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Abstract

In the physics of particle accelerators, light sources and compact accelerators are
gaining more and more importance for various fields of science, medicine and industry.
This is coupled to increasing demands on the beam quality, like, e.g., the need for
ever higher charge densities and pulses in the range of sub-picoseconds.

Another requirement for particle beams, especially in a linear accelerator (linac)
or linac-based X-ray Free Electron Laser (FEL), is a small energy width. In fact, the
problem of large energy spreads has been present in accelerator science for a long time.
In the last years, however, a new concept has been proposed as a counter measure to
this problem: the so-called ‘dechirper’ or ‘silencer’, a passive, geometrically simple
structure based on the use of the interaction between the particle beam and its own
wakefield.

The aim of this thesis is to provide a comprehensive study of the general properties
of a specific type of dechirper: a rectangular waveguide coated with dielectrics. For
this purpose, a semi-analytical model is developed which calculates the wake function
inside the dechirper using an eigenmode expansion. As a second step, this model
is implemented in the programming language Python and benchmarked against
simulations with CST Particle Studio®) (CST PS). These studies show that the
geometrical simplicity of the chosen dechirper type makes an analytical treatment
of the wakefield possible, even though the final computation of the wake function
has to be performed numerically. This method has the advantage of delivering
the wakefield of a point charge, the so called wake function, as a result. The
wake function can be considered a Green’s function and enables the calculation
of wake potentials of arbitrary bunches by a simple convolution. The programme,
named Wakefield Calculation In Rectangular Waveguides Lined with Dielectrics
(WIzaRD), is then used to perform parameter studies to provide an overview over the
influence of variations of the geometrical and dielectric properties on the magnitude
of the wakefield. Here it is shown that the most powerful parameters to adjust
the magnitude of the wakefield are the length of the dechirper, the total charge
of the particle beam that generates the wakefield, and the distance between the
upper and lower dielectric in the dechirper, the gap width. Especially the latter
enables a tuning of the wakefield after the construction of the dechirper and during
experiments, which also makes it possible to turn off the dechirper without removing
it from the beamline.

The underlying project work of this thesis has been performed in collaboration
with the Helmholtz-Zentrum Dresden- Rossendorf (HZDR). The ultimate goal of the
simulation phase has been providing simulations for the later test of a dechirper proto-
type at the Electron Linac for beams with high Brilliance and low Emittance (ELBE)
facility at the HZDR. Consequently, the geometry of a prototype dechirper is intro-
duced in this thesis. Following this, the results of experiments carried out with this
prototype are presented here and compared to simulations performed with the afore-



mentioned semi-analytical programme algorithm. The experiments underline the
tuning possibilities of the wakefield that the gap width provides. Comparisons with
semi-analytic results show a qualitative agreement between theory and experiments.



Zusammenfassung

Im Rahmen der Beschleunigerphysik gewinnen neuartige Lichtquellen und kompakte
Beschleunigerstrukturen mehr und mehr an Bedeutung fiir verschiedenste Anwen-
dung in den Bereichen der wissenschafltichen Forschung, der Medizin und Industrie.
Dies ist an steigende Anforderungen an die Qualitat der Teilchenstrahlen gekniipft,
wie zum Beispiel die Notwendigkeit hoherer Ladungsdichten und Pulslangen im
Bereich von Sub-Pikosekunden.

Eine weitere Anforderung an Teilchenstrahlen, ganz besonders in Linearbeschleu-
nigern (linacs) und auf linacs basierenden Freien Elektronen Lasern (FELs), ist eine
schmale Energiebreite. Tatsachlich ist das Problem von zu hohen Energiebreiten
in Teilchenbeschleunigern bereits seit vielen Jahren prasent und bekannt. Erst in
den letzten Jahren wurde jedoch ein neuartiges Konzept zur Losung dieses Problems
vorgestellt: der sogenannte ,,Dechirper” oder ,,Silencer”, ein passives, geometrisch
einfaches Bauteil, dessen Anwendung auf der Wechselwirkung zwischen dem Teilchen-
strahl und seinem eigenen Wakefeld basiert.

Das Ziel dieser Arbeit ist es, eine umfangreiche Studie zu den Eigenschaften
eines bestimmten Dechirper-Typen, dem rechteckigen Wellenleiter mit dielektrischer
Beschichtung, zu erstellen. Zu diesem Zweck wird zunéchst ein semi-analytisches
Model eingefiihrt, welches das Wakefeld in diesem Dechirper auf Basis einer Eigenmo-
den-Entwicklung des elektrischen Feldes berechnet. Im zweiten Schritt wird dieses
Modell dann in Python implementiert und gegen Simulationen mit CST PS vali-
diert. Diese ersten Studien zeigen, dass die geometrische Einfachheit des gewahlten
Dechirper-Typen eine analytische Betrachtung des Wakefeldes ermoglicht, auch
wenn die finale Berechnung der Wakefunktion numerisch erfolgen muss. Durch
diese Methodik kann das Wakefeld einer Punktladung, die sogenannte Wakefunk-
tion, berechnet werden. Dies hat den Vorteil, dass es sich bei der Wakefunktion
um eine Green’sche Funktion handelt, was somit die Berechnung von Wakepoten-
tialen beliebiger Strahlformen durch einfache Faltung ermdglicht. Das entwickelte
Programm wird dann genutzt, um Parameterstudien durchzufiihren, die dariiber
Auskuft geben sollen, wie und in welchem Mafle die Variation geometrischer und
dielektrischer Parameter die Starke des resultierenden Wakefeldes beeinflusst. Hier
wird gezeigt, dass die Parameter mit dem grofiten Einfluss auf das Wakefeld die
Lange des Dechirpers und die Gesamtladung des Teilchenpakets sowie der Abstand
der oberen und unteren dielektrischen Platte zueinander sind. Gerade der zuletzt
genannte Parameter erméglicht ein Tunen des Wakefeldes nach der Konstruktion
und wahrend des Betriebs des Dechirpers. Dies macht es auflerdem moglich, den
Dechirper auszuschalten ohne ihn aus dem Strahlgang entfernen zu miissen.

Das dieser Arbeit zugrunde liegende Projekt wurde in Zusammenarbeit mit dem
Helmholtz-Zentrum Dresden- Rossendorf (HZDR) durchgefiihrt. Das finale Ziel der
Simulationsphase dieses Projektes war es dabei, den Prototypen eines Dechirpers fiir
den Elektronenbeschleuniger ELBE (FElectron Linac for beams with high Brilliance



and low Emittance) am HZDR zu entwickeln und spéter zu testen. Folglich wird
in dieser Arbeit auch die Geometrie dieses Prototypen vorgestellt und Resultate der
Experimente an ELBE werden prasentiert und mit Ergebnissen der semi-analytischen
Berechnungen aus dem erarbeiteten Programmecode verglichen. Diese Experimente
unterstreichen die Justierbarkeit der Wakefeld-Starke durch ein Einstellen des Plat-
tenabstands. Vergleiche mit den semi-analytischen Simulationen zeigen eine qualita-
tive Ubereinstimmung von Theorie und Experiment.
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Thesis Statements

of the dissertation

Dielectrically Lined Rectangular Waveguides as Wakefield Based Dechirper
Structures

by Franziska Reimann

1. Particle beams with a narrow energy spectrum and short pulse lengths are
an essential requirement of future particle accelerators. Typically, short pulse
lengths are achieved by magnetic chicanes, which, however, have a negative
influence on the energy width of the longitudinal phase space of the beams. To
compensate for this, additional measures to reduce the energy width again are
needed.

2. Active solutions to reduce the energy width of a particle beam include running
the particle beam off-crest in additional, separate acceleration modules. This
method is ineffective and expensive because it requires additional space and
maintenance efforts.

3. As an alternative, passive solution, wakefield dechirpers can be used. These
are geometrically simple waveguide structures with dielectric coatings or riffled
walls in which wakefields are generated by the interaction of the structure with
the particle beam. The wakefields act back on the beam and serve as a spatially
dependent modulation of the energy of the beam.

4. For the application at the Helmholtz-Zentrum Dresden-Rossendorf, a dielec-
trically lined rectangular waveguide was chosen as the configuration baseline
for the design of a dechirper. The advantage of a rectangular structure is
the additional experimental degree of freedom gained through the adjustable
gap width, the distance between the upper and lower dielectric plates of the
dechirper.

5. The eigenmodes of this type of dechirper are the so-called Longitudinal Section
Electric and Longitudinal Section Magnetic modes. The computation of these
eigenmodes utilises the geometric simplicity of the structure and its similarity
to a plain rectangular waveguide, as well as a two-step model for the permittiv-
ity of the dielectric plates and the vacuum gap. The eigenmodes can then be
computed using a Fourier expansion in the direction of the changing permit-
tivity.



10.

11.

12.

13.

14.

The electric field of a point charge inside the dechirper can be determined
employing an eigenmode expansion. From this, the longitudinal wake function
can be derived. Because the analytic expressions of the eigenmodes are known,
an analytic description of the electric field and thus the wake function is also
available.

The wake function serves as the Green’s function for the computation of the
wake potentials of arbitrary bunch shapes.

Despite the availability of analytic expressions for the eigenmodes and the wake
function, both computations rely on series expansions. In a realistic scenario,
these series need to be terminated after a finite number of terms. Additionally,
the expansion coefficients can only be efficiently computed using numerical
means, which renders the overall solution semi-analytical.

This semi-analytic solution strategy for the wake function of a rectangular
dielectrically lined dechirper is effectively implemented in the Python-based
programme WIzaRD.

WIzaRD exploits the symmetry of the eigenmodes and their phase velocity,
which has to be close to the speed of light for the modes to couple to the
beam, to compute a high number of eigenmodes relevant to the wake function
in a short period of time. As a next step, it computes the loss factors, which
represent the contribution strength of each mode to the wake function. The
wake function itself is then computed by a simple weighted summation over
these eigenmodes.

Wake functions and potentials computed with these methods show a very good
convergence and a high agreement with benchmark computations performed
with other numerical software.

From all geometric parameters of the dechirper structure, the gap width and
the length of the waveguide are going to have the largest influence on the
strength of the final wakefield. Including the characteristics of the particle
bunch, the bunch charge is also going to have a strong influence since the wake
function scales linearly with the bunch charge.

The geometry of the dechirper prototype and therefore its performance is
largely determined by the requirements of the accelerator site and has to be
adjusted within the given constraints.

The energy-modulating effect of the dechirper is shown in simulations with
WIlzaRD and experiment performed with a dechirper prototype at the Helmholtz-
Zentrum Dresden-Rossendorf.






I try not to go the obvious route all the time, but sometimes the most obvious is
actually the best.
A. M. Yankovic
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Symbol Unit Description

Ku V/C loss factor for LSM modes

A 1/m wavelength

i Vs/ (Am) permeability

Lo Vs/ (Am) permeability of free space

WE eV centre of a Gaussian energy distribution

L 1 relative permeability

1S m proportionality factor

Ilrg (r) \Y Hertzian potential for TE modes

Iy (r) Vs/m Hertzian potential for TM modes

IT, (r) Vs Hertzian potential for LSE modes

II, g (1) Vs Hertzian potential for LSE modes and PEC boundary
conditions

I, o (1) Vs Hertzian potential for LSE modes and PMC boundary
conditions

I, (r) Vm Hertzian potential for LSM modes

p(r,t) As/m’ electric charge density

o m r.m.s. length of a particle bunch

OE eV standard deviation of a Gaussian energy distribution

¢rE (1) Vs/m scalar gauge function for TE modes

érm (1) \Y scalar gauge function for TM modes

o (1) Vs/m scalar gauge function for LSE modes

ou (1) \Y scalar gauge function for LSM modes

X (1) 1 time-dependent electric field expansion coefficient for
LSE modes

X 1/s auxiliary quantity

Xae (1) 1 electric field expansion coefficient for LSE modes and
PEC boundary conditions

X () 1 electric field expansion coefficient for LSE modes and
PMC boundary conditions

Xy (1) 1 time-dependent electric field expansion coefficient for
LSM modes

Xn 1/s auxiliary quantity

W (s) 1/m normalised bunch shape function

Upg () 1/m normalised shape function of a double Gaussian pulse

Ur (8) 1/m normalised shape function of a flat-top pulse

e () 1/m normalised shape function of a Gaussian pulse

¥y, (s) (As) /m  normalised particle distribution

x1



Symbol Unit Description

U (s) 1/m normalised shape function of a triangular pulse

g (1) 1 scalar source function of Hertzian potential for TE modes

Wy () 1 scalar source function of Hertzian potential for TM
modes

Py (r) 1 scalar source function of Hertzian potential for LSE
modes

Y, (1) 1 scalar source function of Hertzian potential for LSM
modes

U (z,s,t) 1 auxiliary quantity

w 1/s angular frequency

Q m? arbitrary domain

) 1/s angular eigenfrequency of an LSE mode

Wy 1/s angular eigenfrequency of an LSM

0; 1/m partial derivative with respect to i

or m boundary of an arbitrary surface

o2 m?> boundary of an arbitrary domain

\Y% 1/m gradient operator

Vi 1/m transversal gradient operator

\% 1/m? Laplace operator

V. 1/m divergence operator

V x 1/m curl operator

x1i



1 Introduction and Objectives

Since their first appearances in the early 20" century, accelerators have continued
to increase in their relevance for multiple fields of science. Furthermore, their promi-
nence and importance in other areas, such as applied medicine and industry, grew as
well. With the increasing opportunities that the use of particle accelerators represent
in these fields, and the ever growing technological possibilities, the requirements and
demands on accelerators also grew. Such requirements include, for example, higher
beam energies, shorter pulses, higher charge densities and particle beams with a
narrow energy spectrum. The subject of this thesis is a comprehensive study of a
comparatively new concept used for the realisation of the last mentioned requirement,
the so-called wakefield dechirper (sometimes also referred to as a ‘silencer’).

The demand for narrow energy width, on the contrary, is not a new one; as methods
like the electromagnetic focussing of particle beams are dependent on the energies of
the particles. A narrow energy width in this example would lead to a better focussed
particle beam after the electromagnetic lens, whereas the focussing of beams with
a higher energy width to a specific point is not possible. Methods to counteract
the energy spread of particle beams have previously mostly consisted of employing
further accelerating structures in which the beam was run off-crest leading to a
phase-dependent deceleration of the particles. This method, however, is spatially
demanding and costly as it needs additional accelerating modules, which in turn
require, e.g., an external power supply and cooling as well as constant maintenance.
This in turn involves additional, high production expenses.

A different, passive option which promises to be both cheaper and less spatially
demanding, as well as easier to construct, are the aforementioned dechirpers. Two
different waveguide profiles have been proposed as basis for dechirpers so far; a
rectangular waveguide and a cylindrical one. In these structures, wakefields are
generated through the interaction of the particle beam with certain surface conditions.
This wakefield then acts back on the particle beam, causing an energy loss for the
particles depending on their position in the bunch. Surface conditions that allow for
such a wakefield generation are dielectric linings and corrugations.

This thesis focusses on the combination of a rectangular waveguide with dielectric
coatings as a dedicated dechirper and aims at a comprehensible study of this structure,
focussed primarily on a theoretical inspection of the achievable wakefields. For this
purpose, the geometrical simplicity of the dechirper and its similarity with a regular
rectangular waveguide is exploited. Employing a two-step-function to model the
dielectric linings allows for a derivation of the eigenmodes of the structure, so-called
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Longitudinal Section Flectric (LSE) and Longitudinal Section Magnetic (LSM)
modes, in close analogy to the derivation of regular Transversal Flectric (TE) and
Transversal Magnetic (TM) modes in empty waveguides. The analytical expression
of the eigenmodes of the dechirper is then used to perform a second expansion of
the electric field inside the dechirper in case of a point charge traversing it with the
speed of light. From this, the wake function (the wakefield of the point charge) can
be derived. In this way, a full analytic expression of the wake function is obtained.

For both expansions, the expansion coefficients need to be computed numerically,
rendering the overall solution semi-analytical. This computation is performed within
the programme package Wakefield Calculation In Rectangular Waveguides Lined
with Dielectrics (WIzaRD) developed in the context of this thesis. From the calcu-
lation of the wake function, the wake potentials of every arbitrary bunch shape can
be computed using a simple convolution with the bunch shape function.

With this programme, studies regarding the influence of the geometrical parameters
of the dechirper and the properties of the particle bunch have been performed. These
studies, combined with the spatial and technical requirements of the Flectron Linac
for beams with high Brilliance and low Emittance (ELBE) linear accelerator at the
Helmholtz-Zentrum Dresden- Rossendorf (HZDR), have been employed to determine
a suitable dechirper geometry for the use at ELBE. This structure has been designed
and built at ELBE, and results from the performed experiments are then compared to
theoretical predictions using WIzaRD. One very important property of the dechirper
is the tunability of the wakefield when the distance between the upper and the lower
dielectric, the gap width, is adjusted. This aspect has been particularly in the focus
of the experiments.

In this way, this thesis examines the dielectrically lined rectangular waveguide
both theoretically and experimentally in its function as a wakefield dechirper.

1.1 Structure of the Thesis

This thesis is structured as follows: This chapter serves as an introduction and
motivation into wakefield based dechirping, as well as a distinction of the novel
aspects of this work. To illustrate the problem further, the underlying principles of
particle acceleration will be given and the necessity for the dechirping of particle
beams will be explained. The method presented in this thesis is a so-called passive
method of dechirping, and this chapter will also serve as a distinction of these
methods to other possibilities of reducing the energy width of the particle beam
(referred to as ‘active methods’, c.f. Section 1.3.1). The state of the art in the field
of dechirping will also be depicted and differentiated from the approach presented
in the theoretical part of this thesis (c.f. Sections 1.4 and 1.4.1).

In the subsequent Chapter 2, the basic underlying electromagnetic principles of
the theoretical part of this thesis will be presented and explained. Here, also the
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concept of wakefields will be introduced. An additional part of this chapter will focus
on the derivation of eigenmodes in the textbook example of a regular rectangular
cavity, which will help illustrating the model derived in Chapter 3. In this chapter,
at first, the eigenmodes of the rectangular waveguide with dielectric linings are
introduced and derived. From this, the electric field of a point charge traversing the
structure at the speed of light will be computed employing an eigenmode expansion.
The electric field is then integrated to obtain an analytically closed expression of
the wake function inside the dechirper depending on geometric parameters of the
structure and characteristics of the eigenmodes.

Chapter 4 introduces a Python-based programme code dedicated to the semi-
analytical computation of the eigenmodes of the studied dechirper geometry and
the subsequent derivation of the wake function, called WIzaRD. The methods and
algorithms this programme is based on will be explained here. Additionally, special
properties of the eigenmodes with regards to the wake function are introduced and
consequently used to improve the efficiency of WIzaRD. The programme is then
benchmarked against CST Particle Studio®) (CST PS) and convergence studies with
respect to CST PS and the used number of expansion functions in both expansions
of the underlying model are presented.

The following Chapter 5 shows parameter studies performed with WIzaRD with
respect to the geometrical parameters of the dechirper and the properties of the
beam. These studies have been oriented on the dechirper prototype designed at the
HZDR and used in Chapter 6 for experiments. These experiments are focussed on
a proof of the dechirping principle, as well as on an experimental validation of the
results obtained from WIzaRD. Of special interest here was the influence of the gap
width of the dechirper on the wake potential, and thus the effect of the dechirper,
on the particle beam. The gap width remains adjustable after the building of the
dechirper and thus remains a parameter with which the wake potential can be tuned
during operation.

Chapter 7 finalises this thesis by summarising this content.

1.2 Novel Contributions

To the author’s best knowledge, this thesis contains the following scientific novelties:

e The derivation of a full, analytically closed description of the wake function
inside the rectangular, dielectrically lined dechirper based on an Fourier expan-
sion of the three-dimensional eigenmodes of the structure and a subsequent
eigenmode expansion of the electric field of a point charge. Here, the analytic
expressions of the loss factors are of particular importance, as they exclusively
depend on geometrical aspects of the structure and on modal characteristics.
This will consequently allow for a simple computation of these factors.
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e The development and implementation of a Python-based programme that
allows for the computation of the wake function inside the dechirper following
the derived analytic expression of this quantity. The wake function serves as a
Green’s function for the computation of the wake potentials of arbitrary bunch
shapes and cannot be determined by grid-based numeric schemes.

e The experimental results presented in the final part of this thesis constitute
novel contributions as the dechirper in itself is a comparatively new concept.
A proof of principle as presented in this thesis, together with a clear proof
of the tuning abilities provided by the gap width, support that the observed
structure is indeed suited as a dechirper and complement similar experiments
performed parallel to this work by a different work group ([1], [2]). Both
these experimental successes as well as the limitations of this type of dechirper
structure that became apparent during the experiments presented in Chapter 6
can serve as a basis for more extensive, future uses of the dechirper not only
at the HZDR but also at other international accelerator sites.

These contributions have previously been published in [3] and [4].

1.3 Particle Accelerators

Nowadays, particle accelerators have gained such a large prominence that it is hard to
imagine the modern scientific world without them. Their applications have expanded
far beyond physics to other areas such as medicine and different industrial branches.
Especially in the field of medicine, accelerators are often used in radio therapy and
microsurgery, as well as for the sterilisation of medical equipment. In industry,
particle accelerators have gained importance for X-ray radiography and material
testing and modification, amongst others. With the ever growing technological
improvement of accelerators, this importance can only be expected to increase in
the coming years.

In the field of physics, particle accelerators have become essential to many different
types of studies and applications. The most widely known accelerator laboratory
to the general audience particularly in Europe is probably the CERN. Its facilities
Large Flectron-Positron Collider (LEP) [5] (decommissioned in the year 2000) and
Large Hadron Collider (LHC) [6] have contributed greatly in the verification of
the existence of previously theoretically suggested subatomic particles in collision
experiments, like for example the Higgs boson [7], and have thus significantly shaped
the modern image and understanding of physics. Accelerators are also gaining signi-
ficance as synchrotron radiation sources (for example PETRA II and its successor,
PETRA III [8], located at the Deutschen Elektronen-Synchrotron (DESY)) which
in turn enable studies in a variety of research areas, like material science, the physics
of condensed matter and molecular cell biology, amongst others. Free Flectron
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Figure 1.1: Schematic overview over the acceleration principle in a 9-cell acceleration
cavity employing the resonant electric field of the m-mode. The particle bunch is on-crest
with the accelerating half-wave of the electric field (red) in the first cavity (upper panel).
It then traverses into the second cavity, while the field alternates. In this way, the bunch
is again on-crest with the accelerating half-wave (lower panel).

Laser (FEL)s like the Linac Coherent Light Source (LCLS) [9] at the Stanford
Linear Accelerator (SLAC) and the European X-Ray Free Electron Laser (XFEL)
at the DESY [10] additionally enable the use of pulses with short wavelengths (from
extreme ultra-violet to X-ray) and very short lengths in the range of femto- to
attoseconds.

Subject of the experimental part of this thesis is ELBE [11] located at the HZDR.
As a standing wave radio frequency (RF) linear accelerator (linac), the acceleration
of particles (more specifically, electrons) in this type of structure is based on the
sinusoidally varying electric field of the driving mode of the accelerator in a chain
of superconducting cavities. A schematic overview of this acceleration principle is
shown in Fig. 1.1.

Depending on the phase of the particle bunch relative to the crest of the electric
field, the bunch can either be accelerated (red in Fig. 1.1) or decelerated (blue in
Fig. 1.1). For an optimal energy gain, the phase of the bunch should coincide with
the accelerating crest of the field in one cavity. The electric field is oscillating at
the resonance frequency of the 9-cell cavity. During the design process of the unit,
this resonant frequency is chosen such that the driving field alternates in the same
time that it takes the bunch to travel from one cavity to the next, so that it again
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experiences the maximum energy gain from the crest of the alternated field. This
process is then repeated for the following cavities in the chain. This field pattern
basically amounts to a phase change of exactly m between neighbouring cavities.
This is why this driving standing electric field is also often referred to as the m-mode.
For a more detailed explanation of the acceleration principle in linacs and other
accelerators, see for example [12] or [13].

For further general information on particle accelerators, their applications and
underlying principles, see for example [14], or the more recent textbooks [15] and [16].

1.3.1 Ultrashort Pulses and Bunch Compression

In the last years, technological advances like photoinjectors (c.f. [17]) have made
ultra-short pulses available for a wide variety of applications. Bunches with lengths
in the range of sub-picoseconds are required for obtaining high gradients in beam-
driven wakefield accelerators (c.f. [18], [19] and [20]), two-beam accelerators (see [21]
and [22]) and wavelengths in the X-ray region, as used in the aforementioned FELs.

At ELBE, planned laser-plasma experiments and combined ELBE-laser experi-
ments (for example experiments on Thomson scattering) make an effective interac-
tion between laser and electron pulse necessary. This, in turn, is granted when the
phase spaces of both the laser and electron beam exhibit a maximal overlap. For
the electron beam in particular this means that an optimal compression of both
the length and energy width of the beam is required. In context with the bunch
compression procedure used at ELBE this, however, leads to an intrinsic conflict,
sketched in Fig. 1.2.

Figure 1.2 shows the acceleration and bunch compression procedure as it is
performed, e.g. at ELBE. The upper row shows the longitudinal phase space of
the particle bunch; a projection of the energy and time of each particle. Important
to note here is that particles which follow the reference particle at ¢ = 0 will have
t > 0; this part of the bunch is usually referred to as the bunch tail, which is depicted
in red in the figure. Consequently, the particles which are in front of the reference
particle have ¢t < 0, this part is referred to as the bunch head (depicted in blue in
the figure). This formulation is useful in later chapters though not intuitive: lead-
ing particles have positive longitudinal positions, z > 0, which corresponds to the
proportionality constant between time and position being —1, z oc —t.

Figure 1.2 (a) shows the longitudinal phase space before traversing the acceleration
module as an ellipse. The particle bunch is injected into the accelerating module
off-crest. Depending on the phase of the particles relative to the accelerating wave
in the acceleration module, the particles gain more or less energy, which introduces
a so-called chirp in the longitudinal phase space (see Fig. 1.2 (b)). This chirp is
expressed in a stronger energy gain in the tail of the bunch than in its head, which
leads to a rotation of the phase space ellipse. The bunch length, however, is not
affected. To compress the bunch in time and to reach the desired ultra-short pulses,




1.3 Particle Accelerators

) E b) £ ©) £

Figure 1.2: Schematic overview over the bunch compression using a magnetic chicane,
as used at ELBE. The upper row shows the longitudinal phase space of the particle
bunch at the different stages of the process; before the acceleration module (a), after the
acceleration but before the bunch compression (b) and after the bunch compression (c)
in a magnetic chicane composed of four dipoles (grey). The tail of the particle bunch is
depicted in red, the head in blue.

the beam is now injected into a magnetic chicane. This structure is composed of
four dipoles (grey in Fig. 1.2), which serve as electro-magnetic lenses. Here, particles
with a higher energy are deflected less than particles with a lower energy. The
deflection angles of the dipoles are adjusted such that the particles nevertheless leave
the chicane on the same trajectory. This results in an overall shorter path lengths
through the chicane for particles of higher energies: at the end of the chicane, they
appear advanced, while particles with lower energies are delayed. This leads to a
second rotation of the longitudinal phase space ellipse (Fig. 1.2 (c¢)). At the end of
the chicane, the bunch is thus compressed in time.

However, for this procedure to work, the imprinting of the chirp via the accelerating
module (Fig. 1.2 (b)) is absolutely necessary. Additionally, comparing stage (a)
and (c) of Fig. 1.2, it becomes apparent that while the pulse length is significantly
reduced, the energy width is significantly increased as the chirp ‘survives’ the chicane,
which stands in conflict with the requirements listed above. Figure 1.3 shows the
longitudinal phase space plotted from actual data of the ELBE thermionic gun after
the first acceleration module (green) and after the magnetic chicane (red). The
energy spread is increased from ~ 30keV to ~ 3 MeV!.

More specifically, Fig. 1.2 also helps to illustrate one actual problem with beams
of high energy spread: the chirp impedes the focussing of the beam. This focussing

'Data courtesy of U. Lehnert, HZDR; private correspondence.
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Figure 1.3: Longitudinal phase space of an exemplary ELBE electron beam, recorded
after the first acceleration module (green, left axis) and after the magnetic chicane (red,
right axis). The energy spread is significantly increased after the chicane.

is usually performed by further electromagnetic lenses (i.e. quadrupoles), where, like
in the magnetic chicane, particles are deflected with respect to their momentum. A
focussing of a beam with a significant energy spread to a specific focal point or even
plane is thus impossible.

Active Solutions

It shall be noted here that this issue is by no means a specific problem of the ELBE
facility; but, in fact, known since decades and present at other accelerator facilities
world-wide (c.f., for example, [23] and [24]). A feasible and flexible solution to this
problem is thus of high interest.

Previous to the consideration of dechirpers for the task of reducing the final energy
spread of the bunch, the issue was often solved by running the electron beam off-
crest in another, separate acceleration module (c.f. Fig. 1.2 (a) and (b)) which is
driven by a mode of a higher frequency than the main acceleration unit ([25], [26]).
This method, however, requires a significant amount of additional space for the
acceleration module. It is also expensive, its costs are comparable to those of a main
acceleration unit. It also requires regular tuning and maintenance, which is again
expensive and time-consuming. Furthermore, this solution often can only partly
counteract the chirp, which makes this strategy inefficient with regards to the ratio
between its cost and the improvements to the beam quality.
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Passive Solutions

A different concept that fulfils the purpose of reducing the energy spread of a particle
beam is the so-called ‘dechirper’. Basically, a dechirper is a comparatively simple
waveguide structure in which a wakefield is generated through either dielectric coat-
ings or periodic corrugations in the walls of the waveguide. Through the interaction
of the wakefield with the bunch generating it, the energy spread of the bunch can
be reduced.

150
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Figure 1.4: Overview over the general principle of a wakefield dechirper. Left panel: The
longitudinal phase space of an arbitrary bunch with a uniform shape function before (red)
and after the dechirper (green). Right panel: The wake potential of the bunch generated
in a dechirper. The zoomed-in part of the wake potential along the bunch shape (dashed
line) corresponds to an energy loss.

Figure 1.4 depicts the general principle of the dechirper: the left panel shows the
longitudinal phase space of an arbitrary pulse with a uniform bunch shape before and
after the dechirper. Before the dechirper, the bunch shows an energy chirp between
the leading particles at s = 0 and the following particles for s > 0 (depicted in red).
This bunch now passes through a dechirper structure, where a wake potential is
generated by an interaction between the beam and the structure (shown in the right
panel). Along the pulse shape, this wake potential is nearly linear? and corresponds
to an energy loss. Depending on the position of the particle in the bunch, this energy
loss differs; the particles in the tail of the bunch generally experience a larger energy
loss. Overall, this energy modulation counteracts the original chirp of the beam and
reduces the energy spread (left panel, shown in green).

This concept is fundamentally different to the previously described active methods,
as there is no need for an external excitation of an electromagnetic field inside the
structure. What counteracts the energy spread here is the wakefield, which is only
generated by an interaction between the dechirper and the beam in the moment

2This is the case for this specific pulse shape, for more information on the influence of the pulse
shape on the wake potential, see Chapter 5.
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when the beam passes the structure. To put it very simply, all that this procedure
needs to work is the mere presence of the dechirper structure. This is also why
this type of method is sometimes called a passive solution to contrast it against the
previously mentioned active solutions that require external excitation and elaborate
tuning of the beam and the driving field.

1.3.2 Statement Regarding the Subject of this Thesis

The project work this thesis is based on was a collaboration between the Chair of
Electromagnetic Field Theory at the University of Rostock and the HZDR. The
underlying task has been the design of a dedicated dechirper structure for ELBE3.

During the simulation phase, however, it became apparent that due to the novelty
of the dechirper as an approach to reduce the energy spread of a particle beam, not
only design studies, but also theoretical background work was required to obtain an
all-encompassing understanding of the processes within the dechirper and especially
the influences of the geometric and dielectric parameters of the structure on the
obtainable dechirper effect.

The task thus evolved from a single design study to a complete inspection of a
rectangular, dielectrically lined dechirper, starting with an analytical treatment of
the generated wakefield. Especially the wake function was of interest here since it
serves as a Green’s function for bunches of arbitrary shapes, and thus, the following
considerations would not be limited to bunches with specific particle distributions.

The underlying problem of this thesis is thus the development of an eigenmode-
based model for the analytic expression of the wake function and its subsequent
implementation into a simple yet efficient programme code; and the test and vali-
dation of both in parameter studies and accompanying experiments performed at
ELBE.

1.4 State of the Art

The concept of wakefields (explained in more detail in Chapter 2) in itself, is by far
not a novelty in the field of accelerator physics (see, e.g., [13] and [27] for textbooks
dealing with this subject). The computation of wakefields has played an important
role for several decades since, due to their energy modulating nature, wakefields can
have a negative and impeding influence on the quality of the particle beam (e.g., by
increasing its transversal emittance, c.f. [28]). Another aspect that has been studied
with respect to wakefields and their possibly energy-modulating effects is that of a
wakefield accelerator, where long range wakefields of electron bunches are used to
accelerate secondary bunches of particles (c.f. [29] and [30]).

3The work has in great parts been funded by the German Federal Ministry for Education and
Research under the contract number 05K13HR2
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The basis for the study of wakefields in the context of this work is the possibil-
ity to derive, with whatever methods should prove most effective, a mathematical
description of the wake potential as described in [31] and [32]. Progress on the field
of accelerator physics and increasing demands on the beam quality have made precise
solutions for the wakefields become necessities. Software like TBCI [33] and MAFIA
[34], CST PS [35] (all based on the Finite Integration Technique) and ECHO (for
rotationally symmetric structures, [36] and [37]) is dedicated to the computation of
the wakefields, mostly wake potentials of Gaussian pulses, inside various types of
structures. The programme URMEL-I [38], which is based on the software URMEL
[39], also allows for impedance computations. The related software URMEL-T [40]
additionally enables the computation of RF fields in the presence of longitudinally
invariant dielectric fillings in cylindrical symmetric cavities. In an effort to accurately
predict the effects of wakefields on the particle beam, results of these programmes
are often combined with particle-tracking algorithms like ELEGANT [41] or ASTRA
[42]. The computation and evaluation of these effects play a crucial part in the
design process of accelerator structures, as illustrated in [43] for DESY, in [44] for
CLIC, and more recently in [45] for SOLEIL, [46] for FERMIQElettra and in [47]
for CXEB, an energy booster planned at the Colorado State University.

However, for structures with comparatively simple geometries, analytic solutions
for the resulting wakefields are available. These solutions are often based on a
modal analysis of the structure, as the eigenmodes in case of simple geometries
are analytically known; which is also the approach used in this thesis. Analytic
computations of wakefields in cylindric cavities [48], e.g., are often used as benchmark
for numerical software, which is needed to compute the wakefields in more complex,
but similar structures like the typical elliptic accelerating cavities. As a substitute
benchmark, spherical cavities have been studied, as well [49]. Additional attempts
have been made to expand on the analytic expressions of wake fields using the
periodicity of the structures, e.g. in [50]. Other analytic studies are often based
on computing the impedance (the Fourier transform of the wakefield, c.f. [32]) and
deriving the wakefield from there, for example for cylindrical cavities with resistive
walls [51] and between parallel resistive plates [52].

These considerations are already closely related to the subject of the dechirper,
as all suited dechirper structures are unified in their simplicity and similarity to
these basic geometric cavities. The wakefields in dielectrically lined tubes have
been reviewed in [53], while still considered as harmful for the quality of the beam.
The idea to use the originally considered obstructive effects for the purpose of the
reduction of the energy spread came up in 1990 [54], but only gained new attention
and momentum when several work groups, mostly seated in the USA, picked up on
the idea and started considering the dechirper for use at several accelerator sites
around the year 2012.

In its corrugated form, a dechirper was proposed for the Next Generation Light
Source (NGLS) at SLAC by Bane and Stupakov in that year [55]. In this work, the
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corrugated, cylindrical waveguide was reviewed, and single-mode analytical compu-
tations of the wakefield were compared to numerical results obtained with ECHO.
Special attention was put on the nearly linear dechirp created by a flat-top pulse
traversing the dechirper. It has to be mentioned here that the theoretical structure
proposed in [55] was about 9m long. The group continued working on the topic
of dechirpers in the following years, and in 2014, a scientific cooperation with a
second work group from Berkeley and the Pohang Accelerator Laboratory (PAL) in
Korea, was able to implement a rectangular waveguide with corrugated walls as a
dechirper at the PAL-FEL, [56]. The success of the energy spread reduction was
experimentally observed and compared to beam dynamics simulation. Additionally,
observations of the transversal phase space showed an emittance growth in these
directions, which limits the functionality of the dechirper. A similar experiment with
a corrugated rectangular waveguide was recently carried out in Shanghai, China,
[57]. The results here were compared to theoretical phase spaces obtained by beam
dynamics simulations performed with ELEGANT and ASTRA. The wakefield was
analytically approximated by a single mode.

On the field of dielectrically lined dechirpers, Craievich [58] suggested the use of
a dielectrically lined cylindrical waveguide as a phase space linearizer in 2010 in a
prospective study for Elettra. Single and two mode approximations of the wakefield
were performed and then used for particle tracking with the specific beam line and
bunch characteristics for Elettra. Here, the linearizer structure was suggested for
cancelling second order terms in the longitudinal phase space distribution of the
particle beam, since the energy modulation induced by the structure is also non-
linear using an appropriate bunch shape.

