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1Introduction

1.1 Overview

One of the outstanding capabilities of the human auditory system
is to recover information on acoustic scenarios out of a mixture of
sounds.1 With only the two ears as their acoustic sensors, humans

1 Cherry (1953). “Some Experiments on
the Recognition of Speech, with One
and with Two Ears”. In: J. Acoust. Soc.
Am. 25.5, pp. 975–979.

are able to analyse complex scenes and form auditory objects2 from 2 Bregman (1994). Auditory Scene Analy-
sis: The Perceptual Organization of Sound.
MIT press, Ch. 1.

the ear signals. This internal representation allows to interpret and
potentially focus on particular objects. The cocktail-party effect3 is 3 Cherry, op. cit., Sec. 2.
a well-known example, where the listener focuses the attention to a
target speaker and actively segregates it from its interfering milieu4.

4 Hawley et al. (2004). “The benefit of
binaural hearing in a cocktail party: Ef-
fect of location and type of interferer”.
In: J. Acoust. Soc. Am. 115.2, pp. 833–
843, Sec. I.

The remarkable degree of complexity which humans are able to re-
solve also implies challenges for the presentation of spatial audio
content via electronic devices. Electro-acoustic transducers such as
headphones or loudspeaker are used to provide the listener with
selected aspects of a desired scenario. The presentation has to be of
sufficient level of detail in order to invoke the intended perceptual
impression.

Presenting spatial audio content via loudspeakers has a long his-
tory and is well-established in everyday life for decades. According
to the reviews of Rumsey,5 and Ahrens,6 the traditional two-channel

5 Rumsey (2001). Spatial Audio. Focal
Press, Sec. 1.4.
6 Ahrens (2010). “The Single-layer Po-
tential Approach Applied to Sound
Field Synthesis Including Cases of Non-
enclosing Distributions of Secondary
Sources”. PhD thesis. Berlin, Germany:
Technische Universität Berlin, Sec. 1.1.

stereophony was patented in the 1930s by Blumlein.7 A typical stereo

7 Blumlein (1931). Improvements in and
relating to Sound-transmission, Sound-
recording and Sound-reproducing Systems.
British Patent Specification 394,325.

setup is depicted in Fig. 1.1a. The method was extended towards
Ambisonics8 and Quadraphony9 to augment the spatial impression

8 Gerzon (1973). “Periphony: With-
Height Sound Reproduction”. In: J.
Aud. Eng. Soc. 21.1, pp. 2–10.
9 Torick (1998). “Highlights in the His-
tory of Multichannel Sound”. In: J.
Aud. Eng. Soc. 46.1/2, pp. 27–31.

with a larger variety of sound directions. Five-channel Surround
Sound (5.0) with an optional low-frequency channel (5.1) constitutes
another extension and is standardised by the International Telecom-
munication Union (ITU).10 In other reproduction techniques addi- 10 Multichannel stereophonic sound system

with and without accompanying picture
(Aug. 2012). Standard ITU-R BS.775-
3. International Telecommunication
Union Radiocommunication Assembly.

tional loudspeakers are placed at layers above and below the listeners
to present three-dimensional (3D) sound. The number of suggested
loudspeaker layouts is vast.11 A well-established method for arbi-

11 Advanced sound system for programme
production (July 2018). Standard ITU-R
BS.2051-2. International Telecommuni-
cation Union Radiocommunication As-
sembly.

trary 3D geometries is Vector Based Amplitude Panning (VBAP).12

12 Pulkki (1997). “Virtual Sound Source
Positioning Using Vector Base Ampli-
tude Panning”. In: J. Aud. Eng. Soc.
45.6, pp. 456–466.

The mentioned techniques heavily rely on certain properties of the
human auditory system and the perception of sound connected to it.
For example, stereo panning exploits the effect of summing locali-
sation:13 By adjusting the amplitude or the delay between the two

13 Blauert (1997). Spatial hearing: the
psychophysics of human sound localization.
MIT press, Sec. 3.3.1.

loudspeaker signals, the perceived direction of the so-called phan-
tom source is shifted in between the loudspeakers. However, the
exploited mechanism does only lead to the desired spatial perception
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(a) Stereophony (b) Sound Field Synthesis (c) Local Sound Field Synthesis

sweet spot

Figure 1.1: Comparison of differ-
ent loudspeaker reproduction scenar-
ios. The blue area marks the target re-
gion, where the desired perceptual im-
pression is pursued to be invoked cor-
rectly. For Local Sound Field Synthesis,
this region can be shifted according to
the position of the listener. The figure
is adapted from Wierstorf (2014). “Per-
ceptual Assessment of sound field syn-
thesis”. PhD thesis. Technische Univer-
sität Berlin, Fig. 1.4 and Ahrens (2012).
Analytic Methods of Sound Field Synthe-
sis. T-Labs Series in Telecommunication
Services. Berlin Heidelberg, Germany:
Springer-Verlag, Fig. 1.1. �

for a very limited area, where the listener is supposed to be situated
in front of the loudspeakers. In the context of stereophony and sur-
round sound, it is known as the sweet spot. With the growing num-
ber of employed loudspeakers it becomes feasible to pursue a physi-
cally accurate synthesis of a desired sound field within an extended
target region. It is hereby assumed that humans cannot distinguish
between the desired sound field and its perfect physical reconstruc-
tion. Presentation methods following this paradigm are commonly
subsumed under the term Sound Field Synthesis (SFS). Two well-
known representatives are Near-Field-Compensated Higher-Order
Ambisonics (NFCHOA)14 and Wave Field Synthesis (WFS).15 An

14 Daniel (May 2003). “Spatial Sound
Encoding Including Near Field Effect:
Introducing Distance Coding Filters
and a Viable, New Ambisonic Format”.
In: Proc. of 23rd Intl. Aud. Eng.
Soc. Conf. on Signal Processing in Au-
dio Recording and Reproduction. Copen-
hagen, Denmark.
15 Berkhout (1988). “A Holographic Ap-
proach to Acoustic Control”. In: J. Aud.
Eng. Soc. 36.12, pp. 977–995.

exemplary scenario is depicted in Fig. 1.1b. For an accurate synthe-
sis, a distribution of densely spaced loudspeakers surrounding the
target region is necessary. The required distance between two adja-
cent loudspeakers is inversely proportional to the highest frequency
for which correct synthesis is supposed to be achieved. The audible
range up to 20 kHz demands a distance of approximately 1 cm.16

16 based upon the half-wavelength crite-
rion, exempli gratia (e.g.) Van Trees
(2004). Detection, estimation, and mod-
ulation theory, optimum array processing.
John Wiley & Sons, Eq. (2.130).

Violating this condition potentially leads to spatial aliasing impairing
the accuracy. Such small distances cannot be realised with today’s
loudspeaker technology as the minimal distance is constrained by the
cabinet size. Moreover, an extended target region with a boundary
of several metres length leads to a high logistical and financial effort
including a vast number of transducers, amplifiers, and digital-to-
analog (D/A) converters. Thus, most SFS systems employ up to
hundreds of loudspeakers and typically achieve an artefact-free syn-
thesis with an upper frequency limit of 1 kHz to 2 kHz.

A compromise between the available listening area and the syn-
thesis accuracy is made in Local Sound Field Synthesis (LSFS):17 A 17 Local Sound Field Synthesis was ini-

tially introduced as a term in Spors
and Ahrens (Oct. 2010b). “Local Sound
Field Synthesis by Virtual Secondary
Sources”. In: Proc. of 40th Intl. Aud.
Eng. Soc. Conf. on Spatial Audio. Tokyo,
Japan, Sec. 1.

more accurate reproduction inside an area which is smaller than the
area surrounded by the loudspeakers is pursued. Stronger artefacts
outside the prioritised area are permitted. It is shown in Fig. 1.1c,
that LSFS is useful for applications, where the listener’s position is
restricted to a small region of interest or is tracked using a suitable
technology. As various approaches to LSFS exist, an in-depth discus-
sion on them will be given in Ch. 3.

https://github.com/fietew/phd-thesis/tree/master/01_introduction/fig01
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Although the mentioned techniques for spatial audio presentation
are differently motivated by physics and/or perception, their perfor-
mance has to be finally assessed and compared based on the quality
judgement given by the listener. Typical terms used in conjunction
with audio technology are sound quality and Quality of Experience
(QoE).18 Whereas sound quality restricts investigations to the per- 18 Raake and Wierstorf (Sept. 2016).

