirect product decompositions.
More precisely, if ϕ : G→ H is a split epimorphism of groups, and if K = Ker(ϕ) is
the kernel of ϕ then the image of any right inverse of ϕ is a complement of K in G.
Hence, G “splits” into a semidirect product G ∼= K oH. For the details, we refer to
[30, Ch. 7]. For a comprehensive view on permutation groups, we refer to [5].

Lemma 3.1.3. Let G be a group acting transitively on a set X, let x ∈ X be some
fixed element, and let P ≤ Sym(G) be the group of all permutations on G which map
all left cosets of Gx to left cosets of Gx again. Then P acts on X by

P ×X → X, (π, gx) 7→ π(g)x,

and the corresponding homomorphism P → Sym(X) is a split epimorphism.

Proof. The given action of P on X is well defined since gx = hx holds if and only if g
and h lie in the same left coset of Gx, and since all elements of P preserve these left
cosets. Since G acts transitively on X, there is a map f : X → G such that f(y)x = y
for all y ∈ X. It is routine to check that Sym(X) acts on G by

Sym(X)×G→ G, (π, g) 7→ f(π(gx))f(gx)−1g,

and that this action permutes the left cosets of Gx in G. So the action induces a
morphism Sym(X) → P , which is easily seen to be a right inverse of the given
morphism P → Sym(X).
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Proposition 3.1.4. Let V be a kG-module, and let v ∈ V be arbitrary. Then the
homomorphism Dv : Sym(G, v)→ GL(Gv) sending an orbit symmetry to its realization
is a split epimorphism with Ker(Dv) = Iv(G, v).

Proof. Let P ≤ Sym(G) be the group of all permutations on G permuting the left cosets
of Gv in G. Then by Lemma 3.1.3, there is a split epimorphism ϕ : P → Sym(Gv) with
ϕ(π)(gv) = π(g)v for all π ∈ P and all g ∈ G. By definition, we have Ker(ϕ) = Iv(G, v).
We claim that Sym(G, v) = ϕ−1(GL(Gv)).

Let π ∈ Sym(G, v) be arbitrary, and let g, h ∈ G lie in the same left coset of Gv.
Then we have gv = hv and hence π(g)v = Dv(gv) = Dv(hv) = π(h)v. So π(g) and π(h)
again lie in the same left coset of Gv, which shows Sym(G, v) ⊆ P . Since Dv(π) = ϕ(π)
for all π ∈ Sym(G, v), we get Sym(G, v) ⊆ ϕ−1(GL(Gv)). Conversely, if π ∈ P satisfies
ϕ(π) ∈ GL(Gv) then, by definition, π is an orbit symmetry of v realized by ϕ(π). So
ϕ−1(GL(Gv)) ⊆ Sym(G, v).

Now since Sym(G, v) = ϕ−1(GL(Gv)), and since Dv agrees with ϕ on Sym(G, v), it
follows immediately that Ker(Dv) = Ker(ϕ) = Iv(G, v). Moreover, any right inverse of
ϕ restricts to a right inverse of Dv, proving that Dv is a split epimorphism.

Proposition 3.1.4 shows that an orbit symmetry group Sym(G, v) is a semidirect
product Sym(G, v) ∼= Iv(G, v)oGL(Gv). So roughly speaking, we see that the linear
symmetry group GL(Gv) of a G-orbit can always be restored from the corresponding
orbit symmetry group by passing over to the quotient Sym(G, v)/ Iv(G, v).
Besides the irrelevant orbit symmetries, there is another class of permutations on

G which are always orbit symmetries. For any element g ∈ G, the left multiplication
ιg : h 7→ gh is a permutation on G, and the map G → Sym(G) sending g to ιg is an
injective homomorphism usually called the (left) Cayley embedding. By means of that
embedding, we will always regard G as a subgroup of Sym(G).

Lemma 3.1.5. Let V be a kG-module and let v ∈ V be arbitrary. Then Sym(G, v)
contains the left multiplications by all element of G. That is, G ≤ Sym(G, v).

Proof. For any element g ∈ G, the left multiplication by g can be regarded both as a
permutation ιg on G, and as a linear map α ∈ GL(V ). Evidently, α fixes any orbit Gv,
and the restriction α|Gv is a realization of ιg as an orbit symmetry of v.

Example 3.1.6. We reconsider the first motivational example from the introduction.
Let V = R2 be the Euclidean plane, and let G = 〈g〉 be a cyclic group of any order n
acting on V by the rotation representation D : G→ GL(2,R) given by

D
(
gk
)

=
(

cos 2kπ
n
− sin 2kπ

n

sin 2kπ
n

cos 2kπ
n

)
for all k ∈ Z.

Let σ ∈ Sym(G) be the permutation sending each element of G to its inverse. We claim
that σ is an orbit symmetry of any nonzero point v ∈ V .
Let S ∈ GL(V ) be the unique reflection fixing v, and let h ∈ G be arbitrary. Since

D(h) is a rotation, D(h)S must be a reflection. So D(h)SD(h)S = (D(h)S)2 is the
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identity, and hence SD(h)S = D(h)−1 = D(σ(h)). Finally, we get

σ(h)v = SD(h)Sv = S(hv),

which proves σ ∈ Sym(G, v).
It can be easily shown by geometric arguments (as done in the introduction) that

GL(Gv) is the dihedral group Dn of order 2n. Since v has a trivial stabilizer in G,
the orbit symmetry group Sym(G, v) is isomorphic to GL(Gv), and Sym(G, v) must
actually be generated by ιg and σ. Later, in Example 5.1.9, we come to the same
conclusion by a very simple application of our theory.

We next show that orbit symmetries are compatible with isomorphisms of modules.
Recall that for any point v ∈ V , there is a unique smallest (cyclic) kG-submodule
kGv of V containing v. As a k-vector space, kGv is generated by the orbit Gv. In
the following, we identify any linear symmetry α ∈ GL(Gv) with its unique linear
extension to kGv.

Definition 3.1.7. Let V be a kG-module, and let π ∈ Sym(G) be a permutation.
Then V (π) denotes the subset of points of V having π as an orbit symmetry. That is,

V (π) = {v ∈ V : π ∈ Sym(G, v)}.

Lemma 3.1.8. Let ϕ : V → W be an isomorphism of kG-modules, and let v ∈ V ,
π ∈ Sym(G) be arbitrary. Then we have

(1) Sym(G,ϕ(v)) = Sym(G, v), and

(2) ϕ(V (π)) = W (π).

Proof. The isomorphism ϕ restricts to an isomorphism ψ : kGv → kGϕ(v). It is easily
verified that a permutation π ∈ Sym(G) is an orbit symmetry of v realized by α ∈
GL(Gv) if and only if π is an orbit symmetry of ϕ(v) realized by ψαψ−1 ∈ GL(Gϕ(v)).
Both statements now follow immediately from the definitions.

3.2 Generic symmetries

We come to the definition of generic symmetries of a finitely generated kG-module
V over an infinite field k. Recall that we observed in the motivational examples
that “almost all” points of a module have the same orbit symmetries, but there
may be exceptional points where the situation is different. Of course we always have
Sym(G, 0) = Sym(G), so in most cases the zero point of V will have more orbit
symmetries than the other points of V . But moreover, there may even be points v ∈ V
such that Sym(G, v) is strictly larger than the orbit symmetry groups of the majority of
points, although the orbit Gv is a generating set of V of the same size as G. In order to
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turn these intuitive observations into precise statements, we need a mathematical notion
of the term “almost all”. For that purpose, we restrict to fields of infinite order (for
now), and we equip any finitely generated kG-module V with the Zariski topology (see
Section 2.1). In that topology, the nonempty open sets are very large in the sense that
the intersection of finitely many nonempty open sets is nonempty again (Lemma 2.1.2).

Definition 3.2.1. Let P be any property of elements of some finite dimensional vector
space V over an infinite field k. We say that almost all elements of V satisfy P if the
set of elements of V satisfying P has a nonempty interior in V (with respect to the
Zariski topology).

The most important properties of the “almost all” quantifier to keep in mind are
listed in the following lemma. We will frequently use them without further reference.

Lemma 3.2.2. Let V be a finite dimensional vector space over an infinite field, and
let P and Q be properties of points of V .

(1) If all but finitely many points of V satisfy P then almost all points of V satisfy
P .

(2) If almost all points of V satisfy P then there is a generating set of V , each point
of which satisfies P .

(3) If almost all points of V satisfy P , and almost all points of V satisfy Q then
almost all points of V satisfy both P and Q at the same time.

Proof. All these statements are consequences of Lemma 2.1.2. The first statement
follows from the fact that finite sets are always closed in the Zariski topology. Concerning
the second statement, let O ⊆ V be a nonempty open set of points satisfying P . As
any linear subspace of V , the linear span W = 〈O〉 is closed in V . Now the open sets
O and V \W intersect trivially, which forces V \W = ∅, and hence V = W . The third
statement also follows easily from the fact that the intersection of any two nonempty
open sets is nonempty again.

We see that, roughly speaking, “almost all” can be regarded as a quantifier sitting
in-between the universal quantifier and the existential quantifier. With that terminology,
the generic symmetries of a module can be defined in a very natural way.

Definition 3.2.3. Let V be a finitely generated kG-module, where k is an infinite
field. A permutation π ∈ Sym(G) is a generic symmetry of V if π is an orbit symmetry
of almost all elements of V . The set of all generic symmetries of V is denoted by
Sym(G, V ).

Note that, although this definition seems natural, its justification will only be given
later (in Theorem 3.5.2) when we show that Sym(G, V ) is the orbit symmetry group
of almost all points of a module V . Later on, we extend the definition of generic
symmetries to cover modules over finite fields as well (see Definition 3.4.1). At that
point it will be obvious that all of the following results (unless they are stated explicitly
for infinite fields) actually hold for arbitrary fields.
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Lemma 3.2.4. Let V be a finitely generated kG-module. Then Sym(G, V ) is a subgroup
of Sym(G) containing all left multiplications by elements of G. That is, we have
G ≤ Sym(G, V ).

Proof. Of course Sym(G, V ) is nonempty, as it contains the identity permutation. Let
π, σ ∈ Sym(G, V ). We have π ∈ Sym(G, v) for almost all v ∈ V and σ ∈ Sym(G, v) for
almost all v ∈ V . It follows π, σ ∈ Sym(G, v), and hence π−1σ ∈ Sym(G, v) for almost
all v ∈ V . This proves π−1σ ∈ Sym(G, V ), so Sym(G, V ) is a subgroup of Sym(G).
Since by Lemma 3.1.5, any left multiplication ιg is an orbit symmetry of all points of
V , ιg is a generic symmetry of V in particular.

The next lemma shows that Sym(G, V ) only depends on the isomorphism type of the
kG-module V . This fact is central for our theory, as it opens the door for applications
of representation theory.

Lemma 3.2.5. Let V and W be finitely generated kG-modules. If V ∼= W then
Sym(G, V ) = Sym(G,W ).

Proof. Let ϕ : V → W be an isomorphism of kG-modules, and let π ∈ Sym(G). By
Lemma 3.1.8, we have ϕ(V (π)) = W (π). As any isomorphism of vector spaces, ϕ is
also a homeomorphism with respect to the Zariski topologies on V and W . So V (π)
has nonempty interior in V if and only W (π) has nonempty interior in W . Hence, we
have π ∈ Sym(G, V ) if and only if π ∈ Sym(G,W ).

We go on by studying a second class of permutations which are generic symmetries
for trivial reasons. Let V be a kG-module, where G acts on V by the representation
D : G→ GL(V ). The kernel Ker(V ) ⊆ G of V is defined as the kernel of D. That is,
we have

Ker(V ) = Ker(D) = {g ∈ G : gv = v for all v ∈ V }.

We see that Ker(V ) is a normal subgroup of G which can also be described as the
intersection of the stabilizers Gv for all v ∈ V . We have seen in (the proof of) Proposi-
tion 3.1.4 that all permutations fixing the left cosets of a stabilizer Gv are (irrelevant)
orbit symmetries of the point v ∈ V . Consequently, a permutation fixing the cosets of
Ker(V ) in G must actually be a generic symmetry of V .

Definition 3.2.6. A permutation π ∈ Sym(G) is an irrelevant generic symmetry of
a finitely generated kG-module V if π fixes all cosets of Ker(V ) in G. The set of all
irrelevant generic symmetries of V is denoted by Iv(G, V ).

By the previous discussion, it is evident that Iv(G, V ) is a subgroup of Sym(G, V ) (in
fact a normal subgroup, as we will show soon), consisting of those permutations which
are irrelevant orbit symmetries for all v ∈ V . In analogy to the groups of irrelevant orbit
symmetries, we see that a group of irrelevant generic symmetries is also isomorphic to
the power of a full symmetric group. In fact, we have an isomorphism

Iv(G, V ) ∼= Sym(Ker(V ))|G:Ker(V )|.
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Note that if a kG-module V has the kernel K in G then V can also be regarded
as a k[G/K]-module in a natural way. In particular, we may consider the generic
symmetry group Sym(G/K, V ). The next lemma shows that Sym(G/K, V ) embeds
into Sym(G, V ) as a complement of Iv(G, V ), whence we get a semidirect product
decomposition

Sym(G, V ) = Iv(G, V )o Sym(G/K, V ).

So, roughly speaking, we may regard Sym(G/K, V ) as the group of “relevant” generic
symmetries on V .
Proposition 3.2.7. Let V be a finitely generated kG-module with kernel K. Then
there is a split epimorphism p : Sym(G, V ) → Sym(G/K, V ) with Ker(p) = Iv(G, V )
satisfying p(π)(gK) = π(g)K for all π ∈ Sym(G, V ) and g ∈ G.

Proof. Let P ≤ Sym(G) be the subgroup of all elements permuting the cosets of K
in G. By Lemma 3.1.3, there is a split epimorphism ϕ : P → Sym(G/K) such that
ϕ(π)(gK) = π(g)K for all π ∈ Sym(G, V ) and g ∈ G. By definition, we have Ker(ϕ) =
Iv(G, V ). Analogously to the proof of Proposition 3.1.4, we claim that Sym(G, V ) =
ϕ−1(Sym(G/K, V )). Afterwards, it follows immediately that the restriction of ϕ to
Sym(G, V ) has the desired properties.
We begin by showing that Sym(G, V ) is a subgroup of P . If π ∈ Sym(G, V ) then

there is a generating set E ⊆ V over k such that π is an orbit symmetry of all v ∈ E. By
(the proof of) Proposition 3.1.4, π fixes the left cosets of the stabilizers Gv for all v ∈ E.
Therefore, π fixes the left cosets of K = ⋂

v∈E Gv in particular. So Sym(G, V ) ≤ P .
Let v ∈ V and let π ∈ P be arbitrary. To finish the proof, we show that π is an orbit

symmetry of v if and only if ϕ(π) is an orbit symmetry of v. By definition, ϕ(π) ∈
Sym(G/K, v) holds if and only if there is a map α ∈ GL(Gv) such that α((gK)v) =
ϕ(π)(gK)v for all g ∈ G. Since (gK)v = gv and since ϕ(π)(gK)v = (π(g)K)v = π(g)v,
we see that ϕ(π) ∈ Sym(G/K, v) is equivalent to π ∈ Sym(G, v). Since π ∈ P and
v ∈ V were arbitrary, we conclude Sym(G, V ) = ϕ−1(Sym(G/K, V )).

It is natural to ask why we care about irrelevant symmetries at all. Of course by
Proposition 3.2.7, we may always pass over to the quotient Sym(G, V )/ Iv(G, V ) ∼=
Sym(G/K, V ), which may seem to be a better candidate for a symmetry group associ-
ated to V in comparison to Sym(G, V ). The answer is that the actual definition of the
generic symmetry group is compatible with direct sums of modules.
Lemma 3.2.8. Let V = V1 ⊕ · · · ⊕ Vn be a direct sum of kG-modules. Then we have

Sym(G, V1) ∩ · · · ∩ Sym(G, Vn) ⊆ Sym(G, V ), and
Iv(G, V1) ∩ · · · ∩ Iv(G, Vn) = Iv(G, V ).

Proof. Let π ∈ Sym(G, Vi) for all i. Then there are nonempty open sets Oi ⊆ Vi(π) by
definition. We consider the set O = O1 × · · · × On which is nonempty and open in V .
For any v = (vi)i ∈ O it is easy to see that the restriction of the map

Dv1(π)⊕ · · · ⊕Dvn(π) ∈ GL(kGv1 ⊕ · · · ⊕ kGvn)
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to kGv is a realization of π as an orbit symmetry of v. Hence, we have O ⊆ V (π),
which shows that π is a generic symmetry of V . This proves the first assertion.

Concerning the second assertion, note that Ker(V ) = Ker(V1) ∩ · · · ∩ Ker(Vn). By
that equation, it is evident that any permutation π ∈ Sym(G) fixing the cosets of all
Ker(Vi) also fixes the cosets of Ker(V ). Conversely, for each i, we have that any coset
of Ker(Vi) is a disjoint union of cosets of Ker(V ). So any permutation on G fixing the
cosets of Ker(V ) also fixes the cosets of Ker(Vi).

Note that, in the situation of Lemma 3.2.8, even if G acts faithfully on V it is
perfectly possible that a generic symmetry π ∈ ⋂i Sym(G, Vi) is irrelevant with respect
to some summands Vi. In that way, irrelevant symmetries may actually give rise to
relevant symmetries. Although it can be very fruitful to consider such direct sum
decompositions to get generic symmetries of V as common generic symmetries of the
summands Vi, there is no equality Sym(G, V ) = ⋂

i Sym(G, Vi) in general. In fact, it
is a main objective of Chapter 4 to find direct sum decompositions of V , where this
equality holds.
At this point, we have identified two subgroups of an arbitrary generic symmetry

group Sym(G, V ), namely the left regular subgroup G, and the group of irrelevant
generic symmetries Iv(G, V ). Since the latter subgroup is even normal, the product
G · Iv(G, V ) is a subgroup of Sym(G, V ) as well (the intersection G∩ Iv(G, V ) consists
of all left multiplications by elements of Ker(V )). For reasons explained later, we are
particularly interested in the case where Sym(G, V ) = G · Iv(G, V ) holds.

Definition 3.2.9. Let V be a finitely generated kG-module. We call V weakly generi-
cally closed if Sym(G, V ) = G · Iv(G, V ) holds. If moreover, Iv(G, V ) = 1 (that is, if G
acts faithfully on V ) then V is called generically closed.

Remark 3.2.10. In [10], we have defined V to be generically closed if Sym(G, V ) = G,
which is a little bit weaker in comparison to the present definition. More precisely,
a finitely generated kG-module V satisfies Sym(G, V ) = G and Iv(G, V ) > 1 at the
same time if and only if G is cyclic of order two, acting trivially on V . The present
definition is chosen to exclude this pathological example.

Lemma 3.2.11. Let V be a finitely generated kG-module with K = Ker(V ). Then the
following statements are equivalent.

(1) V is a weakly generically closed kG-module.

(2) V is a generically closed k[G/K]-module.

(3) For all π ∈ Sym(G, V ) and all g ∈ G, we have π(gK) = π(1)gK.

Proof. We first prove (1) ⇐⇒ (2). There is a natural homomorphism G/K →
Sym(G, V )/ Iv(G, V ) which is surjective if and only if V is weakly generically closed.
There is also a natural morphism G/K → Sym(G/K, V ) which is surjective if and only
if V is generically closed as a k[G/K]-module (note that Iv(G/K, V ) = 1 since G/K
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acts faithfully on V ). The equivalence follows by applying the natural isomorphism
p : Sym(G, V )/ Iv(G, V )→ Sym(G/K, V ) given by Proposition 3.2.7.
Next, we prove (1) ⇐⇒ (3). If V is weakly generically closed then any generic

symmetry π ∈ Sym(G, V ) is a product π = ιg ◦ σ of a left multiplication ιg, and an
irrelevant generic symmetry σ ∈ Iv(G, V ). Since σ(1) ∈ K, and since left multiplications
by elements of K are irrelevant, we may assume σ(1) = 1, whence π(1) = g. Now if
C ⊆ G is any coset of K then π(C) = gσ(C) = π(1)C. Conversely, if π ∈ Sym(G) is
any permutation satisfying π(C) = π(1)C for all cosets C of K then σ = ιπ(1)−1 ◦ π is
an irrelevant generic symmetry of V , whence π = ιπ(1) ◦ σ ∈ G · Iv(G, V ).

There is another decomposition of Sym(G, V ) into a product of subgroups which
we shall use frequently. It is a direct consequence of the following well known lemma
which is one of many variations of the Frattini argument. As before, if a group G
acts on a set X then the stabilizer of G at some point x ∈ X will be denoted by Gx.
In particular, if V is a finitely generated kG-module then Sym(G, V )1 denotes the
subgroup of Sym(G, V ) fixing the identity of G.

Lemma 3.2.12 (Frattini argument). Let G be a group acting on a set X, and let
H ≤ G be a transitive subgroup. Then for any element x ∈ X, we have G = H ·Gx.

Proof. Let g ∈ G be arbitrary. Since H acts transitively on X, there is some h ∈ H
such that gx = hx. Then h−1g ∈ Gx, and g = h(h−1g) ∈ H ·Gx.

Corollary 3.2.13. Let V be a finitely generated kG-module. The generic symmetry
group Sym(G, V ) decomposes as

Sym(G, V ) = G · Sym(G, V )1, where G ∩ Sym(G, V )1 = 1.

Because of Corollary 3.2.13, many questions on a generic symmetry group Sym(G, V )
can be reduced to questions on the stabilizer Sym(G, V )1. For example, if G acts
faithfully on a finitely generated kG-module V then V is generically closed if and only
if Sym(G, V )1 is trivial. We will use Corollary 3.2.13 without further reference.

3.3 Ample points

The next goal is to show that the generic symmetry group Sym(G, V ) of any finitely
generated kG-module V is the orbit symmetry group of almost all points of V (which we
called “generic points” in the introductory examples). However, it is not trivial to show
that such points even exist. To begin with, we study the orbit symmetries of certain
elements of V which are well accessible. Thereby, we get important characterizations
of generic symmetries (Theorem 3.3.4).

Definition 3.3.1. Let V be a finitely generated kG-module over an infinite field k,
and let n be the maximal dimension (over k) of a cyclic submodule of V . We call v ∈ V
an ample point of V , if dim(kGv) = n. The set of all ample points of V is denoted by
Amp(V ).
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Note that, although the definition of ample points seems valid for finite fields as
well, there are good reasons for choosing a different definition in that setting. This is
explained in Section 3.4.

To prove the existence of generic points, we pursue the following strategy. We begin
by showing that almost all points of V are ample, and that Sym(G, V ) is contained
in the orbit symmetry group of any ample point. Afterwards, it turns out that the
ample points of V having non-generic orbit symmetries form a proper closed subset of
V . This shows that all remaining ample points only have generic orbit symmetries.

In the following we will frequently use the well known fact from linear algebra that
elements v1, . . . , vn ∈ V are linearly independent if and only if there is an alternating
form α : V n → k such that α(v1, . . . , vn) 6= 0. Since alternating forms are rational
functions, they can be used for the construction of open subsets of V .

Lemma 3.3.2. Let V be a finitely generated kG-module over an infinite field k. Then
Amp(V ) is a nonempty open subset of V . In particular, almost all points of V are
ample.

Proof. Let n be the maximal dimension of a cyclic kG-submodule of V . An element
v ∈ V is ample if and only if

α(g1v, g2v, . . . gnv) 6= 0

for some alternating form α : V n → k and some choice of g1, . . . , gn ∈ G. So Amp(V )
is the union of nonzero sets of rational functions, hence open in V . Of course Amp(V )
is nonempty by definition.

Let V be a finitely generated kG-module, and let π ∈ Sym(G) be any permutation.
Recall that V (π) denotes the subset of points of V for which π is an orbit symmetry. To
each point v ∈ V (π) we can assign the unique realization Dv(π) ∈ GL(kGv) of π as an
orbit symmetry of v. By extending these realizations (non-uniquely) to endomorphisms
of V , we get a map ϕ : V (π)→ End(V ). In general, it is too much to ask for ϕ being
(the restriction of) a rational map. However, at least we may construct ϕ in such a way
that it agrees with a rational map in a neighborhood of an arbitrarily chosen point.
This is the objective of the following lemma.

To construct a rational map into End(V ), we will use the well known canonical
isomorphism V ∗ ⊗k V → End(V ), where V ∗ = Hom(V,k) denotes the dual space of V .
This isomorphism is given on the pure tensors by

λ⊗ v 7→ (w 7→ λ(w)v).

Since any isomorphism of vector spaces is a rational map, we may construct ϕ as a
map with codomain V ∗ ⊗k V instead of End(V ).

Lemma 3.3.3. Let V be a finitely generated kG-module, and let π ∈ Sym(G) be any
permutation. There is an open cover Amp(V ) = O1 ∪ · · · ∪ On and rational maps
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ϕi : Oi → End(V ) such that

Oi ∩ V (π) = {v ∈ Oi : ϕi(v)gv = π(g)v for all g ∈ G}.

In particular, Oi ∩ V (π) is closed in Oi, and Amp(V ) ∩ V (π) is closed in Amp(V ).
Proof. For any v ∈ Amp(V ) we construct an open neighborhood O ⊆ Amp(V ) and a
rational map ϕ : O → End(V ) such that

O ∩ V (π) = {x ∈ O : ϕ(x)gx = π(g)x for all g ∈ G}.

This will show in particular that O ∩ V (π) is closed in O. The claim then follows since
Amp(V ) is a compact topological space (see Lemma 2.1.2), and since being closed can
be verified locally.
Let v ∈ Amp(V ) be arbitrary, and let n = dim(kGv). We pick g1, . . . , gn ∈ G and

an alternating form α : V n → k such that α(g1v, . . . , gnv) 6= 0. This form defines an
open neighborhood O ⊆ Amp(V ) of v by

O = {x ∈ V : α(g1x, . . . , gnx) 6= 0}.

For any 1 ≤ i ≤ n, we define maps λi : O → V ∗ by

λi(x) : y 7→ α(g1x, . . . , gi−1x, y, gi+1x, . . . , gnx)
α(g1x, . . . , gnx) .

These maps are constructed from multilinear maps in compliance with Lemma 2.2.3,
so all λi are rational maps. By definition, they satisfy

λi(x)(gjx) =

1 if i = j

0 if i 6= j
.

Finally, we define the rational map

ϕ : O → V ∗ ⊗k V, x 7→
n∑
i=1

λi(x)⊗ π(gi)x.

With respect to the canonical identification of V ∗ ⊗k V and End(V ), one easily checks
that ϕ(x)gix = π(gi)x for all 1 ≤ i ≤ n. Since g1x, . . . , gnx is a k-basis of kGx for all
x ∈ O, we have ϕ(x)gx = π(g)x for all g ∈ G if and only if x ∈ V (π).

Lemma 3.3.3 has some important consequences. To begin with, we get new charac-
terizations of generic symmetries.
Theorem 3.3.4. Let V be a finitely generated kG-module over an infinite field k,
and let π ∈ Sym(G) be any permutation. The following statements are equivalent
characterizations of π being a generic symmetry of V .

(1) Amp(V ) ⊆ V (π),
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(2) V (π) has nonempty interior in V , and

(3) V (π) is dense in V .

Proof. Since (2) is the definition of a generic symmetry, we only have to show the
equivalence of these statements. The implication (1) =⇒ (2) is clear by Lemma 3.3.2,
and (2) =⇒ (3) holds since V is an irreducible topological space (Lemma 2.1.2). It
remains to show (3) =⇒ (1). Since V (π) is dense in V , and since Amp(V ) is open in
V , we get that V (π)∩Amp(V ) is dense in Amp(V ). By Lemma 3.3.3, V (π)∩Amp(V )
is also closed in Amp(V ), whence V (π) ∩ Amp(V ) = Amp(V ).

We will see in the next section that the maps ϕi from Lemma 3.3.3 can be glued
to a single map ϕ : Amp(V )→ End(V ) if V is a cyclic module. This cannot be done
in general. We give an example over R, where a single rational map ϕ satisfying
Lemma 3.3.3 exists, but after a scalar extension to C multiple maps are needed to
cover Amp(V ).

Example 3.3.5. Let G = 〈s, t | s2 = t2 = (st)2 = 1〉 be the Klein four-group acting
on V = k3 by

s

xy
z

 =

−xy
−z

 and t

xy
z

 =

 x
−y
z

 ,
where k is an infinite field of any characteristic different from two. Let v = (x, y, z)ᵀ ∈ V
be arbitrary. It is easy to see that the dimension of kGv is always less than three,
and the dimension equals two if and only if xy 6= 0 or yz 6= 0. So the dimension of a
maximal cyclic submodule of V is two, and we have

V \ Amp(V ) = zeros(X,Z) ∪ zeros(Y )

(X, Y, Z being the usual coordinate functions). Geometrically, the complement of
Amp(V ) in V is the union of a line and a plane.

We demonstrate Lemma 3.3.3 with respect to the permutation π = (s, t) ∈ Sym(G),
which turns out to be a generic symmetry of V . We consider the open cover Amp(V ) =
O1 ∪O2, where

O1 = {(x, y, z)ᵀ ∈ V : xy 6= 0} and O2 = {(x, y, z)ᵀ ∈ V : yz 6= 0}.

Moreover, we define rational maps ϕi : Oi → End(V ) by

ϕ1

xy
z

 =

0 x
y

0
y
x

0 0
0 z

y
0

 , and ϕ2

xy
z

 =

0 x
y

0
0 0 y

z

0 z
y

0

 .
It can be easily verified that ϕi(v)gv = π(g)v for all g ∈ G and all v ∈ Oi. In particular,
this proves π ∈ Sym(G, V ).
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Of course, the above maps ϕi cannot be glued to a single rational map since they do
not agree on O1 ∩O2. But for the field k = R of real numbers, there is another choice
for a rational map ϕ : Amp(V )→ End(V ) with actually satisfies ϕ(v)gv = π(g)v for
all v ∈ Amp(V ) and all g ∈ G. It can be given by

ϕ

xy
z

 =


0 x

y
0

xy
x2+z2 0 yz

x2+z2

0 z
y

0

 .
This map is well defined on Amp(V ) since x2 + z2 = 0 implies x = 0 and z = 0 over the
real numbers. Over the complex numbers this implication does of course not hold, and
actually in that case we cannot choose a single rational map to satisfy Lemma 3.3.3.
Claim. For k = C there is no rational map ϕ : Amp(V ) → End(V ) with ϕ(v)gv =
π(g)v for all v ∈ Amp(V ) and all g ∈ G.
Proof. Let E = C(X, Y, Z) be the field of rational functions over C in three indetermi-
nates. Suppose the claim is wrong, so that such a rational map ϕ : Amp(V )→ End(V )
exists. This means there is a matrix A ∈ E3×3 with entries defined on Amp(V ) such that
A(v)gv = π(g)v for all v ∈ Amp(V ) and all g ∈ G. We pick some common denominator
of A, that is, a polynomial f ∈ C[X, Y, Z] such that f is nonzero on Amp(V ), and the
entries of fA are polynomials. Then

zeros(f) ⊆ V \ Amp(V ) = zeros(X,Z) ∪ zeros(Y ),

and by the principal ideal theorem (see e.g. [18, Theorem 2.6.1]) we even have zeros(f) ⊆
zeros(Y ). By Hilbert’s Nullstellensatz (see e.g. [18, Theorem 1.4.5]), it follows f = cY n

for some 0 6= c ∈ C and n ∈ N. In particular, all entries of Y n · A are polynomials.
Since the equations A(v)v = v and A(v)tv = sv hold for almost all points v ∈ V , we

get equations of rational functions

A · (X, Y, Z)ᵀ = (X, Y, Z)ᵀ and A · (X,−Y, Z)ᵀ = (−X, Y,−Z)ᵀ.

Summing up both equations and multiplying by Y n, we get polynomial equations

Y nA · (X, 0, Z)ᵀ = (0, Y n+1, 0)ᵀ.

But now reduction modulo the ideal (X,Z) E C[X, Y, Z] yields (0, 0, 0)ᵀ ≡ (0, Y n+1, 0)ᵀ
which is a contradiction.

Example 3.3.5 also shows that the set V (π) of points having a certain orbit symmetry
does not need to be open or closed in V .

3.4 Scalar extensions

Many results in representation theory of finite groups require the ground field to be
sufficiently large. In order to use these results, we will sometimes need to pass over
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to field extensions of k. More precisely, if V is a finitely generated kG-module, and if
E/k is any field extension then we can form the scalar extension V E = E⊗k V which
is a finitely generated EG-module by means of the natural action (on the pure tensors)

G× V E → V E, (g, e⊗ v) 7→ e⊗ gv.

Scalar extensions are transitive in the sense that for any tower of field extensions
L/E/k, we have a natural isomorphism (V E)L ∼= V L of LG-modules (given by the
mutually inverse homomorphisms l ⊗ (e ⊗ v) 7→ le ⊗ v and l ⊗ v 7→ l ⊗ (1 ⊗ v) for
l ∈ L, e ∈ E, v ∈ V on the pure tensors). So all scalar extensions of V E are already
scalar extensions of V . We also have a natural kG-linear map κ : V → V E given by
v 7→ 1⊗ v which is an embedding of topological spaces (even a dense embedding if k
has infinite order) by Lemma 2.1.3. It is easily seen by elementary linear algebra that
scalar extensions do not affect the orbit symmetry groups of V in the sense that

Sym(G, v) = Sym(G, κ(v)) holds for all v ∈ V.

In other words, we have V (π) = κ−1(V E(π)) for all π ∈ Sym(G). It is rather surprising
however, that scalar extensions do also not affect the generic symmetry group of V .
This result (Proposition 3.4.2) is essentially an application of Theorem 3.3.4.

Recall that generic symmetries where only defined for infinite fields by now. We now
extend this definition to modules over finite fields in the only possible way ensuring
that Proposition 3.4.2 holds for arbitrary fields.

Definition 3.4.1. Let V be a finitely generated kG-module, where k is a finite field.
A permutation π ∈ Sym(G) is a generic symmetry of V if π is a generic symmetry
of V E for all field extensions E/k of infinite order. As before, the set of all generic
symmetries of V is denoted by Sym(G, V ).

Proposition 3.4.2. Let V be a finitely generated kG-module, and let E/k be a field
extension. Then we have Sym(G, V ) = Sym

(
G, V E

)
as well as Iv(G, V ) = Iv(G, V E),

where V E denotes the scalar extension of V to an EG-module.

Proof. The assertion on the groups of irrelevant generic symmetries follows easily
by definition since we always have Ker(V E) = Ker(V ). So it remains to show that
Sym(G, V E) = Sym(G, V ).

We first consider the case where k is a field of infinite order. Let κ : V → V E denote the
dense embedding of topological spaces given by Lemma 2.1.3. For any π ∈ Sym(G, V E)
the set V E(π) has nonempty interior in V E by definition, so V (π) = κ−1(V E(π)) has
a nonempty interior in V . Hence, π ∈ Sym(G, V ). Conversely, let π ∈ Sym(G, V ) be
arbitrary. Then V (π) has nonempty interior in V , so V E(π) contains the dense subset
κ(V (π)) of V E. Consequently, V E(π) is a dense subset of V E, and Theorem 3.3.4
implies that π ∈ Sym(G, V E). This proves the assertion for infinite fields.
Now suppose that k is of finite order, and that E is of infinite order. Then by

definition, we clearly have the inclusion Sym(G, V ) ⊆ Sym(G, V E). For proving the
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converse direction, we have to show that Sym(G, V E) is contained in Sym(G, V K) for
any extension field K/k of infinite order. For doing so, we consider an arbitrary field L

which is an extension of both E and K (for example, L can be chosen as any quotient
of the k-algebra E⊗k K by a maximal ideal). Then, by what we have proven so far,
we get

Sym(G, V E) = Sym(G, V L) = Sym(G, V K),

proving the assertion.
It remains to consider the case, where both k and E are finite fields. This case also

follows immediately by what we have proven so far. Let L be any extension field of E of
infinite order (for example L = E(T ), the function field over E in one indeterminate).
Then we get

Sym(G, V ) = Sym(G, V L) = Sym(G, V E),

which finishes the proof.

Recall that ample points have only be defined for fields of infinite order so far. The
following definition of ample points over finite fields is chosen in the only possible way
ensuring that ample points remain ample after extending the ground field. With that
definition, it becomes a general fact that the generic symmetry group Sym(G, V ) is
contained in the orbit symmetry groups Sym(G, v) of all ample points v ∈ Amp(V )
(which was already clear for infinite fields by Theorem 3.3.4).

Definition 3.4.3. Let V be a finitely generated kG-module, where k is a finite field.
An element v ∈ V is called ample if for all field extensions E/k of infinite order, 1⊗ v
is an ample point of the EG-module V E. As before, the set of all ample points of V is
denoted by Amp(V ).

Lemma 3.4.4. Let V be a finitely generated kG-module, and let E/k be a field
extension. Then we have Amp(V ) = κ−1(Amp(V E)), where κ : V → V E denotes the
canonical embedding.

