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Abstract

In the last years, cheap off-the-shelf consumer cameras became more and more available while
the imaging quality of these devices increased drastically. This is not only true for normal in-air
cameras but also for underwater devices. In connection with a growing interest in the sea world by
science and industry, this led to the need for advanced computer vision algorithms, especially for
underwater scenarios, so that the vast amount of acquired data can be automatically processed and
important information extracted. However, apart from the normal difficulties of computer vision
– the creation of detections that are consistent and coherent in the spatial as well as temporal
domain – new problems occur in the underwater world caused by the specialties of the medium
water. These difficulties are, among others, blur, color cast, Marine Snow and refraction which
all complicate any computer vision task.

Therefore, this thesis proposes a novel change detection approach and combines it with different
especially developed spatial models, this allows an accurate and spatially coherent detection of any
moving objects with a static camera in arbitrary environments. The spatial models include a novel
approach based on the idea behind Ncut but also a derivative of the Markov Random Field model.
To deal with the special problems of underwater imaging, different enhancement algorithms
were used in combination with the change detection approach to counter the negative effects, e.g.
Marine Snow removal or a learning-based deblurring. Furthermore, pre-segmentations based on
the optical flow and other special adaptions were added to the change detection algorithm so that
it can better handle typical underwater scenarios like a scene crowded by a whole fish swarm.
To use these detections and extract the most information out of them, a blob tracking method
is introduced that keeps the generality of the change detection approach but can still deal with
occlusions or detections errors. Overall, the here presented novel general detection and tracking
approach can deliver accurate results in almost all scenarios while dealing especially well with
underwater videos.

The different steps of the pipeline were tested and compared on different datasets against many
state of the art algorithms and showed competitive results. For the testing on underwater videos a
new special dataset had to be created – since this area was grossly neglected so far – and there the
proposed change detection could outperform any existing method thanks to the newly developed
adaptions.
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Zusammenfassung

Während in den letzten Jahren Kameras fortlaufend billiger und verfügbarer wurden, hat sich
gleichzeitig die Qualität ihrer Aufnahmen drastisch erhöht. Dies gilt nicht nur für die Standard-
Kameras sondern auch für Unterwasserkameras und andere Spezialhardware. Im Zusammenhang
mit dem gewachsenen Interesse an der Unterwasserwelt hat dies zu einem stark ansteigenden
Bedarf an Bildverarbeitungsalgorithmen geführt welche die Unmengen an akquirierten Daten
automatisch verarbeiten und wichtige Informationen extrahieren können. Zusätzlich zu den
Standardproblemen – z.b. der Erstellung von konsistenten und zusammenhängenden Detektionen,
sowohl räumlich als auch zeitlich – sind in Unterwasser-Szenen durch die Besonderheiten des
Mediums Wasser neue Probleme vorhanden. Diese Schwierigkeiten sind unter anderem die
vergrößerte Unschärfe, das Vorhandensein eines Farbstichs, die große Anzahl kleiner Schwebe-
teilchen oder die Lichtbrechung. All diese Effekte müssen bedacht werden und erschweren die
Anwendung von komplexen Algorithmen des maschinellen Sehens erheblich.

Deswegen wird in dieser Arbeit ein neuer Ansatz für die Erkennung von Veränderungen
in Videos hergeleitet und kombiniert mit verschiedenen räumlichen Modellen. Zusammen
ermöglicht die eine zuverlässige und präzise Objekterkennung in fast allen Szenarien, solange
die Kamera statisch ist. Diese Verfahren beinhalten unter anderem einen neuen Ansatz basierend
auf der Idee des Ncut Verfahrens und einer Abwandlung des Markov Random Field Modells.
Weiterhin, um die besonderen Probleme in Unterwasservideos zu untersuchen und deren Effekt
auf die Segmentierungen zu minimieren, wurden verschiedene Bildverbesserungsverfahren mit
den vorher beschriebenen Ansatz kombiniert, zum Beispiel das Entfernen der Schwebeteilchen
oder die Anpassung und Verbesserung der Schärfe basierend auf maschinellem Lernen. Durch
Vorsegmentierungen basierend auf dem optischen Fluss und weiteren Ergänzungen wurde die
Objekterkennungen auf die spezillen Probleme in Unterwasserszenen angepasst, wie zum Beispiel
einen Fischschwarm der den großteil des Bildausschnitts einnimmt.

Um aus diesen Detektionen möglichst viele Informationen zu extrahieren, wurde zuletzt ein
Tracking Verfahren vorgestellt. Der vorgestellt Algorithmus arbeitet ausschließlich mit den
bereits erkannten Objekten wodurch die Allgemeingültigkeit des gesamten Ansatzes gewahrt
bleibt jedoch die Behandlung von Verdeckung und Deketionsfehlern Insgesamt erschwert wird.
Zusammengefasst können diese Bildverarbeitungsverfahren Objekte in fast allen Situationen
präzise Erkennen und Verfolgen, besonders jedoch in Unterwasservideos dank der speziellen
Anpassungen.

Die verschiedenen Schritte des Verfahrens wurden auf öffentlich verfügbaren Datensätzen
getestet und mit viele aktuellen Ansätzen verglichen. Für ’in Luft’ Aufnahmen waren die
Resultate vergleichbar mit gegenwärtigen Methoden während für Unterwasservideos dank der
neu entwickelten Anpassungen eine klare Verbesserung erkennbar war.
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1 Introduction

Computer Vision is an area that tries to enable machines to conceive their surroundings autono-
mously with the help of vision sensors, similar to humans who mostly perceive their surroundings
with the help of their eyes. At first glance, this task may seem quite simple to many people because
the understanding of our surroundings comes so natural to us humans. However, the general
problem is extremely difficult and even the best systems with the most advanced algorithms do
not come close to the ability of humans in perceiving and understanding universal scenes. In
some specific aspects the computer vision systems can already have an advantage in comparison
to humans, e.g. they never get tired or can measure distances very exactly, however, they lose
when it comes to the interpretation of new scenes with unknown objects and the adaption to them.

To build viable computer vision systems, an understanding of various research areas is ne-
cessary, from optics over electrical engineering to machine learning. In all these fields great
advancements have been achieved in the last years. Today, high-resolution color cameras are
becoming ubiquitous in our society and fast computer vision algorithms are present in every
pocket of every human, incorporated in their mobile phones or cameras. In the next years, these
developments will continue and further advancements will make self-driving cars or grocery
stores without checkouts possible, which all rely heavily on computer vision algorithms. Both of
these and many more technologies are at the moment in the experimental stage and will bring
great changes to our daily life and society as a whole in the next decades.

In many areas these changes have already happened so that computer vision plays a vital role
in millions of economic and social interactions daily; examples are the automated license plate
recognition of cars with optical character recognition (OCR) [KBV15] which is used to check if
all car owners have paid their tolls but also for security purposes to identify cars that were stolen
or are used by criminals. In this ever more importance gaining area of security falls also the face
recognition which is already quite advanced and able to compete with the human perception.
It is used often for purposes like the border control at airports [OK15] but also has other civil
usages, e.g. the correlation of images to specific users in social networks. The last and maybe
most significant example for individual lives is in the area of medical imaging where computer
vision algorithms are already helping doctors identifying illnesses like cancer more accurate and
reliable [DP16].

In the case of medical imaging, the task is often to segment an image derived by a medical
imaging device, e.g. an MRT, into diseased/abnormal and healthy tissue to support the physician.
These segmentation tasks are a cornerstone of computer vision as they present usually the first
step in a whole pipeline of different algorithms and the quality of all later results depends heavily
on accurate segmentations. For example, the automated license plate reader previously mentioned
will first segment all license plates in a frame and afterwards identify the individual letters on
each plate with OCR. Therefore, the development of accurate, fast and universal segmentation
algorithms has been a constant and much-discussed problem in the last decades. One of the main
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1.1. PURPOSE AND SCIENTIFIC PROBLEM

difficulties is that there are so many different scenarios in which segmentations are necessary that
it is impossible (at the moment) to develop an algorithm that works with a consistent accuracy
in all of them (e.g. single image vs video segmentation or segmentation of specific object vs
segmentation based on behavior/events) and hence many special algorithms have been developed
for specific scenarios. This work will deal mainly with one of these segmentation tasks which is
very frequently used in computer vision, namely change detection in videos.

1.1 Purpose and Scientific Problem

The detection of change in videos is a classical segmentation task that derives its importance
from the fact that changes in an otherwise static scene correspond to moving objects and that
these objects are usually the ones an observer is interested in. For a self-driving car or any other
robot, for example, a moving object poses a much greater threat of collision than any static
object. To avoid a collision with an immobile object it is always enough to stop and do nothing
whereas the collision avoidance with an object in motion often requires evasive maneuvers and the
prediction of the path that object follows. For the detection of these objects, different algorithms
like background subtraction or the optical flow have been proposed but each of them faces
separate problems in certain scenarios and the research for an optimal solution is still ongoing.
The optical flow, in general, is better suited for situations where the camera is under movement
itself (ego-motion) but has problems with large uniform or slow-moving objects. This work will
mainly deal with change detection via background modeling and subtraction which is a fast and
general method but requires a static camera so that the background can be modeled. The main
disadvantage of this method is the lack of spatial coherence in the results since each pixel is
treated completely separately in the original formulation.

Natural images and videos exhibit a great amount of smoothness and this feature is not
inherently reflected in the background subtraction results. Because of this, the segmentations
look unnatural and it becomes also more difficult to automatically process them further. The
smoothness in natural images comes from the fact that the objects there have continuous and
smooth borders, hardly ever holes and a certain minimal size (at least if they have any importance
to the observer). Therefore, the segmented objects should have these characteristics as well and
not have zigzagging borders, holes or consist of only one or two pixels. Methods that try to
model these smoothness criteria directly, e.g. with Markov Random Fields (MRF), tend to be
very computationally expensive and are, therefore, not suitable for real-time applications. Simpler
methods, like morphological filters or a Gaussian smoothing of the video stream, accomplish
significant improvements but do not use the information from the video stream and, therefore,
cannot achieve the accuracy of more advanced models. In this work, three approaches will be
presented and evaluated which address this problem specifically from different viewpoints.

This spatial coherence is also especially important for the further usage of the segmentation
results, as it is necessary to have clear and unambiguous detections for the next stages of the
computer vision pipeline. Subsequent tracking or classification algorithms, no matter how good
these are, will get into serious problems if large objects are detected as several smaller objects
or small detections of noise are seen as real objects. An example of the effect of these spatial
methods can be seen in Figure 1.1, although the shape of the segmentation is far from ideal even
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CHAPTER 1. INTRODUCTION

Figure 1.1: The images on the left show a frame from the Time of Day video from the Wallflower
dataset and the corresponding ground truth data, on the right side are the results of
the approach from [SW06], once with only the background subtraction and the other
with a MRF model added as a spatial method.

after the spatial method was applied, it becomes clear that there is one large and another small
object in the scene. Without the spatial method, the segmentation is quite open for interpretation
and it becomes very difficult to further process this result for any algorithm. Also, it should be
noted that the methods do not have the ability to know that both detected objects belong to the
same human and that there is just an occlusion from the table. The low-level algorithms do not
have any concept of a human and a realization of this level of understanding has to happen in
higher layers of the computer vision pipeline.

To evaluate the results of these segmentation methods there exist many datasets with a great
variety of different scenarios, from low frame rate videos to thermal recordings and from scenes
with bad weather conditions to situations with difficult shadows. However, none of these have
any underwater footage included and, hence, the specific problems of the underwater world are a
blind spot for the change detection community. These problems include the changed physical
conditions in water which cause refraction, induce a color cast or let many small organic particles
float in the water which can then obstruct the view of the camera. The smallest of the floating
particles cannot be seen by a human directly but reflect and scatter the light which causes the
images to be blurry. The larger floating particles (Marine Snow) are visible and can be so big that
it becomes difficult to differentiate them from moving objects like fish, jellyfish or divers.

These problems are known to underwater photographers and filmmakers for a long time,
and thus there have been many image enhancement algorithms proposed to eliminate these
degradation effects. Usually, the goal of these algorithms is to improve the human perception of a
video or image and not to support computer vision tasks. Nonetheless, as the effect of underwater
image enhancement algorithms for a human observer can be quite beneficial, it is sensible to
assume that similar favorable effects can be found for segmentation algorithms. Since there does
not exist a general change detection dataset for underwater scenarios, a conclusive evaluation of
these effects was not possible so far, let alone an adaption or new development of algorithms to
positively affect the segmentation process. This adaption would probably be necessary as the
original approaches are often quite slow because they were designed for single images and/or
offline usages which limits their usability drastically.

Other effects that make the segmentation and tracking more difficult come from the special
scenarios that occur in underwater situations. An example are fish that often appear in whole
swarms and constantly swim in front and behind each other, this can make it very difficult to
identify a single fish. For in-air situations crowded scenes are also possible – although not
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as frequently – but the main advantage here is that the problem can be mostly mitigated by
placing the camera in a higher position and getting a bird’s-eye perspective. This will limit the
occlusion drastically because humans or cars are not stacked on top of each other and, thereby,
the segmentation task becomes a lot easier. The same is not possible for underwater scenarios as
fish or divers can and do use all three dimensions of the medium and occlude each other in all of
these dimensions as well. Another problem that becomes more difficult in underwater scenarios
is shadows. On the one hand, there is a new kind of shadow/light effect that does not exist in-air,
caustics. On the other hand, the normal shadows are harder to detect because of the deteriorated
color information in underwater scenes and the fact that an attribution of a shadow to a specific
object is often very difficult for swimming or floating objects.

Another specific difficulty of fish detection – apart from the swarm behavior of fish – is that
they tend to camouflage themselves. Of course, this does not apply to all fish, some are very
colorful and clearly stick out from the background, but basically all commercially used fish
(especially in the European area) have a grayish color so that they are harder to see in the open
sea for predators. This naturally makes it harder for computer vision algorithms to detect them
accurately since the difference between the static background and the moving foreground objects
becomes very small in an already degraded image. Nonetheless, it is often an essential task to
detect these fish, e.g. in aquacultures to monitor the growth and health conditions of them or for
biologists to automatically survey the marine life. However, the similarity of these fish can also
be a small advantage, in particular in the crowded scenes when a whole swarm is present. As
all of the fish feature almost the same color, a foreground model has an easier task in modeling
the moving objects. An accurately modeled foreground can be helpful in differentiating between
moving objects and the background. Foreground models are not often used for in-air scenarios
since there the difference between two cars or two persons is usually quite large which negatively
affects the reliability of such a model and makes it overall not as useful.

1.2 Structure of the Thesis

There is already a large base of contributions on change detection and general segmentation
methods in videos and therefore, in this work, the focus will be on two specific points. One is
the lack of spatial coherence in the results of background subtraction methods for which three
different solutions will be proposed, each having their own special advantages and drawbacks.
The other topic that will be discussed in depth is the difficult conditions in underwater scenes and
how to best deal with them. For this, a special dataset is proposed and published, different image
enhancement algorithms are evaluated on this dataset and a special method for crowded scenes is
developed.

Before discussing these methods, the thesis begins with a state of the art review on change
detection and segmentation algorithms for videos in chapter 3. Since the approaches for (single)
image segmentation, in-air video segmentation and underwater video segmentation are very
closely related and often overlap, it is difficult to differentiate perfectly between them. In
this work an algorithm is put into the category of video segmentation if it uses the temporal
progression of the video, e.g. a simple thresholding would not qualify since it is applied on each
frame separately (previous or following frames do not influence the algorithm) and therefore
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counts as image segmentation even if it is used on videos. However, since image segmentation
methods often are the foundation of video segmentation methods – or at least are present in
several substeps of the segmentation process – the first part of the state of the art deals with
image segmentation methods. To limit the overview to a reasonable length only the methods
that were used in underwater scenarios are investigated. Subsequently, the focus is put on
video segmentation and primarily in-air scenarios are investigated where plenty of literature and
several datasets are available. The last part then deals with the quite rare occasions where video
segmentation algorithms were applied in the underwater context.

The chapter 4, Change Detection, introduces a novel background modeling and subtraction al-
gorithm which was previously published in [RG15]. Based on this, three different spatial methods
are presented to enhance the completely pixel-wise segmentations derived from the background
subtraction. The first idea uses MRF to model the spatial connections between the pixels and the
resulting optimization problem is solved approximately with Belief Propagation. In contrast to
other similar approaches, higher order MRFs are used to better model the spatial relationships in
large complex frames and Otsu’s method was integrated into the Belief Propagation optimization
for a better adaption to edges in the frame (previously published in [RG15]). The second approach
uses the idea behind NCut, which is originally a single image segmentation method, and adapts
it for videos so that it becomes a fast way to adapt the segmentation results of the background
subtraction to the edges in the frame. This method was previously published in [Rad+15]. The
last approach is a spatiotemporal method that combines several consecutive segmentations by
using dense optical flows to eliminate single outliers and make the segmentations themselves
spatiotemporal more consistent (published in [RF16]). Eventually, all these methods are evaluated
and compared with many already existing methods on the Wallflower dataset to point out the
strengths and weaknesses of each of them.

In the next chapters the difficult situation for change detection algorithms in underwater
scenarios is examined and some ways to better handle these difficulties are proposed. At first,
in 5, a Dataset for Underwater Change Detection, a new dataset is presented because until
now no common change detection dataset contains any underwater videos. It consists of five
videos which depict different difficulties present in many underwater videos and was previously
published in [Rad+16]. In Chapter 6, Effect of Image Enhancement on Underwater Change
Detection, four different image enhancement methods are tested in combination with different
change detection methods to see if they can have a constantly positive impact on the segmentation
quality. Afterwards, in the chapter 7, Underwater Change Detection, the GSM background
subtraction introduced earlier is adapted to better deal with the special degradation effects in the
medium water and the swarm behavior of fish. For this, the GSM is combined with the Mixture of
Gaussian approach and important parameters are adapted automatically so that it can deal better
with complex scenes. Also, a foreground model is integrated and a special method to deal with
very crowded scenes that is based on the optical flow of the scene. These changes are already
published in [RFL17b] and are at the end evaluated on the new underwater dataset in combination
with the different spatial methods introduced earlier.

Underwater Blob Tracking is the 8th and last chapter where the previous results will be used to
extract important higher-level information from the videos, e.g. the path of a single fish or how
fast the fish swims. It is based on the methods described in [RFL18]. To keep the approach as
general as possible it is solely based on the found foreground blobs from the change detection
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which makes the spatial coherency of these results very important. First, a complex similarity
measure is defined, the Connected Component Similarity Measure (CCSM), to evaluate how
likely it is that two foreground blobs in two different frames represent the same object. The
CCSM uses many different properties of the blobs, e.g. position, shape or velocity, and has also a
way to prevent outliers in the most important parameters. Based on this, the foreground detections
of different frames can be matched, however, the special matching process introduced here does
not only look at single blobs but also takes into account possible unions or splits of these blobs.
This allows a better handling of occlusions and segmentation inaccuracies. The evaluation is
done on two in-air videos with humans as foreground objects since for these videos ground truth
data and many previous results are available. On the underwater videos, only a comparison with
a reimplemented Hungarian method was possible.

Summarized, this work will address the following problems and questions:

1. Development of a novel and lightweight background modeling approach for foreground-
background detection

• Handling of special difficulties like shadows or global changes

• How does it compare to State of the Art in-air methods?

• Adaption to the challenges of underwater footage, especially crowded scenes and
image degradation

2. Search for better approaches to increase the spatial coherence in binary segmentations

• Development of different approaches, comparison in run-time and accuracy improve-
ments

• How is the performance on underwater videos? How is their interaction with image
enhancement methods?

3. Creation of an underwater dataset for foreground-background segmentation

• Important: representation of all common problems in the underwater context

• Are some algorithms better suited for the segmentation underwater? (especially
background subtraction versus optical flow)

• Can image enhancement methods mitigate the common problems in underwater
videos?

4. Creation of a novel very general tracking approach that relies solely on binary segmentations

To all of these problems solutions will be proposed in the following chapters.
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2 Fundamental Definitions

At first, some brief definitions will be given which are essential for understanding the following
parts. The readers that are already familiar with topics like Computer Vision or Change Detection
can skip this chapter.

This work will deal mostly with digital videos which, in this case, can be viewed as a stack of
single images. Then again, each (digital) image is a two-dimensional grid of pixels.

Pixel

The word pixel comes from ”picture element” and is the smallest component in a digital image
or computer screen. Each pixel is assigned to a specific color, which is usually encoded with
the three RGB values. RGB stands for red, green and blue, these colors are used because out of
them all other colors the human is able to perceive can be mixed. The intensity of each color is
commonly given by an integer value that ranges between 0 and 255. For the pixel v this means

v = (r,g,b) ∈ {0,1,2, . . . ,255}3. (2.1)

Each of these three values is called a channel (e.g. red-channel); each channel represents specific
information on a distinct domain. There are pixels with only one channel which then only encode
information about the brightness (grayscale).

In general, a pixel in a digital image is not limited to one or three channels but can represent
much more and universal information. By adding more channels it could also give information
about radio waves, the infrared spectrum or any other data source. However, the human perception
is limited and therefore the devices that are used for displaying pixels (monitors, printers . . . ) are
also limited to the visible spectrum. If more or different information shall be displayed they have
first to be mapped for each pixel to the RGB range.

Digital Image

A digital image (hereinafter simply referred to as image) is a two-dimensional grid of pixels. Let
I be an image of width m and height n, then

I = (ψi, j) with 1≤ i≤ m and 1≤ j ≤ n (2.2)

and
I(i, j) = ψi, j (2.3)

is the pixel at position (i, j). If not stated otherwise, a pixel in an image in this work will always
have the three RBG channels and a specific channel can be addressed by giving the channel

7



Figure 2.1: On the left side is the underwater image of a fish and a small part of this is zoomed in
and displayed on the right side. There the separate pixels can be distinguished and
also the RGB values are shown for each of them.

c ∈ {R,G,B} after the pixel position (I(i, j,c)). A good visualization of an image with its pixels
can be seen in Figure 2.1.

There are two kinds of images, the first one is created with cameras and then the image is
a reproduction of the reality (of the electromagnetic waves that reach the camera). Normally
this is in relation to the visible electromagnetic spectrum, so a reproduction of how we humans
perceive our surroundings, but there are also cameras that work in other spectra. The second type
is artificial images, they can be created on a computer and do not have to have any connection to
the reality. An example is Computer games which are a steady stream of artificial images.

This work will solely work with the first type, taken with cameras, as these images are
measurements of the reality and therefore contain unknown information about our surroundings
which can be extracted and used. At the same time, the analysis of artificial images is moot since
all information that can possibly be extracted from them is or was already present somewhere.
For example, when an image that depicts humans is created, the number and positions of the
humans is known at the time of the creation and therefore a complicated algorithm that detects
humans is in most cases not required.

Video

A video is composed of several images of the same size - often many thousands per video -
that are ordered equidistantly on a timeline and played/shown one after another. Therefore, a
video has an additional time domain to the already existing spatial domain of every single image.
This allows the capturing of changes over time in a scene which is often very beneficial and
opens completely new ways to obtain meaningful data. An example would be the detection of all
moving objects in a scene which cannot be done on single images alone. Additionally, sound is
also often present in videos as a kind of fourth dimension. In this work, however, it is not used as
a source of information and only the previously mentioned time and spatial dimensions are used.

The new time domain not only enhances the usefulness of a video dramatically (in contrast to an
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image), but also the amount of memory needed is much higher and increases approximately linear
with the length of the video. Thus, an efficient compression is necessary to work comfortably with
videos. Usually, in addition to an already efficient single image compression, only the changes
from one image to the next are saved since there are only minor changes present most of the time
(e.g. the background stays unchanged). The images in a video are also often called frames, which
comes historically from the fact that an image on a strip of photographic film looked similar to a
framed pictured.

The standard symbol for a video will be a capital V , similar to the I for an image. Each video
is a combination of T Images

V = (It) for 1≤ t ≤ T (2.4)

and the pixel at position (i, j) and time t can be denoted as

V (i, j, t) = It(i, j) = ψi, j ∈ It . (2.5)

A specific channel of that pixel can be addressed with V (i, j, t,c).

Neighborhood

The neighborhood of a pixel v in an image I is a set of pixels from that image that are spatially close
to the pixel v. Depending on the metric to measure the spatial distance different neighborhoods
can be created, the most common ones are the von Neumann and the Moore neighborhood,
the first is based on the L1 distance (Manhattan distance) and the second on the L∞ distance
(Chebyshev distance). For images, the neighborhoods are always two-dimensional but for videos
they can become three-dimensional since pixels in the next or previous frames can become part
of the neighborhood as well, an example is depicted in Figure 2.2.

Neighborhoods are important for many image processing and computer vision tasks since they
can give a spatial component to otherwise pixel-wise methods. For example, thresholding the
intensity differences between neighbors can be used for a simple edge detection.

v

von Neumann neighborhood

v

Moore neighborhood

v

3D von Neumann neighbor-
hood

Figure 2.2: Shown are three standard neighborhoods for digital image and video processing. The
pixel v is always in the center and its neighborhood consists of all pixel around it that
are shown here.
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Figure 2.3: On the left is the original frame from the KITTI Vision Benchmark Suite (Optical
Flow Evaluation) [MHG18] and on the right the same frame is shown with two
connected components marked (e.g. the result of a car detection algorithm). It can be
seen that the grey car is separated into two connected components because of the tree
and that the red connected component comprises of three different objects because
they all overlap.

Connected Component

A Component C is a simple subset of pixels from an image, for example foreground pixels that
were detected by background subtraction,

C = {v | v ∈ I}. (2.6)

Two pixels a and b from C are called connected if a path between them can be constructed in the
following way: From a a neighboring pixel c ∈C is chosen. Then from c another neighboring
pixel (from C) is chosen and so on. If the pixel b can be reached by repeating this process, a and b
are connected. A component C is called a connected component if all pixels are connected to one
another and the set C consists of the maximal number of pixels, that means no other (foreground)
pixel can be added that is connected to all pixels of C. The neighborhood chosen has a strong
influence on this property, in the following always the 2D von Neumann neighborhood is used to
determine connected components.

Object

An object O in an image is also a set of pixels. This set, however, corresponds to a real object
(car, tree, human, fish . . . ) in the scene and comprises of all pixels that represent it in the image.
The object O can be a connected component but does not have to be. A connected component can
consist of several objects and vice versa a single object can include several connected components.
An example of this can be seen in Figure 2.3. Furthermore, in a video the same object can be
visible for many frames and, therefore, it will be defined over time, so O(t) is an object at time t.
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Temporal Change

Temporal change cannot occur in an image since it only depicts a moment in time but it is an
important property of videos. A single pixel of a video, V (i, j, t), will exhibit changes of its
intensity over time. If these changes are analyzed for all pixels in the video while, optimally, also
taking the neighborhood and global relations into account a great quantity of information can be
extracted from the video. For example, if most of the pixels suddenly drop in their intensity it
can be deduced that probably the light was turned off or (for outdoor scenes) a cloud blocked the
sunlight. Similarly, when the pixels go back to their previous intensities it can be inferred that the
light was turned on again or the cloud moved away.

Optical Flow

The Optical Flow combines the Temporal Change analysis with a spatial component. There are
dense Optical Flows (DOF) which compute the flow for each pixel of the video and sparse Optical
Flows which only consider specific points (e.g. edges and maxima). Both assume that pixels not
just simply change their intensities but move through the scene over time. This assumption is true
for moving objects in a scene; the pixels of that object do not change their intensities, they just
change their location. This means that

V (i, j, t)≈V (i+ fi, j+ f j, t + ft) (2.7)

should be true for all pixels of that object as long as it keeps its velocity and direction. Then the
vector ( fi, f j, ft) is the Optical Flow for that object and its velocity and direction of movement
can be deduced. However, humans cannot be seen as one single object since different body parts
move with different velocities and directions all the time. Furthermore, the Optical Flow is not
apt to handle events that actually change the intensity of pixels - like turning off a light.

The calculation of the Optical Flow is also an example where the neighborhood becomes
important. If the equation 2.7 is only evaluated for one single pixel it will be extremely prone to
errors. It is very probable that a nearby pixel has a similar intensity and then the unambiguous
assignment of pixels over time becomes almost impossible. Therefore, a whole neighborhood is
usually evaluated at once and the Optical Flow assigned to that area. The larger the neighborhood
the more robust the algorithm becomes, but with the size of the neighborhood also the problems
at the border of objects increase and smaller objects will be missed completely.

Foreground and Background in a Scene

In a segmentation of a video or image into foreground and background, the scene is separated
into two disjoint parts that add up to the whole scene. That means each pixel has to be classified
either as foreground or as background. The foreground part of the scene contains all objects
that are important at the moment (to the user, for the next computer vision task, . . . ) and in
the background are the parts that are not relevant and can be ignored for the time being. This
detection of foreground objects can be useful in itself, e.g. a surveillance camera that detects
movement during the night can alert the security. However, most often it is used as the foundation
for other classification and segmentation algorithms.
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Figure 2.4: On the left are two frames from a video taken with a fixed camera, the background is
static and only the fish is moving. A result of a change detection algorithm is shown
on the right side. All pixels that were found to belong to moving objects are shown in
white and pixels that show the static background in black.

What is considered to be important (foreground) is of course extremely dependent on the
specific task and scene. For example, for a self-driving car street signs would be considered as
foreground but the sky rather as background since it contains no important information. This
thesis will work on the specific task of change detection, where all moving objects in a scene are
seen as important and should be classified as foreground and the rest is considered background.

The Change Detection Problem

The task of detecting change in a video is based on the assumption that there is a static component
in the video, the background. This static component includes all objects of the scene that are
immobile (houses, trees, parking cars and so on). Everything that is under motion does not
belong to that static component and should be detected by a change detection algorithm. Since
this task relates to motion it is only natural to perform it on videos; doing it on single images is
hard to impossible. The two main methods to conduct this classification are either: modeling
the background of the scene and comparing it with the current frame of the video (background
subtraction) or are based on the optical flow in the video. An example of a detection is shown in
Figure 2.4 where the classification is pixel-wise and binary, each pixel belongs either to the static
background component or to a moving foreground object.

Gaussian

The modeling of the background - which is the static, non-changing part of the scene - is often
done by using Gaussians (normal distributions) which are continuous probability distributions.
If many independent measurements are conducted the errors often have a distribution that is
almost normal [Lyo14]. In this case, each capturing of a frame is one measurement and since the
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Figure 2.5: Three Gaussians that model the color of a pixel. The certainty of the blue value is the
lowest and therefore it has a high probability to attain values in a broad range around
the mean of 90.

static component of the scene is constant the measurements should have a normal distribution
around this value. Therefore, Gaussians are adequate for this modeling process and every normal
distribution is defined by two values, its mean µ and variance σ. In the case of background
modeling, µ would be the mean intensity over the last frames of the video. With this, the
probability for the value x to appear is

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (2.8)

A visualization of this can be seen in Figure 2.5 where three different Gaussian distributions are
displayed, each modeling one of the RGB values of a specific pixel.

Evaluation

To evaluate the accuracy of binary segmentations/classifications there exists many different scores
which are deduced from the four basic numbers:

• TP (true positives) - a correct detection, e.g. classification as foreground

• TN (true negatives) - a correct rejection, e.g. classification as background

• FP (false positives) - a false alarm, e.g. classification of background as foreground

• FN (false negative) - a missing detection, e.g. classification of foreground as background

To get a useful evaluation of different segmentations from these numbers directly is difficult
because they just count the different classification types and do not take into account the specific
scene. For example, in a video with very little foreground a method that would just mark
everything as background has a very high rate of correct classifications (TP+TN) and may
therefore seem good at first glance but it does not convey any information at all to the user.
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To tackle this problem different coefficients have been proposed that take the total number of
foreground or background into account,

Sensitivity:
T P

T P+FN
,

Specifity:
T N

T N +FP
,

Precision:
T P

T P+FP
.

(2.9)

The Sensitivity is the ratio of correct detections to the total amount of foreground and signifies
how likely the method is to detect a foreground object. Specificity is the ratio of correct rejection
to the total amount of background and signifies how likely the method is to detect background
correctly. The last number, Precision, is the ratio of correct detections to total detections and
shows how likely it is that one detection made by the algorithm is true. These numbers are all
between 0 and 1 and a higher value indicates a better segmentation.

However, each of these numbers only describes one very specific aspect of the segmentation
accuracy and cannot be taken alone for evaluation. In the previous example – an algorithm
which classifies everything as background – the specificity would be one, but the Precision and
Sensitivity would both be zero. Therefore, measures have been proposed that aim to give a
comprehensive overview of the accuracy and contained information of a segmentation in only a
single number. This is a wide field and many proposals have been made [Pow11] but here the
focus will be put on two numbers, the F1-Score and Matthews Correlation Coefficient (MCC),
because they will also be used later in this work.

F1-Score is defined as the harmonic mean of Precision and Sensitivity and focusses on the
detection accuracy. It is a number between 0 and 1 where 1 can only be reached if no detections
have been missed and no false detections have been made. It ignores completely the T N value.
That means for the F1-Score it is irrelevant if five correct detections and one false alarm have
been made on 100 samples or on 100.000 samples. It is defined as

F1-Score =
2

1
Sensitivity +

1
Precision

= 2 · Precision ·Sensitiviy
Precision+Sensitivity

=
2 ·T P

2 ·T P+FN +FP
. (2.10)

The second measure is introduced in [Mat75] and based on the phi coefficient in statistics. It is a
value between -1 and 1 where a measure of 0 would indicate a truly random segmentation, 1 a
perfect segmentation and -1 a completely inverted segmentation. The MCC can be calculated as
follows

MCC =
T P ·T N−FP ·FNp

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
. (2.11)

Both measures are adequate for evaluating binary segmentations, but the F1-Score is traditio-
nally more often used. In Table 6.1 both values are given for some underwater segmentations and
it can be seen that they are closely related.
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Figure 2.6: Matching of fish between two frames of a video like it is necessary for a tracking
algorithm.

If several videos are in a dataset the best way to evaluate the overall accuracy is to compute the
F1-Score or MCC value for each video and then give the average number over all videos. This is
preferable to adding up the values of TP, TN, FP and FN and then computing the measure. The
reason for this is that the videos can contain different amounts of foreground and background and
if a video contains very few foreground pixels, each correctly classified pixel has a big impact on
the accuracy measure for that video. However, if the numbers of correct detections are added up
over all the videos then this impact will be marginalized because other videos may have huge
amounts of foreground. As a result, the correct detection of a few small foreground objects in one
video would be unimportant for the accuracy measure and only the videos with large amounts of
foreground would matter.

Tracking Problem

To track one object in a scene over time it is necessary to associate detections in several frames to
one specific object. Humans usually do these by assigning different properties – e.g. the men
with the black jacket, green pants and big glasses – and then can find this object again even after
many frames and drastic changes in the scene. Computer Vision algorithm work similarly but
use different properties like shape, position or size since they usually do not have any concept of
glasses or jacket. With these properties, a matching of all detected objects in a frame has to be
done with all detections in the next frame (see Figure 2.6). A matching between two frames that
are far apart (with respect to time) is very difficult since properties like position or size usually
change drastically over time. Therefore, the aim of a good tracking algorithm is to make correct
matchings in consecutive frames and not confuse or lose objects. In modern algorithms, these
errors are usually rare but since these errors propagate themselves even a few can lead to poor
results, e.g. once swapped tracks stay swapped forever or one missed detection might cause a
chain reaction so that many objects are matched falsely. Furthermore, the evaluation of these
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results is difficult since they not only depend on the tracking method but also heavily on the type
and accuracy of the detection and the specific task that is assigned (e.g. only detect and humans
vs detect and track all moving objects).

Image Enhancement

Image enhancement or editing is the process of altering the image (digital or analog) after the
actual capturing with the camera. It can be done manually with tools like Photoshop to change
single images (e.g. for magazines) or automated by a computer (e.g. the red-eye removal in many
cameras). Since in this work large videos are processed only the automated enhancement of
digital images/frames is feasible and discussed. Especially in unusual and difficult situations (e.g.
foggy weather or underwater) image enhancement techniques like deblurring or color correction
can help to make important objects more distinct in images. However, it must be noted that no
new information is added during this process, just the present information is remapped so that
certain aspects are better visible.
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3 Related Work

The segmentation problem in-air and underwater images/videos are similar and, therefore, the
general approaches in both fields are also alike. However, the underwater scenes have some
distinct properties that make some approaches more viable than others. For optical videos, these
special properties include color cast, blur, caustics, marine snow, haze or refraction. In this
chapter, a general overview of techniques that have been used in the underwater context for the
segmentation of videos will be given.

The chapter will start with a short detour to sonar images and their segmentation because
they are an important branch of underwater imaging and have some specific benefits. However,
they cannot provide enough accuracy overall – e.g. for the identification of single fish and their
movements – and that is why the focus will be mainly on optical approaches in this work. The
next part of the chapter will address the underwater single image segmentation and gives a brief
overview of the current approaches. Although the aim of this thesis is the segmentation of videos,
the case of a single image cannot be neglected completely since often very similar algorithms or
combinations of them are applied for videos. The last part then deals with current approaches for
video segmentation and is divided into two sections, one general video segmentation part and
one for underwater videos. The general overview of video segmentation algorithms is necessary
because the two topics are very closely related to each other and in-air methods can – of course –
also be applied on underwater videos. Furthermore, a comparison of different methods is only
possible for in-air scenarios since no common underwater datasets are available until now. This
thesis main work will follow a similar structure where first a general segmentation method for
in-air videos is presented with three different ways to add spatial coherency to the pixel-wise
segmentations. Afterwards, this approach is adapted to the specialties of underwater scenes by
refining the modeling process as well as adding underwater image enhancement methods.

3.1 Sonar Imaging

Sonar devices are used for a very long time already and for various purposes in the underwater
context, from fish school detection for fishers to the detection of submarines for military purposes.
They have some distinct advantages over optical sensors, above all the high range but also the
simple determination of depth information through the runtime of the signal. Nonetheless, sonar
images are inferior regarding the resolution and signal-to-noise ratio, Furthermore, they can only
detect the intensity of one specific wavelength and not of a whole band of wavelengths like optical
sensors.
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3.1. SONAR IMAGING

Figure 3.1: Results of [Guo13]. From left to right: pool and boat with sonar device, ground truth
data, point cloud after outlier removal and the reconstructed surface. ©2013 IEEE

3D Surface Reconstruction

In [TCM04] Tao et al. focused on real-time capability rather than accuracy and fitted a superqua-
dric surface over sparse 3D points to reconstruct surfaces. To deal with outliers they started with
a RANSAC algorithm (Random Sample Consensus) to generate a reliable seed and then added
points gradually until no more points were left that fit the model.

The approach of [Guo13] was very similar but only a single beam sonar was used. These
devices are cheap and readily available but only deliver 2D slices which then have to be fused to
create a whole model of the surface. Again, the outliers were a big challenge for the method but
this time an outlier removal filter was applied instead of the RANSAC algorithm. The surface
was modeled by a simple rectangular plane where the corner points were matched with points of
the point cloud. This plane was then continuously subdivided and the new points on the plane
were always shifted on top of already existing points of the point cloud. The algorithm was tested
in a small pool, an image of this and some results can be seen in Figure 3.1.

Object Segmentation

For the identification of objects usually more advanced sonar devices are used as a higher
resolution is necessary. Also, often side-scan sonar images are taken, these images cover a
larger area and are therefore preferable to normal sonar scans. However, these devices also
have particular problems with shadows, obstruction, and noise due to the viewing angle and the
larger distance to the objects of interest. An unsupervised learning algorithm is proposed for
the segmentation of these images in [ZWH16]. Local binary patterns (LBP) were used as well
as Haar-Like features to identify features in the sonar images and then cluster them with the
K-Means algorithm to segment the image. In this way, a real-time segmentation without any
parameters could be achieved. However, more experiments are necessary to verify the quality of
the segmentation results as only two images were used for testing.

Huo et al. proposed in [Huo+16] a segmentation method for side-scan sonar images that starts
with a special non-local mean-based speckle filtering to reduce the heavy noise of these images.
Afterwards, a coarse first segmentation is computed via K-Means clustering which is refined by
using a region scale fitting active contour model. Furthermore, the Canny operator was used for
the detection of edges to ensure that the active contours coincide with the desired edges. The
algorithm was tested on two different datasets of sonar images and on standard black and white
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Figure 3.2: Two noisy sonar images are depicted and next to them the segmentation result of
[Huo+16]. ©2016 IEEE

images, in almost all scenarios it could beat two previous methods. Some results can be seen in
Figure 3.2. There exists a multitude of other approaches for the segmentation of objects in sonar
images, among others MRF [Son+16] or statistical background modeling [Hag+16].

Fish Segmentation

The segmentation of fish with sonar is extremely difficult and often it is only used to detect whole
schools of fish in the open sea and/or coarsely measure their size [Iid+04]. A refinement of this
was proposed by Otaki et al. in [Ota+11] by using a sonar which responded to acoustic tags on
the fishing net to increase the accuracy and range of the sonar and thereby helping the fisher to
detect fish schools. A fish observatory platform using sonar imaging was proposed in [WB14] but
the accuracy of the sonar alone would not have been enough to classify the fish or measure their
size. Therefore, the sonar system was used as a first step to generate a coarse segmentation and
estimate the number of fish, this detection then activated a stereo camera system to start a more
detailed observation. The segmentation of the sonar images was done by a simple background
subtraction using Kalman Filters. An example can be seen in Figure 3.3.

The classification of fish solely based on sonar data was attempted by Matsuo et al. in [Mat+07].
A broadband sonar was used and additionally the different reflection properties of fish species in
different angles to the sonar system were exploited. However, the conditions were very artificial
as the fish were anesthetized or suspended during the imaging. A classification like this under
realistic conditions seems very far-fetched at the moment. Overall, sonar imaging is preferable to
get coarse information of large areas underwater but if specifics and details are necessary optical
imaging is superior. Also, the frame rate is usually quite low due to the lag of the signal and this
can be very problematic for tracking or similar tasks [Tru+00].

