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Abstract

Inverse problems involving parameter estimation often face a choice between the use of a real-

time scheme with strong approximations or rigorous post-processing with explicit uncertainty

handling. Plasma physics experiments set a particularly high demand of both. Real-time

control systems often need to rely on distinct and uncertain input data where knowing the

estimated parameter uncertainty is crucial. Additionally, more rigorous scientific inference is

required for rapid decision-making after experiments. Finally, it is also common that two or

more diagnostics measure the same plasma parameter or correlated parameters, but their data

is analyzed separately. A solution that meets all of these requirements is missing.

With Bayesian analysis it is possible to carry out a quantitative assessment of a parameter

and its uncertainty. The joint analysis of data from several plasma diagnostics in a strict

mathematical way is simplified and it improves the inference on correlated parameters. This

makes standard Bayesian analysis an excellent tool for the case at hand, with the disadvantage

of extensive processing times, which are far too long for a real-time analysis.

Current variations of Bayesian analysis like Kalman filters or sub-optimal Bayesian online

algorithms target specific cases of this problem. But for most plasma physics time-independent

non-linear inverse problems, the best option is to use a general approach of Bayesian analysis

as done with several Wendelstein 7-X diagnostics. This approach avoids approximations when

dealing with post-processing.

The work in this thesis shows how current Field Programmable Gate Array’s (FPGA)

resource and parallelization capabilities allow for an acceleration of this type of mathematically

intense Bayesian analysis. It presents a significant acceleration in the estimation of plasma

parameters and joint analysis of two important plasma diagnostics. Using deep pipelining and

high parallelization, it maintains the required precision while reducing the processing time of

the inversion of a mathematically demanding model. This work therefore presents a solution

that satisfies the scientific experiment requirements while reducing the need for a speed vs.

rigorosity trade-off.

3



Kurzfassung

Die Bestimmung von Parametern bei inversen Problemen beinhaltet eine Abwägung zwischen

der Anwendung von Echtzeitverfahren unter Verwendung vereinfachender Annahmen einerseits

und rigoroser Datenanalyse mit expliziter Fehlerbetrachtung andererseits. Experimente in der

Plasmaphysik stellen besonders hohe Anforderungen an beide. Echtzeitkontrollsysteme müssen

oft auf unähnliche und ungenaue Eingangsdaten zurückgreifen, bei denen die Bestimmung der

Unsicherheit besonders wichtig ist. Eine detailliertere, aber dennoch schnellere Auswertung

nach Experimenten ist entscheidend, um über das weitere Vorgehen entscheiden zu können. Es

ist auch typisch, dass mehrere Diagnostiken dieselben oder stark korrelierte Plasmaparameter

messen, aber ihre Daten unabhängig voneinander ausgewertet werden. Eine Lösung, die alle

diese Anforderungen erfüllt, fehlt.

Mit der Bayesschen Analyse ist es möglich eine quantitative Abschätzung eines Parameters und

seiner Ungenauigkeit zu erhalten. Die gemeinsame Analyse von Daten mehrerer Diagnostiken

auf mathematisch fundierte Weise wird durch sie vereinfacht und die Inferenz korrelierter

Parameter verbessert. Die Bayessche Analyse ist deswegen ein ausgezeichnetes Werkzeug für

diese Problemstellung, mit dem Nachteil einer langen Bearbeitungszeit, die weit entfernt ist

von einer Echtzeitanalyse.

Spezialfälle dieses Problems werden aktuell durch Variationen Bayesscher Analyse wie Kalman-

filter oder suboptimale zeitgleiche Bayessche Algorithmen behandelt. Für die zeitunabhängigen,

nichtlinearen, inversen Probleme der Plasmaphysik ist ein allgemeiner Ansatz die beste Option,

wie er bereits bei vielen Diagnostiken in Wendelstein 7-X verwendet wird. Dieser Ansatz

vermeidet Annäherungen in der Nachbearbeitung.

Diese Arbeit zeigt wie moderne Field Programmable Gate Arrays (FPGA) durch ihre Res-

sourcen und Parallelisierungsfähigkeiten die Beschleunigung dieser Art mathematisch aufwändi-

ger Bayesscher Analyse ermöglichen. Sie beschreibt eine signifikante Beschleunigung in der

Abschätzung von Plasmaparametern und die gemeinsame Analyse zweier wichtiger Plasmadi-

agnostiken. Durch die Verwendung von tiefem Pipelining und hoher Parallelisierung bei der

Inversion eines mathemathisch komplexen Models wird die geforderte Präzision gewährleistet
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und die erforderliche Rechenzeit reduziert. Somit stellt diese Arbeit eine Lösung dar, die den

wissenschaftlichen Experimentanforderungen entspricht und die Notwendigkeit der erwähnten

Geschwindigkeit vs. Rigorosität Abwägung reduziert.
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Thesis Overview

This thesis studies the acceleration feasibility through reconfigurable hardware of Bayesian data

analysis of inverse problems, as they appear in complex physics experiments. The main aim is

to solve complex inverse problems that are normally dealt with in a post processing scheme, on

a time scale which approaches real-time.

The frame of this work is in the field of plasma physics. Here an estimation of important

plasma parameters is required in a faster time frame for the control of the Wendelstein 7-X,

without affecting inference through the introduction of approximations. For the proper analysis

of the problem and the possibilities of acceleration the work was split into two sections. An

initial stage with a simpler problem of low dimensionality and a second stage with a realistic,

higher dimensionality problem.

Chapter 1 introduces the basic concepts of plasma physics, magnetic confinement devices

and field programmable gate arrays which are the background of this thesis.

Chapter 2 defines and describes algorithms, tools and data analysis strategies used to carry out

this work as well as describing the central method used in this thesis, Bayesian analysis. It also

contains a detailed description of a tool developed in Python for optimizing the implementation

of extensive arithmetic functions in hardware.

In Chapter 3, the feasibility of acceleration is studied in a realistic yet simplified case. The non-

linear inverse problem of the Dispersion interferometer is analyzed with a single free parameter,

limiting its dimensionality. This chapter describes the diagnostic design, the description of the

diagnostic’s model, the software analysis and the hardware implementation of the analysis.

Based on the results and the acceleration found in chapter 3, chapter 4 is the logical extension

towards a problem with higher dimensionality and complexity. This chapter covers a new

diagnostic with a more demanding model and a higher number of free parameters. Taking

advantage of the Bayesian analysis, the joint analysis of two diagnostic models that share

a parameter (as is the case with Thomson scattering and the Dispersion interferometer) is

demonstrated. Similar to the previous chapter, the complete process from diagnostic design to

hardware implementation of the model is presented.

Finally, chapter 5 discusses the results obtained in the previous chapters in terms of feasibility,

acceleration, and precision. Since this project was separated in two representative cases of

a single problem, a general analysis can’t be carried out on each section. For this reason,

the conclusions section also contains an in depth analysis of the results of each main section,

followed by a global analysis of the entire project. It is shown how the Bayesian solution of
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inverse problems for scientific inference can be considerably accelerated.

This thesis is an interdisciplinary work between the fields of physics and electronics. Given

that both fields have different ways to discuss and present their results, this work tries to

accommodate both. However, this may not have been successful in every aspect. This work

is written and meant to be read as a whole for a proper understanding. Nevertheless, the

results of section 3.4 and section 4.4 may be more appealing for the reader with a background

in physics. The same applies to section 3.5 and section 4.5, where the results are focused on

the acceleration and engineering aspects of the work.

Other Publications of this work

The work has been presented at two conferences by myself and both papers were published
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The last part of this project, the joint analysis of the Dispersion interferometer and the
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A general overview of the advantages of hardware acceleration of data analysis of plasma

diagnostics and its comparison to a standard analysis is being prepared for publication in the

journal Review of Scientific Instruments.
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1. Introduction

15



1.1. Motivation: Data Analysis in Modern Scientific

Research

In the field of data analysis for modern scientific experiments, one of the most common problems

is that of parameter estimation. A scientific experiment is built to study, control or observe

phenomena of interest. In order to record and study what has been observed in an experiment,

a diagnostic is used to measure a specific parameter of interest. With those measurements, the

possible behavior of the parameter of interest is analyzed to develop or validate a theory about

the observed phenomena. This essentially describes the field of inverse problems, where the

causal factors or parameters are inferred from a set of observations [3, 4].

Focusing on parameter estimation in inverse problems within modern scientific experiments,

the data analysis faces a problem of a trade off between processing time and thoroughness of

the analysis. In some cases, the parameters are measured having in mind control and safety

of the machine in use, which means that approximated fast calculations are an advantage. In

other instances, which is typically the goal of research experiments, the parameter is measured

in order to perform scientific inference with a high level of accuracy. When inference is the

goal, the need for a study typically means that the measured phenomena are not yet fully

understood; and the introduction of approximations reduces the information content that we

obtain from the parameter of interest.

Unfortunately, many studied parameters in modern experiments do not fall under only one of

these categories. In many cases, like the plasma physics niche of this thesis, the unknown and

studied parameters of interest are the same being used for control and safety of the experiment.

Increasingly used for different data analysis schemes, one of the currently most transcendent

techniques in parameter estimation is Bayesian analysis [5, 6, 7, 8]. It provides a good way to

deal with combinations of data from diagnostics measuring the similar parameters. Also, it

allows for a rigorous handling of the uncertainty related to the parameter estimation. Last but

not least, it simplifies the way to introduce our knowledge, or lack thereof, into the analysis.

Like most statistical procedures, the processing requirements make it a common tool for a

post-processing scheme.

Regarding the frame of this work, many plasma diagnostics are used exclusively to preform

scientific inference on the physical process in order to estimate the relevant plasma parameters

[7]. With other diagnostics, the data is also used for a real-time analysis that protects the

experiment from reaching damaging conditions or to feedback control experimental parameters.

This can occur in many ways like controlling the position of the plasma or turning off a heating
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system [9].

As in many modern physics experiments, in plasma physics the evolution of plasma parameters

and other processes tend to follow complex non-linear models with extensive analytic expressions.

The time dynamics and variables of these models are also usually not known with certainty.

Thus, the lack of information on dynamic behavior constrains the analysis, which is then

normally performed for time-independent models where a single data point is considered.

This makes the frame of plasma physics an ideal field for standard Bayesian analysis where

the introduction of approximations and linearizations is avoided in order to obtain unbiased

information about the studied phenomena [8, 10]. Nevertheless, a Bayesian approach to these

types of inverse problems is typically slow. It can have several data sources and free parameters

where often the solution is intractable or has no standard analytic form.

The question, as the reader could have inferred by now, is how to deal with parameter

estimation where unbiased Bayesian analysis is the best tool but the parameter measured is

also required for real-time control. Can a faster version of this standard time-independent

non-linear Bayesian analysis be achieved?

Since Bayesian analysis typically requires big amounts of processing time and power, it is

clear that accelerations and optimizations of this procedure are needed in several fields where

the same conditions apply [11]. An acceleration would serve not only as an unbiased tool for

scientific inference but also for safe control systems with an adequate uncertainty estimation of

the control signal.

Given the analysis' wide dispersal, several efforts towards this goal have been carried out and

succeeded in bringing versions of Bayesian analysis to a real-time scheme. Bayesian filtering

is a good example where various techniques have been sped-up for a real-time scheme. Most

of these are used for analysis of time-dependent models with a state-space approach where

filtering and smoothing are used for control systems [12].

Others focused on linear problems with Gaussian noise where the Kalman filter is the preferred

tool and is in general a reformulation of Bayes' theorem [13].

In the case of non-linear problems of time-dependent models, a reduction in the volume

of calculations can also be achieved with sub-optimal algorithms or linearizations within the

Bayesian approach. Some examples are the extended Kalman filter (EKF), particle filters, grid

based algorithms and variational Bayes techniques, amongst others. Most of these, through a

Bayesian approach, target time-varying inverse problems and are formulated as a stochastic

state-space model [14, 15, 16, 17, 18].

In a control theory frame, the majority of these are the best way to reach a real-time solution
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in a dynamic model state-space approach. Nevertheless, they are not the most suitable solution

for the requirements stated in the frame of this work.

Therefore, the following work’s goal is to satisfy the need for a faster version of this analysis

under the conditions that modern scientific experiments often present.

18



1.2. Fusion

Nuclear fusion is a promising alternative to solve the ongoing problem of an increase in energy

demand. While far from being a simple subject, the basic idea behind fusion can be simply

described as the reaction that happens when two nuclei have enough energy to overcome the

repelling Coulomb force. Typically, fusion reactions produce a heavier nucleus and a neutron or

proton.

The canonical example of fusion takes place in a star, where for most of its lifetime, it is

powered by exothermic reactions that release energy. Here, the sum of the resulting particles

in the reaction has a rest mass that is smaller than the sum of the original elements before

the fusion process takes place. Through Einstein’s E = mc2 equivalence, a calculation of the

energy released from that missing mass is possible and shows how the order of magnitude of

the released energy grows towards the MeV range for a single fusion reaction.

For sustained fusion to happen in nature, it has to be in thermal equilibrium and have high

thermal energy to overcome Coulomb forces. At these temperatures the particles form a plasma,

which is a fully or partially ionized gas. This means that the confinement of a hot ionized gas

which shows collective behavior provides the environment for the fusion of two light elements

into a heavier one.

The reaction itself has a fuel energy density per unit mass higher than other typical reactions

used for power generation. This means remaining optimization point is to increase the energy

output by the proper selection of the fuel. For optimal results, the selection is done in terms

of reaction rate and energy density per fuel mass. The heavy isotopes Deuterium (D) and

Tritium (T) are considered the ones that best meet this requirement, specially the reaction

rate. Their energy density per unit mass is reflected in table 1.1 which shows amount of usable

energy per kilogram fuel. Also, the abundance of Deuterium in sea water and Tritium extracted

from Lithium-6, removes the fuel availability limitation as a problem. Finally and in contrast

to the fission process, the radiation half-life times of the isotopes used is short and can be dealt

with through proper storage.

In order improve the conditions to achieve fusion for the two isotope nuclei, their kinetic

energies must be high to beat the Coulomb repulsion. The likelihood of a collision is increased

with confinement time and density as well. The relevance of these factors was initially seen by

studying the power balance. The power balance can be constrained to a case where no external

power is applied. If the power generated by the fusion reaction is transferred back to the plasma,

it is considered self-heating. Under these conditions the “triple product” term shown in 1.1 can
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Table 1.1.: Amount of Usable Energy per kilogram of fuel

1 kg kWh

Coal 8.1

Oil 11.6

Gas 13.9

U235 2.3× 107

D-T 9.4× 107

be derived. It is commonly used to define the balance required between temperature, density

and confinement time to produce a positive power output.

neτET = 3× 1021 m−3 s keV (1.1)

Here the temperature T, is directly related to the kinetic energy required to overcome

repulsion forces, the electron density ne relates to the probability for a collision of two nuclei

and the energy confinement time τE .

Achieving high kinetic energies, the energy confinement time and density depend strongly

on the quality of the fuel confinement. In the case of stars, the massive fuel abundance plus

the strong gravitational force provide the suitable environment for fusion to happen. When

attempting to recreate this on earth, those two parameters have to be controlled through other

means. For this magnetic confinements is used.

Magnetic confinement takes advantage of the behavior of charged particles in a magnetic

field to constrain particle trajectory. Through magnetic tension and Lorentz force the outwards

pressure that a volume of plasma will exert can be counteracted. The two most advanced types

of magnetic confinement concepts are the tokamak and the stellarator, this work focuses on the

latter.

1.2.1. The Stellarator

As mentioned above, satisfying the constraint of the three parameters in the triple product

is not equally difficult. While reaching a required density and temperature to meet Lawson’s

criterion is not trivial, it is the confinement time that comes at a higher cost. Its control requires

the ability to regulate the power losses in a plasma and needs a machine design that is able to

properly confine it.

Given that charged particles follow a magnetic field, a good approach was to confine the

plasma through a tailored magnetic field. The leading two approaches to build such a magnetic
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Figure 1.1.: Wendelstein 7-X modular coils (blue) configuration and the plasma (yellow).

confinement device were the mentioned stellarator and tokamak. The first idea for the stellarator

design came from Lyman Spitzer Jr. in 1951 who thought of a way to solve the problem of

confining a plasma [19] while avoiding particles drift out of the plasma due to several forces.

If a set of coils is arranged to form a torus, the resulting toroidally shaped magnetic field

guides particles to travel around in a loop. Unfortunately, the effect of magnetic drifts makes

the particles move radially outward and escape confinement. For the sake of this explanation

the radius is measured from the center of the torus to the particle position. Lyman’s alternative

proposed a way to introduce a twist in the magnetic field. With this change, a particle will

follow a magnetic line that no longer has a fixed radial position. A twist in the field would

cause the lines, and therefore the particles, to constantly change their radial position so the

drifts cancel out. These drifts can be caused by several factors including centrifugal forces as

well as forces caused by the combination of the confining magnetic field and an electric field

caused by charge gradients.

To achieve this, modern stellarators use modular coils that not only introduce a toroidal field

component but a poloidal as well. The sum of both effects results in a twisted magnetic cage

that provides a magnetic guide for the particle trajectory while reducing particle losses.

The shape of these coils and the resulting field can be seen in fig. 1.1. Here the coil design

depicts that of the Wendelstein 7-X (W7-X) stellarator located at the Max Planck Institute

for Plasma Physics.

While the plasma confinement is mainly dictated by the magnetic field, the control depends

on many other parameters. Magnetic confinement devices require a set of peripherals that
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provide control of the machine in different aspects; ranging from strength of the magnetic

field to the amount of heating power deposited. The magnetic field contains a plasma with a

temperature in the order of millions of degrees and is often heated with microwaves in the order

of megawatts. Therefore, the measurements of plasma parameters through different diagnostics

provide information for scientific inference and machine safety.

1.2.2. Plasma Parameters: Real-time monitoring and control

One of the central parameters in all fusion devices is the electron density. Proper measurement

of the electron density and its uncertainty is of importance because of its fundamental role in

plasma physics. It is involved in the determination of whether a burning plasma meets the

Lawson criterion eq. (1.1). It also often used as a reference parameter for different heating

configurations.

Through the local density estimation, parameters like plasma frequency, collisionality and

plasma pressure can be estimated [20]. Besides this, its gradient is needed to estimate plasma

transport. The knowledge of the density is also crucial to experimentally reconstruct the

equilibrium magnetic field, which is perturbed by the plasma, and to predict macroscopic

stability of these equilibria.

The investigations presented in this thesis are carried out within the frame of two plasma

diagnostics that have density as a parameter in common. The Dispersion interferometer is

selected for the initial part of the project due to its simpler forward model as a test-bench. This

scenario as a proof of principle provides a good stepping stone into more complicated analysis

like joint analysis with other Bayesian models integrating several parameters from different

diagnostics. For the latter stage of the project, the Thomson scattering (TS) diagnostic was

selected. Besides sharing a line of sight and a parameter with the interferometer, it has a model

that better represents realistic complex examples of Bayesian analysis.
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Figure 1.2.: General depiction of FPGA architecture. The resources included are: input/output
blocks (I/O), configurable logic blocks (CLB), programmable interconnections,
clock connections (red), switch matrices (SM). The CLBs consist of logic slices
containing lookup tables (LUT), multiplexers (Mux), carry chains (Ca.Ch.) and
flip-flops (FF).

1.3. Field Programmable Gate Arrays

A field-programmable gate array (FPGA) is a reconfigurable integrated circuit comprising

arrays of logic gates and other resources, which allow the user to change their configuration by

writing a code describes their interconnection.

Before their invention in the late 1980’s by Steve Casselman, the option of changing a

programmed circuit component was only possible with programmable read-only memories

(PROM) and programmable logic devices (PLD) [21]. While they were reconfigurable

individually, the connections between their components or gates was not, and a change in the

design would normally require a long production time and cost.

Altera and Xilinx, two programmable devices companies, started producing and marketing

options of this new reconfigurable technology after its invention. It wasn’t until 1985, that the

first device with reprogrammable gates and connections between them was released by Xilinx

[22].

The architecture of modern FPGAs, similar to the initial Xilinx design, is in general composed

of three main elements represented in fig. 1.2. They are input/output pads (I/Os) to

interface with external signals, configurable logic blocks (CLB) to carry out different tasks and

programmable interconnections between them. The interconnections can be reconfigured to
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connect with different resources through transistor driven switch matrices (SM).

The CLBs are the basic unit in an FPGA and are composed of one or more logical slices

(or cells). Depending on the model and manufacturers, the slices have different resources

which allow the user to reconfigure the design to attend specific needs [23]. Within a slice,

the resources available are a mixture of lookup tables (LUT), multiplexers, carry chains and

flip-flops. Their combination allows for a wide variety of applications giving FPGA’s their

flexibility.

Among these applications is the implementation of arithmetic operations in different formats.

Specifically for signal processing, modern FPGAs also have a different type of slice commonly

referred to as digital signal processing (DSP) slice. The DSP slices have a different confi-

guration that contain multipliers, pre-adders, accumulators, basic logic functions and pattern

detectors amongst others [24]. While many of these more complex functional components

(cores) can be built from normal slice resources (soft-core), the DSP slices have these specific

cores already hardwired (hard-core).

With the combination of the previously mentioned resources, FPGAs provide a reconfigurable

architecture that can be specified through a hardware description language.

1.3.1. Hardware Description Languages

The FPGA design is done with a branch of programming languages called hardware des-

cription languages (HDL). While they borrow many concepts from general purpose software

programming languages, they differ in aspects that make HDL more suitable to describe hard-

ware. One of these differences is that due to the hardware possibilities of implementing numerous

parallel processes, the specification of time for each process is done explicitly. While in software

programming languages it is possible to do multi-threading (running processes in parallel with

multiple processors), their definition of when a process takes place is typically less deterministic.

HDL is therefore used to design complex circuits in many fields from application-specific

integrated circuit (ASIC) to microprocessors [25].

Several versions and standards of this language have been created. For FPGAs, the two

mainly used are Verilog and VHDL. The work for this thesis was done with the latter which

stands for Very High Speed Integrated Circuit (VHSIC) hardware description language.