Proof. As before, we begin by proving the assertion in the case where k is a field of
infinite order. Since EGκ(v) is the E-linear span of {1 ⊗ gv : g ∈ G} for all v ∈ V ,
we always have dimk(kGv) = dimE(EGκ(v)). Let d denote the maximal dimension of
cyclic kG-submodules of V . We have to prove that d is also the maximum dimension of
cyclic EG-submodules of V E. Since Amp(V ) is nonempty and open in V (Lemma 3.3.2),
since κ has a dense image in V E (Lemma 2.1.3), and since nonempty open subsets
are dense (Lemma 2.1.2), we see that κ(Amp(V )) is a dense subset of V E consisting
of points each of which generates a d-dimensional cyclic EG-submodule of V E. Since
Amp(V E) is open in V E, there is a nonempty intersection of Amp(V E) and κ(Amp(V )).
This proves the assertion.

Now suppose that k is a finite field, and let v ∈ V be arbitrary. We have to show
that v is ample if and only if κ(v) is an ample point of V E. If v is ample then, by
definition, 1⊗ v is an ample point of V L for all infinite field extensions L/k. So if E is
an infinite field then κ(v) is ample for trivial reasons. If, on the other hand, E is a finite
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field then 1 ⊗ κ(v) is an ample point of (V E)L ∼= V L for all infinite field extensions
L/E by transitivity of scalar extensions. So κ(v) is ample in that case as well.
To prove the converse implication, suppose that κ(v) ∈ V E is ample. By definition

of ample points over finite fields, we have to show that 1⊗ v is an ample point of V K

for any infinite field extension K/k. As in the proof of Proposition 3.4.2, we consider
any field L which is a common extension of both K and E. By what we have proven so
far, and by transitivity of scalar extensions, we see that 1⊗ κ(v) is ample in (V E)L,
whence 1⊗ v is ample in V L. Since V L ∼= (V K)L, and since both K and L are infinite
fields, the same argument shows that 1⊗ v is an ample point of V K.

Corollary 3.4.5. Let V be a finitely generated kG-module, and let v ∈ Amp(V ) be an
ample point. Then we have Sym(G, V ) ⊆ Sym(G, v).

Proof. By Lemma 3.4.4 and Proposition 3.4.2, we may assume without loss of generality
that k is a field of infinite order. In that case, the assertion is already implied by
Theorem 3.3.4.

It is natural to ask whether the present definition of ample points over finite fields
differs from the naive definition of ample points as those points generating a cyclic
submodule of maximum dimension. The actual difference is illustrated in the following
example.

Example 3.4.6. Let G = (C2)3 = 〈x, y, z〉 be the elementary abelian group with eight
elements, and let k be a field of characteristic two. We consider the k-linear action of
G on V = k5 given by

x ·


a
b
c
d
e

 =


a
b
c

a+ d
e

 , y ·


a
b
c
d
e

 =


a
b
c
d

b+ e

 , z ·


a
b
c
d
e

 =


a
b

a+ b+ c
d
e

 .

Then V is a kG-module. It can be shown by examining all cases that dim(kGv) ≤ 3
for all points v ∈ F5

2 having coefficients in the prime field. If k contains more than
two elements however, there are points v ∈ V such that dim(kGv) = 4 (for example,
v = (1, b, 0, 0, 0)ᵀ for an arbitrary element b ∈ k \ F2). So in the case k = F2, the
kG-module V does not contain ample points.

Although there are kG-modules without ample points, we will usually deal with
modules for which the existence of ample points is guaranteed. For example, if V is
a cyclic kG-module then the ample points of V are precisely the generators of V (in
particular, Amp(V ) 6= ∅). In Section 3.6, we introduce another class of modules which
always have ample points.
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3.5 Generic points

We are finally able to prove that the generic symmetry group Sym(G, V ) of any finitely
generated kG-module V is the orbit symmetry group of almost all v ∈ V (thereby
justifying our definition of generic symmetries), provided that k is an infinite field.

Definition 3.5.1. Let V be a finitely generated kG-module. An ample point v ∈
Amp(V ) is called a generic point of V if Sym(G, v) = Sym(G, V ). The set of all generic
points of V is denoted by Gen(V ).

Theorem 3.5.2. Let V be a finitely generated kG-module. If k is an infinite field then
Gen(V ) is nonempty and open in V . In particular, we have Sym(G, V ) = Sym(G, v)
for almost all v ∈ V in that case.

Proof. We express the set of generic points as

Gen(V ) =
⋂

π/∈Sym(G,V )
Amp(V ) \ V (π).

By Theorem 3.3.4, Amp(V ) \ V (π) is nonempty provided that π /∈ Sym(G, V ), and by
Lemma 3.3.3, Amp(V ) \V (π) is always open in V . As a finite intersection of nonempty
open sets, Gen(V ) is nonempty and open as well (by Lemma 2.1.2).

If V is a kG-module over a finite field k then Gen(V ) may be empty (even if Amp(V )
is nonempty), as we will see in Example 3.6.4. In [10], we additionally imposed generic
points to have a minimum possible stabilizer in G. However, this property is already
implied by the present definition, as the following lemma shows. Note that the results of
the latter section imply that generic points remain generic after extending the ground
field. Thus, many questions on generic points over arbitrary fields can be reduced to
the case of infinite fields.

Lemma 3.5.3. Let V be a finitely generated kG-module. For any generic point v ∈
Gen(V ), we have Gv = Ker(V ). In particular, we have Iv(G, v) = Iv(G, V ).

Proof. By passing over to an extension field if necessary, we may assume without loss
of generality that k is a field of infinite order. Let H = Gv be the stabilizer of v in
G. Of course we have Ker(V ) ⊆ H. Suppose there is an element h ∈ H \Ker(V ). As
a linear operator on V , h has an eigenvalue 1 since hv = v. On the other hand, V is
not an eigenspace of h, so the union of all eigenspaces of h is a proper closed subset
of V by Lemma 2.1.2. Hence, there is a point w ∈ Amp(V ) lying in no eigenspace
of h. We choose g3, . . . , gn ∈ G such that w, hw, g3w . . . , gnw is a basis of kGw. As
|G : H| = |Gv| ≥ n, there is a left coset gH different from H, g3H, . . . , gnH. We
consider the permutation π = (g, gh) which is an (irrelevant) orbit symmetry of v.
Since v is a generic point, π is a generic symmetry of V . By Theorem 3.3.4, π must be
an orbit symmetry of w as well, realized by α ∈ GL(Gw), say. By construction, α fixes
a basis of kGw, so α is the identity. We conclude ghw = π(g)w = α(gw) = gw, and
hence hw = w. This contradicts the fact that w lies in no eigenspace of h.
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We pause to give a short summary of what we have proven so far. Let V be a finitely
generated kG-module over an infinite field k, and let K = Ker(V ) be the kernel of
V in G. We have assigned to V the generic symmetry group Sym(G, V ) which solely
depends on the isomorphism type of V . Almost all points v ∈ V are generic, that is,
the orbit Gv has the maximum possible size, Gv spans a subspace of maximum possible
dimension in V , and any orbit symmetry of v is an orbit symmetry of almost all points
of V . If v ∈ Gen(V ) is any generic point, we have a chain of canonical isomorphisms

Sym(G/K, V ) ∼= Sym(G, V )/ Iv(G, V ) = Sym(G, v)/ Iv(G, v) ∼= GL(Gv).

So the orbits of all generic points in V have isomorphic linear symmetry groups.
As we will see in Example 3.6.4, it can be tedious to determine generic points of some

given module. By passing over to a certain field extension however, we can easily name
a concrete generic point. The following proposition serves as a simple computational
tool for determining generic symmetry groups.

Proposition 3.5.4. Let D : G → GL(n,k) be a matrix representation, and let E =
k(T ), where T = (T1, . . . , Tn) is a vector of indeterminates over k. Then T is a generic
point of En regarded as an EG-module given by D.

Proof. Let U = kn be the kG-module given by the representation D, and let V = En

be the EG-module given by D. Note that V is canonically isomorphic to the scalar
extension UE (the isomorphism is given by e⊗ x 7→ ex). We have to show that T is an
ample point of V with Sym(G, T ) = Sym(G, V ). By Proposition 3.4.2 and Lemma 3.4.4,
we may assume without loss of generality that the field k has infinite order (otherwise,
we replace k by some infinite extension K and E = k(T ) by K(T ) such that T is still a
vector of indeterminates over K).

Let v ∈ U be any ample point. Then v is still an ample point of V by Lemma 3.4.4,
so T is ample if and only if dimk(kGv) ≤ dimE(EGT ). Let M1 ∈ kn×|G| be the matrix
with columns D(g)v for g ∈ G, and letM2 ∈ En×|G| be the matrix with columns D(g)T ,
respectively. Then M1 is the result of the substitution (that is, of the unique k-algebra
homomorphism k[T ] → k) Ti 7→ vi applied to the entries of M2. By considering the
minors of M1 and M2, we see that the rank of M2 is at least the rank of M1, proving
that T ∈ V is ample.
By Corollary 3.4.5 and Proposition 3.4.2, we have Sym(G,U) = Sym(G, V ) ⊆

Sym(G, T ). We finish the proof by showing that any orbit symmetry π ∈ Sym(G, T ) is
a generic symmetry of U . Let A ∈ En×n be any matrix (A may be non-unique unless
V = EGT ) satisfying

AD(g)T = D(π(g))T for all g ∈ G.

There is a nonempty open subset O ⊆ U such that the entries of A can be evaluated at
any point of O (for example O = {x ∈ U : f(x) 6= 0}, where f ∈ k[T ] is any nonzero
polynomial such that all entries of f · A are polynomials). If Ax ∈ kn×n denotes the
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matrix obtained by the substitution Ti 7→ xi applied to A, we get equations

AxD(g)x = D(π(g))x for all g ∈ G, x ∈ O.

So π is an orbit symmetry of any element of the nonempty open subset O ⊆ V . By
definition, we conclude π ∈ Sym(G,U).

Remark 3.5.5. Proposition 3.5.4 shows that any generic symmetry group can be
computed as the orbit symmetry group of a certain point. This approach can be refined
if the ground field is contained in the field C of complex numbers. In that case, the
computation of a generic symmetry group can actually be reduced to a (colored) graph
automorphism problem. This was shown in [9, Theorem 4.3] for the field of real numbers,
but the argument generalizes to any subfield of C. In [9] we actually defined a generic
symmetry group (which we called generic orbit permutation group then) as the orbit
symmetry group of a vector of indeterminates.

3.6 Generic symmetries of submodules

In the following, we study the connection between generic symmetry groups Sym(G, V )
of kG-modules V and generic symmetry groups Sym(G,W ) of submodules W ≤ V . In
general, there is no set inclusion between Sym(G, V ) and Sym(G,W ) in any direction.
There are positive results however, provided that W contains ample points, or even
generic points of V . Before stating these results, we need to recall some standard facts
on semisimple modules and rings.
A module M over any ring is called simple if M is a nonzero module having no

nonzero proper submodules. A module M is called semisimple if M is the sum of its
simple submodules. In that case, M is even a direct sum of certain simple submodules,
and any submodule of M has a complement in M [22, Theorem 2.4]. Moreover,
all submodules and all quotients of semisimple modules are semisimple again [23,
Ch. XVII Proposition 2.2]. Let N,M be finitely generated semisimple modules with
direct sum decompositions

M ∼= S
(e1)
1 ⊕ · · · ⊕ S(en)

n , N ∼= S
(f1)
1 ⊕ · · · ⊕ S(fn)

n

into non-isomorphic simple modules Si with (possibly zero) integral multiplicities ei, fi.
By the Jordan-Hölder theorem for modules [4, Theorem 3.11], these multiplicities are
unique. Moreover, N is isomorphic to a submodule of M (or equivalently, to a quotient
of M) if and only if fi ≤ ei for all i. A ring R is called semisimple if R is semisimple
regarded as a left module over itself. In that case, all left and all right R-modules are
automatically semisimple, projective, and injective [22, Theorem 2.5]. If G is a finite
group and if k is any field such that char(k) - |G| then Maschke’s theorem states that
kG is a semisimple ring. In particular, if k is a field of characteristic zero, then all
finite dimensional group algebras over k (and all their modules) are semisimple. If, on
the other hand, the characteristic of k divides the order of G (or if G is an infinite
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group) then kG is not semisimple, as the trivial kG-module k is not projective [22,
Theorem 6.1].

If R is a finite dimensional algebra over a field (or more generally, a semilocal
ring) then there is a unique minimal two sided ideal J ⊂ R (namely, the Jacobson
radical) of R such that R/J is a semisimple ring. Moreover, all semisimple R-modules
are annihilated by J , and so are R/J-modules in a natural way [22, Proposition 4.8,
Theorem 4.14].

Among all k-algebras, group algebras have the special property that scalar extensions
of their semisimple modules always stay semisimple. Equivalently, if kG is a group
algebra with Jacobson radical J ⊂ kG, and if E/k is any field extension, then the
Jacobson radical of EG is given by the E-linear span EJ of J . There is a canonical
isomorphism (kG/J)E ∼= EG/EJ of E-algebras [4, Theorem 7.10]. Furthermore, if S, T
are simple kG-modules then the semisimple EG-modules SE and TE have no common
simple constituents (up to isomorphism) [4, Theorem 7.9].

For further details, we refer to [22, Ch. 1,2], [23, Ch. XVII], and to [4, §7A].
Lemma 3.6.1. Let V be a finitely generated semisimple kG-module. Then Amp(V ) is
nonempty. Moreover, we have kGx ∼= kGy for all x, y ∈ Amp(V ).
Proof. Let J be the Jacobson radical of kG as in the preceding discussion. The
semisimple cyclic kG-modules are precisely the quotients of the semisimple left kG-
module kG/J . So a submodule M ≤ V is cyclic if and only if M is isomorphic to a
quotient of kG/J . We consider direct sum decompositions

V ∼= S
(e1)
1 ⊕ · · · ⊕ S(en)

n , kG/J ∼= S
(f1)
1 ⊕ · · · ⊕ S(fn)

n

into non-isomorphic simple kG-modules Si. By the previous discussion, M is a cyclic
submodule of maximum dimension if and only if

M ∼= S
(min(e1,f1))
1 ⊕ · · · ⊕ S(min(en,fn))

n .

In particular, all those maximal cyclic submodules of V are isomorphic. It remains to
show that the dimensions of cyclic submodules of scalar extensions of V do not exceed
the value

d = dimk(M) = min(e1, f1) · dimk(S1) + · · ·+ min(en, fn) · dimk(Sn).

Let E/k be any field extension. Then, by the previous discussion, the scalar extension
SE
i of each simple kG-module Si decomposes into a direct sum SE

i
∼=
⊕li

j=1 T
(ki,j)
i,j into

non-isomorphic simple EG-modules Ti,j. The decompositions of V and EG/EJ into
their simple constituents are uniquely given by

V E ∼=
n⊕
i=1

li⊕
j=1

T
(ei·ki,j)
i,j and EG/EJ ∼=

n⊕
i=1

li⊕
j=1

T
(fi·ki,j)
i,j .

So, by the same reasoning as before, the cyclic submodules M ′ ≤ V E of maximum
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dimension are isomorphic to ⊕i,j T
(min(eiki,j ,fiki,j))
i,j . Their dimension is given by

dimEM
′ =

n∑
i=1

min(ei, fi)
li∑
j=1

ki,j dimE(Ti,j) =
n∑
i=1

min(ei, fi) dimE(SE
i ) = d.

Proposition 3.6.2. Let V be a finitely generated kG-module over an infinite field
k, and let W ≤ V be a submodule containing an ample point of V . Then we have
Sym(G, V ) ⊆ Sym(G,W ). Equality holds if and only if W contains a generic point
of V .

Proof. Since W contains an ample point of V , we have Amp(W ) ⊆ Amp(V ). By
Theorem 3.3.4, we have Amp(V ) ⊆ V (π), and hence Amp(W ) ⊆ W (π) for all π in
Sym(G, V ). So W (π) contains a nonempty open subset of W for all π ∈ Sym(G, V ),
which proves Sym(G, V ) ⊆ Sym(G,W ).

If Sym(G, V ) = Sym(G,W ) holds then any generic point of W (which exists by
Theorem 3.5.2) is also a generic point of V . Conversely, if W contains a generic
point of V then Gen(V ) ∩W is a nonempty open subset of W . By Theorem 3.5.2
and since W is an irreducible topological space (Lemma 2.1.2), there is an element
v ∈ Gen(V ) ∩Gen(W ). We conclude Sym(G, V ) = Sym(G, v) = Sym(G,W ).

Corollary 3.6.3. Let V be a semisimple kG-module, and let W ≤ V be a submodule
containing an ample point of V . Then we have Sym(G, V ) = Sym(G,W ).

Proof. By Proposition 3.4.2 and Lemma 3.4.4, we may assume without loss of generality
that k has infinite order. Let w ∈ W ∩ Amp(V ) and v ∈ Gen(V ) be arbitrary. By
Proposition 3.6.2 and Lemma 3.6.1, we conclude

Sym(G,W ) ⊆ Sym(G,kGw) = Sym(G,kGv) = Sym(G, V ) ⊆ Sym(G,W ).

Proposition 3.6.2 shows that the generic symmetry group of any finitely generated
kG-module V is already attained at some cyclic submodule of V (generated by a
generic point), provided that k is an infinite field (the analog statement for finite fields
does not necessarily hold, as the following example shows). If V is semisimple, such a
cyclic submodule is easy to find as we can take any module generated by an ample
point of V . In general however, finding a suitable cyclic submodule seems to be equally
hard as finding a generic point.

Example 3.6.4. Let k be a field of characteristic two, and let

G = 〈s, t : s2 = t2 = (st)2 = 1〉
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be the Klein four-group acting on V = k3 by

s

xy
z

 =

x+ y
y
z

 and t

xy
z

 =

x+ z
y
z

 .
To find the generic points of V , we shall compute the orbit symmetry groups of all
elements v = (x, y, z)ᵀ ∈ V . It is easy to see that the orbit Gv always spans a linear
subspace of V of dimension less or equal than two, where equality holds if and only if
y 6= 0 or z 6= 0. Thus, we have

Amp(V ) = {(x, y, z)ᵀ ∈ V : y 6= 0 or z 6= 0} .

Case 1: Let y = z = 0 (that is, v is not ample), then G acts trivially on kGv, so that
Sym(G, v) = Iv(G, v) = Sym(G) ∼= S4.

Case 2: Let exactly one of y = 0, z = 0, or y = z hold (that is, v is ample,
but has a nontrivial stabilizer in G). Then there are precisely two linear maps in
GL(Gv) permuting the two elements of the orbit Gv, both of which are realized by left
multiplications by elements of G. We get Sym(G, v) = G · Iv(G, v) ∼= D4.

Case 3: Let yz 6= 0, y 6= z (so that v has a trivial stabilizer in G), and suppose
y3 = z3. We claim that Sym(G, v) consists of all even permutations on G. In particular,
Sym(G, v) ∼= A4.

Proof. It suffices to show that H = Sym(G, v)1, the stabilizer of Sym(G, v) at 1 ∈ G,
is cyclic of order three. Since y3 = z3, the element λ = yz−1 is a primitive third root of
unity, satisfying λ2 + λ+ 1 = 0. It follows y2z−1 = y + z. With that equation in mind,
one easily checks that left multiplication by the matrix

A =

yz
−1 x(y−1 + z−1) 0

0 1 0
0 0 1


permutes the orbit Gv. More precisely, A restricts to a realization of the permutation
π = (s, st, t) ∈ Sym(G) as an orbit symmetry of v. To finish the proof, it remains to
show that H does not contain transpositions. But this is clear, since any linear map in
GL(Gv) fixing two (necessarily linearly independent) points of Gv must be the identity
map.

Case 4: Let yz 6= 0, and y3 6= z3. We claim that Sym(G, v) = G.

Proof. Let α ∈ GL(Gv) be a linear map permuting the elements of Gv such that
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α(v) = v. This map also permutes the three element set

Ω = {sv − v, tv − v, stv − v} = {(y, 0, 0)ᵀ, (z, 0, 0)ᵀ, (y + z, 0, 0)ᵀ}

which has a one dimensional linear span U in V . The restriction of α to U is the left
multiplication by an element λ ∈ k with multiplicative order less or equal than three.
If λ has order three then y = λz or y = λ2z, and hence y3 = z3 which contradicts
our assumption. Since k has characteristic two, λ cannot have order two. It follows
λ = 1, and α acts trivially on Ω. Hence, α is the identity map, which shows that
Sym(G, v) = G.

This case-by-case analysis shows that the generic points of V are given by

Gen(V ) = {(x, y, z)ᵀ ∈ V : yz 6= 0 and y3 6= z3}.

Moreover, we find Sym(G, V ) = G, and V is generically closed. However, although
V always contains ample points, Gen(V ) is nonempty only if k has more than four
elements (and V has points belonging to Case 3 only if k contains a primitive third root
of unity). If v ∈ V is an element considered in the i-th case, then all ample points of
kGv also belong to the same case. Thus, we actually have Sym(G, v) = Sym(G,kGv)
for all v ∈ V in this example (this can be easily seen directly, but it also follows from
Theorem 4.1.7 which we prove later). In particular, the generic symmetry groups of the
maximal cyclic submodules of V are isomorphic to either D4, A4, or C2 × C2. In fact,
if k is a subfield of F4 then no proper submodule of V has the same generic symmetry
group as V . This does not contradict Corollary 3.6.3, but it merely shows that V is
not a semisimple kG-module.

3.7 Relevant eigenvalues

A very common strategy for determining a group G which acts on some set Ω is to
determine a stabilizer Gω for some ω ∈ Ω first and then to determine the left cosets
of Gω in G. By the Orbit-Stabilizer theorem, the left cosets of Gω correspond to the
elements of the orbit Gω. For that reason, any information constraining the orbits of
G can be very useful. In the following, we introduce such a constraint on the orbits of
Sym(G, V )1.

Definition 3.7.1. Let V be a finitely generated kG-module, and let λ ∈ k be an
eigenvalue of an element g ∈ G with respect to its action on V . We call λ relevant
if the corresponding eigenspace Eig(g, λ) contains an ample point of V (that is, if
Eig(g, λ) ∩ Amp(V ) 6= ∅).

Proposition 3.7.2. Let V be a finitely generated kG-module. If g, h ∈ G are elements
lying in the same orbit of Sym(G, V )1, then g and h have the same relevant eigenvalues
in k. Moreover, for each common relevant eigenvalue λ ∈ k of g and h, we have
Eig(g, λ) = Eig(h, λ).
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Proof. By Proposition 3.4.2 and Lemma 3.4.4, we may assume without loss of generality
that k is of infinite order. Let π ∈ Sym(G, V )1 a generic symmetry with π(g) = h, let
λ be a relevant eigenvalue of g, and let v ∈ Eig(g, λ) ∩ Amp(V ) be a corresponding
ample eigenvector. Let α ∈ GL(Gv) be a realization of π as an orbit symmetry of v.
Then we have

hv = π(g)v = α(gv) = λα(v) = λπ(1)v = λv,

whence v ∈ Eig(h, λ). This shows that λ is a relevant eigenvalue of h as well, and that
Eig(g, λ)∩Amp(V ) ⊆ Eig(h, λ). By Lemma 2.1.2 and Lemma 3.3.2, Eig(g, λ)∩Amp(V )
is a dense subset of Eig(g, λ). Since linear subspaces of vector spaces are closed in the
Zariski topology, we conclude Eig(g, λ) ⊆ Eig(h, λ). The reverse inclusion follows by
symmetry.

Proposition 3.7.2 provides a powerful tool for eliminating possibilities when com-
puting generic symmetry groups, as we will see in Example 3.8.7. But there are also
theoretical applications. In Proposition 3.8.8, we reprove a result of Isaacs stating
(in our terminology) that all absolutely simple kG-modules are weakly generically
closed. For that purpose, we use a nontrivial result from the representation theory of
finite dimensional k-algebras. In the special case where |G| is not divisible by char(k)
however, Isaacs’ theorem is already an immediate consequence of Proposition 3.4.2,
Proposition 3.7.2, and the elementary fact that all matrices in GL(n,k) of finite order
coprime to char(k) can be diagonalized.

3.8 Generic symmetries of cyclic modules

Lemma 3.5.3 and Proposition 3.6.2 show that any finitely generated kG-module over an
infinite (or at least over a sufficiently large) field contains a cyclic submodule (generated
by a generic point) with the same kernel in G and the same generic symmetries. For
these reasons, many questions on generic symmetries of arbitrary modules can be
reduced to questions on cyclic modules. In this section we study the specifics of cyclic
modules in the context of generic symmetries.
In the following, let V be any cyclic kG-module with corresponding representation

D : G→ GL(V ). Note that in the case of cyclic modules, ample points are the same as
generators (in particular, cyclic modules always have ample points). If w ∈ V is any
generator of V , we get a representation Dw : Sym(G,w)→ GL(V ) extending D such
that

Dw(π)gw = π(g)w for all g ∈ G, π ∈ Sym(G,w).

In that way, V can be given the structure of a k Sym(G,w)-module, extending the
action of G on V , by setting

πx = Dw(π)x for all x ∈ V, π ∈ Sym(G,w).

We will denote this k Sym(G,w)-module by V̂w. By Corollary 3.4.5, we always have
Sym(G, V ) ⊆ Sym(G,w), so by restriction of scalars, each of these modules V̂w is also a
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k Sym(G, V )-module. Recall that Sym(G, V ) = Sym(G, V E) for all field extensions E/k.
It is easy to see by definition that we have D1⊗w(π) = 1⊗Dw(π) for all π ∈ Sym(G, V )
and w ∈ Amp(V ). So there are equations (not merely isomorphisms) (V̂w)E = (̂V E)1⊗w
of E Sym(G, V )-modules for all w ∈ Amp(V ).
In general, different choices of w ∈ Amp(V ) (even of generic points) may lead to

non-isomorphic modules over k Sym(G, V ), as we will see in Example 3.8.7. In the
following, we develop some conditions under which these modules are isomorphic.
Recall that the character of a finitely generated kG-module V is the map kG→ k

sending each element x ∈ kG to the trace of x as a linear operator on V . Since the trace
function is k-linear, and since G is a k-basis of kG, characters are usually regarded
as functions G→ k. Note that if V is a kG-module with character χ : G→ k, and if
E/k is any field extension then V E has the same character χ.

Lemma 3.8.1. Let V be a cyclic kG-module. Then the k Sym(G, V )-modules V̂w have
the same character for all w ∈ Amp(V ).

Proof. By Proposition 3.4.2 and by the preceding discussion, we may assume without
loss of generality that k is of infinite order. Let π ∈ Sym(G, V ) be any generic symmetry,
and let ϕ : Amp(V ) → GL(V ) be the map sending a generator w ∈ Amp(V ) to the
unique realization Dw(π) of π as an orbit symmetry of w. We have to show that all
images of ϕ have the same trace.
By Lemma 3.3.3, ϕ agrees locally with certain rational maps. By Lemma 2.2.4,

ϕ must be already a rational map. For each w ∈ Amp(V ), the endomorphism ϕ(w)
permutes a generating set Gw of V over k according to π. In particular, each operator
ϕ(w) has a finite order dividing k = o(π). Now the trace Tr(ϕ(w)) is a sum of dim(V )
many k-th roots of unity. In particular, the image of the composition Tr ◦ϕ in k is a
finite subset. On the other hand, Tr ◦ϕ is a rational map with an irreducible domain (as
a topological space), so its image is irreducible as well (here, we use the elementary fact
that the image of an irreducible topological space under a continuous map is irreducible
again). Now the only finite irreducible subsets of k are the singletons, so we conclude
that Tr ◦ϕ is a constant map.

A standard result from the representation theory of finite groups states that the
characters of non-isomorphic simple kG-modules are always linearly independent as
functions G→ k [17, Corollary 9.22]. For that reason, there are many situations where
the character of a module V characterizes V up to isomorphism.

Proposition 3.8.2. Let V be a cyclic kG-module, and suppose that any of the following
statements hold.

(1) char(k) = 0

(2) char(k) > |G|

(3) V is simple

Then the k Sym(G, V )-modules V̂w are isomorphic for all w ∈ Amp(V ).
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Proof. By Lemma 3.8.1, the k Sym(G, V )-modules V̂w have the same character for
all w ∈ Amp(V ). So it suffices to show that the isomorphism type of V̂w is uniquely
determined by its character. We argue that in each case, this is a consequence of the
fact that the characters of non-isomorphic simple modules over group algebras are
linearly independent.
If (3) holds then V̂w is simple for all w ∈ Amp(V ), so there is nothing to show.

If (1) or (2) holds then char(k) does not divide the order of Sym(G), so the group
algebra k Sym(G, V ) is semisimple. Then V̂w decomposes into a direct sum of simple
k Sym(G, V )-modules, each occurring with a multiplicity less or equal to |G| (by a
comparison of dimensions). So the character of V̂w is a linear combination of the
(linearly independent) characters of simple k Sym(G, V )-modules with nonnegative
integral coefficients less or equal to |G|. By the hypothesis, the multiplicities of the
simple constituents of V̂w (and thereby the isomorphism type of V̂w) are uniquely
determined by the character of V̂w.

The statement of Proposition 3.8.2 will be further refined in Theorem 4.6.4.

Corollary 3.8.3. Let V be a cyclic kG-module satisfying the hypothesis of Proposi-
tion 3.8.2. Then the linear symmetry groups GL(Gv) of the orbits of the generic points
v ∈ Gen(V ) are conjugated in GL(V ).

Proof. If v ∈ Gen(V ) is a generic point then GL(Gv) is the image of the representation
Dv : Sym(G, V )→ GL(V ). The claim follows by Proposition 3.8.2.

We have seen so far that if G acts on a cyclic module V , then also Sym(G, V ) acts
on V (in various ways) extending the action of G. In principle, we can continue this
process by considering the generic symmetry group of V with respect to the action
of Sym(G, V ) on V we have chosen. Continuing in that way, we get a sequence of
groups G1 ≤ G2 ≤ G3 ≤ . . . , where Gi+1 = Sym(Gi, V ) acts on V with respect to an
arbitrarily chosen generator of V for all i. It is a natural question, whether this process
terminates at some point, that is, whether Gi is (weakly) generically closed for some i.
To answer that question, we develop two sufficient conditions ensuring that a given
module is (weakly) generically closed.
To begin with, we need to determine the kernel of V̂w in Sym(G, V ), where w ∈

Amp(V ) is any generator. If a generic symmetry π ∈ Sym(G, V ) acts trivially on
V̂w then π ∈ Iv(G,w) is an irrelevant orbit symmetry of w. So Lemma 3.5.3 shows
Ker(V̂w) = Iv(G, V ), provided that w is a generic point of V . Suppose that we are in the
situation of Proposition 3.8.2. Then the modules V̂w are isomorphic for all w ∈ Amp(V )
(regardless of w being generic or not), so the kernel of V̂w consists of the irrelevant
generic symmetries of V in any case (if V does not contain generic points, we come to
the same conclusion by a field extension argument). This remarkable observation will
be the key ingredient for the proof of Theorem 3.8.5. To be as general as possible, we
prove that statement under an even weaker hypothesis than that of Proposition 3.8.2.

Lemma 3.8.4. Let V be a cyclic kG-module, and let w ∈ Amp(V ) be an ample point
such that char(k) - |Gw : Ker(V )|. Then we have Ker(V̂w) = Iv(G, V ).
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Proof. By Proposition 3.4.2 and Lemma 3.4.4, we may assume without loss of generality
that k is of infinite order. By Proposition 3.2.7, we may further assume without loss of
generality that G acts faithfully on V . We have to show that Sym(G, V ) acts faithfully
on V̂w. Let π ∈ Ker(V̂w) be arbitrary. That is, π is any permutation fixing all left cosets
of H = Gw. Let g1, . . . , gd ∈ G be such that g1w, . . . , gdw is a k-basis of V . We consider
the rational maps

s : Amp(V )→ V, v 7→ 1
|H|

∑
h∈H

hv, and

d : Amp(V )→ k, v 7→ det(g1s(v), . . . , gds(v)),

where det : V d → k is any nonzero alternating form. Note that s is well defined since
|H| is nonzero in k by assumption. By definition, we have s(w) = w, whence d(w) 6= 0.
Since d is rational, and since Gen(V ) is dense in V , there is a generic point v ∈ Gen(V )
such that d(v) 6= 0. Therefore, the orbit Gs(v) is a generating set of V over k. Since π
fixes the left cosets of H, it follows Dv(π)gs(v) = gs(v) for all g ∈ G. So Dv(π) fixes a
generating set of V , which shows that π acts trivially on V̂v. The claim now follows by
Lemma 3.5.3.

As an immediate consequence, we get the first sufficient criterion for a module being
(weakly) generically closed.

Theorem 3.8.5. Let V be a finitely generated kG-module with corresponding rep-
resentation D : G → GL(V ). If there is an ample point v ∈ Amp(V ) such that
char(k) - |Gv : Ker(V )| and D(G) = GL(Gv), then V is weakly generically closed.

Proof. By assumption, both maps D : G→ GL(Gv) and Dv : Sym(G, V )→ GL(Gv)
are surjective, and Lemma 3.8.4 states that Ker(Dv) = Iv(G, V ). By Proposition 3.2.7,
we get a chain of canonical group isomorphisms

G/K ∼= GL(Gv) ∼= Sym(G, V )/ Iv(G, V ) ∼= Sym(G/K, V ),

where K = Ker(D). So V is generically closed as a k[G/K]-module. By Lemma 3.2.11,
V is weakly generically closed as a kG-module.

As a first application of Theorem 3.8.5, we give an answer to the question whether the
process of taking generic symmetry groups of generic symmetry groups terminates at
some point. In fact, under a mild hypothesis, any cyclic kG-module is weakly generically
closed as a k Sym(G, V )-module. This result explains in particular why the second
motivational example in the introduction was generically closed.

Theorem 3.8.6. Let V be a cyclic kG-module with kernel K = Ker(V ). Suppose that
char(k) - | Sym(G/K, V )1| holds. Then V̂w is a weakly generically closed k Sym(G, V )-
module for all w ∈ Gen(V ).

If either char(k) = 0 or char(k) > | Sym(G/K, V )| holds then V̂w is weakly generically
closed for all (not necessarily generic) ample points w ∈ Amp(V ).
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Proof. Let w ∈ Gen(V ) be any generic point. Then Sym(G, V ) acts on V̂w with Kernel
Ker(V̂w) = Iv(G, V ) by Lemma 3.5.3. So by Proposition 3.2.7, the quotient group
Sym(G/K, V ) ∼= Sym(G, V )/ Iv(G, V ) acts faithfully on V̂w. By Lemma 3.2.11, we may
assume without loss of generality that G acts faithfully on V and that Sym(G, V )
acts faithfully on V̂w. Then the stabilizer Sym(G, V )w at w ∈ V equals the stabilizer
Sym(G, V )1 with respect to the action of Sym(G, V ) on G. If Dw : Sym(G, V ) → V
denotes the defining representation of V̂w then we have

Dw(Sym(G, V )) = GL(Gw) = GL(Sym(G, V )w),

so the first claim follows by Theorem 3.8.5 applied to Sym(G, V ) acting on V̂w. The
second claim follows by the first part and by Proposition 3.8.2, after possibly extending
the ground field to ensure that generic points exist in V (Proposition 3.4.2, Lemma 3.4.4).

The following example shows that we cannot drop the hypotheses in the previous
results.
Example 3.8.7. Let k be an infinite field of characteristic two without nontrivial
roots of unity (for example, the rational function field over F2 in one indeterminate).
We consider the infinite groups

G =


1 a b

1 c
1

 : a, b ∈ k, c ∈ {0, 1}

 and H =


1 a b

1 0
1

 : a, b ∈ k

 ,
where H is a subgroup of index two in G. Let G ≤ G be any finite subgroup containing
the matrices

s =

1 1 0
1 0

1

 and t =

1 0 0
1 1

1


(the smallest example is G = 〈s, t〉, the dihedral group of order eight). We also consider
the subgroup H = G ∩ H which has index two in G. Since any element of G has an
order dividing four, the order of G is a power of two. Let G act on V = k3 by left
multiplication, so that V becomes a kG-module. This module is cyclic. In fact, for
v = (x, y, z)ᵀ ∈ V we have that {v, sv, tv} is a basis of V if yz 6= 0, and {v, tv, (st)2v}
is a basis of V if z 6= 0, as can be easily seen by taking determinants. As G consists of
upper triangular matrices, the latter statement implies

Amp(V ) = {(x, y, z)ᵀ ∈ V : z 6= 0}.

