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Abstract

Hydrogen-helium demixing has long been proposed to occur in the gas giants Jupiter
and Saturn. Strong indications for this process came from measurements of the at-
mospheric He abundances that revealed a depletion compared to the protosolar
value. The miscibility gap probably results in He rain, where the released gravita-
tional energy from the sinking droplets increases the planet’s internal heat budget
and is a possible explanation for Saturn’s excess luminosity. Quantitative assess-
ments require precise knowledge of the thermodynamic conditions at which demixing
occurs.

In this work, the miscibility gap of hydrogen-helium mixtures is calculated under
conditions relevant for the gas giants Jupiter and Saturn. Density functional theory
coupled to classical molecular dynamics simulations is used to obtain the equations
of state for 29 helium concentrations. The entropy is calculated using a combina-
tion of thermodynamic integration of the equation of state and coupling-constant
integration. In contrast to previous work, an exchange-correlation functional is used
that treats non-local correlations also known as van der Waals effects. New plan-
etary profiles for Jupiter and Saturn are derived and compared to the miscibility
diagram. These profiles give strong indications that there is demixing in Saturn but

possibly not in Jupiter.
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Zusammenfassung

Es wird seit langem vermutet, dass Wasserstoff und Helium im Inneren der Gasrie-
sen Jupiter und Saturn entmischen. Konkrete Hinweise darauf lieferten Messungen
des atmosphérischen Heliumgehalts. In beiden Planeten ist dieser geringer als man
im Vergleich zum protosolaren Heliumgehalt erwarten wiirde. Die Mischungsliicke
fithrt wahrscheinlich zu Heliumregen, durch den die Gravitationsenergie der sinken-
den Tropfen zu einer Erh6hung des internen Wérmehaushalts fithrt. Dieser Prozess
liefert eine mogliche Erklarung fiir die besonders hohe Leuchtkraft von Saturn. Um
quantitative Aussagen treffen zu konnen, ist es notwendig genau zu wissen, unter
welchen Bedingungen Wasserstoff und Helium entmischen.

In dieser Arbeit wird die Mischungsliicke von Wasserstoff-Helium-Mischungen un-
ter Bedingungen, die fiir die grofsen Gasplaneten Jupiter und Saturn relevant sind,
berechnet. Dichtefunktionaltheorie zusammen mit klassischer Molekulardynamik-
simulation wird genutzt, um die Zustandsgleichung fiir 29 Heliumkonzentrationen
zu berechnen. Die Entropie wird mit Hilfe von thermodynamischer Integration in
Zusammenhang mit ’coupling-constant’ Integration berechnet. Im Gegensatz zu frii-
heren Arbeiten wurde hier ein Austausch- und Korrelationsfunktional benutzt, das
nicht-lokale Korrelationen - auch bekannt als van der Waals Effekte - berticksich-
tigt. Neue Planetenprofile fiir Jupiter und Saturn werden berechnet und mit dem
Entmischungsdiagramm verglichen. Diese Profile geben starke Hinweise darauf, dass

Entmischung in Saturn stattfindet aber moglicherweise nicht in Jupiter.
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Chapter 1
Introduction

Hydrogen (H) and helium (He) are the most abundant elements in the universe [1].
They make up 98% of the baryonic matter and are major constituents of stars and
giant gas planets like Jupiter and Saturn. In stars, hydrogen is converted to He
via the proton-proton chain reaction |2|. This fusion process occurs in objects with
masses greater than roughly 75 Jupiter masses (Mj) [3-5|. Below this threshold, the
class of brown dwarfs (masses between 13 Mj and 75 Mj) bridges the gap between
stars and massive planets. Understanding the structure, evolution, and composition
of astrophysical objects is an important area of physics. The possibility of finding
Earth-like planets that potentially host life forms motivates researchers in various
fields and science fiction authors alike. Still, it is impossible to visit other plan-
ets beyond our solar system so that most of the planetary research is limited to
remote observations. Earth-bound facilities (e.g. the Calar Alto Observatory [6],
the Subaru Telescope [7], and the upcoming ELT [8]), observational initiatives (e.g.
WASP [9] and YETT [10]), and space missions (e.g. the Hubble Space Telescope [11],
Kepler [12], TESS [13], and the upcoming PLATO mission [14]) can reveal informa-
tion like radius R, mass M, and the distance of a planet to its host star. Moreover,
spectral signatures of the host star and the atmosphere of the exoplanet are used
to infer their chemical composition. The information about planets in our solar
system is much broader since many spacecraft have been launched to explore their
special features. From these missions, additional observables can be obtained, such
as atmospheric particle abundances x; for each species ¢, gravitational moments J,
of order n, magnetic field strengths, the rotational frequency w, and the luminosity
L. These observables are used in planetary models to constrain the possible in-
terior composition and structure. Additional input is required about the equation

of state of the contained material for a wide range of pressures and temperatures.
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Furthermore, knowledge about phase transitions and chemical reactions is required
because they influence the planet’s energy balance. Hydrogen atoms are very re-
active. They form hydrogen molecules under normal conditions and an enormous
amount of stable compounds with other elements. For planets, methane (CHy),
water (HoO) [15-17], ammonia (NHj3) [18-20], and hydrogen sulfide (HyS) [21] are
important, especially for the ice giants Neptune and Uranus [22]. The situation is
much simpler for the noble gas He, since it forms no stable compounds at room
temperature. Still, there are experimentally verified compounds at high pressures
containing sodium and sodium plus oxygen [23], but it is unclear if these structures
could form in the planetary interior.

In the further course of this chapter, special attention will be paid to the gas giant
planets Jupiter and Saturn that mainly contain hydrogen and helium. Many space
missions have been sent to these planets. Their observations have led to puzzling
questions about the He abundance and the relation between the miscibility gap
of H-He mixtures and the internal structure of these planets. Furthermore phase
transitions in pure H and He will be discussed and the current knowledge of the
miscibility diagram will be reviewed. It will become clear why an improved misci-
bility diagram of hydrogen-helium mixtures is needed and it will be outlined, how

the miscibility diagram is calculated in this thesis.

1.1 Jupiter and Saturn

The exploration of Jupiter with space probes started with the Pioneer 10 mission
on March, 2nd 1972 |24, 25]. It reached the largest solar system planet in November
1973 and delivered new insights on the structure of Jupiter. It took high quality
pictures of the zonal winds, the giant red spot, and also found a smaller red spot
that was gone when Pioneer 11 arrived. Pioneer 10 confirmed that Jupiter radiates
2.5 times more heat into space than it receives from the Sun and provided first mea-
surements of the He abundance and thermodynamic conditions in the atmosphere.
It measured the magnetic field of Jupiter that extents almost to Saturn’s orbit. First
gravitational measurements revealed hints towards a possible small, fluid core.

Since then, five more missions were launched to explore Jupiter: Pioneer 11 [26],
Voyager 1 |27, 28|, Voyager 2 [29, 30|, Galileo [31], and Juno [32, 33]. The Pioneer
and Voyager missions were fly-by missions, whereas Galileo and Juno were designed
as orbiters. The special feature of the Galileo orbiter was an entry probe [34, 35|,
which was released in July 1995 and descended into the planet. It provided an accu-

rate measurement of the He content in the atmosphere, see Tab. 1.1.1, and reached a
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Property Jupiter Saturn
M [Mg] 317.83 95.16
R [Rg] 11.209 9.449
Tipar K] 166 149
Omean |&/ccm]| 1.326 0.687
Yatm 0.238 4 0.005 [35] | 0.18...0.25 [45]

Table 1.1.1: Selected properties of Jupiter and Saturn. Mass M, equatorial radius r
at 1 bar, temperature T3y, at 1 bar, mean density opean, and helium mass fraction

in the atmosphere Y, are shown.

pressure of 22 bar at 426 K in a depth of 146 km below the 1 bar level [35] before the
signal was disrupted. The latest Jupiter probe is the Juno spacecraft, which is orbit-
ing Jupiter since July 2016. Some of its scientific objectives [36] are: measuring the
gravitational and magnetic field (especially the higher harmonics), determining the
ratio of oxygen versus hydrogen to link formation and interior models [37], estimat-
ing Jupiter’s core mass, and investigating the magnetosphere near the planet’s poles.
First measurements of the gravitational field [38] have been used for comparison with
structure models, which suggest that Jupiter has a dilute core with a mass of 7-25
Earth masses [39]. Furthermore a non-uniform distribution of ammonia has been
detected [40] indicating that ammonia vapour might play a similar role on Jupiter
as water vapour on Earth, regarding the weather on both planets [41]. The atmo-
spheric jet streams have been shown to extend possibly to a depth of 3 000 km [42]
and influence the gravity field [43]. Juno measurements of the magnetic field have
revealed that current models underestimate its magnitude by a almost a factor of
two [44]. Many more results are expected to come in the future.

Pioneer 11 and the two Voyager spacecraft were sent to Saturn after their fly-bys
at Jupiter [30, 46, 47]. They discovered additional rings, unknown moons, gave
access to new images of Saturn and performed measurements of Saturn’s magnetic
field. The latest Saturn mission was Cassini-Huygens [48-50], which was launched
in October 1997 and entered Saturn’s orbit in July 2004. It consisted of the Cassini
orbiter and the Huygens lander, which was sent onto the moon Titan. The scientific
objectives of this mission focused on the exploration of the whole Saturnian system
instead of Saturn only. Nevertheless, Cassini’s instruments enabled the first calcu-
lation of Saturn’s Love number directly from observations [51], which potentially
offers new constraints on Saturn’s interior profile, because the fluid Love number is

sensitive to the density distribution inside the planet [52].
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Jupiter and Saturn differ significantly in terms of mass, radius, temperature, and
mean density as can be seen from Tab. 1.1.1. Yet, they are similar in the sense, that
they contain mainly hydrogen and helium. They also share the puzzling observation,
that He is depleted in both planets in comparison to the protosolar He abundance.
The gas giant planets have formed from the same protosolar nebula and, therefore,
should contain similar amounts of H and He. The first measurement of the He
abundance in Jupiter and Saturn originated from the Voyager missions and revealed
He mass fractions of Y; = 0.18 4 0.04 [53| for Jupiter and Ys = 0.06 & 0.05 [54] for
Saturn. Comparing these values to the present-day solar values is tricky because in
the Sun, He is produced via fusion. Therefore, measured atmospheric abundances
are not representative for the entire Sun. Additionally, He is able to gravitation-
ally settle towards the Sun’s interior. Solar models revealed that the protosolar
He mass fraction should be Yp = 0.27...0.28 [55, 56]. The same models yield a
present-day He fraction of Yz = 0.247...0.251 [55, 56] for the solar atmosphere.
Hence, there is a strong He depletion in the atmospheres of Jupiter and Saturn
compared to the protosolar value. However, the Galileo entry probe determined an
atmospheric He mass fraction different from that of the Voyager missions, namely
Y; = 0.238 £0.005. The significant discrepancy led to a reevaluation of the Voyager
data for Saturn, where an updated He mass fraction of Y5 = 0.18...0.25 was deter-
mined [45]. Planetary interior models based on the latest Cassini data led to a mass
fraction of Yg = 0.16...0.22 [57], in agreement with the reanalysed Voyager data.
Still, a new Saturn entry probe is required to precisely measure the atmospheric
composition.

The similarity of the Saturn and Jupiter He abundances to the present-day atom-
spheric He abundance of the Sun is intriguing, but deemed to be coincidental. The
mechanism of the depletion is different in Jupiter and Saturn: gravitational settling
is expected to be negligible compared to the effect of convection, which would remix
the interior. Instead, it has been proposed that the immiscibility of hydrogen and he-
lium under certain conditions could explain the measured He abundances [58]. The
idea is that H-He separation leads to small helium-rich droplets that precipitate and
fall towards the planetary core despite convection. Thus the outermost layer would
show a lower He fraction compared to the mean He fraction that should be similar
to the protosolar value. The descending helium droplets would convert gravitational
energy to heat that contributes to the luminosity. This process would explain Sat-
urn’s high excess luminosity [59-61]. If H-He demixing is neglected, most evolution
models of Saturn fail to describe the observed luminosity and yield a planetary age

much smaller than the solar age of 4.56 Gyr [62]. However, Leconte and Chabrier [63]
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P 2

Figure 1.1.1: Different possible interiors for Saturn. Interior 1 shows a uniform
distribution of He, where the orange colour refers to a protosolar He abundance.
In hashed regions, H is molecular and insulating and in unhashed regions H is an
atomic metal. In interior 2, He has separated from H according to the miscibility
diagram of Ref. [58]. Helium-poor regions are indicated by lighter, yellowish colours
and He-rich regions by darker orange colours. Interior 3 shows a current Saturn
model according to Ref. [62]. Figure from Fortney J.J. Looking into the giant
planets. Science 305, 1414 (2004). Reprinted with permission from AAAS. Credit

to Preston Huey/Science.

proposed layered convection models that can reproduce Saturn’s correct age without
H-He demixing, albeit not entirely ruling it out. In fact, a compositional gradient
as caused by H-He demixing is helpful for their layered convection models. Hence,
a combination of demixing and layered convection is possible. Another observa-
tion that supports H-He demixing is the depletion of neon in Jupiter. Calculations
have shown, that neon dissolves preferably in the non-metallic He rather than in
the metallic hydrogen [64]. Since the metallisation of hydrogen triggers the demix-
ing [65], neon would sink towards the core with the helium. The opposite is true for
argon |[64] which was found to be present in Jupiter’s atmosphere in a higher abun-
dance than the protosolar value, because it tends to dissolve mainly in the metallic
hydrogen. The effect of demixing has a huge impact on the interior structure models
as shown in Fig. 1.1.1 for Saturn. If no demixing occurs in Saturn or if the planet is

at an evolutionary stage, where the interior temperature is high such that demixing
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has not yet begun, the interior would be homogeneously mixed and the He abun-
dance would be Yp as depicted by interior 1. Upon cooling, demixing could happen
in a certain region of the planet, such that He rain occurs and an outer He-poor
and inner He-rich layer forms as shown by interiors 2 and 3. Different miscibility
diagrams can lead to different amounts of He in these layers and to a case, where a
He-rich layer is situated directly above the core as shown by interior 3. Hence, the

precise knowledge of the miscibility diagram is crucial for planetary modelling.

1.2 Phase transitions in H and He: experiment and

theory

It is important to review the relevant phase transitions and current state of research
for the pure constituents, before phase transitions in a mixture of hydrogen and he-
lium are discussed in the next section. The phase diagram of the seemingly simplest
element hydrogen shows many different structures and phases. In the solid, there
are currently six proposed insulating phases |66, 67]. More than 80 years ago, it
was proposed by Wigner and Huntington [68] that solid hydrogen should become
metallic under high pressure. At that time, the estimated minimum pressure to
convert hydrogen to the metallic phase was 2.5 kbar, which was beyond feasibility
for experiments back then. Over the years, the insulator-to-metal transition (IMT)
has been investigated using the continuously improving theoretical and experimen-
tal methods, see e.g. Ref. [69]. The invention of diamond anvil cells (DAC) has
enabled static high pressure experiments in the multi-megabar regime. Pressures
of up to 10 Mbar have been obtained for certain materials [70-72] - however, not
for hydrogen, where pressures have long been limited to below 4 Mbar [66]. Ex-
perimental challenges originate from the mobile hydrogen atoms, which are able to
diffuse through the diamond and the rhenium gasket, especially at higher temper-
atures [67]. A further problem is diamond failure due to defects, residual stress, or
laser-activated defect growth [73]. Despite these difficulties, Dias and Silvera [73|
reported the first observation of the Wigner-Huntington transition, which occurred
at 4.95 Mbar, see Fig. 1.2.1. However, these results are controversially debated in
the scientific community [74-77] because metallisation could only be achieved for a
single run and more data need to be gathered.

Under standard conditions for temperature and pressure, hydrogen is molecular.
At higher temperatures, hydrogen undergoes an IMT in the liquid phase, which
has historically been known as the plasma phase transition (PPT) [87]. Chemical

6
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Figure 1.2.1: High-pressure hydrogen phase diagram. Laser-heated DAC experi-
ments performed by Dzyabura et al. [78|, Ohta et al. [79], and Zaghoo et al. [80].
Dynamic compression experiments by Weir et al. [81, 82] and Knudson et al. [83].
Density functional theory calculations for PBE and HSE have been done by Loren-
zen et al. |84, 85| and for vdW-DF and vdW-DF2 by Knudson et al. [83]. First
evidence of solid metallic hydrogen by Dias and Silvera [73]. Quantum Monte Carlo
(QMC) simulations by Mazzola et al. [86].

models predict the PPT to occur at high temperatures with critical points between
10000 K and 20000 K, see e.g. Ref. [88, 89] and references therein. These models
treat atoms, molecules, ions, and electrons as separate species (the chemical pic-
ture [87]) and calculate their ionisation and dissociation equilibrium using the law
of mass action [90, 91]. This is in contrast to the physical picture, where atoms,
molecules, and ions are systems consisting of only nuclei and electrons, that form
bound states [87]. Chemical models that include Pauli blocking show a significantly
smaller critical temperature of 6450 K [92]. All chemical models also predict the
IMT to be accompanied by a first-order phase transition, i.e. a density disconti-
nuity, see e.g. Ref. [93] for a detailed review. In recent years, simulations based
on density functional theory (DFT) and quantum Monte Carlo (QMC) methods (in
the physical picture) have shown that the insulating molecular fluid transforms to

an atomic metallic liquid, resulting in a first-order liquid-liquid insulator-to-metal

7
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transition (LL-IMT) [84, 94|. In Fig. 1.2.1, the phase diagram of hydrogen shows
a variety of theoretical predictions for the LL-IMT obtained with DFT (green lines
and symbols) and QMC (violet circles and line) [86]. This figure shows only a
few selected results. More calculations are available in the literature [94-96]. DFT
calculations rely on suitable approximations for the exchange-correlation (XC) func-
tional, for which many different exist, see Sec. 2.2.4 in Ch. 2. All of these functionals
yield different results for the LL-IMT. In Fig. 1.2.1, the shown XC functionals used
by different authors are PBE [97], HSE [98, 99|, vdW-DF! (van der Waals density
functional) [100], and vdW-DF2 [101]. The critical temperatures predicted by these
functionals are much smaller than those of the chemical models. The vdW-DF and
vdW-DF?2 calculations [83] include nuclear quantum effects (NQE), which have been
shown to shift the IMT to lower pressures by 35 GPa at 1200 K [86, 96, 102]. The
shown PBE, HSE, and QMC data do not contain NQE and would need to be cor-
rected. DFT and QMC calculations yield metallisation pressures that differ by up
to 1.5 Mbar.

Various experiments have been carried out to identify the LL-IMT. Laser-heated
DAC experiments by the group around Dzyabura et al. [78], Ohta et al. [79], and
Zaghoo et al. [80] are consistent with each other. If NQE were added to the QMC
and HSE results, they would be shifted towards the DAC data. PBE calculations
using path integral molecular dynamics (PIMD) have been shown to yield lower pres-
sures than the DAC experiments [102]. The IMTs predicted by both vdW density
functionals are at much higher pressures than the DAC data. Dynamic compression
experiments reporting a continuous metallisation transition have been performed by
Weir et al. [81]. These data reveal a drop in resistivity at 1.4 Mbar to a value typi-
cal for liquid metals. The corresponding temperature was calculated to be 2600 K
with an uncertainty of 30%. The most recent dynamic compression experiments?
have been done by Knudson et al. [83]. They used reverberating shocks followed
by ramp compression, that allowed for a quasi-isentropic compression. Metalliza-
tion pressures determined in this experiment are at 3 Mbar, which are much higher
compared to any of the DAC experiments. The vdW density functionals show met-
allisation pressures in agreement with this experiment. Still, the slopes of the IMT
obtained with DFT, QMC, and DAC experiments are consistent with each other,

while the slope of the Knudson experiment is much steeper. Due to the contradict-

IThe van der Waals density functional is usually abbreviated by vdW-DF, but is also referred

to as vdW-DF1 and vdW-DF-04 in contrast to its revised version vdW-DF2.
2More recent experiments done at the National Ignition Facility have been shown at several

conferences but are yet unpublished.
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Figure 1.2.2: Helium phase diagram. Orange circles combine various experiments
on the melting line of He [103-110] and the orange line shows the fcc-hep transi-
tion [111]. Band gap calculations shown as solid blue line [112] and dashed blue
line [113]. Black solid line is the preliminary Jupiter model of Hubbard and Mil-
itzer [114]. Black dashed line is the Saturn model of Nettelmann et al. [115]. Blue
and red diamonds are two-phase simulations for the melting line done by Preis-
ing et al. [116]. Figure reprinted from Preising et al. [116] and modified with per-

mission from Martin Preising.

ing experimental results and contradicting theoretical calculations, no satisfactory
answer can be given regarding the phase boundary of the first order LL-IMT now.
However, beyond the critical point, continuous metallisation has been measured pre-
cisely using Hugoniot experiments [117].

The metallisation of hydrogen is predicted to occur also in H-He mixtures [65] and
has been proposed to be the driving force for H-He separation, which will be dis-
cussed in the following sections. It is unclear if a possible metallisation of He leads
to remixing. However, helium remains in an insulating state up to much higher pres-
sures and temperatures than hydrogen [59] and is most likely insulating under Jovian
core conditions [118]|. The exact conditions, under which helium becomes metallic,
are subject to current research [112, 113, 119]. In Fig. 1.2.2, the high-pressure phase

diagram of He is shown. Blue dashed and solid lines show predictions for the closure
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of the band gap [112, 113| and the black dashed line is the Jupiter model by Hub-
bard and Militzer [114]. Even if their Jupiter model overlaps with the prediction by
Stixrude et al. [113], He is most likely insulating at Jovian core conditions, because
the employed DFT calculations underestimate the band gap. This in turn results
in too low metallisation pressures, see Ref. [120] for a discussion of the band gap
problem in DFT. The calculation of Zhang et al. [112] shows band gap closure at
even higher pressures with no overlap of the Jupiter model. The melting line of
He has been experimentally determined by various authors [103-110], collectively
shown as orange dots. Two-phase simulations [121] based on DFT molecular dy-
namic simulations for the determination of the melting line have been performed
by Preising et al. [116] using the PBE and the vdW density functionals and agree
well with the experiments. According to these calculations, He will be liquid in the
entire interiors of Jupiter and Saturn. It will be shown later that the melting line

of He has direct implications for the miscibility diagram of H-He mixtures.