Also in the year 2012, Antipov et al. suggested the use of a dielectrically coated
rectangular waveguide as a silencer for the Facility for Advanced Accelerator Exper-
imental Tests (FACET) (c.f. [59]) and reported on first successes of a cylindrical,
dielectrically lined dechirper structure at the Accelerator Test Facility (ATF) at the
Brookhaven National Accelerator Laboratory (BNL) [60]. In the latter work, the
reported dechirp achieved by the cylindrical structure is in the range of a few 10 keV,
and the numerical considerations were once again based on a single mode approxima-
tion of the wake. Additionally, [60] introduces the idea of using the dechirper and the
oscillating nature of the wakefield for microbunching and the generation of Terrahertz
radiation. In [1] and [61], the same authors report on tests with an alumina-coated
rectangular waveguide at the ATF and show first experimental results for the tuning
of the gap width of the dechirper and the resulting adjustment of the final strength
of the wakefields (and thus, the dechirp). The numerical considerations in [1] use
an eigenmode expansion based approach for the computation of the wakefields, but
give no information on the eigenmodes’ respective loss factors. Additionally, it is
suggested that the number of eigenmodes used for the approximation of the wake-
field is dependent on the thickness of the dielectric layer; thin layers enable a single
mode approximation, while thick layers require a multi-mode expansion. Further
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experiments with a short silicon-lined rectangular dechirper were conducted by this
group in 2015, where again the influence of the gap width has been studied, [2].

As a minor intermediate conclusion, it has to be stated here that the experimental
aspect of the rectangular dielectrically lined dechirper is still a new concept. This
field of study, despite the experiments mentioned above, is far from being saturated
with results. Structures of similar geometries like described above more and more
become the focus of international accelerator sites, c.f. [62].

The mathematical aspect of wakefields in dielectrically loaded structures has also
been the focus of several studies in the last years, at first with regard to analysing
the potentially harmful nature of wakefields in accelerator structures. In 1997,
Tremaine, Rosenzweig and Schoessow proposed an analytical method for the wakefield
computation in dielectrically lined rectangular waveguides based on an expansion in
the two-dimensional eigenmodes of the structure [63]. These eigenmodes are LSE
and LSM modes as opposed to the more commonly known TE and TM modes of
structures without dielectric lining and have been introduced in [64] before. For
this, the loaded structure was split into the vacuum and dielectric regions for which
Maxwell’s equations have been solved separately; this is later combined into complete
field distributions of the eigenmodes. The wakefield is then deduced from these
eigenmodes by an energy balance method. This procedure has been expanded
upon in [65]. Additionally, [65] uses the derived method and implements it in the
framework IMPACT-T. Computations with this code were compared to simulations
with the software VORPAL and show a high agreement. Both methods also consider
transversal wakefields and strongly highlight the contributions of single eigenmodes
to the wakefield.

Further extensive mathematical studies on dielectrically lined waveguides have
been carried out by Baturin et al. in the same timeframe in which the method
presented in this thesis has been developed. In 2012, they presented an optimisation
for potential dielectrically lined dechirpers at FACET and the Argonne W akefield
Accelerator (AWA) based on a single-mode wakefield approximation for a Gaussian
pulse. In this paper, it was suggested that the optimal coating for both structures
was diamond (g, &~ 6). In 2013, they reported on a rigorous analytical approach
contrasting the more often used impedance formulation for the computation of the
wakefield inside the rectangular, dielectrically loaded dechirper called Transverse
Operator Method [66]. It introduces a spatially dependent relative permittivity to
model the dielectric slabs, and directly solves Maxwell’s equations in the dechirper
in the presence of a point charge without an eigenmode expansion. Based on this
method, the programme code RECTANGULAR has been developed. In [67], they
generalised this approach for arbitrary cross-sections of the dechirper.

The formalism of LSE and LSM modes has also been used in [68], though here
the equivalent circuit method is used to compute a single mode wakefield. Further
computations are performed with MAFIA. In [69], this method is expanded to
transversal wakefields for beams outside of the centre of the structure using the
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Panofsky-Wenzel theorem. Less recent considerations on wakefields in dielectrically
lined waveguides include studies on cylindrical structures [70], in which the wake
potential of a Gaussian is computed. Here, like in [63], the waveguide is split into
a dielectric and a vacuum region, and the analytical solution is deduced for the
special cases of an infinitely thick and thin dielectric layer. In [71], an approach for
the calculation of the wake function in a structure with multiple, asymmetrically
positioned dielectrics with different relative permittivities based on two-dimensional
eigenmodes is presented.

The theoretical considerations regarding corrugated dechirpers are omitted here,
because they are not of relevance for the structure considered in this thesis. It shall
be noted here, however, that some efforts have been made by Bane and Stupakov
to connect the theoretical considerations of both corrugated and dielectrically lined
structures by calculating effective permittivities and permeabilities from the corru-
gation parameters in [72].

1.4.1 Distinction of the Presented Semi-Analytical
Approach

In light of the statements of the last section, it appears appropriate to distinguish the
method presented in this thesis against the previously listed analytical approaches
for the wakefield computation in dielectrically lined rectangular waveguides.

In this thesis, a rigorous, self-consistent method is presented with which the wake
function (i.e. the Green’s function) inside the dechirper can be computed. While
also focussing on the expansion of the wakefield into the eigenmodes of the structure
like in [63] and [65], neither method uses the here presented Fourier-expansion based
Rayleigh-Ritz approach to compute the eigenmodes but rather considers the solution
in the different sub-sections of the waveguide (i.e. dielectric slabs and vacuum).
Additionally, both works do not present a solution for the wake function, instead
[65] limits the considerations to charge distributions with a symmetry with respect
to the vertical axis of the dechirper.

The idea of using a spatially dependent relative permittivity is similar to the
approach presented in [66], which constitutes a rigorous solution to Maxwell’s equa~
tions in the dechirper structure in presence of a point charge, which then leads to
the wake function. Other suggestions for the computation of the wake function have
been made in [73], however, these considerations focus on a recreation of the wake
function from a wake potential of a longer pulse, and rely on a numerical fitting of
a correction function.

The approach presented here is free of assumptions. The modes computed with
the suggested approach are three-dimensional eigenmodes compared to the two-
dimensional eigenmodes used in [63]; the open boundary in longitudinal direction is
not imposed on the modes, it is rather reached by a superposition of the eigenmodes
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in a closed structure for Perfect Flectric Conductor (PEC) and Perfect Magnetic
Conductor (PMC) boundary conditions employed in longitudinal direction (c.f. Chap-
ter 3.5). The velocity and symmetry conditions of the modes (c.f. Chapter 3.2.2)
directly result from the employed model itself and are not previously imposed on the
analytical considerations. In this way, an analytically closed formulation of the wake
function is found which also includes the loss factors (that have not been considered
in neither [63] nor [66]) of the structure.

The algorithm presented here can calculate any arbitrary three-dimensional eigen-
mode in the structure in the same computational time, regardless of its frequency,
since the algorithm is in very large parts free of any spatial or temporal discretisation.
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2 Introduction of the Underlying
Principles

This chapter addresses the general physical and mathematical concepts that a large
portion of this thesis is based on. For this purpose, Maxwell’s equations are intro-
duced and the general concepts of wakefields, eigenmodes and eigenmode expansions
are reviewed. As an example, the eigenmodes of a rectangular cavity are determined
analytically.

2.1 Maxwell’s Equations

Maxwell’s equations provide the theoretical foundation of classical electromagnetism.
Formulated in the 19'" century, they are based on physical laws originally established
by other scientists, but have been improved upon by the eponymous James Clerk
Maxwell [74].

Their most commonly used expressions were later reformulated from Maxwell’s
original statements by Heaviside and Gibbs. The integral representation of Maxwell’s
equations for a given spatial coordinate r and a temporal dependence t is

# D (r,)-dS = /// (2.1)

# B (r,t)-dS =0, (2.2)

o

yﬁE( ds———// (2.3)
§£H ds—// <3t I ,t)) .dS, (2.4)

where D (r,t) and B (r,t) represent the electric and magnetic flux densities, respec-
tively; E(r,t) and H (r,t) the electric and magnetic field strengths; p(r,t¢) the
electric charge density and J (r, ) the electric current density.

Equation (2.1) is referred to as Gauss’ Law. It states that the total electric flux
through the closed boundary 9€2 equals the total charge contained in the corres-
ponding arbitrary domain €. Similarly, Gauss’ Law for Magnetism (2.2) equates
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2 Introduction of the Underlying Principles

the total magnetic flux through 0 with zero. Equation (2.3), Faraday’s Law of
Induction, states that the negative rate of change of the magnetic flux through an
arbitrary surface I' is equal to the integrated electric field along a closed boundary
OT of the surface. Again in a similar fashion, (2.4) equates the integration of the
magnetic field strength along a closed boundary of the surface I' to the sum of the
total electric current and the rate of change of the electric flux through the surface.
This relation is labelled Ampere’s Circuital Law with Mazwell’s Extension.
The constitutive equations for linear isotropic materials

D (r,t) =gpe,E (r,t) and
B (I‘, t) :/'LO/'LTH (I', t)

relate the flux densities to the respective field strengths of the electric and magnetic
field. Here, g¢ is the permittivity of vacuum, while ¢, is the material-dependent
relative permittivity. Both are often combined into a single quantity referred to as
permittivity, ¢ = €pe,.. Similarly, the permeability of vacuum gy and the relative
permeability u, can be combined into a single quantity, the permeability © = o,
Both the permittivity and the permeability are not necessarily spatially constant.
Generally, they represent tensors that account for the material’s anisotropy. Addi-
tionally, the speed of light in vaccum can be derived from the vacuum permittivity
and permeability via

= : (2.5)

Using Gauss’ theorem

/// (V-A(r)dV = # (A (r) - n)dS, (2.6)

%A (r)dl = / V x A (r)dS, (2.7)

where A (r) is an arbitrary vector field, the integral representation of Maxwell’s
equations can be transferred into the differential representation,

and Stokes’ theorem

V- -D(r,t) =p(r,t), (2.8)
V- B(r,t) =0, (2.9)
VX E(r,t)=— %B (r,t), (2.10)
V x H (r,t) :%D (r,t) +J(r,t). (2.11)

In these representations, Maxwell’s equations form a set of four coupled, ordinary
partial differential equations, which are more easily applicable for analytical consid-
erations compared to their integral forms.
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2.1.1 The Wave and Helmholtz Equations

A strategy to obtain a solution to Maxwell’s equations is the derivation of the electric
and magnetic wave equations. In the following considerations, it will be assumed
that both the permittivity and the permeability are spatially constant®.

For the electric wave equation, first the curl of Faraday’s Law of Induction (2.10),
is generated:

V xV xE(rt) :—%VXB(P,t) :—%quH(r,t).

Using Ampere’s Law with Maxwell’s Extension (2.11), the right hand side of the
upper equation can be transformed into

VxVxE(rt)= —% <%D(r,t)+J(r,t)>.

To further simplify this equation, the vector identity
Vx(VxA)=V(V-A)- VA (2.12)

is used. With this, the left hand side of the upper equation can be rewritten and

V(V-E(rt) - VE(r,t) = —%u (%D (r,t)+J (r,t))

is obtained. After a few further transformations, the wave equation for electric fields

2

) 1 Ll 9
VZE(r,t) = 5Vp (r,t) +5,u@t2E(r,t) +'u8tJ (r,t), (2.13)

is generated.
Using a similar procedure but starting at Ampere’s Law with Maxwell’s extension
(2.11), the magnetic wave equation can be formulated:

62

V?H (r,t) = 5;;@H (r,t) =V xJ(r,t). (2.14)

Given there are no charges and currents present, the equations (2.13) and (2.14) can
be simplified into

82
V?E (r,t) zsu@E (r,t) and

2

V?H (r,t) H(r,t).

—or

'In the dechirper structure that is the main focus of this thesis, this is not the case. The assumption
is still useful to introduce the general methods and procedures used throughout Chapter 3.
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2 Introduction of the Underlying Principles

As a last step, the fields are now assumed to exhibit a harmonic time dependence.
Introducing phasors, the electric and magnetic field strength can be reformulated
using a separation ansatz,

where w is the angular frequency.
Using e = 1/c?, where c is the speed of light in matter, the Helmholtz equations

V2E(r) = — — E(r) and (2.15)

v?

an
|
|

H(r) (2.16)

can be derived. Here, k is the wavenumber.

2.2 Basic Concepts of Wakefields

Great parts of this section have previously been published in [75] and follow the lines
of [32].

2.2.1 The Term ‘Wakefield’

Outside of accelerator physics, the term ‘wake’ is mostly known from fluid dynamics,
referring to the wave pattern behind an object moving in a liquid (e.g. a ship moving
in water). This also comes to mind first when the term is used in everyday language.

In accelerator physics, the word ‘wakefield’ has a different meaning, as it describes
an electromagnetic effect created by charged particles (see next paragraph). However,
it is not completely wrong to think of the wakefield as a certain field pattern that
follows a charged particle, like water waves excited by a ship.

Walkefields, in the context of accelerator physics, are generated by a charged particle
that travels through a metallic vacuum chamber. The self-field of an ultra-relativistic
particle ends perpendicular to the highly conductive walls. On the surface of the
walls, image charges are created, which turn into the sources of new fields and act
back on the particle. In a metallic vacuum chamber without any geometric variation,
the image charges travel together with the ultra-relativistic particle. Any geometric
variation forces the field lines to bend, since they still need to stay perpendicular to
the conductive walls. Then, some parts of the fields (and the energy stored therein)
stay behind and consequently trail behind the particle. These fields are denoted
wakefields. If a second particle follows the first closely enough, it will still see the
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I
§¢Z

Figure 2.1: Electric field lines of a Gaussian pulse travelling through the model pillbox
cavity (R = 5cm, g = 10cm), calculated using the CST STUDIO SUITE®)[35]: (a)
while entering the structure; (b) traversing the cavity; (c) leaving the structure; (d) after
leaving. It can be seen that a part of the electric field remains in the structure even after
the bunch has left.

c d

wakefields of the first particle and interact with them. In a bunch of charged particles,
the trailing particles of the bunch will see the wakefields of the leading particles and
interact with them.

Figure 2.1 illustrates this process. A Gaussian pulse enters a so-called pillbox
cavity. A pillbox cavity consists of a cylindrical cavity resonator with round openings
that are attached to the beam pipe. The beam axis coincides with the symmetry
axis of the pillbox cavity. At the transitions between the cylindrical cavity and the
beam pipes, the diameter of the vacuum chamber changes so that a wakefield can be
generated—a figurative description would say that part of the self-field of the bunch
is ‘stripped off’ by the geometric changes in the structure. The wakefield remains
in the structure and oscillates for some time after the bunch has left. A second
particle bunch that traverses the structure would consequently be influenced by the
generated wakefield. The pillbox cavity used in Fig. 2.1 has a radius of R = 5cm
and a length of R = 10cm and will be used in examples throughout this chapter as
an exemplary model.

The word ‘wakefield’ is usually understood as a general term. More specifically,
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2 Introduction of the Underlying Principles

the term ‘wake potential’ is used when considering the wakefield behind a particle
bunch, and ‘wake function” when the wakefield behind a point charge is considered.
These expressions will be explained in more detail in subsequent sections.

2.2.2 Basic Concepts of Ultra-Relativistic Wakefields

To understand the underlying principles of wakefields, it is helpful to understand
what happens to a point charge ¢ that moves in free space with a velocity close to
the speed of light, v = c.

Owing to the Lorentz contraction, the electromagnetic field of the electron will be
shrunk to a thin disk perpendicular to its moving direction. The opening angle of
the field travelling with the particle is given by 1/4/1 — 2 = 1/~ with the factor
[ = v/ec. If the velocity approaches the speed of light, the thickness of the disk shrinks
further, to a d-distribution (see Fig. 2.2). This field is strictly radial, i.e. there are no
components of the field behind or in front of the charge, which is also a consequence
of the principle of causality. Accordingly, in this case, there can be no wakefield
behind the electron in free space.

To actually achieve a field and a force behind the field-generating charge, additional
mechanisms are required. For example, the image charges and fields created on the
waveguide walls are only synchronous with the fields generating them if the walls are
perfectly conducting. In resistive or imperfectly conducting walls, the image fields
will trail behind the field-generating charge. Other possibilities include obstacles in
the beam pipe, e.g. geometric variations (c.f. Fig. 2.1), from which the fields are
scattered. Another possibility is to introduce dielectric walls because the speed of
light will be lower here than in a vacuum. This means that the fields are ‘slowed
down’, in the sense that travelling waves in these media will have a lower phase
velocity and thus trail behind the generating fields.

<S=ct-z
/ .Q: Ad v=ee, R
\ 'z
®
Figure 2.2: Radial electric field  Figure 2.3: Field-generating and test charges in a
of an electron moving at the pillbox cavity. The grey dots represent the possi-
speed of light, contracted to a bility of a particle bunch generating the wakefield
disc. instead of a single charge.
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2.3 Theoretical Definition of the Wake Potential
and Related Quantities

In the following, a field-generating charge ¢; located at the three-dimensional coor-
dinate r is considered. First, the electromagnetic force that this field-generating
charge exerts on a test charge ¢, that moves at the speed of light along the z-axis,
v = ce,, is examined. This force is simply the Lorentz force,

F(r,t) = ¢ (E(r,t) +ce, x B(r,t)) . (2.17)

A new variable for the distance between ¢, and ¢; (see Fig. 2.3) is introduced, so
that
s=ct—z,

and
F(s,t) =F (z,y,z =ct — s,t).

The net momentum change dp of the test charge due to the Lorentz force will then
be

5p ~ /F(s,t) at . (2.18)

2.3.1 The Wake Potential

The concept of wake potentials is related to the concept of the momentum change
on a test charge, described before. In the situation described in Fig. 2.3, a pillbox
cavity with its transitions between the cylindrical cavity and the beam pipes intro-
duces a radial change of the vacuum chamber and thus wakefields can be generated.
Additionally, both charges are assumed to have a transverse offset r from the centre
of the beam pipe, while the movement is still parallel to the z-axis. In cylindri-
cal coordinates, the described situation is as shown in Fig. 2.3. In this case, the
three-dimensional wake potential is defined as

o0

1
W (r,s) = — / [E(r,2,t) + ce. x B(r,2,1)],_ (., 4,42, (2.19)

0
which is basically an integral over the Lorentz force evaluated on the beam axis and
normalised to the field-generating charge. Additionally, time is substituted with

t = z 4 s/c. The momentum change of the test charge is related to this via
o0p = q12W(r,s) . (2.20)

Usually, the wake potential is separated into the longitudinal wake potential and the
transverse wake potential.
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For the longitudinal wake potential, the projection of the Lorentz force onto the
z-axis is used:

oo

1
W(r,s)-e,=— | [E(r,2,t) e, +c(e, xB(r,z,1)) e,
0

—0o0

t=(z+s)/c dz.

Here, the second term vanishes because e, - (e, X B (r, z,t)) = 0. The longitudinal
component of the wake potential is thus only dependent on the electric field:

W (r,s) = 1 / E, (r,z, i S) dz. (2.21)
0 c

— 00

Consequently, the transverse wake potential is only dependent on the transverse
components of the electric and magnetic field:
1 o0
W, (r,s) = o / [EL(r,2,t) +ce; x Bi(r,2,8)],_ (44 d2. (2.22)
Both wake potentials are dependent on the distance s between the field-generating
charges and the test charge. This distance is measured in the negative longitudinal
direction (see Fig. 2.3). This means that a negative distance s corresponds to the
case in which the test charge is in front of the field-generating charges. Owing to
the principle of causality, in this case there can be no wake potential. Consequently,
this means that:

Wi (r,s) =0 for s <0, and (2.23)
W, (r,s) =0 for s <0. (2.24)

An example of a longitudinal wake potential of a Gaussian pulse inside a pillbox
cavity is shown in Fig. 2.4.

2.3.2 The Panofsky—Wenzel Theorem

The Panofsky—Wenzel theorem connects the longitudinal and transverse wake poten-
tials via

WL (xvya S) = _VJ_ / VVH ($7y7 S/) dS/, (225)

where V| is the gradient operator relating only to transversal coordinates.
Therefore, in principle, knowledge of only the longitudinal component of the wake
potential is enough, since the transverse component can be constructed from it.
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Figure 2.4: Longitudinal wake potentials of Gaussian pulses with different pulse width o
inside the model pillbox cavity, computed using CST STUDIO SUITE ®)[35].

In the following, the proof of this theorem is briefly sketched.
As a starting point, the transverse wake potential from eqn. (2.22) is chosen. Its
derivative with respect to s is

o0

0 1 0 0
%WL (I', S) = a / \CEEL (I', z, t)l—’— e, X aBL (I', Z, t)l dZ, (226)
- bt T

t=(z+s)/c

where s = ¢t — z and 0s = cOt have been used.

Now T) and T, are replaced with more convenient expressions. For term 77, the
total derivative of the transverse electric field with respect to z is required. Using
s = ct — z this reads as

d zZ+s 0 10 z4+s
&EL (I',Z, N ) — (&+E§) El (I‘,Z, N ) )

where d/dz is the total differential with respect to z. In equation (2.26), T} is
reformulated as

10 Z+s d 0 zZ+s
E&EL (I’,Z7 T) = (& - £> EJ_ (I‘,Z, - ) . (227)

Considerations for term 75 start with Faraday’s law of induction,

V X E(rt)= —%B(r,t) .
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Computing the cross product of this equation with the beam axis leads to

9] o)
&B (r,t) = —e, x (VxE(rt) = gEL(r,t) —V.E, (r,t) . (2.28)

Inserting (2.27) and (2.28) into equation (2.26) results in

9 1 (d D 2ts
&WL(I‘,S)—Z/(&-&)EL(T,Z,—C )

+ <£EL (r,z,z——i_s) —V.FE, (r,z,z——i_s>) dz.
0z c c

This is reformulated as

1 [ d
2VVL(r,s):—/—EL r,z,z——'—s —V.E, r,z,z—ﬂ dz.
0s Q1 dz c c

—0o0

e, X

At the waveguide walls, PEC boundary conditions are assumed so that the tangential
electric field vanishes there. This simplifies equation (2.26) to

1 oo
IwW, (rs)=-L [ v.E. (r, . Z—H) dz,
0s q1 c

—00

which is equivalent to

0
gwj_ (I‘, 8) = _VJ_VVH (I‘, 3) :

Integrating the last statement over s leads to equation (2.25).

2.3.3 The Fundamental Theorem of Beam Loading

This section follows the lines of [12].

Up to this point, the definition of wakefields only included cases with s > 0. For
5 < 0, it was concluded from the principle of causality that there can be no wakefield,
and thus W (r,s) = 0.

The remaining case of s = 0 shall now be considered, which had been excluded
before. For this, a different example situation will be considered first: two particles
with equal charge ¢ and a distance of a half wavelength, A\/2, between them are
moving along the same axis, at the same speed. The first charge enters a previously
empty cavity with no internal electric fields or stored energy (see Fig. 2.5). The
charge will induce surface charges, electric fields, and voltages in the cavity,

Vi:—/E(r,t) dl,
c
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Figure 2.5: Left panel: Two charges separated by a distance /2 travelling along the
same beam axis at the same speed are about to enter a previously empty elliptic cavity.
Middle panel: The first charge has traversed the cavity and induced an image voltage
of —V; in the cavity. Right panel: Both charges have left the cavity. The total energy
change in the cavity is 0, while both charges have lost energy, owing to the image fields
they experienced. From this, the proportionality factor a can be calculated.

Il
=

where the voltage is defined as a line integral over the electric field along a closed
path C.

This induced voltage is referred to as —V;. This induced voltage is left in the
cavity, even after the first charge left. From the law of energy conservation, it can
be infered that energy must be left behind in the cavity. However, the first charge
will also ‘see’ a fraction a of its own induced voltage while in the cavity,

Vi = —dVj.
This corresponds to an energy loss of the first particle,
AWy = qVi = —qdV;.

Thus, with the first particle in the cavity, the net cavity voltage is V., = —Vj, while
the stored energy U will be proportional to this voltage squared, U oc V2. This
situation is shown in the middle panel of Fig. 2.5.

When the second particle arrives in the cavity, the voltage induced by the first
particle will have changed phase by 7 owing to the distance between the two particles.
Thus, the induced voltage from particle 1 is now +V;. The second particle, however,
will also induce a voltage in the cavity of —V;. The net cavity voltage will be

Vo= +Vi-Vi=0.
Particle 2 will also lose energy according to
AWy, = qVi - qaV;
~—~ ~—
from particle 1  from own induced voltage

Since the net energy of the cavity must remain 0, the energy changes of particle 1
and 2 have to compensate each other (see right panel of Fig. 2.5),

AWl—f—AWQ:O,
qVi —qaV; — qaV; = 0.
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This leads directly to

a = —.

2
From this, the fundamental theorem of beam loading can directly be derived: a
moving charge will experience (or ‘see’) half of its own induced voltage.
For the case of the wake potential, this implies that, for s = 0, when the field-
generating and test charges are virtually at the same place, the wake potential must
be multiplied by 1/2. Thus, the final definition of the longitudinal wake potential is:

. o0 N 0 fors <0,
W (r,s)=— / E. <r,z, : S) dzq3 fors=0, . (2.29)
a1 c
—0 1 fors>0.

2.4 The Eigenmodes of an Empty Rectangular
Cavity

In the following section, the procedure for the determination of the eigenmodes of
empty rectangular cavities shall be introduced. The clarification of this approach
as well as concepts and terms connected to it will greatly help the derivation of the
LSE and LSM modes in Chapter 3.2 and simplify the explanations made at this later
point.

A sketch of the geometry of a rectangular cavity can be found in Fig. 2.6. The
internal space of the cavity is supposed to consist of vacuum (e, = 1). PEC condi-
tions are assumed on all boundaries. This gives rise to the condition that the
tangential electric field and the normal magnetic field at these boundaries need to
be zero. In Fig. 2.6, the PEC boundary in z-direction is omitted for reasons of easier
comprehensibility.

2.4.1 The General Concept of Eigenmodes

The term ‘eigenmode’ describes a general concept that is not inherently and exclu-
sively linked to electromagnetism, but present in many parts of physics. In fact, some
of the more common and widely spread examples of eigenmodes originate from other
fields, especially mechanics and atomic physics. Especially examples from the field of
mechanics are also often more intuitive than examples of electromagnetic eigenmodes.
Because of that, these examples shall be described shortly before returning to the
actual subject of this thesis.

The probably most intuitive example are mechanical vibrations. A rope fixed on
both ends and exposed to mechanical stress (e.g., via pulling it into one direction)
will lead to vibrations, visible in harmonic displacements of the rope in form of a
sinusoidal oscillation. Due to the fixation on both ends, this will in an idealised case
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2.4 The Eigenmodes of an Empty Rectangular Cavity

L
L

L,

4

Figure 2.6: General sketch of the dimensions of a rectangular waveguide. For reasons of
comprehensibility, the PEC walls in z-direction are omitted in the sketch, though they
are present in the final model.

lead to a standing wave with a fixed frequency in contrast to a travelling wave in
the case of no fixation?. Important is that an excitation of the system (pulling the
rope) leads to an oscillation in which all parts of the system oscillate with the same
frequency.

In an electromagnetic context, eigenmodes follow a similar concept. The term
describes here distinct distributions of the electric and magnetic field inside a cavity or
waveguide. These field patterns represent, just like in the mechanical case, standing
waves with fixed frequencies, often referred to as eigenfrequencies. The boundaries
provided in the case of vibrations by fixed ends are the terminating walls of the
cavity or waveguide in this case, which impose certain conditions on the electric and
magnetic field depending on their nature. Waveguides and cavities can be distin-
guished in so far as that cavities are limited by walls in all three spatial dimensions
while waveguides are open in one dimension (most often the longitudinal direction).
This leads to the differentiation between so-called 3D-eigenmodes in the case of
cavities and 2D-eigenmodes in case of waveguides. This takes into account that for
3D-eigenmodes, the walls only allow for standing waves in all three spatial dimension,
while in the case of 2D-eigenmodes, the typical patterns of the standing waves can
only be exhibited in the two (transversal) directions which are limited by the walls
of the structure, whereas the mode will behave like a travelling wave in the third
direction.

2Exciting a travelling wave in the case of a rope with two fixed ends is still technically possible,
though not considered here for the sake of simplicity in this more graphic explanation of waves
and modes.
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2 Introduction of the Underlying Principles

In general, for simple cavities without any form of dielectric linings it is distin-
guished between three types of eigenmodes: TE modes, TM modes and Transversal
Flectro-Magnetic (TEM) modes. For TE modes it is characteristic that their elec-
tric fields do not possess a longitudinal component, i.e. in z-direction in the most
commonly used cases. TM modes, respectively, do not feature a magnetic field
component in longitudinal direction. The third type, TEM modes, does not possess
neither an electric nor a magnetic field component in longitudinal direction. Their
occurrences, however, are limited to geometries in which two isolated conductors
exist, such as in coaxial cables. Therefore, they play no role for the considerations
in this work and will be omitted in the following.

Because they present such a basic principle in a wide variety of fields of physics,
further and more detailed information on eigenmodes can be found in any textbook
dealing with the foundations and general concepts of physics. As one example
dealing with general physics, [76] shall be named here. More specific information
about eigenmodes in the context of electromagnetism can, amongst others, be found
in [64] or [77].

2.4.2 The Empty Rectangular Cavity
Maxwell’s Equations for the Empty Rectangular Cavity

The following considerations are made with regard to the model presented in Fig. 2.6,
assuming that its lower left corner of the front face is located at the origin.

If not directly excited and thus visible or measurable in an experiment, eigenmodes
still exist as underlying mathematical concepts. Here, the eigenmodes of a cavity
or waveguide are the intrinsic solutions to Maxwell’s equations inside the structure
without any further charge or current present (p (r,t) = 0,J (r,t) = 0), assuming an
isotropic material with ;1 = py and a harmonic time-dependence that results from
the assumption that the structure is closed and lossless. This simplifies Maxwell’s
equations to

V-D(r) =5V -E(r)=0, (2.30)
V- B(r) =0, (2.31)
V x E(r) =jwB (r), (2.32)
VxB(r)=—-j5E({), (2.33)

with w representing the angular frequency of the mode, and the underlined quantities
indicating phasors. Both TE and TM modes represent solutions to this specific set
of Maxwell’s equations under PEC boundary conditions. It is easier to derive their
expressions separately due to the different requirements concerning the z-components
of their respective electric and magnetic fields.
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2.4 The FEigenmodes of an Empty Rectangular Cavity

The PEC boundary conditions for the phasors of the electric fields and magnetic
flux densities read

E, (r)=0fory=0,band 2 =0, L, (2.34)
E, (r)=0forx=0,aand 2 =0, L, (2.35)
E,(r)=0forx =0,aand y = 0,b and (2.36)
B,(r)=0forz=0,aq, (2.37)
B, (r) =0 fory = 0,0, (2.38)
B,(r)=0forz=0,L (2.39)

Solution Procedure for TM Modes

Due to Gauss’s Law for Magnetism (2.31), the magnetic flux density of a TM mode
can generally be expressed as the curl of a suited potential ITy (r),

By (r) =V x IIrn (1) (2.40)

This automatically fulfils (2.31), since the divergence of a curl is always zero.

In the specific case of TM modes, the magnetic flux density has no longitudinal
component, By . (r) = 0. In this case, it is efficient to choose the potential Ilty
parallel to the z-axis,

Iy (r) = Arvtoru (r) €. (2.41)
Here, Aty is a normalisation factor and ¢y (r) is a scalar source function.

More specifically, the components of the electric fields and magnetic flux densities
can now be defined with regard to the source function ¢y (r). Using equation (2.41)
and plugging it into eqn. (2.40) yields the magnetic flux density

Dy 0 Oy m (r)
Bry() =A4m [0, | x| 0 | =Am | -0tbru(r) |, (2.42)
az wTM(r) 0

where 0; are the shortened notations for the partial derivates 9/0i with respect to
the variable i = z,y, 2.

The electric field can now be obtained using the upper equation and inserting it
into (2.33),

2 c axaszM (I‘)
Epy (r) = j;ov X By (r) = jATMZO 9,0,1rm (r) . (2.43)
= (8% + 87) o ()

From comparing eqn. (2.40) to eqn. (2.32) it can be inferred that the electric field
and the potential have to be proportional to one another apart from the gradient of
an arbitrary scalar function ¢y (r),

Eqy (r) = jwIlpy (r) + Voru (1) . (2.44)

[\
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2 Introduction of the Underlying Principles

For the continuation of the solutions of Maxwell’s equations inside the rectangular
cavity, the egs. (2.40) and (2.44) are now inserted into eqn. (2.33), resulting in

2

w LW
V x (V x Iy (1)) = = Iy (r) —jc—2V¢TM (r).
0 0
k3

Using identity (2.12), the term on the left hand side can be reformulated. The up
until now undefined but arbitrary scalar potential ¢y can then be specified using
the gauge ¢rm (r) = j %V Iy (r). With this, two parts of the resulting equation
will eliminate each other. The remaining parts constitute the Helmholtz equation
for TM modes,

With the definition used here, the potential Ity is referred to as an electric Hertzian
potential [64]3.

Since V? is a scalar operator and Il only constitutes of a z-component, the
Helmholtz equation can be rewritten in terms of the source function . Assuming
a non-trivial solution with Aty # 0, this leads to

0? 0? 0? 2 B 4
@QMM (r) + a—y2¢TM (r) + @@ZJTM (r) + kotbrm = 0, (2.46)

where V2 has been split into its components.
To solve equation (2.46) further, the separation approach is used. For this, it is
assumed that

drm (2,9, 2) = P (2) Q (y) R (2). (2.47)
Plugging this ansatz into equation (2.46), excluding any of the trivial cases in which
Yy = 0 and dividing by ¥y, this leads to

1 a2 1 d2 1 d?

m@f’ (z) + md_y?Q (y) + W@R(Z) + ko = 0.

If the squared wavenumber kg is now also split according to k§ = k7 + k] + kZ,
this partial differential equation can be separated into three ordinary differential
equations,

=r (z) + k2P (x) =0, (2.48)
Q) +KQ W . (2.49)
;—;R (2) + k2R (2) =0, (2.50)

3In a source-free region with p, = 1 and &, # 1, the right hand side of the Helmholtz equation
will yield the dielectric polarization. For a detailed explanation of the terminology, see [64].
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2.4 The FEigenmodes of an Empty Rectangular Cavity

which can readily be solved employing PEC boundary conditions.

If the electric field has the form presented in equation (2.43), the function P (x)
has to comply with the requirement P (x = 0,a) = 0 to fulfil the boundary condition
(2.35). From the set of general solutions that obey the symmetry of eqn. (2.48), the
function that fulfils this condition is the sine, so that

P (z) = sin (k,x) .
The eigenvalue k, can also be specified using the boundary conditions, since
P(x =a)=sin(k,a) =0

requires k,a to be any positive integer multiple of 7. With this, the solution to
equation (2.48) can be written down as

P (z) = sin (Tx) withn =1,2,3.... (2.51)
a

and k, = nm/a.

An equivalent line of argument can be made for @ (y), leading to

Q (y) = sin (%y) withm =1,2,3..., (2.52)

and k, = mmx/b.
For R (z), the conditions (2.34) and (2.35) combined with equation (2.43) lead to
the requirement

d
—R(2) =0.
dz 2=0,L
This is fulfilled if
Im )
R (z) = cos (fy) with [ =0,1,2,3..., (2.53)

and k, = Ir/L.
With this, the scalar source function of the Hertzian potential can be defined as

Yom (2, y, 2) = sin (k) sin (k,y) cos (k. z) . (2.54)

The electric and magnetic field distributions can now be specified using equation
(2.42) and (2.43). The angular eigenfrequency w relates to the wavenumber according

to
W = Cok?() = Cp4/ k’% + kf/ + k’g (255)
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2 Introduction of the Underlying Principles

Solution Procedure for TE Modes

A similar approach is used to determine the field distributions of the electric fields
and magnetic flux densities of TE modes.

Here, it is exploited that due to Gauss’ Law in the cavity (2.30), the electric field
can be expressed via

Here, the magnetic Hertzian potential?,
g (r) = Argtre (r) ez, (2.57)

is also chosen to be parallel to the z-axis such that the z-component of the electric
field automatically vanishes. The quantities Arg and g (r) are a normalisation
constant and the scalar source function of the Hertzian potential, respectively.

With this definition, the components of the electric field can be specified with
respect to the source function as

am 0 ay¢TE (I‘)
ETE (I‘) = ATE 8y X 0 = ATE _8a:¢TE (I‘) . (258)
82 wTE (I‘) 0

This can be inserted into equation (2.32), yielding a more specific expression for the
magnetic flux density,

1 1 8:(:8Z77DTE (I‘)
Brg(r) = —j—V X Epg (r) = —jAre— 0y0:7E (r) : (2.59)
w — (02 + 02) ¥ (1)

The Helmholtz equation for TE modes is derived in a similar manner as before for
the TM modes. At first, a relation between the Hertzian potential and the magnetic
flux density is determined using equation (2.33), where both sides compared lead to

Bg (r) = _jc%)HTE (r) + Vorg (r), (2.60)

where ¢rg (r) is an arbitrary scalar function.

