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Summary 

Since the 1970s, it is a well-known fact that the volume of plastic waste in the form of microplastics 

too (MP < 5 mm) is increasing in our environment. But only in recent years has this topic become 

the focus of marine and inland aquatic research. In order to determine whether pollution by MP is 

present, initially only the surface of the water was sampled with nets of mesh sizes ≥300 μm. While 

it is very easy to take sediment samples, processing them is much more difficult. Here, too, the 

research in the application is limited in terms of the smallest MPs because it is too difficult to isolate 

the small plastics from the rest of the material. However, these particles (< 300 μm) have become 

a global problem in the aquatic environment. Sampling and processing causes many problems, 

especially in water with a high biomass content. To date, there is no standardized methodology to 

sample the entire water column and to determine the size classes or distribution of the particles. 

The potential effects of the particles on the organisms of the different trophic levels are also 

unknown. Since the actual amount of MP in the water compartments or in the sediment is unclear, 

laboratory tests are often carried out with unrealistically high/low particle numbers or take place 

under unnatural conditions. In this work, two methods have been successfully developed: a) to 

enable the sampling of the entire water column without limitation in terms of particle size or density 

and b) to separate MP (< 5 mm) from environmental samples without much effort using a modified 

Korona–Walzen–Scheider (KWS) device originally used in recycling management. Furthermore, a 

sediment contact test (OECD (2007) Test No. 225) was adapted to determine the effects of MP 

on the organism L. variegatus. In a preliminary study, it was first determined whether the plastic 

types (PVC, PET, PMMA, PLA, and PS) used in the experiment have poisonous additives 

(phthalate ester) and whether they dissolve in the water phase. With the high-performance liquid 

chromatography (HPLC) method, different phthalates could be detected in the water contaminated 

with PVC products. Furthermore PVC had a negative effect on mortality beginning with a 

concentration of 0.1 mg/g dw (sand) with an LC 50 of 1.7 mg/g dw. Other types of plastic such as 

PET, PS, PMMA, and the bioplastic PLA show no effects on organisms even at concentrations of 

more than 15 mg/g dw (about 23,000,000 particles per 16 g of sand). None of the used 

concentrations have been recorded anywhere in the environment. It was also examined whether 

the different plastic concentrations have a negative influence on the fitness of the organisms. For 

this purpose, the glycogen content of the surviving worms was determined. The results show that 

only the increasing concentration of PVC causes a negative effect. 
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Zusammenfassung 

Seit den 70er Jahren ist bekannt, dass sich Plastikmüll in Form von Mikroplastik (MP <5 mm) 

vermehrt in unserer Umwelt befindet. Doch erst in den letzten Jahren ist dieses Thema zum 

Schwerpunkt in der Meeres- und Binnengewässerforschung geworden. Um einen Einblick zu 

erhalten, ob eine Verschmutzung durch MP vorhanden ist, wurde zunächst nur die 

Gewässeroberfläche mit Netzen abgefischt, deren Maschenweiten meist nicht weniger als 300 µm 

betrugen, da diese andernfalls zu schnell mit Schwebstoffen verschlossen werden. Sowohl 

Probenahme als auch Aufbereitung bereiten daher vor allem in Gewässern mit hohem 

Biomasseanteil viele Probleme. Im Gegensatz dazu sind Sedimentproben relativ einfach zu 

nehmen, deren Aufarbeitung stellt dabei den weitaus schwierigeren Teil dar. Des Weiteren ist die 

Forschung aktuell noch sehr eingeschränkt, was die Extraktion des MP aus der Proben-Matrix, 

insbesondere jener MP-Partikel <300 µm, anbelangt. Nachweislich sind diese kleinen Partikel zu 

einem weltweiten Problem in der aquatischen Umwelt geworden. Bis heute gibt es keine 

standardisierte Methodik zur Beprobung der gesamten Wassersäule und um die Größenklassen 

sowie die Verteilung der Partikel zu ermitteln. Es ist ebenfalls nicht hinreichend erforscht, welche 

möglichen Effekte die Partikel auf die Organismen der verschiedenen Nahrungsstufen haben. Da 

die tatsächliche Menge von MP in den Wasserkompartimenten und ebenfalls im Sediment nicht 

ausreichend quantifiziert ist, werden die Laborversuche oftmals mit unrealistisch hohen/niedrigen 

Partikelzahlen durchgeführt, sodass zumeist keine repräsentativen Ergebnisse erwartet werden 

konnten. In dieser Arbeit wurden aufgrund dieser methodischen Schwierigkeiten erfolgreich zwei 

Verfahren entwickelt um a) die gesamte Wassersäule beproben zu können, ohne Einschränkung in 

Hinblick auf die Partikelgröße oder -dichte und b) ein Gerät aus dem Recyclingmanagement 

modifiziert, um es für die vereinfachte Trennung von MP (<5 mm) aus Umweltproben einsetzen 

zu können. Des Weiteren wurde der Sediment-Kontakttest (OECD (2007) Test No. 225) zur 

Ermittlung der Auswirkungen von MP auf den Organismus L. variegatus adaptiert. In einer 

Vorstudie wurde dazu zunächst ermittelt, ob die verwendeten Plastikarten (PVC, PET, PMMA, 

PLA und PS) im Versuch schädliche Inhaltstoffe (z. B. Phthalate) aufweisen und ob diese sich in 

der Wasserphase lösen. Mittels Hochleistungsflüssigkeitschromatographie (HPLC) konnte 

bestätigt werden, dass sich vor allem aus PVC- Produkten einige, zum Teil toxische, Additive im 

Wasser lösen und dort nachweisbar sind. Zudem stellte sich heraus, dass PVC, mit hohem Anteil 

an Additiven, ab einer MP- Konzentration von 0,1 mg/g Trockengewicht (TG) die Mortalität 

erhöht bei einer letalen Konzentration (LC 50) von 1,7 mg/g TG. Plastikarten wie PET, PS, 

PMMA sowie das Bioplastik PLA, mit einem sehr geringen Anteil an Additiven, zeigen auch bei 

Konzentrationen von über 15 mg/g TG (ca. 23.000.000 Partikel in 16 g sand) keine nachweisbaren 
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Effekte auf den Süßwasseroligochaeten Lumbriculus variegatus. Keine der eingesetzten 

Konzentrationen konnte bisher in der Umwelt ermittelt werden. Ebenfalls wurde untersucht, ob 

die verschiedenen Plastikkonzentrationen einen negativen Einfluss auf die Fitness der Organismen 

ausüben. Hierzu wurde die Fitness, anhand des Speicherstoffs Glykogen, der überlebenden 

Würmer ermittelt. Die Ergebnisse zeigen, dass sich nur bei hohen Konzentrationen von PVC der 

Glykogengehalt reduziert. 
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1 Introduction 

Plastics play an important role in human society because of  their numerous social benefits 

(Andrady and Neal, 2009). Plastic, a man-made material, is inexpensive, strong, durable, lightweight, 

and easy to manufacture (Thompson et al., 2009). As a result, plastics production has increased 

since the 1950s, rising in particular from 225 million t in 2004 to 322 million t in 2015—an increase 

of  43 % over the last decade (PlasticsEurope, 2016). However, this estimate does not take into 

account the synthetic fibres widely used in the textile and fish industries (Dris et al., 2016) and 

hence underestimates between 15 % and 20 % for each year are likely (Industrievereinigung 

Chemiefaser, 2013). Low estimates suggest that floating marine plastics weigh between 70,000 and 

270,000 t (Cozar et al., 2014; Eriksen et al., 2014; Van Sebille et al., 2015). Small plastic particles, 

called microplastics (MPs), account for a total of  51 trillion particles of  plastic waste (Van Sebille 

et al., 2015). MP is defined as a plastic particle smaller than 5 mm (Arthur et al., 2009). Increasing 

attention has been paid to MPs over the past decade following the publication of  Thompson et al. 

(2004). Plastic microparticles originate from two distinct pathways, primary and secondary sources. 

Primary sources of  MP include a) plastics directly made in micrometric size, including plastic pellets 

(Barnes et al., 2009; Cole et al., 2011), b) MP of  peeling cosmetics (Chang et al., 2015; Fendall and 

Sewell, 2009; Napper et al., 2015; Zitko and Hanlon, 1991), and c) clothing fibres in wastewater 

treatment plants (Browne et al., 2011; Carr et al., 2016). Secondary MP results from the degradation 

of  larger pieces by mechanical attrition, biodegradation, photochemical oxidation in the 

environment  and all kinds of  abrasion like fibers and tire wear (Andrady et al., 2011; Barnes et al., 

2009; Bouwmeester et al., 2015; Breuninger et al., 2016; Browne et al., 2011; Cole et al., 2011; 

Kalliopi and Karapanagioti, 2017; Lambert and Wagner, 2016; Pathak, 2017; Song, 2017). MP can 

also break down into even smaller parts called nanoplastics (Gigault et al., 2016; Koelmans et al., 

2015; Lambert and Wagner, 2016). So, after the actual use, the waste ends up as a primary or 

secondary MP (Crawford and Quinn, 2017; Dris et al., 2015; Gasperi et al., 2015; Gesamp, 2015; 

Vince and Hardesty, 2017) in the environment through the most diverse entry paths and reaches 

the seas e.g. via the rivers (Figure 1)(BKV, 2017; Koelmans et al., 2014b). Estimated 70–95 % of  

the marine MP comes from land-based inputs (Andrady et al., 2011; Duis and Coors, 2016; 

Mehlhart and Blepp, 2012). MP contamination can be detected anywhere in the world; in open 

waters, sediments, and consequently also in organisms (Ivar do Sul and Costa, 2014). 

The knowledge about its actual amount, distribution or potential risk is far from being a basis for 

specific management options. The methods currently used to sample MP in the sea and inland 

waters are very similar. Mainly, they involve plankton nets with mesh sizes of  300–500 μm for the 

water surface. This requires much more research, especially for smaller particles (< 300 μm) (Peng 
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et al., 2017; Wang et al., 2017). The use of  nets is a problem, especially in areas of  high biomass 

content, which causes the mesh to clog quickly, making it impossible to use smaller mesh sizes to 

capture even the smaller particles. It is also not possible to sample the entire water column with 

current methods. As already mentioned, the surface of  aquatic systems is mainly sampled the upper 

50 cm of  the water body; therefore, it has to be assumed that only those types of  plastic with 

density < 1 g/cm3 are covered. Studies on the distribution of  MPs are so far based only on 

estimates. Sediments or beach sand samples are simple to collect but only give an indication of the 

amount of MP per kg. 

The motivation for this work comes from this background, that a standardization and 

harmonization of the sampling methods are needed to make them more effective, as this is the 

basis for successful and comparable studies in the field of MP research (Rochmann et al., 2017). 

Therefore, the focus is laid on method development for microplastics sampling and preparation 

from the aquatic environment. For example, a new methodological approach is needed to be able 

to sample primary plastic as well from cosmetic products (<300 µm). Suspended matter can be 

separated from the water phase under specified conditions by different methods. The choice of the 

method of sample collection depends on the question and the investigation target. The suspended 

matter content of a stream is determined primarily by the flow rate and thus by the discharge of 

water. Suspensions are not evenly (homogeneously) distributed in the water cross-section, neither 

horizontal nor vertical. For large cross-sections, a composite of a mixed sample can be obtained 

by pooling several individual samples. The choice of the ‘right’ sampling strategy i.e. the 

representativeness for a larger water range, is crucial. The important part is the development of a 

novel sampling methodology. In order to sample the entire water column, the nets have to be 

replaced by an adapted procedure. This should also cover the entire size range and preferably 

should not be limited by plastic densities (Table 2). In this work, the flow-through centrifuge 

technique, already a standard method in suspend particulate matter sampling, is established for MP 

sampling (Breitung et al., 2015). The main aim of this strategy is the investigation of all sizes and 

types of MP in the total water column. Regarding the sediments, for the first time, sediment cores 

were taken by divers for MP extraction. These represent the MP occurrence in a temporal course 

and a documentation of the quantitative and qualitative evolution of MP particle entry into aquatic 

ecosystems and their sediment deposition is possible.  

