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Abstract

The measurement of the vibronic spectrum, from the ultra-violet/visible to the X-ray

range, provides a microscopic insight into the dynamical processes in molecular sys-

tems. However, the interpretation of the experimental data requires a suitable theoreti-

cal support. Since the direct ansatz, i.e. propagating a wave packet in the time domain,

becomes rapidly unfeasible for complex systems, it is often necessary to employ classical

or classical-like approximations. In the case of vibronic spectroscopy, such an attempt

is particularly challenging, as there is no direct classical analogue for the occurring time

evolution. A popular compromise is thus to neglect the nuclear dynamics and to ob-

tain the spectrum via single-point calculations in the static picture, thereby losing any

dynamical information.

The goal of this thesis is to bridge the gap between the two extrema via trajectory-

based approximations to the nuclear quantum dynamics. To this end, a generalized

time-correlation function is introduced, which contains many well-known correlation

functions as special cases and furthermore enables the construction of (in principle) in-

finitely many new ones.

Employing the generalized formalism as a starting point, the nuclear quantum dy-

namics is approximated in the framework of imaginary-time path integrals. The pre-

sented derivation is performed in the spirit of the standard ring-polymer molecular dy-

namics and, thus, the developed methodology recovers important quantum effects. It is

demonstrated for model systems, that this method can indeed lead to improved numer-

ical protocols if compared to well-established ones. Importantly, the commonly known

dynamical classical limit approach, which profits from a particularly low computational

effort, is identified as a special limiting case of the path-integral method. This ansatz is

applied to the (non-)linear X-ray spectrum of gas-phase and bulk water, where the com-

parison to the static approximation reveals the importance of taking time-correlated nu-

clear effects into account.

Alternatively to the dynamics of the ring polymer that suffers from artificial oscilla-

tions, the generalized time-correlation function is approximated via the Matsubara dy-

namics, which is extended to vibronic transitions. It turns out that, in contrast to the

aforementioned approximations, this method yields the exact absorption spectrum for

a harmonic oscillator system. Nevertheless, the Matsubara dynamics is not directly ap-

plicable to realistic systems, since the infamous sign problem inhibits a proper statis-

tical convergence. To circumvent this issue, an ad-hoc modification of the method is

suggested, yielding not only an adequate approximation to the vibronic spectra of con-

sidered model systems but also providing accurately the thermal Wigner function.
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Zusammenfassung

Die Messung des vibronischen Spektrums, vom ultravioletten/sichtbaren bis hin zum

Röntgenbereich, erlaubt einen mikroskopischen Einblick in die dynamischen Prozesse

von molekularen Systemen. Die Interpretation der gemessenen Daten erfordert jedoch

die Unterstützung durch eine geeignete Theorie. Da der direkte Ansatz über das Propa-

gieren eines Wellenpaketes in der Zeitdomäne sehr schnell unpraktikabel wird, ist es für

komplexe Systeme oft nötig, von klassischen oder ähnlichen Näherungen auszugehen.

Im Falle von vibronischen Spektren stellt sich dieses Vorhaben als besonders herausfor-

dernd dar, da es kein direktes klassiches Analogon für die hier auftretende Zeitentwick-

lung der Kerne gibt. Ein beliebter Ansatz ist daher, die Kerndynamik zu vernachlässigen

und das Spektrum aus Einzelpunktberechnungen im statischen Bild zu gewinnen, was

jedoch zum Verlust jeglicher dynamischer Information führt.

Diese Arbeit hat das Ziel eine Brücke zwischen den beiden Extremen zu schlagen

und bedient sich dafür des Formalismus’ der trajektorienbasierten Näherungen an die

Quantendynamik. Als Ausgangspunkt einer solchen Näherung wird eine verallgemei-

nerte Zeitkorrelationsfunktion eingeführt, die bereits bekannte Korrelationsfunktionen

als Spezialfälle enthält und darüber hinaus die Konstruktion von (prinzipiell) unendlich

vielen neuen ermöglicht.

In Anlehnung an die Ringpolymer-Molekulardynamik werden die Kerne zunächst

mithilfe von Imaginärzeit-Pfadintegralmethoden über quasi-klassische Bewegungsglei-

chungen propagiert, wodurch wichtige Quanteneffekte berücksichtigt werden können.

Es zeigt sich an Modellsystemen, dass diese Methode, im Vergleich zu bereits existieren-

den Ansätzen, tatsächlich zu verbesserten numerischen Protokollen führen kann. Als

besonderer Spezialfall des Pfadintegralansatzes ergibt sich die bestens bekannte Me-

thode des dynamisch-klassischen Grenzfalls, welche aufgrund des besonders geringen

numerischen Aufwands direkt für die Berechnung (nicht-)linearer Röntgenspektren von

gasförmigem und flüssigem Wasser eingesetzt wird. Der Vergleich mit den Ergebnissen

der rein statischen Näherung lässt erkennen, wie wichtig eine akkurate Einbeziehung

von zeitlich korrelierten Kerneffekten für die Interpretation des Spektrums ist.

Alternativ zur Dynamik eines Ringpolymers, welche durch künstliche Oszillationen

gestört ist, wird das vibronische Spektrum mithilfe der Matsubaradynamik ausgewer-

tet, die für diesen Zweck verallgemeinert wird. Es stellt sich heraus, dass dieser Ansatz

im Gegensatz zu den vorher erwähnten Näherungen das exakte Absorptionsspektrum

eines harmonischen Modellsystems wiedergibt. Nichtsdestoweniger ist diese Methode

nicht direkt auf realistische Systeme anwendbar, da sich durch das berüchtigte Vorzei-

chenproblem praktisch kaum statistische Konvergenz erreichen lässt. Abhilfe schafft ei-

ne zweckmäßige Modifikation, die nicht nur die Spektren adäquat wiedergibt, sondern

auch die thermische Wignerfunktion angemessen verfügbar macht.
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Table of abbreviations & Glossary

ACL averaged classical limit.

Semi-classical approximation to the standard correlation function. The occurring clas-

sical dynamics is with respect to the average of initial- and final-state potentials.

BOA Born-Oppenheimer approximation

CMD centroid molecular dynamics

DCL dynamical classical limit.

Classical approximation to the standard correlation function. The occurring classical

dynamics and statistics are exclusively determined by the initial-state potential.

DFT density functional theory

DOF degree of freedom

EOM equation of motion

IR infra-red

MD molecular dynamics

MO molecular orbital

NRPMD nonadiabatic ring-polymer molecular dynamics

PES potential energy surface

PI path integral

SCF shift correction factor.

Prefactor that relates the Fourier transform of the generalized time-correlation function

to the desired absorption spectrum. The abbreviation is not to be confused with the

common one for self-consistent field.

QM quantum mechanical

RIXS resonant inelastic X-ray scattering

RPMD ring-polymer molecular dynamics.

The common extension of imaginary-time path-integral techniques to real-time prob-

lems. The nuclear quantum dynamics is approximated via the motion of a classical

object consisting of beads connected by harmonic springs, i.e. the ring polymer.
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SACL Schofield averaged classical limit.

Semi-classical approximation to the Schofield correlation function, which is a real-valued

function of time. The occurring classical dynamics as well as the density correspond to

the average of initial- and final-state potentials.

SCL statical classical limit.

Static approximation to the dynamical classical limit. The spectrum is approximated

via a sampling of stick spectra evaluated at the relevant nuclear configurations.

TCF time-correlation function

TRPMD thermostatted ring-polymer molecular dynamics

XAS X-ray absorption spectrum

XFEL X-ray free-electron laser

VI



CONTENTS

Contents

1 Introduction 1

2 Developed methodology to approximate vibronic spectra 9

2.1 Background theory: (Non-)linear spectra in terms of time-correlation functions 9

2.2 Generalized time-correlation function . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Trajectory-based approximations to nuclear quantum dynamics . . . . . . . . . 12

2.3.1 Imaginary-time path-integral techniques . . . . . . . . . . . . . . . . . . . 13

2.3.2 Particular limiting cases: the dynamical and statical classical limits . . . 17

2.3.3 Matsubara dynamics and the modified Matsubara method . . . . . . . . 18

3 Numerical applications 23

3.1 Applying the dynamical classical limit to (non-)linear X-ray spectra of water . . 23

3.1.1 The X-ray absorption spectrum . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 The resonant inelastic X-ray scattering . . . . . . . . . . . . . . . . . . . . 24

3.2 Applying the generalized methodology to model systems . . . . . . . . . . . . . 26

3.2.1 Common weighting functions . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Performance of the Matsubara dynamics and the modified method . . . . . . . 30

3.3.1 Static properties of the methods . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 The vibronic absorption spectrum for an anharmonic system . . . . . . 31

4 Conclusions and outlook 35

5 Bibliography 39

A Own contributions to the manuscripts 51

B Peer reviewed publications 53

[SK1] published in the Journal of Physical Chemistry Letters 8, 992 (2017) . . . . . . . 53

[SK2] published in the Journal of Chemical Physics 146, 224203 (2017) . . . . . . . . . 77

[SK3] published in the Journal of Chemical Physics 148, 102337 (2018) . . . . . . . . . 109

C Additional manuscripts 129

[SK4] published in arXiv: 1805.06195 [physics.chem-ph] (2018) . . . . . . . . . . . . . 129

VII





1. Introduction

1 Introduction

Understanding the dynamics of complex many-body systems is one of the most demanding

challenges in theoretical chemistry and molecular physics. With the ongoing development

of powerful light sources and precise detection devices within the recent decades, experi-

mentalists achieved a spectacular progress in (non-)linear spectroscopic techniques for var-

ious frequency ranges.1–3 When complemented by proper theoretical models and methods,

the resulting vibrational, electronic and especially vibronic spectra, provide comprehensive

information about the interplay between electrons and nuclei forming the molecular sys-

tems of interest.4–7 This offers insights into the dynamical processes on an atomistic level

that is often not available by means of the experiment only. In turn, the theoretical models

can be tested for their applicability via comparing the results of computer simulations to the

experimentally obtained data. Thus, the investigation of (non-)linear spectra by experimen-

tal and theoretical means is a prominent approach to gain more understanding on relevant

chemical and physical mechanisms.

The success of (non-)linear X-ray spectroscopy. Since their discovery in 1895 by Rönt-

gen,8 X-rays (with energies from hundred to several thousand electron volts) allowed scien-

tists to examine the microscopic details of crystals9 but also of molecules in the gas phase10,11

and liquids.12–15 For the two latter cases, the success of the X-ray spectroscopy is mainly

due to three aspects, making it particularly interesting for the present purpose. First, it is

especially useful for obtaining highly local information on the system in question.16 Here,

the so-called core-excited states play the key role, since the corresponding core orbitals are

inherently localized on a particular atom. This is in contrast to the lower-energy ultravi-

olet/visible spectroscopy, where the interaction between light and matter usually involves

delocalized valence molecular orbitals (MOs). Second, due to the energetic separation of

the core levels of different elements, a specific kind of atoms can be investigated or iden-

tified by tuning the X-ray frequency properly. Third, combining the spatial resolution and

the elemental sensitivity with an ultrafast X-ray source enables following charge dynamics

and excitations in materials.6,17 Importantly, only the progress in developing proper light

sources within the recent years has made all of these points accessible.18,19 Especially the

disentanglement of electronic and nuclear contributions in the spectrum requires a high in-

strumental resolution as it will be discussed later.

Early X-ray sources, as used by Röntgen himself, employed the so-called Bremsstrahlung

(engl. deceleration radiation) of cathode rays hitting anode targets in vacuum tubes8 yield-

ing incoherent light of relatively low intensity. Unfortunately, the laser technique, developed

in the 1960s, has not been available for the X-ray range. The short lifetime of core holes and

the high cross section for X-ray absorption in matter complicate the generation of a stable

population inversion as it is necessary for the conventional laser technique.20 Consequently,
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1. Introduction

a monochromatic and coherent source of X-rays along with high field intensities and a high

instrumental resolution has been outside reach for a long period of time. Synchrotron ra-

diation, being also a kind of Bremsstrahlung in high-energy particle experiments and, thus,

originally considered as a loss, has been recognized as a powerful tool for performing experi-

ments in chemistry, biology and condensed matter physics.21 Exploiting complex relativistic

effects that emerge if electron bunches are aligned in a particle accelerator, enabled lately

the construction of the X-ray free-electron laser (XFEL),22 which yields a coherent electro-

magnetic field with a tunable frequency and pulses with an ultrashort duration. Without

actually utilizing an active medium, this facility transfers the benefits of conventional laser

techniques to the X-ray range. In parallel, high harmonic generation sources have been de-

veloped, yielding also proper X-ray pulses though at a considerably lower intensity than that

produced by XFELs. Owing to the increasing spectral resolution, the X-ray experiments can

now reveal fine spectral structures such as vibronic progressions. The creation of suitable X-

ray sources thus paved the way to examine microscopic interaction mechanisms in complex

molecular systems by means of linear and, especially, non-linear spectroscopies.18,19

If the applied electromagnetic fields are weak compared to those inside an atom or a

molecule, the response to the applied light is linear and reveals valuable information on

the core-excited states and their transition dipoles.1,2 The measurement of the linear X-ray

absorption spectrum (XAS) probes those electronic transitions, where a core electron is ex-

cited to the unoccupied MOs. Particular examples of linear X-ray spectroscopies are near-

edge X-ray absorption fine structure16 techniques that examine the low-energy region of the

spectrum, whereas the extended X-ray absorption fine structure23 refers to higher-energy

spectral features. At higher field intensities, a non-linear response emerges, carrying much

more information than the linear response.1,2 Different contributions to the non-linear sig-

nal can be addressed by various spectroscopic techniques. Specifically, resonant inelastic

X-ray scattering (RIXS) can be used to detect the emission signal resulting from the sponta-

neous refill of a core hole by electrons from occupied MOs, providing detailed information

on the electronic structure of samples being in different aggregation states.24,25

Along with the improvement of X-ray sources and detection devices, not only electronic

but also vibronic transitions can be resolved in today’s experiments.26,27 Although X-ray scat-

tering processes occur during few femtoseconds due to the rapid decay of the core-excited

states, fingerprints of ultrafast nuclear dynamics and coherences could be observed in spec-

tra. For instance, the inclusion of vibronic effects in RIXS spectra has been found essential

for the correct assignment of spectral features in simple model systems.28,29 Further, disso-

ciative dynamics on the short timescale of the RIXS process30–32 has also been found im-

portant. It is noteworthy that in Ref. 33, vibrationally resovled inelastic X-ray scattering has

been even considered as a complementary technique to the conventional infra-red (IR) and

vibrational Raman spectroscopies. Moreover, the RIXS spectra of liquid water and alcohols

initiated active debates in the last decade due to the splitting of the 1b1 band, which is not
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1. Introduction

observed in the photoelectron spectra.14,34–36 Remarkably, this peculiar effect received con-

troversial interpretation resulting in six hypotheses,15 with four of them involving different

aspects of nuclear dynamics, such as ultrafast dissociation and H-bond dynamics. At this

point it becomes evident, that a full understanding of such complicated effects requires a

robust and feasible theoretical treatment of nuclear vibrational effects in X-ray spectroscopy

and, thus, this thesis is dedicated to this topic. However, since the mathematical expressions

to describe the interaction between matter and light are independent on the spectral range,

the following discussion on theoretical approaches applies not only to X-ray but to vibronic

spectroscopy in general.

State-of-the-art approaches to theoretical vibronic spectroscopy. Nowadays, computer

simulations serve as a bridge between the experimental observations and the theoretical

models describing the underlying dynamics. Due to the rapid increase of the computational

capabilities in the last decades, one is able to investigate ever more complex systems by

means of simulations. However, to describe the interaction between the molecular system

and the applied light exactly, one would have to solve the full Schrödinger equation cou-

pled to the electromagnetic field equations. Due to the infamous curse of dimensionality of

quantum dynamics, such an approach is not feasible for realistic systems and it is thus nec-

essary to develop strategies and approximations that can circumvent this issue. From the

theoretical standpoint, there exist two limiting strategies to simulate vibronic spectra, that

is static and time-dependent approaches, offering very distinct possibilities with respect to

numerical approximations.

In the static picture, the exact description would require the solution of the time-inde-

pendent Schrödinger equation for the electronic degrees of freedom (DOFs) as well as for the

nuclear ones, where the latter approach is only feasible for rather small molecules,37 leav-

ing e.g. systems in the condensed phase outside reach. Thus, a very common approach is

to perform the so-called single-point calculations, see left panel of Fig. 1 for a sketch. After

separating the electronic and nuclear DOFs and sacrificing any vibronic coupling, i.e. em-

ploying the Born-Oppenheimer approximation (BOA), the electronic structure is obtained

for a single (typically equilibrium) nuclear configuration. The excited state properties such

as energies and transition dipoles are then represented in form of a stick spectrum, ap-

proximating the exact one. Although dubbed here as the simplest approach, it should be

stressed that already a single electronic-structure calculation can be an extremely demand-

ing task for many-body systems. Fortunately, the underlying solvers for the electronic time-

independent Schrödinger equation became increasingly accurate and performant with the

development of elaborate quantum-chemical methods in recent years.38,39 For ground state

properties, density functional theory (DFT) is a well-established approach,40 but there is

still no universal strategy for treating excited-state problems for large systems. Nevertheless,

several methods exist that are able to tackle this challenge. A simplistic quasi-one-electron

3



1. Introduction

approach readily employing the Kohn-Sham MOs obtained via ground-state DFT can still

yield surprisingly good results for excited state properties as has been demonstrated for vari-

ous kinds of systems.28,41–44 Approaches that are capable to treat the general case accurately

are based on e.g. variants of configuration interaction,45 the perturbation theory46 as well

as the coupled cluster47,48 technique. However, the numerical effort increases drastically if

compared to the aforementioned one-electron approximation. Alternatively, one can follow

the multi-configurational self-consistent field ansatz to treat complex systems, in particular

the restricted active space self-consistent field method49 together with a state-interaction

treatment of spin-orbit effects can provide accurate results if complemented sufficiently by

“chemical intuition”.50 Recently, also the algebraic diagrammatic construction51,52 and the

restricted open-shell configuration interaction singles53 methods have been implemented

in state-of-the-art quantum chemical program packages. Importantly, the consideration of

X-ray induced transitions particularly challenges these electronic structure methods, since

the whole plethora of states up to the highly excited core-ones has to be taken into account.

Hence, in order to simulate X-ray spectra, the chosen quantum chemistry method has to be

based on a very efficient algorithm that still yields proper results. Unfortunately, indepen-

dently on the level of the employed quantum chemistry, the single-point approach clearly

ignores any nuclear dynamics and statistics. Thus, spectral broadening and line shapes can

only be included on a phenomenological level.1

Leaving the realm of time-independent techniques, one can find the other common ap-

proach to vibronic spectra in the time domain. In contrast to single-point calculations,

the idea is to obtain a numerically exact solution for the problem by performing nuclear

wave packet dynamics on the electronic potential energy surfaces (PESs), as depicted in the

right panel of Fig. 1. This strategy has been proposed already in 1978 by Heller54 and has

been used extensively since then.37,55–57 The increasing success of this ansatz is again due

to the growth of computer capabilities but it also owes to the development of smart algo-

rithms. Especially the multi-configurational time-dependent Hartree method58 has proven

its applicability to systems with many nuclear DOFs in plenty of applications.59–62 However,

such a wave-packet propagation usually requires an expensive pre-computation of many-

dimensional PESs which can rapidly become a drawback for two reasons. First, the calcula-

tion of the PESs themselves requires an individual electronic structure calculation for each

relevant nuclear configuration. Their number grows exponentially with the dimensionality

of the problem and so does the computational effort; eventually the curse of dimensional-

ity strikes. Second, if the PESs cannot be easily parametrized into a functional form, as it is

generally the case for complex systems, the information for all the points has to be stored in

some way. For chemically relevant molecular systems, the required memory would quickly

exceed the available storage resources, being again a manifestation of the curse. In order to

avoid such a barrier, usually just a few nuclear DOFs are taken into account explicitly while

the rest is included via a system-bath partitioning.63,64 However, such a distinction has to
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1. Introduction

Figure 1: Overview of the methodologies that are considered to bridge the gap between the common
static and time-dependent approaches. The circles represent the nuclear configuration space and the
small black arrows indicate real-time evolution. The arrows in between the PESs correspond to the
electronic energy gap and the approximated spectra are symbolically plotted along the energy axes.

be done carefully and is often very problem-specific. To conclude, as a price for its accu-

racy, the wave-packet propagation is limited to rather small systems or requires a non-trivial

reduction of dimensionality.

Building a bridge between the common static and time-dependent approaches. Ideally,

there would be a method that combines the advantages of the two limiting strategies, i.e. the

single-point calculations and the time-dependent ansatz in a practical and efficient way. To

be precise, such an approach should treat the electronic problem via the well-established

quantum-chemistry tools accompanied by a feasible but accurate treatment of the nuclear

DOFs without facing the curse of dimensionality. Several attempts to bridge this gap have

been made as it will be discussed in the following.

If one starts from the single-point calculations, as the limiting static approach (left panel

in Fig. 1), a step towards treating nuclear vibration levels can be done by taking the cur-

vature of the PES into account. Subsequently, assuming shifted harmonic potentials for

the initial and final electronic states yields the Franck-Condon model for vibronic progres-

sions.2,38,57,65 Still, this approach is not applicable to systems with strongly anharmonic ex-

cited states or for cases where bond formation or cleavage, and/or pronounced conforma-

tional changes are significant. Alternatively, one can sample nuclear distributions e.g. via

classical molecular dynamics (MD) methods2,66 also referred to as the statical classical limit

(SCL), see Fig. 1. It leads to a more realistic description of conformational and environmental

effects67–69 than a single-point calculation, but still lacks information about time-correlated

nuclear motion and thus, for instance, is not capable of reproducing vibronic progressions

that can be crucial for the spectral line shape. To account for static quantum nuclear effects,

quasi-classical imaginary-time path integral (PI) MD simulations70–72 can serve as a basis

for the sampling procedure. Here, one exploits the isomorphism between the quantum me-
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1. Introduction

chanical (QM) partition function and a configuration integral for a purely classical object

consisting of beads connected by harmonic springs. How these PI methods can be employed

to treat real-time quantum effects is discussed below and in the following sections.

Switching to the time domain has the great advantage that the quantum expressions are

more similar to the classical ones, i.e. the Heisenberg time evolution has a direct correspon-

dence to Hamilton’s classical equations of motion (EOMs). Thus, it is more straightforward

to deduce reasonable classical-like approximations leading to nuclear dynamics in form of

trajectories. In contrast to the wave-packet approach, the PESs then can be calculated on

the fly. Hence, there is no need to store and to know the full surface and the curse of dimen-

sionality is not directly faced. Consequently, the time-dependent picture is the preferred

choice to approach the complex dynamics of molecular systems. During the last decades,

plenty of methods have been developed that can treat nuclear dynamics on multiple elec-

tronic PESs also beyond the BOA. For instance, there are surface hopping methods,73–75

mean-field (Ehrenfest) dynamics,76 multiple spawning techniques,77,78 nonadiabatic direct-

dynamics,79,80 classical and semiclassical mapping approaches,81–83 the exact factorization

perspective,84,85 and Bohmian dynamics86, see, e.g., Refs. 87–89 for review. However, the

majority of them are addressing the rates of non-adiabatic transitions, while mostly leaving

the problem of vibronic spectra aside.

Thus, the goal of this thesis is to bridge the aforementioned gap between the exact time-

dependent approach and the purely static one with the focus being on vibronic spectroscopy.

In order to turn to (non-)linear spectroscopic observables, the exact time-independent ex-

pressions can be rewritten in terms of time-correlation functions (TCFs) by employing the

Fourier transform. Since TCFs naturally take time-correlation effects into account1,2,90–92

and profit from the aforementioned benefits of a time-dependent ansatz, the TCF formu-

lation has served as the starting point here, see Sec. 2.1. In particular, in [SK1] and [SK2],

the so-called dynamical classical limit (DCL)1,2 has been applied to (non-)linear X-ray spec-

troscopy, where this approach is not commonly used, especially for the RIXS spectrum. Here,

after employing the interaction representation, the nuclear dynamics is approximated by

classical trajectories that are exclusively determined by the adiabatic ground-state PES as

it is depicted in Fig. 1. However, this contradicts to some extent the correct quantum pic-

ture, where the nuclear wave packet evolves explicitly on the excited PES. Therefore, it leads

to the loss of information about the excited-state dynamics and can cause wrong frequen-

cies and shapes of the vibronic progressions in certain physical situations.93,94 Moreover,

the nuclei are treated as point particles, sacrificing their quantum nature, in particular zero-

point energy and tunneling effects. This leads to wrong dynamics if light atoms, shallow PESs

and/or isotope substitutions are involved, as it has been shown on numerous examples start-

ing from small molecules in gas phase to biomolecules.95–98 Still, the DCL possesses various

profitable features when it comes to an efficient numerical protocol for treating complex

systems and it can be readily applied to non-linear TCFs, see Sec. 2.3.2. Importantly, it pro-
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1. Introduction

vides more information on the line shape than obtained by the static SCL approach to X-ray

spectroscopy, in particular to XAS and especially in the case of RIXS spectra as it has been

discussed in [SK1] and [SK2] and is summarized in this thesis, see Sec. 3.1. However, in order

to get closer to the correct quantum picture, a method that explicitly accounts for excited

states’ dynamics is needed.

In particular, one can derive a semiclassical approximation to the absorption cross-section

that leads to the dynamics that is performed on the arithmetic mean of the ground- and

excited-state PESs, hence referred to as the averaged classical limit (ACL) method, see Ref.

99 and Fig. 1. Following the same line of reasoning for the non-linear spectrum leads to the

known expression derived by Shi and Geva.100,101 Although the ACL approach is in quite

good agreement with the exact results for simple model systems,93,94,100,101 it produces arti-

ficial negativities in the spectrum and still yields purely classical dynamics that might be an

insufficient approximation to the quantum one.

As it has been already mentioned, imaginary-time PIs provide perhaps the most ele-

gant and robust solution for inclusion of static quantum effects by means of trajectory-

based approaches.66,70,102,103 The common extension of imaginary-time PI techniques to

real-time problems, the ring-polymer molecular dynamics (RPMD) method,104 yields quasi-

classical dynamics in an extended classical phase space and has enjoyed success in simulat-

ing chemical reaction rates and approximating IR spectra for the condensed phase, see e.g.

Refs. 105,106 for review. The beauty of this approach lies in the fact that it captures impor-

tant quantum effects while it can be treated efficiently via standard classical MD algorithms.

For the case of multiple electronic PESs, two similar extensions to standard RPMD, referred

to as nonadiabatic ring-polymer molecular dynamics (NRPMD) have been developed107,108

based on the mapping approach introduced by Stock and Thoss.87,109 This method allows

for nonadiabatic dynamics involving several electronic states and is thus a suitable method

for simulating vibronic spectra, given an efficient simulation protocol is provided.110 How-

ever, the convergence with respect to the number of mapping variables, representing the

electronic DOFs, could be an issue for larger systems and it is not yet fully understood what

will happen if this number approaches infinity. Several PI approaches for many PESs with-

out using mapping variables were attempted111–115 most of them addressing nonadiabatic

effects on static properties or reaction rates via surface hopping methods. Still, none of them

has been applied for simulating vibronic spectra.

In order to achieve the declared goal, a practical formalism for simulating optical absorp-

tion spectra in the adiabatic limit without employing mapping variables has been suggested

in [SK3] and is presented in Sec. 2.2. In contrast to the RPMD and NRPMD methods that are

based on the Kubo-transformed TCF, the presented formalism involves a generalized TCF,

having the Kubo TCF itself as well as several other common approximations to vibronic spec-

tra as limiting cases. This new flexible ansatz has been motivated by the observation that for

a practical evaluation of vibronic spectra, the Kubo TCF either becomes non-tractable by

7
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MD methods or has to be decomposed into the contributions that do not have the bene-

ficial properties of the original TCF, in particular they are no more real functions of time.

This poses the question whether the choice of the Kubo TCF as the starting point for sim-

ulating vibronic spectra is as unambiguous as it is in IR spectroscopy.92,104,116 As it will be

presented in Sec. 2.3.1, the imaginary-time shifted TCF, being the cornerstone of the gener-

alized formalism, can be approximated in the spirit of the standard RPMD method, thereby

accounting for nuclear quantum dynamics on multiple adiabatic PESs via quasi-classical

trajectories, see Fig. 1 for a sketch. Remarkably, also the DCL method follows from the gen-

eralized TCF and is thus presented in the following as a special case leading to a particularly

simple numerical protocol. Most importantly, the generalized formalism offers the possibil-

ity to construct in principle infinitely many new TCFs that might lead to superior numerical

protocols if compared to the well-established ones, see Sec. 3.2.

Although the quasi-classical dynamics suggested in [SK3] represents a step forward to the

nuclear quantum dynamics on multiple electronic PESs, it suffers from artificial harmonic

spring oscillations, similarly to the ground-state RPMD method.117 During the last years,

several perspectives have been suggested on how to deduce improved approximations to vi-

brational quantum nuclear dynamics employing the so-called Matsubara dynamics.118–120

This methodology is based on the fact that only smooth imaginary-time paths contribute

to canonical thermal averages, whereas jagged or discontinuous paths are sufficiently sup-

pressed by the Boltzmann operator. By assuming that the path remains smooth even if it

undergoes real-time dynamics, i.e. the Matsubara approximation, one can rigorously derive

classical-like EOMs that conserve the quantum Boltzmann distribution. Although the Mat-

subara dynamics ansatz yields a reasonable approximation to the Kubo TCF for smaller sys-

tems, it is not yet applicable to many-dimensional problems due to the infamous sign prob-

lem. Still, it has been shown that popular methods such as RPMD,104 thermostatted ring-

polymer molecular dynamics (TRPMD)121 as well as centroid molecular dynamics (CMD)122

can be viewed as feasible approximations to the Matsubara dynamics.118,119 Thus, it is nat-

ural to expect that other even more powerful approximations to nuclear quantum dynamics

can be derived on the basis of the Matsubara dynamics making this approach particularly

promising. However, so far this approach has not been employed for vibronic spectra.

In [SK4] and Sec. 2.3.3 it is presented how the imaginary-time shifted TCF and, thus, spec-

troscopic observables can be approximated via the Matsubara dynamics, thereby generaliz-

ing the existing methodology to the multi-PES regime (as sketched in Fig. 1). As opposed

to all aforementioned classical-like approximations, this method restores the exact quan-

tum TCF for a system consisting of two displaced harmonic oscillators. Moreover, a modi-

fied Matsubara method is deduced as an ad-hoc ansatz to simulate the standard correlation

function without suffering from the sign problem. Importantly, this method samples directly

the thermal Wigner function of the harmonic oscillator and is capable to approximate the vi-

bronic absorption spectrum of an anharmonic system accurately, see Sec. 3.3.

8



2. Developed methodology to approximate vibronic spectra

2 Developed methodology to approximate vibronic spectra

The theoretical and methodological achievements derived in detail in [SK1], [SK2], [SK3] and

[SK4] are presented in a compact way in this section. As it has been stated in the Introduc-

tion, the presented formalism should serve as a bridge between a full quantum treatment in

time domain and a purely static approximation via single-point calculations.

2.1 Background theory: (Non-)linear spectra in terms of time-correlation

functions

In this section, the absorption amplitude, being the key quantity of linear spectroscopy, is

reformulated in terms of a quantum TCF. A more detailed derivation can be found in [SK2]

and an alternative route involving response functions is presented in [SK1]. The derivation

of the non-linear TCF from the two-dimensional amplitude is presented here only in brief

with all the details written out in the given references and the associated Supplements. It

should be stressed that although the formalism presented therein is dedicated to describe

X-ray spectra, it is applicable to vibronic spectroscopy in general and, thus, the presentation

here is not bound to a certain spectral range.

Figure 2: Schematic sketch of XAS (left) and RIXS (right)
processes, see text.

If the intensity of the light is suffi-

ciently low and the considered wave-

length is much larger than the di-

mensions of the system, one can em-

ploy first-order perturbation theory in

combination with the dipole approxi-

mation yielding Fermi’s Golden rule.2

The resulting expression describes the

system being excited from an initial

molecular eigenstate |γ〉 with the en-

ergy εγ to a final state |φ〉 with energy

εφ by interacting with a single photon having an angular frequencyΩ and a polarization vec-

tor e, see left panel in Fig. 2. According to that, the absorption spectrum is proportional to

the absorption amplitude that can be written down as

S0(Ω) =X
γ,φ

e−βεγ

Z

¯̄〈φ|d̂ |γ〉¯̄2δ¡Ω− (εφ−εγ)/ħ¢ , (1)

where β := 1/(kBT ) is the inverse temperature, kB is the Boltzmann constant, Z :=P
γexp

£−βεγ¤ is the canonical partition function, and d̂ is dipole operator projected on the

polarization vector. The Dirac δ-function ensures the energy conservation during the pro-

cess.

9



2. Developed methodology to approximate vibronic spectra

In order to formulate the time-domain version of Eq. (1), the δ-function is represented as

the time integral54

δ(Ω) = 1

2π

∞Z
−∞

dt e−iΩt . (2)

Using the fact that |γ〉 and |φ〉 are molecular eigenstates, one can replace the corresponding

energies by the molecular Hamiltonian Ĥ , evoking the Boltzmann operator and a Heisen-

berg time evolution of the dipole operator. The resulting expression takes the desired form

of a Fourier transformed quantum TCF

S0(Ω) =
∞Z

−∞
dt e−iΩtC0(t ) , C0(t ) = 1

Z
tr
h

e−βĤ d̂(0)d̂(t )
i

, (3)

where tr[•] represents a trace in the molecular Hilbert space.

The description of the two-dimensional non-linear spectrum requires including higher

terms in the perturbation theory.1 The contribution that corresponds to the spontaneous

emission of light after the excitation is described by the Kramers-Heisenberg expression123

R(Ω,ω) =X
γ,φ

e−βεγ

Z

¯̄̄̄
¯Xι 〈φ|d̂ |ι〉〈ι|d̂ |γ〉

Ω− (ει−εγ)/ħ+ iΓι

¯̄̄̄
¯
2

δ
¡
Ω−ω− (εφ−εγ)/ħ¢ , (4)

which is referred to as the RIXS amplitude if X-ray spectroscopy is concerned. Here, the

system is first excited from the initial state |γ〉 to an intermediate state |ι〉 by absorbing light

with a frequencyΩ and a polarization vector components e, see right panel in Fig. 2. Second,

the system transits from the state |ι〉 to the final state |φ〉 by emitting light with the frequency

ω and the polarization vector u. The dephasing rate Γι is responsible for a finite lifetime of

the state |ι〉, which enables non-radiative relaxation mechanisms, such as the Auger one,124

by assuming a simple mono-exponential decay. Following the same steps towards the linear

TCF presented above, the integral representation of a δ-function, Eq. (2), is employed and on

top the denominator in Eq. (4) is rewritten as1

1

ω± iΓα
=∓i

∞Z
0

dt e±iωt e−Γαt . (5)

Finally, the non-linear spectrum can be written as a Fourier transform of a multi-time corre-

lation function

R(Ω,ω) =
1

2πZ

∞Z
−∞

dt e−i(Ω−ω)t

∞Z
0

dτ1 eiωτ1

∞Z
0

dτ2 e−iωτ2 tr
h

e−βĤ d̂(0)∆̂(τ2)d̂(τ2)d̂(t +τ1)∆̂(τ1)d̂(t )
i

, (6)
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where ∆̂(t ) :=Pαexp[−Γαt ]|α〉〈α| stems from the mono-exponential decay.

Equations (3) and (6) constitute time-domain formulations of the linear and non-linear

spectral amplitudes. As it has been described in the Introduction, these can serve as start-

ing points to approximate the nuclear quantum dynamics via classical-like trajectory-based

techniques.

2.2 Generalized time-correlation function

Before focusing directly on approximating the nuclear quantum dynamics, see Sec. 2.3, the

previously developed linear time-domain expression is employed to formulate a generalized

TCF as described in detail in [SK3]. As it turns out, employing this new general TCF, instead

of directly approximating C0(t ) in Eq. (3), can yield an improved numerical protocol. More-

over, due to its intrinsic flexibility, the developed formalism includes many well-established

and popular variants of quantum correlation functions as limiting cases. The non-linear

counterpart of such a generalized TCF will be the subject of future research, see Sec. 4 and is

thus not derived here. Still, the multi-dimensional spectrum and the corresponding TCF are

considered theoretically as a particular case, see Sec. 2.3.2, and its application to the X-ray

spectrum of water is extensively discussed in the results part, Sec. 3.1.

It is well known that in the case of purely vibrational transitions, as considered e.g. in IR

spectroscopy, many quantum TCFs can be defined, all carrying the same information.92,116

However, with respect to a (quasi-)classical approximation, the choice of a particular TCF

can yield improved results if compared to others. Justified by symmetry properties and an

isomorphism between the classical and the QM linear response function, the Kubo-trans-

formed TCF, CK(t ) = β−1
R β

0 dλC0(t + iλħ),125 is the preferred choice. Nevertheless, in [SK3]

it has been shown that for a practical consideration of vibronic transitions the choice of the

Kubo transformed TCF might not be unambiguous. Thus a more flexible ansatz for finding

a suitable correlation function has been suggested. At its heart is the integrand of the Kubo-

transformed TCF, i.e. the imaginary-time shifted TCF

Cλ(t ) :=C0(t + iλħ) = 1

Z
tr
h

e−(β−λ)Ĥ d̂(0)e−λĤ d̂(t )
i

, (7)

with the shift λ being a real number between 0 and β, where the quantity ħβ is usually re-

ferred to as the imaginary time. The relation between the Fourier transforms of Cλ(t ) and

C0(t ) reads

Sλ(Ω) = e−λΩħS0(Ω) , (8)

see [SK3]. Integrating both sides of this equation over λ immediately reproduces the relation

between the absorption spectrum and the well-known Kubo-transformed TCF. In contrast,
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2. Developed methodology to approximate vibronic spectra

Figure 3: Sketch of the developed formalism with particular choices of the weighting function w(λ),
leading to the well-established TCFs. The two choices on the right correspond to the real and imag-
inary part of the complex C0(t ), respectively. The legend on the right hand side deciphers the em-
ployed convention. The dashed lines below the first three TCFs imply that further approximations to
them will be discussed in the following, see Sec. 2.3, in particular Fig. 4.

employing an arbitrary weighting function w(λ) for this integration, such that

1

β

βZ
0

dλw(λ)Sλ(Ω)

| {z }
=:S̄w (Ω)

= 1

β

βZ
0

dλw(λ)e−λΩħ

| {z }
=:pw (Ω)

S0(Ω) ⇐⇒ S0(Ω) = p−1
w (Ω)S̄w (Ω) (9)

enables the construction of in principle infinitely many different TCFs that could be more

suitable for (quasi-)classical approximations to vibronic spectra. To reiterate, the idea is to

find a reasonable approximation to each Cλ(t ) in combination with a proper choice of w(λ)

to construct the generalized TCF

C̄w (t ) := 1

β

βZ
0

dλw(λ)Cλ(t ) , (10)

which is a time-domain version of S̄w (Ω), rather than to approximate the desired lineshape

function, S0(Ω), directly. The prefactor p−1
w (Ω) in Eq. (9) compensates the performed shift in

the imaginary time and is thus referred to as the shift correction factor (SCF).

Naturally, setting w(λ) = 1 and w(λ) = δ(λ) restore the Kubo-transformed TCF and the

dipole autocorrelation function itself, respectively. Setting w(λ) differently leads to other

TCFs as it will be discussed in Sec. 3.2 and is sketched in Fig. 3. In order to profit from this

flexibility, the TCF that is optimal for the vibronic transition under study has to be deter-

mined by numerical or ideally by profound physical considerations.

2.3 Trajectory-based approximations to nuclear quantum dynamics

As it has been already stated in the Introduction, the great benefit of the time-domain formu-

lation, i.e. a reformulation via TCFs, is the possibility to deduce classical-like approximations

to the quantum dynamics, since the Heisenberg time evolution has a direct correspondence
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2. Developed methodology to approximate vibronic spectra

in classical mechanics. In order to separate electronic and nuclear DOFs, the BOA is as-

sumed in the following. The electronic part of the trace in Eq. (7) can then be evaluated in

the adiabatic electronic basis |a〉 yielding

Cλ(t ) = 1

Z

X
a,b

Tr
h

e−(β−λ)Ĥa D̂a
b e−λĤb eiĤb t/ħD̂b

ae−iĤa t/ħ
i

, (11)

where Tr[•] stands for a trace in the nuclear Hilbert space only, Ĥa corresponds to the nuclear

Hamiltonian with the potential V̂a of the a-th electronic eigenstate and D̂a
b := 〈a|d̂ |b〉 is the

transition dipole moment. The drawback of this separation becomes immediately apparent

if one considers the case a 6= b, i.e. a truly vibronic transition. The resulting time evolution in

Eq. (11) is then no longer of Heisenberg form and, thus, there is no direct classical analogue

which could serve as a base for any classical approximation. Still, as it will be presented in

the following, taking this expression as a starting point leads to several approximations to

the adiabatic nuclear quantum dynamics via trajectory methods.

2.3.1 Imaginary-time path-integral techniques

The first approach, developed in detail in [SK3], is formulated in the spirit of RPMD,104 which

is proven to capture important aspects of the quantum dynamics in the case of pure nuclear

transitions, e.g. in IR spectroscopy.95 However, the protocol presented here differs drasti-

cally from RPMD due to the presence of multiple electronic states. Still, by setting Ĥb = Ĥa

and restricting to the Kubo transformed TCF, the standard RPMD expressions are recovered

and, thus, the protocol derived here can be viewed as a generalization of the well-established

single-PES method. The concrete relation to the so-called NRPMD107,110 that employs map-

ping variables109 to describe nuclear quantum dynamical processes on multiple PESs is not

yet fully understood. Nevertheless, it is conjectured that the method suggested here corre-

sponds to an adiabatic version of NRPMD in the limit of infinitely many mapping variables if

w(λ) = 1, i.e. the Kubo TCF, is considered, see Fig. 4 for an illustration of the relation between

the methods.

In the canonical fashion of imaginary-time PI techniques, the correlation function in

question, here Cλ(t ), Eq. (11), is first considered at t = 0 only. Note that for the sake of

brevity a single transition from an initial adiabatic electronic state g to a final one f of a

two-level system is considered in the following. The generalization to the case of many

states is straightforward. First, the nuclear trace is evaluated in the eigenstate basis of the

position operator and the imaginary time is equidistantly discretized into P slices, such that

λ ≡ lβ/P with l = 0,1, . . . ,P . Consequently, the two left exponentials in Eq. (11) can be fac-

torized into P − l and l parts, respectively. In between these factors, one inserts unities as

integrals over the so-called bead coordinates R i , collectively represented by the configura-

tion R = (R0, . . .RP−1)T, referred to as the ring polymer. Employing the symmetric Trotter
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Figure 4: Continuation of Fig. 3. It is shown which methods result from the approximation in Eq. (18)
for particular choices of w(λ). The legend on the right hand side deciphers the employed convention.
The methods that are indicated by color are compared against each other in Sec. 3.2.

factorization, which becomes exact in the limit P →∞, the QM trace turns out to be isomor-

phic to the classical configuration-space integral

Cλ≡lβ/P (0) = lim
P→∞

NP

Z

Z
dRe−βUl (R)Dg

f (R l )D f
g (R0) , (12)

where NP is a known normalization constant and it is noted that l and λ are used synony-

mously throughout the thesis. The effective ring-polymer potential

Ul (R) := K (R)+ 1

P

"
lX

k=0
ηkV f (Rk )+

PX
k=l

ηkVg (Rk )

#
(13)

contains the kinetic spring term K (R) which connects neighboring beads via harmonic springs

as in standard RPMD. Note that it has the same form for all electronic states considered,

since its origin lies in the kinetic energy operator. In contrast, the potential part of Ul (R)

consists of different contributions from different electronic states, where ηk is equal to 1/2 if

k corresponds to the first or the last summand, to 0 if there is only one summand, which is

the case if l = 0,P , and to 1 in all other cases. Importantly, each value of l defines a particular

PES and thus a particular realization of the ring polymer, undergoing different statistics and

dynamics as will become clear later. An example of such a realization is illustrated in Fig. 5.

