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Abstract

The general concept of adaptive control originates from an intuitive and promising idea
for the control of plants with uncertain or even changing parameters. Instead of designing
a robust controller that accounts for parameter uncertainties of the plant, the parameters
of the plant or the controller are identified online. Hence, the controller can be adjusted
during operation in order to permanently achieve a predefined closed-loop performance.
After the first introduction of adaptive control, it became very popular in the 1960s in
flight control research. However, unexpected difficulties such as the lack of robustness
of the applied algorithms prevented acceptance of adaptive methods in industry. Today
extensions and modifications exist which make classical adaptive algorithms applicable
to systems that suffer from typical practical issues. Yet, some of these extensions only
provide unsatisfactory solutions for industrial control challenges in terms of performance.
Input saturation of the plant is a common challenge which always plays a very important
role when controlling technical systems with high-performance requirements.
In this work, a new method for adaptive control of plants with input saturation is pre-
sented. The new anti-windup scheme can be shown to result in bounded closed-loop states
under certain conditions on the plant and the initial closed-loop states. As an improve-
ment in comparison to existing methods in adaptive control, a new degree of freedom
is introduced in the control scheme. It allows to improve the closed-loop response when
actually encountering input saturation without changing the closed-loop performance for
unconstrained inputs. Besides the step-by-step introduction of the new adaptive anti-
windup scheme for state-feedback as well as for output-feedback, a mathematical analysis
of its properties is given and simulation examples are shown in order to present the ca-
pabilities of the method to improve the closed-loop performance. Furthermore, numerous
remarks and guidelines are stated and verified by simulations in order to reduce the initial
effort for the application of the introduced method.
Finally, the new method is applied to a helicopter benchmark experiment and the position
control of an electronic throttle plate. The results of these experiments confirm the
simulation results and demonstrate the capabilities of the introduced method as well as
its applicability to real-world plants. In addition, the experimental results point out the
general benefits of adaptive control algorithms for the control of uncertain plants and for
the automatic tuning of controller parameters.
ADAPTIVE CONTROL, SELF TUNING, AUTOMATIC TUNING, INPUT SATURA-
TION, INPUT CONSTRAINTS
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Zusammenfassung

Das grundlegende Konzept der adaptiven Regelung entstammt einer intuitiven und vielver-
sprechenden Idee für die Regelung von Strecken mit unsicheren oder veränderlichen Pa-
rametern. Anstatt einen Regler robust gegen Parameterunsicherheiten auszulegen, werden
die Regler- oder Streckenparameter während des Betriebs identifiziert. Der Regler passt
sich somit stetig an sich ändernde Bedingungen an, um permanent eine vorher definierte
Regelgüte des geschlossenen Regelkreises zu erreichen.
Nach der ersten Vorstellung adaptiver Regleralgorithmen wurden diese in den 1960er
Jahren vielfach in der Forschung zur Flugregelung untersucht. Unerwartete Schwierigkei-
ten und fehlende Robustheit der angewendeten Algorithmen führten jedoch dazu, dass
sich adaptive Verfahren nicht in industriellen Anwendungen etablierten. Noch immer ist
die adaptive Regelung in der Industrie nur selten zu finden, was nicht zuletzt auf den
hohen Aufwand bei dessen Anwendung zurückzuführen ist. Dieser resultiert unter an-
derem aus den Erweiterungen der Standardalgorithmen, die bei der Anwendung in realen
Systemen notwendig werden und eine gute Systemkenntnis der Regelstrecke voraussetzen.
Zudem stellen einige dieser Erweiterungen nur unzureichende Lösungen für übliche indus-
trielle Herausforderungen im Hinblick auf die Regelgüte dar. Eine Stellgrößenbegrenzung
der Regelstrecke ist eine häufig auftretende Herausforderung, die Erweiterungen der Al-
gorithmen benötigt und bei allen technischen Systemen mit hohen Anforderungen an die
Regelung eine wichtige Rolle spielt.
Diese Arbeit präsentiert eine neue Methode für die adaptive Regelung von Strecken
mit Stellgrößenbegrenzung. Für das neue anti-windup Verfahren wird gezeigt, dass die
Zustände des geschlossenen Regelkreises begrenzt bleiben, wenn dessen initiale Werte
und die Regelstrecke bestimmte Bedingungen erfüllen. Eine Verbesserung im Vergleich
zu existierenden Methoden wird durch die Einführung eines zusätzlichen Freiheitsgrades
erzielt. Dieser erlaubt die Verbesserung der Regelgüte des geschlossenen Regelkreises
wenn das Eingangssignal sich in der Limitierung befindet, ohne die Regelgüte bei einem
unbeschränkten Eingangssignal zu verändern. Neben einer Schritt für Schritt Einführung
des neuen adaptiven anti-windup Verfahrens für Zustandsrückführung als auch für Aus-
gangsrückführung und einer mathematischen Analyse von dessen Eigenschaften, wird die
verbesserte erreichbare Regelgüte anhand von Simulationsbeispielen gezeigt. Um den
Aufwand für die initiale Anwendung der neuen Methode zu senken, sind zudem zahlreiche
Hinweise und Richtlinien für dessen Verwendung genannt, die an Simulationsbeispielen
verifiziert werden.
Zum Abschluss wird die neue Methode auf ein Helikopter Benchmark Experiment und auf
die Positionsregelung einer elektronischen Drosselklappe angewendet. Die Ergebnisse der
Experimente bestätigen die Simulationsergebnisse und zeigen die Vorteile und den Nutzen
der neuen Methode sowie ihre Anwendbarkeit auf reale Strecken. Weiterhin heben die
Ergebnisse die grundsätzlichen Vorteile und den Nutzen adaptiver Regelalgorithmen für
Systeme mit unsicheren Parametern sowie für die automatische Reglereinstellung hervor.
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Nomenclature

In the following list, several symbols and abbreviations are described that are frequently
used throughout this work. Symbols that are used only locally or that have special
contextual meanings are not listed here. However, all symbols in this work are properly
explained when introduced.
Since this work deals with adaptive control algorithms, estimated parameters are used
frequently. Their denotation differs for parameters of the plant and parameters of the
control algorithms. The vector of real parameters of the plant model is usually denoted
by θp and its estimation by θ̂p. In difference, the estimated controller parameters θc
are not highlighted by additional symbols. Instead, the ideal values of the controller
parameter vector θ∗

c , which lead to the desired closed-loop behavior for a given plant,
are marked with the star as subscript. In cases where confusion between the estimations
and the real or ideal parameters could easily occur, the time dependence of the estimated
parameters is explicitly stated. The estimation errors θ̂p(t)−θp and θc(t)−θ∗

c are denoted
by a tilde, i.e. θ̃p = θ̂p(t) − θp and θ̃c = θc(t) − θ∗

c , respectively.
Single entries of a vector, e.g. θ, are denoted by θ1, θ2, . . . and so on. If a vector is
denoted with an additional subscript, e.g. θp, the numbering of its entries is separated
by a comma: θp,1, θp,2, . . . and so on. Hence, θp1 does not denote an entry of the vector
θp. Similar to the vector, the coefficients of polynomials, e.g. Z(s), are denoted as
Z(s) = sn + zn−1 sn−1 + · · · + z1 s + z0. Note that small letters are used for the coefficients
of polynomials.

Abbreviations

AMRAW Adaptive model recovery anti-windup

APPC Adaptive pole placement control

CRM Closed-loop reference model

KAAW Anti-windup by Kárason and Annaswamy

MIMO Multiple inputs multiple outputs

MRAC Model reference adaptive control

MRAW Model recovery anti-windup



vi Nomenclature

PE Persistent excitation / persistently exciting

SISO Single input single output

List of frequently used symbols

∆u Effect of saturation represented as an input disturbance

λ Input gain of a plant

S Set of feasible plant parameters

φp Vector of signals of the estimated plant model

θ Vector of parameters of the control law in output-feedback MRAC

θaw Vector of parameters of the anti-windup controller for
output-feedback AMRAW

θnl Vector of parameters of the matched uncertainty θT
nl fnl(.)

θp Vector of parameters of a plant

Aawr Desired anti-windup dynamics

Ad Desired closed-loop denominator for indirect APPC

Ap System matrix of a plant

Aref System matrix of the reference model

Bp Input matrix of a plant

Bref Input matrix of the reference model

c Reference gain for output-feedback MRAC

Cp Output matrix of a plant

Cref Output matrix of the reference model

D , d
dt Differential operator

e Tracking error of the state

e2 Auxiliary error for output-feedback MRAC

ey Tracking error of the output

fnl(·) Vector of arbitrary known nonlinear functions depending on the
plant state or the plant output

In×n Identity matrix of order n



Nomenclature vii

k∆ Estimated parameter such that Bref k∗
∆ = Bp λ

Kaw Gain on state of the anti-windup controller for state-feedback AM-
RAW

ka Auxiliary state as estimation for 1
c

for output-feedback MRAC

kp High frequency gain of a plant

kr Reference gain for state-feedback MRAC

Kx State gain for state-feedback MRAC

Lref Gain of the closed-loop reference model

M(D), P (D), L(D) Controller polynomials of indirect APPC

n Degree of nominator polynomial of a plant

n Order of a plant

n∗ Relative degree of a plant

P Solution of Lyapunov equation

Pls Covariance matrix of least-squares algorithm

Q(D) Internal model of the reference signal

r Reference signal for the closed-loop system

Rp Denominator polynomial of a plant

u Input of a plant and output of a controller

uaw Output of the anti-windup controller

ulim Saturated plant input

V Lyapunov function (candidate)

w1, w2 States of the the control law for output-feedback MRAC

x State of a system specified by an additional subscript

xaw State of the anti-windup scheme

y Output of a system, specified by an additional subscript

yaw Output of the anti-windup plant model

Zp Numerator polynomial of a plant
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Subscripts

aw Anti-Windup Scheme

p Plant

ref Reference Model



Chapter 1

Introduction

The degree of automation in industrial systems as well as in technical consumer goods
is increasing quickly [79, 80]. Since automation always involves automatic control, this
trend comes along with an increasing demand for solutions to control engineering tasks.
Not only the quantity of these tasks is growing but also their diversity. For example in
automotive industries the automatic position control of the electronic throttle plate is
a long known control task [35, 127], which still affects all modern gasoline engines and
has been approached with many different control algorithms (see e.g. [16, 27, 128, 137]).
Recent challenges for automotive control engineers are given e.g. by the control of electric
valve timing systems, parking control algorithms, and the control of autonomous driving
vehicles, which require different and partially novel control approaches [65, 97, 135].
In order to handle the increasing demand for solutions to control tasks, the applied control
algorithms have to work reliably with a desired performance and need to be applicable
with a reasonable effort. In the context of industrial control, e.g. in automotive industry,
the notions of performance, reliability, and effort should be understood as follows:

Performance Performance requirements in industry are usually stated in time-domain
and make demands on the rise-time, the settling-time and maximal overshoots for
desired setpoint changes of the plant output. Furthermore, the offset during con-
stant setpoints needs to be as small as possible. A good performance can therefore
be achieved if set point changes can be accomplished as quickly as possible, with
reasonable small overshoots, and zero steady-state offsets [81, 142, 146].

Reliability A controlled system works reliable1 if it works for its whole lifetime with
the desired performance. Therefore, the applied controller has to be able to handle a
changing behavior of the system, which might arise due to aging, changing environ-
ments, and small defects. Moreover, the control algorithm has to work for several
instances of the same system, which potentially differ due to e.g. poor production
quality or production tolerances.

1Note that this property is often called robustness in control theory. However, the notion of robustness
will be used in a different context in this work.
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Effort A control algorithm for practical problems should be applicable with a rea-
sonable effort. This requires that it is straight forward to understand and that it
can deal with common practical control challenges. The effort further decreases if
the tuning of the controller can be done in an intuitive way and without the expert
knowledge of a control engineer. In addition, a reasonable application effort involves
the feasibility of the implementation of the control algorithm on an electronic control
unit, that is common for the particular system.

When addressing the requirements of performance and reliability, methods from the field
of adaptive control are highly appealing. The basic idea of adaptive control algorithms is
to include a self-adjusting mechanism into the controller. This mechanism is intended to
adapt the controller to uncertain or even changing conditions in order to achieve a constant
closed-loop performance. Loosely speaking, adaptive controllers adjust themselves such
that a desired performance can be achieved for an uncertain or even changing behavior of
the controlled system. This is done by using the plant feedback not only to compute the
controlled input like in constant controllers such as PID-controllers or controllers from
the field of robust control but also utilize to the information in the feedback as a basis for
a parameter adaptation of the control algorithms. This makes such algorithms especially
useful for

Control of Systems with Uncertain Parameters Adaptive control methods per-
manently adjust the controller parameters for the purpose of achieving a desired
closed-loop performance even if the plant parameters are uncertain. Hence, their
reliability is imposed by the adjustment of the controller as a reaction to an uncertain
or changing plant behavior. Traditionally, the application to flight control, as e.g.
in [94, 134, 162], is the main application example for adaptive control. Additional
applications can be found e.g. for robotics and automotive plants [23, 103, 131].

Automatic Tuning Automatic tuning applications use adaptive methods to tune con-
troller parameters in limited time periods. That means the controller parameters
are held constant as long as the closed-loop performance meets its requirements.
Once the system behavior becomes unacceptable, the adaptive algorithm is started
to update the controller parameters automatically. Examples of automatic tun-
ing methods, which are highly relevant for industrial use, can be found e.g. in
[14, 129, 169].

Despite their very attracting idea, numerous application possibilities, and the fact that
first adaptive controllers have already been introduced more than 60 years ago, such
methods are rarely used in industries [17]. Considering the potential benefits of adap-
tive control, this lack of application is unexpected. However, applying adaptive control
algorithms to real-world systems involves high effort due to their complexity and due to
necessary extensions regarding practical issues [31]. For example, neglected system dy-
namics in the plant model, external disturbances, and measurement noise require special
extensions of basic adaptive control methods in order to guarantee closed-loop stability
[60, 112, 136]. Evaluation of the right situation and the right way to use such extensions
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requires extensive system knowledge in the first place [31]. Moreover, it also involves the
knowledge about the properties of the basic adaptive methods, about the properties of
its possible extensions, and about the way in which these extensions affect the controlled
system.
An issue that always needs to be considered when controlling real technical plants is an
input saturation, i.e. a limited amplitude of the plant input. Since the input of any tech-
nical system is limited, this issue is highly relevant for control applications in industrial
systems. An input saturation becomes even more problematic in adaptively controlled
systems compared to closed-loop systems with a constant controller due to the additional
parameter adjustments. Especially with high-performance requirements regarding the
settling time, the controlled input will encounter its limits frequently so that the input
saturation needs to be treated with care in the control design. As a first effect of input
saturation, the reduced available input amplitude might degrade the closed-loop perfor-
mance. Hence, performance requirements that are feasible for unsaturated systems might
not be realizable anymore if saturation is encountered. Secondly, the reduced input ampli-
tude might lead to situations, where an open-loop unstable system can not be stabilized
anymore. The presence of input saturation, therefore, requires the examination of closed-
loop stability as well as its performance and reliability. These aspects are treated in this
work for adaptive systems by introducing a new adaptive anti-windup scheme.

Main Contribution

The introduction of adaptive control in the 1950s came with some interesting, promising
and appealing ideas. However, since that time a lot of theoretical and practical research
on the topic of adaptive systems has been necessary. This research mainly regarded the
stability and the robustness of adaptive systems in the presence of issues that might arise
in real-world applications. The results of this research allow a safe application of modern
adaptive control algorithms in real-world systems. Some of these results are presented in
Chapter 2 and Chapter 3 of this work.
Input saturation is one of the challenges a control engineer has to deal with when consid-
ering real technical systems. For adaptive systems, the issue of input saturation becomes
even more challenging due to the parameter adjustments of the controller. Some of the
aforementioned theoretical and practical research has already been dealing with several
different approaches for input saturated adaptive systems, which are shortly summarized
in Chapter 3. However, these approaches mostly only aim to preserve or establish sta-
bility of the closed-loop system. The closed-loop performance, which is very important
for industrial applications, has so far not been examined for existing adaptive methods
regarding input saturation. This is where the main contribution of this work begins.
This work deals with the development of a new adaptive anti-windup method that allows
for performance considerations in adaptively controlled systems. The construction of the
new method is based on standard adaptive control algorithms. Therefore, many of the
properties and practical considerations of the standard methods do also apply for the new
method presented in this work. The derivation of the new anti-windup scheme in Chapter



4

4 is explicitly done by a combination of two existing anti-windup concepts. Since one of
these concepts originally stems from control theory for plants with known parameters,
it is brought into a form suitable for the adaptive framework. This form has first been
presented by the author of this work. The derivation of the new method is completed by
the choice of a suitable control law and, equally important, by the development of suitable
parameter estimation schemes. For the resulting closed-loop systems stability results are
established by rigorous analysis of the closed-loop equations, wherever such results have
been possible to establish for the author. These are verified and augmented by results
from simulation examples.
The new method is based on an extension of the basic adaptive control algorithms, and
hence leads to a higher effort when it comes to the application of the resulting control
scheme. Since the application effort has been mentioned as an important point for the
applicability of control methods in industrial systems, the second part of the contribution
of this work deals with the reduction of the application effort. For this purpose, remarks
about the newly introduced adaptive anti-windup scheme are given in Chapter 5. Some of
the remarks comment on the stability of the closed-loop and give hints for the implemen-
tation of the method. However, the majority of the remarks are meant to give the control
engineer an interpretation of how the new methods work and how their tuning parameters
can be chosen to achieve an improved closed-loop behavior when actually encountering
input saturation.
As the last part of the contribution of this work, simulations and real-world experiments
have been carried out with the new adaptive anti-windup methods. The results of the
simulations and the experiments do not only verify the effectiveness of the newly developed
methods, but they also illustrate the benefits of adaptive control even in the presence of
input saturation. Moreover, the presentation of the simulations and experiments is meant
to further facilitate the transfer of the presented methods from theory to practical usage.

Chapter Outline

Chapter 2 serves as an introduction to adaptive control. Firstly, the basic concepts
of adaptive control are introduced and some references to the most familiar realizations
of these concepts are presented without mathematical derivations. Moreover, some refer-
ences to topics of active research on adaptive control are given. Subsequently, the methods
of model reference adaptive control (MRAC) for state-feedback and for output-feedback
as well as the method of adaptive pole placement control (APPC) are presented as ex-
plicit realizations of the adaptive control concept. In order to reduce the application effort
of these methods for the reader, all the necessary equations are summed up and issues
that might arise during implementation are discussed in several remarks. Furthermore,
some properties of the aforementioned adaptive control schemes are illustrated by simu-
lation examples. Finally, some extensions are introduced which address practical issues
of adaptive control aside from input saturation. All presented methods in this chapter
are adopted from the literature and form the basis for the derivations in the following
chapters.
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Chapter 3 focuses on the issues that arise if the input amplitude in adaptive systems
saturates. Based on several simulations, different effects of a limited input amplitude on
the closed-loop system are illustrated and explained. As a first basis for the derivation of a
new adaptive anti-windup scheme, the idea of the model-based method of model recovery
anti-windup (MRAW) is presented for systems with known parameters. The transition to
plants with uncertain parameters is given afterwards by an overview of existing adaptive
control methods for input saturated plants from the literature. Finally, the method from
[75] is presented in detail, since besides the basic adaptive control methods from Chapter
2 and MRAW it forms the third basis for the derivations in the subsequent chapter.
In Chapter 4 the main contribution of this work is presented. Based on the methods
introduced in Chapter 2 and in Chapter 3, a new adaptive anti-windup scheme is de-
rived. The derivations are done in several consecutive steps, which introduce the different
concepts of the new scheme separately. For the anti-windup schemes based on MRAC
a rigorous stability analysis is carried out, which verifies boundedness of the closed-loop
signals under certain conditions on its initial states. Additionally, for scalar plants a
performance result is derived, which allows for a systematic tuning of the anti-windup
scheme, such that the influence of the saturation in the closed-loop is reduced. Parts of
the results of Chapter 4 have already been published by the author in [152–154].
In Chapter 5 the results from the previous chapter are examined from an engineering
point of view. Questions and issues that might arise when considering the application
of the newly introduced methods are discussed in several remarks. These remarks are
partially based on the examination of the mathematical results of Chapter 4. Other parts
of the remarks are based on simulation examples, whose results are shown subsequently to
the remarks. The simulation results do not only verify stability of the proposed adaptive
control schemes, but also show their capability of influencing the closed-loop performance
during saturation of the input.
In Chapter 6 the new adaptive anti-windup scheme is applied to real-world experimental
applications. State-feedback model reference adaptive control together with the new anti-
windup scheme is applied to a helicopter benchmark experiment. Several results are
shown, which further verify the results of Chapter 4 and 5. Moreover, the experiments
illustrate the benefits of adaptive control for plants with uncertain or changing parameters
even in the presence of a saturation on the input amplitude. In the second part of chapter
6 the method of adaptive pole placement control with the new anti-windup scheme is
applied to an electronic throttle plate, which is a typical plant in automotive industries.
The presented results show that the new method allows for a fast automatic tuning
without the need of a special excitation of the system and without the need to avoid
saturation of the input amplitude.
In Chapter 7 a concluding summary and an outline of future work is given.





Chapter 2

Presentation of Selected Adaptive
Control Methods

It has often been tried in the literature to uniformly define the field of adaptive control
(see e.g. [11, 13, 116]). The fact that none of the proposed definitions has established
itself shows that it is very difficult to express all aspects of adaptive control in a single
definition. Instead of making another attempt to define adaptive control in this work,
a short overview of some of its basic concepts is given in Section 2.1. Selected methods
of adaptive control, that serve as a basis for subsequent examinations in this work, are
described in more detail afterwards in Section 2.2.

2.1 Basic Concepts of Adaptive Control

In order to present some basic concepts of adaptive control, the general plant representa-
tion

ẋp(t) = fp(xp(t), uc(t), θp),
yp(t) = gp(xp(t), uc(t), θp),

(2.1)

is considered, where the dynamic of the plant state ẋp is a function of a controlled input
uc, the plant state xp, and the uncertain plant parameters θp. Also the measurable plant
output yp is a function of the aforementioned variables. Note that no time dependence is
stated for the plant parameters, since they are usually supposed to be constant or quasi-
stationary for adaptive control. A general assumption for adaptive control can be stated
similar to [87] as follows: There exists a controller with a known structure

ẋctr(t) = fc(xctr(t), yp(t), r(t), θc(t)),
uc(t) = gc(xctr(t), yp(t), r(t), θc(t)),

(2.2)

where xctr(t) and θc(t) are the controller state and the controller parameters, respectively,
that can achieve the desired closed-loop behavior for any value of the plant parameters
θp. After defining a controller structure, which is equivalent to an explicit definition of fc
and gc in (2.2), it remains to find a suitable way to adapt the controller parameters θc(t)
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PlantController ypuc
r

Parameter
Computation

Plant Parameter
Estimation

θc(t)

θ̂p(t)

Figure 2.1: Indirect adaptive control scheme.

such that the desired closed-loop behavior will be achieved. Hence, the way the controller
is updated differentiates the several adaptive control methods. Common approaches are
shortly presented below.
The indirect methods represent the probably most intuitive approach for adaptive control.
According to [13, 116, 140] it has been firstly presented by Kalman in 1958. Indirect adap-
tive controllers combine a control law with a recursive parameter estimation scheme for
the plant. The controller parameters can, therefore, be computed during operation based
on the estimated plant parameters [13, 60, 87]. Hence, the desired closed-loop behavior
is implicitly incorporated in the computation methods for θc. This approach is often
referred to as certainty equivalence principle because the estimated plant parameters are
used as if they were known to be the true plant parameters. The indirect approach basi-
cally allows combining arbitrary controller structures with arbitrary recursive parameter
estimation schemes, as long as a computation of the controller parameters is feasible dur-
ing operation. However, closed-loop stability has so far only been guaranteed for certain
combinations of controller structures and estimation schemes, which are presented e.g. in
[24, 34, 56, 83]. A schematic illustration of indirect adaptive control is shown in Figure
2.1, where θ̂p(t) denotes the estimation of the plant parameters θp. In Section 2.2.3 an
indirect adaptive controller is presented in more detail.
Another concept of adaptive control is given by the direct adaptive control methods,
which are based on direct estimations of the controller parameters and often require the
desired closed-loop performance to be specified in form of a reference model. The idea of
a reference model has first been introduced in [161] and became popular in flight control
in the 1960s [60, 116, 147]. However, the flight accident in 1967 [33] showed that stability
and robustness of adaptive control have not been well understood at that time. Modern
model reference adaptive control (MRAC) is based on rigorous stability analysis, which
yields stable parameter estimation laws and a stable closed-loop system. In addition,
the issue of robustness in adaptive control can be addressed with several extensions of
the basic methods. Some important results on stability and robustness of MRAC can
be found in [106, 108, 113, 114, 116] and [58, 60, 112], respectively. Moreover, recent
results regarding performance and stability show that MRAC is still a topic of active
research [7, 43, 44, 53, 54, 90, 148]. For discrete-time systems the implicit self-tuning
regulator [12] gained a lot of interest and is closely related to MRAC [13, 88]. Nonlinear
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Figure 2.2: Direct adaptive control scheme: MRAC.

direct adaptive control methods are often based on adaptive backstepping or on adaptive
feedback linearization as e.g. in [82, 85, 139]. A schematic illustration of model reference
adaptive control is shown in Figure 2.2. MRAC schemes for state-feedback and output-
feedback will be presented in more detail in Section 2.2.1 and 2.2.2, respectively.
Since the first introduction of the aforementioned ideas, different approaches have been
developed in the framework of adaptive control. Some of them are based on the indirect
and direct adaptive control methods and some of them have introduced new concepts.
The method of composite model reference adaptive control combines indirect and direct
adaptive control [30, 91, 144]. It has been demonstrated without a formal proof, that
this method leads to improved transient performance. Note that in the framework of
adaptive control, transient performance means the closed-loop behavior during parameter
adaptation. Instead of updating the parameters of a controller, the controlled input is
directly adjusted by the methods of iterative learning control, repetitive control, and run
to run control based on a desired closed-loop trajectory [10, 138, 141]. However, these
methods usually require the desired trajectories of a process to be repeated periodically.
Other approaches have combined switching and adaptive control [102, 109–111]. Their
idea is based on multiple models

˙̂xpi(t) = fp
(
x̂pi(t), uc(t), θ̂pi

)
,

ŷpi(t) = gp
(
x̂pi(t), uc(t), θ̂pi

)
,

of the plant, where each model is based on a different estimation θ̂pi of the plant param-
eters θp. Therefore, this model is referred to as multiple model adaptive control. The
model parameters θpi are distributed in the admissible set of the plant parameters θ̂p
and for each of the models a robust controller

ẋctri(t) = fc(xctri(t), yp(t), r(t), θci),
uci(t) = gc(xctri(t), yp(t), r(t), θci),
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with constant plant parameters θci is designed that fulfills the performance specifications,
if it is applied to the respective model. During operation, all of the model states are
updated so that for each model an error ei = ypi − yp can be computed permanently.
Based on this error a so-called supervisor decides which model is the best representation of
the real process. The respective controller is then used to close the loop. Research about
extensions of this method led to mixing of different control signals [86], a combination
of multiple model adaptive control with direct or indirect adaptive control, and the use
of multiple models to improve parameter estimation [117, 118]. An overview of multiple
model adaptive control can be found in [50].
The effort of applying multiple model adaptive control is quite high, in the sense that it
requires high implementation costs as well as high computational costs. The methods of
iterative learning control, repetitive control, and run to run control require a process with
repeated desired trajectories, which strongly restricts its applications to special plants. For
the above-mentioned reasons, the recent advances in MRAC, and its wide applicability, the
method of model reference adaptive control is further examined in this work. In addition,
an indirect method is part of the following examinations because it represents an easily
applicable and understandable adaptive control method. Moreover, indirect methods are
well suited for automatic tuning applications. Note that for the sake of simplicity, time
dependencies of signals and variables are only stated in this work, where omitting them
could lead to confusion.

2.2 Selected Adaptive Control Methods

In the following Sections 2.2.1-2.2.3, the basic methods of MRAC for state-feedback,
MRAC for output-feedback and adaptive pole placement control (APPC) are presented.
Direct versions of MRAC are introduced, while the presented APPC scheme is an indirect
adaptive control scheme. In order to unify the presentation, the aforementioned control
schemes are introduced in five steps. After a short summary of the control scheme, an
explicit structure for the plant (2.1) is defined in the first step and it is shown how the
desired performance of the closed-loop system can be specified. In the second step, it is
assumed that all plant parameters are known. Based on this assumption the parameters of
an explicit constant control law are specified, such that the desired closed-loop properties
are achieved. The constant control law serves as the basis to present an adaptive control
scheme in the third step, where the parameter update laws for an adaptive version of the
control law are presented. In a fourth step a summary of the respective adaptive control
method is given, that allows a quick comparison of the different schemes. In addition,
some questions and issues, that might arise during implementation, are discussed in several
remarks. Finally, simulation examples are shown in the fifth step, in order to point out
some characteristics of the control schemes.
After the introduction of the basic adaptive control methods, extensions of them are pre-
sented in Sections 2.2.4 and 2.2.5, which address the transient performance and robustness
of adaptive systems. If adaptive control methods are applied to real technical processes,
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considering the extensions for robustness is absolutely necessary in order to guarantee
stability of the closed-loop system.

2.2.1 Model Reference Adaptive Control for State-Feedback

In this section, the direct method of model reference adaptive control for state-feedback
plants is presented. In order to force the closed-loop system to follow a desired reference
model, a basic control structure with a gain on each state of the plant, a gain on the
reference signal, and a direct compensation of matched uncertainties are introduced. Since
a direct version of MRAC is presented here, the parameters of the controller are estimated
during operation. The corresponding update laws follow from a stability analysis of the
adaptive closed-loop system. Direct MRAC for state-feedback can be found in slightly
different versions in the literature [11, 56, 60, 116]. The following presentation is done in
accordance with [94].

Plant Structure and Performance Specifications

The plant
Gnl : ẋp = Ap xp + Bp λ

(
u + θT

nl fnl(xp)
)

(2.3)

is considered, where Ap ∈ Rn×n, λ > 0 ∈ R, and θnl ∈ Rl are unknown but constant. The
input vector Bp ∈ Rn is known and the vector fnl(xp) ∈ Rl contains known nonlinear
functions, that depend on the system state and that are bounded for bounded xp:

fnl(xp) =
[
fnl,1(xp) fnl,2(xp) . . . fnl,l(xp)

]T
.

Thus, the linear combination θT
nl fnl(xp) represents a matched uncertainty of the system.

The aim of using MRAC, is to force the closed-loop system to follow a given reference
model

Gref : ẋref = Aref xref + Bref r, (2.4)
where the stable matrix Aref ∈ Rn×n and the input vector Bref ∈ Rn are design param-
eters. That means, the desired performance of the closed-loop system can be chosen in
form of a linear time-invariant (LTI) system.

Control Law for known Plant Parameters

Perfect model following, i.e. xref ≡ xp, can be achieved with the ideal control law

u∗ = K∗T
x xp + k∗

r r − θT
nl fnl(xp), (2.5)

if the ideal controller parameters K∗
x ∈ Rn and k∗

r ∈ R satisfy the matching conditions

Ap + Bp λ K∗
x = Aref ,

Bp λ k∗
r = Bref .

(2.6)
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Inserting (2.5) into (2.3) and using the matching conditions (2.6) directly yields the ref-
erence system Gref . Thus, the desired closed-loop behavior can be achieved by a direct
compensation of the matched uncertainty, proper gains on the states, and a proper gain
on the reference signal.

Adaptive Control Law for Unknown Plant Parameters

Since the calculation of the ideal control law (2.5) is only possible for known plant pa-
rameters, an adaptive version of it

u = KT
x (t) xp + kr(t) r − θ̂T

nl(t) fnl(xp), (2.7)

with the estimated parameters Kx(t) and kr(t), and the estimation θ̂nl(t) of θnl is intro-
duced. Note that the time dependency for the estimated parameters is explicitly stated
here in order to clearly distinguish them from the ideal parameters. In order to guarantee
stability of the closed-loop system and to satisfy the performance requirements, suitable
estimation schemes for the controller parameters have to be derived. This can be done
by a stability analysis of the tracking error e = xp − xref .
In order to get rid of the unknown system matrix Ap in the equations of the closed-loop
system, the term Bp λ

(
K∗T

x xp + k∗
r r
)

is added and subtracted to the plant equation
(2.3), which together with the matching conditions in (2.6) yields

ẋp = Aref xp + Bref r + Bp λ
(
u − K∗T

x xp − k∗
r r + θT

nlfnl(xp)
)

. (2.8)

The dynamics of the tracking error can then be obtained by subtracting (2.4) from (2.8)
and inserting the control law (2.7), which results in

ė = Aref e + Bp λ
(

(Kx − K∗
x)T xp + (kr − k∗

r) r −
(
θ̂nl − θnl

)T
fnl(xp)

)
. (2.9)

Introduction of the parameter estimation errors K̃x = Kx(t) − K∗
x, k̃r = kr(t) − k∗

r ,
θ̃nl(t) = θ̂nl − θnl, and the Lyapunov-function candidate

V = eT P e + λ

(
K̃T

x Γ−1
x K̃x + 1

γr

k̃2
r + θ̃T

nl Γ−1
nl θ̃nl

)
, (2.10)

allows a suitable choice of the update laws

˙̃Kx = K̇x = −Γx xp eT P Bp,

˙̃kr = k̇r = −γr r eT P Bp,

˙̃θnl = ˙̂
θnl = Γnl fnl(xp) eT P Bp,

(2.11)

which result in V̇ ≤ 0. Based on this results the follwing theorem can be stated.
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Theorem 2.1. The control law (2.7) with a bounded reference signal r(t) together with
the parameter update laws (2.11) applied to the system Gnl in (2.3) results in a closed-loop
system, that guarantees global asymptotic stability of the tracking error:

lim
t→∞

∥xp(t) − xref(t)∥ = 0.

Moreover, all signals of the closed-loop system are guaranteed to stay bounded.

Proof. A proof of the theorem can be found e.g. in [94] or for slightly different versions
of MRAC in e.g. [60, 116].

Summary and Remarks

The complete control scheme is given by the control law in (2.7), the parameter update
laws in (2.11), and the reference model Gref . Designing a state-feedback MRAC requires
the choice of several design parameters. At first, a stable system Gref has to be defined,
which satisfies the performance requirements of the closed-loop system. In addition, the
state matrices Aref and Bref need to be chosen, such that the matching conditions (2.6)
can be satisfied for known plant parameters. A comment on that is given in Remark
2.2. For the parameter update laws, the gains Γx, γr, and Γnl, as well as the matrix Q,
which determines P , needs to be defined. All of these parameters act as gains on the
parameter updates. Consequently, the designer can choose Q arbitrarily but positive
definite and tune the gains Γx, γr, and Γnl as stated in Remark 2.4. An overview of the
control scheme is given in Table 2.1. Some of the properties of MRAC are illustrated in
Simulation Example 2.1.

Remark 2.1. The input vector Bp of Gnl has been assumed to be known and just an
uncertainty of the input gain λ has been introduced. This is equivalent to the assumption
of a known control direction, as it is also assumed for the MRAC scheme presented in
[60]. A MRAC scheme that does not require this assumption is given in [116], but just
guarantees local stability. Since the assumption of the known control direction is not
restrictive for many technical systems, the MRAC scheme with the stronger stability
result is considered in this work. Other approaches that deal with uncertain control
directions can be found in [99, 120, 165]

Remark 2.2. The matching conditions (2.6) require the structure of Ap to be known.
That means that the position of the uncertain parameters in the Ap-matrix is known,
so that Aref can be chosen such that an ideal gain K∗

x exists. This is equivalent to
the basic assumption of an existing control structure, that can achieve the performance
requirements. For many technical systems that is usually true. However, the matching
conditions restrict the choice of the reference model. A MRAC method for output tracking
with state-feedback that does not require a known structure of the system matrix is given
e.g. in [147].