In the following, we determine the generic symmetry group of V and its corresponding
representations on V with respect to ample points.
Claim. We have

Sym(G, V )1 = {π ∈ Sym(G) : π(h) = h and π(th) = π(t)h for all h ∈ H} ,
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so G is a proper subgroup of Sym(G, V ). For any ample point v ∈ Amp(V ), the image of
the representation Dv : Sym(G, V )→ GL(V ) is contained in G. Furthermore, there are
infinitely many generic points v ∈ Gen(V ) such that the corresponding representations
Dv are pairwise non-isomorphic.
Proof. Let v = (x, y, z)ᵀ ∈ Amp(V ) be any ample point. If π ∈ Sym(G) is any
permutation satisfying π(h) = h and π(th) = π(t)h for all h ∈ H, one can easily verify
that π(g)v = Aπgv holds for all g ∈ G, where Aπ ∈ k3×3 is the matrix defined in the
following way:

if π(t) =

1 u v
1 1

1

 then Aπ =

1 uy+vz
z

(uy+vz)y
z2

1 0
1

 .
So π ∈ Sym(G, V )1 is a generic symmetry, and Dv(π) = Aπ.
Conversely, let π ∈ Sym(G, V )1 be any generic symmetry fixing 1 ∈ G, and let

v = (x, y, z)ᵀ ∈ Gen(V ) be any generic point. By Lemma 3.5.3, we have Gv = 1, and
hence y 6= 0 and z 6= 0. It is easy to see that the elements of H are precisely those
elements of G with a relevant eigenvalue 1. By Proposition 3.7.2, it follows π(t) ∈ tH.
On the other hand, since s ∈ H fixes the ample point (0, 0, 1)ᵀ, Proposition 3.7.2 shows
that s is mapped to another element of G fixing (0, 0, 1)ᵀ. It follows

π(s) =

1 λ 0
1 0

1

 for some λ ∈ k.

The equation
Dv(π)(sv − v) = π(s)v − v = λ(sv − v)

shows that λ is an eigenvalue of Dv(π). Since Dv(π) has finite multiplicative order, and
since k contains only the trivial root of unity, the only possibility is λ = 1, and hence
π(s) = s. Now we have seen that Dv(π) agrees with Aπ on the basis {v, sv, tv} of V ,
so we conclude Dv(π) = Aπ. As we have verified before, the equations

π(h)v = Aπhv = hv and π(th)v = Aπthv = π(t)hv

hold for all h ∈ H, and, since Gv = 1, we conclude

π(h) = h and π(th) = π(t)h for all h ∈ H.

This proves our first claim. The second claim follows immediately, as we have

Dv(Sym(G, V )) = G ·Dv(Sym(G, V )1) ⊆ G · G ⊆ G

for all v ∈ Amp(V ).
Concerning the last claim, let v, w ∈ Amp(V ) be such that Dv and Dw are isomorphic.

That is, there is a matrix Q ∈ GL(V ) with Q−1Dv(π)Q = Dw(π) for all π ∈ Sym(G, V ).
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In particular, Q−1sQ = Q−1Dv(ιs)Q = Dw(ιs) = s, and analogously Q−1tQ = t. These
equations already imply

Q =

a 0 b
a 0

a


for certain a, b ∈ k. It is easy to check that Q commutes with any element of G, and
hence Dv = Dw. Therefore, the representations of Sym(G, V ) given by ample points are
isomorphic if and only if they coincide. So it suffices to show that there are infinitely
many distinct representations given by generic points. Let v = (x, y, z)ᵀ ∈ Gen(V ) be
a generic point, and let π ∈ Sym(G, V )1 be the generic symmetry with π(t) = ts. The
corresponding matrix

Dv(π) = Aπ =

1 y
z

y2

z2

1 0
1


is uniquely determined by the fraction yz−1. We consider the rational map

f : Amp(V )→ k (x, y, z)ᵀ 7→ yz−1,

which is clearly surjective. Since Gen(V ) is dense in Amp(V ), it follows that f(Gen(V ))
is dense in k. In particular, there are infinitely many values of f(v) = yz−1 attained by
generic points v, which shows that {Dv(π) : v ∈ Gen(V )} is an infinite set.

We have seen in the last example that any finite subgroup G ≤ G acts faithfully
V = k3 such that V is not generically closed as a kG-module. There are infinitely
many natural choices (even up to isomorphism) for letting Sym(G, V ) act on V . If
w ∈ Gen(V ) is any generic point then Dw(Sym(G, V )) is again a finite subgroup of
G. So regardless of the choice of w, the k Sym(G, V )-module V̂w is not generically
closed either. Proceeding in that way, we get an infinite sequence of groups of strictly
increasing order G1 � G2 � G3 � . . . such that Gi+1 = Sym(Gi, V ) acts faithfully on
V with respect to a generic point of Gi for all i.

This example also shows that Sym(G, V ) does not need to act faithfully on V (with
respect to non-generic ample points), even if G does. Indeed, if we consider the generic
symmetry π ∈ Sym(G, V )1 with π(t) = ts, and the ample point v = (0, 0, 1)ᵀ ∈
Amp(V ), then Dv(π) is the identity matrix.

We close this section with a second sufficient criterion on a module for being (weakly)
generically closed. The following result is originally due to Isaacs [16]. We reprove it in
a completely different way, using the previously developed techniques. Later on, we give
a vast generalization of that result (see Theorem 4.5.4). Recall that a kG-module V is
called absolutely simple if the scalar extension V E is a simple EG-module for all field
extensions E/k. A well know result from representation theory states that a simple
kG-module V is absolutely simple if and only if EndkG(V ) = k [22, Theorem 7.5].

Proposition 3.8.8 (Isaacs). Let k be an arbitrary field, and let G be any finite group.
Then all absolutely simple kG-modules are weakly generically closed.
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Proof. Let V be an absolutely simple kG-module with corresponding representation
D : G → GL(V ). By passing over to a field extension if necessary, we may assume
without loss of generality that V contains generic points. Let v, w ∈ Amp(V ) be
arbitrary ample points. We claim that Dv = Dw. By Proposition 3.8.2, there is an
isomorphism α : V̂v → V̂w of k Sym(G, V )-modules. By restriction of scalars, α is also
an automorphism of V as a kG-module. Since V is absolutely simple, it follows that α
is the left multiplication by some nonzero element of k. This implies Dv = Dw.
Now let v ∈ Gen(V ) be a fixed generic point, and let π ∈ Sym(G, V )1 be arbitrary.

By the previous considerations, we have

Dv(π)w = Dw(π)w = π(1)w = w for all w ∈ Amp(V ),

which shows that Dv(π) is the identity on V . By Lemma 3.5.3, it follows π ∈ Ker(Dv) =
Iv(G, V ). We conclude Sym(G, V ) = G · Iv(G, V ).

3.9 Affine symmetries of orbit polytopes

As mentioned in the introduction, the theory on generic symmetries is originally
motivated by geometric questions about orbit polytopes. In this section, we develop
the connection between the abstract notions of generic symmetry groups of modules
and of affine symmetry groups of orbit polytopes. Most importantly, we establish a
necessary and sufficient condition on an abstract group to be isomorphic to the affine
symmetry group of an orbit polytope (Theorem 3.9.6). This criterion can be seen as
the starting point of our classification of the affine symmetry groups of orbit polytopes
(which will ultimately be completed in Theorem 6.4.4).

In the following, we recall a minimal amount of basic facts on polytopes which are
necessary for our purposes. For a comprehensive view on polytopes, we refer to [33].
A polytope P ⊆ V is the convex hull of finitely many points of a real vector space V .
A point p ∈ P is called a vertex of V if there is some linear form λ : V → R and a
constant c ∈ R with λ(x) ≤ c for all x ∈ P such that equality holds only for x = p.
The set Vert(P ) of all vertices of P is a finite set, which is characterized as the unique
smallest subset X ⊆ P such that P = convX [33, Proposition 2.2]. There are different
notions of symmetries of a polytope, but in any case, it is desirable that translations
of a single polytope have isomorphic symmetry groups. For that reason, we cannot
impose symmetries of polytopes to be linear maps. A reasonable notion of symmetry is
given by affine maps.

Definition 3.9.1. Let V be a real vector space, and let X ⊆ V be an arbitrary subset.
An affine symmetry of X is a permutation on X which is the restriction of some affine
map V → V . The group of all affine symmetries of X is denoted by AGL(X).

If the vector space under consideration is an inner product space, one usually restricts
to isometric symmetries, that is, to those affine symmetries preserving distances and
angles. The following considerations are equally valid in that setting, but for simplicity,
we only treat the general case of affine symmetries.
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If f ∈ AGL(P ) is an affine symmetry of some polytope P , it is evident from the
definition that f permutes the vertices of P , and that f is uniquely determined by its
restriction to Vert(P ). In other words, AGL(P ) acts faithfully on Vert(P ), and the
corresponding group homomorphism AGL(P )→ AGL(Vert(P )) is an isomorphism. In
particular, the affine symmetry group of any polytope is finite.

Definition 3.9.2. A polytope P is called an orbit polytope if AGL(P ) acts transitively
on Vert(P ).

By definition, if P is an orbit polytope then P is the convex hull of one particular
orbit of AGL(P ). This observation leads to a general construction of orbit polytopes.
Let G ≤ AGL(V ) be any finite subgroup, and let v ∈ V be an arbitrary element. We
define

Orb(G, v) = convGv = conv{gv : g ∈ G}.

Lemma 3.9.3. Keeping the previous notations, P = Orb(G, v) is an orbit polytope
with vertex set Vert(P ) = Gv.

Proof. Since Vert(P ) is the unique smallest set X such that P = convX, we have
Vert(P ) ⊆ Gv. By restriction of maps to P , we get a homomorphism G → AGL(P )
of groups. Since AGL(P ) acts on Vert(P ), and since a subgroup of AGL(P ) acts
transitively on the superset Gv of Vert(P ), we conclude Vert(P ) = Gv.

We call Orb(G, v) the orbit polytope of G at v. In the following, we establish the
connection between the current setting and the theory of generic symmetries.
Let G be any finite group, and let V be an RG-module such that G acts faithfully

on V . Then G can be regarded as a subgroup of GL(V ), and we may consider the orbit
polytopes P = Orb(G, v) of G at elements v ∈ V . By the previous discussion, we may
identify the affine symmetry group AGL(P ) with the group AGL(Gv). The crucial
point is that (since G is a linear group) we actually have AGL(Gv) = GL(Gv). For
that reason, orbit symmetry groups come into play naturally.

Lemma 3.9.4. Let V be an RG-module, and let v ∈ V be arbitrary. Then we have
GL(Gv) = AGL(Gv).

Proof. We only have to prove the inclusion AGL(Gv) ⊆ GL(Gv). Let f : V → V be
any affine map permuting the elements of the orbit Gv. We have to show that f agrees
with a linear map on Gv. We consider the element e = 1

|G|
∑
g∈G g ∈ RG, and the affine

map h : V → V , x 7→ f(x− ex+ ev) + ex− ev. Since ev is an affine combination of the
elements of Gv, and since f is an affine permutation on Gv, we have f(ev) = ev, and
hence h(0) = 0. So h is a linear map. For all g ∈ G, we have eg = e, and consequently
h(gv) = f(gv).

Now if V is a finitely generated RG-module on which G acts faithfully, then (by
the preceding discussion and by Proposition 3.1.4) we have natural isomorphisms
Sym(G, v) ∼= AGL(Orb(G, v)) for all points v ∈ V with a trivial stabilizer in G. In
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particular (by Theorem 3.5.2 and Lemma 3.5.3), we have Sym(G, V ) ∼= AGL(Orb(G, v))
for all generic points v ∈ Gen(V ).

We have seen that the generic symmetry group of any RG-module V on which G acts
faithfully is isomorphic to the affine symmetry group of orbit polytopes of G in V . In
particular, G is isomorphic to the affine symmetry group of an orbit polytope, provided
there is a generically closed RG-module. It is rather surprising that the converse holds
as well. More precisely, if G is a finite group isomorphic to the affine symmetry group
of an orbit polytope then there exists a generically closed RG-module. To begin with,
we show that G is also the linear symmetry group of an orbit polytope in that case.

Lemma 3.9.5. Let V be a real vector space, and let P ⊂ V be an orbit polytope. Then
there is an orbit polytope Q ⊂ V such that AGL(P ) ∼= AGL(Q) and AGL(Q) = GL(Q).

Proof. We use a similar argument to Lemma 3.9.4. Let X = Vert(P ) be the vertex
set, and let b = 1

|X|
∑
x∈X x ∈ P be the barycenter of P . We consider the translated

polytope Q = P − b = conv{x − b : x ∈ X}. Note that we have f(b) = b for all
symmetries f ∈ AGL(P ), and we have 0 ∈ Q. It is routine to check that the map
AGL(P )→ AGL(Q) sending a symmetry f ∈ AGL(P ) to the map x 7→ f(x+ b)− b is
an isomorphism. As AGL(P ) acts transitively on Vert(P ), it follows that AGL(Q) acts
transitively on Vert(Q) = {x− b : x ∈ X}, proving that Q is an orbit polytope as well.
Moreover, the isomorphism also shows that all affine symmetries of Q fix the origin of
V . This proves AGL(Q) = GL(Q).

As before, let G be any finite group isomorphic to the affine symmetry group of an
orbit polytope. Then by Lemma 3.9.5, there is an orbit polytope Q with GL(Q) =
AGL(Q) and an isomorphism D : G → GL(Q). We regard D as a representation
G→ GL(V ), where V denotes the linear span of Q in its ambient space. In that way,
V becomes an RG-module on which G acts faithfully. If v ∈ Vert(Q) is any vertex of
Q then we have Vert(Q) = Gv, as Q is an orbit polytope. In particular, V is a cyclic
kG-module generated by v, and we have D(G) = GL(Gv). By Theorem 3.8.5, it follows
that V is generically closed. We have proven the main result of the present section.

Theorem 3.9.6. Let G be a finite group. Then G is isomorphic to the affine symmetry
group of an orbit polytope if and only if there is a generically closed RG-module.

During the following chapters, we study the generic symmetries of kG-modules
from different viewpoints, and we develop certain methods for recognizing modules as
generically closed. In combination with Theorem 3.9.6, we are able to identify an abstract
finite group as the affine symmetry group of an orbit polytope. In Theorem 6.4.4, we
ultimately give a complete classification of these groups.
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In the last chapter, we studied the generic symmetries of a kG-module V from a
geometric perspective. In this chapter, we derive further insights by taking a completely
different point of view. Our considerations are based on the observation that a permu-
tation π ∈ Sym(G) is an orbit symmetry of some point of v ∈ V if and only if π fixes
the annihilator Ann(v) of v in kG as a set (Lemma 4.1.1). As a consequence, we obtain
an algebraic characterization of the generic symmetries of V as those permutations
fixing all left ideals of kG of a certain isomorphism type (Theorem 4.1.6).
This leads to the notion of isomorphism class symmetries (or ic-symmetries for

short). We call a permutation π ∈ Sym(G) an ic-symmetry of a left ideal L ≤ kG
if π fixes all left ideals of kG isomorphic to L. Using the basic observation that any
permutation fixing two left ideals L1, L2 ≤ kG also fixes their sum L1 + L2 and their
intersection L1 ∩ L2, we show that an ic-symmetry π of one left ideal is usually an
ic-symmetry of many other (non-isomorphic) left ideals. After restricting to semisimple
group algebras (and later to the subclass of admissible ic-symmetries), we get a good
understanding of the set of left ideals of kG for which π is an (admissible) ic-symmetry
(Theorem 4.2.9 and Theorem 4.3.6).

These results on ic-symmetries of left ideals have many implications on the generic
symmetries of modules. For any cyclic module V over a semisimple group algebra, we
introduce a canonical decomposition V = VI ⊕ VN into its ideal constituent VI and
its non-ideal constituent VN . We show that non-ideal constituents are always weakly
generically closed (Theorem 4.5.4), thereby generalizing a classical result of Isaacs [16]
(which is Proposition 3.8.8 here). This result will be essential for the construction of
generically closed RG-modules in Chapter 6.

For the general treatment of kG-modules V over arbitrary fields, we will restrict our
attention to the subgroup Symad(G, V ) ≤ Sym(G, V ) of admissible generic symmetries
of V . (This is actually not a restriction if k has characteristic zero or if the characteristic
of k exceeds the order of G, in which case we always have Symad(G, V ) = Sym(G, V ).)
We show that admissible generic symmetries of a cyclic module V are also admissible
generic symmetries of the constituents VI and VN (Proposition 4.6.1), thereby obtaining
a formula for Symad(G, V ) which only depends on the character of VI and on the kernel
of VN (Theorem 4.6.2). We also obtain new structural insights into the kSymad(G, V )-
modules V̂w (Theorem 4.6.4). These results are the starting point for our study of
generic symmetries from the character theoretic perspective in Chapter 5.
Most results of the present chapter have already appeared in [10], but only in the

characteristic zero case. While the approach taken here is similar, the considerations
of ic-symmetries are substantially harder in the general setting compared to the
characteristic zero case (see the discussion at the beginning of Section 4.3). In fact, the
existence of non-admissible ic-symmetries (Example 4.3.9 and 4.3.10) already shows
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that some techniques used in [10] cannot be applied to group algebras over fields of
positive characteristics. We develop a unifying theory here which applies to arbitrary
fields. This theory is capable not only of reproving the known results in characteristic
zero, but also of proving analogous results for admissible generic symmetries in positive
characteristics.

For a comprehensive view on the algebraic background of the techniques used here,
we refer to the standard textbooks [21], [22], and [4].

4.1 An algebraic characterization of generic symmetries

As before, we consider an arbitrary field k, and any finite group G. Justified by
Proposition 3.6.2, our focus will be mainly on cyclic modules. Recall that if V is a cyclic
kG-module then the ample points of V are precisely the generators of V (in particular,
cyclic modules always have ample points). Moreover, for any such v ∈ Amp(V ) there is
a unique epimorphism αv : kG→ V of kG-modules sending 1 ∈ G to v. Consequently,
αv induces an isomorphism

V ∼= kG/Ker(αv) = kG/Ann(v),

where Ann(v) = {x ∈ kG : xv = 0} is the annihilator of v. In particular, V is a
quotient of the group algebra by a left ideal (and conversely, any quotient of kG is a
cyclic module).
In the following, we need to consider a different module structure on kG. Since G

is a k-basis of kG, any permutation π ∈ Sym(G) uniquely extends to a k-linear map
kG→ kG ∑

g∈G
λgg 7→

∑
g∈G

λgπ(g),

which we denote by the same symbol π. In that way, kG can be regarded as a
k Sym(G)-module. More generally, for any subgroup P ≤ Sym(G) containing all left
multiplications by elements of G (most importantly, orbit symmetry groups and generic
symmetry groups), we will regard kG as a kP -module. This constraint on P ensures
that all kP -submodules of kG are left ideals of kG in the usual sense.

Lemma 4.1.1. Let V be a kG-module with some point w ∈ V , and let L = Ann(w)
be the annihilator of w. Then

Sym(G,w) = {π ∈ Sym(G) : π(L) ⊆ L}.

If V = kGw is cyclic then there is a unique epimorphism kG→ V̂w of k Sym(G,w)-
modules sending 1 ∈ G to w. In particular, we have an isomorphism kG/L ∼= V̂w of
k Sym(G,w)-modules.

Proof. By passing over to the cyclic submodule kGw ≤ V if necessary, we may assume
without loss of generality that w is a generator of V . Let π ∈ Sym(G,w) be some orbit
symmetry, and let αw : kG→ V denote the epimorphism of kG-modules sending 1 ∈ G
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to w. As before, the representation Sym(G,w)→ GL(V ) sending an orbit symmetry
to its realization is denoted by Dw. Then for all g ∈ G we have

αw(π(g)) = π(g)w = Dw(π)gw = π · αw(g).

Since G generates kG as a vector space, and since αw is a linear map, we see that
αw is actually a morphism of k Sym(G,w)-modules. In particular, L = Ker(αw) is a
k Sym(G, v)-submodule. That is, we have π(L) ⊆ L for all π ∈ Sym(G,w).

Conversely, let π ∈ Sym(G) be any permutation such that π(L) ⊆ L. Then π induces
a linear map kG/L→ kG/L. Let ψ : V → V be the unique linear map such that the
following diagram commutes.

kG/L kG/L

V V

π

αw αw

ψ

Then for all g ∈ G we have

ψ(gw) = ψ(αw(g)) = αw(π(g)) = π(g)w,

whence π ∈ Sym(G,w) is an orbit symmetry of w realized by ψ.

Since a permutation π ∈ Sym(G) is a generic symmetry of a cyclic module V if
and only π is an orbit symmetry of all generators of V (Theorem 3.3.4), Lemma 4.1.1
gives rise to an algebraic characterization of generic symmetries. Before stating that
characterization, we need to recall some special ring theoretical facts about group
algebras.

Lemma 4.1.2. Let V = kGx be a cyclic kG-module. The following statements hold.

(1) Amp(V ) = {ux : u ∈ (kG)×}.

(2) Two left ideals L1, L2 ≤ kG are isomorphic if and only if L2 = L1u for some
unit u ∈ (kG)×.

(3) If a left ideal L ≤ kG is isomorphic to a two-sided ideal I ≤ kG then L = I.

(4) A left ideal L ≤ kG is the annihilator of some generator of V if and only if L is
isomorphic to Ann(x).

Proof. These results rely on the well known facts that group algebras over fields are
Frobenius algebras [21, Example 16.56, Theorem 16.21], and (in particular) semilocal
rings. Then (1) is a consequence of a theorem of Bass [22, Theorem 20.9], and (2)
follows by [21, Proposition 15.20]. Both (3) and (4) are immediate consequences of (1),
(2), and of the equation

Ann(uw) = Ann(w)u−1 for all w ∈ V and u ∈ (kG)×,
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which is easily verified.

The last assertion in Lemma 4.1.2 can be generalized to non-cyclic modules in the
semisimple setting. For non-semisimple modules however, annihilators of ample points
may be non-isomorphic (this can be observed in Example 3.6.4).

Lemma 4.1.3. Let V be a finitely generated semisimple kG-module, and let v, w ∈
Amp(V ) be ample points. Then we have an isomorphism Ann(v) ∼= Ann(w) of kG-
modules.

Proof. By Lemma 3.6.1, we have kGv ∼= kGw, so Ann(w) is also the annihilator
of some generator of kGv. The claim follows by Lemma 4.1.2, as all annihilators of
generators of kGv are isomorphic.

For any kG-module V we can form its automorphism group GLkG(V ) consisting of
all bijective kG-linear maps V → V . It is routine to check that the automorphisms
of a cyclic kG-module V map generators of V to generators again. In other words,
GLkG(V ) acts on Amp(V ) as a permutation group. We will see that there are nice
consequences on the generic symmetries of V if this action is transitive. The following
lemma characterizes that situation.

Lemma 4.1.4. Let V = kGw be a cyclic kG-module. The following statements are
equivalent.

(1) Ann(w) is a two-sided ideal of kG.

(2) Ann(v) = Ann(w) for all v ∈ Amp(V ).

(3) GLkG(V ) acts transitively on Amp(V ).

Proof. We prove (1) =⇒ (2) =⇒ (3) =⇒ (1). If (1) holds then by Lemma 4.1.2, the
annihilators of all generators of V are isomorphic to the same two-sided ideal Ann(w).
Hence, they all coincide, and (2) holds.
Suppose (2) holds, and let v ∈ Amp(V ) be any generator of V . Then we have

an isomorphism α : kG/Ann(w) → V sending 1 to w, as well as an isomorphism
β : kG/Ann(v) → V sending 1 to v. Since Ann(v) = Ann(w), we can form the
composition αβ−1 which is an automorphism of V sending v to w. So (3) holds.

Finally, suppose that (3) holds, and let g ∈ G be arbitrary. By the hypothesis, there
is an automorphism γ ∈ GLkG(V ) such that γ(w) = gw. We compute

Ann(w)g−1 = Ann(gw) = Ann(γ(w)) = Ann(w).

Since g ∈ G was arbitrary, this shows that Ann(w) is a two-sided ideal of kG, whence
(1) holds.

As before, we will sometimes need to extend the ground field to ensure for example
that generic points exist, or that simple modules are absolutely simple. In view of
the previous results, it is clear that we need to keep track of how annihilators are



4.1 An algebraic characterization of generic symmetries 53

affected by scalar extensions. In the following, we consider any field extension E/k and
any finite group G. As we have seen before, if V is any kG-module then the scalar
extension V E = E⊗k V is an EG-module in a natural way. Recall that if f : V → W
is a homomorphism of kG-modules then

fE : V E → WE, e⊗ x 7→ e⊗ f(x)

defines a unique homomorphism of EG-modules. Since we consider tensor products over
fields (and since vector spaces over fields are free modules), fE is an injective (surjective)
homomorphism provided that f is injective (surjective). Moreover, if k : K → V is a
kernel of f (that is, if k is a monomorphism of kG-modules whose image in V is the
kernel of f in the usual sense) then kE is a kernel of fE. These exactness properties of
tensor products are best understood in terms of flat modules. For the details, we refer
to [21, Ch. 2].

Lemma 4.1.5. Let V be a kG-module, let E/k be a field extension, and let v ∈ V be
arbitrary. Then the annihilator of 1⊗ v ∈ V E is the image of the monomorphism

Ann(v)E → EG, e⊗ x 7→ ex.

In other words, Ann(1⊗ v) is given by the E-linear span of Ann(v) in EG.

Proof. We first note that there is a natural isomorphism ϕ : (kG)E → EG of EG-
modules given by e ⊗ x 7→ ex on the pure tensors (the inverse homomorphism is
uniquely given by 1 7→ 1 ⊗ 1). Let k : Ann(v) → kG be the set inclusion, and let
f : kG→ V be the unique homomorphism sending 1 ∈ G to v. Then k is a kernel of f ,
whence kE is a kernel of fE. It is easy to check that we get a commutative diagram

Ann(v)E (kG)E V E

EG

kE

k′ ϕ

fE

f ′

where k′ is given by e ⊗ x 7→ ex, and where f ′ is given by 1 7→ 1 ⊗ v. By a simple
diagram chasing argument, we see that k′ is a kernel of f ′. The claim follows since
Ker(f ′) = Ann(1⊗ v).

We are now ready to prove the main results of this section. The following theorem is
the promised algebraic characterization of generic symmetries.

Theorem 4.1.6. Let k be a field of infinite order, and let V be a finitely generated
kG-module with an ample point w ∈ Amp(V ). Suppose that V is either semisimple or
cyclic. Then we have

Sym(G, V ) = {π ∈ Sym(G) : π(L) ⊆ L for all L ≤ kG with L ∼= Ann(w)}.
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If V is cyclic then there is an epimorphism kG→ V̂w of k Sym(G, V )-modules sending
1 ∈ G to w. In particular, we have kG/Ann(w) ∼= V̂w as k Sym(G, V )-modules.

Proof. By Theorem 3.3.4, and by Lemma 4.1.1, a permutation π ∈ Sym(G) is a generic
symmetry of V if and only if π fixes the annihilators of all ample points of V . By
Lemma 4.1.2 and Lemma 4.1.3, these annihilators form a single isomorphism class of left
ideals in kG. The final assertion follows by Lemma 4.1.1 by restriction of scalars.

In view of Theorem 4.1.6, the situation is of course particularly nice if the hypotheses
of Lemma 4.1.4 hold, since then we only have to consider a single annihilator. This
situation is given for example if G is an abelian group since then the group algebra kG
is commutative, and any left ideal of kG is a two-sided ideal.

Theorem 4.1.7. Let V be a cyclic kG-module such that Ann(w) is a two-sided ideal
for some w ∈ Amp(V ). Then all generators of V are generic points. Furthermore, the
k Sym(G, V )-modules V̂w are isomorphic for all w ∈ Amp(V ).

Proof. For proving the first assertion, we may assume without loss of generality that V
contains generic points (otherwise, by Lemma 4.1.5, we may pass over to a suitable scalar
extension V E, and the lemma guarantees that Ann(1⊗ w) ⊆ EG is still a two-sided
ideal). By Lemma 4.1.4, GLkG(V ) acts transitively on Amp(V ), so by Lemma 3.1.8,
all generators of V have the same orbit symmetry groups. Since V contains generic
points, it follows that all generators of V are generic.

Concerning the second assertion, we apply Lemma 4.1.4 again to get the existence of
a two-sided ideal I ≤ kG satisfying Ann(w) = I for all w ∈ Amp(V ). By Lemma 4.1.1,
we get isomorphisms V̂w ∼= kG/I of k Sym(G, V )-modules for all w ∈ Amp(V ).

Remark 4.1.8. Let V be a cyclic kG-module over an infinite field, and let L ≤ kG
be the annihilator of some generator of V . We know by Theorem 3.3.4 that in order to
test whether a permutation π ∈ Sym(G) is a generic symmetry of V we do not have
to consider all generators of V , but only a dense subset of them. From the algebraic
perspective, Theorem 4.1.6 tells us that π is a generic symmetry of V provided that
π fixes all left ideals of the set L = {L′ ≤ kG : L′ ∼= L}. In view of Theorem 3.3.4,
one might guess that we do not have to check all members of L either, but only a
“dense” subset of them. This intuition can actually be made precise. We can introduce a
suitable quotient topology on L coming from Amp(V ). Then L becomes a compact and
irreducible topological T1-space. With respect to that topology, it can be shown that π is
a generic symmetry of V provided that π fixes a dense subset of L. Interesting examples
of dense subsets of L are the left ideals of L which have one specific complement in
kG, or the left ideals of L generated by elements with coefficients in a smaller (while
still infinite) subfield of k.

4.2 Isomorphism class symmetries of left ideals

We have seen in Theorem 4.1.6 that the generic symmetries of kG-modules are charac-
terized as those permutations fixing a certain isomorphism class of left ideals of kG.
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The objective of this section is to study the set theoretic consequences in that situation.
Note that if a permutation π ∈ Sym(G) fixes two left ideals A,B ≤ kG then π also
fixes their intersection A∩B and their sum A+B. Following that observation, we will
identify many other isomorphism classes of left ideals fixed by π.

Definition 4.2.1. Let L ≤ kG be a left ideal. We say that a permutation π ∈ Sym(G)
fixes L if π(L) ⊆ L. We call π an ic-symmetry (short for isomorphism class symmetry)
of L if π fixes all left ideals of kG isomorphic to L.

Note that if k is an infinite field then a permutation π ∈ Sym(G) is an ic-symmetry
of a left ideal L ≤ kG if and only if π is a generic symmetry of the cyclic kG-module
kG/L (Theorem 4.1.6). However, our considerations on ic-symmetries are independent
of the cardinality of k.

In the following, we study the set of left ideals of kG for which a fixed permutation
π ∈ Sym(G) is an ic-symmetry.

Definition 4.2.2. Let kG be a group algebra. Then LkG denotes the lattice of all left
ideals of kG. For any permutation π ∈ Sym(G), we denote the set of all left ideals of
kG for which π is an ic-symmetry by LkG(π).

It is clear by definition that each set LkG(π) is closed under taking isomorphic copies.
It is less obvious however, that LkG(π) is actually a sublattice of LkG, that is, that
LkG(π) is closed under taking sums and intersections.

Lemma 4.2.3. LkG(π) is a sublattice of LkG for all permutations π ∈ Sym(G).

Proof. Let A,B ∈ LkG(π) be left ideals for which π is an ic-symmetry. We have to show
that π fixes all isomorphic copies of A ∩B and of A+B in kG. By Lemma 4.1.2, the
isomorphic copies of A∩B are given by (A∩B)u = Au∩Bu for unit elements u ∈ (kG)×.
Accordingly, the isomorphic copies of A + B are given by (A + B)u = Au + Bu for
u ∈ (kG)×. The claim follows since Au is an isomorphic copy of A, and since Bu is an
isorphic copy of B, which are both fixed by π.

As a consequence of Lemma 4.2.3, we see that if π is an ic-symmetry of some left
ideal L then π is also an ic-symmetry of any left ideal which is obtained by taking sums
and intersections of isomorphic copies of L. In the semisimple case, we will obtain a
whole interval of left ideals for which π is an ic-symmetry in that way (Theorem 4.2.9).
The bounds of that interval are given by certain two-sided ideals.

Definition 4.2.4. Let L ≤ kG be a left ideal. The ideal constituent LI of L is the
greatest two-sided ideal of kG contained in L. Accordingly, the ideal closure LJ of L is
defined as the smallest two-sided ideal of kG containing L.

We collect some simple properties of ideal constituents and ideal closures.

Lemma 4.2.5. Let A,B,L ≤ kG be left ideals.

(1) We have LI = ⋂
g∈G Lg and LJ = ∑

g∈G Lg.
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(2) If A ∼= B then AI = BI and AJ = BJ .

(3) We always have (A ∩ B)I = AI ∩ BI and (A+B)J = AJ +BJ .

(4) If L ∈ LkG(π) for some π ∈ Sym(G) then LI ∈ LkG(π) and LJ ∈ LkG(π).

Proof. Let I = ⋂
g∈G Lg and J = ∑

g∈G Lg. By definition, I and J are left ideals
satisfying Ig = I and Jg = J for all g ∈ G. So I and J are two-sided ideals, and
of course we have I ⊆ L ⊆ J . Let I ′ and J ′ be arbitrary two-sided ideals such that
I ′ ⊆ L ⊆ J ′. Then for all g ∈ G, we have

I ′ = I ′g ⊆ Lg ⊆ J ′g = J ′,

whence I ′ ⊆ I and J ⊆ J ′. This proves (1).
Both (3) and (4) are immediate consequences of (1) and Lemma 4.2.3. It remains to

prove (2). If A and B are isomorphic left ideals then, by Lemma 4.1.2, we have B = Au
for some unit u ∈ (kG)×. It follows

AI = (AI)u ⊆ Au = B, and B = Au ⊆ (AJ )u = AJ ,

and consequently AI ⊆ BI and BJ ⊆ AJ . The converse inclusions follow by symmetry.

It can be easily shown that all left ideals of kG which can be written in terms of
sums and intersections of isomorphic copies of a single left ideal L lie between LI and
LJ . We will see that for semisimple group algebras the converse statement holds as
well. Thereby, we show that an ic-symmetry of L is also an ic-symmetry of any left
ideal between LI and LJ (Theorem 4.2.9).

From now on, we impose the group algebra kG under consideration to be semisimple
(see the discussion at the beginning of section 3.6), that is, we impose that the
characteristic of the field k does not divide the order of the group G. In that case, all
kG-modules (and in particular, all left ideals of kG) are semisimple. Any left ideal of
kG can be decomposed into a direct sum of simple left ideals, and any left ideal has a
complement in kG. If

kG = L1 ⊕ · · · ⊕ Ln
is any direct sum decomposition of kG into left ideals then there is a unique correspond-
ing decomposition 1 = e1 + · · ·+ en of the unit element into elements ei ∈ Li. It is easy
to see that all ei are orthogonal idempotents (that is, we have (ei)2 = ei and eiej = 0
for all i 6= j) and that each ei is a generator of Li. Conversely, if e1, . . . , en ∈ kG
are orthogonal idempotents summing up to 1 then we get an associated direct sum
decomposition

kG = kGe1 ⊕ · · · ⊕ kGen

of left ideals. Since all left ideals have complements in kG, we see that any left ideal of
kG is a cyclic kG-module generated by an idempotent element (which is non-unique
in general). If L ≤ kG is a left ideal then any idempotent generator e ∈ L gives rise
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to a complement kG(1 − e) of L generated by the idempotent 1 − e. In that way,
the complements of a fixed left ideal L are in one-to-one correspondence with the
idempotent generators of L. For the general theory of idempotents, we refer to [22,
Ch. 7].

We will frequently use the following standard arguments.

Lemma 4.2.6. Let A,B ≤ kG be left ideals of a semisimple group algebra kG, and
let S be a simple submodule of A+B. Then S is isomorphic to a submodule of either
A or B.

Proof. Let ι : S → A+B be the set inclusion, and let κ : A+B → (A+B)/B be the
canonical projection. If κ ◦ ι is the zero map then S is actually a submodule of B. If
κ ◦ ι is nonzero then it must be a monomorphism as S is simple. We conclude that
S is isomorphic to a submodule of (A+ B)/B ∼= A/(A ∩ B). The claim follows since
A/(A ∩B) is isomorphic to a submodule of A (in fact to any complement of A ∩B in
A).

The idempotent generators of two-sided ideals I ≤ kG are special, as they are
uniquely given by a formula in terms of the character of I. Recall that the character of
a finitely generated kG-module V is the map kG→ k sending an element x ∈ kG to
its trace as a linear operator on V . Since the trace map is k-linear, and since G is a
k-basis of kG, characters are usually regarded as functions G→ k.

Lemma 4.2.7. Let kG be a semisimple group algebra, and let L ≤ kG be a left ideal
generated by some idempotent e ∈ kG. Then the following statements are equivalent.

(1) L is a two-sided ideal.

(2) e is central, that is, we have ex = xe for all x ∈ kG.

If any of these statements is true then e is uniquely given by the formula

e = 1
|G|

∑
g∈G

χ(g−1)g,

where χ is the character of L. Moreover, L has a unique complement in kG, and this
complement is a two-sided ideal again.

