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Introduction

The modular group Sl2(Z) can be written as a free product C2 ∗ C3. Making indi-
rect use of this fact, Millington has classified in [5] the finite index subgroups up
to isomorphy. Moreover the author has introduced the notion of the “type” of a
subgroup. Roughly speaking, two subgroups have the same type if and only if they
are isomorphic as groups and the fundamental domains of their subgroups with
respect to the action on the upper halfplane via Moebius transforms are essentially
equal. In particular, this concept does not only take into account the isomorphy
types, but also the gluing of the fundamental domain which is encoded by the genus
and the gluing of the cusps.

It is entirely possible that two isomorphic groups are not of the same type. Jan-
Christoph Schlage-Puchta and Matthias Krieger have researched an algorithm which
enables the classification of all subgroups of given index up to isomorphy based on
the knowledge about the subgroup lattice of each factor of the free product, see [6],
[4]. The authors have made tremendous use of the fact that the isomorphy type of
a free product does only depend on the frequency of occurence of each factor and
not on the order of the factors.

In the first chapter of this work we consider the actions of virtually free groups
on trees. This is in particular generalizes the action of Sl2(Z) on the upper plane.
In this setting, in analogy to the action of Sl2(Z) on the upper plane, we are also
able to define cusps and to analyze the behaviour of those cusps under transition to
subgroups of finite index appropriately. For this purpose we introduce the concepts
“cusp order” and “cusp multiplicity” of a finite index subgroup. In the example
of the action of Sl2(Z) on the upper plane, the fundamental domain of a finite
index subgroup ∆ can be decomposed into | Sl2(Z)/∆|-many copies of fundamental
domains belonging to the Sl2(Z)-action on the upper plane. The cusp order of a
cusp measures the number of copies of the fundamental domains belonging to the
Sl2(Z)-action and being adjacent to that cusp.
On the other hand, the cusp multiplicity measures the total number of cusps, into
which a cusp decomposes under transition to the considered subgroup.

We present a geometric and a group theoretic definition for these quantities and
show that they are equivalent under certain conditions.

The second chapter of the thesis is concerned with the behaviour of elliptic sin-
gularities of groups acting with finite stabilizers on simply connected polyhedral
complexes under transition to finite index subgroups. This consideration is strictly
more general than the analysis of group actions of virtually free groups on trees.
For example Sl3(Z) is not virtually free, see [7] p.67 theorem 16 but it acts with
finite stabilizers on the quadratic forms over R3, see [8]. Soulé reduces Sl3(Z)-set of
the quadratic forms to a polyhedral complex, such that Sl3(Z) acts cocompactly
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INTRODUCTION 2

and with finite stabilizers on it, by retracting the fundamental domain appropriately.
We consider polyhedral complexes as certain directed graphs. In turn we will work
out some concepts and results for group actions on such graphs. We will apply these
methods to the group action of Sl3(Z) on the polyhedral complex constructed from
the quadratic forms as mentioned above and obtain explicit results for certain finite
index subgroups.



CHAPTER 1

Cusps of finite graphs of finite groups

In the present chapter we introduce the notion of “cusps” of a graph of groups and
prove some fundamental properties of them and their stabilizers which we will call
“parabolic” subgroups.

In the following, let G be a group acting inversion free on a tree X in the sense of
[7] (the definition can be also found below).

The notion of a cusp for a group action on a manifold is well known. In or-
der to give an idea what a cusp on a graph might be, we look at the following
example.

Let G := Sl2(Z) be the action on the Hyperbolic plane by Moebius transforms. In
this setting, cusps are exactly the points on the boundary of the fundamental domain
which compactify it. The standard fundamental domain of the modular group has
exactly one cusp which is the point at infinity. However, if we look at translates
of the fundamental domain, we see that the translates of that cusp exhaust the
whole boundary ∂H of H. In other words, the cusps lie in the same orbit under the
extension of the action Gy H to Gy H ∪ ∂H.

We may think of the action of G = Sl2(Z) on H as an action on a geodesic
tree X. X can be made up of the translates of the only boundary component of the
fundamental domain of Gy H, which is not heading to a cusp. The set of ends of
X will play the role of the boundary and therefore we will define a cusp to be the
orbit of an end and a parabolic subgroup to be a stabilizer of one.

Furthermore we will give some conditions to determine when a parabolic group is
cyclic and we will prove under certain assumptions that a cyclic parabolic group
is self normalizing. This leads to some consequences for the behaviour of cusps of
finite index subgroups of G from this fact.

1.1 Terminology, notation and basics

In the whole chapter X will denote a tree and G a group acting inversion free on X
if nothing else is mentioned. There is a natural combinatorial metric on X which we
denote by D. We recall that an action of G on a tree X is called inversion free if an
element γ ∈ G fixes an edge if and only if it fixes its vertices. If Y is a subgraph of
X we write Y ⊆ X and by abuse of notation we write y ∈ Y instead of y ∈ V (Y).
A ray is an infinite path without backtracking which has exactly one vertex with
only one neighbour. The unique vertex of degree one is called the origin of the
ray. If we think of rays as rooted trees with root in the origin we obtain a natural
ordering. Each ray endowed with this ordering is isomorphic to the positive integers
as ordered space and the isomorphism is uniquely determined. Take respect to
this isomorphism if we talk of a r ∈ r being large enough. The existence of the
isomorphism implies that with this ordering the ray is a totally ordered space.

3



1. THE STRUCTURE OF THE AUTOMORPHISMS PRESERVING ENDS 4

We define an equivalence relation on the set of rays of X by saying two rays are
equivalent if and only if they intersect in a ray themselves. This clearly defines an
equivalence relation. The set of equivalence classes of rays is called the set of ends
of X which we denote by ΩX.
Aut(X) induces an action on ΩX via α∗([r]) := [α(r)]. Therefore an action Gy X
also induces an action G y ΩX. We refer on this action on ΩX if nothing else is
mentioned.
We denote by Aut◦(X) the set of automorphisms which act inversion free on X. Let
v ∈ X a vertex. Then, there exists a bijection between the rays with origin in v
and ΩX which we obtain by mapping the rays with origin in v on their equivalence
classes. For the reason X is a tree and therefore contains no circle, this map is
necessarily injective. Surjectivity of the map is trivial. We have to remark that this
bijection cannot be interpreted as isomorphism of Aut(X)-modules in a canonical
way because any group action mapping a ray with origin in v to a ray with origin in
v has to fix v. This is the reason why we work with me more abstract space ΩX.

Definition 1.1.1 (cusps). The set of left G-orbits on the ends G\ΩX is called the
set of cusps of G on X.

Definition 1.1.2 (parabolic groups). Let P ≤ G such that there exists a c ∈ ΩX
with the property P = Gc. Then P is called parabolic.

We observe by definition that the parabolic groups associated to one cusp are
conjugate by elements of G.

1.2 The structure of the automorphisms preserving ends

In the sequel fix a c ∈ ΩX. We set Aut(c) := {α ∈ Aut(X) : αc = c}. Our aim is to
construct a group homomorphism between Aut(c) and Z.
Let r, s ∈ c, r = (ri)i∈N0

, s = (si)i∈N0
. Then there exists a smallest integer lr,s with

the property rl ∈ s for all l ≥ lr,s as well as a smallest integer ls,r such that sl ∈ r
for all l ≥ ls,r. We observe

(1.2.1) r ∩ s =
(
rlr,s+i

)
i∈N0

and r ∩ s =
(
sls,r+i

)
i∈N0

.

We put
τ(r, s) := lr,s − ls,r

and call this number the displacement of the transition from r to s. For an arbitrary
ray r ∈ c set

dr(α) := τ(r, αr)

and call it the displacement of α.

Definition 1.2.1. Let r ∈ c ∈ ΩX and x, y ∈ r = (ri)i∈N0 . Then x = ri for an
i ∈ N0 and y = rj for an j ∈ N0. We put dr(x, y) := j − i. This function may have
values in the whole set of integers. We call the value dr(x, y) the directed distance
from x to y. The directed distance does not depend on the choice of r with x, y ∈ r.
We may therefore write dc(x, y) := dr(x, y).

Before we prove the independence from the choice of the ray, we recapitulate the
following facts: We recall that in a tree X for each two distinct vertices there exists a
unique geodesic with these vertices being terminal. Moreover, in any tree the paths
without backtracking are exactly the geodesics. Hence, for each pair of distinct
vertices there exists a unique path without backtracking with these terminal vertices.

Proof. Let r ∈ c ∈ ΩX and x, y ∈ r = (ri)i∈N0
. Then x = ri for an i ∈ N0

and y = rj for an j ∈ N0. We first show that the directed distance does not
depend on the choice of r. Without loss of generality let i ≤ j, otherwise transit to
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dr(y, x) = −dr(x, y). Let s = (sk)k∈N0
be another ray with x, y ∈ s. Then x = sk

and y = sl, for suitable k, l ∈ N0. We observe k ≤ l. On the contary, suppose k > l.
Then r ∩ s would be a path without backtracking between the origins 0r of r and
0s of s and therefore a geodesic of finite length. Thus, r ∩ s cannot be a ray and
we conclude s /∈ c, a contradiction. This forces dr(x, y) ≥ 0 and ds(x, y) ≥ 0. They
therefore coincide with the (ordinary) distances measured in r and s respectively.
Let π be a path without backtracking with terminal vertices x and y. Considering
the definition of rays, the uniqueness of such paths forces π ⊆ r, s. Denoting the
length of π by l(π), we obtain

dr(x, y) = l(π) = ds(x, y)

and the independence of the directed distance is verfied. �

Remark 1. A short analysis of the definition, yields that the directed distance is
translation invariant, in equal

dr(vi0+k, vj0+k) = dr(vi0 , vj0)

for all r = (vi)i∈N0
, i0, j0 ∈ N0, k ≥ max{−i0,−j0}.

Lemma 1.2.2. The displacement of α does not depend on the choice of the ray r.
We may therefore define dc(α) := dr(α).

Proof. Let 0r be the origin of r. For x ∈ X we set |x|r := dc(0r, x). Let r, s ∈ c.
We observe for r = (ri)i∈N0

and s = (si)i∈N0

lr,s = |rlr,s |r = |sls,r |r,
ls,r = |sls,r |s = |rlr,s |s.

With this notation and s := αr and hence si = αri, we get for r ∈ αr ∩ r and
therefore for α−1r ∈ r ∩ α−1r:

dc(α
−1r, r) = dc(α

−1rlr,αr
, rlr,αr

)
(1.2.1)
= dc(α

−1αrlαr,r
, rlr,αr

) = lr,αr − lαr,r = dr(α),

where the first equality is deduced from the translation invariance of the directed
distance.
We conclude that the displacement dr(α) does indeed not depend on r.

�

Lemma 1.2.3 (additivity of the directed distance). Let x, y, z ∈ r. Then

dr(x, z) = dr(x, y) + dr(y, z).

Proof. Let r be a ray and 0r its origin. In section 1.1 we already have stated
that (r, 0r) is a totally ordered space isomorphic to (N0,≤). For a finite chain
x0 ≤ · · · ≤ xn we call the vertices x0 and xn its terminal vertices. With these
thoughts in mind, we observe that one of the following two cases occurs:

(a) y is not terminal: We may assume without loss of generality x ≤ y ≤ z,
swapping x, z if necessary and applying the identity dr(v, w) = −dr(w, v)
for v, w ∈ r. Now, r induces a geodesic with terminal vertices x and z
which contains by assumption the vertex y. Thus, the geodesic connecting
x and z is the concatenation of geodesics connecting x and y and y and z.
We conclude dr(x, z) = dr(x, y) + dr(y, z).

(b) y is terminal: We reduce this case to the first one. For example let x ≤
z ≤ y. Then, we conclude from the first case dr(x, y) = dr(x, z) + dr(z, y).
Applying the identity dr(z, y) = −dr(y, z) and adding dr(y, z) on both
sides, yields the claim.

�

The following theorem is inspired by [7] p.63 proposition 25:
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Theorem 1.2.4. Let c ∈ ΩX. Then dc : Aut(c) → Z : α ↦→ dc(α) is a well-defined
group homomorphism with ker dc =

⋃
r∈c

⋂
v∈R Aut(c)v.

Proof. Lemma 1.2.2 says that dc is well-defined. We want to establish the
homomorphy. For this purpose, let α, β ∈ Aut(c) and r ∈ c arbitrary. Take r ∈ r
sufficiently large such that (α ◦ β)−1r, α−1r, r ∈ r. We then get by the additivity of
the directed distance

dc(α ◦ β) = dr
(
(α ◦ β)−1r, r

)
= dr(β

−1α−1r, α−1r) + dr(α
−1r, r)

= dc(β) + dc(α).

It remains to show the equation describing the kernel. Let α ∈ ker dc and r ∈ c .
For v ∈ r large enough we get dr(α−1v, v) = dc(α) = 0. Let (v)r be the uniquely
determined subray with origin in v. We observe d(α−1r, r) = 0 for each r ∈ (v)r.
We thus infer α−1r = r for all r ∈ (v)r. This implies α ∈ Aut(c)r for all r ∈ (v)r.
We hence infer

α ∈
⋂

r∈(v)r

Aut(c)r ⊆
⋃
r∈c

⋂
r∈r

Aut(c)r.

On the other hand, let α ∈
⋃

r∈c

⋂
v∈r Aut(c)v. Then, there exists a ray r ∈ c such

that for each v ∈ r holds α ∈ Aut(c)v. This in particular implies αv′ = v′ for every
v′ ≥ v. We conclude

dc(α) = dr(α
−1v′, v′) = 0

for v′ ∈ r large enough and hence α ∈ ker dc. �

Corollary 1.2.5. Let G
θy X not necessarily inversion free. Let c ∈ ΩX and Gc a

parabolic group. We denote the restriction of the action θ to Gc by θc. We then get

ker dc ◦ θc ≤
⋃
r∈c

⋂
v∈r

Gv.

In future we will write dc instead of dc ◦ θc if we talk about an action Gy X.

The proof of the corollary is trivial. We observe that ker dc = 1 means Gc is cyclic.

Let G(Y) be a finite graph of finite groups with vertex groups (Gv)v∈V (Y). By [7]
there exists an uniquely determined tree X which is known as universal cover of
G(Y) and an uniquely determined fundamental group G such that Gy X inversion
free and Y = G\X. Now we can formulate the following:

Corollary 1.2.6. Let Y be a finite path and G(Y) be a graph of finite groups over
Y. Under the assumption gcd((|Gv|)v∈Y) = 1, every parabolic subgroup is cyclic.

Proof. Let P be a parabolic subgroup. Then, there exists a c ∈ ΩX such
that P = Gc. By construction of X (see [7]), every ray c ∋ r ⊆ X contains
a tuple of vertices (v)j∈J such that there is a bijection ϕ between J and V (Y)
and Gvj

∼= Gϕ(j). Applying Lagrange’s theorem, we obtain that the cardinality
|
⋂

v∈rGv

⏐⏐ divides gcd
(
(|Gvj |

)
j∈J

) = 1. We conclude ker dc = 1 and observe that
Gc is indeed cyclic. �
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1.3 Properties of cyclic parabolic subgroups

Lemma 1.3.1. Let α ∈ Aut(X) fixing an end c ∈ ΩX. Then, there exists an r ∈ c
such that αr ⊆ r or α−1r ⊆ r. Furthermore there is an r ∈ c such that αr ⊆ r if and
only if dc(α) ≥ 0.

Proof. Let s ∈ c be an arbitrary ray. Then, there exists a v ∈ s large enough
such that α−1v, v ∈ s. For x ∈ s, let (x)s be the uniquely determined subray of
s with origin in x. We start with the proof of the first assertion. Without loss of
generality, we may assume dc(α) ≥ 0, otherwise we pass to α−1 and make use of
dc(α

−1) = −dc(α). So, we obtain 0 ≤ dc(α) = dc(α
−1v, v) and consequently |v|s ≥

|α−1v|s. Because s is a ray and therefore totally ordered, we obtain (v)s ⊆ (α−1v)s.
We set r := (α−1v)s and observe that

αr = (αα−1v)s = (v)s ⊆ (α−1v)s = r.

This proves the first assertion and the sufficiency of the second assertion.

For the converse direction, we assume that there exists a r ∈ c such that αr ⊆ r. Let
r ∈ r with 0r = α−1r. Then r = (0r)r = (α−1r)r. By

r ⊇ αr = α(α−1r)r = (r)r,

we get
0 ≤ dr(0r, r) = dr(α

−1r, r) = dr(α
−1v, v)

for each v ∈ r, where the last equation is obtained by applying the translation
invariance of the directed distance on r. For v ∈ r large enough, we get dc(α) =
dc(α

−1v, v) ≥ 0. This completes the proof. �

Put Gtor := {γ ∈ G : ord(γ) <∞}. We emphasize that in general Gtor has not be a
subgroup of G.

Lemma 1.3.2. Let Gy X inversion free such that |Gv| <∞ for all v ∈ X. Then,
for every c ∈ ΩX holds

ker dc = Gc ∩Gtor.

Proof. Let c ∈ ΩX. By Corollary 1.2.5 and the hypothesis it is obvious that
ker dc ⊆ Gtor.

To prove the converse direction, we observe that the only torsion element in Z is 0.
Therefore dc(γ) = 0 for all γ ∈ Gc ∩Gtor and hence Gc ∩Gtor ⊆ ker dc. �

We are now able to prove the following characterization for infinite cyclic parabolic
groups.

Theorem 1.3.3 (characterization for infinite cyclic parabolic groups). Let Gy X
inversion free. Assume Gc ̸= {1}. Then Gc is infinite cyclic if and only if ker dc =
{1}.

Proof. Suppose Gc is infinite cyclic. Because an infinite cyclic group has no
element of finite order we obtain Gc ∩Gtor = 1. Then Lemma 1.3.2 yields

ker dc = Gc ∩Gtor = {1},

as desired.

Conversely, assume ker dc = {1}. Then {1} ≠ Gc ↪→ Z. Therefore Gc is infinite
cyclic, as required. �
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Definition 1.3.4. Let G be a group and {1} ̸= H ≤ G a subgroup. We define
ComG(H) := {g ∈ G : ∃1 ̸= x ∈ H : g−1xg ∈ H}. We call this set the Compensator
of H in G.

We have to remark that in general ComG(H) is not necessarily a group. But
nevertheless ComG(H) has some obvious useful properties:

• (ComG(H))
−1

= ComG(H),
• NG(H) ⊆ ComG(H).

Before we proceed, let us introduce some notation. It is widely leant on that in [3].
Let α ∈ Aut(X) acting inversion free on X. We call α a type 2 automorphism if and
only if for any finite F ⊆ V (X) holds αF ̸⊆ F . An infinite backtracking free path is
called 2-path if every vertex has degree 2. Fix any vertex in a 2-path. The rooted
tree with root in this vertex is isomorphic as ordered space to Z. This property
characterizes 2-paths. Let α be a type 2 automorphism. The direction D(α) of α, as
introduced as in [3], is the end associated to the uniquely determined ray generated
by the sequence (αk(v))k∈N0

. Let ℓ be a 2-path. Each automorphism α fixing ℓ
induces an automorphism on ℓ, namely the restriction α|ℓ. Hence, the restriction
map

ρℓ :
Aut(X)ℓ → Aut(ℓ)

α ↦→ α|ℓ

is a homomorphism. Finally, we briefly write (ΩX)α for the set of ends fixed by an
automorphism α.

Next we state a customized version of Halin’s theorems [3] pp.267-268 theorems 7
and 8.

Theorem 1.3.5 (Halin’s theorems; [3] pp.267-268 theorems 7 and 8). Let α ∈
Aut◦(X) be an automorphism of type 2. Then, there is exactly one 2-path ℓ(α) which
is left invariant by it. In particular,

(ΩX)α = {D(α),D(α−1)}.

Remark 2.
(1) ℓ(α) is sometimes also called the line or, due to Serre, the straight path

for α.
(2) Each 2-path can be identified with a pair of distinct ends.

Lemma 1.3.6. Let Gy X inversion free and |Gv| <∞ for all v ∈ X. Let Gc be a
cusp and Gc be an associated parabolic group with Gc ̸= {1} and Gc ∩Gtor = {1}.
Then, the following assertions hold:

Gc ⊆ ComG(Gc) ⊆ Gc ∪
{
γ ∈

⋃
v∈X

Gv : 2 | ord(γ)
}
⊆ Gc ∪

⋃
v∈X:

|Gv|∈2Z

Gv,(1.3.1)

ComG(Gc)
{2} ⊆ Gc,(1.3.2)

where G{2} := {g2|g ∈ G}.

Proof. Let γ ∈ ComG(Gc). Then there exists an element p ∈ Gc such that
(γ−1pγ) ∈ Gc. We therefore obtain p.γc = γc and hence γc ∈ (ΩX)p. The hypothesis
yields that p acts as automorphism of type 2. An application of Theorem 1.3.5 yields
(ΩX)p = {D(p),D(p−1)} ∋ c.

Hence, we have to investigate the following cases:
(a) c = D(p) = γc,
(b) c = D(p−1) = γc,
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(c) D(p) = c,D(p−1) = γc,
(d) D(p−1) = c,D(p) = γc.

In the cases (a) and (b), we obtain γ ∈ Gc immediately and there is nothing to
prove. Without loss of generality, we consider the case (c). Let us assume that
D(p) ̸= D(p−1) otherwise this case reduces to (a) or (b). So, we have D(p) = c
and D(p−1) = γc = γD(p). The fact that γ preserves {D(p),D(p−1)} forces
γD(p−1) = D(p). This in particular leads to the observation

γ2c = γ2D(p) = γ(γD(p)) = γD(p−1) = D(p) = c

and hence γ2 ∈ Gc. This proves (1.3.2).

Let ℓ be the uniquely determined infinite 2-path belonging to the ends D(p) and
D(p−1). Because of D(p−1) = γ.D(p) and Lemma 1.3.1 we get γℓ = ℓ. By assump-
tion the ends generated by ℓ get swapped. Hence, there is a vertex or edge in ℓ such
that γ fixes this vertex or edge respectively. Because G acts on X inversion free, γ
fixes a vertex v ∈ ℓ ⊆ X in any case. This leads to γ ∈ Gv and ord ρℓ(γ) = 2 and
therefore 2 | ord(γ) <∞. This yields the claim. �

Lemma 1.3.7 (sharped version of Lemma 1.3.6). Under the same hypotheses like
in Lemma 1.3.6 the following assertion is true:

(1.3.3) ComG(Gc) ⊆ Gc ⊔ {γ ∈ G| ord(γ) = 2}.

Proof. By Theorem 1.3.3, Gc is an infinite cyclic group. Hence, there exists
an a ∈ Gc such that Gc = ⟨a⟩ and ord(a) = ∞.
Assume ComG(Gc) ̸= Gc. Then, there is a γ ∈ ComG(Gc) − Gc. (1.3.1) forces
n := ord(γ) <∞ and (1.3.2) implies γ2 ∈ Gc = ⟨a⟩. Thus, there exists a k ∈ Z with
the property γ2 = ak. From that we deduce 1 = γ2n = akn. Finally, ord(a) = ∞
forces k = 0 and therefore γ2 = 1. Because of 1 ̸= γ ∈ Gc we conclude ord(γ) = 2,
as claimed. �

Lemma 1.3.8. Let X be a tree and c ∈ ΩX. Furthermore let α ∈ Aut◦(X) such
that αk ∈ Aut◦(X)c and such that for each finite F ⊆ V (X) holds αkF ̸⊆ F . Then,
also

α ∈ Aut◦(X)c

is true.

Proof. By hypothesis αk is an automorphism of type 2. This is also true for α,
for otherwise there would be a finite F ⊆ V (X) such that αkF = αk−1αF ⊆
αk−1F ⊆ · · · ⊆ F , a contradiction. Applying Theorem 1.3.5 we obtain c ∈
{D(αk),D(α−k)}. On the other hand, we have D(α) = D(αk) and D(α−1) =
D(α−k). We conclude c ∈ {D(αk),D(α−k)} = {D(α),D(α−1)} and therefore
αc = c and get the claim. �

Theorem 1.3.9. Let Gy X inversion free and |Gv| <∞ for each v ∈ X. Further-
more let c ∈ ΩX with Gc ̸= {1} and Gc ∩Gtor = 1. Then it holds:

ComG(Gc) = NG(Gc)

and therefore ComG(Gc) is a subgroup of G.

Proof. The direction ⊇ is immediate. It remains to prove the opposite direc-
tion. Theorem 1.3.3 yields that there exists an a ∈ Gc such that ord(a) = ∞ and
Gc = ⟨a⟩. Let γ ∈ ComG(Gc). Then there exists a k ∈ Z such that γ−1akγ ∈ Gc.
Let F ⊆ V (X) be an arbitrary finite set. Gc ∩Gtor = {1}, meaning ord(x) = ∞ for
all 1 ̸= x ∈ Gc, forces

(γ−1aγ)kF = γ−1akγF ̸⊆ F,
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for otherwise the set F would be left invariant under the action of ⟨γ−1akγ⟩. The
uniquely determined geodesic tree F ∗ generated by F would hence be ⟨γ−1akγ⟩-
invariant and finite as well. Therefore γ−1akγ would necessarily have a fixed vertex
or edge in F ∗ but the action of G is inversion free. Thus, γ−1akγ would have to fix
at least one vertex v ∈ F ∗ ⊆ X and hence γ−1akγ ∈ Gv for a certain v. But this
chain of thoughts leads to

ord(ak) = ord(γ−1akγ)
⏐⏐ |Gv| <∞,

a contradiction.

Now we are able to apply Lemma 1.3.8. This leads to

γ−1aγ ∈ Gc

and we conclude γ ∈ NG(Gc).
�

Let G be a group and Ω ⊆ G. For each k ∈ N we denote by

Ωk := {ω1 · · ·ωk : ωi ∈ Ω ∀1 ≤ i ≤ k}

Lemma 1.3.10. Same hypothesis as in Theorem 1.3.9. Then

(NG(Gc)−Gc)
2 ⊆ Gc and hence (ComG(Gc)−Gc)

2 ⊆ Gc

and therefore [ComG(Gc) : Gc] = [NG(Gc) : Gc] ∈ {1, 2}.

Proof. The case NG(Gc) = Gc is trivial, so we may assume NG(Gc)−Gc ̸= ∅.
Let γ, γ′ ∈ NG(Gc) − Gc. We then get by the same argument as in the proof of
Lemma 1.3.6 that c = D(a) or c = D(a−1) and both γ and γ′ leave {D(a),D(a−1)}
invariant. Without loss of generality, we may assume c = D(a). Because γ, γ′ /∈ Gc

and therefore also γ−1 /∈ Gc, we obtain

γ′c = D(a−1) = γ−1c.

This implies γγ′c = c and hence γγ′ ∈ Gc, as required. �

Theorem 1.3.11. Let G be a group such that each two elements of order 2 are
conjugate and such that Gy X inversion free with finite vertex stabilizers, meaning
|Gv| <∞ for all v ∈ X. Let Gc be a cusp and Gc ̸= {1} be the associated parabolic
group with Gc ∩ Gtor = {1}. Furthermore, assume that Gc ̸⊆ {[γ, g] : γ, g ∈
G, ord(γ) = 2}. Then

ComG(Gc) = Gc.

Proof. To obtain a contradiction, suppose ComG(Gc)−Gc ≠ ∅. Then, there
exists a γ ∈ ComG(Gc). Lemma 1.3.7 ensures ord(γ) = 2. Lemma 1.3.10 yields

ComG(Gc)−Gc = γGc.

Let x ∈ Gc be an arbitrary element. Again by Lemma 1.3.7, we obtain ord(γx) = 2.
The hypothesis on G forces the existence of a g ∈ G such that γx = g−1γg and thus
x = γ−1g−1γg = [γ, g]. We conclude

Gc ⊆ {[γ, g] : γ, g ∈ G, ord(γ) = 2},

the desired contradiction. �

Theorem 1.3.12. Let Gy X inversion free such that |Gv| <∞ for all v ∈ X and
each parabolic subgroup of G is infinite cyclic. Then, the maximal infinite cyclic
subgroups are exactly the parabolic subgroups.
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Proof. Let P be a maximal infinite cyclic subgroup and a its generating ele-
ment. Then ord(a) = ∞ and because |Gv| <∞ for all v ∈ X we get that a acts as
a type 2 automorphism on X. Theorem 1.3.5 forces ∅ ≠ (ΩX)a = {D(a),D(a−1)}.
We conclude a ∈ GD(a) and hence P ≤ GD(a). Because GD(a) is cyclic, we infer
P = GD(a).

For the converse direction let c ∈ ΩX and Gc fixing c. By hypothesis, Gc is
infinite cyclic and therefore generated by an element a ∈ Gc, ord(a) = ∞. Let P
be an infinite cyclic group, generated by an element b ∈ P with ord(b) = ∞, such
that Gc ≤ P . We observe

⟨a⟩ = Gc ≤ P = ⟨b⟩.
This yields a = bk for a k ∈ Z and hence bk ∈ Gc. Lemma 1.3.8 forces b ∈ Gc and
therefore P = ⟨b⟩ ≤ Gc, and the proof is complete. �

We remark that this theorem also guarantees the existence of maximal infinite cyclic
subgroups. We extract the case that G does not contain any element of order 2:

Corollary 1.3.13. Let Gy X inversion free such that |Gv| <∞ for all v ∈ X and
each parabolic subgroup of G is infinite cyclic. Furthermore assume 2 - |Gv| for any
v ∈ X. Then ComG(Gc) = Gc.

Example 1.3.14. Let G := C2 ∗C2 where the first factor is generated by c2 and the
second by c′2. G can be interpreted as fundamental group of the associated graph of
groups acting on the universal cover which is a tree. Corollary 1.2.5 guarantees that
every parabolic group has to be cyclic. We consider P := ⟨c2c′2⟩. We observe that
P is a maximal infinite cyclic subgroup and hence by Theorem 1.3.12 it is parabolic.
But we see that

⟨c2⟩ ⊆ ComG(P )

as well as
⟨c′2⟩ ⊆ ComG(P ).

From that we conclude ComG(P ) ̸= P . We remark that in G does not hold that
each 2 elements of order 2 are in the same conjugacy class.

Proposition 1.3.15 (parabolic groups intersect trivial). Let Gy X such that each
parabolic subgroup is either trivial or infinite cyclic. Then, for each two c, c′ ∈ ΩX
either

Gc′ = Gc or Gc′ ∩Gc = {1}
is true.

Proof. On the contrary to our claim, suppose there exist c, c′ ∈ ΩX such that
Gc′ ∩Gc ̸= {1}. Then it follows {1} < Gc′ ∩Gc < Gc. This forces Gc

∼= Z. Hence,
Gc contains only the subgroups {1} and those of finite index. Because H := Gc′ ∩Gc

can be understood as ideal in Z, we deduce that H is of finite index in Gc. We
therefore obtain that Gc/H is a finite cyclic group. Fix an arbitrary 1 ̸= γ ∈ Gc.
Because Gc/H is finite, there is a k ∈ N≥1 such that

H = (γH)k = γkH.

This yields γk ∈ H ≤ Gc′ . By choice we have ord(γ) = ∞. The same argument as
in the proof of Theorem 1.3.9 guarantees that γkF ̸⊆ F for each finite set F . Thus,
Lemma 1.3.8 finally forces γ ∈ Gc′ and therefore Gc ⊆ Gc′ . Exchanging the roles of
c and c′ yields the claim.

�
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1.4 Cusps of finite index subgroups

In [4] has been made an attempt to compute the “cusp multiplicities” of Fuchsian
groups using the “cusp definition” for the hyperbolic plane. Fuchsian groups can
be understood as finite index subgroups of free products of groups. We want to
generalize the results on the setting of finite index subgroups of virtually free groups.
Virtually free groups can be considered as fundamental groups of finite graphs of
finite groups. Think of Gy X as the action of such a fundamental group of a finite
graph of groups on its universal cover X, which has to be a tree.

Let G be a group and H,K ≤ G. We denote by [H]K the orbit of H under
K where K acts on the set of subgroups of G via conjugation. K acts also on the
elements of G by conjugation. For x ∈ G we will denote an orbit by [x]K . If x and
y are conjugate by an element of K, we will write x ∼K y. We use an analogue
notation for subgroups; just replace x and y by subgroups.

In the sequel let ∆ ≤ G a finite index subgroup, µ := (G : ∆). Let θ : G →
Sym(∆\G) = Sµ be the canonical representation on the ∆-cosets.

Definition 1.4.1 (cusp multiplicity). Let Gc ∈ G\ΩX be a cusp of G in X. Then
we call cm∆(Gc) := |∆\Gc| the geometric cusp multiplicity of Gc in ∆. This number
counts the cusps of ∆ in X which fuse to Gc.