Remark 2.3. The controller parameters of the introduced MRAC scheme are not guar-
anteed to converge to the ideal values K∗

x , k∗
r and θnl. However, since the asymptotic
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Plant: ẋp = Ap xp + Bp λ
(
u + θT

nl fnl(xp)
)

Reference Model: ẋref = Aref xref + Bref r

Control Law: u = Kx(t)T xp + kr(t) r − θ̂T
nl(t) fnl(xp)

Lyapunov Equation: −Q = AT
ref P + P Aref

Tracking Error: e = xp − xref

Parameter Update: K̇x = −Γx xp eT P Bp

k̇r = −γr r eT P Bp
˙̂
θnl = Γnl fnl(xp) eT P Bp

kr(t)

KT
x (t)

Plant

Reference Model

Parameter Update

r u xp

e

xref

θ̂T
nl(t)

−

fnl(xp)

−

Design Parameters: • Aref and Bref satisfying performance requirements
and (2.6) (see Remark 2.2)

• Q ∈ Rn×n positive definite

• Γx ∈ Rn×n, Γnl ∈ Rl×l positive definite and γr > 0
(see Remark 2.4)

Table 2.1: Summary of state-feedback MRAC.

convergence of the tracking error e to zero is guaranteed, asymptotic convergence of the
parameter errors K̃x, k̃r, and θ̃nl is not required for the control task. If the estimation
of the ideal controller parameters is part of the task, a sufficient excitation of the system
is needed. For parameter estimation and adaptive systems, this involves the notion of
persistent excitation (PE), which is discussed e.g. in [11, 115, 116]. In this context also
the notion of dual control should be mentioned, which addresses the control problem and
the parameter identification in parallel and with the same priority. Dual controllers start
to excite the plant automatically with the controlled input if the uncertainty of the plant
parameters becomes too large [11, 156, 164].
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Remark 2.4. The positive definite gains Γx, Γnl and γr in the Lyapunov function (2.10)
introduce additional degrees of freedom for the parameter update laws (2.11). These gains
can be used as tuning parameters to adjust the convergence speed of the estimations.
However, there does not exist a systematic way to choose these gains. Typical choices
are diagonal matrices with entries that are as high as possible to establish fast parameter
estimation but still small enough to avoid high-frequency oscillations of the closed-loop
system. Such oscillations occur in adaptive systems due to the influence of the parameter
estimations on the controller input. In Section 2.2.4 an extension of the classical MRAC
scheme is presented, which addresses the issue of oscillatory closed-loop behavior.
Simulation Example 2.1. A second order mechanical plant of the form

Gex1 : ẋp =
(

0 1
−k1

m
−d1

m

)
xp +

(
0
b
m

)
(Fin − Fk − Fr) (2.12)

with measurable state xp =
[
xp,1 xp,2

]T
, where xp,1 and xp,2 are the position and the

velocity, respectively, is considered as an example. A schematic picture of the plant is
shown in Figure 2.3. The parameters of Gex1 are given as follows. The mass, the linear

xp,1, xp,2

Fr

m

k1

Fk

d1

Fin

Figure 2.3: Schematic representation of Gex1.

stiffness and the damping are given as m = 1, k1 = 15 and d1 = 1, respectively. The
input gain for the external controlled force Fin takes the value b = 3.7. In addition, a
nonlinear spring with the characteristic Fk = 3 arctan

(
xp,1
10

)
and a quadratic resistance

Fr = 0.4
(

xp,2
15

)2
sign(xp,2), similar to an air resistance, are part of the plant. Hence the

plant description becomes

ẋp =
(

0 1
−15 −1

)
xp +

(
0

3.7

)(
Fin − 3 arctan

(
xp,1

10

)
− 0.4

(
xp,2

15

)2
sign(xp,2)

)

=
(

0 1
−15 −1

)
xp +

(
0

3.7

)⎛⎝Fin +
[
3 0.4

] ⎛⎝ − arctan
(

xp,1
10

)
−
(

xp,2
15

)2
sign(xp,2)

⎞⎠⎞⎠ ,

(2.13)

which can be shown to be open-loop stable. Note that since this is a simulation example
no units are stated for the parameters or the states.
The objective is to control the position xp,1 of the plant with a desired closed-loop
performance chosen as the LTI model

ẋref =
(

0 1
−100 −20

)
xref +

(
0

100

)
r, (2.14)
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which has two poles at -10 and a unit steady state gain for xref,1.
In order to present the capability of MRAC to control an uncertain plant with the desired
performance, the initial controller parameters have been computed with the matching
equation (2.6), based on rough estimations of the plant parameters, which are assumed
to be k̂1 = 30, d̂1 = 3, b̂ = 6.6, F̂k = 6 arctan

(
xp,1
10

)
, and F̂r = 0.2

(
xp,2
15

)2
sign(xp,2). This

leads to the following initially estimated controller parameters and the respective ideal
parameters:

initial parameters ideal parameters

Kx(0) =
(

−10.5105
−2.7027

)
kr(0) = 15.0150

θ̂nl(0) =
(

6.0
0.2

)
K∗

x =
(

−22.9730
−5.1351

)
k∗

r = 27.0270

θnl =
(

3.0
0.4

)

The simulation results shown in Figure 2.4 have been achieved by applying a MRAC
controller as given in Table 2.1 to the plant Gex1 with Q = I2×2, Γx = Γnl = 0.1 I2×2 and
γr = 0.1. As reference signal r a repeated step sequence with an amplitude of 20 has
been provided. For the first 10 seconds of simulation, the parameter adaptation has been
turned off. The closed-loop response with the initial controller parameters can be seen in
the first graph of Figure 2.4.
After starting the adaptation, the closed-loop response quickly changes but does not follow
the reference signal perfectly. The corresponding controlled input signal u is shown in
the second graph. After the start of adaptation, it undergoes some strong high-frequency
oscillations when the reference signal changes. These oscillations occur frequently in
adaptive systems and have been mentioned in Remark 2.4. The third graph in Figure
2.4 shows the system response at the end of adaptation and for one step back and forth
after the adaptation have been turned off at t = 510s. It can be seen, that the closed-
loop system follows the reference signal better, while adaptation is turned on. This is
emphasized by the scaled output tracking error ēy = 30 (xp,1 − xref,1), which is clearly
higher after adaptation has been switched off. This observation confirms Remark 2.3,
because it shows that the tracking error of the adaptive system can be small without the
need of ideal parameters for the direct MRAC controller. It further shows that the tracking
error during adaptation is not necessarily a good indicator for the tracking error after
adaptation, which is important if the presented adaptive controller is used for automatic
tuning purposes. Finally, the fourth graph shows the estimated controller parameters,
which slowly converge to their ideal values. However, the estimated parameters at the
end of simulation

Kx(t = 510s) =
(

−23.932
−5.0467

)
, kr(t = 510s) = 27.916, θ̂nl(t = 510s) =

(
5.3679

−1.6084

)
,

did not reach their ideal value (see Remark 2.3). As mentioned in Remark 2.4, faster
adaptation can be achieved with higher adaptation gains, but will also lead to stronger
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Figure 2.4: Results of Simulation Example 2.1 for MRAC with state-feedback. First and
second graph: System response and controlled input at beginning of adaptation. Third
graph: Closed-loop response and output tracking error after 480s of adaptation. Fourth
graph: Estimations of controller parameters.
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oscillations of the closed-loop as it is shown in Simulation Example 2.4. Applying an
appropriate reference signal which causes a stronger excitation of the closed-loop system
is another way to speed up the parameter estimation. Simulation result with such a
reference signal are shown in Appendix C.

2.2.2 Model Reference Adaptive Control for Output-Feedback

Model reference adaptive control for output-feedback plants basically uses the same prin-
ciple as in the state-feedback case. However, since only the output is available for mea-
surement, a dynamical controller is necessary. Furthermore, different relative degrees
of the plant require different parameter update laws. For relative degrees higher than
one, the stability analysis of the closed-loop system needs to be done separately from the
stability analysis of the parameter estimations, which increases the effort of the design
procedure in comparison to the state-feedback case. The following presentation of MRAC
for output-feedback plants is based on [60] and [116], but can also be found in [140, 147].

Plant Structure and Performance Specifications

The transfer function of a linear plant

Glin : yp = kp
sm + zm−1 sm−1 + · · · + z1 s + z0

sn + rn−1 sn−1 + · · · + r1 s + r0
u = kp

Zp(s)
Rp(s)u (2.15)

is considered under the following assumptions:

A1) The degrees m of Zp(s) and n of Rp(s) are known. Thus, the relative degree
n∗ = n − m ≥ 1 is known.

A2) The numerator polynomial Zp(s) is Hurwitz.

A3) The sign of kp is known.

The state-space representation of the plant Glin is given by
ẋp = Ap xp + Bp u,

yp = Cp xp,
(2.16)

where Ap ∈ Rn×n, Bp ∈ Rn, Cp ∈ R1×n depend on the unknown constant parameters
zi, rj for i = 0, . . . , m − 1 and j = 0, . . . , n − 1. As in the state-feedback case, a desired
closed-loop behavior can be specified by a linear time-invariant (LTI) reference model

Gref : yref = kref
Zref(s)
Rref(s)r, (2.17)

where the monic polynomials Zref(s) and Rref(s) are of order mref = m and nref = n,
respectively. A state-space model of Gref is given by

ẋref = Aref xref + Bref r,

yref = Cref xref .
(2.18)
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Control Law for Known Plant Parameters

If the plant parameters zi, rj for i = 0, . . . , m − 1 and j = 0, . . . , n − 1 are known, ideal
parameters θ∗

1 ∈ Rn−1, θ∗
2 ∈ Rn−1, θ∗

3 ∈ R, and c∗ ∈ R of the control law

u∗ = θ∗T
1

αn−2(s)
Λ(s) u∗ + θ∗T

2
αn−2(s)

Λ(s) yp + θ∗
3 yp + c∗ r (2.19)

with Λ = Zref Λ0 and
αi(s) =

[
si si−1 . . . s 1

]T
(2.20)

can be found such that the closed-loop system is equal to the reference system. The
polynomial Λ0 of degree n−m−1 can be chosen to be an arbitrary Hurwitz polynomial.
Building the closed-loop system of (2.15) and (2.19) yields

yp = c∗ kp Zp Λ2

Λ [(Λ − θ∗T
1 αn−2) Rp − kp Zp (θ∗T

2 αn−2 + θ∗
3 Λ)]r. (2.21)

For perfect model following, i.e. yp ≡ yref , it follows that

c∗ kp Zp Λ2

Λ [(Λ − θ∗T
1 αn−2) Rp − kp Zp (θ∗T

2 αn−2 + θ∗
3 Λ)] = kref

Zref

Rref

has to be satisfied, which requires 2 n − 2 pole-zero cancellations and the controller
parameters have to satisfy the matching conditions

c∗ = kref

kp
(2.22)

and
θ∗T

1 αn−2 Rp + kp Zp
(
θ∗T

2 αn−2 + θ∗
3 Λ
)

= Λ Rp − Zp Λ0 Rref . (2.23)

In [60] it is shown that (2.23) always has a solution, if assumptions A1)-A3) and the
requirements about the reference model Gref are satisfied.
A similar procedure can be done for the state-space representation (2.16) and the state-
space representation of the control law (2.19)

ẇ1 = F w1 + g u,

ẇ2 = F w2 + g y,

u∗ =
(
θ∗T

1 θ∗T
2 θ∗

3 c∗
)⎛⎜⎜⎜⎝

w1
w2
yp
r

⎞⎟⎟⎟⎠ = θ∗T w,

(2.24)

where F, g satisfy (
s I(n−1)×(n−1) − F

)−1
g = αn−2(s)

Λ(s) .



20 2.2 Selected Adaptive Control Methods

The closed-loop system of (2.16) and (2.24) becomes

ẋc =

⎛⎜⎝Ap + Bp θ∗
3 Cp Bp θ∗T

1 Bp θ∗T
2

g θ∗
3 Cp F + g θ∗T

1 g θ∗T
2

g Cp 0 F

⎞⎟⎠
  

Arefc

xc +

⎛⎜⎝Bp
g
0

⎞⎟⎠
  

Bc

c∗ r,

yp =
(
Cp 0 0

)
  

Cc

xc,

(2.25)

which is a nonminimal state-space representation (2 n − 2 pole-zero cancellations, which
follow from the transfer function argumentation) of the reference model Gref , if the con-
troller parameters satisfy (2.22) and (2.23). Therefore (2.25) can be written as a nonmin-
imal state-space representation of the reference model with the state xrefc:

ẋrefc = Arefc xrefc + Brefc r,

yref = Cc xrefc.
(2.26)

Adaptive Control Law for Unknown Plant Parameters

If the plant parameters zi, rj for i = 0, . . . , m − 1 and j = 0, . . . , n − 1 are unknown, an
adaptive version

u = θT
1 (t)αn−2(s)

Λ(s) u + θT
2 (t)αn−2(s)

Λ(s) yp + θ3(t) yp + c(t) r = θT(t) w (2.27)

of (2.19) is used with the time-dependent estimated controller parameters θ1(t), θ2(t),
θ3(t) and c(t). In order to find suitable update laws for the controller parameters, the
tracking error ey = yp − yref needs to be expressed in terms of the parameter errors
θ̃1(t) = θ1(t)−θ∗

1, θ̃2(t) = θ2(t)−θ∗
2, θ̃3(t) = θ3(t)−θ∗

3 and c̃(t) = c(t)− c∗. Similar to the
state-feedback case, this can be achieved by adding and subtracting the term Bp θ∗T w
and substituting u = θT w in (2.16), which yields

ẋc = Arefc xc + Bc
(
θ̃T w + c∗ r

)
= Arefc xc + Brefc

( 1
c∗ θ̃T w + r

)
,

yp = Cc xc,
(2.28)

where Brefc = Bc c∗ follows from (2.21), (2.25), and (2.26). Since Arefc, Brefc and Cc are
matrices for a nonminimal state-space representation of Gref , the state-space equations
for the tracking error ey = yp − yref become

ė = Arefc e + Brefc
1
c∗ θ̃T w,

ey = Cc e,
(2.29)

with the transfer function
ey = Gref(s) 1

c∗ θ̃T w. (2.30)
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A distinction for the cases of relative degree n∗ = 1 and relative degree n∗ ≥ 2 is
necessary to derive parameter update laws. The procedure for n∗ = 1 is straight forward
and allows to establish stability for the parameter estimations and the closed-loop system
with a single stability analysis. For the case of n∗ ≥ 2 a stable adaptive closed-loop
system requires some extensions in comparison to the case n∗ = 1. In this work the
method from [116] is presented. It requires a separate stability analysis of the parameter
estimations and the remaining closed-loop signals, which makes it not as straight forward
to apply as the method for n∗ = 1 .
n∗ = 1:
For relative degree unity, the reference model Gref has to be strictly positive real (SPR).
If in addition the parameter update law is chosen to be

θ̇ = −Γ ey w sign(c∗) (2.31)

the function
V = 1

2

(
eT Pc e + 1

|c∗| θ̃
T Γ−1 θ̃

)
(2.32)

with the gain matrix Γ = ΓT > 0 ∈ R2n×2n can be shown to be a Lyapunov function.
n∗ ≥ 2:
For a relative degree greater than one, a separate stability analysis for the parameter
estimations and the remaining closed-loop signals is necessary. Various approaches exist,
that result in different parameter estimation schemes. However, in the following the
method 1 from [116] is presented.
The tracking error ey is extended by the auxiliary error

e2 =
(
θT GREF − Gref θT

)
w. (2.33)

such that ey2 = ey + ka(t) e2, where ka(t) is an estimation of 1
c∗ and GREF is a diagonal

2 n × 2 n MIMO transfer function, where each nonzero entry is Gref . With the definition
of the parameter error k̃a = ka(t) − 1

c∗ , the extended error can be written as

ey2 = Gref
1
c∗ θ̃T w + k̃a e2 + 1

c∗ e2

= 1
c∗ θT GREF w + k̃a e2 + 1

c∗ Gref θ̃T w − 1
c∗ Gref θT w

= 1
c∗ θT GREF w + k̃a e2 − 1

c∗ Gref θ∗T w.

(2.34)

Addition and subtraction of 1
c∗ θ∗T GREF w yields

ey2 = 1
c∗ θ̃T GREF w + k̃a e2 + 1

c∗ θ∗T GREF w − 1
c∗ Gref θ∗T w  

δ

, (2.35)

where δ decays exponentially due to the stable linear system Gref and the constant vector
θ∗ of the ideal controller parameters. Hence, δ can be neglected in the following, as shown
in detail in [116].
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The extended error ey2 allows the derivation of the parameter update laws

θ̇ = −sign(c∗) Γ ey2 φw

1 + φT
w φw

, (2.36)

k̇a = −γa
ey2 e2

1 + φT
w φw

, (2.37)

with φw = GREF w, which lead to bounded parameter estimations. This can be shown
with the Lyapunov function

V = 1
2

(
1

|c∗| θ̃
T Γ−1 θ̃ + 1

γa
k̃2

a

)
, (2.38)

where the matrix Γ = ΓT > 0 ∈ R2n×2n and the scalar γa > 0 are gains for the parameter
estimations.

For the presented MRAC scheme for output-feedback, the following theorem can be for-
mulated.

Theorem 2.2. The control law (2.27) with a bounded reference signal r(t) together with
the parameter update law (2.31) for n∗ = 1 or update laws (2.36)-(2.37) for n∗ ≥ 2 and
the reference model (2.17) applied to the plant Glin in (2.15) results in global asymptotic
stability of the tracking error:

lim
t→∞

∥yp(t) − yref(t)∥ = 0.

Moreover, all signals of the closed-loop system are guaranteed to stay bounded.

Proof. The proof of the theorem can be found e.g. in [60] and [116].

Summary and Remarks

The complete control scheme is given by the controller structure in (2.27), the reference
model Gref in (2.17), and the parameter update law (2.31) for n∗ = 1 and the update
laws (2.36)-(2.37) for n∗ ≥ 2. The design of output-feedback MRAC requires the choice
of several design parameters. Similar to the state-feedback case, a reference model Gref
and the gains Γ and γa for the parameter updates need to be defined. Comments on
that and other similarities of state-feedback and output-feedback MRAC are stated in
Remark 2.5. In Remark 2.10 an idea of the choice of the filter polynomial Λ0 for the
control law is explained. An overview of the control scheme is given in Table 2.2. Some
of the properties of MRAC for output-feedback plants are shown in Simulation Example
2.2.

Remark 2.5. Some similarities do appear for MRAC of output-feedback systems and
state-feedback systems:
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Plant: yp = kp
Zp(s)
Rp(s)u

Reference Model: yref = kref
Zref(s)
Rref(s)r

Control Law: u = θT
1

αn−2(s)
Λ(s) u + θT

2
αn−2(s)

Λ(s) yp + θ3 yp + c r = θT w

αn−2(s)
Λ(s) = αn−2(s)

Λ0(s) Zref(s) =
(
s I(n−1)×(n−1) − F

)−1
g

αi(s)=
[
si si−1 . . . s 1

]T
Tracking Error: ey = yp − yref

Parameter Update: n∗ = 1 : θ̇ = −Γ ey w sign(c∗)

n∗ ≥ 2 : e2 =
(
θT GREF − Gref θT

)
w, GREF = Gref I2n×2n

φw = GREF w

ey2 = ey + ka e2

θ̇ = −sign(c∗) Γ ey2 φw

1+φT
w φw

k̇a = −γa
ey2 e2

1+φT
w φw

θ(t)T
Plant

Reference Model

r

u yp

ey

yref

−

Parameter Update

g

g

F

F
1
s

1
s

w2

w1

w

Design Parameters: • Gref satisfies performance requirements (see also Remark
2.6 and Remark 2.9).

• Λ0 of degree n − m − 1 (see Remark 2.10)

• Γ = ΓT > 0 ∈ R2 n×2 n and γa > 0 (see Remark 2.5)

Table 2.2: Summary of output-feedback MRAC. Note that for n∗ ≥ 2 the calculation of
ey2 and therefore also of e2 and φw is part of the parameter update block.
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• For output-feedback systems, the gains for the parameter updates, Γ and γa, have
been introduced. These gains have a similar meaning and effect as the gains for
state-feedback systems, which are mentioned in Remark 2.4.

• The assumption of a known sign of c∗ is similar to the assumption of a known
control direction of the plant. For state-feedback MRAC a comment on that is
given in Remark 2.1.

• The parameter estimations are not guaranteed to converge to their ideal values for
output-feedback MRAC and for state-feedback MRAC. Remark 2.3 for the state-
feedback case does also apply to the parameters of output-feedback MRAC.

Remark 2.6. The method of MRAC for output-feedback plants can also be applied to
plants, where only an upper bound n̄ for the exact plant order n is known (see [60, 116]).
However, in order to simplify the discussion, the plant order is assumed to be known in
this work.
Remark 2.7. For the case of n∗ ≥ 2 the parameter update laws of output-feedback
MRAC become more complicated and are not as straight forward to apply compared to
the case with n∗ = 1. In order to guarantee closed-loop stability, it is even necessary
to introduce the additional state ka. For the special case n∗ = 2 a similar method to
the method for n∗ = 1 can be used (see [60, 116]) in order to reduce the complexity. In
[60] the procedure of stability analysis for n∗ = 1 is even extended for the case of higher
relative degrees. However, this extension leads to control laws with high complexity and
does not have a general advantage over the method presented in this work.
Remark 2.8. In difference to state-feedback MRAC, the adaptive control law for output-
feedback has been presented for a purely linear plant. An output-feedback MRAC scheme
for a class of nonlinear systems is presented in [74].
Remark 2.9. The assumption of a minimum-phase plant (Zp Hurwitz) is necessary, since
pole zero cancellation will take place in order to make the closed-loop system equal to the
reference model. If Zp has roots in the right half plane, unstable pole zero cancellations
are necessary, which lead to unbounded closed-loop states. More detailed comments on
that can be found in [60]. An approach to deal with plants that have unstable zeros has
been introduced in [76] and has been extended in [4].
Remark 2.10. In addition to the gains of the parameter updates, output-feedback MRAC
introduces the coefficients of Λ0 = Λ

Zref
as design parameters. Testing different choices is

a common way to get well-suited coefficients of Λ0 . In [104] the influence of Λ0 on the
closed-loop performance has been examined in a systematic way under the assumption
that the parameters θ∗ lie in a known convex set.
Simulation Example 2.2. A similar plant to Gex1 from Simulation Example 2.1 is
considered, but without the matched uncertainty, which can not be addressed by the
presented MRAC scheme for output-feedback. Hence, the plant model

Gex2 :
ẋp =

(
0 1

−k1
m

−d1
m

)
xp +

(
0
b
m

)
Fin,

yp =
[
1 0

]
xp,

(2.39)
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where the parameters m = 1, k1 = 15 and d1 = 1 are the same as for Gex1. The reference
model is chosen as

ẋref =
(

0 1
−100 −20

)
xref +

(
0

100

)
r,

yref =
[
1 0

]
xref ,

(2.40)

which is the same as in Example 2.1, but only its output is used for the parameter
updates. An initial rough estimate of the plant parameters, which are assumed to be
k̂1 = 30, d̂1 = 3, b̂ = 6.6, have been used to compute the initial controller parameters,
which are given in the following table together with the ideal plant parameters.

initial parameters ideal parameters

θ(0) =

⎛⎜⎜⎜⎝
−18.0

78.3784
−7.8078
15.0150

⎞⎟⎟⎟⎠
ka(0) = 0.0666

θ∗ =

⎛⎜⎜⎜⎝
−19.0
77.027

−22.9730
27.0270

⎞⎟⎟⎟⎠
k∗

a = 0.0370

From this starting point, the same experiments as in Example 2.1 have been done with the
MRAC algorithm in Table 2.2 for relative degrees n∗ ≥ 2. The adaptive gains have been
set to Γ = 104 I4×4, γa = 10 and the filter polynomial has been chosen as Λ0 = s + 1.
The results for a repeated step sequence of the reference signal are shown in Figure 2.5.
In the first and second graph, it can be seen that at the beginning of adaptation, the
tracking error is clearly higher than in the state-feedback case, presented in Simulation
Example 2.1, but the input signal is less oscillatory. Since the parameter adaptation is
faster than in the state-feedback case in this example, as can be seen in the fourth graph
of Figure 2.5, the simulation has already been stopped at t = 240s. The simulation results
at the end of adaptation are shown in the third graph. As in the state-feedback case, the
scaled tracking error ēy = 30 (xp,1 − x1ref,1) is smaller during adaptation and becomes
bigger after adaptation has been deactivated. From t = 201s seconds to t = 205s the
steady-state tracking error vanishes slowly for a constant value of the reference model
output. In contrast to that, the tracking error stays constant in the time from t = 211s
to t = 215s, where again a constant value of the reference signal is demanded. From this
result it can be concluded that the adaptation for the present problem has a similar effect
to an integrator in a non-adaptive control law. As for Simulation Example 2.1, simulation
results for a reference signal that is more appropriate for parameter estimation are shown
in Appendix C.

2.2.3 Indirect Adaptive Pole Placement Control for Output-
Feedback

In this section the polynomial approach for adaptive pole placement control adopted
from [60], is presented. The same method can also be found in [147]. An extension of the
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Figure 2.5: Results of Simulation Example 2.2 for MRAC with output-feedback. First and
second graph: System response and controlled input at beginning of adaptation. Third
graph: Closed-loop response and output tracking error after 180s of adaptation. Fourth
graph: Estimations of controller parameters.
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method from the literature is done here in order to account for matched uncertainties.
In contrast to the foregoing presentations, the APPC scheme is presented as an indirect
adaptive control method based on the certainty equivalence principle.

Plant Structure and Performance Specifications

A strictly proper input-output plant model of the form

Gnl2 : Rp(D) yp = Zp(D)
(
u + θT

nl fnl(yp)
)

(2.41)

is considered, where D , d
dt

, the degree n of the polynomial Rp = Dn+rn−1 Dn−1+· · ·+r0
is known, the polynomials Zp = zm Dm + zm−1 Dm−1 + · · · + z0 and Rp are known to be
coprime, but the constant parameters zi, rj for i = 0, . . . , m and j = 0, . . . , n − 1 are
unknown. The term θT

nl fnl(yp) represents a matched uncertainty, where the nonlinear
functions

fnl(yp) =
[
fnl,1(yp) . . . fnl,l(yp)

]T
are known and bounded for bounded yp. The constant parameters in θnl ∈ Rl are
unknown. Note that the differential operator D , d

dt
instead of the Laplace variable s

is used here, as it has been done e.g. in [38, 74, 77], in order to avoid confusion about
frequency and time domain.
The objective of APPC is to place the poles of the closed-loop system at the poles of a
desired denominator polynomial Ad(D). In addition, the closed-loop system is supposed
to follow the bounded reference signal r. For this reason, an internal model Q(D) with
degree q of the reference signal has to be defined that satisfies Q(D) r = 0 and has no
common roots with Zp(D). The control-law, which will be introduced below, applied to
the plant Glin results in a closed-loop system of order 2 n+ q −1. Accordingly, the degree
of Ad(D) has to be 2 n + q − 1:

Ad(D) = D2 n+q−1 + ad,2 n+q−2 D2 n+q−2 + · · · + ad,0.

Control Law for known Plant Parameters

For known plant parameters the control law

u = − P ∗(D)
Q(D) L∗(D)yp + M∗(D)

Q(D) L∗(D) r − θT
nl fnl(yp) (2.42)

with the constant and ideal polynomials L∗(D), P ∗(D) and M∗(D) is considered. The
degree of these controller polynomials is n − 1 and n + q − 1, for L∗(D) and P ∗(D),
respectively. If tracking of a constant reference signal is desired and z0 ̸= 0, M∗ can be
chosen to be a scalar. In all other cases, M∗(D) has to be chosen as a polynomial of order
n + q − 1. Application of (2.42) to the plant Gnl2 leads to the closed-loop system

yp = Zp(D) M∗(D)
L∗(D) Q(D) Rp(D) + P ∗(D) Zp(D)r. (2.43)
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If the controller parameters satisfy

L∗ Q Rp + P ∗ Zp = Ad, (2.44)

the poles of the closed-loop system lie at the desired positions. If z0 ̸= 0 the computation

M∗ = ad,0

z0
(2.45)

leads to a closed-loop steady-state gain of one, which is especially useful for piecewise
constant reference signals. For other reference signals or z0 = 0, the equation

eyr = yp − r = Zp

Ad
(M∗ − P ∗) r − L∗ Rp

Ad
Q r (2.46)

of the tracking error suggests the choice of

M∗ = P ∗ (2.47)

to achieve eyr(t) → 0 exponentially. In [60] it is shown that (2.44) always has a solution
if all the aforementioned assumptions about Zp, Rp and Q are satisfied. Hence, if (2.44)
has a solution, at least (2.47) has a solution and leads to an admissible choice of M∗(D).

Adaptive Control Law for Unknown Plant Parameters

If the plant parameters zi, rj for i = 0, . . . , m and j = 0, . . . , n−1, and θnl are unknown,
an adaptive version of (2.42) has to be used:

u = − P (D)
Q(D) L(D)yp + M(D)

Q(D) L(D) r − θ̂T
nl fnl(yp). (2.48)

In (2.48) the constant controller parameters have been replaced by their estimations L,
P , M , and θ̂nl. Since an indirect APPC is considered here, an estimation scheme for the
plant parameters rather than for the controller parameters has to be applied. Based on
the certainty equivalence principle, the controller parameters are then calculated during
operation with (2.44) and (2.45) or (2.47) based on the estimations Ẑp, R̂p and θ̂nl of the
plant parameters.
Many recursive parameter estimation schemes exist, that are suitable for indirect adaptive
control. Some of them can be found in [56, 60, 61, 98, 147] and usually require the system
description to be in a linear parametric form. For Gnl2 this can be achieved by multiplying
both sides of (2.41) with Rp(D) and then filtering them with a stable polynomial Λe(D)
of degree n, which results in

Dn yp

Λe(D) = −θT
y

αn−1(D)
Λe(D) yp + θT

u

αm(D)
Λe(D) u + θT

znlm
Dm

Λe(D)fnl(yp) + · · · + θT
znl0

1
Λe(D)fnl(yp),

(2.49)
where

αi(D) =
[
Di Di−1 . . . D 1

]T
, (2.50)
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θy =
[
rn−1 . . . r0

]T
, θu =

[
zm . . . z0

]T
, and θznli = zi θnl for i = 0, . . . , m. Equation

(2.49) can be written in a compact form as

yf = θT
p φp (2.51)

with
yf = Dn yp

Λe(D) ,

θp =
[
θT

y θT
u θT

znl,m . . . θT
znl,0

]T
, and

φp =
[
− αT

n−1
Λe(D)yp

αT
m

Λe(D)u
Dm

Λe(D)fnl(yp)T . . . 1
Λe(D)fnl(yp)T

]T
.

The well known recursive least-squares estimation with covariance resetting can then be
applied to (2.51). Hence, the update law for the estimated plant parameters θ̂p becomes

ϵ =
yf − θ̂T

p φp

1 + φT
p φp

,

˙̂
θp = Pls ϵ φp,

Ṗls = −Pls φp φT
p Pls

1 + φT
p φp

, Pls(0) = Pls0, Pls(tr) = ρr Ip×p,

(2.52)

with the covariance matrix Pls = P T
ls > 0 ∈ Rp×p and p = n + m + l + m l + 1. The

covariance matrix is set to ρr Ip×p at time tr, where the minimal eigenvalue of the co-
variance matrix becomes λmin(Pls) < ρs. The parameters Pls0 and ρr > ρs > 0 can be
chosen as design parameters. The presented least-squares algorithm (2.52) guarantees the
parameter estimations and their derivatives with respect to time to be bounded. Addi-
tional properties of the given recursive least-squares algorithm with covariance resetting
are stated in Appendix B.
Calculation of the controller parameter estimations can be done with equations (2.44) and
(2.45) or (2.47), where the plant parameters have to be replaced by their estimations. An
estimation of the nonlinear parameters can be achieved by

θ̂nl = θ̂znli

ẑi

, (2.53)

for any i = 0, . . . , m.

Summary and Remarks

The complete control scheme is given by the controller structure (2.48), the plant pa-
rameter estimation scheme in (2.52), and the rules for controller parameter calculation
in (2.44), (2.45) or (2.47). A comment on the choice of the tuning parameters Ad, Λe,
Pls(0), ρ0, and ρ1 is given in Remark 2.12. No stability result has been stated for the
APPC scheme in this section. Remark 2.13 gives an idea of a possible proof of stability
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for the closed-loop system. The lack of a solution for equation (2.44) is a potential issue
of the APPC scheme and shortly discussed in Remark 2.14. An overview of the complete
control scheme is given in Table 2.3. Some properties of the APPC method are illustrated
in Simulation Example 2.3.

Remark 2.11. In the presentation of APPC, a least-squares algorithm with covariance
reset has been chosen as plant parameter estimation method. This has been done, because
this estimation scheme has shown superior performance in comparison to other methods,
like gradient methods or the least-mean square estimation (these schemes can be found
e.g. in [56, 60, 61]). In addition, many extensions of the least-squares algorithm exist that
e.g. allow for identification of time-varying parameters ([11, 119]).

Remark 2.12. The performance of the closed-loop system is mainly determined by the
choice of the stable desired denominator polynomial Ad(D). That means, the performance
in terms of speed of the closed-loop response can be estimated by a linear system with poles
at the roots of Ad(D). However, the designer has to keep in mind additional influences,
like the nonlinear nature of the closed-loop system due to parameter updates, and the
zeros of the closed-loop system, that are determined by the zeros of the plant an the choice
of M(D) (see (2.43)). The parameter estimation will be influenced by the choice of the
stable filter polynomial Λe. It can be chosen, such that undesired high-frequency contents
of the output signal, e.g. measurement noise, are filtered out. However, since there is
no systematic way to choose Λe, experiments on the plant are often necessary. Pls(0)
determines the initial gain for the parameter estimation. A high gain is necessary if the
plant parameters are completely unknown. If a good estimation of the plant parameters
is available, only a low gain is necessary. The values of ρ0, and ρ1 can then be chosen
according to Pls(0).

Remark 2.13. For the presented APPC scheme in this section a standard proof of sta-
bility does not exist in the literature, since it has been extended by a direct compensation
of nonlinearities which act as matched uncertainties. For a purely linear plant a stability
proof is given in [60, 147]. Due to the properties of the least squares algorithm, stated
in Appendix A, boundedness of the estimated parameters can be guaranteed for the pre-
sented control scheme. If in addition an upper bound fnlmax ≥ ∥fnl∥ for the nonlinearities
exists, stability of all closed-loop signals can be established in the framework of robust
adaptive control in the presence of bounded disturbances [60, 147]. However, since no
stability analysis has been carried out for the presented APPC scheme, it should only
be used for limited time periods of adaptation under well known and save environmental
conditions. Hence, automatic tuning applications are still well suited for the presented
scheme.

Remark 2.14. A solution for the controller parameters calculated by (2.44) is guaranteed,
as long as Zp and Rp are coprime. However, for an adaptive control scheme, the plant
polynomials are substituted by their estimations so that it can no longer be guaranteed
that a solution for (2.44) always exists. In order to simplify the discussion, it is assumed for
the rest of this work that such a solution always exists. A more detailed discussion about
that issue is given in [60], where also some ways are proposed to enforce the existence of a
solution. One of them restricts the estimated plant parameters to lie in a convex set. This
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Plant: yp = Zp(D)
Rp(D)

(
u + θT

nl fnl(yp)
)

Control Law: u = − P (D)
Q(D) L(D)yp + M(D)

Q(D) L(D) r − θ̂T
nl fnl(yp)

Q(D) r= 0

Plant Parameter
Estimation: ˙̂

θp = Pls ϵ φp

Ṗls = −Pls φp φT
p Pls

1+φT
p φp

, Pls(0) = Pls0, Pls(tr) = ρr Ip×p

ϵ = yf−θ̂T
p φp

1+φT
p φp

yf = Dn yp
Λe(D) , θ̂p =

[
θ̂T

y θ̂T
u θ̂T

znl,m . . . θ̂T
znl,0

]T
φT

p =
[
− αT

n−1
Λe(D)yp

αT
m

Λe(D)u
Dm

Λe(D)f
T
nl(yp) . . . 1

Λe(D)f
T
nl(yp)

]
Controller Parameter
Calculation: Ad(D) = L(D) Q(D) R̂p(D) + P (D) Ẑp(D)

M =
⎧⎨⎩

ad0
ẑ0

, for piecewise constant r and z0 ̸= 0
P, otherwise

θ̂nl = θ̂znl,i
ẑi

, for any i = 0, . . . , m, θ̂u =
[
ẑm . . . ẑ0

]T
Ẑp(D) = θ̂T

u αm

R̂p(D) = Dn + θ̂T
y αn−1(D)

αi(D) =
[
Di Di−1 . . . D 1

]T
M

Q L

P
Q L

Plant

Estimation

r u yp

θ̂nl(t) fnl(yp)

−−

Controller Parameter Plant Parameter
Calculation

θ̂p

Design Parameters: • polynomial Ad with roots at desired closed-loop poles

• Λe of degree n (see Remark 2.12)

• Pls(0), ρ0, and ρr (see Remark 2.12)

Table 2.3: Summary of the polynomial approach of output-feedback APPC with compen-
sation of matched uncertainty.
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is done by a projection algorithm, which is an extension for basic parameter estimation
schemes and is shortly introduced in Section 2.2.5.

