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Abstract 

Hydrogen is an environmentally acceptable fuel due to its high gravimetric energy density and its clean 

combustion. Photocatalytic hydrogen production by using sunlight is an efficient method for direct 

conversion of solar energy into a usable or storable energy resource. With respect to a future practical 

application, the utilization of heterogeneous semiconductors is of advantage. One of the major problems in 

photocatalysis is the fast recombination of photogenerated electron-hole pairs, limiting the overall efficiency 

by releasing the absorbed energy in the form of heat or light. Typically, photogenerated electron-hole pairs 

have a recombination time in the order of 10-9 s, whereas the reaction time of electrons and holes with 

adsorbed species is quite longer (10-8-10-3 s). However, charge separation and recombination can be regarded 

as competitive processes if the recombination of charge carriers is efficiently decelerated. The sunlight-to-

hydrogen conversion efficiency is directly determined by the absorption capability of the material that can 

be improved by loading of other elements or the formation of heterojunctions. In this context, developing 

nanocomposites of C3N4 (CN) with other semiconductors is a promising strategy that creates synergistic 

heterojunctions, eventually resulting in an improved absorption and charge separation and hence higher 

photocatalytic efficiency.  

Subject of the present work is the synthesis of metal sulfide/CN composites and their application in 

photocatalytic hydrogen generation. However, the formation mechanism of photogenerated charge carriers 

as well as their separation and transfer during the photocatalytic reaction is still not clear, though its 

complete understanding is inevitable in order to tune the photocatalytic properties for achieving high 

photocatalytic H2 production efficiency. For this reason, different strategies were employed to synthesize 

metal sulfide/CN heterojunction composites. Subsequently, these materials have been investigated in 

photocatalytic H2 production and their crystal structure, optical properties, chemical composition and 

microstructure were analyzed by XRD, UV-vis-DRS, ATR-IR, XPS and HAADF-STEM. Moreover, 

photoluminescence (PL) and in situ electron paramagnetic resonance (in situ-EPR) spectroscopy were 

applied for monitoring charge separation and transfer.  

First, investigation of pure CN in the presence of Pt (Pt/CN) and triethanolamine (TEOA) as sacrificial 

reagent showed a high initial H2 formation rate that decreased during the course of the reaction due to 

inclusion of Pt NPs in the bulk matrix of CN as was confirmed by STEM, XPS and ICP-OES measurements. 

This behavior was not observed with oxalic acid (OA) as sacrificial reagent, since in this case Pt NPs were 

enriched on the outermost surface of CN. In the case of Pt/AIS-CN catalysts, Pt NPs were preferentially 

deposited on the surface of the AIS phase which prevents them from inclusion in the CN phase, keeping 

them accessible for proton reduction. In situ EPR data visualized that the EPR signal is much higher for pure 

CN under UV-vis light irradiation. When raising the AIS amount, the EPR signal is decreased, most likely 

due to transfer of electrons from CN to AIS. Similarly, the photoluminescence emission intensity of the 

composites decreased with increasing AIS contents underpinning the results obtained from EPR 
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spectroscopy. When Pt is deposited on both CN and AIS/CN, the PL emission intensity decreased which is 

associated with a transfer of excited CB e- from CN to Pt or from CN via AIS to Pt. Thus, charge carrier 

recombination is efficiently suppressed, which leads to a concomitant extension of their lifetime enhancing 

proton reduction to H2. 

MoS2 was used as a second metal sulfide and MoS2/C3N4 (MS-CN) composite photocatalysts were 

synthesized by three different methods such as in situ-photodeposition (PD), sonochemical (SC) and thermal 

decomposition (TD). Among the synthesized composites, 2H phase MS-CN synthesized by in situ-

photodeposition method led to the highest H2 evolution rate under UV-vis light irradiation. STEM 

investigations showed, that Pt is deposited on both the CN and MoS2 in all of the composites, which is in 

contrast to AIS-CN composites. Moreover, STEM and UV-vis spectroscopy revealed a partial wrapping of 

the CN phase by larger particles in the case of the less active samples and the formation of a sufficiently thin 

crystalline layer of 2H MoS2 only in 2H MS-CN (PD) making an intimate interfacial contact with CN that 

favors charge separation and enhances the photocatalytic activity. In situ EPR results showed that the EPR 

CB e- signal for Pt/MS-CN (PD) is lower compared to all other catalysts indicating a more efficient electron 

transfer from CN to Pt leading to a higher activity. 

A further aspect important in the photocatalytic hydrogen evolution is the choice of the sacrificial 

reagent. Using the same semiconductor (CN) and the same cocatalyst (Pt) allowed for a certain degree of 

comparability. Under basic conditions (basic SRs) the oxidation potential of the sacrificial reagent is 

supposed to have a high influence on hydrogen productivity. However, there are more factors such as 

different solubility, distinct degradation mechanisms, different pH values of the various sacrificial agents 

and also different solvent escape probabilities which have to be investigated in much more detail to be able 

to draw more sophisticated conclusions.  
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Zusammenfassung 

Wasserstoff stellt aufgrund seiner hohen gravimetrischen Energiedichte und sauberen Verbrennung 

einen für die Umwelt akzeptablen Kraftstoff dar. Die photokatalytische Wasserstofferzeugung mit 

Sonnenlicht ist eine effiziente Methode zur direkten Umwandlung von Sonnenenergie in eine nutzbare oder 

speicherbare Energiequelle. In Hinblick auf die künftige praktische Anwendung ist der Einsatz von 

heterogenen Halbleitern von Vorteil. Eines der Hauptprobleme in der Photokatalyse besteht in der schnellen 

Rekombination der durch Licht erzeugten Elektronen-Loch-Paare, welche die Gesamteffizienz durch die 

Abgabe dieser Energie in Form von Hitze oder Licht mindert. Typischerweise liegt die Zeit zur 

Rekombination bei durch Licht erzeugten Elektronen-Loch-Paaren im Bereich von 10-9 s, während die 

Reaktionszeit der Elektronen und Löcher mit adsorbierten Spezies länger ist (10-8-10-3 s). Jedoch können 

Ladungstrennung und -rekombination im Fall einer effizienten Verzögerung der 

Ladungsträgerrekombination als konkurrierende Prozesse betrachtet werden. Die Umwandlungseffizienz 

von Sonnenlicht in Wasserstoff wird direkt durch die Absorptionsfähigkeit des Materials bestimmt und 

kann durch Einbringen anderer Elemente oder die Bildung von Heteroübergängen verbessert werden. In 

diesem Zusammenhang stellt die Entwicklung von Nanokompositen aus C3N4 (CN) und anderen 

Halbleitern eine vielversprechende Strategie dar, die letztendlich aufgrund einer verbesserten 

Lichtabsorption und Ladungsträgertrennung zu einer höheren photokatalytischen Effizienz führen sollte. 

Gegenstand der vorliegenden Arbeit ist die Synthese von Metallsulfid/CN-Kompositen und ihre 

Anwendung in der photokatalytischen Wasserstofferzeugung. Jedoch ist der Bildungsmechanismus der 

durch Licht erzeugten Ladungsträger sowie deren Trennung und Transfer während der photokatalytischen 

Reaktion noch immer nicht klar. Ein umfängliches Verständnis darüber ist aber für die Anpassung und 

Optimierung der photokatalytischen Eigenschaften unabdingbar, um eine hohe Effizienz in der 

photokatalytischen Wasserstofferzeugung erreichen zu können. Deshalb wurden verschiedene Strategien 

zur Synthese von Metallsulfid/CN-Heteroübergangskompositen gewählt. Diese Materialien wurden dann in 

der photokatalytischen Wasserstofferzeugung untersucht und ihre Kristallinität, optischen Eigenschaften, 

chemische Zusammensetzung sowie Mikrostruktur mittels XRD, UV-vis-DRS, ATR-IR, XPS und HAADF-

STEM analysiert. Darüberhinaus wurden Photolumineszenz (PL) und in situ-Elektronenspinresonanz-

spektroskopie (in situ-EPR) zur Beobachtung der Ladungstrennung und des Ladungstransfers angewendet. 

Zunächst zeigte die Untersuchung von reinem CN in Gegenwart von Platin (Pt/CN) und 

Triethanolamin( TEOA) als Opferagens eine hohe anfängliche Wasserstoffbildungsrate, die mit dem 

Fortgang der Reaktion abnahm, weil es zum Einschluss von Pt-Nanopartikeln ins Innere von CN kam, wie 

mittels STEM, XPS und ICP-OES belegt werden konnte. Dieses Verhalten trat in Gegenwart von Oxalsäure 

(OA) als Opferagens nicht auf, weil sich die Platin-Nanopartikel in diesem Fall auf der äußersten Oberfläche 

von CN anreichern. Bei den Pt/AgIn5S8-C3N4 (Pt/AIS-CN)-Katalysatoren scheiden sich die Pt-Nanopartikel 

bevorzugt auf der Oberfläche von AIS ab, was deren Migration ins Innere von CN verhindert und sie 
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zugänglich für die Protonenreduktion erhält. In situ-EPR-Spektren zeigten, dass das EPR-Signal bei 

Bestrahlung mit UV-vis-Strahlung für reines CN viel höher ist. Mit zunehmendem Gehalt an AIS nimmt 

dieses Signal jedoch ab, was sehr wahrscheinlich auf einen Elektronentransfer von CN auf AIS 

zurückzuführen ist. In gleicher Weise nimmt auch die Intensität der Emission der Komposite mit steigendem 

Anteil an AIS ab, was die Ergebnisse aus der EPR-Spektroskopie untermauert. Wird Platin sowohl auf CN 

als auch auf AIS-CN abgeschieden, nimmt die Emissionsintensität ebenfalls ab, was einem Transfer von 

Leitungsbandelektronen aus CN zum Pt oder von CN über AIS zum Pt zugeschrieben wird. Hiermit wird 

die Ladungsträgerrekombination effizient unterdrückt, was mit einer gleichzeitigen Verlängerung ihrer 

Lebenszeit und damit einer Erhöhung der Wasserstoffproduktion einhergeht.  

Als weiteres Metallsulfid wurde MoS2 verwendet und die entsprechenden MoS2/C3N4 (MS-CN) 

Komposite wurden über drei verschiedene Wege hergestellt, nämlich mittels in situ-Photoabscheidung (PD), 

sonochemisch (SC) und thermischer Zersetzung (TD). Von diesen Photokatalysatoren zeigte das über in situ-

Photoabscheidung hergestellte 2H MS-CN die höchste Wasserstoffbildungsrate unter Bestrahlung mit UV-

vis-Licht. STEM-Untersuchungen haben ergeben, dass Pt in allen Kompositen sowohl auf CN als auch auf 

MoS2 abgeschieden wird, was gegensätzlich zu den Beobachtungen im Fall der AIS-CN-Komposite ist. 

Außerdem konnte mit STEM und UV-vis-Spektroskopie gezeigt werden, dass CN im Fall der weniger 

aktiven Proben teilweise von größeren MoS2-Partikeln bedeckt ist und es nur bei 2H MS-CN(PD) zur 

Ausbildung hinreichend dünne Schichten an 2H MoS2 kommt, die einen engen Grenzflächenkontakt mit CN 

ermöglichen, durch den die Ladungstrennung begünstigt und damit die photokatalytische Aktivität erhöht 

wird. In situ-EPR-Untersuchungen zeigten, dass das Signal der Leitungsbandelektronen im Fall von Pt/2H 

MS-CN (PD) niedriger als bei den anderen Katalysatoren ist, was auf einen effektiveren Elektronentransfer 

von CN zu Pt, der zu einer höheren Aktivität führt, hindeutet.  

Ein weiterer wichtiger Gesichtspunkt in der photokatalytischen Wasserstofferzeugung ist die Wahl des 

Opferagenses. Durch die Verwendung des gleichen Halbleiters (CN) und des gleichen Cokatalysators (Pt) 

besteht ein gewisses Maß an Vergleichbarkeit. Unter basischen Bedingungen scheint das Oxidationspotential 

des Opferagenses einen großen Einfluss auf die Wasserstoffproduktion zu haben. Jedoch spielen auch 

weitere Faktoren, wie zum Beispiel verschiedene Löslichkeiten, unterschiedliche Degradationsmechanismen, 

ungleiche pH-Werte der diversen Opferagensien und auch unterschiedliche Austrittswahrscheinlichkeiten 

der Lösungsmittel, eine Rolle, die detaillierter untersucht werden müssen, um zu klareren 

Schlussfolgerungen zu gelangen. 
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1 Motivation, objective and state of the art 
1.1 Motivation and objective  

Increasing concerns about energy demand and environmental pollution have encouraged the scientific 

community to discover and utilize promising renewable energy resources alternative to fossil fuels, which is 

one of the primary research topics of the 21st century in view of a more sustainable society.1, 2 The increased 

demand for energy production is mainly due to huge population growth and enormous industrial 

developments. If the growth rate of a population continues at the current levels, the global population is 

predicted to reach 9.5 billion people by 2050, and consequently, the primary energy consumption is also 

estimated to increase from 15 TW to 27 TW by 2050.2, 3 Fossil fuels, such as coal, petroleum, and natural gas 

are the major energy sources currently available that play an important role to meet our energy 

requirements, especially for industry, agriculture, transportation and daily life (Fig. 1.1a). Energy 

Information Administration (EIA) report revealed that more than 85% of primary energy production comes 

from fossil fuels. On the other hand, fossil fuels are rapidly being depleted. On the other hand, the 

greenhouse gas such as CO2 level is increasing due to burning fossil fuels, which is the main cause of climate 

change i.e. global warming, along with other important environmental problems and health issues.4, 5 The 

International Energy Agency (IEA) data shows that atmospheric CO2 concentration is rapidly increasing 

since the year 1990 and about 33.1 giga-tonnes of CO2 was released in 2018 by vast combustion of fossil fuels 

in order to meet our energy requirements (Fig. 1.1b).  

 

To effectively address the depletion of fossil fuels and the environmental problems caused by their 

combustion as well as to meet the increased energy demand, the scientific society has been searching for a 

new form of energy that should, in principle, be a clean, renewable, cheap, safe, and viable alternative to 

fossil fuels. Hydrogen is becoming the most environmentally acceptable fuel of the future and it undergoes 

clean combustion, giving only water as a byproduct (2H2 + O2 ⇌ 2H2O; ΔE = -286 kJ/mol).1, 6-8 Therefore, 

hydrogen is considered a clean fuel, as it does not produce any greenhouse or harmful gases. Moreover, 

Figure 1.1 (a) World energy consumption by fossil fuels, 1900-2015 (Report from Energy Information 

Administration, EIA) and (b) global CO2 emissions by fossil fuels, 1990-2018 (Report from International 

Energy Agency, IEA).  
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hydrogen has a high gravimetric energy density of 119.93 MJ/kg compared to gasoline (44.5 MJ/kg). 

Hydrogen can be produced from both non-renewable sources (coal, petroleum, and natural gas) and 

renewable energy resources (biomass, geothermal, hydroelectric, tidal, wind, solar and nuclear) (Fig. 1.2).6-8  

 

However, almost 96% of current hydrogen production is derived from fossil fuels via steam reforming 

of methane and coal gasification technology.7, 9 Since both these methods produce huge amounts of CO2 

emissions, therefore, developing environmentally benign and economically feasible methods to produce 

hydrogen from renewable resources is of paramount research interest in the recent years. Hydrogen is 

abundant in the form of water, which is cheap, abundant, a renewable resource. On the other hand, the 

incident solar energy on Earth surface is about 120,000 TW, which is 104 times higher than the current global 

energy consumption.10, 11  

Photocatalytic hydrogen production by using sunlight is an efficient method to convert directly solar 

energy into a usable or storable energy resource, which is considered to be an alternative energy source to 

mitigate problems associated with increasing energy demand and environmental pollution.1, 12-16 This 

method utilizes abundantly available solar energy as photon source and water as proton (H+) source to 

produce renewable H2. In 1972, Fujishima and Honda discovered the photoelectrolysis of water by using 

TiO2 photoanode which can split water into hydrogen and oxygen under UV light irradiation.17 The 

Figure 1.2 A possible model for a hydrogen energy economy. Reproduced with permission from ref.407 

Copyright 2008 Royal Society of Chemistry.   
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pioneering work of Fujishima and Honda inspired many researchers towards developing novel 

heterogeneous semiconductor-based materials for photocatalytic water splitting. Until now, a wide variety 

of semiconductors has been explored as photocatalysts for H2 production, such as metal oxides (e.g. TiO2, 

ZnO, SrTiO3, Sr2Ti2O7, La2Ti2O7, Nb2O5, NaNbO3, Ta2O5, NaTaO3, Sr2Ta2O7, Ba5Ta4O15, PbMoO4, PbWO4, β-

Ga2O3, CaIn2O4, etc.), metal sulfides and metal (oxy)sulfides (e.g. ZnS, CdS, CuInS2, CaIn2S4, ZnIn2S4, AgIn5S8, 

La2GaOS2, Sm2Ti2O5S2, ect.), metal nitrides and metal (oxy)nitrides (e.g. GaN, Ta3N5, TaON, LaTiO2N, ect.), 

metal halides and metal (oxy)halides (e.g. AgX (X = Cl, Br, I), BiOX, BiTaO8X, etc.).13, 18, 19 Since solar radiation 

contains visible light as the major fraction besides a small percentage of UV light, catalysts designed for large 

scale application must work efficiently under irradiation with wavelengths above 400 nm (Fig. 1.3). 

Unfortunately, metal oxide semiconductor-based photocatalysts, for instance, first and foremost TiO2 ~3.20, 

but also titanates, niobates and tantalates, such as SrTiO3 ~3.20 eV, NaNbO3 ~3.50 eV and NaTaO3 ~4.00 eV, 

respectively, can only be activated by UV light (only 4% present in the solar spectrum) due to their large 

band gap energy.20 No absorption takes place in the visible light region which constitutes the major part of 

the solar spectrum over 43%. Alternatively, metal sulfides and metal nitrides have a narrow band gap with 

suitable band edge positions for photocatalytic water splitting. However, these materials are unstable under 

light irradiation as they are prone to decompose during the photocatalytic reaction.20 For instance, CdS is 

itself oxidized by photogenerated holes instead of water and eventually produces Cd2+ and S2- in the reaction 

solution (photocorrosion), which is a demerit of metal sulfide-based photocatalysts.21 Although some other 

metal oxides and sulfides have even narrower band gaps (e.g., WO3 ~2.60 eV, V2O5 ~2.30 eV, Ag3PO4 ~2.50 

eV, Bi2WO6 ~2.80 eV, SnS2 ~1.76 eV, CuInS2 ~1.55 eV, AgIn5S8 ~1.76 eV, etc.), they possess unsuitable band 

positions for water splitting and hence, insignificant catalytic performance.20 Moreover, the photocatalytic 

efficiency of these pristine photocatalysts is still too low to meet practical requirements due to its high 

recombination rate of photogenerated electron hole pairs. It is therefore essential to develop promising 

photocatalysts that must absorb light in the visible region, possess suitable band positions and remarkable 

photocatalytic stability. Fig. 1.3 reveals the necessity of developing visible active photocatalysts for H2 

production.  

In 2009, Wang and co-workers observed efficient H2 production for the first time over graphitic carbon 

nitride (g-C3N4) under visible light irradiation.22 Carbon nitride is a two dimensional (2D) layered polymeric 

metal free semiconductor with a narrow band gap of 2.70 eV and a proper optical wavelength of 460 nm, 

allowing the light absorption in the visible region as well as a suitable band position for photocatalytic H2 

production.22 Moreover, it possesses excellent thermal stability (˃ 600 °C in air atmosphere) as well as 

chemical stability against acid, alkali, and organic solvents (e.g. lactic acid, triethanolamine and methanol, 

respectively).23 Furthermore, it exhibits additional favorable properties like earth abundance, non-toxicity, 

synthetic accessibility, etc.24 



4 
 

 

Inspired by the huge advantages of g-C3N4, tremendous efforts have been undertaken towards g-C3N4 

catalyzed light driven transformations, such as water splitting, CO2 reduction and pollutants degradation.20, 

25-31 However, the bulk C3N4 exhibits low photocatalytic activity because of its low surface area, insignificant 

electrical conductivity, limited light absorption in the visible region (up to 460 nm) and high recombination 

rate of photogenerated electron-hole pairs. To address these issues, a number of modification techniques has 

been developed in recent years to improve the photocatalytic activity of C3N4, such as shape control, porous 

structure formation, composite formation with other semiconductors, doping with metal or non-metal 

elements, loading noble metals, coupling with carbon dots, carbon nanotubes, graphene, conducting 

polymers, metal organic frameworks, etc.23, 32 Among these modification techniques, developing 

nanocomposites of C3N4 with other semiconductors is a promising strategy that creates synergistic 

heterojunctions, eventually resulting in an improved charge separation and hence higher photocatalytic 

efficiency.33  

One of the major problems in photocatalysis is the fast recombination of photogenerated electron-hole 

pairs, limiting the overall efficiency. Typically, photogenerated electron-hole pairs have a recombination 

time in the order of 10-9 s, whereas the reaction time of electrons and holes with adsorbed species is quite 

longer (10-8-10-3 s).34 During the photocatalytic reaction, most of the electron-hole pairs can recombine and 

release the absorbed energy in the form of heat or light, because the charge separation and recombination are 

the competitive processes. However, a small percentage of these charge carriers can migrate to the 

photocatalyst surface, where they can interact with the adsorbed molecules and initiates the redox reaction. 

In this framework, developing nanocomposites of C3N4 with other semiconductors is a promising strategy 

Figure1.3 Terrestrial solar spectrum (Air Mass 1.5 Global 37° tilted surface). Modified figure adapted from 

ref.408 Brian Tuffy 2016 PhD thesis.  
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that creates synergistic heterojunctions, eventually resulting in an improved charge separation and hence 

higher photocatalytic efficiency.33, 35, 36 

Objective of the thesis  

Metal sulfides are excellent candidates for photocatalytic hydrogen production due to their narrow 

band gap with suitable band edge positions.13, 20, 37-40 Inspired by the unique properties of metal sulfides, we 

were aiming at the creation of a heterojunction with C3N4 to increase the electron-hole pair separation. 

Making heterojunction between g-C3N4 and metal sulfide, electron hole pair recombination could be 

significantly reduced, resulting in high photocatalytic efficiency. However, the formation of photogenerated 

charge carriers as well as their separation and transfer during photocatalytic reaction is still not clear, though 

its complete understanding is inevitable in order to tune the photocatalytic properties of composite catalysts 

for achieving high photocatalytic H2 production efficiency. In this dissertation, different strategies were 

employed to synthesize metal sulfide/g-C3N4 heterojunction composites and then, investigated their 

applications for photocatalytic H2 production.  

The scope of this dissertation work can be summarized as follows 

 Synthesis of AgIn5S8/C3N4 heterojunction composites (Chapter 3) 

 Synthesis of MoS2/C3N4 heterojunction composites (Chapter 4) 

 Effect of sacrificial agents (Chapter 5) 

Among the various spectroscopic techniques, in-situ electron paramagnetic resonance (EPR) 

spectroscopy has been applied to monitor charge separation and transfer during UV-vis light irradiation. 

Additionally, photoluminescence (PL) spectroscopy was used to investigate the separation efficiency of 

photogenerated charge carriers. In combination with EPR and PL, several standard characterization methods 

were also applied in this work. The crystal structure and phase compositions of the developed catalysts were 

characterized by powder X-ray diffraction (XRD). The optical properties of as-synthesized catalysts were 

characterized by ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The structural properties 

were characterized by attenuated total reflectance-infrared (ATR-IR) spectroscopy. The morphology and 

microstructure of the composites were analysed by scanning transmission electron microscopy (STEM). The 

surface elemental compositions and nature of the species (chemical state of the elements) were analyzed by 

X-ray photoelectron spectroscopy (XPS). The textural properties, such as specific surface area, pore volume 

and pore sizes were analyzed by N2 adsorption-desorption studies (BET analysis). Finally, the bulk 

elemental composition of as-synthesized catalysts was analysed by inductively coupled plasma-optical 

emission spectroscopy (ICP-OES) and carbon, hydrogen, nitrogen and sulfur (CHNS analysis). With the help 

of these techniques, the role of sacrificial agents and co-catalysts, photocatalytic H2 production activity, 

catalysts stability, etc. should be investigated in this dissertation. 
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1.2 State of the art 

Fundamental mechanism of photocatalytic water splitting 

Fig. 1.4 shows a schematic illustration of the 

basic principles of photocatalytic water splitting. 

Thermodynamically, the water splitting reaction is 

an uphill process, requiring a minimum energy of 

1.23 eV because the Gibbs free energy change for 

the reaction is ΔG° = 237 kJ mol-1 per H2O 

molecule.13, 41 The semiconductor band gap usually 

determines the wavelength of sunlight needed for 

the reaction. A semiconductor with a wide band 

gap (Eg > 3 eV) can only absorb UV light, which approximately accounts for 4% of solar energy. In contrast, a 

narrow band gap semiconductor (Eg < 3 eV) can be activated by visible light irradiation, which constitutes 

43% of solar energy.29 

Reduction:           2H+ + 2e- → H2(g)                          ∆E° = 0 V                                                                                  (1.1) 

Oxidation:            H2O(l) → ½ O2(g) + 2H+ + 2e-            ∆E° = 1.23 V                                                                             (1.2)  

Overall reaction: H2O(l) → H2(g) + ½ O2(g)               ∆E° = 1.23 V    (∆G° = 237 kJ mol-1)                                       (1.3) 

Besides the band gap of the semiconductor, 

the positions of valence and conduction band play 

a crucial role in photocatalytic water splitting (Fig. 