The equations (2.60) and (2.56) are now inserted into eqn. (2.32) and the left
hand side is transformed using vector algebra analogously like in the case of TM
modes. At this point, the gauge ¢rg (r) = —j/wV - Il1g (r) is chosen. The resulting
Helmholtz equation for TE modes is

V21 (r) + kg (r) = 0. (2.61)

4In a source-free region with p, # 1 and ¢, = 1, the right hand side of the resulting Helmholtz
equation for TE modes will yield the magnetisation. For a more detailed explanation of the
terminology, see [64].
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2.4 The FEigenmodes of an Empty Rectangular Cavity

Using the definition of the Hertzian potential in equation (2.57), this automatically
leads to the partial differential equation for ¢)rg analogous to eqn. (2.46). The separa-
tion approach (2.47) is used again, and following the same steps and arguments made
in the previous section on TM modes, the three ordinary differential equations (2.48),
(2.49) and (2.50) are once more the result of the transformation of the Helmholtz
equation.

However, the PEC boundaries impose different conditions on the functions P (),
Q@ (y) and R(z). Combining the requirements given in the equations (2.34) and
(2.35) with the definitions in (2.58) it can be deduced that the following conditions
need to be met by the three separated functions,

d

—P =0

dz (w) z=0,a 7
d

dy y=0,b
R(z=0,L) =0.

With these conditions, the solution of the equations (2.48), (2.49) and (2.50) for the
case of TE modes can be written down as

P (z) = cos ("—”y) withn =0,1,2,3..., (2.62)
a

Q (y) =cos (%y) withm =0,1,2,3..., (2.63)

R(z) =sin (%y) withl =1,2,3.... (2.64)

Therefore, the source function of the Hertzian potential reads
Y1 (2, Yy, 2) = cos (kyx) cos (kyy) sin (k,2) . (2.65)

Inserting this into eqn. (2.58) and eqn. (2.32) yields the expression for the electric
and magnetic field distributions of TE modes. The eigenfrequency of a TE mode is
w = coy/k2 + k2 + k2, analogous to the eigenfrequencies of TM modes.

Normalisation

Up until now, the electric fields and magnetic flux densities of both mode types have
not been normalised, i.e., the factors Ay and Arg are still undefined.

Generally, determining these factors will not change the behaviours of the field
distributions, only their amplitudes. Most often, the modes are normalised to the
energy stored in the mode, i.e.

05 [ (5 BOF + B @) dsanar
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2 Introduction of the Underlying Principles

Solving this integral for both TE and TM modes and transforming the result in
dependency of the unknown factors will lead to expressions for the normalisation
constants in dependence of the energy. Most commonly, the energy stored in the
mode is then set to U = 1J and the normalisation constants are defined further.
Theoretically, other normalisation like a normalisation to a field amplitude of one
are also conceivable. In praxis, however, they are seldom used.

2.4.3 Eigenmode Expansions

For later applications, it shall be noted here that one significant advantage of knowing
the eigenmodes of a structure is that they form a complete, orthogonal set of basis
functions. This means that the electric and magnetic field inside the observed
structures can be expanded in a series of eigenmodes even in the presence of charges
and currents. This allows for a solution strategy to Maxwell’s equations even in cases
in which it would usually be complicated or impossible to solve them. Additionally,
the analytic expressions of eigenmodes are often known, which at least allows for the
derivation of an analytic expression of the fields.

On the other hand, the description of fields via an expansion into the eigenmodes
of the structure is in all practical cases an approximation. Eigenmode expansions,
as a form of regular series expansions like the Fourier- or Taylor-series, are only
analytically correct and accurate if infinitely many expansion functions are used,
given that the expansion converges. If the series is terminated after a finite number
of terms, which is always the case in a practical scenario, the expression becomes a
mere approximation of the accurate results.
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3 The Analytical Model

The foundation of all considerations regarding rectangular dechirpers lined with
dielectrics in this work is a completely analytical model for the wake function inside
these waveguides. In this chapter, the derivation of the analytical description of
the eigenmodes of these structures is presented. Subsequently, these expressions are
then used to derive the electric field of a point charge moving through the guide.
From this, an approximation-free analytical model for the wake function is deduced.

The derivations presented in this chapter have also been submitted for publication
in [78], and have been presented in a similar fashion in [3].

3.1 Dielectrically Lined Rectangular Waveguides

A general layout of a dielectrically lined rectangular waveguide is shown in Fig. 3.1.
The guide itself is composed of a highly conductive material, e.g. copper or aluminium,
and is lined symmetrically with two identical dielectric slabs at the top and bottom
of the guide. Theoretically, the only requirement on the slabs is that their relative
permittivity is larger than one; while practically the chosen materials must be suitable
for the use in vacuum as well. The particle beam, here electrons, passes the structure
right through its centre.

Figure 3.1: General layout of a dielectrically lined rectangular waveguide used for passive
wakefield dechirping. The electron beam is indicated in green.

Compared to cylindrical waveguides, a rectangular structure has the advantage
of a higher flexibility: while the radius of the cylinder is a quantity that cannot
be adjusted once the structure is in production, a rectangular layout still allows
for a later tuning. To achieve this, the waveguide is build in a way so that the
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3 The Analytical Model

upper conducting plate with the corresponding dielectric is left unconnected to the
remaining guide and is thus movable. This allows for an adjustment of the gap
widths between the dielectric plates after production. Consequently, this also allows
for an adjustment of the wakefield.

For the use at ELBE, an adjustable structure like the one described in Fig. 3.1
was constructed. The outer aluminium guide has a total length of 80 cm with an
adjustable gap width in the range of 0.5 — 3.5 cm. The dielectric plates will consist
of the glass ceramic MACOR!, with a thickness of 3.0 mm and a relative permittivity
of 6.0. MACOR is suited for the use in ultra-high vacuum and comparatively easy
and cheap to acquire. This makes the material ideal for feasibility studies.

Next to these technical advantages, the rectangular dielectrically lined dechirper
opens up the possibility of an analytic examination of the wakefield due to its geomet-
ric simplicity. From a mathematical point of view, the insertion of dielectric slabs
into the otherwise textbook example of the open, rectangular waveguide, presents
a comparatively minor change in geometry. This similarity is used for an analytic
determination of the eigenmodes of the structure. These eigenmodes can be used
as basic functions for an expansion of the electric field generated by a single point
charge inside such a waveguide. Calculating the longitudinal wakefield from the
electric field leads to the possibility of gaining an analytical Green’s function in form
of the point charge wakefield. This can then be used to determine the wakefield of
a variety of differently shaped bunches by means of simple convolutions, instead of
performing a complete numerical simulation for every shape.

In total, the geometric simplicity of the structure provides the possibility of gaining
a fundamental insight in the dechirping qualities of the chosen layout, which should
not be left unexploited.

3.2 Eigenmode Calculations

3.2.1 The General Model

For all following analytic calculations, the model shown in Fig. 3.2 is used to repre-
sent the dielectrically lined rectangular waveguide. The guide is considered to be
composed entirely of PEC with a length L, width a and height b. The thickness of
the walls is irrelevant. The dielectric slabs have a thickness of b — d (where d gives
the height of the lower edge of the upper dielectric) and a relative permittivity of
g, > 1, which is not further specified at this point to grant a maximum adaptability
of the model. The material between the dielectric slabs is considered to be vacuum.

It shall be noted here that, for calculation purposes, the model is completely
enclosed in PEC. This, on the first glance, seems to be in conflict with the beam indi-

IThe name, most likely, comes from the term ‘machineable glass-ceramic’ and their initial distrib-
utor, the company Corning Inc.
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3.2 Eigenmode Calculations

cated in Fig. 3.1, because the beam requires the structure to be open in z-direction.
Yet, a mathematical model of an open dechirper requires the assumption that the
structure is infinitely long. The actual length of the dechirper is not fixed at this
point and might not differ from the other dimensions of the structure in a way that
justifies assuming it is, in fact, infinite compared to, e.g., the gap width, which would
render the whole assumption already a strong approximation. Additionally, a closer
inspection shows that wakefields in an open waveguide can be expanded in a series
of eigenmodes of the closed waveguide, see Chapter 3.5.

x

Figure 3.2: General sketch of the dimensions of a dielectrically lined rectangular wave-
guide. For reasons of comprehensibility, the PEC walls in z-direction are omitted in the
sketch, though they are present in the final model.

Figure 3.2 shows that the only difference to the textbook problem of the rectangular
waveguide without slabs is the change in permittivity in y-direction. In z- and z-
direction the permittivity stays constant, while in y-direction it changes according
to

g, 0<y<b-—d
ey =<1, b—d<y<d . (3.1)
Er, d<y<b
First of all, Maxwell’s equations have to account for the y-dependency of the permit-
tivity:

V-D (I‘, t) =&V - (gT(y)E (I‘,t)) =P (I‘, t) )

V- -B(r,t) =0,
V X E(rt) = —%B (r,t), (3.4)
VB (r ) = jod (r,1) + uoar(y)&?o%E (r.1). (3.5)

Consequently, this leads to the speed of light also being y-dependent, c(y)?
(505T(y)u0)_1 = c%e.(y)~!, with ¢o representing the speed of light in vacuum.
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3.2.2 The Eigenmodes of Lined Waveguides

The presence of the dielectric slabs causes that the eigenmodes of the lined waveguide
are not simply TE or TM modes. Instead, the set of eigenmodes inside the lined
waveguide needs to account for the changing permittivity in y-direction.

The eigenmodes of general rectangular waveguides lined with dielectric slabs (not
just specifically in the form shown in Fig. 3.2) are introduced in [64] as LSE and
LSM modes (c.f. also [79]). These two types are characterised by the lack of an
electric field component in the direction of the change of the permittivity (for LSE
modes) and the lack of a magnetic field component in this direction (for LSM modes),
respectively. In the special case depicted in Fig. 3.2, this means £, = 0 for LSE
modes, and B, = 0 for LSM modes.

The general process of calculating these modes is also shown in [64], however, only
for a structure loaded with just one dielectric slab and also only in two dimensions.
It shall be expanded upon here. Following the derivation in [64], the calculation of
the eigenmodes for the structure in Fig. 3.2 is shown in the next sections.

Maxwell’s Equations

As presented in Section 2.4, for eigenmode calculations a structure with no external
charges or currents (p (r,t) = 0,J (r,t) = 0) and a harmonic time-dependence of the
fields are assumed. However, in this specific case, the y-dependence of the relative
permittivity needs to be taken into account. This changes Maxwell’s equations to

VD (r) =V - ((y)E(r) =0, (3.6)
V-B(r) =0, (3.7)
VX E(r)=jwB(r), (3.8)
VxB(r) = —j;"—gw)@(r) (3.9)

Again, according to the model presented in Fig. 3.2, the structure is limited by PEC
boundary conditions in all three coordinate directions.

For the application in a subsequent chapter, the curl-curl equation of the electric
field is generated and reformulated to create a general, Helmholtz-like equation.
Therefore, eqn. (3.9) is inserted into the curl of eqn. (3.8) yielding

2

VxVxE(r) = 25 ¢@E()
0

kg

with kg representing the wavenumber in vacuum.
It can be deduced from eqn. (3.6) that V - E (r) = —¢, ' (y)E (r) Ve,(y), which is
then inserted in the upper equation.
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The final result for the general equation then reads:

VE (r) = —kge,E(r) = V- ( E(r) Vé‘r(y)) : (3.10)

er(y)

LSM Modes
From the fact that B, , (r) = 0 for LSM modes (indexed with p) it can be deduced

that the magnetic ﬁelléiy can be described as the curl of a vector purely oriented in
y-direction, N

B,(r)= —%V x 1T, (r), (3.11)
where I, (r) = A,, (r) e, is a so-called Hertzian potential (c.f. Section 2.4), ¢, (r)
a scalar source function and A, is a normalisation constant. It shall be noted here
that the prefactor is chosen purely for convenience; the final fields would usually be
normalised anyway so that the factor here plays no role.

The introduction of this potential brings along the advantage that the problem
of solving Maxwell’s equations for six components (three from each the electric and
the magnetic field, respectively) can be reduced to solving a Helmholtz-like equation
for the Hertzian potential, so for just one component. Both magnetic field, and in
turn, the electric field, can be deduced from IT, (r). Using eqn. (3.8), the electric
field can be determined as

VxE,(r)=jwB,(r) =kV xII, (r),

and is, thus, up to the gradient of a scalar function @, (r), proportional to the
Hertzian potential,

E, (r) =k} I, (r) + VO, (r). (3.12)
The Helmholtz-like equation for the Hertzian potential can now be derived from
eqn. (3.9) by inserting egs. (3.11) and (3.12):
LW LW
VXxB,(r)=—j5VxVxII,(r) = —JC—%ST(y)BM (r)

V x V xIL, (r) = e, (y)kj I, (r) + Ve, (y) @, (v) — D, (r) Ve, ().

At this point, further specifications are made by choosing a suitable gauge for the
up to now arbitrary function @, (r). The gauge Ve, (y)®, (r) = V(V-II,(r)) —
P, (r) =, (y)V -II,(r) is used, and with it the upper equation simplifies to the
final version of the Helmholtz-like basic equation:

0= VLI, (r) + &, (k2 IL, (t) — ' W)V - IL, (1) Ve, (y). (3.13)
With the chosen gauge, the electric field representation in eqn. (3.12) can be simplified

into

E,(r) = (y)V x V x II, (). (3.14)

=
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To determine the Hertzian potential, the product ansatz is used for the source
function ¢, (r) = P(x)Q,.(y)R(2), comparable to the case of the empty waveguide
in Section 2.4. Employing PEC boundary conditions in x- and z-direction leads
directly to P(x) = sin(k,z) and R(z) = sin(k,z), with k, = nn/z, k, = Ir/L and
n,l =0,1,2.... Thus, the Hertzian potential reads now

IT, (r) = A, sin(k,x) sin(k.2)Qu(v)e,.

Note that this behaviour can only be justified because in z- and z-direction, the
structure is comparable to a regular, empty rectangular waveguide. In y-direction,
there is the change in the permittivity that affects @, (y), making it impossible to
determine this function straight away.

Instead, the ansatz for the Hertzian potential is now inserted into the Helmholtz-
like equation (3.13). Because IT, (r) is proportional to e,, it is sufficient to look at
the y-component:

2 2 2 d
s 8) 4 () + 5 ()2 (0 () — & ) ) 5 ().

—k29u(r) k2t (r)

0

Excluding the trivial cases in which P(z) = 0 or R(z) = 0, the upper equation is
now divided by P(z)R(z), leading to

d -1 d d ) ) )
0= d—yQQu(y) — £, (y)@&(y)@Qu(y) + (6r(y)k07u — ki — kz) Qu(y)~
This equation is then rearranged into a more convenient representation:
d 1 d 1
T dy \ & (y) dy —— (kg + k2 = 3.15
dy <5r(y> dyQﬂ<y)> - () (e +£2) Quly) 0,uQu(y); (3.15)

which can be solved to get an expression for @, (y).
The boundary conditions for the electric field are used now to create boundary

conditions for @, (y) accordingly, leading to %y(y) o =0.

These conditions together with eqn. (3.15) form a Sturm-Liouville problem (c.f. [80])
for @,(y) to the eigenvalues ka“ and the weighting function 1. This automatically
implies that the solutions of the Sturm-Liouville problem fulfil the orthogonality
relation

b
/Qu,m(y)Qu,m’ (y)dy = g(sm,m/a (316)
0

which will be of use further on for the overall orthogonality of the LSM modes. Here,
Om.m indicates the Kronecker delta. Additionally, £ is a proportionality factor that
has the value 1 in this case, but the unit [m] and is introduced for consistency.
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3.2 FEigenmode Calculations

To solve the Sturm-Liouville problem, it is at first multiplied by @, (y) and inte-
grated over the computational domain (i.e. the dimensions of the structure):

—O/bQu(y)d% (le)d%%(y)) dy+0/b€r2y) (ke + k) Qu(y)dy = ko“/Q

The first term is then integrated by parts and the boundary conditions are used to
obtain the final integral relation:

/bgjy) [(diy@u(y))Q (K2+ k) Qly ]dy_k: /Q2 (3.17)

A straight-forward analytical solution of this equation is very difficult. Nonetheless,
the unknown function @, (y) can be expanded into a set of known functions, and

the solution of eqn. (3.17) limited to the determination of the expansion coefficients.
o0

Here, the Fourier-cosine series Q. (y) = > Gum@um(¥) = Domo_o Quim cos(5ry) is
chosen as the basic expansion, since the given cosine already satisfies the boundary
conditions for @, (y). This choice finalises the Hertzian potential as

I, (r) = sin(k,x) Z Qum €08 (ky my) sin(k, 2)e,, (3.18)

m=0

with k,,, = mn/b, where only the expansion coefficients g, ,, remain to be deter-
mined.

Inserting the Fourier-cosine series into eqn. (3.17) and rearranging the resulting
equation yields

0= Z Z [T,u,mm k P,u mm/ ] qumqu,m’, (319)

introducing the auxiliary quantities

b

0 (3.20)
P,u,mm’ = /Qu,m(y)Qu,m’<y)dy
0
Equation (3.19) is fulfilled if
= [T = k3 P ] @ for allm’ =0,1,2..... (3.21)
m=0
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3 The Analytical Model

The solution to this set of equations gives the correct analytical result for the expan-
sion coefficients of the Fourier-cosine series. Note, however, that this is not feasible
in a realistic attempt to obtain a solution. Instead, the series needs to be terminated
after a finite number of functions, which renders the final solution a mere approxi-
mation of the correct analytical solution. Ending the series after N functions sets
up a system of N equations, which can be represented by the matrix equation,

Ty Typpz -+ Tuas Poin Puiz - P
Tuor Tupz -0 Tups 2 | Bwer Buzo B 0
. . . . - 0, . . . . q — Y,
Tp,,ml Tiu'va e Tﬂ7mm/ P/"»ml Pl"’mz e Py,,mm/
(3.22)

where T, and P, are symmetric matrices containing the integrals specified above
and q is the vector containing the expansion coefficients.

LSE Modes

In contrast to LSM modes, for LSE modes (indexed with A\) E, , (r) = 0, while
B, , (r) # 0. Consequently, while still using Hertzian potentials, a different ansatz
is employed here:

E, (r) =wV xII) (1), (3.23)

where IT) (r) = Ax¢» (r) e, is the Hertzian potential and the prefactor is chosen for
convenience.

This choice for the electric field needs to fulfil Gauss’ Law (3.6). Inserting
eqn. (3.23) into eqn. (3.6) yields

VD, (r) = (Ve (y) E\ (r) + &:(y)V - E; (r)
=we,(y)V - (V x II, (r)) = 0.
Here, the orthogonality of the gradient of the permittivity (which only has a y-com-
ponent) with the electric field (which has no y-component) is exploited along with
general vector algebra.

Inserting equation (3.23) into eqn. (3.8) yields an expression for the magnetic field
in terms of the Hertzian potential:

B, (r)=—jV xV xII, (r). (3.24)

A different way of obtaining the magnetic field is to rewrite eqn. (3.9) with eqn. (3.23)
and comparing both sides of the equation, resulting in

B, (r) = —j (kA& (y)II\ (r) + VO, (1)), (3.25)
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3.2 FEigenmode Calculations

with arbitrary V@, (r). Equating (3.24) with equation (3.25) and using vector
algebra to eliminate the double curl yields

—j (V(V I\ (r)) = VI, (r)) = —j (k§ xer ()ILy (1) + VO, (1)) .

The gauge @, (r) = V-II, (r) is then employed, resulting in the final Helmholtz-like
equation for LSE modes:

0 = V’II, (r) + kg e, (y)IL, (r) . (3.26)

The equation is again solved by employing the product ansatz for the Hertzian
potential, ¥ (r) = P(z)Qx(y)R(z). Using boundary conditions in a- and z-direction
(c.f. Section 2.4) directly leads to the solutions for P(z) and R(z), respectively, so
that the Hertzian potential can be further specified as

IT) (r) = Aj cos(kyx) cos(k.2)Qx(y),

with k, and k. identical to the LSM case.

The determination of Q,(y) follows along the same lines as for the LSM modes.
First of all, by inserting the last equation into (3.26), dividing the resulting formula-
tion by ¢, (r) and rewriting it, the Sturm-Liouville form is obtained:

e (Y)ko\Qa(y) = —;—;Qx(y) + (k2 +k2) Qr(y)- (3.27)

Using the PEC boundaries on the electric field again the boundary conditions for
@x(y) can be established as Qx(y)l,—y;, = 0, which completes the Sturm-Liouville
problem. The eigenvalues of this problem are again ko » While the weighting function
in this case is the permittivity €,(y). The orthogonality of the eigenfunctions follows
directly from the Sturm-Liouville problem and can therefore be stated as

/ Qo (1) D (9)2 () dy = EBm (3.28)
0

which will be used later to establish the general orthogonality relations of the LSE
modes.

To solve equation (3.27), it is first of all multiplied by @, (y) and integrated over the
computational domain. The term containing the second derivative is then integrated
by parts and the boundary conditions are used to obtain the intermediate result:

b

kSA/gr )QA(y /b[< >2+ (/f§+k§)62§(y)] dy. (3.29)

0
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3 The Analytical Model

The unspecified function @, (y) is again expanded, this time using the Fourier-sine

series QA(Y) = Yoo Gum@am(Y) = D or_1 Omsin(%ry). This finalises the repre-
sentation of the Hertzian potential as

IT, (r) = Ay cos(k,2) Z O Sin(ky my) cos(k.2)e,,. (3.30)

m=1

Inserting the expansion of @, (y) into eqn. (3.29) and introducing similar auxiliary
terms like in the last chapter delivers

[c e o]

0= Z Z [T)\,mm’ - k(Q),)\PA,mm’} Armaxrm’, (331)

m=0m’'=0

with the auxiliary quantities

b
dQ/\,m(?J) dQ/\,m’ (y) 2 2
T — [ (B2 4 1) Qo (5)Qur ()| dy
0/ dy dy
b (3.32)
Pr = / o (1) Q@ (1) Qe ().
0

The expansion needs to be terminated after N terms, so that the final system of
equations, just like in the case of LSM modes, reads as

N
0= [Tamm — kg \Prommr] @ for allm’ =0,1,2..N, (3.33)

m=0

or in matrix form
[T\ — kg ,\Palg=0. (3.34)

The Solution Strategy

The general matrix equations (3.22) and (3.33) are identical. The only changes are
the definitions of the matrices T , and P ,, while both are symmetric in both cases.
In theory, a solution to the systems of equations established in the previous sections
is possible. Though in reality, of course, this might only be feasible for a small
number of expansion functions. Given the approximative nature of the solution, a
reasonably large number of basic functions is needed to grant a result satisfiably
close to the correct analytic solution of the Sturm-Liouville problems.

Thus, the only option to keep the accuracy high is by solving egs. (3.22) and
(3.33) numerically, rendering the overall result semi-analytical, while the general
representation of the eigenmodes remains analytically correct.
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3.2 Eigenmode Calculations

For this purpose, a Python-based [81] programme called WIzaRD was developed,
which will be introduced in detail in Chapter 4. In Fig. 3.3 and 3.4 the electric
field strengths of the LSM and LSE modes with the lowest eigenfrequencies of a test
structure are shown, both calculated using WIzaRD.

Figure 3.3: Absolute value of the electric field strength of the LSM mode with the lowest
eigenfrequency in a test waveguide cut open at z = a/2 and y = b/2 for clarity.

It shall be noted here that, due to the symmetry of the structure, the eigenmodes
exhibit symmetry (or antisymmetry) as well. Put into praxis this means that either
all even or odd expansion coefficients are 0. Thus, the number of basis functions
that are used to represent the final mode is effectively halved.

Orthogonality Relations

LSE and LSM modes form a complete, orthogonal set of eigenmodes, making it
possible to expand any given field into a weighted sum of these modes.

It should be mentioned here that while the magnetic fields are orthogonal in the
conventional sense (with i = u, \),

[ BB )V = Vi, (3.35)
the electric fields are orthogonal with respect to the permittivity function:

o0

/ e W)E, () - B, () dV = A2,y (3.36)

—00
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3 The Analytical Model

Figure 3.4: Absolute value of the electric field strength of the LSE mode with the lowest
eigenfrequency in a test waveguide cut open at z = a/2 and y = b/2 for clarity.

These relations ensure the orthogonality between LSE and LSM modes as well as
between the products of LSE and LSM modes, which is crucial for further consider-
ations. The detailed proof of these relations is given in Appendix A.

3.3 Electric Field Expansion

The analytical description of the eigenmodes is now used to determine the electric
field of a single point charge with the charge and current densities

p(r,t) =qo (x—%)&(y—%)é(z—ct), (3.37)
J(r,t) =cp(r,t)e,, (3.38)

and thus passing the structure in positive z-direction through z = a/2 and y = b/2
at the speed of light. In this case, Maxwell’s equations read like egs. (3.2) - (3.5).

The general methodology of such an expansion can be found, e.g. in [31]. The
aim of the eigenmode expansion is, just like before with the Fourier expansions, the
determination of the expansion coefficients x (t) and x, (¢) in

E(r,t) =Y x(E\(r) + > xu(HE,(x). (3.39)

Here, the time dependence of the field is completely moved to the unknown expan-
sion coefficients x) (t) and x, (t), while the spatial part of the electric field is a
superposition of the electric phasors of the LSE and LSM modes of the structure.
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3.3 Electric Field Expansion

To determine the coefficients, Maxwell’s equations are solved within the structure.
Therefore, the curl-curl equation of the electric field is generated:

VxVxE(r,t):—QVxB( t).

ot
Next, eqn. (3.5) is inserted and the double curl is reformulated using vector algebra:
V- (V-E(r,t) - V°E(r,t) = —po—= 8 J(r,t) — uoeogra—QE (r,t).
’ ’ ot ot? ’

Due to the y-dependence of the permittivity, the divergence of the electric field
derived from eqn. (3.2) reads

p(r,t) 1
er(y)eo  r(y)

This is now inserted into the curl-curl equation, leading to

V-E(rt) = E (r,t) - Ve, (y).

2

1
+V- (@E (r,t)- Vgr(?J)) :

The electric field on the right-hand side of this equation is now reformulated using
the eigenmode expansion (3.39):

v<222>2)+ O_J ZX“ ) VB (x ZEM 8t2XA“(t>
Sl v ( wa*“( >-v<s,.<y>).

Next, the general Helmholtz-like equation for both eigenmodes (3.10) is applied to
the first term on the right-hand side:

\Y ( £ (I‘, t) ) +u ;J ( r, ) _C_lggr(y) Z WA,MXA,;L(t)EA,M (I‘)

gr(y)&“ 0
1
-0V (@E (x)- wy))

1 2
- ?57"(9) ZEA# (r) @X)W(t)
0 '

(3.40)

3 V- (%EA (x) - Ver<y>>
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3 The Analytical Model

After cancelling out the two equal terms and writing g—;X/\,u(t) = X (t), the final
form of the curl-curl equation reads as

S (250) 2= ety (Z (0 (O3 + i () By ()

er-(y)eo Co X

(3.41)
+ > (D w) + % (1) E, <r>> .

At this point, the orthogonality relations from Section 3.2.2 are employed. For this,
eqn. (3.41) is first of all multiplied by E,, (r) and then integrated over the cavity
volume (c.f. Fig. 3.2). Due to the orthogonality of the modes, all terms dependent
on E, (r) vanish, while the integral over the terms dependent on E, (r) will yield
A3U,0y x. Thus, the resulting equation reads as:

o (06 + i (1) = —W (fv(250) B, mav
+ / 22 a;’t)E» (r) dV).

In the same manner, multiplying (3.41) by E, (r) and integrating over the volume
of the cavity and using the orthogonalities to cancel out terms dependent on E, (r),
the source equation to solve for y, (¢) is

w0+ 0 =~ ([ 7 (2550 ) By av
fl

# [ g, wav)

For an exact solution of the integrals on the right-hand side, the reader is referred
to Appendix B. At this point, it shall be sufficient to state that the solution of the
integrals basically amounts to an evaluation of the electric field components of the
modes and their derivatives on the beam axis, while the z-coordinate is transferred
from space to time using the speed of light. With this, the differential equations for
the coefficients read

(3.42)

(3.43)

. WAC nm mmy |
o (B ws +¥a (1) = z‘i\[},\gok k. 111( ) Z qusm< 5 )sm(k;zcot) (3.44)

and

2

N
. qc . /nm . mmy .
X (B) W + X, () = 7 U050 k2 sin <7> E Qumby,m sin (7> sin (k.cot) . (3.45)

m=1
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3.4 The Longitudinal Wakefield

Both equations (3.44) and (3.45) are second order ordinary differential equations of
the form f(t)w? 4+ f(t) = O(t), for which a general solution can be found using the
variation of constants. This general solution is

EI'—

T
/O sin (w (t — ")) dt’.
0

The term T' = min (¢, L/¢y) indicates the upper boundary of the integral, meaning
that the evaluation can be truncated at L/cq because at this point, the charge leaves
the cavity and does not contribute to the electric field any longer.

Using this strategy, eqs. (3.44) and (3.45) can be solved, and the final expansion
coefficients can be written down as:

0 quk‘zc% . <n7r> XN: . <m7r>
= — Sin (| — m S | ——
X A)\U)fo 2 — D 2

T

: /sin (k.cot') sin (wy (t —t)) dt/, (3.46)

0) qk*cd | <n7r> ﬁ: b g (TTLW)
=——220 gn(— mkymsin [ ——
Xu A U,wue0 2 iy, 2

m=1

T

-/[shl(kgcof)snlﬁuu(t——tﬁ)(if. (3.47)

3.4 The Longitudinal Wakefield

With the knowledge of the time-dependent electric field E(r,¢) generated by the
point charge inside the dielectrically lined rectangular waveguide, it is now possible
to determine an analytic expression for the wakefield (for more information, see
e.g. [32]).

The wakefield is evaluated acting on another point-like test charge following the
generating charge in a distance s (c.f. Fig. 3.5) according to

<99 ,Z+Q>dz (3.48)

The wake function thus is an integral over the longitudinal component of the electric
field (the z-component in this case), evaluated at the beam axis (z = a/2 and
y = b/2), and is dependent on the distance between the two charges.
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3 The Analytical Model

Figure 3.5: Field generating charge (green) and test charge (red) inside a dielectrically
lined rectangular waveguide.

Using the field expansion (3.39) in eqn. (3.48), the wakefield can be rewritten as

W, (s) Qtest / <Z X ( )% (%, g, z)) dz, (3.49)

which is basically a sum over the contributions of each mode to the wakefield. Since
all components of the given equation are known analytically, the wakefield integration
can be carried out symbolically.

However, inserting eqs. (3.46) and (3.47) into the upper equation and using the
complete expressions for the electric fields of the modes would lead to unmanageably
long terms, where most parts are constant anyway and are not relevant for the
integration itself.

Therefore, the auxiliary quantities

N

o= - 4 () (5
= A)\U)\SO sin 2 mzz:l(b"m St 2 /)7 (3.50)

N
. qk?cd . (mr) , <m7r>
- T _ mk m - /> . 1
Xu AU sin (= mzlqﬂ, yom S0 | =5 (3.51)
n N

E, .= — Aywyk,sin (7) ;(p\msm ( ) , (3.52)

n N mm
Bpz = — Auk.sin () Z_ yonsin (727 (3.53)
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are introduced. With them, expression (3.49) can be simplified to
1

Qtest

Wo,(s) =

X Eon .z
A

L T (3.54)

//sin (k.cot') sin (w%,\ (Z:r ° t’)) dt’ cos (k,z) dz,
0
0 0

where T* = min ( &+ A).
co co

The general challenge here is the evaluation of

L T
I(s) = //Sin (k.cot") sin (WW\ (z T t')) dt’ cos (k,z) dz,
Co
0 0

which is considered in detail in Appendix C. At this point, it shall be sufficient to
state the integral as

- 1 1 >0
1(s) = Rz (2= 2677 o (Roau L)) cos (ko) | for s — 0 (3.55)
(cok, — w,\,,t)2 (cok. 4+ wap) (2) for s <0

Important to note here is that the only term dependent on s is cos(ko » ,s); everything
else are constants and geometric parameters or mode characteristics.
Combining this result with egs. (3.50) - (3.53), the prefactors

2
ciwak2k? sin® (%) <Z ¢am SN (%)) (2 — 2¢7'™ cos (ko \L))
eoUx (cok, — cu,\)2 (cok, + wy)
2
ikl sin® (2F) (Z QumKym Sin (%)) (2 — 2¢9'™ cos (ko L))

eoU,, (cokz — w,)? (coks + wy)

Ry = —

Ky = —

are generated. Using these, the final expression for the wakefield reads

1 fors>0
Wo,(s) = <Z Kk cos (ko rs) + Z Ky, COS (koﬁs)) + fors=0 . (3.56)
A P 0 fors<O

This expression shows that the wakefield in the case of an electric field resulting from
a mode expansion is generally a superposition of contributions from each mode. The
contribution strength of the modes is summarised in k) and &, (often called ‘loss
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3 The Analytical Model

factors’ to signalise that they basically indicate how much energy of the generating
particle is stored in the respective mode). Both are only dependent on geometric
constants and mode characteristics. Thus, detailed knowledge of the electric fields,
while vital for the derivation of the wakefield, is eventually unnecessary for the wake
function. Additionally, several other properties of the wakefield can be deduced from
the analytic descriptions of the loss factors:

1. Both loss factors are proportional to sin (%), which is zero if n is even. Thus,
neither LSE nor LSM modes with an even n in their wavenumber k, contribute
to the wakefield.

2. Additionally, sin (%) is zero if m is even, as well. Since, as stated in Section
3.2.2, either all m are even or odd, depending on the symmetry of the mode, it
can be stated that all modes where the entirety of m is even do not contribute
to the final wakefield.

3. For LSE modes, the loss factor is proportional to k2k2. Thus, it vanishes for
either k, = 0 or £, = 0. Both cases therefore deliver a loss factor that is
zero and do not contribute to the final strength of the wakefield. This can be
utilised to specify the case differentiation in Appendix A.

Using these symmetry conditions, the loss factors can be represented as

2 .
4 K% _/mm (2 — 2¢9'™ cos (ko L))
Tk (Z oin () E

2
4 mm
o = 5()CLLI{I0# k2+k2 (Z q,um mSHl( 2 ))

' (2 — 27" cos (ko L)) .
(k(%,u - k2)2

(3.58)

The Longitudinal Wake Potential

The longitudinal wake function serves as a Green’s function for the determination
of the longitudinal wakefield of any form of arbitrarily shaped particle bunch (then
called wake potential). This means that the wake potential of any particle bunch
can simply be calculated by convolving the wake function with the respective bunch
shape function,

(s) = / Y (s—s) Wy (s)ds". (3.59)
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Here, v (s) is the normalised bunch shape function. For a Gaussian bunch, this
function, e.g., is

1 s — So
09 == ew (<15, (360
where sq is the centre of the Gaussian pulse and ¢ is the corresponding r.m.s. bunch

length.

3.4.1 A Remark on Normalisation

In Chapter 3.2, the normalisation constants for both LSE and LSM were not defined
further.

A normalisation mathematically amounts to the multiplication of a quantity with a
constant factor Ay, (most often this factor is smaller than one), which is in this case
included in the expressions for the electric and magnetic fields. The orthogonality
relations, due to the scalar product of the fields in the integral, then automatically
scale with Ai .0 as described in the previous sections.

Resulting from the manner in which they have been determined, also the expansion
coefficients of the electric field expansion in Section 3.3 scale with the normalisation
constant. Following eqs. (3.46) and (3.47), this scaling goes with A;L.

The total product of an expansion function and an expansion coefficient, which is
important for the loss factors, is thus scaling with A;L - Ay, = 1. A determination
of the normalisation constants is therefore not necessary if the fields are later used
in a series expansion.

3.5 A Closer Observation of the Longitudinal
Boundary Conditions

As introduced in section 3.2, for the eigenmode calculation the structure was consid-
ered to be completely enclosed in PEC. This is in conflict with the situation shown in
Fig. 3.1, as the presence of the beam requires the structure to be open in z-direction.
This discrepancy may have effects on the final wakefield that have not been consid-
ered yet and may even be an over-simplification. This may, in turn, lead to the used
model becoming inapplicable for a realistic scenario. That this, however, is not the
case here shall be proven now.

The proof is based on the concept of the superposition of waves: A three-dimensional
eigenmode as presented in Section 3.2 is basically a standing wave in all three dimen-
sions. On the other hand, the eigenmode of a longitudinally open structure would
only be a standing wave in the transversal directions, whereas in the longitudinal
direction it would be represented by a free or travelling wave. A fundamental concept
of electrical field theory is that a travelling wave can be represented as a sum of
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3 The Analytical Model

two standing waves [82], weighted with the according transmission and reflection
coefficients. These two standing waves need to

1. be of the same eigenfrequency, and

2. differ in their boundary conditions such that one is terminated by PEC and
the other by PMC.

Consequently, the eigenmodes of the longitudinally open structure can be calculated
by superimposing the already known three-dimensional eigenmodes for PEC bound-
ary conditions with the eigenmodes for PMC boundary conditions in longitudinal
direction only (the transversal boundaries can remain as PEC). Thus, it is necessary
to investigate the effects of changing the longitudinal boundaries from PEC to PMC.