Simulation Example 2.3. A similar plant to Gex1 from Simulation Example 2.1 is
considered:

Gex3 :
ẋp =

(
0 1

−k1
m

−d1
m

)
xp +

(
0
b
m

)
(Fin − Fk) ,

yp =
[
1 0

]
xp.

(2.54)

This plant equation can also be written as(
D2 + d1

m
D + k1

m

)
yp = b

m
(Fin − Fk) . (2.55)

The parameters m = 1, k1 = 15 and d1 = 1 in (2.54) are the same as for Gex1. In
difference to the MRAC methods, no reference model needs to be defined. However,
with the requirement of tracking of a piecewise constant reference signal, which leads to
Q(D) = D, a choice of 2n + q − 1 desired closed-loop poles is necessary. All of them have
been chosen to lie at −25, which results in a desired closed-loop dynamic that is similar
to the dynamics of the reference models in the preceding simulation examples. For the
calculation of the controller parameter M , equation (2.45) has been used.
As in the previous examples, the controller has been initiated with a rough estimate of
the plant parameters, which are given as k̂1 = 30, d̂1 = 3, b̂ = 6.6, F̂k = 6 arctan

(
x1
10

)
.

Consequently, the initial controller parameters and the ideal controller parameters for the
control scheme in Table 2.3 become:

initial parameters ideal parameters

P = 529.13 D2 + 8.9 · 103 D + 5.9 · 104

L = D + 98
M = 5.9 · 104

θ̂nl = 6

P ∗ = 982.7 D2 + 1.6 · 104 D + 1 · 105

L∗ = D + 99
M∗ = 1 · 105

θnl = 3

The linear parametric model for the plant parameter estimation is given by

D2 yp

Λe
= θT

p φp with

θT
p =

[
d1
m

k1
m

b
m

− b θnl
m

]
and

φT
p =

[
−D yp

Λe
− yp

Λe
u

Λe
−arctan( yp

10 )
Λe

]
.

where the filter polynomial Λe(s) has been chosen to have two poles at −150 and the
remaining tuning parameters for the estimation method have been set to Pls0 = 105 I4×4,
ρr = 5 · 104 and ρs = 1.
The results for a similar simulation procedure as in Simulation Examples 2.1 and 2.2 are
shown in Figure 2.6. In difference to the foregoing examples, the parameter adaptation
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Figure 2.6: Results of Simulation Example 2.3 for APPC. First and second graph: System
response and controlled input at beginning of adaptation. Third graph: Closed-loop
response and output tracking error after 80s of adaptation. Fourth graph: Estimations of
controller parameters.
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has already been stopped after 90 seconds. The parameter adaptation is rather quick
in this example so that a longer simulation is not necessary. Although the parameter
estimation is very fast, undesired oscillations can not be observed in the system output
or in the controlled input. In addition, the third graph in Figure 2.6 shows that the
tracking error does not become larger after the adaptation has been switched off, which
is a consequence of the integrator in the controller that has implicitly been introduced
by the internal model Q(s). This result shows that the APPC scheme is suitable for
automatic-tuning purposes. As in the preceding examples, the parameter estimation is
shown for a different reference signal that causes stronger excitation of the closed-loop in
Appendix C.

2.2.4 Closed-Loop Reference Model (CRM)

In Remark 2.4 it has been mentioned that the choice of the gains for the parameter update
laws in model reference adaptive control is not trivial. High adaptation rates will lead
to high-frequency oscillations of the system and the estimated parameters as shown in
[44, 94, 145]. On the other hand, slow adaptation rates will lead to high tracking errors at
the beginning of adaptation. In order to improve this transient behavior in a systematic
way, the closed-loop reference (CRM) model has been introduced and examined in [44].
For the control scheme given in Table 2.1 the CRM is defined as

ẋref = Aref xref + Bref r − Lref (xp − xref) , (2.56)

where Lref ∈ Rn×n is a gain matrix for the tracking error e = xp − xref . As can be seen
in (2.56), the tracking error e = xp − xref is fed back to the reference model, so that
a closed-loop system with feedback-gain Lref results . Using the same procedure as in
Section 2.2.1 with a CRM leads to the closed-loop equation

ė = (Aref + Lref) e + Bp λ
(
K̃T

x xp + k̃r r − θ̃T
nl fnl(xp)

)
(2.57)

of the tracking error dynamics. Stability of MRAC with CRM can be proven the same
way as for MRAC with an open-loop reference model, if the Lyapunov equation

(Aref + Lref)T P + P (Aref + Lref) = −Q for Q = QT > 0 (2.58)

is satisfied. Furthermore, the properties stated in Theorem 2.1 also apply to state-feedback
MRAC with CRM.
As the main benefit of a CRM it is shown in [44] for linear plants that the choices

Γx = γc In×n, γr = γc,

Lref = −Aref − g In×n,

Q = g In×n ⇒ P = 1
2 In×n,

(2.59)

for the estimation gains and the CRM-gain with γc > 0 and g = γc > 0 lead to significant
improvement of the transient closed-loop behavior in the sense of a reduced square integral
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of the tracking error and the parameter derivatives with respect to time. It is also shown
that the closed-loop response, as well as the parameter estimation, are less oscillatory. In
[94] an alternative procedure is shown to tune Lref which is similar to observer tuning.
Two different interpretations on how the CRM improves closed-loop performance can be
given. The first one follows from equation (2.57) and the computation of Lref in (2.59).
It can be seen that the feedback of e to the reference model shifts the reference state xref
in the direction of the plant state xp. Hence, not only the closed-loop state approaches
the reference state, but also the other way round. This, as it is stated in [44], reduces
the burden of tracking on the adaptive system. The second interpretation is adopted
from arguments of observer-based control. From equation (2.57) it follows that Lref can
be chosen such that the stable dynamics of the tracking error is faster than that of the
open-loop reference model. Hence, the tracking error is reduced faster than the closed-
loop system is desired to respond to the reference signal r. This reduces the influence of
the transients of e on the closed-loop system. A similar argument stems from observer
based control where the dynamics of the observer is demanded to be faster than that of
the closed-loop system in order to reduce the influence of the observer error transients on
the closed-loop system (see e.g. [60, 100]).
Application of state-feedback MRAC with CRM is very similar to MRAC with open-loop
reference model in Table 2.1. It is only necessary to replace the reference model equation
and the Lyapunov equation by (2.57) and (2.58), respectively. Calculation of Lref can
then be done by (2.59). Similar results for output-feedback MRAC with CRM can be
found in [43].

Simulation Example 2.4. In order to compare MRAC for state-feedback with and
without closed-loop reference model, the plant Gex1 from Example 2.1 is considered. The
initial estimates of the parameters, as well as the requirements on the closed-loop are also
adopted from Example 2.1. The remaining tuning parameters have been chosen to be
Q = I2×2, Γx = Γnl = 200 I2×2 and γr = 200. Note that the estimation gains are 2000
times larger than in Example 2.1. The closed-loop reference model becomes

ẋref =
(

0 1
−100 −20

)
xref +

(
0

100

)
r − Lref (xp − xref) , (2.60)

where
LT

ref =
(

−2 −1
100 18

)
has been computed according to (2.59) with g = 200. The simulation results are shown
in Figure 2.7, where the results for MRAC with standard reference model are depicted in
the left column.
A first difference of the CRM can be seen in the system response at the beginning of
adaptation in the first graph of Figure 2.7. The responses of the CRM and the closed-
loop system do not differ, even before adaptation is started at t = 10s. The reason
for that is the feedback of xp to the reference model in (2.4) which pulls the reference
trajectories closer to the plant trajectories. Another difference can be observed for the
controlled input of the plant, which is shown in the second graph. For the standard
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tem response and controlled input at beginning of adaptation. Third graph: Closed-loop
response and output tracking error after 180s of adaptation. Fourth graph: Estimations
of controller parameters.
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MRAC strong oscillations occur, which are even stronger than in Example 2.1 due to the
higher estimation gain. In contrast to that, the controlled input of MRAC with CRM
shows no oscillations at all. This is a great improvement, since for technical systems
strong oscillation can be critical for actuators or other wear parts of the system. Finally,
the last graph of Figure 2.7 shows that parameter estimation with CRM is quicker in
this example and results in less oscillatory peaks of the estimated parameters. After
adaptation is switched off at t = 190s the scaled tracking error ēy = 20 (xp,1 − xref,1) is
smaller for the closed-loop system with CRM as can be seen in the third graph of Figure
2.7. Note that the the scaled tracking error for MRAC with CRM as well as for standard
MRAC has been computed with xref,1 of the constant reference model (2.14) in order to
guarantee comparability.

2.2.5 Robustness of Adaptive Control

The plant descriptions Gnl in (2.3), Gnl2 in (2.41), and Glin in (2.15) are models of real
processes. Modeling such processes always involves neglecting some characteristics of
it such as nonlinearities or dynamics at high frequencies, which are often referred to as
unmodeled dynamics. In addition, the process inputs and outputs are usually corrupted by
noise and disturbances of rarely known frequency and amplitude. Since neither unmodeled
dynamics nor noise or unknown disturbances can be represented by the introduced plant
models, none of these effects is considered in the controller synthesis presented in Sections
2.2.1-2.2.4.
Unfortunately, unmodeled dynamics, noise, and disturbances have unelectable influence
on the robustness of adaptive systems. For adaptive controllers, it has been shown in [136],
that unmodeled dynamics can lead to unstable closed-loop responses due to diverging
parameter estimations. Instability can also be caused by disturbances on the adaptive
system [11, 60], even if the disturbances act as noise on the inputs or outputs of the process.
For indirect adaptive control systems, these effects can be explained in an intuitive way
as follows. For the recursive plant model identification, the available plant parameters
are defined in advance by defining the linear parametric model (2.51). The definition of a
plant model always involves negligence of plant dynamics, for example at high frequencies,
in order to keep the model as simple as possible. However, if the plant is excited such
that the unmodeled dynamics contribute to the plant output, the plant behavior can not
be represented by the model. For the least squares algorithm in (2.52), this would lead
to an estimation error ϵ ̸= 0 and hence to a parameter update. Since this update would
not stop as long as the unmodeled dynamics contribute to the plant output, parameter
divergence results. Similar interpretations can be given for disturbances and measurement
noise.
Some known extension of adaptive algorithms can be used to make the adaptive system
robust against unmodeled dynamics, noise, and disturbances. These can be found e.g in
[11, 60, 116, 147]. The idea of these extensions is shortly given below, where the general
notion of modeling errors is used for unmodeled dynamics, noise, and disturbances.
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Leakage

Leakage modifications introduce an additional term in parameter update laws, like (2.11)
or (2.52), that prevents the estimated parameters to become unbounded. Loosely speak-
ing, an additional leakage term is introduced, that pushes the estimated parameters back
in a certain parameter space, when the estimations become too large. In terms of Lya-
punov stability, the leakage term in the update law guarantees the derivative of the Lya-
punov function with respect to time to become negative when the parameter estimations
exceed certain bounds.
Three different leakage modifications are well known in the literature. The σ-modification
[59] is the simplest method that guarantees boundedness of the parameters, but does
not preserve the properties of the original estimation schemes. Most important, the
σ-modification generates nonzero estimation errors, even in the absence of modeling er-
rors [116]. The method of e1-modification [115] was shown to recover the possibility of
nonzero estimation errors, but only if the plant is persistently excited. The third method,
called switching σ-modification [55], preserves all ideal properties of the original estima-
tion schemes at the cost of the knowledge of an admissible convex set for the estimated
parameters.

Dead Zone

If the estimation error ϵ of the parameter update law is small, modeling errors will have
a dominant influence on ϵ. In order to prevent a parameter update based on modeling
errors, the estimation of the plant parameters can be stopped, if the estimation error is
small. This results in a dead zone for the parameter updates, which has to be defined
with a known upper bound for the modeling errors. A parameter update modified by a
suitable dead zone guarantees the estimated parameters to be bounded, but a convergence
of the estimation error to zero can not be established [60, 116].

Parameter Projection

In most practical applications, the plant parameters and therefore also the ideal controller
parameters are known to lie in a convex set S. A simple idea to keep the parameters in
this set is given by the parameter projection. As long as the parameters are inside S, the
original parameter update law stays unchanged. If the estimated parameters get outside
of S, they are projected on the boundary δS of the set. For the least-squares algorithm
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in (2.52) the parameter projection is given in [60] by

˙̂
θp =

⎧⎪⎪⎨⎪⎪⎩
Pls ϵ φp, θ̂p ∈ S

or θ̂p ∈ δS and (P ϵ φp)T ∇g ≤ 0,

Pls ϵ φp − Pls
∇g∇gT

∇gTPls∇g
Pls ϵ φp, otherwise,

Ṗls =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Pls φp φT

p Pls
1+φT

p φp
, θ̂p ∈ S

or θ̂p ∈ δS and (P ϵ φp)T ∇g ≤ 0,

0, otherwise,

Pls(0) = Pls0, Pls(tr) = ρr,

(2.61)

where g(θ̂p), defines the known set as S = {θ̂p ∈ Rp | g(θ̂p) ≤ 0} and ∇g is the gradient
of g. The parameter projection in (2.61) preserves all the properties of the least-squares
algorithm given in Appendix A ([60]). Parameter projection for MRAC can be found in
[84, 94].





Chapter 3

Adaptive Systems with Input
Saturation

In the previous chapter, basic adaptive control methods have been introduced with nec-
essary extensions that address transient performance as well as issues with unmodeled
dynamics, noise, and disturbances. However, the presented methods are not well suited
for constraints on the plant input. Since the input of real technical systems is always lim-
ited due to physical constraints on the actuators, application of adaptive control requires
a suitable consideration of these constraints.
In the subsequent chapters of this work, limitations of the input amplitudes in adaptive
systems are considered. It is well known that input limitations can lead to undesired
closed-loop behavior like oscillations and slow convergence to steady state values even
for controllers without adaptation [52, 150]. These effects have firstly been attributed to
windup of the integral part of the controller, which has been examined and treated e.g.
in [21, 45, 157, 158]. However, not only the integral part can cause undesired closed-loop
behavior, but also eigenvalues of the controller close to the imaginary axis [52]. Moreover,
the properties of the controlled plant itself can give rise to windup effects if the maximal
input amplitude is too small to control all states of the plant with a desired dynamic. A
good example of such effects can be given in terms of the mechanical plant introduced in
Simulation Example 2.1 in the following way. A fast position control of the mechanical
plant Gex1 requires a high velocity of the plant. Close to the desired position the velocity
needs to be reduced very quickly in order to stop the plant in time. However, if the
maximal available force is too small to reduce the velocity quick enough, the plant will
overshoot and might oscillate around the desired position. This effect is called plant
windup in [52]. Most importantly, if an unstable plant is subjected to input saturation,
the feasible plant states are restricted to lie in a certain region, since the range of the input
amplitude is not sufficient to stabilize the plant at arbitrarily large set points [52, 150].
A lot of different anti-windup strategies exist that deal with the effects of windup in
different ways. The publication in [18] shows a bibliography of theoretical and practical
results for control of systems with input constraints up to the year 1995. Modern anti-
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windup strategies, as can be found e.g. in [42, 149–151], introduce additional degrees of
freedom in order to allow for closed-loop performance improvements as shown in [122, 123].
Additional effects of input saturation can be observed in adaptive systems, where the
parameter estimations represent additional closed-loop states that can cause windup.
Consequently, even if a constant controller results in an acceptable closed-loop behavior,
an adaptive version of it can cause undesired effects, which require special consideration.
This chapter builds the basis for the derivation of a new anti-windup method for adaptive
systems that addresses the windup phenomena under consideration of the closed-loop per-
formance. The chapter is structured as follows. Several effects of input saturation which
can occur if the limited input is not explicitly considered in adaptive and non-adaptive
closed-loop systems, are explained and presented in Section 3.1 based on simulation ex-
amples. The method of model recovery anti-windup (MRAW) addresses these issues for
the case of known plant parameters and is presented in Section 3.2. The basic concept
of MRAW will be used in Chapter 4 to derive a new anti-windup scheme for adaptive
systems. The transition to adaptive systems comes in Section 3.3, where an overview
of already existing adaptive control methods for input saturated systems is given. An
especially well-suited method for MRAC is then presented in detail in Section 3.4. Its ba-
sic concept is combined with MRAW for the derivation of the new adaptive anti-windup
scheme in Chapter 4. Finally a conclusion in Section 3.5 sums up the findings of this
chapter.

3.1 Effects of Input Saturation on Adaptive Systems

Before the effects of input limitations will be illustrated with an exemplary plant, a
definition of the input saturation is necessary. A limitation of the input amplitude is
considered as

ulim(t) = satumax(u(t)) ,
⎧⎨⎩u(t) if |u(t)| ≤ umax,

umax sign (u(t)) otherwise,
(3.1)

with the maximal input amplitude umax > 0. If this saturation limits the input of the
plant Gnl in (2.3), the plant description becomes

Gnls : ẋps = Ap xps + Bp λ
(
ulim + θT

nl fnl(xps)
)

. (3.2)

Note that the “s” in the subscript of Gnls stands for “saturation” and will be used fre-
quently in the sequel in order to specify an already defined plant, where an input saturation
has been introduced.
In order to illustrate some effects of saturation on the closed-loop behavior, a linear version
of Gnls, i.e. θnl = fnl = 0, is considered. The explicit description of the plant for the
simulation examples in this section is given by

Gex4 : ẋps =
(

0 1
2 2

)
xps +

(
0

3.7

)
ulim, (3.3)
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which has a stable pole at −0.73 and an unstable pole at 2.73. The maximal input
amplitude of ulim in Gex4 is given by umax = 100. A mechanical interpretation of
the plant (3.3) like in Figure 2.3 would require the introduction of a negative stiffness
and a negative damping, which does not exist for real technical systems. However, the
introduced plant in (3.3) is a good example to illustrate multiple effects of saturation with
a single system. As the desired closed-loop behavior a reference model

ẋref =
(

0 1
−484 −44

)
xref +

(
0

484

)
r (3.4)

is defined, which has two real poles at −22 and a steady-state gain of one for xref,1. The
reference signal has been chosen as a step sequence like in Example 2.1.
A first effect of the limited input amplitude is shown in Figure 3.1, where the adaptation
for a state-feedback MRAC from Table 2.1 has been switched off, and the controller
parameters are set to their ideal values K∗T

x =
[
−131.35 −12.43

]
and k∗

r = 130.81,
which can be computed with the matching equations (2.6). It can be seen that the input
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Figure 3.1: MRAC with ideal and constant controller parameters applied to the unstable
input saturated plant Gex4.

limitation leads to an oscillatory closed-loop response, which leads to an increased settling
time. In addition, the rise time of the closed-loop with saturation is higher than specified
by the reference model, which is an expected effect, since the available input energy is
less than in the unsaturated case. Both effects, the slower convergence to the desired
set points as well as the oscillatory behavior reduces the closed-loop performance and can
also appear if the parameter adaptation is activated as it is shown in Section 3.4. An even
more critical effect of saturation is shown in the simulation results for initial conditions
xT

ps(0) =
[
0 50

]
of the plant states in Figure 3.2. The range of the input amplitude is

too small to stabilize the unstable open-loop plant with these initial conditions, so that
the closed-loop trajectories become unstable.
Since the estimated parameters of MRAC introduce new states in the closed-loop system,
their initial values are as important for the closed-loop stability as the initial values of the
other closed-loop states. In order to illustrate that statement, the initial plant parameters
have been set to xT

ps(0) =
[
0 25

]
and adaptation has been activated at the beginning of
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Figure 3.2: MRAC with ideal and constant controller parameters applied to the unstable
input saturated plant Gex4, with inappropriate initial conditions for the plant state.

simulation. This has been done in two experiments, where the initial parameter estimates
have firstly been chosen to be the ideal controller parameters. In the second experiment
the initial parameter estimations have been set to kr(0) = 250 and Kx(0) = K∗

x. In both
experiments the parameter update gains have been set to Γx = 0.1 I2×2, γr = 0.1 and
γ∆ = 0.1. The system responses of both simulation examples and an additional simulation
without saturation are shown in Figure 3.3. It can be seen that the closed-loop system
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Figure 3.3: Comparison of simulation results for MRAC without anti-windup and with
different initial conditions for the controller parameters.

stays stable, if the initial parameter estimates are given as the ideal parameters. In
difference to that, the wrong initial condition for the parameter kr renders the closed-
loop system unstable. The reason for the instability can be explained as follows. For
unstable plants the uncertainty of the plant parameters might lead to initial controller
parameters that do not stabilize the closed-loop system or leads to a system response,
that is very different from the response of the reference system. Hence, the states of the
plant might grow until they are in a region, where the range of the input amplitude is
not sufficient anymore to stabilize the closed-loop system with the available range of the
input amplitude. That means, even if the controller parameters has become equal to their
ideal values in the meantime, there is no chance to stabilize the closed-loop system. The
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Figure 3.4: Simulation results of the parameter estimations for MRAC without anti-
windup applied to Gex4.

initial conditions of the controller parameters are therefore also crucial for the closed-loop
stability.
With ideal initial parameters, the closed-loop system stays stable, but the performance
becomes very bad as can be seen at the beginning of adaptation in Figure 3.3. Further
simulation of this example leads to the results depicted in Figure 3.4, where the system
response of Gex4 controlled by MRAC is shown for the last 20 seconds of simulation. In
addition, the estimated parameters are shown for the whole time of simulation. It can be
seen that the system output after 180s of adaptation is still bounded, but is very different
from the output shown in Figure 3.1 with constant ideal controller parameters. The reason
for that are the quickly diverging parameter estimations. Based on the plant description
of Gnls in (3.2) this additional effect of input saturation on adaptive systems without an
anti-windup method can be explained in a general way as follows. It is assumed that the
adaptive controller from Table 2.1, parametrized with the ideal parameters K∗

x, k∗
r , and θnl

that satisfy (2.6), is applied to Gnls. It is further assumed that the given reference signal
r leads to saturation of the controlled input, i.e. |u| > umax, during changes of set points.
Therefore, the input is saturated for limited periods of time tsat = {t ∈ R | |u(t)| > umax}.
From (2.5) and (2.6) it follows that the closed-loop system can only follow the reference
model Gref perfectly if the controlled input is equal to the ideal control input u∗. However,
this can not always be achieved due to the saturation, which leads to a tracking error



46 3.2 Model Recovery Anti-Windup (MRAW)

e = xps − xref ̸= 0, that will not vanish if t ∈ tsat. This in turn will lead to updates of the
estimated parameters, as can be seen in the parameter update laws (2.11). Hence, the
controller parameters will be updated, even if they are equal to their ideal values. Since
the tracking error can not become zero with any values of the parameters as long as the
input is saturated, the parameters will diverge as they do in the simulation results shown
in Figure 3.4. This will be referred to as parameter windup in the following.
All the effects of input saturation described above are clearly undesired. Therefore, a
proper consideration of input saturation is always necessary in order to avoid the presented
effects. Different existing methods that address input constraints are presented in the
subsequent sections of this chapter. A way to consider input constraints in non-adaptive
systems is presented in the directly following section and will be extended to adaptive
systems in Chapter 4.

3.2 Model Recovery Anti-Windup (MRAW)

This section briefly explains the basic concept of model recovery anti-windup for the
case of known plant parameters. Note that the presentation of MRAW is done in an
intuitive way in this section. Formal proofs and derivations for MRAW can be found in
[42, 122, 149, 151, 155] and the references therein. It is worth mentioning that MRAW
in this section is introduced for plants with known parameters so that no adaptation is
necessary. The concept of the presented method is used in Chapter 4 to derive a novel
adaptive anti-windup scheme.
The linear plant

Glins :
ẋps = Ap xps + Bp ulim,

yps = Cp xps,
(3.5)

with a limited input amplitude is considered, where all parameters of Ap, Bp, and Cp as
well as the maximal input amplitude umax as defined in (3.1) are assumed to be known.
Note that the following discussion applies for output-feedback as well as state-feedback,
i.e. Cp = I.
It is assumed that a suitable controller Ck for the unsaturated plant Glin is available, so
that the closed-loop system without input saturation satisfies the performance require-
ments. Hence, the controller design of Ck does not involve consideration of the input
saturation. The method of MRAW allows to avoid or at least reduce windup phenomena
by an extension of the closed-loop system without the need of a modification of Ck. This
extension of the closed-loop system is depicted in Figure 3.5 and is described below.
For the explanation of the anti-windup scheme the effect of saturation on the input of the
plant is considered as an input disturbance

∆u = ulim − u, (3.6)

which can be calculated with the knowledge of umax of the saturation (3.1). Note that
∆u describes that part of the amplitude of u that can not be applied to the plant due to
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saturation. As the first part of the anti-windup scheme, the negative of the disturbance
signal −∆u is fed into the model

MG :
ẋaw = Ap xaw + Bp (uaw − ∆u) ,

yaw = Cp xaw,
(3.7)

inside the anti-windup scheme, which represents the plant dynamics of Glin without
saturation. The output yaw of MG is added to the measured plant output yps and the
resulting signal is fed back to the controller Ck. As the second part of MRAW, an anti-
windup controller Ckaw is considered in the anti-windup scheme. Since the computation of
xaw is done with the model (3.7), the anti-windup controller has access to the complete
anti-windup state xaw. The explicit structure of Ckaw is not important for the basic
idea of MRAW and is therefore not defined in this section. Feedback of the anti-windup
control signal uaw to MG builds a closed-loop system inside of the anti-windup structure.
Moreover, the controller output uaw is subtracted from the output uc of the original
controller, so that the unsaturated input becomes u = uc − uaw.

Controller
Ck

Plant
Glins

Plant Model
MG

Controller
Anti-Windup

Ckaw

r uc u

uaw

ulim

−

yps

yaw

yp −∆u

Anti-Windup Scheme

−

xaw

Figure 3.5: Basic structure of model recovery anti-windup.

It follows from Figure 3.5 and its description above, that MRAW manipulates two signals
of the original closed-loop system. The benefit of adding yaw to yps becomes clear, when
actually doing the summation of the respective equations (3.5) and (3.7)

ẋps + ẋaw = Ap (xps + xaw) + Bp uc,

yps + yaw = Cp (xps + xaw) ,
(3.8)

where ulim = uc − uaw + ∆u has been substituted in (3.5). Since the only input uc of
the resulting system in (3.8) is the same as for Glin, the output yp of the system without
input limitation is recovered by the summation under the assumption of known initial
conditions1 of xaw. More precisely, it is achieved that xps + xaw = xp and yps + yaw = yp,
which results in the same feedback to the original controller Ck, as if it was applied to
Glin.

1The assumption of known initial conditions for xaw is not restrictive for practical use of the anti-
windup scheme. When a technical system is put into operation, no influence of past input limitations are
present, so that xaw(0) = 0.
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Since the effect of saturation on the input is represented by the input disturbance ∆u
and the output of the anti-windup scheme is a result of its external input −∆u, the signal
yaw can be interpreted as the effect of the saturation on the plant output yps, but with
inverted sign. Therefore, the summation yaw + yps can be taken as a subtraction of the
saturation influence from the plant output. It has been illustrated in Section 3.1 that the
influence of saturation often leads to a degradation of the closed-loop performance. For
this reason the effect of saturation on the plant output, which is represented by yaw, is
subsequently referred to as the unwanted behavior.
The method of MRAW addresses the closed-loop performance by introducing the anti-
windup controller Ckaw. This controller is supposed to efficiently regulate the unwanted
behavior yaw to zero and therefore to recover the behavior of the closed-loop system
without saturation as good as possible. It has to be designed such that the behavior due
to the disturbance −∆u inside the anti-windup scheme is regulated by the control signal
uaw. Since the unwanted behavior of the plant is a result of the input disturbance ∆u, the
anti-windup control signal with inverted sign −uaw is supposed to reduce the influence of
saturation on the closed-loop system. Hence, the control signal u consists of the original
signal uc, which is supposed to realize the desired performance when the input is not
saturated, and the anti-windup signal −uaw, which is supposed to reduce the unwanted
behavior when saturation is actually encountered.
From the description of MRAW above and Figure 3.5 it follows that the complete anti-
windup scheme can be described by the equations

ẋaw = Ap xaw − Bp (∆u − uaw) ,

yaw = Cp xaw,

uaw = Ckaw(xaw).
(3.9)

A summary of MRAW can be given as follows. A plant model in the anti-windup scheme
is used to calculate the effect of saturation. Removing this effect from the plant output
makes it invisible for the controller Ck. This allows the controller to work as if no
input saturation was present. In addition, an anti-windup controller Ckaw is designed to
eliminate the effect of input saturation independently of the original plant controller Ck.
Therefore, the anti-windup controller is highly relevant for the closed-loop performance if
input saturation occurs. However, choosing an explicit structure and the corresponding
parameters of Ckaw is not trivial. Systematic ways to tune the anti-windup controller
for known plant parameters in order to achieve a good closed-loop performance are given
e.g. in [122–124, 155] and require the solution of convex optimization problems and the
knowledge of the plant parameters.
No simulation example for MRAW is presented in this section since a lot of simulations and
experimental results are shown in Chapters 5 and 6, which will illustrate the properties
of the anti-windup method.
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3.3 Existing Adaptive Control Methods for Systems
with Input Saturation

This section represents the transition to anti-windup methods for adaptive systems. Af-
ter the excursus to a non-adaptive method in the foregoing section, adaptive anti-windup
methods from the literature are presented here and references to the respective publica-
tions are stated. Since this section is intended to give an overview of the basic ideas, it is
not restricted to continuous time methods but begins with a short introduction of discrete
time methods. After that, methods suitable for the adaptive control schemes presented in
Chapter 2.2 are summarized. It is distinguished between practical approaches which are
only valid for very particular problems, approaches for indirect adaptive control schemes,
and approaches for direct adaptive control schemes.
For discrete time adaptive control the computation of the control signal and the parameter
updates is based on current and past values of the plant output and input [46, 47]. In
order to deal with input limitations, these computations have to be done with the limited
values of the past inputs, as stated in [1, 2, 9, 37, 132, 163]. It is therefore guaranteed
that the computations are done with the input values which have actually been applied
to the plant. The methods in [1, 2] extend this concept by an adjustment of the reference
trajectories to make them feasible for the closed-loop system. The reference signal does
therefore represent a trajectory which can actually be achieved by the closed-loop system
even with the limited input amplitude. This approach has been proven to lead to bounded
closed-loop signals if it is applied to stable open-loop plants. A similar procedure and
stability result is given in [132]. A slightly stronger stability result for the same approach
for discrete-time adaptive control of plants with limited input amplitude can be found in
[168] and [167]. It is shown there that the control scheme results in a stable closed-loop
system, if it is applied to plants with at most one pole on the unit circle, whereas all
other poles lie strictly inside the unit circle. This result is extended in [37] to plants with
multiple poles on the unit circle. The discrete-time adaptive control scheme presented in
[9] is based on the same concept as the schemes mentioned before. However, it guarantees
boundedness of the closed-loop signals, if it is applied to stable input saturated plants.
If the plant is unstable, the closed-loop can be shown to have bounded trajectories if the
initial conditions of the closed-loop signals do not exceed certain values. Therefore this
scheme can also be applied to plants with poles outside the unit circle if the closed-loop
initial conditions are admissible.
A slightly different anti-windup approach for discrete-time adaptive control is proposed
in [125]. The presented method adjusts the reference model of a discrete-time model
reference adaptive controller during operation. This is done in a way such that it stays
asymptotically stable and minimizes the settling time, under the condition that the closed-
loop plant can follow this reference model without violating maximal input values and
maximal increments of the input value. However, no explicit algorithm is given to calculate
such a reference model for a general plant, which makes the algorithm to a rather heuristic
approach. Even the authors of [125] state that such an algorithm is not straight forward
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to realize. Therefore, the given global stability result is only valid, if an algorithm can be
found for a given plant.
Rather practical approaches have also been developed for continuous time adaptive control
of plants with a limited input amplitude. These include deactivation of the parameter
estimation during phases of a saturated input as in [73], which is equivalent to switching
to a constant controller during saturation. Combined with the methods in Section 2.2 it
can, therefore, be shown that this approach results in bounded closed-loop signals if it
is applied to an open-loop stable plant. The same method is proposed in [126], where
the authors additionally propose to add a leakage term to the parameter estimation
in order to minimize parameter windup effects. In [20] multiple practical anti-windup
methods are compared for an aircraft model. The first method scales the controlled
input until it satisfies the constraints while preserving the input direction. It is also
proposed there to modify the reference signal and the reference model in order to relax
the control requirements. Finally, the authors of [20] propose an anti-windup scheme that
is based on the re-calculation of an input that fulfills the constraints and results in an
acceleration of the aircraft, which is as similar as possible to an acceleration produced by
the unconstrained input. A comparison of simulations for the different approaches results
in similar performance for all methods proposed in [20].
An early analysis of classical indirect adaptive control of continuous time input limited
systems can be found in [38]. The authors use the filtered limited input for calculation
of the control signal and the parameter estimations. This is similar to the approach for
discrete-time methods since the limited input which is actually applied to the plant is used
for further computations. Boundedness of the closed-loop signals can be shown for stable
plants with at most one pole at the origin. A first approach to introduce the method of
MRAW in indirect adaptive control has been presented in [69] for plants with measurable
states. In this work the authors extend an adaptive linear quadratic controller by MRAW
and show boundedness of all closed-loop signals if the open-loop plant is asymptotically
stable. However, the method requires the solution of linear matrix inequalities during
operation, which is connected to high computational effort. The method is extended to
input rate saturation in [70] and applied to soaring control of a glider in [71, 72].
For continuous time direct adaptive control of plants with limited input amplitudes three
main anti-windup concepts from the literature can be distinguished. The first concept
is based on modifications of the parameter update laws, such that the adaptive control
scheme is applicable to input saturated plants [3, 159]. This concept mainly prevents the
estimated parameters from diverging. The second concept deals with input saturation by
modifying the reference signal, such that the closed-loop system can follow the reference
without violating the maximal input amplitude. For the respective method in [32] no
stability result is given. In difference, the method presented in [95, 96], which can be ap-
plied to input affine nonlinear system, guarantees boundedness of the closed-loop signals.
Finally, the third concept is based on modifications of the reference model, such that it is
feasible for the closed-loop system. This is done by incorporating the effect of saturation
in the reference model. The concept can be shown to be equivalent to an augmentation of
the tracking error between the closed-loop system and the reference system as it has been
introduced in [105]. The idea has been further analyzed in [8, 75], where it is shown that
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the resulting adaptive control method leads to bounded closed-loop signals if it is applied
to a stable open-loop plant. For unstable open-loop plants, the method guarantees the
closed-loop system to have bounded trajectories, if the initial conditions of the closed-loop
signals lie in certain limits. The same concept has been applied to a gyroscope in [64]
and is analyzed in the framework of adaptive backstepping in [171]. Another application
of the basic concept is shown in [25, 26], but with a constant extension of the reference
model by a model of the actuator. A detailed explanation of the basic concept from
[8, 75], which is called Kárason Annaswamy anti-windup (KAAW) in the sequel, is given
in the next section. Note that the method of pseudo control hedging (PCH) proposed in
[67] and further examined in [68, 166] uses the same concept as KAAW, if it is applied to
address input saturation. An extension to KAAW is introduced in [89, 92, 93] and is called
positive µ-modification. It additionally modifies the control signal such that saturation
can be avoided. Similar stability results as for KAAW are derived.