1.5).13, 18 For H2 evolution, the conduction band 

edge should be more negative than the reduction 

potential of H+ to H2 (EH+/H2 = 0 V vs. NHE at pH = 

0) (Eq. 1.1). On the other hand, the valence band 

edge should be more positive than the oxidation 

potential of water (EO2/H2O = 1.23 V vs. NHE at pH = 

0) in order to evolve oxygen (Eq. 1.2). Therefore, 

the band gap of the semiconductor should be at least 1.23 eV in order to split water into H2 and O2 (Eq. 1.3). 

The equivalent light wavelength for this band gap energy is 1100 nm, which is in the near-infrared region of 

the sunlight spectrum.41 By considering other factors, such as energy loss during different stages occurred in 

the photocatalytic process, promising semiconductors must have band gaps greater than 2 eV, which is 

related to light with wavelength less than 620 nm.42  

Main processes involved in photocatalytic water splitting  

The electron-hole pairs in photocatalysts are generated upon excitation by the incident light (Fig. 1.6, 

step 1). Semiconductor photocatalysts have a band structure in which the conduction band (CB) is separated 

Figure 1.4 Thermodynamics of photocatalytic water 

splitting. Modified figure adapted from ref.409 

Copyright 2008 Royal Society of Chemistry. 

Figure 1.5 Basic principle of photocatalytic water 

splitting. Modified figure adapted from ref.410 

Copyright 2010 American chemical society.   
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from the valance band (VB) by a band gap (Eg) with a suitable width. When photocatalyst absorbs light 

energy equal or greater than its band gap, electrons in the VB can be excited to the CB, as a result a hole 

formed in the VB and electrons in the CB. This process is known as electron-hole pair generation. 

 

The excited charges (photogenerated electrons and holes) separate and migrate to the surface of the 

photocatalyst, which is highly dependent on the crystal structure and particle size of the photocatalyst used 

for the reaction (Fig. 1.6, step 2). In parallel, charge recombination can also occur, where a fraction of 

photogenerated electrons and holes radiatively or nonradiatively recombine and release absorbed energy in 

the form of heat or light (Fig. 1.6, step 2). In order to prevent the recombination of the photoinduced e -/h+ 

pairs, several modification strategies have been suggested such as improving crystallinity, decreasing 

particle size, and loading a co-catalyst such as Pt, Pd, RuO2 and NiOx on the surface of photocatalyst.43 The 

higher crystallinity of a photocatalyst can result in the presence of less number of defects, which act as the 

recombination center of photoinduced e-/h+ pairs. Defects are usually considered as the trapping and 

recombination centers between photogenerated electrons and holes, resulting in decreased photocatalytic 

activity. To achieve higher photocatalytic activity, photocatalysts with smaller sized particles are preferred 

as they provide higher surface area with more reactive sites, leading shorten the distance to migrate 

photogenerated excitons to the surface reaction sites and thus, inhibiting the recombination rate of 

photoinduced e-/h+ pairs.44 

The photogenerated electrons on the surface of a photocatalyst can react with H+ to produce H2 whereas 

holes react with H2O to produce O2, which are governed by surface character (active sites) and quantity 

(surface area) of the photocatalyst (Fig. 1.6, step 3). Photocatalysis is a surface phenomenon and thus larger 

surface area provides more number of active sites for the target reaction, enabling the process more efficient. 

Figure 1.6 Main processes involved in photocatalytic water splitting. Modified figure adapted from ref.411 

Copyright 1995 American chemical society. 
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Even when the potentials of the photogenerated electrons and holes are thermodynamically sufficient for 

water splitting, they may not be able to split water into H2 and O2 if the sufficient active sites for redox 

reactions are not available on the catalyst surface. Meanwhile, the backward reaction to form water from the 

evolved H2 and O2 proceeds readily because it is a downhill reaction. Therefore, some co-catalysts, such as 

Pt, Pd, NiOx and RuO2 are usually loaded to introduce additional active sites for H2 evolution because the 

conduction band levels of many oxide photocatalysts are not high enough to reduce H+ into H2 without co-

catalytic assistance.43 In addition to the co-catalysts, sacrificial agents, such as organic/inorganic electron 

donors also play a significant role in influencing photocatalytic activity. The use of sacrificial agents can 

greatly minimize the charge carrier recombination by scavenging the photogenerated holes.45-49  

All of these processes can greatly affect the overall efficiency of a semiconductor photocatalytic system 

(Fig. 1.6). Clearly, taking into consideration the basic mechanism and processes of photocatalytic water 

splitting, there are two key factors that can play a significant role in developing a suitable high-efficiency 

semiconductor. On the one hand, a photocatalyst should have a sufficiently narrow band gap (1.23 eV < Eg < 

3.0 eV) to both harvest visible light and possess the suitable band structure (VB and CB edges). On the other 

hand, photoinduced electron-hole pairs in the photocatalyst should be separated efficiently in order to avoid 

their bulk/surface recombination. They must migrate to the respective surface active sites for hydrogen 

and/or oxygen evolution, thus strictly inhibiting the backward reaction of water formation from H2 and O2. 

Additionally, the stability of the photocatalysts is also vital during photocatalytic reaction.  

Band structure of semiconductors and redox potentials of water splitting 

Several metal oxide semiconductors, such as TiO2, ZnO, ZrO2, Ta2O5, SrTiO3, NaTaO3, BiPO4, InNbO4, 

SrNb2O6, GdTi2O7, K4Nb6O17 and Ba5Ta4O15 possess suitable band structures for photocatalytic water splitting 

(Fig. 1.7).13, 20 However, these metal oxide catalysts can only be activated by UV light due to their large band 

gap energy (˃ 3.2 eV). Unfortunately, UV light (< 400 nm) only accounts for a small portion of solar spectrum 

(4%). No absorption takes place in the visible region, which constitutes the major part of the solar spectrum 

(43%). Thus, more efforts have been made to develop promising visible light active photocatalysts over the 

past few decades (e.g. CdS and SnS2) (Fig. 1.7).13, 20 Non-oxide photocatalyst, such as cadmium sulfide (CdS) 

can satisfy the two requirements with having sufficient potentials for water splitting and good light 

absorption properties in the visible region. However, this material is not stable under irradiation because it 

decomposes during photocatalytic reaction. For instance, CdS is itself oxidized by photogenerated holes 

instead of water and eventually produces Cd2+ and S2- in the reaction solution, which is a demerit of metal 

sulfide-based photocatalysts (Eq. 1.4). This reaction is called photocorrosion and is often a demerit of a metal 

sulfide photocatalyst.41   

                                                                      CdS + 2h+ → Cd2+ + S                                                                     (1.4) 
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However, CdS is an excellent photocatalyst for H2 production under visible light irradiation if a hole 

scavenger is used (e.g. in the presence of Na2S/Na2SO3).21 On the one hand, several metal oxides, for example 

WO3, α-Fe2O3, Bi2WO6, a-Bi2O3, V2O5, Ag3PO4 and BiOI are good photocatalysts for O2 evolution reaction 

(OER) under visible light irradiation in the presence of an electron acceptor, such as Ag+ and Fe3+. However, 

these catalysts are not active for photocatalytic H2 evolution reaction (HER) because of their low conduction 

band level than the H+ reduction potential (Fig. 1.7).13 On the another hand, several metal oxides and metal 

sulfides, for example GdCrO3, ZnFe2O4, CuO, Cu2O, CuInS2, AgIn5S8, SnS2, CdSe and ZnSe are good 

photocatalysts for HER under visible light irradiation in the presence of electron donor (e. g. TEOA and 

lactic acid) but, these are not active for OER because of their high valance band level than water oxidation 

potential (Fig. 1.7).13 Therefore, the band position of the semiconductors is one of the essential requirements 

for photocatalytic water splitting. Other factors, such as overpotentials, charge separation, mobility and 

lifetime of photogenerated electrons and holes affects the photocatalytic water splitting as well.13, 14, 18   

The essential factors for water splitting reaction are summarized as follows. 

1) Band gap energy (capable of absorbing light in the visible region, 400-800 nm),  

2) Suitable band positions (sufficient potential for water splitting), 

3) High crystallinity (to inhibit the recombination rate of photogenerated electrons and holes), 

4) Small particle size (to shorten the diffusion length), 

5) More active sites (for the formation of H2 and O2), 

6) Stability (photostability and insolublity in water), 

7) Efficient charge carrier separation. 

Figure 1.7 Band structure of semiconductors and redox potentials of water.   



10 
 

1.2.1 Development of g-C3N4 semiconductor for photocatalytic H2 production 

Carbon nitride (C3N4) is a two dimensional (2D) layered polymeric metal-free semiconductor, which has 

been widely investigated in various light driven transformations, such as water splitting, CO2 reduction and 

pollutants degradation.20, 24, 26-28, 30-33, 50-58 It exhibits a number of favorable properties including earth 

abundance, non-toxicity, facile synthetic accessibility, suitable electronic band structure and high 

physicochemical stability.24  Additionally, it has a suitable band structure with a band gap of 2.70 eV, which 

allows for the absorption of light in the visible region up to 460 nm.22 As shown in Fig. 1.8, both triazine and 

tri-s-triazine as the building blocks of graphitic carbon nitride (g-C3N4) can provide two possible forms with 

different degrees of stability. One form is based on condensed triazine units as the tectonic units (Fig. 1.8a), 

while the other form is obtained from tri-s-triazine as the fundamental units interconnected via tertiary 

amine (Fig. 1.8b).24, 27 

 

This kind of polymeric carbon nitride was first synthesized by Berzelius, and then named as melon by 

Liebig in 1834, which is regarded as one of the oldest structures of synthetic polymer.59 In 1922, Franklin et 

al. found the empirical composition of ‘melon’ to be C3N4.60 Afterwards, Pauling and Sturdivant developed 

tri-s-triazine derived structure of C3N4 in 1937.61 In 1940, It was demonstrated that this material ‘melon’ has a 

graphite structure as reported by Redemann and Lucas in 1940.62 In 1972, photocatalysis has received 

enormous attention after breakthrough work of Fujishima and Honda i.e. photolysis of water on TiO2.17 

Afterwards, a wide variety of materials, including inorganic semiconductors was evaluated for 

photocatalytic water splitting. However, until Wang et al. first reported in 2009, there were no studies 

making use of g-C3N4 in photocatalysis. They observed efficient H2 production for the first time from visible-

light photocatalysis on g-C3N4 and the quantum efficiency was 0.1% under irradiation at 420-460 nm.22 

However, its photocatalytic activity is low owing to   

1) Its low quantum efficiency, due to fast recombination of the photogenerated electron-hole pairs. 

Figure 1.8 Structures of triazine (a) and tri-s-triazine (b) as the primary building blocks of g-C3N4. 

Reproduced with permission from ref.412 Copyright 2016 American Chemical Society.    
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2) Limited light absorption in the visible region up to 460, limiting the utilization of broad spectrum of 

solar light. 

3) During synthesis, the high degree of condensation of the monomers renders the materials with a low 

surface area (~10 m2 g-1) and without forming textured pores.  

4) The grain boundary effect can disrupt the delocalization of electrons from the surface of a 

photocatalyst through the interface. 

To address these issues, a number of modification strategies have been developed in recent years to 

improve the photocatalytic activity of g-C3N4, such as 

1) Preparation of mesoporous and ordered mesoporous g-C3N4 

2) Preparing texturally and morphologically controlled g-C3N4 

3) Doping with metals (e.g. Mn, Fe, Co, Ni, Cu, Zn, etc.), non-metals (e.g. O, C, P, S, B, I, F, etc.) and co-

doping (e.g. Au/Pt, Au/Pd, Pt/Co, etc.) 

4) Loading co-catalysts (e.g. Pt, Ru, Rh, Pd, Au, Ag, Co, Ni, Cu, RuO2, NiO, etc.) 

5) Constructing synergistic heterojunction with other semiconductors, such as metal oxides (e.g. TiO2, 

NaTaO3, etc.) and sulfides (e.g. CdS, ZnIn2S4, ect.)  

Among these modification strategies, developing nanocomposites of g-C3N4 with other semiconductors 

was found to be a promising strategy that can create synergistic heterojunctions and hence improved charge 

separation and higher photocatalytic efficiency. The mesoporous C3N4 used in this thesis was prepared by 

hard template method using tetraethyl orthosilicate (TEOS) and subsequently used to prepare 

heterojunctions with metal sulfides, such as AgIn5S8 and MoS2 by co-precipitation and in-situ postdeposition 

method, respectively. 

1.2.2 Mesoporous and ordered mesoporous g-C3N4 

g-C3N4 based materials were generally fabricated by direct condensation of abundant nitrogen-rich 

precursors (Fig. 1.9), such as urea,63-71 melamine,72-80 cyanamide,22, 81-84  dicyandiamide,66, 70, 85-94 thiourea,66, 70, 71, 

85, 95, 96 trithiocyanuric acid,97  ammonium thiocyanate,98 etc. Both precursors nature and reaction conditions 

(i.e. temperature, time, and atmosphere) can greatly affect the physicochemical properties of g-C3N4, such as 

C/N ratio, specific surface area, porosity, absorption edge, and nanostructure.66, 99-101 

 

Figure 1.4 Thermal polycondensation pathways for the formation of g-C3N4 starting from cyanamide. 

Reproduced with permission from ref.413 Copyright 2016 American Chemical Society. 
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Porous materials are especially attractive as heterogeneous catalysts photocatalytic H2 production 

reactions due to their accessible porosity and large surface area.20, 23, 25, 29, 102, 103 One of the main drawbacks of 

g-C3N4 is that the high degree of polycondensation of monomers renders the formation of bulk materials 

with low surface area (<10 m2 g-1), without forming textured pores.22 Low surface area has become one of the 

main disadvantages hindering the photocatalytic H2 production activity of g-C3N4 because higher surface 

area catalyst can offer more number of active sites for H2 production.94 Mesoporous g-C3N4 is a promising 

material, because the porous structure can provide a large surface area and numerous channels to facilitate 

mass diffusion, as well as charge migration and separation.104-107 As compared to the bulk g-C3N4, 

mesoporous g-C3N4 materials exhibits higher specific surface area up to 1116 m2 g-1 and larger porosity up to 

1.45 cm3 g-1, high concentration of active sites present on the catalyst surface, resulting in enhanced 

photocatalytic performance.108  

There are two different templating pathways for the preparation of mesoporous g-C3N4, such as soft 

templating (self-assembly along with structure directing agents) and hard templating (nanocasting) (Fig. 

1.10).20, 23, 25, 29, 58, 102, 103, 109, 110  

 

Hard template method is a controllable and precise approach towards the construction of mesoporous 

nanostructures, and it is highly versatile for the design of different mesoporous nanostructures with well-

controlled porosity, size, shape, composition and spatial arrangement.111, 112 The most commonly used hard 

templates are silica nanoparticles (SiO2 NPs) as well as ordered mesoporous silica templates, such as SBA-15, 

SBA-16, KCC-1, KIT-6, IBN-4, etc.108, 113-118 The porosity, structure, size, morphology and surface area can be 

easily tuned by using these templates through hard template method. Mesoporous g-C3N4 has been 

synthesized by using various precursors, such as urea, cyanamide, thiourea and ammonium thiocyanate in 

Figure 1.5 Scheme of two major routes for the synthesis of mesoporous g-C3N4: hard template method and 

soft template method. Modified figure adapted from ref.414 Copyright 2017 Royal Society of Chemistry.    
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the presence of SiO2 NPs as a hard template, the removal of template can result in a 3D interconnected 

structure of g-C3N4 with a large surface area (Fig. 1.10).106, 119 For example, Hong et al. synthesized in situ 

sulfur-doped mesoporous g-C3N4 with a large surface area of 128 m2 g-1 by hard template method using SiO2 

NPs as hard template and thiourea as precursor. For a better comparison, they prepared bulk g-C3N4 with 

low surface area of 12.1 m2 g-1 using melamine as precursor under template-free conditions. Sulfur-doped 

mesoporous g-C3N4 exhibited much higher photocatalytic H2 evolution rate of 136 μmol h-1 which was 30 

times higher than that of bulk material (4.5 μmol h-1). The high catalytic performance of sulfur-doped 

mesoporous g-C3N4 was attributed to the extended light absorption in the visible light region enabled by 

sulfur doping and efficient mass and charge transfer in the mesoporous structure as well.116 

In case of soft templating method, the porosity is introduced by the cooperative self-assembly often 

being carried out under hydrothermal conditions (Fig. 1.10). Wang et al. prepared mesoporous g-C3N4 by 

polycondensation of dicyandiamide using various soft templates, such as non-ionic surfactants, amphiphilic 

block polymers (e.g. Triton X-100, P123, F127, Brij30, Brij58 and Brij76) and also using some ionic surfactants 

(e.g. BmimC1, BmimPF6, BmimBF4 and BmimDCN).120-124 For example, Yan et al. synthesized mesoporous g-

C3N4 with worm-like porosity by a soft template method using Pluronic P123 surfactant as soft template and 

melamine as precursor. The synthesized mesoporous g-C3N4 has high specific surface area (90 m2 g-1) than 

the bulk g-C3N4 (9 m2 g-1). The g-C3N4 sample synthesized from melamine without P123 showed an obvious 

visible-light photocatalytic activity and the H2 production rate reaches 60.5 μmol h-1. The use of 10 wt% P123 

as template assisted g-C3N4 produced 148.2 μmol h-1 of H2 production rate, which was attributed to high BET 

surface area as well as mesoporous g-C3N4 with worm-like porosity that promotes light absorption in the 

visible region up to 800 nm.123 

1.2.3 Morphology controlled g-C3N4 

Besides the ordered mesoporous g-C3N4, extensive efforts have been made to develop various types of 

g-C3N4-based nanostructures, namely, nanospheres, hollow nanospheres, nanorods, nanosheets, and 

nanotubes with the assistance of sacrificial templates.108, 125-133 Controlling morphology of the g-C3N4 

nanostructures is another effective approach to optimize photocatalytic performance of g-C3N4 with efficient 

charge transportation and migration as well as facile mass diffusion during the photocatalytic reaction. 

For instance, Sun et al. designed hollow carbon nitride nanospheres (HCNS) by hard template method using 

mesoporous silica shell (SiO2) as hard template and cyanamide as precursor. The BET surface area was 

found to be 35 m2 g-1 for hollow nanospheres and 11 m2 g-1 for bulk g-C3N4. g-C3N4 hollow nanospheres 

exhibited high photocatalytic H2 production rate (224 μmol h-1) than the bulk g-C3N4 (9 μmol h-1). The 

apparent quantum yield is estimated to be 7.5% at 420 nm. The experimental results demonstrated that 

hollow nanospheres could enhance the effective path length for light absorption due to the existence of 

multiple reflections and scatterings within the nanostructure.129 Moreover, Liu et al. developed uniform 

sized g-C3N4 nanorods (200 nm long and 80 nm wide) with the help of a hard template route using SiO2 
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nanorods as the template and cyanamide as the precursor. The one-dimensional hexagonal mesostructured 

silica nanorods can provide nanoconfinement space for C3N4 condensation to produce perfect layered 

structures. The BET surface area of g-C3N4 nanorods was determined to be 52 m2 g-1, which is about twice to 

that of the bulk g-C3N4 (25 m2 g-1). The g-C3N4 nanorods exhibited high photocatalytic H2 production rate (25 

μmol h-1) than the bulk g-C3N4 (2.5 μmol h-1), which is due to the suppressed charge recombination within 

the C3N4 nanorods and blue-shift light absorption compared to bulky g-C3N4.128 Table 1.1 showing some 

examples of mesoporous g-C3N4 and their photocatalytic H2 production activities.   

Table 1.1 Synthesis of mesoporous g-C3N4 and their photocatalytic H2 production activities.   

1.2.4 Doped g-C3N4 

Doping is a process of incorporating external impurities into the g-C3N4 framework to tune its optical, 

electronic and other physical properties (Fig. 1.11).136 The bandgap energy of g-C3N4 is 2.7 eV, enabling it to 

utilize only the solar light with wavelength below 460 nm.22 Thus, in order to further enhance the light 

harvesting ability of g-C3N4, various bandgap engineering strategies, including metal doping, non-metal 

doping and metal/nonmetal co-doping have been widely exploited and demonstrated to achieve enhanced 

photocatalytic activity in many cases. 20, 23, 25, 26, 29, 30, 58, 102, 103, 110, 136    

No. Precursor Template 
Morphology of 

C3N4 

Pore 

size 

(nm) 

Pore 

volume 

(cm3 g-1) 

Surface 

area 

(m2 g-1) 

H2 production 

(μmol g−1 h−1) 
Ref. 

1 Cyanamide SiO2 NPs Mesoporous 8.3 0.41 126 1420 106 

2 Cyanamide Mesoporous silica Hollow nanospheres - - 79 3600 129 

3 Cyanamide SiO2 NPs Hollow nanospheres - - 221 11000 132 

4 Cyanamide 
Chiral mesoporous 

silica 
Helical rod like 3.8/10.7 - 56 3700 133 

5 Cyanamide Chiral silica nanorods Porous nanorods - - 52 8333 128 

6 Thiourea SiO2 NPs Mesoporous 10-20 - 128 1360 116 

7 Cyanamide 
Ordered mesoporous 

SBA-15 

Ordered 

mesoporous 
5.3 0.34 239 840 113 

8 Dicyandiamide SBA-15 Mesoporous - 0.24 122 2302 134 

9 Cyanamide SBA-15 
Ordered 

mesoporous 
3.4 0.49 517 12150 130 

10 
Ammonium 

thiocyanate 
SBA-15 

Ordered 

mesoporous 
5.3 0.34 239 3040 119 

11 Cyanamide KCC-1 silica spheres Hierarchical spheres 3.8 0.4 160 14350 131 

12 Cyanamide Anodic alumni oxide Nanorods - - 25 2700 127 

13 Melamine Pluronic P123 Warm-like porous - - 90 494 123 

14 Melamine Copolymer-F68 Mesoporous 6.9 0.503 185 1518 135 

15 Urea BmimBF4 Porous nanosheets 25 0.40 73 2580 120 
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Non-metal ion doped g-C3N4 

Tremendous efforts have been made to introduce non-metals, such as B,137-140 C,141-147 N,73, 143, 144 P,124, 143, 144, 

148-154 O,143, 144, 155-158 S,95, 97, 116, 143, 144, 159-165 F,166 Br167 and I92, 168 into g-C3N4, as donor states above the valance band 

for improving light absorption in the visible region (Fig. 1.11c). For example, Wang and co-workers 

developed a new type of B-doped g-C3N4 nanosheets via a simple one-pot pyrolysis strategy. A B-doping 

amount of 1 at% into g-C3N4 exhibited the highest photocatalytic H2 evolution rate (1880 μmol h-1 g-1) under 

visible light illumination, which was over 12-fold higher than that of pristine bulk g-C3N4. B-Doping reduced 

the band gap to absorb visible light more easily and developed higher specific surface area (49.47 m2 g-1) 

compared to that of bulk g-C3N4 (8.24 m2 g-1), which consequently improved the photocatalytic activity 

dramatically.139 In another work, Li et al. prepared oxygen-doped g-C3N4 by a hydrothermal route using 

H2O2 as the dopant precursor. XPS studies showed that part of the sp2-hybridized nitrogen atoms in the g-

C3N4 framework were replaced by oxygen atoms, forming N-C-O bonds, a key reason for the significant 

changes in the physicochemical properties of g-C3N4. The O-doping process effectively enlarges specific 

surface area, extends visible light response with absorption edge up to 498 nm, and improves charge 

separation efficiency for H2 production.157 Moreover, Liu and co-workers reported that sulfur doping can 

induce a unique electronic structure, responsible for an increased VB along with an elevated CB minimum 

and minor declined absorbance. Significant changes in the optical properties and electronic structures would 

lead to enhanced H2 evolution rate over the sulfur-doped g-C3N4, with 8 times H2 evolution rate higher than 

the pristine g-C3N4164. Furthermore, Zhang et al. prepared iodine-doped g-C3N4 by a simple polycondesation 

Figure 1.11 Development of g-C3N4 semiconductor for photocatalytic H2 production: (a) pristine g-C3N4; (b) 

noble metal loaded g-C3N4; (c) non-metals anions doped g-C3N4; (d) metal cations doped g-C3N4; (e) metals 

loaded g-C3N4; (f) plasmonic metals loaded g-C3N4.  
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of dicyandiamide with ammonium iodide as dopant. DFT calculations indicated that the sp2-bonded N was 

preferentially substituted by iodine atom. The intimate interaction between g-C3N4 and iodine atoms 

extended the π-conjugated aromatic heterocycle, which assisted to enhance the mobility of free charge 

carriers evidenced from the EPR analysis. The resulting I-doped g-C3N4 showed enhanced optical 

absorption, enlarged specific surface area as well as accelerated charge separation for excellent H2 

production92.  