As mentioned above, the high biomass fraction then causes difficulties in the separation of MP 

from the sample. Further processing, e.g. the chemical digestion or density separation is very 

complicated, time- and cost-intensive (Hanvey et al., 2017) because the proportion of  organic and 

inorganic material in these samples (water and sediment samples) varies highly. Especially in 
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sediments, the biomass fraction is very high (Underwood et al., 2017; Wagner et al., 2014). In order 

to isolate the MP from the field samples, chemical processes are currently being used in which the 

biological material is destroyed by bases or acids and then density separated by means of  different 

heavy-duty solutions (Hidalgo-Ruz et al., 2012; Imhof  et al., 2012). However even with these 

solutions, it is not certain that all plastic particles are detected; thus, densities are achieved up to 

only about 1.7 g/cm3 and there are far denser plastics such as PTFE (A. Rodríguez-Seijo and R. 

Pereira, 2017). In addition, the chemical treatment of  the samples may cause the MP to further 

decay or even dissolve (Rocha-Santos and Duarte, 2015; Nuelle et al., 2014). For these reasons 

another key consideration in simple MP separation is that the sample mass should be reduced and 

the biological materials removed without altering the properties of the particles. Reducing the 

sample mass would significantly reduce the amount of chemicals needed for further processing. 

Moreover, less harmful and less expensive solvents are needed (Felsing et al., 2017). Because of the 

difficulties in sample preparation, alternative approaches were sought. A promising process was 

found in the recycling industry. In this work, a modified device (KWS) was introduced that uses 

the electrostatic properties of MPs to separate them from different sample materials (Felsing et al., 

2017; Köhnlechner and Sander, 2009). It usually has dimensions of several square meters and a 

capacity in the tonne range. To determine whether this method is also applicable to environmental 

samples, a KWS measuring device has been provided. The aim is that the physical separation 

method can successfully replace the chemical density separation method without having an 

influence on the structure, age, or growth of MP or be limited by the sample composition or particle 

densities. The KWS reduces a sample successfully by about 90 % during the separation process. 

According to many authors, small MP particles are of  particular importance due to increasing 

bioaccumulation potential with decreasing size. Apart from this, bioaccumulation could possibly 

lead to a trophic transfer into food webs, which has been proved under laboratory conditions for 

marine organisms (Duis and Coors, 2016). In addition to physical influences, plastic additives, 

intermediates formed by degradation processes, or chemicals adsorbed to plastic materials after 

oral ingestion may have harmful effects (chemical influences) on organisms (Andrady 2011). One 

additional part of  the work is about capturing the real potential leaching of  environmental plastic 

waste (soft baits were used which enter daily into waters). It is important to determine what the 

material consists of, what is leached, and how much of  it leached. An important prerequisite is to 

make the laboratory conditions as natural as possible. Furthermore, it should be determined 

whether the leached substances pose a risk, by analyzing the estrogenic activity in the water. In this 

work, the focus lies on the detection of  different phthalate ester that may be leached of  plastics. It 

then has to be determined whether these substances can have a negative impact on organisms. 
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As already mentioned many examples of plastic additives occurring in the environment 

(Hermabessiere et al., 2017). The basis of  a supplementary effect study is the ingestion of  MP by 

Lumbriculus variegatus and the exploration which effects occur through what (chemical or physical 

endangering). The main part of  this research is the further development of  a classic sediment 

contact test OECD (2007) Test no. 225.). The aim of  this experimental setup is the in vivo 

characterization of  the effects of  polyvinyl chloride (PVC), polystyrene (PS), polyethylene 

terephthalate (PET) polymethyl methacrylate and (PMMA) and a bioplastic polylactic acid (PLA) 

particles on Lumbriculus variegatus—especially with regard to different MP concentrations, between 

direct and indirect routes of  exposure, and between all tested plastic materials. In addition, the 

identification and quantification of  leached chemicals are evaluated by means of  Yeast Estrogen 

Screen (YES) or chemical analysis. YES offers reliable information about the endocrine potential 

of  substances in water-based matrices (TZW, 2015). It is established as a biological test procedure.  

 

Table 1: Microplastics extracted from 15 m3 surface water of the river Rhine and identified with PyGCMS. 

 

 

 

 

 

 

 



 Introduction 

 

5 
 

Table 2: Summary of the densities of the most commonly used polyester. 

Kind of plastic Abbreviation  Density g/cm3 

Polyvinyl chloride PVC  1.38 

Polyethylene terephthalate PET  1.37 

Polylactic acid PLA  1.21-1.43 

Polymethyl methacrylate PMMA  1.18 

Polystyrene PS  1.05 

Polyethylene PE  0.95 

High-density PE HDPE  0.94 

Low-density PE LDPE  0.9-0.93 

 

1.1 Current state of research 

1.1.1 Sources of micro-, meso-, macroplastics in the aquatic environment 

Plastic sources are commonly discussed in the context of pollution due to marine plastics. Land-

based sources (including beach litter) account for about 80 % of plastic waste (global input) 

(Andrady et al., 2011). It can be assumed that the entry of plastics into the oceans through rivers 

contributes significantly to the pollution of the oceans. In this section, an overview is given of the 

most important sources of plastic release into the environment, insofar as they are relevant to 

freshwater environments, including their catchment areas (Breuninger et al., 2017). The 

information is based on various reports and reviews. In the meantime, the reported values should 

be considered as an indicator of the potential size of each source of pollution. Estimates of personal 

care products (PCP) estimates have also been made, which are believed to have the smallest share 

of MPs. while the emissions of tire wear are the largest. The relevance of this tire dust as an emission 

source for MPs has also been reported by other authors. According to Sundt et al. (2014) and 

Lassen et al. (2015), car tire wear is the most important land-based source of MP in Denmark and 

Norway (500-2,250 t per year). Table 3 shows six different sources of MP emissions in Europe and 

some estimated amounts. Another, mostly forgotten source is the use of artificial soft baits by the 

increasing fishing activity in freshwater systems, which also contain partially toxic additives. 

According to estimates, there are tons of lost fishing lures in German waters. It is not clear what 

exactly happens to them (Raison et al., 2014). Currently, there is no estimate of  the amounts of  

meso- and macroplastics released into the environment. The results of  a study by Faure et al. (2015) 

show that relevant amounts of  meso-plastics (5–25 mm) are present in lakes and rivers. In seven 

Swiss lakes, an average of  44 g/m2 (relative to the water surface) of  mesoplastic was measured. In 

contrast, the average MP concentration was 26 mg/m2 (in terms of  water surface area). In addition, 

the mean concentrations of  four Swiss rivers were 0.43 mg/m3 for mesoplastics and 1.4 mg/m3 for 

MPs (Breuninger et al., 2017). 
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Table 3: European emissions of microplastics into the marine environment from six different sources ( Sherrington, 
2016 = data source). 

Emission source Year Lowes estimated value t/a Highest estimated value t/a 

Tire wear 2012 25,122 58,424 

Pellets n. n. 24,054 48,450 

Textiles 2010 7,510 52,396 

Wall paint 2002 12,300 28,600 

Road marking 2006 7,770 18,069 

Cosmetics 2012 2,461 8,627 

 

1.1.2 Pathways of microplastics to the environment 

Figure 1 shows the different ways how plastics enter the environment. There are several reports of 

exposure of freshwater environments to wastewater from public and/or industrial wastewater 

treatment plants (AWI et al., 2014; Bannick et al., 2015; Leslie et al., 2012; Schwaiger et al., 2016). 

Pollution of surface waters by plastics can also be caused by atmospheric inputs. For example, 

plastic waste or MPs can be transported by wind from areas of infrastructure, agriculture, and 

industry, from uncovered landfills, or during waste collection. Modelling methods are developed 

to estimate the entry of plastics into the oceans. ‘From Land to Sea—A model for the detection of 

land-based plastic waste, 2016’ was designed by the consultancy Consultic Marketing & 

Industrieberatung GmbH (2016) on behalf of the chemical and plastics industry in Germany and 

Austria. The modelling approach systematically seeks to identify land-based plastic inputs into the 

marine environment from improperly disposed litter. The approach intends to characterize and 

quantify major pathways of micro-, meso-, and macroplastics into marine environments and to 

distinguish the inputs of rivers from the total input from coastal regions. In addition, the model 

includes European data on coastal zoning, population density, and socio-economic situations 

(Cieplik et al., 2016). The knowledge gained so far is validated in the next step, whereby the model 

parameters are checked and if necessary modified; the model itself is extended as soon as other 

data become available. 
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Figure 1: Possible pathways of microplastics into freshwater environments and catchment areas (Bänsch-Baltruschat 
et al., 2017) 

1.1.3 Methodology of sampling microplastics  

Plankton networks of various mesh sizes (Hohlenbluhm et al., 2015a) and the so-called Manta 

Trawl (Fischer et al., 2016) have been used in most of the previous studies on MP capture in water 

bodies. As already mentioned above, in waters with high biomass content, this method has the 

disadvantage that the nets clog quickly. For this reason, most studies are limited to a particle size 

range of 300-5000 µm. Bänsch-Baltruschat et al. (2016) summarize the common methods. 

However, since small particles in particular can play a major role for the organisms (Duis and 

Coors, 2016), this gap (Figure 2), which is currently not comprehensively recorded, must be closed. 

Some researchers have already created protocols for the sampling of surface waters, to sample MPs 

in aquatic systems, but as mentioned, only for particles larger than 300 μm (Reifferscheid et al, 

2017); (Table 4). Also for sediment or beach sampling different methods were available 

(Hengstmann et al., 2018). 
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Table 4: Brief summary of the methods used in microplastics research until 2015 (Breuninger et al, 2017). 

 AWI et al. (2014)  Hohenblum et al. 

(2015a)  

Löder et al. (2015)  Mani et al. (2015)  

Sampling location 

Sewage water 

treatment plant 

outlet 

Danube River 

 

North Sea 

 

Rhine River 

 

Sampling device 
Cartridge filter 

10 µm 

nets 500, 250, and 

41 μm 

net 500 μm 

 

net 300 μm 

 

Density separation ZnCl2 NaCl sieving 500 μm NaCl 

Organic digestion 

Sodium dodecyl 

sulphate, enzymatic 

degradation, H2O2 

None 

 

enzymatic 

degradation 

 

 

enzymatic 

degradation 

 

Water removal 

sieving, filtration on 

aluminium oxide 

filter 

thermal drying 

filtration on 

aluminium oxide 

filter 

sieving 300 μm 

 

Detection/ 

identification 

Identification: 

> 500 μm: ATR- 

FT-IR 

< 500 μm: FPA-

μFT-IR 

detection: visual 

identification: ATR-

IR of sub-samples 

(particles > 2 mm) 

identification: μFT-

IR 

 

detection: visual 

(particles > 300 μm 

identification: 

random controls by 

FT-IR) 

 

 

 

Figure 2: Overview of microplastics size classes shows the gap that cannot be captured by current research. 
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1.1.4 Sample preparation and microplastics isolation procedures 

Freshwater samples and sediments consist of a high mass of organic components (Underwood et 

al., 2017; Wagner et al., 2014). To extract the MP from the samples, it is necessary to reduce this 

matrix by chemical digestion and afterward density separation, which are both costly and harmful 

(Hanvey et al., 2017). The process of chemical digestion is carried out with acids or bases, which 

dissolve the excess biomass into its components. The resulting residual material, which is resistant 

to these chemicals (most plastics), is additionally subjected to a density separation. Currently, the 

separation of plastic particles is also based on some chemical processes that use solutions with 

different densities (Table 3) (Hidalgo-Ruz et al., 2012; Imhof et al., 2012). Therefore, the samples 

with different materials are placed in a medium-density fluid. Less dense materials like MPs separate 

from the denser material by floating on the surface. Changing the density of the liquid, usually a 

salt solution, enables the separation of particles with different densities (Table 5). This technique 

has been used in 65 % of the studies in which MPs were separated from sediments (Hidalgo-Ruz 

et al., 2012). NaCl solution (density = 1.2 g/cm3) is most commonly used for this purpose 

(Reifferscheid et al., 2016). However, this method may not be applicable to MPs with higher 

densities than the commonly used solutions, like alkyd resin, polyester, and polytetrafluoroethylene. 