These languages allow for the synthesis of a code into netlists, which specify components

and how they are connected. In FPGA design, a netlist is typically routed, implemented and

programmed on an FPGA. The simulation of the resulting design, or the intended circuit, can

be done for several stages. These range from a behavioral simulation to a final simulation
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considering the specific implemented hardware properties. For this, libraries containing tested

circuit behavior and timing are implemented to show how the design should behave. This

allows for a verification of the code before using it to program a reconfigurable hardware like

the FPGA.

1.3.2. State of the art

Advances in FPGA performance, degree of parallelism and resource availability prompted their

use in the field of high performance computing [26]. Comparing it to the use of normal computers,

this field is characterized for its use of higher processing power and tailored optimizations for

complex science and engineering problems.

Along with graphics processing units (GPU), FPGAs are the most common architecture

used for acceleration of many well-known numerically intensive algorithms or applications. In

some cases, FPGAs show promise in outperforming modern processors or considerably improve

processing times [27, 28, 29].

The addition of arithmetic hard-cores or DSP slices to FPGAs is a relatively recent develop-

ment that motivates the implementation of complex arithmetic functions and operations into

an optimized real-time scenario.

Besides the inclusion of arithmetic hard-cores, FPGA manufacturers also offer Intellectual

Property Cores (IP-cores). These IP-Cores provide the user with optimized hardware

implemented versions of numerical algorithms, data transmission standards and many others.

These cores can be configured depending on the required functional parameters and whether

the optimization goal is area (resource usage), power consumption or speed. They can range

from Ethernet layers and Random Access Memory (RAM) interfaces, to implementations of

double precision floating-point arithmetic operations. The latter are particularly important for

this work, because they decrease development time by reducing the developer’s workload. By

avoiding the re-design of existing optimized cores, the developer is able to focus on optimizations

of the global design.

Finally, the resources in modern FPGAs allow the implementation of extensive arithmetic

problems that a few years back, could have been impossible on a single chip. The work presented

here uses both Virtex-6 and 7 families of Xilinx FPGAs where DSP slice and logic slice counts

are considerably higher than several years ago. Other families like Ultrascale provide a higher

resource availability at a considerably higher monetary cost and therefore are commonly used

for massive designs or non-optimized research designs that must fit in an FPGA.
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1.4. Outline of Contributions

The main contribution of this thesis was to prove that a general acceleration of Bayesian model

based data analysis for inverse problems in scientific experiments, is feasible. This was done

by demonstrating how modern FPGAs allow the acceleration Bayesian analysis of a range of

possible cases in the field of inverse problems. This range of problems was covered by showing

the feasibility of an acceleration in two representative cases and was carried out in several stages

described below. Moreover, in this context acceleration is interpreted as the translation of a

software code into a dedicated hardware design with the aim of reducing its processing time.

The first stage and representative case is the analysis of a dispersion interferometer, a

diagnostic which has recently increased in popularity due to its advantages compared to other

interferometers. It represents the cases of small models, non-linear models or multimodal

posterior distributions. In addition, it addresses the use of an important Bayesian analysis

method, the sequential approach, which is crucial for estimation of parameters with a longer

dynamic time-scale than the available sampling rate. In this frame, the first contribution was

the development of a Java code in the Minerva framework to carry out a Bayesian analysis

for dispersion interferometer. This required finding a solution for a non-linear model which

introduces ambiguity in the determination of the phase difference through a multimodal posterior

distribution. For this, a code using sequential Bayesian analysis was developed. In order to

define a reference point for posterior acceleration, a full implementation of this analysis was

programmed, tested and validated in the Minerva framework.

This allowed for the second contribution, a 16-fold acceleration of this analysis. An FPGA

version was developed, implemented and tested proving the acceleration possibilities of the

analysis and promoting its use in a scheme different from the usual post-processing processing

approach. The shown potential of FPGA acceleration of non-linear inverse problems motivated

the second part of this thesis.

The second part is the other representative case, covering the acceleration of mathematically

extensive and complex models, models with multidimensional posteriors and cases that require

iterative sampling algorithms to carry out the inversion. Furthermore, it includes another

powerful property of Bayesian analysis, which is the ability to do a joint analysis of models

that have parameters in common. This was represented by the Thomson scattering diagnostic

and its joint analysis with the dispersion interferometer. It resulted in a third contribution, the

development of a Bayesian analysis code in the Minerva framework for the joint analysis of

both diagnostics. As with the first code, the developed analysis code was tested against other
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analysis methods and validated before its acceleration.

With a reference software code, the fourth contribution was proving that the Bayesian analysis

of more complex models can be accelerated. Given the complexity of the analysis, a study of

the most time-consuming sections was made in order determine where an FPGA acceleration

would be more relevant. This was found to be the acceleration of the most time-consuming part

of the analysis, the processing of the forward model. This design was tested and implemented

on an FPGA in order to validate the results and the achieved 82-fold acceleration factor.

The complexity and size of the design required the development of a tool that simplifies circuit

design and optimization of large mathematical models on hardware. This fifth contribution

enables the developer to improve the design process by decreasing the development time and

difficulty of going from an extensive mathematical model, to a full hardware implementation.

It simplifies the application of pipelining and parallelism to reduce processing time.

Finally, by determining that it is feasible to accelerate these two representative cases with an

FPGA design, this work establishes a precedent for bringing this type of Bayesian analysis out

of a post-processing scheme. This is not only relevant for plasma physics experiments, as this

work demonstrated. It is also applicable on any type of inverse problems where their analysis

suffers from the introduction of approximations, yet a fast version is required.
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2. Analysis Techniques
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2.1. Forward Modeling

When dealing with the task of modeling a diagnostic, it is important to consider all the parts

involved in the process of taking a measurement. The model must include the dependencies

of the diagnostic on basic parameters, the physics involved in the process and the electronics

involved which normally are all well-known.

Models of inverse problems often have the difficulty that a specific measured value can be

explained by different combinations of its model parameters. Thus, the physics parameter

estimation can become impossible. However, if the model description from parameters to an

electronic measurement is well known, predicting a measured sample from a specific combination

of parameters is possible and known as forward modeling.

Forward modeling presents an effective way to understand the relevance of the parameters in

a final observation and properly represent diagnostic dependencies.

An example of this is shown in fig. 2.1 where the forward model of generic plasma density

diagnostics is depicted.

The forward model (FM) has several advantages due to its clear way of showing the

full functionality of a diagnostic. For instance, it allows correlating data coming from two

diagnostics that have a parameter in common. Also, due to its capability of predicting a

measured sample, synthetic data can be generated for studying the diagnostic’s behavior

without actual measurements.

Figure 2.1.: Forward model, Bayes' theorem and inversion example for electron density (ne) as
main parameter.
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2.2. Bayesian Analysis

2.2.1. The Likelihood Distribution

The likelihood distribution is a probability density function (PDF) that represents the

probability of an observation being measured given the combination of the model parameters.

If our knowledge of every single intricacy of the model was absolute, and we could account

for electronic noise and changes in a device’s response to e.g. temperature changes, we could

formulate the forward model as a function f that yields a sample D⃗ given a set of parameters p⃗

so that D⃗ = f(p⃗).

Since that is not the case, the likelihood distribution describes the uncertainties of the

measurements in a PDF for all possible combination of parameters P (D | p⃗). It thus represents

the probability of a observation happening for a chosen specific combination of parameters.

2.2.2. The Posterior Distribution and Bayes Theorem

Given that the only thing we can be certain of is the taken observation D⃗ and our interest is to

know determine the distribution of p⃗, we must use Bayes' theorem to obtain the posterior PDF

P (p⃗ | D⃗).

Bayes' theorem states:

P (p⃗ | D⃗) =
P (D⃗ | p⃗ )P (p⃗ )

P (D⃗)
. (2.1)

Besides the posterior PDF and the likelihood when can identify two more factors. The first

one, P (p⃗ ), is called the prior and encompasses the knowledge, or lack thereof, that we have

regarding the state of the parameters of interest before the measurement is done. The second

one is the evidence, P (D⃗), which is a distribution that depends only on the measured data. It

is used to compare models but in the case of parameter estimation when using a single model,

it is usually ignored.

The final posterior PDF that Bayes' theorem provides is a representation of all knowledge of

the parameter’s state when considering prior knowledge, the observations and the uncertainties

associated. It provides a full description of our knowledge including correlations between

parameters, amongst others.
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2.2.3. The Joint Posterior Distribution

As it will be seen in the second part of this thesis, it is common practice and an advantage

in Bayesian analysis to be able to do a single analysis for multiple diagnostics that share

a parameter [30]. That is, two sources of data that measured the same parameter through

different approaches. In such a case, a likelihood function will represent the forward model for

each diagnostic and through probability theory a single posterior PDF can be expressed as

P (p⃗ | D1
⃗ ,D2

⃗ ) ∝ P (D1
⃗ ,D2

⃗ | p⃗ )P (p⃗ ). (2.2)

Here the evidence factor has been removed and a proportionality is used when focusing on

parameter estimation because the evidence term is constant when only one model is used. The

previous is referred to as the joint posterior distribution and given that for a fixed parameter

the noise is specific of each model, and they are independent measurements, it can be expressed

as

P (p⃗ | D1
⃗ ,D2

⃗ ) ∝ P (D1
⃗ | p⃗ )P (D2

⃗ | p⃗ )P (p⃗ ). (2.3)

2.2.4. Marginals and Conditionals

There are two final terms commonly used in Bayesian analysis that should be defined, the

marginal and conditional distributions. These are useful when the interest lies in a specific

parameter p1 from the subset of parameters p⃗ used in the full analysis. The marginal and

conditional provide a way to separate from the analysis those parameters that are necessary for

the full analysis but not of particular interest. These irrelevant parameters are also referred to

as nuisance parameters.

In the case of the conditional posterior distribution, as the name suggests, the posterior

is evaluated for the parameters of interest when the conditions are fixed; that is when the

rest of nuisance parameters have a specific value so that the posterior would be P (p1 |

D1
⃗ , p2, p3, . . . , pN ).

On the other hand, the marginal posterior distribution permits the calculation of a specific

parameter regardless of the state of the rest. For this an integration over each parameter is

necessary where the marginal would take the form of

P
(︂
p1 | D⃗

)︂
=

∫︂ ∞

−∞
P
(︂
p⃗ | D⃗

)︂
dp2 dp3 . . . dpN (2.4)
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Figure 2.2.: Flowchart depicting the differences between a batch and sequential approach for
Bayesian analysis.

For the cases of high dimensionality, the marginal is the only way to visually interpret the

data and isolate the parameter of interest.

2.2.5. Sequential Bayesian Analysis

The availability of data for the analysis can vary from one problem to the other. In some cases

a batch of data is available at once while in others the data comes sequentially (i.e. samples

received as they are taken).

In the cases where data could be analyzed as it arrives, while the complete set of data is

needed for the analysis, a sequential treatment can solve the problem. Considering that each

sample is independent of the next one, we can reformulate Bayes' theorem in a sequential form

as:

P (p⃗ | D1, D2, . . . , DN ) = P (D1 | p⃗ )P (D2 | p⃗ ) . . . P (DN | p⃗ )P (p⃗ ). (2.5)

In the frame of this work where acceleration is the main objective, this approach is used

in order to calculate a posterior of a single sample which can then be used as a prior for the

following to update the posterior.

2.2.6. Inversion Algorithms

Depending on the nature of the problem, its linearity, number of modes and dimensionality,

different inversion techniques are available and define time and processing power requirements.

The inversion, opposite to the forward modeling, is the search for the parameters p⃗ that yield
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the highest probability density on the posterior. This specific combination of parameters p⃗ is

called the maximum a posteriori (MAP) and requires the finding of the maximum value of

the posterior distribution.

The modeled system can have specific characteristics that require a different sampler algorithm

or optimizer tool to estimate parameters and their uncertainties.

The linearity of the model, the number of modes or local maxima in the posterior distribution,

and its dimensionality changes the applicability of inversion algorithms for estimating the MAP.

Linear problems can be approached by Linear Gaussian Inversion (LGI) while non-linear

ones might lead to long iterations with a sampling algorithm [31].

Depending on the mentioned factors, different inversion algorithms are chosen to decrease

the processing time and power required.

2.2.7. Minerva

The work described in this thesis uses Bayesian inference for diagnostics based on the software

framework Minerva [32]. As a framework, Minerva provides the tools required for Bayesian

analysis through Bayesian graphical models. It also provides a modularized scheme that allows

the decoupling of models, parameters and inversion algorithms. That way a model can be easily

tested with different optimizers or samplers without much change in the code.

The use of graphical models and the way it is built means that Minerva is very modular. This is

one of the reasons why reconfigurable hardware like the FPGA is selected for acceleration in this

work. The possible changes in models and inversion techniques benefit from an implementation

platform with a modularity that allows the simple exchange of elements in the analysis. For

this reason the analysis gains from the modularity and element swapping that Minerva and the

FPGA provide.

2.2.8. Bayesian Theory and Terminology in this thesis

Bayesian analysis has spread across many fields, as a result different nomenclatures have been

adopted. Due to the fact that the reader might be familiar with other forms of Bayesian

analysis, like the ones presented in section 1.1, some terminology for the frame of this work

must be defined to avoid confusion.

The concept “sample” can be interpreted as measurements or observations taken in an

experiment as well as the ones taken by a sampler algorithm. For this work the former is the

main use of the term and sample will be the observation measured during an experiment unless
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specified otherwise.

When referring to Bayesian analysis, the term has also become broad enough that it encom-

passes different techniques specific to the field where they are applied. Therefore, the use of the

term “Bayesian analysis” in this thesis strictly refers to the explicit usage of Bayes' theorem

for inferring parameters from measurements in scientific experiments where the underlying

phenomena is not completely understood.
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2.3. Non-Linear Algorithms

Non linear cases require different techniques and algorithms to solve the inversion problem.

Two main approaches used are: To find a maximum in a single-mode posterior with low

dimensionality by the use of optimizers, or to sample the distribution with the use of sampler

algorithms for higher dimensionality. In the frame of this work, some of the most relevant

algorithms are presented because they were either used on the analyzed models or provide a

solution to problems that are not covered in this work.

2.3.1. Gradient Descent

For situations where the posterior distribution has a low dimensionality and is smooth enough

with a single maximum, the use of gradient search or other line search algorithms can be an

appropriate technique. Working in the parameter space, the algorithm chooses a direction and

searches for the optimum position in that direction. Gradient search involves the estimation of a

gradient to choose the next step in a function that defined and differentiable around the current

position vicinity. Complex calculations of the posterior can become computationally expensive

for this method, since the step size must be chosen carefully and the number of operations

given by the gradient calculations does have a big impact on processing time. Accelerations of

this algorithm have been developed providing a possibility to implement fast inversions [33].

2.3.2. Pattern Search

Pattern search methods are direct search algorithms that do not require the estimation of a

gradient to find maxima or minima. This property allows them to be used on discontinuous

functions. The method works by changing a parameter by steps of the same magnitude until no

increase or decrease can be reached. In some variations, the step size is halved and the method

is reapplied. An example of pattern search methods is Hook and Jeeves, which is useful for

simpler cases of low dimensionality. While practical and fast, this method still has problems

with multimodality and only provides the MAP [34, 35].

2.3.3. The Metropolis Hastings Markov Chain Monte Carlo Sampler

The Metropolis Hastings Markov Chain Monte Carlo (MCMC) is a sampler method that

allows taking representative samples of the distribution in order to either study the posterior

with the taken samples or to generate a histogram to determine the maximum value [36]. One

of its limitations is the requirement of knowledge regarding where the maximum could lie in
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order to reduce convergence time. This means that in order to keep the number of iterations

low, an optimizer is usually applied to have a good guess for the maximum. If these conditions

are not met, the MCMC can require extensive sampling iterations and excessively sample areas

far away from the maximum, therefore requiring long processing times.

MCMC takes samples by doing a random walk along the posterior distribution. Every “step”

or change in position is sampled from a smoothed or trial distribution. A comparison of the

next state with the current jump is made to decide whether the position will be changed or

not. If the probability of the current state is higher than the new one, a new jump is calculated

disregarding the current one. On the other hand, if the probability of the current state is lower

than the proposed one, the current state is updated and the algorithm proceeds from this new

position. This is defined as a chain and, if it is allowed to sample randomly for a long enough

time, representative samples of the distribution around the maximum can be taken. Part of the

complexity of this method lies in the determination of the trial distribution. This can affect

the method’s behavior by increasing the time it requires taking representative samples or by

rejecting jumps more often. A common solution, as well as the one used in this work, is to

shape the trial distribution to be proportional to the covariance matrix. The matrix holds

information about parameter uncertainties and has a similar shape as the posterior.

Some MCMC implementations have the disadvantage of getting trapped in local maxima

on multimodal posterior distributions. In this case, other versions that solve this problem by

introducing parallel sampling chains exist.

Parallel Tempering MCMC

Parallel tempering MCMC (PT-MCMC) is a method that uses several tempered chains

to improve the dynamic behavior by helping the MCMC method in two ways [37]. First, it

avoids the entrapment of a chain in a local maximum of a multimodal distribution and second it

helps the main chain collect representative samples faster by improving the chain mixing. With

PT-MCMC, each chain samples from a different trial distribution that is estimated according

to the temperature of the chain. In general terms, the temperature of a chain is represents the

likelihood that the chain has of sampling from a low density regions of the distribution. The

higher the temperature the wider the phase space it can sample. The first and coldest chain

will sample from the target distribution while the other hotter chains will sample from modified

versions of the target distribution which are easier to sample. This makes the hotter chains

move faster along the whole distribution and colder chains more likely to get trapped in a local

maximum. After a defined period of iterations, samples are exchanged from a chain to a colder
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one in order to sample effectively the whole distribution.

Optimized versions of this algorithm have been recently developed and a particular version

using the parallel capabilities of the FPGA is of special interest to this work [38, 39, 40]. Given

that the focus is to reduce processing time, an FPGA version of MCMC that can get closer

to the maximum in a shorter time is a big advantage. Also, the fact that this method is less

susceptible to getting trapped in a local maximum makes it a better suited alternative for a

general acceleration solution.
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2.4. Optimizing the Implementation of Extensive

Arithmetic Functions in Hardware Architecture

2.4.1. Design aspects: Implementing arithmetic models on hardware

This project involves the design and implementation of arithmetically complicated functions

with large number of mathematical operations that will be implemented in hardware. For this

to be efficient, this work merited developing a tool to reduce the design and development time.

The developed tool simplifies the hardware design of the arithmetic functions in realistic inverse

problems and shortens the development time scale.

When implementing complex and extensive arithmetic functions in hardware, one of the most

time-consuming and challenging tasks is the mapping of these functions into operations that

can be optimally implemented in hardware. This optimization is done to properly map the

function into a combination of available hardware operations. This can be targeted to optimize

the critical path to reduce processing time or to reduce the number of resources required to

implement such a function.

For the latter part of this work, FPGA design is compared with computer calculations in

scientific inference. In software, these calculations are typically done with double-precision

floating-point operations. In order to match this precision for a reasonable comparison, the

FPGA design requires using either fixed-point arithmetics with long word lengths (number

of bits used to represent a value) or double-precision floating-point arithmetics. Their use

introduces either a longer latency factor or a bigger consumption of resources which adds another

level of complexity for optimization. When trying to accelerate an analysis, this optimization

is done to achieve a better critical path (maximal delay path between data input and result

output) while staying within the use of available resources.

Another important hardware implementation concept is the increase of a circuit’s throughput

at the cost of operation latency, called pipelining. This method divides a circuit or operation

into individual processing elements in order to process multiple data simultaneously in a single

circuit or “pipeline” [41]. This normally increases the throughput, the amount of data that

is processed per unit time i.e. how often a value exits the pipeline. Because each stages of

the pipeline are connected in series, the latency of an instruction is generally increased given

that each stage must wait the time the slowest stage requires. When pipelining hardware

implementations or an arithmetic model, the timing of each operation has to be carefully

considered. Values must meet the pipeline order and reach the next operation node at the same
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time as its counterpart value, coming from another parallel thread.

Finally, one must consider that these extensive arithmetic models can be factorized or

rearranged in many ways that could eventually result either in a shorter critical path or a

smaller amount of operations and hardware resources. This makes hardware optimization of

extensive arithmetic models a cumbersome, time-consuming task; regardless of whether the

goal is critical path reduction or smaller resource consumption. FPGA design often requires

both of these elements to be optimized and directly affects its development time.

2.4.2. Improving the work-flow and simplifying the design

optimization process

To address the described difficulties, a Python package was developed to improve the visualization

of the relevant hardware implementation aspects. The main goal was to decrease the time that

is required to go from a set of equations that describe the model to a final optimized hardware

arithmetic design.

The program does this by parsing the required equations and delivering a tree-like graph

representing the circuit structure. This allows to visualize the important previously mentioned

factors: Individual hardware operation latency, arithmetic terms dependencies, critical path

length, the timing of pipelined parallelized threads and the effects of different factorization

possibilities. With it, the developer can simplify the optimization of the function implementation

in hardware since often extensive models can often have dozens of configurations that favor

different optimization aspects.

Preparing the arithmetic model

Before using the tool to visualize the possible hardware implementation and start the optimiza-

tion, the model has to be worked on due to several reasons.

The first reason and limitation is the availability of arithmetic operations that can be

implemented on the selected hardware implementation platform. Given that this tool was

developed for and used on the latter part of this project, the platform is an FPGA and the

available operations are the double-precision floating-point arithmetic cores. The function is

therefore rewritten to suit the available IP-Core library.

The second reason is the fact that each model or equation can be factorized or manipulated

in different ways that favor either the number or the type of operations required. For example,

physics equations can sometimes be algebraically manipulated in order to express them in terms

40



of one relevant variable. This does not necessarily coincide with the factorization that would

contain the least number of operations or the least number of divisions, which is generally

preferred in hardware implementations.

These different formulations of the model’s equation can be obtained manually or with

a symbolic mathematical equations package in Matlab, Python or even the WolframAlpha

computation engine. With it, several versions of the re-factorized function can be analyzed to

favor the selected optimization aspect.

Finally, if the implemented model is not extensive with numerous terms, it can be implemented

as is. If not, it can split into a number of terms or groups of terms for individual analysis as A2

in eq. (2.7).