We observe that

cm∆(Gc) = |∆\G/Gc| =
⏐⏐{1, . . . , µ}θ/Gc

⏐⏐.
Definition 1.4.2. Let P be a parabolic subgroup of G. Then the grouptheoretical
cusp multiplicity is the number

gcm∆(P ) :=
⏐⏐{[∆ ∩ γPγ−1]∆ : γ ∈ G}

⏐⏐.
That is the number of ∆-conjugacy classes of parabolic subgroups in ∆ into which
the G-conjugacy class of the parabolic subgroup P decomposes.

Let c ∈ ΩX. We call the number co∆(c) := |∆c\Gc| the cusp order of c.
Furthermore, we set for an infinite parabolic subgroup P = ⟨a⟩ in G

gcoP∆(γ) := inf{|k| : k ∈ Z− {0}, γakγ−1 ⊆ ∆}.

the grouptheoretical cusp order of γ with respect to P for the subgroup ∆.

We proceed by giving a characterization for the cusp order.

Lemma 1.4.3. Let G y X inversion free such that |Gv| < ∞ for all v ∈ X and
c ∈ ΩX such that Gc ̸= {1} and Gc ∩Gtor = {1}. Then, Gc = ⟨a⟩ is infinite cyclic
and

co∆(c) = inf{|k| : k ∈ Z r {0}, ak ∈ ∆}.
Moreover, it is true that co∆(c) <∞.

Proof. Because Gc is cyclic the cosets ∆c\Gc form a cyclic group. We hence
obtain ∆c\Gc = ⟨∆c.a⟩.

|∆c\Gc| ≤ |∆\G| = µ <∞

yields co∆(c) <∞. We conclude

|∆c\Gc| = ord∆c\Gc
(∆c.a) = inf{|k| : k ∈ Z r {0}, ak ∈ ∆},

as required. �
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Lemma 1.4.4. Let θ be the canonical coset-representation G → Sym(∆\G) and
⟨a⟩ = P ≤ G be an infinite cyclic parabolic subgroup. Then

gcoP∆(γ) = |∆γ.P |
where ∆γ.P denotes the orbit of ∆γ ∈ ∆\G ∼= {1, . . . , µ} under θ(P ). In particular,
we obtain gcoP∆(γ) <∞ for all γ ∈ G.

Proof. It holds µ = |∆\G| =
∑

∆γ.P∈(∆\G)/P |∆γ.P | therefore |∆γ.P | < ∞
for all γ ∈ G. So let k ∈ N>0 such that |∆γ.P | = k. Then

∆γ.ak = ∆γ

and thus ak ∈ G∆γ = γ−1∆γ. The last assertion implies gcoP∆(γ) ≤ k.

On the other hand, we obtain by the definition the grouptheoretical cusp or-
der γP gcoP∆(γ) ⊆ ∆γ. This leads to the equation ∆γP gcoP∆(γ) = ∆γ and therefore
agco

P
∆(γ) ∈ ⟨a⟩∆γ . We therefore conclude

k = |∆γ.⟨a⟩| = |⟨a⟩/⟨a⟩∆γ |
⏐⏐⏐ |⟨a⟩/⟨agcoP∆(γ)⟩| = gcoP∆(γ),

and the proof is complete. �

Lemma 1.4.5. Let G y X inversion free such that |Gv| < ∞ for all v ∈ X and
c ∈ ΩX with Gc = ⟨a⟩ infinite cyclic. Let c′ ∈ G.c. Then there is a γ ∈ G with
c′ = γ.c and

co∆(c
′) = gcoGc

∆ (γ).

Proof. We first observe

Gc′ = Gγc = γ⟨a⟩γ−1 = ⟨γaγ−1⟩.
Lemma 1.4.3 therefore implies

co∆(c
′) = inf{|k| : k ∈ Z r {0}, γakγ−1 ⊆ ∆} = gcoGc

∆ (γ),

as desired. �

Theorem 1.4.6. Let P be an infinite cyclic parabolic group generated by an element
a. Then it holds

gcm∆(P ) =
⏐⏐{{[x]∆, [x−1]∆} : x ∈ ∆: ∃γ ∈ G : x ∼G a|∆γ.P |}⏐⏐.

Proof. It is easy to see that the map{
{[x]∆, [x−1]∆} : x ∈ ∆: ∃γ ∈ G : gcoP∆(γ) <∞ ∧ x ∼G agco

P
∆(γ)

}
−→ {[∆ ∩ γPγ−1]∆ : γ ∈ G : gcoP∆(γ) <∞}

{[x]∆, [x−1]∆} ↦−→ [⟨x⟩]∆
is well-defined and a bijection. We apply Lemma 1.4.4 and get the claim.

�

Theorem 1.4.7. Let P ≤ G be a parabolic subgroup. Then

Λ: ∆\G/P −→ {[∆ ∩ γPγ−1]∆ : γ ∈ G}
∆γP ↦−→ [∆ ∩ γPγ−1]∆

is a well-defined surjective map.

Let c ∈ ΩX such that P = Gc. If in addition ComG(P ) = P , then Λ is also
injective, hence bijective, and it is even true that

gcm∆(P ) = cm∆(Gc).
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Proof. First, we prove that Λ is a well-defined map. For this purpose, let
γ, γ′ ∈ G such that ∆γP = ∆γ′P . Hence, there exist δ ∈ ∆ and p ∈ P with
γ′ = δγp. We obtain

Λ(∆γ′P ) = [∆ ∩ δγ(pPp−1)γ−1δ−1]

= [δ(∆ ∩ γPγ−1)]∆

= Λ(∆γP ).

The surjectivity of the map is obvious. Hence, we proceed with the second assertion.
To this end, let c ∈ ΩX and P = Gc and assume the equation ComG(P ) = P holds.
To show the injectivity of Λ, take ∆γP,∆γ′P such that

[∆ ∩ γPγ−1]∆ = [∆ ∩ γ′Pγ′−1]∆.

Then, there is a δ ∈ ∆ with the property

∆ ∩ γ′Pγ′−1 = ∆ ∩ δγPγ−1δ−1.

Let x ∈ ∆ ∩ γ′Pγ′−1 = ∆ ∩ δγPγ−1δ−1. Hence, there exist p ∈ P and q ∈ P such
that

δγpγ−1δ−1 = x = γ′qγ′−1.

This yields γ′−1δγpγ−1δ−1γ′ = q. Applying the hypothesis we infer

γ′−1δγ ∈ ComG(P ) = P.

This leads to the conclusion

∆γ′P = ∆γ′(γ′−1δγ)P = ∆δγP = ∆γP,

as claimed.
�

Recall that we denote the natural combinatorial metric on X by D.

Lemma 1.4.8. Assume G acts inversion free on a tree X. Let c ∈ ΩX such that
Gc = ⟨a⟩ is infinite cyclic. Let ℓ(a) be the unique α-invariant 2-path assigned to a;
its existence is assured by Theorem 1.3.5. Then, the action of G on X induces an
action Gc y ℓ(a) and

D(v,∆cv) = co∆(c) ·D(v,Gcv) ∀v ∈ ℓ(a).

Proof. Put k := co∆(c). It follows immediately from the definition of the cusp
order that ∆c = ⟨ak⟩. Recall that we denote by dc the displacement function with
respect to c. We then observe

D(v,∆cv) = D(v, akv) = dc(a
k) = k · dc(a) = k ·D(v, av) = k ·D(v,Gcv),

as required. �

Theorem 1.4.9 (geometric interpretation of the cusp order). Assume G acts
inversion free on a tree X. Let c ∈ ΩX such that Gc = ⟨a⟩ is infinite cyclic. Then,

D(v,∆cv) ≤ co(c) ·D(v,Gcv)

where the equality occurs if and only if v ∈ ℓ(a) or ∆c = Gc. In other words, we
have

co∆(c) = sup
v∈X

D(v,∆cv)

D(v,Gcv)
,

where the supremum is attained if and only if v ∈ ℓ(a) or ∆c = Gc.
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Proof. Take an arbitrary v ∈ X. Set k := co(c). Let v0 ∈ ℓ(a) such that

D(v, v0) = min{D(v, w) : w ∈ ℓ(a)}.
Consider an arbitrary ray in X containing v and ajv, j ∈ N≥1. Because a acts as
an automorphism and therefore as an isometry, this ray shares the vertices v0, ajv0
and the vertices between them with ℓ(a). Combining this with Lemma 1.4.8, we
compute

D(v,∆cv) = D(v, akv)

= D(v, v0) +D(v0, a
kv0) +D(akv0, a

kv)

= 2D(v, v0) + k ·D(v0, Gcv0)

= k ·
(
2D(v, v0) +D(v0, Gcv0)

)  
D(v,Gcv)

−(2k − 2) ·D(v, v0)

= k ·D(v,Gcv)− (2k − 2)  
≥0

·D(v, v0)  
≥0

.

For the reason the second term vanishes if and only if D(v, v0) = 0 or k = 1 and
hence if and only if v = v0 or ∆c = Gc, this yields the claim. �

Corollary 1.4.10. Under the same hypothesis as in Theorem 1.4.9 the following
formula is true:

co(c) = lim
n→∞

D(v,∆
(n)
c v)

D(v,G
(n)
c v)

∀v ∈ X,

where G(n)
c = {γn : γ ∈ Gc} and ∆

(n)
c := {δn : δ ∈ ∆c}.

Proof. Let k := co(c), v ∈ X an arbitrary vertex and v0 ∈ ℓ(a) the vertex of
smallest distance to v. The same arguments as in the proof of Theorem 1.4.9 yield
for each 1 ≤ m ∈ N

D(v, amv) = 2D(v, v0) +m ·D(v0, av0).

We thus conclude
D(v,∆

(n)
c v)

D(v,G
(n)
c v)

=
D(v, aknv)

D(v, anv)
=

2D(v, v0) + kn ·D(v0, av0)

2D(v, v0) + n ·D(v0, av0)

n→∞−−−−→ k,

as desired. �



CHAPTER 2

Singularities of finite index subgroups of Sl3(Z)

It is well known that a subgroup ∆0 of finite index µ of the Modular Group
Γ0 := Sl2(Z) = C2 ∗ C3 can be widely characterized by counting the multiplicities
of conjugacy classes of maximal finite subgroups in ∆0. This has been done by
using the fact that Γ can be seen as free product of finite groups and more general
by a finite graph of finite groups. The Bass-Serre theory ensures that also ∆0 can
be expressed as finite graph of finite groups. This and the notion of the Euler
characteristic of a graph of groups give us pretty much a characterization of finite
index subgroups of Sl2(Z) or more general of free products of finite groups.

There is no similar result for the subgroups of Sl3(Z). It is even true, see [7] p. 67
theorem 16, that Sl3(Z) cannot be written as finite graph of finite groups. Hence, let
us look for another approach. Remember that Sl2(Z) acts on the hyperbolic plane
H via Möbius transforms. If we think of H as the orbit Sl2(R).i ∼= Sl2(R)/ SO2(R),
we get a description which can be generalized in a way resulting in a group action
of Sl3(Z) as isometries on the symmetric space of the quadratic forms.

The fundamental domain of the action of Sl3(Z) on this space is not compact as
it is not for the action of Sl2(Z) on H. But again as for the action of Sl2(Z) on
H, there can be constructed a Sl3(Z)-invariant retract with compact fundamental
domain. Following this approach, Soulé has indeed contrived such a cocompact
retract. Moreover, he has computed the fundamental domain for this action and
even the groups fixing the boundary components of it. In this way he has obtained
a description for Sl3(Z) in terms of a finite complex of finite groups.

Let ∆µ be an arbitrary finite index subgroup of Sl3(Z) with (Sl3(Z) : ∆µ) = µ.
The purpose of this work is to have a deeper insight in the geometric structure of
some finite index subgroups of Sl3(Z) using Soulé’s complex of groups for Sl3(Z).
Moreover, we are interested in the evolution of the numbers of the maximal finite
subgroups of certain types up to ∆µ-conjugacy in µ. We will be able to compute
these sizes by solving certain systems of polynomial equations over finite fields. To
realize this approach, we have to find a system of representatives for ∆µ\Γ with
an adequate explicit description. Hence, it seems necessary to focus on specific
subgroups ∆µ.

For each finite index subgroup, we will also provide a geometric interpretation
for these numbers. To this end, we introduce the reduction of a scwol associated to
the action of a group on that scwol. This reduction is constructed in a way such
that the maximal finite subgroups are the maximal stabilizers of the 0-dimensional
vertices of that scwol and vice versa.

16
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Sl3(Z) satisfies the congruence subgroup property. Thus, each finite index sub-
group of Sl3(Z) can be obtained as a preimage of a subgroup of Sl3(Z/nZ), n ∈ N.
Hence, it is advisable to choose prototypes for finite index subgroups ∆µ which are
as “large” as possible. For those reasons, we consider in our work only finite index
subgroups which occur as preimages (under the congruence map) of Borel subgroups
of Sl3(Fp). Finally, we will lift the results of the computations to preimages of
subgroups of Sl3(Z/dZ), d ∈ Z square-free. Knowing the vertex group, we can
determine the distribution of the isotropy groups of the higher dimensional faces
containing the considered vertex.

2.1 Preliminaries

In the whole article, let Γ := Sl3(Z), 2 ≤ d ∈ Z be an arbitrary integer and
∆(d) := {(ai,j)(i,j)∈3×3 ∈ Sl3(Z) : ai,j ≡ 0 mod d ∀i > j}.

2.2 A complex of groups for Sl3(Z)
Let us consider the following right action of Γ on the space

X := {A ∈ R3×3| det(A) = 1, A = At , ⟨Av, v⟩ > 0 ∀ 0 ̸= v ∈ R3}
of scalar products on R3:

x ∗ γ := γt xγ, x ∈ X, γ ∈ Γ.

Soulé constructed in [8] a fundamental domain D for that action by watching out
for the in some sense minimal elements of the orbits of that action. He could pass
to a 3-dimensional connected compact subset D′ ⊆ D also being a deformation
retract such that D′ ∗ Γ ⊆ X is connected itself. Note that Soulé considered in [8]
the action on the space

X̂ := {A ∈ R3×3| A = At , ⟨Av, v⟩ > 0 ∀ 0 ̸= v ∈ R3}/R×

instead of X. This is obviously equivalent via the Γ-isomorphism:

X̂ → X : [A]R× ↦→
( 1

detA

) 1
3

A

Defining X ′ := D′ ∗ Γ he obtained the 3-dimensional deformation retract X ′ ⊆ X
such that Γ y X ′ cocompactly. Considering a “nice” triangulation of D′ and hence
of X ′ he computed in the same article the associated finite complex of finite groups
given by this action.

Before we state his result, let us set for the sake of clarity

h(u, v, w) :=

⎛⎝ 2 w v
w 2 u
v u 2

⎞⎠ and h∗(·) :=
(

1

deth(·)

) 1
3

h(·).
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Theorem 2.2.1 ([8], pp. 4-5, theorem 2). There is a triangulation of the funda-
mental domain D′ with vertices O := h∗(0, 0, 0), M := h∗(1, 1, 1), M ′ := h∗(1, 1, 0),
N := h∗(1, 1, 12 ), N

′ := h∗(1, 12 ,−
1
2 ), P := h∗( 23 ,

2
3 ,−

2
3 ), Q := h∗(1, 0, 0) which

can be continued on the whole space X ′ such that the action of Γ on X ′ can be

described by the fact that q1 :=

⎛⎝ 1 0 0
0 0 −1
0 1 1

⎞⎠ maps M ′, N ′, Q to M,N,Q and

q2 :=

⎛⎝ −1 0 0
0 1 1
0 0 −1

⎞⎠ maps N,N ′,M ′, Q to N ′, N,M ′, Q and by the stabilizers

of the simplices given by their generators. The triangulation of D′ and the stabilizers
of the simplices belonging to it can be found in the table below. The stabilizer in the
second column is always associated with the underlined simplex.

simplices stabilizer of the underlined simplex isomorphy class

O

⟨⎛⎝ 0 0 1
0 1 0
−1 0 0

⎞⎠,
⎛⎝ −1 0 0

0 0 −1
0 −1 0

⎞⎠⟩ S4

M

M ′

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠,
⎛⎝ 0 0 −1

−1 0 0
1 1 1

⎞⎠⟩ S4

P

⟨⎛⎝ 0 0 −1
−1 0 −1
0 1 1

⎞⎠,
⎛⎝ −1 0 0

0 0 1
0 1 0

⎞⎠⟩ S4

Q

⟨⎛⎝ 1 0 0
0 0 −1
0 1 1

⎞⎠,
⎛⎝ −1 0 0

0 1 1
0 0 −1

⎞⎠⟩ D12

N
N ′

⟨⎛⎝ −1 0 0
0 1 0
0 −1 −1

⎞⎠,
⎛⎝ 0 −1 0

−1 0 0
0 0 −1

⎞⎠⟩ D8

MN
M ′N
M ′N ′

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠,
⎛⎝ −1 0 0

0 −1 0
1 1 1

⎞⎠⟩ V4

M ′P

⟨⎛⎝ 0 −1 −1
0 −1 0
−1 1 0

⎞⎠,
⎛⎝ 0 −1 0

−1 0 0
0 0 −1

⎞⎠⟩ D8

N ′P

⟨⎛⎝ 0 1 1
1 0 1
0 0 −1

⎞⎠,
⎛⎝ −1 0 0

0 0 1
0 1 0

⎞⎠⟩ D8

OM

⟨⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠,
⎛⎝ 0 0 −1

0 −1 0
−1 0 0

⎞⎠⟩ S3

OQ

⟨⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠,
⎛⎝ −1 0 0

0 0 −1
0 −1 0

⎞⎠⟩ V4

OP

⟨⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠,
⎛⎝ 0 −1 0

−1 0 0
0 0 −1

⎞⎠⟩ S3

M ′PN ′

⟨⎛⎝ −1 0 0
−1 0 −1
1 −1 0

⎞⎠,
⎛⎝ 0 −1 −1

0 −1 0
−1 1 0

⎞⎠⟩ V4
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MQ

M ′Q

⟨⎛⎝ −1 0 0
0 0 −1
0 −1 0

⎞⎠⟩ C2

N ′Q

NQ

⟨⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠⟩ C2

ON

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠⟩ C2

ON ′

⟨⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠⟩ C2

OM ′

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠⟩ C2

OMN

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠⟩ C2

OM ′N

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠⟩ C2

OMQ

⟨⎛⎝ −1 0 0
0 0 −1
0 −1 0

⎞⎠⟩ C2

OPN ′

⟨⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠⟩ C2

OM ′P

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠⟩ C2

ON ′Q

⟨⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠⟩ C2

The remaining simplices have trivial stabilizers: ONQ, OM ′Q, OM ′N ′, MNQ,
M ′NQ, M ′N ′Q, OMNQ, OM ′NQ, OM ′N ′Q, and OM ′PN ′.

Remark 3. The left action Γ y X ′ defined via γ.x := γt −1xγ−1, (γ, x) ∈ Γ×X ′,
has the same orbits and stabilizers as the right action used above. Even the
fundamental domains for these actions coincide for the reason X ′ = (X ′)−1. For the
ease of notation we will always consider the left action on X ′ instead of the right
action.

In the corollary below, we compute some representations for maximal finite subgroups
of Γ. For this purpose, we take the restriction of the action Γ y X ′ to suitable
simplices.

Corollary 2.2.2. Set

O2 :=

⎛⎝ 1 1 1
1 2 1
1 1 2

⎞⎠, O3 :=

⎛⎝ 2 1 1
1 2 1
1 1 1

⎞⎠, O4 :=

⎛⎝ 2 1 1
1 1 1
1 1 2

⎞⎠;
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O′
2 :=

⎛⎝ 3 −1 1
−1 1 0
1 0 1

⎞⎠, O′
3 :=

⎛⎝ 1 −1 0
−1 3 1
0 1 1

⎞⎠, O′
4 :=

⎛⎝ 1 0 1
0 1 1
1 1 3

⎞⎠.
M2 := h∗(−1,−1, 1), M3 := h∗(−1, 1,−1), M4 := h∗(1,−1,−1);

P2 := h∗
(
2

3
,−2

3
,
2

3

)
, P3 := h∗

(
−2

3
,
2

3
,
2

3

)
, P4 := h∗

(
−2

3
,−2

3
,−2

3

)
;

M ′
2 :=

⎛⎝ 3
√
2 0 1

22/3

0 3
√
2 1

22/3
1

22/3
1

22/3
3
√
2

⎞⎠,M ′
3 :=

⎛⎝ 3
√
2 − 1

22/3
0

− 1
22/3

3
√
2 1

22/3

0 1
22/3

3
√
2

⎞⎠,
M ′

4 := h∗(1,−1,−1),

M ′
5 :=

⎛⎝ 3
√
2 0 − 1

22/3

0 3
√
2 1

22/3

− 1
22/3

1
22/3

3
√
2

⎞⎠,M ′
6 :=

⎛⎝ 3
√
2 1

22/3
0

1
22/3

3
√
2 1

22/3

0 1
22/3

3
√
2

⎞⎠
Let us denote by ψ the action of Γ on X ′ (from the left) as described in Re-
mark 3. Then the restrictions ψO

M := ψ|ΓM→Sym(ΓM .O) and ψO
P := ψ|ΓP→Sym(ΓP .O),

ψM
O := ψ|ΓO→Sym(ΓO.M) and ψP

O := ψ|ΓO→Sym(ΓO.P ) are isomorphisms and ψM
Q :=

ψ|ΓQ→Sym(ΓQ.M) is injective.

Furthermore we have following explicit expressions for the orbits given by

ΓM .O = {O,O2, O3, O4},
ΓP .O = {O,O′

2, O
′
3, O

′
4},

ΓO.M = {M,M2,M3,M4},
ΓO.P = {P, P2, P3, P4},
ΓQ.M = {M,M ′

2,M
′
3,M

′
4,M

′
5,M

′
6}.

ψO
M is uniquely determined by

ψO
M

⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠ = (O2 O4), ψ
O
M

⎛⎝ 0 0 −1
−1 0 0
1 1 1

⎞⎠ = (O O2 O3 O4);

ψO
P is uniquely determined by

ψO
P

⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠ = (O′
3 O

′
4), ψ

O
P

⎛⎝ 0 0 −1
−1 0 −1
0 1 1

⎞⎠ = (O O′
2 O

′
3 O

′
4);

ψM
O is uniquely determined by

ψM
O

⎛⎝ −1 0 0
0 0 −1
0 −1 0

⎞⎠ = (M2 M3), ψ
M
O

⎛⎝ 0 0 1
0 1 0
−1 0 0

⎞⎠ = (M M2 M3 M4);

ψP
O is uniquely determinded by

ψP
O

⎛⎝ −1 0 0
0 0 −1
0 −1 0

⎞⎠ = (P P2), ψ
P
O

⎛⎝ 0 0 1
0 1 0
−1 0 0

⎞⎠ = (P P2 P3 P4);

ψM
Q is uniquely determined by

ψM
Q

⎛⎝ −1 0 0
0 1 1
0 0 −1

⎞⎠ = (M M ′
3)(M

′
4 M

′
6),
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ψM
Q

⎛⎝ 1 0 0
0 0 −1
0 1 1

⎞⎠ = (M M ′
2 M

′
3 M

′
4 M

′
5 M

′
6).

Proof. Let us proof the corollary for the action of ΓM on Γ.O: From The-
orem 2.2.1 we know that |ΓM .O| = |ΓM/ΓOM | = 4. For the reasons ΓM

∼= S4

and ΓM y ΓM/ΓOM
∼= ΓM .O transitively we infer that ψO

M = ψ|ΓM→Sym(ΓM .O)

has to be an isomorphism. Straightforward matrix computations lead to ΓM .O =
{O,O2, O3, O4} as well as

ψO
M

⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠ = (O2 O4), ψ
O
M

⎛⎝ 0 0 −1
−1 0 0
1 1 1

⎞⎠ = (O O2 O3 O4).

This and ΓM =

⟨⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠,
⎛⎝ 0 0 −1

−1 0 0
1 1 1

⎞⎠⟩ yield the claimed prop-

erties for that action. The remaining assertions can be attained in the same
manner. �

2.3 The lattice of conjugacy classes of finite subgroups of
Sl3(Z)

Using Theorem 2.2.1 and Theorem 2.3.2 we are able to extract the complete lattice
structure of the set of Γ-conjugacy classes of finite subgroups of Γ:

Definition 2.3.1. Let G be an arbitrary group. We denote by Subfin(Γ) the set
of all finite subgroups of G. Let A ≤ Aut(G) be an arbitrary subgroup. A acts on
Sub(G) via µ : A → Sym(Sub(G)) : α ↦→ µα and µα(H) := α(H) ∈ Sub(G). For the
orbit of an element of H ∈ Sub(G) we write [H]A. If two elements H,K ∈ Sub(G)
lie in the same orbit set, we write H ∼

A
K.

Obviously, this group action induces a group action on Subfin(G) because every
automorphism maps finite groups on finite groups.

On the set of orbits A\ Sub(G) we define a partial order as follows: For any
[H]A, [K]A ∈ A\ Sub(G) we write

[H]A ≤ [K]A if and only if ∃α ∈ A : H ≤ α(K).

In particular, we can apply these definitions on the action of G on Sub(G) via
conjugation from the left, by making the choice AG := {αg : αg(H) := gHg−1}. We
write G\ Sub(G) for the set of orbits of AG. Adequately, for H,K ∈ Sub(G) we
set [H]G := [H]AG

and we write H ∼
G
K if and only if H ∼

AG

K. [H]G is called the

G-conjugacy class of H or just the conjugacy class of H. If H ∼
G
K, we say H,K

are G-conjugate. For an arbitrary g ∈ G we make the convention hg := ghg−1 for
every h ∈ G.

Ken-Ichi Tahara classified in [9] all the Γ-conjugacy classes of finite subgroups in Γ.
We will only need a reduced version of his main-theorem which we state below:
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Theorem 2.3.2 ([9], pp. 170-203). The following table shows the complete list of
the isomorphy classes and conjugacy classes of finite subgroups of Γ:

cardinality of the finite isomorphy classes number of Γ-conjugacy
subgroups of Γ appearing classes appearing

2 C2 2
3 C3 2

4
C4 2
V4 4

6
C6 1
S3 3

8 D8 2

12
D12 1
A4 3

24 S4 3

In particular Γ\ Subfin(Γ) is finite.

Let us state some trivial facts because we will often make use of them:

Lemma 2.3.3. Let G be an arbitrary group and Φ: G → G an endomorphism
on it. Furthermore let H,K ≤ G such that [H]G ≤ [K]G. Then the assertion
[Φ(H)]G ≤ [Φ(K)]G is valid.

Proof. By hypothesis there has to exist a g ∈ G such that Hg ≤ K. Applying
Φ we calculate

Φ(H)g = Φ( Hg ) ≤ Φ(K).

Thus we conclude [Φ(H)]G ≤ [Φ(K)]G. �

Lemma 2.3.4. Let G be an arbitrary group and H ≤ G an arbitrary subgroup.
Then the equalities

α(CG(H)) = CG(α(H)) and α(NG(H)) = NG(α(H))

are true for every α ∈ Aut(G).

Proof. We will only show α(NG(H)) = NG(α(H)) as the proof of the other
assertion can be obtained in the same fashion. To this end, it is sufficient to prove

α(NG(H)) ≤ NG(α(H)) ∀α ∈ Aut(G).

So let us fix an α ∈ Aut(G) and take an arbitrary g ∈ α(NG(H)). Then by definition
there exists a g′ ∈ NΓ(H) such that g = α(g′). This implies g−1 = α(g′−1) and
g′Hg′−1 = H. Therefore we obtain

gα(H)g−1 = α(g′Hg′−1) = α(H),

which establishes g ∈ NG(α(H)) and hence the claim. �

The following lemma is an immediate corollary if we replace α ∈ Aut(G) with an
inner automorphism.

Lemma 2.3.5. Let G be an arbitrary group and H,K ≤ G be arbitrary subgroups.
Then, if there exists a g ∈ G such that gHg−1 = K then it is also true that

gCG(H)g−1 = CG(K) and gNG(H)g−1 = NG(K).

Lemma 2.3.6. Let G be an arbitrary group and H be a finite subgroup. Then
NG(H) is finite if and only if CG(H) is finite.
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Proof. “⇒” is trivial because of CG(H) ⊆ NG(H).

“⇐” For this direction let us assume CG(H) is finite and let us look on the following
homorphism:

ϕ : NG(H) → Aut(H) : g ↦→ ϕg

where ϕg(h) := ghg−1. We observe that kerϕ = CG(H). Because H is finite Aut(H)
has to be finite too and hence NG(H)/CG(H) is a finite group. Using CG(H) is
finite we obtain NG(H) is finite and therefore the claim. �

Lemma 2.3.7. Let G be an arbitrary group and H,K ≤ G such that H ≤ K then
CG(H) ⊇ CG(K).

Proof. Let H ≤ K ≤ G. Take an arbitrary g ∈ CG(K). Then we have for all
k ∈ K

gk = kg.

Because of H ⊆ K this equation remains in particular true for all k ∈ H. We
conclude g ∈ CG(H). �

Combining Lemma 2.3.6 and Lemma 2.3.7 we obtain the following corollary:

Corollary 2.3.8. Let G be an arbitrary group and H ≤ K ∈ Subfin(G). Then, if
CG(H) or NG(H) is finite, NG(K) has to be finite.

We want to define the sign homomorphism on an arbitrary Coxeter group. Therefore
we start with the following lemma.

Lemma 2.3.9. Let G be an arbitrary finitely generated group with

G/[G,G] ∼= C2k ⊕A,

where k ∈ N and A an abelian group, such that A contains no element of order 2.
Then,

|Hom(G,C2)| ∈ {1, 2}.

Proof. Because C2 is abelian we clearly have that

Hom(G,C2) ↪→ Hom(G/[G,G], C2)

∼= Hom(C2k ⊕A,C2) = Hom(C2k , C2)⊕Hom(A,C2).

The homomorphy theorem tells us that Hom(A,C2) is trivial. On the other hand each
Φ ∈ Hom(C2k , C2) is determined by the value on the generator of C2k . Therefore
we conclude |Hom(G,C2)| ≤ |Hom(C2k , C2)| = 2. �

Definition 2.3.10. Let W be a Coxeter group with Coxeter system S. For w ∈W
let lS(w) be the length of w with respect to S. We define sgnS : W → W via
sgnS(w) := (−1)(lS(w) mod 2). Then sgnS is a homomorphism. Furthermore if there
exists a k ∈ N such that

W/[W,W ] ∼= C2k ⊕A,

where k ∈ N and A is an abelian group, such that A contains no element of order 2,
then sgnS is independent of the choice of the Coxeter system S. In this case we write
for sgnS just sgnW or sgn and call this homomorphism the sign homomorphism of
W . Then, sgnW is in particular Aut(W )-invariant.

Proof. We start with the first assertion. Let w ∈W and s ∈ S. From [2] p.47
we can immediately derive the following formulas:

lS(sw) = lS(w) + 1 or lS(sw) = lS(w)− 1

and
lS(ws) = lS(w) + 1 or lS(ws) = lS(w)− 1.
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In particular, we get for w1, w2 ∈W

lS(w1w2)
(2)
≡ lS(w1) + lS(w2)

and thus
l∗S : W → F2 : w ↦→ lS(w) mod 2

is a homomorphism. Hence sgnS needs to be a homomorphism as well. The second
assertion is an immediate consequence from Lemma 2.3.9. �

Remark 4. Definition 2.3.10 generalizes the notion of the sign of finite symmetric
groups to all Coxeter groups. In particular for a group G ∼= Sn the sign homomor-
phism is independent of the choice of the isomorphism.

Lemma 2.3.11. Let G be a group such that G ∼= S4. If G = ⟨σ, τ⟩ with ord(σ) = 4
and ord(τ) = 2. Then, we necessarily have sgnG(σ) = −1 = sgnG(τ).

Proof. Let us begin to show sgnG(σ) = −1. [G,G] ∼= A4 ≤ S4 implies
⟨σ, [G,G]⟩ = G. Assume sgnG(σ) = 1. Then,

sgnG(G) = ⟨sgnG(σ), sgnG([G,G])⟩ = {1},
a contradiction to the definition of the sign!

Assume sgnG(τ) = 1. Then, there exists an H ∼= V4 such that τ ∈ H E G.
On the one hand, Sylows’ theorems imply that H lies in all subgroups of G of type
D8. On the other hand Sylow’s theorems tell us that there exists a group K of
type D8 such that ⟨σ⟩ ≤ K. In particular this enforces G = ⟨σ, τ⟩ ≤ K ∼= D8, a
contradiction! �

Lemma 2.3.12. Let G be an arbitrary group and H be a subgroup of G. Further
assume that there exists S, S′ ⊆ H with ⟨S⟩ = H = ⟨S′⟩ such that there is an
α ∈ Aut(G) with α(S) = S′. Then even α(H) = H is true.