To address this problem, higher density salt solutions were used for the extraction of MP 

sediments, such as sodium polytungstate (1.4 g/cm3) (Corcoran et al., 2009; Zhao and Li, 2015), 

zinc chloride (1.5–1.7 g/cm3), (Imhof et al., 2012; Liebezeit and Dubaish, 2012), calcium chloride 

(1.30–1.35 g/cm3) (Stolte et al., 2015), and sodium iodide (1.8 g/cm3) (Claessens et al., 2013; Nuelle 

et al., 2014). Recently, NOAA has recommended the use of 5.4 Mol lithium metatungstate 

(1.62 g/cm3) for density separation. The results obtained with these solutions are relatively 

different, and the plastic particles used in recovery experiments are also relatively large (200–

1000 μm) (Quinn et al., 2017). In addition, chemical treatment may result in partial or complete 

degradation of some MPs, thereby preventing their further analysis (Rocha-Santos and Duarte, 

2015; Nuelle et al., 2014).  
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Table 5: Overview of  the densities of  currently used solutions in microplastic research. 

Solution Density (g/cm3) 

Water (H2O) 1.0032 

Sodium chloride (NaCl) 1.1708 

Calcium chloride (CaCl2) 1.3 

Sodium bromide (NaBr) 1.37 

Sodium polytungstate (SPT) 1.4 

Sodium iodide (NaI) 1.566 

Zinc chloride (ZnCl2) 1.5–1.7 

Lithium metatungstate 1.62 

Zinc bromide (ZnBr) 25%) 1.71 

Calcium formiate (Ca(HCOO)2) 1.91 

 

1.1.5 Identification of microplastics 

There is currently no single method for the identification of MPs. However, it is widely accepted 

that visual identification is inappropriate because up to 70 % of all visually identified particles are 

false-positive (Hidalgo-Ruz et al., 2012). Recently, five methods are being increasingly applied: 

micro-Fourier transform infrared microscopy or infrared spectroscopy (μ-FT-IR) (Lusher et al., 

2013; Renner et al., 2017), Raman microspectroscopy (Van Cauwenberghe et al., 2013; Imhof et al. 

2016), Pyrolysis gas chromatography mass spectrometry (PyGCMS) (Bart 2006) and a combination 

of thermogravimetric analysis (TGA) with thermal desorption gas chromatography mass 

spectrometry referred to as TED-GC-MS (Dümichen et al., 2015) and the microPhazir (Haseler 

unpublished). Since each of these methods has advantages and disadvantages (Table 6), 

combinations are recommended (Bänsch-Baltruschat et al., 2017). 
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Table 6: Overview of  the currently used methods for MP identification with their advantages and disadvantages 
(Bänsch-Baltruschat et al., 2017) = supplemented). 

Analytical methods 
 

Advantages 
 

 
Disadvantages 

 

μFT-IR spectroscopy 

Easy handling even for 
inexperienced personnel; fast 
measurement possible by using a 
focal plane array detector  
Qualitative & quantitative analysis 
of  plastic particles of  various 
chem. composition and shape 
(spherical, irregular, foils, fibres)  

Difficulty in detecting black particles; 
theoretical limit of  detection of  ~3 μm, 
practically not achievable (~20 μm); 
quantification of  MP mass not possible 

Raman 
microspectroscopy 

 

Spatial resolution down to 1 μm; 
qualitative and quantitative analysis 
of  plastic particles of  various 
chem. composition & shape 
(spherical, irregular, foils, fibres); 
information on size distribution of  
particles (see Imhof  et al., 2016) 

Interference of  fluorescence from 
(micro)biological and (in)organic 
contaminations; measurements are time-
consuming and require trained personnel; 
quantification of  MP mass not possible 

Pyrolysis GC-MS 
 

Identification of  all kinds of  
synthetic materials in field samples 
and their additives; quantification 
of  MP mass possible for cleaned 
up samples 

Quantification of  large samples including 
their matrix not possible; sample volume is 
limited by crucible size  

TED-GC-MS 
 

Current state of  knowledge: 
relatively high sample masses com-
pared to Pyrolysis GC-MS (about 
200 times higher); identifying and 
quantifying characteristic 
decomposition products of  spiked 
PE in complex environmental 
samples possible  
(see Dümichen et al. 2015)  

Current state of  knowledge: Until now, only 
PE has been tested;  
pre-concentration will be necessary to 
measure real environmental samples  
(see Dümichen et al. 2015)  

MicroPhazir 

Easy handling even for 
inexperienced personnel; direct 
identification in the field with fast 
measurement. Non-destructive 
analysis with near-infrared 
spectroscopy 

Analyser for the plastic/polymer 
identification <1 mm. quantification of  MP 
mass not possible. Difficulty in detecting 
black particles 

 

1.1.6 Toxicological effects of microplastics on organisms 

The accumulation of plastic in water environments is one of the great challenges of the early 21st 

century. Due to the high persistence of plastic materials in the environment (Akhbarizadeh et al., 

2017; Moore et al., 2017), the assessment of possible adverse effects on aquatic biota is of particular 

interest. So far, risk awareness and research have mainly focused on plastics in marine 

environments. While numerous studies and reports on MPs have been published in the marine 

environment, little is known about the occurrence and ecological risks of plastic particles in rivers 

and lakes. In 2012, the Convention on Biological Diversity (CBD) reported the impacts of  marine 

waste on 663 species, of  which more than 80 % were associated with plastic waste (CBD, 2012). 

The uptake of  relatively small plastic particles (depending on the size of  the organism) has been 

reported for a variety of  marine organisms and a small number of  freshwater species. Due to their 
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small size, MPs can be picked up by marine organisms such as zooplankton, bivalves, and worms 

(De Witte et al., 2014; Devriese et al., 2015; Graham and Thompson, 2009; Rochman et al., 2015; 

Van Cauwenberghe and Janssen, 2014; Van Cauwenberghe et al., 2015) and higher trophic 

organisms such as fish (Boerger et al., 2010; Carpenter et al., 1972; Dantas et al., 2012; Foekema et 

al., 2013; Lusher et al., 2013; Neves et al., 2015; Possatto et al., 2011; Rochman et al., 2015). The 

uptake of  MPs by freshwater species under laboratory conditions has been demonstrated by Imhof  

and Laforsch (2016) for annelid worms (Lumbriculus variegatus), crustaceans (Daphnia magna, 

Gammarus pulex), ostracods (Notodromas monacha), and gastropods (Potamopyrgus antipodarum). Studies 

on potential adverse effects have been performed on different marine species under field and 

laboratory conditions, but efficacy studies on freshwater organisms are still rare (Wiesheu et al., 

2017). These effects on organisms are related to the particles themselves (physical agents), as well 

as the adsorbed additives or impurities (chemical agents) on the particle surface. Potential physical 

effects include entanglement and ingestion (external and internal effects). Depending on the size-

ratio of  plastic particles to organism and the shape of  the particles, ingestion may cause obstruction 

or damage to the respiratory tract of  filter feeders or the digestive tract in birds and mammals. The 

latter can lead to altered feeding behavior such as false satiety, which leads to starvation and finally 

death of  the organism (Gregory et al., 2009). 

For plastic production mainly additives such as plasticizers, flame retardants, stabilizers, 

antioxidants, and pigments are used. Phthalates, bisphenol A (BPA) and nonylphenols are the most 

common additives derived from the environment (Berge et al., 2012; David et al., 2009; de Boer et 

al., 1998; de los Ríos et al., 2012; Mackintosh et al., 2004; Net et al., 2015; Xie et al., 2005, 2007); 

they pose a threat to the environment and organisms (Lithner et al., 2011; Meeker et al. 2009; 

Oehlmann et al., 2009). Phthalic acid esters (PAE) or phthalates are a family of plastic additives 

mainly used in PVC production as plasticizers (Arbeitsgemeinschaft und Umwelt, 2006); Many 

studies on the phthalate contamination of the marine environment show concentrations ranging 

from a few pg l-1 to about 10 μg l-1, with DEHP being the most concentrated phthalate found in 

marine waters (Table 7). Klamer et al. (2005) also report the presence of phthalates (DMP, DEP, 

DBP, BBP, DEHP and DOP) in North Sea sediments, with DEHP being the most concentrated 

phthalate at 170–3,390 μg kg-1. Phthalates in marine sediments from the Gulf of Mexico were 

detected on average at 7.6 and 6.6 μg kg-1 dw for di-n-butyl (Hermabessiere, 2017). Phthalate 

(DnBP) and DEHP (Giam et al., 1978) were found in the Bay of Singapore and reached 890–

2,790 μg kg-1dw for DEHP (Chee et al., 1996). Whether the plastic additives found in marine 

sediments are from diffuse sources (wastewater, atmospheric deposition, sewage sludge, etc.) or 

leachate from plastic waste is unclear, although there is increasing evidence (Al-Odaini et al., 2015) 
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suggesting that MP and plastic waste are generally likely to be sources of plastic additives in the 

marine environment. In 2015, 8.4 million t of plasticizer were used worldwide, of which di-2-

ethylhexyl phthalate (DEHP) was the most commonly used plasticizer, accounting for 37.1 % of 

the global plasticizer market (ECPI, 2016). Europe accounted for 1.3 million t of the global 

plasticizer market in 2015 (ECPI, 2016), but DEHP was not the most widely used plasticizer in 

Europe, as indicated by its 20 % decline in consumption between 1999 and 2004. DEHP has 

progressively been replaced by diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP), and di 

(2-propylheptyl) phthalate (DPHP), accounting for 57 % of plasticizer consumption in Europe in 

2015 (Working Community and Environment, 2006; ECPI, 2016). Possible effects on organisms 

have been reported, mainly in the context of marine studies. Plastic additives, intermediates formed 

by degradation processes, or chemicals adsorbed to plastic materials after oral ingestion may have 

harmful effects (chemical influences) on organisms (Andrady, 2011). For example, a study on the 

additives phthalate-based plasticizers shows effects on the development and reproduction of a large 

number of wild animal species (Schulte-Oehlmann et al., 2009). So far, few effects have been 

observed on freshwater species under laboratory conditions. Exposure to environmentally relevant 

concentrations leads to decreased growth rates, hatching inhibition, altered feeding behavior, and 

changes in innate behavior, such as reactions to olfactory threats. In a study on the uptake and 

effects of MPs in zebrafish (Danio rerio), inflammation and lipid accumulation in fish liver, 

oxidative stress, and impaired lipid and energy metabolism were observed (Lu et al., 2016). MPs 

can potentially transfer chemicals that are adsorbed on its surface (Mato et al., 2001; Teuten et al., 

2007, 2009) or evolve plastic additives. However, little attention has been paid to the transfer of 

plastic additives to marine organisms compared to hydrophobic organic compounds (HOCs), 

although many additives have been classified as hazardous (Lithner et al., 2011). Plastic toxicity has 

increased in recent years. Recent studies using leaching experiments demonstrate that various 

plastics are toxic to a variety of organisms (Table 8). Li et al. (2016) used the seven categories of 

recyclable plastics (HDPE, LDPE, PP, PVC, polycarbonate (PC, PET, and PS) to study the effects 

of their leachate on the survival and colonization of Amphitralanus amphitrite larvae. Of all types 

of plastic, PVC was the most toxic for the larvae.  