3.4 Anti-Windup by Kárason and Annaswamy
(KAAW)

The method introduced by Kárason and Annaswamy in [75] represents a well suited anti-
windup scheme for MRAC since it can be interpreted as an extension of the reference
model. This idea has already been used to derive extensions of KAAW and has been
shown to work effectively in real applications. Therefore the concept of an extended
reference model is also used as a fundamental part of the novel adaptive anti-windup
scheme, which is derived in Chapter 4.
For the presentation of KAAW the plant Gnls from equation (3.2) with input saturation
and with measurable states2 is considered. Similar to the presentation of MRAW, the
input saturation (3.1) is represented by a measurable input disturbance ∆u, which has
been introduced in (3.6). Therefore, the plant description becomes

ẋps = Ap xps + Bp λ
(
u + ∆u + θT

nl fnl(xps)
)

. (3.10)

Building the tracking error dynamics with the reference model Gref in (2.4), as it has
been done in Section 2.2.1, yields

ė = Aref e + Bp λ
(
K̃T

x xps + k̃r r − θ̃T
nl fnl(xps)

)
+ Bp λ ∆u. (3.11)

Following the idea of KAAW in [75], the tracking error has to be extended by e∆ with
the dynamic

ė∆ = Aref e∆ + Bref k∆(t) ∆u. (3.12)
The term Bref k∆(t) ∆u is an estimation of Bp λ ∆u, such that the ideal value k∗

∆ satisfies

Bref k∗
∆ = Bp λ. (3.13)

2In this section the idea of KAAW is presented, which is simpler to do in the framework of state-
feedback MRAC. However, the same idea can be used for output-feedback MRAC as shown in [8, 75].
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Hence, the extension esat = e − e∆ results in

ėsat = Aref esat + Bp λ
(
K̃T

x xps + k̃r r − θ̃T
nl fnl(xps)

)
− Bref k̃∆ ∆u, (3.14)

with the estimation errors known from MRAC in Section 2.2.1 and the additional esti-
mation error k̃∆ = k∆(t) − k∗

∆.
However, a more intuitive way to achieve the tracking error dynamics in (3.14) is given by
an extension of the reference model Gref . From the MRAC presentation in Section 2.2.1
it follows that the application of the ideal control law (2.5) to the plant Gnl leads to the
desired dynamics of reference model (2.4). Applying the same control law u∗ from (2.5)
to Gnls yields

ẋps = Aref xps + Bref r + Bp λ ∆u, (3.15)

where the matching conditions (2.6) have been used. The system in (3.15) is very similar to
the original reference model (2.4), but has an additional term Bp λ ∆u that introduces the
effect of saturation in the reference dynamics. This additional term makes the dynamics
of (3.15) feasible for the closed-loop system. However, an implementation of (3.15) is not
possible, due to the uncertain parameter λ. Therefore, the input gain of the disturbance
∆u has to be estimated by Bref k∆(t), so that an adaptive reference model

Grefs : ẋrefs = Aref xrefs + Bref r + Bref k∆(t) ∆u, (3.16)

is achieved, where the ideal value k∗
∆ of k∆(t) satisfies (3.13). Derivation of the tracking

error as in Section 2.2.1 yields esat from (3.14). Note that similar to the naming of the
plants, the subscript “s" for the reference model denotes that the effect of saturation is
present in the reference system.
The choice of the Lyapunov function candidate

V = eT
sat P esat + λ

(
K̃T

x Γ−1
x K̃x + 1

γr

k̃2
r + θ̃T

nl Γ−1
nl θ̃nl

)
+ 1

γ∆
k̃2

∆, (3.17)

and the parameter update laws

K̇x = −Γx xps eT
sat P Bp

k̇r = −γr r eT
sat P Bp

θ̇nl = Γnl fnl(xps) eT
sat P Bp

k̇∆ = γ∆ esat ∆u P Bref

(3.18)

allows the formulation of the following theorem.

Theorem 3.1. The control law (2.7) with a bounded reference signal r(t) together with
the parameter update laws (3.18) applied to the system Gnls in (3.2) results in bounded
parameter estimations and a bounded tracking error esat.

Proof. The proof of the theorem can be found in [8, 75].
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Note that different from classical MRAC the result of Theorem 3.1 does not directly
lead to boundedness of the remaining closed-loop signals since due to ∆u the reference
state xrefs is not guaranteed to be bounded. However, results for the boundedness of the
remaining closed-loop signals for a purely linear plant with limited input amplitude can
be found in [8, 75]. The derivation of this result is not shown here, because the proofs for
the new adaptive anti-windup method in Chapter 4 are done in a similar way. In order to
apply MRAC with KAAW, the reference model and the parameter update laws in Table
2.1 has to be replaced by (3.16) and (3.18), respectively. The following simulation example
presents the difference between MRAC with and without the extension of KAAW.

Simulation Example 3.1. In order to illustrate the capability of KAAW to deal with
input limited plants, the simulation example from Section 3.1 is continued. Consequently,
the plant in (3.3) and the reference model in (3.4) are considered for the application
of MRAC with KAAW and the controller parameters have again been set to their ideal
values and the initial condition of the plant state have been xT

ps0 =
[
0 25

]
. The additional

KAAW parameter is given by k∆(0) = k∗
∆ = 0.0076. The closed-loop response for the last

20 seconds of adaptation and the estimated parameters are shown in Figure 3.6. It can be
seen that in difference to the standard MRAC algorithm, whose parameters diverged as
shown in Figure 3.4, the parameters stay constant at their ideal values. Consequently, the
system response with KAAW is the same as for the constant control law, shown in Figure
3.1. The simulation example clearly shows, that in difference to basic MRAC, the method
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Figure 3.6: Simulation results for MRAC with and without KAAW applied to Gex4. The
second graph shows the estimated parameters with KAAW, where their initial values have
been set to the ideal parameters.
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of KAAW avoids parameter windup and leads to bounded closed-loop signals. However,
the tracking performance in this example is not desirable due to the strong oscillations of
the plant output around the desired set points.

3.5 Conclusion

The simulation results in Section 3.1 have shown that a proper consideration of saturation
effects is absolutely necessary for adaptive as well as non-adaptive systems. Many of the
adaptive anti-windup schemes for continuous-time systems mentioned in Section 3.3 can
be applied to the adaptive control methods presented in Chapter 2 in order to make them
applicable to plants with input constraints. For some of these methods the boundedness of
the closed-loop has been proven, for others it has been verified with numerical simulations.
However, these methods do not provide additional degrees of freedom to improve the
closed-loop performance during saturation and hence for none of them a performance
analysis has been carried out in either way. Positive µ-modification in [92] even aims
at avoiding saturation of the input in order to reduce the control deficiency. The same
purpose is presented for the method in [95, 96]. Therefore, both of these anti-windup
concepts sacrifices achievable speed and range of the system in order to reduce the control
deficiency.
It has been shown in Section 3.4 that the method of KAAW avoids parameter windup
and, therefore, allows for an application of adaptive control to plants with a limited input
amplitude. However, with KAAW the performance during saturation of the input can only
be influenced by changing the reference model, which also changes the performance when
no saturation occurs. Since the method of MRAW, which has been presented in Section
3.2, can address performance issues during saturation with the additional anti-windup
controller, a combination of it with KAAW is done in this work in order to simultaneously
address parameter-windup and closed-loop performance of adaptive systems.
It is worth mentioning that MRAW has already been combined with an indirect adaptive
control scheme in [69]. However, the method shown there has only been presented for
state-feedback and is based on solutions of a linear matrix inequality, which is computed
during operation. Therefore, it comes with high computational costs and increases the
effort of its application. In Section 4.3 an indirect adaptive method is presented that can
be applied to output-feedback plants without solving a linear matrix inequality. Hence,
it can be used with lower computational costs and is therefore more suitable for common
industrial control challenges.



Chapter 4

Adaptive Model Recovery
Anti-Windup: Derivation

In the preceding chapter, it has been shown that the basic adaptive control methods
presented in Chapter 2 suffer from input saturation. Multiple undesired effects of a limited
input have been illustrated, which can partially be addressed with existing methods from
the literature (see Section 3.3). Most of these methods have been developed to avoid
parameter windup and to guarantee boundedness of the closed-loop signals. Some of them
also allow for a reduction of control deficiency in the presence of saturation. However, for
none of the methods mentioned in Section 3.3 a performance analysis has been carried
out.
In this chapter a new adaptive anti-windup scheme will be introduced, which extends the
adaptive controllers presented in Chapter 2. This new method establishes an additional
degree of freedom that allows for performance considerations in input saturated adaptive
systems. The presentations in this chapter are based on the methods of KAAW and
MRAW, which have been presented in sections 3.2 and 3.4, respectively. Hence, in order
to follow the derivations of the new method in the subsequent sections, it is advisable to
first get familiar with the basic concepts presented there.
In order to unify the following presentations, the derivation of the anti-windup scheme
for the different control structures are done in a similar way. For the direct adaptive
control schemes, an adaptive anti-windup system based on MRAW is introduced in a
first step. Similar to KAAW the reference model is then extended in order to account
for the saturation effects as well as for the influence of the anti-windup system on the
closed-loop system. In the third step, a stability analysis of the closed-loop system is
carried out in order to derive the parameter update laws and to introduce conditions for
guaranteed boundedness of the plant states and the remaining closed-loop signals. At
the end of the respective sections, a summary of the new adaptive anti-windup scheme
is given. In difference to the direct schemes, no extension of a reference model needs to
be considered for the indirect method and also no stability analysis needs to be done to
derive the parameter update laws. Hence, for the introduction of the indirect adaptive
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anti-windup scheme, these steps are substituted by the presentation of a modified linear
parametric model, which can be used to estimate the plant parameters.
Note that this chapter only presents the derivation of the new anti-windup method. Re-
marks about its properties, possible tuning procedures and implementation issues will be
given in Chapter 5 based on illustrative simulation examples.

4.1 Direct Adaptive Model Recovery Anti-Windup
for State-Feedback

The method of adaptive model recovery anti-windup (AMRAW), presented in this section,
extends the MRAC scheme from Section 2.2.1 in order to take saturation of the input
amplitude into account. This is done by introducing an adaptive anti-windup structure
similar to MRAW and by an extended reference model similar to KAAW. For the following
presentation the plant

Gnls : ẋps = Ap xps + Bp λ
(
ulim + θT

nl fnl(xps)
)

,

which has already been defined in (3.2) with unknown parameters Ap, λ and θnl is con-
sidered. As an additional assumption on the plant, a linear function is supposed to be
known as an upper bound for the nonlinear function of the matched uncertainty:

∥fnl(xps)∥ ≤ onl + cnl ∥xps∥ with onl > 0, cnl > 0. (4.1)

Note that this additional assumption is not restrictive for technical systems.

Anti-Windup Scheme

Following the idea of MRAW, the basic MRAC controller structure given in (2.7) is not
changed. Instead, an additional anti-windup scheme is introduced into the closed-loop in
order to recover the output of the plant Gnl introduced in equation (2.3) and to reduce
the influence of the saturation on the plant. The plant equation with the modified input
and the representation of the input limitation as a disturbance becomes

ẋps = Ap xps + Bp λ
(
uc − uaw + ∆u + θT

nl fnl(xps)
)

, (4.2)

where explicit terms for uc and uaw will be defined below and ∆u = ulim − u as defined
in (3.6). For known plant parameters a suitable choice for the anti-windup system model
is given by

ẋaw = Ap xaw + Bp λ
(
−∆u + uaw + θT

nl (fnl(xps + xaw) − fnl(xps))
)

. (4.3)

Summation of (4.2) and (4.3) leads to

ẋps + ẋaw = Ap (xps + xaw) + Bp λ
(
uc + θT

nl fnl(xps + xaw)
)

. (4.4)
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Since (4.4) does not suffer from any effect of input saturation, the summation xps + xaw
recovers the output of the plant Gnl, and hence can be used for feedback to the standard
MRAC control law

uc = Kx(t)T (xps + xaw) + kr(t) r − θ̂T
nl(t) fnl(xps + xaw). (4.5)

However, the anti-windup scheme requires the knowledge of the plant parameters. Hence,
the anti-windup system (4.3) and therefore also the control law (4.5) are not imple-
mentable. A modification of the anti-windup scheme that renders it implementable will
be derived on the basis of (4.3) after the introduction of the anti-windup controller.
In order to regulate the unwanted behavior xaw, resulting from the effect of input satura-
tion ∆u, to zero, an anti-windup controller needs to be introduced. The explicit structure
of this controller is given by

uaw = Kaw(t)T xaw − θ̂T
nl(t) (fnl(xps + xaw) − fnl(xps)) , (4.6)

which is similar to the MRAC control law in (4.5). Since no steady-state value different
from xaw = 0 is desired for the unwanted behavior, a reference signal for any anti-windup
state and a corresponding gain are not necessary. The ideal value K∗

aw of Kaw(t) is
defined to satisfy the matching equation

Ap + Bp λ K∗T
aw = Aawr, (4.7)

so that the desired anti-windup dynamic Aawr introduces an additional degree of freedom,
which can be chosen by the designer in a similar way as Aref for the reference model
in MRAC. Note that Remark 2.2 for the MRAC matching conditions also applies for
matching condition (4.7). The complete control scheme therefore becomes

u = uc − uaw = Kx(t)T (xps + xaw) + kr(t) r − Kaw(t)T xaw − θ̂nl(t)T(t) fnl(xps). (4.8)

The structure of the anti-windup controller can now be used to find an implementable
version of the anti-windup scheme. One possibility of doing that is illustrated in Figure
4.1, where the block-diagram I shows the initial scheme, which follows from equation
(4.3). Since the signal uaw builds an internal closed-loop in the anti-windup scheme,
the anti-windup system can be directly represented by the resulting closed-loop equation.
Furthermore, since the desired dynamics of the anti-windup scheme are known and chosen
by the designer, the ideal control law rather than the adaptive version can be considered
for the internal feedback as shown in block diagram II of Figure 4.1. Together with
matching condition (4.7) this results in

ẋaw = Aawr xaw − Bp λ ∆u,

which is illustrated in block diagram III. In order to get rid of the unknown term Bp λ ∆u,
the estimation Bref k∆(t) for Bp λ is introduced as it has been done for the method of
KAAW in Section 3.4. The final anti-windup system is therefore given by

Maw : ẋaw = Aawr xaw − Bref k∆(t) ∆u, (4.9)
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Figure 4.1: Schematic illustration of the derivation of the adaptive anti-windup scheme.
Note that the ideal anti-windup controller denotes the controller with ideal parameters.

which is shown in block diagram IV of Figure 4.1. Hence, the computation of the
anti-windup state is done with the desired dynamics and an adaptive input gain k∆.
Therefore, Maw can be interpreted as a reference model for the unwanted behavior of the
plant and it remains to find the ideal parameters for the anti-windup controller, which
lead to the corresponding behavior of the real plant. As for basic MRAC, this can be
done by suitable parameter update laws, which will be derived after the introduction of
the reference model.

Reference Model

In order to derive the reference model the same procedure as for KAAW in Section 3.4 is
done. The reference model is determined by considering it as the actual plant, fed by the
ideal version of the control signal (4.8). For AMRAW the ideal control signal u∗ is given
by

u∗ = u∗
c − u∗

aw = K∗T
x (xps + xaw) + k∗

r r − K∗T
aw xaw − θT

nl(t) fnl(xps).
Substitution of u∗ for u in Gnls yields

ẋps =
(
Ap + Bp λ K∗T

x

)
xps + Bp λ k∗

r r + Bp λ
(
K∗T

x − K∗T
aw

)
xaw + Bp λ ∆u.

The matching conditions (2.6) and (4.7) as well as a substitution of the estimation
Bp k∆ ∆u for Bref λ ∆u finally results in the reference model

Grefaw : ẋrefs = Aref (xrefs + xaw) + Bref r + Bref k∆(t) ∆u − Aawr xaw, (4.10)
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where xps has been replaced by xrefs to clarify that it is the state of the reference model.
It has been shown in Section 3.4 that the method of KAAW can be interpreted as an
extension of the reference model in order to incorporate the effect of saturation into
it. This effect is also represented in Grefaw by the term Bref k∆(t) ∆u. Since AMRAW
introduces an additional anti-windup structure that affects the closed-loop, its influence
also has to be incorporated into the reference model in order to make it feasible for the
closed-loop system. In Grefaw the effect of the anti-windup scheme is represented by the
terms Aref xaw and −Aawr xaw.

Parameter Updates and Closed-Loop Stability

Derivation of the parameter update laws requires the development of the closed-loop
system. Similar to the procedure for MRAC the term

Bp λ
(
K∗T

x (xps + xaw) + k∗
r r − K∗T

aw xaw
)

is added and subtracted from the plant equation of Gnls in (3.2). Together with matching
conditions (2.6) it results in

ẋps = Aref xps + Bref r + Bp λ
(
u + ∆u + θT

nl fnl(xps) − K∗T
x (xps + xaw) + K∗T

x xaw

− k∗
r r ± K∗T

aw xaw
)

.

Inserting the control law (4.8) and using the matching condition (4.7) yields

ẋps = Aref xps + Bref r + Bp λ
(
∆u + K̃T

x (xps + xaw) + k̃r r − θ̃T
nl fnl(xps) − K̃T

aw xaw
)

+ (Ap − Aawr) xaw + Bp λ K∗T
x xaw.

Usage of matching condition (2.6) finally results in the closed-loop equation

ẋps =Aref (xps + xaw) + Bref r − Aawr xaw

+ Bp λ
(
∆u + K̃T

x (xps + xaw) + k̃r r − θ̃T
nl fnl(xps) − K̃T

aw xaw
)

,
(4.11)

where K̃x = Kx(t) − K∗
x, k̃r = kr(t) − k∗

r , K̃aw = Kaw(t) − K∗
aw and θ̃nl = θ̂nl(t) − θnl are

the parameter estimation errors. The dynamics of the tracking error esat = xps − xrefs of
the closed-loop system with saturation becomes

ėsat = Aref esat + Bp λ
(
K̃T

x (xps + xaw) + k̃r r − θ̃T
nl fnl(xps) − K̃T

aw xaw
)

− Bref k̃∆ ∆u,

where k̃∆ = k∆(t) − k∗
∆.

Considering the Lyapunov function candidate

V = eT
sat P esat + λ

(
K̃T

x Γ−1
x K̃x + 1

γr

k̃2
r + K̃T

aw Γ−1
aw K̃aw + θ̃T

nl Γ−1
nl θ̃nl

)
+ 1

γ∆
k̃2

∆ (4.12)
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and its derivative with respect to time
V̇ = eT

sat

(
P Aref + AT

ref P
)

esat

+ 2 λ
(
K̃T

x (xps + xaw) eT
sat P Bp + K̃T

x Γ−1
x

˙̃Kx

+ k̃T
r r eT

sat P Bp + 1
γr

k̃r
˙̃kr

− K̃T
aw xaw eT

sat P Bp + K̃T
aw Γ−1

aw
˙̃Kaw

− θ̃T
nl f(xps) eT

sat P Bp + θ̃T
nl Γ−1

nl
˙̃θnl

)
− 2 k̃∆ ∆u eT

sat P Bref + 2
γ∆

k̃∆
˙̃k∆

suggests the choice of
K̇x = −Γx (xps + xaw) eT

sat P Bp,

K̇aw = Γaw xaw eT
sat P Bp,

k̇r = −γr r eT
sat P Bp,

θ̇nl = Γnl fnl(xps) eT
sat P Bp,

k̇∆ = γ∆ ∆u eT
sat P Bref ,

(4.13)

for the parameter update laws. In (4.12) and (4.13), P is the solution of the Lya-
punov equation AT

ref P + P Aref < −Q for Q = QT > 0 and the gains Γx = ΓT
x > 0,

Γaw = ΓT
aw > 0, Γnl = ΓT

nl > 0, γr > 0, and γ∆ > 0 are introduced as tuning parameters
for the parameter updates. Note that Remark 2.4 for the corresponding gains of MRAC
also applies for AMRAW. The preceding derivations allow the formulation of the following
theorem.
Theorem 4.1. The control law (4.8) with a bounded reference signal |r(t)| ≤ rmax(t)
together with the parameter update laws (4.13) and the reference model (4.10) applied to
the plant Gnls in (3.2) results in bounded closed-loop signals if the plant is open-loop
stable. Boundedness of the closed-loop signals for an unstable open-loop plant Gnls can
be established under the following conditions:

i) The initial state of the closed-loop system satisfies

xps(t0)T PW xps(t0) ≤ λmin(PW )
(

2 pb λ (umax − ∥θnl∥ onl)
|−q0 + 2 pb λ ∥K∗

x∥ + ∥θnl∥cnl|

)2

. (4.14)

ii) The reference signal does not exceed

rmax ≤ q0 (umax − ∥θnl∥ onl) − ρ η Daw ∥xaw∥
ρ η|k∗

r | . (4.15)

iii) The initial value of (4.12) does not exceed
V (t0) ≤

λ

λmax(Γx)

(
q0 (2 pb λ (umax − ∥θnl∥ onl)) − 2 pb λ ρ η (|k∗

r | rmax + Daw ∥xaw(t0)∥)
Nmax

)2

(4.16)
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with

Nmax =

2 pb λ

⎡⎣ρ η

⎛⎝∥xaw(t0)∥
⎡⎣1 +

√λmin(Γaw)
λmin(Γx)

⎤⎦+ rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎞⎠
+
⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠ (2 pb λ [umax − ∥θnl∥ onl])
⎤⎦

The matrix PW = P T
W > 0 is the solution of the linear equation AT

ref PW+PW Aref = −QW
with QW = QT

W > 0 and q0 is the minimal eigenvalue of QW. In conditions (i) − (iii) the
definitions of pb , ∥PW Bp∥, η , |−q0 + 2 pb λ ∥K∗

x∥ + ∥θnl∥cnl|, Daw ≥ ∥K∗
x − K∗

aw∥ and
ρ ,

√
λmax(PW)
λmin(PW) have been used, where λmin(·) and λmax(·) are the minimal and maximal

eigenvalue, respectively.

Proof. The boundedness of the parameter estimations directly follows from the fact that
V in (4.12) is a Lyapunov function if the parameter update laws are chosen as those given
in (4.13).
If the plant Gnls is open-loop stable, a bounded input ulim directly leads to a bounded
state xps. Since the boundedness of esat can be deduced from the Lyapunov function
V , also the reference state xrefs is bounded. Summation of the dynamical system of the
reference model (4.10) and the anti-windup scheme (4.9) yields

ẋaw + ẋrefs = Aref (xaw + xref) + Bref r,

which is a stable system with bounded input r. Hence, xaw+xrefs is bounded and therefore
xaw is bounded. From the control law (4.8) it then follows that u is bounded. The proof
of boundedness for the closed-loop signals if AMRAW is applied to an unstable open-loop
plant Gnls is shown in Appendix B.

An additional result to that of Theorem 4.1 can be found for first order plants

ẋps = ap xps + bp λ
(
ulim + θT

nl fnl(xps)
)

, (4.17)

where the same assumptions apply as for Gnls but with scalar plant parameters ap ∈ R
and bp ∈ R. Under the assumption that the parameter update laws have adapted the
controller parameters to their ideal values, the equation (4.9) for the anti-windup system
can be written as

ẋaw = aawr xaw − bp λ ∆u,

= ap xaw + bp λ k∗
aw xaw − bp λ ∆u,

= ap xaw + bp λ k∗
aw xaw − bp λ (sat(uc − k∗

aw xaw) − uc + k∗
aw xaw) ,

= ap xaw + bp λ (uc − sat(uc − k∗
aw xaw)) .

(4.18)

With the interpretation of the state xaw as the unwanted behavior of the plant, as it
has been introduced in Section 3.2, a small value of ∥xaw∥ is desirable. Therefore, xaw
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is a reasonable measure for the closed-loop performance during saturation of the input.
Consequently, increasing the closed-loop performance is equivalent to a reduced influence
of the saturation on the system. The same argumentation is also used e.g. in [122, 155] to
derive anti-windup controllers that optimize the closed-loop performance. The following
theorem implicitly gives an indication of how to choose the desired anti-windup pole
aawr < 0 ∈ R in order to increase closed-loop performance.

Theorem 4.2. For the first order plant (4.17) with limited input amplitude, the choice
of two different AMRAW parameters k∗

aw1 ∈ R and k∗
aw2 ∈ R such that

ap + bp k∗
aw1 = aawr1 < ap + bp k∗

aw2 = aawr2 < ap

with aawri < 0 for i = 1, 2, will lead to |xaw1| ≤ |xaw2| ∀t > t0 for the corresponding
unwanted behaviors xawi, i = 1, 2, if

i) the input uc is the same for both systems,

ii) the initial conditions fulfill |xaw1(t0)| ≤ |xaw2(t0)|,
where sign(xaw1(t0)) = sign(xaw2(t0)),

iii) the unwanted behaviors xaw1 and xaw2 do not change sign.

Proof. The proof is based on an examination of all possible combinations of uc and
sat(uc − k∗

aw xaw) in (4.18) and on the effect of these combinations on the anti-windup
state xaw. The different combinations are compared for two closed-loop systems with
gains k∗

aw1 and k∗
aw2 respectively, which makes a conclusion about the growth or decay of

xaw1 and xaw2 possible. The detailed proof of Theorem 4.2 is given in Appendix B.

Summary

The complete control scheme of AMRAW with state-feedback is given by the control law
(4.8), the adaptive anti-windup scheme Maw in (4.9), the adaptive reference model Grefaw
in (4.10), and the parameter update laws in (4.13). All necessary equations and tuning
parameters for the implementation of AMRAW for state-feedback plants are summarized
in Table 4.1. Since AMRAW extends the method of MRAC, all Remarks 2.1-2.4 from
Section 2.2.1 does also apply to the method of AMRAW. However, since AMRAW intro-
duces additional states, parameter estimations, and tuning parameters in the closed-loop
system, additional considerations are necessary, which are presented in several remarks in
Chapter 5 based on the results of simulation examples.
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Plant: ẋps = Ap xps + Bp λ
(
ulim + θT

nl fnl(xps)
)

Reference Model: ẋrefs = Aref (xrefs + xaw) + Bref r + Bref k∆(t) ∆u − Aawr xaw
∆u = ulim − u

Control Law: u = Kx(t)T (xps + xaw) + kr(t) r − Kaw(t)T xaw
−θ̂nl(t)T(t) fnl(xps)

Anti-Windup: ẋaw = Aawr xaw − Bref k∆(t) ∆u

Lyapunov Equation: −Q = AT
ref P + P Aref

Tracking Error: esat = xps − xrefs

Parameter Update: K̇x= −Γx (xps + xaw) eT
sat P Bp

k̇r = −γr r eT
sat P Bp

θ̇nl = Γnl fnl(xps) eT
sat P Bp

K̇aw = Γaw xaw eT
sat P Bp

k̇∆ = γ∆ ∆u eT
sat P Bref

Plant

Reference Model

Parameter Update

r
u xps

esat

xref

−Controller

Anti-Windup
System

−

ulim

xaw
∆u

xps
xaw∆u
r

Design Parameters: • Aref and Bref satisfying performance requirements
and (2.6)

• Aawr satisfying (4.7) (see Remark 5.2)

• Q ∈ Rn×n positive definite

• Γx, Γaw ∈ Rn×n, Γnl ∈ Rl×l positive definite and
γr, γ∆ > 0 (see Remark 2.4)

Table 4.1: Summary of AMRAW with state-feedback.
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4.2 Direct Adaptive Model Recovery Anti-Windup
for Output-Feedback

The method of adaptive model recovery anti-windup for output-feedback, presented in
this section extends the MRAC scheme from Section 2.2.2 in order to take saturation
of the input amplitude into account. The derivation of the new control scheme follows
the same idea as in the state-feedback case in the preceding section, in the sense that
an adaptive anti-windup scheme is introduced and that the reference model is extended
like in KAAW. However, in difference to the state-feedback case a dynamical controller
is used and hence its state has to be taken into account. This leads to the necessity of
taking the anti-windup controller states into account in the basic control law.
For the following presentation the plant

Glins : yp = kp
sm + zm−1 sm−1 + · · · + z1 s + z0

sn + rn−1 sn−1 + · · · + r1 s + r0
ulim = kp

Zp(s)
Rp(s)ulim (4.19)

with the same assumptions as for the plant Glin in (2.15) is considered. The state-space
model of Glins has already been defined in (3.5) as

ẋps = Ap xps + Bp ulim,

yps = Cp xps,
(4.20)

which is assumed to be in observability canonical form for the following derivations.
Therefore, the additional assumption of an observable plant Glins is necessary. The
limited input ulim in (4.19) has been defined in (3.1).

Anti-Windup Scheme

Derivation of the anti-windup scheme requires the combined open-loop state-space model
of the plant Glins in (4.19) and the controller dynamics⎛⎜⎝ẋps

ẇ1s
ẇ2s

⎞⎟⎠
  

ẋcs

=

⎛⎜⎝ Ap 0 0
0 F 0

g Cp 0 F

⎞⎟⎠
  

Ac

⎛⎜⎝xps
w1s
w2s

⎞⎟⎠
  

xcs

+

⎛⎜⎝Bp
g
0

⎞⎟⎠
  

Bc

(uc − uaw + ∆u) ,

yps =
(
Cp 0 0

)
  

Cc

xcs,

(4.21)

where uc is the signal of the basic controller, uaw is the signal of the anti-windup con-
troller, and F and g are defined as in Section 2.2.2. The effect of saturation is represented
as the input disturbance ∆u = ulim − u. The combined open-loop equation (4.21) differs
from that of the standard MRAC scheme, since the limited input ulim instead of u is
fed back to the controller. This is similar to KAAW for output-feedback plants in [75].
Explicit definitions of the basic control law, as well as the anti-windup control law, will
be derived below.
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For known plant parameters, the anti-windup system model can be chosen as⎛⎜⎝ ẋaw
ẇ1aw
ẇ2aw

⎞⎟⎠
  

ẋawc

=

⎛⎜⎝ Ap 0 0
0 F 0

g Cp 0 F

⎞⎟⎠
  

Ac

⎛⎜⎝ xaw
w1aw
w2aw

⎞⎟⎠
  

xawc

+

⎛⎜⎝Bp
g
0

⎞⎟⎠
  

Bc

(uaw − ∆u) ,

yaw =
(
Cp 0 0

)
xawc.

(4.22)

Summation of the states xcs and xawc yields

ẋcs + ẋawc = Ac (xcs + xawc) + Bc uc. (4.23)

In the equation above no influence of the saturation on the input is present, while the
parameters are the same as for (4.21). Hence, the state of the combined state-space
representation of (2.16) and (2.24) for the unsaturated case is recovered and can be fed
back to the basic control law

uc =
(
θT

1 θT
2 θ3 c

)⎛⎜⎜⎜⎝
w1s + w1aw
w2s + w2aw
yps + yaw

r

⎞⎟⎟⎟⎠ = θT wus. (4.24)

However, since the anti-windup scheme in (4.22) requires the knowledge of the exact plant
parameters, it can not be implemented. An implementable scheme will be derived on the
basis of (4.22) after the introduction of the anti-windup controller.
The anti-windup controller structure

uaw = θT
1aw(t)αn−2(s)

Λ(s) (uaw − ∆u) + θT
2aw(t)αn−2(s)

Λ(s) yaw + θ3aw(t) yaw = θT
aw(t) waw (4.25)

follows from the anti-windup state-space model (4.22). As for the standard output-
feedback MRAC, the parameters of Λ0(s) in Λ(s) = Λ0(s) Zref(s) can be chosen by
the designer, but have to be the same as for the basic controller. The ideal controller
parameters θ∗

1aw, θ∗
2aw and θ∗

3aw of (4.25) are defined to satisfy

Ac xawc + Bc θ∗T
aw waw = Aawrc xawc, (4.26)

where the desired dynamic Aawrc is the non-minimal representation of Aawr, which can
be chosen by the designer. The complete control scheme therefore becomes

u = uc − uaw = θT wus − θT
aw waw. (4.27)

The derivation of the final anti-windup scheme is done with the same procedure as for
the state-feedback case, which is illustrated in Figure 4.1. Instead of the control signal
uaw based on the estimated parameters, the ideal control law

u∗
aw = θ∗T

1aw
αn−2(s)

Λ(s) (u∗
aw − ∆u) + θ∗T

2aw
αn−2(s)

Λ(s) yaw + θ∗
3,aw yaw = θ∗T

aw waw
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is used for feedback inside the anti-windup scheme, so that the internal closed-loop system
can be derived by substitution of u∗

aw in (4.22). Together with (4.26) this yields

ẋawc =

⎛⎜⎝Ap + Bp θ∗
3aw Cp Bp θ∗T

1aw Bp θ∗T
2aw

g θ∗
3aw Cp F + g θ∗T

1aw g θ∗T
2aw

g Cp 0 F

⎞⎟⎠
  

Aawrc

xawc −

⎛⎜⎝Bp
g
0

⎞⎟⎠
  

Bc

∆u,

yaw =
(
Cp 0 0

)
  

Cc

xawc.

(4.28)

With the same arguments as for standard output-feedback MRAC in Section 2.2.2, it can
be shown that (4.28) is a non-minimal representation of

ẋaw = Aawr xaw − 1
c∗ Bref ∆u,

yaw = Cp xaw.

Similar to the state-feedback case the anti-windup system can be made implementable by
using an estimation k∆(t) for the unknown input gain 1

c∗ , which yields the anti-windup
scheme

Maw :
ẋaw = Aawr xaw − k∆ Bref ∆u,

yaw = Cp xaw.
(4.29)

Note that Cp =
[
1 0 . . . 0

]
due to the assumption of the observability canonical form

of (4.20). Hence, the anti-windup scheme for output-feedback is similar to the scheme
in (4.9) for state-feedback. However, a difference is clearly given by the fact that the
structure of the anti-windup controller and the necessary consideration of the anti-windup
controller states for the basic controller in (4.24).

Reference Model

The reference model describes the desired behavior of the closed-loop system and conse-
quently can be achieved if the ideal version of (4.27)

u∗ = θ∗T wus − θ∗T
aw waw (4.30)

is used as the input signal to Glins. Inserting the ideal control law in (4.21) and taking
(2.25) and (4.28) into account, yields

ẋcs = Arefc (xcs + xawc) + Brefc

(
r + 1

c∗ ∆u
)

− Aawrc xawc.

As for the anti-windup scheme, the estimation k∆(t) for the gain 1
c∗ is introduced, so

that a minimal, implementable, and feasible representation of the reference model is given
by

Grefaw : ẋrefs = Aref (xrefs + xaw) + Bref (r + k∆ ∆u) − Aawr xaw, (4.31)
where the closed-loop state has been renamed as xrefs. In Grefaw the effect of saturation
on the input is present as the input disturbance ∆u and also the effect of the anti-windup
scheme is represented by the terms Aref xaw and −Aawr xaw.