1.3 Miscibility gap of H-He mixtures

Experimental results on the miscibility gap of H-He mixtures are sparse and re-
stricted to the low-pressure region [122-125]. These results have been obtained
using diamond anvil cells to compress H-He mixtures up to 0.12 Mbar at room
temperature [122]. For the solar He concentration, demixing was found to occur
at ~ 0.06 Mbar, see Fig. 1.3.1. Recently, similar experiments have been done for
pressures up to 0.75 Mbar at room temperature showing new structural changes in
the binary phase diagram [126]. However, no demixing experiments relevant for the
interiors of Jupiter and Saturn have been published up to now.?> Experiments are
challenging for a number of reasons: standard Hugoniot experiments, where a ma-
terial is shock-compressed using gas guns, magnetically driven flyer plates, or lasers,
most likely do not enter the demixing region because temperature rises rapidly above
the proposed demixing temperatures. A possible alternative is to precompress H-He
to 0.7 g/cm?, from where phase separation within a single shock would be possi-
ble [127]|. Complications also arise from the miscibility diagram at low temperatures,
see Fig. 1.3.1. For the solar He abundance, the liquid hydrogen starts to solidify at

0.06 Mbar with helium remaining in the fluid phase. This results in demixing and

3First results on the miscibility of H-He mixtures at planetary interior conditions have been
presented at scientific conferences, but unfortunately remain unpublished to date. The exper-
iments were performed by Brygoo, Loubeyre, Collins, and others using laser-driven shocks on

precompressed targets. These results will not be discussed here.
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Figure 1.3.1: Experimentally determined miscibility gap of H-He mixtures at room
temperature. Diamonds are direct visualizations within diamond anvil cells and lines
are inferred from Raman measurements, both performed by Loubeyre et al. [122].
The solar He abundance x = 0.086 is marked by the vertical red line. The dashed
line is the limit for miscibility in the solid. Sy is a H-rich solid, Fg a H-rich fluid,
and Fye a He-rich fluid.

prevents the construction of a mixed initial state. The behaviour is similar under
cryogenic conditions. To avoid rapidly rising temperatures in Hugoniot experiments,
techniques like reverberating shock-waves and ramp compression could be combined
similarly to the metallisation experiments by Knudson et al. [83] for pure hydrogen.
In contrast to experiments, many theoretical predictions are available in the lit-
erature using various methods [58, 65, 85, 128-136]. Early analytical calculations
assumed the ions of both species to be fully pressure-ionised and treated the electron
gas perturbatively [58, 129, 130]. This approximation is not valid because Helium
is most likely in an insulating state even at conditions typical for Jupiter’s core as
seen in the previous section. The first predictions based on density functional the-
ory have been made by Klepeis et al. [132] using the local density approximation
(LDA) [137]. The accuracy of the obtained results was insufficient due to the ne-
glect of thermal lattice effects. Later, Pfaffenzeller et al. [128] performed the first
DFT calculations coupled to classical molecular dynamics (MD) based on the Car-

Parinello approach [138]. However, they concluded that the excess free energy at
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Figure 1.3.2: Miscibility diagram of H-He mixtures as calculated by Lorenzen [85].

Solid lines and coloured area correspond to the colour-coded pressures. Thick dashed

lines are estimates for the liquidus line. Thin dashed lines are results from Pfaffen-

zeller et al. [128]. Diamonds show the melting temperature of He [116] for the

colour-coded pressures.

finite temperatures up to 3000 K is not different from the excess energy at 0 K,
so that they used their zero-temperature calculations together with the ideal en-
tropy of mixing to derive a phase diagram for H-He mixtures at temperatures up to
12000 K. Lorenzen et al. |65, 85, 134] performed the first DFT-MD calculations for
all considered temperatures and volumes using gradient corrections of the electron
density incorporated in the Perdew-Burke-Ernzerhof (PBE) functional [97|. These
results are shown in Fig. 1.3.2. The coloured regions correspond to the given pres-
sures. Also shown are results by Pfaffenzeller et al. [128] for 4 Mbar, 10 Mbar, and
24 Mbar as thin dashed lines. In contrast to the data of Lorenzen et al., the Pfaf-
fenzeller et al. demixing temperatures are lower and symmetric with respect to the
helium fraction . The data of Lorenzen et al. show a significant asymmetry with
respect to (w.r.t.) x: The demixing temperatures drop sharply at high He fractions
for pressures greater than 4 Mbar. It has been shown by Lorenzen et al. [134],
that the demixing temperatures approach the melting temperatures of pure He for
increasing He fractions. The demixing regions show island structures for lower pres-
sures, because they are well-separated from the respective liquidus lines. It has
been demonstrated at 1 Mbar and 2 Mbar [65] that the metallisation of the hy-

drogen subsystem coincides with the demixing regions. Thus, it has been proposed
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that the IMT in the H subsystem triggers the immiscibility of H-He mixtures. Vor-
berger et al. [139] and Morales et al. [135] have shown that molecular correlations
in H increase due to the presence of He atoms, thus, effectively preventing the delo-
calization of the hydrogen electrons. This effect limits the demixing region at high
He-fractions, such that higher pressure is required to metallise the H subsystem at
constant temperature and increasing He-fractions. It also explains the sharp drop
in demixing temperature.

Demixing calculations by Klepeis et al. [132], Pfaffenzeller et al. [128] and Loren-
zen et al. [65, 134] approximated the entropy using only the ideal entropy of mixing.
It will be shown in Ch. 4 that this is a rather crude approximation and not valid
under most conditions relevant for H-He demixing under planetary interior condi-
tions. Morales et al. [135, 136] performed DFT-MD simulations in the same way as
Lorenzen et al., but were the first to include also non-ideal effects in the entropy
of mixing. Unfortunately, the authors did not present a complete miscibility dia-
gram. Their data are only available for the solar He abundance, and are shown in
Fig. 1.3.3 together with the Lorenzen et al. data, Jupiter [114, 140-143] and Sat-
urn [115] isentropes, as well as selected phase lines from the hydrogen and helium
phase diagram. Comparing the Lorenzen et al. and Morales et al. data reveals
significant changes in the miscibility phase diagram. For temperatures greater than
5000 K, the Morales et al. data show lower demixing temperatures up to 1500 K
compared to the Lorenzen et al. data. At pressures below 2 Mbar, the Loren-
zen et al. miscibility diagram shows island structures, see Fig. 1.3.2, resulting in
a negative slope of the demixing temperatures as function of pressure. The loca-
tion of the demixing phase boundary is close to the PBE LL-IMT line shown in
Fig. 1.2.1, but slightly shifted to higher pressures. This underlines the role of the
LL-IMT in the hydrogen subsystem as a trigger for demixing. The shift of the
LL-IMT in hydrogen to higher pressures is caused by the presence of He atoms,
as discussed earlier, and has been demonstrated by Vorberger et al. [139], in the
PhD thesis of Lorenzen [85], and in recent QMC calculations by Mazzola et al. [86].
The Morales et al. data, however, show a completely different low-temperature be-
haviour: The demixing pressure decreases monotonically for decreasing pressure and
reproduces calculations of Schouten et al. [133], who performed Monte Carlo simula-
tions in the Gibbs ensemble [144] using effective pair-potentials. The extrapolation
of the Schouten et al. data to lower pressures is consistent with the experiments
by Loubeyre et al. [122]. Demixing at these pressures cannot be explained by the
LL-IMT in the H subsystem. Instead, the non-ideal contribution to entropy must

be responsible for the phase separation, but the exact mechanism is unclear.
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Figure 1.3.3: Miscibility diagram for solar He abundance. The coloured area cor-
responds to the results of Fig. 1.3.2. DFT-MD data by Morales et al. [135, 136]
(purple squares), Monte Carlo data by Schouten et al. [133] (small blue circles)
and experimental diamond anvil cell results by Loubeyre [122]| are shown. Jupiter
and Saturn isentropes by Nettelmann et al. from Ref. [140] and [115], respectively.
Jupiter isentrope by Militzer et al. [114, 141-143|. He melting line from two-phase
DFT-MD simulations by Preising and Redmer [116].

The lower demixing temperatures of the Morales et al. data have direct consequences
for planetary models of Jupiter. Phase separation of H-He mixtures in Jupiter oc-
curs if the planetary isentrope intersects with the demixing phase diagram. For
the isentrope calculated by Nettelmann [140], this is only the case for the Loren-
zen et al. phase diagram, but not for the Morales et al. data. However, a much
cooler Jupiter model has been suggested by Militzer et al. [114, 141-143], that still
intersects with the Morales et al. phase diagram. For Saturn, the shown isentrope
is significantly cooler than the Jupiter adiabats and intersects with all demixing
predictions. Plistow et al. [61] performed inhomogeneous evolution calculations for
Saturn to determine the cooling as a function of time. Homogeneous evolution cal-
culations, that do not incorporate H-He demixing, predict much shorter ages than
the age of our solar system (4.56 Gyr). Piistow et al. showed that phase separation

in Saturn starts at an age of roughly 1 Gyr using the demixing phase diagram of
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Lorenzen et al. [65, 134]. After that, the cooling is slowed down significantly and the
present-day effective temperature is reached after 5.8 Gyr. However, as seen from
the Morales et al. data, demixing temperatures should be significantly lower when
the non-ideal entropy is considered. Piistow et al. lowered the demixing tempera-
tures of Lorenzen et al. by 1300 K to mimic this effect, and found good agreement
with the age of the solar system. This artificial shift had to be performed since no

entire data set of the miscibility diagram was available for the Morales et al. data.

1.4 Motivation and outline of this thesis

Making better predictions of Saturn’s cooling behaviour requires knowledge of the
complete miscibility diagram for arbitrary He fractions. It has been shown in the
previous section that the non-ideal entropy has to be taken into account in order to
reproduce demixing at low pressures which is not driven by the metallisation transi-
tion but by the entropy itself. Calculating the non-ideal entropy in order to obtain
a complete miscibility diagram is one of the two main objectives for this thesis. The
second objective is to improve the equation of state data, required for demixing
calculations, by performing DFT simulations using an XC-functional that offers a
more appropriate description of hydrogen, helium, and their interaction than PBE.
Previous DFT calculations of the miscibility diagram used LDA [145] or PBE [97]
to approximate the exchange-correlation effects. In Sec. 1.2, it has been shown that
the location of the metallisation transition is different for every XC-functional. The
PBE functional shows metallisation at lower pressures than the DAC experiments,
if NQE are taken into account. Functionals including van der Waals effects show
higher metallisation pressures than the DAC experiments but are in better agree-
ment with the ramp compression data by Knudson et al. [83]. Since it has been
shown that metallisation in the H subsystem is responsible for the demixing of H
and He at high pressures (see Sec. 1.3), the chosen functional will also influence
the demixing phase diagram. However, comparing experiments on the LL-IMT to
the DFT calculations using different XC-functionals does not offer a final answer on
which functional is best suited for H-He mixtures. Even for high-precision Hugo-
niot experiments with deuterium it has been shown, that no functional exists that
describes the data best [146].

Nevertheless, Clay et al. [147] performed an extensive benchmarking study on H-He
mixtures, where many DFT XC-functionals have been compared to highly precise
Quantum Monte Carlo calculations. They found that the vdW-DF and BLYP func-

tional describe the enthalpy of H-He mixtures best. Minimising errors in the en-
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thalpy is crucial when calculating phase equilibria and demixing properties as will be
shown in Sec. 2.5. Since the vdW-DF has been able to describe the LL-IMT better
compared to the Knudson et al. experiments, the choice fell on this functional.

In this thesis, the calculation of a new miscibility diagram for H-He mixtures, which
includes the non-ideal entropy and uses the vdW density functional of Dion et al. [100],
will be outlined. In Ch. 2, the theoretical basics and numerical tools, that have
been used in this thesis, will be described. Starting with an explanation of den-
sity functional theory and the coupling to molecular dynamics, the theory behind
XC-functionals, that include van der Waals effects, will be discussed. Additionally,
it will be shown how demixing is calculated for binary mixtures and how nuclear
quantum effects can be treated in a post-processing step. A major part of Ch. 2
will be dedicated to the calculation of entropy within molecular dynamics. Espe-
cially the so-called coupling-constant integration will be explained. In the following
chapters, the main results of this thesis will be presented. Most results have already
been published in Ref. [148] and [149]. There is a publication on the phase dia-
gram of carbon at high pressures [150] that has been calculated as part of this PhD
project, but is not contained in this thesis. In Ch. 3, the equation of state obtained
with the vdW-DF will be shown and compared to PBE calculations. In Ch. 4, the
entropy of H-He mixtures is presented. Different methods to obtain the entropy
will be compared. In Ch. 5, the results from Ch. 3 and 4 will be used to calculate
the Gibbs free energy of mixing for H-He mixtures. Nuclear quantum corrections
will be added to the Gibbs free energy in this chapter. In Ch. 6, the miscibility
diagram of H-He mixtures will be presented and discussed with respect to earlier
predictions by Lorenzen et al. [65, 134] and Morales et al. [136]. New planectary
pressure—temperature profiles for Jupiter and Saturn will be calculated and com-
pared to the miscibility diagram in Ch. 7. Finally, this thesis is concluded in Ch. 8,

which summarises the obtained results and offers an outlook towards future work.
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Methods

This chapter illustrates the theoretical approaches and tools used to obtain the
results in Ch. 3 to 7. In the first section, it is shown how the Schrodinger equation
for a system of electrons and nuclei can be decoupled into an electronic part and a
nuclear part. The former is treated within density functional theory (DFT) and is
explained in the second section. Special attention is given to the non-local van-der-
Waals functional and its contribution to the total energy. The third section briefly
discusses the coupling of DFT to classical molecular dynamics (MD) simulation. In
Sec. 2.5 the thermodynamics of binary systems and the equations used to determine
phase separation are given. It is shown how the DF'T-MD data can be used to obtain
demixing properties. The third section introduces methods to obtain or approximate
the total entropy, where especially the calculation of the ionic entropy is the main
difficulty. In the last section, numerical details about the performed simulations are

given.

2.1 Many-body Schrodinger equation

The properties and evolution of a many-body quantum system consisting of N nuclei
with coordinates {R;} and N, electrons with coordinates {r;} are given by the

solution to the time-dependent Schrédinger equation [151, 152]

s u({r (Rab 1) = (), (Ra)0), 2.1)

where i is the imaginary unit, A is the reduced Planck constant, 1 is the total wave
function and ¢t is the time. The Hamiltonian H is a sum of the kinetic energy oper-
ator of the nuclei T}, the kinetic energy operator of the electrons 7., the Coulomb

potential energy between nuclei and nuclei Vi, the Coulomb potential energy be-
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tween nuclei and electrons V,,_,, and the Coulomb potential energy between electrons

and electrons V,_.:

H=T,+T.+ Vi + VitV (2.1.2)
The individual terms are defined as:
. B2
Th=—-Y —V? 2.1.3
le o Vi (21.3)
« h2 9
T, = — . 2.1.4
; Vi (214)
N 1 e?
‘/:e—e - s 2.1.5
47T€OZ|TZ—TJ'| ( )
1<)
~ 1 Z]ZJ62
ann = R 2.1.6
47T€OI<ZJ|RI—RJ| ( )
~ 1 Z[62
Viee = — , 2.1.7
471'602[ |TZ'—R[| ( )

where m, is the electron mass, my is the mass of the nucleus I, €y is the vacuum
permittivity, and Z; the charge number of the nucleus /. The electrons are much
lighter than the nuclei and their wave functions can be partially decoupled from each
other using the Born-Oppenheimer approximation [153|. The electronic Schrodinger

equation for fixed nuclear coordinates is then [152]

Hepo({r:i}, {Rr}) = Exou({r:}, {R1}), (2.1.8)

where the the orthonormal set of electronic eigenstates ¢, depends only parametri-
cally on the position of the nuclei and the eigenstate k has the corresponding energy

eigenvalue Fj. The electronic Hamiltonian is given by
I:—,e - Te + ‘Ze—e + ‘A/n—e + Vn—n - Te + ‘A/e—e + ‘Zaxt; (219)

where V;Xt = VH_G + V}l_n is the external potential. Using the electronic eigenstates,

the wave function 1 can be expanded [154] as:
V({rd AR} ) = Y (R, on({ri}, {R1)), (2.1.10)

where x, are the nuclear wave functions, which can be viewed as time-dependent
expansion coefficients [152]. Inserting this ansatz into Eq. (2.1.1) using Eq. (2.1.8)

and integrating out the electronic coordinates yields [152]

0 B2,
Zhax’“ - <_ Z QMIVI + Ek) Xk + ; CknXns (2.1.11)

1
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where the dependence of y; on the nuclear coordinates and time has been dropped

for convenience and

This term describes the non-adiabatic coupling between the nuclear system and the
electronic system. In the Born-Oppenheimer approximation, this term is neglected
such that

o, h?
iho X = (— > — S, —V, + Ek> (2.1.13)

Thus, the potential E, = Ei({R}) determines the nuclear motion and requires
the solution to the electronic Schrodinger equation. In the next section, density
functional theory is discussed as a way to determine the electronic eigenstates of
Eq. (2.1.8).

2.2 Density functional theory (DFT)

Density functional theory in its initial formulation [137, 145] is a method to express
the ground state energy and other ground state observables of the electronic quan-
tum system as a functional of the electron density. It is based on the Hohenberg-
Kohn theorems that are explained in the first subsection. The major advantage
of DFT is the reduction of the dimensionality from 3N, electron coordinates to
three spatial coordinates of the electron density n = N, /V', where N, is the number
of electrons and V is the volume. The second subsection gives details about the
Kohn-Sham formalism that allows the actual calculation of ground-state properties
with a tractable numerical scheme. The extension to finite temperature is detailed
in Sec. 2.2.3. In subsections 2.2.4 and 2.2.5 the approximations for the exchange-
correlation functional are explained and special attention is paid to the inclusion of
non-local correlation. In the last subsection, periodic boundary conditions, plane
waves and pseudopotentials are explained, which are important for the numerical

implementation of DFT.

2.2.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems [137] are crucial for the understanding of density
functional theory and will be briefly described here. The first theorem of Hohenberg
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and Kohn proves that the electronic problem is fully determined by the external po-
tential because there is a one-to-one correspondence between the external potential

and the wave function, which determines the electron density n(r),

n(r) = N/d'rg . /drNe|gb0({r,-})|2. (2.2.1)

~

In particular, two potentials, Vi and V/

ext?

that correspond to the same electron
density can only differ by a constant, i.e.

~

‘/ext - V/

ext

+ const. (2.2.2)

This one-to-one correspondence can be used to formulate ground state observables

as a functional of the electron density. For an arbitrary ground state operator O

one can write
O[n] = (O[n]) = {¢o[n]|O|¢o[n]), (2.2.3)
where ¢o[n] means the wave function that yields the electron density n. The energy

as functional of the density can then be formulated as
En] = (¢o[n]|H|go[n]) = (do[n]| T + Vee + Ves|ho)- (2.2.4)

The ground state density ng that yields the ground state energy Ey can be found
by applying the Rayleigh-Ritz variational principle [137]:

Eq[no] = mr}n Eln). (2.2.5)

This is the second Hohenberg-Kohn theorem. Unfortunately, the explicit form of
the energy functional is not known so that the minimization can not be performed.
However, Kohn and Sham in 1965 [145] reformulated the electronic problem within
an efficient scheme that can be used in computer simulations. This formalism will

be presented in the next section.