In addition, a possible tissue transition from MP uptake was observed in laboratory experiments 

on marine organisms. These studies suggest that tissue transfer depends on the particle size of  the 

MPs taken (specific for species or taxonomic groups) (Duis and Coors, 2016). It is expected that 

only small MP particles can enter the body tissue from the digestive tract. Studies on the freshwater 

species Daphnia magna reveal that polystyrene (PS) spheres (0.02 μm and 1 μm particles) appear to 

pass through the intestinal epithelium (Rosenkranz, Chaudhry et al., 2009). Tissue transfer from 
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MP particles is of  particular interest, as it may possibly cause even more severe effects within the 

organisms such as inflammation, rather than the mere uptake and excretion of  particles (Wagner 

et al., 2014). 

1.1.7 Description of the analyzed phthalate ester 

Dimethyl phthalate DMP is e.g. used in pesticides, fragrances and cosmetics and pharmaceutical 

products. It is also used for the production of  explosives and as a plasticizer in various products. 

It has a negative impact on mammal sperm quality when taken orally. In addition, it can lead to an 

influence of  fish phagocytizing cells and thus disturb the immune defense of  the animals (Watanuki 

et al., 2003). Diethyl phthalate DEP has the same fields of  application as the DMP. The uptake 

leads to endocrine disorders and changes in the metabolism in fish (Barse et al., 2007). Di-butyl 

phthalate DBP may cause considerable health issues by inhalation or ingestion. In addition, it has 

an irritating effect on the skin and mucous membranes. The DBP is toxic to aquatic organisms. 

There are demonstrable developmental, reproductive and embryotoxic effects (Adams et al., 1995). 

The use of  DBP is prohibited in toys for children under three (www.Umweltbundesamt.de). Due 

to the high fertility hazard and the possibility of  harming the unborn child the benzyl butyl 

phthalate BBP was banned in 2005 in some consumer goods and baby articles. In the latest draft 

of  the RL 2002/95 / EG RoHS the BBP is included in the substance ban 

(www.Umweltbundesamt.de). Di (2-ethylhexyl) phthalate DEHP can lead to the formation of  

hermaphrodites in juvenile fish. This means that hormones for the formation of  gender are 

influenced by the absorption of  DEHP in the organism. (Norrgren et al., 1999, Norman et al., 

2007) The use of  DEHP is prohibited in toys for children under the age of  three 

(www.Umweltbundesamt.de). Di iso nonylphthalate DINP is a colorless liquid with a faint odor. It 

is preferably used as a plasticizer in PVC production and has a high bioaccumulation potential 

(www.Umweltprobenbank.de). In children's toys, the DINP is prohibited, however, there are no 

safety instructions (www.Umwelbundesamt.de)..For Bis(2-ethylhexyl) adipate DEHA, effects on 

offspring in reproductive toxicology studies have been identified as critical endpoints. Due to the 

ubiquitous occurrence of  these plasticizers, therefore, a damaging effect, in particular with regard 

to subsequent generations (Article 14 (4) Regulation (EC) 178/2002), cannot be ruled out; the 

affected consumer group are pregnant women and infants. Due to its solubility in oil from the 

packaging, it is found in many foods (eg. cheese). In food, a maximum level of  18 mg/kg is allowed 

(BfR, 2006).  
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Table 7: Compilation of research results on the occurrence of additives (phthalate ester) in the environment (Hermabessiere et al., 2017). 

 

Table 8: Short compilation of past attempts to study additives and their influence on different organisms (Hermabessiere et al., 2017). 
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2 Material and Methods 

2.1 Sampling 

2.1.1 Sampling of water bodies 

A flow centrifuge of the Federal Institute of Hydrology (BfG) was used for the sampling on the 

Lahn river. It is a flow centrifuge from the Padberg company (type CEPA Z61), combined with an 

external pump (Neptun NCGP-E110 INOX) (Figure 3). It was first ensured that the method 

samples all plastics (high and low density) by means of recovery (Figure 4). The power was supplied 

via an external generator or a fixed three-phase connection (Figure 5) for example when sampling 

at measuring station locations or a ship. It works at a flow rate of 12  l/min and 17.000 rpm. A 

suspended solid content of 30–100 g of wet substance was obtained per run. The flow centrifuge 

is firmly installed on a trailer and has a total weight of about 900 kg. Sampling on Federal 

Waterways, such as the Lahn river, takes place ship-based. For this purpose, the trailer is 

transported by crane to a ship of the Wasser- und Schifffahrtsverwaltung des Bundes (WSV) and 

firmly secured. Sampling involves collecting water at three positions in the longitudinal and vertical 

profile at three different depths. In the flow centrifuge, particles are separated from the aqueous 

phase due to the centrifugal force on the inner wall of the separator. The separator (clarifier) is 

lined with a Teflon film (PTFE). All parts of the pump and centrifuge that come into contact with 

the water/suspended solids mixture are made of stainless steel and/or provided with Teflon 

(PTFE) in order to avoid contamination by other plastics. The water is pumped continuously 

through the separator. The acceleration in the separator is a multiple of the gravitational 

acceleration. Through the use of high-performance flow centrifuges, rebound rates of up to 98 % 

were reached (Breitung et al., 1997; Bierl et al., 2015). In order to sample at greater depths, an 

external pump is connected in front of the centrifuge, which supports the water supply of the 

centrifuge. The exact flow rate of one m3 was detected by the centrifuge. The water is passed 

through a steel funnel which collects all particles <5 mm. For physical reasons, the centrifuge only 

collects particles with a density >1 g/m3. The residual water that leaves the centrifuge must 

therefore be collected separately and contains particles that are lighter than water, with a density 

<1 g/m3. At the four positions, sediment samples were also taken with the Van Veen Grab. One 

can thus obtain an entire cross-section of a sampling location. Sampling was performed at the Lahn 

river upstream and downstream of the effluent of a wastewater treatment plant (WWTP)(Figure 6) 

to determine a possible point source of MP. Additional two horizontal samples were taken to cover 

the entire river Lahn in a transverse profile It was sampled in two depths (directly below water 

surface and -3 m). The suspended matter was collected in the centrifuge and transferred directly to 

glass dishes. The net (5 µm) which collected the outcoming water of the CFC was rinsed and the 
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particulate matter also transferred to a glass jar. Between each sampling, all materials were rinsed 

with ultrapure water. 

 

 

Figure 3: Adapted continuous flow centrifuge (CFC) method to obtain suspended matter samples for the sampling of 
microplastics from the aquatic environment. On the left is the overview of how to sample; on the right is the scheme 
of the modified strategy with a steel funnel A) external pump, B) the CFC, C) and a 5 µm sieve after the outlet for 
catching the rest water. 

 

 

Figure 4: The picture shows the tested kinds of plastic on the teflon foil of the continuous flow centrifuge and on a 
sieve which collects the low-density particles of the out coming water. The colored arrows are described in table 2. 
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Figure 5: Overview of the sampling process. The four pictures show A) a crane lifting the centrifuge onto the ship of 

the WSV. B) a diesel operating generator that starts up the pump. C) CFC where river water is passed through and D) 
the suspended matter collected on the teflon foil by the centrifuge. 

 

 
Figure 6: The picture shows the sampling sites (upstream and downstream) on the river Lahn and the effluent of a 
waste water treatment plant (Source: Google Maps). 
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Sediment core sampling 

The sediment cores were taken by divers during a test run of the centrifuge by divers. The 

undisturbed sediment cores come from the Trave river (about 4 m depth) (Figure 7). The used 

cores (hard PVC) are 20 cm in diameter and about 22 cm long. The lids are removed and the lancing 

tube is slowly pushed into the sediment. Then the upper lid is replaced and the sediment lingers in 

the core. The core is then closed with the lower lid and frozen until further processing. 

Subsequently, these are divided into 1.5–2 cm thick layers. The age of each layer was determined 

with gamma spectroscopy (cesium 137 dating) and the amount of MP content was determined. 

The sediment was dried and the MP was isolated using the KWS (Felsing et al., 2017). The digestion 

of organic material was done using 10 Mol KOH and 30 % H2O2. For the density separation, 

1.6 g/ml KHCO2 was used (house method). Pressure filtration on glass fibre filter was at 5 bar 

overpressure. Only visual identification with the microscope was done at first.  

 

 

Figure 7: The maps show the sampling positions on the Trave river, Brennholt et al, 2017. 
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2.1.2 Identification 

The qualitative identification of the small particles, which can no longer be determined visually, is 

done presently in the BfG by using a μFTIR and microphasir. 

2.1.3 Sample preparation 

To separate MP from different sample material the Korona–Walzen–Scheider (KWS), a 

metal/plastic separator, was used. The device used here has the dimensions 60 × 60 × 60 cm and 

a weight of 57 kg. The funnel has the dimensions 20 × 15 × 20 cm, so that samples up to this 

volume can be introduced directly. The collecting trays can be emptied continuously so that 

theoretically very much larger quantities can be separated. Operation takes place via a touch panel 

from sigmatek, which stores all settings (voltage, speed, vibration) and allows for export via USB 

(hamos, 2016). The mixture to be separated is fed via a vibratory conveyor to a rotating grounded 

metal drum and transported into the area of a corona electrode. Here, the particles are 

electrostatically charged due to their substance-specific properties (Chosakai, 1976, 1984, 

Domenico and Schwartz, 1990). Because the drum is grounded, the particles discharge as soon as 

they leave the electric field, which discharges more conductive materials faster than less conductive 

ones. They are discarded by the rotational movement according to their discharge rate in different 

sample collectors. The less conductive the particles are, the more slowly they are removed; later, 

they are divided into the corresponding fraction: the sample fraction (non-conductor fraction of 

MP particles and small amounts of organic and inorganic residues) and the discarded residual 

fraction (conductor fraction) (Domenico and Schwartz, 1990), which is free of plastic 

(Köhnlechner and Sander, 2009). After several test runs, the optimal settings for the KWS for the 

separation of environmental samples were found. The vibration of the conveyor belt was set to 

900 rpm and the drum speed to 66.5 rpm (Figure 8). A voltage of 20 kV was applied to the electrode 

(Flachberger and Köhnlechner, 2009).  

In order to validate the effectiveness of the KWS for MP separation from field samples and to 

ensure the reliability of the procedure, a comprehensive recovery attempt was made. For this 

purpose, four different materials were compared—purified quartz sand, sand from the beach, river 

sediment, and freshwater particulate matter (Figure 9, A–D); 150 g of each material were spiked 

with 10 MP particles of different types (see MP production) and four different size classes (63–

200 μm, 200–630 μm, 0.63–2 mm, and 5 mm). The added plastic particles were then separated from 

the material by the KWS in terms of their conductivity (Flachberger and Koehnlechner, 2009; 

Koehnlechner and Sander, 2009; Schubert et al., 2001). For the best possible result of the sample 

reduction, each fraction was run three times. For the determination of the recovery, three replicates 

each were run and presented as an average. Depending on the composition of the sample, the 
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separation time varied (Figure 10). The weights of the fractions were collected after each step and 

the particles counted (Felsing et al., 2017). 