“Assessment of audio quality and ex-
perience using binaural-hearing mod-
els”. In: Proc. of 22nd Int. Congress
on Acoustics (ICA). Buenos Aires, Ar-
gentina, Sec. 1.

ceivable influence of the technical system, QoE takes the whole lis-
tening experience into account. According to Raake and Wierstorf, it
is challenging to directly assess QoE due to its holistic character and
most studies focus on sound quality. Blauert and Jekosch19 identi-

19 Blauert and Jekosch (Aug. 2003).
“Concepts Behind Sound Quality:
Some Basic Considerations”. In:
Proc. of International Congress and
Exposition on Noise Control Engineering
(INTERNOISE). Seogwipo, Korea.

fied the concepts of plausibility and authenticity as closely related to
sound quality. Plausibility is related to the internally build-up expec-
tation of the listener and how well the presentation agrees with her
or his implicit reference. Asking for the authenticity of a sound pre-
sentation method implies the provision of an explicit reference. If the
listener is not able to distinguish between the presentation and the
reference, the method can be regarded as authentic or transparent.
Authenticity may be investigated using the paradigm of fidelity,20 20 Raake and Wierstorf, loc. cit.

where different aspects or attributes of an audio reproduction are
assessed separately. In the context of surround sound, Rumsey et
al.21 identified spatial and timbral fidelity as significant aspects of 21 Rumsey et al. (2005). “On the rela-

tive importance of spatial and timbral
fiedelities in judgements of degraded
multichannel audio quality”. In: J.
Acoust. Soc. Am. 118.2, pp. 968–976.

the overall sound quality. The perceived quality of (L)SFS is also
subject to recent research: Wittek et al.22,23 compared stereophony

22 Wittek (2007). “Perceptual differences
between wavefield synthesis and stere-
ophony”. PhD thesis. University of
Surrey.
23 Wittek et al. (Oct. 2007). “On the
Sound Color Properties of Wavefield
Synthesis and Stereo”. In: Proc. of 123rd
Aud. Eng. Soc. Conv. New York, USA.

and WFS with respect to (w.r.t.) spatial and timbral fidelity. Wier-
storf24 investigated the horizontal localisation in NFCHOA and WFS

24 Wierstorf (2014). “Perceptual Assess-
ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Sec. 5.1.

as an aspect of spatial fidelity. Further, he conducted experiments to
assess the timbral fidelity of WFS.25,26

25 Wierstorf et al. (Aug. 2014). “Col-
oration in Wave Field Synthesis”. In:
Proc. of 55th Intl. Aud. Eng. Soc. Conf.
on Spatial Audio. Helsinki, Finland.
26 Wierstorf, op. cit., Sec. 5.2.

1.2 Goals and Structure

The goal of this thesis is to investigate the physical and perceptual
properties of selected methods for LSFS and compare them to con-
ventional SFS. As LSFS potentially enhances the synthesis accuracy
around the listener’s position, the question arises, whether this has
an positive effect on aspects related to sound quality as well. More-
over, this work focusses on how technical parameters such as the
position of the listener or the size of target region in LSFS influ-
ences physics and perception. Although panning techniques such as
Ambisonics27 and VBAP28 are not explicitly considered within the 27 Gerzon, op. cit.

28 Pulkki, op. cit.present work, results from the literature are incorporated into the
discussions whenever it is suitable.

In Ch. 2, the mathematical foundations of sound propagation in
linear acoustics are introduced. The integral notation of the lin-
earised wave equation will be revisited in particular since it builds
the basis for (L)SFS. As a key concept for the later discussions on
the physical properties, the local wavenumber vector29 will be intro-

29 Firtha et al. (2017). “Improved Ref-
erencing Schemes for 2.5D Wave Field
Synthesis Driving Functions”. In:
IEEE/ACM Trans. Audio, Speech, Lan-
guage Process. 25.5, pp. 1117–1127,
Eq. (15).

duced.
The fundamental problem of (L)SFS is verbally and mathemati-

cally formulated in Ch. 3. WFS and NFCHOA are revisited as repre-
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sentatives of the conventional solution to it. They will later be used as
the baseline for the comparison. Based upon prior discussions on the
benefits and drawbacks of different LSFS strategies, Local Wave Field
Synthesis using Spatial Bandwidth Limitation (LWFS-SBL)30 and Lo- 30 Hahn et al. (June 2016). “Local

Wave Field Synthesis by Spatial Band-
Limitation in the Circular/Spherical
Harmonics Domain”. In: Proc. of 140th
Aud. Eng. Soc. Conv. Paris, France.

cal Wave Field Synthesis using Virtual Secondary Sources (LWFS-
VSS)31 are selected for further investigations. For all methods, spe-

31 Spors and Ahrens, op. cit.
cial attention is drawn to the implementation of the methods in the
discrete-time domain as a consequence of digital signal processing.
The influence of the parametrisation of the mentioned techniques
on the properties of the synthesised sound fields is examined on a
qualitative level.

Several theoretical treatises covered the trade-off between the spa-
tial extent of the listening area, the number of actuators, and the fre-
quency up to which artefact-free synthesis is possible in (L)SFS. For
example, Kennedy et al.32 derived lower bounds for the mentioned 32 Kennedy et al. (2007). “Intrinsic Lim-

its of Dimensionality and Richness in
Random Multipath Fields”. In: IEEE
Trans. Signal Process. 55.6, pp. 2542–
2556.

frequency assuming arbitrary sound fields. If and how the synthesis
accuracy can be enhanced by incorporating additional knowledge
about the desired scenario, remains an open research question. Ch. 4
introduces a geometric model, which predicts the artefact-free fre-
quency bound as a function of the mentioned dependencies. The
model is further used to compare the selected (L)SFS methods w.r.t.
their physical properties.

The perceptual evaluation of the approaches is presented in Ch. 5
and Ch. 6. For spatial fidelity, the azimuthal localisation of a point
source as the desired sound field is investigated. Timbral fidelity
is assessed by measuring the perceived colouration of the synthesis
with the point source as the reference. A summary of the thesis is
given in Ch. 7.

1.3 Open Science, Reproducibility, and External
Resources

CC BY 3.0 DE

Figure 1.2: Pictograms of listener with
and without headphones. �

The success of scientific research in general heavily relies on its credi-
bility and acceptance in the broader society. In the past years, striking
terms as fake news33 and fake science34 had emerged as synonyms for

33 Lazer et al. (2018). “The science
of fake news”. In: Science 359.6380,
pp. 1094–1096.
34 Eckert and Hornung (July 2018). Fake
Science – Die Lügenmacher. Das Erste.
television documentary.

the intentional misinformation eroding the trust in reliable research.
Making scientific results publicly accessible and reproducible is one
building block to counteract this process. As a publicly financed
researcher, the author also sees a moral obligation to the public. The
provision of means to reproduce the published results should more-
over be common practice. It allows other researchers to comprehend
and validate the outcome of the research. Most of the present work
relies on the implementation of signal processing chains as computer
programs, which is by definition prone to errors. Thus, with some
exceptions, anything less than the release of source programs is intolerable
for results that depend on computation.35 35 Ince et al. (Feb. 2012). “The case for

open computer programs”. In: Nature
482.7386, pp. 485–488.

The approach towards the mentioned aspects is very much in-
spired by the work of Wierstorf:36 Several features of the present 36 Wierstorf, op. cit.
document rely on hyperlinks allowing to navigate between different

https://github.com/fietew/phd-thesis/tree/master/01_introduction/fig02
https://www.daserste.de/information/reportage-dokumentation/dokus/videos/exclusiv-im-ersten-fake-science-die-luegenmacher-video-102.html
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parts of thesis and providing access to external resources. Thus, the
author highly recommends the usage of the electronic version of this
document for maximum comfort. For all figures, the symbol � pro-
vides a link to the according folder of the code repository37 contain- 37 snapshot available at Winter (2019).

Local Sound Field Synthesis – Supplements
1.0.1. doi: 10.5281/zenodo.3543537.

ing the necessary scripts and data to reproduce the figure. All (L)SFS
algorithms presented in Ch. 3 are implemented – partly by the author
– in the Sound Field Synthesis Toolbox for MATLAB.38 It is publicly 38 Wierstorf and Spors (Apr. 2012).

“Sound Field Synthesis Toolbox”. In:
Proc. of 132nd Aud. Eng. Soc. Conv.
Budapest, Hungary.

available either in the code repository or as a citable snapshot of the
used version.39 Whenever possible, a link to the distinct function of

39 Sound Field Synthesis Toolbox

Wierstorf et al. (Mar. 2019). Sound Field
Synthesis Toolbox 2.5.0. doi: 10.5281/

zenodo.2597212

the toolbox implementing a currently discussed feature is given as
a side note. The perceptive model used to extract auditory features
from binaural signals in Ch. 5 and Ch. 6 is part of the Two!Ears
Auditory Model.40 The layout of the thesis is based on a LATEX class 40 Two!Ears Auditory Model

Two!Ears Team (Oct. 2018). Two!Ears
Auditory Model 1.5. doi: 10 . 5281 /

zenodo.1458420

which mimics the style of the books of Tufte,41 whereas the style for

41 tufte-latex

e.g. Tufte (May 2006). Beautiful Ev-
idence. 1st ed. Cheshire, Connecticut:
Graphics Press, LLC

chapter headings stems from Firtha.42 The pictograms for a listener

42 Firtha (2019). “A Generalized Wave
Field Synthesis Framework with Ap-
plication for Moving Virtual Sources”.
PhD thesis. Budapest University of
Technology and Economics.

with and without headphones depicted in Fig. 1.2 are part of the
thesis of Wierstorf. All colormaps used in the plots are published by
Brewer and are implemented by Schneider and Wierstorf.43,44

43 colorbrewer2.org

Brewer (2005). Designing Better Maps: A
Guide for GIS Users. New York, USA:
ESRI Press
44 Schneider and Wierstorf (June 2014).
Gnuplot-colorbrewer: ColorBrewer color
schemes for gnuplot. doi: 10 . 5281 /

zenodo.10282.