Using the tool to analyze possible optimizations

Once the right mathematical expression for the model has been prepared, it can be written in

the tool as the input. The tool will use this input to create a tree structure where the output

of the analysis would be the root node and the inputs would be the leaf nodes or end nodes.

For this particular use of the tree structure, the length between a node and its parent is defined

by the number of cycles that the hardware implementation requires to calculate the operation.

This means that each parent node will be an arithmetic operation of the equation between two

or more child nodes (operands).

Starting from the leaf nodes, the constants are available from the start of the analysis and just

like the inputs, have no need to be processed. This means they also represent a leaf node and

must be recognized by the tool. The tool is able to recognize numerical constants in the input

equation but needs to be notified of the alphanumerical constants. This is done by initially

filling a Python list with all the known constants present in the equations, as seen with K1

in 2.6. In some cases for a specific analysis purpose, it is desirable to ignore the branch of a

function. These functions are also added to this list so that the tool treats the branch as a

single value or constant and ignores its operands from the final graph. Their specification is

done the same way the constants are defined, as sinTheta does in

R = [[“K1”, 0] , [“K2”, 2] , “sinTheta”]. (2.6)

Since these functions will not be ready at time zero like constants, their latency or clock

cycles required for its calculation can be specified as K2 shows in eq. (2.6). In this case a

duration of 2 clock cycles is indicated and it will be placed in the respective level in the tree.
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With the constants specified, the equations to be implemented are passed to the tool as a

single equation or a set of them. In eq. (2.7), A0,1,2 show the input as a set of equations while

B0 shows the equivalent as a single input.

A0 = 4 + 30ζ2 − 55ζ4,

A1 = 25 + ζ3(29− 42ζ2),

A2 = A0/A1,

B0 = (4 + 30ζ2 − 55ζ4)/(25 + ζ3(29− 42ζ2)),

(2.7)

The set of equations has the advantage that it lets the user define the name of the parent

node in the tree visualization. In the case of a single input, each operation will get the name of

the list index where its stored with an R (register) prefix.

The final input required from the user is the latency of the functions for their hardware

implementation and the definition of special functions. The definition of a latency allows

the tool to properly display the levels of the nodes and distances between them. The special

functions are defined due to the cases where a particular operation, like multiply and add, is

available on hardware as a single operation with three inputs.

Figure 2.3.: Flowchart representing the use and internal logic of the optimization tool.
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Description of the tool’s mode of operation

The tool’s work-flow and mode of operation, described in fig. 2.3 is the following: The first

task the tool does is to parse each input line to identify constants, variables and operators.

This is done procedurally to preserve the order in which the operations are made, considering

parenthesis and arithmetic rules.

If there are numerical constants, it stores them as objects on the register list. The next

step is parsing and storing operations that depend on previously registered objects on the list.

Subsequently, the parsed operation becomes an object itself and is appended to the list. Thus,

it becomes available for the following parsing iteration. This procedure is repeated until all

operations on the expression are parsed. The program continues parsing each line with a new

expression in the same way while respecting the hierarchy.

After all the expressions have been parsed, the total arithmetic function is stored in the list

with their respective hierarchy, operation latency and dependencies. The tool is then ready to

plot visual representation of the tree containing all the function’s relevant factors in a hardware

implementation as show in fig. 2.4.

Each parent node will be plotted with a name, or index number, and the operation symbol

that it represents. The line length from each node to its parent node is proportional to the

clock cycles required for the other sibling node to be ready. This indicates graphically how long

a signal must be buffered and shifted for it to match its pipelined counterpart. The latency

initially defined for each hardware operator is thus visually represented and reflects the real

timing paths of each operation and its child branches.

To simplify the timing analysis, markers are placed at clock cycles intervals defined by the

user. In the previous example the interval is 5, making the top branch 30 clock cycles in

duration and the square root latency 10 clock cycles. This speeds the timing analysis when

introducing shift registers to correct timing differences from the operand’s counterparts in other

branches. This can be seen for the multiplication of the unnamed registers with index R17 and

R11 on fig. 2.4. Here, the R11 must be buffered and shifted 5 clock cycles until R17 becomes

available.

Finally, if a factor is shared in different branches, it becomes available in the other branches

at the tree level where the node that represents its calculation is plotted. For simplification

of the visual representation, the package stores and displays each factor branch once. If the

factor’s branch is shared by several functions, its name or register index is displayed instead. A

work-flow example of the tool can be found in appendix A.1, where the example depicted in
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Figure 2.4.: Graph of tool output with registers (squares) and operations (circles). Minimal
subdivision: 5 clock cycles. Original tool output can be found in appendix A.1

.

fig. 2.4 is thoroughly explained.

When analyzing the effectiveness of the tool in general, automated visual representation speeds

up and favors the design process in several ways. As previously mentioned, a function can be

algebraically manipulated to be represented with different expressions. This tool allows for a fast

input of these different expressions to compare their critical path length, dependencies buffering

and the number of operations needed. This is particularly useful for the implementation of

extensive arithmetic models as it often is in scientific research. Depending on whether the

optimization is regarding area, power or resource usage, the best expression for the implemented

function is chosen.

Besides the optimization advantages considered, the tool also helps with implementation

and coding aspects. It trivializes the calculation of operand buffering to meet timing of its

pipelined counterpart. This is also advantageous when the different operation latency are tested

to improve the critical path. With the use of this tool only a change of an input parameter is

required.

In general, its use when implementing extensive arithmetic functions in hardware significantly

reduces the development and optimization time, and simplifies the circuit analysis. It becomes

good aid in the work-flow before and after the coding of a function in hardware architecture

like the one implemented in chapter 4.
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3. Acceleration of Interferometry Data

Analysis
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Interferometry is the technique of measuring interference on the addition of waves, typically

electromagnetic waves. It is generally carried out by allowing two waves that have traveled

through different mediums or conditions, to interfere constructively or destructively depending

on the phase difference imposed on them by the path. From the resulting interference pattern

it is possible to infer information about the medium that the waves went through.

From testing quality of reflective surfaces to measuring long and small distances, interferometry

has a wide variety of applications. Here, we focus on the measurement of a refractive index.

While there are many types of interferometers, this work uses the dispersion interferometer

(DI). Besides being the available design for this work, it is a newer type of diagnostic that

outperforms similar types. Its advantage is the use of one single optical path for both probing

components which reduces the phase estimation to a single one while being insensitive to noise

introduced by mechanical vibrations in the optical components. The following chapter will

focus on the description of the Dispersion interferometer operating principle.

In order to establish a context for the modeled physics principles, the approach initially

guided by its operation principle and design. The diagnostic’s process to obtain a measurement

will be described initially. Subsequently, an explanation of how the active parts of the diagnostic

interact with the plasma will be used to associate how the physics phenomena occur and how

it’s modeled.
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3.1. W7-X Dispersion Interferometer

As mentioned, one of the many uses of an interferometer is to measure a refractive index. The

refractive index is a number that describes how light propagates through a medium as opposed

to its propagation in vacuum. This means that in any other medium than vacuum, the group

velocity of light will be lower. If one compares the phase of two light waves going through a

medium and vacuum respectively, light traveling through a such medium will perceive a phase

retardation compared to its vacuum counterpart. This phase shift carries information about

the medium of interest and is the basic application of interferometry in this thesis.

3.1.1. Design and Operation of the W7-X DI

The Dispersion interferometer diagnostic is used to measure the plasma refractive index. The

plasma refractive index is a function of its density and thus a measurement of its index allow us

to estimate the line integrated electron density. The interferometer can be viewed as an active

diagnostic that introduces negligible perturbations in the plasma by sending an electromagnetic

wave through it. In this context, an active diagnostic is one that probes the plasma while

performing a measurement. A passive diagnostic would be one that measures it without

perturbing it in any way e.g., measuring the radiation of a plasma.

As with other interferometers, the basic principle can be split in three basic aspects. The first

one is the generation of two probing components or beams in order to compare their phases

after crossing a medium. This can be done with a reference line that doesn’t cross the medium

or by sending both beams of two different wavelengths through the medium.

The second aspect is to drive the beam with a set of optical components through the medium

to be studied. In the case of a reference beam, only one probing beam will be sent through the

medium and the other will travel the exact same distance without crossing the medium. In the

case of two wavelengths, both are sent through the medium. An important point of this stage

is that changes in the path length due to vibrations for example, can induce errors in the phase

measurement.

Finally, the last aspect is to collect an interference pattern given by the constructive or

destructive addition of both beams reaching a detector with their respective phases. In this

chapter, the DI described will be the one built for W7-X [42, 43].

For the DI, the first aspect of generating the probing beams is done differently since both

components travel the same exact path. Therefore, the diagnostic’s operation starts with a

single 20W continuous wave CO2 laser source operating at a 10.6 µm. It is directly shot to a
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Figure 3.1.: Dispersion interferometer cross-section showing laser paths (dotted black), retrore-
flector (CCR) and plasma magnetic surfaces (concentric paths).

mirror that guides it through an attenuator used to dim the laser power for calibration and

testing scenarios. After the attenuator comes another mirror which belongs to a group of optics

that will not be mentioned since they are mainly used to redirect the laser to the main active

components. They are nevertheless depicted in fig. 3.2.

The aforementioned mirror drives the laser to a telescope with ZnSe lenses that focuses the

beam in a 5mm× 5mm aperture, AgGaSe2 frequency doubling crystal (FDC) where the

two probing components will be created. This crystal takes the first harmonic of the incoming

beam, introduces a 90° polarization and doubles the frequency of a percentage of the incoming

first harmonic power. Now both components have different frequency and travel the exact same

optical path. This reduces noise due to changes in the path length of each component.

The doubling and polarizing efficiency, which is measured around 1.41× 10−5 %, sets the

constraint for laser power required in order to measure a strong enough signal. For the final

laser light to be properly measured, the laser power has to be in the order of the chosen 20W

laser capability.

Once the probing components are prepared, they have to be properly guided to the plasma
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Figure 3.2.: Component placement and operating principle of the DI: CO2 laser, frequency
doubling crystal (FDC), photoelastic modulator (PEM), corner cube retroreflector
(CCR), MgF2 filter and the photodetector.

and back. After the FDC, the laser is sent through a ZnSe photoelastic modulator (PEM)

which introduces a phase modulation to the polarized 5.3 µm component. This modulation is

introduced to simplify final phase difference estimation according to a heterodyne scheme and

it is applied at a 50 kHz frequency. It will be discussed further in section 3.2 when analyzed

with the model for the interferometer.

Applying this modulation to only one of the components requires that the PEM only affects

the modulation in one direction. It is therefore placed so that it coincides with the 90◦ polarized

component without affecting the base frequency.

These two coaxial beams are sent to a concave mirror that guides them to exit the interfero-

metry plate. This plate, the main support structure of the diagnostic, is a 2x2.50m vertically

placed basalt plate with another basalt neck of 2.3m that positions the beam closer to the

entry point in the torus.

The entry point to the Torus is a ZnSe window that the outer vessel has where both beams are

focused to cross the plasma twice by having a corner cube retroreflector (CCR) located on

the opposite inner side of the torus. This retroreflector sends the beam on an inverse trajectory

and displaces it 5 times its beam waist radius.

The double-crossing of the plasma represents, as it is explained in further detail on the

following chapter, that the plasma refractive index will have twice the incidence on the phase

value than both beams have before entering the vessel. Also, that given that the frequency is

different, both will experience a dissimilar phase shift.

Once the crossing of the medium is done, the generation of an interference pattern is the

final aspect. On the return path for both beams, they are directed one last time into a second
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Figure 3.3.: Different stages after each DI optical active elements from the point of view of
wave components

frequency doubling crystal. This crystal has no effect on the already perpendicularly polarized

5.3 µm component, yet polarizes and doubles the frequency of the main 10.6 µm component

which has now experienced a phase shift from the plasma as seen in fig. 3.3. After this crystal,

an interference pattern between the two components that crossed the plasma at different

frequencies is created. This interference pattern will be the carrier of information about the

plasma refractive index. The rest of the original first harmonic frequency will then be filtered

out by a MgF2 filter that is placed in front of the photodetector recording the signal with an

analog to digital converter (ADC).
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3.2. The Dispersion Interferometer Model

When modeling an interferometer in the field of plasma diagnostics, the physics principles

required are that related to the measurement of the refractive index of a material, which in this

case is represented by the plasma. For fusion devices and plasma refractive index measurements,

there are several interferometers like the two-color interferometer or the Michelson interferometer

that have been used to determine the line integrated electron density [44].

This chapter focuses on the newer concept of the dispersion interferometer which has also

been developed for several fusion devices [45, 46, 47, 48].

When the beam path length is known, a refractive index can be estimated and vice versa. This

index can be measured when the conditions are such that the medium is partially transparent

to an electromagnetic wave. In a plasma, there are three main scenarios for the propagation of

an electromagnetic wave. The first scenario is the total reflection of the wave which can be

analyzed by comparison with reflection in a metal. In a metal the electrons are relatively free to

move in the conductive band, shielding the propagation of the incident wave. They absorb the

incident energy inducing a current that, similar to an antenna, will re-emit the wave causing

a near total reflection. In the plasma, this can be deduced through the plasma frequency ωp,

which can be seen as a measure of how fast electrons can react to a charge displacement and

thus how they can shield an electric field. It depends mainly on the electron density and is

defined as

ωp =

√︄
nee2

ϵ0me
(3.1)

where ne is the electron density, e is the elementary charge, ϵo is the dielectric constant of

vacuum and me is the electron mass. This means that if the density is high and the plasma

frequency is higher than the laser probing frequency ωl, the plasma behaves similar to a metal

with free electrons and can totally reflect the incident wave. This introduces the first limitation

of ωl > ωp for the probing beam to propagate.

The second scenario is a strong refraction of the incident wave. Similar to light refraction

when the incident wave changes media, the plasma frequency can also affect the refraction index

of the medium. Given that the plasma is not a homogeneous medium, its refraction index will

depend on the local conditions of the plasma and is also a function of the plasma frequency and

the probing frequency. If both frequencies have similar values, the probing beam will experience

variable refraction due to density gradients along its path. These changes in the refraction index

will cause the beam to change its geometrical path and miss the desired optical components.

51



This introduces a second design parameter that involves selecting a probing frequency well

above the plasma frequency.

This brings us to the third case; full propagation to the medium. Here, given that the wave

does propagate, the selection is done regarding how sensitive the phase change on the wave is

with respect to the plasma refractive index. The refractive index is defined as the speed with

which a wave propagates through a medium with respect to its speed in vacuum. This means

that the lower the refractive index the bigger the phase shift experienced by the wave after

crossing the medium. A lower frequency will translate to a higher sensitivity and bigger phase

change due to variations in the refractive index with the risk of suffering too much refraction.

A higher frequency means a lower effect of the density on the phase shift and thus loss of

sensitivity i.e. the plasma is almost transparent to the wave.

With all this knowledge, a selection of the probing frequency can be done using W7-X design

parameters and constraining the phase shift to 2π rad, thus avoiding phase jumps which can

induce errors in the estimation.

Given that the W7-X heating system has an effective heating density limit, one can estimate

a limit of maximal electron density or cutoff density of nc ≈ 2.4× 1020 m−3 [49] and find a

limit plasma frequency of 0.8GHz. This allows us to treat the plasma as a dielectric medium

where, even considering the limit case, the selected laser wavelength satisfies the condition with

λl = 10.6 µm with a frequency of 177.7THz [50]. With this selection, a change in density of

1.56× 1020 m−3 would produce a phase shift of 4.66 rad and meets the design constrains.

Once the dependency to the refractive index of the plasma has been defined, we can proceed

to use the expression for the relation between a phase difference ∆φ and a density value. This

can be modeled as

∆φ = (2π/λ)

∫︂ l2

l1

[µv − µ0(l)] dl (3.2)

where l2 − l1 is the path length, µ0(l) the plasma refractive index and µv = 1 the vacuum

refractive index. Expressing the plasma refractive index in terms of density we obtain the

expression

∆ϕ =

(︃
λe2

4πc2ε0me

)︃∫︂
ne(l)dl =

(︃
λ

2πc
cp

)︃∫︂
ne(l) dl, (3.3)

that describes how the line integrated electron density is proportional to the difference

between both phase components.

The final step is to model the diagnostic itself and how the measured signal intensity relates
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to this phase difference.

In this case we need to define phase shifts that occur in the dispersion interferometer. The

first are the shifts in the optical path length ∆d, due to mechanical vibrations in the optics

ωl∆d/c and 2ωl∆d/c for the second harmonic where ωl is the laser angular frequency.

The phase shifts due to changes in the plasma density from eq. (3.3) are

cpn̄eL/ωl (first harmonic)

cpn̄eL/(2ωl) (second harmonic)

(3.4)

where n̄e is the line averaged electron density and L is the path length through the plasma.

As explained in section 3.1.1, after the beam crosses the plasma and receives its second

frequency doubling, the original harmonic is filtered, leaving only the components and phase

values φ1 and φ2 of both second harmonic components.

φ1 = 2(ωlt+ ωl∆d/c+ cpn̄eL/ωl + ϕ1)

φ2 = 2ωlt+ 2ωl∆d/c+ cpn̄eL/(2ωl) + ϕ2

(3.5)

These are the initial phases of the second harmonic, that when expressed in the intensities

measured in the detector signal, the interference pattern can be modeled through

I = I1 + I2 + 2
√︁
I1I2 cos

(︃
3

2

cpn̄eL

ωl
+ ϕ

)︃
with

ϕ = 2ϕ1 − ϕ2,

(3.6)

which represents the model of the interferometer signal [51]. This model shows one disadvan-

tage of some interferometers where, given that the sine is a monotonic function, it can only be

estimated without ambiguity in its monotonic part and thus, reducing its usable range. It also

shows clearly one of the main advantages of the dispersion interferometer’s single path which

allows for the canceling of the vibrational term ω∆d/c since both wave components experience

the same vibrations.

It is important to clarify that even though ϕ is also a phase difference, it is just the constant

offset level of phase difference that the signal will have regardless of the plasma. The real

parameter of interest and relevant phase difference is the density change related factor.

To finish the model and remove the ambiguity of the sinusoidal functions, the modulation

term coming from the photo-elastic modulator has to be considered. The phase is modulated to

reduce the phase restriction due to the lack of monotonicity of the cosine function in eq. (3.6)

and remove calibration necessities due to variations between discharges in I1 and I2. For this,
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we express the intensity eq. (3.6) in terms of wavelength, add the modulation frequency ωm,

substitute cp and reach a general expression of the line integrated electron density signal as

I(t) = I1 + I2 + 2
√︁
I1I2 cos

(︃
mπ sin(ωmt) + ϕ+

3

2

λle
2

4πc2meε0

∫︂
nedL

)︃
. (3.7)

In this equation m represents the modulation depth which is a gain selected on the photo-

elastic modulator. It is important to consider that before the plasma discharge occurs, while

the density is 0, an arbitrary phase difference value will be present and can be disregarded. The

change in phase difference is what is measured making the measurement a relative value. This

means for the analysis, that the offset of the phase ϕ before the measurement, assuming it is

constant in a short time period, will not have an effect on the measured phase change. Also, I1

and I2 show negligible variations within a single modulation period if compared against the

rate of change of the main parameter and therefore can be estimated for each period. With

this we have our final desired model for the analysis of the interferometer measurement.

I(t) = I1 + I2 + 2
√︁
I1I2 cos

(︃
mπ sin(ωmt) +

3

2

λle
2

4πc2meε0

∫︂
nedL

)︃
I(t) = I1 + I2 + 2

√︁
I1I2 cos(mπ sin(ωmt) + ∆φ)

(3.8)

This non-linear equation, with uncertainty on the cosine’s ambiguity, is the final model

required to describe the Dispersion interferometer. If we were to consider this model with

typical values seen in the diagnostic and a sampling rate of 50MSps which is the currently used,

the resulting signal would look is shown in fig. 3.4.

Figure 3.4.: Typical signal at the detector with 55 dB Gaussian noise, m = 0.98, I1, I2 = 100mV,
ω = 50 kHz and ∆φ = 1.5 rad

In the following chapter we focus on defining the parameters of interest and selecting a

Bayesian model and analysis approach to obtain the final line integrated electron density.
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3.3. Bayesian Model for the Dispersion Interferometer

In order to gradually accelerate the computation of different time independent problems with a

growing complexity, the DI was chosen as a proof of principle. Due to the non-linearity and

ambiguity of the model, the DI meets the requirements where problem’s complexity is still

at the level of other plasma physics problems. The model and its parameters are known well

enough to simplify the analysis to a single free parameter problem and start searching for an

acceleration from a basic level. For this reason, the current section will focus on a 1-dimensional

problem and use an approach of Bayesian analysis. This chosen approach is sequential Bayesian

analysis as described in section 2.2.5.

From the previous section we know that the parameter of interest is the line integrated

electron density. In eq. (3.8) is shown that this density is proportional to ∆φ. Therefore, we

will consider ∆φ as the main parameter of interest and the analysis will focus around it. We

know that ∆φ is time dependent and it varies on each modulation period. Changes within

them also occur due to smaller and faster density changes.

A target resolution of 1× 1017 m−3 was initially selected. Due to the possible ∆φ resolution

with current noise levels, phase changes within a single modulation period are not expected to

surpass this uncertainty limit. This means that phase difference changes within a modulation

period are not relevant, and we can neglect them.

With this approximation we can apply sequential Bayesian analysis to this signal within a

period with ∆φ as free parameter.

The initial guess of the knowledge of the phase difference is defined as a flat prior distribution.

Even though we know that the phase will start at the value representing zero density, the

knowledge of the dynamic behavior for the density after that point is too poor to define a more

constrained prior. Also, a zero density can be represented by an arbitrary initial phase shift

within defined range as done in page 52. Therefore, a flat prior indicating lack of knowledge of

the phase difference will prevent biasing the results and is expressed by

p(∆φ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ∆φ < 0

1/2π 0 ≤ ∆φ ≤ 2π

0 ∆φ > 2π.

(3.9)

Based on the parameter designs present in the previous section, the phase shift is expected

to be anywhere between 0 and 2π.