Proof. If e is central then L = kGe is obviously a two-sided ideal, so the implication
(2) =⇒ (1) is trivial. Suppose that (1) holds. We first show that L has a unique
complement in kG. Let C1, C2 ≤ kG be complements of L, and let C = C1 +C2. Then
we certainly have L + C = kG. Suppose that L ∩ C 6= 0, and let S ≤ L ∩ C be any
simple submodule. By Lemma 4.2.6, we may assume without loss of generality that S
is isomorphic to a submodule S ′ ≤ C1. By Lemma 4.1.2, we have S ′ = Su for some
unit u ∈ (kG)×, and hence S ′ = Su ≤ Lu = L. This contradicts L ∩ C1 = 0. So C
must actually be a complement of L in kG, and we conclude C1 = C = C2, proving
uniqueness.
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By the previous discussion, the idempotent generators of L are in one-to-one corre-
spondence with the complements of L in kG. Since L has only one complement, there
is a unique idempotent generator e ∈ L. Since L = Lg holds for all g ∈ G, it is easy to
see that g−1eg is also an idempotent generator of L for all g ∈ G. Consequently, we
have g−1eg = e for all g ∈ G, and hence (since G is a k-basis of kG), ex = xe for all
x ∈ kG. This proves (2). Now the unique complement C of L is generated by by the
central idempotent 1− e, and we already have proved that C is a two-sided ideal in
that case.

It remains to determine the coefficients λg of e = ∑
g∈G λgg. For that purpose, we need

to consider the character ρ of kG regarded as a module over itself. It is straightforward
to check (by considering the standard basis G of kG) that

ρ(1) = |G| and ρ(g) = 0 for all g ∈ G \ {1}.

The character of the unique complement C = kG(1 − e) of I is given by ψ = ρ − χ.
Since I = kGe, and since e is a central idempotent, the left multiplication by e is the
identity on I, and the zero map on C. Consequently, we get

|G| · λg = ρ(eg−1) = χ(eg−1) + ψ(eg−1) = χ(g−1)

for all g ∈ G. The claim follows since kG is semisimple, which means that |G| is nonzero
in k.

In the following, we frequently need two calculation rules for manipulating left ideals.
The first rule is usually known as the modular law, which essentially states that the
two obvious ways of mapping an arbitrary left ideal X to a left ideal between two given
left ideals A ⊆ B yield the same result. Formally, if A,B,X ≤ kG are left ideals with
A ⊆ B, then we have

(A+X) ∩ B = A+ (X ∩ B).

The proof of the modular law is elementary and utterly routine. In fact, it applies
more generally to submodules of any module over an arbitrary ring.
The second law we need is a distributive law. Note that lattices of submodules are

usually not distributive, that is, we usually have

(A+B) ∩ C 6= (A ∩ C) + (B ∩ C)

for submodules A,B,C of a fixed module (even for subspaces of vector spaces). However,
if A,B,C are left ideals of a semisimple ring, and if we require C to be a two-sided
ideal, we actually get an equality.

Lemma 4.2.8. Let kG be a semisimple group algebra, let A,B ≤ kG be left ideals,
and let I ≤ kG be a two-sided ideal. Then we have (A+B) ∩ I = (A ∩ I) + (B ∩ I).

Proof. The right-to-left inclusion trivially holds without any assumption on I. So it
remains to prove (A+B) ∩ I ⊆ (A ∩ I) + (B ∩ I). By Lemma 4.2.7, there is a central
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idempotent element e ∈ kG such that I = kGe. Then f = 1− e is a central idempotent
such that I = {x ∈ kG : fx = 0}. Let a ∈ A and b ∈ B be arbitrary such that
a+ b ∈ I. Then we have 0 = f(a+ b) = fa+ fb. Since A and B are left ideals, we have
a′ = a − fa ∈ A and b′ = b − fb ∈ B. Furthermore, since f is idempotent, we have
fa′ = fb′ = 0. So a′, b′ ∈ I. Finally, we see that a+ b = a′ + b′ ∈ (A∩ I) + (B ∩ I).

With all these arguments in mind, we are ready to prove the following important
result which is (among others) a key ingredient for our generalization of Isaacs’ theorem
(Theorem 4.5.4).

Theorem 4.2.9. Let kG be semisimple, and let π ∈ Sym(G) be an ic-symmetry of
some left ideal L ≤ kG. Then π is an ic-symmetry of all left ideals between LI and
LJ . That is, we have an implication

L ∈ LkG(π) =⇒ {X ≤ kG : LI ⊆ X ⊆ LJ } ⊆ LkG(π).

Proof. For keeping notations short, we set L = LkG(π), I = LI and J = LJ . We have
to show that any left ideal X ≤ kG with I ⊆ X ⊆ J is contained in L. We consider
some complement of I in X, which we decompose into a direct sum of simple left ideals.
That is, we may write

X = I ⊕ S1 ⊕ · · · ⊕ Sn
for certain simple left ideals Si ⊆ J . Since L is a lattice by Lemma 4.2.3, it suffices
to show that L contains all left ideals of the form I ⊕ S, where S ≤ J is a simple left
ideal with S ∩ I = 0. Since J is a finite sum of isomorphic copies of L (Lemma 4.2.5),
we see by Lemma 4.2.6 that S is isomorphic to a submodule of L. Since L contains all
isomorphic copies of its members, and since no isomorphic copy of S is contained in I,
we may further assume without loss of generality that S is contained in L.

We define the left ideal D to be the intersection of all isomorphic copies of L
containing S. Since kG is a finite dimensional vector space, and since all left ideals are
linear subspaces of kG, D can also be written as the intersection of a finite subcollection
of those copies of L. So we have D ∈ L by Lemma 4.2.3, and by definition, we have
I + S ⊆ D ⊆ L. We will show that I + S = D, in which case we are done.
Suppose that I + S is a proper submodule of D. Then there is another simple

submodule T ≤ D with (I + S) ∩ T = 0. By choosing complements, we may consider
direct sum decompositions

J = L⊕ C and L = L′ ⊕ T

with respect to certain left ideals C,L′ ≤ kG, where I + S ≤ L′. By the distributive
law (Lemma 4.2.8), we have

TJ = J ∩ TJ = (L ∩ TJ )⊕ (C ∩ TJ ).

Since T is not contained in I (or equivalently, TJ 6⊆ L), we have L ∩ TJ ( TJ , and
hence C ∩ TJ 6= 0. By Lemma 4.2.6, and since TJ is a sum of isomorphic copies of T ,
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there must be a simple submodule T ′ ≤ C isomorphic to T . We define L′′ = L′ ⊕ T ′.
By definition, L′′ is isomorphic to L, and I + S ⊆ L′′, whence D ⊆ L ∩ L′′. By the
modular law, we get

T ⊆ D ⊆ L ∩ L′′ = (L′ + T ′) ∩ L = L′ + (T ′ ∩ L) = L′.

This contradicts the fact that T has a trivial intersection with L′.

4.3 Admissible ic-symmetries

The consideration of ic-symmetries is a lot easier in the case where the ground field
has characteristic zero. In [10] we have shown that it suffices to consider the field C of
complex numbers in that case, where we have canonical choices for complements of left
ideals in CG. In summary, if we consider the inner product on CG for which G is an
orthonormal basis, then all permutations π ∈ Sym(G) act as orthogonal operators on
CG. Consequently, if π fixes some left ideal L ≤ CG then it has to fix the orthogonal
complement L⊥, which is a left ideal again. With that observation, it is easy to see
that if π is an ic-symmetry of L then π is also an ic-symmetry of any complement
of L. Unfortunately, the idea of this approach does not apply to fields of positive
characteristics, and in fact, an ic-symmetry of some left ideal L ≤ kG does not have to
be an ic-symmetry of a complement of L in general (see Example 4.3.9 and 4.3.10). To
overcome that problem, we will exclude such “problematic” ic-symmetries from our
considerations by restring to the subclass of admissible ic-symmetries. This subclass is
designed to fulfill the same criteria as the full class of ic-symmetries in the characteristic
zero case.
Although there are no canonical choices for taking complements of left ideals in

general, we know that two-sided ideals have unique complements in semisimple group
algebras (Lemma 4.2.7). We introduce the following terminology. For any two-sided
ideal I ≤ kG of a semisimple group algebra kG, we denote the unique complement
of I by I⊥. It is easy to see that the map sending a two-sided ideal I to I⊥ is a
self-inverse inclusion reversing bijection (that is, an anti-automorphism) on the lattice
of all two-sided ideals in kG. In particular, this map interchanges intersections and
sums, that is, for all two-sided ideals I, J ≤ kG, we have

(I ∩ J)⊥ = I⊥ + J⊥ as well as (I + J)⊥ = I⊥ ∩ J⊥.

We now restrict our attention to those ic-symmetries fixing certain complements of
two-sided ideals.

Definition 4.3.1. Let π ∈ Sym(G) be an ic-symmetry of a left ideal L ≤ kG. Then π
is called admissible (with respect to L) if π fixes both (LI)⊥ and (LJ )⊥. The set of all
left ideals of kG for which π is an admissible ic-symmetry is denoted by Lad

kG(π).

It can be easily verified that the set of all admissible ic-symmetries of some left ideal
L is a subgroup of Sym(G), but we will not use this observation in the present section.
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By Lemma 4.2.5, we see that Lad
kG(π) contains all isomorphic copies of its members,

and by definition, Lad
kG(π) is a subset of LkG(π). However, we have to put some efforts

into showing that Lad
kG(π) is actually a sublattice. Before doing so, we identify some

situations, where ic-symmetries are automatically admissible.

Lemma 4.3.2. Let kG be a semisimple group algebra, and let π ∈ Sym(G) be a
permutation satisfying any of the following properties.

(1) π is a left multiplication by some element of G.

(2) The characteristic of k does not divide the order of P , where P is the subgroup
of Sym(G) generated by G and π.

(3) π is an automorphism or an anti-automorphism of G.

If π fixes any two-sided ideal I ≤ kG then π also fixes the unique complement I⊥.
Moreover, we have Lad

kG(π) = LkG(π) in that situation.

Here we call π an anti-automorphism if π(gh) = π(h)π(g) holds for all g, h ∈ G. For
example, the inversion map is always an anti-automorphism.

Proof. The second assertion is an immediate consequence of the first assertion and of
Lemma 4.2.5. So it remains to show that π fixes I⊥ provided that π fixes I.
Of course, there is nothing to show if (1) holds. Suppose that (2) holds. Then by

Maschke’s Theorem [22, Theorem 6.1], kP is a semisimple group algebra, whence
kG can be regarded as a semisimple module over kP . Since I is fixed by π, I is a
kP -submodule of kG which has a complement I ′ over kP . Since G is a subgroup of P ,
I ′ is also a left ideal of kG, and we conclude I ′ = I⊥ by Lemma 4.2.7. In particular,
I⊥ is fixed by π.
Finally, suppose that (3) holds, and let e ∈ I be the unique central idempotent

generator of I given by Lemma 4.2.7. Since π is an (anti-) automorphism of G, its
unique linear continuation to kG is an (anti-) automorphism as well, that is, we have
π(xy) = π(x)π(y) (or π(xy) = π(y)π(x)) for all x, y ∈ kG. Since e is central, π(e) is
central again, and we get π(xe) = π(x)π(e) for all x ∈ kG in any case. In particular,
π(e) is idempotent, and since I = π(I) = π(kGe) = kGπ(e), we see that π(e) is
actually an idempotent generator of I. By uniqueness, we conclude π(e) = e, and hence
π(1− e) = 1− e. Finally, we get π(I⊥) = π(kG(1− e)) = kGπ(1− e) = I⊥.

Most importantly, Lemma 4.3.2 shows that if k has characteristic zero, or if the
characteristic of k exceeds the order of G then all ic-symmetries are automatically
admissible. In that case, all of the following considerations are valid for arbitrary
ic-symmetries.

The main result of this section will be Theorem 4.3.6, which shows that admissible
ic-symmetry is actually a reasonable notion of symmetry (for example, that Lad

kG(π) is
a lattice in the first place). As a first step towards that goal, we will prove a variation
of Theorem 4.2.9 in the admissible setting.
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In the following, we will frequently (and implicitly) use the argument that for any
left ideal X ≤ kG and for any two-sided ideal I ≤ kG the statements X ∩ I = 0 and
X ⊆ I⊥ are equivalent. While the implication X ⊆ I⊥ =⇒ X ∩ I = 0 is trivial, the
other direction is an application of the distributive law. Since (X+ I⊥)∩ I = X ∩ I = 0,
X + I⊥ is a complement of I in kG, whence X + I⊥ = I⊥.

Lemma 4.3.3. Let kG be a semisimple group algebra, and let π ∈ Sym(G) be any
permutation. If L ∈ Lad

kG(π) then Lad
kG(π) contains all left ideals X ≤ kG satisfying

X ∩ LI ∈ {0, LI} and X ∩ (LJ )⊥ ∈ {0, (LJ )⊥}.

Proof. By definition of Lad
kG(π), it suffices to show that X ∈ LkG(π), (XI)⊥ ∈ LkG(π),

and (XJ )⊥ ∈ LkG(π). In fact, we claim that it suffices to prove only the first of these
three assertions as (XI)⊥ and (XJ )⊥ also satisfy the hypotheses of Lemma 4.3.3. It
is easy to see that if I ≤ kG is any two-sided ideal then X ∩ I ∈ {0, I} implies
(XI)⊥ ∩ I = (XI + I⊥)⊥ ∈ {0, I}, and accordingly, (XJ )⊥ ∩ I = (XJ + I⊥)⊥ ∈ {0, I}.

It remains to show that X ∈ LkG(π). We set I = LI and J = LJ . Then we
have I⊥, J⊥ ∈ LkG(π) since π is admissible with respect to L, and since two-sided
ideals have no additional isomorphic copies (Lemma 4.1.2). Furthermore, the left
ideal X ′ = (I + X) ∩ J obviously satisfies the hypotheses of Theorem 4.2.9, whence
X ′ ∈ LkG(π). Now it is easy to see (using the modular law) that for any two-sided
ideal K ≤ kG we have the implications

X ∩K = 0 =⇒ X = (X +K) ∩K⊥, and
X ∩K⊥ = K⊥ =⇒ X = K⊥ + (K ∩X).

Consequently, X can be written in terms of sums and intersections of X ′, I⊥ and J⊥.
More precisely, we have X ∈ {X ′, X ′ ∩ I⊥, X ′ + J⊥, (X ′ ∩ I⊥) + J⊥}. Since LkG(π) is
a lattice by Lemma 4.2.3, we conclude X ∈ LkG(π).

We next show that for semisimple group algebras, the ideal constituent LI of any
left ideal L has a unique complement in L which we will call the non-ideal constituent
of L. Later, it turns out to be a crucial fact that all admissible ic-symmetries of L
respect the decomposition of L into its ideal constituent and its non-ideal constituent.

Definition 4.3.4. Let L ≤ kG be a left ideal of a semisimple group algebra. Then we
call LN = L ∩ (LI)⊥ the non-ideal constituent of L.

Lemma 4.3.5. Let kG be a semisimple group algebra, and let L ≤ kG be some left
ideal. Then the non-ideal constituent LN of L is the unique complement of the ideal
constituent LI in L.

Proof. We clearly have LI ∩ LN = 0, and by the modular law, we get

LI + LN = LI + ((LI)⊥ ∩ L) = (LI + (LI)⊥) ∩ L = L.
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So LN is a complement of LI in L. Now if C ≤ L is any complement of LI then
C ∩ LI = 0 implies C ⊆ (LI)⊥, whence C = LN .

We now are ready to prove the essential properties of admissible ic-symmetries.

Theorem 4.3.6. Let kG be a semisimple group algebra, let π ∈ Sym(G) be any
permutation, and let L ≤ kG be any left ideal. Then the following statements hold.

(1) Lad
kG(π) is a sublattice of LkG(π) containing all isomorphic copies of its members.

(2) If L ∈ Lad
kG(π) then all complements of L are contained in Lad

kG(π).

(3) We have L ∈ Lad
kG(π) if and only if both LI ∈ Lad

kG(π) and LN ∈ Lad
kG(π).

Proof. We begin by proving (2), which is a simple application of Lemma 4.3.3. Let C
be any complement of L in kG. Then we clearly have LI ∩C = 0, and the distributive
law shows

(LJ )⊥ = (L⊕ C) ∩ (LJ )⊥ = C ∩ (LJ )⊥,

whence C ∈ Lad
kG(π).

We next prove (1). We have already noticed that Lad
kG(π) is contained in LkG(π) by

definition, and that Lemma 4.2.5 implies that Lad
kG(π) contains all isomorphic copies of

its members. Let A,B ∈ Lad
kG(π) be arbitrary. We claim that both A ∩B and A+B

are contained in Lad
kG(π).

We first consider the intersection A ∩B, which is certainly contained in LkG(π) by
Lemma 4.2.3. By Lemma 4.2.5, we also see that ((A ∩B)I)⊥ = (AI)⊥ + (BI)⊥ is fixed
by π. So proving A ∩ B ∈ Lad

kG(π) comes down to showing that π fixes ((A ∩ B)J )⊥.
For that purpose, we consider any direct sum decomposition

A ∩ B = (A ∩ B)I ⊕ S1 ⊕ · · · ⊕ Sk, (4.1)

where Si ≤ kG are simple left ideals for all i. We will apply Lemma 4.3.3 to each
Si separately. Since each Si is contained in both A and B, we have Si ∩ (AJ )⊥ =
Si ∩ (BJ )⊥ = 0. Furthermore, since each Si intersects (A∩B)I = AI ∩BI trivially, we
either have Si ∩ AI = 0 or Si ∩ BI = 0. In either case, we conclude Si ∈ Lad

kG(π). In
particular, π fixes the ideals ((Si)J )⊥ for all i. By taking ideal closures and complements
on both sides in (4.1), we obtain

((A ∩ B)J )⊥ = ((A ∩B)I)⊥ ∩ ((S1)J )⊥ ∩ · · · ∩ ((Sk)J )⊥.

Since we have already shown that π fixes ((A ∩B)I)⊥, we condlude that π also fixes
((A ∩ B)J )⊥. This finally shows that A ∩B ∈ Lad

kG(π).
To prove that A + B ∈ Lad

kG(π), we use a duality argument. We will construct
a complement CA of A and a complement CB of B in kG such that CA ∩ CB is a
complement of A+B. Then, by what we have proven so far, we get CA, CB ∈ Lad

kG(π),
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and hence A+ B = CA ∩ CB ∈ Lad
kG(π). To construct these complements, we consider

direct sum decompositions

A = A′ ⊕ (A ∩ B), B = B′ ⊕ (A ∩ B), kG = (A+B)⊕ C,

where A′, B′, C ≤ kG are arbitrary complements. Since B′ ∩ A = B′ ∩ (A ∩ B) = 0,
we see that A+ B = A′ ⊕ (A ∩ B)⊕ B′ and hence kG = A′ ⊕ (A ∩ B)⊕ B′ ⊕ C are
direct sum decompositions. Consequently, CA = B′ ⊕ C is a complement of A, while
CB = A′ ⊕ C is a complement of B in kG. We use the modular law to compute

CA ∩ CB = (C +B′) ∩ CB = C + (B′ ∩ CB) = C + 0 = C.

This finishes the proof of (1).
It reimains to prove (3), which is a simple application of (1) and (2). Suppose that

L ∈ Lad
kG(π). Since LI is a finite intersection of isomorphic copies of L (Lemma 4.2.5), it

is contained in Lad
kG(π) by (1). By (1) and (2), we conclude LN = L ∩ (LI)⊥ ∈ Lad

kG(π).
Conversely, suppose that both LI and LN are contained in Lad

kG(π). Then, by
Lemma 4.3.5 and by (1), we get L = LI + LN ∈ Lad

kG(π).

We close this section with a characterization of admissible ic-symmetries of two-sided
ideals I. It turns out that these symmetries can be characterized in terms of the
character of I as a kG-module (Proposition 4.3.8).

Lemma 4.3.7. Let kG be a group algebra decomposing into a direct sum of left ideals
kG = A⊕B, and let 1 = e+ f be the corresponding decomposition of the unit element
into idempotent generators e ∈ A, and f ∈ B. Let π ∈ Sym(G) be any permutation.
Then the following statements are equivalent.

(1) π fixes both A and B.

(2) For all g ∈ G we have π(ge) = π(g)e.

Proof. If (2) holds, then π maps a generating set of A (as a k-vector space) into A,
whence π(A) ⊆ A. Since f = 1− e, we easily see that (2) is symmetric in the sense that
also π(gf) = π(g)f holds for all g ∈ G. So by the same argument, we have π(B) ⊆ B.
Suppose (1) holds. Then for all g ∈ G we have π(g(1− e)) = π(gf) ∈ B and hence

π(g(1− e))e = 0. Expanding the left hand term, and using π(ge)e = π(ge), we conclude
π(g)e = π(ge).

Proposition 4.3.8. Let kG be a semisimple group algebra, and let I ≤ kG be a
two-sided ideal with corresponding character χ. Then a permutation π ∈ Sym(G) is an
admissible ic-symmetry of I (or equivalently, of I⊥) if and only if

χ(π(g)−1π(h)) = χ(g−1h) for all g, h ∈ G.

Proof. By Lemma 4.1.2, I is the only left ideal of kG isomorphic to I. Therefore, π is
an admissible ic-symmetry of I if and only if π fixes I and I⊥. By Lemma 4.3.7, this is
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equivalent to π(ge) = π(g)e for all g ∈ G, where e ∈ I is the unique central idempotent
generator of I given by Lemma 4.2.7. Now the assertion follows by the formula given
in Lemma 4.2.7 after a comparison of coefficients.

Recall that by Lemma 4.3.2, ic-symmetries are automatically admissible if the ground
field k has characteristic zero, or if k has a sufficiently large characteristic. Nevertheless,
in any positive characteristics there are infinitely many group algebras with two-sided
ideals admitting non-admissible ic-symmetries.

Example 4.3.9. Let p be a prime number and let n be some integer such that n ≥ 2
and pn 6= 4. Then the semisimple group algebra FpCpn−1 has a two-sided ideal affording
non-admissible ic-symmetries.

Proof. We consider the group G = (Fpn)× (which is cyclic of order pn − 1) acting
linearly on the Fp-space V = Fpn . Then for v = 1 ∈ V , the orbit Gv consists of all
nonzero elements of V . Thus, we have GL(Gv) = GL(V ), and hence Sym(G, v) =
GL(G) = GLFp(Fpn). Since the group algebra FpG is commutative, the left ideal
I = Ann(v) ⊂ FpG is two-sided. By Lemma 4.1.1 and Lemma 4.1.2, the ic-symmetries
of I are given precisely by the Fp-linear permutations on G.
Since V is isomorphic to a complement of I in FpG, and by Proposition 4.3.8, the

admissible ic-symmetries of I are given by those (necessarily Fp-linear) permutations π
on G such that

χ(π(g)−1π(h)) = χ(g−1h) for all g, h ∈ G,

where χ is the character afforded by V . In the present example, χ coincides with the
relative trace map of the field extension Fpn/Fp. That is, we have

χ(g) = TrFpn/Fp(g) = g + gp + gp
2 + · · ·+ gp

n−1

for all g ∈ G (the sum being taken in the field Fpn). It is well known that the trace map
TrFpn/Fp : Fpn → Fp is a surjective Fp-linear map, having a kernel of size pn−1. Since
n ≥ 2 and since pn 6= 4, there are elements x, y ∈ G with χ(x) 6= χ(y) such that both x
and y are linearly independent of 1 (there are pn − p elements in G which are linearly
independent of 1, but only pn−1 of them can have the same trace). Now any Fp-linear
permutation π of G with π(1) = 1 and π(x) = y is a non-admissible ic-symmetry of I
since

χ(π(1)−1π(x)) = χ(y) 6= χ(x) = χ(1−1x).

The smallest example of the latter kind is the group algebra F2C7. If g denotes
some generator of C7 then (after identifying g with a suitable generator of (F8)×)
the two-sided ideal I mentioned in the proof is generated by the central idempotent
e = g + g2 + g4 ∈ F2C7. There are 168 ic-symmetries of I, only 21 of which are
admissible. The group of admissible ic-symmetries of I is a semidirect product of the
type C7 o C3 generated by the left multiplication ιg and by the automorphism h 7→ h2

of C7. One particular example of a non-admissible ic-symmetry of I is the permutation
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π = (g, g2, g5)(g3, g6, g4). In fact, it can be easily checked that π(ge)(1− e) = 0 holds
for all g ∈ G, so π certainly fixes I. By Lemma 4.3.7 however, π(e) 6= π(1)e implies
that π does not fix I⊥.

The latter examples are particularly simple in the sense that they only involve
two-sided ideals, for which ic-symmetries can be determined easily. With some more
efforts however, these examples can also be used to construct one-sided left ideals
(of non-commutative group algebras) admitting non-admissible ic-symmetries. In the
following, we use some results which have not been presented so far. The reader might
want to revisit this point after finishing Chapter 4.

Example 4.3.10. Let (p, n) be as in Example 4.3.9, and let H be any non-abelian
group of order not divisible by p. Let G = Cpn−1 ×H, and let k be any (finite) field
of characteristic p which is a splitting field for H (that is, all simple kH-modules are
absolutely simple). Then the semisimple group algebra kG has a one-sided left ideal
affording non-admissible ic-symmetries.

Proof. Let C = Cpn−1 be the cyclic group of order pn − 1. By Example 4.3.9, the
semisimple group algebra kC contains a two-sided ideal I ≤ kC admitting non-
admissible ic-symmetries. That is, if I = kCe is generated by the central idempotent
e ∈ kC, there is a permutation π ∈ Sym(C) such that π(ce)(1−e) = 0 for all c ∈ C but
π(c′e) 6= π(c′)e for some c′ ∈ C. Let e1 = 1

|C|
∑
c∈C c be the trivial central idempotent

of kC. We either have ee1 = 0 or ee1 = e1. By replacing e by e− e1 in the latter case,
we may assume without loss of generality that ee1 = 0.

Since C is contained in the center of G = C × H, we may also regard e as a
central idempotent element of kG, generating a two-sided ideal J = kGe. We define a
permutation π′ ∈ Sym(G) by setting

π′(hc) = hπ(c) for all h ∈ H, c ∈ C.

By definition, π′ fixes all cosets of C in G, and it is easy to check that this permutation
satisfies π′(ge)(1−e) = 0 for all g ∈ G but π′(c′e) 6= π′(c′)e. Thus, π′ is a non-admissible
ic-symmetry of J .
Since H is non-abelian, and since k is a splitting field for H, there is an absolutely

simple k[G/C]-module of dimension at least two. Accordingly, there is a one-sided
simple left ideal S ≤ kG with C ⊆ Ker(S). Then π′ fixes all cosets of Ker(S) in G, so
π′ is an (admissible) ic-symmetry of S by Proposition 4.4.6 and Corollary 4.4.3. By
Lemma 4.2.3, π′ is an ic-symmetry of L = J + S. Since C acts trivially on S, we have
eS = ee1S = 0. So S is not contained in J , which shows that the left ideal L is not
two-sided. Moreover, we obtain LI = J . Since π′ does not fix J⊥, we see that π′ is a
non-admissible ic-symmetry of L.

We have seen that in any positive characteristic there are infinitely many examples
of group algebras having (both one-sided and two-sided) left ideals which admit non-
admissible ic-symmetries. One particular example of a non-commutative group algebra
having such a one-sided left ideal is F3[C8 ×D4].
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4.4 Admissible generic symmetries

From now on, our objective is to use the results on ic-symmetries to get corresponding
results on generic symmetries. In the present preparatory section, we establish the
connections between these two notions of symmetry. Since many results of the last
section depend on semisimplicity assumptions, we will throughout assume that the
given group algebra kG is semisimple. Moreover, as we got best results only for the
subclass of admissible ic-symmetries, we will introduce the corresponding notion of
admissible generic symmetries.

Definition 4.4.1. Let kG be a semisimple group algebra, and let V be a finitely
generated kG-module. We call a generic symmetry π ∈ Sym(G, V ) admissible if π fixes
the ideals (Ann(v)I)⊥ and (Ann(v)J )⊥ for all ample points v ∈ Amp(V ). The set of
all admissible generic symmetries of V is denoted by Symad(G, V ).

Note that all finitely generated modules over semisimple group algebras are semisim-
ple, and so have ample points by Lemma 3.6.1. Moreover, the annihilators of all ample
points of a semisimple module are isomorphic by Lemma 4.1.3. Thus, by Lemma 4.2.5,
the question whether a generic symmetry is admissible can be answered by considering
only one annihilator of an arbitrary ample point.
It is clear by definition that Symad(G, V ) is a subgroup of Sym(G, V ) which only

depends on the isomorphism type of V . We will show that the group Symad(G, V )
satisfies many properties which are similar to properties of Sym(G, V ).

Lemma 4.4.2. Let kG be a semisimple group algebra, and let V be a finitely generated
kG-module. If v ∈ Amp(V ) is any ample point then Symad(G, V ) consists of admissible
ic-symmetries of Ann(v). If k is of infinite order then the converse holds as well, that
is, any admissible ic-symmetry of Ann(v) is contained in Symad(G, V ).

Proof. Let π ∈ Symad(G, V ) be any admissible generic symmetry of V . Then π is
an orbit symmetry of any ample point of V by Corollary 3.4.5, so by Lemma 4.1.1,
π fixes all annihilators of all ample points of V . By Lemma 4.1.3 and Lemma 4.1.2,
these annihilators range over all left ideals of kG isomorphic to Ann(v). So π is an
ic-symmetry of Ann(v). By definition of admissible generic symmetries, π must in fact
be an admissible ic-symmetry of Ann(v), proving the first claim.
Now let k be a field of infinite order. Then by Theorem 4.1.6, Sym(G, V ) con-

sists precisely of the ic-symmetries of Ann(v). Again by definition, we conclude that
Symad(G, V ) consists precisely of the admissible ic-symmetries of Ann(v).

The situation is special for left ideals L ≤ kG since in that case, we have notions of
admissible generic symmetries of L, as well as of admissible ic-symmetries of L. The
following corollary shows how these notions are connected.

Corollary 4.4.3. Let kG be a semisimple group algebra, and let L ≤ kG be a left
ideal. Then Symad(G,L) consists of admissible ic-symmetries of L. If k is of infinite
order then the converse holds as well, that is, all admissible ic-symmetries of L are
contained in Symad(G,L).
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Proof. Let C ≤ kG be any complement of L in kG, and let 1 = e + f be the
unique decomposition of 1 ∈ G into idempotent generators e ∈ L and f ∈ C. By
Theorem 4.3.6, L and C have the same admissible ic-symmetries. Since we have
Ann(e) = kG(1− e) = C, the claim follows by Lemma 4.4.2.

We continue the discussion on tensor products before Lemma 4.1.5. Let E/k be a
field extension. We have already noticed that tensoring by a field E sends injective
(surjective) morphisms f : V → W of kG-modules to injective (surjective) morphisms
fE : V E → WE of EG-modules, where kernels are mapped to kernels. Moreover, we
have a canonical isomorphism on external direct sums (V ⊕W )E → V E⊕WE given by
e⊗ (v, w) 7→ (e⊗v, e⊗w). As we already noticed, if U ≤ V is a submodule then the set
inclusion U → V gives rise to a canonical embedding UE → V E (given by e⊗u 7→ e⊗u
on the pure tensors). Therefore, UE can safely be regarded as a submodule of V E. As
in the proof of Lemma 4.1.4, we identify (kG)E with EG by means of the canonical
isomorphism e ⊗ x 7→ ex. In particular, if L ≤ kG is any left ideal then LE will be
regarded as a left ideal of EG.
The following facts seem to be folklore but they are hard to find in literature. We

sketch their proofs for convenience.

Lemma 4.4.4. Let V be a kG-module and let E/k be a field extension. Then for all
submodules U,W ≤ V we have (U +W )E = UE +WE and (U ∩W )E = UE ∩WE as
submodules of V E. In particular, for any left ideal L ≤ kG we have (LI)E = (LE)I and
(LJ )E = (LE)J as ideals of EG.

Proof. The first assertion is straightforward to show as both (U +W )E and UE +WE

are generated as k-vector spaces by the pure tensors of the form e⊗ u and e⊗ w for
e ∈ E, u ∈ U , w ∈ W .

Concerning the second assertion, is is easy to see that we have at least an inclusion
(U ∩W )E ⊆ UE ∩WE as submodules of V E. Let U ⊕W be the external direct sum
of U and W . We consider the morphisms δ : U ∩ W → U ⊕ W , x 7→ (x, x) and
µ : U ⊕W → V , (u,w) 7→ u− w. Then δ is a kernel of µ, whence δE is a kernel of µE.
We get a commutative diagram

(U ∩W )E (U ⊕W )E V E

UE ∩WE UE ⊕WE

δE

i c

µE

δ′

µ′

where i is the set inclusion, c is the canonical isomorphism, and δ′ and µ′ are defined
analogously to δ and µ (in particular, δ′ is a kernel of µ′). Now a simple diagram
chasing argument shows that i must be an isomorphism.
The remaining assertion on the ideal constituent and the ideal closure of some left

ideal L ≤ kG now follows by Lemma 4.2.5 and by the simple fact that (Lg)E = (LE)g
holds for all g ∈ G.
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Proposition 4.4.5. Let kG be a semisimple group algebra, let E/k be a field extension,
and let V be a finitely generated kG-module. Then Symad(G, V ) = Symad(G, V E).

Proof. By Proposition 3.4.2, we have Sym(G, V ) = Sym(G, V E). So it remains to show
that a generic symmetry π is admissible for V if and only if π is admissible for V E.
By Lemma 3.6.1, there is an ample point v ∈ Amp(V ), and by Lemma 4.1.3,

the annihilators of all ample points of V are isomorphic to L = Ann(v). So by
Lemma 4.2.5, they all have the same ideal constituent LI and the same ideal closure
LJ . By Lemma 3.4.4, 1 ⊗ v is an ample point of V E, and by the same reasoning as
before, the annihilators of all ample points of V E are isomorphic to L′ = Ann(1⊗ v).
Furthermore, they all have the same ideal constituent L′I and the same ideal closure
L′J . So it remains to show that π fixes both (LI)⊥ and (LJ )⊥ if and only if π fixes
both (L′I)⊥ and (L′J )⊥.
By Lemma 4.1.5, we have a canonical isomorphism LE → L′ of EG-modules. By

Lemma 4.4.4, we get a canonical isomorphism (LI)E → L′I . Therefore, if e ∈ kG is
the central idempotent generator of LI given by Lemma 4.2.7 then e (regarded as an
element of EG) also generates the two-sided ideal L′I of EG. Now Lemma 4.3.7 shows
that π fixes (LI)⊥ if and only if π fixes (L′I)⊥ (since both statements are equivalent to
π(ge) = π(g)e for all g ∈ G). Exactly the same reasoning holds verbatim for the ideal
closures of L and L′.

By Proposition 4.4.5, many questions on admissible generic symmetries over arbitrary
fields can be reduced to the case of infinite fields. The proof of the following statement
relies on a simple application of that reduction.

Proposition 4.4.6. Let kG be a semisimple group algebra, and let V be a finitely
generated kG-module. Then we have

G · Iv(G, V ) ≤ Symad(G, V ).

Moreover, a generic symmetry π ∈ Sym(G, V ) is admissible if it suffices one of the
hypotheses of Lemma 4.3.2.

Proof. By Proposition 3.4.2 and Proposition 4.4.5, we may assume without loss of
generality that k is of infinite order. Let v ∈ Amp(V ) be arbitrary, and let L = Ann(v).
Then by Theorem 4.1.6, Sym(G, V ) consists precisely of the ic-symmetries of L, while
by Lemma 4.4.2, Symad(G, V ) consists precisely of the admissible ic-symmetries of L.
Now almost all assertions follow by Lemma 4.3.2. It only remains to show that any
irrelevant generic symmetry π ∈ Iv(G, V ) fixes both (LI)⊥ and (LJ )⊥.
By definition, π fixes all cosets of K = Ker(V ) in G. We consider the left ideal

I ≤ kG generated by all elements of the form 1− g for g ∈ K. Then we have I ⊆ L by
definition, and since K is a normal subgroup of G, it is easy to see that I is actually a
two-sided ideal, whence I ⊆ LI . So if f ∈ (LI)⊥ is the central idempotent generator
given by Lemma 4.2.7 then we have I · f = 0, and hence gf = f for all g ∈ K. So we
see that the normal subgroup K ≤ G acts trivially on the ideal (LI)⊥. This shows that
the coefficients of all elements of (LI)⊥ (with respect to the standard basis G of kG)
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are constant on the cosets of K. By the assumption on π, it follows that π(x) = x for
all x ∈ (LI)⊥. Since (LJ )⊥ ⊆ (LI)⊥, we see that π fixes both (LI)⊥ and (LJ )⊥.

Most importantly, Proposition 4.4.6 shows that we have an equation

Symad(G, V ) = Sym(G, V )

provided that the ground field k has characteristic zero or that k has a characteristic
exceeding the order of G. The following lemma is the analog to Lemma 3.2.8 for
admissible generic symmetries.