One sees that there are two sets of beads, which “feel” either the upper or the lower PES,

indicated by the blue and the red color, respectively. Additionally, the 0-th and the l -th beads

are influenced by the averaged potential, symbolized by both colors at a time. The presence

of the two distinguishable sets of beads breaks the cyclic symmetry of the ring polymer which

is in stark contrast to the standard RPMD. Following the steps in [SK3], one obtains the
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desired (and still exact) relation for C̄w (0) as

C̄w (0) = lim
P→∞

1

P

PX
l=0

ηl w(λ)ξλ
D

Dg
f (R l )D f

g (R0)
E
λ

, (14)

where the imaginary-time integration in Eq. (10) is discretized via the trapezoidal rule and

〈•〉λ stands for an average with respect to the Boltzmann density of the l -th realization. The

factors

ξλ :=
exp

h
−R λ0 ­V̂ f − V̂g

®
µ

dµ
i

1+exp
h
−R β0 ­V̂ f − V̂g

®
µ

dµ
i (15)

weight each summand in Eq. (14) individually. Since they are exclusively determined by the

quantum Boltzmann statistics, they are dubbed as intrinsic weights, which is in opposition

to the arbitrary factors w(λ) that can be viewed as external weights. Importantly, due to the

particular form of Eq. (15), the intrinsic weights can be calculated conveniently and numer-

ically exactly via an imaginary-time PI sampling.

Figure 5: Sketch of the effective ring-
polymer potential, Eq. (13) for the case P =
9 and l = 4, where the 0-th and the l-th
bead are marked. The PESs Vg and V f are
shown in red and blue, respectively. The
color of the beads that ”feel“ one of the
PESs is chosen accordingly.

Having the t = 0 expression at hand, the prob-

lem remains how to approximate the nuclear quan-

tum dynamics, in particular, how to estimate the

non-classical time evolution in Eq. (11), which is in-

herent to vibronic transitions. In [SK3], the follow-

ing ansatz has been proposed. First, an effective

Hamiltonian Ĥλ is defined such that it corresponds

to the effective potential Ul (R), Eq. (13), for each

point in the imaginary time λ= lβ/P . Second, em-

ploying the interaction representation,1,2 the prop-

agator belonging to the a-th state with a = g , f is

rewritten as

e−iĤa t/ħ = e−iĤλt/ħ exp+

½
− i

ħ
Z t

0
[Ĥa(τ)− Ĥλ]dτ

¾
,

(16)

where the time argument represents a time evolu-

tion with respect to Ĥλ and exp+ is the time-ordered exponential. The important outcome

of this reformulation is that all operators appearing in Eq. (11) undergo a Heisenberg-type

time evolution. This permits to approximate the dynamics generated by Ĥλ via the quasi-

classical dynamics of the ring polymer with respect to the classical Hamilton function

Hλ(R,P) = 1

2P
PTM−1P+Ul (R) . (17)
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The operators are then replaced by their classical counterparts and, thus, the time ordering

becomes irrelevant. The momenta of the ring polymer P are introduced as conjugate vari-

ables to the coordinates R in the usual RPMD fashion and M is the diagonal nuclear mass

matrix. Finally, the desired generalized TCF is approximated as

C̄w (t ) ≈ lim
P→∞

1

P

PX
l=0

ηl w(λ)ξλ
D

Dg
f (R l )D f

g (R0(t ))ei/ħR t
0 [V f (R0(τ))−Vg (R0(τ))]dτ

E
λ

, (18)

which is main theoretical result of this section.

In order to evaluate the TCF, the following simulation protocol can be applied, where

the practical value of P is a convergence parameter. First, for each value of l = 0,1, . . . ,P the

coordinates and momenta of the ring polymer are sampled from the corresponding density

determined by Hλ, Eq. (17), e.g. by using the Langevin thermostat.126 The electronic energy

gap, V f −Vg , is evaluated on the fly such that the intrinsic weights, ξλ, can be calculated ac-

cording to Eq. (15). Second, the Hamilton EOMs are solved with respect to Hλ for each sum-

mand in Eq. (18) which requires in general ab-initio MD simulations66 accompanied with a

proper electronic-structure method, see Sec. 1. Importantly, since the order and the phase

of the adiabatic electronic states are ambiguous in quantum-chemical calculations, it be-

comes obligatory to trace the states. For instance, the number of states that are relevant for

X-ray spectra of realistic molecular systems can become readily larger than several hundreds.

Thus, the tracing procedure has to be realized in a fully automated manner, as carried out in

[SK1] and [SK2]. Third, the electronic gap as well as transition dipole moments are evaluated

along the resulting trajectories and plugged into the generalized TCF, Eq. (18). Finally, the

contributions from all values of l are summed over by employing a proper weighting func-

tion, yielding e.g. the standard TCF, the Kubo transformed or the Schofield function,127 see

Fig. 4. Note that since the density and the dynamics are generated by the same Hamiltonian,

this protocol leaves the density stationary at all times and excludes problems such as the in-

famous zero-point energy leakage.128 Additionally, this stationarity enables averaging along

trajectories, on top of the averaging with respect to the initial conditions thereby greatly im-

proving the statistical convergence. The generalization to a larger number of states amounts

to considering each transition separately according to Eq. (18) and summing the results over.

To summarize, a quasi-classical approximation to the generalized TCF has been pro-

posed employing imaginary-time PI techniques. In contrast to the standard RPMD, the

generalized TCF is built from multiple realizations of the ring polymer, each experiencing

an individual effective potential, Eq. (13), featuring different fractions of the initial- and the

final-state PESs. In the next section it will be shown that restricting to the particular realiza-

tion with λ= 0 yields the well-known DCL expression for a single bead, i.e. a classical point

particle.
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2.3.2 Particular limiting cases: the dynamical and statical classical limits

As it has been stated in Sec. 2.2, setting w(λ) = δ(λ) for the generalized TCF restores the

correlation function C0(t ) itself. Although a (quasi-)classical approximation to the original

correlation function might not lead to optimal results, this choice still possesses various ben-

eficial features as it will be discussed in the following.

Applying the approximation scheme derived in the previous section with w(λ) = δ(λ)

results in a realization, where the ring polymer is exclusively influenced by the initial-state

potential Vg , see Eq. (13) with l = 0. The resulting TCF is determined by ground-state tra-

jectories starting from the corresponding Boltzmann distribution independently on the ex-

cited state, see Eq. (18) with the imposed settings. The important consequence is that, al-

though hidden by the compact notation, the very same trajectories can be used to evalu-

ate the TCFs for all transitions that contribute to the full spectrum, making this approach

particularly attractive for treating complex systems. The last statement can be additionally

supported, since a parametrized ground-state potential in the form of a force field exists for

many systems such that the trajectories can be conveniently obtained via molecular me-

chanics simulations. Further, sacrificing the nuclear quantum effects by setting P = 1 con-

verts the generalized TCF with the imposed weighting function into the commonly known

DCL1,2,93,94 (and, thus, the case P > 1 is referred to as PI-DCL), see Fig. 4. This purely clas-

sical approach also yields a feasible protocol to treat the non-linear spectrum as it has been

demonstrated for RIXS in [SK1] and [SK2] with the results being summarized in Sec. 3.1. It

should be stressed that especially the computational effort for multi-dimensional spectra is

enormously reduced by using a common set of ground-state trajectories for all transitions,

since their possible number grows exponentially with the order of the spectrum.

Unfortunately, the advantage of the DCL, i.e. an exclusive use of ground-state dynamics,

is at the same time its drawback. In this case, the system’s time evolution is not affected

by the excited-state PESs. This contradicts the correct quantum picture, where the nuclear

wave packet evolves explicitly on these PESs.2,54 Thus, it can be already foreseen that such

an approximation might yield incorrect dynamical information and the contributions from

realizations with λ> 0 are required, see Sec. 3.2 and Sec. 3.3.

The SCL follows from the DCL by removing the nuclear dynamics as such, as it has been

mentioned in the Introduction and is sketched in Fig. 4. The static spectrum follows from

a sampling of the relevant nuclear configuration space, thereby accounting for conforma-

tional and environmental effects67–69 that form the spectral line shape. However, it lacks

information about time-correlated nuclear motion and, thus, it is not capable to reproduce

e.g. vibronic progressions. Still, the comparison between the results obtained from the DCL

and the SCL can be employed to identify and analyze vibronic transitions that are sensitive

to time-correlated nuclear effects, as carried out in [SK1], [SK2] and Sec. 3.1. Contracting

the sampling to a particular (typically the equilibrium) nuclear configuration, finally yields
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the single-point calculation protocol that, despite being most simplistic, is also a popular

method to describe spectra, where electronic transitions are involved,38 see Introduction.

Another more accurate trajectory-based approach via the so-called Matsubara dynamics is

presented in the following section.

2.3.3 Matsubara dynamics and the modified Matsubara method

In this section it is demonstrated how the imaginary-time shifted TCF and, thus, the vibronic

spectrum can be approximated in terms of the Matsubara dynamics, see [SK4] for details. As

opposed to the approximations described in Sec. 2.3.1 and Sec. 2.3.2, this approach recovers

the exact TCF, Cλ(t ), for two shifted harmonic oscillators in the Condon approximation.

Figure 6: Visualization of the structure of the cor-
relation function in Eqs. (19). The jagged lines and
straight arrows represent imaginary- and real-time
propagations with length β/P and t , respectively.
The red and the blue color indicates the inter-
action with respect to initial and final electronic
states, correspondingly.

The starting point of the derivation is the

exact imaginary-time shifted TCF, Eq. (11),

considered at an arbitrary time instance t ,

which is in contrast to Sec. 2.3.1, where t = 0

has been imposed. For the sake of brevity,

we restrict ourselves to a one-dimensional

system, described by x̂ and p̂, and two dis-

crete electronic states g and f ; the gener-

alization to a more-dimensional multi-level

system is straightforward. Similarly to com-

mon PI techniques, described in Sec. 2.3.1,

the nuclear trace is evaluated in the eigen-

state basis of x̂ and the imaginary time is

discretized. Subsequently, in between the

Boltzmann factors, exp[−βĤa/P ] with a =
g , f , one inserts unities that correspond to pairs of variables x±

i , that are transformed to mid-

point and difference variables, i.e. xi and∆i , respectively, see Fig. 6 for a sketch. Note that the

xi play a similar role as the bead positions depicted in Fig. 5 in Sec. 2.3.1. Importantly, apart

from the case i = 0, each unity 1̂ = exp[iĤ i t ]exp[−iĤ i t ] is realized as a Heisenberg time

evolution with respect to an arbitrary Hamiltonian Ĥ i = p̂2/2m + V̂i (x̂), see Fig. 6, where m

is the nuclear mass and particular choices for the potentials V̂i will be discussed later. Finally,

the TCF can be written in the form of a classical-like phase-space integral over the positions

x = (x0, . . . , xP−1) and momenta p = (p0, . . . , pP−1)

Cλ(t ) =
Z

dx
Z

dp Al (x , p)Bl (x , p , t ) , (19)

where the momentum variables have been introduced via Fourier transforms with respect

to the difference variables and the factors Al (x , p) and Bl (x , p , t ) will be considered in the

following.
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2. Developed methodology to approximate vibronic spectra

The time-independent part, Al (x , p) in Eq. (19), that contains matrix elements of the

Boltzmann operator, is further evaluated by employing the symmetric Trotter factorization.

Alternatively to Ref. 118, the Matsubara dynamics is derived in this thesis via a local har-

monic approximation to the physical potential, i.e.

Va(x±
i ) ≈Va(xi )± ∂Va

∂xi

∆i

2
+ 1

2

∂2Va

∂x2
i

µ
∆i

2

¶2

, (20)

and a local linear approximation to the transition dipole. This ultimately enables analytical

integration over the difference variables and, hence, only the classical-like position and mo-

mentum variables, x and p , respectively, remain relevant. The next important step towards

the Matsubara dynamics is to employ the normal mode coordinates of the free-particle ring

polymer,103,117 Q := Tx/
p

P and Π := Tp/
p

P , where the orthogonal transformation matrix

T represents the discrete Fourier transform with respect to the imaginary time.118 In order

to avoid problems with terms that diverge as P increases, one restricts the normal modes to

the M lowest, so-called Matsubara modes, where M ¿ P , see Fig. 7 for a sketch. Practically

it implies that only smooth imaginary-time paths significantly contribute to the TCF for all

times t and that integrals corresponding to the non-Matsubara modes in Eq. (19) can be per-

formed analytically. Finally, one can write down the time-independent part in the Matsubara

approximation as

Ãl (Q ,Π) ≈ M̄ !2

2πħM Z
Dg

f (xl (Q))e−β
£
H̃l (Q ,Π)+iΠTWQ

¤
, (21)

where the anti-symmetric anti-diagonal matrix W contains the well-known Matsubara fre-

quencies ωr = 2πr /βħ and M̄ := (M − 1)/2. For the sake of brevity, Q and Π represent the

Matsubara modes only and Ãl (Q ,Π) := P P Al (x(Q), p(Π)) with P P stemming from the sub-

stitution of the Cartesian volume element by the normal-mode one. The classical Hamil-

ton function in Eq. (21), H̃l (Q ,Π) := ΠTΠ/2m +Ũl (Q), is determined by the effective ring-

polymer potential for multiple PESs, Eq. (13), without the spring term.

The time-dependent part, Bl (x , p , t ) in Eq. (19), is built up from the matrix elements

of the real-time propagators that contain Ĥ i . Employing properties of the Wigner trans-

form,99,129,130 one can show that for P →∞ the time evolution of B̃l (Q ,Π, t ) = Bl (x(Q), p(Π), t )

is exactly given by the classical-like Liouvillian

lim
P→∞

ˆ̃Ll (Q ,Π) = 1

m
ΠT∇Q − [∇T

QŨl (Q)]∇Π+ i

ħ [V f (x0(Q))−Vg (x0(Q))] , (22)

where Ul (x) := [V f (x0)+Vg (x0)]/2P +PP−1
i=1 Vi (xi )/P contains the yet unspecified potentials

Vi that stem from the Ĥ i . Importantly, neither an additional approximation nor any ħ→ 0

limit has been applied but crucial has been the application of the Matsubara approximation

which has removed the problematic divergent terms.
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2. Developed methodology to approximate vibronic spectra

Putting together both parts, Al (x , p) and Bl (x , p , t ), yields the Matsubara approximation

to the imaginary-time shifted correlation function

Cλ(t ) ≈ M̄ !2

2πħM Z

Z
dQ
Z

dΠe−β
£
H̃l (Q ,Π)+iΠTWQ

¤

×Dg
f (xl (0))D f

g (x0(t ))exp

½
i

ħ
Z t

0
[V f (x0(τ))−Vg (x0(τ))]dτ

¾
, (23)

where the time evolution obeys the classical-like EOMs

Q̇ = Π
m

, Π̇=−∇QŨl (Q) . (24)

These last two equations represent one of the main theoretical results in [SK4]. Importantly,

the developed protocol is a generalization of the existing Matsubara dynamics method to

multi-PES spectroscopy, since the single-PES case can be addressed by considering the Kubo

transformed TCF and additionally imposing that the adiabatic electronic states coincide, see

Fig. 8. However, two concerns are yet unresolved.

Figure 7: A sketch illustrating how the Matsubara approxi-
mation affects an imaginary-time path. An arbitrary jagged
imaginary-time path (upper left) is transformed to the normal
modes’ coordinates via the matrix T (upper right). After re-
stricting to the M lowest modes (bottom right), i.e. the Mat-
subara approximation, one obtains a smooth path via the back
transform (bottom left). Note that the normal mode index r
runs over −P̄ , . . . , P̄ , where, similarly to M̄ , P̄ := (P −1)/2.

First, one has to find a rea-

sonable choice for the poten-

tials Vi , which has been put

forward in [SK4] with the fol-

lowing two suggestions as the

outcome. The so-called equi-

librium method is designed to

keep the density as stationary as

possible to avoid problems like

zero-point energy leakage and

artificial negativities in the spec-

trum, see [SK3]. Unfortunately,

the stationarity cannot be com-

pletely achieved and, moreover,

this choice seems to be incom-

patible with the Matsubara ap-

proximation, which implies taking only smooth imaginary-time paths into account. The

latter deficiency can be circumvented by the alternative average method, where all beads

are propagated with respect to the average of the initial- and final-state Hamiltonians. The

resulting EOMs conserve the cyclic symmetry of imaginary-time path, leading to dynamics

that are compatible with the Matsubara approximation at the price of non-stationarity. In

this thesis only two choices for the potentials are suggested, nonetheless, the presented for-

malism offers in principle infinitely many possible approaches to vibronic spectroscopy that

might or might not lead to efficient simulation protocols.
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2. Developed methodology to approximate vibronic spectra

Figure 8: Overview of the methods that result from the
approximation in Eq. (23) for different values of λ and P .
The legend can be found on the right hand side of Fig. 4.
The methods that are indicated by color are compared
against each other in Sec. 3.3.

The second and more severe con-

cern is the presence of the imagi-

nary part ΠTWQ in the exponent in

Eq. (23), which is responsible for the

infamous sign problem plaguing the

Matsubara dynamics methods. This

imaginary part can be removed by

transforming the Matsubara momen-

tum to the complex plane.118 Unfortu-

nately, the resulting dynamics feature

unstable complex trajectories yielding

similar statistical convergence issues

as the sign problem itself. For single-

PES studies, one common ansatz to fi-

nally avoid the sign problem is to simply neglect the imaginary contributions to the dynam-

ics leading directly to the well-known RPMD method. If vibronic spectroscopy is considered,

this approximation leads to a RPMD-like method for multiple PESs that coincides with the

one presented in [SK3] and Sec. 2.3.1 for the open intervalλ ∈ ]0,β[ if the equilibrium method

is considered, see Fig. 8. Thus, for these values of λ, the quasi-classical methodology intro-

duced in Sec. 2.3.1 can be viewed as an approximation to the Matsubara dynamics presented

here. In contrast for the set λ ∈ {0,β}, such a relation is not given, since the dynamics that is

described here features the averaged potential [V f (x0)+Vg (x0)]/2P for the 0-th bead, which

is not present in Sec. 2.3.1. Consequently for λ= 0, the equilibrium and average versions of

the Matsubara method as well as its RPMD-like approximation have the ACL as their com-

mon P → 1 limit instead of the DCL, compare Fig. 4 and Fig. 8.

Yet another method that is suitable to accurately simulate the standard correlation func-

tion, C0(t ), without suffering from the sign problem has been suggested in [SK4]. In contrast

to the aforementioned RPMD-like ansatz, this modified Matsubara method is not a system-

atic approximation to the Matsubara dynamics, but is rather deduced from a comparison

of analytical expressions for a harmonic oscillator system. At the heart of the method is the

ad-hoc modification of the complex exponent in Eq. (23), such that

1

2m
ΠTΠ+Ũ0(Q)+ iΠTWQ 7→ 1

2m
ΠT(1+WTY−1(Q)W)Π+Ũ0(Q)+ 1

2
mQTWTWQ , (25)

while keeping the original EOMs from Eq. (24) for the real-time propagation. The key quan-

tity is the position-dependent matrix Y(Q), which maps the curvature of the ground-state
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2. Developed methodology to approximate vibronic spectra

potential along the imaginary-time path onto the Matsubara modes, i.e.

Y(Q) := 1

m
T

Ã
∂2Vg

∂x2
i

δi j

!
TT . (26)

For two shifted harmonic oscillators, this modification leads to a standard TCF, C0(t ), that is

equal to the one obtained by the original Matsubara method, see [SK4]. Hence, both meth-

ods restore the exact QM spectrum for this particular model. Importantly, since the modified

density is strictly real, the sign problem does not occur and, thus, the statistical convergence

behavior is strikingly improved with respect to the original method. Moreover, the suggested

modified method accurately samples the thermal Wigner function and provides a reason-

able approximation to vibronic absorption spectra of anharmonic model systems, as it will

be demonstrated in Sec. 3.3. However, as a word of caution it should be noted that the in-

verseY−1 becomes ill-defined at points where the second derivative of the ground-state PES

vanishes and that the modified density can become unbound if Vg (x) possesses regions with

a negative curvature.

It remains to be seen whether this new but heuristic simulation protocol can be viewed as

a systematic approximation to the orignal Matsubara method, see Fig. 8. In order to clarify

this relation, it would be desirable to find a rigorous mathematical route from the original

Matsubara method to the modified one. Such a derivation may also shed light on the relation

to the known Feynman-Kleinert Quasi-Classical Wigner method.131
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3. Numerical applications

3 Numerical applications

3.1 Applying the dynamical classical limit to (non-)linear X-ray spectra of

water

As it has been already stated in Sec. 2.3.2, the somewhat simplistic DCL method may con-

stitute a pragmatic choice for complex realistic systems due to its comparably low cost and

good scaling with the number of DOFs.
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Figure 9: XAS amplitudes for gas phase water, pan-
els a,b) and for bulk water, panels c,d). The black
line represents the respective experimental data from
Ref. 13. The blue and red lines depict the DCL re-
sults, whereas the filled green and yellow curves cor-
respond to the SCL method. The unoccupied MOs of
a water molecule to which the transition is performed
are visualized next to the corresponding peaks. Inset
zooms on the transition corresponding to the lowest
energy in the gas phase with the imposed infinite life-
time, where the frequency axis is shifted by the peak
position ∆E = 534.3 eV.

It has been demonstrated in [SK1], [SK2]

that it can serve as a basis for a qual-

itative analysis, proving the importance

of accurately accounting for dynamical

nuclear effects in theoretical X-ray spec-

troscopy. Especially for the non-linear

RIXS spectrum, the common static de-

scription via the SCL can lead to wrong

line shapes and intensities as it is exem-

plified in the following for the oxygen K-

edge spectra of gas phase and bulk wa-

ter at ambient temperature. It should be

stressed that the focus is put on the com-

parison between the SCL and the DCL

methods and, thus, the differences due

to nuclear dynamics rather than on the

peculiarities of the water spectra them-

selves. Note that the same datasets have

been used for both methods.

3.1.1 The X-ray absorption spectrum

The results for the XAS amplitude ob-

tained via various simulation setups and

strategies are discussed and compared

against each other, where all the com-

putational details are given in [SK1] and

[SK2]. In Fig. 9, the XAS amplitudes for

gas phase and bulk water resulting from

the SCL and the DCL approaches for a

rather small (0.025 eV) and a larger (0.25 eV) widthσ of the excitation pulse are shown. With-
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out any fitting, the computed curves for the gas phase and the bulk system are in qualitative

agreement with experimental data,13 depicted by solid black curves therein. A comparison

between the SCL and DCL results for the gas phase and the small linewidth, Fig. 9a), reveals

subtle but evident differences in the peak intensities. Their origin can be clearly traced back

to dynamical effects by assuming an infinite lifetime of the final core-excited states within

the simulation, see inset. The observed side bands can be directly related to the vibrational

modes of the water molecule, in particular to the bending and stretching ones, which have in

the employed force field frequencies of ≈1500 cm−1 and ≈3800 cm−1, respectively. Naturally

these side bands cannot be recovered by the SCL method due to the aforementioned intrinsic

limitations of this static approach, see Sec. 2.3.2. However, all the differences vanish at the

large spectral pulse width, see Fig. 9b). One can show that the two spectra cover the same

area and, thus, increasing the width of the convoluted Gaussian naturally eliminates the dif-

ferences between the two approaches. The same comparison is performed for bulk water,

see panels c) and d) in Fig. 9. Here, the differences between the methods are negligibly small

for both pulse widths as well as for an hypothetic infinite lifetime of the core-excited states,

see Sec. VI in Supplement of [SK2]. This suggests that XAS is not a very sensitive observable

for nuclear dynamical effects.
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Figure 10: Two-dimensional RIXS spectrum for
bulk water (small pulse width) obtained by means
of the DCL method, see Sec. 2.3.2. The dashed ver-
tical line indicates the position of the cut depicted
in Fig. 11.

To resume, correlated nuclear dynam-

ics does not affect XAS amplitudes signif-

icantly for bulk water under any circum-

stances. However, differences for the gas

phase can be seen if the pulse widths and/or

lifetime broadening of the final states are

particularly small. As it has been pointed

out in the Introduction, the RIXS amplitude

contains more information and, hence, the

fingerprints of nuclear dynamical effects are

more prominent, as will be shown in the fol-

lowing section.

3.1.2 The resonant inelastic X-ray scat-

tering

In Fig. 10, a two-dimensional spectrum is

shown for bulk water obtained via the DCL

method. Since it is hard to make a quanti-

tative analysis on its basis, a particular cut

corresponding to the lowest absorption frequency is considered, see vertical line in Fig. 10;

note that the particular excitation frequencies are different for the gas phase (534.2 eV) and

bulk (535.0 eV) cases. Note further that the features revealed by cuts at different excitation

24



3. Numerical applications

frequencies are qualitatively similar, as it can be seen in [SK1] and [SK2].
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Figure 11: Cuts through RIXS spectra for various
simulation scenarios. The excitations frequencies
are fixed at 534.2 eV and 535.0 eV for the gas phase
and the bulk, respectively. The color code and
the panel structure are the same as in Fig. 9. Pan-
els a) and c) correspond to σ = 0.025 eV whereas
b) and d) to σ = 0.25 eV. Each panel is split into
three sub-panels according to the spectral ranges
that exhibit intensity (note multiplicative factors
therein), see Fig. 10. The black line represents the
respective experimental data for the gas phase and
for the bulk system from Refs. 132 and 34, respec-
tively. Inset zooms on the left peak in panel a2)
with ∆E = 520.2 eV.

In Fig. 11, the aforementioned cut is di-

vided into three spectral ranges that are ex-

amined for various simulation setups. The

peaks can be related to spontaneous emis-

sions from the intermediate (core-excited)

state to final (ground or valence-excited)

ones, see the respective water MOs from

which the emission takes place in panels

a). The simulated spectra qualitatively re-

produce the experimental data, taken from

Refs. 132 and 34 and depicted by black

lines in panels b2) and d2). Note that no

experimental data has been available for

the transitions shown in the left and right

columns. In panels a1)-a3) significant dif-

ferences between the methods become ev-

ident in case of the small pulse width. For

all peaks, prominent vibronic structures be-

ing almost symmetric around the maximum

can be observed with the frequencies easily

attributed to vibrational modes of the wa-

ter molecule, see, e.g., the inset where the

progression of the bending mode is clearly

visible. Although the fine structures can-

not be detected employing a larger excita-

tion bandwidth, see panels b) therein, dif-

ferences in intensity remain for the elastic

and for the peak around 526 eV in panel

b2). Moreover, the energetically lowest tran-

sition in panel b1) possesses a pronounced

peak structure when computed via the DCL

method and, thus, this transition turns out to be very sensitive to nuclear dynamical effects.

In contrast to the linear spectrum, i.e. XAS, the results for the condensed phase still fea-

ture noticeable differences between the methods for all pulse widths considered, see panels

c1), c3), d1) and d3). This underlines the statement that non-linear RIXS spectra are more

sensitive to time-correlated nuclear effects. Most importantly, one sees clear traces of nu-

clear dynamics at all realistic experimental conditions considered. In particular, the static

approach is naturally not able to reproduce any vibronic progression and the intensity of the
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elastic peak is overestimated whereas the inelastic peak height is underestimated.

The origin of these differences has been extensively analyzed in [SK2] and will be briefly

summarized in the following. Employing the Condon approximation and a simple harmonic

model, the magnitude of the deviation between the static and the dynamical approach can

be connected to the high- and low-frequency contributions to the fluctuations of the elec-

tronic gap, i.e. the spectral density.1,2 The conclusion is that, the more a vibronic transition

involves faster nuclear motion and, thus, higher vibrational modes, the larger the discrep-

ancy between the SCL and DCL method becomes.

In this section it has been demonstrated that the DCL indeed represents a step forward

over the more common SCL approach to X-ray spectroscopy. Due to its simplicity, the DCL

method can be readily applied to study the non-linear spectra of complex systems on a qual-

itative basis. In particular, via a comparison to the purely static approach, it can be used

to identify those transitions that are particularly sensitive to nuclear dynamical and time-

correlation effects. However, it might become unreliable when it comes to a quantitative

analysis, since the approximation can cause wrong frequencies and shapes of the vibronic

progressions. The quantum dynamics are approximated more accurately within the for-

malisms presented in Sec. 2.3.1 and Sec. 2.3.3, as it will be demonstrated in the following

sections.

3.2 Applying the generalized methodology to model systems

As it has been discussed in Sec. 2.2, the generalized formalism does not only restore common

TCFs, see Fig. 3, it furthermore enables “tailoring” completely new ones that might lead to

improved numerical protocols. As a first step to investigate the opportunities given by this

flexibility, a one-dimensional model system consisting of two displaced Morse oscillators

has been considered at two different temperatures in [SK3]. The chosen ground-state po-

tential mimics an isolated OH bond of a water molecule, where the parameters are adopted

from Ref. 133. In order to examine various scenarios, a moderate displacement (0.22 au) and

a large one (0.5 au) have been used in combination with equal dissociation energies but dif-

ferent stiffness parameters α for the two oscillators, where the stiffness of the excited-state

PES is reduced by a factor of 0.86 with respect to the ground-state one.

3.2.1 Common weighting functions

First, the spectra obtained by the methods that stem from common choices of the weight-

ing function, namely PI-DCL, DCL, ACL, Schofield, Schofield averaged classical limit (SACL)

and Kubo are compared against each other in Fig. 12, see Fig. 4 for a sketch and [SK3] for a

detailed description of all the methods. Since the numerically exact results are available for

such a model system, one can directly judge on the ability of each method to reproduce the

correct QM spectrum. To start, the comparison for the moderately displaced PESs is per-
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Figure 12: The two-level system at 300 K, left: moderate shift of 0.22 au and right: large shift of 0.5 au,
see text. Panels a) intrinsic weights, ξλ, b)-c) absorption spectra for P = 1,32,128, see the legend
therein.

formed (left column) for ambient temperature. The intrinsic weights, ξλ defined in Eq. (15),

can be used to examine the convergence with respect to the number of beads, see panel

a1) therein. It becomes immediately apparent that the weights for P = 1 (the classical limit

for the nuclei) are qualitatively wrong. Complete convergence to the exact quantum result

is reached at P = 32, which is a manifestation of the fact that imaginary-time PI methods

correctly describe static quantities. These numbers of beads are also typical for reaching

convergence for ground-state properties of water at ambient conditions.128,134

Turning to the absorption spectra depicted in Fig. 12b1)-c1), one sees that the QM spec-

trum reveals a Franck-Condon progression with a Huang-Rhys factor smaller than 0.5, mean-

ing that the maximal intensity is located at the 0-0 transition.2 For the case P = 1, panel b1),

DCL and Kubo results are very similar, however, both methods fail completely to reproduce

the exact spectrum in this parameter regime. In particular, the maximum is not at the correct

0-0 transition and the peak heights are dramatically overestimated (note the scaling factor).

The vibronic progression is almost not present and features wrong frequencies and a sym-

metrical shape, as it has been discussed for the DCL before, see Sec. 3.1, [SK1] and [SK2]. In

contrast, the ACL results are in better agreement with the exact ones, apart from the scaling

and a slight difference in the fundamental frequency. The artificial negativity that can be
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observed to the left of the 0-0 transition is an intrinsic feature of this method, as it has been

shown in [SK3]. Finally, the numerical spectra obtained from the SACL method, i.e. classical

limit of the Schofield method, suffer from an uncontrollable intensity growth due to the SCF.

As it can be seen in Fig. 3 and Fig. 13, this factor grows exponentially with frequency, where a

solution for this problem is suggested in Sec. 3.2.2.

Increasing the number of beads to P = 32, see panel c1), the PI-DCL method yields rea-

sonable amplitudes but still wrong spectral shapes. This supports the statement that the

pure ground-state dynamics cannot reproduce the spectra, which significantly dependent

on the peculiarities of the excited state. As they include contributions from the beads evolv-

ing on the PES of the excited state, the Kubo results improve a lot with respect to the spectral

structure. Still, the shape is not correct, which in principle can be healed by a different choice

of the SCF, see Sec. 3.2.2. Again, the spectra stemming from the Schofield function grow un-

controllably with frequency due to the SCF that is independent on the number of beads.

In order to investigate a regime, where the vibronic progressions are more pronounced,

the model system with the large displacement of the PESs, i.e. 0.5 au, is considered, see right

panels in Fig. 12. The convergence of the intrinsic weights can be observed for P = 128 beads,

which is significantly more than for the moderately displaced system. This is intuitively ex-

pected, since a larger number of beads is needed to account for the increased displacement

of the PESs as can be understood from Fig. 5. The spectra obtained by the Kubo and the

DCL method for P = 1, see panel b2), exhibit again dramatically overestimated intensities

and rather symmetric lineshapes, whereas the ACL spectra are qualitatively better, though

suffer increasingly from the negativities. When the number of beads is increased to P = 128,

panel c2), the Kubo spectrum features an improved envelop with respect to the results for

P = 1. However, the peaks are much broader than in the QM reference and they are not at

the correct positions. The PI-DCL amplitudes are getting more reasonable but the shape and

peak positions still do not fit to the QM result and the Schofield spectra are again numeri-

cally unstable. Practically, there is no qualitative difference in terms of the performance of

each method with P > 1 for the two regimes considered, which supports the assertion that

the Kubo transform is not superior to the other methods if vibronic spectra are considered.

3.2.2 Possible improvements

As it is has been discussed in the previous section, the common approaches to vibronic spec-

tra, do not necessarily lead to optimal results for the considered model systems. For instance,

the ACL reproduces the lineshapes generally quite well, but suffers from the rather severe

problem of negativities due to non-equilibrium dynamics. The equilibrium version of ACL,

i.e. the SACL, does not have this deficiency but, unfortunately, the respective SCF (depicted

in Fig. 13b)) leads to a numerical instability for spectra. It thus seems natural to opt for a

more moderate SCF while having SACL-like dynamics, which can be readily realized by the

generalized formalism, since the external weighting function w(λ) can be chosen arbitrarily.
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Figure 13: The two-level system with the moderate shift of 0.22 au; left: at T = 300 K and right: at
T = 1117.6 K, see text. The smoothing for the Schofield function βε = 4.8, and for the low-pass filter
βε= 3.2. Panels a) filtered intrinsic weights, ξλ ·w(λ), b) SCFs, c) absorption spectra for P = 32.

One possibility is to choose w(λ) = exp[−|λ−β/2| · ε], which “smooths” the delta peak

around β/2 (corresponding to the Schofield TCF), where the width can be controlled by the

value of ε. It can be clearly seen in Fig. 13b) that the resulting SCFs (green curves) indeed

exhibit a significantly lower magnitude for higher frequencies. Another reasonable choice

follows from the conclusion that Kubo yields an acceptable envelop for the vibronic pro-

gressions, but suffers from overestimated intensities for higher frequencies. It is supposed

that this deficiency is due to over-pronounced contributions with large λ, thus, suggesting

w(λ) = exp[−λε], which suppresses the unwanted contributions to spectra and can be hence

considered as a low-pass filter. The resulting filtered intrinsic weights, ξλ ·w(λ), are depicted

in the upper panels of Fig. 13.

The respective spectra for the system with the small displacement between the PESs are

shown in the lower panels of Fig. 13 for two different temperatures. At lower temperatures

(larger β), panel c1), the low-pass filter appears to be preferable. Specifically, it removes the

overpronounced high frequency contributions that spoiled the Kubo results, whereas the

smoothed Schofield filter emphasizes these contributions even more and is thus not usable

for this regime. However, the fine structures in the spectrum obtained by the low-pass filter

are broader than those in the exact spectrum. Switching to the higher temperature case,

right column of Fig. 13, the low-pass does not improve over the Kubo results, whereas the
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smoothed Schofield filter reveals the fine spectral structure with a decent quality without any

negativities. In both cases the smoothed Schofield spectra exhibit reasonable intensities, as

it is implied by the choice of the external weight.

To summarize, the present study suggests that a non-standard form of w(λ) can be ben-

eficial in comparison to common choices with respect to quality and numerical stability.

However, a universal recipe for choosing the weighting function is hard to formulate for the

general case and requires further investigations, see Sec. 4.

3.3 Performance of the Matsubara dynamics and the modified method

It has been demonstrated in [SK4] that the suggested Matsubara dynamics approach to vi-

bronic spectra as well as the modified method recover the exact TCF for a system consisting

of two displaced harmonic oscillators in the Condon approximation. To reiterate, this in

contrast to all (quasi-)classical approximations presented in Sec. 2.3.1 and Sec. 2.3.2. In or-

der to investigate a more realistic scenario (beyond the harmonic case), the focus is on two

displaced anharmonic oscillators given by quartic expansions of the Morse potential at am-

bient temperature. The parameters for the electronic ground state are again adopted from

Ref. 133. Similarly to [SK3] and Sec. 3.2, the excited-state PES differs from the ground-state

one by a displacement of 0.22au and a lower stiffness, whereas the dissociation energies are

equal.

3.3.1 Static properties of the methods

Before discussing the vibronic spectra, the peculiarities of the modified Matsubara method,

as introduced in Sec. 2.3.3, are considered. It has been demonstrated in [SK4] that the mod-

ification suggested in Eq. (25) yields the exact sampling of the Wigner function for the har-

monic oscillator. In Fig. 14, the ability of the modified Matsubara method to reproduce the

exact Wigner function of the anharmonic system is investigated. In panel a) therein, one

can see the classical Boltzmann function for the electronic ground state. It is not surpris-

ing that the classical density is much more localized than the exact Wigner function seen

in panel d); note the different scales for the color bars in the different panels. In panel b),

the absolute value of the complex density corresponding to the original Matsubara method,

Eq. (23), is shown for P = 45. This is effectively nothing else than the classical Boltzmann

distribution, but for a temperature that is P times higher than in the classical case, panel a).

For the present model this implies a temperature of 13500 K and, hence, the density covers a

phase-space volume that is much larger than the classical one and significantly larger than

the correct QM one. Only the cancellation due to the complex phase in the Matsubara den-

sity removes the irrelevant contributions to the observables. This indirect sampling of the

correct distribution is at the heart of the sign problem and is thus responsible for the insuffi-

cient convergence of the original Matsubara method. In contrast, the modified method ap-
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Figure 14: Phase-space probability densities for the anharmonic model system sampled by the con-
sidered methods. Panel a) the classical Boltzmann distribution; panel b) the absolute value of the
complex Matsubara density and panel c) the modified density, both with P = 45; panel d) the exact
Wigner function.

proximates the exact thermal Wigner function directly with a remarkable accuracy, see panel

c). Importantly, it is even able to reproduce the “egg shape” of the correct Wigner function,

which is an inherently quantum-statistical effect, since it requires the coupling of positions

and momenta in the density, which is not present in the classical case.

3.3.2 The vibronic absorption spectrum for an anharmonic system

After discussing static properties of the methods, the dynamical observables of interest, i.e.

vibronic absorption spectra, are considered for the anharmonic system in Fig. 15. It should

be noted that the focus is put on the caseλ= 0 only, since in [SK4] it has been concluded, that

none of the methods presented in Sec. 2.3.3 can practically reproduce the exact imaginary-

time shifted TCF for the case λ ∈ ]0,β[ . In particular, the equilibrium Matsubara method

converges formally to the exact result but is suffering from the sign problem. The RPMD-

like method (see Sec. 2.3.3 and Fig. 8) does not lead to an acceptable approximation to the

quantum TCF, and unfortunately, the modified Matsubara method has been derived just for

λ= 0 and naive use of this modification for λ> 0 expectedly fails. Still, the expressions that

have been derived in this thesis for a general value of λmight serve as a basis for future work,

see Sec. 4.

Figure 15 is structured such that the results from the equilibrium and average methods,

see Sec. 2.3.3, are depicted in left and right columns, respectively. Although setting M = P

contradicts the assumption of the Matsubara approximation, it has been concluded in [SK4]

that only this choice leads to reasonable results for the equilibrium method. Moreover, for

the model systems considered therein, it has been demonstrated that there is no apparent
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Figure 15: Absorption spectra for two displaced anharmonic oscillators at 300K. The left column,
panels a), exhibits the results of the equilibrium methods whereas panels b) contain the results of
the average methods for M = P . The first row, panels 1), exhibits the results for M = P = 5, apart
from the DCL and ACL curves which correspond to M = P = 1. The second row, panels 2), features
M = P = 9 and panels 3) show M = P = 45. The thin blue lines in the lower row represent the setup
M = 25,P = 45.

advantage of using M ¿ P instead of M = P for the average method. Thus the setup with

M = P is still considered in the following.

Starting with the description of the QM spectrum in Fig. 15, one recognizes a typical

Franck-Condon progression with a maximal intensity that is located at the 0-0 transition.

Switching to the approximations in panel 1a), the common DCL method neither yields the

correct spectral shape nor the correct peak positions, as it has been observed before, see Refs.

93,94, [SK3] and Sec. 3.2. In contrast, the result obtained with the ACL method, see panel

1b), is in much better agreement with the QM one. However, a significant negative inten-

sity below the 0-0 transition is present, which is again a consequence of the non-stationary

dynamics featured by this method.

Employing more modes and beads, i.e. M = P = 5 in panels 1) of Fig. 15, the modified

method still coincides with the Matsubara method although this is generally not expected

for an anharmonic case. Both methods lead to a negative intensity to the left of the 0-0

transition, having a smaller amplitude than the one produced by the ACL and RPMD-like

methods. For the latter, the average method, see panel 1b), performs significantly better

than its equilibrium counterpart depicted in panel 1a).
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Increasing M and P to nine improves the quality of the modified and the Matsubara

method, which are still surprisingly similar, as it can be seen in panels 2) of Fig. 15. Never-

theless, as a consequence of the sign problem, the Matsubara method has required ten times

more trajectories than the modified one to yield statistically converged results. Importantly,

the artificial negativity is smaller by a factor of two than that for the case M = P = 5. The

average version of the RPMD-like approach, see panel 2b), improves further with respect to

the peak intensities, whereas the negative intensity has not changed notably. The opposite

can be observed in panel 2a) for the equilibrium RPMD-like method, where the negativity is

removed completely, whereas the overall agreement with the QM curve becomes worse.

It appears to be impossible to practically reach statistical convergence for the Matsubara

method, if the number of beads and modes is increased to 45, even employing 106 trajecto-

ries and, thus, no results are shown. The average version of the RPMD-like method does not

improve significantly in this case and the same can be observed for its equilibrium counter-

part, see panels 3). The modified Matsubara method converges again without any issues,

while coming quite close to the exact QM curve. Importantly, the artificial negativity van-

ishes almost completely. As it has been stated in the beginning of this subsection, there is no

apparent advantage of setting M = 25 < P = 45 in comparison to M = P = 45 when consider-

ing the average methods, see the solid line in panel 3b). In contrast, the equilibrium method

fails for M < P , as it can be seen in panel 3a).

To conclude, Matsubara and modified Matsubara methods nearly coincide for all cases,

where the Matsubara method reaches statistical convergence. One can therefore expect for

the general case that both would tend to very similar results in the limit M ,P →∞. In com-

parison to the more common methods, i.e. DCL, ACL, as well as to the RPMD-like ansatz,

the modified Matsubara method yields much more accurate results, especially with respect

to the negativities below the 0-0 transition. Interestingly, setting M < P , that is compatible

with the Matsubara approximation, does not yield any benefit in comparison to the case

where M = P if the average method is considered. However, this is by no means the ultimate

conclusion and the impact of such a setup has to be investigated carefully, in particular using

more complex systems featuring problems such as zero-point energy leakage.
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4 Conclusions and outlook

This thesis is dedicated to bridging the gap between a numerically exact approach to vibronic

spectra via wave-packet propagation and a purely static approximation via single-point cal-

culations. For that purpose, a versatile formalism for simulating optical absorption spectra

has been suggested. In contrast to common approaches to spectroscopy, that are mostly

based on the Kubo-transformed time-correlation function (TCF), the presented formalism

involves a generalized correlation function, having the Kubo TCF itself as well as various

other known correlation functions as limiting cases. Beyond that, the formalism offers the

possibility to construct in principle infinitely many new TCFs that might lead to superior nu-

merical protocols if compared to the established ones. Practically, the generalization is done

via employing an arbitrary weighting function and the imaginary-time shifted TCF, where

the latter can be directly related to the desired vibronic absorption spectrum in the Fourier

space. Employing this TCF as the starting point, the spectral amplitude has been approx-

imated in the framework of classical(-like) trajectory-based methods, which is particularly

challenging, since there is no classical analogue of the time evolution on multiple potential

energy surfaces (PESs). However, this ansatz yielded several feasible simulation protocols

that are capable to bridge the aforementioned gap.