Metal ion doped g-C3N4 

Apart from non-metal doping, doping of metals, such as Mn,169-171 Fe,169, 171-177 Co,169, 171, 178 Ni,169, 171 Cu169, 

171, 177, 179, 180, Zn181, Y182, Zr,183 Mo184, W185 has also been broadly employed to modify the optical and electronic 

properties of g-C3N4 by efficiently increasing the light absorption, reducing the band gap, accelerating the 

charge mobility, and prolonging the lifetime of charge carriers, which are all beneficial for photocatalytic H2 

production (Fig. 1.11d). For example, Gao et al. synthesized Fe doped g-C3N4 by a hydrothermal method 

using formamide and citric acid as precursors for g-C3N4 and ferric chloride as the Fe-precursor. The Fe 

dopant appeared to be in the +3 oxidation state and could significantly influence the electronic and optical 

properties of g-C3N4. The as-prepared Fe doped g-C3N4 photocatalyst showed highly efficient visible light-

driven H2 production rate of ∼16.2 mmol g-1 h-1 and a quantum efficiency of 0.8%. The experimental results 

demonstrated that Fe doping promotes strong coupling between the metal and the g-C3N4, forming unique 

electronic structures and favoring electron mobilization along with 2D nanomaterial plane. The presence of 

2D nanomaterial planes is also responsible for efficient electron transfer process in the photocatalytic system, 

leading to efficient H2 evolution.173 Jiang and co-workers fabricated a series of mesoporous Cu-doped g-C3N4 

photocatalysts by using CuCl2 and melamine as precursors. The embedded Cu2+ transformed the optical 

properties, influenced the energy band structure, and improved the electron-hole separation rate and thus 

enhanced the photocatalytic properties.180 Zhang and co-workers synthesized Mn-doped g-C3N4 nanoribbons 

via a two-step calcination approach. In particular, the obtained Mn-doped g-C3N4 exhibited excellent 

photocatalytic properties for HER. The yields of H2 and O2 could reach 593.35 and 59.47 μmol g-1 after 3 h 

illumination.170 Ye and co-workers presented a facile soft-chemical approach to prepare Zn-doped g-C3N4. 

Compared with other metal atoms, Zn was easier to incorporate into g-C3N4 without destroying its graphite-

like structure. The H2 evolution rate of Zn-doped g-C3N4 was as high as 297.5 μmol h-1 g-1, over 10-fold 

higher than that of pure g-C3N4.181  

Besides transition metal ions, the coordination of alkali metal ions, such as Li+, K+ and Na+ and into the 

nitrogen pots of g-C3N4 framework was also studied to enhance its structure-activity performance.186-191 

Zhang and co-workers prepared K-doped g-C3N4 via a facile thermal polycondensation strategy employing 

KBr as the K source. The KBr content strongly affected the photocatalytic performance of the K-doped g-

C3N4, and the photocatalytic H2 evolution rate of the optimized K-doped g-C3N4 nanosheets (10 wt% KBr) 



17 
 

was as high as 1337.2 μmol h-1 g-1, which was 5.6 fold higher than that of pure g-C3N4 (239.8 μmol h-1 g-1). 

This is due to the narrower band gap and improved light harvesting property of K-doped g-C3N4.187 

Metal and non-metal ions co-doped g-C3N4 

 Co-doping with metal cation and non-metal 

anion was also found to be a promising strategy 

to optimize structural and optical properties of g-

C3N4 (Fig. 1.12).192-199 Hu et al. developed a 

metal/nonmetal co-doping method to synthesize 

Fe and P co-doped g-C3N4 using dicyandiamide, 

ferric nitrate, and diammonium hydrogen 

phosphate as precursors. The phosphorus was 

doped into g-C3N4 to form P-N bonds at the 

interstitial sites of g-C3N4. On the other hand, the 

Fe was coordinated with the N at the interstitial 

position in the nitrogen pots of g-C3N4. The improved activity of Fe and P co-doped g-C3N4  catalyst 

compared with pristine g-C3N4 and single-doped g-C3N4 under visible light irradiation was due to the 

synergistic effect of Fe and P co-doping that assisted to inhibit the crystal growth of g-C3N4, enhance the BET 

surface area, narrow the band gap energy, and promote the separation efficiency of photogenerated charge 

carriers.195  

1.2.5 Role of co-catalysts in photocatalytic H2 and O2 evolution 

The co-catalysts can play an important role in 

improving the photocatalytic activity of g-C3N4 (Fig. 

1.13).23, 30, 43 In photocatalytic water splitting, the co-

catalysts can be used to enhance either water oxidation or 

reduction reactions. When the noble metal is loaded on 

the surface of g-C3N4, the photogenerated electrons could 

migrate to the surface and entrapped by the noble metal 

co-catalyst, because the Fermi energy level of noble metal 

is always lower than the g-C3N4.36 Hence, the presence of 

such co-catalysts greatly minimizes the possibility of 

electron-hole recombination, resulting in efficient 

electron-hole separation and enhanced photocatalytic 

activity.36   

(i) Co-catalysts could lower the activation energy or overpotential for H2 or O2 evolution reactions.43  

Figure 1.12 Possible doping sites of P and Fe in Fe/P co-

doped g-C3N4 photocatalysts. Reproduced with 

permission from ref.415 Copyright 2014 Elsevier. 

Figure 1.13 Schematic illustration of 

photocatalytic water splitting over a 

semiconductor photocatalyst loaded H2 and O2 

evolution co-catalyst. Modified figure adapted 

from ref.416 Copyright 2014 Royal Society 

Chemistry. 
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(ii) Co-catalysts are capable of improving electron-hole separation at the co-catalyst/semiconductor 

interface. As shown in Fig. 1.13, the photogenerated electrons in the conduction band (CB) of a 

photocatalyst are transferred to the H2 evolution co-catalyst and reduce protons to H2 molecules, 

whereas photogenerated holes in the valence band (VB) migrate to the O2 evolution co-catalyst and 

oxidize H2O to form O2. The formation of an appropriate heterojunction between the co-catalyst and 

the semiconductor is the key factor for enhanced charge separation and transfer from the 

semiconductor to the co-catalyst.34  

(iii) Moreover, co-catalysts could suppress the photocorrosion and increase the stability of 

semiconductor photocatalysts.21, 200  

Many factors can affect the performance of co-catalysts, such as loading amount, particle size and 

valence states.44 Particle size and valence states are strongly dependent on the loading method of the co-

catalysts. There are three types of methods to deposit co-catalysts onto the semiconductor surface, i.e. in-situ 

photodeposition, impregnation and chemical reduction.201 In photodeposition method, the semiconductor is 

mixed with co-catalyst precursor (e.g. g-C3N4 with H2PtCl6) and then reduced by photoexcited electrons on 

the semiconductor surface (Pt/g-C3N4) under light irradiation in the presence of sacrificial reagents.201 The 

second method is usually followed by a post-calcination step. First, a semiconductor is impregnated with a 

solution containing co-catalyst precursor, followed by evaporation and drying. Afterwards, the obtained 

sample is calcined in air or other gases such as hydrogen or argon in order to obtain the desired states of the 

metal or metal oxide.201 The third method is chemical reduction, in which the semiconductor is mixed with 

co-catalyst precursor and then reduced by using NaBH4.201  

Especially, the loading amount of co-catalysts can affect their catalytic performance. Initially, the 

introduction of a co-catalyst onto a semiconductor surface could gradually enhance the photocatalytic water 

splitting activity by facilitating efficient charge separation. When the loading amount of a co-catalyst on a 

semiconductor reaches the optimal value, this co-catalyst/semiconductor system achieves the highest 

activity. However, further loading of the co-catalyst will drastically decrease the photocatalytic activity. This 

decreased activity in case of excessive loading of co-catalysts can be explained by the following factors: (i) 

covering the surface active sites of the semiconductor and hindering its contact with sacrificial reagents or 

water molecules; (ii) shielding the incident light, and thus preventing the light absorption and generation of 

photogenerated electrons and holes; and (iii) co-catalysts at high loading amount could act as charge 

recombination centers, a key factor for decrease of the photocatalytic activity. Another important factor 

influencing the catalytic activity of co-catalysts is their particle size. Co-catalysts with smaller particle size 

have a large BET surface area, which provides more number of active sites, and hence, higher photocatalytic 

activity. In fact, numerous studies showed that the smaller particle size and high dispersion of loaded co-

catalysts lead to significantly enhanced photocatalytic activity.43  

Various co-catalysts have been used for photocatalytic H2 and O2 evolution reactions (Fig. 1.14).43 For 

example, noble metals, such as Pt, Ru, Rh, Pd, Au and Ag have been extensively investigated as efficient co-
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catalysts for photocatalytic H2 evolution (Fig. 1.14).202-207 Among them, Pt was found to be the most effective 

co-catalyst because of its high work function and low over potential for H2 evolution reaction.204 On the other 

hand, noble metal oxides, such as RuO2 and IrO2 are well-known and excellent water oxidation co-catalysts 

for improving the photocatalytic O2 evolution rate (Fig. 1.14).22, 208 The earth-abundant transition metals, such 

as Co, Ni and Cu have been applied as co-catalysts for photocatalytic H2 evolution reaction (Fig. 1.14).209-213 In 

addition, their metal oxides and hydroxides can act as both H2 and O2 evolution co-catalysts (Fig. 1.14).200, 201, 

214-217 Furthermore, metal sulfides,218-222 nitrides,223, 224 phosphides,225-227 carbides,228-230 arsenides231 and 

borides232 were found to be good H2 evolution co-catalysts in recent years.   

 

1.2.6 Loading co-catalysts on g-C3N4 

Besides the elemental doping to tune the light absorption of g-C3N4, the loading of co-catalysts was also 

attempted to enhance its photocatalytic activity for H2 production (Fig. 1.15).23, 26, 33, 43, 233 It was demonstrated 

that a metal/g-C3N4 heterojunction could facilitate the separation and transportation of photogenerated 

electron-hole pairs.36 In metal/g-C3N4 heterojunctions, a Schottky barrier is formed when g-C3N4 is in close 

contact with a metal that results, Fermi level alignment induced by electron flow from higher Fermi level (g-

C3N4) to lower level (metal) (Fig. 1.15). The loaded metal could effectively act as an electron trap to receive 

photoelectrons generated from g-C3N4 after excitation, improving the charge carrier separation and reducing 

the recombination rate.23, 34, 36, 234, 235 In addition, the loaded metal provides additional active sites for H2 

generation due to its relatively low over-potential for water reduction.43  

 

Figure 1.14 Different types of co-catalysts for photocatalytic H2 and O2 evolution.  
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Noble metal loaded on g-C3N4 

As mentioned above, the co-catalysts could play an 

important role in separating photogenerated charge carriers, 

hosting active sites for H2 generation, suppressing 

photocorrosion, and thereby enhancing the photocatalytic 

activity.23, 34, 36, 234, 235 Noble metals, such as Ru,81 Rh,81, 205 Ir,81 Pd81, 

126, 203, 236-238 and Pt81, 89, 94, 96, 126, 201, 202, 204, 239-248 are commonly used co-

catalysts for photocatalytic H2 production (Fig. 1.11b). Among 

these noble metals, Pt is the most effective promoter for H2 

evolution due to its large work function for trapping electrons 

and its lowest activation energy for efficient H2 evolution.29  

For example, Maeda et al. loaded various noble metals, 

such as Ru, Rh, Pd, Ir, Pt and Au on  the surface of g-C3N4 by in 

situ photodeposition method using (NH4)2RuCl6, 

Na3RhCl6·2H2O, (NH4)2PdCl4, Na2IrCl6·6H2O, H2PtCl6·2H2O and HAuCl4·4H2O as precursors, respectively. 

Among these, Pt/g-C3N4 exhibited the highest photocatalytic H2 production rate (7.3 μmol h-1), whereas 

lowest H2 production was obtained with Ir/g-C3N4 (0.2 μmol h-1). Platinum possesses an excellent ability to 

act as a catalytically active site for H2 evolution due to the smallest overvoltage, while Iridium has the largest 

values among metals employed in this study.81 Hence, the presence of such co-catalysts greatly minimizes 

the possibility of electron-hole recombination, resulting in an efficient electron-hole separation, thus, 

photocatalytic activity enhanced.81 Wang et al. also synthesized Pt NPs decorated g-C3N4 by simple chemical 

reduction method using ethylene glycol acting as both solvent and reducing agent. The Pt/g-C3N4 catalysts 

showed a H2 evolution rate of 45 μmol h-1 from an aqueous solution of triethanolamine under visible light 

irradiation.249  

Cao et al. synthesized different shapes of Pt NPs, such as cubic, octahedral and spherical, and then 

deposited on g-C3N4 surface by adsorption-deposition method for photocatalytic H2 evolution reaction. 

These Pt NPs of different shapes have similar sizes of around 10 nm but have different facets exposed on the 

surface. The experimental results demonstrated that the spherical Pt/g-C3N4 exhibits higher photocatalytic 

H2 evolution rate than the cubic Pt/g-C3N4 and octahedral Pt/g-C3N4 under visible light irradiation, 

indicating the significance of Pt shape in tuning the photocatalytic activity of g-C3N4 under visible light 

irradiation. Such structure-sensitive activity is mainly due to the unique surface atomic structures of 

different exposed facets of Pt NPs, leading to the disparity of active sites and adsorption energies during 

photocatalytic reaction. Thus, optimizing the size and shape of co-catalysts is essential for the design of 

efficient photocatalysts.202   

Figure 1.15 Schematic energy band 

diagram of a typical metal-semiconductor 

Schottky junction. Reproduced with 

permission from ref.
417

 Copyright 2014 

Royal Society of Chemistry. 
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Besides the noble metals, their oxides and sulfides, such as RuO2, IrO2, Ag2O, PtOx, PdS, Ag2S, Ru2S3, 

and Rh2S3 were also used as co-catalysts for photocatalytic H2 and O2 evolution reactions.201, 217   

Decorating with noble metals, such as Ag206, 247, 250-268 and Au126, 204, 207, 247, 257, 269-277 on the g-C3N4 surface can 

induce the localized surface plasmon resonance (SPR) due to the strong visible light absorption (Fig. 1.11f).23, 

43, 276, 278, 279 For example, Di et al. deposited Au NPs on the surface of g‐C3N4 by three different methods, such 

as deposition-precipitation, in situ photodeposition, and impregnation to construct synergistic metal-

semiconductor junctions for photocatalytic H2 production. The deposition of Au NPs showed enhanced 

visible light absorption and a characteristic peak at 560 nm belonging to the plasmonic effect of Au NPs. In 

addition, there was a red shift in the absorbance edge of Au/g-C3N4 in comparison with pristine g-C3N4. The 

Au NPs were found to possess an average diameter of 8-20 nm, which were decorated especially on the 

surface and edges of g-C3N4. Among those, the Au/g‐C3N4 prepared by the deposition-precipitation 

exhibited much higher photocatalytic H2 production, owing to (i) higher visible light absorption capacity 

induced by Au NPs due to the SPR effect and (ii) formation of intimate interfacial contact between g-C3N4 

and Au NPs that effectively promoted the charge transfer and separation.204  

In addition, Samanta et al. also synthesized Au loaded g-C3N4 by deposition-precipitation technique, 

resulting in a localized SPR effect, which could absorb visible light effectively, as evidenced by a 

characteristic peak centered at 550 nm. The prepared Au/g-C3N4 composite showed an improved 

photocatalytic performance, the H2 evolution rate was up to 8870 μmol h-1 g-1, which was 23-fold higher than 

that of neat g-C3N4 (383 μmol h-1 g-1), indicating that the size, shape and uniform dispersion of Au NPs on the 

g-C3N4 surface were advantageous to improve the photocatalytic activity.207    

In another work, Qin et al. loaded Ag on top of g-C3N4 by a chemical reduction method, in which, the 

visible light absorption was increased due to the localized surface plasmon resonance (LSPR) effect, resulting 

in reduced recombination of photogenerated electron-hole pairs and enhanced photocatalytic activity. The 

Ag loaded g-C3N4 exhibited excellent photocatalytic H2 evolution rate (344.51 μmol g-1 h-1), which was about 

3.6 times higher than that of pristine g-C3N4 (95.15 μmol g-1 h-1). Moreover, the addition of fluorescein, as a 

photosensitizer, led to increased H2 evolution rate (2014.20 μmol g-1 h-1) which was about 4.8 times higher 

than that of the Ag/g-C3N4 composite.262 

On the other hand, bimetallic nanocrystals have huge prospects in catalytic activities owing to their 

extraordinary structural properties and synergistic effect between metals.280-287 For example, Han and co-

workers developed AuPd bimetallic decorated g-C3N4 photocatalysts, via in situ chemical deposition 

method, which could effectively promote the separation efficiency of photogenerated charge carriers, and 

consequently enhanced H2 evolution activity. Owing to these advantages, the 0.5 wt% AuPd/g-C3N4 catalyst 

showed the best catalytic performance, with H2 evolution rate of 326 μmol h-1 g-1, which is about 3.5 and 1.6 

times higher than that of pristine Au/g-C3N4 and Pd/g-C3N4 under visible light irradiation.282  
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Non-noble metal loaded on g-C3N4 

Besides the expensive noble metals, some earth abundant, low-cost transitional metals, such as Bi,288, 289 

Ni209, 212, 213, 290-294 and Cu179, 210, 211, 295 have also been applied as co-catalysts in photocatalytic H2 production (Fig, 

1.11e). As an active transition non-noble metal, Ni plays a significant role in photocatalytic systems, which 

has been widely used in g-C3N4-based photocatalysts. The introduction of Ni results in a change in the 

surface band bending, and thus enhances the separation efficiency.209, 290 For example, Bi et al. synthesized Ni 

loaded g-C3N4 by a simple solvothermal method using nickel acetylacetonate as Ni precursor. Ni 

nanoparticles with size of 30 nm were found to be uniformly distributed on the 2D g-C3N4 nanosheet surface 

with a lattice spacing of 0.209 nm, which corresponded to the (111) plane of metallic Ni. The high 

distribution of Ni NPs on the g-C3N4 could enhance the photocatalytic H2 evolution activity. The surface 

photovoltage (SPV) was employed to examine the efficiency of charge separation at the heterojunction 

interface of Ni/g-C3N4. Interestingly, the response intensity of Ni/g-C3N4 is markedly larger than the pristine 

g-C3N4, signifying the well separation of charge carriers at the interface to control the recombination process. 

As noticed by Mott-Schottky plots, Ni loading deepens the surface band bending of g-C3N4, resulting in high 

separation of photogenerated charge carriers, which is contributed to the enhanced photocatalytic H2 

evolution activity.290 

In addition, Kong et al. also synthesized Ni loaded g-C3N4 by in-situ photodeposition method using 

NiCl2·6H2O as a Ni precursor and NaH2PO2 as the hole sacrificial agent. The Ni NPs were obtained by the 

reduction of Ni(II) via photogenerated electrons and uniformly distributed on the electron outlet points of g-

C3N4 in 30 minutes. When the loading amount of Ni was 7.40 wt%, a high photocatalytic H2 production rate 

(4318 g-1 h-1) was obtained and no noticeable decrease in the photocatalytic H2 evolution rate after four runs 

(48 h). Furthermore, the Ni/g-C3N4 composite photocatalyst presented a sunlight-driven H2 production of 

4000 μmol g-1 h-1 under natural sunlight outdoors. The photoelectrochemical and steady-state 

photoluminescence experiments demonstrated that Ni effectively prevented the recombination of the 

photogenerated electrons and holes of g-C3N4 and hence, improved H2 evolution activity.212 

In another related study, Indra and co-workers deposited low-cost and earth-abundant Ni co-catalysts 

on the porous g-C3N4 surface for enhanced H2 evolution. Upon photoreduction process, Ni metal domains 

were produced from the Ni2+ ions via electron transfer from the CB of g-C3N4, as verified by the in-situ EPR 

spectroscopy. The EPR spectrum of catalyst (Ni deposition in the dark) recorded at 300 K showed no signal, 

suggesting that all nickel is dispersed as Ni2+ species. After visible light irradiation, a broad EPR signal (g = 

2.23) was observed, indicating the formation of ferromagnetic Ni0 NPs. Importantly, the CB potential of g-

C3N4 was larger (-1.3 V) than the reduction potential of Ni2+ to Ni (-0.26 V), rendering the formation of Ni 

metal. Thus, the hybrid photocatalytic system comprised both Ni2+ and Ni species. In line with that, the as-

formed Ni can serve as an efficient co-catalyst for capturing the electrons from g-C3N4. Moreover, the charge 
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separation and transfer during photocatalytic H2 evolution was investigated by using in-situ EPR 

spectroscopy.291 

Furthermore, Fan et al. prepared Cu loaded g-C3N4 catalyst by impregnation method using Cu(NO3)2 as 

precursor. The particle size of Cu was found to be 30 nm dispersed on the g-C3N4 surface with a lattice 

spacing of 0.255 nm, corresponding to the (111) plane of metallic Cu phase. The experimental results 

demonstrated that the Cu NPs could trap the photogenerated electrons and act as a co-catalyst, and hence, it 

can suppress the charge recombination and enhance the photocatalytic activity.210 

Besides the transition metals, their oxides (e.g. NiO, CoOx and MnOx)201, 217, hydroxides (e.g. Ni(OH)2, 

Cu(OH)2 and Co(OH)2)200, 214-216, oxyhydroxides (e.g. FeOOH and NiOOH)296, 297, sulfides (e.g. MoS2, Mo3S4, 

NiS, NiS2, CuS, CoS, WS2, NiWSx, FeS2 and SnS2)218-222, nitrides (e.g. Mo2N and NiMoNx)223, 224, phosphides 

(e.g. NiP, Ni2P, CoP, MoP, FeP, InP and GaP)225-227, arsenides (e.g. GaAs and NiAs)231, carbides (e.g. WC, 

Mo2C, Ni3C and Ti2C)228-230 and borides (e.g. MoB and TaB2)232, etc., can also be used as co-catalysts for 

photocatalytic H2 and O2 evolution reactions.   

1.2.7 Semiconductor/g-C3N4 heterojunction 

The synthesis of semiconductor 

heterostructures is an effective approach to 

promote charge separation for improved 

photocatalytic activity (Fig. 1.16).13, 14, 19, 20, 23, 34, 36, 

234, 235, 298-304 One of the major problems in 

photocatalysis is the fast recombination of 

photogenerated electron-hole pairs, limiting the 

overall efficiency. Typically, photogenerated 

electron-hole pairs have a recombination time 

in the order of 10-9 s, whereas the reaction time 

of electrons and holes with adsorbed species is 

quite longer (10-8-10-3 s).34 If the recombination 

process can be partly diminished, highly efficient photocatalysts for water splitting reaction will be gained. 

The photogenerated electron-hole pair recombination could be reduced by making heterojunction between 

g-C3N4 and other semiconductor.20, 23 Based on the type of semiconductors, i.e. p-type (holes being the major 

charge carriers) or n-type (electrons being the major charge carriers), heterojunctions can be categorized into 

p-p, n-n, and p-n types, which are formed between two p-type SCs, two n-type SCs, and p-type and n-type 

SCs, respectively.303  

 The semiconductor p-n heterojunction is an effective design for achieving efficient charge separation 

and transportation. In general, when the p-type and n-type semiconductors are in contact, they form a p-n 

junction with a space-charge region at the interfaces due to the diffusion of electrons and holes, and thus 

Figure 1.16 Schematic diagram of energy band structure 

and electron-hole separation in the p-n heterojunction. 

Modified figure adapted from ref.418 Copyright 2014 Royal 

Society of Chemistry.  
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creating a built-in electrical potential that can direct the electrons and holes to travel in the opposite direction 

(Fig. 1.16).36 When the p-n heterojunction is irradiated by photons with energy higher or equal than its 

bandgap, the photogenerated electron-hole pairs can be quickly separated by the built-in electric field within 

the space charge region. Driven by the electric field, the electrons are transferred to the CB of the n-type 

semiconductor and the holes to the VB of the p-type semiconductor. This p-n type heterostructure can offer 

several advantages, i.e. (i) a more effective charge separation, (ii) a rapid charge transfer to the catalyst, (iii) a 

longer lifetime of the charge carriers, and (iv) a separation of locally incompatible reduction and oxidation 

reactions.305 

Depending on the bandgap and relative energy level of VB and CB, the semiconductor heterojunctions 

can be divided into three categories: straddling gap (Type-I), staggered gap (Type-II) and broken gap (Type-

III), as shown in Fig. 1.17.23, 30, 34, 235, 299, 301-304 For the Type-I band alignment, both the VB and CB potentials of 

smaller band gap semiconductor (SC-2) are confined within the larger band gap semiconductor (SC-1), 

creating a straddling band alignment. Therefore, upon light irradiation with sufficient energy equivalent to 

or greater than the band gap of the semiconductors, photogeneration of electron-hole pairs occurred, 

resulting in the transfer and accumulation of all charge carriers in a single component within a hybrid 

structure. Since the charge carriers are accumulated in a single semiconductor, there is no evident overall 

enhancement of charge separation and thus commonly impairing the photoredox efficiency.23 In Type-II 

heterojunction, the conduction band of SC-1 is more negative than that of SC-2, while the valence band of 

SC-1 is less positive than that of SC-2.303 Importantly, the difference of chemical potential between SC-1 and 

SC-2 causes band bending at the interface of junction. The band bending induces a built-in-field, which 

drives the photogenerated electrons and holes in opposite directions, leading to a spatial separation of the 

electrons and holes on different sides of heterojunction.303 Thus, the formation of type-II heterostructures is 

an effective approach to enhance charge separation efficiency for improved photocatalytic activity. 