3.2 Optical Imaging - Single Image Segmentation

Optical underwater imaging can deliver a higher information density and accuracy than sonar
imaging but is limited to close range applications because water absorbs and scatters visible light
strongly – much more than air. Sonar devices are optimal for the coarse 3D reconstruction of
surfaces or the location of large objects or whole swarms of fish, but if accurate information is
necessary, e.g. the location of single fish or small objects on the ground, there is no alternative to
optical imaging even in the underwater context.
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Figure 3.3: A sonar image of fish. From left to right: original image, segmentation of [WB14]
and the ground truth data. ©2014 IEEE

Thresholding

Thresholding is a very simple and fast method to binarize an image. The classification of
each pixel value v = I(v̄) is usually done on grayscale images by a comparison against the
predetermined thresholed T and gives the segmentation

Seg(v̄) =

(
1 if I(v̄)< T

0 else.
(3.1)

The vector v̄ contains the pixel location (i, j) in image I and in this work all parameters that
denote vectors will have a line over them to distinguish them from scalar quantities. Thresholding
can also be applied to color images if the norm of the vector of pixel values is taken instead of the
single grayscale value. It is very difficult and important to get an optimal value for the threshold
T and many methods have been proposed for this. One example is Otsu’s method [Ots79] where
the variance in each class (foreground/background) is minimized. The method has been extended
since then in many different ways, e.g. in the two-dimensional Otsu’s method [JWY91] where a
two-dimensional histogram is used – the second dimension shows the average of a small area
around each pixel. Thresholding usually only works for special tasks or simple images because
the complexity of understanding natural images cannot be reduced to a single value. Nonetheless,
it has been applied for some underwater tasks, e.g. in [Lab+12] where fish fry was counted in
a small glass container. They used an adaptive threshold to account for the changing lighting
situations in different parts of the scene and averaged the results over several frames of a video to
reduce outliers. The counting was accurate for batches of up to 700 fish but fails at larger batches
since the fish then constantly overlap, which cannot be handled by thresholding alone anymore.
In this scenario thresholding was an adequate method since there was a very distinct difference
between the dark fish and the white background. However, for more difficult scenes with complex
backgrounds, this method cannot be used anymore because it becomes impossible to define the
difference between foreground and background by a simple threshold.

In [RGS12] different thresholding techniques were tested and combined with image enhan-
cement on underwater scenarios. In contrast to the standard global thresholding, a multilevel
approach was used which marks all pixels as foreground that are between two values,

Seg(v̄) =

(
1 if T1 < I(v̄)< T2

0 else.
(3.2)
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Figure 3.4: Results of the fish detection and tracking algorithm from [Chu+15]. ©2015 IEEE

For the image enhancement, a Contrast Limited Adaptive Histogram Equalization (CLAHE)
was chosen and could significantly improve the results because the foreground areas were more
distinct from the background regions and therefore it became easier to find a threshold which
separates these two. This addition could mitigate the problems of thresholding in complex scenes
just mentioned but are not enough to make it a viable option.

Thresholding with Histogram Backprojection

A stereo camera system with LED strobes was used in a trawl by Chuang et al. in [Chu+15].
Due to the lighting conditions and LED strobes the video shows a completely black background
with partially bright fish in the foreground. First, an ellipse was constructed around bright areas
(which are probably fish) so that a local thresholding with Otsu’s method could be applied there.
Two segmentations are computed with this method, one with a higher and one with a lower
threshold. Both segmentations are then ’binned’ locally, that means counting how many pixels
in an area fall into each category (here foreground or background). With this, a ratio histogram
is created which compares the number of pixels in the bins for the foreground areas in both
segmentations. This histogram is then back-projected onto the frame which means that each pixel
gets assigned the value of the ratio histogram that corresponds to its own pixel value. Finally, the
frame is segmented by thresholding these ratios. This rather complicated thresholding process is
necessary to deal with the varying lighting conditions, where the fish are partially very bright
but also contain parts which are dark. The results are further enhanced with a spatial component
to eliminate outliers and then a stereo matching and tracking are applied. The stereo matching
is done with a block matching, where each fish is divided into four blocks along its horizontal
axis and is matched with the best corresponding block in the other frame. Afterwards, a temporal
matching is done with four cues (vicinity, area, motion and histogram distance) which are used
in a Viterbi data association algorithm (first proposed in [Vit67]). Some results of the whole
approach can be seen in Figure 3.4. Almost all fish could be detected by their algorithm (Precision:
0.98) but the accuracy of the segmentations is meager for the relatively easy conditions with a
Precision of 0.746. Again, this method has the problem that it depends on a completely black
background so that everything bright can be assumed to be a fish, e.g. in the first step where the
ellipses are constructed around the fish. Therefore, it cannot be applied to general scenarios.

Mean Shift

The mean shift algorithm was introduced by Fukunaga and Hostetler in [FH75] and is a nonpara-
metric clustering technique which does not require prior knowledge about the number of clusters

21
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Figure 3.5: Segmentation with the mean shift algorithm from [MS08]. On the left is the original
image, in the middle the result after the clustering and on the right the detected edges
based on the clusters. ©2008 IEEE

in the data. The mean of a cluster with the initial estimation of the cluster location x̄ is defined by

ζ(x̄) =
∑xi∈N(x̄) K(x̄i− x̄)x̄i

∑x̄i∈N(x̄) K(x̄i− x̄)
(3.3)

with a kernel function K(x̄) which is often the Gaussian kernel K(x̄) = e−ckx̄k2
. The mean shift

vector is then ζ(x̄)− x̄ and gives the direction to the area with the highest density. The algorithm
converges to static points, where the mean shift vector is zero, which then defines the clusters.

The mean shift approach was used in many different scenarios for the segmentation of un-
derwater images, mostly in combination with prior image enhancement and other segmentation
algorithms. For example, in [MS08] for the segmentation of fish and corals in combination with
histogram equalization for color correction and a Median-Cut. An example of this is depicted in
Figure 3.5. The segmentation of fish was also the objective of [BBN14] where the mean shift
was used after an image enhancement step to divide the image into subregions which were then
classified by an object detection algorithm. In [Liu+10] the algorithm was used on grayscale
images to detect feature points in weld images.

Overall, the mean shift algorithm can be a valuable first step to divide the image into several
regions which are then further processed by other algorithms. It cannot, however, deliver useful
segmentations on its own since there is no further information given about the clusters computed,
e.g. which is a fish and which cluster is background. Additionally, there has to be a quite distinct
difference between the foreground object and the background so that they do not end up in the
same cluster, some examples of this can be seen in Figure 3.5.

Fuzzy C-Means

Fuzzy C-Means was first proposed by [Dun73] and is a clustering algorithm related to the K-
Means approach. In both algorithms, the number of clusters must be defined by the user (K or C)
and then each of these clusters is initialized. Subsequently, all data points have to be assigned
to one of these preliminary clusters and then an energy function is minimized to optimize this
assignment and the clusters. For the K-Means algorithm, this function is the sum of distances of
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all data points belonging to a cluster to the center c̄ of that cluster

EK-Means =
K

∑
i=1

N(i)

∑
j=1
kx̄(i)j − c̄ik. (3.4)

The variable N(i) describes the number of neighbors of cluster i with the center c̄i and x̄(i)j is the
i-th neighbor of c̄i. Each point x̄ j will only appear once in the sum above as it is assigned to
one cluster exclusively. In the fuzzy C-Means approach the membership of one data point x̄ j

to a cluster is not binary anymore but a membership variable. The value m ji defines the degree
of membership the data point x̄ j has to the cluster i. The values of m ji are limited to [0,1] and
∑

C
i=1 m ji = 1. The corresponding energy function then is

Eb =
K

∑
i=1

J

∑
j=1

mb
jikx̄ j

−c̄ik, (3.5)

where J is the number of data points overall and the cluster center c̄i is then defined by

c̄i =
∑

J
j=1 mb

jix̄ j

∑
J
j=1 mb

ji
. (3.6)

The parameter b is the fuzzy exponent and regulates the impact of the membership variable,
b ∈ [1,∞).

Fuzzy C-Means was used to segment underwater images in the work [Bai+16] in combination
with a morphological component analysis (MCA). With MCA they could separate the image
into two parts by using sparse representation – a noise part and a texture part – and thereby
retrieve a cleaner image which is better suited for the following clustering. For the segmentation,
they combine the fuzzy C-Means energy function with the idea of active contours. They limited
themselves to two clusters (to retrieve a binary segmentation) but added a factor to the energy
function which minimizes the length of the contour between the two clusters. As the membership
is fuzzy, the contour is always defined by the two regions of pixels with less or more than 0.5
membership to a cluster. With this energy function, they could segment simple objects spatially
coherent in underwater scenarios, an example is depicted in Figure 3.6.

To improve usage of the color information the I1I2I3 color space was applied in [Wan+11] and
combined with a special metric. The distance between the pixel v̄ = (v1,v2,v3) and cluster center
c̄ = (c1,c2,c3) was defined as

dCS(v̄, c̄) =

s
3

∑
i=1

d(vi,ci)2 =

s
3

∑
i=1

vi log10
vi +1
ci +1

+ ci log10
ci +1
vi +1

2

. (3.7)

Furthermore, the energy function was enhanced with a spatial component that takes into account
the neighborhood of a pixel and enforces similarity in the membership variable of that neighbor-
hood. The method was able to segment single, simple objects in turbid underwater scenes. In
comparison to the mean shift clustering this approach has a higher flexibility because the number
of clusters can be fixed – e.g. to two when a binary segmentation is necessary – and the fuzzy
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Figure 3.6: One result of the approach of [Bai+16]. One the left is the original underwater image,
the next image shows their segmentation on the grayscale version of this image, the
next image shows the MCA enhanced version of this image and their segmentation on
it and the last image on the right shows a local binary fitting method for comparison.
©2016 IEEE

membership enables a smoother optimization process. However, the need for prior information
limits the usability.

As a whole, it can be stated that methods like clustering or thresholding can be useful in special
cases or for simple objects, but usually, fail in more demanding scenarios. An example would be a
complex background, which makes the usage of these methods futile as they cannot differentiate
between foreground objects and unimportant background objects. Therefore, combinations with
other methods are necessary for the application on complicated images or videos, e.g. with
background subtraction [SHP12; PM16].

Neural Networks

Machine Learning algorithms have gained strong popularity in recent years because of their
ability to solve a great variety of very different problems with high accuracy. These algorithms
always have a learning phase at first, in which the algorithm is given annotated data from which
it can learn what it should detect/distinguish in the images. The statement of the problem, as
well as the selection of the data, are crucial points for the success of these methods. A very
popular approach at the moment is neural networks which try to loosely model the learning and
problem-solving abilities of the biological brain, a small example can be seen in Figure 3.7. There
the input layer (red) gets data from the outside which activates the neurons on that layer, e.g. each
neuron could represent one pixel of an image and is activated based on the color values of that
pixel. The neurons then emit signals which are the input for the next layer and so on. At the end
is the output layer which tries to give the desired information, e.g. for each pixel if it is classified
as background or foreground.

The important parameters in such a model are the activation functions which converts for each
neuron the input signals into an output signal and the interconnection between the neurons which
determine how much influence a neuron has on other neurons. These values are determined during
a training phase and there exist many different algorithms for an optimal parameter learning, see
[LBH15]. Images are usually too large to model each pixel as one neuron even with today’s
hardware and therefore convolutional neural networks (CNNs) are used. There, smaller parts of
the image are first processed separately and in later layers tiled together for a better representation
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Input

Hidden

Output

Figure 3.7: A depiction of a small neural network. Each circle represents a neuron and the arrows
are the connections between them. The neural network consists of three parts, the
input layer (red), one or several hidden layers (magenta) and the output layer.

of the whole image [Cir+11; KSH12].
In the underwater context, they have been used for automatic abundance estimation of cold-

water corals and sponges in [Pur+09]. An ROV was used to obtain a video of the seafloor and
single frames were then taken for the evaluation of the coral and sponge coverage. A training
set of 250 examples for each species was used to train the algorithm but instead of using neural
networks on the images themselves they extracted a 30-dimensional feature vector of the images
and trained the algorithm on them. The approach had some problems with changing illuminations
and was evaluated against three other methods which required user interaction and could provide
similar results. Nonetheless, it is a completely automated process (after the training phase with
expert labels) and therefore could be effortlessly applied on a very large number of images. A
similar approach for the segmentation of corals was used in [ONN16]. There one specific patch
of the seafloor was observed for more than one year and every hour a high-resolution image
was taken. In a preprocessing step, the images were all aligned and color corrected. For each
of these images, the corals were segmented and only pixels that were marked as coral in every
single image were taken as coral-pixels. On these pixels, the color change was analyzed to gain
data about the developments of corals over longer periods of times (blooming phases etc.). An
example can be seen in Figure 3.8.

In [MB16] CNNs were used to detect and classify benthic fauna. High-resolution photo
mosaics of the Pacific continental shelf captured by an ROV were used and ten different classes
should be detected (e.g. coral, crab, flatfish). The overall accuracy was quite high with up to
84.7% but varied greatly between the different classes. Flatfish had a low detection rate because
of their camouflage behavior and other classes were quite similar so that the objects got detected
but then wrongly classified. They also compared two different toolkits for the usage of neural
networks, the DIGITS toolkit from Nvidia and TensorFlow from Google. The performance of
DIGITS was in all tests slightly better but the Python interface of the TensorFlow toolkit made it

25



3.2. OPTICAL IMAGING - SINGLE IMAGE SEGMENTATION

Figure 3.8: Cold-water coral segmentation of [ONN16]. On the left is the original image, in the
middle the aligned and colored corrected version and on the right the result of the
coral segmentation with neural networks. ©2016 IEEE

easier to use.
Neural networks or machine learning, in general, can achieve great results in diverse scenarios

but has always the need of a training phase with annotated ground truth data which limits its
usability. It can help in the detection of specific objects in large databases and thereby relieve
the human of tedious work (see [Pur+09]). However, it would be difficult to implement this as
a general foreground detection and furthermore, the detection is usually not pixel accurate but
rather a bounding box around the object.

CNNs and Feature Pooling

Li et al. tried to counter some of the weaknesses of neural networks by combining them with
ideas from the semantic segmentation. In [Li+16] a special CNNs was trained on the LifeCLEF
2014 Fish Task dataset 1 which finds regions that contain fish with a high accuracy. From these
regions SIFT features and local binary patterns are extracted and afterwards pooled, that means
that all features of a region are combined by an operator to form a region descriptor. Examples of
such an operator could be the average or maximum function (for details see [Car+12]). These
regional descriptors allowed them to automatically learn fish features without adding features that
described the background as these got overruled in the pooling process. Also, this combination
allowed them to retrieve pixel-wise foreground-background segmentation results. The accuracy
of this pixel-wise segmentation was not measured in the paper but the detection and classification
accuracy on the LifeCLEF dataset was 82.7% and thereby higher than for many previous methods.
An example of a segmentation result is depicted in Figure 3.9. Overall, the proposed combination
could fix one of the shortcomings of neural networks by allowing the creation of pixel-wise
segmentations and could also increase the accuracy slightly. However, the accuracy of these
segmentations was not measured and there is still the need of hand-annotated data for a learning
phase.

Active Contours

Active contours, proposed by Kass et al. [KWT88] and also known as snakes, is a concept of the
computer vision field which optimizes an estimation of a shape (e.g. a bounding box) to the real

1http://www.imageclef.org/2014/lifeclef/fish
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Figure 3.9: One example of the approach from [Li+16] on the LifeCLEF dataset. On the left
is original image with the region found by the neural network, in the middle is the
segmentation based on support vector regression and feature pooling and on the right
side shows the combination of both. ©2016 IEEE

edges of the object. It consists of a spline s(x) defined by a set of points x̄i on which an energy
function is defined. There exists a great variety of proposed energy functions, but usually, they
consist of two terms:

Esnake =
Z 1

0
Einternal(s(x))+Eimage(s(x))dx. (3.8)

The integral goes over the whole length of the spline and evaluates different properties of it.
The internal energy Einternal evaluates the shape of the spline, e.g. it is usually desired that the
spline is smooth as this corresponds with the smoothness of natural objects. This can be enforced
by minimizing the second derivate of the spline and therefore | d2s

dx2 |2 is one common part of the
internal energy function. The other part of the energy function, Eimage, should adapt the spline
optimally to the image. Usually, this means that the spline should lie on edges of the image and
for these areas high gradient values are characteristic. Therefore, by adding the term −|∇I(i, j)|2
to the energy function the spline will tend to stay on edges. There are many more possible terms
for the energy function, but the exact configuration heavily depends on the application.

After defining the energy function the shape of the spline will be changed gradually so that
the energy is minimal with the aim that the spline adapts to the contours of an object in the
image. This concept was used for underwater images in [Zha+15a]. After applying an image
restoration method based on a physical model on the frame the object was detected with Canny
edge detection. The objects they want to detect are light sources which are visible during a
docking process of an underwater vehicle. To get the exact shape and position of these light
sources a snake is on the detected edges and then the shape is iteratively optimized. In general,
active contours are a great tool for the refining of object shapes but rely heavily on good detection
results and sharp pronounced edges between the object and the background. This proved to be
successful in the scenario of [Zha+15a] in a pool but it seems doubtful if active contours can be
a useful tool for underwater images in general because they are usually blurrier than in in-air
images.
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Figure 3.10: A simplified depiction of the effect of refraction on underwater stereo systems. Due
to the different refraction indices of water and air the light ray (red) is bent at the
transition of these mediums. If this effect is not considered the fish will seem to be
closer to the camera system than it actually is (virtual position). The computation
and cancellation of this effect is very difficult since it is nonlinear.

Depth Information via Stereo-Vision

Obtaining depth information in underwater scenarios is extremely difficult since water as a
medium heavily disturbs all sensors. The Kinect has been used for this purpose in [Dan+14] but
the infrared light it uses gets absorbed very quickly by the light. The same is true for a time of
flight sensors which often use light of the infrared spectrum. In [Tsu+14] a maximal depth of one
meter was achieved with such a sensor. Stereo systems do not suffer that strongly from absorption
properties of water and can achieve higher ranges but have to deal with refraction which distorts
the depth measurements in a nonlinear way and is therefore mathematically difficult to eliminate
[DK14; DLK15]. The effect is illustrated in Figure 3.10.

Nonetheless, it was used in the work of Skinner and Roberson [SJ15] for the segmentation
of archaeological sites underwater. They used two approaches in parallel, the first part uses
clustering to create super pixels and then classifies them based on their structure and a learned
dictionary. The second part segments the image based on the depth map they acquired with their
stereo system. How exactly this was done is not explained in detail, e.g. if refraction was taken
into account or just an in-air stereo algorithm applied. Nonetheless, instead of taking the absolute
value the gradient of the depth map is computed and a threshold is set based on these values. This
proved to be a good indicator since archaeological structures often have walls rectangular to the
seafloor. With these two methods potential areas could be detected and from them, human-made
structures were further filtered with a RANSAC algorithm which looked for the best straight
lines.

A stereo system was installed in a big indoor tank (10×6×5 meters) in [Mar+13] to track
an AUV in it. The detection of the AUV could be achieved with ordinary template matching or
background subtraction since the water was clear and the background uniform. Afterwards, these
detections were used for the estimation of the exact position of the AUV in the water tank via
stereo matching. However, they used in-air methods for their camera calibration and therefore
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Figure 3.11: On the left is an underwater scene from [Wan+15] and in the middle the result of
a K-Means clustering on that image. The segmentation is very fragmented and
scattered which complicates a further usage and interpretation of that result. By
using the MRF model on such clustering results the spatial coherency could be
improved greatly, which can be seen on the right side. ©2015 IEEE

refraction was neglected which leads to measurement errors of up to 10%.
Underwater stereo systems are expensive (underwater housing, two cameras etc.) and difficult

to set up (synchronization, calibration) but can provide useful depth information. With standard
in-air algorithms, the absolute depth values are not very accurate but the relation between different
values is still accurate enough for simple segmentation tasks like in [SJ15]. More complex and
general segmentation scenarios would require the use of advanced algorithms on the depth maps
(e.g. background subtraction) which usually promise better results when they are used directly
on the color images. Overall, depth maps can be an additional source of information which is
useful to validate and enhance the results on the color images. However, it is very expensive
to create these maps from both the hardware and the computational perspective. It seems only
advisable, especially in the underwater case, if the depth information is necessary later anyway,
e.g. to determine the size of objects.

Markov Random Fields

Markov Random Field (MRF) models and how to optimize them with Belief Propagation are
explained in detail in 4.2.1. They are a great universal tool but need prior information about the
scene, either in form of a model that describes the foreground and background or a different
algorithm that delivers a first result which is then refined. In [Wan+15] the MRF model has
been used in conjunction with a clustering algorithm to segment objects lying on the seafloor
in frames captured by an AUV. The clustering they used had no spatial component and hence
the segmentations based only on these clusters were very scattered, especially in more complex
scenes. The MRF can model spatial relationships very good and was therefore ideal to improve
this. The model needs probabilities of each pixel to belong to a certain class/cluster as a starting
configuration and these were computed by using the mean and variance of each cluster. The
model was then optimized with a simulated annealing approach and afterwards, the mean and
variance of the new clusters were computed again and the process was repeated until a steady
state was achieved. They compared their method against other clustering algorithms and could
achieve segmentations that were spatially more coherent due to the neighborhood relationships of
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Figure 3.12: Lobster segmentation of [Soo+14]. On the left side is the original frame, in the
middle the result of the proposed approach and the right side shows the result of the
approach from [Lau+12] for comparison. ©2014 IEEE

the pixels in the MRF model, this result can be seen in Figure 3.11.
It is difficult to use an MRF model alone for the segmentation of images since it needs prior

information. However, it is a great model of the spatial relations in natural images and can,
therefore, improve the accuracy of many segmentation methods by using their results as input,
similar to the approach in [Wan+15]. The optimization of these models is very demanding which
makes it impossible to use them for real-time applications.

Bayesian Framework

A Bayesian framework is a statistical approach resembling the MRF method, however, a Bayesian
network is acyclic and directed in contrast to an MRF and therefore the optimization (Maximum
A Posteriori estimation) is easier. In [Soo+14] lobster should be detected in large mosaic images
of the seafloor. Like the MRF model the Bayesian framework needs prior information about
the scene and therefore they learn the characteristic brightness, hue and saturation of the lobster
and of the background and from these values infer a probability for each pixel of being lobster
or background. To ensure spatial smoothness a Gibbs energy function is used over a 3× 3
neighborhood. An example of the result is depicted in Figure 3.12. Overall, the approach is
comparable to the MRF model discussed above; the optimization can be done faster but therefore
the spatial relationships are not modeled as accurately.

In general, statistical inference models like these can very successfully fuse the input data from
different sources, either spatially like in the MRF example or from the different models like in the
Bayesian framework. However, without a good model and input data it is not possible to create
accurate segmentations and often the creation of them is the most difficult part. Furthermore, the
inference is mathematically complex and computationally expensive.

Evaluation of Optical Imaging Approaches

Optical imaging can provide higher resolutions than sonar imaging and therefore the algorithms
in general reach more accurate results than their sonar counterparts. Also, single images can
be stored and processed in time much easier than whole videos (for which algorithms will be
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discussed hereafter). On the downside, the range of optical imaging is very limited underwater
and single images miss the important time domain so that the detection of objects becomes much
harder and behavior analysis almost impossible.

There are algorithms like Clustering (K-Means, C-Means), Thresholding or Edge Detection
that segment underwater images without any special prior knowledge (e.g. training of specific
object feature). However, on single images it is very hard to find a universal distinguishing feature
between ’interesting’ objects and the background. Therefore, assumptions that only hold for a
few special cases are common in this area, for example, that the foreground is always brighter
than the background. Overall, these algorithms are very fast and often easy to implement and use
but lack heavily in generality since the necessary assumptions usually do not apply for different
images.

Algorithms that require a prior training phase (like Neural Networks) are more distinctive and
can detect almost every object with acceptable precision when provided with enough training
data. However, the need of a training phase makes them insufficient in generality and ease of use
since for every new object training data has to be created (often by hand) and incorporated into
the existing model.

Depth information is hard gather in the underwater context due to the harsh conditions and
simple segmentation algorithms applied on the depth data are usually not sufficient to get
precise detections. The discussed statistical approaches (MRF or the Bayesian Framework) are
often computational demanding but are also accurate spatial models which often increase the
segmentation accuracy greatly. However, they can only be supplementary to an already existing
segmentation algorithm since they are dependent on its segmentation data.

Overall, no single image algorithm can solve the underwater segmentation problem satis-
factorily. The most promising ones are learning based algorithms like Convolutional Neural
Networks which can achieve high accuracies but their need for training makes them difficult and
cumbersome to use even for experts. For example, for every different fish species the creation
of a large amount of training data and a computational intensive training phase is necessary.
Especially Neural Networks are improving rapidly at the moment and might be a viable option
in a few years, however, at the moment the segmentation of videos is the better option for the
segmentation of fishes underwater since it allows the precise extraction of more general features
like movement and the evaluation of the detection over time which can be used to analyze the
behavior of different fish.

3.3 Video Segmentation

When a whole video is available for the segmentation process a completely new source of
information is available, the temporal change of a pixel. With this, new approaches are possible,
e.g. the computation of an optical flow, and these sources of information should be used for the
segmentation although their computation is often very demanding. Only methods that use this
additional temporal information are considered as video segmentation methods in this work, even
though single image approaches are sometimes used as well on whole videos, see [Lab+12] for
example where thresholding was applied on every single frame of the video but the temporal
information were not used at all. However, more common are combinations of single image and
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video segmentation methods, e.g. thresholding after background subtraction or Clustering and
graph cut approaches to align the segmentation derived from the temporal cues to the edges of the
current frame of the video [Zha+15b]. Another possibility is slightly adapted image segmentation
approaches that also use the temporal information of the video, e.g. Graph Cuts in a 3D image
volume [He+15].

Since underwater video segmentation is a niche topic and only very few algorithms have been
created especially for this cause, this section will begin with a general overview of the field of
video segmentation. The advantage of the in-air scenario is also that there exist several common
datasets for these cases which enables a good comparison of different approaches. In the second
part of this section some algorithms are presented that were designed for and used on underwater
videos.

3.3.1 General Video Segmentation

For the segmentation of videos two cases should be distinguished generally, a freely moving
camera and a static camera. The segmentation of a video made by a moving camera is much
more complex than that of a static camera as many algorithms exploit the non-moving parts of a
video (e.g. Background Subtraction) or work more reliable in a static setting (e.g. optical flow).
Approaches to solve the inherent difficulties of a moving camera are shown in [ZYD14; ZZY15]
where the motion of the camera is estimated from the video based on the assumption that most
of the scene is static background. Then, either the camera motion is subtracted from the frames
which then makes it possible to use slightly modified versions of the segmentation algorithms for
static camera scenarios or the segmentation can be based directly on the camera motion and all
objects which have a deviating direction of movement will be marked as foreground.

Nonetheless, a freely moving camera is a great challenge, since, for example, new parts of
the background become visible all the time so that the background model can usually only be
based on the last few frames. Also, when the background consists of many objects at different
distances to the camera the perceived motion induced by the camera movement is not uniform
but extremely diverse. If the motion vector of an object and the perceived motion of the whole
scene have the same direction, it becomes almost impossible to decide whether the object is
close to the camera and stationary or far away from the camera and moving. In Figure 3.13
some examples are shown where these problems were addressed in [ZYD14] and [ZZY15]. On
the image on the left side, the perceived motion of the parking cars is a lot stronger than that
of the trees and other background parts because they are farther away from the camera. This
substantially complicates the detection of the cars that are actually moving. The only advantage
is that the camera moves quite slowly and, therefore, the perceived motion of stationary objects
is, in general, an order of magnitude lower than that of the moving cars. The images on the right
side show a different approach where the background was reconstructed and then a background
subtraction method applied. The scenarios shown there are easier overall because the distance
between the background objects and the camera is greater, this makes the whole scene less volatile
over time.

The other case, the segregation into foreground and background of videos taken by a static
camera, will be discussed in the following and can be approached in a very different way. Since
the camera is static it can be expected that the background of the scene will remain almost
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Figure 3.13: Segmentation of a video made with a moving camera. The top row shows the
original frame and below are the detections of [ZYD14] depicted. The scene is
difficult since various stationary objects at different distances to the camera exist. In
the bottom rows is the approach of [ZZY15], it shows from left to right the original
frame, the background model and the segmentation. ©2015 IEEE
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constant for the duration of the video. Therefore, a model of the background can be created over
time which only contains the static background parts but excludes all moving objects as they can
only be seen for a relatively short duration. A comparison between this background model and
the current frame of the video then allows a detection of all moving objects. In Figure 3.14 an
example of this can be seen.

Background Modeling and Subtraction

Background modeling and subtraction is used for a long time already in computer vision. The first
approaches date back to the beginning of the 90ths [RMK95; SS93] and commercial applications
followed soon. An example is the Patent [GM99], where background subtraction is used for
video compression. The background model is used to detect changing areas (areas of interest)
in the current scene and then only these areas will be updated in the video stream. This could
reduce the bandwidth requirements dramatically e.g. for real-time video calls.

Common problems with this approach are image noise and shaking cameras. Random variations
of brightness or color information in images are called image noise. These random variations can
cause false detections during the Background Subtraction approach which can be seen in Figure
3.14. A way to reduce image noise is an improvement of the lighting conditions in the scene
or the usage of a camera with a better sensor. Shaking cameras are also a problem since then it
seems for the background subtraction algorithm that the whole scene is under movement when in
reality only the camera is slightly moving. Therefore, a good fixation of the camera is a necessity
for Background Subtraction algorithms.

Single Gaussian

The most widespread way to model the background of a scene is by assuming that each pixel
value changes according to the probability function of a normal distribution (also called Gaussian).
The idea is that noise of any kind which disturbs the imaging system has a Gaussian distribution
and therefore it can be assumed that a pixel value in a static scene will also show a Gaussian
distribution over time. However, if a real change in the scene occurs, which is not induced only by
the noise of the imaging system, then the pixel value will differ significantly from that previous
distribution. A simple way to use this for the detection of moving objects is the Single Gaussian
method which was used e.g. by Wren et al. [Wre+97] (short: Single Gaussian) in their real-time
tracking system. They used a simple updating scheme

µt = α ·V (i, j,c, t)+(1−α)µt−1 (3.9)

where µt is the mean value of the Gaussian distribution at position (i, j) and time t for channel
the channel c. The update rate α defines how fast the mean adapts to changes in the scene. A
similar scheme can be applied for the variance and with these parameters (mean and variance) the
Gaussian distribution is fully defined. This simple model made real-time applications possible
even 20 years ago but showed problems with more difficult scenarios, e.g. changes in the
background of the scene (e.g. by a swaying tree) or the constant presence of foreground objects
which could impair the accuracy of the background model.
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Figure 3.14: Background Subtraction on an example video of a lion from the zoo of Rostock. The
left top image shows the current frame of the video and the right top image depicts
the background model that was created from the past frames of the video. A map of
the differences between the model and the current frame can be seen on the bottom
left and applying a threshold on this creates a binary segmentation of foreground
and background.

Mixture of Gaussians

To account for these problems an adaption of this algorithm was proposed by Stauffer et al.
[SG99] (short: Adaptive MoG) which used several Gaussians for each pixel (and each channel)
instead of only one Gaussian per value. This additional complexity made the modeling slower and
increased the memory demand, but also enabled the process to accurately model many difficult
situations which cannot be handled by the Single Gaussian approach. The key idea is that there is
sometimes more than one exact background color which should be learned by the background
model for each pixel. Examples could be the swaying of tree in the wind – where the color of a
specific pixel could alternate between the green of the leaves, the brown of the branches and the
blue of the sky – or an outdoor scene where the clouds sometimes block the direct sunlight and
sometimes do not block it, so that each pixel alternates between bright and dark.

By using several Gaussians there are basically several models for each pixel and each new
value (from a new frame of the video) is put into only one of the Gaussians/models, namely the
one that it fits the best. In the swaying tree scenario, ideally, there would be one Gaussian for
the green color of the leaves, one for the brown color of the branches and so on. In this way,
for every new pixel value a fitting Gaussian will be found or otherwise, a new Gaussian will be
created as it will be assumed a new object appeared. To now create a segmentation a weight
must be assigned to each of these Gaussians. The weight indicates how often a value could be
matched to a specific Gaussian in the past and as background values are assumed to appear often
and regularly, only Gaussians with a high weight can represent the true background. A match
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Figure 3.15: An example of the Adaptive MoG background subtraction of [SG99]. On the left
is the actual frame, in the middle an illustration of the background model and on
the right the segmentation. Although it is a difficult outside scene with shadows,
changing lighting conditions and a tree close to the camera the algorithm could still
model the background quite accurately. ©1999 IEEE

with a low weight Gaussian means that the value could not be matched to any background value
and, therefore, belongs to a foreground object. In Figure 3.15 the accuracy of the MoG method
on a difficult scene is shown.

Background Subtraction methods, in general, have difficulties with shadows and too many
parameters that have to be adjusted. In [Ziv04] (Short: MoG 1) a standard MoG model is
used but important parameters of this model - for example the update rate or the number of
Gaussians - are determined automatically by using the Maximum Likelihood estimation. This
makes the method more robust to different situations and easier to use for non-experts. In [WS07]
(Short: MoG + PSO) the problem of tuning the (often many) parameters of a MoG method
was approached differently. Particle swarm optimization - a method to find extrema in higher
dimensional functions - was used to optimize parameters like the update rate α or the sensitivity
β. The problem with this is, that ground-truth data is necessary to evaluate the segmentation
results and adapt automatically the parameters. Therefore, White und Shah require a ground-truth
segmentation every 100 to 200 frames of the video to recalibrate the parameters. In realistic
application this is hardly achievable and, furthermore, many background subtraction approaches
without this requirement could achieve better results.

The problem of the unwanted detection of shadows is addressed in [KB02] (Short: MoG 2)
where a special condition for the RGB color space was developed to classify detected foreground
pixels into real objects and shadows. The condition checks whether there was only a change in
the intensity of the pixel or also a color change, the first would be an indication of a shadow that
just darkened the pixel. Also, a new updating scheme is developed that improves the important
initialization of the model so that precise segmentations can be achieved with a shorter training
phase. The especially developed IHLS color space was used in [Set+06] (Short: MoG + IHLS) to
detect shadows. It splits the information of each pixel into hue, luminance and saturation. From
this, a chrominance vector is generated based on the saturation-weighted hue values. A shadow
should now only affect the luminance value of a pixel but not the chrominance vector and can,
thereby, be easily distinguished from real objects. An example of the accuracy of the shadow
detection can be seen in Figure 3.16.

The Mixture of Gaussian (MoG) is still often used today because of its high accuracy even in
difficult situations and its real-time capability. However, it has one disadvantage which is present
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Figure 3.16: The top row shows the original frames and in at the bottom the segmentation results
of MoG + IHLS can be seen. Shadows that have been detected thanks to the IHLS
color space are shown in red.

in all background modeling and subtraction methods. They all model each pixel separately and
thereby forgo all spatial aspects of the scene which are often relevant for segmentation tasks.
Images of the real world are smooth and objects in them are usually quite big (several hundredths
of pixels or more) and this knowledge should be used for the segmentation process. An example
would be an area where all pixels were classified as background by the background subtraction
except one pixel that was marked as foreground. If now the neighborhood as a whole is observed,
it becomes obvious that this one foreground pixel is not an object that should be detected but
almost certainly some noise and therefore should be marked as background. To incorporate these
spatial aspects of the segmentation the MoG is nowadays often combined with a spatial method.

MoG + Markov Random Fields

One common method to model the smoothness of natural images is the MRF (see 3.2 and 4.2.1
for a detailed explanation) which was used e.g. by Schindler et al. [SW06] (short: Enhanced
MoG and Enhanced MoG + MRF). As discussed earlier, the MRF needs input data which is then
enhanced by using the neighborhood information of the pixel. In the case of image or video
segmentation this is usually a probability map (not a binary segmentation), and therefore the
background subtraction output has to be adapted to this. Schindler et al. computed the foreground
probability P(v̄) of the pixel at location v̄ = (i, j) in the following way

P(v̄) =
K

∑
l=1

wl(v̄)p
(2π)n|Sl(v̄)|

e−
1
2 (I(v̄)−ml(v̄))T Sl(v̄)−1(I(v̄)−ml(v̄)). (3.10)

Here, K is the maximal number of Gaussians per pixel in the MoG model, wl(v̄) is the weight of
the l-th Gaussian of pixel v̄, Sl(v̄) is the corresponding covariance matrix, I(v̄) is the vector with
the pixel values of v̄ and ml(v̄) is the vector with the mean values of the l-th Gaussian.

Exemplarily the effect of the MRF from [SW06] is depicted in Figure 3.17. Small false
detections due to noise could be removed and holes or openings in the objects were mostly closed
without impairing the shape. Overall, this combination can provide very promising results and
[SW06] were able to create excellent results on the Wallflower dataset (the best so far). However,
the MRF model heavily depends on the results of the background subtraction and is not able
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Figure 3.17: Effect of an MRF model on the background subtraction segmentation. Images taken
from [SW06].

to correct larger errors which other approaches can achieve to some degree, e.g. graph cuts by
adapting the segmentation to the edges in the frame. Moreover, the quality of the results has a
drawback in the computational complexity of the MRF model which prohibits most real-time
applications.

Non-Gaussian Models

Apart from the different Gaussian models for modeling the background in videos there also
exist some non-Gaussian models which will be discussed in the following. The basic idea of
these methods is the same but the pixel values are not modeled anymore through a probability
distribution but by other means, e.g. by saving a large number of past pixel values and deducing a
prediction for the current frame from them.

Wiener Filter
Toyama et al. [Toy+99] defined the most prominent background modeling problems and created
a segmentation algorithm especially designed for these difficulties (short: Scale-Based Wiener
Filter). It consists of three different levels, with the lowest level (pixel level) being the standard
pixel-wise modeling of the background. Instead of the common Gaussian model they use however
a Wiener filter [Wie64] with the 50 most recent values to derive a prediction for the background
value of each pixel.

The second level is a regional approach which tries to segment whole objects based on the
pixel-wise segmentation of the first step. The idea is to get at least one seed region of each
foreground object and then grow them until they reach the edges of the whole object. The
assumption here is that the foreground objects are homogeneous in their color, which is mostly
true for this dataset but in many other cases not. The third and last level is frame wide and tries to
deal with changes of the whole scene, the example here is an indoor scene in which the light is
turned on or off. They argue that these events must be treated globally and use several background
models for these situations. The first step in creating these model is a learning phase where the
frames are clustered via k-means [HW79] to train k different background models. Afterwards,
the segmentation algorithm detects these global changes – if more than 70 percent of all pixels
are marked as foreground – and switches to the most appropriate background model.
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The method showed good results on the dataset provided by them and contains some interesting
ideas but is too much engineered for this specific dataset. For example, for the k-means clustering
the number of different global states has to be known beforehand and it should be ensured that
each of these states occurs during the training phase, otherwise the clustering would create
meaningless results and may even interfere with the normal background subtraction.

Subspace Learning
Subspace learning methods do not look at the videos pixel-wise but take the whole scene at once
into account. An often-used approach is the Principal Component Analysis (PCA) in which
the last k frames of the video are taken as data input. This data is then reduced drastically in
dimension and because of this reduction only large and prominent parts of the image will still
be part of the lower-dimensional data. The idea to use this for video segmentation comes from
the fact that moving objects are in a different location in every of these k frames and, therefore,
they are no consistent and prominent part of the scene. Hence, only the background part of the
video should be modeled by the lower-dimensional data. In [ORP00] (Short: Eigenspace Model)
a background model was created with PCA and then a simple thresholding was used to create a
binary segmentation. They used the results for tracking and behavioral analysis but overall the
accuracy is lackluster in comparison to other approaches.

The PCA approach of reconstructing the background was combined with a Linear Discriminant
Analysis (LDA) in [MTR12] (short: PCA + LDA). LDA works similar, however, it does not model
the background of the scene but rather tries to detect changing parts of the image directly in the
lower-dimensional data. Each of these methods has very different advantages and disadvantages
and by combining them Marghes et al. could achieve competitive results to most Background
Modeling approaches.

Instead of LDA the Maximum Margin Criterion (MMC) was used in [FMB12](short: IMMC).
The computation of the MMC is easier and faster in comparison to the LDA since no inverse
operations are necessary. Additionally, they developed it further into an incremental approach
which makes a batch computation with the last k frames unnecessary for updating the background
model with the current frame. They tested it thoroughly and showed e.g. the great improvements
that can be obtained by enlarging the history that is used to create the model (increasing k).
Nonetheless, overall the PCA + MMC approach performed slightly worse than PCA + LDA on
the background subtraction task and the execution time is still poor with only 7 frames per second
on a 240×360 video.

Another subspace learning approach is the Independent Component Analysis (ICA) in which
an image (or in general any signal) is seen as a mix of its independent components (source
signals). In [TL09] (short: ICA) this property is used in a method that resembles the background
subtraction approach. The independent components of two images are computed at the same
time with ICA and then the independence of these signals against the signals in the other image
is measured. Each signal should correspond to one object in the image and, therefore, if a signal
from the first frame is independent to all signals from the second frame - the corresponding object
has only appeared in frame one. To segment a video, an image which only contains background
is compared to the current frame of the video in this way and all objects that are not present in
the background image are marked as foreground. The problem with this approach is the need of a
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Figure 3.18: Results from the method proposed in [TL09]. The first image in each row shows the
original frame. The second image shows the result of comparing the original frame
with the background model via ICA; a brighter pixel means a greater difference to
the background was detected. The third image is a binarization of the second one.
The fourth and fifth image show the results of a different method based on ICA that
was used for comparison. ©2009 IEEE

background image which is often hard to obtain and also does not adjust itself to slight changes
in the scene like the background modeling methods discussed earlier. An example of the results
on a grayscale video can be seen in Figure 3.18.

In [BG09] (short: INMF) a non-negative matrix factorization was used on videos to lower
the dimension of the data. The non-negativity restrain makes the data more meaningful (e.g. an
object cannot have a negative presence in a scene) but also even more complex to compute. To
address this problem, they proposed an incremental updating approach that can update the matrix
factorization for each new incoming frame of the video with a much lower complexity than the
standard batch calculation approach. Nonetheless, the results on change detection datasets were
poor and could not justify the additional complexity. Lastly, in [Hu+11] (short: Tensor Subspace
Learning) a tensor is used with an incremental singular value decomposition to obtain the most
significant background components of the scene. Although they also use an incremental updating
approach to lower the computational load, the approach is still much slower than background
modeling and subtraction methods.