 

Figure 8: Scheme of the Korona–Walzen–Scheider (KWS) electrostatic metal separator (hamos GmbH). The KWS 
255 sorts material into non-conductor, mix, and conductor fractions. Since the mix fraction may still contain 
microplastics particles, it is combined with the non-conductor fraction to form the sample fraction, Felsing et al., 2017. 
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Figure 9: The four different materials used for recovery by the KWS; (A) freshwater-suspended particulate matter 

(SPM), (B) 259 freshwater sediment, (C) beach sand, and (D) quartz sand. Microplastics (MP) particles of different 

shapes were tested. (E) 260 Self-made MP particles and (F) isolated aged MP particles from the Rhine river. (G) Rest 

fraction of 147.6 g quartz sand. (H) 261 Sample fraction containing 2  g of MPs and less sand; both images were made 

after Separation Step 1 (Felsing et al., 2017).  
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Figure 10: Scheme of the separation steps using the KWS, Felsing et al., 2017. 

 

2.2 Laboratory design: Leaching additives from different polymers 

In the experiment investigating the leaching of phthalate ester from plastic material, 11 different 

soft baits (rubber fish) from different manufacturers were used. First, they were analyzed for their 

composition by PyGCMS. This information serves as the basis for the phthalate analyses. For 

leaching attempt, 1 g of the material was weighed from each bait. If the rubber fish were made of 
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different materials, they were weighed in equal parts to 1 g. The sample material was then incubated 

in a glass with 75 ml of ultrapure water to exclude impurities from the outside. From each sample, 

three replicates were made and three blanks were used for comparison. The vessels were then 

shaken in a day-night (daylight imitation: Inkubationsschüttler Multitron pro, Infors HT, Basel) 

rhythm 16/8 h at 15 °C (average temperature in the Rhine river). After four and eight weeks, 1 ml 

of each sample was taken for high-performance liquid chromatography mass spectrometry-mass 

spectrometry (HPLC MS MS) analysis for determination of additives and 6 ml for the YES test. 

2.2.1 Identification of MP using PyGCMS 

The pyrolysis-GC-MS(PyGCMS) is an analytical method by means of which almost the entire 

sample material (solid or liquid) from small sample amounts (30 µg to 1 mg) can be characterized 

without prior sample preparation. It gives information about the type of plastics, the composition 

of materials, additives contained or foreign substances (contaminations). A wider temperature 

range offers the possibility to use this technique for sensitive materials and extremely temperature-

stable materials. Particles extracted from the field samples were identified by the following method. 

A total of 10–30 μg of sample material were flash-pyrolysed at 600 °C using the pyrolysis injector 

EGA/PY-3030D from Frontier Lab (Koriyama, Japan). The pyrolysis products were separated by 

gas chromatography using a 7890B gas chromatograph (Agilent Technologies, Santa Clara, USA) 

and a 30 m Ultra ALLOY-5 capillary column with an inner diameter of 250 μm and a thickness of 

0.25 μm (Frontier Lab, Koriyama, Japan). GC oven temperature of 40 °C was maintained for two 

minutes, increased to 320 °C by 20 °C per minute and maintained for 13 minutes. Detection was 

performed by high resolution mass spectrometry using a 7200 Q-ToF (Agilent Technologies, Santa 

Clara, USA) operating in electron ionization (70 eV) and full scan (m/z 50-500) mode. 

Identification of the plastics was done by database-matching with the F-Search database v3.4.2 

delivered by Frontier Lab (Koriyama, Japan). For the detection of leached phthalate ester HPLC 

was used. 

The identification and quantification of additives was done with a HPLC MS/MS (according DIN-

Norm 38407-36, DIN 2014). It is an analytical method for the separation and determination of 

molecules by a combination of liquid chromatography (HPLC) and mass spectrometry (MS). The 

chromatography is used for the separation of molecules in a mixture and the subsequent mass 

spectrometry for the identification and/or quantification of the substances. For the sampling 

directly from the water sample a house own method was used. Parameter: The volume of the direct 

injection amounted to 10 µl with a column temperature of 30 °C. ESI+ (electrospray ionization 

with positively charged ions) was adjusted in a Multiple Reaction Monitoring (MRM) mode and a 
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linear calibration of 0.5–500 ng/µl was used with D4-Diethylphthalat (D4-DEP) as internal 

standard. A Trapcolumn Poroshell 120 EC-C18 from Agilent Technologies was slotted ahead of 

the injector for blank elimination. For the analysis, a Zorbax Eclipse Plus C18 (Agilent 

Technologies) column was used. 

2.2.2 Measurement of estrogen active substances using the YES-test 

The estrogenicity was tested weekly by the Yeast Estrogen Screen (YES) performed according to 

the provisional ISO standard ISO/TC 147/SC 5 N 804 - ISO/WD YES Test-1 (working draft, 

unpublished as of  2017) with Saccharomyces cerevisiae. In this in vitro test system, the gene of  the 

human estrogen receptor (hER) was integrated into the main chromosome of  the yeast S. cerevisiae 

by molecular genetic methods. In addition, an expression plasmid was inserted, with an estrogen 

responses element (ERE) and the reporter gene lacZ. LacZ encodes the enzyme β-galactosidase. 

If  an estrogen-active substance activates the hER (an additive from MP), a complex is formed that 

binds to the ERE in the plasmid. This leads to the transcription of  the lacZ gene and thus to the 

synthesis of  β-galactosidase (Spangenberg, 2014). By adding the chromosome substance 

chlorophenol red-D-galactopyranoside (CPRG), the activity of  the enzyme can be determined, 

since β-galactosidase cleaves the CPRG while releasing chlorophenol red. The colour changes from 

yellow to red can then be determined photometrically and helps to determine the estrogenic activity 

(Routledge and Sumpter, 1996). 

 

2.2.3 Laboratory test design of ecotoxicological investigations  

2.2.4 Primary studies on additives 

In the first step, the types of plastic used were analyzed for their composition by means of pyrolysis 

gas chromatography mass spectrometry (PyGCMS) (see 2.3.1) and characterized accordingly. It 

was then determined whether additives are leached of MP particles and to what extent. For this 

purpose, six different plastics (5 mm) were incubated with water in 20 ml glasses. These were shaken 

in a day-night rhythm 16/8 h at 20 °C. After four and eight weeks, a sample was taken for the 

HPLC measurement and the water was analyzed for seven different phthalates (DNOP, DEHP, 

DEHA, BBP, DBP, DEP, DMP). The identification and quantification of the phthalates was 

carried out using HPLC-MS-MS (see 2.1.1). 

 

2.2.5 Description of the used polymers 

Polylactic acid (PLA, CAS No.: 26100-51-6) belongs to the class of  thermoplastics. The monomer 

can be produced by microorganisms from glucose by fermentation or directly by polycondensation. 
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It is polymerized from renewable raw materials and thus belongs to the biogenic plastics. The 

polymer is produced by the esterification of  lactic acid monomers. PLA has a density of  1.2–

1.4 g/cm3 and therefore sinks in the water body and is available for benthic organisms. It is 100 % 

biodegradable and in combination with the biogenic origin of  the monomers it is a true bioplastic. 

The used PLA comes from disposable cups from PAPSTAR (PAPSTAR GmbH, Kall, GER). 

Analysis by PyGCMS shows pure material of  only PLA. No impurities or additives were detected 

in the material.  

Polymethyl methacrylate (PMMA, CAS No.: 9011-14-7) is a high-molecular-weight petrochemical 

polymer. It is polymerized from monomers of  methacrylic acid methyl ester. With a density of  

1.2 g/cm3, PMMA is also available for benthic organisms. The molecular formula of  the monomer 

is C5H8O2 (GESTIS Substance Database, 2017a). PMMA is a polymer commonly used for acrylic 

glass. The acrylic should not contain plasticizers or other byproducts. The results of  PyGCMS 

analysis bear out this statement.  

Polystyrene (PS, CAS No.: 9003-53-6) is also a high-molecular-weight petrochemical polymer with 

a density of  1.05 g/cm3. Polystyrene is difficult to ignite, insoluble in water, and resistant to acids, 

bases, alcohols, and mineral oils. It is unstable in most solvents (GESTIS Substance Database, 

2017b). The used polystyrene comes from disposable plates, which are comminuted in the cryomill. 

Polystyrene is used for a large number of  disposable products such as cups and cutlery, and also in 

the packaging industry. The analysis of  polystyrene by PyGCMS shows only the pyrolysis product 

of  the trimer of  styrene and thus that it is pure polystyrene. The plastic contains no plasticizers or 

other added by-products and is therefore suitable for the experiment. Polyvinyl chloride (PVC, 

CAS No. 9002-86-2) is a thermoplastic polymer.  

The PVC plastics are divided into hard and soft PVC. In this work, a soft PVC (pond liner) has 

been used. Soft PVC contains up to 40 % plasticizers (phthalate ester), for example DEHP and 

DINP, which lead to elastic behavior of  the material. It is practically insoluble in water but soluble 

in organic solvents (acetone as well as ester and stain remover). It is resistant to concentrated and 

diluted bases, oils, and aliphatic hydrocarbons. However, it decomposes upon exposure to oxidizing 

mineral acids. Polyethylene terephthalate (PET, Cas No. 25038-59-9) is a thermoplastic of  the 

polyester family. It has a high breaking strength and dimensional stability at a temperature above 

80 °C. PET is unstable against the attack of  strong inorganic acids, in particular sulfuric acid or 

nitric and hydrochloric acid. 

 

2.2.6 Proof of ingestion of MP by L. variegatus 

To determine whether a sediment contact test with spiked sediment makes sense for L. variegatus, 

an ingestion test was first carried out with two different types of  plastic (PVC, PET). Ten 
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individuals were transferred to a vessel with water and ‘fed’ with the particles (63–200 μm). The 

animals were then observed under a fluorescence microscope to watch the ingestion 

simultaneously. 

 

2.2.7 Sediment contact test with L. variegatus 

The test species used in this study is the freshwater oligochaete L. variegatus (Müller; Egeler et al., 

2005). This species is tolerant of a variety of sediment types and is commonly used for sediment 

toxicity and bioaccumulation tests (U.S.P.A., 2000, OECD, 2004). In contrast to epibenthic 

organisms, endobenthic aquatic oligochaetes such as L. variegatus dig into the sediment and collect 

sediment particles beneath the sedimentary surface. This ensures the exposure of the test organisms 

to the test substance via all possible routes of exposure (e.g. contact with and ingestion of 

contaminated sediment particles, but also via pore water and overlying water). The sediment 

contact test was carried out according to OECD (2007) and adapted as a randomized, controlled, 

and blinded trial. Each group of 15 worms was randomly allocated to the different MP 

concentrations, thus preventing known and unknown prognosis factors by the worms being 

distributed unequally across the test tubes. Otherwise, a selection bias could occur, which would 

lower the internal validity (Gauch and Bast, 2014). The random assignment was done by means of 

the Randomization in Treatment Arms (RITA) software. This software ensures the transparency 

and traceability of the randomization process and the reproducibility of the results (Pahlke et al., 

2004). The underlying method of randomization is the so-called Biased Coin Design, in which the 

current frequencies of the respective experimental approach are taken into account. The controlled 

design was ensured through the aforementioned three blanks. All glasses were numbered so that 

the included MP type and concentration would not be visible to the examiner (blinded trial). 

The basis is the sediment toxicity test, which is usually carried out with pollutants in natural 

sediments. This means that it is determined how the pollutants found in the sand affect the 

organism. In the test here, it is also about finding out if the particle (MP) itself causes effects (by 

direct uptake over the sand) or indirectly (via possible leaching of pollutants into the water column). 