Since the truncation will naturally happen due to the selected prior, the likelihood is chosen
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as a normal distribution of the data around the forward modeled value of the predicted voltage

VDI .

p(DDI | ∆φ) =
1

σDI

√
2π

e
−1

2

(︃
DDI − VDI

σDI

)︃2

(3.10)

where VDI is the predicted value using eq. (3.8) as the forward model, and D are the measured

data. As previously clarified, σDI usually represents the uncertainty of the measured signal.

Usually, variables that are not known with accuracy are ideally treated as free parameters

and will be considered in more complex version of this analysis. Nevertheless, since the goal is

to have a single free parameter for a proof of concept, they will be treated as known parameters.

All the uncertainties in these variables that are treated as non-free parameters will be

considered. Foreseeing that as a first approach, calculations will be made in an FPGA without

floating-point precision, every arithmetic errors in the forward modeling as well as the non-free

parameter uncertainties are taken into account. This means that uncertainty contributions

from the raw signal will be considered in σD, while the just mentioned error propagation is

represented by σV . Thus, σDI becomes

σ2
DI = σ2

D + σ2
V (3.11)

When dealing with a data set for which the evidence term p(DDI) in eq. (2.1) is constant

for all data points, we can disregard the term given that it does not require normalization for

a search of the MAP. Therefore, using eq. (3.9) and eq. (3.10) the posterior distribution of

eq. (2.1) can be changed to a proportionality:

p(∆φi | DDI) ∝
1

σDI

√
2π

e
−1

2

(︃
DDI − Vi

σDI

)︃2

1

2π
(3.12)

where the subindex i represents the i − th sample. A common practice when doing this

type of analysis is to calculate the logarithm of this function. It does not only reduce the

computation time but also smooths the posterior distribution [52]. This simplifies eq. (3.12) to

ln(p(∆φi | Di)) = −1

2

(︃
Di − Vi

σDI

)︃2

+ C (3.13)

where its analytic solution leads to 2 possible answers for each time sample.

∆φe = ∆φr and φe = sin(ωt)− φr + k2π (3.14)
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Here φe is the estimated value of the phase difference, φr the value due to the change in

density and sin(ωt) the modulation frequency with k ∈ Z+.

As it will be shown in the following section, this scenario leads to a multimodality in the

posterior that can be solved when good number of informative samples is available. For example

our current scenario, where the parameter of interest can be considered constant within a single

period.

p(∆φ1:N | D1:N ) ∝
N∏︂
j=1

[︃
1

σDI

√
2π

e
− 1

2

(︂
Dj−Vj

σDI

)︂2
]︃

1

2π
(3.15)

This can be approached through an analysis in bulk or a sequential analysis. Given that the

samples are constantly entering and the bulk of data is not available, the sequential analysis

takes place already introducing an acceleration idea of analyzing data while the next sample

arrives.
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3.4. Software Implementation

The software implementation of the analysis serves as a reference point to determine the

acceleration possibilities. In this section the work described has no optimization in mind, that

is, the code isn’t optimized for processing speed. Due to the fact that this example was chosen

simpler as a first step, not only the basic version in a Bayesian framework was developed, but a

second version in C was done to benchmark against a code which optimizes processing time.

The first is the implementation in Minerva to test the validity of the analysis and to carry out

a profiling on where the code requires more time. The second version, after the analysis has

been validated, is the C implementation which gives a better idea of how a faster version of

this code can perform. This will be described in the following chapter in order to simplify the

comparison for acceleration. Finally, in the last chapter of this first part of the project, the C

version is compared against the designed FPGA accelerated solution.

3.4.1. Minerva implementation of the DI analysis

In order to observe how the likelihood and posterior function behave on the DI model, a version

of it was implemented on Minerva using the tools provided by this framework while keeping

the model unchanged. The first step was to analyze the posterior created by each sample in

order to see the progression of the posterior when the sequential analysis approach is taken and

each sample changes the posterior. A data set was generated where ∆φ = 1.5 rad within one

full period of its 50 kHz modulation frequency. With this data fig. 3.5 was generated where the

posterior probability distribution is visible for each time sample in a single graph.

Figure 3.5.: Probability density for a full period. (1000 Samples for a simulated ∆φ = 1.5 rad.)

The search for an analytic solution to eq. (3.13) yields an oscillating solution as well as the
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real one, representing the modulated phase plus the density term. This can be observed in

fig. 3.5 where the posterior distribution has always two most likely values for each sample. The

real answer in figure fig. 3.5 can be seen constant for all the time samples, while the oscillating

solution can be seen changing along the period.

If we were to take a single time slice of the full period infig. 3.5, like the 440th sample, to

show the posterior from a single data point of the DI, we would see that each sample generates

a multimodal posterior as shown in fig. 3.6.

Figure 3.6.: Probability density for ∆φ at sample 440, showing the ambiguity when analyzing
a single sample.

The fact that the posterior distribution is multimodal makes it nearly impossible to the finding

of the maxima since they are equiprobable. This complicates the acceleration possibilities and

in order to solve it, the sequential analysis of eq. (3.15) is carried out.

Within one period, from one sample to the next, the oscillating solution changes while the

density phase change solution stays constant. This makes it possible that adding the information

from all the samples will keep the likelihood of the density phase change high, and lower it for

the oscillating solution, as shown in fig. 3.7.

At this point, given that the final distribution is of a low order, the maximum probability

can be efficiently found with a simple scan of the posterior.

Regarding the uncertainty compared against expected values, the chosen phase resolution was

7× 1017 m−2 ≈ 0.03 rad which leaves the standard deviation of the final posterior well inside

the desired range.
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Figure 3.7.: Normalized PDF with all samples in a period and a 0.9 modulation depth.

Standard practices in Bayesian analysis require that each value that is not known with

satisfying accuracy is handled as a free parameter. This makes it an extra dimension in

the posterior of each parameter. However, to start tackling the possible acceleration, the

dimensionality of the posterior was limited to a single dimension to learn how the analysis can

be sped up in a simplified example of a complicated forward model. In case of this example,

the parameter of interest ∆φ is treated as free, while the other parameters were included in the

error propagation. This specific handling of other possible free parameters raises the question

whether ignoring the other parameters, invalidates or affects the analysis.

Figure 3.8.: Posterior with standard deviation for a 10% error in modulation depth m

As shown in fig. 3.4, the parameters I1 and I2 can be easily calculated within a single period.

They also have little effect on the changes of the signal, making the modulation depth m the

main parameter considered known yet has indeed a higher uncertainty. Its value is entered

manually in the photo-elastic modulator, however, its precision is not well specified by the
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manufacturer.

In order to measure the effect of errors from the other non free parameters, m was scanned

since it is the one with the biggest estimated error. To test its effect on the global analysis,

the posterior distribution was obtained with an introduced error on the value of m which was

selected to be 10% of its original value. By using synthetic data, the final phase value under

these conditions could be compared to the synthetic value selected. The analysis in the Minerva

model showed that the MAP has an error of 0.01 rad which is below the desired error and shows

how for this simplified analysis it bears little effect to the final phase estimation. The next step

is the hardware design after the software implementation of the data analysis was successful

within the design parameters.
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3.5. Hardware Design

Once the models have been selected and the software analysis has been carried out, the hardware

acceleration is the next step. This model’s analysis has the characteristic of requiring several

calculations of the forward model that can easily be parallelized. Moreover, extensive mathe-

matical operations that depend on different parameters can also be branched and parallelized

to reduce processing time. The dependencies of the model on different incoming signals or

parameters such as the modulation signal, gain from a processing platform that can respond

immediately with parallel and independent processes. Due to these characteristics, an FPGA

hardware implementation was chosen to make use of its high level parallelism and modular

design capabilities.

There are three main ways to accelerate this analysis. These depend on the location of

bottlenecks and the processing power required for each section of the software code. In the case

of this general approach of Bayesian analysis, some acceleration can be achieved in the three

main sections of the code. These are the evaluation of the forward model, the application of

Bayes’ theorem for N-dimensional posterior distributions and finally the inversion procedure.

The following section describes the design of the analysis in FPGA architecture to achieve a

speed-up with parallelization, modularization and pre-processing.

3.5.1. Acceleration of Bayesian analysis for the Dispersion

Interferometer

When more than one sample is needed to produce a reliable result, the analysis method has to

be chosen accordingly. In chapter 2.2 the method of sequential Bayesian analysis was introduced

as means of analyzing incoming samples as they arrive, instead of a batch of preobtained

samples. With this approach equation 3.15 was derived to apply sequential Bayesian analysis.

This will be used to design an online circuit that updates the posterior with each incoming

sample within a modulation period. The modularity and parallelization of the architecture

allow the processing of received samples to occur simultaneously with the preparation for the

next sample. This significantly reduces the processing time of the forward model.

The modularity and continuous processing are an advantage inherent in the dedicated

hardware implementation of this analysis. The parallelism on the other hand, depends on the

number of parallel processes achievable. That is, the resources available in the device versus

the amount of resources required per parallel thread.

A Virtex 6 LX130T FPGA was chosen as the platform for this proof of principle. While
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Figure 3.9.: Basic structure of the forward model (FM) and critical path (red) of the dispersion
interferometer.

being one of the smallest chips in the family, this FPGA resources are enough to test a high

level of parallelism. Since a scan along the phase difference range is required to create the

distribution, the parallelism is applied in the evaluations of the forward model for different

values of ∆φ. It is exploited by creating a thread for each of the values of the ∆φ range, as

opposed to the software approach where each value of the scan is done within a loop. The

parallel calculations are done with a resolution that gets close enough to the desired value of

≈ 0.03 rad while staying within the FPGA’s resource capabilities. The example selected tests

how much can be gained through a high parallelization in a relatively simple scenario of low

dimensionality like the DI.

Resolution and error propagation design

The selected and tested forward model was the first section to be parallelized by designing

threads that calculate each iteration of the forward function, eq. (3.8). The basic operations

for the forward model are shown in fig. 3.9. Most of these parameters are available before the

sample arrives. The modulation factor is set manually in the modulator and the sine function

phase and frequency are known through the modulator trigger signal. Finally, the I1 and I2

parameters are combined as offset and amplitude of the function. As discussed in the previous

chapter, these change negligibly within time scale of two or three periods. A measurement of

amplitude and offset of the previous period can be used as values for the forward model while

considering the introduced error.

This means that these threads of the forward model can also be timed and modularized so
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that their output is precalculated and ready before the next sample arrives. The number of

parallel calculations depends directly on the resolution of the ∆φ scan desired. Nevertheless,

to determine limits of resource usage, the implementation is done with an initial value of 60

parallel FM’s. This equates to resolution similar to the design constraint of final phase error.

This target resolution is of 7× 1017 m−2 ≈ 0.03 rad.

To determine the resolution and error of the hardware implementation, two main design

factors have to be considered. The first one is the already mentioned resolution of the scan of

∆φ. The more values calculated in the scan, the higher the resolution. The second one is the

arithmetic precision given the word length of each parameter, which is tied to the parameters

known error. The word length design is therefore chosen so that the error introduced by the

arithmetic precision is smaller than error due to the scan resolution of ∆φ. The scan resolution

and the uncertainty of the Bayesian analysis is thus taken as the final resolution.

This approach varies from the software approach in that this error due to the precision of the

analysis implementation is introduced. All calculations with a given word length have an upper

bound relative error that comes from a bit truncation in arithmetic operations. In computers

this is typically known as the machine epsilon. With double-precision floating-point arithmetics,

this error tends to be low enough to consider the results in the forward model to be exact.

For the case of the FPGA implementation, double-precision floating-point arithmetic ope-

rations can be implemented. Nevertheless, it is not clear its effect on the FPGA resource

consumption given the model’s size. A part of this project’s aim is to define whether this and

bigger models are feasible as a FPGA implementation.

Given that the final resource usage is hard to estimate at this point, a lower resource

consuming architecture was preferred. Fixed-point arithmetic architecture with minimum word

length for each parameter suits this purpose adequately.

This low resource hardware implementation with limited arithmetic precision requires accoun-

ting for the error introduced in the forward model. With the knowledge of each parameter’s

error, its word length can be designed to match accordingly. This analysis of error propagation

in the forward model is done to ensure that the final arithmetic precision is better or matches

the one limited by scan resolution. By doing this, the parameter word lengths can be selected

to satisfy the final resolution design constraint.

Given that several samples are used in one period to calculate the final value, and that this

value must satisfy the final desired error, the error propagation is done backwards to define the

required word lengths. With it, the arithmetic precision for each parameter is ensured to be

the minimum possible in order to reduce resource usage per thread.
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With the use of eq. (3.11), we can calculate the word length required for the buses. This

starts by relating numerically the standard deviation of the posterior after analyzing all the

samples, to a single likelihood function. With the target posterior resolution, the value of

uncertainty required in the likelihood is 0.032 rad. Going backwards in the error propagation of

the forward function VDI , we have

σ2
VDI

=

[︃
∂V

∂I1
σI1

]︃2
+

[︃
∂V

∂I2
σI2

]︃2
+

[︃
∂V

∂cos
σcos

]︃2
(3.16)

If we approximate the error in the argument of the cosine to the error in the cosine through a

Taylor expansion, we can show that σcos ≈ σA, with A representing the argument of the cosine,

and therefore

σ2
A =

[︃
∂A

∂m
σm

]︃2
+

[︃
∂A

∂ω
σω

]︃2
+

[︃
∂A

∂t
σt

]︃2
+

[︃
∂A

∂∆ϕ
σ∆ϕ

]︃2
(3.17)

Using this equation for the error propagation we can introduce the resolution of the free

parameter σ∆φ ≈ 0.31 and the estimated errors in each of the non-free parameters to define the

required word lengths. This includes the jitter of the trigger signal from the modulation as well.

With this analysis we can make sure the errors on the non-free parameters and the arithmetic

precision do not affect the target uncertainty for the phase difference.

This can be summarized in three values. The final value of eq. (3.16) will define the maximum

precision achieved in the calculation. The resolution will be limited by the number of threads

in the scan of ∆φ. Finally, the uncertainty will be defined by the standard deviation of the

posterior distribution obtained with the analysis. This constrains the final uncertainty which

cannot be better than the previous two limiting values of resolution and precision.

Design of Hardware Architecture

Once the error propagation is done, the word lengths can be defined. The forward modeling of

the cosine’s argument is composed of several stages based on eq. (3.18).

I(t) = I1 + I2 + 2
√︁
I1I2 cos(mπ sin(ωmt) + ∆φ) (3.18)

Starting with ∆φ scan, these parameters are implemented as an array of registers. The array

depth defines the resolution of the parameter scan and the number of parallel forward models to

be implemented. This approach allows us to have N copies of the forward model depending on

the desired resolution and available resources. The selected N = 60 parallel forward functions
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Figure 3.10.: Hardware design for the cosine’s argument calculation. Based on the error
propagation the minimum word lengths in the forward model are defined.

for each value of ∆φ keeps the resource usage low while staying within the desired resolution.

Each forward function has a final word length of 16 bits and matches that of the incoming

samples.

Parallel to the ∆φ registers, the modulation factor is calculated as seen in fig. 3.10. The

sinusoid for the modulation factor is generated by a Read-Only Memory (ROM) that holds the

scaled values of π sin(ωt). Given the periodicity of this factor, the sine can be synchronized with

a Transistor-Transistor Logic (TTL) trigger signal coming from the modulator described

in 3.1.1. With this trigger, a counter is synchronized and used as an address for the memory

that outputs the respective sine signal.

The sinusoidal output of the ROM is multiplied by a register that holds the scaled value of

the modulation depth m. This value can be modified through user controlled registers in order

to match it to the manually selected setting on the modulator. These registers are modified

via a peripheral component interconnect express (PCIe) bus present on the FGPA and

connected to a local computer.

The last operation needed to finish the cosine’s argument is the addition of the phase value.

With the full argument ready, a method for the implementation of the cosine is required.

A fast and generic approach to function estimation is an LUT that contains the range of

desired evaluations of the function. Given that this project aims to achieve acceleration for any
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Figure 3.11.: Multiplexing scheme for the sharing of the cosine’s LUT. The multiplexed cosine
estimation section is driven at 300MHz to match the 30MHz data-path clock.

given model, the use of an LUT falls withing the generic solution picture and was therefore

initially preferred.

This requires that the values of the argument are scaled adequately to satisfy the addressing

of the LUT memory space. To meet the required resolution a 16 bit address is used and scaled

with

K(mπ sin(ωt) + ∆φ) +B (3.19)

where K and B are scaling and offset constants that depend on the desired resolution or

memory depth. These are K = 5452 and B = 20553 for a memory address space between 0

and 216 − 1.

Considering the scaling and the error propagation analysis, the word lengths of each parameter

are: 7 bits for m, 9 bits for πsin(ωt) and 16 bits for ∆ϕ. The final word length would then

match the 16 address bits for the cosine evaluation of a given argument.

For complex functions, the LUT calculation of 60 parallel threads would be infeasible given

that the resources would not suffice. Therefore, the cosine estimation LUT is shared by a

number of multiplexed threads. The workload is divided between 3 ROMs that require 30

blocks of 36k RAM resources each. To reduce the consumption of resources a Dual ROM is used.

This ROM has two address and output ports that allow the reading of two memory locations

simultaneously. Due to the dual access, 10 values of the cosine’s argument are multiplexed to
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Figure 3.12.: Final section of the forward model. Based on the measurements of the previous
period, the offset and amplitude are estimated and applied. A 15 bit rescaling is
carried out after the amplitude is multiplied.

each ROM input as fig. 3.11 shows.

This multiplexing introduces a limitation and sets the main data-path clock frequency of the

design. Given that the Dual ROM has a max frequency of 400MHz, a test 300MHz multiplexing

and read clock is selected to simplify FPGA timing in the initial design. Since the argument

values are multiplexed with 10 values per ROM address port, a 30MHz main data-path clock

is used to comply with this design limitation.

Finally, the I1 and I2 values are included by using the fact that these do not vary significantly

from one period to another. The selected approach is to constantly measure the input signal

and estimate a maximum and minimum for each period, as seen in fig. 3.12. With it the

offset I1 + I2 and amplitude 2
√
I1I2 are determined and the possible introduction of an error is

considered in the error propagation. The values estimated from the previous period are then

applied to the following period’s forward model.

As mentioned in the previous section, a significant advantage of this design is the modularity

of different processes on the FPGA running in parallel. With a parallel module dedicated to the

forward model, the cosine factor and its arguments are calculated independently and constantly.

The complete forward model can then be pre-processed before the next sample arrives.

Once the forward model is done, the calculation of the likelihood function can take place

with the incoming sample.

ln(p(∆φ1:n | D1:n)) = − 1

2σ2
DI

n∑︂
i=1

[︂
(Di − Vi)

2
]︂

(3.20)

As discussed in section 3.3, the use of the logarithmic form of Bayes' theorem changes the
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Figure 3.13.: Design of the application of logarithmic version of Bayes' formula and final sum.
After this section, the final step is the inversion to define a most likely value.

function to eq. (3.20) while still having the same MAP. This logarithmic version is the same

formulation used as standard in Minerva.

This calculation of the likelihood, when compared to eq. (3.12), is much simpler and reduces

the required number of operations. An incoming sample is compared against each forward

model result by their subtraction given the chosen likelihood model. It is followed by a

final multiplication calculating the squared value required to generate part of the likelihood

distribution for a single sample.

The calculation of the posterior starts with the sum of each likelihood. The stored data will

continuously accumulate the results of a likelihood function for each incoming sample until a

full period is analyzed as seen in fig. 3.13.

After the 200 samples in a period have been accumulated, a division over the factor containing

the global uncertainty (σDI) is necessary. This uncertainty value is obtained by considering the

error propagation analysis and signal noise. Its inverse can be pre-calculated and set through

user controlled registers in order to substitute and multiply with 1/2σ2
DI. By taking this factor

out of the sum, it will be applied only once every 200 samples and thus reduces resource

consumption and processing time.

After the array that accumulates the likelihood values, the prior defined in eq. (3.9) is added

as an initial probability. Since the prior is only taken into account once per data set (a full

modulation period), it is not required to keep applying it for every incoming sample. As

previously defined for this case, the prior value is a flat distribution that takes the same value

for every scanned value of ∆φ and was modeled as 1/2π.

The full posterior is ready and the inversion, or search for the most likely value, takes place.

This is estimated by comparing each value with its array neighbor, meaning that the 60 values
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Figure 3.14.: Unnormalized posterior distribution of the hardware implementation with simula-
ted ∆φ = 1.5 rad.

require 6 comparator levels until the maximum is found.

It is often the case that besides the MAP, the full posterior distribution should be observed

and analyzed. For this purpose, the final design’s real-time results are monitored using Xilinx’s

Integrated Logic Analyzer (ILA) tool. With it, the final distribution and its temporal behavior

can be observed.

3.5.2. Results and Analysis

Verification of validity and accuracy of the results

In order to verify the validity and accuracy of the implemented design, two test bench scenarios

were generated. The first test signal is a synthetic version of the detector signal with the same

conditions used in software analysis in Minerva. It has 55 dB of Gaussian noise which introduces

variations in the offset and amplitude, modulation depth m = 0.9 and ∆φ =1.5 rad. In this

test, the MAP of the posterior obtained in the hardware implementation is required to match

the phase difference used to generate the signal.

Figure 3.14 shows the posterior distribution with the shape of a truncated Gaussian covering

the phase difference range selected for the 60 values of ∆φ. The truncated section is the rest of

the 2π periodicity of the signal that falls outside the required range. This initial verification

shows how the MAP matches the synthetic value selected. As tested for the software approach,

it also removes the effect of multimodality present in fig. 3.6, resulting in a posterior with a

single maximum.

The second test bench verifies proper estimation within the required ∆φ range of 0 to
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Figure 3.15.: MAP and STD measurements for ∆φ. Test and hardware estimated values (top).
STD values with respect to design requirements (bottom).

4.4406 rad with a resolution of 60 values. It is also aimed to test whether the respective

uncertainties of the maxima within this range, meet the design requirements. For this, a test

signal was created with the same noise conditions and a changing phase difference. Here ∆φ is

a time dependent function with 10 different values along the required range.