1.4 Mathematical Preliminaries

x

y

z

ux

uy

uz r
x

ρφ

ϑ

Figure 1.3: Coordinate representations
�

A position vector x in the three-dimensional, right-hand coordinate
system is defined by its Cartesian (x, y, z), its cylindrical (ρ, ϕ, z) or
its spherical representation (r, ϑ, ϕ), see Fig. 1.3. The orthogonal dis-
tance of the vector from the z-axis is denoted by ρ, while ϕ describes
the azimuth angle between the x-axis and the projection of x onto the
xy-plane. The 2-norm of x, id est (i.e.) its distance to the coordinates’
origin, is given as r = |x|. Its polar angle is denoted as ϑ. These
representations are connected via

x = ρ cos ϕ = r sin ϑ cos ϕ , (1.1a)

y = ρ sin ϕ = r sin ϑ sin ϕ , (1.1b)

z = z = r cos ϑ . (1.1c)

In general, column vectors are assumed in Cartesian coordinates, i.e.
x = [x, y, z]T, with T denoting the transposition operator. Elements
of a vector are denoted using the same subscripted indices of their
corresponding vector. For example, xi, yi, and zi belong to xi. The
scalar product of two vectors is given by the notation45

45 Arfken and Weber (2005). Mathemat-
ical Methods for Physicists. 6th ed. Else-
vier, Eq. (1.24).

⟨x1|x2⟩ := x1x2 + y1y2 + z1z2 . (1.2)

A special case of the scalar product is the squared 2-norm |x|2 =

⟨x|x⟩. In Cartesian coordinates, the gradient of a scalar function f
w.r.t. x is defined as46,47 46 Williams (1999). Fourier Acoustics:

Sound Radiation and Nearfield Acoustical
Holography. London, UK: Academic
Press, Eq. (2.4).
47 Arfken and Weber, op. cit., Eq. (1.61).

∇x f (x) :=
∂ f (x)

∂x
ux +

∂ f (x)
∂y

uy +
∂ f (x)

∂z
uz . (1.3)

The unit vectors along the coordinate axes are denoted as ux, uy, and
uz. The directional derivative of f along an unit vector n

∇x,n f (x) := ⟨∇x f (x)|n⟩ (1.4)

https://github.com/fietew/phd-thesis/tree/master
https://doi.org/10.5281/zenodo.3543537
https://github.com/sfstoolbox/sfs-matlab/tree/2.5.0
https://doi.org/10.5281/zenodo.2597212
https://doi.org/10.5281/zenodo.2597212
https://github.com/TWOEARS/TwoEars
https://doi.org/10.5281/zenodo.1458420
https://doi.org/10.5281/zenodo.1458420
https://www.ctan.org/pkg/tufte-latex
http://colorbrewer2.org
https://doi.org/10.5281/zenodo.10282
https://doi.org/10.5281/zenodo.10282
https://github.com/fietew/phd-thesis/tree/master/01_introduction/fig03
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is related to the gradient via the scalar product. The Laplace operator
w.r.t. x is defined as48,49 48 Williams, op. cit., p. 15.

49 Arfken and Weber, op. cit., Eq. (1.81a).

∇2
x f (x) :=

∂2 f (x)
∂x2 +

∂2 f (x)
∂y2 +

∂2 f (x)
∂z2 . (1.5)



2Fundamentals of Sound Fields

This chapter introduces the reader to sound propagation in linear
acoustics which builds the basis for SFS. As a well-established model
for sound propagation in air, the linearised wave equation is pre-
sented in Sec. 2.1. Different alternatives to represent the sound fields
fulfilling the wave equation are discussed in Sec. 2.2. They will later
be used to derive selected methods for SFS. Finally, Sec. 2.3 focusses
on the definition of the local wavenumber vector as one of the key
concepts for the calculi in the subsequent chapters.

2.1 The Linearised Wave Equation

The theoretical foundation of wave propagation in linear acoustics is
given by the linearised wave equation, which will be simply termed
wave equation in the course of this thesis. As the term linearised al-
ready suggests, it derives from more general, non-linear principles of
fluid dynamics, namely the equations of mass, momentum, energy,
and state.1 Several assumptions especially about the medium (air) 1 Blackstock (2000). Fundamentals of

physical acoustics. John Wiley & Sons,
p. 83.

in which the waves propagate and the amplitude of the waves have
to be made in order to achieve linearisation. For a more detailed
discussion, the reader is referred to Blackstock2 or Pierce.3 The three 2 Ibid., Cha. 2.

3 Pierce (2014). “Basic Linear Acous-
tics”. In: Springer Handbook of Acous-
tics. Ed. by Thomas D Rossing. 2nd ed.
Springer, pp. 29–115, Sec. 3.3.

upcoming sections discuss the wave equation in its differential and
integral representation together with selected solutions.

2.1.1 Differential Formulation

The inhomogeneous wave equation is defined in its differential form
as4 4 Williams (1999). Fourier Acoustics:

Sound Radiation and Nearfield Acoustical
Holography. London, UK: Academic
Press, Eq. (8.39).

∇2
x p(x, t)− 1

c2
∂2

∂t2 p(x, t) = −qp(x, t) , (2.1)

where the Laplace operator ∇2
x is defined by (1.5). The speed of

sound is denoted as c and is fixed to 343 m/s for all simulations within
this thesis. The position- and time-dependent sound pressure field
p(x, t) has to fulfil this equation in order to be a valid model in terms
of linear acoustics. The source density qp(x, t) describes possibly
existing sound sources also known as (a.k.a.) inhomogenities. If the
density is zero everywhere in the 3D space R3, Eq. (2.1) is generally
referred to as the homogeneous wave equation.5 5 Ibid., Eq. (2.1).

The temporal Fourier Transform for a time-signal f (t) is defined
as6 6 Girod et al. (2001). Signal and Systems.

Wiley, Eq. (9.1).
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F(ω) :=
∞∫︂

−∞

f (t) e−jωt dt , (2.2)

whereas F(ω) denotes the according Fourier spectrum. It should be
noted, that other treatises7,8 use a different convention with a plus- 7 Gumerov and Duraiswami (2004). Fast

multipole methods for the Helmholtz equa-
tion in three dimensions. Oxford, UK: El-
sevier Science, Eq. (1.1.14).
8 Williams, op. cit., Eq. (1.6).

sign in the exponential. The angular frequency ω is related to the
temporal frequency f via ω = 2π f . Along with its differentiation
theorem,9 the transform is applied to Eq. (2.1) to obtain an expression

9 Girod et al., op. cit., p. 564.for the wave equation in the temporal frequency domain:10
10 Williams, op. cit., Eq. (8.39).

∇2
x P(x, ω) +

(︂ω

c

)︂2
P(x, ω) = −QP(x, ω) . (2.3)

The Fourier spectra of the sound pressure field and the source den-
sity are denoted as P(x, ω) and QP(x, ω), respectively. Eq. (2.3) is
generally referred to as the inhomogeneous Helmholtz equation.11 11 Jensen et al. (2011). Computational

Ocean Acoustics. 2nd ed. Modern
Acoustics and Signal Processing. New
York, USA: Springer, Eq. (2.29).

Again, QP(x, ω) equals zero in the homogeneous case. Although
(2.1) and (2.3) are equivalent, most of the upcoming calculi are car-
ried out in the temporal frequency domain as the absence of the
derivative w.r.t. time allows for more convenient derivations.

The general solution to (2.3) is given by the sum of the particular
solution to (2.3) and the general solution to the respective homoge-
neous equation.12 A versatile tool to express arbitrary solutions of 12 Ibid., p. 78.

the inhomogeneous wave equation in the absence of boundary condi-
tions is the 3D free-field Green’s function. With the used convention
for the Fourier Transform in (2.2), it is given as13 13 Williams, op. cit., Eq. (8.41).

G(x|xs, ω) =
e−j ω

c |x−xs|

4π|x− xs|
. (2.4)

Its according density reads

QG(x|xs, ω) = δ(x− xs) := δ(x− xs) δ(y− ys) δ(z− zs) (2.5)

with δ(·) denoting the Dirac delta distribution.14 It can be inter- 14 Girod et al., op. cit., Sec. 8.3.

preted as an impulse-like excitation located at xs.15 The resulting 15 Williams, op. cit.

specialised inhomogeneous Helmholtz equation reads16 16 Jensen et al., op. cit., Eq. (2.60).

∇2
x G(x|xs, ω) +

(︂ω

c

)︂2
G(x|xs, ω) = −δ(x− xs) . (2.6)

The free-field Green’s function in (2.4) is only one particular solution
to (2.6) because solutions to the homogeneous Helmholtz equation
may be added in order to form the general solution. According to
Williams,17 the sifting property18,19 17 Williams, op. cit., Sec. 8.6.

18 Girod et al., op. cit., Eq. (8.15).
19 Gel’fand and Shilov (1964). General-
ized functions: Vol. 1. Properties and op-
erations. New York, London: Academic
Press, p. 4.

