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Abstract

Recent advances in camera technologies have made depth-sensing devices, such as the

LIDAR scanners, light field cameras, structured light devices and Time-of-Flight (ToF)

devices available. While high-end devices such as LIDAR scanners and light field cameras

provide comparatively interference-free depth images with high accuracy, devices based

on structured light or ToF show lower resolution and artifacts such as lack of depth,

holes, flickering, inhomogeneity and alike. On the other hand, high-end devices are

quite expensive and often difficult to operate due to their size and weight. Consequently,

both the research and industry are more likely to turn to the readily available and less

expensive devices such as the structured light devices and ToF devices. Although these

devices capture a scene with reasonable resolution and speed, the depth data exhibits a

substantial amount of artifacts. The artifacts generated by these consumer depth cameras

come in different forms. One common artifact appears as randomly distributed holes over

the surface of the objects of a scene; especially, where the depth discontinuity occurs.

Often, such artifact is spread over the temporal domain and causes the flickering artifacts,

meaning the holes appear and disappear at random locations on the object’s surfaces over

the successive frames. Moreover, in case of dramatic or drastic movement of the objects in

a scene, ghosting artifacts are often perceived on the depth frames when post-processing

is applied on these depth frames. Hence, the depth images from consumer depth cameras

usually need further enhancement otherwise, they cannot be used in various crucial real-

world applications. For example, in object tracking applications, the noise on an object’s

surface greatly deteriorates the tracking performance and in forensic analysis of a crime

scene, where every detail is vital, a poorly reconstructed scene might hamper the recovery

of correct information. Likewise, in telepresence or e-learning systems, low-quality 3D

scene limits the sensation of a natural presence of the remote users to the local site.

The primary focus of this work is on the qualitative improvement of depth data

recorded with the low-cost depth cameras. In addition to noise reduction, this primarily

concerns the reduction of the described artifacts. In this context, this thesis proposes a new

concept for real-time calculation of high-quality depth images. The main contribution is the

development of a new depth image enhancement filter that fuses the spatial and temporal

information of depth images in real time and thus, stabilizes and enhances the distorted
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depth data. Furthermore, this thesis presents a noise visualization and analysis method

with the aim to suppress the inherent noise of the depth values and, eventually, to optimize

the proposed depth enhancement method. In order to better understand the characteristics

of depth noise and ultimately remove the noise, the analysis method is applied to ground

truth test data that are generated from experiments using precise tracking information.

For the evaluation of the proposed real-time depth enhancement strategy, experimental

results are compared with other state-of-the-art methods on reference data sets. The

results show that noise and the number of flickering holes are significantly minimized and

ghosting artifacts are successfully removed.

Furthermore, this thesis presents two strategies for real-time camera data reduction,

with which the processed images can be transmitted without noticeable delay. This is

especially true for the multi-camera configurations used in many applications, which

deliver image streams from multiple cameras simultaneously. The developed data re-

duction methods function as pre-processing steps for the transmission of scenes that are

recorded from several angles and therefore contain large amounts of image data about

the recording location. Extensive testing shows that the reduction strategies successfully

reduce the amount of transmission data and hence, enable uninterrupted transmission in

a low-bandwidth network.



Zusammenfassung

Mit den kürzlich erfolgten Fortschritten in der Kameratechnologie wurden Tiefenmess-

geräte wie der LIDAR-Scanner, Lichtfeldkameras, Vorrichtungen, die mit strukturiertem

Licht arbeiten, und sogenannte Time-of-Flight (ToF) Geräte verfügbar. Während High-

End-Geräte wie die LIDAR- Scanner und Lichtfeldkameras vergleichsweise störungsfreie

Tiefenbilder mit hoher Genauigkeit liefern, zeigen Geräte, die mit strukturiertem Licht

oder auf Basis von ToF funktionieren, eine niedrigere Auflösung und Artefakte wie feh-

lende Tiefe, Löcher, Flackern oder Inhomogenität. Andererseits sind High-End-Geräte

aufgrund ihrer Größe und ihres Gewichts recht teuer und oft schwer zu bedienen. Folglich

wenden sich sowohl Forschung als auch Industrie häufiger den leicht verfügbaren und

kostengünstigeren Geräten zu. Neben heftigem Rauschen, stellt die beträchtliche Menge

an Artefakten, die in verschiedenen Formen auftreten, Hauptproblem bei der Arbeit mit

diesen Geräten dar. Besonders häufig erscheinen zufällig verteilte Löcher in der Tiefenin-

formation von Oberflächen der Szenenobjekte. Insbesondere geschieht dies an abrupten

Änderungen der Tiefenwerte, d.h. in der Nähe von Objektkanten. Zudem tritt dieses

Artefakt häufig diskontinuierlich über die Zeitdomäne verteilt auf und verursacht so ein

stark auffälliges Flackern, bei dem die Löcher in aufeinanderfolgenden Frames immer

wieder erscheinen und verschwinden. Weniger zufällig als Löcher entstehen durch die

notwendige Kompensation schneller Bewegungen von Szenenobjekten oft unerwünsch-

te Geisterbilder in den Tiefendaten. Zur Verwendbarkeit für praktische Anwendungen

müssen Tiefenbilder deshalb in der Regel intensiv weiterverarbeitet werden, um sie von

diesen Artefakten zu befreien. Ansonsten ist die rekonstruierte 3D-Szene von minderer

Güte und nicht adäquat für die jeweilige Anwendung. Beispielsweise vermindert sich in

Telepräsenz- oder E-Learning- Systemen mit der Qualität der Szenenrekonstruktion das

Gefühl der natürlichen Präsenz von entfernten Benutzer am lokalen Standort und damit

gleichermaßen die Immersion. Auf ähnliche Weise kann eine fehlerhafte 3D-Nachbildung

eines Tatorts eine forensische Analyse erschweren, weil falsch dargestellte Details den

entscheidenden Hinweis verschleiern können.

Der primäre Fokus der vorliegenden Arbeit liegt auf der qualitativen Verbesserung

von Tiefeninformationen, die mit preiswerten Tiefenkameras aufgenommen werden. Dies

betrifft neben Rauschunterdrückung in erster Linie die Reduzierung der beschriebenen
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Artefakte. In diesem Zusammenhang schlägt die Arbeit ein neues Konzept zur Echtzeit-

Berechnung qualitativ hochwertiger Tiefenbilder vor. Der Hauptbeitrag dabei ist die Ent-

wicklung eines neuen Tiefendatenfilters, der die räumlichen und zeitlichen Informationen

aus Tiefenbildern in Echtzeit kombiniert und sie damit stabilisiert und verbessert. Weiter-

hin präsentiert die Arbeit ein Rauschvisualisierungs- und Analyseverfahren mit dem Ziel,

das inhärente Rauschen der Tiefenwerte unterdrücken zu können. Um die Charakteristika

des Tiefenrauschens besser zu verstehen und um das Rauschen letztendlich entfernen

zu können, wird das Analyseverfahren auf Ground-Truth-Testdaten eingesetzt, die aus

Experimenten unter Verwendung von präzisen Tracking-Informationen stammen. Für die

Evaluation der vorgeschlagenen Echtzeit-Strategie zur Tiefendatenverbesserung erfolgt

ein Vergleich der Ergebnisse mit anderen aktuellen Methoden auf Referenzdatensätzen.

lm Ergebnis zeigt sich, dass Rauschen und die Anzahl der flackernden Löcher signifikant

minimiert und Geisterartefakte erfolgreich entfernt werden.

Weiterhin stellt die Arbeit zwei Strategien zur Echtzeit-Datenreduktion vor, mit der

die von Rauschen und Artefakten bereinigten bildern unterbrechungsfrei übertragen wer-

den können. Dies gilt insbesondere für die in vielen Anwendungsbereichen eingesetzten

Mehrkamera-Konfigurationen, die entsprechend Bildströme mehrerer Kameras gleichzeitig

liefern. Das entwickelte Datenreduktionsverfahren fungiert als weiterer Vorverarbeitungs-

schritte für die Übertragung von Szenen, die aus mehreren Blickwinkeln aufgenommen

werden und daher große Mengen von Daten über den Aufnahmeort enthalten. Ausführ-

liche Tests zeigen, dass die Reduktionsstrategien erfolgreich die Übertragung in einem

Netzwerk mit niedriger Bandbreite ermöglicht.
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Chapter 1

Introduction

1.1 Motivation

With the ongoing innovations and evolution in computer vision technologies, the realiza-

tion of intelligent and automated applications are becoming more feasible in different

areas, such as in autonomous vehicle industry, surveillance, virtual reality, remote collabo-

ration, e-learning, interactive 3D scene modeling, gaming, industrial automation, forensic

analysis, and robotics. Most of the applications in these areas are built upon the idea that

they would be able to function and interact with the real world autonomously by being

able to meticulously analyze a scene in real-time and correctly identify the objects within

it. To achieve such a goal, a crucial step involves scene understanding where computer

vision technologies play a vital role. Images, either in two- or in multi-dimensions, are

the fundamental materials in computer vision for understanding a scene. With the in-

troduction of multi-camera or multi-view systems for depth estimation of scene objects

and with the progress in three-dimensional depth-sensing technologies, depth information

of the objects in a scene is becoming more convenient to extract. Depth information is

highly quantifiable in scene understanding since it contains detailed information (e.g.,

position, distance) of the objects in a scene. Depth information, generally, is obtained

from stereopsis where the scene features are projected onto two cameras that are placed

at a distance from each other (mimicking the human eye positions), and then, the depth

information is extracted by using triangulation methods. However, depth estimation by

triangulation methods relies heavily on finding the accurate corresponding points for

matching the right and left images which is a well known but still a challenging problem.

With the innovations in camera technology, new three-dimensional depth-sensing

devices, such as the LIDAR scanners, light field cameras, structured light devices, and

Time-of-Flight (ToF) devices are becoming available. While high-end depth-sensing devices

such as the LIDAR scanners and light field cameras are capable of generating depth images

with high accuracy and comparatively less artifacts (e.g., missing depth, holes, flickering,

1



2 1.1 Motivation

depth inhomogeneity and alike) compared to consumer devices such as, structured light

sensors and ToF devices, they are quite expensive and often difficult to operate due to

their size and weight. Consequently, both the communities - academics and industry, have

inclined towards easily available and low priced devices such as the structured light devices

and ToF devices. Although these devices capture a scene with reasonable resolution and

speed, the depth data exhibits a substantial amount of artifacts. The artifacts generated

by these consumer depth cameras come in different forms. One common artifact appears

as randomly distributed holes over the surface of the objects of a scene; especially, where

the depth discontinuity occurs, i.e. near the edges of objects. Often, such artifact is spread

over the temporal domain and causes the flickering artifacts, meaning the random holes

appear and disappear at random locations on the object’s surfaces over the successive

frames. Moreover, in case of dramatic or drastic movement of the objects in a scene, we

often perceive ghosting artifacts on the depth frames when post-processing is applied

to the depth frames. Hence, the depth images from consumer depth cameras usually

need further enhancement otherwise, they cannot be used in various crucial real-world

applications. For example, in object tracking applications, the noise on an object’s surface

greatly deteriorates the tracking performance and in forensic analysis of a crime scene,

where every detail is vital, a poorly reconstructed scene might hamper the recovery of

correct information. Likewise, in telepresence or e-learning systems, low-quality 3D scene

limits the sensation of a natural presence of the remote users to the local site.

The primary focus of this thesis is to enhance the quality of the depth data captured

by the low-cost depth cameras; namely to reduce the artifacts from the resulting depth

images and subsequently, the secondary focus is to reduce the amount of data required

from multiple cameras (in case of a multi-camera setup) for smooth transmission of the

captured data. In respect to that, we propose a new framework to compute good-quality

depth images at interactive speed along with a data reduction strategy to aid uninterrupted

transmission of the data. Our main contribution is the development of a new real-time

depth image enhancement filter that fuses the spatial and temporal information of depth

images simultaneously for stabilizing and enhancing the distorted depth data. Therefore,

we suggest a composition of a novel depth outlier detection method and a real-time spatio-

temporal filter. Besides this, for a better understanding of the noise characteristics of the

depth sensors and eventually to optimize our depth enhancement method, we propose

to develop a noise visualization and analysis procedure where we create ground truth

data using position tracking information and then compare the recorded test data with

the ground truth data to extract the noise. Moreover, since our objective is to improve

the overall processing and enhancement strategy of the depth images, we maintain the

industry requirement for ensuring the requirements of real-time interactive content that

recommends less memory usage and reduction of data transmission time [1]. This

recommendation is placed for ensuring smooth data transportability from one location to

another. To this end, we devise a data reduction method that works as a preprocessing
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step before processing the captured data. Often, multi-camera setup is used for capturing

a scene for visualizing a 3D reconstruction of the scene from arbitrary viewing angles;

hence, a data reduction method would facilitate smooth transition of the large amount of

captured data from the capture location to the processing location.

In the following, firstly we briefly discuss different methods of depth data acquisition

and highlight their respective advantages and flaws. We discuss these methods and their

respective attributes, because there is a direct impact of these acquisition methods on the

quality of the captured depth images. Then, we discuss briefly the concept of spatial and

temporal filtering approaches and the idea of fusing spatial and temporal components of

depth images to attenuate the artifacts found on the depth images. Finally, we present the

objectives and challenges of this thesis as well as the outline and contributions.

1.2 Depth acquisition methods

Existing depth acquisition methods can be divided into two main categories - contact-based

and contact-less approaches. Contact-based approaches, as the name suggests, require

some form of physical contact with the object being scanned/captured and usually delivers

high quality 3D model. However, since they require direct physical contact they might

not be suitable for certain computer vision applications. On the other hand, contact-less

approaches do not need direct physical contact with the target objects and hence are being

used in a wide variety of computer vision applications. Contact-less approaches can be

further divided into categories - passive and active depth acquisition approaches where

the former one uses two cameras to acquire depth using triangulation methods [1] and

the later uses one camera and a projector to acquire depth [1].

Passive depth acquisition approach is based on passive triangulation method that

basically reproduces the human stereovision by placing two cameras placed at a certain

distance from each other. In this approach, binocular disparity [1] is used to estimate

the actual depth between the objects and the cameras. However, it requires accurate

detection of the projection points, which is a well-known yet challenging correspondence

problem [1]. Moreover, it also requires very precise calibration of the cameras and careful

setup of the instruments; otherwise, it generates invalid or missing depth information [2].
More details about this approach are stated in Chapter 2.

Active depth acquisition approach, on the other hand, is based on laser or structured

light techniques [1]. In this case, a camera and an emitter, that projects a pattern or a light

of specific wavelength to the scene, are used to obtain the depth information. Structured

light devices and ToF cameras use this active approach to estimate the depth of a scene.

While these devices are active range sensors and they are being utilized in many computer

vision application due to their low-cost and easy availability, they often produce invalid or

missing depth values due to reasons such as specular surface, occlusion and alike [1]. This
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leads to artifacts such as random holes over the surface of the scene objects and flickering.

More details about this approach are stated in Chapter 2.

Because of these artifacts, many crucial 3D computer vision applications demand

further enhancement of the depth images so that those applications can deliver accurate

and precise output by using depth images with minimum or no artifacts. Thus, the primary

aim of this thesis is to combine the spatial and temporal aspects of depth images for

removing or minimizing the artifacts and hence, elevate the overall quality of a captured

scene. Besides this, while capturing the detailed depth information and color information

of the objects of a scene, these cameras yield massive amount of data that needs to be

transported or transmitted to the processing location. Hence, the secondary focus of this

thesis is to eliminate input data that does not contribute to the final output.

1.3 Depth enhancement methods and existing challenges

There has been quite a lot of research pursued by the scientific communities where

researchers formulated the problem of the depth image enhancement with different

approaches, including but not limited to diffusion-based enhancement [3–5], energy

minimization [6–10], exemplar-based enhancement, spatial-neighborhood-based enhance-

ment, temporal information based enhancement and so on. Reformulating the depth

enhancement problem eventually resulted in a wide variety of enhancement approaches.

Here, we will focus on the spatial- and temporal-neighborhood-based solutions since

these methods have proven to be yielding moderate-quality output with reasonable pro-

cessing speed and with low computational complexity. Of course, the other methods

have their own benefits and flaws, such as energy minimization based solutions generate

comparatively accurate and plausible output, but their optimization process are often

difficult to implement and they have numerical instability along with large computation

time. Another example could be the exemplar-based methods that show great potential in

enhancing depth images where the structural continuity of a scene is preserved and the

missing depth values are recovered with plausible values. However, the success of these

methods in enhancing depth images greatly depend on the presence of color texture in

all regions of the accompanying color images. Lack of color texture on a smooth surface

eventually causes deterioration of performance for these methods.

In the existing literature of depth image enhancement using domain (either spatial

or temporal, even a combination of these two) information, we came across three basic

categories of methods. Among them, one category of methods uses the spatial domain

information available locally within the depth map and potentially the accompanying

color image, whereas another category uses the history of temporal information within a

continuous sequence of images to estimate the depth values for the current depth image;

the remaining other category uses both the spatial and temporal information to estimate
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the plausible depth values for the scene regions with missing depth information. A brief

discussion on these three categories of enhancement methods is presented below.

1.3.1 Spatial-based depth image enhancement

In the spatial-based depth image enhancement methods, neighboring pixel values and

other information around the affected depth pixel with artifacts are used to estimate plau-

sible and valid depth values for the affected depth pixel. In this approach, typically a single

depth image is considered while obtaining the neighborhood information of an affected

depth pixel. Some solutions using the spatial-based enhancement use accompanying color

image as a guidance image to estimate valid depth values for filling the holes caused due

to invalid or missing depth values. The solutions based on this approach typically are

suitable for static scenes and even when they are applied to dynamic scenes, the whole

processing is done offline. Besides, when solutions rely on guidance color image, lack of

color information in certain regions of the color image causes performance degradation of

the depth enhancement.

Most common solutions using this approach of depth enhancement use spatial or range

kernel filters such as median filter, bilateral filter and sometimes a combination of different

filters. Apart from these filters, there are interpolation and extrapolation methods that

are also used for depth image enhancement. However, although the filtering methods

typically generate good quality output for static scenes, most of them show a tendency to

blur the image, introduce artifacts around boundaries, and produce noisy edges. There

are also inpainting-based spatial methods, which works fine to generate good quality

output, but most of them work only for static scenes. Reconstruction-based methods also

generate good-quality output; however, they suffer from long computational time and

high complexity that cause difficult implementation.

1.3.2 Temporal-based depth image enhancement

This approach of depth image enhancement uses motion and temporal information within

successive frames to enhance a depth image. Some solutions, which use this approach,

also use accompanying color image to refine the respective depth image. In this approach,

the history of the depth values for the affected pixels is used to estimate plausible and valid

depth values to fill the holes present at the affected pixels. Temporal based approaches

generally deliver reasonably good quality output for dynamic scenes which spatial-based

methods are not able to perform. Besides, they also maintain depth consistency and

homogeneity on the enhanced depth images. This approach is often able to deliver the

output with reasonable processing speed and its computation complexity is also usually

low. However, the solutions based on this approach often suffer from latency issues

because of processing a number of previous frames to generate the desired enhancement

of the current frames. Often, in case of dynamic scenes, we perceive flickering artifacts on
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the enhanced images. Moreover, for drastic or very fast movement of the objects inside a

sequence of frames, enhanced images from this approach suffer from ghosting artifacts

when such scenarios are not taken into considerations. Besides this, we often observe

persistent holes in one part of an output scene when the depth values for that part in the

previous frames are invalid or missing.

1.3.3 Spatial and temporal based depth image enhancement

This category of depth enhancement approaches fuse the attributes of spatial- and

temporal-based methods and recover the depth values using both the spatial and tem-

poral domain information. The solutions, using this approach, take advantage of the

best attributes of both the spatial-based methods and the temporal-based methods and

hence deliver reasonably good quality output. However, they also inherit the flaws of both

the methods which often are seen as ghosting artifacts, flickering artifacts, and delay in

real-time output generation.

Hence, we propose a new method of spatial and temporal based enhancement which

keeps the advantages of spatial and temporal based methods and additionally minimizes

or removes the ghosting artifacts and flickering artifacts while filling the holes.

1.3.4 Research questions

While the existing challenges in depth image enhancement, mentioned above, indicate

which are the most important issues that need to be addressed for achieving good quality

depth images with reasonable processing speed and computational complexity, below we

formulate the following set of research questions which depicts these challenges more

precisely. These questions are directed towards the capability of an enhancement method

in addressing the existing challenges.

• Is the depth enhancement method capable of enhancing both static and dynamic

scenes in real time?

• Does the method only remove the holes or can it also remove other artifacts such as

flickering, motion artifacts (ghosting)?

• Does the depth enhancement method perform online or is it applied offline on the

input data sets?

• Does the method’s performance depend heavily on the texture of the accompanying

color image to enhance the corresponding depth image?

• Can the method fill large holes without introducing additional artifacts?

• Is the computational complexity high for the enhancement process?
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• Does the enhancement processing pipeline consider how the massive amount of

produced data be transmitted from one location to another?

1.4 Objectives and constraints

1.4.1 Objectives

There exist quite a lot of works to address the issues with low-cost depth cameras that

use different strategies to elevate the quality of depth images by recovering the depth

information in the affected region of a captured scene. Among the existing methods,

some of them greatly enhance the depth images, but at the cost of low processing speed

while others are more efficient in processing but their enhancement performance is poor.

Moreover, there are methods that work only for stationary scenes and some others work

very well for stationary scenes and perform poorly for dynamic scenes. Apart from that,

many of the existing depth enhancement methods’ working pipelines do not take into

account the massive amount of data that the camera (or cameras, in case of multi-camera

setup) generates.

The objective of this thesis is to overcome these limitations, such as ghosting, flickering,

processing delay, which are seen when both the spatial and temporal domain information

are used to enhance the depth images of a scene. Our purpose is to develop such a

method that not only would remove the mentioned artifacts but also would not introduce

additional artifacts like those that some of the existing methods do. Besides, we would

also like to make sure that our method has very low computational complexity and its

implementation is relatively simple so that it can be applied to various applications with

minimum effort. Moreover, we would like to support real-time processing speed for our

approach so that it can be used in various applications that demand such speed. While

developing our approach, we would also like to focus on using minimum usage of data so

that we can put a minimum load on processing; to do that we opt to use only the depth

image and not any guidance image. An important goal of our work is to support both

static and dynamic image enhancement so that different applications can benefit from

our approach. Moreover, our goal is also to process the images online so that it can work

in real-time, unlike a few depth enhancement methods that opt to process the data in

off-line. For a better understanding of the characteristics of the noise generated by the

depth sensors, we would also like to visualize and analyze the noise generated by the

depth sensors. To do that, we would like to create ground truth using our tracking setup

and then compare the test data with the ground truth to extract the noise. Moreover, we

would also like to ensure better transportability of the generated data so that they can be

transmitted from one location/device to another via a regular speed network.



8 1.4 Objectives and constraints

To that end, we propose a new real-time enhancement filter that fuses the spatial

and temporal information of depth images simultaneously for stabilizing the distorted

depth data. Here, we suggest a composition of a novel depth outlier detection method

and real-time spatio-temporal filter to achieve good quality depth images. Moreover, we

design a tracking setup to get the location of the camera and the test object in world

coordinates, and then we create ground truth images; which we later use to extract noise

from the captured test data set. We develop an analysis and visualization procedure of the

sensor noise for a better understanding of the noise characteristics. The outcome of the

noise analysis could essentially be used to optimize our depth enhancement method. In

addition, we also aim to address the industrial requirements for real-world applications,

which imply an easy and transparent adaptability of the method and an implementation

capable to perform in real-time. Moreover, our work also aims to maintain the industry

requirement for lower consumption of memory and data transmission time by reducing

the input camera data in case of a multi-camera acquisition setup.

1.4.2 Constraints

In this work, we choose to use the affordable and easily available active depth acquisition

devices simply because currently a great number of academia and industry use such devices

for their respective computer vision applications. Besides, we also did not consider contact-

based depth-sensing devices because these devices require physical contact (i.e. markers

on the objects) with the object being scanned; which is not feasible for many applications

and impractical to survey a defined area. We opted for a real-time solution and maintained

a certain level of accuracy because there are quite a lot of applications that demand

real-time processing speed rather than very high level of accuracy. Although accuracy is

important, but many applications do not require a very high level of accuracy, instead,

they are fine with normal accuracy but they would rather demand high processing speed.

We also kept in mind that some applications might need more than one capturing camera

in which case quite a big amount of data needs to be processed and later transmitted to

different locations or devices. In this case, oftentimes a reduction of input data from each

camera helps smooth transfer of processed data over low bandwidth network. We consider

low-bandwidth networks in such case because there might be locations (e.g. remote

geographical area, areas affected with natural disaster and alike) and situations (e.g., a

depth camera, mounted on a robot at a disaster location, is transmitting the captured data

over public mobile network to the base station for reconstructing the affected area in 3D)

where a high-bandwidth network might not be available.
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1.5 Outline and contributions

This section gives the outline of the thesis, highlights the contributions with respect to

the different stages of depth image enhancement process, and provides references to the

articles where the results were published. Figure 1.1 depicts a pipeline of the stages of a

typical depth image enhancement process. The purpose of each of the stages is described

briefly with labels in the diagram of Figure 1.1. It also shows the parts of the pipeline

where we have contributed. Below we state the outline of this thesis by presenting and

briefly discussing about the main parts of the thesis. The main body of the thesis is

separated into five parts as below:

• Background and related works

• Novel depth image enhancement strategy

• Depth noise extraction and visualization

• Camera data reduction strategy

• Use cases of our proposed strategies

– Telepresence

– Efficient 3D representation of a scene

– E-learning

1.5.1 Background and related works

This part of the thesis presents a brief background study about the topic discussed through-

out the thesis and analyze the existing works pursued in the scope of depth image

enhancement. In Chapter 2, firstly we introduce the fundamental topics related to depth

image processing and least square optimization which are crucial for this thesis work and

then, we categorize different existing methods according to their filter type usage, usage

of guidance color image, processing speed, real-time support and so on. We also discuss

about the respective advantages and flaws of these methods.

1.5.2 Novel depth image enhancement strategy

We present our main contribution in this part of the thesis. Chapter 3 discusses and

illustrates the underlying reasons behind the existence of holes, flickering artifacts, and

ghosting artifacts. Then it introduces our novel depth outlier detection method and real-

time spatio-temporal filtering. It also includes the related algorithm and illustration of

how invalid depth values and unstable valid depth are identified as outliers and later

removed in order to attenuate the holes and flickering artifacts. The different illustrations
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in this chapter show how we minimize or remove the holes, stabilize the valid depths and

yield ghosting-artifact-free depth images that can later be used in crucial computer vision

applications. This chapter highlights our contribution in achieving a real-time and robust

depth image enhancement method that performs quite well both for static and dynamic

scenes. The results of this chapter have been published in the following articles:

• Islam, ABM T.; Luboschik, M.; Jirka, A. & Staadt, O., gSMOOTH - A Gradient based

Spatial and Temporal Method of Depth Image Enhancement, Computer Graphics

International (CGI)’18, Bintan, Indonesia, Pages 175-184, 2018.

• Islam, ABM T.; Scheel, C.; Pajarola, R. & Staadt, O., Robust Enhancement of Depth

Images from Depth Sensors, Computers & Graphics Journal, Volume 68, Pages 53-65,

2017.

• Islam, ABM T.; Scheel, C.; Pajarola, R. & Staadt, O., Depth Image Enhancement using

1D Least Median of Squares, Computer Graphics International (CGI)’15, Strasbourg,

France, 2015.

• Islam, ABM T.; Scheel, C.; Pajarola, R. & Staadt, O., Robust Enhancement of Depth

Images from Kinect Sensor, IEEE Virtual Reality Conference, Arles, France 2015

1.5.3 Depth noise extraction and visualization

This chapter presents our work that we pursue to visualize and analyze the noise that

a depth sensor yields on the surface of depth images. Chapter 4 shows how the sensor

noise of a depth camera is related to the distance of the objects from the camera, the

viewing angle of the camera and the lighting condition of the scene. The experiments

conducted in this chapter therefore have three parameters – the distance of the objects

from the camera, the viewing angle and the lighting condition. With the data obtained

from this experiment, ground truth data is generated which is later used to extract noise

from the captured depth data. Detail description of the experimental setup, hardware

tools, camera calibration method, object tracking tools for generating the ground truth

data and extracting the noise is also described in this chapter. Moreover, a brief description

of the software tools developed to visualize the noise or distortion is also presented in

this chapter. Results from this chapter could potentially be utilized to optimize the depth

image enhancement processing pipeline stated in Chapter 3.

1.5.4 Camera data reduction strategy

This chapter presents the secondary focus of this thesis that is the reduction of camera

data. There are certain computer vision applications where multiple cameras are used

for capturing a scene from various viewing angles. In such multi-camera setups, first,



12 1.5 Outline and contributions

not all the camera data from each camera is used for the final output. Hence, some

parts of the camera data can be discarded. And, second, although our proposed depth

data enhancement framework does not depend on the accompanying color images, many

computer vision applications use the color images in addition to the enhanced depth

images to reconstruct a colored 3D model. Hence, we propose two data reduction

strategies – one for reducing the input data in case of a multi-camera setup and another

for the color images that are captured in parallel with the depth images by the depth

cameras. Chapter 5 firstly discusses briefly some existing data reduction strategies and

then proposes two data reduction strategies for multi-camera setup and color image data

reduction respectively. The results of this chapter have been published in the following

articles:

• Islam, ABM T. & Staadt, O., Bandwidth-Efficient Image Degradation and Enhance-

ment Model for Multi-Camera Telepresence Environments, Proceedings of the 10th

European Conference on Visual Media Production (CVMP), 2013.

• Adhikarla, V. K.; Islam, ABM T., A.; Kovacs, P. T. & Staadt, O., Fast and Efficient Data

Reduction Approach for Multi-Camera Light Field Display Telepresence Systems,

Proceedings of the EEE 3DTV-Conference: The True Vision-Capture, Transmission

and Display of 3D Video (3DTV-CON), 2013.