In the spirit of the standard ring-polymer molecular dynamics (RPMD) method, the exact

time evolution has been approximated by the quasi-classical dynamics of the ring polymer,

thereby recovering important nuclear quantum effects. Importantly, in contrast to the ex-

isting RPMD ansatz for single-PES problems, the presented methodology features dynamics

on several PESs simultaneously as an inherent feature of vibronic transitions. It has been

demonstrated that the quasi-classical dynamics improves on the purely classical one, e.g.

the dynamical classical limit (DCL), when employing commonly known TCFs such as the

Kubo transformed. Moreover, by exploiting the flexibility of the generalized formalism, some

of the results could be further improved upon choosing a more complicated weighting func-

tion form, i.e. the low-pass filter as well as the smoothed Schofield one. This elucidates the

attractive possibilities provided by the generalized formalism and motivates searching for an

optimal weighting function, suited for a specific problem or even for the general case. Ide-

ally, finding such an optimum should be supported by a physical foundation, which, how-

ever, requires a general understanding that may be obtained via an extensive analysis for

various complex systems in different parameter regimes.

It has been shown that the well-established DCL follows as a limiting case of the quasi-

classical method by employing a particular weighting function. In that case, the nuclear

dynamics is approximated by classical trajectories that are exclusively determined by the

adiabatic ground-state PES, independently on the considered transition. This leads to a par-

ticularly simple numerical protocol that is readily applicable to non-linear spectra of more

complex systems. However, the consequence is a loss of information about the excited-state
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dynamics, leading to incorrect features in the simulated vibronic spectrum. Still, the com-

parison between the results obtained from the DCL and the statical classical limit (SCL) (i.e.

the sampling), has been employed to identify and analyze vibronic transitions that are sensi-

tive to nuclear dynamical effects. It has been exemplified for gas-phase and bulk water that

the DCL recovers more information on X-ray spectra than the sampling approach, which is

e.g. not capable to reproduce any vibronic progression. Moreover, it has turned out that the

non-linear resonant inelastic X-ray scattering (RIXS) amplitude is much more sensitive to

nuclear correlation effects than the linear X-ray absorption spectrum (XAS). This observa-

tion strongly suggests to extend the developed generalized formalism as well as the quasi-

classical dynamics approximation to the realm of non-linear spectroscopy.

Although the presented quasi-classical method captures important nuclear quantum ef-

fects and is thus more accurate than a purely classical description, the ring-polymer dy-

namics suffers from artificial harmonic spring oscillations. This fact has motivated to ap-

proximate the imaginary-time shifted TCF alternatively via the Matsubara dynamics, which

has led to a generalization of the existing single-PES methodology. Here, the quantum dy-

namics has been approximated via classical-like equations of motion (EOMs) for a smooth

imaginary-time path that does not feature artificial spring motions. The developed expres-

sions leave a great flexibility in choosing the particular potentials Vi and the generated dy-

namics, thereby providing an exciting perspective for future investigations. By employing

two particular suggestions for the dynamics, the Matsubara ansatz formally restores the

exact quantum TCF for a system consisting of two displaced harmonic oscillators. Impor-

tantly, this is in contrast to all aforementioned classical-like approximations and, thus, the

suggested Matsubara method to simulate vibronic spectra represents a significant step to-

wards the declared goal. Still, its direct practical application to complex systems is inhibited

by the infamous sign problem, causing an insufficient statistical convergence. In order to

circumvent this issue, a modified Matsubara method to simulate the standard correlation

function has been deduced as an ad-hoc solution via a comparison of analytical expressions

for a harmonic oscillator model system. This method has been demonstrated to yield ab-

sorption spectra that are of the same adequate quality as the ones obtained from the Mat-

subara dynamics approach, whereas the convergence behavior is excellent. Moreover, it has

turned out that the modified method samples the thermal Wigner functions of the consid-

ered model systems accurately. Hence, this method is a promising starting point, not only

for simulating vibronic spectra, but for classical-like approximations to nuclear quantum

dynamics in general. However, due to numerical instabilities for concave regions of the po-

tential, it remains to be seen if this ad-hoc method is applicable to arbitrary realistic sys-

tems. Since the suggested modification yields an adequate approximation to the standard

TCF only, this method is not yet compatible with the generalized formalism. Thus, the ulti-

mate goal would be to deduce a similar modification for the genuine imaginary-time shifted

correlation function, which would enable to profit from the flexibility of generalized TCF

36



4. Conclusions and outlook

as well as from the quality of the approximated spectra. The derived Matsubara dynamics

approximation to vibronic spectra may serve as a basis for such an attempt.

To conclude, by employing trajectory-based approaches to vibronic spectroscopy as the

framework for this thesis, some of the most severe difficulties and deficiencies of the more

common methods have been avoided. Thus, the developed formalisms represent a step for-

ward to simulating spectroscopic observables of complex molecular systems via feasible and

practical protocols. Offering on top exciting perspectives for future research, the presented

methodologies are a valuable contribution to the realm of theoretical tools that may help

physicists to obtain deeper insights into the fascinating world of molecular dynamics.
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ABSTRACT: To date X-ray spectroscopy has become a routine tool that can reveal highly
local and element-specific information on the electronic structure of atoms in complex
environments. Here, we focus on nuclear dynamical correlation effects in X-ray spectra and
develop a rigorous time-correlation function method employing ground state classical
molecular dynamics simulations. The importance of nuclear correlation phenomena is
demonstrated by comparison against the results from the conventional sampling approach
performed on the same data set for gas phase water. In contrast to the first-order absorption,
second-order resonant inelastic scattering spectra exhibit pronounced fingerprints of nuclear
motions. The developed methodology is not biased to a particular electronic structure method
and, owing to its generality, can be applied to, e.g., X-ray photoelectron and Auger
spectroscopies.

Constant increase in spectral resolution and rapid develop-
ment of various spectroscopies, covering broad energy

ranges from radio frequencies to extra hard radiation, open new
horizons for molecular science to investigate more and more
intricate phenomena. When it comes to obtaining highly local
and element-specific information on the electronic structure, X-
ray spectroscopies stand out.1 Popular variants include first-
order X-ray absorption spectra (XAS) and second-order
resonant inelastic X-ray scattering (RIXS) techniques. The
former focuses on the electronic transitions where a core
electron is excited to the manifold of unoccupied molecular
orbitals (MOs), whereas the latter detects the emission signal
resulting from a refill of a core-hole by electrons occupying
valence MOs. Although X-ray spectroscopy usually targets
electronic transitions, the vibrational ones as well as the
accompanying nuclear dynamics have recently received growing
attention.2−9 Remarkably, the RIXS spectra of liquid water and
alcohols initiated active ongoing debates in the past
decade,10−12 with controversial interpretations, among others,
involving different aspects of nuclear dynamics; see ref 13 for a
review.
From a theoretical standpoint, there exist two strategies to

simulate electronic spectra. Clearly, the best approach possible
is to perform wavepacket quantum dynamics numerically
exactly.14−17 However, it is limited to small systems and
requires expensive precomputation of many-dimensional
potential energy surfaces for typically large numbers of highly
excited electronic states relevant for X-ray spectra. Any attempt
to apply it to large systems can only be made feasible via a
reduction of dimensionality, that is, by introducing low-
dimensional models, which could be a severe approximation
on its own.

The other approach is to treat the system in question in full
complexity and to perform single point electronic structure
calculations combined with models such as the multimode
Brownian oscillator one to include broadening on a
phenomenological level.18 A substantial improvement is to
sample nuclear distributions in the phase space via molecular
dynamics (MD) methods,19−21 leading to a more realistic
description of conformational and environmental effects22−25

although lacking information about correlated nuclear motion.
Here we propose an extension of this state-of-the-art approach
to XAS and RIXS spectra based on time-correlation functions
obtained from the time evolution provided by electronic
ground-state MD simulations, analogous to infrared and UV−
vis spectroscopies.18,21,26−29 Being a representative of trajec-
tory-based methods, which became extremely popular in
theoretical physical chemistry in the last decades, it even
opens the possibility to incorporate nuclear quantum
effects.20,30

At first glance it might appear that the ultrafast core-hole
dynamics triggered by an X-ray excitation should be essentially
decoupled from the nuclear dynamics, which takes place on
time scales longer than 10 fs. In other words, sampling
uncorrelated nuclear distributions should be sufficient for the
purpose of X-ray spectroscopy. However, the central message
of this Letter is that this is not the case; that is, nuclear
correlation effects can play a significant role for the proper
description of lineshapes. We exemplify this on oxygen K-edge
spectra of gas-phase water by comparison against the results of
the aforementioned sampling approach on the same data set.
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We would like to stress that we are not aiming at the
peculiarities of the water spectra and rather use water as a
convenient model system to study nuclear correlation effects.
Importantly, only RIXS, being a second-order process, appears
sensitive to them, much like nonlinear optical spectra provide
more detailed insight into the underlying dynamical pro-
cesses.18,19

Theory. The XAS process consists of exciting the system from
an initial state |g⟩ to a final core-excited state |f⟩ by absorbing
light with angular frequency Ω and polarization ; see left panel
in Figure 1. Similarly, in RIXS the system is first excited to a

core-excited intermediate state |i⟩ or |j⟩ and then transits to the
valence final state |f⟩ by emitting light with the frequency ω and
polarization ; see right panel therein.
The derivation of the spectral amplitudes corresponding to

both processes, taking explicit correlated nuclear dynamics into
account, is sketched below; see the Supporting Information for
a complete derivation. The starting point for the XAS
amplitude, Ω( ), is the Fourier-transformed linear response
function.18 The time evolution of the transition dipole
moments involved is exactly recast with respect to the
electronic ground state via the interaction representation. As
a consequence, the electronic energy gaps between the ground
state and the other states appear in the formalism. To develop a
practical recipe involving classical MD methods, the dynamical
classical limit is taken for the nuclear degrees of freedom.
Finally, the resulting XAS amplitude possesses the form of the
Fourier transform of a time-correlation function being a
classical canonical average with respect to the electronic
ground state Hamilton function, H0.
The same steps are undertaken to derive the RIXS amplitude,

ωΩ( , ). However, the starting point here is the Raman part of
the spontaneous light emission signal expressed via the
corresponding third-order response function. Note that the
lifetimes of the intermediate states due to Auger process are
introduced phenomenologically via a monoexponential decay
and are assumed to depend on the corresponding electronic
level only.
The final expressions for the spectral amplitudes in atomic

units read

∫Ω = ⟨ ⟩η
η

ξ
ξ−∞

∞ Ωt M t M( ) d e (0) ( ) (0)t
g f

g
g
fi
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where Greek letters stand for Cartesian components of the
respective vectors and Einstein notation for summing over
indices that appear in sub- and superscript is implied. Here the
“dressed” transition dipole moments are introduced as

∫ τ τ≔ Δξ ξM t D t E( ) ( ) exp[i d ( )]g
f

g
f

t

fg
0 (3)

where Dξg
f are the elements of the transition dipole moment

vectors from |g⟩ to |f⟩ and ΔEfg(τ) is the respective electronic
energy gap, time-evolved with respect to H0. Furthermore,
Δi(τ) ≔ θ(τ) exp[−Γiτ] is the damping function, where Γi is
the lifetime broadening of the intermediate state |i⟩ and θ(τ) is
the Heaviside step function. Additionally, the spectra are
convoluted with a Gaussian of width σ along the Ω axis to
account for the bandwidth of the excitation pulse. Finally, the
weighting function is defined as

∑≔ ⟨ ⟩−Δ −Δt( ) e / eg
E t k T

g

E k T( )/ (0)/g0 B g0 B

(4)

with kB being the Boltzmann constant and ⟨...⟩ here and in eqs
1 and 2 standing for the classical canonical average with respect
to H0. We note in passing that eqs 1 and 2 can be derived
starting from the Fermi’s Golden rule and the Kramers−
Heisenberg expression, respectively.31 Note further that from
the practical standpoint it is more convenient to evaluate eqs 1
and 2 in the frequency domain, as explained in detail in the
Supporting Information. Importantly, this transformation
changes a coupled multitime integral in eq 2 into decoupled
single-variable integrations.
Computational Details. The MD simulations have been

performed using Gromacs version 4.6.5,33 employing the
anharmonic qSPC/Fw water model with a Morse O−H
potential.34 A set of 140 uncorrelated initial conditions has
been sampled from an NVTMD run at 300 K further serving as
starting points for NVE trajectories. The trajectories have been
0.5 ps long with a time step of 0.5 fs, yielding a spectral
resolution of ∼8 meV. The electronic Schrödinger equation for
each MD snapshot has been solved via ground-state density
functional theory with the PBE functional35 using ORCA
version 3.0.3.36 The def2-QZVPP basis set37 together with
(5s5p)/[1s1p] generally contracted Rydberg functions on
oxygen have been used. Such a small Rydberg basis does not
allow one to reproduce the high-energy tail of the absorption
spectrum38 but enables the description of the lowest states just
above the core-excitation threshold. The energies of the valence
and core-excited states have been approximated by the
differences of the respective Kohn−Sham orbital energies; the
corresponding dipole transition moments have been calculated
with respect to these orbitals.39 This approximation is known to
yield a reasonable compromise between accuracy and
efficiency.2,38−41 Note that the separation between the
electronic states makes nonadiabatic effects negligible. To
preserve the continuous time evolution of the dressed dipoles,
the entire manifold of relevant electronic levels has been traced
along the MD trajectories in a fully automated manner.31 The
excitation Gaussian line width and the uniform Lorentzian
lifetime broadening have been chosen as σ = 0.05 eV and Γ =

Figure 1. Schematic sketch of XAS (left) and RIXS (right) processes,
see text.
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0.25 fs−1, respectively.42,43 The data have been averaged over
the molecular orientations assuming the orthogonality of and
, which corresponds to a typical experimental setup, and the

spectra have been shifted globally by 24.8 eV on the absorption
axis and 23.3 eV on the emission axis such that the peak
structure roughly matches the experimental data.32,44 Note that
both the sampling and time-correlation approaches employ the
same data sets for the consistency of comparison. For further
computational details, see the Supporting Information.
Results. The XAS amplitudes (Figure 2) are in fairly good

agreement with the experimental data32 shown as the black

solid line. We would like to reiterate that we do not aim at
quantitatively reproducing and analyzing experimental data
with the rather simple model employed. Instead, the focus is on
the nuclear correlation effects, manifesting themselves as the
differences between the results of the sampling and correlation
approaches.
The first two absorption peaks in Figure 2 correspond to the

1sO → σ*(2s) [1a1 → 4a1] and 1sO → σ*(2p) [1a1 → 2b2]
transitions, whereas the other three stem from the Rydberg 1sO
→ 3pO [1a1 →5a1, 2b1, 3b2] ones, as is illustrated by the target
unoccupied MOs displayed near the respective spectral peaks
therein. Apparently, XAS amplitudes feature only subtle
differences in intensities between the sampling and the
correlation approach. This suggests that XAS is not a very
sensitive observable for nuclear correlation effects.
Figure 3 shows a 2D RIXS spectrum obtained via the

correlation approach, eq 2. Although it gives an overall
impression about the spectral shape, it is hard to make
quantitative analysis on its basis. Therefore, we consider a
particular cut for a fixed excitation frequency Ω = 536.4 eV that
corresponds to the 1sO → σ*(2p) [1a1 → 2b2] XAS transition,
see Figure 2 and vertical line in Figure 3. Three spectral ranges
marked with horizontal lines in Figure 3 are shown in Figure 4.
They contain peaks related to transitions from the intermediate
(core-excited) states to final (ground or valence-excited) ones;
see the respective orbitals from which the core-hole refill takes
place. Despite the simple electronic structure method
employed, the RIXS results also qualitatively reproduce
experimental data; see black solid line in panel b.44 Note that
the experimental data corresponding to those in panels a and c
are not available to us.
Most importantly, the RIXS spectrum obtained via the time-

correlation approach exhibits clear traces of nuclear dynamical

effects as compared with the sampling one. First, the two
spectra possess notably different lineshapes. For instance, the
vibronic structure, which is not present in the sampling
spectra by construction, is clearly visible for inelastic features in
Figure 4a,b. In particular, the sidebands for peaks at 509.0 and
526.7 eV correspond to the O−H stretching mode with the
frequency 3800 cm−1 ≈ 0.47 eV. Furthermore, the electronic
transitions at 520.7 (see inset) and 524.9 eV are coupled to the
bending vibrational mode having the frequency of ≈ 1500
cm−1.
Second, the sampling approach exhibits higher intensity of

the elastic peak (Figure 4c) and lower intensities of the inelastic
ones with respect to the correlation method, although both
techniques employ the same statistics. The origin of the
differences in intensities can be mainly traced back to the
complex exponential of the gap fluctuations in the dressed
transition dipoles (see eq 3), as shown in detail elsewhere.31

Since the expression in eq 2 contains energy gap fluctuations

Figure 2. XAS amplitudes for gas phase water. The black line
represents the respective experimental data from ref 32. The blue line
depicts the time-correlation approach results according to eq 1,
whereas the filled green curve corresponds to the sampling method.
The unoccupied MOs to which the transition is performed are shown
and assigned near the respective spectral peaks.

Figure 3. 2D RIXS spectrum, ωΩ( , ), of gas-phase water obtained
by means of the time-correlation approach, eq 2; note the log scale for
intensities depicted with color. The dashed vertical line indicates the
position of the cut depicted in Figure 4. The three pairs of dotted
horizontal lines indicate the three spectral regions corresponding to
panels a−c in Figure 4.

Figure 4. Cut-through RIXS spectrum in Figure 3 at Ω = 536.4 eV.
The color code is the same as in Figure 2. Panels depict three relevant
spectral ranges. The black line represents the respective experimental
data from ref 24. Inset zooms on the left peak in panel b that
corresponds to σ(2p) → 1sO [1b2 →1a1] transition with ΔE = 520.7
eV.
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between dif ferent pairs of electronic states, we believe that this
makes RIXS spectra more sensitive to nuclear dynamical
correlation effects. In contrast, the absorption spectrum, eq 1,
depends only on the initial−final gap fluctuations.
Conclusions and Outlook. A simulation protocol allowing for

nuclear correlation phenomena in X-ray spectra has been
developed. This rigorously derived method intrinsically exploits
classical molecular dynamics in the electronic ground state
together with a phenomenological dephasing model for core-
excited states. As a word of caution, using the latter model
leaves cases that exhibit intricate large-amplitude dynamics in
the excited state, for example, ultrafast dissociation,43,45,46

outside reach. From this viewpoint, both liquid and gaseous
water systems are not very suitable to reproduce nuclear effects
in full complexity. Still, because the effects in question are
elucidated as the differences between the two methods applied
to the same data set, the particular model system is not
important for the present purpose. The consequences of the
dynamical classical limit, employed here, have been extensively
studied by Berne et al.47,48 This approximation can cause wrong
frequencies and shapes of the vibronic progressions in certain
physical situations. Importantly, it can only lead to a suppression
of the vibronic progressions, and hence the strength of the
vibronic effects discussed here can be even stronger. Overall,
the developed technique provides an improvement on the
description of nuclear dynamical correlation effects in X-ray
spectra with respect to state-of-the-art approaches. These
effects have been demonstrated to be essential for X-ray
spectroscopy via the comparison against the conventional
sampling approach results for gas phase water. In particular,
RIXS, being a two-photon process, has turned out to be a
sensitive technique for the effects in question. In contrast, XAS,
being a one-photon process, exhibits almost no traces of the
underlying nuclear dynamics. Interestingly, static (sampling)
and dynamic (correlation) nuclear phenomena have been
disentangled from each other experimentally, employing RIXS
with excitation pulses strongly detuned from the resonance.11

Thus a theoretical prediction of fine nuclear effects may further
stimulate respective high-resolution experiments. Note that it is
not clear how to single out nuclear correlation effects by means
of a wavepacket propagation method, whereas they come out
naturally via trajectory-based approaches, for example, the one
employed here.
Remarkably, the developed methodology is rather universal

and does not conceptually depend on the accompanying
electronic structure method. Furthermore, a similar strategy can
be applied to the related photon-in/electron-out techniques,
such as photoelectron and Auger spectroscopies. We believe
that these developments are especially important in view of the
recently suggested nonlinear X-ray techniques49,50 that are
foreseen to be even more informative and sensitive than the
conventional RIXS approach.
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1Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock,

Germany, and 2Chemistry Department, Faculty of Science, King Abdulaziz University,

21589 Jeddah, Saudi Arabia

E-mail: sergei.ivanov@uni-rostock.de; sergey.bokarev@uni-rostock.de

Contents

1 Computational details S2

2 Derivation of time-domain expression from 3rd order nonlinear response

function S3

3 Derivation of the time-domain expression from the linear response func-

tion S9
∗To whom correspondence should be addressed
†1Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
‡2Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia

S1

B. Peer reviewed publications

61



4 Expression for RIXS in Fourier space S10

5 Expression for XAS in Fourier space S13

1 Computational details

The MD simulations have been performed for a gas phase water molecule using the Gromacs

program package ver. 4.6.5S1 employing the anharmonic qSPC/Fw water model with a Morse

potential for the O-H intra-molecular potential.S2 The “standard protocol”S3 for calculating

spectra in the canonical ensemble has been used, that is a set of 140 uncorrelated initial

conditions, which is sufficient to obtain converged results, has been generated from an NV T

MD run with the target temperature of 300 K imposed by the Langevin thermostat. These

initial conditions have been further used as starting points for simulating microcanonical

(NV E) trajectories, each 0.5 ps with MD timestep of 0.5 fs. The spectra calculated along

the NV E trajectories have been averaged to yield the desired canonical ensemble result.

The time-independent electronic Schrödinger equation has been solved for each MD snap-

shot at the level of the ground state density functional theory with the Perdew-Burke-

Ernzerhof functionalS4 using the ORCA ver. 3.0.3 program package.S5 Tight SCF conver-

gence criteria (10−7 Hartree) and a standard grid (ORCA grid3) have been employed. The

def2-QZVPP basis set for oxygen and hydrogenS6 together with (5s5p)/[1s1p] generally con-

tracted Rydberg functions on oxygen have been used. Rydberg contractions have been

obtained as atomic natural orbitalsS7,S8 constructed of primitives with universal exponents

(see Ref. S9). The energies of the singly-excited valence and core states have been approx-

imated by the differences of the respective Kohn-Sham orbital energies; the corresponding

dipole transition moments have been calculated with respect to these orbitals.S10

In order to mimic the finite width of the exciting light pulse given by the experi-

mental conditions, the XAS amplitudes and RIXS spectra are convoluted with normal-

ized Gaussian functions exp[−Ω2/(2σ2)]/(
√

2πσ2) along the excitation axis, Ω, with σ =

S2
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0.05 eV.S11 Additionally, the XAS amplitude is convoluted with normalized Lorentzian func-

tions Γ/π · [Γ2 + Ω2]−1 taking into account the finite lifetime of the core-excited final states,

Γ = 0.25 fs−1.S12 The same Γ has been used for all final states entering the XAS amplitude

as well as for all intermediate states entering the RIXS amplitude, where the finite lifetime

is already accounted for by construction.

The number of considered states that contribute to the spectra is determined by the

absorption and emission frequency range of interest, here Ω ∈ [532.8, 540.8] eV and ω ∈

[507.3, 538.3] eV requiring the consideration of 31 states. Note that all the spectra have been

shifted globally by 24.8 eV such that the peak structure in XAS approximately matches the

experimental data for gas phase water.S13

2 Derivation of time-domain expression from 3rd order

nonlinear response function

Taking the Raman part (R3) of the expression for the spontaneous light emission (SLE) given

in 9.12a (p. 269 of Ref. S14) with the corresponding third-order response function defined

in Eq. (7.12) (p. 198 therein), one gets

SSLE(ωL, ωS) = 2Re

∞∫

0

dt1

∞∫

0

dt2

∞∫

0

dt3 exp[−iωLt1 − i(ωL − ωS)t2 + iωSt3]

× 〈V̂ge exp[iĤet1/~]V̂eg exp[iĤg(t2 + t3)/~]V̂ge exp[−iĤet3/~]V̂eg exp[−iĤg(t1 + t2)/~]ρ̂g〉

(S1)

Here, ωL and ωS are the frequencies of the absorbed and emitted photons, that is Ω and ω in

our notation, respectively. The equation above is restricted to the case of an electronic two-

level system; the extension to a multi-level system is straightforward and will be performed

later below. In the following atomic units will be employed, that is ~ = 1. In order to get
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the proper time arguments one can perform the rearrangements

exp[iĤg(t2 + t3)] = exp[−iĤgt1] exp[iĤg(t1 + t2 + t3)] (S2)

exp[−iĤet3] = exp[−iĤe(t1 + t2 + t3)] exp[iĤe(t1 + t2)] , (S3)

yielding

SSLE(Ω, ω) = 2Re

∞∫

0

dt1

∞∫

0

dt2

∞∫

0

dt3 exp[−iΩt1 − i(Ω− ω)t2 + iωt3]

× 〈V̂ge exp[iĤet1]V̂eg exp[−iĤgt1] exp[iĤg(t1 + t2 + t3)]V̂ge exp[−iĤe(t1 + t2 + t3)]

× exp[iĤe(t1 + t2)]V̂eg exp[−iĤg(t1 + t2)]ρ̂g〉 . (S4)

One sees that the interaction terms, V̂eg and V̂ge are now embraced with the Heisenberg

time evolution operators that form pairs with same times. Introducing a new time variable

t := t1 + t2 leads to

SSLE(Ω, ω) = 2Re

∞∫

0

dt1

∞∫

0

dt

∞∫

0

dt3 exp[−iΩt1 − i(Ω− ω)(t− t1) + iωt3]

× 〈V̂ge exp[iĤet1]V̂eg exp[−iĤgt1] exp[iĤg(t+ t3)]V̂ge exp[−iĤe(t+ t3)]

× exp[iĤet]V̂eg exp[−iĤgt]ρ̂g〉 , (S5)

which would eventually decouple the Fourier transforms involving Ω and ω, see next equa-

tion. Since the spectrum is real, one can take the complex conjugate leading to the adjoint
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operators with inverted order under the canonical average

SSLE(Ω, ω) = 2Re

∞∫

0

dt1

∞∫

0

dt

∞∫

0

dt3 exp[iΩt+ iωt1 − iω(t+ t3)]

× 〈ρ̂g exp[iĤgt]V̂ge exp[−iĤet] exp[iĤe(t+ t3)]V̂eg exp[−iĤg(t+ t3)]

× exp[iĤgt1]V̂ge exp[−iĤet1]V̂eg〉 ; (S6)

note that it is, in principle, not necessary but leads to the same form of the final equation as

in the main text. Now we can group the terms such that the time integrations are separated

SSLE(Ω, ω) = 2Re

∞∫

0

dt eiΩt

×
∞∫

0

dt3 e−iω(t+t3)〈ρ̂geiĤgtV̂gee
−iĤeteiĤe(t+t3)V̂ege

−iĤg(t+t3)

×
∞∫

0

dt1 eiωt1eiĤgt1V̂gee
−iĤet1V̂eg〉 . (S7)

Noting that the t-integrand has the form of an equilibrium auto-correlation function (and

has thus a symmetric real part and an anti-symmetric imaginary part) the imaginary part

vanishes by construction and one can drop the Re symbol. Further one can remove the factor

2 and change the integration limits to (−∞,∞), since the integrand is even.

At this point we generalize the expression to many states and set the interaction terms

to be the properly polarized transition dipoles according to the RIXS process, see Fig. 1 in

the main text. In order to distinguish the generalized case, the RIXS amplitude is further
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referred to as R(Ω, ω)

R(Ω, ω) =

∞∫

−∞

dt eiΩt

×
∞∫

0

dt3 e−iω(t+t3)〈ρ̂geiĤgtD̂gζ
j eζe

−iHjteiHj(t+t3)uνD̂j
νfe
−iHf (t+t3)

×
∞∫

0

dt1 eiωt1eiHf t1D̂fη
i uηe

−iHit1eξD̂i
ξg〉 , (S8)

where u and e are the polarizations of the emitted and the absorbed light, respectively, and

D̂b
a := 〈a|d̂|b〉, where d̂ is the dipole operator. The use of super- and subscripts is pictorial,

since one sees in which way the excitation goes (from the subscript to the superscript). For

the sake of brevity, the notation cξ = c?ξ for any indexed complex quantity is used and the

Einstein convention for summing the indices that appear in a subsrcipt and in a superscript

is employed. Note that the aforementioned embracing does not yet have the desired form of

the Heisenberg time evolution, since it is performed with respect to different Hamiltonians.

In fact, it would be convenient if the time evolution would be performed with respect to

the electronic ground state |0〉, since this allows one to employ well-established ground state

electronic structure methods for calculating forces for MD. In order to circumvent this issue

we employ the interaction representationS14,S15

e−iĤat = e−iĤ0tŜa(t, 0) , (S9)

where the scattering operator is defined as

Ŝa(t, t0) := exp+


−i

t∫

t0

dτ ∆Êa0(τ)


 , (S10)

with the energy gap ∆Êa0 := Êa − Ê0 and the symbol exp+ standing for a (positively)
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time-ordered exponential. The time argument of the integrand therein corresponds to the

time evolution according to the Heisenberg equation of motion with respect to the electronic

ground state Hamiltonian, Ĥ0

Â(t) ≡ eiĤ0tÂe−iĤ0t . (S11)

The result after applying the interaction representation reads

R(Ω, ω) =

∞∫

−∞

dt eiΩt

∞∫

0

dt3 e−iω(t+t3)

× 〈ρ̂gŜg(t, 0)D̂gζ
j (t)eζŜj(t, 0)uνŜj(t+ t3, 0)D̂j

νf (t+ t3)Ŝf (t+ t3, 0)

×
∞∫

0

dt1 eiωt1Ŝf (t1, 0)D̂fη
i (t1)uηŜi(t1, 0)eξD̂i

ξg(0)〉 . (S12)

Finally, introducing the dressed dipoles

M̂a
b (t, 0) := Ŝa(t, 0)D̂a

b (t)Ŝb(t, 0) (S13)

and deciphering the canonical averaging 〈ρg•〉 :=
∑

G〈G| exp[−βĤg(0)]• |G〉/Z, Z being the

canonical partition function and |G〉 are nuclear states corresponding to g-th electronic level,

leads to a compact form for the RIXS amplitude

R(Ω, ω) =
1

Z

∞∫

−∞

dt eiΩt
∑

G

〈G|e−βĤg(0) (S14)

∞∫

−∞

dt3 e−iω(t+t3)M̂ gζ
j (t, 0)eζ∆j(t3)uνM̂ j

νf (t+ t3, 0)

∞∫

−∞

dt1 eiωt1M̂ fη
i (t1, 0)uη∆i(t1)eξM̂ i

ξg(0, 0)|G〉 , (S15)

where we have introduced phenomenological mono-exponential decay ∆i/j(t) := θ(t) exp[−Γi/jt],

which is equivalent to adding an imaginary part for the Hamiltonians of the intermediate
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states. Note that the lower integration limits have been extended to −∞ using the properties

of the Heaviside step function θ(t).

The last step is to perform the dynamical classical limit for the nuclei.S14,S15 In particular,

the nuclei are represented by point particles and the operators are replaced by continuous

dynamic functions. Consequently, the trace over the initial nuclear states |G〉 is substituted

by an integral over the phase space

1

Z

∑

G

〈G|e−βĤg(0) • |G〉 → 1

Z̃

∑

g

∫∫
dR0 dP0e−βHg• , (S16)

where Z̃ is the classical canonical partition function. However, the goal is to formulate

the averaging with respect to the electronic ground state Hamilton function, i.e. 〈•〉 =
∫∫

dR0dP0 exp [−βH0(0)]/Z0•, where Z0 is the partition function of the electronic ground

state. Multiplying and dividing Z̃ by Z0 and adding and subtracting the electronic ground

state Hamilton function, Hg(0) = H0(0) + ∆Eg0(0), one can write

Z̃ =
∑

g

∫∫
dR0dP0e−βHg(0)

= Z0

∑

g

∫∫
dR0dP0

e−βHg(0)

Z0

= Z0

∫∫
dR0dP0

e−βH0(0)

Z0

∑

g

e−β∆Eg0(0) (S17)

= Z0

〈∑

g

e−β∆Eg0(0)

〉
. (S18)

Finally, the classical canonical average becomes

∑

g

∫∫
dR0dP0 exp [−βHg(0)]/Z • =

∫∫
dR0dP0

e−βH0(0)

Z0

Wg(0)• (S19)

=
〈
Wg(0) •

〉
, (S20)
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with Wg(0) defined in Eq. (4) of the main text.

According to the correspondence principle, the Heisenberg time evolution for a general

operator Â becomes the dynamic function A(t) ≡ A(R(t),P(t)), with the time evolution

induced by the Hamilton function H0(R,P). Naturally, the time-ordering of exponentials in

Eq. (S10) becomes irrelevant and disappears. Performing all these replacements leads to the

final time-domain expression for the RIXS amplitude, Eq. (2) in the main text, that reads

R(Ω, ω) =

∞∫

−∞

dt eiΩt

∞∫

−∞

dt3 e−iω(t+t3)

∞∫

−∞

dt1 eiωt1

〈
Wg(0)M gζ

j (t, 0)eζ∆j(t3)uνM j
νf (t+ t3, 0)M fη

i (t1, 0)uη∆i(t1)eξM i
ξg(0, 0)

〉
. (S21)

Note that in the main text the second argument of the dressed dipoles has been skipped,

since it is always zero in the developed formalism.

3 Derivation of the time-domain expression from the

linear response function

The derivation of the expression for the XAS amplitude follows the same line of reasoning

as presented for the RIXS one in the previous section. Here, the starting point is the linear

response function J(t1), see Eq. (7.4a) on p. 190 of Ref. S14

J(t1) = 〈exp[iĤgt1]V̂ge exp [−iĤet1]V̂egρ̂g〉 . (S22)

In order to obtain the spectrum that depends on the excitation frequency Ω, the response

function is Fourier-transformed. After the generalization to a many-level system and employ-

ing the interaction representation via Eqs. (S9,S10), the absorption spectrum can be written

S9
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in terms of a time-correlation function of the dressed dipole moments, Eq. (S13),

X (Ω) =
1

Z

∞∫

−∞

dt1 eiΩt1
∑

G

〈G|e−βĤg(0)M̂ gη
f (t1, 0)eηe

ξM̂ f
ξg(0, 0)|G〉 , (S23)

where the symbols from Ref. S14 have been replaced by our notation as it has been done for

RIXS. In the next step, the nuclei are subjected to the dynamical classical limit leading finally

to the XAS amplitude obtained from classical ground-state dynamics and the corresponding

classical canonical average

X (Ω) =

∞∫

−∞

dt1 eiΩt1
〈
Wg(0)M gη

f (t1, 0)eηe
ξM f

ξg(0, 0)
〉

(S24)

which coincides with Eq. (1) in the main text after dropping the second time argument for

the dressed dipoles.

4 Expression for RIXS in Fourier space

Firstly an additional integration along an MD trajectory with the length T is performed in

Eq. (S21), owing to the stationarity of the canonical density

R(Ω, ω) =

〈
1

T

T∫

0

dτWg(τ)

∞∫

−∞

dt eiΩt

∞∫

−∞

dt3 e−iω(τ+t+t3)M gζ
j (τ + t, τ)eζ∆j(t3)uνM j

νf (τ + t+ t3, τ)

∞∫

−∞

dt1 eiω(τ+t1)M fη
i (τ + t1, τ)uη∆i(t1)eξM i

ξg(τ, τ)

〉
, (S25)

where also 1 = exp[−iωτ ] exp[iωτ ] has been inserted. One can show that if the dressed

dipoles’ product has a cyclic structure of indices, then the starting time can be chosen
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arbitrarily. A relevant example is the expression from Eq. (S25)

M gζ
j (τ + t, τ)M j

νf (τ + t+ t3, τ)M fη
i (τ + t1, τ)M i

ξg(τ, τ) ≡

M gζ
j (τ + t, 0)M j

νf (τ + t+ t3, 0)M fη
i (τ + t1, 0)M i

ξg(τ, 0) . (S26)

For a sufficiently large T one may extend formally the τ -integration interval to (−∞,∞).

Subsequently, one substitutes τ ′ := τ + t yielding

R(Ω, ω) =

〈
1

T

∞∫

−∞

dτe−iΩτ

∞∫

−∞

dτ ′ eiΩτ
′

∞∫

−∞

dt3 e−iω(τ
′
+t3)M gζ

j (τ ′, 0)eζ∆j(t3)uνM j
νf (τ

′ + t3, 0)

∞∫

−∞

dt1 eiω(τ+t1)M fη
i (τ + t1, 0)uη∆i(t1)eξM i

ξg(τ, 0)Wg(τ)

〉
. (S27)

Now, one can replace the damping function by its Fourier transform via

∆a(τ) =

∞∫

−∞

dω′eiω
′
τ∆̌a(ω

′) ≡
∞∫

−∞

dω′e−iω
′
τ∆̌a(−ω′) . (S28)

where ∆̌a(ω
′) := 1/(2π)

√
Γa/π(Γa + iω′)−1. By rearranging the integrations one gets a

product of two very similar constructs

R(Ω, ω) =

〈
1

T

∞∫

−∞

dω1

∞∫

−∞

dτ ′ eiΩτ
′
∞∫

−∞

dt3 e−iω(τ
′
+t3)M gζ

j (τ ′, 0)eζ∆̌j(ω1)eiω1t3uνM j
νf (τ

′ + t3, 0)

∞∫

−∞

dω2

∞∫

−∞

dτe−iΩτ

∞∫

−∞

dt1 eiω(τ+t1) M fη
i (τ + t1, 0)uη∆̌i(−ω2)e−iω2t1eξM i

ξg(τ, 0)Wg(τ)
〉
.

(S29)
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The form of the time arguments of the dressed dipoles suggests two additional variable

substitutions: τ ′1 := τ ′ + t3 and τ ′2 := τ + t1 that yield

R(Ω, ω) =

〈
1

T

∞∫

−∞

dω1

∞∫

−∞

dτ ′ eiΩτ
′
∞∫

−∞

dτ ′1 e−iωτ
′
1M gζ

j (τ ′, 0)eζ∆̌j(ω1)eiω1(τ
′
1−τ ′)uνM j

νf (τ
′
1, 0)

∞∫

−∞

dω2

∞∫

−∞

dτe−iΩτ

∞∫

−∞

dτ ′2 eiωτ
′
2 M fη

i (τ ′2, 0)uη∆̌i(−ω2)e−iω2(τ
′
2−τ)eξM i

ξg(τ, 0)Wg(τ)
〉
,

(S30)

which becomes after rearranging the integrals

R(Ω, ω) =

〈
1

T

∞∫

−∞

dω1∆̌j(ω1)

∞∫

−∞

dτ ′ e−i(ω1−Ω)τ
′
M gζ

j (τ ′, 0)eζ

∞∫

−∞

dτ ′1 e−i(ω−ω1)τ
′
1uνM j

νf (τ
′
1, 0)

∞∫

−∞

dω2 ∆̌i(−ω2)

∞∫

−∞

dτe−i(Ω−ω2)τeξM i
ξg(τ, 0)Wg(τ)

∞∫

−∞

dτ ′2 e−i(ω2−ω)τ
′
2M fη

i (τ ′2, 0)uη

〉
.

(S31)

Here, one recognizes the Fourier transforms of the dressed transition dipole moments

M̌ f
g (Ω) :=

∞∫

−∞

dt e−iΩtM f
g (t, 0) (S32)

and

M̌i
g (Ω) :=

∞∫

−∞

dt e−iΩtM i
g(t, 0)Wg(τ) (S33)
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leading to a compact expression

R(Ω, ω) =

〈
1

T

∞∫

−∞

dω1M̌
gζ
j (ω1 − Ω) eζ∆̌j(ω1)uνM̌ j

νf (ω − ω1)

∞∫

−∞

dω2M̌
fη
i (ω2 − ω)uη∆̌i(−ω2)eξM̌i

ξg (Ω− ω2)

〉
. (S34)

Finally, defining the gap fluctuation Ufg(τ) := ∆Efg(τ)−ω̄fg, where ω̄fg := 1/T
∫ T

0
dτ∆Efg(τ)

is the mean transition frequency along the MD trajectory, enables the definition of

M̄ f
g (t, 0) := Df

g (t) exp

[
i

∫ t

0

dτUfg(τ)

]
. (S35)

Since this quantity evolves exclusively on the nuclear timescale, its Fourier transform ˇ̄M f
g (Ω)

can be calculated numerically by standard routines using the MD time step. It is straight-

forward to show the relation

M̌ f
g (Ω) = ˇ̄M f

g (Ω− ω̄fg) (S36)

which is used to obtain the RIXS amplitude, Eq. (S34), via numerical available data.

5 Expression for XAS in Fourier space

The derivation follows the logic of that for the RIXS amplitude. After performing an addi-

tional integration along an MD trajectory in Eq. (S24), one can exploit the cyclic structure of

indices in the dressed dipoles analogously to Eq. (S26), and subsequently the XAS amplitude

takes the form

X (Ω) =

〈
1

T

T∫

0

dτ

∞∫

−∞

dt1 eiΩt1Wg(τ)M gη
f (t1 + τ, 0)eηe

ξM f
ξg(τ, 0)

〉
. (S37)
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If the length T of the trajectory is sufficiently long, one may extend the τ -integration and

substitute τ ′ := τ + t1 yielding after rearranging

X (Ω) =

〈
1

T

∞∫

−∞

dτ eiΩτ
′
M gη

f (τ ′, 0)eη

∞∫

−∞

dτe−iΩτWg(τ)eξM f
ξg(τ, 0)

〉
. (S38)

With the definitions of the Fourier transform and the mean transition frequency ω̄fg the

XAS amplitude takes the compact form

X (Ω) =

〈
1

T
ˇ̄M gη
f (ω̄fg − Ω)eηe

ξ ˇ̄Mf
ξg(Ω− ω̄fg)

〉
(S39)

which can be calculated using available numerical data.
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Modern X-ray spectroscopy has proven itself as a robust tool for probing the electronic structure of
atoms in complex environments. Despite working on energy scales that are much larger than those
corresponding to nuclear motions, taking nuclear dynamics and the associated nuclear correlations
into account may be of importance for X-ray spectroscopy. Recently, we have developed an efficient
protocol to account for nuclear dynamics in X-ray absorption and resonant inelastic X-ray scattering
spectra [Karsten et al., J. Phys. Chem. Lett. 8, 992 (2017)], based on ground state molecular dynam-
ics accompanied with state-of-the-art calculations of electronic excitation energies and transition
dipoles. Here, we present an alternative derivation of the formalism and elaborate on the developed
simulation protocol using gas phase and bulk water as examples. The specific spectroscopic features
stemming from the nuclear motions are analyzed and traced down to the dynamics of electronic
energy gaps and transition dipole correlation functions. The observed tendencies are explained on
the basis of a simple harmonic model, and the involved approximations are discussed. The method
represents a step forward over the conventional approaches that treat the system in full complexity
and provides a reasonable starting point for further improvements. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4984930]

I. INTRODUCTION

Understanding complex phenomena arising in physical
chemistry requires unraveling the underlying processes on
an atomistic level. Due to the energetic separation of the
core levels of different elements and the compact nature of
the corresponding orbitals, X-ray spectroscopy can reveal
highly local and element-specific information on the elec-
tronic structure of an absorbing atom and on its interac-
tion with the environment.1 In particular, X-ray absorption
spectra (XAS) probe those electronic transitions, where a
core electron is excited to the unoccupied molecular orbitals
(MOs), whereas resonant inelastic X-ray scattering (RIXS)
detects the emission signal resulting from the refill of the
core hole by electrons from occupied MOs. Thus, the com-
bination of both approaches provides detailed information on
the electronic structure of a sample in different aggregation
states.2,3

Along with the improvement of the instrumental resolu-
tion in X-ray spectroscopic studies, not only electronic but
also the vibrational transitions have recently attracted grow-
ing attention.4,5 In Ref. 6, RIXS has been even regarded to
be a complementary technique to the conventional vibrational
infrared and Raman spectroscopies. Although X-ray scat-
tering processes occur during few femtoseconds due to the
typically short lifetimes of core-excited states, indications of

a) Electronic mail: sergey.bokarev@uni-rostock.de
b) Electronic mail: sergei.ivanov@uni-rostock.de

ultrafast nuclear dynamics could be observed. For instance, the
inclusion of vibronic effects in RIXS spectra as well as coher-
ences between vibrational levels has been found essential for
the correct assignment of spectral features in simple model sys-
tems.7,8 Further, dissociative dynamics on the timescale of the
RIXS scattering process9–11 has also been detected. The RIXS
spectra of liquid water and alcohols initiated active debates in
the last decade due to the splitting of the 1b1 band, which
is not observed in the photoelectron spectra.12–15 Remark-
ably, this peculiar effect received controversial interpretation
resulting in six hypotheses,16 with four of them involving
different aspects of nuclear dynamics, such as ultrafast disso-
ciation and H-bond dynamics. Thus, the necessity for a robust
theoretical treatment of nuclear vibrational effects becomes
apparent.