Proof. We just compute α(H) = ⟨α(S)⟩ = ⟨S′⟩ = H which has been claimed.
�

Corollary 2.3.13. Let G ∼= D12 and H be an arbitrary 2-Sylow subgroup of G.
Furthermore let τ1 ̸= τ2 ∈ H r Z(G). Then [τ1]G ̸= [τ2]G.

Proof. Because |Z(G)| = |Z(D12)| = 2, there exists a 2-Sylow subgroup which
contains Z(G). For the reasons that Z(G) E G and all 2-Sylow subgroups are
conjugate, Z(G) lies in every 2-Sylow subgroup and hence Z(G) ≤ H. Let σ• be the
only non trivial element of Z(G). Set S := {σ•, τ1} and S′ := {σ•, τ2} and observe
that ⟨S⟩ = H = ⟨S′⟩. Assume in order to obtain a contradiction that there exists a
g ∈ G such that τg 1 = τ2. Then, we infer

Sg = { σg •, τg 1} = {σ•, τ2} = S′.

Now, Lemma 2.3.12 tells us that Hg = H and therefore g ∈ NG(H) = H. Because
H ∼= V4 is abelian, this implies τ1 = τ2, a contradiction! �

Lemma 2.3.14. Let G be an arbitrary group acting on a set X. Let x0 ∈ X an
arbitrary element and set H := Gx0 . Then, NG(H) is the largest subgroup of G which
leaves the set {x ∈ X : Gx = H} invariant. In particular, if |{x ∈ X : Gx = H}| = 1,
then NG(H) = H.

Proof. Set M := {x ∈ X : Gx = H}. Let x ∈M and g ∈ NG(H). Then

Gg.x = Hg = H

and hence g.x ∈ M . Thus, NG(H) leaves M invariant. Let GM be the largest
subgroup of G leaving M invariant. Take g ∈ GM and x ∈ M . We clearly obtain
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g.x ∈M and therefore Hg = Gg.x = H. This finally implies g ∈ NG(H) and thus
NG(H) = GM , as required. �

Definition 2.3.15. Let “≼” be a partial order on a set M . Let a, b ∈M such that
a ≼ b. We say an inclusion a ≼ b is simple if and only if for each c ∈ M with
a ≼ c ≼ b either c = a or c = b is true. We call a pair (a, b) ∈M ×M simple if and
only if a ≼ b and a ≼ b is simple or b ≼ a and b ≼ a is simple.

Definition 2.3.16. For an arbitrary group G we set

Sub◦fin(G) := {H ∈ Sub(G) : NG(H) ∈ Subfin(G)}.
The action of G on Sub(G) via conjugation induces an action of G on Sub◦fin(G)
because Lemma 2.3.5 tells us that normalizers get mapped on normalizers. Sub◦fin(G)
has the following property: If H ∈ Sub◦fin(G) then for each Subfin(G) ∋ K ≥ H
holds K ∈ Sub◦fin(G).

Proof. The property is a reformulation of Corollary 2.3.8. �

Notation 2.3.17. Let G and G̃ arbitrary groups and ϕ : G̃→ G an homomorphism.
Then for each g ∈ G and x ∈ G̃ we write ( ϕg )(x) := (ϕ(x))g . This yields a map
ϕg : G̃→ G which is a homomorphism as well. If ϕ is an mono-/epi-/isomorphism

then also ϕg has to be an mono-/epi-/isomorphism.

We have to introduce some further notation now.

Notation 2.3.18. Let K be a field, A ∈ Kn×n and λ be an Eigenvalue for A.
Let L/K be an arbitrary field extension of K containg λ. Then we denote by
EL

λ (A) := {v ∈ Ln : Av = λv} the Eigenspace of A over L according to the
Eigenvalue λ.

Notation 2.3.19. Let us make the following convention: Let H be an arbitrary
group (not necessary contained in Γ) and G ≤ Γ. Then we set

HG := {[K]G ∈ G\ Sub(G) : K ∼= H}.
If this set consists only of one conjugacy class c we write by abuse of notation HG

for an arbitrary representative of c.

Using the notation of Theorem 2.2.1 we make the following settings

S1
4 := ΓO, S2

4 := ΓM , S3
4 := ΓP , D12 := ΓQ.

We think it is worth to remark that S1
4 is by definition the group of orthogonal

matrices with determinant 1 and integer entries.
With the convention above let A

Si
4

4, i ∈ {1, . . . , 3} be the A4-type subgroups of Si
4,

and D
Si
4

8 be arbitrary 2-Sylow subgroups of Si
4. We write CD12

6 for the unique
cyclic subgroup of order 6 in D12 and SD12 1

3 and SD12 2
3 for the only two type S3

subgroups of D12, for which we know, that they are not conjugate in D12. We set
S

Si
4

3 for an arbitrary type S3 subgroup of Si
4, taking into account that all type S3

subgroups are conjugate in groups of type S4. Furthermore, we write V
Si
4 •

4 for the
type V4 subgroups being normal in Si

4 and V
Si
4 ◦

4 for that being not normal in Si
4.

Moreover we denote by VD12
4 an arbitrary 2-Sylow subgroup of D12. Let us write

C
Si
4

4 for an arbitrary type C4-subgroup of Si
4 regarding the fact that all subgroups

of S4 of type C4 are conjugate. For the only 3-Sylow subgroup of D12 we write
CD12

3 and for an arbitrary 3-Sylow subgroup of Si
4 we write C

Si
4

3. Finally, let us
write C

Si
4

2 for the set of type C2 conjugacy classes in Si
4 which contains exactly

2 elements; an arbitrary representative of the Si
4-conjugacy class of subgroups of
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order 2 with positive sign with respect to Si
4 is denoted by C

Si
4 •

2 and an arbitrary
representative of the Si

4-conjugacy class of subgroups of order 2 with negative sign
with respect to Si

4 is denoted by C
Si
4 ◦

2 . Finally let us write CD12
2 for the set of type

C2 conjugacy classes in D12 which consists of exactly 3 elements.

Lemma 2.3.20. There exists an automorphism Φ: Γ → Γ such that

Φ(S1
4) = S1

4 and Φ(S2
4) = S3

4 .

Proof. Let ϕ : Γ → Γ: γ ↦→ ( γt )−1 be the transposition-inversion automor-
phism. Put

σ1 :=

⎛⎝ 0 0 −1
−1 0 0
1 1 1

⎞⎠, σ2 :=

⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠
and

τ1 :=

⎛⎝ 0 0 −1
−1 0 −1
0 1 1

⎞⎠, τ2 :=

⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠
Theorem 2.2.1 tells us that S2

4 = ⟨σ1, σ2⟩ and S3
4 = ⟨τ1, τ2⟩. Let us put

η :=

⎛⎝ 0 0 −1
−1 0 0
0 1 0

⎞⎠ ∈ S1
4

and Φ := ϕη . For the reason S1
4 consists only of orthogonal matrices ϕ restricts to

the identity on S1
4 . Thus η ∈ S1

4 enforces Φ(S1
4) = S1

4 . We can easily verify that

Φ(σ1) = τ1 ∈ S3
4 and Φ(σ2) = τ2 ∈ S3

4 .

Therefore we get Φ(S2
4) = S3

4 which completes the proof. �

Lemma 2.3.21. Let Γ ≥ H ∼= V4. Then CΓ(H) = H. In particular NΓ(H) is
finite.

Proof. By virtue of Corollary 2.3.8 it is sufficient to show that CΓ(H) = H.
To do this let h1, h2, h3 ∈ H be its elements of order 2. By ord(hi) = 2 we conclude

pmin(hi)(X) = X2 − 1 = (X − 1)(X + 1)

and each hi has to be diagonalizable over Q.
det(hi) = 1 implies dimEQ

1 (hi) = 1 and dimEQ
−1(hi) = 2. For this reason and by

virtue of H is abelian, there exists a simultaneous eigenbasis (bj)
3
j=1 for H over Q.

Now, dimEQ
1 (hi) = 1 implies that there exists a ji such that hibji = bji and even

further EQ
1 (hi) = Qbji . On the other hand, the fact that (bj)

3
j=1 is an eigenbasis for

hi enforces h1bj = −bj for every j ̸= ji for otherwise we would have dimEQ
1 (hi) > 1,

contrary to dimEQ
1 (hi) = 1. We conclude EQ

−1(hi) =
⨁

j ̸=ji
Qbj . From this and the

fact that the hi share the same eigenvalues, we may deduce that hi ̸= hk already
forces EQ

1 (hi) ̸= EQ
1 (hk). Hence the map

{1, . . . , 3} → {Qb1,Qb2,Qb3} : i ↦→ EQ
1 (hi)

is necessarily a bijection. It follows that

Q3 = EQ
1 (h1)⊕ EQ

1 (h2)⊕ EQ
1 (h3).

Setting Vi := EQ
1 (hi) this becomes

Q3 = V1 ⊕ V2 ⊕ V3

where dim(V1) = dim(V2) = dim(V3) = 1. Now dim(Vi) = 1 forces the existence of
a vi ∈ Z3 such that Vi ∩ Z3 = Zvi.
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Let us take an arbitrary γ ∈ CΓ(H). Then γ commutes with all the elements in H.
Thus γ must leave every hi-eigenspace and therefore the spaces Vi for i ∈ {1, . . . , 3}
invariant. On the other hand γ ∈ Γ = Sl3(Z) implies that γ leaves also Z3 invariant.
Hence γ leaves the Z-modules Vi ∩ Z3 invariant. We conclude that there exists a
λi ∈ Z such that

(2.3.1) Z3 ∋ γvi = λivi

for suitable λi. For the reason γ is invertible we conclude that there exists a µi ∈ Z
with the property

Z3 ∋ γ−1vi = µivi.

Observing vi = γ−1γvi = µiλivi we obtain µi = λ−1
i and therefore in particular

λi ∈ Z×. By virtue of (2.3.1) we get 1 = det(γ) = λ1λ2λ3 which has at most four
possible solutions in (Z×)3. This establishes the claim of the lemma.

�

Lemma 2.3.22. Let α ∈ Γ such that ord(α) = 3. Then CΓ(α) is finite. In particular
NΓ(⟨α⟩) is finite.

Proof. Let (νi)
3
i=1 be the eigenvalues for α. We begin by proving

pmin(α)(X) = X3 − 1 :

To this end, we observe that deg pmin(α) ≥ 2 otherwise α would be a multiple of
the identity. From ord(α) = 3 we derive

pmin(α) | X3 − 1 = (X − 1)(X − ε3)(X − ε23),

where ε3 := exp(2πi/3). Combining this with deg pmin(α) ≥ 2 we infer ε3 or ε23 = ε3
has to be a zero of pmin(α). By virtue of 1 = det(α) = ν1ν2ν3 this leads in each
case to the observation that both, ε3 and ε23, have to be zeroes of pmin(α). So
we may assume without loss of generality ν2 = ε3 and ν3 = ε23. Applying again
1 = ν1ν2ν3 leads to ν1 = 1. This establishes pmin(α)(X) = X3 − 1, which has been
our introductory statement. Clearly pmin(α) decomposes into linear factors over the
cyclotomic field Q(ε3). Setting νi := εi3, i ∈ {0, . . . , 2} we thus obtain the following
decomposition of Q(ε3)

3 into eigenspaces for α:

(2.3.2) Q(ε3)
3 =

2⨁
i=0

EQ(ε3)
νi

(α).

In particular we obtain

dimQ(ε3)

(
EQ(ε3)

νi
(α)
)
= 1 ∀i ∈ {0, . . . , 2}.

Algebraic number theory tells us that the integer ring for Q(ε3) is Z(ε3). Moreover
it is well known that Z[ε3] = Z

[
1+

√
3i

2

]
is an Euclidean ring. For the reason that

Z[ε3] is an Euclidean ring and because

Vi := EQ(ε3)
νi

(α) ∩ Z[ε3]3

is a submodule of the free module Z[ε3]3, we conclude that each Z[ε3]-module Vi
has to be a free Z[ε3]-module of rank 1. In this way for each i ∈ {0, . . . , 2} there
exists a 0 ̸= vi ∈ Vi such that

(2.3.3) Vi = Z[ε3]vi.

Now, take an arbitrary γ ∈ CΓ(α). Because γ commutes with α, γ leaves all
eigenspaces EQ(ε3)

νi (α) invariant. Additionally, γ ∈ Sl3(Z) forces that γ must leave
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Z[ε3]3 invariant. We combine these facts to the observation that γ leaves Vi invariant.
(2.3.3) now implies the existence of λi, µi ∈ Z[ε] for each i ∈ {0, . . . , 2} such that

(2.3.4) γvi = λivi.

and
γ−1vi = µivi.

By virtue of vi = γ−1γvi = µiλivi, we finally obtain λi ∈ Z[ε3]×. For the reasons
that all embeddings of Q(ε3) into C are complex and [Q(ε3) : Q] = 2, Dirichlet’s
Unit theorem forces that Z[ε3]× is finite. In particular there are only finitely many
choices for the λi and hence for γ. This proves the assertion of the lemma.

�

Lemma 2.3.23. Let α ∈ Γ such that ord(α) = 4. Then CΓ(α) is finite. In particular
NΓ(⟨α⟩) is finite.

Proof. This follows almost by the same argument we have used in the proof of
Lemma 2.3.22. First, we observe pmin(α) | X4− 1. As in Lemma 2.3.22 we conclude
by det(α) = 1 and tr(α) ∈ Q that

pmin(α) = (X − 1)(X − i)(X + i) = (X − 1)(X2 + 1).

Therefore the splitting field of pmin(α) is necessarily Q(i). Note that its associ-
ated ring of integers Z[i] is Euclidean. Thus, the same method as in the proof
Lemma 2.3.22 yields that CΓ(α) has to be finite. �

Definition 2.3.24. We call a representativeH of a Γ-conjugacy class c ∈ Γ\ Subfin(Γ)
admissible if it satisfies H ≤ Si

4 for some i ∈ {1, . . . , 3} or H ≤ D12.

Theorem 2.3.25. The lattice of Γ-orbit sets on Subfin(Γ) is completely described by
the following diagram: The nodes are the representatives of Γ\ Subfin(Γ). Two nodes
are on the same level if their labels have the same cardinality. We put a connection
line between two nodes if they lie on different levels and if ([A]Γ, [B]Γ) are simple
with respect to “≤” for their labels A,B ∈ Subfin(Γ). Furthermore we have

Γ\ Sub◦fin(Γ) = {[H]Γ ∈ Γ\ Subfin(Γ) : |H| ≥ 3}.
We give a list of the normalizers of the representatives of Γ\ Sub◦fin(Γ) which are not
obviously obtained by this fact:

• NΓ

(
S

S1
4

3

)
= S

S1
4

3;

• NΓ

(
C

Si
4

4

)
= D

Si
4

8, i ∈ {1, 2};

• NΓ

(
V

S1
4 ◦

4

)
= D

S1
4

8;

• NΓ

(
C

S1
4

3

)
= S

S1
4

3.



S
1 4

S
2 4

S
3 4

D
1
2

A
S

1 4
4

A
S

2 4
4

A
S

3 4
4

D
S

1 4
8

D
S

2 4
8

C
D

1
2

6
S

D
1
2

1 3
S

D
1
2

2 3
S

S
1 4

3

V
S

1 4
◦ 4

C
S

1 4
4

V
S

1 4
• 4

V
S

2 4
• 4

C
S

2 4
4

V
S

3 4
• 4

C
D

1
2

3
C

S
1 4

3

C
S

1 4
• 2

C
S

1 4
◦ 2
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Proof. For his convenience, we advise the reader to print out the diagram
above. We start our proof by determining admissible representatives for Γ-conjugacy
classes of subgroups of order 2:

Let G be arbitrary with G ∼= S4. The elements of order 2 in S4 and therefore
of G fall into two conjugacy classes. Because sgnG is invariant under G-conjugation,
the G-conjugacy classes of elements of order 2 are exactly the preimages of the
possible values of sgnG restricted to the set of elements in G having order 2.

Let S1
4 play the role of G.

Set σ• :=

⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠ which can be expressed as square of

⎛⎝ 0 −1 0
1 0 0
0 0 1

⎞⎠ ∈

ΓO = S1
4 and which has therefore positive sign with respect to S1

4 .

Furthermore we define σ◦ :=

⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠. From Theorem 2.2.1 we know

that σ◦ fixes the vertices which have been called O,M and P in that context
and hence σ◦ ∈ S1

4 ∩ S2
4 ∩ S3

4 . From Theorem 2.3.2 we also know that there are
only two Γ-conjugacy classes of subgroups of type C2. Assume there exists a⎛⎝ q r s

t u v
x y z

⎞⎠ = γ ∈ Γ such that (σ•)
γ

= σ◦. Then γ has to solve

⎛⎝ q r s
t u v
x y z

⎞⎠⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠ =

⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠⎛⎝ q r s
t u v
x y z

⎞⎠.
and therefore q = t, r = u, s = −v, z = 0. Thus γ =

⎛⎝ q r s
q r −s
x y 0

⎞⎠. Taking the

determinant leads to

1 = det(γ) = 2(qsy − rsx),

and therefore 2 ∈ Z×, a contradiction! We conclude

(2.3.5) {[H]Γ : H ∼= C2} = {[⟨σ•⟩]Γ, [⟨σ◦⟩]Γ}.

Due to σ•, σ◦ ∈ S1
4 this implies sgnS1

4
(σ◦) = −1.

We proceed to figure out the substructure Γ\ Subfin(Γ) of Γ-conjugacy classes of
2-groups.

From Theorem 2.2.1 we know that

S2
4 =

⟨⎛⎝ 0 0 −1
−1 0 0
1 1 1

⎞⎠, σ◦

⟩

and

S3
4 =

⟨
α3 :=

⎛⎝ 0 0 −1
−1 0 −1
0 1 1

⎞⎠, β3 :=

⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠⟩.
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Observing ord

⎛⎝ 0 0 −1
−1 0 0
1 1 1

⎞⎠ = 4 and applying Lemma 2.3.11, we infer

(2.3.6) sgnS2
4
(σ◦) = −1.

Let Φ: Γ → Γ be an automorphism such that Φ(S1
4) = S1

4 and Φ(S2
4) = S3

4 . The
existence of this automorphism is guaranteed by Lemma 2.3.20. Therefore and by
Definition 2.3.10 we obtain

(2.3.7) sgnS3
4
(σ◦) = sgnΦ(S2

4)
(Φ(σ◦)) = sgnS2

4
(σ◦) = −1.

Let us observe that⎛⎝ 1 0 0
0 0 −1
0 1 1

⎞⎠σ◦

⎛⎝ 1 0 0
0 0 −1
0 1 1

⎞⎠−1

=

⎛⎝ 0 −1 −1
0 −1 0
−1 1 0

⎞⎠ = α2
3 ∈ S3

4 .

By virtue of sgnS3
4
α2
3 = 1 and (2.3.7) we conclude for all i ∈ {1, . . . , 3} :

(2.3.8)
[

C
Si
4 ◦

2

]
Γ
=
[

C
S3
4 •

2

]
Γ
.

Because Φ|S2
4→S3

4
: S2

4 → S3
4 is an isomorphism the invariance of the sign under

isomorphisms implies: [
C

S2
4 •

2

]
Γ
=
[
Φ−1

(
C

S3
4 •

2

)]
Γ
.

Putting this together with Φ(S1
4) = S1

4 and (2.3.8) for i = 1 we obtain[
C

S2
4 •

2

]
Γ
=
[
Φ−1

(
C

S3
4 •

2

)]
Γ
=
[
Φ−1

(
C

S1
4 ◦

2

)]
Γ
=
[

C
S1
4 ◦

2

]
Γ
.

Thus (2.3.8) becomes

(2.3.9)
[

C
S2
4 •

2

]
Γ
=
[

C
Si
4 ◦

2

]
Γ
=
[

C
S3
4 •

2

]
Γ
, i ∈ {1, . . . , 3}.

Let us find admissible representatives and their normalizers for the Γ-conjugacy
classes of the type V4 subgroups. By Theorem 2.3.2 there are exactly four Γ-conjugacy
classes of groups of type V4. Set

H•
i := {σ ∈ Si

4 : ord(σ) ≤ 2 ∧ sgnSi
4
(σ) = 1}.

By definition we have H•
i
∼= V4 and H•

i E Si
4. In particular we obtain V

Si
4 •

4 = H•
i .

Combining Lemma 2.3.21 and Theorem 2.3.2 we infer

(2.3.10) NΓ( V
Si
4 •

4 ) = NΓ(H
•
i ) = Si

4.

Let V
S1
4 ◦

4 be an arbitrary representitive for a type V4 subgroup of S1
4 being not

normal in S1
4 , choose for example V

S1
4 ◦

4 = ⟨σ◦, σ•⟩. We now claim that

(2.3.11) NΓ

(
V

S1
4 ◦

4

)
= D

S1
4

8.

Lemma 2.3.21 ensures that NΓ

(
V

S1
4 ◦

4

)
is finite. Suppose NΓ

(
V

S1
4 ◦

4

)
∼= S4. Then

there exists an i0 ∈ {1, . . . , 3} such that NΓ

(
V

S1
4 ◦

4

)
∼
Γ
Si
4. For the reason that for

each group of type S4 there exists only one subgroup of type V4 lying normal in it,
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V
S1
4 ◦

4 would have to be Γ-conjugate to V
S

i0
4 •

4 . We can exclude the case i0 = 1, for
otherwise we would have σ◦ ∼

Γ
σ•, which is impossible. By virtue of i0 ∈ {2, 3} and

[⟨σ•⟩]Γ ≤
[

V
S1
4 ◦

4

]
Γ
=

[
V

S
i0
4 •

4

]
Γ

we conclude, taking account of (2.3.9), once more σ• ∼
Γ
σ◦, a contradiction. This

proves our claim.

Applying Lemma 2.3.5 on (2.3.10) and (2.3.11) we obtain the complete list of
Γ-conjugacy classes belonging to the subgroups of type V4 namely

(2.3.12) {[H]Γ : H ∼= V4} =
{[

V
S1
4 •

4

]
Γ
,
[

V
S2
4 •

4

]
Γ
,
[

V
S3
4 •

4

]
Γ
,
[

V
S1
4 ◦

4

]
Γ

}
.

Let us identify admissible representatives for the Γ-Conjugacy Classes of the type
C4 subgroups and compute their normalizers as well:

We begin by recalling that

⎛⎝ 0 0 1
0 1 0
−1 0 0

⎞⎠ ∈ S1
4 and

⎛⎝ 0 0 −1
−1 0 0
1 1 1

⎞⎠ ∈ S2
4 are

elements of order 4. Therefore their squares lie in V
S1
4 •

4 and V
S2
4 •

4 respectively.
Considering (2.3.9), we conclude

(2.3.13)

⎡⎢⎣
⎛⎝ 0 0 1

0 1 0
−1 0 0

⎞⎠2
⎤⎥⎦
Γ

= [σ•]Γ

and

(2.3.14)

⎡⎢⎣
⎛⎝ 0 0 −1

−1 0 0
1 1 1

⎞⎠2
⎤⎥⎦
Γ

= [σ◦]Γ.

We consistently choose C
S1
4

4 =

⟨⎛⎝ 0 0 1
0 1 0
−1 0 0

⎞⎠⟩ as representative for the S1
4 -

conjugacy class of type C4 subgroups in S1
4 and C

S2
4

4 =

⟨⎛⎝ 0 0 −1
−1 0 0
1 1 1

⎞⎠⟩ as

representative for the S2
4 -conjugacy class of type C4 subgroups in S2

4 . For the reason
that Γ contains only two Γ-conjugacy classes of type C4 and by (2.3.13) and (2.3.14),
we obtain already

(2.3.15) {[H]Γ : H ∼= C4} =
{[

C
S1
4

4

]
Γ
,
[

C
S2
4

4

]
Γ

}
.

We proceed by computing the normalizers of the admissible representatives. To this
end, apply Lemma 2.3.23 and observe NΓ

(
C

Si
4

4

)
is finite for each i ∈ {1, . . . , 3}.

Hence by an application of Theorem 2.3.2 combined with the fact that the C
Si
4

4 are
(by definition) admissible, we obtain

(2.3.16) NΓ

(
C

Si
4

4

)
= D

Si
4

8.

Let us now look for admissible representatives for Γ-conjugacy classes of the type
D8-subgroups.
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Due to (2.3.16) we take D
S1
4

8 = NΓ

(
C

S1
4

4

)
and D

S2
4

8 = NΓ

(
C

S2
4

4

)
as candi-

dates for admissible representatives. Because all subgroups of type C4 are conjugate
in groups of type D8, we infer that[

D
S1
4

8

]
Γ
̸=
[

D
S2
4

8

]
Γ
,

for otherwise we would have C
S1
4

4 ∼
Γ

C
S2
4

4, contrary to (2.3.15). By virtue of
Theorem 2.3.2 we are able to deduce

(2.3.17) {[H]Γ : H ∼= D8} =
{[

D
S1
4

8

]
Γ
,
[

D
S2
4

8

]
Γ

}
.

Our next goal is to find all the admissible representatives of type C3. For this
purpose, consider for instance

CD12
3 =

⟨⎛⎝ 1 0 0
0 −1 −1
0 1 0

⎞⎠⟩ and C
S1
4

3 =

⟨⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠⟩.
We claim that CD12

3 ̸∼
Γ

C
S1
4

3. Conversely, suppose that there exists a Γ ∋ γ =⎛⎝ q r s
t u v
x y z

⎞⎠ such that

γ CD12
3 = C

S1
4

3γ.

Because in a symmetric group each element is conjugate to its inverse, we may
assume that γ even satisfies

γ

⎛⎝ 1 0 0
0 −1 −1
0 1 0

⎞⎠ =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠γ.
A straightforward computation yields that γ is of the form

γ =

⎛⎝ q r s
q s− r −r
q −s r − s

⎞⎠, q, r, s ∈ Z.

Taking the determinant we obtain

1 = det(γ) = 3(−qr2 + qrs− qs2),

contrary to 3 ̸∈ Z×.
Finally, an application of Theorem 2.3.2 results in

(2.3.18) {[H]Γ : H ∼= C3} =
{[

CD12
3

]
Γ
,
[

C
S1
4

3

]
Γ

}
.

By virtue of Lemma 2.3.22 and Theorem 2.3.2 we get immediately

(2.3.19) NΓ

(
CD12

3

)
= D12.

This and Theorem 2.3.2 enforce NΓ

(
C

S1
4

3

)
̸∼= D12, for otherwise we would have

CD12
3 ∼

Γ
C

S1
4

3, which contradicts (2.3.18). In this way, Lagrange’s theorem and the

admissibility of C
S1
4

3 ensure that

(2.3.20) NΓ

(
C

S1
4

3

)
= S

S1
4

3.

Next, we determine admissible representatives for the Γ-conjugacy classes being
associated with subgroups of type S3.



2. THE LATTICE OF CONJUGACY CLASSES OF FINITE SUBGROUPS OF Sl3(Z) 34

To this end, consider the candidates SD12 1
3 , SD12 2

3 and S
S1
4 1

3 . First we prove[
SD12 1
3

]
Γ
̸=
[

SD12 2
3

]
Γ
.

On the contrary, suppose there exists a γ ∈ Γ such that
(

SD12 1
3

)γ

= SD12 2
3 . Then

we obtain by Lemma 2.3.5

(D12)
γ

=
(
NΓ

(
SD12 1
3

))γ

= NΓ

(
SD12 2
3

)
= D12.

Hence γ ∈ NΓ(D12). On the other hand we deduce, using Corollary 2.3.8, that
γ ∈ D12 = ND12

(
S1
3

)
. We conclude

SD12 1
3 =

(
SD12 1
3

)γ

= SD12 2
3 ,

contrary to |{[H]D12
: D12 ≥ H ∼= S3}| = 2.

Corollary 2.3.8 and the finiteness of CΓ

(
C

S1
4

3

)
imply that NΓ

(
S

S1
4

3

)
has to be

finite as well. This combined with (2.3.18) and (2.3.20) leads immediately to

NΓ

(
S

S1
4

3

)
= S

S1
4

3

and additionally in consideration of Lemma 2.3.5 also to[
S

S1
4

3

]
Γ
̸=
[

SD12 j
3

]
Γ
, j ∈ {1, 2}.

Finally, an application of Theorem 2.3.2 yields

(2.3.21) {[H]Γ : H ∼= S3} =
{[

SD12 1
3

]
Γ
,
[

SD12 2
3

]
Γ
,
[

S
S1
4

3

]
Γ

}
.

Theorem 2.3.2 and Lemma 2.3.5 yield admissible representatives for the conjugacy
classes of the finite subgroups associated with the remaining isomorphy types. In
this manner we obtain

{[H]Γ : H ∼= C6} =
{[

CD12
6

]
Γ

}
,(2.3.22)

{[H]Γ : H ∼= D12} = {[D12]Γ},(2.3.23)

{[H]Γ : H ∼= A4} =
{[

A
Si
4

4

]
Γ
: i ∈ {1, . . . , 3}

}
,(2.3.24)

and

{[H]Γ : H ∼= S4} =
{[
Si
4

]
Γ
: i ∈ {1, . . . , 3}

}
.(2.3.25)

We now turn to the discussion about the positions of the elements in Γ\ Subfin(Γ).
We start by analyzing the connection lines belonging to the Γ-conjugacy classes of
type C2. Because each group of order 4 contains an element of order 2 with trivial
sign, we get on the one hand

(2.3.26) [⟨σ•⟩]Γ ≤
[

V
S1
4 •

4

]
Γ
,
[

V
S1
4 ◦

4

]
Γ
,
[

C
S1
4

4

]
Γ
.

On the other hand we infer by virtue of (2.3.9) that

(2.3.27) [⟨σ◦⟩]Γ ≤
[

V
S1
4 ◦

4

]
Γ
,
[

V
S2
4 •

4

]
Γ
,
[

V
S3
4 •

4

]
Γ
,
[

C
S2
4

4

]
Γ
,
[

S
S1
4

3

]
Γ
.

A straightforward computation yields

CΓ

⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠ =

⎧⎨⎩
⎛⎝ det(A)−1

A

⎞⎠ : A ∈ Gl2(Z)

⎫⎬⎭ =: G.
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0 −1 0
0 0 −1

⎞⎠ ∈ V
S1
4 •

4 now implies that [CΓ(σ
•)]Γ = [G]Γ. On the other hand

an analysis of the structure of the generators of D12 results in D12 ≤ G. In this way
we obtain in particular

[σ•]Γ = [Z(D12)]Γ.

This leads immediately to

(2.3.28) [⟨σ•⟩]Γ ≤
[

CD12
6

]
Γ

and [⟨σ•⟩]Γ ≤
[

VD12
4

]
Γ
.

Moreover, Theorem 2.2.1 ensures that

⎛⎝ −1 0 0
0 0 −1
0 −1 0

⎞⎠ ∈ D12∩S1
4 . This element

is of order 2 and can be represented as transposition. The invariance of the sign
under automorphisms enforces that this element has negative sign with respect to
S1
4 . We conclude

[⟨σ◦⟩]Γ =

⎡⎣⟨⎛⎝ −1 0 0
0 0 −1
0 −1 0

⎞⎠⟩⎤⎦
Γ

≤
[

VD12
4

]
Γ
,

which leads by virtue of (2.3.27) and (2.3.26) to

(2.3.29)
[

VD12
4

]
Γ
=
[

V
S1
4 ◦

4

]
Γ
.

From this, (2.3.28) and Corollary 2.3.13 we may derive

(2.3.30) [⟨σ◦⟩] ≤
[

SD12 j
3

]
Γ
, j ∈ {1, 2}.

In order to close the chapter about the simple inclusions of Γ-conjugacy classes
of subgroups of type C2, we have to show that there is not any other element in
Γ\ Subfin(Γ) with the property that any Γ-conjugacy class of subgroups of type C2

lies simple in it. We begin by proving

(2.3.31) [⟨σ•⟩]Γ ̸≤ [Si
4]Γ, i ∈ {2, 3}.

Conversely, suppose that there is an i ∈ {2, 3} such that

[⟨σ•⟩]Γ ≤ [Si
4]Γ.

Then (2.3.8) already implies [σ•]Γ = [σ◦]Γ, a contradiction. Moreover

[⟨σ•⟩]Γ ̸≤
[

SD12 j
3

]
Γ
, j ∈ {1, 2},

for otherwise, taking account of [⟨σ◦⟩]Γ ≤
[

SD12 j
3

]
Γ
, we would necessarily obtain

once more [σ•]Γ = [σ◦]Γ.