Meanwhile, for the Type-III heterojunction, both VB and CB edges of a SC-1 are located above the CB 

potential of SC-2 without crossing each other.299  

 

Figure 1.17 Schematic energy band diagram of three types of semiconductor heterojunctions. Modified 

figure adapted from ref.419 Copyright 2016 American Chemical Society. 
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Zhang et al. synthesized sheet-on-sheet ZnIn2S4/g-C3N4 Type-I heterostructures, by in situ growth of 

ultrathin ZnIn2S4 nanosheets onto g-C3N4 nanosheets through a hydrothermal method, for photocatalytic H2 

production.306 After introducing ZnIn2S4 nanosheets, the specific surface area of g-C3N4 nanosheets is 

considerably improved that led to the availability of more number of active sites for the photoreaction. The 

optimized hybrid photocatalytic system (15% ZnIn2S4/g-C3N4) exhibited excellent hydrogen evolution rate of 

14.1 μmol h-1, which was about 17.6 times higher than that of pure g-C3N4 (0.8 μmol h-1), attributed to 

efficient interfacial transfer of photoinduced electrons and holes from g-C3N4 to ZnIn2S4 nanosheets, as a 

result, decreased charge recombination on g-C3N4 nanosheets and the increased amount of photoinduced 

charge carriers in ZnIn2S4 nanosheets. Concurrently, the increased number of surface-active-sites and 

extended light absorption of g-C3N4 nanosheets after the decoration of ZnIn2S4 nanosheets may play a certain 

role for the enhancement of photocatalytic activity. The apparent quantum efficiency of this optimal sample 

is estimated to be 0.28% at 420 nm. Photovoltage and transient photoluminescence results demonstrated that 

the ZnIn2S4/g-C3N4 heterojunction nanosheets considerably boost the charge transfer efficiency, improving 

the probability of photoinduced charge carriers to reach the photocatalyst surface for efficient H2 production. 

Wu and co-workers fabricated a CdS/gC3N4 visible light driven Type-II heterojunction photocatalysts 

by chemisorption and self-assembly method.307 The optimized hybrid photocatalysts system (5% Ni2P-

CdS/g-C3N4) exhibited the highest hydrogen evolution rate of 44 450 μmol h-1 g-1, which was about 27 times 

higher than that of pure CdS (1668 μmol h-1 g-1). The apparent quantum yield reaches up to 46.3% at 420 nm. 

The excellent photocatalytic activity and stability can be ascribed to the synergistic effect of the intimate 

interfacial contact between CdS and g-C3N4 and the surface co-catalyst modification. The outstanding 

performance of the Ni2P-CdS/g-C3N4 composites can be attributed to the following reasons, i.e. (i) intimate 

interfacial contact between CdS and g-C3N4 can effectively promote the electron-hole pair separation, (ii) The 

introduction of Ni2P as co-catalyst further accelerates the separation rate of the photogenerated electron-hole 

pairs and provides a catalytic active site for H2 production. 

Liu et al. synthesized CdLa2S4/mpg-C3N4 type-II heterojunction composites by hydrothermal method.308 

The CdLa2S4/mpg-C3N4 composites showed absorption edge to longer wavelengths in comparison with the 

pure mpg-C3N4, attributed to the strong interaction between mpg-C3N4 and CdLa2S4 in the composites. This 

interaction can play a favorable role in improving the separation of the photogenerated electron-hole pairs, 

resulting in higher photocatalytic H2 evolution rate of 5984.8 μmol h-1 g-1 over CdLa2S4/mpg-C3N4 composite 

catalysts, which was 7.7 times higher than the pure CdLa2S4 (779.2 μmol h-1 g-1). The apparent quantum yield 

was estimated to be 7.1% at 420 nm. The results of photoluminescence and photocurrent response 

demonstrated that the recombination of photogenerated electron-hole pairs was effectively inhibited due to 

the well-matched band structure and intimate contact interfaces of CdLa2S4 and mpg-C3N4.  

In this thesis work, we synthesized AgIn5S8/C3N4 (Type-I heterojunction) and MoS2/C3N4 (Type-II 

heterojunction) has been synthesized for photocatalytic H2 production. Design of heterojunction between 
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these metal sulfides and C3N4, electron hole pair recombination could be significantly reduced. Table 1.2 

showing some examples of heterojunction photocatalysts and their photocatalytic H2 production activity. 

Table 1.2 Photocatalytic H2 production on metal sulfide/g-C3N4 based catalysts.    

1.2.8 Role of sacrificial agents in photocatalytic H2 and O2 evolution 

In principle, sacrificial agents usually react with one type of charge carrier, while the other charge 

carrier reacts with water to produce hydrogen or oxygen.13, 18, 34, 45-49 The basic principle of photocatalytic 

reaction using sacrificial reagents is depicted schematically in (Fig. 1.18). When the photocatalytic reaction is 

conducted in the presence of an electron donor, for example methanol, the photogenerated holes in the 

valence band can irreversibly oxidize methanol instead of H2O, thus facilitating water reduction by 

conduction band electrons. It is possible when the bottom of the conduction band of the photocatalyst is 

located at a more negative potential than the water reduction potential (0 V vs. NHE, pH 0). On the other 

hand, in the presence of an electron acceptor, for example, silver cations, the photogenerated electrons in the 

conduction band irreversibly reduce electron acceptors instead of H+, thereby promoting water oxidation by 

valence band holes. It is possible if the top of the valence band of the photocatalyst is positioned at a more 

positive level than the water oxidation potential (1.23 V vs. NHE, pH 0). The most commonly used electron 

donors are methanol,45, 47, 48 ethanol,45, 48 trimethylamine,46, 287 triethanolamine,45, 46, 48, 49, 287, 314-316 Na2S/Na2SO3,45, 

47, 49, 317 lactic acid,45, 48, 314 oxalic acid,46, 48, 314, 318-320 ascorbic acid,46, 49, 314, 316, 317 etc., whereas metal cations such as 

Ag+ and Fe3+ are typically used as electron acceptors.13, 18, 47  

Catalyst 
Synthesis 

method 

Co-

catalyst  

Sacrificial  

agent 

Light 

source 

Incident 

light (nm) 

Activity 

(μmol g−1 h−1 ) 
Ref. 

ZnS/g-C3N4 Precipitation - Methanol 3 W UV-LED ˃ 420 194 309 

CdS/g-C3N4 Sonochemical  Pt  Na2S & Na2SO3 350 W Xe  ˃ 420  4152  21 

CuInS2/g-C3N4 Hydrothermal Pt  Na2S & Na2SO3 300 W Xe  ˃ 420 1290  310 

CaIn2S4/g-C3N4 Hydrothermal Pt  Na2S & Na2SO3 12 W UV-LED  - 102  35 

ZnIn2S4/g-C3N4 Hydrothermal - TEOA  300 W Xe ˃ 400  2820  306 

CdIn2S4/g-C3N4 Hydrothermal - Na2S & Na2SO3 300 W Xe ˃ 400 323 311 

CdLa2S4/g-C3N4 Hydrothermal - Na2S & Na2SO3 300 W Xe ˃ 420  5985 308 

Cu2MoS4/g-C3N4 Hydrothermal - TEOA 300 W Xe ˃ 420  2171 312 

MoS2/g-C3N4  Sonochemical Pt  Methanol  300 W Xe  ˃ 420  231  313 
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Figure 1.18 Schematic illustration of H2 and O2 evolution in the presence of sacrificial reagents. Modified 

figure adapted from ref.420 Copyright 2015 Royal Society of Chemistry.  
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2 Experimental 
2.1 Catalyst synthesis  

2.1.1 Synthesis of mesoporous C3N4, AgIn5S8 and AgIn5S8/C3N4 composite 

Synthesis of mesoporous C3N4 by hard template method (CN) 

Mesoporous C3N4 (CN) was received from Prof. Arne Thomas group (Technical University Berlin, 

Germany). Mesoporous C3N4 has been synthesized by a hard template method described in detail ref.321 

Briefly, cyanamide (CA) was dissolved in a mixed solution of ethanol and HCl at pH =2. After adding 

tetraethylorthosilicate (TEOS) the mixture was stirred for 30 min, followed by evaporation of the solvent and 

drying at 80 °C. Afterwards, the dry solid was subjected to a stepwise thermal treatment at 550 °C in argon 

and at 650 °C in ambient atmosphere. Finally, the formed silica was removed from the composite by 

treatment with a 4 M NH4HF2 solution to create mesopores.  

Synthesis of AgIn5S8 by co-precipitation method (AIS) 

AgIn5S8 (AIS) nanoparticles were synthesized by a co-precipitation method.322 Typically, 0.0680 g (0.4 

mmol) of AgNO3 and 0.7818 g (2.0 mmol) of In(NO3)3.5H2O were dispersed in 120 mL double distilled water 

under vigorous stirring for 30 minutes. Then, 0.6010 g (8.0 mmol) of thioacetamide (C2H5NS) was added to 

the above reaction mixture. Subsequently, the reaction mixture was kept on an oil bath at 60 °C for 12 hours 

under magnetic stirring (300 rpm) with a condenser. The resulting grey coloured precipitate was filtered, 

washed with distilled water and ethanol for several times and then dried for 12 h at 80 °C in ambient 

atmosphere. 

Synthesis of AgIn5S8/C3N4 by co-precipitation method (AIS-CN) 

AIS-CN composites with different AIS content (labelled as xAIS-CN, where x denotes the weight 

percentage of AIS) were synthesized by performing the above described co-precipitation in the presence of 

CN.322 In a typical synthesis procedure, 0.1800 g of CN was dispersed in 20 mL double distilled water by 

vigorous stirring for 30 minutes. To obtain a composite with 10 wt.% AIS, 0.0036 g of AgNO3 and 0.0417 g of 

In(NO3)3.5H2O were added to this suspension and vigorously stirred for 30 minutes. After adding 0.0321 g of 

thioacetamide (C2H5NS) the mixture was stirred at 60 °C for 12 hours. The resulting yellow-grey coloured 

precipitate was filtered, washed and dried in the same way as pure AIS. To obtain composites with 5, 15 and 

20 % AIS, the concentrations of the respective precursors have been adjusted accordingly.  

2.1.2 Synthesis of 2H and 1T phase MoS2 and MoS2/C3N4 composites 

Synthesis of 2 wt% 2H MoS2/C3N4 composite by in situ photodeposition method (2H MS-CN 

(PD)) 

Ammonium tetrathiomolybdate (ATTM), (NH4)2MoS4 was used as precursor for MoS2 in situ 

photodeposition.323 A typical in situ photodeposition process is given in Section 2.2 as the synthesis was 
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performed in the same setup like the hydrogen evolution experiments. C3N4 (24.5 mg) and ATTM 

(NH4)2MoS4 (0.84 mg, 0.0032 mmol; theoretical loading amount of MoS2 is 2 wt% or 0.5 mg MoS2) were 

dispersed by sonication for 2 minutes in 25 mL of an aqueous solution containing 1.7 mL lactic acid. Before 

irradiation, the reactor was evacuated several times by applying vacuum and refilling with argon to remove 

oxygen. A 300 W Xe lamp with an output power of 1.5 W was used to irradiate the sample and temperature 

was maintained at 25 °C. After 2 hours, the reaction was stopped and the material was recovered by 

centrifugation. After washing it three times alternatingly with double distilled water and absolute ethanol 

the material was dried at room temperature overnight. Ammonium tetrathiomolybdate was dissociated into 

NH4+ and (MoS4)2-. (MoS4)2- was reduced into MoS2 by photogenerated CB e- and then deposited on the 

surface of CN (Eq. 2.1 & 2.2). 

                                                              Step 1: (NH4)2MoS4 → 2NH4+ + (MoS4)2-                                                                        (2.1) 

                                                              Step 2: (MoS4)2- + 2e-CB → MoS2 + 2S2-                                                                          (2.2) 

Synthesis of 2 wt% 2H MoS2/C3N4 composite by sonochemical method (2H MS-CN (SC)) 

For the synthesis of this material, 2H MoS2 has been prepared separately by a hydrothermal method 

(2H MS (HT)).324 In a typical procedure, ammonium heptamolybdate tetrahydrate, (NH4)2Mo7O24·4H2O 

(1.2359 g, 1.0 mmol) was dissolved in 35 mL deionized water by vigorous stirring for 1 h. Thiourea, CH4N2S 

(1.1418 g, 15.0 mmol), was dissolved separately in 35 mL deionized water by vigorous stirring for 1 h. These 

two reaction solutions were combined and stirred again for 30 minutes. Then, this reaction mixture 

(transparent solution) was transferred into a 100 mL Teflon-lined stainless steel autoclave and heated at 180 

°C for 24 h in the heating oven, and cooled down to room temperature naturally. The black coloured product 

was collected by centrifugation, washed alternatingly with distilled water and absolute ethanol until the 

centrifugate got colourless and odorless (approx. 5-6 times each solvent). Finally, the obtained material was 

dried at 70 °C for 24 h in the heating oven. 

For the synthesis of 2 wt% 2H MoS2/C3N4 composite (2H MS-CN (SC)), C3N4 (196 mg) was dispersed in 

10 mL of absolute ethanol by stirring for 30 min and then sonicated for 30 min. In a separate flask, 2H MoS2 

(HT) (4 mg) was dispersed in 5 mL of absolute ethanol by stirring for 30 min and then sonicated for 30 min. 

Then, the exfoliated C3N4 and 2H MoS2 solutions were combined and kept in an oil bath at 70 °C under 

stirring, until ethanol was evaporated completely. The obtained powder was ground by using mortar and 

pestle and then heated at 300 °C for 2 h under an Ar atmosphere (ramp rate 5 K/min) in the tubular 

furnace.313, 325 

Synthesis of 2 wt% 1T MoS2/C3N4 composite by sonochemical method (1T MS-CN (SC)) 

For the synthesis of 1T MS-CN (SC), 1T MoS2 has been prepared separately by a solvothermal method 

using N,N-Dimethylformamide (DMF) as a solvent (1T MS (ST)).326 In a typical synthesis procedure, sodium 

molybdate dihydrate, NaMoO4·2H2O (0.3630 g, 1.5 mmol) and L-cysteine, C3H7NO2S (0.608 g, 5.0 mmol) 

were dissolved in 70 mL of DMF/H2O 3/2 (v/v) under stirring for 1 h. The formed yellow coloured 
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transparent solution was transferred into a 100 ml Teflon-lined stainless steel autoclave and then heated at 

180 °C for 12 h in the heating oven and cooled down to room temperature naturally. The resulting black 

coloured product was centrifuged, washed alternatingly with distilled water and absolute ethanol for 

several times and then dried at 70 °C for 24 h in the heating oven.   

For the synthesis of 2 wt% 1T MoS2/C3N4 composite (1T MS-CN (SC)), C3N4 (196 mg) was dispersed in 

10 mL of absolute ethanol by stirring for 30 minutes and then sonicated for 30 minutes. In a separate flask, 

1T MoS2 (ST) (4 mg) was dispersed in 10 mL of absolute ethanol by stirring for 2 h. Then, these two solutions 

were combined and stirred at room temperature until ethanol was evaporated and allowed to dry at room 

temperature for another 24 h. Finally, the material was ground by using mortar and pestle. 

Synthesis of 2H MoS2 and 2 wt% 2H MoS2/C3N4 composite by thermal decomposition 

(impregnation) method (2H MS-CN (TD)) 

For the synthesis of 2H MoS2 by a thermal decomposition method (2H MS (TD)),327 ATTM (NH4)2MoS4 

(200 mg, 0.77 mmol) was dispersed in 20 mL of absolute ethanol by vigorous stirring for 30 minutes and then 

sonicated for 1 h. This reaction solution was kept in an oil bath at 70 °C under stirring until complete 

evaporation of ethanol. The obtained black coloured powder was heated at 400 °C for 2 h under an Ar 

atmosphere (ramp rate 5 K/min.) in the tubular furnace. Finally, the material was ground by using mortar 

and pestle. In stage 1, ATTM was decomposed into Mo2S5, NH3, H2S and S at 160-230 °C (Eq. 2.3). The 

formation of MoS2 was occurs at 230-360 °C due to decomposition of Mo2S5 (stage 2) (Eq. 2.4).   

                            Stage 1:         2 (NH4)2MoS4                                     Mo2S5 + 4NH3 ↑ + 2H2S ↑ + S ↑               (2.3) 

                            Stage 2:         2 Mo2S5                                             2MoS2 + S ↑                                               (2.4) 

For the synthesis of 2 wt% 2H MoS2/C3N4 composite (2H MS-CN (TD)), C3N4 (196 mg) was dispersed in 

10 mL of absolute ethanol by stirring for 30 minutes and then sonicated for 1 h. In a separate flask, ATTM 

(NH4)2MoS4 (6.5 mg, 0.025 mmol ; theoretical loading amount of MoS2 is 2 wt% or 4 mg MoS2) was dispersed 

in 5 mL of absolute ethanol by stirring for 30 minutes and then sonicated for 1 h. Then, these two 

suspensions were combined and kept in an oil bath at 70 °C under stirring until complete evaporation of 

ethanol. The obtained powder was heated at 400 °C for 2 h under Ar atmosphere (ramp rate 5 K/min.) in the 

tubular furnace. Finally, the material was ground by using mortar and pestle. 

2.2 Catalytic testing 

The H2 evolution measurements were carried out under an argon atmosphere with freshly prepared 

distilled solvents. Catalytic tests were performed in a double walled and thermostatically controlled reaction 

vessel connected to an automatic gas burette (Fig. 2.1). Details about the equipment and the experimental 

set-up are described in ref.328 Before each experiment, the reactor was several times evacuated and filled with 

argon to remove air.  

 

T2 = 230 – 360 °C 

T1 = 160 – 230 °C 
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In a typical experiment, the reactor was charged with 24.5 mg of catalyst and 0.2 mL aqueous H2PtCl6, 

containing 0.5 mg Pt to achieve a nominal Pt loading of 2 wt.% Pt. Then 24.8 mL of a mixture of water and 

the sacrificial agent (SA) were added to obtain a final ratio of water/SA of 9/1 (v/v), and the temperature was 

maintained at 25 °C. After stirring for approximately 10 minutes to reach thermal equilibrium the reaction 

was started by switching the light source on. As light source a 300 W Xe lamp with an output power of 1.5 W 

was used. For working under visible light irradiation only, a 420 nm cut-off filter was applied. The amounts 

of evolved gases were continuously determined by the automatic gas burette, equipped with a pressure 

sensor. After each experiment, a 5 mL gas sample was taken from the burette and quantitatively analyzed by 

a GC HP 6890N gas chromatograph equipped with a carboxen 1000 column and a thermal conductivity 

detector (TCD) and Ar as carrier gas. In selected experiments, the reaction was stopped after 3 h or 20 h, 

respectively, the catalyst was recovered by centrifugation, washed with double distilled water and ethanol 

and dried overnight at room temperature for further characterization.  

The H2 evolution rate, rH2 given in μmol g-1 h-1 was calculated according (Eq. 2.5) by assuming ideal gas 

behavior of H2 with a molar volume of Vm = 24.48 mol-1.   

                                                                  
    

      
                                                          (2.5) 

in which, Vexp is the gas volume determined experimentally, Vm is the molar volume, t is the reaction 

time, m is the mass of the sample. 

 Figure 2.1 Experimental setup for photocatalytic H2 production. 



32 
 

2.3 Catalyst characterization Techniques 

2.3.1 X-ray diffraction (XRD) 

The crystal structure and crystallinity of semiconductor 

photocatalysts can highly influence the photocatalytic 

activity. This technique is used to identify the crystalline 

phases, crystallite size, chemical composition, strain and 

defects in the structure. X-ray diffraction is based on the 

interaction of lattice atoms with a monochromatic beam of 

incident X-rays causing its diffraction, constructive and 

destructive interference, into many specific directions. The 

condition for constructive interference is expressed by 

Bragg’s law (Eq. 2.6).329 This law relates the wavelength of electromagnetic radiation to the diffraction angle 

and the lattice spacing in a crystalline sample (Fig. 2.2),  

                                                                                                                                                  (2.6)                                                                      

in which, n is the order of a reflection, λ is the wavelength of X-ray used, d is the distance between 

parallel lattice planes and θ is the angle between the incident beam and a lattice plane, known as Bragg 

angle.  

Apart from phase identification, XRD pattern can be used to determine mean crystallite size. The mean 

crystallite size (D) can be estimated from peak broadening by Scherrer’s formula (Eq. 2.7),330 

                                                            
  

      
                                                            (2.7)                     

in which, K is the dimensionless shape factor with 

a value close to unity (0.89), λ is the wavelength of X-

ray used (1.5406 Å), β is the full width at half 

maximum (FWHM) and θ is the diffraction angle. For 

example, in our studies, the pure AgIn5S8 gives several 

diffraction peaks that can be assigned to the cubic 

crystal system with face-centered cubic (FCC) lattice 

(JCPDS card number 26-1477) (Fig. 2.3).  

Experimental description:  

XRD powder patterns were recorded on a 

Panalytical X'Pert diffractometer equipped with a Xcelerator detector using automatic divergence slits and 

Cu kα1/α2 radiation (40 kV, 40 mA; λ= 0.15406 nm, 0.154443 nm). Cu beta-radiation was excluded using a 

nickel filter foil. The measurements were performed in 0.0167° steps and 25 s of data collecting time per step. 

The samples were mounted on silicon zero background holders. The obtained intensities were converted 

Figure 2.2 Interaction of X-rays with atoms of 

the crystal. 

Figure 2.3 XRD powder pattern of pure AgIn5S8.  
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from automatic to fixed divergence slits (0.25°) for further analysis. Peak positions and profile were fitted 

with Pseudo-Voigt function using the HighScore Plus software package (Panalytical). Phase identification 

was done by using the PDF-2 database of the International Center of Diffraction Data (ICDD). 

2.3.2 Ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS) 

UV-vis diffuse reflectance spectroscopy 

provides information about band gap of a 

semiconductor based on the absorptive and light 

scattering properties of the sample under light 

excitation from 200-800 nm range. As shown in 

the Fig. 2.4, incident light reflected symmetrically 

with respect to the normal line is called specular 

reflection, while incident light scattered in 

different directions is called diffuse reflection. The band gap represents the minimum energy difference 

between the top of the valance band (VB) and bottom of the conduction band (CB). There are two types of 

electronic transitions in semiconductors, i.e. it can be either direct or indirect, depending on the momentum 

of electrons in the CB and holes in the VB (Fig. 2.5).331 

The minimal-energy state in the conduction 

band (CB-minimum) and the maximal-energy state 

in the valence band (VB-maximum) are each 

characterized by a certain crystal momentum (k-

vector) in the Brillouin zone.332 If the k-vectors are 

the same, it is called a "direct gap". If they are 

different, it is called an "indirect gap". The band 

gap is called "direct" if the momentum of electrons 

and holes is the same in both the CB and the VB; an electron can directly emit a photon. In an "indirect" gap, 

a photon cannot be emitted because the electron must pass through an intermediate state and transfer 

momentum to the crystal lattice. In principle, band gap determination by using UV-vis DRS depends on the 

excitation of the electrons from the valence band to the conduction band which is observed by an increase in 

the absorbance at a given wavelength. Since UV-vis spectra of powder catalysts are recorded in diffuse 

reflectance mode, the diffuse reflectance (R), is directly obtained from the spectrometer. Then the reflectance 

data were converted to the F (R) function according to the Kubelka-Munk (Eq. 2.8).   

                                                       ( )  
(   ) 

  
  

 

 
                                                              (2.8)       

in which, F (R) function is equivalent to the absorption co-efficient (α), K is the absorption coefficient 

and S is the scattering coefficient (Schuster-Kubelka-Munk, SKM function). The optical band gap of the 

semiconductor can be calculated by using Tauc equation (Eq. 2.9).  

Figure 2.5 Direct and indirect band gap transitions in a 

semiconductor. 

Figure 2.4 The basic forms of reflection. 
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                                                                        (   )    (     )
                                                                   (2.9) 

in which, α is the absorption co-efficient, h is the 

Planck constant, ν is the light frequency, A is the 

proportionality constant, Eg is the band gap of a 

semiconductor, n depends on the type of optical 

transition of the semiconductor (n = ½ for direct 

transition and n = 2 for indirect transition). Thus, the 

band gap (Eg) of the semiconductor can be estimated 

from the plot of (αhν)n versus photon energy (hν). For 

example, in our studies, C3N4 and AgIn5S8, both are 

direct band gap semiconductors.322, 333 The pure CN 

shows absorption wavelength from UV to visible 

region up to 600 nm and pure AgIn5S8 shows absorption edge at 720 nm, exhibiting the broad absorption 

region of visible light (Fig. 2.6). The band gap of C3N4 and AgIn5S8 were estimated to be 2.65eV and 1.75 eV 

respectively (Fig. 2.6, in-set).    

Experimental description:  

Diffuse reflectance UV-vis spectra were obtained by a Cary5000 spectrometer (Varian) equipped with a 

diffuse reflectance accessory (Praying MantisTM, Harrick) by using BaSO4 as white standard reference 

material. DRS UV-vis spectra were also obtained by using AvaSpec 2048 fiber optical spectrometer (Avantes 

BV, Apeldoorn, Netherlands) equipped with an AvaLight-DHS light source and a FCR-19UV200-2-ME 

reflection probe. Each spectrum was acquired taking 24 to 27 accumulations with integration times between 

18 and 22 ms. 

2.3.3 Attenuated total reflectance-infrared (ATR-IR) spectroscopy 

 ATR-IR is an effective method for determining the presence of different functional groups in the 

material. It is a technique based on vibrations of the atoms within a molecule. The selection rule for a 

vibrational mode of a molecule to be IR active is that there is a change of the electric dipole moment of the 

molecule upon absorption of light. The absorption of infrared light due to the excitation from the ground 

vibrational energy level to a higher energy level provides information concerning molecular structure and 

molecular interactions. It is a powerful tool for identifying types of chemical bonds in a molecule by 

producing an infrared absorption spectrum that is like a molecular "fingerprint". Due to the existence of the 

wide absorption spectra database in the mid-infrared region (4000–400 cm-1), infrared spectroscopy is 

considered as a universal technique since many molecules have strong absorbance in this region. As the 

resonance frequency of a distinct vibration depends on the reduced mass of the atoms of the vibrating 

group, μ, and on the strength of the bonds (expressed by the force constant, f) according to eq. 2.10, one 

observes IR bands at the highest frequencies for light atoms and for groups with high bond energies. 