2.2.2 Kohn-Sham formalism

The aim of the Kohn-Sham formalism [145] is to map the fully interacting system
of electrons onto a system of non-interacting particles in an effective potential that
yields the same ground state density as the original system. This approach separates
the N-particle problem into /N one-particle problems and leads to a computationally
more feasible scheme similar to the Hartree-Fock formalism [155]: the Hamilton
operator Hy for a non-interacting system can be written as (the operator hats are
omitted hereafter):

H, =T, + Vi, (2.2.6)
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where Ty and Vi are the kinetic energy and the external potential, respectively.
For a non-interacting system, the Schrodinger equation separates into one-particle

equations of the form [156]

{_2?; * ”S("“)} 0i(r) = eii(r), (2.2.7)

where ¢;(r) are one-particle wave functions, the Kohn-Sham orbitals, and ¢, is the

energy eigenvalue for each electron i. The electron density is then defined as

= Oili(r)P, (2.2.8)
i=1
where the occupation number is:

1 . if g < KE s
0; = ’ (2.2.9)

0 , else,

where Ep is the Fermi energy. The key objective is to find an external potential
vs(r), defined via

Ve = /drn(r)vs(r), (2.2.10)

that reproduces the same electron density as the interacting system. The ansatz
of Kohn and Sham was an energy functional similar to Eq. (2.2.4) that had the
following form:

En| =T + En[n] + Eext[n] + Exc[n]. (2.2.11)

The first term is the kinetic energy of the non-interacting system and can be defined

in terms of the one-particle wave functions:

T, = Ze/dms 25 bi(T). (2.2.12)

The second term is the Hartree energy of two classical charge densities:

Ey| dr n . 2.2.1
"2 47reo / / |'r — 7’| ( 3)

The third term is the energy of the external potential:

Eon] = Vs = / dr Ve (7)1 (1). (2.2.14)

The last term Ei.[n] is the unknown exchange-correlation energy that contains the

difference of the non-interacting system to the fully interacting system.
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The energy functional, Eq. (2.2.11), yields the ground state energy for the ground
state density ng. If a small variation dn is applied to the ground state density such
that

n=mng+on, (2.2.15)

then the variational principle can be applied to Eq. (2.2.11) in combination with
Eq. (2.2.7) so that the following equation is obtained [156]:

Py

Thus, the external potential vy(7), also known as the Kohn-Sham potential vkg, can
be identified as

}5n(r). (2.2.16)

n=ng

Us(1) = vks(T) = Vext (7)) + vu[no(T)] + vyc[no(T)], (2.2.17)

with the Hartree potential

van(r)] = ¢ / ar' ) (2.2.18)

" 4me lr — |

and the exchange-correlation potential

Uxe[n(T)] = 55:&?. (2.2.19)

Substituting Eq. (2.2.17) into Eq. (2.2.7) results in the Kohn-Sham equation

{— ” V2 4 Ve (1) + vu[n(r)] + vxc[n(r)]} qu('r) = 5,@@(1‘). (2.2.20)

2m,

Solving the Kohn-Sham equation requires an initial guess for the one-particle wave
functions. From these, the initial density is calculated via Eq. (2.2.8), which de-
termines the Kohn-Sham potential, Eq. (2.2.17). The Kohn-Sham equation is then
solved yielding new wave functions from which a new electron density can be cal-
culated. This cycle is repeated self-consistently until the energy, Eq. (2.2.14) is
minimized. Up to this point, density functional theory and the Kohn-Sham formal-
ism is an exact theory, but in practice the exchange-correlation functional F.. is still
unknown. Approximations to E. are needed and will be discussed in Sec. 2.2.4. In

the next section the important extension to finite temperatures will be shown.

2.2.3 Extension to finite temperatures

Initially, DF'T was developed as a theory for systems at temperature 7" = 0. Mer-
min [157] showed that DFT can be extended to finite temperatures. He proved that
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for a given temperature and chemical potential no two external potentials can lead
to the same ground state density when the grand canonical ensemble is used. In
the Kohn-Sham formalism [145] the energy as a functional of the electron density is

replaced by the free energy F[n|
Fln| = E[n] — T'S[n], (2.2.21)

where S[n] is the entropy consisting of an ideal part Siq and an unknown exchange-

correlation part Sy.:
Sn] = Siq + See[n]. (2.2.22)
The ideal part can be written as [158|

o0

Sa=—ks Y [filnfi+ (1= f;)In(1— f;)], (2.2.23)

i=1
where f; is the Fermi-Dirac-distribution
B 1

exp{B(e; —p)}+1

Here, u is the chemical potential and f = (kBT)_l, where kg is the Boltzmann

fi (2.2.24)

constant and T is the temperature. Further, the occupation number #;, which was
a step function in Eq. (2.2.9), is replaced by the Fermi-Dirac-distribution f; in
Eq. (2.2.8):

n(r) =3 fili(r)* (2.2.25)

The exchange-correlation energy Fiy. is replaced by the exchange-correlation free
energy Fy.. Up to now, it has been common to use the zero-temperature exchange-

correlation energy F,. also in finite-temperature calculations so that
Foo =~ Ey.. (2.2.26)

The development of exchange-correlation functionals for the free energy beyond this
approximation is an active field of research [159-169]|. Smith et al. [170] showed for
the analytical model of a Hubbard dimer that the zero-temperature approximation
is generally a good approximation for moderate temperatures and weak correlations.
For highly correlated systems, errors stemming from the zero-temperature exchange-
correlation functional are expected to be larger than the error due to the neglect
of thermal effects [170]. Thus, it appears that the choice of a proper ground-state
exchange-correlation functional is more important than finite-temperature correc-

tions.
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2.2.4 Exchange-correlation functionals

In this section, zero-temperature exchange-correlation functionals will be discussed,
which are also used throughout all computations carried out for this thesis. Methods
beyond the local density approximation and generalised gradient approximation, i.e.
hybrid functionals and meta-GGAs, are only briefly acknowledged, because they
play a minor part in this work. More important for this thesis are functionals that
incorporate non-local correlation. A separate section will be dedicated to these
functionals, see Sec. 2.2.5.

The exact, universal XC functional is not known, so that good approximations are
needed in order to perform DFT calculations with sufficient accuracy. The simplest
way to approximate FE.. is the local density approximation (LDA) [137]. If the
electron density is only weakly varying in space it can be assumed to be locally

homogeneous, such that:

XcC

FLPAL] — / n(F)em ()] dr, (2.2.27)

hom
xc

where € is the homogeneous exchange-correlation energy. It is split into an ex-

change part and a correlation part:

hom — ¢hom | hom (2.2.28)

Xc X C

2
hom e“ 3 ;/3n
=— —\/— 2.2.29
S L By (2.2.29)

is the result for a homogeneous electron gas [171]. The correlation energy '™ has

where

been accurately determined by Ceperley and Alder [172] using Monte Carlo simula-
tions and also by other authors [173, 174]. Despite LDA being the simplest approx-
imation, it performs surprisingly well for many systems. This is especially true for
the spin-dependent formulation of DFT, where the local spin density approximation
improves ionisation potentials, dissociation energies and cohesive energies [175]. The
success of LDA is based on the fulfilment of exact constraints that can be derived
for the exchange-correlation functional: the two-particle probability (the probability
to find an electron at any position r, given that there is another electron at 7’) is
defined as

P(r.v') = Ny(N, — 1) /dr3 L dr [6({r ). (2.2.30)

Compared to the two-particle probability in the uncorrelated case, Pyncor (7, 7) =
n(r)n(r’), the exchange-correlation contribution creates a so-called exchange-correlation

hole with density ny.(r,r’), which corresponds to a reduced probability of finding
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two electrons close to each other. The probability can be rewritten in terms of
Nye(T,7") as
P(r,r") = n(r)n(r’") + n(r)ne(r,r’). (2.2.31)

The exact constraints on ny.(r, ') are [176]

/dr Nee(r,7’) = —1 Vo', (2.2.32)
/drnx('r,r') = -1 W, (2.2.33)
/dr,nc(r,r') = 0 Vv, (2.2.34)

where ny. = ny + n.. Further the exchange part n, has to fulfil

ne(r,r) = —n(r)/2, (2.2.35)
ne(r,r’) < 0. (2.2.36)

The LDA fulfils these important conditions exactly [177]. The next step towards
a better XC functional is to include also the gradient of the density. This can be
done by expanding the exchange energy for slowly varying densities, but it has been
shown, that such a gradient expansion approximation (GEA) violates the proper-
ties of the exchange-correlation hole [178]. Perdew and Wang [179] developed the
generalised gradient approximation (GGA), which improves the GEA significantly
because it satisfies the exchange-correlation hole properties. Exchange functionals
of the GGA type have the form

ESCAIp) = /n(r)ei‘om[n]FX(s(r))dr, (2.2.37)
where vl
s(r) = 2k:n’ (2.2.38)

is the dimensionless reduced gradient, kp = V/372n is the Fermi wave vector, and
F.(s) is the exchange enhancement factor. Many different GGA functionals exist
in the literature, e.g. PW86 [179] PW91 [180], PBE [97], AMO05 [181], BLYP [182],
and more [183-185]. Among these, PBE is one of the most widely used GGA
functionals because it fulfils all the exact constraints that LDA fulfils [186] and it
has no empirical parameters.

Further degrees of freedom can be added to GGA when also the kinetic energy

density [156]
2

\

(2.2.39)

T =

—
%mZﬁ
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is used. These functionals are called meta-GGAs, where the exchange energy can

be written as

EretamGGA[T — /n(r)ehom[n]FX(s,T) dr. (2.2.40)

Examples for meta-GGAs are TPSS [187], revTPSS [188|, and SCAN [189].

In Hartree-Fock (HF') theory, the exchange energy of the one-particle states is cal-
culated exactly. Eventually, this led to the idea to couple HF exchange with density
functional theory to obtain the best of both worlds [190]. This was first achieved
by Becke [191] and provided the starting point for the so-called hybrid functionals.
These mix the HF exchange energy with the usual GGA exchange in a certain frac-
tion. Hybrid functionals were able to better predict atomisation energies, ionisation
potentials and proton affinities of molecules [191], and to generally improve the band

gap of many systems compared to standard GGA functionals [192].

2.2.5 Non-local correlation and van der Waals density func-

tionals

The LDA and GGA XC functionals do not incorporate long-range, non-local con-
tributions to correlation [193|. Yet, these are necessary to accurately describe van
der Waals (vdW) forces. Numerous methods have been devised to account for
van der Waals effects [100, 101, 193-208]. The extension of DFT using pairwise
vdW potentials has been attempted by, e.g., Grimme et al. [201, 204, 205] and
by Tkatchenko et al. [206-208| (TS and TS-MBD method). True non-local density
functionals have been constructed by Rydberg et al. [196, 198], Dion et al. [100, 199],
and Vydrov and van Voorhis [202, 203].

In this section, the theory behind the van der Waals density functional (vdW-DF,
sometimes also referred to as vdW-DF1 or vdW-DF-04) [100] will be outlined. The
aim is to give a comprehensive review of the steps and approximations needed to
derive the vdW-DF. This section will recite the major progress made by Langreth,
Lundqvist, and the members of their groups based on Refs. [100, 101, 193-200].
The functional used in this work is the vdW-DF by Dion et al. [100]. Starting point
for the construction of exchange-correlation functionals is the adiabatic connection
formula (ACF), which is a coupling-constant integration from a non-interacting ref-
erence system to a fully interacting one. The exchange-correlation energy FE.. can

be expressed in terms of the exchange-correlation hole n).(r, r’) (see section 2.2.4)
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as

Ey. d\ drdr'" : (2.2.41)
- [ ff i

where A is a coupling parameter. Note that atomic units are used in this subsection.
The equation can be reformulated using the generalisation of Eq. (2.2.31) to arbitrary

A values, i.e.,
Py(r,r") = n(r)n(r’) + n(r)nd.(r,r’), (2.2.42)

Eye /d)\//drdr (r, Ti_qu n(r’) (2.2.43)

Using the fluctuation dissipation theorem (FDT), the 2-body probability Py (r,r’)
can be connected to the response function x,(7,7’,¢t = 0) and it can be shown [194,
195, 199] that

as

xalr,r’,t=0) = / d—wXA(r ', w) = P\(r,7") — n(r)n(r’) + 5(r — r")n(r),

2mi
(2.2.44)
where the response function x, is defined via

ny(r,w) = /d’r'x,\(r, W)l (1, w), (2.2.45)
where dn,, is the change in density introduced by an external potential ¢7 .. Inserting

Eq. (2.2.44) into Eq. (2.2.43) one arrives at

1 oS J

- / d\ / 2—“Tr XAV — B, (2.2.46)

T

0 0

where V = V(r — 7/) = The last term E.gr = [drn(r)V(0) is the self

energy, that diverges but should be cancelled exactly by a corresponding counterpart

[r—r’]"

in the first term. The frequency w = iu has been used to shift the contour of
the integral [199]. The response function y, of an external potential ¢, can be

connected to the response function Y, of the total potential ¢, via

Xa = Xa + AV, (2.2.47)

where y is defined via
dny(r,w) = /dr’f(,\(r, v’ w)on (1, w). (2.2.48)
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The coupling-constant integration in Eq. (2.2.46) can be performed when Eq. (2.2.47)
is inserted and the full potential approximation (FPA) [100, 200], i.e. XA = X1 = X,
is applied:

o)

d ~
Ee=— / oy [m (1 - gv)} — B (2.2.49)
27
0
The FPA neglects spectator excitations, i.e. the influence of the polarisability of a
distant object on y, but yields the correct vdW asymptote for large separations [200].
If the FPA is applied to a uniform system, the exchange-correlation energy would

be given by

[d
EY = — / e G (2.2.50)
27
0
where € is the dielectric function of a homogeneous system. Subtracting the homo-
geneous electron gas contribution from Eq. (2.2.49) gives the non-local correlation

energy

d ~
B = — / oy [111 (1 . xv) ~In e] . (2.2.51)
2
0
This splitting of the total exchange-correlation energy, i.e.,

By = E° + E™, (2.2.52)

is key for density functionals, which incorporate non-local correlations. Using this
convention, the non-local part vanishes for homogeneous systems by construction.
Importantly, this form is not limited to the treatment of well-separated fragments,
e.g. molecules far away from each other, but is able to treat close molecules with
overlapping densities. Instead of using Eq. (2.2.50) for the local contribution, the
vdW-DF uses a combination of the Zhang-Yang revPBE exchange [183] and LDA
correlation, because the FPA would not be appropriate, since it was designed specif-
ically to accurately describe asymptotic, non-local vdW effects. It has been shown
that the exchange part of most GGAs introduces binding for rare-gas atoms [209].
Since this should be solely a correlation effect, the vdW-DF uses the revPBE ex-
change, which does not introduce binding in these cases.

The non-local correlation energy E™ has to be further approximated to enable a
tractable computation scheme. This is done by expanding Eq. (2.2.51) to second

order in S = 1 — ¢! which results in

00 o ~ 2

du v vVSs-VVv

nl _ - 2 vy vy

EM = /47TTr S ( o ) . (2.2.53)
0
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In a plane-wave representation, Dion et al. [100, 199] make the ansatz
o 171~ ~
Sqq = ) [Sq,q’ +S_q-a|> (2.2.54)

where q and g’ are wave vectors and

2

Soq = re~ia-a)r p 2.

Sar = [ (1) ][y (r) — ]’ (225
wp, = Vdmn, (2.2.56)

wy(r) = @ (2.2.57)

_ 47rq2 ’
2Me <1 —e 9q0<r>2>

o) = ke(r) (1—Zgb (s(r>)2>. (2.2.58)

The function go(r) with parameter Z,;, = —0.8491 determines the scale on which
w, switches from its low-g to large-q limits. Its form and parameters represent the
local density approximation with gradient corrections. The choice of S’q’ql is similar
to a plasmon pole approximation, where the excitation energy as function of wave
vector interpolates between plasmon excitations at low g (long wavelengths) and
electron-hole excitations which go as ¢?/2m, for large g [199]. Furthermore, the
f-sum rule is respected because Sy 4 — — (4m€2/mew?) n for large w [100]. Also the
large-q limit is reproduced, that gives the right self-correlation, and the resulting
exchange-correlation hole integrates to —1 as required by Eq. (2.2.32). The vdW-DF
is a pure density functional, in the sense that it relies only the electronic density
n and its gradient, which enter via w, and w,, and no other empirical quantities.

Thus, in a more general way, the non-local correlation energy can be written as [100]

nl __ 1 ’ ’ ’
E) = i/dr dr'n(r)®(r,r")n(r’), (2.2.59)

where ® (7, 7’) is the vdW-kernel that is a given function depending on the electron
densities n at positions r» and =/, and » — r’. It has been shown, that Eq. (2.2.53)
can be recast into this form [199]. The exact formula is not reprinted here. However,

for large separations R = |r — 7’| the asymptotic form of ®(r,7’) is [100, 199]
1 C
RS qo(7)%qo(r") (qo(7)? + qo(7)?)’

where C' = 12 (47/9)° mee*. The asymptotic form of ®(r,7’) decays with RS as

expected from the usual expression for the asymptotic van der Waals potential [210].

O(r,r') =

(2.2.60)

In hydrogen, local energy differences and potential energy surfaces, especially close
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to metallisation are best reproduced with the vdW-DF in comparison to QMC sim-
ulations [211]|. Also in hydrogen-helium mixtures, the vdW-DF has been shown to
give best performance with respect to enthalpies for all mixing ratios [147]. Yet, the
pressure is overestimated compared to QMC simulations. However, the vdW-DF has
been tested on the S22' [212] data set with moderate success [213] and solids [214]
with less success.

Further developments of the vdW-DF method have been done by Lee et al. [101]
(vdW-DF2). They use a different underlying exchange functional (rPW86) and
change the parameter Z,, to -1.887, altering the gradient expansion of the local den-
sity approximation used in Eq. (2.2.58). It has been realized by Klimes et al. [214,
215] that the accuracy of the vdW-DF method can be optimized by selecting a
different exchange functional. They proposed several functionals which decreased
the mean absolute deviation on the S22 data set to below chemical accuracy (1
kcal /mol).

2.2.6 Periodic boundary conditions, plane waves and pseu-

dopotentials

The simulation of macroscopic systems within DFT is numerically not possible.
Instead, periodic boundary conditions are introduced, where the original simulation
cell is periodically continued in every space direction. This periodicity implies the
periodicity of the Kohn-Sham potential V¥5 = [ drv®S(r)n(r), i.e.

VES(p) = VS(r + L), (2.2.61)

where L is the lattice vector. The Kohn-Sham orbitals are thus described by Bloch
functions [152, 216|
bi(r, k) = u;(r, k)e®, (2.2.62)

where k is a vector in reciprocal space restricted to the first Brillouin zone. In turn,
the periodicity of the Kohn-Sham potential results in periodicity of the Bloch factor
u;(r, k) and the Kohn-Sham orbitals:

¢i(r, k) = ¢i(r + L, k). (2.2.64)

The exact numerical solution to the Kohn-Sham equation requires the Bloch factors

to be expanded in a complete, orthonormal basis set. Here, plane waves are used

IThe S22 data set contains molecules which contain important non-covalent bonds.
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for that purpose and the Kohn-Sham orbitals become [152]
- 1 ,
(k) = — ) (G k)G 2.2.65
k) = 2 D el@K) (2:265)

where G are reciprocal space vectors and ¢;(G, k) are the expansion coefficients.
The infinite sum over G' has to be truncated in numerical calculations. A cutoff
energy Feutoft i introduced such that only G vectors are included that satisfy
h2
2me

|G + k|* < Eouorr- (2.2.66)

The calculation of, e.g., electron density and energy requires an integral over wave
vectors k in the first Brillouin zone [152|. However, wave vectors that are close to
each other contain similar information [216]| so that the integration over k-space
can be reduced to a weighted sum over a few discrete k-points. Convergence w.r.t.
E.wor and the amount of k-points has to be checked and the values used in this
thesis are denoted in Sec. 2.7.

The expansion of the Kohn-Sham orbitals into plane waves requires large F.uof to
reproduce the strong oscillations of the wave function near the core. In fact, the
required cutoff energies increase the cost for DFT-MD simulations beyond feasibility
for many applications. To overcome this limitation, pseudopotentials are used [152,
216]. They replace the wave function in a certain sphere with radius r. around the
nucleus with a smooth, node-free wave function. This reduces the number of G
vectors needed to achieve convergence of the basis set. The use of pseudopotentials
for the core electrons is valid because they do not contribute significantly to binding
energies and other observables unlike the valence electrons. In this work, Projector-
Augmented-Wave (PAW) pseudopotentials [217, 218] supplied with VASP [219-221]
are used, which connect the wave function to the pseudo wave function using a linear
transformation. Pseudopotentials do not impact the simulation results unless two
atoms are closer than the combined distance of their core radii r.. Still, they have
to be validated, e.g., by comparing pseudopotentials with different r. or even with

calculations using the Coulomb potential.

2.3 Molecular dynamics (MD)

The Newtonian equations of motion for classical point particles can be derived from

Eq. (2.1.13) [152]:
MI%RI = —V,E.({R}). (2.3.1)
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Using the Hellman-Feynman theorem, see e.g. [222], the derivative of the potential
energy surface, can be calculated from the derivative of the electronic Hamiltonian

as:

V[Ek({R[}) = /drl.../drNeﬁ({ri}) [V[[:[e({R[}) (bk({’l"z}) (232)

The equations of motion are integrated numerically using an appropriate algorithm
such as the Verlet algorithm [223] as implemented in VASP. For every time step,
the forces on the ions need be computed in a DFT calculation. Special care has
to be taken with respect to the time step of the simulation. Especially if hydro-
gen molecules are present, their vibrational period needs to be temporally resolved.
Thus the time step needs to be sufficiently small. The simulations are initialised by
having an ensemble of N atoms at certain predefined positions in a box with vol-
ume V. Periodic boundary conditions are employed. The system is generally not in
equilibrium because the direction of the initial velocities is chosen randomly, while
the mean kinetic energy is chosen such that the desired simulation temperature is
obtained. To simulate the system at a selected temperature, i.e. in the canonical
ensemble, the Nosé-Hoover thermostat {224, 225| is used. Depending on how close
the initial setup was to the equilibrium conditions, the simulation has to be run for
several hundred time steps before equilibrium is eventually reached. From that point
on, thermodynamic averages of pressure, energy, and other quantities that can be
expressed as an ensemble average, can be computed. The pressure is derived from
the potential energy surface using the Viral theorem [226]. From the particle posi-
tions one can calculate distribution functions of the ions, e.g. the radial distribution
function (RDF). From the velocities, the auto-correlation function can be computed
of which the Fourier transformation yields the vibrational density of states (VDOS).
Nuclear quantum effects are important under certain conditions and are discussed
in the next section.

In classical molecular dynamics simulations with analytical force fields, it is nowa-
days possible to simulate hundreds of millions of particles [227, 228| using efficient
algorithms and high performance computers on thousands of CPUs. In DFT-MD
simulations however, the most computationally expensive part is the DFT calcu-
lation and feasible particle numbers are actually constrained by the total num-
ber of electrons. Lorenzen et al. performed highly demanding DFT-MD simula-
tions on hydrogen-helium mixtures using 2048 electrons [65, 85] only for a lim-
ited number of calculations to visualise demixing directly in the simulation box.
Typical DFT-MD calculations are performed using 64-512 explicitly treated elec-
trons [15, 17, 18, 119, 134, 142, 229-231], i.e. valence electrons which are not frozen
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in the pseudopotentials. Hence, convergence with respect to the particle number
has to be checked.