The biggest drawbacks of all these methods, in general, is their computational complexity since
the decomposition of large matrices is not an easy task, even for today’s computers and with the
adaptations made to some of the algorithms. In return, the algorithms promise a spatially precise
model of the background since the scene is modeled as a whole and not each pixel separately.
Nonetheless, the results in binary video segmentation are not more accurate than background
subtraction or optical flow approaches.

Sample Consensus Methods
These methods model the background by keeping a set of samples of each pixel instead of
modeling the color directly. One of the earlier examples for these algorithms is provided in
[ZH06] (short: KNN) where pixel values of previous frames are stored in different memories -
one for the short term and one for the long term. In a variable sized kernel region a search for
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matches to the current pixel value is performed and if enough matches can be found the current
pixel will be classified as background. In [EHD00] (short: Non-parametric Model) a method
resembling this approach is presented. They also use one short-term and one long-term model,
each updated differently. The comparison of the current pixel is done with a kernel function that
evaluates and thresholds the distance to all samples in the model at once. Additionally, they are
suppressing false detection by considering the whole neighborhood of a detection to evaluate if
the area just moved a few pixels in one direction - e.g. a tree branch moving in the wind.

The ViBe algorithm [BD11] is another example for this class, it updates the saved old samples
for each pixel randomly so that even old values can have an influence on the current segmentation
(although with a low probability). Furthermore, the updating process diverges spatially so that an
update of one sample can influence the neighboring samples which makes the model spatially
coherent to some degree. The segmentation itself is done by counting the number of values that
agree with the current value (are closer to the value than a threshold) and if that number is large
enough the pixel is assumed to be background. The approach by St-Carles et al. [SBB15] is
similar to that, however it does not store the pixel values directly but rather an LBSP-feature (Local
Binary Similarity Patterns) vector that describes the pixel and its neighborhood. Furthermore,
they used a sophisticated scheme to adapt their parameters to the current situation based on a
regional classification.

The sample consensus methods can achieve results similar to MoG background modeling
approaches and are also real-time capable. They tend to need more memory to save the past pixel
values or feature vectors, however, this depends heavily on the parameters of the algorithm and
is usually not a problem with today’s hardware. They not only have very similar advantages to
the MoG methods but also the same problems because they model each pixel separately. By
using local features instead of pixel values (see [SBB15]) this can be countered partly but it also
increases the computational complexity.

Fusion of Segmentation Methods

This is a completely different approach which does not try to model the background by itself but
relies on other algorithms and tries to combine their results so that an improved segmentation
can be created. Examples of this are [Mig10], which used a Bayesian Model and a Rand
Estimator to fuse different segmentations or [WZW04] which used MRFs to fuse segmentations
of medical images. A quite current approach is [BCS15] which used the large database of different
segmentations of the changedetection.net dataset and fused the best performing of them. The
fusion process itself was not done by a Bayesian Model like in the other cases but with a genetic
algorithm. The genetic algorithm had the segmentations and a set of functions it could apply to
them and tried to find the best combination. These functions were e.g. morphological erosion or
dilation, logical AND or OR operations, or a majority vote. In this way, they could improve the
already very good results of the top algorithms. However, to run their genetic algorithm ground
truth data is necessary and therefore they used one video of each category and the corresponding
ground truth data to find the best combination of segmentations and functions. This is not the
original idea of the dataset and therefore their results are not comparable with other algorithms
who have not partly used the ground truth data to train their algorithms.

Overall, these algorithms can partly improve already accurate segmentation results but rely on
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several good segmentation algorithms which have to provide the input data. This makes them
impractical for real usage as the calibration and computation of these algorithms is very time
consuming and is not justified by the usually small gain in accuracy over the input methods.

Optical Flow

A video segmentation method which is not based on the creation of a background model and was
already discussed in conjunction with other approaches is the optical flow. A video is here viewed
as a 3-dimensional image volume V in which each frame is one layer. For the location v̄ = (i, j, t)
in such an image volume the optical flow f (v̄) = ( fx, fy, ft) is usually computed with the formula

∂V (v̄)
∂x

fx +
∂V (v̄)

∂y
fy +

∂V (v̄)
∂t

ft = ∇V (v̄)T f (p̄) = 0. (3.11)

This condition can usually be fulfilled only approximately and will be checked over a small 3D
image patch Λ(v̄) to make the method more robust, e.g. against aperture. Using a least-squares
error measure this leads to the following minimization problem

Err(v̄) =
Z

n̄∈Λ(v̄)
(∇V (n̄)T f (v̄))2W (v̄, n̄)dn̄+λ(1− f (v̄)T f (v̄)), (3.12)

where W (v̄, n̄) is weighting function. The last term enforces a normalization of the optical flow
as otherwise f (v̄) = 0 would always be the best solution. This is then usually reformulated as
an eigenvalue problem and the optimal solution is estimated. However, the computation of the
optical flow by solving an eigenvalue problem is very costly and therefore many adaptions and
different formulations have been made that try to ease the computational burden without losing
too much accuracy [Wan+14a; Sey+16a]. To derive segmentations the resulting optical flows can
be thresholded so that every pixel that moves/changes gets marked as foreground. If the camera
is not static this can still be applied by computing and subtracting the camera motion although
this gets very difficult for complex scenes.

To make the computation of the optical flow faster Wulff and Black proposed in [WB15] a
method based on sparse feature matching which was enhanced to a dense optical flow (DOF) by
trained data. First, features were found and matched in two consecutive frames to create a sparse
optical flow. Afterwards, they used a trained basis B to estimate the DOF from that. The basis
was trained with four movies for which the DOF was computed with a standard method. Ground
truth data would have been better for the training but is not available to this extent. The basis
B could then be used to reconstruct the DOF so that it best matches the movement of the found
features. The biggest problems they had were outliers, which are unavoidable to a certain extent.
To deal with this the robust Cauchy function

ρ(x) =
θ2

2
log(1+

x2

θ2 ) (3.13)

was applied to reduce the sensitivity to errors. If a segmentation of the frames is required (in
addition to the DOF) the found features are clustered into M classes and for each of them the
DOF is calculated separately as each class is expected to move independently. Then each pixel is

42



CHAPTER 3. RELATED WORK

assigned to one of the layers/classes based on an energy function which considers smoothness,
color and the position of features.

The algorithm was evaluated on the MPI Sintel and KITTI datasets and gave excellent results
in comparison to the computation time is needed. Nevertheless, although the approach is already
designed for speed it still takes about 3 seconds for the segmentation of an image and has the
need for prior training. For underwater scenes, the detection and matching of features are also
difficult in general because of all the degradations on the videos (blur, color attenuation etc.).

Flux Tensor

The Flux Tensor is a different way to compute the optical flow in a video, however, it uses a
slightly different formulation for the task so that only the movement speed is calculated and
not the direction of movement. Because of this, it is faster than normal optical flow methods
and can be computed in real time. In [Bun+07] the approached was used on infrared data and
combined with geodesic active contours which were used on the visible light spectrum of the
image. A meaningful comparison is hardly possible since a dataset with videos in the visible and
infrared spectrum is necessary. Nonetheless, the Flux Tensor alone seems to perform quite bad
since it tends to only segment the edges of the objects but can be a useful intermediate step in a
combination of algorithms since it can be computed quite fast for an optical flow. Of course, it
can also be used on normal optical videos and details about the computation of the Flux Tensor
can be found in Section 7.2.1.

Optical Flow + CNNs

A combination of CNNs and an Optical Flow was used in [HR16] to gather information in
scenarios with a moving camera. To create the optical flow each frame was first over-segmented
into superpixels and then for each superpixel a fundamental matrix was estimated which gives
the relation from the current frame to the last frames. From this matrix, the optical flow can
be easily derived. For the estimation of the fundamental matrix the semantic information was
essential. If the superpixel was classified as a static object (e.g. street or building) there could
still be perceived motion due to the camera movement but only motion that obeys to the epipolar
constraints, which limits the possible movement vectors drastically. For an object that moves
through the scene (humans, cars etc.) this constraint cannot be applied. The semantic information
was extracted with the CNN from [LSD15].

These constraints were combined with other auxiliary conditions about the occlusion and
connectivity between the superpixels and lead to a complicated optimization problem. The
optimization was done with a PatchMatch Belief Propagation [Bes+12] which is similar to the
normal Belief Propagation but can work in the continuous domain instead of a set of discrete
labels, which is necessary for the optimization of the fundamental matrix. An example of the
results is depicted in Figure 3.19.

The whole process is complicated and computational expensive but necessary as they had
difficult scenarios with a non-static camera. The inclusion of the CNN allowed the approach to
better handle the ego-motion of the camera as it made it possible to detect static areas. Although
this greatly improves the quality of the optical flows as well as the detection accuracy of moving
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Figure 3.19: An example of the approach from [HR16]. The left side shows the original frame
with the semantic information overlaid and the right side depicts the optical flow.

objects, it also limits the generality of the approach since now training data is necessary and the
trained CNN will also only work for one scenario (e.g. car driving in a city) but not for others
(e.g. human inside a building or bike driving through a wood).

Optical Flow + Stereo-Vision

Geiger et al. combine the idea behind the optical flow with a stereo setup in [GZS11] for fast 3D
reconstruction. They detect several features in each image, match them in consecutive frames and
then find loops in these matches (current left frame↔ previous left frame↔ previous right frame
↔ current right frame↔ current left frame). Such a loop allows for higher confidence in the
features matches and the stereo matches also allow for a depth estimation. The detected points are
then structured and clustered by using a Delaunay triangulation. In [Len+11] this approach was
applied to detect moving objects in urban environments and predict their movement. Together
with the depth information this should be used for collision avoidance in driver assistance systems.

Overall their results were convincing and they could clearly enhance the optical flow data
by combining it with stereo matches. Nonetheless, problems still exist with the tracking of
objects over longer periods due to false detection or occlusions of objects in crowded scenes.
Furthermore, the need for a stereo camera system makes the whole approach expensive and
complicated, especially in the underwater case where refraction must be taken into account.

Optical Flow + Feature Tracking

A different way to obtain feature matches with a high confidence was proposed by Ochs et
al. in [OMB14]. They only had a single camera system and, therefore, instead of using the
stereo matches to verify their optical flow they utilized the time dimension extensively. They
used the approach from [BM11] to compute a sparse optical flow between two frames but then
combined these matches over many frames to obtain feature trajectories. If these trajectories
go over hundreds of frames the feature becomes very reliable. A distance measure between
these trajectories is then defined and a spectral clustering applied so that similar trajectories are
grouped together as they most likely belong to the same object. In the last step, the sparse features
are used to get a classical pixel-wise classification/segmentation of the frame. This is done by
optimizing a Potts model which minimize the length of the borders as well as the number of
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Figure 3.20: One example from [OMB14] of the segmentation of a video. On the left are the
original frame, in the middle are the features which were found in these frames and
on the right side is the dense segmentation. ©2014 IEEE

false classifications inside of regions. The code of the algorithm is freely available2 and some
examples are depicted in Figure 3.20.

The advantage of this method is that it can detect and separate any moving objects without a
training phase even if the camera is moving. However, the computation time is nothing close to
real-time and it is always necessary to collect a batch of frames first to compute the trajectories
on them, so it can never be used as an online algorithm. When used on underwater images the
feature detection was often a problem as not enough features could be found to create meaningful
segmentations.

Overall, the computation of an optical flow is often very costly, especially for whole videos,
and can only be done in real-time if a lot of accuracy is sacrificed. It has some advantages in
contrast to background subtraction methods, e.g. it does not need a learning phase, handles
illumination changes better and can also be used in videos captured by a moving camera because
a static background (which can be modeled) is not necessary. Nonetheless, scenarios with moving
cameras are quite difficult even for optical flow approaches since it is very delicate to differentiate
between real movement and movement induced by the camera. Problematic for optical flows are
in general the detection of foreground objects that are barely moving for a period of time or a
lack of detectable features in the video.

MoG + Optical Flow

Another way to adapt the segmentations to the smoothness of natural images is the usage of
the optical flow as it is inherently very smooth. Furthermore, it provides a second cue for the

2https://lmb.informatik.uni-freiburg.de/resources/software.php
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Figure 3.21: Example of a segmentation from [Wan+14a] where the two source segmentati-
ons (MoG background subtraction and Flux Tensor) are shown and four different
derivatives from them. ©2014 IEEE

segmentation which is based on spatial change instead of temporal change (like background
subtraction) which can also be used to compensate for the specific weaknesses of the background
subtraction approach, e.g. is the optical flow not as sensitive to changes in the illumination.
Wang et al. used the Flux Tensor to compute the optical flow in [Wan+14a] and used it together
with a modified MoG background subtraction. They could achieve state of the art results on the
changedetection.net dataset.

Figure 3.21 shows how much information can be gained by combining these two segmen-
tation methods. The MoG segmentation (left top) is prone to noise and false detections due
to illumination changes but gets the borders of the objects very accurate. In contrast to that,
the optical flow (left bottom) has problems with foreground objects which do not move for a
short time and does overestimate the size of moving objects in the direction of movement (halo
effect). From these two segmentation results from different methods, a lot of information can now
be extracted, pixels that are classified as foreground by both approaches belong quite certainly
to moving foreground objects and can safely be marked as foreground (Moving Foreground
in Figure 3.21). Pixels which were marked as foreground by the optical flow but not by the
background subtraction belong to the halo effect of the optical flow. Pixels that were marked as
foreground by the MoG but not by the optical flow can fall into two different categories. Most of
them are illumination changes which were falsely detected by the MoG but some of them can
belong to static foreground objects as they are undetectable for the optical flow. To differentiate
between these two categories Wang et al. used a foreground model if the pixel coincides with the
foreground model no illumination change has happened recently and therefore the pixel belongs
to a static foreground object.

This extracted information about different classes is not only directly useful for the creation
of the segmentation of the current image, but can also be very helpful in the updating process
of the background model so that the adaption to illumination changes can happen faster and the
addition of foreground information to the background model can be prevented better. Altogether
this combination can produce a segmentation quality which is similar to the combination of MoG
with MRF. The difference is that here the focus is not on the spatial relationship of the pixels
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Figure 3.22: Graph representation of an image with a four-connected neighborhood. The red line
is a cut through this graph that segments the image into two parts.

and therefore the spatial coherency is not as perfect as with an MRF model. Nonetheless, the
additional value of having a second, completely different segmentation cue makes up for that. As
the computation of an optical flow is very complex a usage for real-time applications is again very
difficult, there exist some methods which can compute optical flows in real-time but they often
lack in accuracy [AM16; Sey+16b]. Similar approaches with different optical flow algorithms
can be found in [LH14] where it was combined with super pixels and an MRF or in [RC14] where
alpha matting was added.

3D GraphCut

Graph cuts originate from the single image segmentation and have there been used for a long
time already. The image is interpreted as a graph G = (N,ϒ,w) with the nodes N that correspond
to the pixels and the edges ϒ which model the neighborhood relations, usually a four-connected
neighborhood is chosen. The function w weights the edges based on the similarity of the two
pixels that are connected by the edge. The segregation into two classes in this model is done by
looking for an optimal cut through the graph. There are many criteria for the best cut (e.g. NCut
[SM00]) but usually, this means that edges with low weights are cut while edges with high weights
stay untouched as they signify a high connectivity. An example is depicted in Figure 3.22 where
the pixels C and E are in a different class than A, B and D because their connectivity/similarity to
A is very low.

This idea has been adopted for videos by analyzing a whole batch of frames at the same time
instead of just a single image. The video is viewed as an image volume and a three-dimensional
graph is created that represents this image volume. An optimal cut is then computed in a similar
manner as in the two-dimensional case. This way a temporal smoothness of the segmentation
can be enforced but the computation of such an optimal cut usually is very costly. In [Tia+11]
the frames of the video were first over-segmented with a mean shift method and then a graph
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was created where each node would represent one of the segmented areas instead of single
pixels. Thereby, they could reduce the size of the three-dimensional graph drastically without
losing much accuracy since the borders of the areas which were separated by the mean shift
approach would coincide with the edges of the objects in the frame. For each area, a foreground
probability is then calculated based on the histogram and an optical flow. This calculation works
on with the assumption that sudden changes (visible in the histogram) or movement (visible in
the optical flow) are indicators for foreground objects. Together with a smoothness term between
the segmented areas, this allows for a smooth segmentation of moving objects.

The computation time of this approach is enormous since it not only needs the optical flow
maps of all the frames but then also has to find the optimal cut in a very large 3D graph. Also,
only one object can be detected in the graph at once, which is why the method was only tested on
simple and small videos with one foreground object. The presence of several foreground objects
would have a severe impact on the detection accuracy and require the computation of several cuts
(one per foreground object) through the graph.

Often this idea has also been used for medical image segmentation. Usually, not videos are
segmented there but volumes of two-dimensional slices of body parts, but the general idea is
similar. An example is [Nan+16] where nuclei from microscopic images were segmented. First,
in each image/slice, the nuclei were segmented separately. This was done with by extracting seed
points from the images and then applying a two-dimensional graph cut. With these segmentations,
a first three-dimensional segmentation can be obtained and the nuclei can be separated from each
other. However, the segmentation is not smooth between the different slices. Therefore, for each
detected nucleus a directed three-dimensional graph is created and the minimum s− t Cut in it
computed. With the correct problem formulation, this method extracts the 3D Volume with the
minimal surface that includes the nuclei.

With this method, volumes which contained many nuclei could be segmented accurately but
the method is very specialized and cannot be easily converted to other segmentation problems.
Overall, it can be stated that these algorithms are not suitable for general video segmentation
as they are too computationally expensive and at the same time too limited in the number of
foreground objects which can be handled at the same time. However, for special applications
with fixed conditions, like in medical imaging, they can be very useful because graph cuts, in
general, are a great tool for segmentation. This can be observed in the single image segmentation
task where they have been used for many years and very regularly.

Evaluation of General Video Segmentation Approaches

There are two main ways to use the temporal information provided by a video efficiently for the
segmentation task, computing the optical flow or modeling the background and subtracting it
from the current frame. Other methods like 3D GraphCuts or subspace learning are hardly used,
mostly because of their complexity (both: computational and algorithmic) and, additionally, their
results cannot provide any improvements in accuracy over the other two methods in general.

The optical flow is solely based on the current movement in the video and will mark all
moving pixel as foreground. One of the advantages is its great versatility: it can be used even
if the camera is under movement or shaking since this movement of the complete scene can be
detected and subtracted. Also, changes in the lighting conditions do only affect the detection
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accuracy for a very short time because only the movement at the moment is analyzed. One of
the disadvantages is the computational load, which is usually much higher than for background
subtraction approaches. Furthermore, the optical flow has problems with detecting foreground
objects that stand still for a short time (e.g. a car that halts for a red light), objects that are
“deforming” (e.g. a human which arms are alternating between being visible and being concealed
by the body) and large uniform areas under movement.

Background modeling is faster and easier to achieve in real-time but requires a static camera
since movements from the camera are very difficult to compensate. Unlike the optical flow, it has
no problems with foreground objects that are not moving for a short while, deforming objects or
large uniform areas. However, the background modeling has its own obstacles. When sudden
changes in the lighting conditions occur a rather long period (hundreds of frames) is necessary to
adapt the background model to the new conditions and get accurate results again. Furthermore,
often bad detection results lead to a deterioration of the background model which then impairs
the accuracy of future segmentations.

Overall, both methods are capable of creating accurate pixel-wise segmentations and should
always be taken into consideration for binary video segmentation tasks. For the specific purpose
that is discussed here, the background subtraction method was chosen since a static camera is
always used anyway to observe the fish. Furthermore, real-time capability might become an issue
when it is applied and, therefore, the fast background subtraction algorithm is more adequate.

3.3.2 Underwater Video Segmentation

The problem of detecting change in underwater videos has not been the focus of attention in
recent years. One reason for this is that underwater scenes are often not available to scientists and
the creation of them would be expensive due to the high costs of underwater imaging equipment.
Furthermore, when underwater scenes are investigated it is not uncommon to ignore the special
difficulties of these scenes and just use standard algorithms. Sometimes this can be justified, e.g.
in an aquarium when the water is very clear so that there is no marine snow and hardly any color
attenuation or blur, but often it is not and the existing problems are just ignored. In the following,
some of the few existing underwater video segmentation approaches are discussed.

Spatio-Temporal Bayesian Framework

A fixed camera was installed in a pool to observe human swimmers in [KF10]. Although the
camera is static, a background modeling is not possible in a situation like this because of the
waves and reflections on the water surface as well as the turbulences in the water caused by a
swimmer. Therefore, different regions were identified previously and a Bayesian framework was
trained with the derived data. The extraction of these different regions was done based on their
specific properties, e.g. the clear water was extracted by a segmentation of the blue channel of
the image and turbulent water by a thresholding of the variance of small neighborhood regions.
They used geodesic distances to achieve a spatiotemporal coherent segmentation of their videos.
This was done by lowering the probabilities of being foreground in their Bayesian framework
drastically if a pixel was far away (in the geodesic distance measure) from any foreground region
in the previous segmentation. The reasoning behind this is that the movements of the human

49



3.3. VIDEO SEGMENTATION

Figure 3.23: Two examples of the swimmer segmentation from [KF10]. At the top the reflections
on the water surface as well as the turbulences due to the movements of the swimmer
are clearly visible. ©2010 IEEE

swimmer have a finite velocity and therefore a region that was far away from any foreground
region cannot be foreground in the next frame. This is a valid assumption but is only useful when
the previous segmentations are close to the ground truth and the framerate is high enough. An
example is depicted in Figure 3.23.

The presented approach is very specialized and adapting it to other scenarios would be difficult
and time-consuming. Their segmentation results are visually convincing but no real comparison or
evaluation could be done since ground truth data for this situation is not available. Nonetheless, the
method illustrates the difficulties of underwater segmentation quite well, e.g. because background
subtraction cannot be used although the camera is static due to all the turbulences and reflections.

Optical Flow with Focus of Expansion

Another very specific approach, this time for the detection of jellyfish, was suggested by Wang et
al. in [WWW11]. They allowed camera motion in their approach but restricted the movement
to be mainly in the z-direction (meaning: forward, into the field of view). Under this motion,
there exists a point from which all other points seem to move away, the Focus of Expansion
(FoE). With this in mind, the optical flow was computed with a standard method [HS80] and
then the results were set in relation to the FoE point. If the movement of a pixel was not directly
away from the FoE point it had to belong to an object which was under motion itself should,
therefore, be marked as foreground. In their videos, the moving objects were mostly jellyfish but a
classification step was still necessary. The classification was mainly based on the average intensity
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Figure 3.24: The left image shows the optical flow and two estimations of the FoE point (green
and red dot) from the approach of [WWW11]. In the middle are the different areas
around the FoE depicted, different thresholds are used in each of these areas. The
final segmentation is depicted in the right image. ©2011 IEEE

of the detected object in relation to the distance to the FoE point. This distance is important
because jellyfish usually appear brighter near the FoE and darker at the corners, hence different
intensity thresholds were used for different regions. The optical flow, FoE point detection and an
example of a segmentation are depicted in Figure 3.24.

The whole method is specialized for one scenario and therefore hard to evaluated against other
approaches, similar to the previous swimmer segmentation. It would be easily possible to use the
idea of the FoE point to segment all moving objects in such a scenario with a non-static camera.
However, the ROV (or car, or plane) on which the camera is mounted, is then only be allowed to
go straight forward as otherwise the FoE would change and this deteriorates the segmentation
results. Moreover, the results are completely dependent on the quality of the optical flow which
is often problematic in underwater scenarios because they need to find features in the frames.
The degraded underwater images often have less features (that can be found) which makes an
accurate computation of the optical flow difficult.

Background Modeling

Background modeling and subtraction is the most common approach for underwater video
segmentation because it is not as strongly affected by the degradation effects in underwater
scenarios as other approaches, e.g. optical flow. Nonetheless, there still are negative effects like
the lack of color information (due to color cast) which makes it more difficult to distinguish
between foreground and background or the presence of marine snow which complicates the
modeling process. An example of the problems can be found in [Spa+08], where first a simple
Single Gaussian approach was used for the background modeling. However, the quality of the
results was not satisfactory due to the harsh conditions of the underwater videos and a more
advanced approach had to be used. The MoG model from [Ziv04] was used by them afterwards
and proved to cope better with the problems because it could model the foreground objects
separately (in different Gaussians) which results in a better model and allows a stricter threshold
after the background subtraction. Overall, the detection rate of the fish (not accuracy) was around
85%. Other examples are [Sha+15] where the background modeling and subtraction from [SG00]
was used or [Liu+16] where the approach from [HHD00] was applied. However, in none of these
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Figure 3.25: The fish basin of [SCL12] with the detected fish school marked by a green ellipse
and the robot fish by a blue line.©2012 IEEE

a satisfactory evaluation of the results was done because of the lack of ground-truth data (e.g.
comparing just the number of detection against the number of fish).

Background Modeling in real-time scenarios
A real-time feedback loop was created based on background subtraction in [SCL12] to control a
small robotic fish. First, a small group of fish was detected and their movement was estimated.
With this information, a robotic fish was controlled and used to influence the behavior of the whole
fish school. Since the fish are dark and swim in very clear water in front of a white background
the modeling and subtraction were straightforward in this scenario and a high accuracy could
be achieved. A very important aspect was also the runtime because the robotic fish had to
be controlled in real-time. Here the efficiency of the background subtraction could shine, the
tracking and motion prediction of the fish was much more computationally expensive than the
segmentation. Three examples of the fish basin are shown in Figure 3.25. A similar setup was
used in [TNL09] to count fish in a small basin. There different methods like edge detection or
thresholding were evaluated and background subtraction was the approach that could provide the
best results.

In these two cases, background subtraction was used for underwater scenarios but in very
artificial conditions which were very similar to in-air videos and did not reflect the special
difficulties of most underwater videos. The method was mainly chosen because of its runtime to
handle the real-time conditions.

Background-Foreground Modeling
An adapted algorithm was introduced in [Mor+05] where two MoG models were used, one for
the background and a second one for the foreground. The background MoG consisted of four
Gaussians, which is a common value for a MoG approach, and was trained beforehand on selected
images which showed only the background. The approach was not pixel-wise as each of these
Gaussian mixtures was modeling small areas of the scene. The foreground model was also trained
beforehand on selected parts of images which only contained fish. In contrast to the background
model, there was only one foreground model for the complete scene which was applied on all
areas. The reason for this is that there was just one fish species which should be detected which
made it possible to model the foreground by one MoG. However, to be able to model all different
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Figure 3.26: Depicted are two frames from [Mor+05] with their corresponding foreground pro-
bability maps. The black ellipses show the estimated fish position by the tracking
approach. ©2005 IEEE

parts of the fish at the same time this foreground MoG had 25 Gaussians, an example of the
results is displayed in Figure 3.26.

The segmentations were used to count the fish in the scene and analyze their movement.
Although the water conditions were poorly they could achieve respectable results due to their
offline training on hand-annotated data. Their detection accuracy reached 81% on their own
dataset and they could track the fish positions with an error margin of only a few pixels. The
usage of ground truth data for the training process, however, limits the usability severely and
also scenes with several different kinds of foreground objects would be very problematic for this
approach.

Background Modeling with Image Enhancement
An automatic fish counting on deep-sea videos from the ocean networks Canada 3 was done in
[FAH14] with a combination of underwater image enhancement, background subtraction and
tracking. As the conditions in the deep-sea videos were very harsh they used several preprocessing
steps to enhance the quality of the videos. Among other things they reduced the effect of the
marine snow with median filtering [HMY99], the noise was reduced with a bilateral filter and
the contrast stretching was applied. The background subtraction was done with a standard MoG
method but solely on the green channel of the image because, according to them, this channel was
the least affected one by noise. The threshold for the background subtraction step was adaptively
computed with Otsu’s method. Lastly, to also count fish correctly that overlap each other, a
blob tracking was introduced which uses the information from the DOF of Farnebäck [Far03] to
predict the movements of the blobs.

They evaluated their data on 100 randomly selected videos from the ocean networks Canada
and could achieve a fish detection precision of 65.8%. This is substantially lower than the
previous approach ([Mor+05]) which could attain 81% in very harsh conditions. However, the
advantage of this approach is its generality. It is not limited to one foreground class and does not
need any prior training on ground truth data. Unfortunately, there was no evaluation whether the
preprocessing had a positive effect on the results and it was not mentioned how computationally
expensive it was.

3http://www.oceannetworks.ca/
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Figure 3.27: Results of the approach from [FAH14]. On the left is the original image, then the
enhanced image, the segmentation result and the last image shows the tracking result
overlayed over the original image. ©2014 IEEE

Background Modeling in Multi-Camera Systems
Multiple cameras in a small pool was used to detect and track robot fish in [Zha+16]. The fish
were detected with a standard MoG background subtraction separately for each camera. They
did not give any details about their accuracy but used these results (foreground blobs) to track
the fish over time. The fish were tracked with a Kalman Filter approach over ten features for
every camera and afterwards the detected fish were registered between the different cameras with
a SURF-RANSAC algorithm (SURF: Speeded Up Robust Features) and thereby the different
tracks of the cameras could be unified.

This paper could demonstrate that it is possible to use multi-camera systems for underwater
scenarios at least under laboratory conditions (robot fish in a pool) and unify the results of the
different cameras. Consistent trajectories could be computed for up to five fish at the same time
but a real evaluation was not possible since no ground truth data is provided. Therefore, it is
also not clear how the multi-camera approach could improve the accuracy over single camera
methods.

In conclusion, it can be said that background modeling methods can achieve good segmentation
results for underwater videos even under harsh conditions but although they were used in different
scenarios no common dataset is available and therefore no real qualitative comparison possible.
Some approaches created their own ground truth data for the evaluation but then did not publish it,
which is unfortunate. Furthermore, the circumstances of the videos used are very different: from
small basins with clear water in a lab, where effects like color cast or marine snow do basically
not exist, to deep sea stations in the ocean several hundred meter below the water surface, where
these effects are very prominent and interfere with the segmentation process. Nonetheless, for
general change detection, the background modeling and subtraction approaches seem to be the
best choice if the camera is static. The only methods that could compete with them on the in-air
datasets were based on the optical flow and these are in general slower and suffer more from
underwater degradations.
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3.4 Conclusion

Approaches about the segmentation of images or videos of underwater scenes are strongly
underrepresented in the scientific community due to the difficulties of obtaining them and because
there are fewer use cases in the underwater world. Many of the papers that deal with these
scenarios concentrate on sonar imaging since it is a special approach that is only viable in the
underwater world. For in-air situations, sonar imaging grants no advantages over imaging with
electromagnetic waves. In water, on the contrary, sound waves have a specific benefit over
electromagnetic waves and especially the visible light, they are not absorbed by the water as
quickly and therefore have a vastly larger range. Nonetheless, their spatial resolution and frame
rate are not high enough to provide information that could differentiate exactly between various
fish in a scene. Therefore, this technology is not viable for the detection of single fish but rather
for the identification or larger objects like fish swarms or submarines.

Accordingly, this related works was focused mainly on approaches that used optical imaging
and try to deal with the degradation effects and limited range of the underwater world. For the
single image segmentation many algorithms were examined but often they could not comprehen-
sively differentiate between background and foreground and just clustered pixels into different
groups (e.g. thresholding or mean shift). These can only be used in very simple situations directly
for a detection of change (e.g. when the background is completely white) but fail in more complex
scenarios. For these scenarios, the mentioned algorithms can mostly only be used as pre- or
post-processing steps to aid other more sophisticated approaches. There are also single image
approaches that directly rely on provided data (e.g. MRF on foreground probability maps) and,
therefore, fall in the same category of supplementary algorithms. Only a few approaches could
really create foreground-background segmentations on single images, and they were dependent
on a training phase (e.g. CNN) so that they could learn the difference between a special object
category and the rest of the scene. To create a general approach that works in most scenarios
without any prior learning a whole video with its additional time dimension is therefore necessary.

Video segmentation approaches, in contrast to single image algorithms, exploit the temporal
information of a video and do not work on one frame alone. Of these approaches, only very
few were adjusted for underwater scenarios and, therefore, the section about video segmentation
started with a summary of in-air methods. Also, in contrast to the underwater case, for the
in-air scenario several common datasets exist so that an evaluation of different approaches is
possible. Basically, there exist two different techniques for the change detection in videos, the
computation of the optical flow or the creation of a background model. For both several methods
and combinations with other approaches exist. However, in general, they have quite specific
advantages and disadvantages. The background modeling is fast and accurate even in complex
scenarios but is limited to static cameras, has the necessity of a training phase and has no inherent
spatial coherency. The optical flow, on the other hand, is spatially coherent, not limited to static
cameras in general and can also handle complex scenes, however, it is slower than the background
modeling, usually not as accurate and has specific problems e.g. with large homogeneous areas.

For underwater scenarios the situation is very similar. Both methods, the optical flow and
background subtraction, suffer from the degradation effects of the underwater world but the
negative impact is more pronounced for the optical flow. Especially the blur and haze make it
difficult to find enough features in the scenes which can be matched among frames to create an
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accurate optical flow. The background modeling is, of course, also affected by the degradations,
e.g. the lack of color information makes the differences between background and foreground
less pronounced, but this effect is often marginal. In the current works about underwater video
segmentation, these specific problems were often only insinuated because of the lack of a common
dataset to qualitatively compare different methods. A detailed discussion of this is done in section
6 of this work. Overall, background modeling is faster, at least as accurate as optical flow
approaches and suffers less from the underwater degradations and is therefore preferable for
the change detection in underwater scenarios with a static camera, which is the scenario that is
discussed in this thesis. Hence, a background subtraction approach will be used in this work to
create segmentations.

Open Problems
The main challenge for background subtraction methods is the updating of the background model
and existing updating methods are often complicated (e.g. many input parameters are required)
which makes them difficult to apply and also impacts their runtime. Therefore, approaches with
low and very stable runtimes which also have fewer parameters are sought-after. Even if a good
background model can be obtained, there is still the lack of spatial coherency that impacts the
segmentation quality because of the pixel-wise nature of the background subtraction method.
This is especially important for further processing steps (e.g. tracking) since otherwise an object
might be split into many small parts. At the moment, algorithms which deal with that problem are
all based on single images and either unsophisticated (simple smoothing) or very slow (Markow
Random Fields). Hence, a method that delivers accurate and spatially coherent segmentations in
real-time is not available yet.

Another set of problems that will be examined are the underwater degradations in videos.
Their effect is almost completely unaddressed in previous works and, therefore, it is an open
question how grave their effect on the segmentation quality is, how to deal with them during
the segmentation and if, for example, image enhancement methods can help in this regard. A
special problem in this scenario is crowded scenes. They appear especially often underwater (fish
swarms) and need to be addressed specifically because the main assumption of the background
subtraction approach - the background is visible more than 50

After the segmentation, to gain more high-level information, a tracking over time of the
segments is advisable. Existing tracking approaches often use pre-trained detectors for specific
objects. To not be limited to specific objects a more general approach like blob-tracking is
preferable. The limiting factor while tracking general blobs/segments is that small errors (e.g.
one object is sometimes detected as two blobs) can lead to great confusion during the tracking.
For this, novel algorithms are necessary that deal with these unavoidable errors during the
segmentation phase and correct the tracking accordingly.

Outlook
To address these just mentioned problems, a novel background updating algorithm will be
developed in the next chapter which can detect and precisely segment fish underwater. It will be
combined with a heuristic to detect changes in the lighting conditions of the scene which allows a
fast adaption of the model to these new conditions. Furthermore, the model will be applied to

56



CHAPTER 3. RELATED WORK

a special color space which facilitates shadow detection. Overall, this combination provides a
versatile and accurate background subtraction method that can later be expanded and adapted to
the specifics of underwater scenarios.

The lack of spatial coherency is discussed next. To mitigate this problem and improve the
segmentations three different and novel methods will be proposed. Each of them has their
own advantages and deficiencies and should be chosen according to the specific task. First, an
advanced MRF approach that uses a larger neighborhood than previous methods is introduced.
Next, an adaption of the normalized Cut to the video segmentation problem will be proposed and,
lastly, a method that uses the optical flow to combine the information about the segmentations
from several frames.

The first underwater specific problem is the lack of a common dataset to evaluate algorithms
fairly. Hence, a new underwater dataset will be presented here with fish as foreground objects.
The proposed and other state-of-the-art algorithms will be tested on it, for example to evaluate if
background subtraction or optical flow approaches suffer less from the underwater degradation.
Furthermore, the addition of four different image enhancement techniques and their influence on
the segmentation accuracy is thoroughly reviewed.

The next part deals with crowded scenes and their implications for background subtraction.
Standard background modeling algorithms usually fail in these situations because they start to
model the foreground objects in these scenarios instead of the background. To solve this, a
special preliminary step is proposed which segments the frames roughly based on their optical
flow. The background subtraction method then only gets the remaining (background) parts of
the frame which circumvents this problem. Additionally, the effect the image degradation has
on the performance of the spatial methods has never been tested. Since methods like the Ncut
often rely on prominent edges in the images, a strong decline in effectiveness is to be expected.
Therefore, all three proposed spatial methods are evaluated on underwater videos to see which of
them can handle the difficult conditions better and can be used together with the specially adapted
background subtraction.

In the end, the presented algorithms are combined to make accurate segmentations of fish and
then a novel general-purpose tracking method is developed. This is necessary to gain important
data about the behavior of fish (e.g. velocity, direction movement, average velocity) which could
then be used for the detection of illnesses or other anomalies. To keep the generality of the
presented approach, the tracking - unlike most other approaches - does not use any specific data
about the fish that should be tracked but just uses the detections made from the background
subtraction method. This allows an easy adaption to other fish-species or even completely
different objects or contexts.
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In this first part, a new method for background modeling for general change detection will be
introduced which is the foundation for all subsequent algorithms. It is based on two differently
updated models and by comparing them errors in the modeling process can be found and corrected.
Since one of the biggest drawbacks of the background subtraction method is its lack of spatial
coherency, this will be addressed in this chapter as well by introducing three distinct spatial
methods and analyzing their particular advantages and weaknesses. Although this thesis tries
to provide solutions for the underwater change detection problem, this first part will deal with
the general in-air case. This is justified because of the general background modeling approach,
as well as the spatial model, which are in both scenarios almost identical. For example, in both
situations it can be assumed that natural objects are almost always smooth, without sharp edges
or holes, and should have a minimum size to get detected. Therefore, addressing the general case
at first is very beneficial since it allows an extensive evaluation on common datasets as well as
a qualitative comparison with many other methods. A dataset for the underwater case will be
introduced in the next section and afterwards, the here proposed algorithms will be extended and
adapted to handle the specific difficulties of underwater scenes.

The idea behind the detection of change in a video is that moving objects are usually the most
interesting parts of a scene and it can be very useful to separate these objects from the rest of the
scene for further analysis, e.g. classification. The advantage of this approach is that change is a
very general concept so that it can be used in many different situations without a special adaption
of the algorithm. Common examples are the detection of people walking by in a pedestrian area,
the counting of cars passing an intersection or the surveillance and burglar detection in deserted
areas and/or at night. The one limitation of this technique is that it requires a static camera so
that there is no perceived motion from stationary objects. Otherwise, it becomes very difficult to
differentiate between the motion of objects and the motion of the camera and in these situations
often other approaches perform better. Therefore, there is always a static camera assumed for the
presented algorithms.

Background subtraction is by far the most used method for the task of change detection at the
moment and its popularity comes from two facts. First, it is very efficient and can run in real-time
even on cheap hardware or one that was designed for low energy consumption. The second
point is that the principle behind it is simple and easy to understand but is able to create very
accurate results in most situations. Other approaches which could be used for the detection of
change, e.g. optical flow, are more complicated in their development and usage but cannot achieve
better results for static camera scenarios. The basic principle behind background subtraction is a
comparison between a model of the scene that includes only stationary objects and the current
frame of the video. All objects that are moving, and thereby creating change in the video, can
then be detected as a difference to the model.

A drawback of this approach is that it only analyzes each pixel separately and does not use

59



4.1. GAUSSIAN SWITCH MODEL

the spatial relations in a frame. The objects that should be detected are usually rather big
(several hundred pixels), connected and have smooth borders. This knowledge is ignored if the
background subtraction approach is used individually but can and should be used to improve the
segmentations afterwards, e.g. by using MRF or the optical flow to delete small false detections
and close holes in segmented objects. This simplifies the further processing of the segmentations
drastically because it reduces the number of (falsely) found objects and overall increases the
accuracy. Therefore, this step, although sometimes computational intensive, cannot be neglected
and is an important part of the segmentation process with background subtraction.

At first, a new background modeling and subtraction algorithm will be introduced which
combines the efficiency and simplicity of Single Gaussian approaches with the accuracy of
Mixture of Gaussian models. Afterwards, three methods are introduced which model the spatial
coherency of the segmentations and make them coincide with the aforementioned assumptions.
The first is a Markov Random Field which uses larger neighborhoods than the 4-connected (von
Neumann) neighborhood previous approaches used to better model the relations between the
pixels and regions. The second approach uses the idea behind NCut and adapts it for the usage in
videos instead of single images. Lastly, a method is proposed which adds a temporal component
by tracking a pixel in the following (and previous) frames. For this tracking, dense Optical Flows
are used which allow the usage, not only of the spatial neighborhood but also of the temporal
neighboring pixels (e.g. pixel in the previous frame).

4.1 Gaussian Switch Model

The most important but also most difficult part of a background subtraction approach is the
modeling of the background. If an adequate model is available, the creation of a segmentation via
subtraction and thresholding is usually unproblematic. As described in Section 3.3 most of the
current algorithms use statistical methods for the modeling process and usually for each pixel one
or several Gaussian distributions are used to model the color of that pixel. The usage of Gaussian
distributions is justified by the fact that the intensity of a pixel in a completely static scene will
theoretically vary according to a Normal distribution N (µ,σ2) with mean µ and variance σ2 due
to the measurement errors inherent in the camera system.