Figure 2.6 UV-vis DRS spectra of C3N4 and 

AgIn5S8 and band gap estimation from Tauc plot 

(in-set) 
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                                                          (2.10)                     

 The thin-film solid catalyst is in strong 

contact to the ATR crystal. Passing through the 

crystal, the incoming IR beam penetrates the 

catalyst on top of it, so that the attenuated 

radiation is finally reflected (Fig. 2.7). The 

intensity of an ATR-IR signal strongly depends 

on the number of reflections in the crystal as well 

as on the depth of penetration, which itself 

increases with higher wavelengths. 

Measurements were carried out in the spectral 

range 650-4000 cm-1. Each spectrum was an 

average of 64 scans to increase the signal to noise ratio. For example, in our studies, the C3N4 shows a wide 

variety of peaks that are corresponds to N-H, C-N, and C=N stretching vibrations, present in the triazine unit 

(Fig. 2.7, in display).64 

Experimental description:  

IR spectra in attenuated total reflectance mode (ATR-IR) were recorded on a Nicolet iS10 instrument. 

2.3.4 Scanning transmission electron microscopy (STEM) 

STEM provides useful 

information about morphology, 

elemental composition, shape and 

size of the particles. STEM imaging is 

based on the elastic scattering of 

electrons in an high energy electron 

beam (100–300 kV) upon interacting 

with the atoms of a solid thin sample 

(< 100 nm), whereby much higher 

resolutions (atomic scale) are 

obtained due to the small de Broglie wavelength of the electron. There are different modes to detect image 

e.g. bright field (BF), high angle annular dark field (HAADF), electron energy loss spectroscopy (EELS), 

energy dispersive X-ray spectroscopy (EDXS).  

Fig. 2.8 shows processes initiated by irradiating a sample with an electron beam. A part of electrons 

passes through the sample directly. A two dimensional image (bright field, BF) is obtained from the 

transmitted electrons, in which areas of strong scatterers appear dark while those of light scatterers appear 

Figure 2.7 Schematic diagram of ATR-IR spectrometer. 

Figure 2.8 Schematic view of electron beam and sample interaction.  
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bright since more electrons can pass through. A High Angle Annular Dark Field (HAADF) detector is 

especially useful to detect electrons scattered from heavy elements. HAADF detects electrons scattered from 

heavy atoms with a high scattering angle, and shows lattice fringes. Electrons can also be backscattered, 

especially from heavy elements such as Pt. These can also be used to create contrast, especially in scanning 

electron microscopy (SEM). Auger electrons and X-rays are emitted as a consequence of relaxation when 

electrons from higher shells fill core holes which arise when the electron beam ejects core electrons from the 

sample. This radiation is characteristic for the element and can be used to obtain information on the 

composition of a sample. For example, in our studies, the Pt NPs are deposited on surface of AgIn5S8 and 

C3N4 (Fig. 2.9a). As can be seen in HAADF image, the Pt NPs are clearly visible due electrons scattered with 

high scattering angle.     

 

Experimental description:  

STEM micrographs were obtained at 200 kV by a probe aberration corrected JEM-ARM200F 

transmission electron microscope (Jeol Ltd., Akishima, Japan). The microscope is equipped with a JED-2300 

(JEOL) energy dispersive X-ray spectrometer (EDXS) for chemical analysis. The catalyst powder was dry 

deposited on a Cu grid (mesh 300) covered by a holey carbon film and transferred into the microscope. 

 

 

 

Figure 2.9 (a) Bright field and (b) High angle annular dark field images of image of 2 wt% Pt/10 wt% 

AgIn5S8/C3N4 (recovered catalyst after 3 h photocatalytic reaction). 
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2.3.5 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) 

is a surface-sensitive (usually in 1-10 nm 

depth) quantitative spectroscopic technique 

that measures the elemental composition as 

well as chemical state of the elements in a 

solid catalyst. It is based on the principle of 

photoelectric effect. XPS spectra are obtained 

by irradiating a material with a beam of 

aluminium or magnesium Kα X-rays while 

simultaneously measuring the kinetic energy (Ekin) and number of electrons that escape from the top 1 to 10 

nm of the material being analyzed (Fig. 2.10). The electrons ejected from the sample are collected by a 

hemispherical electron energy analyzer which measures the kinetic energy of the ejected electrons. The 

kinetic energy measured can then be used to determine the binding energy (BE) of the electron from the 

following Eq. 2.11, 

                                                                                                                                               (2.11) 

in which, h is the Planck’s constant, ν is the 

frequency of incident X-ray and   is the work 

function of the spectrometer. Each ejected electron 

from an element has a characteristic binding energy 

and the position of this binding energy is used to 

identify the element and core level of the electron that 

can be found by consulting binding energy tables. 

The peak intensities can be used to quantitatively 

determine the elemental composition and the peak 

positions can be used to determine oxidation states 

for the elements. In general, binding energies 

increases with increasing oxidation state typically shifting by about 0-3 eV. For example, in our studies, the 

survey spectrum indicates that the presence of C and N elements in C3N4 sample (Fig. 2.11). The elemental N 

1s spectrum of pure CN could be deconvoluted into three different peaks corresponding to the terminal 

amino groups (C-N-H), tertiary nitrogen groups (N-(C)3) and sp2-hybridized nitrogen in triazine rings (C-

N=C) (Fig. 2.11, inset).225 

Experimental description:  

The XPS (X-ray Photoelectron Spectroscopy) measurements were performed on an ESCALAB 220iXL 

(ThermoFisher Scientific, Waltham, MA, USA) with monochromated Al Kα radiation (E = 1486.6 eV). 

Figure 2.11 XPS survey spectra of C3N4 and N 1s 

elemental spectra (inset).  

Figure 2.10 Schematic diagram showing the basic principle of 

XPS. 
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Samples are prepared on a stainless steel holder with conductive double sided adhesive carbon tape. The 

electron binding energies were obtained with charge compensation using a flood electron source and 

referenced to the C1s peak of C-C and C-H bonds at 284.8 eV. For quantitative analysis the peaks were 

deconvoluted with Gaussian-Lorentzian curves, the peak areas were divided by the transmission function of 

the spectrometer and a sensitivity factor obtained from the element specific Scofield factor.334 

2.3.6 Brunauer-Emmett-Teller (BET) surface area and pore size distribution analysis  

As heterogeneous photocatalytic reactions 

occur at the catalyst surface, the number of 

photoactive sites usually depends on the surface 

area of the catalyst. Its dimension is critically 

affected by the particle size, morphology, surface 

texturing and porosity. The specific surface area 

of a powder catalyst is determined by physical 

adsorption of a gas on the surface of the solid and 

by calculating the amount of adsorbate gas 

corresponding to a monomolecular layer on the 

surface. Physical adsorption results from 

relatively weak forces (van der Waals forces) between the adsorbate gas molecules and the adsorbent surface 

area of the powder catalyst. Isolated sites on the sample surface begin to adsorb gas molecules at low 

pressure. As gas pressure increases, coverage of adsorbed molecules increases to form a monolayer (one 

molecule thick). A further increase in the gas pressure will cause complete coverage of the sample and fill all 

the pores (Fig. 2.12). 339 The BJH calculation can be used to determine pore diameter, volume and 

distribution. The determination is usually carried out at the temperature of liquid nitrogen. The amount of 

gas adsorbed on the surface and pores is monitored with the function of relative pressure to obtain gas 

adsorption isotherms.  

There are generally accepted to be six 

adsorption isotherms (Fig. 2.13). Each of these types 

is observed in practice but by far the most common 

are types I, II and IV. Type I is the characteristic 

examples of microporous materials while Type IV is 

an example of the mesoporous material. In addition 

to BET surface area, N2-physisorption experiments 

provide the information about the pore properties 

as well. Generally, pores are classified in to three 

categories on the basis of pore width, i.e. 
Figure 2.13 IUPAC classifications of adsorption 

isotherms (Type I - VI) 

Figure 2.12 The basic principle of gas adsorption on a 

solid surface 
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macropores (> 50 nm), mesopores (2-50 nm) and microspores (< 2 nm).  

Based on a simplified model of physisorption and the adsorption isotherm, the Brunauer-Emmett-Teller 

(BET) method is widely used for evaluating the surface area of catalysts. Assuming that (i) gas molecules can 

be physically adsorbed on a solid in layers infinitely, (ii) gas molecules only interact with adjacent layers and 

(iii) Langmuir theory can be applied to each layer, which is a theory for monolayer molecular adsorption. 

The data can be treated according to the Brunauer-Emmett-Teller (BET) adsorption isotherm equation (Eq. 

2.12).  
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                                                         (2.12) 

in which, P is the partial vapour pressure of adsorbate gas in equilibrium with the surface at 77.4 K 

(boiling point of liquid nitrogen), P0 is saturation pressure of adsorbate gas, Va is volume of gas adsorbed at 

standard temperature and pressure (STP) (273.15 K and atmospheric pressure (1.013 × 105 Pa)), Vm is volume 

of gas adsorbed at STP to produce an apparent monolayer on the sample surface, C is dimensionless 

constant that is related to the enthalpy of adsorption of the adsorbate gas on the powder sample. The specific 

surface area can be calculated by the following equation (Eq. 2.13).   

                                                         
    

         
                                           (2.13)                                        

in which, vm is volume of gas adsorbed (mL) at 

STP, NA is Avogadro number, W is weight of the 

catalyst (g) and Am is mean cross sectional area 

occupied by adsorbate molecule (e.g. for N2, it is 16.2 

Å2). For example, in our studies, the pure CN exhibited 

type IV isotherm, according to the IUPAC 

classification, indicating the existence of mesopores (2-

50 nm) (Fig. 2.14). The pore size distributions of C3N4 

were estimated by using the Barrett-Joyner-Halenda 

(BJH) method from the desorption branches, as shown 

in Fig. 2.14, inset.  

Experimental description:  

About 200 mg of the powder sample is taken in a glass tube. Before the measurement, tube was 

evacuated for 2 h at 150 °C to remove physisorbed water. BET surface area, pore volume and pore size 

distribution of the catalysts were determined by standard nitrogen adsorption at −196 °C (ASAP 2020, 

Micromeritics GmbH, Aachen, Germany).  

 

 

Figure 2.14 N2 adsorption-desorption isotherms of 

pure C3N4 and pore size distributions estimated by 

the BJH (inset). 
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2.3.7 Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

ICP-OES is an analytical technique in which the composition of elements in (mostly water-dissolved) 

samples can be determined using plasma. For example, in our studies, ICP-OES was applied to determine Pt, 

Ag, In and S in Pt/AgIn5S8-C3N4 composite catalysts and Pt, Mo and S in Pt/MoS2-C3N4 composite catalysts. 

Plasma is a gas, in this case argon, which contains a significant number of argon ions. Elements, in the form 

of atoms, are introduced into the plasma. A proportion of theses atoms become ionized within the plasma. 

When an atom or ion is excited within the plasma, its electrons jump from a lower to higher energy level 

(Fig. 2.15). Upon relaxation of these electrons to their initial ground state, energy is emitted in the form of 

photons. The emitted photons possess wavelengths that are characteristic of their respective elements. The 

intensity of the signal is directly proportional to the concentration of the element present in the sample.    

 

Experimental description:  

A Varian 715-ES ICP-emission spectrometer was used for analysis. In a typical procedure, 10 mg sample 

was dissolved in 8 mL aqua regia and 2 mL hydrofluoric acid by treatment with the microwave-assisted 

sample preparation system ‚MULTI WAVE Pro‛ (Anton Paar/Perkin-Elmer) at 200 °C and 60 bar. The 

digested solution was filled up to 100 mL with deionized water and analyzed. The ICP Expert software was 

used for analysis. 

2.3.8 Carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis 

CHNS elemental analysis used for rapid 

determination of carbon, hydrogen, nitrogen and 

sulfur in organic matrices and other types of 

materials. For example, in our studies, elemental 

analysis (CHNS) was applied to determine C and 

N ratio in the C3N4 and MoS2/C3N4 photocatalysts. 

For CHNS analysis, the solid sample (5-10 mg) 

mixed with an oxidizer such as vanadium 

pentoxide (V2O5) in a tin (Sn) capsule, which is then combusted in a reactor at 1000 °C. The sample and 

container melt, and the tin promotes a violent reaction (flash combustion) in an enriched oxygen 

Figure 2.15 Excitation of an atom by plasma. 

Figure 2.16 CHNS combustion process.  
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atmosphere. The combustion products NO2, CO2, H2O, and SO2 are carried by a constant flow of carrier gas 

(helium) that passes through a glass column packed with an oxidation catalyst of tungsten trioxide (WO3) 

and a copper reducer, both kept at 1000 °C. At this temperature, Cu removes the excess oxygen and reduces 

nitrogen oxides into N2. The N2, CO2, and SO2 are then transported by the helium and separated by a packed 

column and quantified with a TCD (set at 290 °C) (Fig. 2.16). The chromatographic responses are calibrated 

against pre-analyzed standards, and the CHNS elemental contents are reported in weight percent (wt. %). 

Experimental description: 

A CHNS multianalyzer TruSpec (Leco) was used for the quantitative analysis of C, H, N and S. The 

catalyst (10 mg) was mixed with V2O5 as oxidation reagent and packed into a tin container, which is easily 

oxidizable. The reactor is heated to 1000 °C and the combustion products were quantified by TCD. 

2.3.9 In situ electron paramagnetic resonance (EPR) spectroscopy 

In situ EPR is a versatile technique to monitor separation and transfer of photogenerated electrons in 

semiconductors based on oxides 335 or carbon nitrides 76, since electrons excited to the conduction band can 

be trapped at oxygen vacancies 335 and carbon defects. 336 In the present thesis, this powerful technique was 

used to monitor the efficiency of charge separation and transfer during UV-vis light irradiation. An electron 

has a spin quantum number, s = ½, which has magnetic components ms = ½ and ms = -½. In the absence of a 

magnetic field, the energy of the two ms states are equivalent. However, a strong external magnetic field 

generates a difference between the energy levels of the electron spins, ms = +½ and ms = –½, which results in 

resonance absorption of an applied microwave energy (Fig. 2.17). The energy difference between the ms state 

is dependent on the strength of the magnetic field (Eq. 2.14). This is called the Zeeman effect.  

                                                                                                                                         (2.14) 

in which, ΔE is the energy difference between the spin 

levels, ge is the g-facotr (for free electron = 2.0023), μB is the 

Bohr magneton (9.274 · 10-24 J T-1), B0 is the strength of the 

external magnetic field (gauss or Testla), h is the Planck’s 

constant (6.626 · 10-34 J.s), ν is the microwave frequency (GHz 

or MHz). From this relationship, there are two important 

factors to note, i.e. the two spin states have the same energy 

when there is no applied magnetic field and the energy 

difference between the two spin states increases linearly with 

increasing magnetic field strength.  

Usually, all the spectrometers work by changing the 

magnetic field while holding frequency constant. EPR spectra 

can be recorded in different frequency regions, the most 

important being L-band (1-2 GHz), S-band (2-4 GHz), X-band Figure 2.17 Electron Zeeman interaction 

for a spin S = 1/2 system in the presence of 

an external magnetic field. 
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(8-10 GHz), Q-band (~35 GHz) and W-band (~90 GHz). In this work, X-band frequency EPR spectrometer 

was used. There are two methods to record EPR spectra. The first one is called the continuous wave (cw), in 

which the applied frequency is held constant. In this case, the magnetic field is varied until the resonance 

condition is fulfilled and the microwave energy matches the energy difference for the allowed spin 

transitions.  

For example, in our studies, pure C3N4, even in the dark (without light irradiation) exhibits a narrow 

isotropic singlet with Lorentzian line shape at a g-value of 2.0042 which ascribed to the unpaired electrons in 

the sp2-carbon in a typical Tri-s-triazine unit (Fig. 2.18a). This confirms the presence of paramagnetic species 

in C3N4. Moreover, the observed g-value indicates that this strong signal arises from surface trapped CB e- 

that preferentially has carbon character. Moreover, the EPR signal intensity is increased during UV-vis light 

irradiation due to electron-hole separation and excitation of electrons from VB to CB of C3N4. However, after 

switched-off light, the EPR signal intensity is decreased due to the recombination of photoexcited electrons 

with holes (Fig. 2.18b).    

 

Experimental description: 

In situ-EPR measurements in X-band (microwave frequency ≈ 9.8 GHz) were performed at 300 K by an 

EMX CW-micro spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany) equipped with an ER 

4119HS-WI high-sensitivity optical resonator with a grid in the front side (Bruker Biospin GmbH, 

Rheinstetten, Germany). The samples were illuminated by a 300 W Xe lamp (LOT-QuantumDesign GmbH, 

Darmstadt, Germany). All the samples were measured under the same conditions (microwave power: 6.99 

mW, receiver gain: 1 × 104, modulation frequency: 100 kHz, modulation amplitude: 3 G, Sweep time: 122.8 s). 

g values have been calculated from the resonance field B0 and the resonance frequency ν using the resonance 

condition hν = gβB0. The calibration of the g values was performed using DPPH (2,2-diphenyl-1-

picrylhydrazyl) (g = 2.0036 ± 0.00004). 

  

Figure 2.18 (a) EPR signal of pure C3N4 at room temperature without light irradiation (inset: magnification 

from 3480 to 3560 G). (b) EPR CB-e- signal of pure C3N4 during UV-vis light irradiation and after light 

switched-off. 
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2.3.10 Photoluminescence (PL) spectroscopy 

Photoluminescence (PL) analysis is 

commonly employed to investigate the 

separation efficiency of photogenerated 

charge carriers. The PL emission peak is 

originating from recombination of 

photogenerated electrons and holes so that 

the PL intensity can reflect the separation 

efficiency and lifetime of charge carriers.337 

For instance, a photocatalyst which exhibited lower PL emission intensity means a higher recombination rate 

of electron-hole pairs or shorter lifetime.   

Photoluminescence is known as the spontaneous radiative emission of a photon due to an electron that 

is photoexcited to a higher energy state (i.e. conduction band) by absorbing appropriate energy and then 

makes a transition to the lower energy state (i.e. valence band). The energy that is applied as external light 

has to be greater than or equal than its bandgap energy of the semiconductor, hν ≥ Eg (Fig. 2.19). For 

example, in our studies, pure CN exhibits a strong emission at 460 nm, which corresponds to the band gap 

charge carrier recombination (Fig. 2.20b). But pure sample doesn’t show PL emission, despite the fact that it 

absorbs UV-vis light able to excite electrons from its valance band to the conduction band. This suggests that 

electron-hole recombination in the pure AgIn5S8 samples might be too fast to emit PL radiation (Fig. 2.20b). 

PL spectroscopy is a complimentary technique to UV-vis DRS, it also gives information on the electronic 

structure from light excitation. PL spectrum is quite different from absorption spectrum in the sense that 

absorption spectrum measures transitions from the ground state to excited state, while photoluminescence 

deals with transitions from the excited state to the ground state. The emission of photons from this 

phenomenon can be measured as fluorescence. This process is relevant to the study of photocatalyst systems 

since fluorescence occurs when electrons in the conduction band recombine with holes in the valence band. 

This characterization technique can thus give direct information on electron transfer kinetics during the 

photocatalytic process. The PL intensity can be used to compare recombination rates for different 

photocatalyst systems. A laser turned on and passes through monochromator and falls on the sample. An 

excitation wavelength is selected by monochromator, and luminescence is observed through an emission 

monochromator, usually positioned at 90° to the incident light to minimize the intensity of scattered light 

reaching the detector. If the excitation wavelength is fixed and the emitted radiation is scanned, an emission 

spectrum is produced (Fig. 2.20a).     

Figure 2.19 schematic diagram showing the basic principle 

of photoluminescence spectroscopy 
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Experimental description: 

Photoluminescence (PL) spectra were obtained by a Cary Eclipse Fluorescence spectrophotometer 

(Agilent Technologies Inc., Mulgrave, Australia) with an excitation wavelength of 370 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 (a) Schematic diagram of PL spectrometer. (b) PL spectra of C3N4 and AgIn5S8 
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3 Relations between structure, activity and 

stability in AgIn5S8/C3N4 composite 

photocatalysts used for photocatalytic H2 

production 

This work has been published in the journal Catalysts (MDPI publishing company). Ramesh P. 

Sivasankaran, Nils Rockstroh, Dirk Hollmann, Carsten R. Kreyenschulte, Giovanni Agostini, Henrik Lund, 

Amitava Acharjya, Jabor Rabeah, Ursula Bentrup, Henrik Junge, Arne Thomas and Angelika Brückner*, 

Catalysts, 2018, 8, 52.    

Ternary metal sulfides such as I−III−VI (I = Cu, Ag; III = Al, In, Ga; VI = S, Se, Te) with a general formula 

of I−III−VI2 or I−III5−VI8 have been studied in the field of photocatalysis due to their narrow bandgap energy 

between 0.8 and 2.0 eV and high absorption co-efficient.39, 338, 339 In particular, AgIn5S8 is considered to be a 

promising photocatalyst for visible light driven H2 production because of its direct bandgap of 1.70−1.80 

eV.322, 340, 341 Hence, this work has been focused on the photocatalytic behavior of various AgIn5S8 (AIS) 

composites prepared by integrating with mesoporous CN in the presence of a Pt co-catalyst during 

photocatalytic H2 evolution from water/SA mixtures by varying the radiation wavelength and the pH of the 

reaction solution. AIS has been chosen as co-component because it forms a single phase with a direct 

bandgap of 1.70−1.80 eV and exhibits excellent photocatalytic H2 production under visible light irradiation. 

On the other hand, Na2S/Na2SO3 as sacrificial agent322,342 is less useful since it produces sulfate as a byproduct 

via oxidation. A comprehensive catalyst characterization including the in situ electron paramagnetic 

resonance (EPR) spectroscopy was carried out to derive structure-reactivity relationships of the developed 

composites for photocatalytic H2 production. Much attention has been paid to understand the role of the SA 

and AIS with respect to activity, stability and nature of the formed Pt co-catalyst in the photocatalytic H2 

production reaction.  
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3.1 Catalytic activity 

Primarily, the effect of basic (triethanolamine, TEOA) and acidic (oxalic acid, OA) sacrificial reagents in 

the photocatalytic H2 production over CN catalyst under both UV-vis and visible light irradiation (Fig. 3.1a 

and c) was investigated. Fig. 3.1 shows the photocatalytic H2 production activity versus time of pure CN, 

pure AIS and AIS/CN composites under both UV-vis and visible light irradiation in the presence of 

triethanolamine (TEOA) as sacrificial agent. The in-situ photoreduction of H2PtCl6 was carried out to deposit 

Pt nanoparticles (NPs) on the surface of all catalysts. 

 

As shown in Fig. 3.1a, the Pt/CN catalyst exhibited a better photocatalytic activity up to 4 hours reaction 

time and then the H2 production was drastically decreased. In contrast, the deposition of 5-15 wt.% AIS on 

CN led to decreased initial H2 evolution rates, but prevents the catalyst deactivation (Fig. 3.1a). With the 

addition of 5 wt.% AIS, the deactivation of Pt/CN catalyst is partly inhibited, while the addition of 20 wt.% 

AIS led to a significant decline in the activity of the Pt/CN catalyst over the whole range of time. Among 

them, 10 wt.% AIS appeared to be the optimum amount to achieve promising results in terms of H2 

production and catalyst’s stability. The activity results obtained with the current catalysts were compared 

(a) (b)

Figure 3.1 H2 evolution as a function of time for monophasic CN and AIS as well as for xAIS-CN composites 

with x wt.% of AIS under UV-vis (a) and visible irradiation with λ > 420 nm (b); (c) Comparison of Pt/CN 

under UV-vis light with TEOA, with OA and with TEOA again after removal from OA-containing reaction 

mixture after 4 h. CN: mesoporous C3N4; AIS: AgIn5S8 ; TEOA: triethanolamine. 
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with that of other types of g-C3N4 based catalysts in Table A1 and A2. Though lower initial H2 evolution rate 

was found for this sample compared with Pt/CN catalyst, despite a much higher total Pt content (vide infra), 

the Pt/10AIS-CN catalyst showed a negligible deactivation within 24 h. Interestingly, the Pt/AIS catalyst 

without CN as well as blank CN without Pt were not active at all for photocatalytic H2 production (Fig. 3.1a). 

In case of a physical mixture of AIS (10 wt.%) and CN, a very similar deactivation behavior was noticed as 

found over the Pt/CN catalyst (Fig. 3.1a). Moreover, the H2 production rates were lower for all samples, 

when a 420 nm cut-off filter was used under similar reaction conditions. However, the deactivation of the 

Pt/xAIS-CNs catalysts did not occur within 24 h reaction time (Fig. 3.1b) and was far slower for Pt/CN even 

though suppression was not complete in the latter case. This clearly indicates that the stability of Pt/CN 

catalyst is a key concern in case of long-term reaction even under visible light, which has been surprisingly 

ignored in the past.  

Table 3.1 Surface composition derived by XPS. 