• Islam, ABM T.; Ohl, S. & Staadt, O., Multi-Camera Acquisition and Placement Strat-

egy for Displaying High-Resolution Images for Telepresence Systems, Eurographics

Posters, 2013.

1.5.5 Use cases of this work

This chapter is presented as an extension of the works pursued in the previous chapters

and typical uses cases of the proposed approaches. Chapter 6 introduces three typical use

cases where we can use our proposed works. First, an illustration of a typical telepresence

system is presented that shows how our proposed real-time enhancement can be used in

telepresence systems. Second, how the enhanced depth images from our proposed strategy

can improve the output of 3D scene reconstruction is explained and experimental results

are presented. Third, an illustration of an e-learning environment is presented and then

how enhanced depth image can improve the sensation of 3D presence is demonstrated.

We published the following articles that showcase that these applications can potentially

benefit from the enhanced depth images.

• Islam, ABM T.; Scheel, C.; Imran, A. S. & Staadt, O., Fast and Accurate 3D

Reproduction of a Remote Collaboration Environment, Virtual, Augmented and

Mixed Reality. Designing and Developing Virtual and Augmented Environments,

Springer International Publishing, 2014.
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• Islam, ABM T.; Flint, J.; Jaecks, P. & Cap, C. H., A proficient and versatile online

student-teacher collaboration platform for large classroom lectures, International

Journal of Educational Technology in Higher Education, 2017.

• Scheel, C.; Islam, ABM T. & Staadt, O., An Efficient Interpolation Approach for

Low Cost Unrestrained Gaze Tracking in 3D Space, ICAT-EGVE - International

Conference on Artificial Reality and Telexistence and Eurographics Symposium on

Virtual Environments, 2016.

Chapter 7 concludes the thesis and elaborates on possible lines of future work.





Chapter 2

Background and related work

2.1 Background

2.1.1 Depth images

A depth image or depth map d(x , y, z) is an image that contains information relating

to the distance of the surfaces of scene objects from a viewpoint; here x and y are the

2D positions of the image sensor pixels which refers to the row and column of an image

and z refers to the distance to the target object from each image sensor pixel. Since a

depth image contains a lot more detailed information about the objects of a scene, it can

be used in a wide variety of applications such as 3D reconstruction of a scene, robotics,

autonomous vehicle industry, security, object tracking and alike.

Depth images are captured with various available depth sensors, such as structured

light devices (Microsoft Kinect, Intel RealSense, ASUS Xtion and alike), ToF sensors, LIDAR

scanners and so on. These devices use different methods to capture scene objects. Below

we discuss briefly different depth acquisition methods.

2.1.2 Depth acquisition methods

There exist quite a few depth-sensing approaches, along with their respective advantages

and flaws, such as depth from motion, stereo imaging, structured light or ToF [1]. These

approaches can be divided into two main categories - contact-based and contactless

techniques. Contact-based approaches require some form of physical contact, either the

markers are to be placed on the objects being scanned or the scanning devices need to be

in physical contact, and they are able to reconstruct high quality and precise 3D model of

a scene. However, due to the requirement of physical contact, these approaches might not

be suitable for many computer vision applications and unrealistic to scan a defined region.

Contact-less approaches, as the name implies, do not require such direct physical contact

15
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with the objects being scanned and hence are being used in a wide variety of computer

vision applications. Contact-less approaches can be further divided into two categories -

passive and active depth acquisition approaches where the former one uses two cameras

to acquire depth using triangulation methods [1] and the later uses one camera and a

projector to acquire depth [1]. Figure 2.1 shows a diagram depicting the basic differences

between these two approaches. In the following, we briefly describe the passive and active

depth acquisition approaches.

2.1.2.1 Passive depth acquisition

Depth acquisition techniques that are based on passive triangulation method basically

follow the stereopsis or stereo vision which reproduces the human stereo vision by placing

two cameras placed at a certain distance (i.e. baseline) from each other. The left image

of Figure 2.1 shows an illustration of passive depth acquisition setup. In passive stereo

depth acquisition, binocular disparity (the difference in retinal position between the

corresponding points in the two images) is used to estimate the actual depth between

the objects and the cameras. However, this approach requires accurate detection of the

projection points, a well-known yet challenging correspondence problem [1], which are

obtained by feature matching and hence are affected by shadows or texture patterns.

Moreover, this approach requires very precise calibration of the cameras and careful

setup process; otherwise, even for very small issues in calibration and synchronization, it

generates invalid or missing depth information. Such artifacts also occurs in case of the

absence of camera overlap, featureless surfaces, sparse information for a scene object such

as shrubbery, unclear object boundaries [2] and so on.

Camera 1 

Camera 2 

Camera 

Projector 

Passive depth acquisition  Active depth acquisition  

Figure 2.1 – Diagram showing the basic differences between Passive and Active
depth acquisition techniques.
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2.1.2.2 Active depth acquisition

In contrast to the passive depth acquisition approach, active approach, based on laser or

structured light techniques [1], reduces the dependency on texture to deal with feature

correspondence pairs. In this case, one of the cameras in the setup of Figure 2.1 is replaced

by an emitter that projects a pattern to the scene. By doing so, the camera is able to

distinguish the projected pattern from the rest of the elements, regardless of their texture.

Thus, the projected pattern generates a group of features that may be detected in the

recorded intensity image. ToF cameras also use an active approach of depth measurement

where depth is calculated by measuring the phase difference between emitted and reflected

infrared signal [11]. While both the Structured light devices and ToF cameras are active

range sensors and they suffer from mis-calibration issues, they are more widely utilized

for a variety of purposes due to their low-cost availability in the commercial market with

factory calibration settings [2]. Moreover, these depth cameras provide more reliable and

robust 3D geometry information of real world objects than the stereo-based systems [11].

However, and despite the efforts in redesigning the illumination patterns and factory

calibration settings, different artifacts occur, in case of structured light devices, when the

projected pattern becomes too weak compared to the background light due to a wide range

of issues such as ambient light [1], external active illumination source interference [2],
active light path error caused by reflective surfaces, occlusion, erroneous light pattern

detection in dynamic scenes, depth offset for non-reflective objects and others [2]. ToF

cameras also produce artifacts that originate from the electronic noise, dark noise and

photon shot noise of the camera sensor [12]. These artifacts eventually produce invalid

depth measurements. Regardless whether the active depth acquisition is performed

with structured light sensors or by ToF sensors, the obtained depth information of a

scene often contains invalid or missing depth values. This leads to artifacts such as

randomly distributed holes over the surface of the scene objects and sometimes, those

holes are perceived as flickering. Moreover, ghosting artifacts are also perceived when fast

movements occur inside a scene. Due to the presence of these artifacts, many computer

vision applications demand further enhancement of the depth acquired by these sensors

so that those applications can deliver accurate and precise output by using depth images

with minimum or no artifacts. Since the aim of this thesis is to remove or significantly

reduce these artifacts and hence improve the depth image quality, we proceed toward a

depth enhancement approach where we identify the invalid depths as outliers among the

valid values that are the inliers. We use least squared optimization approach to maximize

the probability of detection and removal of the outliers (i.e. the invalid depth values) and

replace them with valid depth values.
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2.1.3 Leastsquaresoptimization

Leastsquaresisalinearregressionproceduretodeterminethebest-fitlinetoasetofdata

points[13].Thebasicproblemistofindthebest-fitline,seeEquation2.1,giventhat,for

n∈1,...,N,thepairs(xn,yn)areobserved.Theleastsquaresmethodcanbegeneralized

tofindthebestfitintheformstatedinEquation2.2.

y=ax+b (2.1)

y=a1f1(x)+...+aKfK(x) (2.2)

Incaseofleastsquaresmethod,insteadoffindingthebestfitline,wecouldfind

thebestfitgivenbyanyfinitelinearcombinationsofspecifiedfunctions. Hencethe

generalproblemis:givenfunctionsf1,...,fK,findvaluesofcoefficientsa1,...,aKsuch

thatthelinearcombination(seeEquation2.2)isthebestapproximationtothedata.The

Equation2.1involvestwofreeparametersthatspecifytheintercept(a)andtheslope(b)

oftheregressionline.Theleastsquaremethoddefinestheestimateoftheseparameters

asthevalueswhichminimizethesumofthesquares(hencethenameleastsquares)

betweenthemeasurementsandthemodel(i.e.,thepredictedvalues)[14].Thisamounts

tominimizingtheexpressioninEquation2.3whichistheerror associatedwiththe

function,ofEquation2.1,foragivendata{(x1,y1),...,(xN,yN)}.Thegoaloftheleast

squareoptimizationprocessistofindvaluesofaandbthatminimizetheerror.

(a,b)=

N

n=1

(yn−(axn+b))
2 (2.3)

Leastsquaresmethodspossesstheabilitytoexplainaproblemwithsimplicityand

haveawidespreadapplicabilityinvariousapplications.Moreover,theyarethemaximum-

likelihoodsolutionand,iftheGauss-Markovconditionsapply,thebestlinearunbiased

estimator[14].However,despitethesequalities,leastsquaresmethodshaveacrucial

drawbackthatishighsensitivitytooutliers(i.e.extremeobservations).Thisisaconse-

quenceofusingsquaresbecausesquaringexaggeratesthemagnitudeofdifferences(e.g.,

thedifferencebetween25and15isequalto10butthedifferencebetween252and152is

equalto400)andthereforegivesamuchstrongerimportancetoextremeobservations

i.e.theoutliers.Thisproblemisaddressedbyusingrobusttechniques(suchastheleast

medianofsquares)thatarelesssensitivetotheeffectofoutliers[14].

2.1.4 LeastMedianofSquares

TheLeastMedianofSquares(LMS)[15]isastatisticaltechniqueforrobustregressionof

ap-dimensionalsampleset(xi,yi),whichminimizesthemedianofthesquaredresiduals
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ri
2overasetofestimatesθin p.Here,riandθareexpressedasinEquation2.4and

Equation2.5:

ri(n)=yi−(xi1θ̂1+···+xi(p−1)̂θp−1+xip̂θp) (2.4)

θ=(θ1,θ2,···,θp)
t (2.5)

Basically,avectornrepresentsahyperplanethat,inacertainway,describesthelinear

dependencyofyifromthep−1variablesinxi.LMSisknowntoberobusttofalse

matchesandoutlierswhilefittingequationstotheobserveddataset.Figure2.2shows

anillustrationofLMSthatisappliedonadummydataset(xi,yi).Itestimatesthedata

pointsbysolvingthenonlinearminimizationproblemthatisri(n).Theoutliersfrom

thedatasetcanbefilteredoutbyusingarobuststandarddeviation̂σwhichusesthe

minimummedianofri(n).

ItisworthtomentionthatLMShasneverbeenusedfordepthimageenhancement.

Weuseitfortheveryfirsttimeforenhancingdepthimages.However,theoriginalLMS

estimatorbecomescomputationallyexpensivewhenthedimensionpofsampleset(xi,yi)

getsbigger.Since,inthescopeofthisthesis,wecandefineourobserveddepthvalues

asaonedimensionalsetofdata,wecanuseaonedimensionalLMSwhichwouldbea

X-axis 

Y-
a
xi
s 

outliers 

L
MS 

goodfitforthenatureoftheproblemdomainofthisthesisanditwouldalsobelesstime

Figure2.2–IllustrationofLeastMedianofSquares:thegreendotsrepresentthe

inliersorvalidvaluesinthedataset,thereddotsrepresenttheoutliersandthethin

bluelinerepresentstheLeastMedianofSquaresregressionlinewhichgoesthrough

theinliers.
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consuming than higher dimensional LMS. We choose LMS estimator over other robust

estimators, such as median and least trimmed squares regression, because by using the

LMS regression, we can have least expensive computation for enhancing depth images and

at the same time, remove most amount of outliers with LMS than the other estimators.

2.2 Related work

There are a number of existing approaches that deal with the noise removal in depth

images. These existing approaches can be divided into two main categories. First, several

approaches define the depth noise removal problem as scene depth completion [2] and

inpainting process where the holes can be reduced or removed by applying different

strategies such as anisotropic diffusion, energy minimization, exemplar-based filling and

matrix completion. Second, other approaches define the depth noise as the missing of

domain information and they are based on the nature of retrieving the missing information

domain that is needed for processing the depth images to fill the holes of the depth images.

Here, we focus on the second category since this thesis falls into this category. We first

describe briefly the outcome and limitations of the first category of these approaches and

then we describe the attributes, advantages and limitations of the second category.

2.2.1 Depth noise removal by scene depth completion and inpaint-

ing like methods

Researchers, in quite a few approaches, have reformulated the problem of depth hole filling

as scene depth completion and hence applied inpainting like methods [16] to fill the holes.

One such method is anisotropic diffusion [3] and a few approaches, such as [4,5], use

this method to remove the noise from depth images. The approaches that use this method

generally fill depth holes by extracting the edges from the accompanying color image

captured from a RGB-D sensor and then by applying various diffusion methods to smooth

the edge and other regions. Although the approaches based on this method yield smooth

depth images in the presence of flat surface with sharp edges, their high computational cost

and complexity restrict them from being used in real-time applications. The approaches

based on energy minimization, on the other hand, use an energy function [6] which

incorporates the characteristics of a depth image acquired via a RGB-D sensor (such

as Microsoft Kinect) into the hole filling process. Approaches, such as [7–10], that

use this method generally assume that a linear correlation exists between the depth

and color values within a small region. These approaches generally produce smooth

surfaces with sharp object boundaries, but often texture and relief information of the

surface are lost during the processing [2]. Besides this, these methods also suffer from

large computational overhead [8] due to the complex optimization process of energy
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minimization approaches; although recent computational advancements (e.g., using GPU

acceleration) would facilitate them to extensively boost their computation speed.

Exemplar-based methods, in case of color image completion, generally work by copying

and pasting the texture patches from the known regions of the image to complete or fill the

region of interest [2]. However, since the depth images from the commodity depth sensors

do not contain such level of texture and often produce smooth object surfaces, directly

applying the exemplar based color image filling method is very challenging. Although the

approaches, such as [17–23], which use exemplar-based filling method produce images

with sharp edges, crisp surfaces and maintain structural homogeneity, often they are

computationally expensive and their performance relies heavily on the availability of

fronto-parallel views [2]. Few other approaches, such as [24], use matrix completion

based approaches where the depth images are filled based on the idea that similar patches

in a color-depth image pair lie in a low-dimensional subspace and can be approximated

by a low-ranked matrix. Although the approaches using this method generate sharp edges

with crisp surface, some approaches (e.g., [24]) require noisy color image as input.

2.2.2 Depth noise removal by domain information

The approaches that use domain information to remove the noise from depth images can

be categorized into three types. The first type uses the spatial domain information that is

locally contained within the depth map. This type of work often also includes information

from accompanying color image. The second type uses temporal information extracted

from a sequence of frames and use that information to remove the depth noise. The third

type combines both the spatial and temporal domain information for enhancing depth

images. In Table 2.1, we present the advantages and limitations of each of the three

categories of depth image enhancement methods which we discussed above. It is worth

to mention that the advantages and limitations differ in the degree and strength of these

methods. The diagram in Figure 2.3 illustrates an overview of the existing depth noise

removal methods based on the type of input data and information domain dependency.

2.2.2.1 Noise removal using spatial domain information

This category of depth noise removal methods use the depth value and other information

from the spatial neighbors of a single depth image to remove the artifacts such as holes or

invalid values within the current depth image. Some methods of this category also use the

information from the accompanying color image to remove the artifacts from the depth

image. Due to the nature of the processing attributes of this category of methods, they

are mostly suitable for processing a single frame at a time or with delayed results in case

of processing a sequence of frames. They can also be applied to processing a sequence

where off-line processing is allowed for an application. Although these methods have the

potential to generate real-time results with the help of recent advancements in hardware
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acceleration and optimization in their respective algorithms, such real-time solutions can

be achieved only if there is no dependency on other frames [2]. Existing approaches in

this category of methods can further be divided into three main groups based on the type

of spatial information these methods use for removing the artifacts. Below we briefly

discuss the works that falls into these three groups.

Methods based on spatial filtering, interpolation and extrapolation

There are quite a few approaches that use only spatial filters for depth image enhancement.

Most of these approaches use popular filters like median filters [32,46], Kalman filters [56],
guided image filters [30,40,57,58], bilateral filters [25–27,39,55,59,60], and sometimes

a combination of median and bilateral filters [26, 45]. Besides the type of filters used,

these approaches can basically be categorized by the depth sensor type they use, real-time

processing support and by the inclusion of accompanying color image data. In most of the

depth image capture scenarios, either the color images are captured with the attached

RGB sensor of the depth cameras or a secondary RGB camera is used to capture the color

images when the depth cameras do not have one. Many of the existing depth enhancement

approaches use the visual information encoded in the color image to further enhance the

accuracy of the depth images. Many of these approaches, e.g. in [61,62], in fact use the

color images to elevate the sharpness and resolution of the depth images.

For instance, Chen et al., in [25], use accompanying color image to fill the holes using a

region growing approach. They use a joint bilateral filter to further elevate the accuracy of

the enhanced depth images. However, it fails to work well for parts where the color image

contains a dark region. Yang et al. [26] also enhance depth images by using bilateral filters

that generate good result for static scenes; however, due to lack of temporal information,

it is not suitable for dynamic scenes. Camplani et al., in [27,28], also use a joint bilateral

filter that evaluates pre-detected foreground areas and edge-diffidence maps to integrate

depth and color information. However, it is applicable only to static scenes. Shen et

al. [29] propose another method using bilateral filters that assumes different depth layers

by separating the scene into a static background and several dynamic foreground objects.

Later, they combine different RGB-D noise models to determine the label of each depth

layer and fill the holes considering the fact that only the neighboring pixels that are on

the same depth layer contribute to filling the central pixel. Their output outperforms the

output from [28].

He et al. [30] use a guidance image to enhance the depth image. They use a linear

time guided filtering approach where the content of the guidance image is used to generate

the resulting image. Their method performs fast and is able to preserve the sharpness

of the edges since it transfers the structures of the guidance image into the resulting

image. Some other notable methods that also use a similar guidance image approach
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are [40,57,58,63]. However, most of them are not suitable for dynamic scenes and a few

of them yield blurry object boundaries.

Yang et al., in [31], use a different approach of applying a bilateral filter for depth

image enhancement. They fill the holes based on the depth distribution of the neighboring

pixels. To do so, at first they label each hole and then dilate each labeled holes to get

the value of the surrounding pixels. Later, they use a cross-bilateral filter to elevate the

accuracy of the output. Another method proposed by Nguyen et al. [64] also uses a

cross-bilateral filter to fill the holes in the warped image. They use the propagation of the

directional depth information that is based on camera calibration to fill the holes caused

by disocclusion from 3D warping [64]. While this approach generates good results, it

works only for the holes occurred due to transformation and warping.

Min et al., in [65], propose to use a new way of using the information from color

images to enhance the corresponding depth image. They use a weighted mode filter and a

joint histogram of the color and depth image pair. At first, they analyze the color similarity

between the target and the neighbor pixels to obtain a weight value that is then utilized to

count each bin on the joint histogram of the depth image [2]. Their method also includes

temporal information for achieving a temporally stable depth video. Daribo et al. [66] use

another weighted filter, a weighted Gaussian filter, unlike a weighted mode filter in [65],
to enhance the depth images. They basically apply this rather simple to implement filter

by considering the distance to the contours. Here they apply smoothing close to object

boundaries but avoid filtering the smooth areas in the depth image [2]. Another similar

approach is proposed by Chen et al. [67]. However, here they use an average filter rather

than a Gaussian filter as seen in [66]. Here they use an adaptive approach by taking into

account the edge and directions that eventually helps to preserve the sharpness of the

edges and avoid the smoothing the textured areas.

There are few other notable approaches, e.g. [68,69], that use cross-trilateral median

filter and multilateral filter respectively to fill the holes in depth images. However, these

works are suitable for the depth data that are estimated by stereo correspondence that is

not covered in this thesis. Although they produce reasonable output, occasionally they

yield blurry depth images.

Quite a few depth image enhancement methods use interpolation and extrapolation

techniques to fill the holes in the depth images. For instance, Garro et al. [70] propose

a segmentation-based depth image enhancement method. Since this method requires

accurate alignment of the objects inside the color and the depth image, it uses advanced

segmentation methods [71] that combine depth and color information when the image

is not particularly highly textured to identify the surfaces and objects in the color image.

Subsequently, the low-resolution depth image is projected on the segmented color image

and later interpolation is applied to the resulting image. Although this method produces

good quality output, it’s high dependency on precise registration between color and depth

image causes occasional failure when the registration and segmentation are not done
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perfectly. Xu et al. [33] also use an advanced segmentation method, but unlike the one

in [70] which is based on graph cuts [71], they use watershed color segmentation [72]
for correctly aligning the color and depth images. Although their method yields output

without any blurring, the segmentation is computationally expensive.

Another method that uses interpolation technique is proposed by Atapour-Abarghouei

et al. [73]. They use a grammar-inspired non-parametric interpolation approach that

uses a segmentation step to redefine and identify the holes into a dozen of completion

cases. Subsequently, they propagate the depth pattern into hole regions according to the

individual cases. Although for regular-sized holes it performs quite well, its performance

highly depends on accurate segmentation that does not always occur and it also fails for

large holes. Maimone et al. [32] also use interpolation method for removing holes. At

first, they use a GPU-accelerated median filter and then they apply interpolation for filling

the holes. This approach generates smooth depth frames, but it occasionally produces

wrong interpolated values.

A few other approaches use extrapolation technique to enhance the depth images.

For example, Po et al. [74] use a multi-directional extrapolation method to fill the holes.

This method uses the neighboring pixel texture features to estimate the direction in

which extrapolation is to take place, rather than using the classic horizontal or vertical

directions that create obvious deficiencies in the completed image. They propose sets of

nine directions to fill the holes so that there is a higher possibility for the completed holes

to match the texture or structure of the background and the surrounding objects. Other

notable methods using such strategy are [75,76].

Methods based on reconstruction techniques

The approaches that use reconstruction based approach for depth enhancement basically

define the problem of hole filling as an energy minimization problem. Although most

of these approaches use the autoregression model or Markov Random Fields for depth

enhancement, they use different objective functions that originate from their respective

regularization terms.

For instance, Yang et al. [7] propose an adaptive color-guided depth image recovery

method where they utilize an auto-regressive model to define the problem of hole filling

as a problem of minimizing the model’s prediction errors. For improving the accuracy

and stability of their depth enhancement strategy, they also apply a parameter adaptation

strategy which they use for processing each pixel. A similar color-guided approach has

been proposed by Garcia et al. [34] where the hole filling performance highly depends on

the accurate registration between the color and the depth image pair.

A rather different approach, than [7,34], of energy function for a depth image recovery

model is proposed by Liu et al. [9]. Here, for building the energy function the authors

assume that a linear correlation exists between depth and color values in small local
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neighborhoods. They also propose to use a regularization term along with the energy

function for attenuating the noise and sharpening the object boundaries. In a rather

similar approach, Chen et al. [6,35] use a regularization term, along with their energy

function, which includes a joint-bilateral and a joint-trilateral filter. The joint-bilateral filter

is utilized to integrate the structure information and the joint-trilateral filter is adapted to

the noise model of the depth camera used for depth acquisition.

Wang et al. [36] use a trilateral constrained sparse representation (SRn) approach of

depth hole filling which considers the intensity similarity and spatial distance between

a reference patch (in the color image) and the target patch (in the depth image). This

method is based on [37] which uses a locally regularized representation that ignores the

effects of geometric distance and position of the target and reference pixels in the depth

and color image pair. Wang et al. improve the output by including the SRn method into it.

Other notable works in this category are pursued by Sheng et al. in [8] and Yang

et al. in [38]; here, in the former one, the authors use a combination of joint bilateral

filtering and segment-based surface structure propagation, and in the latter one, the

authors use an adaptive color-guided auto-regressive (AR) model. In general, the depth

enhancement methods based on reconstruction techniques suffer from large computational

overhead due to their energy minimization approaches [8]. However, recent computational

advancements (e.g., using GPU acceleration) would assist them to overcome this issue.

Methods based on inpainting techniques

Quite a few works in the area of depth enhancement adapt the popular inpainting method

that has been primarily used in enhancing color images. Although most of the works

using this approach generate a reasonable output, most of them are computationally

expensive and are not suitable for real-time applications. For example, the approach [23]
by Criminisi et al. use a structure-guided inpainting technique [77] which generates

reasonable results but occasionally suffers from blurring and loss of fine details due to

its diffusion process [2]. Moreover, it is mainly used in the depth data acquired through

stereo correspondence that is not covered in this thesis. Telea et al. present another image

inpainting method [16] that uses both the depth and color data for depth enhancement.

However, it exhibits noisy object boundaries due to not considering both the spatial and

temporal information among the pixels and fails for large holes.

Another approach that uses both the color and depth images is proposed by Qi et

al. [39]. Here they use a fusion-based inpainting method where the color image is used

mainly for locating the object boundaries and hence, achieve nice results with sharp

object edges. While filling the holes in the depth images, they use a non-local filtering

strategy that considers the geometric distance, and the depth and structure similarity in

the color image. Liu et al. [40] also use the information from color images to enhance the

corresponding depth image; however, they adapt the fast marching method from [16]. To
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achieve better output than [16], they incorporate a post-processing method by using the

color-image-guided technique from [30]. As a result, the output shows better sharpness

near the objects’ edges. There are a few other notable approaches, e.g. [41–43], which use

the inpainting method in combination with the information from the accompanying color

image. Among these methods, in [42] a GPU-based anisotropic diffusion-based method is

used which works in real-time. Here, the anisotropic diffusion is applied to ensure the

accurate alignment of the object boundaries in the color and depth image pair.

2.2.2.2 Noise removal using temporal domain information

This category of methods uses motion and temporal information from a sequence of frames

to enhance the depth images. Some methods in this category also use accompanying color

frames to remove the artifacts and refine the corresponding depth frames. For instance,

in [44], Avetisyan et. al. use optical flow information of consecutive color frames and

transfer this information to enhance the corresponding depth frames. Although their

work provides real-time results and performs well in suitable cases, it does not produce

satisfactory results for very noisy regions. Moreover, it occasionally generates invalid

motion vectors and also suffers from ghosting artifacts when there is a sudden change in

depth due to rapidly moving objects in a scene. Hui et al., in [45], estimate the optical

flow of consecutive color frames in a mobile RGB-D camera setup to get an additional

depth cue which then enhances the depth frames. However, instead of building a temporal

filter on top of the obtained data, their method estimates additional depth cues from the

flow that are then combined with the original depth images. Moreover, it works only with

moveable camera setups and is not appropriate for stationary cameras. Izadi et al. [50]
propose another method for moving camera setup that is called KinectFusion. Here they

use a sequence of depth frames to complete the missing area while reconstructing a scene

in 3D. Although their method is robust, it is only applicable to scenes with static objects.

Matyunin et al., in [46], also use the motion information, obtained through motion

estimation, to enhance the depth frames. However, they present an offline approach where

the filtering itself is still just spatial; the estimated motion is only employed to temporally

smooth the depth images. Although their outputs are mostly plausible, they suffer near

the edge of the objects. Moreover, their method occasionally generates invalid depth value

when the color information does not correspond to the accompanying depth information.

An online temporal method is presented by Islam et al. in [47,78,79] which considers

the depth value history of the pixels in the temporal domain to enhance the depth frames.

They mainly use a simplified but conceivably parallelizable LMS filter to enhance the

depth frames. While their method exhibits satisfactory results for static scenes, it shows

ghosting artifacts for dynamic scenes with fast-moving objects [44,47].

Fu et al., in [48], use an adaptive temporal filter where the depth inconsistencies

among neighboring depth frames are corrected using the correspondence between color
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and depth frame pairs. In their method, they observed that the depth values of the

same object change from one frame to another even though the planar existence has not

been changed; hence, the inconsistency in depth occurs which causes flickering artifacts.

Although their method generates reasonable results by applying the temporal filter to

all the regions of the scene, they do not discuss the outcome of their method in case

of fast movement of objects. Sheng et. al., in [80], also offer a solution to correct the

temporal depth inconsistency but by using a different approach than [48]. Here, they

use an intrinsic static structure which contains the static structures of the scene. They

initialize this structure on the very first frame and gradually refine it when more frames

become available. They enhance the depth values by considering both the incoming input

depth and the intrinsic static structure [2]; the weight of enhancement is based on the

probability of the input depth value belonging to the structure [2]. This method applies

the depth inconsistency correction process only on static parts of the scene in contrary to

the method [48] where the enhancement process is applied to all regions.

The authors in [49] fill the holes in the depth images in two steps: first, they categorize

the holes on the basis of the reason behind the occurrence of the holes and then they

use the subsequent deepest neighboring values to fill the affected pixels according to

the category they fall into [2]. The authors consider two alternative reasons behind the

occurrence of the holes: one in which the holes are created by the occlusion occurred

due to the moving foreground objects, and the other in which the holes are caused by the

attribute of the objects’ surface such as specularity of the surface, strong lighting condition,

and other random factors. Although their assumptions might work in many cases, there

might the situations where static objects can also be the reason to yield missing or invalid

data in depth images which are acquired by low-cost depth cameras [2].

Therefore, the approaches which use temporal domain information generally yield

decent quality output even in such cases where the spatial-domain based methods are

unable to do so. When it is important to preserve the depth consistency and homogeneity

in a depth sequence, the temporal-domain based approaches deliver the solution for such

situations. Contrary to that, the dependence on the other frames often causes delays in

processing which makes some of these approaches suitable only for offline processing [2].

2.2.2.3 Noise removal using both spatial and temporal domain information

This category of depth noise removal method combines the features from the spatial

and temporal based approaches and removes the noise or holes using both the spatial

and temporal information contained in depth images [28,54]. Most of the works in this

category either use some kind of filtering or use interpolation to remove the noise.