The latter requires some modifications of the directives are necessary. For this purpose, the worms 

were brought to a developmental stage (Phillips et al., 1993). The sediment was mixed with six 

different concentrations of PVC, PET, PS, PMMA and PLA (63–200 μm) to determine the direct 

exposure (Test Approach 1). Indirect exposure was assessed by fixed MP in the water column (Test 

Approach 2) (Figure 11). The sand (unspiked and spiked) was placed in 200ml jars and filled with 

water (manufactured according to OECD standards). Each jar was provided with 15 worms and 

ventilated throughout the experiment. The temperature was kept steady at 20 °C. A day-night 
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rhythm of 16:8 h was set and the exposure duration was 28 days. From each concentration, three 

replicates were made and a total of three blanks were scheduled for control. Water parameter 

controls and feeding were done by regulation (OECD, 2007, Test No. 225). The survival rates of 

individual, biomass, and fitness parameters as well as in vitro estrogenicity of leached chemicals 

(DEHP) were investigated. These analyses were carried out according to in-house regulations. 

 

Figure 11: Experimental setup of sediment contact tests. On the left the direct exposure is shown (Test Approach 1) 
and on the right the indirect exposure (Test Approach 2). 

 

2.2.8 Detection of the glycogen content of L. variegatus 

As indicators of physiological fitness during the contact test, the form of reserve substances 

(glycogen) were measured in the surviving worms. For the preparation of a glycogen hydrolysate, 

30 μl of the crude homogenate of L. variegatus were removed and transferred to a 1.5 ml reaction 

vessel. For the hydrolysis of the glycogen, 15 μl of KHCO3, 250 μl of acetate buffer, and 5 μl of 

amyloglucosidase were added. For optimal incubation, the sample was placed in a 40 °C water bath 

for two hours. To terminate the reaction and denature the remaining enzyme, the sample was added 

to low boiling water for about five minutes. To remove cell debris, centrifugation was then carried 

out at 14,000 rpm for 10 minutes. The supernatant was removed, transferred to a 0.5 ml reaction 

vessel, and stored on ice. For the measurement, the glucose and the Tris-Acetat-EDTA (TAE) 

measurement buffer were then prepared according to house-owned Standard Operation Procedure 

(SOP). In the photometer (Analytik Jena), the determination of the free glucose via the NADPH 

concentration then took place at 339 nm. Since the concentration of NADPH is stoichiometrically 

equal to the glucose concentration, Lambert–Beer's law allows us to determine the exact glucose 

concentration of each sample. The method is described in detail by Keppler and Decker (1984). 
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2.2.9 Contamination during all processes 

In order to prevent contamination, the work was carried out continuously according to the 

guidelines of the NOAA (Masura et al., 2015; Woodall et al., 2015). All used objects and devices 

were carefully cleaned between all working steps. 
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3 Results 

3.1 Sampling 

3.1.1 Sampling success in water column samples 

The data represent the number of counted particles and are therefore shown without error bars. 

The results represent the number of particles per square meter. Different amounts of four kinds 

((primary; Figure 12: A, B) and secondary; Figure 12: C, D)) of MP (fragments, fibers, foils and 

spheres) were sampled in the river Lahn. In three meter deep downstream of the WWTP effluent, 

the highest amounts were found in the nets. Most of the detected particles were fragments (303 

particles/m3), fibers (142 particles/m3) on the right shore, 70 fragments and 56 fibers on the left 

shore (Figure 13). These values are up to 37 times higher than the amounts of particles upstream 

of the WWTP effluent (Figure 14) in the same depth. Also upstream of the WWTP in the surface 

water are less particles detected than downstream. A total of 97 fragments, 60 fibers, 3 foils and 2 

spheres were determined (left and right shore)( Figure 15). Overall, more particles are detected in 

the net.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The pictures show some plastic particles of different kinds and size isolated from the river Lahn using the 
modified CFC method. A) Overview of fiber, fragment and sphere, B) primary plastic, sphere, C) fragment, D) foil. 

 

Figure 1: The pictures show some plastic particles of different kinds and sizes isolated from the river Lahn. A) 
Overview of fiber, fragment and sphere, B)primary plastic, sphere, C)fragment, D)foil. 
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Figure 13: The figure shows the amount of the MP-particles/m3 (fragments, fibers, soils and spheres) sampled in 3 
meters deep water of the river Lahn using the modified centrifuge system. Illustrated are the results from the centrifuge 
and the net at the downstream sampling point left, right) after the WWTP effluent (see Figure 6). 

  

 

Figure 14: The figure shows the amount of the MP-particles/m3 (fragments, fibers, soils and spheres) sampled in 3 
meters deep water of the river Lahn using the modified centrifuge system. Illustrated are the results from the centrifuge 
and the net at the upstream sampling point (left, right) before the WWTP effluent (see Figure 6).  
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Figure 15: The figure shows the amount of the MP-particles/m3 (fragments, fibers, soils and spheres) sampled in the 
surface water of the river Lahn using the modified centrifuge system. Illustrated are the results from the centrifuge and 
the net at the upstream sampling point (left, right) before the WWTP effluent (see Figure 6). 

 

 

3.1.2 Distribution of MP in sediment samples 

The results show a significant increase in particle abundance to date (Figure 16) and the plastic 

particles differ in kind, size and shape (Figure 17, Table 9). This means that with the increasing 

consumption of plastics over the last years, the occurrence of these, in form of microplastics, is 

also increasing in the environment. This fact should be a reason to better control the way from 

plastics to its recycling. With a half-life of 30.17 years, the peak of the 137Cs concentration in the 

sediment could also shows us two events—in1959—1963 (atomic bomb tests,~10-20 cm) and 

1986 (Chernobyl, 4-6 cm).  
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Figure 16: The picture shows a sediment core taken by divers in the Trave river. Also shown are the results of the Cs-
137 dating (in the middle) and the MP contribution (on the right) (Kochleus et al., 2017). 

 

 

Figure 17: The pictures show MP extracted from the sediment cores from the river Rhine including information 
about depths. A) sphere (14–16cm), B) fiber (20–22 cm) C) fragment (20–22cm) D) fragment (22–23cm) (Kochleus 
et al., 2017). 
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Table 9: Type of particles found (> 50 μm) in the sediment core sorted by commonness. 

 

 

 

3.1.3 Sample preparation 

The results show that electroseparation is a reliable alternative method to reduce even relatively 

large sample volumes. For all materials, a mass reduction of almost 99 % was achieved (Figure 18). 

For example, a 150 g sample of quartz sand after the third step could be reduced by 98.4 ± 0.1 % 

to 2.34 ± 0.17 g. The freshwater sediment was reduced from an initial mass of 150 g to a final mass 

of 2.33 ± 0.13 g, which corresponds to a reduction of 98.4 ± 0.1 %. For beach sand, the 150 g 

sample was reduced to 2.00 ± 0.04 g—a reduction of 98.7 ± 0.2%. Similarly, the 150 g particle 

sample was reduced to 2.51 ± 0.23 g (98.3 ± 0.1 %). The results also show successful accumulation 

of MPs across the separation runs, with the best results achieved with beach sand, although there 

is no significant difference between the four materials. During the process, the small loss of sample 

material in the device (Figure 19) did not affect the recovery of the added plastics. In addition, 

depending on the grain size of the material, the method yields different results with respect to the 

percentage mass reduction in the individual steps. After the first separation step with the KWS the 

mass reduction of the residual material is >90 %. The yield achieved with the KWS is also very 

promising, since the recovery of the largest size category (2,000–5,000 μm) was 100 % and that of 

the size class 630–2000 μm was almost 100 % for all tested materials. One particle of PP and one 

of PS were lost in freshwater particle or freshwater sediment samples. In the size fraction 200–

630 μm, a PP particle was lost in the freshwater SPM sample, whereas for the smallest size fraction 

(63–200 μm), the recovery was 100 % across all materials. MP particles from the Rhine river were 

also recovered at 100 %. Only for the 630–200 μm fraction, there was a loss of one out of 10 PP 

and PS particles, and a particle of PP was lost in the 200–630 μm fraction (Figure 20). Figure 21 

gives an idea of the enrichment of particles during the separation. The experiment with the isolated 

plastic shows that the shape of the MP does not affect the separation process, the age of the 

Depth/cm 1 common 2 common 3 common 

0–2 fragments sphere fibers 
2–4 fragments fibers  
4–6 fragments fibers  
6–8 fibers   
8–10 fragments   
10–12 fragments fibers sphere 
12–14 fragments fibers  
14–16 fibers sphere  
16–18 fragments fibers sphere 
18–20 fibers fragments  
20–22 fibers fragments  
22–23 fibers   
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particles, or the possible growth of biota on their surface. Neither the particle size distribution nor 

the TOC of the materials affects the recovery. For beach sand and quartz sand, a TOC of <0.1 % 

was determined, while for freshwater particles and freshwater sediment, TOC values were 4.64 % 

and 5.25 %, respectively (Table 10). 

 

Figure 18: Mass reduction of quartz sand, beach sand, freshwater (freshw.) sediment, and freshwater-suspended 
particulate matter (SPM). The mean mass ±S.D. of the remaining sample (hatched) and the rest (non-hatched) fractions 
after one, two, and three steps of electroseparation for all four types of matter is shown. After the third separation, 2–
2.5 g remained from the original 150 g sample, independent of the type of matter, Felsing et al., 2017. 
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Figure 19: Mean loss of original 150 g sample material during the separation process using the KWS for all four tested 
sample types. The mean ± S.D. after three steps of electroseparation is displayed, Felsing et al., 2017. 

 

 

Figure 20: Recovery of MP particles in four size ranges from four different sample materials after the third separation 
step using the KWS. The mean value, expressed as a percentage, is shown. Standard deviations cannot be shown 
because in all three cases of less than 100 % recovery, one single particle was lost in each replicate, Felsing et al., 2017. 
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Figure 21: Enrichment of the spiked particles in the four materials (particles of MP/material in g) over the three 
separation steps using the KWS, Felsing et al., 2017. 

 

Table 10: Grain-size distribution of the four sample materials used in the KWS recovery experiment, Felsing et al., 
2017. 

Sample material 630-2000 µm 

[%] 

200-630 µm 

    [%] 

63-200 µm 

[%] 

20-63 µm 

[%] 

<20 µm 

[%] 

∑ 

[%] 

Loss 

[%] 

Quartz sand 0 16.6 82.9 0.3 0.3 100 0.0 

Freshw. Sediment 0 2.9 25.7 17.9 47.1 93.6 6.4 

Beach sand 0.1 41.4 57.6 0.1 0.3 99.5 0.6 

S. particulate matter 0 1.7 37.0 15.4 39.4 93.6 6.4 
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3.2 Modifications of the electroseparator KWS already implemented 

The KWS was initially an exposition device. This was served analogously at the beginning. This 

means that all parameters have been set using knobs in eight possible parameters. The modified 

device is now operated via a touch panel. The KWS was not designed for fine sediments; it was 

internally designed to be open, resulting in the loss of sample material when separating fine 

materials such as sediment or suspended matter. To optimize the KWS on field samples, the steel 

funnel was converted with a jacket so that it can be removed by a handle for cleaning. On the 

funnel, there is now a lid that prevents entries from the outside. The shuttering prevents the loss 

of dust on the way to the roller and into the corona field. Even before and after the roller, the use 

of plates also prevents article loss. The forces in the corona field can lead to distraction of particles. 

This is prevented by installing the KWS in the interior and making it more closed by means of 

further conversion measures. For ease of use, the three compartments have been replaced by two 

(Figure 22, Figure 23, Figure 24). 

 

Figure 22: Overview of the modifications of the KWS. Compared to the old device, the new KWS is operated via a 
touch panel. In order to prevent the loss of sample material, there is now a shot removable for cleaning and two instead 
of three drip trays. 
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Figure 23: Overview of the modifications of the KWS. In the new KWS, additional walls have been installed to 
prevent the loss of sample material. 