Sample 
Surface Content (at.%) Total Pt (wt.%) 

(ICP-OES) C N O Ag In S Pt 

CN 44.8 52.3 2.9 - - - - - 

AIS 22.3  9.7 4.7 27.5 35.9 - - 

10AIS-CN 42.8 34.5 7.0 1.2 6.1 8.3 - - 

Pt/CN (3 h) 45.5 50.9 3.5 - - - 0.06 0.27 

Pt/CN (20 h) 46.6 49.4 3.9 - - - 0.05 0.43 

Pt/CN_OA (4 h) 1 46.9 48.5 3.7 - - - 0.85 1.69 

Pt/CN_OA_TEOA (24 h) 2 44.8 51.3 3.6 - - - 0.2 n. d. 

Pt/10AIS-CN (3 h) 47.9 35.9 6.6 0.6 2.4 4.1 2.5 1.86 

Pt/10AIS-CN (20 h) 45.3 40.6 7.2 0.5 2.6 2.4 1.4 1.87 

1 SA = oxalic acid, 2 Pt/CN_OA (4 h) recovered and exposed to UV-vis light for 24 h with TEOA as SA. 

In order to estimate the impact of the pH of the reaction solution, which is basic in the presence of 

TEOA (pH = 10.6), on the stability of the photocatalysts, an analogous experiment was performed with 

Pt/CN using oxalic acid (OA) as sacrificial agent at pH = 0.67 (Fig. 3.1c, blue line). In this case, total H2 

production is much higher, which was attributed to higher proton concentration. It must also be mentioned 

that H2 is not only produced from water, but also from OA providing CO2 as well. However, the total Pt 

content as well as the surface Pt concentration of the Pt/CN catalyst is much higher in OA than in TEOA, 

which could also be the reason for its higher catalytic activity in the presence of OA (Table 3.1). The direct 

reduction of [PtCl6]2− to metallic Pt is possible at low pH and the intermediate hydrolysis of the Pt precursor 

complex, as in basic medium, could be avoided.343 In the presence of OA, no deactivation of Pt/CN occurs. 

To further confirm the catalytic deactivation of Pt/CN in basic medium (TEOA), the predeposited Pt/CN 

catalyst, recovered from the photocatalytic reactor after 4 hours reaction time in the presence of OA under 

UV-vis irradiation, was again evaluated for photocatalytic H2 production in TEOA. This Pt/CN (recovered 

from OA) catalyst exhibited significantly higher photocatalytic performance without any deactivation, yet 

with TEOA as sacrificial agent, which is due to the predeposited metallic Pt0 NPs, providing more active 
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sites for photocatalytic H2 production (compare black and red line in Fig. 3.1c). To elucidate reasons for this 

different behavior, a comprehensive catalyst characterization has been carried out and the results are 

discussed in the next section. Since the Pt/10AIS-CN catalyst was found to be the best catalyst among the 

composites tested, it has been selected for comparing it with Pt/CN in all further experiments.  

3.2 Catalyst characterization  

3.2.1 Crystal structure, optical and structural properties 

The crystal structure and phase compositions were characterized by powder XRD. Fig. 3.2 shows XRD 

powder patterns of AIS, CN and AIS-CN composites with different contents of AIS. The pure CN exhibited 

two different diffraction peaks, the main peak at 27.5° indexed as (002) diffraction plane, corresponding to 

the characteristic interlayer stacking reflection of polymeric melon sheets and a minor diffraction peak at 

13.2° indexed as (100) plane, corresponds to in-plane structural motif between nitride pores (Fig. 3.2a).344 The 

pure AIS exhibits various diffraction peaks which are attributed to reflection planes of the cubic face 

centered lattice with a slight deviation of the unit cell parameters compared to reference (ICDD 01-071-3985: 

10.822 Å, found 10.797 Å) (Fig. 3.2a).322 The XRD powder patterns of the Pt/CN and Pt/10AIS-CN samples 

removed from the catalytic reactor after 3 h and 20 h exposure to UV-vis light do not show any change of the 

CN and AIS reflections, suggesting that the bulk structure of these two phases remains stable during 

catalysis (Fig. 3.2b). This has also been confirmed by ATR-IR spectra being identical for CN, 10AIS-CN as 

well as for Pt/CN and Pt/10AIS-CN after 3 h and 20 h use (refer to Fig. 3.4). The XRD powder patterns of the 

latter four catalysts show a small Pt(111) peak at 2θ = 39.9° which confirms the deposition of Pt particles as 

evidenced by scanning transmission electron microscopy with high angle annular dark field detector (STEM-

HAADF), too (Fig. 3.2b and Fig. 3.6). 

 

The optical properties of the as synthesized AIS, CN and AIS-CN composites with different contents of 

AIS were characterized by diffuse reflectance UV-vis spectroscopy. As illustrated in Fig. 3.3a, CN exhibited 

absorption wavelengths from UV to the visible region up to 600 nm.225 The AIS absorption edge is about 720 
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Figure 3.2 XRD powder patterns of (a) as-prepared samples and (b) Pt/CN and Pt/10AIS-CN samples 

removed from the reactor after 3 h and 20 h irradiation with UV-vis light in the presence of TEOA. 
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nm, exhibiting the broad absorption region of visible light.322, 341 When incorporating AIS into CN, the 

absorption edges are shifted to longer wavelengths. The band gap of CN decreases upon composite 

formation with AIS, suggesting that there is an effective interaction between AIS and CN in the composites. 

The calculated band gaps of the samples are summarized in Table 3.2 the corresponding Tauc plot are 

depicted in Fig. 3.3b. 

Table 3.2 Structural properties of as-prepared (without deposited Pt) and used photocatalysts. 

Catalyst Band Gap (eV) 1 SBET (m2/g) Pore Volume (cm3/g) Mean Pore Size (nm) 

CN 2.65 159.1 0.206 3.9 

5AIS-CN 2.59 137.4 0.194 4.5 

10AIS-CN 2.54 118.4 0.150 3.9 

15AIS-CN 2.48 122.7 0.175 4.5 

20AIS-CN 2.39 126.7 0.177 4.6 

AIS 1.75 90.9 0.272 8.2 

Pt/CN (20 h) - 137.0 0.210 3.9 

1 derived from the absorption edges in the UV-vis-DR spectra (Figure 3.3b) using the Tauc plot (345). 

 

 

Fig. 3.4 shows ATR-IR spectra of CN, AIS and AIS-CN composites with different contents of AIS. A 

wide variety of bands is observed in the pure CN sample: the broad peak at 3152 cm-1 has been assigned to 

the stretching mode of the N-H bond, while the peaks at 1203, 1315, 1400, 1453 and 1541 cm-1 are attributed 

to C-N stretching modes. The peak at 1627 cm-1 is associated with C=N stretching vibration modes and the 

intense band at 806 cm-1 is due to the vibration of the triazine ring (Fig. 3.4a).64 For AIS, the peaks at 3152 and 

1612 cm-1 are related to adsorption of OH- on the material surface.340 After coupling AIS with CN, the 

resulting composites show the same IR spectrum as that of CN. Thus, the incorporation of AIS into CN 

cannot be proven by IR spectroscopy, however, it proves the stability of the carbon nitride support whose 

chemical structure remains unchanged after photocatalytic reaction (Fig. 3.4b).  

CN 5 AIS10 15 20

(a) (b)

Figure 3.3 (a) UV-vis diffuse reflectance spectra of AIS, CN and AIS-CN composites with different contents 

of AIS and (b) band gap estimation from Tauc plot.  
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3.2.2 Surface area analysis: N2 adsorption-desorption isotherms   

Fig. 3.5 shows the N2 adsorption-desorption isotherms of AIS, CN and 10 wt.% AIS-CN composites and 

their corresponding pore size distribution plot. As shown in Fig. 3.5a, both the pure CN and 10AIS-CN 

exhibit type IV isotherms with a H4 hysteresis loop (according to the IUPAC classification) indicating the 

existence of mesopores (2-50 nm). These H4 hysteresis loops indicate the formation of narrow slit-shaped 

pores. In contrast, pure AIS displayed type IV isotherm with a H3 hysteresis loop. This H3 hysteresis loop 

indicates the existence of slit-shaped pores and no limiting N2 adsorption at high p/p0 due to the aggregation 

of particles. The specific surface area, pore volume and average pore size of the samples are summarized in 

Table 3.2. The pore size distribution of the samples were estimated by Barrett-Joyner-Halenda (BJH) method 

from the desorption branches, as shown in Fig. 3.5b. The BET surface area of CN (159.1 m2 g-1) is higher than 

the AIS (90.9 m2 g-1). Compared with pure CN, the 10 wt% AIS-CN composites showed decreased BET 

surface area and pore volume. This indicates that the BET surface area is not directly related to the 

photocatalytic activity. A similar effects was also observed for other g-C3N4-based photocatalysts such as g-

C3N4/Zn2SnO4346, g-C3N4/CdIn2S4347, g-C3N4/AgX348, g-C3N4/SmVO4349 and g-C3N4/CaIn2S435. 

(b)

Figure 3.4 ATR-IR spectra of (a) as-prepared samples and (b) Pt/CN and Pt/10AIS-CN samples removed from 

the reactor after 3 and 20 h of irradiation with UV-vis light in the presence of TEOA. 
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3.2.3 Morphology and microstructure analysis by STEM 

The aberration corrected STEM-HAADF images of Pt/CN catalyst, removed from the reactor after 3 h 

(in the active state of the catalyst), show the presence of uniform Pt containing particles with the size of 5-10 

nm on the surface of CN (Fig. 3.6a, plots l and m). In addition, single Pt atoms are also distributed on the 

surface of CN (Fig. 3.6, plot r). Interestingly, the Pt particle size and distribution remain almost unchanged 

even after 20 h exposure of the Pt/CN catalyst to UV-vis light in the presence of TEOA (Fig. 3.6b). This 

indicates that the sintering of the Pt co-catalyst particles is not the reason for the observed catalyst 

deactivation (compare Fig. 3.1a). However, it appeared that the CN phase in the sample used for 20 h is 

much more sensitive against beam damage than Pt/CN used for 3 h only. This suggests that the prolonged 

exposure (20 h) of Pt/CN to UV-vis light led to changes in the electronic properties of the CN phase, which 

facilitate Pt inclusion inside the pores of CN, preventing them from participation in the reaction. This 

observation is also supported by XPS data (Table 3.1), which confirm the presence of a very low amount of 

surface Pt species for Pt/CN catalyst used with TEOA. 

In case of Pt/10AIS-CN, there was no much change in the particle size of the Pt NPs compared to Pt/CN 

which are also almost unaltered after 20 h. However, the Pt NPs are preferentially deposited on the AIS 

phase (Fig. 3.6c and d, plots l and m), which itself formed irregular shaped particles with the size of around 

100 nm (Fig. 3.6c and d, plot m). On the CN phase, Pt particles are less abundant on the surface, however, 

some single Pt atoms are also present (Fig. 3.6, plot r). It is therefore likely that the AIS phase protects the Pt 

NPs against encapsulation into the CN phase, keeping them accessible to protons and active for 

photocatalysis. The reason for this interesting observation may be that the polar AIS surface enables efficient 

adsorption and reduction of the polar [PtCl6]2− precursor compared with the non-polar CN surface which is 

also reflected by the higher Pt content in Pt/10AIS-CN after 3 h and 20 h use (Table 3.1). 

 

(a) (b)

Figure 3.5 (a) N2 adsorption-desorption isotherms of AIS, CN and 10AIS-CN; (b) Barrett-Joyner-Halenda 

pore size distribution plot. 
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d 

e 
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l m r 

Figure 3.6 STEM-HAADF micrographs of catalysts exposed to UV-vis irradiation with TEOA: (a) Pt/CN for 

3 h, (b) Pt/CN for 20 h, (c) Pt/10AIS-CN for 3 h, (d) Pt/10AIS-CN for 20 h, (e) physical mixture Pt/(10 wt.% 

AIS + CN) for 20 h and (f) Pt/CN after 4 h with oxalic acid (OA) as sacrificial agent. Plots l, m and r show 

areas of the same sample with different magnification. 
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The physically mixed Pt/(10 wt.% AIS + CN) (Fig. 3.2e) catalyst contains the similar Pt distribution as in 

the Pt/10AIS-CN catalyst (Fig. 3.2c and d). Some Pt single atoms are located on the CN phase while the Pt 

particles are enriched on the AIS surface. However, in the physically mixed catalyst, the CN and AIS phases 

obviously do not form tight composite, but they are rather separated from each other (Fig. 3.2e, plot m). 

Since the Pt/AIS catalyst without having strong contact with CN does not produce any H2 (Fig. 3.1a), it 

appears that the catalytic activity and the deactivation of the physical mixture Pt/(10 wt.% AIS + CN) is 

governed by the separately existing Pt/CN phase in this sample, which could be the reason for the 

observation of a similar activity of physically mixed Pt/(10 wt.% AIS + CN) and Pt/CN (compare Fig. 3.1a).  

When the photocatalytic H2 production reaction was performed on Pt/CN catalyst with oxalic acid 

instead of TEOA as sacrificial agent, most Pt particles are located on the outermost surface of the CN phase 

where they remain accessible by protons (Fig 3.2f). This might be the reason for the high stability of the 

Pt/CN catalyst under these acidic conditions (compare Fig. 1c). 

To understand the changes occurred on the catalyst surface during the catalysis, we performed the XPS 

analysis of the catalysts removed from the reactor after 3 h (Pt/CN is more active than Pt/10AIS-CN) and 20 h 

(Pt/10AIS-CN is more active than Pt/CN) as well as from samples exposed to OA. The surface Pt content in 

two Pt/CN samples is almost the same, but about two orders of magnitude lower than that determined by 

ICP-OES after 3 h and 20 h use (Table 3.1). This indicates that most of the Pt NPs observed by STEM-HAADF 

(Fig. 3.2a and b) are enclosed in the CN matrix. This observation is different for Pt/10AIS-CN after 3 h and 20 

h use in which the surface Pt content is much higher than in AIS-free Pt/CN, in agreement with the STEM-

HAADF results, which point out the preferential deposition of Pt on the AIS phase (Fig. 3.2c and d). 

Moreover, the Ag:In:S atomic ratios in as-prepared 10AIS-CN as well as in two Pt/10AIS-CN samples are 

close to the theoretical 1:5:8 ratio, suggesting that the deposition-precipitation of the AIS component on the 

CN phase did not alter the composition and structure of the latter.  

It has been shown by simultaneous in situ-SEM/STEM-HAADF analysis that Pt NPs deposited on the 

surface of carbon tend to migrate into the bulk phase of the support when increasing the temperature up to 

200 °C, especially in the presence of air.350 Possibly, a similar process is promoted in the Pt/CN samples 

treated at high pH conditions. Note that the Pt surface content in Pt/CN_OA (4h) sample irradiated for 4 h in 

acidic medium is about 10 times higher than in Pt/CN treated for 3 h in TEOA. Thus, the AIS phase keeps Pt 

enriched and exposed on the catalyst surface. Interestingly, there was no deactivation for Pt/CN (3 h) 

sample, indicating that, despite diffusion into the mesopores, the Pt NPs remain accessible to reactants 

during the initial 3 h of reaction. Only after more than 6 h reaction time, the Pt NPs lose their activity (Fig. 

3.1a). In basic medium, formation of highly reactive •OH radicals is possible by the reaction of holes with 

OH− anions. We speculate that these species may attack the CN phase in the vicinity of the Pt NPs, create 

defects and promote tight wrapping of the Pt NPs by CN. Remarkably, the BET surface area of Pt/CN 

catalyst after 20 h use is slightly lower than that of the as-prepared CN phase whereas no variation in 

volume and mean diameter of the pores was observed at all (Table 3.2). This indicates, in agreement with 
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ATR-IR and XRD results (Fig. 3.2 and 3.4), that it might be a local densification of the CN phase around the 

Pt NPs, rather than an extended collapse of surface and mesopore structure which reduces accessibility of Pt 

NPs by reactants. This aspect has been further analyzed by FTIR analysis of adsorbed CO (vide infra). 

3.2.4 Surface chemical analysis by XPS 

From the results discussed thus far it gives the impression that a longer exposure of Pt/CN to strongly 

basic medium increases the possibility of undesired support changes. Besides the elevated sensitivity of the 

CN phase against beam damage during STEM-HAADF, this is further substantiated by analyzing the C 1s 

and N 1s XP spectra which contain contributions from different moieties of the C3N4 structure351 (Fig. 3.7a 

and b). Probably, a similar process takes place in Pt/10AIS-CN (20 h) as the CN phase in this sample was 

prone to beam damage in TEM as well. However, in this sample, high concentration of surface Pt species 

was found on the AIS phase, which might protect it against inclusion in the CN pores. It can be seen from 

Fig. 3.7b that the peak belonging to N-(C3) moieties decreases strongly upon prolonged irradiation in basic 

medium, while only a tiny peak corresponding to C–N–H moieties was found. In contrast, the as-prepared 

CN catalyst contains a certain amount of oxygen species, at least a part of which might account for the N=C–

O moieties as shown in in Fig. 3.7a, which also disappeared after the reaction. Considering the position of 

such moieties within the C3N4 structure (Fig. 3.7d), defect formation upon their removal seems likely 

supporting local changes (densification) of the CN structure around the Pt NPs, and hence shielding the 

latter from the reactants.  

There was no much variation in the surface composition of the catalysts treated in TEOA. All the 

catalysts contain both metallic Pt0 and oxidized Pt2+, reflected by Pt 4f7/2 peaks at 70-72 eV and 74 eV, 

respectively (Fig. 3.7c).343 Especially in the AIS-containing samples, these peaks are very broad and hence, a 

meaningful deconvolution into distinct doublets for 4f7/2 and 4f5/2 is not possible, which is most likely 

attributed to the presence of different types of Pt species, i.e. single atoms, small particles and agglomerates 

of small particles in the vicinity of both CN as well as AIS (evidenced by STEM-HAADF, Fig. 3.6c and d). 

When Pt NPs are deposited in situ on CN in the presence of OA, the Pt surface concentration is much 

higher than that obtained in the presence of TEOA (0.85 at.% vs. 0.06 at.%, Table 3.1), since the Pt 

nanoparticles (Pt0 and Pt2+ coexist) are located preferentially on the outer surface of CN (Fig. 3.6f and 3.7c, 

green and blue fitted lines). After the subsequent treatment of Pt/CN_OA (4 h) under UV-vis light in TEOA 

for 24 h, the Pt2+ is even more dominating on the surface than in Pt/CN sample (20 h) treated only in TEOA 

(compare Fig. 3.7c, bottom plots). This confirms that the enrichment of oxidic Pt is not the reason for catalyst 

deactivation because the latter catalyst does not deactivate (compare Fig. 3.1c). 

 



55 
 

 

The total Pt content determined by ICP-OES analysis for Pt/CN is much lower than the theoretical value 

of 2 wt.%, after 3 h and 20 h irradiation with UV-vis light (0.27 and 0.43 wt.%, respectively, Table 3.1) and it 

is only slightly below 2 wt.% in the respective Pt/10AIS-CN samples (1.86 and 1.87 wt.%). This is probably 

due to the fact that only a part of the dissolved [PtCl6]2− precursor is reduced and deposited as Pt NPs in 

basic TEOA solution. It was shown in literature that a stepwise hydrolysis i.e. [PtCl6]2− → [Pt(OH)xCl6−x]2− → 

[Pt(OH)6]2− occurs under high pH conditions (TEOA), inhibiting the formation of metallic Pt particles.343 

Moreover, owing to its non-polar nature, the CN is less prone to adsorb the polar Pt complex species 

compared with the polar AIS surface. Nevertheless, the small percentage of deposited Pt is obviously 

sufficient for obtaining the best initial H2 evolution rate of Pt/CN under UV-vis light during the first 4 h. 

3.2.5 CO adsorption study by FT-IR 

Fig. 3.8 shows the FT-IR spectra of CO adsorbed on the catalysts in order to estimate the accessibility of 

the active Pt species. Bands of CO adsorbed on oxidized Pt2+/Pt+ as well as on metallic Pt0 were found as 

ba

d

c

Figure 3.7 XP spectra of selected samples in the C 1s (a), N 1s (b) and Pt 4f region (c) blue: Pt2+, green: Pt0 

together with a scheme of the C3N4 structure (d). 
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shown in Fig. 3.8,352 supporting the observation of oxidized and zerovalent Pt species with XPS (compare 

Fig. 3.7c). The band intensities of all species were found to decrease after exposing the Pt/CN catalyst to the 

photocatalytic reaction for 20 h, indicating decreased accessibility of the Pt surface for reactants, which is a 

potential explanation for the observed rapid deactivation of Pt/CN after 20 h (Fig. 3.1). 

 

3.3 Mechanism: charge separation and transfer 

3.3.1 Visualization of charge separation and transfer by in situ-EPR  

In situ-EPR is a versatile technique to monitor separation and transfer of photogenerated electrons in 

semiconductors based on oxides 335 or carbon nitrides, 76 since electrons excited to the conduction band (CB-

e−) can be trapped at oxygen vacancies 335 and carbon defects.336 Even under dark conditions, the pure CN 

and AIS/CN composite catalysts exhibit a single Lorentzian line centered at a g-value of 2.0042 which is 

ascribed to the unpaired electrons in the sp2-carbon in a typical tri-s-triazine (heptazine) unit 353,354 (Fig. A.1). 

Moreover, the observed g-value indicates that this strong signal arises from surface trapped CB e- that 

preferentially has carbon character. It is important to note that the conduction band (LUMO) of CN is mainly 

constituted of C 2p orbitals whereas valence band (HOMO) is mainly made up of N 2p orbitals.22  

Fig. 3.9a clearly shows an increase of this EPR CB e- signal under irradiation with UV-vis light due to 

electron-hole separation and excitation of electrons into the CN conduction band (solid lines). However, 

after switching the light off, the EPR CB e- signal is decreased due to the recombination of photoexcited 

electrons with holes (dashed lines). This whole process is also called electron-hole pair recombination.  

The EPR spectra during UV-vis light irradiation and after light switched-off were integrated twice 

(background signals in the dark subtracted) to investigate the charge separation efficiency of CN and AIS 

loaded CN samples (Fig. 3.9b). This integral’s intensity is highest upon irradiation of CN, When raising the 

amount of AIS, the EPR CB e- signal intensity is decreased most likely due to the transfer of electrons from 

Figure 3.8 FTIR spectra of adsorbed CO for catalyst Pt/CN after 3 h and 20 h use in the reaction with UV-vis 

light. 
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the CN conduction band to AIS in the composites. Another indication for such a process is provided by 

photoluminescence (PL) spectra (vide infra).  

 

As shown in section 3.1, there is no photocatalytic H2 production activity when CN alone is used as 

photocatalyst. This suggests the necessity of a further transfer of the separated CB-e- directly or via AIS to Pt. 

Thus, 2 wt% Pt co-catalysts were photodeposited on the surface of CN to provide active sites for H2 

production. To prove the impact of those Pt NPs in the electron transfer mechanism during photocatalytic 

reaction, catalysts Pt/CN and Pt/10% AIS-CN have been removed from the photocatalytic reactor after 3 h 

and 20 h and comprehensively characterized by in situ EPR.  

Interestingly, the EPR CB e- signal intensity under UV-vis light irradiation seems to reflect somehow 

the catalytic behavior. As can be seen in Fig. 3.10, the EPR CB e- signal is higher for fresh CN and drops 

down after 3 h. It implies that during photocatalytic reaction the photogenerated CB e- of CN is quickly 

transferred to Pt NPs, where electrons react with H+ to produce H2 molecules. It is higher for Pt/CN after 20 h 

use, indicating that transfer of CB-e- to Pt and, thus, charge separation is less efficient, which may be a 

reason for the observed deactivation (Fig. 3.10). In the case of Pt/AIS-CN, the intensity of this CB-e signal 

under irradiation after 20 h is markedly lower compared to 20 h Pt/CN. This indicates that AIS promotes 

transfer of separated CB e- from CN to Pt, which may account for the higher H2 production rate of Pt/AIS-

CN after 20 h. This is also supported by TEM results which showed that in Pt/AIS-CN virtually all Pt NPs 

are deposited on AIS, leaving the CN surface nearly Pt-free. Obviously, in active catalysts fast transfer of CB-

e− via CN → (AIS) → Pt → H+ → H2 takes place, keeping the CB-e− electron signal small, while the Pt → H+ → 

H2 step of this chain might be hindered in less active catalysts, leading to higher EPR intensity.  

(a) (b)

Figure 3.9 (a) Electron paramagnetic resonance (EPR) signal of CB-e− in as-prepared catalysts (without Pt) 

during UV-vis irradiation (solid lines) and after light switched-off (dashed lines); (b) Double integral of the 

EPR CB e-signal intensity (initial background signal in the dark subtracted) during UV-vis light irradiation 

(black dots) and after light switched-off (red dots). 
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3.3.2 Photoluminescence spectroscopy study 

Photoluminescence (PL) analysis is commonly employed to investigate the separation efficiency of 

photogenerated charge carriers. The PL emission peak is originating from recombination of photogenerated 

electrons and holes so that the PL intensity can reflect the separation efficiency and lifetime of charge 

carriers. For instance, a photocatalyst which exhibited lower PL emission intensity means a higher 

recombination rate of electron-hole pairs or shorter lifetime.337 Fig. 3.11 shows PL spectra of AIS, CN and 

AIS-CN composites collected after excitation at 370 nm. It can be seen that the pure CN exhibits a strong 

emission peak exactly at 470 nm, which corresponds to the band gap charge carrier recombination. Pure AIS 

gives no PL, despite the fact that it absorbs UV-vis light able to excite electrons from the valence to the 

conduction band. This suggests that electron-hole recombination in the pure AIS phase might be too fast to 

emit PL radiation. When AIS is introduced into CN, the emission peak intensity was decreased with rising 

AIS contents, indicative of a transfer of the photogenerated charge carriers from CN to AIS. A similar effect 

was also observed for other C3N4-based photocatalysts such as In2S3/g-C3N4,355 ZnFe2O4/g-C3N4,356 

Cu2O/NaTaO3,357 g-C3N4/NiFe-LDH358 and MoS2/g-C3N4.359 When Pt is deposited on both, pure CN and the 

10AIS-CN composite, giving rise to photocatalytic activity, the PL signal decreases (Fig. 3.11b). The reason 

might be transfer of excited CB e- from CN to Pt or from CN via AIS to Pt, respectively, which efficiently 

prevents charge carrier recombination and extends their lifetime sufficiently for reduction of protons to H2. 