First, all modes are generally a combination of sines and cosines. Switching from
PEC to PMC basically means exchanging the one-dimensional function R(z) for its
derivative or vice versa, what amounts to exchanging sine and cosine (and the sign)
in the Hertzian potentials. For example, the Hertzian potential of an LSE mode
changes according to

IT), g(r) = Ay cos(k,x) cos(k.2)Qx(y)e, for PEC,
IT) p(r) = —Ay cos(kyx) sin(k,2)Qx(y)e, for PMC.

It is important to note here that there is mo change in the behaviour in neither
transversal component. The Helmholtz-like equation (3.13) is not influenced by
the change in the boundary conditions, as well. To solve the Helmholtz-like equa-
tions, the actual behaviour of the Hertzian potential in longitudinal direction is
only relevant with respect to its second derivative. The behaviour of the second
derivative compared to the original function, however, is identical for sine and cosine,
L R(z) = —kZR(z). Consequently, all the source equations on which the determi-
nation of the coefficients of the Fourier expansion are based do not change with a
switch in the boundary conditions. Thus, the eigenfrequencies of the calculated fields
remain identical, and condition 1. is fulfilled. Note that, however, the expressions
for the fields do change, e.g. the longitudinal component of the electric field of an
LSE mode is

E, p(r) = —k.sin(k,2)Q(y) cos(k.z) for PEC,
E, (r) = k. sin(k,z)Q(y) sin(k. z) for PMC.

This will consequently influence the derivation of the coefficients of the eigenmode
expansion of the electric field, described in Section 3.3. Basically, it leads to the
same sine - cosine exchange in equations (3.44) and (3.45). Again for LSE modes,
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this would mean that the expansion coefficients will change according to

T
Xae(t C’)\/sm (k.cot’) sin (wy (t — ")) dt’ for PEC,

0
ot (8) = i / cos(kscot') sin (w (£ — ) dt’ for PMC,
0

where C' is the proportionality factor containing the remaining contributions.

To generate the total electric field of the point charge, though, the coefficients and
the electric fields of the modes are multiplied. This, firstly, compensates for the
change in the sign. For the wakefield, the longitudinal electric field is then integrated
again. The resulting wakefield contributions per mode then read (for LSE modes)

L
HE B,\/cos
0

Wim(s) = By sin(kzz)

sin(k,cot’) sin (w) (t — ¢')) dt'dz for PEC,

cos(k,cot') sin (wy (t — t')) dt'dz for PMC,

o\'ﬂ o\ﬂ

[e=]

with B, indicating a proportionality factor again.

Evaluating these integrals leads to the exact same result. Consequently, a dielec-
trically lined rectangular waveguide with PMC boundaries in longitudinal direction
has the exact same wakefield as the same waveguide using PEC boundary conditions.

The aforementioned superposition of two standing waves to represent a travelling
wave could, for example, be carried out for the electric fields. So, to generate the
open boundary case, the electric fields for both the PEC and the PMC case would
be superimposed, and then integrated to gain the longitudinal wakefield. Both
integrations would however lead to the same wakefield, making the superposition
in this case all but unnecessary. Thus, due to the PEC and the PMC case both
generating eigenmodes with the same eigenfrequencies and the same total wakefields,
the open boundary case can be represented using PEC boundaries in longitudinal
direction alone.

Note that this is only true for the wakefield; as the electric fields and also the
magnetic fields of both cases are different from each other.
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3 The Analytical Model

3.6 Summary

In this chapter, it has been shown that the wakefield generated by a point charge
inside a rectangular, dielectrically lined waveguide can be expanded in a series of
eigenmodes. These eigenmodes are LSE and LSM modes, and can, in turn, be
determined using a Rayleigh-Ritz method based on Fourier expansion.

The eigenmodes were calculated for a structure completely enclosed in PEC. It
was shown that this treatment is sufficient, even though in an actual application of
the dielectrically lined rectangular waveguide as a wakefield dechirper, the structure
would have to be open in z-direction. The reason for this is proven to be the
invariance of the wakefield with respect to an exchange of boundary conditions from
PEC to PMC in z-direction. A superposition of these two wakefields would deliver
the result for open boundary conditions.
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4 The Programme Package WIzaRD

In this chapter, the programme package WIzaRD is presented as the numerical
approach to solve the analytical problem shown in Chapter 3. This consideration
is divided into the tasks of eigenmode and wakefield computations. The underlying
principles of the implementation are discussed as well as further assumptions and
conditions that can be exploited to increase the efficiency of the programme pack-
age. WIzaRD is then benchmarked against the commercial software CST STUDIO
SUITE ®) [35].

4.1 The General Solution Strategy for Wake
Function Calculations

The set of problems presented in the previous chapter is obviously divided into
eigenmode computations and the calculation of the loss factors. Both issues contain
series expansions: the eigenmode computation is only possible due to a Fourier
expansion of the y-component of the respective Hertzian potentials. Moreover, the
basis for the loss factor calculations is the expansion of the electric field into a set
of eigenmodes.

As discussed before, this has the consequence that the series expansions need to
be terminated after a finite number of basis functions, rendering the overall result
an approximation. Even so, analytic expressions of the eigenmodes and the wake
function are available. Additionally, if the set of expansion functions is chosen in a
suitable way, these approximations still show a very high accuracy.

As seen from the equations (3.57) and (3.58), the loss factors themselves are
only dependent on mode characteristics and geometrical parameters of the struc-
ture, which is another advantage. This enables the wake function calculation with
knowledge that can purely be gained from an observation of the eigenmodes of the
structure, with no necessity to compute an electric field as an intermediate step.

Consequently, the first step to calculate the wake function in a certain type of
dechirper is the computation of its eigenmodes. For this, at first the geometry needs
to be set using the parameters introduced in Fig. 3.2. Then, specific eigenmodes
can be computed solving the matrix equations (3.22) and (3.34). This will result
in knowledge about the expansion coefficients of the Fourier series, and thus, all
requirements to solve eqns. (3.57) and (3.58) are met. Using equation (3.56), the
wake function can then be calculated.
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4 The Programme Package WIzaRD

The given set of problems is implemented in the programming language Python [81].
Next to the high performance of programmes written in this language, one major
advantage of Python is the availability of a high number of specific modules which
work together seamlessly and, in this case, enable combining the efficiency of matrix
calculations with the accuracy of a symbolic evaluation of integrals.

4.2 Eigenmode Computations

In the following section, the focus solely lies on the eigenmode computation with
Python and the methods and modules used for it.

The quantities important for the later computation of the wake function are the
frequency of the eigenmode as well as the Fourier expansion coefficients from which,
theoretically, the electric and magnetic field distributions can be derived.

It shall be emphasised once more that all considerations for the eigenmodes are
made for the 3D case in which the structure is closed in all three spatial dimensions
and terminated by PEC.

4.2.1 The Algorithm for Computing the Eigenmodes
The General Approach

As already stated before, the determination of the eigenmodes of a dechirper is done
by solving the equations (3.22) and (3.34). Both of these equations are eigenvalue
equations corresponding to the eigenvalue k2, the total wavenumber squared.

The entries of the matrices Ty, T, Py and P, are defined in the equations (3.20)
and (3.32) as integrals depending mostly on the Fourier expansion functions and
their derivatives. However, also the one-dimensional wavenumbers k, and k., appear
in the definition of Ty and T,,.

All four integrals can be solved analytically for the chosen Fourier expansion
coefficients. The resulting general functions will give the matrix entries in dependence
on m and m’, k, and k.. Special attention needs to be paid to the T, and P,
since both are additionally dependent on the changing relative permittivity (its
value as well as the coordinates of the jumps). Especially this more complicated
behaviour makes it more effective to determine an analytically correct expression for
the integrals once and then evaluate them by simply plugging in parameters instead
of computing the integrals anew for every new combination of parameters possible.

The size of the resulting matrices is dependent on the number of expansion coef-
ficients chosen. Selecting N Fourier expansion functions will result in matrices of
the size N x N. Due to the nature of the integrals that make up the matrices’
entries, the matrices will be symmetric, real-valued, sparse and will exhibit a full
rank. Accordingly, the matrices possess N real-valued eigenvalues corresponding to
N different wavenumbers k2 and N different eigenmodes. Since for all the eigenmodes
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4.2 Eigenmode Computations

arising from one specific matrix configuration k, and k, remain unchanged, these
eigenmodes will only differ in their behaviour in y-direction. Analogously to TE and
TM modes, the total one-dimensional eigenvalue in y-direction shall be defined as

k? =k — kI — k2. (4.1)

However, due to the behaviour in y-direction being defined via a Fourier series, an
extraction of a single m that corresponds to &, like in the case of TE and TM modes,
where k, = mm/b, is not possible here. This also makes a simple identification of the
eigenmodes via the triple of integers (n, m, () impossible. For TE and TM modes, this
triple specified the number of half-waves the fields of the eigenmodes would exhibit
in -, y- and z-direction and made both a simple referencing and identification of
modes from their respective field patterns possible.

To preserve this intuitive nomenclature for LSE and LSM modes, a substitute
identifier m for the behaviour in y-direction shall be introduced here. As stated
before, the eigenvalue equations (3.22) and (3.34) each possess N different eigenvalues
corresponding to different eigenvectors and thus eigenmodes. To specify a single
mode, one of these eigenvalues has to be selected. The identifier m is chosen such
that in an ascending list of eigenvalues corresponding to the same problem defined
by k, and k., m = 0 refers to the eigenvalue with the lowest total wavenumber and
thus to the eigenmode with the lowest eigenfrequency. Subsequently, m = 2 refers
to the mode with the second lowest eigenfrequency, and m = N — 1 to the mode
with the highest frequency that is calculable from the given matrix equation. As a
consequence, to calculate the (N + 1)th eigenfrequency of a set of solutions defined
by k, and k., also N 4 1 expansion functions are needed.

The Implementation in Python

In practice, this set of problems is solved using Python’s modules SymPy [83] and
NumPy [84]. The schematic of this procedure is visualised in Fig. 4.1,

As a first step, the geometry is specified in a single file that stores all unchanging
geometrical parameters as well as the chosen number of Fourier expansion functions.
This file is then used as input for all further procedures.

SymPy has the advantage of being able to process symbolic expressions. In this
work, it is used to store the general solutions of the integrals (3.20) and (3.32) which
have previously been analytically solved by using Mathematica [85]. The resulting
symbolic expressions are then evaluated and transferred into a NumPy array by
choosing k, and k., for the selected set of modes. The eigenvalue equations (3.22)
and (3.34) are then solved by first generating the system matrices P):LT A and then
solving the eigenvalue equation

P;,}LTAyl—"q = kg,)\,p,q‘
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Figure 4.1: Schematic of the mode calculation procedure.

This is done by plainly using the native NumPy commands for eigenvalue determi-
nation.

As a next step, by specifying m a single eigenmode is selected, for which the
eigenvector is then calculated using the inverse iteration scheme (c.f. [86]). In this
variant of the power method, the eigenvector corresponding to a known eigenvalue
can iteratively be determined by the update scheme

Qi1 = (PK,LT,\,N — koul) ai,

where ¢ indicates the iteration step.

In WIzaRD, the initial vector qq is chosen such that all entries are set to zero
apart from the (m+ 1)th entry, which is set to 1. This vector is then updated a fixed
number of times, where due to the fast convergence of the inverse iteration scheme
even a small number of steps like, e.g., 25 are enough.
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4.2 Eigenmode Computations

Type | n | m | L] qiap | Q2rp | - | NI
LSM | 1| 1]1|q 92,1 <o | N

Table 4.1: Structure of the result vector storing relevant information about the eigenmodes
later used to compute the wake function with exemplary entries for the LSM; ;1 mode.

The generated eigenvector then corresponds to the expansion coefficients for the
chosen mode. Together with information about the mode type, the triple (n,m, 1)
and the eigenfrequency of the mode, the coefficients are then stored in another
vector (c.f. Table 4.1). This single vector has stored all necessary information about
a unique identification of a single mode, and is all that is needed to determine the
field distributions of the mode and their later contribution to the wake function.

4.2.2 Analysis of the Field Distributions of LSE and LSM
Modes

In this section, the electric field and magnetic flux density distributions of LSE and
LSM modes are going to be analysed and compared to analytical expectations and

results simulated with CST Microwave Studio®) (CST MWS).
For this, a model structure with the following geometrical parameters is introduced:

a = bcm,
b=18cm,
d=1.5cm,
L = 20cm,
e = 6.

This geometry is very similar to the structure later used as the prototype dechirper
for ELBE; however, it is only one fourth of the length of the prototype to simplify and
speed up computations. Additionally, an intermediate gap widths of 2d —b = 1.2 cm
is chosen.

For this dechirper, the lowest LSE and LSM modes shall now be visualised. There-
fore, it is first of all necessary to explicitly state the analytic formulations of the
electric field strength and the magnetic flux density of these modes.

For LSE modes, the electric field is derived from the equations (3.23) and (3.30),

N
k. cos(kyx) D> qamsin(kymy)sin(k,z)

m=

E)\ (I‘) = A)\CL))\ 0 . (42)

N
—kysin(kyx) D qamsin(kymy) cos(k,z)

m=1

—
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4 The Programme Package WIzaRD

Here, k, = k, = 0 results in a trivial solution and is thus excluded. The magnetic
flux density can be derived from equation (3.24), resulting in

kysin(kyx) Y qrmbkym cos(kymy) cos(k,z)

1

k.x) i Qam Sin(ky my) cos(k.z) | . (4.3)

m=1

ﬁMz

B, (r) = jAx | — (K2 + k2) cos

—~

k. cos(k,x)

ﬁMz

Oomby,m cos(ky my) sin(k, z)
1

The mode with the lowest eigenfrequency is always the mode with the lowest possible
combination of the indices (n,m, ). For LSE modes, the modes with m = 0 do not
exist.

On the contrary, the cases n = 0 and [ = 0 are allowed, but mutually exclusive.
For the chosen geometry, however, k, for [ = 1 will be smaller than &, for n = 1
since L. > a, which is why the mode with n = 0 will overall result in the smaller
eigenfrequency. The mode in question is thus the one with (n = 0,m = 1,1 = 1),
from now on referred to as LSEq ;; analogously to the common notation for TE and
TM modes. Using these specifications, the expressions (4.2) and (4.3) simplify to

N
E,\,on?x (I‘) = A,\,onw)\,on% Z qrm Sin(ky,my) sin (%Z> ) (4-4)

m=1
for the electric field and
0
7\2 N . .
Byon (r) =jAsoun | (Z) z::l Gam S (Kymy) cos(7 2)

N
T > @omkym cos(ky my) sin (%z)

m=1

, (4.5)

for the magnetic flux density.
For LSM modes, the magnetic flux density can be derived from (3.11) and (3.18).
The resulting field is

N
—k,sin(kx) Y qum cos(ky my) cos(k,z)

Wy m=0
B,(r)=—jA,— 0 : (4.6)
“ N
ky cos(kzx) Y qum cos(ky my)sin(k,z)
m=0

where k, # 0 and k, # 0 need to be fulfilled to exclude a trivial solution. The electric
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4.2 Eigenmode Computations

field can be derived from the magnetic flux density as

N
—ky cos(ke) D qumbkymsin(ky ,y) sin(k.z)
m=0
N
(k2 + k2)sin(kyx) > qum cos(kymy)sin(k.z) | . (4.7)
m=0

N

—k,sin(k,x) Y qumkym sin(kymy) cos(k,z)

m=0

1

E, (r) = AM%

=

Here, the eigenmode with the lowest frequency corresponds to (n =1,m = 0,1 = 1);
it will be denoted as the LSM; ¢; mode. The fields resulting from this specification
are

N
—Z 08 (22) Y quumbym sin(kyny) sin (72)

m=0
1 5 2\ . N .
By () = Auion s | (5 4+ 5 ) s (52) 20 an cos(hymy)sin (2)
N
— 7 sin (%x) > Qumkym sin(ky my) cos (%z)

m=0

(4.8)

and
' N
—Zsin (g:c) > Qum cos(ky my) cos (%z)
B S W I (U " 4.9
B, 101 (r) = —jAu101 2 . . (4.9)

= cos (%x) >~ Gum c08(kymy) sin (%Z)
m=0

In WIzaRD, these eigenmode field distributions can be calculated utilising SymPy
once more, which allows for a direct implementation of the definitions in egs. (4.2),
(4.3), (4.6) and (4.7). Then, with the expansion coefficients and frequencies calculated
with the scheme shown in Fig. 4.1, the fields are specified. This allows for a deeper
analysis of the fields along one-dimensional axis, on cutting planes and as a full
3D field plot. For the LSE(;; and the LSM; o; mode, the absolute electric fields
(normalised to a maximum amplitude of 1 V/m) along the y-axis for z = a/2 and
z = L/2 are shown in the figures 4.2 and 4.3 (for 50 expansion coefficients of the
Fourier series and 28,000 tetrahedral mesh cells in CST MWS). Analytically, the
behaviours can be predicted from the equations (4.4) and (4.8) as

N
a L .
E)\,Oll,x <§7 Y, 5) X Z dxm Sln<ky,my)7
m=1

a L 1 &
Eu,lOl,y 57 Y, 5 X —/— Z u,m COS(kany).
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Figure 4.2: Normalised absolute electric Figure 4.3: Normalised absolute electric

field of the LSEq i1 mode at the coor-
dinates * = a/2 and z = L/2. The
result computed with WIzaRD is compared
to a simulation from CST MWS. The
results computed with both methods agree
very well. The average relative difference
between both methods is < 1 %.

field of the LSM; o1 mode at the coordi-
nates = a/2 and z = L/2. The result
computed with WIzaRD is compared to a
simulation from CST MWS. Both meth-
ods agree very well overall, however, the
jump resulting from the step-like behaviour
of the permittivity in the CST MWS

version suffers from the finite grid reso-
lution. The average relative difference
between both methods is < 1%

Basically, these projections on the y-axis reflect the behaviour of purely the Fourier
expansion series. Additionally, it can be expected that the LSM; ¢; mode will show
a step-like behaviour at the transitions between dielectric and vacuum, as the electric
field is inversely proportional to the relative permittivity. And in fact, this behaviour
can easily be seen in Fig. 4.3. In this case, the comparison to CST MWS also clearly
shows the advantages of using a symbolic-based implementation style like SymPy:
the jump in the permittivities is difficult to resolve with a finite grid spacing, or
requires a high number of grid points to be resolved sharply. On the other hand, a
symbolic computation can utilise the Heaviside-function like in equation (3.1), which
results in a sharply defined jump.

Similar considerations can be made for the magnetic flux densities. Here, however,
it is more advantageous to select the projection axis at * = a/4 and z = L/2, since
at © = a/2, the resulting fields would be zero along the complete y-axis. At the
chosen locations, the magnetic flux densities of the LSE(;; and the LSM; o; show
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the following behaviours derived from the equations (4.5) and (4.9):

N
a L
E)\,Oll,z (ZJ Y, 5) X Z qA,mky,m COS(k’y’my),

=1
N
a L
Eu,lol,z (Zu Y, 5) X Z Qu,m cos(k%my).
m=0

From these expressions it can be seen that basically, B, 1o, , (%, Y, %) shows a simi-
lar behaviour to E,, ¢, (%, Y, %) and is thus directly proportional to the Fourier
expansion series. However, it is not directly dependent on the relative permittivity
function. This can also clearly be seen from comparing the figures 4.5 and 4.3; the
normalised absolute electric and magnetic flux densities do look identical apart from
the dependence of the electric field on the inverse relative permittivity, which causes
the jump.

According to the upper simplifications, By g1 . (jzl, v, %) should be dependent on
the derivative of the Fourier expansion series. Additionally, there is no direct depen-
dence on the relative permittivity visible in the analytic expressions. However,
Fig. 4.4 clearly shows that the permittivity still influences the overall behaviour,
seen in the dents that are visible between 0 and 3mm and 15 and 18 mm in the
graphical display of the magnetic flux density on the chosen axis. The reason for
this is even with no clear proportionality of the fields to the relative permittivity, the
Fourier expansion coefficients were still computed from the matrix equations (3.22)
and (3.34), where some of the matrices do depend on the relative permittivity and
thus indirectly influence the expansion coefficients and the final Fourier series.

4.2.3 Convergence Studies

As already stated in Chapter 3, both series expansions used for the wake function
computations are only analytically correct as long as an infinite number of expansion
functions is chosen. Should the series expansion be terminated after a finite number
of terms, which in all realistic scenarios has to be the case, a series expansion
only represents an approximation. The accuracy of this approximation is strongly
dependent on the number of expansion functions used.

To assess the accuracy of the Rayleigh-Ritz expansion method for LSE and LSM
modes, convergence studies regarding the eigenmodes of the previously introduced
model structure have been conducted. Two criteria have been of importance here:
first, the convergence of the eigenfrequencies calculated with WIzaRD towards a
certain value for an increasing number of Fourier expansion functions, and second,
the agreement with and convergence to the numerically obtained eigenfrequencies
(computed with CST MWS).
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Figure 4.4: Normalised absolute magnetic Figure 4.5: Normalised absolute magnetic

flux density of the LSEq 11 mode at the
coordinates x = a/4 and z = L/2. The
result computed with WIzaRD is compared
to a simulation from CST MWS. The
results computed with both methods agree
well. Despite no clear dependence on the
relative permittivity in the analytic expres-
sion, the magnetic flux density is clearly
dependent on it, seen in the dents that the
plotted field displays between 0 and 3 mm
and 15 and 18 mm. Compared to the elec-
tric fields, the relative difference between
both methods is higher here, though still

flux density of the LSM; 1 mode at the
coordinates x = a/4 and z = L/2. The
result computed with WIzaRD is compared
to a simulation from CST MWS. Both
methods agree very well. According to
the analytic expressions the magnetic flux
density at this location shows a similar
behaviour like the electric field displayed
in 4.3 apart from the dependence on the
relative permittivity function, which can
be clearly seen from comparing the two
graphs. The average relative difference
between both methods is again < 1%

<5%

For this purpose, the LSEq;; and LSM; o; modes of the model structure have
been considered. In the case of the LSM; o; mode, the eigenfrequencies computed
with WIzaRD for an increasing number of expansion functions are shown in Table
4.2.

Table 4.2 also contains the eigenfrequency computed with the eigenmode solver
of CST MWS and 28,000 tetrahedral mesh cells! as a reference. Already from the
numerical values alone it can be seen that while the results obtained with WIzaRD
and the result from CST MWS lie very close together, they differ in the range of
approximately a few percent. Additionally, it can be seen that the agreement between
both values increases slightly for a larger number of expansion functions taken. This
behaviour is visualised in Fig. 4.6.

A similar behaviour can be observed for the LSEj; ; mode. The eigenfrequencies

IThis number has been decided upon in a convergence study that will not be regarded further
here.
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N [1] | £[GHZ]
5 | 2.61510802
10 | 2.61029354
15 | 2.60910998
20 | 2.60889413
25 | 2.60840116
30 | 2.60811633
35 | 2.60780646
10 | 2.60778679
45 | 2.60766262
50 | 2.60762101

[ fosr [ 2606801 |

Table 4.2: Eigenfrequencies of the LSM; 1 mode of the model structure computed with
WIzaRD and an increasing number of Fourier expansion functions Ne.,. The eigen-
frequency computed with CST MWS (28,000 tetrahedral mesh cells) is displayed for
comparison.

computed with WIzaRD converge to a certain value and show a high conformity
with the CST MWS result, however, after reaching a minimum at 15 expansion
functions, the agreement between both methods does in fact decrease again with an
increasing number of expansion functions used (see Table 4.3 and Fig. 4.7). This
behaviour of an increasing difference between the CST MWS and the WIzaRD result
is, however, entirely uncritical. First, it is still very low (in the range of less than
one percent). Second, since CST MWS is a numerical solver, the result calculated
with it is an approximation as well, and can only be used as a reference, but should
not be confused with the correct result. The computed eigenfrequency in CST MWS
is also dependent on the type of mesh and the number of mesh cells, which has to
be high enough so that the eigenmodes can be accurately calculated. The differing
values of the frequencies computed with WIzaRD should therefore be taken as a
quantitative confirmation of the effectiveness of the algorithms and programming of
WIzaRD’s mode computation rather than as a qualitative indicator of the accuracy
of the method. The true, analytically correct eigenvalues remain unknown and can
only be estimated. It has to be assumed, however, that due to being derived from
two series expansions, the semi-analytic frequencies will eventually converge to the
true analytic value.

Other aspects that have to be looked into are the accuracy and convergence of
higher order modes. It will be shown later on that to accurately compute the wake
function, especially eigenmodes with a high index [ have to be taken into account
(c.f. Section 4.3.2), while both n and m can remain comparatively low. For this
purpose, the convergence of the LSM; ; and LSEq;; modes have been plotted in
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Figure 4.6: Relative difference of the eigenfrequency of the LSM; o1 mode for an increas-
ing number of Fourier expansion functions compared to a reference frequency fr.r
(blue: frer calculated with WIzaRD and 50 expansion functions, green: calculated
with CST MWS and 28,000 mesh cells). Both curves converge to a certain percent-
age (< 0.01% for CST MWS and < 0.001% for WIzaRD) with an increasing number of
basis functions used.

Fig. 4.8 for an increasing number of expansion functions and [ = 1, 10, 100, 500. It can
be seen from both panels that while higher order modes generally need more expan-
sion functions to obtain a converged result, the differences between the computed
frequencies and the reference values quickly drop below 1%. For the observed LSM
modes, this happens already at 15 expansion functions, for LSE modes even already
above 10 expansion functions. Both numbers are still very low, and, on the greater
scope of computing the wake function and thus a high number of modes, allow for
the solution of the given eigenvalue problem in less than a second with WIzaRD?.
When considering higher order modes, another difference between WIzaRD and
CST MWS becomes apparent. The computation of eigenmodes in CST MWS needs
at the very least an estimate of the expected frequency range. Additionally, comput-
ing solely higher order modes, e.g. the LSM; 100 mode is difficult in nearly every
solver setting as it, at the very least, requires an estimate for the frequency, as well.
Modes with high frequencies also require a fine spatial grid spacing and thus a high
number of mesh cells which will make the simulations computationally expensive.

2As a ‘rule of thumb’ it can be said that for 30-35 Fourier expansion functions, WIzaRD can
calculate approximately 1,000 eigenmodes in one hour.
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N [1] | £[GHZ]
5 | 7.16928125
10 | 7.16120933
15 | 7.15902971
20 | 7.15863916
25 | 7.15851930
30 | 7.15945779
35 | 7.15845779
40 | 7.15844791
45 | 7.15843551
50 | 7.15842827

[ fosr [ 7159077 |

Table 4.3: Eigenfrequencies of the LSEq 1,1 mode of the model structure computed with
WIzaRD and an increasing number of Fourier expansion functions Ne.,. The eigen-
frequency computed with CST MWS (28,000 tetrahedral mesh cells) is displayed for
comparison.

This would be similar for any kind of discretisation method, as well. However, in
WIzaRD, a mode can be solely calculated from the triple (n,m,[) and the distin-
guishing between LSE and LSM modes. There is no grid spacing involved, and
consequently, computing a higher order mode is exactly as computationally expen-
sive as computing a lower order mode. This allows for a much faster computation of
a very high number of modes up to a comparable accuracy, which is important for
the later determination of the longitudinal wake potential following the eigenmode
expansion ansatz.

4.3 Wake Function Computations

In this section, the computational aspects of the wake function calculation based on
the eigenmodes are considered. Additionally, algorithms for an efficient sorting of
eigenmodes and conditions that limit the number of modes that need to be calculated
are introduced.

4.3.1 Calculating the Loss Factors

According to equation (3.56), the wake function can be calculated employing a
superposition of simple cosines using the eigenmodes’ eigenfrequencies and weighting
them with the loss factors (3.57) and (3.58). The loss factors, in turn, are only
dependent on geometric information about the dechirper structure, which are known
from the start, and on the properties stored in the result vector of the eigenmode
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Figure 4.7: Relative difference of the eigenfrequency of the LSEq 1 1 mode for an increasing
number of Fourier expansion functions compared to a reference frequency f,.s (blue: fr.cr
calculated with WIzaRD and 50 expansion functions, green: calculated with CST MWS
and 28,000 mesh cells). Both curves converge to a certain percentage (~ 0.001% for
CST MWS and < 0.001% for WIzaRD) with an increasing number of basis functions
used, however, the conformity between WIzaRD and CST MWS slightly drops after
reaching a maximum at 15 expansion functions.

computation. All that remains to be done in WIlzaRD is to distinguish between the
eigenmode types, collect the necessary information from the result vectors of the
mode computation and plug them into the expression (3.57) and (3.58). This can
readily be implemented using NumPy and SymPy.

A number of result vectors for a number of eigenmodes is then combined into
a result array, where a column is added at the end of the array that stores the
calculated loss factors (c.f. Table 4.4).

Type | n | m Qe | ©ap AN p | Eau
LSM | 1] 1 Gpu | G qNu Ky
LSE | 1| 2 qix | G2.n qn K

Table 4.4: Structure of the result array, now updated to store the loss factors, as well

(indicated in green).
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Figure 4.8: Semi-logarithmic plot of the relative difference of the eigenfrequencies of
different LSM; o; (left panel) LSE( ;; modes (right panel) for an increasing number of
Fourier expansion functions compared to the result obtained with 50 basis functions.
Modes with a higher [ show less conformity with fewer expansion functions, however,
above 10 expansion functions used, the difference between the computed frequencies
drops below 1% for every mode.

Mode Sorting

Computations of the wake function by a set of eigenmodes need the set of modes to
be sorted in some form to make the superposition of the wake function less arbitrary.
Especially terminating the series expansion after a certain number of eigenmodes
needs to obey a certain regularity or order, which can be granted if the modes are
sorted by ascending frequency. In that manner, using 100 eigenmodes to approximate
the wake function will not refer to 100 arbitrary modes, but to the 100 eigenmodes
with the lowest eigenfrequencies.

One difference of WilzaRD, if compared to CST MWS for example, is that it needs
the input of the triple (n,m,1) to calculate the properties of a mode. While this
is not a disadvantage in itself, it results in WIzaRD being unable to calculate a
number of modes according to their eigenfrequencies in ascending order without
further considerations.

If the eigenfrequencies would be easily predictable like in the case of TE and
TM modes (c.f. equation (2.55)), this sorting of modes could be done by a suited
algorithm that iterates through combinations of n, m and [ and sorts the resulting
eigenfrequencies in ascending order without actually having to calculate the eigen-
modes. As a second step, the generated list of modes in ascending order could then
be used as a basis to compute the actual mode properties and then the loss factors.

Since, however, the expressions of the eigenfrequency of LSE and LSM modes are
not as simple and depend internally also on the Fourier expansion coefficients, both

73



4 The Programme Package WIzaRD

the mode computations and the sorting according to their eigenfrequency need to
be done simultaneously. Here it is important to be as efficient as possible, since the
eigenmode calculation is the most computationally expensive subroutine of WIlzaRD.

The first important aspect that can be exploited here is the fact that also for LSE
and LSM modes, a triple (n’,m/,!’) indicates a mode with a higher frequency than
a mode denoted with the triple (n,m, ) if either of the three indices is larger than
for the mode it is compared to; so either n’ > n, m’ > m or I’ > [. This is readily
provable for n and [, as the wave numbers

Wo="T S e >,
a a
'r 1
k;:%>%:kzifl’>l,

also increase for increasing n and [. For m, it was already chosen such that a higher
m would indicate a mode with a higher frequency. Since this is the case, starting with
the eigenmodes that have the lowest eigenfrequencies and subsequently increasing
the indices will also make sure that modes with increasing frequencies are calculated.

According to the considerations made in the previous section, the lowest possible
eigenmodes are the LSM; ¢ mode and the LSE(;; mode. However, according to
the specifications made in Chapter 3.4, only modes with odd n and odd m contribute
to the wake function due to symmetry reasons. Calculating modes with even n and
m is thus not necessary, and skipping these modes entirely will safe computational
effort. Since zero can be considered an even number here, the eigenmodes with the
lowest eigenmodes that will be needed for the wake function computation are the
LSM; ;; mode and the LSE; ; ; mode.

Increasing either index of either mode will result in a mode with a higher eigen-
frequency. Also resulting from the considerations in Chapter 3.4, it is unnecessary
to increase n and m in steps of 1, as all even indices can be skipped here. Thus, n
and m will be increased by 2 to generate higher order modes.

Thus, theoretically, each of the basis modes indicated by the triple (1,1,1) leads
to three higher order modes, one for increasing either index: the modes denoted
by the triples (3,1,1), (1,3,1) and (1,1,2). However, it is still unclear which of
these modes, in turn, has the lowest eigenfrequency. Depending on the geometry
and the relation between a and L, a statement can be made regarding whether an
increase in n or [ will lead to the mode with the higher frequency. On the other
hand, such an assessment cannot easily be made for the increase in m due to no
concrete formulation for £, being available. The only way of reliably determining
which of these modes has the lowest frequency is actually calculating it.

Additionally, it can be deduced that this method of successively increasing the
indices of a mode will quickly give rise to a vast number of higher order modes that
need to be considered, since for every chosen mode, three indices can be increased
to generate a higher order mode.
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Figure 4.9: Tree diagram of the successive increasing of mode indices, exemplary for
the triple (n = 1,m = 1,1l = 1) for two steps. Each mode gives rise to three succes-
sively following higher order modes, from which several, however, denote identical modes
(marked with colours).

This is shown in Fig. 4.9. It can also be seen from this schematic that simply
increasing the indices might lead to overlapping cases: the triple (3,3,1) (marked
red in the figure), for example, can either be generated by first increasing n and then
increasing m, or vice versa.

To avoid having to compute modes several times due to these ambiguous cases,
WIlzaRD uses a mode pool: here, all triples of indices for which the eigenfrequency
has already been calculated are stored. If a new triple is considered, it can first
be compared to the pool to guarantee that the mode is, indeed, new, and has not
already been considered before.

The practical approach to the mode sorting is thus as follows: First, the two basis
modes LSE; ;; and LSM; ;; are computed. All of their relevant properties (the
result vectors displayed in Table 4.1) are stored in the mode pool. The pool is then
sorted with respect to ascending frequencies, so that the first mode in the pool has
then to be the lowest eigenmode that needs to be considered for this structure. This
mode is then moved to the result array with all its properties. The indices of this
mode are then increased successively, and the three resulting modes for n + 2, m + 2
and [ + 1 are calculated and moved to the pool. The pool is sorted in ascending
order with respect to the frequencies again and then, the first mode of the pool is
moved to the result array. The indices of this mode are again increased successively
and the generated indices of the higher order modes are compared to the indices of
the modes already in the pool. Only if the modes are not already in the pool, the
properties of the mode are computed. Once the new modes are found, the pool is
again sorted and the lowest mode is moved to the result array and so on. This circle
of computations can then be readily broken off if the desired number of modes has
been calculated. This procedure is schematically shown in Fig. 4.10%. The resulting
array of modes stored together with their properties is then expanded by another

3This approach will later be refined using the velocity condition and it will also be slightly altered
to make the programming more efficient. The general sorting algorithm and procedure using
the pool, however, will stay the same.
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Figure 4.10: Schematic overview of the general mode sorting algorithm.

column where the calculated loss factor is stored, like displayed in Table 4.4.

4.3.2 Loss Factor Analyses

To guarantee the efficiency of WizaRD, the accuracy of the computations performed
with it needs to be balanced with the computational demand. A number of condi-
tions and properties can be used to drastically reduce the computational effort. First,
as stated in Section 3.4, due to their symmetry a large number of modes do not
contribute to the wake function. In WIzaRD, this is employed by simply not calcu-
lating these modes, which are anticipated to not contribute to the wake function due
to their wavenumbers in z-, y- and z-direction.

A second condition that can be exploited derives from the modes’ different phase
velocities and strongly influences the value of the loss factors.
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The Velocity Condition

According to the equations (3.57) and (3.58), the final expressions of the loss factors
are both indirectly proportional to the term ka Ap k%. The wave number of the
respective eigenmode can be transformed such that it depends on the eigenfrequency
of the mode
2 2 W 2

kg, — k. = % — k.
The considerations made for the loss factor calculation are based on a point charge
moving in longitudinal direction. The phase velocity of the modes can be expressed
as

and thus the denominator of both (3.57) and (3.58) can be rewritten as

1 1
2 2 _ 2
0 ph

After some further transformations, it can be deduced that

2
W
2 2 Wp 2 2
ko, — ks = 2,2 (Uph - CO) :
0%ph

This expression approaches 0 if v,, — ¢y, which has also been reported in [65]. Since
the loss factors are indirectly proportional to this expression, it can be concluded
that the loss factors can be expected to reach significantly higher values should the
phase velocity of the eigenmode in question approach the speed of light.

This behaviour can be seen in Fig. 4.11. In the left panel, the loss factors of some
of the LSM modes of the model structure are plotted against their longitudinal wave
number k.. The modes are distinguished by n and m, effectively parting them into
different series of modes. In the figure it can be seen that each of these series of
increasing k., possesses a maximum value in form of a peak-like behaviour. Compared
to the phase velocities, plotted on the right panel in form of the frequency over the
longitudinal wave number, these peaks coincide with the modes which exhibit a
phase velocity close to the speed of light (dashed line). Additionally the figure
shows that there is no single mode with a phase velocity equal to the speed of light,
i.e. the graphs do not show single, sharp maxima. Instead, the maxima are broader,
meaning a number of modes exhibit phase velocities around (but not equal to) the
speed of light. This is due to the numerical calculation of the modes, and results
in more eigenmodes having a large influence on the wakefield than just a single one.
Additionally, the condition v,, = ¢y would also lead to ko, = k. and thus to an
infinite loss factor because the denominators in the equations (3.57) and (3.58) would
be zero. This is not possible in practise.
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Figure 4.11: Left panel: Loss factors of different LSM modes of the model structure
modes plotted against their wave number in z-direction. Right panel: Frequencies of the
same modes plotted against their wave number in z-direction and compared to the speed
of light (dashed line). All modes are distinguished by their indices n and m. Comparing
both panels it can be seen that the highest values of the loss factors correspond to the
modes with phase velocities close to the speed of light. For convenience, the first of these
correspondences is marked with a red x symbol.

