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Introduction

The modular group Sl»2(Z) can be written as a free product Cy * C5. Making indi-
rect use of this fact, Millington has classified in [5] the finite index subgroups up
to isomorphy. Moreover the author has introduced the notion of the “type” of a
subgroup. Roughly speaking, two subgroups have the same type if and only if they
are isomorphic as groups and the fundamental domains of their subgroups with
respect to the action on the upper halfplane via Moebius transforms are essentially
equal. In particular, this concept does not only take into account the isomorphy
types, but also the gluing of the fundamental domain which is encoded by the genus
and the gluing of the cusps.

It is entirely possible that two isomorphic groups are not of the same type. Jan-
Christoph Schlage-Puchta and Matthias Krieger have researched an algorithm which
enables the classification of all subgroups of given index up to isomorphy based on
the knowledge about the subgroup lattice of each factor of the free product, see [6],
[4]. The authors have made tremendous use of the fact that the isomorphy type of
a free product does only depend on the frequency of occurence of each factor and
not on the order of the factors.

In the first chapter of this work we consider the actions of virtually free groups
on trees. This is in particular generalizes the action of Sly(Z) on the upper plane.
In this setting, in analogy to the action of Slo(Z) on the upper plane, we are also
able to define cusps and to analyze the behaviour of those cusps under transition to
subgroups of finite index appropriately. For this purpose we introduce the concepts
“cusp order” and “cusp multiplicity” of a finite index subgroup. In the example
of the action of Slo(Z) on the upper plane, the fundamental domain of a finite
index subgroup A can be decomposed into | Sly(Z)/A|-many copies of fundamental
domains belonging to the Sly(Z)-action on the upper plane. The cusp order of a
cusp measures the number of copies of the fundamental domains belonging to the
Sly(Z)-action and being adjacent to that cusp.

On the other hand, the cusp multiplicity measures the total number of cusps, into
which a cusp decomposes under transition to the considered subgroup.

We present a geometric and a group theoretic definition for these quantities and
show that they are equivalent under certain conditions.

The second chapter of the thesis is concerned with the behaviour of elliptic sin-
gularities of groups acting with finite stabilizers on simply connected polyhedral
complexes under transition to finite index subgroups. This consideration is strictly
more general than the analysis of group actions of virtually free groups on trees.
For example Sl3(Z) is not virtually free, see [7] p.67 theorem 16 but it acts with
finite stabilizers on the quadratic forms over R3, see [8]. Soulé reduces Sl3(Z)-set of
the quadratic forms to a polyhedral complex, such that Sl3(Z) acts cocompactly

1



INTRODUCTION 2

and with finite stabilizers on it, by retracting the fundamental domain appropriately.
We consider polyhedral complexes as certain directed graphs. In turn we will work
out some concepts and results for group actions on such graphs. We will apply these
methods to the group action of Sl3(Z) on the polyhedral complex constructed from
the quadratic forms as mentioned above and obtain explicit results for certain finite
index subgroups.



CHAPTER 1

Cusps of finite graphs of finite groups

In the present chapter we introduce the notion of “cusps” of a graph of groups and
prove some fundamental properties of them and their stabilizers which we will call
“parabolic” subgroups.

In the following, let G be a group acting inversion free on a tree X in the sense of
[7] (the definition can be also found below).

The notion of a cusp for a group action on a manifold is well known. In or-
der to give an idea what a cusp on a graph might be, we look at the following
example.

Let G := Sly(Z) be the action on the Hyperbolic plane by Moebius transforms. In
this setting, cusps are exactly the points on the boundary of the fundamental domain
which compactify it. The standard fundamental domain of the modular group has
exactly one cusp which is the point at infinity. However, if we look at translates
of the fundamental domain, we see that the translates of that cusp exhaust the
whole boundary OH of H. In other words, the cusps lie in the same orbit under the
extension of the action G ~ H to G ~ H U OH.

We may think of the action of G = Sl3(Z) on H as an action on a geodesic
tree X. X can be made up of the translates of the only boundary component of the
fundamental domain of G ~ H, which is not heading to a cusp. The set of ends of
X will play the role of the boundary and therefore we will define a cusp to be the
orbit of an end and a parabolic subgroup to be a stabilizer of one.

Furthermore we will give some conditions to determine when a parabolic group is
cyclic and we will prove under certain assumptions that a cyclic parabolic group
is self normalizing. This leads to some consequences for the behaviour of cusps of
finite index subgroups of G from this fact.

1.1 TERMINOLOGY, NOTATION AND BASICS

In the whole chapter X will denote a tree and G a group acting inversion free on X
if nothing else is mentioned. There is a natural combinatorial metric on X which we
denote by D. We recall that an action of G on a tree X is called inversion free if an
element v € G fixes an edge if and only if it fixes its vertices. If ) is a subgraph of
X we write 2) C X and by abuse of notation we write y € 2) instead of y € V(9)).
A ray is an infinite path without backtracking which has exactly one vertex with
only one neighbour. The unique vertex of degree one is called the origin of the
ray. If we think of rays as rooted trees with root in the origin we obtain a natural
ordering. Each ray endowed with this ordering is isomorphic to the positive integers
as ordered space and the isomorphism is uniquely determined. Take respect to
this isomorphism if we talk of a € t being large enough. The existence of the
isomorphism implies that with this ordering the ray is a totally ordered space.

3



1. THE STRUCTURE OF THE AUTOMORPHISMS PRESERVING ENDS 4

We define an equivalence relation on the set of rays of X by saying two rays are
equivalent if and only if they intersect in a ray themselves. This clearly defines an
equivalence relation. The set of equivalence classes of rays is called the set of ends
of X which we denote by QX.

Aut(X%) induces an action on QX via a*([t]) := [«(t)]. Therefore an action G ~ X
also induces an action G ~ QX. We refer on this action on QX if nothing else is
mentioned.

We denote by Aut®(X) the set of automorphisms which act inversion free on X. Let
v € X a vertex. Then, there exists a bijection between the rays with origin in v
and QX which we obtain by mapping the rays with origin in v on their equivalence
classes. For the reason X is a tree and therefore contains no circle, this map is
necessarily injective. Surjectivity of the map is trivial. We have to remark that this
bijection cannot be interpreted as isomorphism of Aut(X)-modules in a canonical
way because any group action mapping a ray with origin in v to a ray with origin in
v has to fix v. This is the reason why we work with me more abstract space QX.

Definition 1.1.1 (cusps). The set of left G-orbits on the ends G\QX is called the
set of cusps of G on X.

Definition 1.1.2 (parabolic groups). Let P < G such that there exists a ¢ € QX
with the property P = G.. Then P is called parabolic.

We observe by definition that the parabolic groups associated to one cusp are
conjugate by elements of G.

1.2 THE STRUCTURE OF THE AUTOMORPHISMS PRESERVING ENDS

In the sequel fix a ¢ € QX. We set Aut(c) := {a € Aut(X) : ac=c}. Our aim is to
construct a group homomorphism between Aut(c) and Z.

Let v,6 € ¢, t = (r;)ieny, 5 = (8i)ien,- Then there exists a smallest integer [, s with
the property r; € s for all [ > [ ; as well as a smallest integer [; . such that s; € ¢
for all [ > l5 .. We observe

(1.2.1) tNs = (rlt,sﬂ-)ieNO and tNs= (Slﬁvr"'i)ieNo'

We put
T(tvﬁ) =l — s
and call this number the displacement of the transition from v to s. For an arbitrary
ray t € c set
de(a) := 7(t, ar)

and call it the displacement of «.

Definition 1.2.1. Let v € ¢ € QX and =,y € v = (1;)4en,- Then z = r; for an
it € Ng and y = r; for an j € Ng. We put d.(z,y) := j — 4. This function may have
values in the whole set of integers. We call the value d.(z,y) the directed distance
from x to y. The directed distance does not depend on the choice of ¢t with =,y € ¢.
We may therefore write d.(z,y) := de(z,y).

Before we prove the independence from the choice of the ray, we recapitulate the
following facts: We recall that in a tree X for each two distinct vertices there exists a
unique geodesic with these vertices being terminal. Moreover, in any tree the paths
without backtracking are exactly the geodesics. Hence, for each pair of distinct
vertices there exists a unique path without backtracking with these terminal vertices.

PROOF. Let vt € c € QX and z,y € v = (r;)ienN,- Then x = r; for an i € Ny
and y = r; for an j € Ng. We first show that the directed distance does not
depend on the choice of . Without loss of generality let ¢ < j, otherwise transit to
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de(y,z) = —d(z,y). Let s = (Sg)ren, be another ray with z,y € s. Then = = s,
and y = s, for suitable k,l € Ng. We observe £ < [. On the contary, suppose k > [.
Then v Ns would be a path without backtracking between the origins 0, of v and
0s of s and therefore a geodesic of finite length. Thus, tNs cannot be a ray and
we conclude s ¢ ¢, a contradiction. This forces di(x,y) > 0 and ds(z,y) > 0. They
therefore coincide with the (ordinary) distances measured in v and s respectively.
Let 7 be a path without backtracking with terminal vertices  and y. Considering
the definition of rays, the uniqueness of such paths forces 7 C t,s. Denoting the
length of 7 by I(7), we obtain

de(z,y) = (1) = ds(,y)
and the independence of the directed distance is verfied. O

Remark 1. A short analysis of the definition, yields that the directed distance is
translation invariant, in equal

dt(vio—‘rk:a Ujo-l—k) = dt(vi(ﬂ Ujo)
for all t = ('Ui)ieNm 10, Jo € No, k> maX{—io, _jO}'

Lemma 1.2.2. The displacement of o does not depend on the choice of the ray t.
We may therefore define d.(«) := di(a).

PROOF. Let 0, be the origin of v. For z € X we set |z|, := d¢(0.,z). Let v,s € c.
We observe for t = (r;);en, and § = (s;)ien,

les = [ le = [s1 v
lse = |3l5,r|5 = |Tlc,5|s-
With this notation and s := at and hence s; = ar;, we get for r € ar Nt and
therefore for a 't e tNa
-1 -1 (1.2.1) -1
de(a™ r,r) = do(a Tlr,marlt,m) = d( arlm,mrl:,m) = lr,ar = lav,e = de(@),

where the first equality is deduced from the translation invariance of the directed
distance.
We conclude that the displacement d.(«) does indeed not depend on t.

O

Lemma 1.2.3 (additivity of the directed distance). Let x,y,z € t. Then
de(z,2) = de(x,y) + de(y, 2).

PROOF. Let t be a ray and 0, its origin. In section 1.1 we already have stated
that (t,0.) is a totally ordered space isomorphic to (Np, <). For a finite chain
To < --- < x, we call the vertices zg and x,, its terminal vertices. With these
thoughts in mind, we observe that one of the following two cases occurs:

(a) y is not terminal: We may assume without loss of generality z <y < z,
swapping z, z if necessary and applying the identity d.(v,w) = —d.(w,v)
for v,w € r. Now, t induces a geodesic with terminal vertices x and z
which contains by assumption the vertex y. Thus, the geodesic connecting
x and z is the concatenation of geodesics connecting  and y and y and z.
We conclude di(z, z) = de(z,y) + d:(y, 2).

(b) y is terminal: We reduce this case to the first one. For example let z <
z < y. Then, we conclude from the first case d.(x,y) = d.(z, 2) + d:(z,y).
Applying the identity d.(z,y) = —d.(y,2) and adding d.(y,z) on both
sides, yields the claim.

O

The following theorem is inspired by [7] p.63 proposition 25:



1. THE STRUCTURE OF THE AUTOMORPHISMS PRESERVING ENDS 6

Theorem 1.2.4. Let c € QX. Then d.: Aut(c) = Z: a — d.(«) is a well-defined
group homomorphism with ker d. = {J,c.Nyer Aut(c),.

PrROOF. Lemma 1.2.2 says that d. is well-defined. We want to establish the
homomorphy. For this purpose, let a, 5 € Aut(c) and ¢ € ¢ arbitrary. Take r € ¢
sufficiently large such that (a0 8)~r,a~lr,r € v. We then get by the additivity of
the directed distance

de(aof) =di((ao B) " tr, r)
=d.(B o r a7 ) + de(a” )
= de(B) + de(a).
It remains to show the equation describing the kernel. Let o € kerd, and v € ¢ .
For v € t large enough we get d.(a"1v,v) = d.(a) = 0. Let (v), be the uniquely

determined subray with origin in v. We observe d(a~1r,r) = 0 for each r € (v),.
We thus infer a=!r = r for all r € (v),. This implies a € Aut(c),. for all 7 € (v),.

We hence infer
o€ m Aut(c), C U ﬂ Aut(c),.

re(v)e t€crer
On the other hand, let a € J.c.[),c. Aut(c),. Then, there exists a ray t € c such
that for each v € v holds a € Aut(c),. This in particular implies av’ = v’ for every
v’ > v. We conclude

de(@) = de(a ', 0") =0
for v’ € t large enough and hence « € kerd.. U

0 I .
Corollary 1.2.5. Let G ~ X not necessarily inversion free. Let ¢ € QX and G. a
parabolic group. We denote the restriction of the action 6 to G, by 0.. We then get

kerd, o0, < U ﬂ G,.

tEcvEr

In future we will write d. instead of d. o 0. if we talk about an action G ~ X.

The proof of the corollary is trivial. We observe that ker d. = 1 means G, is cyclic.

Let G(9) be a finite graph of finite groups with vertex groups (G, )vev (). By [7]
there exists an uniquely determined tree X which is known as universal cover of
G(9) and an uniquely determined fundamental group G such that G ~ X inversion
free and ) = G\X. Now we can formulate the following:

Corollary 1.2.6. Let ) be a finite path and G(2)) be a graph of finite groups over
). Under the assumption ged((|Gy|)vey) = 1, every parabolic subgroup is cyclic.

PrOOF. Let P be a parabolic subgroup. Then, there exists a ¢ € QX such
that P = G.. By construction of X (see [7]), every ray ¢ > vt C X contains
a tuple of vertices (v);cs such that there is a bijection ¢ between J and V(2))
and G,; = G,(;). Applying Lagrange’s theorem, we obtain that the cardinality
| Nuee Go| divides ged ((|Gy, |)j€J) = 1. We conclude kerd. = 1 and observe that
G, is indeed cyclic. O
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1.3 PROPERTIES OF CYCLIC PARABOLIC SUBGROUPS

Lemma 1.3.1. Let o € Aut(X) fizing an end ¢ € QX. Then, there exists an t € ¢
such that ar C ¢ or a~ 't C ¢v. Furthermore there is an v € ¢ such that ar C t if and
only if d.(a) > 0.

PROOF. Let s € ¢ be an arbitrary ray. Then, there exists a v € s large enough
such that a=lv,v € 5. For z € s, let (x)s be the uniquely determined subray of
s with origin in x. We start with the proof of the first assertion. Without loss of
generality, we may assume d.(a) > 0, otherwise we pass to a~! and make use of
d.(a™!) = —d.(a). So, we obtain 0 < d.(a) = d.(a"'v,v) and consequently |v|s >
|a~tv|s. Because s is a ray and therefore totally ordered, we obtain (v)s C (o™ 1v)s.
We set t:= (a'v)s and observe that

at = (aa ), = (v)s € ('), =t

This proves the first assertion and the sufficiency of the second assertion.

For the converse direction, we assume that there exists a t € ¢ such that at C t. Let
r € v with 0, = a~'r. Then t = (0,), = (a~!r),. By

tDar=ala ) = (7).,
we get
0 < de(0,7) = de(a™'r,7) = de(a™ v, v)

for each v € v, where the last equation is obtained by applying the translation
invariance of the directed distance on t. For v € t large enough, we get d.(a) =
d.(a~tv,v) > 0. This completes the proof. O

Put Gior := {7 € G : ord(y) < oco}. We emphasize that in general G, has not be a
subgroup of G.

Lemma 1.3.2. Let G ~ X inversion free such that |G,| < oo for all v € X. Then,
for every ¢ € QX holds

kerd, = G. N Gior-
PrROOF. Let ¢ € QX. By Corollary 1.2.5 and the hypothesis it is obvious that
kerd. C Gior.

To prove the converse direction, we observe that the only torsion element in Z is 0.
Therefore d.(y) =0 for all v € G. N Gior and hence G. N Gior C kerd,. O

We are now able to prove the following characterization for infinite cyclic parabolic
groups.

Theorem 1.3.3 (characterization for infinite cyclic parabolic groups). Let G ~ X
inversion free. Assume G. # {1}. Then G, is infinite cyclic if and only if kerd, =

{1}

PROOF. Suppose G, is infinite cyclic. Because an infinite cyclic group has no
element of finite order we obtain G. N G,y = 1. Then Lemma 1.3.2 yields

kerd. = Ge N Gior = {1},

as desired.

Conversely, assume kerd. = {1}. Then {1} # G. < Z. Therefore G, is infinite
cyclic, as required. O
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Definition 1.3.4. Let G be a group and {1} # H < G a subgroup. We define
Comg(H):={geG: I #xec H: g lxzge H}. We call this set the Compensator
of H in G.

We have to remark that in general Comg(H) is not necessarily a group. But
nevertheless Comg (H) has some obvious useful properties:

e (Comg(H))™" = Comg(H),

e Ng(H) C Comg(H).
Before we proceed, let us introduce some notation. It is widely leant on that in [3].
Let a € Aut(X) acting inversion free on X. We call « a type 2 automorphism if and
only if for any finite F C V(X) holds aF' € F. An infinite backtracking free path is
called 2-path if every vertex has degree 2. Fix any vertex in a 2-path. The rooted
tree with root in this vertex is isomorphic as ordered space to Z. This property
characterizes 2-paths. Let « be a type 2 automorphism. The direction D(a) of a, as
introduced as in [3], is the end associated to the uniquely determined ray generated
by the sequence (a*(v))ren,. Let £ be a 2-path. Each automorphism « fixing ¢
induces an automorphism on ¢, namely the restriction «,. Hence, the restriction
map

CAut(X)e —  Aut(d)
pe: « — Qg

is a homomorphism. Finally, we briefly write (Q2X)* for the set of ends fixed by an
automorphism a.

Next we state a customized version of Halin’s theorems [3| pp.267-268 theorems 7
and 8.

Theorem 1.3.5 (Halin’s theorems; [3] pp.267-268 theorems 7 and 8). Let o €
Aut®(X) be an automorphism of type 2. Then, there is exactly one 2-path ¢(«) which
1s left invariant by it. In particular,

(QX)* = {D(a), D(a™H)}.
Remark 2.

(1) ¢(c) is sometimes also called the line or, due to Serre, the straight path
for a.
(2) Each 2-path can be identified with a pair of distinct ends.

Lemma 1.3.6. Let G ~ X inversion free and |G,| < oo for allv € X. Let Ge be a
cusp and G. be an associated parabolic group with G. # {1} and G, N Gror = {1}.
Then, the following assertions hold:

(1.3.1)  G. C Comg(G.) C G U {’y eJG.:2 ord(’y)} cc.u |J G,

veX vEX:
|Gy |€2Z

(1.3.2) Comg(G)# C @,
where G2} .= {g%|g € G}.

PRrOOF. Let v € Comg(G.). Then there exists an element p € G, such that
(v~ 1py) € G.. We therefore obtain p.yc = vc and hence vc € (2X)?. The hypothesis
yields that p acts as automorphism of type 2. An application of Theorem 1.3.5 yields

(QxX)P ={D(p),D2(p ")} 3¢

Hence, we have to investigate the following cases:

(a) c=D(p) = e,
(b) c=D(p7") =1c,
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(c) D(p) =, D(p7") =70,

(d) D(p71) =¢,D(p) = e
In the cases (a) and (b), we obtain v € G, immediately and there is nothing to
prove. Without loss of generality, we consider the case (c). Let us assume that
D(p) # D(p~') otherwise this case reduces to (a) or (b). So, we have D(p) = ¢
and D(p~!) = yc = yD(p). The fact that v preserves {D(p),D(p~1)} forces
yD(p~!) = D(p). This in particular leads to the observation

Ve=7"D(p) =1(v®(p) =¥D(p ™) =D(p) = ¢
and hence 2 € G.. This proves (1.3.2).

Let ¢ be the uniquely determined infinite 2-path belonging to the ends ©(p) and
D(p~1). Because of D(p~!) = v.D(p) and Lemma 1.3.1 we get v/ = ¢. By assump-
tion the ends generated by ¢ get swapped. Hence, there is a vertex or edge in ¢ such
that ~ fixes this vertex or edge respectively. Because G acts on X inversion free, =y
fixes a vertex v € £ C X in any case. This leads to v € G, and ord pg(y) = 2 and
therefore 2 | ord(y) < oco. This yields the claim. O

Lemma 1.3.7 (sharped version of Lemma 1.3.6). Under the same hypotheses like
in Lemma 1.3.6 the following assertion is true:

(1.3.3) Comg(G.) C G. U {y € Glord(y) = 2}.

PrOOF. By Theorem 1.3.3, GG, is an infinite cyclic group. Hence, there exists
an a € G, such that G, = (a) and ord(a) = oco.
Assume Comg(G.) # G.. Then, there is a v € Comg(G.) — G.. (1.3.1) forces
n = ord(7y) < oo and (1.3.2) implies v € G, = (a). Thus, there exists a k € Z with
the property 72 = a*. From that we deduce 1 = 4" = ¢*". Finally, ord(a) = oo
forces k = 0 and therefore 42 = 1. Because of 1 # v € G, we conclude ord(y) = 2,
as claimed. ]

Lemma 1.3.8. Let X be a tree and ¢ € QX. Furthermore let o € Aut®(X) such
that o € Aut®(X). and such that for each finite F C V(X) holds o*F ¢ F. Then,
also

a € Aut®(X).

15 true.

PROOF. By hypothesis a* is an automorphism of type 2. This is also true for a,

for otherwise there would be a finite £ C V(X) such that ofF = of " laF
af~'F C ... C F, a contradiction. Applying Theorem 1.3.5 we obtain ¢
{D(a®),D(a"%)}. On the other hand, we have D(a) = D(a*) and D(a™)
D(a~F). We conclude ¢ € {D(a*),D(a )} = {D(a),D(a"!)} and therefore
ac = ¢ and get the claim.

I miN

O

Theorem 1.3.9. Let G ~ X inversion free and |G,| < co for each v € X. Further-
more let ¢ € QX with G, # {1} and G N Gior = 1. Then it holds:

Comg(G.) = Ng(G.)
and therefore Comg(G.) is a subgroup of G.

ProoOF. The direction D is immediate. It remains to prove the opposite direc-
tion. Theorem 1.3.3 yields that there exists an a € G. such that ord(a) = co and
G. = {(a). Let v € Comg(G.). Then there exists a k € Z such that v~ la*y € G..
Let F C V(X) be an arbitrary finite set. G, N Gyor = {1}, meaning ord(z) = oo for
all 1 # z € G, forces

(Y lan)tF =~y"'a*F ¢ F,
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for otherwise the set F' would be left invariant under the action of (y~!a*y). The

uniquely determined geodesic tree F* generated by F would hence be (y~1ak~)-

invariant and finite as well. Therefore y~'a*y would necessarily have a fixed vertex
or edge in F'* but the action of G is inversion free. Thus, v~ !a*v would have to fix
at least one vertex v € F* C X and hence vy~ 'a*y € G, for a certain v. But this
chain of thoughts leads to

ord(a®) = ord(y ta*y) | |G| < o0,

a contradiction.

Now we are able to apply Lemma 1.3.8. This leads to
v lay € G,
and we conclude v € Ng(G.).

Let G be a group and 2 C G. For each k£ € N we denote by
QF = {wy--wp: w; €QVI<i<k}
Lemma 1.3.10. Same hypothesis as in Theorem 1.3.9. Then
(Ng(G.) — G.)> € G. and hence (Comg(G.)— G.)* C G.
and therefore [Comg(G.) : G¢] = [Na(G.) : G¢] € {1,2}.

PROOF. The case Ng(G.) = G, is trivial, so we may assume Ng(G.) — G. # 0.
Let v,7" € Ng(G.) — G.. We then get by the same argument as in the proof of
Lemma 1.3.6 that ¢ = D(a) or ¢ = D(a~!) and both v and 7' leave {D(a),D(a"1)}
invariant. Without loss of generality, we may assume ¢ = D(a). Because 7,7 ¢ G,
and therefore also v~! ¢ G, we obtain
Ye=D( ) =~""e
This implies vy'c = ¢ and hence vy’ € G, as required. O

Theorem 1.3.11. Let G be a group such that each two elements of order 2 are
conjugate and such that G ~ X inversion free with finite vertex stabilizers, meaning
|G| < o0 for allv € X. Let Ge be a cusp and G, # {1} be the associated parabolic
group with G. N Gyor = {1}. Furthermore, assume that G. € {[v,q] : 7,9 €
G, ord(y) = 2}. Then

Comg(G,.) = G.

PROOF. To obtain a contradiction, suppose Comg(G,.) — G # 0. Then, there
exists a 7 € Comg(G.). Lemma 1.3.7 ensures ord(y) = 2. Lemma 1.3.10 yields

Comg(G.) — G. = vG.

Let « € G, be an arbitrary element. Again by Lemma 1.3.7, we obtain ord(yz) = 2.
The hypothesis on G forces the existence of a g € G such that yo = g~'vyg and thus
r=v"1g7vg = [vy,g]. We conclude

Ge S{lv,gl: 71,9 € G, ord(y) =2},
the desired contradiction. d
Theorem 1.3.12. Let G ~ X inversion free such that |G,| < oo for allv € X and

each parabolic subgroup of G is infinite cyclic. Then, the maximal infinite cyclic
subgroups are exactly the parabolic subgroups.
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PRrROOF. Let P be a maximal infinite cyclic subgroup and a its generating ele-
ment. Then ord(a) = co and because |G,| < oo for all v € X we get that a acts as
a type 2 automorphism on X. Theorem 1.3.5 forces () # (QX)* = {D(a),D(a"1)}.
We conclude a € Gp(q) and hence P < Gp(,). Because Go(q) is cyclic, we infer
P= G@(a).

For the converse direction let ¢ € QX and G, fixing ¢. By hypothesis, G, is
infinite cyclic and therefore generated by an element a € G, ord(a) = co. Let P
be an infinite cyclic group, generated by an element b € P with ord(b) = oo, such
that G, < P. We observe

(a) = Ge < P = (b).

This yields a = b* for a k € Z and hence b* € G.. Lemma 1.3.8 forces b € G, and
therefore P = (b) < G,, and the proof is complete. O

We remark that this theorem also guarantees the existence of maximal infinite cyclic
subgroups. We extract the case that G does not contain any element of order 2:

Corollary 1.3.13. Let G ~ X inversion free such that |G, | < co for allv € X and
each parabolic subgroup of G is infinite cyclic. Furthermore assume 21 |G,| for any
v € X. Then Comg(G.) = Ge.