On the other hand, the reason for the decreasing H2 evolution rates with rising AIS content in the AIS-CN 

composites may be AIS mediated quenching of a part of the CB e− before they reach the Pt conduction band. 

Figure 3.10 Intensity (double integral) of the CB e- EPR signal (initial background signal in the dark 

substracted) during UV-vis light irradiation (black dots) and after light switched-off (red dots). Values for 

as-prepared samples without Pt (fresh) taken from Fig. 3.9b. 
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3.4  Conclusions 

The Pt/CN catalysts without AIS showed the highest initial H2 production rates in both basic (TEOA) 

and acidic (OA) aqueous solutions. However, the Pt NPs are encapsulated in the bulk structure of CN in 

basic medium (pH = 10.6), leading to fast catalytic deactivation within the first 4-6 h of reaction time under 

UV-vis light conditions, which occurs, though slower, under pure visible light (λ ≥ 420 nm) conditions. The 

reason for the fast deactivation of Pt/CN catalyst may originate in an attack of the CN structure by highly 

reactive •OH radicals, resulting in defect formation and subsequent densification. With the increase of AIS 

content in the Pt/xAIS-CN (0 ≤ x ≤ 20 wt.%) composites, the initial H2 evolution rates were found to decrease, 

while the CN-free Pt/AIS catalyst was completely inactive for photocatalytic H2 production reaction. This is 

most likely due to rapid electron-hole recombination in AIS although it absorbs visible light efficiently. This 

prevents the electron transfer from the AIS conduction band to the Pt particles. In AIS/CN composites, 

electrons excited from the valence band to the conduction band of CN, travel through the interface to AIS 

and further to the Pt particles, enriching preferentially on the AIS surface, which is only possible when an 

effective heterojunction exists. This must be concluded since the course in catalytic activity of a physical 

mixture of CN and AIS (with no such heterojunction) is similar to Pt/CN without AIS (Fig. 3.1a) and Pt/AIS 

is not active at all. Apparently, an optimum situation was found for Pt/10AIS-CN sample, in which the CN 

surface is covered most effectively by AIS particles (indicated by the lowest BET surface area, Table 3.2), 

which might be still thin enough to enable effective transfer of CB-e− from CN via AIS to Pt where they 

reduce protons to hydrogen. The similar process is expected in aqueous oxalic acid solution (pH = 0.67), 

though the H2 formation rates are significantly higher, due to the higher proton concentration. 

The main difference resulting from the pH of the reaction solution concerns catalyst stability which is 

related to the nature of the Pt NPs. Both metallic Pt0 and oxidic Pt2+ are present in all cases, excluding the 

partial oxidation of metallic Pt as a reason for the fast deactivation of the Pt/CN catalyst. However, the Pt 

Figure 3.11 Photoluminescence spectra after excitation at 370 nm of as-prepared catalysts without Pt (a) and 

Pt containing catalysts after 3 h and 20 h use under UV-vis irradiation (b) For comparison the Pt free 

supports are shown in plot b as well. 
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NPs in Pt/CN catalyst are highly active in acidic medium (pH = 0.67) because most Pt NPs are present on the 

surface of CN phase and not encapsulated in the CN bulk structure, as observed in basic medium (pH = 

10.6). 

The following observations were noticed from the catalytic activity studies: (i) the Pt co-catalyst is 

needed for efficient H2 production over CN-based photocatalysts as it promotes electron transfer from the 

conduction band of CN to Pt, while suppressing the recombination of electron-hole pairs. (ii) Although an 

improvement in the catalyst stability was noticed, composite formation of AIS with CN is detrimental for H2 

formation rates. (iii) Despite the fact that AIS is able to absorb visible light (evidenced by UV-vis diffuse 

reflectance spectra), the electron-hole separation and/or the electron transfer is insignificant, preventing 

proton reduction. (iv) The pH of the reaction solution was found to show a considerable effect on the 

stability of the Pt/CN catalyst for photocatalytic H2 production. 
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4 Influence of MoS2 on Activity and Stability 

of Carbon Nitride in Photocatalytic Hydrogen 

Production 
This work has been submitted in the journal Catalysts (MDPI publishing company). Ramesh P. 

Sivasankaran, Nils Rockstroh, Carsten R. Kreyenschulte, Stephan Bartling, Henrik Lund, Amitava Acharjya, 

Henrik Junge, Arne Thomas and Angelika Brückner*. 

In this chapter, we synthesized MoS2/C3N4 (MS-CN) composite photocatalysts by three different 

methods, i. e. in situ-photodeposition (PD), sonochemical (SC) and thermal decomposition (TD). Two 

dimensional (2D) MoS2 is a good semiconductor due to its beneficial structural, electronic, optical, chemical 

and thermal properties which render it very attractive for H2 production applications.360, 361 2D MoS2 is 

composed of hexagonal layers, in which Mo atoms are sandwiched between two layers of S atoms. The 

layered structure of MoS2 can form two different polymorphs, a 2H phase (trigonal prismatic coordination of 

S around Mo) and a 1T phase (octahedral coordination of S around Mo).324 The 2H phase is semiconducting 

whereas 1T phase is metallic.324 The structure of the 2H phase can be described by two S-Mo-S layers 

composed of edge-shared MoS6 trigonal prisms, whereas the structure of the 1T phase is described by a 

single S-Mo-S layer built from edge-sharing MoS6 octahedra.360, 362 In recent work, the 1T MoS2 phase is 

considered as more active in electrocatalytic H2 production than the 2H phase, mainly because it is metallic 

and exposed more active sites,324 however, there is still an ongoing debate about this issue. Despite the fact 

that carbon nitride turned out to be a suitable photocatalyst for visible light driven H2 production, one major 

problem is fast recombination of photogenerated electron-hole pairs in pristine C3N4 which limits the overall 

photocatalytic efficiency.34 Inspired by the advantageous properties of MoS2 nanosheets and by previous 

investigations (Table A.3), we were aiming at the creation of a heterojunction with C3N4 (CN) to improve 

electron-hole pair separation and stability during photocatalytic hydrogen evolution. In this work, we used 

MoS2 since we expected that, due to its 2D structure, it may cover the CN surface with a thin layer rather 

than forming big particles, which could lead to a more effective heterojunction.  

4.1 Catalytic activity 

Fig. 4.1a shows the photocatalytic H2 production activity of MoS2-free Pt/CN in the presence of lactic 

acid under UV-vis light (black line), under only visible light (λ > 420 nm, blue line) and upon irradiation 

with λ > 420 nm after 4 h of UV-vis light irradiation (red line).  
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2.7 wt% Pt nanoparticles (NPs) were deposited as a cocatalyst on the surface of the photocatalysts by in 

situ photoreduction of H2PtCl6, since no photocatalytic activity was observed with pristine CN (Fig. 4.1b). 

Pt/CN exhibits significantly higher photocatalytic activity under UV-vis light than under pure visible light 

(2178.7 μmol h-1 g-1 compared to 333.7 μmol h-1 g-1, Fig. 4.1a). This is due to the higher number of absorbed 

photons that excite more electrons from the valence to the conduction band.363 Comparison of the blue and 

the red line in Fig. 4.1a suggests that formation of Pt particles active for proton reduction under visible light 

is not a limiting factor since the slope of both curves is the same. Moreover, Pt/CN is stable under the acidic 

conditions used in this test, in contrast to previous tests performed with TEOA as sacrificial reagent (Chapter 

3).363  

As evident from Fig. 4.1b, all composite catalysts showed remarkable H2 production activity within 24 h 

while no H2 evolution was observed with Pt/2H MS, for which the 2H phase MoS2 was prepared by a 

hydrothermal method (HT) without CN. While Pt/2H MS-CN (PD) exhibits a higher H2 production rate 

(2342 μmol h-1 g-1) than Pt/CN (2178.7 μmol h-1 g-1), the photocatalytic activity in the composite materials 

Pt/2H MS-CN (SC), Pt/1T MS-CN (SC) and Pt/2H MS-CN (TD) was lower than that of Pt/CN. This implies a 

considerable influence of the preparation procedure on the catalyst properties and in turn on the catalytic 

performance, which has been elucidated by thorough catalyst characterization (vide infra). 

4.2 Catalyst characterization   

4.2.1 Crystal structure and optical properties 

The powder XRD patterns of MoS2 prepared by solvothermal (ST), hydrothermal (HT) and thermal 

decomposition (TD) methods and of MS-CN composites are depicted in Fig. 4.2a and b. 

Figure 4.1 Photocatalytic H2 production of MoS2-free Pt/CN as a function of time in the presence of lactic 

acid: (a) under UV-vis light (black), under visible light (λ > 420 nm, blue) and with a 420 nm cut-off filter 

inserted after 4 h irradiation under UV-vis light (red); (b) for differently prepared MS-CN composites under 

UV-vis light irradiation. Reaction conditions: 24.5 mg CN or MS-CN, 0.2 mL of a H2PtCl6 stock solution 

equal to 0.5 mg Pt, 24.8 mL H2O/lactic acid (final ratio 9/1 (v/v)), 25 °C, 1.5 W light power (Xe lamp) without 

(UV-vis) or with (vis) a 420 nm cut-off filter. 
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The 2H phase of MoS2 exhibits diffraction peaks at 14.1, 32.9, 39.5, 43.3, 49.4, 58.8 and 69.2° which are 

attributed to the (002), (100), (103), (006), (105), (110) and (108) reflection planes of the hexagonal crystal 

system (ICDD: 01-075-1539) (Fig. 4.2a).324 In the 1T MoS2 phase (ST), the (002) diffraction peak is shifted to a 

lower value of 2θ (9.9°) (Fig. 4.2a).326 Pure CN exhibits two diffraction peaks for the interlayer stacking 

reflection of polymeric melon sheets (27.5°) and an in-plane structural motif between nitride pores (13.2°) 

(ICDD: 00-066-0813) (Fig. 4.2b).344, 363 The XRD patterns of the MS-CN composites show the main peaks of CN 

(Fig. 4.2b). In the composites 2H MS-CN (SC) and 2H MS-CN (TD), the (002) peak of the 2H phase is 

superimposed on the (100) peak of CN at 13.2° leading to slight asymmetry. The powder XRD patterns of the 

used catalysts recovered after 6 hours from the reaction mixture show a small diffraction peak at 2θ = 39.9° 

for Pt (111) confirming the in situ-photodeposition of Pt NPs (Fig. A.2) which was also evidenced by 

scanning transmission electron microscopy (STEM, vide infra). The (002) diffraction peak of 1T MS-CN (SC) 

at 2θ = 14.1° disappeared after 6 h use, possibly due to a phase transition from 1T to 2H MoS2 during the 

reaction 324 (compare Fig. 4.2b and A.2).  

The light absorption properties of as synthesized pure C3N4 and MS-CN composites were analyzed by 

diffuse reflectance UV-vis spectroscopy (Fig. 4.3). Pure CN exhibits absorption wavelengths from UV to 

visible region up to 600 nm, indicating its ability to absorb visible light (Fig. 4.3a).363 Pure MoS2 is black and 

absorbs light in the whole wavelength range (Fig. A.3). Hence, the colour becomes darker when CN forms a 

composite with 2 wt% of MoS2 (Fig. 4.3a). Surprisingly, a decrease of the absorption bands of CN is observed 

after loading of MoS2 on the surface of CN. This may be due to a shielding effect caused by wrapping of the 

MoS2 nanosheets around the CN nanosheets (see also STEM results below). Accordingly, absorbance of MS-

CN composites in the range of 650-1000 nm increases slightly, which is related to MoS2 and has been also 

observed after loading of MoS2 on BiOI.364 Moreover, the catalytically most active sample Pt/2H MS-CN (PD) 

(cf. Fig. 4.1) shows the lowest decrease of the CN absorption band around 500 nm. The origin of this band is 

Figure 4.2 XRD powder patterns of (a) 1T MoS2 (ST), 2H MoS2 (SC), 2H MoS2 (TD) and (NH4)MoS4; (b) pure 

CN and differently prepared MS-CN composites. 
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most likely due to an increase of the degree of polymerization and π-plane conjugation.100 As can be seen 

from Fig. 4.3b, the band gap of CN and 2H MS/CN (PD) estimated to be 2.65 eV.  

 

4.2.2 Surface area analysis: N2 adsorption-desorption isotherms   

As shown in Fig. 4.4a, the pure CN and 2H MS-CN (PD) exhibited type IV isotherms with a H4 

hysteresis loop, according to the IUPAC classification, indicating the existence of mesopores (2-50 nm). 

These H4 hysteresis loops indicate the formation of narrow slit-shaped pores. The specific surface area, pore 

volume and average pore size of the samples are summarized in Table 4.1. The pore size distribution of the 

samples were estimated by using the Barrett-Joyner-Halenda (BJH) method from the desorption branches, as 

shown in Fig. 4.4b. The BET surface area of CN is 98.5 m2 g-1. Compared with pure CN, the 2H MS/CN (PD) 

composites showed decreased BET surface (70.6 m2 g-1) area and pore volume. This indicates that the surface 

area is not playing any role in the photocatalytic activity. 

 

 

 

Figure 4.3 a) UV-vis-DR spectra of pure CN and MS-CN composites together with photographs of (I) CN, 

(II) 2H MS-CN (PD), (III) 2H MS-CN (SC), (IV) 1T MS-CN (SC), (V) 2H MS-CN (TD); (b) Band gap estimation 

from Tauc plot. 

Figure 4.4 (a) N2 adsorption-desorption isotherms of CN and 2H MS-CN (PD); (b) Barrett-Joyner-Halenda 

pore size distribution plot. 
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Table 4.1 Structural properties of as-prepared catalysts. 

Catalyst SBET (m2/g) Pore Volume (cm3/g) Mean Pore Size (nm) 

C3N4 98.5 0.152 4.7 

2H MS-CN (PD) 70.6 0.111 4.8 

2H MS-CN (SC) 92.9 0.151 4.9 

1T MS-CN (SC) 68.8 0.132 4.9 

2H MS-CN (TD) 86.4 0.133 4.6 

4.2.3 Morphology and microstructure analysis by STEM 

STEM-HAADF micrographs of Pt/CN, recovered after 6 h reaction time show a uniform distribution of 

Pt NPs (single atoms, clusters and particles < 5 nm) on the surface of CN (Fig. 4.5a, Fig. A.4a plots l-r and Fig. 

A.6) which is similar to that observed for Pt/CN in the presence of TEOA as sacrificial agent.363 

 

In the used composite Pt/2H MS-CN (PD) (Fig. 4.5b and Fig. A.4b plots l-r), bright areas of MoS2 can be 

seen in contact with less intense areas of C3N4. The MS phase consists of small units with a certain short 

range order (Fig. A.4b, plots m and r). These units agglomerate in a disordered manner as opposed to the 

structures achieved by the other preparation method. The Pt NPs are more or less equally distributed on the 

CN and MS phase with a slight tendency to be more enriched on the CN phase. This is also supported by 

EDX measurements (Fig. A.8). In the other three samples Pt/2H MS-CN (SC), Pt/1T MS-CN (SC) and Pt/2H 

MS-CN (TD) markedly larger MS particles are formed  (Fig. 4.5c-e and Fig. A.4c-e plots l-r) in which even the 

Figure 4.5 STEM-bright field (BF) micrographs of catalysts exposed to UV-vis irradiation for 6 h in the 

presence of lactic acid. (a) Pt/CN, (b) Pt/2H MS-CN (PD), (c) Pt/2H MS-CN (SC), (d) Pt/1T MS-CN (SC), (e) 

Pt/2H MS-CN (TD).      

a b c 

d e 
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layered crystalline structure of the 2H MoS2 phase can be seen (Figure 4.5c, A.4c, A.5). This agrees well with 

the fact that the XRD patterns of sample Pt/2H MS-CN (SC) shows peak of the MS phase while these are not 

evident in sample Pt/2H MS-CN (PD) (cf. Fig. 4.1b). The formation of smaller and higher dispersed MS 

particles in sample Pt/2H MS-CN (PD) may have been promoted by the photodeposition procedure of MoS2 

since this is known to create a very high dispersion of the photodeposited species.365 The Pt NPs in samples 

Pt/2H MS-CN (SC), Pt/1T MS-CN (SC) and Pt/2H MS-CN (TD) are even more enriched on the CN phase 

while the MS phase contains much less Pt. This is also evident from EDX analysis (Fig. A.5, A.8-A.10). This is 

different from our previously studied AgIn5S8/C3N4 composites, in which Pt NPs were deposited 

preferentially on the sulphide phase (Chapter 3).363 A possible reason may be too fast charge recombination 

in big MoS2 particles that hinders diffusion of photoexcited electrons to the surface of MoS2 where they 

would be needed to reduce the Pt4+ precursor to metallic particles. An indication for such fast charge 

recombination in MoS2 is also evident from PL measurements discussed below. 

4.2.4 Surface chemical analysis by XPS 

As shown in our previous work the surface of the composites is prone to changes under photocatalytic 

conditions.363 Therefore, we performed XPS analysis on the most active catalyst 2H MS-CN (PD) and the 

least active sample 2H MS-CN (TD) before and after use in the catalytic reaction, i. e. without and with 

deposited Pt particles to elucidate the surface elemental composition and valence states (Fig. 4.6 and Fig. 

A.11-A.14). 

The 3d3/2 and 3d5/2 peaks of Mo4+ in the Mo 3d spectra of both samples fall at binding energies 

characteristic for the 2H phase of MoS2 (233.4 and 230.3 eV, Fig. 4.6a).366 Besides, a Mo 3d doublet for Mo6+ is 

observed at 235.2 and 232.1 eV.366 This arises most probably from partial oxidation of MoS2 to MoO3 at the 

surface 13. There is no much difference between the Mo 3d spectra of both samples. Comparison of the 

experimental atomic percentages found by XPS with the theoretical values assuming a homogeneous 

elemental distribution in the whole sample shows that the relative proportion of Mo on the surface is almost 

the same as in the bulk phase, suggesting a similar distribution of Mo in the bulk and on the surface of both 

fresh samples (Table S3). This holds true also for the proportion of sulfur (S:Mo ratio) in the most active 

sample 2H MS-CN (PD). However, in the least active sample 2H MS-CN (TD) the surface S content is 

considerably higher. While the S 2p spectra of the former sample show only one peak around 163.5 eV 

associated with MoS2,360, 367 a second feature at about 169 eV is visible in the S 2p spectrum of sample 2H MS-

CN (TD). This is characteristic of surface sulfate species, likely formed during preparation of 2H MS-CN 

(TD), which included a thermal decomposition step (Fig. 4.6c). Though this was performed in argon, traces 

of oxygen might have promoted formation of surface sulfate that is also described in the literature.368 
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After use in the photocatalytic reaction, the weight percentage of both Mo and S in the whole sample 

(determined by ICP-OES, Table S2) decreased. This indicates some leaching of Mo and, to a smaller extent, 

also of S during reaction. The decrease of Mo on the surface is especially pronounced, leading to a strong 

increase of the S:Mo surface ratio in the used catalysts (Table S3). Moreover, the sulfate XPS peak is more 

pronounced after use in sample Pt/2H MS-CN (TD) and it is stronger compared to the more active sample 

Pt/2H MS-CN (PD), in which this peak appears for the first time after use (Fig.4.6d). The oxidation of sulfur 

species during photocatalysis is not uncommon and also exploited e.g. in the photocatalytic oxidative 

desulfurization.368 The formed sulfate, however, could interact with the surface Pt species and reduce their 

activity for proton reduction. 

During the photocatalytic reaction, Pt is deposited on the surface of both samples. The Pt4f spectra in 

Fig. A.14 show signals from Pt0 (72.6 and 75.7 eV) and Pt2+ (74.9 and 77.7 eV). Interestingly, these values are 

somewhat higher compared with literature values for surfaces of bulk samples (71.1 and 74.4 eV for Pt0; 72.4 

Figure 4.6 XP spectra of 2H MS-CN (PD) and 2H MS-CN (TD) in the Mo 3d and S 2p region 

before (a and c) and after 6h of reaction (b and d).        
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and 76.0 eV for Pt2+).369 This may be due to the very small particle size (evidenced also by TEM).370-373 Another 

reason may be strong metal-support interaction which is known to induce shifts in binding energy values.374, 

375 Such shifts have also been observed by other authors in related substrates.132, 201, 376, 377 The total surface Pt 

content is highest for the least active sample Pt/2H MS-CN (TD) (Table S3), suggesting that not every Pt 

center is catalytically active or accessible by the reactants. Comparing the TEM investigations, a partial 

coverage of CN by MoS2 particles may account for this. Interestingly, in the most active sample Pt/2H MS-

CN (PD) the percentage of Pt2+ is by far lowest and the amount of surface Pt0 is somewhat higher than in 

Pt/CN. This suggests that it might be the Pt0 centers that are active for hydrogen generation. On the other 

hand, the amount of Pt0 is highest in the least active sample Pt/2H MS/CN (TD). This suggests that the 

surface percentage of Pt0 is one but not the only property that governs catalytic activity. It will be 

demonstrated below, that the amount of reactive photolelectrons is another crucial factor for high 

photocatalytic performance (vide infra, EPR and photoluminescence spectroscopy).  

Table 4.2 Elemental composition of fresh and used catalysts derived from CHNS and ICP-OES. 

Sample C  

(wt.%) 

N  

(wt.%) 

MoICP  

(wt.%) 

SICP  

(wt.%) 

PtICP  

(wt.%) 

2H MoS2 (HT)   61.55 36.82 - 

1T MoS2 (ST)   48.64 33.67 - 

2H MoS2 (TD)   48.44 38.55 - 

C3N4 31.99 61.75 - - - 

2H MS-CN (PD) 30.96 56.81 0.85 0.74 - 

2H MS-CN (SC) 30.46 57.13 1.04 0.70 - 

1T MS-CN (SC) 30.56 57.27 0.88 0.61 - 

2H MS-CN (TD) 31.69 58.20 1.0 0.79 - 

MS-CN theoretically 38.36 59.64 1.20 0.80 - 

Pt/CN   - - 2.70 

Pt/2H MS-CN (PD)   0.62 0.63 2.68 

Pt/2H MS-CN (SC)   0.86 0.51 2.70 

Pt/1T MS-CN (SC)   0.61 0.54 2.72 

Pt/2H MS-CN (TD)   0.67 0.67 2.70 

Table 4.3 Surface elemental composition of fresh and used catalysts derived from XPS. 

Sample C  

(at.%) 

N  

(at.%) 

O  

(at.%) 

Mo  

(at.%) 

S   

(at.%) 

S:Mo 

Ratio 

Pt 

(at.%) 

Pt0 

(at.%) 

Pt2+ 

(at.%) 

C3N4 44.67 52.59 2.74 - -  -   

2H MS-CN (PD) 47.80 49.47 2.41 0.11 0.20 1.82 -   

2H MS-CN (TD) 41.42 55.34 2.65 0.15 0.46 3.07 -   

MS-CN theoreticallya 42.64 56.86 - 0.167 0.334 2 -   

Pt/CN 46.05 48.93 4.12 - - - 0.90 0.66 0.24 

Pt/CN theoreticallya 42.80 57.06 - - - - 0.14   

Pt/2H MS-CN (PD) 45.21 49.03 4.43 0.09 0.47 5.22 0.77 0.69 0.08 

Pt/2H MS-CN (TD) 47.43 45.75 4.59 0.12 0.75 6.25 1.38 1.16 0.22 
a calculated under the assumption that the elemental composition at the surface is the same as in the bulk. 
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4.3 Mechanism: charge separation and transfer 

4.3.1 Monitoring charge separation and transfer by in situ-EPR 

In previous work it was shown that in situ-EPR spectroscopy is a unique method to analyze separation 

and transfer of photoexcited electrons in semiconductors based on oxides335 or carbon nitrides.76, 363 All C3N4 

containing samples show a narrow isotropic EPR signal with Lorentzian line shape at a g-value of 2.0047 

already in the dark (Fig. A.15). This is attributed to single electrons that are trapped at surface sp2 carbon 

atoms of heptazine units.353 Upon photoexcitation, more electrons are excited from the valence to the 

conduction band (formed of N 2p and C 2p orbitals, respectively22) and trapped at carbon defects.349 This 

causes an intensity increase of this EPR signal, which is reversible upon light switch off due to charge 

recombination (Fig. 4.7a). Thus, the increase of the EPR signal intensity of bare CN under light irradiation 

(Fig. 4.7b, open black circle) is a measure for the total number of electrons that can be excited and trapped in 

pure C3N4 while the EPR intensity after light switch-off (red open circle in Fig. 4.7b) reflects electrons that do 

not immediately recombine. 