2.4 Nuclear quantum corrections

Quantum effects for the nuclei become increasingly important for low temperatures.
The explicit simulation of nuclear quantum effects (NQE) is a challenging task.
Methods, which compute NQE directly during the MD simulations are Path Inte-
gral Molecular Dynamics (PIMD) [232-234] and coloured-noise thermostats based
on the generalised Langevin equation (GLE) [235, 236]. PIMD simulations increase
computational costs compared to DFT-MD simulations using classical nuclei by a
factor of 10-100 [152] and are thus out of the scope for a large number of com-
putations. Coloured-noise thermostats are much more feasible, which reduce the
computational costs significantly compared to PIMD. Unfortunately, this type of
thermostat is not implemented in the simulation package VASP and an own imple-
mentation would be out of the scope of this work. In this work, nuclear quantum
corrections (NQC) were accounted for by applying post-processing procedures based
on the vibrational density of states S (VDOS)? [237]. The VDOS can be calculated
from the velocity-autocorrelation function (v4(t) - v4(0))y. evaluated at given vol-

ume V' and temperature 7" [18]:

o0

(v, V,T) ZwangT /dt cos (2mvt) (Vo (t) - va(0))yp (2.4.1)

where v is the frequency, v, are the velocities, and z, and m, are the particle
fraction and the mass of species «, respectively. The integral of S(v, V,T) over the
entire frequency range is equal to 1. The canonical partition function () can be

expressed as:
In@ = 3N/du8(1/, V,T)Inq(v), (2.4.2)
if the frequencies of the normal modes are continuously distributed. Here, ¢(v) is

the partition function for a mode with frequency v. The partition function for a

quantum mechanical harmonic oscillator ¢© is

¢%v) =

exp(—222)

1 —exp(—phv)

2Do not confuse the calligraphic symbol S for the VDOS with the letter S used for entropy or
with § and S as used in Sec. 2.2.5.

(2.4.3)
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The partition function for a classical harmonic oscillator ¢ is

¢“(v) = (Bhw) ", (2.4.4)
where h is Planck’s constant. These partition functions act as weighting functions for
the VDOS. From Eq. (2.4.2), (2.4.3), and (2.4.4), one can derive weighting functions
for the internal energy U, free energy F', and entropy S in the quantum (superscript
Q) and classical (superscript C) case for a system of harmonic oscillators. These
are [237]:

Bhv Bhv

Q —
Welv) = ==+ o (Bh) 1 (2.4.5)
1 — exp(—Shv)
Q) = 1 P 2.4
WF (y> n exp(—ﬁhy/Q) ’ ( : 6)
Q) — Bhw 11— exo(—
Wg(v) = exp(Bhv) — 1 In(1 — exp(—phv)), (2.4.7)
W) = 1, (2.4.8)
WE ) = In(Bhw), (2.4.9)
W) = 1—In(Bhw). (2.4.10)
The corresponding expressions for U, F', and S in the quantum and classical case
are
UV, T) = 3NksT / dv S, V, YW (), (2.4.11)
0
FI(V,T) = 3NkBT/ dvS(v, V, T)W(v), (2.4.12)
0
SV.T) = 3Nks / dv S(v,V, T)WI (v). (2.4.13)
0

where v = {Q, C}. Although the weighting functions are consistently derived from
the partition functions, the given expressions for U7, F'7, and S” are not thermody-
namically consistent because the VDOS also depends on V" and T [238]. In practice,
this is not a serious limitation because the thermodynamic inconsistency is expected
to be small. Furthermore, thermodynamically consistent energies and pressures can
be calculated from F7(V,T) if the obtained data is fit to a suitable, differentiable
model function. However, the integrands in the formulas for free energy and entropy
diverge for v — 0 if §(0) # 0, which is generally the case for liquids. Only for solids
the zero-frequency contribution vanishes, because the diffusion coefficient is zero.
For a single-species system, where all particles have mass m, the vibrational density
of states at v = 0 is connected to the diffusion coefficient D via [237]
S(0)

- ons (2.4.14)
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The divergence can be eliminated when the classical case is subtracted from the
quantum case, which then yields equations for quantum corrections (QC) of the

thermodynamic quantities:

U@ = ue-uc, (2.4.15)
FQC¢ = FQ_ FC (2.4.16)
SQC = 89 g¢ (2.4.17)

In this thesis, only FQC has been used to add quantum corrections to the free
energy as a post-processing step. The VDOS can easily be calculated from the
velocity auto-correlation function (VACF), which is calculated from the DFT-MD
runs. In general, the system in DFT-MD simulations contains also anharmonic con-
tributions, especially at high temperatures. Anharmonicities enter only through the
VDOS S(v, V, T) since only harmonic weighting functions have been used. Thus, the
quantum corrections capture anharmonic effects in an incomplete way. Furthermore,
the quantum nature of rotation is not captured using this approach. Nevertheless,

this technique has been successfully applied to many systems [18, 238, 239].

2.5 Thermodynamics of binary systems

In this section, the thermodynamics of binary systems, see e.g. Ref. [240], are
outlined, which are needed to understand how demixing is calculated. The thermo-
dynamic potential for a binary system such as a hydrogen-helium mixture at given
temperature T, pressure p, and mole numbers 7; (i = 1,2) is the Gibbs free energy

G-

Gy, 72, p,T) = Uy, e, p, T) + pV (71, 2, p, T) — T'S(71, 2, p, T)(2.5.1)
= M (M, M2, p, T) + Mapa(7r, o, p, T), (2.5.2)

where U is the internal energy, V' the volume, and p; the chemical potential. It is

convenient to rewrite these equations in terms of mole fractions

n; ﬁi
;= -, 2.5.3
where
d =1, (2.5.4)
and

> mi=m. (2.5.5)
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Figure 2.5.1: Schematic depiction of a demixed binary system. Closed circles are
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species 1 and open circles are species 2. The outer system has particle fraction
xl, = 1/9 and the inner system z7 = 8/11. The overall particle fraction of species 2
is o = 11/38.

The Gibbs free energy is then

G('x%va) = U(x2>p7T)+pv(x27p7T)_TS('%.Qava)? (256)

—  G(x,p, T
G = w = (1 - CCQ)/M(I'Q,]?, T) + 513'2/1/2(372729, T) (257)

n
= pi(re,p, T) + x2 (22, p, T) — pia(x2,p, T)], (2.5.8)

where the dependency on both mole numbers is replaced by the mole fraction of one
species. Note that the mole fraction x; is equal to the particle fraction N;/ >, N;.
The total differential of G and its derivative with respect to z, are

oG oG

dG = T)d T)d —| dp+ =—| dT,(2.5.9
Ml(x%pa ) $1+M2($27p, ) ‘T2+ ap thp—i_ 6T - 7( )
dG
d_ = MQ(x27pa T) - Ml(x%pa T)a (2510)
T9 T
where dr; = —dzs has been used.

Now a binary system that consists of two subsystems is considered where only the
mole fractions differ. One could think of a hydrogen-helium system, where a helium-

rich droplet has formed inside a hydrogen-rich environment. The first subsystem is
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labelled by a dash and the second by a double dash, i.e., the mole fractions are x/
and z7, see Fig. 2.5.1 for a schematic depiction. In these systems, 7" = 7" and

p’ = p” holds. The total differential of the molar Gibbs free energy is thus
dG = it (xo, p, T)dz| + pb (e, p, T)dah + i) (2o, p, T)dx]| + 1ty (z2, p, T)daly. (2.5.11)

The total number of particles is not allowed to change so that a change in x} neces-
sarily results in a change in 2, which can be expressed as

dx = —dx!. (2.5.12)

3 (2

Equation (2.5.11) then becomes

In equilibrium, the Gibbs free energy does not change and dG has to be zero, so

that this equation for arbitrary dz) only holds if

pi = 1, (2.5.14)

i.e. the chemical potentials have to be equal in both subsystems. Let us evaluate

Eq. (2.5.8) for both subsystems and drop the dependencies on p and T for simplicity:

(g — py)ay (2.5.15)
(5 — p1y)7s (2.5.16)

Subtracting Eq. (2.5.15) from Eq. (2.5.16) yields

all_a/ _'u/ —,U,/ o @ " " da
- M2 1

= Mg 1

, (2.5.17)

xhy — o, dxsy 2 dxy ol

where Eq. (2.5.14) and (2.5.10) have been used. Equation (2.5.17) is of major
importance: it says that equilibrium concentrations can be found from G when a
common tangent is applied, where the derivatives of G w.r.t. z, at the points x5 and
xfy are equal. If a binary system tends to separate into two subsystems with different
compositions, the mole fractions z, and 2/ can be determined this way. Applying
this common tangent construction to the Gibbs free energy at different pressures
and temperatures yields the so called binodal curve, i.e. the ensemble of x} and z
as a function of temperature or pressure. While the binodal curve corresponds to

thermodynamically stable states, there are also states that can be metastable. To
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determine the unstable region one has to evaluate the second derivative of the Gibbs
free energy, which is negative in unstable regions, i.e.
0*G

2
Oxs

<0. (2.5.18)

The point of inflection is given by the second derivative of G being zero and separates
the stable and metastable region (convex G) from the unstable region (concave G).
For different temperatures and pressures this condition yields the so called spinodal
curve. In Fig. 2.5.2, the stable, metastable, and unstable regions are visualized for
a schematic depiction of the Gibbs free enthalpy of mixing.

The same considerations also apply when the Gibbs free energy of mixing AG(z, p, T)
is taken into account. The index 2 is dropped hereafter so that x = x,. For H-He
mixtures, z is considered to be the helium fraction. The Gibbs free energy of mixing

(also free enthalpy of mixing or excess free enthalpy) AG(z,p,T) is defined as:

It is more convenient to work with this quantity because it becomes zero for both
x =0 and z = 1 and is thus easier to present graphically. Equations (2.5.17) and
(2.5.18) then become:

AG(2",p,T) — AG(2,p,T) B OAG(z,p,T) B OAG(z,p,T)

' — oz ” ox y

(2.5.20)

and .
?AG (z,p,T)

ox?

In calculations, the Gibbs free energy of mixing can only be evaluated for a discrete

<0. (2.5.21)

set of He fractions. This data set can then be fitted using a suitable ansatz. In the
work of Lorenzen et al. [134], a Redlich-Kister fit [241] was used such that

k

(z) = (2% —2) Y _ A (2x — 1), (2.5.22)
=0

where k is the order of the fit and A; are the coefficients. The factor (x? —x) ensures

that the function vanishes for = 0 and = 1 and the term (2x — 1) was designed

to be the most simple function f(x) that fulfils the condition f(x) = —f(1 —x), i.e.

that has central symmetry with respect to the point x = 0.5. The Redlich-Kister fit

facilitates the numerical determination of the spinodal and tangent points and has

been used throughout this work.

In Fig. 2.5.2, a schematic depiction of the Gibbs free energy of mixing is shown for
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free enthalpy of mixing
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Figure 2.5.2:  Schematic depiction of the Gibbs free energy of mixing (black solid
curves) for different conditions labelled 1 to 4: If pressure is constant, the temper-
ature would decrease from curve 1 to curve 4. The common tangent construction
(red dashed line with crosses at the tangent points) and spinodal points (blue cir-
cles) are shown, where demixing occurs (curves 2, 3, and 4). For curve 3, the stable,

metastable, and unstable x are marked as coloured region.

different conditions. If constant pressure is assumed, the black curves would show
varying temperatures from hottest (curve 1) to coldest (curve 4). In general, if the
temperature is increased (or pressure is decreased) the interactions between particles
are weakened so that mixtures can be seen as increasingly ideal and well-mixed. In
curve 1, the Gibbs free energy of mixing does not show any point of inflection,
so that the system is perfectly mixed for arbitrary helium fractions. In curve 2
the temperature is decreased compared to curve 1 and a small double-well structure
forms in the Gibbs free energy of mixing, such that the common tangent construction
can be applied. The temperature of curve 3 is even lower than the temperature of
curve 2 and the double-well structure is more pronounced. In curve 4 the Gibbs free
energy of mixing is concave up to a helium fraction of x = 0.87 indicated by the blue
circle, so that the mixture is not stable in the region (0, 0.87). In general, if the curve
is concave at either end of x or over the entire range, the tangent line according to
Eq. (2.5.20) can not be determined. It is important to note that there always exists a

finite miscibility of one species in another, so that in principle the Gibbs free energy
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of mixing should show a small minimum in the vicinity of x = 0, x = 1, or both
ends. In the simulations presented in this thesis, it is not computationally feasible
to calculate arbitrary small helium or hydrogen fractions. Instead, a set of discrete
He fractions is simulated with a certain distribution, so that the Redlich-Kister fit
of this discrete set is not able to resolve miscibility at fractions smaller than the
lowest He and H fractions. This, in turn, leads to cases, where the Gibbs free energy
of mixing is concave over the entire range of He fractions and the existence of a
tangent is mathematically not fulfilled, but should occur physically.

Similar to the Gibbs free energy of mixing, other mixing quantities can be defined.
Such as the entropy of mixing Asy, volume of mixing Awy, energy of mixing

Ak, and enthalpy of mixing Ah

1
1
1

As(z,p,
Av

T)—xs(1,p,T), (2.5.23)
x)s(0,p, T) —xv(1,p,T), (2.5.24)
z)u(0,p, T) — zu(l,p,T), (2.5.25)
z)h(0,p,T) — xh(1,p,T), (2.5.26)

T) = s(z,p,T)—(1-12)s00,p,
z,p,T) = v(z,pT)—(1-
Au(z,p,T) = u(z,p,T)— (1 -
T) (z,p,T) = (1 -
T)

( (
( (
( (
( (1

Ah(z, p, = h(x,p,

where s(z,p,T), v(z,p,T), u(z,p,T), and h(z,p,T) = u(z,p,T) + pv(z,p,T) are
the specific entropy, volume, energy, and enthalpy per particle, respectively. The

Gibbs free energy of mixing per particle Ag(x,p,T) is similar to Eq. (2.5.19)

Ag(ﬂﬂ,p, T) = g(ﬂﬁ,p, T) - (1 - l’) 9(07p7 T) - :Ug(l,p, T)? (2527)

where g(z,p,T') is the Gibbs free energy per particle.
An interesting aspect of computing the equation of state of a binary system for
various mixing ratios is the calculation of partial (molar) quantities, e.g. the partial

volume. The partial volume &; is defined as

oV
&:( ) | (2.5.28)
ONi /) 1y

where V' is the volume and N; is the particle number of species 7. It is important

to note that & is a function of temperature T', pressure p, and particle fractions
x;. The partial volume is important, e.g., for the calculation of entropies within the
formalism of Lin et al. [242] and Desjarlais [243| in the multi-component case - see
also French et al. [238]. The effective particle density

1
neff = £ = Vlg- > N (2.5.29)
J

is required in these methods for binary systems, see Sec. 2.6.2 for more details on

how they enter in these theories. The quantity & can numerically be evaluated by
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simulating an isobaric-isothermal ensemble with different particle numbers of species
1. However, such an approach is quite demanding. Instead the partial volumes are
here calculated via the so called "Method of intercepts’ [244], which will be explained
in the following:

In a binary system the total volume per particle v = V/N is given by:
U(fl},p7 T) = (1 - m)gl(‘ral% T) + l’gg(I,p, T) (2530>

which has already been used in Eq. (2.5.29). The derivative with respect to = at

constant p and T is

p, T

ox or  Ox 0
0 0
= L6+ (1- x)% - xa—% (2.5.32)
= &(z) —&i(2), (2.5.33)

where (1 — x)d&; + xd& = 0, since the change in & and & is not independent when
the particle fraction is changed. In other words, the slope of the specific volume as
a function of particle fraction is given by the difference in partial volumes evaluated
at that particle fraction. To obtain also the absolute values one considers a tangent

t(z), that is applied to v(x) at the fraction 2’. This tangent has the form
t(r) = [Ga(2) — &1(2)] (x — 2") + v(2). (2.5.34)

Inserting Eq. (2.5.30) at = 2’ into the tangent equation one obtains

t(x) = &(2) + [&(2') — &()] 2. (2.5.35)

Thus, the tangent construction for v(x) at © = 2’ yields the partial volumes &; at
x = 0and & at x = 1. In Fig. 2.5.3, the method of intercepts is demonstrated
for actual H-He data. The specific volume data were fitted using a second-order
polynomial. The tangent and the partial volumes were then computed analytically.
The curvature of v(z) is small, so that the partial volumes show only a weak variation
with particle fraction. In Fig. 2.5.4, the partial volumes and their ratio are given as
a function of pressure for three different He fractions at a temperature of 10000 K.
The partial volumes of H and He decrease with increasing pressure in a similar
way as the specific volumes of the mixture would decrease with pressure. However,
the ratio of the partial volumes increases only weakly with pressure and decreases
with increasing He fraction. It has been shown [135, 136] that the addition of He

favours the bonding of hydrogen molecules even under conditions, where pure H
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3

specific volume v = V/N [A* /atom]

— fit to data

e v(x)dataatT = 10000 K, p=2.124 Mbar

=——a tangent to v(x) atx =0.5

£ (x=0.5)

E)H(x =0.5) ]
2O
Figure 2.5.3:

3

Partial volume & [A”/atom]

0.51

0.2 0.4 0.6
Helium fraction x

0.8

Method of intercepts demonstrated for H-He mixtures at a temper-
ature of 10000 K and a pressure of 2.124 Mbar. A tangent was constructed at He
fraction 2’ = 0.5, which yields &g at x = 0 and &g, at © = 1.

5
Pressure p [Mbar]

Figure 2.5.4: Partial volumes of H and He, and their ratio as a function of pressure

p at a temperature of 10000 K for three He fractions.
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would be completely dissociated. Molecular hydrogen has a higher specific volume
than atomic hydrogen. Thus, the partial volume of H also increases with increasing
He fraction. With increasing pressure, this effect is weakened so that the ratio of

partial volumes increases slightly.

2.6 Entropy

In sections 2.2 and 2.3, the determination of energy and pressure using DFT-MD
simulations has been explained. The calculation of phase equilibria additionally re-
quires knowledge of the entropy. The ideal electronic entropy is given by Eq. (2.2.23),
where the XC contribution to entropy is neglected due to the lack of sophisticated
finite-temperature XC functionals. The major contribution, however, is the ionic
entropy. Unfortunately, it is not possible to evaluate the ionic entropy as an en-
semble average within molecular dynamics. Thus, additional techniques are needed
to access it. Many different methods exist to calculate or approximate the ionic
entropy. In the following subsections, the most important methods are summarised

and applied to hydrogen-helium mixtures.

2.6.1 Thermodynamic integration

The difference in entropy between the state of interest and a given reference state can
be obtained by integrating the equation of state along thermodynamic paths [140]. If
the volume V' and temperature 7" are chosen as independent variables the integration
can be performed at isochoric or isothermal conditions:

14 T

U(‘/; T) / p(T(J? vl) ! U(Tla V) FO
Vo TO

where Fy = U(Vy, Ty) — ToS(Vo, Tp) is the free energy of the reference state at
volume V and temperature 7Tj. It contains the unknown entropy of the reference
state S(Vy, Tp). A similar formula can also be derived if pressure p and temperature

T are chosen as independent variables, see Appendix A.1:

S(p.T) = Ulp,T) +pV(p,T) _/dp, V(p', To)

T Th

Po

T
Ulp, ') +pV(p,T') Gy
7 = ’ 2.6.2
To
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where Go = U(po, To) + poV (po, To) — ToS(po, To) is the Gibbs free energy of the
reference state located at pressure py, and temperature 7;. The required equation
of state data are available from DFT-MD simulations, but the reference entropy
is in principle unknown. A possible choice for the reference state is the ideal gas
limit for high temperatures and/or low densities since the entropy of the ideal gas is
analytically known. However, DF'T-MD calculations become increasingly demand-
ing for low densities and high temperatures especially in a plane-wave basis. Thus,
the connection of DFT-MD data and the ideal gas limit is impossible on an equal
theoretical description. To overcome this limitation Becker et al. [230] used dif-
ferent theoretical models to create patched, wide-range equations of state for pure
hydrogen and helium from which the absolute entropy can be reconstructed using
Eq. (2.6.1) or (2.6.2). The construction of such an EOS for numerous He fractions
is beyond the scope of this work because it would require a wide-range EOS for
29 different He fractions. From a technical point of view, the integration over a
wide range of volumes and temperatures is challenging, because the EOS data is not
given analytically but on a discrete volume and temperature grid. Thus, the data
has to be interpolated or fitted to a given model. If the caloric and thermal EOS
are interpolated or fitted independently, they are not thermodynamically consistent,
which is mandatory to apply Eq. (2.6.2). The resulting uncertainty in entropy from
an inconsistent EOS will increase with the length of the integration since errors in
the EOS are added along the integration path. In order to avoid performing the
integration over a wide range, the calculation of high precision reference entropies at
certain volumes and temperatures is inevitable. There are methods based on the cal-
culation of the vibrational density of states derived from the velocity-autocorrelation
function, which will be outlined in the next section, but the most reliable method for

this purpose is coupling-constant integration, which will be explained in Sec. 2.6.3.