That this velocity condition directly results from the loss factor calculations with-
out further previous assumptions supports the functionality of the applied model.
This behaviour is advantageous in two different ways for computations with WlzaRD:
First and foremost, eigenmodes with phase velocities far lower or far larger than the
speed of light are obviously not going to deliver high loss factors compared to the
modes which mainly contribute to the wake function and thus, can be excluded from
calculations. Second, also visible in Fig. 4.11, there is a high number of modes with
loss factors far lower than the ones which contribute most. One example would be the
last modes of the n = 1, 7 = 5 series in the figure (red). The mode that apparently
contributes the most to the wake function is one of the n = 1, m = 1 series (blue),
with a loss factor approximately four times larger than for the last modes of the
n = 1, m = 5 series. These large differences between the highest contributions to
the lowest contributions to the wake function can be exploited, too; to make the
final superposition of the wake function computationally more effective. For this,
an additional filter can be used to eliminate all modes which have insignificant loss
factors compared to the largest contributions to the wake function. This is done
in WIzaRD by employing a threshold (c.f. Section 4.4.1); in most cases it has been
shown to be enough to include modes which have loss factors within a range of
three orders of magnitude from the mode that contributes the most. This filtering
algorithm has also been used on the data Fig. 4.11 is based on.
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4.3.3 Using the Velocity Condition to Improve WIzaRD

To exploit the condition that only modes with a phase velocity close to the speed of
light contribute to the wake function, the scheme presented in Fig. 4.10 needs to be
modified.

Here, one of the most important deductions from the loss factor analysis is that
the modes can be distinguished into series with the same n and m and that from
these series only a small number of modes with certain [ are going to contribute to
the wake function. The mode with the highest contribution is going to be the mode
where k, = Im/L is closest to ko. If this mode can be determined, a fixed number of
modes with higher and lower [ can be computed additionally to increase the accuracy
of the superimposed wake function.

Theoretically, this procedure is similar to determining the root of the problem
ko = k., and a simple method like the bisection method (c.f., [87]) would suffice to
solve it. However, this is not strictly necessary since the actual root of the problem
can also be represented analytically: In the hypothetical case that k, = kg, the phase
velocity of the mode would equal the speed of light. In that case, in the right panel
of Fig. 4.11, the frequency of the mode would be located directly on the dashed line
indicating the speed of light. This corresponding, ‘ideal’ frequency of the mode (the
root of k, = ko) can be determined as

kO,idoal = kz
lidealﬂ-
CoWideal = i
Colideal
ideal — 5 4.10
fiaon = 2 (1.10)

where it is not guaranteed that ljqe, is an integer.

A simple solution of ky = k, and a later approximation of ljqe, With an integer
is, however, also not possible. The reason for this is that varying [ will also change
the matrix equations (3.22) and (3.34) from which the expansion coefficients of the
Fourier expansions are determined by changing the system matrices. The influence
of this on the total wavenumber cannot be estimated a priori, such that the deter-
mination of the mode with an index [ closest to [;qea1 becomes an iterative problem
for a series of n and m.

To solve this problem, a similar approach like the bisection method is employed.
A starting index [; is set (in the beginning, this is I; = 1), and a second index [y
is chosen in a distance Al to [;. For this second index, the eigenfrequency and the
Fourier expansion coefficients are calculated as it has been described in Section 4.2.1.
This frequency f5 is then compared to the ‘ideal’ frequency of a mode with the given
l5 and a phase velocity equal to the speed of light,

Colz

o (4.11)

f ideal —
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Figure 4.12: Schematic overview of the algorithm used to determine the eigenmode with
the phase velocity closest to the speed of light.
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If f5 < figeal, the frequency fs lies below the dashed line in Fig. 4.11, which means
that the phase velocity is lower than the speed of light. Since the frequency is
monotonously increasing with the index [, [ needs to be increased to approach the
speed of light. Therefore, in this case, the interval between [; and [ is shifted by
+Al, and the procedure is repeated.

If fo > figeal, the frequency fs5 is above the dashed line in Fig. 4.11, the phase
velocity is higher than the speed of light. In this case, the upper limit of the integral
needs to be decreased. Here, [, is shifted by floor (Al/2), where floor indicates that
Al/2 is rounded down to the next integer value (to guarantee that /; and Il remain
integers at all times).

This procedure is then repeated until the stepsize Al reaches zero. A schematic
display of this method is presented in Fig. 4.12.

Test runs of WIzaRD show that for practical purposes, it is reasonable to choose
the stepsize large (usually Al = 1000), since apart from the eigenmodes with low n
and m, all series of transversal indices show modes with a phase velocity close to the
speed of light for very high [ (I = 400 — 1000 for most modes in Fig. 4.11).

After WIzaRD has found the modes of a series denoted by the indices n and
m which exhibit the phase velocity closest to the speed of light, it additionally
calculates a number of modes above and below the determined [. This accounts for
the broader peak structure displayed in the left panel of Fig. 4.11, so for modes with
a comparatively high loss factor and thus a high contribution to the wake function.
In total, only a fraction of the modes in a series denoted by n and m have to be
calculated in that way, which significantly reduces the computational effort. All
others can safely be assumed to have far too high or low phase velocities to couple
to the beam.

To implement this algorithm into WIzaRD, the schematic procedure shown in
Fig. 4.10 has to be modified accordingly. The updated diagram can be found in
figure 4.13. The first modification is not to address a single mode by the triple
(n,m, 1), but a series of modes by n and m. For this series, the mode with the phase
velocity closest to the speed of light is determined, and this mode is then stored
in the pool. The indices n and m are then successively increased just as before,
and the created higher order modes are compared to the pool. If they are already
stored, nothing is done. If not, the mode with the highest loss factor is found by the
described algorithm and this mode is then also stored inside the pool.

When modes have been added to the pool, it is again sorted by ascending frequen-
cies, and the mode with the lowest frequency is moved to the result array. A fixed
number of modes with higher and lower [ are then computed and stored in the result
array as well. In this way, only the modes with the highest loss factors are stored
inside the pool, which reduces its size significantly. Additionally, a higher number of
modes relevant to the wake function can be computed in a smaller fraction of time.

To optimise the later wake function calculation, an additional filter sorts out modes
with insignificant contributions to the wake function.
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Figure 4.13: Updated general mode calculation algorithm of WIzaRD focussing on the
computation of modes relevant to the wake function.

4.3.4 Green’s Function Calculations

Once the loss factors are determined for a number of eigenmodes of increasing
eigenfrequencies, the wake function can be determined by using equation (3.56).
The capabilities of SymPy allow for a symbolic implementation of (3.56), including
the case differentiation. This symbolic representation is then numerically evaluated
using NumPy and the loss factors stored in the result vector of the mode analysis.
The total wavenumber is also extracted from this array.

Up until this point, no spatial discretisation has been used to compute either the
eigenmodes or the loss factors, and the repeated use of SymPy makes the use of
discretisation for this step unnecessary as well.

An exemplary Green’s function (wake function) for the model structure used
throughout this section can be found in Fig. 4.14. The case differentiation of the
wake function with respect to the position of the field generating charge and the test
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charge can be also seen from the figure: If s < 0, the wake function is set to 0 in
the SymPy implementation, resulting in a sharp jump at s = 0. The value at s =0
is multiplied by 1/2 to obey the fundamental theorem of beam loading, though this
is not easily visible in the figure. In Fig. 4.14, 35 Fourier expansion functions were

1 0 1 2 3 4 5
s[em]
Figure 4.14: Wake function of the model structure calculated with WIzaRD. The wake
function was generated using 35 Fourier expansion functions per eigenmode and a total
number of 408 eigenmodes.

used to calculate the eigenmodes, and 408 modes were superimposed for the wake
function calculation. This can be considered a moderately accurate approximation
in terms of the number of eigenmodes used (a closer inspection of the accuracy of
WIzaRD with respect to the number of eigenfunctions used can be found in the
next sections). Should the number of eigenmodes used prove insufficient, the work
procedure of WIzaRD allows for the additional calculations of more modes. For this
purpose it is only necessary to store the pool in a separate file, so that it simply
needs to be read in by the mode calculating subroutine and used as a basis for a
repetitive cycle of the procedure shown in Fig. 4.13.

4.4 Wakefield Convergence Studies

In this section, the convergence of the wake function, and later the wake potentials
for a number of Gaussian particle beams, will be considered. Again, two different
reference values for calculations done with WIzaRD are important here, the first
being the overall convergence of WIzaRD itself, the second one being the convergence
with respect to results computed with CST PS.
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4.4.1 Wake Function Convergence

This section is going to use the wake function of the exemplary structure introduced
in this chapter.

Convergence with Respect to the Number of Eigenmodes

As explained in the previous section, WIzaRD is implemented in a way such that only
the eigenmodes with the potentially highest contribution to the wake function (i.e. the
ones with a phase velocity close to the speed of light) are calculated. Additionally,
a filter that can be run separately can be used to sort out the modes with the
comparatively lowest contributions. This filter operates using a threshold of the
ratio of the loss factor of a mode compared to the highest loss factor calculated for
the structure

K
= Tmax7
Kmax

where the value for the threshold, T},.., can be chosen freely. If not stated otherwise,
this threshold is set to Thax = 1072, so a deviation from the maximum value of
three orders of magnitude is allowed. This has proven sufficient in a great number
of structures observed.

A first indicator of the wake functions convergence with regard to the number of
eigenmodes taken into consideration is the number of eigenmodes after the filter is
applied. For the example examined in the following, the eigenmodes of the model
structure have been determined in blocks of 700 modes (i.e. 20 series of different n
and m with 35 modes each). After each block of modes, the loss factors have been
calculated and then the mode filter has been applied.

N, | Nt
700 | 138
1,400 | 231
2,100 | 256
2,300 | 327
3,500 | 390
4,200 | 402
4,000 | 408
5,600 | 408
6,300 | 408
7,000 | 408

Table 4.5: Number of eigenmodes of the model structure computed with WIzaRD (N.)
compared to the number of modes after filtering (INy).

Table 4.5 shows how many of the calculated modes passed the filter with an applied
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threshold of three orders of magnitude. It can be seen that while at first, each new
block of eigenmodes computed also has a significant contribution to the eigenmodes
passing the filter, the number of ‘new’ modes after filtering with each added block
decreases significantly between 3,500 and 4,900 source modes and then stagnates.
This behaviour strongly hints at a lessened contribution of higher order modes to
the wake function. Figure 4.15 visualises this in the left bar diagram, showing the
number of new modes passing the filter compared to the maximum number of modes
used to calculate the wake function (408).
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Figure 4.15: Left bar diagram: Number of new modes compared to the maximum/total
number of modes passing the filter. Right bar diagram: Contribution of the modes
passing the filter to the wake function at s = 0 normalised to the wake function at s =0
and the total number of 408 modes considered

The right bar diagram in Fig. 4.15 additionally shows the significance of the
calculated modes for the wake function. For this diagram, the wake function is
evaluated at s = 0 for an increasing number of modes used for computations. This
specifies equation (3.56) as

1
Wi(s) = 5 Z K-
A

The result is then normalised to the value of the wake function at s = 0 and 408
modes taken into consideration. This diagram gives insight into the overall strength
of the summed up loss factors in the computed and filtered blocks. It shows that for
this model, more than 60% of the value of the wake function at s = 0 comes from
modes of the first block, so modes of a comparatively low order and frequency, but

85



4 The Programme Package WIzaRD

it also shows that the contributions of the following blocks of higher order modes
are not negligibly small. Even the contribution of the last six modes (the 402nd
to 408th modes) is in the range of a few percent. However, for a good estimation
of the strength of the wake function at s = 0 with more than 80% accordance to
the converged result, 256 modes after filtering are sufficient. This corresponds to
the calculation of a total number of 2,100 modes, which can be done on a regular
desktop PC in about two hours.

1000

N=138
N=231
N=256
N=327
N=390
N=402
N=408

500

Wo[V/pC]

—500

—1000

—1500"

slem]

Figure 4.16: Wake function of the model structure for an increasing number of eigenmodes
used for the superposition.

In the greater scope of the full wake function it becomes apparent that considering
higher order modes is essential for the accuracy of the wake function. Figure 4.16
shows the wake function of the model structure for increasing the numbers of modes
used for the computation in the same sequence as above. The behaviour shown in the
right diagram of Fig. 4.15 is here visible, too, at s = 0. What is more important here,
however, is the behaviour of the wake function over s*, which differs drastically for a
low number of eigenmodes used (138, 231, 256) compared to the maximum number
of eigenmodes, 408. Starting with the use of N = 327 eigenmodes, the computed
wake functions start to resemble each other more closely, and it can clearly be seen
that the following wake functions converge to the wake function for the maximum
number of eigenmodes. 327 modes after filtering correspond to the calculation of a
total number of 2,800 modes, and compared to the right diagram in Fig. 4.15, this
means an agreement of &~ 90% for the value of the wake function at s = 0.

4The interval used in Fig. 4.16 is with [—1 cm, 5 cm] small compared to the length of the waveguide.
Since for the later use as a dechirper mostly short-ranged wakefields are of interest, it is sufficient
to examine a region close to s = 0, though.
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4.4.2 Wake Potential Computations

As it has been stated in the previous chapter in equation (3.59), the wake potential
of an arbitrary bunch shape can be determined via a convolution of the bunch shape
function with the wake function. The wake potentials are determined in WIzaRD by
using a spatially discrete convolution of the SciPy module. For this step, it is also
necessary to project the computed wake function onto a spatial grid, since a symbolic
convolution might be possible in theory using SymPy, put to practise this, however,
is impractical due to the long computational times and the high computational effort
for a symbolic convolution. This is the first step in the chain of computational steps
in WIzaRD that makes a spatial grid for the wake function necessary.

In this section, two different Gaussian bunches (3.60) centred around sy = 0 are
going to be considered for further convergence studies, one with ¢ = 3mm and
another with o = 0.3 mm.

The results obtained with WIzaRD are then compared to the results computed
with CST PS, whenever possible.

Qualitative Comparisons

At first, the wake potentials of the Gaussian bunch with ¢ = 3mm are going to be
examined for an increasing number of eigenmodes used for the computation of the
wake function. The sequence in which the number of modes are increased is the
same that was used before, resulting from the filtering of subsequent blocks with
700 modes of increasing eigenfrequencies calculated. Figure 4.17 shows the resulting
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Figure 4.17: Wake potential of Gaussian bunch with s; = 0 and ¢ = 3 mm for the model
structure for an increasing number of eigenmodes used for the superposition of the wake
function. The result is compared to the wake potential computed with CST PS. The
shape function of the particle beam is shown in black.
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wake potentials compared to the result obtained by using CST PS with ~ 8,000,000
hexahedral mesh cells. The shape function of the bunch is plotted in black. It can be
seen in the figure that the overall agreement between the different wake potentials
computed with WIzaRD seems to increase. While for the Green’s function shown
in Fig. 4.16 the differing number of eigenmodes used for the superposition of the
wake function also result in an overall differing behaviour of the wake functions,
all wake potentials computed with WIzaRD in Fig. 4.17 exhibit the same overall
behaviour, only subjected to minor fluctuations. This clearly has to be the result
of the convolution: the used Gaussian pulse is with ¢ = 3 mm comparatively broad,
and the convolution effectively smoothes the rapidly oscillating behaviour of the
original wake function.

In comparison to CST PS there are differences in both the magnitude of the
extrema and the position of the zeros of the wake potential. The result obtained
with CST PS shows extrema that are lower than their WIzaRD counterparts by a
few V/pC. The position of the zeros is shifted towards slightly higher s for the
CST PS result, and this shift increases towards zeros that are located further away
from s = 0. In analogy to a regular sine or cosine oscillation, it could be said that
the wake potential calculated with CST PS has a slightly lower amplitude and a
slightly higher frequency, resulting in the increasing disagreement in the positions of
the zeros compared to the WIzaRD result. This difference, however, only becomes
critical for positions further away from s = 0. In the example used here and in every
case considered for the dechirper, the beam will be operated in the single bunch mode
or with a very low beam current to grant a high distance between the bunches. This
means that only the short range wake potential in direct proximity of the bunch itself
is important for the considerations of the dechirper. In the proximity of the bunch
(plotted in black in Fig. 4.17), the only relevant difference between the CST PS and
the WIzaRD result is the slightly different magnitude of the first extremum, since
the first zero of both results match well.

For a smaller Gaussian bunch with ¢ = 0.3mm, the calculation of the wake
potential with CST PS becomes more complicated. The reason for this is that the
small bunch lengths compared to the length of the structure makes a very fine spatial
resolution of the grid in z-direction necessary. The resulting number of grid cells
is too high to be handled on the same desktop PC that was used for the WIzaRD
computations and was thus omitted. This also highlights another advantage that
WIzaRD has over CST PS - due to the computation of the Green’s function wakefield,
it is possible to derive any form of wake potential by a simple convolution. These
convolutions are not limited by the size of the bunch and even bunches with a small
length compared to the dimensions of the structure are possible. Additionally, as is
going to be investigated in the following chapter, the wake potentials of other beam
shapes, such as double Gaussians or flat-top pulses, can also be derived from the
wake function calculated in WIzaRD, while CST PS only allows for the computation
of wake potentials of Gaussian bunches.
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Figure 4.18: Wake potential of Gaussian bunch with sg = 0 and ¢ = 0.3 mm for the
model structure for an increasing number of eigenmodes used for the superposition of
the wake function. The shape function of the particle beam is shown in black.

Figure 4.18 shows the wake potentials for a Gaussian bunch with ¢ = 0.3 mm
calculated from the wake function of the model structure and the same sequence of
increasing the number of eigenmodes. The smoothing due to the convolution with
a bunch shape carries less weight here due to the smaller bunch lengths, so that
the differences in the overall behaviour of the wake potential depending on the used
number of eigenmodes are still easily visible. In fact, if not due to Fig. 4.18 display-
ing only the interval [—0.5 cm, 2.0 cm] (compared to [—1.0 cm, 4.0 cm] in Fig. 4.16),
the wake potential of this Gaussian bunch would exhibit a very similar, if scaled,
behaviour compared to the original wake function. Consequently, like in Fig. 4.16,
it can easily be seen that the result up until N = 256 eigenmodes has not converged
and shows greater discrepancies towards the result computed with the maximum
number of eigenmodes used, the result computed with N = 408 eigenmodes.

Important to note for both bunches, however, is that due to the behaviour of the
wake function at s = 0, the wake potential will for this example always display a
negative slope over the length of the bunch. This is independent from the actual
length of the bunch, which is a result from the convolution and will be observed in
more detail at a later point. This negative slope corresponds to an energy loss over
the beam, which is what finally will give rise to the effect of the dechirper.

Quantitative Comparisons

A purely visual comparison of the wake functions and potentials for different numbers
of eigenmodes is a weak criterion to judge the accuracy of the simulation. The
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convergence studies conducted here would greatly benefit from a numerical figure of
merit.
Therefore, the quantity

/ m/H (8) = Wiirer (S)| ds
A=1-2

. (4.12)
{ |Wiires (s)| ds

is introduced. This basically measures the difference of the wake potentials’ areas in
relation to the area of the reference wake potential W) . (s) (either the potential
computed with CST PS or the WIzaRD result with the highest number of eigen-
modes). This is now evaluated numerically for the wake function and potentials
discussed previously using the trapezoidal rule to determine the integrals.
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Figure 4.19: Accuracy of different wake functions and potentials for the model structure
and different references. The reference wake function/potential is the WIzaRD example
for the highest number of eigenmodes unless stated otherwise (light blue curve, CST PS).

Figure 4.19 shows the accuracy with respect to equation (4.12) for the wake
function of the model structure and the derived wake potentials for Gaussian bunches
with ¢ = 0.3mm and ¢ = 3mm as well as the convergence to the CST PS result for
the Gaussian bunch with ¢ = 3 mm.

It can be seen in the figure that the accuracy of WlzaRD computations compared to
CST PS is considerably lower than the accuracy of WIzaRD computations compared
to each other. It ranges between = 87% and ~ 89%, and even decreases with for an
increasing number of eigenmodes used for the WIzaRD computations. This also goes

90



4.4 Wakefield Convergence Studies

together with Fig. 4.17, where the visual difference between the CST PS and the
WIzaRD example are easily visible. A reason for this discrepancy is the increasing
shift in the position of the zeros of the CST PS example.

The accuracies of the examples calculated with WIzaRD, on the contrary, vary
between ~ 97% and > 99%, even for the wake function and the wake potential of
the 0 = 0.3 mm Gaussian pulse. The accuracies overall increase with an increasing
number of eigenmodes used for the superposition of the wake function. Additionally,
going together with the observations from the last section, the accuracy of the
o = 3mm Gaussian pulse wake potential (green) is overall slightly higher due to the
bunch length of the Gaussian pulse smoothing out the more rapid oscillation of the
wake function.
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Figure 4.20: Accuracy of different wake functions and potentials for the section —30 <
s < 30, computed for the model structure and different references. The reference wake
function/potential is the WIzaRD example for the highest number of eigenmodes unless
stated otherwise (light blue curve, CST PS).

Figure 4.20 shows a second convergence study with respect to equation (4.12)
and for the same wake functions and potentials used in the previous figure, this
time, however, limited to the section —30 < s < 30, so the area directly around
the particle bunch as the area most important for the operation of the dechirper.
Here it becomes even clearer that the wake potentials of the broader bunch with
o = 3mm (green) do not vary much for an increasing number of eigenmodes because
the convolution smoothed out the high oscillations and differences of the original
wake function (blue). Both, the wake function and the wake potential of the smaller
Gaussian pulse (red) show a significant increase in accuracy with an increasing
number of eigenmodes, starting with an accuracy of < 70%, but reaching more than
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95% using 256 eigenmodes (filtered; 2,800 unfiltered). While the wake potential of
smaller Gaussian pulse shows always a little better accuracies than the wake function,
both curves behave very similarly and lie close together. Additionally, the curve
of the wake potential of the broader Gaussian pulse compared to CST PS (light
blue) shows a significantly greater accuracy (always > 95%) than in Fig. 4.19, where
it had been computed over the complete length of the dechirper. This confirms
that the discrepancies result from the increase in the shift of the zeros of the wake
potential calculated with CST PS compared to the WIzaRD version. The smaller
section observed in this figure, on the other hand, only includes the first zero of
both versions, which still lie very close together. In other words, the shift is of less
importance in this example and thus for the observation of short-range wakefields.

4.4.3 Wake Potential Convergence with Regards to the
Number of Fourier Expansion Functions

With the underlying routines of selective mode calculations, mode sorting and filter-
ing in WIzaRD, the convergence analysis of the wake function or wake potentials
for an increasing number of Fourier expansion functions used is difficult. The reason
for this is that changing the number of Fourier expansion functions for the eigen-
mode calculations will also change, obviously, the eigenfrequency, which has also
been shown before. WIzaRD is optimised in a way that the mode calculation is
implemented such that only modes relevant to the wake function with ascending
frequencies are calculated. A slight shift in the eigenfrequencies, due to a different
number of Fourier expansion functions used for their calculation, can change the
order in which the eigenmodes are calculated. It can also change which mode will
be found to have the phase velocity closest to the speed of light, and lastly, it will
change the loss factors.

This is why calculating a fixed number of modes with the optimised version of
WIzaRD is not guaranteed to lead to the same modes being calculated for two
different setting for the Fourier expansions. If, e.g., 2,800 modes are calculated
with 25 Fourier expansion functions, these are not necessarily the same 2,800 modes
which are computed if 30 Fourier expansion functions have been used. The change
of the number of Fourier expansion functions will also change a number of other
parameters, that in the current operation of WIzaRD cannot be kept constant while
still maintaining its efficiency.

A convergence study of the wake function or wake potentials with respect to the
number of Fourier expansion functions has thus to be handled with care. It is done
here for the model structure used in this chapter. The previously used 25 expansion
functions have been increased in steps of 5 until 50 Fourier expansion functions have
been used for the eigenmode computation. The number of modes used for each wake
function was determined by looking at the number of modes after the filtering with a
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threshold of 10 and stopping to compute new modes once this number did not change
any longer (i.e. once only irrelevant modes were added in further calculations). This
obviously resulted in a differing number of eigenmodes used for each wake function
in the following study.
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Figure 4.21: Accuracy of different wake functions and potentials for the section, computed
for the model structure and different references. The reference wake function/potential
is the WIzaRD example for the highest number of Fourier expansion functions unless
stated otherwise (light blue curve, CST PS).

Figure 4.21 shows the convergence analysis for the wake function, the wake poten-
tials of Gaussian bunches with ¢ = 0.3 mm and ¢ = 3 mm compared to the WIzaRD
result for 50 Fourier expansion functions, and the wake potential of a Gaussian
bunch with ¢ = 3mm compared to a completely numerical result from CST PS.
The graphic shows that the behaviour for an increasing number of Fourier expan-
sion functions is not monotonous. In fact, the highest accuracy is reached for the
Gaussian pulse with ¢ = 3 mm for both references at 30 Fourier expansion functions
(> 95%). For the wake function and the Gaussian pulse with ¢ = 0.3 mm, the
result for 45 Fourier expansion function (/~ 95%) has the highest agreement with the
reference wakefield, whereas the result for 35 expansion function is not significantly
worse (= 93%).

No extrapolation can be done using this data, and no predictions can be made
as to which number of Fourier expansion functions delivers the most accurate result
due to reasons stated above. Even so, Fig. 4.21 can still be understood as a pointer
as to which number of Fourier expansion functions appears to be the most suited
and efficient for further computations. At 30 Fourier expansion functions, all four
graphs show an agreement of more than 90 % with the reference value. Increasing
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this number further will either make the accuracy drop or at least stop to increase
significantly. Additionally, computations with 30 Fourier expansion functions are
still very fast. The wake function computation for this case can be done in about
five hours on a regular desktop PC with a sufficient number of eigenmodes used. For
50 Fourier expansion functions, this time is easily tripled, while the accuracy gain is
clearly not, even if the convergence study from above needs to be treated with care.
Increasing the number of Fourier expansion functions used above the value of 30 is
therefore not efficient.

Additional studies with other dechirper geometries have shown that indeed, 25 -
35 Fourier expansion functions for the wake function computations deliver highly
accurate results compared to the references (either CST PS or more computationally
expensive WIzaRD results) and can usually be done in about the same time. So while
Fig. 4.21 most certainly cannot give a clear idea about the convergence behaviour
of wake functions with regards to the number of Fourier expansion functions, it still
shows that using 30 expansion functions is a safe and efficient choice for further
computations.

4.5 Summary

In this chapter, the programme package WIzaRD has been introduced together with
the general algorithms and routines for the eigenmode calculation and selection.
Additionally, the symmetry and velocity conditions have been explained and used
for a further gain in efficiency of the programme package WIzaRD. Benchmarks
against purely numerical solvers such as CST and convergence studies demonstrate
that both series expansions can be cut off after a reasonably low number of expansion
functions while still maintaining a high accuracy of the results.

All points considered, the greatest advantage of the model described is that it
presents a possibility to obtain an analytical description of the Green’s function
wakefield. This is mainly possible because of the comparative simplicity of the struc-
ture, and it enables a fast calculation of a multitude of wakefields of different bunch
shapes by means of a simple convolution. Additionally, for the use in beam tracking
software like, e.g., ELEGANT [41], the input of the wakefield of a point charge is
necessary. Employing purely numerical software this is usually emulated by using
the wakefield of a very short Gaussian bunch, which is intrinsically inaccurate and
introduces a systematic error right from the beginning. Adopting a semi-analytical
approach, this specific error can be avoided, making this method preferable due to
the feasible stopping criteria of the expansions.
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In this chapter, the influence of the geometrical parameters of the dechirper on the
wake function will be studied. Additionally, in a second step, the wake potentials of
different bunches will be calculated to study the influence of the bunch characteris-
tics on the wake potential and gain a first perspective insight into the principle of
operation of the dechirper with regards to different beam situations.

For this purpose, the model structure used in the previous chapter will be slightly
modified, such that now

a = 5cm,
b=1.8cm,
d=1.5cm,
L = 80 cm,
e, = 6.

Compared to the model structure in Chapter 4, this dechirper is four times as long
and is identical to the prototype build and operated at ELBE. A more technical and
detailed explanation on why these values were chosen can be found in Chapter 6. For
the moment, this structure will merely serve as a basis for the parameter variations.

5.1 Geometrical Parameters

In this section, the main focus of the parameter studies are the geometrical charac-
teristics of the dechirper, i.e. the length and width of the structure, the properties
of the dielectric coating (thickness and material, i.e. relative permittivity) and the
gap width between the two dielectric plates.

The wake function is always, if not noted otherwise, evaluated and compared at
the position s = 0. This is the point at which, no matter the actual shape of the
wake function or potential, the absolute value of the wakefield is always comparable
to other examples studied in this chapter. The absolute value of the wake function
at this point is also what will later have a large influence on the absolute value of
the wake potential for an arbitrary bunch shape.

As the overall strength of the wake function is dependent on the loss parameters
(3.57) and (3.58). Despite having an analytic expression for them at hand, though,
a prediction of the behaviour of the wake function for a variation of the geometry
based off of these expressions is difficult and hardly feasible. The middle term in both
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expressions is dependent on the expansion coefficients of the Fourier expansion, which
are analytically unknown. For a very small number of Fourier expansion functions
these coefficients could still be expressed analytically by solving the underlying
matrix equations, but this is not reasonable due to low numbers of Fourier expansion
functions not delivering the accuracy needed for these parameter studies. It is thus
hard to predict how a change of parameters will influence the expansion coefficients
analytically. Since in that way, the behaviour of one term in the expression of the loss
parameters remains unknown, a full analytic calculation of the expected behaviour of
the wake function for variations of the geometry of the dechirper is hardly reasonable.

5.1.1 Length of the Dechirper

The first parameter to be studied in this section is the length of the dechirper. The
length of the dechirper coincides with the propagation direction of the particle beam
and therefore can safely be assumed to have a large influence on the overall wake
function. Different sources show that a linear behaviour of the strength of the wake
function with an increase in length can be expected. Indeed, it can even be assumed
that doubling the length of the dechirper will also double the maximum strength of
the wake function, c.f. e.g. [55].

Additionally, the length is, like in the case of ELBE (c.f. Chapter 6), the parameter
most susceptible to become subject to the spatial limitations of the accelerator site.
It thus becomes crucial to know how much such spatial requirements actually can
limit the achievable maximum strength of the wake function so that these can be
balanced out by the other properties of the dechirper, if possible.

For this study, the length of the dechirper has been varied between 0.10m and
4.0 m in non-equidistant steps.

Figure 5.1 shows the values of the longitudinal wake function at s = 0 for increasing
dechirper lengths (blue). The values have been computed with WIzaRD and are
compared to a fit with a linear function performed with Python (red). Apart from
the very first value at L = 0.1 m, all data points align nearly perfectly to the fitted
function. Additionally, in Fig. 5.2, it can be seen that not only the value at s = 0,
but the whole wake function scales with the length. The position of the zeros and
the overall behaviour of the wake function stays the same with an increase in the
length of the dechirper, merely the absolute values of the local extrema are scaled
up. The expression of the fitted linear function is

A%
W, =0,L) = —497.5268
0,|| (8 3 ) pC .m

Denoting the first value as an outlier (not depicted in Fig. 5.1) changes this expression
only very slightly to

A%
- L —5.7446—.
pC

\% \%
W =0,L) =—-499.2780——— - L — 1.8852—.
O,H (S 3 ) pC .m pC
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Figure 5.1: Longitudinal wake function at Figure 5.2: The linear behaviour of the
s = 0 calculated with WIzaRD for vari- wake function with an increase in the

ous dechirper lengths (blue) compared dechirper length manifests itself in a clear

to a linear fit (red) of the data points
performed with Python. The behaviour
of the strength of the wake function with
the length of the dechirper is clearly linear.

scaling of the total wake function, i.e. the
overall shape of the wake function and the
positions of the zeros do not vary with
an increase in length, though the absolute

values of the local extrema do.

From both linear fits it can already be deduced that scaling the length of the dechirper
by an arbitrary factor A will also scale the resultant strength of the wake function by
nearly the same factor. Reason for this is that the products of the functions’ slopes
with the inserted length is much larger than the vertical intersect of both functions
for dechirper lengths larger than a few centimetres.

To confirm this behaviour, table 5.1 contains the actual data points of the longi-
tudinal wake functions at s = 0 computed by WIzaRD (middle column) compared
to a value W* (third column) that is gained from scaling up the previous entry with
respect to the length of the dechirper,

Ly
L

*

i+1 —

W07||7i(0).

Again, apart from the very first value (here for L = 0.2m) the values actually
computed by WIzaRD and the values gained by scaling up the previous WIzaRD
result match very well.

Following these studies, it can be concluded that the initially assumed linear
behaviour of the wake function with the length of the dechirper can be seen and
reinforced by the calculations done with WIzaRD. This is important in two ways:
First, it establishes the variation of the length of the dechirper as a comparatively
easy way to increase (or decrease, if needed) the effect of the dechirper; and it also
shows that a simple scaling of the wake function with respect to the length is enough
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| L[m] [ Wo(0) [V/pC] | W*[V/p(] |

0.10 —77.9875 —
0.20 —103.8499 | —155.9750
0.30 —152.5166 | —155.77485
0.40 —201.8129 | —203.3555
0.50 —251.6977 | —252.2661
0.60 —300.9559 | —302.0372
0.70 —351.0260 | —351.1152
0.80 —400.5592 | —401.1726
0.90 —450.4429 | —450.6291
1.00 —500.0755 | —500.4921
2.00 —999.6559 | —1000.9844
4.00 —1999.9136 | —2001.9684

Table 5.1: Values of the longitudinal wake function at s = 0 calculated with WIzaRD for
various dechirper lengths (middle column), the underlying data points of Fig. 5.1. The
third column shows the values for the longitudinal wake function at this point as they
could have been expected by scaling the previous data point with respect to the length.
Apart from scaled value at L = 0.2m, both columns match very well.

to calculate the wake function of a different dechirper. For future dechirper projects,
this basically makes parameter studies with respect to the length obsolete, the results
can simply be scaled.

Second, and more important, though, is that the linear behaviour of the wakefield
with the length of the dechirper is a well-known phenomenon also studied for different
dechirper types, like circular structures with corrugations [55]. That WIzaRD is able
to replicate this behaviour nearly perfectly substantiates the used algorithms and
programming structures introduced in the previous chapters once more and thus
also provides a benchmark for the validity of the following parameter studies, where
there are no previous studies to compare to.

5.1.2 Width of the Dechirper

There are no previous studies that describe the behaviour of the wake function of
a dielectrically lined rectangular waveguide with an increase in the width of the
dechirper. Consequently, only predictions and assumptions can be made regarding
the outcome of this parameter study.

Since the width coincides with one of the transversal directions of the wakefield,
and for the longitudinal wake function only the point a/2 is of significance, it can be
expected that the effect of varying the width of the structure will only have a small
influence on the strength of the wake function. Intuitively, it can even be assumed
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that for larger widths of the structure less changes to the wake function will happen
when the width is increased even further, since the only area in which the fields have
a big influence on the wake function is the one close to the beam. For larger widths,
greater parts of the dechirper are further away from the beam.

For this study, the width of the dechirper has been varied between 1.0cm and
15.0 cm in non-equidistant steps.

400 —240
a=1.0 cm

a=2.0 cm
a=3.0 cm
a=4.0 cm
a=5.0 cm —280
a=7.0 cm
a=10.0 cm —300
a=15.0 cm

300 —260

200

100

0

[V/pC]

—340

0.

—100

W (0)[V/pC]

—200 —360

—300 —380

—400 —400

—500L . - : —420

slem] alem|

Figure 5.3: Total wake functions for an Figure 5.4: Longitudinal wake function at
increasing width of the dechirper. In s =0 calculated with WIzaRD for various
contrast to the behaviour for an increas- dechirper widths. The graph shows a local
ing dechirper length in Fig. 5.2, the wake extremum between 3 and 5cm. For larger
function does not simply scale up with an widths, the absolute value of the longitu-
increase in the studied parameter. dinal wake function at s = 0 changes only

insignificantly.

Figure 5.3 shows the different wake functions of the dechirper for varying the width
of the structure. It becomes apparent that in contrast to the variation of the length of
the dechirper, the wake function is this case is not simply scaled with respect to the
width. The overall behaviour of the wake function, the positions of the extrema and
zeros change drastically in this parameter study. This means that in this scenario
the wake functions are only comparable at s = 0. Since for the purposes of the later
application of the dechirper at ELBE only the short-range wakefields are important,
such a comparison appears sufficient.