 

As shown in Fig. 4.1b, the photocatalytic H2 production activity is negligible when bare CN is used as 

photocatalyst. Therefore, Pt NPs were photodeposited on the surface of CN to provide active sites with 

sufficient potential for H2 production. To prove the impact of those Pt NPs on electron transfer during the 

photocatalytic reaction, Pt/CN has been removed from the photocatalytic reactor after 6 h and characterized 

by EPR spectroscopy with and without UV-vis irradiation. From Fig. 4.7b it is evident that the EPR signal 

intensity of Pt/CN under light irradiation is much smaller than that of bare CN (compare the black hollow 

and solid circles). This is due to fast transfer of CB e- from CN to Pt from which they can react with H+ to 

produce H2.76  

Figure 4.7 (a) EPR spectra of the as-prepared catalysts during UV-vis light irradiation (solid lines) and after 

light switched-off (dashed lines). (b) Double integral of the EPR CB e- signal intensity (initial background 

signal in the dark was subtracted) during UV-vis light irradiation (black circles) and after light switched-off 

(red circles). Hollow circles represent fresh catalysts (without Pt NPs) and solid circles represent used 

catalysts (with Pt NPs). CN - C3N4; PD - 2H MS-CN (Photodeposition method); SC (2H) - 2H MS-CN 

(Sonochemical method); SC (1T) - 1T MS-CN (Sonochemical method); TD - 2H MS-CN (Thermal 

decomposition method). 
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When MoS2 is deposited on the surface of C3N4, a similar drop of the CB e- EPR signal intensity is 

observed already without Pt NPs (hollow black circles in Fig. 4.7b). This suggests that those electrons are 

quickly transferred via the phase boundary to MoS2. However, catalytic tests revealed that Pt-free MS-CN 

materials are not active in photocatalytic H2 evolution. This implies that exited electrons transferred from the 

conduction band of C3N4 to that of MoS2 return too quickly to the valence band of the latter so that they 

cannot be used for proton reduction, which is also supported by photoluminescence results discussed below.  

Deposition of Pt NPs onto the MS-CN composites leads to a further drop of intensity, due to electron 

transfer from the CN and/or MS phase to Pt NPs (black solid circles in Fig. 4.7b). This intensity drop is 

strongest, indicating the highest number of CB e- transferred to Pt, for the most active sample Pt/2H MS-CN 

(PD) and decreases as catalytic activity is reduced (compare Fig. 4.1b and 4.7b). A much smaller decrease in 

intensity is observed for the less active samples Pt/2H MS-CN (SC), Pt/1T MS-CN (SC) and Pt/2H MS-CN 

(TD). This implies a lower electron transfer from MS-CN to Pt.  

4.3.2 Photoluminescence spectroscopy study 

Photoluminescence (PL) occurs upon recombination of photogenerated electrons and holes. It is 

therefore commonly employed to investigate the separation efficiency of photogenerated charge carriers.337 

The PL spectra of MoS2, CN and MS-CN composites after excitation at 370 nm are shown in Fig. 4.8a.  

 

It can be seen that pure CN exhibits a strong emission at 461 nm, which arises from charge carrier 

recombination via the band gap, whereas the pure MoS2 samples show no PL, despite the fact that they 

absorb UV-vis light able to excite electrons from the valance band to the conduction band (Fig. 4.8a). This 

suggests that electron-hole recombination in the pure MoS2 samples might be too fast to emit PL radiation. 

Upon loading of MoS2 onto CN, the PL emission peak intensity decreased, which is an indication for electron 

transfer from the conduction band of CN to that of MoS2 (Fig. 4.8a). A similar effect was also observed for 

other CN-based photocatalysts such as AgIn5S8/C3N4,363 In2S3/g-C3N4,355 ZnFe2O4/g-C3N4,356 Cu2O/NaTaO3,357 

g-C3N4/NiFe-LDH 358  and MoS2/g-C3N4.359 When Pt is deposited on the surface of the photocatalysts, the PL 

Figure 4.8 Photoluminescence spectra of (a) the as-synthesized catalysts; (b) recovered Pt containing 

catalysts after 6 h under UV-vis light irradiation.    
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signal intensity decreased even further (Fig. 4.8b). The reason might be a transfer of excited CB electrons 

from CN to Pt or from CN via MoS2 to Pt, respectively. As the reduction potential of Pt is sufficient to reduce 

protons, these electrons are able to form H2 from H+. As can be seen in both plots, the emission intensity 

decrease is highest in the case of (Pt/)2H MS-CN (PD) which is a further indication for effective electron 

transfer from the CB of CN directly or via MoS2 to Pt NPs. In the latter case, the electron transfer efficiency is 

hampered by fast charge carrier recombination in MoS2 (see PL spectra of pure MoS2 samples) only allowing 

increased charge transfer efficiency in the case of thin MoS2 layers as present in 2H MS-CN (PD). 

4.4 Conclusions 

Pt/2H MS-CN (PD) showed the highest photocatalytic hydrogen production activity of all investigated 

MS-CN composites, and it is the only one in which deposition of MoS2 improves the performance of Pt/CN. 

This might be due to the fact that, in Pt/2H MS-CN (PD), MoS2 forms a very thin overlayer on C3N4 which 

does not hinder light absorption and charge separation in C3N4 nor charge transfer from the CB of C3N4 

through the MoS2 layer to the Pt NPs. Rather it might be this thin layer that prevents fast charge 

recombination within C3N4. In samples Pt/2H MS-CN (SC), Pt/1T MS-CN (SC) and Pt/2H MS-CN (TD), 

which all revealed lower activity than sulfide-free Pt/CN, MoS2 is attached to C3N4 in form of big crystalline 

particles in which even lattice planes were detected by STEM. These particles might partially hinder 

absorption of visible light by C3N4 (evident from a decrease of the UV-vis band between 450 and 550 nm). 

Moreover, they hinder transfer of electrons from the CB of C3N4 to the Pt particles, as evidenced by in situ-

EPR and photoluminescence results. Moreover, interaction with surface sulfate, the amount of which is 

highest in the least active sample Pt/2H MS-CN (TD), may lower the ability of Pt to reduce protons.   

In summary, the beneficial performance of Pt/2H MS-CN (PD) is attributed to the formation of an 

effective heterojunction between the C3N4 surface and a thin MoS2 overlayer that enables an efficient electron 

transfer from CN via MoS2 to Pt.  
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5 Influence of different sacrificial agents on 

photocatalytic H2 production over C3N4 

photocatalysts 
In addition to the work described above the C3N4 has been subjected to photocatalytic hydrogen 

evolution in the presence of platinum with various common sacrificial reagents. The results obtained from 

these experiments are summarized in the following sections. 

5.1 Catalytic activity 

Sacrificial agents also called sacrificial reductants (SR), electron donors or hole scavengers play an 

important role in photocatalytic H2 production. They are essentially providing the electrons for the reduction 

of the protons to H2 by reducing the holes in the semiconductor after their photoexcitation. To check the 

influence of this important class of reactants photocatalytic H2 production over C3N4 photocatalysts by using 

various acidic and basic sacrificial agents in the presence of Pt as co-catalyst under UV-vis light irradiation 

was carried out (Fig. 5.1).  

 

The pH value of the solution is supposed to be an important factor that may influence the reactivity, 

because protons are the educt in the hydrogen generation reaction. The redox potential is also of great 

importance because it directly refers to the capability of the SRs to donate electrons to fill the holes in the 

semiconductor. Furthermore, factors such as collision probability and the conversion mechanism of the 

sacrificial reagent may also play a role in the reaction.  

 

Figure 5.1 Photocatalytic H2 production activity of Pt/CN by using various sacrificial reagents under UV-vis 

light irradiation. (a) Basic medium; TEOA–Triethylamine, TETA–Triethylenetriamine, TMA–

Trimethylamine, DETA–Diethylenetriamine, TEA–Triethylamine, TMEDA–N,N,N’,N’-

Tetramethylethylenediamine, EDA–Ethylenediamine and HMTA–Hexamethylenetetramine. (b) Acidic 

medium; OA–Oxalic acid, LA–Lactic acid, TA–L-Tartaric acid, CA–Citric acid, AA–L-Ascorbic acid, PA–

Pyruvic acid and APA–L-Aspartic acid.  
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5.2 Photocatalytic H2 production with basic sacrificial reagents 

As shown in Fig. 5.1a, CN without sacrificial agents shows poor photocatalytic H2 production activity 

(even in the presence of a Pt precursor) due to inefficient or missing hole scavenging capability of water. The 

experiments in the presence of different basic sacrificial reagents indicate that the photocatalytic H2 

production activity of Pt/CN can be enhanced to different degrees (Table 5.1). Among these agents, TEOA 

aqueous solution gives highest H2 production compared to the other sacrificial agents. This is most likely 

associated with its redox potential that is lowest within the class of investigated sacrificial agents in this 

work (cf. Table 1).  

Table 5.1. Compilation of different basic sacrificial agents that were used in the photocatalytic hydrogen 

production reaction with C3N4 and Pt. Conditions: 24.5 mg C3N4, 0.2 ml H2PtCl6 solution with c = 0.25 

mg·mL-1 (0.5 mg Pt), nSR = 18,94 mmol (0,757 mM), total volume = 25 mL, Xe lamp without filter, 1.5 W 

output, 25 °C. 

Entry 
Sacrificial 

agents 
Structure pKb 

Oxidation 

potential 

(V vs. 

SCE) 

H2 

(μmol) 

(24 h) 

H2 

(μmol 

h-1 g-1) 

1 Triethanolamine (TEOA) 

 

pKb = 6.26 0.57 287  761.7 1259.5 

2 Triethylenetetramine (TETA) 
 

 

pKb1 = 3.24 

 

- 576.3 960.5 

3 Trimethylamine (TMA) 

 

pKb = 4.20 0.76 378 561.0 935.0 

4 Diethylenetriamine (DETA) 
 

pKb1 = 3.98 

pKb2 = 4.79 

pKb3 = 9.58 

- 405.2 675.3 

5 Triethylamine (TEA) 

 

pKb = 3.25 0.69 287 238.8 394.8 

6 

N,N,N′,N′-

Tetramethylethylenediamine 

(TMEDA) 
 

pKb = 5.85 0.66 378 215.8 359.7 

7 Ethylenediamine (EDA) 
 

pKb1 = 4.02 

pKb2 = 6.44 
1.30 379  70.1 116.8 

8 
Hexamethylenetetramine 

(HMTA) 

 

pKb = 9.5 1.37 378 64.7 107.8 
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A lower redox potential means an easier oxidation and more efficient hole scavenging ability. 

Comparison of these different potentials with the hydrogen evolution activity demonstrated in most cases 

that the sacrificial agents with lower redox potential allowed for higher photocatalytic H2 production (Fig. 

5.1a). However, there is no strict correlation suggesting also other parameters being involved (Fig. 5.2).

 

One issue is comprised by the irreversibility of the redox processes of the different sacrificial agents. 

The main other influencing factor may arise from the mechanism. A good example may be given by the 

comparison of TEOA and TEA. As can be seen in Fig. 5.3 the degradation pathway comprises the same steps 

and intermediates.287  

 
Figure 5. 3 Degradation pathway of TEOA (R = CH2OH) and TEA (R = CH3) upon two-electron oxidation. 

Figure 5.2 Dependency of the observed hydrogen evolution activity from the redox potential of the 

sacrificial reagent (redox potential values taken from Table 5.1). 
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Starting from the formation of a nitrogen centered radical upon initial oxidation, a carbon centered 

radical is formed and finally, a second oxidation occurs. There are two proton abstraction steps implying a 

pH dependency. It is reasonable to assume a better proton abstraction capability at higher pH.46 However, 

even though TEA generates the more basic solution, the hydrogen productivity is higher in the case of 

TEOA. This also points to the influence of more factors and it is also obvious that TEA and TEOA are used in 

excess so that proton abstraction is not the rate determining step in the investigated system here. Another 

point in the mechanism is the initial formation of the aminyl radical after oxidation that might either react 

again with reduced species (intermediate [C3N4]- or H2) or further to a carbon centered radical.46 As the 

carbon centered radical has reducing power itself it is beneficial for H2 productivity.46, 380-383 Another aspect 

covers the capability of the reaction products to escape from the solvent cage. The more efficient the reaction 

products escape the higher the productivity, because there will be no accumulation of reductive species 

then.46, 384 Also, the presence of either a reductive or an oxidative quenching mechanism similar to 

homogeneous systems may affect the proton reduction.46 If first the protons are reduced and hole quenching 

occurs subsequently, an oxidative quenching mechanism is present, while hole quenching followed by 

proton reduction comprises the reductive mechanism.46 In the case of TEA and TEOA, both mechanisms are 

possible, that are influenced by the choice of the photosensitizer.46 Moreover, also the miscibility of the SR 

with water may play an important role as this directly affects the ‚active‛ concentration of the SR in 

solution.46 In this respect, TEOA with its hydroxyl groups has advantages compared to TEA, which might be 

a reasonable explanation for the largely decreased activity of TEA compared with TEOA. Also TMA with an 

even higher redox potential exhibits a higher activity as TEA.  

5.3 Photocatalytic H2 production with acidic sacrificial reagents 

Comparison of the results obtained with SRs that are acidic under the chosen reaction conditions shows 

also huge differences (Fig. 5.1). As the data basis on redox potentials is quite poor here, these cannot be 

discussed here. Compared to the results obtained under basic conditions higher activities have been 

observed with the best performing acidic SRs. This implies an influence of the pH. However, as can be 

derived from the pKa values given in Table 5. 2, no real trend can be seen suggesting also the influence of 

other parameters, most likely solubility and redox potential as well as cage escape probability.  
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Table 5.2. Compilation of different acidic sacrificial reagents that were used in the photocatalytic hydrogen 

production reaction with C3N4 and Pt. Conditions: 24.5 mg C3N4, 0.2 ml H2PtCl6 solution with c = 0.25 

mg·mL-1 (0.5 mg Pt), nSR = 18,94 mmol (0,757 mM), total volume = 25 mL, Xe lamp without filter, 1.5 W 

output, 25 °C. 

Entry 
Sacrificial 

agents 
Structure pKa 

H2 

(μmol) 

H2 

(μmolh-1 g-1) 

1 Oxalic acid (OA) 

 

pKa1 = 1.23 

pKa2 = 4.19 
1075.5 (9 h) 

 

5371.7 

 

2 Lactic acid (LA) 

 

pKa1 = 3.86 

pKa2 = 15.1 
1342.1 (24 h) 

 

2219.5 

 

3 L-tartaric acid (TA) 

 

pKa1 = 2.89 

pKa2 = 4.40 
685.1 (24 h) 1141.8 

4 Citric acid (CA) 

 

pKa1 = 3.13 

pKa2 = 4.76 

pKa3 = 6.40 

466.2 (24 h) 777.0 

5 L-ascorbic acid (AA) 

 

pKa1 = 4.10 

pKa2 = 11.80 
452.9 (24 h) 

 

754.8 

 

6 Pyruvic acid (PA) 

 

 

pKa = 2.50 

 

366.3 (21 h) 697.7 

7 L-aspartic acid (APA) 

 

pKa (A) = 2.09 

pKa (B) = 9.82 

pKa (C) = 3.86 

35.2 (24 h) 58.7 

Another point might arise from the mechanism. While the acids with carboxy groups form thermo-

dynamically stable CO2, ascorbic acid is transformed to the trioxo product dehydroascorbic acid (see Fig. 5.4 

and 5.5).46, 314, 318-320, 385-387 16 It shall be noted here that in the carboxylic acids CO2 abstraction occurs always and 

in oxalic acid, the formation of a second CO2 molecule may enhance H2 production. A comparison between 

the acids with carboxy function is difficult as there are no potentials available. However, considering group 

effects, one can see that lactic acid with its electron donating CH3-CH(OH)-group is much more active than 

pyruvic acid with an acyl group adjacent to the carboxy functionality.386, 387 A more electron withdrawing 

adjacent group will potentially decelerate carbon dioxide formation that is the final step in the conversion 

mechanism of carboxylic acids.314, 318-320, 385-387 
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Figure 5.4 Degradation pathway of oxalic acid upon one-electron oxidation. 

Figure 5.5 Degradation pathway of L-ascorbic acid upon two-electron oxidation. 

Ascorbic acid undergoes a two-electron oxidation pathway (Fig. 5.5) 388, 46. (Fig. 5.5). It dissociates into 

ascorbate anions and H+ in water. Holes in the VB can react with ascorbate anions to produce ascorbate 

anion radical. Besides, hydroxyl radicals (▪OH) can also react with ascorbate anions to produce ascorbate 
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anion radicals. Subsequently, this ascorbate anion radical can react with another hole to produce 

dehydroascorbic acid 388. By this way, ascorbic acid reacts irreversibly with the photogenerated holes to 

suppress the rate of electron-hole pair recombination and increases the rate of hydrogen evolution on Pt. 

5.4 Conclusion 

Based on the aforementioned results, a huge influence of the sacrificial reagent was observed in the 

present work. The application of the same semiconductor and the same co-catalyst in each experiment 

provides a certain degree of comparability of the results. However, the overall conclusion that can be drawn 

from these experiments is limited by issues such as different solubility, distinct degradation mechanisms and 

changing pH as well as different solvent cage escape probabilities. More detailed investigations by EPR, 

NMR and IR spectroscopy in combination with kinetic analyses would be necessary for a deeper 

understanding of the underlying processes. 
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Appendix  

Chapter-3 

Table A.1 Surface area, reaction conditions and H2 evolution rates of selected C3N4-based photocatalysts. 

No. Catalyst 
SBET 

(m2/g) 

Co- 

catalyst/wt.% 

Sacrificial 

agent 
Light source 

Incident 

light 

(nm) 

Activity 

(μmol 

g−1 h−1 ) 

Time 

(h) 
Ref. 

1 SG-C3N4 1 Pt/0.8 TEOA 300 W Xe > 395 143 24 321 

2 SG-C3N4 131 Pt/0.8 TEOA 300 W Xe > 395 1379 24 321 

3 g-C3N4 142 Ni/0.73 TEOA 300 W Xe > 420 103 48 291 

4 g-C3N4 - Cu/3.0 Methanol 300 W Xe > 400 20 6 210 

5 Ag2S/g-C3N4 13 - Methanol 3 W UV-LED > 420 200 4 389 

6 MoS2/g-C3N4 - Pt/1.0 Methanol 300 W Xe > 420 231 6 313 

7 WS2/g-C3N4 - - Lactic acid 300 W Xe > 420 240 - 219 

8 CdS/g-C3N4 23 Pt/0.6 Na2S/Na2SO3 350 W Xe > 420 4152 - 390 

9 CuInS2/g-C3N4 96 Pt/1.0 Na2S/Na2SO3 300 W Xe > 420 1290 5 310 

10 ZnIn2S4/g-C3N4 66 - TEOA 300 W Xe > 400 2820 2 306 

11 CaIn2S4/g-C3N4 54 Pt/1.0 Na2S/Na2SO3 12 W UV-LED - 102 - 391 

12 CoO/g-C3N4 111 Pt/1.0 TEOA 300 W Xe > 400 651.3 1 392 

13 Cu2O/g-C3N4 - Pt/1.0 TEOA 300 W Xe > 420 241 11 393 

14 In2O3/g-C3N4 - Pt/0.5 Ascorbic acid 300 W Xe > 420 198.0 4 394 

15 AgIn5S8/C3N4 118 Pt/≤ 2.0 TEOA 300 W Xe > 420  1395 24  

Table A.2 Reaction conditions and H2 evolution rates of AgIn5S8 photocatalysts. 

No. Catalyst 
SBET 

(m2/g) 

Co- 

catalyst/wt.% 

Sacrificial 

agent 
Light source 

Incident 

light 

(nm) 

Activity 

(μmol 

g−1 h−1 ) 

Time 

(h) 
Ref. 

1 AgIn5S8 - Pt/2.0 Na2S/Na2SO3 300 W Xe > 420 1001 3 322 

2 AgIn5S8 - Pt/2.0 Na2S/Na2SO3 300 W Xe > 420 110 - 341 

3 AgIn5S8 - Pt/0.5 Na2S/K2SO3 300 W Xe > 420 1150 7 342 
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Chapter-4 

Table A.3 Synthesis method, reaction conditions and H2 production rates of selected metal sulfide/C3N4 

based photocatalysts. 

No. 

 

Catalyst 

 

Synthesis  

method 

Optimum 

amount of 

MoS2/wt.% 

 

Sacrificial 

agent 

 

Light 

source 

Incident 

light 

(nm) 

Activity 

(μmol 

h−1 g−1) 

Ref. 

1 EB/MoSx/g-C3N4 In-situ photodeposition 0.5 TEOA 400 W Hg > 420 180 395 

2 MoS2/g-C3N4 In-situ photodeposition 2.89 TEOA 300 W Xe > 400 252 396 

3 Pt/MoS2/g-C3N4 Sonochemical 0.5 Methanol 300 W Xe > 400 231 313 

4 MoS2/mpg-C3N4 Impregnation & Sulfidation 0.2 Lactic acid 300 W Xe 420 1125 397 

5 MoS2/g-C3N4 Impregnation-sulfidation 0.5 Lactic acid 300 W Xe > 420 1340 398 

6 MoS2/C3N4 Hydrothermal 4 TEOA 300 W Xe > 420 90 399 

7 MoSx/g-C3N4 - 3 Lactic acid 3 W LED 420 273.1 400 

8 1T MoS2/g-C3N4 Solvothermal 0.2 Lactic acid 300 W Xe - 949 401 

9 1T MoS2/O-g-C3N4 Solvothermal 0.2 TEOA 300 W Xe > 400 1842 394 

10 MoS2/py-C3N4 Hydrothermal 3 TEOA 300 W Xe > 420 500 402 

11 g‐C3N4/Ag/MoS2 Hydrothermal - TEOA 300 W Xe > 420 104 403 

12 Pt/MoS2/C3N4 In-situ photodeposition 2 Lactic acid 300 W Xe  2342  

 

 

 

 

 

Figure A.1 EPR signal of pure C3N4 at room temperature without light irradiation (inset: magnification from 

3480 to 3560 G). 
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Figure A.2 XRD powder patterns of Pt/CN and Pt/MS-CN composite catalysts removed from the reactor after 

6 h irradiation under UV-vis light in the presence of lactic acid. 

Figure A.3 DRS UV-vis spectra of 2H MoS2 (HT), 1T MoS2 (ST) and 2H MoS2 (TD). Photos: (a) 2H MoS2 (HT), 

(b) 1T MoS2 (ST) and (c) 2H MoS2 (TD). 



IV 
 

 
  

Figure A.4 STEM high angle annular dark field (HAADF) micrographs of CN phase decorated with Pt 

(column l), high resolution HAADF (column m) and bright field (BF) micrographs (column r) of MoS2 phase 

(when present) in catalysts exposed to UV-vis irradiation for 6 h in the presence of lactic acid; (line a) Pt/CN, 

(b) Pt/2H MS-CN (PD), (c) Pt/2H MS-CN (SC), (d) Pt/1T MS-CN (SC), (e) Pt/2H MS-CN (TD). 
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In Fig. A.5, the high resolution STEM-HAADF image of Pt/2H MS-CN (SC) illustrates that 2H MoS2 has 

a typical layered structure. Analysis of the Fast Fourier Transformation (FFT) of that image revealed an 

interlayer spacing of 0.27 and 0.65 nm, which corresponds to the (100) and (002) planes of hexagonal 2H 

MoS2 (ICDD: 01-075-1539) which also confirms the existence of 2H MoS2 species in the composite catalysts. 

    

  

               Figure A.5 High resolution STEM-HAADF image with corresponding FFT of Pt/2H MS-CN (SC). 

         Figure A.6 STEM-HAADF micrograph with corresponding EDX spectra of Pt/CN. 
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Figure A.7 STEM-HAADF micrograph with corresponding EDX spectra of Pt/2H MS-CN (PD). 

Figure A.8 STEM-HAADF micrograph with corresponding EDX spectra of Pt/2H MS-CN (SC). 

Figure A.9 STEM-HAADF micrograph with corresponding EDX spectra of Pt/1T MS-CN (SC). 
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Figure A.10 STEM-HAADF micrograph with corresponding EDX spectra of Pt/2H MS-CN (TD). 

Figure A.11 XP spectra of C 1s: (a) Fresh catalysts; (b) Recovered catalysts after 6 h reaction. 
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The elemental C 1s spectrum of pure CN (Fig. A11a, top) can be deconvoluted into four different peaks 

with binding energies centered at 289.5, 288.3, 285.9 and 284.8 eV. The peak located at 289.5 eV can be 

attributed to (N=C-O) groups, while the peak centered at 288.3 eV is associated with the sp2-bonded carbon 

in an N-containing aromatic structure (N-C=N) which is the major carbon environment in the CN matrix. 

The peak at 285.9 eV is ascribed to carbon attached with tertiary nitrogen ((C)3-N) and the peak at 284.8 eV 

corresponds to adventitious carbon species (C-C).404 The respective elemental N 1s spectrum of pure CN 

(Fig. A.12a, top) could be deconvoluted into three different peaks at binding energies of 401.5, 400.3 and 

398.9 eV which can be assigned to the terminal amino groups (C-N-H), tertiary nitrogen groups (N-(C)3) and 

sp2-hybridized nitrogen involved in triazine rings (C-N=C), respectively.351 Moreover, there is a weak peak 

present at 404.35 eV that is attributed to charging effects in CN.405,406  

 

 

 

 

 

 

 

 

Figure A.12 XP spectra of N 1s: (a) Fresh catalysts; (b) Recovered catalysts after 6 h reaction. 
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Figure A.13 XP spectra of O 1s: (a) Fresh catalysts; (b) Recovered catalysts after 6 h reaction. 

Figure A.14 XP spectra of Pt 4f: Pt/CN, Pt/2H MS-CN (PD) and Pt/2H MS-CN (TD). 
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