∫︂ ∞

−∞
f (xs)δ(xs − x)dxs = f (x) (2.7)

of the Dirac delta distribution can be used to express the source
density of an arbitrary sound field in (2.3) as20 20 Williams, op. cit., Eq. (8.42).

QP(x, ω) =
∫︂∫︂∫︂

R3
QP(xs, ω) δ(x− xs)dVs . (2.8)

A suitably chosen differential volume element for integration is de-
noted as dVs = dVs(xs). The equation postulates a 3D convolution
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of the source density of the free-field Green’s function and the source
density of the sound field over the whole R3 space. After substitu-
ting the Dirac delta distribution in (2.8) with the left-hand side of
(2.6), the order of differentiation and integration in the resulting
equation is interchanged. A comparison with (2.3) then reveals that21 21 Ibid., Eq. (8.43).

P(x, ω) =
∫︂∫︂∫︂

R3
QP(xs, ω)G(x|xs, ω)dVs (2.9)

holds. A particular solution P(x, ω) of (2.3) may be expressed by its
corresponding source density QP(x, ω) together with the free-field
Green’s function. The integral postulates P(x, ω) as the result of a
3D convolution. In free-field, the wave equation can be interpreted
as a linear time and space invariant (LTSI) system, with QP(x, ω) and
P(x, ω) as its input and output, respectively. The free-field Green’s
function in the temporal Fourier domain can be interpreted as the
spatial impulse response and temporal transfer function of the wave
equation. It allows to compute any sound field for a given source
density. In the following section, Eq. (2.9) is used to derive solutions
to (2.3) for selected source densities.

2.1.2 Selected Solutions
greens_function_mono.m

greens_function_imp.mThis section presents a selection of analytically expressible sound
fields which are the solution to the inhomogeneous Helmholtz equa-
tion (2.3) for relatively simple source densities QP(x, ω).
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Figure 2.1: Real part of the sound
pressure Pps(x|xps, ω) of a point source
(2.11) located at xps = [0, 1, 0]T m emit-
ting a monochromatic ( f = 1 kHz)
source signal. The plot is normalised
to the pressure magnitude at the coor-
dinates’ origin. �

Monopole Point Source: The sound field Pps(x|xps, ω) of a mono-
pole point source located at xps is a generalisation of the free-field
Green’s function (2.4) with its density

Qps(x|xps, ω) = S̃(ω)δ(x− xps) , (2.10)

where S̃(ω) describes the Fourier spectrum of the source signal s̃(t),
which is emitted by the point source. The sound pressure field is
given as22

22 Spors (2006). “Active listening
room compensation for spatial sound
reproduction systems”. PhD the-
sis. Friedrich-Alexander-Universität
Erlangen-Nürnberg., Eq. (2.27)

Pps(x|xps, ω) = S̃(ω)
e−j ω

c |x−xps|

4π|x− xps|
(2.11)

which is exemplarily shown in Fig. 2.1. The position of the point
source will either be parametrised by its Cartesian (xps, yps, zps) or
its spherical representation (rps, ϑps, ϕps).

Monopole Line Source: The sound field Pls(x|xls, ω) of an infinite-
length line source in z-direction located at xls = [xls, yls, 0]T satisfies
(2.3) with the density23,24 23 Williams, op. cit., p. 265.

24 Spors, op. cit., Eq. (2.38).
Qls(x, ω) = S̃(ω)δ(x− xls)δ(y− yls) . (2.12)

It is alternatively parametrised in cylindrical coordinates by xls =

ρls[cos ϕls, sin ϕls, 0]T. A comparison between (2.10) and (2.12) shows,
that the line source can be interpreted as a continuous, infinite, linear
distribution of monopole point sources, here along the z-direction.25 25 Williams, op. cit., Sec. 8.6.1.

http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_monochromatic/greens_function_mono.m
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_time_domain/greens_function_imp.m
https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig01
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The corresponding sound pressure field is given as26 26 Ibid., Eq. (8.47).

Pls(x|xls, ω) = − j
4

S̃(ω) H(2)
0

(︃
ω

c

√︂
(x− xls)2 + (y− yls)2

)︃
(2.13)

and is exemplarily shown in Fig. 2.2. The amplitude decay of a line
source is approximately 3 dB per distance doubling, which is half
decay of a monopole point source.27 H(2)

0 (·) denotes the cylindrical 27 Möser (2009). Engineering Acoustics.
Springer, Sec. 3.1 and 3.2.Hankel function of second kind and zeroth order.28
28 Abramowitz and Stegun (1964).
Handbook of mathematical functions: with
formulas, graphs, and mathematical tables.
55. Courier Corporation, Sec. 9.1.4.
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Figure 2.2: Real part of the sound pres-
sure Pls(x|xls, ω) of a line source (2.13)
located at xls = [0, 1, 0]T m emitting
a monochromatic ( f = 1 kHz) source
signal. The plot is normalised to the
pressure magnitude at the coordinates’
origin. �

Dipole Point Source: A dipole point source Pdps(x|xdps, ndps, ω) is
parametrised by its position xdps and the unit vector ndps, which
describes the orientation of the dipole radiation pattern. The corre-
sponding source density reads

Qdps(x|xdps, ndps, ω) = S̃(ω)∇x,ndps δ(x− xdps) , (2.14)

where the directional derivative∇x,ndps along ndps is defined by (1.4).
Inserting the density into (2.9) yields

Pdps(x|xdps, ndps, ω) = (2.15)

S̃(ω)
∫︂∫︂∫︂

R3
∇xs,ndps δ(xs − xdps)G(x|xs, ω)dVs .

For the derivation, ndps may chosen to ux
29 without loss of gener-

29 unit vector pointing in positive x-
direction, see Sec. 1.4

ality since the underlying coordinate system may be rotated such
that the ndps and the x-axis are aligned. The directional derivative
in (2.15) simplifies to the derivative with respect to xs. While the
integrals w.r.t. ys and zs are solved via the sifting theorem in (2.7),
the differentiation theorem30

30 Gel’fand and Shilov, op. cit., p. 26.
∫︂ ∞

−∞
f (xs)

dδ(xs − x)
dx

dxs = −
d f (xs)

dxs

⃓⃓
⃓⃓
xs=x

(2.16)

of the Dirac delta distribution is applied to solve the remaining one.
After the ndps has been re-generalised to arbitrary directions, the
sound pressure field reads31 31 Schultz (2016). “Sound Field Syn-

thesis for Line Source Array Applica-
tions in Large-Scale Sound Reinforce-
ment”. PhD thesis. University of Ro-
stock, Eq. (2.17).

Pdps(x|xdps, ndps, ω) = −S̃(ω)∇x,ndps G(x|xdps, ω) (2.17)

describing the dipole point source as the directional derivative of a
monopole point source along ndps. The sound pressure is finally
given as32 32 Ibid., Eq. (2.18).

Pdps(x|xdps, ndps, ω) = (2.18)

S̃(ω)

(︄
j
ω

c
+

1
|x− xdps|

)︄
⟨x− xdps|ndps⟩
|x− xdps|⏞ ⏟⏟ ⏞
directivity

e−j ω
c |x−xdps|

4π|x− xdps|⏞ ⏟⏟ ⏞
monopole

and is exemplary shown in Fig. 2.3. As shown in Eq. (2.18), the
dipole source can be described as a monopole point source weighted
by a directivity pattern and the term given in the brackets. For close
distances |x − xdps| and low frequencies ω, the second addend in
the bracket becomes dominant leading to a total amplitude decay of

https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig02
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12 dB per distance doubling. In the far-field, the first addend leads
to a high-pass characteristic with the distance decay of a monopole
point source. The directivity pattern describes a so-called figure-of-
eight, which is the cosine of the angle between x− xdps and ndps.
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Figure 2.3: Real part of the sound pres-
sure Pdps(x|xdps, ndps, ω) of a dipole
source (2.18) located at xdps =

[0, 1, 0]T m and oriented along ndps =

[0,−1, 0]T emitting a monochromatic
( f = 1 kHz) source signal. The plot is
normalised to the pressure magnitude
at the coordinates’ origin. �

Plane Wave: A plane wave Ppw(x|npw, ω) with its propagation di-
rection npw = [cos ϕpw sin ϑpw, sin ϕpw sin ϑpw, cos ϑpw]T is often re-
garded as a solution to the homogeneous Helmholtz equation.33 Al-

33 Williams, op. cit., Sec. 2.6.2.

though the author does not raise doubts against its mathematical
validity, stating the corresponding source density Qpw(x, ω) to be
zero, raises the question what kind of sound source creates a plane
wave. As described by Junger and Feit,34 a plane wave is excited by a

34 Junger and Feit (1986). Sound, Struc-
tures, and Their Interaction. Cambridge,
USA: MIT Press.

uniformly vibrating plate of infinite size and infinitesimal thickness.
It is modelled by Spors35 as a continuous, infinite, planar distribution

35 Spors, op. cit., Sec. 2.4.4.

of monopole point sources which is shown in Fig. 2.4. The location of
the plane is parametrised by its normal vector npw and its signed dis-
tance d to the coordinates’ origin 0. For the derivation, Spors chose
the plane to be located at the coordinates origin, i.e. d = 0. However,
the propagation direction of the plane wave is only correct in the
halfspace "in front" of the plate. Behind the plate, the propagation
direction is −npw. Thus, it is necessary to consider the limiting case
where d→ ∞. The corresponding source density reads36 36 Ibid., modification of Eq. 2.45.