The comparison of the values of the wake functions at s = 0 are shown in Fig. 5.4.
In this figure it can be seen that for small widths, widening the structure will result
in an increase in the absolute value of the wake function at s = 0 until a maximum
strength is reached between 3 and 6 cm. After that, the absolute value decreases
again. For larger width, Fig. 5.4 shows that, indeed, no significant gain or loss can
be reached by further increasing the width. For practical applications this means
that there is nothing to be gained from a very wide dechirper. Instead, there is
apparently an optimal width that corresponds to the maximum absolute value of
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the wake function strength at s = 0. In the case of the structure build at ELBE, the
chosen width of 5cm lies in that optimal range.

5.1.3 The Dielectric Coating

The generation of a wakefield inside the considered structures is only possible due to
the dielectric coatings and the lower propagation velocity of electromagnetic waves
inside these materials. The dielectric is thus the most important distinguishing
characteristic of these types of dechirper. Two parameters play a role here; first,
the actual material of the dielectric and thus its relative permittivity, and second
the thickness of the coating. On the flipside, however, choosing the appropriate
material and thickness is also highly dependent on outside factors: There is no
continuous spectrum of relative permittivities to choose from, instead, a selection
of a suitable coating for the designated purpose is limited to which materials are
practically available and in which thicknesses these materials can be manufactured.

This naturally also puts constraints on the parameter studies performed for these
two characteristics. Without going into the technical aspects (c.f. Chapter 6 for more
information on this topic), for this study it showed to be sufficient to observe the
range of permittivities between 2 and 20, which correspond to materials like FR4
and a number of easily available glass ceramics, but also encompass diamond which
has been suggested as a coating material for a dechirper already in [59]. The range
with the most practical applicability here is within a few millimetres of thickness,
such that the dielectric coating can actually be handled like a separate and solid
plate that is later mounted to the metallic waveguide. Smaller thicknesses far below
1 mm require different preparations that were not considered as a solution for ELBE,
like thermal evaporation for very thin dielectric films.

Figure 5.5 actually shows that with an increase in the relative permittivity, the
maximum absolute value of the wake function at s = 0 decreases. This means that to
achieve a dechirper effect as high as possible, materials of low relative permittivities,
like FR4 (where the permittivity varies depending on the composition and the
fabricator, but is generally €, ~ 5), diamond (with ¢, ~ 6) and some ceramics with
low permittivities, while ceramics with higher permittivities between 15 and 20 are
less favourable considering their comparatively lower maximum absolute values for
the wake function at s = 0.

Considering the thickness of the material, Fig. 5.6 shows no clear regular or periodic
behaviour with an increase in thickness, apart from an overall tendency that indicates
that higher thicknesses are more likely to result in lower maximum absolute values
at s = 0. This indicates that thinner coatings seem to be favourable, though in any
case, a parameter study should be conducted once the other parameters have been
set to ensure an optimal gain. It is worth mentioning, however, that the chosen
material thickness of 3 mm coincides with a local extremum in the graph displayed
in Fig. 5.6 and thus, for this particular structure, with the most favourable material
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Figure 5.5: Longitudinal wake function at Figure 5.6: Longitudinal wake function at
s = 0 calculated with WIzaRD for vari- s = 0 calculated with WIzaRD for an
ous relative permittivities, i.e. different increasing thickness of the dielectric coat-
coating materials. At s = 0, the absolute ing. No regular or periodic behaviour can
value of the wake function decreases with be read off the graph apart from an overall
an increase in the relative permittivity. decreasing tendency of the wake function

strength at s = 0.

thickness.

5.1.4 The Gap Width

Likely the most important advantage of a rectangular dechirper is the possibility
to tune the gap width between the upper and lower dielectric after the structure
itself is built. This additional degree of freedom, it can be presumed, will make it
possible to adjust the wakefield during the operation of the dechirper and will thus
allow for an exact tuning of the dechirper to the situation at the operation site. It
can generally be assumed that smaller gap widths correspond to higher effects of the
dechirper; i.e. to higher maximum strength of the wakefield. In addition to this, it is
imaginable that a large gap width, and thus a high distance between the dielectrica,
will significantly reduce the influence of the dechirper on the beam. This would open
up the possibility of using this increased gap width to deactivate the dechirper fully
while the structure does not have to be taken out of the beam line completely, which
would be a large practical advantage.

In a realistic scenario, the gap width of the dechirper will be limited by outer
circumstances, e.g. the mechanics that drive the dielectric plates and the surrounding
vacuum chamber in the beam line. Another factor are the characteristics of the beam,
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which means that the gap width cannot be smaller than the transversal width of
the beam to avoid the dechirper cutting into the beam. For the scenario at ELBE,
this means that the minimum achievable gap width lies at about 6 mm, while the
mechanical drives and the vacuum chamber will limit the maximum gap width to
about 35 mm. This is also the range in which the parameter study will be conducted
to stay close to the realistic scenario at ELBE.

Gap=6.0 mm
Gap=8.0 mm
Gap=10.0 mm 900
Gap=12.0 mm
Gap=14.0 mm
Gap=16.0 mm
Gap=20.0 mm —400
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Figure 5.7: Total wake functions for an Figure 5.8: Longitudinal wake function at
increasing gap width of the dechirper. The s = 0 calculated with WIzaRD for various
wake function does not simply scale up gap widths of the dechirper. The reduction
with an increase in the studied parame- of the maximum absolute value of the wake
ter; the positions of the extrema and zeros function with an increase in the gap width
clearly change for the selected examples. is much stronger for lower gap widths and

seems to approach 0 for larger gap widths.

Figure 5.7 shows how the behaviour of the wake function changes with varying
the gap width of the dechirper. From the figure it can be observed that changing
the gap width of the dechirper will also change the overall behaviour of the wake
function, i.e. the position and number of extrema and zeros. It can also be seen that
the absolute value of comparable extrema at roughly the same position s decreases
significantly with an increase in the gap width. This behaviour is shown in more
detail in Fig. 5.8, again for the extremum at s = 0, since this is the only point where
a reliable comparison can be made. This figure shows the indeed drastic reduction of
the maximum absolute value of the wake function at s = 0, from nearly —1200 V/pC
for 6 mm to less than —100 V/pC for a gap width of 35 mm. It can also be seen that
for lower gap widths, the slope of the resulting curve displayed in Fig. 5.8 is larger,
meaning the decrease in the strength of the wake function at s = 0 is larger here for
the same increase in gap width than for overall larger gap widths. The curve seems
to slowly approach zero, but due to the decreasing slope it can safely be assumed that
another drastic increase in the gap width would be needed to reduce the strength of
the wake function at s = 0 much further. Theoretically, it can even be assumed that

102



5.1 Geometrical Parameters

this behaviour is asymptotic, and that the wakefield will only ever not be present
at all without a dechirper. For practical purposes, however, it is sufficient to know
that even a comparatively small increase in the gap width (just by about 30 mm)
will already significantly reduce the influence of the wakefield on the particle beam
due to the much lower absolute value of the wake function for these cases.

5.1.5 Conclusion

In this section, the influence of several geometrical parameters of the dechirper on
the maximum absolute value of the wake function at s = 0 have been shown. First,
the linearity of the increase in the maximum absolute value of the wake function
with an increase in the length of the dechirper could be observed, which also served
as a benchmark of the accuracy of the model used and implemented in WIzaRD.

As a second parameter, the width of the dechirper has been studied. Most impor-
tant about these results is that after a certain width is reached, the absolute value
of the wake function at s = 0 will stay the same even for a continued increase in
the width of the dechirper. This is very relevant for a practical realisation of the
dechirper, as the maximum width can be limited by outer influences, e.g. a vacuum
chamber that contains the dechirper.

Both the material and the thickness of the dielectric have been shown to affect the
wake function as well when varied. Here, smaller relative permittivities proved to be
preferable because they yielded overall higher absolute values of the wake function
at s = 0. Thinner dielectric plates also appear to be more advantageous, though
the behaviour of the absolute value of the wake function at s = 0 with an increasing
dielectric thickness is not smooth but shows irregular jumps at certain thicknesses.

However, both the material of the coating and its thickness have only a relatively
small influence on the final wakefield when compared to the effect of the gap width.
Next to the length of the dechirper, this parameter is the one that has the largest
influence on the strength of the wake function at s = 0. For example, in Fig. 5.6
the absolute value of the wake function at s = 0 varies between ~ —200V /pC and
~ —400 V/pC for the observed thicknesses. A variation of the absolute value of the
wake function in the same range can also be achieved by simply reducing the gap
width of the dechirper from 15mm to 12mm (c.f. Fig. 5.8). On the other hand, the
gap width can easily be adjusted after the dechirper is already built, which results in
an additional degree of freedom during the operation of the dechirper. In other words,
it shows that any losses in the maximum wake function strength that may arise from
technical limitations on the dielectric and its thickness can easily be balanced out
by adjusting the gap width (and also, the length of the dechirper), which makes the
planning and realisation of the dechirper simpler and more flexible.
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5.2 Bunch Characteristics

While the wake function will stay unaffected by the characteristics of the bunch,
the wake potential as the convolution of the wake function with the bunch shape
function, c.f. equation (3.59), will be influenced by the characteristics of the bunch.
There are two possible quantities here that play a role: the bunch charge and the
bunch shape, i.e. the length and actual form of the particle distribution.

This section is dedicated to determining the influence of these two additional
characteristics on the wake potential.

5.2.1 Bunch Charge

To be completely accurate it has to be said that the bunch charge has no effect
on the wake potential itself, as the wakefield is normalised with the charge of the
test bunch, c.f. equation (2.19). However, in later studies of the effect of the wake
function on the particle bunch the bunch charge is used to transform the wakefield
into an energy modulation,

Eyaxe = QpVV||> (51)

where the energy is given in eV and ¢, is the total charge of the pulse. Since this
energy modulation is the primary function of the dechirper and thus the main aspect
of these considerations, it nevertheless makes sense to look at the influence of the
bunch charge at this point.

From the upper equation it also becomes apparent how this modulation will look
like with a variation of the bunch charge: an increase in the bunch charge will lead
to a linear increase in the energy modulation due to the wake potential, i.e. doubling
the bunch charge will also double the energy modulation. This behaviour makes the
bunch charge a powerful influence on the eventual strength of the dechirper effect; one
that can, in theory, be used to balance out losses that arise from technical limitations
of the other parameters like the gap width or the dechirper length. On the other
hand, small variations to the bunch charge will already introduce a possibly visible
change in the strength of the energy modulation, i.e. also natural fluctuation in the
bunch charge will have an effect on the performance of the dechirper. The range
of these fluctuations is determined by the technical aspects of the accelerator site,
and the scope of the influence on the dechirper is also dependent on the wakefield
characteristics, i.e. the maximum achievable effect of the dechirper. This aspect will
be looked into in more detail in Section 6.1.

5.2.2 Bunch Shape

The shape of the particle bunch can readily be assumed to have a significant influence
on the wake potential and thus also on the effect of the dechirper. The wake
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potential of a certain particle bunch is determined from the wake function via a
single convolution!,

W (s) = / Y (s—s") Woy (s')ds'.

Here, 1 (s) is the shape function of the particle bunch, or, in other words, the
particle distribution. An important characteristic of this function it that it needs to

be normalised to 1,
/ ¥ (s)ds = 1.

The charge distribution of a particle bunch consisting only of one type of particles
with a total charge ¢, derives from this, for example, as

by (s) = ap (s),

where the total charge, correspondingly, is

In this section, four different particle distributions are going to be studied. Basis
of all of these particle distributions is a Gaussian bunch with an r.m.s. length of
o = 0.3mm, located at pu =0,

Y (s) = L e(fé%)?). (5.2)

For a Gaussian distribution, 99.7% of all particles lie within a range of +3¢ around
the mean, which implies an approximate bunch length of 6. Accordingly, the
r.m.s. length for this example study has been chosen to reflect the achievable pulse
length at ELBE. The choice of the mean value of the distribution does not have a
significant influence on the wake potential, though it is technically also not completely
arbitrary. Since the particle distribution is given with respect to the coordinate s,
which is measured relative to a reference particle, the choice of the mean basically
determines the position of this reference particle within the bunch. For wake poten-
tials, it was assumed until now that the reference particle is the first particle in
the bunch. This would imply for the particle distribution that it cannot encompass
negative s, so the bunch has to start at s = 0 and moves only in positive direction.

!This is the same expression as eqn. (3.59). It is repeated here to allow for a more convenient
reading of the following analysis.
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For the Gaussian pulse, this would imply that the mean has to be chosen such that
the Gaussian is zero, or close to zero, at s = 0. Due to the asymptotic behaviour of
the Gaussian, this is not achievable, though it can be approximated (the mean could,
e.g. be chosen as ;1 = 30 in correspondence with assuming that the pulse has a length
of 60). But since other pulses will be derived from this Gaussian distribution for this
parameter study, it is more convenient to choose ;1 = 0 and thus fix all pulses in the
centre. Here, the reference particle is not the first particle in the bunch, it is rather
located in the centre of the bunch. While not completely accurate, for the resulting
wake potential this will only introduce a displacement of the whole potential in s.
Since, however, for this study, only the behaviour of the wake potential relative to
the particle bunch is of interest, such a displacement plays no role.

The second particle bunch profile that is going to be observed is a combination of
two different Gaussian pulses, referred to as a double Gaussian here. For this, the
pulse in equation (5.2) is superimposed with a second Gaussian with a far smaller
r.m.s. length and a different mean, ¢* = 0.30 and p* = —1.250. These values have
been chosen arbitrarily, only keeping to the rule that the base Gaussian has to be
the term mainly influencing the overall approximated length of the superimposed
pulse. This basically means p* — 30* > —30, which is fulfilled here: —1.250 — 3 -
0.30 = —2.150 > —30. Consequently, the expression of the double Gaussian can be
formulated as

1 (s+1. )2
¥na (s) = ! ;6(7%§i> + ;eb( G ) : (5.3)

2\ V2ro? 27 (0.30)2

As a third profile, a uniform distribution of particles along the length of the pulse
is chosen. This form is often referred to as a flat-top or rectangular pulse. There
is a variety of possibilities to express this pulse; e.g. via partially defined functions
mathematically or simply an if-clause in Python. For computational purposes, a
superposition of Heaviside-distributions © was chosen here. As a total pulse length
of 60 was assumed, and to obtain the same symmetry as for the single Gaussian,
the flat-top pulse was centred on s = 0 as well. The final expression for the used

flat-top pulse is

e (5) = (O (s+ 30) +§U(—s+30) — 1)’ (5.4)

which has already been normalised to 1 by dividing the function by its area, 6.
The fourth and last pulse that has been chosen is a triangular pulse, i.e. a pulse
with a linearly rising flank for s < 0 and a linearly descending flank with the same
absolute slope for s > 0. This pulse is easily expressed by an inverted absolute value
function centred on s = 0 that is shifted upwards such that it has zeros at s = —30
and s = 30, V% (s) = — |s| + 30. This is then multiplied by the flat-top pulse which
serves as a window function cutting off the negative function values and limiting the
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pulse length. The resulting function value at s = 0 is 30, and by simple geometric
considerations, the area under the function is 3030 = 902. The complete expression
of the normalised triangular pulse is thus

(O(s+30)+0O(=s+30)—1)-(—|s| + 30)

902

Ur(s) = : (5.5)
These four pulses have then been used to derive four different wake potentials from
the wake function of the model dechirper. Here, only the behaviour of the wake
potential over the length of the pulse is of interest, where basically two things play a
role for the later dechirping: first, the maximum absolute value of the wake potential
as it determines the maximum energy loss of the particles in the bunch, and second,
the form of the slope of the wake potential over the pulse, which can be assumed
to have a significant influence on the dechirped phase space of the pulse. Since the
wake potential, by its very nature, is a convolution of the wake function and the
bunch shape, two assumptions can be made regarding the different wake potentials:

1. The maximum absolute value of the wake potentials will not show a strong
dependence on the bunch shape. The convolution basically measures the
overlap of the areas under the wake function and under the bunch shape. The
maximum absolute value over the length of the bunch is reached when the
bunch and the wake function overlap fully for the first time. Since all pulse
shapes have to be normalised and thus the area below their respective functions
is 1, the maximum overlap of all bunch shapes should be very similar at the
very least.

2. The slope will strongly depend on the bunch shape. The flat-top pulse is the
most likely to generate a uniform slope or the wake potential, while the slopes
of all other pulses will most likely not be uniform but reflect the behaviour of

the bunch.

Figure 5.9 shows the wake potentials for the model dechirper calculated for the
above-described bunch shapes and in dashed lines the corresponding normalised
particle distributions. It can be seen that indeed, the maximum absolute value of all
potentials along the bunches is comparable, always at ~ —350 V /pC. These maxima
are reached at the end of the pulses.

The other expectations regarding the form of the slopes can also be verified using
Fig. 5.9. For the uniform pulse (green), the slope of the wake potential over the
length of the bunch is at a first glance linear, at closer inspection, though, it shows
to have a slight curvature which simply results from the non-linearity of the wake
function in the considered region (c.f., e.g. Fig. 5.2). No matter this slight curvature,
however, the uniform bunch is the pulse shape that grants to most uniform slopes
and thus can be expected to grant the most uniform energy loss over the particle
bunch.
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Figure 5.9: Wake potentials (solid lines) of different bunch shapes (dashed lines) of the
same length derived from a convolution with the wake function of the model structure.
It can be seen that the maximum absolute value of the wake potential over the length

of the bunches is very similar for the different distributions, while the slopes radically
differ.

The Gaussian pulse creates a wake potential with a slope that is curved all over the
length of the bunch. The wake potential has an inflection point where the Gaussian
has its maximum (i.e. at s = 0) and shows a steep, nearly uniform slope in the
region around this inflection point. This corresponds to the region in which the slope
of the Gaussian pulse has the highest absolute value since these are the regions in
which the overlap of the pulse and the wake function increases the fastest. Around
the beginning and end of the bunch, where the Gaussian pulse goes over into the
asymptotic approach to zero, the wake potential shows a more distinct curvature.

The wake potential of the triangular pulse is similar to the one created by the
Gaussian pulse. It also shows an inflection point at s = 0, but overall a softer,
more steady slope than the wake potential of the Gaussian pulse. For example at
the beginning of the bunch the wake potential of the triangular pulse shows lower
absolute values than the wake potential of the Gaussian pulse at the same distance
s. It can be seen from the pulse shapes that in this region at the beginning of the
bunch, the triangular pulse encloses a larger area under its curve compared to the
Gaussian bunch, but after the maximum at s = 0, the steeper slope of the Gaussian
leads to a now larger area under the curve of the Gaussian and thus to a weaker
overall wake potential of the triangular pulse in the second half of the bunch.

For the double Gaussian, the two superimposed single Gaussians are visible in
the wake potential as two regions of clearly different slopes: a steeper region at the
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beginning of the pulse resulting from the Gaussian with the smaller r.m.s. length and
a region with a smaller overall slope corresponding to the Gaussian with the original,
larger r.m.s. length. In both of these regions a change of the internal curvature in
an inflection point corresponding to the two local extrema of the Gaussians can be
conjectured, for the second Gaussian centred on s = 0 it is visible more easily.

These observations all coincide with the initial expectation that the bunch shapes
will reflect in different behaviours of the wake potentials. These different behaviours
will also have an influence on the phase space of the particle bunch, which will be
studied in the following section.

5.2.3 Phase Space Computations for Various Bunch Shapes
and Gap Widths

Similar findings like presented in this section have previously been published in [4].

As mentioned before in equation (5.1), the energy shift introduced by the dechirper
is proportional to the wake potential and the proportionality factor is the total charge
of the pulse. This means that the form of the energy shift results directly from the
particle distribution and, by implication, has nothing to do with the initial energy
distribution of the particle bunch, and neither with the total energy of the pulse. This
means for the following phase space studies the energy distribution of the particle
bunch can be chosen arbitrarily. For the phase space of the test bunch in these
studies 1,000 particles were created and randomly assigned a position according to
the particle distributions introduced in the previous sections, and an energy according
to a fixed energy distribution. This distribution has been chosen such that the effect
of the dechirper is most easily visible for a total charge of

¢y, = 100 pC,

which is the maximum achievable bunch charge of the ELBE thermionic gun that
has been available for the experiments. More specifically, a Gaussian with a standard
deviation of

Ofp = 166 keV,

and a mean of
pe = HkeV,

has been chosen. This Gaussian was then imprinted with an energy chirp. This
chirp has been introduced as a uniform increase in energy starting from

Ejy = 100keV,
at the head of the bunch and ending at

Ehigh =220 keV,
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at its tail. The total energy width of the bunch is thus 120 keV. The resulting position-
dependent energy variation was then added to the original energy distribution and
stored for all particles of the bunch.

The initial phase space created in this way is now modulated using the wake
potentials of the different bunch shapes studied in the previous section. For this
purpose, the wake potentials are calculated discretely over s by performing the
convolution in eqn. (3.59) numerically. The resulting potentials are then interpolated
using SciPy and a one-dimensional, linear interpolation. This is done to guarantee
that for every randomly assigned particle position of the initial phase space an energy
shift can be calculated from the wake potentials and the total charge of the bunch.
This energy change is then added to the initial energy of the particle. This procedure
is additionally performed for several gap widths to show the different behaviours of
the dechirper in these cases. Exemplary, the gap widths 6 mm, 12mm and 35 mm
have been chosen. The resulting phase spaces for the initial particle distributions
and the dechirped bunches are shown in the following figures.
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Figure 5.10: Phase space of a particle bunch with the example initial energy distribution
and a Gaussian particle distribution before and after the model dechirper with varying
gap widths. The overall energy reduction caused by the dechirper is, as intended, stronger
at the tail of the bunch than at its head. The curvature of the wake potential shown
in Fig. 5.9 is clearly visible in the curved, wave-like behaviour of the phase space after
dechirping. Increasing the gap width from 6 mm to 9 mm significantly reduces the effect
of the dechirper. An increase of the gap width to 12 mm further reduces the effect of the
dechirper, increasing it even further to 35 mm nearly completely negates it.

In Fig. 5.10, the dechirping effect of the structure on the model Gaussian with the
given energy distribution is shown. The progressively stronger energy modulation
with increasing gap width is clearly visible, as is the non-linear behaviour of this
effect with respect to the gap width. For a gap width of 35 mm, the effect of the
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dechirper on the phase space of the particle bunch is nearly negligible; just a slight
modulation of the energy in the range of a few keV can be seen. This modulation
is, as could be expected from Fig. 5.9, stronger at the tail of the bunch than at the
head. A reduction of the gap width to 12 mm increases the effect of the dechirper.
The curvature of the wake potential, also seen in Fig. 5.9, is clearly imprinted on the
formerly linear energy chirp. In the central region of the bunch between —0.5 mm and
0.5 mm, the nearly uniform slope of the wake potential of the Gaussian pulse nearly
compensates for the initial chirp, leading to a minimal energy width of ~ 20keV in
this region. This does not, however, include the head and tail of the bunch, which due
to the curvature of the Gaussian pulse increase the total energy width to ~ 80 keV
for the total pulse. Decreasing the gap width even further to 6 mm again significantly
increases the effect of the dechirper, so much in fact that it overcompensates the
initial chirp and leads to a new chirp in the opposite direction, where the tail of the
bunch has a lower energy than its head. This new phase space has now an energy
width of ~ —60keV. The non-linear behaviour of the reduction of the gap width can
easily be deduced from the phase space example at a gap width of 9mm: while it is
the central gap width between the other examples at 6 mm and 12 mm, the effect of
the dechirper is just slightly stronger here than for the 12 mm example. For a linear
scaling of the effect of the dechirper with the gap width, it would be expected that
the phase space at a gap width of 9mm lies in between the other examples of 6 mm
and 12mm. This shows again clearly the influence of the gap width on the overall
effect of the dechirper and the power of the tuning: within a range of just 3 cm of
gap width, the initial energy chirp of the bunch can be either nearly left uninfluenced
up to already significantly overcompensated by the dechirper. Due to their similar
wake potentials, the dechirped phase space for the triangular pulse would be very
similar and is thus omitted here.

Figure 5.11 shows a similar study conducted for the double Gaussian particle
distribution. The effect of the dechirper with varying gap widths is again clearly
visible, from a nearly negligible effect at 35 mm to a very strong overcompensation
of the initial chirp at 6 mm gap width. The behaviour of the wake potentials is again
imprinted on the phase space after the dechirper. In the case of the 6 mm gap width
it leads to a valley of nearly constant energy after the dechirper in the region between
about —0.3 mm to 0.3 mm, which coincides with the second of the two Gaussians and
subsequently the flatter part of the slope of the wake potential. Like for the single
Gaussian, though, the head and tail of the bunch deviate vastly from this valley,
which overall increases the energy width of the dechirped phase space to ~ —50keV.
And even if the mentioned valley does have a very low local energy width, the mean
energy nevertheless was clearly reduced to just &~ 60keV. For the middle gap width
of 12mm this valley is discernible as well, but the overall energy of the phase space
after the dechirper is still determined by the initial chirp and still = 75keV, which
does not significantly differ from the single Gaussian, as was expected due to the
comparable maximum absolute values of the wake potentials over the bunch length.
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Figure 5.11: Phase space of a particle bunch with the example initial energy distribution
and a double Gaussian particle distribution before and after the model dechirper with
varying gap widths. Similar to the single Gaussian, the curvature of the wake potential
is clearly visible in the behaviour of the phase space after dechirping. In this case, the
behaviour of the wake potential of the double Gaussian leads to a valley-like region in
the centre of the dechirped phase space. An increase in the gap width again significantly
reduces the effect of the dechirper.

In Fig. 5.12, the effect of the dechirper with varying gap widths on a uniform
particle bunch is shown. Again, the influence of the gap is easily visible; for 35 mm
the dechirper has hardly any effect on the energy distribution, while for 6 mm, the
effect is the strongest. Due to the uniform pulse and the wake potential displayed
in Fig. 5.9, the dechirped pulses show the least curvature here. For the two larger
gap widths, nearly no curvature is discernible, though for a gap of 6 mm width it
is easily visible. As stated in the previous section, this curvature results from the
non-linearity of the wake function and has nothing to do with the shape of the
pulse itself. What does have an influence on this curvature, and thus on the wake
potential, is the length of the pulse compared to the length of the first flank of the
wake function. From Fig. 5.14 it can be seen that the first rising flank (between
s = 0 and the first local maximum) of the wake function of the model structure for
a gap width of 6 mm is &~ 3mm long and comparatively steep, while for the lower
gap widths, this flank is flatter and a little longer. For the wake potential, which,
again, is determined by a convolution of the wake function with the pulse shape,
especially the region between s = 0 and the length of the pulse, which is 1.8 mm
here, is relevant. For this pulse, this coincides with nearly the total length of the first
flank of the wake function, and thus, all non-linearities in that region will influence
the wake potential.

To mitigate this effect, it makes sense to reduce the length of the pulse compared
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Figure 5.12: Phase space of a particle bunch with the example initial energy distribution
and a uniform particle distribution with a total length of 66 = 1.8 mm before and after
the model dechirper with different gap widths. The scaling of the effect of the dechirper
with an increase in gap width is clearly visible. Additionally, despite the uniform particle
bunch and in accordance to Fig. 5.9, the dechirped phase space for the lowest gap width
clearly shows a curvature.

to the length of the first flank for the wake function. In Fig. 5.13 this is done by
reducing the length of the uniform pulse to a tenth of its previous value, 0.18 mm.
This shorter pulse will result in a smaller region of the wake function playing a
role for the wake potential (if the considerations are limited to short range wake
potentials). In this smaller region, no matter the gap width, the value of the wake
function will not change that drastically compared to the larger region that becomes
interesting for longer pulses. As a result, the phase space will be dechirped much
more uniformly as seen in Fig. 5.13: here, for the lowest gap width, the initial chirp
has been fully compensated. The energy width of ~ 10keV of the pulse is here
merely the result of the initial random energy distribution that was chosen for the
generation of the model pulses, but the imprinted chirp of the initial bunch has been
balanced out by the effect of the wake potential and thus, the dechirper.

5.2.4 Conclusion

Apart from the bunch charge that serves as a scaling factor for the strength of
the wake potential, the length and the shape of the particle bunch have both a
significant influence on the effect of the dechirper. Here the form of the pulse is not,
or only minimally, important for the maximum dechirp over the pulse the structure
is able to generate. This is due to the wake potential being influenced by the
normalised particle distribution and the maximum of the wake potential over the
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Figure 5.13: Phase space of a particle bunch Figure 5.14: Close-up of the wake

with the same initial characteristics as in 5.12,
but a total length of 0.18 mm before and after

the model dechirper with different gap widths.

Compared to the longer bunch, the curvature
in the dechirped phase spaces is no longer

function of the model dechirper for
the gap widths 6, 12 and 35mm
around s = 0. The first rising flank of
the wake functions starting at s = 0 is
the steepest for the lowest gap width.

discernible. In fact, in this case, the dechirper
position with the lowest gap width is able to
fully compensate the initial chirp.

bunch coinciding with the maximum overlap of the areas of the wake function in
the region of the pulse and the bunch. However, the shape of the bunch greatly
influences the form of the slope of the wake potential over the pulse. The pulse that
generates the most uniform slope of the wake potential over the length of the bunch
is the flat-top pulse, though even here the non-linear behaviour of the wake function
will create a slight curvature of the wake potential. This effect can be mitigated by
choosing a pulse length that is short compared to the length of the first flank of the
wake function. Other pulse shapes, like the Gaussian or double Gaussian, show a
significantly more curved wake potentials, though with smaller regions within the
pulse where the slope is nearly uniform.

These potentials have different effect on the model phase space. For a linear
initial chirp like chosen in this section, a strong effect of the dechirper (which is
achievable for low gap widths) will easily imprint on the dechirped phase space. A
complete compensation of such a linear chirp is naturally only possible with a more
or less linear slope of the wake potential, and could be achieved for the model energy
distribution for a very short flat-top pulse and the smallest possible gap width of
6 mm. Consequently, though, for different initial chirps, e.g. for a more wave-like
chirp, other pulse shapes are more suited to compensate for the chirp and flatten the
energy distribution as much as possible. For the wave-like chirp, a Gaussian pulse,
e.g. might deliver more promising results.
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6 Dechirper Experiments at ELBE

After the geometrical parameters of the dechirper had been agreed on with the
HZDR, the prototype and the corresponding vacuum chamber were planned and
built directly at the HZDR. During the second half of the year 2016, the dechirper
was integrated into the beam line and was then available for experiments.

The following chapter will deal with the experiments carried out at ELBE in 2016.
For this, the dechirper prototype will at first be described in detail. Spatial and
technical limitations of the accelerator site will also be taken into account before
the experimental results will be compared to expectations and results obtained with

WIzaRD.

6.1 The Dechirper Prototype Used at ELBE

In this section, the parameter choice for the dechirper prototype used at ELBE will
be illustrated in detail. Two aspects are of interest in this regard: the geometrical
parameters, limited purely by spatial and technical characteristics of the accelerator
site; and the parameters of the dielectric coating, which are influenced by material
characteristics and manufacturing limitations and availability.

6.1.1 Spatial Requirements at the Accelerator Site and
Geometric Parameters of the Dechirper

As mentioned already in the previous sections, the geometry of the final dechirper
prototype has been subject to a number of limitations due to the situation at ELBE.
First and foremost, the length of the dechirper could not exceed 80 cm, as this
corresponds to the largest amount of free space in the beam line at the accelerator
site.

Second, the dechirper had to be inserted into the beam line within a cylindrical
vacuum chamber. This chamber has a diameter of 10 cm, which limits the width
of the dechirper and the maximum achievable gap width. The vacuum chamber
also holds mechanical drives that allow for a tuning of the distance between the two
dielectric plates even after the dechirper has been taken into operation. These drives
also make it possible to close the dechirper entirely (i.e. such that the dielectrics lie
directly on top of each other) and bring the closed dechirper towards one side of the
vacuum chamber and thus remove it from the beam path entirely. For the geometry
of the dechirper, it holds that the wider the structure is, the more the gap width will

115



6 Dechirper Experiments at ELBE

be limited. A width of 5cm has been chosen. As seen in Fig. 5.4, at this width the
achievable maximum value of the dechirp at s = 0 is nearly maximal. Additionally,
starting at 6 cm, the wake function strength remains unchanged if the width of the
dechirper is increased even further.

The width of the dechirper also influences the experiments in another way. To
simplify the geometry and the construction process, the terminating walls in z-direc-
tion have been left out in the prototype (c.f. Fig. 6.1). The necessary electric termi-
nation in this transversal direction is instead provided by the vacuum chamber. This
represents a deviation from the original, completely rectangular, semi-analytic model
that WIzaRD cannot account for. Comparative studies conducted with CST PS,
however, show that this differing termination makes little to no difference for the
final wake potential. The parameter study in Fig. 5.4 hints at this behaviour, too: a
simple way to interpret the curved termination resulting from the vacuum chamber
is to assume that the width of the dechirper varies between 5cm and 10 cm along
y-direction, and Fig. 5.4 shows that apart from the jump occurring around 6 cm, the
width does not influence the wake function in that range. A sufficiently wide vacuum
chamber, as used in this prototype, should therefore be comparable to the situation
considered in the semi-analytical model.

Figure 6.1: Schematic profile of the dechirper prototype inside the vacuum chamber. The
terminating walls of the analytical model have been left out in one transversal direction.
The necessary termination is provided by the chamber walls instead.

Under these conditions and taking the mechanical drives into consideration, the
maximum achievable gap width at ELBE was limited to 35 mm.
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6.1 The Dechirper Prototype Used at ELBE

6.1.2 The Material of the Dielectric Coating

The choice of the coating material and its parameters is likewise subject to limitations
of different natures. Here, first and foremost, the material needs to be suited for the
use in ultra-high vacuum. Under the low pressure inside the beam line, even solid
materials can release gases that in turn contaminate the vacuum and increase the
pressure inside the accelerator. This process is generally referred to as outgassing.

Additionally, especially the thickness of the chosen material strongly depends on
the manufacturing and processing possibilities. Moreover, in all previous studies
conducted with both CST PS and WIzaRD, lower dielectric constants resulted in
higher achievable strengths of the wakefield (c.f. Fig. 5.5). This was taken into
account during the design process of the dechirper.

Initially, FR4! was considered as a dielectric coating. As a composite material
consisting of amongst others of epoxy resin and woven glass fabric reinforcements,
FRA4 is often used in circuit boards and had already previously been applied at ELBE
for other purposes. It is easy to produce in various thicknesses, comparatively cheap
and easy to process further. Additionally, while the dielectric constant varies for
different compositions, it is most often found to be in the range between ¢, = 4 and
g, =5 (c.f. [88]) and thus relatively low. However, first ultra-high vacuum tests with
a sample of the material designated for the use on the dechirper showed that the
outgassing of this material was greater than initially assumed and it is thus unsuited
for the use on the dechirper.

As substitute materials especially glass-ceramics were considered due to their
low propensity for outgassing. In the end, MACOR was chosen for the dielectric
coating. It is also a composite material made up of mainly silica and various metal
oxides and is known to be a good thermal insulator with very little outgassing. It
can be produced in a variety of forms and thicknesses. Its dielectric constant is
g, = 6 (c.f. [89]) for the used sample, which is slightly higher than for FR4, but
still comparatively low (other ceramic materials have higher dielectric constants up
onto €, ~ 20). This is also comparable to the permittivity of diamond (e, ~ 5.7,
[90]), which has been proposed as a material for the coating of dielectrically lined
dechirpers in [59] and [91]. Samples of the used material were tested at ELBE and
met the ultra-high vacuum requirements.

The samples of MACOR used for the dechirper prototype at ELBE have a thickness
of 3mm due to manufacturing limitations. For similar reasons, two single plates in
the given dimensions (80 cm x 5cm) proved to be unobtainable. Therefore, instead
of using two single plates as the dielectric coating, five shorter plates per side with a
length of 16 cm each were used to emulate the total length of the dechirper. This was
done by mounting the single plates with metallic clamps in a row. These metallic
clamps also connected the upper and lower dielectric with the necessary electric
termination in y-direction, in this case, aluminium plates. This splitting of a single

IThe letters FR stand for ‘flame retardant’ and refer to the low flammability of the material.
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plate into five smaller plates is assumed to have little to no influence on the final
wakefield.

6.1.3 Consequences for the Wake Potential

The geometric and dielectric properties of the dechirper can therefore be summarised
as:

length L = 80 cm,

width ¢ = 5cm,

e permittivity of the coating ¢, = 6,

coating thickness b — d = 3mm,

gap width adjustable up to 35 mm.

Figures 6.2 and 6.3 show the prototype of the dechirper used at ELBE during
construction and after incorporation into the beamline. The model structure used in

Figure 6.2: Vacuum chamber of the dechirper Figure 6.3: Vacuum chamber and
prototype operated at ELBE during construction. dechirper integrated into the beam
Courtesy of U. Lehnert, HZDR. line at ELBE. Courtesy of U.

Lehnert, HZDR.

Chapter 5 assumes a gap width of 12mm as a start for further investigations. This
corresponds to an opening that is least likely to cut into the beam in transversal
direction and thus leads to no beam loss, yet can still be considered as a small gap
width with a resultingly high effect of the dechirper. According to table 5.1, the
wake function strength at s = 0 in this case is —400.5592 V /pC, which also limits the
wake potential for an arbitrary bunch shape to this value. Of course, should a lower
gap width be achievable, the maximum possible amplitude of the wake function will
increase.
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It should also be mentioned that at the maximum achievable gap width of 35 mm,
there will still be a wakefield generated inside the dechirper. Figures 5.10 to 5.13
however show that these effects are very small and will thus be neglected during
this chapter. The state of the maximally opened dechirper will be regarded as the
state of a ‘turned off’ dechirper. While it is technically possible to mechanically
remove the dechirper fully from the beam path, this is not a desirable solution as it
additionally makes it necessary to fully close the dechirper. In a series of experiments
this would make a new adjustment of the beam inside the dechirper necessary for
every new setting, as it is crucial that the beam passes directly through the centre
of the dechirper. It is technically simpler to adjust the beam to the centre once and
then use this configuration for as many experiments as possible without having to
remove the dechirper from the beam path entirely.