Lemma 4.4.7. Let kG be a semisimple group algebra, and let V be a finitely generated
kG-module decomposing into a direct sum V = V1 ⊕ · · · ⊕ Vn of submodules. Then we
have

Symad(G, V1) ∩ · · · ∩ Symad(G, Vn) ⊆ Symad(G, V ).

Proof. By Proposition 4.4.5, we may assume without loss of generality that k is of
infinite order. Since the set Amp(V1) + · · ·+ Amp(Vn) is open in V by Lemma 3.3.2, it
has a nonzero intersection with Amp(V ) by Lemma 2.1.2. Therefore, we find an ample
point v = v1 + · · ·+ vn ∈ Amp(V ) such that vi ∈ Amp(Vi) for all i. One easily checks
that Ann(v) = Ann(v1)∩ · · · ∩Ann(vn). Since (by Lemma 4.4.2) Symad(G, Vi) consists
precisely of the admissible ic-symmetries of Ann(vi) for all i, and since Symad(G, V )
consists of the admissible ic-symmetries of Ann(v), the claim follows by Theorem 4.3.6
which shows that Lad

kG(π) is closed under taking intersections for all π ∈ Sym(G).

4.5 Ideal constituents and a generalized Isaacs’ theorem

From now on, we restrict our attention to cyclic modules. We have already observed
in the context of left ideals that the investigation of ic-symmetries naturally leads to
certain two-sided ideals which have to be treated separately. In the present section,
we introduce the analogous notion of the ideal constituent VI ≤ V of a cyclic module
V which turns out to be an important invariant for the recognition of (admissible)
generic symmetries. We show that in the extremal cases VI = 0 and VI = V , the group
of admissible generic symmetries of V is easy to compute.

Lemma 4.5.1. Let kG be a semisimple group algebra, and let V be a cyclic kG-module.
Then there is a unique submodule I ≤ V maximal subject to the following equivalent
conditions:

(1) I is isomorphic to a two-sided ideal of kG,

(2) GLkG(I) acts transitively on Amp(I).

This uniquely determined submodule I also has a unique complement in V .
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Proof. Since V is cyclic, and since kG is semisimple, V is isomorphic to a left ideal
L ≤ kG. By Lemma 4.1.2, a submodule of L is isomorphic to a two-sided ideal only if
it is already a two-sided ideal. Consequently, the unique submodule of L satisfying (1)
is just the ideal constituent LI , and by Lemma 4.3.5, there is a unique complement
LN of LI in L. Since L ∼= V , the same holds for V .

It remains to show the equivalence of (1) and (2). By Lemma 4.2.7, any two-sided ideal
J ≤ kG is generated by a central idempotent e ∈ kG, and then Ann(e) = kG(1− e) is
also a two-sided ideal. So by Lemma 4.1.4, any kG-module satisfying (1) also satisfies
(2). Conversely, if I is a module satisfying (2) then by the same arguments, Ann(w)
is a two-sided ideal for some w ∈ Amp(I) and I ∼= kG/Ann(w) is isomorphic to the
unique complement of a two-sided ideal, which must be two-sided again.

Definition 4.5.2. Let kG be a semisimple group algebra, and let V be a cyclic kG-
module. The unique maximal submodule of V satisfying the conditions of Lemma 4.5.1
is denoted by VI . We call it the ideal constituent of V . The unique complement VN of
VI in V is called the non-ideal constituent of V .

Note that the notion of ideal and non-ideal constituents of modules is a generalization
of the previously introduced notion in the case of left ideals. That is, if the module V
under consideration is actually a left ideal then in any case VI is simply the largest
two-sided ideal contained in V .

Proposition 4.5.3. Let kG be a semisimple group algebra, and let V be a cyclic
kG-module with VI = V . Then we have

Symad(G, V ) = {π ∈ Sym(G) : χ(π(g)−1π(h)) = χ(g−1h) for all g, h ∈ G},

where χ is the character of V .

Proof. Without loss of generality, we may assume that V = I is a two-sided ideal in
kG. As in the proof of Lemma 4.5.1, we see that I is generated by a central idempotent
e ∈ kG, and Ann(e) = kG(1− e) is a two-sided ideal. By Theorem 4.1.7, e is a generic
point of I, and Lemma 4.1.1 implies that the admissible generic symmetries of I are
precisely those permutations of Sym(G) fixing both Ann(e) and its unique complement
I. The claim now follows by Proposition 4.3.8.

The next result is particularly important, as it suggests a general procedure for
constructing (weakly) generically closed modules. Recall that Isaacs’ theorem (Proposi-
tion 3.8.8) states that any absolutely simple kG-module V is weakly generically closed.
(As before, a kG-module V is called absolutely simple if the scalar extensions V E are
simple EG-modules for all field extensions E/k, or equivalently, if EndkG(V ) = k.)
Since absolutely simple modules are simple, we have either VI = 0 or VI = V , and
it is easy to show that the latter case is only possible if V is one dimensional over k.
Indeed, if I ≤ kG is an absolutely simple two-sided ideal then the right multiplication
by any element g ∈ G is (as a kG-linear operator on I) equal to the multiplication by
some element λg ∈ k. So if e ∈ I is the central idempotent generator of I given by
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Lemma 4.2.7 then we have ge = eg = λge for all g ∈ G. In particular, I = kGe = ke is
one dimensional. For that reason, the following theorem can be seen as a generalization
of Isaacs’ result.

Theorem 4.5.4. Let kG be a semisimple group algebra, and let V be a cyclic kG-
module with VI = 0. Then we have

Sym(G, V ) = Symad(G, V ) = G · Iv(G, V ).

In particular, V is weakly generically closed.

Proof. By Proposition 4.4.6, the inclusions G · Iv(G, V ) ⊆ Symad(G, V ) ⊆ Sym(G, V )
do always hold. So it remains to show that any generic symmetry π ∈ Sym(G, V ) with
π(1) = 1 is contained in Iv(G, V ).
By Proposition 3.4.2 and Lemma 4.4.4, we may assume without loss of generality

that k is a field of infinite order and that V decomposes into a direct sum

V = S1 ⊕ · · · ⊕ Sn

of absolutely simple kG-modules Si. Let L ≤ kG be the annihilator of some generator
v ∈ Amp(V ). Then by Theorem 4.1.6, π is an ic-symmetry of L.

We claim that LJ = kG. By considering the isomorphisms V ∼= kG/L and kG/LJ ∼=
(LJ )⊥ as well as the canonical epimorphism kG/L → kG/LJ , we see that (LJ )⊥ is
isomorphic to a quotient of V . Since V is semisimple, the two-sided ideal (LJ )⊥ is
also isomorphic to a submodule of V . Since VI = 0, we conclude (LJ )⊥ = 0, whence
LJ = kG. So by Theorem 4.2.9, it follows that π is an ic-symmetry of all left ideals of
kG above L.

We consider the decomposition v = s1 + · · ·+sn of the generator into unique elements
si ∈ Si. Then each si is a generator of Si, and we have L ≤ Ann(si) for all i. So π is
an ic-symmetry of all these annihilators, and by applying Theorem 4.1.6 again, we get
π ∈ Sym(G,Si) for all i. By Isaacs’ theorem (Proposition 3.8.8), we get π ∈ Iv(G,Si)
for all i, and by Lemma 3.2.8, we conclude π ∈ Iv(G, V ).

Theorem 4.5.4 suggests a natural approach for constructing a (weakly) generically
closed kG-module for any finite group G. We may always define a kG-module V as the
direct sum of all simple kG-modules S (one of each isomorphism type) with SI = 0.
Then V has also a zero ideal constituent (so V is weakly generically closed), and
actually V has the smallest kernel in G among all cyclic kG-modules with zero ideal
constituent. So V can be expected to be a good candidate for a generically closed
module. We will take that approach to construct generically closed RG-modules for a
great variety of groups in Chapter 6, thereby proving that these groups are isomorphic
to affine symmetry groups of orbit polytopes. In fact, we will classify the exceptional
finite groups for which that approach fails (Theorem 6.2.3).
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4.6 Structure theorems

At this point, we know how to compute the group of admissible generic symmetries of
cyclic kG-modules in the extremal cases where V has zero ideal constituent, and where
V is its own ideal constituent. This is actually all we need to know. In this section, we
show that the admissible generic symmetries of any cyclic module V are precisely the
common admissible generic symmetries of the modules VI and VN (Proposition 4.6.1)
which in turn leads to a formula for Symad(G, V ) only depending on the character of
VI and on the kernel of VN in G (Theorem 4.6.2). Moreover, we obtain new insights
into the action of Symad(G, V ) on the modules V̂w for w ∈ Amp(V ). Recall that we
already know by Proposition 3.8.2 that all modules V̂w are isomorphic over k Sym(G, V )
provided that k has characteristic zero, or that the characteristic of k exceeds the order
of G. This result is sharpened in Theorem 4.6.4 which shows that these modules are
always isomorphic (to a submodule of kG) when regarded as kSymad(G, V )-modules.

Proposition 4.6.1. Let kG be a semisimple group algebra, let V be a cyclic kG-module,
and let W be any kG-module such that V ⊕W ∼= kG. Then we have

Symad(G,W ) = Symad(G, V ) = Symad(G, VI) ∩ Symad(G, VN ).

Proof. Since V andW are cyclic modules over a semisimple group algebra kG, and since
the assertions do only depend on the isomorphism type of V and W , we may assume
without loss of generality that both V and W are left ideals of kG. Since we know by
Lemma 4.4.4 that (VI)E = (V E)I holds for all field extensions E/k, and since ideal
constituents have unique complements by Lemma 4.3.5, we also have (VN )E = (V E)N .
So by Proposition 4.4.5, we may further assume without loss of generality that k

is a field of infinite order. Now Corollary 4.4.3 applies, that is, admissible generic
symmetries are characterized as admissible ic-symmetries in the current setting. All
assertions follow at once by Theorem 4.3.6.

Putting everything together, we are finally able to derive a formula for Symad(G, V )
which only depends on the character of VI and on the kernel of VN . This result leads to
the important observation that in characteristic zero, the generic symmetries of modules
are completely understood in terms of characters. The study of generic symmetries of
characters will be our objective in the next chapter.

Theorem 4.6.2. Let kG be a semisimple group algebra, and let V be a cyclic kG-
module. Then we have

Symad(G, V ) =
{
π ∈ Sym(G) : χ(π(g)−1π(h)) = χ(g−1h) for all g, h ∈ G

π(gK) = π(1)gK for all g ∈ G

}
,

where χ is the character of VI, and where K is the kernel of VN in G.

Proof. This is an immediate consequence of Proposition 4.6.1, Proposition 4.5.3, and
Theorem 4.5.4.
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We close this chapter with a structural result on the kSymad(G, V )-modules V̂w
given by the generators w ∈ Amp(V ). More precisely, we show that independently of
the choice of the generator w, these modules have a unique isomorphism type, and we
determine a family of submodules of V̂w which come up naturally. For that purpose, we
need a strengthening of Maschke’s Theorem, which is probably well known. However,
since it is a nice application of the geometric methods developed in Chapter 3, we give
a proof here.

Lemma 4.6.3. Let k be a field of infinite order, let kG be a semisimple group algebra,
and let L1, . . . , Lk ≤ kG be isomorphic left ideals. Then there is a left ideal C ≤ kG
which is a complement in kG for every Li.

Proof. We claim that there is a cyclic kG-module V such that the annihilators of all
generators of V are isomorphic to kG/Li for all i. Note that by Lemma 4.1.2, the
annihilators of all generators of a cyclic module are isomorphic. Moreover, since the
left ideals Li are isomorphic by assumption, the quotients kG/Li are isomorphic as
well (by semisimplicity). For these reasons, V = L1 has the desired properties.

For any i, we consider the set

Xi = {x ∈ Amp(V ) : Ann(x) ∩ Li = 0}.

We claim that each Xi is nonempty and open in V . Assuming this assertion to be true
for a moment, these sets Xi have a nonempty intersection by Lemma 2.1.2, so there is
some element x ∈ Amp(V ) such that Ann(x) ∩ Li = 0 for all i. By definition of V , we
also have Ann(x) ∼= kG/Li, and hence

dim(kG) = dim(Li) + dim(Ann(x))

for all i. Consequently, Ann(x) is a common complement in kG for every Li.
It remains to show that each Xi is nonempty and open in V . Let 1 ≤ i ≤ k be

arbitrary. Since kG is semisimple, there exists a complement C ≤ kG of Li. By
definition of V and by Lemma 4.1.2, C is the annihilator of some generator of V . So Xi

is nonempty. Let x ∈ V be arbitrary. Since dim(Li) = dim(V ), x is an element of Xi if
and only if the right multiplication by x is an isomorphism Li → V of vector spaces.
So if l1, . . . , ld ∈ Li is any k-basis of Li, and if det : V d → k is any nonzero alternating
form, we see that Xi = {x ∈ V : det(l1x, . . . , ldx) 6= 0} is open in V .

Although the following result is valid for arbitrary fields, it relies on results which
are valid only for infinite fields. To set up a reduction argument to infinite fields as
before, we need the Noether-Deuring theorem [22, Theorem 19.25]. Let V,W be finitely
generated kG-modules, and let E/k be any field extension. If V and W are isomorphic,
it is clear that any isomorphism f : V → W extends to an isomorphism fE : V E → WE

of EG-modules, whence V E is isomorphic to WE. The Noether-Deuring theorem states
that the converse holds as well. That is, if V E and WE are isomorphic EG-modules
then V and W must be already isomorphic as kG-modules (although there is no
natural choice for an isomorphism is that situation). We also note that a permutation
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π ∈ Sym(G) fixes a left ideal L ≤ kG if and only if π fixes LE regarded as a left ideal of
EG. Furthermore, if V is a cyclic kG-module with generator w ∈ Amp(V ) then we have
an equality (not merely an isomorphism) (V̂w)E = (̂V E)1⊗w of E Sym(G,w)-modules
by definition (cf. Section 3.8).

Theorem 4.6.4. Let kG be a semisimple group algebra, and let V be a cyclic kG-
module with corresponding group Ĝ = Symad(G, V ) of admissible generic symmetries.
The following statements hold independently of the choice of a generator w ∈ Amp(V )
and of the choice of a left ideal L ≤ kG isomorphic to V .

(1) VI is a kĜ-submodule of V̂w.

(2) Any kG-submodule of VN is a kĜ-submodule of V̂w.

(3) L is a kĜ-submodule of kG, and we have V̂w ∼= L as kĜ-modules.

Proof. We consider the direct sum decomposition V = VI ⊕ VN as kG-modules. Let
w = x+ y be the unique decomposition of the generator w into generators x ∈ VI and
y ∈ VI . Since we have Ĝ ⊆ Symad(G, VI) ∩ Symad(G, VN ) by Proposition 4.6.1, there
are representations Dx : Ĝ→ GL(VI) and Dy : Ĝ→ GL(VN ) such that

Dx(π)gx = π(g)x and Dy(π)gy = π(g)y for all g ∈ G, π ∈ Ĝ.

It is easy to check that Dx ⊕ Dy is exactly the representation Dw : Ĝ → GL(V ),
which shows that VI and VN are kĜ-submodules of V̂w. Now since Symad(G, VN ) =
G · Iv(G, VN ) by Theorem 4.5.4, we have

Dw(π)z = Dy(π)z = π(1)z for all π ∈ Ĝ, z ∈ VN .

This shows that all kG-submodules of VN are kĜ-submodules. So we have proven (1)
and (2).

To prove (3), we may assume (by the preceding discussion) without loss of generality
that the field k has infinite order. Let L′ ≤ kG be any complement of Ann(w) in kG as
kG-modules. By Lemma 4.4.2 and Corollary 4.4.3, all elements of Ĝ are admissible ic-
symmetries of L, L′ and Ann(w). In particular, all these left ideals are kĜ-submodules
of kG. By Theorem 4.1.6, we get V̂w ∼= kG/Ann(w) ∼= L′ as kĜ-modules. It remains
to show that the isomorphic left ideals L and L′ are also isomorphic as kĜ-modules.
This is a consequence of Lemma 4.6.3. By that lemma, there is a left ideal C ≤ kG
which is a complement of both L and L′ in kG. Since C is kG-isomorphic to Ann(w),
C is a kĜ-submodule of kG. It follows L ∼= kG/C ∼= L′ as kĜ-modules.

Theorem 4.6.4 shows in particular that for any semisimple group algebra kG and for
any cyclic kG-module V , the modules V̂w given by ample points w ∈ Amp(V ) belong
to a single isomorphism class with respect to the group algebra kSymad(G, V ). This
result is a refinement of Proposition 3.8.2.
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From now on, we restrict to fields k of characteristic zero. In that case, all group
algebras kG are semisimple, and all kG-modules are uniquely determined by their
characters. Moreover, generic symmetries are automatically admissible in that case
(Proposition 4.4.6), so the formula in Theorem 4.6.2 characterizes all generic symmetries
of a given module. The objective of this chapter is to introduce a theory of generic
symmetries which only uses the character theoretic language, without referring to
modules or representations.

To begin with, note that since kG-modules are uniquely determined by their charac-
ters up to isomorphism, we can safely define the generic symmetry group Sym(G,χ) of
a character χ : G→ k as the generic symmetry group of V for an arbitrary kG-module
V affording χ. For cyclic modules V , we have seen that the generic symmetry group acts
on V in various ways (any generator gives rise to a corresponding action of Sym(G, V )
on V ), all of which leading to the same character of Sym(G, V ) (Lemma 3.8.1). Ac-
cordingly, if χ is the character of a cyclic kG-module V , we can unambiguously define
χ̂ to be the character of Sym(G,χ) afforded by V̂w for some generator w ∈ Amp(V ).
Since G can be regarded as a subgroup of Sym(G,χ), the character χ̂ can be regarded
as an extension of χ.
Analogously to the case of modules, we introduce the ideal constituent χI and the

non-ideal constituent χN of a character χ, which are specific characters of G uniquely
determined by χ. The generic symmetry group Sym(G,χ) is characterized by a formula
only depending on χI and on (the kernel of) χN (Theorem 5.1.10). Motivated by that
result, we point out some possibilities for determining these constituents of a given
character. In general, there are formulas for χI and χN depending on χ and on the
character table of G. In Section 5.3, we develop more involved methods for finding χI
and χN (without knowledge of the full character table of G) in the case where χ is an
induced character.

In any case, the extended character χ̂ is easily computed by a formula only depending
on χ (Theorem 5.1.15). We obtain structural information on the constituents of χ̂
in terms of certain constituents of χ (Theorem 5.1.12). We will illustrate how the
knowledge of the extended character can help to get results on the corresponding
generic symmetry group. For example, we show that Sym(G,χ) is doubly transitive on
G only if Sym(G,χ) = Sym(G) is the full symmetric group (Corollary 5.1.13).

In Section 5.2, we give suggestions on how the considerations of generic symmetries
could be used in character theory of groups. We give a sufficient criterion ensuring
that a character of a subgroup H ≤ G can be extended (by an explicit formula) to a
character of G provided that H has a complement in G (Proposition 5.2.1).

The results of Section 5.1 have already appeared in [10], while the results of Section 5.3
are extracted from [19]. The considerations of Section 5.2 have not been published
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so far. In this chapter, we use many standard techniques from representation theory
of finite groups. For a comprehensive view on representation theory, we refer to the
textbooks [17] and [4].

5.1 Generic symmetries of characters

In the following, we essentially reformulate the results of Chapter 4 into the character
theoretic language. To begin with, we recall some basic facts of the character theory
of finite groups which can be found in most textbooks. For a comprehensive view, we
refer to [17].

The character of a finitely generated kG-module V is defined as the function kG→ k

sending each element x ∈ kG to its trace as a linear operator on V . Since the trace
map is k-linear and since G is a k-basis of kG, characters are usually regarded as
functions G → k. If k has characteristic zero then kG is semisimple by Maschke’s
theorem. So all kG-modules decompose into a direct sum of simple modules. Since
the characters of simple modules are always linearly independent as functions G→ k

(see [17, Corollary 9.22]), all finitely generated kG-modules are uniquely determined
by their character up to isomorphism. Moreover, characters are not affected by scalar
extensions. That is, if V is any finitely generated kG-module with character χ and if
E/k is any field extension then the character of V E coincides with χ on the elements
of G.

As already mentioned, we want to restrict to fields of characteristic zero, but for the
greatest convenience, we will actually consider only the field C of complex numbers.
There is no loss of generality in doing so, since all kG-modules in characteristic zero
arise as CG-modules in a certain sense. Indeed, if V is any kG-module over a field
k of characteristic zero then we may choose a common field extension E of k and
C (any quotient of the Q-algebra k⊗Q C by a maximal ideal serves as an example).
Since EG ∼= (CG)E and since all simple CG-modules modules are absolutely simple, all
EG-modules are scalar extensions of CG-modules (up to isomorphism). In particular,
there must be a CG-module W such that V E ∼= WE. By Proposition 3.4.2, we conclude
(in the case of finitely generated modules)

Sym(G, V ) = Sym(G, V E) = Sym(G,WE) = Sym(G,W ).

So all generic symmetry groups of kG-modules in characteristic zero are actually generic
symmetry groups of CG-modules.
From now on, a character χ of a finite group G will always be understood as

the character of some finitely generated CG-module V (in particular, as a function
χ : G→ C). The degree of χ is defined as the dimension of V over C, or equivalently,
as the value χ(1). We always have χ(g−1) = χ(g) for all g ∈ G, and the kernel of χ
(which is the kernel of V by definition) is given by

Ker(χ) = {g ∈ G : χ(g) = χ(1)}.
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A character ψ of G is called a constituent of χ if ψ is afforded by a submodule of
V (or equivalently, if χ − ψ is also a character of G). An irreducible character is by
definition the character of an (absolutely) simple CG-module. The set of all irreducible
characters of G is denoted by Irr(G). Characters of G are class functions, that is, they
are constant on the conjugacy classes of G. The set of all class functions G→ C is a
complex inner product space with respect to the (Hermitian) inner product

〈α, β〉 = 1
|G|

∑
g∈G

α(g)β(g).

The first part of Schur’s orthogonality relations states that Irr(G) is an orthonormal
basis of the space of all class functions G→ C. In particular, a class function α : G→ C

is a character if and only if 〈α, χ〉 is a nonnegative integer for all χ ∈ Irr(G). We will
see that the characters of left ideals and of two sided ideals of CG are characterized in
a similar manner.

As an important example, we consider the character ρ of CG regarded as a module
over itself which is usually called the regular character of G. As we have already seen
in the proof of Lemma 4.2.7, the regular character is easily computed as

ρ(g) =

|G| if g = 1
0 if g 6= 1

for all g ∈ G.

For each irreducible character ψ ∈ Irr(G) we have 〈ρ, ψ〉 = ψ(1), so the regular character
decomposes (uniquely) as

ρ =
∑

ψ∈Irr(G)
ψ(1)ψ

into a linear combination of irreducible characters. Since left ideals are precisely the
submodules of CG, we see that a character χ of G is the character of a left ideal (or
equivalently, of a cyclic module) if and only if χ is a constituent of ρ. This in turn
is equivalent to 〈χ, ψ〉 ≤ ψ(1) for all ψ ∈ Irr(G). Moreover, since a left ideal is a two
sided ideal if and only if it contains all isomorphic copies of its simple constituents, we
see that χ is the character of a two sided ideal if and only if 〈χ, ψ〉 ∈ {0, ψ(1)} for all
ψ ∈ Irr(G).

While the latter notations and facts are completely standard, we also introduce the
following non-standard terminology.

Definition 5.1.1. Let χ be a character of a finite group G. Then χ is called

(1) a left ideal character if χ is afforded by a left ideal (or equivalently, by a cyclic
module) of CG,

(2) an ideal character if χ is afforded by a two sided ideal of CG,

(3) a non-ideal character if χ is afforded by a left ideal of CG with trivial ideal
constituent.
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Moreover, we define the characters

χL =
∑

ψ∈Irr(G)
min(〈χ, ψ〉, ψ(1))ψ, χI =

∑
ψ∈Irr(G)
〈χ,ψ〉=ψ(1)

ψ(1)ψ, χN = χL − χI ,

where χL is called the left ideal constituent of χ, χI is called the ideal constituent of χ,
and χN is called the non-ideal constituent of χ.

By the previous discussion, we see that χL is the unique left ideal character of
maximum degree which is a constituent of χ, while χI is the unique ideal character of
maximum degree which is a constituent of χ. Consequently, χN is the unique non-ideal
character satisfying χL = χI+χN . Note that these constituents of χ are easily computed
if all irreducible characters of G are known. In general, finding those constituents of
χ can be quite involved (see Section 5.3 for positive results), but at least there is a
simple intrinsic characterization of ideal characters.

Lemma 5.1.2. A class function χ : G→ C is an ideal character of G if and only if

χ(g) = 1
|G|

∑
h∈G

χ(gh−1)χ(h) for all g ∈ G.

In that case, χ is afforded by a kG-module, where k = Q(χ) is the field generated by
the values {χ(g) : g ∈ G} over Q.

Proof. We consider the element

eχ = 1
|G|

∑
g∈G

χ(g−1)g ∈ CG

which is central in the group algebra since χ is a class function. If χ is the character of a
two sided ideal I then eχ is the unique idempotent of CG with I = kGe by Lemma 4.2.7.
Conversely, if eχ is idempotent then the left ideal CGeχ is a two sided ideal (since eχ
is central) affording the character χ (by Lemma 4.2.7 again). In conclusion, testing
whether a class function χ is an ideal character comes down to check whether the
element eχ is idempotent. The claim follows by comparing the coefficients of eχ and
(eχ)2.

The second assertion follows immediately, since the kG-module kGeχ affords the
character χ.

We now define the main objects of investigations of the present chapter. The following
notations are well defined since isomorphic CG-modules have the same generic symmetry
group (Lemma 3.2.5).

Definition 5.1.3. Let χ be a character of G. We define the generic symmetry group
Sym(G,χ) of χ as Sym(G, V ), where V is any CG-module affording χ. Accordingly,
the group of irrelevant generic symmetries Iv(G,χ) of χ is defined as Iv(G, V ). We call
χ (weakly) generically closed if V is (weakly) generically closed.
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Note that Iv(G,χ) is just the subgroup of all elements of Sym(G) fixing all cosets
of Ker(χ) in G. Since the kernel of χ is given by a simple formula in terms of χ, the
irrelevant generic symmetries of a character are easily determined.
Recall that if V is a cyclic CG-module then Sym(G, V ) has natural actions on V

(given by the generators of V ) which all lead to the same character of the generic
symmetry group (Lemma 3.8.1). This character of Sym(G, V ) is uniquely determined
by the character of V .

Definition 5.1.4. Let χ be a left ideal character of G. Then χ̂ denotes the character
of Sym(G,χ) afforded by V̂w, where V is any CG-module affording χ, and where
w ∈ Amp(V ) is any generator of V .

We will see that to a great extent, considerations on generic symmetries of CG-
modules can be done at the level of characters. We begin with simple estimates on
sums and differences of characters.

Proposition 5.1.5. Let χ and ψ be characters of G.

(1) We always have Sym(G,χ) ∩ Sym(G,ψ) ≤ Sym(G,χ+ ψ).

(2) If χ is a left ideal character then we have Sym(G, ρ− χ) = Sym(G,χ), where ρ
is the regular character of G.

(3) If χ is a left ideal character, and if ψ is a constituent of χ then we have
Sym(G,χ) ∩ Sym(G,ψ) ≤ Sym(G,χ− ψ).

Proof. Let χ be afforded by the CG-module V , and let ψ be afforded by the CG-module
W . By Lemma 3.2.8, we have Sym(G, V ) ∩ Sym(G,W ) ≤ Sym(G, V ⊕W ), proving
the first assertion

If χ is a left ideal character then V is isomorphic to a left ideal of CG. By semisim-
plicity, there is a CG-module W such that V ⊕W ∼= CG. The second assertion follows
by Proposition 4.6.1, since the character of W is given by ρ− χ.
Finally, suppose that χ is a left ideal character and that ψ is a constituent of χ.

Then, using the previous statements, we compute

Sym(G,χ− ψ) = Sym(G, ρ− χ+ ψ) ≥ Sym(G, ρ− χ) ∩ Sym(G,ψ)
= Sym(G,χ) ∩ Sym(G,ψ).

In general, the set inclusions in Proposition 5.1.5 are strict, but there is an important
special case, where we always have equality. The following result is the reason why
(left) ideal characters and non-ideal characters are essential notions in the character
theoretic approach to generic symmetries. In particular, it shows that many questions
on generic symmetries of arbitrary characters can be reduced to the case of left ideal
characters.
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Proposition 5.1.6. Let χ be any character of G. Then we have

Sym(G,χ) = Sym(G,χL) = Sym(G,χI) ∩ Sym(G,χN ).

Proof. Let V be a CG-module affording χ, and let U ≤ V be a cyclic submodule
generated by an ample point of V . Then by definition, U is a cyclic submodule of V
of maximum dimension, so the character of U must be χL. By Corollary 3.6.3, we
have Sym(G, V ) = Sym(G,U), proving the first equality. The second equality is a
consequence of Proposition 4.6.1 since χI and χN are the characters of UI and UN by
definition.

By Proposition 5.1.6, the task of determining generic symmetries of characters
clearly reduces to the special cases of ideal characters and non-ideal characters. The
following result is the character theoretic version of the generalized Isaacs’ theorem
(Theorem 4.5.4).

Theorem 5.1.7. Let χ be a non-ideal character of G, that is, a character of G satisfying
〈χ, ψ〉 < ψ(1) for all ψ ∈ Irr(G). Then χ is weakly generically closed, that is, we have

Sym(G,χ) = G · Iv(G,χ).

Moreover, we have χ̂(π) = χ(π(1)) for all π ∈ Sym(G,χ).

Proof. Let V be a CG-module affording χ. Then V is a cyclic module with trivial ideal
constituent by the hypothesis on χ. So V is weakly generically closed by Theorem 4.5.4.
Let π ∈ Sym(G, V ) be any generic symmetry. Then there is a decomposition π = ιg ◦σ,
where ιg is the left multiplication by some g ∈ G, and where σ ∈ Iv(G, V ) is irrelevant
with σ(1) = 1. If w ∈ Amp(V ) is any generator then σ acts trivially on V̂w. So π acts
on V̂w in the same way as ιg does. Hence, χ̂(π) = χ̂(ιg) = χ(g) = χ(π(1)).

For an ideal character χ of G, we already know by Proposition 4.5.3 a characterization
of Sym(G,χ) in terms of a certain formula depending on χ. It actually turns out that
the same formula gives a necessary condition in the more general setting of left ideal
characters.

Theorem 5.1.8. Let χ be a left ideal character of G, and let π ∈ Sym(G) be a
permutation. If π is a generic symmetry of χ then we have

χ(π(g)−1π(h)) = χ(g−1h) for all g, h ∈ G.

If χ is even an ideal character, the converse holds as well.

Proof. The assertion on ideal characters immediately follows by Proposition 4.5.3. So
let χ be a left ideal character, and let π ∈ Sym(G,χ) be any generic symmetry. By
Proposition 5.1.6 π is a generic symmetry of both χI and χN . Since the assertion holds
for ideal characters, we clearly have χI(π(g)−1π(h)) = χI(g−1h) for all g, h ∈ G. Since



5.1 Generic symmetries of characters 83

χ is a left ideal character, we have χ = χI + χN , and it remains to show that also
χN (π(g)−1π(h)) = χN (g−1h) holds for all g, h ∈ G.

We set ψ = χN . By Theorem 5.1.7, ψ is weakly generically closed, so π is an irrelevant
generic symmetry of ψ. Let K = Ker(ψ) be the kernel of ψ, and let g, h ∈ G be arbitrary
elements. Then there are elements k1, k2 ∈ K such that π(g) = gk1 and π(h) = hk2.
We conclude ψ(π(g)−1π(h)) = ψ(k−1

1 (g−1h)k2) = ψ(g−1h).

Example 5.1.9. We finish the considerations of Example 3.1.6. In that example, we
have considered the cyclic group G = 〈x〉 of order n acting on the Euclidean plane by
rotations. The corresponding left ideal character (which is actually an ideal character)
is given by

χ(xk) = 2 cos
(

2kπ
n

)
for all k ∈ Z.

We have already noticed that the permutation σ ∈ Sym(G) sending each group element
to its inverse is an orbit symmetry of any element of the plane, and hence a generic
symmetry of χ. So Sym(G,χ) contains the subgroup U of order 2n generated by the
left multiplications ιg and by σ. We will use Theorem 5.1.8 to show that actually
U = Sym(G,χ), or equivalently, Sym(G,χ)1 = 〈σ〉 holds.
Let π ∈ Sym(G,χ)1 be any generic symmetry stabilizing 1 ∈ G. Note that for

arbitrary elements g, h ∈ G, we have χ(g) = χ(h) if and only if g = h or g = h−1.
Applying Theorem 5.1.8 to g = 1, we see that χ(π(h)) = χ(h), and hence π(h) ∈
{h, h−1} holds for all h ∈ G. We have to show that π is either the identity or the
inversion map. Otherwise, we would have π(g) = g−1 and π(h) = h for some elements
g, h ∈ G with g2, h2 6= 1. Then π(g)−1π(h) = gh is certainly different from both g−1h
and h−1g, which implies χ(π(g)−1π(h)) 6= χ(g−1h). This contradicts Theorem 5.1.8.

Combining the previous results on the generic symmetries of (left) ideal characters
and non-ideal characters, we get a formula for Sym(G,χ) for arbitrary characters χ of
G. Thus, we see that (if there are sufficiently many information on the constituents of
χ available) the generic symmetries of a character can be determined without referring
to a module at all.

Theorem 5.1.10. Let χ be a character of G. Then we have

Sym(G,χ) =
{
π ∈ Sym(G) : χI(π(g)−1π(h)) = χI(g−1h) for all g, h ∈ G

π(gK) = π(1)gK for all g ∈ G

}
,

where K is the kernel of χN in G.

Proof. This is an immediate consequence of Proposition 5.1.6, Theorem 5.1.7, and
Theorem 5.1.8.

As a first application of Theorem 5.1.10, we determine those characters for which
the inversion map is a generic symmetry. The following observation is an important
detail in the considerations of the next chapter.
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Corollary 5.1.11. Let χ be a left ideal character of G. The inversion of group elements
σ : g 7→ g−1 is a generic symmetry of χ if and only if χ is a real valued ideal character.
In particular, χ is afforded by an RG-module in that case.

Proof. If χ is a real valued ideal character then σ must be a generic symmetry of χ by
Theorem 5.1.8 and by the fact that χ(g−1) = χ(g) for all g ∈ G. By Lemma 5.1.2, χ is
afforded by an RG-module in that case.

Conversely, suppose that σ is a generic symmetry of χ, and let K = Ker(χN ) be the
kernel of the non-ideal constituent of χ. By Theorem 5.1.10, σ fixes all cosets of K
in G which is equivalent to G/K being an elementary abelian 2-group. Since all left
ideal characters of abelian groups are ideal characters, it follows that χN is an ideal
character, whence χN = 0. So χ must be an ideal character, and by the same argument
as before, we conclude χ = χ.

Before stating the next theorem, we need to recall some standard facts about permu-
tation characters. Let P be any finite group acting on a finite set Ω by permutations.
Then P acts linearly on the complex vector space CΩ by permuting coordinates. As a
CP -module, CΩ is called the permutation module corresponding to the action of P on
Ω. The corresponding character χ is called a permutation character. For any g ∈ P the
value of χ(g) equals the number of fixed points of g on Ω. Since P acts trivially on the
one dimensional subspace of CΩ generated by the all-one-vector, the trivial character
1P is always a constituent of χ. It is well known that the inner product 〈χ, 1P 〉 is equal
to the number of orbits of P on Ω, and that the inner product 〈χ, χ〉 = 〈χ2, 1P 〉 is
exactly the number of orbits of P on Ω2. Consequently, by calculating the inner product
〈χ − 1P , χ − 1P 〉, we see that the character χ − 1P is irreducible if and only if P is
doubly transitive on Ω.

We go on by examining the canonical extension χ̂ of any left ideal character χ of G.
The following structure theorem shows how χ̂ decomposes into smaller constituents in
accordance with a certain decomposition of χ. In that situation, it is useful to regard χ̂
not only as a character of the generic symmetry group Sym(G,χ) but also as a character
of any subgroup between G and Sym(G,χ) (formally, we consider restrictions of χ̂). The
following result is essentially an application of Theorem 4.6.4. If χ is the character of any
left ideal L ≤ CG then Theorem 4.6.4 shows that L is also a C Sym(G,χ)-submodule
of CG affording the character χ̂.

Theorem 5.1.12. Let Ĝ ≤ Sym(G) be any permutation group on G containing all
left multiplications by elements of G. Let χ, ψ be left ideal characters of G such that
Ĝ ⊆ Sym(G,χ) and Ĝ ⊆ Sym(G,ψ). Then the following statements hold.