 

 

Figure 24: Overview of the modifications of the KWS. An additional door inside prevents the loss of sample 
material. 
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3.3 Leaching from bait material 

The basic material of the baits is PVC added with different additives or antioxidants (Table 11). 

The results show that not all baits were leaching phthalates. Only for samples 1, 2, 5,8 ,10 and 11 

are the values within the measurable range. Fish bait 1 leached an amount of 4.78±1.3 µg/ml after 

one week (W1) up to an amount of 40.51±11.9 µg/ml after eight weeks (W8) of DINP in the water 

(Figure 25). In the water body which was contaminated by fish bait 2, different ranges of DMP 

(W1= 36.2±12.3 ng/ml and W8=299.8±22.29 ng/ml were detect. DEHA was determined for W1= 

13.8±5.3 ng/ml) up to W8= 207.3±57.3 ng/ml. DEHP was found in lower ranges with W1= 

16.9±4.8 ng/ml and W8= 74.7±34.4 ng/ml (Figure 26). In the sample of fish bait 8 a high amount 

of DEHP was determined (W8=824.5±297.6 ng/ml) (Figure 27). The highest levels of DEHA 

were detected in the fish bait 11 sample (W1=0.21±0.1 ng/ml and W8=10.91±2.2 ng/ml). The 

results also show that there is an increase of phthalate ester over time (Figure 28). In addition, an 

increase in estrogenic activity over time was detected in the water phases with fish bait 3 

(W8=15±3.8 ng/l) and 10 (W8=153 ±18.4 ng/l) (Figure 29, Figure 30). The results of the other 

samples where below the detection limit or the same as the detected blank. 

Table 11: Results of  the PyGCMS show the compositions of  the different baits. 

Sample/ Fish Main component additions 

1 DINP Di ethyl phthalate 

2 DEHT Bis(2-ethylhexyl) phthalate 

3 DEHT Bis(2-ethylhexyl) phthalate 

4 DINCH Phthalic acid, 2-methylbutyl octyl ester 

5 DINP long-chain alcohols 

6 DINCH Adipic acid, dioct-4-yl ester 

7 Tributyl acetylcitrate Adipic acid, 3-heptyl nonyl ester 

8 DEHP 1,3-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester 

9 DINCH Phthalic acid, isopropyl octyl ester (Spuren) 

10 DIOP long-chain alcohols 

11 DINP long-chain alcohols 
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Figure 25: The figure shows the concentration of Diisononylphthalate (µg/ml) leaching into the water phase of fish 
bait 1. Standard deviations are shown based on n=3. 

 

 

Figure 26: The figure shows the concentrations of DMP, DEHA and DEHP (ng/ml) leached out in the water phase 
of fish bait 2. Standard deviations are shown based on n=3. 
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Figure 27: The figure shows the concentrations of DEHP (ng/ml) leached out in the water phase of fish bait 8. 
Standard deviations are shown based on n=3. 

 

 

Figure 28: The figure shows the concentrations of DEHA (ng/ml) leached out in the water phase of fish bait 11. 
Standard deviations are shown based on n=3. 
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Figure 29: The figure shows the concentration (ng/l) of an estrogen active substance in the water phase of fish bait 3. 
Standard deviations are shown based on n=3. 

 

 

Figure 30: The figure shows the concentration (ng/l) of an estrogen active substance in the water phase of fish bait 
10. Standard deviations are shown based on n=3. 
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3.4 Effects of plastic on model organism L. variegatus 

3.4.1 Detected additives 

In the experiment, all seven phthalates (DNOP, DEHP, DEHA, BBP, DBP, DEP, DMP) analyzed 

were detected in organisms. The results show that different degrees of washout of additives occur 

of the synthetic materials in the water phase, with PVC containing the highest impurities (Figure 

31). In most cases, there is an increase in concentrations over time in some of the samples like the 

DMP found in PET, PP and PS. Also the factor light seems to strengthen the leaching because the 

amount increase from dark to light.  

 

Figure 31: Leaching test of additives from six different types of plastic in water. The MP particles (5 mm ∅) were 
incubated for eight weeks at 20 °C with a 16:8 h day-night rhythm. The figure shows the measured values of eight 
common phthalate ester after four and eight weeks. 
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3.4.2 MP characterization using PyGCMS 

The pyrolysis and adjustment of polymer database provides clear results on the starting material of 

the self-produced MP used from conventional household products (Figure 32, 1-5). 

 

Figure 32: Results of the PyGCMS are shown as chromatograms of 1) PET, 2) PS, 3) PMMA, 4) PLA and 6) PVC, 
used for the sediment contact test. 
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3.4.3 Evidence of the uptake/ingestion of MP by L. variegatus. 

The results show that the organisms eat and excrete the two types of plastic. The residence time of 

the particles has not been determined.  

 

Figure 33: The picture shows the ingestion of PVC (on the left) and PET (on the right) by L. variegatus. The images 
were taken with a fluorescence microscope. 

 

3.4.4 Results of the sediment contact test 

The results show that there are differences between the plastic species and their influence on the 

organism. An LC50 of 1.7 mg/g dw of the endpoint of surviving individuals was determined in 

PVC-spiked sediment whereas PET, PS, PMMA and PLA-spiked sediments showed no significant 

effect (Figure 34). Table 12 gives an overview of how many particles are in the weighed amount of 

PVC and PET (p/g dw). These numbers shown in Table 12 are almost identical to the other three 

types of plastic (PS, PMMA and PLA). The increasing concentration had negative effects on the 

number of individuals only in PVC. The higher the concentration, the greater the effect on the 

organism. For PET, even the highest concentration C6 had no effect on mortality. The polymers 

PMMA, PS as well the bioplastic PLA have also no effect on the mortality or fitness of L. variegatus 

(Figure 35). 
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Table 12: The table shows the particle concentrations of PVC and PET in mass and amount used in the sediment 
contact test. 

Label Mass (PVC/PET) 

mg/g dw 

PET particles PVC particles 

                p/g dw           p/g dw 

C0 0 0 0 

C1 0.02 23.000 26.000 

C2 0.08 115.000 130.000 

C3 0.83 1.150.000 1.300.000 

C4 1.67 2.300.000 2.600.000 

C5 8.33 11.500.000 13.000.000 

C6 16.67 23.000.000 26.000.000 

 

 

 

Figure 34: The figure shows the mortality (by number of individuals based on 100 %) of L. variegatus after the sediment 
contact test. The mortality decreases with increased concentration of PVC. It shows a LC50 of 1.7 mg/g dw. There 
are no effects with increasing particle concentration of PET, PMMA, PS and PLA. 
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3.4.5 Glycogen content of L. variegatus 

The basic glycogen content refers to the blanks. The results show that the four plastic types (PET, 

PS, PMMA, and PLA) have no effect on the glycogen content. Also, the increasing concentration 

of the particles does not affect the fitness of the animals. However, in the case of the PVC, it could 

be shown that the increasing concentration in the sediment has a negative influence on the 

organism and its fitness (Figure 35). 
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Figure 35: Glycogen content in L. variegatus after 28 days. Only with PVC is there a—though not significantly—recognized trend. PET/PVC and PLA/PMMA/PS were examined 

simultaneously and by one person each. ‘Indirect’ indicates that the respective maximum concentration was investigated in indirect exposure, the index k stands for particle size <200  μm 

as in direct exposure, index g stands for particles of size 200–630 μm. Mean values without outliers (p <5 %; Q test; marked with *) are shown, including standard errors as well as n—the 
number of measurements considered. 
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4 Discussion 
MP is found almost everywhere in the environment due to the increasing use of plastics and 

inadequate recycling management. The potential hazards, as a result, cannot be fully estimated yet. 

However, recent studies give an indication of the hazardousness of the particles to organisms. Due 

to the difficulties in quantifying and qualifying the MP in the environment, there are not enough 

data available to estimate the risk potential. The aim of this work is to develop methodological 

solutions for MP research, especially in sampling and sample preparation. Additionally there are 

investigations how organisms could be affected by plastic in the environment included. 

4.1 Sampling methodology and success 

Different methods were developed and tested, the use of which can immensely facilitate future 

investigations in MP research. 

CFC-Method 

Sampling with a continuous flow centrifuge (CFC) enables us to record the quantitative and 

qualitative distribution of the MPs in the water column. The entire spectrum of the particles can 

be recorded and thus can provide the prerequisites for realistically conducted effect studies. The 

method with the centrifuge can well replace techniques involving nets. There are no longer any 

problems with large quantities of organic material in the water. An advantage of sampling with a 

centrifuge is that centrifuges are already being used in almost all federal states for the purpose of 

suspended particulate matter monitoring (Claus, 2009; Schubert et al., 2012). In the course of these 

surveys it would thus be possible to integrate the MP sampling without much additional effort 

while an entirely new purchase would be very expensive.  

For sampling suitable locations have to be chosen. The trailer must be balanced and stand secure 

so that the centrifuge does not waver. Hoses used may contaminate the sample. However, since all 

materials are determined beforehand, they are not recorded in the analysis/identification (blank 

value control). Negatively you get only small amounts of sample material, but without loss of 

information. For future studies, anyway, a comprehensive recovery of the modified CFC method 

and a blank value analysis must be carried out to determine the standard error of the device.  

The results of the centrifuge method show that it is successful in sampling the entire water column. 

All particles (high and low density) <5 mm can be sampled by the modified centrifuge strategy. The 

data are random samples to show that the method can capture the MP as planned. In-depth 

analyzes using PyGCMS have subsequently shown that a certain percentage has been identified 

falsely positive (Figure 12-D). This requires further controls. The samples taken at the water surface 
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show that the proportion of particles found in the net was higher than in the CFC. At a depth of 

three meters, however, more particles were detectable in the centrifuge. This fits in with the 

descriptions (2.1.1) that the centrifuge captures the particles >1 g/cm3 and the net captures the 

particles <1 g/cm3. Based on the results that were found in the net, it is clear that a higher load is 

detectable downstream behind the effluent of the WWTP  which is thus determined as a point 

source for fragments and fibers. For these reasons treatment plants must be subjected to intensive 

controls and remediated so that no MP enters the waters from these sources. Whether the found 

of primary plastic comes from cosmetic products is difficult to comprehend. What is known, 

however, is that it has been manufactured by industry as such and is now increasingly found in the 

aquatic environment. A special improvement of the sewage treatment plants can safely prevent the 

entry into the waters. Furthermore MP is knowingly lost during transport, for example. Stronger 

guidelines regarding production and export should therefore be introduced. All results are used to 

describe a distribution of the MP (size, type, shape) in the water column including the sediment 

samples. 

KWS-Method 

The presence of MPs in different aquatic systems has been frequently confirmed (Schneiderman 

and Hillmyer, 2017; Verster et al., 2017). However, a reliable assessment of the environmental risks 

of MPs requires quantitative and qualitative analyses of their occurrence including a detailed study 

of their size distribution (Duis and Coors, 2016). Many strategies have been developed for the 

sampling and quantification of MPs in waters, freshwater/marin sediments and beach sand (Löder 

and Gerdts, 2015; Besley, 2017), but the different organic and inorganic compositions of 

environmental samples have complicated sample preparation, making it mostly inefficient. Many 

alternative methods have been proposed, but none has been widely accepted or standardized 

(Hanvey et al., 2017; Hidalgo-Ruz et al., 2012; Rochman et al., 2017; Shim et al., 2017).  