For instance, Kim et al. [51] use a joint bilateral filter that uses a combination of

spatial and temporal depth enhancement process. They consider the motion flow between

consecutive color images to infer information about object motion in the corresponding
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depth images. Although their method yields sharp and smooth depth images, it basically

ignores the length of motion vector data present in the dynamic parts of the depth images

and hence it only works for the static parts of the images. Whereas, Xu et al. [52] use an

advanced interpolation method in combination with a motion detection strategy for depth

image enhancement. Their motion detection method is based on the motion information

from the temporal sequence that they use for filling up the affected regions caused due

to occlusion. Then they extract the dynamic objects by using background differentials

and the original images and finally, apply a four-neighbor interpolation method over the

background areas before filling the body areas. Although their method preserves the

sharpness of the objects’ edges, the interpolation method is computationally expensive.

Camplani et al., in [28], use a joint bilateral filter to remove the holes from depth

images. They use an iterative method of computing a reliability score of the neighbouring

pixels’ depth values to fill the holes with the most reliable neighbors around the holes. They

apply the joint bilateral filter to the neighboring pixels where the weights of those pixels are

determined based on visual information, depth information, and a temporal consistency

map that is created to track the reliability of the depth values near the hole regions. Here,

they try to increase the accuracy of the reliability values with iterative filtering and with

filtering consecutive frames. Although this method generates good quality depth images

which the authors compare to a popular inpainting algorithm proposed by Criminisi et

al. [23] and describe their results as visually better, their method is suitable only for static

scenes. Another spatio-temporal depth enhancement method [55] that uses joint bilateral

filtering is proposed by Richardt et al. They use a multi-scale completion technique

pursued in [81,82] to remove the holes. The resulting depth image is generated by using a

joint bilateral filter and a spatio-temporal process that removes noise by averaging values

from successive frames.

The approach from Camplani and Salgado [53] also uses a combination of joint

bilateral filtering and a Kalman filtering to enhance the depth images. This method

consists of three stages: at first an adaptive joint bilateral filter which combines the depth

and color information is used, and then an adaptive kalman filter is applied to each pixel to

remove the flickering artifact and finally, it fills the missing depth values by applying a 2D

Gaussian kernel and by interpolating the stable depth values in the regions neighboring the

holes obtained from previous stages. This method yields good results but it can fail for the

image regions where color information is absent. Wang et al. [54] also use accompanying

color images for enhancing the respective depth images. Their method has two stages:

first, they yield a "deepest depth image" by fusing the spatial and temporal information

from the color and depth image pairs, and utilize that image to remove the holes and

then, the resulting depth image is further improved by using collective information of

geometry and color. Their method generates good quality depth images, however, it

depends highly on accurate registration of color and depth images and it can fail when

the color information is not available in the accompanying color images.
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More recently, Islam et al. [83] propose another spatio-temporal method which uses

spatial neighborhood information from each depth pixel of a depth image to remove the

ghosting artifacts and then use a sequence of frames to locate outliers with respect to depth

consistency within the frame. Their method performs in real-time to enhance the depth

images. They utilize an improved and more efficient regression technique LMS [84] to fill

holes and replace outliers with valid depth values. The approach is capable of removing

the ghosting artifacts, removing the holes and flickering and sharp depth refinement

within a sequence of frames. Nevertheless, it can occasionally fail to remove holes for a

specific part of an image when the previous successive depth frames do not contain any

valid depth values for that part of the image [83].
Therefore, the works using both the spatial and temporal domain information for depth

image enhancement presumably exploit the best attributes of both spatial-information-

based methods and temporal-information-based methods, but they also acquire the flaws

of those methods along with the advantages. Temporal and motion information can help

to remove the blurring, jagging, and mismatched object contours that are occasionally

created by spatial-based methods [2]. However, they can cause the delay in generating

output that might restrict these methods to be used in real-time applications.

From the above discussion about various different depth enhancement methods and

from the list of the advantages and limitations in Table 2.1, we can see that the temporal

and spatio-temporal methods have the potential to be implemented for enhancing dynamic

scenes. However, these methods also have certain limitations regarding their ability to

properly remove the artifacts while maintaining some conditions such as relatively simple

implementation, faster processing time, appropriate and minimal usage of available data,

and alike. Table 2.2 presents an outline of the abilities of these methods regarding the

mentioned conditions.

From Table 2.2, we can see that several of these methods can only address some of the

research questions which we discussed in Section 1.3.4. None of the methods can address

all those research questions which are important to process dynamic scenes captured

from consumer depth cameras. For example, one method can process both static and

dynamic scenes, but they are not capable of processing in real-time speed; while some

others might produce good quality output, but at the cost of long processing delay. There

are also some methods that generate good quality output but their processing complexity

is relatively high and they are relatively difficult to implement. Besides, very few methods

address the minimum data usage issue, which becomes important when the data needs

to be transmitted over regular bandwidth network, but they might not be applicable for

dynamic scenes and might also not support faster processing. Hence, there are yet some

questions which need to be addressed to achieve better performance in removing artifacts

from both static and dynamic scenes. The purpose of this thesis is to develop a depth

image enhancement strategy which would essentially address all of the research questions

mentioned in Section 1.3.4.
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Chapter 3

Real-time enhancement of depth images

This chapter discusses the primary contribution of this thesis. Here, we first discuss the

reasons behind the most significant problems (holes, flickering and ghosting) that occur

during capturing a scene with commodity depth cameras and after processing it with a

temporal filter that does not take the depth frames’ temporal aspects into account. Then,

we propose our new method which combines the spatial and temporal information from a

sequence of frames to enhance the depth images in real-time. Finally, we show the results

using our self-recorded and state-of-the-art datasets. We also compare our results with the

results from state-of-the-art methods used for depth enhancement. Finally, we discuss the

limitations of our proposed approach and briefly write about the future work that can be

done within this work. The approaches in this chapter are published in [47,78,79,83].

3.1 Problem statement

3.1.1 Noise and invalid values

Depth frames acquired by depth cameras (e.g., RGB-D sensors or ToF cameras) contain

artifacts such as holes (caused due to invalid depth values) and flickering (varying depth

values of the same pixel over time). Such artifacts are shown in Figure 3.1 and 3.2.

These artifacts occur for example, when the sensor of a Kinect cannot measure the depth

information accurately. A Kinect captures both the color and depth data of a scene. In

the case of Kinect V1, the depth of an object is measured by projecting light patterns

from an infrared light source on the object space [85]. An infrared camera receives the

reflected light pattern from the surface of the object and compares it against a reference

pattern. An estimated disparity image of the objects inside a scene and corresponding

depth calculations are obtained by the differences between the captured patterns and

the reference pattern [27, 86]. The inaccurate depth measurements of a Kinect occur

33
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Figure3.1–Invalidandunstabledepthvaluesfromadepthsensoronsuccessive

frames:(a)threesuccessivedepthframes,(b)thedepthvaluesalongasinglescan

lineoftherectangleareain(a),(c)asingledepthframeand,therespectiveoutput

(d)frommethod[47]

!
!
!
!
!
!
!

!
! !

time, t t + 2 
 

t + 1 t + 3 
 (a) (b) 

pixel (250, 180, 902) pixel (250, 180, 2047) pixel (250, 180, 923) pixel (250, 180, 904) 

showingsomeghostingartifacts.

Figure3.2–RGB-DframesfromKinectV1withstaticobjects:(a)colorimage,(b)

fourconsecutivedepthframesofsquaremarkedareaof(a).Thedepthvaluesof

onepixelinsidethediamondmarkedareain(b)aredepictedbelowtheframes.We

observethreetypesofdepthvaluedistortions:2047isaninvalidvalue(reported

occasionally),923isanoutlierandtheothersareregulardepthvaluesfluctuating

becauseofGaussiannoise.

inthepresenceofmultiplereflections,stronglightingconditions,andscatteringobject

surfaces[27,85,86].

Typically,theinaccuracyinthedepthmeasurementsforadepthsensorlikeKinect

originatesfromthreeprincipalsources:thedepthsensor,themeasurementsetupand

theattributeoftheobject’ssurface[85].Thesensorerrorsoccurmainlyduetothe
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insufficient sensor calibration and flawed disparity measurement. While the inaccurate

calibration parameters estimation causes the systematic error in the object coordinates of

individual points, the incorrect disparity measurements influence the accuracy of individual

points. Errors caused due to the measurement setup are mainly related to the lighting

condition and the imaging geometry. The lighting condition influences the correlation and

measurement of disparities. In strong light, the laser speckles appear in low contrast in

the infrared image, which can lead to outliers in the output [85]. The imaging geometry

includes the distance to the object and the orientation of the object surface relative to

the sensor. The possibility of occurring erroneous depth measurement increases with

increasing distance to the sensor [85]. Moreover, depending on the imaging geometry,

parts of the scene may be occluded or shadowed which appear as gaps or large black

areas. In Figure 3.1(c), the left side of the chair is shadowed because it is not illuminated

but is captured in the infrared image. The attributes of the object’s surface also affect the

measurement of points. As we see in Figure 3.2(a), shiny surfaces that appear overexposed

in the infrared image (the top part of the chair) impede the measurement of disparities,

and hence, result in black holes in the depth image.

A major issue with the depth image from depth sensors like Kinect is the presence of

pixels for which the depth values are not obtained (see Figures 3.1 and 3.2) and hence,

they contain invalid depth values and appear as black holes in the depth images. Such

holes occur primarily because of occlusion near object boundaries or scattering object

surfaces, but they are also seen in areas that correspond to concave surfaces and, randomly,

in the homogeneous image regions. Depth measurements at object boundaries are also

severely affected by noise. Moreover, sharp depth transitions that occur near the object

boundaries yield spurious reflection patterns that derive inaccurate depth measurements

causing incorrectly aligned object boundaries [27].

The depth measurements are also prone to instability over time, which results in

flickering [27]. It occurs even in the static parts of a scene (see Figure 3.2); here, we can

observe the unstable nature of valid depth values for certain pixels. The plot in Figure 3.1

(b) shows that Kinects report both invalid values (see the spikes) and fluctuating valid

values (see the different values marked by different shaped markers) for the same pixels in

successive frames. There are several approaches to address this problem; amongst others

successful are the temporal filtering techniques.

3.1.2 Ghosting

A majority of the depth enhancement methods uses a variety of filters to deal with the

holes and flickering artifacts. Especially with temporal filters [47,51], ghosting artifacts

become a serious problem in dynamic scenes. Such artifacts occur near edges of fast-

moving objects as the depth values at those areas change drastically from one frame to

another [44,47]. Since temporal filters combine depth values from temporally consecutive
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frames, the fast-changing values in such dynamic regions are often falsely recapped into

incoherent depth values [44] (e.g., by interpolation). Those incorrect values along the

edges are perceived as ghosting artifacts in the form of an interim depth value. Figure 3.1

(d) shows an example of a ghosting artifact near the right edge of the chair. Details about

the reason behind ghosting and how we remove them are discussed in Section 3.2.1.

Here, we take this unstable nature of depth values into consideration to replace the

unstable, invalid and incoherent values with plausible, valid and stable depth values.

3.2 Proposed spatio-temporal method

In this work, we propose a new gradient-based spatio-temporal Least Median of Squares

(we call it gSMOOTH) approach to enhance the depth frames in real time. We consider the

history of depth pixels, both in the spatial and temporal domains, over a certain number

of frames and use that information to obtain stable and plausible valid depth values. We

propose to use both the spatial and temporal coherence which will correct every depth

pixel by incorporating values from spatial and temporal surrounding areas. Our approach

is divided into two steps: in the first step, we spatially process consecutive frames using a

gradient-based approach which helps to prevent the observed ghosting artifacts from the

resulting final depth frames. In the second step, we apply a temporal LMS filter which

generates stable and plausible valid depth values for every depth pixels. Figure 3.3 depicts

the pipeline of the processing steps of our method. We depict the detailed processing steps

for one pixel, marked with a yellow square, showing how that pixel is enhanced in the

spatial and temporal steps of our proposed approach; see Figure 3.4.

3.2.1 Step 1: Spatial ghosting reduction

Although our temporal LMS-approach [47] (where we did not incorporate the gradient-

based spatial filter) for depth enhancement yields compelling results with noise removal

Spatial 
Ghosting reduction 

step-1 

Temporal 
LMS 

step-2 

Detection of fore-and 
background values of 

depth pixels 

Determine representative 
depth values for the 

depth pixels 

Spatial 
Ghosting reduction

Detection of fore-and 
background values of 

depth pixels 

Determine representativee
depth values for the

depth pixels 

f
pre-processing 

Invalid and unstable 
depth value detection 
for the depth pixels 

Inlier and outlier 
detection for the 

depth pixels 

Temporal 
LMS

Invalid and unstable 
depth value detection 
for the depth pixels

Inlier and outlier 
detection for the 
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d

d

stable  valid  
depth values processed 

 frames 

output 
successive frames 

Figure 3.3 – Illustration of the processing pipeline of gSMOOTH.
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Figure3.4–DetailprocessingstepsofgSMOOTHforthepixelmarkedwithyellow

square.Inthespatialprocessingstep,theattributesfromtheneighbouringpixelsof

theyellowmarkedpixelareusedtoremovetheghostingartifactwhichoccursonthe

finaloutputfordynamicscenes.Holesandflickeringartifactsareaddressedforthat

pixelinthetemporalprocessingstepandfinallytheenhancedoutputisgenerated.

andinvalidvaluetreatment,itinsertedghostingartifacts(seeFigure3.1(d))whicharea

commonissueintemporalfilters.TheaimofourworkistokeeptheadvantagesofLMS

andtoadditionallypreventtheghosting.Forthispurpose,wefirsthavetoidentifythe

originofghosting.

3.2.1.1 OriginofGhosting

Likeothertemporalmedianfilter,ourtemporalLMS-approachofdepthenhancement[47]

presumesaGaussiandistributionofdepthvaluesovertimewiththeoutliers(invalidand

noisevalues)locatedattheGaussiancurvesrespectiveends.Takingthemedianvalue

ofthatdistributionmeanstoselectoneofthetemporallymostprominentexistingdepth

valuestodistinguishvalidvaluesandoutliers.Takingtheaverageofthevaliddepthvalues

yieldsafinaldepththatisclosetothemedian.Consideringratherstaticuniformregions,

thishypothesisworksfineasthereisonlyonetruevaliddepththatcontinuouslyevolves

overtime,infrequentlyinterruptedbyoutliers.Figure3.5(a)illustratesthisassumption.

Examiningtheedgesoffast-movingobjects,wefindanotherconfigurationwhichis

eventuallytheoriginofghosting.InsteadofasingleGaussiandistributionofdepths,

weobserveatemporalabruptchangeofdepthresultingintwoGaussiandistributions

comprisingtheforegroundandbackgrounddepthsrespectively.Duetothepersistent

noisethatisrelativetothevaliddepths,noisevaluesfromtheforegroundorbackground

arenowlocatedatthecenterofthetemporaldepthvaluedistribution(seeFigure3.5(b)).
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Thus, the selected median is a value randomly chosen either from the foreground noise

or from the background noise. Those intermediate depth values caused by noise are the

origin of the ghosting artifact and the randomness of noise explains the uneven structure

of the ghosting (see detail of Figure 3.1 (d)).

For the ease of explanation, we have depicted another illustration for a rather static

scene, see detail of Figure 3.6, which shows sample original pixel values of a certain pixel

(marked with a yellow square), continuous distribution (as more frames come into the

scene) of the median values for that pixel and their final median value. As expected, when

we apply a median filter, such as our temporal LMS from [47], on these frames, we can

see that the median also does not vary much from one frame to another and hence, we do

not see any ghosting on the final output.

For examining the effect of applying our temporal LMS [47] on a dynamic scene, we

depicted another illustration (see detail of Figure 3.7) showing sample original pixel values

of a certain pixel (marked with a yellow square), continuous distribution (as more frames

come into the scene) of the median values for that pixel and their final median value.

Here, in this dynamic scene, the object is moving from right to left. By looking at the pixel

values, we can see that the foreground pixels have lower values and the background have

higher values. Now, when we apply a median filter, e.g. our temporal LMS [47], on these

frames, we can see that the median gradually shifts towards in between the lower and the

higher pixel values. These intermediate values are perceived as ghosting. The pixels in the

later frames have such values which belong neither to foreground nor to background and

hence they appear as ghosting. The bottom sequence of frames shows the ghosting artifact

on the pixel. A careful observation shows that the gradient of this pixel has changed (we

can compare it with the gradient of the top sequence of frame’s pixels) on the later frames

of this sequence. It is worth to mention that our temporal LMS approach from [47] is

stated later in Section 3.2.2; in that section, our gradient-based spatial filter (discussed

in the next section) is already incorporated. If we apply only our temporal approach

(without incorporating our spatial filter) on a dynamic scene, we would perceive ghosting

on the dynamic scene (see Figure 3.1 (d)). Therefore, we proposed and developed a

gradient-based spatial filter to prevent the ghosting.

3.2.1.2 Spatial Filtering

Instead of solely analyzing the history of a single depth pixel [47], the above observation

motivates a prior spatial analysis including the neighborhood of the current pixel. The

purpose of that step is to detect if that depth pixel is located near or directly at an edge in

the depth values. With that knowledge, we can shift the later temporal LMS (discussed in

Section 3.2.2) to base either on valid foreground or valid background depths without the

respective noise.
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 s
pl
it
s 
i
nt
o 
a 
f
or
e
gr
o
u
n
d 
a
n
d 
a 
b
a
c
k
gr
o
u
n
d 
di
st
ri
b
u-

ti
o
n.
 
N
o
w,
 
as
 
t
h
e
 
m
e
di
a
n 
st
il
l 
s
hi
ft
s 
c
o
nt
i
n
u
o
us
l
y, 
i
nt
er
m
e
di
at
e 
n
oi
s
e 
v
al
u
es
 
ar
e 
s
el
e
ct
e
d 
f
or
 
t
h
e 
e
n
h
a
n
c
e
m
e
nt

(s
e
e 
ri
g
ht
m
os
t 
di
st
ri
b
ut
i
o
n 
i
n 
(
b)
).
 
S
u
c
h 
i
nt
er
m
e
di
at
e 
v
al
u
es
 
ar
e 
r
e
c
o
g
ni
z
e
d 
as
 
g
h
os
ti
n
g 
ar
ti
f
a
ct
s 
(
gr
e
e
n 
b
o
x

i
n 
(
b)
) 
as
 
t
h
e
y 
d
o 
n
ot
 
r
e
fl
e
ct
 
t
h
e 
a
br
u
pt
 
c
h
a
n
g
e.

is
s
ue
 i
n 
te
m
p
or
al
 
fil
te
rs
.
 
O
ur
 a
i
m 
he
re
 i
s 
t
o 
ke
e
p 
t
he
 
a
d
va
n-

t
a
ge
s 
of
 
L
M
S 
a
n
d 
t
o 
a
d
di
ti
o
n
al
l
y 
re
m
o
ve
 t
he
 
g
h
os
ti
n
g.
 
Fo
r

t
hi
s 
p
ur
p
os
e,
 
we
 
fir
st
 
h
a
ve
 t
o 
i
de
nt
if
y 
t
he
 o
ri
gi
n 
of
 g
h
os
ti
n
g.

4.
1.
1 
Or
i
gi
n 
of
 
G
h
os
ti
n
g.
T
he
 
Le
as
t
 
Me
di
a
n 
of
 
S
q
u
ar
es

a
p
pr
o
ac
h 
of
 d
e
pt
h 
e
n
h
a
nc
e
me
nt
 [
1
4
] 
pr
es
u
me
s 
a 
G
a
us
si
a
n 
di
s-

tr
i
b
ut
i
o
n 
of
 
de
pt
h 
va
l
ue
s 
o
ve
r 
ti
me
 
wi
t
h 
t
he
 
o
ut
li
er
s 
(i
n
va
li
d

a
n
d 
n
oi
se
 
va
l
ue
s)
 l
oc
at
e
d 
at
 t
he
 
G
a
us
si
a
n 
c
ur
ve
s 
re
s
pe
ct
i
ve

e
n
ds
. 
Ta
ki
n
g 
t
he
me
di
a
n
va
l
ue
 
of
 t
h
at
 
di
st
ri
b
ut
i
o
n
 
me
a
ns
 t
o

se
le
ct
o
ne
 
of
 t
he
 t
e
m
p
or
al
l
y
 
m
os
t 
pr
o
mi
ne
nt
 e
xi
st
i
n
g 
de
pt
h

va
l
ue
s 
t
o 
di
st
i
n
g
ui
s
h 
va
li
d 
va
l
ue
s 
a
n
d 
o
ut
li
er
s.
 
Ta
ki
n
g 
t
he

a
ve
r
a
ge
 o
f 
t
he
v
al
i
d
de
pt
h 
va
l
ue
s 
yi
el
ds
 a
 
fi
n
al
 
de
pt
h 
t
h
at
 i
s

cl
os
e 
t
o 
t
he
 
me
di
a
n.
 
C
o
ns
i
de
ri
n
g 
r
at
he
r 
st
at
ic
 u
ni
f
or
m 
re
gi
o
ns
,

t
hi
s 
h
y
p
ot
he
si
s 
wo
r
ks
 fi
ne
 a
s 
t
he
re
 i
s 
o
nl
y 
o
ne
 t
r
ue
 v
al
i
d 
de
pt
h

t
h
at
 c
o
nt
i
n
u
o
us
l
y 
e
vo
l
ve
s 
o
ve
r 
ti
me
, 
i
nf
re
q
ue
nt
l
y 
i
nt
er
r
u
pt
e
d

b
y 
o
ut
li
er
s.
 
Fi
g
ur
e 
4 
(
a)
 i
ll
us
tr
at
es
 t
hi
s 
as
s
u
m
pt
i
o
n.

E
x
a
mi
ni
n
g 
t
he
 e
d
ge
s 
of
 f
as
t
 
m
o
vi
n
g 
o
bj
ec
ts
, 
we
 
fi
n
d 
a
n-

ot
he
r 
c
o
n
fi
g
ur
at
i
o
n 
w
hi
c
h 
is
 e
ve
nt
u
al
l
y 
t
he
 o
ri
gi
n 
of
 g
h
os
ti
n
g.

I
ns
te
a
d 
of
 a
 s
i
n
gl
e 
G
a
us
si
a
n 
di
st
ri
b
ut
i
o
n 
of
 d
e
pt
hs
, 
we
 o
bs
er
ve

a 
te
m
p
or
al
 a
br
u
pt
 c
h
a
n
ge
 o
f 
de
pt
h 
re
s
ul
ti
n
g 
i
n 
t
wo
 
G
a
us
si
a
n

di
st
ri
b
ut
i
o
ns
 
c
o
m
pr
is
i
n
g 
t
he
 f
or
e-
 
a
n
d 
b
ac
k
gr
o
u
n
d 
de
pt
hs

re
s
pe
ct
i
ve
l
y.
 
D
ue
 t
o 
t
he
 
pe
rs
is
te
nt
 
n
oi
se
 t
h
at
 i
s 
re
l
at
i
ve
 t
o

t
he
 
va
li
d 
de
pt
hs
, 
n
oi
se
 
va
l
ue
s 
fr
o
m 
t
he
 f
or
e-
 
or
 
b
ac
k
gr
o
u
n
d

ar
e 
n
o
w 
l
oc
at
e
d 
at
 t
he
 
ce
nt
er
 
of
 t
he
 t
e
m
p
or
al
 
de
pt
h 
va
l
ue

di
st
ri
b
ut
i
o
n 
(s
ee
 
Fi
g
ur
e 
4 
(
b)
).
 
T
h
us
, 
t
he
 s
el
ec
te
d
 
me
di
a
n 
is

a 
va
l
ue
 r
a
n
d
o
ml
y 
c
h
os
e
n 
ei
t
he
r 
fr
o
m 
t
he
 f
or
e
gr
o
u
n
d 
n
oi
se
 o
r

fr
o
m 
t
he
 
b
ac
k
gr
o
u
n
d 
n
oi
se
. 
T
h
os
e 
i
nt
er
me
di
at
e 
de
pt
h 
va
l
ue
s

c
a
us
e
d 
b
y 
n
oi
se
 
ar
e 
t
he
 
or
i
gi
n 
of
 t
he
 
g
h
os
ti
n
g 
ar
ti
f
ac
t 
a
n
d

t
he
 r
a
n
d
o
m
ne
ss
 o
f 
n
oi
se
 e
x
pl
ai
ns
 t
he
 
u
ne
ve
n 
st
r
uc
t
ur
e 
of
 t
he

g
h
os
ti
n
g 
(s
ee
 
de
t
ai
l 
of
 
Fi
g
ur
e 
2 
(
d)
).

4.
1.
2 
S
pa
ti
al
 
Fil
te
ri
n
g.
I
ns
te
a
d 
of
 s
ol
el
y 
a
n
al
yz
i
n
g 
t
he
 
hi
s-

t
or
y 
of
 
a 
si
n
gl
e 
de
pt
h 
pi
xe
l 
[1
4
],
 t
he
 
a
b
o
ve
 
o
bs
er
va
ti
o
n
 
m
o-

ti
va
te
s 
a 
pr
i
or
 s
p
at
i
al
 
a
n
al
ys
is
 i
nc
l
u
di
n
g 
t
he
 
ne
i
g
h
b
or
h
o
o
d

of
 t
he
 c
ur
re
nt
 
pi
xe
l.
 
T
he
 
p
ur
p
os
e 
of
 t
h
at
 s
te
p 
is
 t
o 
de
te
ct
 i
f

t
h
at
 
de
pt
h 
pi
xe
l 
is
 l
oc
at
e
d 
ne
ar
 o
r 
di
re
ct
l
y 
at
 a
n 
e
d
ge
 i
n 
t
he

de
pt
h 
va
l
ue
s.
 
Wi
t
h 
t
h
at
 
k
n
o
wl
e
d
ge
, 
we
 
c
a
n 
s
hi
ft
 t
he
 l
at
er

te
m
p
or
al
 
L
M
S 
t
o 
b
as
e 
ei
t
he
r 
o
n 
va
li
d 
f
or
e
gr
o
u
n
d 
or
 
va
li
d

b
ac
k
gr
o
u
n
d 
de
pt
hs
 
wi
t
h
o
ut
 t
he
 r
es
pe
ct
i
ve
 
n
oi
se
.

We
 
a
p
pl
y 
o
ur
 s
p
at
i
al
 
a
n
al
ys
is
 
o
n 
a 
pe
r-
de
pt
h 
pi
xe
l 
b
as
is
.

He
re
, 
we
 a
d
dr
es
s 
t
he
 d
e
pt
h 
va
l
ue
s 
b
y 
s
p
at
i
al
 r
ef
er
e
nc
es
d
(x
, 
y
)

s
pe
ci
f
yi
n
g 
pi
xe
l 
c
o
or
di
n
at
es
 
(x
, 
y
).
 
We
 
de
fi
ne
 
t
he
 
s
p
at
i
al

C
GI
 2
0
1
8,
 J
u
ne
 1
1
–
1
4,
 2
0
1
8,
 
Bi
nt
a
n 
Is
la
n
d,
 I
n
d
o
ne
si
a

A
B
M 
Ta
ri
q
ul 
Is
la
m 
et
 a
l.

ti
me

(
a
)

ti
me

(
b
)

Fi
g
ur
e
4:
Il
l
us
tr
at
i
n
g
t
h
e
or
i
gi
n
of
g
h
os
ti
n
g:
T
h
e
L
M
S
d
e
pt
h
e
n
h
a
n
c
e
m
e
n
t
a
p
pr
o
a
c
h
[
1
4]
pr
es
u
m
es
a
G
a
us
s-

i
a
n
di
st
r
i
b
ut
i
o
n
of
ra
w
d
e
pt
h
v
al
u
es
i
n
a
t
e
mp
o
r
al
wi
n
d
o
w
f
or
a
si
n
gl
e
pi
x
el
(r
e
d
m
ar
k
e
d
c
e
nt
er
).
Wi
t
hi
n
a

c
o
nt
i
nu
o
u
s
d
e
p
th
v
a
l
ue
ch
a
n
g
e
(a
),
th
e
re
s
p
e
ct
i
ve
d
is
tr
i
bu
ti
o
n
sl
i
g
ht
l
y
s
hi
ft
s.
H
e
n
c
e,
th
e
m
e
d
i
an
(b
l
ue
a
rr
o
w)

al
s
o
sh
if
ts
c
o
n
ti
nu
o
us
l
y
a
n
d
o
nl
y
v
al
i
d
d
e
pt
h
v
al
u
e
s
ar
e
fi
n
al
l
y
se
l
ec
t
ed
f
or
t
h
e
e
n
h
a
n
c
e
m
e
n
t.
B
ut
i
n
a
n
a
br
u
pt

c
h
a
n
g
e
(b
),
th
e
d
is
tr
ib
u
ti
o
n
o
f
th
e
p
ix
e
ls
d
e
p
th
v
a
lu
e
se
ri
e
s
sp
li
ts
in
to
a
fo
re
g
ro
u
n
d
a
n
d
a
b
a
c
k
g
ro
u
n
d
d
is
tr
ib
u
-

ti
o
n
.
N
o
w
,
a
s
th
e
m
e
d
ia
n
st
il
l
sh
if
ts
c
o
n
ti
n
u
o
u
sl
y
,
in
te
r
m
e
d
ia
te
n
o
is
e
v
a
lu
e
s
a
re
se
l
e
c
te
d
fo
r
th
e
e
n
h
a
n
c
e
m
e
n
t

(s
e
e
ri
g
ht
m
os
t
di
s
tr
i
b
ut
i
o
n
i
n
(
b)
).
S
u
c
h
i
nt
er
m
ed
i
at
e
v
al
u
e
s
ar
e
r
ec
o
g
ni
z
e
d
as
g
h
os
ti
n
g
ar
ti
f
a
c
ts
(
gr
ee
n
b
o
x

i
n
(
b)
)
as
t
h
e
y
d
o
n
ot
re
fl
e
ct
t
h
e
a
br
u
pt
ch
a
n
g
e.

is
su
e
in
te
m
p
o
r
al
fi
lt
er
s.
O
u
r
a
im
h
er
e
is
to
k
ee
p
th
e
a
d
va
n
-

ta
g
es
o
f
L
M
S
a
n
d
to
a
d
d
it
io
n
a
ll
y
re
m
ov
e
th
e
g
h
o
st
in
g
.
F
o
r

th
is
p
u
r
po
se
,
w
e
fi
rs
t
h
av
e
to
id
en
ti
f
y
th
e
o
ri
g
in
o
f
g
h
o
st
in
g
.