Example 1.3.14. Let G := CyxCy where the first factor is generated by ¢, and the
second by ;. G can be interpreted as fundamental group of the associated graph of
groups acting on the universal cover which is a tree. Corollary 1.2.5 guarantees that
every parabolic group has to be cyclic. We consider P := (cach). We observe that
P is a maximal infinite cyclic subgroup and hence by Theorem 1.3.12 it is parabolic.
But we see that

<62> Q COmg(P)
as well as
(¢h) C Comg(P).

From that we conclude Comg(P) # P. We remark that in G does not hold that
each 2 elements of order 2 are in the same conjugacy class.

Proposition 1.3.15 (parabolic groups intersect trivial). Let G ~ X such that each
parabolic subgroup is either trivial or infinite cyclic. Then, for each two c,c € QX
either

Go =G, or GoNG.={1}

s true.

PRrROOF. On the contrary to our claim, suppose there exist ¢, ¢’ € QX such that
Go NG # {1}. Then it follows {1} < G NG, < G.. This forces G, = Z. Hence,
G contains only the subgroups {1} and those of finite index. Because H := G NG,
can be understood as ideal in Z, we deduce that H is of finite index in G.. We
therefore obtain that G./H is a finite cyclic group. Fix an arbitrary 1 # v € G..
Because G./H is finite, there is a k € N> such that

H = (yH)* =4*H.

This yields v* € H < G . By choice we have ord(y) = co. The same argument as
in the proof of Theorem 1.3.9 guarantees that v*F ¢ F for each finite set F. Thus,
Lemma 1.3.8 finally forces v € G and therefore G. C G . Exchanging the roles of
c and ¢ yields the claim.

O
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1.4 CUSPS OF FINITE INDEX SUBGROUPS

In [4] has been made an attempt to compute the “cusp multiplicities” of Fuchsian
groups using the “cusp definition” for the hyperbolic plane. Fuchsian groups can
be understood as finite index subgroups of free products of groups. We want to
generalize the results on the setting of finite index subgroups of virtually free groups.
Virtually free groups can be considered as fundamental groups of finite graphs of
finite groups. Think of G ~ X as the action of such a fundamental group of a finite
graph of groups on its universal cover X, which has to be a tree.

Let G be a group and H,K < G. We denote by [H|x the orbit of H under
K where K acts on the set of subgroups of G via conjugation. K acts also on the
elements of G by conjugation. For € G we will denote an orbit by [z]x. If z and
y are conjugate by an element of K, we will write x ~x y. We use an analogue
notation for subgroups; just replace = and y by subgroups.

In the sequel let A < G a finite index subgroup, p := (G : A). Let 0: G —
Sym(A\G) = S, be the canonical representation on the A-cosets.

Definition 1.4.1 (cusp multiplicity). Let Gec € G\QX be a cusp of G in X. Then
we call cma (Ge) := |A\Ge| the geometric cusp multiplicity of Ge in A. This number
counts the cusps of A in X which fuse to Ge.

We observe that

cma(Ge) = |[A\G/G.| = [{1,... 7/QL}?GC|.

Definition 1.4.2. Let P be a parabolic subgroup of G. Then the grouptheoretical
cusp multiplicity is the number

gemu (P) := {[ANyPy a1y € G},

That is the number of A-conjugacy classes of parabolic subgroups in A into which
the G-conjugacy class of the parabolic subgroup P decomposes.

Let ¢ € QX. We call the number coa(¢) := |A\G,| the cusp order of c.
Furthermore, we set for an infinite parabolic subgroup P = (a) in G

geoa (v) = inf{|k| : k € Z — {0}, va*y~! C A}
the grouptheoretical cusp order of v with respect to P for the subgroup A.

We proceed by giving a characterization for the cusp order.

Lemma 1.4.3. Let G ~ X inversion free such that |G,| < oo for allv € X and
c € QX such that G, # {1} and G.N Gyor = {1}. Then, G. = (a) is infinite cyclic
and

coa(c) = inf{|k| : k€ Z~ {0}, a* € A}.
Moreover, it is true that coa(c) < co.

PROOF. Because G. is cyclic the cosets A \G, form a cyclic group. We hence
obtain A\G. = (Ac.a).

ANG.] < [A\G] = 4 < o0
yields coa(¢) < o0o. We conclude
IANG.| = orda . (Ac.a) = inf{|k| : k€ Z~ {0}, a* € A},

as required. O
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Lemma 1.4.4. Let 6 be the canonical coset-representation G — Sym(A\G) and
(a) = P < G be an infinite cyclic parabolic subgroup. Then

geoX (7) = [A7.P)|
where Ay.P denotes the orbit of Ay € A\G = {1,...,u} under 0(P). In particular,
we obtain geok (v) < oo for all vy € G.

PRrOOF. It holds p = |A\G| = } A, pe(ava),p |A7-P| therefore |Av.P| < oo
for all v € G. So let k € N5 such that [Avy.P| = k. Then

Av.a® = Ay
and thus a® € Ga, = y71Av. The last assertion implies gcok (v) < k.

On the other hand, we obtain by the definition the grouptheoretical cusp or-
der 'yPgCOZ(V) C A~. This leads to the equation AngCOg("f) = A~ and therefore
asx ™) ¢ (a) A~- We therefore conclude
P
k=|Av.(a)] = [(a)/(a)as| | [{a) /(a2 )] = geoX (v),
and the proof is complete. O

Lemma 1.4.5. Let G ~ X inversion free such that |G| < oo for allv € X and
c € QX with G. = {(a) infinite cyclic. Let ¢ € G.c. Then there is a v € G with
c =+.c and
coa(¢) = geoX* (7).
PRrOOF. We first observe
Go = G =(a)y™" = (yay ™).
Lemma 1.4.3 therefore implies
coa(d) = inf{|k|: k€ Z~ {0}, ya*y1 C A} = gcoX°(v),

as desired. (]

Theorem 1.4.6. Let P be an infinite cyclic parabolic group generated by an element
a. Then it holds

gemp (P) = [{{[z]a, [z a} 2 € A Iy € G 2 ~g a® P

PROOF. It is easy to see that the map

{{lz]a, [z a} 2 € Ar Iy € G: geok(7) <00 A T ~g agcoih)}
— {[ANyPy a1y € G: geon(y) < oo}

{lz]a, [z a} — [2)]a
is well-defined and a bijection. We apply Lemma 1.4.4 and get the claim.

Theorem 1.4.7. Let P < G be a parabolic subgroup. Then

A: A\G/P — {[AnyPy la:veG)
AyP — [ANyPy=ia

s a well-defined surjective map.
Let ¢ € QX such that P = G.. If in addition Comg(P) = P, then A is also
injective, hence bijective, and it is even true that

gema (P) = ema (Ge).
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PROOF. First, we prove that A is a well-defined map. For this purpose, let
v,7" € G such that AyP = A~+'P. Hence, there exist 6 € A and p € P with
~" = éyp. We obtain

AAY'P) = [ANdy(pPp~ ')y ']
= [6(ANyPyH]a
= A(A~P).
The surjectivity of the map is obvious. Hence, we proceed with the second assertion.

To this end, let ¢ € X and P = G, and assume the equation Comg(P) = P holds.
To show the injectivity of A, take AyP, Ay’ P such that

[ANyPy~Ha = [ANY Py a.
Then, there is a § € A with the property
ANy Py~ =AnsyPyto .

Let x € ANy Py~ = AN §yPy~ 161, Hence, there exist p € P and ¢ € P such
that

-1 1

Sypy o =w=~'gy 7
This yields v/~ 'dypy~ 16~ 'y = q. Applying the hypothesis we infer
7715y € Comg(P) = P.
This leads to the conclusion
AY'P =AY (y/7157)P = ASyP = AyP,

as claimed.

Recall that we denote the natural combinatorial metric on X by D.

Lemma 1.4.8. Assume G acts inversion free on a tree X. Let ¢ € QX such that
G. = (a) is infinite cyclic. Let £(a) be the unique a-invariant 2-path assigned to a;
its existence is assured by Theorem 1.3.5. Then, the action of G on X induces an
action G. ~ L(a) and

D(v,Av) = coalc) - D(v,Gev) Yo € £(a).

PROOF. Put k := coa(c). It follows immediately from the definition of the cusp
order that A. = (a*). Recall that we denote by d. the displacement function with
respect to c. We then observe

D(v, A.v) = D(v,a"v) = do(a®) = k- do(a) = k- D(v,av) = k - D(v, Gv),
as required. O
Theorem 1.4.9 (geometric interpretation of the cusp order). Assume G acts
inversion free on a tree X. Let ¢ € QX such that G. = (a) is infinite cyclic. Then,
D(v, Acv) < co(c) - D(v,Gv)

where the equality occurs if and only if v € £(a) or A, = G.. In other words, we
have
D(v,A.v)
05 = D0, Gew)’

where the supremum is attained if and only if v € £(a) or A, = G..
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PROOF. Take an arbitrary v € X. Set k := co(c). Let vy € £(a) such that
D(v,v9) = min{D(v,w) : w € £(a)}.

Consider an arbitrary ray in X containing v and a’v, j € N>;. Because a acts as
an automorphism and therefore as an isometry, this ray shares the vertices vg, a?vg
and the vertices between them with ¢(a). Combining this with Lemma 1.4.8, we
compute

D(v, Aw) = D(v, a"v)
= D(v,v0) 4+ D(vo, a*vo) + D(a*vg, a*v)
=2D(v,v9) + k - D(vo, Gcvp)
=k - (2D(v,v0) + D(vo, Gevo)) —(2k — 2) - D(v, vo)

D(v,G.v)
=k -D(v,G.v) — (2k —2)- D(v,vy) .
>0 >0

For the reason the second term vanishes if and only if D(v,v9) =0 or k = 1 and
hence if and only if v = vy or A, = G, this yields the claim. (]

Corollary 1.4.10. Under the same hypothesis as in Theorem 1.4.9 the following
formula is true:
D(v, A"
co(c) = lim D(v,Ac v) ( )v)
n=%0 D(v, G¢"v)
where G = {47 : v € Go} and AT .= {57 §€ A}

Yo € X,

PROOF. Let k := co(c), v € X an arbitrary vertex and vg € £(a) the vertex of
smallest distance to v. The same arguments as in the proof of Theorem 1.4.9 yield
foreach 1 <m e N

D(v,a™v) = 2D(v,v9) +m - D(vg, avy).
We thus conclude
D(v, Alv) _ D(v,a*™v)  2D(v,v0) + kn - D(vg, avg) n—soo .
D(v,G!v) ~ D(v,a™) — 2D(v,v0) +n - D(vo, avo) ’

as desired. O




CHAPTER 2

Singularities of finite index subgroups of Sl3(7Z)

It is well known that a subgroup Ag of finite index pu of the Modular Group
Ty := Sl3(Z) = C5 % C3 can be widely characterized by counting the multiplicities
of conjugacy classes of maximal finite subgroups in Ay. This has been done by
using the fact that I' can be seen as free product of finite groups and more general
by a finite graph of finite groups. The Bass-Serre theory ensures that also A can
be expressed as finite graph of finite groups. This and the notion of the Euler
characteristic of a graph of groups give us pretty much a characterization of finite
index subgroups of Sl2(Z) or more general of free products of finite groups.

There is no similar result for the subgroups of Sl3(Z). It is even true, see [7] p. 67
theorem 16, that Sl3(Z) cannot be written as finite graph of finite groups. Hence, let
us look for another approach. Remember that Sly(Z) acts on the hyperbolic plane
H via M6bius transforms. If we think of H as the orbit Slo(R).i 22 Slo(R)/ SO2(R),
we get a description which can be generalized in a way resulting in a group action
of Sl3(Z) as isometries on the symmetric space of the quadratic forms.

The fundamental domain of the action of Sl3(Z) on this space is not compact as
it is not for the action of Sly(Z) on H. But again as for the action of Sly(Z) on
H, there can be constructed a Sl3(Z)-invariant retract with compact fundamental
domain. Following this approach, Soulé has indeed contrived such a cocompact
retract. Moreover, he has computed the fundamental domain for this action and
even the groups fixing the boundary components of it. In this way he has obtained
a description for Sl3(Z) in terms of a finite complex of finite groups.

Let A, be an arbitrary finite index subgroup of Sl3(Z) with (Sl3(Z) : A,) = p.
The purpose of this work is to have a deeper insight in the geometric structure of
some finite index subgroups of Sl3(Z) using Soulé’s complex of groups for Sl3(Z).
Moreover, we are interested in the evolution of the numbers of the maximal finite
subgroups of certain types up to A,-conjugacy in p. We will be able to compute
these sizes by solving certain systems of polynomial equations over finite fields. To
realize this approach, we have to find a system of representatives for A,\I' with
an adequate explicit description. Hence, it seems necessary to focus on specific
subgroups A,,.

For each finite index subgroup, we will also provide a geometric interpretation
for these numbers. To this end, we introduce the reduction of a scwol associated to
the action of a group on that scwol. This reduction is constructed in a way such
that the maximal finite subgroups are the maximal stabilizers of the O-dimensional
vertices of that scwol and vice versa.

16
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Sl3(Z) satisfies the congruence subgroup property. Thus, each finite index sub-
group of Sl3(Z) can be obtained as a preimage of a subgroup of Sl3(Z/nZ), n € N.
Hence, it is advisable to choose prototypes for finite index subgroups A, which are
as “large” as possible. For those reasons, we consider in our work only finite index
subgroups which occur as preimages (under the congruence map) of Borel subgroups
of Sl3(F,). Finally, we will lift the results of the computations to preimages of
subgroups of Sl3(Z/dZ), d € Z square-free. Knowing the vertex group, we can
determine the distribution of the isotropy groups of the higher dimensional faces
containing the considered vertex.

2.1 PRELIMINARIES

In the whole article, let T' := Sl3(Z), 2 < d € Z be an arbitrary integer and
A = {(ai’j)(i’j)egxg, S 813(2) a5 = 0 mod d Vi > ]}

2.2 A COMPLEX OF GROUPS FOR Sl3(Z)

Let us consider the following right action of I' on the space
X :={AcR¥3| det(A) =1,A="A,{Av,0) >0 YV 0#wvecR?}
of scalar products on R3:
r*y:="tyry, ze€X, yel.

Soulé constructed in [8] a fundamental domain D for that action by watching out
for the in some sense minimal elements of the orbits of that action. He could pass
to a 3-dimensional connected compact subset D’ C D also being a deformation
retract such that D' «I' C X is connected itself. Note that Soulé considered in [8]
the action on the space

X :={AeR¥>3 A="4,(Av,v) >0 V0#veR3}/R
instead of X. This is obviously equivalent via the I'-isomorphism:
i 1o\d
X — X: [Algx — <7) A
Al det A
Defining X’ := D’ % T" he obtained the 3-dimensional deformation retract X’ C X
such that ' ~ X’ cocompactly. Considering a “nice” triangulation of D’ and hence

of X’ he computed in the same article the associated finite complex of finite groups
given by this action.

Before we state his result, let us set for the sake of clarity

g and h*(-) := (detlh(-)fh(')'

2
h(u,v,w) :== | w
v

S o8
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Theorem 2.2.1 ([8], pp. 4-5, theorem 2). There is a triangulation of the funda-

mental domain D’ with vertices O := h*(0,0,0), M := h*(1,1,1), M’ := h*(1,1,0),

N :=h*(1,1,3), N' == h*(1,3,-1), P == h*(%,2,-2), Q := h*(1,0,0) which

can be continued on the whole space X' such that the action of I' on X' can be
1 0 0

described by the fact that g1 == | 0 -1 maps M',N',Q to M,N,Q and
0 1

_= O

-1 0 0
G2 = 0 1 1 maps N,N',M',Q to N',N,M’,Q and by the stabilizers
0 0 -1
of the simplices given by their generators. The triangulation of D' and the stabilizers
of the simplices belonging to it can be found in the table below. The stabilizer in the
second column is always associated with the underlined simplex.

simplices stabilizer of the underlined simplex isomorphy class
0 0 1 -1 0 0
o < 0 1 0 |, 0 0 -1 > Sy
-1 0 0 0 -1 0
M 0 -1 0 0 0 -1
< -1 0 0 , | -1 0 0 > Sy
M’ 0 0 -1 1 1 1
0 0 -1 -1 0 0
P < -1 0 -1 |, 0 0 1 > Sy
0 1 1 0 1 0
1 0 0 -1 0 0
Q < 00 -1 |, 0 1 1 > Dys
B 01 1 0 0 -1
-1 0 0 0 -1 0
]% <( 0 1 0 , ( -1 0 0 )> Dy
0 -1 -1 0 0 -1
MN 0 -1 0 -1 0 0
M'N < -1 0 0 , 0 -1 0 > Vi
M'N’ 0 0o -1 1 1 1
0o -1 -1 0 -1 0
M'P < 0 -1 o0 1 -1 0 0 > Dy
-1 1 0 0 0 -1
01 1 -1 0 0
N'P < 1 0 1 , 0 0 1 > Dy
0 0 -1 0 1 0
010 0 0 -1
oM < 00 1], 0 -1 0 > Ss
1 00 -1 0 0
-1 0 0 -1 0 0
oQ < 0o 0 1], 0 0 -1 > V4
e 0 10 0 -1 0
-1 0 0 0o -1 0
OP < o 0 1], -1 O 0 > Ss
0 1 0 0 0 -1
-1 0 0 0o -1 -1
M'PN’ < -1 0 -1 |, 0 -1 0 > V4
1 -1 0 -1 1 0
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MQ -1 0 0

- < 0 0 -1 > Cs

M'Q 0 -1 0

N'Q 1 0 0

- < 0 0 1 > Cy

NQ 0 1 0
0 -1 0

ON < -1 0 0 > Cs
0 0 -1
-1 0 0

ON’ < 0 0 1 > Cs
0 1 0
0 -1 0

oM’ < -1 0 0 > Cs
0 0 -1
0 -1 0

OMN < -1 0 0 > Cs
0 0 -1
0 -1 0

OM'N < -1 0 0 > Cs
0 0 -1
-1 0 0

OMQ < 0o 0 -1 > Cs
0 -1 0
~1 0 0

OPN'’ < 0 0 1 > Cs
0 1 0
0 -1 0

OM'P < -1 0 0 > Cs
0 0 -1
1 0 0

ON'Q < 0 0 1 > Cy
0 1 0

The remaining simplices have trivial stabilizers: ONQ, OM’'Q, OM'N’', MNQ,
M'NQ, M'N'Q, OMNQ, OM'NQ, OM'N'Q, and OM'PN".

Remark 3. The left action I' ~ X’ defined via .2 := 4y~ lay™1, (y,2) €T x X/,
has the same orbits and stabilizers as the right action used above. Even the
fundamental domains for these actions coincide for the reason X’ = (X’)~!. For the
ease of notation we will always consider the left action on X’ instead of the right
action.

In the corollary below, we compute some representations for maximal finite subgroups
of T. For this purpose, we take the restriction of the action I' ~ X’ to suitable
simplices.

Corollary 2.2.2. Set

02 = 5 03 = 5 04 =

e
— = N
— N =
— =
— = N
e )

1
2
1

N —
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-1 1 -1 0 1 0 1
Ol := — 1 0 é 1 3 1], 0;:= 0 1 1
1 0 1 1 1 1 1 3
My = h*(=1,-1,1), M3 := h*(=1,1, 1), My :=h*(1,~1,—1);
2 22 2 2 2 2 2 2
Po=h*(2,-2.2), Py=h (2,22, Pp=hr (-2, -2, -2,
2 <3a 373 ) 3 < 3)373>a 4 ( 37 37 3)7
, \3/i 30 221/3 , \3/1i _3221/3 (1)
M; = 0 V2 22/3 Mg = —22/3 2 22/3 )
221/ 3 221/ 3 \Vi O 221/ 3 \75
Méi = h*(la_L 1)a
\3/5 O _221/3 \?/5 221/3 O
VS N SV i
~prm @E V2 0 mm V2

Let us denote by 1 the action of T' on X' (from the left) as described in Re-
mark 3. Then the restrictions 11}1% = Y|y —Sym(Tpr.0) ONA 1/119 = Y|P p—Sym(Tp.0)
d)gf = Yo —Sym(To. M) and wg = Y|ro—Sym(To.P) ar€ isomorphisms and ¢é\24 =

Yrg—ssym(To.M) 18 injective.

Furthermore we have following explicit expressions for the orbits given by

I'.0 ={0,0,05,04},

I'p.0 ={0,0;,03,0;},

To.M = {M, My, M, M,},

To.P = {P, Py, Ps, P,},

To.M = {M, M}, M}, M)}, ML, M}}.

Y§; is uniquely determined by

0 -1 0 0 0 -1
vi| -1 0 0 | =(0204), ¥f| -1 0 0 | =(00050u);
o 0 -1 1 1 1
Y§ is uniquely determined by
-1 0 O 0o 0 -1
W2 0 0 1| =050, ¥2[ -1 0 —1 | =(0 04040
0 1 0 0 1 1
wé‘)/l 18 uniquely determined by
-1 0 0 0 0 1
VM1 0 0 -1 | =My M), Y 0 1 0 | =(M My My M,);
0 -1 0 -1.0 0
wg is uniquely determinded by
-1 0 0 0 0 1
o 0 0 -1 ) =PPR)y5| 0 1 0 |=(PPPP);
0o -1 0 -1 0 O
wé‘g/[ 18 uniquely determined by
-1 0 0
v | 0 11| = (M M) (M M),
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1 0 O
vy [ 0 0 —1 | = (M My M M, M M).
0 1 1
PROOF. Let us proof the corollary for the action of I'jy; on I''O: From The-
orem 2.2.1 we know that |I'y;.0| = |T'pr/Tonm| = 4. For the reasons I'yy = Sy
and I'yy ~ Ty /Top = IO transitively we infer that ¢1\O4 = Y| 3 —Sym(I'ar.0)

has to be an isomorphism. Straightforward matrix computations lead to I'p;.0 =
{0,04,03,04} as well as

0 -1 0 0 0 -1
(78 I SV =(0204), Y| -1 0 0 = (0 Oz O3 Oy).
0o 0 -1 1 1 1
0 -1 0 0 0 -1
This and ')y = < -1 0 0 , | -1 0 0 > yield the claimed prop-
0o 0 -1 1 1 1
erties for that action. The remaining assertions can be attained in the same
manner. U

2.3 THE LATTICE OF CONJUGACY CLASSES OF FINITE SUBGROUPS OF
SI3(Z)

Using Theorem 2.2.1 and Theorem 2.3.2 we are able to extract the complete lattice
structure of the set of I'-conjugacy classes of finite subgroups of I':

Definition 2.3.1. Let G be an arbitrary group. We denote by Subg, (T') the set
of all finite subgroups of G. Let A < Aut(G) be an arbitrary subgroup. A acts on
Sub(G) via p: A — Sym(Sub(G)): a — e and pe(H) := a(H) € Sub(G). For the
orbit of an element of H € Sub(G) we write [H] 4. If two elements H, K € Sub(G)
lie in the same orbit set, we write H X K.

Obviously, this group action induces a group action on Subg,(G) because every
automorphism maps finite groups on finite groups.

On the set of orbits A\ Sub(G) we define a partial order as follows: For any
[H] A, [K]a € A\ Sub(G) we write
[H|4 < [K]a ifandonlyif Jae A: H < o(K).
In particular, we can apply these definitions on the action of G on Sub(G) via
conjugation from the left, by making the choice Ag := {ay, : ay(H) := gHg™'}. We
write G\ Sub(G) for the set of orbits of Ag. Adequately, for H, K € Sub(G) we
set [H]g := [H] 4, and we write H ~ K if and only if H I K. [H]g is called the
G

G-conjugacy class of H or just the conjugacy class of H. If H ~ K, we say H, K

are G-conjugate. For an arbitrary ¢ € G we make the convention 9k := ghg~! for
every h € G.

Ken-Ichi Tahara classified in [9] all the T-conjugacy classes of finite subgroups in T
We will only need a reduced version of his main-theorem which we state below:
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Theorem 2.3.2 ([9], pp. 170-203). The following table shows the complete list of
the isomorphy classes and conjugacy classes of finite subgroups of T':

cardinality of the finite | isomorphy classes | number of I -conjugacy
subgroups of T’ appearing classes appearing

2 Co 2
3 Cs 2

Cy 2
4 Vi 4

Cs 1
0 S5 3
8 Dg 2

Dyo 1
12 A, 3
24 Sy 3

In particular T\ Subgay (T) is finite.
Let us state some trivial facts because we will often make use of them:

Lemma 2.3.3. Let G be an arbitrary group and ®: G — G an endomorphism
on it. Furthermore let H,K < G such that [H|, < [K],. Then the assertion
[®(H)|g < [®(K)]g is valid.

PrROOF. By hypothesis there has to exist a ¢ € G such that YH < K. Applying
® we calculate

IO(H) = ®(9H) < ¢(K).
Thus we conclude [®(H)]g < [®(K)]g- O

Lemma 2.3.4. Let G be an arbitrary group and H < G an arbitrary subgroup.
Then the equalities

a(Ca(H)) = Cg(a(H)) and a(Ng(H)) = Ne(a(H))
are true for every o € Aut(G).

PRrROOF. We will only show a(Ng(H)) = Ng(a(H)) as the proof of the other
assertion can be obtained in the same fashion. To this end, it is sufficient to prove

a(Ng(H)) < Ne(a(H)) Yo € Aut(G).

So let us fix an a € Aut(G) and take an arbitrary g € a(Ng(H)). Then by definition
there exists a ¢’ € Np(H) such that g = a(g’). This implies g~! = a(¢’"!) and
¢'Hg'~' = H. Therefore we obtain

go(H)g™! = a(g'Hg'™") = a(H),
which establishes g € Ng(a(H)) and hence the claim. O

The following lemma is an immediate corollary if we replace o € Aut(G) with an
inner automorphism.

Lemma 2.3.5. Let G be an arbitrary group and H, K < G be arbitrary subgroups.
Then, if there exists a g € G such that gHg™' = K then it is also true that

9Ca(H)g™' = Ca(K) and gNa(H)g™" = Ng(K).

Lemma 2.3.6. Let G be an arbitrary group and H be a finite subgroup. Then
Ng(H) is finite if and only if Cq(H) is finite.
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PROOF. “=" is trivial because of C(H) C Ng(H).