Since solving the electronic-nuclear Schrödinger equa-
tion is feasible only for rather small model systems,17 differ-
ent approximate schemes are commonly applied. Frequently,
electronic spectra are obtained via single point electronic
structure calculations combined with phenomenological
broadening for the vibrational environmental effects, thereby
neglecting peculiarities of the underlying microscopic dynam-
ics, see, e.g., Ref. 18. A popular extension to this approach
that explicitly includes nuclear vibrations is to assume the
shifted harmonic potentials for the initial and final elec-
tronic states, leading to the analytical Franck-Condon descrip-
tion.7,19–22 However, this approach is not appropriate for cases
where strong anharmonicities, bond formation or cleavage,
and/or pronounced conformational changes are present. Here,
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real-time propagation of a nuclear wavepacket on pre-
calculated potential energy surfaces improves on the purely
harmonic description.8,21,23,24 Nevertheless, the construction
of such multidimensional potentials as well as the wavepacket
propagation itself is practically unfeasible for large numbers
of highly-excited electronic states (relevant for RIXS spectra)
and nuclear degrees of freedom.

Trajectory-based approaches have become very popular in
the last two decades in theoretical chemistry.25,26 In this con-
text, classical molecular dynamics (MD) method employing
forces according to the electronic ground state has proven itself
as a versatile approach to incorporate and analyze the spec-
tral fingerprints of nuclear dynamics in (non-)linear infrared
to ultraviolet spectroscopies.19,25,27,28 Extending this method-
ology to the X-ray range and performing quantum-chemical
static point calculations for each MD snapshot allows one
to utilize nuclear distributions in the phase space, leading
to a more realistic description of conformational and envi-
ronmental effects.18,29–31 However, this sampling approach is
capable of describing a distribution of structural motifs only,
without any (time-ordered) nuclear correlation, and a truly
time-domain approach is needed to account for both stati-
cal and dynamical effects. Interestingly, these effects could
be disentangled from each other experimentally, employ-
ing RIXS with excitation pulses strongly detuned from the
resonance.14

Recently, we have suggested a trajectory-based time-
domain approach for calculating XAS and RIXS amplitudes,
which is an improvement on the state-of-the-art sampling
approaches. The method employs the nuclear time evolution
provided by electronic ground state MD simulations. With the
help of the developed protocol, we were able to demonstrate
the importance of nuclear correlation effects on the example
of a gas phase water molecule.32 Here, we present an alter-
native but still rigorous derivation for the formalism, starting
from Fermi’s golden rule and the Kramers-Heisenberg expres-
sion for XAS and RIXS amplitudes, respectively, followed
by employing the interaction representation picture and the
dynamical classical limit19,33 as is described in Sec. II. To
retain nuclear correlations, one has to trace the entire man-
ifold of relevant electronic levels along the MD trajectory
in order to eliminate possible order and phase alterations.
A fully-automated procedure serving this purpose has been
developed as is illustrated in Secs. III and IV. The established
protocol is exemplified by oxygen K-edge XAS and RIXS of
gas phase and bulk water. However, in the present article we
mainly focus on methodological aspects rather than on the
particular application and, thus, the obtained results have been
compared against those of the sampling approach, not focus-
ing on the peculiarities of water X-ray spectra, see Sec. V.
Importantly, the sources of the observed differences have been
extensively analyzed.

The developed correlation-function technique provides a
step forward in the description of nuclear dynamical effects
in various X-ray spectroscopies. It can be applied to generally
anharmonic systems treating them in full dimensionality, that
is, without scanning potential energy surfaces. The limitations
of the method are summarized in Sec. V C, and conclusions
are presented in Sec. VI.

II. THEORY
A. Setting the stage

Let us consider a molecular system consisting of elec-
trons represented by Cartesian positions r̂ and momenta p̂
and nuclei described, respectively, by R̂ and P̂. In the frame-
work of the Born-Oppenheimer approximation (BOA), an
eigenstate of the total Hamiltonian, having the energy εα,
factorizes as |α〉= |a〉|A〉

; here and in the following nuclear
states denoted with a capital letter correspond to an elec-
tronic state indicated with the same small letter, e.g., a set
of nuclear states ��A〉

belongs to the electronic state |a〉.
The respective electronic energies are given as the solu-
tions of the electronic time-independent Schrödinger equation
(TISE)

Ĥel(r̂, p̂, R̂)|a〉 = Êa(R̂)|a〉, (1)

where Ĥel is the electronic Hamiltonian, see, e.g., Ref. 19.
Finally, the nuclear state ��A〉

is an eigenstate of the Hamiltonian
Ĥa(R̂, P̂) := Ĥnuc(R̂, P̂) + Êa(R̂) with the eigenvalue εA

Ĥa |A〉
= εA |A〉

, (2)

with Ĥnuc consisting of the nuclear kinetic and potential
(Coulomb) energy operators.19

In the following, atomic units will be used and the argu-
ments of the operators will be skipped unless the depen-
dency has to be emphasized. In general, the indices stemming
from electronic bra-states appear in superscript, whereas the
subscript ones correspond to the ket-states. For the sake of
brevity, the notation cξ := c∗ξ for any indexed complex quan-

tity and Âξ := Â†ξ for any indexed operator (vector) is used
throughout the manuscript. Furthermore, the Einstein notation
is employed; that is, indices that appear as a subscript and as
a superscript are summed over.

B. The XAS amplitude

In this section, the derivation of a time-domain expres-
sion for the XAS amplitude is presented in detail. We opted
to present it because of its relative simplicity, rather than
the derivation of a perhaps more interesting but cumber-
some expression for the RIXS amplitude. Still the present
derivation contains all the necessary steps and can thus serve
as a roadmap for deriving the RIXS amplitude in the time
domain. The latter is presented here only schematically with
all the details left for the supplementary material. In con-
trast to the derivation presented in the supplementary mate-
rial of Ref. 32, we do not employ optical response functions
here.

1. The quantum expression

The process under study consists of exciting the system
from an initial state |γ〉 to a final state |φ〉 by absorbing light
with angular frequency Ω and polarization vector with the
Cartesian components eξ , see the left panel in Fig. 1. Fol-
lowing Fermi’s golden rule, the X-ray absorption spectrum
is proportional to the XAS amplitude that can be written
down with the help of the notations introduced in Sec. II A
as
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FIG. 1. Schematic sketch of XAS (left) and RIXS (right) processes.

X(Ω) =
∑

γ,φ

e−βεγ

Z
���〈φ|eξ d̂ξ |γ〉���2δ (

Ω − (εφ − εγ)
)
, (3)

where β := 1/(kBT ) is the inverse temperature, kB is the
Boltzmann constant, Z :=

∑
γ exp[−βεγ] is the canonical par-

tition function, and d̂ξ is the ξ-th component of the dipole
operator. The Dirac δ-function ensures the energy conservation
during the process.

In order to formulate the time-domain version of Eq. (3),
the δ-function is represented as the time integral

δ (Ω −Ω0) =
1

2π

∞∫

−∞
dt ei(Ω−Ω0)t , (4)

yielding

X(Ω) =
1

2πZ

∑

γ,φ

∞∫

−∞
dt ei(Ω−(εφ−εγ ))t

× e−βεγ 〈γ |d̂ηeη |φ〉〈φ|eξ d̂ξ |γ〉 (5)

in the fashion similar to the derivation of the infrared and
UV/Vis spectroscopies.19,34–37 Alternatively, this expression
follows from time-dependent perturbation theory as is exer-
cised in Ref. 33, see also Ref. 32. Note that in order to keep
notations as compact as possible the transition dipoles are
assumed to be projected on the polarization vector and the cor-
responding coordinate indices ξ and η are dropped throughout
the theory section without any loss of generality. They will be
restored in the final expressions.

Applying the BOA leads to the aforementioned factoriza-
tion of the states: |γ〉= |g〉|G〉

and |φ〉= |f 〉|F〉
, which after

rearranging the complex exponential in Eq. (5) yields

X(Ω) =
1

2πZ

∑

G,F

∞∫

−∞
dt eiΩt

×〈G|e−βεG eiεGtD̂g
f e−iεF t |F〉〈F |D̂f

g |G〉, (6)

where D̂a
b(R̂) :=

〈
a|d̂(r̂, R̂)|b〉 is the electronic transition dipole

moment that remains an operator in the nuclear space. In order
to obtain the time evolution for the dipole operator, one may
substitute the energies εF and εG, being the eigenvalues of Ĥf

and Ĥg, correspondingly, see Eq. (2), by the operators them-
selves. Since after this substitution there is no dependence
on the final nuclear states left in Eq. (6), one may employ
the closure for |F〉

to eliminate the projectors |F〉〈
F |, leading

to

X(Ω) =
1

2πZ

∞∫

−∞
dt eiΩt

∑

G

〈
G|e−βĤg eiĤgtD̂g

f e−iĤf tD̂f
g |G

〉
.

(7)

The mission to obtain a practical time-domain analogue of
Eq. (3) would be accomplished if Ĥf coincided with Ĥg. This
difference can be circumvented by the following steps. First,
one rewrites Ĥf = Ĥ0 + ∆Êf 0, ∆Êf 0 := Êf − Ê0 with the index
0 standing for the electronic ground state. Second, the energy
gap is treated as a perturbation operator that enables switching
to the interaction representation19,33

e−iĤf t = e−iĤ0t Ŝf (t, 0), (8)

where the scattering operator is defined as

Ŝf (t, t0) := exp+


−i

t∫

t0

dτ ∆Êf 0(τ)


. (9)

The symbol exp+ in Eq. (9) represents a (positively) time-
ordered exponential. The time argument of the integrand
therein stands for the time evolution according to the
Heisenberg equation of motion with respect to the electronic
ground state Hamiltonian, Ĥ0. The equations for |g〉 can be
obtained by taking the adjoint from Eqs. (8) and (9) and substi-
tuting f by g. Importantly, the choice of the electronic ground
state as the reference is motivated by the initial condition
before absorbing a photon and is beneficial in view of potential
use of classical MD methods, which are available mostly for
the ground state.

Utilizing the interaction representation, Eq. (8), for the
XAS amplitude yields

X(Ω) =
1

2πZ

∞∫

−∞
dt eiΩt

∑

G

〈
G|e−βĤg(0)Ŝg(t, 0)

× D̂g
f (t)Ŝf (t, 0)D̂f

g(0)|G
〉

. (10)

Introducing the “dressed” dipole moment

M̂a
b (t, 0) := Ŝa(t, 0)D̂a

b(t)Ŝb(t, 0) (11)

leads to a compact form for the XAS amplitude

X(Ω) =
1

2πZ

∞∫

−∞
dt eiΩt

∑

G

〈
G|e−βĤg(0)M̂g

f (t, 0)M̂ f
g(0, 0)|G

〉
,

(12)

where we have used that M̂ f
g(0, 0) ≡ D̂f

g(0).

2. The dynamical classical limit

In order to utilize well-established classical MD meth-
ods in combination with state-of-the-art quantum chemistry
tools, the quantum mechanical expression for the XAS ampli-
tude, Eq. (12), is subjected to the dynamical classical limit
for the nuclei.19,33 In particular, the nuclei are represented by
point particles and the operators are replaced by continuous
dynamical functions. Consequently, the trace over the initial
nuclear states |G〉

is substituted by an integral over the phase
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space and time-evolved operators become dynamic functions.
Naturally, the time ordering of exponentials in Eq. (9) becomes
irrelevant and disappears.

Performing all these replacements in Eq. (12) results in

X(Ω) =
1

2πZ

∞∫

−∞
dt eiΩt

×
∫∫

dR0dP0e−βHg(0)Mg
f (t, 0)M f

g(0, 0), (13)

where Z becomes the sum of classical partition functions cor-
responding to potential energy surfaces of all electronic states
in question, Z =

∑
g ∫ ∫ dR0dP0 exp[−βHg(0)]. Since the aim

is to use classical MD methods, the observables should have
the form of a canonical ensemble average,

〈
•
〉
, with respect to

the Hamilton function of the electronic ground state

〈A〉 :=
1
Z0

∫∫
dR0dP0 e−βH0(R0,P0) A(R0, P0), (14)

where Z0 := ∫ ∫ dR0dP0 exp[−βH0(R0, P0)]. Using the stan-
dard trick of adding and subtracting H0 and performing some
simple algebra leads to

X(Ω) =
1

2π

∞∫

−∞
dt eiΩt

〈
Wg(0)Mgη

f (t, 0)eηe
ξM f

ξg(0, 0)
〉
, (15)

where the omitted polarization vectors have been restored.
Here, the weighting function is

Wg(0) := e−β[∆Eg0(0)]/Z (16)

with the normalization factor

Z :=

〈∑

g

e−β[∆Eg0(0)]
〉
, (17)

see supplementary material. Equation (15) for the XAS ampli-
tude has the desired form of the Fourier transform of an
equilibrium time correlation function.

C. The RIXS amplitude

It was pointed out in the Introduction that the XAS spec-
tra considered above correspond to one-photon processes,
whereas more information can be obtained from a two-photon
process, e.g., RIXS. Here, the system is first excited from the
initial state |γ〉 to an intermediate state |ι〉 by absorbing light
with a frequency Ω and a polarization vector with the com-
ponents eξ , see the right panel in Fig. 1. Second, the system
transits from the state |ι〉 to the final state |φ〉 by emitting
light with the frequency ω and the polarization vector with
components uη .

Following Kramers and Heisenberg, the RIXS amplitude
reads38

R(Ω,ω) =
∑

γ,φ

e−βεγ

Z

������
∑

ι

〈φ|d̂ηuη |ι〉〈ι|eξ d̂ξ |γ〉
Ω − (ε ι − εγ) + iΓι

������
2

× δ
(
Ω − (εφ − εγ + ω)

)
, (18)

where the dephasing rate Γι takes into account the finite life-
time of the state |ι〉. This implies that intricate electron-nuclear

dynamics therein, including non-radiative relaxation mecha-
nisms, such as the Auger one, is modeled by a simple mono-
exponential decay. Note that the sum in Eq. (18) is under the
square; thereby, coherences are taken into account.

In order to get a classical time-domain expression for
RIXS, the same pathway as for XAS is followed, as is sum-
marized below and detailed in the supplementary material. To
start, the integral representation of a δ-function, Eq. (4), is
employed. Additionally, the denominator in Eq. (18) is recast
into the time domain via

1
ω − ω0 ± iΓα

= ∓i

∞∫

−∞
dt e±i(ω −ω0)t∆α(t), (19)

with the damping function

∆α(t) := e−Γα tθ(t), (20)

where θ(t) is the Heaviside step function. The latter is intro-
duced in order to have the integrations from −∞ to ∞. Fur-
ther, the BOA is applied and the lifetimes of the intermediate
states are assumed to depend on the corresponding electronic
level only, i.e., Γα = Γa. Then the interaction representation
is employed in order to obtain the time evolution for the
dipole operators with respect to the electronic ground state,
see Eqs. (8) and (9). To formulate a practical recipe involving
classical MD methods, the dynamical classical limit is per-
formed for nuclear degrees of freedom following Sec. II B 2.
Finally, the resulting RIXS amplitude possesses the form of a
multi-time integral over the classical canonical average with
respect to the electronic ground state Hamilton function

R(Ω,ω) =
1

2π

∞∫

−∞
dt eiΩt

∞∫

−∞
dτ1 e−iω(t+τ1)

∞∫

−∞
dτ2 eiωτ2

×
〈
Wg(0)Mgζ

j (t, 0)eζ∆j(τ1)uνM j
νf (t + τ1, 0)

×M fη
i (τ2, 0)uη∆i(τ2)eξM i

ξg(0, 0)
〉
. (21)

This expression for the RIXS amplitude together with the
one for the XAS amplitude, Eq. (15), is the central theoret-
ical result of this work. These expressions coincide with the
ones derived via optical response functions in Ref. 32. Similar
to the corresponding analogues in the UV/Vis domain,33,34,39

these expressions provide a general and unified framework for
simulating XAS and RIXS amplitudes.

III. METHODOLOGY
A. Tracing the states

In this section, we aim at formulating practical recipes
for evaluating the time-domain expressions for the XAS and
RIXS amplitudes, Eqs. (15) and (21). One notices that both
are fully determined by the time evolution of the transition
dipole moments, Da

ξb(t), and the electronic energies, Ea(t).
To reiterate, the evolution is carried out with respect to the
electronic ground state potential energy surface.

Unfortunately, the functional dependence of the afore-
mentioned ingredients on nuclear coordinates is not available
for any realistic many-particle system. A possible solution is
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to solve the TISE at each MD timestep independently using
any established quantum-chemistry method. This, however,
would lead to two problems. First, the numbering of the eigen-
values is arbitrary at any time instance. Second, the phases
of the eigenstates are ambiguous. Ignoring these obstacles
would ultimately destroy the dynamical correlation effects that
are the essence of the developed formalism. Thus, evaluat-
ing the time correlation functions requires tracing the states
along MD trajectories, in order to have a continuous evolu-
tion of the respective energies and phases. Technically, the
order and phases can be fixed at t = 0 and then followed
by identifying the states of the same character at future
times.

In order to find a mapping of an unordered set of states
{|b̃(t)

〉} onto the desired ordered set {|a(t)
〉}, one can formally

make the expansion

|a(t)
〉
=

∑

b̃

〈
b̃(t)|a(t)

〉 |b̃(t)
〉
, (22)

assuming that both sets are complete. Then, one can
define a generalized permutation matrix, Y(t), with ele-
ments Y b̃

a (t) :=
〈
b̃(t)|a(t)

〉
that brings any unordered observ-

able, Ãd̃
c̃ (t), to the correct order via Ab

a(t)=Yb
d̃

(t)Ãd̃
c̃ (t)Y c̃

a (t).
Note that the matrix Y(t) contains only one non-zero (complex
unity) element per column and row by construction.

Since the correctly ordered set of states {|a(t)
〉} is not

available, one can start at t = 0 and to approximate the
respective matrix elements as

Y b̃
a (∆t) ≈ Ob̃

a(∆t, 0) :=
〈
b̃(∆t)|a(0)

〉
, (23)

where ∆t is the next time instance, e.g., next MD timestep.
Since Ob̃

a(∆t, 0) might contain many non-zero contributions
per row/column, one finds a maximal one in each column
of O(∆t, 0), normalizes this (complex) number to unity, and
sets the other to zero. In order to verify the uniqueness of the
result, the same procedure is performed row-wise. If this self-
consistency check is failed, it implies that the MD timestep is
too large and has to be reduced. The restored set of states at
t = ∆t serves as a basis for ordering the states at t = 2∆t and
so on along the MD trajectory. Since similar problems arise
in surface hopping methods,40 the developed procedure might
be of use there as well.

B. An efficient evaluation of XAS and RIXS amplitudes

The XAS amplitude, Eq. (15), is the Fourier transform of
an equilibrium time correlation function. Moreover, the RIXS
amplitude, Eq. (21), contains a multi-time correlation function
and three time integrations, only one of those being decoupled
from the other two. This implies calculating a two-dimensional
time integral on top of evaluating the correlation functions
(each being a nested time integration as well). A handy way of
making this numerically efficient can be adopted from vibra-
tional spectroscopy,27 where the stationarity of the canonical
density is utilized implying that any time instance can be con-
sidered as the starting one. Integrating over all initial times with
the help of the convolution theorem leads to XAS and RIXS
amplitudes in a form of products of the Fourier-transformed
(indicated by the reversed hat) dressed dipole moments

M̌ f
g(Ω) =

∞∫

−∞
dt e−iΩtDf

g(t)ei ∫ t
0 dτ∆Efg(τ), (24)

see supplementary material for details. Note that in the dynam-
ical classical limit, the energy gap between the excited and
the electronic ground states is canceled out, and only the gap
between the states f and g remains in the exponent. Since the
complex exponential depending on the energy gap oscillates
on the electronic timescale, which is not accessible by MD, the
common recipe for separating the highly oscillating contribu-
tion is employed.19 One defines the mean transition frequency
between two electronic states f and g as the average along the
trajectory of a total length T, ω̄fg := 1/T ∫ T

0 dτ∆Efg(τ), and the
gap fluctuation as Ufg(τ) := ∆Efg(τ) − ω̄fg. Substituting them
into Eq. (24) leads to

M̌ f
g(Ω) ≡ ˇ̄M f

g(Ω − ω̄fg), (25)

where M̄ f
g(t, 0) := Df

g(t) exp[i ∫ t
0 dτUfg(τ)]. The bars above the

quantities generally indicate that the mean electronic gap has
been removed and they evolve on the nuclear time scale and,
thus, can be Fourier-transformed using the data provided by
MD.

Finally, with the help of the convolution theorem, the XAS
amplitude can be expressed as a product

X(Ω) =
1

2πT

〈
ˇ̄Mg

f (ω̄fg −Ω) ˇ̄Mf
g(Ω − ω̄fg)

〉
, (26)

where M̄f
g(t, 0) := Wg(t)Df

g(t) exp[i ∫ t
0 dτUfg(τ)]; note the

different signs in the argument of the two functions in Eq. (26).
Following the same approach, the RIXS amplitude can be

reformulated as

R(Ω,ω) =
1

2πT

〈 ∞∫

−∞
dω1

ˇ̄Mg
j

(
ω̄jg − [Ω − ω1]

)
∆̌j(ω1)

× ˇ̄M j
f

(
[ω − ω1] − ω̄jf

)

×
∞∫

−∞
dω2

ˇ̄Mi
g

(
[Ω − ω2] − ω̄ig

)
∆̌i(−ω2)

× ˇ̄M f
i

(
ω̄if − [ω − ω2]

) 〉
, (27)

where ∆̌j(ω) := 1/(2π)
√
Γj/π(Γj + iω)−1. Here, one still has

to perform a convolution due to the finite lifetime of the
intermediate states.

To sum up, the calculation of both spectra is accom-
plished by performing single-variable integrations using the
MD timestep. It is worth mentioning that this structure of the
final result naturally enables identifying the contribution from
any particular initial, intermediate, and/or final state. Note also
that identifying the contributions from the underlying geo-
metrical motifs can be performed analogously to vibrational
spectroscopy.41,42

C. Sampling and time-domain approaches

As it has been stated in the Introduction, the conventional
approach to the X-ray amplitudes, Eqs. (3) and (18), is based
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on static single point calculations for structures sampled from
statistical ensembles. Note that the sampling amplitudes,
which correspond to the limit of fixed nuclei of the respec-
tive time-domain expressions, can be brought to the same
functional form as the latter, see supplementary material. This
makes the analysis of the contributions of the nuclear dynam-
ics, performed via comparison of the time-domain results to
their sampling counterparts, convenient, see Sec. V B. In order
to conduct a fair comparison, the sampling procedure and the
time-domain method have employed identical large data sets.

IV. COMPUTATIONAL DETAILS

The MD simulations have been performed using the
Gromacs program package ver. 4.6.543 employing the anhar-
monic qSPC/Fw water model with a Morse potential for the O–
H intra-molecular potential.44 The “standard protocol”27 for
calculating spectra in the canonical ensemble has been used,
that is, a set of uncorrelated initial conditions has been gener-
ated from an NVT MD run with the target temperature of 300 K
imposed by the Langevin thermostat. These initial conditions
have been further used as starting points for simulating micro-
canonical (NVE) trajectories, each 0.5 ps long, yielding a spec-
tral resolution of ≈8 meV. The MD timestep of 0.1 fs has been
used to provide a successful tracing of the states as described
in Sec. III A. The spectra calculated along the NVE trajecto-
ries have been averaged to yield the result for the canonical
ensemble.

Two systems have been considered: (a) an isolated water
molecule, referred to as gas phase water; (b) a cubic box
consisting of 466 water molecules under periodic bound-
ary conditions with the box edge length of 2.4 nm, which
corresponds to a density of 1.0 g/cm3, referred to as bulk
water.

The TISE [Eq. (1)] has been solved for each MD snap-
shot at the level of the ground state density functional the-
ory with the Perdew-Burke-Ernzerhof functional45 using the
ORCA ver. 3.0.3 program package.46 Tight convergence cri-
teria (10�7 hartree) and a standard grid (ORCA grid3) have
been employed. The def2-QZVPP basis set for oxygen and
hydrogen47 together with (5s5p)/[1s1p] generally contracted
Rydberg functions on oxygen have been used. Rydberg con-
tractions have been obtained as atomic natural orbitals48,49

constructed of primitives with universal exponents (see
Ref. 50). Such a small Rydberg basis does not allow one to
reproduce the high-energy tail of the absorption spectrum51

but enables description of the lowest states just above the
core-excitation threshold. The energies of the singly-excited
valence and core states have been approximated by the dif-
ferences of the respective Kohn-Sham orbital energies; the
corresponding dipole transition moments have been calculated
with respect to these orbitals.52 This approximate quasi–one-
electron method could be a reasonable compromise between
accuracy and efficiency, as has been demonstrated for various
kinds of systems.7,51–54 It will be shown that it still yields a
satisfactory agreement with experimental data for the present
case, see Secs. V and V C for a discussion.

In order to achieve a feasible treatment of the bulk system,
a hybrid quantum mechanics/molecular mechanics (QM/MM)

partitioning has been performed. For each snapshot and each
selected molecule individually, the whole simulation box has
been translated to the mass centre frame of that molecule which
has been further treated via the QM method. The atoms of
all surrounding molecules have been considered as classical
point charges that enter the QM calculation via a static external
potential.

Since the QM calculations here are to be performed for
an isolated (hence non-periodic) system, surface effects due
to the finite box have been “smoothed out” by applying a
spherically symmetric cutoff function f (r) to the charges, i.e.,

f (r) :=



1, r < Rin

2(r − Rin)3

(Rout − Rin)3
− 3(r − Rin)2

(Rout − Rin)2
+ 1, Rin ≤ r ≤ Rout

0, r > Rout

,

(28)
with a smoothing region [Rin, Rout], where r is the distance
from the origin to the mass center of a surrounding water
molecule. We have employed the values Rin = 5 Å and Rout

= 8 Å to safely include all charges in the first solvation shell.
In order to preserve the charge neutrality of the entire sys-
tem the same function value has been applied to all point
charges belonging to the same molecule. Convergence has
been reached employing 120 trajectories for gas phase water
and 70 for bulk water.

In order to mimic the finite width σ of the exciting
light pulse, as given by experimental conditions, the spectra,
Eqs. (15) and (21), have been convoluted with normalized
Gaussian functions exp[−Ω2/(2σ2)]/(

√
2πσ2) in Ω-direction

with σ = 0.025 eV and σ = 0.25 eV as typical small and large
widths, respectively.55 Naturally the effects in question should
be mostly pronounced when σ is small. However, it is impor-
tant to also demonstrate them for large values of σ, when
vibronic features are smeared out. Additionally, the XAS
amplitude has been convoluted with normalized Lorentzian
functions Γf /π · [Γ2

f +Ω2]
−1

taking into account the finite life-
time of the core-excited final states. For the results in Sec. V,
the value Γa = 0.25 fs�1, as a typical decay rate for core holes,56

has been used for all final states entering the XAS ampli-
tude as well as for all intermediate states entering the RIXS
amplitude, where the finite lifetime is already accounted for
by construction, see Eqs. (18) and (21).

The number of considered states that contribute to the
spectra is determined by the absorption and emission fre-
quency range of interest. Here, Ω ∈ [532.8, 540.8] eV and
ω ∈ [509.8, 540.8] eV requires the consideration of 31 states
for both water setups. Note that all spectra have been shifted
globally by 24.8 eV such that the peak structure roughly
matches the experimental data for bulk and gas phase water.13

Finally, the data shown in Sec. V correspond to an average
over orthogonal polarizations of the incoming and the emitted
light57,58 owing to the isotropy of the gas and liquid phases.

V. RESULTS AND DISCUSSION

The proposed methodology has been first suggested by us
in Ref. 32 and applied to K-edge oxygen spectra of a gas phase
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water molecule. Nuclear correlation effects have been demon-
strated to be essential for second-order X-ray spectroscopy.
In particular, RIXS has turned out to be a sensitive technique
for the effects in question, whereas XAS exhibited almost no
traces of the underlying nuclear dynamics. However, the origin
of the observed phenomena has not been analyzed and will be
the main concern here.

A. XAS

In this section, the results for the XAS amplitude obtained
via various simulation scenarios are discussed and compared
against each other. We would like to stress again that the focus
is put on the differences due to nuclear dynamics rather than on
the peculiarities of the water spectra themselves, see Ref. 15
and references therein.

In Fig. 2 the XAS amplitudes for the small (σ = 0.025 eV)
and the large (σ = 0.25 eV) width of the excitation pulse
provided by the sampling and the time-domain approach
are shown for gas phase as well as for bulk water. The

FIG. 2. XAS amplitudes of water for a small (σ = 0.025 eV) and a large
(σ = 0.25 eV) pulse width are shown in panels [(a), (c)] and [(b), (d)], respec-
tively. The gas phase spectra are presented in panels (a) and (b), whereas
panels (c) and (d) are dedicated to that of bulk water. Black lines represent
normalized experimental data for bulk and gas phase water from Ref. 13.
Blue and red lines depict the time-domain approach results according to
Eq. (26), whereas filled (green and orange) curves correspond to the sam-
pling method. The unoccupied molecular orbitals to which the transition is
performed are shown near the respective spectral peaks. Inset zooms on the
1s→σ∗(2s) [1a1→ 4a1] transition in the gas phase with the imposed infinite
lifetime (Γf → 0), where the frequency axis is shifted by the peak position ∆E
= 534.3 eV.

agreement with experimental data, depicted with solid black
curves therein, is fairly good for the gas phase and qualita-
tively correct for the liquid; note that the widths were not fit.
Before comparing the spectra, we assign the peaks in the XAS
to the underlying transitions in order to connect to the energy
level structure of the water molecule. The respective unoc-
cupied molecular orbitals are exemplified near the spectral
peaks. In particular, the first two peaks (534.3 eV and 536.4 eV)
correspond to the 1s→σ∗(2s) [1a1→ 4a1] and 1s→σ∗(2p)
[1a1→ 2b2] transitions, respectively. Other peaks can be
attributed to the transitions from 1s to 3p Rydberg orbitals of
oxygen.

Comparing the results of the sampling and correlation
approaches for the gas phase water molecule with the small
linewidth, Fig. 2(a), one sees that there are subtle but evident
differences in intensities for all the peaks apart from the one
with the highest energy. Their origin can be clearly traced back
by setting the lifetime of the final core-excited states to infin-
ity (Γf → 0), see inset. Here, observed pronounced side bands
can be directly related to the vibrational modes of the water
molecule, in particular to the bending and stretching ones,
which have the frequencies of ≈1500 cm�1 and ≈3800 cm�1,
respectively. We stress that these side bands can not be pro-
vided by the sampling approach due to its intrinsic limitations.
Nonetheless, all these discrepancies disappear at the large
pulse width, see Fig. 2(b). Note that the two spectra have
the same area by construction, see supplementary material
for a proof, and thus increasing the width of the convoluted
Gaussian naturally eliminates the differences between the two
approaches. Therefore, one can view this coincidence as the
cross-check for the implementation.

The same comparison is performed for bulk water, see
panels (c) and (d) in Fig. 2. Here, the differences between the
pulse widths and especially between the methods are vanish-
ing. Interestingly, the discrepancies are negligibly small even
for infinite lifetimes, see Fig. S1 in the supplementary material.
This illustrates the statement that XAS is not a very sensitive
observable for nuclear correlation effects.

To sum up, nuclear correlations do not influence XAS
amplitudes for bulk water under any circumstances, whereas
for gas phase the (small) differences are seen only if the
pulse width and/or lifetime broadening of the final states
are particularly small. In principle, the RIXS amplitude con-
tains more information and, thus, could be more promis-
ing for observing nuclear effects, as will be shown in
Sec. V B.

B. RIXS

In Fig. 3 a 2D spectrum for bulk water obtained according
to Eq. (27) is shown. Although it gives an overall impression
about the spectral shape in the entire excitation and emis-
sion ranges, it is hard to make a quantitative analysis on
its basis. Therefore, we consider a particular cut for a fixed
excitation frequency Ω that corresponds to a maximum of
the spectral peak assigned to the 1s→σ∗(2s) [1a1→ 4a1]
absorption transition, see vertical line in Fig. 3; note that
the particular excitation frequencies are different for the gas
phase (534.2 eV) and bulk (535.0 eV) cases. Note further
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FIG. 3. 2D RIXS spectrum for bulk water (small pulse width) obtained by
means of the time-correlation approach, Eq. (27). The dashed vertical line
indicates the position of the cut depicted in Fig. 4.

that the tendencies observed for cuts at different excitation
frequencies are qualitatively similar, see Ref. 32 and supple-
mentary material. The agreement with the experimental data
is qualitative, given that the widths were not fit to reproduce
experiment.31

Three spectral ranges corresponding to peaks in the afore-
mentioned cut are shown for various simulation scenarios in
Fig. 4. These peaks can be related to transitions from the
intermediate (core-excited) state to final (ground or valence-
excited) states, see the respective orbitals from which the
emission takes place in panels (a). In particular, the peak
in panel (a1) can be assigned to the σ(2s)→ 1s [2a1→ 1a1]
core-hole refill. In panel (a2), the peaks at 520.2, 524.6, and
526.3 eV stand for the refill from bonding σ(2p) [1b2] and
two lone-pairs n(2p) [3a1 and 1b1], respectively. Panel (a3)
contains the elastic peak, that is, the refill from the antibond-
ing σ∗(2s) [4a1] orbital populated in the first step of the RIXS
process. In panels (a1)-(a3) one sees pronounced differences
between the methods in case of the small pulse width. A
prominent vibronic structure is observed for all peaks with
the frequencies easily attributed to vibrational normal modes,
see, e.g., inset where the fingerprints of the bending mode can
be clearly seen. Although these structures disappear for the
large pulse width, see panels (b) therein, differences in inten-
sity remain for the elastic and for the lone-pair peak with the
highest energy (526.3 eV). Moreover, the energetically low-
est transition in panel (b1) still exhibits a pronounced peak
structure when computed with the time-correlation approach.
Importantly, the results for bulk water still reveal noticeable
differences between the methods for all pulse widths consid-
ered, see panels (c1), (c3), (d1), and (d3). In particular, the sam-
pling approach overestimates the intensity of the elastic peak
and underestimates the intensity of the inelastic ones and, in
addition, reveals no vibronic progressions. This underlines the

FIG. 4. Cuts through RIXS spectra for various simulation scenarios. The exci-
tations frequencies are fixed at 534.2 eV and 535.0 eV for the gas phase and
the bulk, respectively. The colour-code and the panel structure are the same
as in Fig. 2. Panels (a) and (c) correspond to σ = 0.025 eV whereas (b) and
(d) to σ = 0.25 eV. Each panel is split into three sub-panels according to the
spectral ranges that exhibit intensity (note multiplicative factors therein), see
Fig. 3. The black line represents the respective experimental data for the gas
phase and for the bulk system from Refs. 59 and 13, respectively. Inset zooms
on the left peak in panel (a2) with ∆E = 520.2 eV, which corresponds to the
maximum intensity of the 1b2→ 1a1 transition.

statement that RIXS spectra are sensitive to correlation effects
in the nuclear dynamics. Most importantly, one sees clear
traces of nuclear dynamics at all realistic experimental con-
ditions considered.

In order to shed light on the origin of the observed devi-
ations, we consider all possible sources, see Eq. (21), that is,
the time correlation of the transition dipoles and that of the
energy gaps. The former corresponds to the effects beyond
the Condon approximation, which can be easily elucidated by
setting the dipoles to their values at, e.g., t = 0. It turns out
that the deviations due to the Condon approximation are small
for inelastic peaks, see Fig. 5, and thus cannot be responsi-
ble for the substantial differences observed in RIXS spectra.
This implies that these differences are caused by the time
dependence of the energies involved. Interestingly, the afore-
mentioned deviations for the elastic peak are notable only
for correlated spectra computed here. Importantly, the Con-
don approximation increases the intensity of the elastic peak,
whereas correlation effects suppress it. Since the two act in
opposite directions, one can employ the Condon approxima-
tion results for the analysis, as the true non-Condon differences
between the sampling and correlation methods can be only
more pronounced.

B. Peer reviewed publications

86



224203-9 Karsten et al. J. Chem. Phys. 146, 224203 (2017)

FIG. 5. The accuracy of the Condon approximation. The same cut as in Fig. 4
panels (c) is shown with the same colour code corresponding to bulk water
withσ = 0.025 eV. Gray dashed and solid curves correspond to the reference
results without Condon approximation for the time-domain approach and the
sampling, respectively.

To investigate the role of the energy time-dependencies,
we consider a particular RIXS channel, g→ i→ f , and impose
the Condon approximation as it has been justified for inelas-
tic peaks for the present system. The corresponding RIXS
amplitudes for the sampling, RS , and the time-correlation
approach, RC , taken at the mean transition frequencies ω̄ig

and ω̄if can be reduced to

RS/C(ω̄ig, ω̄if ) ∝
∞∫

0

dt CS/C
gif (t), (29)

where
CS

gif (t) := e−σ
2t2/2Re

〈
eiUgf (0)t ��χS

if (0)��2〉 (30a)

CC
gif (t) := e−σ

2t2/2Re
〈
ei ∫ t

0 dτUgf (τ) χC∗
if (t)χC

if (0)
〉

, (30b)

as it is shown in the supplementary material. The func-
tionsRS/C(ω̄ig, ω̄if ) approximately describe the heights of the
corresponding spectral peaks at maximum. Here,

χS/C
if (t) :=

∞∫

−∞
dτ LS/C

if (τ; t), (31)

with
LS

if (τ; 0) := exp[iUif (0)τ]∆i(τ) (32a)

LC
if (τ; t) := exp[i

t+τ∫

t

dτ̄Uif (τ̄)]∆i(τ), (32b)

where ∆i is the damping function defined in Eq. (20), and
Uab(t) are the gap fluctuations; note that χS

if (t) is evaluated

only at t = 0. Importantly, CS
gif (t) consists of the averaged prod-

uct of the phase w.r.t. Ugf (0) and the squared value of χS
if (0),

which is just a number. In contrast, CC
gif (t) is constructed from

the averaged product of the two expressions, both involving
autocorrelation functions, since the phase factor in Eq. (30b)
can be treated as an autocorrelation function in the framework
of the cumulant expansion.19,33 Note that the two autocorrela-
tion functions involve different gap fluctuations, i.e., U if and
Ugf .

To proceed, the following approximate factorization is
performed

CC
gif (t) ≈ Re

[
e−σ

2t2/4
〈
ei ∫ t

0 dτUgf (τ)
〉]

×Re
[
e−σ

2t2/4
〈
χC∗

if (t)χC
if (0)

〉]
; (33)

here the Gaussian has also been split into two in order to
smooth both parts in a similar way. The same factorization is
then performed for CS

gif (t) defined in Eq. (30a). These factor-
izations are possible due to the absence of correlations between
the two parts as can be shown numerically and seen from Fig. 6.
Thus, the aforementioned averaged product of the two factors
has now become the product of the averages.

The relevant quantities are summarized in Fig. 6, whose
two rows correspond to the peaks exhibiting the most pro-
nounced differences in the RIXS spectra, that is, the elastic
one and the peak with the lowest emission energy, see Fig. 4;
the analysis for the other three peaks is shown in the supple-
mentary material. The first column contains CS/C

gif , the second
and third columns depict the first and second parts in Eq. (33),
respectively, as well as the corresponding sampling counter-
parts. The fourth column shows the averaged absolute values of
the Fourier-transformed gap fluctuations, i.e., the spectral den-
sity function. The intensity differences in question are given
by the difference of the areas under the CS/C curves in the
first column therein. To reiterate, although for the elastic peak
the Condon approximation is not justified, going beyond it will
make the effect in question even stronger, as becomes apparent
from Fig. 5.

For elastic scattering g = f, and hence the first part in
Eq. (33) reduces to exp[−σ2t2/4] by construction, as Ugg(τ)
≡ 0; the same naturally applies to its sampling counterpart, see
panel (a2). Therefore, CS [shaded area in panel (a1)] exhibits a
Gaussian decay stemming from the excitation pulse. The solid
curve therein, CC, contains in addition correlation effects due
to the second part of Eq. (33) shown in panel (a3), that shrink
the area under the curve (a1), and are thus responsible for the
observed intensity difference in the spectra Fig. 5 panel (3).

FIG. 6. The origin of different peak intensities. The colour code is the same
as in Fig. 4. Row (a) corresponds to the intensity of the elastic peaks in Condon
approximation, see orange and red curves in Fig. 5 panel (3). The lower row
(b) is related to theσ(2s)→ 1s [2a1→ 1a1] transition, see Fig. 5 panel (1). The
first column contains the time-dependent functions that determine the peak
intensities, see Eqs. (30a) and (30b). The second and third columns feature
the first and the second part of the factorization in Eq. (33), respectively,
as well as the sampling counterparts. In the fourth column one can see the
spectral densities (averaged absolute value of the Fourier-transformed gap
fluctuations), where the results are convoluted with a normalized Gaussian
(σ = 0.025 eV).
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The same analysis performed for the inelastic peak imme-
diately suggests that the shape of CS/C, panel (b1), is dictated
almost exclusively by the first part in Eq. (33) presented in
panel (b2). The observed rapid decay (≈10 fs) in turn implies
that the peculiarities of the time-dependence of the correlation
function constituting the second part, panel (b3), are irrelevant.
Thus, its value at t = 0, which can be notably different for the
two approaches, controls the magnitude of CS/C and, hence,
the signal intensity at maximum.

One can show on the basis of a simple harmonic model,
that in the limit of fast nuclear vibrations the sampling
method would underestimate χC

if (0) and thus CS/C(0), whereas
the two methods coincide in the low-frequency limit, see
supplementary material. This implies that inelastic spectral
intensities would be underestimated as well. Practically one
can expect this underestimation to be strong if the gap fluctu-
ation has more contributions from high-frequency modes than
from low-frequency ones. Indeed, the spectral density shown in
panel (b4) strongly supports this scenario, see supplementary
material for the respective contributions for other peaks. Fur-
thermore, the similar values of CS/C(0) for the elastic peak in
panel (a1) directly follow from the fact that the corresponding
spectral density has its major contribution in the low frequency
range, see panel (a4). Nonetheless, for elastic peaks not only
the value at zero is important but the entire shape of CS/C(t),
and thus the overall conclusion for elastic peaks can not be
drawn on this basis.

Interestingly, the impact of the Condon approximation on
spectra can be explained by the above analysis. In particu-
lar, the time-dependence of the transition dipoles, which is
ignored by the approximation, serves as an additional source
for dephasing, decreasing the elastic peak intensity even fur-
ther, see Fig. 5. Since for inelastic peaks just the value of
CS/C(0) matters, the faster dephasing is expected to be almost
irrelevant and thus, the Condon approximation has proven
itself reliable in this case.

To resume, the differences in intensities between the two
approaches for the system studied are determined by the
second part of Eq. (33), which is a clear trace of nuclear
dynamics.

C. Limitations of the method

Let us recapitulate the approximations that have been
employed on the way from the coupled nuclear-electronic
Schrödinger equation to the final result, Eqs. (15) and (21).
The first one is the BOA, which leads to ignoring non-adiabatic
effects that can be important in a typical scenario when the
density of core-excited states is substantial. In general, having
the continuous time evolution of the electronic wavefunction
opens the doorway for taking these effects into account, and
thus this is not a principal deficiency.