Therefore, Gaussian distributions will be used for the proposed approach as well but instead
of using many Gaussians for each pixel and channel the aim is to create a genuine model of the
background by using only a few Gaussians by using an intelligent updating scheme. This helps to
minimize and bound the memory consumption and runtime as well as simplifies the algorithm so
that fewer parameters are necessary. In the end, a model M stores all the Gaussians that describe
the background of the scene and it has the same dimensions as the current video V . A specific
Gaussian can be addressed with a location v̄ and a channel c. Additionally, the required parameter
of the Gaussian must be stated, mean µ or variance σ. Thus, M(µ,100,100,r) is the mean of the
red channel at location (100,100) in the video.

The first step is always the initialization of the model. The most common and general approach
was chosen which is to take the first image as the initial model. There are other and more sophi-
sticated ways to initialize the model, but they require extra knowledge or expensive computations
which cannot be done in real-time and if there is an advantage of such an initialization it vanishes
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quickly as the importance of the first state decreases with each new frame. For the pixel at
location v̄ the mean and variance of corresponding Gaussian in the Model M is set to

M(µ, v̄,c) =V (v̄,0,c) and M(σ, v̄,c) = ζ (4.1)

as initial values. It is also possible to treat each frame as a grayscale frame and model only the
intensities, this saves almost 2

3 of the computation time and still gives good results. Nonetheless,
in difficult situations, the color information can be very valuable e.g. to differentiate moving
objects from shadows. The variable ζ is a constant value and was set to 0.001 but the importance
of this variable is minor as the variance gets adjusted quickly.

After setting up the model, it needs to be updated with every new frame from the video. One
reason is that there can be foreground objects in the first frame which are part of the model after
the initialization and now have to be unlearned and another aspect is that the model has to adapt
to changes in the background, e.g. changing light conditions or new background objects (objects
that are static for a long time). Therefore, with each new frame at time point t the model is
updated in the following way

M(σ, v̄,c) = α ·M(σ, v̄,c)+(1−α) · (V (v̄, t,c)−M(µ, v̄,c))2,

M(µ, v̄,c) = α ·M(µ, v̄,c)+(1−α) ·V (v̄, t,c).
(4.2)

The update rate α ∈ (0,1) controls the impact of each new frame on the model and is therefore
very important for the model building process. Usually, it is set close to one so that every new
frame has only a small impact on the model. This ensures that the model is not dominated by
the newest frames but an average of the last several hundred frames. Also, the data from the
different frames is inherently weighted by that updating scheme so that newer frames have a
greater influence than older frames.

The problem with this model building is that it does also include the information from fo-
reground objects into the model and therefore corrupts it. Especially when there is a constant
presence of many foreground objects, the background model gets influenced and corrupted heavily
by them. Usually, these problems are tackled with a Mixture of Gaussians (MoG) approach in
which several Gaussians are used for each pixel and each channel. The idea is that the background
is modeled in one Gaussian and the foreground objects separately in different Gaussians.

Another approach to solve this is to make a partial update, this means that instead of updating
the complete model (all pixels) only the Gaussians are updated that correspond to pixels which
were classified as background. Ideally, now only background information should get included
into the model which should make the modeling process more robust and precise. To achieve this
the segmentation of the current frame must be computed by the background subtraction before
the model is updated with the information from the new frame. Then this segmentation can be
used to only update the background pixels and exclude foreground objects from the updating
process. In general, this improves the segmentation and makes the model more accurate, but as
the model is used to improve the updating process for the model itself, a kind of self-fulfilling
prophecy can occur.
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An example of this is the presence of a foreground object during the initialization. This
foreground object is a part of the model in the beginning and should slowly be overwritten with
background information during the updating process. However, when partial updating is applied
this regularly does not happen because the actual background in that area will be marked as
foreground and therefore not get included in the model. The true background will be classified as
foreground because it is very different to the current model, which has the information from the
foreground object of the first frame. An example of this and a depiction of the problems of the
partial and complete update approach can be seen in Figure 4.1.

The same problem occurs when a new object becomes part of the background and should,
therefore, get included into the background model over time. An example would be a car that
comes into the scene and parks, it is first a foreground object since it is moving and then becomes
part of the background because it becomes permanently immobile. Objects like these never
get included into the model when partial updating is applied because they are recognized as
foreground objects and therefore the model is not updated. To still get the benefits from the
partial updating without these problems, the Gaussian Switch Model (GSM) is proposed which
uses exactly two Gaussians to model the background. The first Gaussian is partially updated and
is standardly taken as the background model while the second Gaussian is fully updated with
every frame. This second Gaussian is used to detect the problems that occur with the partial
updating method. By comparing the two Gaussians the errors in the partially updated model can
be detected since they always show the same characteristics:

• The means of the two Gaussians slowly diverge from each other as the model that is fully
updated adapts to the new background and the other stays constant.

• For many successive frames a foreground object is detected at the same position.

If these characteristics are true for a specific pixel, the partially updated Gaussian for that pixel
gets overwritten with the values of the full updated Gaussian as it does not reflect the true
background anymore. Furthermore, this switch to the fully updated Gaussian only happens when
the variance of this Gaussian is small because this indicates that there has not been much noise or
many foreground objects recently and therefore its values can be taken as a reliable background
model.

An example of this background modeling with the GSM can be seen in Figure 4.1 (the mean
values of the Gaussians are displayed to represent the background model) where it is compared to
the full and partial updating schemes on a video with many foreground objects. The parameters
of the modeling (e.g. α) are the same for all three methods and it can be seen that the complete
update created a model which is corrupted with many of the current foreground objects of the
scene. The partial update eliminates this problem but many objects from the first frame can
still be seen in the model because they have never been overwritten with the real background
information. The GSM can combine the advantages of both methods and can create an almost
uncorrupted background model.
The next step, after the creation of the model, is the subtraction of the model from the current
frame of the video. This gives a difference frame which can be thresholded to generate a binary
segmentation. The information from the Gaussians of the model can be used to create an adaptive
individual threshold for each pixel instead of one global threshold. The important information
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Frame 1 Frame 2000

Model: GSM Partial Update Full Update

Segmentation: GSM Partial Update Full Update

Figure 4.1: Comparison of different update schemes for the background modeling. In the top row
are the first and 2000th frame of the Town Center video from [BR11]. In the next
row are three background models for the 2000th frame of the video created with the
same parameters but different updating mechanisms: the first was created with GSM
model, the second with partial updating and the last one with a complete update for
every frame. The last row shows the corresponding segmentations for every model.

here is in the variance as this encodes the expected deviation from the mean and hence is a good
reference for the threshold. Therefore, for each pixel and channel the inequality

(Mp(µ, v̄,c)−V p(t, v̄,c))2 < max(β ·Mp(σ, v̄,c),γ) (4.3)

is checked. Here Mp stands for the Model of the partially updated Gaussian, β is a parameter
which defines the sensitivity of the algorithm and γ is a lower threshold since the variance can
attain very small values when there is no foreground object for a long time and this would lead
to a very high sensitivity and a noisy segmentation. Each channel is checked separately and
afterwards a voting algorithm is applied to unify the results. If at least for two of the three
channels of a pixel the inequality is true, the pixel will be classified as background, otherwise as
foreground.

An advantage of these separate handling of the channels is that shadows can be detected easier.
Shadows are a serious problem for change detection in all scenarios as they are real changes in
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Model: converted color space Original Model: RGB color space

Segmentation with converted color space Segmentation with RGB color space

Figure 4.2: Comparison between different color spaces and their effect on the segmentation on
the Town Center video. On the left top is the model created with the converted color
space (see 4.4) and on the top right is the same model but created with the standard
RGB color space. In the middle is the original frame where three persons are visible.
The bottom row shows the corresponding segmentations. Although both models seem
very similar the misdetections of shadows are more pronounced when the RGB color
space is used.

the scene but should usually not be detected. The only difference to a real object is that a shadow
only darkens the background and does not change the color of that area (if the shadow is not too
strong). This characteristic is used to differentiate real moving objects from their shadows.

For this the color space of the images is changed from the common RGB to a color space which
has the brightness information encoded in one channel and in the other two channels are then
pure color information. The conversion is done with the following equation similar to [Li+08]

L = R+B+G,

C1 = R/L,

C2 = B/L.

(4.4)

Afterwards the Intensity L is scaled with the factor 1
3·255 so that all values are in the range [0,1].

This color space is similar to the YUV space because both have one intensity channel and two
channels with color information, however, the described color space does not have any weighting

64



CHAPTER 4. GENERAL CHANGE DETECTION

parameters to adapt the colors to the human perception as this is not necessary for the automatic
image segmentation task.

After this division into brightness and color a shadow should only be visible in the intensity
channel L and not in the two other channels and therefore will not be classified as foreground since
the two color channels overrule the intensity channel in the voting algorithm. However, this will
not work when the shadow is very strong since then the color information is lost completely and
the channels C1 and C2 might also indicate a change in that area. Figure 4.2 shows a comparison
of the color space used here with the standard RGB color space. The models for both color spaces
are similar and accurate but the derived segmentations are different and show that new color
space suppresses the segmentation of shadows quite well.

In natural scenes, the lighting conditions are often very dynamic (clouds blocking the sun,
reflections, shadows etc.) and consequently the changes in the lighting are in general at least an
order of magnitude higher than the variations in the color of the background. Hence, the intensity
channel should be treated slightly different than the other two channels, for example in equation
4.3 the parameter β should have a higher value when the channel with the brightness information
is checked than for the color channels to incorporate the higher variations of the intensity values
in the model.

Another common problem are rapidly changing lighting conditions of the whole scene, e.g.
induced by a light that is turned on or off, the sunset or a cloud blocking the sun. These events
often result in the classification of almost the whole scene as foreground and afterwards, it takes
the model a long time to adapt to the new conditions. To improve this behavior [Toy+99] proposed
a method which checks for these events and then retrains the model rapidly for the new lighting
conditions. This idea was adapted for the GSM algorithm by checking in every new frame if more
than 75% of the pixels are classified as foreground but only the intensity channel is taken into
consideration for this because these rapid changes usually only affect the brightness. If this is the
case the update rate α will be lowered to 0.5 for this specific frame and every pixel of the model
will be updated (no partial update). This increases the adaption speed of the model drastically
and improves the results of the algorithm in the difficult lighting situations.

4.2 Spatial Coherence

A drawback of the background subtraction method for change detection is that it does not take into
account the smoothness of natural images. Each pixel is treated separately and the neighborhood
of that pixel is not taken into account at all. However, for real world scenes some assumptions can
be made, e.g. objects are larger than a few pixels, borders are smooth (not zick-zacking) or objects
do not have (small) holes. These assumptions can then be used to improve the segmentations
derived by the background subtractions. In the following sections, three different methods are
proposed that add spatial coherency to the segmentations in very distinct ways and each has its
own advantages and disadvantages which will be analyzed.

65



4.2. SPATIAL COHERENCE

4.2.1 Higher Order Markov Random Fields and Belief Propagation

The MRF is a well-established and widely used statistical model which can describe the de-
pendencies between various random variables. It originates from the work of Ising [Isi25] on
ferromagnetism but was since extended and adopted to many different problems, especially in
image processing and computer vision.

A B C D

E F

Figure 4.3: A graphical depiction of a MRF. Here E depends on A and B; B depends on A, E and
C; D depends only on C and so forth.

A small example of an MRF represented as a graph can be seen in Figure 4.3. The random
variables are depicted as circles and the edges show the dependencies between them. This easy
and graphical way of modeling the relations between random variables can be useful in a great
variety of applications, one example is the spatial relation between pixels in an image. In this
case, every pixel is represented by one random variable for which the state is unknown and which
has dependencies on all neighboring pixels. Thereby, the state of a random variable could indicate
if the corresponding pixel is in the foreground or background of the image, denote the optical
flow at that point or any other information which shall be obtained for a single pixel.

A crucial point for this is the neighborhood system which is chosen, a small system like the von
Neumann neighborhood (four-connected neighborhood) might be unable to model all complex
relations between the pixels and a larger system will soon create models which are unmanageable.
For image processing or computer vision algorithms, the von Neumann neighborhood is almost
always chosen because it will create a pairwise MRF. In contrast to higher order MRF, these
have the advantage that they only have cliques of one or two nodes which makes the following
optimization computationally much easier. The small example MRF in Figure 4.3 is not pairwise
because A, B and E are all connected among themselves and, therefore, already form a clique of
three nodes.

In the optimization step the maximum a posteriori probability (MAP) should be estimated,
which is the most likely state of the overall system based on prior knowledge (natural images are
smooth) and observations (the current frame). The computational difficulties derive from the fact
that in every clique all members will be influenced by all the others. To deduce an approximation
of the MAP the Belief Propagation algorithm will compute messages from every possible clique
to all of its members. This means that in Figure 4.3 node E will receive one message depending
only on A (because E and A form a clique), one depending only on B but also a third message
depending on both of them (because A, E and B form a clique). For larger neighborhoods, each
node can be in tens or even hundreds of different cliques which will make the computation and
especially the storage of all the messages nearly impossible.

In the Moore neighborhood (eight connected neighborhood), which is the next larger system
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Figure 4.4: Here the Moore neighborhood of node five is shown. There are eight cliques of size
two, twelve cliques of size three and four cliques of size four in which this node is a
member.

which is commonly used for images, every node is already a member in 24 cliques (see Figure
4.4). Also, it has to be noted that there is not just one message from every clique to each member
but one message for every possible state the clique(!) can be in. For example, if there is a
clique with six nodes and every node has two possible states then each node can receive up to 25

messages because the other five nodes can be in this many different states. Every one of these
messages will deliver information on how likely it is that the clique will attain one certain overall
state. To reduce this heavy computational load some simplifications to the MRF model will be
introduced later which will make it possible to compute good approximations of the MAP even
for advanced neighborhood systems.

Before discussing these simplifications, the model has to be completely defined and created.
As a neighborhood system, the generalized Moore neighborhood (GMN) is chosen, which is a
variable extension of the Moore neighborhood. The standard Moore neighborhood is shown in
Figure 4.6 for two different nodes. For an arbitrary node N this neighborhood system is defined
by a three times three square of nodes with N in the center of it. All nodes of this square are then
the neighbors of N. The first order GMN uses a 5×5 square instead of a 3×3 one, the second
order GMN then enlarges this to a 7×7 square and so forth (see Figure 4.5). This neighborhood
system has the advantage that it ensures the homogeneity of the MRF since it is symmetrical in
all axes and can at the same time easily be changed in size. Homogeneity is important because it
ensures that all pixels have a neighborhood which is structured in exactly the same way. This
regularity makes the computation and implementation much easier and can be guaranteed in this
case because of the uniform structure of the image and neighborhood system, only the pixels
close to a border are an exception and must be treated carefully. Furthermore, the variability of
the size makes the GMN very flexible, but the number of cliques will increase drastically with
the order of the GMN. For example, the second order GMN has already 477.439 cliques for each
pixel which makes a computation and storage of all messages infeasible.

So far only the modeling of the spatial relationships of the pixels was discussed. To generate a
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Figure 4.5: This figure shows three different neighborhoods for the black pixel in the center. In
the standard Moore neighborhood only the dark gray pixel are neighbors. The first
order GMN extends this by adding all the bright gray pixels and the second order
GMN also includes the outer white pixels as neighbors.

good segmentation, the information given by the actual image also has to be included into the
model. In the proposed method this will be a value generated by the background subtraction
method denoting the probability of the pixel being in the background. Nonetheless, this could also
be the color value of the pixel, a value given by an edge detector or any other data derived from
the image depending on the task. To include this knowledge into the model a second node with a
fixed/known state is created for every pixel. This new node is called an evidence node because it
represents given information in the model. The other nodes are called hidden since they indicate
an unknown state of the system which shall be deduced. In this case, the unknown state that shall
be deduced is whether the pixels are in the fore- or background of the scene. Every evidence
node will influence only his corresponding hidden node in a way that it will more likely attain
the state favored by the given data. That means, if the background subtraction classified pixel v
as foreground then the evidence node of v will have a constant influence on the corresponding
hidden node to classify the pixel as foreground. However, if, for example, all the neighboring
pixels/nodes are classified as background then they will also influence the hidden node of v with
a favor for the classification as background and will probably overrule the evidence node of v and
thereby correct an assumedly false classification of the background subtraction. A small example
of a complete MRF model with a Moore neighborhood can be seen in Figure 4.6.

Now, that the model is fully defined, the input has to be specified. As input the MRF needs
in principle two values for each pixel, one should indicate the probability of the pixel for being
foreground and the other the probability of it being background. This data is necessary for the
evidence nodes so that they can represent the result of the background subtraction algorithm.
Here, just one value pBS(v̄) is used, which is the probability that the pixel at location v̄ belongs to
the background. As this value is already normalized the other probability can be simply set to
1− pBS(v̄). To get a floating-point probability instead of a binary value (which was computed in
the previous Section 4.1) all three channels are used separately in the following way
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Figure 4.6: The evidence nodes are drawn as small black filled circles and each is connected with
one edge to the corresponding hidden node. For the green and purple hidden nodes
the edges to the neighboring nodes are also drawn.

pBS(v̄,c) =
e−(I(v̄,c)−Mp(µ,v̄,c))2

max(β ·Mp(σ, v̄,c),γ)
, (4.5)

p̃BS(v̄,c) = min(pBS(v̄,c), 1
3), (4.6)

pBS(v̄) = p̃BS(v̄,R)+ p̃BS(v̄,B)+ p̃BS(x̄,G). (4.7)

By modifying and rearranging the equation 4.3 the probability pBS(v̄,c) can be obtained in
equation 4.5. Because the channels are handled separately the influence of each channel has
to be limited so that, for example, a big change in the brightness alone cannot produce a 100%
probability of being foreground without any changes in the color. Therefore, the impact of each
channel is limited to one-third in equation 4.6 so that a change in at least two channels is necessary
to get a probability of over 50%. In the last equation 4.7 the overall probability pBS(v̄) of being
foreground for the pixel I(v̄) is computed by adding together the results for the different channels,
since each of them is limited to one-third the overall probability cannot exceed 100%.

Furthermore, a cost function has to be defined on the model to measure how good a seg-
mentation matches the MRF model. Therefore, a function Dl(s) is needed with the variable s
that describes a specific state of the evidence node l. For each possible state of s (here fore-
ground or background) the function represents how good this matches the data delivered from the
background subtraction. In this specific case the function is defined as

Dl(s) =

(
pBS(v̄), s = foreground

1− pBS(v̄), s = backgroundround
(4.8)

where I(v̄) is the pixel that corresponds to the node l. There is a one-to-one correlation between
the pixels and nodes, for every pixel I(v̄) there exists one node l that models this pixel and which
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consists of the hidden node l and the evidence node l. Additionally, a second set of functions
is necessary for the cliques between the hidden nodes. They are named Ck, the k indicating the
size of the clique. These functions should represent the spatial relationship between the pixels
and hence there can be different functions for all possible clique sizes and spatial arrangements.
However, in this case the beneficial homogenous structure of the MRF can be exploited. Since
all hidden nodes have the same neighborhood and a coherent segmentation shall be achieved
over the whole image, the functions Ck can be identical for all nodes. A small exception are the
boundaries, there the neighborhood is smaller and consequently the number of cliques decreases.

Even though almost all nodes have the same neighborhood the model still has an extreme
flexibility as each of the cliques could potentially have a unique cost function. For example the
four cliques of size three in Figure 4.4 ( {2,4,5},{2,6,5},{8,6,5} and {8,4,5}) could have each
a special cost function, e.g. one that favors a configurations in which two nodes are foreground
and one node is background for the first clique, a favor for all background pixels in the second
clique and so on. To use this flexibility would, of course, complicate the approximation of the
MAP extremely and is in most realistic scenarios not necessary. In the small example that was
just given it does not make sense to define a function that favors states in which two pixels are
foreground and one background since the aim is to have spatial coherent segmentations. However,
if it was possible to go to very large neighborhoods the shape of a clique could be important
for the expected smoothness (maybe by learning prior shape features) and their different cost
functions could provide a benefit, but as the computation of the MAP is already very costly for
the smallest possible neighborhoods this is only a theoretical possibility at the moment.

The aim is rather to reduce the computational burden and therefore very simple energy functions
are used for the cliques. In a spatially coherent segmentation almost all cliques will have only
background or only foreground nodes and hence the function should only favor these states for
all cliques, independent of their size or location in the image. This can be achieved when the
function Ck is returning 0 energy for the case that all nodes have the same classification and a
static value (larger than zero) for all other cases in which foreground and background pixels are
mixed. If k = 4 the energy function for the clique could look like this

C4(s1,s2,s3,s4) =

(
p(s1) · p(s2) · p(s3) · p(s4), if s1 = s2 = s3 = s4

0, elsewise
(4.9)

where the variables s1 to s4 indicate the states of the four nodes contained in the clique and
p(s1) is the probability that the corresponding pixel has the state s1. For the probabilities the
values derived from the background subtraction are taken. This energy function also has the great
advantage that now only a differentiation between two states of the whole clique is necessary
instead of 24 states.

If these cost functions are given, an evaluation of different segmentations is possible and
thereby the best segmentation could be computed. For example, for a fully defined pairwise MRF
model and the necessary input data (tl is the data for the evidence node l, in this case, these are
the probabilities from the background subtraction) the probability that a specific configuration of
states occurs can be now computed with
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p({sl : l ∈ I} | {tl : l ∈ I}) = 1
Z ∏

l∈I
D(sl)∏

r∈I
C2(sl,sr). (4.10)

Here I is the set of all nodes/pixels and the function C2(sl,sr) is set to one when the hidden
nodes l and r are not connected. The variable Z is a normalizing constant that ensures that all
probabilities add up to one. The k in Ck can only be two in this case since it is a pairwise MRF.
Since the product is over all pixels of the image it is clear that the calculation of the probability is
very cumbersome and time-consuming. If the MRF is not pairwise the calculation becomes even
more difficult with

p({sl : l ∈ I} | {tl : l ∈ I}) = 1
Z ∏

l∈I
D(sl)

n

∑
k=2

∏
l1,...,lk∈I

Ck(sl1 , . . . ,slk). (4.11)

The number of possible states (different foreground-background segmentations) of such a system
is 2#pixels which is an extremely large number and to calculate the probabilities of all of them is
not possible.

For this reason, an optimization algorithm is necessary that can at least estimate an optimal
solution. In this case, Belief Propagation was chosen because its message passing approach suits
the concept of the MRF model quite well. For the optimization, the model is converted to a factor
graph first so that a loopy max-product Belief Propagation can be applied more easily in which
the cost functions were incorporated into the messages. The details of this optimization technique
are described in the following subsection.

Belief Propagation

There is a great quantity of literature about Belief Propagation (BP) in general and its specific
implementation for different usages specifically. Two works can be recommended, which were
also used for creating this paragraph about BP, a good general overview of the topic and different
applications that are possible with BP is given by [YFW03] and a detailed description of an
implementation for computer vision purposes can be found in [FH04].

BP is a local message passing algorithm which is used to solve inference problems. These are
problems in which there exist several entities and they influence each other. Therefore, a change
in one of the entities can have global effects which make it impossible to divide the problem into
smaller sub problems which are easier to solve. This makes finding the optimal solution very
complex and time-consuming. As inference problems come up in various scientific disciplines,
e.g. computer vision, artificial intelligence (AI) or statistical physics, Belief Propagation, as an
efficient way to solve them, was rediscovered several times in slightly different ways. Examples
are the Kalman filter, the transfer-matrix approach in physics, the Viterbi algorithm or the
sum-product algorithm [KFL01], which are all special cases of BP.

For acyclic networks like the Bayesian network in Figure 4.7 it is mathematical proven that BP
will give the exact solution after a finite number of iterations. Solution here means that it returns
the state of the nodes A to G which has the highest probability of all possible combinations.
For cyclic graphs, there is no certainty to find the best overall solution anymore because the
influence exerted by the nodes goes along these cyclic paths and cannot be modeled completely

71



4.2. SPATIAL COHERENCE
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Figure 4.7: Small acyclic Bayesian network. Each node can attain a finite number of states and
with BP the most probable combination of states can be computed exactly because of
the acyclic nature of the network.

by a finite number of iterations. However, these cyclic networks are the most interesting ones
for the computer vision community as images are usually modeled as Markov Random Fields,
which are cyclic. Although BP cannot compute the exact solution it can still give satisfactory
approximations after a small number of iterations and is, therefore, a useful tool.

An example for a pairwise MRF of an image can be seen on the left side of Figure 4.8. Pairwise
means that the largest cliques in the MRF have the size two. The gray nodes represent evidence
nodes which contain given information from the image and the hidden nodes (green) can attain
several states (e.g. foreground or background). As opposed to the Bayesian network the MRF is
an undirected graphical model and therefore always contains circles.

To approximate the most probable combination of states (MAP) of the hidden nodes the graph
is first transformed into a factor graph (right side of Figure 4.8). This is not a necessary step
but always possible for an MRF and it simplifies the description and implementation of the BP
algorithm. A factor graph is a bipartite graph which is used to represent a factorization of a
function, in this context of the probability distribution of the MRF. It consists of vertices (green
circles), factor vertices (blue squares) and edges. The factor vertices represent functions and the
normal vertices the variables. An edge can only be between a vertex and a factor vertex, because
only a variable can be the input for a function and only a function can create a new variable,
therefore the graph is always bipartite.

In this case, the factor vertices are neighborhood functions that collect the data from all
neighboring vertices and unify them into one message. The normal vertices include the input data
(from the background subtraction) to these messages and send them to the next factor vertex. The
next step, after the conversion to a factor graph, is to actually compute the messages. For this let
fi be the factor vertex for the node i and nk the vertex for node k. The corresponding node/pixel k
can attain different states sk and for each of these states the probabilities should be computed.
Therefore, the messages from the factor vertices f to the vertices n (for a specific state s) are
defined by

Q fi,nk(sk) = ∑
sz

C2(sk,sz) ·Qnz, fi (4.12)

for a node k in a pairwise MRF, or
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Figure 4.8: On the left a MRF of an image with a four-connected neighborhood and on the right
side the same model as a factor graph.

Q fi,nk(sk) =
r

∑
v=1

∑
sz1 ,...,szv

Cv+1(sk,sz1 , . . . ,szv) ·Qnz1 , fi · . . . ·Qnzv , fi (4.13)

for a general MRF. The sum is over all possible states the other vertices in the clique can attain
and the parameter r describes the maximum size of the cliques. The messages from vertices to
factor vertices are defined as

Qnk, fi(sk) = Dk(sk) ∏
fz∈N(nk)\ fi

Q fz,nk(sk). (4.14)

The set N(nk) consists of all factor vertices which are connected to nk. For the initialization all
messages from factor vertices to normal vertices are set to one (Q fi,nk = 1) so that Qnk, fi = Dk(sk)
at first. With this, the message passing can start but before sending the messages they always
have to be normalized so that all messages from one vertex to another vertex sum up to one. This
is important because there is one message for each possible state (the equations 4.12 and 4.14
must be computed for all possible states of sk) and after the normalization, these messages can be
interpreted as a probability for that state.

The BP will always converge to a minimum (although it might be a local one) but it is not
advisable to let it run until it has found the exact minimum. This would be the case when a steady
state is found, which would take many iterations. However, after very few iterations the changes
of the probability for each state are usually already very minimal and do not influence the final
decision (since it is irrelevant if the final foreground probability is 80.13% or 80.15%). Therefore,
a threshold should be defined, either a maximum number of iterations or a minimum change in
the probabilities or messages. After the threshold is met, the marginal probability that node/pixel
k has state sk can be expressed as

p(sk) ∝ ∏
fi∈N(nk)

Q fi,nk , (4.15)

which gives an approximation of the MAP.

73



4.2. SPATIAL COHERENCE

Figure 4.9: The first row shows the original picture, the ground truth data and the result after the
background subtraction. In the second row, the results after the smallest clique Belief
Propagation algorithm with an increasing neighborhood (Moore neighborhood, first
and second order GMN) are depicted. The last row shows the same for the maximal
clique Belief Propagation.

The reason why almost only pairwise MRFs have been used so far is that the formula 4.13
is very complex and time-consuming to compute, especially since it has to be computed for
all possible states in which the neighbors sz1 , . . . ,szv can be. However, in this special case, the
complexity can be reduced drastically because only the probability that all neighbors have the
same state as node k is important, all other possible states can be condensed into an unwanted
state with a mixture of foreground and background. Therefore, only two messages have to be sent
from the factor vertices to the normal vertices, independently from the size of the neighborhood,
which are

Q fi,nk(sk) =Cv+1(sk,sz1 = s j, . . . ,szv = sk)
v

∏
t=1

Qnzt , fi = pk(sk)pz1(sk) · · · · · pzn(sk)
v

∏
t=1

Qnzt , fi

(4.16)

for sk either foreground or background where pz1(sk) is the probability that node z1 has state
sk (compare with Equation 4.9). The messages from the normal vertices to the factor vertices
are similarly reduced as they depend on the just discussed messages. This was a first great
reduction in complexity of the computation, however, this is still not enough because for larger
neighborhoods there are just too many cliques, and even if only two messages for every clique
are sent it would still need an excessive amount of memory to just store them.
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For example, if a 5×5 GMN should be applied on an HD image (1920×1080 pixels) each
pixel would be in 1951 cliques (if the few special cases at the border are ignored) and therefore
2 ·1920 ·1080 ·1951 = 8.091.187.200 messages need to be computed and stored, which would
require over 60GB of memory if every message is one double value. And these are just the
messages from the factor to the normal vertices, the same amount is necessary for the other
messages. It is therefore obvious that another drastic reduction in the number of messages
is necessary. For this, the algorithm is reduced to cliques of the largest (or smallest) size so
that the number of messages becomes manageable. The largest and smallest cliques are ideal
because they either define the smoothness of details accurately or the smoothness in a larger area.
Furthermore, the number of cliques of these sizes is very limited in contrast to other clique sizes,
e.g. the 5×5 GMN has only 24 cliques of the smallest size. An example that shows the different
effect the choice between the largest or smallest cliques has is depicted in Figure 4.9 for three
different neighborhood sizes. Overall the results for the smallest cliques look more natural and
this algorithm was therefore chosen in all further applications of the BP approach.

Combining the between Class Variance with Belief Propagation

After using a pixel-wise segmentation method (background subtraction) and combining it with an
optimization over the whole image (MRF+BP) the last step is a local method which adapts the
segmentation to local edges and corners. In [Ots79] a method is described to segment a picture
into two classes by trying to maximize the variance between the two classes. The segmentation
is based on thresholding and the variance between the classes is used as an indicator to find the
best threshold value. If applied to a grayscale image this will lead to a segmentation in which
all dark pixels are in one class and all bright pixels in the other class. This results in a useful
segmentation only under very specific circumstances, namely when the objects of interest are
always brighter or darker than the background. It is obvious that this assumption cannot be made
in most real-life images.
However, in most cases, this assumption will hold if only a small area around a pixel is taken into
account. The reason for this is that objects are usually uniform in their appearance at least locally
and hence the between Class Variance would be maximized when all pixels of an object are in the
same class. To use this to improve the segmentation, a local between Class Variance was coupled
with the BP explained earlier to enhance the data taken from the background subtraction in each
iteration and thus improve the overall result.
The between Class Variance can only be computed for a given segmentation because then there
exist two classes (foreground and background) between which the variance can be computed.
For this reason, a segmentation will be computed after every iteration of the Belief Propagation
algorithm with equation 4.15. Afterwards, the algorithm will iterate through all pixels of the
image and compute the average color of all background pixels (respectively foreground pixels) in
an area around the current pixel. The area was chosen to be square sized and the current pixel
was excluded from the averaging. Now the background probability pBS will be increased if the
color of the current pixel is closer to the background average than to the foreground average and
lowered elsewise.
To be more precise, for a given patch of the image let cbg = (L,C1,C2) (see Equation 4.4) and c f g

be the average color of the background respectively foreground and I(v̄) the color of the center
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pixel of that patch. Then, if

kcbg− I(v̄)k2 < kc f g− I(v̄)k2 (4.17)

the between Class Variance will be increased when the current pixel is classified as background
and hence the background probability will be increased. If the inequality does not hold a
classification as foreground would increase the local between Class Variance and will therefore
be favored.
However, the classification of the current pixel itself will not be directly changed according to the
between Class Variance but the data obtained from the background subtraction will be altered
to reinforce a classification that increases the local between Class Variance. This is done by
computing the value av̄

av̄ = η · (kc f g− I(v̄)k2−kcbg− I(v̄)k2) (4.18)

which determines how much the probability pBS(v̄) of the current pixel will change, η is a
parameter to control this influence. The value pBS(v̄) was computed in equation 4.7 and represents
the probability that a pixel lies in the foreground. It influences the BP according to the energy
function D(v̄) from equation 4.8 and was a fix value until now. With the addition of the local
between Class Variance to the BP this value is made adjustable to incorporate the additional
information. The probability pBS(v̄) is adjusted in the following way

p̃bg(v̄) = max(pBS(v̄)+av̄,0), (4.19)

p̃ f g(v̄) = max((1− pBS(v̄))−av̄,0), (4.20)

pBS(x̄) =
p̃bg(v̄)

p̃bg(v̄)+ p̃ f g(v̄)
. (4.21)

The maximum is required to avoid negative probabilities. This process adapts the segmentations
locally to edges but is also computational expensive, especially the calculation of the average
values cbg and c f g for every pixel in every iteration of the BP algorithm. To reduce the runtime,
integral images (introduced by [VJ04]) are used to efficiently compute these values in a static
time, independently from the size of the area over which the average is calculated. For every
channel two integral images have to be created, one for all background pixels and one which only
adds up the foreground pixels. After calculating these integral images, the actual averages can be
obtained by a simple operation consisting only of three additions.

4.2.2 N2Cut

Even though the model was drastically simplified, the approximation of the MAP of the MRF
still is costly and not possible in real-time for typical video formats today (e.g. 1920×1080).
Therefore, in this section, another method is proposed which increases the spatial coherence, so
that the segmentations reflect better the smoothness of natural images but uses a different model
and minimization technique which is fast enough even for real-time video analysis.

In many single image segmentation approaches the image is seen as a graph where each pixel is
one node which is connected to its four neighbors (Moore neighborhood) and then an optimal cut
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through the graph defines a segmentation into different objects or parts of the images. For these
graph cuts, there are many ways to define an optimal cut, the most prominent are the minimization
of the cut-value by using the max-flow min-cut theorem [PL10] and the Normalized Cut (NCut)
[Car+10; SM00]. The NCut overall gives better results for single images as it not only takes the
cut through the graph/image into account but also the interior of the two areas that are divided
by the cut. Therefore, NCut will favor cuts that create two areas of similar size and, as far as
possible, have a uniform color which usually corresponds to how humans would segment natural
images.

However, these algorithms have been used almost exclusively for single images as they do
not incorporate any temporal information of a video. Therefore, they cannot detect the moving
objects or any changes in a video but will instead segment the objects with the most distinctive
edges, independently from their movement in the scene. Nonetheless, they can be used for the
segmentation of videos to refine an already existing segmentation by adjusting it to the edges
in the individual frames. To do this with the segmentations derived by the GSM background
subtraction a graph is built for each frame where the edges between two pixels have a weight
according to their difference in the color space. To avoid computational expensive exponentiation
of floating point values the 1-Norm is used for the computation of the weights. In comparison to
the Euclidean norm there was no detectable accuracy loss but a significant gain in computation
speed with this metric. Therefore, the weight is defined as

ωvy = |rv− ry|+ |gv−gy|+ |bv−by|. (4.22)

For graph cuts the RBG color space is more appropriate than the color space introduced in
equation 4.4 since changes in intensity and color should be treated similarly. Thus, rx̄ is the value
of the red channel at position x̄, gx̄ the value at same position in the green channel and so forth.
After this the graph is defined with a von Neumann neighborhood and its weights computed.
Now, an energy function has to be formulated for this graph so that a cut which is optimal in
regard to this energy function can be found. For this, the NCut is a good starting point although it
has the drawback that finding the optimal solution is a NP-hard problem [SM00] which makes it
necessary to use approximative methods for the optimization (e.g. spectral graph theory). If N
is the set of nodes in the graph and FG and BG are two sets which constitute a partition of that
graph (that means: N = FG∪BG ∧ FG∩BG = /0), then the NCut is defined as follows

NCut(FG,BG) =
Cut(FG,BG)

Assoc(FG)
+

Cut(FG,BG)

Assoc(BG)
, (4.23)

Assoc(FG) = ∑
m∈FG,v∈N

ωmv, (4.24)

Cut(FG,BG) = ∑
m∈FG,v∈BG

ωmv. (4.25)

This partition of the graph into the two sets FG and BG is similar to a segmentation, FG can be
interpreted as the set of foreground nodes/pixels and BG as the set of background nodes/pixels
and the NCut value is an evaluation of this segmentation. Although the NCut function uses the
information better than a minimal cut approach by also taking into account the weights of the
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edges inside the sets FG and BG, it is not well suited for the evaluation of foreground-background
segmentations in videos. One reason for this lies in the simple fact that a 100% background
segmentation is not possible as it would result in a division by zero. This division would occur
since the association (Assoc(·)) of an empty set is an empty sum and hence zero. Therefore, the
energy function inherently works with the assumption that there are always foreground objects
visible. This assumption is often wrong for videos and will lead to erroneous results.

Another problem is that even segmentations with only a small amount of foreground are heavily
penalized by this energy function. If there is only a small amount of foreground (or background)
the association in that region (Assoc(FG) in equation 4.24) will attain small values and the
corresponding summand in equation 4.23 will become very large. Consequently, the NCut energy
function tends to segment the image in roughly the same amount of fore- and background because
the overall association (Assoc(FG)+Assoc(BG)) is almost constant. The more prominent the
edges are in images (that corresponds to the possibility of high Cut(FG,BG) values) the more
unbalanced the amount of foreground and background can become, however, less than 20% of
either foreground or background is extremely unlikely. In the segmentation of videos, there are
often frames with zero or almost zero foreground and without prominent transitions. Therefore,
the NCut is not an appropriate energy function for these tasks.

To overcome these problems, a modified NCut is proposed in this work which has no bias for
any specific amount of foreground:

N2cut(FG,BG) =
Cut(FG,BG)

nAssoc(FG)
+

Cut(FG,BG)

nAssoc(BG)
, (4.26)

nAssoc(FG) =
Assoc(FG)+1

∑m∈FG,v∈N,∃emv 1+1
. (4.27)

In equation 4.27 the association is normalized by dividing by the number of edges in the set (emv

is the edge between m and v). This eliminates the preference for large sets because now only the
average association between nodes/pixels is important regardless of the size of that region. The
addition of one to the denominator and numerator of the fraction in equation 4.27 prevents the
divisions by zero for empty sets. Therefore, even 100% background or foreground segmentations
can be mapped by this function (see Figure 4.14). The normalization of Cut(FG,BG) in the
same way is not reasonable. At the moment the length of the cut is important and shorter cuts are
preferred since the coincide with smaller cut values. The normalization of Cut(FG,BG) would
remove the dependency from the length of the cut which would lead to longer cuts with a high
curvature (zig-zagging through the frame). Segmentations obtained from such cuts would not
reflect the smoothness of natural images anymore.

Nonetheless, a background-foreground segregation purely based on this energy function would
not be meaningful because the minimum for every image would be A = /0 and BG = N or FG = N
and BG = /0, since the cut-value would then be zero and the association one. However, the
borders of objects in the image constitute local minima of this energy function. This fact can be
exploited by a local optimization method which is initiated with the segmentation provided by
the background subtraction. This will adapt the segmentation to the edges of the nearest objects
in the image and thereby it makes the results more spatially coherent.
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Minimization

The first step in the minimization process is the computation of the N2Cut value for the given
segmentation that was computed with the GSM background subtraction. For this, the values
Assoc(FG), Assoc(BG) and Cut(FG,BG) as well as the number of edges inside each set have to
be calculated. From these values the normalized associations and the N2Cut can be easily derived
and subsequently all these values are stored to enable the fast computation of the N2Cut value for
a slightly changed segmentation. This will then be used for the local minimization of the energy
function by changing the state (foreground/background) of a single pixel. Assuming that the
N2Cut is already computed, the swapping of the node t from set FG to set BG can be expressed
in the following way

Cut(FG\{t},BG∪{t}) =Cut(FG,BG)+ ∑
m∈FG ∧ m∈Neigh(t)

ωmt − ∑
v∈BG ∧ v∈Neigh(t)

ωvt , (4.28)

Assoc(FG\{t}) = Assoc(FG)− ∑
m∈BG ∧ m∈Neigh(t)

ωmt , (4.29)

Assoc(BG∪{t}) = Assoc(BG)+ ∑
m∈FG ∧ m∈Neigh(t)

ωmt . (4.30)

The values Cut(FG,BG), Assoc(FG) and Assoc(BG) are already known and all summations
contain at most four summands because the von Neumann neighborhood (Neigh(t)) limits the
number of neighbors to four. Larger neighborhoods are not common for graph cuts since they are
unintuitive and would disproportionate increase the computational costs. Therefore, the updating
of the associations and the cut-value has a very low computational overhead. The number of
edges in each set can be updated in the same way and with these numbers the value of the new
N2Cut(FG\{t},BG∪{t}) can be computed with a few simple operations.

With this approach, an efficient local optimization method is built. The image is scanned for a
pixel lying on the boundary between foreground and background and then, by changing the label
of this pixel from foreground to background or vice versa, it will be attempted to decrease the
N2Cut value. If the swap did indeed decrease the N2Cut a better segmentation has been found
and will be used for further optimizations. Otherwise, the new segmentation and all values (Cut,
Assoc etc.) are discarded and the old ones restored. After scanning the whole image in this way
the entire process is repeated until a steady state is reached. The optimization process is only
locally and hence the information from the initialization (the segmentation from the background
subtraction) is not lost but just adjusted to the strongest edges in the neighborhood.

This method can be extended by applying it to different scales of the image. By using a
downscaled version, the effect of changing the classification of one pixel is increased and the
range of the N2Cut is extended, therefore, the impact of the spatial relations on the overall result
will be increased. In order to use this effect, a low-resolution version of the image is created by
the consolidation of four pixels into one, the new pixel will then have the average color of the
four former pixels. Applying this process reduces the number of pixels by about 3/4, only at the
borders of the image it is sometimes necessary to consolidate only two or one pixels to a new
pixel of the low-resolution image.