“«<” For this direction let us assume Cq(H) is finite and let us look on the following
homorphism:

¢: No(H) = Aut(H): g — ¢,
where p4(h) := ghg~'. We observe that ker ¢ = C(H). Because H is finite Aut(H)
has to be finite too and hence Ng(H)/Cq(H) is a finite group. Using Cq(H) is
finite we obtain Ng(H) is finite and therefore the claim. O

Lemma 2.3.7. Let G be an arbitrary group and H, K < G such that H < K then
Ca(H) 2 Ca(K).

PRrROOF. Let H < K < @. Take an arbitrary g € Cg(K). Then we have for all
ke K
gk = kg.
Because of H C K this equation remains in particular true for all k € H. We
conclude g € Ce(H). O

Combining Lemma 2.3.6 and Lemma 2.3.7 we obtain the following corollary:

Corollary 2.3.8. Let G be an arbitrary group and H < K € Subg,(G). Then, if
Cg(H) or Ng(H) is finite, Ng(K) has to be finite.

We want to define the sign homomorphism on an arbitrary Coxeter group. Therefore
we start with the following lemma.

Lemma 2.3.9. Let G be an arbitrary finitely generated group with
G/|G,G] 2 Cor @ A,
where k € N and A an abelian group, such that A contains no element of order 2.

Then,
| Hom(G, Cs)| € {1, 2}.

PRrROOF. Because Cj is abelian we clearly have that
Hom(G, Cy) — Hom(G/[G, G, Cs)
= Hom(Car @ A, Cz) = Hom(Cyr, Cs) @ Hom(A, Cy).
The homomorphy theorem tells us that Hom(A, Cs) is trivial. On the other hand each

® € Hom(Cyx, Cy) is determined by the value on the generator of Cyx. Therefore
we conclude | Hom(G, C3)| < |Hom(Cyr, Cs)| = 2. O

Definition 2.3.10. Let W be a Coxeter group with Coxeter system S. For w € W
let Ig(w) be the length of w with respect to S. We define sgng: W — W via
sgng(w) := (—1)(Is)mod2) " Then sgng is a homomorphism. Furthermore if there
exists a k € N such that
W/IW, W] = Gy & 4,

where k € N and A is an abelian group, such that A contains no element of order 2,
then sgng is independent of the choice of the Coxeter system S. In this case we write
for sgng just sgny, or sgn and call this homomorphism the sign homomorphism of
W. Then, sgny, is in particular Aut(W)-invariant.

PROOF. We start with the first assertion. Let w € W and s € S. From [2] p.47
we can immediately derive the following formulas:
ls(sw) =lg(w) + 1 or lg(sw) = lg(w) — 1
and
ls(ws) =lg(w) + 1 or lg(ws) = lg(w) — 1.
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In particular, we get for wy,ws € W

2
ls(wiws) = lg(wy) + ls(ws)
and thus
I5: W = TFy: we lg(w) mod 2
is a homomorphism. Hence sgng needs to be a homomorphism as well. The second
assertion is an immediate consequence from Lemma 2.3.9. 0

Remark 4. Definition 2.3.10 generalizes the notion of the sign of finite symmetric
groups to all Coxeter groups. In particular for a group G = S, the sign homomor-
phism is independent of the choice of the isomorphism.

Lemma 2.3.11. Let G be a group such that G = Sy. If G = (0, 7) with ord(c) =4
and ord(T) = 2. Then, we necessarily have sgng (o) = —1 = sgne (7).

PROOF. Let us begin to show sgns(c) = —-1. [G,G] &2 Ay < S4 implies
(0,]G, G]) = G. Assume sgng (o) = 1. Then,

sgng (G) = (sgng (o), sgng (G, G)) = {1},
a contradiction to the definition of the sign!

Assume sgne(7) = 1. Then, there exists an H = V, such that 7 € H < G.
On the one hand, Sylows’ theorems imply that H lies in all subgroups of G of type
Dg. On the other hand Sylow’s theorems tell us that there exists a group K of
type Ds such that (o) < K. In particular this enforces G = (0,7) < K = Dg, a
contradiction! O

Lemma 2.3.12. Let G be an arbitrary group and H be a subgroup of G. Further
assume that there exists S,S" C H with (S) = H = (S') such that there is an
a € Aut(G) with a(S) = S’'. Then even o(H) = H s true.

PROOF. We just compute a(H) = («(S)) = (S’') = H which has been claimed.
U

Corollary 2.3.13. Let G =2 D15 and H be an arbitrary 2-Sylow subgroup of G.
Furthermore let Ty # 10 € H \ Z(G). Then [11]a # [2]a-

PROOF. Because |Z(G)| = |Z(D12)| = 2, there exists a 2-Sylow subgroup which
contains Z(G). For the reasons that Z(G) < G and all 2-Sylow subgroups are
conjugate, Z(G) lies in every 2-Sylow subgroup and hence Z(G) < H. Let o® be the
only non trivial element of Z(G). Set S := {0°®, 71} and S’ := {¢®, 72} and observe
that (S) = H = (S’). Assume in order to obtain a contradiction that there exists a
g € G such that 97, = 7. Then, we infer

98 = {90°, 91} = {o*, 2} = 5",
Now, Lemma 2.3.12 tells us that Y4 = H and therefore g € Ng(H) = H. Because
H =V, is abelian, this implies 7, = 7%, a contradiction! O

Lemma 2.3.14. Let G be an arbitrary group acting on a set X. Let xg € X an
arbitrary element and set H := Gy,. Then, Ng(H) is the largest subgroup of G which
leaves the set {x € X : G, = H} invariant. In particular, if {x € X : G, = H}| =1,
then Ng(H) = H.
PRrROOF. Set M :={x € X : G, = H}. Let z € M and g € Ng(H). Then
Ggo=9H=H

and hence g.x € M. Thus, Ng(H) leaves M invariant. Let Gjs be the largest
subgroup of G leaving M invariant. Take g € Gj; and x € M. We clearly obtain
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g.x € M and therefore YH = G, , = H. This finally implies g € Ng(H) and thus
Ng(H) = Gy, as required. O

Definition 2.3.15. Let “=<” be a partial order on a set M. Let a,b € M such that
a =< b. We say an inclusion a =< b is simple if and only if for each ¢ € M with
a = ¢ = beither ¢ =a or ¢ =0 is true. We call a pair (a,b) € M x M simple if and
only if @ < b and a < b is simple or b < a and b =< «a is simple.

Definition 2.3.16. For an arbitrary group G we set
Subg,(G) := {H € Sub(G) : Ng(H) € Subg,(G)}.

The action of G on Sub(G) via conjugation induces an action of G on Subg, (G)
because Lemma 2.3.5 tells us that normalizers get mapped on normalizers. Subg, (G)
has the following property: If H € Sub? (G) then for each Suba,(G) > K > H
holds K € Subg (G).

PROOF. The property is a reformulation of Corollary 2.3.8. O

Notation 2.3.17. Let G and G arbitrary groups and p: G — G an homomorphism.
Then for each g € G and z € G we write (9%)(z) := 9(¢(x)). This yields a map
90 : G — G which is a homomorphism as well. If ¢ is an mono-/epi-/isomorphism
then also 9¢ has to be an mono-/epi-/isomorphism.

We have to introduce some further notation now.

Notation 2.3.18. Let K be a field, A € K™*™ and A be an Eigenvalue for A.
Let L/K be an arbitrary field extension of K containg A. Then we denote by
EL(A) == {v € L™ : Av = M} the Eigenspace of A over L according to the
Eigenvalue A.

Notation 2.3.19. Let us make the following convention: Let H be an arbitrary
group (not necessary contained in I') and G < T'. Then we set

“H :={|[K]g € G\Sub(G) : K = H}.

If this set consists only of one conjugacy class ¢ we write by abuse of notation ¢H
for an arbitrary representative of c.

Using the notation of Theorem 2.2.1 we make the following settings
Si:=To, Si:=Ty, S}:=Tp, Diy:=Tg.
We think it is worth to remark that S} is by definition the group of orthogonal
matrices with determinant 1 and integer entries.
With the convention above let S‘iA4, i €{1,...,3} be the Ay-type subgroups of Si,

and S£D8 be arbitrary 2-Sylow subgroups of Si. We write D1206 for the unique
cyclic subgroup of order 6 in Dys and D”Sé and D“Sg for the only two type S3
subgroups of D12, for which we know, that they are not conjugate in Di2. We set

5‘153 for an arbitrary type Ss subgroup of S, taking into account that all type Ss
subgroups are conjugate in groups of type S;. Furthermore, we write SiVJ for the

type V4 subgroups being normal in Si and SZ‘V: for that being not normal in Sj.
Moreover we denote by ” 12V, an arbitrary 2-Sylow subgroup of Djy. Let us write

3‘104 for an arbitrary type Cy-subgroup of S regarding the fact that all subgroups
of Sy of type C, are conjugate. For the only 3-Sylow subgroup of D5 we write

b 12, and for an arbitrary 3-Sylow subgroup of S} we write 5‘1*03. Finally, let us

write 5102 for the set of type Cy conjugacy classes in Si which contains exactly
2 elements; an arbitrary representative of the Sj-conjugacy class of subgroups of
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order 2 with positive sign with respect to S} is denoted by Sf‘C; and an arbitrary
representative of the Sj-conjugacy class of subgroups of order 2 with negative sign

with respect to S is denoted by SZ‘C’; . Finally let us write 12, for the set of type
C5 conjugacy classes in D1 which consists of exactly 3 elements.

Lemma 2.3.20. There exists an automorphism ®: ' — T" such that
®(S;) =S} and ®(S7) = S5.

PROOF. Let ¢: ' — I': v = (*y)~! be the transposition-inversion automor-
phism. Put

0 0 -1 0 -1 0
o= -1 0 0 |, o= -1 0 0
1 1 1 0 0 -1
and
0 0 -1 -1 0 O
T = -1 0 =1 1], mo:= 0 0 1
0 1 1 0 1 0
Theorem 2.2.1 tells us that S7 = (o1, 02) and S = (11, 72). Let us put
0 0 -1
ni=| -1 0 0 |esi
0O 1 0

and ® := "p. For the reason S} consists only of orthogonal matrices ¢ restricts to

the identity on S}. Thus n € S} enforces ®(S}) = S1. We can easily verify that
®(o1) =71 € S} and ®(03) =7 € S5.

Therefore we get ®(S7) = S3 which completes the proof. O

Lemma 2.3.21. LetI' > H 2 V,. Then Cr(H) = H. In particular Np(H) is
finite.

PRrOOF. By virtue of Corollary 2.3.8 it is sufficient to show that Cr(H) = H.

To do this let hy, ho, hs € H be its elements of order 2. By ord(h;) = 2 we conclude
Pmin(hi)(X) = X? = 1= (X - 1)(X +1)

and each h; has to be diagonalizable over Q.
det(h;) = 1 implies dim E2(h;) = 1 and dim E?, (h;) = 2. For this reason and by
virtue of H is abelian, there exists a simultaneous eigenbasis (b;)3_, for H over Q.
Now, dim E2(h;) = 1 implies that there exists a j; such that h;b;, = b;, and even
further E2(h;) = Qbj,. On the other hand, the fact that (bj)3_, is an eigenbasis for
h; enforces h1b; = —b; for every j # j; for otherwise we would have dim E2(h;) > 1,
contrary to dim E2(h;) = 1. We conclude E%, (h;) = @D, Qb;. From this and the
fact that the h; share the same eigenvalues, we may deduce that h; # hjy already
forces E2(h;) # E2(hy,). Hence the map

{1,...,3} — {Qby,Qbs, Qbs}: i > EX(h;)
is necessarily a bijection. It follows that
Q® = EX(h1) @ EY(h2) ® EX(hs).
Setting V; := E2(h;) this becomes
C=vielheV

where dim(V;) = dim(V2) = dim(V3) = 1. Now dim(V;) = 1 forces the existence of
a v; € Z3 such that V; N Z3 = Zuv,.
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Let us take an arbitrary v € Cr(H). Then v commutes with all the elements in H.
Thus v must leave every h;-eigenspace and therefore the spaces V; for i € {1,...,3}
invariant. On the other hand v € T' = Sl3(Z) implies that ~y leaves also Z?3 invariant.
Hence 7 leaves the Z-modules V; N Z? invariant. We conclude that there exists a
A; € Z such that

(231) VA 2 YU = Aiv;

for suitable ;. For the reason = is invertible we conclude that there exists a u; € Z
with the property
VAR 7_1vi = [4;V;.
Observing v; = v~ 'yv; = p;A\v; we obtain ju; = A 1 and therefore in particular
Ai € Z*. By virtue of (2.3.1) we get 1 = det(y) = A;A2A3 which has at most four
possible solutions in (Z*)3. This establishes the claim of the lemma.
O

Lemma 2.3.22. Let o € T' such that ord(«) = 3. Then Cr(«) is finite. In particular
Nr({(«)) is finite.

PROOF. Let (v;)?_; be the eigenvalues for a. We begin by proving
Pmin(@)(X) = X3 —1:

To this end, we observe that deg pmin(a) > 2 otherwise o would be a multiple of
the identity. From ord(a) = 3 we derive

Pmin(@) | X7 =1 = (X = 1)(X —e3)(X —€3),

where g3 := exp(2mi/3). Combining this with deg pin() > 2 we infer €3 or €3 = £3
has to be a zero of pmin(a). By virtue of 1 = det(«) = v11o15 this leads in each
case to the observation that both, e3 and €2, have to be zeroes of pmin(a). So
we may assume without loss of generality 12 = 3 and v3 = 3. Applying again
1 = v11ov3 leads to vy = 1. This establishes puin(a)(X) = X3 — 1, which has been
our introductory statement. Clearly pmin(c) decomposes into linear factors over the
cyclotomic field Q(e3). Setting v; := €%, i € {0,...,2} we thus obtain the following
decomposition of Q(e3)? into eigenspaces for a:

(2.3.2) Q(es)® = P EX=) ().
1=0

In particular we obtain
dimg(e) (E2E(a)) =173 € {0,....,2}.

Algebraic number theory tells us that the integer ring for Q(e3) is Z(e3). Moreover
it is well known that Z[es] = Z [HT‘/&} is an Euclidean ring. For the reason that
Zes] is an Euclidean ring and because

V= Eg(EB)(Q) N Z[es]3

is a submodule of the free module Z[e3]?, we conclude that each Z[e3]-module V;
has to be a free Z[es]-module of rank 1. In this way for each ¢ € {0,...,2} there
exists a 0 # v; € V; such that

Now, take an arbitrary v € Cr(a). Because v commutes with «, v leaves all
eigenspaces Eg(s‘?’)(a) invariant. Additionally, v € Sl3(Z) forces that v must leave
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Z[es)? invariant. We combine these facts to the observation that  leaves V; invariant.
(2.3.3) now implies the existence of \;, u; € Z[e] for each ¢ € {0,...,2} such that

(2.3.4) YU = )\Z"Ui.

and

-1
YV = iU

By virtue of v; = vy~ tyv; = p;\v;, we finally obtain \; € Z[e3]*. For the reasons
that all embeddings of Q(e3) into C are complex and [Q(e3) : Q] = 2, Dirichlet’s
Unit theorem forces that Z[es]™ is finite. In particular there are only finitely many

choices for the \; and hence for . This proves the assertion of the lemma.
O

Lemma 2.3.23. Let o € T' such that ord(«) = 4. Then Cr(«) is finite. In particular
Nr({«)) is finite.

PRrROOF. This follows almost by the same argument we have used in the proof of
Lemma 2.3.22. First, we observe ppin() | X% —1. As in Lemma 2.3.22 we conclude
by det(a) =1 and tr(a) € Q that

Pmin(a) = (X = 1)(X = )(X +14) = (X = 1)(X? +1).
Therefore the splitting field of pmin(«) is necessarily Q(¢). Note that its associ-

ated ring of integers Z[i] is Euclidean. Thus, the same method as in the proof
Lemma 2.3.22 yields that Cr(«) has to be finite. O

Definition 2.3.24. We call a representative H of a I'-conjugacy class ¢ € I'\ Subg, (I")
admissible if it satisfies H < S for some i € {1,...,3} or H < D15.

Theorem 2.3.25. The lattice of T-orbit sets on Subg,(I') is completely described by
the following diagram: The nodes are the representatives of I'\ Subgn (I'). Two nodes
are on the same level if their labels have the same cardinality. We put a connection
line between two nodes if they lie on different levels and if ([Alr, [B]r) are simple
with respect to “<” for their labels A, B € Subg,(T'). Furthermore we have
'\ Subg, (T') = {[H]r € T\ Suba,(T) : |H| > 3}.
We give a list of the normalizers of the representatives of T'\ Subg_ (I') which are not
obviously obtained by this fact:
* A (Siss) = isy;

o Nr 5304) = Sip,, ie{1,2);
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PROOF. For his convenience, we advise the reader to print out the diagram
above. We start our proof by determining admissible representatives for I'-conjugacy
classes of subgroups of order 2:

Let G be arbitrary with G = S;. The elements of order 2 in S; and therefore
of G fall into two conjugacy classes. Because sgn, is invariant under G-conjugation,
the G-conjugacy classes of elements of order 2 are exactly the preimages of the
possible values of sgn,, restricted to the set of elements in G having order 2.

Let S} play the role of G.

-1 0 0 0 -1 0
Set o® := 0 —1 0 | which can be expressed as squareof [ 1 0 0 €
0 0 1 0 0 1
I'o = S} and which has therefore positive sign with respect to Sj.
0 -1 0
Furthermore we define ¢° := -1 0 0 . From Theorem 2.2.1 we know
0 0o -1

that o° fixes the vertices which have been called O, M and P in that context
and hence ¢° € S} N S? N S;. From Theorem 2.3.2 we also know that there are
only two I'-conjugacy classes of subgroups of type C3. Assume there exists a

q r s
t uw v | =v €T such that "(0°®) = 0°. Then v has to solve
T Yy 2z
qg r S -1 0 0 0o -1 0 q r S
t u w 0 -1 0 |= -1 0 0 t u w
T Yy z 0 0 1 0 0 1 r Yy z
q r s
and therefore g =t, r =u, s = —v, 2 =0. Thus v = q r —s |. Taking the
z y 0

determinant leads to
1 =det(v) = 2(gsy — rsx),
and therefore 2 € Z*, a contradiction! We conclude

(2.3.5) {H]r - H = Co} = {[(¢®)]r; [{(¢")]r}-

Due to 0®,0° € S} this implies sgngi(0°) = —1.
We proceed to figure out the substructure I'\ Subg, (I") of I'-conjugacy classes of
2-groups.

From Theorem 2.2.1 we know that

0 0 -1
S§=< -1 0 0 ,a°>
11 1

and
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0o 0 -1

Observing ord{ —1 0 0 =4 and applying Lemma 2.3.11, we infer
1 1 1

(2.3.6) sgngz(0°) = —1.

Let ®: T' — T be an automorphism such that ®(S}) = S} and ®(S?) = S3. The
existence of this automorphism is guaranteed by Lemma 2.3.20. Therefore and by
Definition 2.3.10 we obtain

(2.3.7) sgngs (0°) = sgnasy) (B(0°)) = sgngs (o°) = —1.

Let us observe that

10 0 10 0 0 -1 -1
00 -1 |e°f 0 0 —1 =1 0 -1 0 |=diesi
01 1 01 1 -1 1 0

By virtue of sgngg a3 = 1 and (2.3.7) we conclude for all 4 € {1,...,3} :

(2.3.8) [3305} = [SZ(J;} -

Because @52 ,63: S? — 53 is an isomorphism the invariance of the sign under
isomorphisms implies:
] - o ()]
[ Zlr 2)1r
Putting this together with ®(S}) = S} and (2.3.8) for i = 1 we obtain
S2 e _1/(83 e —1(8} o Si ~o
[ 402}1": {(I) 1( 46’2)}1“ - [(I) 1( 402”1“: [ 402}1“'
Thus (2.3.8) becomes
S2 e St o 53 e .
(2.3.9) [ 402]F = 402L - 402L, ie{l,...,3}.

Let us find admissible representatives and their normalizers for the I'-conjugacy
classes of the type Vj subgroups. By Theorem 2.3.2 there are exactly four I'-conjugacy
classes of groups of type Vy. Set

H? :={o € Sj:ord(o) <2 A sgng; (o) =1}.

By definition we have H® =V, and H? < S%. In particular we obtain SiVJ =H;.
Combining Lemma 2.3.21 and Theorem 2.3.2 we infer

(2.3.10) Ne(*VF) = Np(H!) = Si.

1
Let S‘*Vf be an arbitrary representitive for a type V, subgroup of S} being not

normal in S}, choose for example S4V4o = (0°,0°*). We now claim that
1 1
(2.3.11) NF<S4V4°) = %ip,.

1 1
Lemma 2.3.21 ensures that NF(S4V4°> is finite. Suppose Np(sﬂ/:) =~ S,. Then

1 .
there exists an iy € {1,...,3} such that Np <S4V4O) ~ Sj. For the reason that for

each group of type Sy there exists only one subgroup of type V, lying normal in it,
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1 iQ
S V, would have to be I'-conjugate to S V4'. We can exclude the case ig = 1, for
otherwise we would have ¢° ~ o®, which is impossible. By virtue of iy € {2,3} and

o< [v7], = [%vi|

we conclude, taking account of (2.3.9), once more o*® ~ 0°, a contradiction. This

proves our claim.

Applying Lemma 2.3.5 on (2.3.10) and (2.3.11) we obtain the complete list of
T’-conjugacy classes belonging to the subgroups of type V4 namely

(2.3.12) {[H]F I V4} _ {[Sivé;}r’ [SEV;L—" |:SEV4.:|F, [SiV4O:|F}.

Let us identify admissible representatives for the I'-Conjugacy Classes of the type
Cy subgroups and compute their normalizers as well:

0 0 1 0 0 -1
We begin by recalling that 0 1 0 | eS}and -1 0 O € S? are
-1 0 0 1 1 1

1 2
elements of order 4. Therefore their squares lie in ** V, and 51 V, respectively.
Considering (2.3.9), we conclude

2

0 0 1
(2.3.13) 0 10 = [o*]r
-1 0 0
r
and
0 0 -1\’
(2.3.14) -1 0 O = [0°]r.
1 1 1
r
) 0 0 1
We consistently choose S4C’4 _< 0 1 0 >as representative for the S}-
-1 0 0

1 1 1
representative for the S%-conjugacy class of type Cy subgroups in S7. For the reason
that T' contains only two I'-conjugacy classes of type Cy and by (2.3.13) and (2.3.14),
we obtain already

(2.3.15) ([H]r: H=Cy) = {[5104} . [5504} F}.

We proceed by computing the normalizers of the admissible representatives. To this
end, apply Lemma 2.3.23 and observe NF(S4C4) is finite for each i € {1,...,3}.

0 0 -1
2
conjugacy class of type Cy subgroups in S} and S4C4 = < -1 0 O > as

Hence by an application of Theorem 2.3.2 combined with the fact that the SZ*C4 are
(by definition) admissible, we obtain

(2.3.16) NF(Sicg) = Sip,,

Let us now look for admissible representatives for I'-conjugacy classes of the type
Dg-subgroups.
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Sy S; sz S3 .
Due to (2.3.16) we take "*Dg = NF( 404) and "*Dg = Np( 404) as candi-
dates for admissible representatives. Because all subgroups of type Cj are conjugate
in groups of type Dg, we infer that

{S‘}Dg} r 7 [SiDS} r’

1 2
for otherwise we would have S4C’4 ~ S4C4, contrary to (2.3.15). By virtue of
r

Theorem 2.3.2 we are able to deduce
(2.3.17) {[Hlr: H=Ds}={ {SiDSL, [Sng}F}.

Our next goal is to find all the admissible representatives of type C3. For this
purpose, consider for instance

10

0 1 >

0 0

1 0 0 )
bug, = < 0 -1 -1 > and *Cy = <
0 1 0

1
We claim that D1203 b S4C'3. Conversely, suppose that there exists a I' 5 v =
T

_ o O

8 <+

r s
u v such that
Yy oz

1
D12 _ Sy
YOy = 37-
Because in a symmetric group each element is conjugate to its inverse, we may
assume that v even satisfies

1 0 0 010
vfo -1 =1 =00 1]y
0 1 0 100

A straightforward computation yields that ~ is of the form
y=1|qg s—r —r , q,7,8 € Z.

Taking the determinant we obtain
1 = det(y) = 3(—qr* + qrs — qs?),

contrary to 3 & Z*.
Finally, an application of Theorem 2.3.2 results in

(2.3.18) ([Hlr: H=C3) = {[Dlzcs]r, [Sics]r}.
By virtue of Lemma 2.3.22 and Theorem 2.3.2 we get immediately
(2.3.19) Np (D12C3) — Dy

This and Theorem 2.3.2 enforce NF(SiC3) 2 Dy, for otherwise we would have
D1203 ~ S‘iC’g, which contradicts (2.3.18). In this way, Lagrange’s theorem and the
admissibility of Si Cj ensure that

(2.3.20) Ne(Fiey) = s,

Next, we determine admissible representatives for the I'-conjugacy classes being
associated with subgroups of type S3.
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1
To this end, consider the candidates © 125;, b 125§ and S“S;. First we prove
D1251} [D1252:| )
[ 3 7 3l

.
On the contrary, suppose there exists a v € I" such that (D125§> = D”S??. Then
we obtain by Lemma 2.3.5

M(Dya) = w(NF(DHS?})) = Nr(P25%) = Dia.

Hence v € Nr(D12). On the other hand we deduce, using Corollary 2.3.8, that
v € D12 = Np,,(53). We conclude

D125§ _ ’Y(Dlzs;) — DlZSg’
contrary to [{[H]p,, : D12 > H = S3}| = 2.
Corollary 2.3.8 and the finiteness of CF(SQQ,)) imply that Np (515«3) has to be
finite as well. This combined with (2.3.18) and (2.3.20) leads immediately to
Ne(%is,) = Sis,
and additionally in consideration of Lemma 2.3.5 also to

], #[75] s e 0.2

Finally, an application of Theorem 2.3.2 yields
. ~ _ Di2 gl D12 g2 S;
(2.3.21) {(H)r: H =53} ={] S3L, | SSL, [ SSL}.

Theorem 2.3.2 and Lemma 2.3.5 yield admissible representatives for the conjugacy
classes of the finite subgroups associated with the remaining isomorphy types. In
this manner we obtain

(2.3.22) ([H]r : H=Cs) = {[’31206]F},

(2.3.23) ([H]r: H= Dy} = {[Di2]r),

(2.3.24) ([H]r:H= A = {[SXALJF: z’e{l,...,3}},
and

(2.3.25) {Hlr: H= S} = {[Si]: ie{l,...,3}}.