By virtue of (2.3.28) we derive

[⟨σ◦⟩]Γ ̸≤
[

CD12
6

]
Γ

and for the reason that a group of type A4 contains only one subgroup of type V4,
we must have

[⟨σ◦⟩]Γ ̸≤
[

A
S1
4

4

]
Γ
.

Because of [σ◦]Γ ̸= [σ•]Γ we see

[⟨σ◦⟩]Γ ̸≤
[

C
S1
4

4

]
Γ
.
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Thus, we infer that we have indeed determined in (2.3.27), (2.3.26), (2.3.28) and
(2.3.30) all the connection lines emanating from Γ-conjugacy classes of subgroups of
type C2.

Next we watch out for the simple inclusions of Γ-conjugacy classes of subgroups
lying over [σ•]Γ. Considering (2.3.31) we immediately observe that[

V
S1
4 •

4

]
Γ
,
[

V
S1
4 ◦

4

]
Γ
,
[

C
S1
4

4

]
Γ
̸≤ [Si

4]Γ, i ∈ {2, 3}.

Taking account of (2.3.29) we get[
V

S1
4 ◦

4

]
Γ
≤ [D12]Γ

and in addition, according to the fact that all subgroups of type V4 in D12 have to
be conjugate by Sylow’s theorems, we infer[

V
S1
4 •

4

]
Γ
̸≤ [D12]Γ.

The determination of the remaining simple inclusions of the elements in Subfin(Γ)
lying properly over [σ•]Γ is straightforward as well as the proof that we have found
all of them.

Now, let us find the simple inclusions for the Γ-conjugacy classes c of subgroups of
order 4 and 8, for which the following conditions are valid:

• [⟨σ◦⟩]Γ ≤ c and
• [⟨σ•⟩]Γ ̸≤ c.

Such Γ-conjugacy classes cannot be contained in [S1
4 ]Γ, for otherwise they would

contain [⟨σ•⟩]Γ, a contradicition.
This and (2.3.17) forces

[
D

S2
4

8

]
Γ
=
[

D
S3
4

8

]
Γ
. Moreover, we see

[
V

Si
4 •

4

]
Γ
̸≤ [D12]Γ,

i ∈ {2, 3}, for otherwise we would have
[

VD12
4

]
Γ
=
[

V
Si
4 •

4

]
Γ
, contrary to (2.3.29).

By virtue of this the following list of simple inclusions for the Γ-conjugacy classes,
which satisfy the conditions above, is true and complete:

•
[

V
Si
4 •

4

]
Γ
≤
[

D
S2
4

8

]
Γ
,
[

A
Si
4

4

]
Γ
, i ∈ {2, 3};

•
[

C
S2
4

4

]
Γ
≤
[

D
S2
4

8

]
Γ
;

•
[

D
S2
4

8

]
Γ
≤ [Si

4]Γ, i ∈ {2, 3}.

It is trivial to give complete lists of simple inclusions for
[

A
Si
4

4

]
Γ
, i ∈ {1, . . . , 3}

and
[

CD12
6

]
Γ
.

To finish the proof of the proposition, it suffices to find the collection of sim-
ple inclusions for Γ-conjugacy classes of subgroups of type C3 and S3 and to prove
that this collection is exhaustive.

We start by showing

(2.3.32)
[

C
S1
4

3

]
Γ
̸≤ [D12]Γ.

If it were true, that
[

C
S1
4

3

]
Γ
≤ [D12]Γ there would exist a γ ∈ Γ satisfying(

C
S1
4

3

)γ

≤ D12.
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But if this were the case, Sylow’s theorems would already force(
C

S1
4

3

)γ

= CD12
3,

contradicting (2.3.18).

From this we obtain by the way

(2.3.33)
[

S
S1
4

3

]
Γ
≤ [D12]Γ.

On the other hand, Theorem 2.2.1 tells us that S1
4 shares a common subgroup of

type C3 with S2
4 and a another common subgroup of type C3 with S3

4 . Applying
Sylow’s theorems we conclude

(2.3.34)
[

C
Si
4

3

]
Γ
=
[

C
S1
4

3

]
Γ

∀i ∈ {1, . . . , 3}.

Hence, we immediately obtain

(2.3.35)
[

C
S1
4

3

]
Γ
≤
[

A
Si
4

4

]
Γ

∀i ∈ {1, . . . , 3}.

Taking account of (2.3.18) the relation given in (2.3.34) suggests the following claim.

(2.3.36)
[

CD12
3

]
Γ
̸≤ [Si

4]Γ, i ∈ {1, . . . , 3}.

On the contrary, suppose that [
CD12

3

]
Γ
≤ [Si0

4 ]Γ

for some i0 ∈ {1, . . . , 3}. Then there exists a γ ∈ Γ such that(
CD12

3

)γ

≤ Si0
4 .

Sylow’s theorems allow us to modify our γ ∈ Γ in a way such that(
CD12

3

)γ

= C
S

i0
4

3.

In particular, we obtain [
CD12

3

]
Γ
=

[
C

S
i0
4

3

]
Γ

=
[

C
S1
4

3

]
Γ
,

contradicting (2.3.18).

From (2.3.32) and (2.3.36) we derive immediately

(2.3.37)
[

SD12 j
3

]
Γ
̸≤ [Si

4]Γ

Combining (2.3.20) with (2.3.34) yields

(2.3.38)
[

S
S1
4

3

]
Γ
≤ [Si

4]Γ ∀i ∈ {1, . . . , 3}.

So we can give a complete list of simple inclusions for the Γ-conjugacy classes of
subgroups having orders 3 or 6.

•
[

CD12
6

]
Γ
≤ [D12]Γ;

•
[

C
S1
4

3

]
Γ
≤
[

S
S1
4

3

]
Γ
;

•
[

C
S1
4

3

]
Γ
≤
[

A
Si
4

4

]
Γ
, i ∈ {1, . . . , 3};

•
[

CD12
3

]
Γ
≤
[

CD12
6

]
Γ
,
[

SD12 j
3

]
Γ
, j ∈ {1, 2};

•
[

S
S1
4

3

]
Γ
≤ [Si

4]Γ, i ∈ {1, . . . , 3};
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•
[

SD12 j
3

]
Γ
≤ [D12]Γ, j ∈ {1, 2}.

(2.3.32), (2.3.36) and (2.3.33) enforce that there cannot be another simple inclusion
with origin in a group of order 3 or 6.

This completes the proof of the proposition. �
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2.4 Scwols and Complexes of groups

Think of a Complex of groups as fundamental domain for a group action, labeled
with the stabilizer groups at its singular vertices. We look in this chapter for the
construction of, in some sense, minimal complex of groups belonging to a given
group. A key feature of such a minimal object should be, that the number conjugacy
classes of maximal finite subgroups of the group is equal to the number of vertices
labeled by such groups. The main-theorem of this chapter, Theorem 2.4.49, shows
that our construction essentially has this property.

The following definition is due to Serre and can be found in [7].

Definition 2.4.1 (graph). A graph G is a tuple (V (G),E(G), i, t,−1 ) where

i : E(G) → V (G) and t : E(G) → V (G)

are maps and
−1 : E(G) → E(G)

is an involution without fixed points which satisfies the following condition:

i(e−1) = t(e).

Remark 5. We sometimes write VG or EG instead of V (G) or E(G) respectively.

Definition 2.4.2. Let G be a graph. We say H = (V,E, i′, t′, κ) is a subgraph of G,
if it is a graph having vertices V ⊆ V (G) and edges E ⊆ E(G) such that

i′ = i|E→V and t′ = t|E→V

and such that the involution κ coincides with the restriction of the involution −1 to
E.

Definition 2.4.3 (paths, connected graphs). Let G = (V (G),E(G), i, t,−1 ) be a
graph. A path is a non-empty tuple of edges

(ek)
n
j=1, ek ∈ E(G) ∀1 ≤ k ≤ n,

such that t(ek) = i(ek+1) for each k ∈ {1, . . . , n−1} or an 1-tuple (v) for a v ∈ V (G).
In the last case we say the path is trivial. Let π be a path. We set i(π) := i(e1)
and t(π) := t(en) if π = (e1, . . . , en) for some edges ek ∈ E(X ) and i(π) := v and
t(π) := v if π = (v) for a v ∈ V (G). For vertices v, w ∈ V (G) and a path π we say
the π connects v to w if i(π) = v and t(π) = w. For a non-trivial path π = (ek)

n
k=1

we set
E(π) := {ek : 1 ≤ k ≤ n}

and
V (π) := {v ∈ V (G) : ∃e ∈ E(π) : v = i(e) or v = t(e)}.

If π = (v) for some v ∈ V (X ), we put E(π) := ∅ and V (π) := {v}. We call E(π) the
set of edges and V (π) the set of vertices of π. We say the graph G is connected if
for each two vertices v, w ∈ V (G) there exists a path π connecting v to w.

Definition 2.4.4 (concatenation of paths). Let G be a graph and π = (ek)
m
k=1 and

η = (fl)
n
l=1 be paths in G such that t(π) = i(η). If π and η are non-trivial, we define

π ∗ η := (e1, . . . , em, f1, . . . fn).

If π is trivial, we set π ∗ η := η. If η is trivial, we put π ∗ η := π. In each case π ∗ η
is a path.
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Definition 2.4.5 (backtracking, circle, tree). Let G be a graph and π be a path
in G. We say π = (ek)

n
k=1 has backtracking if there exists a 1 ≤ k0 ≤ n such that

ek0+1 = (ek0)
−1. We say π is a path without backtracking if there exists no such

k0. We call π a circle if and only if π is a non-trivial path without backtracking
satisfying t(π) = i(π). A graph G is said to be a tree if it is connected and does not
contain any circle.

Remark 6. Consider an arbitrary path π in a graph G. If there is a backtracking,
remove it. If there is not, we have obtained a path without backtracking. Iterating
this procedure leads to a path without backtracking after finitely many steps. This
path is unique in the sense that it does not depend on the order we removed the
backtracking. We call the unique path obtained by this procedure the path without
backtracking associated to π.

Definition 2.4.6 (spanning tree). Let G = (V (G),E(G), i, t,−1 ) be a graph. A
subgraph T is called a spanning tree if V (T ) = V (G) and if it is a tree.

It is well known that each connected graph contains a spanning tree.

The following definitions can be taken from [1].

Definition 2.4.7 (scwol). A small category without loops (briefly a scwol) X is a
tuple (V (X ), E(X ), i, t, ◦) consisting of sets V (X ), E(X ) and maps

i : E(X ) → V (X ), t : E(X ) → V (X )

and a composition map
◦ : E(2)(X ) → E(X ),

where we have set for k ∈ N

E(k)(Y) :=

⎧⎨⎩(a1, . . . , ak) ∈
k∏

j=1

E(X ) : i(aj) = t(aj+1), j ∈ {1, . . . , k − 1}

⎫⎬⎭,
and where the tuple is required to satisfy the following axioms:

(1) ∀(a, b) ∈ E(2)(X ) : i(a ◦ b) = i(b) and t(a ◦ b) = t(a);
(2) ∀(a, b, c) ∈ E(3)(X ) : (a ◦ b) ◦ c = a ◦ (b ◦ c);
(3) ∀a ∈ E(X ) : i(a) ̸= t(a).

The elements of V (X ) are called vertices, those of E(X ) are called arrows, and those
of E(2)(X ) composable arrows. For composable arrows a, b we will often write ab
instead of a ◦ b.

Definition 2.4.8 (subscwol). A subscwol X ′ = (V X ′, EX ′, i|EX ′ , t|EX ′ , ◦|(EX ′)2)
of a scwol X is given by subsets V (X ′) ⊆ V (X ) and E(X ′) ⊆ E(X ) such that if
a ∈ E(X ′), then i(a), t(a) ∈ V (X ′) and if a, b ∈ E(X ′) are such that i(a) = t(b),
then a ◦ b ∈ E(X ′).

Definition 2.4.9 (canonical partial order on the set of vertices of the scwol). Let
X be a scwol. Then, the relation given by

v ≤ w :⇐⇒
{

v = w
or ∃a ∈ E(Y) : i(a) = w and t(a) = v

}
.

is a partial order on V (X ). It is called the canonical parital order on V (X ).

Proof. The axioms satisfied by a scwol enforce that “≤” defines indeed a
partial order. �
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Remark 7. We will sometimes refer to it as the canonical order on X or as the
order on X . We agree on the following convention: If we write v ≤ w for some
v, w ∈ V (X ), we explicitly refer to the canonical partial order unless nothing else is
specified.

Definition 2.4.10 (dimension of a vertex in a scwol, dimension of a scwol). Let
X be a scwol. For each v ∈ V (X ) we set E(k)(X , v) := {(a1, . . . , ak) ∈ E(k)(X ) :
i(ak) = v}. The dimension of a vertex v ∈ V (X ) is the number

dim(v) := max{k ∈ N : ∃(a1, . . . , ak) ∈ E(k)(X , v) : i(ak) = v}.
The number dim(X ) := supv∈V (X ) dim(v) is called the dimension of the scwol.

Definition 2.4.11. For an arbitrary scwol X and any number k ∈ N we set

Vk(X ) := {v ∈ V (X ) : dim v = k}.

Remark 8. It is clearly true that V (X ) =
⨄

k∈N Vk(X ).

Definition 2.4.12. For an arbitrary scwol X we define

Vmax(X ) := {v ∈ V (X ) : v maximal}.

Lemma 2.4.13 (dimension is a strictly increasing function on V X ). For each two
vertices v, w ∈ V (X ) with v < w holds

dim(v) < dim(w).

Proof. Let v < w, n := dim v. By definition there exists a sequence (a1, . . . , an)
such that a1 ◦ · · · ◦ an ∈ E(Y) and i(an) = v. Furthermore the axioms for scwols
imply there exists an arrow a ∈ E(Y) with i(a) = w and t(a) = v. We conclude that

a1 ◦ · · · ◦ an ◦ a ∈ E(Y)

and therefore
dimw ≥ n+ 1 > n = dim v.

�

Lemma 2.4.14 (each vertice is covered by a maximal one). Let X be a scwol such
that dim(X ) <∞. For each v ∈ V (X ) there exists a maximal element w with respect
to “≤” such that v ≤ w.

Proof. Let n := dim(X ). Suppose, contrary to our claim, that there is an
element v ∈ V (X ) such that for each w ≥ v there exists a V (X ) ∋ w′ > w. Iterative
applications of this argument yield a sequence of elements (vi)i∈N in V (X ) such
that vi < vi+1. Take an arbitrary k > n+ 1. Due to Lemma 2.4.13 we obtain

dim(vk) ≥ dim(v1) + k − 1 > n = dim(X ),

which is impossible. �

Definition 2.4.15 (morphisms of scwols). Let X and Y be scwols. Then a pair of
maps

ϕ :
V (X ) → V (Y)
E(X ) → E(Y)

is called a morphism, if it satisfies the following conditions
(1) ∀a ∈ E(X ) : iY(ϕ(a)) = ϕ(iX (a)) and tY(ϕ(a)) = ϕ(tX (a)); and
(2) ∀(a, b) ∈ E(2)(X ) : ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b).

ϕ is called an isomorphism if, in addition, both maps in ϕ are bijections. X and
Y are called isomorphic if there is an isomorphism between them. In this case we
write briefly X ∼= Y.
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Definition 2.4.16 (complex of groups). Let Y be a scwol. A complex of groups
G(Y) over Y is given by the following data:

(1) a family of groups (Gv)v∈V (Y) over the vertices of Y , a group Gv is called
the local group at v;

(2) a family (ψa)a∈E(Y) of injective group homomorphisms ψa : Gi(a) → Gt(a)

over the arrows of Y;
(3) a family of twisting elements (ga,b)(a,b)∈E(2)(Y), ga,b ∈ Gt(a);

with the following compatibility conditions:
(a) ∀(a, b) ∈ E(2)(Y) : (ψab)

ga,b = ψaψb;
(b) ∀(a, b, c) ∈ E(3)(Y) : ψa(gb,c)ga,bc = ga,bgab,c

In short we write G(Y) = (Gv, ψa, ga,b).

Definition 2.4.17 (group action on a scwol). An action of a group G on a scwol
X consists of an action Gy V (X ) and an action Gy E(X ) with the compatibility
conditions

g.i(a) = i(g.a) and g.t(a) = t(g.a)

and
g.(a ◦ b) = g.a ◦ g.b

satisfying the following additional axioms:
(1) ∀a ∈ E(X ), g ∈ G : g.i(a) ̸= t(a), (“dimension preserving”)
(2) ∀a ∈ E(X ), g ∈ G : g.i(a) = i(a) ⇒ g.a = a. (“inversion free”)

Remark 9. The first condition can be omitted, if the scwol, on which the group
acts, is finite. The definition implies that G preserves the canonical partial order on
V (X ).

Definition 2.4.18 (quotient scwol). Let X be a scwol and G be a group acting on
it. Then the quotient scwol G\X consists of the quotient sets G\V (X ), G\E(X )
and the induced maps ī and t̄ where ī(G.v) := G.i(v) and t̄(G.v) := G.t(v). The
composition on G\X is defined as follows: Let (α, β) ∈ E(2)(G\X ) and choose
arbitrary a ∈ α and b ∈ β. Due to ī(α) = t̄(β) there exists a g ∈ G such that
i(a) = g.t(b) = t(g.b). We set α ∗ β := G.(a ◦ g.b). It is not hard to see that all the
maps are well-defined and that G\X := (G\V (X ), G\E(X ), ī.t̄, ∗) satisfies all the
axioms of a scwol.

Because we have not found it anywhere in the literature, we provide a definition for
the notion of being a fundamental domain of a group action on a connected scwol.

Definition 2.4.19 (fundamental domain of an action). Let G be a group acting on
a finite dimensional connected scwol X . A subscwol D of X is called a fundamental
domain for Gy X if the following properties are satisfied:

(1) Vmax(D) is a system of representatives for G\Vmax(X ),
(2) ∀a ∈ E(X ) : i(a) ∈ V (D) ⇒ a ∈ E(D). (“track incidence structure”)

Remark 10. Axiom (1) in Definition 2.4.19 can be interpreted in the following way:
“There is an open subset of D such that X can be covered by disjoint translates of
that subset up to sets of measure zero.”
It might happen that there are multiple arrows identified between two vertices in
a quotient scwol. However, property (2) in Definition 2.4.19 takes account of that
fact.

Lemma 2.4.20 (The notion “fundamental domain” is well-defined). Let D be a
fundamental domain for a group action of a group G on a connected scwol X with
dim(X ) <∞. Then

V (G\X ) = {G.v : v ∈ V (D)} and E(G\X ) = {G.a : a ∈ E(D)}.
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Proof. We first claim that for each v ∈ V (X ) there are a v′ ∈ V (D) and a
g ∈ G such that v = g.v′. To prove this, take an arbitrary v ∈ V (X ). Lemma 2.4.14
guarantees the existence of a w ∈ Vmax(X ) with v ≤ w. By (1) in Definition 2.4.19
there exists a w′ ∈ Vmax(D) such that g.w′ = w. Because the G action on X preserves
the canonical order on V (X ), we obtain

v′ := g−1.v ≤ g−1.w = w′.

The definition of the canonical order forces that one of the following cases occurs:
(1) there is a b ∈ E(D) such that i(b) = w′, t(b) = v′ or
(2) v′ = w′.

In the second case we conclude g.v′ = v, v′ = w′ ∈ V (D), as claimed. So, let
us assume the first case occurs. For the reason i(b) ∈ V (D), we obtain by (2) in
Definition 2.4.19 that b ∈ E(D). Because D is a subscwol, we get v′ ∈ V (D). We
conclude

g.v′ = gg−1.v = v,

which yields the claim.

We get as an immediate consequence

V (G\X ) = {G.v : v ∈ V (D)}.

Now, we turn to the proof of the second assertion of the lemma. It suffices to show
E(G\X ) ⊆ {G.a : a ∈ E(D)}. So, let G.a ∈ E(G\X ). Then, G.i(a) ⊆ V (G\X ). By
the claim above, there is a v′ ∈ V (D) such that i(a) = g.v′. Put a′ := g−1.a. We
infer

i(a′) = g−1.i(a) = v′ ∈ V (D)

and therefore a′ ∈ E(D). Hence

G.a = G.a′ ⊆ {G.a : a ∈ E(D)},

as desired.
�

Proposition 2.4.21. Each group action of a group G on a finite dimensional
connected scwol X has a fundamental domain given by

V (D) := {v ∈ V (X ) : ∃σ ∈ Σ: v ≤ σ},
E(D) := {a ∈ E(X ) : ∃σ ∈ Σ: i(a) ≤ σ},

where Σ is an arbitrary system of representatives for G\Vmax(X ).

Proof. The proof is trivial. �

Proposition 2.4.22. Let G be a group acting on a finite dimensional connected
scwol X . Let D be a fundamental domain for this action. Put Σ := Vmax(D). Then,
D can be represented as follows:

V (D) = {v ∈ V (X ) : ∃σ ∈ Σ: v ≤ σ},
E(D) = {a ∈ E(X ) : ∃σ ∈ Σ: i(a) ≤ σ},

In particular, each fundamental domain, is uniquely determined by the choice of the
system of representatives Σ of the quotient G\Vmax(X ).

Proof. The proof is straightforward. �
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Lemma 2.4.23. Let G be a group acting on a finite dimensional connected scwol
X and ∆ ≤ G such that (G : ∆) < ∞. Let S be a system of representatives for
∆\G. Furthermore, assume there is a fundamental domain D for Gy X such that
Gv = {1} for each v ∈ Vmax(D). Then, the scwol S.D given by

V (S.D) := {s.v : s ∈ S, v ∈ V (D)} and E(S.D) := {s.a : s ∈ S, a ∈ E(D)}

is a fundamental domain for ∆ y X .

Proof. We begin by proving that S.D is indeed a subscwol. Obviously, a ∈
E(S.D) implies i(a), t(a) ∈ V (S.D). The only non-trivial fact we have to show is
a, b ∈ E(S.D) with i(a) = t(b) implies a◦b ∈ E(S.D). To this end, take a, b ∈ E(S.D)
such that i(a) = t(b). By definition, there are s ∈ S and b′ ∈ E(D) such that b = s.b′.
We put a′ := s−1a. Considering D is a subscwol, we have i(b′), t(b′) ∈ V (D) and
thus

i(a′) = s−1.i(a) = s−1.t(b) = t(b′) ∈ V (D).

Definition 2.4.19 axiom (2) forces a′ ∈ E(D). Because D is a subscwol, we obtain
a′ ◦ b′ ∈ E(D). We conclude

a ◦ b = (s.a′ ◦ s.b′) = s.(a′ ◦ b′) ∈ E(S.D).

Hence S.D is indeed a subscwol.

Let us show that S.D satisfies (1) and (2) of Definition 2.4.19. We start with
(1). To this end, take an arbitrary v ∈ Vmax(X ). Because D is a fundamental
domain, there are g ∈ G and v′ ∈ Vmax(D) such that g.v′ = v. Considering that S
is a system of represantatives for ∆\Γ, we get ∆g = ∆s for a suitable s ∈ S. We
conclude

∆.v = ∆g.v′ = ∆.(s.v′).

Suppose, there are w,w′ ∈ Vmax(S.D) and δ, δ′ ∈ ∆ such that δ′.w′ = δ.w. Then,
there are also s, s′ ∈ S and v, v′ ∈ Vmax(D) such that w = s.v and w′ = s′.v′. In
particular, we obtain

δ′s′.v′ = δs.v.

The fact that Vmax(D) is a system of representatives for G\Vmax(X ) now enforces
v = v′. This yields

s−1δ−1δ′s′ ∈ Gv = {1}
and therefore ∆s′ = ∆s. For the reason that S is a system of representatives for
∆\Γ, we obtain s′ = s. This implies

w′ = s′.v′ = s.v = w.

We conclude that Vmax(S.D) is a system of representatives for ∆\Vmax(X ), as
required. Property (2) in Definition 2.4.19 for S.D is an immediate consequence of
that of D. �

Definition 2.4.24 (complex of groups associated to an action on a scwol). Let G
be a group acting on a scwol X . Let Y := G\X the quotient scwol. For each vertex
v̄ ∈ V (Y) choose a vertex v ∈ v̄ such that G.v = v̄. For each edge ā ∈ E(Y) with
i(ā) = v̄ we ensure due to the inversion freeness axiom for X the existence of an
unique edge a ∈ E(X ) such that a ∈ ā and i(a) = v. Take an arbitrary w ∈ t(ā).
Choose an ha ∈ G such that ha.t(a) = w. For v̄ ∈ V (Y) let Gv̄ be the isotropy
subgroup of v, and for each ā ∈ E(Y), let ψā : Gi(ā) → Gt(ā) be the homomorphism
defined by

ψā(g) := hagh
−1
a
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which lies by the inversion freeness axiom in Gt(ā). For composable edges (ā, b̄) ∈
E(2)(Y) define gā,b̄ := hahbh

−1
ab ∈ Gt(ā). The complex of groups over Y associated to

the action of G on X (and the choices above) is

G(Y) = (Gv̄, ψā, gā,b̄).

It is easy to show that all the axioms of a complex of groups are satisfied.

Remark 11. Different choices will result in different complexes of groups. For the
interested reader let us mention that other choices for the ha lead to complexes of
groups deduced from G(Y) by a “coboundary”, in particular they are “isomorphic”.
For the definitions and more detailed information we refer the reader to [1] Chapter
III.C.Complexes of Groups.

Definition 2.4.25 (developability). A complex of groups G(Y) is called developable
if there exists a group G and a scwol X such that G acts on X , Y = G\X and G(Y)
is a complex of groups over Y associated to this action.

Theorem 2.4.26 ([1] pp. 553-554: 3.13 Theorem, 3.15 Corollary). Each developable
complex of groups G(Y) belongs to an action of a certain group G acting on a simply
connected scwol X . G and X are unique up to isomorphy.

Remark 12. This theorem allows us to study group actions on simply connected
scwols instead of Complexes of Groups. In our view, the first framework allows
much more flexibility than the last one.

Definition 2.4.27. We say a group G satisfies FCoFG if and only if there are
only finitely many G-conjugacy classes of finite subgroups in G, i.e. G\ Subfin(G) is
finite.

The following lemma is the reason why we consider FCoFG groups.

Lemma 2.4.28 (In FCoFG groups every finite subgroup is dominated by a maximal
one). Let G be a group satisfying FCoFG. Then for each finite group H ≤ G there
exists a maximal finite subgroup K ≤ G such that H ≤ K.

Proof. Clearly the size map

| · | : Subfin(G) → N : H ↦→ |H|
can be pushed down to a well-defined map

| · |∗ : G\ Subfin(G) → N : [H]G ↦→ |H|.
Because G\ Subfin(G) is finite, there exists an m ∈ N such that |[H]G|∗ ≤ m for
each H ∈ Subfin(G). In particular, |H| ≤ m for each H ∈ Subfin(G). Now, suppose
contrary to the claim of the lemma, that there exists an element H ∈ Subfin(G)
such that for each Subfin(G) ∋ K ≥ H there exists a Subfin(G) ∋ L > K. Then
we can construct recursively a sequence of the form (Hk)k∈N with the properties
H = H1, Hk < Hk+1 and Hk ∈ Subfin(G) for each 1 ≤ k ∈ N. We then have that
|Hk| < |Hk+1| and via iteration we estimate |Hk| ≥ k for every k ∈ N. Hence, we
obtain |Hm+1| ≥ m+ 1, a contradiction to |Hm+1| ≤ m. �

Lemma 2.4.29 (finite index subgroups of FCoFG groups are FCoFG). Let G be a
group satisfying FCoFG. Then each subgroup ∆ ≤ G with the property (G : ∆) <∞
also satisfies FCoFG.

Proof. By hypothesis there exists an m ∈ N such that (G : ∆) = m. Pick an
arbitrary element H ∈ Subfin(Γ). Clearly, ∆ acts on [H]G via conjugation. In this
way, we obtain a map

ϕ : ∆\G→ ∆\[H]G : ∆g ↦→ [ Hg ]∆,
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which is obviously well-defined and surjective. In particular, ∆\[H]G is finite. On
the other hand, we have

∆\ Subfin(∆) ⊆ ∆\ Subfin(G) ⊆
⋃

[H]G∈G\ Subfin(G)

∆\[H]G.

Combining both facts yields the following estimation:

|∆\ Subfin(∆)| ≤
∑

[H]G∈G\ Subfin(G)

|∆\[H]G| ≤ |G\ Subfin(G)| ·m.

By hypothesis |G\ Subfin(G)| is finite. This enforces together with the estimate
above that |∆\ Subfin(∆)| has to be finite as well, which is the desired conclusion.

�

Notation 2.4.30. Let G be a group satisfying FCoFG. In the sequel, M(G) stands
for the set

M(G) := {H ∈ Subfin(G) : H is maximal in Subfin(G)}
and M◦(G) for the set

M◦(G) :=M(G) ∩ Sub◦fin(G).

Remark 13. Gy Subfin(G) via conjugation. This action leaves M(G) invariant
because the conjugation with an element of G preserves the order “≤” on Subfin(G).
Hence G y M(G) via conjugation and for a similar reason G y M◦(G) via
conjugation as well.

Definition 2.4.31. Let G be a group and X = (V (X ), E(X ), iX , tX ) be a scwol.
We say G acts on X with finite stabilizers if and only if G acts on X and Gv is
finite for each v ∈ V (X ).

Definition 2.4.32 (edges in a scwol; edge-graph; edge-path; connected scwol). Let
X be a scwol. Let E be a subset of E(X ). Set

E+ := E × {1}, E− := E × {−1}
and finally

E± := E+ ⊎ E−.

In this way we obtain maps

ι+ : E(X ) → E±(X) : a ↦→ (a, 1) =: a+

and
ι− : E(X ) → E±(X ) : a ↦→ (a,−1) =: a−.

Furthermore we define incidence maps i′ : E±(X ) → V (X ) via

i′(e) :=

{
t(a), if e = a+ for some a ∈ E(X ),
i(a), if e = a− for some a ∈ E(X )

and

t′(e) :=

{
i(a), if e = a+ for some a ∈ E(X ),
t(a), if e = a− for some a ∈ E(X ).

An element e ∈ E±(X ) is called an edge of the scwol X . Moreover call the quadruplet
X± := (V (X ), E±(X ), i′, t′) the edge-graph of X . The map

−1 : E±(X ) → E±(X ) :

defined via
(a+)−1 := a− and (a−)−1 := a+
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is clearly an involution without fixed points satisfying i′X (e−1) = t′X (e). Thus
(X±,−1 ) is indeed a graph in the sense Definition 2.4.1. For the reason the definition
of −1 does only depend on X , we may identify X± with (X±,−1 ). We say a path π
is an edge-path in X if it is just a path in the edge-graph X±. We say the scwol X
is connected if the associated edge-graph X± is connected.

Lemma 2.4.33. Let X be a scwol and H be a subgraph of X±. Then there exists a
set E ⊆ E(X ) such that E(H) = E+ ⊎ E−.

Proof. The set E := {a ∈ E(X ) : a+ ∈ E(H)} will do the job. �

Our next goal is to construct a scwol X̃ from X in a way such that G acts on X̃ and
such that for a maximal finite subgroup H the set {v ∈ V (X̃ ) : Gv = H} consists
of only one element. Furthermore there should be an epimorphism mapping the
fundamental group of X onto that of X̃ and the stabilizers of the action G on X̃
should be obtained in a canonical way from that of the action G on X .

To this end, let G be a FCoFG group acting with finite stabilizers on a scwol
X . Then we can define the following equivalence relation on V (X ):

(2.4.1)

v ∼ w :⇔

⎧⎨⎩ v = w or
v ̸= w, Gv ∈M◦(G) and there is an edge-path π connecting

v to w s.t. Gσ = Gv for each σ ∈ V (π).

It is easy to verify that “∼” satisfies indeed the axioms of an equivalence relation on
V (X ). Put

E′(X ) := E(X )r {a ∈ E(X ) : Gi(a) ∈M◦(G)}.
For each a, b ∈ E′(X ) we write a ∼ b if and only if iX (a) = iX (b) and tX (a) ∼ tX (b).
This is obviously an equivalence relation on E′(X ). Now, we are ready to define the
scwol X̃ . For this purpose we set

V (X̃ ) := V (X )/ ∼ and E(X̃ ) := E′(X )/ ∼

and furthermore we put

iX̃ ([a]) := [iX (a)] and tX̃ ([a]) := [tX (a)].

In order to obtain an appropriate composition on X̃ we need to compute E(2)(X̃).
In fact, we can show

∀(α, β) ∈ E(2)(X̃ ) : α× β ⊆ E(2)(X ).