4 Adaptive Model Recovery Anti-Windup: Derivation 67

Parameter Updates and Closed-Loop Stability

A description of the closed-loop system with AMRAW can be derived by adding and
subtracting Bc

(
θ∗T wus + θ∗T

aw waw
)

to the combined open-loop equations in (4.21), which
results in

ẋcs = Arefc (xcs + xaw) + Brefc r + Brefc
1
c∗

(
∆u + uc − uaw − θ∗T wus + θ∗T

aw waw
)

− Aawrc xawc.
(4.32)

Substitution of the control law (4.27) for uc − uaw and subtraction of the reference model
(4.31) from the minimal representation of (4.32) leads to the closed-loop tracking error
dynamics

ėsat = Aref esat + Bref
1
c∗

(
θ̃T wus − θ̃T

aw waw − k̃∆∆u
)

, (4.33)

with the parameter estimation errors θ̃ = θ − θ∗, θ̃aw = θaw − θ∗
aw, k̃∆ = c∗ k∆ − 1 and the

transfer function
eys = 1

c∗ Gref
(
θ̃T wus − θ̃T

aw waw − k̃∆∆u
)

, (4.34)

that can be used to derive the necessary parameter update laws for the complete control-
law in (4.27). As for the standard MRAC, this requires a differentiation between the two
cases of relative degree n∗ = 1 and n∗ ≥ 2 of the plant Glins.
n∗ = 1
For the case n∗ = 1, the reference model Gref has to be SPR. If the parameter update
laws are chosen to be

θ̇ = −Γ wus eys sign(c∗), (4.35)
θ̇aw = Γaw waw eys sign(c∗), (4.36)
k̇∆ = γ∆ ∆u eys, (4.37)

the function

V1 = eT
sat P esat + 1

|c∗|
(
θ̃T Γ−1 θ̃ + θ̃T

aw Γ−1
aw θ̃aw

)
+ 1

γ∆ c∗2 k̃2
∆, (4.38)

with P as the solution for AT
ref P + PAref = Q with Q = QT < 0, can be shown to be

a Lyapunov function of (4.33) and (4.35)-(4.37). This result is derived in more detail in
the proof of Theorem 4.3.
n∗ ≥ 2
For higher relative degrees an augmentation of the error dynamics (4.34), as it was done
in Section 2.2.2 for basic MRAC, is necessary. The auxiliary error

e2s =
(
θT

cl GREF − Gref θT
cl

)
wcl

is used for the augmentation ey2s = eys + ka e2s, which results in

ey2s = 1
c∗ θ̃T

cl GREF wcl − ˜̄k∆ Gref∆u + k̃a e2s + 1
c∗ θ∗T

cl GREF wcl − 1
c∗ Gref θ∗T

cl wcl  
→0 exponentially

, (4.39)
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with θ̃cl =
[
θ̃T θ̃T

aw

]T
, wcl =

[
wT

us −wT
aw

]T
, k̃a = ka − 1

c∗ and ˜̄k∆ = 1
c∗ k̃∆. The transfer

function GREF has already been defined in Section 2.2.2 as a diagonal MIMO system,
where all nonzero entries are Gref . The parameter update laws

θ̇cl = −sign(c∗) Γcl
ey2s φcl

1 + φT
cl φcl

(4.40)

k̇a = −γa
ey2s e2s

1 + φT
cl φcl

(4.41)

k̇∆ = γ∆
ey2s φu

1 + φT
cl φcl

(4.42)

with φcl = GREF wcl and φu = Gref ∆u result in boundedness for the estimated parame-
ters, which can be shown with the Lyapunov function candidate

V2 = 1
2

(
1

|c∗| θ̃
T
cl Γ−1

cl θ̃T
cl + 1

γ∆

˜̄k2
∆ + 1

γa
k̃2

a

)
. (4.43)

This result is derived in more detail in the proof of Theorem 4.3.

Since all necessary equations to implement AMRAW for an output-feedback system Glins
have been derived above, the following theorem can be stated:

Theorem 4.3. The control law (4.27) with a bounded reference signal |r(t)| ≤ rmax(t)
together with the parameter update laws (4.35)-(4.37) for n∗ = 1 or (4.40)-(4.42) for
n∗ ≥ 2 and the reference model (4.31) applied to the plant Glins in (4.19) results in a
bounded state of (4.21), if the plant is open-loop stable. Boundedness of the state for an
unstable open-loop plant Glins can be established under the following conditions:

i) The initial condition of the closed-loop state fulfills

xcs(0)T PW xcs(0) ≤ λmin(PW)
(

2 pb umax

| − q0 + 2 pb ∥θ̄∗∥ ∥Ct∥|

)2

. (4.44)

ii) The reference signal does not exceed

rmax(t) ≤ umax q0 − ρ η Daw ∥Ct∥ ∥xawc∥
ρ η |c∗| . (4.45)

iii) The initial values of the Lyapunov functions V in (4.38) and (4.43) fulfill√
V (t0) ≤√

1
|c∗| λmax(Γ)

(
2 pb umax q0 − 2 ρ η pb∥c∗∥ rmax − 2 ρ η pb Daw∥Ct∥ ∥xawc(t0)∥

Nmax

)
(4.46)

with

Nmax = 2 ρ η pb ∥Ct∥ ∥xawc(t0)∥
(

1 + λmin(Γaw)
λmin(Γ)

)
+ 2 ρ η pb rmax + 4 p2

b umax ∥Ct∥.



4 Adaptive Model Recovery Anti-Windup: Derivation 69

The matrix PW = P T
W > 0 is the solution of the linear equation AT

ref PW +PW Aref = −QW
with QW = QT

W > 0 and q0 is the minimal eigenvalue of QW. In conditions (i) − (iii)
the definitions of θ̄ =

[
θT

1 θT
2 θ3

]T
, pb , ∥PW Bc∥, η , |2 pb ∥θ̄∗∥ ∥Ct∥ − q0|, Daw ≥

∥(θ̄∗T−θ∗T
aw)∥ and ρ ,

√
λmax(PW)
λmin(PW) have been used, where λmin(·) and λmax(·) are the minimal

and maximal eigenvalue, respectively. The matrix

Ct ,

⎛⎜⎝ 0 In−1×n−1 0
0 0 In−1×n−1

Cp 0 0

⎞⎟⎠
defines the mappings w̄ = Ct xcs and waw = Ct xawc.

Proof. The derivative with respect to time of V1 in (4.38) is given by

V̇1 = eT
sat

(
P Aref + AT

ref P
)

esat + 2 eT
sat P Bref

1
c∗

(
θ̃T wus − θ̃T

aw waw − k̃∆ ∆u
)

+ 2
|c∗| θ̃T Γ−1 ˙̃θ + 2

|c∗| θ̃
T
aw Γ−1

aw
˙̃θaw + 2

γ∆c∗2 k̃∆
˙̃k∆

(4.47)

Since Gref is SPR, it follows from the MKY-Lemma that P Bref = CT
ref which leads to

eT
sat P Bref = eys. Therefore, the update laws (4.35)-(4.37) lead to V̇1 ≤ 0 and hence

to bounded parameter estimations of the adaptive system with a plant of relative degree
n∗ = 1. Since V1 is a Lyapunov function, the state esat is bounded. If the open-loop plant
Glins is stable, a bounded input ulim will lead to a bounded plant state and therefore to a
bounded state xrefs of the reference model. Summation of the anti-windup scheme (4.29)
and the reference model (4.31) leads to the stable system

ẋaw + ẋrefs = Aref (xaw + xrefs) + Bref r,

with the bounded input r. Hence, xaw + xrefs is bounded and therefore xaw is bounded.
The derivative with respect to time of V2 in (4.43) is given by

V̇2 = 1
|c∗| θ̃T

cl Γ−1
cl

˙̃θcl + 1
γ∆

˜̄k∆
˙̄̃
k∆ + 1

γa
k̃a

˙̃ka, (4.48)

where ˙̄̃
k∆ = 1

c∗
˙̃k∆ = k̇∆. Substitution of the parameter update laws (4.40)-(4.42) yields

V̇2 = ey2s

1 + φT
cl φcl

(
− 1

c∗ θ̃T
cl φcl + ˜̄k∆ φu − k̃1 e2s

)
. (4.49)

From (4.39) it follows that k̃a e2s = ey2s − 1
c∗ θ̃T

cl φcl + ˜̄k∆ φu which results in

V̇2 = − e2
y2s

1 + φT
cl φcl

≤ 0 (4.50)

and bounded parameter estimations for the adaptive closed-loop system for a plant of
relative degree n∗ ≥ 2. If the open-loop plant Glins is stable, the bounded input ulim
directly leads to boundedness of the states of (4.21). Boundedness of the of the states of
(4.21) for the case of an unstable open-loop plant is given in Appendix B.
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Summary

The complete control scheme of direct AMRAW for output-feedback plants is given by
the control law (4.27), the anti-windup scheme (4.29), the reference model (4.31), and
the parameter update laws (4.35)-(4.37) for n∗ = 1 and (4.40)-(4.42) for n∗ ≥ 2. All
equations and tuning parameters, which are necessary to implement direct AMRAW
for output-feedback plants, are summarized in Table 4.2. A schematic illustration of
AMRAW for output-feedback plants is shown in Figure 4.2. Since the presented method
is an extension of direct MRAC with output-feedback, Remarks 2.5-2.10 do also apply to
AMRAW. Additional remarks and examinations are given in Chapter 5.

ẋps = Ap xps + Bp ulim

yps = Cp xp

ẋaw = Aawr xaw − Bref k∆ ∆u

yaw = Cp xaw

ẇ1aw = F w1aw + g (θT
aw waw − ∆u)

ẇ2aw = F w2aw + g yaw

ẋrefs = Aref (xrefs + xaw) + Bref r + Bref k∆ ∆u − Aawr xaw

yrefs = Cp xrefs

ẇ1s = F w1s + g (u + ∆u)
ẇ2s = F w2s + g yps

u = θ̄T (w̄s + waw) + c r

− θT
aw waw

r

xaw

ulimu yps

yrefs

eys

−

w1aw, w2aw, yaw

∆u

−

Parameter
Updates

ws
waw
∆u

Controller

Anti-Windup

Plant

Reference Model

Figure 4.2: Schematic illustration of AMRAW for output-feedback plants. Note that for
n∗ ≥ 2 the calculation of ey2s, e2s , φcl, and φu is part of the parameter update block.
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Plant: yps = kp
Zp(s)
Rp(s)ulim

Reference Model: ẋrefs = Aref (xrefs + xaw) + Bref (r + k∆∆u)
− Aawr xaw

yrefs = Cp xrefs

Control Law: u = θ̄T (w̄s + waw) + c r − θT
aw waw

ws =
[
w̄T

s r
]T

, θ =
[
θ̄T c

]T
waw, θaw from (4.25)

Anti-Windup: ẋaw = Aawr xaw − k∆ Bref ∆u

yaw =
[
1 0 . . . 0

]
xaw

Tracking Error: eys = yps − yrefs

Parameter Updates: n∗ = 1 : θ̇ = −Γ wus eys sign(c∗); wus from (4.24)
θ̇aw = Γaw waw eys sign(c∗)
k̇∆ = γ∆ ∆u eys

n∗ ≥ 2 : e2s =
(
θT

cl GREF − Gref θT
cl

)
wcl, GREF = Gref I2n×2n

wcl =
[
wT

us −wT
aw

]T
; θcl =

[
θT θT

aw

]T
φcl = GREF wcl; φu = Gref ∆u

ey2s = eys + ka e2s

θ̇cl = −sign(c∗) Γcl
ey2s φcl

1+φT
cl φcl

k̇a = −γa
ey2s e2s

1+φT
cl φcl

k̇∆ = γ∆
ey2s φu

1+φT
cl φcl

Block Diagram
in Figure 4.2

Design Parameters: • Aref , Bref satisfy performance requirements (see also Re-
mark 2.6 and Remark 2.9).

• Aawr determines the desired anti-windup dynamics (see
Section 5.2.1)

• Λ0 of degree n − m − 1 (see Remark 2.10)

• Γ = ΓT > 0, Γaw = ΓT
aw > 0, Γcl = diag(Γaw, Γcl), γ∆ > 0,

γa > 0 (see Remark 2.5)

Table 4.2: Summary of AMRAW for output-feedback.
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4.3 Indirect Adaptive Model Recovery Anti-Windup
for Output-Feedback

The indirect method of adaptive model recovery anti-windup for output-feedback pre-
sented in this section, extends the APPC scheme from Section 2.2.3 in order to take
saturation of the input amplitude into account. Since an indirect adaptive method is
derived here, the certainty equivalence principle rather than a stability analysis is used to
introduce suitable parameter update laws.
For the following presentation the plant

Gnl2s : yps = Zp(D)
Rp(D)

(
ulim + θT

nl fnl(yps)
)

(4.51)

is considered, with the same assumptions as for Gnl2 in (2.41) and ulim from the definition
in (3.1). The state-space equation of the plant is given by

ẋps = Ap xps + Bp
(
ulim + θT

nl fnl(yps)
)

,

yps = Cp xps.
(4.52)

Anti-Windup Scheme

The state-space equation (4.52) is very similar to the plant description for the direct
state-feedback AMRAW. The only difference is given by the measurement of the output
yps instead of the complete state. Therefore, the same arguments as for direct AMRAW
with state-feedback can be used to show that the summation of yps and the output of
the anti-windup system

ẋaw = Ap xaw + Bp
(
−∆u + uaw + θT

nl (fnl(yps + yaw) − fnl(yps))
)

,

yaw = Cp xaw,
(4.53)

recovers the output of the plant Gnl2 in (2.41). In difference to the direct AMRAW
methods, the uncertain system parameters are estimated so that an implementable version
of (4.53) is given by

ẋaw = Âp xaw + B̂p
(
−∆u + uaw + θ̂T

nl (fnl(yps + yaw) − fnl(yps))
)

,

yaw = Ĉp xaw,
(4.54)

where Âp, B̂p, and Ĉp are in controller canonical form and can be build from the estima-
tions of zi, rj for i = 0, . . . , m − 1 and j = 0, . . . , n − 1 in Gnl2s. The parameter vector
θ̂nl is an estimation of θnl. Usage of the recovered output of the plant Gnl2 allows the
calculation of the basic control law

uc = − P (D)
Q(D) L(D) (yps + yaw) + M(D)

Q(D) L(D) r − θ̂T
nl fnl(yps + yaw), (4.55)
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where the computation of the controller parameters has to be done with equations (2.44)
and (2.45).
In order to regulate the unwanted behavior yaw to zero a state-feedback controller with
nonlinear compensation

uaw = KT
aw(t) xaw − θ̂T

nl (fnl(yps + yaw) − fnl(yps)) (4.56)

is introduced into the anti-windup scheme. The time depending gain for the states is
calculated by

Âp + B̂p Kaw(t)T = Aawr, (4.57)

where the matrix Aawr can be chosen by the designer to have desired closed-loop poles
for the anti-windup scheme. Hence, the complete control scheme is given by

u = uc − uaw = − P (D)
Q(D) L(D) (yps + yaw) + M(D)

Q(D) L(D) r − θ̂T
nl fnl(yps) − KT

aw xaw. (4.58)

Note that in difference to the direct methods of AMRAW, which have been presented in
the preceding sections, the structure of the anti-windup controller in (4.56) is different
from the structure of the basic controller in (4.55). A state-feedback gain KT

aw has been
chosen, because it does not introduce additional controller states in the closed-loop system
and it is straight forward to compute with (4.57).
Since the calculation of Kaw in (4.57), the control law (4.56), and the anti-windup system
in (4.54) are based on estimated parameters, it is always true that

ẋaw = Âp xaw + B̂p
(
−∆u + uaw + θ̂T

nl (fnl(yps + yaw) − fnl(xps))
)

= Aawr xaw − B̂p ∆u,
(4.59)

so that the anti-windup system can be implemented as

Maw :
ẋaw = Aawr xaw − B̂p ∆u,

yaw = Ĉp xaw.
(4.60)

Parameter Updates

Similar to the method of APPC, many different estimation schemes can be used to es-
timate the plant parameters. As for the APPC scheme in Section 2.2.3, a least-squares
algorithm with covariance resetting is chosen for the indirect AMRAW scheme. No mod-
ifications for this algorithm are necessary for its application in the AMRAW scheme.
However, in order to account for the input saturation, the linear parametric model needs
to be slightly modified in comparison to (2.51). It becomes

yfs = θT
p φps (4.61)
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with
yfs = Dn yps

Λe(s) ,

θp =
[
θT

y θT
u θT

znl,m . . . θT
znl,0

]T
, and

φps =
[
− αT

n−1
Λe(D)yps

αT
m

Λe(D)ulim
Dm

Λe(D)fnl(yps)T . . . 1
Λe(D)fnl(yps)T

]T
,

where αi(D) has been defined in (2.50), θy =
[
rn−1 . . . r0

]T
, θu =

[
zm . . . z0

]T
,

θznl,i = zi θnl for i = 0, . . . , m, and an arbitrary but Hurwitz polynomial Λe(s) of degree
n. Hence, the modification is done for the definition of φps, which includes the saturated
input ulim instead of the unsaturated input as in (2.51). For the linear parametric model
(4.61) the least-squares algorithm (2.52) can be used to estimate the plant parameters.
Since the estimation scheme is the same as for basic APPC the estimated plant parameters
have the same properties stated in Appendix A.

Summary

The complete control scheme of indirect AMRAW for output-feedback plants is given
by the control law (4.58), the plant parameter estimation scheme (2.52) for the linear
parametric model (4.61) and the rules for the controller parameter calculation in (2.44),
(2.45) or (2.47), and (4.57). Since the presented method is based on indirect APPC, the
Remarks 2.12-2.14 do also apply for indirect AMRAW. All equations and tuning parame-
ters, which are necessary to implement indirect AMRAW for output-feedback plants, are
summarized in Table 4.3. Additional remarks and examinations are given in Chapter 5.
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Plant: yps = Zp
Rp

(
ulim + θT

nl fnl(yps)
)

Control Law: u = − P
Q L

(yps + yaw) + M
Q L

r − θ̂T
nl fnl(yps) − KT

aw xaw

Q r= 0

Anti-Windup: ẋaw = Aawr xaw − B̂p ∆u

ẏaw = Ĉp xaw

Plant Parameter
Estimation: ˙̂

θps = Pls ϵs φps

Ṗls = −Pls φps φT
ps Pls

1+φT
ps φps

, Pls(0) = Pls0, Pls(tr) = ρr Ip×p

ϵs = yfs−θ̂T
p φp

1+φT
ps φps

yfs = Dn yps
Λe

, θ̂p =
[
θ̂T

y θ̂T
u θ̂T

znl,m . . . θ̂T
znl,0

]T
φT

ps=
[
−αT

n−1
Λe

yps
αT

m

Λe
ulim

Dm

Λe
fT

nl(yps) . . . 1
Λe

fT
nl(yps)

]
Controller Parameter
Calculation: Ad(D) = L(D) Q(D) R̂p(D) + P (D) Ẑp(D)

M =
⎧⎨⎩

ad,0
ẑ0

, for piecewise constant r and z0 ̸= 0
P, otherwise

Aawr = Âp + B̂p KT
aw

θ̂nl = θ̂znl,i
ẑi

, for any i = 0, . . . , m, θ̂u =
[
ẑm . . . ẑ0

]T
R̂p(D) = Dn + θ̂T

y αn−1(D), Ẑp(D) = θ̂T
u αm

αi(D) =
[
Di Di−1 . . . D 1

]T

Plant

Estimation

ulim yps

Controller Parameter Plant Parameter
Calculation

θ̂ps

Anti-Windup

Controller

−∆u

u

yaw

xaw

r

Design Parameters: • Ad with roots at desired closed-loop poles and Aawr with
desired anti-windup dynamic (see Remark 5.2)

• Λe of degree n (see Remark 2.12

• Pls(0), ρ0, and ρr (see Remark 2.12)

Table 4.3: Summary of indirect AMRAW based on the polynomial approach of APPC.





Chapter 5

Adaptive Model Recovery
Anti-Windup: Remarks and
Simulations

The AMRAW schemes derived in the previous chapter extend the basic adaptive methods
presented in Chapter 2. In order to deal with limited input amplitudes of the controlled
plants these extensions introduce additional dynamics and parameters in the closed-loop
system. For the control engineer, it might not directly be clear how to use these addi-
tional degree of freedom and what kind of considerations are necessary before applying
AMRAW. Therefore, some interpretations and information about the newly introduced
anti-windup scheme are given in this chapter in the form of several remarks. Some of the
discussions and comments in the remarks are based on observations in the results of mul-
tiple simulations and experiments. Selected simulation results are shown in this chapter,
whereas the experimental results and a detailed explanation of these experiments can be
found in the next chapter.

5.1 Direct Adaptive Model Recovery Anti-Windup
for State-Feedback

In comparison to basic MRAC summarized in Table 2.1, the AMRAW scheme given in
Table 4.1 adds an additional degree of freedom represented by the anti-windup controller.
This additional degree of freedom has been introduced to allow for performance consider-
ations for input saturated systems. Remark 5.1 gives an idea of how to use this additional
degree of freedom and how its influence on the closed-loop performance can be interpreted.
For many technical plants, a good system knowledge might be sufficient for the control
engineer to tune an anti-windup scheme like MRAW. Furthermore, some tuning proce-
dures for known plant parameters exist, that lead to a systematic parametrization of the
anti-windup scheme. However, if the plant parameters are uncertain or even changing
during operation, an initial choice of the desired anti-windup dynamics might not work
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well for the whole lifetime of the system. Since AMRAW has been introduced in order to
account for such uncertain plants, some heuristic, intuitive, and practical approaches to
find the desired anti-windup dynamics are given in Remark 5.2.
Even if AMRAW provides the possibility to influence the closed-loop performance dur-
ing saturation of the input, the implementation costs and the tuning effort are clearly
higher than for KAAW. Therefore, from the viewpoint of the application costs, KAAW
is preferable over AMRAW. In Remark 5.3 a comment about the connection between
AMRAW and KAAW is given and it is shortly discussed in which cases KAAW rather
than AMRAW should be used.
Not only the decisions of when to use AMRAW and how to correctly tune its anti-
windup scheme needs to be considered with care. Also, the conditions in Theorem 4.1,
which guarantee stability if AMRAW is applied to unstable open-loop plants require some
explanation. Therefore, the theorem and especially the conditions are shortly discussed in
Remark 5.4. However, all the derived stability results are not valid anymore if AMRAW
is applied to plants with uncertain maximal input amplitudes. This issue and ways to
avoid it are further discussed in Remark 5.5. Finally a short comment about the usage of
a CRM in AMRAW is given in Remark 5.6.
The discussions, proposals and comments in the following remarks are partially based on
the results of the Simulation Examples 5.1-5.3 in Section 5.1.2. These examples show the
general benefits of AMRAW and its advantages in comparison with KAAW. The method
of KAAW has been chosen for comparative examinations because AMRAW is partially
based on the main concept of KAAW, which has already been used successfully in different
practical applications (see Section 3.3).

5.1.1 Remarks

Remark 5.1 (Additional Degree of Freedom). The anti-windup controller of AM-
RAW introduces an additional degree of freedom in the closed-loop system, which can
be used to influence the closed-loop performance during saturation of the input. The
notion of performance, in this case, is equivalent to a reduction of the unwanted behav-
ior, represented by the anti-windup state xaw, on the closed-loop behavior. Since the
anti-windup controller only regulates xaw, it can influence the closed-loop performance
if input saturation occurs without changing it if the input does not encounter its limits.
This is shown in Simulation Example 5.1. In addition to the tuning parameters of basic
MRAC, AMRAW allows the control designer to choose the desired dynamics Aawr of the
anti-windup system, which determines the ideal controller parameters of the anti-windup
controller. In the Simulation Examples 5.1-5.3 it can be observed that fast anti-windup
dynamics forces the input to stay longer in saturation and vice versa. An interpretation
of this behavior can be given under consideration of block diagram II in Figure 4.1 as fol-
lows. The desired anti-windup dynamics can be achieved by feedback of the ideal control
signal to the plant model inside the anti-windup scheme. Therefore, the requirement of
fast dynamics of the anti-windup scheme requires high gains of the anti-windup controller
and therefore results in higher amplitudes of the control signal u∗

aw. Since uaw, as the es-
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timation of u∗
aw contributes to the input of the plant, also the amplitude of u will become

higher and therefore grows further above the maximal amplitude umax. Consequently, it
takes a longer time for the plant input to come out of saturation again.

Remark 5.2 (Tuning Proposals). Similar to standard MRAC, the reference model
system matrix Aref and the input vector Bref of Grefaw in (4.10) can be chosen by
the control designer such that this part of the reference model represents the desired
closed-loop dynamics without saturation of the plant input. An additional degree of
freedom in the method of AMRAW has been introduced in order to allow for performance
considerations in adaptive systems with limited input amplitude. This is possible by
choosing the desired anti-windup dynamics Aawr in a suitable way. For first order plants,
Theorem 4.2 suggests the choice of a very fast stable pole for the desired anti-windup
dynamics. The absolute value of this pole is only limited by practical limitations such as
measurement noise. However, already the choice of Aawr for second order plants is not
straight forward anymore. It is shown in Simulation Examples 5.1-5.2 that the optimal
choice depends on the plant, the reference model dynamics and the desired or at least
acceptable closed-loop behavior during input saturation. This makes the specification of
a systematic procedure to tune Aawr more difficult in comparison to the choice of Aref
and Bref .
If nominal plant parameters and hence the corresponding controller parameters are known,
which is usually the case for technical plants, an anti-windup tuning for the nominal case
is possible. This can either be done by manual tuning or by using a systematic optimiza-
tion technique presented e.g. in [122, 124]. However, for changing plant parameters no
guarantees for the optimality of the anti-windup parameters can be given anymore with
this tuning procedure.
For some plants a convex set of possible plant parameters is known in advance. Then the
estimated controller parameters can be guaranteed to stay in the corresponding set by
using parameter projection (see Section 2.2.5) and hence a bound on the parameter uncer-
tainty is known. For such cases, optimal parameters for the anti-windup controller can be
found with the methods presented in [49, 155]. However, since these methods are based
on a robust approach, they might only work satisfactorily for sufficiently small parameter
uncertainties. For strong uncertainties, such an approach could lead to rather conserva-
tive parametrization of the anti-windup scheme and hence to an insufficient closed-loop
performance. In such cases, it is unavoidable to find a suitable Aawr by extensive simu-
lations with multiple predefined or random combinations of possible plant and controller
parameters. With this approach, a desired anti-windup dynamic can be found that likely
leads to the best closed-loop behavior for all parameter combinations. For higher order
plants, this procedure is clearly very time consuming and might therefore not be feasible.
However, in some technical applications, where plant parameters change during lifetime
due to aging or changing environments, the direction of the parameter changes is known
in advance and only the corresponding time, where these changes occur, and the rate of
change is unknown. For such plants, only a reduced number of simulations are necessary
to find a suitable Aawr, since the knowledge about parameter changes adds additional
restriction on the plant parameter set.



80 5.1 Direct Adaptive Model Recovery Anti-Windup for State-Feedback

For some plants neither a good system knowledge is available nor extensive simulations
are feasible. For these plants, the desired anti-windup dynamics Aawr can be made
tunable. This renders a re-tuning of the desired anti-windup dynamics possible if the
plant parameters change and the performance for a saturated input becomes unacceptable.
This procedure is still preferable compared to an occasionally re-tuned constant controller,
since the parameters of the basic controller and the anti-windup scheme in AMRAW will
be adapted automatically.

Remark 5.3 (Connection between KAAW and AMRAW). Since the concept of
an extended reference model introduced with KAAW has also been used for AMRAW,
a connection between the two methods exist, which can be seen by inspection of the
AMRAW control law (4.8), the reference model (4.10), and the corresponding equations
(2.5) and (3.16) for KAAW. If the desired dynamics of the closed-loop and the anti-
windup system are chosen such that Aawr = Aref , it directly follows that K∗

x = K∗
aw

for the ideal controller parameters. In such cases, the effect of the anti-windup method
in the reference model as well as in the control law is canceled out, so that AMRAW
and KAAW lead to the same closed-loop behavior after the controller parameters have
been adapted to their ideal values. Consequently, if the best closed-loop performance is
achieved for Aawr = Aref , KAAW instead of AMRAW should be used for the following
reasons. The tuning effort, the implementation costs, and the computational costs are less
for KAAW, because AMRAW introduces 2 n additional states in the controller due to
the anti-windup system and the additional parameter estimation of Kaw. Since AMRAW
introduces n additional parameters in comparison to KAAW, a stronger excitation of the
AMRAW closed-loop system is required (see Remark 2.3) if parameter estimation is part
of the control task.

Remark 5.4 (Conditions of Theorem 4.1). In Theorem 4.1 it has been stated that
the boundedness of all closed-loop signals can always be achieved if AMRAW is applied
to open-loop stable plants. For unstable open-loop plants, guaranteed boundedness of
the closed-loop signals requires the conditions i) − iii) in Theorem 4.1 to hold, which
are similar to the conditions for KAAW given in [75]. However, already the conditions
for KAAW are quite restrictive, such that it is very difficult to find higher order plants
that actually fulfill them [19]. When applying AMRAW the additional state xaw further
restricts the admissible initial states of the closed-loop and the maximal reference signal.
Only first order plants have been found that can fulfill condition i) − iii) in Theorem 4.1
with reasonable maximal admissible amplitudes of the reference signal.
Even for such low order plants already the calculation of the conditions i) − iii) in
Theorem 4.1 is not straight forward since it requires the knowledge of a maximum
xawmax ≥ ∥xaw(t)∥. If tuning of Aawr is done as proposed in Remark 5.2, a value for
xawmax can directly be deduced from extensive simulations. If such simulations are not
feasible, condition ii) for the maximal reference signal amplitude can be calculated during
operation, so that it can be reduced if boundedness can no longer be guaranteed by The-
orem 4.1. However, the conditions for AMRAW and KAAW have been found out to be
very conservative, so that a violation of them does not necessarily leads to unboundedness
of the closed-loop signals. This is shown in Simulation Examples 5.2 and 5.3.
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Remark 5.5 (Uncertain Input Amplitude). In the preceding derivation of AMRAW
the upper and lower limit of the input amplitude has been assumed to be known and to
have the same absolute value. However, for many technical applications that is not true
and the maximal amplitudes might even change during operation. For these cases, the
following considerations should be taken into account, in order to prevent the closed-loop
system from avoidable problems. Unsymmetrical limitations of the input amplitude, i.e.
different maximal values for positive and negative input amplitudes are not a problem
for the application of AMRAW as long as they are taken into account correctly for the
calculation of ∆u. If boundedness for the closed-loop system needs to be guaranteed
with the conditions of Theorem 4.1, the calculation of the necessary conditions needs to
be done with the smallest absolute value of the input amplitude limit. For the tuning
of AMRAW the different limitations also need to be taken into account. Since a tighter
input limitation will lead to stronger saturation effects, the closed-loop behavior should
be evaluated for the corresponding input direction.
Implementing AMRAW exactly as shown in the block diagram of Table 4.1 can avoid
problems which might arise if only an estimation of the amplitude limits is available. If
the shown artificial saturation in front of the plant is actually implemented such that its
limitations are guaranteed to be tighter than the real input limitations of the plant, it can
be avoided that the actual input amplitude of the plant is higher than that of ulim used
for calculation of ∆u. However, if the maximal input amplitude of the plant is reduced
during operation, e.g. due to defects of the technical system or changes of the environment,
the new saturation limits might be unknown and can not directly be adjusted, so that an
incorrect calculation of ∆u results. The experiment in Section 6.1 suggests that AMRAW
does not totally fail in such cases. However, conditions for guaranteed boundedness of
the AMRAW closed-loop states have only been derived for known limits of the input
amplitude in this work.

Remark 5.6 (AMRAW with CRM). It can be seen by inspection of the stability
analysis for AMRAW that combining it with a CRM, which has been presented in Section
2.2.4, does not change the stability results in Theorem 4.1. In order to benefit from the
properties of a CRM it is therefore advisable to also use it in combination with AMRAW.

5.1.2 Simulations

Simulation Example 5.1. The plant Gex1s is considered, which differs from the plant
Gex1 from Simulation Example 2.1 in that it has a maximal input amplitude of umax =
100. This is equivalent to a maximal force that can be applied to the mechanical system
and therefore makes the example more realistic. The reference model and the initially
estimated plant parameters are adopted from Simulation Example 2.1. For the desired
dynamics of the anti-windup scheme the system matrix

Aawr =
(

0 1
−676 −52

)
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has been defined, which has two eigenvalues at -26. These specifications lead to the
following initially estimated controller parameters and the respective ideal parameters of
AMRAW:

initial parameters ideal parameters

Kx(0) =
(

−10.5105
−2.7027

)
kr(0) = 15.0150

θ̂nl(0) =
(

6.0
0.2

)

Kaw(0) =
(

−33.93
−4.50

)
k∆(0) = 0.066

K∗
x =

(
−22.9730
−5.1351

)
k∗

r = 27.0270

θnl =
(

3.0
0.4

)

K∗
aw =

(
−65.13
−8.37

)
k∗

∆ = 0.037

The simulation results for the same reference signals and simulation length as in Example
2.1 are shown in Figure 5.1, where the adaptation gains for the parameter update laws
have been chosen as Γx = 0.1 I2×2, γr = 0.1, Γnl = 0.1 I2×2, Γaw = 2 I2×2 and γ∆ = 0.1.
The results of the introduced method of AMRAW are compared to the results of KAAW
in the first three graphs, which show the system responses before (t < 10s) and after
adaptation, respectively. These results together with the estimated AMRAW parameters
in the forth graph verify that the closed-loop signals stay bounded. In addition, it can
be seen in the third graph that the plant input for AMRAW stays longer in saturation
than the input of KAAW. Therefore more input energy is supplied to the system, which
results in a faster closed-loop response.
As a second part of this example, additional simulations have been carried out with
different choices of the desired anti-windup poles, while the parameters of Aref and Bref
have been kept constant. The resulting system responses for ideal controller parameters
are shown in Figure 5.2 together with the respective saturated inputs. Note that the
choice of −10 for the desired anti-windup poles is equivalent to an application of KAAW
(see Remark 5.7). It can be observed that for faster desired poles of the anti-windup
schemes, the input stays longer in saturation, so that the closed-loop response becomes
faster. However, for the desired anti-windup poles at −45 the input stays too long in
saturation, which results in a strong undershoot for the step response downwards. In this
case it can be seen that the maximal amplitude of the force is not sufficient to stop the
system with such a high velocity at the desired position. This effect has been introduced
as plant-windup at the beginning of Chapter 3.
Another property of AMRAW is also shown in Figure 5.2 for a small change of the desired
set point, which does not lead to saturation of the input. No difference of the closed-loop
responses can be seen for this step command. These results confirm that AMRAW allows
for an adjustment of the closed-loop performance during input saturation without having
an influence on the behavior when the input does not exceed its maximal amplitude.
Hence, the desired closed-loop performance for the unsaturated case can be defined in the
same way it is done for MRAC.
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In difference to AMRAW the adjustment of the performance during input saturation for
KAAW requires a change of the parameters of the reference model. In order to point
out the effect of changing the reference model in the given system, a third simulation has
been done with

ẋref =
(

0 1
−676 −52

)
xref +

(
0

676

)
r, (5.1)

which has its two poles at -26, such as the system matrix Aawr considered so far. The
results are shown in Figure 5.3. For KAAW a small overshoot of the step response upwards
and a very strong undershoot of the step response downwards can be observed. This result
shows that tuning of Aref and Bref of the reference model is not equivalent to tuning of
the anti-windup dynamics Aawr in AMRAW. If the given reference model (5.1) is desired
for small set point changes, where saturation of the input does not occur, the additional
degree of freedom provided by the method of AMRAW allows to avoid the overshoots and
undershoots during the large step commands of the reference signal. This is also shown
in Figure 5.3, where the desired system matrix for the anti-windup scheme of AMRAW
has been chosen as

Aawr =
(

0 1
−196 −16

)
with two poles at −13.
Note that additional simulations have been carried out with a better-suited reference
signal regarding parameter estimation. The results are shown in Appendix C and verify
that a stronger excitation of the closed-loop systems results in faster parameter estimation
for AMRAW.
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Figure 5.1: Results of Simulation Example 5.1 for KAAW and AMRAW with state-
feedback before (t < 10s) and after adaptation. The last graphs show the parameter
estimations of AMRAW.
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Figure 5.2: Results of Simulation Example 5.1 for AMRAW with state-feedback, ideal
controller parameters and different choices of the desired anti-windup poles.