4.
1.
1
O
ri
gi
n
of
G
h
os
t
in
g.
T
h
e
L
ea
st
M
ed
ia
n
o
f
S
q
u
a
re
s

a
p
p
r
oa
ch
o
f
d
ep
th
en
h
a
n
ce
m
en
t
[1
4
]
p
re
su
m
es
a
G
a
u
ss
ia
n
d
is
-

tr
ib
u
ti
o
n
o
f
d
ep
th
va
lu
es
ov
er
ti
m
e
w
it
h
th
e
o
ut
li
er
s
(i
n
va
li
d

a
n
d
n
o
is
e
va
lu
es
)
lo
ca
te
d
a
t
th
e
G
a
u
ss
ia
n
cu
r
ve
s
re
sp
ec
ti
v
e

e
nd
s.
T
a
ki
n
g
t
he
me
di
a
n
va
lu
e
o
f
th
a
t
d
is
tr
ib
u
ti
o
n
m
ea
n
s
to

se
le
ct
o
n
e
o
f
th
e
te
m
p
o
r
al
ly
m
o
st
p
r
om
in
en
t
ex
is
ti
n
g
d
ep
th

va
lu
es
to
d
is
ti
n
g
u
is
h
va
li
d
va
lu
es
a
n
d
o
u
tl
ie
rs
.
T
a
k
in
g
th
e

av
er
ag
e
o
f
th
e
v
al
id
d
e
pt
h
va
l
ue
s
yi
el
d
s
a
fi
n
a
l
d
e
pt
h
th
a
t
is

cl
o
se
to
th
e
m
ed
ia
n
.
C
o
n
si
d
er
in
g
r
at
h
er
st
a
ti
c
u
n
if
or
m
re
g
io
n
s,

th
is
h
y
p
o
th
es
is
w
o
r
ks
fi
n
e
a
s
th
er
e
is
o
n
ly
o
n
e
tr
ue
va
li
d
d
ep
th

th
a
t
co
n
ti
n
u
o
u
sl
y
ev
o
lv
es
ov
er
ti
m
e,
in
fr
eq
u
en
tl
y
in
te
rr
up
te
d

b
y
o
u
tl
ie
rs
.
F
ig
u
re
4
(a
)
il
lu
st
r
at
es
th
is
a
ss
u
m
p
ti
o
n
.

E
x
a
m
in
in
g
th
e
ed
g
es
o
f
f
as
t
m
ov
in
g
o
b
je
ct
s,
w
e
fi
n
d
a
n
-

o
th
er
co
n
fi
g
u
r
at
io
n
w
h
ic
h
is
ev
en
tu
a
ll
y
th
e
o
ri
g
in
o
f
g
h
o
st
in
g
.

In
st
ea
d
o
f
a
si
n
g
le
G
a
u
ss
ia
n
d
is
tr
ib
u
ti
o
n
o
f
d
ep
th
s,
w
e
o
b
se
r
ve

a
te
m
p
o
r
al
a
b
r
up
t
ch
a
n
g
e
o
f
d
ep
th
re
su
lt
in
g
in
tw
o
G
a
u
ss
ia
n

d
is
tr
ib
u
ti
o
n
s
co
m
p
ri
si
n
g
th
e
fo
re
-
a
n
d
b
a
ck
g
r
ou
n
d
d
ep
th
s

re
sp
ec
ti
v
el
y.
D
u
e
to
th
e
p
er
si
st
en
t
n
o
is
e
th
a
t
is
re
la
ti
v
e
to

th
e
va
li
d
d
ep
th
s,
n
o
is
e
va
lu
es
fr
om
th
e
f
or
e-
o
r
b
a
ck
g
r
ou
n
d

a
re
n
ow
lo
ca
te
d
a
t
th
e
ce
n
te
r
o
f
th
e
te
m
p
o
r
al
d
ep
th
va
lu
e

d
is
tr
ib
u
ti
o
n
(s
ee
F
ig
u
re
4
(b
))
.
T
h
u
s,
th
e
se
le
ct
ed
m
ed
ia
n
is

a
va
lu
e
r
an
d
o
m
ly
ch
o
se
n
ei
th
er
fr
om
th
e
f
or
eg
r
ou
n
d
n
o
is
e
o
r

fr
om
th
e
b
a
ck
g
r
ou
n
d
n
o
is
e.
T
h
o
se
in
te
r
me
d
ia
te
d
ep
th
va
lu
es

ca
u
se
d
b
y
n
o
is
e
a
re
th
e
o
ri
g
in
o
f
th
e
g
h
o
st
in
g
a
rt
if
ac
t
a
n
d

th
e
r
an
d
o
m
n
es
s
o
f
n
o
is
e
ex
p
la
in
s
th
e
u
n
ev
en
st
r
uc
tu
re
o
f
th
e

g
h
o
st
in
g
(s
ee
d
et
a
il
o
f
F
ig
u
re
2
(d
))
.

4.
1.
2
S
p
at
ia
l
Fi
lt
er
in
g
.
In
st
e
ad
o
f
s
ol
el
y
a
n
a
l
yz
i
ng
th
e
h
is
-

to
r
y
o
f
a
si
n
g
le
d
ep
th
p
ix
el
[1
4
],
th
e
a
b
ov
e
o
b
se
r
va
ti
o
n
m
o
-

ti
va
te
s
a
p
ri
o
r
sp
a
ti
a
l
a
n
a
ly
si
s
in
cl
u
d
in
g
th
e
n
ei
g
h
b
o
r
ho
o
d

o
f
th
e
cu
rr
en
t
p
ix
el
.
T
h
e
p
u
r
po
se
o
f
th
a
t
st
ep
is
to
d
et
ec
t
if

th
a
t
d
ep
th
p
ix
el
is
lo
ca
te
d
n
ea
r
o
r
d
ir
ec
tl
y
a
t
a
n
ed
g
e
in
th
e

d
ep
th
va
lu
es
.
W
it
h
th
a
t
k
n
ow
le
d
g
e,
w
e
ca
n
sh
if
t
th
e
la
te
r

te
m
p
o
r
al
L
M
S
to
b
a
se
ei
th
er
o
n
va
li
d
f
or
eg
r
ou
n
d
o
r
va
li
d

b
a
ck
g
r
ou
n
d
d
ep
th
s
w
it
h
o
u
t
th
e
re
sp
ec
ti
v
e
n
o
is
e.

W
e
a
p
p
ly
o
u
r
sp
a
ti
a
l
a
n
a
ly
si
s
o
n
a
p
er
-d
ep
th
p
ix
el
b
a
si
s.

H
er
e,
w
e
a
d
d
re
ss
th
e
d
ep
th
va
lu
es
b
y
sp
a
ti
a
l
re
fe
re
n
ce
s
d
(x
,
y
)

sp
ec
if
yi
n
g
p
ix
el
co
o
r
di
n
a
te
s
(x
,
y
).
W
e
de
fi
ne
t
he
s
p
at
i
al
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Di
st
ri
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ti
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 o
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Me
di
an
 v
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ue
s 

C
GI
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0
1
8,
 J
u
ne
 1
1
–
1
4,
 2
0
1
8,
 
Bi
nt
a
n 
Is
la
n
d,
 I
n
d
o
ne
si
a

A
B
M 
Ta
ri
q
ul 
Is
la
m 
et
 a
l.

ti
me

(
a
)

ti
me

(
b
)

Fi
g
ur
e
4:
Il
l
us
tr
at
i
n
g
t
h
e
or
i
gi
n
of
g
h
os
ti
n
g:
T
h
e
L
M
S
d
e
pt
h
e
n
h
a
n
c
e
m
e
n
t
a
p
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We apply our spatial analysis on a per-depth pixel basis. Here, we address the depth

values by spatial references d(x , y) specifying pixel coordinates (x , y). We define the

spatial aspect of the surrounding area by the m-neighborhood Nx ,y of a depth pixel (x , y),
which is a 2D array containing the values as stated in Equation 3.1.

Nx ,y(p, q) = d(x + p, y + q);−m ≤ p, q ≤ m (3.1)

Since edge detection commonly bases upon locating strong gradients, we follow the

same procedure. We are interested in classifying single depth values d(x , y) and propose

to calculate the discrete gradients along the four main directions (0◦, 45◦, 90◦, 135◦)
within the neighborhood Nx ,y . Looking for edges crossing that small region, we are

calculating the average gradients with respect to each pixel column, row or diagonal (see

Figure 3.8).

In case we found one or more strong gradients, we know that the current pixel (x , y)
is located close to an edge. That means the depth value d(x , y) is affected either by the

foreground, by the background or by intermediate noise. As we aim for a deterministic

distinction of foreground and background values, we rely on the majority of similar depth

values found in Nx ,y . Assuming at most one edge per Nx ,y , such pixels can easily be

selected as they correlate with the position of the strongest gradient (see Figure 3.9). With

choosing only a pixel subset Sx ,y ⊆ Nx ,y , we elect one of the two depth value distributions

(foreground/background) to have a stronger influence for the pixel and its neighborhood.

As we are enhancing a single pixel, we finally have to pick a single depth value ds(x , y)
based on the subset Sx ,y . To eliminate noise located along the edge, to simultaneously

keep the strong gradient, and moreover to prevent the calculation of intermediate values,

we take the median value of the subset ds(x , y) = med{Sx ,y}. In this way, the following

temporal LMS (discussed in Section 3.2.2) bases either on foreground or on background

depth values instead of intermediate noise (see Figure 3.10) and ghosting artifacts as in

Figure 3.5(b) should be obsolete.

In summary, we i) use a local edge detection approach to determine whether the fore-

ground or the background has a stronger influence on a certain pixel and its neighborhood

and ii) use spatial smoothing to reduce noise. The result of this preprocessing step is

Figure 3.8 – Finding edges along the four main directions by calculating the gradients
between the green, blue and red pixels average in an exemplary 3-neighborhood.
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Figure 3.9 – Depending on the existence and the location of the strongest gradient
(dotted line) in a 3-neighborhood Nx ,y , there are 9 different subsets Sx ,y (darker
blues).

a deterministically-chosen noise-reduced depth value ds(x , y) that is passed on to the

temporal LMS enhancement step.

3.2.2 Step 2: Temporal LMS

We assume that a RGB-D sensor generates a sequence of depth frames. In our framework,

each enhanced frame is formed based on the history of (t − n+ 1) frames’ depth values;

here t is the frame number along the time direction and n is the number of frames whose

depth values are used to enhance the (t + 1)th frame. To enhance the (t+2)th frame,

we just take the newest frame into our temporal window and remove the oldest frame

from the window. The latency of our approach depends on the number of frames in the

temporal window. Figure 3.11 depicts an illustration of our proposed approach.

We apply our spatio-temporal LMS on a per-depth pixel basis over the successive

frames in the temporal window. Thus, the aforementioned spatial depth values d(x , y)
get a further reference and become d(x , y, t) with t determining the frame number.

Consequently, the neighborhood Nx ,y , the subset Sx ,y and the chosen value ds(x , y)
become Nx ,y,t , Sx ,y,t and ds(x , y, t) respectively.

We obtain a candidate depth value dc for each depth pixel (x , y) of every frame t inside

the temporal window by simply taking the spatial filtering result ds(x , y, t). Considering

each single pixel with x and y fixed, we have a spatially-fixed 1D array of depth values

whose elements vary only along the temporal domain. Now, we apply the temporal part

of our gSMOOTH approach on this 1D array of d t
c to find a stable and valid value.

Our goal is to locate the invalid and unstable depth values (which we consider as

outliers) from the set of depth values of each pixel and replace them with a stable valid

depth value. An illustration of our gSMOOTH temporal LMS on k consecutive frames is

depicted in Figure 3.12. Our depth enhancement strategy is based on three principle steps.

For each pixel inside the sliding window (i.e. for the n consecutive frames):

• detect if there are invalid depth values.

• detect if the valid depth values are fluctuating from one frame to another.

• if the valid depth values are fluctuating, find the outliers among the valid depth

values, remove them and process the inliers to get a final stable depth value. Also

replace the invalid depth values with the stable valid depth value.
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Wefollowthedefinitionofinvaliddepthsasstatedin[27,86]tofindtheinvalid

depthvaluesfromthe1Darrayofdtc.Todetectthevalidbuttemporallyfluctuatingdepth

valuesamongthedtc,weusethestandarddeviationofthevalidd
t
candthenidentifythe

elementsofdtcasoutliersthatdonotsatisfycertainconditions.Theinvaliddepthvalues

areidentifiedasoutliersinthisprocess.Toidentifytheoutliersamongthedepthvalues

dtc,weproposetousetheresidualinformationamongthesevalues.Webasicallylookfor

theminimumdifferencei.e. minimumresidualamongthedtc.Identifyingtheoutliers

fromasampledatasetusingresidualinformationcanbeperformedbymethodssuch

astheleastmedianofsquares(LMS)[15]. WechoosetoadopttheLMSmethodtofit

intoourproposedmethodasithasproventobeoptimalwithrespecttotherobustnessof

toleratingupto50%outliers[15].

Toremovetheoutliersandfilltheinvaliddepthvaluesforacertainpixel,wecalculate

anLMSestimatorMwhichidentifiesthestablevalidvaluesamongthedtcsuchthatthe

medianofallabsoluteresidualsriisminimized.Here,weusetheabsolutedifferencefor

gettingtheresidualsriamongthed
t
c;in[15],r

2
iisusedtoavoidnegativevalues.The

wholecalculationprocessisillustratedinFigure3.13.Here,instep1,forasetofdepth

valuesdtc,wecalculateabsolutedifferenceforeachdepthvaluetotherestofthedepth

valuesforthatpixel.Therefore,weobtainasetofresidualsforeachdepthvalueofdtc.In

Figure3.13,thefirstsetofabsolutedistancesi.e.r0={2,21,1145,4,1}arecalculated

forthefirstdepthvalue902,r1fortheseconddepthvalue904andsoon.Instep2,we

calculatethemediansfromeachsetofresidualsriandthen,instep3,wecalculatethe

LMSestimatorMwhichistheminimumofthemedians.Equation3.2showstheformula

tocalculateM

t-n+1 t-o t-1 t 

Temporal Window 

Time 

Depth  
frames 

Spatial 
neighbor- 
hoods S 

Enhanced depth frames 

t+1 

1D array 	

candidate 
depth  
values  

Temporal LMS 

t+2 

Spatial Enhancement 

.

Figure3.11–IllustrationofSpatio-temporalLMS.Thetemporalwindowcontainsa

numberofframeswhosedepthvaluesareusedtoenhancethe(t+1)thframe.The

spatialneighborhoodsSareshownforonedepthpixeloftheframes.
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Figure3.12–IllustrationofourgSMOOTHtemporalLMSononedepthpixelina

slidingwindow.Thethickgraylineshowstherealdistanceofasceneobjectover

time.Thecheckedcirclesrepresentdepthvaluesdt+i−1obtainedinnconsecutive

frames.Thethinblacklineapproximatesthegraylinebycalculatingtheestimator

M i.e.byminimizingthemedianoftheabsolutedistancestothedepthvalues,

visualizedbyverticalpurplelines.Theredmarkedinvalidvalueati=3andthe

turquoisemarkedoutlierati=4aredetectablebyourtemporalLMS.

Afterthat,weretrievethecorrespondingdepthvaluewhoseindexmatchestheindex

ofM.Here,instep3,wecanseethatthevalueofMis2;whichoriginatesfromthe

secondsetofresidualsr1.Asr1originatesfromtheseconddepthvalue904,weusethe

valueofMandtheretrieveddepthvalue(904)fortherestoftheprocessofourtemporal

LMS.Wecalculatethestandarddeviation̂σandaconstraintsci,todetermineifacertain

depthvalueisaninlieroroutlier,accordingtotheformulastatedinEquation3.3.After

weobtaininliersandoutliers,wefinallyobtainthestablevaliddepthvaluebytakingthe

averageoftheinliers.

M=min
i
med{ri}

=min
i,j
med{|dic−d

j
c|}

i,j∈[n−t+1,t],i=j

(3.2)



902,    904,        923,    2047,     906,       903 

2, 21, 1145, 4, 1 2, 19, 1143, 2, 1 1, 1, 20, 1144, 3 . . . 

Step 1 
(absolute distance) 

Step 2 (median) 

4, 2, 20, 1143, 4, 3 

Step 3 (minimum median) 2 à Corresponding depth value = 904 

avg 

final depth value 

inliers outliers 

Depth values  
of a pixel 

r0 r1 ri 
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Figure3.13–IllustrationofgSMOOTHtemporalLMSononedepthpixel–the

valuesonthetopgreenboxaretherawdepthvaluesobtainedforonepixeloverthe

framesinsidetheslidingwindow.

σ̂∼=1.4826
n+4

n−1
M

ci=
1, if r≤2.5̂σ

0, if r>2.5̂σ.

(3.3)

Theconstant1.4826inEquation3.3isacoefficienttoachievetheoptimalefficiency

inthepresenceofGaussiannoise,(n+4)/(n−1)isusedtocompensatetheeffectof

usingasmallsetofdataandtheconstant2.5isusedwitĥσbecauseinaGaussian

situationtherewillbeveryfewresidualslargerthan2.5̂σ;foradetailedexplanationof

thecoefficients,pleaselookatpages17,29,44,131,132and202in[84].However,this

processneedsquitesometimetotraverseforallthedepthvaluesofeachpixelforthesen

frames.Because,inFigure3.11,wecanseethattoobtaintheabsolutedistancesris,we

needtocheckeachdepthvaluetotherestofthedepthvaluestogettheriswhichtakes

quitesometime.Therefore,toreducethecalculationofris,weadaptafastdatatraversal

proceduretofitourtemporalLMS.

ThefastdatatraversalprocedureisgiveninAlgorithm1.Itshowstheprocessof

enhancingonedepthpixelovernsuccessiveframes.Here,weshowtheprocessingofthe
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candidatedepthvaluesdtc.Notethat,weuseanadvancedmediancalculationstrategy

than[15]whoseeffectivenessisexplainedin[84].

Algorithm1Spatio-temporalLMSforthevaluesofonedepthpixeloverawindowofn
frames

1:procedure

2: variables
3: i,j,count,n,r,M
4: cDepthSrt[n];sortedcandidatedepthvalues(thesevaluesaretheresulting
depthvaluesdenotedbyds(x,y)inthegradient-basedspatialfilterdiscussedin

Section3.2.1.2)

5: maxVal;avalue≥reportedmaxdepthvalue
6: nDepth[j];calculatednewdepthvalues
7: FinalMedian;medianofnewdepthvalues
8: inliers,validStableDepthVal
9: endvariables

10: M←maxVal
11: j=0
12: fori=0ton−1

2
do

13: r=cDepthSrti+n
2
−cDepthSrt[i]

14: ifr≤Mthen
15: M=r

16: nDepth[j]=
cDepthSrti+n

2
+cDepthSrt[i]

2
17: j=j+1

18: endif

19: endfor

20: FinalMedian=MEDIANofnDepth[0...j]

21: σ̂=1.5 n+4

n−1
M

22: count=0
23: fori=0ton−1 do
24: if|FinalMedian−cDepthSrt[i]|≤2.5×σ̂then
25: count=count+1
26: inliers=inliers+cDepthSrt[i]

27: endif

28: endfor
29: validStableDepthVal= inliers

count

30:endprocedure

3.2.3 Real-timeprocessing

Ouralgorithmhastheadvantageofprocessingeachdepthimagepixel(x,y)independent

ofalltheothers,thusitiseasilyparallelizable.Inordertosupportreal-timeapplications,

weimplementedgSMOOTHontheGPU,usingtheCUDAlanguage.Bysimplyloadingthe

depth-imagestotheGPUandcallingthekerneltocomputethegSMOOTHalgorithmfor

eachpixelintheimage,theprocessingtimealreadydecreasesbyafactorof7.Sincewe
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perform a lot of memory accesses, especially for data sorting and median calculation, we

can benefit from the fast memory access method using shared memory. Thus, we built up

a special memory management to increase the speed.

The CUDA kernel is called with one thread per image pixel, which means Y ×X threads

for the depth images; here, Y is the width and X is the height of an image. All the CUDA

threads within one block load their required image data from the global memory to the

shared memory on each time step as shown in Figure 3.14 for a window size of 3. The

required sorting algorithms now can be performed on the shared memory, which is much

faster than doing it on the global memory. Also, the other calculations profit from the fast

memory access, the results are shown in Table 3.1 in Section 3.3.1.

3.3 Results and discussion

We conducted several tests to analyze the efficiency of our proposed depth image enhance-

ment (gSMOOTH) approach. We used various sample depth sequences recorded with

Kinect V1 and also common reference depth sequences from Camplani et al. [27], Islam

et at. [47] and Middlebury RGB-D database [87]. We recorded the data with a Kinect

V1 sensor since most of the reference works also use such devices for acquisition. For

gSMOOTH, we used a 5×5 spatial neighborhood of the depth pixels so that the coherency

of the recovered depth values are maintained and, we used 10 frames in the temporal

window to keep the latency low.

We compare gSMOOTH to six state-of-the-art methods: Avetisyan et al. [44], Camplani

et at. [28], Garcia et al. [34], Islam et al. [47], Wang et al. [36] and Nguyen et al. [86].
For establishing an impartial comparison ground for the tests, we set the parameters of

each approach to the respective optimum values given in these works. We performed our

tests on a Ubuntu PC with Intel i7 3.00 GHz processor, 64GB RAM, and NVIDIA GeForce

depth frame D1 depth frame D2 depth frame D3 

thread k - 1 thread k thread k + 1 Linear shared memory 

Figure 3.14 – Data management for shared memory.
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GTX TITAN X GPU. In the following sections, we present the qualitative and quantitative

performance comparison respectively.

3.3.1 Evaluation using real-world depth data

We conducted a qualitative evaluation of our method by using several depth sequences. As

we did not come across any benchmark depth sequence which is recorded with stationary

RGB-D sensors, we used self-recorded and reference depth sequences from [27] and [47].
We refer the depth sequences on the 1st and 2nd rows of Figure 3.15 as PersonBox and

Chairs; the depth sequences on the 1st, 2nd and 3rd rows of Figure 3.17 as OfficeRoom,

PersonWalking and PersonSitting; the depth sequence on the 2nd row of Figure 3.19 as

PersonChair. The Chairs and the PersonWalking datasets are from [27] and the PersonChair

dataset is from [47].

Figure 3.15 shows the performance of gSMOOTH on datasets PersonBox and Chairs.

As we increase the spatial neighborhood from 3 to 5, the results become more visually

appealing (see difference between Figure 3.15(b) and (c)). The noise and missing depth

information, both in static and dynamic parts of the images, have been significantly

reduced by our gSMOOTH. Moreover, we also eliminate the flickering artifacts notably.

(b) (c) (a) 

Figure 3.15 – Performance of gSMOOTH on PersonBox dataset (1st row) and on
Chairs dataset (2nd row): (a) raw depth frames, (b) our result with 3 × 3 spatial
neighborhood, (c) our result with 5× 5 spatial neighborhood.
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Figure 3.16 – Performance comparison of gSMOOTH and Nguyen et al. [86] on
the PersonBox dataset for removing noise and flickering: the top left image is a raw
depth frame, the middle image is the output from [86] and the right image is from
gSMOOTH. The plot shows the performance of gSMOOTH and method [86] over
15 enhanced frames. The depth values on the plot are the recovered depth values
for one pixel in the circle-marked area on the depth frames. gSMOOTH significantly
reduces the noise and flickering as seen by the blue line on the plot.
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Figure 3.16 shows a performance comparison, in noise and flickering artifacts removal,

between our method and the approach of Nguyen et al. [86].

Using the reference depth sequence PersonWalking and our self-recorded sequence

OfficeRoom, we can also compare the performance of our gSMOOTH method against

reference methods (Avetisyan et al. [44], Garcia et al. [34], Nguyen et al. [86] and Wang

et al. [36]) for the static and dynamic scene parts. For both the depth sequences, our

method reduces the holes and flickering in the static and dynamic parts of the frames,

see Figure 3.17 and Figure 3.18 for the results. Here, we can see that the reference

methods and our method produce nice results and the surfaces of the objects are nicely

recovered. However, we notice that the reference methods suffer along the edges of the

objects. The result from method [36] shows blurry edges, whereas our method yields

sharp edges; see the zoomed parts in Figure 3.17. Such artifacts are also produced by the

approaches from [34] and [44] (see Figure 3.18). The blurry edges typically occur due to

the inaccurate registration between the color and depth frames. Since the performance of

these reference methods relies heavily on accurate depth and color frame registration, they

often suffer from the aforementioned artifacts on both static and dynamic parts of a frame.

Since our gSMOOTH method does not require the color frames to enhance the depth

frames, it does not exhibit such artifacts. Table 3.1 shows the performance of our method

in frames per second fps on our test datasets. A separate table for the comparison of

performance on CPU among gSMOOTH and other methods is not included here, because

we found that the approaches with good quality output required quite a large amount of

time, to process one frame, than our gSMOOTH. For example, Wang et al. [36] need 240

seconds to process one frame from the PersonBox dataset, whereas our gSMOOTH needs

only 0.13 seconds. It is worth to mention that output quality from Wang et al. [36] and

gSMOOTH is similar. Since the performance difference in terms of fps is quite large, we

did not include another table for showing the difference.

Ghosting artifact, on the other hand, is a common problem found with many existing

works (e.g., in [44, 47]). We use the reference dataset PersonChair from [47] and self-

recorded dataset PersonBox to demonstrate the performance of our method in removing this

artifact. In Figure 3.19(b), (e) and (h), we can observe ghosting artifacts on the rectangle-

Table 3.1 – Performance of gSMOOTH in frames per second (fps) on the five test
depth sequences.

CPU
GPU global

memory
GPU shared

memory
PersonBox 7.93 55.52 140.25

Chairs 7.53 53.17 135.51
OfficeRoom 8.02 55.81 141.03

PersonWalking 8.48 60.03 144.07
PersonChair 7.76 54.41 137.61
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(b) (c) (a) (d) 

raw depth frames results from [86] results from [36] our results 

Figure 3.17 – Performance of gSMOOTH on OfficeRoom dataset (1st row), Person-
Walking dataset (2nd row) and PersonSitting dataset (3rd row): (a) raw depth frames,
(b) results from Nguyen et al. [86], (c) results from Wang et al. [36], (d) our results.
For both datasets, our method yields nicer edges while reducing the artifacts.
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(c) (d) (e) 

(b) (a) 

Figure 3.18 – Comparison results-1 on dynamic scenes from PersonWalking
dataset [27]: (a) color frame, (b) raw depth frame, (c) result from Garcia et al. [34],
(d) result from Avetisyan et al. [44], (e) our result. Our result perform well in
removing the artifacts and preserving the sharpness of the edges both for static and
dynamic parts of the frame.

marked areas due to the person (1st and 2nd rows) and the chair (3rd row) moving

rapidly. Figure 3.19(b), (e) and (h) are the result from method [47] and Figure 3.19(c),

(f) and (i) show the results from our method. We can see that our method successfully

removed the ghosting artifact and reduce the temporal noise while method [47] shows

the ghosting artifacts; see the zoomed part in Figure 3.19(b), (e) and (h).

3.3.2 Evaluation using depth data with synthetic degradation

We conducted another test to assess the efficiency of our method using simulated degra-

dation of depth frames. For this test, we took two benchmark depth files (Book and

Art) from the Middlebury depth database [87]. We use the PSNR and SSIM scores to

present the results of quantitative assessment. We know that both the ground truth depth

information and output (i.e. enhanced) depth information are essential for measuring the

PSNR and SSIM scores. Hence, we simulated artifacts similar to those of a Kinect sensor
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(i) (h) (g) 

(c) (b) (a) 

(f) (e) (d) 

Figure 3.19 – Comparison results-2 on dynamic scenes from PersonBox dataset (1st
and 2nd rows) and PersonChair dataset [47] (3rd row): (a,d,g) raw depth frames,
(b,e,h) result from Islam et al. [47] (ghosting artifacts are visible in the rectangle-
marked area and in other areas), (c,f,i) our results with gradient-based preprocessing
(ghosting artifacts are removed). Our results in (c), (f) and (i) do not exhibit ghosting
artifacts since we used the gradient-based spatial preprocessing.
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on the benchmarks ground truth depth data by applying the approach of [7]. On these

synthetically degraded frames, we apply our method and get the results which are then

compared against the ground truth depth frames.

For gSMOOTH, we need successive depth frames in the temporal window; however,

the Middlebury database does not deliver such depth sequences. Hence, we created our

own sequence of depth frames by copying the benchmark depth images multiple times and

applying the method from [7] for yielding randomly distributed artifacts. The result is a

static scene where the degradations are randomly distributed over consecutive frames. We

then applied our proposed approach to this degraded depth sequence to finally enhance

it again. For the reference methods [28, 36] to which we compare the performance of

gSMOOTH, we also use the color and depth image pairs from the benchmark datasets

along with the degraded images. Figure 3.20 depicts the synthetically degraded depth

frames and the respective output frames from [28], [36] and our proposed gSMOOTH.

Using the ground truth depth files and the enhanced results of the different approaches,

we measured the PSNR and SSIM scores as shown in Table 3.2. While looking at the PSNR

and SSIM scores, we can see that our method yields higher PSNR and SSIM values than

(b) (c) (a) (d) 

degraded depth frames results from [28] results from [36] our results 

Figure 3.20 – Comparison results on two benchmark depth frames of Book and Art
from Middlebury [87]: (a) depth frames with simulated degradation, (b) results
from Camplani et al. [28], (c) results from Wang et al. [36] (d) our results. Our
method yields sharper edges, while reducing the artifacts, than the other methods.
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Table 3.2 – PSNR and SSIM scores on the results of methods [28, 36] and our
gSMOOTH on benchmark depth frames.