We now turn to the discussion about the positions of the elements in I'\ Subg, (T').
We start by analyzing the connection lines belonging to the I'-conjugacy classes of
type C2. Because each group of order 4 contains an element of order 2 with trivial
sign, we get on the one hand

Siyre Sitro Sy
3. L] < 4 4 4 .
(2.3.26) [o®)]r < [ V‘Jr’[ VAL’[ 04}1“
On the other hand we infer by virtue of (2.3.9) that
Sl o S2 e S3 e S2 h
o} < 4 4 4 4 4
(2.3.27) (o) < [ V4:|F7 [ ‘/4]1“’ [ Vi }r’ [ 04]1“’ [ 53}14
A straightforward computation yields
1 0 0 det(A)~?
crl 0 -1 0 = : AeGl(Z) ) = G.

0 0 -1 A
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1 0 0
1
0 -1 0 | €%V now implies that [Cp(c®)]r = [G]r. On the other hand
0o 0 -1
an analysis of the structure of the generators of Di5 results in D15 < G. In this way
we obtain in particular

[0°]r = [Z(D12)]r-
This leads immediately to

(2.3.28) (o) < [P2C5 and [(0*)]r < [V,
-1 0 0

Moreover, Theorem 2.2.1 ensures that 0 0 -1 € Do ﬁSi. This element
0O -1 0

is of order 2 and can be represented as transposition. The invariance of the sign
under automorphisms enforces that this element has negative sign with respect to
S}. We conclude

-1 0 0
[(°))r = < 0 0 -1 > <[Povy]
0 -1 0 . r
which leads by virtue of (2.3.27) and (2.3.26) to
D12 _ [Siyr0
(2.3.29) [ V4]F - [ V4L.
From this, (2.3.28) and Corollary 2.3.13 we may derive
(2.3.30) [(o°)] < [Dwsg}r, jef1,2).

In order to close the chapter about the simple inclusions of I'-conjugacy classes
of subgroups of type C3, we have to show that there is not any other element in
'\ Subg, (T') with the property that any I'-conjugacy class of subgroups of type Cs
lies simple in it. We begin by proving

(2.3.31) [(e®)]r £ [Sir, i € {2,3}).
Conversely, suppose that there is an ¢ € {2,3} such that

[{o®)Ir < [Silr-

Then (2.3.8) already implies [0®*]r = [¢°]r, a contradiction. Moreover
(oM £ [285] 5 e {12}

for otherwise, taking account of [{(¢°)]r < [D”Sﬂ , we would necessarily obtain
r

once more [o°|r = [0°]r.

By virtue of (2.3.28) we derive
) D12
(o)l 2 [P2C]

and for the reason that a group of type A4 contains only one subgroup of type Vy,
we must have

[oe 2 [F4,]

Because of [0°|r # [0®]r we see

e 2 [y
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Thus, we infer that we have indeed determined in (2.3.27), (2.3.26), (2.3.28) and
(2.3.30) all the connection lines emanating from I'-conjugacy classes of subgroups of
type Cs.

Next we watch out for the simple inclusions of I'-conjugacy classes of subgroups
lying over [0®]p. Considering (2.3.31) we immediately observe that

[SiVA;L’ [Sin]F, {Si04]r £ [Silr, i € {2,3).
Taking account of (2.3.29) we get
*ve] <Dl

and in addition, according to the fact that all subgroups of type V4 in Di5 have to
be conjugate by Sylow’s theorems, we infer

[Siv4'] - % [D12]r.

The determination of the remaining simple inclusions of the elements in Subg, (T")
lying properly over [o°®]r is straightforward as well as the proof that we have found
all of them.

Now, let us find the simple inclusions for the I'-conjugacy classes ¢ of subgroups of
order 4 and 8, for which the following conditions are valid:

e [(0°)]r <cand
e [(o%)r £c.

Such I'-conjugacy classes cannot be contained in [Si]r, for otherwise they would
contain [{(c*)]r, a contradicition.

This and (2.3.17) forces [S‘%Dg}r = [S‘%DSL. Moreover, we see [SiV;L £ [D12]r,

i € {2, 3}, for otherwise we would have [D12V4]F = {S‘i‘/:h, contrary to (2.3.29).

By virtue of this the following list of simple inclusions for the I'-conjugacy classes,
which satisfy the conditions above, is true and complete:

¢ [], < [0 [, el
el < o),

. [Sipg]r < [Silr, i € {2,3}).

It is trivial to give complete lists of simple inclusions for [S3A4} ,1e€{l,...,3}
r
and [D 1206] .
r
To finish the proof of the proposition, it suffices to find the collection of sim-

ple inclusions for I'-conjugacy classes of subgroups of type C5 and S3 and to prove
that this collection is exhaustive.

We start by showing
1
(2.3.32) [S4C3L £ [Dia]r.

1
If it were true, that [S4C’3] - < [D12]r there would exist a v € T satisfying

7(5103) < Dqs.
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But if this were the case, Sylow’s theorems would already force
Yy 1
(5403) =2y,
contradicting (2.3.18).

From this we obtain by the way
(2.3.33) [Sisgh < [Dia]r-

37

On the other hand, Theorem 2.2.1 tells us that S} shares a common subgroup of
type C3 with S? and a another common subgroup of type C3 with S3. Applying

Sylow’s theorems we conclude
(2.3.34) [5303]F _ [Sicgh Vie{1,...,3).
Hence, we immediately obtain

(2.3.35) [Sicgh < [S‘iAAJF vie{l,...,3).

Taking account of (2.3.18) the relation given in (2.3.34) suggests the following claim.

(2.3.36) [chg]r £ [Sip, i€ {1,...,3}.
On the contrary, suppose that
[P20s] <ISpr
for some 49 € {1,...,3}. Then there exists a v € T" such that
’Y(Dmc ) < §io
3] =94 -
Sylow’s theorems allow us to modify our v € I' in a way such that
5 i
(D1203) _ S40C3.
In particular, we obtain

[Pes), = [a = [Pl

contradicting (2.3.18).

From (2.3.32) and (2.3.36) we derive immediately
(2.3.37) [Dmsé]r £ [Silr
Combining (2.3.20) with (2.3.34) yields

(2.3.38) {Sisg}r <[Sir Vief{l,...,3).

So we can give a complete list of simple inclusions for the I'-conjugacy classes of

subgroups having orders 3 or 6.
° {D”CGL < [D12]r;

[ < [Ms)

e <[ e
[ <[ [Pes) s

F ol r )
o [%i5,] < ISl i€ {1k
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o [D”SéL < [D12]r, j €{1,2}.

(2.3.32), (2.3.36) and (2.3.33) enforce that there cannot be another simple inclusion
with origin in a group of order 3 or 6.

This completes the proof of the proposition. O



2. SCWOLS AND COMPLEXES OF GROUPS 39

2.4 ScwoLs AND COMPLEXES OF GROUPS

Think of a Complex of groups as fundamental domain for a group action, labeled
with the stabilizer groups at its singular vertices. We look in this chapter for the
construction of, in some sense, minimal complex of groups belonging to a given
group. A key feature of such a minimal object should be, that the number conjugacy
classes of maximal finite subgroups of the group is equal to the number of vertices
labeled by such groups. The main-theorem of this chapter, Theorem 2.4.49, shows
that our construction essentially has this property.

The following definition is due to Serre and can be found in [7].
Definition 2.4.1 (graph). A graph & is a tuple (V (&), &(&),4,t,”! ) where
i: €(B) - V(6) and t: E(&) — V(6)
are maps and
—1g(6) - ¢(B)

is an involution without fixed points which satisfies the following condition:
i(e™!) = t(e).
Remark 5. We sometimes write V& or E® instead of V(&) or E(®) respectively.

Definition 2.4.2. Let & be a graph. We say $ = (V, €,4',¢', k) is a subgraph of &,
if it is a graph having vertices V' C V(®) and edges € C &(®) such that

./ . !
T = z|€—>V and t' = t‘@_ﬂ/

and such that the involution x coincides with the restriction of the involution ~! to
¢.

Definition 2.4.3 (paths, connected graphs). Let & = (V(8), €(8),i,t,7) be a
graph. A path is a non-empty tuple of edges

(ex)—1. ex € E(B) VI <k <n,

such that t(ex) = i(eg41) for each k € {1,...,n—1} or an 1-tuple (v) for a v € V(8).
In the last case we say the path is trivial. Let m be a path. We set i(m) := i(e1)
and t(m) :=t(e,) if # = (eq,...,ey) for some edges e € E(X) and i(7) := v and
t(m) :=v if 7 = (v) for a v € V(®). For vertices v,w € V(&) and a path 7 we say
the 7 connects v to w if i(r) = v and t(7) = w. For a non-trivial path = = (ex)7_,
we set
E(m) :={ep:1<k<n}
and
V(m):={veV(®):Jec&m):v=1i(e) orv="1t(e)}.

If 7 = (v) for some v € V(X), we put €(m) := 0 and V(7) := {v}. We call &(r) the
set of edges and V(7) the set of vertices of m. We say the graph & is connected if
for each two vertices v, w € V(&) there exists a path 7 connecting v to w.

Definition 2.4.4 (concatenation of paths). Let & be a graph and = = (ey)j, and
1 = (f1)7~, be paths in & such that ¢(7) = i(n). If 7 and 7 are non-trivial, we define

Tk T) = (61,...,€m,f1,...fn)~

If 7 is trivial, we set m % n :=n. If n is trivial, we put @ * n := 7. In each case m*xn
is a path.
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Definition 2.4.5 (backtracking, circle, tree). Let & be a graph and « be a path
in &. We say m = (ex)}_; has backtracking if there exists a 1 < kg < n such that
eko+1 = ()"t We say 7 is a path without backtracking if there exists no such
ko. We call 7 a circle if and only if 7 is a non-trivial path without backtracking
satisfying t(m) = i(7). A graph & is said to be a tree if it is connected and does not
contain any circle.

Remark 6. Consider an arbitrary path 7 in a graph &. If there is a backtracking,
remove it. If there is not, we have obtained a path without backtracking. Iterating
this procedure leads to a path without backtracking after finitely many steps. This
path is unique in the sense that it does not depend on the order we removed the
backtracking. We call the unique path obtained by this procedure the path without
backtracking associated to .

Definition 2.4.6 (spanning tree). Let & = (V(®), &(&),i,t,”1) be a graph. A
subgraph T is called a spanning tree if V(T) = V(®) and if it is a tree.

It is well known that each connected graph contains a spanning tree.

The following definitions can be taken from [1].
Definition 2.4.7 (scwol). A small category without loops (briefly a scwol) X is a
tuple (V(X), E(X),1,t,0) consisting of sets V(X), E(X) and maps
i: BE(X)—=>V(X), t:EX)—V(X)
and a composition map
o: EA(X) = E(X),
where we have set for k € N

k

EW(Y) = { (a1,...,a) € [[ B(X) ri(a;) = taj4r), j€{1,...,k—1} ¢,
j=1

and where the tuple is required to satisfy the following axioms:
(1) Y(a,b) € EA(X):i(aob) =1i(b) and t(aob) = t(a);
(2) Y(a,b,c) € EG(X): (aob)oc=ao (boc);
(3) Ya € E(X):i(a) # t(a).
The elements of V(X) are called vertices, those of E(X) are called arrows, and those

of E@)(X) composable arrows. For composable arrows a, b we will often write ab
instead of a o b.

Definition 2.4.8 (subscwol). A subscwol X' = (VX' EX',ijgx:,t|gxs, 0| (Bx")?)
of a scwol X is given by subsets V(X') C V(X) and E(X') C E(X) such that if
a € E(X’), then i(a),t(a) € V(X’) and if a,b € E(X’) are such that i(a) = ¢(b),
then aob € E(X’).

Definition 2.4.9 (canonical partial order on the set of vertices of the scwol). Let
X be a scwol. Then, the relation given by

I PSS T

is a partial order on V(X). It is called the canonical parital order on V(X).

PROOF. The axioms satisfied by a scwol enforce that “<” defines indeed a
partial order. O
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Remark 7. We will sometimes refer to it as the canonical order on X or as the
order on X. We agree on the following convention: If we write v < w for some
v,w € V(X), we explicitly refer to the canonical partial order unless nothing else is
specified.

Definition 2.4.10 (dimension of a vertex in a scwol, dimension of a scwol). Let
X be a scwol. For each v € V(&) we set E®) (X, v) := {(ay,...,ax) € E®(X) :
i(ar) = v}. The dimension of a vertex v € V(X) is the number

dim(v) ;= max{k € N: J(a1,...,az) € E®(X,0): i(ay) = v}.

The number dim(X) := sup, ey (x) dim(v) is called the dimension of the scwol.

Definition 2.4.11. For an arbitrary scwol X and any number k € N we set
Vi(X) :={v € V(X) : dimv = k}.

Remark 8. It is clearly true that V(&) = [,y Va(X).

Definition 2.4.12. For an arbitrary scwol X we define
Vinax(X) := {v € V(X) : v maximal}.

Lemma 2.4.13 (dimension is a strictly increasing function on V.X). For each two
vertices v,w € V(X) with v < w holds

dim(v) < dim(w).

PROOF. Let v < w, n := dimv. By definition there exists a sequence (ay, ..., a;)
such that ay o---0a, € E(Y) and i(a,) = v. Furthermore the axioms for scwols
imply there exists an arrow a € E()) with i(a) = w and t(a) = v. We conclude that

ajo---oanoa€ E(Y)

and therefore
dimw>n+1>n=dimv.
O

Lemma 2.4.14 (each vertice is covered by a maximal one). Let X' be a scwol such
that dim(X) < co. For each v € V(X) there exists a mazimal element w with respect
to “<” such that v < w.

PRrROOF. Let n := dim(X’). Suppose, contrary to our claim, that there is an
element v € V(X') such that for each w > v there exists a V(X) > w’ > w. Iterative
applications of this argument yield a sequence of elements (v;);en in V(X) such
that v; < v;41. Take an arbitrary k£ > n + 1. Due to Lemma 2.4.13 we obtain

dim(vg) > dim(vy) + k£ — 1 > n = dim(&X),
which is impossible. O

Definition 2.4.15 (morphisms of scwols). Let X and ) be scwols. Then a pair of
maps
V(x) — V()
E(X) — EQ)
is called a morphism, if it satisfies the following conditions
(1) Va € E(X): iy(p(a)) = ¢(ix(a)) and ty(p(a)) = ¢(tx(a)); and
(2) V(a,b) € EA(X): p(aob) = ¢(a) o p(b).
@ is called an isomorphism if, in addition, both maps in ¢ are bijections. X and

Y are called isomorphic if there is an isomorphism between them. In this case we
write briefly X = ).



2. SCWOLS AND COMPLEXES OF GROUPS 42

Definition 2.4.16 (complex of groups). Let ) be a scwol. A complex of groups
G(Y) over Y is given by the following data:
(1) a family of groups (G )yecv(y) over the vertices of ), a group G, is called
the local group at v;
(2) a family (¢a)acr(y) of injective group homomorphisms g : Giq) = G(a)
over the arrows of );
(3) a family of twisting elements (ga,b) (a,p)cE® (3)s Ja.b € Gi(a);
with the following compatibility conditions:
(a) Y(a,b) € ED(V): ** () = ath;
(b) V(a, b7 C) S E(3) (y) . wa(gb,c)ga,bc = Ga,b9ab,c
In short we write G(Y) = (Gy, Ya, Gab)-

Definition 2.4.17 (group action on a scwol). An action of a group G on a scwol
X consists of an action G ~ V(X)) and an action G ~ E(X) with the compatibility
conditions
g.i(a) =i(g.a) and g.t(a) = t(g.a)
and
g.(aob)=g.aog.b

satisfying the following additional axioms:

(1) Ya € E(X), g € G: g.i(a) # t(a), (“dimension preserving”)

(2) Vae E(X), g€ G: g.i(a) =1i(a) = g.a =a. (“inversion free”)

Remark 9. The first condition can be omitted, if the scwol, on which the group
acts, is finite. The definition implies that G preserves the canonical partial order on
V(X).

Definition 2.4.18 (quotient scwol). Let X be a scwol and G be a group acting on
it. Then the quotient scwol G\X consists of the quotient sets G\V(X), G\E(X)
and the induced maps i and ¢ where i(G.v) := G.i(v) and {(G.v) := G.t(v). The
composition on G\X is defined as follows: Let (a,3) € E?(G\X) and choose
arbitrary a € o and b € 3. Due to i(a) = #(3) there exists a ¢ € G such that
i(a) = g.t(b) = t(g.b). We set a* 8 := G.(a 0 g.b). It is not hard to see that all the
maps are well-defined and that G\X := (G\V (X),G\E(X),i.l, *) satisfies all the

axioms of a scwol.

Because we have not found it anywhere in the literature, we provide a definition for
the notion of being a fundamental domain of a group action on a connected scwol.

Definition 2.4.19 (fundamental domain of an action). Let G be a group acting on
a finite dimensional connected scwol X'. A subscwol D of X is called a fundamental
domain for G ~ X if the following properties are satisfied:

(1) Vinax(D) is a system of representatives for G\ Vipax (X)),
(2) Yae E(X): i(a) e V(D)= a€ E(D). (“track incidence structure”)

Remark 10. Axiom (1) in Definition 2.4.19 can be interpreted in the following way:
“There is an open subset of D such that X can be covered by disjoint translates of
that subset up to sets of measure zero.”

It might happen that there are multiple arrows identified between two vertices in
a quotient scwol. However, property (2) in Definition 2.4.19 takes account of that
fact.

Lemma 2.4.20 (The notion “fundamental domain” is well-defined). Let D be a
fundamental domain for a group action of a group G on a connected scwol X with
dim(X) < co. Then

V(G\X) ={Gw:v eV (D)} and E(G\X) = {G.a: a € E(D)}.
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PROOF. We first claim that for each v € V(X) there are a v’ € V(D) and a
g € G such that v = g.v’. To prove this, take an arbitrary v € V(X). Lemma 2.4.14
guarantees the existence of a w € Vipax (&) with v < w. By (1) in Definition 2.4.19
there exists a w’ € Vipax (D) such that g.w’ = w. Because the G action on X’ preserves
the canonical order on V(X), we obtain

1 1

V=g lu<g lw=w.
The definition of the canonical order forces that one of the following cases occurs:
(1) there is a b € E(D) such that i(b) = w’, t(b) = v or
(2) v =w'.
In the second case we conclude g.v' = v, v = w’ € V(D), as claimed. So, let
us assume the first case occurs. For the reason i(b) € V(D), we obtain by (2) in
Definition 2.4.19 that b € E(D). Because D is a subscwol, we get v' € V(D). We
conclude

g = ggil.v =,

which yields the claim.

We get as an immediate consequence
V(G\X)={Gw:veV(D)}.

Now, we turn to the proof of the second assertion of the lemma. It suffices to show
E(G\X) C{G.a:a € E(D)}. So, let G.a € E(G\X). Then, G.i(a) C V(G\X). By
the claim above, there is a v € V(D) such that i(a) = g.v'. Put a’ := g~1.a. We
infer

i(a') =g li(a) =0 € V(D)
and therefore a’ € E(D). Hence
G.a=G.d C{G.a:a€ E(D)},

as desired.
O

Proposition 2.4.21. Fach group action of a group G on a finite dimensional
connected scwol X has a fundamental domain given by

V(D) ={veV(X):JoeZ:v <o},

EMD):={a€ E(X):30 € X:i(a) <o},
where ¥ is an arbitrary system of representatives for G\Viax(X).

PROOF. The proof is trivial. O

Proposition 2.4.22. Let G be a group acting on a finite dimensional connected
scwol X. Let D be a fundamental domain for this action. Put ¥ := Vinax(D). Then,
D can be represented as follows:

VD)={veV(X):JoeX:v<0},

ED)={a€ E(X):30eX:i(a) <o},

In particular, each fundamental domain, is uniquely determined by the choice of the
system of representatives ¥ of the quotient G\ Viax(X).

PROOF. The proof is straightforward. U
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Lemma 2.4.23. Let G be a group acting on a finite dimensional connected scwol
X and A < G such that (G : A) < oco. Let S be a system of representatives for
A\G. Furthermore, assume there is a fundamental domain D for G ~ X such that

G, = {1} for each v € Vipax (D). Then, the scwol S.D given by
V(SD):={swv:s€8, veV(D)} and E(SD) :={s.a:s€ S, ac E(D)}
is a fundamental domain for A ~ X.

PrOOF. We begin by proving that S.D is indeed a subscwol. Obviously, a €
E(S.D) implies i(a),t(a) € V(S.D). The only non-trivial fact we have to show is
a,b € E(S.D) with i(a) = t(b) implies aob € E(S.D). To this end, take a,b € E(S.D)
such that i(a) = ¢(b). By definition, there are s € S and b’ € E(D) such that b = s.b'.
We put @’ := s~ la. Considering D is a subscwol, we have i(b'),t(V') € V(D) and
thus

i(a') = s Li(a) = s71.t(b) = t(b)) € V(D).

Definition 2.4.19 axiom (2) forces a’ € E(D). Because D is a subscwol, we obtain
a' ol € E(D). We conclude

aob=(s.a’ 0osb')=s.(a'0b") € E(S.D).

Hence S.D is indeed a subscwol.

Let us show that S.D satisfies (1) and (2) of Definition 2.4.19. We start with
(1). To this end, take an arbitrary v € Vipax(X). Because D is a fundamental
domain, there are g € G and v' € Vi.x(D) such that g.v' = v. Considering that S
is a system of represantatives for A\I', we get Ag = As for a suitable s € S. We
conclude

Av=Agv = A.(s0).

Suppose, there are w, w’ € Vihax(S.D) and 6,0” € A such that §'.w’ = §.w. Then,
there are also s,s" € S and v,v" € Viyax(D) such that w = s.v and w’ = §'.0'. In
particular, we obtain

§'s’ v = ds.0.
The fact that Vi,.x(D) is a system of representatives for G\ Viyax(X) now enforces
v = v’. This yields
s~lol's e G, = {1}
and therefore As’ = As. For the reason that S is a system of representatives for
A\T', we obtain s’ = s. This implies

w =50 =sv=uw.

We conclude that Vi,.x(S.D) is a system of representatives for A\Viyax(X), as
required. Property (2) in Definition 2.4.19 for S.D is an immediate consequence of
that of D. O

Definition 2.4.24 (complex of groups associated to an action on a scwol). Let G
be a group acting on a scwol X. Let ) := G\ X the quotient scwol. For each vertex
v € V(Y) choose a vertex v € v such that G.v = 0. For each edge a € E(Y) with
i(a) = v we ensure due to the inversion freeness axiom for X’ the existence of an
unique edge a € F(X) such that a € a and i(a) = v. Take an arbitrary w € t(a).
Choose an h, € G such that h,.t(a) = w. For v € V(Y) let G5 be the isotropy
subgroup of v, and for each a € E()), let ¥a: Gia) — Gya) be the homomorphism
defined by

%(9) = hagh;1
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which lies by the inversion freeness axiom in Gy;). For composable edges (a, b) €
E®)(Y) define Gap = hahbh;bl € Gy(a)- The complex of groups over Y associated to
the action of G on X (and the choices above) is

G(V) = (Go:Ya: gap)-
It is easy to show that all the axioms of a complex of groups are satisfied.

Remark 11. Different choices will result in different complexes of groups. For the
interested reader let us mention that other choices for the h, lead to complexes of
groups deduced from G()) by a “coboundary”, in particular they are “isomorphic”.
For the definitions and more detailed information we refer the reader to [1] Chapter
III.C. Complezes of Groups.

Definition 2.4.25 (developability). A complex of groups G()) is called developable
if there exists a group G and a scwol X such that G acts on X, Y = G\X and G())
is a complex of groups over ) associated to this action.

Theorem 2.4.26 ([1| pp. 553-554: 3.13 Theorem, 3.15 Corollary). Each developable
complezx of groups G(Y) belongs to an action of a certain group G acting on a simply
connected scwol X. G and X are unique up to isomorphy.

Remark 12. This theorem allows us to study group actions on simply connected
scwols instead of Complexes of Groups. In our view, the first framework allows
much more flexibility than the last one.

Definition 2.4.27. We say a group G satisfies FCoFG if and only if there are
only finitely many G-conjugacy classes of finite subgroups in G, i.e. G\ Subg,(G) is
finite.

The following lemma is the reason why we consider FCoFG groups.

Lemma 2.4.28 (In FCoFG groups every finite subgroup is dominated by a maximal
one). Let G be a group satisfying FCoFG. Then for each finite group H < G there
exists a mazximal finite subgroup K < G such that H < K.

PROOF. Clearly the size map
|- ]: Subgn(G) = N: H — |H|
can be pushed down to a well-defined map
|- |«: G\ Suban(G) = N: [H|g — |H]|.
Because G\ Subgy, (G) is finite, there exists an m € N such that |[H]g|. < m for
each H € Subg,(G). In particular, |H| < m for each H € Subg,(G). Now, suppose
contrary to the claim of the lemma, that there exists an element H € Subg,(G)
such that for each Subg,(G) > K > H there exists a Subg,(G) 3 L > K. Then
we can construct recursively a sequence of the form (Hy)gen with the properties
H = Hy, Hy, < Hiyq and Hy € Subg, (G) for each 1 < k € N. We then have that

|Hy| < |Hp+1| and via iteration we estimate |Hy| > k for every k € N. Hence, we
obtain |H,,+1| > m + 1, a contradiction to |H,,+1| < m. O

Lemma 2.4.29 (finite index subgroups of FCoFG groups are FCoFG). Let G be a
group satisfying FCoFG. Then each subgroup A < G with the property (G : A) < oo
also satisfies FCoFG.

PRroOOF. By hypothesis there exists an m € N such that (G : A) = m. Pick an
arbitrary element H € Subg,(I'). Clearly, A acts on [H]g via conjugation. In this
way, we obtain a map

©: A\G = A\[H]g: Ag — [YH]a,
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which is obviously well-defined and surjective. In particular, A\[H]¢ is finite. On
the other hand, we have

A\ Subg, (A) € A\ Subg,(G) € U A\[H]g-
[H]c €G\ Subgin (G)
Combining both facts yields the following estimation:
A\Sube,(A) < S [A\He] < |G\ Subsn(G)] - m.
[H]GEG\ Subfin(G)

By hypothesis |G\ Subg,(G)| is finite. This enforces together with the estimate
above that |A\ Subga,(A)] has to be finite as well, which is the desired conclusion.
]

Notation 2.4.30. Let G be a group satisfying FCoFG. In the sequel, M(G) stands
for the set
M(G) :={H € Subg,(G): H is maximal in Subg,(G)}
and M°(G) for the set
M°(G) := M(G) N Subg,(G).