86 5.1 Direct Adaptive Model Recovery Anti-Windup for State-Feedback

0 2 4 6 8 10 12 14 16 18 20 22

0

10

20

time in s

sy
st

em
re

sp
on

se
desired response AMRAW KAAW

0

10

20

sy
st

em
re

sp
on

se

490 490.5 491 491.5 492 492.5 493 493.5 494 494.5 495 495.5 496 496.5 497
−100
−50

0
50

100

time in s

sa
tu

ra
te

d
in

pu
t

−30

−20

−10

0

co
nt

ro
lle

r
pa

ra
m

et
er

s

kx,2 θ̂nl,1 θ̂nl,2 k∆ kaw,1 kaw,2

101.2
101.5

k
r

0 50 100 150 200 250 300 350 400 450 500

−97
−97.3

time in s

k
x

,1

Figure 5.3: Results of the third part of Simulation Example 5.1 for KAAW and AMRAW
with state-feedback before (t < 10s) and after adaptation. The last graphs show the
parameter estimations of AMRAW.
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Simulation Example 5.2. In order to show the capability of AMRAW to deal with
unstable open-loop systems with an input saturation the plant Gex4 and the reference
model (3.4) from Simulation Example 3.1 are considered. The additional desired system
matrix for the anti-windup system has been chosen as

Aawr =
(

0 1
−100 −20

)
,

which has both poles at −10. In difference to the Example 3.1 not all the controller
parameters are initialized with their ideal values:

initial parameters ideal parameters

Kx(0) =
(

−131.35
−12.43

)
kr(0) = 150,

Kaw(0) =
(

−19.29
−4.16

)
k∆(0) = 0.0153

K∗
x =

(
−131.35
−12.43

)
k∗

r = 130.81

K∗
aw =

(
−27.56
−5.94

)
k∗

∆ = 0.0076

As in Section 3.1 and Simulation Example 3.1, the initial plant state has been set to
xT

ps0 =
[
0 25

]
. The gains of the parameter update laws have been chosen to be Γx =

10 I2×2, γr = 10, Γaw = 10 I2×2 and γ∆ = 10. These values of the initial closed-loop states,
parameter estimation errors and the maximal reference amplitude lead to a violation of
conditions i) and ii) in Theorem 4.1, so that boundedness of the closed-loop signals can
not be guaranteed. However, the simulation results in Figure 5.4 for the same reference
signal as in Simulation Example 3.1 show that the closed-loop signals stay bounded.
This simulation result supports the statement that the conditions in Theorem 4.1 are
conservative and a violation of them does not necessarily mean that the closed-loop signals
become unbounded. It can also be observed that the given choice of Aawr for AMRAW
results in a better closed-loop response than the application of KAAW. Similar to the
previous examples, simulation results for a reference signal that is more appropriate for
parameter estimation are shown in Appendix C.

Simulation Example 5.3. In this example the unstable first order plant

Gex5 : ẋps = 0.5 xps + 2 u (5.2)

is considered, which has already been used for an example in [89]. The reference model

ẋref = −6 xref + 6 r (5.3)

is also adopted from the simulation example in [89]. The desired pole for the anti-windup
system has been chosen as aawr = −10. In order to simulate an unknown plant the
controller parameters have been initialized with slightly changed plant parameters:

˙̂xps = 0.45 x̂ps + 2.2 u. (5.4)

Hence, the initial controller parameter and their ideal values become:
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initial parameters ideal parameters
kx(0) = −2.93
kr(0) = 2.73

kaw(0) = −4.75
k∆(0) = 0.3667

k∗
x = −3.25

k∗
r = 3

k∗
aw = −5.25
k∗

∆ = 0.3333

For the simulation examples, the gains for the parameter adaptation have been set to
Γx = 104, γr = 104, Γaw = 104 and γ∆ = 104.
With the given initial closed-loop conditions and QW = 1, which leads to PW = 0.0833,
a maximal input amplitude of umax = 1, a maximal reference signal of rmax = 0.8, and
λ = 1.1, the conditions i) − iii) in Theorem 4.1 become

xps(t0)T PW xps(t0) ≤ 0.1594,

rmax(t) ≤ 1.5391 and
V (0) ≤ 5.722 · 10−4.

(5.5)

The maximal value of xaw(t), which is necessary for the computation of the results in
(5.5), has been determined by simulation examples for different combinations of plant
and controller parameters. For these simulations, it has been assumed that a maximal
estimation error of the plant parameters are given by |ãp| = 0.1 and |b̃p| = 0.2. As
a consequence the maximal value for the anti-windup state has been found out to be
xawmax = 0.3.
With the given estimation errors of the controller parameters and an initial tracking error
of zero, which results from the initial plant and anti-windup state of xps(0) = xaw(0) = 0,
the initial value of the Lyapunov function becomes V (0) = 2.7384 · 10−5. Hence, all
conditions in Theorem 4.1 are fulfilled for this example and boundedness of all closed-
loop signals can be guaranteed.
Simulation results for AMRAW and KAAW are shown in Figure 5.5 at the beginning and
at the end of adaptation. They verify the stability of the closed-loop system and show
that AMRAW results in a better closed-loop performance than KAAW. In the last graph
of Figure 5.5 it is demonstrated that for the given plant the excitation of the reference
signal is sufficient for the parameters to converge quickly to their ideal values.
As the second part of this example, the desired pole of the anti-windup system has been
varied while keeping the reference model constant. For the presented closed-loop responses
in Figure 5.6, where the desired anti-windup poles are smaller than aawr = −10, the
conditions in Theorem 4.1 do not hold due to the increased value of Daw ≥ ∥k∗

x − k∗
aw∥.

However, the results show that the closed-loop signals stay bounded. Moreover, the closed-
loop response can be forced to follow the reference model more closely by increasing the
absolute value of the stable anti-windup pole, which verifies Theorem 4.2. This improved
performance is a consequence of faster regulation of the unwanted behavior to zero, which
is shown in the second graph of Figure 5.6.
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5.2 Direct Adaptive Model Recovery Anti-Windup
for Output-Feedback

The basic concept of direct AMRAW for output-feedback, which is summarized in Table
4.2, is similar to that of state-feedback AMRAW. Also the effect of the additional degree
of freedom, introduced by the anti-windup controller, has been found out to be similar
to the state-feedback case. For this reason, Remarks 5.1 and 5.2, which comment about
the influence of the anti-windup controller on the closed-loop system and possible ways
to tune the desired anti-windup dynamics, respectively, do also apply for output-feedback
AMRAW. Moreover, in order to avoid problems with uncertain input limitations, the
considerations for the implementation of state-feedback AMRAW in Remark 5.5 should
also be taken into account for AMRAW with output-feedback.
Similar to the state-feedback case, a connection between output-feedback KAAW and
AMRAW can be found. This connection is described in Remark 5.7in terms of output-
feedback AMRAW. The dynamical controller in output-feedback AMRAW lead to modi-
fications on the stability conditions in Theorem 4.3 in comparison to Theorem 4.1. These
differences are pointed out in Remark 5.8.

5.2.1 Remarks

Remark 5.7 (Connection between KAAW and AMRAW). From equation (4.26)
for the anti-windup controller and the presentation in Section 2.2.2 for the basic MRAC
it follows that the choice of Aref = Aawr leads to θ∗

1 = θ∗
1aw, θ∗

2 = θ∗
2aw, and θ∗

3 =
θ∗

3aw. Therefore, if the controller parameters have been adapted to their ideal values,
the influence of the anti-windup state is canceled in the control law and the reference
model as can be seen in equations (4.26) and (4.31), respectively. If the best closed-loop
performance is achieved for Aref = Aawr, KAAW rather than AMRAW should be used due
to the same reasons mentioned for the state-feedback case in Remark 5.3. AMRAW for
output-feedback introduces 3 n − 1 additional controller states in comparison to KAAW,
where 2 n − 1 of these states stem from the additional estimated controller parameters
θaw1(t), θaw2(t), and θaw3(t).

Remark 5.8 (Conditions of Theorem 4.3). Similar to state-feedback AMRAW,
boundedness of the closed-loop states can only be guaranteed with output-feedback AM-
RAW if the conditions i)−iii) in Theorem 4.3 are satisfied. However, for output-feedback
AMRAW not only the plant states and the parameter states needs to be considered for
these conditions, but also the states of the basic controller and the anti-windup con-
troller, which are included in the combined state vectors xcs and xawc. Therefore, the
anti-windup controller states do have an influence on the maximal admissible amplitude
of the reference signal in condition ii) of Theorem 4.3. For this reason the boundedness
conditions for output-feedback AMRAW might not be satisfied in cases, where they can
be satisfied by applying state-feedback AMRAW. The fact that closed-loop boundedness
for the state-feedback AMRAW scheme is not equivalent to stability of output-feedback
AMRAW is illustrated in Simulation Example 5.5.
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5.2.2 Simulations

Simulation Example 5.4. In this example, the plant Gex2s is considered, which dif-
fers from the plant Gex2 from Simulation Example 2.2 in that it has a maximal input
amplitude of umax = 100. The reference model, as well as the initially estimated plant
parameters, have been adopted from Example 2.2. For the application of AMRAW, the
desired anti-windup dynamics have been chosen as

Aawr =
(

0 1
−625 −50

)
,

which has two poles at −25.
The first simulation has been carried out in order to show boundedness of the closed-
loop states. Therefore, a reference signal r = r1 + r2 has been provided where each
value of the repeated sequence r1 = (20, 0, 10, 0) has been hold for 2 seconds and r2 =
9 sin(5 t) + 6 sin(8 t). The simulation results are shown in Figure 5.7, where adaptation
has been started at t = 10s with the adaptation gains Γ = 105 I4×4, Γaw = 106 I3×3,
γ∆ = γa = 100. It can be seen that the plant output, as well as the parameter estimations,
stay bounded and that the parameters adapt to their ideal values so that the plant output
follows the desired trajectory more closely.
Similar to the state-feedback case, output-feedback AMRAW has the capability to in-
fluence the closed-loop performance if the input is saturated. That is illustrated by a
second simulation, whose results are shown in Figure 5.8. The simulation results have
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Figure 5.7: Results of Simulation Example 5.4 for AMRAW with output feedback. Adap-
tation has been started at t = 10s.



94 5.2 Direct Adaptive Model Recovery Anti-Windup for Output-Feedback

0

10

20

sy
st

em
re

sp
on

se

desired response
poles at -5
poles at -10
poles at -26
poles at -45

0.1 1.7

5.1 6.7

0 2 4 6 8 10 12 14 16
−100

−50

0

50

100

time in s

sa
tu

ra
te

d
in

pu
t

0 0.7

4.9 5.6

5.1 5.5

Figure 5.8: Results of Simulation Example 5.4 for AMRAW with output-feedback, ideal
controller parameters and different choices of the desired anti-windup poles.

been achieved for ideal controller parameters with different choices of the desired anti-
windup poles. The results look similar to the state-feedback case and can be explained
in the same way (see Remark 5.1).

Simulation Example 5.5. As for state-feedback AMRAW, the unstable plant Gex4
from Section 3.1 and Simulation Example 3.1 is revisited with output-feedback AMRAW
in this example. A desired anti-windup dynamics of

Aawr =
(

0 1
−625 −50

)

has been chosen, which has both poles at −25. Adaptation has been started at t = 10s
with the estimation gains Γ = 105 I4×4, Γaw = 106 I3×3, γ∆ = γ1 = 100. In order to
simulate an uncertain plant, only the initial controller parameter c has been scaled by a
small factor of 1.05, so that the initial controller has a slightly higher gain on the reference
signal than in the ideal case. The simulation results are shown in Figure 5.9 for the same
reference dynamics and desired anti-windup dynamics. For the given initial closed-loop
states, conditions i) and ii) of Theorem 4.3 does not hold. That has also been true for
the state-feedback example 5.2, whose results are shown in Figure 5.4.
It can be seen in the first ten seconds of the first graph that the slightly higher value
of c results in a small offset to the desired steady-state output. After the start of the
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Figure 5.9: Results of Simulation Example 5.5 for AMRAW with output-feedback applied
to the unstable open-loop plant Gex4. Adaptation has been started at t = 10s.

parameter adaptation, the closed-loop system becomes unstable already after 10 seconds.
This is different to state-feedback AMRAW, where the closed-loop trajectories with the
same open-loop plant stayed bounded. This result shows that boundedness of the closed-
loop system with output-feedback AMRAW is clearly not equivalent to boundedness of
the closed-loop with state-feedback AMRAW.

5.3 Indirect Adaptive Model Recovery Anti-Windup
for Output-Feedback

The basic concept of plant parameter estimation and controller parameter calculation of
indirect AMRAW presented in Table 4.3 differs from the concept of the direct methods.
No reference model is used for the indirect AMRAW scheme, which makes a comparison to
KAAW meaningless. Consequently, no connection to KAAW can be drawn, like it is done
in Remarks 5.3 and 5.7 for the direct methods. As an additional difference to the direct
methods a stability analysis has not been carried out for the complete closed-loop system
with indirect AMRAW. A comment on the meaning of the missing proof of stability is
given in Remark 5.9.
Despite the differences to the direct methods, the effect of the anti-windup controller in
indirect AMRAW has been found out to be very similar to the direct schemes. Therefore,
Remark 5.1 about the general anti-windup effect, Remark 5.2 about the anti-windup
tuning, and Remark 5.5 about the issue of unknown amplitude limits of the input do also
apply to the indirect scheme. This is verified by the results of Simulation Example 5.6.
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Remark 5.9. The boundedness of the closed-loop signals has not been proven for the
indirect AMRAW scheme. Only boundedness of the estimated parameters is guaranteed
by the properties of the least squares algorithm stated in Appendix A. Consequently,
the adaptation of the indirect AMRAW scheme should only be activated for limited
periods of time and under well known and save environmental conditions. The simulation
examples 5.6 and 5.7 and the experimental result in Section 5.3 suggest that under optimal
conditions the given control scheme results in a stable closed-loop system.

5.3.1 Simulations

Simulation Example 5.6. The plant Gex3s is considered, which differs from the plant
Gex3 from Example 2.3 in that it has a maximal input amplitude of umax = 100. All
closed-loop requirements and initial conditions have been adopted from Simulation Ex-
ample 2.3 and the desired anti-windup dynamics for the application of indirect AMRAW
has been chosen as

Aawr =
(

0 1
−100 −10

)
,

which has two poles at −10. Consequently, the initial controller parameters and the ideal
parameters of the control scheme in Table 4.3 become:

initial parameters ideal parameters
P = 529.13 D2 + 8.9 · 103 D + 5.9 · 104

L = D + 98
M = 5.9 · 104

θ̂nl = 6
KT

aw =
[
−10.51 −2.70

]

P ∗ = 982.7 D2 + 1.6 · 104 D + 1 · 105

L∗ = D + 99
M∗ = 1 · 105

θnl = 3
K∗T

aw =
[
−22.97 −5.13

]
In Figure 5.10 the simulation results are shown before (t < 10s) and after parameter
adaptation in the first and the second graph, respectively. In addition, the results with
indirect AMRAW after adaptation are compared to a constant pole placement controller,
where the parameters are set to their ideal values. The constant pole placement con-
troller can be derived from Table 2.3 with ideal parameters. It can be observed that the
closed-loop signals of the AMRAW scheme stay bounded and that a good closed-loop
performance results already after a short time of parameter adaptation. In difference to
that, the closed-loop performance with the constant pole placement controller without
anti-windup is far from acceptable. Strong oscillations occur, which are unacceptable for
any technical application. The results show that the AMRAW scheme is not only very
effective in avoiding parameter windup, but also improves the overall performance signif-
icantly in comparison to the pole placement controller without anti-windup. It can also
be observed that the parameter adaptation speed does not significantly differ from the
estimation speed in Simulation Example 2.3.
As for the preceding examples with the direct AMRAW schemes, also for indirect AMRAW
the choice of the desired anti-windup dynamics can influence the closed-loop dynamics
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during input saturation, while having no influence if the input does not encounter its
limits. This is shown by additional simulation results in Figure 5.11, where the controller
parameters have been set to their ideal values and the poles of Aawr have been varied.
The results look very similar to the results in Example 5.1 and 5.4 and can be explained
in the same way (see Remark 5.1).
Simulations for a third part of this example have been carried out, in order to show the
effect of an uncertain maximal input amplitude on indirect AMRAW. For this purpose, the
input saturation limit has been reduced to umax = 75 without considering this reduction
in the AMRAW scheme. The controller parameters have been initialized with their ideal
values and adaptation has been activated at the beginning of the simulation. The results
are shown in Figure 5.12. It can be seen that the range of input amplitude is not sufficient
to bring the system output to the desired steady-state value. However, the closed-loop
signals stay bounded. Further, it can be observed that the estimated parameters do not
stay at their ideal values. The parameter estimation of θp3, which represents the input
gain of the system, is reduced very quickly. Apparently, the effect of a reduced input
saturation is partially considered as a reduced input gain of the estimated plant model.
However, as can be seen in Figure 5.12, also the estimations of θp1 and θp2 change
and none of the parameters mentioned above reach a constant value. The values of the
estimated parameters alter between different constant values for the different values of
the reference signal. This observation emphasizes the fact that the effect of a reduced
maximal input amplitude can not be represented by any constant combination of the
plant parameters.
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Figure 5.10: Results of Simulation Example 5.6 for indirect AMRAW with output-
feedback before (t < 10s) and after adaptation. The result at the end of adaptation
is compared to standard APPC with constant and ideal parameters. The last graphs
shows the plant parameter estimations of the indirect AMRAW scheme.
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Figure 5.11: Simulation results for indirect AMRAW with output-feedback, ideal con-
troller parameters, and different choices of the desired anti-windup poles.
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Figure 5.12: Simulation results for indirect AMRAW with output-feedback, where the
input amplitude limit has been overestimated.
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Simulation Example 5.7. In this example the unstable plant Gex4 with input satu-
ration, which has been defined in (3.3), is revisited for indirect AMRAW. In order to
simulate the case of uncertain plant parameters the controller parameters and the param-
eter estimation scheme has been initialized with the rough estimate

˙̂xps =
(

0 1
4 4

)
x̂ps +

(
0

6.6

)
ulim

of the plant. The desired closed-loop poles of Ad have been chosen to lie at −25 and
the desired anti-windup system matrix has been defined as

Aawr =
(

0 1
−100 −10

)
,

which has two poles at −10. Therefore, the initial and ideal parameters of indirect
AMRAW from Table 4.3 become

initial parameters ideal parameters
P = 626.13 D2 + 9.4 · 103 D + 5.9 · 104

L = D + 104
M = 5.9 · 104

θ̂nl = 6
KT

aw =
[
−10.51 −2.70

]

P ∗ = 1069.2 D2 + 1.05 · 104 D + 1.05 · 105

L∗ = D + 102
M∗ = 1.05 · 105

θnl = 3
K∗T

aw =
[
−27.56 −5.95

]
The simulation results are shown in Figure 5.13, where adaptation has been started at
t = 10s with the tuning parameters of the least squares algorithm set to Pls0 = 105 I3×3,
ρr = 5 · 104, ρs = 1, and Λe = D2 + 30 D + 22500. It can be seen that the closed-loop
system stays stable and that the parameter estimations converge quickly to their real
values. Before the start of the parameter estimation at t = 10s undesired overshoots and
undershoots at the set point changes can be observed. However, after adaptation of the
parameters a good closed-loop performance results without any oscillation around the set
points.
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Figure 5.13: Results of Simulation Example 5.7 for indirect AMRAW applied to the
unstable open-loop plant Gex4.





Chapter 6

Experimental Results

6.1 Helicopter Benchmark Experiment

The helicopter benchmark experiment is a well-suited experiment for adaptive control
and has already been addressed with several different adaptive control approaches [6,
22, 36, 41, 63, 121, 133]. Depending on the experimental setup and on the performance
requirements, this experiment is subjected to tight limitations of the input amplitude.
However, in none of the aforementioned references the influence of the limited input
amplitude on the closed-loop system has been examined or explicitly considered for the
controller design. In this section, it is shown that such negligence of the input saturation
will lead to instability of the adaptive closed-loop system if the basic MRAC scheme with
CRM is applied. In difference to that, it is shown with the results of real experiments
that the application of AMRAW leads to a stable closed-loop system and allows for an
improvement of the closed-loop performance during saturation of the input. Moreover,
the general benefits of adaptive control are presented in this section. This is done by
presenting the results of experiments which have been carried out with uncertain or even
changing plant parameters.

6.1.1 Experimental Setup and Plant Description

The basic setup of the helicopter benchmark experiment is shown in Figure 6.1 from
two different perspectives and in a schematic illustration. The masses and lengths in the
schematic picture are denoted with m and l, respectively. The experiment consists of
two propellers in an orange and a green protection cover, respectively, driven by brushless
DC motors and mounted in parallel with distance 2 · lh on the “propeller bar". The
“propeller bar" is mounted on one side of the “elevation bar" such that a pitch motion
p of the “propeller bar" is possible. The suspension of the “elevation bar" allows for a
motion of the whole experimental setup around the vertical axis v as well as an elevation
motion ϵ. On the other side of the “elevation bar" a counter mass mc is mounted. In
addition, a movable mass mv with an automatically adjustable position xv is located
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Figure 6.1: Photography and a schematic illustration of the experimental setup of the
3-DOF helicopter.

between the counter mass and the “propeller bar". The two other length lm and lm1,
which characterize the position of mv, are fixed.
For the subsequently described experiments with the helicopter the two degrees of freedom
v and p have been mechanically fixed so that only an elevation motion ϵ has been
possible. Furthermore, in order to keep the controller design as simple as possible, a
simplified version of the plant has been considered to derive the equation of motion. This
simplified system consists of one lumped mass mf +me +mb on the side of the “elevation
bar” where the propellers are mounted, the counter mass mc on the other side, and
the movable mass mv. Therefore, using Euler’s rotation equations of classical mechanics
under the assumption of a constant inertia of the system and under consideration of the
lumped masses and distances in Figure 6.1 leads to the elevation dynamic

Jϵ ϵ̈ = − (mf + mb + me) g
la

cos(δa) cos(ϵ − δa) + mc g
lc

cos(δc)
cos(ϵ + δc)

− mv g
lm1 + xv

cos(δv) cos(ϵ − δv) + la (F1 + F2) − ηϵ ϵ̇

(6.1)

with the angles

δa = arctan
(

lP1

la

)
, δc = arctan

(
lP2

lc

)
, δv = arctan

(
lP2 + lm
lm1 + xv

)
,

the acceleration of gravity g, a linear damping ηϵ, and the forces F1 and F2 produced
by the propellers. A similar model of the experimental setup has been derived in [62, 143,
170].
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ηϵ = 0.1

Jϵ = 2.2

la = 0.705

θV = 2.2043

θP = 27.8728

θC = 26.4471

δa = 0.0298

δc = −0.0617

δ̄v = −0.1831
0 0.2 0.4 0.6 0.8 1

0
2
4
6
8

PWM duty cycle

F
1+

F
2

Fmax

F̄max

Table 6.1: Plant parameters and force characteristic for helicopter benchmark experiment.

In order to transform (6.1) in a state-space model equivalent to Gnls in (3.2), the param-
eters

θP = (mf + mb + me) g
1

cos(δa) , θC = mc g
1

cos(δc)
, θV = mv g

lm1 + xv

la cos(δv)

and the state xT
ps =

[
ϵ ϵ̇

]
are introduced, which allow a formulation of the plant as

ẋps =
(

0 1
0 − ηϵ

Jϵ

)
xps +

(
0
la
Jϵ

)⎛⎜⎝F1 + F2 +
[
θP θC θV

]⎛⎜⎝− cos(ϵ − δa)
+ cos(ϵ + δc)
− cos(ϵ − δ̄v)

⎞⎟⎠
⎞⎟⎠

= AH xps + BH λ
(
F1 + F2 + θT

H fH(ϵ)
)

,

(6.2)

with λ = 1, and where ϵ = 0 corresponds to the horizontal position of the “elevation
bar". Note that the angle δv depends on the position xv of the mass mv. However,
as an additional simplification, this dependence is neglected in the term cos(ϵ − δ̄v) in
(6.2), where δ̄v is considered a constant angle. The dependence of the inertia Jϵ and the
parameter θV on the position of the mass mv is considered as a parametric uncertainty,
which is supposed to be addressed by the adaptive controller. All of the parameters
of the plant model, which have been identified by measurements of masses and lengths
with xv = 0, are given in SI units in Table 6.1. In the same table the characteristic of
the propeller forces is depicted in dependence of the PWM duty cycle, which is used to
adjust the voltage supply of the brushless DC motors. These characteristics has been
determined experimentally. It can be seen that the maximal force of both propellers
combined is limited by Fmax = 8N. A force in the opposite direction is not possible with
the presented experimental setup. Hence, the minimal force of the propellers is given by
Fmin = 0. It is worth mentioning that for many of the following experiments the maximal
amplitude of the propeller forces have been limited to F̄max = 6N in the software.
For all of the experiments, whose results will be shown in the following, the control
algorithms have been implemented on a dSpace DS1103 system with a sampling time
of 1ms. Therefore, the continuous time control schemes from tables 2.1 and 4.1 have
been implemented using a Euler forward discretisation. The angular position ϵ and the
angular velocity ϵ̇ have been detected by a rotary encoder with a resolution of 20000
increments per revolution. It should be mentioned that the admissible range of ϵ is
restricted to −0.45 rad ≤ ϵ ≤ 0.64 rad due to mechanical stops, which prohibit further
elevation movements.
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6.1.2 Closed-Loop Stability for Frequent Saturation of the Input

In the first experiment, the method of MRAC without anti-windup and with AMRAW has
been applied for position control of the helicopter benchmark experiment with a maximal
force amplitude of F̄max = 6N. The control methods given in Table 2.1 and Table 4.1,
respectively, have been initialized for the plant description in (6.2) with the parameters
in Table 6.1 and a specified reference model

ẋref =
(

0 1
−9 −6

)
xref +

(
0
9

)
r, (6.3)

which has two poles at −3 and a steady state gain of one for the position. The desired
anti-windup dynamic of AMRAW has been defined as

Aawr =
(

0 1
−13.69 −7.4

)
,

which has two poles at −3.7. Hence, the initial parameters for MRAC become

Kx(0) =
(

−28.08
−18.58

)
, kr(0) = 28.08, θ̂nl(0) = θH =

⎛⎜⎝27.87
26.45
2.20

⎞⎟⎠ ,

and the additional parameters for AMRAW are given by

Kaw(0) =
(

−42.72
−22.95

)
, k∆(0) = 0.0356.

The estimation gains have been set to Γx = Γaw = I2×2, γr = γ∆ = 1, and Γnl = I3×3. For
both control schemes a CRM has been implemented, where the parameters γc = g = 1
have been chosen according to (2.59) which results in

Lref =
(

−1 −1
9 5

)
.

The closed-loop responses for MRAC without anti-windup are shown in Figure 6.2 and
the results for AMRAW are shown in Figure 6.3. Note that the desired system response
led to a saturation of the input for the step response upwards as well as for the step
response downwards, which can be observed in Figure 6.4.
It can be seen that the parameters of MRAC without anti-windup slowly diverge and
the system response shows some strong overshoots and undershoots after some time of
adaptation. In difference to that, the closed-loop response with AMRAW looks very
similar at the beginning of adaptation and at the end of the experiment. Only a slight
change of the parameters of AMRAW can be observed, which are most likely due to
measurement errors of the plant parameters in Table 6.1. The results clearly show that
the application of basic MRAC is not advisable for this experiment with the desired
dynamics given by 6.3. However, the extension of AMRAW allows the application of the
adaptive control scheme and results in a good closed-loop performance.
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Figure 6.2: MRAC with CRM applied to helicopter experiment.
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Figure 6.3: AMRAW with CRM applied to helicopter experiment.
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6.1.3 Performance Adjustments and Parameter Adaptation

As a second experiment with the method of AMRAW different choices of Aawr with the
desired anti-windup poles at −1, −3, −3.7, and −5 have been carried out. Note that the
poles at −3 results in an equivalent closed-loop response to KAAW after adaptation to
the ideal controller parameters (see Remark 5.3). After some time of adaptation, different
step heights have been provided as the reference signal. Figure 6.4 shows a comparison
of the experimental results for all choices of the anti-windup dynamics
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Figure 6.4: AMRAW applied to the helicopter experiment with different choices of the
anti-windup poles.

It can be seen that similar to Simulation Example 5.1 the input stays longer in saturation
for higher absolute values of the desired anti-windup poles. In the presented results the
choice of the poles at −3.7 leads to the best closed-loop performance, in the sense that the
closed-loop response is most similar to the desired behavior prescribed by the reference
model (6.3). It can also be observed that for smaller step sizes, where the period of
saturation is shorter for all the compared cases, the different closed-loop responses look
more similar to each other than for big step commands. For the step command without
saturation of the input at t = 24s, no influence of the choice of the anti-windup pole
can be observed. These results again verify that the desired anti-windup dynamics can
be used to tune the performance when the input actually saturates without changing the
performance when the input amplitude stays inside its limits.



6 Experimental Results 109

In order to additionally show the capability of AMRAW to deal with uncertain plants,
some erroneous plant parameters have been used to initialize the controller parameters.
The inertia, the movable mass and the parameter θP have been considered as

Ĵϵ = 1.87, m̂v = 0.705, θ̂P = 30.66,

so that the calculation of the initial controller parameters with the same specification as
in Section 6.1.2 yields

Kx(0) =
(

−23.87
−15.77

)
, kr(0) = 23.87, θ̂nl(0) =

⎛⎜⎝30.66
26.45
2.20

⎞⎟⎠ ,

Kaw(0) =
(

−36.31
−19.49

)
, k∆(0) = 0.0419.

The experimental results are shown in Figure 6.5, where adaptation has been started at
t = 53s. It can be seen that the performance with the erroneous plant parameters is very
bad due to the very large offsets at steady state. After activation of the adaptation the
parameter of θ̂nl quickly change, so that a good tracking behavior results almost instantly
after adaptation has been started. Therefore, the method of AMRAW also works very
reliably for this plant when initialized with wrong parameters, due to the adaptive nature
of the method.

6.1.4 Adaptation to Changing Plant Parameters

Changing mass position

After showing the capability of AMRAW to deal with uncertain initial plant parameters,
the following experiments are intended to show how the newly introduced method can
adapt to changing plant parameters. As a simulation of a changing mass of a helicopter
due to e.g. additional payload, the mass position xv of the experiment has been changed
during operation. This was done such that the distance of mv to the propellers has been
reduced and an increased propeller force is required to hold the helicopter in a constant
position. The AMRAW controller parameters have been initialized like in section 6.1.2.
Figure 6.6 shows the results of two experiments with activated and deactivated parameter
adaptation, respectively.
It can be seen that without adaptation the closed-loop response becomes unacceptable
after the mass has started to move. Due to the higher required force the closed-loop
response ϵ does not reach its desired steady state-values. For the experiment with pa-
rameter adaptation the effect of a changing mass position is barely observable in the
closed-loop response. This is due to the quickly changing controller parameters θ̂nl,1, θ̂nl,2
and θ̂nl,3, which compensate for the effect of the changing mass position. It can also be
seen in Figure 6.6 that the changed position of the mass leads to an increased required
force in the steady-state positions which in turn results in a longer input saturation for
the steps upwards. However, no critical overshoots and undershoots can be observed for
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Figure 6.5: AMRAW applied to helicopter experiment with wrong initial parameters.
Adaptation has been started at t = 52s.

the chosen desired anti-windup dynamics. This result shows that the initial choice of the
desired anti-windup dynamic is still a good choice for the altered plant parameters.

Reduced control effectiveness

As a last experiment with the helicopter, a defect of a propeller has been simulated. This
has been done by reducing the value of λ in (6.2) to a value of 0.75 and by simultaneously
reducing the maximal force amplitude from Fmax = 8N to F̄max = 6N during operation.
For a real helicopter, this would be equivalent to a reduced thrust and a respective reduced
maximal force that can be achieved with the propellers. It is worth mentioning that these
changes have been done in the software and not by actually damaging the propellers. The
controller parameters of AMRAW have been initialized like in Section 6.1.2 and the initial
maximal amplitude of Fmax = 8N has been considered in the AMRAW algorithm during
the whole experiment. Hence, after reducing the maximal propeller force, the AMRAW
algorithm uses a wrong assumption of the maximal amplitude of the force.
It can be seen in Figure 6.7 that the closed-loop system adapts to the reduced control
effectiveness so that the tracking performance with adaptation is far better than without
adaptation. It can also be observed that the parameters stay stable and do not diverge
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Figure 6.6: AMRAW applied to helicopter experiment with changing position of mass
mv.

during the whole time of the experiment. This experimental result suggests that the
AMRAW algorithm is robust against wrong considerations of the saturation and therefore
against erroneous calculations of ∆u. However, it is necessary to mention again that this
observation is only based on simulation results and experimental results. Robustness and
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Figure 6.7: AMRAW applied to helicopter experiment with changing λ and a reduction
of the maximal force amplitude during operation.

stability in the case of overestimated input amplitude limits can not be guaranteed based
on the derivations in this work.

6.2 Electronic Throttle Plate

In this section, the method of indirect AMRAW from Table 4.3 is applied to the position
control of an electronic throttle plate, which is a typical automotive application. The
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position of the throttle plate mainly determines the airflow into the combustion chambers
of an internal combustion engine. The resulting air charge, in turn, determines the engine
torque of gasoline engines. More detailed information about the physical relations in the
combustion engines can be found e.g. in [51]. As a consequence of the physical relations,
the performance of the throttle plates position control has a strong influence on how quick
the desired engine torque can be generated. Since the reference value for the position of
the throttle plate is generated based on the position of the drivers gas pedal, a quick
position control for the throttle plate corresponds to a dynamic driving experience.
Due to aging, altering environments and small defects, the control performance of an
electronic throttle plate can decrease during lifetime. Furthermore, production tolerances
can lead to altering performances for different instances of the same type of throttle plates.
In order to avoid a permanent deterioration of the control performance, an automatic
tuning algorithm can be applied. Such algorithms can be used to automatically re-tune
the controller parameters if the performance becomes unacceptable. They also allow
for an automatic initial tuning of the controller parameters, which results in a similar
performance of all devices that have been tuned in this way. Some approaches for such
algorithms applied to electronic throttle plates can be found in the literature [5, 27–
29, 66, 107, 130, 131]. However, most of the proposed methods need special excitation
signals in order to identify all parameters which are necessary for the controller design of
the respective methods in the above-stated references. Furthermore, none of the above
mentioned algorithms take input saturation into account explicitly. Since fast position
dynamics require the input of an electronic throttle plate to frequently encounter its
limits, a parameter adaptation with none of these algorithms is possible without the risk
of parameter-windup for usual excitation of the plant during operation. In contrast to
that, the method of indirect AMRAW will be shown in the following to allow for quick
adaptation without the need of a special excitation of the throttle plate and without the
need of avoiding input saturation. In addition, the algorithm will be shown to work very
efficiently without special consideration of friction.

6.2.1 Experimental Setup and Plant Description

The setup of the electronic throttle plate experiment is shown in Figure 6.8. Two throttle
plates are mounted on the top of a shelf. Each throttle plate can be controlled separately
by connecting them to the additional hardware, which is mounted on the middle level of
the shelf. The additional hardware consists of a power supply unit which provides 24V, a
DC-DC converter to reduce the voltage down to 12V, and a motor controller that converts
a PWM into DC voltage for the DC motor of the throttle plate. A dSpace Autobox 1405
is used to process the sensor data, implement the control scheme, and to generate the
resulting PWM based on the computations of the control scheme. The sampling time has
been chosen to be 1ms, which is similar to the sampling time of the series production
throttle plate controller. Discretisations have been done with the Euler forward method.
Figure 6.9 shows the schematic structure of the throttle plate, which can be used to
derive the plant description. For this purpose, the throttle plate has been divided into an
electrical and a mechanical part. The electrical part represents a DC motor with resistance
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R and inductance L. A voltage uM is applied to the motor that results in a current iM

and a torque TM
ng

. The motor is connected to the mechanical part of the throttle plate
via a gear with transmission ratio ng. The mechanical parameters are the inertia Jmech,
the damping dmech, which is not schematically depicted in Figure 6.9, and four additional
parameters that determine the torque of the spring TS. These four parameters result
from the special arrangement of two springs, which is common in usual throttle plates
and shown in the undermost picture of Figure 6.9. The two springs differ such that each
of them has a different initial tension T0i at the equilibrium point ϕ = ϕlh and a different
stiffness kti. Each spring is active in another region of the opening angle ϕ in order to
force the throttle plate in the so-called “limp home position” ϕlh if no voltage is applied.
In this position, the motor can be still supplied with enough air to slowly drive the car.
The described spring arrangement results in the expression

TS = (T01 − kt1 (ϕ − ϕlh)) H(ϕlh − ϕ)
+ (−T02 − kt2 (ϕ − ϕlh)) H(ϕ − ϕlh)

(6.4)

for the spring torque, where H(·) denotes the Heaviside function

H(x) =
⎧⎨⎩0, for x ≤ 0,

1, otherwise.
(6.5)

It is worth mentioning that the opening angle ϕ of throttle plates is always limited by
mechanical stops and that for all experiments in this section the “limp home position”
has been defined to correspond to the opening angle ϕ = 0.