The second issue is the electronic structure method
employed. Here, we have used ground state Kohn-Sham
orbitals for the excited states and thus inevitably neglected
electronic relaxation, differential correlation, and possible
multi-configurational nature of the wavefunction. Importantly,
the developed approach is independent of the electronic struc-
ture method and, thus, utilizing a truly correlated technique

for the excited states,60 such as the multi-configurational self-
consistent field approach, would mitigate the problem.61–64

The last but not the least approximation is the classi-
cal one. In particular, the classical treatment of the scatter-
ing operator, Eq. (9), which does not have in principle the
correct classical limit, is, in our opinion, the most severe
approximation employed. The replacement of the operator
∆Êa0 by a number, leads to the complete loss of informa-
tion about the dynamics in the excited state |a〉, and leaves us
with a simple phase factor. The consequences of the dynam-
ical classical limit have been extensively studied by Berne
et al.65,66 This approximation can cause wrong frequencies
and shapes of the vibronic progressions in certain physical
situations, whereas the envelopes of the vibronic bands are
reproduced reasonably well. Another deficiency of the limit
is that for ambient temperatures the ground state trajectory
is confined in a small region near the potential minimum. In
contrast, in the correct quantum picture the nuclei can move
far away from that minimum in a dissociative core-excited
state potential.56,67,68 However, we believe that in the case
of water, which has a core-hole lifetime of ≈4 fs, the phe-
nomenological dephasing model used, Eq. (20), is suited to
describe XAS. In case of RIXS, such an ultrafast dissoci-
ation gives rise to vibronic features, which cannot be cap-
tured by our method due to a significant difference between
the dynamics in the bound ground and unbound core-excited
states.

Note that the classical approximation for the dipoles
appears to be not so important, since the Condon approxi-
mation holds reasonably well. We believe that the observed
symmetry of the vibrational progressions with respect to
0-0 vibronic transition is also due to the classical limit, which
corresponds to a temperature much larger than a vibrational
quantum. This can be understood in terms of a simple Huang-
Rhys model, where such a symmetry emerges as a result
of equally populated nuclear levels of the initial electronic
state.

To resume, the only unsurmountable approximation that
belongs to the method itself is the classical limit and thus is the
main target for future improvements. These may be incorpo-
rating nuclear quantum effects, which is well-established for
trajectory-based methods,25,26 and improving the dynamics to
take many potential surfaces into account in an Ehrenfest or
averaged classical limit fashion.69–71 An interesting possibil-
ity, combining all the improvements needed, might be pro-
vided by the non-adiabatic ring polymer molecular dynamics
method.72,73

VI. CONCLUSIONS

In order to include correlation effects from the underly-
ing nuclear dynamics into theoretical X-ray spectroscopy, a
time-domain approach to XAS and RIXS spectra has been
rigorously developed and tested on gas phase and bulk water.
The derivation has been carried out here from the Schrödinger-
picture expressions and in Ref. 32 from optical response
functions. It has been shown that at realistic (experimental)
conditions the impact of nuclear dynamical effects on XAS
amplitudes of water is fairly small. However, the RIXS
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spectra have turned out to exhibit pronounced signatures of
the nuclear dynamics that have been traced down to the
particular underlying effects in all cases studied. The differ-
ence between the sampling and the approach presented here
has turned out to be caused by nuclear correlation effects.
The observed intensity differences have been rationalized on
the basis of a simple harmonic model and connected to the
high- and low-frequency contributions to the spectral den-
sity. Such an analysis in combination with a more accu-
rate description of the electronic structure and the nuclear
dynamics might help to resolve controversial debates, e.g.,
the splitting of 1b1 band in water RIXS spectra. The practi-
cal limitations of the method and underlying approximations,
with the dynamical classical limit being the most important
one, have been analyzed and discussed. Despite the defi-
ciencies of the method, it represents a step forward over
the conventional approaches treating the system in full com-
plexity and provides a reasonable starting point for further
improvements.

SUPPLEMENTARY MATERIAL

See supplementary material for the complete derivations
of the norm-factor, time-domain expression for RIXS, expres-
sions for XAS and RIXS in Fourier space; the time-dependent
functions used for the analysis; the graphs containing XAS
amplitudes with infinite lifetimes for final states, various cuts
for RIXS, and time-dependent functions for the other inelastic
peaks complementary to Fig. 6; the recipes how to obtain the
XAS and RIXS amplitudes from the sampling approach and to
perform averaging over polarization vectors; a proof that the
spectral norm is preserved in XAS; and finally a simple har-
monic model that helps to understand the differences observed
between χC/S

if (0).
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I. DERIVING THE NORM-FACTOR

In the following the phase space averaging with respect to all initial states

∑

g

∫∫
dR0dP0 exp [−βHg(0)]/Z• (S1)

is rewritten as a canonical ensemble average with respect to the electronic ground state

Hamilton function, i.e. 〈•〉 =
∫∫

dR0dP0 exp [−βH0(0)]/Z0•. First, the focus is put on

rewriting the partition function Z. Multiplying and dividing Z by Z0 and employing again

the trick of adding and subtracting the electronic ground state Hamilton function, Hg(0) =

2
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H0(0) + ∆Eg0(0), one can write

Z =
∑

g

∫∫
dR0dP0e−βHg(0)

= Z0

∑

g

∫∫
dR0dP0

e−βHg(0)

Z0

= Z0

∫∫
dR0dP0

e−βH0(0)

Z0

∑

g

e−β∆Eg0(0) . (S2)

In the last equation one recognizes the relation between the full partition function and the

norm factor given according to Eq. (17) in the main text as

Z :=

〈∑

g

e−β∆Eg0(0)

〉
, (S3)

i.e. Z = Z0Z. Inserting this relation into the general phase space integration, Eq. (1),

and employing once again the trick of adding and subtracting the electronic ground state

Hamilton function yields

∑

g

∫∫
dR0dP0 exp [−βHg(0)]/Z • =

∫∫
dR0dP0

e−βH0(0)

Z0

∑

g

e−β∆Eg0(0)

Z •

=

〈∑

g

e−β∆Eg0(0)

Z •
〉

, (S4)

Thus, the general phase space integration can be recast into a canonical ensemble average

with respect to the ground state Hamilton function, with the norm-factor given in Eq. (17)

of the main text.

II. DERIVING THE TIME-DOMAIN EXPRESSION FOR RIXS

In this section the detailed derivation of the time-domain expression for RIXS amplitude

from the Kramers-Heisenberg expression, Eq. (18) in the main text that reads

R(Ω, ω) =
∑

γ,φ

e−βεγ

Z

∣∣∣∣∣
∑

ι

〈φ|d̂ηuη|ι〉〈ι|eξd̂ξ|γ〉
ω − (ει − εφ) + iΓι

∣∣∣∣∣

2

δ
(
Ω− (εφ − εγ + ω)

)
, (S5)

is shown. First, the absolute value squared is formulated out, yielding

R(Ω, ω) =
∑

γ,ι,ι
′
,φ

e−βεγ

Z

〈γ|d̂ζeζ |ι′〉〈ι′|uν d̂ν |φ〉
ω − (ει′ − εφ)− iΓι′

〈φ|d̂ηuη|ι〉〈ι|eξd̂ξ|γ〉
ω − (ει − εφ) + iΓι

δ
(
Ω− (εφ − εγ + ω)

)
.

(S6)

3

B. Peer reviewed publications

93



Second, the time-domain expressions for a δ-function, Eq. (4) in the main text that reads

δ (Ω− Ω0) =
1

2π

∞∫

−∞

dt ei(Ω−Ω0)t , (S7)

and for a Lorentzian, Eq. (19) in the main text given as

1

ω − ω0 ± iΓα
= ∓i

∞∫

−∞

dτ e±i(ω−ω0)τ∆α(τ) , (S8)

are inserted, leading to

R(Ω, ω) =
∑

γ,ι,ι
′
,φ

e−βεγ

Z

∞∫

−∞

dt ei(Ω−(εφ−εγ+ω))t
∞∫

−∞

dτ1 e−i(ω−(ε
ι
′−εφ))τ1〈γ|d̂ζeζ |ι′〉∆ι

′(τ1)〈ι′|uν d̂ν |φ〉

∞∫

−∞

dτ2 ei(ω−(ει−εφ))τ2〈φ|d̂ηuη|ι〉∆ι(τ2)〈ι|eξd̂ξ|γ〉 .

(S9)

Third, the BOA is applied, thus, the system’s eigenstates factorise as |γ〉 = |g〉|G〉,
|ι〉 = |i〉|I〉, |ι′〉 = |j〉|J〉 and |φ〉 = |f〉|F 〉. After rearranging the complex exponentials

exp [iει′τ1] = exp [iει′(t+ τ1)] exp [−iει′t] and using the eigenvalue relation given in Eq. (2)

in the main text that reads

Ĥa|A〉 = εA|A〉 , (S10)

one gets

R(Ω, ω) =
1

2πZ

∞∫

−∞

dt eiΩt
∑

G,I,J,F

∞∫

−∞

dτ1 e−iω(t+τ1)〈G|e−βĤgeiĤgtD̂gζ
j eζe

−iĤjt|J〉∆j(τ1)〈J |eiĤj(t+τ1)uνD̂j
νfe
−iĤf (t+τ1)|F 〉

∞∫

−∞

dτ2 eiωτ2〈F |eiĤf τ2D̂fη
i uηe

−iĤiτ2|I〉∆i(τ2)〈I|eξD̂i
ξg|G〉 ; (S11)

noting that the damping function is assumed to depend on the electronic state only.

Fourth, the summation over the nuclear states I, J, F can be carried out by using the

closure relation and one can make use of interaction representation to employ the dressed

4
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transition dipole moments, defined in Eq. (11) in the main text, for the RIXS amplitude

R(Ω, ω) =
1

2πZ

∞∫

−∞

dt eiΩt
∑

G

〈G|e−βĤg(0)

∞∫

−∞

dτ1 e−iω(t+τ1)M̂ gζ
j (t, 0)eζ∆j(τ1)uνM̂ j

νf (t+ τ1, 0)

∞∫

−∞

dτ2 eiωτ2M̂ fη
i (τ2, 0)uη∆i(τ2)eξM̂ i

ξg(0, 0)|G〉 .

(S12)

Fifth, the nuclei are subjected to the dynamical classical limit, i.e. the operators are

replaced by the corresponding classical dynamical functions and the trace over initial nuclear

states is replaced by classical phase space integral, leading to

R(Ω, ω) =
1

2π

∞∫

−∞

dt eiΩt

∞∫

−∞

dτ1 e−iω(t+τ1)

∞∫

−∞

dτ2 eiωτ2

〈
Wg(0)M gζ

j (t, 0)eζ∆j(τ1)uνM j
νf (t+ τ1, 0)M fη

i (τ2, 0)uη∆i(τ2)eξM i
ξg(0, 0)

〉
, (S13)

which coincides with Eq. (21) in the main text. Note again that the same rearrangement

for the partition functions, as was described in the previous section, has been employed in

order to have the canonical averaging with respect to the ground state.

III. EXPRESSIONS FOR XAS AND RIXS IN FOURIER SPACE

In this section the XAS amplitude is recast into Fourier space, getting from Eq. (15) to

Eq. (26) in the main text. Firstly an additional integration along an MD trajectory with

the length T is performed in Eq. (15), owing to the stationarity of the canonical density

X (Ω) =

〈
1

2πT

∞∫

−∞

dt eiΩt

T∫

0

dτWg(τ)M gη
f (t+ τ, τ)eηe

ξM f
ξg(τ, τ)

〉
, (S14)

Using the form of the complex exponential stemming from the scattering operator, Eqs. (9)

and (11) of the main text, respectively, one can easily show that the starting time in the

product M gη
f (t+ τ, 0)M f

ξg(τ, 0) can be shifted, leading to

M gη
f (t+ τ, τ)M f

ξg(τ, τ) = M gη
f (t+ τ, 0)M f

ξg(τ, 0) . (S14)

Note that this time shift property does not apply to an arbitrary quantity, but one can still

generalize it to a product of dressed dipoles with chain indices and the same starting time,
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such as M b
a(t1, t0)M c

b (t2, t0) . . .Ma
z (tN , t0). Shifting the starting time to zero, making the

substitution τ ′ = τ + t and rearranging yields

X (Ω) =

〈
1

2πT

∞∫

−∞

dτ ′ eiΩτ
′
M gη

f (τ ′, 0)eηe
ξ

T∫

0

dτe−iΩτM f
ξg(τ, 0)Wg(τ)

〉
, (S15)

For a sufficiently large T one may extend formally the τ -integration interval to (−∞,∞)

resulting in a negligible error. Subsequently, one recognises the Fourier transforms of the

dressed dipoles, Eq. (24) in the manuscript (note the minus sign), and gets by using Eq. (25)

the desired Eq. (26) as written in the main text. Note also that the mean transition frequency

ω̄ab = −ω̄ba can be negative and thus, in order to keep frequencies positive, ω̄fg is used in

the final expression.

Now the focus is put on the RIXS amplitude and the necessary steps to get from Eq. (21)

to Eq. (27) in the main text. Following the same line of reasoning as for the XAS amplitude,

the additional integration over MD trajectory is applied to Eq. (21) resulting in

R(Ω, ω) =

〈
1

2πT

T∫

0

dτWg(τ)

∞∫

−∞

dt eiΩt

∞∫

−∞

dτ1 e−iω(τ+t+τ1)M gζ
j (τ + t, τ)eζ∆j(τ1)uνM j

νf (τ + t+ τ1, τ)

∞∫

−∞

dτ2 eiω(τ+τ2)M fη
i (τ + τ2, τ)uη∆i(τ2)eξM i

ξg(τ, τ)

〉
, (S16)

where also 1 = exp[−iωτ ] exp[iωτ ] has been inserted. Again, since the dressed dipoles’ prod-

uct in Eq. (S16) has a cyclic structure of indices, the starting time can be chosen arbitrarily,

that is

M gζ
j (τ + t, τ)M j

νf (τ + t+ τ1, τ)M fη
i (τ + τ2, τ)M i

ξg(τ, τ) ≡

M gζ
j (τ + t, 0)M j

νf (τ + t+ τ1, 0)M fη
i (τ + τ2, 0)M i

ξg(τ, 0) . (S17)

For a sufficiently large T one may extend formally the τ -integration interval to (−∞,∞).
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Subsequently, one substitutes τ ′ = τ + t yielding

R(Ω, ω) =

〈
1

2πT

∞∫

−∞

dτe−iΩτ

∞∫

−∞

dτ ′ eiΩτ
′

∞∫

−∞

dτ1 e−iω(τ
′
+τ1)M gζ

j (τ ′, 0)eζ∆j(τ1)uνM j
νf (τ

′ + τ1, 0)

∞∫

−∞

dτ2 eiω(τ+τ2)M fη
i (τ + τ2, 0)uη∆i(τ2)eξM i

ξg(τ, 0)Wg(τ)

〉
. (S18)

Now, one can replace the damping function by its Fourier transform via

∆a(τ) =

∞∫

−∞

dω′eiω
′
τ∆̌a(ω

′) ≡
∞∫

−∞

dω′e−iω
′
τ∆̌a(−ω′) . (S19)

where ∆̌a(ω
′) := 1/(2π)

√
Γa/π(Γa + iω′)−1. By rearranging the integrations one gets

R(Ω, ω) =

〈
1

2πT
∞∫

−∞

dω1

∞∫

−∞

dτ ′ eiΩτ
′
∞∫

−∞

dτ1 e−iω(τ
′
+τ1)M gζ

j (τ ′, 0)eζ∆̌j(ω1)eiω1τ1uνM j
νf (τ

′ + τ1, 0)

∞∫

−∞

dω2

∞∫

−∞

dτe−iΩτ

∞∫

−∞

dτ2 eiω(τ+τ2) M fη
i (τ + τ2, 0)uη∆̌i(−ω2)e−iω2τ2eξM i

ξg(τ, 0)Wg(τ)
〉
.

(S20)

Looking at the time arguments of the dressed dipoles suggests two more variable substitu-

tions: τ ′1 := τ ′ + τ1 and τ ′2 := τ + τ2 that yield

R(Ω, ω) =

〈
1

2πT
∞∫

−∞

dω1

∞∫

−∞

dτ ′ eiΩτ
′
∞∫

−∞

dτ ′1 e−iωτ
′
1M gζ

j (τ ′, 0)eζ∆̌j(ω1)eiω1(τ
′
1−τ ′)uνM j

νf (τ
′
1, 0)

∞∫

−∞

dω2

∞∫

−∞

dτe−iΩτ

∞∫

−∞

dτ ′2 eiωτ
′
2 M fη

i (τ ′2, 0)uη∆̌i(−ω2)e−iω2(τ
′
2−τ)eξM i

ξg(τ, 0)Wg(τ)
〉
,

(S21)
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which becomes after rearranging the integrals

R(Ω, ω) =

〈
1

2πT
∞∫

−∞

dω1∆̌j(ω1)

∞∫

−∞

dτ ′ e−i(ω1−Ω)τ
′
M gζ

j (τ ′, 0)eζ

∞∫

−∞

dτ ′1 e−i(ω−ω1)τ
′
1uνM j

νf (τ
′
1, 0)

∞∫

−∞

dω2 ∆̌i(−ω2)

∞∫

−∞

dτe−i(Ω−ω2)τeξM i
ξg(τ, 0)Wg(τ)

∞∫

−∞

dτ ′2 e−i(ω2−ω)τ
′
2M fη

i (τ ′2, 0)uη

〉
.

(S22)

Here, one recognises the Fourier transforms of the dressed transition dipole moments and

one can write more compactly

R(Ω, ω) =

〈
1

2πT

∞∫

−∞

dω1M̌
g
ζj (ω1 − Ω) eζ∆̌j(ω1)uνM̌ jν

f (ω − ω1)

∞∫

−∞

dω2M̌
fη
i (ω2 − ω) uη∆̌i(−ω2)eξM̌i

ξg (Ω− ω2)

〉
(S23)

and finally, by using Eq. (25) in the main text that reads

M̌ f
g (Ω) ≡ ˇ̄M f

g (Ω− ω̄fg) , (S24)

one gets the desired expression for the RIXS amplitude in Fourier space, Eq. (27) in the main

text. Note that the mean transition frequencies were always chosen positive by switching

the indices: ω̄ab = −ω̄ba.
In order to calculate the quantities ˇ̄M f

g (Ω) numerically, the transition dipoles and the

energy gaps between the traced electronic states have to be stored along the trajectory.

Subsequently one has to construct M̄ f
g (t, 0) = Df

g (t) exp[i
∫ t

0
dτUfg(τ)] as defined in the

main text. Importantly, the functions M̄ f
g (t, 0) change only on the nuclear time scale, thus

the Fourier transforms, yielding ˇ̄M f
g (Ω), can be performed numerically via standard routines

employing the MD time step size.

IV. THE SAMPLING VERSUS THE TIME-DOMAIN APPROACH.

In this section it is presented how one obtains the XAS and RIXS amplitudes from the

sampling approach and which assumptions and approximations are involved. The XAS am-

8

B. Peer reviewed publications

98



plitude should serve again as a template since all performed manipulations can be transferred

to the more complicated RIXS amplitude.

The starting point is Eq.(3) (in the manuscript) as a result of Fermi’s Golden rule.

After applying the BOA, the nuclei are subjected to a statical classical limit, that is in

contrast to the derivation Sec. 2.2.2 in the main text. In other words, the nuclear degrees of

freedom are assumed to be in a fixed configuration R0, producing a static external potential.

Subsequently, the states |α〉 of the molecular system are identified with the electronic states

|a〉 that depend parametrically on that particular configuration R0 and the trace over nuclear

states is transferred in to a phase space integral. Inserting the definition of the weighting

factor, Eq. (17) in the main text, and performing simple algebra as described in Sec. 1 in

the Supplement one obtains the XAS amplitude from sampling via

XS(Ω) =
〈
Wg(R0)Dgη

f (R0)eηe
ξDf

ξg(R0)δ
(
Ω−∆Efg(R0)

)〉
. (S25)

Applying the same assumptions, one gets the sampled RIXS amplitude from the expres-

sion

RS(Ω, ω) =

〈
Wg(R0)

Dgζ
j (R0)eζu

νDj
νf (R0)

ω −∆Ejf (R0)− iΓj

Dfη
i (R0)uηe

ξDi
ξg(R0)

ω −∆Eif (R0) + iΓi
δ
(
Ω− (∆Efg(R0) + ω)

)
〉

.

(S26)

Note that similar to the time-domain approach, Eqs. (15,21) in the main text, the sampled

amplitudes are fully determined by the electronic energy gaps and the transition dipole

moments and the canonical average is with respect to the electronic ground state Hamilton

function. Thus, the sampling can be performed using the very same data as employed

for the time-domain method. However, since the dipoles and energies in Eqs. (S25,S26)

are evaluated at the same configuration, any phase alteration cancels and the order of

summation is irrelevant. Thus, the state tracing as described in Sec. 3.2 in the main text is

only obligatorily for the time-correlation function approach.

In order to examine the similarities and difference to the time-domain expression it is

beneficial to write the δ-functions and the denominators in the RIXS amplitude in their

integral representation, Eqs. (4,19) in the main text, respectively, leading to

XS(Ω) =
1

2π

∞∫

−∞

dt eiΩt
〈
Wg(R0)Dgη

f (R0)eηe
i∆Egf (R0)teξDf

ξg(R0)
〉

(S27)
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and

RS(Ω, ω) =
1

2π

∞∫

−∞

dt eiΩt

∞∫

−∞

dτ1 e−iω(t+τ1)

∞∫

−∞

dτ2 eiωτ2

〈
Wg(R0)Dgζ

j (R0)eζe
i∆Egj(R0)t∆j(τ1)uνDj

νf (R0)ei∆Ejf (R0)(t+τ1)

×Dfη
i (R0)ei∆Efi(R0)τ2uη∆i(τ2)eξDi

ξg(R0)
〉
, (S28)

where it has been used that ∆Egf (R0)t + ∆Ejf (R0)τ1 = ∆Egj(R0)t + ∆Ejf (R0)(t + τ1).

Surprisingly, the expressions obtained via sampling have a very similar structure as their

time-domain counterparts. However, there are two striking differences. First, the transition

dipoles are all evaluated at the same configuration: Dbξ
a (t)→ Dbξ

a (R0). Second, the integrals

in the complex exponentials become simple products:
∫ t

0
∆Eab(τ)dτ → ∆Eab(R0)t. Having

these relations at hand, it is straightforward to show that both sampling amplitudes can be

considered as limits of the corresponding correlation function expressions if nuclear dynamics

can be neglected, i.e. R(t) ≈ R(0) ≡ R0.

V. AVERAGING OVER POLARIZATION VECTORS

The starting point is the Fourier space expression for the XAS amplitude

X (Ω) =
1

2πT

〈
M̌ gη

f (−Ω)eηe
ξM̌f

ξg(Ω)
〉
. (S28)

This expression, involving only a particular polarization vector of the incoming light beam,

should account for the free tumbling of the molecules in the gas or liquid phases. Equivalently

it can be averaged over all polarization orientations. In order to achieve this goal the

normalized vector is parametrized with the angular spherical coordinates φ, θ as

ex(φ, θ) = sin(θ) cos(φ), ey(φ, θ) = sin(θ) sin(φ), ez(φ, θ) = cos(θ) (S28)

The average can now easily be performed as an analytical integration over the spherical

angles leading to

〈
eηe

ξ
〉

pol.
=

1

3
δξη (S28)

Inserting this into the expression for XAS amplitude on obtains

〈X (Ω)〉pol. =
1

6πT

〈
M̌ gξ

f (−Ω)M̌f
ξg(Ω)

〉
. (S28)
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The derivation for the averaged RIXS amplitude follows the same line of reasoning as

done for XAS. One starts with

R(Ω, ω) =

〈
1

2πT

∞∫

−∞

dω1M̌
g
ζj (ω1 − Ω) eζ∆̌j(ω1)uνM̌ jν

f (ω − ω1)

∞∫

−∞

dω2M̌
fη
i (ω2 − ω) uη∆̌i(−ω2)eξM̌i

ξg (Ω− ω2)

〉
. (S29)

and both polarization vectors are parametrized with the angular coordinates. The analytical

integration is now performed with the constraint, given by experimental conditions, that

there is a fixed angle Φ between the two vectors, i.e. for the present consideration Φ = 90◦.

Equivalently to the results presented in Ref. 54 of the main text, the averaged expression

becomes

〈R(Ω, ω)〉pol. =

〈
1

2πT

×F
∞∫

−∞

dω1M̌
g
ζj (ω1 − Ω) ∆̌j(ω1)M̌ jζ

f (ω − ω1)

∞∫

−∞

dω2M̌
fξ
i (ω2 − ω) ∆̌i(−ω2)M̌i

ξg (Ω− ω2)

+G

∞∫

−∞

dω1M̌
g
ξj (ω1 − Ω) ∆̌j(ω1)M̌ jη

f (ω − ω1)

∞∫

−∞

dω2M̌
fη
i (ω2 − ω) ∆̌i(−ω2)M̌i

ξg (Ω− ω2)

+ H

∞∫

−∞

dω1M̌
g
ηj (ω1 − Ω) ∆̌j(ω1)M̌ jξ

f (ω − ω1)

∞∫

−∞

dω2M̌
fη
i (ω2 − ω) ∆̌i(−ω2)M̌i

ξg (Ω− ω2)

〉
,

(S30)

where F = H = 3 cos2(Φ) − 1, G = 4 − 2 cos2(Φ). As an exception to the employed sum

convention, the summation in the middle line still goes over ξ and η although they appear

exclusively as a subscript or superscript, respectively.

VI. XAS AMPLITUDES WITH INFINITE LIFETIMES FOR FINAL

STATES

Fig. S1 shows the absorption spectra obtained via Eq. (26) in the main text without

additional convolution by a Lorentzian function which implies that the lifetime of the final

state goes to infinity (Γ→ 0).
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FIG. S1. XAS amplitudes with an infinite lifetimes for final states. The colour code is explained

in Fig. 1 in the main text.

VII. PROOF THAT THE SPECTRAL NORM IS PRESERVED IN XAS

First, the focus is put on the XAS amplitude obtained from the sampling procedure.

Again the canonical average is partially written as a time integration along an NVE trajec-

tory yielding

XS(Ω) =

〈
1

T

T∫

0

dτWg(τ)Dgη
f (τ)eηe

ξDf
ξg(τ)δ(Ω−∆Efg(τ))

〉
. (S31)

Using the integral representation of the delta function one gets

XS(Ω) =

〈
1

T

∞∫

−∞

dτWg(τ)Dgη
f (τ)eηe

ξDf
ξg(τ)

1

2π

∞∫

−∞

dt eiΩte−i∆Efg(τ)t

〉
, (S32)

Now one can carry out the integration over Ω to get the spectral norm of XAS

∞∫

−∞

dΩXS(Ω) =

〈
1

T

T∫

0

dτWg(τ)

∞∫

−∞

dt
1

2π

∞∫

−∞

dΩeiΩtDgη
f (τ)eηe

ξDf
ξg(τ)e−i∆Efg(τ)t

〉
(S33)

=

〈
1

T

T∫

0

dτ

∞∫

−∞

dtδ(t)Wg(τ)Dgη
f (τ)eηe

ξDf
ξg(τ)e−i∆Efg(τ)t

〉
(S34)

=

〈
1

T

T∫

0

dτWg(τ)Dgη
f (τ)eηe

ξDf
ξg(τ)

〉
. (S35)
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Now the focus is put on the XAS amplitude stemming from the time domain approach,

i.e.

X (Ω) =
1

2π

∞∫

−∞

dt eiΩt

〈
1

T

T∫

0

dτWg(τ)M gη
f (t+ τ, τ)eηe

ξM f
ξg(τ, τ)

〉
. (S36)

Integrating over the excitation frequency Ω and subsequently employing the integral repre-

sentation of the delta function yields

∞∫

−∞

dΩX (Ω) =

∞∫

−∞

dt δ(t)

〈
1

T

T∫

0

dτWg(τ)M gη
f (t+ τ, τ)eηe

ξM f
ξg(τ, τ)

〉
. (S37)

Carrying out the integration over t and noting that M f
ξg(τ, τ) ≡ Df

ξg(τ) leads to

∞∫

−∞

dΩX (Ω) =

〈
1

T

T∫

0

dτWg(τ)Dgη
f (τ)eηe

ξDf
ξg(τ)

〉
, (S38)

which is identical to the spectral norm resulting from the sampling approach, Eq. (S35), if

the same data has been used.

VIII. VARIOUS CUTS FOR RIXS

For the model system, as presented in the main text, the RIXS spectra for different fixed

excitation frequencies show all very similar structures, compare Fig. 4 in the main text and

Fig. S2. This fact is due the simplistic one-electron approximation that neglects any orbital

relaxation after the excitation has happened.

IX. DERIVATION OF THE TIME-DEPENDENT FUNCTIONS

First, the focus is put on the RIXS amplitude obtained via the time-domain approach,

Eq. (21) in the main text, where the additional convolution with the normalised Gaussian

function has been performed, as discussed Sec. 4 in the main text. The convoluted RIXS

amplitude then reads

R(Ω, ω) =
1

2π

∞∫

−∞

dt e−t
2
σ
2
/2eiΩt

∞∫

−∞

dτ1 e−iω(t+τ1)

∞∫

−∞

dτ2 eiωτ2

〈
Wg(0)M gζ

j (t, 0)eζ∆j(τ1)uνM j
νf (t+ τ1, 0)M fη

i (τ2, 0)uη∆i(τ2)eξM i
ξg(0, 0)

〉
. (S39)
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FIG. S2. Cuts through the RIXS spectrum at the highest considered resonant absorption frequen-

cies, i.e. Ω = 538.7 eV for the gas phase and Ω = 539.2 eV for the bulk water. The inset zooms

into the left peak of panel a2) with ∆E = 520.3 eV.

Now the spectrum is evaluated at a certain frequency pair (Ω, ω) = (ω̄ig, ω̄if ) related to a

particular channel g → i→ f . Using the definitions of the dressed dipole moments M bξ
a (t, 0)

(Eq. (11) in the main text) and the gap fluctuation function Uab(τ) (Sec. 3.2 in the main

text) one can write

R(ω̄ig, ω̄if ) =
1

2π

∞∫

−∞

dt e−t
2
σ
2
/2e

i(ω̄ig−ω̄j′g′ )t
∞∫

−∞

dτ1 e
−i(ω̄if−ω̄j′f ′ )(t+τ1)

∞∫

−∞

dτ2 e
i(ω̄if−ω̄i′f ′ )τ2

〈
Wg

′(0)Dg
′
ζ

j
′ (t)e

i
∫ t
0 Ug′j′ (τ)dτ

eζ∆j
′(τ1)uνDj

′

νf
′(t+ τ1)e

i
∫ t+τ1
0 U

j
′
f
′ (τ)dτ

Dfη

i
′ (τ2)e

i
∫ τ2
0 U

f
′
i
′ (τ)dτ

uη∆i
′(τ2)eξDi

′

ξg(0)
〉
, (S40)

where the summation goes now over the primed indices in order to distinguish them from

the fixed g, i, f that are not summed over in the following. It is assumed that only one
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summand contributes significantly, namely where i′ = j′ = i, f ′ = f and g′ = g, i.e.

R(ω̄ig, ω̄if ) ≈
1

2π

∞∫

−∞

dt e−t
2
σ
2
/2

∞∫

−∞

dτ1

∞∫

−∞

dτ2

〈
Wg(0)Dgζ

i (t)ei
∫ t
0 dτUgi(τ)eζ∆i(τ1)uνDi

νf (t+ τ1)ei
∫ t+τ1
0 Uif (τ)dτ

Dfη
i (τ2)ei

∫ τ2
0 Ufi(τ)dτuη∆i(τ2)eξDi

ξg(0)
〉
. (S41)

Additionally the Condon approximation is applied by setting the transition dipoles to, e.g.

Dbξ
a (t) ≡ Dbξ

a (0) leading after rearranging to

R(ω̄ig, ω̄if ) ≈
〈

1

2π
Wg(0)Dgζ

i (0)eζu
νDi

νf (0)Dfη
i (0)uηe

ξDi
ξg(0)

∞∫

−∞

dt e−t
2
σ
2
/2

∞∫

−∞

dτ1

∞∫

−∞

dτ2

ei
∫ t
0 Ugi(τ)dτ∆i(τ1)ei

∫ t+τ1
0 Uif (τ)dτei

∫ τ2
0 Ufi(τ)dτ∆i(τ2)

〉
. (S42)

The results for the RIXS amplitude, as shown in Fig. 4 in the main text, exhibit a remarkable

difference between elastic (g = f) and inelastic (g 6= f) peaks with respect to the impact

of nuclear dynamics. It is therefore desirable to restructure the expression such that elastic

and inelastic RIXS amplitude are easily distinguishable. This can be achieved by rewriting

and combining the integrals in the complex exponents as
∫ t+τ1

0
Uif (τ)dτ =

∫ t+τ1
t

Uif (τ)dτ +
∫ t

0
Uif (τ)dτ and subsequently

∫ t
0
Ugi(τ)dτ +

∫ t
0
Uif (τ)dτ =

∫ t
0
Ugf (τ)dτ yielding

R(ω̄ig, ω̄if ) ∝
〈 ∞∫

−∞

dt e−t
2
σ
2
/2ei

∫ t
0 Ugf (τ)dτ

∞∫

−∞

dτ1 ei
∫ t+τ1
t Uif (τ)dτ∆i(τ1)

∞∫

−∞

dτ2 ei
∫ τ2
0 Ufi(τ)dτ∆i(τ2)

〉
,

(S43)

where the constant prefactorWg(0)Dgζ
i (0)eζu

νDi
νf (0)Dfη

i (0)uηe
ξDi

ξg(0)/(2π) has been omit-

ted for the sake of brevity and the integrations have been interchanged. Note that for the

elastic peak the exponential ei
∫ t
0 Ugf (τ)dτ becomes unity, since Ugg(τ) ≡ 0 and thus the ex-

pression differs substantially in the inelastic case as it has been desired. With the definition

χC
if (t) :=

∫∞
−∞ dτ1 ei

∫ t+τ1
t Uif (τ)dτ∆i(τ1) one can write more compactly

R(ω̄ig, ω̄if ) ∝
∞∫

−∞

dt e−t
2
σ
2
/2
〈

ei
∫ t
0 Ugf (τ)dτχC

if (t)χ
C∗
if (0)

〉
. (S44)
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FIG. S3. Time-dependent functions corresponding to the inelastic spectral peaks in Fig. 5, panel

2) in the main text. Panels a) to c) are assigned to the peaks from the left to the right.

Since the integrand has the structure of an autocorrelation function it is symmetric and,

hence, the integral reduces to

R(ω̄ig, ω̄if ) ∝
∞∫

0

dt e−t
2
σ
2
/2Re

〈
ei

∫ t
0 Ugf (τ)dτχC

if (t)χ
C∗
if (0)

〉
. (S45)

The respective RIXS amplitude RS(ω̄ig, ω̄if ) resulting from the sampling approach can be

obtained by taking the limit of static nuclei. Consequently, setting Uab(τ) ≡ Uab(0) leads to

RS(ω̄ig, ω̄if ) ∝
∞∫

0

dt e−t
2
σ
2
/2Re

〈
eiUgf (0)t|χS

if (0)|2
〉
, (S46)

where χS
if (0) :=

∫∞
−∞ dτ1 eiUif (0)τ1∆i(τ1).

X. TIME-DEPENDENT FUNCTIONS FOR THE INELASTIC PEAKS

Complementary to Fig. 6 in the main text, the Fig. S3 exhibits the time-dependent func-

tions and their ingredients belonging to the other inelastic peaks in the RIXS spectrum.

XI. SIMPLE HARMONIC MODEL

One can understand the differences for χ
C/S
if (0) discussed in the main text on the basis

of a simple model, where the gap fluctuation has the harmonic form Uif (τ) ≈ εif cos(Θτ).
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In this case

LS
if (τ ; 0) = exp

[
iεifτ∆i(τ)

]
(S46a)

LC
if (τ ; 0) = exp

[
iεif

sin(Θτ)

Θ
∆i(τ)

]
. (S46b)

One immediately recognizes that LS
if (τ ; 0) does not depend on the vibrational frequency, Θ,

in contrast to LC
if (τ ; 0). It is straightforward to show that in the low frequency limit

lim
Θ→0
|χC
if (0)|2 =

1

ε2
if + Γ2

i

= lim
Θ→0
|χS
if (0)|2 (S46)

the time-domain and the sampling results coincide, as is expected from the limit of static

nuclei described in Sec. IV in the supplementary information. In contrast, in the limit of

fast nuclear oscillation one gets

lim
Θ→∞

|χC
if (0)|2 =

1

Γ2
i

>
1

ε2
if + Γ2

i

= lim
Θ→∞

|χS
if (0)|2 . (S46)

Thus, for this simple model, the sampling method would underestimate the value |χC
if (0)|2

and thus the intensity of the inelastic scattering if the gap strongly fluctuates with a fre-

quency stemming from a fast nuclear mode.

17

B. Peer reviewed publications

107



B. Peer reviewed publications

108



B. Peer reviewed publications

[SK3] Quasi-classical approaches to vibronic spectra revisited

SVEN KARSTEN, SERGEI D. IVANOV, SERGEY I. BOKAREV, and OLIVER KÜHN

Reproduced from S. KARSTEN, S. D. IVANOV, S. I. BOKAREV, and O. KÜHN, Journal of Chem-

ical Physics 148, 102337 (2018), with the permission of AIP Publishing.

109



B. Peer reviewed publications

110



THE JOURNAL OF CHEMICAL PHYSICS 148, 102337 (2018)
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The framework to approach quasi-classical dynamics in the electronic ground state is well established
and is based on the Kubo-transformed time correlation function (TCF), being the most classical-like
quantum TCF. Here we discuss whether the choice of the Kubo-transformed TCF as a starting point for
simulating vibronic spectra is as unambiguous as it is for vibrational ones. Employing imaginary-time
path integral techniques in combination with the interaction representation allowed us to formulate a
method for simulating vibronic spectra in the adiabatic regime that takes nuclear quantum effects and
dynamics on multiple potential energy surfaces into account. Further, a generalized quantum TCF
is proposed that contains many well-established TCFs, including the Kubo one, as particular cases.
Importantly, it also provides a framework to construct new quantum TCFs. Applying the developed
methodology to the generalized TCF leads to a plethora of simulation protocols, which are based on
the well-known TCFs as well as on new ones. Their performance is investigated on 1D anharmonic
model systems at finite temperatures. It is shown that the protocols based on the new TCFs may lead
to superior results with respect to those based on the common ones. The strategies to find the optimal
approach are discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5011764

I. INTRODUCTION

Understanding the dynamics of complex many-body sys-
tems is the grand challenge of theoretical chemistry and
molecular physics. The recent decade witnessed spectacu-
lar progress in (non-linear) experimental spectroscopic tech-
niques1–3 in various frequency ranges, owing to the appearance
of ultra-short pulses and intense light sources.4–7 The result-
ing vibrational, electronic, and vibronic spectra provide com-
prehensive information about the dynamical processes, when
interpreted and understood with the help of proper theoretical
tools.

From the theoretical standpoint, there exist two limiting
strategies to simulate vibronic spectra, that is, energy- and
time-domain approaches. For the former, in the simplest case,
single-point electronic structure calculations are performed
and broadening is included on a phenomenological level.1,8

Further, nuclear vibrations can be treated within the Franck-
Condon model assuming shifted harmonic potentials for the
initial and final electronic states.2,8–10 Still, this approach
is not appropriate for cases where strong anharmonicities,
bond formation or cleavage, and/or pronounced conforma-
tional changes are observed. In the time domain, arguably
the best approach is to perform wavepacket quantum dynam-
ics numerically exactly.9,11–15 However, it usually requires
an expensive pre-computation of many-dimensional poten-
tial energy surfaces (PESs) and is limited to small systems
or is based on a reduction of dimensionality. Many attempts
to bridge the gap between the two extrema, which are not pos-
sible to review in detail here, were made; see Refs. 16–18
and references therein for selected examples. The consensus

a)Electronic mail: sergei.ivanov@uni-rostock.de

is that it is desirable to have a method that would combine the
advantages of the two limiting strategies in an optimal way.
If one starts from the energy-domain approaches, a step in
this direction is to sample nuclear distributions in the phase
space via molecular dynamics (MD) methods.2,19 It leads to
a more realistic description of conformational and environ-
mental effects20–22 but still lacks information about correlated
nuclear motion and thus, for instance, is not capable of repro-
ducing vibronic progressions. Correlations can be included by
recasting the quantities of interest in terms of time correlation
functions (TCFs).1,2,23–25

Recently, we have developed such an extension to the
state-of-the-art sampling approach to X-ray spectroscopy, in
particular, to X-ray absorption and resonant inelastic X-ray
scattering spectra.26,27 Further improvements of the method
should attack the main approximations behind it: the Born-
Oppenheimer approximation and the dynamical classical limit
(DCL).2 The former leads to a neglect of non-adiabatic
effects that are conventionally treated via surface hopping
methods,28,29 mean-field (Ehrenfest) dynamics,29 multiple
spawning techniques,16,30 classical and semiclassical map-
ping approaches,31–33 exact factorization perspective34,35 and
Bohmian dynamics36 to mention but few; see, e.g., Refs. 18,
37, and 38 for review. The consequences of the DCL approxi-
mation are twofold. First, the nuclear dynamics is exclusively
due to forces in the electronic ground state. It leads to the com-
plete loss of information about the excited state dynamics and
can cause wrong frequencies and shapes of the vibronic pro-
gressions in certain physical situations, although the envelopes
of the vibronic bands may be reproduced reasonably well.39,40

Furthermore, at ambient temperatures, the ground state trajec-
tory is confined in a small region near the potential minimum,
i.e., one cannot describe excited-state dynamics such as dis-
sociation within the DCL. Further, the nuclei are treated as
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point particles, sacrificing their quantum nature, in particu-
lar zero-point energy and tunneling effects. This might lead
to qualitatively wrong dynamics and even sampling, if light
atoms, shallow PESs, and/or isotope substitutions are involved,
as have been shown on numerous examples starting from small
molecules in gas phase to biomolecules.41–44

In order to improve on the DCL, a method that explicitly
accounts for excited states’ dynamics is needed. Following
Ref. 45, one can derive a semiclassical approximation to the
absorption cross section that leads to the dynamics that is per-
formed on the arithmetic mean of the ground and excited state
PESs, hence referred to as the averaged classical limit (ACL)
method. Note that such a derivation for resonant Raman spec-
tra leads to the known expression derived by Shi and Geva.46,47

The authors evaluated the quality of the ACL method on simple
test systems and found it satisfactory.

For inclusion of quantum effects, Feynman path integrals
(PIs) provide hitherto the most elegant and robust solution
for trajectory-based approaches.19,48–50 Here, the ring poly-
mer molecular dynamics (RPMD) method51 enjoyed success
in simulating quasi-classical dynamics; see, e.g., Refs. 52 and
53 for review. Further, two similar non-adiabatic versions of
RPMD (NRPMD) were developed,54,55 based on the mapping
approach.37,56,57 This method allows for all the aspects dis-
cussed above and is a suitable method of choice to approach
vibronic spectra, given an efficient simulation protocol is pro-
vided.58 Several PI approaches for many PESs without map-
ping variables were attempted,59–63 most of them addressing
non-adiabatic effects on static properties or reaction rates via
surface hopping methods. However, none of them have been
applied for simulating vibronic spectra. We here suggest a
practical recipe for simulating optical absorption spectra in the
adiabatic limit, taking nuclear quantum effects and multiple
PESs into account. The heart of the method is the imaginary-
time shifted TCF, given in Eq. (3), which is addressed via
imaginary-time PI techniques and the interaction represen-
tation; see Sec. II C. To the best of our knowledge, such a
methodology for simulating vibronic spectra is proposed for
the first time.

The cornerstone of (N)RPMD is the Kubo-transformed
TCF, which is the most classical-like quantum TCF since it
is real-valued and symmetric with respect to time reversal.
Nonetheless, when it comes to practical evaluation of vibronic
spectra, the Kubo TCF either becomes non-tractable by MD
methods or has to be decomposed into the contributions that
do not have the beneficial properties of the original TCF; in
particular, they are no more real functions of time; see Sec. II B
for details. This poses the central question of this work, that
is, whether the choice of the Kubo TCF as the starting point
for simulating vibronic spectra is as unambiguous as it is in
infrared spectroscopy.25,51,64

In anticipation of our results, we propose a generalized
quantum TCF that is based on the aforementioned imaginary-
time shifted one and contains most of the well-established
TCFs, including Kubo, as particular cases. Moreover, it offers
the possibility to construct, in principle, infinitely many
other new TCFs that may or may not be numerically favor-
able. Importantly, the new TCFs are constructed out of the
imaginary-time shifted TCF without a need to recompute it.