Figure 3.15 shows the results of this benchmark where the original phase value and the

estimated one are compared to see if the desired uncertainty was met.

From these 10 test values, only 2 fell outside the target standard deviation desired with

an acceptable error margin. The other 8 fall within the required uncertainty, validating

the estimation of the maxima as well as the error propagation analysis in the hardware

implementation.

Acceleration comparison against software approach

Once the hardware implementation results have been verified, we can analyze the achieved

acceleration when comparing against the typical software approach.

Before a global speed up review, it is important to discuss the optimization level of the

hardware implementation. This first stage of the project serves as a proof of principle that

probes if it is feasible to tackle more realistic and complicated problems. In this sense, the first

stage shows the expected validity which was reviewed in the previous section. An acceleration

was also achieved and described in the following analysis. Nevertheless, the current FPGA
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design shows room for further improvement in terms of clock speed optimization which will be

also discussed.

In order to measure acceleration, a specific implementation must be chosen as a comparison

point. Comparing against current accelerations of the many forms of Bayesian analysis can

present some difficulties given the diversity of solutions that target specific analysis methods. As

previously mentioned, this work’s analysis differs from other solutions such as Bayesian filtering

and smoothing filters. In this work the analysis is applied to the general use of Bayes' theorem

and forward modeling. It is specifically targeted at, but not constrained to, complex physics

problems where the dynamics of the phenomena are not well know.

Developed implementations of FPGA accelerators are, for example, applied to Bayesian

networks where the hardware is mainly used to evaluate and compare score values of different

models [53]. This means that the comparison is better done against the analysis carried out in

Minerva. Given that the size of the model and its respective code are considerably small, a

basic implementation of the algorithm in Minerva (Java) was translated to C and profiled to

benchmark against the FPGA implementation.

The comparison of the design’s processing time introduces the complication that the hardware

has an independent module that constantly pre-calculates the forward model. This essentially

means that the forward model is done before the sample arrives to the FPGA. It does not play

a role in the total processing time of each sample in a full period and thus in the duration of

the total analysis. Due to this, both processing times with and without forward model duration

are considered.

Starting with the processing time for one sample, fig. 3.16 shows how the forward model

itself requires 8 clock cycles to generate a value for each of the 60 parallel threads scanning ∆φ.

The application of Bayes' formula (eq. (3.20)) is achieved within 4 clock cycles per sample if

the final operation of the uncertainty is considered. While the uncertainty factor is applied

after the 200 samples have been considered, it is required if a posterior would be created from

one sample. The last part is the estimation of the MAP from the 60 values that make up the

final posterior distribution, which requires 6 clock cycles. At a 300MHz clock, counting from

the sample arrival until Bayes' formula plus MAP are completed, a total of 10 clock cycles or

0.33 µs have elapsed. If the pre-processing of the forward model is ignored and its processing

time considered, a total of 18 clock cycles or 0.6 µs are needed.

In terms of the full analysis, a set of 200 samples (full modulation period) is required to

provide a phase difference value. This period takes 20 µs and the pipelining of the architecture

allows it to process each sample as it is received. This means that a full analysis lasts 20.33 µs

72



Figure 3.16.: Global scheme of each analysis section and their respective duration for the
generation of a posterior from a single sample.

when the time for all the samples to arrive and the time required to analyze the final sample

are considered. Thus, any reduction in the modulation frequency could reduce the 20 µs period

and yield a faster processed data rate.

Regarding the software implementation, the Minerva framework is not optimized for real

time processing. The C code was therefore developed to calculate the same analysis as the

Minerva code without having to deal with the inner processes of the framework. This means it

follows the exact same core algorithm used in the Java code in Minerva and thus only composed

of the same basic operations used by the FPGA code.

As in Minerva, C code uses the double data type which has a floating-point double-precision

that does not need the error propagation analysis done in the hardware implementation. It

is executed on an Intel i3− 4130 CPU with a 3.40GHz clock speed. The analysis for a single

sample is then executed 50000 times to determine an average per execution and compare against

the time required for a single sample in the hardware implementation. Under these conditions,

the C code yielded an average of 5 µs per sample on a single thread. If compared against

the FPGA implementation with a pre-processed forward model, the FPGA achieves a 16-fold

acceleration. In the case where the forward model is included, an 8-fold acceleration is reached.

While this acceleration is already promising, it is important to analyze it in the frame of pos-

sible optimizations in both implementations. In the FPGA approach, this first implementation

shows that the main bottleneck is the cosine function evaluation in the forward model. It limits

the data-path clock given its considerable resource consumption and maximum read rate. The

resource consumption causes the design to share the LUTs by multiplexing the parallel threads

use it. This consumption is visualized when analyzing the resource usage shown in table 3.1.
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Table 3.1.: Use of FPGA resources.

Resource Utilization Available Utilization(%)

Registers 4503 160000 2
RAMB36-18 211 528 40

DSP48 91 480 18
Slices 2066 20000 10

An increase in the number of cosine LUTs in the forward model would reduce the multiplexing

degree, allowing the use of a higher frequency clock in the main data-path.

Regarding read rate, the cosine function estimation was read at 300MHz. The Block Memory

Generator IP-Core used to generate the LUT defines a max clock frequency of 450MHz. By

clocking the LUT at a higher frequency, the data-path clock can also be improved. This means

that a considerable increase of the main clock is possible by combining the resource increment,

a lower level of multiplexing and use of the maximal read rate. This optimization review is

focused on showing that the FPGA has more room for optimization than the C counterpart. Its

parallelization level, which is the main acceleration factor, is only limited by resources whilst

the C code tends to have a lower number of threads limit.

An alternative solution to increase its clock speed is with the use of a less consuming cosine

estimation method. The LUT approach was preferred over coordinate rotation digital

computer (CORDIC) or other algorithms that can be clocked at higher frequencies. The

reason for doing this was to keep the design general enough for other possible models that

use functions that cannot be implemented through CORDIC [54, 55]. Complex functions will

present, in general, difficulties with regard to resource usage or clock cycles required along the

critical path. Therefore, a LUT table presents a viable solution that can be generally applied

to several functions in order to assess timing and implementation feasibility. Another LUT

advantage is that any function evaluation requires a single clock cycle read. This comes at

a cost of a greater resource consumption when higher function resolution and precision are

needed.

Other architecture considerations

Regarding implementation possibilities, this conservative first FPGA approach clearly is at a

disadvantage when considering the limited fixed-point arithmetic precision. While it introduces

a reduction in resource usage, the uncertainty requires complex error propagation analysis

to satisfy a specific uncertainty. For bigger and more complex models, this cumbersome

requirement could present difficulties.
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The advantage of a software implementation with double precision floating-point operations

motivates to match its precision while still maintaining an acceleration for the second part

of this project. This way, the final uncertainty depends mainly on the used priors and the

incoming data. An increase in arithmetic precision represents a usual trade off in terms of

precision versus parallelism when working with limited FPGA resources. This will be analyzed

in the frame of more complex problems in the following chapter.

Finally, for cases of a low dimensionality posterior, the parallel approach and the simple

solution of a comparator scheme for the search of the MAP is possible. Nevertheless, this

reduced interferometry model shows that this is rarely the case. In this already small model, free

parameters had to be ignored to intentionally keep the dimensionality low. Multidimensional

posteriors require alternative solutions.

For a low number of dimensions, direct search algorithms like Hooke and Jeeves are a straight

forward alternative to find the MAP in different non-linear optimization problems as a first

approach [35]. For higher dimensionalities or more complex distributions, sampler algorithms

like MCMC provide significant samples from which a MAP can be found by generating a

histogram. Given that iterative approaches inherently increase the processing time, accelerated

solutions for this also exist like Parallel Tempering MCMC described in section 2.3.
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4. Accelerating Data Analysis for

Temperature and Density Profiles
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4.1. W7-X Thomson Scattering System

For the sake of a better visualization and understanding of the model behind, the W7-X

Thomson scattering system is briefly introduced. The physics model is described giving enough

information about the diagnostic design and operation, so that the selection of the forward

model and the physics principles behind it are understood.

4.1.1. Diagnostic Construction and Operation

The Thomson scattering diagnostic measures laser light scattered by free electrons in the plasma.

This scattered light provides information about electron density and velocity distribution, i.e.,

temperature.

It is an active diagnostic that causes negligible perturbations when obtaining a measurement

given that it launches a high energy beam into the plasma, a tiny fraction of which is scattered

by the free electrons.

If we were to describe the W7-X Thomson scattering measurement as a process, it would start

with a light beam from a periodically pulsed Nd:YAG laser [56]. The laser has a fundamental

Figure 4.1.: Thomson scattering diagnostic cross-section showing laser path (red), scattering
volumes (aligned blue squares) and plasma magnetic surfaces (concentric paths).
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wavelength of λ = 1064.14 nm with a tunable energy from 0.7 to 2.5 J, with a repetition rate of

10Hz. The laser beam is then guided from a separate room to the torus hall, the hall where

the W7-X is placed. Using a set of mirrors, the laser beam is guided to the entrance port of the

plasma vessel.

The laser beam passes through the center of the plasma where part of the light will be

scattered the free electrons of the plasma. The rest of the laser energy is collected by a beam

dump behind the output port located and aligned opposite to the entrance port as shown in

fig. 4.1.

The scattered light is collected by a lens module that observes the entire plasma cross-section

of 1.6 m along the beam line. The optics are located in air inside an immersion tube that isolates

them from the vacuum vessel. A support structure, which is decoupled from the stellarator for

mechanical stability, holds the lens module in place. The optic set used in this work and in the

first operation campaign, observes the outer half of the plasma cross-section with 10 scattering

volumes (spatial channels) along the laser path from which scattered light is collected. The

arrangement of these volumes can be seen in fig. 4.1.

The scattered light from these volumes is collected by dedicated rectangular fiber bundles,

which define the relevant dimensions of the scattering volume. These fibers transport the

collected light back to a separate room for analysis.

The mentioned room contains several polychromators, as depicted in fig. 4.2, to which each

fiber bundle connects.

Figure 4.2.: Spectral channels and filters of the polychromator for one of the Thomson spatial
channels.
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The main function of these polychromators is to separate the scattered light into five spectral

segments, while maintaining an acceptable signal-to-noise ratio. This in principle serves the

same purpose as a spectrometer with a limited spectral resolution. The spectral coverage of the

polychromator channels is exemplified by fig. 4.3.

In a polychromator, the light from the fiber bundle passes through a set of lenses and

interference filters that separate the light into the spectral segments. In each channel the light

is detected by a silicon avalanche photo-diode.

Finally, a set of ADCs digitizes the signals from all channels and stores them for further

processing. Given the scattered light spectrum and 10 ns duration of the total pulse, the ADCs

have a bandwidth of 300MHz with a dynamic range of 14 bits and 1Gsps temporal resolution.

The process of taking a measurement with the Thomson scattering diagnostic is completed

with the collection of these samples. With the description of the diagnostic finished, the review

of associated physics, modeling and data analysis can be carried out.

Figure 4.3.: Top: Spectral distribution at different temperatures. Bottom: Spectral coverage of
the 5 polychromator filters. The shades of blue show the coinciding sections. The
laser wavelength (red) at 1064 nm is also displayed.
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4.2. Thomson Scattering Principle and Modeling

The required conditions for electromagnetic emission by free charged particles, which is the

case of interest, is that said particles change their velocities due to the influence of a magnetic

or electric field. In plasmas, an example of this is an electron moving due to the Coulomb field

of an ion and generate what is named bremsstrahlung through acceleration.

The Thomson scattering diagnostic measures the dipole radiation from electrons accelerated

by intense lasers fields. These electrons are driven to oscillate at the same frequency as the

probing electromagnetic wave. In this case, the mentioned Nd:YAG laser is the electromagnetic

wave responsible for accelerating the electrons while the induced oscillation causes it to scatter

a photon.

When modeling Thomson scattering, the entire model can be divided into two parts, the

physics model of the scattering process occurring in the plasma and the diagnostic component-

specific parameters. The latter considers all the required changes in the measured signal

introduced by the components of the diagnostic after the scattering process. It includes

lenses, fibers, transmission efficiencies, electronic gains and the spectral filtering done by the

polychromator filters.

Starting with the physics model, the scattering can be described as a sum of unrelated

single electron-photon scattering processes. This means, that by using a model describing the

scattering process of an electron under the influence of a polarized wave’s electromagnetic field,

we can add the contribution of each electron within a volume of plasma and calculate the total

irradiated power from a scattering volume.

Considering the case of a single electron, the thermal motion of the electron will directly affect

the frequency of the scattered wave due to the Doppler effect: the moving electron experiences

the incident wave at a different frequency and Doppler shift compared to the observer point.

The velocity distribution of the electrons will thus determine the Thomson spectrum. The

density on the other hand, is proportional to the amount of photons collected by the lens for a

specific solid angle [57]. These considerations of density and velocity distribution allow us to

model the intensity and spread of the Thomson spectrum.

It is also important to take into account the statistical distribution of electrons in the

plasma. The W7-X electron temperatures are high enough for the model to require a relativistic

correction of the equations (Te > 1 keV).

With all the aforementioned factors considered, we can describe the differential scattered
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power in a general form as:

d3Ps

dΩsdϵdV
= r2ene⟨Sl⟩S(ϵ, θ, α), (4.1)

where on the left-hand side,d3Ps is the differential scattered power, dΩs is the solid angle

differential, dϵ is the wavelength shift differential, dV is the volumetric differential. On the

right-hand side re is the classical electron radius, Sl the laser incident light Poynting vector, θ

the scattering angle, ϵ = (λ− λl)/λl is the normalized wavelength shift, α = mec
2/(2Te) is the

normalized inverse temperature and S(ϵ, θ, α), the spectral density function.

The selection of the spectral density function is defined by the ratio between the Debye length

and the incident wave frequency. This ratio determines if the scattering from other electrons in

the Debye sphere adds incoherently or coherently; in the case of the Thomson scattering, this

is an incoherent process. Given that the plasma temperatures in W7-X discharges are high

enough to require a relativistic correction, the selected model for the spectral density function

must include these considerations.

The spectral density function describes how much power is scattered with a specific frequency

and scattering angle by a single electron, given the electron’s velocity and the incident wave

frequency. In the widely adopted model developed by Naito [58],

S(ϵ, θ, α) = Sz(ϵ, θ, α)q(ϵ, θ, α) (4.2)

the spectral density function is composed by the Zhuralev coefficient, Sz(ϵ, θ, α), and a

depolarization factor that considers the incident and scattered light polarization, q(ϵ, θ, α).

These factors are defined as

Sz(ϵ, θ, α) =
e−2α(x−1)

2K∗
2 (1 + ϵ)3

√︁
2[1− cos(θ)](1 + ϵ) + ϵ2

(4.3)

K∗
2 (2α) ≈

√︃
π

2(2α)

(︃
1 +

15

8(2α)
+

105

128(2α)2
+

315

1024(2α)3

)︃
(4.4)

q(ϵ, θ, α) = 1− 4ηζ

(︃
p0(ζ) + p1(ζ)η + p2(ζ)η

2

q0(ζ) + q1(ζ)η + q2(ζ)η2

)︃
(4.5)

u =
sin θ

1− cos θ
, x =

√︄
1 +

ϵ2

2[1− cos(θ)](1 + ϵ)
(4.6)
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y =
1√

x2 + u2
, η =

y

2α
, ζ = xy, α =

mec
2

Te
, ϵ =

λs − λi

λi
(4.7)

where K∗
2 (2α) is the modified Bessel function of the second kind.

Another important factor is that the spectral density function is expressed with a change of

variable from λs to ϵ, that is the normalized wavelength shift between the scattered wavelength

λs and the incident λi.

Regarding the coefficients of the depolarization factor, Naito’s suggested (2,2) a rational

function approximation to the integral over the scattering angle. Here the depolarization factor’s

coefficients are

q0 = p0 = 4 + 30ζ2 − 55ζ4,

q1 = 25ζ3(29− 42ζ2),

p1 = −ζ(25− 545ζ2 + 720ζ4),

q2 = 5(18− 66ζ2 + 630ζ4 − 805ζ6),

p2 = 2(33− 165ζ2 + 240ζ4 − 100ζ6),

(4.8)

with the ζ value calculated in eq. (4.7).

If we reformulate eq. (4.1) to yield a number of scattered photons for a specific channel and

spectral channel, we obtain

d4Ns

dΩsdϵd3r
= r2ene⟨Sl⟩S(ϵ, θ, α)

λs

hc
, (4.9)

where h is Planck’s constant and c the speed of light. By re-normalizing the wavelength shift

we can express the section 4.2 as

d4Ns

dΩsdλsd3r
= ne⟨Sl⟩S(ϵ, θ, α)

λs

λl

r2e
hc

. (4.10)

This allows us to arrange the equation to express the number of scattered photons as Nij in

the i− th scattering volume, j − th spectral channel

Nij =

∫︂∫︂∫︂∫︂
ne⟨Sl⟩S(ϵ, θ, α)

λs

λl

re2

hc
Tij(λs) dΩd3r dλs dt. (4.11)

Here we include a calibration factor Tij(λs) representing the optics transmission coefficient
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for the i− th spatial channel and the j − th spectral channel at a specific wavelength λs. Also,

due to the nature and possibilities of the calibration process, this calibration factor also includes

electronics calibration factors.

The complexity of the model and the physics problem, require a number of assumptions.

Initially, Naito already assumed a relativistic Maxwellian velocity distribution function and

laser light polarization. Besides this, we can separate the d3r integral into a surface integral

over the laser waist area and a line integral along its path. The small Thomson scattering

cross-section (σT ≈ 6.65 · 10−29m2) compared to the laser waist area lets us safely assume that

all scattering volumes will experience the same laser power. Knowing that the laser power does

not change along the path, we can group
∫︁∫︁

⟨Sl⟩ dA to substitute it for a factor of laser energy

El and remove the time integral as well.

Finally, we also know that the solid angle covered by the optics, does not depend on the

integration volume, which allows us to express eq. (4.11) as

Nij =
r2e
hc

El∆Ωj

∫︂∫︂
ne⟨Sl⟩S(ϵ, θ, α)

λs

λl
Tij(λs) dl dλs. (4.12)

The last two important modifications to the model that we have to consider are related

to the volume length and the actual signal measured by the avalanche photo-diodes. The

scattering volume is defined as the area of the laser beam cross section times the selected volume

length. If this volume is small enough, we can expect that the plasma parameters within the

volume are constant. This allows us to change the integration over the volume length
∫︁

dL to

a multiplication by the actual length ∆L. Also, due to the fact that the avalanche photo-diode

records an intensity over time, the number of photons in this signal is equal to the integral of

this signal over time.

(︃∫︂
sdt

)︃
ij

=
r2e
hc

El∆Ωj

∫︂
ne⟨Sl⟩S(ϵ, θ, α)

λs

λl
Tij(λs) dλs. (4.13)

This leaves us with the final required forward model for the i-th spatial channel and the

j-th spectral channel to be used in the Bayesian analysis. The complete set of equations are

presented here mainly to illustrate the sheer volume of calculations required to yield a single

forward model value, and thus the challenge in accelerating such models. Also, the complexity

of the model requires the introduction of some assumptions increasing the motivation to use

Bayesian Analysis and reduce the number of approximations to a minimum.
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4.3. Thomson Scattering Bayesian Model

After having a model that describes the involved physics and diagnostic operation, a Bayesian

model has to be developed analyzing the relation between the data and the posterior according

to Bayes' theorem.

In this case, the two parameters of interest per Thomson channel are the electron density and

electron temperature needed to determine the respective spatial profiles. Interferometry adds

no free parameters because its density data is predicted by integrating the 10 density values

that the TS channels already require. This raises the number of parameters and translates to a

20 dimensional posterior.

Analyzing both models together means that the data has to be mathematically related in

order to do a joint analysis. As previously mentioned, these two diagnostics do not only share

the density parameter, but also their laser paths are close enough to be considered identical for

the practical purpose of this analysis. As seen in fig. 3.1 and fig. 4.1, the overlap of the beam

paths of the Thomson and the interferometry laser is a design feature of both diagnostics that

eases the comparison of their measurements.

The deviations between their laser paths are due to the angles with which they are directed

into the plasma vessel. Design constraints regarding the entry port forces the incidence angle

to be slightly different and creates a separation of the beams in the toroidal direction on the

order of a few centimeters. In fig. 3.1 and fig. 4.1 this deviation is shown in the poloidal angle

for illustrative purposes. This difference has a negligible effect for two reasons. First, the

density along a magnetic surface is assumed to be constant and both lasers go through the

same magnetic surfaces. Also, they both cross the magnetic axis, where the constant density

assumption no longer holds, at the same point. Second, given the current uncertainty and

calibration of both diagnostics, changes in density due to this discrepancy are expected to fall

within the error margins of each diagnostic. Furthermore, if necessary, one can account for this

discrepancy and eventual systematic error in the uncertainty used for the corresponding laser

pointing vector parameter.

Based on the assumption of identical laser paths, the line integrated electron density measured

by the DI is equal to the integration of the density values for each volume of the Thomson

system along the laser path. This allows is to mathematically relate both diagnostics for the

Bayesian model development. The joint posterior PDF can be expressed as

p(ne⃗, Te⃗ | D⃗TS , DDI) =
p(D⃗TS , DDI | ne⃗, Te⃗)p(ne⃗)p(Te⃗)

p(DTS
⃗ ,DDI)

, (4.14)
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where D⃗TS is the data vector from all TS channels, DDI , the data from the interferometer,

p(ne⃗, Te⃗ | D⃗TS , DDI), is the joint posterior PDF. The likelihood, p(D⃗TS , DDI | ne⃗, Te⃗), is

defined by a normal distribution of the data set around the predicted forward model values.

Finally, p(ne⃗) and p(Te⃗) are the priors of the selected parameters and p(D⃗TS , DDI) is the

evidence. The evidence factor is disregarded, just like in chapter 3, due to fact that it is constant

for a given data set.