2.6.2 Methods based on the VDOS

In the harmonic approximation, the entropy of solids can be computed via the
phonon density of states [150] or from the VDOS S(v) using appropriate weighting
functions derived from the harmonic and quantum harmonic oscillators, see Sec. 2.4
and in particular Eq. (2.4.13). However, as mentioned in Sec. 2.4, these weighting
functions diverge for liquids because the VDOS is finite at zero frequency (v = 0).
It has been suggested by Lin et al. [242] that the VDOS of liquids S, (v) for species
« can be interpreted as the superposition of a solid-like VDOS S¢(v) and a gas-like
VDOS S2(v). Here, the multi-component formulation of French et al. [245] will be
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used, which is based on the notation of Desjarlais [243]. The VDOS for species «
is, thus,

S.(v) = Fi83(0) + JESEW). (2.63)
where f& =1 — f5 is the gas-like fraction and f} is the solid-like fraction. Using
an appropriate decomposition of the total power spectrum, the harmonic weighting
functions can be applied to the solid-like part while a good model has to be found for
the gas-like part. Lin et al. [242] chose a hard sphere model® to obtain the gas-like

entropy. In this formalism, the gas-like fraction is given by
f& = 2PN, (2.6.4)

where the hard sphere packing fraction v, can be determined from the normalised
diffusivities A, via [243]

2(1—n,)°
( Vo) —72/5A3/5:0

2.6.5
2 _ ,ya « « Y ( )
where 23
2 kT 1/3 (6
Ay = =8,(0)4/ —— (nf - , 2.6.6
a0y T ey (£) (26.6)
The gas-like VDOS in the hard sphere approximation has the form
S, (0
f8S8 = 0) . (2.6.7)

a~a 2
1+ (WU;S;g(O))
The entropy of the solid part is then obtained as an integration over the solid-like

spectrum
o0

S® = 3Nk / (Su(v) — F5SE W), (2.6.8)

where W (v) is the weighting function of a harmonic oscillator defined in Eq. (2.4.7).
The weighting function for the hard sphere gas is

1 (S 1 o 2 _~3 o (37a — 4
WES:_{L_'_ID{ +7 +%3%}+7 (37 2)}’ (2:6.9)
3 kB (1 - ’7&) (1 - ’704)
where the entropy of the ideal gas SI¢ is
SIG 5 2rmakT\*? 1
Zo T4 o 2.6.10
o2 k 2 ) fane | 26.10)

3The terminology of "hard spheres’ used in the work of Lin et al. actually refers to a relaxation

time approximation.
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and the corresponding gas-like entropy is
S& = 3N, f8kp / SE(V)WHS = 3N, fBkgWIS, (2.6.11)

0

The total entropy S is simply

S=> 55+ 95 (2.6.12)

This method, named 2PT (two-phase thermodynamic), was successfully applied to
Lennard-Jones fluids [242], molecular water [246], and carbon dioxide [247]. Im-

portantly, in the multi-component formulation, the partial volumes are needed to

eff
ey

It has been shown, that the 2PT method fails for liquid metals near the melting

calculate the effective particle densities n&" as explained in Sec. 2.5, see also [245].
line [243]. Desjarlais [243| has significantly improved the 2PT method by using a
memory function (MF) approach [248-250] to the gas-like component. The gas-like

spectrum with MF kernel K&(7) can be written as

1 1
SIw) =2 |- + - , (2.6.13)
K§(i2mv) +i2mv  K§(—i27v) — i27v

where K5 (s) is the Laplace transform of K2(7). Desjarlais uses a Gaussian form of
the MF kernel K&(7) whose Laplace transform is [243]

KE(s) = A8, [ — = L ate [ 2.6.14
a(S)_ o Eexp E TIiC E, ( )

where A& and B$ are parameters and Erfc(z) is the complementary error function.

The parameters can be related via the zero-frequency value

g g
S.(0) = 4%\/%, (2.6.15)

and the requirement that the low-frequency behaviour is equal to that of a hard

sphere system:

A8 = 4B/

24 \/7r (1 + BES2(0)/ (2f§)2)] . (2.6.16)

The yet to be determined parameter B2 can be computed from the moment expan-
sion of the autocorrelation function. However, this parameter essentially determines

the high-frequency tail of the gas-like spectrum. Thus, it is possible to fit S&(v)
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to the high frequency tail of S,(v), because these spectra should merge for high
v [243]. It has been demonstrated that this 2PT-MF method improves the accuracy
of entropies for liquid metals to within 1 %. It has also been successfully applied to
superionic water [245].

The advantage of the 2PT and 2PT-MF method is that entropies can be computed
from a single molecular dynamics run without the need for classical pair potentials
and additional demanding simulations as in the coupling-constant approach, which

will be explained next.

2.6.3 Coupling-constant integration (CCI)

Coupling-constant integration (CCI)* is related to the thermodynamic integration
of the equation of state, but instead of using a physical quantity such as volume,
temperature, or pressure as variable one uses an artificial coupling parameter A which
connects two different interactions [251]. Let the two systems be labelled by index 0
and 1. The Hamiltonians are thus Hy(r, p) and H;(r,p) that depend on the space
coordinate r = (rq,7r2,..,7x) and the momentum coordinate p = (p;, Py, .., Pn)
containing the coordinates of all N atoms. The Hamiltonians for both systems can

be written as

N 2

p

H;(r,p) = E 2.6.17
j(r.p) £ 5 ( )
where m; is the mass of atom ¢ and Vj(r) is the potential that determines the
interaction of the particles for system j. These systems can be coupled using the

coupling-constant \ as

H\) = (1- )\)HO + \H,, (2.6.18)
Z AV = Vp), (2.6.19)
Z ’2 (2.6.20)
where
V) =Vo+A(Vi = 14). (2.6.21)

Using this coupling, the system switches linearly from V5 at A =0 to V; at A = 1.

The dependences on p and r have been dropped from the notation for convenience.

41t should be noted, that CCI is often also referred to as thermodynamic integration. In this

thesis, the term thermodynamic integration will exclusively refer to Eq. (2.6.2).
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The difference in free energy AF' between system 0 and 1 is given by

AF = /81;_&)\) dA. (2.6.22)

0

The free energy F'()) is related to the Hamiltonian H(\) via the canonical partition
function Q(\) as

F(\) =—-8"1InQ()). (2.6.23)
The canonical partition function can be denoted as an integral over the phase space
as drd
rdp _
Q(A):/hsNN!e PHN) (2.6.24)
where h is the Planck constant. Using the canonical partition function AF becomes
/ 0
AF = —/d)\ﬁﬁ‘lan()\) (2.6.25)
0
/ 1 0 drd
_ rap _
= — [d\B =t BHEX) 2.6.2
/ 5o 8)\/h3NN!e (2.6.26)
0
1
1 drdp (OV(N)\ _
— [ dx BHR) 2.6.27
o) / h3NN!< o )¢ (26.27)
0

= /ld/\ <8‘g—§\>‘)>A (2.6.28)

In the last step, it has been used that the ensemble average of any thermodynamic

quantity A can be calculated via

1 drdp | _su
<A>A:Q()\)/h3NN!Ae PHR), (2.6.29)

Substituting Eq. (2.6.21) into Eq. (2.6.28) yields
1

AF = / (Vi — Vo), dA. (2.6.30)

0
The result provides a straight-forward recipe to calculate free energy differences
within molecular dynamics or Monte Carlo simulations: a system with potential
V() is simulated at a series of A\ values. For each simulation, the difference of the

potential energies is averaged over a thermodynamically equilibrated run. Finally,
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alau] | blau] | L |au.]
H-H 1.0 2.5 8.0
H-He 1.0 1.9 8.0
He-He 1.0 1.2 8.0

Table 2.6.1: Coefficients for the reflected Yukawa pair potentials [135]. Values are

given in atomic units.

the integration with respect to A is carried out. In contrast to the thermodynamic
integration introduced in Sec. 2.6.1, it is possible to use the ideal gas as system 0.
The interaction energy of the ideal gas is zero, i.e. V, =0, and Eq. 2.6.28 simplifies
to

AF = /(V1>Ad)\ (2.6.31)

The absolute value of the free energy of an ideal gas is given by:

v
Fq=—> NoksT (ln N + 1) : (2.6.32)

where \, = h/\/27mykgT is the thermal wavelength. However, obtaining the free
energy difference between the real DFT-MD system and the ideal gas directly is not
recommended, because at A = 0 the interaction energy and thus the forces on the
ions become zero. This eventually leads to an ideal distribution of particles, where
particles might overlap significantly. But according to Eq. (2.6.30) the energy V;,
i.e. the DFT energy, has to be computed for these configurations. This might lead
to numerical instabilities where the Kohn-Sham cycle does not converge. To avoid
these difficulties, the CCI is split into two steps: First, the free energy difference
between a classical reference potential and the ideal gas AFjq_,q is evaluated via
Eq. (2.6.31). Second, the free energy difference between the DFT-MD system and
the classical reference potential AFy_,ppr is evaluated via Eq. (2.6.28). The absolute

free energy F' then becomes:
F = Fq + AFqa + AFgper. (2.6.33)

The classical reference potential should closely resemble the DFT-MD system in
terms of radial distribution function and energy. Thus, an accurate integration of

Eq. (2.6.28) is possible with only few coupling-constants. In this work, the reflected
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Figure 2.6.1: Integrand of Eq. (2.6.31) for the reflected Yukawa potential at a tem-
perature of T' = 10000 K and a Wigner-Seitz-radius of r¢ = 1.4 ay. The ensemble
average of the RY potential simulated at different coupling-constants is shown for
various He fractions (coloured circles). The diamonds on the left side represent the

analytical values obtained via Eq. (2.6.36) for A = 0. Lines are Akima splines.

Yukawa (RY) pair potentials given by Morales et al. [135] have been used. The
potential energy Vgry(7) can then be expressed as:

N N
Vav(r) =D D~ Vid(riy), (2.6.34)
i=1 j=i+l

where V}g{(rij) is the potential between atom ¢ and j depending on their distance

Tij = |’I“Z' — ’f’j|2

—br —b(L—ry5) —bL/2
a(e +e - —4¢ > Tz’jSL/2;

Tig L*Tij L

Vg (rij) = (2.6.35)

0 rij > L/2,
where a, b, and L are parameters. If two different species are considered the pa-
rameters depend on the species of atom ¢ and j. For a H-He system three sets of
parameters need to be known for the interaction between H-H, H-He, and He-He.
These are given in Table 2.6.1. The free energy of the RY potential was obtained
using a Metropolis Monte Carlo (MMC) code [226, 252|, that has been developed as

20



Chapter 2 - Methods

T ]

CLRNPRY _
=2 % b\*\\_‘_\“‘
N b
o o h
>| e x=0
z -100 — e x=02 _
o e x=04
v e x=06
B o x=0.8 7
o x=1
-150 — —
- -
2200 | | | | | | | | 1
0 0.2 0.4 0.6 0.8 1

Coupling-constant A

Figure 2.6.2: Thermodynamic integration of the DF'T and RY system at a temper-
ature of T = 10000 K and a Wigner-Seitz-radius of r, = 1.4 ag. The ensemble
average simulated at different coupling-constants is shown for various He fractions

(coloured circles). Lines are 4th order polynomial fits to the data.

part of this thesis. The MMC code evaluates Eq. (2.6.31) for V; = Viy using twenty
A values. In Fig. 2.6.1, the integrand of Eq. (2.6.31) is shown as a function of the
coupling-constant A for various He fractions. Solid lines are Akima splines [253],
which have been used for the numerical integration. For A — 0 the data becomes
constant and the diamonds show the analytical value for A — 0 obtained via

o0

N?
(Vry)y = Y Z Z%%/dTVR{[(T)g{(T), (2.6.36)
% i 0

where the sums are over particle species ¢ and j with particle fraction x; and ;. The
radial distribution function g;j (r) has to be known for a system obeying the total
potential given by Eq. 2.6.21. As already noted, at A\ = 0 the interaction potential
is that of an ideal gas, i.e. V5 = 0, and the radial distribution function is thus
unity. This enables the analytic evaluation of Eq. (2.6.36). Comparing the analytic
solution to the MMC data set shows very good agreement.

The free energy of the DFT-MD system was obtained by implementing the CCI
procedure into the VASP code which was done as part of this thesis. In finite-
temperature DFT-MD simulations, the energy as functional of the density E|[n]| is
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Figure 2.6.3: Radial distribution functions of pure hydrogen and pure helium at a
temperature of "= 10000 K and a Wigner-Seitz-radius of r¢ = 1.4 ag for different
coupling-constants A, where A = 0 is the RY system and A = 1 is the DF'T system.

replaced by the free energy F[n], see Sec. 2.2.3. As a consequence, the forces on the
ions are derived from the Mermin free energy [142]

Qppr = Vis — T'Si, (2.6.37)

where Vs = [ drn(r)uks(r) is the Kohn-Sham potential and Siq is the ideal entropy
given by Eq. (2.2.23) due to the lack of finite-temperature XC functionals. Thus, the
free energy difference to the classical potential, i.e. the reflected Yukawa potential,

AFyprr, 18
1

N / (et — Vi), dA (2.6.38)
0

In Fig. 2.6.2, the integrand of Eq. (2.6.38) is shown for various He fractions. The
obtained data are very smooth and well-behaved, so that they could be fitted to
a 4th order polynomial function. This allows for an analytic evaluation of the
coupling-constant integral. Most importantly, the number of coupling-constants,
which need to be simulated can be kept as low as seven values, which is beneficial
for the evaluation of CCI entropies. This is also due to the fact, that the structure
of the H-He system at 7" = 10000 K and ry = 1.4 ag is quite simple in the sense that
correlations are low and no molecules are present. This can be seen when comparing
the radial distribution functions g(r) for pure H and pure He as shown in Fig. 2.6.3.
The transition from the RY system (A = 0) to the DFT system (A = 1) is smooth

and does not involve huge changes in the internal structure.
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It is possible to reduce the amount of coupling-constants to a single value using
further approximations. For that, the integrand of Eq. (2.6.22), i.e. the derivative
of F w.r.t. A, is expanded in a Taylor series centred around A [254, 255]:

/dA Z ~ (%)AO (A —Xo)". (2.6.39)

Truncating this series after the linear term and evaluating the derivatives as de-

scribed in Appendix A.2 leads to

AP~ Vi, ~ R, - i) e

This method will be called reduced CCI (RCCI) in the following. The expression in
curly braces is the variance of Vi — Vj at the given \q. Thus, the derivative of the

integrand in Eq. (2.6.22) w.r.t. A is given by

0 OF
If the potentials V5 and V; yield similar configurations and energies, the variance
and the slope of the integrand will be small resulting in a good approximation for
AF'. Higher order terms have been derived, but no systematic convergence could be

achieved, see Appendix A.2 for more information.

2.7 Numerical settings of the DFT-MD simulations

In this section the numerical settings of the performed simulations will be outlined.
The DFT-MD simulations have been performed using the plane-wave code VASP
(Vienna Ab Initio Simulation Package) [219-221|. Every simulation setting was de-
termined by extensive convergence tests, see e.g. the appendix of Ref. [85] where
convergence tests for H-He mixtures are discussed in detail. The used cutoff energy
is 1200 eV. The Baldereschi mean-value k-point [256] was used. Molecular dynamic
simulations were performed with a time step of 0.2 fs and thermodynamic averages
were taken for at least 10000 time steps after thermodynamic equilibrium has been
reached. Projector-augmented wave pseudopotentials (PAW) [218| supplied with
VASP have been used. Specifically, these were pseudopotentials with a core radius
of r. = 1.1 ag both released in 2001. Simulations for the equation of state have been
performed for 29 He concentrations for 15 temperatures in the range of 1000 K to

15000 K and several pressures in the range of 0.2 and 30 Mbar summing up to more
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than 7500 calculations. An electron number of 64 has been used for these calcula-
tions. Pressures are converged within 1 % in the given pressure range. Simulations
for the CCI, RCCI and 2PT-MF calculations have been performed for an electron
number of 256 to reduce finite-size effects. Other convergence settings were chosen
as for the EOS calculations.
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Chapter 3
Equation of state

Density functional theory molecular dynamics simulations in the canonical ensemble,
i.e. at constant volumes and temperatures, have been performed as described in
Ch. 2. The discrete simulation data (energy per particle v = U/N and pressure p
as function of volume per particle v = V/N, temperature 7" and helium fraction x)
are inverted such that w and v are given as functions of p, T" and x. Energy and

volume per particle are fit as functions of p at constant 7', and x using the following

formulas:
4 .
Inv(p) = Z A; (Inp)", (3.1)
i=0
4 .
In(u(p) +¢)=>_ B;(lnp)’, (3.2)
where A; and B; are coefficients and ¢ = 10 eV /atom is a constant that shifts

the energy to positive values avoiding negative arguments in the logarithm. In
principle, it would be desirable to obtain a two-dimensional fit of both p and T" or
even a three-dimensional fit of =, p, and T, but all tested model functions had an
inferior accuracy compared to the one-dimensional fit functions. In the following
two sections, the equation of state (without NQC) is shown for a selected number
of isotherms for pure H and pure He and compared to the hydrogen and helium
Rostock EOS in its third version (H-REOS.3 and He-REOS.3) [230]. The H/He-
REOS.3 use DFT-MD calculations and the PBE functional in the strongly correlated
regime. For lower densities, these data are connected to the fluid variational theory
calculations of Juranek et al. [257], Holst et al. [89], and Saumon et al. [258], and
to a virial EOS [230]. The following figures, that show the vdW-DF EOS, are
limited to three isotherms to ensure the readability of the figures. Due to the

enormous amount of data produced for this thesis, it is not possible to print the
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Figure 3.1.1: Volume as function of pressure for three temperatures (colour coded)
for pure hydrogen. The H-REOS.3 based on PBE is compared to simulations using
the vdW-DF. Lines are fits to the vdW-DF data using Eq. (3.1).

EOS and the fit coefficients in tabular form (there are 7933 EOS points resulting
in 4350 fit coefficients). Still, these data can be provided upon request. In the
third section, the EOS of the mixture is displayed. This is done by calculating the
volume of mixing Av, energy of mixing Awu, and enthalpy of mixing Ah according
to Eq. (2.5.24), (2.5.25), and (2.5.26), respectively. For mixtures, the H/He-REOS.3
(and any other EOS for the pure components) can only be used within the linear
mixing approximation and Av, Au, and Ah are zero by definition. PBE data for
the real mixture have been calculated by Lorenzen et al. [65, 85, 134] as part of their

miscibility calculations, which will be used for comparison.

3.1 Hydrogen

In Fig. 3.1.1, the volume per atom is shown as function of pressure for pure hydro-
gen. For the 15000 K isotherm, there exist no vdW-DF data for pressures lower
than 3 Mbar. It will become apparent later that, at this temperature, no demixing
occurs for all considered pressures so that the missing data is not crucial. Compared
to the PBE functional used in the H-REOS.3, the vdW-DF shows higher pressures

at constant volume. This shift to higher pressures is more pronounced for low pres-
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Figure 3.1.2: Energy as function of pressure for three temperatures (colour coded)
for pure hydrogen. The H-REOS.3 based on PBE is compared to simulations using
the vdW-DF. Lines are fits to the vdW-DF data using Eq. (3.2).

sures and has also been noted by Clay et al. [147, 211] in their benchmarking study.
Compared to these QMC calculations, the vdW-DF' overestimates the pressure by
up to 4% for pure H at a volume of v = 1.49 A3 /atom [147]. Under these conditions,
PBE overestimates the pressure only by 1%. The difference between PBE and vdW-
DF decreases significantly with increasing pressure and increasing temperature, so
that differences between PBE and vdW-DF in the miscibility diagram are expected
to occur mainly at small pressures.

In Fig. 3.1.2, the energy per atom is shown as a function of pressure. Symbols and
lines are equal to Fig. 3.1.1. A constant shift of Au = 13.32 eV /atom has been
added to the H-REOS.3, so that the energies of H-REOS.3 and the vdW-DF data
match at 7" = 15000 K and p = 30 Mbar. This point has been chosen because
the pressure difference between PBE and vdW-DF is least for a given volume. The
slope of the vdW-DF energy is similar to the H-REOS.3 for high pressures. For
lower pressures, there are significant differences in the slopes and the energy devi-
ates significantly for pressures smaller than 3 Mbar. Comparing the EOS with the
hydrogen phase diagram and the metallisation predictions of PBE and vdW-DF in
Fig. 1.2.1 reveals that the energies and volumes differ most in the molecular regime,
i.e. for p < 3 Mbar.
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Figure 3.2.1: Volume as function of pressure for three temperatures (colour coded)
for pure helium. The He-REOS.3 based on PBE is compared to simulations using
the vdW-DF. Lines are fits to the vdW-DF data using Eq. (3.1)

3.2 Helium

In Fig. 3.2.1, the volume per atom is shown as a function of pressure for pure helium.
The given temperatures are different to those shown in Fig. 3.1.1 and 3.1.2 because
the He-REOS.3 table has no entry for 15000 K. The 6000 K isotherm is shown
instead. Differences in volumes between the He-REOS.3 and the vdW-DF are less
than 5%, and there is no strong pressure dependence as for hydrogen that was caused
by the molecular regime.