We demonstrate numerically on 1D model systems that the
best results indeed do not necessarily come from the Kubo
TCF.

This paper is structured as follows. In Sec. II, the gen-
eralized TCF is introduced and the new methodology for the
simulation of vibronic spectra is developed. The connections
to the well-established TCFs and methods based on them are
discussed in Sec. II D. The results for 1D model systems (see
Sec. III) are presented in Sec. IV. In Sec. IV B, the flexibility
of the formalism is taken advantage of to propose new TCFs
that improve the numerical behavior for the particular mod-
els. Conclusions and outlook, containing the discussion of the
optimal starting point for simulating vibronic spectra, can be
found in Sec. V.

II. THEORY
A. Generalized time correlation function

The experimentally measured quantity, the absorption
cross section is proportional to the lineshape function

S0(Ω) =

∞∫

−∞
dt e−iΩtC0(t), (1)

which is given by the Fourier transform of the dipole autocor-
relation function2

C0(t) ≡ 1
Z

tr
[
e−βĤ d̂(0)d̂(t)

]
, (2)

and the TCFs will be denoted with C and their respective
Fourier transforms with S throughout the manuscript. Here
Ĥ is the full molecular Hamiltonian of the system including
both electrons and nuclei, Z = tr[exp(�βĤ)] is the respective
partition function, tr[•] standing for the trace with respect to
both nuclear and electronic degrees of freedom, β ≡ 1/kBT is
the inverse temperature, and d̂(t) is the total dipole operator
time-evolved with respect to Ĥ.

It is well known that many quantum TCFs can be defined,
all carrying the same information since their Fourier trans-
forms have simple relations.64 In particular, applying a shift in
imaginary time to the dipole autocorrelation function, Eq. (2),
leads to

Cλ(t) ≡ C0(t + iλ~) =
1
Z

tr
[
e−(β−λ)Ĥ d̂(0)e−λĤ d̂(t)

]
, (3)

hence referred to as the imaginary-time shifted TCF. The afore-
mentioned relation for the Fourier transforms of Cλ and C0

reads
Sλ(Ω) = e−λΩ~S0(Ω), (4)

as it is shown in the supplementary material. Integrating both
sides of this equation over λ from 0 to β yields the relation
between the absorption spectrum and the well-known Kubo-
transformed TCF.65 In an attempt to formulate a more general
and flexible approach that may lead to more practical simu-
lation protocols, we propose to employ a weighting function
w(λ) for this integration leading to

1
β

β∫

0

dλ w(λ)Sλ(Ω)

︸                   ︷︷                   ︸
S̄w (Ω)

=
1
β

β∫

0

dλ w(λ)e−λΩ~

︸                   ︷︷                   ︸
pw (Ω)

S0(Ω) (5)
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such that the absorption lineshape can be obtained as

S0(Ω) = p−1
w (Ω)S̄w(Ω). (6)

Naturally, setting w(λ) = 1 would yield back the Kubo-
transformed TCF.

Given the flexibility provided by the arbitrary choice of
the weighting function w(λ), we attempt to find a reasonable
approximation to C̄w(t),

C̄w(t) =
1
β

β∫

0

dλw(λ)Cλ(t), (7)

which is a time-domain version of S̄w(Ω), rather than to
approximate the desired lineshape function, S0(Ω), directly.
The prefactor p−1

w (Ω) in Eq. (6) compensates the performed
shift in the imaginary time and is thus referred to as the shift
correction factor (SCF). As it will become clear later, the SCF
acts as a “magnifying glass” or a “filter” emphasizing certain
contributions stemming from particular λ and suppressing the
others. It will be also shown that Eq. (6) serves as a common
starting point for several popular approximations to vibronic
spectra.

B. Practical considerations

In order to formulate a reasonable approximation to
C̄w(t), the central object to consider is the imaginary-time
shifted TCF, Cλ(t), defined in Eq. (3). Assuming the Born-
Oppenheimer approximation and evaluating the electronic part
of the trace in Eq. (3) in the adiabatic basis |a〉 yields

Cλ(t) =
1
Z

∑

a,b

Tr
[
e−(β−λ)Ĥa D̂a

be−λĤb eiĤbt/~D̂b
ae−iĤat/~

]
, (8)

where the capital Tr[•] stands for a trace in the nuclear
Hilbert space only, Ĥa corresponds to the nuclear Hamil-
tonian with the PES of the ath electronic eigenstate and
D̂a

b = 〈a|d̂ |b〉 is the transition dipole moment. For the sake
of brevity, a single transition from an initial electronic state
g to a final state f of a two-level system is considered in the
following. The generalization to the case of many states is
straightforward.

Spelling out the electronic trace in Eq. (8) leads to

Cλ(t) =
1
Z

Tr
[
e−(β−λ)Ĥg D̂g

f e−λĤf eiĤf t/~D̂f
ge−iĤgt/~

+ e−(β−λ)Ĥf D̂f
ge−λĤg eiĤgt/~D̂g

f e−iĤf t/~
]

. (9)

It is possible to shift the final state Hamiltonian as Ĥf ≡ ˆ̃Hf + εfg

such that the eigenvalues of Ĥg and shifted ˆ̃Hf are in the same
energy range, and thus, the respective frequencies are on the
same (nuclear) timescale. Such a shift is needed for practical
purposes since the TCF would otherwise oscillate on the elec-
tronic timescales that are unresolvable by means of nuclear
MD methods.26,27 To reiterate, the shift is equal to zero by
construction when purely vibrational transitions are concerned
and this issue does not occur.

Applying the shift to Eq. (9) and evaluating the trace in

the nuclear eigenstates, Ĥg |G〉 = EG |G〉 and ˆ̃Hf |F〉 = ẼF |F〉

yield

Cλ(t) =
1
Z

∑

G,F

e−(β−λ)EG e−λ(ẼF +εfg) |〈G| D̂g
f |F〉|2ei(εfg+ẼF−EG)t/~

+
1
Z

∑

G,F

e−(β−λ)(ẼF +εfg)e−λEG |〈G| D̂g
f |F〉|2

× e−i(εfg+ẼF−EG)t/~. (10)

Note the different sign in front of εfg in the phase fac-
tors. The transitions due to the first and second summands
group near the shift frequencies Ω = ±εfg. It becomes appar-
ent that the two spectral features are completely isolated if
εfg � ẼF−EG; see Fig. 1. This makes MD methods unsuitable
for the present purpose as the spectrum covers frequency
ranges inaccessible to them. Consequently both summands
have to be considered individually in practice. However, the
TCFs described by the individual terms do not have the prop-
erties of the common TCFs described by Eq. (9). For instance,
the respective terms for Kubo TCF would become complex
when treated this way, as can be easily seen by choosing
w(λ) = 1. Therefore the terms themselves do not constitute
an obvious choice for an approximation by (quasi-)classical
methods. In a nutshell, for a practical application, one cannot
approximate the TCF given by Eq. (9) directly, as it requires
treating the dynamics on the electronic timescales, whereas
approximating the summands therein individually does not
favor the Kubo-transformed TCF because the summands are
not real functions of time. In the following, only the first term
in Eq. (9) is considered since only the feature on the pos-
itive part of the frequency axis is important for absorption
spectroscopy.

C. Vibronic spectra via imaginary-time PI methods

In the spirit of RPMD techniques, it is useful to consider
the quantity of interest, Cλ(t), at time zero for any given λ.51

To reiterate, only the summand that leads to absorption spec-
tra is kept in the expression for Cλ(t), Eq. (9). The nuclear
trace therein is evaluated in the coordinate representation, and
the shift in imaginary time is equidistantly discretized, i.e.,
λ = lβ/P, where l ∈ [0, P] is an integer number and P >
0 is a natural number which will become later the number
of beads in the ring polymer. The result has the form of a
configuration-space average

Cλ(0) =
1
Z

∫
dR0 〈R0 | e−(P−l)βĤg/PD̂g

f e−lβĤf /PD̂f
g |R0〉 , (11)

where R describes the positions of all the nuclei in the system;
note that since l is a discretized version of λ, we use both inter-
changeably to simplify the notation. Following the standard
imaginary-time path integral approach,50,66 each exponential
term exp(�jβĤa/P), where a = g, f and j = P � l, l, can

FIG. 1. Schematic picture of a spectrum resulting from the two summands in
Eq. (10). Note that the SCF, which would lead to different relative intensities
at ±ε, is not applied.
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be written as a product of j identical factors exp(�βĤa/P).
Further, in total, P � 2 spatial closures ∫ dRk |Rk〉 〈Rk | = 1,
with k = 1, . . ., l � 1 and k = l + 1, . . ., P � 1 for a = f
and a = g, respectively, are inserted in between those fac-
tors. One additional closure with k = l is put right next to D̂g

f

yielding the corresponding eigenvalue D̂g
f |Rl〉 = Dg

f (Rl) |Rl〉
as it happens for D̂f

g |R0〉 as well. The resulting matrix ele-
ments 〈Rk+1 | exp(−βĤa/P) |Rk〉 are approximated via the
symmetric Trotter factorization in order to separate position-
and momentum-dependent terms. The former result in the
respective eigenvalues, whereas the latter are supplied by the
momenta closures leading after some straightforward algebra
to the well-known kinetic (spring) terms. These terms stand
for harmonic springs connecting adjacent beads of the result-
ing ring polymer; note that they are state-independent and thus
coincide for Ĥg and Ĥ f . Finally, the value Cλ(0) gets the form
of a configuration integral over the ring polymer coordinate
space

Cλ(0) ≈ 1
Z

∫
dR e−βUl(R)Dg

f (Rl)D
f
g(R0), (12)

where R = (R0, . . . , RP−1)T is the ring polymer configuration
obeying the cyclic condition RP = R0 and the effective ring
polymer potential

Ul(R) = K(R) +
1
P


l∑

k=0

ηkVf (Rk) +
P∑

k=l

ηkVg(Rk)
 , (13)

K(R) =
P−1∑

k=0

P

2β2~2
(Rk − Rk+1)TM(Rk − Rk+1). (14)

Here K denotes the kinetic spring term, M is the nuclear mass
matrix, and ηk is equal to 1/2 if k corresponds to the first or
the last summand, to 0 if there is only one summand, which
is the case if l = 0, P, and to 1 in all other cases. Importantly
each value of l defines a particular PES and thus a particular
realization of the ring polymer, undergoing different dynamics
as will become clear later; see Eq. (21). An example of such a
realization of the ring polymer is illustrated in Fig. 2. One sees
that there are two sets of beads, which “feel” either the upper
or the lower PES as is indicated by the blue or the red color,

FIG. 2. Sketch of the effective ring polymer potential, Eq. (13), for the case
P = 9 and l = 4, where the 0-th and the lth bead are marked. The PESs Vg and
V f are shown in red and blue, respectively. The color of the beads that “feel”
one of the PESs is chosen accordingly.

respectively. Note that there are two “boundary” beads that
distinguish one set of beads from the other and are influenced
by the averaged potential (hence depicted with both colors).
The presence of the two distinguishable sets of beads breaks
the cyclic symmetry of the ring polymer. Remarkably, in the
classical limit, P = 1, l can be equal to 0 and 1, and thus there
would be two realizations of the ring polymer according to
Eq. (13). This can be viewed as a consequence of the broken
cyclic symmetry of the ring polymer; note that when the PESs
are the same, the two potential energy terms in Eq. (13) coin-
cide, yielding the standard PIMD expression for the ground
state dynamics. Equation (12) remains exact in the limit
P→∞.

In order to evaluate the configuration integral in Eq. (12)
correctly via the standard sampling methods, the partition
function that appears in the expression has to normalize the
density exp[−βUl(R)]. Thus, the expression is multiplied and
divided by

Zλ = Tr
[
e−(β−λ)Ĥg e−λĤf

]
∝
∫

dR e−βUl(R) (15)

leading to a prefactor ξλ ≡ Zλ/Z that has to be calculated. As
it is derived in the supplementary material, this prefactor can
be conveniently and still numerically exactly extracted as

ξλ =
exp

[
− ∫ λ0

〈
V̂f − V̂g

〉
µ

dµ
]

1 + exp
[
− ∫ β0

〈
V̂f − V̂g

〉
µ

dµ
] , (16)

where the average is defined as

〈•〉λ =
1

Zλ
Tr

[
e−(β−λ)Ĥg e−λĤf •

]
. (17)

Finally, putting together all the obtained results leads to a
relation for C̄w(0),

C̄w(0) ≈ 1
P

P∑

l=0

ηlw(λ)ξλ
〈
Dg

f (Rl)D
f
g(R0)

〉
λ

, (18)

where the imaginary-time integration in Eq. (7) has been
discretized via the trapezoidal rule. It becomes apparent at
this point that one has to independently simulate each sum-
mand in Eq. (18), which corresponds to the respective real-
ization of the ring polymer defined by a particular value λ.
The factor w(λ) provides an external weight to the realiza-
tions and can be chosen arbitrarily, whereas the factors ξλ
are intrinsic weights that are dictated by quantum statisti-
cal mechanics; note that we consider distinguishable particles
only.

The remaining question is how to approximate the nuclear
dynamics, in particular, how to estimate the non-classical time
evolution in Eq. (8), i.e., exp[−iĤf t/~]D̂f

g exp[iĤgt/~]. First, an
effective Hamiltonian Ĥλ is defined for each point in the imag-
inary time λ = lβ/P that corresponds to the effective potential
Ul(R), Eq. (13). Second, the Hamiltonian of the ath state is
rewritten as Ĥa = Ĥλ + Ĥa � Ĥλ for a = g, f in order to switch
to the interaction representation1,2 that yields

e−iĤat/~ = e−iĤλ t/~ exp+

{
− i
~

∫ t

0
[Ĥa(τ) − Ĥλ]dτ

}
, (19)
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where the time arguments indicate a time evolution with
respect to Ĥλ. Third, the dynamics induced by Ĥλ are approx-
imated by the quasi-classical dynamics of the ring polymer
with respect to

Hλ(R,P) =
1

2P
PTM−1P + Ul(R) (20)

and the operators are replaced by their classical counterparts.
The momenta of the ring polymer P are introduced as conju-
gate variables to the coordinatesR in the usual fashion. Finally,
the desired TCF is approximated as

C̄w(t) ≈ 1
P

P∑

l=0

ηlw(λ)ξλ

×
〈
Dg

f (Rl)D
f
g(R0(t))ei/~ ∫ t

0 [Vf (R0(τ))−Vg(R0(τ))]dτ
〉
λ

.

(21)

Equation (21) is the main theoretical result of this work. It
should be stressed that this approximation leaves the den-
sity stationary at all times and excludes problems such as the
infamous zero-point energy leakage.67 Additionally, this sta-
tionarity enables averaging along trajectories, on top of the
averaging with respect to the initial conditions, thereby greatly
improving the statistical convergence. The generalization to a
larger number of states amounts to considering each transi-
tion separately according to Eq. (21) and summing the results
over.

D. Limiting cases

The formalism presented in Sec. II C as well as sev-
eral important limiting cases are sketched in Fig. 3. The
starting point is Eq. (5), where a specific choice of the,
in principle, arbitrary weighting function, w(λ), is made.
This choice defines the SCF and leads to a particular TCF,
including most of the well-established ones. For instance,
choosing w(λ) = δ(λ), see the left column therein, defines
a constant SCF equal to β and corresponds to the stan-
dard dipole autocorrelation function, Eq. (2). Approximat-
ing the dynamics according to Eq. (21) would lead to the

dynamics with respect to the ground state only, as it is done
in the DCL, but taking nuclear quantum effects into account,
hence termed PI-DCL. The pure DCL limit can be straight-
forwardly obtained by setting the number of beads P = 1. The
neglect of dynamics leads to sampling approaches and fur-
ther sacrifice of nuclear degrees of freedom as such results
in single-point calculation methods as it was discussed in the
Introduction.

For the case w(λ) = δ(λ), there exists also a completely
different route to approximate the dynamics,45 starting from
Eq. (8) with λ = 0 in the Wigner representation and taking
the semiclassical limit. This results in the ACL dynamics, that
is, the dynamics on the averaged PES U1/2 ≡ 1/2[Vg + V f ].
In contrast to the approximation suggested in this work, the
initial conditions for the ACL are sampled with respect to the
PES of the ground state, U0, thereby making the density non-
stationary. The presence of these non-equilibrium dynamics
causes unphysical negativities in the spectrum as it is discussed
in Sec. IV A and is proven in the supplementary material.

Interestingly, the same approximation to the dynamics
can be obtained within the presented formalism by setting
w(λ) = δ(λ � β/2), see the second column in Fig. 3, which
results in the Schofield TCF,68 being another TCF that has
the desired symmetry properties for quasi- or semi-classical
approximations.69,70 Then the P→ 1 limit of the correspond-
ing ring polymer potential can be interpreted as the aver-
aged PES, U1/2, defined above. Thus, the dynamics in this
case would be identical to the ACL one with the big advan-
tage that the density is stationary. Since it stems from the
Schofield TCF, it is referred to as Schofield ACL (SACL)
in the following. It is worth mentioning that analogous to
ACL, one can obtain SACL by starting from the Schofield
TCF and following the semiclassical route described in
Ref. 45.

Choosing w(λ) = 1, which corresponds to a democratic
average over all possible ring polymer realizations, results in
the Kubo TCF. For this choice of the weighting function and
restricting to the adiabatic regime, it has been suggested in
Ref. 58 that in the limit of an infinite number of mapping
variables, the NRPMD method54,58 evokes dynamics similar

FIG. 3. Sketch of the developed for-
malism with several examples of the
weighting function w(λ) that lead to
the well-established TCFs. The legend
on the right-hand side deciphers the
employed convention.
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to that in Eq. (21). Further, setting Ĥ f = Ĥg yields the standard
Kubo-transformed TCF, which serves as the basis for the state-
of-the-art RPMD method.51,53 Note that the real as well as the
imaginary part of C0(t) can be obtained by setting w(λ) = δ(λ)
± δ(λ � β), respectively.

III. COMPUTATIONAL DETAILS

In order to probe a chemically relevant regime, the pre-
sented protocol was applied to a diatomic that mimics the
OH bond of a gas-phase water molecule. The PESs for the
states, Vg and V f , were represented by a Morse potential
Va(r) = Ea(1 − exp[−αa(r − req

a )])2, where the ground state
parameters Eg = 0.185 a.u., αg = 1.21 a.u.�1, and req

g = 1.89
a.u. were taken from the qSPC/Fw water model and r is the
distance between O and H atoms.71 To have non-trivial spectra,
the frequency and the position of the minimum for the (final)
excited state PES were chosen to be different from the ground
state ones, whereas the dissociation energy was set the same
Ef = Eg ≡E. The particular values for the parametersαf and req

f
for the cases considered are given in Sec. IV. Further, the Con-
don approximation for the dipoles was used, and the spectra
were broadened with a Gaussian function with the dispersion
σ = 0.002 a.u. to account for dephasing due to the interactions
with an environment.

Spectra were simulated according to Eq. (21), with 500
uncorrelated initial conditions for each summand therein (that
is, each realization of the ring polymer with respect to λ);
ACL required 5000 trajectories due to non-stationarity of the
dynamics. MD with a Langevin thermostat was employed at
two different temperatures. One was the ambient T = 300.0 K
corresponding to β~ωg = 18.6, where ωg is the harmonic fre-
quency of the ground state. The other higher T = 1117.6 K
implied β~ωg = 5. As a side product of this sampling, the
prefactors ξλ were obtained via the gap average 〈V̂f − V̂g〉λ
according to Eq. (16). An MD trajectory according to Hλ

with a length of 12 000.0 a.u. and a timestep of 3.0 a.u. was
performed using the velocity-Verlet algorithm, starting from
each initial condition. The time evolution resulting from the
kinetic spring term was carried out analytically as described in
Ref. 72. The desired TCF was calculated as an ensemble aver-
age combined with the time average. The former was realized
as an average over the swarm of trajectories. The latter was
carried out as an average along each trajectory, which is legit-
imate owing to the stationarity of the density. Exact results
were obtained in the basis of 50 eigenstates of the harmonic
oscillator with the frequency ωg. Note that in view of the gen-
eralization to multi-state cases, where all transitions have to
be considered separately and then summed up, an individual
normalization of the TCFs would lead to wrong intensity ratios
between the transitions. Hence, a normalization of the spectra
was not performed.

IV. RESULTS AND DISCUSSION
A. Common weighting functions

The performance of all the aforementioned methods,
namely, PI-DCL, DCL, ACL, Schofield, SACL, and Kubo, is

compared against the numerically exact quantum-mechanical
(QM) reference in Fig. 4 for the two shifted Morse oscillators.
The shifts were chosen to be req

f − req
g = 0.22 a.u. (left) and

req
f − req

g = 0.5 a.u. (right), with a moderate ratio αf /αg = 0.86
and using ambient temperature. In Fig. 4(a1) the convergence
of intrinsic weights, ξλ, to the exact result is illustrated. To
start, the weights for P = 1 (classical case) are qualitatively
wrong. In this case, there are only two points corresponding
to the two realizations of the classical particle being either in
the ground or in the excited state; see Sec. II for a discussion.
Importantly, despite being an exponential quantity, the intrin-
sic weights can be obtained with sufficient accuracy with P
= 16 and completely converge at P = 32; note the log scale.
These numbers of beads are typical for reaching convergence
for ground-state properties of water at ambient conditions.67,73

It is natural to expect the same convergence behavior when the
shift between PESs is sufficiently small.

Switching to the absorption spectra depicted in Figs. 4(b1)
and 4(c1), one sees that the exact solution reveals a typical
Franck-Condon progression with a Huang-Rhys factor below
0.5, which implies the maximal intensity at the 0–0 transi-
tion.2,10 For the classical case, P = 1, Fig. 4(b1), DCL and
Kubo results are very similar since ξ0 is much higher than ξβ ,
see Fig. 4(a1), and thus the contributions stemming from the
ground state play the most important role. Both methods fail
completely to reproduce the exact spectrum in this parameter
regime. In particular, the intensities are dramatically overesti-
mated (note the scaling factor), and the maximum is not at the
exact 0–0 transition. The vibronic progression is significantly
suppressed and features wrong frequencies and almost sym-
metrical shapes, as it was discussed for DCL before.26,27 The
shape is more symmetrical for DCL than for Kubo because
the Kubo SCF, being responsible for the detailed balance,
suppresses the signal below zero frequency; the SCFs are
listed in Fig. 3 and the non-trivial ones are plotted in Fig.
6(b). In contrast, ACL results satisfactorily agree with the
exact ones, apart from a slight difference in the fundamen-
tal frequency. Nonetheless, the infamous negativities, which
are intrinsic to the method, can be observed to the left of
the 0–0 transition. Finally, the spectral intensities resulting
from SACL grow uncontrollably due to the SCF. To illustrate,
the SCF that reads exp[~βΩ/2] would yield approximately
3000, 9·106, and 2.7·1010 for the first, second, and third over-
tones of the characteristic frequency ωf , respectively; note
that whereas the frequency is growing linearly with the vibra-
tional quantum number in vibronic progression, the SCF grows
exponentially. This suggests that a more suitable choice of
the SCF can yield better numerical results, as is discussed in
Sec. IV B.

When it comes to more beads, that is, P = 32 in Fig.
4(c1), PI-DCL exhibits reasonable amplitudes but still yields
fairly symmetric wrong spectral shapes. This is a manifes-
tation of the fact that the ground-state dynamics only cannot
reproduce the spectra which are significantly dependent on the
peculiarities of the excited state. The Kubo results improve a
lot with respect to the spectral structure, as they include con-
tributions from the beads evolving on the PES of the excited
state, included due to the intrinsic weights in the proper way.
The shape is still not correct which is presumably due to
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FIG. 4. The two-level system with the parameters αf /αg = 0.86 at 300 K, left: req
f − req

g = 0.22 a.u. and right: req
f − req

g = 0.5 a.u.; see the text. Top: intrinsic
weights, ξλ , and middle and bottom: absorption spectra for P = 1, 32, 128.

over-pronounced contributions from large values of λ, which
in principle can be healed by a proper choice of the SCF; see
Sec. IV B. Schofield spectra still grow uncontrollably with fre-
quency due to the SCF, which does not depend on the number of
beads.

In order to test a different regime, where the vibronic
progressions are more pronounced, the same system with the
displacement of the PESs increased to req

f − req
g = 0.5 a.u. was

considered; see right panels in Fig. 4. Following the same struc-
ture of the discussion, the curve for intrinsic weights is an order
of magnitude lower, is much steeper at the imaginary-time
borders, and converges slower to the exact result. The latter is
intuitively expected since a larger number of beads are needed
to account for the increased displacement of the PESs as can be
understood from Fig. 2. The difference between ξ0 and ξβ for
P = 1 suggests that the results for Kubo and DCL would match
even closer than it was observed in Fig. 4(b1). Indeed, the
difference between the two is barely visible; see Fig. 4(b2);
note that they are still not identical due to the different SCFs.
Again, both show dramatically overestimated intensities and
rather symmetric lineshapes, whereas the ACL spectra are
qualitatively better, though they suffer increasingly from the
negativities. When the number of beads is increased to P = 128
in Fig. 4(c2), the Kubo spectrum improves over that from
DCL with respect to the envelop but the peaks are still much

broader than in the QM reference and are not at the correct
positions, whereas the Schofield spectra diverge again. The
PI-DCL amplitudes are getting more reasonable, but the shape
and peak positions still do not fit to the QM result. Practically,
there is no qualitative difference in terms of the performance
of each method for the two regimes considered.

Yet another possible regime can be accessed via increasing
the temperature (or, equivalently, by decreasing the frequen-
cies) while keeping the (other) parameters of the ground and
excited PESs the same; see Fig. 5. Starting with the system with
moderate shift in the left panels, one can see that the intrinsic
weights, ξλ, are converged at P = 32. Switching to the classical
spectra in Fig. 4(b1), one sees that DCL and Kubo again fail to
describe the exact spectrum. The ACL spectrum reveals small
negativities and slightly incorrect peak positions but overall
demonstrates the best agreement among the methods con-
sidered. Interestingly in this regime, the Schofield spectrum
remains bound which can be explained by a more moderate
SCF as a consequence of the higher temperature. However the
intensities are still strongly overestimated especially for higher
frequencies.

By increasing the number of beads, panels (c), the PI-
DCL results do not improve over pure DCL ones although the
amplitudes become better. The Kubo spectrum loses the fine
structure whereas the envelop resembles the shape of the exact
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FIG. 5. The structure of the figure coincides with that of Fig. 4 with the only difference being the higher temperature T = 1117.6 K (β~ωg = 5).

result. The Schofield spectrum again becomes unbound as it
was for the lower temperature.

The conclusions for the other system are the same apart
from the exploding SACL spectra in Fig. 5(b2) as the interested
reader can figure out.

B. Possible improvements

As it was shown in Sec. IV A, ACL performs generally
quite well with respect to the lineshapes but reveals negativi-
ties due to non-equilibrium dynamics, which is a rather severe
problem. The equilibrium version of ACL, which does not have
this deficiency, stems from the Schofield correlation function,
hence termed SACL in Sec. II D. Unfortunately, the respective
SCF is enormously large in the relevant frequency regions [Fig.
6(b)] thereby leading to a numerical instability (large times
small number) for spectra. It is thus desirable to preserve the
dynamics of SACL having a more “gentle” SCF. To reiterate,
in contrast to intrinsic weights ξλ dictated by statistics, exter-
nal weighting function w(λ) can be chosen arbitrarily. One
possibility is to choose

w(λ) = e−|λ−β/2 |ε , (22)

which “smooths” the delta peak around β/2 (corresponding
to the Schofield TCF), with the smoothing being controlled
by the value of ε . It can be clearly seen in Fig. 6(b) that the
resulting SCFs (green curves) indeed exhibit a significantly
more moderate growth with frequency. Another possibility

logically follows from the conclusion that Kubo performs rea-
sonably well but suffers from overestimated intensities for
higher frequencies. It is supposed that this deficiency is due to
over-pronounced contributions with large λ, thus, suggesting

w(λ) = e−λε . (23)

This constitutes a low-pass filter that suppresses the unwanted
contributions to spectra. The respective filtered intrinsic
weights, ξλ · w(λ), are shown in the upper panels of Fig. 6.
One sees that the smoothed Schofield includes all the contri-
butions keeping the emphasis on the middle one, whereas the
low-pass filter indeed suppresses the contributions with large
λ. To reiterate, Kubo and Schofield can be viewed as two lim-
iting cases, the former taking all the contributions into account
democratically and the latter picking only a single (λ = β/2)
one.

The respective spectra for the system with the small shift
are shown in the lower panels of Fig. 6; the results for the other
system are given in the supplementary material. One sees that
at lower temperatures (larger β), Fig. 6(c1) the low-pass fil-
ter appears to be the better choice. In particular, it removes
the over-pronounced high frequency contributions that the
Kubo results suffer from, whereas the smoothed Schofield filter
emphasizes these contributions even more. However, the low-
pass filter results in the dynamical features that are washed
out with respect to the exact spectrum. In contrast, for the
higher temperature case, low-pass performs as badly as the
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FIG. 6. The two-level system with the parameters αf /αg = 0.86, req
f − req

g = 0.22 a.u.; left: at T = 300 K and right: at T = 1117.6 K; see the text. The smoothing
for the Schofield function βε = 4.8 and for the low-pass filter βε = 3.2. Panels (a) filtered intrinsic weights, ξλ ·w(λ), (b) SCFs, and (c) absorption spectra for
P = 32.

Kubo does, whereas the smoothed Schofield filter reveals the
fine spectral structure with a decent quality. In both cases, the
smoothed Schofield spectra remain bound, as it is implied by
the choice of the external weight. Unfortunately the suggested
weights did not improve the results for the system with the
larger shift; see supplementary material.

To summarize, the present study suggests that a non-
standard form of w(λ) can be beneficial in comparison to the
common choices with respect to quality and numerical stabil-
ity. However, a universal recipe for choosing the weighting
function is hard to formulate for the general case and requires
further investigations.

V. CONCLUSIONS AND OUTLOOK

The central question of this work was whether the com-
mon TCFs employed for approximations to nuclear dynamics
on a single PES are still preferable for vibronic spectroscopy.
To reiterate, the Kubo-transformed TCF enjoyed success in
describing the ground state dynamics due to fundamental sym-
metry properties that make it the most classical-like quantum
TCF.51,64 Unfortunately, the direct practical application of the
Kubo TCF to vibronic transitions leads to either numerical or
conceptual deficiencies, namely, it is either intractable numer-
ically or becomes a complex function. Therefore in the present
work, we suggested a generalized form of quantum time cor-
relation functions and several approximations based on it that

can be used, e.g., for the linear vibronic absorption spec-
troscopy. The generalization is done via employing a shift in
imaginary time and introducing a weighting function, thereby
uniting many TCFs that have been reported in the literature
before. Furthermore, it is possible to construct new TCFs that
might outperform the common ones when it comes to quasi-
classical approximations to vibronic spectroscopy. Here we
employed imaginary-time PI techniques and the interaction
representation to develop a method that allows for dynamics
on multiple potential energy surfaces and nuclear quantum
effects.

Absorption spectra resulting from various weighting func-
tions and thereby from different TCFs were compared against
the exact results, which can be straightforwardly obtained for
1D two-level model system considered here. As it was already
shown in the previous studies,26,27 DCL-based methods typ-
ically exhibit (incorrectly) symmetrical spectral shapes with
possibly wrong frequencies, when the ground and excited
PESs differ significantly. Apart from the negativities which
stem from the non-equilibrium dynamics, the results of the
ACL method agree well with exact spectra in terms of frequen-
cies and intensity ratios in vibronic progressions. We would
like to stress that these negativities are not trivial artifacts that
can be manually removed from the spectra. A possible solu-
tion based on the Schofield TCF, which leads to an equilibrium
dynamics, suffers from an unhealthy growth of the shift correc-
tion factor for both low- and high-temperature regimes. The
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performance of the popular Kubo TCF is in most cases not
superior with respect to the aforementioned ones that treat
excited-state dynamics explicitly, exhibiting washed-out fine
spectral structures and/or incorrect frequencies and intensities.
The results could be improved upon choosing a more compli-
cated weighting function form, however staying unsatisfactory
for systems with a large shift between ground and excited state
PESs.

To summarize, a successful method should employ
dynamics, which accounts for the involved PESs simultane-
ously. The imaginary-time PI approach in combination with
the generalized TCF, as it is presented here, not only incorpo-
rates nuclear quantum effects but also yields the possibility to
construct more practical numerical protocols than those based
on the state-of-the-art Kubo TCF. Nonetheless, the presented
formalism neglects non-adiabatic effects; to allow for them,
NRPMD54,55 is hitherto the method of choice.

The existing freedom for the choice of the SCF provides
attractive possibilities for finding an optimal one suited for a
particular problem as well as, if possible, for a class of prob-
lems or even for the general case. A criterion for the optimality
may be the match of the spectra in terms of peak positions and
spectral shapes to the exact ones simulated for prototypical
model systems. Practically, such an investigation can be done
in an automated manner, e.g., using machine learning tech-
niques. Importantly, it can be performed a posteriori based
on the existing dynamical results without recomputing them.
Ideally, this should be supported by a physical motivation
that can specify the particular form of the weighting func-
tion or explain the numerically obtained one. This requires
a general understanding of the reasons behind the success
or failure of a particular weighting function, which may be
obtained at minimum via an extensive analysis for various
systems (beyond 1D) in different parameter regimes. This is
clearly a project on its own and is thus a subject for future
research.

SUPPLEMENTARY MATERIAL

See supplementary material for the relation between
Sλ(Ω) and the absorption lineshape S0(Ω), the derivation of
the expression for the intrinsic weights, Eq. (16), the proof
that the negativities in the spectra are due to non-equilibrium
dynamics, and the results of applying the filters to the system
with the large PES shift.
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I. RELATION BETWEEN THE FOURIER TRANSFORMS

To show the relation between Sλ(Ω) for a given λ and the absorption line shape S0(Ω)

as given by Eq. (4) in the main text, one can evaluate Eq. (3) therein in the basis of the

molecular energy eigenstates and apply the Fourier transform
∞∫

−∞

dt e−iΩtCλ(t) =
1

Z

∞∫

−∞

dt e−iΩt
∑

γ,φ

e−(β−λ)εγ〈γ|d̂|φ〉e−λεφeiεφt/~〈φ|d̂|γ〉e−iεγt/~ . (S1)

Rearranging the factors and performing the time integration yields

Sλ(Ω) =
2π

Z

∑

γ,φ

e−λ(εφ−εγ)e−βεγ〈γ|d̂|φ〉〈φ|d̂|γ〉δ(Ω− (εφ − εγ)/~) . (S2)

Due to the delta-function one can replace the energy gap appearing in the left exponential

by the energy quantum carried by the incoming photon, i.e. εφ − εγ = ~Ω,

Sλ(Ω) = e−λ~Ω 2π

Z

∑

γ,φ

e−βεγ〈γ|d̂|φ〉〈φ|d̂|γ〉δ(Ω− (εφ − εγ)/~) . (S3)

Due to this substitution the exponential containing λ became independent on the indices

γ, φ and could be pulled out of the sum. Recognizing the remaining sum to be the absorption

line shape S0(Ω) (in accordance to Fermi’s golden rule) yields directly Eq. (4) in the main

text.

II. DERIVING THE INTRINSIC WEIGHTS

In order to derive a working expression for the intrinsic weights, Eq. (16) in the main

text, the full partition function is written as

Z = Tr[e−βĤg ] + Tr[e−βĤf ] = Z0 + Zβ , (S4)

2
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where the latter equality follows from the definition of Zλ, Eq. (15) in the main text. It

turns out to be beneficial to multiply and divide ξλ by 1/Z0 yielding

ξλ =
Zλ
Z

=
Zλ

Z0 + Zβ
=

Zλ/Z0

1 + Zβ/Z0

, (S5)

thus the remaining task is to evaluate Zλ/Z0 for λ = 0, . . . β. The direct evaluation of the

fraction would require the sampling of an observable depending exponentially on the phase-

space variables leading to an uncontrollable fluctuation and, hence, to a poor convergence

behavior. In order to circumvent this issue one can consider first the logarithm of the fraction

and subsequently its derivative with respect to the imaginary time λ

d

dλ
ln
Zλ
Z0

=
1

Zλ

dZλ
dλ

= − 1

Zλ
Tr
[
e−(β−λ)Ĥge−λĤf (V̂f − V̂g)

]
= −

〈
V̂f − V̂g

〉
λ
. (S6)

The remaining quantity to be evaluated is the quantum mechanical average of the potential

gap which can be calculated efficiently and numerically exact by means of imaginary time

path integral methods. To invert the differentiation one has to integrate the gap over the

imaginary time

ln
Zλ
Z0

= −
λ∫

0

〈
V̂f − V̂g

〉
µ

dµ+ ln
Zλ=0

Z0

. (S7)

Exponentiating and noting that ln(1) = 0 yields Eq. (16) in the main text.

III. NEGATIVITIES IN THE SPECTRUM DUE TO NON-EQUILIBRIUM

DYNAMICS

Consider a general auto-correlation function in terms of a phase-space integral

C(t) =

∫
dΓ ρA(t)A∗(0) , (S8)

where ρ and A are functions of the considered phase-space variables collectively described

by Γ and the asterisk represents the complex conjugation. One can now insert a unity as

1 = lim
T→∞

1

2T

T∫

−T

dτ e−L̂τeL̂τ , (S9)
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in between ρ and A(t), where L̂ is the Liouvillian that generates the dynamics in A(t).

After acting with the time-evolution operators to the left and to the right, respectively, the

expression for the auto-correlation function becomes

C(t) = lim
T→∞

1

2T

∫
dΓ

T∫

−T

dτ ρ(τ)A(t+ τ)A∗(τ) , (S10)

where the density ρ is not necessarily stationary and the Liouville theorem is employed, i.e.

exp[L̂τ ]dΓ = dΓ. Switching to the corresponding spectrum S(Ω) =
∫∞
−∞ dt exp[−iΩt]C(t)

and making a variable substitution t→ t+ τ yields

S(Ω) = lim
T→∞

1

2T

∫
dΓ

∞∫

−∞

dt e−iΩtA(t)

T∫

−T

dτ eiΩτρ(τ)A∗(τ) . (S11)

If T becomes sufficiently large, the τ -integration limits may be extended to infinity and one

can recognize the Fourier transforms of the corresponding time-dependent functions

S(Ω) = lim
T→∞

1

2T

∫
dΓSA(Ω)S∗ρ∗A(Ω) . (S12)

Assuming now that ρ is real, positive semi-definite and obeys stationarity, as given in most

(quasi-)classical equilibrium dynamics, it can be pulled out of the Fourier transform, yielding

S(Ω) = lim
T→∞

1

2T

∫
dΓ ρ|SA(Ω)|2 , (S13)

which represents a spectrum without negativities. Since the stationarity of the density was

the only assumption involved, the presence of non-equilibrium (quasi-)classical dynamics is

a necessary requirement for negativities in an absorption spectrum.

IV. APPLYING THE FILTERS TO THE SYSTEM WITH THE LARGE

PES SHIFT

Figure 1 reveals that the filter techniques presented in the main text, i.e. the smoothed

Schofield and the low-pass filter do not improve the results for the system with the large

PES shift.
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FIG. 1. The two-level system with the parameters αf/αg = 0.86, req
f − r

eq
g = 0.5 au at T = 300 K

and 1117.6 K in the left and in the right panels, respectively. The PES parameters coincide with

those of the right panels in Fig. 4 and Fig. 5 in the main text and the structure is the same as

in Fig. 6 therein. Panels a) filtered intrinsic weights, ξλw(λ), b) SCFs, c) absorption spectra for

P = 32. The smoothing parameter for the Schofield function is βε = 9.2 and for the low-pass

βε = 5.2.
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Measuring the vibronic spectrum probes dynamical processes in molecular systems.

When interpreted via suitable theoretical tools, the experimental data provides com-

prehensive information about the system in question. For complex many-body prob-

lems, such an approach usually requires the formulation of proper classical-like ap-

proximations, which is particularly challenging if multiple electronic states are in-

volved. In this manuscript, we express the imaginary-time shifted time correlation

function (TCF) and, thus, the vibronic spectrum in terms of the so-called Matsub-

ara dynamics, which combines quantum statistics and classical-like dynamics. In

contrast to the existing literature, we invoke a local harmonic approximation to the

potential allowing an analytical evaluation of integrals. By subsequently applying

the Matsubara approximation, we derive a generalization of the existing Matsubara

method to multiple potential energy surfaces (PESs), which, however, suffers from

the sign problem as its single-PES counterpart does. The mathematical analysis for

two shifted harmonic oscillators suggests a new modified method to simulate the

standard correlation function via classical-like dynamics. Importantly, this modified

method samples the thermal Wigner function without suffering from the sign prob-

lem and it yields an accurate approximation to the vibronic absorption spectrum,

not only for the harmonic system, but also for an anharmonic one.

a)Electronic mail: sergei.ivanov@uni-rostock.de
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I. INTRODUCTION

Spectroscopic methods constitute the cornerstone of experimental molecular physics and

physical chemistry.1–3 Constant sharpening of the energy and time resolution provides in-

creasingly detailed insight into photophysical and photochemical processes. Complementing

measurements by proper theoretical tools enables understanding of the underlying micro-

scopic phenomena. Simple models,1,2 on the one hand, often fail to capture essential features,

whereas solving the time-dependent Schödinger equation numerically exactly,4 on the other

hand, is not feasible for large systems due to the infamous curse of dimensionality. There-

fore, compromises between the both extremes are to be found. A remarkable pathway is

to approximate the exact quantum dynamics via (quasi-)classical methods motivated by

the provided intuitive access into the atomistic picture. For instance, imaginary-time path

integral (PI) techniques have proven themselves to rigorously account for static quantum

effects profiting from the classical-like equations of motion (EOMs).5–8 These approaches

are successfully employed for electronic ground-state properties and purely vibrational spec-

tra.9–12 Here, the quantum time evolution has a direct classical analogue since only a single

electronic PES is of relevance. In contrast, vibronic spectra are intrinsically more quantum

due to electronic degrees of freedom (DOFs) undergoing transitions between discrete levels.

Thus in a simulation, at least two PESs need to be explicitly accounted for; such a situation

has no classical analogue.

A number of trajectory-based methods treating dynamics on several PESs has been sug-

gested (see, e.g., Refs. 13–15 for review), mostly addressing the rates of non-adiabatic tran-

sitions, while leaving the problem of vibronic spectra aside. Further, nonadiabatic ring poly-

mer molecular dynamics (NRPMD) techniques have been developed,16,17 which are based

on the mapping approach introduced by Stock and Thoss.13,18,19 Although these methods

are suitable for vibronic spectra, given an efficient simulation protocol is provided,20 such an

application has not been commonly discussed. Similarly, PI approaches for many PESs with-

out mapping variables21–25 have addressed mostly non-adiabatic effects on static properties

or reaction rates but not vibronic spectra.

In a recent publication, Ref. 26, we have suggested a generalized formalism to address

the vibronic spectra of complex systems. Within this approach, many commonly known

correlation functions such as the Kubo27 or Schofield28 TCFs as well as the more pragmatic

2
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dynamical classical limit (DCL) one29–32 are naturally recovered. Additionally, this formu-

lation enables constructing completely new TCFs and it has been demonstrated for model

systems that some newly suggested TCFs can yield numerical protocols that outperform

the well-established ones. This has led to the conclusion that there is no unambiguously

favorable TCF when it comes to a practical consideration of the vibronic spectrum, which

is in contrast to infra-red (IR) spectroscopy, where the Kubo TCF is to be preferred.33,34

In Ref. 26, an adiabatic quasi-classical approximation to the imaginary-time shifted TCF,

which is the main ingredient of the generalized formalism, has been carried out. In the

spirit of the standard ring polymer molecular dynamics (RPMD) method,34 a numerically

exact expression for the TCF at time zero has been derived. The subsequent dynamics has

been constructed to conserve the quantum Boltzmann density, but it suffers from infamous

artificial harmonic spring oscillations, intrinsic to quasi-classical PI techniques.35

During the last years, several attempts have been performed to develop improved approx-

imations to vibrational quantum dynamics based on the so-called Matsubara dynamics.36–38

This methodology starts from the observation that only smooth imaginary-time paths con-

tribute to canonical thermal averages, whereas jagged or discontinuous paths are sufficiently

suppressed by the Boltzmann operator. Assuming that the path remains smooth even if it

undergoes dynamics, i.e. the Matsubara approximation, one can rigorously derive classical-

like EOMs leaving the initial density unchanged. Although the Matsubara dynamics ansatz

yields a reasonable approximation to the Kubo TCF for small systems, it is not yet applica-

ble to high-dimensional problems due to the infamous sign problem. Still, it has been shown

that popular methods such as RPMD, thermostatted RPMD (TRPMD)39 as well as centroid

molecular dynamics (CMD)40 can be viewed as feasible approximations to the Matsubara

dynamics. Thus, it is natural to expect that other even more powerful approximations to

nuclear quantum dynamics can be derived on its basis, making this approach particularly

promising.