Remark 13. G ~ Subg,(G) via conjugation. This action leaves M (G) invariant
because the conjugation with an element of G preserves the order “<” on Subg,(G).
Hence G ~ M(G) via conjugation and for a similar reason G ~ M°(G) via
conjugation as well.

Definition 2.4.31. Let G be a group and X = (V(X), E(X),ix,tx) be a scwol.
We say G acts on X with finite stabilizers if and only if G acts on X and G, is
finite for each v € V(X).

Definition 2.4.32 (edges in a scwol; edge-graph; edge-path; connected scwol). Let
X be a scwol. Let £ be a subset of E(X). Set
Et=Ex {1}, & =& x{-1}
and finally
Eri=Etwe.
In this way we obtain maps
I EBEX) - EX(X):a— (a,1) = at
and
1T E(X) 5 EX¥(X):am (a,—1) =a".

Furthermore we define incidence maps i': E*(X) — V(X) via

(e) = t(a), ife=a" for some a € E(X),

YT ila), ife=a for some a € E(X)
and

Fle) = i(a), if e=a" for some a € E(X),

"\ tla), ife=a" for some a € E(X).
An element e € E*(X) is called an edge of the scwol X'. Moreover call the quadruplet
X+t = (V(X),E*(X),q',t') the edge-graph of X. The map
1 EH(X) - EE(X):
defined via
(at)ti=a" and (a7) " ti=aT



2. SCWOLS AND COMPLEXES OF GROUPS 47

is clearly an involution without fixed points satisfying i, (e™!) = t/(e). Thus
(X*,71) is indeed a graph in the sense Definition 2.4.1. For the reason the definition
of =1 does only depend on X, we may identify X* with (X*,~1). We say a path 7
is an edge-path in X if it is just a path in the edge-graph X*. We say the scwol X
is connected if the associated edge-graph X'+ is connected.

Lemma 2.4.33. Let X be a scwol and $) be a subgraph of X*. Then there exists a
set £ C E(X) such that €(H) =ETWE™.

PROOF. The set £ :={a € E(X):a" € &($)} will do the job. O

Our next goal is to construct a scwol X from X in a way such that G acts on X and
such that for a maximal finite subgroup H the set {v € V(X): G, = H} consists
of only one element. Furthermore there should be an epimorphism mapping the
fundamental group of X onto that of X and the stabilizers of the action G on X
should be obtained in a canonical way from that of the action G on X.

To this end, let G be a FCoFG group acting with finite stabilizers on a scwol
X. Then we can define the following equivalence relation on V(X):

(2.4.1)

v=w or

ORSETRRES v#w, G, € M°(G) and there is an edge-path 7 connecting
v to w s.t. G, = G, for each o € V().

It is easy to verify that “~” satisfies indeed the axioms of an equivalence relation on
V(X). Put

E'(X):= E(X)~{a€ E(X):Gq € M°(G)}.
For each a,b € E'(X) we write a ~ b if and only if ix(a) = ix(b) and tx(a) ~ tx(b).
This is obviously an equivalence relation on E’(X). Now, we are ready to define the
scwol X'. For this purpose we set

V(X):=V(X)/ ~ and E(X):=E'(X)/ ~
and furthermore we put
iz(la]) = [ix(a)] and t 5([a]) := [tx(a)].

In order to obtain an appropriate composition on X we need to compute E2) ()~( ).
In fact, we can show

V(a,8) € E?D(X): axpC E@(X).

To prove this take (a, 8) € E?)(X). We then have t ¢ (8) = i 5 («) and by definition
of X we get the relation tx(b) ~ iy (a) for any a € a and any b € 5. To deduce the
claim, it is sufficient to show

tx(b) =ix(a)
for each choice (a,b) € a x .

On the contrary, suppose that tx(b) # ix(a) for some ag € a and by € 5. The
definition of “~” on V(X)) tells us that G;, (4,) has to be maximal. But this implies
ag ¢ E'(X), contradicting o C E’'(X). This yields the claim.

So we define the composition on E(X) via

o: EA(X) = E(X): ([a],[b]) — [aob].
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We have to check that “e” is a well-defined map. To this end let us take a’ ~ a and
b ~ b and observe

ig([a']e[V]) = [ix(a 0b)] = [ix (V)] = [ix(b)] = [ix(a 0 b)] = iz([a] & [b])
and
tz([a']e[V]) = [tx(a' ob)] = [tx(a)] = [tx(a)] = [tx(aob)] =t5([a] e [b])

which is the claim. We proceed by constructing the action on X.

It is not hard to see that G preserves the equivalence relation on V(X) because
G takes edge-paths to edge-paths, and the property of being a maximal finite
subgroup as well as the property of having finite normalizer are invariant under
automorphisms, in particular under conjugation. Therefore the action of G on V(?E )
given by R

g.[v] :==[gv], V¥(g,v) € GxV(X)
is well-defined. For the same reasons it turns to be out that the action of G on
E(X) leaves the subset E'(X) invariant and we thus obtain that the action of G on
E(X) for [a] in E(X) defined by

g.la] == [g.a], V(g,a) € G x E(X)

is also well-defined. In the same manner we observe that the actions G ~ V(X)
and G ~ E(X) extend to an action G on X.
We call X the reduction of X associated to the action G on X.

Remark 14. Considering the definition of X we immediately observe that for each
e € E'(X)* the following is true:

e =[],

Definition 2.4.34 (reduction of an edge-path). Let X be a scwol and G be a group
satisfying FCoFG and acting with finite stabilizers on it. Let v,w € V(X) and
m = (e;)}—; be an edge-path in X' connecting v to w. Let (jix)7, be the unique
strictly increasing enumeration of {i € [n] : e; € E'*(X)}. We set
pe{ el B D)=
L

e )iy, otherwise.

7 is an edge-path in X connecting [v] € V(X) to [w] € V(X). We say 7 is the
edge-path obtained by reduction from 7.

PrROOF. Put J := {i € [n] : ¢; € E'*(X)} and m = |J|. If J = (), there is
nothing to prove.
So, let us assume J # (). We start our proof by showing that 7 is indeed an edge-path
in X with indices in J. Let (Jk), be the uniquely determined strictly increasing
enumeration of J. Then, we have by definition 7 = ([e;,])7"_;. So take an arbitrary
1 <k <m —1 and the following two cases may occur. In the case ji + 1 = jr41
we have by hypothesis t/y(e;,) = i’y(ej41) = i’y(ej,.,) and we obtain finally
t's(leji]) = 5 ([ejiy,])- If the case jy +1 # jki1 occurs, we see e; & E'*(X) for each
jr+1 <1< jri1—1. By definition ¢, = af or e; = q; for some a; € E(X)\ E'(X).
In both cases we have G, (4,) is maximal in Subg,(G) and hence, applying the

axioms for an action of G on X, we get additionally Gy, (a,) = Giy(q;)- This
leads to ix(a;) ~ tx(a;) and we therefore obtain in both cases to i’y (e;) ~ t'y (e1).
In particular, (ej, /)7~ 7" is an edge path connecting th(e;,) = i (€j,+1) to

the(ejup—1) = ix((ej,,)) such that Giy@,) = Gixa;, 1) € M°(G). We thus

conclude t'y (ej, ) ~ 'y ( ) and therefore t';([e;, ]) = 7’z ([ej,,,])- This proofs that

Cikt1 X



2. SCWOLS AND COMPLEXES OF GROUPS 49

7 is indeed an edge-path in X. It remains to show () = [v] and t'5(7) = [w].
To compute 7’ (7) consider the following two cases. If 1 = ji, we have obviously
(%) = [i"y ()] = [v] as required. If 1 # j;, we get e; ¢ E'*(X) forall 1 <1< j;—1.
n analogous argumentation to the above one leads to iy (e1) ~ i’y (ej,) and thus
) = [i%(m)] = [v]. In the same manner we may compute ¢’ () and obtain finally
) = [ty (m)] = [w]. This completes the proof. O

7

o

>

(7
(7

TR T

i
t
Corollary 2.4.35. Same hypothesis as above. If X is connected, then X is connected
as well.

PrROOF. Take arbitrary vertices 0, w € V(/'?) Choose an arbitrary v € v and
an arbitrary w € w. By hypothesis there exists an edge-path 7 in X' connecting v to
w. Now, Definition 2.4.34 guarantees us the existence of an edge-path 7 connecting
v to w. This yields the claim. O

Lemma 2.4.36. Same hypothesis as above. Let w be an arbitrary edge-path and
n be the edge-path without backtracking associated to w. Furthermore let ™ or 7 its
reductions respectively. Let w be the edge-path without backtracking associated to 7.
Then, w is also the edge-path without backtracking associated to 7.

ProoF. By Remark 14 it is possible to obtain 7} by iterating the deletion of
backtracking from 7. Now, we delete backtracking from 7 until we get to a path
without backtracking. The resulting path is the edge-path without backtracking
associated to both, 7 and 7. By the uniqueness of the edge-path associated to 7 it
has to coincide with w. O

Lemma 2.4.37. Let X be a scwol and G be a group satisfying FCoFG and acting
with finite stabilizers on it. Furthermore, let v,w € V(A?) arbitrary vertices in X
and T be an arbitrary edge-path in X connecting v to w. Then for each v € v and
w € w there exists an edge-path w in X connecting v to w such that ™ = 7.

PROOF. Let 0, € V(X) and 7 = (&,...,&,) be an edge-path connecting o
to w. Fix v € v and w € w. We will construct an edge-path 7 in X, satisfying the
conditions above, in a recursive way. Let us start with an arbitrary edge e; € é;.
We put v' := i, (e1) € 0. If v =0/, just set m; := (e1). If we have v # v/, there
exists by definition of the equivalence relation over V(X') an edge-path 71 in X
connecting v to v’, such that G, = G, for all o € V(1) and G, € M°(G), and

we set m = 11 * (e1). Let us assume that for 1 < k < m the edge-path 7 is
already defined. We then obtain 7,41 as follows. Take ex41 € €x41. We have
at least thy (mg) ~ iy (ext1). I th(mp) = iy (ext1), just set mpp1 = T * (€pt1)-

In the case t (7)) # iy (ex+1), there exists an edge-path ;41 connecting % (7y)
to i’y (ex+1), such that G, = Gy (r,) € M°(G) for all ¢ € V(nx11), and we set
Tht1 = Tk * Mkt1 * (ex1). In this way we have constructed an edge-path 7,
connecting v to t (my,) =ty (em) € W. Let w € @. If th (m,,) = w, just set m := mpy,.
In the case t/y(m,,) # w there exists an edge-path 7,41 connecting t’, (m,,) to w,
such that G, = Gy, (x,,) € M°(QG) for all o € V(1n+1), and we set m := Ty, * Nyt1-
By construction 7 is an edge-path in X connecting v to w. For the reason that
€(n;) CEF(X) N EH(X) V1<j<m+1
we obtain for the reductions 7; of 7
7~T1 = ([61]) and ﬁ'kJrl = ﬁ'k * ([ek])

and therefore @ = ([e1],...,[em]) = (€1,...,&xn) = 7. This proves the claim of the
lemma. (]

The following definitions are taken from [1].
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Definition 2.4.38 (universal group associated to a complex of groups). Let G(Y) =
(Gys%a, ga,p) be a complex of groups over the scwol Y. The universal group FG(Y)
is the group given by the following presentation: It is generated by the set

W G.wE=Y)

veV(Y)
subject to the relations

the relations in the groups G,,
ata™=1=a"at,

atbt = gap(ab)T, V(a,b) € E@(Y)
dja(g) = a+ga—v Vg € Gi(a)
Remark 15. We may regard a scwol ) as the complex of groups over U(Y") whose

vertex groups are all trivial. We call it the trivial complex of groups over ). So the
universal group over ) is just FY := FU(Y).

R =

Definition 2.4.39 (G(Y)-path, concatenation of G(Y)-paths). Let ) be a scwol and
G(Y) = (Gy,%Ya, ga,p) & complex of groups over Y. Then, a G())-path ¢ connecting
v to w is a tuple
c= (gOa €1,915- -, emagm,)

where (e1,...,e,) is an edge-path connecting v to w, go € G, and g; € Gy, for all
J € [m]. We set i(c) := i1 (e1) and t(c) :=t', s (em). Let ¢ = (go,€1,91,---,€m>Im)
and ¢ = (g{,€},9%,---,€,9,) be two G(¥)-paths such that ¢(c) = i(¢). The
concatenation of ¢ with ¢ is the G())-path

/L ror r
ek = 1(00,€1,915- -+ €ms GmT0, €1s Gls« -+ €y U )-

Remark 16. For the ease of notation, this definition only covers the case where
the considered edge-paths are non-trivial. For the trivial cases just take the obvious
definition.

It is easy to verify that the concatenation satisfies the associative law.

Definition 2.4.40. Let ) be a scwol. For an edge-path (eq, ..., e, ) put F(c) :=
e1 ey € FY and for a trivial edge-path ¢ put F(c¢) := 1 € F). Let G())
be a complex of groups over Y. For a G())-path ¢ = (go,€1,91,---,€m,gm) set
F(c) :==goe191 - emgm € FG(Y). It is easy to verify that the maps

P {edge-paths} — FYy: c— F(c)
- {9(V)-paths} = FG(Y): ¢~ F(c)

are homomorphisms in the sense, that for each pair of edge-paths or G())-paths
¢, ¢ with the property ¢(c) = i(c) it is true that F(c* ') = F(c)F(c).

Definition 2.4.41 (rooted fundamental group of a scwol). Let ) be a scwol and
Vo € V(y)

71 (Y, v0) :={F(n) € FY : 7 is an edge-path such that i(7) = vg = t(7)}
is a subgroup of F')Y and it is called the fundamental group of Y rooted in vy.

Definition 2.4.42 (rooted fundamental group of a complex of groups). Let G(Y) =
(Gy,%a, ga,p) be a complex of groups over a connected scwol Y and vy € V()). The
set

m1(G(Y),vo) := {F(c) € FG(Y) : ¢ is G(Y)-path such that i(c) = vg = t(c)}
is a subgroup of FG(Y) and it is called the fundamental group of G(Y) rooted in vy.
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Remark 17. Let Y be a scwol and U()) be the trivial complex of groups over V.
Fix vg € V(Y). Then it is obviously true that

71 (Y, v0) = T (U(Y), vo).

Definition 2.4.43 (fundamental group of a complex of groups relative to T'). Let
G(Y) = (Gy, %4, ga,b) be a complex of groups over a connected scwol Y and T be a
spanning tree in *. Moreover, let N be the normal hull of the set {F(e) : e € &(T)}
in FG(Y). The fundamental group of G(Y) relative to T is the group

m(GV),T) :== FG(Y)/N.

Remark 18. There is an analogue definition for a fundamental group of a scwol
relative to T, by identifying ) with ¢ ()). We can just put

(V. T) :=mU),T).

Lemma 2.4.44 (equivalence of the definitions, [1] p.549 theorem 3.7). Let G(Y) =
(Gv,Ya, gap) be a complex of groups over a connected scwol Y, vy € V(Y) be an
arbitrary vertex and T be an arbitrary spanning tree in Y. Then, the following is
true

T (G(V),v0) = (GV),T).

In particular the isomorphy class of the fundamental group over G()) does neither
depend on the root nor the spanning tree.

Definition 2.4.45 (simply-connected scwol). A connected scwol X is called simply-
connected if there exists a vertex vy € V(X) such that 71 (X, vp) is trivial.

Theorem 2.4.46. Let X be a connected scwol and G be a group satisfying FCoFG
and acting with finite stabilizers on it. Let X be the reduction of X associated to the
action of G on X. Fiz an arbitrary vertex vy € V(X). Then,

©: m (X, v9) = m1 (X, [wo]): F(w) — F(7)
1s a well-defined map. Moreover it is a surjective homomorphism.

PROOF. Let us introduce some notation before we start with the proof. For an
arbitrary scwol ) denote by §) be the free group generated by E*()). By definition
FY is the quotient §YV/Ny where Ny, is the normal hull in FY of the set

R ata™=1=a"a™,
YU atht = (ab)t, Y(a,b) € EAY) [
We first observe, applying Corollary 2.4.35, that the reduction X is connected

and thus m (X, [vo]) is defined. Next, let us remark, that the reduction induces a
surjective homomorphism

: v, le], if e € E'(X);
pi S = FX: e { 1, otherwise.
Further, we infer that p maps Rx to R3 and thus Ny to N3. So we may push the
map p down to a surjective map

p: FX — FX.
By Definition 2.4.34 the image of the restriction of p to 71 (X, v) is necessarily a

subset of 7 (X, [vo]). Because © is just p with range restricted to m (X, [vg]), we
already have that © is a well-defined homomorphism. It remains to show that © is

surjective. For this purpose, consider an arbitrary element g € m (X, [v]). Clearly,
g = F(7) for an appropriate edge-path 7 without backtracking in X such that
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i(1) = [vog] = t(7). Now, Lemma 2.4.37 guarantees the existence of an edge-path n
in X such that 7 = 7. We therefore obtain finally

O(F(n) = F(n) = F(r) =g,

which is the desired conclusion. O
We get the following immediate corollary:

Corollary 2.4.47. Same hypothesis as above. If X is simply-connected, then the
reduction X is simply-connected as well.

Lemma 2.4.48 (reduction preserves the stabilizers). Let X' be a scwol and G be a
group satisfying FCoFG and acting with finite stabilizers on it. Then, G acts on the

scwol X. If X is a simply-connected scwol, X is simply-connected as well. Moreover,
the group G even acts with finite stabilizers on X. In fact, the following is true:

Yv € V(X): G[U] = G,.

PROOF. It is only left to prove the last part of the proposition, everything else
has been shown before. For this purpose, fix v € V(X). If |[v]| = 1, g fixes [v] if
and only if ¢ fixes v and we are done. Therefore, assume |[v]| # 1. The definition of
the equivalence relation on V' (X) ensures that G,, € M°(G). Therefore, recalling
the definition of M*°(G), it is sufficient to show G[,) < Ng(G,). To this end, pick
an arbitrary g € G|,). Because g fixes [v], we clearly have g.v € [v]. The definition
of the equivalence relation on V(X) guarantees the existence of a path 7 connecting
v to g.v such that G, = G, for each o € V(x). In particular, this enforces

G'u = Gg.'u = gGvg_l
and therefore g € Ng(G,) as required. O
Now, we are in the position to state and prove the main theorem of this chapter.

Theorem 2.4.49. Let G be a group satisfying FCoFG and acting with finite stabi-
lizers on a simply-connected scwol X, which has the following additional properties:

(1) For each H € Subgy,(G) there exists a v € V(X) such that H < Gy;
(2) Yo,w € V(X): G, = Gy, € M°(G) 3 path © connecting v to w: G, =
G, Vo € V(7).
By Lemma 2.4.48 the reduction X is simply-connected and G acts with finite stabi-
lizers on it. Denote by Y := G\X and by G(Y) = (G, %a, gap) an arbitrary complex
of groups over Y associated to that action. Finally set

Me(GY):={veV(Y): Gy € M°(G)}.
Then, the map

A: M°(G(Y)) = G\M°(G): v — [Gsla
s a bijection.

PROOF. It remains to show that A is bijective. Everything else follows from
Lemma 2.4.48. We begin by proving that A is surjective. For this purpose, take
an arbitrary conjugacy class H € M°(G). Condition (1) ensures the existence of
av € V(X) such that H < G,. Because G acts with finite stabilizers on X we
already get by the maximality of H the equality H = G,. Lemma 2.4.48 tells us
that H = Gy,). In particular, G}, € M°(G). Bringing back the definition of the
quotient scwol ) to our mind, we infer, that we necessarily have v := G.[v] € V().
Now, the definition of G()) guarantees the existence of an element [v'] € G.[v] such
that G|, = G. We thus obtain
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To prove, that A is also an injective map, consider o,w € V() such that G = (Gy)
for some g € G. By definition of G()) there exist [v],[w] € V(X) such that
v =[v], w=[w] and G}, = g(G[w]) = G|g.)- But then Lemma 2.4.48 ensures that

G, =Gy Yo e v] V' € [gw].

If v =w', we get [v] = g.[w]. For v # w’, condition (2) yields a path 7 connecting v
to w’ such that G, = G, € M°(QG) for each o € V(7). In particular, v ~ w’ which
means [v] = g.[w]. So we get, no matter the case,

v =G.Jv] =G.|w] =w,
which is the desired conclusion. O

Our next goal, is to show that taking reductions of scwols is compatible with taking
actions of subgroups on them. To this end, we need to distinguish the reductions
associated to actions of subgroups on a scwol with the action of the original group
on it. Hence, we introduce the following notation:

Notation 2.4.50. Let G be a group satisfying FCoFG and X be a scwol, such that
G acts with finite stabilizers on X. We denote the reduction of X associated to the
action of G on X by Rg(X). Moreover, we write R (m) for the reduction of an
edge-path 7 in X. Finally we set

Ra(E(X)) = E(X)~{ac E(X): Giyq € M°(G)}
and for each subset £ C E(X)
Rg(g) = R(;(E(X)) neé.
Note that Rg(E(X)) is exactly the set which we have denoted by E’(X) until now.

Theorem 2.4.51. Let G be a group satisfying FCoFG and X be a scwol, such that
G acts with finite stabilizers on it. Furthermore, let A < G, such that (G : A) < o0.
Now, put

Ra,c(E(X)) :=Ra(E(X)) NRa(E(X)).
Then the following assertion is true: There exists a pair of surjective maps

 V(Ra(X) = V(Ra(Ra(X)): [vlra = [[Vrelr,
7 Rac(BX)/~ = ERa(Re(X)): ldrs = [lalrelr, -

and each map of that pair is A-equivariant.

The reason, why we cannot prove Ra(R¢g (X)) =2 Ra(X), is that M is maximal finite
in G does not imply M N A is maximal finite in A. If we change the construction
such that this problem does not arise, we cannot get exact information how the
isotropy groups might change.

PRrROOF. Let K < G be an arbitrary subgroup. We write o for the equivalence
K

relation on V(X') mentioned in (2.4.1). In the same way, let us write o for the
K

equivalence relation on R (E(X)).

We begin our proof by showing that ¢ is a pair of well-defined maps. First,
consider the “map” between the vertex sets. So, pick v,w € V(X) such that v 0w
A

If [v]r, = [w]r, there is nothing to prove. Hence assume [v]g, # [w]r,. Now, by
definition of the equivalence relation there exists a path 7 in X’ connecting v to w
such that A, € M°(A) and A, = A, Vo € V(7). Reduction of the path associated
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to the action of G on X yields a path Rg(7) connecting [v]g,, and [w]g.. Applying
Lemma 2.4.48 to the action of G on X, we obtain

Vo € V(7T)Z G[U]’RG = G,
Hence, we get finally for an arbitrary but fixed o € V(7):
A[U]RG:G[ NA=G,NA=A,.

In particular R () is a path such that Apolr, = Aplr, and A
This yields [v]r, R [w]r. and thus
A

O']RG

= A, € M°(A).

”]RG

[Vlralrs = [[WRe]R

as required. We proceed by showing that the second entry of ¢ is well-defined. To
this end, take a,b € Ra,g(E(X)) such that a i b. So, we have ix(a) = ix(b)
A

and one of the following cases occurs: If tx(a) = tx(b), we have [a|r, = [b]re-
Moreover, a,b € Ra,¢(E(X)) implies that [a]r., [blre € Ra(E(Ra(X))) and thus

llalrelra = [[Blrc]RA-
If tx(a) # tx(b) there exists an edge-path 7 connecting ¢x(a) to tx(b) such that
Ay = A¢y(a) and Ay (q) € M°(A). The same argument as for the map between the
vertex sets applies and we therefore obtain

la]rglrRA = [BIRGIRA

and the second entry of ¢ is a well-defined map, as desired.

We now turn to the proof of the surjectivity of those maps. But this is immediate
for the first entry of . It remains to show the surjectivity of the second one. For
this purpose, take o € E(Ra(Ra(X))). Then there exists an o € Ra(E(Ra(X)))
such that o = [@']g,. By definition of E(Rg (X)) there exists an a € Rg(E (X))
such that o/ = [a]g,. On the other hand, o/ = [a]r, € Ra(E(Rg(X))) forces
Ajary € M°(A) is not maximal in Subg,(A). In this situation an application
of Lemma 2.4.48 yields A;) = Ajory and thus A, o) ¢ M°(A). This leads to
a € Ra(E(X)). We infer

a € Ra(E(X)) NRA(E(X)) = Ra,c(E(X)).

Now, we may insert [a]g, in ¢ and in this way we obtain

Q= [[G}RG]RA = @([Q]RA)v
which is exactly what we have claimed. The A-equivariance of ¢ is a trivial conse-
quence of the way how we have defined the group action on reductions. Nevertheless,
we give a proof of it. So, let us take an arbitrary v € V(X), a € Ra,q(E(X)) and
0 € A. We compute

30(5'[U]RA) = 90([5'U]RA) = [[5'U]RG]RA = 6’[[U]RG]RA = 5'90([1]]72A)'

A

and

‘P(d'[a]RA) = QO([(S'CL]RA) = [[5'a]RG]RA = 5'[[a]RG]RA = 6")0([a]RA)7
which completes the proof of the proposition. O
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2.5 SYSTEM OF REPRESENTATIVES FOR CERTAIN QUOTIENTS OF Sl3(Z)

We set up the following terminology: Let us denote by I' the group Sl5(Z). For an
arbitrary but fixed squarefree non-negative integer d we write

0@ .= Sl3(z/d7),

A(d) = {(aij)(i,j)e[g,]x[g] S Slg(Z/dZ) : V(i,j) S [3] X [3] 7> ] Q5 = 0}

and
Al .— (a_.) S12(Z) = Y(i. i . SR @
= i) i j)esx3) € SIs(Z) = V(i,7) € [3] x [3]: i > j:as; = 0.

d)

If d is a prime, we sometimes call A@ the Borel subgroup of T4, A can be

viewed as the preimage of A under the congruence map
& . T — 1, (aij)m — (aij + dZ)i,j.

It is a well known fact that the congruence map is an epimorphism of groups.
Because ®(@ is an epimorphism taking A@® to A we can @ push down to an
isomorphism between right I'-sets, namely

(2.5.1) o@D AN\ =5 AN\T@),

In particular, A(d)\F is of finite cardinality.

Let p be a prime. Therefore, p is a squarefree non-negative integer and the notation,
we have introduced so far, applies. The main goal of this chapter is to find a system
of representatives for the set of cosets AP\T.