Depth frames
Book Art

PSNR SSIM PSNR SSIM
Method [28] 26.5911 0.9416 29.1845 0.9442
Method [36] 26.8854 0.9492 30.3104 0.9587
gSMOOTH 29.7361 0.9735 33.5142 0.9841

the reference methods. Since our method preserves the sharpness of the object’s edges and

removes most of the artifacts at the same time, it gets a higher score than the reference

methods. A careful analysis of the circle-marked areas in Figure 3.20 also denotes the

issues with the edges and reveals the reason for the respective SSIM and PSNR scores

of the reference methods. All approaches (including ours) recover the depth values of

homogeneous surface areas while the reference methods suffer near the edges where the

depth discontinuity occurs. Additionally, our method delivers it’s output in real-time (at

≈ 140 frames per second, see Table 3.1) due to it’s GPU based workflow, whereas the

reference methods do not perform in real-time in their original implementation.

3.3.3 Limitations

Although the results of the depth enhancement approach are pleasing qualitatively and

quantitatively, it has some limitations. First, we cannot completely reduce the noise that

persists in large areas (larger than 5× 5 spatial neighborhood) in one region of successive

depth frames with our method (see the holes in Figure 3.18(e) and 3.19(f, i). Taking

a larger spatial neighborhood of pixels might be useful to refine the large areas with

artifacts; however, it can potentially reduce the coherency of the recovered depth value.

In this case, the recovered depth might originate from a completely different object that

would lead to other artifacts. Thus, we need to understand why and how these artifacts

occur. We design a novel depth data capture setup, discussed in Chapter 4, to better

understand the depth artifacts and to find a future solution.

Second, our enhanced frames are slightly behind the raw depth data: Abrupt changes

in the camera footage need to propagate for a maximum of n/2 frames to become finally

visible (as seen in Figure 3.10). Thus, in our experiments, we measured a lag of 5 frames

at most. Although this is not ideal, we found that i.e., loosing tracked objects, extracting

noisy contours, and reconstructing noisy 3D models due to flickering, invalid values, blurry

edges, and ghosting artifacts are more severe than this minimal lag.
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3.3.4 Future work

Due to the time constraints that cover the scope of this thesis, there is a list of points

related to the work that can further be investigated. We address some of the issues in the

following.

• Filling up the large holes. As we can see that our proposed method removes the ghost-

ing and flickering artifacts completely in real-time, but for some large holes, it

cannot fill them completely. We can think of using spatial filters, such as in [38],
which use neighbor pixels to fill the holes and in addition, we can think of using

structure-aware filters, such as in [88,89], which would help to maintain the ho-

mogeneity of the objects’ contours. Including these additional processes into our

current workflow might demand extra processing power, however, we can think of

optimizing the processing by using hardware-based acceleration methods such as by

using GPU coding.

• Apply our method on other ToF cameras. Here in this section, we have shown the

results that were conducted using a Kinect V1 camera which has a structured light

sensor. Although we showed some results of using our method on the depth images

from Kinect V2 camera (see Figure 6.4 in Section 6.2) that has a ToF sensor, we did

not have enough time to test with other ToF sensors. Since our method considers

the invalid values as outliers and then remove them and stabilize them by using the

valid depth values from spatio-temporal neighborhood, we can think of applying

our approach to remove the ‘flying pixel’ issues [90] found with the depth images

from ToF sensors. Flying pixels occur near the edges of objects where the depth

discontinues, i.e. where the near-infrared light emitted by the ToF camera gets

reflected in part by an object in the foreground and in part by an object in the

background [90]. Here those flying pixels values can be considered as outliers and

they can be replaced with valid values by using our proposed spatio-temporal filter.

• Apply our method on ToF scanners. Recently we came across some emerging ToF

scanners, such as the ibeo LUX [91] and the Eco Scan FX8 [92] that yield low-

resolution depth images with better depth accuracy than current ToF cameras [1].
However, since these scanners create these depth images successively point by point,

introducing time delay between them, we perceive motion artifacts on those depth

images. We can further investigate and adapt our proposed depth enhancement

method, which addresses motion artifacts such as ghosting, to attenuate the motion

artifacts found with the depth images from these ToF scanners.



Chapter 4

Depth noise extraction and visualization

This chapter presents our novel depth data capture setup that we design and develop to

understand the nature and reason of depth noise that a depth sensor yields. We analyze

the experimental data acquired with this setup and show how the distortion from a depth

camera is related to the distance of the objects from the camera, the viewing angle of

the camera and the lighting condition of the scene. Hence, our experiments have three

parameters – the distance of the objects from the camera, the viewing angle and the

lighting condition. With the data obtained from this setup, we generate ground truth

data which we use to extract noise from our captured test data (which typically contains

noise) to visualize the noise or distortion produced by a depth camera for those three

parameters. In the following sections, we discuss the motivation behind the work, the

process of generating ground truth data using markers on the depth camera and a target

object and the process of extracting the noise and visualizing it.

4.1 Problem description and motivation

While testing our proposed depth enhancement strategy on our test data sets, we noticed

that the number of required frames in the sliding window varies depending on the distance

of the object from the location of the depth cameras, the viewing angle of the camera and

the lighting condition. We observed that for different distances, the noise or the error

generated on the depth frames vary and hence we needed to use different number of

frames in the sliding window for different distances to remove this noise. Since our test

data sets were recorded in different lighting conditions (e.g. natural daylight, room light,

studio light), we also observed different error characteristics for these different lighting

conditions and we also noticed variations in the quantity of depth errors for different

viewing angles. Hence, here we investigate the characteristics of the depth noise and,

quantify and visualize the noise characteristics to address these following three queries:

59
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• how the variations of distances of the objects from the depth camera affect the

quantity of noise

• how the different lighting conditions influence the quantity of noise on the depth

frames and

• how the noise changes with the change in the viewing angle of the camera.

Once we would be able to visualize and analyze the relationship of the noise char-

acteristics with respect to the distance of objects from camera, lighting condition, and

viewing angle, we would better understand the nature of noise in different situations and

this could essentially help us to potentially optimize our proposed depth enhancement

strategy and could also lead us towards a future new depth image enhancement solution.

4.2 Noise extraction and analysis method

In order to visualize and analyze the noise characteristics of a depth sensor, we design an

experiment where we generate ground truth data for a target object. Here, we register

a depth camera in the global coordinate system of a tracking system that is also used

to continuously deliver global coordinates of the target object’s surface that is visible

by the camera. Using the common coordinate system, the synchronization between the

devices, and the known surface geometry, we could eventually be able to reconstruct the

projection area and the undistorted depth of the surface in every camera image. By simply

subtracting this ground truth from recorded depth data, we can obtain the plain noise in

a sequence of depth images. To make our experiments most effective, we automate the

test sequences. We vary the lighting condition over time and the target object’s distance

is varied from the depth camera by moving the target on a movable platform that also

provides support for the camera and the target object to be attached steadily. Besides this,

the used target’s surface is arched in order to cover the dependence on the viewing angle

in every shot.

For the visualization and analysis of the noise, we develop software that helps to extract

the noise from the test sequences and encodes the absolute noise as colored textures

mapped to the ground truth planes. We generate such error mapping on ground truth

data for each of the three conditions stated in Section 4.1.

4.2.1 Sources of depth noise

While capturing a scene with consumer depth cameras, such as Microsoft Kinect, we

perceive different artifacts on the captured depth images. Whether the depth cameras

use a structured light pattern or time-of-flight ToF method to measure the depth of the

objects inside the captured scene, there usually are sources of errors or noise that cause
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invalid or inaccurate measurement of the depth of the objects. In the case of structured

light devices, the projected pattern might become too weak compared to the background

light that causes the erroneous depth generation. The typical reasons for the weakening

of the projected pattern cover a wide range of issues such as:

• ambient light [1],

• external active illumination source interference [2],

• active light path error caused by reflective surfaces,

• occlusion,

• erroneous light pattern detection in dynamic scenes,

• depth offset for non-reflective objects and others [2].

ToF cameras also produce depth error that mainly originate from the electronic noise,

dark noise and photon shot noise of the camera sensor [12]. Electronic noise is a random

fluctuation that is characteristic of all electronic circuits such as analog to digital converters.

Dark noise summarizes additional photodetector noise sources such as thermal noise, i.e.,

random fluctuations due to changes in temperature. Photon shot noise occurs due to the

photon character of light [1]. These sources of noise are caused due to the following

reasons:

• background illumination – since most ToF sensors use infrared light, the unfiltered

external background light interferes with the depth calculation. This problem

becomes more severe in capturing outdoor scenes.

• reflections – surfaces reflecting the infrared light might cause the erroneous depth

measurements. For example, specular or highly reflective surfaces cause the super-

imposition of measured values. While capturing the scene for generating ground

truth data, we noticed that even diffuse surfaces turn into specular surfaces when

the viewing angle is changed which cause unwanted reflections.

• temperature – when some ToF sensors, e.g., Microsoft Kinect V2, becomes warm due

to higher consumption of energy, this increase in device temperature can potentially

lead towards a shift in distance values during this increased temperature phase [1].

Therefore, we set three parameters for our experiment where we use varying lighting

conditions, varying viewing angle and varying distance to quantify and visualize the

error on the captured object. We consider the variation in distance since the depth

sensors generate different quantity of error based on the distance of an object from the

camera [27,86].
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4.2.2 Experimental setup

For our experiment, we used a moveable target and a fixed depth camera; the camera is

able to rotate in vertical and horizontal directions. We mounted the test target and the

depth camera on a steady structure made from aluminium. The steady structure helps to

maintain a stable position of the target and the depth camera while recording the position

of the camera and the target, in the world coordinate system, for various distances of the

target object from the depth camera.

4.2.2.1 Description of the apparatus used in the experiment

The steady structure

For conducting the experiments, we mounted the target checkerboard and the depth

camera on an aluminium-made steady structure which we built in order to keep the

position of the target object and the depth cameras as steady as possible in the world

coordinate system of the tracking system. Figure 4.1 shows the steady structure along

with other apparatus we used in our experiment. The length of the steady structure is 3.2

meters and the height is 1.2 meters from the ground. There are locking mechanism on

each of the eight wheels that keeps the position of the whole structure stable. There are

two long rails on the bottom of the structure to support the steady movement of the test

target. We attach, at one end of the structure, a depth camera and on the other end, a test

target.

The test target is attached to a moveable platform that can be moved along the two-rig

rail system. The height of the rigs, on which the depth camera and the test target are

attached, are adjustable and the test target can be moved in both directions, forward to

backward and vice versa. It is worth to mention that, we also placed the ‘L-shaped’ ground

plane, required by the OptiTrack tracking system [93] on the bottom rails so that its

position also remains stable.

The target object

We use a checkerboard as our target object that has a planar surface. We have attached

the checkerboard on a wooden pressboard and carefully glued it on the wooden board

so that the printed checkerboard is attached properly on all areas of the wooden board;

this ensures that the surface of the target is planar and all the pixels of the target are

located on the same plane. This reduces the possibility of the occurrence of external errors

that might be caused due to an uneven surface of the target object. We avoided using

boards constructed from lighter material such as cardboards that would not be able to

maintain their original structure and might bend at certain places after a while. Moreover,

the flexible nature of these lighter boards was also not a good fit for our experiment since

it would induce measurement errors. We used a matte print of the checkerboard to keep
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Figure 4.1 – Images of our experimental setup for the steady structure: (a) steady
structure with depth camera and test target – view-1, (b) steady structure with depth
camera and test target – view-2, (c) ‘L-shaped’ ground plane, required by OptiTrack
tracking system for getting the world coordinate system, (d) steady structure – the
two-rig rail system on which the target moves to the marked positions.
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Figure 4.2 – Images of our experimental setup for the test target: (a) the test
target attached on the moveable platform on the steady structure, (b) the test target
mounted to the steady structure with the camera gear.

the errors occurred due to reflection at a minimal level. The height and width of our

target checkerboard is 0.57× 0.85 meters. We mounted the checkerboard target to the

steady structure using a mounting gear usually used to mount digital cameras to tripods.

We adjusted the position of the target so that it levels up with the ground plane of the

tracking system (details of the tracking system is discussed later in this section) and it is

perpendicular to the recording depth camera.

For extracting the noise characteristics that occur due to the variations of the distance

of the target object from the camera, we moved the target object with the range of distance

from 1.2 meters to 2.6 meters, from the depth camera, with an interval of 0.05 meters.

Although this range of distance does not accurately cover the original minimum and

maximum operating distance of a Kinect V1 sensor (which can measure the depth of

objects locating in the range between 0.5 meters to 4.5 meters from the camera sensor) or

a Kinect V2 sensor (the maximum depth-sensing distance is 8 meters), since the generated

noise at the extreme ranges was too high to extract any usable information, we used the

distance range from 1.2 meters to 2.6 meters. Moreover, for our setup, if we placed the

target closer than 1.2 meters from the camera, the target was beginning to crop near the

edge of the object on the recorded depth image while rotating the camera for varying

viewing angles. We used a measurement ruler to mark the different distances of the target

object from the depth camera. We also marked the intervals with the ruler on the steady
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structure (see the marks on the two-rig rail system in Figure 4.1(d)) with permanent

marker to avoid any measurement errors. This distance marking helped us to make precise

(as precise as manually possible) movement of the target object on the steady structure

in either direction from the depth camera. Figure 4.2 shows the target we used in this

experiment.

The recording depth camera

We used both the Kinect V1 and V2 depth cameras to record the target object for our

experiment. Finally, we used the output from Kinect V2 to show the different results in the

chapter, since this is the most recent product of Microsoft Kinect and it has better depth

resolution than Kinect V1. However, in the results section, we used the depth images

from Kinect V1 and Kinect V2 to compare and explain certain noise characteristics in

their respective images. We mounted the depth camera on the aluminium-made steady

structure to ensure its stable position. To rotate the camera to various angles, we attached

it to a rotatable gear similar to the ones used in digital photography. For our experiment,

we considered only the vertical rotation of the camera by which we get different viewing

angles with respect to the movable target. We also attached the power cable of the camera

to the steady structure so that there is no unwanted movement of the camera occurred

due to the movement of the power cable. Similar to the test target, we adjusted the

location and orientation of the depth camera so that it can level with the ground plane

of the tracking system and it is perpendicular to the test target. This adjustment is done

to minimize the external errors caused due to improper alignment of test equipment.

Figure 4.3(c) and (d) show the depth cameras, with tracking markers on them, used in

this experiment.

The tracking system and placement of the markers

For obtaining the position of the depth camera and the target while varying the distance

of the target from the camera, we used 12-DOF (degree-of-freedom) OptiTrack tracking

system [93]. We used 12 tracking cameras that track the position of the target and the

camera by locating and tracking the markers placed on the test target and the depth

camera. We discussed placing the ground plane for obtaining the world coordinate system

for the tracking system earlier in this section and in Figure 4.1(c). The tracking cameras

are placed near the ceiling on another four-sided steady aluminium-made structure which

surrounds the total area covered by our hardware setup. We placed three cameras on each

side of the four-sided structure so that they can cover all possible movements of the target

inside the experiment area. Figure 4.4 shows an illustration of the placement of the 12

tracking camera on the four-sided rig, and the placement of the depth camera, test target

and the steady structure which we used in this experiment.
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(a) 

(b) 

(c) 

(d) 

Figure 4.3 – Images of our experimental setup for the depth camera: (a) the depth
camera attached to the height-adjustable rig of the steady structure, (b) the depth
camera mounted to the steady structure with the camera gear, (c,d) markers on the
Kinect V1 and V2 depth cameras.

Tracking cameras on the four-sided rig 

Our setup: depth camera, test target and steady structure 

Figure 4.4 – Illustration of our tracking setup along with placement of the 12 tracking
cameras, recording depth camera, test target and the steady structure.

In order to track the position of the depth camera and the test target, we placed

markers on both the depth camera and the checkerboard, see Figure 4.5. We placed

several markers along the length and width of both Kinect V1 and V2. The green circle

marked marker, in Figure 4.5(c), is placed directly on top of the depth sensor; this way we
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(a) 

(b) 

(c) 

(e) 

(d) 

Figure 4.5 – Placement of markers on the depth camera and the test target and
the position of part of the tracking cameras. Here, in (a) we can see that the test
target (the checkerboard) is equipped with a asymmetric structure and another eight
markers which provides a stable and steady position in the world coordinate system.
Since the eight markers are on the same plane, we needed to attach the asymmetric
structure to create a trackable rigid body for the OptiTrack system. A zoomed in
version of the asymmetric structure in (b) shows both the front and behind view of
the structure. The green marked marker is considered as the pivot of the rigid body.
The depth cameras in (c) and (d) are equipped with several markers, along their
length and width directions, which also helps to create a trackable rigid body for the
OptiTrack system. Here the green marked markers, in (c) and (d) are placed on top
of the estimated position of the depth sensor. We used this marker to create the pivot
for this trackable rigid body. Finally, a part of the placement of the tracking cameras
on the four-sided rig attached near the celling of the room are shown in (d).
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get the position of the depth sensor in the world coordinate system. However, we needed

to make some adjustments to get the real position of the depth sensor (the actual depth

sensor is located little below the top surface of the depth camera) that we will discuss later

in this chapter. We placed the other markers (placed along the length and the width of the

depth camera) on the depth cameras so that the rigid body we created on the OptiTrack

system can be stable and provide the position values in X, Y and Z coordinates.

There are eight markers on the surface of the test target which we used along with an

asymmetric structure attached on top of the test target to create a rigid body for the test

target on the OptiTrack system, see Figure 4.5(a). Since the eight markers are located on

the same surface, we attached this asymmetric structure so that the rigid body can provide

the position of the four corners of the test target that we later use to create the ground

truth image. We consider the upper-left marker (marked with green circle) as the pivot of

this rigid body and calculate the position of other four corners using the dimension values

of the checkerboard. Figure 4.5(e) shows parts of the placement of the tracking cameras

on the rig attached to the ceiling.

Software tools and libraries used to generate the ground truth data

We developed software to generate ground truth data from the tracked position of the

depth camera and the test target. The software gets the position of the two rigid bodies –

one for the depth camera (we named it ‘Kinect’) and another for test target (we named it

‘Checkerboard’). We used the VRPN streaming tool [94] to get the position of the rigid

bodies from the server machine (which records the positions of the rigid bodies) to the

client machine (where we perform necessary calculations to generate ground truth using

the tracked data received from the server machine). We used the Motive 2.0 software

platform from OptiTrack to visualize the rigid bodies tracked by the OptiTrack tracking

system. Figure 4.6 shows the rigid bodies, the location of the tracking cameras, the

placement of the ‘L-shaped’ ground plane and the direction of world coordinate system

for the OptiTrack system. From 4.6(b), we can see that the Z-axis of the rigid body of

the depth camera is aligned with the world coordinate system of the OptiTrack system.

However, since the test target is in front of the depth camera, the Z-axis should face

towards the test target. Therefore, we needed to calibrate the depth camera so that we can

obtain its position, being the Z-axis facing toward the test target, in the world coordinate

system. The calibration procedure involves translation and rotation steps that we will

discuss in the next section. Before performing this calibration, we also needed to adjust

the position of both the rigid bodies in their initial coordinate system (i.e. in the world

coordinate system) by using the orientation values provided by the OptiTrack system. We

needed this step to account for the minor misalignment from the ground plane that the

rigid bodies normally have. For quick prototyping, we initially used Matlab and then,
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(a) 

(b) 

Figure 4.6 – Images from the Motive software of the OptiTrack tracking system
showing the placement of the tracking cameras in (a) and the world coordinate
system (the red, green and blue arrows represents X,Y and Z axes respectively) is
shown inside the yellow marked circle in (a). We can see the rigid bodies (Kinect
and CheckerBoard) in (b) which correspond to the depth camera and the test target
respectively. In (b), we can see that the coordinate systems of both the rigid bodies
align with the world coordinate system provided by the OptiTrack system. The yellow
marked ellipse in (b) shows the location of the ‘L-shaped’ ground plane required by
the OptiTRack system to define the world coordinate of the tracking system.
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we used C/C++, OpenCV, OpenGL and Matlab to create our software to visualize the

recorded depth data by the depth camera, the ground truth data and the noise.

4.2.3 Camera and test target calibration, and ground truth data cre-

ation

Since the test target and the depth camera are both positioned in the world coordinate

system, we need to transform the test target position to the position of the depth sensor

for obtaining the ground truth image. By looking at the local coordinate system of the

depth sensor and the test target, in Figure 4.6(b), we find out that both these objects’

local coordinates are aligned with the world coordinate system from the OptiTrack system.

Hence, we need to perform firstly, a translation process for the test target so that its

position is translated to the position of the depth camera and then, we need to perform

a rotation operation on this translated position so that the Z-axis of the depth camera,

which indicates the distance (i.e. depth) of the objects from the depth sensor, would face

towards the test target. We can see, in Figure 4.6(b), that the Z-axis of the depth camera is

facing in opposite direction from the test target, see the red line (perpendicular to the blue

and green lines) on the ‘Kinect’ rigid body, which indicates the Z-axis of its local coordinate

system.

4.2.3.1 Calibration of the depth camera and the test target

To create ground truth image of the test target using the position and orientation informa-

tion from the OptiTrack system, we need to calibrate the depth camera so that we get the

position of the test target from the perspective of the depth camera’s position. Calibration

involves two steps that are the translation and the rotation. Using these two steps, we can

essentially transform the test target’s position to the camera’s coordinate system. However,

we also need to consider the orientation of the depth camera and the test target to adjust

their respective position in the world coordinate system before we perform the translation

and rotation steps.

Adjusting the position of the depth camera and the test target using orientation

information

Suppose, we have the position (Cp and Tp) and orientation (Co and To) information, see

Equation 4.1, of the depth camera and the test target respectively and we would like

to perform first an adjustment to the position of the depth camera and the test target

using the orientation information and then apply the translation and the rotation steps

on the adjusted position of the test target. It is worth to mention that both the position

and orientation information for the depth camera and the test target are provided for the

pivots of their respective rigid bodies (see the description of the markers in section 4.2.2.1
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and Figure 4.5). For adjusting the position of the depth camera and the test target, we

calculate the rotation matrix using the orientation information of the camera and the

target. We use Equation 4.2 to convert the orientation information to rotation matrices

Rc and Rt ; Rc and Rt refer to rotation matrices for the depth camera and the test target

respectively.

Camera_posi t ion, Cp = [Cx , Cy , Cz]

Camera_orientat ion, Co = [Cox
, Coy

, Coz
, Cow

]

Tar get_posi t ion, Tp = [Tx , Ty , Tz]

Tar get_orientat ion, To = [Tox
, Toy

, Toz
, Tow

]

(4.1)
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We obtain the adjusted positions of the depth camera and the test target using the

formula in Equation 4.3. Since we placed four markers on the four corners of the test

target and considered the upper-left marker as the pivot of the rigid body of the test

target (see the description of the markers in section 4.2.2.1 and in Figure 4.5), we need to

calculate the position and adjusted position of the other three corner markers to obtain the

final ground truth plane of the test target. We use the dimension (height and width, see

the description in Section 4.2.2.1) information of the test target to calculate the position

of the other three corners of the test target. We call the position of the pivot as Tp (already

stated in Equation 4.1), the position of the marker on the upper-right corner as Tp2
, the

position of the marker on the lower-left corner as Tp3
and the position of the marker

on the lower-right corner as Tp4
. The calculation process of the positions of these three

corners is stated in Equation 4.4. Then we obtain these corners’ adjusted position using the

orientation (Rt) of the pivot Tp as stated in Equation 4.5. After adjusting all the corners of

the test target, we put these corners in a matrix and call it target adjusted Ta as stated in

Equation 4.6. For further calculation, e.g. for the translation and rotation steps, we use

this matrix Ta as the position of the test target. It is worth to mention that since we later
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plotted the four corners in OpenGL to visualize the ground truth plane, we placed nTp4

before nTp3
in Ta, see in Equation 4.6.

NewCamera_posi t ion, nCp = Cp × Rc

NewTar get_posi t ion, nTp = Tp × Rt

(4.3)

Tp2
= [Tp(x − wid th), Tp y, Tpz]

Tp3
= [Tp x , Tp(y − height), Tpz]

Tp4
= [Tp(x − wid th), Tp y, Tpz]

(4.4)

nTp2
= Tp2

× Rt

nTp3
= Tp3

× Rt

nTp4
= Tp4

× Rt

(4.5)

Ta =

⎛⎜⎜⎜⎜⎜⎝
nTp

nTp2

nTp4

nTp3

⎞⎟⎟⎟⎟⎟⎠ (4.6)

Translation of the test target position to the depth camera position

Since we need to perceive the position of the test target from the position of the depth

camera, we need to perform a translation step on the matrix Ta that contains the four

corners of the test target. Translation steps involves subtracting the adjusted position of

the depth camera nCp from the test target corner matrix Ta. Since Ta has four rows in

which each row contains three values (the X, Y and Z coordinate values of all the four

corners) and nCp has just one column with three values (the X, Y and Z coordinate values

of the marker placed on top of the depth sensor location), we need to create a matrix

with four columns for the depth camera where each column would contain the X,Y and

Z coordinate values of the depth sensor. The camera matrix Ca, in Equation 4.7 shows

the elements of this matrix. Since we need to subtract the same camera position from

each of the corners, we fill the camera matrix Ca where all the rows have the same X, Y,

and Z coordinate values. For performing the translation, we perform a subtraction and
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obtain the translated target corners t rTa as stated in Equation 4.8. On this translated

target corners t rTa, we perform a rotation operation that is stated in the next section.

Ca =

⎛⎜⎜⎜⎜⎜⎝
nCp

nCp

nCp

nCp
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t rTa = Ta − Ca
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Rotation of the test target position

From the direction of the X, Y, and Z coordinates of the depth camera (shown in Figure 4.5

of section 4.2.2.1), we can see that the viewing direction of the depth camera is in the

opposite direction of the test target. Hence, we need to perform a rotation so that the

Z-axis of the camera face the test target. To do so, we rotate the X-coordinate of the

translated target corners t rTa to −90 degrees and later rearrange the coordinates so that

they match with the coordinate system of OpenGL platform. We rotated the X-coordinate

in the opposite direction, because this X-coordinate is basically giving us the distance of

the test target from the depth camera. Hence, we consider the X-axis values as the Z-axis

values and vice versa. For this rotation, we calculate the rotation matrix Rx as stated in

Equation 4.9 which we multiply with the translated target corners t rTa, see Equation 4.10

and finally we get the final position of the test target corners Tf in which we use to plot

the ground truth plane of the test target.

Rx =

⎛⎜⎜⎝
1 0 0

0 0 1

0 −1 0

⎞⎟⎟⎠ (4.9)

Tf in = t rTa × Rx (4.10)

Tf in contains the X, Y, and Z coordinate values for all the four corners of the test

target after it has been translated to the position of the depth camera and then rotated

−90 degrees in X-coordinate. Equation 4.11 shows the contents of Tf in; here Tc1
,Tc2

,Tc3

and Tc4
are the final transformed the upper-left, upper-right, lower-left and lower-right

corners of the test target respectively. We swap the columns to rearrange them so that

the first, second and third columns contain the X, Y, and Z coordinate values respectively,
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see Equation 4.12. For plotting the ground truth plane, using these four corner positions,

in OpenGL, we use Equation 4.13; the process of creating the ground truth in OpenGL is

explained in Section 4.2.3.2.

Tf in =
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Additional adjustments

Using the values from Tf in, when we created the ground truth image (discussed in

Section 4.2.3.2) and compared against a fitted plane through the recorded depth image

(discussed in Section 4.2.5), we found out that there are slight misalignment along the

X, Y, and Z coordinates of the test target with the ground truth image, hence, we needed

to adjust the angles slightly for the X, Y, and Z coordinates. This misalignment occurs

since we placed the markers on top of the depth sensor without knowing exactly at which

location the depth sensor is located physically inside the depth camera. Moreover, we also

don’t know the real physical orientation of the image plane of the Kinect. That’s the reason

we need to adjust the position and rotation angles of the pivot of the depth sensor. It is

worth to mention that we used three horizontal angle position of the depth camera with

respect to the test target. For the first position, the depth camera is kept perpendicular to

the test target, i.e. the horizontal angle between them is 0. For the second and the third

horizontal positions, we rotated the camera by 4° in the right direction and 5° in the left

direction respectively. We wanted to rotate the camera by 5° to the right side too, however

the tracking cameras were not able to track the markers beyond 4° for that position of the

depth camera.

For the 0° position, we used an additional, X=2°, Y=−3.89°, and Z=4° to align the

ground truth plane with the recorded image pane. For the 4° position in the right side,

we used an additional, X=2°, Y=1.18°, and Z=4° to align the ground truth plane with

the recorded image pane. And, for the 5° position in the left side, we used an additional,
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X=2°, Y=9.89°, and Z=4° to align the ground truth plane with the recorded image pane.

Moreover, since the pivot for the depth camera (located at the green marked markers in

Figure 4.5(c,d)) is on the surface of the Kinects, we also need to adjust the X-axis and

Y-axis position of the Kinect to reach the real physical location of the depth sensor inside

the camera. Besides, as the test target is moved far away from the depth camera the offset

between the measured depth image and ground truth image tends to increase for Kinect

V1 [95]; therefore we needed to additionally adjust the X-axis position accordingly. We

subtracted values ΔX and ΔY (in millimeters) from the Cx and Cy values in Equation 4.1

to achieve that. It is worth to mention that while ΔY remained the same through the

varying distances of the test target from the depth camera, we needed to increase the

value of ΔX (for Kinect V1) as the test target was moved far away from the depth camera.

4.2.3.2 Ground truth data creation

After we obtain the transformed position of the four corners of the test target, we draw a

rectangle using GL_QUADS and glVertex3f. By convention, OpenGL has a right-handed

coordinate system this basically means that the positive X-axis is to the right, the positive

Y-axis is up and the positive Z-axis is facing the forward direction. However, when we

plot a 3D coordinate in OpenGL, the projection matrix switches the direction of the Z-

axis; that means we need to reverse the value of Z-axis co-ordinate. After we followed

this convention, our transformed corner matrix Tf in looks as stated in Equation 4.13.