In Fig. 3.2.2, the energy per atom is shown as a function of pressure for pure helium.
Temperatures are equal to those shown in Fig. 3.2.1. The energy of the He-REOS.3
has been shifted to match the vdW-DF energies at 10000 K and 30 Mbar similar to
the energy of the H-REOS.3 in the previous section. As for hydrogen, the slope of
the vdW-DF energy shows a lower deviation to the He-REOS.3 at higher pressures
than at lower pressures. However, the deviations do not decrease when temperature

is increased as for hydrogen.
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Figure 3.2.2: Energy as function of pressure for three temperatures (colour coded)
for pure helium. The He-REOS.3 based on PBE is compared to simulations using
the vdW-DF. Lines are fits to the vdW-DF data using Eq. (3.2)

3.3 H-He mixtures

In Fig. 3.3.1, the volume of mixing Av (top panels), energy of mixing Awu (middle
panels), and enthalpy of mixing Ah (bottom panels) are shown for temperatures
of 3000 K (left column) and 10000 K (right column) and pressures of 2 Mbar,
4 Mbar, and 10 Mbar. Open symbols show the data of Lorenzen et al. [65, 85, 134]
and closed symbols show the vdW-DF data. The volume of mixing shown in the
first row generally decreases with increasing pressure and increasing temperature at
fixed He fraction. The PBE data show lower Av than the vdW-DF data except for
3000 K and 10 Mbar. The pressure dependence of Awv is significantly stronger than
its temperature dependence as already seen in Fig. 3.1.1 and 3.2.1. In the second
row of Fig. 3.3.1, the energy of mixing Aw is shown. It can be seen that Au increases
with increasing pressure and temperature as apparent from Fig. 3.1.2 and 3.2.2. The
PBE functional results in higher Aw for all of the shown conditions. At 3000 K and
2 Mbar, the vdW-DF energy of mixing is negative while the PBE energy of mixing
is positive. Negative Au occur, where pure hydrogen is still in its molecular form.
At the shown pressures of 4 Mbar and 10 Mbar, hydrogen is already dissociated, see
the hydrogen phase diagram, Fig. 1.2.1. At 3000 K, the Au for PBE at 2 Mbar is
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similar to the Awu for the vdW-DF at 4 Mbar. This also underlines the already noted
pressure shift between PBE and the vdW-DF. At 10000 K, the energy of mixing is
positive for all shown conditions. The third row of Fig. 3.3.1 shows the enthalpy of
mixing Ah = Au + pAwv. Despite the negative Au at 3000 K and 2 Mbar for the
vdW-DF, Ah is positive for all shown conditions. The enthalpy of mixing shows the
same trend as the energy of mixing, i.e. it increases with increasing pressure and
temperature. The enthalpy itself does not allow any conclusion about demixing.
As shown in Sec. 2.5, the entropy of mixing is required to calculate the Gibbs free
energy of mixing. Previous calculations by Lorenzen et al. [134] approximated the

entropy with the ideal entropy of mixing per particle
Asig=—kpg[(l1—2)In(l —2)+xInz]. (3.1)

In Fig. 3.3.1, the ideal entropy of mixing times temperature T'Asiq is shown for
comparison. It can be seen that T'As;q is on the same order of magnitude as the
enthalpy data. Thus, the difference of Ah and T'As;q required to calculate the Gibbs
free energy is small and demixing features depend crucially on the accuracy of the

simulations. In the next chapter, the non-ideal entropy of mixing will be calculated.
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Figure 3.3.1: Volume of mixing (black), energy of mixing (red), and enthalpy of
mixing (blue) at 3000 K (left column) and 10000 K (right column) for 2 Mbar
(circles), 4 Mbar (squares), and 10 Mbar (triangles). The vdW-DF data (filled
symbols) are compared to the PBE data of Lorenzen et al. |65, 85, 134] (open
symbols). The orange line in the bottom row shows the ideal entropy of mixing

times temperature in eV /atom. Other lines are guides to the eye. 61
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Chapter 4

Entropy of H-He mixtures

In this chapter, the entropies of H-He mixtures are calculated, which are needed
in order to obtain the Gibbs free energy. In the first section, the general strategy
to calculate entropies is outlined. In Sec. 4.2, entropies obtained at a carefully
chosen reference point are compared. In Sec. 4.3, it is detailed how the entropies at
the reference point are used for the thermodynamic integration via Eq. (2.6.2) to

compute entropies at arbitrary pressures and temperatures.

4.1 Basic idea and strategy

The aim is to avoid the ideal entropy approximation by calculating the non-ideal
ionic entropy for all considered He fractions in the temperature range of 1000 K to
15000 K and pressure range of 0.2 to 30 Mbar for 29 different He fractions. The most
reliable way is to apply coupling-constant integration for all EOS points because
it is formally exact and has been successfully applied to H-He mixtures by other
authors [135, 136, 141, 142, 231]. However, this approach is not feasible because it
would exceed the given computational resources by a large factor, not taking into
account the time needed to obtain adequate classical potentials. Another approach
is to apply the 2PT-MF method for any EOS point, which only needs the velocities
of the particles to calculate the VDOS and the partial volumes. Yet, the VDOS is
sensitive to the particle number, especially for low and high He fractions, where only
a few particles of either species are in the box. Thus, all EOS calculations would need
to be redone using higher particle numbers. This, in turn, would lead to demixing in
the box at certain conditions, which influences the entropy. The resulting simulation
data would not be those of a uniformly mixed system as required by Eq. (2.5.19).
But most notably, it will be shown in the next section, that the 2PT-MF method

63



Chapter 4 - Entropy of H-He mixtures

does not yield accurate and thermodynamically consistent results for H-He mixtures.
Therefore, the strategy is to calculate entropies via thermodynamic integration of
the equation of state, where the needed reference entropies for the He fractions are
calculated using coupling-constant integration. Morales et al. [135] applied the same
strategy and defined the reference state at temperature T, = 10000 K and Wigner-
Seitz radius rg = 1.25 ag. The resulting pressures might be too close to the demixing
region and features of demixing are already visible in the radial pair-distribution
function, see Fig. 5 of Ref. [135]. Thus, for the calculations in this work, the reference
state was shifted to r¢ = 1.40 ag, i.e. lower pressures, to avoid any demixing in
the simulation box. Coupling-constant integrations at the reference point have not
been performed for all 29 He fractions, because of the high computational costs.
Instead, 12 He fractions were chosen and a Redlich-Kister fit [241] was applied to
obtain reference entropies for arbitrary He fractions. The reference entropies have
then been used to perform thermodynamic integrations of the equation of state to
calculate entropies for arbitrary pressures and temperatures. In the next section,

the entropy at the given reference state will be calculated using different approaches.

4.2 Entropy at the reference point

At the beginning of this work, the idea was to use the 2PT-MF method at the
reference state (T = 10000 K, r; = 1.4 ay) instead of coupling-constant integra-
tion, because entropies can be obtained much faster from a single MD run and the
numerical implementation is much simpler. However, the accuracy of the 2PT-MF
method for H-He mixtures was unknown while the CCI method has been successfully
applied [135, 136, 141, 142, 231|. As mentioned in Sec. 2.6.2, the partial volumes
are needed to apply the 2PT-MF method. These were obtained using the method
of intercepts as described in Sec. 2.5 and are shown in Fig. 4.2.1. In panel a of this
figure, the application of the method of intercepts to three different He fractions at
the reference point is shown. The given pressures correspond to the pressures at
rs = 1.4 ag for the given x. Panel b shows the partial volumes of H and He and
their ratio at the reference state as a function of He fraction. Although there is a
significant change in the partial volumes, their influence on the entropy is only on
the order of 0.01 kg/atom. If the partial volume is approximated with the specific
volume at constant pressure for pure H and He, the error in entropy would also be of
the same order of magnitude, so that the effort in calculating partial volumes could
be avoided entirely for future calculations.

The resulting total entropies for the 2PT-MF method are shown in Fig. 4.2.2. Ad-
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Figure 4.2.1: a: Volume versus He fraction for three pressures at 10000 K. The
determination of partial volumes for H and He is demonstrated for three He fractions
at pressures corresponding to the reference state. Partial volumes are indicated by
the crosses at x = 0 for hydrogen and z = 1 for helium. b: Partial volumes and

their ratio at the reference state for all considered He fractions.

ditionally, the entropy has been calculated using the CCI, and RCCI methods for
the same conditions as described in Sec. 2.6. The RCCI method has been applied
for three Ay values. The CCI method is most accurate with an estimated error of
0.01 kg/atom. An error bar of 1% is shown for the 2PT-MF method, which has been
demonstrated for liquid metals [243|. Despite this rather large error, the 2PT-MF
entropies deviate significantly from the CCI entropies. While the 2PT-MF method
works well for liquid metals near the melting line, deviations of up to 0.46 kg/atom
compared to the CCI approach are observed.

The RCCI method shows in general a much smaller deviation to the full CCI ap-
proach than the 2PT-MF method. For a value of Ay = 0 the deviation is largest on
average with a maximum error of 0.34 kg/atom at x = 1. For Ay = 1 the agreement
with CCI is better with a maximum error of 0.12 kg/atom at x = 0.8. The best
performance of the RCCI method was achieved for a value of Ay = 0.5 where a
maximum error of 0.042 kg/atom can be seen at z = 1. The differences in entropy
for different A\ especially for = 1 can be explained by comparing (Qppr — Ugry)
for different He fractions as shown in Fig. 2.6.2. The slope of the z = 1 curve is
significantly different to the other He fractions, most notably for small A values.
This leads to larger errors in the RCCI method because the A integration is not well
represented by a linear expansion in A at these small A values, cf. Eq. (2.6.40). In
general, it would be possible to obtain higher order terms for the RCCI method,

but systematic convergence of the higher order terms could not be achieved, see
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Figure 4.2.2: Entropy of H-He mixtures as a function of He fraction = at T" =
10000 K and 7y = 1.4 ay. Data for the coupling-constant integration (CCI), reduced
coupling-constant integration (RCCI), and 2PT-MF method have been obtained
using the vdW-DF.

Appendix A.1. This was due to the fact, that higher order terms are increasingly
hard to converge and much more simulation time would be needed to do so.

In general, the performance of the RCCI method is surprisingly good given the
performance of the reflected Yukawa potential at these conditions, see Fig. 2.6.3
where the radial pair-distribution function of the RY and the DFT system has
been compared. The calculations demonstrate, that even these moderately accurate
potentials can yield highly accurate entropies with the RCCI method and the com-
putational effort can be decreased significantly if special attention is paid to finding
a good pair potential. More importantly, if \g = 1 is chosen, the RCCI method
can be applied without modifications in the DFT-MD code, because the simulation
is performed with pure DFT forces and the classical potential can be evaluated on
the DFT-MD trajectory in a post-processing step to evaluate the ensemble averages
of Eq. (2.6.40). Still, the RCCI method works only well, if structural changes in
the coupling-constant integration procedure are small. In molecular systems, where
dissociation occurs, the effective potential would most likely not reproduce the dis-
sociation reactions accurately enough for the RCCI method to work.

In Fig. 4.2.3, the entropy of mixing, Eq. (2.5.23), is shown at the reference point
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Figure 4.2.3: Entropy of mixing of H-He mixtures as a function of He fraction
x at T'= 10000 K and r¢ = 1.4 ay. Data for the coupling-constant integration
(CCI), reduced coupling-constant integration (RCCI), and 2PT-MF method have
been obtained using the vdW-DF.

for the 2PT-MF, CCI, and RCCI methods similar to Fig. 4.2.2. For the 2PT-MF
method, an estimated uncertainty of 1% in the total entropies results in an uncer-
tainty of ~ 0.2 kg/atom in the entropies of mixing, which translates into a relative
uncertainty of at least 30%. The CCI entropies of mixing are within the error bars
of the 2PT-MF entropies of mixing. The RCCI method for Ay = 0 also shows a
significant deviation to the CCI entropies of mixing. For Ao = 0.5 and Ay = 1
the entropies of mixing agree well with the CCI entropies of mixing. The lines in
Fig. 4.2.3 are third order RK fits.

The CCI method is in principle exact if the integration w.r.t. A is performed using
a sufficient amount of simulations. Thus, the CCI entropies are expected to be most
accurate at the chosen reference point. In contrast, the 2PT-MF method relies on
approximations and it can be shown, that the obtained data are not thermodynam-
ically consistent with the equation of state. Therefore, the RK fit of the CCI data
set, As®E(z), will be used as reference entropies in the following where the entropy

of the mixture at the reference point for arbitrary z is given by:

s(z) = As™™(z) — (1 — 2) s(0) — ws(1), (4.2.1)
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where s(0) and s(1) are the CCI entropies of H and He, respectively.

4.3 Entropies for arbitrary pressures and tempera-

tures

As mentioned before, the strategy is to use thermodynamic integration via the equa-
tion of state (TI), Eq. (2.6.2), to obtain entropies for arbitrary pressures and tem-
peratures. The entropies at the reference point computed with CCI were shown in
the previous section, Fig 4.2.2 and 4.2.3.

First, it should be demonstrated that TI is able to yield the same results as coupling-
constant integration, and is therefore thermodynamically consistent. For this pur-
pose, CCI entropies were calculated at a constant temperature of 10 000 K for differ-
ent Wigner-Seitz radii for a He fraction of x = 0.0756, which are shown in Fig 4.3.1 as
a function of pressure. These calculations were performed for the vdW-DF and the
PBE functional. Also shown are PBE CCI results from Militzer and Hubbard [141].
The CCI calculations with PBE agree with those of Ref. [141]. The vdW-DF en-
tropies for the same Wigner-Seitz radii also agree with the PBE entropies within
0.006 kg/atom but the vdW-DF yields higher pressures at a given density. Addition-
ally, entropies obtained with the 2PT-MF method calculated for the PBE functional
are shown. These entropies deviate significantly from the CCI entropies as already
shown in Fig. 4.2.2. The dashed lines are TT results using Eq. (2.6.2). For each
method separately (CCI using PBE, CCI using vdW-DF, and 2PT-MF using PBE),
the reference entropy that determines the constant GGy was chosen to be the entropy
value at r¢ = 1.4 ag. The TI curves agree perfectly with the CCI results for the
PBE functional and the vdW-DF. The 2PT-MF method, despite overestimating the
entropy significantly, yields entropies that do not reproduce the thermodynamic in-
tegration via the equation of state. This suggests, that the 2PT-MF method does
not produce entropies that are thermodynamically consistent with the equation of
state. Figure 4.3.2 shows the entropy of mixing for the vdW-DF as function of z for
different T" at a constant Wigner-Seitz radius of ry = 1.4 ay. Symbols are CCI cal-
culations. The black solid line is a Redlich-Kister (RK) fit [241] of 4th order of the
10000 K data, see Eq. (2.5.22). The other coloured lines have been obtained using
TT where the reference entropy for every He fraction is the RK fit of the 10000 K
CCI data. For 12000 K and 15000 K, the CCI entropies agree with TI within the
given error bars except for 15000 K at = = 0.9 where the TT yields slightly higher

entropies. Nevertheless, the thermodynamic integration via the equation of state is
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Figure 4.3.1: Entropy at 10000 K for a H-He mixture with x = 0.0756 as function
of pressure. The CCI entropy for four different densities using the PBE functional
(black circles) and the vdW-DF (orange squares) is shown. The 2PT-MF entropy
has been evaluated for the PBE functional. PBE and vdW-DF calculations have
been performed for four Wigner-Seitz radii ry given in atomic units. Dashed lines
are obtained using Eq. (2.6.2), where the constant Gy was determined from the
entropy value at r¢ = 1.4 ag for the corresponding method. The black and green TI
curves for PBE are thus only shifted by the constant Gg. Red open circles are from
Ref. [141].

well suited to obtain entropies at arbitrary pressures and temperatures. Most impor-
tantly, this figure shows that the non-ideal entropy of mixing deviates significantly
from the temperature-independent ideal entropy of mixing shown as dot-dashed line.
The inclusion of non-ideal effects will therefore significantly alter the miscibility di-
agram.

In the following, the technical procedure to calculate entropies at arbitrary pres-
sures and temperatures will be explained in more detail. It is based on the fact that
thermodynamic integration can be performed along isobars as well as isotherms to
obtain entropies in the required p — T space. Starting from the obtained reference
entropies at a temperature of 10000 K and a Wigner-Seitz radius of 1.4 ag, the
first step is to use Eq. (2.6.2) to calculate the entropy as a function of pressure for

all considered He fractions for the constant reference temperature of 10000 K. The

69



Chapter 4 - Entropy of H-He mixtures

0.8 T T T T
0.7 R 7]
-’ - tNS
= "‘ -
o~
e 0.6 — —
2 L 4 4
8 2
<05 . =
« v
< - 4 g
%ﬂ D
2 0.4 —
E i ® CCIL: 10000 K reference state 7
S 03 fit to reference state -
& ¢ CCI 12000 K
= i = CCI 15000 K AN
Q02+ TI: 7000 K from reference W\
—— TI: 8000 K from reference W
i —— TI: 12000 K from reference N |
0.1 —— TI: 15000 K from reference
- — - ideal entropy of mixing
0 ! | ! | ! | ! | ! Y
0.2 0.4 0.6 0.8 1

Helium fraction x

Figure 4.3.2: Entropy of mixing for five temperatures at a Wigner-Seitz radius of
rs = 1.4 ag. Symbols are CCI calculations. Black solid line is a RK fit of 4th order
of the CCI data. Colored solid lines are obtained using T1, Eq. (2.6.2), where the
reference entropy is the RK fit of the 10000 K CCI data.

constants Gy for each He fraction are given by the CCI entropies of the reference
state and their respective energy and pressure. The integration requires volume as
function of pressure, see Eq. (2.6.2). In Ch. 3 it was demonstrated that v(p) can be
fitted very accurately using Eq. (3.1), which can be easily integrated numerically.
The obtained entropy at 10000 K for all He fractions is represented on a dense grid
of pressures, due to the numerical integration. The second step is to calculate the
entropy for different temperatures. Again, Eq. (2.6.2) is applied but for a single
fixed pressure. A pressure of 3 Mbar was chosen to obtain the entropy on an isobar.
This choice was motivated by two factors: First, the pressure is high enough to be
beyond the first-order LL-IMT in liquid hydrogen, cf. the LL-IMT for the vdW-DF
in Fig. 1.2.1. Second, the chosen pressure is in a region where a sufficient amount of
EOS data points has been calculated for all considered temperatures. For this chosen
pressure, energies and volumes in the temperature range from 1000 to 15000 K have
been fitted to a fourth order polynomial as a function of temperature. Using these
fits, Eq. (2.6.2) has been evaluated, where the constant Gy at 3 Mbar is available
from the first step. Again, the integration is performed numerically and entropies

are given on a grid, that is equal to the grid of the simulated temperatures, i.e. from
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1000 K to 15000 K in steps of 1000 K. A much finer grid could be calculated, if the
EOS data had been fitted in both p and 7" simultaneously. However, the accuracy
of such a fit is inferior to only pressure-dependent fit functions for each individual
temperature independently. The third step is to repeat the first step but for every
temperature, i.e. to calculate the entropy on the given isotherm via Eq. (2.6.2). The
constants (G for every temperature are now given by the entropies obtained in the
previous step.

The described procedure yields entropies on a dense pressure grid for all considered
temperatures that are used in Ch. 5 to construct the Gibbs free energy of mixing.
Nuclear quantum corrections to the EOS and the entropies will also be discussed in

the following chapter.
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Chapter 5

(Gibbs free energy of mixing of H-He

mixtures

In this chapter, the Gibbs free energy of mixing is shown for hydrogen-helium mix-
tures. In the first section, the Gibbs free energies of mixing for the exchange-
correlation functionals PBE and vdW-DF are compared. In Sec. 5.2, the nuclear
quantum corrections to the Gibbs free energy of mixing are discussed. Finally, the

total Gibbs free energy of mixing is shown for different p — T" conditions.

5.1 Comparison of PBE and vdW-DF results

Previous DFT-MD calculations targeting the miscibility of hydrogen and helium
have been performed using the PBE functional [65, 85, 134-136]. Here, a comparison
of the Gibbs free energy of mixing between the PBE functional and the vdW-DF is
made. The PBE data by Lorenzen et al. have been obtained using the ideal entropy
of mixing [134], so that, in a first step, this approximation is used for a direct
comparison. In Fig. 5.1.1, the Gibbs free energy of mixing is shown for the vdW-DF
and the PBE functional. Temperatures from 3000 K to 11000 K are shown for a
pressure of 4 Mbar. The dashed straight lines and dot-dashed lines represent the
common tangent construction to the PBE data and the vdW-DF data, respectively.
Both vdW-DF and PBE results show demixing for temperatures up to 10000 K (not
shown in the figure), apparent by the double-well structure and regions with negative
curvature, see Sec. 2.5 on the explanation of the thermodynamics of binary systems.
At a temperature of 11000 K, no negative curvature can be seen: thus, the system
is in a well mixed state. Compared to PBE, the vdW-DF leads to significantly lower

enthalpies of mixing. This effect is more pronounced for the He-rich side of the figure.
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Figure 5.1.1: Comparison of the Gibbs free energy of mixing at 4 Mbar for various
temperatures (colour coded) between the PBE and the vdW density functional. The
PBE curves have been taken from Lorenzen et al. [134]. The ideal entropy of mixing

has been used.

The common tangent construction which determines the He fractions of the He-poor,
x1, and He-rich, x5, phases results in significantly different He fractions of the He-
rich phase for both functionals. For 3000 K, the vdW-DF leads to a much lower x,
than PBE. For increasing temperature, o increases significantly for the vdW-DF
functional and decreases slightly for the PBE functional, see also Fig. 6.1.1 in the
upcoming Ch. 6 for a comparison of the vdW-DF and PBE miscibility diagram.

5.2 Nuclear quantum corrections to the Gibbs free

energy of mixing

Nuclear quantum corrections (NQC) to the Gibbs free energy ¢g9¢ can be calculated

from the nuclear quantum corrections to the free energy f<C:
9w, p, T) = ¥ 2, p, T) +p¥ (2, p, T)v(z,p,T), (5.2.1)

where p@©(z, p, T) is the NQC to pressure that is determined from f@€ in the further

course of this section. Note, that the total pressure p includes the NQC to pressure
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Figure 5.2.1: Quantum corrections to the free energy for pure H and pure He as a
function of electron density for various temperatures (colour coded). Lines are fits
according to Eq. (5.2.3).

now. The corresponding NQC to the Gibbs free energy of mixing is then
AgQC(xvpu T) = gQC(xvpa T) - (]' - x)gQC(O7p7 T) - ngC<]-7p7 T) (522>

First, the NQC to the free energy have been obtained using Eq. (2.4.17). The free
energy per particle fQ€ was then fitted (for each He fraction separately) to the

following two-dimensional function
3 2 ’ ‘
FMe, Ty =exp > Y Agyln(n)' In(T) |, (5.2.3)

where n. = N./V is the electron density and A;; are fit coefficients. The use
of the electron density instead of the particle or mass density, or the volume is
an arbitrary choice only motivated by the numerical implementation of the data
processing routines. In Fig. 5.2.1, the NQC data and their fits for pure H and pure
He as a function of electron density is shown for five temperatures. For pure He, the
quantum corrections to the free energy increase with increasing density and decrease
with increasing temperature. For pure H, the general trend is similar except that at

low densities, the NQC exhibit a minimum followed by a slight increase for even lower
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Figure 5.2.2: Quantum corrections to the pressure for pure H and pure He as a
function of total pressure for various temperatures (colour coded). Lines are guides

to the eye. Dashed lines mark the percental fraction of the NQC to the total pressure.

densities. This behaviour can be explained by the pressure induced dissociation of
hydrogen molecules with increasing density. In the molecular phase at low densities,
the NQC are stronger because of molecular vibrations, which can be seen in the
VDOS. The dissociation of Hy leads to a visible decrease of NQC, followed by an
increase with density.
A volume dependent NQC to the free energy results in a quantum correction to
pressure. These can easily be obtained from the fit function Eq. (5.2.3) as:
QC _ ng of Qe
1+z On.’