To this end, we may view Z/pZ as field F,,. Based on that and the observations
above, we are able to compute the exact number of elements of A(p)\F:

‘A(P)\F‘ - )A(p)\f(p)‘
_ |Gls(F,)|
|F5 ||A®)]
_ PP -DE*-1p-1)
(p—1)(p—1)%p?
=@ +p+1p+1).

We will again make use of the isomorphism ®® during the determination of an
appropriate set of representatives for A(®) \I". The idea behind the construction is
a slightly modified LR-algorithm for Gl3(F,): The idea is to apply “permutation”

1 0 0
matrices to the set of matrices of the shape u 1 0], w,v,w € F, from
v ow 1

the right and to look for redundancies under the elimination operations which are
induced by the multiplication with elements of A®) from the left. To this end, we
have to modify the permutation matrices in a way such that they have determinant
one. This can be achieved by modifying one entry by a sign if necessary.

From this background it would maybe be more confident to talk about an “RL-
construction” instead of an LR-construction in this context.

Before we state the result of this consideration, let us introduce some notation.
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Notation 2.5.1.

) 00 ) 0-10

Rgp):: wl0]:uv,wel,;, Rgp): 1 00]:uvel,,,
vwl u v 1

) ~100 ) 00 -1

Rgp):: w 01| :uvelF,y,, Rip):: 01 0 ueF, s,
v 10 lu 0O

- 0 1 0 0 0 1

RP =S 0 u 1 |:ueF,y, RY:= 100
1 0 0 01 0

Finally let us write R(®) := E-szl Rl(p).
Now we are in the position to state the following theorem.

Theorem 2.5.2. R?) is q system of representatives for AWPNT®) | In particular,
each set R®W) C T, such that R?») = Q(p)(R(p)), is a system of representatives for
APN\T,

PROOF. The second assertion is an immediate consequence of the first one. It
remains to prove that R() is a system of representatives for A(p)\l"(p). Because we
clearly have

Y

[RO)| = p* + 2% +2p +1 = (0% + p+ 1)(p + 1) = [AP\TP

the proof is completed by showing that for each two elements r,r’ € R®), such that
AP, — A(p)rl7

it is already true that r = r’. So, take 7,7/ € R®) with the property A®)yr = AW®)y’,
Then we necessarily have rr'~t € A®),

Now, we have to consider the cases r,r’ € R; for a fixed 7 and the cases r € R;,
r" € Rj, for a fixed pair (7,7) such that ¢ < j and we have to solve the resulting
systems of equalities, which is an easy but time-intensive task, if we do it manually.
Because this is pretty straightforward and can be quickly done for example with
Wolfram Mathematica ([10]), we do not give the details of that calculation. O

Notation 2.5.3. Here and subsequently, we choose the system of representatives
R®) in a way such that the matrix entries have minimal absolute value. Based on
this convention, we introduce the following notation:

1 0 0 0 -1 0
rgp)(u,v,w) = v 1 0 ], rép)(u,v) =1 0 0|,
v ow 1 v v 1
-1 0 0 0 0 -1
rép) (u,v) = u 0 1], rip) (=101 0 |,
v 1 0 1 v 0
0 1 0 0 0 1
rép) (w):=| 0 u 1 ], rép) =11 0 0 |,
1 0 0 01 0

where
and u,v,w € {0,1} in the case p = 2.
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2.6 THE VERTEX GROUPS FOR “BOREL-SUBGROUPS” OF Sl3(Z)

One aim of this chapter is to give a complete list of the vertex groups for reductions
of the action of A® on the scwol associated to the action of G on the space X
described in the introduction of section 2.2. Moreover, we want to carry as much
of the results, we will attain, as possible over to the groups A(® where d is a
square-free non-negative integer. Based on Lemma 2.4.48, our attempt to solve
this problem at least for primes p, is to determine the set of conjugacy classes of
the maximal finite subgroups in A(®) . Our first step in this direction will be to
determine all the A®)-conjugacy classes of finite subgroups of A®). We will reduce
this problem to the computation of fixpoints of the action of finite subgroups of
I' on A®N\T. This results in several systems of polynomial equations of degree at
most 3, which we will be able to solve.

To obtain from that at least the number vertex groups of a given type, we have to
set up some theoretical framework.

In the whole chapter, let G be an arbitrary but fixed group satisfying FCoFG
and let A < G such that (G : A) < co. In particular, Lemma 2.4.29 implies that
with G also A has to satisfy FCoFG. Recall, that the property of a group to satisfy
FCoFG, guarantees the existence of maximal finite subgroups of that group, see
Lemma 2.4.28. This is our primary reason for considering such groups.

Furthermore, we will make use of the same notation as in Notation 2.3.19 and
Theorem 2.3.25.

Before we start to introduce more notation, let us point out that Theorem 2.3.2
ensures that I' = Sl3(Z) satisfies FCoFG. Indeed, the class of groups satisfying
FCoFG is quite large, as all finitely generated hyperbolic groups satisfy FCoFG, see
[1] p.459 theorem 3.2.

Now, let us introduce some notation.

Notation 2.6.1. Let Hy € Subg,(G). Here and subsequently, we will write
Ca(Hy) == {[H]A € A\ Subga(A) : H HO},

Ma(Hp) :={[H]a € €a(Hp) : H € M(A)},
and
La(Ho) :={[H]a € €a(Hp) : H ¢ M(A)}.
Furthermore, for Hy, Ky € Subg, (G) such that Hy < K, we put
Ca(Hp, Ko) :={[H]a € €a(Hp) : [K]a € €A(Kp): [H]a < [K]a}-

For a group G acting on a set Q from the right, we write Fixq(G) for the set of
fixed points under that action. If we have to distinguish sets of fixpoints for different
actions, we just label that sets with upper indices in an intuitive and appropriate
way.

Let us state the following trivial but useful facts:

Remark 19. For subgroups H, K < GG acting on 2 from the right the following is
true:

Fixg(H) N Fixo(K) = Fixq((H, K)).
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Remark 20. Let G acting on 2 from the right and H < G. Then for each g € G
the following relation holds:

Fixq(YH) = Fixq(H).g.
The following lemmas treat some elementary properties of that notation.
Lemma 2.6.2. For each Hy € Suba,(G) and each v € G it holds
(2.6.1) Ca(Ho) = Ca("Hy).
Therefore, for arbitrary [Hole € G\ Subg,(G), we may define

Ca([Hola) := Ca(Ho).

Moreover, for each Hy, Ky € Subg,(G) such that Hy < Ky and each v € G, 0 € G
it is true, that

(2.6.2) Ca(Ho, Ko) = €a("H,y, °K,).
So we may introduce the notation
cA([HO]Gv [KO]G) = €a(Ho, Ko)-

PROOF. Let us first show (2.6.1). To this end, it is sufficient to show “C”.
So, pick an arbitrary [H|a € €a(Hp) and an arbitrary v € G. Then, we have by
definition H C A and H ~ Hy. In particular, we obtain H ~ "H, which yields

H e @A(HO).
Let us step to the proof of (2.6.2). But this can be immediately seen if we in-
sert €a(Hp) = €a("Hy) and €a(Kp) = €a(°K,) in the expansion of the definition

of €A (Ho, Kp). This completes the proof.
O

Lemma 2.6.3. Let Hy € Subg,(G). Then the following formulas are true:

(2.6.3) Ma(Ho) = €a(Ho) \ L£a(Ho)
and
(2.6.4) Ca(Hy) = U ¢a([Holg [Kolg)-

[Ko]GEG\ Subfjn(G)
Therefore, £A(Hg) and Ma(Hy) are constant on the whole G-conjugacy class [Hola
and we may define £A([Holc) := £a(Ho) and Ma([Hols) := Ma(Ho).

PROOF. (2.6.3) is obviously true. It remains to prove (2.6.4). To show “C”,
pick [H]a € £a(Hp). Because Hy ¢ M(A) there exists a Ky € Subg,(A) such that
H < Ky. But then [H]|a € €a(Hy, Ko) = €a([Holg, [Kole), as required.

For the converse direction, fix an arbitrary [Kolg € G\ Subg,(G) and take an
arbitrary [H|a € C€a([Holg, [Kolg) = €a(Ho, Ko). By definition, there exists an
K € Subgn(A) such that K > Ky and H < K. In particular, H ¢ M(A). We

therefore conclude [H]a € £a(Hp), which completes the proof. O

Lemma 2.6.4. The following equation is true:

A\M°(A) N {[H]a € A\ Subgy(A) : Ng(H) < 0o} = ) Ma([H]y)-
[H]G€G\ Subg,, (G)
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ProOOF. We start with the proof of the direction “C”. To this end, take a
A-conjugacy class [H]a € A\M°(A) N {[H]a € A\ Subg,(A) : N¢(H) < oo}. This
implies H € M(A), [H]a € €a([H]g) and Ng(H) < co. We therefore conclude
H e Ma([H]) with [H]g € G\ Subg (G) as required.

For the converse direction let [H]n € 9Ma([Ho],) for one Hy € Subg, (G). By
definition, we get H € M(A). On the other hand, Hy € Subg (G) and H ~ Hy

forces H € Sub?, (G). This leads to H € M(A)NSubg (G) C M°(A), and therefore
[H]a € A\M®(A)

as claimed. O

We have destilled the following lemma from the diploma thesis [4] pp. 40-43.

Lemma 2.6.5. Let Hy € Suba,(G). Then, its normalizer Ng(Hy) acts from the
right on Fixa\g(Ho) and the map

= . Fixa\g(Ho)/Na(Ho) — C€a(Ho)
=Ho- A~.Ng(Hp) S AN

is a bijection.

Remark 21. If there is not any possiblity of confusion, we write will write Z instead
of EHD .

PROOF. We begin by proving the first assertion. To this end, let Ay €
Fixa\q(Ho) and g € Ng(Ho). For the reason gHo = Hog, we obtain

AygHy = AvHog = Avg.
From that, we immediately deduce Avy.g € Fixa\q(Hp), as desired.
Now, we turn to the proof that = is a bijection. For this purpose, we first have to prove

that = is a well-defined. So take an arbitrary v € G such that Ay € Fixa\q(Ho)-
We infer

E(A0y9-Ne(Ho)) = |7(“Hy) | = |"Hy| = ["Hyla = E(Ay.No(Hy))
for all § € A and g € Ng(Hp). On the other hand, Ay € Fixa\g(Ho) implies
~vHy C AyHy = A~y and therefore
"H, C A.
We thus obtain Z(Avy.Ng(Ho)) = ["Hyla € €a(Hp), and E is indeed well-defined.
Our next step is to show that Z is injective. So, take v,0 € G such that there is an

§ € A with the property "H, = °°H, C A. But this means v~ 'do € Ng(H,) and
therefore

Avy.Ne(Ho) = Ay(y~'60).Ng(Ho) = Ado.Na(Ho) = Ao.Ng(Ho),

and = is injective.

It remains to show that = is surjective. To this end, consider a A-conjugacy class
["H,] such that "H, C A. We rewrite the last condition as yHy C Ay. But this
forces

AvHy C Ay
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and hence even AyHy = A~. In particular, we see Ay € Fixa\g(Ho). We thus may
insert AyNg(Hp) in Z. This yields

E(AYN(Ho)) = ["Hyla,
and therefore the claim. O
For the readers convenience we restate the following well-known fact:

Lemma 2.6.6. For an arbitrary non-negative integer n let us denote by ®,, the
n-th cyclotomic polynomial. Let p be a prime such that ged(n,p) = 1. Then, ®,, is
irreducible over Fy, if and only if p + nZ generates the group (Z/nZ)".

There are two D2 conjugacy classes of type S3, and we have not specified which
of them we denote by D”S; and D”Sg. In fact, there has been no necessity to do
this for the proof of Theorem 2.3.25 and thus until now. This becomes reasonable if
we consider the diagram there and observe that it is symmetric around the nodes
Pr2gl and 71283

3 3°

For the main theorem of this chapter, we have to make this choice. A simple
computation shows, that

-1 0 0 ~1 0 0 -1 0 0 -1 0 0
0 -1 -1,/ 0 01 and o1 1 |,/ o o -1
0 0 1 0 10 0 0 -1 0 -1 0

are subgroups of Di5 of type S3 and not equal. For the reason that there are as
many Djs-conjugacy classes as subgroups of type Ss, they cannot be conjugate in
D15. Due to this background, we set

-1 0 0 -1 0
D12S§::< 0 -1 -1/, 0 o0
0

0 0 1 1

o = O
~_—

and

>}
s

|95}
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—
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PROOF. We start with the following two observations: First, the set of fixpoints
of a group acting on some set is just the intersection of the sets of fixpoints its
generators. Second, we observe that for Ho € Subgy(I') the number | Fixxm\r(Ho)
does only depend on the I'-conjugacy class of Hy. Therefore, in Theorem 2.6.7, we
have chosen the representatives H of those I'-conjugacy classes in a way such that
the fixpoints of the right-action of H on A®\T" are as easy to compute as possible.
To throw out redundancies, we describe the right-action of H on A(p)\F by the
multiplication of elements from H on R® from the right. More precisely, we compute
the fixpoints in the following way: Let H = (ay| i € I). Then, AP yH = APy if
and only if A®~ya;v~! = A and thus

Yo, € AP Vi€ T
The last condition results in several systems of polynomial equations in FF,, for the

matrix entries of ~, if we require that 7 is an element of R®). We will illustrate,
how the computation works, for the two hardest examples. The other cases are

1
similiar and easier to deal with. We begin with the conjugacy class [5403} and

0 -1 0
its representative H; := < 0o 0 -1 > Clearly, the fixpoints of H; are the
1 0 0

fixpoints of its generator. Hence, we have to solve the equations given by the
condition

0
(2.6.5) 0 0 -1 |ean,
1

where v € R®),

~ can be of the shapes ) (u, v, w), % (u, v), 7 (u,v), v (), 7 (u) or () re-
spectively. Thus, we have to solve in fact 6 systems of polynomial equations over
F,. We will demonstrate this only for one such system. So, let us assume that ~
has the shape r1(u,v,w). Under that assumption, (2.6.5) becomes

U -1 0
u? +v — uw w—u —1 e AP,
vw+u(v—w2)+1 w2—v —w
where
(8] <unnz 2], o4

and u,v,w € {0,1} in the case p = 2. By the definition of A®), we obtain the
system of equations below:

(2.6.6) w4+ o—uw 2o
(2.6.7) vw+u(v—w?) +1 @y
(2.6.8) v w2,

where u, v, w are as above.
We insert (2.6.8) in (2.6.7) and (2.6.6) and obtain

(2.6.9) W12

and

—~
=

(2.6.10) u? — ww + w? Z 0.
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This means that @ := w + pZ has to be a zero of ®¢(X) = X? — X +1 = ®3(—X)

over [F,, or w (g —1.

To derive appropriate consequences from that observations, we state the following

Lemma 2.6.8. For f(t,X) :=t?> —tX + X2 € F,[t, X] the following assertions
hold:

(1) J(t.X) = f(X,1),

(2) 7(1,X) = @g(X),

(3) f(laX + 1) = (1)3(X) = f(*le%

(4) f(X =1, X) = P(X).
In particular, each two elements a,b € F), with f(a,b) = 0 have to satisfy f(b,a) =0
as well.

Proof of the lemma. The proof is trivial.

//
We put f(t, X) :=t? —tX + X?. Hence, we may rewrite (2.6.9) and (2.6.10) as
(2.6.11) f(a,w) =0 and (Pg(w) =0V w = —1),
where @ := w+pZ. If p # 3, Lemma 2.6.6 tells us, that 3 and by ®(X) = $3(—X)
also ®g, have zeroes in F,, if and only if |(p + 3Z>F3x | # 2 and hence if and only if

3
D (E) 1. We thus distinguish between the following three cases:

3
1.p (E) —1: In that case, ®3 and ®¢ have no zeroes in [F,,. Suppose to obtain

a contradiction that the system of equations above has solutions. Then,
by virtue of (2.6.9), X3 +1 = (X + 1)®¢(X) has exactly one solution,

namely w ® —1. Hence, (2.6.8) forces v @ 1. Therefore, (2.6.6) becomes

w4u+1 (%) 0 and u has to be a zero for ®3, a contradiction.

3
2. p (—:) 1: Lemma 2.6.6 implies that ®¢ has two zeroes X1, Xy € F,,. Because

P(X) = (X - X1)(X — X2) = X2 — (X; + X)) X + X; X,

a coeflicient comparison yields X;X; = 1 and X;+X; = 1. Hence, X; # X
for otherwise we would have X? = 1 and 2X; = 1. This would imply
X; =41 and +2 = 2X; = 1. This might only happen if p = 3, contrary to
our assumption. Therefore, X; and Xs are indeed different. By a similar
reasoning, we infer X; # —1. Therefore, we have to consider the following
cases:

If @ = —1 we have to find @ € F,, such that f(@,—1) = 0. But

f(t,—1) = ®3(t) = Pe(t + 1)
has exactly the zeroes X; — 1. Hence @ has to attain one of the values X; —1.
In the cases w = X;, (2.6.11) becomes 0 = f(u,X;). In particular, @

has to be a zero of the quadratic polynomial p;(¢) = f(¢, X;). Lemma 2.6.8
tells us that p;(1) = f(1, X;) = ®6(X;) = 0 and

pi(Xi—1) = f(X; —1,X;) = P(X;) =0

and therefore # has to attain the values 1 or X; — 1.

(2.6.8) guarantees that in each of the cases ¥ does only depend on .
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3. p=3:1Inthis case Pg(X) = X? - X +1=X?+2X +1 = (X +1)%
Therefore w = —1 is a zero of X + 1. By f(ui,—1) = f(—1,4) = ®3(u) =

®g(—u) we obtain —a = —1 and thus @ = 1.
0 -1 0
This yields all elements of Fix A(p)\p< 0O 0 -1 > represented by elements
1 0 0

of the form r%p) (u, v, w).

2
Let us proceed with the second example. We consider the I'-conjugacy class [S“ 04}

0 -1 0
and its representative Hy := < 1 1 1 > As above, we realize that we
-1 0 0
have to determine v € R() such that
/0 10
(2.6.12) 1 1 1 |eaA®,
-1 0 0

Again, we only compute the solutions of the shape ’I"%p )(u,v,w). The remaining

solutions are obtained by similar but easier calculations. So the condition (2.6.12)
becomes
U -1 0
—v4ufu+w—-1)+1 —u—w+1 1 ] €A
—vw+w+ulv+ (w—-Dw)—1 —w4+w—-v w
where
{2 <uns (2]

and u,v,w € {0,1} in the case p = 2. Those matrices are elements of A® if and
only if they satisfy the following system of equations:

(2.6.13) —vtulu+w—1)+1=
(2.6.14) —vw+w+ulv+ (w—lw) —1 ®
(2.6.15) —w—1)w 2.

We insert (2.6.15) in (2.6.14) and (2.6.13) and obtain

wg—w2—|—w—1(20

w2—w+1—u+u2+uw(g().
Recalling ®4(X) = X2 + 1, the last system of equations can be rewritten as

(2.6.16) (w =14 (w) Lo

(2.6.17) (w+w—-1)2%+u+w—uw (Q 0.

To solve this system of equations we will make use of the lemma below:

Lemma 2.6.9. The polynomial f(t,X) = (t+X —1)2+t+ X —tX € F,[t, X]
has the following properties:

(1) f(t7X) = f(th)
(2) f(1,X) = ®4(X).
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(3) (X, =X) = @4 (X).

Proof of the lemma. The proof is trivial.

//
Now, we put f(t,X):= (t+X — 1) + ¢+ X — tX. With that notation, the system
of equations consisting of (2.6.16) and (2.6.17) becomes

(2.6.18) f(a,w) =0 and (P4(w) =0V =1).
Lemma 2.6.6 tells us for p odd that ®4 is irreducible in IF,, if and only if [(p)(z/4z)x | =

4
2. Thus, ®4 has zeroes if and only if p (z) 1. We therefore consider the following

three cases.

4
1. p = —1 : In that case ®, is irreducible over [F,. We claim that there

is no solution for (2.6.18). Suppose contrary to our claim, that there is
a solution (#,w) € (Fp)? of that system. Then, w = 1 because ¥4 is
irreducible. Applying Lemma 2.6.9 we necessary have,

0= f(ﬂ7 1) = @4(114)7

a contradiction to the irreducibility of ®4. Hence, (2.6.18) has indeed no

solution in that case.
4
2. p (E) 1: Lemma 2.6.6 guarantees us that ®, has two zeroes X; and X5.

We thus get
X241=904X) = (X — X1)(X — Xo) = X% — (X1 + Xo) X + X1 Xo.

Coefficient comparison yields X; + Xo = 0 and X; X5 = 1. In particular
X1 # X and X; # 1, i € {1,2}, for otherwise we would have p = 2, a

—~
s

contradiction to p g 1. The structure of (2.6.18) suggests that we should
consider the following cases: In the case w = 1, Lemma 2.6.9 yields that
(2.6.18) becomes
0= f(a,1) = P4(u).

Because f(t,1) is a polynomial of degree 2, u has to attain one of the
values X;, i € {1,2}. If ®(w) = 0, we have w = X; for one i € {1,2}. We
put p;(t) := f(¢, X;). Thus, (2.6.18) gets to p;(a) = 0. For the reason p;(t)
is a polynomial of degree 2, it has at most two zeroes in [F,,. Lemma 2.6.9

yields
pi(1) = f(1,X;) = ®4(X;) =0
and
pi(—=Xi) = f(=Xi, Xi) = f(Xi, = X)) = @u(X;) = 0.
So, w e {1, X,}.
3. p=2: If p=2 occurs, (2.6.18) is equivalent to u = 1 = w.
This is the claim for Hs. O

Let d be a square-free non-negative integer. So far, we have computed the fixpoints
for the right actions of finite subgroups of T' on the quotients A®\T'. With that
in our mind, we can derive the fixpoints of those actions on A®\T just by con-
sidering direct products. Using the Cauchy-Frobenius formula, we will obtain the
numbers |€ @) (-)]. On the road to our aim to determine the cardinalities of the sets
Maw (H) for H € Subg, (I') we have to describe them in an appropriate way. By
virtue of Lemma 2.6.3 it is enough to determine the sizes |€ ) (H, K)| for suitable
H,K € Subg,y(I'). In Lemma 2.6.5 we have found a method to compute € (+).
But this only works for the reason we can express the term YH C A in an equivalent
way using fixpoints. In general, there is no possibility to get such a description
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for €x (H, K) because there is an additional relation H < K which has to be
regarded. However, this problem will be solved if we find a way to force that relation
to be trivial. For example, this is indeed the case, if Naw (H) = K is true.

In the sequel, let d = [],_, p; the decomposition of d into primes. Because d is
square-free, each of the primes occurs exactly once. For a non-negative integer k € N
we abbreviate an element a+kZ € Z/kZ with a(®). For a matrix v = (@ij) i, jyesix 3]
we denote by 7¥) the matrix (@gf))(i’j)e[g]x[‘g] € Mat3(Z). Using that notation, the
Chinese remainder theorem tells us that the map

7)d7. = [I/_,Z/pZ:

2.6.19
( ) ald — (@(pz));'zl

is an isomorphism. It is a well known fact that this isomorphism gives rise to an
isomorphism of groups:

o~

Ss(Z/dZ) — Tli=, S(Z/mZ)

(d) — (ﬁ(pz));l.

(2.6.20) P

The only non trivial part of the proof of this assertion is to ensure the surjectivity of
0. But the surjectivity is an immediate consequence of the following consideration:
Given, there is a matrix v € Matg(Z) satisfying a system of equations

det’y(m) :T(pl), le{l,...,r}

we obtain p; | det(y) — 1 for each [ € {1,...,r}, and hence d | det(y) — 1. The last
relation can be rewritten as

deiry ¥ =19,
which is the desired conclusion.
Clearly, we have
(2.6.21) o D(A@D) = H A@)

=1
Thus (2.6.20) yields

A(d)\f‘(d) o~ HA(P!)\f‘(Pl)7
=1
where the isomorphy is meant to be between I'-sets with respect to the canonical
I'-actions from the right.

For this reason and by (2.5.1), the product map

r
o

(2.6.22) AND = TT(APNI)
=1
has be an isomorphism between right I'-sets, as well.

An element z = (21,...,7,) € [[|_, A®PN\T is fixed by an element g € T if
and only if

(z1,...,zr) =z =2.9 = (1.9, ..., Tr.g),
and therefore, if and only if g fixes each z; € API\T. This leads to the following
lemma:



2. THE VERTEX GROUPS FOR “BOREL-SUBGROUPS” OF Sl3(Z) 68

Lemma 2.6.10. The restriction of the product map in (2.6.22) to Fixawnr(H)
induces an isomorphism between the right Ny (H)-sets

FiXA(d)\F (H) and H FiXA(pl)\F (H).
=1

By a slight abuse of notation we rewrite this assertion as

Fixaw\r(H) 2 [ [ Fixpoop(H).
=1

PRrROOF. This is a direct consequence of Lemma 2.6.5 combined with (2.6.22)
and the statement in front of the lemma. O

For the computation of the cardinality of € ([H]r) for an element of H € Subg, (T'),
we will make use of the following lemma:

Lemma 2.6.11. Let G be a group acting on a set Q from the right. Furthermore,
let H € Subg (G). Then Ng(H) and thus also Ng(H)/H act on Fixq(H) from the
right and the following formula holds:

(2.6.23)
| Fixo(H)/Na(H)| = m { | Fixq(H) +gHEN§H)|/§iXQ(<H, 9l }
gH#H

If INg(H)/H| = q for a suitable prime q, then this formula can be simplified to

(2.6.24)
| Fixq(H)/Na(H)|

4 Pixa(H)| + (1 - 1) Fixa(No(H)|
| Fixey(Na (H)| + H{ | Fixa(H)| — | Fixo(Na(H))|}.

PROOF. In the same manner as in the proof of Lemma 2.6.5, it can be shown
that Ng(H) and Ng(H)/H act on Q' := Fixq(H) from the right. By gH = Hg for
each g € Ng(H) we get obviously

Fixq(H)/Na(H) = Fixa(H)/(Na(H)/H),
in particular the fixpoints on €’ of both actions coincide, i.e.
. . Ng(H)/H
Fix{y ((9)) = Fixg?” /" ((gH)).