To prove this take (α, β) ∈ E(2)(X̃ ). We then have tX̃(β) = iX̃(α) and by definition
of X̃ we get the relation tX (b) ∼ iX (a) for any a ∈ α and any b ∈ β. To deduce the
claim, it is sufficient to show

tX (b) = iX (a)

for each choice (a, b) ∈ α× β.

On the contrary, suppose that tX (b) ̸= iX (a) for some a0 ∈ α and b0 ∈ β. The
definition of “∼” on V (X ) tells us that GiX (a0) has to be maximal. But this implies
a0 /∈ E′(X ), contradicting α ⊆ E′(X ). This yields the claim.

So we define the composition on E(X̃ ) via

• : E(2)(X̃ ) → E(X̃) : ([a], [b]) ↦→ [a ◦ b].
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We have to check that “•” is a well-defined map. To this end let us take a′ ∼ a and
b′ ∼ b and observe

iX̃([a′] • [b′]) = [iX (a′ ◦ b′)] = [iX (b′)] = [iX (b)] = [iX (a ◦ b)] = iX̃ ([a] • [b])
and

tX̃([a′] • [b′]) = [tX (a′ ◦ b′)] = [tX (a′)] = [tX (a)] = [tX (a ◦ b)] = tX̃ ([a] • [b])

which is the claim. We proceed by constructing the action on X̃.

It is not hard to see that G preserves the equivalence relation on V (X ) because
G takes edge-paths to edge-paths, and the property of being a maximal finite
subgroup as well as the property of having finite normalizer are invariant under
automorphisms, in particular under conjugation. Therefore the action of G on V (X̃ )
given by

g.[v] := [g.v], ∀(g, v) ∈ G× V (X̃ )

is well-defined. For the same reasons it turns to be out that the action of G on
E(X ) leaves the subset E′(X ) invariant and we thus obtain that the action of G on
E(X̃ ) for [a] in E(X̃ ) defined by

g.[a] := [g.a], ∀(g, a) ∈ G× E(X̃ )

is also well-defined. In the same manner we observe that the actions G y V (X̃)

and Gy E(X̃) extend to an action G on X̃.
We call X̃ the reduction of X associated to the action G on X .

Remark 14. Considering the definition of X̃ we immediately observe that for each
e ∈ E′(X )± the following is true:

[e−1] = [e]−1.

Definition 2.4.34 (reduction of an edge-path). Let X be a scwol and G be a group
satisfying FCoFG and acting with finite stabilizers on it. Let v, w ∈ V (X ) and
π = (ei)

n
i=1 be an edge-path in X connecting v to w. Let (jk)

m
k=1 be the unique

strictly increasing enumeration of {i ∈ [n] : ei ∈ E′±(X )}. We set

π̃ :=

{
([v]), if {i ∈ [n] : ei ∈ E′±(X )} = ∅,

([ejk ])
m
k=1, otherwise.

π̃ is an edge-path in X̃ connecting [v] ∈ V (X̃ ) to [w] ∈ V (X̃ ). We say π̃ is the
edge-path obtained by reduction from π.

Proof. Put J := {i ∈ [n] : ei ∈ E′±(X )} and m := |J |. If J = ∅, there is
nothing to prove.
So, let us assume J ̸= ∅. We start our proof by showing that π̃ is indeed an edge-path
in X̃ with indices in J . Let (jk)

m
k=1 be the uniquely determined strictly increasing

enumeration of J . Then, we have by definition π̃ = ([ejk ])
m
k=1. So take an arbitrary

1 ≤ k ≤ m − 1 and the following two cases may occur. In the case jk + 1 = jk+1

we have by hypothesis t′X (ejk) = i′X (ejk+1) = i′X (ejk+1
) and we obtain finally

t′X̃ ([ejk ]) = i′X̃ ([ejk+1
]). If the case jk+1 ̸= jk+1 occurs, we see el ̸∈ E′±(X ) for each

jk +1 ≤ l ≤ jk+1− 1. By definition el = a+l or el = a−l for some al ∈ E(X )rE′(X ).
In both cases we have GiX (al) is maximal in Subfin(G) and hence, applying the
axioms for an action of G on X , we get additionally GtX (al) = GiX (al). This
leads to iX (al) ∼ tX (al) and we therefore obtain in both cases to i′X (el) ∼ t′X (el).

In particular, (ejk+l)
jk+1−jk
l=1 is an edge path connecting t′X (ejk) = i′X (ejk+1) to

t′X (ejk+1−1) = i′X ((ejk+1
)) such that GiX (al) = GiX(ajk+1) ∈ M◦(G). We thus

conclude t′X(ejk) ∼ i′X(ejk+1
) and therefore t′X̃ ([ejk ]) = i′X̃ ([ejk+1

]). This proofs that
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π̃ is indeed an edge-path in X̃ . It remains to show i′X̃ (π̃) = [v] and t′X̃ (π̃) = [w].
To compute i′X̃ (π̃) consider the following two cases. If 1 = j1, we have obviously
i′X̃ (π̃) = [i′X (π)] = [v] as required. If 1 ̸= j1, we get el /∈ E′±(X ) for all 1 ≤ l ≤ j1−1.
An analogous argumentation to the above one leads to i′X (e1) ∼ i′X (ej1) and thus
i′X̃ (π̃) = [i′X (π)] = [v]. In the same manner we may compute t′X̃ (π̃) and obtain finally
t′X̃ (π̃) = [t′X (π)] = [w]. This completes the proof. �

Corollary 2.4.35. Same hypothesis as above. If X is connected, then X̃ is connected
as well.

Proof. Take arbitrary vertices v̄, w̄ ∈ V (X̃ ). Choose an arbitrary v ∈ v̄ and
an arbitrary w ∈ w̄. By hypothesis there exists an edge-path π in X connecting v to
w. Now, Definition 2.4.34 guarantees us the existence of an edge-path π̃ connecting
v̄ to w̄. This yields the claim. �

Lemma 2.4.36. Same hypothesis as above. Let π be an arbitrary edge-path and
η be the edge-path without backtracking associated to π. Furthermore let π̃ or η̃ its
reductions respectively. Let ω be the edge-path without backtracking associated to π̃.
Then, ω is also the edge-path without backtracking associated to η̃.

Proof. By Remark 14 it is possible to obtain η̃ by iterating the deletion of
backtracking from π̃. Now, we delete backtracking from η̃ until we get to a path
without backtracking. The resulting path is the edge-path without backtracking
associated to both, π̃ and η̃. By the uniqueness of the edge-path associated to π̃ it
has to coincide with ω. �

Lemma 2.4.37. Let X be a scwol and G be a group satisfying FCoFG and acting
with finite stabilizers on it. Furthermore, let v̄, w̄ ∈ V (X̃ ) arbitrary vertices in X̃
and τ be an arbitrary edge-path in X̃ connecting v̄ to w̄. Then for each v ∈ v̄ and
w ∈ w̄ there exists an edge-path π in X connecting v to w such that π̃ = τ .

Proof. Let v̄, w̄ ∈ V (X̃ ) and τ = (ē1, . . . , ēm) be an edge-path connecting v̄
to w̄. Fix v ∈ v̄ and w ∈ w̄. We will construct an edge-path π in X , satisfying the
conditions above, in a recursive way. Let us start with an arbitrary edge e1 ∈ ē1.
We put v′ := i′X (e1) ∈ v̄. If v = v′, just set π1 := (e1). If we have v ̸= v′, there
exists by definition of the equivalence relation over V (X ) an edge-path η1 in X
connecting v to v′, such that Gσ = Gv for all σ ∈ V (η1) and Gv ∈ M◦(G), and
we set π1 := η1 ∗ (e1). Let us assume that for 1 ≤ k < m the edge-path πk is
already defined. We then obtain πk+1 as follows. Take ek+1 ∈ ēk+1. We have
at least t′X (πk) ∼ i′X (ek+1). If t′X (πk) = i′X (ek+1), just set πk+1 := πk ∗ (ek+1).
In the case t′X (πk) ̸= i′X (ek+1), there exists an edge-path ηk+1 connecting t′X (πk)
to i′X (ek+1), such that Gσ = Gt′X (πk) ∈ M◦(G) for all σ ∈ V (ηk+1), and we set
πk+1 := πk ∗ ηk+1 ∗ (ek+1). In this way we have constructed an edge-path πm
connecting v to t′X (πm) = t′X (em) ∈ w̄. Let w ∈ w̄. If t′X (πm) = w, just set π := πm.
In the case t′X (πm) ̸= w there exists an edge-path ηm+1 connecting t′X (πm) to w,
such that Gσ = Gt′X (πm) ∈M◦(G) for all σ ∈ V (ηm+1), and we set π := πm ∗ ηm+1.
By construction π is an edge-path in X connecting v to w. For the reason that

E(ηj) ⊆ E±(X )r E′±(X ) ∀1 ≤ j ≤ m+ 1

we obtain for the reductions π̃k of πk
π̃1 = ([e1]) and π̃k+1 = π̃k ∗ ([ek]).

and therefore π̃ ≡ ([e1], . . . , [em]) = (ē1, . . . , ēm) = τ . This proves the claim of the
lemma. �

The following definitions are taken from [1].
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Definition 2.4.38 (universal group associated to a complex of groups). Let G(Y) =
(Gv, ψa, ga,b) be a complex of groups over the scwol Y . The universal group FG(Y)
is the group given by the following presentation: It is generated by the set⨄

v∈V (Y)

Gv ⊎ E±(Y)

subject to the relations

R :=

⎧⎪⎪⎨⎪⎪⎩
the relations in the groups Gv,

a+a− = 1 = a−a+,
a+b+ = ga,b(ab)

+, ∀(a, b) ∈ E(2)(Y)
ψa(g) = a+ga−, ∀g ∈ Gi(a)

⎫⎪⎪⎬⎪⎪⎭.
Remark 15. We may regard a scwol Y as the complex of groups over U(Y ) whose
vertex groups are all trivial. We call it the trivial complex of groups over Y . So the
universal group over Y is just FY := FU(Y).

Definition 2.4.39 (G(Y)-path, concatenation of G(Y)-paths). Let Y be a scwol and
G(Y) = (Gv, ψa, ga,b) a complex of groups over Y. Then, a G(Y)-path c connecting
v to w is a tuple

c = (g0, e1, g1, . . . , em, gm)

where (e1, . . . , en) is an edge-path connecting v to w, g0 ∈ Gv and gj ∈ Gt(ej) for all
j ∈ [m]. We set i(c) := i′X±(e1) and t(c) := t′X±(em). Let c = (g0, e1, g1, . . . , em, gm)
and c′ = (g′0, e

′
1, g

′
1, . . . , e

′
n, g

′
n) be two G(Y)-paths such that t(c) = i(c′). The

concatenation of c with c′ is the G(Y)-path

c ∗ c′ := (g0, e1, g1, . . . , em, gmg
′
0, e

′
1, g

′
1, . . . , e

′
n, g

′
n).

Remark 16. For the ease of notation, this definition only covers the case where
the considered edge-paths are non-trivial. For the trivial cases just take the obvious
definition.

It is easy to verify that the concatenation satisfies the associative law.

Definition 2.4.40. Let Y be a scwol. For an edge-path (e1, . . . , em) put F (c) :=
e1 · · · em ∈ FY and for a trivial edge-path c put F (c) := 1 ∈ FY. Let G(Y)
be a complex of groups over Y. For a G(Y)-path c = (g0, e1, g1, . . . , em, gm) set
F (c) := g0e1g1 · · · emgm ∈ FG(Y). It is easy to verify that the maps

F :
{edge-paths} → FY : c ↦→ F (c)
{G(Y)-paths} → FG(Y) : c ↦→ F (c)

are homomorphisms in the sense, that for each pair of edge-paths or G(Y)-paths
c, c′ with the property t(c) = i(c′) it is true that F (c ∗ c′) = F (c)F (c′).

Definition 2.4.41 (rooted fundamental group of a scwol). Let Y be a scwol and
v0 ∈ V (Y).

π1(Y, v0) := {F (π) ∈ FY : π is an edge-path such that i(π) = v0 = t(π)}

is a subgroup of FY and it is called the fundamental group of Y rooted in v0.

Definition 2.4.42 (rooted fundamental group of a complex of groups). Let G(Y) =
(Gv, ψa, ga,b) be a complex of groups over a connected scwol Y and v0 ∈ V (Y). The
set

π1(G(Y), v0) := {F (c) ∈ FG(Y) : c is G(Y)-path such that i(c) = v0 = t(c)}

is a subgroup of FG(Y) and it is called the fundamental group of G(Y) rooted in v0.
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Remark 17. Let Y be a scwol and U(Y) be the trivial complex of groups over Y.
Fix v0 ∈ V (Y). Then it is obviously true that

π1(Y, v0) = π1(U(Y), v0).

Definition 2.4.43 (fundamental group of a complex of groups relative to T ). Let
G(Y) = (Gv, ψa, ga,b) be a complex of groups over a connected scwol Y and T be a
spanning tree in Y±. Moreover, let N be the normal hull of the set {F (e) : e ∈ E(T )}
in FG(Y). The fundamental group of G(Y) relative to T is the group

π1(G(Y), T ) := FG(Y)/N.

Remark 18. There is an analogue definition for a fundamental group of a scwol
relative to T , by identifying Y with U(Y). We can just put

π1(Y, T ) := π1(U(Y), T ).

Lemma 2.4.44 (equivalence of the definitions, [1] p.549 theorem 3.7). Let G(Y) =
(Gv, ψa, ga,b) be a complex of groups over a connected scwol Y, v0 ∈ V (Y) be an
arbitrary vertex and T be an arbitrary spanning tree in Y. Then, the following is
true

π1(G(Y), v0) ∼= π1(G(Y), T ).

In particular the isomorphy class of the fundamental group over G(Y) does neither
depend on the root nor the spanning tree.

Definition 2.4.45 (simply-connected scwol). A connected scwol X is called simply-
connected if there exists a vertex v0 ∈ V (X ) such that π1(X , v0) is trivial.

Theorem 2.4.46. Let X be a connected scwol and G be a group satisfying FCoFG
and acting with finite stabilizers on it. Let X̃ be the reduction of X associated to the
action of G on X . Fix an arbitrary vertex v0 ∈ V (X ). Then,

Θ: π1(X , v0) → π1(X̃ , [v0]) : F (π) ↦→ F (π̃)

is a well-defined map. Moreover it is a surjective homomorphism.

Proof. Let us introduce some notation before we start with the proof. For an
arbitrary scwol Y denote by FY be the free group generated by E±(Y). By definition
FY is the quotient FY/NY where NY is the normal hull in FY of the set

RY :=

{
a+a− = 1 = a−a+,

a+b+ = (ab)+, ∀(a, b) ∈ E(2)(Y)

}
.

We first observe, applying Corollary 2.4.35, that the reduction X̃ is connected
and thus π1(X̃ , [v0]) is defined. Next, let us remark, that the reduction induces a
surjective homomorphism

p : FX → FX̃ : e ↦→
{

[e], if e ∈ E′(X );
1, otherwise.

Further, we infer that p maps RX to RX̃ and thus NX to NX̃ . So we may push the
map p down to a surjective map

p̄ : FX → F X̃ .

By Definition 2.4.34 the image of the restriction of p̄ to π1(X , v0) is necessarily a
subset of π1(X̃ , [v0]). Because Θ is just p̄ with range restricted to π1(X̃ , [v0]), we
already have that Θ is a well-defined homomorphism. It remains to show that Θ is
surjective. For this purpose, consider an arbitrary element g ∈ π1(X̃ , [v]). Clearly,
g = F (τ) for an appropriate edge-path τ without backtracking in X̃ such that
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i(τ) = [v0] = t(τ). Now, Lemma 2.4.37 guarantees the existence of an edge-path η
in X such that τ = η̃. We therefore obtain finally

Θ(F (η)) = F (η̃) = F (τ) = g,

which is the desired conclusion. �

We get the following immediate corollary:

Corollary 2.4.47. Same hypothesis as above. If X is simply-connected, then the
reduction X̃ is simply-connected as well.

Lemma 2.4.48 (reduction preserves the stabilizers). Let X be a scwol and G be a
group satisfying FCoFG and acting with finite stabilizers on it. Then, G acts on the
scwol X̃. If X is a simply-connected scwol, X̃ is simply-connected as well. Moreover,
the group G even acts with finite stabilizers on X̃ . In fact, the following is true:

∀v ∈ V (X ) : G[v] = Gv.

Proof. It is only left to prove the last part of the proposition, everything else
has been shown before. For this purpose, fix v ∈ V (X ). If |[v]| = 1, g fixes [v] if
and only if g fixes v and we are done. Therefore, assume |[v]| ̸= 1. The definition of
the equivalence relation on V (X ) ensures that Gv ∈ M◦(G). Therefore, recalling
the definition of M◦(G), it is sufficient to show G[v] ≤ NG(Gv). To this end, pick
an arbitrary g ∈ G[v]. Because g fixes [v], we clearly have g.v ∈ [v]. The definition
of the equivalence relation on V (X ) guarantees the existence of a path π connecting
v to g.v such that Gσ = Gv for each σ ∈ V (π). In particular, this enforces

Gv = Gg.v = gGvg
−1

and therefore g ∈ NG(Gv) as required. �

Now, we are in the position to state and prove the main theorem of this chapter.

Theorem 2.4.49. Let G be a group satisfying FCoFG and acting with finite stabi-
lizers on a simply-connected scwol X , which has the following additional properties:

(1) For each H ∈ Subfin(G) there exists a v ∈ V (X ) such that H ≤ Gv;
(2) ∀v, w ∈ V (X ) : Gv = Gw ∈ M◦(G) ∃ path π connecting v to w : Gσ =

Gv ∀σ ∈ V (π).

By Lemma 2.4.48 the reduction X̃ is simply-connected and G acts with finite stabi-
lizers on it. Denote by Y := G\X̃ and by G(Y) = (Gv̄, ψā, gā,b̄) an arbitrary complex
of groups over Y associated to that action. Finally set

M◦(G(Y)) := {v̄ ∈ V (Y) : Gv̄ ∈M◦(G)}.
Then, the map

Λ: M◦(G(Y)) → G\M◦(G) : v̄ ↦→ [Gv̄]G

is a bijection.

Proof. It remains to show that Λ is bijective. Everything else follows from
Lemma 2.4.48. We begin by proving that Λ is surjective. For this purpose, take
an arbitrary conjugacy class H ∈ M◦(G). Condition (1) ensures the existence of
a v ∈ V (X ) such that H ≤ Gv. Because G acts with finite stabilizers on X we
already get by the maximality of H the equality H = Gv. Lemma 2.4.48 tells us
that H = G[v]. In particular, G[v] ∈ M◦(G). Bringing back the definition of the
quotient scwol Y to our mind, we infer, that we necessarily have v̄ := G.[v] ∈ V (Y).
Now, the definition of G(Y) guarantees the existence of an element [v′] ∈ G.[v] such
that G[v′] = Gv̄. We thus obtain

[Gv′ ]G = [Gv̄]G = Λ(v̄),
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as required.

To prove, that Λ is also an injective map, consider v̄, w̄ ∈ V (Y) such that Gv̄ = (Gw̄)
g

for some g ∈ G. By definition of G(Y) there exist [v], [w] ∈ V (X̃ ) such that
v̄ = [v], w̄ = [w] and G[v] =

(
G[w]

)g
= G[g.w]. But then Lemma 2.4.48 ensures that

Gv = Gw′ ∀v ∈ [v] ∀w′ ∈ [g.w].

If v = w′, we get [v] = g.[w]. For v ̸= w′, condition (2) yields a path π connecting v
to w′ such that Gσ = Gv ∈M◦(G) for each σ ∈ V (π). In particular, v ∼ w′ which
means [v] = g.[w]. So we get, no matter the case,

v̄ = G.[v] = G.[w] = w̄,

which is the desired conclusion. �

Our next goal, is to show that taking reductions of scwols is compatible with taking
actions of subgroups on them. To this end, we need to distinguish the reductions
associated to actions of subgroups on a scwol with the action of the original group
on it. Hence, we introduce the following notation:

Notation 2.4.50. Let G be a group satisfying FCoFG and X be a scwol, such that
G acts with finite stabilizers on X . We denote the reduction of X associated to the
action of G on X by RG(X ). Moreover, we write RG(π) for the reduction of an
edge-path π in X . Finally we set

RG(E(X )) := E(X )r {a ∈ E(X ) : Gi(a) ∈M◦(G)}
and for each subset E ⊆ E(X )

RG(E) := RG(E(X )) ∩ E .
Note that RG(E(X )) is exactly the set which we have denoted by E′(X ) until now.

Theorem 2.4.51. Let G be a group satisfying FCoFG and X be a scwol, such that
G acts with finite stabilizers on it. Furthermore, let ∆ ≤ G, such that (G : ∆) <∞.
Now, put

R∆,G(E(X )) := R∆(E(X )) ∩RG(E(X )).

Then the following assertion is true: There exists a pair of surjective maps

ϕ :
V (R∆(X )) → V (R∆(RG(X ))) : [v]R∆ → [[v]RG

]R∆

R∆,G(E(X ))/ ∼
R∆

→ E(R∆(RG(X ))) : [a]R∆ → [[a]RG
]R∆

,

and each map of that pair is ∆-equivariant.

The reason, why we cannot prove R∆(RG(X )) ∼= R∆(X ), is that M is maximal finite
in G does not imply M ∩∆ is maximal finite in ∆. If we change the construction
such that this problem does not arise, we cannot get exact information how the
isotropy groups might change.

Proof. Let K ≤ G be an arbitrary subgroup. We write ∼
RK

for the equivalence

relation on V (X ) mentioned in (2.4.1). In the same way, let us write ∼
RK

for the

equivalence relation on RK(E(X )).

We begin our proof by showing that ϕ is a pair of well-defined maps. First,
consider the “map” between the vertex sets. So, pick v, w ∈ V (X ) such that v ∼

R∆

w.

If [v]RG
= [w]RG

there is nothing to prove. Hence assume [v]RG
̸= [w]RG

. Now, by
definition of the equivalence relation there exists a path π in X connecting v to w
such that ∆v ∈M◦(∆) and ∆σ = ∆v ∀σ ∈ V (π). Reduction of the path associated
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to the action of G on X yields a path RG(π) connecting [v]RG
and [w]RG

. Applying
Lemma 2.4.48 to the action of G on X , we obtain

∀σ ∈ V (π) : G[σ]RG
= Gσ.

Hence, we get finally for an arbitrary but fixed σ ∈ V (π):

∆[σ]RG
= G[σ]RG

∩∆ = Gσ ∩∆ = ∆σ.

In particular RG(π) is a path such that ∆[σ]RG
= ∆[v]RG

and ∆[v]RG
= ∆v ∈M◦(∆).

This yields [v]RG
∼
R∆

[w]RG
and thus

[[v]RG
]R∆

= [[w]RG
]R∆

,

as required. We proceed by showing that the second entry of ϕ is well-defined. To
this end, take a, b ∈ R∆,G(E(X )) such that a ∼

R∆

b. So, we have iX (a) = iX (b)

and one of the following cases occurs: If tX (a) = tX (b), we have [a]RG
= [b]RG

.
Moreover, a, b ∈ R∆,G(E(X )) implies that [a]RG

, [b]RG
∈ R∆(E(RG(X ))) and thus

[[a]RG
]R∆ = [[b]RG

]R∆ .

If tX (a) ̸= tX (b) there exists an edge-path π connecting tX (a) to tX (b) such that
∆σ = ∆tX (a) and ∆tX (a) ∈M◦(∆). The same argument as for the map between the
vertex sets applies and we therefore obtain

[[a]RG
]R∆

= [[b]RG
]R∆

and the second entry of ϕ is a well-defined map, as desired.

We now turn to the proof of the surjectivity of those maps. But this is immediate
for the first entry of ϕ. It remains to show the surjectivity of the second one. For
this purpose, take α ∈ E(R∆(RG(X ))). Then there exists an α′ ∈ R∆(E(RG(X )))
such that α = [α′]R∆

. By definition of E(RG(X )) there exists an a ∈ RG(E(X ))
such that α′ = [a]RG

. On the other hand, α′ = [a]RG
∈ R∆(E(RG(X ))) forces

∆i(α′) /∈ M◦(∆) is not maximal in Subfin(∆). In this situation an application
of Lemma 2.4.48 yields ∆i(a) = ∆i(α′) and thus ∆iX (a) /∈ M◦(∆). This leads to
a ∈ R∆(E(X )). We infer

a ∈ RG(E(X )) ∩R∆(E(X )) = R∆,G(E(X )).

Now, we may insert [a]R∆ in ϕ and in this way we obtain

α = [[a]RG
]R∆

= ϕ([a]R∆
),

which is exactly what we have claimed. The ∆-equivariance of ϕ is a trivial conse-
quence of the way how we have defined the group action on reductions. Nevertheless,
we give a proof of it. So, let us take an arbitrary v ∈ V (X ), a ∈ R∆,G(E(X )) and
δ ∈ ∆. We compute

ϕ(δ.[v]R∆) = ϕ([δ.v]R∆) = [[δ.v]RG
]R∆ = δ.[[v]RG

]R∆ = δ.ϕ([v]R∆).

and

ϕ(δ.[a]R∆) = ϕ([δ.a]R∆) = [[δ.a]RG
]R∆ = δ.[[a]RG

]R∆ = δ.ϕ([a]R∆),

which completes the proof of the proposition. �
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2.5 System of Representatives for certain quotients of Sl3(Z)

We set up the following terminology: Let us denote by Γ the group Sl3(Z). For an
arbitrary but fixed squarefree non-negative integer d we write

Γ̄(d) := Sl3(Z/dZ),

∆̄(d) :=
{
(aij)(i,j)∈[3]×[3] ∈ Sl3(Z/dZ) : ∀(i, j) ∈ [3]× [3] : i > j : aij = 0

}
and

∆(d) :=

{
(aij)(i,j)∈[3]×[3] ∈ Sl3(Z) : ∀(i, j) ∈ [3]× [3] : i > j : aij

(d)
≡ 0

}
.

If d is a prime, we sometimes call ∆̄(d) the Borel subgroup of Γ̄(d). ∆(d) can be
viewed as the preimage of ∆̄(d) under the congruence map

Φ(d) : Γ → Γ̄(d) : (aij)i,j ↦→ (aij + dZ)i,j .

It is a well known fact that the congruence map is an epimorphism of groups.
Because Φ(d) is an epimorphism taking ∆(d) to ∆̄(d), we can Φ(d) push down to an
isomorphism between right Γ-sets, namely

(2.5.1) Φ̃(d) : ∆(d)\Γ
∼=−→ ∆̄(d)\Γ̄(d).

In particular, ∆(d)\Γ is of finite cardinality.

Let p be a prime. Therefore, p is a squarefree non-negative integer and the notation,
we have introduced so far, applies. The main goal of this chapter is to find a system
of representatives for the set of cosets ∆(p)\Γ.
To this end, we may view Z/pZ as field Fp. Based on that and the observations
above, we are able to compute the exact number of elements of ∆(p)\Γ:⏐⏐⏐∆(p)\Γ

⏐⏐⏐ = ⏐⏐⏐∆̄(p)\Γ̄(p)
⏐⏐⏐

=
|Gl3(Fp)|
|F×

p ||∆̄(p)|

=
p3(p3 − 1)(p2 − 1)(p− 1)

(p− 1)(p− 1)2p3

= (p2 + p+ 1)(p+ 1).

We will again make use of the isomorphism Φ̃(p) during the determination of an
appropriate set of representatives for ∆(p)\Γ. The idea behind the construction is
a slightly modified LR-algorithm for Gl3(Fp): The idea is to apply “permutation”

matrices to the set of matrices of the shape

⎛⎝ 1 0 0
u 1 0
v w 1

⎞⎠, u, v, w ∈ Fp from

the right and to look for redundancies under the elimination operations which are
induced by the multiplication with elements of ∆̄(p) from the left. To this end, we
have to modify the permutation matrices in a way such that they have determinant
one. This can be achieved by modifying one entry by a sign if necessary.

From this background it would maybe be more confident to talk about an “RL-
construction” instead of an LR-construction in this context.

Before we state the result of this consideration, let us introduce some notation.
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Notation 2.5.1.

R̄
(p)
1 :=

⎧⎨⎩
⎛⎝ 1 0 0
u 1 0
v w 1

⎞⎠ : u, v, w ∈ Fp

⎫⎬⎭, R̄
(p)
2 :=

⎧⎨⎩
⎛⎝ 0 −1 0

1 0 0
u v 1

⎞⎠ : u, v ∈ Fp

⎫⎬⎭,

R̄
(p)
3 :=

⎧⎨⎩
⎛⎝−1 0 0

u 0 1
v 1 0

⎞⎠ : u, v ∈ Fp

⎫⎬⎭, R̄
(p)
4 :=

⎧⎨⎩
⎛⎝ 0 0 −1

0 1 0
1 u 0

⎞⎠ : u ∈ Fp

⎫⎬⎭,

R̄
(p)
5 :=

⎧⎨⎩
⎛⎝ 0 1 0

0 u 1
1 0 0

⎞⎠ : u ∈ Fp

⎫⎬⎭, R̄
(p)
6 :=

⎧⎨⎩
⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠⎫⎬⎭.
Finally let us write R̄(p) :=

⨄6
i=1 R̄

(p)
i .

Now we are in the position to state the following theorem.

Theorem 2.5.2. R̄(p) is a system of representatives for ∆̄(p)\Γ̄(p). In particular,
each set R(p) ⊆ Γ, such that R̄(p) = Φ(p)(R(p)), is a system of representatives for
∆(p)\Γ.

Proof. The second assertion is an immediate consequence of the first one. It
remains to prove that R̄(p) is a system of representatives for ∆̄(p)\Γ̄(p). Because we
clearly have

|R̄(p)| = p3 + 2p2 + 2p+ 1 = (p2 + p+ 1)(p+ 1) =
⏐⏐⏐∆̄(p)\Γ̄(p)

⏐⏐⏐,
the proof is completed by showing that for each two elements r, r′ ∈ R̄(p), such that

∆̄(p)r = ∆̄(p)r′,

it is already true that r = r′. So, take r, r′ ∈ R̄(p) with the property ∆̄(p)r = ∆̄(p)r′.
Then we necessarily have rr′−1 ∈ ∆̄(p).
Now, we have to consider the cases r, r′ ∈ Ri for a fixed i and the cases r ∈ Ri,
r′ ∈ Rj , for a fixed pair (i, j) such that i < j and we have to solve the resulting
systems of equalities, which is an easy but time-intensive task, if we do it manually.
Because this is pretty straightforward and can be quickly done for example with
Wolfram Mathematica ([10]), we do not give the details of that calculation. �

Notation 2.5.3. Here and subsequently, we choose the system of representatives
R(p) in a way such that the matrix entries have minimal absolute value. Based on
this convention, we introduce the following notation:

r
(p)
1 (u, v, w) :=

⎛⎝ 1 0 0
u 1 0
v w 1

⎞⎠, r
(p)
2 (u, v) :=

⎛⎝ 0 −1 0
1 0 0
u v 1

⎞⎠,
r
(p)
3 (u, v) :=

⎛⎝ −1 0 0
u 0 1
v 1 0

⎞⎠, r
(p)
4 (u) :=

⎛⎝ 0 0 −1
0 1 0
1 u 0

⎞⎠,
r
(p)
5 (u) :=

⎛⎝ 0 1 0
0 u 1
1 0 0

⎞⎠, r
(p)
6 :=

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠,
where

−
⌊p
2

⌋
≤ u, v, w ≤

⌊p
2

⌋
, if p ̸= 2

and u, v, w ∈ {0, 1} in the case p = 2.
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2.6 The vertex groups for “Borel-subgroups” of Sl3(Z)
One aim of this chapter is to give a complete list of the vertex groups for reductions
of the action of ∆(p) on the scwol associated to the action of G on the space X̃
described in the introduction of section 2.2. Moreover, we want to carry as much
of the results, we will attain, as possible over to the groups ∆(d), where d is a
square-free non-negative integer. Based on Lemma 2.4.48, our attempt to solve
this problem at least for primes p, is to determine the set of conjugacy classes of
the maximal finite subgroups in ∆(p). Our first step in this direction will be to
determine all the ∆(p)-conjugacy classes of finite subgroups of ∆(p). We will reduce
this problem to the computation of fixpoints of the action of finite subgroups of
Γ on ∆(p)\Γ. This results in several systems of polynomial equations of degree at
most 3, which we will be able to solve.

To obtain from that at least the number vertex groups of a given type, we have to
set up some theoretical framework.

In the whole chapter, let G be an arbitrary but fixed group satisfying FCoFG
and let ∆ ≤ G such that (G : ∆) < ∞. In particular, Lemma 2.4.29 implies that
with G also ∆ has to satisfy FCoFG. Recall, that the property of a group to satisfy
FCoFG, guarantees the existence of maximal finite subgroups of that group, see
Lemma 2.4.28. This is our primary reason for considering such groups.