(1) If ρ is the regular character of G then Ĝ ⊆ Sym(G, ρ), and ρ̂ is exactly the
permutation character of Ĝ acting on G.

(2) If χ is a constituent of ψ then χ̂ is a constituent of ψ̂ as characters of Ĝ.

(3) If χ+ψ is a left ideal character of G then Ĝ ⊆ Sym(G,χ+ψ) and χ̂+ ψ = χ̂+ ψ̂
as characters of Ĝ.
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(4) We have Ĝ ⊆ Sym(G,χI), and χ̂I is a constituent of χ̂ as characters of Ĝ.

(5) Let α be any constituent of χN . Then Ĝ ⊆ Sym(G,α), and α̂ is a constituent of
χ̂ as characters of Ĝ.

Proof. The regular character ρ of G is afforded by the group algebra CG as a left module
over itself. Of course, we have Sym(G, ρ) = Sym(G) (for example, by Theorem 5.1.10),
so Ĝ ⊆ Sym(G, ρ) in particular. By Theorem 4.6.4, the extended character ρ̂ is afforded
by CG regarded as a CĜ-module, which is exactly the permutation module of Ĝ acting
on G. Thus, ρ̂ is the permutation character of Ĝ acting on G. This proves (1).

We go on by proving (2). Since χ is a constituent of ψ, there are left ideals A ≤ B ≤
CG such that χ is afforded by A, and ψ is afforded by B. By Theorem 4.6.4, A and B
are CĜ-submodules of CG affording the characters χ̂ and ψ̂, respectively. This shows
that χ̂ is a constituent of ψ̂.
Suppose that the hypothesis of (3) holds. We have Ĝ ⊆ Sym(G,χ + ψ) by Propo-

sition 5.1.5. Let L = A⊕ B be an internal direct sum of left ideals of CG such that
χ is afforded by A, and ψ is afforded by B (of course, then L is afforded by χ + ψ).
By Theorem 4.6.4, A,B, and L are CĜ-submodules of CG affording the extended
characters χ̂, ψ̂, and χ̂+ ψ. Thus, we have χ̂+ ψ̂ = χ̂+ ψ.
Finally, we have Ĝ ⊆ Sym(G,χ) = Sym(G,χI) ∩ Sym(G,χN ) by Proposition 5.1.6.

By Theorem 5.1.7, any constituent α of χN (including χN itself) is weakly generically
closed. Since Ker(χN ) ⊆ Ker(α), we see that Ĝ ⊆ Sym(G,χN ) ⊆ Sym(G,α). By what
we have already shown, we conclude that both χ̂I and α̂ are constituents of χ̂, proving
(4) and (5).

Recall that a generic symmetry group Sym(G,χ) is always transitive on G as it
contains a regular subgroup (isomorphic to G). However, we will see that this action is
rarely 2-transitive.

Corollary 5.1.13. Let χ be a character of G such that Sym(G,χ) is doubly transitive
on G. Then Sym(G,χ) = Sym(G), and either χ is a scalar multiple of the trivial
character, or ρ− 1G is a constituent of χ, where ρ denotes the regular character of G.

Proof. Let Ĝ = Sym(G,χ). By Theorem 5.1.12 and Proposition 5.1.5, the Ĝ-character
χ̂L is a constituent of ρ̂ = ρ̂− 1G + 1̂G. Since ρ̂ is the permutation character of
a doubly transitive action, both ρ̂− 1G and 1̂G = 1

Ĝ
are irreducible. So we have

χ̂L ∈ {1̂G, ρ̂− 1G, ρ̂}, and by restriction to G, we get χL ∈ {1G, ρ− 1G, ρ}. In any case,
we have Sym(G,χ) = Sym(G,χL) = Sym(G) by Propositions 5.1.6 and 5.1.5.

Remark 5.1.14. The proof of Corollary 5.1.13 essentially relies on the fact that
the permutation module of a doubly transitive group action decomposes into the
trivial module and exactly one other simple module in characteristic zero. This does
not necessarily hold in positive characteristics. In fact, we have already observed in
Example 4.3.9 that a generic symmetry group may be doubly transitive without being
a full symmetric group.
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The last main result of this section is a formula for the extended character χ̂ which
only relies on χ. It is a remarkable coincidence that, although the generic symmetries
of ideal characters and of non-ideal characters are characterized in completely different
ways, their character values are given by the same formula.

In the following proof, it is convenient to use the canonical isomorphism

V ∗ ⊗C V → EndC(V ), λ⊗ v 7→ (x 7→ λ(x)v)

to identify the endomorphisms of a finite dimensional C-space V with the elements of
V ∗ ⊗C V , where V ∗ = HomC(V,C) is the dual space of V . Recall that the trace of an
endomorphism ∑n

i=1 λi ⊗ vi given in that way is simply the sum ∑n
i=1 λi(vi).

Theorem 5.1.15. Let χ be a left ideal character of G, and let χ̂ be the character
associated to Sym(G,χ). Then for all π ∈ Sym(G,χ) we have

χ̂(π) = 1
|G|

∑
g∈G

χ(g−1π(g)).

Moreover, χ̂ is a weakly generically closed character of Sym(G,χ).

Proof. By Theorem 3.8.6, χ̂ is always weakly generically closed. Let Ĝ = Sym(G,χ).
Since we have χ̂ = χ̂I + χ̂N as characters of Ĝ by Theorem 5.1.12, we may assume for
the rest of the proof that χ is either an ideal character or a non-ideal character.

Suppose that χ is a non-ideal character, and let K = Ker(χ). By Theorem 5.1.7, we
have π(gK) = π(1)gK as well as χ̂(π) = χ(π(1)) for all g ∈ G, π ∈ Ĝ. For any g ∈ G,
and any π ∈ Ĝ, there is an element k ∈ K such that π(g) = π(1)gk. Consequently, we
have

χ(g−1π(g)) = χ(g−1π(1)gk) = χ(g−1π(1)g) = χ(π(1)).

So in the present case, the assertion follows immediately.
Now suppose that χ is an ideal character afforded by a two sided ideal I ≤ CG, say.

By Theorem 4.6.4, I is also a CĜ-submodule of CG affording the extended character
χ̂. We consider central idempotent generator e = 1

|G|
∑
g∈G χ(g−1)g ∈ CG of I given by

Lemma 4.2.7. Let π ∈ Sym(G,χ) be any generic symmetry of χ. We claim that π is given
as a C-linear operator on I by the endomorphism α = 1

|G|
∑
g∈G λg ⊗ π(ge) ∈ I∗ ⊗C I,

where λg is the linear form x 7→ χ(g−1x). In fact, for all h ∈ G we have

α(he) = 1
|G|

∑
g∈G

χ(g−1h)π(ge) = π

 1
|G|

∑
g∈G

χ(g−1)hge
 = π(hee) = π(he),

proving that assertion. Since we have π(he) = π(h)e for all h ∈ G (for example, by
Theorem 5.1.8, or by Lemma 4.3.7 and 4.3.2), we conclude

χ̂(π) = TrI(α) = 1
|G|

∑
g∈G

χ(g−1π(ge)) = 1
|G|

∑
g∈G

χ(g−1π(g)).
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We have already seen in the proof of Corollary 5.1.13 that the consideration of the
extended character χ̂ of a left ideal character χ can be very useful in order to achieve
results on the generic symmetry group Sym(G,χ). Theorem 5.1.15 is remarkable as it
shows that χ̂ can be computed without any knowledge about the ideal constituent of χ.
We give a very simple example which illustrates how the formula for χ̂ can be used to
show that a permutation is not a generic symmetry without referring to Theorem 5.1.10
(which requires knowledge about χI).

Example 5.1.16. Let G = 〈r, s : r4 = s2 = 1, srs = r−1〉 be the dihedral group of
order eight, and let χ be the character of the usual action of G on the Euclidean
plane by rotations and reflections (we have χ(1) = 2, χ(r2) = −2, and χ(g) = 0 for
all g ∈ G \ 〈r2〉). Suppose that we have no information about the constituents of χ
(which is actually an irreducible character). In view of Theorem 5.1.8, we may identify
the group inversion σ : g 7→ g−1 as a potential candidate for a generic symmetry of χ.
Assuming σ ∈ Sym(G,χ), we use Theorem 5.1.15 to compute

χ̂(σ) = 1
8
∑
g∈G

χ(g2) = 1
8(6 · 2 + 2 · (−2)) = 1.

This is impossible however, since any matrix A ∈ GL(n,C) of order two has an integral
trace satisfying Tr(A) ≡ n mod 2 (as follows easily by diagonalization). So σ cannot
be a generic symmetry of χ.

5.2 Continuation of characters

In the last section, we introduced a framework allowing us to handle generic symmetry
groups only in terms of characters, without referring to modules or representations. The
aim of the present section is to give suggestions on how this framework may actually
be useful to study characters of finite groups. In general, if G is a finite group, and if
U is a subgroup with some character χ, one might ask whether χ is the restriction of
some character of G. In that case, we say that χ admits a continuation to G. We give
a sufficient condition for χ admitting a continuation in the special case, where U has a
complement in G. The following considerations have not been published so far.
In the following, we consider a finite group G with subgroups H,A ≤ G such that

G = HA and H ∩ A = 1 (G is called a Zappa-Szép product of H and A). In that case,
the left cosets of A in G can be naturally identified with the elements of H. Since G
acts on the left cosets of A by left multiplication, any element of G can be regarded
as a permutation on H. More precisely, for all g ∈ G there is a unique permutation
πg ∈ Sym(H) such that

ghA = πg(h)A for all h ∈ H.

From that equation it follows immediately that the map Ψ: G → Sym(H), g 7→ πg
is a homomorphism. Under that morphism, any element h ∈ H is sent to the left
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multiplication ιh. Furthermore, we have πg(1) = 1 if and only if g ∈ A, so A is the
preimage under Ψ of the stabilizer Sym(H)1. In particular, we have

Ker(Ψ) =
⋂
g∈G

Ag =
⋂
h∈H

Ah,

which is usually called the core of A in G. Now suppose that we have a left ideal
character χ of H such that Ψ(G) ⊆ Sym(H,χ) (or equivalently, Ψ(A) ⊆ Sym(H,χ)).
Then by Theorem 5.1.15, χ can be extended to a character χ̂ of Ψ(G) in a very specific
way. Consequently, we get a canonical continuation χ̂ ◦Ψ of χ to G. This idea is refined
in the following Proposition.

Proposition 5.2.1. Let G = HA, where H,A ≤ G are subgroups such that H ∩A = 1.
Let χ be a left ideal character of H such that Ψ(A) ⊆ Sym(H,χ). Then χ can be
extended to a character χ̂ of G with

χ̂(g) = 1
|H|

∑
h∈H

χ(h−1πg(h))

for all g ∈ G. Furthermore, the following holds.

(1) If χ is an ideal character then

〈χ̂, χ̂〉 = 1
|A|

1
|H|2

∑
a∈A

∑
h1,h2∈H

χ(h−1
2 h1πa(h1)−1πa(h2)).

(2) Suppose that Ψ(A) contains all inner automorphisms of H. Let χ be an ideal
character of H which, among all nonzero ideal characters of H, is minimal subject
to Ψ(A) ⊆ Sym(H,χ). Then χ̂ is an irreducible character of G.

Proof. We have already seen in the previous discussion that χ can be extended to a
character χ̂ by that formula. If χ is an ideal character, we compute

〈χ̂, χ̂〉 = 1
|G|

∑
x∈H,a∈A

χ̂(xa)χ̂(xa) = 1
|G|

1
|H|2

∑
a∈A

∑
x,h1,h2∈H

χ(h−1
1 xπa(h1))χ(h−1

2 xπa(h2))

= 1
|G|

1
|H|

∑
a∈A

∑
h1,h2∈H

χ(h−1
2 h1πa(h1)−1πa(h2)),

where the last equality is due to Lemma 5.1.2.
Concerning the last assertion, note that χ̂ is the character of the permutation group

Ψ(G) acting on a two sided ideal I of the group algebra CH (Theorem 4.6.4). If Ψ(A)
contains all inner automorphisms of H then all CΨ(G)-submodules of I are two sided
ideals of CH, whence all constituents of χ̂ restrict to ideal characters of H. If χ is
minimal among all nonzero ideal characters subject to Ψ(A) ⊆ Sym(H,χ) then I must
be a simple CΨ(G)-module, and χ̂ must be an irreducible character.
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The situation simplifies a lot when H is normal in G. Then the core of A in G
equals the centralizer CA(H), and πa is simply the (left) conjugation by a (that is,
πa(x) = axa−1) for all a ∈ A.
Corollary 5.2.2. Let G = H o A be a semidirect product, and let χ be an ideal
character of H which is invariant under conjugation by A. Then χ can be extended to
a character χ̂ of G such that

χ̂(ha) = 1
|H|

∑
x∈H

χ(haxa−1x−1) for all h ∈ H, a ∈ A.

(1) We have
〈χ̂, χ̂〉 = 1

|A|
∑
a∈A

χ̂(a) = 〈χ̂|A, 1A〉.

(2) If H ≤ CG(H)A, and if χ has no nontrivial proper ideal constituents invariant
under A then χ̂ is irreducible.

Proof. Since χ is an A-invariant (and hence G-invariant) ideal character, we have
Ψ(G) ⊆ Sym(H,χ) by Theorem 5.1.10 (in the notation of Proposition 5.2.1). The
formula for χ̂ is an immediate consequence of Proposition 5.2.1 since we have

χ(x−1πha(x)) = χ(x−1haxa−1) = χ(haxa−1x−1)

for all x, h ∈ H and a ∈ A. The inner product formula of Proposition 5.2.1 simplifies as

〈χ̂, χ̂〉 = 1
|A|

1
|H|2

∑
a∈A

∑
h1,h2∈H

χ((h−1
2 h1)a(h−1

2 h1)−1a−1)

= 1
|A|

1
|H|

∑
a∈A

∑
x∈H

χ(x−1axa−1) = 1
|A|

∑
a∈A

χ̂(a) = 〈χ̂|A, 1A〉.

Finally, suppose we have H ≤ CG(H)A. Then for any h ∈ H there are elements
c ∈ CG(H) and a ∈ A such that h = ca. For all x ∈ H we have xh = xca = xa, so
πa ∈ Sym(H) is just the conjugation by h. Since h was arbitrary, Ψ(A) contains all
inner automorphisms of H. By Theorem 5.1.8, all ideal characters ψ of H with Ψ(A) ⊆
Sym(G,ψ) are A-invariant. Since χ has no nonzero proper A-invariant constituents, χ̂
is irreducible by Proposition 5.2.1.
Example 5.2.3. Let G = GL(2, 3) be the group of all invertible (2× 2)-matrices over
the field with three elements. This group of order 48 acts transitively on the set of
nonzero vectors Ω = F2

3 \ {0}. We also consider the subgroup SL(2, 3) ≤ GL(2, 3) of all
matrices with determinant 1. This group of order 24 still acts transitively on Ω. By the
Cayley-Hamilton theorem one easily checks that SL(2, 3) has exactly one involution
(the negative identity matrix −1), six elements of order four, namely(

x −x2/y
y −x

)
for x ∈ F3 and y ∈ F×3 ,
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and no element of order eight. So these six elements of order four together with 1 and
−1 form the unique Sylow 2-subgroup of SL(2, 3) which we call H. Being a unique
Sylow subgroup of a characteristic subgroup, H is normal in G. From the element
orders of H we already see that H is isomorphic to the quaternion group Q8. Since all
point stabilizers of SL(2, 3) have order three, and since |H| = 8, we see that H acts
regularly on Ω. Let A = Gv denote the stabilizer (of order six) in G of some vector
v ∈ Ω. By the Frattini argument, we see that G is an internal semidirect product
G = H oA. Since H is regular on Ω, the natural action of A on Ω is equivalent to the
action of A on H by conjugation. In particular, A centralizes precisely the elements
±1 ∈ H, whereas A acts regularly on the six elements of order four of H. Moreover, A
faithfully permutes the three conjugacy classes of length two in H, which shows that A
is isomorphic to S3.
We now consider the character χ = 2ψ of H, where ψ ∈ Irr(H) is the unique

irreducible character of degree two (ψ is zero on the six elements of order four, and
minus two on the unique involution). Then χ is a G-invariant ideal character of H,
and by Corollary 5.2.2, χ extends to a character χ̂ of G. We claim that χ̂ is irreducible.
Since we do not have H ≤ CG(H)A in this example (so the sufficient criterion of
Corollary 5.2.2 does not apply), we will compute the values of χ̂|A and the inner
product 〈χ̂, χ̂〉.
Of course we have χ̂(1) = χ(1) = 4. Since conjugation by any nonidentity element

1 6= a ∈ A fixes exactly two elements of H, the equation axa−1x−1 = 1 has exactly two
solutions x ∈ H. If a ∈ A is an element of order three, and if x ∈ H \ {±1} then x and
axa−1 lie in different conjugacy classes of H. Therefore, we have axa−1x−1 6= −1 for
all x ∈ H. We conclude

χ̂(a) = 1
8(4 + 4 + 0 + 0 + 0 + 0 + 0 + 0) = 1

for all elements a ∈ A of order three. If b ∈ A is an element of order two, conjugation
by b fixes precisely one of the three conjugacy classes of length two in H, and b acts as
a transposition on that class. So the equation bxb−1x−1 = −1 holds for precisely two
elements x ∈ H. We conclude

χ̂(b) = 1
8(4 + 4− 4− 4 + 0 + 0 + 0 + 0) = 0

for all b ∈ A of order two. Now A ∼= S3 has two elements of order three and three
elements of order two. By Corollary 5.2.2, we get

〈χ̂, χ̂〉 = 1
6(4 + 1 + 1 + 0 + 0 + 0) = 1.

So the extension χ̂ of χ is indeed an irreducible character of G.
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5.3 Induced characters

Although we have determined the generic symmetry group of an arbitrary character χ
in terms of a formula only depending on χ (Theorem 5.1.10), we still need to know the
ideal constituent and the non-ideal constituent of χ for applying that formula. Since
we cannot always assume to know the character table of a given group in practice, we
need other techniques to find these constituents. In this section, we develop techniques
for extracting the ideal and non-ideal constituents of induced characters. The results
of the present section are due to Ladisch. They are extracted from [19], where they
(partly) appear implicitly in different proofs.

We recall some standard facts about induction of modules and characters. Let G
be a finite group, and let U ≤ G be a subgroup. If V is any CU -module, the tensor
product CG ⊗CU V is a CG-module in a natural way (where CG is considered as a
CG-CU -bimodule in the canonical way). It is called an induced module. If V affords
the character χ of U , the induced character χG afforded by CG⊗CU V is given by the
formula

χG(g) = 1
|U |

∑
t∈G
gt∈U

χ(gt) for all g ∈ G.

This formula already shows that character induction is additive (that is, (χ+ ψ)G =
χG + ψG holds for arbitrary characters χ, ψ of U), and that the kernel of any nonzero
induced character is given by

Ker
(
χG
)

=
⋂
g∈G

Ker(χ)g.

It is well known that tensor products are associative. That is, if H ≤ U ≤ G is a chain
of subgroups, and if V is any CH-module, we have natural isomorphisms

CG⊗CU (CU ⊗CH V ) ∼= (CG⊗CU CU)⊗CH V ∼= CG⊗CH V.

Consequently, for any character χ of H we have (χU)G = χG. The isomorphism
CG⊗CU CU ∼= CG, which we have just used implicitly, also shows that inducing the
regular character of U yields the regular character of G.
Another important property is that character induction does not affect the field of

definition. That is, if k is any field between Q and C, and if χ is a character afforded
by a kU -module then the induced character χG is afforded by a kG-module. This is
due to the canonical isomorphism

C⊗k (kG⊗kU V ) ∼= CG⊗CU (C⊗k V )

of CG-modules which holds for any kU -module V . (This can be seen directly by
constructing two (canonical) inverse morphisms, but it follows more abstractly from
the fact that both induction and scalar extension are left adjoints of certain forgetful
functors.)



92 5 The character theoretic view on generic symmetries

The inner product of an induced character with another character is most easily
computed by the Frobenius reciprocity. That is, if χ is any character of U and if ψ is
any character of G then we have

〈χG, ψ〉 = 〈χ, ψ|U〉.

Since group algebras over fields of characteristic zero are semisimple, all their modules
are flat (even projective). So tensoring with any fixed module is an exact functor, which
(in particular) preserves injective morphisms. Let L ≤ CU be any left ideal. Then the
inclusion morphism L ↪→ CU gives rise to a monomorphism

CG⊗CU L ↪→ CG⊗CU CU = CG.

For that reason, CG⊗CU L may be regarded as a left ideal of CG. More precisely, if
e ∈ CU is any idempotent generator of L then e (regarded as an element of CG) also
generates a left ideal of CG canonically isomorphic to CG⊗CU L. In particular, we see
that if χ is any left ideal character of U then χG is a left ideal character of G.

The following definition is not standard, but it generalizes the standard terminology
of invariant characters in the case where U is a normal subgroup of G.
Definition 5.3.1. Let χ be a character of a subgroup U ≤ G. We define a function
χ̇ : G→ C by

χ̇(g) =

χ(g) if g ∈ U
0 if g /∈ U

.

The character χ is called invariant under G if χ̇ is a class function of G.
Lemma 5.3.2. Let χ be a left ideal character of U ≤ G. Then the induced character
χG is a left ideal character of G. Moreover, χG is an ideal character of G if and only
if χ is an G-invariant ideal character of U .

Proof. Let L be a left ideal of CU affording χ, and let e ∈ L be an idempotent generator
of L. By the preceding discussion, L′ = CGe is a left ideal of CG affording the induced
character χG (in particular, χG is a left ideal character). By Lemma 4.2.7, L′ is a two
sided ideal if and only if e is central in CG which holds if and only if L is a two sided
ideal of CU and g−1eg = e holds for all g ∈ G. If any of these equivalent statements
holds then e is uniquely given by the formula

e = 1
|U |

∑
u∈U

χ(u−1)u.

So the condition g−1eg = e for all g ∈ G is equivalent to χ being G-invariant.

In view of Theorem 5.1.7, it is particularly important to recognize non-ideal characters.
The following simple observation already has strong consequences.
Lemma 5.3.3. Let χ be a non-ideal character of a subgroup U ≤ G. Then χG is a
non-ideal character as well.
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Proof. Let ρ be the regular character of G, and let ρ′ be the regular character of U .
By definition, χ is a left ideal character, and any irreducible character of U occurs as a
constituent of ρ′ − χ. By Frobenius reciprocity, we have

〈ρ− χG, ψ〉 = 〈(ρ′ − χ)G, ψ〉 = 〈ρ′ − χ, ψ|U〉 > 0,

for all ψ ∈ Irr(G). So any irreducible character of G is a constituent of ρ − χG. It
follows that χG is a non-ideal character.

In combination with Theorem 5.1.7, Lemma 5.3.3 is a powerful tool to construct
(weakly) generically closed characters. In the next chapter, we classify all finite groups
isomorphic to affine symmetry groups of orbit polytopes (that is, those groups having
generically closed RG-modules). At this point, we can already identify a very large
class of such groups.

Example 5.3.4. Let G be a finite group containing two non-commuting involutions.
Then G is isomorphic to the affine symmetry group of an orbit polytope.

Proof. The subgroup U = 〈x, y〉 generated by non-commuting involutions x, y ∈ G
is a non-commutative dihedral group, which has a faithful irreducible character χ
afforded by an RU -module (given by rotations and reflections on the Euclidean plane).
By Lemma 5.3.3, χG is a faithful non-ideal character afforded by an RG-module. By
Theorem 5.1.7, χG is generically closed. So by Theorem 3.9.6, G is isomorphic to the
affine symmetry group of an orbit polytope.

We next consider the induction (1U )G of the trivial character 1U of a subgroup U ≤ G
which is actually the permutation character of G acting on the left cosets of U . It turns
out that its ideal constituent is also a very specific permutation character.

Lemma 5.3.5. Let U ≤ G be any subgroup, and let χ = (1U)G. Then the ideal
constituent of χ is χI = (1N)G, where N = 〈U g : g ∈ G〉 is the normal subgroup of G
generated by U . Moreover, if U � N then we have Ker(χN ) = ⋂

g∈G U
g.

Proof. Let ψ ∈ Irr(G) be any irreducible character. Then, by Frobenius reciprocity, ψ
is a constituent of χI if and only if ψ(1) = 〈χ, ψ〉 = 〈1U , ψ|U〉. This in turn is equivalent
to ψ|U = ψ(1)1U . So χI has exactly those irreducible constituents ψ ∈ Irr(G) for
which U ⊆ Ker(ψ), or equivalently, N ⊆ Ker(ψ) holds (each constituent occurring
with multiplicity ψ(1)). Hence, χI is exactly the regular character of G/N , regarded
as character of G. That is, we have χI(g) = |G : N | for all g ∈ N , and χI(h) = 0 for
all h ∈ G \N . These values coincide with those of the induced character (1N )G, so we
have χI = (1N)G. We finally compute

Ker(χN ) = Ker(χ− χI) = Ker(((1U)N − 1N)G) =
⋂
g∈G

Ker((1U)N − 1N)g

=
⋂
g∈G

Ker((1U)N)g =
⋂
g∈G

 ⋂
h∈N

Ker(1U)h
g =

⋂
g∈G

U g.
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Most importantly, Lemma 5.3.5 shows that for any subgroup U ≤ G not normal in
G there is a non-ideal character χ of G afforded by a QG-module such that Ker(χ) is
the core of U in G.

The last result of this section considers character inductions from a normal subgroup
N of G. We will see that the ideal constituent of an induced left ideal character can
always be identified in that case. Before proving the following lemma, we recall some
standard facts from Clifford theory.
Let χ be a character of a normal subgroup N E G, and let g ∈ G be any element.

Then there is a conjugated character χg of N which is given by

χg(x) = χ(gxg−1) for all x ∈ N.

In that way, G acts on the (irreducible) characters of N . A character χ of N is said to
be G-invariant if χg = χ holds for all g ∈ G. In that case, G permutes the (irreducible)
constituents of χ. So the irreducible constituents of N are partitioned into orbits, where
all constituents of any orbit occur with the same multiplicity in χ. The stabilizer of
some character χ of N in G (that is, the largest subgroup N ≤ I ≤ G such that χ is
I-invariant) is called the inertia subgroup of χ. It is usually denoted by

IG(χ) = {g ∈ G : χg = χ}.

One of the main theorems of Clifford theory states that if ψ ∈ Irr(G) is an irreducible
character of G then the irreducible constituents of the restriction ψ|N (being a G-
invariant character) fall into one single G-orbit. That is, for any irreducible character
ψ ∈ Irr(G) there is an irreducible character χ ∈ Irr(N) and a nonnegative integer
e ∈ Z such that

ψ|N = e(χg1 + · · ·+ χgt),

where {g1, . . . , gt} is any set of right coset representatives of IG(χ) in G. A second main
theorem of Clifford theory implies that ψ is induced by a certain irreducible character
η of IG(χ) such that χ is a constituent of η|N .
We finally note that any character χ of a normal subgroup N E G has a unique

maximal G-invariant constituent. It is given by the formula∑
ψ∈Irr(N)

kψψ,

with multiplicities kψ = min{〈χ, ψg〉 : g ∈ G} (which could possibly be zero).

Lemma 5.3.6. Let N E G be a normal subgroup, and let χ be a left ideal character
of N . If ψ denotes the maximal G-invariant constituent of χI then ψG is the ideal
constituent of χG.

Proof. First of all, we easily see that ψ is an ideal character of N since the multiplicity
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of any irreducible character τ ∈ Irr(N) in ψ satisfies

〈ψ, τ〉 = min{〈χI , τ g〉 : g ∈ G} ∈ {0, τ(1)}.

Since ψ is G-invariant by definition, it follows by Lemma 5.3.2 that ψG is an ideal
character of G.
It remains to show that the character χG − ψG of G is a non-ideal character. Let

τ ∈ Irr(G) be any irreducible constituent of χG − ψG. Its restriction to N decomposes
as

τ|N = k1η1 + · · ·+ ktηt,

into distince irreducible characters ηi ∈ Irr(N) with nonnegative multiplicities ki ∈ Z.
Since τ|N is G-invariant, G permutes the characters ηi by conjugation. Since (by
construction) the character χ− ψ has no G-invariant ideal constituent, at least one
of the ηi occurs with a multiplicity less than ηi(1) as a constituent of χ − ψ. So by
Frobenius reciprocity, we have

0 < 〈χG − ψG, τ〉 = 〈χ− ψ, τ|N〉 =
t∑
i=1

ki〈χ− ψ, ηi〉 <
t∑
i=1

kiηi(1) = τ(1).

Since τ was an arbitrary irreducible constituent of χG − ψG, we see that χG − ψG is a
non-ideal character.





6 Generically closed modules over the real and
complex numbers

In this chapter, we classify all finite groups which are isomorphic to the affine symmetry
group of an orbit polytope (Theorem 6.4.4). Thereby, we answer an old question of
Babai who answered the analogous question on the Euclidean symmetry groups of
vertex transitive polytopes (we reprove Babai’s result later in Theorem 7.2.2). The proof
of our classification proceeds in several steps. Note that by Theorem 3.9.6, we already
know that a finite group G is isomorphic to the affine symmetry group of an orbit
polytope if and only if there is a generically closed RG-module. We begin by classifying
all finite groups G admitting a faithful non-ideal RG-module (Theorem 6.2.3) which is
automatically generically closed by the generalized Isaacs’ Theorem. The remaining
finite groups fall into four families. These are the abelian groups, the generalized
dicyclic groups, and the groups of the form Q8 × C4 × Cr

2 and Q8 ×Q8 × Cr
2 for any

nonnegative integer r. The generalized dicyclic groups are easily excluded either by
using Babai’s classification or by a simple application of our methods (Lemma 6.4.1).
While it is easy to see that abelian groups of exponent greater than two never have
generically closed RG-modules, it is a challenging combinatorial task to construct
generically closed modules for abelian groups of exponent two. We use a graph theoretic
approach to show that the group G = Cr

2 has a generically closed RG-module if and
only if r /∈ {2, 3, 4} (Theorem 6.3.8). The classification is finished by the Lemmas 6.4.2
and 6.4.3 which construct characters of generically closed RG-modules for all groups
of the form G = Q8 × C4 × Cr

2 or G = Q8 ×Q8 × Cr
2 .

The results of the present chapter have been published, distributed among the papers
[9], [10], and [19]. The classification of all finite groups G admitting a faithful non-ideal
RG-module (Theorem 6.2.3) is originally due to Ladisch. The result presented here
is slightly improved by a new, purely group theoretical, characterization of those
groups. We also give a new simplified proof. Ladisch also classified the finite groups G
admitting a faithful non-ideal QG-module, which leads to a classification of all finite
groups isomorphic to the affine symmetry group of an orbit polytope with integral
vertices [19]. This result however, is not presented here.

6.1 Groups G with generically closed CG-modules

Before we restrict our attention to characters afforded by RG-modules, we briefly
discuss the general question of which finite groups have generically closed characters (of
CG-modules). Surprisingly, the answer is particularly simple in the case of non-abelian
groups. The following result essentially relies on the well known facts that a finite
group G is abelian if and only if all irreducible characters of G are linear, and that the
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multiplication with any linear character of G permutes the irreducible characters of G.
The next result is equivalent to Lemma 3.2 in [19].

Theorem 6.1.1. Let G be a non-abelian finite group. Then G has a faithful non-ideal
character. In particular, G has generically closed characters.

Proof. Let χ be the sum of all irreducible characters of G which are not linear. Since
G is non-abelian, χ is nonzero. The ideal constituent of χ is trivial by definition. We
claim that χ is faithful (then we are done by Theorem 5.1.7).

Suppose there is a non-identity element 1 6= g ∈ Ker(χ). Since the regular character
of G is faithful, there must be an irreducible character λ ∈ Irr(G) such that g /∈ Ker(λ).
By definition of χ, the character λ must in fact be linear. But then we have λχ = χ,
and hence g /∈ Ker(λχ) = Ker(χ). This is a contradiction.

The question of which finite abelian groups have generically closed characters is much
more challenging (as they have no non-ideal characters at all). Of course, any cyclic
group has a faithful linear character which is generically closed by Proposition 3.8.8.
For abelian groups of exponent two, the question will be fully answered later in this
chapter through the application of graph theory. For non-cyclic abelian groups of
exponent greater than two it seems to be generally open whether there exist generically
closed characters. At least, we know that such characters cannot be real valued by
Corollary 5.1.11. So these cases become irrelevant when restricting the attention to
characters of RG-modules.

6.2 Groups G with faithful non-ideal RG-modules

In this section, we classify all finite groups G admitting a faithful non-ideal RG-module.
The idea is very similar to the proof of Theorem 6.1.1. If G is any finite group, we can
easily construct a non-ideal character of G afforded by an RG-module whose kernel is
as small as possible. More precisely, we may define a character χ to be the sum of the
characters of all simple non-ideal RG-modules. However, in contrast to the situation in
Theorem 6.1.1, χ may have a nontrivial kernel even if G is non-abelian. (For example,
all left ideals of RQ8 are two sided ideals, where Q8 is the quaternion group of order 8.
In that case, χ is just the zero character.) The kernel of χ can also be defined in the
following way.

Definition 6.2.1. Let G be a finite group. The non-ideal kernel of G is defined by

NKer(G) =
⋂
χ

Ker(χ),

where χ runs over all non-ideal characters of G afforded by (simple) RG-modules. If G
has no such characters, we set NKer(G) = G.

By definition of the non-ideal kernel, a finite group G satisfies NKer(G) = 1 if
and only if G admits a faithful non-ideal RG-module (which is generically closed by
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Theorem 4.5.4). In the following, we classify the exceptional finite groups G for which
NKer(G) is nontrivial.
In the proof of the following Theorem 6.2.3, we frequently need to know whether

an irreducible character of G is afforded by an RG-module. A very useful tool for
recognizing such characters is the Frobenius-Schur indicator (see [17, Ch. 4] for further
reference). For any character χ of G the Frobenius-Schur indicator ιχ ∈ C is defined by

ιχ = 1
|G|

∑
g∈G

χ(g2).

If χ is irreducible then we have ιχ ∈ {−1, 0, 1}, and these values can be interpreted in
the following way. If ιχ = 1 then χ is afforded by an absolutely simple RG-module. If
ιχ = 0 then χ is not real valued, and consequently not afforded by an RG-module. In
that case, the character χ+ χ is afforded by a simple RG-module. Finally, if ιχ = −1
then χ is real valued, but not afforded by an RG-module either. In that case, 2χ is
afforded by a simple RG-module.
If G = A× B is a direct product of two (necessarily normal) subgroups A,B then

we have a canonical bijection Irr(G) = Irr(A) × Irr(B). More precisely, if α ∈ Irr(A)
and β ∈ Irr(B) are irreducible characters, then there is an irreducible character
α× β ∈ Irr(G) sending a product a · b to α(a)β(b) for all a ∈ A, b ∈ B. Any irreducible
character of G arises uniquely in that way. It is easily seen that the Frobenius-Schur
indicator of such characters evaluates to ι(α× β) = ια · ιβ.

According to Babai, we call a finite group G generalized dicyclic if there is a normal
abelian subgroup A ≤ G of index two in G such that some (and hence every) element
g ∈ G \ A has order four, and acts on A by inverting elements. We need the following
facts about the irreducible characters of generalized dicyclic groups, which are easily
proven by Clifford theory (see the discussion before Lemma 5.3.6).

Lemma 6.2.2. Let G = A〈g〉 be a generalized dicyclic group, where A is of index
two in G, and where g is an element of order four acting as the inversion on A. Let
χ ∈ Irr(G) be any irreducible character with g2 /∈ Ker(χ).

(1) If χ is linear then χ is not real valued, and the character χ+ χ is zero on G \A.

(2) If χ is non-linear then χ is a real valued character of degree two. Furthermore, χ
is zero on G\A, and we have χ(h2) = χ(h)2−2 for all h ∈ G. Its Frobenius-Schur
indicator is ιχ = −1.

Proof. Suppose that χ is linear, and let h ∈ G \ A be arbitrary. Then we have h = ga
for some a ∈ A, and hence h2 = (ga)2 = g2aga = g2. Since χ(h2) = χ(g)2 6= 1, we have
χ(h) = ±i (in particular, χ is not real valued), and hence χ(h) + χ(h) = 0.

Now suppose that χ is non-linear, and let λ ∈ Irr(A) be an irreducible constituent of
χ|A. By Clifford theory, we have χ|A = λ+ λg = λ+ λ. In particular, we have χ(1) = 2,
χ(g2) = −2, and χ(a2) = χ(a)2 − 2 for all a ∈ A. Furthermore, we easily see that
IG(λ) = A, so χ = λG is an induced character which clearly vanishes outside A. As
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before, any element h ∈ G\A squares to g2. So we have χ(h2) = χ(g2) = −2 = χ(h)2−2
for all h ∈ G \A. Since any element of A is conjugated to its inverse in G, and since χ
vanishes outside A, we get χ = χ. Finally, we compute

ιχ = 1
|G|

∑
h∈G

χ(h2) = 1
|G|

∑
h∈G

χ(h)2 − 2 = 〈χ, χ〉 − 2 = −1.