Figure 4.7(a) shows the ground truth image that we plot in OpenGL. Figure 4.7(b) shows

the recorded depth image in an OpenCV window. Details about extraction of test target

region from other part of the recorded image is discussed in Section 4.2.4.

4.2.4 Extraction of the test target from the ground truth image and

recorded depth image

After we create the ground truth depth image of the test target, the next step is to extract

the region of interest from the ground truth depth image and the recorded depth image

from the depth camera. Since the test target does not fill the whole area of the captured

depth image, it contains other objects along with the test target inside it. So, we need to

extract only the test target from the depth image and use that image for further calculation

for quantifying the amount of noise. The ground truth image that we plot on an OpenGL

window also contains other areas outside of the surface area of the checkerboard to fill the

window. Therefore, we also need to extract the area, from the OpenGL window showing

the ground truth plane, that would contain only the area of the checkerboard’s surface

area. Therefore, we need a region of interest area detection process that would detect

the boundaries of our target object’s plane and effectively eliminate other points which

does not belong to the plane. For detecting the plane of the test target inside the captured

depth image and the plotted ground truth image, we followed the following steps:
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(a) (b) 

Figure 4.7 – A side-by-side view of the ground truth image and recoded depth image.
Here (a) shows the ground truth image drawn on an OpenGL window and (b) shows
the recorded depth image on an OpenCV window. We can see both the images in (a)
and (b) are similar in size, shape and orientation.

• Binary image creation

• Bounding box calculation

• Extracting the test target and plotting the extracted target in 3D

Binary image creation

We created binary images for both the depth image captured by the depth camera and

the ground truth image which we generated using the calculation stated in the previous

(a) (b) 

Figure 4.8 – A side-by-side view of the binary images, using the depth thresholds, of
the ground truth image and recoded depth image. Here (a) and (b) show the binary
images of the ground truth image and the recorded depth image respectively.
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section. The images in Figure 4.8 show the binary images corresponding to the ground

truth depth image and the recorded depth image. In Figure 4.8, the white pixels indicate

the test target which we used for our experiment i.e. the regions of interest, while the black

pixels are the areas which fall outside the region of interest and are ignored eventually.

For the captured depth image, we created the binary image by applying a threshold to the

depth image. We used an upper and a lower boundary for the threshold that we calculated

based on the test target’s dimension (width and height) and the distance from the depth

camera. For example, if we placed the test target 1.3 meters from the camera, we would

put the lower threshold as 1300 millimeters and the upper threshold as 1460 millimeters,

see lines 5 and 6 in the Matlab codes in Listing A.1 of Appendix A.1. The upper threshold

is bigger than the lower threshold, because the upper part of the test target was a bit tilted

in outwards direction from the depth camera. We obtained the upper and lower thresholds

by plotting the depth image in 3D in Matlab and then we hovered the mouse over the

image to find the lowest and highest depth values for the area covered by the test target.

We used the Matlab function surf, see line 4 in Listing A.1 of Appendix A.1, which plots

a 3D colored surface of an input image. Finally, we apply the threshold to the captured

depth image and obtain its binary image, see line 7 in Listing A.1 of Appendix A.1. For

getting the binary image of the ground truth image, we used only one threshold that is

the value 0 since the areas outside the ground truth plane inside the OpenGL window are

black and have pixel values of 0. The code for getting binary image from ground truth

image is shown on line 8 in Listing A.1 of Appendix A.1.

Bounding box calculation

After we obtain the binary image of the captured depth image and the ground truth image,

we calculate the bounding boxes of the binary images. Later we use these bounding boxes

to extract the target object from the captured depth image and the ground truth depth

image. As we see from Figure 4.8, the white part of the binary images contain the actual

test target, we calculate the bounding box using these binary images. We used the Matlab

function regionprops, see lines 10 and 11 in Listing A.1, to obtain the exact bounding

box of the white part of the binary image (of the captured depth image), which is the

region of our interest i.e. our test target. For the process of obtaining the bounding box

for the ground truth image, please see lines 15 and 11 in Listing A.1 of Appendix A.1. We

use these bounding boxes for the next step that is the extraction of the test targets from

the captured depth image and ground truth depth image.

Extracting the test target and plotting the extracted target in 3D

After we obtain the bounding boxes for both the captured depth image and the ground

truth depth image, we apply them respectively on the captured depth image and the

ground truth depth image to extract the test target from the captured depth image and
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(a) (b) 

Figure 4.9 – A side-by-side view of the extracted regions from the ground truth
image and recoded depth image. Here (a) and (b) show the extracted regions of the
ground truth image and the recorded depth image respectively.

(d) (f) 

(a) (b) (c) 

(e) 

Figure 4.10 – 3D plot showing different views of the test target extracted from the
recorded depth image. Here (a)–(f) show the front, back, top, bottom, left and right
views of the extracted region of the recorded depth image.

ground truth depth image, see lines 13 and 18 respectively in Listing A.1 of Appendix A.1.

Figure 4.9 shows the extracted test target region of the ground truth image and the

recorded depth image. We plot these extracted regions in 3D to visualize and analyze the

extracted test target area from the ground truth image and the recorded depth image, see

lines from 20 to 24 in Listing A.1 of Appendix A.1. Figure 4.10 shows different views of

the extracted region of the recorded depth image in 3D. Figure 4.11 shows different views

of the extracted region of the recorded depth image and the ground truth image in 3D. We

can see that the depth values of the extracted region of the recorded depth image fluctuate
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(d) (f) 

(a) (c) 

(e) 

(b) 

Figure 4.11 – 3D plot showing different views of the test target extracted from the
recorded depth image and the ground truth depth image. Here (a)–(f) show the
front, back, top, bottom, left and right views of the extracted region of the recorded
depth image and the ground truth depth image. Here, ground truth image is shown
in gray color in (a)–(f). For example, in (c) the ground truth image is the gray surface
plane which is passing through the recorded depth image.

from one region to another and the range of the depth values are also not very small.

Hence, we fit a plane through these depth values so that we can analyze and compare

the difference between the surfaces of the recorded depth image and ground truth depth

image. While plotting the extracted target of the recorded depth image in 3D, we noticed

that the extracted region is showing unstable movement due to the occurrence of outliers

from one frame to another. This unstable nature of the depth image would cause issues to

properly calibrate the position of the depth sensor because with an unstable and moving

target we would not be able to properly measure at which distance and rotation angle

the ground truth would align with the recorded depth image. To resolve this issue and to

stabilize the recorded depth image, we used an average image of 90 images instead of

using one single image and use that average image to estimate the calibration parameters.

4.2.5 Fitting plane through the ground truth and the recorded depth

image

Since the captured depth image contains depth values that vary drastically from one

location to another, depending on distance, lighting and viewing angle, we used a plane

that would fit the depth values at various locations in the image. This would help us to

more precisely measure the difference between the captured depth image and generated
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ground truth image. We also fit a plane through the ground truth depth image. For the

points in a depth image, we calculated a plane with minimal distance to all the points.

This was done by using the MATLAB function fit that calculates the best coefficients

for an equation with given points. We used the polynomial model poly10 of Matlab to

calculate the equation of the plane to be fitted. From the definition of fittype parameter

of Matlab’s fit function, for polynomial surfaces, model names have such definition as

polyij, where i is the degree in x and j is the degree in y. Since, we use model poly10, it

means that the degree in x is 1 and the degree in y is 0. According to the definition of fit
function, the plane equation for poly10 becomes as stated in Equation 4.14; here, p00

and p10 are the coefficients. We also used options such as Normalize and Bisquare for

normalizing the values and for obtaining a robust plane. The codes for fitting planes are

stated in Listing A.2 of Appendix A.2. Figure 4.12 shows the fitted planes of the recorded

depth image and the ground truth depth image; here, we can see that both these planes

match and the gap between them is very small. The tiny angle (0.2947°) between these

fitted planes also shows that the gap between them is very small.

z = p00+ p10 ∗ x (4.14)

4.2.6 Noise extraction and visualization of the extracted noise

In order to understand the depth sensor noise, generated on the test target, we obtain

the noise by subtracting the ground truth image from the recorded depth image. We

extract the noise for each measured location of the test target and then we analyze how

the noise is changed (or not changed) depending on the viewing distance from the camera,

viewing angle of the camera and the lighting condition of the environment. We use

(a) (b) 

Figure 4.12 – Front and back view of the fitted planes through the extracted regions
of the recorded depth image and the ground truth depth image; green and gray
planes represent the recorded depth image and the ground truth depth respectively.
Here (a) and (b) show the front and back views of the fitted planes of the extracted
region of the recorded depth image and the ground truth image respectively. The
zoomed image in the middle shows the very small distance between these planes.
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Figure 4.13 – Extracted noise mapped on the ground truth image at two different
distances. Here (a) and (b) shows the noise mapped on the ground truth images
created at distances 1.6 meters and 1.7 meters respectively. The color bar shows
the scale of the amount of noise in millimetres (mm) over the surface of the ground
truth images. We can see that the variation of the amount of noise in image (a) and
(b) which are located at two different positions.

the Matlab function imabsdiff to get the difference between the recorded depth image

and the ground truth image. Then we map the noise to the ground truth image so that

we can perceive the quantity of noise on the surface of the ground truth image. This

mapping is done to perceive the effect of noise on the ground truth image and analyze

it for understanding the noise characteristics. The Matlab codes for extracting the noise

and mapping it onto the surface of the ground truth image is stated in Listing A.3 of

Appendix A.3. Figure 4.13 shows an example of the extracted noise mapped onto the

ground truth images that are created at two different distances from the position of the

depth camera. More results for different distances, viewing angles and lighting conditions

are shown in the next section.

4.3 Results and discussions

Here we discuss the various results that we obtained throughout different steps of the

sensor noise extraction and visualization experiment. We first show how the depth image

changes depending on the distance of the test target from the depth camera. In addition

to this, we show the corresponding ground truth images for the different distances and the

noise extracted and mapped on the ground truth image. Then we present visualizations

of the depth image and the ground truth image from three different angles for the

same position to understand how the viewing angle affects the depth images and the

corresponding noise on them. Finally, we present and compare the depth images captured

in two different lighting conditions and try to understand how different lighting sources

affect (or, do not affect) the noise characteristics of the depth images. We also compare the
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depth images captured by Kinect V1 and Kinect V2 and analyze the noise characteristics

from these two different depth sensors (Kinect V1 and V2 use structured light sensing and

ToF methods respectively to measure the depth of an object).

4.3.1 Visualization of depth images and ground truth images at vary-

ing distances

Here we show the appearance of noise on the surface of the recorded depth images at

various locations of the test target from the depth camera. Figure 4.14 shows 3D views of

the recorded depth images of the test target at three different distances (1.4 meters, 1.6

meters, and 1.8 meters) from the depth camera. We know from the working principle of

Kinect V2 that the accuracy of the depth estimation varies with the variation of an object’s

distance from the depth camera [95, 96]. Similarly, we see that as the target is moved

to different distances from the camera, the quantity of noise on the surface of the depth

image also varies. It becomes more clear by looking at the four holes, on Figure 4.14(b)

to (d), which occur at the positions where we placed four reflective objects so that we get

some noise at these locations. We also perceive a rather large hole in the middle of the

images in Figure 4.14(c) and (d) which is caused by an unwanted reflection on the test

target’s surface. As we move further from the camera, the reflection gets smaller and so

the size of the hole; in (b), we do not see this hole since at this position that part of the

target’s surface is not reflective anymore. We have also depicted the ground truth image

along with the recorded depth image at the mentioned distances in Figure 4.15. It shows

how the ground truth is aligning and intersecting with the recorded depth images over the

surface area. In order to visualize the noise, we have subtracted the ground truth image

from the recorded depth image and showed the noise at those distances in Figure 4.16;

here too, we can see that the amount of noise changes as the target is moved far away

from the depth camera. Figure 4.20(a) shows how the noise increases or decreases with

the increase or decrease of the distance of the target from the camera.

4.3.2 Visualization of depth images and ground truth images at vary-

ing viewing angles

We present here the effect of changing the viewing angle of the depth camera with respect

to the test target on the quantity of noise. We used three viewing angles of the depth

camera – first with 5° rotation of the camera to the left side, then at 0° rotation of the

camera i.e. the camera is kept at perpendicular direction with respect to the test target

and finally, at 4° rotation to the right side. Figure 4.17 shows the recorded depth image

and ground truth image of the test target for those three viewing angles. Here, we can see

variations in depth values from one viewing angle to another. At the same time, we also

observed a variation in the angle between the fitted planes that pass through the recorded



4.3 Results and discussions 83

D
is

ta
nc

e 
 (i

n 
m

m
) f

ro
m

 c
am

er
a 

(a) 

(b) 

(d) 

(c) 

(e) 

(f) 

(g) 

(h) 

Target width 

Ta
rg

et
 h

ei
gh

t 

Figure 4.14 – 3D views of the recorded depth images and ground truth images
of the test target at three different distances from the depth camera. Here, (a,e)
show the 3D views of all the depth images and the ground truth images in one plot
whereas, (b,c,d,f,g,h) show different plots showing different 3D views of the test
target located at distances 1.4 meters, 1.6 meters and 1.8 meters from the depth
camera respectively. We can see presence of a rather large hole in the middle of the
depth images in (c) and (d) which were caused by reflections. As we move far away
from the lighting source causing the reflection, the hole gets smaller and in (b) we
do not perceive that hole anymore. We perceive a difference in the quantity of noise
on the surface of the depth images as the target is moved farther from the camera by
looking at the four holes (we placed four reflective objects on these positions so that
we get some noise at these locations). By looking at images (d) to (b), we can see
that the amount of noise varies (noise increases as the distance of the object from
the camera increases) with varying distances of the test target from the camera.
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Figure 4.15 – 3D views of the alignment of ground truth image and recorded depth
images of the test target at three different distances (1.4 meters, 1.6 meters and 1.8
meters) from the depth camera. As we move from (d) to (b), we can perceive how
the ground truth aligns and intersects with the image plane of the recorded depth
images.

depth image and ground truth image respectively, see Figure 4.18. Table 4.1 shows the

change in the angle between the fitted planes through the recorded depth image and

the ground truth image for three viewing angles. We also perceive the variations in the

amount of noise from one rotation angle to another, see Figure 4.19. Here, we mapped

the extracted noise on the ground truth image as color-coded texture and hence we can

perceive the scale of noise on the surface of the ground truth image; the noise is obtained

by extracting the ground truth image from the recorded depth image. We perceive more

variation of noise on the right edge of the test target when we change the viewing angle of

the camera. The scales shown on the right side of each plot in Figure 4.19 also indicates

that the noise quantity changes from one angle to another. Besides, the color-coding of

the noise at the right edge also changes from one image to another which indicates the
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Figure 4.16 – 3D views of the noise obtained by subtracting the ground truth images
from the recorded depth images of the test target at three different distances (1.4
meters, 1.6 meters and 1.8 meters) from the depth camera. Here, by looking from
(d) to (b), we can see that the amount of noise changes as the target is moved far
away from the depth camera.

change of noise amount. Figure 4.20(b) shows how the noise increases or decreases with

the increase or decrease of the viewing angle of the camera with respect to the target.

Table 4.1 – Change in the angle between the fitted planes through the recorded
depth image and the ground truth image for three viewing angles.

Rotation angle of
the depth camera Angle between the fitted planes

5° to the left side 0.5185
0° 0.5907

4° to the right side 0.5790
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Figure 4.17 – 3D views of the recorded depth image and ground truth image at three
different viewing angles at one specific distance from the depth camera. Here, (a)
shows the plots from all the three viewing angles and (b,c,d) show the plots for the
rotation of the depth camera to 5° to the left side, 0° (no rotation i.e. perpendicular
to the test target) and 4° to the right side respectively. We see here variations in
depth values on the surface of the test target from one viewing angle to another.
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(a) (b) (c) 

Figure 4.18 – 3D views of the front and back side of the fitted planes through the
extracted regions of the recorded depth image and the ground truth depth image
at the three angles, mentioned in Figure 4.17, respectively; green and gray planes
represent the recorded depth image and the ground truth depth image respectively.
The zoomed images above (b,c,d) show how the fitted planes align with each other.
Here, the zoomed parts of (a) and (b) show a small gap (less than 0.5 millimetres)
between the fitted planes of the recorded depth image and the ground truth image,
whereas (c) show no such distance. This gap occurs due to manually moving the test
target from one location to another or manually rotating from one angle to another
which seems to induce such gap.
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Figure 4.19 – 3D views of the noise obtained by subtracting the ground truth images
from the recorded depth images of the test target at three different viewing angles,
mentioned in Figure 4.17, respectively. Here, by looking from (a) to (c), we can see
that the amount of noise varies from one viewing angle to another, specifically at the
bottom right corner of the test target shows the variations in the amount of noise
in millimeter (mm). Moreover, the scales (shown at the right side of each images)
in these three images have different maximum values which also indicate that the
amount of noise varies from one angle to another.
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Figure 4.20 – Variations of the noise quantity at various distances of the object from
the camera and at various viewing angle of the camera with respect to the target.
Here, (a) and (b) show the amount of noise changed due to the change in distance
of the target the camera and for the change in viewing angle of the camera. In (a),
we can see that the lowest noise (marked with a green ellipse) occurs in between
the range of 1 meter and 1.5 meters and it increases beyond this range. The error is
lowest at this range because at this distance range, Kinects can estimate the depth
values better. In (b), we can see that the lowest error occurs when the viewing angle
between the camera and the target is 0 and then it becomes bigger with greater
viewing angles.
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4.3.3 Visualization of depth images and ground truth images at vary-

ing light sources

For testing the effect of various light sources on the amount of artifact generated on the

surface of the target, we used two light sources mounted on the rig to which the tracking

cameras are attached. In one source we had room lights which have a color temperature

of 5,500K and in another, we used four studio lights which have a color temperature of

6,500K each. We observed slight variations of the test target’s depth values under these

lighting sources. Although the variations are not huge, there are slight variations in the

depth values. Figure 4.21 shows the color images, depth images and the corresponding 3D

plot of the extracted region of the target and the ground truth image for the two lighting

sources. Although the color image shows different shades of lighting, we perceive a slight

change in the depth values both in the depth images and on the 3D plots. To visualize the

difference between the depth image, we show a plot in Figure 4.22(a) which depicts the

absolute differences between these images which also indicate tiny variation among these

two images. The noise difference in Figure 4.22(b) also indicate similar observation. It is

worth to mention that we obtained the noise for these images by subtracting the ground

truth images from the recorded depth images. For a better quantification of the noise per

pixel in these images, we depict, in Figure 4.23, bar diagrams which show the mean noise

per pixel for these images. Here too, we perceive the variations in the noise level for these

two images which are not very drastic for the majority of the pixels.

4.3.4 Observations from the experiments with Kinect V1 and V2 sen-

sors

There are a few other issues which we observed while conducting these experiments.

Firstly, we noticed, for Kinect V2, a variation in depth values for the different colored

squares with black and white color. Since all these squares are on the same plane they

should all have the same depth value and should not appear as different squares on

the depth image. This artifact has already been discussed in [96]. Figure 4.24 (and

Figure 4.11(a) and (b)) show examples of such artifacts. Kinect V1 sensor do not exhibit

such artifact.

For conducting the experiment with Kinect V2 sensor, we needed to run Kinect V2

for 25 minutes before recording any scene. This waiting time helped us to get a steady

depth value of the test target as before that time the measured depth value fluctuates a

lot. The distance measurement method of Kinect V2 has a strong correlation with the

temperature of the device, whereas Kinect V1 has a weak correlation [95]. Therefore, we

waited approximately 25 minutes to avoid temperature-related influences on the depth

images. For Kinect V1, a short warm-up time was fine.
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Figure 4.21 – Recorded depth image and ground truth image under two different
lighting sources. Here, (a) to (c) show the color image, depth image and the 3D
plot of the extracted region of the target and the ground truth image under room
light (with color temperature of 5,500K). And, (d) to (f) show the color image,
depth image and the 3D plot of the extracted region of the target and the ground
truth image under studio light (with color temperature of 6, 500K). Under these two
lighting sources, although the color images show different shades of lighting, very
little change is perceived in the depth images and on the 3D plots.

Image difference Noise difference 

(a) (b) 

Figure 4.22 – Absolute difference between the depth images under two lighting
sources and between the noise on these two depth images. Here, (a) shows the
absolute differences between the depth images under room light and studio light.
By looking at the plot and the scale of variation on the right side, we perceive very
small variation among these two images. And, (b)shows the absolute differences
between the noise generated on the depth images under room light and studio light.
Here too, we observe very little variation among the two noise quantities.
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Mean noise per pixel for room light Mean noise per pixel for studio light 

(a) (b) 

Figure 4.23 – Bar diagrams showing the mean noise per pixel for the images recorded
under room light and studio light. Here, (a) and (b) show the bar diagrams of
the mean noise per pixel of the depth images under room light and studio light
respectively. Although, we perceive little variations in the noise level for these two
images, but the variations are not very drastic for the majority of the pixels.

Kinect V1 Kinect V2 

(a) (b) 

Figure 4.24 – Extracted test targets, located at the same position, from the depth
images captured by Kinect V1 and Kinect V2 sensors. Here, (a) and (b) show the
test targets by Kinect V1 and V2 respectively. We can see the squares in (b) (also in
Figure 4.11(a) and (b)) which correspond to the actual black and white squares on
the test target (checkerboard) we used for the experiments. Although these squares
are on the same plane, Kinect V2 is showing different depth values for these squares.
We don’t see such squares on the depth image of Kinect V1 in (a).
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Kinect V1 Kinect V2 

(a) (b) 

(c) (d) 

Figure 4.25 – Top and bottom views of the extracted test target in 3D showing the
depth values. Here, (a) and (b) show the 3D views of the top side of the test target
extracted from the depth images captured by Kinect V1 and V2 respectively. We can
see that the depth values are fluctuating within a relatively short range for Kinect
V1 than for Kinect V2. For Kinect V2, we see quite large fluctuation of depth value
compared to the fluctuation in Kinect V1. We also perceive similar behaviour of the
depth values for the bottom view of the extracted test target in (c) and (d). Here, we
can see even more spikes indicating more fluctuations in the depth values for Kinect
V2 than Kinect V1.

While conducting the experiments with Kinect V1 and V2 sensors, we came across

different levels of outliers on the depth images captured by these two sensors. For Kinect

V1, the outliers are more close to each other whereas the outliers for Kinect V2 are spread

out from one another forming spike shapes. Figure 4.25 shows an example of such an

artifact where (a) and (b) show that the depth values are fluctuating within a relatively

short range for Kinect V1 than for Kinect V2. For Kinect V2, we see quite a large fluctuation

of depth value compared to the fluctuation in Kinect V1. We also perceive similar behavior

of the depth values for the bottom view of the extracted test target in Figure 4.25(c) and

(d). Here, we can see even more spikes indicating more fluctuations in the depth values

for Kinect V2 than Kinect V1. Since the depth images from Kinect V2 contain a rather large

quantity of outliers, our proposed depth enhancement strategy, discussed in Chapter 3,
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would essentially be able to remove those outliers and stabilize the depth values for each

pixel.

4.4 Future works

Due to the time constraints, we were not able to test the noise characteristics of other

depth cameras. In the future, we would like to carry out the experiment with other depth

cameras and analyze the noise characteristics for those depth cameras. Moreover, we

would like to perform interpolation using the calibration results from the experiment so

that we can effectively estimate the depth values for dynamic scenes with more precision.

Instead of using a rectangular target, we would use a sphere to get all possible orientation

of the test target at one capture and use more light sources to cover all possible variations

of distortions that occur on a depth sensor. We would move the sphere in different vertical

and horizontal places, rather than moving along one line as we did in this experiment,

to get a better interpolation and hence a better approximation of the depth value for

any given position and orientation of a target object in a scene. Besides this, we would

also like to dynamically select the number of frames in the sliding window of the depth

enhancement strategy discussed in Chapter 3 which would help us to better optimize the

whole processing pipeline of the enhancement strategy.





Chapter 5

Reduction of transmission data

This is the second focus of this thesis where we discuss our proposed data reduction

approaches. Since the captured data needs to be transmitted to some location/device

from the acquisition device, in case of a large amount of captured data, there is always a

demand for reduction of the input data that does not contribute to the final output. An

efficient reduction strategy not only reduces the data transmission latency, but also makes

the data processing less complex and less time-consuming. Besides this, there is industry

requirement which states that a method’s generated data should use less memory and

consume the minimum amount of data to ensure smooth transportability of the data from

one location to another [1]. To fulfill these requirements, we propose two data reduction

methods for reducing the amount of image data without compromising the quality of the

final output. The works in this chapter is published in [97,98].

5.1 Problem description and motivation

While a moderate amount of processing time and power are required to process the data

generated by a single commodity depth sensor such as Microsoft Kinect or ASUS Xtion

Pro, we can easily imagine the required processing power to handle the massive volume

of data which is produced when multiple cameras are used in parallel to capture a scene

from various angles. In recent years, we have seen that quite a few applications, such

as telepresence [32, 99], tend to be equipped with multiple cameras (see Figure 5.1)

to transmit and display the whole scene of the communication space. When a multi-

camera setup is used for capturing a scene to support multi-view 3D reconstruction of

the scene, the large volume of generated data normally requires additional processing

for the final output. These large data need to be processed at the acquisition site, might

need aggregation from different network nodes and transmitted to the receiver site.

Transmission of this huge data from multiple cameras becomes critically challenging when

they are sent over a limited bandwidth network. Even when a single camera is in use in

95
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Figure 5.1 – A communication system with multi-camera setup.

an area where network bandwidth is low and unpredictable, such as in a disaster location

where a robot is capturing the scene to transmit it to the service station for processing

the data to take action accordingly, the captured data becomes too large for the network

to transmit properly and hence, need efficient reduction. Compression of these large

data, without further consideration, might resolve this issue to a certain degree, but such

compression degrades the quality of the data.

We know that depending on the final viewing-angle of a 3D reconstruction or the

users’ focus on a reconstructed scene, not all data from every camera contribute equally

to the final output. Hence, usually, there are camera data from certain cameras that can

be discarded for a particular viewing angle of a scene. Besides, based on a user’s focus

on a scene, data that falls outside of a user’s gaze, can also be discarded. Hence, the

improvement of coding efficiency at low bitrates before applying the classical compression

methods, rather than only applying those compression methods, would be useful in

transmitting such data.

Moreover, although our proposed depth data enhancement framework, described

in Chapter 3, does not rely on the accompanying color images, many computer vision

applications use the color and depth image pairs to reconstruct a colored 3D model. Thus,

the combination of color and depth image streams results in quite a heavy amount of data

that needs to be processed for generating the final output. Often, not all the color data on

all the color frames are required for the final output; hence, we can also find removable

color data in the color image stream.

Therefore, to address the above mentioned issues with massive camera data, we

propose two data reduction strategies: one for multi-camera data capture setup where

certain part of a camera’s data can be removed and another for color image data (acquired

by multi-camera setup) reduction where certain color data in certain color frames can be

discarded. Both of these strategies are aimed towards reducing the overall data required
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for certain applications and subsequently, reducing the amount of processing power needed

to yield the final output. It is worth to mention that both of these strategies are considered

as preprocessing steps before applying classical compression techniques; they are not

meant to apply as alternatives of any data compression methods that in fact cover a

completely different area of work than ours.

5.2 Related works in camera data reduction

We discuss the related work in camera data reduction here, instead of discussing it in

Section 2.2, because this is a secondary focus of the thesis which wanted to keep separate

from the main focus of the thesis.

The approaches pursued in camera-data reduction use a variety of approaches to

reduce the amount of data captured with multi-camera setups. These approaches can

be divided into two broad categories. In the first category, the approaches mainly focus

on reducing the data volume in such a manner that they require lower bandwidth to

be transmitted to other locations/devices. Most of these works apply a dynamic camera

selection strategy or dynamic data stream selection strategy. In the second category, the

approaches mainly focus on transmitting down-sampled non-key-frames (NKF)s of each

camera so that they require less bandwidth and later at the receiver end, they enhance

those down-sampled NKFs by using Super Resolution (SR) methods.

For instance, Willert et al. [100] propose a dynamic camera selection strategy which

reduces the number of recording cameras at the acquisition site. Here, they propose to use

data from only those cameras which capture the scene from the perspective of the user.

They also propose to use a dynamic frustum selection method when the dynamic camera

selection fails. In another work [101] Lamboray et al. classify the camera data stream into

several categories such as bulk data, sporadic-event data, and real-time streaming data.

Based on the positional information, obtained through a backchannel between acquisition

and receiver location, of the viewing user (located at a different location) they apply

different strategies to transmit selective updates of the scene from the acquisition location.

The effectiveness of such selective transmission of camera data has been studied in the

work by Maimone et al. [102] where the authors suggest that when the change does not

take place in all parts of a scene, camera selection should focus on the reduction of the

overall amount of data. Lien et al. [103] propose another notable data reduction strategy

where they apply an approach based on model-driven data reduction strategy.

On the other hand, Brandi et al. [104] propose to use SR methods, at the receiver

site, to enhance the down-graded NKFs. Here, they down-sample the NKFs and keep the

Key Frame (KF)s at original resolution; encoding is performed on this combination of

degraded NKFs and original KFs. By employing this, they gain a better video compression

rate by means of up-sampling those down-sampled NKFs at the receiver site. The works
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by Shen et al. [105] and Hu et al. [106] also use a similar approach but by using an

exampled-based SR method and an adaptive SR method respectively to upgrade the NKFs.

There are a few other spatial color image enhancement methods [107,108], other than

the SR methods, which are computationally very expensive and are not suitable for our

problem domain.

Recently, we have seen usage of very Large High Resolution Display (LHRD)s which

are mainly used to display 3D reconstruction of a scene captured with multiple cameras.