Furthermore, we will make use of the same notation as in Notation 2.3.19 and
Theorem 2.3.25.

Before we start to introduce more notation, let us point out that Theorem 2.3.2
ensures that Γ = Sl3(Z) satisfies FCoFG. Indeed, the class of groups satisfying
FCoFG is quite large, as all finitely generated hyperbolic groups satisfy FCoFG, see
[1] p.459 theorem 3.2.

Now, let us introduce some notation.

Notation 2.6.1. Let H0 ∈ Subfin(G). Here and subsequently, we will write

C∆(H0) :=
{
[H]∆ ∈ ∆\ Subfin(∆) : H ∼

G
H0

}
,

M∆(H0) := {[H]∆ ∈ C∆(H0) : H ∈M(∆)},
and

L∆(H0) := {[H]∆ ∈ C∆(H0) : H /∈M(∆)}.
Furthermore, for H0,K0 ∈ Subfin(G) such that H0 ≤ K0, we put

C∆(H0,K0) := {[H]∆ ∈ C∆(H0) : ∃[K]∆ ∈ C∆(K0) : [H]∆ < [K]∆}.

For a group G acting on a set Ω from the right, we write FixΩ(G) for the set of
fixed points under that action. If we have to distinguish sets of fixpoints for different
actions, we just label that sets with upper indices in an intuitive and appropriate
way.

Let us state the following trivial but useful facts:

Remark 19. For subgroups H,K ≤ G acting on Ω from the right the following is
true:

FixΩ(H) ∩ FixΩ(K) = FixΩ(⟨H,K⟩).
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Remark 20. Let G acting on Ω from the right and H ≤ G. Then for each g ∈ G
the following relation holds:

FixΩ( H
g ) = FixΩ(H).g.

The following lemmas treat some elementary properties of that notation.

Lemma 2.6.2. For each H0 ∈ Subfin(G) and each γ ∈ G it holds

(2.6.1) C∆(H0) = C∆( H
γ

0).

Therefore, for arbitrary [H0]G ∈ G\ Subfin(G), we may define

C∆([H0]G) := C∆(H0).

Moreover, for each H0,K0 ∈ Subfin(G) such that H0 ≤ K0 and each γ ∈ G, σ ∈ G
it is true, that

(2.6.2) C∆(H0,K0) = C∆( H
γ

0, Kσ 0).

So we may introduce the notation

C∆([H0]G, [K0]G) := C∆(H0,K0).

Proof. Let us first show (2.6.1). To this end, it is sufficient to show “⊆”.
So, pick an arbitrary [H]∆ ∈ C∆(H0) and an arbitrary γ ∈ G. Then, we have by
definition H ⊆ ∆ and H ∼

G
H0. In particular, we obtain H ∼

G
Hγ 0 which yields

H ∈ C∆(H0).

Let us step to the proof of (2.6.2). But this can be immediately seen if we in-
sert C∆(H0) = C∆( H

γ
0) and C∆(K0) = C∆( K

σ
0) in the expansion of the definition

of C∆(H0,K0). This completes the proof.
�

Lemma 2.6.3. Let H0 ∈ Subfin(G). Then the following formulas are true:

(2.6.3) M∆(H0) = C∆(H0)r L∆(H0)

and

(2.6.4) L∆(H0) =
⋃

[K0]G∈G\ Subfin(G)

C∆([H0]G, [K0]G).

Therefore, L∆(H0) and M∆(H0) are constant on the whole G-conjugacy class [H0]G
and we may define L∆([H0]G) := L∆(H0) and M∆([H0]G) := M∆(H0).

Proof. (2.6.3) is obviously true. It remains to prove (2.6.4). To show “⊆”,
pick [H]∆ ∈ L∆(H0). Because H0 /∈M(∆) there exists a K0 ∈ Subfin(∆) such that
H < K0. But then [H]∆ ∈ C∆(H0,K0) = C∆([H0]G, [K0]G), as required.

For the converse direction, fix an arbitrary [K0]G ∈ G\ Subfin(G) and take an
arbitrary [H]∆ ∈ C∆([H0]G, [K0]G) = C∆(H0,K0). By definition, there exists an
K ∈ Subfin(∆) such that K ∼

G
K0 and H < K. In particular, H /∈ M(∆). We

therefore conclude [H]∆ ∈ L∆(H0), which completes the proof. �

Lemma 2.6.4. The following equation is true:

∆\M◦(∆) ∩ {[H]∆ ∈ ∆\ Subfin(∆) : NG(H) <∞} =
⨄

[H]G∈G\ Sub◦
fin(G)

M∆([H]G).
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Proof. We start with the proof of the direction “⊆”. To this end, take a
∆-conjugacy class [H]∆ ∈ ∆\M◦(∆) ∩ {[H]∆ ∈ ∆\ Subfin(∆) : NG(H) <∞}. This
implies H ∈ M(∆), [H]∆ ∈ C∆([H]G) and NG(H) < ∞. We therefore conclude
H ∈ M∆([H]G) with [H]G ∈ G\ Sub◦fin(G) as required.

For the converse direction let [H]∆ ∈ M∆([H0]G) for one H0 ∈ Sub◦fin(G). By
definition, we get H ∈ M(∆). On the other hand, H0 ∈ Sub◦fin(G) and H ∼

G
H0

forces H ∈ Sub◦fin(G). This leads to H ∈M(∆)∩Sub◦fin(G) ⊆M◦(∆), and therefore

[H]∆ ∈ ∆\M◦(∆)

as claimed. �

We have destilled the following lemma from the diploma thesis [4] pp. 40-43.

Lemma 2.6.5. Let H0 ∈ Subfin(G). Then, its normalizer NG(H0) acts from the
right on Fix∆\G(H0) and the map

ΞH0
:

Fix∆\G(H0)/NG(H0) → C∆(H0)
∆γ.NG(H0) ↦→ [ Hγ 0]∆

is a bijection.

Remark 21. If there is not any possiblity of confusion, we write will write Ξ instead
of ΞH0

.

Proof. We begin by proving the first assertion. To this end, let ∆γ ∈
Fix∆\G(H0) and g ∈ NG(H0). For the reason gH0 = H0g, we obtain

∆γgH0 = ∆γH0g = ∆γg.

From that, we immediately deduce ∆γ.g ∈ Fix∆\G(H0), as desired.

Now, we turn to the proof that Ξ is a bijection. For this purpose, we first have to prove
that Ξ is a well-defined. So take an arbitrary γ ∈ G such that ∆γ ∈ Fix∆\G(H0).
We infer

Ξ(∆δγg.NG(H0)) =
[

( Hg 0)
δγ

]
∆
=
[

Hδγ
0

]
∆
= [ Hγ 0]∆ = Ξ(∆γ.NG(H0))

for all δ ∈ ∆ and g ∈ NG(H0). On the other hand, ∆γ ∈ Fix∆\G(H0) implies
γH0 ⊆ ∆γH0 = ∆γ and therefore

Hγ 0 ⊆ ∆.

We thus obtain Ξ(∆γ.NG(H0)) = [ Hγ 0]∆ ∈ C∆(H0), and Ξ is indeed well-defined.

Our next step is to show that Ξ is injective. So, take γ, σ ∈ G such that there is an
δ ∈ ∆ with the property Hγ 0 = Hδσ

0 ⊆ ∆. But this means γ−1δσ ∈ NG(H0) and
therefore

∆γ.NG(H0) = ∆γ(γ−1δσ).NG(H0) = ∆δσ.NG(H0) = ∆σ.NG(H0),

and Ξ is injective.

It remains to show that Ξ is surjective. To this end, consider a ∆-conjugacy class
[ Hγ 0] such that Hγ 0 ⊆ ∆. We rewrite the last condition as γH0 ⊆ ∆γ. But this
forces

∆γH0 ⊆ ∆γ
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and hence even ∆γH0 = ∆γ. In particular, we see ∆γ ∈ Fix∆\G(H0). We thus may
insert ∆γNG(H0) in Ξ. This yields

Ξ(∆γNG(H0)) = [ Hγ 0]∆,

and therefore the claim. �

For the readers convenience we restate the following well-known fact:

Lemma 2.6.6. For an arbitrary non-negative integer n let us denote by Φn the
n-th cyclotomic polynomial. Let p be a prime such that gcd(n, p) = 1. Then, Φn is
irreducible over Fp if and only if p+ nZ generates the group (Z/nZ)×.

There are two D12 conjugacy classes of type S3, and we have not specified which
of them we denote by SD12 1

3 and SD12 2
3 . In fact, there has been no necessity to do

this for the proof of Theorem 2.3.25 and thus until now. This becomes reasonable if
we consider the diagram there and observe that it is symmetric around the nodes

SD12 1
3 and SD12 2

3 .

For the main theorem of this chapter, we have to make this choice. A simple
computation shows, that⟨( −1 0 0

0 −1 −1
0 0 1

)
,

( −1 0 0
0 0 1
0 1 0

)⟩
and

⟨( −1 0 0
0 1 1
0 0 −1

)
,

( −1 0 0
0 0 −1
0 −1 0

)⟩
are subgroups of D12 of type S3 and not equal. For the reason that there are as
many D12-conjugacy classes as subgroups of type S3, they cannot be conjugate in
D12. Due to this background, we set

SD12 1
3 :=

⟨⎛⎝ −1 0 0
0 −1 −1
0 0 1

⎞⎠,
⎛⎝ −1 0 0

0 0 1
0 1 0

⎞⎠⟩
and

SD12 2
3 :=

⟨⎛⎝ −1 0 0
0 1 1
0 0 −1

⎞⎠,
⎛⎝ −1 0 0

0 0 −1
0 −1 0

⎞⎠⟩.
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Proof. We start with the following two observations: First, the set of fixpoints
of a group acting on some set is just the intersection of the sets of fixpoints its
generators. Second, we observe that for H0 ∈ Subfin(Γ) the number |Fix∆(p)\Γ(H0)|
does only depend on the Γ-conjugacy class of H0. Therefore, in Theorem 2.6.7, we
have chosen the representatives H of those Γ-conjugacy classes in a way such that
the fixpoints of the right-action of H on ∆(p)\Γ are as easy to compute as possible.
To throw out redundancies, we describe the right-action of H on ∆(p)\Γ by the
multiplication of elements from H on R(p) from the right. More precisely, we compute
the fixpoints in the following way: Let H = ⟨αi| i ∈ I⟩. Then, ∆(p)γH = ∆(p)γ if
and only if ∆(p)γαiγ

−1 = ∆ and thus

αγ i ∈ ∆(p) ∀i ∈ I.

The last condition results in several systems of polynomial equations in Fp for the
matrix entries of γ, if we require that γ is an element of R(p). We will illustrate,
how the computation works, for the two hardest examples. The other cases are
similiar and easier to deal with. We begin with the conjugacy class

[
C

S1
4

3

]
Γ

and

its representative H1 :=

⟨⎛⎝ 0 −1 0
0 0 −1
1 0 0

⎞⎠⟩. Clearly, the fixpoints of H1 are the

fixpoints of its generator. Hence, we have to solve the equations given by the
condition

(2.6.5)

⎛⎝ 0 −1 0
0 0 −1
1 0 0

⎞⎠γ

∈ ∆,

where γ ∈ R(p).
γ can be of the shapes r(p)1 (u, v, w), r

(p)
2 (u, v), r

(p)
3 (u, v), r

(p)
4 (u), r

(p)
5 (u) or r(p)6 re-

spectively. Thus, we have to solve in fact 6 systems of polynomial equations over
Fp. We will demonstrate this only for one such system. So, let us assume that γ
has the shape r1(u, v, w). Under that assumption, (2.6.5) becomes⎛⎝ u −1 0

u2 + v − uw w − u −1
vw + u

(
v − w2

)
+ 1 w2 − v −w

⎞⎠ ∈ ∆(p),

where
−
⌊p
2

⌋
≤ u, v, w ≤

⌊p
2

⌋
, if p ̸= 2

and u, v, w ∈ {0, 1} in the case p = 2. By the definition of ∆(p), we obtain the
system of equations below:

u2 + v − uw
(p)
≡ 0(2.6.6)

vw + u
(
v − w2

)
+ 1

(p)
≡ 0(2.6.7)

v
(p)
≡ w2,(2.6.8)

where u, v, w are as above.
We insert (2.6.8) in (2.6.7) and (2.6.6) and obtain

(2.6.9) w3 + 1
(p)
≡ 0

and

(2.6.10) u2 − uw + w2 (p)
≡ 0.



2. THE VERTEX GROUPS FOR “BOREL-SUBGROUPS” OF Sl3(Z) 64

This means that w̄ := w + pZ has to be a zero of Φ6(X) = X2 −X + 1 = Φ3(−X)

over Fp or w
(p)
≡ −1.

To derive appropriate consequences from that observations, we state the following

Lemma 2.6.8. For f(t,X) := t2 − tX + X2 ∈ Fp[t,X] the following assertions
hold:

(1) f(t,X) = f(X, t),
(2) f(1, X) = Φ6(X),
(3) f(1, X + 1) = Φ3(X) = f(−1, X),
(4) f(X − 1, X) = Φ6(X).

In particular, each two elements a, b ∈ Fp with f(a, b) = 0 have to satisfy f(b, a) = 0
as well.

Proof of the lemma. The proof is trivial.
//

We put f(t,X) := t2 − tX +X2. Hence, we may rewrite (2.6.9) and (2.6.10) as

(2.6.11) f(ū, w̄) = 0 and (Φ6(w̄) = 0 ∨ w̄ = −1),

where w̄ := w+pZ. If p ̸= 3, Lemma 2.6.6 tells us, that Φ3 and by Φ6(X) = Φ3(−X)
also Φ6, have zeroes in Fp if and only if |⟨p+ 3Z⟩F×

3
| ̸= 2 and hence if and only if

p
(3)
≡ 1. We thus distinguish between the following three cases:

1. p
(3)
≡ −1 : In that case, Φ3 and Φ6 have no zeroes in Fp. Suppose to obtain

a contradiction that the system of equations above has solutions. Then,
by virtue of (2.6.9), X3 + 1 = (X + 1)Φ6(X) has exactly one solution,

namely w
(p)
≡ −1. Hence, (2.6.8) forces v

(p)
≡ 1. Therefore, (2.6.6) becomes

u2 + u+ 1
(p)
≡ 0 and u has to be a zero for Φ3, a contradiction.

2. p
(3)
≡ 1 : Lemma 2.6.6 implies that Φ6 has two zeroes X1, X2 ∈ Fp. Because

Φ6(X) = (X −X1)(X −X2) = X2 − (Xi +Xj)X +XiXj ,

a coefficient comparison yields XiXj = 1 and Xi+Xj = 1. Hence, Xi ̸= Xj

for otherwise we would have X2
1 = 1 and 2X1 = 1. This would imply

Xi = ±1 and ±2 = 2Xi = 1. This might only happen if p = 3, contrary to
our assumption. Therefore, X1 and X2 are indeed different. By a similar
reasoning, we infer Xi ̸= −1. Therefore, we have to consider the following
cases:

If w̄ = −1 we have to find ū ∈ Fp such that f(ū,−1) = 0. But

f(t,−1) = Φ3(t) = Φ6(t+ 1)

has exactly the zeroes Xi−1. Hence ū has to attain one of the values Xi−1.

In the cases w̄ = Xi, (2.6.11) becomes 0 = f(ū, Xi). In particular, ū
has to be a zero of the quadratic polynomial pi(t) = f(t,Xi). Lemma 2.6.8
tells us that pi(1) = f(1, Xi) = Φ6(Xi) = 0 and

pi(Xi − 1) = f(Xi − 1, Xi) = Φ6(Xi) = 0

and therefore ū has to attain the values 1 or Xi − 1.

(2.6.8) guarantees that in each of the cases v̄ does only depend on w̄.
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3. p = 3 : In this case Φ6(X) = X2 − X + 1 = X2 + 2X + 1 = (X + 1)2.
Therefore w̄ = −1 is a zero of X3 + 1. By f(ū,−1) = f(−1, ū) = Φ3(ū) =
Φ6(−ū) we obtain −ū = −1 and thus ū = 1.

This yields all elements of Fix∆(p)\Γ

⟨⎛⎝ 0 −1 0
0 0 −1
1 0 0

⎞⎠⟩ represented by elements

of the form r
(p)
1 (u, v, w).

Let us proceed with the second example. We consider the Γ-conjugacy class
[

C
S2
4

4

]
Γ

and its representative H2 :=

⟨⎛⎝ 0 −1 0
1 1 1
−1 0 0

⎞⎠⟩. As above, we realize that we

have to determine γ ∈ R(p) such that

(2.6.12)

⎛⎝ 0 −1 0
1 1 1
−1 0 0

⎞⎠γ

∈ ∆(p).

Again, we only compute the solutions of the shape r(p)1 (u, v, w). The remaining
solutions are obtained by similar but easier calculations. So the condition (2.6.12)
becomes ⎛⎝ u −1 0

−v + u(u+ w − 1) + 1 −u− w + 1 1
−vw + w + u(v + (w − 1)w)− 1 −w2 + w − v w

⎞⎠ ∈ ∆,

where
−
⌊p
2

⌋
≤ u, v, w ≤

⌊p
2

⌋
, if p ̸= 2

and u, v, w ∈ {0, 1} in the case p = 2. Those matrices are elements of ∆(p) if and
only if they satisfy the following system of equations:

−v + u(u+ w − 1) + 1
(p)
≡ 0(2.6.13)

−vw + w + u(v + (w − 1)w)− 1
(p)
≡ 0(2.6.14)

−(w − 1)w
(p)
≡ v.(2.6.15)

We insert (2.6.15) in (2.6.14) and (2.6.13) and obtain

w3 − w2 + w − 1
(p)
≡ 0

w2 − w + 1− u+ u2 + uw
(p)
≡ 0.

Recalling Φ4(X) = X2 + 1, the last system of equations can be rewritten as

(w − 1)Φ4(w)
(p)
≡ 0(2.6.16)

(u+ w − 1)2 + u+ w − uw
(p)
≡ 0.(2.6.17)

To solve this system of equations we will make use of the lemma below:

Lemma 2.6.9. The polynomial f(t,X) := (t +X − 1)2 + t +X − tX ∈ Fp[t,X]
has the following properties:

(1) f(t,X) = f(X, t)
(2) f(1, X) = Φ4(X).
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(3) f(X,−X) = Φ4(X).

Proof of the lemma. The proof is trivial.
//

Now, we put f(t,X) := (t+X − 1)2 + t+X − tX. With that notation, the system
of equations consisting of (2.6.16) and (2.6.17) becomes

(2.6.18) f(ū, w̄) = 0 and (Φ4(w̄) = 0 ∨ w̄ = 1).

Lemma 2.6.6 tells us for p odd that Φ4 is irreducible in Fp if and only if |⟨p⟩(Z/4Z)× | =

2. Thus, Φ4 has zeroes if and only if p
(4)
≡ 1. We therefore consider the following

three cases.

1. p
(4)
≡ −1 : In that case Φ4 is irreducible over Fp. We claim that there

is no solution for (2.6.18). Suppose contrary to our claim, that there is
a solution (ū, w̄) ∈ (Fp)

2 of that system. Then, w̄ = 1 because Φ4 is
irreducible. Applying Lemma 2.6.9 we necessary have,

0 = f(ū, 1) = Φ4(u),

a contradiction to the irreducibility of Φ4. Hence, (2.6.18) has indeed no
solution in that case.

2. p
(4)
≡ 1: Lemma 2.6.6 guarantees us that Φ4 has two zeroes X1 and X2.

We thus get

X2 + 1 = Φ4(X) = (X −X1)(X −X2) = X2 − (X1 +X2)X +X1X2.

Coefficient comparison yields X1 +X2 = 0 and X1X2 = 1. In particular
X1 ̸= X2 and Xi ̸= 1, i ∈ {1, 2}, for otherwise we would have p = 2, a

contradiction to p
(4)
≡ 1. The structure of (2.6.18) suggests that we should

consider the following cases: In the case w̄ = 1, Lemma 2.6.9 yields that
(2.6.18) becomes

0 = f(ū, 1) = Φ4(u).

Because f(t, 1) is a polynomial of degree 2, u has to attain one of the
values Xi, i ∈ {1, 2}. If Φ(w̄) = 0, we have w̄ = Xi for one i ∈ {1, 2}. We
put pi(t) := f(t,Xi). Thus, (2.6.18) gets to pi(ū) = 0. For the reason pi(t)
is a polynomial of degree 2, it has at most two zeroes in Fp. Lemma 2.6.9
yields

pi(1) = f(1, Xi) = Φ4(Xi) = 0

and

pi(−Xi) = f(−Xi, Xi) = f(Xi,−Xi) = Φ4(Xi) = 0.

So, ū ∈ {1, Xi}.
3. p = 2: If p = 2 occurs, (2.6.18) is equivalent to ū = 1 = w̄.

This is the claim for H2. �

Let d be a square-free non-negative integer. So far, we have computed the fixpoints
for the right actions of finite subgroups of Γ on the quotients ∆(p)\Γ. With that
in our mind, we can derive the fixpoints of those actions on ∆(d)\Γ just by con-
sidering direct products. Using the Cauchy-Frobenius formula, we will obtain the
numbers |C∆(d)(·)|. On the road to our aim to determine the cardinalities of the sets
M∆(d)(H) for H ∈ Subfin(Γ) we have to describe them in an appropriate way. By
virtue of Lemma 2.6.3 it is enough to determine the sizes |C∆(d)(H,K)| for suitable
H,K ∈ Subfin(Γ). In Lemma 2.6.5 we have found a method to compute C∆(d)(·).
But this only works for the reason we can express the term Hγ ⊆ ∆ in an equivalent
way using fixpoints. In general, there is no possibility to get such a description
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for C∆(d)(H,K) because there is an additional relation H < K which has to be
regarded. However, this problem will be solved if we find a way to force that relation
to be trivial. For example, this is indeed the case, if N∆(d)(H) = K is true.

In the sequel, let d =
∏r

l=1 pl the decomposition of d into primes. Because d is
square-free, each of the primes occurs exactly once. For a non-negative integer k ∈ N
we abbreviate an element a+kZ ∈ Z/kZ with ā(k). For a matrix γ = (aij)(i,j)∈[3]×[3]

we denote by γ̄(k) the matrix (ā
(k)
ij )(i,j)∈[3]×[3] ∈ Mat3(Z). Using that notation, the

Chinese remainder theorem tells us that the map

(2.6.19) Z/dZ
∼=−→

∏r
l=1 Z/plZ :

ā(d) ↦→ (ā(pl))rl=1

is an isomorphism. It is a well known fact that this isomorphism gives rise to an
isomorphism of groups:

(2.6.20) ρ(d) :
Sl3(Z/dZ)

∼=−→
∏r

l=1 Sl3(Z/plZ)
γ̄(d) ↦→

(
γ̄(pl)

)r
l=1

.

The only non trivial part of the proof of this assertion is to ensure the surjectivity of
ϱ(d). But the surjectivity is an immediate consequence of the following consideration:
Given, there is a matrix γ ∈ Mat3(Z) satisfying a system of equations

det γ
(pl)

= 1
(pl), l ∈ {1, . . . , r};

we obtain pl | det(γ)− 1 for each l ∈ {1, . . . , r}, and hence d | det(γ)− 1. The last
relation can be rewritten as

det γ
(d)

= 1
(d)
,

which is the desired conclusion.

Clearly, we have

(2.6.21) ϱ(d)(∆(d)) =

r∏
l=1

∆(pl).

Thus (2.6.20) yields

∆̄(d)\Γ̄(d) ∼=
r∏

l=1

∆̄(pl)\Γ̄(pl),

where the isomorphy is meant to be between Γ-sets with respect to the canonical
Γ-actions from the right.

For this reason and by (2.5.1), the product map

(2.6.22) ∆(d)\Γ
∼=−→

r∏
l=1

(∆(pl)\Γ)

has be an isomorphism between right Γ-sets, as well.

An element x = (x1, . . . , xr) ∈
∏r

l=1 ∆
(pl)\Γ is fixed by an element g ∈ Γ if

and only if
(x1, . . . , xr) = x = x.g = (x1.g, . . . , xr.g),

and therefore, if and only if g fixes each xi ∈ ∆(pl)\Γ. This leads to the following
lemma:
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Lemma 2.6.10. The restriction of the product map in (2.6.22) to Fix∆(d)\Γ(H)

induces an isomorphism between the right NΓ(H)-sets

Fix∆(d)\Γ(H) and
r∏

l=1

Fix∆(pl)\Γ(H).

By a slight abuse of notation we rewrite this assertion as

Fix∆(d)\Γ(H) ∼=
r∏

l=1

Fix∆(pl)\Γ(H).

Proof. This is a direct consequence of Lemma 2.6.5 combined with (2.6.22)
and the statement in front of the lemma. �

For the computation of the cardinality of C∆(d)([H]Γ) for an element ofH ∈ Sub◦fin(Γ),
we will make use of the following lemma:

Lemma 2.6.11. Let G be a group acting on a set Ω from the right. Furthermore,
let H ∈ Sub◦fin(G). Then NG(H) and thus also NG(H)/H act on FixΩ(H) from the
right and the following formula holds:
(2.6.23)

|FixΩ(H)/NG(H)| = 1

(NG(H) :H)

{
|FixΩ(H)|+

∑
gH∈NG(H)/H,

gH ̸=H

|FixΩ(⟨H, g⟩)|

}
.

If |NG(H)/H| = q for a suitable prime q, then this formula can be simplified to

(2.6.24)
|FixΩ(H)/NG(H)| = 1

q |FixΩ(H)|+
(
1− 1

q

)
|FixΩ(NG(H))|

= |FixΩ(NG(H))|+ 1
q

{
|FixΩ(H)| − |FixΩ(NG(H))|

}
.

Proof. In the same manner as in the proof of Lemma 2.6.5, it can be shown
that NG(H) and NG(H)/H act on Ω′ := FixΩ(H) from the right. By gH = Hg for
each g ∈ NG(H) we get obviously

FixΩ(H)/NG(H) = FixΩ(H)/(NG(H)/H),

in particular the fixpoints on Ω′ of both actions coincide, i.e.

FixGΩ′(⟨g⟩) = Fix
NG(H)/H
Ω′ (⟨gH⟩).

Therefore, it suffices to compute |FixΩ(H)/(NG(H)/H)| which can be easily done
using the Cauchy-Frobenius formula and Remark 19:

|FixΩ(H)/(NG(H)/H)| = 1

(NG(H) :H)

{
|FixΩ′(H)|+

∑
gH∈NG(H)/H,

gH ̸=H

|FixΩ′(⟨gH⟩)|

}

=
1

(NG(H) :H)

{
|FixΩ(H)|+

∑
gH∈NG(H)/H,

gH ̸=H

|FixΩ(⟨H, g⟩)|

}
.

Under the assumption NG(H)/H ∼= Cq we obtain (2.6.24) by the following consid-
eration: ⟨gH⟩ = NG(H)/H if and only if gH ̸= H. In this case (2.6.23) becomes
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|FixΩ(H)/NG(H)| = 1

q

{
|FixΩ(H)|+ (q − 1) |FixΩ(NG(H))|

}
=

1

q
|FixΩ(H)|+

(
1− 1

q

)
|FixΩ(NG(H))|

= |FixΩ(NG(H))|+ 1

q

{
|FixΩ(NG(H))| − |FixΩ(H)|

}
,

which is the desired conclusion. �

Lemma 2.6.5 combined with the just proved statement and Lemma 2.6.10 leads
immediately to

Lemma 2.6.12. Let H ∈ Sub◦fin(Γ), then

|C∆(d)(H)| = 1

(NΓ(H) :H)

⎧⎪⎪⎨⎪⎪⎩
r∏

l=1

|Fix∆(pl)\Γ(H)|+
∑

gH∈NΓ(H)/H,
gH ̸=H

r∏
l=1

|Fix∆(pl)\Γ(⟨H, g⟩)|

⎫⎪⎪⎬⎪⎪⎭.
Under the additional assumption that |NΓ(H)/H| = q for a suitable prime q, this
formula can be simplified to

|C∆(d)(H)| = 1

q

r∏
l=1

|Fix∆(pl)\Γ(H)|+ q − 1

q

r∏
l=1

|Fix∆(pl)\Γ(NΓ(H))|.

Remark 22. The lemma above tells us that we obtain the cardinalities |C∆(d)([H0]Γ)|
from the numbers |Fix∆(p)\Γ(H0)| for all H0 ∈ Sub◦fin(Γ), where we already have
computed the last ones in Theorem 2.6.7.

In order to derive the numbers |M∆(d)([·]Γ)|, we need a series of technical lemmas
which allows us to determine the cardinalities |C∆(d)([·]Γ, [·]Γ)| or |L∆(d)([·]Γ)|, from
those of C∆(d)([·]Γ). Here, “ ·” stands for arbitrary elements in Sub◦fin(Γ). For the
sake of brevity we have introduce the following notions:

Definition 2.6.13. Let H0 ≤ K0 ∈ Subfin(G). We say H0 or [H0]G satisfies
property

(
N[K0]G

)
in G if and only if the following assertion holds:

∀(H,K) ∈ [H0]G × [K0]G : (H ≤ K ⇒ H E K).

Definition 2.6.14. Let H0 ∈ Subfin(G). We say H0 has property (P) if and only
if for each G\ Subfin(G) ∋ [K0]G > [H0]G the following assertion is true: [K0]G is a
maximal element in the set {[K]G ∈ G\ Subfin(G) : C∆([K]G) ̸= ∅} with respect to
the order induced by that on G\ Sub(G).
We recall the following well known elemental group theoretical fact:

Remark 23. Let K be a finite group and q be the lowest prime dividing it. Then
each H ≤ K such that (K : H) = q satisfies H E K.

Proof. Consider the kernel of the action K → Sym(K/H) : k ↦→ (k′H ↦→
kk′H). �

Lemma 2.6.15. Let H0 ≤ K0 ∈ Subfin(G). Let q be the smallest prime dividing
|K0|. Then, (K0 : H0) = q implies that H0 satisfies

(
N[K0]G

)
in G.

Proof. Let (H,K) ∈ [H0]G× [K0]G such that H ≤ K. By Lagrange’s theorem
we have

q = (K0 : H0) =
|K0|
|H0|

=
|K|
|H|

= (K : H).

But now, the elemental group theoretical fact recalled in Remark 23 yields H E K
and therefore the claim. �
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Lemma 2.6.16. We denote by ΞH0
the map defined in Lemma 2.6.5. Let K0 be a

finite group and H0 ≤ K0 such that NG(H0) = K0. Under the assumption that H0

satisfies
(
N[K0]G

)
, the following assertions are true:

(2.6.25) C∆(H0,K0) = {[H]∆ ∈ C∆(H0) : NG(H) ⊆ ∆}.

and hence

(2.6.26) C∆(H0,K0) = ΞH0

(
Fix∆\G(K0)

)
.

Proof. We begin by proving (2.6.25). Therefore, we first show that C∆(H0,K0)
is contained in {[H]∆ ∈ C∆(H0) : NG(H) ⊆ ∆}. To this end, take an arbitrary
[H]∆ ∈ C∆(H0,K0). Then, by definition, H < K ⊆ ∆ for an appropriate K such
that [K]∆ ∈ C∆(K0). Now,

(
N[K0]G

)
implies that H E K and hence K = NK(H) ≤

NG(H). On the other hand, there exists a γ ∈ G such that H = Hγ 0. We combine
these assertions to

[K0]∆ ∋ K ≤ NG(H) = Nγ G(H0) = Kγ 0.

But conjugation with elements in ∆ is an automorphism in G and therefore all
“≤” are in fact equalities. In particular, NG(H) = K ⊆ ∆ which is the desired
conclusion. For the converse direction pick an arbitrary [H]∆ ∈ C∆(H0) such that
NG(H) ⊆ ∆. Now, H ∼

G
H0 implies NG(H) ∼

G
NG(H0) = K0. This together with

NG(H) ⊆ ∆ implies [NG(H)]∆ ∈ C∆(K0) and therefore [H]∆ ∈ C∆(H0,K0), and
the proof of (2.6.25) is complete.

It remains to show (2.6.26). For this purpose, pick an arbitrary γ ∈ G such
that

[ Hγ 0]∆ ∈ {[H]∆ ∈ C∆(H0) : NG(H) ⊆ ∆}.
By definition and Lemma 2.3.5 we have γNG(H0)γ

−1 ⊆ ∆. Analysing the proof of
Lemma 2.6.5, we infer that this condition can be rewritten as ∆γ = ∆γNG(H) or
equivalently as ∆γ ∈ Fix∆\G(NG(H0)). We thus conclude

Ξ−1([ Hγ 0]∆) = ∆γ.NG(H0) = ∆γ.