We are ready to classify all finite groups G admitting faithful non-ideal RG-modules
(or equivalently, all finite groups G with NKer(G) = 1). Note that the equivalence
(1) ⇐⇒ (4) was originally proven by Ladisch using the classification of the so called
Blackburn groups (which in turn relies on the well known classification of all Dedekind
groups) [19]. By a careful analysis of that proof, it was possible to extract a new
intermediate characterization (3) of the groups G admitting a faithful non-ideal RG-
module, which is of purely group theoretical nature. We prove (1) =⇒ (3) and (4)
=⇒ (1) by using the methods we developed so far. The implication (3) =⇒ (4) is
proven just by elementary group theory. In particular, the proof of Theorem 6.2.3 does
neither rely on Blackburn’s classification, nor on Dedekind’s classification.

In the following, it turns out to be important to recognize which cyclic subgroups of
the given group G are normal. For simplicity, we call an element g ∈ G normal if the
cyclic subgroup 〈g〉 generated by g is a normal subgroup of G. The other elements of
G are called non-normal.

Theorem 6.2.3. Let G a nontrivial finite group. The following statements are equiva-
lent:

(1) NKer(G) > 1.

(2) ⋂ψ Ker((ψG)N ) > 1, where ψ runs over all characters afforded by simple RU-
modules for cyclic subgroups U ≤ G.

(3) All normal elements g ∈ G satisfy gG ⊆ {g, g−1}. All non-normal elements of G
have order four, and all these elements have the same square.

(4) G belongs to any of the following four families:
• G is abelian,
• G is generalized dicyclic,
• G ∼= Q8 × C4 × Cr

2 for some r ≥ 0, or
• G ∼= Q8 ×Q8 × Cr

2 for some r ≥ 0.

Proof. We begin by proving the implications (1) =⇒ (2) =⇒ (3) and (4) =⇒ (1).
The proof of the remaining part, (3) =⇒ (4), is split into several lemmas afterwards.

Of course the direction (1) =⇒ (2) is trivial by definition. For proving the implication
(2) =⇒ (3), we set K = ⋂

ψ Ker((ψG)N ), where ψ runs over the characters of all simple
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RU -modules for cyclic subgroups U ≤ G. Let h ∈ G be any non-normal element. We
consider the permutation character χ = (1〈h〉)G. By Lemma 5.3.5, the kernel of χN
is strictly contained in 〈h〉, so we have K ( 〈h〉. In particular, we have o(h) > 2. We
now consider the character ψ = λ+ λ, where λ ∈ Irr(〈h〉) is a faithful linear character.
By the previous discussion, ψ is afforded by a simple R〈h〉-module (it is actually the
character of the usual representation of the cyclic group 〈h〉 acting on the Euclidean
plane, where h acts as a rotation of order o(h)). Let τ be any irreducible constituent of
ψG. By Frobenius reciprocity, we have

0 < 〈ψG, τ〉 = 〈ψ, τ|〈h〉〉 = 〈λ, τ|〈h〉〉+ 〈λ, τ|〈h〉〉,

so τ|〈h〉 has a faithful linear constituent. In particular, we have Ker(τ) ∩ 〈h〉 = 1, and
hence K 6⊆ Ker(τ). By definition of K, it follows that τ is actually a constituent of
(ψG)I . Since τ was chosen arbitrarily, ψG must be an ideal character. By Lemma 5.3.2,
it follows that ψ is G-invariant. Since h is non-normal, this implies ψ(h) = 0, and hence
o(h) = 4. Since K is a nontrivial proper subgroup of 〈h〉, we conclude K = 〈h2〉. Since
h was arbitrary, we see that all non-normal elements of G have the same square.

Now let g ∈ G be a normal element. If g2 = 1 then g is central, and there is nothing
to prove. Suppose that o(g) > 2. As before, we consider the character ψ = λ + λ,
where λ ∈ Irr(〈g〉) is faithful. Then ψ is an ideal character of the normal subgroup
〈g〉 E G. Since λ is G-invariant if and only if λ is G-invariant, the maximal G-invariant
constituent of ψ is either 0 or ψ. So by Lemma 5.3.6, ψG is either an ideal character or
a non-ideal character, depending on whether ψ is G-invariant or not. Since Ker(ψG) = 1
does not contain K, we conclude that ψG is an ideal character, and that ψ is G-invariant.
By definition of ψ, we have ψ(x) = ψ(y) for some x, y ∈ 〈g〉 if and only if y ∈ {x, x−1}.
From ψ(g) = ψ(gh) for all h ∈ G, we conclude gG ⊆ {g, g−1}.
Next, we prove (4) =⇒ (1). If G is abelian then every left ideal character of G is

an ideal character, so NKer(G) = G > 1.
Let G be generalized dicyclic. Let A ≤ G be an abelian normal subgroup of index two,

and let g ∈ G \ A be an element of order four, acting on A by inverting elements. We
claim that g2 ∈ NKer(G). Indeed, if χ ∈ Irr(G) is any non-linear irreducible character
with g2 /∈ Ker(χ) then, by Lemma 6.2.2, χ has degree two, and 2χ is the unique
character afforded by a simple RG-module having χ as a constituent. But 2χ is an ideal
character. By contraposition, g2 lies in the kernel of all non-ideal characters afforded
by (simple) RG-modules. That is, g2 ∈ NKer(G).
Let G = 〈i, j〉 × 〈g〉 ×H, where 〈i, j〉 ∼= Q8, 〈g〉 ∼= C4, and H ∼= Cr

2 . We claim that
(ig)2 ∈ NKer(G). Let χ ∈ Irr(G) be non-linear with (ig)2 /∈ Ker(χ), say χ = α× β × γ,
where α ∈ Irr(〈i, j〉), β ∈ Irr(〈g〉), and γ ∈ Irr(H). Since χ is non-linear, α has to be
the quaternionic character of degree two, and hence χ(1) = 2. Since χ((ig)2) 6= 2 and
α(i2) = −2, it follows β(g2) = 1, and hence ιβ = 1. We compute ιχ = ια · ιβ · ιγ = −1.
So the unique character of a simple RG-module having χ as a constituent is 2χ, which
is clearly an ideal character. Hence, (ig)2 ∈ NKer(G).
Finally, let G = 〈i, j〉 × 〈i′, j′〉 × H, where 〈i, j〉, 〈i′, j′〉 ∼= Q8, and H ∼= Cr

2 . We
claim that (ii′)2 ∈ NKer(G). Let χ ∈ Irr(G) be non-linear with (ii′)2 /∈ Ker(χ),
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say χ = α × β × γ, where α ∈ Irr(〈i, j〉), β ∈ Irr(〈i′, j′〉), and γ ∈ Irr(H). Since χ
is non-linear, one of α or β must be the quaternionic character of degree two. Since
(ii′)2 /∈ Ker(χ), one of α or β must be linear. Hence, χ(1) = 2, and ιχ = ια · ιβ · ιγ = −1.
As before, it follows that the unique character of a simple RG-module having χ as a
constituent is an ideal character. Consequently, (ii′)2 ∈ NKer(G).

The direction (3) =⇒ (4) will be handled in the rest of this section.

From now on let G be any finite group satisfying (3) of Theorem 6.2.3. That is, any
normal element g ∈ G satisfies gG ⊆ {g, g−1}, and all non-normal elements of G (if
there are any) have the same square, which is a (necessarily central) involution. We
have to show that G is isomorphic to a group listed in (4).
As usual in group theory, we denote the commutator of two elements g, h ∈ G by

[g, h] = g−1h−1gh. By definition, g and h commute if and only if [g, h] = 1, and there
are the obvious calculation rules hg[g, h] = gh and [g, h][h, g] = 1. If the commutator
[g, h] commutes with both g and h, we obtain from these elementary observations the
very useful equation (gh)n = gnhn[h, g](

n
2) for all non-negative integers n. Moreover,

there are well known (and straightforward to verify) equations

[gh, x] = [g, x]h · [h, x] for all g, h, x ∈ G.

In particular (setting g = h), if g, x ∈ G are elements such that g commutes with [g, x]
then we have [g, x]n = [gn, x] for all nonnegative integers n.

Lemma 6.2.4. If all normal elements of G are central then G is abelian.

Proof. Let Z = Z(G) be the center of G which contains all normal elements of G
by the hypothesis. Then all elements outside Z (being non-normal) have the same
square which is a central involution. For a proof by contradiction, we assume that
G is non-abelian. Then G/Z is an abelian group of exponent two. Let h ∈ G \ Z be
arbitrary. For all elements g ∈ G with g ∈ Z or g ∈ hZ we have hg = h. If g ∈ G \Z is
such that gZ 6= hZ then the three elements g, h, and gh are all outside of Z, so they
all have order four, and they all have the same square z ∈ Z. Furthermore, since G/Z
is abelian, we have [h, g] ∈ Z. We conclude

h2 = z = (gh)2 = g2h2[h, g] = z2[h, g] = [h, g],

which implies hg = h−1. So we see that h is normal in G but not central, which
contradicts the hypothesis.

From now on, we suppose that G is non-ablian. We fix some element x ∈ G such
that o(x) > 2 and xG = {x, x−1} (which exists by Lemma 6.2.4). Then N = CG(x) is a
normal subgroup of index two in G.

Lemma 6.2.5. For all g ∈ G\N we have o(g) = 4. If an element g ∈ G\N is normal
in G then 〈g, x〉 is isomorphic to the quaternion group Q8.
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Proof. Of course we have o(g) = 4 for all non-normal elements g ∈ G. If g ∈ G \ N
is normal then we have both xg = x−1 and gx = g−1. Thereby, we get equations
g2 = [x, g] = x−2, which show in particular that g2 commutes with x, x2 commutes with
g, and both g and x commute with [x, g]. So g4 = [x, g]2 = [x2, g] = 1, and analogously,
x4 = [g, x]2 = [g2, x] = 1. As a product of two cyclic normal subgroups of order four
with nontrivial intersection, we see that 〈g, x〉 is the quaternion group of order eight.

Lemma 6.2.6. If all elements in G \N are non-normal then G is generalized dicyclic.

Proof. Let g ∈ G\N be fixed. For all y ∈ N , we have gy /∈ N , so gy is non-normal, and
we have g2 = (gy)2 = g2ygy. It follows yg = y−1. In particular, N must be abelian.

For any group H, we use H2 to denote 〈h2 : h ∈ H〉, the subgroup generated by all
squares of H. This soubgroup is normal (even characteristic) in H, and the quotient
H/H2 is an abelian group of exponent less or equal than two.

Lemma 6.2.7. If some element g ∈ G \N is normal in G then there is a subgroup
H ≤ N such that G = 〈g, x〉 ×H, all elements of H are normal in G, and |H2| ≤ 2.

Proof. Let Q = 〈g, x〉 which is the quaternion group by Lemma 6.2.5. Being generated
by normal elements, Q is a normal subgroup of G. We consider the centralizer C =
CG(Q) = CN(g) which is (being the centralizer of a normal subgroup) also normal in
G. It is easy to see that Q ∩ C = 〈g2〉. Since G acts on Q by inner automorphisms
of Q, we also have G = QC. We claim that all elements of C are normal in G, that
|C2| ≤ 2, and that g2 is not a square in C.
Let h ∈ C be arbitrary. Then gh /∈ N , so o(gh) = 4 by Lemma 6.2.5, and hence

h4 = 1. So the exponent of C divides four. If gh is normal in G for some h ∈ C then
g3h3 = (gh)x = g−1h, and hence h2 = 1. By contraposition, we see that for all elements
h ∈ C of order four the product gh is non-normal. So o(gh) = 4, and hence g2 6= h2.
This shows that g2 is not a square in C. If h1, h2 ∈ C are both of order four, then
(gh1)2 = (gh2)2, and hence h2

1 = h2
2, proving |C2| ≤ 2. Finally, if some element h ∈ C

would be non-normal in G then we would have o(h) = 4, so (since gh also is non-normal
in that case, as shown before) h2 = (gh)2 = g2h2, and hence g2 = 1. This contradiction
shows that all elements of C are normal in G.
To finish the proof, we show that 〈g2〉 ≤ C has a complement H in C. As we have

just seen, we have g2 /∈ C2. So, as C/C2 is elementary abelian, there is a complement
H/C2 of the nontrivial subgroup 〈g2〉C2/C2 in C/C2. Then H is a complement of 〈g2〉
in C, and hence a complement of Q in G. Being a subgroup of C, H also commutes
with Q, so we get G = Q×H. It is clear that all elements of H are normal in G and
that |H2| ≤ 2 holds, since the same even holds for C.

Continuation of the proof of Theorem 6.2.3. We finally prove the direction (3) =⇒
(4). If G is not abelian, and not generalized dicyclic, then by Lemma 6.2.5 and
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Lemma 6.2.7 we have G = Q × H, where Q is the quaternion group of order eight,
and H consists of normal elements of orders dividing four, where any two elements
of order four have the same square. If H is abelian, then we either have H ∼= Cr

2 , or
H ∼= C4 × Cr

2 for some r ≥ 0. In the first case G is generalized dicyclic, in the second
case we have G ∼= Q8 × C4 × Cr

2 .
If H is not abelian, then we apply Lemma 6.2.5 and Lemma 6.2.7 to H instead of G

to obtain H = W × U , where W is the quaternion group of order eight, and U is a
certain complement of W . Since all elements of H have an order dividing four, and all
elements of order four have the same square, U must be an elementary abelian 2-group.
It follows G ∼= Q8 ×Q8 × Cr

2 for some r ≥ 0.

6.3 Generically closed RG-modules of abelian groups

As already mentioned before, the RG-modules of abelian groups of exponent greater
than two are never generically closed since the inversion of group elements is always
a generic symmetry by Corollary 5.1.11. The objective of this section is to classify
which abelian groups of exponent two have generically closed characters. (Note that
all characters of elementary abelian 2-groups are afforded by RG-modules since their
linear characters obviously are.)
Recall that the generic symmetry group of a character χ always coincides with

the generic symmetry group of its left ideal constituent (Proposition 5.1.6), and that
any left ideal character of an abelian group is an ideal character (the group algebra
being commutative). So we may restrict our attention to ideal characters which we
characterize in the following. It is convenient to regard any finite elementary abelian 2-
group G as a vector space over F2, the field with two elements. As such, G is isomorphic
to Fn2 for some n ≥ 0. So it suffices to consider the concrete examples Fn2 (consisting of
row vectors) which we regard both as additive groups, and as F2-spaces. The linear
characters of G = Fn2 are uniquely described by their values (±1) on the unit vectors.
So the linear characters λv ∈ Irr(G) are in bijective correspondence to the vectors
v ∈ Fn2 , by

λv(x) = (−1)xvt for all x ∈ G.

An arbitrary ideal character of degree m is the sum of m distinct linear characters.
So the ideal characters χC of G of degree m are in bijective correspondence to the
subsets C ⊆ Fn2 of size m. It is often convenient to regard such an m-subset C ⊆ Fn2 as
a matrix C ∈ Fn×m2 by regarding the elements of C as column vectors which appear in
any order. By doing so, we see that any ideal character χC of G is given by the formula

χC(x) =
∑
i

(−1)xvi = m− 2 wt(xC) for all x ∈ G,

where wt(y) denotes the weight of a vector y (that is, the number of its nonzero
coordinates). In particular, we see that the kernel of χC is exactly the (left) kernel
of the matrix C. So the faithful characters of G correspond to those matrices with
linearly independent rows. By Theorem 5.1.8, a permutation π ∈ Sym(G) is a generic
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symmetry of the ideal character χC if and only if we have

wt(π(x)C + π(y)C) = wt(xC + yC) for all x, y ∈ G.

Let K = Ker(χC) be the (left) kernel of the matrix C. Then the right multiplication
by C induces an isomorphism of the quotient group G/K and the row space V of C.
So χC can be regarded as a faithful ideal character of V . Identifying G/K and V , we
get that a permutation σ ∈ Sym(V ) is a generic symmetry of χC if and only if

wt(σ(x) + σ(y)) = wt(x+ y) for all x, y ∈ V.

Recall that the generic symmetry group Sym(G,χC) is a semidirect product

Sym(G,χC) ∼= Iv(G,χC)o Sym(V, χC)

by Proposition 3.2.7, so we see that the row space of C actually contains the most
relevant information on the generic symmetries of the character χC .
Using these observations, we will answer the question of which of the elementary

abelian 2-groups of order up to 32 have generically closed characters. Concerning F2,
the smallest groups among them, we see that F2 = Sym(F2). So in fact, all faithful
characters of F2 are generically closed for trivial reasons. By a counting argument,
it can be easily shown that the next three candidates do not have generically closed
(ideal) characters.

Lemma 6.3.1. Let G be an elementary abelian group of order 4, 8, or 16. Then no
character of G is generically closed.

Proof. Without loss of generality, we may assume G = Fn2 , where n ∈ {2, 3, 4}. Any
ideal character χC ofG of degree 1 ≤ m ≤ 2n corresponds to anm-subset C ⊆ Fn2 . There
are

(
2n

m

)
such subsets. The group GL(n, 2) acts on those m-sets by left multiplications.

Since |GL(n, 2)| = ∏n−1
i=0 (2n − 2i) is strictly larger than

(
2n

m

)
for the given values of n

and m, there must be a non-identity matrix A ∈ GL(n, 2) such that AC = C. By the
previous considerations, we see that the permutation x 7→ xA is a generic symmetry of
χC (which is not a translation). So χC is not generically closed.

The elementary abelian group of order 32 actually has a generically closed character.

Example 6.3.2. We consider the following matrix C ∈ F5×12
2 :

C =


1 0 0 0 0 1 0 0 1 1 0 1
0 1 0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 0 1 0 0 1 1 1
0 0 0 1 0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 1 1


The corresponding character χC of F5

2 is generically closed.
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The following proof is elementary but relies on enumerating all vectors of a space
with 32 elements and many calculations. It is recommended to use a computer algebra
system for verification.

Proof. Let V be the column space of C. The rows of C obviously are linearly inde-
pendent, so the character χC is faithful, and it suffices to show that any permutation
π ∈ Sym(V ) with π(0) = 0 and wt(π(x) + π(y)) = wt(x+ y) for all x, y ∈ V must be
the identity. We will frequently use the argument that if p ∈ V is any fixed point of π
and if x, y ∈ V are in the same orbit under π then x+ p and y + p must have the same
weight. In particular (setting p = 0), all orbits of π must have some constant weight.

The nonzero vectors of V distribute into 1 vector of weight 3, 2 vectors of weight 4, 7
vectors of weight 5, 8 vectors of weight 6, 7 vectors of weight 7, 5 vectors of weight 5, and
1 vector of weight 9. Let v3 be the unique vector of weight 3, and let v9 be the unique
vector of weight 9. By uniqueness, both v3 and v9 are fixed by π. Let v4,1, v4,2 ∈ V
be the two vectors of weight 4. Then we calculate wt(v4,1 + v3) 6= wt(v4,2 + v3) which
shows that both v4,1 and v4,2 must be fixed by π. Now if x, y ∈ V are arbitrary distinct
vectors of the same weight wt(x) = wt(y) ∈ {5, 6, 7, 8}, we see that at least one of the
inequalities

wt(x+ v3) 6= wt(y + v3),wt(x+ v9) 6= wt(y + v9),
wt(x+ v4,1) 6= wt(y + v4,1), or wt(x+ v4,2) 6= wt(y + v4,2)

holds. So any two vectors of V lie in different orbits of π which shows that π is the
identity.

In the remainder of this section, we will show that all elementary abelian groups of
order 2n for n ≥ 6 have generically closed characters. For simplification, we will restrict
our attention to those ideal characters χC coming from matrices C, where each column
has exactly two nonzero entries. These are precisely the incidence matrices of finite
simple graphs, and in fact it turns out to be very convenient to use the graph theoretic
language.

In the following, a graph is always understood as a finite undirected graph Γ = (V,E)
with vertex set V and edge set E without loops or multiple edges. That is, the edges
e ∈ E of Γ are 2-subsets e = {x, y} of vertices x, y ∈ V . For keeping the notation simple,
an edge e = {x, y} is denoted by e = xy. We consider the power sets P(V ) and P(E) as
vector spaces over F2, where the vector addition is given by symmetric difference, that
is, A+B = (A\B)∪ (B \A). These spaces are of course canonically isomorphic to F

(V )
2

and F
(E)
2 , respectively (any subset being identified with its characteristic vector). Let

C ∈ FV×E2 be the incidence matrix of Γ, that is, C = (cv,e)v∈V,e∈E with entry cv,e = 1 if
v ∈ e and cv,e = 0 otherwise. The right multiplication by C corresponds to the linear
map

P(V )→ P(E), A 7→ {e ∈ E : |e ∩ A| = 1},

which sends a vertex set A ⊆ V to the set of all edges connecting a vertex of A with a
vertex of V \ A. We denote that linear map by the same symbol C, and we call the
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image of C in P(E) (which corresponds to the row space of the incidence matrix) the
cut space of Γ. The cut space of Γ is denoted by CΓ, and its elements are called cut
sets. Note that C(A) = C(V \A) for all subsets A ⊆ V , so the map C is never injective.
We collect its rank and another simple fact we need in the following lemma.

Lemma 6.3.3. Let Γ = (V,E) be a graph.

(1) The kernel of C : P(V )→ P(E) is generated by the vertex sets of the connected
components of Γ. Therefore, CΓ is a (|V | − t)-dimensional subspace of P(E),
where t is the number of those components.

(2) If Γ is connected then CΓ has dimension |V | − 1.

(3) As a subgraph of Γ, any cut set is bipartite. In particular, all circles in a cut set
are of even length.

Proof. A subset A ⊆ V is in the kernel of C if and only if no edge of Γ leaves A. This
is equivalent to A being a disjoint union of the connected components of Γ, which
proves (1). Of course (2) is an immediate consequence of (1). Finally, if C(A) ∈ CΓ is
an arbitrary cut set then the disjoint union A t (V \ A) is a bipartition of C(A) as a
subgraph of Γ, proving (3).

We now proceed as follows. We consider some connected graph Γ = (V,E) with n
vertices and m edges, which has an associated (n− 1)-dimensional F2-space CΓ. By
the previous discussion, there is a faithful ideal character χ of CΓ (corresponding to
the incidence matrix of Γ) of degree m. Since the weight of a vector of F(E)

2 is just the
cardinality of the corresponding subset of E, the values of χ are given by

χ(S) = m− 2|S| for all S ∈ CΓ.

We wish to find a graph theoretical condition on Γ ensuring that χ is generically closed.
By Theorem 5.1.10, a generic symmetry of χ is a permutation π ∈ Sym(CΓ) such that
|Sπ + T π| = |S + T | (we use the exponential notation Sπ instead of π(S) here) for all
cut sets S, T ∈ CΓ. Since we only want to know whether Sym(CΓ, χ) is strictly larger
than CΓ, we may restrict our attention to those generic symmetries fixing the identity
∅ ∈ CΓ. For convenience, we introduce the following terminology.

Definition 6.3.4. Let Γ be a graph. A permutation π ∈ Sym(CΓ) is called a cut
symmetry of Γ if ∅π = ∅, and |Sπ + T π| = |S + T | for all S, T ∈ CΓ.

By the previous discussion, the character χ associated to (the incidence matrix of) a
graph Γ is a generically closed character of the cut space CΓ if and only if Γ has only
the trivial cut symmetry. The following simple characterization of cut symmetries will
be frequently used.

Lemma 6.3.5. Let Γ be a graph. A permutation π ∈ Sym(CΓ) is a cut symmetry of Γ
if and only if
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(1) |Sσ| = |S|, and

(2) |Sσ ∩ T σ| = |S ∩ T |

holds for all cut sets S, T ∈ CΓ.

Proof. This is an immediate consequence of the equation |S + T | = |S|+ |T | − |S ∩ T |
which actually holds for arbitrary finite sets S, T .

Let π be a graph automorphism of a graph Γ (that is, a permutation of the vertices
which also permutes the edges of Γ). Then π induces a cut symmetry σ of Γ by setting
C(A)σ = C(Aπ). The cut symmetries obtained in that way are special as they permute
the cut sets of the form C({v}) for vertices v of Γ. We will call the cut sets given by
single vertices principal cut sets, and we will denote them by C(v) for short. In general,
not every cut symmetry of a graph permutes its principal cut sets. For example if
Γ = (V,E) is a tree then CΓ is the entire power set P(E). Thus each permutation of
the edges leads to a cut symmetry, whereas of course not every permutation of edges
have to permute the principal cut sets.
It is also worth noting that not every cut symmetry permuting the principal cut

sets in CΓ must be induced by a graph automorphism. Consider the graph Γ shown in
Figure 6.1. The nonzero, non-principal cut sets of Γ are {a, c}, {b, d}, and {a, b, c, d}.

c

b

a

d

Figure 6.1: Cycle of length four.

It can be easily seen that the permutation σ ∈ Sym(CΓ) which transposes {a, c} and
{b, d}, and which leaves all other cut sets fixed is actually a cut symmetry of Γ. However,
σ is the identity permutation on the principal cut sets of Γ (although it is of course
not induced by the identity automorphism). We will show that this example is in fact
prototypical.

Lemma 6.3.6. Let Γ be a graph such that no cut set is a cycle of length 4. Then any
cut symmetry of Γ permuting the principal cut sets is induced by a graph automorphism.

Proof. Let Γ = (V,E), and let σ ∈ Sym(CΓ) be a cut symmetry permuting the
principal cut sets. Then there is a corresponding permutation π ∈ Sym(V ) which
satisfies C(u)σ = C(uπ) for all u ∈ V . We claim that π is a graph automorphism.
Indeed, two vertices v, w ∈ V are adjacent if and only if |C(v) ∩ C(w)| = 1, which
is equivalent to |C(v)σ ∩ C(w)σ| = 1. This in turn is equivalent to vπ and wπ being
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adjacent, proving the claim. Since any graph automorphism induces a cut symmetry
permuting the principal cut sets, we may assume without loss of generality that π is
the identity. It remains to show that any cut symmetry σ of Γ fixing all principal cut
sets must be the identity.
For that purpose, we will first show that the cut set S = C(u) + C(v) is fixed by

σ for any pair of adjacent vertices u, v ∈ V . Let e = uv ∈ E. We have C(u) ∩ S =
C(u) \ {e} and |C(u) ∩ Sσ| = |C(u) ∩ S| = |C(u)| − 1. Suppose we have e 6∈ Sσ. Then
C(u) ∩ Sσ = C(u) ∩ S = C(u) \ {e}, and similarly C(v) ∩ Sσ = C(v) ∩ S = C(v) \ {e}.
Since |Sσ| = |S| = |C(u)|+ |C(v)| − 2, it follows S = Sσ.
By contraposition, if Sσ 6= S then e ∈ Sσ. In that case, there must be an edge

f ∈ C(u) \ Sσ, and an edge g ∈ C(v) \ Sσ, with f = ux and g = vy for some vertices
x 6= v and y 6= u. Thus Sσ contains all edges of S but f and g, and it contains the
edge e which is not in S. Since |Sσ| = |S|, there is exactly one further edge h in Sσ \ S.
Since |C(x) ∩ Sσ| = |C(x) ∩ S|, and f ∈ C(x) ∩ S but f 6∈ C(x) ∩ Sσ, and e 6∈ C(x),
we conclude that h ∈ C(x) ∩ Sσ. The same argument with y and g instead of x and f
shows that h ∈ C(y) ∩ Sσ. Thus we have h ∈ C(x) ∩ C(y). So either x = y or h = xy.
If x = y, then the cut set Sσ + C(x) contains the cycle uvx of odd length 3

contradicting Lemma 6.3.3. If h = xy, then Sσ +S = {f, g, e, h} is a cut set of Γ which
clearly forms a cycle of length 4 in contradiction to the hypothesis. Hence, we have
shown that Sσ = S.
To finish the proof, we note that for any edge e = uv and any cut set S, we have

e ∈ S if and only if |S ∩ (C(u) + C(v))| < |S ∩ C(u)| + |S ∩ C(v)|. By the previous
step and by Lemma 6.3.5, the latter condition is clearly invariant under σ. That is, we
have e ∈ S if and only if e ∈ Sσ. This finally shows that Sσ = S holds for all cut sets
S ∈ CΓ.

We now introduce a family of asymmetric graphs which satisfy the hypotheses of
Lemma 6.3.6 for all cut symmetries. Therefore, all of them only have the trivial cut
symmetry, and their cut spaces have generically closed characters. This family consists
of the complements of the trees with n ≥ 7 vertices shown in Figure 6.2. (Recall that
the complement Γ of a graph Γ has the same vertex set as Γ but the complementary
set of edges.) Note that the analogous graph with n = 6 vertices has a nontrivial
automorphism, and so has a nontrivial cut symmetry. In fact, all graphs with 6 vertices
have nontrivial cut symmetries (although there are asymmetric graphs of that size). So
the graph theoretic approach does not produce a generically closed character for the
elementary abelian group of order 32.

Lemma 6.3.7. The complementary graph of any tree shown in Figure 6.2 has no
nontrivial cut symmetries.

Proof. Let Γ = (V,E) be one of the trees shown in Figure 6.2 with n ≥ 7 vertices,
and let Γ = (V,E) be its complement. It is evident that Γ (and hence also Γ) has no
nontrivial automorphism. So by Lemma 6.3.6, it suffices to show that no cut set of Γ is
a cycle of length four, and that any cut symmetry of Γ permutes the principal cut sets.
We begin by estimating the sizes of these cut sets.
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b

a c d

Figure 6.2: A family of asymmetric trees with n vertices for any n ≥ 7.

Let a, b, c, d ∈ V be the vertices labeled in Figure 6.2. The corresponding principal
cut sets have cardinalities

|C(a)| = |C(b)| = |C(d)| = n− 2, and |C(c)| = n− 4.

All remaining principal cut sets of have cardinality n− 3. In particular, we see that
any principal cut set of Γ has at most n− 2 elements.

Now let C(A) be an arbitrary non-principal cut set of Γ. Since C(A) = C(V \A), we
may assume without loss of generality 2 ≤ |A| ≤ n/2. For the moment, we also assume
|A| > 2. Since Γ is a tree, there are at most n− 1 edges between A and V \A in Γ. So
in Γ, there must be at least |A| · (n− |A|)− (n− 1) edges between A and V \ A. By
elementary calculus, the real valued function f : [3, n/2]→ R, x 7→ x · (n− x)− (n− 1)
is increasing, so it attains its global minimum at x = 3. We conclude

|C(A)| ≥ f(|A|) ≥ f(3) = 2n− 8 ≥ n− 1

for all subsets A ⊆ V with 3 ≤ |A| ≤ n/2.
Finally, let A = {x, y} be any 2-subset of V with |C(x)| ≤ |C(y)|, say. Then, since

there is a unique principal cut set of minimum size, we have

|C(A)| = |C(x)|+ |C(y)| − 2|C(x) ∩ C(y)| ≥ (n− 4) + (n− 3)− 2 = 2n− 9,

where equality holds if and only if x = c, and y ∈ V \ {a, b, c, d} is any vertex not
adjacent to c in the tree Γ. At this point, we see that all non-principal cut sets of Γ
contain more than four elements. In particular, no cut set is a cycle of length four.
Furthermore, if n ≥ 8 then |C(A)| ≥ n− 1, and we see that all non-principal cut sets
are strictly larger than any principal cut set. In particular, any cut symmetry must
permute the principal cut sets, and we are done in that case.
It remains to consider n = 7, in which case Γ has a unique non-principal cut set

S = C(c) + C(y) of size less than n − 1 (namely, n − 2). The only other cut sets of

b

a c y d
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the same size are the principals C(a), C(b), and C(d). Let σ ∈ Sym(CΓ) be any cut
symmetry. We have to show that σ fixes S. Since C(c) is the unique cut set of size 3, σ
certainly fixes C(c). Hence, we have

|Sσ + C(c)| = |S + C(c)| = |C(y)| = 4.

For x ∈ {a, b, d}, however, we have

|C(x) + C(c)| = |C(x)|+ |C(c)| − 2|C(x) ∩ C(c)| ∈ {6, 8}.

So Sσ 6= C(x) for all these x, and the only possibility left is Sσ = S. This completes
the proof.

At this point, we completed the iteration through all elementary abelian 2-groups.

Theorem 6.3.8. The elementary abelian group of order 2n has a generically closed
character if and only if n /∈ {2, 3, 4}.

Proof. The case n = 1 is trivial, and Lemma 6.3.1 shows that there are no generically
closed characters for n ∈ {2, 3, 4}. The case n = 5 was handled in Example 6.3.2. For
n > 5, consider the tree Γ with n+ 1 vertices shown in Figure 6.2. Its complement Γ is
clearly connected, so the cut space CΓ is an elementary abelian group of order 2n. By
Lemma 6.3.7, Γ has no nontrivial cut symmetries, so the corresponding character of
CΓ is generically closed.

6.4 Generically closed RG-modules of arbitrary groups

To answer the question of which finite groups G have generically closed RG-modules,
we have shown that all groups with trivial non-ideal kernel have such modules, and
we classified the exceptional groups having a nontrivial non-ideal kernel. Among these
exceptional groups, we have already handled all abelian groups. It remains to consider
the generalized dicyclic groups, and the two families Q8 × C4 × Cr

2 , and Q8 ×Q8 × Cr
2

for r ≥ 0.
A generalized dicyclic group G does not have generically closed RG-modules. This

can already be deduced from Babai’s classification of the Euclidean symmetry groups of
vertex transitive polytopes (Theorem 7.2.2) but at this point it seems more reasonable
to give a direct proof.

Lemma 6.4.1. Let G = A〈g〉 be a generalized dicyclic group, where A is of index
two in G, and where g is an element of order four acting as the inversion on A.
Let π ∈ Sym(G) be the permutation which is the identity on A, and which is the
multiplication by g2 on G \ A. Then π is a generic symmetry of every RG-module.

Proof. By Proposition 5.1.5, it suffices to show that π ∈ Sym(G,χ) for any character
χ afforded by a simple RG-module. If g2 ∈ Ker(χ) then π fixes all cosets of Ker(χ) in
G, and π is even an irrelevant symmetry of χ. So we may assume g2 /∈ Ker(χ) in the
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rest of the proof. By Lemma 6.2.2, χ then must be an ideal character which is zero
on the coset gA. Let x, y ∈ G be arbitrary. If x and y both lie in the same coset of
A then we have π(x)−1π(y) = x−1y. If they lie in different cosets then both x−1y and
π(x)−1π(y) = g2x−1y are elements of the coset gA on which χ vanishes. So in any case,
we have χ(π(x)−1π(y)) = χ(x−1y). By Theorem 5.1.8, we get π ∈ Sym(G,χ).

The remaining two families of exceptional groups both have generically closed RG-
modules whose characters can be constructed explicitly. Recall that the irreducible
characters of a direct product of groups are given by products of irreducible characters
of the factors, and that the Frobenius-Schur indicator is multiplicative with respect to
such products (see the discussion at 6.2).

Lemma 6.4.2. Let G = Q8 × C4 × Cr
2 for some r ≥ 0. Then G is generically closed

with respect to some RG-module.

Proof. Let α ∈ Irr(Q8) be the faithful irreducible character of degree 2. Let β = λ+ λ,
where λ is a faithful linear character of C4 = 〈c〉. Finally, let γ be a faithful ideal
character of Cr

2 . Then we claim that the character

χ = (α× β × γ) + (2α× 1× 1) + (1× β × 1)

is afforded by a generically closed RG-module.
The irreducible constituents of the first summand have the form τ = α × µ × σ,

where µ ∈ {λ, λ}, and σ ∈ Irr(Cr
2). We have τ 6= τ , τ(1) = 2, and ιτ = 0. Moreover,

both τ and τ occur in χ with multiplicity 1.
The other irreducible constituents η of χ, that is,

η ∈ {α× 1× 1, 1× λ× 1, 1× λ× 1},

each occur with multiplicity η(1). Thus χ is a left ideal character afforded by a
RG-module, and the ideal constituent of χ is

χI = (2α× 1× 1) + (1× β × 1).

An easy calculation shows Ker(χN ) = Ker(α× β × γ) = 〈u〉, where u = (−1, c2, 1).
We have χI(u) = −6 = −χI(1), so u is in the center of χI . In particular, we have
χI(gu) = −χI(g) for all g ∈ G.
Let π ∈ Sym(G,χ) be any generic symmetry with π(1) = 1. By Theorem 5.1.10, π

leaves the cosets of Ker(χN ) setwise fixed. Suppose that π is not the identity, then
there is an element g ∈ G with π(g) = gu. Then, again by Theorem 5.1.10, we
have χI(g) = χI(π(g)) = −χI(g), so χI(g) = 0 which means g = (x, y, z) with
x ∈ Q8 \ {±1} and y2 6= 1. Let h = (x, 1, 1). Then 0 6= χI(h) = 2, so π(h) = h,
and 0 6= χI(h−1g) = 2. But then χI(π(h)−1π(g)) = χI(h−1ug) = −χI(h−1g) is a
contradiction to Theorem 5.1.10, which shows that π must be the identity. Hence, χ is
generically closed.