6.2 Experimental Conditions

6.2.1 The General Aim of the Experiments

The option to tune the dechirper after construction due to the adjustable gap width
has always been one of the most important aspects in the design choice of the
dechirper for the HZDR. Since the very first stages of the planning process, the
experimental proof of the dependence of the wake potential and thus the dechirp
on the gap width has been decided on as the most important part of the tests with
the prototype. Additionally, variations of the bunch charge will also influence the
final dechirp, though not the wake potential, which is why they are also suited as
experimental degrees of freedom.

These aspects in mind, the focus of the experiments carried out at the HZDR was
quickly set on

1. a proof of the general working principle of the dechirper,
2. an experimental proof of the influence of the gap width on the dechirp, and

3. studies regarding the influence of the bunch charge on the final effect of the
dechirper.

Additionally, the effect of the dechirper on the particle bunch can also be calculated
numerically using WIzaRD, and therefore, both experiment and semi-analytical
prediction will be compared to each other. This promises an additional experimental
validation of the functionality of WIzaRD.
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6.2.2 Experimental Limitations and Compensating
Measures

The measured quantity in the experiments conducted at ELBE was the energy
spectrum of the particle beam. From these spectra, the average energy of the particles
(i.e. the energy average with respect to the intensity displayed in the spectrum) and
the corresponding standard deviations were computed. The dechirper effect, as
shown in the previous sections, basically amounts to an overall energy loss and a
narrowing of the energy width of the beam. In the energy spectrum, this would
correspond to

1. a decrease of the average energy of the beam, and
2. a decrease of the standard deviation of the spectrum.

Depending on the gap width of the dechirper and the bunch charge, these changes
will be more or less pronounced.

The studied bunches during the experiments were generated by a thermionic
particle gun. Here, the maximum achievable pulse charge was limited to ~ 100 pC.
Taking Table 5.1 into account once more, the maximum achievable dechirp for this
case, a gap width of 12mm and the given maximum bunch charge is

V
—400.56 — - 100 pC = —40,056 V,
pC

which corresponds to an energy loss of & —40keV that the particles of the bunch
can maximally experience.

This is very small compared to the usual chirp of the ELBE beam during normal
operation, which is in the range of several MeV (c.f. Fig. 1.3). Without any exper-
iments, it can therefore be predicted that the prototype will not be enough to
compensate the usual energy chirp of the ELBE beam, which is already accounted
for by the technical and spatial limitations of the accelerator site.

The small effect of the prototype compared to the usual chirp at ELBE poses
another experimental challenge here: the variations in the dechirp created by adjust-
ing the gap width are also small compared to the initial chirp. It is thus harder to
differentiate between and consequently identify the effects of the dechirper and vary-
ing the gap width, respectively, and, e.g., natural fluctuations of the beam caused
by the gun. This challenge, however, is also easy to work around. The chirp at
the ELBE facility is imprinted on the particle beam within a magnetic chicane used
to shorten the spatial bunch length before the bunch passes the second accelerator
module (c.f. Fig. 1.2). Both the chicane and the second module can be deactivated,
so that it becomes possible to use a particle bunch without an initial chirp during
the experiments. This has the advantage that the effect of the dechirper is measured
directly, and not in correlation with the initial chirp of the beam.
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a) b)

Figure 6.4: Exemplary phase space of two particle beams, one with an initial chirp (solid
line) and one without (dashed line) (displayed in panel (a)). The schematic effect of the
dechirper is shown in read, and is basically added to the phase spaces of the particle
beam. Panel (b) shows the resulting phase spaces after the dechirper: While energy
width of the initially chirped beam is compensated, the dechirper imprints its own energy
width onto the initially unchirped beam.

On the other hand, this also changes the objective of the experiments. Figure
6.4 shows schematic phase spaces for an initially unchirped beam (dashed line) and
an initially chirped beam (black, solid line), as well as a schematic dechirp (red).
The acting of the dechirper on the particle beam can generally be understood as
a summation of the phase space profile and the dechirp. This means that while
the energy width of the intially chirped is compensated by the dechirp, the initially
unchirped beam is imprinted with the profile of the dechirp. A similar effect is the
overcompensation of the initial chirp, which can also be seen in the test phase spaces
in the figures 5.10 to 5.13. This means that for the given situation of an unchirped
beam, the objectives of the experiments have to be adjusted. The general energy
loss of the particles is not affected by whether or not the beam is initially chirped,
so that the first objective still remains to measure a general decrease in the average
energy of the spectrum of the particle bunch. However, instead of narrowing the
energy width of the spectrum, the dechirper will imprint the bunch with its own
phase space profile, and thus widen the spectrum. Therefore, the standard deviation
of the energy spectrum will increase. This is technically the inverse effect of what
the dechirper ideally should accomplish, but it will serve as a proof of principle just
as well.

Another limitation resulting from the circumstances at ELBE is that next to the
energy spectrum, neither the longitudinal phase space, nor the particle distribution
of the bunch, nor the bunch length could be measured directly. While this is not
detrimental to the experiments themselves as the effect of the dechirper can still be
deduced from the energy spectra, it nevertheless complicates the comparisons to the
semi-analytically expected effects of the dechirper. The particle distribution and
bunch length, as shown in the previous sections, are fundamental for the numerical
derivation of the wake potential from the wake function. Not knowing these quanti-
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ties makes an accurate prediction of the effect of the dechirper on the particle bunch
impossible as the correct wake potential remains unknown. Both the bunch length
and also an approximated particle distribution could be reconstructed from measured
data using phase-space tomography methods, though these still remain only approx-
imations and cannot replace actual measured data which will consequently overall
negatively influence the comparisons that can be made between the experiments and
the semi-analytical predictions.

6.3 Experimental Results

6.3.1 Evaluation of Raw Measured Data and Variations of
the Bunch Charge

Average Energy and Standard Deviation of the Energy Spectra

The effect of the dechirper on the energy spectra of different bunches was observed
in three experimental sessions in the second half of the year 2016. As a first step,
in this subsection the raw experimental data for selected experimental series were
analysed. The only alteration of the initial data is that the evaluated window of the
original energy spectra is tightened to a region of interest.

To differentiate and compare the results for the different bunches, each particle
bunch will be identified by the date of the respective experimental session, a consec-
utive number denoting the different experimental series per day, and the bunch
charge.

The first pulse that is going to be analysed here is the bunch 1008_1_54, measured
on August 10 at 54 pC. The normalised intensities of the energy spectra measured for
varying gap width are shown in Fig. 6.5. In this plot, the intensities are represented
by a colourmap and plotted over the energy and the gap width. The upper limit of
the gap width is 35 mm for technical reasons. The lower limit, 6 mm, has been found
to be the closest position that the two dechirper plates can have without cutting
transversally into the beam. For this depiction, the data has been interpolated over
gap widths that have not been measured (e.g. between 30 mm and 35 mm because
the expected changes to the spectrum introduced by the dechirper are only minimal
in this range). The figure shows a shift of the non-zero areas of the spectra towards
lower energies for low gap widths. Additionally, a general broadening of the spectra
for these gap widths can also be surmised, though both effects clearly only appear
in a range of a few 10keV.

For a closer inspection of the effect of the dechirper on the pulse, the average
energy and the standard deviation of the spectra are calculated. To see the actual
effect compared to the ‘opened’ dechirper at 35 mm more clearly, the average energy
and the standard deviation of this case are taken as a reference for the evaluation.
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Figure 6.5: Normed intensities of the Figure 6.6: Average energies (top) and stan-
energy spectra of the particle bunch dard deviations (bottom) of the energy spec-
1008_1_54 for different gap width of the tra of the particle bunch 1008_1_54 for different
dechirper. A broadening of the width of gap width of the dechirper compared to the
the spectrum for lower gap widths of the open dechirper. As predicted, the closing of
dechirper is visible. The general energy the dechirper leads to a decrease of the average
reduction induced by the dechirper can energy, and, as the inverse dechirper effect is
be seen in a shift of the non-zero areas measured, to an increase in the standard devi-
of the spectra towards lower energies for ations of the spectra.
lower gap width. Both effects are only
minimal.

Figure 6.6 shows clearly the expected behaviour of both the average energy and
the standard deviation compared to the reference measurement. The average energy
decreases for a decreasing gap width by a total of 13 keV, which is in the same range
as the effect reported in [60] for a similar dechirper, while the standard deviation
increases by 1.5 keV. Both effects are clearly not linear, and get significantly stronger
for lower gap width, a behaviour also reported in [1] and [2]. This is in accordance
with the previous prediction and parameter analyses shown in the last chapter.
However, both effects are also very small, only in the range of a few keV, which, to
a certain degree, has also been expected.

The same effects could be verified in several other experimental sessions, shown
as a second example for the bunch 2508_1_56 in the Figures 6.7 and 6.8. In Fig. 6.7,
both explained effects can also be seen more clearly: the increase of the energy
width of the pulse is visible in the second high intensity region at ~ 26.93 MeV that
starts to appear for gap widths smaller than 10 mm. An observation of the first high
intensity region at ~ 26.97 MeV shows that this region shifts towards lower energies
for low gap widths, which again confirms the general energy-reducing effect of the
dechirper.
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Figure 6.7: Normed intensities of the Figure 6.8: Average energies (top) and stan-
energy spectra of the particle bunch dard deviations (bottom) of the energy spec-
2508_1_56 for different gap width of the tra of the particle bunch 2508_1_56 for different
dechirper. A broadening of the width of gap width of the dechirper compared to the
the spectrum for lower gap widths of the open dechirper. As in the previous experimen-
dechirper is clearly visible in the second tal series, the closing of the dechirper leads to a
high intensity peak at ~ 26.93 MeV for decrease of the average energy and an increase
lower gap widths. The general energy in the standard deviations of the spectra.
reduction induced by the dechirper can
be seen in a shift of the non-zero areas
of the spectra towards lower energies.

For another very similar example of the effect of the dechirper on the energy
spectrum of an electron bunch measured at ELBE, see Fig. D.1 in Appendix D.

Influence of the Bunch Charge

Next to the gap width of the dechirper, the charge of the used particle bunch was the
second quantity the effect of which has been of great interest during all experimental
sessions at ELBE. For this purpose, bunches with the same characteristics (i.e. the
same settings of the thermionic gun) but different total charges have been used in the
experiments. The effect of the dechirper for a decreasing gap width has subsequently
been measured for all of these series.

The first series of experiments discussed here was measured for three different
bunch charges, 68 pC, 82pC and 97 pC. The results for the average energy of the
spectra and the corresponding standard deviation can be found in Fig. 6.9.

The figure shows the scaling of the effect of the dechirper for an increasing bunch
charge in the case of the average energy of the different spectra: the maximum
dechirp at a gap width of 6 mm is the highest for a bunch charge of 97 pC (= 12keV)
and lowest for the lowest bunch charge of 68 pC (=~ 6keV). The scaling is nonlinear,
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Figure 6.9: Progression of the average energy and the standard deviation of the energy
spectra of particle bunches with different bunch charges from the series 2508_4 for different
gap widths of the dechirper. The bunch charge clearly has an influence on the overall
dechirp, seen in a stronger reduction of the average energy for the higher bunch charges
compared to the lower ones. An effect on the standard deviation is also visible, though
not as pronounced.

like predicted from theory, but it is clearly visible. For the standard deviations of
the spectra, this dependence on the bunch charge is not as pronounced. First and
foremost, all three series of measurements show the increase in the standard deviation
for a decreasing gap width that has been predicted as one of the dechirpers main
effects. There are also minimal differences visible for the different bunch charges.
However, there is no clear scaling with the bunch charge visible; e.g. the middle
bunch charge of 82 pC has the lowest maximum increase in the standard deviation
for the minimum gap width (~ 3keV) and not, as would have been expected, the
lowest measured bunch charge.

A second investigation of this scaling of the effect of the dechirper with the bunch
charge can be seen in Fig. 6.10, which shows a series of measurements for the same
bunch with now six differing total charges in the range from 29 pC to 98 pC. In this
figure, it becomes even clearer that while there is some form of effect of the charge
on the final dechirp, the theoretically expected scaling is hard to verify from these
measurements. Again, the generally predicted overall behaviour of both the average
energies and the standard deviation of the measured spectra can clearly be seen in the
figure. Additionally, the experimental series studied for 98 pC shows the strongest
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reduction of the average energy with decreasing gap widths and the strongest increase
in the standard deviation, at least at the lowest gap width. However, there is no
clear scaling identifiable from the other series with different bunch charges.
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Figure 6.10: Progression of the average energy and the standard deviation of the energy
spectra of particle bunches with different bunch charges from the series 2508_1 for different
gap widths of the dechirper. While a variation of the effect of the dechirper for different
bunch charges is clearly visible in this series, and, e.g., the highest reduction of the
average energy is provided by the highest bunch charge measured, a clear scaling with
the bunch charge cannot be seen neither for the average energy nor for the standard
deviation of the energy spectra.

Similar effects could be observed in all other experimental series where different
bunch charges have been tested for the same general bunch characteristics. As an
intermediate conclusion, it can thus be said that while there generally is a qualitative
effect of the bunch charge on the strength of the dechirper, the expected scaling
could quantitatively not be verified.

There are multiple possible reasons for this. On the one hand, the measured bunch
charges are comparatively close together, i.e. all in the same order of magnitude. In
addition to the already small predicted effect of the dechirper, a small variation in
the bunch charge does not lead to vastly different results. Other sources of errors
that will be discussed in detail later and experimental limitations might already have
a bigger influence on the measured qualitative effect of the dechirper compared to
the variation of the bunch charge. This, once more, can be ascribed to technical

126



6.3 Experimental Results

limitations at the accelerator site. The thermionic gun used for these experiments
was not able to produce higher charges than a maximum of 100 pC. On the other
hand, the thermionic gun is sensitive to changes in a sense that it could not be
guaranteed that a variation of the bunch charge would not, even if only marginally,
also change the phase space of the pulse. A different phase space might have led to a
different pulse shape, which in turn would also influence the final dechirp and might
account for changes in the range of a few keV. This is already in the same range
as the expected effects of a change in the total charge, so there is a high relative
insecurity of the measured data. Since the phase space could not be observed, there
was no way to assess the qualitative changes to the bunch that the variation of the
charge might have caused.

Another comparison of the behaviour of the dechirper for the same general bunch
and different bunch charges can be found in Fig. D.3 in Appendix D.

6.3.2 Comparison to Semi-Analytical Calculations

As described earlier, a comparison of the experimental data to a semi-analytically
predicted effect of the dechirper proves challenging because of the lack of knowledge
about the phase space of the measured pulses. The pulse lengths could be recreated
reasonably well using a form of phase space tomography, which can also give indica-
tors for the unknown pulse shape function. For an example of such a phase space
tomography, see appendix E. For more information on the details of this method,
refer to [92].

To nevertheless compare the experimental data to references calculated with
WIzaRD, the phase spaces of the measured pulses needed to be approximated. For
that, the pulse shapes have been assumed to follow a double Gaussian (c.f. eqn. (5.3))
distribution for first comparisons, which is an educated guess based on the results
of multiple phase space tomographies. The total length of the pulse was taken
from the respective phase space tomography. With this information, a number of
particles have been created within a Python programme which exhibit the given
particle distribution. The energy distribution of the created particles is taken from
the energy spectra of the open dechirper. The numerically generated particles were
randomly assigned a position and an energy according to this distribution.

The so created test phase spaces were then subjected to the dechirps of the
prototype for different gap widths. For this, the dechirp was calculated by multiplying
the wake potential with the used pulse charge. The resulting curve of the dechirp
(in dependence on the position s) was then interpolated over the region of the pulse
so that a functional dependence of the dechirp from the position could be gained.
In a next step, for each of the particles of the artificial phase space the dechirp was
calculated with respect to the position of the particle. The determined dechirp per
particle was then added to the original particle energy.

Figure 6.11 shows a comparison between the experimentally determined average
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Figure 6.11: Comparison between the theoretically predicted dechirp (dashed line) of the
pulse 1008_1_54 (pulse shape: double Gaussian, length 2 mm) and the experimental data
(x-shaped markers). The order of magnitude of the predicted dechirp clearly matches
the experimental results, though both the average energy decrease and the increase in
the standard deviation have been predicted as too large compared to the measured data.

energies and standard deviations of the energy spectra of pulse 1008_1_54 and their
theoretically predicted pendants for different gap widths of the dechirper. First
and foremost, the order of magnitude, i.e. changes in the range of a few 10keV of
the experimentally measured data is mirrored in the theoretical predictions. The
non-linear dependence on the gap width is also highlighted by the theoretical data.
When it comes to a quantitative agreement of the two methods, however, there
are discrepancies. The absolute disagreement between both methods also grows for
decreasing gap width. In case of the average energies, the difference of both methods
is initially in the range of a few keV for the highest gap width. It grows to ~ 5keV
for gap width of 15 to 10 mm and lies at ~ 15keV for the lowest gap width, 6 mm.
Roughly rounded off, the theoretical predictions always seem to be about twice as
large as the experimental values. A similar behaviour can be seen for the standard
deviations. This apparent scaling, however, is assumed to be a coincidence, since
other comparisons did not exhibit this behaviour.

A second comparison to a theoretical prediction of the effect of the dechirper for
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Figure 6.12: Comparison between the theoretically predicted dechirp (dashed line) of the
pulse 2508_1_56 (pulse shape: double Gaussian, length 1.2mm) and the experimental
data (x-shaped markers). For the average energy, the chosen model is able to predict the
experimental results accurately for gap width larger than 15 mm. For lower gap widths,
the discrepancy is larger. In case of the standard deviation, the predicted effect of the
dechirper is too low for most gap widths, though the order of magnitude of both results
is still compliant.

the pulse 2508_1_56 generally confirms the previous findings. Figure 6.12 shows again
that the theoretical prediction and the experimental results for both the average
energy and the standard deviation of the observed pulse match in their order of
magnitude, but also that there are quantitative differences. In this case, while
the shift in the average energies is predicted as too strong compared to the actual
measurements, the change in the standard deviation is predicted as too low apart for
the region of the lowest gap width, in which prediction and experiment are actually
in near perfect agreement. The apparent scaling with a factor of 2 that the previous
comparison exhibited cannot be confirmed here, which supports the claim that this
scaling was coincidence.

As a final statement it should be noted that due to the lack of knowledge of the real
phase space of the ELBE beam the matching order of magnitude of all theoretical
predictions should be treated as a success.
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6.3.3 Influence of the Background Noise
Reducing the Background Noise

Another aspect that needs to be taken into consideration when evaluating the exper-
imental data becomes apparent when the energy spectra are studied more closely.
Figure 6.13 shows two energy spectra (solid lines) from the series 2508_1_56. There
is a clear offset in the intensities, a background of ~ 10,000 that is present through-
out the measured region. Even measurements without an actual beam show this
behaviour, it is thus part of the systematic error of the spectrometer and not inherit
to the effect of the dechirper. This is especially problematic because this offset is
not constant over the measured energy region, it is generally slightly larger in lower
energy regions which can also be seen in Fig. 6.13.
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Figure 6.13: Energy spectra for the bunch 2508_1_56 and two different gap widths (solid
line). The dotted line indicates the polynomials used to fit the background noise which
have been subtracted from the raw data in the dashed spectra.

A strategy to reduce this background is also shown in this figure. The background
is here fitted with a quadratic polynomial, excluding the high intensity region of the
actual spectrum. Here,

I(E)=a-E*+b-FE+c, (6.1)

is the assumed relationship between the intensity I of the spectrum and the energy
E, and a, b and c are the fitting parameters which are consequently determined using
a Python script.

The resulting polynomial function is then subtracted from the original spectra.
This can lead to negative intensities, which are set to 0. The resulting spectra
(dashed lines) show no offset. Due to the fitted polynomials generally not being
constant, this background reduction is energy dependent and thus likely to influence
the evaluated quantities, the average energy of the spectrum and the corresponding
standard deviation.
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Figure 6.14: Influence of the background reduction on the average energy and the stan-
dard deviation of the energy spectra measured for the dechirping of bunch 1008_1_54.
Reducing the background by subtracting the fitted quadratic function (triangular markers)
increases the accordance between the theoretically calculated (dashed line) and experi-
mentally measured results (x-shaped markers).

The influence of this background reduction on the experimental data, again in
comparison to theoretical predictions, can be seen in Fig. 6.14 for the pulse 10_1_54.
Both the decrease of the average energy and the increase of the standard deviation
are more pronounced for the spectra after a reduction of the background with a
quadratic polynomial. This leads to an increase of the maximum change in the
average energy from ~ —13keV without the background reduction to ~ —20keV
with this reduction. In the case of the maximum change in the standard deviation,
the shift at 6 mm gap width increases from = 1.5 keV without reduction to ~ 5.5 keV
with reduction. For both quantities, the changes introduced by the reduction of the
background correspond to a scaling of the original curve, not to an offset; i.e. the
influence of the background reduction is smaller for larger gap widths. In general,
this modification of the raw experimental data seems to increase the accordance with
the theoretical predictions for this pulse.

A similar investigation of the bunch 2508_1_56 also shows an improvement of the
accordance of theory and experiment by using a quadratic background reduction on
the experimental data. In case of the average energies of this series of experiments,
the background reduction even leads to a very good qualitative agreement of both
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Figure 6.15: Influence of the background reduction on the average energy and the stan-
dard deviation of the energy spectra measured for the dechirping of bunch 2508_1_56.
Reducing the background by subtracting the fitted quadratic function (triangular markers)
increases the accordance between the theoretically calculated (dashed line) and experi-
mentally measured results (x-shaped markers).

curves apart from a small region around the gap width 10 mm. Especially for the
very low gap widths, the measured and calculated average energies of the spectra
match very well. For the standard deviation, the increased accordance between
prediction and experiment is especially apparent for gap widths larger than 10 mm
where the discrepancies used to be the largest for the raw experimental data and
the semi-analytical predictions.

Other experimental results underline these findings, compare to Fig. D.2 in Ap-
pendix D for a third example.

6.3.4 Influence of Experimental Limitations and
Uncertainties on the Evaluated Quantities

All experimental data is subject to errors. To judge the quality of the obtained
results, these errors need to be taken into account and evaluated regarding the used
methods and devices.

In case of the experiments with the dechirper prototype conducted at ELBE,
especially the methods used to postprocess the data and compare to theoretical
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expectations are the source of uncertainties and thus, errors. These methods and
quantities include the choice of the fitting function for the background reduction,
the bunch length extracted from the phase space tomography and the choice of the
bunch shape for the semi-analytical calculation of the dechirped phase space. These
aspects, together with other possible sources of errors, are going to be discussed in
this section.

The Background Fitting Function

In the previous section, the background noise of the energy spectrum has been
reduced by fitting it with a quadratic function and then subtracting this function
from the raw experimental data. The choice of the function, however, was only
empirical and based on experiences in dealing with the data. Instead of a quadratic
polynomial, other functions might be used as well to represent the background.

In the following, next to the quadratic polynomial (c.f. eqn. (6.1)) also a linear
function

I[(E)=a-E+b, (6.2)

and a hyperbolic function
I(E)=a-E*+b-E*+c-E+d, (6.3)

will be used to represent the background. For the series 1008_1_54, the average ener-
gies and standard deviations consequently extracted from the modified experimental
data can be found in Fig. 6.16.

The figure shows that the influence of the fitting function of the background
is generally small. For this series of experiments, the linear and the hyperbolic
fitting function deliver nearly exactly the same results for the average energy and the
standard deviation. Only a fit with a quadratic function leads to slightly higher shifts
in the standard deviation for lower gap widths. The difference to the results which
utilised one of the other two fitting functions is only in the range of a maximum of
2keV for the lowest gap width.

Figure 6.17 shows a similar behaviour for the series 2508_1_56. Any choice of
the fitting function for the background noise delivers nearly the same results for
the average energies of the dechirped spectra, with only minor variations. For the
standard deviations, though, it is apparent that the choice of a linear function for
the fitting of the background leads to vastly different results than the other two.
In this case, it leads even to negative overall changes of the standard deviation for
nearly all gap widths, which means that here, the standard deviation does actually
increase, which fits neither the theoretical prediction, nor the extracted values from
the raw data. Apparently, in this case, a fit with a linear function is unsuitable?.

2Fitting the background with other theoretically possible functions usually does not lead to
convergent results for the coefficients.
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Figure 6.16: Influence of the choice of the function used to fit the background on the
experimental data of the series 1008_1_54. The background has been fitted with a linear
(blue), quadratic (green) and a hyperbolic polynomial (red), respectively. The average
energies for different dechirper gap widths do not vary strongly with a change in the
background function. For the standard deviation, the linear and the hyperbolic function
deliver similar results, while the quadratic function leads to a stronger increase of this
quantity for lower gap width.

To summarise, the choice of the function for the fitting of the background has only
a minimal influence on the extracted quantities, the average energy and the standard
deviation of the spectra. Therefore, the choice of the fitting function is also only
a small source of uncertainties for these quantities. The choice of the background
fitting function is, however, also not completely arbitrary as the series 2508_1_56
shows and should always be verified against a second or even third option.

Uncertainties of the Bunch Length

As stated in Section 6.2.2, the direct measurement of bunch characteristics like the
length and shape was not possible at ELBE due to technical limitations. The bunch
length, however, could be estimated using phase space tomography.

For comparisons to semi-analytical calculations of the dechirp, knowledge of the
bunch characteristics is vital. To estimate which influence this lack of detailed
knowledge has on the comparisons made in the previous sections, the previously
estimated bunch lengths extracted from the phase space tomography are now varied.
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Figure 6.17: Influence of the choice of the function used to fit the background on the
experimental data of the series 2508_1_56. The background has been fitted with a linear
(blue), quadratic (green) and a hyperbolic polynomial (red), respectively. In this case,
using the linear fit results in a stronger shift in the average energies for lower gap width
compared to the higher order polynomials. Additionally, the evaluation of the standard
deviation for the linear fit shows a decrease in this quantity for all gap widths, compared
to the (predicted) increase that the use of a higher order polynomial shows.

With these differing bunch lengths, the semi-analytical calculations for the dechirp
are repeated and the results are compared to each other, and to the experimentally
obtained result. A background reduction of any kind has not been applied for the
evaluations in this chapter. All theoretically modelled bunches use a double Gaussian
bunch profile.

Figure 6.18 shows a comparison between the experimentally determined effect
of the dechirper on the energy spectra for the series 1008_1_.54 to semi-analytical
predictions made for several different bunch lengths. Three bunch lengths have been
used in the figure; 2mm (red) as determined from the phase space tomography,
I mm (green) and a vastly shorter length of 0.2mm (blue). The figure shows that
for the two bunch lengths which lie closest together, 2mm and 1 mm, the results
from the semi-analytical calculations do not differ significantly, neither the average
energies, nor the standard deviations. However, reducing the estimated bunch length
to a tenth of the original value, so to 0.2 mm, decreases the expected effect of the
dechirper on the electron beam. Especially for the calculated average energies, the
use of a smaller bunch length leads to a drop in the maximally expected effect of
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Figure 6.18: Comparison of the experimental series 1008_1_54 to semi-analytical calcula-
tions of the energy spectra after the dechirper for three different bunch lengths used in
the generation of the test phase spaces for the semi-analytical studies. Shown are again
the average energy and the standard deviation of the energy spectra for different gap
widths of the dechirper. While there is no significant difference in the behaviour of both
quantities when comparing the bunch lengths of 1 mm and 2 mm, the very short bunch
length of 0.2 mm shows a drastically weaker overall effect of the dechirper.

the dechirper by nearly 10 keV for the lowest gap width, which is about one third of
the expected effect for the bunch length estimated by phase space tomography. A
similar effect, though on a smaller scale, can be observed for the standard deviations.
This also moves the semi-analytical expectations closer to the actual experimental
results.

These observations were again validated against a second series of experiments, the
series 2508_1_56. The actual bunch length extracted from the phase space tomogra-
phy for this series was 1.2 mm. In Fig. 6.19, the semi-analytically calculated dechirps
for differing gap widths are plotted for three different bunch lengths, including the
one extracted from the phase space tomography. Here it shows that the highest
compliance between semi-analytical prediction and experiment in case of the average
energies is reached for the shortest observed bunch length, 0.12mm (blue), which is
a tenth of the originally used length. For this bunch length, both methods are in
nearly perfect agreement. Both higher bunch lengths, 1.2mm (green) and 2.4 mm
(red), deliver average energies of the spectra that are higher compared to the experi-
mental results. The maximum difference between these curves, again reached for the
minimal gap width of 6 mm, is more than 30 keV for the shortest and longest bunch,

136



6.3 Experimental Results

e -» Semi-Analytical, length= 0.12mm
e - Semi-Analytical, length= 1.2 mm

® -8 Semi-Analytical, length= 2.4 mm
X X Experimental

0o p.’*!xgggg %

—0.005|

sl A

—0.020} X

& —0.025]

| —0.030}

& —0.035]

—0.040} )

~0.045
0

35 [MeV]

20 25 30 35

0.006
= 0.005
= 0.004} '
£ 0003 %
| 0.002} x
S 0.001} ‘:’.".‘f’_‘x""""x x

0.000

llnun,.n.,.,-.):

15 20 25
Gap [mm]

X
30

0 10

Figure 6.19: Comparison of the experimental series 2508_1_56 to semi-analytical calcula-
tions of the energy spectra after the dechirper for three different bunch lengths used in
the generation of the test phase spaces for the semi-analytical studies. For the average
energies, the lowest used bunch length of 0.12mm (blue) leads to the highest accordance
with the experimental data, while both larger bunch lengths predict the effect of the
dechirper as too large. For the standard deviations, the bunch length extracted from the
phase space tomography, 1.2mm (green), delivers marginally better results. The third
observed bunch length, 2.4 mm (red) does not lead to a satisfactory agreement with the
experimental data.

respectively. With respect to the bunch length determined from the phase space
tomography, the lower bunch length delivers a maximum dechirp at the lowest gap
width of ~ 30% of the value for the estimated length, while the higher bunch length
leads to a maximum dechirp of ~ 150% of that value. For both bunch lengths, this
is a significant difference. For the standard deviation, it is easy to see in Fig. 6.19
that results obtained for the bunch length of 2.4 mm do not mirror the experimental
results at all. Both other bunch lengths lead to shifts in the standard deviation that
are significantly closer to the experimental value. The bunch length extracted from
the phase space tomography shows the largest compliance here, though.

Overall, these comparisons show that the bunch length has a significant influence
on the effect of the dechirper. An accurate knowledge of this quantity is thus needed
to successfully model the bunch and perform the semi-analytical predictions. While
especially the average energy of the spectra seems to be more robust against slight
changes of the bunch length within the same order of magnitude, there are still shifts
and variations in the predicted results in the range of a few keV. This is, however,
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the same order of magnitude in which the increase or decrease of the gap width will
change the overall effect of the dechirper, so that this lack of accurate knowledge
about the bunch length will in any case complicate a qualitative comparison between
theory and experiments. On the other hand, the most drastic changes in the predicted
effect of the dechirper that result from a change in the bunch length are the two
cases in which the bunch length has been reduced to a tenth of the original value,
so in which the order of magnitude of the bunch length has been altered. It has to
be mentioned here that these two are artificial test cases and that it is not expected
that the uncertainty of the bunch length resulting from the use of the phase space
tomography is that significant.

The Semi-Analytical Dechirp for Different Bunch Shapes

Next to the uncertainties regarding the bunch length, during the experiments carried
out at ELBE, the bunch shape could also not directly be measured. The recon-
struction of the unknown phase space of the bunch using phase space tomography
and experiences with the thermionic gun suggest a Gaussian or double Gaussian
behaviour, from which the latter has so far been used to artificially generate the
pulses used for the semi-analytical prediction of the dechirp.

To estimate the influence the correct pulse shape has on the semi-analytical
predictions, in this section these predictions have been carried out using bunches
recreated for different bunch shapes of the same length; the double Gaussian shape
that has already been used in the previous sections, the Gaussian, and the uniform
(flat-top) pulse. The results are then compared to the raw experimental data without
any background reduction. The bunch lengths chosen here are the ones determined
by the phase space tomography.

Figure 6.20 shows the average energies and the standard deviations of the energy
spectra for the raw experimental data of the series 1008_1_54 compared to semi-
analytical studies made for bunches with the three named bunch shapes. The figure
shows that the choice of the bunch shape has only a minor influence on these two
quantities, especially the average energy. All three shapes deliver nearly the same
results for the studied bunch shapes, only the use of flat-top pulse shape leads to
a slight difference in the standard deviations of the energy spectra calculated for
the lowest gap width. Figure 6.21 shows that the same holds true for the second
experimental series studied, 2508_1_56.

To some extent, the only minimal variation between the characteristics of the
energy spectra for the different bunch shapes seem counter-intuitive. However, both
quantities studied here are averaged parameters of the whole bunch. In the cases
observed here, the Figures 6.20 and 6.21 show that the shift of the particles’ energies
after the dechirper are the same on average for the different bunch shapes, and that
overall, the spectra broadened by about the same amount for all observed bunch
shapes. The effect of the dechirper on the actual longitudinal phase space distribution
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Figure 6.20: Comparison of the experimental series 1008_1_54 to semi-analytical calcula-
tions of the energy spectra after the dechirper for three different bunch shapes used in
the generation of the test phase spaces for the semi-analytical studies. All bunch shapes
deliver approximately the same changes in both the average energy and the standard
deviation of the spectra for decreasing gap width. In case of the standard deviation, the
uniform pulse (red) delivers a slightly lower shift for the lower gap width compared to
the double Gaussian (blue) and the Gaussian pulse (green).

could not be studied, and is still expected to differ for the different bunch shapes.
Additionally, Fig. 5.9 shows clearly that the maximum achievable strength of the
wake potential over the pulse does not vary much for the different bunch shapes. The
Gaussian and the flat-top pulse are also symmetrical to s = 0, so averaging the wake
potential over the pulse shape would also lead to a very comparable result. This
explains the similar results for the various bunch shapes.

6.3.5 The Actual Dechirping Effect

Apart from the inverse effect of the dechirper discussed in the previous sections,
another series of experiments carried out on August 25, 2016 showed the actually
desired effect of the dechirper, namely a reduction of the width of the energy spectrum
(as opposed to a broadening). The series, referred to as 2508_2_65 from now on, used
slightly modified settings for the thermionic gun compared to the series discussed
previously. The bunch charge here was 65 pC.
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Figure 6.21: Comparison of the experimental series 2508_1_56 to semi-analytical calcula-
tions of the energy spectra after the dechirper for three different bunch shapes used in
the generation of the test phase spaces for the semi-analytical studies. All three studied
bunch shapes lead to similar behaviours of the average energy and the standard deviation
for the different gap width.

Figure 6.22 shows the normalised intensities of the energy spectra recorded for
the bunch after the dechirper using varying gap width. As in the Figures 6.5 and
6.7, the intensities have been interpolated for the gap widths that have not been
measured.

The figure verifies again the energy reduction due to the effect of the dechirper:
the high intensity peak at 26.92 MeV shifts towards lower energies for decreasing
gap widths. This shift is especially strong for gap widths lower than 10 mm. But
additionally, the figure illustrates an actual reduction of the width of the energy
spectrum. There is a second peak of higher intensities in the spectra that is located
at = 26.96 MeV. For decreasing gap widths, this peak does not only shift towards
lower energies, its intensity also becomes less and less until it is nearly completely
suppressed for gap widths lower than 10 mm. This suppression of the second high
intensity peak leads to an overall reduction of the energy width.
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Figure 6.22: The actually desired dechirper effect measured in the series 2508_2_65. The
shift of the spectrum towards lower energies for a decreasing gap width of the dechirper
is seen in the high intensity peak at 26.92 MeV. The actually intended decrease in the
width of the energy spectrum can be seen in the second energy peak at 26.96 MeV, which
gets gradually suppressed for lower gap width.

6.4 Summary

Despite the technical and spatial limitations that only allowed for a dechirper proto-
type with a relatively minor expected influence on the overall phase space of the
electron beam, both the effect of the dechirper prototype could be shown in multi-
ple series of experiments and are supported by similar findings in [1], [2] and [60]
regarding the influence of the gap width and the overall strength of the dechirper.

Since the phase spaces of the electron beam could not directly be measured, the
energy spectra of the beams after the dechirper were studied instead. The quantities
that have been focussed on during the evaluation of the experimental data were
the average energies and the standard deviations of the spectra. These quantities
were extracted from the raw data for different gap widths of the dechirper, and the
changes in these quantities were recorded with respect to the open dechirper, i.e. the
dechirper setting with the highest achievable gap width.