The scaling algorithm can be applied several times to create an image pyramid with decreasing
resolutions. A corresponding down scaled version of the initial segmentation is needed as well as
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a starting point for the N2Cut minimization at the lowest level. However, the binary character
of the segmentation gives rise to a problem in the scaling process. When exactly two of the
four pixels that should be consolidated are labeled as foreground, there is a tie and no sensible
decision for the new pixel can be made based on the given data. In this case, it was reasoned that
the actual change in the foreground pixels is a better indicator than the static behavior of the two
background pixels and therefore the pixel was marked as foreground.

Eventually, two image pyramids exist with the same number of layers (usually two to four
were used for the examples in this work). The optimization of the N2Cut will start with the lowest
resolution image and the corresponding scaled version of the initial segmentation. The resulting
segmentation is scaled up and used as an initial segmentation for the next higher resolution version
of the image. Therefore, only the lowest resolution version from the initial segmentation (derived
from the background subtraction) is used. This process is repeated until the final segmentation
(lowest local N2Cut value) with the original resolution has been computed.

The run time increase caused by this multi resolution approach is at most minor as the amount
of pixels decreases rapidly for different scales. Also, since an improved initial segmentation is
available for the last stage of the optimization with the highest resolution image (which is by
far the most expensive stage) it is very likely that fewer iterations are necessary until a steady
state is found and the overall costs could actually decrease. The amount of memory required by
the algorithm increases only moderately as well. If the special cases of pixels at the borders are
ignored the memory usage is capped at 4/3 of the memory usage of the single resolution version.

This multi resolution approach enables the user to control the influence the spatial relations
have on the segmentation by changing the number of layers in the image pyramid. This makes the
proposed method more flexible without increasing the run time or memory usage considerably.
The main steps of the algorithm are also depicted as pseudo code. Algorithm 1 shows the structure
of the minimization. It requires an initial segmentation as well as the original frame and with
that two image pyramids are created so that the N2Cut minimization can be performed on each
layer, beginning with the lowest resolution layer. Algorithm 2 depicts the actual minimization
of a specific layer. It receives an image and segmentation of the same size and first computes
the N2Cut value for this segmentation. Then, for each pixel, it is checked if the pixel is located
on the border between foreground and background. If this is true, the segmentation is changed,
evaluated and kept only if the N2Cut value has been decreased.
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Algorithm 1 HierarchicalN2cut
Require: img . original image
Require: segmentation . from background subtraction
Require: layers . parameter, int

imgPy← createPyramid(img,layers)
segPy← createPyramid(segmentation,layers)
for i:=layers-1 to 0 step -1 do

segPy[i]← minimizeN2Cut(imgPy[i],segPy[i]) . N2Cut Optimization
if i >0 then

segPy[i-1]← upscale(segPy[i])
end if

end for
return segPy[0]

Parallelization

To make the approach better scalable a parallelization was implemented. This is often a compli-
cated process and limited by the need for extensive information exchange between the different
threads. In this case, however, the nature of the proposed algorithm makes it easy to implement
and promises a considerable runtime reduction because the minimization of the N2Cut is comple-
tely independent for each frame and can be executed concurrently. Only the initial segmentation
and the image itself have to be sent to the specified thread.

The first step is the parallelization of the GSM background subtraction. Otherwise, the N2Cut
minimizer would be idle most of the time and wait for the initial segmentations because the
computation of them takes almost as long as the following N2Cut minimization. Since the
background model is updated with every new frame the background subtraction cannot happen
concurrently for different frames. To still get a benefit from the parallelization the image must
be split into different parts and then for each of these parts the modeling and subtraction of the
background can be done by a different thread. Based on the runtime of the other components and
the number of available CPU’s (8) the ideal number of threads for the background subtraction
was three in this case and therefore the image was split into the three different color channels
as they were handled mostly separate anyway. If more CPU’s are available for the background
subtraction the image can also be split into an arbitrary amount of smaller parts since each pixel
is handled separately.

Afterwards, the complete initial segmentation with the data from the three threads and send
to another thread designated for the N2Cut minimization. For the minimization, several threads
should be provided (roughly the same amount as for the background subtraction) which successi-
vely take and process the incoming tasks as there is no concurrency limitation at this stage. A
depiction of this whole process can be seen in Figure 4.10. Altogether, this made combination of
GSM and N2Cut freely scalable with only a minor parallelization overhead. A detailed analysis
of the runtime is done in Section 4.3.
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Figure 4.10: Visualization of the parallelization of the N2Cut. On the left, several images are
incoming from the video stream which should be segmented. They are first split into
their different color channels and then each channel is segmented separately by the
GSM background subtraction in the threads two to four. Afterwards, the different
segmentations are unified again and send to the threads five to eight (depending
on which is available at the moment) which are applying the N2Cut minimization
on them and afterwards send out the final segmentation for displaying or further
processing. Thread one splits and merges the frames and coordinates the other
threads. A time-flow of the parallelization can be seen in Figure 4.11.
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Algorithm 2 minimizeN2cut
Require: img . original image
Require: seg . from background subtraction

repeat← true . bolean
ncutValue← ncutEvaluate(seg,img)
while repeat do

repeat← false
for i:=0 to imgWidth step 1 do . imgWidth = number of columns of the image

for j:=0 to imgHeight step 1 do
if IsOnBorder(seg,i,j) then

seg2← seg . save old segmenation
ChangeSeg(seg2,i,j) . change one pixel
if ncutValue>ncutEvaluate(seg2,img) then . new N2Cut better?

ncutValue← ncutEvaluate(seg2,img)
seg← seg2
repeat← true

end if
end if

end for
end for

end while
return seg

4.2.3 Temporal Trajectories

In the last two sections, the segmentation accuracy was improved by adapting the spatial coherency
to that of a natural image (general smoothness, short round edges etc.). Now a different view is
taken which considers the lack of reliable data during the subtraction phase from the background
model. The problem at this stage is that the model is usually based on hundreds or even thousands
of past frames and therefore quite reliable because noise or errors are averaged out, e.g. see
the picture in Figure 4.1 where the GSM could build a very accurate model of the background.
However, the current frame, which is subtracted from this model, is only one single data point
and therefore vulnerable to effects like camera noise. Hence it would be desirable to combine
the information from more than one frame to get more robust information and consequently
segmentations.

The basic idea is that a pixel that was foreground in the last two or three frames is more likely to
be foreground again in the current frame. Similar to a pixel that is surrounded only by background
pixels that then becomes more likely to be background itself. This combining of several images
can be even extended to future frames so that, if the pixel is labeled as foreground in the next
two or three frames, it becomes very likely that it should be labeled as foreground in the current
frame as well. The problem with combining information from several frames like this is that
the foreground objects move through the scene and therefore the information at a specific pixel
location can change rapidly. However, the foreground pixels that were found in one frame do not
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Figure 4.11: Development over time in the parallelized N2Cut (see Figure 4.11). The time goes
from left to right and therefore the length of the rectangles symbolizes the time the
thread needs for the computation. T1 stands for the first available thread, T2 for the
second and so on.
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Figure 4.12: For the segmentation of the frame in the middle all pixel locations, e.g. the end of
the shoe, are predicted in nearby frames and the segmentation from these frames are
then used to enhance the segmentation accuracy in the middle frame.

vanish in the next frame, mostly they are just at a different location. Therefore, the movement
of the pixels has to be tracked and their position in the next or previous frame estimated so that
several segmentations can be combined. An illustration of this can be seen in Figure 4.12.

Dense Optical Flows

To genuinely track single pixels through the video dense optical flows (DOF) are necessary.
In contrast to most optical flows, which only track certain feature from frame to frame, they
estimate the movement of every pixel in the image. The output is usually a vector for each pixel
which gives the estimated movement in up-down and left-right direction in pixel steps. With
this information, a prediction of the position of a specific pixel in nearby frames can be easily
obtained. A visualization of the result of a DOF can be seen in Figure 4.13.

In this case, the DOF is computed with the algorithm described in [Far03]. The idea behind
this algorithm is to model both images as Polynomial Expansions and then, by solving a system
of linear equations, create a displacement vector between these two models. Only quadratic
polynomials in the form of

f1(x̄)∼ x̄T A1x̄+ b̄1
T x̄+ c1, (4.31)

were used as higher orders would be too computational expensive. The matrix A1 is symmetric,
b̄1 is a vector and c1 a scalar. These coefficients were estimated with a weighted least square
fit so the function will approximate the pixel values in an area around x̄. If f1(x̄) now models a
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Figure 4.13: In the top row the detected movement with the DOF is translated into intensity
values, a brighter pixel signifies a stronger movement at that location. On the left
side, this is done for the right-left movement and on the right for the up-down
movement. In the bottom row is the original frame from the video.

small area in frame I1 which is also visible in frame I2 but with a translation d̄, then the function
f2(·) which models the same region in I2 should be defined as

f2(x̄) = x̄T A2x̄+ b̄2
T x̄+ c2 = f1(x̄− d̄)

= (x̄− d̄)T A1(x̄− d̄)+ b̄1
T
(x̄− ¯̄d)+ c1

= x̄A1x̄T +(b̄1−2A1d̄)T x̄+ d̄T A1d̄− b̄1
T d̄ + c1.

(4.32)

Thus, the matrices A1 and A2 are identical and b̄2 = b̄1−2A1d̄ which leads to d̄ = 1
2 A−1

1 (b̄1− b̄2).
Theoretically, the displacement vector can now be easily computed by solving a system of linear
equations (which is necessary to get the invers of A), however, the practical computation still
offers some problems. For example, the two matrices A1 and A2 are not identical in reality due to
rounding errors but also because of small changes in the neighborhood of x̄ over time. Therefore,
a new matrix A = 1

2 A1 +
1
2 A2 has to be introduced which minimizes this problem. For other

practical issues the reader is referred to [Far03].
This method has two important parameters, the first one is the size of the neighborhood that

should be modeled by one quadratic equation. On one hand large neighborhoods are preferable as
they are more robust (e.g. against aperture) but on the other hand, large neighborhoods cannot be
modeled accurately anymore by a simple model like a quadratic equation. Experiments showed
that for scenarios examined in this work a size of 15×15 pixels provided a good compromise
between accuracy and robustness, this size was used in all further evaluations. The second
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parameter is a weight function for the evaluation of how similar two neighborhoods are. Since
usually no exact match can be found between two images, the translation vector d which gives
the best match for f1(x)≈ f2(x̄+ d̄) needs to be found. For this, the Euclidean norm is used to
compare the two neighborhoods but it is sensible to put an emphasize on the pixels close to the
center as a match there is more important and reliable. Here the weight function comes into play
which gives a different weight to different pixels in the neighborhood based on their distance
to the center. For the experiments in this work, a two-dimensional Gaussian distribution with
radially decreasing weights is chosen.

An advantage of this method is that it also allows the incorporation of a priori knowledge into
the computation. If a prior estimation of the DOF is given, the algorithm only has to compute the
displacement vectors from this estimation to the correct solution, which are usually much smaller.
This is very beneficial because the calculation of large displacement vectors is computationally
very demanding and especially prone to errors. This inclusion of prior knowledge can be used in
two ways to improve the DOFs. Since the displacement vectors should be computed for all frames
of the video, the optical flow from the last frame can always be used as a good first approximation
for the current frame. A second way to use this is a hierarchical approach where the optical flow
is calculated first on a low-resolution version of the image and the result of this calculation is
then used as a start value for versions with higher resolution. By applying these two methods the
optical flows can be computed faster and in a more stable way over the course of a video.

An example of the results of the optical flow can be seen in Figure 4.13. It can clearly
be seen that optical flow better represents the smoothness in natural images as a background
subtraction method. This comes from the fact that always whole neighborhoods are analyzed
and not only single pixels. This alone can be used to improve the segmentations considerably
and makes the optical flow an important second cue for the segmentation process. It has to be
noted, however, that the computation of DOFs is always a complicated and computationally
expensive task, especially if trajectories of pixels over several frames shall be created the errors
will cumulate quickly. Therefore, the choice of the DOF algorithm is very important and should
be well-conceived. The method based on the Polynomial Expansions was chosen because it
provides a high flexibility with the option of using different patch sizes and different weight
functions. This is combined with the possibility to use prior knowledge which is especially
beneficial if whole videos have to be analyzed and it also aligns the results over several frames
which is very important for the extraction of accurate trajectories. In the next step, these DOFs
are used to enhance the segmentations derived from the background subtraction.

Using Dense Optical Flows as a Spatial Component

After calculating the DOFs the information from them should be used to support the background
modeling and subtraction process. For this, the location of each pixel in nearby frames must be
approximated to extract trajectories. For this let

DOFx
m−1,m(v̄) and DOFy

m−1,m(v̄) (4.33)

be the optical flow of pixel v̄ from frame m−1 to frame m. There are two float values for each
pixel as one signifies the lateral and the other the vertical movement of the pixel. Therefore, the
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pixel that is in frame m−1 at location v̄ will be at location

v̄new = v̄−DOFm−1,m(v̄) = (i, j)− (DOFx
m−1,m(v̄),DOFy

m−1,m(v̄))

= (i−DOFx
m−1,m(v̄), j−DOFy

m−1,m(v̄))
(4.34)

in frame m, according to the optical flow. The new location for the same pixel in the frames m−2,
m+1 or m+2 can be calculated in a similar way. With this method, pathways for single pixels
can be computed over several frames, however, the DOFs are never perfectly accurate and since
errors accumulate radically over longer pathways, reliable information can only be derived for a
small number of past or future frames. In this approach, the pathways for a batch of seven frames
(m− 3 to m+ 3) are computed and used to enhance the foreground probabilities of the m-th
frame. This is done by using a Gaussian filter over the probabilities along the pathway centered
at the m-th frame with a standard deviation of 0.75. The low standard deviation ensures that the
importance of the values along the pathway decreases rapidly in both directions, this corresponds
to the rapidly decreasing certainty of the correctness of the pathway. Longer trajectories are
possible but the estimation accuracy, as well as the influence on the center pixel, decrease rapidly
with the distance and therefore there was no detectable gain by using batches larger than seven
frames.

Furthermore, the DOFs can be used as an indicator of movement in the scene themselves.
For this purpose, the assumed location of a pixel v̄ in the frames m−1 and m is taken and the
Euclidean distance dm−1,m(v̄) computed. The same is done for the assumed locations in the
frames m and m+1. The larger these distances are, the more certain it is that there is a moving
object (foreground object) at this location and consequently the foreground probability derived
from the background subtraction for this pixel will be adapted accordingly. If p(v̄) is the current
foreground probability of pixel v̄, then it will be modified to

p̃(v̄) =
2
3

p(v̄)+
1
6

min(
dm−1,m(v̄)

τ
,1)+

1
6

min(
dm,m+1(v̄)

τ
,1). (4.35)

The weights of the different components have been determined experimentally, the only hard
condition is that they add up to one to ensure that the probability stays in the range of [0,1].
The distances are divided by τ which signifies that a movement of τ pixels from one frame to
another is taken as a clear indication of a moving object. The value of τ is very dependent on
the resolution of the video and therefore was set to Width o f Image

100 so that it would be adaptive for
different sizes of videos, this means that for an HD video a displacement vector of length ten
would be a clear indication of a foreground object that moves.

The last step is a slight spatial smoothing of each probability map separately in which the diffe-
rences of the value of the central pixel with that of all other pixel values in a 3×3 neighborhood
are summed up, weighted and the result is added to the probability value of the central pixel.
This eliminates outliers and in general increases the spatial coherency. These three steps – the
smoothing over the trajectories, the adding of the optical flow prior and the spatial smoothing –
are applied successively on a batch of segmentations which was first derived from the background
subtraction. If several batches are necessary for the segmentation of a whole video it is advisable
that the individual batches overlap slightly at the beginning and end, since the trajectories cannot
be computed for the first and last frames of each batch and therefore their segmentation will be
untouched by this algorithm.
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Algorithm 3 Temporal coherence with DOFs
given: Batchsize k

** computing initial segmentations **
for i=1:k do

f rames[i]← getimage(video)
U pdateBackgroundModel( f rames[i])
segs[i]← BackgroundSubtraction( f rames[i])

end for

**get DOFs**
for i=1:k-1 do

DOF [i] = getDOF( f rames[i], f rames[i+1])
end for

** get Trajectories from DOFs **
Paths← getTra jectories(DOF)

** use DOF and Paths to improve results **
while TerminationCriteria do

oldseg← segs[k/2]
for i=4:k-3 do

segs[i]← spatialsmoothing(segs[i])
segs[i]← AddDOFPrior(segs[i],DOF [i])

end for
for i=4:k-3 do

segs[i]← PathSmoothing(segs,Paths[i])
end for
TerminationCriteria←CalculateChange(oldseg,segs[k/2])

end while

A common batch size for this algorithm was 100 frames. Larger batch sizes would be slightly
better for the quality of the results but also increase the memory demand of the algorithm. The
whole algorithm is run several times over each batch, each time all three steps are executed.
Several iterations can be useful because the changes in the segmentations in the first step influence
the smoothing over the trajectories in the next steps and so on. The quality and smoothness of the
probability map increase gradually over the iterations and with this also the trajectories provide
better information in each step and thereby improve the segmentations further. This process,
of course, needs a termination criterion which stops the iteration. Instead of a fixed number of
iterations, the changes in the probability fields from one iteration to the next were measured and
if these changes were smaller than a specified threshold the loop would terminate. The change
was observed by measuring the mean of all foreground probabilities and calculating its variations
over time. To reduce the computational cost, the measurement was constrained to the probability
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map of only one frame in the batch, the center frame. A summary of the whole segmentation
process can be seen in algorithm 3.

4.3 Results

To assess the quality of a segmentation result it is necessary to have ground truth data. This data
is usually created by hand by a human expert who marks all areas in a frame that are foreground
and therefore should be segmented by the algorithm. The evaluation is then done by a pixel-wise
comparison of the computed segmentations with the ground truth data. For the specific assessment
of change detection algorithms, there exist several common public datasets on which scientists
can compare their methods, here the Wallflower dataset was chosen for the evaluation of the just
proposed algorithms since already many other algorithms have been tested there and an extensive
evaluation is possible.

Wallflower Dataset

The Wallflower dataset was introduced by Toyama in [Toy+99] and is publicly available under
a Microsoft research license1. It consists of seven videos which all feature very specific and
distinct video segmentation problems. The videos have different length but all share the same
resolution of 160×120 pixels. The advantages of this dataset are that each video features one
very specific problem of change detection (e.g. a swaying tree in the background or aperture)
and that a large dataset of algorithms exists for comparison. The drawback of it is that only one
ground truth image per video exists, here a larger ground truth dataset would be desirable to get
more universal results.

As an evaluation measure, the total number of false classifications (FP+FN) is chosen because
advanced measures like the F1-Score or MCC cannot deal with one of the scenes of this dataset
that does not feature any foreground. In this scene, the two values TP and FN are always zero
(since there is no foreground) and therefore the F1-Score would either be 0 (the worst possible
result) or a division zero by zero. The MCC measure has the same problem and would always
result in a division by zero, see equations 2.10 and 2.11. Before the results of the proposed algo-
rithms on this dataset are discussed a short description of each video and the distinct difficulties
for the segmentation algorithms in them will be given.

1http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm

90



CHAPTER 4. GENERAL CHANGE DETECTION

Moving Object (MO):
The stool is moved once by a person and afterwards has
to be included into the background again in the new
position.
Duration: 1744 frames
Learning Phase: 984 frames

Time of Day (ToD):
Indoor scene in which the light changes slowly from
completely dark to normal illumination and back again.
The foreground object is a person that enters the room.
Duration: 5889 frames
Learning Phase: 1849 frames

Light Switch (LS):
Another indoor scene with a flickering monitor and rapid
light changes by someone turning on and off the light in
the room. A person which enters the room and sits in
front of the monitor should be detected.
Duration: 2714 frames
Learning Phase: 1865 frames

Waving Tree (WT):
Outdoor scene with a tree that sways slowly in the wind
but should nonetheless be detected as a background
object. The foreground object is again a person that
enters the scene and stands in front of the tree.
Duration: 286 frames
Learning Phase: 246 frames

Camouflage (C):
Closeup of a flickering monitor which should be detected
as background despite all the rapid changes which appear.
Foreground object is a person which walks in front of the
monitor and blocks the view.
Duration: 352 frames
Learning Phase: 250 frames
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Bootstrap (B):
Indoor scene of a busy canteen with the constant presence
of many different foreground objects (people who
get their food) which aggravates the learning of an
appropriated background model.
Duration: 3054 frames
Learning Phase: 298 frames

Foreground Aperture (FA):
A person sleeping on his desk who should be detected
as foreground after he wakes up and starts moving. A
special problem is the very homogenous color of the fore-
ground object (completely black) which makes it difficult
to detect changes.
Duration: 2112 frames
Learning Phase: 489 frames

Assessment of the proposed Algorithms

The GSM background subtraction was run on each of these videos and the results can be seen
in Figure 4.14. There are also shown representations of the trained background model and the
results of the GSM with the spatial methods discussed earlier in this chapter. The segmentations
based purely on the GSM shows many single false detections, e.g. in the Waving Tree video
many small areas get falsely classified as foreground because of the slight movements of the
tree which complicate the background modeling. All of the spatial methods can eliminate these
errors consistently and thereby improve the segmentation quality considerably which shows the
necessity of these algorithms.

The pure Belief Propagation makes the segmentations and the objects look very natural/smooth
due to the advanced neighborhood model used, but it works only based on the segmentation
derived by the GSM background subtraction. Therefore, it does not take into account the actual
borders of the images and hence cannot adapt the segmentations to these borders. This can be
very well seen in the Foreground Aperture video (see Figure 4.14) where a large part of the human
silhouette is not segmented although it is one consistently black object. This could be partially
corrected with the improved BP by adding Otsu’s method to the optimization process. Otsu’s
method favors segmentations in which the intra-class variance (e.g. the variance between pixels in
the foreground) is low and thereby the segmentation adapts partly to the human silhouette because
this reduces the intra-class variance. However, if the background, as well as the foreground
objects, feature many different colors and brightness values, the intra-class variance is not a good
indicator anymore. This can be seen on the Waving Tree video, where the segmentation gets
worse.

An adaption mainly to the edges of the frame is done by the N2Cut, which results in an even
better segmentation on the Foreground Aperture video and additionally shows an improvement
on the difficult Light Switch video. In both cases the edges between foreground objects and
the background scene are very prominent and there the algorithm succeeds in adapting the
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segmentation to the real object edges. If the transition between foreground and background is not
that prominent the algorithm has often problems stopping the expansion of the segmented objects.
A good example of this is the Time of Day video where there is almost no difference between the
background and the foreground object. Hence, there is no edge which would stop the N2Cut from
expanding (or shrinking) and as a result, the segmentation of the human degenerates to a simple
square. Only in the upper part, the segmentation can adapt to the real object because there is a
clear border between the dark head and the white wall. The part at the very bottom, where there
are feet that should be detected, vanishes completely because there are again no borders which
would stop the N2Cut from growing or shrinking.

The last method, which uses trajectories derived from an optical flow as a spatial-temporal
component, does also increase the spatial coherence but could not delete all small false detections
in the Waving Tree example because they were so frequent that they were tracked over several
frames. Likewise, in the Light Switch and Camouflage videos the constant errors due to the
flickering monitor where a problem for this method. However, it represents the exact shape of
the objects very well in most cases, e.g. in the Ligh Switch or Time of Day video, but still could
delete most of the small errors.

The N2Cut approach provided the best results with 5064 errors (false negatives + false positives)
because it excelled in the Light Switch and Time of Day videos. This is also an immense
improvement over the 9718 errors which were still present when only the GSM algorithm was
used. The other methods to increase the spatial coherence could also improve the pure GSM
results by a wide margin but not as much as the N2Cut. For example, the smoothing with only
the BP could already diminish the errors to 7169 because of all the small false detections due
to noise which were removed. With the addition of Otsu’s method to the Belief Propagation
optimization, it could be further reduced to 6092 by enhancing the segmentation of homogenous
objects. With 6078 errors the trajectories derived from optical flow produced similar results. The
detailed results of the proposed algorithms are depicted in Table 4.2.

Overall, the proposed Belief Propagation algorithm can increase the segmentation quality
immensely and creates natural-looking results. However, it is not good in correcting errors made
in the background subtraction phase and computationally very demanding. By combining it with
Otsu’s method it became better at correcting errors in the provided segmentations, but this further
increased the computational load and added additional parameters. The N2Cut, on the other hand,
has less computational complexity and is, therefore, usable for real-time applications (see the
next paragraph for a detailed analysis of the runtimes). It is also very good at correcting large
errors in the provided segmentations since it works at the original images and uses information
about the edges in them. By the numbers it provided the best results, but the segmentation often is
too edged and do not look natural. The last method, Temporal Trajectories, is in the segmentation
quality slightly better than the Belief Propagation but also very computational complex since
an optical flow has to be computed. It is very dependent on the computed optical flow and its
potential can increase in the future when more accurate or faster optical flow methods become
available.

An overview of the results and a comparison with some selected methods is given in the Figure
4.17 and a detailed depiction and evaluation of the results of other methods on the Wallflower
dataset can be seen in the Figures 4.16 and 4.15 as well as in the Table 4.2. The results and
images used there for the methods Single Gaussian [Wre+97], Enhanced MoG[SG99], ICA
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[TL09], IMMC [FMB12], INMF [BG09], PCA + LDA [MTR12], Tensor Subspace Learning
[Hu+11], Non-parametric Model [EHD00] and Eigenspace Model [ORP00] were taken from
[MTR12]. For the methods MoG 1 [Ziv04], MoG 2[KB02] and KNN [ZH06] the corresponding
OpenCV implementation was used to create the results and the results for Normalized Block
Correlation[MOH00] and Scale-Based Wiener Filter [Toy+99] were taken from [Toy+99]. For
the other methods the results were taken directly from the respective papers (Enhanced MoG +
MRF [SW06], PSO [WS07] and MoG + IHLS [Set+06]).

It can be seen that the standard methods cannot handle the difficult situations in the Wallflower
dataset very well and had over 25.000 errors (e.g. Single Gaussian or the standard MoG methods
from OpenCV). Approaches especially adapted for this dataset naturally could create better
results and are typically around 10.000 errors, an example of this is [Set+06] with 9739 errors or
the IMMC method from [FMB12] with 11974 errors. The only method that could create even
better segmentations than the GSM+N2Cut combination is from Schindler et al. [SW06] who
used a special MoG approach which resulted in only 7340 errors and these results could be further
enhanced by using Markov Random Field as a spatial method which in the end provided only
3808 errors in total.

This is a surprising result since every other approach that was available for comparison on this
dataset generated more than double the amount of errors, even if they also used a MoG algorithm.
This advantage probably comes from a careful implementation and the special adaption they
made to account for some of the special difficulties, e.g. the quick global change in illumination
in the Light Switch video. However, there are only hints regarding these modifications in the
paper, so a definite answer is not possible.

Runtime

Another important aspect, apart from the pure accuracy of the segmentations, is the runtime of
the algorithm. If the algorithm creates great results but takes hours or days for the segmentation
process its usefulness is doubtful. The aim for video segmentation methods is often to be able to
function in real-time so that they can be used online for the observation of production processes
in factories, surveillance of certain areas or similar tasks that require real-time responses. Of
course, there are also many applications without a hard real-time constraint, e.g. the analysis of
scientific data collected in a mission, but even then a fast algorithm is beneficial.

The modeling of the background in a video and the subsequent subtraction of that model from
the current frame is usually unproblematic and real-time capability can be achieved without
much effort. Especially, since the whole process is done separately for each pixel and therefore
a parallelization is easily possible if necessary, e.g. four processes which each take care of
one-quarter of the image. The GSM algorithm has the advantage that it uses only two Gaussian
models for each pixel value instead of five or more like in most MoG approaches. This reduces
the computation time and memory usage and, furthermore, has the advantage that these values
are fixed and not dependent on the complexity of the scene. For complex scenes, more of the
available Gaussians in a MoG modeling method are actually used and this increases the memory
usage and computation time compared to simpler scenes. The GSM background modeling and
subtraction can process around 12 frames per second of a full HD video on a single 3.4 GHz
Core. If the resolution is reduced to 960×540 it can handle up to 34 frames per second and a
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reduction to this (still high) resolution does not lose any information since the algorithm should
not detect extremely small objects anyway.

The spatial models used in conjunction with background subtraction are often computationally
more intensive and therefore make it difficult to maintain the real-time capability of the approach.
One example of this is the proposed MRF model with the BP optimization which takes around
10 seconds per HD frame although the complexity of the model is already drastically reduced.
The addition of Otsu’s method into the optimization increases the already long runtime per frame
only slightly. Other approaches that use the MRF model have similar run times, e.g. [SW06]
use a smaller pairwise MRF on the Wallflower dataset and state that they need 14 milliseconds
for the creation and optimization of the model. However, this measurement was done on the
160× 120 pixel frames from the Wallflower dataset and not on an HD video, therefore, it is
not really representative for today’s cameras and the usual requirements. If it is assumed (very
optimistically) that the runtime increases linearly with the number of pixels, the algorithm would
need around 1.5 seconds per frame of an HD video for their MRF model and hence also lose
real-time capability.

The N2Cut was developed with this in mind and had the objective to be fast enough for
real-time applications. Due to the sophisticated and efficient optimization process of the N2Cut
approach – which goes over different scales of the frame and only handles the edges of segmented
objects – it achieves similar run times per frame than the GSM background subtraction. Due
to the parallelization introduced in Section 4.2.2 all four cores (eight threads) of an i7-4770
processor could be used fully. By doing so, it was possible to segment 20.5 frames of an HD
video per second with a pipeline consisting of both, the GSM background subtraction and the
N2Cut. Therefore, the N2Cut can be used for real-time applications even if the videos have a high
resolution and only standard consumer hardware is available.

The last method that was introduced, which uses trajectories obtained by an optical flow to
track pixel through the video, has a high memory demand since it first needs to collect a batch
of frames in which then the trajectories can be computed. For example, for a batch of 100 HD
frames, it is already necessary to have around 7.5 GB of memory since not only the frames
have to be stored but also the segmentations and optical flows of all the frames. Also, this batch
computation makes it inherently impossible for this approach to deliver quick responses since it
needs to collect 100 frames first before it even starts with the calculation of the segmentations.
The computational demand is not as high as with the BP optimization but it still takes around 400
seconds for every 100-frame batch, so four seconds per frame overall. This makes this method
quite impractical for most applications.

Overall, the combination of the GSM background subtraction with the N2Cut delivered the
best results of the proposed algorithms and was also by far the fastest method (see Table 4.1).
None of the many other approaches presented here could achieve a similar accuracy except than
[SW06] which could produce an even higher accuracy but is also at least an order of magnitude
slower. The advantages of the N2Cut are especially in the frames with strong edges between
foreground and background, since it then tries to adapt the detected foreground objects to the
edges of the frame. When the background and foreground objects were diverse and complex
the N2Cut had problems with adapting the segmentations to the corrects edges, see e.g. the
Bootstrap video. In these cases, the MRF model or the trajectories based on the optical flow
could provide better results since they do not base their results on the current frame and the edges
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Algorithm N2Cut MRF Temporal
+ Otsu Trajectories

speed (per frame) 0.15s 10s 4s
accuracy improvement 47.9% 37.3 % 37.5 %
memory usage 0.4GB 1GB ∼7.5GB
result looks natural −− ++ +

Table 4.1: The numbers are all for one HD frame and without parallelization. For the temporal
trajectories a 100-frame batch is assumed for the memory usage. The accuracy
improvement describes how much the GSM result on the wallflower dataset can
be improved by adding this method.

inside of it but solely on a foreground probability map or a dense optical flow. Although each
of the spatial methods has its own strengths and weaknesses, all of them provided very accurate
results and could significantly improve the already good results of the GSM approach. On the
difficult Wallflower dataset, all of these combinations could provide improvements over almost
all existing algorithms.
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4.4 Conclusion

This chapter dealt with the standard change detection for in-air scenarios and focused on the
prevalent background modeling and subtraction approach to solve this problem. First, a novel
background modeling method was proposed that uses exactly two Gaussians which are differently
updated – one partially and one fully – and creates an accurate model of the background by
comparing and adapting these two. In comparison to the often-used Mixture of Gaussian
approaches, it has the advantage of simplicity – which leads to fewer parameters that are needed
for the algorithm – as well as a runtime and memory usage which are low and stable. Nonetheless,
it proved to be very accurate on the difficult Wallflower dataset and could compete with other
current approaches.

The main part of this chapter, however, discussed the problem of spatial coherency. Since
the whole background subtraction approach is completely pixel-wise, it inherently lacks spa-
tial coherency which diminishes the segmentation accuracy. Therefore, three different spatial
methods are introduced which can be combined with background modeling and subtraction
methods to improve the segmentation results. The first one uses an MRF model to describe the
spatial relationships between pixels. However, instead of using a small pairwise model, like
it has been done in previous approaches, a higher order MRF was used with a more complex
neighborhood. This made it possible to adjust the degree of smoothness by choosing a smaller or
larger neighborhood. However, to still be able to solve these complicated models the optimization
step had to be simplified drastically. Overall, by applying this method the segmentation accuracy
could be increased greatly but run-time increased as well to around ten seconds per HD frame
so that real-time applications are not possible anymore. It was not the best spatial method by
numbers, but it made the segmentations look most natural since it is a direct model of natural
smoothness.

The second proposed approach, N2cut, is inspired by the NCut image segmentation which
was adapted and extended in this chapter for videos. In short, the method takes the segmentation
from the background subtraction and adapts them to edges in the current frame. This has the
advantage that it not only smooths the segmentations to a certain degree but can genuinely change
their shape, e.g. in the Light Switch or Time of Day videos this led to great improvements. The
effectiveness of the N2cut decreases when there are no strong and clear edges present in the scene,
but overall it gave the best results on the Wallflower dataset and was also the fastest method
which can be even be run in real-time. Lastly, the temporal trajectories are a method that uses
optical flows to join several successive frames of a video. This increases the amount of available
data for the background subtraction but also makes the approach very dependent on accurate
DOFs since otherwise the trajectories become flawed very quickly, especially at the edges of
objects. With respect to accuracy and run-time, it is roughly equivalent to the MRF model but has
a greater potential since it can profit from possible improvements in the optical flow computation.
It remains to be seen, however, how necessary the whole background subtraction step is at all if
at some point very accurate DOFs become available.

Overall, it could be shown that the proposed combinations of the GSM with spatial models
are very effective, they could clearly outperform all but one of the previous methods on the
Wallflower dataset. Furthermore, the evaluation showed that each of the three approaches to
improve spatial coherence has its own strengths and weaknesses in certain scenarios so that they

97



4.4. CONCLUSION

can complement each other very well. These accurate results will now be further used in and
adapted for the difficult underwater scenarios so that precise segmentations can be obtained there
also.

98



CHAPTER 4. GENERAL CHANGE DETECTION

(4.2.3)G
SM

+
Trajectories

(4.2.2)G
SM

+
N

2C
ut

(4.2.1)G
SM

+
B

P
+

O
tsu

(4.2.1)G
SM

+
B

P

(4.1)G
SM

B
ackground

M
odel(G

SM
)

G
round

Truth

O
riginal

Fram
e

W
T

C
B

FA
M

O
ToD

L
S

Figure
4.14:Show

n
are

results
from

the
proposed

algorithm
s

on
the

W
allflow

erdataset.V
ideos

from
leftto

right:W
aving

Tree
(W

T
),

C
am

ouflage
(C

),B
ootstrap

(B
),Foreground

A
perture

(FA
),M

oving
O

bject(M
O

),Tim
e

ofD
ay

(ToD
),L

ightSw
itch

(L
S).

99



4.4. CONCLUSION

M
oG

+
IH

L
S

[Set+06]

M
oG

+
PSO

[W
S07]

M
oG

2
[K

B
02]

M
oG

1
[Z

iv04]

A
daptive

M
oG

[SG
99]

E
nhanced

M
oG

+
M

R
F

[SW
06]

E
nhanced

M
oG

[SW
06]

Single
G

aussian
[W

re+97]

W
T

C
B

FA
M

O
ToD

L
S

Figure
4.15:R

esults
ofotherG

aussian
m

odels
on

the
W

allflow
erdataset.

100



CHAPTER 4. GENERAL CHANGE DETECTION

E
igenspace

M
odel

[O
R

P00]

K
N

N
[Z

H
06]

N
on-param

etric
M

odel[E
H

D
00]

TensorSubspace
L

earning
[H

u+11]

PC
A

+
L

D
A

[M
T

R
12]

IN
M

F
[B

G
09]

IM
M

C
[FM

B
12]

IC
A

[T
L

09]

W
T

C
B

FA
M

O
ToD

L
S

Figure
4.16:R

esults
ofnon-G

aussian
m

odels
on

the
W

allflow
erdataset.

101



4.4. CONCLUSION

9
7

1
8

7
1

6
9

6
0

9
2

5
0

6
4

6
0

7
8

3
5

1
3

3

2
7

0
5

3
2

6
7

8
9

9
7

3
9

7
3

4
0

3
8

0
8

0

5
00

0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

4
0

0
0

0

NUMBER OF FALSE CLASSIFICATIONS (FN+FP)

SEG
M

EN
TA

TIO
N

 M
ETH

O
D

Evalu
atio

n
 o

n
 th

e
 W

allflo
w

e
r D

atase
t

G
SM

G
SM

 + B
P

G
SM

 + B
P

 + O
tsu

G
SM

 N
²C

u
t

G
SM

 + Tem
p

o
ral

Trajecto
ries

Sin
gle G

au
ssian

M
O

G
 1

M
O

G
 2

M
O

G
 + IH

LS

En
h

an
ced

 M
O

G

Figure
4.17:E

valuation
ofdifferentbackground

subtraction
m

ethods
on

the
W

allflow
erdataset.From

leftto
right:G

SM
(4.1),G

SM
+B

P
(4.2.1),G

SM
+im

proved
B

P
(4.2.1),G

SM
+N

2cut(4.2.2),G
SM

+O
pticalFlow

(4.2.3),Single
G

aussian
[W

re+97],M
O

G
[SG

99],M
O

G
(O

penC
V

)[Z
iv04],M

O
G

+H
L

S
C

olorSpace
[Set+06],E

nhanced
M

O
G

[SW
06]and

E
nhanced

M
O

G
+M

R
F

[SW
06].

102



CHAPTER 4. GENERAL CHANGE DETECTION

Algorithm error Videos: whole
type WT C B FA MO ToD LS set

GSM FN 244 829 1708 1567 0 457 1636 6441
FP 736 164 166 561 466 641 543 3277

4.1 9718
GSM+BP FN 113 208 2064 1686 0 394 1789 6254

FP 156 13 3 414 0 40 289 915
4.2.1 7169
GSM+ FN 174 246 2081 469 0 321 1383 4684
BP+Otsu FP 356 66 0 92 0 199 695 1408
4.2.1 6092
GSM+ FN 22 97 1634 70 0 145 36 2004
N2cut FP 671 203 486 317 0 584 799 3060
4.2.2 5064
GSM+Optical FN 2 288 1557 476 0 443 1172 3938
Flow FP 1131 132 40 405 0 50 382 2140
4.2.3 6078
Single Gaussian FN 3110 4101 2215 3464 0 949 1857 15696

FP 357 2040 92 1290 0 535 15123 19437
[Wre+97] 35133
Adaptive MoG FN 1323 398 1874 2442 0 1008 1633 8678

FP 341 3098 217 530 0 20 14169 18375
[SG99] 27053
MoG 1 FN 266 229 1429 1463 0 775 784 4946

FP 1484 192 309 5504 0 4 14350 21843
[Ziv04] 26789
MoG 2 FN 1887 2005 2397 2556 0 1043 2163 12051

FP 411 346 38 462 0 2 13637 14896
[KB02] 26947
MoG + IHLS FN 31 188 1647 2327 0 379 1146 5718

FP 270 467 333 554 0 99 2298 4021
[Set+06] 9739
Enhanced MoG FN 43 110 1159 1023 0 203 1148 3686

FP 278 468 143 534 19 1648 564 3654
[SW06] 7340
Enhanced MoG FN 15 16 1060 34 0 47 204 1376
+ MRF FP 311 467 102 604 0 402 546 2432
[SW06] 3808
Non-Parametric FN 170 238 1755 2413 0 1298 760 6634
Model FP 589 3392 993 624 0 125 14153 19816
[EHD00] 26450
KNN FN 21 7524 1143 2331 0 852 1609 13480

FP 753 82 117 1133 0 3 1198 3286
[ZH06] 17242
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Algorithm error Videos: whole
type WT C B FA MO ToD LS set

PSO FN 219 929 1339 2300 0 737 2059 7583
FP 267 433 546 631 0 9 96 1982

[WS07] 9565
Normalized Bl- FN 3323 6103 2638 1172 0 1030 883 15149
ock Correlation FP 448 567 35 1230 1200 135 2919 6534
[MOH00] 21683
Eigenspace FN 1027 350 304 2441 0 879 962 5963
Model FP 2057 1548 6129 537 1065 16 362 11714
[ORP00] 17677
ICA FN 3372 3054 2560 2721 0 1199 1557 14463

FP 148 43 16 428 0 0 210 845
[TL09] 15308
INMF FN 4525 1491 1734 2438 0 1282 2822 14292

FP 7 114 2080 12 0 159 389 2761
[BG09] 17053
PCA + LDA FN 1426 922 2380 2025 0 443 1107 8303

FP 958 204 142 576 0 103 49 2032
[MTR12] 10335
Tensor Subspace FN 4525 1491 1734 2438 0 1282 2822 14292
Learning FP 7 114 2080 12 0 159 389 2761
[Hu+11] 17053
IMMC FN 4106 1167 2175 2320 0 626 711 11105

FP 5 135 503 201 0 10 15 869
[FMB12] 11974
Scale-Based FN 877 229 2025 320 0 961 947 5359
Wiener Filter FP 1999 2706 365 649 0 25 375 6119
[Toy+99] 11478

Table 4.2: The results of different algorithms for the Wallflower dataset. Each row shows the
number of wrongly classified pixels for one approach separated in false positives and
false negatives.
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5 A Dataset for Underwater Change Detection

The first step to adapt general change detection algorithms like the GSM for the specialties of the
underwater case is the creation of a common dataset based underwater videos on which different
algorithms can be evaluated and compared fairly against each other. The problem is that change
detection in underwater environments has been a widely neglected subject so far, whereas the
general change detection case has been researched intensively for several decades and is still
used regularly as the foundation of many computer vision pipelines. Hence, no dataset with
underwater videos exists at this point although there are many applications in which change
detection is useful to automatically observe objects underwater. Some examples are the automatic
counting of wild fish [TNL09] or the observation of aquacultures. For this reason, the specialties
of change detection in this difficult environment should be investigated thoroughly to adapt and
combine existing in-air algorithms for these tasks. To do this, the Underwater Change Detection
dataset (UCD dataset in the following) is presented in this chapter and afterwards an evaluation
of different image enhancement methods and their effect on the segmentation is done.