Qpw(x|npw, ω) = 2j
ω

c
S̃(ω) lim

d→∞
δ
(︁
⟨npw|x⟩+ d

)︁
e+j ω

c d , (2.19)

−npw npw

plate
radiator

d
0

npw

Figure 2.4: Infinite vibrating plate and
its created sound field. �

whereas the exponential term compensates for the propagation de-
lay. Similar to the calculus for the dipole point source, npw is chosen
to ux without loss of generality. After inserting (2.19) into (2.3) the
sifting theorem (2.7) is used to solve the integral w.r.t. xs. The
resulting integral37

37 Ibid., modification of Eq. 2.46.
Ppw(x|ux, ω) = (2.20)

2j ω
c

4π
lim

d→∞
e+j ω

c d
∫︂ ∞

−∞

∫︂ ∞

−∞

e−j ω
c

√
(x+d)2+(y−ys)2+(z−zs)2

√︁
(x + d)2 + (y− ys)2 + (z− zs)2

dys dzs

is solved using the identities from Gradshteyn and Ryzhik.38 It can

38 Gradshteyn and Ryzhik (2007). Ta-
bles of Integrals, Series, and Products. Ed.
by Alan Jeffrey and Daniel Zwillinger.
7th ed. Academic Press, Eq. 3.876-1/2,
6.677–3/4.be re-generalised to arbitrary propagation directions npw as

Ppw(x|npw, ω) = S̃(ω)e−j ω
c ⟨npw|x⟩ , (2.21)

which is the sound field pressure of a plane wave. As shown in
Fig. 2.5, the amplitude of the sound pressure is constant. The wave
fronts are planar and oriented perpendicular to the propagation di-
rection. −1
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Figure 2.5: Real part of the sound
pressure Ppw(x|npw, ω) of a monochro-
matic ( f = 1 kHz) plane wave (2.21)
with a propagation direction of npw =

[0,−1, 0]T. �

2.1.3 Integral Formulation

The integral notation of the wave equation or equivalently of the
Helmholtz equation builds the theoretical basis of all techniques for
SFS presented later in this thesis. The geometry used for the expla-
nations is shown in Fig. 2.6. Given a bounded volume Ω in R3 with

https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig03
https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig04
https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig05
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its smooth boundary ∂Ω, the position vector x ∈ Ω, and an arbitrary
sound pressure field P(x, ω) with its corresponding source density
QP(x, ω), the integral notation of the wave equation is given as39 39 Schultz, op. cit., Eq. (2.13).

P(x, ω) =
∫︂∫︂∫︂

Ω
G(x|xs, ω)QP(xs, ω)dVs (2.22)

+
∫︂∫︂

∂Ω
P(x0, ω)∇x0,n0 G(x|x0, ω)− G(x|x0, ω)∇x0,n0 P(x0, ω)dA0 .

dVs = dVs(xs) and dA0 = dA0(x0) describe suitably chosen dif-
ferential volume and boundary elements, respectively. The bound-
ary integral represents a distribution of monopole and dipole point
sources40 located at x0 ∈ ∂Ω. The dipoles are oriented along the 40 see Sec. 2.1.2

inward pointing surface normal n0 = n0(x0) of ∂Ω. The source
signals S̃(ω) of the dipoles and the monopoles are the boundary
sound pressure P(x0, ω) and its directional derivative∇x0,n0 P(x0, ω),
respectively. Contrary to (2.9), P(x, ω) is not defined by a single
volume integral over the whole source density QP(x, ω) in R3, but
rather by a volume integral including all sources inside Ω and a
boundary integral along ∂Ω. The boundary integral describes the
contributions of all sound sources defined by QP(x, ω), which are
located outside Ω. Thus,
∫︂∫︂∫︂

Ω̄
G(x|xs, ω)QP(xs, ω)dVs = (2.23)
∫︂∫︂

∂Ω
P(x0, ω)∇x0,n0 G(x|x0, ω)− G(x|x0, ω)∇x0,n0 P(x0)dA0

0

QP(x, ω) Ω

Ω̄

∂Ω
x

x0n0

xs

Figure 2.6: Geometry for the Integral
Formulation of the Helmholtz Equa-
tion. The area shaded in dark grey
illustrates a non-zero source density
QP(x, ω). �

with Ω̄ := R3/Ω can be easily derived by subtracting (2.9) from
(2.22). The sound field P(x, ω) may be split into two parts: its
homogeneous component

HΩ
P (x, ω) = (2.24)
∫︂∫︂

∂Ω
P(x0, ω)∇x0,n0 G(x|x0, ω)− G(x|x0, ω)∇x0,n0 P(x0, ω) dA0 ,

is source-free within Ω and describes all contributions from Ω̄. Its
inhomogeneous counterpart

IΩ
P (x, ω) :=

∫︂∫︂∫︂

Ω
G(x|xs, ω)QP(xs, ω) dVs (2.25)

defines contributions from all sources inside Ω. According to (2.22),
it is not possible to define sources inside Ω using the distribution
of monopole and dipole source along ∂Ω as this would require mo-
nopole point sources inside Ω. IP(x, ω) can therefore be regarded
as the systemic error introduced when a sound field with non-zero
source density QP(x, ω) inside Ω is described by the boundary inte-
gral alone.

The Helmholtz-Integral-Equation: In the special case of P(x, ω) be-
ing source-free within Ω, i.e. QP(x, ω) = 0 ∀ x ∈ Ω, the volume
integral in (2.22) vanishes which leads to the interior Helmholtz-
Integral-Equation (HIE)41,42

41 Williams, op. cit., Eq. (8.15).
42 Colton and Kress (2013). Inverse
acoustic and electromagnetic scattering the-
ory. 3rd ed. Vol. 93. Applied Math-
ematical Sciences. Springer Science &
Business Media, Eq. (2.5).

https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig06
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P(x, ω) = (2.26)
∫︂∫︂

∂Ω
P(x0, ω)∇x0,n0 G(x|x0, ω)− G(x|x0, ω)∇x0,n0 P(x0, ω) dA0 .

In this case, IΩ
P (x, ω) vanishes and P(x, ω) = HΩ

P (x, ω) holds. Re-
markably, independent of whether or not P(x, ω) exhibits an inho-
mogeneous component IΩ

P (x, ω), the boundary integral does only
describe the homogeneous part given by (2.24). In other words,
driving the monopole and dipole distribution with the overall field
P(x, ω) is identical to driving it with only the homogeneous compo-
nent HΩ

P (x, ω). Mathematically speaking,
∫︂∫︂

∂Ω
HP(x0, ω)∇x0,n0 G(x|x0, ω)− G(x|x0, ω)∇x0,n0HP(x0, ω) dA0

=
∫︂∫︂

∂Ω
P(x0, ω)∇x0,n0 G(x|x0, ω)− G(x|x0, ω)∇x0,n0 P(x0, ω) dA0 .

(2.27)

Boundary Conditions: The necessity of the surface pressure and the
surface pressure gradient to define the sound field within Ω is one
potential drawback of the HIE.43 It is evident from the right-hand 43 Williams, op. cit., Sec. 8.7.

side of (2.26) and has been studied extensively in the literature, that
this can be resolved by applying boundary conditions either to the
free-field Green’s function44 or to the sound field itself.45,46,47 The 44 Ibid., Sec. 8.8.

45 Ibid., Sec. 8.7.
46 Schultz and Spors (2014). “Compar-
ing Approaches to the Spherical and
Planar Single Layer Potentials for In-
terior Sound Field Synthesis”. In:
Acta Acustica united with Acustica 100.5,
pp. 900–911, Sec. 4.2.
47 Fazi and Nelson (2013). “Sound field
reproduction as an equivalent acousti-
cal scattering problem”. In: J. Acoust.
Soc. Am. 134.5, pp. 3721–3729, Sec. IV.

second option will be discussed here: A sound field P(x, ω) being
source-free inside Ω may be modified to

PT(x, ω) := P(x, ω) + PD(x, ω) , (2.28)

where the PD(x, ω) is purely inhomogeneous within Ω, i.e. its ho-
mogeneous component HΩ

PD
(x, ω) is zero. The addends P(x, ω) and

PD(x, ω) can hence be regarded as the homogeneous and inhomoge-
neous part of the total sound field PT(x, ω), respectively. Following
the same argumentation as for (2.27) the original sound field is de-
fined as

P(x, ω) = (2.29)
∫︂∫︂

∂Ω
PT(x0, ω)∇x0,n0 G(x|x0, ω)− G(x|x0, ω)∇x0,n0 PT(x0, ω) dA0 .

The addend PD(x, ω) is used to let the total sound field fulfil a chosen
boundary condition w.r.t. to the surface pressure or its directional
derivative. Within this treatise, the homogenous Dirichlet (sound-
soft) boundary condition48 48 Ibid., Eq. (14).