(5.2.4)

where the He fraction in the term (1 + )" is needed to translate electron number N,
to particle number N, ie. N, = (1+2z)N. In Fig. 5.2.2, the quantum corrections to
pressure are shown as a function of total pressure for pure hydrogen and pure helium
for five temperatures, similar to Fig. 5.2.1. For hydrogen, the NQC to pressure are
negative for low pressures and temperatures as expected by the shape of the NQC
to free energy in Fig. 5.2.1. For higher pressures, the NQC to pressure increase and
become positive. For helium, the NQC to pressure are positive for all temperatures
and also show an increase with pressure. For both pure H and He, the absolute value

of pRC€ decreases with increasing temperature. The dashed lines show the percental
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Figure 5.2.3: Quantum corrections to the Gibbs free energy of mixing at 1 Mbar for

various temperatures (colour coded). Solid lines are Redlich-Kister fits of 3rd order.

fraction of pRC to the total pressure. For most data points, the NQCs to pressure
are less than 1% of the total pressure, except for hydrogen at 1000 K, where p@°
makes up to 7.6% of the total pressure at 0.5 Mbar. Thus, quantum corrections to
pressure are only important for the lowest temperatures and pressures considered
here and could otherwise be neglected entirely due to their low magnitude. However,
it is apparent from Fig. 5.2.1 that the fit is a major source of uncertainty for those
small pressures. It overestimates the slope and especially the change in slope at
low densities. The fit could be improved if the NQC to free energy was fit to a
density-dependent function for each temperature separately.

Using the NQC to the free energy and the derived pressure correction, the quantum
corrections to the Gibbs free energy of mixing have been calculated. These are
shown in Fig. 5.2.3 for a pressure of 1 Mbar and in Fig. 5.2.4 for a pressure of
10 Mbar. Lines are RK fits of third order. At 1 Mbar, the NQCs to the Gibbs free
energy of mixing are positive for all He fractions and temperatures. Thus, the NQCs
reduce the miscibility of H and He, because the total Gibbs free energy of mixing is
increased. At 1000 K, the NQCs to the Gibbs free energy of mixing are largest. They
decrease with increasing temperature as expected from the previous figures. The
scatter of the data points is largest for 1000 K because the convergence of the VDOS

is slow due to the low particle velocities and numbers. At these low temperatures,

7



Chapter 5 - Gibbs free energy of mixing of H-He mixtures

0.02 T T T

1000 K i
3000 K
5000 K
10000 K
15000 K

0.015

o @ o @ o

0.01

A gQC [eV/atom]

0.005

0 0.2 0.4 0.6 0.8 1
Helium fraction x

Figure 5.2.4: Quantum corrections to the Gibbs free energy of mixing at 10 Mbar

for various temperatures (colour coded). Solid lines are RK fits of 3rd order.

the simulations would need to run much longer to obtain better statistics. However,
given the large number of computations and the limited computational resources,
the obtained accuracy is sufficient for the NQC to the Gibbs free energy of mixing.
In Fig. 5.2.4, the contribution of NQC to the Gibbs free energy of mixing is generally
smaller at 10 Mbar than at 1 Mbar. For 1000 K, Ag®C is positive for all He fractions,
which again favours the demixing. For higher temperatures, Ag®C shows different
features than before. For 3000 K, 5000 K, and 10000 K, the NQC to the Gibbs free
energy of mixing is negative for small He fractions. For 15000 K, Ag®C is negative
for all He fractions, which favours the miscibility of hydrogen and helium. However,
NQCs at 10 Mbar are too small to influence the total Gibbs free energy of mixing

significantly as will be discussed in the next section.

5.3 Total Gibbs free energy of mixing for the vdW-
DF

The Gibbs free energy of mixing has been calculated using the DFT-MD data and
the entropies obtained via CCI and TI, see Ch. 4. Nuclear quantum corrections
(NQC) have been added. The total Gibbs free energy (per particle) is thus given by
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Figure 5.3.1: Total Gibbs free energy of mixing (including quantum corrections)
at 1 Mbar for various temperatures (colour coded). Solid lines are RK fits of 5th
order and straight dashed lines show the double tangent construction to Ag where

it applies.

g(z,p,T) = u"" " (2,p,T) = Ts"(z,p,T) + ¢%°(z,p,T) + p* " v(z,p,T), (5.3.1)

where uP¥T (2, p, T') is the total energy of the DFT-MD simulations, s™(x,p, T) is
the entropy obtained via thermodynamic integration as explained in Ch. 4, and
p = pPFT + pC is the sum of DFT-MD pressure and NQC to pressure.

In Figures 5.3.1 and 5.3.2, the total Gibbs free energy of mixing is shown for five
temperatures and a pressure of 1 Mbar and 10 Mbar, respectively. Redlich-Kister
fits of 5th order have been applied to the total Gibbs free energy of mixing. The
common tangent construction has been numerically applied to the Redlich-Kister
fits and is shown where it can be constructed. The Gibbs free energy of mixing
shows demixing for temperatures up to 3000 K at 1 Mbar (Fig. 5.3.1). In this tem-
perature and pressure range, the NQC contribute significantly to the total Gibbs
free energy and enhance the insolubility. There would be no demixing at 3000 K
without nuclear quantum effects. For higher temperatures, the NQC still tend to
favour complete demixing, but are already small enough that no demixing can be

seen in the total Gibbs free energy. At 10 Mbar (Fig. 5.3.2), demixing is present
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Figure 5.3.2: Total Gibbs free energy of mixing (including quantum corrections) at
10 Mbar for various temperatures (colour coded). Solid lines are RK fits of 5th
order and straight dashed lines show the double tangent construction to Ag where

it applies.

up to temperatures of 11000 K (10000 K is the highest shown temperature in the
figure, where demixing occurs). The contribution of NQC at 10 Mbar is less than 1%
and their effect is too small to influence the total Gibbs free energy. At 10 Mbar,
the 1000 K curve intersects with the 3000 K curve, which is an unexpected be-
haviour for the Gibbs free energy of mixing, because it does not occur if the ideal
entropy of mixing is used or if the Helmholtz energy is visualised. Thus, the crossing
must be caused by the non-ideal entropy of mixing, which is higher for the lower
temperature. Still, the demixing into the pure components is not altered by this
crossover and there is no argument why the Gibbs free energy of mixing for different
temperatures should not intersect. Furthermore, at 10 Mbar and 1000 K, He should
be solid, while at 3000 K He starts to melt according to Fig. 1.2.2, which eventually
influences the Gibbs free energy of mixing.

In total, the Gibbs free energy of mixing has been calculated for pressures of
0.5 Mbar, 1 Mbar, 1.2 Mbar, 1.5 Mbar, 2 Mbar, 4 Mbar, 10 Mbar, 24 Mbar, and
30 Mbar. The calculation of additional, intermediate pressures is possible, but the
obtained grid is already sufficient for the construction of a complete miscibility di-

agram in that pressure range.
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Miscibility diagram

This chapter discusses the main results of this thesis: the miscibility gap of hydrogen-
helium mixtures obtained using the vdW-DF XC functional and non-ideal entropy
of mixing. First, the PBE demixing phase diagram of Lorenzen et al. |65, 134]
is compared to the vdW-DF results that were obtained using the ideal entropy
of mixing. Thus, the influence of the XC-functional is directly visualized for the
complete miscibility diagram. Second, the influence of non-ideal entropy effects on
the vdW-DF miscibility diagram is demonstrated by comparing the previously shown
ideal entropy case with the non-ideal entropy case, which has a paramount impact on
the miscibility diagram. In the last section, the demixing phase diagram for chosen
He abundances is presented and compared to calculations by Morales et al. [136]
and Lorenzen et al. |65, 134].

6.1 Miscibility gap for PBE and vdW-DF using the
ideal entropy

To illustrate the effect of the XC-functional, a comparison of the miscibility dia-
grams for PBE [65, 134] (solid lines and coloured areas) and the vdW-DF (circles
and dot-dashed lines) using the ideal entropy of mixing computed in this work is
shown in Fig. 6.1.1. No nuclear quantum corrections have been taken into account
because neither have they been taken into account by Lorenzen et al. [65, 134].
Demixing temperatures are given as a function of He fraction for different colour
coded pressures. The dot-dashed lines are smoothing splines [259] to the circles
and act as a guide to the eye. The coarseness of the temperature grid confines the
critical temperature to an interval of 1000 K. Thus, the splines have been restricted

to show a maximum between the highest T" where demixing could be numerically
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Figure 6.1.1: Miscibility gap of hydrogen-helium mixtures using the ideal mixing
approximation. Dot-dashed lines are smoothing splines to the data points. Colours
indicate the pressures. The coloured areas confined by solid lines are PBE results
by Lorenzen et al. [65, 134].

determined and the next higher 7" where no demixing could be seen. First, it is
important to note that both functionals show the effect of demixing in a similar
way. There are certain differences in the demixing temperatures and pressures but
the overall appearance is comparable. Nevertheless, there are three main differences
between PBE and vdW-DF: first, the vdW-DF shows no sign of demixing for pres-
sures below 1.5 Mbar. The lowest demixing pressure for the PBE functional is at
1 Mbar. The vdW-DF shifts the demixing pressures up by 0.5 Mbar compared to
PBE. This shift towards higher pressures (relative to PBE) also appears for the
metallisation transition [83] and the thermal equation of state in pure hydrogen and
in pure helium as seen in Ch. 3 especially for lower pressures. The demixing regions
for 1.5 Mbar and 2 Mbar form island structures similar to the PBE results, which
are well separated from the liquidus line. The second difference is the vertical edge
in the demixing temperatures appearing for PBE at 4 Mbar, 10 Mbar, and 24 Mbar
at high He-fractions, which is different for the vdW-DF. There, a tilt towards lower
He-fractions is obtained. As already discussed in the introduction, Sec. 1.3, this

edge is due to the metallisation in the hydrogen subsystem, which is only possible

82



Chapter 6 - Miscibility diagram

up to a critical He concentration, where the presence of He atoms inhibits the delo-
calization of H electrons, such that short lived Hy molecules form again or, at least,
increased molecular correlations are visible in the simulation box. From Fig. 6.1.1,
it becomes apparent that a higher He concentration is necessary to inhibit the met-
allisation of the H subsystem for increasing pressure. For the vdW-DF the critical
He fraction is temperature-dependent for all considered pressures, while for PBE it
becomes temperature-independent for pressures greater than 4 Mbar. In general,
higher temperatures favour mixing but also weaken the localisation of electrons,
so that these two effects balance each other in PBE. However, that is not true
for the vdW-DF results, where the demixing region is increased with temperature.
The discussed behaviour is only apparent above a particular temperature. Below
this temperature a kink appears, where the demixing region extends to higher He
fractions. A complete separation into the pure components occurs below a certain
temperature. For each pressure, this coincides with the melting temperatures of He
(coloured diamonds at = = 1) and reveal the liquidus line of H-He mixtures. The
last difference between the PBE and vdW-DF miscibility diagram is that for the
solar He abundance, demixing temperatures for the vdW-DF are lowered compared
to PBE especially for low pressures. This will be seen more clearly in Fig. 6.3.1 in
Sec. 6.3, and it is a direct consequence of the shift to higher pressure by the vdW-DF
compared to PBE, shown in Ch. 3.

6.2 Miscibility gap for the vd W-DF' using the ideal

and non-ideal entropy

In this section, the complete miscibility diagram using the non-ideal entropy is
presented. Nuclear quantum corrections discussed in Ch. 5 are now taken into
account, but their influence is minor compared to the effect of non-ideal entropy. In
Fig. 6.2.1, the miscibility diagram with the vdW-DF using both ideal entropy and
non-ideal entropy is shown. Solid lines and dot-dashed lines are smoothing splines
corresponding to the coloured circles similar to Fig. 6.1.1. The inclusion of non-ideal
effects in entropy has major consequences for the whole demixing phase diagram.
In total, four striking differences can be seen: first, demixing temperatures are
lowered significantly at high pressures. This consequence is particularly important
for small He abundances relevant for Jupiter and Saturn, whose mean He content
should be similar to the solar He abundance. It will be shown in the next section,

how demixing temperatures are shifted at solar He abundance and in Ch. 7, the
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Figure 6.2.1: Miscibility gap of hydrogen-helium mixtures using the vdW-DF. Dot-
dashed lines are the same as in Fig. 6.1.1. Solid lines are smoothing splines to the

data points that include non-ideal effects in the entropy.

implications for Jupiter and Saturn are discussed. The second difference is that the
demixing region using non-ideal entropy extends to pressures smaller than 1.5 Mbar,
which directly removes the island-like structure that appeared when using the ideal
entropy. The first two changes have already been anticipated in Ch. 1, Sec. 1.3, by
comparing the work of Morales et al. [136] to the work of Lorenzen et al. [65, 134],
where the demixing temperatures and the low-pressure miscibility diagram have
been significantly altered due to the inclusion of the non-ideal entropy. As a third
difference, it can be seen that the kink at high He fractions in the ideal entropy
calculations is smoothed out significantly at pressures above 2 Mbar. At pressures
of 1.5 Mbar and 1.2 Mbar, there is still a small sign of this effect but not as apparent
as in the ideal entropy calculation. The fourth difference concerns the size of the
demixing region, which is increased especially for pressures of 1.5 Mbar, 2 Mbar,
and 4 Mbar by shifting the He fractions of the He-rich phase towards higher .

Due to uncertainties in the underlying DFT-MD data and in the Redlich-Kister fit
of AG, it is estimated that the uncertainty in the He fractions of the He-rich and
He-poor phases of the miscibility gap are dx = £0.02, which has to be taken into

account when calculating the planetary evolution.
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Figure 6.3.1: Miscibility gap of hydrogen-helium mixtures at solar Helium abun-
dance. Theoretical results from Lorenzen et al. [65, 134], Morales et al. [136]
and Schouten et al. [123] are shown. DAC experiments have been performed by
Loubeyre et al. [122].

6.3 Miscibility gap for solar He concentration

In Fig. 6.3.1, the miscibility diagram for the mean solar He concentration yy., =
0.086 is shown, which is relevant for the giant gas planets Jupiter and Saturn. The
miscibility regions from PBE and vdW-DF calculations are compared, and for each
functional both ideal and non-ideal entropy of mixing are shown. Error bars for the
vdW-DF demixing temperatures for the non-ideal entropy case have been obtained
by simply shifting the smoothing splines by dx = +0.02, which results in a shift in
demixing temperatures at the solar He abundance w4.,,. The size of the error bars
is thus directly related to the slope of the miscibility region and most pronounced
at a pressure of 1.2 Mbar.

A comparison between the PBE data sets using ideal and non-ideal entropy has
already been done in Sec. 1.3 so that the focus here is on comparing the vdW-DF
results to their PBE counterparts. The differences between vdW-DF and PBE;, that
have been discussed in the two previous sections, are also pronounced at solar He
composition: for the ideal entropy case a significant shift to higher pressures can
be seen for the vdW-DF. This shift contributes to the lowering of the demixing
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temperatures compared to PBE at pressures below 8 Mbar. For low temperatures,
the island-like structure in the ideal entropy calculations results in a negative slope
of the demixing phase boundary. The calculations using the non-ideal entropy do
not show this behaviour. Instead, both the PBE and vdW-DF results confirm the
calculations of Schouten et al. [123], who performed Monte Carlo simulations of H-
He mixtures in the Gibbs ensemble [144| using effective pair-potentials. This special
ensemble allows to simulate phase equilibria by ensuring equal chemical potentials in
both phases. Thus, the concentration of the He-rich and He-poor phases can directly
be visualized within the simulation boxes. The vdW-DF calculations using the non-
ideal entropy are in excellent agreement with these data. The DAC experiments
of Loubeyre et al. [122] can be reproduced, if the combined data is extrapolated to
lower pressures. When comparing the vdW-DF and PBE calculations obtained with
non-ideal entropy, it can be seen that the vdW-DF yields demixing temperatures
that are on average 1000 K lower for pressures greater than 0.7 Mbar. It will
be shown in the next chapter, that the new results have major consequences for

planetary models of Jupiter and Saturn.
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Chapter 7
Planetary isentropes

In the previous chapter, the miscibility diagram using the vdW density functional
and non-ideal entropy has been presented and significant shifts compared to previous
demixing phase diagrams have been identified. Most notably, the shown demixing
temperatures were significantly decreased. In this chapter, it will be shown how
the new miscibility diagram influences planetary models of Jupiter and Saturn.
Furthermore, new p — T profiles for Jupiter and Saturn will be calculated using the
obtained vdW-DF EOS and entropy data. In the first section, it will be explained
how the new p—T profiles have been obtained and why they are only simple models.
Then, in the second section, the calculated interiors will be compared to other models

and put into contrast to the miscibility diagram.

7.1 Calculating planetary p — 71" profiles

The pressure profile of a planet can be calculated by employing differential equations
for the hydrostatic equilibrium and the mass distribution. For a spherical object
these are [260]:

dp _ Gm(r)o(r)
> = 55 (7.1.1)
Z—T = 4mr?o(r), (7.1.2)

where G is the gravitational constant, o(r) is the mass density at radius r, and
m(r) is the integrated mass from the inside of the planet to r. The radius r is thus
considered to be a coordinate, where r = 0 at the center of the planet and r = R at
the 1 bar level. The equation of state of the contained material is needed to relate

pressure with mass density, but since the EOS also depends on temperature, one
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additional equation is necessary - the temperature profile. In the theory of planetary

modelling, the temperature gradient is often defined as the dimensionless quantity

pdl  dInT

vT:fdp ~dlnp’

(7.1.3)

The gradient depends on the mechanism with that heat is transported from the
inside to the outside of the planet. These mechanisms are conduction, radiation,
and convection. If heat is only transported via radiation and conduction, the tem-

perature gradient V,,q, could be calculated as [260-262]:

3  klp

vra = A i
T Ao G mTA

(7.1.4)

where [ is the interior luminosity, ¢ is the Stefan-Boltzmann constant, and « is the
opacity that contains both contributions from radiation and conduction. If heat is
transported primarily via convection, the temperature gradient V1 can be described

by the adiabatic temperature gradient V,.q4:

dinT
= 1.
v (G ) (7.15)

where s denotes an evaluation of the derivative at constant entropy. The Schwarzschild
criterion [263]:
vrad < vad (716)

then determines, if the medium is stable to convection. For Jupiter and Saturn,
this criterion is likely violated for most p — 7" conditions [261, 264-266] because of
their high luminosities [267, 268]. Still, the opacities that enter Eq. (7.1.4) could
be low enough to suppress convection under certain circumstances [261]: if only H-
He mixtures are considered, the opacity at around 2000 K would be small enough
to favour a radiative energy transport. Also the inclusion of water and methane
would not increase the opacity above the critical opacity that is needed to violate
Eq. (7.1.6) [261]. However, Guillot et al. [266] have shown that the presence of
potassium and sodium would yield opacities high enough to ensure a convective

interior. It can be shown [262] that convection leads to the case
Vi ~ Vi < Vyad, (7.1.7)

where almost all heat is transported via convection and the established temperature
gradient Vr is very close to the adiabatic temperature gradient. Thus, as long as
there are no first order phase transitions [269], core erosion [270], thermal boundary

layers [271], or demixing transitions [272|, the interior should be homogeneously
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mixed and isentropic. The temperature profile is, thus, to a good approximation
given by Eq. (7.1.5). The required thermodynamic path of constant entropy for a
given material can be calculated in three ways: first, if the entropy is known for a
given equation of state (either as a formula or discrete data), it is straight-forward
to construct thermodynamic paths of constant entropy by numerically inverting
the analytical expressions or interpolating the discrete simulation data. Second, if
the entropy is not known, it is possible to use thermodynamic integration via the
equation of state as described in Sec. 2.6. No knowledge about the actual entropy
at a given reference state is required except that this reference condition on the
isentrope has to be known. The temperature at the 1 bar level is often used for
that purpose. The third method involves solving a differential equation, which also

requires an initial state that is part of the isentropic path. This differential equation

<§_‘7;>s = —ng:g: (7.1.8)

which can be derived by using Maxwell’s relations [273] and other thermodynamic

can be written as

relations. In principle, the obtained set of V', p, and T should be self-consistently
determined by additionally solving Eq. (7.1.1) and (7.1.2) to relate the thermody-
namic conditions to the radius coordinate. This is required to fulfil all observational
constraints. Furthermore, gravitational field data expressed in terms of gravitational
moments J, can hardly be reproduced using a completely homogeneous interior. In-
stead, two-layer or three-layer models are required, with a different composition in
each layer [262|. In a first step however, it is not necessary to determine a fully self-
consistent and observationally constrained three-layer model to answer the question
if the immiscibility of H-He mixtures is relevant for Jupiter and Saturn. A simple
p — T profile consisting only of hydrogen and helium is sufficient to compare to the
miscibility diagram obtained in the previous chapter. Such simplified models have
been calculated for Jupiter and Saturn based on the vdW-DF EOS and entropy data

and will be discussed in the next section.