5.1 Existing Change Detection Datasets

There already exist several datasets for the change detection with a static camera in all kind of
in-air scenarios which have been used for evaluation. The most prominent one at the moment
is the changedetection.net dataset [Wan+14b; Goy+12] which comprises of dozens of videos
and tens of thousands of ground truth images. Many algorithms have been tested on this dataset
and a comprehensive evaluation could be made as all kinds of different scenes are reproduced in
the data, e.g. difficult weather situations, shaky cameras or thermal videos. However, none of
the 53 videos of the dataset depict an underwater scene and the same is true for all other known
datasets and hence the unique difficulties of this environment have not been subjected to rigorous
testing yet. In the following, some examples of other smaller datasets are given, which often have
a special focus and therefore could be useful for specific applications, and afterwards, the UCD
dataset is presented.

In [Pra+03] Prati et al. use five videos with several hundreds of ground truth images overall
but focused on the difficulties of shadows in their algorithm and their dataset. An artificial dataset
was created by Brutzer et al. [BHH11]. It consists of nine videos, each depicting one specific
challenge of change detection. As artificial data was used they could easily create many perfect
ground truth frames without any errors through human perception. However, the artificial data is
far away from a perfect representation of the reality and therefore not a realistic test scenario. To
create such an artificial dataset for underwater scenes would be especially difficult because of
all the special physical effects the medium water has (refraction, haze, blur...). Another dataset
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Figure 5.1: Depicted are some examples from the dataset presented in [Kav+14] and the corre-
sponding ground truth data. The upper row shows two frames of the same video, in
the first case the uppermost fish was not correctly marked in the ground truth data
and in the next frame the lowermost fish. In the bottom row two crowded scenes are
depicted and in each the non-expert humans only segmented the most prominent and
biggest fish in the scene and left out many smaller fish.

is available from Microsoft 1 and was already used in several papers, e.g. [Cri+06; Yin+07]. It
consists of many short videos which are mostly close-up shots of humans with some moving
objects or persons in the background. And of course, the Wallflower dataset from [Toy+99] which
was already discussed in Section 4.3.

There exists so far one Dataset on change detection which uses underwater scenes, however,
it was created more incidentally by evaluating a platform for collaborative web-based video
annotation. In [Kav+14] a tool is presented that has the aim to make it easier for computer vision
experts to create ground truth data by using larger groups of non-experts and a collaborative
platform. From several non-expert annotations for the same frame, the tool would calculate the
most likely correct annotation. This method was evaluated on videos from the Fish4Knowledge
project2 in which the exact shape of the fish should be marked. The result was a change
detection dataset for fish which consists of six different categories – e.g. crowded, blurred or
complex background – which each comprises of several short videos, it can be downloaded at
http://f4k.dieei.unict.it/datasets/bkg_modeling.

However, the problem with this dataset is that it was not made for the actual comparison of
segmentation methods. For example, in some videos, there is no training phase included although
the videos are quite long (5 to 10 minutes). But more importantly is the bad quality of the ground
truth data. The shapes of the segmented fish are mostly quite accurate but often some fish are not
segmented at all. Some examples of this are shown in Figure 5.1. This is probably because the
non-expert humans misunderstood the task or were just not motivated enough to mark all small
fish. Therefore, this dataset is not suited for a qualitative evaluation of segmentation approaches
and was only used so far in one paper for this purpose ([QPL14]).

None of these datasets reflect the special difficulties of underwater scenarios and allow an

1http://research.microsoft.com/vision/cambridge/i2i/DSWeb.htm
2www.fish4knowledge.eu
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extensive and fair comparison on underwater videos, therefore, the here presented dataset will
focus exclusively on underwater videos to address this gap. The UCD dataset includes five videos
of different scenes with fish as moving foreground objects. For each video, the first 1000 frames
are used as a learning phase and are followed by 100 frames for which hand-segmented ground
truth images were created. These images are labeled by three colors: white for background, black
for foreground and gray for border/unsure where both labels are correct. The third category is
especially needed in the underwater context as the blurriness often does not allow for a clear
distinction between object and background at the edges. Also, when a fish swims into the scene
from the background it is not clear (and quite subjective) when an algorithm should start detecting
it. The videos of this dataset were all taken with a GoPro Hero 3 consumer camera and have a
resolution of 1920×1080. This camera was chosen as it is cheap, easy to use and very robust
and therefore can be utilized in various scenarios without problems. Furthermore, the success of
a change detection algorithm should not depend on some special or very expensive hardware, the
aim should be a universal approach.

5.2 Difficulties in the Underwater Context

In the following, the different special challenges in the underwater world are explained more
detailed and afterwards the five videos of the UCD dataset are presented and it is described how
they correlate to these challenges.

• Blur

It reduces the sharpness and contrast of the image and appears in pictures taken in air
usually when the camera is out of focus. Another reason for blur in images can be an
object which moves fast through the scene (or a too long exposure time) which leads to
motion blur. Both of these cases can happen in the underwater context as well and have to
be avoided. However, the forward scattering in water is an additional source of blur which
cannot be avoided by conventional means. To still get a sharp and clear underwater image,
deblurring algorithms are an absolute necessity. (See also Figure 5.2)

• Haze

Small particles in the medium, in which the image is taken, cause backscatter and have
an effect which is similar to a sheer veil in front of the scene. It is a general effect and
can often be observed in normal images, especially when there is a strong air pollution.
In underwater images, the effect is often quite strong even for short distances and can be
enhanced by stirred up sand or similar events. (See also Figure 5.2)

• Color Attenuation

Attenuation of light happens in any medium but is neglectable in air for visible light.
The absorption in water is several magnitudes stronger and therefore it is mandatory to be
close to the object of interest to take an image underwater. Also, the absorption effect for
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visible light depends on the wavelength and this leads to underwater images with strongly
distorted and mitigated colors. In clear and open water blue light is absorbed the fewest
because it has the shortest wavelengths and red is absorbed the fastest. That is also the
reason why water and objects inside it usually appear blue. However, coastal waters contain
phytoplankton which absorbs light with short wavelengths (blue) especially well. Hence
the near-shore waters can also appear greenish instead of blue. (See also Figure 5.3)

• Caustics

They are a very special phenomenon of underwater images and videos taken in natu-
ral light. Ripples or waves on the water surface refract the light strongly when entering
the water and therefore create a very unevenly illuminated scene. Also, the illumination
conditions change constantly and rapidly, according to the changes of the ripples or waves
on the water surface. (See also Figure 5.2)

• Marine Snow

Small floating particles which are mostly organic and strongly reflect light are called
Marine Snow. They are, in fact, small moving objects in the scene but are usually not the
interesting part of the image and should therefore not be segmented. Mostly, they are small
enough that they are filtered out/ignored during the segmentation process, however, they
still corrupt the image and complicate for example the modeling of the static background
for background subtraction algorithms. (See also Figure 5.2)

Furthermore, fish, especially the species produced in aquacultures, often have a color similar
to the background to hide from predators and/or swim in big swarms. Both circumstances
complicate the precise detection of single fish enormously. Also, shadows are disconnected from
the objects which cause them. The reason for this is that fish float in the water and do not stand
on the ground. This makes it difficult to differentiate between a dark fish and a shadow because
the assumption that the shadow is always directly beneath the object itself is not valid anymore. It
is possible, for example, that the actual fish swims above the field of view of the camera and only
the shadows on the ground are visible in the scene. This can be confusing for a human observer
and is a challenging task for computer vision algorithms. In the videos of the UCD dataset, this
and most of the other difficulties have been reproduced, some examples can be seen in Figure 5.5.

5.3 Underwater Change Detection dataset

Below is a list of all five UCD videos and a short description of the special difficulties they
feature.

• Caustics:
Scene with a complex, partially moving background and light effects produced by caustics.
The fish are very similar to the background and even for a human observer hard to detect.
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• Fish Swarm:
Fuzzy greenish river water with a swarm of fish constantly present in the scene and thereby
complicating the modeling of the background, especially the initialization.

• two Fish:
Basic scene with two fish in a fish tank slowly moving. The only real difficulty is that the
fish have a color that is similar to the background.

• Marine Snow:
Features a scene in an aquarium with good visual conditions and many different fish,
however, the permanent presence of Marine Snow aggravates the segmentation task.

• small Aquaculture:
An aquaculture used for scientific purposes, easier background and clearer water than in
Fish Swarm but even more fish.

An example frame from each video can be seen in Figure 5.4. The videos were taken at the
Fraunhofer EMB (facility for marine- and biotechnology) in Lübeck, the Ozeaneum in Stralsund
and the Natur- und Umweltpark in Güstrow (natural- and environmental park). The whole dataset
is available under underwaterchangedtection.eu and everyone is encouraged to evaluate their own
algorithms and methods on it to get a better overall picture of change detection underwater.

5.4 Conclusion

In this chapter, the different degradation effects of videos and images in the underwater environ-
ment were described. Afterwards, the first change detection dataset was introduced that focuses
on the underwater context. It contains all the described image degradation effects, which will
allow, for the first time, a conclusive evaluation of change detection in the underwater context.
The dataset consists of five videos with each featuring a distinct scenario and having 100 hand-
segmented ground truth images for the evaluation. The moving objects are always fish and are
usually very similar to each other as well as to the background. This data will be used in the
next chapter to evaluate five different change detection methods in combination with different
underwater image enhancement techniques.
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Figure 5.2: In this image several degradations effects of the underwater world can be seen. The
leftmost sun ray hits a very small particle in the water and gets thereby reflected
towards the camera (haze). If the particle is larger (not microscopic) the effect is
similar but then the object itself can be seen instead of just a degradation effect, the
object is then called Marine Snow. The sunray in the middle is reflected from the fish
towards the camera (blue arrow) but the water diverts part of the light slightly (green
arrows) which causes a blur effect. On the right side, the Caustic effect is visualized,
the magenta rays got refracted differently at the water surface due to the waves. Now
several rays hit one spot on the rock and make this area consequently very bright
whereas in other areas almost no rays are incoming.

Figure 5.3: On the left side is a Figure that illustrates the different ranges of light based on the
color/wavelength. On the right side is a real checkerboard with different colors on
it photographed in air (top left), in five-meter-deep water (top right), in 10m depth
(bottom left) and 20m depth. Images courtesy of Eik Deistung.
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CHAPTER 5. A DATASET FOR UNDERWATER CHANGE DETECTION

Figure 5.4: One example from each video of the UCD dataset. From top to bottom: two Fish,
Caustics, Fish Swarm, Marine Snow and small Aquaculture.
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5.4. CONCLUSION

Figure 5.5: Selected difficult situations from the UCD dataset. In the top row are a shadow of a
fish (left) and Marine Snow (right) depicted. At the bottom is a fish swarm (left) as
well as a single fish which is barely distinguishable from the background (right).
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6 Image Enhancement on Underwater Change
Detection

With an established dataset, it is now possible to evaluate the effect of underwater image enhance-
ment on different segmentation algorithms. These image enhancement methods can deliver great
results for a human observer in many situations, however, it is mostly unknown if algorithms for
change detection can profit from them in a similar way. First, there will be a short explanation of
the underwater image enhancement methods that were used and afterwards their effects on the
videos will be evaluated. For this, five different segmentation algorithms are combined with the
enhancement methods and their segmentation results on the UCD dataset are compared.

6.1 Enhancement Methods

6.1.1 Marine Snow Removal - MSR

Marine Snow is a problem which is present in three of the presented videos, it has a strong impact
in the Marine Snow video as well as the small Aquaculture video and is also visible in the Fish
Swarm video but there mainly in regions without fish. To remove these unwanted objects from
the image a method which is loosely based on the approach of [Ban+14] was implemented. The
method uses the high reflectivity of the Marine Snow particles which makes them stand out
prominently from their neighborhood. The algorithm looks for outliers in the brightness, this is
done by using a search window that compares the brightness of the center pixel with the mean
brightness of all other pixels in that window. To account for the different sizes Marine Snow can
have the search process has to be repeated several times with varying sizes of the search window.
Typical sizes used for the Marine Snow removal (MSR) were from 11×11 to 21×21.

If a pixel with an unusual high brightness was found the color was also checked to avoid
wrong detections. Only if the three color channels (red, green and blue) had a similar intensity –
which means a color close to white or gray – was the pixel considered as belonging to Marine
Snow. Afterwards, the pixel value was adjusted to its neighborhood by median filtering but the
immediate neighborhood was omitted in the filtering process. The reason for this is that these
pixels are very likely to also belong to the Marine Snow particle and therefore would distort the
average color of the background. The effect of this enhancement on the human observer is a
visually more pleasant image and the pixels where Marine Snow was replaced by median filtering
are hardly recognizable anymore (see Figure 6.1). However, there are also some false detections
which change parts of the image that do not belong to Marine Snow particles and the median
filtering, in general, creates some noise in the detected regions.
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6.1. ENHANCEMENT METHODS

Figure 6.1: The effect of the MSR algorithm on a frame of the Marine Snow video.

6.1.2 Learning-based Deblurring - LbD

Underwater images often suffer from a strong blur of the present features due to forward scatter
of light from the object to the camera. To address this issue, in [FR16] a dictionary learning
algorithm based on sparse representation was proposed by us. The advantage of a learning-based
algorithm is that it can extract useful knowledge of the physical properties from a given dataset
although an explicit model is not available. The formulation of an explicit model would be
difficult since many different physical effects interact with each other (see Figure 5.2) and at
best the result is a mathematically complex formulation that describes some of the occurring
effects. By having an over-complete dictionary (a matrix of vectorized image patches) the sparse
representation theory allows the representation of a patch over this dictionary using only a few
elements of this dictionary. Using this, together with the dictionary learning algorithm (K-SVD
[AEB06]), the relation between a set of degraded training image patches and corresponding
high-quality ones is learned and can then be used for the restoration of any underwater image. In
a next step, the blurriness of each patch is measured first and then the deblurring is adapted to the
specific amount of blur that is present in each patch. This adaption gives more accurate results
and allows the creation of a coarse depth map since blur in underwater images is a function of
distance. The result of the Learning-based Deblurring (LbD) approached is an image which is
sharper and has more visible details. However, not only the edges are enhanced but unfortunately
also the noise, which is more prominent in the results (see Figure 6.2).

6.1.3 Adaptive Gray World - AGW

The next two methods try to counter the loss of color information in underwater videos. In
[FZL15] a simple but still effective color mapping scheme was proposed which is based on the
gray world hypothesis. It is claimed that discarding the extreme cases in the deep sea, where
red or even green colors are completely lost, the gray world hypothesis is still valid. However,
remapping the colors in underwater images the same way as in-air images are remapped with the
gray world hypothesis does not work. Usually, too much color information is lost, especially in
the red channel, which would lead to a concentration of specific values. To avoid this effect an
adaptive gain factor is introduced. Using this gain factor each pixel is sketched with a different
weight and as a result, not only the colors are sketched based on their wavelength but also the
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Figure 6.2: These images show the effect of the LbD algorithm. The image is not as blurry
anymore and more details can be seen, for example at the wood on the right side.
However, it can also be seen that the image becomes noisier.

whole dynamic range is used. An example is given in Figure 6.3.

6.1.4 Automatic Color Equalization - ACE

Automatic Color Equalization is a method introduced by Gatta et al. [GRM02] which combines
the gray world hypothesis and the white patch approach for a fully automatic image color
restoration. The original algorithm is quite slow (O(N4) with N as the number of pixels) since
a slope function - which amplifies small differences and saturates large differences - has to be
computed between every two pixels and is weighted with the distance between these two pixels.
Therefore, the original approach is too slow for an HD-Video and here the implementation of
[Get12] is used which reduces the complexity to O(N2logN) by using polynomial approximations
for the slope function. An example can be seen in Figure 6.3, there the difference between the
fish and the background is more distinct than in the original frame. The overall effect on the
image of ACE is much stronger than AGW.

Figure 6.3: Depicted are, from left to right, the original snippet from the Fish Swarm video, the
color corrected version with the adaptive gray world approach and the result of the
automatic color equalization.
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6.2. EVALUATION

Segmentation Methods

The focus here was put on the background subtraction methods since this work mainly deals
with this approach, however, another method which is solely based on the optical flow was also
included for comparison. One of the background subtraction approaches that is evaluated with
these enhancement methods is the proposed GSM algorithm described in Section 4.1. Alongside
this, three other background modeling and subtraction methods are evaluated to get a more
complete and thorough overview of the benefits of image enhancement. The spatial methods
are evaluated later on underwater footage (see Section 7.3). In this section the focus is on three
points:

• The general performance of background subtraction methods in the underwater context.

• Can the segmentation accuracy be increased by combining background subtraction with
image enhancement methods?

• An comparison against optical flow-based methods. Which algorithms can deal better
with the difficult underwater environment and which work together well with image
enhancement?

The three background subtraction methods do not use spatial methods as well and their
implementation is available in OpenCV1 (MoG 1 [Ziv04], MoG 2 [KB02] and KNN [ZH06]).
The last method, the segmentation by motion, is from the paper [OMB14] and the code they used
for the segmentation is available as well2. It was chosen because it is based on the optical flow -
the other widely used foreground detection method - and therefore allows an evaluation of how
good these different approaches can deal with the difficult underwater environment and how they
can profit from the image enhancement. These approaches were chosen for comparison because
unlike most methods existing implementations of them are freely available, this ensures a fairer
evaluation than a reimplementation.

6.2 Evaluation

A comprehensive evaluation of these segmentation algorithms is made in the following to compare
the accuracy of them. First, they were all run on the normal UCD dataset and it will be analyzed
how the degradation of the video quality in underwater scenarios influences the segmentation
quality. Afterwards, the image enhancement will be added to see if it can have a positive effect
on the segmentation accuracy.

Background Subtraction on Underwater Videos

The results of the four different background subtraction approaches on the UCD dataset can
be seen in Table 6.1. There the four basic numbers for binary classification (true negative,
true positive, false negative and false positive) are given and the deduced values F1-Score and

1www.opcencv.org
2http://lmb.informatik.uni-freiburg.de/resources/binaries/ under Motion Segmentation
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CHAPTER 6. IMAGE ENHANCEMENT ON UNDERWATER CHANGE DETECTION

MCC (see Chapter 2 for details). In the following tables only the MCC value will be used for
the comparison because both values - although slightly different - lead in the end to the same
conclusions. For the gray/unsure areas in the ground truth images both classifications were
correct, so if the pixel is classified as background by the algorithm it would count as a true
negative and otherwise as a true positive pixel.

Algorithm True Negatives True Positives False Negatives False Positives F1-Score MCC
two Fish Video:

GSM 180,375,360 17,611,623 3,144,660 6,228,357 0.7898 0.7669
MoG 1 [Ziv04] 180,197,503 17,876,878 3,203,631 6,081,988 0.7938 0.7708
MoG 2 [KB02] 186,601,671 12,668,199 7,377,859 712,271 0.7579 0.7555
KNN [ZH06] 171,035,889 19,855,054 1,233,689 15,235,368 0.7068 0.6930

Caustics Video:
GSM 199,856,886 2,845,746 399,016 4,258,352 0.5499 0.5841

MoG 1 [Ziv04] 202,367,357 2,922,016 396,985 1,673,642 0.7383 0.7435
MoG 2 [KB02] 204,526,698 1,441,280 1,260,559 131,463 0.6743 0.6964
KNN [ZH06] 202,611,023 2,869,860 21,439,644 1,492,743 0.7533 0.7571

Fish Swarm Video:
GSM 170,096,604 14,821,201 21,153,182 1,289,013 0.5691 0.5721

MoG 1 [Ziv04] 171,894,004 6,339,948 29,026,034 100,014 0.3033 0.3874
MoG 2 [KB02] 172,338,391 1,025,615 33,988,415 7,579 0.0569 0.1556
KNN [ZH06] 171,228,069 14,420,954 21,439,644 271,333 0.5705 0.5904

Marine Snow Video:
GSM 189,927,339 14,378,161 3,209,105 1,918,995 0.8361 0.8487

MoG 1 [Ziv04] 189,109,247 14,516,541 3,070,725 2,737,087 0.8182 0.8333
MoG 2 [KB02] 192,618,186 7,074,827 7,251,284 415,703 0.6480 0.6682
KNN [ZH06] 190,710,197 13,326,863 4,260,403 1,136,137 0.8224 0.8316

small Aquaculture Video:
GSM 152,343,809 34,692,315 16,803,395 3,520,481 0.7734 0.7255

MoG 1 [Ziv04] 154,091,301 34,900,057 17,237,378 1,131,264 0.7383 0.7435
MoG 2 [KB02] 156,568,143 13,975,078 36,795,641 21,138 0.4315 0.4715
KNN [ZH06] 152,381,919 43,446,320 9,336,148 2,195,613 0.8828 0.8504

whole Dataset:
GSM 892,599,998 84,349,046 44,709,358 17,215,198 0.7037 0.69946

MoG 1 [Ziv04] 897,659,412 76,555,440 52,934,753 11,723,995 0.6784 0.6957
MoG 2 [KB02] 912,653,089 36,184,999 86,673,758 1,288,154 0.5137 0.5488
KNN [ZH06] 887,967,097 93,919,051 36,656,258 20,331,194 0.7472 0.7445

Table 6.1: All four different background subtraction methods evaluated on the UCD dataset. The
best MCC and F1-Score values for the whole dataset are the sum of the separate values
for the videos divided by five. In bold are marked the best MCC and F1-Score values
for each video.

The most difficult scene for the background subtraction algorithms is the Fish Swarm video
as it combines a difficult background, color cast and the constant presence of many foreground
objects. Especially the many foreground objects which are similar in color to the background
make the modeling of the background very difficult. The problem is enhanced by the general loss
of color information due to the strong color attenuation in the video, the result of the modeling can
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Figure 6.4: A snippet from the Fish Swarm video (left) and the trained background model (right)
of the GSM algorithm.

be seen in Figure 6.4, the background model is blurred and often a mix between the background
and the color of the fish passing by.

Also interesting is that the two Fish video, which seems to feature the simplest of all five
scenes, does not provide the highest accuracy per se. The results are very stable with regard to the
segmentation method but, for example, the KNN algorithm provides better results in the Caustics,
Marine Snow and small Aquaculture videos. Overall the KNN algorithm [ZH06] gives the best
results although it performed comparatively bad for the two Fish video.

Background Subtraction with Enhancement

two Fish Caustics
Algorithm - +ACE +AGW +LbD +MSR - +ACE +AGW +LbD +MSR

GSM 0.7669 0.5278 0.7594 0.7164 0.7669 0.5841 0.3325 0.5786 0.4001 0.6011
MoG 1 [Ziv04] 0.7708 0.7297 0.7969 0.7633 0.7708 0.7435 0.5520 0.7466 0.6618 0.7512
MoG 2 [KB02] 0.7555 0.7056 0.7990 0.7549 0.7659 0.6964 0.7419 0.6964 0.6711 0.6981
KNN [ZH06] 0.6930 0.5887 0.7391 0.6806 0.6930 0.7571 0.4516 0.7557 0.6278 0.7682

Fish Swarm small Aquaculture
Algorithm - +ACE +AGW +LbD +MSR - +ACE +AGW +LbD +MSR

GSM 0.5721 0.5014 0.5673 0.5199 0.5654 0.7255 0.6462 0.7232 0.6583 0.7303
MoG 1 [Ziv04] 0.3874 0.7350 0.3946 0.4500 0.3767 0.7435 0.4377 0.7624 0.7374 0.7612
MoG 2 [KB02] 0.1556 0.3362 0.1694 0.2423 0.1395 0.4715 0.3197 0.4720 0.4719 0.4699
KNN [ZH06] 0.5904 0.8402 0.5503 0.6160 0.5812 0.8504 0.4210 0.8517 0.8157 0.8544

Marine Snow Overall
Algorithm - +ACE +AGW +LbD +MSR - +ACE +AGW +LbD +MSR

GSM 0.8487 0.6316 0.8096 0.6850 0.8614 0.6995 0.5279 0.6876 0.5959 0.7050
MoG 1 [Ziv04] 0.8333 0.8214 0.8537 0.7923 0.8806 0.6957 0.6552 0.7108 0.6810 0.7081
MoG 2 [KB02] 0.6682 0.8290 0.7190 0.6507 0.6703 0.5494 0.5865 0.5712 0.5582 0.5487
KNN [ZH06] 0.8316 0.7975 0.8625 0.8115 0.8792 0.7445 0.6198 0.7519 0.71032 0.7552

Table 6.2: Evaluation of the impact of different image enhancement methods on the background
subtraction methods. Given are the MCC values and all cases in which an enhancement
increased the accuracy are shown in bold.
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The impact of the underwater image enhancement methods on the background modeling and
subtraction is depicted in Table 6.2. Altogether, the results are very volatile, great improvements
could be achieved on some videos but the same method would then also reduce the accuracy on
other videos. An example for this is the MoG 2 algorithm ([KB02]) in combination with the ACE
color correction: in the Marine Snow video the accuracy could be improvement from 0.668 to
0.829 but on the small Aquaculture video an equally large deterioration from 0.4715 to 0.3197
happened. Therefore, the ACE method overall slightly decreased the accuracy and this is true for
all different background subtraction methods. Only on videos with a strong color cast (like the
Fish Swarm video) does it seem to be a viable option.

For LbD the results were quite similar to the ACE although the impact on the performance was
overall less significant. In contrast to that, the AGW method showed a relatively small impact
on the segmentations of each video but increased the overall results of three out of the four
algorithms slightly. It seems to be a suitable method to aid background subtraction in general
underwater situations if the additional computational load is unproblematic. An example of the
segmentation of the KNN and GSM algorithms in conjunction with the AGW is depicted in Figure
6.5.

The last method is the MSR approach which is special because normally underwater image
enhancement techniques try to make the frames sharper, the color more vivid or increase the
contrast. The MSR tries none of these and often even blurs the image a bit by trying to remove
Marine Snow particles. It could greatly improve the results for the Marine Snow and had a
varying but little effect on the other results.

In conclusion, the effect of the image enhancement algorithm varies widely from video to
video and, therefore, the enhancement method should be chosen based on the degradation of the
video. Otherwise, no positive effect or even a deterioration of the segmentation result is very
probable.

• Color Cast: The ACE showed great results for a prominent color cast. Other approaches
could also achieve some improvements but only minor in comparison to the ACE.

• Blur and haze: Are in general not that problematic for background subtraction methods.
Theoretically, they should be addressed by the LbD but these effects usually occur together
with a color cast and then the missing color information is the far more substantial problem
and should be solved primarily.

• Marine Snow: The especially developed MSR algorithm handled this degradation very well.
Methods that sharpen the image (like LbD) only emphasize the marine snow particles and
thereby worsen the problem.

• Caustics: No algorithm especially addresses them. Image restoration methods like LbD or
ACE tend to increase the problem since they make the caustics more prominent. The MSR
could improve the results for the Caustics video slightly, probably because of the small
blur effect it has.

• Unknown degradations: If the degradation is not known beforehand the MSR seems like
the most sensible choice. It has a comparatively small computational load, shows great
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Figure 6.5: Top: the raw image and the ground truth data. Bottom: segmentation results of the
GSM algorithm + AGW(left) and on the right the background subtraction of [Ziv04]
+ AGW.

Video: - +ACE +AGW +LbD
Marine Snow 0.7669 0.7842 0.6693 0.8548
Fish Swarm 0.4907 0.5936 0.4883 0.6076

Caustics 0.3810 0.5782 0.4588 0.6974

Table 6.3: Results of the motion segmentation from [OMB14] on three of the videos. Also, the
effects of three different image enhancement algorithms are shown. The numbers
indicate the MCC.

improvements when Marine Snow is present and almost no (negative) effects when other
degradations appear.

Run-times are always hard to compare since they not only depend on the image size but also
often on the parameters of the algorithm, the specific image data, the parallelization and so on.
For the setup used here for a typical image (1920×1080) the run-times were as follow:

MSR ∼ 0.75 second per frame ACE ∼ 1.75 seconds per frame

LbD ∼ 4.5 seconds per frame AGW ∼ 0.1 seconds per frame

Motion Segmentation on Underwater Videos

The segmentation by motion from [OMB14] has to be treated separately as it did not provide
meaningful results for two of the videos. The reason for this is that the videos small Aquaculture
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Figure 6.6: On the left side are segmentations shown from the algorithm [OMB14] overlayed
over the original frame. The right side displays close-ups of the features which were
tracked.

and two Fish have a uniform and featureless background. This, which would be considered as an
advantage for the background subtraction methods, is an irresolvable problem for this approach
since the segmentation is based on the tracking of features and if too few features can be found in
the frames the segmentation will fail. An example of this can be seen in Figure 6.6 where for the
small Aquaculture video no sensible distinction between foreground and background could be
made because the black background is completely featureless. This problem does also exist for
featureless areas in in-air videos but the degradation effects underwater (e.g. the blur) obscure
small features and thereby worsen the problem. On the other three videos, the method provided
decent results, although in general not as good as the background subtraction methods. It has to
be noted that this approach is slow but has the advantage that it inherently differentiates between
different foreground objects and also tracks them.

The results on the UCD dataset and the effects of combining it with image enhancement
methods are shown in Table 6.3. The effects of the AGW method are ambivalent but ACE and
LbD improve the results consistently through all three videos. The reason for this is that these
methods make features in the image more distinct and thereby allow the algorithm to track more
features. For example, in the normal Marine Snow video 28197 features could be tracked but
when the video was first deblurred by LdD this number increased to 80225 (in Figure 6.6 on the
right side, each small rectangle signifies one found features in the frame).

The results of the Marine Snow Removal (MSR) are not depicted in the Table 6.3 because
the method reduced the number of features that could be tracked in the videos drastically and
lead to segmentations that could not sensibly be evaluated anymore. Two examples of this are
depicted in Figure 6.7, in the Caustics video the algorithm would not segment any objects at
all because the number of features in motions was too low and in the Marine Snow video the
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Figure 6.7: Two examples of the segmentations from [OMB14] after the Marine Snow removal
from Section 6.1.1 is applied. The smoothing effect of the MSR decreases the number
of features drastically and makes the detection of moving objects impossible.

number of background features between the fish was too low, so that vast areas got marked as
moving objects. Overall, these examinations show that the optical flow is not competitive with
background subtraction for underwater scenarios with static cameras.
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6.3 Conclusion

In the previous chapter, the different degradation effects that can influence videos and images in
the underwater environment were described. Afterwards, the first change detection dataset was
introduced that focuses especially on the underwater context. This data could now be used in
this chapter to evaluate five different change detection methods (four background subtraction
approaches and one based on the optical flow) in combination with four different underwater
image enhancement techniques.

First, the general performance on underwater videos was evaluated (without any image en-
hancement) and here the background subtraction approaches clearly outperformed the optical
flow. The optical flow computation is heavily affected by the degradations in the video since
the number of detectable features - which are tracked by this approach - is reduced drastically
and the remaining features are less distinguishing and, therefore, harder to match correctly. The
performance of the background subtraction is also impaired by the degradations, e.g. when the
color information is lost, but considerably less.

By adding image enhancement methods this outcome did not change, however, the effect it had
was very different for both segmentation approaches. For the different background subtraction
methods, the result was heavily dependent on the degradation effect. The negative effect of
color cast could be counteracted very well with the ACE method. The same is true for the
Marine Snow particles and the MSR algorithm. Blur and haze are not that problematic for
background subtraction and reducing their impact - e.g. with the LbD method - did not show
great improvements. The last degradation, caustics, is not addressed specifically by any image
enhancement and their effect on the segmentation results could not be significantly mitigated.
Methods like ACE or LbD even seem to increase the problem by making the caustics more
prominent.

In contrast to that, the results for the optical flow were very consistent for each image enhan-
cement method. It suffered drastically from the MSR since this method reduced the number of
detectable features further. However, accuracy could be gained by adding the LbD because this
made the features more distinct and easier to detect. Nonetheless, even with image enhancement,
the optical flow approach could not produce meaningful results for some videos and overall is not
competitive with the background subtraction approach.

In total, these experiments proved that background subtraction should be the favored change
detection method for underwater scenes because it can handle the degradations far better than
approaches based on the optical flow. Furthermore, it can be stated that the effect of the image
enhancement methods is very volatile, strongly depending on the specific underwater scene
and the degradations which are present. A poorly chosen image enhancement can often have
a negative effect on the segmentation result, e.g. ACE on videos that do not have a color cast.
Therefore, they should be chosen and applied very carefully but, in general, a combination of
background subtraction and MSR seems to be the most promising approach for an unknown
scene since MSR had almost no negative effects when used on videos without Marine Snow.
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7 Underwater Change Detection

With this first evaluation of different change detection methods on the UCD dataset in conjunction
with four underwater image enhancement methods, it became clear that an image enhancement
preprocessing step alone will not be sufficient to counteract the degradation effects in the under-
water environment. The degradations are too diverse and the effect of the enhancement methods
too unstable to reliably mitigate all of the negative impacts. Therefore, to deal with the difficult
underwater scenarios, the next step is the adaption of the proposed change detection methods
to this special environment. This will be done by elaborating the GSM background modeling
process presented in Section 4.1 and using an improved way to automatically adapt some of the
parameters. Also, the special but important case of very crowded underwater scenes – with many
fish swimming behind and in front of each other – will be discussed and a method is proposed
that at least minimizes the negative effect this has on the background modeling.

7.1 Extension of the GSM - eGSM

The proposed GSM approach is a fast and flexible model which proved that it can handle in-air
situations quite well. Now, however, it will be extended by superimposing it with the Mixture
of Gaussian (MoG) idea, adding a foreground model and using an enhanced way to define the
parameters. This makes the whole approach more complex and slower but also can increase the
accuracy of the model further which is especially necessary for difficult scenarios like underwater
scenes but can also be beneficially in difficult in-air situations, e.g. when it is snowing or raining.

To achieve this higher model accuracy the two Single Gaussian models that are used in the
standard GSM are replaced by MoG models which are then updated in the same way, one partially
and one complete. Each MoG consists of a variable number of Gaussians (in the experiments
always five are used) and every one of them is described by three values: mean µ, variance σ

and weight w. The mean and variance are similar to the Single Gaussian model since they are a
description of the probability distribution of a Gaussian. The weight, however, is a new variable
needed in the MoG model that reflects the confidence in a specific Gaussian in comparison to the
others in the MoG model. If a specific Gaussian has a high weight, this means that it is supported
by a lot of data (at least compared to the other Gaussians) and therefore a high confidence can be
put into this data. Alternatively, if the weight is low the Gaussian is backed by only a few data
points and is very unlikely to be a static background object.

Hence, to be considered as a part of the background a minimum weight is necessary, otherwise,
the Gaussian is assumed to belong to the optical flow of a foreground object which only appeared
shortly in the video. The minimum weight is defined as a percentage of the sum over all weights
of a MoG. As this sum depends on the number of Gaussians in a MoG, the percentage was set
to 1/#gaussians. Notation-wise, M(µ2,100,100,r) would be the mean of the second Gaussian
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of the red channel of the pixel at location (100,100) and this gaussian would have the weight
M(w2,100,100,r).

The updating process is also slightly different than in the Single Gaussian model, from the mix
of different Gaussians only the one that matches the current data the best should get updated. For
each pixel the color is modeled by three models, each consisting of two MoGs and representing
one color channel. This is similar to the standard GSM where the models for each color channel
are independent of each other. However, if these models are treated completely independently
they would fail to accurately describe the current scene. To understand the problem, imagine a
pixel that switches between black and white. For each channel, there will be one Gaussian that
models high intensity (255) and one that models a low intensity (0). But when they are treated
independently each combination of them would also be possible, e.g. a high intensity in the red
channel and a low intensity in the other two channels. To prevent this, the three channels must be
evaluated and updated jointly. Hence, the three Gaussians that match best with the current pixel
color are given by

gbm = argmin
g=1,...,n

∑
c∈{R,G,B}

(I(v̄,c)−M(µg, v̄,c))2

β ·M(σg, v̄,c)
. (7.1)

The g – e.g. in M(µg, v̄,c) – stands for the Gaussian of the MoG model that is currently compared
against the pixel value and gbm is the best match that was found. The usage of the (L,C1,C2)
color space from Equation 4.4 is not beneficial anymore in this context since all three channels
are evaluated at the same time and therefore a change only in the intensity cannot be identified
anymore. Hence, the standard (R,G,B) color space can be applied to avoid a conversion. After
the best-matching Gaussians are found they can be updated with the new data from the current
frame in the following way

M(σgbm , v̄,c) = α ·M(σgbm , v̄,c)+(1−α) · (M(µgbm , v̄,c)− I(v̄,c))2,

M(µgbm , v̄,c) = α ·M(µgbm , v̄,c)+(1−α) · I(v̄,c),
M(wgbm , v̄,c) = M(wgbm , v̄,c)+1.

(7.2)

This whole updating process is done two times, once for the partially updated MoG and also
for the fully updated one. The partial MoG is obviously only updated in the areas classified as
background. One constraint for this updating is that there is one Gaussian that matches the current
color of the pixel. If even the best match cannot meet a minimum threshold none of the Gaussians
are updated and instead, a new Gaussian must be created based on the new value from the current
frame. If there exist already the maximum number of Gaussians in the MoG the Gaussian with
the lowest weight has to be deleted and replaced with the new Gaussian. The minimum threshold
TnewGaussian is checked with the following inequality

∑
c∈{R,G,B}

(I(v̄,c)−M(µgbm , v̄,c))
2 < TnewGaussian, (7.3)

where TnewGaussian was set to 0.015 for the experiments on the UCD dataset. This threshold
prevents the creation of new Gaussians that are very similar to the existing ones but should
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also not be chosen too large as it would prevent the modeling of different objects in different
Gaussians, which is the principle idea of the MoG. If a new Gaussian has to be created it will be
initialized with

M(σgbm , v̄,c) = I(v̄,c),

M(µgbm , v̄,c) = ζ,

M(wgbm , v̄,c) = 1,

(7.4)

similar to the initialization of the standard GSM.
To not run into overflow problems after some time (the weight increases by 1 with each update)

and, more importantly, to diminish the effect of old data, a decay factor δ is introduced and
applied on all weights of the whole model. This is done with every new frame in the following
way

M(wg, v̄,c) = δ ·M(wg, v̄,c) ∀g ∀c ∀v̄. (7.5)

In the underwater scenes a δ of 0.995 proved to be ideal. Another important change to the Single
Gaussian model is that the α value, which is the key parameter for the updating process, is not
static anymore but determined dynamically based on the weight of the specific Gaussian. If
a Gaussian is selected to be updated the α will be dynamically set to 1

M(wg,v̄,c)
but it is always

capped at 0.5. Hence the value of δ also controls the update rate α and is thereby the most
important parameter for the background modeling.

Together, this ensures that Gaussians which until now only got very few data points to back
them up or only old data points which are not reliable anymore adapt quickly to new values. At
the same time, Gaussians which were updated frequently (and therefore have a high weight) will
receive an update with a small α and are not strongly affected by single outliers. Consequently,
the decay factor has a strong impact on the update rate, especially in longer videos where the
decay rate dominates the update rate. For example, a δ of 0.995 means that the sum of all weights
in a MoG model will tend to 200 but never reach it. Therefore, α will always be greater than
0.005.

Furthermore, the parameter β is also dynamically adjusted based on the current video instead of
giving it a fixed value. This makes the approach more universally applicable to different scenarios
and requires less user interaction. The value of β, e.g. in the Equations 7.1 or 7.8, controls the
sensitivity of the whole model to changes in the scene and is therefore very important for the
detection of objects. This sensitivity should be dependent on the amount of change present in
the scene (e.g. through camera noise, moving objects or a tree waving in the wind) so that in
a very noisy scene the sensitivity is reduced and vice versa. For that reason, β is defined as a
comparison between the current and previous frame of the video in the following way

β = (1−αavg)β+αavg
∑v̄ ∑c∈{R,G,B}

p
|Iold(v̄,c)− Inew(v̄,c)|
∑v̄ 1

. (7.6)

This is an updating process similar to a running Gaussian update, with the initialization of β = 1
and αavg as the average of all α values used in the last updating of the background model. The
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square root of the absolute value is taken so that large disparities (e.g. due to moving objects) are
not overrated and dominate the whole sum. To save processing time, this updating can be done
over a smaller version of the original frames or over a randomly sampled subset of pixels instead
of using a sum over the whole frame. In experiments 1000 randomly selected pixel proofed to be
sufficient and also small enough to not significantly influence the run-time.

Besides the two MoG models, there is also a foreground model that is created and will be
updated simultaneously. It consists of a simple SG model as only the latest visible foreground
object should be modeled for each pixel. The update rate α is a fixed value as there is no weight
which could control it (compare with equation 4.2). It should be set relatively low so that the
model learns a new foreground object fast enough before it disappears again, for the UCD dataset
it was set to 0.64. The updating process is in a way the reverse version of the partial updating
scheme, only the parts of the scene that were detected as foreground will get updated. The
usage of a foreground model is especially promising in underwater scenarios with fish since they
often are very similar to each other and therefore the model does not have to change drastically
between different foreground objects. This argument does not hold for most in-air videos where
the foreground objects usually exhibit radical change, e.g. cars of different colors or humans with
different colored clothes. Of course, there are also some underwater scenes with many different
colorful fish or other creatures, however, these scenes are usually not in Europe and these fish are
often not economically important, e.g. grown in aquacultures.