Figure 6.8: Experimental setup of the
throttle plate position control.

uM

L RiM

ng

M

Jmech TS
ϕ Tfric

electrical part

mechanical part

structure of the spring

ϕlh

kt1 kt2

TM
ng

TM
ng

Figure 6.9: Schematic structure of the
throttle plate.
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In the following, the plant model is shortly presented based on the schematic illustration
in Figure 6.9 and the description above. For a more detailed derivation of the system
equations it is referred to [5, 48]. The equations of the plant are given by

uM = KM ϕ̇ + R iM + L
d iM

dt
(6.6)

TM = KM iM ng, (6.7)

for the electrical part and

Jmech ϕ̈ = TS + TM − dmech ϕ̇ + Tfric (6.8)

for the mechanical part, where KM denotes the torque constant of the DC motor. The
torque Tfric in (6.8) describes all effects of friction. Note that these effects are usually very
strong in common electronic throttle plates. However, friction is not explicitly considered
for the derivation of the indirect AMRAW scheme for the throttle plate in this work.
Therefore, the term Tfric is neglected in the following.
Additional negligence of the inductance (L = 0), which is a common assumption for DC
motors of throttle plates [5, 48], leads to

Jmech ϕ̈ = TS −
(

dmech + K2
M ng

R

)
ϕ̇ + KM ng

R
uM (6.9)

after substitution of (6.6) and (6.7) in (6.8). As already mentioned in the description of
the experimental setup different voltages uM have been realized with a motor controller.
This motor controller scales a constant voltage U based on a pulse-width modulation
(PWM) with duty-cycle τ such that uM = τ U with −τmax = −1 ≤ τ ≤ 1 = τmax.
Together with equation (6.9) this yields the model

ẋtp =
(

0 1
0 − d

J

)
xtp +

(
0
1
J

)(
τ + θ̄T

tp ftp(ϕ)
)

(
D2 + d

J
D

)
ϕ = 1

J

(
τ + θ̄T

tp ftp(ϕ)
)

,

(6.10)

where
xtp =

[
ϕ ϕ̇

]T
,

θ̄tp =
[
T01 T02 kt1 kt2

]T R

KM ng U
,

ftp =
[
H(ϕlh − ϕ) −H(ϕ − ϕlh) · · ·

−(ϕ − ϕlh) H(ϕlh − ϕ) −(ϕ − ϕlh) H(ϕ − ϕlh)
]T

,

J = Jmech
R

KM ng U
, d =

(
dmech + K2

M ng

R

)
R

KM ng U
.

In order to apply indirect AMRAW to the throttle plate, a linear parametric model as
given in (4.61) needs to be defined. In the following the linear parametric model

τf = θT
tp φtp (6.11)
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with
τf = 1

Λ(D) τ,

θtp =
[
J d θ̄T

tp

]T
,

φtp = 1
Λ(D)

[
D2 ϕ D ϕ −ftp,1(y) · · · −ftp,4(y)

]T
,

(6.12)

of the throttle plate is considered. Note that in difference to (4.61), the filtered saturated
input have been defined as the output of (6.11). That allows an independent identification
of the physical motivated parameters J , d and θ̄tp. The filter polynomial Λ(D) in (6.11)
will be defined in the next section.

6.2.2 Application and Results

The method of indirect AMRAW from Table 4.3 has been applied to different throttle
plates in order to show the capability of the indirect adaptive control method to quickly
adapt the parameters and to achieve a prescribed performance. In order to make the
plant parameter estimation scheme robust against modeling errors, it has been extended
by projection as presented in Section 2.2.5. Hence, the parameter estimation scheme
becomes

˙̂
θtp =

⎧⎪⎪⎨⎪⎪⎩
Pls ϵtp φtp, θ̂tp ∈ S

or θ̂tp ∈ δS and (P ϵtp φtp)T ∇g ≤ 0,

Pls ϵtp φtp − Pls
∇g∇gT

∇gTPls∇g
Pls ϵtp φtp, otherwise,

Ṗls =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Pls φp φT

p Pls
1+φT

tp φtp
, θ̂tp ∈ S

or θ̂tp ∈ δS and (P ϵtp φtp)T ∇g ≤ 0,

0, otherwise,

Pls(0) = Pls0, Pls(tr) = ρr,
(6.13)

with

ϵtp =
τf − θ̂T

tp φtp

1 + φT
tp φtp

and S = {θ̂tp ∈ R6 | (θp − X)T (θp − X) − R2
S ≤ 0}. This definition of the admissible set

S for the plant parameters corresponds to a ball with a midpoint

XT =
[
J̄ d̄ T̄01 T̄02 k̄1 k̄2

]
and with a radius RS .
For the initialization of the indirect AMRAW control scheme, the initial estimation of the
plant parameters have been set to

θ̂(t)T =
[
3 · 10−4 0.089 0.13 0.07 0.04 0.065

]
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based on a rough initial parameter identification. The admissible set of the estimated
parameters have been defined by

XT =
[
5 · 10−4 0.1 0.2 0.1 0.06 0.08

]
RS = 0.1.

In normal operation of the throttle plate, its position is desired to track changing constant
set points. In order to achieve this requirement, the internal model has been set to
Q(D) = D which implicitly introduces an integrator in the control law of the basic
controller given in Table 4.3. Therefore, four desired closed-loop poles need to be specified
for Ad, which have been chosen to lie at −100. Also, the desired poles for the anti-windup
scheme has been chosen to lie at −100, which leads to a desired system matrix of

Aawr =
(

0 1
−10000 −200

)
.

The remaining tuning parameters of indirect AMRAW has been set to Pls(0) = 105 I6×6,
ρ0 = 1, 5 · 104 and Λe(D) = D2 + 200 D + 10000.
From this starting point, an experiment has been done with the first throttle plate, which
is called TP1 in the following. A repeated step sequence with different step heights has
been specified as reference signal. Note that such a reference signal is not special at all
and can occur during normal operation of a throttle plate. The system response with
the initial parameters and deactivated adaptation can be seen in the first graph of Figure
6.10. Apparently, the closed-loop performance is not sufficient to meet the requirements.
Some strong oscillations around the desired set points can be observed. This is critical
since it can lead to a varying air flow through the throttle plate and can also cause damage
to the throttle plate if such oscillations occur near to a mechanical stop. In addition, a
strange behavior can be observed when passing the “limp home position" ϕ = 0 at about
t = 2.8s. The throttle plate seems to bounce off the “limp home position" so that it moves
in the wrong direction for a short time. The applied force seems not to be sufficient to
overcome the initial torque of the spring which is active on the other side of the “limp
home position".
The second, third, and fourth graph of Figure 6.10 show the closed-loop signals directly
after starting the parameter adaptation. It can be seen that the estimated parameters
change very quickly and also the closed-loop performance becomes better very quickly.
It can also be observed that during adaptation the input saturates for the high step
command upwards and downwards, which does not lead to divergence of the parameters.
After ten seconds of adaptation, the parameter estimation has been deactivated. The
closed-loop response with the adapted parameters is depicted in the last graph of Figure
6.10 and shows a very good tracking performance.
The same experiment has been carried out with a second throttle plate, called TP2 in
the following. All tuning parameters have been adopted from the foregoing experiment.
The initial values for estimated plant parameters have been chosen to be the estimated
parameters at the end of the experiment with throttle plate TP1. The results are shown
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in Figure 6.11. It can be seen that the performance for TP2 before adaptation is better
than the performance of TP1 before its adaptation. However, overshoots and undershoots
can be observed, which are undesired and critical for operation near to the mechanical
stops of the throttle plate. After the start of parameter adaptation, it can be seen again
that the parameter estimations change quickly and that the undesired behavior of the
system response vanishes. Finally, after adaptation of the parameters the closed-loop
performance of TP2 is similar to the performance of TP1.
The results of the presented throttle plate experiments clearly show a lot of benefits of
the indirect AMRAW algorithm. It has been presented that a very quick adaptation of
the plant parameters and therefore of the controller parameters can be achieved. This is
possible even without a special excitation of the system. Therefore, it is not necessary to
design a reference signal that allows for a reliable parameter estimation. Furthermore, it
is not necessary to avoid input saturation during parameter adaptation, due to the anti-
windup scheme. It has also been shown that the resulting closed-loop performance after
adaptation is very good in the sense that no oscillations occur and that the rise time of
the system is quite short. These properties of the presented AMRAW algorithm make it
suitable for different applications. Firstly it could be used for automatic tuning purposes
of throttle plates directly after their production. This would lead to the same initial
closed-loop performance for different instances of the throttle plate even in the presence
of production tolerances. In addition, the algorithm could be used to re-tune the control
algorithm during regular maintenance. Hence, performance degradation due to aging
could be avoided. Such re-tuning could also be activated in a safe operating condition of
the motor and the car if a bad closed-loop performance has been detected before. This
could reduce the time between parameter adaptation of the algorithm in comparison to
the maintenance intervals and therefore lead to longer periods of an optimal throttle plate
behavior. A last suitable application is mainly based on the parameter adaptation. It
has been shown that the estimation of the plant parameters is quite fast. In addition the
parameters have been chosen to have a physical interpretation. This makes it suitable
for purposes of diagnostics, which can be used to detect defects or undesired changes of
certain parts of the throttle plate.
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Figure 6.10: Closed-loop responses of throttle plate TP1 before, during, and after adap-
tation.
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Figure 6.11: Closed-loop responses of throttle plate TP2 before, during, and after adap-
tation.



Chapter 7

Summary and Future Work

In this work, adaptive systems with input saturation have been examined. It has been
shown that the application of basic adaptive control methods can lead to undesired effects
on the closed-loop response if the input amplitude of the plant is limited. These effects
involve slow closed-loop responses, oscillations of the plant output, and divergence of
the estimated parameters. Additionally, for unstable open-loop plants global closed-loop
stability can not be guaranteed any longer. Consequently, it has been concluded that a
proper consideration of the input saturation for adaptive systems is absolutely necessary.
A review on existing anti-windup schemes for adaptive control in the literature revealed
that multiple methods exist that address the issue of diverging parameters and that can
guarantee bounded closed-loop trajectories under certain conditions on the plant and
the closed-loop signals. Some of the reviewed methods additionally aim to avoid input
saturation in order to reduce control deficiency. However, for none of the adaptive meth-
ods a performance analysis has been carried out analytically, experimentally or through
simulations.
In order to address the issue of performance degradation in adaptive systems with input
saturation, the new adaptive anti-windup method AMRAW has been introduced in this
work. It extends basic adaptive control methods by a combination of two existing anti-
windup concepts from the literature. Bounded closed-loop trajectories can be guaranteed
if the new method based on MRAC is applied to open-loop stable plants. For unstable
open-loop plants, certain conditions on the closed-loop states have been derived to guar-
antee boundedness of the closed-loop signals. Moreover, it has been shown for first order
systems that the additional tuning parameter of AMRAW can be used to determine how
fast the unwanted saturation effects will be regulated.
Several results of simulation examples have been presented in order to verify the stabil-
ity of the resulting closed-loop system for the direct and indirect AMRAW schemes. In
addition, the results show that the new adaptive anti-windup method can be used to
improve the closed-loop performance and to avoid parameter divergence when the limits
of the input amplitude are actually encountered. These properties of AMRAW have also
been verified by applying the new method to real-world experiments. The results of the
helicopter benchmark experiment further show the general benefits of adaptive control
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algorithms for plants with parameter uncertainties and that the extensions of AMRAW
makes adaptive control applicable to input saturated plants. Moreover, the results of
the throttle plate experiments show how the application of indirect AMRAW results in
an automatic tuning method that is straight forward to apply and leads to a very good
closed-loop behavior. Based on the theoretical examination, the simulations, and the
experiments, some interpretations and proposals have been stated in order to facilitate
the understanding of the adaptive control schemes and to lower the hurdles for real world
applications of the proposed schemes.

Future Work
Many technical plants are controlled by digital controllers with low sampling rates, which
makes the application of discrete-time control algorithms necessary. In such cases, the
adaptive algorithms presented in this work are not applicable without further consid-
erations. Hence, future work should involve these considerations and the derivation of
discrete-time AMRAW methods, which allow for an improvement of performance for
discrete-time input saturated adaptive closed-loop systems.
Not only a limited input amplitude can lead to a deterioration of the closed-loop per-
formance in adaptive systems, but also a rate limitation of the controlled input. The
method of MRAW can be used to address rate limitations for known plant parameters
as shown e.g. in [15, 39, 40]. Therefore, an extension or modification of AMRAW which
allows for a consideration of rate limitations would be beneficial for adaptive control of
plants, which suffer from a limited input rate. Note that for indirect adaptive control with
state-feedback an adaptive MRAW scheme for rate limitations has already been presented
in [70].
In this work, the method of AMRAW has been derived for SISO systems. However,
not all technical applications can be divided into multiple SISO systems, but have to be
considered as a MIMO plant. For these applications, it is necessary to extend AMRAW to
account for multiple inputs and outputs. Especially for plants with redundant actuators,
this will include the allocation of the control signal inside the anti-windup scheme.
In Remark 5.2 possible ways of tuning the desired anti-windup dynamics in AMRAW
have been proposed. These tuning procedures require either extensive simulations with
different combinations of plant and controller parameters or a re-tuning after the closed-
loop performance has become unacceptable. In order to find a more systematic tuning
procedure a combination of the robust approach, as presented e.g. in [49, 155], with the
adaptive approach, which has been presented in this work, should be considered.
The amplitude limits of technical systems are not always perfectly known or might even
change during lifetime. A recommendation to implement AMRAW in order to avoid
problems due to underestimation of the amplitude limits has been stated in Remark
5.5. In addition, the results of the helicopter experiment suggest that AMRAW is robust
against overestimation of the input amplitude limits. However, future work should involve
a rigorous examination of the robustness of AMRAW in the case of erroneous assumptions
of the input amplitude limits. Results of such examinations will help to decide if AMRAW
can be used for a plant with uncertain amplitude limits.



Appendix A

Definitions, Theorems and Lemma
regarding Stability Analysis of
Adaptive Systems

Some important definitions, theorems, and lemma are given in this appendix that are
often utilized for stability analysis of adaptive dynamical systems. None of the lemma
or theorems are proven here, but references are stated that present such proofs. The
following definitions, theorems, and lemma are partially adopted from [94] and [60].

A.1 Lyapunov Stability

A dynamical system of the form
ẋ = f(t, x) (A.1)

is considered, with f : [0, ∞) × B → Rn and the domain B ⊂ Rn . It is assumed
that f satisfies all necessary and sufficient conditions for the existence and uniqueness of
the solution of (A.1) (see e.g. [78, 94]) for all initial conditions x(t0) = x0 ∈ B. Stability
analysis of the system (A.1) is done by inspecting the stability properties of its equilibrium
points, which are defined in the following.

Definition A.1. The state xe is an equilibrium point of the system (A.1), if

f(t, xe) ≡ 0 ∀t ≥ t0.

Definition A.2. An equilibrium point xe of (A.1) is stable in the sense of Lyapunov if
for arbitrary t0 ≥ 0, ϵ > 0 there exists a δ(ϵ, t0) > 0 , such that ∀ ∥x0 − xe∥ ≤ δ the
system trajectories will satisfy ∥x(t) − xe∥ < ϵ ∀t ≥ t0. If δ does not depend on t0, the
equilibrium point is said to be uniformly stable.

Definition A.3. An equilibrium point xe of (A.1) is asymptotically stable in the sense
of Lyapunov, if it is stable and there exists a δ(t0) such that the system trajectories will
satisfy limt→∞ ∥x(t) − xe∥ = 0 if ∥x0 − xe∥ ≤ δ.
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Definition A.4. An equilibrium point xe of (A.1) is uniformly asymptotically stable in
the sense of Lyapunov, if it is uniformly stable and there exists a δ for any t0 ≥ 0 and
ϵ > 0, independent of (t0, ϵ), and a T (ϵ) > 0, independent of t0, such that the system
trajectories will satisfy ∥x(t) − xe∥ < ϵ ∀t ≥ t0 + T (ϵ) if ∥x0 − xe∥ ≤ δ.

Definition A.5. The stability definitions A.2-A.4 are said to be global, if limϵ→∞ δ = ∞
in the respective cases.

If an equilibrium point of the system (A.1) is stable in the sense of at least one of the
definitions A.2-A.5, the solution x is said to be bounded. The concept of boundedness is
defined in the following.
Definition A.6. A solution x of (A.1) is bounded, if ∥x∥ < β ∀t ≥ t0, with a β > 0,
which may depend on each solution.

Definition A.7. A solution x of (A.1) is uniformly bounded, if for any α > 0 there
exists a β(α), independent of t0, such that ∥x∥ < β(α) ∀t ≥ t0 if ∥x0∥ < α.

The concept of Laypunov stability has been defined above. The next definitions are useful
to analyze the stability of a system with Lyapunovs direct method.
Definition A.8. A scalar function V (x) : Br → R, with the domain

Br = {x ∈ Rn : ∥x∥ ≤ 0} ,

is called locally positive definite (semidefinite), if V (0) = 0 and V (x) > 0 (V (x) ≥ 0)
for all nonzero x ∈ Br for some r > 0. The function is globally positive (semi)definite if
Br = Rn.

Definition A.9. A scalar function V (x) : Br → R, with the domain

Br = {x ∈ Rn : ∥x∥ ≤ 0} ,

is called locally negative definite (semidefinite), if −V (x) is locally positive definite (semi-
definite). The function is globally negative (semi)definite if Br = Rn.

Definition A.10. A function V (x) : Rn → R is called radially unbounded, if it is positive
definite, strictly increasing on R, and satisfies lim∥x∥→∞ V (x) = ∞.

The definitions above allow the statement of the main theorem for stability analysis in
the sense of Lyapunov.
Theorem A.1 (Lyapunov’s Direct Method). Let xe = 0 be an equilibrium point for
(A.1). Suppose the initial conditions x(t0 = 0) = x0 lie in the domain B and there exists
a continuously differentiable positive definite function on that domain: V (x) : B → R. If
the time derivative of this function is locally negative semi definite,

V̇ = dV

dx
f(t, x) ≤ 0,

for all t ≥ 0, x ∈ B, then the equilibrium of the system is locally uniformly stable in the
sense of Lyapunov. If V̇ < 0 (locally negative definite), then the equilibrium point is
uniformly asymptotically stable.
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A proof of Theorem A.1 can be found in [78, 160]. The theorem above presents a method
to verify stability as defined in A.2-A.4 by the properties of a function, defined in A.8-A.9.
A positive definite function V (x) which is supposed to verify the stability of a system
(A.1) is called a Lyapunov function candidate. If it satisfies the conditions in Theorem
A.1, V (x) becomes a Lyapunov function. The concept of a Lyapunov function can be
extended as follows.

Theorem A.2. Let xe = 0 be an equilibrium point for (A.1). If V (x) is a radially
unbounded Lyapunov function of the system, then the equilibrium is globally uniformly
(asymptotically) stable.

A proof of Theorem A.2 can also be found in [78, 160].

A.2 Barbalat’s Lemma

Barabalat’s Lemma is especially useful to verify asymptotic convergence of states or signals
of a system, even if Lyapunov’s direct method (Theorem A.1) can just verify stability of
the system (V̇ (x) semi negative definite). In order to state Barabalat’s Lemma, the
definition of uniformly continuous functions is necessary.

Definition A.11. A function f(t) : R → R is a uniformly continuous function, if for
any ϵ > 0 there exists a δ(ϵ) such that ∀|t2 − t1| ≤ δ ⇒ |f(t2) − f(t1)| ≤ ϵ.

Lemma A.1 (Barbalat’s Lemma). If limt→∞
∫ t

0 f(τ)dτ of the uniformly continuous func-
tion f(t) : R → R exists and is finite, then limt→∞ f(t) = 0.

The proof of Barabalat’s Lemma can be found in [60, 78] The Lemma A.1 together with
the two facts that a function is uniformly continuous if its derivative is bounded ([60, 94]),
and that a nonincreasing function with lower bound has a limit for t → ∞ (Lemma 3.2.3
in [60]) lead to the following result which is adopted from [94].

Corollary A.1. If a scalar function f : R → R is twice continuously differentiable on
[0, ∞), has a finite limit, and has a bounded second derivative, then limt→∞ ḟ(t) = 0.

A.3 Meyer-Kalman-Yakubovich (MKY) Lemma

Before introducing the MKY Lemma, a definition for (strictly) positive real transfer func-
tions is necessary. The following definitions and the MKY lemma are adopted from
[60, 116, 147].

Definition A.12. A function G(s) of the complex variable s = σ + j ω is positive real
(PR) if

1. G(s) is real for real s, and
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2. the real part of G(s), i.e. Re(G(s)), for all s > 0 satisfies Re(G(s)) ≥ 0.

Definition A.13. A function G(s) of the complex variable s = σ+j ω is strictly positive
real (SPR) if G(s − ϵ) is PR for some ϵ > 0.

Lemma A.2. A rational function G(s) of the complex variable s = σ + j ω is strictly
positive real (SPR) if and only if

• G(s) does not have any poles for σ ≥ 0,

• Re(G(s)) > 0 for all ω ∈ (−∞, ∞), and

•

⎧⎪⎪⎨⎪⎪⎩
limω2→∞ ω2 Re(G(j ω)) > 0 for n∗ = 1,

limω→∞ Re(G(j ω)) > 0 for n∗ = 0, and
limω→∞

G(j ω)
j ω

> 0 for n∗ = −1.

A proof of Lemma A.2 can be found in [57]. Note that the second condition in Lemma
A.2 is equivalent to a phase of G(s) in (−90◦, 90◦).

Lemma A.3 (Meyer-Kalman-Yakubovich (MKY) Lemma). A system with the Hurwitz
matrix A, vectors B, C and a scalar d ≥ 0 is considered. If the transfer function

G(s) = C (s I − A)−1 B + d

of this system is SPR, then for any given L = LT > 0, there exists a scalar v > 0, a
vector q and a P = P T > 0 such that

AT P + P A = −q qT − v L

PB − CT = ±q
√

2 d

A proof of the MKY Lemma can be found in [101].

A.4 Properties of Least-Squares Estimation with Co-
variance Resetting

The following theorem states the properties of the Least-Squares Algorithm presented in
Section 2.2.3.

Theorem A.3. The Least-Squares Algorithm with Covariance resetting given in (2.52)
has the following properties:

i) ϵ, ϵ
√

φT
p φp, θ̂p,

˙̂
θp are bounded.

ii) ϵ, ϵ
√

φT
p φp,

˙̂
θp are square integrable.

A proof of Theorem A.3 can be found in [60].



Appendix B

Proofs

B.1 Second Part of Proof of Theorem 4.1

In Section 4.1 the method of adaptive model recovery anti-windup for state-feedback has
been introduced. Boundedness of the closed-loop signals in the case of a stable open-
loop plant has already been established in the first part of the proof. The proof of the
boundedness of the closed-loop signals for the case of an unstable open-loop plant is done
in the following. The respective theorem is repeated here for clarity.

Theorem 4.1. The control law (4.8) with a bounded reference signal |r(t)| ≤ rmax(t)
together with the parameter update laws (4.13) and the reference model (4.10) applied to
the plant Gnls in (3.2) results in bounded closed-loop signals if the plant is open-loop
stable. Boundedness of the closed-loop signals for an unstable open-loop plant Gnls can
be established under the following conditions:

i) The initial state of the closed-loop system satisfies

xps(t0)T PW xps(t0) ≤ λmin(PW )
(

2 pb λ (umax − ∥θnl∥ onl)
|−q0 + 2 pb λ ∥K∗

x∥ + ∥θnl∥cnl|

)2

. (B.1)

ii) The reference signal does not exceed

rmax ≤ q0 (umax − ∥θnl∥ onl) − ρ η Daw ∥xaw∥
ρ η|k∗

r | . (B.2)

iii) The initial value of (4.12) does not exceed

V (t0) ≤
λ

λmax(Γx)

(
q0 (2 pb λ (umax − ∥θnl∥ onl)) − 2 pb λ ρ η (|k∗

r | rmax + Daw ∥xaw(t0)∥)
Nmax

)2

(B.3)
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with

Nmax =

2 pb λ

⎡⎣ρ η

⎛⎝∥xaw(t0)∥
⎡⎣1 +

√λmin(Γaw)
λmin(Γx)

⎤⎦+ rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎞⎠
+
⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠ (2 pb λ [umax − ∥θnl∥ onl])
⎤⎦

The matrix PW = P T
W > 0 is the solution of the linear equation AT

ref PW+PW Aref = −QW
with QW = QT

W > 0 and q0 is the minimal eigenvalue of QW. In conditions (i) − (iii) the
definitions of pb , ∥PW Bp∥, η , |−q0 + 2 pb λ ∥K∗

x∥ + ∥θnl∥cnl|, Daw ≥ ∥K∗
x − K∗

aw∥ and
ρ ,

√
λmax(PW)
λmin(PW) have been used, where λmin(·) and λmax(·) are the minimal and maximal

eigenvalue, respectively.

Proof. In order to simplify notation in the proof, upper bounds for the estimation errors
are defined as K̃xmax > ∥K̃x∥, K̃awmax > ∥K̃aw∥, k̃rmax > |k̃r|, θ̃nlmax > ∥θ̃nl∥ and
k̃∆max > |k̃∆| such that an upper bound for the Lyapunov function (4.12) satisfies

Vmax = λ
K̃2

xmax
λmin(Γx) = λ

K̃2
awmax

λmin(Γaw) = λ
k̃2

rmax
γr

= λ
k̃2

∆max
γ∆

= λ
θ̃2

nlmax
λmin(Γnl)

> ∥V ∥. (B.4)

From this definition it can be deduced that

K̃awmax =

√λmin(Γaw)
λmin(Γx) K̃xmax, k̃rmax =

√
γr

λmin(Γx)K̃xmax,

θ̃nlmax =

√λmin(Γnl)
λmin(Γx) K̃xmax, k̃∆max =

√
γ∆

λmin(Γx)K̃xmax.

(B.5)

The proof is divided into two parts in the following. In the first part the case of ∆u = 0
is examined, whereas in the second part the case ∆u ̸= 0 is considered. In both cases
the quadratic Lyapunov function candidate

W = xT
ps PW xps (B.6)

is chosen in order to establish boundedness of the closed-loop signals. At the end of the
proof, the two separate parts are combined in order to derive conditions for stability.
Case ∆u = 0
The derivative with respect to time of (B.6) together with the closed-loop equation (4.11)
results in

Ẇ = ẋT
ps PW xps + xT

ps PW ẋps = xT
ps

(
AT

ref PW + PW Aref
)

xps

+ 2 xps PW

[
Bp λ k∗

r r + Bp λ
(
K̃T

x (xps + xaw) + k̃r r − θ̃T
nl fnl(xps) − K̃T

aw xaw

+K∗T
x xaw − K∗T

aw xaw
)]

,

(B.7)
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where matching conditions (2.6) and (4.7) have been used to substitute

Bp λ K∗T
x xaw − Bp λ K∗T

aw xaw = Aref xaw − Aawr xaw.

Solving the Lyapunov equation AT
ref PW + PW Aref = −QW for QW = QT

W > 0 and
introduction of the definitions q0 = λmin(QW ), pb = ∥PW Bp∥ yields

Ẇ < − q0∥xps∥2 + 2 ∥xps∥ pb λ (|k∗
r | rmax + ∥K∗

x − K∗
aw∥ ∥xaw∥)

+ 2 ∥xps∥ pb λ

⎡⎣K̃xmax

⎛⎝∥xps∥
⎡⎣1 + cnl

√λmin(Γnl)
λmin(Γx)

⎤⎦+ ∥xaw∥
⎡⎣1 +

√λmin(Γaw)
λmin(Γx)

⎤⎦
+rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎞⎠⎤⎦ ,

(B.8)
where the upper bound for the nonlinear function in (4.1) has been used. Since Ẇ ≤ 0
is necessary for (B.6) to be a Lyapunov function, equation (B.8) can be rearranged to

∥xps∥
⎡⎣q0 − 2 pb λ K̃xmax

⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠⎤⎦
≥ 2 pb λ

⎡⎣|k∗
r | rmax + Daw ∥xaw∥ + K̃xmax

⎛⎝∥xaw∥
⎡⎣1 +

√λmin(Γaw)
λmin(Γx)

⎤⎦
+rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎞⎠⎤⎦ ,

(B.9)

where Daw , ∥K∗
x − K∗

aw∥. Hence it follows an upper bound for the plant state

∥xps∥ ≥

⎛⎜⎜⎝2 pb λ
[
|k∗

r | rmax + Daw ∥xaw∥ + K̃xmax

(
∥xaw∥

[
1 +

√
λmin(Γaw)
λmin(Γx)

])]
q0 − 2 pb λ K̃xmax

(
1 + cnl

√
λmin(Γnl)
λmin(Γx)

)

+
2 pb λ K̃xmax

(
rmax

√
γr

λmin(Γx) + onl

√
λmin(Γnl)
λmin(Γx)

)
q0 − 2 pb λ K̃xmax

(
1 + cnl

√
λmin(Γnl)
λmin(Γx)

)
⎞⎟⎟⎠ .

(B.10)

The denominator of (B.10) q0 − 2 pb λ K̃xmax

(
1 + cnl

√
λmin(Γnl)
λmin(Γx)

)
is always positive as it is

shown at the end of the proof.
Case ∆u ̸= 0
For ∆u ̸= 0, the stability analysis has to be divided into another two sub-cases, namely
sign(u) ̸= sign(xT

ps PW Bps) and sign(u) = sign(xT
ps PW Bps).

(1): sign(u) ̸= sign(xT
ps PW Bps)
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A representation of the closed-loop is derived by adding and subtracting the term
Bp λ K∗T

x xp
to the plant model Gnl,s, which yields

ẋps = Aref xps + Bp λ umax sign(u) − Bp λ K∗T
x xp + Bp λ θT

nl fnl(xps). (B.11)

The derivative of the Lyapunov equation W with respect to time then becomes

Ẇ = −xT
ps QW xps + 2 xT

ps PW Bp λ umax sign(u) − 2 xT
ps PW Bp λ

(
K∗T

x xps − θT
nl fnl(xps)

)
≤ −q0 ∥xps∥2 − 2 ∥xps∥pb λ umax + 2 ∥xps∥ pb λ (∥K∗

x∥ ∥xps∥ + ∥θnl∥ (onl + cnl ∥xps∥))
≤ ∥xps∥2 |−q0 + 2 pb λ ∥K∗

x∥ + ∥θnl∥cnl| − 2 ∥xps∥ pb λ (umax − ∥θnl∥ onl) .
(B.12)

This leads to an upper bound

∥xps∥ ≤ 2 pb λ (umax − ∥θnl∥ onl)
|−q0 + 2 pb λ ∥K∗

x∥ + ∥θnl∥cnl|
(B.13)

for the plant state to establish Ẇ ≤ 0.
(2): sign(u) = sign(xT

ps PW Bp)
In this case, the fact that sign(u) = sign(xT

ps PW Bp) leads to

Ẇ = −xT
ps QW xps + 2 |xT

ps PW Bp| λ umax − 2 xT
ps PW Bp λ

(
K∗T

x xps − θT
nl fnl(xps)

)
(B.14)

Since the case ∆u ̸= 0 is considered, which is equivalent to |u| > umax, the inequality

|xT
ps PW Bp| λ umax = xT

ps PW Bp sign(xT
ps PW Bp) λ umax

< xT
ps PW Bp sign(xT

ps PW Bp) λ |u|

is true and
xT

ps PW Bp sign(xT
ps PW Bp) λ |u| = xT

ps PW Bp λ u

leads to

Ẇ < −xT
ps QW xps + 2 xT

ps PW Bp λ
(
KT

x (xps + xaw) + kr r − KT
aw xaw − θ̂T

nl fnl(xps)
)

− 2 xT
ps PW Bp λ

(
K∗

x xps − θT
nl fnl(xps)

)
= −xT

ps QW xps + 2 xT
ps PW Bp λ

(
K̃T

x xps + Kx xaw + kr r − Kaw xaw − θ̂nl f(xps)
)

(B.15)
Adding and subtracting 2 xT

ps PW Bp λ
(
K∗T

x xaw − K∗T
aw xaw + k∗

r r
)

results in

Ẇ < −xT
ps QW xps + 2 xps PW

(
Bp λ k∗

r r + Bp λ
(
K̃T

x (xps + xaw) + k̃r r − θ̃T
nl fnl(xps)

− K̃T
aw xaw +K∗T

x xaw − K∗T
aw xaw

))
,

(B.16)
which is the same relation as for the case ∆u = 0 and hence leads to the same lower
bound for the plant state.
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Combination of the Cases
For the system to be stable, conditions (B.10) and (B.13) have to be satisfied, which are
equivalent to

xT
ps PW xps ≥

λmax(PW )

⎛⎜⎜⎝2 pb λ
(

|k∗
r | rmax + Daw ∥xaw∥ + K̃xmax

(
∥xaw∥

(
1 +

√
λmin(Γaw)
λmin(Γx)

)))
q0 − 2 pb λ K̃xmax

(
1 + cnl

√
λmin(Γnl)
λmin(Γx)

)

+
2 pb λ K̃xmax

(
rmax

√
γr

λmin(Γx) + onl

√
λmin(Γnl)
λmin(Γx)

)
q0 − 2 pb λ K̃xmax

(
1 + cnl

√
λmin(Γnl)
λmin(Γx)

)
⎞⎟⎟⎠

2
(B.17)

and

xT
ps PW xps ≤ λmin(PW )

(
2 pb λ (umax − ∥θnl∥ onl)

|−q0 + 2 pb λ ∥K∗
x∥ + ∥θnl∥cnl|

)2

, (B.18)

respectively.

With the definitions of η , |−q0 + 2 pb λ ∥K∗
x∥ + ∥θnl∥cnl| and ρ ,

√
λmax(PW )
λmin(PW ) it follows

ρ η

⎡⎣2 pb λ

⎛⎝|k∗
r | rmax + Daw ∥xaw∥ + K̃xmax

⎛⎝∥xaw∥
⎡⎣1 +

√λmin(Γaw)
λmin(Γx)

⎤⎦
+rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎞⎠⎞⎠⎤⎦
≤ q0 [2 pb λ (umax − ∥θnl∥ onl)]

− 2 pb λ K̃xmax

⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠ [2 pb λ (umax − ∥θnl∥ onl)]

(B.19)

Rearranging leads to

K̃xmax

⎡⎣2 pb λ

⎛⎝ρ η

⎡⎣∥xaw∥
⎛⎝1 +

√λmin(Γaw)
λmin(Γx)

⎞⎠+ rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎤⎦
+
⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠ (2 pb λ (umax − ∥θnl∥ onl))
⎞⎠⎤⎦

≤ q0 [2 pb λ (umax − ∥θnl∥ onl)] − 2 pb λ ρ η (|k∗
r | rmax + Daw ∥xaw∥) ,

and hence an upper bound

K̃xmax ≤ q0 [2 pb λ (umax − ∥θnl∥ onl)] − 2 pb λ ρ η (|k∗
r | rmax + Daw ∥xaw∥)

Nmax
(B.20)
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for the estimation error results, where the denominator is given by

Nmax =2 pb λ

⎡⎣ρ η

⎛⎝∥xaw∥
⎡⎣1 +

√λmin(Γaw)
λmin(Γx)

⎤⎦+ rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎞⎠
+
⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠ (2 pb λ [umax − ∥θnl∥ onl])
⎤⎦ .

From this maximal estimation error it directly follows that

2 pb λ

⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠ K̃xmax (2 pb λ (umax − ∥θnl∥ onl))

≤ q0 (2 pb λ (umax − ∥θnl∥ onl)) − PT,

where

PT = K̃xmax 2 pb λ ρ η

⎛⎝∥xaw∥
⎡⎣1 +

√λmin(Γaw)
λmin(Γx)

⎤⎦+ rmax

√
γr

λmin(Γx) + onl

√λmin(Γnl)
λmin(Γx)

⎞⎠
is a positive term, and hence

q0 ≥ 2 pb λ K̃xmax

⎛⎝1 + cnl

√λmin(Γnl)
λmin(Γx)

⎞⎠ ,

which already has been presumed for (B.10).
In addition, from the definition of K̃xmax in (B.4) an upper bound for V can be deduced
as

V (t0) ≤ λ

λmax(Γx)K̃2
xmax.