PT(x0, ω) = 0 ∀ x0 ∈ ∂Ω (2.30)

is of special interest, which further simplifies Eq. (2.29) to

P(x, ω) = −
∫︂∫︂

∂Ω
∇x0,n0 PT(x0, ω)G(x|x0, ω) dA0 . (2.31)

As the remaining task, ∇x0,n0 PT(x0, ω) has to be determined based
on the sound field P(x, ω) and on the shape of the boundary ∂Ω. It
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has been shown by Zotter and Spors,49 and Fazi and Nelson,50 that 49 Zotter and Spors (Sept. 2013). “Is
sound field control determined at all
frequencies? How is it related to nu-
merical acoustics?” In: Proc. of 52nd
Intl. Aud. Eng. Soc. Conf. on Sound
Field Control - Engineering and Perception.
Guildford, UK, Sec. 3.
50 Fazi and Nelson, op. cit., Sec. IV.

∇x0,n0 PT(x0, ω) is equivalent to the directional pressure gradient on
the surface of a sound-soft scatterer, whose shape coincides with
the shape of Ω. A solution of the scattering problem with P(x, ω)

as the sound field impinging on the scatterer is also a solution to
the original task. In general, it is not straightforward to solve the
scattering problem for arbitrary shapes. However, analytic solutions
for simple boundaries, like e.g. planes, cylinders and spheres, exist.
They build the basis for the SFS methods presented in Ch. 3.

2.2 Sound Field Representations

This section presents possibilities to expand arbitrary sound fields
into a superposition of basis functions weighted by their respective
expansion coefficients. In general, all presented expansions depend
on the coordinate xc around which they are expanded. However,
without loss of generality the coordinates’ origin 0 is chosen as the
expansion centre for most of the explanations. Whenever the de-
pendency on xc is omitted for the respective expansion coefficients,
xc = 0 holds.

2.2.1 Expansion into Spherical Basis Functions

The definition of the spherical coordinates r, ϑ, and ϕ used in this
treatise is given in Sec. 1.4. The general solution of the Helmholtz
Equation (2.3) for this coordinate system is the Spherical Harmonics
expansion a.k.a. the inverse Spherical Harmonics transform

P(x, ω) =
∞

∑
n=0

n

∑
m=−n

◦
Pm

n (r, ω)Ψm
n (ϑ, ϕ) (2.32)

where
◦
Pm

n (r, ω) denotes the Spherical Harmonics expansion coeffi-
cients. The according Spherical Harmonics transform is given as

◦
Pm

n (r, ω) =
∫︂ 2π

0

∫︂ π

0
P(x, ω)Ψ−m

n (ϑ, ϕ) sin ϑ dϑ dϕ . (2.33)

re

ri

Ωi

Ωe

0

QP(x, ω)

Figure 2.7: Example for interior and ex-
terior domain (grey shaded areas) in the
spherical coordinate system. �

The angular basis functions a.k.a. Spherical Harmonics are defined
as51

51 Gumerov and Duraiswami, op. cit.,
Eq. (2.1.59).

Ψm
n (ϑ, ϕ) = (−1)m

√︄
2n + 1

4 π

(n− |m|)!
(n + |m|)! L|m|n (cos ϑ)e+jmϕ . (2.34)

Lm
n (cos ϑ) are the associated Legendre functions.52 For the structure

52 Ibid., Eq. (2.1.47).

of
◦
Pm

n (r, ω), two cases have to be considered: As shown in Fig. 2.7,
the coefficients fulfil the Helmholtz equation (2.3) in the interior do-
main Ωi or in the exterior domain Ωe. The former region describes
the source-free area, where the radius r is smaller than the minimal
radius ri of the sound source distribution. Hence, all sources are
located outside this domain. The exterior domain r > ri surrounds
the sound sources. Due to the linearity of the Helmholtz equation
the shown source distribution may be split up into sub-distributions.

https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig07
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Source type P̆m
n Conditions

Point Source −j ω
c h(2)n (ω

c rps)Ψ−m
n (ϑps, ϕps) r < rps

Line Source π jm−n−1 H(2)
m (ω

c ρls)Ψ−m
n
(︁

π
2 , ϕls

)︁
r < ρls, ϑ = π

2

Plane Wave 4πj−nΨ−m
n (ϑpw, ϕpw)

Table 2.1: Interior spherical expansion
coefficients of various source types. The
temporal spectrum of the source signal
S̃(ω) is omitted, for brevity.

The interior and exterior domain can then be defined for each sub-
distribution, individually. The Spherical Harmonics expansion spe-
cialises to53 53 Ahrens (2012). Analytic Methods of

Sound Field Synthesis. T-Labs Series
in Telecommunication Services. Berlin
Heidelberg, Germany: Springer-Verlag,
Eq. (2.32).

P(x, ω) =
∞

∑
n=0

n

∑
m=−n

{︄
P̆m

n (ω)jn(ω
c r) ∀ x ∈ Ωi

“Pm
n (ω)h(2)n (ω

c r) ∀ x ∈ Ωe

}︄
Ψm

n (ϑ, ϕ) , (2.35)

with the nth-order spherical Bessel function jn(·).54 For the used 54 Abramowitz and Stegun, op. cit.,
Sec. 10.1.definition of the Fourier Transform55, the nth-order spherical Hankel
55 see (2.2)

function of second kind h(2)n (·) has to be used for the exterior domain.
P̆m

n (ω) and “Pm
n (ω) denote the respective interior and exterior spheri-

cal expansion coefficients of the sound field. For the former, Tab. 2.1
shows the coefficients for some of the sound sources introduced in
Sec. 2.1.2. The radial and the angular basis functions are subsumed
under56 56 Gumerov and Duraiswami, op.

cit., modification of Eq. (2.1.101)
and (2.1.102), since different definition
of Fourier Transform w.r.t. time is used.

Im
n (x, ω) = jn

(︂ω

c
r
)︂

Ψm
n (ϑ, ϕ) , (2.36a)

Em
n (x, ω) = h(2)n

(︂ω

c
r
)︂

Ψm
n (ϑ, ϕ) (2.36b)

where Im
n (x, ω) and Em

n (x, ω) denote the interior and the exterior
spherical basis functions, respectively.

2.2.2 Expansion into Circular Basis Function57 57 Parts of this section are published
in Hahn et al. (June 2016). “Local
Wave Field Synthesis by Spatial Band-
Limitation in the Circular/Spherical
Harmonics Domain”. In: Proc. of 140th
Aud. Eng. Soc. Conv. Paris, France.

Any two-dimensional (2D) sound field whose pressure is indepen-
dent of the z coordinate may be expanded into58

58 Williams, op. cit., Eq. (4.49).P(x, ω) =
∞

∑
m=−∞

⋄
Pm(ρ, ω)e+jmϕ , (2.37)

with the Circular Harmonics expansion coefficients given via the
Circular Harmonics Transform (CHT)

⋄
Pm(ρ, ω) =

1
2π

∫︂ 2π

0
P(x, ω) e−jmϕ dϕ . (2.38)

The polar coordinates ρ and ϕ are defined within the cylindrical
coordinate system in Sec. 1.4. Analogue to the Spherical Harmonics
expansion, the interior and exterior domains have to be handled sep-
arately. The domains are defined via the minimum and maximum
radii ρ{i,e} of the non-zero source density. The expansion reads

P(x, ω) =
∞

∑
m=−∞

{︄
P̌m(ω)Jm(

ω
c ρ) ∀ x ∈ Ωi

P̂m(ω)H(2)
m (ω

c ρ) ∀ x ∈ Ωe

}︄
e+jmϕ , (2.39)
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where Jm(·) denotes the mth-order cylindrical Bessel function. The
cylindrical Hankel function of second kind and mth order is given
as H(2)

m (·). P̌m(ω) and P̂m(ω) denote the interior and exterior circu-
lar expansion coefficients, respectively. Tab. 2.2 lists some examples circexp_mono_ps.m

circexp_mono_pw.mfor interior circular expansion coefficients. Analogous to (2.36), the
subsumptions

Im(x, ω) = Jm

(︂ω

c
ρ
)︂

e+jmϕ (2.40a)

Em(x, ω) = H(2)
m

(︂ω

c
ρ
)︂

e+jmϕ (2.40b)

with the interior and exterior circular basis functions Im(x, ω) and
Em(x, ω) are used.

The interior circular and spherical expansion coefficients can be
converted into each other. For the interior spherical expansion (2.35),
the order of summation may be reordered to59,60 59 Hahn et al., op. cit., Eq. (28).