After the model is created, the segmentation itself is then done by comparing the current frame
with the two MoGs. The MoG model is assumed to agree with the current pixel color if the
following inequality holds

0.5 < exp − max
g∈{1,...,n}

∑
c∈{R,G,B}

(I(v̄,c)−M(µg, v̄,c))2

β ·M(σg, v̄,c)
. (7.7)

However, not all Gaussians are considered for this check. Only the Gaussians that have a weight
that exceeds the minimum weight (M(wg, v̄,c)> 1

n ∑
n
k=1 M(wg, v̄,c)) are considered part of the

background model and therefore qualify for this check.
After this check, there are three possibilities. If the pixel matches with at least one Gaussian in

both MoGs it will be classified as background and if it does not match with any Gaussian in the
models it will be seen as a foreground object. More difficult is the last situation when the current
pixel value agrees with only one of the models. To solve this problem the foreground model for
the corresponding pixel is used as a tiebreaker by evaluating the inequality

0.5 < exp − ∑
c∈{R,G,B}

(I(v̄,c)−M(µ, v̄,c))2

β ·M(σ, v̄,c)
, (7.8)

where M(µ, v̄,c) and M(σ, v̄,c) are the values from the foreground model. If the inequality holds
the pixel matches the foreground model and therefore should be marked as foreground, otherwise
background.

Similar to the original GSM algorithm, there is an adaption of the partially updated MoG
to the fully updated MoG to compensate for the weaknesses of partial updating scheme. Such
an adaption should occur when there is something in the scene which is static and constantly
classified as foreground, because then, with a high probability, an error in the background

128



CHAPTER 7. UNDERWATER CHANGE DETECTION

modeling happened and should be corrected. To detect such an error the first condition is that the
fully updated MoG and the foreground model are similar since this indicates that this pixel has
been mainly classified as foreground in the recent past. The models are considered similar if

∃g∀c M(µBG
g , v̄,c)−M(µFG

g , v̄,c)<
M(σFG

g , v̄,c)
2

. (7.9)

Here M(µBG
g , v̄,c) is the mean value of the partially updated MoG model and M(µFG, v̄,c) is

accordingly the mean value of the foreground model. This similarity could also occur when there
appear many foreground objects in a short period of time. To filter these events out the variance is
used as well since foreground objects usually generate higher variations in the pixel color due to
their movement. Hence, the second condition is a small variance and the limit is set to the median
of all variances of the completely updated MoG to have an automatically adapting threshold
which does not require any input parameters. If both conditions are fulfilled (inequality 7.9 and a
small variance) an error in the partially updated MoG is very probable and therefore the model is
overwritten with the values from the fully updated MoG to restart the model.

Lastly, it can occur that two Gaussians in one MoG get very similar over time. These Gaussians
then should be unified as they are modeling the same object. The similarity between Gaussian g1
and g2 is checked with

∑
c∈{R,G,B}

(M(µg1 , v̄,c)−M(µg2 , v̄,c))
2 < min

g∈{g1,g2}
∑

c∈{R,G,B}
(M(σFG

g , v̄,c))2 (7.10)

and if the inequality holds, the old Gaussians are deleted and a new Gaussian is created with the
following values

M(µgnew , v̄,c) =
M(wg1 , v̄,c) ·M(µg1 , v̄,c)+M(wg2 , v̄,c) ·M(µg2 , v̄,c)

M(wg1 , v̄,c)+M(wg2 , v̄,c)
,

M(σgnew , v̄,c) =
M(wg1 , v̄,c) ·M(σg1 , v̄,c)+M(wg2 , v̄,c) ·M(σg2 , v̄,c)

M(wg1 , v̄,c)+M(wg2 , v̄,c)
,

M(wgnew , v̄,c) = M(wg1 , v̄,c)+M(wg2 , v̄,c).

(7.11)

Altogether, this extension of the GSM leads to a complex but also more robust and accurate model
building process since now several different objects can be represented by the model at the same
time and the update rate adapts itself automatically based on the confidence the model has in the
data. Especially in the difficult underwater scenes, this proved to be very advantageous compared
to the standard GSM. Three examples of modeled backgrounds can be seen in Figure 7.1.

7.2 Segmentation of Crowded Underwater Scenes

In underwater videos, the scene can become very crowded when whole swarms of fish appear
and this can cause several problems for the segmentation process. For once it becomes very
difficult to separate the individual fish as they swim in front and behind each other, however, if
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Figure 7.1: The right side depicts three background models created with the eGSM and on the
left are the corresponding original frames from the video. The background models
are visualized by taking the Gaussian with the highest weight of the partially updated
MoG and displaying the mean of it.

the swarm stays permanently in the scene another problem arises with the background modeling.
The concept of the background modeling is based on the idea that the objects in the background
will be visible most of the time and therefore the model will learn the pixel values that are visible
most of the time. If now in more than 50% of the time a fish is visible at a certain location, the
model will tend to learn the color of the fish. This is especially true for fish since they tend to
be very similar in color and then the model will learn the grayish color of the fish instead of the
real background pixel value. A very good example of this is the Fish Swarm video of the UCD
dataset where there are many fish constantly swimming back and forth in the middle of the scene.
An example of the problems normal background modeling algorithms have with this is depicted
in Figure 7.2.
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7.2.1 Optical Flow as Pre-Segmentation in Crowded Scenes

An improvement of the background modeling is not able to solve this as it will by design model
the objects visible most of the time. However, if the time the fish – or more general: moving
objects – are visible can be reduced, this would aid the background modeling process immensely.
To achieve this, a second segmentation approach will be used to create coarse pre-segmentations
which are then applied as a mask to reduce the time the foreground objects are visible for the
background modeling. These pre-segmentations are created based on the optical flow method
because of two reasons. First, the optical flow can be used for change detection and thereby
is as general as background subtraction and should in theory segment the exact same objects.
Other possible approaches like machine learning algorithms are always limited to one or two
specific kinds of objects and therefore their whole aim is already different than for background
subtractions methods. The second reason for using optical flow based methods is that they use
a completely different approach to detect change in videos. Therefore, they are less likely to
suffer from the same problems and create the same errors than background subtraction algorithms.
Also, it does not have any training phase and therefore can be used immediately for the learning
phase of the background subtraction. As shown earlier, the accuracy of optical flow approaches is
often not competitive in underwater scenarios, however, since the method is only used to create
coarse pre-segmentations this accuracy is sufficient here. As long as it classifies more pixel
correct than false an improvement of the background modeling should be possible by narrowing
down the model learning to background pixels. There exist many different approaches for the
computation of an optical flow, in this work the Flux Tensor will be used because it has some
special advantages in the creation of binary segmentations.

Flux Tensor

Two-dimensional structure tensors have been widely used for edge and corner detection in images,
e.g. in [NP05]. They use the information of derivates of the images and are applied as filters
on the image which makes them computationally very efficient. Motion information can be
recovered in a similar way, but then there has to be a three-dimensional tensor which is applied to
an image volume of a video (see e.g. [NG98; PJB04]).

In an image volume each pixel has not two but three coordinates, additionally to the standard i
and j coordinates there is also a t coordinate which signifies which frame in the video/volume is
meant. So the location v̄ = (i, j, t) in the image volume is the pixel (i, j) in frame t. The optical
flow f (v̄) = ( fx, fy, ft) for v̄ is defined by

∂I(v̄)
∂x

fx +
∂I(v̄)

∂y
fy +

∂I(v̄)
∂t

ft = 0. (7.12)

This formula can be derived with the assumption that each pixel in the first frame is present again
in the next frame

I(i, j, t) = I(i+ v fx, j+ fy, t + ft), (7.13)

and the Taylor series
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Figure 7.2: On the top left is a frame of the Fish Swarm video and the right side the corresponding
background model. It can be seen that especially in the middle, where many fish
swim by, even the eGSM has difficulties modeling the correct objects. At the bottom
is a close-up of this where many fragments of the passing fish are still part of the
background model.

I(i+ fx, j+ fy, t + ft) = I(i, j, t)+
∂I(v̄)

∂x
fx +

∂I(v̄)
∂y

fy +
∂I(v̄)

∂t
ft +O( f (v̄)2). (7.14)

This, of course, is an idealistic view and for real data an energy function has to be derived and
minimized to estimate the theoretical solution. For the least square measure the energy function
can be written as

E( f (v̄)) =
Z

z̄∈Ω

(∇IT (z̄) f (v̄))2W (v̄, z̄)dz̄. (7.15)

The function W (v̄, z̄) weights the impact of different pixels in the neighborhood Ω based on their
distance to the center pixel v̄, usually a Gaussian function is used. As f (v̄) = 0 would always be
an optimal solution for this formulation a normalization factor has to be added so that the final
energy function is defined as

E( f (v̄)) =
Z

z̄∈Ω

(∇IT
(z̄) f (v̄))2W (v̄, z̄)dz̄+λ(1− f (v̄)T f (v̄)). (7.16)

The impact of the normalization is controlled by λ and for this the minimum can be found by
solving the following Eigenvalue problem,

A(v̄,W ) f (v̄) = λ f (v̄), (7.17)
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with

A(v̄,W ) =


R

Ω
W (v̄,z̄)

∂I(z̄)
∂x

∂I(z̄)
∂x dz̄
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∂x
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∂I(z̄)
∂t dz̄R
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∂y dz̄
R

Ω
W (v̄,z̄)

∂I(z̄)
∂y
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∂t dz̄R
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∂t
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∂x dz̄
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∂t
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R
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W (v̄,z̄)

∂I(z̄)
∂t

∂I(z̄)
∂t dz̄

 . (7.18)

The actual computation of the eigenvector v(x̄) is very computational expensive and therefore
estimation approaches have been suggested, e.g. using trace(A(x̄,W )). However, this is just
a measure of the gradient change in an area and cannot distinguish between spatial and tem-
poral changes. Therefore, a new formulation was proposed in [Bun+07] which gives a better
approximation by adding a temporal derivation to every existing derivation in the matrix A,

AF(v̄,W ) =


R

Ω
W (v̄,z̄)

h
∂I(z̄)

∂x
∂I(z̄)

∂t

i2
dz̄

R
Ω
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∂I2(z̄)
∂x∂t
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R
Ω
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(7.19)
The Flux Tensor is then defined by the trace of this new matrix,

trace(AF) =
Z

z̄∈Ω

W (v̄, z̄)
h

∂2I(z̄)
∂x∂t

2
+

∂2I(z̄)
∂y∂t

2
+

∂2I(z̄)
∂t∂t

2i
dz̄

=
Z

z̄∈Ω

W (v̄, z̄)k ∂

∂t
∇I(z̄)k2

2dz̄.
(7.20)

The additional temporal derivations ensure that only movements (temporal changes) will be
detected by this trace.

By computing the Flux Tensor one value per pixel is obtained which represents the magnitude
of motion in that area and this can be thresholded to get a binary segmentation. In contrast to
most other optical flow approaches the direction of movement is not computed, this information
would be useful for the separation of overlapping foreground objects or in tracking tasks. If
this additional data is necessary or useful, other optical flow approaches might be favorable (see
for example Section 4.2.3), however, for binary segmentations the direction of movement is
completely irrelevant. Nonetheless, one problem that occurred was uniform objects, the Flux
Tensor does have difficulties segmenting the interior of these objects and often only detects the
edges as moving. To cope with this behavior a density-based spatial clustering is applied after
the thresholding and the next step is the construction of a convex hull around these clusters
of foreground detections. This method can detect most of the moving objects but the created
segmentations do not reflect the actual shape of the objects very well. Segmentation methods
based on the optical flow, in general, have problems with an accurate shape determination of
foreground objects but here this problem is enhanced by the coarse shape estimation of the convex
hull. Two examples of both steps of the algorithm can be seen in Figure 7.3.
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Figure 7.3: The Flux Tensor on two examples with fish as moving objects. The images in the
middle show the result of the actual Flux Tensor, higher intensities depict higher
detected movement. On the right side is the segmentation after the clustering and
building a convex hull around the foreground these clusters. The noise, especially in
the upper example, is due to the Marine Snow which get detected very well by optical
flow approaches.

To mitigate some of the accuracy problems optical flow approaches have in underwater
scenarios more than two frames were used for the computation of the Flux Tensor. For once, this
allows the computation of two Optical Flows, one between the current and the previous frame
and a second one between the current frame and the next frame. If the results of these two are
averaged it becomes less likely to miss movement and thereby the overall result is improved.
Furthermore, if more frames are available the computation of the derivates can be more exact,
especially the second derivative in the time domain. Therefore, altogether nine frames are used
for the computation of the Tensor Flow, namely: the current frame, the last four previous frames
and the next four frames of the video. This adds a bit of complexity but mainly increases the
memory requirements as all of these frames have to be kept in the main memory and it also makes
it necessary to always wait until the next four frames of the video stream were received until the
computation of the Flux Tensor can begin. However, these are only small limitations and the
overall accuracy can be improved by this usage of more frames. The runtime is even then only
around 0.025 seconds for one HD frame on one 3.4 GHz CPU Core and therefore the algorithm
can easily be run in real-time.

For a new frame of the video the Flux Tensor segmentation is first computed and then used to
exclude all detected foreground areas from the updating process of the background model. This
can reduce the number of foreground objects the background model is exposed to drastically
and thereby prohibits the inclusion of foreground information into the background model. The
principle is similar to that of the partial updating scheme which excluded pixels that are classified
as foreground from the updating. However, this does only work if the background model is
already accurate and a good segmentation can be provided. In a scene that is constantly crowded
no reliable background model can be created and therefore the partial updating scheme fails.
Here the pre-segmentations show their strength as they help to build an accurate model in the first
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Figure 7.4: Effect of the Flux Tensor pre-segmentations on the background modeling. In the
top row are from left to right the ground truth image, the segmentation of the eGSM
method with pre-segmentation and the same without pre-segmentation. Below that
are the original frame and the corresponding visualizations of the two background
models. The last row shows a close-up of the background models in an area where
many fish were passing by. The model created with pre-segmentations (left) has fewer
artifacts of fish and is also not as blurry.

place. If a reliable model has once been established the additional pre-segmentations can even be
deactivated since the partial updating scheme will prevent the corruption of the model, at least for
a long time. An example of this effect can be seen in Figure 7.4 where the Fish Swarm video
from the UCD dataset was segmented with the eGSM, once with and once without the usage
of these pre-segmentations. The visualization of the background model is created by taking the
Gaussian with the highest weight of the partially updated MoG and displaying the mean of it.
When eGSM is used hereafter, the pre-segmentations are always included.

7.3 Spatial Methods

Similar to the in-air case a spatial method should be added here as well. The assumptions of
natural images apply equally to underwater videos and, therefore, the same methods that were
discussed in Section 4.2 should be useful. However, the degradation effects might have negative
(or positive) impacts on the effectiveness of these methods and this will be evaluated in the
following on the UCD dataset.
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Markov Random Fields

Like for the in-air footage of the Wallflower dataset the MRF model can smooth the segmentations
very naturally. Also, small false detections due to noise are removed but larger defects in the
segmentation are preserved by the MRF because it does not use the image itself but only the
probability map derived from the background subtraction. Therefore, it cannot repair large errors
of the background subtraction but only make them spatially more coherent. Examples of this can
be seen in Figure 7.5, in the small Aquaculture scene some areas at the right side are so noisy that
they are not removed and in the Marine Snow scenario are some small shadows that are removed
after the application of the MRF model but the large shadow in the left bottom of the scene stays
since it is too large. Overall, it gave the visually most accurate and pleasant result and does not
need any adaption for the underwater scenario since the assumptions for natural images apply
equally underwater.

N2Cut

The N2Cut from Section 4.2.2 adapts the segmentations from the background subtraction to
edges in the current frame. This can produce great results if there are strong edges between
the foreground objects and the background, an example of this are the results on Wallflower
dataset (see Figure 4.14). Unfortunately, underwater scenes are usually quite blurry and this
makes the adaption to existing edges in the frame difficult. This can lead to a situation where
the adaption process does not stop, since it does not find any suitable edge, and degenerates the
segmented objects to simple rectangles or lets them vanish completely. The impact of the N2Cut
on the segmentation is regulated by the different sizes of the frame it is run on. If the image is
downscaled the effect and range of the N2Cut grow drastically with each additional layer in the
image pyramid (see Section 4.2.2) and similarly the effect is locally very limited if it is only used
on high-resolution images without downscaling.

To prevent this degeneration in underwater images without sharp edges it is necessary to limit
the effect of the N2Cut and only run it on the largest scale. With this restriction, slight adaptions
of the borders are still possible but the deletion of small false detection (e.g. Marine Snow)
can often not be done anymore by the N2Cut as the effect is too locally limited. Hence, it was
necessary to introduce a minimum object size so that all detected objects below a certain size are
counted as noise and will be deleted. This minimum size takes care of larger errors like Marine
Snow detections or noisy areas while the N2Cut can still adapt the borders of the larger objects
slightly and closes small holes inside of them. In Figure 7.5 are two examples of the effect of the
N2Cut depicted, it was only run on the original size of the frame and the minimum size of objects
was 1000 pixels.

Temporal Trajectories

The positive effect of the temporal trajectories is mostly limited by the accuracy of the dense
optical flow (DOF) which is used to compute the trajectories over several frames of the video.
As already discussed, Optical Flows tend to lose accuracy in underwater videos because there
are less detectable features and less contrast between moving and static objects. Therefore, the
impact on the segmentations, although overall positive, is lower than in the previously presented
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methods and the segmentations often stay fragmented. An example can be seen in Figure 7.5
where it was run on the two fish video and the Fish Swarm scene of the UCD dataset. The problem,
especially on the Fish Swarm video, is that many fish are not detected by the optical flow as they
are too similar to the background. Therefore, many areas that were correctly detected at first are
afterwards classified falsely as background. Overall, this method seemed to cope the worst with
the special situation in underwater scenes and one of the two previous methods (N2Cut or MRF)
should be preferred.

7.4 Evaluation

For the evaluation on the UCD dataset the three background subtraction methods which have
implementations in OpenCV are used again, similarly to the evaluation of the underwater image
enhancement. The implementation of the algorithm from [KB02] is done in CUDA and hence
runs on the graphics card and is faster than the other two who are executed on the normal CPU,
but all of them are fast and capable of real-time segmentation of HD videos. An optimization of
the parameters of these algorithms was done, but no real positive effect could be achieved for the
implementations of [Ziv04] and [ZH06], it appears they have an automatic parameter adaption
that works very well. For [KB02] the optimization had a significant effect, the overall F1-Score
went from 0.4513 to 0.7527.

A comparison between these methods, the original GSM and the proposed algorithms, is given
in Table 7.1 and 7.2. It shows that the eGSM (including the pre-segmentations) is a substantial
improvement to the original GSM on each of the five videos and also outperforms the other
methods on the whole dataset. In the Fish Swarm video the largest improvement could be
achieved, mainly because of the pre-segmentations which made it possible to create a better
background model of that scene. Nonetheless, not all fish in the Fish Swarm video could be
detected since some of them barely move or are almost indistinguishable from the background. In
the other four videos of the dataset the fish could be detected very reliable by the eGSM approach
and the problems there mostly consist of false detections of shadows caused by the fish or caustics
on the water surface. It is a complicated task to avoid these errors since the algorithm needs to
be very sensitive to detect fish even when they are similar to the background which then causes
these false detections. Also, the best indicator to distinguish shadows from real objects is the
hue because shadows darken the scene but the hue should stay almost constant when a shadow
appears. In contrast to that, a real moving object will change the brightness and the hue. However,
this color information is deteriorated in underwater scenes which makes the detection of shadows
even more complicated.

The usage of this eGSM approach on in-air scenes did not provide any substantial improvement.
For the Wallflower dataset the number of falsely classified pixels decreased slightly from 9718
(normal GSM) to 9600 (eGSM). The advancement here is mainly because of the advanced
background model updating algorithm, the pre-segmentations have almost no influence.

The addition of any of the three presented spatial methods could further improve the results on
the underwater videos, not only visually – as already shown – but also in a concrete comparison
against the ground truth data. In Table 7.1 it can be seen that the temporal trajectories performed
worst, as already assumed, with only a minor improvement overall, they reduce the false positives
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MRF

N2Cut

Temporal Trajectories

Figure 7.5: The effect of the three different spatial methods on the UCD datasets. On the left is
always the original image, in the middle the segmentation with the eGSM background
subtraction and on the right side is the result after the corresponding spatial method
was included.
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drastically but at the same time increase the number of false negative classifications. The MRF
model achieved a drastic reduction in false positive classifications without affecting the other
categories negatively and therefore showed a more substantial improvement in the aggregated
results. Nonetheless, the best segmentations by far were created by the N2Cut which – in contrast
to the other two methods – was able to increase the number of true positive results. This is a bit
surprising as the lack of sharp edges should obstruct the N2Cut but the limitation of the effect of
the N2Cut in combination with the minimum object size seem to work together very effectively.

It should be noted that the results for each video differ drastically, e.g. the temporal trajectories
can achieve the best results of all algorithms on the Caustics video and the greatest improvement
among the spatial methods in the two fish video. In the Fish Swarm video, however, it decreased
the results significantly and therefore could not compete in the overall results with the other
approaches. In Figure 7.6 some results of the eGSM in combination with the N2Cut are depicted
and compared with the ground truth images.

The addition of underwater image enhancement to this advanced method has similar effects
as discussed in Chapter 5 with the standard GSM. It would be too much and confusing to now
test all different background subtraction methods with all different spatial methods and all image
enhancement approaches, especially since the effect is very similar, independently from the
specific background subtraction of spatial method. As an example only the combination of the
most promising methods – eGSM+N2Cut with a previous MSR – shall be presented, it could
achieve an overall F1-Score of 0.8532, which is a noticeable improvement over the 0.8371
without MSR. The improvement was, as expected, mainly in the videos with strong Marine Snow
(Two fish video: from 0.8245 to 0.8977 or Marine Snow video: from 0.9100 to 0.9252) and in
other videos there was hardly an effect or even a decrease in accuracy (Fish Swarm video: from
0.8459 to 0.7821).
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Algorithm True Negative True Positive False Negative False Positive F1-Score

[Ziv04] 897,659,412 76,555,440 52,934,753 11,723,995 0.6713
[ZH06] 887,967,097 93,919,051 36,656,258 20,331,194 0.7515
[KB02] 872,346,370 106,827,320 40,266,356 13,682,950 0.7527
GSM 892,599,998 84,349,046 44,709,358 17,215,198 0.7036
eGSM 879,524,562 111,071,329 20,976,510 25,227,599 0.7965

eGSM+Trajectories 888,905,557 98,456,774 29,168,633 9,901,036 0.8159
eGSM+MRF 887,107,298 110,810,067 20,803,490 8,079,145 0.8194
eGSM+N2Cut 872,360,637 116,926,034 30,167,642 17,345,687 0.8371

Table 7.1: The results of the proposed algorithms and three different background subtraction
methods on the UCD dataset. The result of the normal GSM is amongst these three
approaches and only by extending the GSM can a considerable improvement over
existing methods be achieved. These results can be further enhanced by adding a
spatial method. Here, the N2Cut showed the most significant improvement, similar to
the in-air scenes of the Wallflower dataset. The amount of foreground (TP+FN) is not
constant because of the small uncertainty area (gray) in the dataset. The F1-Score here
is the average of the F1-Scores of the five videos (see Table 7.2), the other values are
the sums.

Algorithm
Video Fish Swarm Marine Snow small Aquaculture Caustics two Fish

[Ziv04] 0.3033 0.8182 0.7030 0.7383 0.7938
[ZH06] 0.5904 0.8244 0.8828 0.7533 0.7068
[KB02] 0.6320 0.8162 0.8600 0.6048 0.8507
GSM 0.5691 0.8361 0.7734 0.5499 0.7898
eGSM 0.7537 0.8908 0.8684 0.6524 0.8174

eGSM+Trajectories 0.6660 0.9104 0.9021 0.7553 0.8456
eGSM+MRF 0.7514 0.9053 0.9133 0.7046 0.8223
eGSM+N2Cut 0.8459 0.9100 0.9332 0.6719 0.8245

Table 7.2: The F1-Scores of the algorithms from Table 7.1 for each video of the dataset separately.
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Figure 7.6: One frame of each of the five videos of the UCD dataset. From top to bottom are
shown the videos: Marine Snow, Fish Swarm, small Aquaculture, Caustics and two
fish. In the middle column are the segmentations of the proposed approach and on the
right the hand-segmented ground truth images.
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7.5 Conclusion

After dealing with the general change detection in the first part of this thesis and then introducing
the UCD dataset and evaluating different image enhancement methods on it in the second part;
this chapter dealt with the adaption of the presented background modeling approach to this new
and difficult environment. The first steps were the merging of the GSM with the MoG idea,
adding a foreground model and making the parameters more adaptive to the current scene. This
made the whole process slower and more complex but showed great improvements in accuracy
on the UCD dataset. Nonetheless, for simpler in-air footage like the Town Center video [BR11],
usually, the normal GSM is usually still sufficient and preferable because of its lower runtime
and complexity. Another special difficulty of underwater scenes is crowded scenes with many
fish due to the swarm behavior of them. For this reason, a pre-segmentation based on the Flux
Tensor computation of the optical flow was introduced that improved the background modeling
drastically by filtering moving objects out of the modeling process at the very beginning. In
the Fish Swarm scene of the UCD dataset this problem was most prominent and, consequently,
the greatest improvement could be achieved on it with the new eGSM in combination with
pre-segmentations (from 0.5681 to 0.7537 F1-Score). However, also in the other four videos
these changes could improve the results significantly.

In a next step, the spatial methods of the previous section were evaluated. They showed similar
results to the in-air footage of the Wallflower dataset. All of them could improve the results of
the pure eGSM approach and their rankings, as well as weaknesses and strengths, were almost
the same as for the in-air dataset. One difference was that the temporal trajectories were overall a
bit worse than the MRF method because the computation of the dense optical flow in underwater
videos is not as reliable. Because of this unsteadiness in the computation of the optical flow, the
results of the temporal trajectory method were quite variable; in some videos it excelled (e.g.
Caustics where it could produce the most accurate results) and in others it made the eGSM results
worse (Fish Swarm). Overall, the N2Cut proved to be by far the best method as it consistently
increased the results in all five videos, achieved the best overall accuracy and is also the method
with the lowest runtime.

In the end, the results of the spatial methods for the underwater videos were quite similar to
the in-air case discussed in Chapter 4, especially for the N2Cut approach. This still holds if any
of the four image enhancement methods from Chapter 6 is added. Therefore, the combination of
eGSM + N2Cut with MSR as a preprocessing step is the overall preferred method for underwater
change detection.

Consequently, the eGSM + N2Cut combination will be used in the next chapter to create
the segmentations for the tracking approach. From the runtime perspective, the eGSM without
pre-segmentations takes about three times as long as the normal GSM because of the advanced
updating mechanism. When pre-segmentations are used (and when not mentioned otherwise they
always are), this increases slightly to around four times of the GSM runtime. With a parallelization
similar to the one described in Figure 4.10 the segmentation of around 10 HD frames per second
is possible with an eGSM + N2Cut combination. The memory consumption, in this case, is
around 700 MB. For the tracking in underwater scenes the MSR is added to this combination. It
needs about 1 second per HD frame (Single Core on a Desktop PC), and therefore, a real-time
capability is hard to achieve, even with parallelization. However, the memory consumption is
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very low with only 40 MB.
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8 Underwater Blob Tracking

To extract valuable information from the segmentations derived from change detection, e.g. about
the behavior of fish, it is necessary to associate the detected objects with found objects in the
previous (and succeeding) frames. With these associations, a tracking of individual objects can be
realized and allows the computation of movement speeds, paths and other valuable higher-level
features. Change detection is a very general approach and not limited to a specific object type,
nor has it the need for a learning phase for every new object class. Therefore, the tracking
approach used should be also very general and not based on any object-specific features (e.g.
eyes, faces, colors, etc.). Furthermore, the similarity of the detected fish in a swarm can be a great
problem. When humans or cars are tracked there are usually quite notable differences between
objects, e.g. in the size (car or truck), color (blue jacket or green jacket) or shape (thin or big).
These differences result in distinct features for each object which can then be matched between
different frames [XLL12; Cam+16]. For different fish of the same species – or even a swarm –
these features have to be expected to be very similar and additionally degraded because of the
underwater scenario. Another distinguishing attribute which is often used in in-air tracking is
depth, however, it is very hard to obtain depth information in underwater scenes because of the
refraction and absorption properties of water.

Based on this, the here presented tracking approach will solely rely on the information contained
in the segmentation provided by the change detection. This allows a general usage of the approach
in underwater scenarios as well as in-air videos to track fish, cars, humans or any other moving
object. The strategy used here is in sharp contrast with most other tracking methods where a
specific object detector is trained, e.g. [Shu+12] uses Haar-like features and a SVM classifier to
detect humans. The tracking of any arbitrary foreground detections made by a change detection
approach can become extremely difficult, especially when many objects are present in the scene
at the same time and overlap each other. However, this strategy preserves the generality of the
overall approach and can distinguish even between very similar objects. The first step in the
building of this tracking method is a matching function that evaluates how similar two foreground
detections are.

8.1 Matching Function

At first, all components in the binary segmentations must be extracted so that they can then be
matched against each other. For this, a random foreground pixel is chosen in the segmentation as
the start of a new component. Then all neighboring foreground pixels are added to this component
and this is repeated for all newly added foreground pixels until no further foreground pixels
can be added and then a new, so far unused, pixel is chosen to start the next component. These
components will be called connected components since each pixel in it can be connected to each
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other pixel in that component by a path, a result of this extraction of connected components can
be seen in Figure 8.1.

Figure 8.1: On the left is a segmentation result of the previously described change detection
approaches and on the right side is each connected component colored differently.

Each of these connected components has a list of properties that is used to compare them
against each other, these properties are:

Properties of connected components

• A unique identifier

• Height and width of the bounding box in pixels – BBh,BBw

• Center point of the bounding box – BBx,BBy

• Number of pixels that belong to that connected component – NoP

• Growth rate: change of the NoP in pixels per frame – GR

• Coordinates of the centroid of the connected component – (Cx,Cy)

• Direction of movement (of the centroid) – (Dx,Dy)

• Velocity in pixels per frame (of the centroid) – Vel

• A vector that includes all pixel positions of that component

All properties that rely on a trend/history are initialized as zero (velocity, growth rate) except

the direction of movement which is initialized as Dx =
q

1
2 and Dy =

q
1
2 since it is always

normalized to 1. These properties require two matched components to be computed since they
are defined as a change over time, e.g. the GR is defined as the change in the NoP between
two components. With this information the properties get updated in the fashion of a running
Gaussian with each new match in the following ways
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GRn = α ·GRn−1 +(1−α) ·NoPn−NoPn−1,

Veln = α ·Veln−1 +(1−α) ·
q

(Cxn−Cxn−1)2 +(Cyn−Cyn−1)2,

gDxn = α ·Dxn−1 +(1−α) · |Cxn−Cxn−1|
|Cxn−Cxn−1|+ |Cyn−Cyn−1|

,

gDyn = α ·Dyn−1 +(1−α) · |Cyn−Cyn−1|
|Cxn−Cxn−1|+ |Cyn−Cyn−1|

.

(8.1)

The Direction of movement is afterwards normalized

Dxn =
gDxngDxn +gDyn

,

Dyn =
gDxngDxn +gDyn

.

(8.2)

The α was chosen as 0.9 in the equations above. In this way, one wrong detection of a component
does not completely change these parameters, but they can still quickly adapt to changes (in
around 5 to 10 frames).

The other values can be directly inferred from the connected component itself. With these
properties, a measure of similarity between two components can be derived which will be called
Connected Component Similarity Measure (CCSM) in the following. To compute the CCSM it
is assumed that two connected components (CC1 and CC2) are from consecutive frames. The
lower the CCSM value, the more likely it is that these components represent the same object of
the scene and vice versa. The first part of the CCSM is defined as

CCSMa = |BBh1−BBh2|+ |BBw1−BBw2| (8.3)

+
p
|(NoP1 +GR1)−NoP2| (8.4)

+ |(Cx1 +Dx1 ·Vel1)−Cx2|+ |(Cy1 +Dy1 ·Vel1)−Cy2| (8.5)

+ |(BBx1 +Dx1 ·Vel1)−BBx2| (8.6)

+ |(BBy1 +Dy1 ·Vel1)−BBy2| . (8.7)

In 8.3 the sizes of the different bounding boxes are compared under the assumption that they
should be very similar if the connected components are representing the same object in consecutive
frames. In the next line, the number of pixels is evaluated where NoP1 +GR1 is the estimated
number of pixels in the next frame and should, therefore, be close to NoP2. Then the 2nd root is
taken of that value because it describes a two-dimensional property (the pixels can lie in x- and y-
direction) whereas the other values describe one-dimensional values (e.g. length of the bounding
box in x-direction). In 8.5 the positions of the Centroids are compared and Cx1 +Dx1 ·Vel1 is
the estimated x-coordinate in the next frame which is compared to Cx2. It should be noted that
the direction of movement is always scaled so that k(Dx,Dy)k2 = 1 and therefore Dx ·Vel is the
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Figure 8.2: In the standard coordinate system the pixel marked with a red dot is at position
(0.5,0.5). If the coordinate system is converted to polar coordinates it would be at
(γ,a) with an angle γ of 45◦ and a length a =

p
(0.52 +0.52). The same applies to

the pixel marked in orange, which has the polar coordinates (ζ,b) in the image.

estimated movement in x-direction in pixels per frame. A similar comparison is done in 8.6 and
8.7 with the middle point of the bounding box.

One important aspect that is missing from the CCSM so far is the shape of the detected
foreground object. For this, the bounding box of the connected component is taken and its
coordinate system is transferred to polar coordinates in a new frame with a fixed size of 360×360.
For this, the center of the bounding box is taken and from there the image is sampled in 360
different angles with a sampling rate of 360. In Figure 8.2 the conversion of Euclidean to polar
coordinates is illustrated and in Figure 8.3 an example is given of a connected component in
Euclidean and in polar coordinates.

In order to compare the shapes of two connected components, both are transferred to polar
coordinates and then five different scores are computed. These scores work under the assumption
that the same detected foreground object in two consecutive frames has a barely changed 3D
rotation and pixel size, that means, for example, that the distance and angle to the camera are
similar in both frames. Therefore, the aim of this shape comparison is not to be rotational and
size invariant in contrast to most of the recent work in shape recognition where exactly this is the
objective [WG16; Abu+12]. In this scenario, since fish have very similar shapes, especially if
they are of the same species, the rotation of the fish in the scene can be an important indicator to
differentiate between fish in an underwater scene and should be used.

The first shape feature that is computed is the percentage of detections (or non-detections) that
do not match in both polar images and it can be seen as a general measure of the similarity of the
two detected objects. Let PI1 and PI2 be the binary polar images of two connected components
and PI(ξ,l) the value at angle ξ and length l, the shape feature is then defined as
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Figure 8.3: On the left side is the bounding box of a detected fish from the eGSM approach that
has the dimensions (364,73). This bounding box is converted to polar coordinates to
compare the shapes of different foreground objects, the result of the transformation is
depicted on the right side. After the conversion, the detections have always the size
of (360,360) to simplify the comparisons between them.

Sha = 1−
360

∑
ξ=1

360

∑
l=1

g(PI1
(ξ,l),PI2

(ξ,l)) /(360 ·360), (8.8)

with

g(x,y) =

(
1 if x = y

0 else
. (8.9)

The 360 in the equation comes from the size of the polar images which is fixed to 360× 360
because of the sampling rate. The second feature is based on a comparison of the number of
foreground pixels per angle of the two frames. Since no rotation is assumed the same object
should have a similar extension in each angle in both frames, this is checked with:

Shb =

"
360

∑
ξ=1

360

∑
l=1

g(PI1
(ξ,l),1) −

360

∑
l=1

g(PI2
(ξ,l),1)

#
/(360 ·360) (8.10)

The third and fourth features are similar but evaluate each pixel separately and give them different
weights based on their distance to the center of the original detection. The third feature focuses
on pixels close to the center and the fourth on pixels at the outside. Furthermore, the standard
Euclidean metric is applied so that outliers have a stronger impact.
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Shc =

"
360

∑
ξ=1

360

∑
l=1

s
l

360
·g(PI1

(ξ,l),1)−
l

360
·g(PI2

(ξ,l),1)
2
#
/(360 ·

360

∑
l=1

l
360

) (8.11)

Shd =

"
360

∑
ξ=1

360

∑
l=1

s
360− l

360
·g(PI1

(ξ,l),1)−
360− l

360
·g(PI2

(ξ,l),1)
2
#
/(360 ·

360

∑
l=1

l
360

) (8.12)

The last shape feature compares the contours of both connected components. First, both polar
images are reduced to their contours by scanning each angle separately and only keeping the
pixels as foreground that have a background neighbor along that angle. The result of this are
the binary contour images Cont1 and Cont2 with the same dimensions as PI1, an example of this
can be seen in Figure 8.4. Afterwards, the contours are compared by computing for each angle
the minimal distance in pixels from a contour pixel in one of the connected components to any
contour pixel in the same angle in the other connected component. It is computed in the following
way

She =
360

∑
ξ=1

360

∑
l=1

g(Cont1
(ξ,l),1) · min

l2=−360...360
g(Cont2

(ξ,l2)
,1)>0

|l− l2|

+g(Cont2
(ξ,l),1) · min

l2=−360...360
g(Cont1

(ξ,l2)
,1)>0

|l− l2| /(2 ·360),

(8.13)

where first Cont1 is compared with Cont2 and then the other way around. The term g(Cont1
(ξ,l2)

,1)
is just a check whether the binary contour image is true or false at that position. Furthermore,
there appear negative length values in this expression and they imply that the original connected
component is scanned in the opposite angle and therefore:

Cont(ξ,−l) =Cont(β,l) with β = (ξ+180) mod 360. (8.14)

Finally, with these five shape features the shape component of the CCSM can be easily derived,

CCSMb =

s
∑

k∈{a,b,c,d,e}
Sh2

k . (8.15)

After the first two components that compared general properties and the shapes, the third and last
component of the CCSM focusses on outlier detection. It prevents the matching of connected
components that are e.g. in completely different parts of the frame or have very different sizes but
are otherwise very similar. This is done by using the exponential function so that a large disparity
in one parameter dominates the whole CCSM value. Otherwise the computation is resembling
calculation of the first component (CCSMa) with the Equations 8.3 to 8.7. It is defined as
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Figure 8.4: On the left side is a polar image of a fish and on the right the contour of that polar
image is displayed.

CCSMc = exp |Cx1 +Dx1 ·Vel1−Cx2|− z (8.16)

+ exp |Cy1 +Dy1 ·Vel1−Cy2|− z (8.17)

+ exp |BBh1−BBh2|− z (8.18)

+ exp |BBw1−BBw2|− z (8.19)

+ exp |(BBx1 +Dx1 ·Vel1)−BBx2|− z (8.20)

+ exp |(BBy1 +Dy1 ·Vel1)−BBy2|− z (8.21)

+ exp |(NoP1 +GR1)−NoP2|−0.15 · (NoP1 +NoP2) , (8.22)

where z is a parameter that was set empirically and is based on the image size

z =
√

FrameHeight ·FrameWidth
25

. (8.23)

The subtraction of z in conjunction with the exponential function ensures that only properties
which are very different (outliers) contribute substantially to the CCSMc component. For example,
if the heights of the bounding boxes are less than z pixels apart, the element 8.18 will contribute
less than 1 to the overall sum. However, if the disparity is larger than z it will increase very
quickly so that basically all connected components where the difference is greater than z will
be rejected. The same applies to all the components of the CCSMc in the lines 8.16 to 8.21 and
in 8.22 it is checked whether the overall number of pixel is not changing by more than 15% in
consecutive frames. With these three components, the final CCSM is computed in the following
way

CCSM =CCSMb ·CCSMa +CCSMc. (8.24)
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The multiplication of the values CCSMa and CCSMb ensures that both values are important for
the matching, even though the CCSMb is usually much smaller than the CCSMa. The CCSMc

should always be very small for correct matches and its only purpose is the rejection of wrong
matches.

8.2 Optimal Match Finding

To now compute the best matches between the connected components of two frames according to
the CCSM, the first step is the creation of a list of all connected components for each of the two
frames. However, it has to be considered that two connected components in one frame can merge
into one larger component in the next or vice versa. This can be caused by two or more fish
swimming in front or behind each other but also by segmentation errors of the change detection
approach, two examples of this can be seen in Figure 8.5. To take this into account, not only the
single connected components are considered but also the unifications of two or more connected
components that are close to each other. This means that if three connected components are near
to each other, that the three single components would be considered for matching but also the
three possible different unions of two of them as well as the union of all three of them.

There exist methods for the task of computing the best overall matchings between two frames,
e.g. the Hungarian Method which was originally introduced by Kuhn in [Kuh55] and is still often
used today [LZF12]. However, since the matching method applied here should also take unions
and splits of connected components into consideration, it cannot be used. To find the globally
best matching between two frames gradually matching components (e.g. greedy approach) will
not be enough, the algorithm must look at all objects and their possible matches at the same time.
When splits and unions are allowed this becomes extremely difficult since each component can
be a part of many splits and/or unions. Therefore, an adaption of this method that takes unions
and splits into account is probably not feasible. The here presented method focuses on finding a
local optimum in a shorter runtime.

Considering the possibility of unions of separate connected components makes the handling of
splits and merges more accurate but can also be very computational intensive when many smaller
components are close to each other. For n components the number of possible combinations is

n

∑
k=1

n
k

=
n

∑
k=1

n!
(n− k)! · k!

, (8.25)

which means e.g. 15 combinations for n = 4 or 31 for n = 5. If many small objects are expected
in a scene and time is a concern, it is, therefore, advisable to limit the number of possible unions,
e.g. by only considering unions of at most two or three components. To be considered for a union
the connected components must be close enough together. Here the minimal distance between
the borders is important since that is the region where a split or merge would most likely happen.
Therefore, to be considered close, two pixels have to exist (one from each connected component)
that have a distance of less than TCCdist pixels between them. The threshold is dependent on the
resolution of the video and, therefore, it is set to TCCdist = z (compare with equation 8.23).