However, so far the Matsubara dynamics method has not been employed for vibronic

spectra. In this manuscript, we present how this spectroscopic observable can be approxi-

mately evaluated making use of the Matsubara dynamics. First, the exact imaginary-time

shifted TCF is rigorously reformulated in terms of a phase-space integration, see Sec. II A.

Second, alternatively to existing literature, a local harmonic approximation to the poten-

tial is involved in Sec. II B. Together with the Matsubara approximation itself, this leads to

3
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a generalization of the established Matsubara method to multiple PESs. Third, classical-

like EOMs are derived in Sec. II C, leaving a flexibility for a choice of Hamilton function

generating the dynamics. Two reasonable variants are motivated in Sec. II E, followed by

a discussion of common approaches to circumvent the sign problem in Sec. II F. Finally,

favorable simulation scenarios are suggested, based on the mathematical analysis for an an-

alytically solvable system consisting of two shifted harmonic oscillators in Sec. IV. Moreover,

a modified method to simulate the standard correlation function without suffering from the

sign problem is outlined. Importantly, this method samples directly the thermal Wigner

function of the harmonic oscillator. All considered approaches are subsequently applied to

a one-dimensional model system at ambient temperature, see Sec. IV A 2. In Sec. IV B 1,

the modified method is generalized to anharmonic systems and is demonstrated to sample

accurately the thermal Wigner function for a quartic expansion of the Morse potential. In-

terestingly, although designed for the harmonic case, the modified method yields vibronic

spectra very similar to those obtained with the Matsubara dynamics method for the general

case, see Sec. IV B 2. In Sec. V, the manuscript is concluded and some perspectives for future

research are given.

II. THEORY

Traditionally, the heart of (N)RPMD methodologies is the Kubo-transformed TCF, how-

ever, we have shown recently that when vibronic spectra are addressed, the choice of the

correlation function is not as unambiguous as it is for vibrational dynamics.26 The corner-

stone of the generalized TCF suggested therein is the formally exact imaginary-time shifted

TCF, Cλ(t) (see Eq. (1)). Here, we generalize the well-established Matsubara dynamics36 to

vibronic spectroscopy and derive it from Cλ(t) by means of a local harmonic approximation

to the potential.

A. Setting the stage

The starting point is the imaginary-time shifted correlation function for a particular

λ ∈ [0, β]26

Cλ(t) =
1

Z
Tr
[
e−(β−λ)ĤgD̂g

fe
−λĤf eiĤf t/~D̂f

g e−iĤgt/~
]
, (1)
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where the Born-Oppenheimer approximation (BOA) is assumed, Tr[•] stands for a trace in

the nuclear Hilbert space, Ĥa corresponds to the nuclear Hamiltonian with the PES V̂a of the

a-th adiabatic state, where a = g, f and D̂g
f ≡ (D̂f

g )∗ is the transition dipole moment. Note

that for λ = 0, the standard correlation function C0(t) is recovered, whose Fourier transform

directly yields the absorption spectrum. For the sake of brevity, we restrict ourselves to a

1D system, described by position and momentum operators x̂ and p̂ in nuclear space and

two discrete electronic states g and f ; the generalization to a many-dimensional multi-level

system is straightforward. To start, the shift in imaginary time is equidistantly discretized,

i.e. λ = lβ/P , where P > 0 is a natural number and λ and l are used synonymously

throughout the manuscript. The nuclear trace in Eq. (1) is performed in the eigenstate

basis of x̂ over coordinates x−0 and an additional spatial closure, i.e. an integral over x+
0 , is

inserted. Subsequently, a canonical variable substitution to midpoint and difference variables

is performed, i.e. x0 := (x+
0 + x−0 )/2 and ∆0 := x+

0 − x−0 , respectively, see Fig. 1 for a sketch.

The resulting expression reads

Cλ(t) =
1

Z

∫
dx0

∫
d∆0〈x−0 |e−(P−l)βĤg/P D̂g

fe
−lβĤf/P |x+

0 〉〈x+
0 |eiĤf t/~D̂f

g e−iĤgt/~|x−0 〉 . (2)

Following the standard imaginary-time PI approach,8,41 each exponential term exp(−jβĤa/P ),

with j = P − l, l can be expressed as a product of j identical factors exp(−βĤa/P ). Further,

unity operators in the form

1̂ =

∫
dxi

∫
d∆i|x+

i 〉〈x+
i |eiĤit/~e−iĤit/~|x−i 〉〈x−i | (3)

are inserted in between those factors, where the coordinates x±i correspond to the sum and

difference variables xi and ∆i, respectively, as it is visualized in Fig. 1. The Ĥi are, in

principle, arbitrary Hermitian operators, i = 1, . . . , P − 1. However, for the present purpose

they are limited to a non-relativistic Hamiltonian form Ĥi = p̂2/2m + V̂i(x̂), where m is

the nuclear mass and particular choices for the potentials V̂i are suggested in Sec. II E. To

obtain the structure of the Wigner transform,42,43 which will be of use later, scalar unities

are inserted

1 =

∫
d∆′i δ(∆

′
i −∆i) =

1

2π~

∫
d∆′i

∫
dpi e

ipi(∆
′
i−∆i)/~ (4)

for each i. Finally, time-(in)dependent parts can be singled out, leading to the compact

5
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FIG. 1. Visualization of the structure of the correlation function in Eqs. (5-7). The jagged

lines and straight arrows represent imaginary- and real-time propagations with length β/P and t,

respectively. The red and the blue color indicates initial and final electronic state, correspondingly.

form of a classical-like phase-space integral

Cλ(t) =

∫
dx

∫
dpAl(x,p)Bl(x,p, t) . (5)

Here, the time-independent part reads

Al(x,p) :=

1

Z(2π~)P

∫
d∆ eip

T
∆/~1

2
[Dg

f (x
+
l ) +Dg

f (x
−
l )]

P−1∏

i=l

〈x−i+1|e−βĤg/P |x+
i 〉

l−1∏

i=0

〈x−i+1|e−βĤf/P |x+
i 〉 ,

(6)

where x := (x0, . . . , xP−1)T (likewise for ∆ and p) and all the vectors obey the cyclic

condition P 7→ 0. Note that the dipole is evaluated at both x±l since the unity with the

index l, Eq. (3), can be inserted on the both sides of the dipole operator. Having Fig. 1 at

hand, it becomes clear that the midpoint coordinates xi form a continuous path in the limit

P → ∞. Analogously to common imaginary-time PI approaches, these midpoints will be

referred to as beads in the following.

The time-dependent part takes the form

Bl(x,p, t) :=

∫
d∆ e−ip

T
∆/~

P−1∏

i=0

〈x+
i |eiĤit/~Ôie−iĤ′

it/~|x−i 〉 , (7)

where Ôi = 1̂,∀i > 0 and Ô0 := D̂f
g . Importantly, for i = 0 the Hamiltonians are fixed

Ĥ′0 := Ĥg and Ĥ0 := Ĥf , whereas the Ĥ′i ≡ Ĥi,∀i > 0 remain arbitrary. Note further that

6
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at time zero the expression collapses to Bl(x,p, 0) ≡ Df
g (x0) as it can be easily proven. The

Eqs. (5-7) remain exact and possible approximations to them are discussed in Sec. II B and

II C.

B. The time-independent part

First, each density matrix element in the time-independent part is evaluated via the

symmetric Trotter factorization in the usual imaginary-time PI fashion, yielding

〈x−i+1|e−βĤa/P |x+
i 〉 = lim

P→∞

(
βmΩ2

P

2π

)1/2

exp

{
− β

2P

[
Va(x

−
i+1) + Va(x

+
i )
]
− βmΩ2

P

2

[
x−i+1 − x+

i

]2
}

,

(8)

where ΩP :=
√
P/β~ is the standard ring-polymer chain frequency. Now the first approxi-

mation is employed, namely that the potential is assumed to be locally harmonic

Va(x
±
i ) ≈ Va(xi)±

∂Va
∂xi

∆i

2
+

1

2

∂2Va

∂x2
i

(
∆i

2

)2

(9)

and the transition dipole to be locally linear

1

2
[Dg

f (x
+
l ) +Dg

f (x
−
l )] ≈ Dg

f (xl) . (10)

These assumptions enable the analytical integration over the difference variables, see Sup-

plement for a detailed derivation. It is useful to employ the normal mode coordinates of

the free-particle ring polymer,8,35 Q := Tx/
√
P and Π := Tp/

√
P , where the orthog-

onal transformation matrix T represents the discrete Fourier transform with respect to

the imaginary time36 and the matrix elements are given explicitly in Sec. I of the Sup-

plement. For notational convenience later on, the normal modes have the index r that runs

over r = −(P − 1)/2, . . . , 0, . . . , (P − 1)/2; in contrast, the bead indices take the values

i = 0, . . . , P − 1, see Fig. 2. Since the formulas are slightly different depending on the parity

of P , it is chosen to be an odd number to get more symmetric expressions. Importantly,

taking the limit P → ∞, which makes the Trotter factorization exact, is problematic due

to the appearance of diverging terms. These divergences can be, however, healed by an

additional approximation that is described in the following.

The second approximation is to restrict the normal modes to the so-called Matsubara

modes, i.e. to discard all higher normal modes with |r| > M̄ , where M̄ := (M − 1)/2 with
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FIG. 2. A sketch illustrating how the Matsubara approximation affects an imaginary-time path.

An arbitrary jagged imaginary-time path (upper left) is transformed to the normal modes’ coordi-

nates via the matrix T (upper right). After restricting to the M lowest modes (bottom right), i.e.

the Matsubara approximation, one obtains a smooth path via the back transform (bottom left).

Note that the normal mode index r runs over −P̄ , . . . , P̄ , where, similarly to M̄ , P̄ := (P − 1)/2.

M � P , see Fig. 2 for a sketch. Subsequently, the dependency of all physical quantities,

in particular, the potential, the transition dipole moment as well as the time-dependent

part on these higher “non-Matsubara” modes is neglected. Practically, it implies that only

smooth imaginary-time paths significantly contribute to the TCF for all times t. Under this

assumption, the integrals corresponding to the non-Matsubara modes in Eq. (5) possess a

Gaussian form and can be thus performed analytically, see Sec. II in the Supplement. The

resulting approximate time-independent part can be written down compactly as

Ãl(Q,Π) ≈ M̄ !2

2π~MZ
Dg
f (xl(Q))e−β[H̃l(Q,Π)+iΠ

TWQ] , (11)

where the anti-symmetric anti-diagonal matrix (W)r,s := ωrδr,−s contains the well-known

Matsubara frequencies ωr := 2πr/β~. For the sake of brevity, Q and Π represent the

Matsubara modes only and Ãl(Q,Π) := P PAl(x(Q),p(Π)) with P P stemming from the

substitution of the Cartesian volume element by the normal mode one. Note that we will

define X̃(Q,Π) := X(x(Q),p(Π)) without the P P factor for any other arbitrary phase-space
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function X in the following. The classical Hamilton function in Eq. (11)

H̃l(Q,Π) :=
1

2m
ΠTΠ + Ũl(Q) (12)

is determined by the effective ring polymer potential for multiple PESs26

Ul(x) :=
1

P

l∑

i=0

κiVf (xi) +
1

P

P∑

i=l

κiVg(xi) , (13)

where κi is equal to 1/2 if i corresponds to the first or the last summand, to 0 if there is

only one summand, which is the case if l = 0, P , and to 1 in all other cases. Note that the

harmonic spring term that is usually present in imaginary-time PI methods has vanished

upon applying the Matsubara approximation, see Sec. II in the Supplement. Note further

that in the case λ ∈ {0, β}, with {•} representing a set, the effective potential is exclusively

assembled from the initial and final state potentials, respectively. Having Eq. (13) at hand,

it becomes clear that the effective potential remains discontinuous at the points x0 and xl in

the limit P → ∞ for λ ∈ ]0, β[ , where ]•, •[ refers to an open interval. The question arises

whether this is in the spirit of the Matsubara approximation which permits only smooth

and continuous imaginary-time paths, see Sec. IV for a discussion.

Importantly, after integrating out the non-Matsubara modes, the time-independent part

does not feature any divergence as P →∞. This is a direct consequence of the Matsubara

approximation and will be particularly relevant for the consideration of the time-dependent

part in Sec. II C. Interestingly, setting Vg(x) = Vf (x), i.e. considering a single-PES problem,

and integrating Eq. (1) over λ from 0 to β yielding the Kubo transform, leads to the expres-

sion derived in Ref. 36, even though the local harmonic approximation to the PES and the

linear approximation to the dipole, Eqs. (9,10), were not utilized therein.

C. The time-dependent part

In order to evaluate the time-dependent part, we first consider its time derivative. Since

the factors in Eq. (7) are uncoupled, it is sufficient to consider them individually. The time

derivative of the i-th factor reads

Ḃi
l (xi, pi, t) =

i

~

∫
d∆i e−ipi∆i/~〈x+

i |[ĤiÔi(t)− Ôi(t)Ĥ′i]|x−i 〉 , (14)
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where Ôi(t) := exp[iĤit/~]Ôi exp[−iĤ′it/~] with Ôi defined in Sec. II A. Recognizing the

Wigner transform in Eq. (14), the time derivative can be exactly rewritten in terms of a

quantum Liouvillian, see e.g. Ref. 44, as Ḃi
l (xi, pi, t) = L̂il(xi, pi)Bi

l (xi, pi, t), where

L̂il(xi, pi) :=
pi
m

∂

∂xi
− 1

~
[Vi(xi) + V ′i(xi)] sin

(
~
2

←−
∂

∂xi

−→
∂

∂pi

)
+

i

~
[Vi(xi)− V ′i(xi)] cos

(
~
2

←−
∂

∂xi

−→
∂

∂pi

)

(15)

and the arrows on top of the partial derivatives imply the direction of their action. Impor-

tantly, all terms Vi(xi)− V ′i(xi) vanish apart from the case i = 0, where V0(x0)− V ′0(x0) =

Vf (x0)− Vg(x0), see definitions of Ĥi below Eq. (7). After summing up the individual parts

and noting that mixed derivatives with respect to different indices i vanish, one gets the

derivative of the complete time-dependent part as Ḃl(x,p, t) = L̂l(x,p)Bl(x,p, t), with the

full and still exact quantum Liouvillian

L̂l(x,p) :=
1

m
pT∇x −

2P

~
Ul(x) sin

(
~
2

←−∇T
x

−→∇p

)
+

i

~
[Vf (x0)− Vg(x0)] cos

(
~
2

←−∇T
x

−→∇p

)
,

(16)

where

Ul(x) :=
1

2P
[Vf (x0) + Vg(x0)] +

1

P

P−1∑

i=1

Vi(xi) . (17)

Following the same line of reasoning as in the previous section, the normal mode transform

is employed leading to
←−∇T

x

−→∇p =
←−∇T

Q

−→∇Π/P , where it is important to note the downscaling

by P . Restricting the normal modes to the Matsubara modes and bearing in mind that

the limit P → ∞ of the time-independent part exists, we can consider this limit for the

time-dependent part as well. Keeping only the leading terms in the Taylor series of sine and

cosine in Eq. (16) yields

lim
P→∞

ˆ̃Ll(Q,Π) =
1

m
ΠT∇Q − [∇T

QŨl(Q)]∇Π +
i

~
[Vf (x0(Q))− Vg(x0(Q))] , (18)

which is a classical -like Liouvillian containing a scalar imaginary inhomogeneity that de-

pends on the energy gap between the initial and final electronic states. Importantly, neither

an additional approximation nor any ~ → 0 limit has been applied; note that the latter

would be a non-trivial task since the time-independent part still depends on ~. Having the
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particular form of the Liouvillian at hand, one can write down the time-dependent part

explicitly as

B̃l(Q,Π, t) = e
ˆ̃Ll(Q,Π)tB̃l(Q,Π, 0) = Df

g (x0(t)) exp

{
i

~

∫ t

0

[Vf (x0(τ))− Vg(x0(τ))]dτ

}
,

(19)

where x0(t) := eRe ˆ̃Ll(Q,Π)tx0(Q) with Re ˆ̃Ll meaning the real part of ˆ̃Ll. Alternatively to

the formulation with Liouville operators, one could now define a classical Hamilton function

that generates the trajectory x0(t) with x0(0) = x0(Q) via Hamilton’s EOMs for Q and Π

as it is spelled out explicitly in the following section.

D. The Matsubara approximation to the imaginary-time shifted TCF

Putting together the results presented in the last two sections leads to the Matsubara

approximation to the imaginary-time shifted correlation function

Cλ(t) ≈
M̄ !2

2π~MZ

∫
dQ

∫
dΠ

×e−β[H̃l(Q,Π)+iΠ
TWQ]Dg

f (xl(0))Df
g (x0(t)) exp

{
i

~

∫ t

0

[Vf (x0(τ))− Vg(x0(τ))]dτ

}
,

(20)

where the dynamics follows from the EOMs

Q̇ =
Π

m
, Π̇ = −∇QŨl(Q) . (21)

The last two equations constitute one of the main theoretical results of this manuscript and

the starting point for simulating the vibronic spectra of complex systems (after a straight-

forward generalization to a many-dimensional many-body case). However, a few concerns

are yet unresolved. First, it is not clear which particular form of the potential Ũl(Q) is

reasonable. As it is discussed in the next section, this freedom might be beneficial. Sec-

ond and a more severe one, is the presence of the imaginary part ΠTWQ in the exponent

in Eq. (20), which is responsible for the infamous sign problem, leading to an unsufficient

statistical convergence, see Sec. II F.
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E. Choosing the dynamics

As it has been stated in Sec. II A, the Hermitian operators Ĥi that determine the dynamics

are, in principle, completely arbitrary. However, one can think of two choices aiming at a

reasonable simulation protocol.

First, in an attempt to avoid problems such as zero-point energy leakage,45 it would be

desirable to keep the density stationary. Thus, one can define the Hamiltonians

Ĥi :=





Ĥf , 1 ≤ i < l

Ĥav := (Ĥg + Ĥf )/2 , 0 < l < P , l = i

Ĥg , l < i ≤ P − 1 ,

(22)

such that, at first glance, the equality Ul(Q) = Ul(Q) (see Eqs. (13,17) for their definitions)

would lead to favorable equilibrium dynamics, since the density and the EOMs are deter-

mined by the same potential. Unfortunately, for λ ∈ {0, β}, the equality Ul(Q) = Ul(Q)

cannot be achieved, since U0 and Uβ are exclusively assembled from the initial and the excited

state potential, respectively, whereas U0 and Uβ will always feature the averaged potential

for x0, see Eq. (17). Further, for λ ∈ ]0, β[ , the Matsubara phase (ΠTWQ in Eq. (20)) varies

in time and so does the density, as it is shown in the Supplement, Sec. III. In contrast, this

time dependence vanishes in the continuous limit for the single PES problem and, hence, the

Matsubara density becomes strictly stationary as P → ∞. Eventually, it seems impossible

to find any set of Ĥi for any λ that would lead to truly stationary dynamics for a vibronic

spectroscopy study. Another possible objection against this choice of the potential is the

presence of the discontinuity at x0 and xl that contradicts the path smoothness assumed

within the Matsubara approximation, see the comments to Eq. (13). Despite these facts,

this particular choice of Ĥi will be employed and referred to as the equilibrium method in

the following.

Second, by setting all Ĥi := Ĥav the discontinuity is avoided at the price of obviously

non-stationary dynamics. This choice, dubbed as the average method, is more compatible

with smooth paths assembled from the Matsubara modes. Importantly, both the equilibrium

and the average setups recover the usual Matsubara dynamics for the single-PES problem,

i.e. Vg(x) = Vf (x). Moreover, in contrast to known classical(-like) approaches to vibronic

spectra such as the DCL, the averaged classical limit (ACL)44 and the method presented in
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Ref. 26, both choices of the dynamics recover the exact imaginary-time shifted TCF of a

harmonic oscillator model, as it is shown in Sec. IV.

Here, we have considered only the two aforementioned logically sound choices for the

potentials. Nonetheless, the presented formalism offers in principle infinitely many possible

approaches to vibronic spectroscopy that might or might not lead to efficient simulation

protocols.

F. Circumventing the sign problem

1. The conventional ansatz

As it has been already stated, the Matsubara approximation to the quantum TCF suffers

from the sign problem due to the presence of the imaginary part ΠTWQ in the exponent

in Eq. (20). However, this imaginary part can be removed by transforming the Matsubara

momentum to the complex plane, independently on the form of the physical potential36

Π 7→ Π + imWQ . (23)

It is straightforward to show that the exponent then becomes

H̃l(Q,Π) + iΠTWQ 7→ H̃l(Q,Π) +
1

2
mQTWTWQ , (24)

which is purely real and thus there is no sign problem occurring. Unfortunately, the new

Liouvillian

Re ˆ̃Ll(Q,Π) 7→ Re ˆ̃Ll(Q,Π)−mQTWTW∇Π + i[ΠTW∇Π −QTW∇Q] (25)

would generate unstable complex trajectories yielding similar statistical convergence issues

as the sign problem itself.

One common ansatz to ultimately avoid the sign problem is to simply discard the imagi-

nary part of the Liouvillian.36 Applying this approximation to Eq. (25) leads to a RPMD-like

method for multiple PESs, since the additional terms on the right hand sides of Eqs. (24,25)

correspond to the well-known spring terms.8 Importantly, if one picks the equilibrium choice

for the dynamics and considers only λ ∈ ]0, β[, then the resulting approximation to Cλ(t)

coincides with the one presented in Ref. 26 in the limit M,P → ∞. Hence, the method
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carried out therein can be viewed as an approximation to the Matsubra dynamics presented

here. Nevertheless, this relation does not hold at the imaginary-time borders, i.e. λ ∈ {0, β}
since the bead located at x0 experiences the averaged potential, see Eq. (17), which is not

present in Ref. 26. We note in passing that other common approximations circumventing the

sign problem, such as TRPMD39 and CMD,40 would be equally transferable to the multiple

PESs case, starting from the developed Matsubara dynamics ansatz.

2. The modified method

Utilizing the harmonic model system introduced in Sec. III allows one to write down

explicit expressions for various TCFs. In particular, a comparison of the RPMD expression

for the standard TCF, C0(t), to its Matsubara counterpart suggests an interesting though

ad hoc modification of the simulation protocol, see Sec. IV of the Supplement. Substituting

the exponent of the complex density from Eq. (20) as

1

2m
ΠTΠ +

1

2
mω2QTQ + iΠTWQ 7→ 1

2m
ΠT(1 + WTW/ω2)Π +

1

2
mω2QT(1 + WTW/ω2)Q

(26)

and keeping the EOMs given in Eq. (21) unchanged, recovers the analytical Matsubara ex-

pression for the harmonic oscillator model considered. Consequently, this modified method

recovers the exact TCF in the M,P → ∞ limit as the Matsubara method does. How-

ever, since the resulting modified density is real and non-negative, there is no sign problem

and thus the suggested modification leads to a strikingly more efficient protocol than the

Matsubara approximation, see Sec. IV. Interestingly, in contrast to the RPMD-like protocol,

this modified method features dynamics without springs, which can cause artificial reso-

nances with physical modes that may ruin the correct description of dynamical properties,

as is well-known in vibrational spectroscopy.35,46 Instead, there is an additional spring term,

which connects the momenta of the beads in the density but does not affect the dynamics.

Although being constructed in an ad-hoc fashion, the modified density is directly related

to the thermal Wigner function for the harmonic oscillator case, as it is shown in Sec. IV A 2.

The proposed modification is based exclusively on the expressions for λ = 0 and, thus it

expectedly fails for any case, where λ ∈ ]0, β[, see Sec. V in the Supplement. Inventing

analogous modifications for these cases is non-obvious and, therefore, a rigorous justification

of the replacement would be desirable to identify the missing ingredients.
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In order to go beyond purely harmonic systems, the modified method has to be generalized

to an anharmonic system. We suggest to perform the following modification

1

2m
ΠTΠ + Ũ0(Q)− iΠTWQ 7→ 1

2m
ΠT(1 + WTY−1(Q)W)Π + Ũ0(Q) +

1

2
mQTWTWQ ,

(27)

while keeping again the original EOMs from Eq. (21). The key quantity is the position-

dependent matrix Y(Q), which maps the curvature of the ground-state potential along the

imaginary-time path onto the Matsubara modes, i.e.

Y(Q) :=
1

m
T

(
∂2Vg

∂x2
i

δij

)
TT . (28)

This seems to us as the most flexible generalization to anharmonic systems, while keeping

the structure as close as possible to that in Eq. (26) and having it as the limiting case if

Vg(x) is perfectly quadratic. As a word of caution, it should be noted that the inverse Y−1

becomes ill-defined at the turning points of the ground-state PES and that the modified

density can become unbound if Vg(x) possesses regions with a negative curvature. However,

for the present study these problems are avoided owing to the particular form of the quartic

potential as given in Sec. III. It remains to be seen whether this new but heuristic simulation

protocol can be viewed as a systematic approximation to the orignal Matsubara method or

if there is any relation to the Feynman-Kleinert Quasi-Classical Wigner method.47 Note

that in case of λ = 0 all aforementioned methods tend to the well-known ACL one29,30,44 as

P → 1. This is in contrast to Ref. 26, where the λ = 0 and P = 1 case coincides with the

DCL method.

III. COMPUTATIONAL DETAILS

In order to analyze the methodology presented in Sec. II, we consider in Sec. IV A a rather

simple but still non-trivial model system consisting of two shifted harmonic PESs, Va(x) =

mω2(x−xa)2/2 with a = g, f and the same harmonic frequency ω. Consequently the energy

gap Vf (x) − Vg(x) is a linear function of the coordinate. The exact quantum-mechanical

(QM) imaginary-time shifted TCF for such a system in the Condon approximation, i.e.

Df
g (x) ≈ 1, is known and is compared to its approximations in Sec. IV A 1.
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For practical simulations performed in Sec. IV A 2, the parameters for the OH diatomic

adopted from the qSPC/Fw model48 are employed, that is m = mOH = 1728.0 au, ω =

ωOH = 0.0177 au, xg = 0 and xf = 0.5 au.

In order to investigate a more realistic scenario in Sec. IV B, we have modeled the OH-

diatomic by two displaced anharmonic oscillators, where

Va(x) = Ea

[
α2
a(x− xa)2 − α3

a(x− xa)3 +
7

12
α4
a(x− xa)4

]
(29)

is a quartic expansion of the Morse potential. The parameters for the electronic ground state,

Eg = 0.185 au and αg = 1.21 au, are again adopted from the qSPC/Fw model for water48

with xg = 0. Similarly to the choice made in Ref. 26, the excited state differs from the ground

state by a displacement of xf−xg = 0.22 au and a lower stiffness of αf = 0.86αg, whereas the

dissociation energies Ef = Eg are the same. The equilibration as well as the sampling have

been performed at 300 K using a standard Langevin thermostat49 and the EOMs have been

integrated employing the velocity-Verlet algorithm. A reasonably large number of 10000

microcanonical trajectories starting from uncorrelated initial conditions has been used for

all the methods and systems. Only the Matsubara method with P = 9 has required 10

times more trajectories to converge, see below. The quantum results have been obtained in

the harmonic basis of the electronic ground state potential using 50 eigenstates. In order

to avoid artifacts of the finite Fourier transform, the spectra have been convoluted with a

Gaussian window exp[−ω2/2σ2], where σ = 0.002 au.

Although setting M = P contradicts the Matsubara approximation, where M � P

is implied, see Sec. II B, this choice still yields reasonable results for various simulation

protocols, as it will be discussed in Sec. IV. In such a scenario, the correlation function

originates from purely classical dynamics of P independent particles that are only connected

via the Matsubara phase in the density, Eq. (20). In the following discussion, we will therefore

make the distinction between this dynamics of independent classical particles, i.e. M = P ,

and the true Matsubara dynamics, involving only smooth imaginary-time paths, i.e. M < P .

Note that for the RPMD-like method the beads are coupled via the spring term in any case.
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IV. RESULTS AND DISCUSSION

A. Analysis for the harmonic oscillator model

For the harmonic system introduced in Sec. III, the exact QM imaginary-time shifted

TCF, the corresponding Matsubara approximation as well as the expression resulting from

the RPMD-like ansatz and the modified method can be written down explicitly as functions

of M and P . These analytical expressions, written down in Sec. IV of the Supplement, serve

as a basis for the following discussion that suggests several favorable simulation scenarios,

subsequently employed in Sec. IV A 2 and Sec. IV B.

1. Analytical results

The developed mathematical expressions are utilized for an applicability analysis of the

considered methods, with respect to the relation between M and P and a choice of λ, see

Table. I. The criterion for the applicability is the correct limit of the TCF as M,P → ∞
for the aforementioned harmonic oscillator system. To reiterate, common classical(-like)

approaches to vibronic spectroscopy, such as the DCL and the ACL do not yield the correct

TCF and thus spectrum with any parameter setup.26

approximation Matsubara RPMD-like modified

EOMs equilibrium average equilibrium average equilibrium average

λ ∈ {0, β} ]0, β[ {0, β} ]0, β[ {0, β} ]0, β[ {0, β} ]0, β[ {0} {0}

M = P + + + + − − − − + +

M < P − − + − − − − − − +

TABLE I. Applicability of the considered methods summarized in the first two rows to recover

the exact result for the shifted harmonic oscillators in the limit M,P →∞. Green plus signs mark

the success, whereas red minus signs represent a failure. In the third row, the curly braces indicate

a set, while ]•, •[ refers to an open interval.

Let us start with the Matsubara dynamics, that is Eqs. (20,21), carried out via average and

equilibrium methods, as is discussed in Sec. II E. Both methods yield the exact imaginary-

time shifted TCF for any λ only for M = P , which contradicts the original idea of the
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Matsubara approximation. However, since the equilibrium method is not exact for M < P

irrespectively of the value of λ, M = P remains the only reasonable setting for this choice

of the EOMs, see Sec. IV A 2 and IV B 2 for a discussion of its ability to approximate the

quantum TCF. The only combination that still yields exact results with M < P is the

average method with λ ∈ {0, β}. Solely for this choice, true Matsubara dynamics (with

M < P ) yields the exact quantum TCF for the harmonic oscillator. Importantly, for

λ ∈ ]0, β[ none of the considered choices for the dynamics leads to the exact result if M < P .

This indicates that the Matsubara approximation, i.e. taking only smooth imaginary-time

paths into account, is incompatible with with the discontinuity in the potential for the points

x0 and xl, see Sec. II B and Sec. II E.

2. Numerical results

In this section, the findings from Sec. IV A 1 are supplemented by a performance com-

parison between all the methods via numerical simulations at ambient temperature for a

harmonic oscillator system, which mimics an isolated OH bond of a water molecule, see

Sec. III. The focus is on on the convergence with respect to statistics and the number of

beads and Matsubara modes, i.e. P and M , respectively.

Let us first examine probability densities for the bead positions and momenta sampled

by the modified method, Eq. (26), see Fig. 3. Interestingly, they tend to the exact result

given by the well-known thermal Wigner function of the harmonic oscillator, not only for

positions, which is natural for PI methods, but also for momenta. Nonetheless, it is clear

that such a correspondence cannot be general, as i) Wigner functions can become negative,

which cannot be achieved by the suggested protocol; ii) the harmonic frequency ω appearing

on the r.h.s. of Eq. (26) cannot be unambiguously defined for a general system, see Sec. IV B

for suggestions.

Switching to the TCFs, we first restrict ourselves to λ = 0 and M = P , see Fig. 4, where

the left/right column corresponds to the equilibrium/average method. For each method,

the degree of statistical convergence is visualized by transparent areas representing the 95 %

confidence interval around the mean values that are depicted as lines and points; note that

for most of the methods these areas are within the thickness of the line.
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FIG. 3. Histograms of the positions, panel a), and momenta, panel b), as sampled by the

modified method for various values of P . The classical Boltzmann and the QM Wigner functions

are plotted as solid lines. Note that the full two-dimensional Wigner function can be constructed

as the Cartesian product of both curves.

Independent classical dynamics. Starting from the common classical (P = 1) ap-

proaches, one sees that both DCL, Fig. 4 panel 1a), and ACL, panel 1b), fail to reproduce

the correlation function, although the ACL TCF captures more features of the QM curve.

For P = 5, still panels 1) therein, one can see that the curves resulting from the Matsubara

and the modified method coincide as expected and improve qualitatively over the ACL TCF,

which is their common P → 1 limit. In case of the RPMD ansatz, the average method

performs much better than the equilibrium one, see panels 1a) and 1b), correspondingly.

When the number of beads is further increased to nine, panels 2) in Fig. 4, the first traces

of the sign problem in the Matsubara method appear, as is manifested by red areas therein.

In contrast, the modified method still features an excellent statistical convergence and the

curve gets closer to the exact QM result. Apart from the vicinity of the first minimum

of the TCF, both RPMD-like methods do not improve, which underlines that RPMD is a

short-time approximation to the exact QM dynamics.

Finally, taking a large number of beads (P = 45), which is a typical value to reach

convergence for an OH diatomic at 300 K, as is confirmed in Fig. 3, both versions of the

Matsubara method exhibit severe problems with respect to statistical convergence, see in-

sets in panels 3). This illustrates the well-known fact that the Matsubara method is not

directly applicable in practical numerical simulations. In contrast, the modified method

converges to the exact result without any issues and, importantly, without any additional

costs with respect to the RPMD-like method that in turn exhibits no further improvement
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FIG. 4. The real part of standard correlation functions, C0(t), for the harmonic system, see

Sec. III. The left column, panels a), exhibits the results of the equilibrium methods, whereas panels

b) contain the results of the average methods for M = P . The first row, panels 1), correspond to

the case M = P = 5, apart from the DCL and ACL curves which naturally imply M = P = 1.

The second row, panels 2), features M = P = 9 and panels 3) show M = P = 45 data, with insets

exhibiting the results of the Matsubara method. Transparent areas indicate the 95% confidence

intervals (which are not visible for most of the curves) and the lines and points represent the

statistical mean.

with increasing P .

True Matsubara dynamics. The Matsubara approximation implies that M < P , thus

TCFs with M/P ≈ 0.5 for all the methods are shown in Fig. 5, which has the same layout

as Fig. 4. The equilibrium Matsubara and the modified method (which coincide by con-

struction) exhibit a phase shift with respect to the exact QM curve for M = 3, P = 5, see

panel 1a). This bad performance is anticipated on the basis of the analysis presented in

Sec. IV A 1. The RPMD-like method fails in a similar way. In contrast, the curves obtained

20

C. Additional manuscripts

150



by the average methods, panel 1b), are in phase with the QM one. Especially, the average

RPMD TCF reveals much better agreement with the exact result than the equilibrium one.

Note that for the classical methods (P = 1), the number of Matsubara modes cannot be

smaller than the number of beads, thus ACL and DCL results are not shown.

Turning to a larger number of modes and beads, M = 5, P = 9 in panels 2) of Fig. 5, one

notices immediately that in contrast to Fig. 4 the Matsubara methods do not feature issues

with the statistical convergence. However, this is only due to the fact that the Matsubara

density is assembled by 5 modes only, thus, the statistical behavior is effectively the same as

for the case M = P = 5. Importantly, all the average versions approximate the QM curve

much better, which is especially true for the RPMD-like method, compare panel 2a) and

2b).

Approaching the convergence with respect to the number of Matsubara modes and beads,

i.e. for M = 25, P = 45, panels 3) in Fig. 5, the Matsubara method suffers again from the

sign problem, see insets. The average version of the modified method converges to the exact

result without any issues, however, as expected, the equilibrium one as well as the RPMD

method do not.

To conclude, the suggested modification strikingly outperforms the Matsubara method

with respect to the statistical convergence, while yielding the same results for the case

λ = 0. Moreover, the modified method surpasses the RPMD-like ansatz with respect to

the quality of the results. As it has been anticipated from the mathematical analysis, the

equilibrium versions of the Matsubara and the modified methods lead to reasonable results

only if M = P . The average methods outperform the equilibrium ones if M < P , which

is especially true for the RPMD ansatz. At this point there is no pratical advantage of

the quasi-classical dynamics (M < P ) with respect to the independent classical dynamics

(M = P ). However, since the considered system consists of two one-dimensional harmonic

oscillators this is not surprising. Whether such a statement can be transferred to a more

realistic anharmonic case is discussed in Sec. IV B.

Finally, none of the presented methods can practically reproduce the exact imaginary-

time shifted TCF for the case λ ∈ ]0, β[ , see Sec. V in the Supplement. In particular, the

equilibrium Matsubara method converges formally to the exact result if M = P but is

suffering from the sign problem. The RPMD-like method does not lead to an acceptable

approximation to the quantum TCF, as in all the other cases considered. Unfortunately,
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FIG. 5. Same scenario and color code as in Fig. 4 but with the first row, panels 1), exhibiting the

results for M = 3, P = 5. The second row, panels 2), features M = 5, P = 9 and panels 3) show

M = 25, P = 45.

the modified method was derived just for λ = 0 and naive use of this modification for λ > 0

expectedly fails. Still, the expressions that have been derived in Sec. II for a general value

of λ might serve as a basis for future work and finally may lead to a powerful simulation

protocol in combination with the generalized TCF formalism.26

B. Anharmonic oscillators

1. Generalization of the modified method

Since the modified density tends to the exact Wigner function for the harmonic oscillator,

see Fig. 3, we investigate the ability of the generalized modified method to reproduce the

exact Wigner function of the anharmonic system introduced in Sec. III. In Fig. 6a) one can

see the classical Boltzmann function for the electronic ground state, which is the common
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limit for all methods if P = 1. It is not surprising that the classical density is much more

localized than the exact Wigner function seen in panel d); note the different scales for the

color bars in the different panels. In panel b), the absolute value of the complex density

corresponding to the Matsubara method, Eq. (20), is shown for P = 45. This is effectively

nothing else than the classical Boltzmann distribution but for a temperature that is P times

higher than in the classical case, panel a). For the present model this would correspond

to a temperature of 13500 K and, hence, the density covers a phase-space volume that is

much larger than the classical one and significantly larger than the correct QM one. Only

the cancellation due to the complex phase in the Matsubara density, removes the irrelevant

contributions to the observables. This indirect sampling of the correct distribution is at the

heart of the sign problem and is thus responsible for the poor convergence of the Matsubara

method. In contrast, the generalized method, Eq. (27), approximates the exact thermal

Wigner function directly with a remarkable accuracy, see panel c). Importantly, it is even

able to reproduce the “egg shape” of the correct Wigner function, which is an inherently

quantum-statistical effect, since it requires the coupling of position and momenta in the

density, which is not present in the classical case.

In resume, the suggested generalization captures important quantum statistics even for

the anharmonic case, although any negativity in the Wigner function remains outside reach

and the numerical instabilities in the regions of a vanishing or negative curvature of the

potential are still awaiting for a proper treatment.

2. Vibronic absorption spectra for the anharmonic system

After discussing static properties of the methods, the dynamical observables, i.e. vibronic

absorption spectra are considered for the anharmonic system. With the parameters given in

Sec. III, simulations have been performed yielding the results depicted in Fig. 7, which has

the same structure as Fig. 4 but now showing the Fourier transforms of C0(t).

Starting with the description of the QM spectrum, one recognizes a typical Franck-

Condon progression with a Huang-Rhys factor smaller than 0.5, meaning that the maximal

intensity is located at the 0-0 transition. Switching to the approximations in panel 1a),

the common DCL method neither yields the correct spectral shape nor the correct peak

positions, as has been observed before.26,29,30 In contrast, the result obtained with the ACL

23

C. Additional manuscripts

153



a)

p
 [

au
]

-15

-10

-5

0

5

10

15

20

0

0.5

1

1.5

2

2.5

3

3.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
b)

p
 [

au
]

x [au]

-20

-15

-10

-5

0

5

10

15

20

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
c)

x [au]

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
d)

FIG. 6. Phase-space probability densities for the anharmonic model system sampled by the

considered methods. Panel a) the classical Boltzmann distribution; panel b) the absolute value of

the complex Matsubara density and panel c) the modified density, both with P = 45; panel d) the

exact Wigner function.

method, see panel 1b), is in much better agreement with the QM one, though a significant

negative intensity below the 0-0 transition is present. This is a consequence of the non-

stationary dynamics, possibly leading to all kinds of unphysical artifacts in spectra of more

complex systems.26

When it comes to more modes and beads, i.e. M = P = 5 in panels 1) of Fig. 7, the

modified method still coincides with the Matsubara method although this is generally not

expected for an anharmonic case. Both methods cannot completely avoid a negative intensity

below the 0-0 transition, but the amplitude of the artifact is smaller than the ones produced

by the ACL and RPMD-like methods. For the latter, the average method, see panel 1b),

performs significantly better than its equilibrium counterpart depicted in panel 1a).

Increasing M and P to nine improves the quality of the modified and the Matsubara

method, which are still surprisingly similar, as it can be seen in panels 2) of Fig. 7. However,

the Matsubara method has required ten times more trajectories than the modified one to

yield statistically converged results. Importantly, the artificial negativity is smaller by a

factor of two than that for the case M = P = 5. The average version of the RPMD-like
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approach, see panel 2b), improves further with respect to the peak intensities, whereas the

negative intensity has not changed notably. The opposite can be observed in panel 2a) for

the equilibrium RPMD-like method, where the negativity completely disappears, whereas

the overall agreement with the QM curve becomes worse.

It appears to be impossible to reach statistical convergence for the Matsubara method,

if the number of beads and modes is increased to 45, even employing 106 trajectories and,

thus, no results are shown. The average version of the RPMD method does not improve

significantly in this case and the quality of its equilibrium counterpart becomes even worse,

see panels 3). The modified method convergences again without any issues, while coming

quite close to the exact QM curve. Importantly, the artificial negativity vanishes almost

completely. Finally, one can see that there is again no significant difference between the

cases M = P = 45 and M = 25, P = 45 when considering the modified average methods,

see the solid line in panel 3b). The equilibrium method fails again if M < P , as it can be

seen in panel 3a).

To conclude, the Matsubara and the modified methods nearly coincide for all cases, where

the Matsubara method statistically converges. One can therefore expect that both would

converge to very similar results in the limit M,P →∞. In comparison to the more common

methods, i.e. DCL, ACL and finally the RPMD ansatz, the modified method yields much

more accurate results, especially with respect to the negativities below the 0-0 transition.

These statements are additionally supported by the results for a similar anharmonic system

possessing a larger displacement between the potentials, see Sec. V in the Supplement.

Interestingly, even for such a notably anharmonic system, the truly quasi-classical dynamics

with M < P yields no benefit if compared to the methods with M = P . However, this is

by no means the ultimate conclusion and the impact of having continuous imaginary-time

paths within the dynamics has to be investigated carefully, in particular using more complex

systems featuring problems such as zero-point energy leakage.