The new method introduced in this work uses the electrostatic properties of MPs to separate them 

from different sample materials (Felsing et al., 2017; Köhnlechner and Sander, 2009). Coarse-

grained samples such as beach sand or freshwater-suspended solids can be analyzed directly, e.g. 

by PyGCMS (Nuelle et al., 2014; Tagg et al., 2015), Fourier-transform infrared or Raman 

microscopy (Kappler et al., 2016). Further studies on the recovery of added MPs are required for 

a final assessment of the electroseparation method including a comparison of the widely used 

Munich plastic separator (Imhof et al., 2012) and our KSW-based electroseparation method in 

order to assess whether the recovery results are the same for each kind of sample material. These 

future experiments should use the most common types of MPs in different concentrations and 

sediment types as well as field samples from different sources. The loss of <1 % of the fine-grained 
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material during the separation process may be considered negligible as it does not result in a loss 

of added plastic particles in the size range of 63–5,000 μm. Due to the simple technique and the 

consistent physical properties of polymers it can be assumed that all smaller particles <63μm are 

successfully separated. This should still be reviewed. Since the KWS can only separate dry material, 

the samples must be completely dried before separation. Although this is the most time-consuming 

step and can take several days, the process is otherwise time-saving and the samples are easy to 

handle. If it comes to clumping, the sample can be carefully processed with a mortar. Other 

advantages of the process are that only a 230 V power supply is required. Labor costs are minimal 

and neither special protective clothing nor monitoring is required. In addition due to the physical 

separation principle of KWS and the greatly reduced sample mass after electroseparation 

significantly lower levels of more or less harmful heavy solutions such as zinc chloride or sodium 

polytungstate are used and then discarded (GESTIS, 2016a; GESTIS, 2016b).  

The results of this study show that electroseparation is a valid and reliable method to isolate a very 

wide range of commonly used MPs of different density, size, shape and age from environmental 

samples that differ in their content of organic matter and grain sizes. The varying compositions of 

field samples do not negatively affect either the separation process or the recovery rates. Even 

samples with high biomass compounds are efficiently reduced and the MPs successfully enriched 

in the final fraction. Unlike other methods, e. g. those based on chemical density separation, the 

recovery rate of the KWS is very high (> 99 %), even for very small (63 μm) MP particles. This 

efficient recovery reflects the high quality of this new method, which has been used for the first 

time in a scientific study. By reducing the sample mass by up to 99 %, KWS simplifies the handling 

of large field samples without special safety measures or hazardous fluids with material damaging 

effects during the separation process. In addition, the application is simple, requires no special skills 

and is of a short duration (a few hours), which contributes to its efficiency. To further research the 

harmful effects of plastic waste on aquatic and terrestrial environments, electric separation using 

KWS can help to assess the worldwide abundance of plastic waste in different ecosystems with less 

effort. In conclusion the electrical separation method can replace the chemical digestion. The 

device (KWS) is currently proven for particles up to a minimum of 63μm. The composition of the 

samples used and the proportion of biological material has no influence on the success of the 

separation process. All types of plastic, including aged plastic can be separated with the KWS. The 

using of the new sampling technique leads to the production of new or extensive results. The 

assumption that tiny primary plastic makes up only a small amount of the MP entry could be 

undoubtedly refuted. For future studies, however, a comprehensive blank value analysis must be 

carried out to determine the standard error of the device. 
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The physiological functioning of animals is altered by consumption of MPs, either by the leaching 

of accumulated organic pollutants from the particles into the gastric mucosa, as shown for fish, by 

the physical blockage of the digestive system, or simply by taking up space in the stomach that 

could otherwise be used by nourishment (Bakir et al., 2014; Wright et al., 2013). As MPs can 

facilitate the bioaccumulation and/or biomagnification of harmful contaminants (Koelmans et al., 

2013) it is relevant whether plastic waste and its small fragments are a source or sink of hazardous 

chemicals for the environment and for organisms (Crawford and Quinn, 2017; Hong et al., 2017; 

Lambert, 2017). Since the electrostatic separation by the KWS does not require liquids that could 

dissolve substances adsorbed on the surfaces of the particles, the separated MPs can subsequently 

be analyzed for these contaminants. In further investigations a division of the MP fractions into 

the various types of plastics with an electrostatic plastic-plastic separator would improve the 

precision and efficiency of the analyses of the various plastics due to their individual conductivity 

(Schubert et al., 2001).  

Core sampling 

Investigating sediment cores is a good way to view MP evolution (quantity, kind, and size) over 

time. The frequency of the particles increases over time and thus reflects the increase in the use of 

plastics since the 1950s. To obtain even more accurate and more comprehensive data longer cores 

made of stainless steel are currently used for further studies at the BfG (Brennholt et al., 2017). 

The prerequisite for sampling with cores is that the sediment is suitable for this purpose. Thus 

locations must be determined without coarse grained subsoil for example. Depending on the depth 

of the water it is no longer possible to sample from the ship and divers must be used. Whereas 

divers are in turn dependent on the flow velocity and flow characteristics.  

4.2 Microplastics and possible effects on organisms 

The presence of accumulated plastic additives in the environment or organisms has often been 

used as a proxy of plastic pollution in the marine environment resulting from the release of 

additives from plastic waste. While direct toxicity may occur due to the physical effects of plastic 

ingestion (Wright et al., 2013), indirect toxicity may be observed with respect to the release of 

hazardous chemicals from plastics. Since most plastic additives are not chemically bound to the 

plastic, they can end up in the environment and become available to organisms (Table 6) 

(Hermabessiere et al. 2017). The experiments in the laboratory show that some of the detected 

additives are toxic plasticizers that are no longer authorized in Germany or subject to strict 

regulations. DINP and DIDP are suspected to accumulate to a high degree in organisms and to be 

long-lived in soil and sediments. Due to the high input quantities for soft PVC and the structural 

similarity to DEHP it can be expected to spread strongly in the environment. For the DEHP a 
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tolerable daily intake (TDI) of 50 μg/kg bw per day was established. In both cases the DEHP may 

be responsible for the results of the YES. Samples 2, 5 and 9 were tested positive for estrogenic 

substances with the YES-test. There is a ban on baby products and children's toys because of the 

reproductive toxicity properties for DEHP. For precautionary reasons the Umweltbundesamt 

(UBA) advocates avoiding the environmental impact of DIDP and DINP. Although there are no 

hazard labels for DINP, it has a TDI of 150 μg/kg bw per day. The phthalates found were awarded 

a high environmental risk It can therefore be assumed that the high content in fish bait also 

increases the proportion of toxic phthalates in the water. It is not shown in this experiment how 

long it takes for a rubber fish to be completely decomposed. It is also not clear how much additives 

are introduced the water phase through a whole bait, whether they accumulate there and have an 

influence on the reproduction of organisms. This has to be investigated separately. Due to the 

material properties the baits sink to the riverbed after a possible loss by the angler. Over a longer 

period of time and until the final decay they could release toxic/estrogenic ingredients there 

continuously, possibly exerting a negative influence on benthic organisms.  

PVC can contain 10–60 % phthalates. Because phthalates are not chemically bound to the polymer 

matrix, they can easily enter the environment during manufacture, use and disposal (Net et al., 

2015). The release of the phthalates from soft PVC cannot be prevented. The UBA therefore 

advocates where (technically) possible and reasonable for a gradual replacement of soft PVC with 

alternative plastics (such as polyethylene or polypropylene) (UBA, 2007). PAEs have been found 

in a variety of environments, as reported by Net et al., 2015 This is alarming because some 

phthalates have been defined as endocrine disruptors in low concentrations (Oehlmann et al., 2009; 

Hermabessiere et al., 2017). Phthalates (DMP, DEP, DiBP, DnBP, BBP, DEHP, DnOP, and 

DnNP) have been found in a variety of organisms, ranging from 18 different species of primary 

producers (plankton and macroalgae) to the dogfish shark (Squalus acanthias), but no 

biomagnification has occurred in the phthalates studied by the food web (Mackintosh et al., 2004). 

Recently Cheng et al. (2013) also reported phthalates (DMP, DEP, DiBP, DnBP, 2-methoxyethyl 

phthalate [DMEP], DHP, BBP, DEHP, DnOP, DNP) in concentrations ranging from 0.2 to 

1.223 μg g-1 ww. Therefore, the transportation and fate of plastic additives extracted from plastic 

waste should be treated with care in future field, laboratory and modeling work. In this study only 

phthalates were sought in the water samples. However the results of the pyrolysis have shown 

further additions in the baits. One could expand the analysis even more. And even if some of the 

toxic phthalates are banned in the EU, products with questionable ingredients always seem to be 

imported to Germany/Europe. For the effect research it can be assumed that in a closed 
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experimental setup the values would be even higher. Since phthalates are very volatile substances 

the concentration drops at each working step.  

The particle concentrations used for the experiment are far from the realistic numbers found in 

the environment. If one were to repeat the experiment with realistically selected particle numbers, 

none of the plastic kinds would probably have a negative effect on the mortality of L. variegatus. 

Whether the leaching really has no influence is not known exactly. Since the experiment is a very 

open system, it can be assumed that the substances evaporate too quickly to be effective at all. In 

the experiment further estrogenic effects were detected. It is unclear whether this influences L. 

variegatus because it is not known if this worm has an estrogenic receptor. Hence it would also be 

useful to choose an organism that reacts to estrogen-active substances. Physiological indicators of 

fitness present a measure of an organism’s response to a changing environment. An analysis of 

how these organisms allocate and store their energy resources provides an understanding of how 

they cope with such environmental changes. The amount of stored energy is the most important 

physiological indicator of fitness. Glycogen and triglycerides are the main substrates in insects and 

crustaceans to store surplus energy and release it in times of need (Hervant et al., 1999; Koop et 

al., 2008). This approach seems to be the most efficient route and has successfully been applied to 

invertebrate samples before (Winkelmann and Koop, 2007; Koop et al., 2008). It is proposed that 

this allows an almost real-time observation of negative developments because physiological 

indicators react very quickly (within 1 to 3 weeks) to environmental changes (Hervant et al., 1999). 

The toxicological studies have shown that especially additive-rich plastic particles can pose a 

potential hazard and the results of the glycogen content analyses reflect the mortality rate of the 

sediment toxicity test. This will be the case especially in waters with high plastic load. Otherwise it 

must be further investigated from which concentrations the certain pollutants and particles are 

really dangerous. If one compares the results of 3.4.1 with the mortality of the worms in the 

experiment, there seems to be a positive correlation between the occurrence of the additives and 

the mortality rate. However the effect of the additives on the organisms seems to act only through 

direct uptake (ingestion) and not indirectly over the water column. But based on the presented 

results, it has not become clear whether the additive or the estrogenic effect has an influence on 

the organism. That is why further studies are needed here. The Polymer and Food Protection 

Consortium and several studies (Wagner et al., 2006; Tchounwou et al., 2014) warn against the 

heavy metals that will also be leached of the plastic over time. Especially PVC can have high 

concentrations of toxic cadmium, titanium and zinc (Heinrichs and Hermann, 1990). Heavy metals 

have been shown to negatively impact animal and plant life as well as humans (Singh et al., 2010). 

A next step and continuation of this work is the analysis of the used plastics on the occurrence of 
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heavy metals. These results can then be used to construct a suitable effect study or compared to 

existing literature on environmental impact. With regard to the quantities of PVC and other plastics 

it can be assumed that the values of heavy metals in the aquatic environment will increase if they 

are continuously fed into the environment. This urgently requires further studies. In general the 

modification of the sediment contact test was successful and can now be used for further MP 

studies. 

In this study an improvement for sampling is shown and indications of possible contaminants from 

plastic as well as effects on biota are demonstrated. To capture the real danger of increasing 

pollution by MP more studies are needed especially to be able to estimate the entries of MP in the 

open sea. The presented approaches can be useful for this purpose. 
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