60 Ahrens, op. cit., Eq. (2.34).

P(x, ω) =
∞

∑
m=−∞

⎡
⎣

∞

∑
n=|m|

P̆m
n (ω)jn

(︂ω

c
r
)︂

Ψm
n (ϑ, 0)

⎤
⎦ e+jmϕ , (2.41)

where Ψm
n (ϑ, ϕ) = Ψm

n (ϑ, 0)e+jmϕ from (2.34) has been utilised. A
comparison of (2.41) and the interior case of (2.39) yields

P̌m(ω)Jm

(︂ω

c
ρ
)︂
=

∞

∑
n=|m|

P̆m
n (ω)jn

(︂ω

c
r
)︂

Ψm
n (ϑ, 0) . (2.42)

Using the circular and spherical expansion of a plane wave (see
Tab. 2.1 and 2.2) allows to express the cylindrical Bessel function
in terms of spherical bessel functions

Jm

(︂ω

c
ρ
)︂
=

∞

∑
n=|m|

4πjm−nΨ−m
n

(︂π

2
, 0
)︂

jn
(︂ω

c
r
)︂

Ψm
n (ϑ, 0) . (2.43)

After the substitution of Jm(
ω
c ρ) in (2.42), the conversion relation61 61 Hahn and Spors (May 2015b).

“Sound Field Synthesis of Virtual
Cylindrical Waves Using Circular and
Spherical Loudspeaker Arrays”. In:
Proc. of 138th Aud. Eng. Soc. Conv.
Warsaw, Poland, Eq. (14).

P̆m
n (ω) = 4πjm−n P̌m(ω)Ψ−m

n

(︂π

2
, 0
)︂

(2.44)

from the circular to the spherical expansion coefficients is obtained.
This relation is, for example, used to derive the regular spherical
expansion coefficients of a line source shown in Tab. 2.2. The inverse
conversion is given as62 62 Hahn et al., op. cit., Eq. (32).

P̌m(ω) =
j|m|−m

4πΨ−m
|m|
(︁

π
2 , 0
)︁ P̆m
|m|(ω) . (2.45)

It is exact only for 2D, i.e. z-independent, sound fields. For 3D sound
fields expressed via P̆m

n (ω), the conversion to a circular expansion
states an approximation, which coincides with the original sound
field only at the expansion centre.63 Combining (2.45) and (2.44) 63 Ibid., Sec. 2.7.

allows for an approximation

P̆m
n (ω) ≈ j|m|−n Ψ−m

n
(︁

π
2 , 0
)︁

Ψ−m
|m|
(︁

π
2 , 0
)︁ P̆m
|m|(ω) (2.46)

of the spherical expansion via its sectorial64 (n = |m|) subset. Again, 64 Gumerov and Duraiswami, op. cit.,
Sec. 2.1.2.2.this sectorial approximation becomes exact for 2D sound fields.

http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_monochromatic/circexp_mono/circexp_mono_ps.m
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_monochromatic/circexp_mono/circexp_mono_pw.m
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Source type P̌m Conditions

Point Source
j|m|−m

4π
(−j

ω

c
)h(2)|m|(

ω

c
rps)e−jmϕps ρ < rps, ϑps =

π
2

Line Source − j
4

H(2)
m (

ω

c
ρls)e

−jmϕls ρ < ρls

Plane Wave j−me−jmϕpw ϑpw = π
2

Table 2.2: Interior circular expansion
coefficients for various source types.
The temporal spectrum of the source
signal S̃(ω) is omitted, for brevity.
Since the point source is a 3D sound
field, the coefficients are an approxima-
tion based on Eq. (2.45).

2.2.3 Expansion into Plane Waves

Another representation form which does only hold for the interior
domain Ωi is the plane wave expansion or Plane Wave Decomposi-
tion (PWD)65 65 Ahrens, op. cit., Eq. (2.45).

P(x, ω) =
1

4π

∫︂ 2π

0

∫︂ π

0
P̄(ϕpw, ϑpw, ω)e−j ω

c ⟨npw|x⟩ sin ϑpw dϑpw dϕpw .

(2.47)
It constitutes a superposition of plane waves with their propagation
directions continuously distributed on the unit sphere. Each indi-
vidual plane wave is hereby weighted by its corresponding plane
wave coefficient P̄(ϕpw, ϑpw, ω) sometimes referred to as the signa-
ture function.66 A conversion between the 3D PWD and regular 66 Ibid., Sec. 2.2.4.

spherical expansion coefficients (2.35) of same sound field is achieved
via67 67 Ibid., Eq. (E-16) and (E-12).

P̄(ϕpw, ϑpw, ω) =
∞

∑
n=0

n

∑
m=−n

jn P̆m
n (ω)Ψm

n (ϑpw, ϕpw) , and (2.48a)

P̆m
n (ω) = j−n

∫︂ 2π

0

∫︂ π

0
P̄(ϕpw, ϑpw, ω)

·Ψ−m
n (ϑpw, ϕpw) sin ϑpw dϑpw dϕpw , (2.48b)

respectively. For a 2D sound field, (2.47) can be further simplified to
a 2D plane wave expansion68 68 Kuntz (2009). “Wave Field Analysis

Using Virtual Circular Microphone
Arrays”. PhD thesis. Friedrich-
Alexander-Universität Erlangen-
Nürnberg, Eq. (2.246).

P(x, ω) =
1

2π

∫︂ 2π

0
P̄(ϕpw, ω)e−j ω

c ⟨npw|x⟩ dϕpw (2.49)

with the corresponding coefficients P̄(ϕpw, ω). A similar conver-
sion relation is given for the interior circular expansion coefficients
(2.39):69 69 Ibid., Eq. (4.91).

P̄(ϕpw, ω) =
∞

∑
m=−∞

jm P̌m(ω)e+jmϕpw (2.50a)

P̌m(ω) = j−m
∫︂ 2π

0
P̄(ϕpw, ω)e−jmϕpw dϕpw (2.50b)

2.3 The Local Wavenumber Vector

The concept of the local wavenumber vector was introduced in the
context of SFS by Firtha et al..70 The temporal frequency spectrum of 70 Firtha et al. (2017). “Improved Ref-

erencing Schemes for 2.5D Wave Field
Synthesis Driving Functions”. In:
IEEE/ACM Trans. Audio, Speech, Lan-
guage Process. 25.5, pp. 1117–1127, Eq.
(15).

a sound field P(x, ω) may be expressed via its real-valued amplitude
AP(x, ω) and phase ΦP(x, ω) as

P(x, ω) = AP(x, ω) e+jΦP(x,ω) . (2.51)
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One may use this notation together with the product rule of differ-
entiation to express the gradient of a sound field as

∇xP(x, ω) =

(︃∇x AP(x, ω)

AP(x, ω)
+ j∇xΦP(x, ω)

)︃
P(x, ω) . (2.52)

For the used Fourier Transform convention, the local wavenumber
vector is defined as

kP(x, ω) := −∇xΦP(x, ω) = −Im
(︃∇xP(x, ω)

P(x, ω)

)︃
(2.53)

−1

0

1

−1 0 1

y
/

m

x / m

−1

0

1

Figure 2.8: Real part of the sound pres-
sure Pps(x|xps, ω) of a monochromatic
( f = 1 kHz) point source (2.11) located
at xps = [0, 1, 0]T m. The plot is nor-
malised to the pressure magnitude the
coordinates’ origin. The black arrows
illustrate the according local wavenum-
ber vector (2.53). �

as the gradient of the phase ΦP(x, ω) or as the imaginary part of
the normalised gradient ∇xP(x,ω)

P(x,ω)
. The vector points towards the

local propagation direction of the sound field at a given coordinate
x. Its normalised vector k̂P(x, ω) is occasionally used to describe
this direction. An example is shown for a point source in Fig. 2.8:
The vector is oriented perpendicular to the wave fronts, i.e. to the
surfaces of equal phase ΦP(x, ω). This is a general property of
vector fields resulting from a gradient operator, where the direction
is always perpendicular to surfaces of constant value of the under-
lying scalar field.71 For the fundamental sound fields presented in 71 Arfken and Weber (2005). Mathemat-

ical Methods for Physicists. 6th ed. Else-
vier, p. 35.

Sec. 2.1.2, kP(x, ω) fulfils the local dispersion relation, i.e. its length
is fixed to ω

c .72 For arbitrary sound fields, this statement is true for 72 Firtha (2019). “A Generalized Wave
Field Synthesis Framework with Ap-
plication for Moving Virtual Sources”.
PhD thesis. Budapest University of
Technology and Economics, Tab. 3.1.

asymptotically high frequencies.73 Generally

73 Kinsler et al. (Dec. 1999). Fundamen-
tals of Acoustics. 4th ed. John Wiley &
Sons, Inc., Sec. 5.14.

kP(x, ω)
ω→∞≈ ω

c
k̂P(x, ω) (2.54)

holds. The approximation is based upon assumption, that the rela-
tive change of the amplitude expressed via ∇x AP(x,ω)

AP(x,ω)
in (2.52) is

much smaller than the change of the phase ∇xΦP(x, ω) for high
frequencies. This assumption may be further used to omit the ampli-
tude term in (2.52). The sound field gradient is then approximated
via74 74 Firtha, op. cit., Sec. 3.12.