This combined with (2.6.25) yields Ξ−1
(
C∆(H0,K0)

)
= Fix(K0), and (2.6.26) is

proved. �

Lemma 2.6.17. Let H0 ∈ Sub◦fin(G) such that H0 satisfies property (P) and [H0]G
has property

(
N[K0]G

)
for each [K0]G > [H0]G : C∆(K0) ̸= ∅. Then,

Λ: L∆(H0) →
⨄

[K0]G>[H0]G :
C∆(K0) ̸=∅

C∆(K0) :

[H]∆ ↦→ [N∆(H)]∆

is a well-defined surjective map.

Proof. First, we have to prove that Λ is indeed well-defined. For this purpose,
we take any [H]∆ ∈ L∆(H0). Our goal is to show that there exists a K0 > H0

such that [N∆(H)]∆ ∈ C∆(K0). The definition of L∆(H0) yields the existence of
an [K0]∆ such that [K0]G > [H0]G and [H]∆ ∈ C∆(H0,K0). Hence, there is an
[K]∆ ∈ C∆(K0) such that H < K. In particular, C∆(K0) cannot be empty. Because
[H0]G satisfies property

(
N[K0]G

)
, we infer

(2.6.27) K0 ∼
G
K = NK(H) ≤ N∆(H) ⊆ ∆.

But property (P) forces
[N∆(H)]G ≤ [K0]G.
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Both assertions combine to

|N∆(H)| = |K0| = |K|.
So, (2.6.27) can be strengthened to [N∆(H)]∆ = [K]∆ ∈ C∆(K0), as required.

Let us now turn our attention to the proof of the surjectivity of Λ. To this
end, pick [K]∆ ∈ C∆(K0) for some [K0]G > [H0]G : C∆(K0) ̸= ∅. Thus, there is a
γ ∈ G such that Kγ 0 = K ⊆ ∆. For the reason Hγ 0 ≤ Kγ 0 = K ⊆ ∆, we get by
property

(
N[K0]G

)
K = NK( Hγ 0) ≤ N∆( H

γ
0).

Because H0 satisfies property (P), we may conclude in the same manner as above

K = N∆( H
γ

0).

From that we derive
[K]∆ = Λ([ Hγ 0]∆),

which completes the proof. �

Under further assumptions we can also ensure that the map Λ, mentioned in
Lemma 2.6.17, is in addition injective. This is subjective of the following

Lemma 2.6.18. We use the same notation and hypotheses as in Lemma 2.6.17.
Under the additional assumption that for each [K0]G > [H0]G with C∆(K0) ̸= ∅
there is a representative K ∈ [K0]G such that the map

ΘK :
{[H]K : H ∼= H0} → G\ Subfin(G)

[H]K ↦→ [NG(H)]G

is an injection, the map Λ in Lemma 2.6.17 is even a bijection.

Proof. We only need to show that Λ is injective. The remaining statements
are consequences of Lemma 2.6.17. For this purpose, take any H,H ′ ∈ L∆(H0) such
that

[N∆(H)]∆ = [N∆(H
′)]∆.

By definition, there exists a δ ∈ ∆ with the property

N∆(H) = N∆(H
′)

δ
= N∆( H

δ ′).

We put H ′′ := Hδ ′ and rewrite the assertion as

N∆(H) = N∆(H
′′).

Lemma 2.6.17 tells us that C∆(N∆(H)) ̸= ∅ and N∆(H) > H just because [N∆(H)]∆
is an element of the co-domain of Λ. Now, pick a K ∈ [N∆(H)]G such that ΘK is
an injective map. Then, there exists a γ ∈ G such that

K = N∆(H)
γ

= N∆(H
′′)

γ
.

By virtue of H,H ′′ ≤ N∆(H) we obtain Hγ , Hγ ′′ ≤ N∆(H)
γ

= K.

At this point let us claim that

(2.6.28) [ Hγ ]K = [ Hγ ′′]K .

On the contrary, suppose that [ Hγ ]K ̸= [ Hγ ′′]K . For the reason Hγ ∼= H0
∼= Hγ ′′

we may apply ΘK on both sides. Because ΘK is an injective map this yields:

[NΓ( H
γ )]G = ΘK([ Hγ ]K) ̸= ΘK([ Hγ ′′]K) = [NΓ( H

γ ′′)]G.

According to Lemma 2.3.5 this can be only true if

[H]G = [ Hγ ]G ̸= [ Hγ ′′]G = [H ′′]G,
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contradicting H ∼
G
H0 ∼

G
H ′′.

We continue to show [H]∆ = [H ′]∆. (2.6.28) guarantees the existence of a k ∈ K
such that Hkγ = Hγ ′′. We rewrite this assertion as

Hγ−1kγ = H ′′.

Since k ∈ K = γN∆(H)γ−1, there exists an x ∈ N∆(H) ⊆ ∆ such that k = γxγ−1.
We conclude

H ′′ = Hγ−1γxγ−1γ = Hx ,

and thus [H ′]∆ = [H ′′]∆ = [H]∆, as claimed. �

Lemma 2.6.19. Let H0 < K0 ∈ Subfin(G) such that for each ∆γNG(H0) ∈
Fix∆\G(H0)/NG(H0) the condition

∆γ.NG(H0) ∩ Fix∆\G(K0) ̸= ∅

is satisfied. Then, it is already true that

C∆(H0,K0) = C∆(H0).

Proof. Let the maps ΞH0
and ΞK0

be defined as in Lemma 2.6.5 and take an
arbitrary [H]∆ ∈ C∆(H0). By definition, there is a γ ∈ G such that H = Hγ 0 ⊆ ∆.
Taking the preimage under the map ΞH0

we obtain

Ξ−1
H0

([H]∆) = ∆γNG(H0) ∈ Fix∆\G(H0)/NG(H0).

By hypothesis, there exists a γ′ ∈ G such that ∆γ′ ∈ ∆γ.NG(H0) ∩ Fix∆\G(K0).
This in particular yields ∆γ′ ∈ Fix∆\G(K0) ⊆ Fix∆\G(H0) and thus

[ Hγ′

0]∆ = ΞH0
(∆γ′NG(H0)) ∈ C∆(H0)

as well as
[ Kγ′

0]∆ = ΞK0
(∆γ′NG(K0)) ∈ C∆(K0).

On the other hand, ∆γ.NG(H0) = ∆γ′.NG(H0) forces

[H]∆ = ΞH0
(∆γ.NG(H0)) = ΞH0

(∆γ′.NG(H0) = [ Hγ′

0]∆.

H0 < K0 hence implies

[H]∆ = [ Hγ′

0]∆ < [ Kγ′

0]∆ ∈ C∆(K0).

This proves [H]∆ ∈ C∆(H0,K0) and therefore C∆(H0) ⊆ C∆(H0,K0), as required.
�

Lemma 2.6.20. Let H0 ≤ K0 ≤ G such that NG(H0) is finite and NG(H0) =
NG(K0). Furthermore, let ΞH0

and ΞK0
be the associated maps from Lemma 2.6.5.

Then, we have

(2.6.29) Ξ−1
K0

(C∆(K0)) ⊆ Ξ−1
H0

(C∆(H0)).

Now, let (Ki)i∈I be an arbitrary family with H0 ≤ Ki ≤ G and NG(Ki) = NG(H0).
Under the assumption

Fix∆\G(H0) ⊆
⋃
i∈I

Fix∆\G(Ki)

it is even true that

(2.6.30) C∆(H0) =
⋃
i∈I

C∆(H0,Ki).
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Proof. We begin by proving (2.6.29). H0 ≤ K0 clearly implies Fix∆\G(K0) ⊆
Fix∆\G(H0). We put L := NG(H0) and rewrite the hypothesis as L = NG(K0). We
thus obtain

Ξ−1
K0

(C∆(K0)) = Fix∆\G(K0)/L ⊆ Fix∆\G(H0)/L = Ξ−1
H0

(C∆(H0))

which already yields (2.6.29). To prove (2.6.30) take a family (Ki)i ∈ I with
H0 ≤ Ki and NG(H0) = NG(Ki) for all i ∈ I such that

Fix∆\G(H0) ⊆
⋃
i∈I

Fix∆\G(Ki).

Obviously, it is sufficient to show “⊆” to obtain the equality in (2.6.30). We set
again L := NG(H0). So, we may derive from the hypothesis that

Ξ−1
H0

(C∆(H0)) = Fix∆\G(H0)/L ⊆
⋃
i∈I

Fix∆\G(Ki)/L ⊆
⋃
i∈I

Ξ−1
Ki

(C∆(Ki)).

But (2.6.29) yields Ξ−1
Ki

(C∆(Ki)) ⊆ Ξ−1
H0

(C∆(H0)) for each i ∈ I. Combining both
assertions we get

Ξ−1
H0

(C∆(H0)) =
⋃
i∈I

Ξ−1
Ki

(C∆(Ki)).

(2.6.29) tells us that the domains of ΞKi are all contained in that of ΞH0 . Therefore
we may apply ΞH0 on both sides. This leads to

C∆(H0) =
⋃
i∈I

ΞH0Ξ
−1
Ki

(C∆(Ki)).

Hence, it remains to show ΞH0Ξ
−1
Ki

(C∆(Ki)) ⊆ C∆(H0,Ki) for each i ∈ I. For this
purpose, fix an i ∈ I and pick an arbitrary c ∈ ΞH0

Ξ−1
Ki

(C∆(Ki)). Then, there exists
a γ ∈ Γ such that

c = ΞH0
Ξ−1
Ki

([ Kγ i]∆) = ΞH0
(∆γNG(Ki)) = ΞH0

(∆γNG(H0)) = [ Hγ 0]∆,

where the definition of C∆(Ki) and the choice of γ implies that Kγ i ⊆ ∆. We
hence infer c = [ Hγ 0]∆ < [ Kγ i]∆ ∈ C∆(Ki). This assertion can be rewritten as
c ∈ C∆(H0,Ki), and the lemma follows. �

We are now in the position to state and prove the conclusion from Theorem 2.6.7:

Theorem 2.6.21. Let d =
∏r

l=1 pl be an arbitrary square-free integer. Then, the
numbers |C∆(d)(H)| and |M∆(d)(H)| can be computed for each H ∈ Sub◦fin(Γ). The
results of those computations are given by the table below:
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Proof. We begin by a verification of 4-th column which contains the sizes of
C∆(d)([H0]Γ) for all [H0]Γ ∈ Γ\ Sub◦fin(Γ). By Lemma 2.6.5, we have |C∆(d)(H)| =
|Fix∆(d)\Γ(H)/NG(H)| for each H ∈ Sub◦fin(Γ). We therefore obtain those numbers
in a straight-forward way from Theorem 2.6.7, Theorem 2.3.25 and Lemma 2.6.12.
We illustrate the computation of that numbers at the example

[
C

S1
4

3

]
Γ
: Take

H ∈
[

C
S1
4

3

]
Γ
. Let a, b ∈ F3 and put

δa,b :=

{
1, a = b,
0, a ̸= b.

Theorem 2.3.25 tells us that NΓ(H) ∼= S3. Theorem 2.6.7 yields⏐⏐⏐Fix∆(p)\Γ

(
C

S1
4

3

)⏐⏐⏐ = δ0̄,p̄ + 6δ1̄,p̄

and also ⏐⏐⏐Fix∆(p)\Γ

(
S

S1
4

3

)⏐⏐⏐ = δ0̄,p̄.

We hence obtain by Lemma 2.6.12 and Theorem 2.6.7

|C∆(d)([H]Γ)| =
1

2

{ r∏
l=1

(δ0̄,p̄l
+ 6δ1̄,p̄l

)  
=0, if pl

(3)
≡−1

for some l

+

r∏
l=1

δ0̄,p̄l  
=0, if d ̸=3

}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if d = 3;

0, if ∃l ∈ {1, . . . , r} : pl
(3)
≡ −1;

1
21 · 6

r−1, if 3 | d, d ̸= 3, ∀3 ̸= p | d : p
(3)
≡ 1;

1
26

r, if ∀p | d : p
(3)
≡ 1.

It is left to verify, that the sizes |M∆(d)([·]Γ)| are given by the numbers in the last
column. Of course, we will already make also use of the results for |C∆(d)([·]Γ)|. To
compute the numbers |M∆(d)([H0]Γ)| for each element in [H0]Γ ∈ Γ\ Sub◦fin(Γ), it is
therefore sufficient to express |M∆(d)(H0)| in terms of |C∆(d)(·)|. For his convenience,
we advise the reader to print out the diagram from Theorem 2.3.25 and the table
above.

1.
[

CD12
3

]
Γ
: We have to consider the following cases: If d ̸= 3, we have

by the results of the 4-th column C∆(d)

(
SD12 j
3

)
= ∅, j ∈ {1, 2}, and

C∆(d)(D12) = ∅. Theorem 2.3.25 thus implies that CD12
3 has property (P).

Therefore, the only Γ-conjugacy class [K0]Γ ∈ Sub◦fin(Γ) which lies over[
CD12

3

]
Γ

such that C∆(d)(K0) ̸= ∅ might occur, is
[

CD12
6

]
Γ
. Hence, we

put K0 := CD12
6. And the last fact clearly forces that CD12

3 has property(
N[K0]Γ

)
. Because there is only one subgroup of isomorphy type C3 in

K0, the map ΘK0
in Lemma 2.6.18 is necessarily injective. Therefore, the

hypotheses for Lemma 2.6.18 are satisfied. We thus obtain⏐⏐⏐L∆(d)

(
CD12

3

)⏐⏐⏐ = |C∆(d)(K0)|.

Now, an application of Lemma 2.6.3 forces⏐⏐⏐M∆(d)

(
CD12

3

)⏐⏐⏐ = ⏐⏐⏐C∆(d)

(
CD12

3

)⏐⏐⏐− ⏐⏐⏐C∆(d)

(
CD12

6

)⏐⏐⏐.
This yields the required cardinality. If d = 3, we have C∆(d)(D12) ̸= ∅. In
particular, property (P) is not satisfied. Thus, the criterion Lemma 2.6.18
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cannot be applied. Luckily, Lemma 2.6.20 might work here. We hence
prepare ourselves to apply Lemma 2.6.20. To this end, consider

H0 :=

⟨⎛⎝ 1 0 0
0 −1 −1
0 1 0

⎞⎠⟩ ∈
[

C
S1
4

3

]
Γ
,

K1 :=

⟨⎛⎝ −1 0 0
0 −1 −1
0 0 1

⎞⎠,
⎛⎝ −1 0 0

0 0 1
0 1 0

⎞⎠⟩ ∈
[

SD12 1
3

]
Γ
,

and

K2 :=

⟨⎛⎝ −1 0 0
0 −1 0
0 1 1

⎞⎠,
⎛⎝ −1 0 0

0 0 −1
0 −1 0

⎞⎠⟩ ∈
[

SD12 2
3

]
Γ
.

Theorem 2.6.7 tells us that

Fix∆(3)\Γ(H0) ⊆ Fix∆(3)\Γ(K1) ∪ Fix∆(3)\Γ(K2).

So, we may apply Lemma 2.6.20. This yields

C∆(3)(H0) = C∆(3)(H0,K1) ∪ C∆(3)(H0,K2) ⊆ L∆(3)(H0).

We conclude ⏐⏐⏐M∆(3)

(
CD12

3

)⏐⏐⏐ = |M∆(3)(H0)| = 0.

2.
[

C
S1
4

3

]
Γ
: If d ̸= 3, C∆(d)

(
S

S1
4

3

)
= ∅ immediately ensures that⏐⏐⏐M∆(d)

(
C

S1
4

3

)⏐⏐⏐ = ⏐⏐⏐C∆(d)

(
C

S1
4

3

)⏐⏐⏐.
Now, let us assume d = 3. Let (H0,K0) ∈

[
C

S1
4

3

]
Γ
×
[

S
S1
4

3

]
Γ

such that

H0 ≤ K0. Because (K0 : H0) = 2, H0 satisfies
(
N[K0]Γ

)
. On the other

hand, Theorem 2.3.25 tells us that [H0]Γ has property (P). The Sylow
theorems guarantee that the map ΘK0

from Lemma 2.6.18 is injective.
Thus, we may apply Lemma 2.6.18 and obtain

|L∆(3)(H0)| = |C∆(3)(K0)|.
Therefore, we get

|M∆(3)(H0)| = |C∆(3)(H0)| − |C∆(3)(K0)|.

3.
[

C
Si
4

4

]
Γ
, i ∈ {1, 2}: First, we treat the case d ̸= 2. For the reason⏐⏐⏐C∆

(
D

Si
4

8

)⏐⏐⏐ = 0, Theorem 2.3.25 implies

M∆(d)

(
C

Si
4

4

)
= C∆(d)

(
C

Si
4

4

)
.

For d = 2,
[

D
Si
4

8

]
Γ

is the only element in Γ\ Sub◦fin(Γ) such that [Ki]Γ >[
C

Si
4

4

]
Γ

and C∆(2)(Ki) ̸= ∅. Let Hi be an representative of
[

C
Si
4

4

]
Γ

and Ki be an representative of
[

D
Si
4

8

]
Γ

such that Hi ≤ Ki. Then,

(Ki : Hi) = 2 implies that Hi has necessarily the property
(
N[Ki]Γ

)
.

Moreover, NΓ(Hi) = Ki. Thus, Lemma 2.6.16 forces

|L∆(2)(Hi)| = |C∆(2)(Hi,Ki)| = |Fix∆(2)\Γ(Ki)|.
We thus conclude

|M∆(2)(Hi)| = |C∆(2)(Hi)| − |Fix∆(2)\Γ(Ki)|.
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V

S1
4 •

4

]
Γ
: If d ̸= 2, we observe C∆(d)([K0]Γ) = ∅ for each Γ\ Subfin(Γ) ∋

[K0]Γ >
[

V
S1
4 •

4

]
Γ
. This leads to

M∆(d)

(
V

S1
4 •

4

)
= C∆(d)

(
V

S1
4 •

4

)
.

So, let us assume d = 2. We choose representatives H0 ∈
[

V
S1
4 •

4

]
Γ

and

K0 ∈
[

D
S1
4

8

]
Γ
. As for the groups of type C4 there is only one Γ-class

which lies over
[

V
S1
4 •

4

]
Γ
, namely

[
D

S1
4

8

]
Γ
. Therefore, H0 satisfies the

properties (P) and
(
N[K0]G

)
. Now, we have to show that the map ΘK0

in
Lemma 2.6.18 is injective. To this end, we consider the domain of ΘK0

which is given by the set

{[H]K0 : H ∼= D8} =

{[
V

S1
4 •

4

]
K0

,
[

V
S1
4 ◦

4

]
K0

}
.

Theorem 2.3.25 tells us that

ΘK0

([
V

S1
4 •

4

]
K0

)
=
[
S1
4

]
Γ

and

ΘK0

([
V

S1
4 ◦

4

]
K0

)
=
[

D
S1
4

8

]
Γ
.

In particular, ΘK0 is injective. We may thus apply Lemma 2.6.18 on H0

and get
|L∆(2)(H0)| = |C∆(2)(K0)|.

This forces

|M∆(2)(H0)| = |C∆(2)(H0)| − |C∆(2)(K0)|.

4.
[

V
Si
4 •

4

]
Γ
, i ∈ {2, 3}: For d ̸= 2 we obtain by the same reasoning as for[

V
S1
4 •

4

]
Γ

M∆(d)

(
V

Si
4 •

4

)
= C∆(d)

(
V

Si
4 •

4

)
.

So, let us assume d = 2. We know⏐⏐⏐C∆(2)

(
V

Si
4 •

4

)⏐⏐⏐ = 1.

For the reason, C∆(2)

(
D

S2
4

8

)
̸= ∅ and by the diagram in Theorem 2.3.25

it is true that C∆(2)

(
V

Si
4 •

4 , D
S2
4

8

)
̸= ∅. This leads to⏐⏐⏐M∆(2)

(
V

Si
4 •

4

)⏐⏐⏐ = ⏐⏐⏐C∆(2)

(
V

Si
4 •

4

)⏐⏐⏐− ⏐⏐⏐C∆(2)

(
V

Si
4 •

4 , D
S2
4

8

)⏐⏐⏐ ≤ 1− 1 = 0.

We want to point out that Θ
D

S2
4

8

is not injective here and we therefore

cannot apply Lemma 2.6.18.
5.
[

V
S1
4 ◦

4

]
Γ
: If d ̸= 2, 3, we have C∆(d)([K0]Γ) = ∅ for all Γ\ Sub◦fin(Γ) ∋

[K0]Γ >
[

V
S1
4 ◦

4

]
Γ
. We therefore get

M∆(d)

(
V

S1
4 ◦

4

)
= C∆(d)

(
V

S1
4 ◦

4

)
.



2. THE VERTEX GROUPS FOR “BOREL-SUBGROUPS” OF Sl3(Z) 79

We now turn our attention to the case d = 3. We then have C∆(3)([D12]Γ) ̸=
∅. We put

H0 :=

⟨⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠,
⎛⎝ −1 0 0

0 0 −1
0 −1 0

⎞⎠⟩ ∈
[

V
S1
4 ◦

4

]
Γ
,

K0 :=

⟨⎛⎝ −1 0 0
0 −1 −1
0 0 1

⎞⎠,
⎛⎝ −1 0 0

0 −1 0
0 1 1

⎞⎠⟩ ∈ [D12]Γ

and Theorem 2.3.25 tells us that NΓ(H0) ∈
[

D
S1
4

8

]
Γ
. It is obviously true

that H0 < K0. By Theorem 2.6.7, we are able to verify, for instance using
[10], that the hypotheses for H0,K0 in Lemma 2.6.19 are satisfied. From
that we immediately get C∆(3)(H0,K0) = C∆(3)(H0). This forces

|M∆(3)(H0)| = |C∆(3)(H0)| − |C∆(3)(H0,K0)| = 0.

It remains to consider the case d = 2. The only Γ-conjugacy class [K]Γ

over
[

V
S1
4 ◦

4

]
Γ

such that C∆(2)([K]Γ) ̸= ∅ is
[

D
S1
4

8

]
Γ
. For the reason

NΓ

(
V

S1
4 ◦

4

)
∈
[

D
S1
4

8

]
Γ

the hypotheses for Lemma 2.6.16 are satisfied.
This yields⏐⏐⏐M∆(2)

(
V

S1
4 ◦

4

)⏐⏐⏐ = ⏐⏐⏐C∆(2)

(
V

S1
4 ◦

4

)⏐⏐⏐− ⏐⏐⏐Fix∆(2)\Γ

(
D

S1
4

8

)⏐⏐⏐ = 5− 5 = 0.

6.
[

CD12
6

]
Γ
: First, consider the case d ̸= 3. So, for each Γ-class [K]Γ ∈

Subfin(Γ), such that [K]Γ >
[

CD12
6

]
Γ
, holds

C∆(d)([K]Γ) = ∅.

We conclude

M∆(d)

([
CD12

6

]
Γ

)
= C∆(d)

([
CD12

6

]
Γ

)
.

Now, let us assume d = 3. Under that assumption it is clearly true
that

L∆(3)

(
CD12

6

)
= C∆(3)

(
CD12

6, D12

)
.

Furthermore, CD12
6 has property

(
N[D12]G

)
and NΓ

(
CD12

6

)
= D12. We

may thus apply Lemma 2.6.16 and obtain⏐⏐⏐M∆(3)

([
CD12

6

]
Γ

)⏐⏐⏐ = ⏐⏐⏐C∆(3)

(
CD12

6

)⏐⏐⏐− |Fix∆(3)(D12)|.

7.
[

SD12 j
3

]
Γ
, j ∈ 1, 2: For d ̸= 3 is nothing to show. So, let us assume d = 3.

A similar sequence of arguments, as for
[

CD12
6

]
Γ

in the case d = 3, yields⏐⏐⏐M∆(3)

([
SD12 j
3

]
Γ

)⏐⏐⏐ = ⏐⏐⏐C∆(3)

(
SD12 j
3

)⏐⏐⏐− |Fix∆(3)(D12)|.

For the remaining cases we have M∆(d)(H) = C∆(d)(H) for each [H]Γ ∈ Sub◦fin(Γ),
and the proof is complete. �

Theorem 2.2.1 and Theorem 2.3.25 together with Theorem 2.4.49 tell us that
Theorem 2.6.21 counts indeed the number of maximal vertex groups which are
not of type C2 in a “reduced” complex of groups for ∆(p). For ∆(p), p prime, we
are even able to compute those groups explicitly. For a general square-free integer
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d =
∏r

l=1 pl the problem arises to determine the preimages of certain elements under
the product maps

Fix∆(d)\Γ(H) →
r∏

l=1

Fix∆(pl)\Γ(H).

As long as we are not able to give an explicit system of representatives for ∆(d)\Γ,
an explicit description for the maximal vertex groups of ∆(d), which are not of
type C2, can hardly be given. The results of Theorem 2.6.7 and Theorem 2.6.21
allow us to compute maximal ∆(p)-conjugacy classes of finite subgroups with finite
Normalizers in Γ.

The subject of the following theorem is the computation of the exact values for
the components of the decomposition of ∆(p)\M◦(∆(p)

)
into M∆(p)([H]Γ), see

Lemma 2.6.4, where p is an arbitrary non-negative prime. By Theorem 2.3.25, we
know that any non-trivial finite subgroup of any type but C2 has finite Normalizer
in ∆(p).
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Proof. An analysis of Theorem 2.6.21 yields that the only non-trivial cases are[
SD12 j
3

]
Γ
, j ∈ 1, 2 for p = 3 and

[
V

S1
4 •

4

]
Γ

for p = 2. Let us first consider M∆(p)(Hj)

for p = 3, where Hj := SD12 j
3. We observe Fix∆(3)\Γ(D12) ⊆ Fix(Hj). Theo-

rem 2.6.21 tells us that there is only one element in M∆(3)(Hj). Because Hj satisfies
NΓ(Hj) = D12 and property

(
N[D12]G

)
, we obtain by Lemma 2.6.16 that the only el-

ement in M∆(3)(Hj) has to be parametrized by some element ∆γj ∈ Fix∆(3)\Γ(Hj)r
Fix∆(3)\Γ(D12). Theorem 2.6.7 yields |Fix∆(3)\Γ(Hj)rFix∆(3)\Γ(D12)| = 2. For the
reason D12 = NΓ(Hj) acts from the right on Fix∆(3)\Γ(Hj), we therefore obtain that
the two elements in Fix∆(3)\Γ(Hj)r Fix∆(3)\Γ(D12) form one orbit. We conclude

Ξ−1
Hj

(M∆(3)(Hj)) = {∆(3)γjD12},

as desired.

We now turn to the computation of M∆(p)(H) for p = 2 and H = V
S1
4 •

4 . To this end,
let us consider the action of NG(H)/H = S1

4/H from the right on Ω := Fix∆(2)\Γ(H).
This yields

|Ω| =
∑

k|(NΓ(H):H)

∑
∆(2)γ.NΓ(H)∈Ω/NΓ(H) :

|∆(2)γ.NΓ(H)|=k

|∆(2)γ.NΓ(H)|(2.6.31)

=
∑
k|6

k · |{∆(2)γ.S1
4 ∈ Ω/S1

4 : |∆(2)γ.S1
4 | = k}|.

Now, consider the sets Ωk := {∆(2)γ.S1
4 ∈ Ω/S1

4 : |∆(2)γ.S1
4 | = k}. We clearly have

Ω1 = Fix∆(2)\Γ(S
1
4) = ∅. The orbit formula implies that |∆(2)γ.S1

4 | = k if and only

if |(S1
4)∆(2)γ | = 24/k. Because the only subgroup of S1

4 of index 2 is A
S1
4

4, we obtain

for ∆(2)γ.S1
4 ∈ Ω2 that (S1

4)∆γ = A
S1
4

4. We therefore deduce

Ω2 ⊆ Fix∆(2)\Γ

(
A

S1
4

4

)
/S1

4 .

Because Fix∆(2)\Γ

(
A

S1
4

4

)
= ∅, we conclude Ω2 = ∅ as well.

On the other hand, every subgroup of index 3 in S1
4 has to be S1

4 -conjugate to D
S1
4

8.
By Remark 20, we infer

Ω3 ⊆
( ⋃

σ∈S1
4

Fix∆(2)\Γ

(
D

S1
4

8

)
σ
)
/S1

4 = Fix∆(2)\Γ

(
D

S1
4

8

)
/S1

4 .

Because Fix∆(2)\Γ(S
1
4) = ∅, we also obtain

Fix∆(2)\Γ

(
D

S1
4

8

)
⊆ Ω3.

We therefore get

Ω3 = Fix∆(2)\Γ

(
D

S1
4

8

)
/S1

4 = Ξ−1

D
S1
4

8

(
C∆(2)

(
D

S1
4

8

))
.

Inserting these observations into (2.6.31), leads to

|Ω| = 3|C∆(2)

(
D

S1
4

8

)
|+ 6|Ω6|.

|Ω| = 21 and |C∆(2)

(
D

S1
4

8

)
| = 5 enforce |Ω6| = 1. On the other hand, each element

of Ω associated with an element in M∆(2)(H) cannot lie in Fix∆(2)\Γ

(
D

S1
4

8

)
, for

otherwise that element can also be associated with an element of C∆(2)

(
D

S1
4

8

)
. This



2. THE VERTEX GROUPS FOR “BOREL-SUBGROUPS” OF Sl3(Z) 84

violates the definition of M∆(2)(H).

We conclude Ξ−1
H (M∆(2)(H)) ⊆ Ω6. Because

1 = |M∆(2)(H)| ≤ |Ω6| = 1,

we can choose an arbitrary element ∆(2)γ ∈ Ω6 and get M∆(2)(H) = {∆(2)γ}.
The orbit Ω6 can be easily determined for example with [10], and the proof is
complete. �

Recall that Γ acts on X = {A ∈ R3×3| det(A) = 1, A = At , ⟨Av, v⟩ > 0 ∀ 0 ̸= v ∈
R3}. The Γ-space X ′, see Theorem 2.2.1, is a polyhedral complex. Hence there
exists a scwol XΓ such that its geometric realization can be identified with X ′. In
addition, X is a symmetric space and therefore geodesic complete. This forces that
the action of each finite index subgroup of Γ on the scwol XΓ satisfies the hypotheses
for Theorem 2.4.49. Because X ′ is simply connected the scwol XΓ has to be simply
connected as well.

To consider the consequences of Theorem 2.4.49 in this setting, we introduce and
recall the following notation.

Notation 2.6.23. Let ∆ be an arbitrary subgroup of Γ such that (Γ : ∆) < ∞.
We denote by R∆(XΓ) the reduction of XΓ associated to the action ∆ y XΓ, as
defined on page 48 and in Notation 2.4.50. Furthermore we agree on G(Y(∆)) to
be the complex of groups associated to the action ∆ y R∆(XΓ) over the scwol
Y(∆) := ∆\R∆(XΓ).

Corollary 2.6.24. Let ∆ be an arbitrary subgroup of Γ such that (Γ : ∆) <∞. By
Theorem 2.4.49 the map

Λ: M◦(G(Y(∆))) → ∆\M◦(∆)

induces for each Γ-conjugacy-class [H0]Γ ∈ Γ\ Sub◦fin(Γ) a bijection

Λ[H0]Γ :
{v̄ ∈M◦(G(Y(∆))) : ∆v̄ ∼

Γ
H0} → M∆([H0]Γ)

v̄ ↦→ [∆v̄]∆
.

Proof. This is a direct consequence of Theorem 2.4.49 and the introductory
remark in front of Corollary 2.6.24. �

Definition 2.6.25 ([1] p.532 1.17). Let X be a scwol and v ∈ V (X ). The upper
link Lkv(X ) of v consists of a set of vertices

V (Lkv(X )) := {a ∈ E(X ) : t(a) = v}

and arrows

E(Lkv(X )) := {(a, b) ∈ E(2)(X ) : t(a) = v}.

Moreover, we define edgev(X ) to be

edgev(X ) := {a ∈ V (Lkv(X)) : dimX (iX (a)) = 1}.

Remark 24. Let X be a scwol, v ∈ V (X ) and G be a group acting on X. Then,
this action induces actions Gv y Lkv(X ) and Gv y edgev(X ). For each γ ∈ G the
actions Γv y Lkv(X ) and Γγ.v y Lkγ.v(X ) are isomorphic and hence the actions
Γv y edgev(X ) and Γγ.v y edgeγ.v(X ) are isomorphic as well.
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Lemma 2.6.26. Let G be a group acting on a scwol X . For any v ∈ V (X ) the
following statement is true:

{g ∈ G : ∃a, a′ ∈ Lkv(X ) : g.a = a′} ⊆ Gv,

and therefore, for each a ∈ V (Lkv(X )) the stabilizer Gv acts transistively on

G.a ∩ V (Lkv(X )).