The experiments were carried out for electron beams without an initial energy
chirp. The operation of the dechirper in this case shows the inverse of the desired
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effect: a widening of the spectrum instead of a reduction of the energy width that
increases with a decreasing gap width. This was visible in all experimental results in
an increase of the standard deviations of the spectra. The general energy reduction
induced by the dechirper was also shown in all experimental series. The order of
magnitude of the dechirp can be predicted reasonably well with the use of WlzaRD,
however, and accurate prediction of the qualitative effect of the dechirper is difficult
due to the lack of knowledge about the phase space of the electron beam. Both the
bunch lengths and the approximate beam shape could be recreated using phase space
tomography, and even though the data extracted from this procedure contains errors
that are hard to estimate, small variations in both quantities do not change the
predicted results drastically. The comparison between WIzaRD and the experiments
remains still valid.

Another factor that has an influence on the agreement between theory and exper-
iment is the background of the energy spectra. It has been shown that fitting this
background with a simple polynomial and then subtracting it from the raw data
generally helps to increase the agreement of both methods.

The influence of the bunch charge on the effect of the dechirper has also been
studied. Here, measurements show that changing the bunch charge does influence
the effect of the prototype in the expected order of magnitude, but the linear scaling
that was predicted from theory was not observed. A reason for this is the relatively
small range of charges that could be generated by the thermionic gun compared to
the already small effect of the dechirper overall. Nevertheless, for future studies, this
can easily be remedied when the ELBE SRF gun is ready for operation.

Overall, despite the technical limitations, the experiments can be treated as a
success that gives a general proof of principle of the functionality of the dechirper.
Especially the influence of the gap width was illustrated very well by all experimental
series that have been carried out, and thus underlines the predicted versatility and
adaptability of this particular dechirper type during operation.

Additionally, the actually desired effect of the dechirper - a reduction of the energy
width of the beam - could also be measured in form of the suppression of a high
energy peak in one of the experimental series.
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7 Discussion, Summary and Outlook

The objective of this thesis has been a comprehensive study of the general properties
and application of dielectrically lined rectangular waveguides for the purpose of
dechirping electron bunches, specifically at the ELBE facility at the HZDR. The
term dechirping in this context refers to a reduction of the energy width of the
electron bunch. A particular point of interest has been the influence of the geometric
parameters of the structure on the final wake potential and the resulting dechirping
ability.

The final goal of the project work of this thesis has been set as the test of a
prototype dechirper at the HZDR from the very beginning. This means that all the
studies conducted for this thesis are heavily tied to the requirements at ELBE and
the applicability of the considered concepts at this facility. This duality of theoretical
research and practical applicability has been what first and foremost determined the
prospective geometry of the dechirper as a rectangular waveguide with dielectric
coatings. This particular type of dechirper promised an easy construction, and an
additional experimental degree of freedom in form of the gap width of the dechirper,
i.e. the distance between the upper and the lower dielectric plate which has later
become an important focus of the experiments.

The initial choice of the structure of the dechirper provided another important
advantage in its geometric simplicity and similarity to a plain, empty and uncoated
rectangular waveguide. The only difference is that compared to the empty waveguide,
the dechirper is coated with dielectric plates, which will lead to a varying permittivity
in one transversal dimension of the dechirper.

This advantage has been exploited in the course of this work to gain an analytic
expression of the wake function inside the dechirper using an eigenmode expansion.
For this purpose, a Rayleigh-Ritz based formulation of the eigenmodes of these
dechirpers, so-called LSE and LSM modes, has been established. These formulations
use Fourier-sine and Fourier-cosine expansions to express the otherwise unknown
behaviour of the eigenmodes in the direction of the changing permittivity; in the other
dimensions, the eigenmode solutions are similar to those in an uncoated waveguide.

As a next step, the electric field of a point charge traversing the dechirper in
longitudinal direction at the speed of light has been computed by expanding it
into a series of eigenmodes. From the electric field, the wake function has been
determined via integration. A simplification of the gained expression for the wake
function lead to eqn. (3.56). This shows that the wake function can be expressed
as the sum of contributions from each mode. The strength of these contributions
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is measured by the loss factors (3.57) and (3.58), which in turn depend entirely on
mode characteristics and geometric parameters of the structure. This means that
for a practical calculation of the wake function, no previous knowledge of the electric
field is necessary.

As a result of these considerations, an analytical expression of the eigenmodes and
the wake function of a rectangular, dielectrically coated dechirper has been gained.
However, the expansion coefficients of both the Fourier expansions used for the mode
computations and the eigenmode expansion used to calculate the electric field cannot
be calculated analytically for any reasonable number of expansion functions. Their
computation needs to be carried out numerically, which renders the overall model
semi-analytical for any practical application.

In the following step, the semi-analytical model has been implemented in Python.
For this, the two Python modules SymPy and NumPy have been combined. As a first
subroutine, the Python programme, dubbed WIzaRD, calculates the eigenmodes of
the specified structure in a sense that it determines the expansion coefficients of the
underlying Fourier expansions and computes the eigenfrequency of the mode. For
these eigenmodes, the loss factors are then generated, which enables the superposition
to obtain the wake function. To grant an efficient performance of WIzaRD, the
modes are generated and superimposed following a certain scheme (c.f. Fig. 4.13)
that exploits that a great number of eigenmodes does not contribute to the wake
function due to symmetry reasons, and that only eigenmodes with a phase velocity
close to the speed of light have a large influence on the wake function. All other
modes are not considered and also not computed by WIzaRD. Additionally, the
modes are calculated in ascending order with respect to their eigenfrequencies.

The algorithms and methods used in WIzaRD have been benchmarked against
computations with CST PS and analysed with respect to their convergence. These
studies show that especially for the short-range wake fields important in the field
of dechirpers (i.e. the wakefields directly in the region of the particle pulse that
generates them), WlzaRD shows a very good and fast convergence and delivers
nearly the same results as CST PS. Over the course of these studies it was also
illustrated that WIzaRD has several inherent advantages against purely numerical
software. The most important advantage is that WIzaRD allows for a computation
of the wake function, which serves as the Green’s function for the calculation of wake
potentials of arbitrary bunch shapes. In contrast, CST PS can only compute the
wake potentials of Gaussian pulses. Additionally, the calculation of wake potentials of
small pulses is difficult and computationally expensive because numerical simulation
tools require a very fine spatial discretisation in these cases. Post-processing of
wakefield data almost always uses particle tracking software, e.g. ELEGANT, to
determine the effect of the wakefield on the generating and following particle bunches.
This software requires the input of the wake function, which means that using the
result of a numerical solver, i.e. the wake potential of a small Gaussian beam, is
automatically the source of errors. WIzaRD enables the calculation of a Green’s
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function which avoids this source of error. Additionally, WIzaRD is not reliant on
spatial or temporal grids since it is purely based on the analytical descriptions of the
modes and the wake function. This allows for a computation of substantially higher
order modes with nearly the same accuracy as modes of a lower order in the same
amount of time.

As a next step, the programme package WIzaRD was used to perform parame-
ter studies. In this section, all relevant geometric and dielectric parameters of the
dechirper were varied based on the configuration that had been chosen for the proto-
type tested at ELBE. First, the known linear behaviour of the wake function with
the length of the structure was observed and used as a benchmark for the accuracy
and performance of WIzaRD. After this step, it was shown that the width of the
dechirper only has an influence on the strength of the wake function in a certain,
limited range. After this range, larger widths of the dechirper do not lead to higher
amplitudes of the wake function. With respect to the dielectric parameters, it could
be shown that lower dielectric constants are favourable for achieving higher wake
function amplitudes, but that small variations of this parameter do not influence the
amplitude of the wake function as strongly as variations in the length or of the gap
width of the dechirper. A similar observation could be made regarding the thickness
of the dielectric plates. The highest potential for influencing the wake function of a
dechirper with a fixed length has the gap width of the rectangular dechirper, i.e. the
distance between the upper and lower dielectric plate. It could be shown in this
work that within a few centimetres of range the strength of the wake function can
be reduced significantly. This also means that the dechirper can nearly be turned off
completely by only increasing the gap width, which has several practical advantages.
Here it likewise became clear that a tuning of the gap width can enable a later
adjustment of the wakefield to the needs at the accelerator site.

During the experiments performed at ELBE, the focus was set on providing exper-
imental proof of the tunability of the wake potential due to the mechanical variation
of the gap width. An additional point of interest was the scaling of the effect of
the dechirper with the total bunch charge, which, in theory, should be linear. Due
to the parameter studies performed previously, it was already expected that the
prototype dechirper would not be able to produce a dechirp that could counteract
the usual chirp of the ELBE beam. This chirp is usually in the range of a few
MeV, the dechirper was expected to be able to counteract ~ 40keV. This effect
is very small compared to the actual chirp. To be able to measure the effect of
the dechirper without correlation to the chirp of the particle beam, the magnetic
chicane and the second accelerating module at ELBE were not used in these exper-
iments. As a result, the beams that were used in these experiments had no initial
chirp. Thus, the dechirper, while it still would lower the overall energy of the bunch,
was expected to broaden the energy width of the particle bunch. This could be
measured in a decrease of the average energy of the energy spectrum and an increase
in the respective standard deviation. Overall, the experiments showed exactly this
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behaviour. Additionally, a stepwise decrease of the gap width of the dechirper lead
in all measured experimental series to an increase in the effect of the dechirper which
underlines the expected tunabilitiy of the rectangular dechirper type. When it came
to analysing the behaviour of the dechirper for different bunch charges, it has to
be said that while the bunch charge could be shown to have a qualitative influence
on the effect of the dechirper, quantitatively this did not match the expected linear
scaling. In one of the experiments performed it was also possible to generate a
particle bunch that could actually be dechirped by the prototype, which became
apparent in the measured spectra in form of the suppression of a high intensity peak
at the higher end of the spectrum (c.f. Fig. 6.22).

Comparisons between the experimental results and theoretical predictions proved
challenging because the technical limitations at the HZDR did not allow for a direct
measurement of the longitudinal phase space of the observed particle bunches. Both
the approximate bunch length and pulse shape could be extracted from additional
measurements which enabled a phase space tomography. With this data, the particle
bunches were artificially recreated in Python and then dechirped using the wake
functions determined with WIzaRD during the parameter studies. The average ener-
gies and standard deviations of the energy distributions of these assumed particle
bunches were then calculated and compared to the results of the experiments. Here
it showed that while generally, the experiments and the theoretical computations
show and predict the effect of the prototype in the same order of magnitude, which
was in most cases a few 10 keV. However, the agreements of theory and raw experi-
mental data was still not found to be very high within that order of magnitude. A
reduction of the background of the experimental data by a fit with a quadratic poly-
nomial increased this agreement, while it still not fully compensated the differences.
Additional simulations performed to estimate the influence of the lack of detailed
knowledge of the length and shape of the particle bunch showed that especially due
to evaluating averaged quantities of the whole spectrum, variations of the beam
shape and length within reasonable limits did not significantly change the outcome
of the theoretical predictions. In other words, while the lack of detailed knowledge
about the phase space inhibits the estimation of the effect of the dechirper on the
phase space, for observations regarding the energy spectrum an approximation of
the bunch shape and length seem sufficient.

However, a crucial point in all experimental investigations was the comparatively
small effect of the dechirper on the particle bunch that is in the same order of
magnitude as the effects that the variation of quantities like the bunch charge or
pulse length have. A decorrelation of these effects to identify sources or errors in
both the experimental setup and the theoretical predictions is thus very hard.

Notwithstanding these experimental challenges, in this work the rectangular dielec-
trically coated waveguide could be characterised in the use as a bunch dechirper from
three different angles: first, an analytical foundation and subsequent semi-analytical
implementation for the calculation of these wake functions could be found. Second,
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the influence of the geometrical and dieletric properties of the dechirper could be
analysed. And third, the effect of the dechirper could be shown in multiple series
of experiments. From this point of view, the objective of reaching a comprehensive
understanding of this dechirper type has been met, and it could be shown that this
particular structure is suited for the application as a wakefield dechirper. The major
advantages of this dechirper type lie in its simplicity and therefore the possibility to
study its effect analytically; and in the tunability of the effect of the structure by
adjusting the gap width, which is even possible after construction. The disadvantage
is the comparatively weak effect of the dechirper, which, however, is also limited
by the spatial requirements of the accelerator site ELBE and the limitations to the
bunch charge.

In the future, these studies can provide the basics for additional, more detailed
experiments regarding the dechirper prototype at ELBE. Once the ELBE SRF gun
can be utilised for the bunch generation, higher bunch charges of up to 1nC are
possible, which would already increase the effect of the dechirper by a factor of ten
and thus allow for observations of more pronounced shifts in the characteristics of the
energy spectrum. Current research and construction projects at ELBE also focus
on deflecting cavities and their application for the measurement of the complete
longitudinal phase space. With these measurements at hand, the theoretical predic-
tions of the effect of the dechirper could be significantly improved. Additionally,
this would allow for an analysis of the effect of the dechirper on the complete phase
space, not only the energy spectrum, which can give a vastly more detailed insight
into the effect of the dechirper on the single particles. This type of investigation
would then also allow for studies regarding the applicability of the dechirper in other
fields; e.g. the here described effects of the bunch shape on the form of the dechirped
particle bunch. This could, e.g. allow for a compensation of higher order correlations
in the longitudinal phase space by applying a dechirper and using a particular bunch
profile that creates a wake potential which counteracts this effects.

On a more theoretical sector this work can provide the groundwork for additional
studies of other dechirper types. The algorithms discussed here can, with a few
modifications, also be applied for cylindrical waveguides with a dielectric coating,
which have also been suggested as dechirpers. Here, instead of having a varying
permittivity in one transversal direction, the radius of the waveguide would be
subjected to a varying permittivity due to the dielectric coating. Calculating eigen-
modes and the resulting wake function from this should be possible analogously to
the procedure described here. With a few more alterations, this methodology can
also be used to compute the wake functions inside corrugated dechirpers. Here, the
described methods to compute the eigenmodes have to be adjusted by employing,
e.g., mode-matching techniques and Floquet’s theorem. This would then enable
the programming of an even more all-encompassing semi-analytical tool for the
calculation of wake functions in every dechirper type studied so far.
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A Detailed Proof of the Orthogonality
Relations

The proof of the orthogonality relations of LSE and LSM modes, due to their repre-
sentation, is in large parts simply a matter of the familiar orthogonality relations of
sine and cosine,

a

. . 4 fork, #0
/ . , 27 xT
/sm(kzx) sin(kjz)dx = S,k { 0. for k. = 0 (A.1)
0
/COS(/{}fo‘) cos(kyz)dz = Op, { 2’ ff((: lljw 7_'é8 7 (A.2)

with equivalent relations in z-direction. Additionally, the relations (3.16) and (3.28)
between two solutions of the same Sturm-Liouville problem as given in Chapter 3.2.2
will become important in the following derivations.

Perhaps the relation that is easiest to prove is the orthogonality of the magnetic flux
densities of LSM modes (4.6). When solving [ B, (r) - B,, (r)dV/, the integrations
over the z- and z-components are simply following (A.1) and (A.2). Thus, the
orthogonality relation simplifies to a proof of

ral
/BH (I‘) 'B#/ (I‘) dV = —Ai%% (k‘i + k’g) 5]%719;51%7]6;

/ (Z Qum cos(k:yvmy)> . (Z Qum’ cos(kyvm/y)> dy.

m=0 m’=0

With this formulation it can be seen that if both modes differ in either k, or k., the
integral vanishes. In this case, the functions @, (y) and @, (y) do not belong to
the same Sturm-Liouville problem and their orthogonality is not granted by (3.16).
However, the solution to the remaining integration over the y-components is not
necessary for the orthogonality in total, since oy, i 0, . = 0 already renders the
expression 0.

Should 0y, xs 0k, . = 1, the final integration needs to be carried out. Note that in
this case, the y-components of both modes are derived from the same Sturm-Liouville
problem (since k, =k}, and k, = k), so that (3.16) is valid. Thus, the orthogonality
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relation of the magnetic flux densities of LSM modes can be summarised as

(1) Le (a3)

TN

/B (r) B, (r)dV = AiVMcSM,M/ with V, = i

o

with 6H7H' = 5kx7k&(5k2,k;(5m,m/.

The derivation of the orthogonality relation of the electric field of two LSE modes
(4.2) follows the previous proof nearly analogously.

Due to the solutions of the Sturm-Liouville problem for LSE modes being orthogo-
nal with respect to the relative permittivity (c.f. eqn. (3.28)), the same orthogonality
is proven here for the electric fields. The only adaptation that needs to be made
in comparison to the proceeding for the magnetic flux density of the LSM mode is
the introduction of a case differentiation that accounts for the possibility of either
one-dimensional wavenumber being zero, so that

L
/éTr(y)E)\ (I‘) . E)\/ (I‘) dV = AE\U)\(S)\,)\’ with U)\ = wi%Tmﬁ, (A4)
with
(k24 k%) fork, #0,k, #0
T,. =4 k2 fork, #0,k, =0 . (A.5)

k2 fork, =0,k, #0

Proving the orthogonality of the magnetic flux densities of LSE modes and the
electric fields the LSM modes is more complex, and requires several ‘detours’. This
is caused by the z- and z-components of both fields being dependent on the first
derivatives of their respective functions Q(y), for which no orthogonality relations
are known.

A detailed solution strategy is presented here for the orthogonality of the electric
fields of two LSM modes (4.7): an obvious method to circumvent the first order
derivatives of @, (y) is to proof the orthogonality of the electric field with a vector
where both the z- and z-component are zero anyway, e.g. the Hertzian potential
(3.18). And indeed, the orthogonality of the electric fields of two modes can be
reduced to the orthogonality of the electric field of one mode and the Hertzian
potential of another mode using (3.12),

/ & ())E, (r) - B, (r) AV = & / & ())E, (r) -TI,.,s (r) AV
+ /  (Y)E, (1) -V (5 (4) (V- TL,.,0 (1)) AV,

where the first term is the desired formulation of the orthogonality relation and the
second term is effectively zero, as will be proven now.
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Inverting the product rule, the second term of the above integral can be rewritten
as

[ @B ) () (7 T (1)) 2V
— [V W ()& ) (T Ty (1)) aV

- / V- (0B, (1) &' (y) (V- Ty (x)) AV,

-

«V-D,,(r)=0

where the second term vanishes due to (3.6). The first term is now subjected to the
Divergence Theorem, rewriting it into

[V B, e ) (7 T (1) 4V = [ B, (0)(F Ty (1)) ndS o

This expression vanishes on the PEC boundary, since VII,, ,/ (r) n = 0 at this surface
(with n representing a vector normal to the surface). This can be seen clearly when
actually determining the gradient of the Hertzian potential,

N
V11, (r) = —A,sin(k,z) Z Qumbym sin(ky ny) sin(k,z),

m=0

and is caused by the symmetry of the sine functions.
In total, the orthogonality of the electric fields of LSM modes reduces to

[ B 0) By ()Y = [ < (0], (1) T (1) AV

Note that the dependency of the electric field on the relative permittivity cancels
out the permittivity in the volume integral, and the final proof of the orthogonality
follows closely the statements made for the previous two proofs.

The final relation thus reads as

/af,,(y)E/l (r) - E, (r)dV = k3 / er(Y)E, (r) - IL, v/ (r)dV = AiUuéu,u’

L

(A.6)
mmm:%@%«@%g

A similar procedure can be applied for the magnetic field of LSE modes (4.3), substi-
tuting one of the fields employing eqn. (3.25) and proving the orthogonality of one
magnetic flux density with another Hertzian potential instead:

[ BA 0By 0)aV ==k [ 2By (9T (1) V=i [ By ()9 (7 Ty (1)) V.
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The first term on the right-hand side is the desired formulation of the orthogonality
relation, while the second term needs to be zero. To proof this, the same strategy as
before is used. Reversing the product rule, the second term on the right-hand side
can be written as

[Ba)- (7 Ty () AV == [ (V- B, (0) (7 Ty (1)) v

=0

" / V- (B, () (V- Iy (1)) AV,

where the first term vanishes due to (3.9).
The remaining term is rewritten using the Divergence Theorem,

/V . (BA (I‘) (V : H/\7)\/ (I‘))) dV = /B)\ (I‘) (V : H)“)\/ (I‘)) ndS = 0,

which vanishes because B, (r) n = 0 according to the PEC boundary conditions.

All in all this means that it is sufficient for the orthogonality of the magnetic flux
densities of two LSE modes to proof the orthogonality of one field with the Hertzian
potential, which, again, follows the same general thoughts as all examples before.
The final result reads

/E/\ (r) - By, (r)dV = —jk3 /erﬂ/\ (r) - Iy (r) AV = A3V\ban

L
with V3 = —%kSng

(A7)

For the sake of completeness, also the orthogonality of LSE and LSM modes amongst
themselves shall be proven here.

Due to the case discrimination regarding the one-dimensional wavenumbers k, and
k, for the LSE modes, the same differentiation is necessary here. For the moment,
k, # 0 and k, # 0 is assumed. In this case, the volume integral over the scalar
product of the electric fields of the modes reads as

al

[ OB () By ) AV A yin G B

b
d
[ (d—y@u@)) Ay - (—hopbon + konkey) .
0

If Ok, s ko Ok, sk, = 0, the above expression is zero. If 0y, , , 0k, \ k., 7# 0, which
is the case only for k, » = k;, and k, y = k. ,, the parenthesised expression on the
right-hand side consists of two terms with identical absolute value and different signs
and thus vanishes. So in total, the integral is always zero.
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If k; » = 0 and k, » # 0, the electric field of an LSE mode will only be non-zero in
the z-component. The z-dependency in this component simplifies to cos(k, \z) = 1.
The orthogonality integral reads

L
[ B @) B, 1)V —Aidinbs T,

/b Q) (diy@u@)) dy - / cos(kp ) = 0,
0 0

=0

where the integral over the single cosine is zero, and thus the total expression is, as
well. The same argumentation applies for the case k, y # 0 and k, , = 0, and thus
the orthogonality

/ - ())E, (1) - E, (x)dV =0 (A.8)

is proven.

The orthogonality proof for the magnetic flux density follows the same argumen-
tation and case discrimination. For £, 5 # 0 and k., # 0 the volume integral results
in two expressions with different signs and the same absolute value; while in the
other two cases a one-dimensional integral over a single cosine each renders the
total integral zero. Thus, also for the magnetic flux densities of the two modes, the

orthogonality
/B (r)-B,(r)dV =0 (A.9)

is proven.
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B Integrals over the Charge Density and
the Current Density

For the general solution of the integral

r-—% /v (SE‘;)’?O) -A(r,t)dV+/uoan;t> A DAV |, (B

- ~

]1 12

S/

where A(r,t) is any arbitrary vector field, an explicit formulation of V <M> and

81'(y)50
aI(r,t) -
% is needed.

The integral I; splits into two terms using the quotient rule

_ 1 LA (r p(r,t) . Al
I —\/&(y)go (Vp(r,t) - A( ,lt)dvj+/6 20y) (Ve(y)) - A(r,t)dV. (B.2)

r
J/

In Iz
By the definition of the charge and current densities in (3.37) and (3.38), any form
of derivative of these two quantities will contain first order derivatives of Dirac
distribution. The derivative of the Dirac distribution 6(¢) with respect to the quantity
¢ will in the following be referred to as 6;(¢). The time derivative of the current
density thus reads

0 a b\ .
aJ (r,t) = qcé (x — 5) o (y — 5) 0; (z — ct) e, (B.3)
while the gradient of the charge density is given as
0/0x a b
Vp(r,t)=1| 0/0y | ¢ (95 — 5) J (y - 5) d(z—ct), (B.4)
0/0z
35 (:c—%)é(y—%)é(z—ct)
=q| 0(z—%)d, (y —b§) d(z—ct) (B.5)
§(z—2)0(y—2)d,(z—ct)

To solve the integral I 5, knowledge of the gradient of the relative permittivity is
required. Due to the piecewise-nature of the permittivity function defined in (3.1),
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B Integrals over the Charge Density and the Current Density

it becomes clear that the derivative of this function is going to contain a sum of two
Dirac distributions at the jump discontinuities. Additionally, a derivative is only
non-zero with respect to y. Thus, the gradient of the relative permittivity reads

Ver(y) = N(0(y — (b= d)) +d(y — d)) ey, (B.6)

where N is an arbitrary proportionality factor that does not need to be determined
any further. Most importantly, it is to note here that the gradient of the relative
permittivity is zero everywhere, except at the jump discontinuities.

With these definitions settled, the three integrals can be solved separately now,

starting with
b a L
t
[122///1(22) (Ver (y)) - A (r,t) dzdady.
0cyr
00 0

The integrations over x and z can be carried out without any complications, taking
into account the Dirac distributions from the charge density. The product of the
gradient and the general vector field will only amount to a non-zero result in the
y-component. Thus, the integral can be reformulated as

b

/60& () (y N g) (0(y = (b—d)) + 0y — d)) 4, (%7?;,015) dy.

0

An integration over y means that the Dirac distributions arising from the gradient
will be evaluated at y = b/2, where both are zero. As a result, the whole integrand
is zero, and thus, the integral itself is

I, = 0. (B.7)
The integral I1; basically separates again into three different terms:
1
hn = [ o (Vo) A () dV
L b
/] / (Vo (x,1)), 4w (1,8) +(Vp (x,0)), Ay (1, 1)
) er(y + (Vp(r,t)), A, (r,t))dzdydz

Inserting the components of (B.5) now and carrying out all simple integrals over
ordinary Delta distributions yields

a b

q a b q 1 b a

fn =g, / (e g) A (mgpet)ar e 2 [ 2o (u=5) A4 Gver)
0
L
9 man A (22 2)a
= Z CO 272,2: Z.
0
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Here it was used that e, (g) =1, and thus ¢ (g) = Cp.

Further calculations require knowledge of the behaviour of the derivative of the Dirac

distribution when integrated. The integration rule reads as [ ¢, (x —r) f(z)dz =
4 (x)!x:r and is used to further specify Iy, resulting in

T dz
_q 0 b q O a b
Iy =—— A (357 —,Cot> s 6—0 &Az (57 572

o ox * 2
0 (1
12 —A, (g,y,ct> .
g0 Oy \ &, 2 y=t
2
Here, the last addend requires closer consideration. At first, the quotient rule is
applied so that

z=cpt

qg 0O 1 a qg 0 1 a b
— - | =4 (5 =—= — Ay (=, =, cot
g0 9y (@(y) ! <27y’6 )>'y’2’ g0 Oy er(y) y=2 ! (272700)
—_—
=0
q O a
€ (9yAy(2’ ’Ct>‘ b

again using &, (g) = 1. To evaluate this term, the application of the chain rule is

necessary due to the y-dependence of the speed of light. This, however, will lead to

a term containing dic(y)‘ , which is zero since dier(y)‘ = (. Thus, the final
Y y=b/2 Y y=b/2
result for integral I;; is

_ %Ay (gy cot> .
(B.8)

_ QAZ 9,972 .
0z 272 ot

When calculating the term I, the vector field A (r) is projected to the z-axis by the
dependency of the current density, and the integrations over x and y can be carried
out right away:

olJ (r,t
I, = /MO%AZ(%% z)dV

L
b
:Moqco/fsé(Z—Cot)Az oz de
2°2
0

Next, the coordinate transformation n = z — ¢yt is employed,

L—cot

, a b
I = _i 677 (77) Az (§a 5777—{' COt) d777
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B Integrals over the Charge Density and the Current Density

. —1 —
using % = —, % =1 and poch = po (pogo) =
The result of the last equation is readily determined as

qg O a b
L=2 %4 (22 /
2 o 87’] z<2a2)n+60)

I

n=0

and resubstituting z = n + cgt the final result for the auxiliary integral is

qg O a b
I :__Az a0 a0
T g 02 (2 2 Z)

The summation of 11, I1o and I5 cancels out the terms dependent on the z-component
of the field, so that the final result of eqn. (B.1) is
) ) (B.10)
y=3

2
qc 0 b 0 a
= A2U250 (@A:p (% 570075) . - a_yAy (§7y760t)

7

(B.9)

z=cpt

r=
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C The Wakefield Integral

This chapter is dedicated to the procedure finding the solution of the double integral

L T*

I(s) = / / sin (k.col!) sin (w (Zjo °_ t)) cos (k:zz)l d'd= (C.1)

U (z,s,t")

as used in Chapter 3.4.

For the solution, a differentiation of cases depending on the position of the test
charge and the exciting charge to each other is necessary. This derivation follows
closely the procedure shown in [31].

1. The distance between the two charges is larger than the waveguide length L
(s > L). Accordingly, the test charge only enters the guide when the exciting
charge has already left, and thus ¢o7* = min(z +s,L) = L is the upper
boundary of the time integral.

2. The distance between the two charges is positive, but smaller than the length
of the guide (0 < s < L). As long as z + s < L, both charges will be in the
guide simultaneously, and thus, cy7* = z 4+ s. However, when the exciting
charge leaves the guide, the test charge still has to travel a distance of s, which
will give rise to a second term of the integral with c¢yT™ = L.

3. Both charges are virtually at the same place, i.e. s =0.

4. The test charge travels through the guide in front of the exciting charge, s < 0.
In this case, as a consequence of the principle of causality, the wakefield must
be zero.

These cases will now be evaluated one by one.
The first case is probably the simplest. Refining the upper boundary leads to

L L/co
Il(s):/ / U (z,s,t")dt'dz.
0 0

Carrying out the two integrations delivers
cik.w (2 — 263 cos (koL)) cos (kos)

hi(s) = (cok, — w)2 (cok, + w)
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C The Wakefield Integral

For the second case, the integral is split into two terms according to

L—s(z+s)/co L L/co
/ / (2 s,t')dt/dz—i—/ /\I’(z,s,t/)dzdt'.
0 L—s O

The boundaries of these double integrals are now transformed so that the final version
contains the same limits as the integral I;(s):

L L/co L—s Ljco
= / / U (z,s,t")dt'dz + / / U (z,s,t')dzdt’ = I1(s) — K(s).
0 0 0 (z+s)/co

So, while the solution of I;(s) is already known, the solution to K(s) has to be
determined now. For that, the ‘artificial’ case 4 is considered now.

In the fourth case, the test charge is always in front of the exciting charge. This
case is obviously unphysical, because there can be no wakefield if the test charge is
in front of the field generating charge. However, the case is useful for the purpose
of further defining K (s). Only the situation 0 > s and |s| < L needs to be treated,
which does not change the fact that the wakefield here must be zero. In this case,
coT* = z + s always holds. The double integral reads here

L (z+s)/co
:/ / \Ifzstdt'dz;().
0

As far as the integral over z is concerned, expanding it up until L — s will not
change the result, because the point L — s, in this case, is behind the guide where
no wakefield is generated:

—s5 (2+s)/co

/ U (z,s,t) dt'dz = 0.
0

o\h

The boundaries of this integral are transformed, so that they reflect the boundaries
of K(s):

L—sL/co L—s' Ljco
Ii(s) = / / U (z,s,t')dt'dz — / / (z,5,¢)dt'dz = 0.
0 0 (z+s)/co

=0

The first part of this integral must be zero, since it reflects the case z+ s > L, which
is only the case if z > L, and L — s, again, is already outside the cavity. So the first
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part of the integral basically is the expression for a case in which also the generating
charge, located at z, is already outside the cavity. Without an exciting charge, there
is no wakefield, so obviously, the integral must be zero.

What remains is an integral that on first glance looks identical to K (s); but for
K(s), s was defined as positive, whereas in this case, it is negative. Considering the
absolute values, however, both integrals are defined in the same (absolute) domain.
Thus, I4(s) = —K(—s) = 0.

Additionally, K (s) is an even function: ¥ (z,s,t') is a product of two sines and
thus even, its integral will therefore be odd. Multiplying this by a cosine does not
change that, as the cosine is an even function. Integrating again over said odd
function will result in K(s), the final result, being even. Thus, K (s) = K(—s) = 0.

Coming back to the second case, I5(s), this means that in

K(s) can now safely be assumed to be zero, so that
]2(8) = 11(8> (CS)

is the final result for the wakefield integral in the second stated case.

The only remaining case is the third now, where s = 0. Here, the fundamental
theorem of beam loading (see, e.g., [13]) can be applied. It states that a charge sees
the half of the voltage induced by itself, and thus, half its own wakefield. Therefore,
the solution of the integral (C.1) can be finalised as

o Bt s 20
(Cokz — W)Q (COkz + W) (2) s<0 |
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D Additional Experimental Results

This section of the appendix introduces the experimental results of the series 0311_1_60
as supplementary material for the data presented in Chapter 6.

The data in this section has been measured in the same manner as the previous two
series of results. The energy spectra of the used particle bunch have been measured
after the dechirper for different gap widths. From the spectra, the average energy
and the standard deviation were calculated, and the results for the maximum gap
width of 35 mm were taken as a reference. The total bunch charge amounted to
60 pC in this case.

For the recreation of the phase space of the bunch used in the semi-analytical
predictions of the results, a double Gaussian bunch profile was employed. The length
of the particle bunch has been extracted from phase space tomography once more,
and is assumed to be 3.6 mm throughout this section.

For the reduction of the background, a quadratic polynomial was used in Fig. D.2.

29.05
29.00

= 98.95k

MeV]

E

28.90

28.85

10 15 20 25 30 35
Gap [mm]

Figure D.1: Normed total intensities of the energy spectra recorded for the bunch
0311_1_.60 plotted over the gap width of the dechirper. The data has been interpo-
lated for the gap widths that have not been measured. The figure shows clearly the
energy reduction induced by the dechirper in the shift of the high intensity peak at
~ 28.95keV towards lower energies for decreasing gap width. An increase in the width
of the spectrum is not easily visible.
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Figure D.2: Progression of the average energies and the standard deviations of the energy
spectra of the bunch 0311_1_60 measured for different gap width of the dechirper. The
figure shows the raw experimental data (x-shaped markers), the experimental data after
a reduction of the background by a quadratic polynomial (triangular markers) and the
semi-analytical predictions carried out for the extracted bunch length and assumed bunch
shape of a double Gaussian (dashed lines).

Like in Chapter 6, the semi-analytically predicted shift in the average energies for lower
gap width is, while in the same order of magnitude, lower than the experimentally shift.
The discrepancy between both curves is highest for gap widths lower than 10 mm. When
the background of the spectra is fitted and subtracted, the accordance of the experimental
and semi-analytical results can be increased.

For the standard deviations, the experimental results do not match the semi-analytical
predictions. Both the raw data and the data after the background reduction suggest a
minimal increase of the standard deviation of the spectrum, while the semi-analytically
calculated results suggest a decrease of the width of the spectrum in the range, which
would be in better accordance with the generally expected effect of the dechirper. However,
both shifts are only in the range of a few keV and thus very minimal.
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Figure D.3: Average energies and standard deviations of the energy spectra recorded for

three different bunch charges, but the same overall settings like the bunch 0311_1_60.
Both quantities were extracted from the raw experimental data. While slight variations
of the observed quantities with the change in the bunch charge can be observed, the clear
scaling of the effect of the dechirper with the bunch charge is not visible from the given
data. This is also in accordance with the results presented in Chapter 6.
In addition to the decrease in the average energies for decreasing gap widths of the
dechirper, the figure also shows that all three observed bunches show a slight decrease
in the standard deviations for decreasing gap widths, which would indicate a decrease in
the width of the energy spectrum. This is against the predictions presented in Fig. D.2,
but the small order of magnitude in which these changes occur and the overall unknown
phase space of the particle bunch can explain this discrepancy.
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E Supplementary Material Regarding
Phase Space Tomography
The lack of a possibility to directly measure the longitudinal phase space of the

studied particle bunches at ELBE makes it necessary to approximate this very
important quantity in other ways.
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—0.15 0.00015
~0.20 0.00000

-8 6 -4 -2 0 2 4 6 8
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Figure E.1: Underlying longitudinal phase space distribution of the series of pulses 2508_1,
measured at 80 pC and recreated employing phase space tomography. The majority of the
pulse is located in a range of £2 ps around zero, which corresponds to an approximate
pulse length of 4ps (roughly 1.2mm). The intensity around the centre of the pulse
indicates two maxima, which would correspond well with the double Gaussian pulse
profile.

One way is the so-called phase space tomography. In general, tomographic tech-
niques allow for a recreation of an n-dimensional object from a number of (n — 1)-
dimensional projections of this object. In this specific case this term refers to the
recreation of the two-dimensional longitudinal phase space; a depiction of the longi-
tudinal position of each particle and its energy, with the help of the one-dimensional
projections of the phase space. These projections are here energy spectra; depictions
of the energy distribution of the particle beam. For the underlying reconstruction
algorithm to work, it is necessary that a number of energy spectra is measured for
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E Supplementary Material Regarding Phase Space Tomography

different projection angles, which can be adjusted using a quadrupole magnet. For
a detailed description of this method and its limitations refer to [92].

Figure E.1 shows such a reconstruction of the phase space for the series 2508_1
measured at 80 pC. For this, as mentioned above, the energy spectra were measured
for different projection angles which are indicated in the figure by the solid coloured
lines!. From the intensity shown in the figure, it can be deduced that the pulse
extends from ~ —2ps to ~ 2 ps. This corresponds to a total bunch length of ~ 4 ps,
which corresponds to roughly 1.2mm. This is the bunch length assumed for the
pulse 25_1_54 in Chapter 6, assuming that a change in the charge of the pulse will
not significantly alter the phase space. Additionally, the figure indicates that the
pulse does indeed have an approximately double Gaussian profile, as in the non-zero
area of the pulse there are two high intensity peaks (located in the centre of the
pulse between 0ps and 2 ps), which has been used to generate the model pulses in
Chapter 6.

!The reconstruction was computed employing a Python programme courtesy of U. Lehnert,
HZDR
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