One such LHRD is a light field display. Among the notable works which propose data

reduction strategy for such LHRD with a multi-camera setup, Jones et al. [109] propose

a set of rendering methods for an autostereoscopic light field display which is able to

present interactive 3D graphics to multiple simultaneous viewers covering 360 degrees

around the display. They apply a multiple-center-of-projection rendering technique for

creating perspective-correct images from arbitrary viewpoints around the display. In [110],
Magnor et al. present another approach where they apply vector quantization, DCT coding

and transform coding using spherical functions to the light field compression technique.

Here, the first coder decodes the recorded light-field segments very fast and thus achieves

interactive rendering rate and then the second coder works as disparity compensating

coder which incrementally refines the light field during the decoding and predicts the

intermediate light field images.

5.3 Data reduction by efficient degradation and enhance-

ment of color frames

Using classical compression methods to reduce the large volume of data generated by multi-

camera setups might solve the problem to a certain degree, but using such compression

techniques directly on the acquired data does not guarantee efficient data reduction.

Reducing the input data from dynamically selected frames which can be enhanced at a

later stage, would be beneficial for transmitting the camera data in real-time. To that end,

we propose a camera data reduction strategy which supports efficient bandwidth usage for

the frames of a multi-camera setup. Our approach improves the coding performance by

means of degrading the color information of NKFs at the acquisition site; we do not degrade

the KFs. Unlike the methods described in [104–106] which reduce the resolution of the

NKFs, we reduce the amount of color data of the NKFs which aids to reduce the image

data. We also propose two different methods which we use to enhance, at the receiver

site, the degraded NKFs by using the information stored in non-degraded KFs. Thus, our

degradation method acts as a pre-process to the classical video compression methods

while our two post-processing methods enhance the image quality of the encoded frames

at low bitrates. Our strategy reduces the encoder complexity, improves the compression

rate and aids to transmit large amounts of data from multiple cameras at low bitrate.
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5.3.1 Proposed method

Our problem domain consists of an acquisition site, a receiver site, a display screen on

both sites and cameras placed at certain positions to capture the scene; see Figure 5.1.

The captured frames are sent, from the acquisition site, through the available network to

be displayed on the screen at the receiver site. Here, the communication works in both

ways; we used the terms acquisition and receiver site for the ease of explanation. As we

mentioned previously, our proposed approach consists of a degradation process of the

NKFs which acts as a pre-processing step and two enhancement processes which enhances

the degraded NKFs with the information from non-degraded KFs. In the next subsections,

we discuss the details about our degradation and enhancement strategies in detail.

5.3.1.1 Degradation process

Unlike the methods in [104–106], we degrade the frames not by reducing the resolution

but by reducing the color information. We transmit the KFs with full color information

and the NKFs with reduced color information which eventually improves the compression

rate of the encoder. The diagram in Figure 5.2 shows our basic degradation model.

At first, we convert the color space, from RGB to CIELAB, for each of the NKFs, because

CIELAB provides independent access of the lightness and color information, and it is more

uniform than RGB [111]. We get the corresponding L*a*b* values of each NKFs after this

conversion. Then we apply Principle Component Analysis (PCA) to de-correlate the image

data in the CIELAB space. For color degradation, we do not change the information of the

L* channel and work only with a* and b* channel to access the chromaticity parameters.

We apply the following formulae, in Equation 5.1 and 5.2, to obtain the eigenvectors and

eigenvalues.

Pin = I − Im, Cv = PT
inPin

Evc =

⎡
⎣Evc11 Evc12

Evc21 Evc22

⎤
⎦ , Evl = diag(sor t(

⎡
⎣Evl1

Evl2

⎤
⎦)) (5.1)

In Equation 5.1, Pin = independent/de-correlated color channel axis, I = NKFs,

Im=mean of I , Cv = covariance matrix, PT
in= transpose of Pin, Evc= eigenvector ma-

trix and Evl= eigenvalue matrix. Here, Pin and I are raster image matrix in CIELAB color

space. Since we apple PCA on two variables, i.e. on two channels (a* and b* channels) of

CIELAB space, we get four eigenvectors Evc11, Evc12, Evc21 and Evc22. For the same reason,

we get two eigenvalues Evl1 and Evl2.

Then, we project the Evc on Pin and get the reduced axes (the two Principle Component

(PC)s Pin1 and Pin2), which contain reduced color information of the a* and b* channels,

according to the formula in Equation 5.2.
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Figure5.2–Colordegradationstrategyfortheframes.

Pindfinal=PinEvc

Pind1final=Pin1
Evl1

Evl2

−k

Pind2final=Pin2(2k)
−1

(5.2)

InEquation5.2,Pin1andPin2=1stand2ndindependentaxesandk=multiplication

factor(determinedbyexperimentationand0<k<1).Wesetk=0.65forourexperi-

ments.Thevalueofkshouldbesethigherforthesequenceswithmorebalancedcolor

informationacrossallthechannelsandlowerforthesequenceswithlessbalancedorless

colorinformation;becauseforthefirstcase,thereissufficientcolorinformationtobe

reducedwhereas,forthesecondcase,thereisnotmuchinformationtobereduced.

SincePin1,beingthe1stPCinthePCA,hasmorecolorinformationthanPin2,we

multipliedPin1with
Evl1
Evl2

−k

anddividedPin2withafactorof2k.Because(2k)
−1is

alwaysgreaterthan
Evl1
Evl2

−k

,thecolorinformationalongPin1axisgetsmorereduced

thanthecolorinformationalongPin2andhence,afterthereduction,bothPind1finaland

Pind1finalpossessanequivalentamountofcolorinformation.Afterthedegradationis

completed,webringbacktheNKFstoRGBspacefromCIELABspaceforfurtherprocessing.

Figure5.3showstheamountofreductionina*andb*channelsbyscatterplotandCIELAB
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diagramfortwoNKFframesfromMDandCG. Wecanperceivethecolorreductionby

comparingtheshirtandskincolorofMDinFigure5.3(a)andtheshirtoftheperson

onthesmallboat,redstripoftheshipandgreencoloroftheplantinFigure5.3(b).

Therefore,afterthedegradation,wegetNKFswithreducedcolorinformationandsize.

FortheexperimentalresultcomparisoninSection5.3.3,wealsodevisedtheinverse

processofthisdegradationmethodinwhichwemultiplyPin1withafactorof2kandPin2

with
Evl1
Evl2

k

.Since
Evl1
Evl2

k

isalwaysbiggerthan2k,Pin2isenhancedmorethan

Pin1andsothecolorisenhancementisbalancedforbothPin1andPin2.Inthenextsection,

wediscussaboutourtwoproposedmethodswhichweusetoenhancethesedegraded

NKFsaftertheyaredecodedonthereceiversite.

5.3.2 Enhancementprocess

AftertheNKFsaredegradedattheacquisitionsiteandencodedwithnon-degradedKFs

andtransmittedtothereceiversite,theseNKFsandKFsaredecodedandthentheNKFsare

enhancedwiththeinformationstoredintheKFs.Aninverseoperationofthedegradation

process(describedinprevioussection)doesn’thelptoenhancethecolorinformationof

theNKFs,becauseduringthedegradationthatcolorinformationisalreadylostandthe

inverseoperation,withoutanyotherenhancementprocess,cannothelptoelevatethe

colorinformationofNKFstotheKF’slevel. Weproposetwoenhancementmethodsby

whichthedegradedNKFsleveluptothecolorinformationofthenon-degradedKFs.

Atthebeginningphaseofenhancement,themeanvaluesofeachchannel(RGB)ofthe

KFarestoredandthesevaluesareusedtolevelupthecolorinformationofNKFs.Each

ofthechannelsoftheNKFsisscannedindividuallyandmeanvaluesofcorresponding

channelsofKFsarepassedtotheNKFstolevelupthatchannel’scolorinformation.For

thecalculation,weusedthechannel’scolorvaluerangefrom0to1,laterwemultiplied

thechannelvalueswiththeoriginalrangestogetbacktotheoriginalvalues.Thediagram

inFigure5.4showsthestepsofourproposedmethods.Detailsaboutthemethodsare

explainedinthefollowingsubsections.

5.3.2.1 NKFenhancement:method1

Inthismethod,weelevatethecolorinformationofeachofthechannels(RGB)ofthe

NKFsbyusingthemeanvaluesofRGBchannelsofKFwhichwerestoredinitially.Weuse

theformulainEquation5.3toenhancetheNKFs.

CEi=







1−C
k

i

1−C
nk

i

Cnki −C
nk

i +C
k

i, ifC
k

i>C
nk

i

CnkiC
k

i C
nk

i

−1

otherwise

(5.3)
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In Equation 5.3, C E
i = enhanced color value for channel Ci , Cnk

i = color value of

degraded NKF for channel Ci , C
k
i = mean color value for the KF for channel Ci and C

nk
i =

mean color value for the NKF for channel Ci . Here, if the mean color value C
k
i is greater

than the mean color value C
nk
i , then all the color values of that channel are uplifted similar

to the top illustration of diagram (i) of Figure 5.4, but if C
k
i < C

nk
i (which could occur

very seldom), then the channel values of NKFs follow the mean value of the channels of

KF; see the bottom illustration of diagram (i) of Figure 5.4. In this way, the information

stored in the KFs are used to elevate the color information of the NKFs.

5.3.2.2 NKF enhancement: method 2

Here, we use the following strategy to enhance the NKFs: we calculate the ratio of mean

color value for each channel of NKF and KF, and then take the maximum from these three

ratios and inverse multiply the maximum ratio with the ratio of mean color value for each

channel of KF and mean color value for each channel of NKF(
C

k
i

C
nk
i

), and with the color

value for each channel (Cnk
i ) of NKF. We use the formula in Equation 5.4 for this process.

C E
i = Cnk

i

C
k
i

C
nk
i

⎛⎜⎜⎜⎝max

⎧
⎨
⎩ C

k
1

C
nk
1

,
C

k
2

C
nk
2

,
C

k
3

C
nk
3

⎫
⎬
⎭
⎞⎟⎟⎟⎠

−1

(5.4)

In Equation 5.4, C E
i , Cnk

i , C
k
i and C

nk
i represents same as in Equation 5.4 and C

k
1, C

k
2,

C
k
3, C

nk
1 , C

nk
2 , C

nk
3 represents the mean color values for the red, green and blue channels

of the KF and NKF respectively. The diagram (ii) in Figure 5.4 illustrates the enhancement

method using this approach.

5.3.3 Experimental results

For evaluating our proposed method, we used three reference data sets from [112] among

which two are CIF (352 × 288) video sequences from Mother and daughter MD and

Coastguard CG datasets and another is 4CIF (704× 576) video sequence from ice dataset.

Here, we used FFMPEG’s MPEG-4/AVC encoder (mentioned as reference coder in this

section) to encode the stream at low bitrates. Since, live stream of frames is transmitted

in a normal communication scenario, we used two seconds’ worth number of frames to

test our methods to avoid noticeable transmission delay. We encoded the stream at 30

fps, so there were 60 frames for each of the tests. We compared the PSNR gain with our

degradation and enhancement model and with the output from the reference coder.

We had two test phases. In one test phase, we varied the bitrate from 5 kbps to 35

kbps, kept the quantization parameter QP at 31 and measured the PSNR gain of the NKFs

for our proposed methods, reference coder, only decoded situation and decoded & inverse
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process of degradation (referred here as Decoded and Lab enhanced). In case of Decoded

and Lab enhanced, after decoding the NKFs at the receiver site, we applied the inverse

process of the degradation (discussed in Section 5.3.1.1). In the second test phase, we

varied the frequency of KFs and considered every 2nd, 5th, 10th, and 20th frames as KFs

respectively for the four cases. Then, we measured the PSNR gain for the NKFs with our

proposed methods and reference coder.

For the first phase of the test, we calculated the average PSNR for four scenarios. In

first scenario, frames are degraded, encoded, transmitted, decoded and enhanced by our

strategies, in second scenario, frames are not degraded, they are encoded, transmitted and

then decoded (here only reference coder is used), in third scenario, frames are degraded,

encoded, transmitted and decoded, but they are not enhanced and in fourth scenario,

frames are degraded, encoded, transmitted, decoded and enhanced by the inverse process.

The results of these four scenarios are depicted in Figure 5.5 and 5.6.

In Figure 5.5 (a) and (b), we can see that the PSNR gains from the 3rd and 4th scenarios

are much lower than the other two scenarios. While the reference coder output, i.e. the

2nd scenario, shows good PSNR level, our methods (the first scenario) show better PSNR

level than all the other scenarios. Our results show clear improvement in compression

ratio i.e. PSNR gain. We perceive similar superior PSNR gains, as in Figure 5.5, with our

proposed strategy for the MD and ice sequences as well; see the results in Figure 5.6. The

PSNR gain for ice, in Figure 5.6(b), is comparatively less than the gain of the MD and CG.

It occurs because the MD and CG sequences contain much balanced color information in

all the channels and hence, the color information degradation and enhancement is better

and balanced than the ice sequence. The PSNR gain for ice sequence could be improved

by using a lower value for k in Equation 2, however, we chose to use the same value of k

for ensuring the uniformity of the experiment settings.
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Figure 5.5 – Enhancement results for Coastguard CG sequence: (a) Proposed
method 1, (b) Proposed method 2.
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Figure 5.6 – Enhancement results with proposed method 1 on: (a) Mother and
daughter MD sequence, (b) ice sequence.
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Figure 5.7 – Enhancement results varying KF frequency for Coastguard CG sequence:
(a) Proposed method 1, (b) Proposed method 2.

For second phase of the test, we varied the frequency of KFs (from 2 to 20 KF frequency)

and displayed the PSNR gain. For this phase, we calculated the average PSNR for the

frames for two scenarios. In the first scenario, frames are degraded with different KF

frequencies, encoded, transmitted, decoded and enhanced by our strategies and in the

second scenario, frames are not degraded, then encoded, transmitted and then decoded

(no enhancement strategy is used).

Figure 5.7 shows the PSNR gains from our proposed methods with varying KF fre-

quencies at different bitrates (1st scenario) and the PSNR gains from the reference coder

at different bitrates (2nd scenario). Figure 5.7 shows that our method outperforms the

reference coder for all the bitrates for most of the KF frequencies; as the KF frequency

decreases from 20 to 2, we can see clear PSNR gain improvement. In the case of MD

and ice also, our strategies show better PSNR gain than the reference coder; results are

depicted in Figure 5.8.
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Figure 5.8 – Enhancement results varying KF frequency with proposed method 1
on: (a) MD sequence, (b) ice sequence.
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Figure 5.9 – PSNR result for MD sequence: varying total no. of frames.

Figure 5.9 shows the PSNR gain with varying total number of frames from 60 to 20.

Both of our methods, in Figure 5.9 (a) and (b), provide better PSNR gain than the reference

coder and also the third and fourth scenarios of the first phase. Our methods perform

better than the reference coder because the reference coder produces color artifacts in

all the color channels during encoding while our methods successfully enhance those

degraded color information with the information stored in the KFs. In Figure 5.9, as the

total number of frames decreases, we can see a rise in PSNR gains; it happens because,

with fewer frames, the overall artifacts produced by the reference coder become less and

hence the PSNR gain is improved. The total number of frames to be used in this case is

still under investigation.

We have presented a subjective comparison test in Figure 5.10 for evaluating our

proposed methods. In this test, we considered every 5th frame as KFs and used 20 kbps

bitrate with 31 QP to process these frames with the reference coder. We perceive a clear
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improvement in color quality for the images in Figure 5.10(c) and (g) in comparison with

Figure 5.10(b) and (f) respectively. Figure 5.10 shows that the enhanced frames of MD

and CG are visually more pleasant than the reference coder output. The rectangle marked

area in Figure 5.10 (c) shows that our method enhances the frames while keeping the

details (see the chin, lips and teeth) of the original frame in comparison with the reference

coder output marked with rectangle in Figure 5.10 (d). We also perceive similar color

enhancement performance from our methods, in Figure 5.10 (g), which preserve more

details than the reference coder. Here, on the marked areas, such as the red strip of the

ship and the water area, our methods provide better color information with more details

than the reference coder output in Figure 5.10 (h). As a result of using our data reduction

strategies we were able to transmit more data, previously 3.5 Mbps and now 5.27 Mbps,

at a given time on a low-bandwidth network. It is worth to mention that, our proposed

approach itself is not a coding scheme, rather it is used as a supporting system to the

classical coding schemes in order to elevate the compression rate of the coder.

5.3.4 Discussion, limitations and future work

We have presented a camera data reduction method which improves the encoder per-

formance at the acquisition site. As a result, a large amount of data can potentially be

transmitted at low bitrates via a lower-bandwidth network. The degradation method,

on the acquisition site, reduces the image data by decreasing the volume of color in the

NKFs and keep the KFs intact. On the receiver site, the degraded NKFs are enhanced

by using the information from the non-degraded KFs. The PSNR comparison, on three

reference sequences, between our methods and the reference coder indicates that our

methods gain better PSNR value. The subjective comparison also shows that the outputs

from our methods are visually more pleasant than the reference coder output.

Although our proposed approach obtains better PSNR gains for the MD and CG se-

quences, PSNR gain is not similar for the ice sequence which has less balanced color

information across all the channels. The limitation is due to the fact that, if the images

already have less color information across the channels, there is less room for the degrada-

tion and enhancement process and thus the PSNR gain might not be up to the level of the

images with more balanced color information. Moreover, if we transmit more than 300

frames at a time, our proposed strategy would perform comparatively slower; because, the

decoder produces more color artifacts in the later frames which demands more processing

to elevate the color information for those frames. Since we consider transmitting two

seconds’ worth of frames (i.e. 60 frames), this limitation does not affect our tests.

In the future, we plan to examine our approach in conjunction with existing SR

methods for obtaining a better compression ratio. Moreover, we also plan to use our

approach to examine the compression rate gain for HD image stream.
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5.4 Data reduction using display model and light field

geometry

Here, we discuss our second data reduction strategy which deals with the large volume

of data captured with multiple cameras that are processed to be displayed on a light

filed display. Since using classical coding techniques directly on large data might not

guarantee efficient data reduction [97], it would be beneficial to determine the actual

portion of data needed by the display system and discard the rest of the input data to

ensure real-time transmission. To this end, we propose a fast and efficient data reduction

strategy for systems equipped with multiple cameras and light filed display. Our approach

automatically isolates the required areas of the incoming images which contribute to the

light field reconstruction. We explicitly consider the display model and, captured and

reconstructed light field geometry for devising a precise and automatic data selection

procedure. The key contribution here is the reduction of the data being transmitted within

a communication system, equipped with a light field display, by finding the optimum

region of interest from multiple camera images that is used in light field reconstruction.

5.4.1 Data reduction strategy

Light field displays present a scene in 3D space. They do not simply project multiple

views in different directions to create a 3D illusion, it requires complex data processing

to do so. This primary observation is the basis of our proposed data reduction scheme.

Figure 5.11 shows the whole chain of capturing, processing, rendering and displaying

of light field content. A single Linux-based acquisition node controls the data capturing

part which consists of 27 compact USB cameras. The captured images are streamed

directly to the rendering cluster via a Gigabit Ethernet connection. The rendering cluster

then drives the optical modules of the display and finally, a holographic screen is used

to realize the 3D information in the form of light rays projected by the optical modules.

The processing done by application node includes controlling operations such as camera

Multi-camera setup for capturing Light Field 

Acquisition Node 

Render Cluster 

Network Switch 

Application Node 

Figure 5.11 – Light field capture, processing and displaying pipeline.
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tation details. In Section 4, we show and explain the experimental
results and conclusions are drawn in Section 5.

2. RELATED WORK

In [4], Lamboray et al. classified the data stream into several
categories such as: bulk data, sporadic-event data, and real-time
streaming data. They discussed the aspects of image-based and
geometry-based reconstruction systems. They used strategies which
allow to transmit selective updates from a collaboration scene.
They introduced the idea of a back channel between acquisition
and receiver site, by means of which positional data of the viewer
at receiver site can be sent to the acquisition site for various pur-
poses. In [5], the authors proposed a dynamic camera selection
strategy which helps to reduce the number of recording cameras
at the acquisition site. The authors also proposed to use a dy-
namic frustrum selection method in certain cases where the dy-
namic cameras selection fails. In [6], Lien et al. propose a model-
driven data compression. Maimone and Fuchs [7] presented a con-
cise study which suggests that when changes do not occur in all
parts of a scene, camera selection should focus on the reduction of
the overall amount of data.

In [8], Jones et al. propose a set of rendering methods for
an autosteoreoscopic light field display which is able to present
interactive 3D graphics to multiple simultaneous viewers 360 de-
grees around the display. Their method is a multiple-center-of-
projection rendering technique for creating perspective-correct im-
ages from arbitrary viewpoints around the display. In [9], Magnor
et al. have presented two schemes for light field compression.
They have applied vector quantization, DCT coding and trans-
form coding using spherical functions to the light field compres-
sion technique. In their schemes, the first coder has the advan-
tage of decoding the recorded light-field segments very fast and
thus achieves interactive rendering rate; and the second scheme
describes a coder which is disparity compensating coder and it in-
crementally refines the light field during the decoding and predicts
the intermediate light field images.

3. DATA REDUCTION APPROACH

Light field displays present the scene in 3D space. In other words,
they do not simply project multiple views in different directions
to create a 3D illusion. This primary observation is the basis of
current data reduction scheme. Figure 6 shows the whole chain
of capturing, processing, rendering and displaying of light field
content. The capturing part consists of linearly arranged 27 com-
pact USB cameras (for more information on the system design see
[10]). Images from all the cameras are captured from a single ac-
quisition node. This Linux-based acquisition node has extended
USB ports to collect information from all the cameras. The cap-
tured images can be streamed directly to the rendering cluster via
gigabit Ethernet connection. The rendering cluster then drives the
optical modules of the display and finally a holographic screen is
used to realize the 3D information in the form of light rays pro-
jected by the optical modules. The processing done by application
node includes controlling operations such as camera calibration
and checking the preview from all the cameras. The main part of
this processing involves calculating the camera calibration data;
a semi-automatic method is adopted for calibrating 27 cameras.
Once the calibration is done, the calibration data is made avail-
able to the rendering cluster. The render cluster is equipped with

Figure 2. Light field capture, processing and displaying pipeline.

Figure 3. Sample light field capturing.

light field modelling data built on display projection geometry be-
forehand. The incoming pixels of captured image stream are re-
ordered on each cluster node’s GPU using the available light field
geometry and the camera calibration data. This pixel manipula-
tion is handled using look-up tables, which are specific for each
node in the render cluster.

The output of the render cluster is the 3D lighfield reconstruc-
tion of the scene obtained from multiple 2D images. Figure 3
shows an example light field capture and Figure 4 shows the re-
constructed light field realized on a light field display.

An important observation from the light field reconstruction
process is that not all the incoming pixels are used from all the
cameras. Certain regions in each of the camera images are not
used during the light field reconstruction. Another important ob-
servation is that the look-up tables used for re-ordering the pixels
are constructed once in the beginning of the rendering process and
remains same, as far as the mapping between the two light-field
remains the same. These key observations forms the basis of the
current work. Zooming in and out, or shifting the light field map-
ping of course forces the recalculation of these tables.

Cam 1 Cam 2 Cam 3 Cam 14 Cam 25 Cam 26 Cam 27 

(a)

Figure 4. Light field reconstruction.

3.1. Experimental setup

In the current experiment, we used Holografika’s HV721RC light
field display. The is a large-scale display and can support multiple
users simultaneously. The main reason behind choosing the dis-
play for the preliminary experiments is it’s simplified geometry.
As the case with a typical telepresence system, we assume that the
capturing is done locally and rendering is done at a remote place.
The camera system and demo computer are at a local site and the
render cluster together with the optical modules and the display
are located at a remote place. As this is first version of the telep-
resence system, we assume that the local and remote site are not
far away from each other and communicate via gigabit Ethernet
connection. For further simplicity, we assume a one-way telepres-
ence system in other words, the locally captured images are sent
to the remote place and rendered on the display.

3.2. Experimental procedure

As mentioned before the main aim of the current experiment is
to reduce the amount of data flow still maintaining the same vi-
sual quality and we intend to solve this problem not by exploring
image/video coding schemes, but rather taking in to account the
display model and camera calibration. In order to achieve this,
the first step is to identify the pixels from the input image stream
which are discarded after the final rendering. Figure 5 shows sig-
nificat pixel locations (pixels in white) based on the look-up tables
in one of the experimental captures. More precisely, we used the
pixel to light ray mapping information to mark the positions of the
pixels from each of the camera images used by all nodes in the
rendering cluster. In Figure 6, we present the percentage of pix-
els referred in the look-up tables for pixel re-ordering from each
camera image. Note that the asymmetric nature of the curve is the
effect of chosen region of interest (can be observed from Figures
3 & 4) and also a part of it is driven by the camera rotation. Also,
please note that due to the vertical misalignments of the capture
cameras, the top and bottom of the source images are cropped in
this mapping between the incoming and outgoing light fields (we
essentially zoomed inside the light field), hence the unused pixels
on the top and bottom of some images. In synthetic setups, or us-
ing a more precise camera system the ratio of used pixels would

Figure 5. Calculated significant camera image pixels from a sample cap-
ture.

Figure 6. Percentage of pixels from each camera image used in sample
light field reconstruction.

be higher.
One of the most important observations from Figure 6 is that

the number of pixels utilized from each camera frame is not the
same for any two cameras. Moreover, it is more general that these
pixels are not chosen in the same pattern and the from same loca-
tions on every image. However, the significant pixels from every
image form the shape of a rectangular box of varying area across
multiple camera images and once set, the shape and the area re-
mains same throughout the capture. This means, light field from
the current capture setup can be comfortably reconstructed using
the patterns of useful pixels on multiple camera images. In sim-
ple terms, it is possible to recreate exactly the same 3D impres-
sion with suitably chosen pixel subset on camera images using the
masks in a pre-calculated pattern. We exploit this observation in
our approach to reduce the amount of data being transmitted.

As the first step, the look-up table generation mechanism is
shifted from the remote to the local site and is included as a part
of the processing on the transmission side. The look-up table gen-
eration is carried out before transmitting the data and after final-
izing the calibration. These tables are generated for all the nodes
and once this is done, we introduce an additional processing step
on all the camera images where we create a mask for each camera
image that define a pattern of significant pixels needed by all the
nodes in render cluster. The incoming camera images are carefully
tailored using the created masks. As soon as the look-up tables are
made available, this step can be very fast and apparently does not
involve a lot of processing. Thus we can create a one to one map-
ping of the incoming and outgoing camera images. The processed
camera images are now light weight and are sent to the remote
site. To speed-up the process of creating masks and accessing the
image pixels locally, we introduce an additional processing com-
puter on the local site.

Note that the look-up tables are now available already and thus

(b)

Figure 5.12 – Sample scene acquisition and reconstruction for light field display: (a)
sample light field capturing, (b) light field reconstruction.

calibration and checking the preview from all the cameras. The main part of this processing

involves calculating the camera calibration data; a semi-automatic method is adopted for

calibrating 27 cameras.

Once the calibration is done, the calibration data is made available to the rendering

cluster. The render cluster is equipped with light field modelling data built on display

projection geometry beforehand. The incoming pixels of captured image stream are

reordered on each cluster node’s GPU using the available light field geometry and the

camera calibration data. This pixel manipulation is handled using look-up tables, which

are specific for each node in the render cluster.

The output of the render cluster is the 3D lighfield reconstruction of the scene obtained

from multiple 2D images. Figure 5.12a shows an example light field capture and Fig-

ure 5.12b shows the reconstructed light field realized on a light field display. An important

observation from the light field reconstruction process is that not all the incoming pixels
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3.1. Experimental setup

In the current experiment, we used Holografika’s HV721RC light
field display. The is a large-scale display and can support multiple
users simultaneously. The main reason behind choosing the dis-
play for the preliminary experiments is it’s simplified geometry.
As the case with a typical telepresence system, we assume that the
capturing is done locally and rendering is done at a remote place.
The camera system and demo computer are at a local site and the
render cluster together with the optical modules and the display
are located at a remote place. As this is first version of the telep-
resence system, we assume that the local and remote site are not
far away from each other and communicate via gigabit Ethernet
connection. For further simplicity, we assume a one-way telepres-
ence system in other words, the locally captured images are sent
to the remote place and rendered on the display.

3.2. Experimental procedure

As mentioned before the main aim of the current experiment is
to reduce the amount of data flow still maintaining the same vi-
sual quality and we intend to solve this problem not by exploring
image/video coding schemes, but rather taking in to account the
display model and camera calibration. In order to achieve this,
the first step is to identify the pixels from the input image stream
which are discarded after the final rendering. Figure 5 shows sig-
nificat pixel locations (pixels in white) based on the look-up tables
in one of the experimental captures. More precisely, we used the
pixel to light ray mapping information to mark the positions of the
pixels from each of the camera images used by all nodes in the
rendering cluster. In Figure 6, we present the percentage of pix-
els referred in the look-up tables for pixel re-ordering from each
camera image. Note that the asymmetric nature of the curve is the
effect of chosen region of interest (can be observed from Figures
3 & 4) and also a part of it is driven by the camera rotation. Also,
please note that due to the vertical misalignments of the capture
cameras, the top and bottom of the source images are cropped in
this mapping between the incoming and outgoing light fields (we
essentially zoomed inside the light field), hence the unused pixels
on the top and bottom of some images. In synthetic setups, or us-
ing a more precise camera system the ratio of used pixels would
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ture.
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light field reconstruction.

be higher.
One of the most important observations from Figure 6 is that

the number of pixels utilized from each camera frame is not the
same for any two cameras. Moreover, it is more general that these
pixels are not chosen in the same pattern and the from same loca-
tions on every image. However, the significant pixels from every
image form the shape of a rectangular box of varying area across
multiple camera images and once set, the shape and the area re-
mains same throughout the capture. This means, light field from
the current capture setup can be comfortably reconstructed using
the patterns of useful pixels on multiple camera images. In sim-
ple terms, it is possible to recreate exactly the same 3D impres-
sion with suitably chosen pixel subset on camera images using the
masks in a pre-calculated pattern. We exploit this observation in
our approach to reduce the amount of data being transmitted.