Therefore, it suffices to compute | Fixq(H)/(Ng(H)/H)| which can be easily done
using the Cauchy-Frobenius formula and Remark 19:

|FiXQ(H)/(NG(H)/H):(]\/-G(;I):I{){|F1XQ/(H)|+ > FiXQ/(<9H>)|}
gHEgN;;g)/H,

= W;,):H){IFiXQ(H)I + Y |Fix9(<H,g))|}.

gHENG(H)/H,
gH#H

Under the assumption Ng(H)/H = C,; we obtain (2.6.24) by the following consid-
eration: (¢gH) = Ng(H)/H if and only if gH # H. In this case (2.6.23) becomes
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[ Fixa(H)/No(H)] = ¢ { | Fixa(H)| + (4 — 1) | Fixa(Na ()]}
— CIFixa(fD)] + (1 - . ) | Fixa(No (D)
~ | Fixa(No(#)] + - {| Fixa(Na ()| - | Fixa ()]}
which is the desired conclusion. 0

Lemma 2.6.5 combined with the just proved statement and Lemma 2.6.10 leads
immediately to

Lemma 2.6.12. Let H € Subg, (T), then

1 T T
|Caw (H)| = m H | FlXA<m>\r(H)| + Z H | FlXA<Pz)\F(<H7g>)|
) =1 gHEN(H)/H, I=1
gH#H

Under the additional assumption that |[Np(H)/H| = q for a suitable prime q, this
formula can be simplified to

LT o =117
[Cac (H)| = ;H | Fixqwo\r (H)] + e 1T Fixacop (Ne(H))I-
1=1 1=1
Remark 22. The lemma above tells us that we obtain the cardinalities |€x sy ([Ho]r)|
from the numbers | Fixam\r(Ho)| for all Ho € Subg, (I'), where we already have
computed the last ones in Theorem 2.6.7.

In order to derive the numbers |9M A ([-]r)], we need a series of technical lemmas
which allows us to determine the cardinalities |€aw ([]p, []p)] or [Law@ ([]r)], from
those of €aw ([-]r). Here, “” stands for arbitrary elements in Subg (I"). For the
sake of brevity we have introduce the following notions:

Definition 2.6.13. Let Hy < Ky € Subg,(G). We say Hy or [Hy|g satisfies
property (M Ko]c) in G if and only if the following assertion holds:

V(H,K) € [Holg x [Kole: (H< K= H<K).

Definition 2.6.14. Let Hj € Subs,(G). We say Hy has property (P) if and only
if for each G\ Subg,(G) 3 [Ko]e > [Hole the following assertion is true: [Ko]g is a
maximal element in the set {[K]g € G\ Subg,(GQ) : €a([K]g) # 0} with respect to
the order induced by that on G\ Sub(G).

We recall the following well known elemental group theoretical fact:

Remark 23. Let K be a finite group and ¢ be the lowest prime dividing it. Then
each H < K such that (K : H) = g satisfies H < K.

PRrOOF. Counsider the kernel of the action K — Sym(K/H): k — (K'H —
kk'H). O

Lemma 2.6.15. Let Hy < Ky € Suba,(G). Let g be the smallest prime dividing
|Ko|. Then, (Ko : Ho) = q implies that Hy satisfies (A/[Ko]c) in G.

PRrOOF. Let (H, K) € [Hplg x [Ko]g such that H < K. By Lagrange’s theorem

we have K| K|
0
q=(Ko:Hy) =07 = 77 = (K : H).
|Ho|  |H]
But now, the elemental group theoretical fact recalled in Remark 23 yields H < K
and therefore the claim. O
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Lemma 2.6.16. We denote by =g, the map defined in Lemma 2.6.5. Let Ko be a
finite group and Hy < Ky such that Ng(Hy) = Ky. Under the assumption that Hy
satisfies (MKO]G), the following assertions are true:

(2.6.25) Ca(Hp, Ko) = {[H]a € €A(Hy): Ng(H) C A}.
and hence
(2626) Q:A(Ho,Ko) = EHO(FiXA\G(KQ)).

PROOF. We begin by proving (2.6.25). Therefore, we first show that €a (Hp, Ko)
is contained in {[H]a € €a(Hp): Ng(H) C A}. To this end, take an arbitrary
[H]a € €a(Ho, Kop). Then, by definition, H < K C A for an appropriate K such
that [K]a € €a(Ko). Now, (Nik,],) implies that H < K and hence K = Nk (H) <
N¢(H). On the other hand, there exists a v € G such that H = "H,. We combine
these assertions to

[Kola 3 K < Ng(H) = "N (Ho) = "K,.

But conjugation with elements in A is an automorphism in G and therefore all
“<” are in fact equalities. In particular, Ng(H) = K C A which is the desired
conclusion. For the converse direction pick an arbitrary [H]|a € €a(Hp) such that
Ng(H) € A. Now, H > Hj, implies Ng(H) > N¢(Hp) = Ky. This together with
Ng(H) C A implies [Ng(H)]a € €a(Kp) and therefore [H]a € €a(Hy, Kp), and
the proof of (2.6.25) is complete.

It remains to show (2.6.26). For this purpose, pick an arbitrary v € G such
that

[’YHO}A € {[H]a € €a(Hyp): Ng(H) C A}.
By definition and Lemma 2.3.5 we have YNg(Hp)y~! C A. Analysing the proof of
Lemma 2.6.5, we infer that this condition can be rewritten as Ay = AyNg(H) or
equivalently as Ay € Fixa\q(Na(Hp)). We thus conclude
EY(["Hyla) = Ay.Ng(Ho) = An.
This combined with (2.6.25) yields £~ (€a(Ho, Ko)) = Fix(Kj), and (2.6.26) is
proved. O

Lemma 2.6.17. Let Hy € Subg (G) such that Hy satisfies property (P) and [Hola
has property (Nix,..) for each [Kolg > [Hola: €a(Ko) # 0. Then,

A: La(Hy) — | Ca(Ko):
[Kola>[Holc :
€a(Ko)#0

[Hlan +~ [Na(H)]a

1s a well-defined surjective map.

PROOF. First, we have to prove that A is indeed well-defined. For this purpose,
we take any [H|a € £a(Hp). Our goal is to show that there exists a Ko > Hp
such that [Na(H)]a € €a(Kp). The definition of £a(Hp) yields the existence of
an [Ko]a such that [Kolg > [Holg and [H]a € €a(Hp, Ko). Hence, there is an
[K]a € €a(Kp) such that H < K. In particular, €A (Kj) cannot be empty. Because
[Ho|c satisfies property (M KO]g), we infer

(2.6.27) Ko~ K = Ni(H) < Na(H) C A,

But property (P) forces
[Na(H)]c < [Kolc-
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Both assertions combine to
INa(H)| = [Ko| = |K].
So, (2.6.27) can be strengthened to [Na(H)]a = [K]a € €a(Kp), as required.

Let us now turn our attention to the proof of the surjectivity of A. To this
end, pick [K]a € €a(Kp) for some [Ko|g > [Holg: €a(Ko) # 0. Thus, there is a
v € G such that 'K, = K C A. For the reason "H, < "K, = K C A, we get by
property (-/V[Ko]G)
K= NK(’YHO) < NA(A{HO)'
Because H satisfies property (P), we may conclude in the same manner as above
K = Na("Hy).
From that we derive
[K]a = A([’YHO]A)v
which completes the proof. O

Under further assumptions we can also ensure that the map A, mentioned in
Lemma 2.6.17, is in addition injective. This is subjective of the following

Lemma 2.6.18. We use the same notation and hypotheses as in Lemma 2.6.17.
Under the additional assumption that for each [Kglg > [Holg with €A (Ky) # 0
there is a representative K € [Kolg such that the map
{[Hlg : H= Hy} — G\Subsa,y(G)

[H]x = [Ne(H)]e

is an injection, the map A in Lemma 2.6.17 is even a bijection.

@K:

PROOF. We only need to show that A is injective. The remaining statements
are consequences of Lemma 2.6.17. For this purpose, take any H, H' € £ (Hj) such
that

[Na(H)]a = [Na(H')]a.-
By definition, there exists a 6 € A with the property
5
Na(H) = "Na(H') = NA(°H").
We put H” := °H’ and rewrite the assertion as
Na(H) = Na(H").

Lemma 2.6.17 tells us that €A (Na(H)) # 0 and Na(H) > H just because [Na(H)]a
is an element of the co-domain of A. Now, pick a K € [Na(H)]g such that O is
an injective map. Then, there exists a v € G such that

K = "NA(H) = "Na(H").
By virtue of H, H” < Na(H) we obtain "H,"H"” < "Na(H) = K.

At this point let us claim that
(2.6.28) ["H]k =["H"|k.

On the contrary, suppose that [YH|x # [YH"]|k. For the reason "H = Hy = "H"
we may apply O on both sides. Because O is an injective map this yields:

[Nr("H)le = Ok (["H]k) # Ok (["H"]x) = [Nr("H")]c-
According to Lemma 2.3.5 this can be only true if

[Hlg = ["H]c # ["H"]c = [H"]c,
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contradicting H ~ Hy ~ H".
el a

We continue to show [H]a = [H']a. (2.6.28) guarantees the existence of a k € K
such that ¥YH = YH". We rewrite this assertion as

"ME = H
Since k € K = yNa(H)y~!, there exists an x € Na(H) C A such that k = yzy~ 1.
We conclude
H'" = ey — 8
and thus [H'|a = [H"]a = [H]a, as claimed. O
Lemma 2.6.19. Let Hy < Ky € Subg,(G) such that for each AyNg(Hp) €
Fixa\q(Ho)/Ng(Ho) the condition
Av.Ng(Ho) N Fixa\g(Ko) # 0
1s satisfied. Then, it is already true that
€a(Ho, Ko) = €a(Ho).

ProOOF. Let the maps Zp, and Eg, be defined as in Lemma 2.6.5 and take an
arbitrary [H|a € €a(Hyp). By definition, there is a v € G such that H = "H, C A.
Taking the preimage under the map Zg, we obtain

Ene([H]a) = AyNg(Ho) € Fixa\g(Ho)/Na(Ho).

By hypothesis, there exists a 7' € G such that Ay’ € Ay.Ng(Hp) N Fixay¢(Ko).
This in particular yields A" € Fixa\g(Ko) € Fixa\q(Ho) and thus

[" Hola = Zn,(AY' Ne(Ho)) € €a(Ho)
as well as

[" Kola = Exo (A7 Na(Ko)) € €a(Ko).
On the other hand, Ay.Ng(Hy) = Avy'.Ng(Hy) forces

[H]a = En,(Ay-Ng(Ho)) = Ep, (AY'.Na(Ho) = [ Hyla.

Hy < Ky hence implies

[H]a =[" Hola <[ Kola € €a(Ko).

This proves [H|a € €a(Ho, Ko) and therefore €a(Hp) C €a(Hy, Kp), as required.
(]

Lemma 2.6.20. Let Hy < Ky < G such that Ng(Hy) is finite and Ng(Hp) =
Ng(Ko). Furthermore, let 2, and Zg, be the associated maps from Lemma 2.6.5.
Then, we have

(2.6.29) Ex(€a(Ko)) € Et(€a(Ho)).
Now, let (K;)icr be an arbitrary family with Hy < K; < G and Ng(K;) = Ng(Hy).
Under the assumption
Fixa\g(Ho) € | Fixa\c(Ki)
iel
it 1s even true that

(2.6.30) Ca(Ho) = | €a(Ho, K).
el
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ProOF. We begin by proving (2.6.29). Hy < Ky clearly implies Fixa\q(Ko) €
Fixa\q(Ho). We put L := Ng(Hop) and rewrite the hypothesis as L = Ng(Ko). We
thus obtain

Ere (€a(Ko)) = Fixa\¢(Ko)/L € Fixa\g(Ho)/L = Ep;! (€a(Ho))

which already yields (2.6.29). To prove (2.6.30) take a family (K;); € I with
Hy < K; and Ng(Hp) = Ng(K;) for all ¢ € I such that

Fixa\q(Ho) C U Fixa\g (K5).
iel
Obviously, it is sufficient to show “C” to obtain the equality in (2.6.30). We set
again L := Ng(Hp). So, we may derive from the hypothesis that

Eih (€a(Hy)) = Fixa\a(Ho)/L C | Fixaa(K)/L € | 25 (€a(Ky)).
i€l iel

But (2.6.29) yields El_(ql (Ca(K;)) C E;I(l)(Q:A(HO)) for each i € I. Combining both
assertions we get

=1 _ | |=—1

Erm (Ca(Ho)) = | J Exi (€a()).

icl

(2.6.29) tells us that the domains of =, are all contained in that of Zp,. Therefore
we may apply =g, on both sides. This leads to

Ca(Ho) = U En,Ex (Ca(K)).
iel
Hence, it remains to show EHOEE(@A(KO) C €a(Hy, K;) for each i € I. For this

purpose, fix an ¢ € I and pick an arbitrary ¢ € EHOEE(CA (K;)). Then, there exists
a v € I' such that

¢ =Zn,Zg, (["K,]a) = En,(AYNa(K:)) = Epy (AN (Ho)) = ["Hy)a,
where the definition of €A (K;) and the choice of v implies that "K, C A. We

hence infer ¢ = ["Hyla < ["K;Ja € €a(K;). This assertion can be rewritten as
¢ € Ca(Hy, K;), and the lemma follows. O

We are now in the position to state and prove the conclusion from Theorem 2.6.7:

Theorem 2.6.21. Let d = [[,_, pi be an arbitrary square-free integer. Then, the
numbers |Eaw (H)| and |Maw (H)| can be computed for each H € Subg (T'). The
results of those computations are given by the table below:
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PROOF. We begin by a verification of 4-th column which contains the sizes of
Caw ([Holr) for all [Holr € T'\ Subg, (T"). By Lemma 2.6.5, we have |€xw (H)| =
| Fixaanr(H)/Ne(H)| for each H € Subg, (I'). We therefore obtain those numbers
in a straight-forward way from Theorem 2.6.7, Theorem 2.3.25 and Lemma 2.6.12.

1
We illustrate the computation of that numbers at the example [S“C’g} : Take
r

1
He {3403} . Let a,b € F3 and put
r

1, a=b,
Oab '_{ 0, a#b.

Theorem 2.3.25 tells us that Np(H) = S3. Theorem 2.6.7 yields

and also

1
[Fixaonr (€5 )| = 00,5 + 631

1
Fixaonr (*55)] = 0,

We hence obtain by Lemma 2.6.12 and Theorem 2.6.7

It is left
column.

T

€a (H0) = 5 { TGop + 65100+ [To05 }
=1

=
1 H/_/
=0, ifpl(;>_1 =0, if d#3
for some [
1, if d = 3;
i G
0, el 2
) 3
1.6, if3|d, d#£3, v:s;,e(p)m:pgl;
: 3
%67‘7 if vp | d: p = 1.

to verify, that the sizes |Ma ([-]p)| are given by the numbers in the last
Of course, we will already make also use of the results for |€a @) ([-]r)|- To

compute the numbers |9 ([Holp)| for each element in [Hy|r € T'\ Subg ('), it is
therefore sufficient to express |9 (Ho)| in terms of |€a ) (+)|. For his convenience,
we advise the reader to print out the diagram from Theorem 2.3.25 and the table

above.
1.

[D”C’SL: We have to consider the following cases: If d # 3, we have

by the results of the 4-th column € ) (Dleg) =0, j € {1,2}, and

€A (D12) = 0. Theorem 2.3.25 thus implies that D12C3 has property (P).
Therefore, the only I'-conjugacy class [Kolr € Subg, (I") which lies over

{D1203]F such that €@ (Kp) # 0 might occur, is [DIQC6L. Hence, we

put Ky :=P 2Cy. And the last fact clearly forces that b 2y has property
(A/[Ko]p)- Because there is only one subgroup of isomorphy type C5 in
Ky, the map O, in Lemma 2.6.18 is necessarily injective. Therefore, the
hypotheses for Lemma 2.6.18 are satisfied. We thus obtain

‘Smd) (Dlzozs)‘ = |€aw (Ko)|.
Now, an application of Lemma 2.6.3 forces
[Taio (72C5) | = [ (65| = [€an (7C5)|
Ad) 3 A(d) 3 A(d) 6/

This yields the required cardinality. If d = 3, we have €x () (D12) # 0. In
particular, property (P) is not satisfied. Thus, the criterion Lemma 2.6.18
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cannot be applied. Luckily, Lemma 2.6.20 might work here. We hence
prepare ourselves to apply Lemma 2.6.20. To this end, consider

1 0 0
Ho:< 0 -1 -1 >€[Sicgh,

0 1 0
1 0 0 10 0
K, ::< 0o -1 -1 |, o o1 >e[DHS§],
0 0 1 0 1 0 r
and
1 0 0 1 0 0
K, :< o 10|, 0o o -1 >€[D12$§}.
0 1 1 0 -1 0 r

Theorem 2.6.7 tells us that
Fixa@\r(Ho) C Fixaenr (K1) UFixae\r(K2).
So, we may apply Lemma 2.6.20. This yields
Caw (Ho) = Caw) (Ho, K1) U € (Ho, K2) C LA (Ho).
We conclude

‘WA(S) <D1203)‘ = |imA(3> (H0)| = O
. [s‘}Cg} = Ifd#3, Chw (SiS:;) = () immediately ensures that

s (76 = feao ().

1 1
Now, let us assume d = 3. Let (Hy, Ko) € {S“CBL X [S4S3L such that

Hy < Ky. Because (Ky : Hp) = 2, Hy satisfies (-/V[Ko]p)' On the other
hand, Theorem 2.3.25 tells us that [Ho|r has property (P). The Sylow
theorems guarantee that the map O, from Lemma 2.6.18 is injective.
Thus, we may apply Lemma 2.6.18 and obtain

|€a@ (Ho)| = [€ac (Ko)l.
Therefore, we get
MA@ (Ho)| = |€ae) (Ho)| = [€aw (Ko)l-
[Sic4h’ i € {1,2}: First, we treat the case d # 2. For the reason

‘Q:A (Sipg)‘ = 0, Theorem 2.3.25 implies

S:nA(d) (5?104) = Q:A(d) (SZC4) .
For d = 2, {SXDS} . is the only element in I'\ Subg (I') such that [K;]pr >

{5504]1“ and €r@) (K;) # 0. Let H; be an representative of {SZC4L

and K; be an representative of [SiDg} such that H; < K;. Then,
r

(K; : H;) = 2 implies that H; has necessarily the property (’/\/[Ki]r)'
Moreover, Nyp(H;) = K;. Thus, Lemma 2.6.16 forces

|Lae (Hi)| = [€ae (Hi, Ki)| = | Fixaenr(K5)|.
We thus conclude
IMac (Hi)| = |€ac (Hi)| — | Fixaenr(Ki)
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[S‘iV;L: If d # 2, we observe €5 ([Kolr) = 0 for each I'\ Subg,(T') >
[Kolr > [S‘iV;L. This leads to

1 L ] 1 L]
mA(d) (S4V4 ) = @A(d) (54‘/;1 )
1
So, let us assume d = 2. We choose representatives Hg € [S‘*V;L and

1
Ky € [S“Dg} . As for the groups of type Cy there is only one I'-class
r

which lies over {S‘iVJ]F, namely [SiDS]F. Therefore, Hy satisfies the

properties (P) and (Ng,.,). Now, we have to show that the map O, in
Lemma 2.6.18 is injective. To this end, we consider the domain of O,
which is given by the set

(I, 1= 0y = { %] [P] )

Theorem 2.3.25 tells us that

o ([*W4],, ) = 1511

and

In particular, O, is injective. We may thus apply Lemma 2.6.18 on H
and get

|€ac (Ho)| = [€ac (Ko)l-
This forces
[Mac (Ho)l = |€ae (Ho)| — [€a@ (Ko)l.

4. {53V4']F, i € {2,3}: For d # 2 we obtain by the same reasoning as for
Sit,®
il

Maeo (F17) = Caw (7).

So, let us assume d = 2. We know
eae (P =1
For the reason, €2 (S§D8> # () and by the diagram in Theorem 2.3.25
it is true that €5 (S‘iV;, S‘%DE;) # (). This leads to
s (94| = e ()] e (47 %0 <11

We want to point out that © s, is not injective here and we therefore

cannot apply Lemma 2.6.18.
1
5. [S4V4°L; If d # 2,3, we have €aw ([Kolr) = 0 for all T\ Subg (T) >

1
[Ko]r > [S4V4°L. We therefore get

M x o (Sivf) — Crw (Sivj).
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We now turn our attention to the case d = 3. We then have €5 ) ([D12]) #

(0. We put
1 0 0 1 0 0
St o
Ho:=< o -1 0 |, 0o o -1 >e[4V4],
0 0 -1 0 -1 0 r
1 0 0 1 0 0
Ko = < 0o -1 -1 |, 0 -1 0 > € [Di2]r
0 0 1 0 1 1

1
and Theorem 2.3.25 tells us that Np(Hy) € {S“DS] . It is obviously true
r

that Hy < K. By Theorem 2.6.7, we are able to verify, for instance using
[10], that the hypotheses for Hy, Ko in Lemma 2.6.19 are satisfied. From
that we immediately get Cas) (Ho, Ko) = Caes) (Ho). This forces

MA@ (Ho)| = |€a (Ho)| — |€aw (Ho, Ko)| = 0.

It remains to consider the case d = 2. The only I'-conjugacy class [K]|r
1 1
over {S“VZL such that € ([K]r) # 0 is [S4D8L. For the reason

Np(s‘}V:) € {SiDSL the hypotheses for Lemma 2.6.16 are satisfied.
This yields

e (107) = e () -

6. [D1206L: First, consider the case d # 3. So, for each I'-class [K]r €

1
FixNz)\F(S“DS) ‘ —5-5=0.

Subg, (T'), such that [K]r > [D”CGL, holds

Caw ([K]r) = 0.

We conclude

(20, ) = €[], )

Now, let us assume d = 3. Under that assumption it is clearly true
that

A (chG) R (D1206, D12).

Furthermore, ©'2Cy has property (MD12]G) and Nt (D12CG) = Dip. We
may thus apply Lemma 2.6.16 and obtain

\smw ([DHCG]F) \ - \em () \ | Fixae (D12)].
7. {Dleg]F, j € 1,2: For d # 3 is nothing to show. So, let us assume d = 3.

A similar sequence of arguments, as for [D12C’6] in the case d = 3, yields
r

oo ([7288], )| = eae (7251)

For the remaining cases we have Mx ) (H) = €xa) (H) for each [H]p € Subg (T),
and the proof is complete. O

— |Fixa@ (D12)]-

Theorem 2.2.1 and Theorem 2.3.25 together with Theorem 2.4.49 tell us that
Theorem 2.6.21 counts indeed the number of maximal vertex groups which are
not of type Cs in a “reduced” complex of groups for A® . For A® p prime, we
are even able to compute those groups explicitly. For a general square-free integer
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d= HIT:1 p; the problem arises to determine the preimages of certain elements under
the product maps

ks
Fixaw\r(H) = [ [ Fixaoor(H).

1=1
As long as we are not able to give an explicit system of representatives for AD\T,
an explicit description for the maximal vertex groups of A® which are not of
type Cs, can hardly be given. The results of Theorem 2.6.7 and Theorem 2.6.21
allow us to compute maximal AP)-conjugacy classes of finite subgroups with finite
Normalizers in I'.

The subject of the following theorem is the computation of the exact values for
the components of the decomposition of AP\M°(A®)) into M) ([H]r), see
Lemma 2.6.4, where p is an arbitrary non-negative prime. By Theorem 2.3.25, we
know that any non-trivial finite subgroup of any type but Cs has finite Normalizer
in A(®),
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PROOF. An analysis of Theorem 2.6.21 yields that the only non-trivial cases are
. 1

[Dl"’SéL, j€1,2forp=3and [S“V;L for p = 2. Let us first consider Ma ) (H;)
for p = 3, where H; := D”Sg. We observe Fixae)\p(D12) C Fix(H;). Theo-
rem 2.6.21 tells us that there is only one element in M) (H;). Because H; satisfies
Nr(H;) = D2 and property (/\/[D12]G), we obtain by Lemma 2.6.16 that the only el-
ement in M A s (H;) has to be parametrized by some element Avy; € Fixa e\ p(Hj)
FiXA(s)\F(Dlz). Theorem 2.6.7 yields |FiXA(3)\F(Hj) \FixA(3>\F(D12)| = 2. For the
reason D1p = Nr(H;) acts from the right on Fixs)\r(H;), we therefore obtain that
the two elements in Fixa@)\r(H;) N\ Fixae)\r(D12) form one orbit. We conclude

Zi (Mae (Hy)) = {A®)y; Do},

as desired.

1
We now turn to the computation of MMy (H) for p =2 and H = S V4°. To this end,
let us consider the action of Ng(H)/H = S;/H from the right on Q := Fixs@)\r(H).
This yields

(2.6.31) Q=Y > |A® Ny (H)|
K|(Nr(H):H) A® ~ Np(H)eQ2/Nr(H):
|A®) Y. Np(H)|=k

> k- {APy.5) € /8] |[APy.Si =k},
k|6

Now, consider the sets Q, := {A®)~.51 € Q/S}: [AP)~.St| = k}. We clearly have
Oy = Fixp@)\r(S}) = 0. The orbit formula implies that |A(2)y.S}| = k if and only

1
if [(Si)a@~| = 24/k. Because the only subgroup of S} of index 2 is S4A4, we obtain
1
for A®@~.S1 € Qy that (S§)ay = S4A4. We therefore deduce

Q, C Fi Sig,)/sl
2 = FIXA@\T 1)/ 54

1
Because Fixae\r (S4A4> = (), we conclude Q5 = () as well.

1
On the other hand, every subgroup of index 3 in S} has to be Si-conjugate to S Dyg.

By Remark 20, we infer
Q3 C ( U FiXA@)\F(SiDS)U)/Si = FiXA@)\F(SiDS)/Si'

ceS}

Because FiXA(z)\F(S’i) = (), we also obtain
FiXA(?)\r(siDg) C Q3.
We therefore get
Q3 = FiXA@)\F(SiDS) /55 = E;;D (¢A<2) (SiDs))-
s
Inserting these observations into (2.6.31), leads to
9] = 3[€am (*Dg )|+ 6l%]

|2] =21 and € (SiDS)\ =5 enforce || = 1. On the other hand, each element
of Q associated with an element in M) (H) cannot lie in Fixae\r (S‘}Dg)7 for

1
otherwise that element can also be associated with an element of €4 (2 (S4 Ds)- This
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violates the definition of M2 (H).