V. CONCLUSIONS AND OUTLOOK

The Matsubara dynamics has been generalized to the multi-PES case and thereby to

vibronic spectroscopy. It has been shown that the Matsubara dynamics can be derived from

the imaginary-time shifted TCF, assuming that the potential is locally harmonic and the

25

C. Additional manuscripts

155



FIG. 7. Absorption spectra for two displaced anharmonic oscillators, see Eq. (29). Same color code

as in Fig. 4 but with the thin blue lines in the lower row representing the setup M = 25, P = 45.

transition dipole moment is locally linear. The performed derivation left certain flexibility

in choosing the Hamiltonians responsible for the real-time propagation. Practically, this

enables infinitely many possible simulation protocols, whereas we have employed two par-

ticular ones, termed equilibrium and average methods, which have physical foundation. In

order to circumvent the infamous sign problem plaguing the Matsubara-based methods, an

RPMD-like ansatz has been employed. The comparison of the Matsubara expressions to the

QM TCF for a system of two shifted harmonic oscillators has singled out cases that lead to

numerically exact results in the limit of infinitely many Matsubara modes. Note that com-

mon classical-like approaches to the vibronic spectrum, such as the DCL and the ACL, do

not yield exact results for this system with any set of parameters. Further comparison of the

RPMD expressions to the exact ones has suggested an ad hoc but meaningful modification

of the density and its generalization to the anharmonic regime has been developed. In both

scenarios, the harmonic and the anharmonic one, the sampled density reproduced the exact
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thermal Wigner function of the electronic ground state with remarkable accuracy. Although

it cannot reproduce the negativities of the Wigner function by construction, it still may be

a reasonable and very convenient method to sample Wigner densities, which is a common

task in quasi- and semiclassical methods.50 When it comes to approximating the absorption

spectra, the modified method outperforms the Matsubara method with respect to the sta-

tistical convergence, while it surpasses the RPMD-like ansatz with respect to the quality

of the results. Further, if true Matsubara dynamics with smooth imaginary-time paths is

considered, all of the presented average methods lead to significantly better results than

the equilibrium ones. Although the advantage of quasi-classical dynamics over independent

classical dynamics has not become apparent for the considered one-dimensional systems, the

importance of taking only smooth paths into account has to be investigated carefully for

more complex systems. Unfortunately, for imaginary-time shifted TCFs, Cλ(t) with λ > 0,

none of the methods is directly applicable to realistic systems. To improve on the last point,

future work might be dedicated to find a more rigorous justification of the modified method

and finally to combine the generalized TCF formalism26 with the methodology presented

here. Another interesting perspective could be the application of the suggested modified

method to single-PES studies such as IR spectroscopy. In contrast to the more common

RPMD and CMD methods, one would expect that problems with spurious resonances or

with the curvature of the ring polymer35 could be avoided by the modified ansatz.
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27R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

28P. Schofield, Phys. Rev. Lett. 4, 239 (1960).

28

C. Additional manuscripts

158



29E. Rabani, S. A. Egorov, and B. J. Berne, J. Chem. Phys. 109, 6376 (1998).

30S. A. Egorov, E. Rabani, and B. J. Berne, J. Chem. Phys. 108, 1407 (1998).

31S. Karsten, S. D. Ivanov, S. G. Aziz, S. I. Bokarev, and O. Kühn, J. Phys. Chem. Lett.
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I. APPLYING THE LOCAL HARMONIC APPROXIMATION

In this section the structure of the time-independent part, is further evaluated under

the assumption of locally harmonic potentials. The starting point is the symmetric Trotter

factorization employed to obtain the matrix elements of the Boltzmann operator, see Eq.

(8) in the main text. Applying this to each factor of the product in Eq. (6) in the main text

yields

P−1∏

i=l

〈x−i+1|e−βĤg/P |x+
i 〉

l−1∏

i=0

〈x−i+1|e−βĤf/P |x+
i 〉 = lim

P→∞

(
βmΩ2

P

2π

)P/2

× exp

{
− β

2P

[
l−1∑

i=0

Vf (x
−
i+1) + Vf (x

+
i ) +

P−1∑

i=l

Vg(x
−
i+1) + Vg(x

+
i )

]
− βmΩ2

P

2

P−1∑

i=0

[
x−i+1 − x+

i

]2
}

,

(S1)

where ΩP :=
√
P/β~ is the standard ring-polymer chain frequency. By assuming that the

potentials are quadratic in the difference variable ∆i, see Eq. (9) in the main text, and
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writing out explicitly x±i = xi ±∆i/2, one obtains for the exponent in Eq. (S1)

− β

2P

[
l−1∑

i=0

Vf (xi+1) + Vf (xi) +
P−1∑

i=l

Vg(xi+1) + Vg(xi)

]

− β

2P

[
l−1∑

i=0

∂Vf
∂xi

∆i

2
− ∂Vf
∂xi+1

∆i+1

2
+

P−1∑

i=l

∂Vg
∂xi

∆i

2
− ∂Vg
∂xi+1

∆i+1

2

]

− β

2P

[
l−1∑

i=0

∂2Vf

∂x2
i

∆2
i

8
+
∂2Vf

∂x2
i+1

∆2
i+1

8
+

P−1∑

i=l

∂2Vg

∂x2
i

∆2
i

8
+
∂2Vg

∂x2
i+1

∆2
i+1

8

]

− βmΩ2
P

2

P−1∑

i=0

[
(xi+1 − xi)2 +

1

4
(∆i+1 + ∆i)

2 − (xi+1∆i − xi∆i+1)

]
. (S2)

The examination of each line yields the following. The term in braces in the first line

represents the effective ring polymer potential

Ul(x) :=
1

P

l∑

i=0

κiVf (xi) +
1

P

P∑

i=l

κiVg(xi) . (S3)

with κi ensuring the trapezoidal rule. In the second line all terms vanish apart from the

summation borders, i.e. i = 0, l. The summands in the third line can be rewritten in terms of

the second derivatives ∂2Ul/∂x
2
i of the effective potential and the last line stemming from the

kinetic energy operator couples the sum and difference variables. In order to profit from a

more compact matrix vector notation, one can introduce the matrices (A)i,j := 2δi,j−δi,j+1−
δi,j−1, (Bl(x))i,j := ∂2Ul/∂x

2
i δi,j, (C)i,j := δi,j+1− δi+1,j and (Dl)i,j := (δi,0δ0,j− δi,lδl,j)/4 and

the gradient vector

g(x) := ∇x

1

P

P−1∑

i=0

(Vf (xi)− Vg(xi)) , (S4)

all obeying the cyclic condition P 7→ 0 for the indices i, j. The exponent then becomes

− β
[
Ul(x) + ∆TDlg(x) +

1

8
∆TBl(x)∆ +

mΩ2
P

2

(
xTAx +

1

4
∆T(4− A)∆ + xTC∆

)]
,

(S5)

which yields after rearranging for the time-independent part

Al(x,p) =
(βmΩ2

P )P/2Dg
f (xl)

Z(4π2~)P/2
e−β[mΩ

2
Px

TAx/2+Ul(x)]

∫
d∆ eip

T
∆/~e−βKl(x,∆) , (S6)

where the term Kl(x,∆) connects the midpoint and difference variables, i.e.

Kl(x,∆) :=
mΩ2

P

2

[
1

4
∆T

(
4− A +

Bl(x)

mΩ2
P

)
∆ + xTC∆

]
+ ∆TDlg(x) . (S7)
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One can easily prove that the contribution from the matrix Dl is negligible in the limit

P →∞. Moreover, the matrix 4−A is positive definite and so is 4−A+Bl(x)/mΩ2
P , since

the part with Bl(x) becomes arbitrarily small in the limit P → ∞ and is thus irrelevant.

This allows performing the Fourier transform in Eq. (S6) analytically, since the appearing

integrals over the variables ∆i possess a Gaussian form and are well defined, leading to the

following result

Al(x,p) =
Dg
f (xl)

∣∣detS−1
l

∣∣1/2

Z(2π~)P
e−β[mΩ

2
Px

TAx/2+Ul(x)]e−
β

2mP
p

TS−1
l p+ i

2~p
TS−1

l CT
x+β

mΩ
2
P

8
x

TCS−1
l CT

x ,

(S8)

where Sl = Sl(x) := (4− A + Bl(x)/mΩ2
P )/4.

In the next step we will introduce the normal mode coordinates of the free ring polymer,

i.e. Q := Tx/
√
P and Π := Tp/

√
P , where the orthogonal transformation matrix T diag-

onalizes TATT = Ã, where (Ã)r,s = 4 sin2(πr/P )δr,s contains the eignenvalues of the ring

polymer coupling matrix. The elements of T are analytically known to be

(T)r,i =





1/
√
P , r = 0

√
2/P cos(2πri/P ), r < 0

√
2/P sin(2πri/P ), r > 0

(S9)

with −(P −1)/2 ≤ r ≤ (P −1)/2 and i = 0, . . . , P −1, see e.g. Ref. 1. Note that the normal

mode indices are defined such that they run over r, s = −(P − 1)/2, . . . , 0, . . . , (P − 1)/2.

Further we have specified P as an odd number without loosing generality since this number

should tend to infinity anyway. Inserting these new variables leads after rearranging to

Ãl(Q,Π) =

P PDg
f (xl(Q))

∣∣∣det S̃−1

l

∣∣∣
1/2

Z(2π~)P
e
−β

[
1

2m
Π

TS̃−1
l Π+Ũl(Q)

]
e

iP
2~Π

TS̃−1
l C̃T

Q−βmΩ
2
PPQ

T
(Ã−C̃S̃−1

l C̃T
/4)Q/2 ,

(S10)

where Ãl(Q,Π) := P PAl(x(Q),p(Π)) with P P stemming from the substitution of the

Cartesian volume element by the normal mode one, Ũl(Q) := Ul(x(Q)) and all matrices

with a tilde are the normal mode versions of their Cartesian counterparts, see e.g. for Ã

above.
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II. INTEGRATING OUT THE NON-MATSUBARA MODES

In order to evaluate the time-independent part further, we assume that all physical quanti-

ties, in particular, the potential, the transition dipole moment as well as the time-dependent

part do not significantly depend one the non-Matsubara modes. This assumption allows us

to separate them from the Matsubara modes in the time-independent part and finally to

integrate out the non-Matsubara modes as it will be shown in the following.

We start with the correlation function that becomes

Cλ(t) =

∫
dQ

∫
dΠ Ãl(Q,Π)B̃l(QM ,ΠM , t) , (S11)

where Q = QM + Q′ stands for all modes whereas QM and Q′ contain only the Matsubara

modes and the non-Matsubara modes, respectively, which holds likewisely for the momenta.

The time-independent part then reads

Ãl(Q,Π) =
P PDg

f (xl(QM))

Z(2π~)P
e−βŨl(QM )

×
∣∣∣det S̃−1

l

∣∣∣
1/2

e−
β

2m
Π

TS̃−1
l Π+ iP

2~Π
TS̃−1

l C̃T
Q−βmΩ

2
PPQ

T
(Ã−C̃S̃−1

l C̃T
/4)Q/2 , (S12)

where each of the appearing matrices will now be examined.

First, one can show that S̃−1
is of diagonal form as P →∞ if all terms are neglected that

decrease at least as 1/P 2. The elements of the matrix S̃ can be written down as (S̃)r,s =

(4 − 4 sin2(πr/P )δr,s + (B̃l)r,s/mΩ2
P )/4, where (B̃l)r,s =

∑
i(T)r,i(T)s,i∂

2Ul(x)/∂x2
i ∝ 1/P

which is a consequence of the 1/
√
P in the elements of T and the 1/P in the definition

of Ul(x). Due to the additional factor Ω2
P ∝ P in the denominator, the term with B̃l

tends to zero as 1/P 2 and is thus negligible if P grows to infinity. The remaining term

is then (S̃)r,s = cos2(πr/P )δr,s, where we have used a trigonometric identity. The inverse

is consequently (S̃−1
)r,s = cos−2(πr/P )δr,s which becomes (S̃−1

)r,s = δr,s in the case that

|r|, |s| � (P − 1)/2, i.e. for the Matsubara modes. Owing to the diagonal form of S̃−1
the

kinetic part can be now separated into ΠTS̃−1

l Π = ΠT
MΠM + Π′TS̃′−1

l Π′, where S̃′−1
l is a

(P −M) × (P −M) matrix containing only elements that correspond to non-Matsubara

modes. Moreover, one can write det S̃−1

l = 1M det S̃′−1
l = det S̃′−1

l .

Second, the elements of P · C̃ are analysed. Immediately one can see that all diagonal

elements must vanish, since (C)i,j = δi,j+1− δi+1,j is anti-symmetric and so is the orthogonal
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transformation

(C̃)r,s =
P−1∑

i=0

(T)r,i[(T)s,i−1 − (T)s,i+1] . (S13)

For the elements P · C̃0,s with s < 0 one gets via inserting (T)0,i = 1/
√
P and (T)s,i−1 −

(T)s,i+1 =
√

2/P [cos(2πs(i− 1)/P )− cos(2πs(i+ 1)/P )] = 2
√

2/P sin(2πs/P ) sin(2πsi/P )

P · C̃0,s = 2P sin(2πs/P )
P−1∑

i=0

√
1

P

√
2

P
sin(2πsi/P ) = (S14)

= 2P sin(2πs/P )(TTT)0,−s = 2P sin(2πs/P )δ0,−s (S15)

= 0 (S16)

since T is orthogonal and s < 0 and, thus, the Kronecker delta is never equal to one.

Following the same line of reasoning one obtains for s > 0

P · C̃0,s = −2P sin(2πs/P )δ0,−s = 0 (S17)

For the next combination, r < 0 and s < 0, with (T)r,i =
√

2/P cos(2πri/P ) one obtains

P · C̃r,s = 2P sin(2πs/P )
P−1∑

i=0

√
2

P
cos(2πri/P )

√
2

P
sin(2πsi/P ) = (S18)

= 2P sin(2πs/P )δr,−s = 0 , (S19)

since r and s have the same sign. Similarly we get for r > 0 and s > 0

P · C̃r,s = −2P sin(2πs/P )
P−1∑

i=0

√
2

P
sin(2πri/P )

√
2

P
cos(2πsi/P ) = (S20)

= −2P sin(2πs/P )δr,−s = 0 . (S21)

Lastly, for r < 0, s > 0 one obtains

P · C̃r,s = 2P sin(2πs/P )
P−1∑

i=0

√
2

P
cos(2πri/P )

√
2

P
sin(2πsi/P ) = (S22)

= 2P sin(2πs/P )δr,−s , (S23)

which can now be non-vanishing since r and s have opposite signs. Similarly, one gets for

the remaining case, i.e. r > 0, s < 0,

P · C̃r,s = −2P sin(2πs/P )δr,−s = 2P sin(2πr/P )δr,−s . (S24)
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Finally, the matrix P · C̃r,s turns out to be an anti-diagnonal with elements tending to

P · C̃r,s = 4πrδr,−s if |r|, |s| � (P − 1)/2. Importantly, the matrix P · C̃ does not couple

Matsubara and non-Matsubara modes which still holds for the products

P · (S̃−1

l C̃T
)r,s = −2P sin(2πr/P )

cos2(πr/P )
δr,−s (S25)

and

P 2 · (C̃S̃−1

l C̃T
)r,s =

4P 2 sin2(2πr/P )

cos2(πr/P )
δr,s (S26)

as it can be easily verified. Interestingly, if we restrict ourselves to the Matsubara modes,

i.e. |r|, |s| � (P − 1)/2, the first product matrix tends to P · (S̃−1

l C̃T
)r,s = −4πrδr,−s which

corresponds up to prefactor of −2/β~ to the Matsubara frequencies ωr = 2πr/β~. Whereas,

the second products tends to P 2 · (C̃S̃−1

l C̃T
)r,s = 16π2r2δr,s which corresponds to 4Ã in the

Matsubara space, consequently, the term Ã− C̃S̃−1

l C̃T
/4 vanishes for the Matsubara modes.

The analysis has shown that none of matrices couples the Matsubara and the non-

Matsubara modes, which allows us to separate them from each other and ultimately to inte-

grate out the non-Matsubara ones. We can now write Ãl(Q,Π) = Ã′l(Q
′,Π′)ÃMl (QM ,ΠM),

where

Ã′l(Q
′,Π′) :=

P P
∣∣∣det S̃′−1

l

∣∣∣
1/2

(2π~)P
e−

β
2m

Π
′TS̃′−1

l Π
′
+ iP

2~Π
′TS̃′−1

l C̃′TQ
′−βmΩ

2
PPQ

′T
(

˜A′−C̃′S̃′−1
l C̃′T/4)Q

′
/2 .

(S27)

and

ÃMl (QM ,ΠM) =
Dg
f (xl(QM))

Z
e−β[ 1

2m
Π

T
MΠM+Ũl(QM )+iΠ

T
MWQM ] , (S28)

with W := −P S̃−1

l C̃T
/2~β containing the Matsubara frequencies (W)r,s = ωrδr,−s. First, we

integrate out the P −M momentum variables of the non-Matsubara modes using standard

Gaussian integrals

P P
∣∣∣det S̃′−1

l

∣∣∣
1/2

(2π~)P

∫
dΠ′ e−

β
2m

Π
′TS̃′−1

l Π
′
+ iP

2~Π
′TS̃′−1

l C̃′TQ
′

(S29)

=
P P
∣∣∣det S̃′−1

l

∣∣∣
1/2

(2π~)P
(2mπ/β)(P−M)/2

∣∣∣det S̃′−1
l

∣∣∣
1/2

e−
β
4
mP

2
Q
′TC̃′S̃′−1

l C̃′TQ
′
/2~2

β
2

(S30)

=
P P (2mπ/β)(P−M)/2

(2π~)P
e−

β
8
mΩ

2
PPQ

′TC̃′S̃′−1
l C̃′TQ

′
. (S31)
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Since the terms with C̃′S̃′−1
l C̃′T exactly cancel each other, only the term with Ã remains for

the spatial non-Matsubara modes, which becomes after integration

∫
dQ′

P P (2mπ/β)(P−M)/2

(2π~)P
e−

β
2
mΩ

2
PPQ

′TÃQ
′
=
P P (2mπ/β)(P−M)/2

(2π~)P
(2πβ~2)(P−M)/2

(mP 2)(P−M)/2
√

det Ã′

(S32)

=
PM

(2π~)M
√

det Ã′
. (S33)

Since Ã is diagonal one can immediately write down with P̄ := (P−1)/2 and M̄ := (M−1)/2

√
det Ã′ =

√√√√√
−(M̄+1)∏

r=−P̄
4 sin2(πr/P )

P̄∏

r=M̄+1

4 sin2(πr/P ) (S34)

sin
2
(x) is even
= 4P̄−M̄




P̄∏

r=M̄+1

sin(πr/P )




2

= 4P̄−M̄
[

P̄∏

r=1

sin(πr/P )/
M̄∏

r=1

sin(πr/P )

]2

(S35)

sine symmetric around P̄
= 4P̄−M̄

P−1∏

r=1

sin(πr/P )/

[
M̄∏

r=1

sin(πr/P )

]2

(S36)

M�P
= 4P̄−M̄

P

2P−1
/

[
M̄∏

r=1

πr/P

]2

= 4P̄−M̄
P

2P−1
P 2M̄/π2M̄M̄ !2 = 2π

PM

(2π)MM̄ !2
,

(S37)

(S38)

where the last line is obtained by employing the identity
∏P−1

r=1 sin(πr/P ) = P/2P−1, see e.g.

Ref. 1. Bringing everything together yields

∫
dQ′dΠ′ Ã′l(Q

′,Π′) =
M̄ !2

2π~M
. (S39)

III. TIME EVOLUTION OF THE MATSUBARA PHASE

In contrast to the single electronic state problem, the Matsubara phase is not trivially

constant as it will become clear by considering its time derivative

d

dτ
Π(τ)TWQ(τ) =

1

m
Π(τ)TWΠ(τ)− [∇T

Q(τ)Ũl(Q(τ))]WQ(τ) (S40)
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where we have used Hamilton’s equations of motion (EOMs) that correspond to the equi-

librium method. Although it is straightforward to show that the momentum part vanishes,

since W is antisymmetric, one can find that the potential part does not vanish as it is

demonstrated in the following.

The term [∇T
QŨl(Q)]WQ can be rewritten as

[∇T
QŨl(Q)]WQ = lim

P→∞

1

P
[∇T

QŨl(Q)]TPTTWQ (S41)

= lim
P→∞

1

P

P−1∑

i=0

(
√
PTT∇QŨl(Q))i(

√
PTTWQ)i , (S42)

which holds for any time τ and, thus, the time argument is skipped. First, one can recognize

that the left term represents

(
√
PTT∇QŨl(Q))i =

∂Vl(xi)
∂xi

. (S43)

where we have used
√
PTT∇Q = ∇x and Vl(xi) stands for Vf (xi) if 0 < i < l, Vg(xi) if

l < i ≤ P −1 and (Vg(xi) +Vf (xi))/2 if i = 0, l. Second, the right term can be written down

as

(
√
PTTWQ)i =

−1∑

r=−M̄

√
2ωr cos(ωriβ~/P )Q−r +

M̄∑

r=1

√
2ωr sin(ωriβ~/P )Q−r , (S44)

where the definition of T and W has been used. By comparing the last expression to the

imaginary time derivative

∂xµ
∂µ

=
∂

∂µ
lim
P→∞

xi =
∂

∂µ


Q0 +

−1∑

r=−M̄

√
2 cos(ωrµ~)Qr +

M̄∑

r=1

√
2 sin(ωrµ~)Qr


 (S45)

= ~


−

−1∑

r=−M̄

√
2ωr sin(ωrµ~)Qr +

M̄∑

r=1

√
2ωr cos(ωrµ~)Qr


 (S46)

= ~


−

M̄∑

r=1

−
√

2ωr sin(−ωrµ~)Q−r −
−1∑

r=−M̄

√
2ωr cos(−ωrµ~)Q−r




(S47)

= −~




M̄∑

r=1

√
2ωr sin(ωrµ~)Q−r +

−1∑

r=−M̄

√
2ωr cos(ωrµ~)Q−r


 (S48)

= −~ lim
P→∞

(
√
PTTWQ)i , (S49)
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where µ = iβ/P is imposed, we see that both coincide up to a constant prefactor. Bringing

both parts together yields

[∇T
QŨl(Q)]WQ = − 1

β~

∫ β

0

dµ
∂Vλ(xµ)

∂xµ

∂xµ
∂µ

, (S50)

where Vλ(xµ) = Vf (xµ)θ(λ−µ)+Vg(xµ)θ(µ−λ) is the continuous counterpart of Vl(xi) with

θ(µ) being the Heaviside step function. Employing now the properties of the step function

one obtains

∫ β

0

dµ
∂Vλ(xµ)

∂xµ

∂xµ
∂µ

=

∫ λ

0

dµ
∂Vf (xµ)

∂xµ

∂xµ
∂µ

+

∫ β

λ

dµ
∂Vg(xµ)

∂xµ

∂xµ
∂µ

. (S51)

Since Vf (x) and Vg(x) are assumed to be smooth functions of the coordinate, one can use

the chain rule of differentiation twice, which leads to

[∇T
QŨl(Q)]WQ = − 1

β~
(
Vf (xl)− Vf (x0) + Vg(x0)− Vg(xl)

)
, (S52)

where the cyclicality of the imaginary-time path has been used and xl = xλ. Finally one

can write the time derivative of the Matsubara phase as

d

dτ
Π(τ)TWQ(τ) =

1

β~
(
Vf (xl(τ))− Vg(xl(τ))− [Vf (x0(τ))− Vg(x0(τ))]

)
(S53)

where the time arguments have been restored. In order to invert the time derivative one can

integrate over time yielding

Π(τ)TWQ(τ) = ΠTWQ +
1

β~

∫ τ

0

(
Vf (xl(t

′))− Vg(xl(t′))− [Vf (x0(t′))− Vg(x0(t′))]
)

dt′ .

(S54)

Since the gap between the potentials is not vanishing, the phase varies in time and so does

the density. If, in contrast, Vg = Vf , the phase and, thus, the density remain constant.

IV. CORRELATION FUNCTIONS FOR TWO SHIFTED HARMONIC

OSCILLATORS

In this section the analytical results for the model system consisting of two shifted har-

monic potential energy surfaces (PESs) will be derived for various methods. Specifically, we

choose Vg(x) = mω2x2/2 and Vf (x) = mω2(x − xf )
2/2, where both PESs have the same

harmonic frequency ω. Consequently the energy gap is a linear function of the coordinate
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and can be written as Vf (x) − Vg(x) = ax + ε. If the Condon approximation is valid, i.e.

Df
g (x) ≈ 1, then the exact quantum mechanical (QM) imaginary time shifted correlation

function for such a system reads

Cλ(t) = exp

{
− ia2

2m~ω2 t+
a2

2mω2λ+
iε

~
t− ελ− a2 coth(β~ω/2)

2m~ω3

+
ia2

2m~ω3 sin(ωt)
sinh(β~ω/2− ωλ~)

sinh(β~ω/2)
+

a2

2m~ω3 cos(ωt)
cosh(β~ω/2− ωλ~)

sinh(β~ω/2)

}
.

(S55)

Note that this expression can be obtained e.g. from Ref. 2 by substituting t → t + iλ~

in the standard correlation function, C0(t), and subsequently using addition theorems for

(hyperbolic) sine and cosine functions.

A. Matsubara dynamics

First, the correlation function resulting from the Matsubara approximation is examined

which takes the form

Cλ(t) ≈
M̄ !2

2π~MZ

∫
dQ

∫
dΠ e−β[

1
2m

Π
T

Π+Ul(Q)+iQ
TWΠ]e

i
~
∫ t
0 ax0(τ)dτeiεt/~ , (S56)

where the potential in the density is

Ul(x) =
1

P

l∑

i=0

κiVf (xi) +
1

P

P∑

i=l

κiVg(xi) =
1

2
mω2QTQ +

a

2P
GT
l Q + ε

l

P
= Ũl(Q) , (S57)

with

Gl = 2
√
PT( 1/2︸︷︷︸

i=0

, 1, . . . , 1, 1/2︸︷︷︸
i=l

, 0, . . . , 0︸︷︷︸
i=P−1

)T (S58)

= 2(. . . ,
√

2
l∑

i=0

κi cos(2πir/P ), . . .

︸ ︷︷ ︸
−M̄≤r<0

, l

︸︷︷︸
r=0

, . . . ,
√

2
l∑

i=0

κi sin(2πir/P ), . . .

︸ ︷︷ ︸
0<r≤M̄

)T (S59)

for 0 < l < P and G0 = 0, GP = 2
√
PT(1, . . . , 1)T = (0, . . . , 0, 2P, 0, . . . , 0)T, see definition

of T in Eq. (S9). It is important to note that, after the restriction to the Matsubara modes,

the vector Gl has only M elements and not P . The dynamics is generated with respect to

Ũl(Q) =
1

2
mω2QTQ +

a

2P
GT
l Q + const. , (S60)
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where the constant stems from the shift ε and the vector Gl naturally depends on the choice

of the EOMs as discussed in Sec. II E in the main text. For the equilibrium method, one gets

Gl = Gl if 0 < l < P , otherwise G0 = 2
√
PT(1/2, 0, . . . , 0)T = (

√
2, . . . ,

√
2, 1, 0, . . . , 0)T and

GP = 2
√
PT(1/2, 1, . . . , 1)T = (−

√
2, . . . ,−

√
2, 2P − 1, 0, . . . , 0)T. In contrast, for the aver-

age method, the vector is independent on the value of l, namely Gl = (0, . . . , 0, P, 0, . . . , 0)T.

It is straightforward to prove that for both choices of the dynamics, the resulting EOMs for

the Matsubara modes have the following solution

Q(τ) = Q cos(ωτ) +
Π

mω
sin(ωτ) +

a

2mω2P
[cos(ωτ)− 1]Gl (S61)

This leads directly to the time evolution of x0(τ) = FTQ(τ), where F = 2
√
PT(1/2, 0, . . . , 0)T =

(
√

2, . . . ,
√

2, 1, 0, . . . , 0)T, which can be integrated as

∫ t

0

dτFTQ(τ) =
FTQ

ω
sin(ωt)− FTΠ

mω2 [cos(ωt)− 1] +
a

2Pmω3 [sin(ωt)− ωt]FTGl . (S62)

After inserting this into the correlation function

Cλ(t) =

M̄ !2

2π~MZ
eiεt/~−εβl/P eia

2
[sin(ωt)−ωt]FTGl/2P~mω3

∫
dQ

∫
dΠ e−β[

1
2m

Π
T

Π+ 1
2
mω

2
Q

T
Q+ a

2P
G

T
l Q+iQ

TWΠ]

× exp

{
iaFTQ

~ω
sin(ωt)− iaFTΠ

~mω2 [cos(ωt)− 1]

}
, (S63)

the remaining task is to evaluate multi-dimensional Gaussian integrals. Performing the

integral over the coordinates yields

∫
dQe−β[

1
2
mω

2
Q

T
Q+ a

2P
G

T
l Q+iQ

TWΠ]+ iaF
T
Q

~ω sin(ωt) =

(
2π

mω2β

)M/2

× exp

{
βa2

8P 2mω2 GT
l Gl −

a2

2βm~2ω4 sin2(ωt)FTF− ia2

2Pm~ω3 FTGl sin(ωt)

}

× exp

{
− β

2mω2 ΠTWTWΠ +
a sin(ωt)

m~ω3 FTWΠ +
iaβ

2Pmω2 GT
l WΠ

}
. (S64)
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Subsequently one can integrate over the momenta leading to

∫
dΠe−β[

1
2m

Π
T

(1+WTW/ω
2
)Π] exp

{
a sin(ωt)

m~ω3 FTWΠ +
iaβ

2Pmω2 GT
l WΠ− iaFTΠ

~mω2 [cos(ωt)− 1]

}
=

(
2πmω2

β

)M/2



M̄∏

r=−M̄
ω2 + ω2

r



−1/2

exp

{
a2 sin2(ωt)

4m2~2ω6 FTWM−1WTF− a2β2

16P 2m2ω4 GT
l WM−1WTGl

}

× exp

{
− a2

4~2m2ω4 [cos(ωt)− 1]2FTM−1F +
ia2β

4Pm2~ω5 sin(ωt)FTWM−1WTGl

}

× exp

{
a2β

2Pm2~ω4 [cos(ωt)− 1]GT
l WM−1F

}
, (S65)

where M = β(1 + WTW/ω2)/2m and the cross term with sin(ωt)[cos(ωt)− 1] has canceled

since the product WM−1 is antisymmetric. In total one obtains

Cλ(t) =
M̄ !2

2πZ

(
2π

~β

)M



M̄∏

r=−M̄
ω2 + ω2

r



−1/2

eiεt/~−εβl/P eia
2
[sin(ωt)−ωt]FTGl/2P~mω3

× exp

{
βa2

8P 2mω2 GT
l Gl −

a2

2βm~2ω4 sin2(ωt)FTF− ia2

2Pm~ω3 FTGl sin(ωt)

}

× exp

{
a2 sin2(ωt)

4m2~2ω6 FTWM−1WTF− a2β2

16P 2m2ω4 GT
l WM−1WTGl

}

× exp

{
− a2

4~2m2ω4 [cos(ωt)− 1]2FTM−1F +
ia2β

4Pm2~ω5 sin(ωt)FTWM−1WTGl

}

× exp

{
a2β

2Pm2~ω4 [cos(ωt)− 1]GT
l WM−1F

}
. (S66)

Before we further evaluate the expression in full complexity, let us consider the correlation

function for the specific case l = 0, i.e. λ = 0. Since G0 = 0, only a few terms remain,

namely those with

FTF = M (S67)

FTWM−1WTF =
4m

β

M̄∑

r=1

ω2
r

1 + ω2
r/ω

2 (S68)

FTM−1F =
2m

β
+

4m

β

M̄∑

r=1

1

1 + ω2
r/ω

2 , (S69)

where the definition of W has been used, see Sec. II B in the main text. The resulting
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standard correlation function reads

C0(t) =
M̄ !2

2πZ

(
2π

~β

)M



M̄∏

r=−M̄
ω2 + ω2

r



−1/2

eiεt/~eia
2
[sin(ωt)−ωt]FTG0/2P~mω3

× exp

{
− a2

2βm~2ω4 sin2(ωt)M +
a2 sin2(ωt)

βm~2ω4

[
M̄∑

r=1

ω2
r/ω

2

1 + ω2
r/ω

2

]}

× exp

{
− a2

4m~ω3 [cos(ωt)− 1]2
[

2

β~ω
+

4

β~ω

M̄∑

r=1

1

1 + ω2
r/ω

2

]}
. (S70)

The terms with sin2(ωt) can be combined using M/2 = M̄ + 1/2 = 1/2 +
∑M̄

r=1 1 such that

a2 sin2(ωt)

4βm~2ω4

(
4

M̄∑

r=1

[
ω2
r/ω

2

1 + ω2
r/ω

2 − 1

]
− 2

)
= −a

2 sin2(ωt)

4m~ω3

[
2

β~ω
+

4

β~ω

M̄∑

r=1

1

1 + ω2
r/ω

2

]
.

(S71)

Using the trigonometric identity sin2(x) + (cos(x)− 1)2 = 2− 2 cos(x) one obtains

C0(t) =
M̄ !2

2πZ

(
2π

~β

)M



M̄∏

r=−M̄
ω2 + ω2

r



−1/2

× exp

{
iεt

~
+

ia2FTG0

2Pm~ω3 [sin(ωt)− ωt] +
a2

2m~ω3 [cos(ωt)− 1]

[
2

β~ω
+

4

β~ω

M̄∑

r=1

1

1 + ω2
r/ω

2

]}
.

(S72)

In order to clarify the relation between the approximation and the exact result, one has to

consider the limit M → ∞. Using the definition of ωr in Sec. II B of the main text and

writing out the factorial, the limit of the prefactor can be explicitly written as

lim
M→∞

1

Z~βω

[
M̄∏

r=1

(
β~ω
2πr

)2

+ 1

]−1

= 1 (S73)

where we have employed the well-known partition function of the harmonic oscillator, Z =

2/ sinh(β~ω/2), and the product representation of the hyperbolic sine function.3 For the

term with the cosine one can employ the familiar series representation of the hyperbolic

cotangens funciton

lim
M→∞

2

β~ω
+

4

β~ω

M̄∑

r=1

1

1 + ω2
r/ω

2 = coth(β~ω/2) . (S74)

14

C. Additional manuscripts

174



By comparing the last two expressions to Eq. (S55) with λ = 0, one can see that these two

terms become exact in the limit. However, there is one remaining term in Eq. (S72) that

depends explicitly on the dynamics, which is FTG0 = M for the equilibrium method and

FTG0 = P for the average method. If M and P tend to infinity, while obeying M � P ,

the fraction FTG0/P tends to zero for the equilibrium method and is constantly one for

the average method. Consequently, the equilibrium method recovers the exact C0(t) only if

M = P , whereas the average method yields accurate results for M < P as it is discussed

in Sec. IV of the main text. Following the same line of reasoning, one can draw the same

conclusions for the case l = P , i.e. λ = β.

Switching to values λ ∈ ]0, β[ , we have to write out the additional terms appearing in

Eq. (S66), i.e.

β

P 2 GT
l Gl =

8

β

−1∑

r=−M̄

(
β

P

l∑

i=0

κi cos(2πir/P )

)2

+ 4
βl2

P 2

+ 8
M̄∑

r=1

(
β

P

l∑

i=0

κi sin(2πir/P )

)2

, (S75)

β

P
FTGl = 4

−1∑

r=−M̄

β

P

l∑

i=0

κi cos(2πir/P ) + 2
βl

P
, (S76)

β2

P 2 GT
l WM−1WTGl =

16m

β

M̄∑

r=1

ω2
r

(
β
P

∑l
i=0 κi sin(2πir/P )

)2

1 + ω2
r/ω

2

+
16m

β

−1∑

r=−M̄

ω2
r

(
β
P

∑l
i=0 κi cos(2πir/P )

)2

1 + ω2
r/ω

2 , (S77)

β

P
GT
l WM−1F = −8m

β

M̄∑

r=1

ωr
β
P

∑l
i=0 κi sin(2πir/P )

1 + ω2
r/ω

2 , (S78)

β

P
FTWM−1WTGl =

8m

β

−1∑

r=−M̄

ω2
k
β
P

∑l
i=0 κi cos(2πir/P )

1 + ω2
k/ω

2 . (S79)

Note that F “picks” only the negative modes leading to the minus sign in Eq. (S78).

First, we want to restrict ourselves to the case M = P . The terms in Eqs. (S75,S76)

then become strikingly more compact, whereas the other terms keep their complexity. In
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particular

β

P 2 GT
l Gl =

2β(2l − 1)

P
, (S80)

β

P
FTGl = β , (S81)

where we have used Eq. (S58), the Cartesian definition of F and that TTT = TTT = 1 for

M = P . To proceed, one has to perform the limit M = P → ∞ for the aforementioned

terms. The summations over the index i can be written as integrals over imaginary time

leading to

lim
P→∞

β

P 2 GT
l Gl = 4λ (S82)

lim
P→∞

β

P
FTGl = β , (S83)

lim
P→∞

β2

P 2 GT
l WM−1WTGl =

16m

β~2

−1∑

r=−∞

sin2(ωrλ~)

1 + ω2
r/ω

2

+
16m

β~2

∞∑

r=1

(1− cos(ωrλ~))2

1 + ω2
r/ω

2 , (S84)

lim
P→∞

β

P
GT
l WM−1F = −8m

β~

∞∑

r=1

1− cos(ωkλ~)

1 + ω2
k/ω

2 , (S85)

lim
P→∞

β

P
FTWM−1WTGl =

8m

~β

−1∑

r=−∞

ωk sin(ωkλ~)

1 + ω2
k/ω

2 . (S86)

Inserting these relations into the correlation function, Eq. (S66), yields after some straight-

forward rearranging and employing a few relations of (hyperbolic) sine and cosine functions

Cλ(t) = eiεt/~−ελ exp

{
− ia2

2m~ω2 t+
a2λ

2mω2 +
ia2 sin(ωt)

2m~ω3

(
4

β~ω

∞∑

r=1

sin(ωrλ~)ωr/ω

1 + ω2
r/ω

2

)}

× exp

{
a2 cos(ωt)

2m~ω3

[
4

β~ω

∞∑

r=1

cos(ωrλ~)

1 + ω2
r/ω

2 +
2

β~ω

]
− a2

2m~ω3 coth(β~ω/2)

}
, (S87)

where we have reused Eqs. (S73,S74) and FTGl/P = 1 for M = P . In Ref. 1, one can find

that

4

β~ω

∞∑

r=1

cos(ωrλ~)

1 + ω2
r/ω

2 +
2

β~ω
=

cosh(β~ω/2− ωλ~)

sinh(β~ω/2)
(S88)

and by differentiating this expression with respect to λ one readily obtains

4

β~ω

∞∑

r=1

sin(ωrλ~)ωr/ω

1 + ω2
r/ω

2 =
sinh(β~ω/2− ωλ~)

sinh(β~ω/2)
, (S89)
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where the latter holds only for 0 < λ < β. After putting these limits back into the correla-

tion function and comparing it to the QM one, Eq. (S55), one can see that the Matsubara

dynamics yields indeed the exact result for Cλ(t) if M = P .

Importantly, if M < P , as it is imposed by the original Matsubara approximation, the

exact expression cannot be recovered, since irrespectively on the chosen dynamics

lim
P→∞

β

P 2 GT
l Gl 6= 4λ , (S90)

lim
P→∞

β

P
FTGl 6= β . (S91)

Thus, for λ ∈ ]0, β[ , none of the methods yields the exact result if only smooth imaginary-

time paths are considered, see discussion in Sec. IV of the main text and Sec. V here.

B. The RPMD-like method

To derive the correlation function resulting from the ring polymer molecular dynamics

(RPMD)-like method one has to evaluate the integral

Cλ(t) ≈
M̄ !2

2π~MZ

∫
dQ

∫
dΠ e−β[

1
2m

Π
T

Π+Ul(Q)+ 1
2
mQ

TWTWQ]e
i
~
∫ t
0 ax0(τ)dτeiεt/~ , (S92)

where Ũl(Q) is defined in the previous section. The dynamics that yields x0(τ) is generated

with respect to

Ũl(Q) =
1

2
mQTWTWQ +

1

2
mω2QTQ +

a

2P
GT
l Q + const. , (S93)

where the first summand is the well-known spring term, intrinsic to RPMD-like methods

and absent in the Matsubara dynamics, and Gl is the same as in the previous section. The

resulting time evolution of the normal modes can be written down explicitly as

Q(t) = cos(W̃t)Q +
1

m
W̃−1

sin(W̃t)Π +
a

2mP
W̃−2

[cos(W̃t)− 1]Gl , (S94)

where the diagonal W̃ = (ω̃rδr,s) with ω̃r =
√
ω2 + ω2

r .

Following the same line of reasoning as in the previous section, the correlation function

can be further evaluated by solving multi-dimensional integrals. As it will become clear

soon, it is sufficient to consider the case where λ = 0 and M = P , for which the final result
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for the RPMD-like approximation reads

C0(t) ≈ eiεt/~ exp

{
ia2

2~mP

[
2

P̄∑

r=1

sin(ω̃rt)− ω̃rt
ω̃3
r

+
sin(ωt)− ωt

ω3

]}

× exp

{
a2

2m~ω3

[
P̄∑

r=1

4[cos(ω̃rt)− 1]

β~ωω̃4
r/ω

4 +
2[cos(ωt)− 1]

β~ω

]}
, (S95)

where, for the sake of brevity, the limit for the prefactor, Eq. (S73), has been anticipated.

By comparing this expression to its Matsubara counterpart, Eq. (S72), one notices a similar

structure, though the frequencies appearing in the arguments of sine and cosine are not

the same and, thus, the RPMD-like approximation does not tend to the correct C0(t) as

P → ∞. Since the ω̃r differ from the physical frequency ω by the Matsubara frequencies,

this deficiency can be directly traced back to the artificial spring forces that disturb the

dynamics, which is similarly given for other values of λ and ratios of M and P .

C. The modified method

As it has been stated in the previous section, the RPMD-like ansatz fails due to the

Matsubara frequencies that disturb the real-time dynamics, whereas the structure of the

expression is quite close to the correct Matsubara counterpart. This suggests the ad-hoc

modification to “remove” the Matsubara frequencies from the real-time dynamics while

keeping them in the density. In particular, if one first sets all ω̃r → ω in the first row

of Eq. (S95), one would already obtain the correct imaginary part of the exponent, see

Eq. (S72). Second, setting ω̃r → ω in the cosine’s argument and, third, ω̃4
r → ω̃2

rω
2 in the

denominator would on top lead to the correct real part. The first two replacements can be

readily achieved by simply removing the spring forces from the RPMD-like protocol during

the real-time propagation, thereby recovering the original Matsubara dynamics. The third

substitution requires additionally to modify the kinetic part in the density in Eq. (S92) as

1

2m
ΠTΠ→ 1

2m
ΠTW̃TW̃Π/ω2 =

1

2m
ΠT(1 + WTW/ω2)Π , (S96)

while keeping the original physical potential as well as the usual spring term mQTWTWQ/2.

The combination of all three modifications leads to the modified method as it is presented

in the main text in Sec. II F 2. It is straightforward to show that this method yields the

exact standard correlation function, C0(t), for the equilibrium method with M = P and for

the average method M ≤ P in the limit M,P →∞.
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V. COMPLEMENTARY RESULTS

A. Numerical results for imaginary-time shifted correlation functions

Fig. 1, exhibits the computed imaginary-time shifted correlation functions, Cλ(t), with

λ ∈ ]0, β[ and M = P for the harmonic system as introduced in Sec. III of the main text.

Note that the layout is similar to that in Fig. 4 of the main text. In panels 1), one can

see that the results from the Matsubara and the modified do not coincide for both, the

equilibrium and the average methods if P = 5 and λ = β/5. This is expected, since the

modified method is exclusively designed for the case λ = 0. Interestingly, the convergence

of the Matsubara method with respect to the number of modes seems to be much slower

than for the case λ = 0. An acceptable convergence could be only reached for P = 1215,

as depicted by the corresponding analytical result, see the red dots dots. Note that such a

high number of modes cannot be treated numerically in a reasonable amount of time. Note

further that the statistical convergence could be improved for the equilibrium method, due

to an additional integration along the trajectories, as it can be seen by the larger red areas

in the right panels. The average RPMD-like method as well as the equilibrium one fail to

reproduce the QM result, while both versions come closer to the results of the modified

method than to the Matsubara ones.

Switching to panels 2), i.e. P = 9, λ = β/3, the QM result features an almost straight

line that is not reasonably approximated by both Matsubara methods. An acceptable con-

vergence with respect to the number of modes could be obtained for P = 1215, see the

analytical results depicted by the dots. The statistical convergence of the equilibrium Mat-

subara method is strikingly better than for the average one, which is again due to the

additional time integration. The modified method as well as the RPMD-like one fail again

to approximate the QM result.

B. Anharmonic oscillators with a large shift

Fig. 2 exhibits the numerical results for two anharmonic oscillators as given in Sec. III of

the main text, though featuring a larger displacement of xf − xg = 0.5 au.
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FIG. 1. Imaginary-time shifted correlation functions, Cλ(t), with λ ∈ ]0, β[ and M = P for the

two shifted harmonic oscillators. First row, λ = β/5 and the second row, λ = β/3. Red dots

represent analytical results for the Matsubara methods with P =M = 1215.
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xf − xg = 0.5 au. Same layout code as in Fig. 7 in the main text.
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