As the first step, the look-up table generation mechanism is
shifted from the remote to the local site and is included as a part
of the processing on the transmission side. The look-up table gen-
eration is carried out before transmitting the data and after final-
izing the calibration. These tables are generated for all the nodes
and once this is done, we introduce an additional processing step
on all the camera images where we create a mask for each camera
image that define a pattern of significant pixels needed by all the
nodes in render cluster. The incoming camera images are carefully
tailored using the created masks. As soon as the look-up tables are
made available, this step can be very fast and apparently does not
involve a lot of processing. Thus we can create a one to one map-
ping of the incoming and outgoing camera images. The processed
camera images are now light weight and are sent to the remote
site. To speed-up the process of creating masks and accessing the
image pixels locally, we introduce an additional processing com-
puter on the local site.

Note that the look-up tables are now available already and thus
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3.1. Experimental setup

In the current experiment, we used Holografika’s HV721RC light
field display. The is a large-scale display and can support multiple
users simultaneously. The main reason behind choosing the dis-
play for the preliminary experiments is it’s simplified geometry.
As the case with a typical telepresence system, we assume that the
capturing is done locally and rendering is done at a remote place.
The camera system and demo computer are at a local site and the
render cluster together with the optical modules and the display
are located at a remote place. As this is first version of the telep-
resence system, we assume that the local and remote site are not
far away from each other and communicate via gigabit Ethernet
connection. For further simplicity, we assume a one-way telepres-
ence system in other words, the locally captured images are sent
to the remote place and rendered on the display.

3.2. Experimental procedure

As mentioned before the main aim of the current experiment is
to reduce the amount of data flow still maintaining the same vi-
sual quality and we intend to solve this problem not by exploring
image/video coding schemes, but rather taking in to account the
display model and camera calibration. In order to achieve this,
the first step is to identify the pixels from the input image stream
which are discarded after the final rendering. Figure 5 shows sig-
nificat pixel locations (pixels in white) based on the look-up tables
in one of the experimental captures. More precisely, we used the
pixel to light ray mapping information to mark the positions of the
pixels from each of the camera images used by all nodes in the
rendering cluster. In Figure 6, we present the percentage of pix-
els referred in the look-up tables for pixel re-ordering from each
camera image. Note that the asymmetric nature of the curve is the
effect of chosen region of interest (can be observed from Figures
3 & 4) and also a part of it is driven by the camera rotation. Also,
please note that due to the vertical misalignments of the capture
cameras, the top and bottom of the source images are cropped in
this mapping between the incoming and outgoing light fields (we
essentially zoomed inside the light field), hence the unused pixels
on the top and bottom of some images. In synthetic setups, or us-
ing a more precise camera system the ratio of used pixels would

Figure 5. Calculated significant camera image pixels from a sample cap-
ture.

Figure 6. Percentage of pixels from each camera image used in sample
light field reconstruction.

be higher.
One of the most important observations from Figure 6 is that

the number of pixels utilized from each camera frame is not the
same for any two cameras. Moreover, it is more general that these
pixels are not chosen in the same pattern and the from same loca-
tions on every image. However, the significant pixels from every
image form the shape of a rectangular box of varying area across
multiple camera images and once set, the shape and the area re-
mains same throughout the capture. This means, light field from
the current capture setup can be comfortably reconstructed using
the patterns of useful pixels on multiple camera images. In sim-
ple terms, it is possible to recreate exactly the same 3D impres-
sion with suitably chosen pixel subset on camera images using the
masks in a pre-calculated pattern. We exploit this observation in
our approach to reduce the amount of data being transmitted.

As the first step, the look-up table generation mechanism is
shifted from the remote to the local site and is included as a part
of the processing on the transmission side. The look-up table gen-
eration is carried out before transmitting the data and after final-
izing the calibration. These tables are generated for all the nodes
and once this is done, we introduce an additional processing step
on all the camera images where we create a mask for each camera
image that define a pattern of significant pixels needed by all the
nodes in render cluster. The incoming camera images are carefully
tailored using the created masks. As soon as the look-up tables are
made available, this step can be very fast and apparently does not
involve a lot of processing. Thus we can create a one to one map-
ping of the incoming and outgoing camera images. The processed
camera images are now light weight and are sent to the remote
site. To speed-up the process of creating masks and accessing the
image pixels locally, we introduce an additional processing com-
puter on the local site.

Note that the look-up tables are now available already and thus
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Figure 5.13 – Proposed data reduction strategy: (a) calculated significant camera
image pixels from a sample capture, (b) percentage of pixels from each camera
image used in sample light field reconstruction.

are used from all the cameras. Certain regions in each of the camera images are not used

during the light field reconstruction. Another important observation is that the look-up ta-

bles used for re-ordering the pixels are constructed once in the beginning of the rendering

process and remains the same, as far as the mapping between the two light-field remains

the same. These key observations form the basis of the proposed method. However,

zooming in and out, or shifting the light field mapping forces the recalculation of these

tables.

5.4.2 Experimental setup and procedure

For the experiment, we use Holografika’s HV721RC light field display which is a large-scale

display and can support multiple users simultaneously. We chose this display primarily

due to its simplified geometry. As the case with a typical communication system (see
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Figure 5.1), e.g., telepresence, we assume that the capturing is done locally and rendering

is done at a remote place. Hence, the total data acquisition system is at a local site and the

render cluster together with the optical modules and the display are located at a remote

place. As this is the first version of such a communication system, we assume that the

local and remote site are not far away from each other and communicate via a Gigabit

Ethernet connection.

Our goal here is to reduce the amount of data flow without compromising the im-

age quality and we intend to achieve this not by using any coding schemes, but rather

considering the display model and camera calibration. In order to achieve this, the first

step is to identify the pixels from the input image stream which are discarded after the

final rendering. Figure 5.13a shows significant pixel locations (pixels in white) based

on the look-up tables in an experimental capture. Here, we used the pixel-to-light ray

mapping information to mark the pixels’ positions from each of the camera images used

by all nodes in the rendering cluster. In Figure 5.13b, we present the percentage of pixels

referred to in the look-up tables for pixel re-ordering from each camera image. Note that

the asymmetric nature of the curve is the effect of the chosen region of interest (can be

observed from Figures 5.12a and 5.12b) and also a part of it is driven by the camera

rotation. Moreover, due to the vertical misalignments of the cameras, the top and bottom

of the source images are cropped in this mapping between the incoming and outgoing

light fields (we essentially zoomed inside the light field), hence the unused pixels on

the top and bottom of some images. A higher ratio of used pixels could be achieved in

synthetic setups or with a more precise camera system.

One important observation from Figure 5.13b is that the number of pixels utilized

from each camera frame is not the same for any two cameras. Moreover, these pixels are

not chosen in the same pattern and from the same locations on every image. However,

the significant pixels from every image form a rectangular shape of varying area across

multiple camera images and once set, the shape and the area remains same throughout

the capture. This means, light field from the current capture setup can be comfortably

reconstructed using the patterns of useful pixels on multiple camera images. Hence, we

can recreate exactly the same 3D impression with suitably chosen pixel subset on camera

images using the masks in a pre-calculated pattern. We exploit this observation to reduce

the amount of data being transmitted.

At first, we shift the look-up table generation mechanism from the remote site to

the local site and include it as a part of the processing on the transmission side. The

look-up table generation is carried out before transmitting the data and after finalizing

the calibration. These tables are generated for all the nodes and once this is done, we

introduce an additional processing step on all the camera images where we create a

mask for each camera image that defines a pattern of significant pixels needed by all the

nodes in the render cluster. The incoming camera images are carefully tailored using the

created masks. As soon as the look-up tables are made available, this step is executed
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very fast without involving a lot of processing. Thus we can create a one-to-one mapping

of the incoming and outgoing camera images. The processed camera images are now

light-weight and are sent to the remote site. To speed up the process of creating masks

and accessing the image pixels locally, we introduce an additional processing computer on

the local site.

Now, since the look-up tables are already available, the rendering cluster does not

require additional time generating them. Moreover, since the camera calibration data are

also included in the look-up tables, they do not need to be transmitted separately. Thus,

instead of sending camera calibration data to the render cluster, we send the lookup tables

for each node before the rendering process. The render cluster uses the look-up tables and

the reduced image data to perform the light field rendering. As we discard parts of camera

images, the output image texture coordinates may not coincide with the coordinates in

the look-up tables. Thus, we need to store texture coordinate offset values in both X and Y

direction for all the 27 cameras. The 54 valued offset texture is also transmitted before

the actual rendering starts.

5.4.3 Results, discussions and future work

We tested the performance of our approach on a pre-recorded 19 second footage, "Telep-

resence" using a light field display. With the given initial conditions, we demonstrated that

our approach yields the same light field reconstruction without introducing any temporal

or spatial artifacts and yet using only up to 20% of the whole data stream. Thus, the

bandwidth resource consumption is effectively reduced by a factor of five. Also because

of the reduced image resolution, GPU uploading and hence the overall rendering at the

remote site becomes faster. Although the amount of data being uploaded is reduced, for

the final rendering the number of texels used remains the same and thus there is not any

significant speed up in the rendering frame rate.

Here, we presented a lossless approach to reduce the data flow in a multi-camera setup

using a light field display. Our method does not rely on any coding schemes, but rather uses

the display projection geometry to exploit and eliminate redundancy. We proposed minor

changes in the capturing, processing and rendering pipeline with additional processing at

the local site that helps achieving significant data reduction. Furthermore, the additional

processing step before transmission, mostly involves simple image processing operations

such as generating masks and extracting a bunch of pixels and needs to be done only once.

The processed and transmitted data not only consumes less bandwidth but also speeds up

the texture upload process.

Here, we showed the use of global masks to reduce pixel data selectively. In practice,

each rendering node does not need the whole information, even from the extracted pixel

subset. It is possible to customize the masks for each of the render cluster nodes, which

can further improve speed. Also, the camera images can be subjected to a 90 degree
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rotation soon after the capture and then, we would access the pixels row-wise for selective

transmission. This might bypass any unnecessary passages during the memory access and

direct memory offsets can be used.

In the proposed method, we made an assumption that the local and remote sites are

connected via a low latency, relatively high-bandwidth connection. In general, this is not

the case and in order to transmit the light field data over longer distances, it is possible

to incorporate multi-view coding schemes such as H.264, MVC, and HEVC. Also, the

capturing speed at the acquisition site is a bottleneck in the current setup. Using constant

exposure time cameras with hardware trigger might further increase the accuracy in the

camera synchronization.





Chapter 6

Use cases of our proposed strategies

Here, we discuss the application areas of our proposed approaches. Firstly, our proposed

depth enhancement strategy can be applied to enhance the depth frames in many ap-

plication areas including but not limited to telepresence, 3D reconstruction of a scene,

e-learning, tracking, forensic analysis and alike. Besides this, our data reduction approach

can also be applied to reduce the volume of required data which need to be transmitted

for generating the output. Below, we discuss briefly how our approaches can be applied in

the different application sectors. The concept of multi-camera setup and 3D reconstruction

from the camera data in telepresence and the idea of e-learning application has been

published in our article [113,114].

6.1 Utilization in telepresence applications

Telepresence, an emerging application area which often needs 3D scene reconstruction,

can be benefitted from our proposed depth enhancement strategy. In the case of telep-

resence, our method can be used to enhance the stream of frames received from the

remote site of the communication. There are typically two sides of communication in

a traditional telepresence system, which are: acquisition site and receiver site. Users

staying at each site can communicate and interact with each other via network channel;

their surrounding environment is captured and transmitted to the other end of the com-

munication site. Figure 6.1 illustrates a typical telepresence scenario along with how

our depth enhancement strategy can be applied to such a scenario. Since a telepresence

system involves processing the captured frames with dynamic objects within them, our

method can be suitably applied to enhance those frames which then can be used to obtain

an enhanced final output. Besides, since a typical telepresence system is equipped with

multiple cameras, our data reduction strategies can also be applied to reduce the volume

of generate data and comfortably transmit them over low bandwidth network.

117
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Acquisition site Receiver site 

Data stream while gSMOOTH is processing 
the frames inside the window of frames 

Data stream after gSMOOTH processing 
is finished for the window of frames 

Depth image 
with artifacts 

Enhanced 
depth image 

 

processing time for the  
first window of frames 

Figure 6.1 – Illustration of using our gSMOOTH in a telepresence scenario. The
depth image on the right screen of the local site is enhanced by gSMOOTH while the
left depth image shows artifacts (since the processing of the frames inside the sliding
window is in progress).

Latency

sliding window of frames 
Output frames 

t-3 t-2 t-1 t t+1 . . . 

Input 
frames 

t-3 t-2 t-1 t t+n . . . 

gSMOOTH 

t 

sliding window of frames

1D LMedS

t+1t

Figure 6.2 – Illustration of sliding window of frames in gSMOOTH. Here, there
are three frames inside the sliding window, hence we will perceive the enhanced
output from the fourth frame.

Since, in case of our depth enhancement approach gSMOOTH, we use a sliding window

of frames to enhance the t ith frame, we will see the enhanced t ith frame after processing

the frames inside the sliding window, see Figure 6.2. While the frames inside the sliding

window are being processed, the users will observe the frames with artifacts, but as soon

as the processing is finished and the sliding window moves to the next window of frames,

the users will start observing the enhanced stream. Since our approach works in real-time

processing the frames in the sliding window take very little time and hence the users

observe the frames with artifacts for a very short time. As described in the first paragraph

of Section 3.2.2, for the later sliding window, only one frame’s worth calculation time is

needed since the gSMOOTH calculation for other frames have already been done while

processing the frames inside the previous sliding window.

Moreover, since in a typical telepresence system, multiple cameras are used to capture

the communication environment, our first data reduction strategy can potentially be used

to reduce the large volume of color image data and eventually these reduced data stream

can be used to transmit over low bandwidth network and be used to reconstruct a colored

3D representation of the captured scene. Moreover, in case of a telepresence setup with

light field display, our second data reduction strategy can be applied to reduce the total
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data volume by a factor of five which is significant and plays a vital role when the real-time

transmission becomes an issue.

Apart from these, our depth enhancement approach gSMOOTH can be applied to other

applications as well, such as in 3D reconstruction of a scene, tracking objects and alike,

which involves a sequence of frames to be processed before carrying out a certain task. In

the following sections, we describe briefly the effect of applying our approach in those

applications.

6.2 Utilization in efficient 3D reconstruction of a scene

With the introduction of low-cost cameras, reconstructing a scene in 3D using the images

of the scene captured from different viewing angles has become popular in many different

application areas in computer vision and computer graphics. While there are different

methods which use 2D imagery from multiple stand-alone RGB cameras and stereopsis

to reconstruct a scene in 3D, many other works use 3D depth cameras which provide

depth information of the scene. There are quite a few works, such as in [59,113], which

use multiple depth cameras, e.g. Kinects, to reconstruct a captured scene so that it can

be viewed from an arbitrary viewing angle. As we discussed earlier that, such depth

camera images are affected by different artifacts which eventually affect the final 3D

reconstruction. We can use our proposed gSMOOTH depth enhancement method to

remove those artifacts. Since our approach removes those artifacts and generate output in

real-time, our approach has the potential to support an interactive speed for reconstructing

a 3D scene using processed and enhanced images from multiple cameras. We demonstrate

here such a concept on an existing work done by us in [113]. In the original work, we

use a simple median filter to remove the noise from the images captured from two Kinect

V1 sensors and later represented the scene by blending the frames form these cameras

using a dynamic proxy approach [113]. We used our proposed approach to enhance those

depth images and the final output improves the 3D representation than the original work.

Figure 6.3 shows a comparison between the 3D representations using a median filter used

originally in [113] and our proposed depth enhancement method from [83].

For evaluating the performance of our approach on the 3D reconstruction using images

from Kinect V2 sensors, we performed another test and found out that our method also

efficiently enhances the images from those Kinect V2 sensors and hence the final 3D

reconstruction has better surface reconstruction than the 3D reconstruction with original

raw depth frames. For this test, we captured the scene with two Kinect V2 sensors and

then enhanced the scene with our approach and then reconstructed the scene in 3D using

the workflow stated in [115]. Figure 6.4 shows a reconstructed 3D scene of a person

standing where the final output shows clear improvement on the surface reconstruction.

Another test on a different dataset also shows similar improvement, on the surface of



120 6.2 Utilization in efficient 3D reconstruction of a scene

3D reconstruction using raw  
depth frames 

3D reconstruction using depth  
frames enhanced by median filter 

3D reconstruction using depth  
frames enhanced by our approach 

(a) (b) (c) 

Figure 6.3 – Effect of applying our depth enhancement approach on 3D recon-
struction of two scenes. The images on the top row are from the first scene where
a person is standing and the images on the bottom row are from the second scene
where a person is sitting on a desk. Here, the 3D reconstruction in (a) is using the
raw depth frames to reconstruct the scene, while the 3D reconstructions in (b) and
(c) use a median filter and our proposed depth enhancement approach respectively.
The images in (c) show clear improvement on different parts of the scene, such as
the body of the person and the floor areas, in comparison with the images in (b)
where a simple median filter is used to enhance the depth frames.
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raw depth frames our outputs  

3D reconstructions 
zoomed part zoomed part 

Figure 6.4 – Our depth enhancement result on 3D reconstruction: the raw depth
frames on top images shows holes while our outputs removes the hole significantly.
The enhancement is reflected on the 3D reconstructed images where the 3D recon-
struction on the right side shows improved surface than the 3D reconstruction on
the left side. The respective zoomed parts show the detailed enhancement on the
surface of the 3D reconstruction.
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(b) (a) 

3D reconstruction using  
raw depth frames 

3D reconstruction using  
our approach  

Figure 6.5 – Effect of applying our depth enhancement approach on 3D recon-
struction of a person’s upper body part. Here, the surface reconstruction in (b)
using the enhanced depth frames by our approach shows significant improvement in
comparison with the surface reconstruction in (a) which uses the raw depth frames.
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3D reconstruction, achieved by using our approach; see Figure 6.5. Therefore, we can

potentially use our depth enhancement method to a 3D reproduction process and achieve

a high-quality output.

6.3 Utilization in e-learning applications

Over the past few decades, the interest in online collaboration on classroom lecture

content has been growing steadily [114]. This is happening primarily due to the prospect

of online collaboration in enhancing the overall learning experience. Participants of

a course are now able to take part in a lecture by being at a different place, through

e-learning platforms, than the actual lecture location. They can also access the lecture

contents after the lecture is finished. Typically, within an e-learning platform, the lectures

are recorded while the actual lecture takes place. Apart from the actual content displayed

on a screen via a projector or written by the teacher on a black/white board, the motion of

the teacher is tracked by different sensors so that the recorded video can later be classified

accordingly [116–118]. An illustration of a classroom where the lecture is being recorded

and the lecture content is being displayed by a projector is shown in Figure 6.6.

Typically, when no automatic tracking mechanism is used, then a person usually

controls the recording camera to capture different movements of the teacher and the

displayed content, and then categorize the entire lecture content accordingly. However

recent works, such as in [116–119] suggest that low-cost depth sensors such as a Kinect can

potentially be used to capture the lecture content. Since Kinect has the capability to track

objects inside a scene and its movement (pan, tilt) can also be controlled automatically,

the researchers have started to use such depth cameras to record the lecture contents.

While using a Kinect for recording a lecture, the teacher can use certain gestures for

certain tasks. Such as when the teacher wants to start/stop the recording, s/he can make a

particular gesture with his hand and then the Kinect, using the embedded tracking method,

can act accordingly. Moreover, certain other tasks such as recording the lecture slides

displayed on a projector curtain, recording the black/white board on which the teacher

has wrote something to explain certain things or record the teacher himself/herself can

also be performed with different gestures during the lecture [118]. To achieve these i.e.

to execute these actions based on the gestures from the teacher, an accurate recognition

of the hand is important.

However, as we know that these depth sensors yield artifacts on the output, hence,

consequently these artifacts affect the tracking performance. Due to the presence of

these artifacts, objects such as a teacher on a podium inside a lecture room, cannot be

tracked with high accuracy. When gesture-based commands are utilized to start and

stop the recording of a lecture [118], accurate tracking of the finger becomes crucial.

If there are artifacts around the finger location of the teacher, then the tracking lacks
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accuracy [120,121] and hence the recorded lecture will be falsely indexed or categorized.

The image in Figure 6.7(a) shows a typical depth frame captured with a Kinect’s depth

sensor where the frame shows quite a few holes all over the scene. If we look at the hand

part of the person, we perceive quite a lot of holes there too. With such artifacts on the

detected hand, see the bottom image of Figure 6.7(a), the gesture recognition accuracy

would normally be quite low.

(a) 

(b) (c) (d) 

depth frame 

hand  detection 

(d)

Figure 6.7 – Hand gesture detection and enhancement within a lecture record-
ing session in an e-learning system. Here, a random frame in (a) shows that there
are quite a lot of holes appearing in different parts of the captured scene. The
detected hand in the bottom image of (a) also shows a lot of holes on it which poten-
tially would affect the performance of gesture recognition. Enhancement methods,
such as morphological closing (b) and interpolation technique (c) remove these
artifacts partially, however, these outputs do not preserve the homogeneity of the
edges of the fingers. Our method in (d) is able to remove a major part of the holes.
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After detecting the hand, if traditional smoothing methods, which do not consider

to maintain the sharpness of the object’s edges, are used for removing the artifacts,

they would not preserve the sharpness of the edges of detected hand. Hence, the exact

position of the fingers might not be known if such smoothing techniques are applied

to remove these noise; see the results in Figure 6.7(b) and (c). Our proposed depth

enhancement method can potentially be used to enhance these captured frames. Since our

method preserves the sharpness of the edges while enhancing the images, see the result in

Figure 6.7(d), the tracking accuracy would potentially be improved. Consequently, with

the enhanced frames, the lectures can be recorded and categorized as instructed by the

teacher. Hence, our method could potentially be applied in a lecture recording session of

an e-learning platform which uses Kinect or other type of depth camera as recording and

gesture recognition device.



Chapter 7

Conclusion and future work

In this thesis, our primary focus was to enhance the quality of the depth images captured

by the low-cost depth cameras; namely to reduce the artifacts from the resulting depth

images and subsequently, the secondary focus was to reduce the amount of captured data

for their smooth transmission over low bandwidth network. To that end, we have first

introduced a new depth image enhancement framework that fuses both the spatial and

temporal domain information of the depth pixels to remove the artifacts from the depth

images. We have also developed a ground truth data generation approach which have

the potential to further optimize our depth enhancement framework. And secondly, we

propose two data reduction strategies which can reduce the amount of camera data needed

to transmit to the final processing location/device over the low-bandwidth network.

Our proposed depth enhancement strategy, in Chapter 3, can efficiently remove artifacts

from both static and dynamic scenes. Moreover, we are able to achieve real-time processing

speed which is crucial for many computer vision applications. Comparing with existing

methods in depth image enhancement, our method outperforms most of these methods in

case of quality of the final output and in case of processing speed. We applied our depth

enhancement strategy to several reference depth sequences and self-recorded sequences to

assess the performance of our approach against reference methods. Our method removes

the holes, flickering, and ghosting artifacts significantly while preserving the sharpness of

the objects’ edges. We also used an efficient memory management strategy on the GPU

which makes our approach suitable for many real-time applications such as telepresence,

e-learning, autonomous driving and alike. As the computational complexity of our method

is low and its implementation is straightforward, it can be considered to also address

further issues of other RGB-D sensors such as flying pixels with ToF cameras.

From the depth enhancement results, we perceive that there still remains a few holes

in case there is no valid depth value for certain pixels in the sliding window of frames.

In the future, we would like to remove the remaining holes by trying out different size

combinations for the sliding window and the spatial neighborhood window. We would

127
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also like to use the knowledge obtained, from Chapter 4, about the noise characteristics of

a depth sensor to dynamically determine the optimal window size for a given scene and

consequently, improve the optimization of the depth enhancement pipeline. Using the

hardware setup and calibration process stated in Chapter 4, we would also like to analyze

the noise characteristics of other depth sensors and apply our depth enhancement pipeline

on those sensors depth data. To fill the remaining holes, we would also use the depth-hole-

filling methods that fill the holes by taking a weighted value of the neighborhood. However,

since those methods usually do not consider the homogeneity of the scene-objects and

consequently, results in additional artifacts, we have to be cautious about it.

Regarding our data reduction strategies (from Chapter 5), in case of our first strategy

of reducing color image data, we have presented a degradation and enhancement model

for the color images captured by a multi-camera setup, by which we can improve the

performance of the encoder at the acquisition site and send large amount of data at

low bitrates via lower-bandwidth network. The degradation method reduces the image

data by decreasing the quantity of color data in the non-key frames NKFs and keep the

key-frames KFs intact. On the receiver site, the degraded NKFs are enhanced by using

the information from the KFs. We used three reference video sequences to compare the

PSNR gain between our methods and the reference coder; the results indicate that our

methods gain better PSNR value. The subjective comparison also shows that our output is

more pleasant than the non-degraded decoded NKFs. In the case of our second strategy,

we presented a lossless approach to reduce the data flow in multi-camera telepresence

systems using light field displays. The proposed method does not rely on image/video

coding schemes, but rather uses the display projection geometry to exploit and eliminate

redundancy. We proposed minor changes in the capturing, processing and rendering

pipeline with additional processing at the local site that helps achieving significant data

reduction. Furthermore, this additional processing step mostly involves simple and light-

weight image processing operations which need to be done only once. The processed and

transmitted data not only consumes less bandwidth but also speeds up the texture upload.

Although our proposed first data reduction strategy helps to achieve better performance

for the reference videos, its performance might degrade due to lack of sufficient color

data in all the three channels of a color image. In the future, we plan to test our method

in conjunction with the existing SR methods for obtaining a better compression ratio.

Moreover, we would also examine the compression rate gain of our method for HD

streams. For our second data reduction strategy, since each rendering node does not

need the whole information, we would customize the masks for each render cluster nodes

which can further improve speed. Besides this, we would incorporate multi-view coding

schemes such as H.264, MVC, and HEVC to transmit the light field data over long distances.

Furthermore, in order to resolve the camera speed bottleneck issue at the acquisition site,

we would like to use hardware-triggered constant exposure time cameras to increase the

camera synchronization accuracy and the capturing speed.
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AppendixA

Matlabcodesforgeneratinggroundplane

andvisualisingin3D

A.1 Codestocreatebinaryimages,extracttesttargets

andplotthemin3D

1 clear;

2 capturedImage =double(imread(’CapturedImage.png’));

3 groundTruthImage =double(imread(’GroundTruthImage.png’));

4 surf(capturedImage,’EdgeColor’,’none’);

5 Up_Limit=1460;

6 Low_Limit=1300;

7 binaryImagefromCapturedImage = capturedImage >Low_Limit &

capturedImage <Up_Limit;

8 binaryImageFromGrounTruthImage= groundTruthImage >0;;

9

10 propsCapturedImage = regionprops(binaryImagefromCapturedImage,

’BoundingBox’);

11 boundingBoxCapturedImage = propsCapturedImage.BoundingBox

12

13 testTarget_CapturedImage =imcrop(CapturedImage,

boundingBoxCapturedImage);

14

15 propsGrounTruthImage = regionprops(binaryImageFromGrounTruthImage,

’BoundingBox’);

16 boundingBoxGrounTruthImage = propsGrounTruthImage.BoundingBox

17

18 testTarget_GrounTruthImage =imcrop(groundTruthImage,

boundingBoxGrounTruthImage);

19

20 figure

21 surf(testTarget_GrounTruthImage,’EdgeColor’,[0.5 0.5 0.5]);
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148 A.1 Codes to create binary images, extract test targets and plot them in 3D

22 hold on
23 surf( testTarget_CapturedImage , ’EdgeColor ’, ’none ’);
24 hold off

Listing A.1 – Matlab codes for creating binary images, extracting test targets

and plotting them in 3D

A.2 Matlab codes for fitting planes to the captured depth

image

1

2 % for captured image
3

4 x = 1: size( testTarget_CapturedImage ,1);
5 y = 1: size( testTarget_CapturedImage ,2);
6 z= testTarget_CapturedImage ;
7 [xo ,yo ,zo] = prepareSurfaceData (x,y,z);
8

9

10 fc1 =fit ([yo ,xo],zo ,’poly10 ’,’Normalize ’,’on’,’Robust ’,’Bisquare ’);
11

12

13 %for ground truth image
14 x1 = 1: size( testTarget_GrounTruthImage ,1);
15 y1 = 1: size( testTarget_GrounTruthImage ,2);
16 z1= testTarget_GrounTruthImage ;
17 [xg ,yg ,zg] = prepareSurfaceData (x1 ,y1 ,z1);
18

19 fg = fit ([yg ,xg],zg ,’poly10 ’,’Normalize ’,’on’,’Robust ’,’Bisquare ’);
20

21

22 figure
23 h1=plot(fc1);
24 set(h1 (1) ,’Edgecolor ’,’none ’)
25 set(h1 (1) ,’FaceAlpha ’,’0.99 ’)
26 set(h1 (1) ,’FaceColor ’,’green ’)
27

28 hold on
29 h2=plot (fg);
30 set(h2 (1) ,’Edgecolor ’,’none ’)
31 set(h2 (1) ,’FaceAlpha ’,’0.99 ’)
32 set(h2 (1) ,’FaceColor ’ ,[0.5 0.5 0.5])
33

34 view (5, -19);
35 hold off
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ListingA.2–Matlabcodesforfittingplanethroughthecapturedandground

truthdepthimages

A.3 Matlabcodesforextractingnoiseand mappingit

ontothegroundtruthimage

1

2 noise=

imabsdiff(testTarget_CapturedImage,testTarget_GrounTruthImage);

3

4

5 %mapping the noise onto the ground truth image

6 figure

7

8 surf(testTarget_GrounTruthImage,noise,’FaceColor’,’texturemap’,

’EdgeColor’,’none’);

9 colormap(jet);

10 view(2,46);

11 colorbar

ListingA.3–Matlabcodesforextractingnoiseandmappingitontotheground

truthimage
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