6.4 Generically closed RG-modules of arbitrary groups 113

Lemma 6.4.3. Let G = Q8 ×Q8 × Cr
2 for some r ≥ 0. Then G is generically closed

with respect to some RG-module.

Proof. As in the proof of Lemma 6.4.2, α ∈ Irr(Q8) denotes the faithful character of
degree two, and γ denotes a faithful character of Cr

2 . We claim that the character

χ = (α× α× γ) + (2α× 1× 1) + (1× 2α× 1)

is afforded by a generically closed RG-module.
The proof follows the same lines as in Lemma 6.4.2. For the same reasons as above,

χ is a left ideal character afforded by an RG-module, and its ideal constituent is given
by

χI = (2α× 1× 1) + (1× 2α× 1).

We also have Ker(χN ) = Ker(α × α × γ) = 〈u〉, where u = (−1,−1, 1). We have
χI(u) = −8 = −χI(1), so u is in the center of χI , and we have χ(gu) = −χ(g) for
all g ∈ G. Let π ∈ Sym(G,χ) with π(1) = 1. Suppose that π is not the identity.
Then there is an element g ∈ G with π(g) = gu. By Theorem 5.1.10, we have
χI(g) = χI(π(g)) = −χI(g), and hence χI(g) = 0. Therefore, we have g = (x, y, z) with
either (x, y) ∈ {(1,−1), (−1, 1)} or x, y ∈ Q8 \ {±1}. In the first case, set h = (a, 1, 1),
where a is any element inQ8\{±1}; in the second case, set h = (x, 1, 1). In both cases, we
have χI(h) 6= 0, so π(h) = h, and χI(h−1g) 6= 0. Again, as in the proof above, we obtain
a contradiction to Theorem 5.1.10 by χI(π(h)−1π(g)) = χI(h−1ug) = −χI(h−1g). So
π must be the identity, and χ is generically closed.

At this point, we finished the iteration through all finite groups. The following
theorem summarizes all results of this chapter, and it completes the classification of the
affine symmetry groups of orbit polytopes. Moreover, it answers a question of Babai
(1977) who classified the Euclidean symmetry groups of vertex transitive polytopes.

Theorem 6.4.4. Let G be a finite group. The following statements are equivalent.

(1) There is a generically closed RG-module.

(2) G is isomorphic to the affine symmetry group of an orbit polytope.

(3) G is neither generalized dicyclic, nor abelian of exponent greater than two, nor
elementary abelian of order 4, 8, or 16.

Proof. The equivalence of (1) and (2) was already proven in Theorem 3.9.6. The
equivalence of (1) and (3) was the objective of the present section: Of course every
RG-module is generically closed if G = 1 is the trivial group. If G is an abelian group
of exponent two then, by Theorem 6.3.8, there is a generically closed RG-module if
and only if |G| /∈ {4, 8, 16}. An abelian group of exponent greater than two has no
generically closed module over R by Corollary 5.1.11. By Lemma 6.4.1, generalized
dicyclic groups have no generically closed modules over R. If G is isomorphic to either
Q8 × C4 × Cr

2 or Q8 × Q8 × Cr
2 for some r ≥ 0 then there are generically closed
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RG-modules by Lemma 6.4.2 and 6.4.3. By Theorem 6.2.3, all other groups G not
mentioned so far have a faithful non-ideal character afforded by an RG-module, which
is generically closed by Theorem 5.1.7.

Babai’s classification (which we reprove in Theorem 7.2.2) asserts that any finite
group is isomorphic to the Euclidean symmetry group of some vertex transitive polytope
unless it is abelian of exponent greater than two, or generalized dicyclic. In combination
with Theorem 6.4.4, we get the surprising result that there are up to isomorphism only
three groups which arise as the Euclidean symmetry group of some vertex transitive
polytope but not as the affine symmetry group of an orbit polytope, namely C2

2 , C
3
2 ,

and C4
2 .



7 Orthogonal and unitary generic symmetries

So far we have considered the most general class of reasonable symmetries on vector
spaces, namely (affine) linear symmetries. However, in some situations (especially when
studying polytopes) one is often interested in more restricted classes of symmetries
which, for example, also preserve distances and angles. The most prominent examples
of such symmetries are of course (affine) orthogonal and unitary maps. In this chapter
we show that the previously developed theory of generic symmetries can be extended
without many efforts to achieve results about orthogonal or unitary symmetries of
orbits.
In the following, we introduce the notion of orthogonal generic symmetries of RG-

modules in complete analogy to ordinary generic symmetries (replacing linear per-
mutations by orthogonal permutations). Surprisingly, the group OSym(G, V ) of all
orthogonal generic symmetries of a RG-module V does not rely on a specific inner
product on V , but is completely determined by the character of V . In Theorem 7.1.8,
we give a characterization of OSym(G, V ) by a formula only depending on χ. We
also have an orthogonal analog of generic points (Theorem 7.1.10). That is, if G acts
faithfully on V by orthogonal transformations then OSym(G, V ) is isomorphic to the
orthogonal symmetry groups of almost all orbits of G in V . As an application of these
results, we give an new proof of Babai’s classification of the Euclidean symmetry groups
of vertex transitive polytopes (Theorem 7.2.2).
In the unitary setting, the situation is much simpler. In Theorem 7.3.1, we show

that if V is a complex inner product space on which G acts faithfully by unitary
transformations then G is already the unitary symmetry group of almost all of its
orbits in V .
The following theory on orthogonal generic symmetries has not been published so

far. The main result on unitary generic symmetries has appeared in [8].

7.1 Orthogonal generic symmetries

In this section, we only consider finite dimensional inner product spaces over the field
R of real numbers (although some results have generalizations to other fields and
other geometries). As before, we consider a fixed finite group G together with some
finitely generated RG-module V . A standard averaging argument shows that there
exists a G-invariant inner product on V (that is, we have 〈gx, gy〉 = 〈x, y〉 for all g ∈ G,
x, y ∈ V ). More precisely, if α : V ×V → R is an arbitrary inner product, a G-invariant
inner product is obtained by setting

〈x, y〉 = 1
|G|

∑
g∈G

α(gx, gy) for all x, y ∈ V.
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For the rest of the section, we consider V as an inner product space on which G acts by
orthogonal transformations. For any subset X ⊆ V , we define the orthogonal symmetry
group O(X) ≤ Sym(X) as the group of all permutations on X arising as restrictions of
orthogonal maps V → V . Of course, this definition agrees with the usual definition of
orthogonal groups of inner product spaces. That is, if X ≤ V is a linear subspace then
O(X) consists precisely of the orthogonal maps X → X.
With that terminology, orthogonal orbit symmetries and orthogonal generic sym-

metries can be defined in complete analogy to ordinary orbit symmetries and generic
symmetries by replacing each occurrence of GL(X) by O(X).

Definition 7.1.1. A permutation π ∈ Sym(G) is an orthogonal orbit symmetry of a
point v ∈ V if there is an orthogonal map α ∈ O(Gv) such that

α(gv) = π(g)v for all g ∈ G.

A permutation π is a orthogonal generic symmetry of V if π is an orthogonal orbit
symmetry of almost all points of V . The set of all orthogonal orbit symmetries of v ∈ V
is denoted by OSym(G, v). The set of orthogonal generic symmetries of V is denoted
by OSym(G, V ).

In the following, we show that many of the basic results on generic symmetries
are easily adaptable to orthogonal generic symmetries. To begin with, it is utterly
routine to check that both OSym(G, v) and OSym(G, V ) are subgroups of Sym(G)
containing all left multiplications by elements of G (cf. Proposition 3.1.4, 3.2.4, 3.1.5).
Moreover, the usual epimorphism Dv : Sym(G, v) → GL(Gv) restricts to an epimor-
phism OSym(G, v)→ O(Gv), whose kernel consists of all irrelevant orbit symmetries
of v by Proposition 3.1.4. So if v has a trivial stabilizer in G then we have a natural
isomorphism OSym(G, v) ∼= O(Gv). For adapting some more advanced results on
generic symmetries, we need the following restatements of orthogonal orbit symmetries
and orthogonal generic symmetries.

Lemma 7.1.2. Let V be a real inner product space on which G acts by orthogonal
transformations. A permutation π ∈ Sym(G) is an orthogonal orbit symmetry of some
point x ∈ V if and only if π is an (ordinary) orbit symmetry of x, and we have

〈π(g)x, π(h)x〉 = 〈gx, hx〉 for all g, h ∈ G.

Proof. It is clear by definition that OSym(G, x) ⊆ Sym(G, x). Let π ∈ Sym(G, x) be
an orbit symmetry of x realized by a linear map α ∈ GL(Gx). We have π ∈ OSym(G, x)
if and only if α ∈ O(Gx), which is equivalent to

〈α(gx), α(hx)〉 = 〈gx, hx〉 for all g, h ∈ G.

By definition of α, this in turn is equivalent to

〈π(g)x, π(h)x〉 = 〈gx, hx〉 for all g, h ∈ G.
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Lemma 7.1.2 suggests that the group of orthogonal orbit symmetries OSym(G, x)
of some point x ∈ V does essentially depend on the inner product on V . In fact, this
observation can be easily confirmed by looking at simple examples. It is rather surprising
however, that the orthogonal generic symmetry group OSym(G, V ) is independent of
the choice of an inner product on V . This follows immediately from the next lemma.
For any RG-module V , we set Ann(V ) = {x ∈ RG : xv = 0 for all v ∈ V }. This

annihilator of V is a two sided ideal of RG which can also be expressed as the
intersection of the annihilators of all elements of V .

Lemma 7.1.3. Let V be a finite dimensional real inner product space on which G acts
by orthogonal transformations. A permutation π ∈ Sym(G) is an orthogonal generic
symmetry of V if and only if π is an (ordinary) generic symmetry of V , and one of
the following equivalent statements holds.

(1) We have 〈π(g)v, π(h)v〉 = 〈gv, hv〉 for all g, h ∈ G and all v ∈ V .

(2) We have π(h)−1π(g) + π(g)−1π(h)− h−1g − g−1h ∈ Ann(V ) for all g, h ∈ G.

In that case, π is an orthogonal orbit symmetry of all ample points of V .

Proof. It is clear from the definition that any orthogonal generic symmetry of V is
also an (ordinary) generic symmetry of V . Let π ∈ Sym(G, V ) be arbitrary. If π is
orthogonally generic, then by Lemma 7.1.2, we have

〈π(g)v, π(h)v〉 = 〈gv, hv〉 (7.1)

for all g, h ∈ G and for almost all v ∈ V . As the set of all v ∈ V satisfying (7.1) is closed
in V , this equation must actually hold for all v ∈ V . Conversely, if π ∈ Sym(G, V )
is such that (7.1) holds for all v ∈ V then π is an orthogonal orbit symmetry of any
v ∈ V for which it is an orbit symmetry. In summary, a permutation π ∈ Sym(G) is in
OSym(G, V ) if and only if π is in Sym(G, V ) and (1) holds. By Theorem 3.3.4, in that
case π is an orthogonal orbit symmetry of any ample point of V .

It remains to prove the equivalence of (1) and (2). By substituting v = x+ y, we see
that (1) holds if and only if

〈π(g)(x+ y), π(h)(x+ y)〉 = 〈g(x+ y), h(x+ y)〉

holds for all x, y ∈ V and all g, h ∈ G. By expanding both sides, and applying (7.1)
repeatedly, we see that (1) is equivalent to

〈π(g)x, π(h)y〉+ 〈π(g)y, π(h)x〉 = 〈gx, hy〉+ 〈gy, hx〉

for all x, y ∈ V and all g, h ∈ G. By G-invariance and by symmetry of the inner product,
this in turn is equivalent to

〈(π(h)−1π(g) + π(g)−1π(h)− h−1g − g−1h)x, y〉 = 0
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for all x, y ∈ V and all g, h ∈ G. Since the inner product is non-degenerate, this is
equivalent to

(π(h)−1π(g) + π(g)−1π(h)− h−1g − g−1h)x = 0

for all g, h ∈ G and all x ∈ V . This is precisely the statement of (2).

Among others, Lemma 7.1.3 shows that for any finitely generated RG-module V ,
the group OSym(G, V ) is unambiguously defined. More precisely, OSym(G, V ) does
only depend on the isomorphism type of V , that is, on the character of V .

Definition 7.1.4. Let χ be a character of G afforded by an RG-module V . Then we
set OSym(G,χ) = OSym(G, V ) with respect to an arbitrary G-invariant inner product
on V .

Remark 7.1.5. In principle, OSym(G, V ) can be defined for a kG-module V over
an arbitrary field k with respect to a symmetric G-invariant form β : V × V → k. If
β is non-degenerate, the statement of Lemma 7.1.3 holds as well by the same proof.
However, there is no guarantee for such a non-degenerate form existing. In fact, if V
is a simple CG-module which is not a scalar extension of an RG-module, the only
symmetric G-invariant form V × V → C is the zero map. So OSym(G,χ) cannot be
defined for all characters of G in a reasonable way.

Lemma 7.1.3 shows that we may freely choose a G-invariant inner product on V for
the determination of OSym(G, V ). As a consequence, we can easily adapt the proof of
Lemma 3.2.8 to get an analog result in the orthogonal setting.

Lemma 7.1.6. Let χ and ψ be characters of G afforded by RG-modules. Then

OSym(G,χ) ∩OSym(G,ψ) ⊆ OSym(G,χ+ ψ).

Proof. Let U1, U2 be RG-modules affording the characters χ and ψ, respectively. Let
further βi be arbitrary G-invariant inner products on Ui. Then V = U1 ⊕ U2 becomes
an inner product space on which G acts by orthogonal transformations with respect to
the form

((x1, x2), (y1, y2)) 7→ β1(x1, y1) + β2(x2, y2).

The rest of the proof follows the lines of the proof of Lemma 3.2.8 verbatim: Let
π ∈ OSym(G,U1) ∩OSym(G,U2) be an orthogonal generic symmetry, and let Oi ⊆ Ui
be nonempty open sets of points for which π is an orthogonal orbit symmetry. Then
O = O1×O2 is open in V , and it is easy to see that π is an orthogonal orbit symmetry
of all points of O.

Since the group OSym(G,χ) is uniquely determined by χ, we may hope to find a
formula characterizing the orthogonal generic symmetries only in terms of the character
χ. In fact, by Theorem 5.1.10 and by Lemma 7.1.3, we only need to find a formula
characterizing the annihilator of a module in terms of its character. Such a formula is
doubtlessly well known. Nevertheless, we give a proof of the following statement for
convenience.
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Lemma 7.1.7. Let χ be a character of G afforded by an RG-module V . Then we have

Ann(V ) = {x ∈ RG : χ(gx) = 0 for all g ∈ G}.

Proof. The left-to-right inclusion is easy to see, for if x ∈ Ann(V ) then each element
gx ∈ RG acts as the zero endomorphism on V , which of course has a zero trace. Hence
χ(gx) = 0 for all g ∈ G.
Conversely, let x ∈ RG be any element such that χ(gx) = 0 for all g ∈ G. Since

Ann(V ) is a two sided ideal of RG, it is generated by a central idempotent f ∈ RG
by Lemma 4.2.7. Let L = RG(1 − f)x be the left ideal generated by (1 − f)x. By
construction, we have fy = 0 and χ(y) = 0 for all y ∈ L. Let e ∈ L be an idempotent
generator of L. Since e acts as a projection on V , χ(e) is precisely the rank of e as a
linear operator of V by linear algebra. Since χ(e) = 0, e must be the zero endomorphism
on V , so we have e ∈ Ann(V ). Consequently, we have e = fe = 0, and hence L = 0. In
particular, we have (1− f)x = 0 which shows that x ∈ Ann(V ).

Combining Theorem 5.1.10, Lemma 7.1.3, and Lemma 7.1.7 we get a purely character
theoretic characterization of orthogonal generic symmetries. Recall that for any charac-
ter χ of G we have introduced its ideal constituent χI , and its non-ideal constituent
χN (cf. Chapter 5).

Theorem 7.1.8. Let χ be a character of G afforded by an RG-module. Then a per-
mutation π ∈ Sym(G) is in OSym(G,χ) if and only if the following statements hold.

(1) χI(π(g)−1π(h)) = χI(g−1h) for all g, h ∈ G,

(2) π(gK) = π(1)gK for all g ∈ G, where K = Ker(χN ),

(3) χ(gπ(x)−1π(y)) + χ(gπ(y)−1π(x)) = χ(gx−1y) + χ(gy−1x) for all g, x, y ∈ G.

Proof. Let V be an RG-module affording the character χ. By Lemma 7.1.3, a permu-
tation π ∈ Sym(G) is in OSym(G,χ) if and only if π ∈ Sym(G,χ) and wx,y ∈ Ann(V )
for all x, y ∈ G, where

wx,y = π(x)−1π(y) + π(y)−1π(x)− x−1y − y−1x.

By Theorem 5.1.10, π ∈ Sym(G,χ) is equivalent to (1) and (2). By Lemma 7.1.7,
wx,y ∈ Ann(V ) is equivalent to χ(gwx,y) = 0 for all g ∈ G. This in turn is equivalent
to (3).

As a very simple application, we determine the orthogonal generic symmetries of
the group algebra RG for any elementary abelian 2-group G. Recall that the (regular)
character ρ of RG sends 1 ∈ G to the order |G|, and any other element of G to 0.

Example 7.1.9. Let G ∼= Cr
2 be an elementary abelian 2-group, and let ρ be its regular

character. Then G = OSym(G, ρ).
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Proof. Since G is always a subgroup of Sym(G, ρ), it suffices to show that any permu-
tation π ∈ OSym(G, ρ) with π(1) = 1 is the identity. This is almost immediate from
Theorem 7.1.8. By setting g = x and y = 1, we get from (3) that 2ρ(xπ(x)) = 2ρ(1)
holds for all x ∈ G. This implies π(x) = x for all x ∈ G.

Recall that the relevance of generic symmetry groups lies in the fact that (assuming
G acts faithfully on V ) a generic symmetry group Sym(G, V ) is isomorphic to the linear
symmetry groups of almost all orbits of G in V (Theorem 3.5.2). This observation
essentially enables us to use character theory in order to prove statements about linear
symmetry groups of orbits. The next result is the orthogonal analog of Theorem 3.5.2.
Roughly speaking, it states that generic points also exist in the orthogonal setting.

Theorem 7.1.10. Let V be a finite dimensional real inner product space on which
G acts by orthogonal transformations. Then we have OSym(G, x) = OSym(G, V ) for
almost all x ∈ V .

Proof. For any permutation π ∈ Sym(G), we consider the set

Oπ = {x ∈ V : 〈π(g)x, π(h)x〉 6= 〈gx, hx〉 for some g, h ∈ G}.

This set is open by construction, although it may be empty for some π (such as for the
identity). We define O ⊆ V to be the intersection of Gen(V ) and of all these sets Oπ,
π ∈ Sym(G), which are nonempty. Then O is by construction (and by Theorem 3.5.2)
a nonempty open set. We claim that OSym(G, x) = OSym(G, V ) for all x ∈ O.
The right-to-left inclusion holds by Lemma 7.1.3 since O consists of ample points.

Concerning the other inclusion, let π ∈ OSym(G, x) be arbitrary. Since x is a generic
point, we clearly have π ∈ Sym(G, V ). On the other hand, we have x /∈ Oπ, and
consequently Oπ = ∅. By definition of Oπ, it follows that for all y ∈ V and all g, h ∈ G
we have

〈π(g)y, π(h)y〉 = 〈gy, hy〉.

So π must be an orthogonal generic symmetry of V by Lemma 7.1.3. This proves the
left-to-right inclusion.

The next result is the orthogonal analog of Theorem 3.8.6, which is proven exactly
in the same way. To keep things simple, we exclude irrelevant generic symmetries by
assuming that G acts faithfully on V .

Proposition 7.1.11. Let D : G → O(V ) be a faithful orthogonal representation for
some finite dimensional real inner product space V . Suppose there is an element v ∈ V
such that V = RGv and D(G) = O(Gv). Then we have G = OSym(G, V ).

Proof. Let Dv : OSym(G, V ) → O(V ) be the canonical orthogonal representation
(which is the restriction of the canonical map Dv : Sym(G, V )→ GL(V )) associated to
OSym(G, V ). Since D is faithful, Dv must be faithful as well by Lemma 3.8.4. Since
the representations D and Dv have the same images, they give rise to isomorphisms

G ∼= O(Gv) ∼= OSym(G, V ).
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Since G and OSym(G, V ) are finite groups with G ≤ OSym(G, V ), equality follows.

7.2 Babai’s classification

As an illustrating application of the theory of orthogonal generic symmetries developed
so far, we reprove a classical result of Babai (Theorem 7.2.2). Let V be finite dimensional
real inner product space, and let P ⊂ V be a polytope. An isometry of P is understood
as a permutation P → P which is the restriction of an isometry (that is, of a distance
preserving affine map) V → V . The Euclidean symmetry group of P is the group
consisting of all isometries of P . The polytope P is called vertex transitive if its
Euclidean symmetry group acts transitively on the vertices of P . Babai has classified
all finite groups which are isomorphic to an Euclidean symmetry group of a vertex
transitive polytope.
The idea of the following proof of Theorem 7.2.2 is essentially the same as of the

proof of Theorem 6.4.4. As a first step, we translate the property of being isomorphic
to an Euclidean symmetry group of a vertex transitive polytope into a purely character
theoretic statement (Proposition 7.2.1). To a great extent, this part is analog to the
considerations done in Section 3.9. For the sake of clarity, we will skip some details
which can be adapted verbatim, and focus on the new obstacles arising. In a second
step, we need to determine whether a finite group G has a faithful character χ afforded
by an RG-module such that G = OSym(G,χ) holds. This question is answered by
using the techniques developed in the last three chapters.

Proposition 7.2.1. Let G be a finite group. Then the following statements are equiv-
alent.

(1) There is a faithful character χ of G afforded by an RG-module such that G =
OSym(G,χ) holds.

(2) There is a finite subset X ⊂ V of some real inner product space V such that
G ∼= O(X), and O(X) acts transitively on X.

(3) G is isomorphic to the Euclidean symmetry group of some vertex-transitive
polytope.

Sketch of a proof. We show the implications (3) =⇒ (2) =⇒ (1) =⇒ (3). To a
great extent, the argumentation follows the lines of Section 3.9 proving Theorem 3.9.6.
Suppose that (3) holds. Then there is a real inner product space V and a vertex

transitive polytope P ⊂ V whose Euclidean symmetry group is isomorphic to G. By
translating P if necessary, we may assume without loss of generality that the barycenter
of P is the origin of V . Then all isometries of P are restrictions of orthogonal maps on
V . If X denotes the vertex set of P then O(X) acts transitively on X and is isomorphic
to the Euclidean symmetry group of P . So (2) holds.
Suppose that (2) holds. We may assume without loss of generality that V is the

R-linear span of X. Then any isomorphism D : G→ O(X) can be regarded as a faithful
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orthogonal representation G→ O(V ). Since O(X) is transitive on X, we have X = Gv
for any v ∈ X. In particular, we have D(G) = O(X) = O(Gx). Now Proposition 7.1.11
implies G = OSym(G, V ) = OSym(G,χ), where χ is the character of D. So (1) holds.
Finally, suppose that (1) holds. Then G acts faithfully on some finite dimensional

real inner product space V by orthogonal transformations such that G = OSym(G, V ).
By Theorem 7.1.10, there is some point x ∈ V such that Gx = 1 and OSym(G, x) =
OSym(G, V ). It follows that G is isomorphic to the orthogonal symmetry group O(Gx).
Let P ⊂ V be the convex hull of Gx. Then the orbit Gx is also the vertex set of the
polytope P , and O(P ) consists precisely of the left multiplications by the elements of G.
In particular, P is vertex transitive, and G ∼= O(P ). To prove (3), it remains to show
that O(P ) is the full Euclidean symmetry group of P . Let ϕ : V → V be any isometry
of V permuting the elements (or equivalently, the vertices) of P . By Lemma 3.9.4, there
is a linear map ψ : V → V agreeing with ϕ on (the vertices of) P . We claim that ϕ
restricts to an orthogonal map on the R-linear span W of P . Afterwards, after altering
the action of ψ on the orthogonal complement W⊥ in V if necessary to ensure that ψ
is an orthogonal map on V , we have proven that ϕ agrees with an orthogonal map on
P . To finish the proof, we have to show that 〈ψ(gx), ψ(hx)〉 = 〈gx, hx〉, or equivalently,
that 〈ϕ(gx), ϕ(hx)〉 = 〈gx, hx〉 holds for all g, h ∈ G. Since ϕ is an isometry of V ,
it preserves the distances between elements of V . Furthermore, since G acts on V
by orthogonal transformations, and since ϕ permutes the elements of Gx, we have
‖ϕ(gx)‖ = ‖gx‖ for all g ∈ G. The assertion now follows by the well known equation

〈y, z〉 = 1
2
(
‖y‖2 + ‖z‖2 − ‖y − z‖2

)
which holds for all y, z ∈ V .
Theorem 7.2.2 (Babai). A finite group G is not isomorphic to the Euclidean symmetry
group of a vertex transitive polytope if and only if G is abelian of exponent greater than
two, or generalized dicyclic.
Proof. Let G be a group which is not isomorphic to the Euclidean symmetry group of a
vertex transitive polytope. By Proposition 7.2.1, this is equivalent to G ( OSym(G,χ)
for all characters χ afforded by RG-modules. In particular, we have G ( Sym(G,χ) for
all those χ which by Theorem 6.4.4 implies that G must be either abelian of exponent
greater than two, or generalized dicyclic, or G must be isomorphic to one of C2

2 , C
3
2 , or

C4
2 . The last three cases are excluded by Example 7.1.9.
Conversely, let G be any finite abelian group of exponent greater than two, and

let χ be a left ideal character afforded by an RG-module. Since the exponent of G is
not two, the permutation π : g 7→ g−1 is not a left multiplication by some element of
G. We apply Theorem 7.1.8 to show that π is an orthogonal generic symmetry of χ.
By Corollary 5.1.11, π is a generic symmetry of χ, so the first two items are satisfied.
In fact, the third requirement of Theorem 7.1.8 is satisfied for trivial reasons, so π is
indeed an orthogonal generic symmetry of χ. Hence, G ( OSym(G,χ).

Finally, let G = A〈g〉 be a generalized dicyclic group with an abelian subgroup A of
index two, where g ∈ G \ A is an element of order four acting on A as the inversion.
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Let π ∈ Sym(G) be the permutation which is the identity on A, and which is the
multiplication by (the central element) g2 on G \ A. We claim that π is an orthogonal
generic symmetry of any simple RG-module. By Lemma 7.1.6, it then follows that π is
orthogonally generic for any RG-module, that is, G ( OSym(G,χ) for all characters χ
afforded by RG-modules.
Let χ be the character of any simple RG-module. We again apply Theorem 7.1.8

to χ and π. By Lemma 6.4.1, π is an ordinary generic symmetry of χ, so the first
two requirements of the theorem are satisfied. We show that the third requirement is
satisfied as well. Of course there is nothing to show if g2 ∈ Kerχ. If g2 /∈ Kerχ then,
by Lemma 6.2.2, we see that χ is zero on G \ A. Let x, y ∈ G be arbitrary elements.
If x and y lie in the same coset of A then we have π(x)−1π(y) = x−1y, and hence
χ(hπ(x)−1π(y)) = χ(hx−1y) for all h ∈ G. If x and y lie in different cosets of A then
we have π(x)−1π(y) = g2x−1y, and both π(x)−1π(y) and x−1y are not in A. Let h ∈ G
be arbitrary. If h ∈ A then neither hπ(x)−1π(y) nor hx−1y are in A, and hence we get
χ(hπ(x)−1π(y)) = χ(hx−1y) = 0. If on the other hand h ∈ gA, say h = ga = a−1g,
then we compute

χ(hπ(x)−1π(y)) = χ(g3ax−1y) = χ(y−1xa−1g) = χ(hy−1x).

In any case, we see that the third requirement of Theorem 7.1.8 is satisfied, whence π
is an orthogonal generic symmetry of χ.

It is worth noting that, although Babai’s theorem is an easy consequence of the
results developed before, our proof of Theorem 7.2.2 does not give many information
about the polytopes P constructed implicitly. Babai’s original proof gives more insight.
In fact, Babai always constructs P as a simplex whose vertices are arbitrarily chosen
within certain open regions (in the Euclidean topology). So in our notation, Babai has
shown that if G is not of one of the exceptional types, we have G = OSym(G, ρ), where
ρ is the regular character of G.

7.3 Unitary generic symmetries

We have seen that the theory of generic symmetries can be easily extended to achieve
results about orthogonal symmetries of orbits. As one might expect, the original theory
can be modified in a similar way to handle questions on unitary symmetries of orbits.
In principle, many definitions from the theory of orthogonal generic symmetries can be
adapted easily to complex inner product spaces. However, the situation becomes much
more transparent in the unitary setting. We will see that if a finite group G acts faithfully
on a finite dimensional complex inner product space V by unitary transformations
then most of its orbits admit no additional unitary symmetries (Theorem 7.3.1). In
other words, if we define an “unitary generic symmetry group” USym(G, V ) in a
reasonable way, we would always have G = USym(G, V ). For that reason, we will state
Theorem 7.3.1 without introducing any terminology on unitary orbit symmetries or
unitary generic symmetries.
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In the following, we consider a finite dimensional complex inner product space V .
The Hermitian inner product on V is assumed to be linear in the first argument and
semi-linear in the second argument. For any subset X ⊆ V , we consider the unitary
symmetry group U(X) consisting of all permutations X → X which are restrictions
of unitary maps V → V . Of course, this definition coincides with the usual notion of
unitary groups of inner product spaces if X is a linear subspace of V .

In contrast to our former approach, we will not equip V with its usual Zariski topology
over the complex numbers. Instead, we equip V with the “real Zariski topology”, that
is, with the Zariski topology of V regarded as a vector space over R. This is essentially
due to the fact that the complex conjugation C → C is a rational map only if C is
considered as a vector space over R. In fact, a Hermitian inner product V × V → C

is a rational map if V and C are regarded as vector spaces over R, but it is not even
continuous in the ordinary Zariski topology of complex vector spaces. The consequences
of that obstacle are well illustrated in Example 7.3.2. Note that the real Zariski topology
of V is strictly finer than the ordinary Zariski topology, that is, any subset of V which
is open (or closed) in the ordinary Zariski topology is also open (or closed) in the real
Zariski topology of V .

As we have already observed in the orthogonal setting, if G is any finite group acting
linearly on a complex vector space V then B can be equipped with a G-invariant
inner product so that G acts on V by unitary transformations. This is proven by the
same averaging argument. More precisely, we can choose an arbitrary inner product
β : V × V → C to obtain a G-invariant inner product by setting

〈x, y〉 = 1
|G|

∑
g∈G

β(gx, gy).

So any linear action of G on some C-vector space can be regarded as a unitary action.
We are ready to prove the main result of this section.

Theorem 7.3.1. Let G be a finite group acting faithfully on a finite dimensional
complex inner product space V by unitary transformations. Then there is a nonempty
subset O ⊆ V which is open in the real Zariski topology of V such that G = U(Gx)
holds for all x ∈ O.

Proof. We consider V to be equipped with the real Zariski topology. We begin by
constructing O as the intersection of finitely many nonempty open subsets of V . Since
V is an irreducible topological space (Lemma 2.1.2), O must be a nonempty open set
as well.

We first consider the set

X = {x ∈ V : gx 6= x for all g ∈ G \ {1}} =
⋂
g 6=1
{x ∈ V : gx 6= x}.

Since G acts faithfully on V , we see that X is a finite intersection of nonempty open
subsets of V . So X is nonempty and open in V . For any permutation π ∈ Sym(G), we
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consider the set

Oπ = {x ∈ V : 〈π(g)x, π(1)x〉 6= 〈gx, x〉 for some g ∈ G}.

This set is open by construction, although it may be empty for some π (such as for
the identity). We define O ⊆ V to be the intersection of X and of all those sets Oπ,
π ∈ Sym(G), which are nonempty. Then O is by construction a nonempty open set.
We claim that the canonical morphism G→ U(Gx) is an isomorphism for all x ∈ O.

Let w ∈ O be arbitrary. Since w ∈ X, it is clear that G→ U(Gw) is injective. To
prove surjectivity, let α ∈ U(V ) be an arbitrary unitary transformation permuting the
elements of the orbit Gw, say α(gw) = π(g)w for all g ∈ G, where π ∈ Sym(G) is a
certain permutation. We get

〈π(g)w, π(1)w〉 = 〈α(gw), α(w)〉 = 〈gw,w〉 for all g ∈ G.

This means w /∈ Oπ, which by definition of O, implies Oπ = ∅. Consequently, the
equations

〈π(g)v, π(1)v〉 = 〈gv, v〉 (7.2)

hold for all v ∈ V and all g ∈ G. By plugging v = x+y into (7.2) for x, y ∈ V arbitrary,
and expanding both sides, we get

〈π(g)x, π(1)x〉+ 〈π(g)x, π(1)y〉+ 〈π(g)y, π(1)x〉+ 〈π(g)y, π(1)y〉
= 〈gx, x〉+ 〈gx, y〉+ 〈gy, x〉+ 〈gy, y〉

for all x, y ∈ V and all g ∈ G. By applying (7.2) again and canceling common terms,
we get

〈π(g)x, π(1)y〉+ 〈π(g)y, π(1)x〉 = 〈gx, y〉+ 〈gy, x〉 (7.3)

for all x, y ∈ V and all g ∈ G. In (7.3) we replace y by iy, and we multiply both sides
by i to obtain the equations

〈π(g)x, π(1)y〉 − 〈π(g)y, π(1)x〉 = 〈gx, y〉 − 〈gy, x〉 (7.4)

for all x, y ∈ V and all g ∈ G. Finally, by taking sums of (7.3) and (7.4) and dividing
both sides by two, we get 〈π(g)x, π(1)y〉 = 〈gx, y〉 and hence 〈π(1)−1π(g)x, y〉 = 〈gx, y〉
for all x, y ∈ V and all g ∈ G. Since G acts faithfully on V , we conclude π(g) = π(1)g
for all g ∈ G. By definition of π, we get α(gw) = π(g)w = π(1)gw for all g ∈ G. This
finally shows that the restriction of α to the orbit Gw is just the left multiplication by
some element of G (proving the surjectivity of G→ U(Gw)).

The proof of Theorem 7.3.1 is constructive, as it gives a concrete prescription how to
find points x ∈ V satisfying G = U(Gx). We illustrate how such points can be found
by looking at a small (but nontrivial) example.
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Example 7.3.2. We consider V = C2 with the standard inner product (〈x, y〉 = xy∗).
Let G ≤ U(V ) be the cyclic group of order four generated by the matrix

g =
(

0 −1
1 0

)
.

In the following, we determine those points x ∈ V for which G = U(Gx) holds.
To exclude the trivial case, we observe that for x = 0 the canonical map G→ U(Gx)

is not injective. For all other points 0 6= x ∈ V , the map G→ U(Gx) is injective since
no non-identity element of G has the eigenvalue 1. In the terminology of the proof of
Theorem 7.3.1, we have X = V \ {0}.

Next, we consider any nonzero point x = (a, b)ᵀ ∈ V such that a · b = a · b. This
property ensures that x and gx are orthogonal (and, in particular, linearly independent).
Now the linear map α ∈ GL(V ) with α(x) = x and α(gx) = −gx is clearly unitary
(since it maps an orthonormal basis to another orthonormal basis), and it permutes
the orbit Gx (since g2x = −x and g3x = −gx). As a non-identity map fixing x, α
cannot be a left multiplication by some element of G, so we see that G→ U(Gx) is
not surjective.

Finally, let x = (a, b)ᵀ ∈ V be an arbitrary point such that a · b 6= a · b. Then we see
that the four complex numbers 〈hx, x〉, h ∈ G, are all distinct. In the notation of the
proof of Theorem 7.3.1, we see that x ∈ Oπ holds for any permutation π ∈ Sym(G)
which is not the left multiplication by π(1). Since Oπ = ∅ if π is a left multiplication,
we see that x ∈ O, and the proof of Theorem 7.3.1 guarantees that G → U(Gx) is
actually an isomorphism.
In conclusion, a point x ∈ V satisfies G = U(Gx) if and only if x is an element of

the set
O =

{
(a, b)ᵀ ∈ V : a · b 6= a · b

}
.

This set is clearly open in the real Zariski topology of V (Theorem 7.3.1 only guarantees
that it has a nonempty interior). In the ordinary Zariski topology of V however, O has
an empty interior since its complement V \O contains the dense subset R2 ⊂ V . So in
fact both O and V \O are dense in the ordinary Zariski topology of V .
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