As seen in the likelihood function, the interferometer data DDI is not treated as a vector

but instead as a single data point. In the chosen the Bayesian model, interferometry data is

modeled as if the interferometer provided line integrated electron density as a signal and not its

typical raw data. Complications with the storage of raw data of the interferometer for the first

operation campaign prevented the availability of a test with realistic raw data. Nevertheless,

the processed data for line integrated electron density was available for discharges where the

Thomson data was as well. Given that in the first part of the project, the model and analysis for

the interferometer are tested and validated, the joint analysis is done using averaged processed

data from the interferometer. An alternative could have been to create synthetic data when the

forward models are available. While this is useful option, it is crucial to test the models and

the analysis under realistic conditions using real data from W7-X.

Moreover, the different temporal resolutions of the two diagnostics in the analysis have to

be taken into account. The interferometer provides a 50Msps data rate which results in 1000

samples within the period of its 50 kHz frequency. The Thomson system on the other hand,

provides a single measurement every 10Hz. Since they are not triggered simultaneously, the

time point of the samples will rarely match and different densities may be reflected on their data.

Formally, the possible variations of density within two interferometry time points should be

introduced in the model which would in turn increase the uncertainty of the marginal posterior

for density. Nevertheless, given that events changing density in that timescale are very rare,

the typical increase in uncertainty from a change is negligible compared to uncertainty already

present in the analysis. For this reason, a window of two data from the interferometer is taken

around each Thomson time point. The window of DI samples is averaged and a mean value is

used.

For the purposes of this approach, it can be seen as if the DI diagnostic provided the line

integrated electron density directly as raw data. The consequences of this assumption and its

lack of impact in the acceleration is nevertheless duly discussed in the conclusion section.

Having defined how the data is received from each diagnostic, we can select a formulation for
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the likelihood with data coming from different sources, which can be written as [52]

p(D⃗TS , DDI | ne⃗, Te⃗) = N (D⃗TS ; V⃗ TS , σ⃗
2
TS)N (DDI ;VDI , σ

2
DI). (4.15)

For this joint likelihood analysis, the normal distributions, N , of the data DDI/TS over the

predicted forward modeled value VDI/TS , a function of ne and Te, are multiplied. Consequently,

σ2
TS/DI is the covariance matrix and variance value of the TS and DI data respectively,

representing the noise level of the data. This results in a 20 dimensional posterior PDF and

a covariance matrix that is used to create a suitable proposal distribution for the MCMC

algorithm.

Finally, the selection of the model for the prior is made. For the density limits in eq. (4.16),

the planned heating scheme is responsible for setting a boundary. The density is controlled

to prevent the point where the heating would be reflected by the plasma and thus, no higher

densities were attempted in OP1.1. For the temperature in eq. (4.17), a similar reason is present

since the limits of temperature are the ones planned for the operation campaign. Therefore, a

truncated normal distribution is selected and specially helpful in cases like the plasma edge

where the density is known to be low. This can be expressed for density and the temperature as

p(ne) =

⎧⎪⎪⎨⎪⎪⎩
1

Aσne

√
2π

exp−1

2

(︃
ne − µne

σne

)︃2

0 ≤ ne ≤ 1× 1020 m−3

0 otherwise.

(4.16)

p(Te) =

⎧⎪⎪⎨⎪⎪⎩
1

AσTe

√
2π

exp−1

2

(︃
Te − µTe

σTe

)︃2

0 ≤ Te ≤ 20× 103 eV

0 otherwise.

(4.17)

Here, A is the normalization value for the truncated normal and µnei the mean value for the

density value of each specific channel that requires a different truncation.

Once the Bayesian model has been defined, the next step is to test the model with data from

both diagnostics. The following section explains the software implementation of the model, the

algorithms chosen to carry out the inversion and the results obtained.
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4.4. Software Implementation

One of the main reasons why Bayesian analysis is chosen for the estimation of plasma parameters

is the capability to handle and rigorously evaluate of the uncertainty associated with the selected

parameters. In chapter 3, the estimation of the uncertainty in a one dimensional posterior is

reduced to a simple calculation of the standard deviation in the posterior distribution.

When dealing with higher dimensional posteriors the search for the most likely value and

its uncertainty can become a more challenging task. As seen in section 2.3 there are several

algorithms that are often used for these two tasks.

The posterior distribution provides a full description of the parameters given the data. This

means that an exploration of the posterior can be done with a tool like MCMC by taking

representative samples of the distribution. These samples, when viewed as a histogram for each

parameter value, provide not only the most likely solution but an uncertainty for each of the

parameters. This comes at the cost of a longer time required by the iterative algorithms to

find a good starting point for the MCMC chains. A selection and tuning of these algorithms

is necessary to find a simple way to scan the posterior without incurring too long processing

times. This is why a full software implementation and optimization of the analysis is needed

before attempting the hardware acceleration.

4.4.1. Algorithm selection

The MCMC algorithm, similar to many sampling algorithms, requires a number of iterations on

the distribution as a burn in period. This allows the chain to enter a high probability region

(the vicinity of the maximum in the distribution) from which the representative samples are

taken.

Since the main objective of this work is acceleration, any reduction of iterations is beneficial.

The reduction of burn in iterations can be achieved by starting the MCMC chain at a point

close to the distribution maximum for each free parameter. For most real cases, if one chooses

an arbitrary starting point, MCMC will spend a considerable amount of iterations in a region of

negligible probability. By starting at a high probability point, the time MCMC needs to arrive

at a significant probability region can be reduced. The obtained samples in a high probability

region are considered representative and can used to estimate the mean and standard deviation

of each parameter.

From the available optimizers, the one selected for a 20 dimensional posterior was Hooke and

Jeeves. Besides having the robustness of a pattern search algorithm, it was also available as an
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inversion tool in Minerva which simplified testing.

4.4.2. Testing scenarios

Section 4.3 argues that for a proper testing of the analysis, regardless of the acceleration

possibilities, the current model is best tested with real W7-X data rather than using synthetic

data. This requires small adjustments to adapt to the data availability. Besides the corrections

needed to use a line integrated electron density signal instead of raw interferometry data,

another factor to take into account is the selection of data.

The data used in this project pertains to the first operation campaign of the W7-X, where

hundreds of discharges were carried out. These discharges vary in length, temperature, confi-

guration of the magnetic field and many other parameters. Besides these variations, on each

operation day the diagnostics can have a diversity of behaviors that depend on the conditions of

their active elements. The reasons for these differences can be caused by many factors ranging

from temperatures and calibrations of the diagnostic’s parts, to the global physics configuration

of the W7-X that changes typically after several discharges.

This means that the estimation of the parameter they share, density in this case, can yield

different results when comparing the diagnostics. While in some experimental scenarios they

can agree, in others the estimation of the density can be very different. The main reason for this

is that the model does not cover all the previously mentioned variations the diagnostic can have.

Whether that is because the model is intentionally simplified or due to a lack of knowledge of

the inaccuracy of the model is irrelevant. Finding and solving these inconsistencies is not the

objective of this work, yet it is important to cover the possible range of cases.

The punctual density measurements of TS profile can be used to calculate a line integrated

electron density, which in turn can be compared against the DI results. Therefore, to cover the

range of scenarios cases are compared. In the first case the results of both diagnostics agreed,

in the second they show different density estimations. Both belong to a set of scenarios that

were previously compared after the experimental campaign [59].

4.4.3. Software analysis and results with Minerva

When dealing with real-time data, one cannot predict whether the analyzed scenario will be one

where results from both diagnostics agree or disagree. So regardless of the different behavior of

the data in both scenarios, a common analysis has to be conducted for both cases.

For the determination of uncertainties and the most likely values, the Markov Chain Monte
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Carlo algorithm was selected. A starting point for the MCMC chain is obtained with Hooke

and Jeeves to reduce the number of iterations.

Analysis and fine tuning of inversion algorithms

From these algorithms, the main factors that have to be tuned and optimized are: the number

of iterations and the proposal distribution for MCMC as well as the initial iterations needed

with Hooke and Jeeves for a proper starting point. In order to tune these values, different data

plots are analyzed under a variety of tuning conditions.

Regarding the tuning of MCMC, the general question of how many iterations are needed

until the samples represent the real distribution is a very complex one. Eahc sample is an

iteration and samples are collected until the chain is considered to have explored the distribution.

This is often referred to as chain convergence of the MCMC algorithm, and represents the

quality of approximation of the collected samples to the explored distribution. The convergence

does not have a direct numerical solution and two approaches are typically followed. The

first is through numerical algorithms, used to estimate chain convergence, including chain

convergence diagnostics. These are often used for post processing of complex problems

with little data and intractable posteriors [60]. The second, which was used in this work, is for

problems where the parameter’s behavior is better known. These are more pragmatic methods,

like observing sample acceptance rate and chain behavior. This helps estimate when a chain

is believed to be in a higher probability region. For both cases, it is never absolutely certain

whether the chain is in a high probability region due to the nature of MCMC and the fact that

a perfect reconstruction of the posterior would only be achieved after infinite iterations.

For reasons explained in the following sections, the MCMC algorithm was only used in the

software implementation. Nevertheless, keeping acceleration in mind, the number of iterations

should be reduced to a minimum. After the reduction, enough samples have to be taken in

order to consider them representative of the distribution.

There are several ways to analyze the data in order to estimate an adequate number of

iterations. The first is a plot of the samples taken with each chain. A chain with drastic

drifts is unlikely to have found a high probability region and thus drifts along the distribution.

This analysis is also accompanied by monitoring the acceptance rate to evaluate the chain

convergence [61].

Another plot is a histogram of the samples taken by MCMC after the burn in period. These

are plotted per channel for density and temperature in order to observe the marginalized

distributions for each parameter and channel. From the histogram the mean and the standard
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deviation for each parameter can also be obtained and used to plot the profile with the

respective channel positions. This can be compared against previous knowledge or expectations

of parameter values to determine a chain’s behavior as done in section 4.4.3. An example of

this is present in appendix A.3.

Regarding the second factor to optimize, the proposal distribution, its selection is key to

the behavior of the algorithm and chain mixing. The selection of a good proposal distribution

directly affects the number of samples required to properly represent the distribution and can

be carried out through several approaches. These range from manual adjustment in a post

processing scheme, to an “on the fly” modification by using Adaptive MCMC [62].

If the objective is a real-time scenario, the adaptive proposal is the option that better suits

the processing scheme. Nevertheless, for reasons that will be explained in section 4.5, this work

will focus on the acceleration of the forward model. A hardware implementation of the adaptive

proposal distribution was not found and was not implemented in this thesis. This means that a

fixed proposal distribution is the most realistic solution for an FPGA implementation. The

behavior of a fixed proposal is therefore tested in the software implementation. The solution

suggested and tested in this work is the construction of a suitable proposal distribution, based

on previously analyzed plasma discharges.

With the use of the adaptive proposal algorithm implemented in Minerva, a proposal

distribution is generated using data from a discharge that represents common temperature and

density profiles. This proposal distribution is then used for the other data sets from different

discharges and can be used in a real-time scenario. This naturally introduces doubts such as

which data to use as a representative case, or whether very different discharges will be affected

by a proposal distribution that was not adapted to their posterior. While the absolute values of

density and temperature could change from one discharge to another, their correlation depends

mainly on the profile shape. In practice, there are only a few profiles that are possible for the

analyzed discharges. As a result, the correlation between the Thomson channels will not change

drastically and thus their optimal proposal distributions are not significantly different.

Because of the way MCMC’s works, it is expected that a sub-optimal proposal distribution

would increase the iterations needed to reach a representative distribution. If the number of

iterations is fixed for all discharges, the effect of a sub-optimal proposal distribution would be

visible in the obtained samples potentially misrepresenting the posterior distribution. If infinite

samples could be taken, the sub-optimal proposal distribution would have no effect. For this

reason, the choice of the number of iterations used for this joint model is based on the fixed

proposal distribution. It is defined by how many samples it requires to lose the bias from using
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a sub-optimal proposal distribution.

The last part to be tuned is the number of iterations that are required from Hooke and Jeeves

to obtain a good initial estimation that results in a lower amount of burn-in samples. The

tuning was done by running the algorithm on synthetic data as well as on plasma discharges

where the MAP had already been found. For these discharges, the algorithm was ran until

nearly all were within the error margins of the previously estimated MAP. In some cases, the

lack of signal in one of the channels can cause a bad MAP estimation for the outermost channel

but gives a right one for the rest.

Finally, the last factor to consider is the correlation between temperature and density. While

not specifically important for tuning, their correlation is relevant for the validation of the

analysis. The TS model depends on both temperature and density while interferometry only on

density. The addition of interferometer data, which is a line integration along the TS density

spatial channels, constrains the possible density combinations these channels may have. It is

therefore expected that constraining each spatial channel’s density with respect to the other

channels, will also constrain each channel’s temperature, thus modifying the uncertainty in

the likelihood. In order to visualize this, contour plots are used to observe the correlation

between them for each channel as shown in fig. 4.4. This plot shows the shape of the posterior

distribution when marginalizing with an MCMC chain for the first channel.
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Figure 4.4.: Typical correlation on a 2D Histogram created using the MCMC chain samples for
density and temperature of the innermost spatial channel.

Figure 4.4 shows a 2D histogram representing the marginalized posterior distribution for the
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innermost channel, close to the core of the plasma. It depicts a soft correlation between density

and temperature with a single maximum and represents a typical behavior of correlation seen

on plasma discharges where the diagnostics analysis agrees.

In other cases, a low density at the edge of the plasma causes low scattering of light and thus

little information in the measurements. This could result in a very widespread distribution

indicating that the low amount of information makes it impossible to infer a value with certainty

and would affect the channel uncertainty in the profile. By analyzing the data with the described

methods, the behavior of the code and algorithms can be tuned to reach an optimal point for

the inversion algorithms to run in the minimal possible time.

Tuning results

The minimum number of optimizer iterations that yield a high probability starting position of

the chain was found to be 10 runs of Hooke and Jeeves. This provided an initial point close

enough to the real MAP where the MCMC chains were started to determine a minimum number

of sampler iterations.

For the MCMC algorithm, various combinations of burn in and representative samples were

tested by observing the performance of the chain on each parameter for both representative

cases. Once the chain behavior and acceptance rate are deemed sufficient to define that the

chain is in a high probability region, the subsequent samples are considered representative of

the distribution and used to plot the profile.

This pragmatic task of individually looking at MCMC chains to find a proper amount of

iterations, was tested in several steps ranging from 5000 to 500000 iterations. The minimum

number of iterations that could properly represent the tested posterior distributions was 40000 .

This was done using 20000 iterations as burn in and the other 20000 to determine the mean

and standard deviation estimation.

With the tuning defined, the stored representative samples of each channel are used to find a

most likely value and its standard deviation. Those obtained values are plotted to generate the

final profiles of temperature and density as shown in the following two representative cases.
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Cases with good previous agreement between the individual density estimations

of TS and DI

The case where the individual analyses of TS and DI yielded similar density values was the first

to be considered as a representative case for the joint analysis. This means that the data of

the Thomson channels was analyzed individually and integrated to compare against the line

integrated electron density previously analyzed from interferometry.

The analysis with the final tuning resulted in a density profile as seen in fig. 4.5 and a

temperature profile shown in fig. 4.6. The shown profiles contain superposed plots from three

different analysis: the values of the MAP used as starting points for the MCMC algorithm,

the values from an analysis with only TS data considered and the joint analysis done in this

thesis. The density profile shows how in the case of a good previous agreement between both

diagnostics, the joint analysis also coincides with the TS results obtained in other works. The

results using only TS analysis fall within the uncertainty range of the joint analysis, suggesting

that the addition of the DI information modifies and increases the uncertainty that was obtained

previously.
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Figure 4.5.: Density profile for good previous agreement with joint analysis values (red x and
blue shade) as well as only TS values (black error bars) and the MAP value obtained
with Hooke and Jeeves (black profile)
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Figure 4.6.: Temperature profile for good previous agreement with joint analysis values (red x
and blue shade) as well as only TS values (black error bars) and the MAP value
obtained with Hooke and Jeeves (black profile)

Even though it falls outside the scope of this work, it is important to mention that considering

the error bars, this density plot does not represent evidence for a hollow profile.

The temperature profile, similar to the density, shows the TS results within the error margin

of the joint analysis and a similar the uncertainty from both diagnostics. This shows how the

profile is expected to look like and how the forward model, as well as the inversion, agrees with

previously analyzed estimations of Thomson profiles.

Regarding acceleration, this scenario presents no complications for the implementation of the

FPGA version since it creates no physically impossible profiles. The values of temperature and

density all fall within a physically plausible range, opposite to the following disagreeing case

where the independent of TS yields a different profile than the joint analysis.
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Cases with bad previous agreement between the individual density estimations of

TS and DI

A different behavior is observed when the line integration of the TS channels results in a

different density value to what is obtained with the DI. In the corresponding W7-X discharges,

the interferometer data were noisy yet the values of line integrated electron densities appeared

to be within a plausible range. The TS diagnostic on the other hand, had problems with the

outermost spatial channel which only measured noise. The consequences were visible in the low

density values (< 1 · 1017m−3) in fig. 4.7 as well as the high uncertainty and erratic estimation

of temperature for those channels in the profile shown in fig. 4.8.

The density profile shows how the outermost Thomson channels drops out of the joint analysis

error bar due to low information content in the data due to low density and poor scattering.

The reasons why the signal was so low that the two outermost channels are in principle not

important for this work. However, the identification of such scenarios is crucial for a general

acceleration of this analysis, considering that this profile could be used for plasma control or

device safety.
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Figure 4.7.: Density profile for poor previous agreement with joint analysis values (red x and
blue shade) as well as only TS values (black error bars) and the MAP value obtained
with Hooke and Jeeves (black profile)
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Figure 4.8.: Temperature profile for poor previous agreement with joint analysis values (red x
and blue shade) as well as only TS values (black error bars) and the MAP value
obtained with Hooke and Jeeves (black profile)

Under these circumstances, solutions ranging from raising a flag to avoiding such misleading

results can be attempted. Therefore, a set of reasons behind this implausible result and its

alternative solutions are briefly discussed.

The first reason comes from the information content in the temperature profile in fig. 4.8.

The temperature values in the two mentioned channels are considerably higher than what is

probable for the edge of the plasma. Further inspection showed that the data for these two

outermost channels is truncated to zero due to its statistically insignificance, but had a rather

large uncertainty (orders of magnitude bigger than the mean). The causal relationship between

a high temperature and a low signal level is not intuitive and will be explained.

As mentioned in the introduction of section 4.2, besides the Thomson scattering radiation,

background radiation is also generated by brehmsstralung. The small scattering cross-section

(σT ≈ 6.65 ·10−29m2) means that when the spatial channels measure a very low density, a strong

background radiation is enough to result in a measurement with a very low signal-to-noise ratio.

Figure 4.6 shows how under normal conditions, the lowest temperatures are measured by the

two outermost channels. Therefore, these spatial channels are the most likely to result in a
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noisy signal during low density conditions and explains why the analysis yields implausible

results for these two.

To understand the reason for the results giving implausible high temperatures, the spatial

channels response under low densities must be analyzed. For the cases where no signal is

measured, the polychromator’s spectral channel with the broadest filter will be most susceptible

to background radiation. Hence, that spectral channel registers the highest noise level and biggest

uncertainty of the measurement. If we consider the wavelength range of each polichromator’s

spectral filter, as shown in fig. 4.3, we can see that filter number 5 is the broadest and covers

the range that would detect higher temperatures. Thus, the uncertainty of this spectral channel

will be considerably higher. With the discussed effects of low density in the spatial and spectral

channels on the Bayesian analysis we can now explain the results.

Even when all the channels provided noise measurements mainly, the spectral channel

providing data with the highest uncertainty and lowest signal-to-noise ratio, is the one measuring

the highest temperature range. This means the marginalized posterior for the outermost channel

is very broad and carries little information. Specially broad towards high temperatures given

the discussed effects on the spectral channel covering that range. This means that the Te

MCMC chains sampling those channels will roam around the broad marginalized posterior and

will require an additional undefined number of iterations to properly represent it. If ran for

infinite samples, the marginalized posterior would most likely reflect a very broad distribution

covering the whole temperature range given the lack of information from the data.

All of this means that in fig. 4.8, the uncertainty and range of the results for these spatial

channels show the consequences of stopping the MCMC algorithm too soon for those channels.

The chains only explore part of a very broad distribution, which in this case was the high

temperature range where the MAP gave the starting point. This was also confirmed by observing

the respective MCMC chains which roamed around without converging within the predefined

limit of MCMC iterations.

The second factor to consider is the effect of adding interferometry data. The addition of

interferometry data will limit the number of possible density combinations that the spectral

channels can have, in order to satisfy the measured line integrated electron density and its

uncertainty. Given a density and temperature correlation in the TS model, it is expected that

uncertainty of the marginalized posterior for the outermost channels would be limited by this

same principle. However, for the disagreeing plasma discharges in fig. 4.9, we see that the noise

present in the interferometry processed signal, also has a high uncertainty which provides no

constraining of the posterior. With a higher uncertainty in a channel measuring only noise, its
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Figure 4.9.: Interferometer’s line integrated electron density signal for the poor previous
agreement between density and temperature profiles

marginal posterior will be wider and therefore allow the exploration of more combinations of

TS parameters.

It is clear that a result like the one shown in these two profiles with such high temperature at

the plasma edge is not possible. However, with these two effects combined, the analysis results

from the algorithm are expected under the noise conditions of both diagnostics and low signal

level of the two outermost channels.

This thesis suggests two solutions to this problem in order to avoid or limit the occurrence

of such unrealistic result. With the hardware implementation of the forward model in mind,

solutions fitting to the designed implementation will be discussed in the conclusions section.
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4.5. Hardware Design

The typical way the Thomson scattering analysis is accelerated is through the use of a LUT

that has precalculated values for a range of possible input parameters. While this in principle

is a very fast solution, the flexibility and other advantages of the Bayesian approach are lost.

Moreover, if a parameter needs to be considered as unknown, the assignment of a new probability

increases the size and complexity of the LUT and requires a full regeneration of the table.

Therefore, this section describes a solution through an accelerated Bayesian analysis.

4.5.1. Implications of accelerating a more complex model

When designing a faster joint analysis of interferometry and Thomson scattering, some factors

have to be considered that were less relevant in the single DI analysis and its acceleration. The

DI acceleration gained from high parallelism of the forward model. This was possible because

it dealt with a one dimensional posterior of a relatively small forward model.