In particular, this implies

G.a ∩ V (Lkv(X )) = Gv.a.

Lemma 2.6.27. Let G be a group satisfying FCoFG acting with finite stabilizers on
a finite dimensional connected scwol X such that Gv /∈M◦(G) for all v ∈ Vmax(X ).
Let D be a fundamental domain D for that action. Let RG(X ) be the reduction of
the action of G on X . Then, the subscwol RG(D), which we define via

V (RG(D)) := {[v]RG
: v ∈ V (D)},

E(RG(D)) := {[a]RG
: a ∈ RG(E(X )) ∩ E(D)},

is a fundamental domain for the induced action of G on RG(X ).

Proof. We begin by proving that RG(D) is a subscwol. Clearly, [a] ∈
E(RG(D)) implies i([a]), t([a]) ∈ V (RG(D)). It remains to show that for each
pair of arrows [a], [b] ∈ E(RG(D)) satisfying i([a]) = t([b]) it is also true that
[a] ◦ [b] ∈ E(RG(D)). For this purpose, take such [a], [b]. By definition of RG(D),
there are elements

a′ ∈ [a] ∩RG(E(X )) ∩ E(D) and b′ ∈ [b] ∩RG(E(X )) ∩ E(D).

a′ and b′ necessarily satisfy a′ ∼ b′. In the case i(a′) = t(b′), we have

[a] ◦ [b] = [a′ ◦ b′] ∈ E(RG(D)),

as claimed. Hence, let us assume i(a′) ̸= t(b′) occurs. By definition of the equivalence
relation “∼” (p. 47 (2.4.1)), this forces Gi(a′) ∈M◦(G). This yields a′ /∈ RG(E(X )),
a contradiction. Thus, RG(D) is indeed a subscwol.

Now, let us show that RG(D) satisfies the axioms of a fundamental domain. We
begin with Definition 2.4.19 (1). Because Gv /∈ M◦(G) for each v ∈ Vmax(X ), we
clearly have [v] ∈ Vmax(RG(X )) if and only if v ∈ Vmax(X ) and [v] ∈ Vmax(RG(D))
if and only if v ∈ RG(D). If |[v]| = 1 for each [v] ∈ Vmax(RG(X )), we obtain
Vmax(RG(X )) = Vmax(X ) and Vmax(RG(D)) = Vmax(D), which yields indeed Defi-
nition 2.4.19 (1).
Hence, it is left to show |[v]| = 1 for each [v] ∈ Vmax(RG(X )). Suppose there
is a v′ ̸= v with v′ ∈ [v]. Then v′ ∼ v. By the definition of “∼”, we get
Gv′ = Gv ∈M◦(G), a contradiction to our hypothesis.
Obviously, RG(D) inherits property Definition 2.4.19 (2) from D. Thus, RG(D) is
a fundamental domain for Gy RG(X ), as claimed. �

Let ∆ ≤ G be a finite index subgroup and M∆([H0]G) ̸= ∅. For the link of an
arbitrary vertex in X , we want to compute the stabilizers regarding ∆ y X , given
the stabilizers for G y X on a fundamental domain for G y X . To obtain a
compact notation, it seems necessary to label each vertex and each edge with its
isotropy group with respect to the current action.

Definition 2.6.28. Let G be a group acting on an arbitrary scwol X . Let V be a
subset of V (X ) and E be subset of E(X ). We set

LG V := {(v,Gv) : v ∈ V} and LG E := {(a,Ga) : a ∈ E}.
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We call an element of LG V (X ) a labeled vertex and an element of LGE(X ) a labeled
arrow. Furthermore, we call for each v ∈ V (X ) the set

LG Lkv(X ) := {(a,Ga) : a ∈ V (Lkv(X ))}

the labeled link of v. LG Lkv(X ) is a subset of E(X )× Subfin(G).

G acts on V (X )× Subfin(G) via

g.(v,H) := (g.v, Hg ), (v,H) ∈ V (X )× Subfin(G)

and on E(X )× Subfin(G) via

g.(a,H) := (g.a, Hg ), (a,H) ∈ E(X )× Subfin(G).

Finally, we call for each H ∈ Subfin(G) the map χH given by

χH :
E(X )× Subfin(G) → E(X )× Subfin(G)

(a,K) ↦→ (a,H ∩K),

the intersection with H.

Remark 25. Let us use the same notation as above. Then, we have G-isomorphisms

V (X )
∼=−→ LG V (X ) :

v ↦→ (v,Gv)
and E(X )

∼=−→ LGE(X ) :
a ↦→ (a,Ga).

Lemma 2.6.29. Let X be a scwol and G be a group satisfying FCoFG and acting
with finite stabilizers on it. Denote by ϕ the pair of maps

ϕ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V (X ) → V (RG(X )) :
v ↦→ [v]

RG(E(X )) → E(RG(X ) :
a ↦→ [a].

Then, for each [v] ∈ V(RG(X )) the following formula is true:

V
(
Lk[v](RG(X ))

)
=
⋃

v′∈[v]

ϕ
(
RG(E(X )) ∩ V (Lkv

′
(X ))

)
.

Proof. The proof is trivial. �

Remark 26. The reduction of RG does not necessarily preserve dimensions. In
particular, this means if we compute LG{a ∈ V (Lkv(X )) : dimX i(a) = 1}, we do not
have the complete information about LG{[a] ∈ V (Lk[v](X )) : dimRG(X ) i([a]) = 1}.

Lemma 2.6.30 (Determination of the link, given a fundamental domain). Let G be
a group acting on a finite dimensional connected scwol X . Let D be a fundamental
for that action. Then, for each v0 ∈ V (X ) the vertices of Lkv0(X ) can be represented
as follows:

V (Lkv0(X )) =
⋃

(γ,v)∈G×V (D) :
γ.v=v0

γ.V (Lkv(D)).

Moreover, for each family (Lv)v∈V (D) such that

Lv ⊆ V (Lkv(D))
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and
⋃

a∈Lv Gv.a ⊇ V (Lkv(D)) the following statement is true:

V (Lkv0(X )) =
⋃

(γ,v)∈G×V (D) :
γ.v=v0

⋃
a′∈Lv

γGv.a
′

=
⋃

(γ,v′)∈G×V (D) :
γ.v=v0

⋃
a∈γ.Lv

Gv0 .a.

Proof. The proof consists of straightforward applications of Lemma 2.4.20. �

Lemma 2.6.31. Let G be a group acting on a finite dimensional connected scwol
X . Let D be an arbitrary fundamental domain for this action. And denote by YG

the quotient scwol. Furthermore, let ϱG be the quotient morphism

ϱG :
V (X ) → V (YG) : v ↦→ G.v
E(X ) → E(YG) : a ↦→ G.a

.

Then, for each v̄ ∈ V (YG) there is a v0 ∈ V (D) ∩ v̄ such that

V (Lkv̄(YG)) = ϱG(V (Lkv0(X ))).

Proof. Let v̄ ∈ V (YG). By Lemma 2.4.20, we clearly have v̄ ∩ V (D) ̸= ∅. Pick
a fixed v0 ∈ v̄ ∩ V (D). Then v′ = g.v0 for suitable g ∈ G. In particular, we get
V (Lkv

′
(X )) = g.V (Lkv0(X )) and therefore

ϱG(V (Lkv
′
(X ))) = ϱG(V (Lkv0(X ))).

We hence conclude

V (Lkv̄(YG)) =
⋃
v′∈v̄

{G.a ∈ E(YG) : t(a) = v′}

=
⋃
v′∈v̄

ϱG(V (Lkv
′
(X )))

= ϱG(V (Lkv0(X ))),

as desired. �

Proposition 2.6.32. Let G be a group satisfying FCoFG, which acts with finite
stabilizers on a scwol X . Let ∆ ≤ G with (G : ∆) < ∞ and S be a system of
representatives for ∆\G. Furthermore, let v ∈ V (X ) and H0 ∈ Subfin(G) such that
H0 ≤ Gv. Moreover, assume there is a s ∈ S such that Hs 0 ∈ M(∆). Finally,
denote by χH0 the intersection with H0. Then,

L∆ Lks.v(X ) = s.χH0
(LG Lkv(X )).

Proof. Take s ∈ S as above. We first prove ∆s.v = Hs 0. To this end, we
observe H0 ≤ Gv forces Hs 0 ⊆ Gs.v. But we also have Hs 0 ⊆ ∆ by the choice of s.
We thus obtain

H0 ≤ Gs.v ∩∆ = ∆s.v.

On the other hand, ∆s.v = Gs.v ∩∆ is finite by hypothesis. For the reason that Hs 0

is a maximal finite subgroup in ∆, we hence conclude Hs 0 = ∆s.v, as desired.

Let us show “⊆”. So, let us take (a,∆a) ∈ L∆ Lkv(X ) and put a′ := s−1a. We
clearly have a′ ∈ V (Lkv(X )). From

s.χH0
(a′, Ga′) = s.(a′, H0 ∩Ga′)

= (a, Hs 0 ∩Gs.a′)

= (a,∆v ∩Ga)

= (a,∆a),
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we deduce (a,∆a) ∈ s.χH0
(LG Lkv(H0)), as required.

For the converse direction, take s.(a′, H0 ∩ Ga′) with a′ ∈ Lkv(X ). Putting
a := s.a′ ∈ V (Lks.v(X )), we obtain by the same computation as above

s.(a′, H0 ∩Ga′) = (a,∆a) ∈ L∆ Lks.v(X ),

as claimed. This completes the proof. �

The 1-dimensional local structure of the complex of groups associated to ∆(d) y XΓ

over Y∆(d) := ∆(d)\XΓ can be partially described by the table given below. Partially
has two meanings here: The first one is that the hypotheses for Proposition 2.6.32
have to be satisfied to give the computation below an importance. Proposition 2.6.32
enables us to convert local data of the complex of groups associated to Γ y XΓ

over Γ\XΓ into local data for the complex of groups associated to ∆(d) y XΓ over
∆(d)\XΓ. Anything else can be derived from that data by the lemmas Lemma 2.6.27,
Lemma 2.6.29, Lemma 2.6.30 and Lemma 2.6.31. This brings up the second meaning
of “partially”. We will only compute the 1-dimensional local structure, and for the
sake of overview, we will restrict ourselves to give derived sizes of that data. The
result will be Theorem 2.6.39.

Definition 2.6.33. Let X be a scwol, G be a FCoFG-group acting with finite
stabilizers on it, and ∆ ≤ G such that (G : ∆) < ∞. Furthermore, let v ∈ V (X ),
H0 ≤ Gv and [L]G ∈ G\ Subfin(G). Then, for each a ∈ V (Lkv(X )) we set

αv,H0

[L]G
(a) := α

(v,H0)
[L]G

(a) := |{(a′, H0 ∩Ga′) : a′ ∈ Gv.a, [H0 ∩Ga′ ]G = [L]G}|,

βv
∆,[L]G

(a) := |{(a′,∆a′) ∈ L∆ Lkv(X ) : a′ ∈ Gv.a, [∆a′ ]G = [L]G}|.

Remark 27.
(1) From a geometric perspective, βv

∆,[L]G
(a) counts the number of faces

containing v, which lie in the G-orbit of the face a, such that their stabilizers
under the ∆-action are G-conjugate to L.

(2) αv,H0

[L]G
(a) = αv,H0

[L]G
(a′) and βv

∆,[L]G
(a) = βv

∆,[L]G
(a′) ∀a′ ∈ Gv.a.

(3) αv,H0

[L]G
(a) = α

γ.(v,H0)
[L]G

(a′) ∀γ ∈ G ∀a′ ∈ G.a ∩ V (Lkγv(X )).

Proof. The only non-trivial assertion is (3). It is clearly true that

α
(v,H0)
[L]G

(a) = αγ.(v,H0)(γa).

Now, (2) combined with Lemma 2.6.26 implies

αγ.(v,H0)(γa) = αγ.(v,H0)(a′) ∀a′ ∈ G.a ∩ V (Lkγv(X )),

as required. �

Proposition 2.6.34. Let X be scwol, G be a FCoFG-group acting with finite
stabilizers on it, and ∆ ≤ G such that (G : ∆) <∞. Furthermore, let v ∈ V (X ) and
H0 ≤ Gv such that M∆([H0]G) ̸= ∅. Take an arbitrary [L]G ≤ [H0]G. Then, for
each s ∈ ∆γNG(H) ∈ Ξ−1

H0
(M∆([H0]G)) and a ∈ V (Lkv(X )) the following formula

is true:
αv,H0

[L]G
(a) = βs.v

∆,[L]G
(b) ∀b ∈ G.a ∩ V (Lks.v(X )).

Proof. We set for each a ∈ V (Lkv(X )):

Av,H0

[L]G
(a) := {(a′, H0 ∩Ga′) : a′ ∈ Gv.a, [H0 ∩Ga′ ]G = [L]G},

Bv
∆,[L]G

:= {(a′,∆a′) ∈ L∆ Lkv(X ) : a′ ∈ Gv.a, [∆a′ ]G = [L]G}.
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We start by proving the first assertion of the theorem. To this end, take a s ∈
∆γNG(H) ∈ Ξ−1

H0
(M∆([H0]G)) and consider the map

Φs :
χH0(Gv.(a,Ga)) → s.χH0(Gv.(a,Ga))
(a′, H0 ∩Ga′) ↦→ s(a′, H0 ∩Ga′).

This map is obviously a bijection. By Proposition 2.6.32, we also have

im(Φs) ⊆ L∆ Lks.v(X ).

This in particular means

im(Φs) = {(a′,∆a′) ∈ L∆ Lks.v(X ) : a′ ∈ Gsv.sa}

and
(H0 ∩Ga′)s = ∆sa′ .

Hence, the restriction of Φs on Av,H0

[L]G
(a) maps onto Bs.v

∆,[L]G
(s.a) and therefore

αv,H0

[L]G
(a) = βs.v

∆,[L]G
(s.a),

as required. Take an arbitrary b ∈ G.a ∩ V (Lks.v(X )). By Lemma 2.6.26, we have
b ∈ Gsv.sa. For the reason, that βs.v

∆,[L]G
is constant along Gs.v-orbits, this forces

βs.v
∆,[L]G

(s.a) = βs.v
∆,[L]G

(b).

This yields the claim. �

Proposition 2.6.35. Let X be a finite dimensional connected scwol, G be a FCoFG-
group acting with finite stabilizers on it. Let DG the fundamental domain of that
action, and ∆ ≤ G such that (G : ∆) < ∞. Furthermore, let v ∈ V (X ) such that
∆v ∈M(∆). Then, there are v0 ∈ V (DG) and H0 ≤ Gv0

such that

βv
∆,[L]G

(a) = αv0,H0

[L]G
(a0) ∀a ∈ V (Lkv(X )), ∀a0 ∈ G.a ∩ V (Lkv0(X )).

Proof. Let v ∈ V (X ) such that ∆v is maximal finite in ∆. Take an arbitrary
a ∈ V (Lkv(X )). Lemma 2.4.20 ensures there is a v0 ∈ V (DG) and a γ ∈ G such
that v = γ.v0. Put H0 := ∆γ−1

v and b0 := γ−1a. Proposition 2.6.34 now implies
that

βv
∆,[L]G

(a) = αv0,H0

[L]G
(b0).

Take an arbitrary a0 ∈ G.a ∩ V (Lkv0(X )). By Lemma 2.6.26, we have a0 ∈ Gv0 .b0.
For the reason, that αv0,H0

[L]G
is constant along Gv0 -orbits, this forces

αv0,H0

[L]G
(b0) = αv0,H0

[L]G
(a0).

Combining both equations, we conclude

βv
∆,[L]G

(a) = αv0,H0

[L]G
(a0), ∀a0 ∈ G.a ∩ V (Lkv0(X )),

as claimed. �

Lemma 2.6.36. Let G be a group and H,K ≤ G subgroups. Then,

NG(H)NG(K) ⊆ {γ ∈ G : [H ∩ Kγ ]G = [H ∩K]G}.

Remark 28. NG(H)NG(K) has not to be a subgroup here.

Proof. Let h ∈ NG(H) and k ∈ NG(K). We compute

[H ∩ Khk ]G =
[
( Hh−1

) ∩K
]
G
= [H ∩K]G

and conclude NG(H)NG(K) ⊆ {γ ∈ G : [H ∩ Kγ ]G = [H ∩K]G}, as required. �
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Lemma 2.6.37. Let X be a scwol, G be a FCoFG-group acting with finite stabilizers
on it, and ∆ ≤ G such that (G : ∆) <∞. Furthermore, let v ∈ V (X ), H0 ≤ Gv and
[L]G ∈ G\ Subfin(G). Then, for any a ∈ V (Lkv(X )) such that

|NGv
(H0)| · |NGv

(Ga)| ≥ |Gv| · |NGv
(H0) ∩NGv

(Ga)|,
we have

αv,H0

[L]G
(a) ∈

{
0,

|Gv|
|Ga|

}
.

Proof. Take v, H0, [L]G and a as above. If [H0 ∩ Ga′ ]G ̸= [L]G for each
a′ ∈ Gv.a, we clearly have αv,H0

[L]G
(a) = 0, as desired.

Hence, we assume there is at least one a0 ∈ Gv.a such that [H0 ∩Ga0 ]G = [L]G. We
take a g0 ∈ Gv such that a0 = g0a. By hypothesis, we have

|NGv
(H0)NGv

(Ga)| =
|NGv

(H0)| · |NGv
(Ga)|

|NGv
(H0) ∩NGv

(Ga)|
≥ |Gv|

and therefore Gv = NGv
(H0)NGv

(Ga). Lemma 2.6.36 forces that

[H0 ∩Ga0 ]Gv = [H0 ∩ Gg0
a]Gv = [H0 ∩Ga]Gv = [H0 ∩ Gg a]Gv

∀g ∈ Gv.

In particular, we obtain

[H0 ∩Ga′ ]G = [L]G ∀a′ ∈ Gv.a.

This implies

αv,H0

[L]G
(a) = |Gv.(a,H0 ∩Ga)| = |Gv.a| =

|Gv|
|Ga|

,

as required. �

Definition 2.6.38. Let v ∈ V (XΓ). We call H0 ∈ Sub(Γ) v-admissible if and only
if H0 ∈ Sub◦fin(Γ) ∩ Sub(Γv) and there is a square-free integer d ∈ Z such that
M∆(d)([H0]Γ) ̸= ∅.

Theorem 2.6.39. Consider the action of Γ y XΓ. Let DΓ be the fundamental
domain for that action given by Theorem 2.2.1. Let d be an arbitrary square-free
integer. Then, the sizes |M∆(d)([H]Γ)| can be computed for every H ∈ Sub◦fin(Γ).
For each v ∈ V (DΓ), a ∈ edgev(DΓ), for each v-admissible H0 ∈ Sub◦fin(Γ) and for
each 1 ̸= [L]Γ ≤ [H0]Γ we compute the numbers αv,H0

[L]Γ
(a). By Remark 27, αv,H0

[L]Γ

depends not on the exact choice of H0 itself, but on [H0]Γv
. The results of that

computation can be found in the table below. As a consequence of Proposition 2.6.34
and Proposition 2.6.35, these numbers determine all the functions βw

∆,[L]Γ
with

w ∈M◦(∆).
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We use the same the notation as in Theorem 2.2.1 and Notation 2.3.19. In addition,
we put

DN
8 := ΓN =

⟨⎛⎝ −1 0 0
0 1 0
0 −1 −1

⎞⎠,
⎛⎝ 0 −1 0

−1 0 0
0 0 −1

⎞⎠⟩,
V

DN
8 1

4 :=

⟨⎛⎝ −1 0 0
0 −1 0
1 1 1

⎞⎠,
⎛⎝ −1 0 0

0 1 0
0 −1 −1

⎞⎠⟩
and

V
DN

8 2
4 :=

⟨⎛⎝ −1 0 0
0 −1 0
1 1 1

⎞⎠,
⎛⎝ 0 −1 0

−1 0 0
0 0 −1

⎞⎠⟩.
The rows belonging to a fixed vertex v and a fixed edge a of the table below
consist of those entries, for which there exist at least one v-admissible H0 and one
1 ̸= [L]Γ ≤ [H0]Γ such that αv,H0

[L]Γ
(a) ̸= 0.

“vertex”
Γv

“edge” [H0]Γv
,

[L]Γ αv,H0

[L]Γ
(a)

v ∈ V0(DΓ) a ∈ edgev(DΓ) H0 v-admissible

O S1
4

OM

C
S1
4

3 C
S1
4

3 1
V

S1
4 ◦

4 C
S1
4 ◦

2 4

S
S1
4

3

C
S1
4 ◦

2 3
S

S1
4

3 1
D

S1
4

8 C
S1
4 ◦

2 4

OQ

V
S1
4 ◦

4 V
S1
4 ◦

4 2
V

S1
4 •

4 C
S1
4 •

2 6
C

S1
4

4 C
S1
4 •

2 2
S

S1
4

3 C
S1
4 ◦

2 6

D
S1
4

8

C
S1
4 •

2 4
V

S1
4 ◦

4 2

OP

C
S1
4

3 C
S1
4

3 1
V

S1
4 ◦

4 C
S1
4 ◦

2 4

S
S1
4

3

C
S1
4 ◦

2 3
S

S1
4

3 1
D

S1
4

8 C
S1
4 ◦

2 4

ON
V

S1
4 ◦

4 C
S1
4 ◦

2 4
S

S1
4

3 C
S1
4 ◦

2 6
D

S1
4

8 C
S1
4 ◦

2 4

ON ′
V

S1
4 ◦

4 C
S1
4 ◦

2 4
S

S1
4

3 C
S1
4 ◦

2 6
D

S1
4

8 C
S1
4 ◦

2 4

OM ′
V

S1
4 ◦

4 C
S1
4 ◦

2 4
S

S1
4

3 C
S1
4 ◦

2 6
D

S1
4

8 C
S1
4 ◦

2 4
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M S2
4

MN

V
S2
4 ◦

4 V
S3
4 •

4 2
V

S2
4 •

4 C
S1
4 ◦

2 6
C

S2
4

4 C
S1
4 ◦

2 2
S

S2
4

3 C
S1
4 ◦

2 6

D
S2
4

8

C
S1
4 ◦

2 4
V

S3
4 •

4 2

OM

C
S2
4

3 C
S1
4

3 1
V

S2
4 ◦

4 C
S1
4 ◦

2 4

S
S2
4

3

C
S1
4 ◦

2 3
S

S1
4

3 1
D

S2
4

8 C
S1
4 ◦

2 4

MQ
V

S2
4 ◦

4 C
S1
4 ◦

2 4
S

S2
4

3 C
S1
4 ◦

2 6
D

S2
4

8 C
S1
4 ◦

2 4

M ′

= q1.M
Sq1 2
4

M ′N
M ′N ′

V
( S
q1 2

4) ◦
4 V

S3
4 •

4 2

V
( S
q1 2

4) •
4 C

S1
4 ◦

2 6

C
( S
q1 2

4)
4 C

S1
4 ◦

2 2

S
( S
q1 2

4)
3 C

S1
4 ◦

2 6

D
( S
q1 2

4)
8

C
S1
4 ◦

2 4
V

S3
4 •

4 2

M ′P

V
( S
q1 2

4) ◦
4

C
S1
4 ◦

2 2
V

S3
4 •

4 1

V
( S
q1 2

4) •
4 V

S2
4 •

4 3

C
( S
q1 2

4)
4

C
S1
4 ◦

2 2
C

S2
4

4 1

S
( S
q1 2

4)
3 C

S1
4 ◦

2 3

D
( S
q1 2

4)
8

V
S2
4 •

4 2
D

S2
4

8 1

M ′Q
V

( S
q1 2

4) ◦
4 C

S1
4 ◦

2 4

S
( S
q1 2

4)
3 C

S1
4 ◦

2 6

D
( S
q1 2

4)
8 C

S1
4 ◦

2 4

OM ′

V
( S
q1 2

4) ◦
4 C

S1
4 ◦

2 4

V
( S
q1 2

4) •
4 C

S1
4 ◦

2 12

C
( S
q1 2

4)
4 C

S1
4 ◦

2 4

D
( S
q1 2

4)
8 C

S1
4 ◦

2 12
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P S3
4

M ′P

V
S3
4 ◦

4

C
S1
4 ◦

2 2
V

S2
4 •

4 1
V

S3
4 •

4 V
S3
4 •

4 3

C
S3
4

4

C
S1
4 ◦

2 2
C

S2
4

4 1
S

S3
4

3 C
S1
4 ◦

2 3

D
S3
4

8

V
S3
4 •

4 2
D

S2
4

8 1

N ′P

V
S3
4 ◦

4

C
S1
4 ◦

2 2
V

S2
4 •

4 1
V

S3
4 •

4 V
S3
4 •

4 3

C
S3
4

4

C
S1
4 ◦

2 2
C

S2
4

4 1
S

S3
4

3 C
S1
4 ◦

2 3

D
S3
4

8

V
S3
4 •

4 2
D

S2
4

8 1

OP

C
S3
4

3 C
S1
4

3 1
V

S3
4 ◦

4 C
S1
4 ◦

2 4

S
S3
4

3

C
S1
4 ◦

2 3
S

S1
4

3 1
D

S3
4

8 C
S1
4 ◦

2 4

Q D12

OQ

VD12
4

C
S1
4 •

2 2
V

S1
4 ◦

4 1
SD12 1
3 , SD12 2

3 C
S1
4 ◦

2 3

CD12
6 C

S1
4 •

2 3

D12 V
S1
4 ◦

4 3

MQ
M ′Q

VD12
4 C

S1
4 ◦

2 2
SD12 2
3 C

S1
4 ◦

2 6
D12 C

S1
4 ◦

2 6

NQ
N ′Q

VD12
4 C

S1
4 ◦

2 2
SD12 1
3 C

S1
4 ◦

2 6
D12 C

S1
4 ◦

2 6

N DN
8

MN
M ′N

V
( DN

8) 1

4 C
S1
4 ◦

2 2

V
( DN

8) 2

4 V
S3
4 •

4 2

C
( DN

8)
4 C

S1
4 ◦

2 2

D
( DN

8)
8 V

S3
4 •

4 2

NQ
V

( DN
8) 1

4 C
S1
4 ◦

2 4

D
( DN

8)
8 C

S1
4 ◦

2 4

ON
V

( DN
8) 2

4 C
S1
4 ◦

2 4
DN

8 C
S1
4 ◦

2 4
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N ′

= q1.N

(
DN

8

)q1

M ′N ′

(
V

( DN
8) 1

4

)q1

C
S1
4 ◦

2 2(
V

( DN
8) 2

4

)q1

V
S3
4 •

4 2(
C

( DN
8)

4

)q1

C
S1
4 ◦

2 2(
DN

8

)q1
V

S3
4 •

4 2

N ′P

(
V

( DN
8) 1

4

)q1

V
S2
4 •

4 1(
V

( DN
8) 2

4

)q1

V
S3
4 •

4 1(
C

( DN
8)

4

)q1

C
S2
4

4 1(
DN

8

)q1
D

S2
4

8 1

N ′Q
(

V
( DN

8) 1

4

)q1

C
S1
4 ◦

2 4(
DN

8

)q1
C

S1
4 ◦

2 4

ON ′

(
V

( DN
8) 1

4

)q1

C
S1
4 ◦

2 4(
DN

8

)q1
C

S1
4 ◦

2 4

Proof. We give the proof for a non-trivial example. Let us consider the vertex
O and the edge OQ. We know that

[ΓOQ]S1
4
=
[

V
S1
4 ◦

4

]
S1
4

.

Applying a suitable representation Φ: S1
4 → S4, we may assume that

K := Φ(ΓOQ) = ⟨(1 2), (3 4)⟩.

Let us consider the following cases:

• H0 = ΓOQ ∼
S1
4

V
S1
4 ◦

4 : For H0 = ΓOQ we obtain Φ(H0) = K. For each

σ ∈ S4 we have

Kσ = ⟨(σ.1 σ.2), (σ.3 σ.4)⟩.

In particular, K ∩ Kσ ̸= 1 if and only if (σ.1 σ.2) ∈ {(1 2), (3 4)}. This
yields that

K ∩ Kσ ̸= 1 ⇐⇒ ⟨(1 2), (3 4)⟩σ = ⟨(1 2), (3 4)⟩ ⇐⇒ σ ∈ NS4
(K).

We conclude

αO,H0[
V

S1
4 ◦

4

]
G

(OQ) = |NS1
4
(ΓOQ).(OQ,ΓOQ)| =

|NS1
4
(ΓOQ)|

|ΓOQ|
= 2.

• H0 = V
S1
4 •

4 : In this case, we have NS1
4
(H0) = S1

4 and we obtain by
Lemma 2.6.37

αO,H0[
C

S1
4 •

2

]
G

(OQ) =
|ΓO|
|ΓOQ|

= 6.

• H0 ∼
S1
4

C
S1
4

4 : Because each two groups of type C4 are conjugate in S1
4

we can assume that H0 ≤ NS1
4
(ΓOQ) ∼= D8. For the reason that there is

only one group of type C4 in D8, we obtain Φ(H0) = ⟨(1 3 2 4)⟩. Hence,
π ∈ Φ(H0) ∩ Kσ implies sgn(π) = 1 and ord(π) ∈ {1, 2}. This yields
π ∈ {1, (1 2)(3 4)} and thus Φ(H0) ∩ Kσ ∈ {{1}, ⟨(1 2)(3 4)⟩}. Because
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Φ(H0) ∩K = ⟨(1 2)(3 4)⟩, we have Φ(H0) ∩ Kσ = ⟨(1 2)(3 4)⟩ if and only
if σ ∈ CS4

(
(1 2)(3 4)

)
= NS4

(K). This implies

αO,H0[
C

S1
4 •

2

]
G

(OQ) =
⏐⏐NS1

4
(ΓOQ).(a,Φ

−1
(
(1 2)(3 4)

)⏐⏐ = |NS4
(ΓOQ)|

|ΓOQ|
= 2.

• H0 ∼
S1
4

S
S1
4

3 : We see
|N

S1
4
(H0)||NS1

4
(ΓOQ)|

|ΓO| = 2. On the other hand, it holds

|NS1
4
(H0) ∩ NS1

4
(ΓOQ)| ∈ {1, 2} due to Lagrange’s theorem. Therefore

Lemma 2.6.37 forces

αO,H0[
C

S1
4 ◦

2

]
G

(OQ) =
|ΓO|
|ΓOQ|

= 6.

• H0 = NS1
4
(ΓOQ) ∼

S1
4

D
S1
4

8: The choice of Φ and the definition of H0 force

Φ(H0) = ⟨(1 3 2 4), (12)⟩. Because H0 contains all order 2 elements with
positive sign, we obtain

|H0 ∩ (ΓOQ)
g | ∈ {2, 4}.

Obviously ΓOQ ⊆ H0. For the reason both H0 and ΓOQ contain only
two elements with negative sign, we have Kσ ≤ Φ(H0) if and only if
(1 2)σ , (3 4)σ ∈ {(1 2), (3 4)}. This is the case if and only if

(
(1 2)(3 4)

)σ
=

(1 2)(3 4) or σ ∈ CS4

(
(1 2)(3 4)

)
= Φ(H0) respectively. In particular, we

obtain

αO,H0[
V

S1
4 ◦

4

]
G

(OQ) = |H0.(OQ,ΓOQ)| =
|H0|
|ΓOQ|

= 2.

This completes the proof of the example. The other cases can be verified
by similar arguments.

�



Nomenclature

∆(d) invertible upper triangular matrices mod d, page 17

Γ the group Sl3(Z), page 17

G(Y) complex of groups over the scwol Y, page 42

Z(G) the center of the group G, page 24

M◦(G(Y)) the set of vertices v whose vertex groups Gv are maximal finite and
satisfy NG(Gv) <∞, page 52

Sub◦fin(G) the set of subgroups of G with finite normalizers, page 25

X̃ ,RG(X ) the scwol obtained by reduction of X associated to an action Gy X ,
page 47

X scwol, page 40

XΓ a scwol with geometric realization X ′, page 84

Ξ,ΞH0
the map considered in Lemma 2.6.5, page 59

M(G) set of maximal finite subgroups in G, page 46

M◦(G) set of maximal finite subgroups H in G with NG(H) finite, page 46

Vk(X ) the set of k-dimensional vertices of X , page 41

Vmax(X ) maximal vertices with respect to the canonical order on X , page 41

X the set of positive definite quadratic forms over R3 of determinant 1,
page 17

X ′ simply connected cocompact simplical complex on which Γ acts on,
page 17

LGE(X ) the set of labeled arrows, page 85

LG Lkv(X ) the labeled link of a vertex v, page 86

LG V (X ) the set of labeled vertices, page 85
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