We conclude Z5,' (M (H)) € Q6. Because
L= [Ma@ (H)| < Q%] =1,

we can choose an arbitrary element Ay € Qg and get Mp (H) = {AP4}.
The orbit g can be easily determined for example with [10], and the proof is
complete. O

Recall that T acts on X = {4 € R3*3| det(A) =1,A="tA,(Av,0) >0 VO0#ve
R3}. The I'-space X', see Theorem 2.2.1, is a polyhedral complex. Hence there
exists a scwol X1 such that its geometric realization can be identified with X’. In
addition, X is a symmetric space and therefore geodesic complete. This forces that
the action of each finite index subgroup of I' on the scwol A satisfies the hypotheses
for Theorem 2.4.49. Because X’ is simply connected the scwol A1 has to be simply
connected as well.

To consider the consequences of Theorem 2.4.49 in this setting, we introduce and
recall the following notation.

Notation 2.6.23. Let A be an arbitrary subgroup of I" such that (I' : A) < 0.
We denote by Ra(Xr) the reduction of X1 associated to the action A ~ Ar, as
defined on page 48 and in Notation 2.4.50. Furthermore we agree on G(Y(A)) to
be the complex of groups associated to the action A ~ Ra(AT) over the scwol

Y(A) := A\Ra(Ar).

Corollary 2.6.24. Let A be an arbitrary subgroup of I' such that (I' : A) < co. By
Theorem 2.4.49 the map

A: MO(GOV(A)) — A\ME(A)
induces for each T'-conjugacy-class [Holr € T'\ Subg, (') a bijection
(5. MPOI(A)  Av - Ho} — Ma([Holr)

A :
(Holr 7 = [Ada

PROOF. This is a direct consequence of Theorem 2.4.49 and the introductory
remark in front of Corollary 2.6.24. O

Definition 2.6.25 ([1] p.532 1.17). Let X be a scwol and v € V(X). The upper
link Lk"(X) of v consists of a set of vertices

V(LK (X)) := {a € E(X) : t(a) = v}
and arrows
E(LK'(X)) := {(a,b) € E®(X) : t(a) = v}.
Moreover, we define edge’(X) to be
edge’(X) := {a € V(LK'(X)) : dimy (ix(a)) = 1}.

Remark 24. Let X be a scwol, v € V(X) and G be a group acting on X. Then,
this action induces actions G, ~ Lk"(X) and G, m~ edge”(X). For each v € G the
actions I', ~ Lk"(&X) and T, , » Lk”""(X) are isomorphic and hence the actions
Iy, ~edge”(X) and I'y , ~ edge””(X) are isomorphic as well.
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Lemma 2.6.26. Let G be a group acting on a scwol X. For any v € V(X) the
following statement is true:

{9 € G:3a,d € Lk*(X): ga=d"} CG,,
and therefore, for each a € V(LkY(X)) the stabilizer G, acts transistively on
G.a NV (LK (X)).
In particular, this implies
G.aNV(LK' (X)) = Gy.a.

Lemma 2.6.27. Let G be a group satisfying FCoFG acting with finite stabilizers on
a finite dimensional connected scwol X such that G, ¢ M°(G) for all v € Vipax(X).
Let D be a fundamental domain D for that action. Let Rg(X) be the reduction of
the action of G on X. Then, the subscwol Ra(D), which we define via

V(Ra(D)) :=A{[vlre : v € V(D)},
E(Rg(D)) :={la]rs : a € Ra(E(X)) N E(D)},
is a fundamental domain for the induced action of G on Rg(X).

PROOF. We begin by proving that Rg(D) is a subscwol. Clearly, [a] €
E(R¢ (D)) implies i([a)),t([a]) € V(Ra(D)). It remains to show that for each
pair of arrows [a],[b] € E(R¢g(D)) satistfying i([a]) = ¢([b]) it is also true that
[a] o [b] € E(Rg(D)). For this purpose, take such [a], [b]. By definition of Rg(D),
there are elements

a' € la)NRa(E(X))NE(D) and b € b N Ra(E(X)) N E(D).
a’ and b’ necessarily satisfy o’ ~ b'. In the case i(a’) = t(b'), we have
[a] o [b] = [a" 0 V'] € E(Ra(D)),

as claimed. Hence, let us assume i(a’) # t(b’) occurs. By definition of the equivalence
relation “~” (p. 47 (2.4.1)), this forces G,y € M°(G). This yields a’ ¢ Ra(E(X)),
a contradiction. Thus, Rg (D) is indeed a subscwol.

Now, let us show that Rg(D) satisfies the axioms of a fundamental domain. We
begin with Definition 2.4.19 (1). Because G, ¢ M°(G) for each v € Vipax(X), we
clearly have [v] € Vipax(Ra (X)) if and only if v € Vipax(X) and [v] € Vinax(Ra (D))
if and only if v € Rg(D). If |[v]] = 1 for each [v] € Vipax(Ra (X)), we obtain
Vinax(Ra (X)) = Vipax(X) and Vinax(Ra (D)) = Vinax(D), which yields indeed Defi-
nition 2.4.19 (1).

Hence, it is left to show |[v]| = 1 for each [v] € Vipax(Ra(X)). Suppose there
is a v # v with v/ € [v]. Then v ~ v. By the definition of “~”, we get
G, = G, € M°(G), a contradiction to our hypothesis.

Obviously, R¢(D) inherits property Definition 2.4.19 (2) from D. Thus, Rg(D) is
a fundamental domain for G ~ Rg(X), as claimed. O

Let A < G be a finite index subgroup and Ma([Hol;) # 0. For the link of an
arbitrary vertex in X', we want to compute the stabilizers regarding A ~ X, given
the stabilizers for G ~ X on a fundamental domain for G ~ X. To obtain a
compact notation, it seems necessary to label each vertex and each edge with its
isotropy group with respect to the current action.

Definition 2.6.28. Let G be a group acting on an arbitrary scwol X. Let V be a
subset of V(&X) and € be subset of E(X). We set

LoV :={(v,Gy):v €V} and Lg€ :={(a,G,) : a € E}.
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We call an element of Lg V(X) a labeled vertex and an element of Lg E(X) a labeled
arrow. Furthermore, we call for each v € V(X) the set

Lo LK (X) :={(a,Gq) : a € V(LK (X))}
the labeled link of v. Lg Lk"(X) is a subset of E(X) x Subgy, (G).

G acts on V(X) x Subg, (G) via

g-(v, H) := (gv,7H), (v, H) € V(X) x Subga(G)
and on E(X) x Subg,(G) via

g-(a,H) :=(g.a,9H), (a,H) € E(X) x Subg,(G).
Finally, we call for each H € Subg,(G) the map xz given by

 E(X) x Subgn(G) —  E(X) x Subgn(G)
XH: (a, K) — (a, HNK),

the intersection with H.

Remark 25. Let us use the same notation as above. Then, we have G-isomorphisms

o

VX)) S LeV(X):

4 BX) = LgE(X):
v — (v,Gy) a —

(a,Gy).

Lemma 2.6.29. Let X be a scwol and G be a group satisfying FCoFG and acting
with finite stabilizers on it. Denote by ¢ the pair of maps

Vx) = V(Re(X)):
v — [v]

Ra(E(X)) —  E(Rg(X):
a — [a].

Then, for each [v] € V(Ra(X)) the following formula is true:

V(I (R (X)) = | @(Ra(E@) NVLE (X)),

v’ €[v]

PROOF. The proof is trivial. O

Remark 26. The reduction of Rg does not necessarily preserve dimensions. In
particular, this means if we compute Lg{a € V(Lk"(X)) : dimy i(a) = 1}, we do not
have the complete information about Lg{[a] € V (Lk” (X)) : dimg v i([a]) = 1}.

Lemma 2.6.30 (Determination of the link, given a fundamental domain). Let G be
a group acting on a finite dimensional connected scwol X. Let D be a fundamental
for that action. Then, for each vy € V(X)) the vertices of Lk (X') can be represented
as follows:

V(Ik? (X)) = | J 7.V (LK’ (D)).

(v,v)EGXV(D):
Y- v=vo

Moreover, for each family (L),ev(p)y such that

L' C V(LK (D))
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and e po Go.a 2 V(LK (D)) the following statement is true:

VIk* () = | U +Gud

(v,0)EGXV(D): a’€L?
~y.v=vq

= U U Gy, -a.

(v,0")EGXV(D): a€y.LY
Y- v=vo

PrOOF. The proof consists of straightforward applications of Lemma 2.4.20. O

Lemma 2.6.31. Let G be a group acting on a finite dimensional connected scwol
X. Let D be an arbitrary fundamental domain for this action. And denote by Vg
the quotient scwol. Furthermore, let oc be the quotient morphism

VX)) = V(Qe): v = Guw
¢ B(x) - EQqg): a = Ga-
Then, for each v € V(Yg) there is a vg € V(D) N such that
V(LK (V) = 0c(V(LE™ (X))).

PrROOF. Let o € V(Yg). By Lemma 2.4.20, we clearly have 7N V(D) # 0. Pick
a fixed vg € 9N V(D). Then v = g.vy for suitable g € G. In particular, we get

V(Lk”,(X)) = ¢.V(Lk" (X)) and therefore
06(V (LK (X)) = o (V (LK™ (X))).
We hence conclude

V(K (V) = [ J{G.a € EQVe) : t(a) = v'}

v’ €D

= {J ec(V (LK (X))

v’ €V
= 0c(V(LK™ (X)),
as desired. ]
Proposition 2.6.32. Let G be a group satisfying FCoFG, which acts with finite
stabilizers on a scwol X. Let A < G with (G : A) < oo and S be a system of
representatives for A\G. Furthermore, let v € V(X) and Hy € Suban(G) such that
Hy < G,. Moreover, assume there is a s € S such that *Hy, € M(A). Finally,
denote by xm, the intersection with Hy. Then,
La LK*"(X) = s.xm, (Lg LK"(X)).

Proor. Take s € S as above. We first prove A, , = *H,. To this end, we
observe Hy < G, forces *H, C G;.,. But we also have *H; C A by the choice of s.
We thus obtain

Hy <GgoNA=A,,.
On the other hand, A, , = G5, N A is finite by hypothesis. For the reason that *H,,
is a maximal finite subgroup in A, we hence conclude *H, = A, ,, as desired.

Let us show “C”. So, let us take (a,A,) € La Lk"(X) and put o’ := s~ la. We
clearly have o’ € V(Lk"(X)). From

s Xty (a',Gar) = s.(a', HyN Gyr)
= (a,*Hy N Gs.a)
= (a,A, NGy)
= (a,4,),
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we deduce (a, A,) € s.xm,(Lg Lk"(Hp)), as required.

For the converse direction, take s.(a’, Hy N G4) with ¢’ € LkY(X). Putting
a:=s.a" € V(Lk*" (X)), we obtain by the same computation as above

s.(a’,HoNGy) = (a,A,) € La Lk*7(X),
as claimed. This completes the proof. O

The 1-dimensional local structure of the complex of groups associated to A ~ Xp
over Yaw) = A(d)\?{p can be partially described by the table given below. Partially
has two meanings here: The first one is that the hypotheses for Proposition 2.6.32
have to be satisfied to give the computation below an importance. Proposition 2.6.32
enables us to convert local data of the complex of groups associated to I' ~ Ap
over I\ AT into local data for the complex of groups associated to A ~ X over
AD\Xp. Anything else can be derived from that data by the lemmas Lemma 2.6.27,
Lemma 2.6.29, Lemma 2.6.30 and Lemma 2.6.31. This brings up the second meaning
of “partially”. We will only compute the 1-dimensional local structure, and for the
sake of overview, we will restrict ourselves to give derived sizes of that data. The
result will be Theorem 2.6.39.

Definition 2.6.33. Let X be a scwol, G be a FCoFG-group acting with finite
stabilizers on it, and A < G such that (G : A) < oo. Furthermore, let v € V(X),
Hy < G, and [L]g € G\ Subgy,(G). Then, for each a € V(Lk"(X)) we set

afiffo(a) =} (a) i= [{(a', Ho N Ga) : @' € Guea, [Ho N Gul = (LG},

B (@) = [{(d',Au) € LALK"(X) : d’ € Gy, [Aule = [L]G}-
Remark 27.

(1) From a geometric perspective, 83 . (a) counts the number of faces
containing v, which lie in the G-orbit of the face a, such that their stabilizers
under the A-action are G-conjugate to L.

(2) ajjji(a) = afj(a') and B 1. (a) = BR (), (@) Va' € Gy.a.

(3) afL’i‘) (a) = aE’L%Z’HO)(a’) Vy e GVad € GanV(Ik"(X)).

PROOF. The only non-trivial assertion is (3). It is clearly true that

v, H (v
o310 (a) = 071 (a).

Now, (2) combined with Lemma 2.6.26 implies
a0 (q) = o7 HO (o)) V' € Glan V(LK"Y (X)),
as required. O
Proposition 2.6.34. Let X be scwol, G be a FCoFG-group acting with finite
stabilizers on it, and A < G such that (G : A) < co. Furthermore, let v € V(X) and
Hy < G, such that Ma([Holg,) # 0. Take an arbitrary [L]g < [Holg. Then, for
each s € AyNg(H) € E;Ii (Ma([Holg)) and a € V(LK"(X)) the following formula
18 true:
a{j(a) = AR (0) Vb€ Gan V(LK™ (X)).
PrOOF. We set for each a € V(Lk"(X)):
Afii;’(a) ={(d,HoNGy):d € Gy.a, [HoNGulc = [Llc},

BY (11, = {(¢',Aw) €LALK'(X) 1 d’ € Ga, [Aule = [L]a)-
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We start by proving the first assertion of the theorem. To this end, take a s €
AYNg(H) € 2,1 (Ma([Hol,)) and consider the map

XHO(GU'(Q’G(L)) - S'XHU(GU'(avGa))
(a/,HyNGy) +—  s(a’,HyNGy).

This map is obviously a bijection. By Proposition 2.6.32, we also have

im(®,) C La Lk*"(X).

P,

This in particular means
im(®;) = {(a/, Awr) € LALK®?(X) : d’ € Ggy.50}
and
(HoNGy) = Agqr-
Hence, the restriction of &, on AfoIGO (a) maps onto BX'/;, . (s.a) and therefore

affjela) = By, (s.a),

as required. Take an arbitrary b € G.a N V(Lk*"(X)). By Lemma 2.6.26, we have

b € G4y.sa. For the reason, that BZ"’[L]G is constant along G ,-orbits, this forces
ﬁSA;U[L]G (S'a) = ﬂSA;U[L]G (b) °

This yields the claim. ]

Proposition 2.6.35. Let X be a finite dimensional connected scwol, G be a FCoFG-

group acting with finite stabilizers on it. Let Dqg the fundamental domain of that

action, and A < G such that (G : A) < co. Furthermore, let v € V(X) such that
A, € M(A). Then, there are vg € V(Dg) and Hy < Gy, such that

BX 116 (@) = o (ag)  Va € V(LK'(X)), Vag € G.a N V(LK™ (X)).

PRrROOF. Let v € V(X) such that A, is maximal finite in A. Take an arbitrary
a € V(Lk”(X)). Lemma 2.4.20 ensures there is a v9 € V(Dg) and a v € G such
that v = y.v9. Put Hy := 77*A, and by := v~ 'a. Proposition 2.6.34 now implies
that

BA L6 (@) = afﬁjfo(bo)-
Take an arbitrary ap € G.a NV (Lk"(X)). By Lemma 2.6.26, we have ag € Gy, .bo.

For the reason, that afL"]’fO is constant along G,-orbits, this forces

afzis’ (bo) = aff; (o).
Combining both equations, we conclude
B 116 (@) = afg]fo (ag), VYag € G.anV (LK™ (X)),
as claimed. O
Lemma 2.6.36. Let G be a group and H, K < G subgroups. Then,
Ne(H)Ng(K) C{ye G:[HN"K|g =[HNK]g}.
Remark 28. Ng(H)Ng(K) has not to be a subgroup here.
PROOF. Let h € Ng(H) and k € Ng(K). We compute
[HN"K]g=[""H)NK],=[HNK|c
and conclude Ng(H)Ng(K) C {ye€ G:[HN"K|g =[HNK]g}, as required. 0O
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Lemma 2.6.37. Let X be a scwol, G be a FCoFG-group acting with finite stabilizers
on it, and A < G such that (G : A) < oo. Furthermore, let v € V(X), Hy < G, and
[L]g € G\ Subg,(G). Then, for any a € V(Lk"(X)) such that

[Na, (Ho)| - |Ng, (Ga)| = |G| - [Na, (Ho) N Na, (Ga);

v, |Gy
a[Lﬁ;“(a) € {O, rEapg
PRrROOF. Take v, Hy, [L]g and a as above. If [Hy N Gyle # [L]g for each
a’ € G,.a, we clearly have a[UL’l]Z" (a) =0, as desired.

we have

Hence, we assume there is at least one ag € G,.a such that [Hy NGy, le = [L]g. We
take a gg € G, such that ag = gga. By hypothesis, we have

_ INg,(Ho)| - [Ng, (Ga)| Gl
INe, (Ho) N N, (Ga)| = °

and therefore G, = Ng, (Ho)Ng,(G,). Lemma 2.6.36 forces that

|Na, (Ho)Ng, (Ga)l

[Ho N Gayla, = [HoN°G,la, = [HoNGala, = [HoN9G,la, Vg€ G,.
In particular, we obtain
[HoNGule = [Llg Vd' € Gy.a.
This implies
afif(6) = |G Ho 11 Ga)| = [Gual = 21
as required. O

Definition 2.6.38. Let v € V(&T). We call Hy € Sub(T") v-admissible if and only
it Hy € Subg, (T') N Sub(T',) and there is a square-free integer d € Z such that
Mac@ ([Holp) # 0.

Theorem 2.6.39. Consider the action of I' ~ Xp. Let Dr be the fundamental
domain for that action given by Theorem 2.2.1. Let d be an arbitrary square-free
integer. Then, the sizes |Maw ([H]p)| can be computed for every H € Subg, (T).
For each v € V(Dr), a € edge”(Dr), for each v-admissible Hy € Subg (I') and for
each 1 # [L]r < [Ho|r we compute the numbers afL’i(’ (a). By Remark 27, aFL’ﬁO
depends not on the exact choice of Hy itself, but on [Ho|r,. The results of that
computation can be found in the table below. As a consequence of Proposition 2.6.34
and Proposition 2.6.35, these numbers determine all the functions BZ,[L]F with

w e M°(A).
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We use the same the notation as in Theorem 2.2.1 and Notation 2.3.19. In addition,

we put

and

Doz <
4

-1 0

0 1

0o -1 -1
-1 0 0

0 -1 0

1 1 1
-1 0 0

0 -1 0

1 1 1

-1
oo
0
0 -1 0
-1 0 o
0 0 -1

>.

0 -1 0
-1 0 o >
0 0 -1
0 0
Lo >

-1 -1

The rows belonging to a fixed vertex v and a fixed edge a of the table below
consist of those entries, for which there exist at least one v-admissible Hy and one
1 # [L]r < [Ho]r such that aE’L’]}iO (a) # 0.

“vertex”

113 d 2 H , v
r, e Holro, 1 1)y | oyt (a)
v € Vo(Dr) a € edge’(Dr) | Hy v-admissible
i, S, 1
Sty? Sies | 4
OM 5 Sicy 3
S SiS 1
3
%Dy Sicg |4
Saye Sayp 2
Siyre Sics 6
0Q i, Sicy |2
%ig, Sics |6
Sics | 4
© S SiDs h %
4‘/4 2
i, i, 1
Siyp Sics | 4
oP s Sice | 3
S3 SiS 1
3
%Dy Sicg | 4
Sy Sy 4
ON Sisg S‘}CQO 6
%Dy S| 4
Sty? Sies | 4
ON’ SiSB S‘}C; 6
%Dy Siog | 4
Siyre Sicy 4
oM’ EH 53 Sicg 6
%Dy Sicg | a4
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SZV: SZVZ 9
Siye Sy 6
Sj Si o
MN c, AR
Sig, Sic;’ 6
SZ S4020 4
M g2 Dy SZV' 9
4 2 T 4
e S, 1
onl Sty Sicy 4
ST o
SZS 402 3
3 Sig 1
3
SiDS Sic;’ 4
STye Siee | 4
MQ %ig, Yoy |6
%Dy Sicg |4
q1 g2 ° 3 o
( S‘:)‘/4 S4v4 2
(q154)v4o SiC; 6
M'N W<
M/N/ ( 1S4)C4 Sic; )
a1 2 1
"s,  [Sicg| e
. Si o
( ISZ)DS 5216/5' ;L
4
Sige | 2
q1 o2
M’ ( 154)‘/40 531/2' 1
1 a2
M a Sy (T57), e 2 4.
’ , V, “Vy 3
MP (52) Sicg | 2
4 C 2
! Yo, | 1
(q154)53 Sicv; 3
@ Siy,®
(152), Vi
s | %ipg| 1
q1 o 1 o
/ ( S4)v4 5462 4
a1 g2 1
MQ ( 54)53 5405 6
sp, | sieg | 4
(q154)v4o SiCQO A
q1 g2 ° 1
oM’ (< S4>)V4 Sice | 12
ISZ sl o
C 1C 4
(q154) 4 Sl i
Dy 1C, 12
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Si o 9

e | a2
* A% 1
SZV; S;f‘/; 3
M'P 3 S4C§ 2

Sio ,

4 52 c, 1
Sig, Sice | 3
s3 ssz; 2
Dy SZDS 1
Sies | 2

! S3+ 0 2
54 V4 Sivz 1
SZV; SzV; 3
N'P 53 540;’ )
'y 5204 1
Sig, Sige | 3
o Siyel 2
Dy SfDS 1
Sic, Sio, |1
Siye Sioe | 4
OP ) Sic; 3
Sy 53 Si SS .
%Dy Sics | a4
Si . 9

D12V 102
! Siye |1
oQ D125§’ D125§ S%C; 3
Pragy oy 3

Si ,0
D Dis v 3
e D12 g2 Sice | 6

M'Q 3 2
1C, 6

D12 " 2
NIQ D12531 EH C; 6

N Q ST ~o
Do 1C, 6
("Pe)y 1 Sice | 2
MN (NDS)V42 S§V4. 9
M'N ( DS)C4 Sics 5

S3 e
ND8 ( Dg)Dg 4‘/;; 2
Byl Isice | 4
e CPp, | Sies | 4
Pz Fsice |y
oN NDg Sige |4
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q
1((ND8)‘/41> SiCQO 9
M'N’ T (VDg), 2 3y e
ql( vi) || e
((NDS)C4) Sigg | 2
N’ a/N “(NDy) Siye |l 2
D 8 4
:q1~N ( 8) qT (NDS)V;II) SZVZ )
N'P ql((NDg)Vf) SEVZ 1
qT ((NDS)C4> 5204 1
"Dy | "] 1
va | W) [Fa|
"(py | ;| 4
T (N Dg) 1 I
V, 1C 4
ON’ 2
(“<ND8>> oy

PrOOF. We give the proof for a non-trivial example. Let us consider the vertex
O and the edge OQ. We know that

Toals = [ V]

Applying a suitable representation ®: S} — S, we may assume that

K = 3(Tog) = (1 2), (3 4)).

st

Let us consider the following cases:
* Hy =Toq » Siy? : For Hy = T'og we obtain ®(Hy) = K. For each
o € 54 we have
°K ={(0.10.2),(0.3 0.4)).

In particular, K N °K # 1 if and only if (6.1 0.2) € {(1 2),(3 4)}. This
yields that

KNK #1 <= °(12),34)=(12),(34) < oc Ns,(K).

We conclude

O‘([)s’f;o} (0Q) = [Ns1(I'oq).(0Q,Toq)| =

4

Ny Coo)l _,

Toql

e Hy = S‘iV; : In this case, we have Ngi(Ho) = S} and we obtain by
Lemma 2.6.37

Col

- = 6.
Togl

2

a1 (0Q)
e,

1
e Hy ~ 5404 : Because each two groups of type C; are conjugate in S}
S4
we can assume that Hy < Ng1(I'oq) = Ds. For the reason that there is

only one group of type Cy4 in Dg, we obtain ®(Hp) = ((1 3 2 4)). Hence,
m € ®(Hp) N °K implies sgn(w) = 1 and ord(w) € {1,2}. This yields
m € {1,(1 2)(3 4)} and thus ®(Hy) N °K € {{1},{((1 2)(3 4))}. Because
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O(Ho)NK = {(12)(34)), we have ®(Hp) N K = ((1 2)(3 4)) if and only
if o € Cs, (1 2)(3 4)) = N, (K). This implies
o7 09) = Toa) w07 (123 )| - Ws.loa)l _,
ief) Toel

G
\Nsi(Ho)HNsi (Toq)l
Tol

e Hy ~ SiS3 : We see = 2. On the other hand, it holds
s

4

|Ns1(Ho) N Ng1(I'og)| € {1,2} due to Lagrange’s theorem. Therefore
Lemma 2.6.37 forces

0.H Col
« = =
|:SiC2o:| ( ) |FOQ|
G

1
e Hy= Ng: (Tog) S4D8: The choice of ® and the definition of H force

~
1
S4

®(Hp) = ((1 3 24),(12)). Because Hy contains all order 2 elements with
positive sign, we obtain

|H0 n g(FOQ)| S {2,4}.
Obviously I'og C Hy. For the reason both Hy and I'pg contain only
two elements with negative sign, we have °K < ®(Hy) if and only if
7(12),7(34) € {(12),(34)}. This is the case if and only if” (12)(34)) =
(12)(34) or g € Cs,((12)(34)) =P(Hy) respectively. In particular, we
obtain

H
_ml

alnl o (0Q) = |Ho.(0Q,Tog)| = =
[ 4v4]c Toq|

This completes the proof of the example. The other cases can be verified
by similar arguments.

O



L¢ E(X)
L¢ LKV (X)

Lo V(X)

Nomenclature

invertible upper triangular matrices mod d, page 17
the group Sls3(Z), page 17

complex of groups over the scwol ), page 42

the center of the group G, page 24

the set of vertices v whose vertex groups G, are maximal finite and
satisfy Ng(G,) < oo, page 52

the set of subgroups of G with finite normalizers, page 25

the scwol obtained by reduction of X associated to an action G ~ X,
page 47

scwol, page 40

a scwol with geometric realization X', page 84

the map considered in Lemma 2.6.5, page 59

set of maximal finite subgroups in G, page 46

set of maximal finite subgroups H in G with Ng(H) finite, page 46
the set of k-dimensional vertices of X, page 41

maximal vertices with respect to the canonical order on X, page 41

the set of positive definite quadratic forms over R3 of determinant 1,
page 17

simply connected cocompact simplical complex on which I' acts on,
page 17

the set of labeled arrows, page 85
the labeled link of a vertex v, page 86

the set of labeled vertices, page 85
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