For the joint analysis of TS and DI, the models and inversion techniques differ from the single

DI model in the several ways. First, the dimensionality of the posterior is much higher than in the

first case, now being 20 dimensional. Second, the forward model is more challenging regarding

the number of operations or functions it contains, and their complexity and the precision

they require. Finally, the inversion technique used to obtain the marginalized parameters and

consequently their mean and uncertainty, is no longer achievable by a simple comparator scheme

and thus requires iterative algorithms.

The first challenge regarding dimensionality, mainly translates to a bigger resource con-

sumption as well as limiting the inversion techniques that can be used. An increase in free

parameters suggests using a parallelization approach. While a small level of parallelism can

be implemented for each TS channel, the size of the forward model for each channel must

be considered regarding the FPGA resource limits. A parallel approach to evaluate the 3700

wavelength values of the forward model, would be intractable. For this aspect a pipelining

approach would be a more suitable solution to increase clock speed and total throughput.

The second challenge is the complexity of the model. It will have a big impact on resource

consumption and processing time. Compared to the DI, the TS forward model has considerably

more operations, more complex arithmetic factors, and diverse dynamic ranges. This increase

in complexity entails an increase in resource consumption and a limitation in how many parallel

versions of the forward model can be implemented. Moreover, in order to keep the precision

comparable to CPU architecture and satisfy the dynamic range, a double precision floating-point
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architecture is advantageous but leads to a bigger resource consumption as well.

A use of this arithmetic precision standard not only simplifies the design of bus sizes by

standardizing it, but also moves in the direction of having a generic solution for any model.

This helps study the feasibility of FPGA acceleration of Bayesian analysis for different inverse

problems. The double precision floating-point architecture would cover the arithmetic precision

requirements of most inverse problems. This helps to generalize acceleration approaches and

makes it the arithmetic format of choice.

Finally, regarding the limitation of available inversion algorithms, samplers like MCMC have

the disadvantage of being iterative. This makes them slower than optimizers and used rather

for post-processing. For Bayesian analysis of complex models, these algorithms increase the

difficulty of acceleration because the full evaluation of extensive forward models costs significant

time before the next iteration can be started. Its sequential nature limits the parallelization

possibilities that proved to be crucial for accelerating the DI model. On the other hand,

MCMC’s ubiquity in most high-dimensionality inverse problems helps attain the goal of a

general acceleration design.

After reviewing the implications of accelerating a more complex model, a short analysis of

where they can be applied is due. As discussed in section 3.5, the breakdown of acceleration

possibilities are the evaluation of the forward model, the application of Bayes' theorem and the

inversion algorithm.

An acceleration of a popular sampling algorithm like MCMC to surpass other state-of-the-art

accelerations, as the one mentioned in section 2.3.3, could already be the main goal of a project.

Also, the application of Bayes' theorem leaves little room for improvement, singling out the

forward model as the main candidate. While this sounds like a limitation of acceleration

possibilities, it is important to have an overview of what part the analysis requires the most

time and how they affect the total processing time.

TTotal = (TMCMC + TFM + TBayes)Niterations (4.18)

Equation (4.18) is a simplified model of the total analysis duration when taking into account

the main processing requirements of each stage and the typical number of operations each

entails. Here TMCMC represents the inversion algorithm time, TFM the time required to evaluate

a full forward model and TBayes the application of Bayes' theorem while Niterations is the number

of iterations MCMC needs.

Figure 4.10 shows the effect of acceleration on each processing time. Each curve is generated
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Figure 4.10.: Variation of TTotal in eq. (4.18) when accelerating each time x-fold where 1 ≤ x ≤
100. Base values TFM = 100µs, TMCMC = 1µs, TBayes = 100 ns, Niter = 1000000

by multiplying each individual with of 1/x where 1 ≤ x ≤ 100 and keeping the rest at their base

values. These base values were taken from those obtained on Minerva for the TS model. The

effects observed can be explained by the fact that in a model like the one analyzed, the forward

model tends to contain tens or hundreds of operations sometimes for several channels. The

MCMC algorithm and Bayes' theorem only require a couple of operations and their acceleration

has a negligible effect on the total processing time. Thus, the most relevant acceleration

segments are the number of iterations and the forward model. Besides this, a complex forward

model is often observed in many inverse problems. For these reasons, the acceleration of the

forward model is a key element and this section will focus on its acceleration.

4.5.2. Architecture Design

While both the TS and DI forward model have to be implemented, the DI model is substantially

smaller and was previously tested. For this reason the focus lies on the Thomson scattering

model.

Exploiting parallelism and pipelining on the FPGA architecture

The initial acceleration possibility for the FPGA design is the parallelization and design of

dedicated modules of the model’s factors to reduce processing time. The most obvious possibility

targets one characteristic of inverse problems in physics. Several data sources from N channels

of a single diagnostic can be parallelized. On a global level, the forward model for each channel
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Figure 4.11.: Proposed FPGA full architecture with: partial forward model (f(λs)), spectral
integration per spectral channel (

∫︁
f(λs) dλs), electronic gains (E.G), Bayes' the-

orem and inversion (M.C.M.C.) and the DI model (
∫︁
ne dl)

and the integration for each spectral filter described in eq. (4.13), can be parallelized to reduce

processing time. This results in a general design concept shown in fig. 4.11.

Here the registers of the main free parameters, the density and temperature for each channel,

are at the base of design. A section of Naito’s formula follows (f(λs)) within the forward model,

before a parallelized calculation of the 5 spectral channels is carried out. The integrated outputs

are then multiplied with their respective electronic gains finishing the forward model. With the

prediction of the measured values available, the likelihood is calculated and a prior is applied in

the Bayes' theorem module before sending the results to the sampler module. In the M.C.M.C.

module, the decision of accepting or rejecting the new sample is taken and the next value is

sent to the Te and ne registers to finish a full iteration of the analysis.

At a more intricate level, within the forward model acceleration opportunities are clear

from the start such as the implementation of eq. (4.2). Here, Sz(η, θ, α) and q(η, θ, α) can be

calculated simultaneously. Nevertheless, the sheer volume of operations required and their

possible configurations open many other factors that may be suitable for parallelization but

not trivial to identify. This is specially visible when dealing with numerous arithmetic factors

within the model that do not depend on each other and can be processed simultaneously.

To optimize the time required for each factor in the final model, two main tasks are necessary.

The first task is the analysis of how each factor can be formulated in different ways by analytic

manipulation of the formulas. Whether that is to factorize or expand the equations, it is done
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in order to promote parallelism and reduce the number of operations. The second task is the

mixture of parallelism with pipelining (section 2.4.1). The model requires a spectral integration

over a range of 3700 wavelength values, which is an ideal case for pipelining the architecture.

When the best formulation for parallelizing an expression is found, many possible configurations

can be designed by grouping operations and considering dependencies so that the waiting or

buffering time of values in the pipeline is reduced.

For models as extensive as the TS case, the factorization and testing of different formulations

of the equation in order to optimize parallelism can grow in difficulty. This type of analysis

and optimization can be a cumbersome and time-consuming design process. To address this

problem systematically, a special software tool (described in section 2.4) was developed. It

simplifies the optimization time required to test different configurations and the application

of parallelism and pipelining. Moreover, the tool allows for a fast and effective way to test

different factorization possibilities and architectures of each term in the model, in order to

compare them. It also allows to visualize the whole architecture in order to improve sections

where the buffering of a value in the pipeline can be reduced. Finally, the tool’s ability to define

the processing time of arithmetic operation in terms of clock cycles, simplifies the tracking and

programming of buffering lengths in the pipeline. The tool simplifies the visualization of these

factors and adjusting their calculation order to reduce buffering resources.

With it, parallelism was exploited in the forward model in order to modularize individual

factors and decrease processing times with an FPGA architecture as shown in fig. 4.12, fig. 4.13,

fig. 4.14 and fig. 4.15. All of these designs start from right to left, with the base level containing

constants, the main free parameters and the beginning of critical path shown in red. The circles

represent the operation applied and the squares are the registers where the partial results are

stored. This critical path starts with the test wavelength value λt of the analyzed spectrum as

shown in fig. 4.12.

At its maximum, there are 11 parallel branches in the design calculating factors simultaneously,

most of them are present in fig. 4.14. Nevertheless, there are numerous more instances in the

design that calculate two or more operations at the same time. This is one of the two main

reasons for the design’s acceleration. The other main factor is the dedicated pipelined hardware

implementation of the model. It results in a throughput of one wavelength value per clock cycle

once the chain of values has propagated through the entire critical path.
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Figure 4.12.: Schematic for Zhuralev coefficient (eq. (4.3)). The critical path (red) is part of the
generation of x in Sz and continues with ζ in the depolarization factor (fig. 4.14).

Accelerating while reducing resource consumption

While parallelism and pipelining of 3700 wavelength values introduces already an acceleration,

the resource usage has to be kept in mind. As discussed, an arithmetic precision of double-

precision floating-point is desired to explore the reach of the FPGA implementation.

Previous FPGA generations would have presented resource limitations as well as poor

availability of IP-cores for the application of this arithmetic. As discussed in section 1.3, current

FPGA generations not only simplify and pre-optimize the implementation of these complex

arithmetic functions with floating-point arithmetic cores, but also posses the resources to use

them in extensive models. In the architecture design, all the floating-point operations were

done using Xilinx’s IP-cores and were optimized for performance. The optimization towards

performance, instead of area, for a heavy resource consuming standard like floating-point means

that the reduction of the resource consumption has to be achieved somewhere else.

Several changes towards using less resources were also considered in this optimization process.

Divisions (3220 slice LUTs, 2066 slice registers), exponentials (2248 slice LUTs, 704 slice registers,
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Figure 4.13.: Bessel factor K∗ (eq. (4.4)), as a part of the Zhuralev coefficient (Sz).

15 DSP slices) and square roots (1701 slice LUTs, 968 slice registers) require considerably more

resources than other operations like a multiplication (140 slice LUTs, 147 slice registers, 10

DSP slices) 1.

Many factors of the model can be modified or mathematically manipulated to reduce resource

usage, mainly by avoiding costly divisions. Multiplications with the inverse of a constant

replace the costly divisions over the same constant. This is shown in the design of the Bessel

factor(eq. (4.4)) represented in fig. 4.13, with the constant K2 representing 15/8.

Described in fig. 4.13, is the effect of changing the order the operations to minimize resource

consumption. Instead of calculating 2α and (2α)2 and dividing over each term, 1/2α can be

calculated once in order to implement its squared and cubed values with multiplications.

Finally, one of the modifications that was made introduces a trade-off scenario in terms of

resource consumption. In order to reduce the critical path length, the factor of 1/(ε+ 1) was

not obtained by using the calculated value of epsilon in fig. 4.12. In the critical path, this

value is only available after the tenth clock cycle. Instead, the factor is taken from a table

implemented on a ROM with its 3700 values as calculated with eq. (A.4) in appendix A.2. This

was not done with the other possible values that could have been precalculated, in order to keep

the total number of operations implemented as close as possible to the software approach for

comparison purposes. Nevertheless, the specific value of 1/(ε+ 1) directly affected the critical

path and was substituted for acceleration purposes.

The reduction of resource consumption by changing the implemented operations can be

problematic for the comparison with the software approach, because it changes the total number

1 Values based on specific optimization options and design parameters discussed in the following subsection
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Figure 4.14.: Numerator(right) and denominator(left) of the depolarization factor (eq. (4.5)).
The numerator contains part of the critical path (red) coming from the ζ factor.

of operations. To evaluate this, an overview of the acceleration causes has to be kept in mind.

For the FPGA design, the number of operations changed or reduced that were not changed

in the software approach was 7 from the total of 87 operations in the FPGA design. These

changes were all applied before the spectral integration. Nevertheless, the main driving factor

for an acceleration is the high level of parallelism plus pipelining introduced by the FPGA.

Parallelism is exploited in the branches of the numerator and denominator in eq. (4.5), as well

as all the shared factors eq. (4.7) and eq. (4.6) shown in fig. 4.12. Moreover, the simultaneous

calculation of the two main factors Sz and Q show that the acceleration is not driven by the

few changes made to 7 operations. Finally, if the pipelining of a dedicated hardware design is

taken into account, these changes do not affect the comparison. These changes mainly help

to avoid resource consuming operations in a forward model that, due to its volume, already

presents a challenge.

General design considerations

Regarding parameters general to the whole design, an initial test clock frequency of 100MHz

was selected as a single frequency to avoid clock domain crossing on a design that did not

demand it. With the base frequency selected, different operation latency were tested for

each operator in order to prevent timing violations while minimizing the critical path. To
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Figure 4.15.: Final branch (eq. (4.5), eq. (4.3)) joining the Zhuralev coefficient Sz (fig. 4.13)
and two elements of the depolarization factor q (fig. 4.14) to finish the critical
path used in the benchmark.

meet timing requirements and improve pipelining, a latency of 5 clock cycles was selected for

simpler operations like sums and multiplications. For the slower counterparts, i.e. divisions,

exponentials and square roots, a latency of 20 clock cycles was used.

The design was initially targeted for implementation on a Virtex-7 xc7vx690T FPGA because

of its resource abundance. However, this FPGA was not available for testing. Therefore, the

design was programmed on the KC705 development board that uses a Kintex-7 xc7k325t FPGA.

Performing a simulation and achieving an implementation is in general sufficient to assess the

feasibility of the design running on an FPGA. However, the implemented circuit was tested on

the Kintex FPGA to certify the lack of timing issues and that the calculated data validity.

4.6. Results and analysis

Regarding results pertaining to the architecture design, an initial result is the reduction of the

critical path when using a parallel architecture. If FPGA parallelism was not exploited and the

operations were carried out sequentially, considering the individual operation latency, the single

critical path in f(λs) shown in fig. 4.11 would take 695 clock cycles. The critical path of the

FPGA design starts in fig. 4.12 and ends in fig. 4.15. Using the developed tool for optimizing

the design, the critical path length was reduced to 150 clock cycles.

The other results to be analyzed focus on data validity and the total acceleration. In

section 3.5 the validation and acceleration of the FPGA implementation of the DI was done at

a global level. That is, they were benchmarked for the full analysis of both the hardware and

software version. Given the particularities of the current model, both the data validation and

acceleration are not done for the full analysis, but only for the most time-consuming sections.

The data validity is to some extent trivial given that both use double-precision floating-
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Figure 4.16.: Differences between the software and hardware results. The chosen representative
functions are the exponential function f1 = e2α(1−x) whereas in other functions
like f2 = K∗

2 the results match exactly.

point arithmetic. The acceleration, on the other hand, is more complicated to determine. To

evaluate acceleration, a benchmarking point had to be chosen to measure a relative acceleration.

The possibilities to accelerate the analysis were mentioned to be in the forward model, the

application of Bayes' theorem and the inversion algorithm. However, the timing model in

eq. (4.18) suggests that focusing the effort on the acceleration of the forward model and iteration

reduction is the most reasonable approach. This means that the forward model was accelerated

and the inversion algorithm, due to its ubiquity and complexity, was not implemented. For this

reason the validation and acceleration is benchmarked using the forward model; specifically the

function f(λs).

Starting with the validation of the forward model results, its precision had an acceptable

agreement with those in the Minerva implementation, as is expected of double precision

floating-point architecture.

Figure 4.16 shows the comparison of forward modeled values for e2α(1−x) and K∗
2 in both

software and FPGA implementations. The propagated error in the final f(λs) originates from

the implementation of the exponential function in hardware, which had a small disagreement
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Table 4.1.: Acceleration with FPGA based on a CPU time of (0.8± 0.1) µs

CPU Freq.(MHz) FPGA(ns) Acceleration(N-fold)

100.0 10.40 82

200.0* 5.20 164

300.0* 3.46 246

with the software results. The other functions, as seen in K∗
2 , completely agree with the software

results. These differences are most likely to be from the method used by both tools to evaluate

the exponential function. Another error source can be the systematic error introduced by

the difference in round of techniques used in Java versus the Xilinx floating-point IP-Cores.

However, the accumulated error from the exponential function after the spectral integration

amounts to a difference in the order of 10−16 and has a negligible effect on the final result.

Regarding the comparison of FPGA and the Minerva code processing times, several aspects

are important. Developing a full version in C, as was done in chapter 3, requires a workload

that is not really justified by the achievable speed-up when compared to the code in Java. While

a C code can be faster and more efficient than its Java counterpart, the speed up will be small

compared to the orders of magnitude of acceleration achievable with an FPGA. This is visible

in the results show in table 4.1. A C implementation would only be relevant if the processing

time difference between the FPGA and the software implementation, is small enough to fall

within the range of processing time differences that C and Java can have. For this reason the

FPGA performance is compared with the performance in Minerva.

The benchmarking is based around the processing time of the model for each wavelength

value, a central parameter that is accessible to benchmark in the Java code. Moreover, the

total processing time of f(λs) can also be derived from this base duration.

The Minerva code was run on an Intel Xeon E3-1505M CPU with a clock speed of 2.8 GHz

and 16 GB of RAM memory. Visual VM was used for the Minerva profiling on Java, focusing

on the application run-time. Using data from 20 runs, the Minerva calculation of the forward

model took on average (0.8± 0.1) µs for each wavelength value.

On the FPGA, this is the time a single wavelength takes to go through the critical path.

This path starts in fig. 4.12 and ends in fig. 4.15. The total processing time for the FPGA

eq. (4.19) is calculated as follows.

TFPGA = (Lcritical path ∗ τclk + (NWL − 1) ∗ τclk)/NWL (4.19)

Here TFPGA is the total FPGA processing time for the evaluation of f(λs) for a single
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wavelength value. Lcritical path ∗ τclk is the length of the critical path multiplied by the clock

period. It represents the time the first value of the wavelength takes to propagate through the

whole pipeline. NWL, represents the number of wavelength values. This means that the second

factor ((NWL − 1) ∗ τclk) is the time required by the rest of the values given the throughput

of the pipeline after the initial propagation. The reason for the averaging over NWL is due to

the effect of pipelining. The first value requires the full propagation of the wavelengths chain

through the whole critical path. After that, the rest of the values only need a single clock cycle

to be ready. The critical path of the forward model requires 150 clock cycles. With a wavelength

resolution of 3700 values, the average duration for the processing of a single wavelength value

is 10.40 ns. These results show in table 4.1, the acceleration achieved with the initial clock

frequency and two other projected frequencies that stay within the operation limits of the used

IP-Cores. With the designed architecture, an ≈ 82-fold acceleration of the forward model is

achieved. This already shows the general potential of acceleration in complex inverse models

where the number of arithmetic operations is significant.

The projected increase in the clock frequency could require changes in operation latency,

given that the timing constrains would be tighter. These projected values of total processing

time are done without considering latency changes, which could increase the critical path.

However, the effect of a change in the critical path is not so relevant for the processing time if

compared to the acceleration caused by doubling or tripling the clock frequency. For example,

a change form 150 to 180 stages in the critical path, would yield an acceleration factor of 162

and 244 respectively.

In the Thomson model, further acceleration possibilities are available. Given that this

calculation is done per channel, any N-th order parallelization of spatial channels in the forward

model would make the analysis N-times faster at a cost of higher resource consumption. A

similar possibility exists for the five spectral channels of each polychromator, where the spectral

integration along the range of wavelength values can be parallelized as well. In this case the

resource consumption would not be as affected.

From the profiling of the Minerva analysis, the base values for fig. 4.10 were obtained, where

it was confirmed that the forward model calculation represents the biggest time-consuming

task. This was relevant to determine how accurate an approximation of the total processing

time would be in a full implementation of the analysis on the FPGA. The FPGA processing

times for the evaluation of Bayes formula and MCMC algorithm cannot be accounted, since

they were not implemented in this project. However,the processing time of forward model is

some orders of magnitude larger than its counterparts. This means we can approximate the
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Table 4.2.: Resource Consumption for a Single TS Channel

Resource Utilization Available Utilization %

LUT 61035 433200 14.09

FF 39269 866400 4.53

LUTRAM 3143 174200 1.8

DSP 721 3600 20.03

FPGA processing time for a full iteration of the analysis to be within the processing time of

the forward model for the 3700 wavelength values. If the forward model for each channel were

run in parallel at the base frequency of 100MHz, the 40000 iterations would require ∼ 1.55s.

This brings the usual post-processing technique closer to a real-time frame with a design that

has not been fully optimized.

Of course, this level of parallelism prompts the question whether the size of the model stays

within resource availability of current modern FPGAs. As clarified in the previous section, while

the implementation was tested on a Kintex 7 FPGA, the original design resource consumption

was carried out on a Virtex 7 xc7vx690. The design and every operator were optimized for

performance rather than lower consumption and its resource usage can be seen in table 4.2.

Of the available resources, the most consumed were DSP slices (20%). This is due to the

fact that most of the arithmetic cores were configured for full DSP slice usage. The block

memory use was minimal since it was mainly consumed by the single exponential operation. It

is important to note that, given a complete use of the DSP slices available, logic slices can also

be used for floating-point operations and are configured within the IP-Core. This means that a

parallel implementation of more channels is feasible, considering that several FPGA’s (i.e. the

Ultrascale family) could posses sufficient resources for such an approach.

Finally, while the majority of acceleration results have been assessed within this chapter, a

discussion on other possibilities of acceleration will be done in a global context in the conclusions

section.

112



5. Conclusions
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5.1. Hardware Acceleration of the Dispersion

Interferometer Analysis

5.1.1. General observations and conclusions

The initial stage of this project had the goal of studying the feasibility of accelerating a basic

approach to Bayesian analysis within the field of plasma diagnostics. As a prerequisite, an

understanding of the difficulties and possibilities of accelerating a post-processing analysis had

to be obtained. For this purpose, an example was chosen that kept some sort of simplicity while

staying within the difficulty range of modern physics problems.

The dispersion interferometer (DI) was selected for this purpose given that in its model,

the number of poorly known parameters as well as the parameter of interest present a low

dimensionality scenario. However, the complex analytic expression for its forward model keeps

the difficulty at the desired level because of its multimodality. The two possible model solutions

meant that its posterior distribution presented a multimodal distribution when using a single

sample.