7.2 Profiles for Jupiter and Saturn

Isentropes for Jupiter and Saturn are fully determined by their entropy value. At
the 1 bar level, Jupiter has a temperature of 166.1 K [274], measured by the Galileo
entry probe, whereas Saturn is slightly cooler with a temperature of 135 K [57]. If
only H and He are considered the corresponding entropy can be easily determined.
In Fig. 7.2.1, the entropy at 1 bar for H, He, and a mixture with x = 0.07563 is
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Figure 7.2.1: Entropy for hydrogen, helium and a linear mixture with helium fraction
x = 0.07563 at p = 1 bar according to the EOS of Saumon, Chabrier, and van Horn
(SCvH) [258]. The temperatures of Saturn (dot-dashed) and Jupiter (dashed) for

that pressure are shown as vertical black lines.

shown as a function of temperature. These entropies have been taken from the EOS
of Saumon, Chabrier, and van Horn (SCvH) [258], who calculated the free energy
of pure H and pure He within a free energy minimization scheme using a chemical
model. Note that the nuclear spin entropy of H, s,,c = In2 kg, has been subtracted.
For the considered mixture, the H and He EOS have been linearly mixed and the
ideal entropy of mixing has been added. Here, the ideal entropy approximation is
valid because at 1 bar, H and He behave as ideal gases. The He fraction x = 0.07563
corresponds to a mass fraction of Y = 0.245, which is slightly higher than the Jupiter
value determined by the Galileo entry probe Y; = 0.238+0.04. For Saturn the value
is within the reanalysed Voyager data Yg = 0.18...0.25, but outside of the Cassini
data Ys = 0.16...0.22. Calculations of the EOS and entropy data for this particu-
lar He fraction have been performed by Militzer [142] using DFT simulations with
the PBE functional. These results were subsequently used by Hubbard and Mil-
itzer [114] to calculate a new Jupiter model and an isentrope for Saturn’s entropy
value. In Fig. 7.2.1, their entropy values are marked by the symbols. The Jupiter
value s = 7.6135 kg and the Saturn value s = 7.3574 kg agree with the SCvH en-

tropy at the respective temperature within 1%. To obtain models with the same He
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Figure 7.2.2: Isentropes of Jupiter and Saturn in comparison to the miscibility
diagram. Diamonds and coloured area are the same as in Fig. 6.3.1. Planetary
isentropes are from Nettelmann et al. [115, 140], Hubbard and Militzer [114], and

vdW-DF calculations from this work. Entropies are given in kg /atom.

fraction, DFT-MD simulations with the vdW-DF using 256 electrons (18 He atoms
and 220 H atoms) were performed similar to the calculations of Militzer [142]. EOS
calculations for the miscibility diagram have been calculated using 64 electrons so
that x = 0.07563 is not available in that data set. In turn, there is no entropy data
for arbitrary p and T for that mixture. However, the entropy at 10000 K has been
calculated for 256 electrons and x = 0.07563 using CCI, see Fig. 4.3.1. This data has
been used to obtain the corresponding pressure at 10 000 K for the required entropy
value. These p — T' conditions have been used to compute isentropes via Eq. 7.1.8.
Resulting profiles for Jupiter and Saturn are shown in Fig. 7.2.2 in comparison to
the models of Nettelmann et al. [115, 140], Hubbard and Militzer [114], and the mis-
cibility diagram at solar He abundance obtained in Sec. 6.3. Note that the vdW-DF
isentropes have not been calculated for pressures lower than 0.5 Mbar because DFT-
MD simulations become increasingly demanding for large volumes. In principle, one
could use the SCvH EOS for lower pressures as done by Hubbard and Militzer, but
a thermodynamically consistent connection between different EOS models is chal-
lenging [230] and out of the scope of this work. The available vdW-DF EOS data
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are sufficient for a comparison with the demixing phase diagram. For Jupiter, the
vdW-DF isentrope and the isentrope of Hubbard and Militzer et al. [114] show much
lower temperatures than the isentrope of Nettelmann et al. [140]. The isentropes of
Hubbard and Militzer and Nettelmann et al. are outside of the vdW-DF miscibility
diagram, whereas the vdW-DF isentrope still intersects within the error bars. QMC
calculations have shown that the vdW-DF' overestimates the pressure to a larger
extent than PBE [147] does. This indicates that the true isentrope could be located
at slightly lower pressures than both DFT calculations predict and thus no demix-
ing would occur in Jupiter. However, much more QMC calculations are needed to
derive a more sophisticated conclusion. If demixing still occurs, it remains to be
seen if planetary evolution models with helium rain are still able to reproduce the
observed helium fraction in the atmosphere. The occurrence of hydrogen-helium
immiscibility in Jupiter should therefore be critically discussed and the possibility
of no helium rain at all should be taken into account. Other factors than demixing
could influence the amount of He in the atmosphere. As mentioned in the previous
section, a radiative zone that acts as barrier to convection could form, so that the
combined effect of gravitational settling and thermal diffusion leads to a depletion
of helium. The existence of such a zone at temperatures around 2 000 K depends on
the presence of strong absorbers like potassium, sodium, and titanium oxide [266].
Interestingly, the atmospheric helium abundance in the Sun is similar to that of
Jupiter and this He depletion compared to the protosolar value is actually caused
by gravitational settling and thermal diffusion [55]. However, a strong argument in
favour of He rain is the depletion of neon compared to the solar value, because it
was found that Ne dissolves preferably in the non-metallic He rather than in the
metallic hydrogen [64]. Alternatively, the neon depletion might be explained with a
clathrate-hydrate formation scenario where neon is not easily trapped in these ice
cages [275] and therefore not present in a solar abundance.

For the shown Saturn isentropes, differences between the models are not as pro-
nounced as for Jupiter. The isentropes of Hubbard and Militzer [114], and the
presented one based on vdW-DF calculations agree well with each other. For high
pressures, the vdW-DF' isentrope shows slightly higher temperatures than the isen-
trope of Hubbard and Militzer. Both isentropes show slightly higher temperatures
than the isentrope of Nettelmann et al. [140]. Still, all isentropes intersect with the
miscibility diagram. In Fig. 7.2.3, evolution calculations for Saturn performed by
Plistow et al. [61] are reprinted to discuss consequences of the presented miscibility
diagram for Saturn. Piistow et al. used the Lorenzen et al. [65, 134] miscibility

diagram to calculate Saturn’s inhomogeneous evolution. Inhomogeneous evolution
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Figure 7.2.3: Effective temperature of Saturn as a function of time since its for-
mation. Today’s effective temperature is shown as grey area. All data has been
calculated by Piistow et al. [61] based on the Lorenzen et al. data [65, 134]. The
Lorenzen et al. demixing temperatures were shifted by Piistow et al. by AT to

mimic the Morales et al. [136] phase diagram.

means that the composition of a given layer in the planetary model is allowed to
change during its evolution. Thus, helium is allowed to sink down according to
the underlying miscibility diagram. Saturn’s age is overestimated when the original
Lorenzen et al. data is considered. Piistow et al. lowered the demixing tempera-
tures by AT in order to mimic the Morales et al. [136] data because these are only
available for a single H-He mixture. A decrease in demixing temperature results in
a lowering of Saturn’s age and a shift of AT = —1300 K reproduces the age of the
solar system. It has been shown in Fig. 6.1.1, 6.2.1, and 6.3.1 that the miscibility
diagram changes significantly when the vdW density functional and the non-ideal
entropy of mixing is used. The demixing temperatures for the solar mixture decrease
by about 2000 K compared to the Lorenzen et al. data. The calculations by Piis-
tow et al. suggest that such a decrease would lower Saturn’s age to a value below the
age of the solar system, because demixing in Saturn would start at a later stage in its
evolution. Furthermore, demixing would occur in a smaller part of its volume and at
deeper levels. However, the artificial lowering of the Lorenzen et al. data does not

include the changes introduced by the non-ideal entropy to the complete miscibility
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diagram. This effect has been shown in Fig. 6.2.1 and significantly increases the He
fraction of the He-rich phase. In turn, more He would sink towards the planetary
core and a greater amount of energy would be converted to heat. As a consequence,
the inhomogeneous evolution would possibly lead to a slower decrease of the effec-
tive temperature with time, effectively prolonging Saturn’s cooling curve. If more
He sinks towards the core, compositional gradients would be increased. Leconte
and Chabrier [63] pointed out that these gradients could lead to layered convection,
which reduces the cooling rate of Saturn significantly and offers an alternative or
additional mechanism to explain its excess luminosity.

The calculations in this chapter are only the starting point for new and improved
planetary models which have to be produced in future calculations. Especially the
recalculation of Saturn’s evolution is of great interest to see the quantitative impact

of the new miscibility gap on Saturn’s excess luminosity and its predicted age.
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Conclusion

8.1 Summary

In this thesis, density functional theory calculations coupled to classical molecu-
lar dynamics simulations have been performed for hydrogen-helium mixtures. The
equation of state has been calculated for 29 He fractions, 15 temperatures from
1000 K to 15000 K and pressures between 0.5 Mbar and 30 Mbar were considered
in particular for each He fraction. More than 7500 EOS calculations have been
performed for that purpose. The vdW-DF of Dion et al. [100] has been selected
as an appropriate exchange-correlation functional based on the comparison to ex-
perimental and theoretical data. Especially the shift of the hydrogen metallisation
pressure towards the experiments of Knudson et al. [83] and the agreement of the
enthalpy with QMC data [147| are strong indications that the vdW-DF is superior
to PBE for the purpose of calculating a more accurate miscibility diagram. In Ch. 4,
it has been shown, that the ideal entropy of mixing is insufficient to approximate
the entropy. Different approaches have been tested to obtain the non-ideal entropy
of mixing. The coupling-constant integration method has been proven to yield most
accurate non-ideal entropies. These have subsequently been used to obtain the en-
tropy for arbitrary pressures and temperatures using a thermodynamic integration
technique via the equation of state. It has been shown that this technique yields the
same results as coupling-constant integration. The EOS data and entropies were
used to obtain the Gibbs free energy of mixing. It has been shown that nuclear
quantum corrections affect the Gibbs free energy of mixing mostly at low tempera-
tures and that their inclusion increases the miscibility gap by a small amount. The
Gibbs free energy of mixing was subsequently used to calculate the complete misci-

bility gap of hydrogen-helium mixtures for pressures up to 30 Mbar. It was shown
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that the vdW-DF and the non-ideal entropy both have a significant impact on the
demixing phase diagram compared to calculations by Lorenzen et al. [65, 134] and
Morales et al. [136]. The main influence of the vdW-DF is a shift of demixing pres-
sures to higher values by about 0.5 Mbar. The inclusion of the non-ideal entropy
has been shown to alter the miscibility diagram completely at low pressures. Cal-
culations using the ideal entropy of mixing show demixing islands, see Fig. 1.3.2,
6.1.1, and 6.2.1, which are separated from the proposed liquidus line. It has been
confirmed, that the non-ideal entropy changes this behaviour by extending the misci-
bility to much lower pressures. Additionally, the demixing temperatures are lowered
significantly compared to calculations using the ideal entropy of mixing. In Ch. 7, it
has been shown that demixing temperatures are decreased to such an extent, that
the present-day Jupiter model of Hubbard and Militzer [114]| does not intersect with
the vdW-DF miscibility diagram. As a consequence, helium has possibly not been
separated from hydrogen in Jupiter due to demixing and the observed He deple-
tion in the atmosphere needs an alternative explanation. However, a Jupiter p — T
profile based on the calculated vdW-DF EOS data has been computed and it has
been shown in Fig. 7.2.2 that this isentrope still intersects with the error bars of the
vdW-DF miscibility diagram. Therefore, it is not clear, whether He rain still occurs
in Jupiter. Due to the proximity of the Jupiter models to the miscibility diagram,
Jupiter could be in a state where demixing has just begun or is about to begin. For
Saturn, the situation is clear because all isentropes intersect with the miscibility
diagram. However, the layer of He rain is shifted to higher pressures, i.e. deeper
into the planet. Thus, demixing would begin at a later time in Saturn’s evolution
compared to calculations based on PBE data. This eventually impacts the calcu-
lation of Saturn’s cooling time and would lead to a younger age than determined
by previous calculations [61] that made use of the PBE demixing phase diagram of
Lorenzen et al. |65, 134].

8.2 Outlook

The quality of density functional theory calculations depends crucially on the treat-
ment of exchange and correlation effects by the chosen XC-functional. High precision
experiments are needed to verify these approximations. For hydrogen, it has been
outlined in Sec. 1.2, that no available XC-functional is able to reproduce Hugoniot
data within the error bars [146]. Additionally, contradicting experiments exist re-
garding the metallisation transition in liquid hydrogen. This further complicates the

choice of an appropriate XC-functional. Hence, it needs to be clarified, why different
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experiments yield contradicting results. Only then, theoretical calculations can be
benchmarked. Up to now, the most precise dynamic compression experiment on the
metallisation of deuterium has been done by Knudson et al. [83] at Sandia National
Labs using magnetically driven flyer plates [276]. The reproduction of the results
of this experiment on other platforms, e.g. at the National Ignition Facility using
Laser-driven shocks [277], is a necessary and mandatory step. In turn, these exper-
iments will allow a better evaluation of theoretical approaches like DFT or QMC.
Depending on the results of future experiments, it could be necessary to revise the
H-He miscibility diagram using a different approximation for the XC-functional. For
the demixing phase diagram of H-He mixtures, no published experimental results
exist at pressures and temperatures relevant for Jupiter and Saturn. To validate
the obtained miscibility gap, such experiments are needed and will hopefully be
performed in the near future.

The miscibility diagram could also be revalidated using other theoretical methods.
It has been shown by Lorenzen et al. [65] and Soubiran et al. [127]| that demixing
can be determined by direct visualisation of the simulation box if the particle num-
bers are sufficiently high. This can be used to obtain the miscibility gap by direct
simulations. However, a number of difficulties are associated with that technique.
Foremost, it is completely unclear how finite-size effects affect the demixing. It has
to be checked that convergence with respect to particle number can be achieved and
that this particle number is still feasible within standard DFT codes such as VASP.
Alternatively, it might be possible to derive effective potentials from the DFT-MD
simulations of H-He mixtures using a force-matching algorithm [278, 279]. These
potentials could then be used in classical MD simulations with millions of atoms.
Furthermore, they could be used in a Gibbs ensemble Monte Carlo simulation [144]
similar to the work of Schouten et al. [123].

In Ch. 6, it has been shown, that the chosen temperature grid (1000 K) might be
too large to obtain accurate critical temperatures. Thus, it would be possible to
obtain a denser temperature grid using more computational resources, which would
decrease the error of the critical temperatures.

In future work, new consistent models of Saturn and Jupiter have to be calculated
based on the obtained miscibility diagram. Especially the cooling history of Saturn
will be influenced and new information on its luminosity anomaly will be gathered.
In general, the obtained vdW-DF EOS and entropy data could be used. However,
the usage of that functional has been motivated by its ability to reproduce QMC
calculations of the enthalpy [147|. Yet, it has also been shown, that the vdW-DF,
compared to QMC, overestimates the pressure more than PBE does. Thus, the vdW-
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Figure 8.2.1: Calculated equilibrium temperature of 176 out of 4017 confirmed exo-
planets as a function of their mass in units of Jupiter masses. The planetary radius
in Jupiter radii is colour-coded. Figure obtained from exoplanet.org on August, 2nd
2018.

DF might not be suitable for planetary models and a more appropriate functional
has to be identified. There is already a huge amount of EOS calculations that use
PBE in the highly correlated regime. Wide-range equations of state for pure H and
He have been calculated by Becker et al. [230]. These data lack information about
the entropy and therefore free energy. The methods from Sec. 2.6 applied in Ch. 4
could be used to calculate the missing data which would facilitate the calculation of
planetary models. Still, only linear mixtures using the ideal entropy of mixing could
be constructed for arbitrary He fractions. To obtain information about the real
mixture, simulations as done by Militzer [142] for a H-He mixture with x = 0.07563
should be performed also for different He fractions. For Saturn, He-rich mixtures
would be favourable because He would be present in higher amounts deep in Saturn
because of He rain. These calculations are subject to future work.

The calculations in this work are also relevant for exoplanets that are Jupiter- or
Saturn-like. In Fig. 8.2.1, the calculated equilibrium temperatures of 176 exoplanets
with masses between 0.1 Mj and 10 Mj are shown. The data might be biased to-

wards hotter exoplanets because the detection of planets by their transit in front of
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their host star favours smaller semi-major axes [280]. Nevertheless, a few exoplanets
with equilibrium temperatures around 200 K are known. Hydrogen-helium demixing
could occur on these planets, if their compositions are close to Jupiter and Saturn.
In the future, more exoplanets will be discovered by new missions such as TESS [13]
or PLATO [14]. Additionally, it is absolutely necessary that a Saturn entry probe
is planned that measures the composition of Saturn similarly to the Galileo entry
probe for Jupiter. The uncertainties of the remote observations by the Voyager and
Cassini missions are too large to calculate the precise He abundance. Furthermore,
information on the neon and argon abundance would be beneficial since these ele-
ments have been argued to be a tracer of H-He demixing.

Other interesting questions concerning the miscibility of H and He are: how do
helium-rich droplets form in the interior of giant planets? How large are these
droplets and what are the time scales on which they sink towards the core? Do
they dissolve again before they reach the core? The formation of droplets is in gen-
eral described by nucleation theory [281, 282| and first estimates to these questions
have been given by Piistow [283| under strongly simplifying assumptions. However,
more accurate descriptions of these processes are needed in order to understand the

physics of planetary interiors and evolution models.
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Appendix A

Derivations

A.1 Thermodynamic integration formula for p, T

The derivation of Eq. (2.6.2) is straightforward and similar to the derivation of
Eq. (2.6.1), which is available in Ref. [262].
Starting from the definition of the Gibbs free energy, Eq. (2.5.2), the entropy can

be written as

S(p, T) = U“’T’T) + %V(p, T) - G@T’T). (A.1.1)

We use the fact that the difference of %’T) to a reference state G@TL(;TO) can be

written as a line integral

p.T
G(?T) - G(p%’)TO) - / d%, (A.1.2)
po,To
and insert this into Eq. (A.1.1), which yields
p.T
S(p,T) = U(Z;T) + %V(p, T) - / dG(?ﬂ T (A.1.3)
po,To

G(po,T,
where ¢ = ——(pz(i’ 0)
0

. Using a suitable map [262], the line integral can be split into

paths of constant pressure and paths of constant temperature, where

p,T P T
G(pu T) / a G(p/7T0> / / 8 G(p7T,) /
7 — | =17 T". Al4
/ e w\~n ), "7\ )¢ (A-14)
po,To Po To
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w.r.t. pressure and temperature can be evaluated when

The derivatives of _G(%T)

using the fundamental thermodynamic relation dG = —SdT + Vdp as follows:

op T ), T o
d (G(p,T) G(p,T) , 10G(p,T) Up,T)+pV(p,T)
T ( T > - T Y7o T e (A.1.6)

Inserting these equations into Eq. (A.1.3) one arrives at

Ulp,T)+pV(p,T) _/pdp, Vi, T

Slp,T) = T T

Po

T

Ulp, T Vip, T’

+/dT/ <p7 );If <p7 )+C, (A17)
To

which is Eq. (2.6.2).

A.2 Reduced coupling-constant integration

The series expansion centered around g of Eq. (2.6.22) can be generally expressed

/dAZ = (%)AO (A= Xo)". (A.2.1)

The derivatives of F/(A) w.r.t. A have to be calculated similar to Eq. (2.6.28), using
the definitions of () and the ensemble average. The first derivative has already
been derived in Eq. (2.6.28), where

32_9) _ <3(V9_(AA)>A_ (A.2.2)
The second derivative is
82;(3) _ (% <3‘g_<AA>>A7 (A.2.3)
_ %&)\) / hci"]“vciﬁ! <5‘g§\>‘)) A, (A.2.4)
) ﬁ<a(vagx)> <agix)>+<a2€;gx>> —ﬁ<<ag—(£))2>(A-2-5)
= BV =W)) - (h-W)’}, (4.2.6)
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where the second term in Eq. (A.2.5) is zero because a linear combination of the
Hamiltonians in Eq. (2.6.18) has been used. Deriving higher order terms is cumber-

some. The following quantity is introduced to facilitate the notation:
VNN \" m
o= ((Z)N — vy (A27)
oA N

Higher order derivatives of F(\) w.r.t. A can be expressed as derivatives of C!,

which themselves can be expressed through CJ*:

aC!

SL o= s(ci-ay, (A:28)
1

R (e ) (A29)
1

aa% = B(CIC3 —C). (A.2.10)

Expressing Eq. (A.2.6) using these quantities results in

I?F () 0
% = 50} = B(C} — Cy). (A.2.11)
The third and fourth derivatives are
>PF 2 1,1 1 3
a8 =P (=3C1Cy + C5 +2C7) , (A.2.12)
and
I'F 3 2 1 2 11 4 1
o7 =B (—12C7Cy 4 3C3 + 4C1Cy + 6CF — Cy) (A.2.13)

respectively. These expressions have been used to obtain the Taylor series up to
third order in A (which requires the fourth derivative). However, no systematic
convergence could be obtained for the quadratic and cubic term. This might be due
to the fact that higher order moments of (V; — Vj) require much better statistics and
thus much longer simulations to converge. The convergence of the higher moments
has not been systematically checked because simulations using the standard CCI
approach have been used during this thesis anyway. Still, this open question will be

addressed in future work.
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