A union of two or more connected components consists of all the pixels that belong to each of
the connected components which are combined. Therefore, the same properties can be derived
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Figure 8.5: In the top row are two segmentations of a fish with a low accuracy. This causes
the connected components to merge and split frequently although they all belong
to the same foreground object. In the bottom row are two fish which are accurately
segmented but their paths cross which causes the connected components to merge
into one single component. Both situations are very difficult for the tracking approach
and have to be handled with care.
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as for a connected component, e.g. bounding box, number of pixels and so on. Values like the
growth rate, direction of movement or velocity are averaged over all connected components
weighted by their size. For example, the velocity of a union of t connected components would be

Velunion =
1

∑
t
s=1 NoPs

·
t

∑
k=1

NoPk ·Velk. (8.26)

With these properties defined, the unions can be compared to connected components or other
unions by using the CCSM. The only new thing about the unions is that they also have a list of all
old connected components they are composed of. This is important in case the union splits later
again so that the old connected components can be matched correctly again. An example of the
merging and splitting of components can be seen in Figure 8.12.

When for each of the two frames (between which the matches have to be found) a list of all
connected components and possible unions is created the actual matching can start. For this,
the CCSM is computed for every possible match. That means if the list for the first frame has
length t and for the second frame length s, a t× s Matrix of CCSM values is created. Now, let the
entry (k,u) be the lowest value in the whole matrix, this means that the connected components
k (from frame one) and u (from frame two) are the best possible match at the moment and will
be assigned to each other. These two values and all unions that include one of them – or, if they
are unions already themselves, all connected components that belong to them and unions that
include at least one of them – have to be deleted from the matrix and then the process can be
repeated. This is depicted in Figure 8.6 where the row and column corresponding to the element
(k,u) get deleted and two other elements – indicated in dashed lines – also get deleted because
the corresponding elements contain the just matched elements k and l and therefore a matching in
the next step is not possible.

By repeating this process all connected components from frame one can be matched with
corresponding components in frame two and then the elements in frame two can be similarly
matched with the components found in the next frame (frame three) and so on. By choosing
the relatively simple greedy approach the time for the optimization, after computing the CCSM
values, is neglectable. More elaborated optimization approaches would have to take into account
the overall matching costs for all connected components between several frames at the same time.
This optimization would be computationally very expensive, require the processing of whole
batches of frames (which prohibits any online usage) and promises little accuracy improvement
since parameters that include combined information from several frames are already included in
the CCSM (e.g. velocity or direction of movement).
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Figure 8.6: A correlation matrix between the s elements in frame one and t elements in frame

two. The element (k,u) has the lowest value (is the best match) and for any further
matching all components that include elements from k or u have to be deleted.

In normal situations, this matching works very well but specific situations can be problematic,
e.g. if a new fish appears it cannot be matched since there are no prior detections and hence the
connected component of that fish has to be treated differently. In the following, these special
cases and their handling are discussed.

8.2.1 Special Cases

A different number of connected components in two consecutive frames does not yet mean that
a new fish appeared or an old one disappeared; sometimes a bad segmentation splits a fish in
two and thereby generates two connected components instead of one or two fish swim close to
each other so that their connected components merge to one. These cases can usually be handled
by the algorithm already because it tries to match also unions of connected components that are
close by or expects a split of a connected component that was the result of a merge in the past.
However, if at the end there are still elements left over which cannot be matched, they are handled
as follows:

Leftover Elements in Frame One - Disappearance of an Existing Fish

If an element in frame one is left over it will most likely correspond to a fish that disappeared,
e.g. by swimming out of the scene or swimming so far away from the camera that it cannot
be distinguished anymore from the background. To avoid errors (e.g. by a missed detection),
these elements will not immediately be forgotten but especially tagged and added to the list of
connected components for frame 2. As it could not be matched it will not be shown as an element
in the result of frame two, but in the next step, there will be a trial to match this connected
component to a component in the following frame. Only if the connected component could not
be matched in five consecutive frames will it be completely forgotten. This ensures that the
disappearance of a fish is not just a short time error in the segmentation but consistent over several
frames.
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Leftover Elements in Frame Two - Appearance of a new Fish

If a connected component in frame 2 is left over, it will most likely correspond to the appearance
of a new fish but could also be a misdetection (e.g. of a shadow) or an unfortunate split of
an existing connected component. The last aspect will be checked first by going through all
found matches between frame one and two and checking if the CCSM score can be improved by
adding the leftover component to any of the matches. That means uniting the matched component
in frame two with the leftover component and then computing the CCSM value with this new
component. Most of these unions are already evaluated in the first step of the matching but
sometimes the split of a connected component can happen so awkwardly or the objects move so
fast that the resulting new components are already far away from each other and therefore a union
of these two elements was not checked in the previous step (because they were farther away than
TCCdist).

If an existing match could be improved by adding the leftover component, the component will
be added to that match and everything is done. Otherwise, a new detection has to be assumed
and will be added to the list of components in frame 2. However, similar to the previous case,
this component will be tagged as new and not shown in the results at first. It will only be fully
accepted as an object that has to be tracked if the connected components could be matched for five
consecutive frames. This makes the whole approach more resistant to errors in the segmentation
which is especially necessary since the wrong addition of only one new component can strongly
affect the tracking accuracy of the already tracked objects in the scene.

Leftover Elements in both Frames

If both events happen simultaneously, an old connected component disappears and a new one
appears, completely false matches can occur since at the end a connected component in frame one
that has no true match is left over and also one component in frame two that has no true match.
To avoid that these two are matched falsely a threshold for the CCSM has to be set so that all
matches above this threshold will be rejected. Since the CCSM score already entails an effective
outlier detection (see equation 8.16 to 8.22) this threshold can be set quite high. The CCSM
value, in this case, is dominated by the exponential functions in the outlier detection which are
depending on the image size and, therefore, the threshold is set to

TCCSMmax = expz, (8.27)

where z is also depending on the resolution of the frame (compare with equation 8.23). If the
CCSM score exceeds TCCSMmax no matching will occur and instead the remaining components
will be handled separately as discussed in the previous two paragraphs.

8.3 Results

Evaluating and comparing tracking algorithms is more difficult than the evaluation of change
detection methods. First of all, the creation of ground truth data can become very cumbersome
and ambiguous even for humans – especially in crowded scenes – and, in addition to that, the
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Figure 8.7: Comparison of the tracking method from [PF14] (right) with the proposed algorithm
(left). In both cases a bounding box is drawn around the detected objects and the path
tracked so far is shown with a small dot for each previous detection. Each tracked
object has a specific ID and a color which is assigned to that ID. On the left side is
also the background subtraction result overlayed over the actual image.

comparison of the results with the ground truth data is not as well defined as for change detection,
e.g. when does an object counts as detected? which objects should be detected? and so on. This
is further complicated by the very different approaches to this problem. There exist single camera
systems, stereo camera systems but also multi-camera systems with many cameras from different
perspectives which are later combined. Furthermore, some approaches use neural networks or
similarly trained detectors which then only detect specific objects (mostly humans) and have no
consideration for other moving objects in the scene like cars or animals. More general approaches,
like the here presented, detect all moving objects and therefore would detect cars also. This
makes a direct comparison very difficult and often unfair since the algorithms pursue different
aims.

Although there exist several datasets for evaluating tracking algorithms, there is so far, again,
no dataset with underwater videos. Therefore, an evaluation on in-air data will be done and
the first dataset is the one presented in [PF14]. The aim of the Arena dataset is the detection
of unusual (criminal) behavior and not the comparison of tracking algorithms. However, they
provide the detection and tracking data of their own algorithm, so it can be used for the higher
level tasks of behavior analysis. The proposed approach will be compared with their data on the
video with the ID 06_011. Since no ground truth data for the tracking is provided only a visual
comparison of the results is possible but it allows the underlining of some of the specialties of the
proposed approach compared to most other tracking methods.

A first impression of the results can be seen in Figure 8.7 where two humans were tracked. The
situation is quite easy and therefore both methods could track the humans without problems but it
can be seen that the approach from [PF14] only gives bounding boxes of the found detections
whereas the proposed approach gives more exact sets of foreground pixels that belong to the
detected object. Therefore, in the tracked path every step of the human can be seen clearly since
the body goes up and down slightly with each step. In the method of [PF14] these nuances are

1http://www.cvg.reading.ac.uk/PETS2014/a.html
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Figure 8.8: On the left side is the proposed approach where the car is tracked since it is a moving
object. On the right side is the data from [PF14], there the car is not tracked since the
method focuses on humans. There are also some wrong detections at places where
humans previously left the field of view of the camera.

lost and the paths are almost straight lines.

Detection: Humans vs all Moving Objects

In Figure 8.8 the proposed approach detects all moving objects, even the car, whereas the method
of [PF14] tries to detect only the humans and does not track the car. Either can be advantageous,
depending on the situation and task, however, one problem with the detection of specific objects
is that they depend on pre-trained data and cannot correct errors later. For example, in the Figure
8.8 the tripod is mistakenly recognized as a human and this detection stays there constantly for
the rest of the video. Of course, the background subtraction also makes errors but these errors
vanish over time as the background model adapts to the new situation and therefore this method
is overall more stable, especially for longer periods.

Occlusion Handling

Normally, tracking algorithms try to track the different objects through occlusions which can be
seen on the right side of Figure 8.9. The proposed method, however, only looks at the detected
foreground blobs and therefore cannot differentiate between them during the occlusion but tries
to match the objects correctly after the occlusion based on their expected movement. A good
example for this in an underwater scene can be seen in Figure 8.12.

Fragmentation

Since the proposed approach does not try to detect specific objects but any movement, in general,
it is more prone to fragmentation errors. An example of this can be seen in Figure 8.10 where the
human is divided into three smaller detections. Normally, the handling of splits and merges would
unite these three components and treat them as one, but in this case, the human just appeared
from the left side and, therefore, it is unknown yet if these three detections belong together or if
they represent three different objects. The approach from [PF14] handles this situation better and
detects the human as a whole, although the bounding box is quite inaccurate.
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Figure 8.9: The proposed algorithm (left) sees the objects as one blob during the occlusion
whereas the approach of [PF14] and most other tracking approaches try to track the
different objects during the occlusion.

Different Detection and Tracking Errors

The tracking accuracy of the proposed approach seems to be higher overall, an example of a
difficult situation is given at the top of Figure 8.11. The detection of the human becomes difficult
for both approaches at some point; that can be seen very well in the left image where the track
is at first accurate and stable but becomes messy and confusing at some point because of a very
low detection accuracy. However, the proposed approach tracks that human constantly and does
not lose the track whereas in the data of [PF14] the track is lost and a new ID created so that the
human seems to appear out of the middle of the street. In the lower part of that Figure other errors
are shown, the background subtraction produces some false detection because of the tarpaulin
that is moving in the wind. The approach of [PF14] is not affected by this but has the previously
discussed misdetection of the tripod as a human in that same frame.

Lastly, a good example of how the proposed tracking method deals with occlusion (merging
and splitting of blobs) can be seen in Figure 8.12 where a part of the Marine Snow video from
the UCD dataset is shown.

8.3.1 Quantitative Evaluation

For a meaningful assertion of the quality of different tracking algorithms a quantitative evaluation
of the errors against ground truth data created by experts is necessary. The scoring of the results
against such ground truth data is not as simple as for the change detection task because many
different kinds of errors are possible and have to be reflected all in the metrics. This cannot be
done by one measure alone and therefore several metrics will be used here that focus on different
aspects. In [BS08] two measures especially created for the evaluation of tracking algorithms are
presented.

MOTP - Multiple Object Tracking Precision

The definition of the original MOTP is: Let Dcor
k,t represent the coordinates of the centroid of

the detection with label k in frame t and Gcor
k,t the coordinates of the centroid of the ground truth
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Figure 8.10: The just appearing human is fragmented due to partial occlusion from the tripod.
In the algorithm of [PF14] the human gets detected as a whole and can hence be
tracked better.

Figure 8.11: The top row shows the loss of a track in the [PF14] data (right) and in the bottom
row different detection errors are displayed.
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Figure 8.12: An example of the tracking in a crowded scene where components split and merge
constantly. The numbers in white for each tracked component give some of the
properties, from top to bottom they are number of pixels, velocity, number of old
components, x- and y-coordinate of the centroid. In the first two images the dark
green object splits because its different connected components drifted too far apart.
Also, the gray and purple one are unified. It can be seen that the purple object is not
forgotten but kept as an old component and was matched correctly in the third frame
after they split again. The same is true for the gray and red component, they are first
unified and later matched correctly again after they split.
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annotation with label k in frame t. The MOTP is then defined as

∑k,t kDcor
k,t −Gcor

k,t k2
2

∑k,t 1
. (8.28)

Objects that could not be detected or matched are ignored as only the precision of the tracked
objects is measured. Matching and detection errors are evaluated separately in the next metric.
The MOTP is the average distance in pixels between the centroids of correctly matched detections
and the ground truth data. It is a value greater or equal to 0 and 0 would mean a perfect accuracy,
all found detections would be completely similar to the ground truth annotations.

In the literature, however, often a slightly different definition is used under this name. It will
be called MOTP2 here and is the ratio of the intersection and union of the bounding boxes of a
correct detection and its ground truth counterpart,

MOT P2 =
∑k,t

|Dbb
k,t∩Gbb

k,t |
|Dbb

k,t∪Gbb
k,t |

∑k,t 1
. (8.29)

Here Dbb
k,t is the set of all pixels which belong to the bounding box of the correctly matched

detection k in frame t and Gbb
k,t is the corresponding set for the ground truth data. Hence, the

MOTP2 is a value between 0 and 1, where an optimal tracking algorithm would receive a score
of 1 since that would mean Dbb

k,t = Gbb
k,t for all k and t. The MOTP2 measure is used more often

in the literature and is also more expressive since it takes the whole bounding box into account
and not only the centroid, e.g. can it differentiate between two bounding boxes with the same
centroid but different sizes which the original MOTP cannot do.

MOTA - Multiple Object Tracking Accuracy

The MOTA metric is a measure of the detection and tracking errors and consists of three com-
ponents:

• mt – Number of misses in frame t

• f pt – Number of false positive detections in frame t

• mmet – Number of mismatches in frame t

These numbers added together and divided by the total number of objects gives a ratio of errors
to true objects. The MOTA is then defined as

1− ∑t mt + f pt +mmet

∑t ct
, (8.30)

where ct is the number of objects present in frame t. It is a value smaller or equal to 1 and a rating
of 1 would signify a perfect accuracy. The metric is not limited to the range of [1,0], values lower
than 0 are possible if there are e.g. more false positives than actual objects.
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Algorithm MOTP2 MOTA
Jiang et al. [JRD12] 0.788 0.608

Breitenstein et al. [Bre+11] 0.563 0.797
Yang et al. [Yan+09] 0.538 0.759

Berclaz et al. [BFF06] 0.600 0.660
Andriyenko et al. [AS11] 0.761 0.814

proposed approach 0.550 0.885

Table 8.1: Results of different tracking approaches on the S2.L1 Video of the PETS 2009 dataset.
The data is taken from [JRD12]. The results show that the proposed approach is very
good at accurately detecting and matching objects in the scene (MOTA). However, it
fails in precision (MOTP2) since objects that are close together are often not separated
and treated as only one object.

PETS 2009 Dataset

To compare various methods based on these metrics the video S2.L1 of the PETS 2009 Bench-
mark2 [FS09] is chosen. The ground truth data for this video is available3 and several different
algorithms have already been tested on this video so that a meaningful evaluation is possible. A
comparison of five different algorithms with the proposed algorithm can be seen in Table 8.1. The
metrics MOTP2 and MOTA have been used (since the data for these two metrics were available)
and they show that the proposed algorithm has a high tracking accuracy and a below average
precision. Both of these results come at least partially from the combination of change detection
with a blob tracker. The extended GSM background subtraction delivers very accurate detection
results so that hardly any misses occur. Only when a person was mainly occluded by the sign in
the middle of the scene did the algorithm fail to detect this person occasionally (compare Figure
8.14). However, this detection accuracy comes with the price that no single humans are detected
but only moving foreground blobs which consequently makes the tracking more difficult (splitting
and merging of blobs) and also reduces the accuracy of the detection since often humans that are
close together are detected and tracked together (see Figure 8.13).

TownCenter Video

A second evaluation was done on the TownCenter video presented in [BR11] where tracking
results of many different algorithms are available at motchallenge.net4 and even videos of
these results can be downloaded. The ground truth data is freely available5 and focuses on the
heads of the humans so that a human where the head is outside of the field of view of the camera

2http://www.cvg.reading.ac.uk/PETS2009/a.html
3http://www.milanton.de/data.html
4https://motchallenge.net/results/3D_MOT_2015/
5http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.
html
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Figure 8.13: Example of the S2.L1 Video of the PETS 2009 dataset. The bounding box of the
detection of the proposed algorithm is shown in purple and in blue and pink are the
provided ground truth bounding boxes. Both humans were accurately detected but
considered as one blob and therefore the detection accuracy (MOTP2 value) for both
human is each time below 40%.

is usually not marked in the ground truth data although the rest of the body might still be visible.
A comparison with six other methods can be seen in Table 8.2 where the two previous metrics

(MOTP2 and MOTA) are used as well as False Alarms per Frame (FAF). FAF is the number
of falsely detected objects per frame. It can be seen again that the accuracy is very high and
the precision quite low, in general for the same reasons as before. Although the accuracy is so
high the FAF is still quite large with 3.3. These false alarms are mainly detections of humans
where the head is not visible but (parts of) the rest of the body or inaccurate detections so that one
actual object is split into two or more in the segmentation. These false detections are the main
error source that contributes to the MOTA measure and other errors rarely happen (e.g. missed
detections are around 0.3 per frame).

Results of the proposed algorithm and [KRH17] can be seen in Figure 8.15 where they are
compared against the ground truth data. The proposed method detects many partly occluded
persons which are not marked in the ground truth data because their heads are not visible. In
contrast to the proposed change detection, the approach of [KRH17] uses a specific human model
for the detection and tracking so that the head position (or the lack of it) can be estimated, this
leads to far fewer false detection. However, the detector often fails to recognize persons so that
the miss rate is higher than with the GSM background subtraction; for example the couple in the
bottom-left corner or the man with the baby stroller in the bottom-right corner.

Hungarian Method

Lastly, the proposed matching method (greedy matching but with consideration of possible unions
or splits) is compared against the Hungarian method (best overall match but without considering
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Figure 8.14: Shown are results of the proposed tracking algorithm in combination with the eGSM
background subtraction on the S2.L1 Video of the PETS 2009 dataset. On the left
side are the pure detection and tracking results of the proposed method and on the
right side the results are interposed with the current frame and the ground truth
bounding boxes which are shown in black. In the top frame it can be noticed that the
person in the middle behind the pole is not detected correctly because he is mainly
occluded. In the other images it can be seen how the persons tracked as light blue,
green and yellow are tracked correctly although the pass and occlude each other.
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Figure 8.15: Comparison of two approaches with the provided ground truth data on the Town-
Center video.
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Algorithm MOTP2 MOTA FAF
Klinger et al. [KRH15] 0.610 0.511 2.3
Klinger et al. [KRH17] 0.574 0.422 2.6

Leal-Taixé et al. [LPR11] 0.519 0.287 3.1
Wen et al. [Wen+17] 0.542 0.168 4.3

Sadeghian et al. [SAS17] 0.546 0.153 2.5
Pellegrini et al. [Pel+09] 0.514 0.152 3.6

proposed approach 0.410 0.780 3.3

Table 8.2: Evaluation on the TownCenter video. The data for the other approaches is taken from
motchallenge.net and the results are overall very similar to the previous comparison
with a high accuracy but low precision because objects that are close together are not
tracked separately.

unions or splits). The greedy approach does not ensure an overall optimal solution between
two frames since sometimes it can be preferable to not choose the best match for a connected
component because this opens better matching options later for other components. The Hungarian
method, on the other hand, finds the optimal matches for all found foreground objects but, to
do this, it must consider all objects and their possible matches at the same time which prohibits
the consideration of unions and splits. Hence, only individual blobs will be considered for the
Hungarian method.

To evaluate which approach performs better, a greedy approach with consideration of unions
and splits or the overall optimal solution without this, an evaluation on 1000 frames of the Marine
Snow video is done. This video has a high density of fish in various shapes and many occlusions
happening, therefore it is ideal for an evaluation. Occlusions among fish and the following
confusion or loss of labels are the main challenge for the tracking task and an example of this can
be seen in Figure 8.16. The tracking of fish when no occlusion is happening was very good for
both approaches and the only reason for errors during these times was a poor detection quality of
the GSM background subtraction, e.g. the detection of shadows.

For a fair comparison both methods use the same detection results and, therefore, errors based
on bad detections of fish are not important since they are similar in both cases. The only errors
that are interesting are the cases where a label is lost or switched for a fish (foreground blob) that
was permanently detected by the eGSM. These errors are solely based on the performance and
accuracy of the tracking algorithms and therefore a good measure. For the first 1000 frames of the
Marine Snow video, these errors were counted by hand and occurred 33 times for the proposed
method and 81 times for the Hungarian method which clearly shows that a consideration of
unions and splits is necessary for this kind of task and scenario. Also, both methods used the
same energy function, the CCSM, so that only the matching quality is evaluated.

For an evaluation with the previous measures (MOTP or MOTA), ground truth tracking data
would be necessary but is not available for underwater videos. However, a test on the TownCenter
video could validate the previous results. A change of the matching method from the proposed
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Figure 8.16: A comparison of the proposed tracking approach (left) with the Hungarian method
(right). At first, the two fish are detected and tracked separately and accurately (top
row) but then they overlap slightly (middle row) and therefore only one foreground
blob is detected. In the last frame (bottom row) the fish separate again and the
proposed method can assign the correct labels from the first frame again whereas
the Hungarian method has lost the smaller fish (light blue) and gave him a new label
(green).

approach to the Hungarian method decreased the accuracy (MOTA) from 0.78 to 0.745 and
increased the precision (MOTP2) slightly from 0.41 to 0.43. The accuracy deteriorated because
more tracks were lost, like in the Marine Snow video, and the precision improved because each
blob was always handled separately and never united with others that move in a similar direction,
this could in some situations produce higher precision results.

Runtime

The matching based on the CCSM is computationally expensive as the measure incorporates
many different properties which have to be computed and compared. Moreover, the runtime is
highly dependent on the number of objects present in the scene. First of all, the CCSM between
every object in frame 1 and every object in frame 2 is computed which is quite time-consuming.
But more importantly are the possible unions and splits that are considered because the number
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CHAPTER 8. UNDERWATER BLOB TRACKING

Algorithm Proposed Approach Hungarian Method
TownCenter Full Size (1920×1080) 8.97 1.25
TownCenter Half Size (960×540) 3.65 0.70

PETS S2.L1 (769×576) 0.11 0.10
Marine Snow (1920×1080) 15.92 0.18

Table 8.3: Shown are the average times (in seconds) necessary to process one frame for the
proposed algorithm (eGSM + Tracking) and the Hungarian method on different videos.

of possible unions increases very fast with the number of foreground blobs that are close together
(factorial!). Therefore, in frames with many foreground blobs close together the runtime increases
drastically. Different mean runtimes of the algorithm on the previously shown videos are shown
in Table 8.3 and compared to the Hungarian method. As a comparison: in [KRH17] it is stated
that their algorithm takes in general around 10 seconds per frame.

8.3.2 Conclusion

In this chapter, the previous change detection results were used to further extract information out
of the (underwater) videos by not only detecting the different foreground objects in the scene
but also tracking them during the whole video. Since the proposed tracking is based solely on
the detected foreground blobs – so that the whole approach stays very general and can easily be
applied on different objects in other scenarios – a new matching measure, the CCSM, is introduced
first. It uses several distinct features of the foreground blobs to evaluate their similarity, e.g. shape,
direction of movement or size. The measure includes an outlier detection to avoid matching blobs
that are far away or very different in size but otherwise similar. This was especially necessary
since fish of the same species tend to be extremely similar in their appearance (e.g. shape) and
behavior (e.g. direction of movement in a swarm). In these cases, a small inaccuracy of the
detection could lead to false matchings without the discussed outlier detections.

Afterwards, the actual matching is done based on the CCSM scores between all foreground
blobs in two consecutive frames. In this process, the unions and splits of blobs are also considered
so that detection inaccuracies or occlusions can be handled better. Then, in a greedy approach,
always the two most similar blobs are matched successively. If elements are leftover at the end of
this process they most probably signify an appearance or disappearance of a foreground object
in the scene. Nonetheless, these cases are handled with special care to avoid falsely adding or
deleting tracked objects since this could lead to a cascade of wrong matchings.

The accuracy of this method was evaluated on two different datasets against several other
approaches. These videos feature in-air scenes since no underwater videos or ground truth data are
available and all existing methods were only tested on in-air scenes. In general, the comparison
of the proposed tracking algorithm is complicated since – by focusing on the detected foreground
blobs instead of trying to detect specific objects – the whole tracking approach is handled slightly
different here than in most previous methods. Therefore, the accuracy is higher than in the other
approaches but, at the same time, the precision with which single objects are tracked is lower
than in most approaches. The main reason for the high accuracy is the accurate detections of
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8.3. RESULTS

the eGSM background subtraction which barely misses any moving objects. The cause for the
low precision is the foreground blobs which can consist of several actual objects (fish, humans,
etc.) that are close together or occlude each other. Since these blobs are tracked as a whole, this
consequently lowers the detection and tracking accuracy of each individual object drastically.
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9 Conclusion and Future Work

Advancements in technology and the production process have made video cameras cheap and
readily available to a large group of customers, this includes end-users as well as businesses.
These advances were originally mainly developed for in-air equipment but often paved the way
for improvements for underwater imaging tools as well, and this process of ever decreasing costs
with increasing imaging quality is very likely to continue. This opens many new possibilities
for automation, e.g. aquacultures in the open sea which are monitored constantly by cameras
or cameras which are mounted on cruise ships to constantly study the natural sea life. These
cameras, however, produce immense amounts of data which cannot be watched and interpreted
by humans manually anymore but need computer vision algorithms so that they can be processed
semi- or fully-automatic. A crucial problem for these algorithms is the great variety of tasks that
have to be handled, e.g. the objects that should be detected (humans, plants, fish, ships . . . ) or the
environment they are in (indoor or outdoor, different lighting conditions, . . . ).

To this account, a new change detection algorithm – the Gaussian Switch Model – was
proposed, which can adjust and correct itself by comparing two different models. Nonetheless,
the approach is still fairly simple, fast and can be applied to detect any moving object in almost
all environments with the only necessity being a single static camera. To make the change
detection results easier usable in later stages of a computer vision pipeline, the use of a method to
increase spatial coherency is advisable since the GSM results are completely pixel-wise and do
not incorporate any spatial model of the real world. Three different methods were proposed for
this task, one adjusts the segmentations to the edges in the frame (N2cut), one uses a spatial model
based on natural objects (MRF) and the last one combines the information from several frames
via an optical flow (temporal trajectories). Each of these methods has specific advantages and
problems in certain scenarios but overall the N2cut delivered the highest accuracy in a fraction of
the runtime of the other approaches.

Although these algorithms can be in principle applied to almost all scenarios, an adaption to
special difficulties of specific videos can be beneficial. Underwater scenarios pose such special
difficulties with increased blur, color cast, Marine Snow and many other image degradation effects.
However, no one has so far investigated the possible adaptions and their potential to increase the
segmentation accuracy underwater since there does not exist any change detection dataset with
underwater scenes (although many for in-air scenes are available). Therefore, the first step in
adapting the presented algorithms to underwater videos was the creation of a new dataset, the
Underwater Change Detection dataset. On these videos, the proposed algorithms were compared
to state of the art change detection approaches and combined with several underwater image
enhancement techniques to investigate if they can have a positive impact on the segmentation
quality. On the one hand, the impact of these enhancement methods was fairly consistent
throughout the different change detection approaches. However, on the other hand, the results
were heavily dependent on the specific scene they were applied on and often even decreased the
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accuracy instead of increasing it. The overall most promising and usable enhancement method
seems to be Marine Snow removal since it combines an overall positive impact with a low runtime
( 0.75s per frame), other approaches took up to several seconds per frame without delivering
better results.

Since underwater image enhancement alone was not enough to tackle the special problems of
the medium water, an adaption of the GSM change detection algorithm to these special conditions
was necessary. Because it is very common that moving objects underwater have a high similarity
between them (e.g. a swarm of fish) a foreground model was added that could help differentiate
between foreground and background objects. Furthermore, the GSM model was combined with
the Mixture of Gaussian idea and important parameters were updated automatically and adaptively.
This made the whole model more complex and increased the runtime, but also could enhance
the accuracy notable. A special problem in underwater scenarios is crowded scenes. Fish often
appears in whole swarms – especially the ones which are interesting for fishers and aquacultures –
which makes it very difficult to create and sustain a model of the background since the actual
background is often hardly visible anymore. To account for this, pre-segmentations were created
with an optical flow approach (Flux Tensor). This allowed to exclude most foreground objects
from the background modeling process in the first place and, thereby, increased the quality of the
model and the accuracy of the resulting segmentations significantly in crowded scenes.

Lastly, these segmentations were combined with new a blob tracking approach so that important
information about the movement of the detected objects could be extracted. To keep the generality
of the overall approach, the tracking was restricted to the detected foreground blobs and no
object-specific properties or models are used. Therefore, it can be used to track fish, divers,
boats or any other moving object. To compare and match the different blobs a new metric was
introduced, the Connected Component Similarity Measure, which combines information about
the shape, size, location, movement vector and so on. Furthermore, an outlier detection is part of
the score to avoid matches of blobs that are very far away or too different in size but otherwise
very similar. This was integrated into a matching algorithm that takes into account possible splits
or unions of blobs which are close to each other. Taking these into account allowed a better
handling of occlusions or inaccurate segmentations and provided more accurate results than
the Hungarian algorithm. Because of the neglection of underwater videos in segmentation and
tracking datasets, the evaluation had to be done mainly on in-air footage and showed a very good
accuracy (MOTA value) but low precision (MOTP) in comparison to state of the art methods.
The reason for this is the focus on general foreground blobs instead of specific objects which
generates a high detection accuracy but does not allow a separation of several occluding objects.

Overall, the here presented algorithms can be combined efficiently to a computer vision
pipeline that detects accurately all moving objects in an underwater scene and also tracks them
as long as they are inside the field of view of the camera. The proposed adaption of the GSM
and possible additions of image enhancement techniques like Marine Snow removal make it
especially valuable for underwater scenes but, nonetheless, the algorithms work also accurately
on in-air scenarios. The results are important and useful information about the scene, e.g. the
number fish and their movement patterns in an aquaculture. Also, it is possible to easily adapt or
extend this pipeline by changing single algorithms like the spatial model or by adding further
parts to gain even more high-level information.
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CHAPTER 9. CONCLUSION AND FUTURE WORK

To summarize, in this work were presented:

1. A novel background modeling approach that is lightweight and achieves State of the Art
results for in-air foreground-background detection

2. An adaption to the common challenges of underwater footage

• The background modeling in crowded scenes was improved with pre-segmentations.

• Several underwater image enhancement methods were explored to counter the effects
of image degradation.

3. Three novel methods that increase the spatial coherence in binary segmentations

• The MRF model was enhanced by enlarging the neighborhood in a way that still
allowed the computation in a feasible time.

• N2cut is an adaption of the Ncut to the video segmentation problem. It provides the
most accurate results and has the shortest runtime.

• Temporal trajectories used a dense optical flow to combine the segmentations from
several consecutive frames.

4. The first underwater dataset for foreground-background segmentation

• It contains all of the common problems of underwater video footage.

• This made it possible to evaluate different underwater image enhancement methods
in combination with segmentation methods.

• The evaluation also showed that background subtraction methods are in general
superior to optical flow based approaches in underwater conditions.

5. A tracking approach that only uses the binary segmentation results

• A very general method that does not rely on any prior information about the objects.

• To still obtain accurate tracking results the splitting and merging of the detected
foreground blobs had to be considered and handled carefully.

Future Work

To address the low precision of the tracking approach it would be beneficial to have the possibility
to add a model of the specific object class that should be tracked at the moment. This would allow
dividing foreground blobs into the individual objects they consist of and improve the precision
during occlusions. Furthermore, the creation of tracking ground truth data on underwater videos,
especially with fish swarms and aquacultures, would be interesting and allow a better and more
complete comparison. The next step of the computer vision pipeline would be the integration in a
stereo camera setup and the addition of an algorithm that allows the extraction of accurate 3D
data even in underwater scenarios where refraction is a great problem. This data would allow e.g.
the observation of the growth process of fish in an aquaculture and could also be used to aid and
verify the segmentation and tracking results.
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Another interesting aspect would be the addition of machine learning approaches, e.g. in an
aquaculture to find illnesses among the detected fish or even to recognize individual fish based on
features like their scale patterns. Furthermore, over longer periods the behavior and patterns in
the entire scene could be learned and abnormalities detected, e.g. if the whole fish swarm swims
slower and/or less than before. Furthermore, to make the system overall more flexible and usable
on ROVs and AUVs, an adaption of the background model to small/slow camera movements
like described in [RFL17a] could be further developed for underwater scenarios which could
potentially eliminate the necessity of a static camera.
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Abbreviations and Symbols

Abbreviations

ACE Automatic Color Equalization
AGW Adaptive Gray World
AUV Autonomous Underwater Vehicle
BP Belief Propagation
B Bootstrap (Video from the Wallflower Dataset)
CCSM Connected Component Similarity Measure
CLAHE Contrast Limited daptive Histogram Equalization
CNN Convolutional Neural Network
CV Computer Vision
C Camouflage (Video from the Wallflower Dataset)
DOF Dense Optical Flow
e.g. For example
FA Foreground Aperture (Video from the Wallflower Dataset)
FN False Negative (e.g. false detection of background pixels)
FoE Focus of Expansion
FP False Positive (e.g. false detection of foreground pixels)
GB Gigabyte
GMN Generalized Moore Neighbourhood
GSM Gaussian Switch Model
HD High Definition (1920×1280)
ICA Independent Component Analysis
IHLS Improved HLS Color Space (Hue, Lightning Saturation)
INMF Incremental Non-Negative Matrix Factorization
K-SVD Combination of K-Means Clustering and Singular Valud Decomposition

(SVD)
KNN K-Nearest Neighbors
LbD Learning-based Deblurring
LBP Local Binary Pattern
LBSP Local Binary Similarity Patterns
LDA Linear Discriminant Analysis
LED Light-Emitting Diode
LS Light Switch (Video from the Wallflower Dataset)
MAP Maximum A posteriori Probability
MCA Morphological Component Analysis
MCC Matthews Correlation Coefficient
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MoG Mixture of Gaussians
MO Moving Object (Video from the Wallflower Dataset)
MRF Markov Random Field
NCut Normalized Cut
OCR Optical Character Recognition
PCA Principal Component Analysis
PSO Particle Swarm Optimization
RANSAC Random Sample Consensus
ROV Remotely Operated underwater Vehicle
SURF Speeded Up Robust Features
TN True Negative (e.g. correct detection of background pixels)
TP True Negative (e.g. correct detection of foreground pixels)
UCD Underwater Change Detection
WT Waving Tree (Video from the Wallflower Dataset)

Symbols

# Quantity of something
α GSM parameter: update rate
Assoc(FG) Measures the association in a set FG
β GSM parameter: controls the sensitivity of the Background Subtraction
BBh Height of the Bounding Box of a connected component
BBw Width of the Bounding Box of a connected component
BBh Position of the centroid of the bounding box, x-coordinate
BBw Position of the centroid of the bounding box, y-coordinate
Ck Cost function in the MRF model for cliques of size k
Cx Position of the centroid of a connected component, x-coordinate
Cy Position of the centroid of a connected component, y-coordinate
D(x) Cost function in the MRF model based on background subtraction data
DOFm−1,m(v̄) Optical Flow of pixel (v̄) from frame m−1 to frame m.
DOFx

m−1,m(v̄) Vertical component of the Optical Flow of pixel (v̄).
DOFy

m−1,m(v̄) Horizontal component of the Optical Flow of pixel (v̄).
dm−1,m(v̄) Distance the pixel v̄ of frame m−1 moved to its estimated position in frame m
Dx Direction of Movement of a connected component, x-coordinate
Dy Direction of Movement of a connected component, y-coordinate
η Belief Propagation parameter: controls the influence of Otsu’s Method
k · k2 Euclidean Norm
e Euler’s number e = ∑

inf
n=0

1
n ! ≈ 2.71828

γ GSM parameter: Minimum value of the Variance for a pixel
GR Growth rate of a connected component (in respect to the NoP)
I Image - matrix and set of pixel values
I(v̄) Pixel-value at the location I(v̄)
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I(v̄,c) Value of the channel c of the pixel v̄
K(v) Gaussian kernel function: K(v) = e−ckvk2

M Gaussian model of the background of a video
M(µg, v̄,c) Mean of the g-th Gaussian of channel c of the pixel v̄
M(µp) Mean of the partially updated Gaussian
M(σg, v̄,c) Variance of the g-th Gaussian of the channel c and pixel v̄
M(σp) Variance of the partially updated Gaussian
M(wg, v̄,c) Weight of the g-th Gaussian of channel c of the pixel v̄
max(a,b) Returns the maximum of the two values a and b
min(a,b) Returns the minimum of the two values a and b
N(v̄) Set of all pixels in the neighborhood of v̄
N2Cut(FG,BG) Similar to NCut but with nAssoc(FG) instead of the normal association
nAssoc(FG) Normalized association of the set FG
NCut(FG,BG) NCut value of a graph which is partitioned into the sets FG and BG
NoP Number of Pixels of a connected component
ωxy Weight of the edge between the nodes representing the pixels x and y
Cut(FG,BG) Cut value between the sets FG and BG in a graph
pBS(v̄) Probability that pixel v̄ is background, based on the background subtraction
∝ is proportional to
PI(ξ,l) a polar image at the coordinates ξ (angle) and l (radius)
sx State of node x
Sh a shape feature of a connected component
TCCdist Controls when the union of two components is also considered for matching
TCCSMmax Maximal value of the CCSM score, above that not matching will occur
TnewGaussian Threshold to control the creation of new Gaussians in the MoG model
trace(A) Sum of all diagonal elements of the square matrix A
v Pixel in an image, usually with the RGB value (r,g,b)
v̄ Position of pixel v in an image (v̄ = (i, j)) or video (v̄ = (i, j, t))
V Three dimensional image volume / Video
V (t, v̄,c) Value at time-point t, position v̄ and of channel c of the video V
Vel Velocity of a connected component
f (v̄) Optical flow at the position v̄ of an image or image volume
Qv j, fi Message from node n j to the factor vertex fi in the Belief Propagation model
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1. Change in a scene is an important cue – for humans as well as computers – that helps in
quickly understanding the most important aspects of a given situation and making important
decisions. Therefore, the detection of change is a vital aspect in the field of computer vision
and often the first step in a whole pipeline of different algorithms to extract information
from a video. Furthermore, its generality allows a broad usage in almost any scenario with
a static camera.

2. There already exists a wide range of literature about change detection and it has been
applied successfully in many different scenarios. However, some aspects have not been
sufficiently addressed in their entirety. Examples for this are the lack of spatial coherency
in background subtraction methods or the segmentation of crowded scenes. Other aspects
that are more special, like the handling of underwater scenarios, have been neglected almost
completely so far.

3. Since many change detection approaches are based on a pixel-wise approach, where each
pixel is handled completely separately, there is no spatial coherence inherent in these
methods. Nonetheless, spatially coherent detections are necessary to facilitate subsequent
steps in the computer vision pipeline like tracking or classification. Hence, the addition of
a spatial model is mandatory for the production of accurate and useful results.

4. The objects which shall be detected in natural images – in water or in air – can be expected
to be smooth, coherent and without holes. This is also true for most synthetic images as
they usually imitate natural scenes. A spatial model must consider these properties and
adapt the change detection results accordingly.

5. Underwater videos suffer from various additional degradations in contrast to in-air videos.
These effects mainly emerge from the different physical properties of the medium water
and can heavily impair the quality of the segmentations from change detection methods and
computer vision algorithms in general. Hence, special consideration of these degradations
is necessary when dealing with underwater videos.

6. Change detection approaches based on the optical flow suffer more from underwater
degradations than methods which rely on background modeling. The computation of
the optical flow relies heavily on the detection and matching of features in the images,
and the degradation effects of underwater scenes result in fewer features and a reduced
distinctiveness of the remaining features. In general, background modeling should be the
preferred method for change detection in underwater videos.

7. Today’s underwater image enhancement algorithms are designed with the perception of
humans in mind and not optimized for change detection methods. Therefore, their effect
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on the accuracy of change detection results can be positive but is extremely depending on
the scene. For the general case, only methods that deal with specific effects (like Marine
Snow or color cast removal) can be recommended as they have no negative impact on the
segmentations on videos without these effects but usually increase the accuracy when the
effect is present. If a specific scene is given, the enhancement method has to be chosen
with extreme care to achieve measurable accuracy improvements and no deteriorations.

8. Fishes of a specific species are very similar among themselves and often also to the
background of the scene, especially the fishes with swarm behavior which are used for
livestock. Their similarity to the background makes change detection by background
subtraction difficult. However, at the same time, the similarity among themselves can be
used to build a reliable and consistent foreground model which can be very beneficial for
the separation of foreground and background.

9. When whole swarms of fishes appear they pose a special problem since the view to the
background can be completely obstructed. This aggravates the background modeling
immensely since it works under the assumption that the background is visible most of the
time. This problem can be relieved with the prior exclusion of foreground areas by using
pre-segmentations based on the optical flow.

10. Most tracking approaches use object detectors which are especially trained and adjusted
for a particular object type (often humans or cars). General detectors do not have this
information and, therefore, cannot detect only one specific object class and have problems
separating different objects which are close to each other. Tracking based on such a general
detection approach, blob tracking, has to consider these problems and deal with blobs that
represent several actual objects and blobs that are merging and splitting constantly while
not losing track of the original detections.
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