For the problems with a multimodal posterior an online approach to Bayesian analysis, the

sequential analysis, proved to be a useful tool with two main advantages for acceleration. The

first is the nature of the sequential approach when compared to a batch approach, where each

sample can update the posterior without the need of the full set of samples to be available. This

means that the time between samples can be spent on pre-calculating other required values of

the forward model. This is specifically useful for cases where signals that carry information of

the forward model are constantly available, as in the case of the modulation signal coming from

the PEM. The availability of this signal allowed for the pre-processing of the forward model.

With this value calculated, the posterior could be immediately updated upon arrival of the

following signal, thereby removing the forward model processing time from the global time.

In the case of the DI model, the rate of change of the non-free parameters in the model was

on a much slower time scale than the parameter of interest. This allowed for the treatment

of these parameters to be that of fixed parameters and thus permitted the dimensionality to

stay one dimensional. While this seems more of a specific property of the DI, it shows that

when enough knowledge of the parameters is available, some simplifications can be made to

reduce the complexity of the problem. Still, this introduced an error in the estimation that

required proper handling of error propagation. It was shown that the introduction of an error in

a known parameter had a negligible effect on the estimation of the final density. This opens a
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possibility of analyzing the effects of a parameter on the posterior to reach a decision of trading

a loss in precision for a gain in acceleration.

The second advantage is in the case of inverse problems with multimodal distributions due

to its forward model. When using a sequential approach, the addition of information from

upcoming samples can modify the posterior distribution to solve the multimodality. This can

be advantageous for problems where the rate of change of the nuisance parameter is slower

than the parameter of interest. It is mainly achievable when the time to collect the necessary

samples is lower than the desired time resolution of the analysis.

5.1.2. Acceleration of the analysis

Regarding the acceleration achieved by implementing it on FPGA architecture, besides the

general advantages that a dedicated hardware implementation can have, the DI project provided

insight on the feasibility of a general acceleration.

With the mentioned advantage of sequential analysis and its pre-processing, a dedicated

continuous module of the forward model proves to be advantageous. It allows for a constant

estimation of the forward model so that it is available to update the likelihood with the upcoming

sample.

Furthermore, the high parallelization possibilities on an FPGA design provided an initial

overview of the reach of this property when applied to Bayesian analysis. For the specific cases

of low dimensionality, parallel modules of the same forward model can be implemented for a

scan of the parameters of interest. While in the DI this allowed for a full parallelization of

the single parameter scan, a multiplexing approach can be used for more resource consuming

models with low dimensionality. This multiplexing, as seen in the case of the DI, comes at the

cost of limiting the critical path clock frequency.

The attempt to keep a generic approach for the implementation of the forward model

introduced the use of the LUT to implement complex function evaluations. This proved to

be a resource intensive approach for the required precision which resulted in the limitation of

the main clock frequency. Nevertheless, this limitation may be compensated by using other

function evaluation methods such as CORDIC or by improving the multiplexing scheme.

For this example, the resource consumption was intentionally kept low by using fixed-point

arithmetic and a limited resolution to satisfy the minimum requirements. While this was

sufficient to fit the full design in a Virtex-6 FPGA that ranks within the small sized range of its

family, the effects of using this arithmetic precision are difficult to judge without a comparison

to another precision standard.
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Based purely on the achieved speed-up, it was possible to conclude that an acceleration in the

case of low dimensionality problems is feasible. The comparison with a CPU implementation

showed that even at a very low initial design clock frequency, a 16-fold acceleration was achieved

in the processing time of the full analysis.

Though it was not the intention of this first project to carry out a final comparison of an

FPGA vs CPU, it is possible to notice some key factors. While it is reasonable to think that a

16-fold acceleration can be achieved by a CPU code running several threads, the CPU approach

has two limitations: The level of parallelism achieved by the FPGA will still dominate over the

CPU capabilities and while the CPU offers a significantly higher clock frequencies, it still lacks

in the simultaneous modularized calculations that facilitate the pre-processing.

While both implementations could be optimized, the comparison and feasibility study were

the main goal of the example and thus no deep optimization in any of them was required.

The proof of principle implementation and feasibility study of an acceleration provided

enough positive results to motivate the acceleration attempt for a problem that is at par in

complexity with modern physics inverse problems. The joint analysis, including the dispersion

interferometer and Thomson scattering diagnostic was selected for this purpose.

5.2. Hardware Acceleration of the Temperature and

Density Profile Analysis

Once the acceleration feasibility was demonstrated on a simpler model, the search for a Bayesian

analysis of a more complex inverse problem that represents a typical example was the next

step. The diversity of possible inverse problems within the field of plasma physics makes it

hard to find such a representative case. For this reason, two key characteristics of Bayesian

analysis of physics inverse problems were selected to represent several typical cases. One is

the high number of free parameters that entails a higher dimensionality. This not only means

an increase in complexity but also requires slow iterative algorithms to do the inversion. If

combined with a complex forward model, each iteration makes the analysis a slow one. The

other is the important advantage of Bayesian analysis to perform a joint analysis of two different

physics models that share a common parameter.

The ubiquity and relevance these two factors in modern research inverse problems, helped

test acceleration in a scenario representative of complex inverse problems. It was crucial to

prove that one of the most useful properties of the Bayesian method, the joint analysis, is

transferable to an accelerated architecture.
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The joint analysis of the Dispersion interferometer and Thomson scattering presented a good

test case to study these objectives. Thomson provides the complexity, dimensionality and

inversion requirements to be general enough while interferometry with its simpler model, allows

for the joint analysis to be tested.

5.2.1. Model design and software analysis

While enough data and infrastructure were available in order to use both diagnostics as a test

case for this general acceleration, the initial software analysis revealed that some changes were

required to be able to use these models.

The lack of raw interferometry data required the omission of its forward model from the

analysis and using its processed data instead. While this seems to be a disadvantage towards

the goal of certifying that the joint analysis can be accelerated, a thorough review of the

implications can clarify this issue.

The omission of the DI’s forward model mainly affects the resource consumption and not the

total processing time. Due to the size of its forward model compared to the TS model, timing

would not be affected. The operations required for the DI’s model are completed significantly

faster. The same goes for resource consumption when we consider the number of arithmetic

operations required. The full DI forward model requires significantly less than a single channel

of the TS model. Furthermore, the validation of the DI model and its analysis was already

proven in the first stage. This means that the architecture can be redesigned to a higher

double-precision floating-point standard with the same result expected. Finally, the previously

obtained DI uncertainty can be accounted for through the uncertainty of the pre-processed line

integrated electron density.

Another difficulty found during the software analysis was the case where both independent

density values had significant differences. The case of bad agreement analyzed in section 4.4.3

showed that for some plasma discharges, where the density is low enough to scatter very

small amounts of light, the detectors for the outer most channels had no signal but a strong

background noise. This ended in a profile that exhibited high temperatures in the two channels

that should measure the lower temperatures at the edge of the plasma. As explained in that

section, the main reason for this was the low information content of the measured data, which

specially affects the broad high temperature spectral filter. This broad bandwidth measures

only background radiation and results in a data point with low signal-to-noise ratio. This

high uncertainty translates in the Bayesian analysis to a broader marginal posterior for these

parameters. Here the MCMC is free to explore the distribution without converging in a high
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probability region within the predefined iterations. A high noise in the line integrated data

from the DI meant that the addition of this information was not enough to constrain the profile

to prevent this broad marginal posterior.

This problem can be addressed through two approaches. If the signal being processed were to

be used for machine safety or control, the first trivial approach is to program a detection module

in the FPGA with the task of recognizing the scenarios where the uncertainty is significantly

higher than the mean value. A flag can be raised indicating that the data can produce profiles

that can have errors. The second approach, which avoids faulty profiles, would be to constraint

the priors for the problematic channels. By knowing that the plausible temperatures at the edge

of the plasma, the prior can be modified to truncate or reduce the probability of implausible

values. It is nevertheless important to notice that this solution comes at a risk. As mentioned in

the introduction, the reason that this general Bayesian analysis is preferred to other available fast

approaches is the lack of approximations and linearizations. When studying physics phenomena

that are not well-known, the assumption of expecting a lower temperature in the edge could

mask new information or less likely behaviors of that parameter. For example, a change in the

magnetic axis could place the outermost channels in a higher temperature section of the plasma

that could be unnoticed due to an over-constrained prior. A truncation or modification of the

prior must be done with this factor in mind.

In general, the full software analysis proved to satisfy the selected requirements in order to

attempt an acceleration with FPGA hardware architecture.

Hardware acceleration of an complex inverse problem

Next, a decision on which aspects of this complex problem to accelerate was made. Accelerations

of inversion algorithms like Hooke and Jeeves or Markov Chain Monte Carlo are beyond the

scope of this project and existing examples are discussed herein. The profiling in Minerva of a

representative example like the TS model, provided insight on the weight of each section of the

analysis on the total processing time. The application of Bayes' theorem is trivial enough in this

design that it left little room for improvement. A reduction of iterations would be beneficial and

is already achieved by modern implementations of algorithms like PT-MCMC. The acceleration

of the calculations of the inversion algorithm is not crucial given that it does not contribute

much processing time when compared to the other analysis elements. Therefore, the forward

model becomes the main candidate and proved to be the most effective way to accelerate the

global analysis for two reasons. The profiling of the Minerva code revealed that the majority of

the processing time consumed was in the forward model. Since high dimensionality problems are
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most popularly inverted by sampler algorithms like MCMC, each gain achieved in the forward

model resulted in a gain per iteration required, vastly decreasing the global processing time.

Once selected, the acceleration of the forward model posed the question of how feasible is it to

match the arithmetic precision of a CPU with FPGA architecture. Specifically, while achieving

the acceleration and staying within resource usage. While this might have previously presented a

problem, this project showed how current FPGA resource availability and performance allow for

an implementation and acceleration of such models. Furthermore, the improvement of IP-Cores

for this arithmetic simplifies the design process of an analysis that is already challenging in

many other aspects.

For extensive models with complex arithmetic functions and double precision floating-point

arithmetic, the FPGA was shown to provide many accelerations options which were discussed

in section 1.3.2. While for some operations FPGAs can outperform CPUs, this aspect was not

tested for the current analysis. The FPGA acceleration of this forward model demonstrated

how complex forward models can thrive on the FPGAs parallelism and the pipelining of a

hardware dedicated architecture.

In order to fully exploit these possibilities a software tool was created to decrease the time and

difficulty of optimizing models with numerous complex mathematical operations. The Python

code enabled this by optimizing the tracking of dependencies and simplifying the visualization

of a global design for arithmetic calculations. It also provided a way to control and optimize

the pipelining by taking into consideration the clock cycles required per operation and thus the

buffering of factors. With these accelerations implemented in the design, a comparison with

the Minerva code in Java was carried out.

Benchmarking

The run time differences between a Java and C implementation would normally be minuscule.

The DI section already showed an acceleration higher than the expected gain achievable by

implementing this full analysis in C. An implementation in C for this project would therefore

not only be time-consuming but redundant when already available in Minerva. The comparison

was therefore made against the Java code, ignoring special methods required by the Minerva

framework and profiling only on the forward model processing time. It showed that the

acceleration for a single wavelength calculation was 82-fold on an initially low critical path

clock frequency. A reasonable increase of this frequency could improve the acceleration factor

to 246-fold.

One has to take into account that the full analysis requires a forward model calculation for
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each channel of the Thomson model. CPU multithreading can be outperformed by the higher

level of parallelism that modern FPGAs allow. Specially in the Thomson model, the need for

10 spatial channels and 5 spectral increases this acceleration possibility.

If the full analysis time is approximated with the implemented clock frequency, the resulting

time required for 40000 iterations of the forward model is ∼1.55 s for a pair of parameters in a

single channel. A full parallelization of all the channels, and the fact that the forward model

consumes most of the processing time, means that this estimation is close to the complete

processing time of a full analysis. There are still tasks in the analysis that need to be performed,

like calculating a mean and standard deviation of the chain of each free parameter. Nevertheless,

most of these tasks can be updated online as soon as the representative samples are taken.

Thus, their processing time would still be several orders of magnitude lower and fall within the

approximated final time.

A final point of discussion would be the resource consumption. Double precision floating-point

arithmetic usually results in a resource intensive architecture. This architecture was chosen to

represent cases that require it. An error analysis like the one carried out in the first part of this

project, could show how the use of single precision or fixed point arithmetic can suffice. The

worked showed that the implementation of an extensive mathematical model allowed for the

resource allocation in an FPGA which is sizable within its family but not the biggest available

on the market. Based on the observed consumption, other FPGA families like the Ultrascale

group can comfortably handle such a model. This type of analysis also does not require large

amounts of data transfer, which hints that a multiple FPGA solution is also a possibility.

Finally, the acceleration possibilities in the other main component, the inversion algorithms,

must be taken into account. In this specific analysis two common algorithms for optimization

and inversion were used. As mentioned in section 2.3, accelerations of both tools are currently

available. The FPGA implementation or Parallel Tempered MCMC is especially promising for

this work’s goal. Its multiple tempered chains could reduce the number of iterations required

to reach an area of high probability, improving the other most time-consuming factor in the

analysis.

5.3. General Aspects of the Acceleration of Bayesian

Analysis

The main goal of this project was to attempt a general acceleration for this type of standard

Bayesian analysis of complex non-linear inverse problems present in modern scientific experi-

120



ments. Specifically, those where the dynamic behavior of the parameters of interest are poorly

known and therefore require the least amount of approximations and linearizations.

Finding a general solution to a problem with a large range of possible variations is an ambitious

task. This meant that in order to approach a majority of the cases, available problems that

shared the most characteristics with the rest were selected.

The initial approach successfully covered the cases with a simpler scenario. An on-line

sequential approach was beneficial where the rate of change of the parameter of interest was

lower than the data rate. While it had a smaller forward model with a low dimensionality, the

model represented as well models with a non-linearity that resulted in a multimodal posterior.

It showed the reach of parallelism and sequential Bayesian analysis when accelerating these

type of problems, promoting further investigation of more complex models.

The second part of the project covered a bigger range of problems by targeting three common

characteristics. First, an extensive forward model with numerous operations is better at

representing modern inverse problems which are tackled with Bayesian analysis. Second, a

multidimensional posterior which requires an iterative algorithm for the inversion of a single

data set in time. Finally, it also included one of the strongest advantages of this type of analysis,

which is dealing with a joint analysis of several models. Achieving this acceleration on a complex

forward model with a high precision arithmetic opens the possibility of bringing this type of

analyses to real-time scenarios. If mixed with modern accelerations of inversion algorithms, it

is clear that while not yet in a microsecond timescale, it is closer to a fast online scenario. This

is especially noticeable when comparing against the typical processing time which is generally

ranging from minutes to hours.

The acceleration possibilities for several inverse problems were studied and proved achievable.

This was initially carried out through the development of a tool to improve the exploitation

of FPGA parallelism and pipelining. It was followed by the design and testing of a Bayesian

analysis for two plasma physics diagnostics and the implementation of both analysis on FPGA

hardware.

The work sets a precedent for bringing this type of analysis to hardware architectures like the

FPGA. It shows that while this might not have been deemed practical a couple of years ago,

modern FPGAs allow for this type of analysis. The same applies for the joint analysis of several

diagnostics which was proved to be possible even if the increase in complexity is considered.

In conclusion, Bayesian analysis is a robust and powerful tool that allows for the proper esti-

mation of parameters with a rigorous handling of their uncertainties. The increasing frequency

of use in many fields of data analysis, represents its importance in the field. Accelerations have
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been achieved for many specific problems, but not yet developed for the niche of this project.

Modern scientific experiments often require an unbiased inference tool that is capable of

dealing with complex non-linear models where the dynamic behavior of the parameters of interest

is unknown. Moreover, they often require this analysis in a faster timescale for machine control

or safety. It is the intention of this work to set a precedent towards bringing a general approach

of this analysis closer to a real-time frame and to promote the study of more acceleration

possibilities.
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A.1. Hardware Optimization Tool Workflow

The work-flow for the use of the developed Python tool is the following:

Once the factorization of the model’s equation has been selected, it is arranged to separate

constants from variables and, in the case of typical hardware implementations, reduce the

number of divisions necessary. Equation (A.1) shows how the Bessel function is modified for

this purpose.

f(2α) ≈
√︃

π

2(2α)

(︃
1 +

15

8(2α)
+

105

128(2α)2
+

315

1024(2α)3

)︃

f(2α) ≈
√︄

K1

(2α)

(︃
1 +

K2

(2α)
+

K3

(2α)2
+

K4

(2α)3

)︃
1

2α
= TereEei

(A.1)

With the expression selected, the equation can be entered following the syntax described in

section 2.4 as shown in eq. (A.2). In this case, the equation was not given in a single line but

rather a breakdown of it. With this approach the analysis is simplified by giving parent nodes

specific names that appear when the value is used, like alphaT2inv in fig. A.1.

R = [[′K1′, 0], [′K2′, 0], [′K3′, 0], [′K4′, 0]

alphaT2inv = Solver(Te ∗ reEn e i,R)

alphaT2iSq = (alphaT2inv ∗ alphaT2inv)

alphaT2iCub = (alphaT2iSq ∗ alphaT2inv)

bessel1 = (′K1′ ∗ alphaT2inv).fun(′sqrt′,′ bessel1′)

bessel2 = (′1.0′ +′ K2′ ∗ alphaT2inv +′ K3′ ∗ (alphaT2iSq)−′ K4′ ∗ (alphaT2iCub))

bessel = bessel1 ∗ bessel2

factor2 =′ 2.0′ ∗ bessel
(A.2)

In the previous code the first line represents the input of alphanumeric constants or any value

that will represent a leaf in the graph. The comma separated number represents the delay the

signal will have.

The first input of the arithmetic expression uses the Solver() method to initially pass the

library with the predefined constants. The .fun() method is also used to represent special

functions like the square root in this case which is not recognized by the parser.
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The output of this code example is shown in fig. A.1 where a ASCII character represents the

tree representing the dependencies, latencies and critical path of the implemented model.

Figure A.1.: Tool example output of the Bessel function implementation.
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A.2. Hardware function refactorization

This section contains the relevant functions that were arithmetically manipulated to suit better

the FPGA hardware implementation.

The 1/(ϵ + 1) factor which is a function of the scattered wavelength was generated by

expressing it the same way that the wavelength changed can be expressed. That is an initial

wavelength value plus a wavelength increment until the range is complete

λsi = λs0 + i∆λs (A.3)

1

ϵi + 1
=

λl

λs0

+ i
∆λsλl

(λs0 +∆λs)λs0

(A.4)

The other equations in the Naito model, modified to promote parallelism and reduce resource

consumption were:

Sz(ϵ, θ, α) =
1

K∗
2

(︃
1

1 + ϵ

)︃3
1

2
√︁

2[1− cos(θ)](1 + ϵ) + ϵ2
e(2α)(1−x) (A.5)
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1
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1
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1
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(A.6)

u =
sin θ

1− cos θ
= Ku, x =

√︄
1 +

ϵ2

2[KcTheta](1 + ϵ)
(A.7)

2α =

(︃
reEr

Te

)︃
, ϵ =

λt − λl

λl
(A.8)

q0 = p0 = p0a + p0bζ
2 + (p0c)ζ

4,

q1 = q1aζ
3(q1b + q1cζ

2),

p1 = ζ(p1aζ
2 + p1bζ

4 + p1c),

q2 = (q2a + q2bζ
2 + q2cζ

4 + q2dζ
6),

p2 = (p2a + p2bζ
2 + p2cζ

4 + p2dζ
6),

(A.9)
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A.3. Temperature and Density Histograms for Profile

Inference

When analyzing the chain of each parameter, the histogram of that chain provides a marginalized

posterior of its parameter as shown in fig. A.2.
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Figure A.2.: Density histograms per channel for good previous agreement with the joint analysis
mean value (red) and its standard deviation (black)

This can be used to obtain a mean and standard deviation used to build the profile, as

depicted in section 4.4.3, or can be plotted several ways depending on the analysis required.

Another representation is shown in fig. A.3.
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Figure A.3.: Density histogram outline per channel in a 3D view.
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B. Glossary - Terms and Acronyms

Term/Acronym Brief description Scope Page
D Deuterium: Hydrogen isotope Document 19
T Tritium: Hydrogen isotope Document 19
W7-X Wendelstein 7-X Document 21
TS Thomson scattering Diagnostics 22
PROM Programmable Read-Only Memories Document 23
PLD Programmable Logic Devices Document 23
FPGA Field Programmable Gate Arrays Document 23
I/O Input/Output Document 23
CLB Configurable Logic Block Document 23
SM Switch Matrix Document 23
IO Input/Output Document 23
LUT Look-Up Table Document 24
DSP Digital Signal Processing Document 24
HDL hardware description language Document 24
ASIC application-specific integrated circuit Document 24
VHSIC very high speed integrated circuit Document 24
VHDL VHSIC hardware description language Document 24
GPU graphics processing unit Document 25
IP-Core Intellectual property core Document 25
RAM random access memory Document 25
FM Forward Model Analysis 30
PDF Probability Density Function Analysis 31
MAP Maximum a Posteriori Analysis 34
LGI Linear Gaussian Inversion Analysis 34
Minerva Bayesian analysis framework Analysis 34
MCMC Markov Chain Monte Carlo Analysis 36
PT-MCMC Parallel Tempering MCMC Analysis 37
Pipelining Hardware architecture strategy Analysis 39
Root node Base or superior node of a tree structure Analysis 41
Leaf node End node in a tree structure Analysis 41
DI Dispersion interferometer Diagnostics 46
ZnSe Zinc selenide Diagnostics 48
AgGaSe2 Silver Selenogallate Diagnostics 48
FDC Frequency Doubling Crystal Diagnostics 48
PEM Photo-Elastic Modulator Diagnostics 49
CCR corner cube retroreflector Diagnostics 49
MgF2 Magnesium fluoride Diagnostics 50
ADC Analog to Digital Converter Diagnostics 50
TTL Transistor-Transistor Logic Implementation 66
CORDIC Coordinate Rotation Digital Computer Implementation 74
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