Since V̇ ≤ 0, this is equivalent to the upper bound given in condition iii) of Theorem 4.1.
In order to satisfy K̃x,max > 0 the condition ii) in Theorem 4.1 on the reference signal r
is also necessary. Based on the boundedness of xps and esat, it directly follows that xrefs
is bounded. Summation of the dynamical system of the reference model (4.10) and the
anti-windup scheme (4.9) yields

ẋaw + ẋrefs = Aref (xaw + xref) + Bref r,

which is a stable system with bounded input r. Hence, xaw+xrefs is bounded and therefore
xaw is bounded. From the control law (4.8) it then follows that u is bounded.

B.2 Proof of Theorem 4.2

Theorem 4.2. For the first order plant (4.17) with limited input amplitude, the choice
of two different AMRAW parameters k∗

aw1 ∈ R and k∗
aw2 ∈ R such that

ap + bp k∗
aw1 = aawr1 < ap + bp k∗

aw2 = aawr2 < ap
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with aawri < 0 for i = 1, 2, will lead to |xaw1| ≤ |xaw2| ∀t > t0 for the corresponding
unwanted behaviors xawi, i = 1, 2, if

i) the input uc is the same for both systems,

ii) the initial conditions fulfill |xaw1(t0)| ≤ |xaw2(t0)|,
where sign(xaw1(t0)) = sign(xaw2(t0)),

iii) the unwanted behaviors xaw1 and xaw2 do not change sign.

Proof. In the following, the results for the dynamic of the unwanted behavior xaw will
be derived for

ẋaw = ap xaw + bp λ ∆ucaw, (B.21)
which results from equation (4.18) with

∆ucaw = uc − sat(uc − k∗
aw xaw) (B.22)

Five different cases will be considered to proof Theorem 4.2. A graphical interpretation
of these cases is shown in Figure B.1, where the possible combinations of uc and uawp =
−k∗

aw xaw are shown for a fixed sign of uc, respectively. In the following the different
cases are shortly defined and described. Furthermore, for all cases it is concluded how the
unwanted behavior |xaw| grows or decays.

Case 1

uc

uawp

∆ucaw

uc

uc

Case 2 Case 3

uawp

∆ucaw

Case 4

∆ucaw uawp

Case 5

uc

uawp

∆ucaw

uc

uawp

∆ucaw

Figure B.1: Graphical interpretation of all cases that can occur for uc − sat(uc + uawp).

Description of the Cases:

Case 1 |uc + uawp| ≤ umax. This case includes all possible combinations of uawp and
uc that does not lead to saturation.

In this case, it follows from equation (B.22) that ∆ucaw = k∗
aw xaw and therefore |xaw|

will decay with the desired dynamic aawr.

Case 2 |uc| > umax and |uc + uawp| > umax where sign(uc) = sign(uawp). The sign
of uawp and uc is the same in this case and the amplitude of uc is greater than
umax. Hence, the combination uc + uawp will always have the same sign as uc,
independently of the amplitude of uawp.
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In this case it follows that sign(∆ucaw) = sign(uawp) and therefore sign(∆ucaw) ̸=
sign(k∗

aw xaw). Let the system stay in Case 2 throughout the time tc2. Then a
time-dependent fictitious gain kawf(tc2) can be defined such that kawf(tc2) xaw =
∆ucaw(tc2) with sign(kawf) ̸= sign(k∗

aw). From equation (B.21) it can be seen that

ẋaw = ap xaw + bp λ kawf(tc2) xaw

with
ap + bp λ kawf(tc2) > ap

For a stable system, this can lead to a slower decay than in Case 1 or even a growth
of the unwanted behavior. For an unstable system |xaw| will grow.

Case 3 |uc| < umax and |uc + uawp| > umax where sign(uc) = sign(uawp). That means,
the amplitude of uc is smaller than umax and the combination uc +uawp will always
have the same sign as uc, independently of the amplitude of uawp. In contrast to
Case 2, the amplitude of uawp is not arbitrary but has to be greater than umax−|uc|.

In this case it follows that sign(uawp) ̸= sign(∆ucaw) and hence

sign(∆ucaw) = sign(k∗
aw xaw).

It can also be deduced, that |uc| + |∆ucaw| < |uc| + |uawp| and therefore |∆ucaw| <
|uawp|. It follows that a time-dependent fictitious gain kawf(tc3) can be found for
the time tc3 the system stays in Case 3, such that kawf(tc3) xaw = ∆ucaw(tc3)
with sign(kawf(tc3)) = sign(k∗

aw) and |kawf(tc3)| < |k∗
aw|. That means that ap +

bp kawf(tc3) > aawr but ap + bp kawf(tc3) < ap. For a stable system, this will lead to
a slower decay of the unwanted behavior than in Case 1. For an unstable system,
it can lead to a slower decay than in Case 1 or even a growth of the unwanted
behavior.

Case 4 |uc| > umax and |uc + uawp| > umax where sign(uc) ̸= sign(uawp) and |uc| >
|k∗

awi xaw|. The first possibility of different signs of uc and uawp is described in this
case. The amplitude of uc is greater than umax and the amplitude of uawp is not
high enough for the system to be in Case 1 or Case 5.

In this case it can be derived that |∆ucaw| > |uawp| and sign(uawp) ̸= sign(∆ucaw).
Let the system stay in Case 4 throughout the time tc4. Then a time-dependent
fictitious gain kawf(tc4) can be found such that kawf(tc4) xaw = ∆ucaw(tc4) with
|kawf(tc4)| > |k∗

aw| and sign(kawf) = sign(k∗
aw). Therefore it can be derived that

ap + bp kawf(tc4) < aawr and the decay of |xaw| is faster than in Case 1.

Case 5 |uc + uawp| > umax where sign(uc) ̸= sign(uawp) and |uc| < |uawp|. There are
no restrictions for the amplitude of uc in this case. In contrast to Case 4, the
amplitude of uawp is high enough to bring the input uc + uawp in the saturation
with the opposite sign of uc.
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It directly follows from the definition of this case, that

|∆ucaw| < |uawp| and sign(uawp) ̸= sign(∆ucaw).

Hence a time-dependent fictitious gain kawf(tc5) with |kawf(tc5)| < |k∗
aw| can be

found, such that kawf(tc5) xaw = ∆ucaw(tc5) and ap + bp k∗
awf(tc5) > aawr and

ap + bp k∗
awf(tc5) < ap. For a stable system, this will lead to a slower decay of the

unwanted behavior than in Case 1. For an unstable system, the unwanted behavior
can even grow.

The five cases above describe all possible combinations of uc + uawp. The different cases
differentiate between |uc + uawp| < umax and |uc + uawp| > umax with the same and
different signs of uc and uawp. This is summarized in the following:

|uawp + uc| ≤ umax

All possible combination of uc and uawp that lead to a smaller amplitude than umax
are described by Case 1.

|uc + uawp| > umax and sign(uawp) = sign(uc)

All possible combinations of uc and uawp with the same sign that lead to a higher
amplitude than umax are described by Case 2 for |uc| > umax and Case 3 for
|uc| ≤ umax.

|uc + uawp| > umax and sign(uawp) ̸= sign(uc)

All possible combinations of uc and uawp with different sign that lead to a higher
amplitude than umax are described by Case 4 for |uc| > |uawp| and Case 5 for
|uc| ≤ |uawp|.

Comparison of two systems:
In the next step of the proof, it is assumed that the system with k∗

aw = k∗
aw2, called Gaw2

in the following, is in one of the five possible cases. For xaw1 = xaw2 = xaw it is examined,
which cases are possible for the system Gaw1 with k∗

aw = k∗
aw1. In addition, the signals

uawp1 = −k∗
aw1 xaw1 and uawp2 = −k∗

aw2 xaw,2 as well as ∆ucaw1 and ∆ucaw2 are used for
the respective systems.

Gaw2 in Case 1:

System Gaw1 can not be in Case 2 or Case 4:
Assume Gaw1 to be in Case 2. Then |uc| > umax has to be true. Hence, for Gaw2
to be in Case 1, an opposite sign of uc and uawp2 is necessary. Since sign(k∗

aw1) =
sign(k∗

aw2) this contradicts the assumption of Gaw1 to be in Case 2. Hence, Gaw1
can not be in Case 2.



136 B.2 Proof of Theorem 4.2

Assume Gaw1 to be in Case 4. For Gaw1 it is then necessary that |uc + uawp| =
|uc|−|k∗

aw1 xaw| > umax and |uc| > umax. Since sign(k∗
aw1) = sign(k∗

aw2) and |k∗
aw2| <

|k∗
aw,1| it follows that |uc + uawp2| = |uc| − |k∗

aw2 xaw| > umax. Therefore |uc| −
|k∗

aw2 xaw| ≤ umax for system Gaw2 is not possible, which means that Gaw1 can not
be in Case 4.

Conclusion for Gaw1 in Case 1, Case 3 or Case 5:
If Gaw1 is in Case 1, it directly follows that |xaw1| will decay faster than |xaw2|.
If Gaw1 is in Case 3, then a gain kawf1(tc3) can be found such that kawf1(tc3) xaw =
∆ucaw1. It follows that |uc| + |∆ucaw1| = umax and therefore by definition of Case 1
and the fact that sign(kawf1(tc3)) = sign(k∗

aw2) it results |kawf1(tc3)| ≥ |k∗
aw2|. Since

k∗
aw2 is chosen such that Gaw2 is stable, the unwanted behavior of both systems will

decay, but |xaw1| will decay at least at the same rate as |xaw2|.
If Gaw1 is in Case 5, the same arguments as for Case 3 can be used.

Gaw2 in Case 2:

The signal |uc| > umax is the same for both examined systems. It is known that
sign(k∗

aw1 xaw) = sign(k∗
aw2 xaw) and |k∗

aw1| > |k∗
aw2|. Therefore it can be seen that

|uc + uawp1| > |uc + uawp2| > umax, which shows that it is only possible for Gaw1
to also be in Case 2. That means that the unwanted behavior of both systems will
decay or grow at the same rate.

Gaw2 in Case 3:

The signal |uc| < umax is the same for both examined systems, and from Theorem 4.2
it is known that sign(k∗

aw1 xaw) = sign(k∗
aw2 xaw) and |k∗

aw1| > |k∗
aw2|. Therefore it

can be seen that |uc + uawp1| > |u + uawp2| > umax and it is only possible for Gaw1
to also be in Case 3. Since |∆ucaw| is the same for both systems, the same fictitious
gain kawf(tc3) can be found for them. Therefore both systems will decay or grow at
the same rate.

Gaw2 in Case 4:

For system Gaw1 it is only possible to be in Case 1, Case 4, or in Case 5. These are
the only cases where sign(uc) ̸= sign(uawpi) for i = 1, 2 is possible.
If both systems are in Case 4, the unwanted behavior will decay for both systems
at the same rate, since an identical fictitious gain for both systems can be found.
If system Gaw1 is in Case 1, it follows that |uawp1| ≥ |∆ucaw2|. Hence, it results
|kawf2| ≤ |k∗

aw1|, while both gains have the same sign. Therefore the unwanted
behavior of system Gaw1 will decay at least at the same rate as |xaw2|.
If system Gaw1 is in Case 5 the fact that uc > umax allows the conclusion that
|∆ucaw1| > |∆ucaw2| with sign(∆ucaw1) = sign(∆ucaw2). This results in |kawf1| >
|kawf2| for the fictitious gains of the systems. Therefore the decay of |xaw1| is faster
than that of |xaw2|.
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Gaw2 in Case 5:

If system Gaw2 is in Case 5, it is known that sign(uc) ̸= sign(uawp2). Hence, system
Gaw1 can not be in Cases 1-3, because sign(k∗

aw1) = sign(k∗
aw2). Assuming Gaw1 to

be in Case 4 leads to the requirement |uc| > |umax|. For this case it follows that
|kaw2 xaw| > |uc|. which indicates |kaw2 xaw| > |uc|, since |kaw1 > kaw2|. However,
this contradicts the assumption of Gaw1 being in Case 4. Hence, system Gaw1 can
only be in Case 5. In that case for both systems the same fictitious gain kawf1 = kawf2
can be found. Therefore the unwanted behavior for both systems will decay or grow
at the same rate.

It has been shown that |xaw1| will at most grow and at least decay at the same rate as
|xaw2| for all possible cases of Gaw2. Since the cases describe all possible dynamics of the
system and it is guaranteed that xaw does not change sign, it can be established that
|xaw1| ≤ |xaw2| ∀t > t0.

B.3 Second Part of Proof of Theorem 4.3

In Section 4.2 the method of adaptive model recovery anti-windup for output-feedback has
been introduced. Boundedness of the plant state for the case of an open-loop stable plant
has already been established in the first part of the proof. The proof of the boundedness
in case of an unstable open-loop plant is done in the following. The respective theorem
is repeated here for clarity.

Theorem 4.3. The control law (4.27) with a bounded reference signal |r(t)| ≤ rmax(t)
together with the parameter update laws (4.35)-(4.37) for n∗ = 1 or (4.40)-(4.42) for
n∗ ≥ 2 and the reference model (4.31) applied to the plant Glins in (4.19) results in a
bounded state of (4.21), if the plant is open-loop stable. Boundedness of the state for an
unstable open-loop plant Glins can be established under the following conditions:

i) The initial condition of the closed-loop state fulfills

xcs(0)T PW xcs(0) ≤ λmin(PW)
(

2 pb umax

| − q0 + 2 pb ∥θ̄∗∥ ∥Ct∥|

)2

. (B.23)

ii) The reference signal does not exceed

rmax(t) ≤ umax q0 − ρ η Daw ∥Ct∥ ∥xawc∥
ρ η |c∗| . (B.24)

iii) The initial values of the Lyapunov functions V in (4.38) and (4.43) fulfill√
V (t0) ≤√

1
|c∗| λmax(Γ)

(
2 pb umax q0 − 2 ρ η pb∥c∗∥ rmax − 2 ρ η pb Daw∥Ct∥ ∥xawc(t0)∥

Nmax

)
(B.25)



138 B.3 Second Part of Proof of Theorem 4.3

with

Nmax = 2 ρ η pb ∥Ct∥ ∥xawc(t0)∥
(

1 + λmin(Γaw)
λmin(Γ)

)
+ 2 ρ η pb rmax + 4 p2

b umax ∥Ct∥.

The matrix PW = P T
W > 0 is the solution of the linear equation AT

ref PW +PW Aref = −QW
with QW = QT

W > 0 and q0 is the minimal eigenvalue of QW. In conditions (i) − (iii)
the definitions of θ̄ =

[
θT

1 θT
2 θ3

]T
, pb , ∥PW Bc∥, η , |2 pb ∥θ̄∗∥ ∥Ct∥ − q0|, Daw ≥

∥(θ̄∗T−θ∗T
aw)∥ and ρ ,

√
λmax(PW)
λmin(PW) have been used, where λmin(·) and λmax(·) are the minimal

and maximal eigenvalue, respectively. The matrix

Ct ,

⎛⎜⎝ 0 In−1×n−1 0
0 0 In−1×n−1

Cp 0 0

⎞⎟⎠
defines the mappings w̄ = Ct xcs and waw = Ct xawc.

Proof. The finite upper bounds θ̃max > ∥θ̃∥ and a bounded θ̃awmax > ∥θ̃aw∥ are defined
such that

Vmax = 1
|c∗|

θ̃2
max

λmin(Γ) = 1
|c∗|

θ̃2
awmax

λmin(Γaw) > ∥V ∥, (B.26)

where Vmax is an upper bound for the Lyapunov equation ∥V1∥ in (4.38) or ∥V2∥ in (4.43).
Consequently

θ̃awmax =

√λmin(Γaw)
λmin(Γ) θ̃max. (B.27)

Since c̃ is part of θ̃, the relations

c = c∗ + c − c∗ = c∗ + c̃ ≤ c∗ + θ̃max ≤ ∥c∗∥ + θ̃max (B.28)

result in an upper bound for c.
In the following, the Lyapunov function candidate W = xT

cs PW xcs with positive definite
PW as the solution for Lyapunov equation AT

refc PW + PW Arefc = −QW for a positive
definite QW is utilized to show boundedness for all closed-loop signals. The stability
analysis is divided into two parts, namely the cases ∆u = 0 and ∆u ̸= 0.
Case ∆u = 0:
Starting with the combined open-loop system

ẋcs = Ac xcs + Bc (u + ∆u) . (B.29)

from equation (4.21), adding and subtracting Bc
(
θ̄∗T (w̄s + waw)

)
, where

w̄s =
[
wT

1s wT
2s yps

]T
yields

ẋcs = Arefc xcs + Bc
(
u + ∆u − θ̄∗T w̄us + θ̄∗T waw

)
, (B.30)
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with w̄us = w̄s+waw. Adding and subtracting Bc θ∗T
aw waw and substitution of u = uc−uaw =

θ̄T w̄us + c r − θT
aw waw results in

ẋcs = Arefc xcs + Bc

(
∆u + ˜̄θT w̄us − θ̃T

aw waw + θ̄∗T waw − θ∗T
aw waw + c r

)
= Arefc xcs + Bc

(
∆u + ˜̄θT (w̄ + waw) − θ̃T

aw waw + θ̄∗T waw − θ∗T
aw waw + c r

)
.

(B.31)

With

Ct =

⎛⎜⎝ 0 In−1×n−1 0
0 0 In−1×n−1

Cp 0 0

⎞⎟⎠ (B.32)

and

w̄s =

⎛⎜⎝w1s
w2s
yps

⎞⎟⎠ = Ct xcs, waw =

⎛⎜⎝w1aw
w2aw
yaw

⎞⎟⎠ = Ct xawc. (B.33)

equation (B.30) can be written as

ẋcs = Arefc xcs + Bc

(
∆u + ˜̄θT Ct (xcs + xawc) − θ̃T

aw Ct xawc +
(
θ̄∗T − θ∗T

aw

)
Ct xawc + c r

)
.

(B.34)
Therefore, the derivative of W with respect to time becomes

Ẇ =(
Arefc xcs + Bc

(
∆u + ˜̄θT Ct (xcs + xawc) − θ̃T

aw Ct xawc +
(
θ̄∗T − θ∗T

aw
)

Ct xawc + c r
))T

PW xcs

+ xT
cs PW

(
Arefc xcs + Bc

(
∆u + ˜̄θT Ct (xc + xawc) − θ̃T

aw Ct xawc +
(
θ̄∗T − θ∗T

aw
)

Ct xawc + c r
))

= xT
cs
(
AT

refcPW + PW Arefc
)

xcs

+ 2 xT
cs PW Bc

( ˜̄θT Ct (xcs + xawc) − θ̃T
aw Ct xawc +

(
θ̄∗T − θ∗T

aw
)

Ct xawc + c r
)

.

(B.35)
With the definitions q0 , λmin(QW ), pb , ∥PW Bc∥, and Daw , ∥θ̄∗ − θ∗

aw∥ , it can be
established that

Ẇ ≤ −q0 ∥xcs∥2 + 2∥xcs∥2 pb θ̃max∥Ct∥ + 2∥xcs∥ pb θ̃max∥Ct∥ ∥xawc∥
⎛⎝1 +

√λmin(Γaw)
λmin(Γ)

⎞⎠
+ 2 ∥xcs∥ pb

(
∥c∗∥ + θ̃max

)
rmax + 2 ∥xcs∥ pb Daw ∥Ct∥∥xawc∥.

(B.36)
The state xcs can be shown to be bounded if Ẇ ≤ 0. From (B.36) it follows Lyapunov
stability of xcs for

∥xcs∥ ≥
2 pbθ̃max ∥Ct∥∥xawc∥

(
1 +

√
λmin(Γaw)

λmin(Γ)

)
+ 2 pb

(
∥c∗∥ + θ̃max

)
rmax

q0 − 2 pbθ̃max∥Ct∥

+ 2 pb Daw∥Ct∥ ∥xawc∥
q0 − 2 pbθ̃max∥Ct∥

(B.37)
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At the end of this proof, it is shown that q0 − 2 pb θ̃max∥Ct∥ > 0 in the denominator of
(B.37) is always true.
Case ∆u ̸= 0:
In this case, the system input is ulim = umax sign(u) and the closed-loop system can be
written as

ẋcs = Ac xcs +Bc umax sign(u)+Bc θ̄∗T w̄−Bc θ̄∗T w̄ = Arefc xcs +Bc umax sign(u)−Bc θ̄∗T w̄.
(B.38)

For the time derivative of the Lyapunov function candidate it follows

Ẇ = xT
cs

(
AT

refc PW + PW Arefc
)

xcs + 2 xT
cs PW Bc

(
umax sign(u) − θ̄∗Tw̄

)
= −xT

cs QW xcs − 2 xT
cs PW Bc θ̄∗T Ct xcs + 2 |xT

cs PW Bc| umax sign(u) sign(xT
cs PW Bc).

(B.39)
Two different subcases, namely sign(u) = sign(xT

c PW Bc) and sign(u) ̸= sign(xT
c PW Bc),

are distinguished in the following in order to establish boundedness of the closed-loop
signals for the case ∆u ̸= 0.
(1): sign(u) = sign(xT

cs PW Bc):
It follows from (B.39) that

Ẇ = −xT
cs QW xcs − 2 xT

cs PW Bcθ̄
∗T Ct xcs + 2 |xT

cs PW Bc| umax. (B.40)

Since ∆u ̸= 0 it follows that umax < |u| and hence |xT
cs PW Bc| umax ≤ xT

cs PW Bc u, which
leads to

Ẇ ≤ −xT
cs QW xcs − 2 xT

cs PW Bc, θ̄∗T Ct xcs + 2 xT
cs PW Bc u. (B.41)

Substitution of the control law
u = uc − uaw = θ̄T Ct (xcs + xawc) + c r − θT

aw Ct xawc

= θ̄∗T Ct xcs + ˜̄θT Ct xcs + θ̄∗T Ct xawc + ˜̄θT Ct xawc + c r − θ∗T
aw Ct xawc − θ̃T

aw Ct xawc

in (B.41) yields

Ẇ ≤ −xT
cs QW xcs − 2 xT

cs PW Bcθ̄
∗T Ct xcs

+ 2 xT
cs PW Bc

(
θ̄∗T Ct xcs + ˜̄θT Ct xcs + θ̄∗T Ct xawc

+˜̄θT Ct xawc + c r − θ∗T
aw Ct xawc − θ̃T

aw Ct xawc

)
= −xT

csQW xcs

+ 2xT
csPW Bc

(
˜̄θT Ct (xcs + xawc) − θ̃T

aw Ct xawc +
(
θ̄∗T − θ∗T

aw

)
Ct xawc + c r

)
,

(B.42)

which is the same as for ∆u = 0. Hence Ẇ ≤ 0 if (B.37) is true.
(2): sign(u) ̸= sign(xT

cs PW Bc):
In this case, the time derivative of W becomes

Ẇ ≤ −xT
cs Q xcs − 2 xT

cs PW Bc θ̄∗T Ct xcs − 2 |xT
cs PW Bc| umax

≤ −xT
cs Q xcs + 2 |xT

cs PW Bc| ∥θ̄∗T Ct xcs∥ − 2 |xT
cs PW Bc| umax.

(B.43)
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If ∥θ̄∗T Ct xcs∥ ≤ umax then Ẇ ≤ 0, which proves boundedness of xcs.
For ∥θ̄∗T Ct xcs∥ > umax the equation (B.43) is rewritten as

Ẇ ≤ −xT
cs Q xcs + 2 ∥xcs∥ pb

(
∥xcs∥ ∥θ̄∗∥ ∥Ct∥ − umax

)
. (B.44)

A negative definite Ẇ can, therefore, be achieved for

| − q0 + 2 pb ∥θ̄∗∥ ∥Ct∥| ∥xcs∥2 − 2∥xcs∥ pb umax ≤ 0

⇐⇒ ∥xcs∥ ≤ 2 pb umax

| − q0 + 2 pb ∥θ̄∗∥ ∥Ct∥| .
(B.45)

Combination of the Cases
It remains to combine the above cases in order to establish stability. From equation (B.45)
and (B.37) it follows

xT
cs PW xcs ≤ λmin(PW )

(
2 pb umax

| − q0 + 2 pb ∥θ̄∗∥ ∥Ct∥|

)2

, (B.46)

which is condition i) in the Theorem, and

xT
cs PW xcs ≥

λmax(PW )

⎛⎜⎜⎝2 pbθ̃max ∥Ct∥∥xawc∥
(

1 +
√

λmin(Γaw)
λmin(Γ)

)
+ 2 pb

(
∥c∗∥ + θ̃max

)
rmax

q0 − 2 pbθ̃max∥Ct∥

+ 2 pb Daw∥Ct∥ ∥xawc∥
q0 − 2 pbθ̃max∥Ct∥

)2

,

(B.47)

respectively, which together leads to the relation

λmax(PW )

⎛⎜⎜⎝2 pbθ̃max ∥Ct∥∥xawc∥
(

1 +
√

λmin(Γaw)
λmin(Γ)

)
+ 2 pb

(
∥c∗∥ + θ̃max

)
rmax

q0 − 2 pbθ̃max∥Ct∥

+ 2 pb Daw∥Ct∥ ∥xawc∥
q0 − 2 pbθ̃max∥Ct∥

)2

≤ λmin(PW )
(

2 pb umax

| − q + 2 pb ∥θ̄∗∥ ∥Ct∥|

)2

.

(B.48)

Rewriting the above inequality as

2 pb umax q0 − 4 p2
b umaxθ̃max∥Ct∥

≥
√λmax(PW )

λmin(PW )

(
2 η pb θ̃max ∥Ct∥ ∥xawc∥

(
1 + λmin(Γaw)

λmin(Γ)

)
+ 2 η pb

(
∥c∗∥ + θ̃max

)
rmax

+2 pb η Daw∥Ct∥ ∥xawc∥)
(B.49)
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where η , | − q + 2 pb ∥θ̄∗∥ ∥Ct∥|, leads to

2 pb umax q0 − 2 ρ η pb∥c∗∥ rmax − 2 ρ η pb Daw∥Ct∥ ∥xawc∥ ≥

θ̃max

(
2 ρ η pb ∥Ct∥ ∥xawc∥

(
1 + λmin(Γaw)

λmin(Γ)

)
+ 2 ρ η pb rmax + 4 p2

b umax ∥Ct∥
)

(B.50)
with ρ =

√
λmax(PW )
λmin(PW ) . This results in an upper bound for the parameter errors

θ̃max ≤ 2 pb umax q0 − 2 ρ η pb∥c∗∥ rmax − 2 ρ η pb Daw∥Ct∥ ∥xawc∥
2 ρ η pb ∥Ct∥ ∥xawc∥

(
1 + λmin(Γaw)

λmin(Γ)

)
+ 2 ρ η pb rmax + 4 p2

b umax ∥Ct∥
. (B.51)

and hence in a bound for the initial value of the Lyapunov function√
V (t0) ≤√

1
|c∗| λmin(Γ)

⎛⎝ 2 pb umax q0 − 2 ρ η pb∥c∗∥ rmax − 2 ρ η pb Daw∥Ct∥ ∥xawc∥
2 ρ η pb ∥Ct∥ ∥xawc∥

(
1 + λmin(Γaw)

λmin(Γ)

)
+ 2 ρ η pb rmax + 4 p2

b umax ∥Ct∥

⎞⎠ .

(B.52)
The explicit term for θ̃max in (B.51) leads to the relation

2 pb umax q0 − 2 ρ η pb∥c∗∥ rmax − 2 ρ η pb Daw∥Ct∥ ∥xaw∥

− θ̃max

(
2 ρ η pb ∥Ct∥ ∥xaw∥

(
1 + λmin(Γaw)

λmin(Γ)

)
+ 2 ρ η pb rmax

)
≥

θ̃max 4 p2
b umax ∥Ct∥

which is equivalent to
2 pb umax q0 ≥ θ̃max 4 p2

b umax ∥Ct∥,

which has already been presumed for the derivation for the case ∆u = 0.
From equation (B.51) it can be deduced that

2 pb umax q0 − 2 ρ η pb∥c∗∥ rmax − 2 ρ η pb Daw∥Ct∥ ∥xawc∥ ≥ 0,

rmax ≤ umax q0 − ρ η Daw ∥Ct∥ ∥xawc∥
ρ η |c∗| ,

(B.53)

which is condition ii) in the Theorem.
With xcs bounded, it follows that xps is bounded and hence yps is bounded. For a plant
with relative degree n∗ = 1 it follows from the Laypunov function V1 that the state esat
is bounded. Together with the bonded plant state, this leads to a bounded state xrefs
of the reference model. Summation of the anti-windup scheme (4.29) and the reference
model (4.31) leads to the stable system

ẋaw + ẋrefs = Aref (xaw + xrefs) + Bref r,

with the bounded input r. Hence, xaw + xrefs is bounded and therefore xaw is bounded.



Appendix C

Examples: Additional Results

Example 2.1

An additional simulation has been carried out for Example 2.1, where all the tunable
MRAC parameters have been the same as for the first part of the example. In order to
achieve faster adaptation of the parameters, a different reference signal has been provided.
It is a combination of the repeated sequence r1 = (20, 0, 10, 0), where each value is hold
for 2 seconds, and r2 = 9 sin(5 t) + 6 sin(8 t). The system response and the estimated
parameters are shown in Figure C.1. The adaptation of the controller parameters is faster
than in Figure 2.4 for the repeated step change of the reference signal, which is due to
the stronger excitation of closed-loop system by the reference signal r = r1 + r2 (see
Remark 2.3). However, such excitation is usually not desired during normal operation of
a technical system.
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Figure C.1: Additional result of Simulation Example 2.1 for MRAC with state-feedback.
First graph: System response at beginning of adaptation. Second graph: Estimations of
controller parameters.
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Example 2.2

For output-feedback MRAC the same starting point as given in the introduction of Exam-
ple 2.2 has been used for an additional simulation with the same reference signal as given
in Appendix C. The results in Figure C.2 show that also for output-feedback MRAC
adaptation of the parameters can be made faster with a reference signal that is more
appropriate for parameter estimation.
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Figure C.2: Additional results of Simulation Examples 2.2 for MRAC with output-
feedback. First graph: System response at beginning of adaptation. Second graph:
Estimations of controller parameters.
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Example 2.3

For APPC the same starting point as given in the introduction of Example 2.3 has been
used for an additional simulation with the same reference signal as given in Appendix
C. The results in Figure C.3 show that for APPC, similar to the MRAC schemes before,
adaptation of the parameters can be made faster with a reference signal that is more
appropriate for parameter estimation.
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Figure C.3: Additional results of Simulation Example 2.3 for APPC. First graph: System
response and controlled input at beginning of adaptation. Second graph: Estimations of
controller parameters.
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Example 5.1

An additional simulation has been carried out for Example 5.1, where all the tunable
AMRAW parameters have been the same as for the first part of the example. In order to
achieve faster adaptation of the parameters the reference signal given in Appendix C have
been used. The system response and the estimated parameters are shown in Figure C.4.
It can be seen that similar to standard MRAC the stronger excitation of the closed-loop
leads to faster parameter adaptation. However, the parameters do not reach their ideal
values until the end of the simulation. For this example the excitation of the closed-loop
is not sufficient to adapt the parameters to their ideal values in the given simulation time.
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Figure C.4: Additional results of Simulation Example 5.1 for AMRAW with state-
feedback. First graph: System response at beginning of adaptation. Second and third
graph: Estimations of controller parameters.
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Example 5.2

An additional simulation has been carried out for Example 5.2, where all the tunable
AMRAW parameters have been the same as for the first part of the example. In order
to achieve faster adaptation of the parameters, the reference signal r = r1 + r2 has been
used, where the values of the repeating sequence r1 = (10, 0, 5, 0) have been changed
every two seconds and r2 = 5 sin(5 t)+3 sin(8 t). The amplitudes of the reference signals
have been reduced for this example in comparison to the preceding examples in order to
avoid plant stated where stabilization is not possible with the limited input amplitude.
The results are shown in Figure C.5. It can be observed that the parameter estimation
is a bit faster than for the step sequence in Figure 5.4. However, similar to the results in
Appendix C, the excitation of the closed-loop is not sufficient for estimation of the ideal
parameters in the given simulation time.
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Figure C.5: Additional results of Simulation Example 5.2 for AMRAW with state-feedback
for an unstable open-loop plant. First graph: System response at beginning of adaptation.
Second, third and fourth graph: Estimations of controller parameters.
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Theses

• The input amplitude of technical plants is always limited. Hence, input saturation
is highly relevant for industrial control applications.

• Especially in systems with high performance requirements saturation of the plant
input is encountered frequently and therefore plays an important role for the closed-
loop behavior.

• An input saturation of the plant can not only cause a reduction of the closed-loop
performance but can also lead to an unstable closed-loop system if the input of an
unstable open-loop system is saturated.

• Control algorithms for industrial applications need to work for plants that can
change due to aging, environmental conditions or small defects. Moreover, the
control algorithms has to work for several instances of the same system which po-
tentially differ due to e.g. production tolerances.

• Adaptive control algorithms provide methods to adjust the controller parameters
such that the closed-loop behavior gets as close as possible to a desired behavior
even for uncertain or changing plant parameters.

• Indirect adaptive control approaches basically allow to combine arbitrary controller
structures with arbitrary recursive parameter estimation schemes. However, closed-
loop stability has so far only been guaranteed for certain combinations of controller
structures and estimation schemes.

• Modern direct model reference adaptive control algorithms are based on a rigorous
stability analysis that yields stable parameter estimation laws and bounded closed-
loop signals as well as an asymptotically stable tracking error.

• Model reference adaptive control aims to force the closed-loop system to follow a
given reference model, where the stable system matrix and the input matrix are
design parameters and can be chosen by the designer.

• The extension of model reference adaptive control (MRAC) by a closed-loop ref-
erence model leads to an improvement of the closed-loop performance during the
parameter estimation transients and is therefore highly relevant for practical appli-
cations of MRAC.

• If adaptive control methods are applied to real technical processes it is absolutely
necessary to consider extensions regarding robustness, e.g. a dead zone modification
and parameter projection. Otherwise unmodeled dynamics or disturbances can lead
to an unstable closed-loop system.

• If an input saturation of the plant is not considered correctly for the controller
design, an undesired closed-loop behavior is likely to occur. Such an undesired be-
havior can often be connected to the integral part of the controller or slow controller



dynamics. However, also the characteristics of the controlled plant can give rise to
undesired windup effects.

• Multiple extensions for adaptive control methods exist that allow to take input
saturation into account and result in stable closed-loop systems. However, none
of these methods provide degrees of freedom to explicitly address the closed-loop
performance.

• In adaptive systems the parameter estimations introduce additional states in the
closed-loop system. Therefore, these states and their initial values are important
for the closed-loop stability, for windup-phenomena, and for undesired closed-loop
effects in the presence of input saturation.

• The method of model recovery anti-windup (MRAW) allows for a separate treatment
of the saturation effects by introducing a dynamical system as an extension of the
closed-loop system. Since the additional dynamical system can be interpreted in
terms of the plant model, MRAW is well suited for the framework of adaptive
control.

• In order to guarantee stability of the estimated parameters in model reference adap-
tive control (MRAC) the desired dynamic has to be achievable for the closed-loop
system. If the input of the controlled plant is limited, the reference model has to be
extended in order to take the input saturation into account in the desired dynamic.

• The additional dynamical system introduced by the method of MRAW can be split
up in a desired anti-windup dynamic and in an adaptive controller. The controller
parameters needs to be adjusted by a suitable update law in order achieve the desired
anti-windup dynamic. This structure is similar to the model reference adaptive
control structure and hence can be treated in a similar way.

• The newly introduced method of adaptive model recovery anti-windup (AMRAW)
based on model reference adaptive control (MRAC) results in a stable closed-loop
system under certain conditions on the plant and on the initial closed-loop states.

• Adaptive model recovery anti-windup (AMRAW) introduces an additional degree
of freedom in the closed-loop, that allows to influence the closed-loop performance
if the input saturation is encountered without changing it when the input stays
unsaturated.
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