∇xP(x, ω)
ω→∞≈ −j

ω

c
k̂P(x, ω)P(x, ω) . (2.55)

https://github.com/fietew/phd-thesis/tree/master/02_fundamentals/fig08


3Selected Methods for
(Local) Sound Field Synthesis

As already stated in Sec. 1.1, methods for SFS pursue a physically This introduction was partly published
in Winter et al. (May 2016). “On An-
alytic Methods for 2.5-D Local Sound
Field Synthesis Using Circular Distri-
butions of Secondary Sources”. In:
IEEE/ACM Trans. Audio, Speech, Lan-
guage Process. 24.5, pp. 914–926

accurate reconstruction of a desired sound field inside a defined
target region. The representation of the sound field can be cate-
gorised into two fundamental principles:1,2 In model-based render-

1 Spors et al. (Oct. 2011). “Efficient
realization of model-based rendering
for 2.5-dimensional near-field compen-
sated higher order Ambisonics”. In:
Proc. of 2011 IEEE Workshop on Appli-
cations of Signal Processing to Audio and
Acoustics (WASPAA). New Paltz, USA,
Sec. 1.
2 Wierstorf (2014). “Perceptual Assess-
ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Sec. 2.4.

ing, the virtual sound field is a composition of elementary sources
whose pressure is described via simple parametric models such as
point sources or plane waves. Additional examples are given in
Sec. 2.1.2. For each elementary source a (dry) source signal has to
be provided. Data-based rendering synthesises a sound field whose
spatio-temporal structure is acquired via Sound Field Analysis (SFA)
techniques using e.g. microphone arrays.3,4,5 The theory of SFS re-

3 Teutsch (2006). “Wavefield Decompo-
sition Using Microphone Arrays and Its
Application to Acoustic Scene Analy-
sis”. PhD thesis. Friedrich-Alexander-
Universität Erlangen-Nürnberg.
4 Kuntz (2009). “Wave Field Analysis
Using Virtual Circular Microphone Ar-
rays”. PhD thesis. Friedrich-Alexander-
Universität Erlangen-Nürnberg.
5 Rafaely (2015). Fundamentals of Spher-
ical Array Processing. Heidelberg, Ger-
many: Springer.

quires a continuous distribution of so-called secondary sources to
be positioned around the target region in order to achieve correct
synthesis. Each secondary source has to be fed with its driving signal
such that the superposition of the sound fields emitted by all sources
coincide with the virtual sound field. In practice, a limited num-
ber (up to hundreds) of individually driven loudspeakers approxi-
mate this continuous distribution. The synthesis accuracy is mainly
limited by spatial sampling artefacts, which are introduced to the
synthesised sound field due to the finite resolution of this discreti-
sation. These artefacts can be avoided as long as a critical number
of actuators are deployed,6 which grows linearly with the spatial

6 Kennedy et al. (2007). “Intrinsic Limits
of Dimensionality and Richness in Ran-
dom Multipath Fields”. In: IEEE Trans.
Signal Process. 55.6, pp. 2542–2556.

scale of the target region and the temporal frequency. The relation
serves as a motivation for LSFS: A more accurate reproduction inside
a downsized area which is smaller than the area surrounded by the
Secondary Source Distribution (SSD) is pursued. To achieve this,
stronger artefacts outside the prioritised area are permitted. This is
sensible for applications, where the listener’s position is restricted to
a small region of interest or is tracked using a suitable technology.

Approaches to derive the driving signals of the SSD may be clas-
sified into numerical and analytical methods: Many numerical tech-
niques to SFS7,8,9,10 spatially sample the target region in order to

7 Miyoshi and Kaneda (Feb. 1988). “In-
verse filtering of room acoustics”. In:
IEEE Trans. Acoust., Speech, Signal Pro-
cess. 36.2, pp. 145–152
8 Kirkeby and Nelson (1993). “Repro-
duction of plane wave sound fields”. In:
J. Acoust. Soc. Am. 94.5
9 Kirkeby et al. (1996). “Local sound
field reproduction using digital signal
processing”. In: J. Acoust. Soc. Am.
100.3.
10 Kolundžija et al. (2011). “Reproduc-
ing Sound Fields Using MIMO Acous-
tic Channel Inversion”. In: J. Aud. Eng.
Soc. 59.10, pp. 721–734.

establish a set of control points. They relate the desired sound pres-
sure at these points to the loudspeaker driving signals via a linear
equation system. It is solved using suitable methods for (regularised)
matrix inversion. Hereby, no distinction between model and data-
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based rendering is made. Alternatively, the control points are estab-
lished on the boundary of the target region in order to achieve ac-
curate synthesis inside.11 The inversion problem may be transferred

11 Ise (1999). “A principle of sound
field control based on the Kirchhoff-
Helmholtz integral equation and the
theory of inverse systems”. In:
Acta Acustica united with Acustica 85.1,
pp. 78–87

to the Spherical Harmonics domain which is also known as mode
matching.12,13 Although most approaches perform calculations in

12 Poletti (2005). “Three-dimensional
surround sound systems based on
spherical harmonics”. In: J. Aud. Eng.
Soc. 11.53, pp. 1004–1025.
13 Hannemann and Donohue (2008).
“Virtual Sound Source Rendering
Using a Multipole-Expansion and
Method-of-Moments Approach”. In: J.
Aud. Eng. Soc. 56.6, pp. 473–481.

the frequency domain, numerical methods for the time domain do
exist.14 A related yet different field of research that received signifi-

14 Feng et al. (2018). “Time-domain
sound field reproduction using the
group Lasso”. In: J. Acoust. Soc. Am.
143.2, EL55–EL60.

cant attention in the recent years is multizone sound field reproduc-
tion. It aims at independently controlling the synthesised sound field
in two or more portions of the target area.15,16,17 In order to do so,

15 Wu and Abhayapala (Aug. 2011).
“Spatial Multizone Soundfield Repro-
duction: Theory and Design”. In: IEEE
Trans. Audio, Speech, Language Process.
19.6, pp. 1711–1720.
16 Coleman et al. (2014). “Acoustic con-
trast, planarity and robustness of sound
zone methods using a circular loud-
speaker array”. In: J. Acoust. Soc. Am.
135.4.
17 Jin and Kleijn (Dec. 2015). “Theory
and Design of Multizone Soundfield
Reproduction Using Sparse Methods”.
In: IEEE/ACM Trans. Audio, Speech, Lan-
guage Process. 23.12, pp. 2343–2355.

these methods create bright zones with significant sound pressure
and dark zones with minimum sound pressure. The dark zones can
then be exposed to another bright zone that is ideally independent
of the initial bright zone. The drawback of numerical approaches
is the large computational effort which has to be spent to solve the
system of linear equations. If the computation is carried out in the
frequency domain the calculation of the driving signals typically has
to be repeated for different temporal frequencies. Moreover, the re-
quired number of control points increases with increasing frequency.
For time-variant sound fields e.g. with moving sound sources, the
equation system has to be solved for each time step.

The driving signals of analytic SFS methods are derived from the
parametric description of the virtual sound field. While this seems
to restrict these techniques to the model-based rendering paradigm,
data-based approaches are possible. As an example, the spatio-
temporal structure of a sound field measured by a microphone array,
can be converted into a PWD. Each plane wave is then synthesised in-
dividually using the parametric approach. Due to the mathematical
expression for the driving signals, analytic SFS methods are simple
to realise compared to the numerical methods. Moreover, the ex-
pressions allow to change parameters over time in order to enable
time-variant synthesis scenarios. A better analysis of the connection
between the parametrisation and the artefacts occurring in the syn-
thesised sound field is also possible. Ahrens argues, that specific
scenarios in numerical SFS have to considered individually and the
fundamental properties are difficult to deduce.18 Because of their

18 Ahrens (2010). “The Single-layer Po-
tential Approach Applied to Sound
Field Synthesis Including Cases of Non-
enclosing Distributions of Secondary
Sources”. PhD thesis. Berlin, Germany:
Technische Universität Berlin

benefits, this thesis focuses on analytic SFS methods.
This chapter introduces the reader to selected SFS methods and

discusses potential challenges regarding their implementation. In
Sec. 3.1, the fundamental synthesis problem is formulated. Solutions
to it including their driving signals in the frequency domain and
their realisation in the discrete-time domain are presented in the
subsequent sections. They include two well-established representa-
tives for conventional SFS, namely WFS19 and NFCHOA.20 The two

19 Berkhout (1988). “A Holographic Ap-
proach to Acoustic Control”. In: J. Aud.
Eng. Soc. 36.12, pp. 977–995
20 Daniel (May 2003). “Spatial Sound
Encoding Including Near Field Effect:
Introducing Distance Coding Filters
and a Viable, New Ambisonic Format”.
In: Proc. of 23rd Intl. Aud. Eng.
Soc. Conf. on Signal Processing in Au-
dio Recording and Reproduction. Copen-
hagen, Denmark

LSFS methods termed LWFS-SBL21 and LWFS-VSS22 are discussed

21 Hahn et al. (June 2016). “Local
Wave Field Synthesis by Spatial Band-
Limitation in the Circular/Spherical
Harmonics Domain”. In: Proc. of 140th
Aud. Eng. Soc. Conv. Paris, France

22 Spors and Ahrens (Oct. 2010b). “Lo-
cal Sound Field Synthesis by Virtual
Secondary Sources”. In: Proc. of 40th
Intl. Aud. Eng. Soc. Conf. on Spatial
Audio. Tokyo, Japan

afterwards.
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S(x, ω)

∂Ω=̂∂S

Ω=̂S
n0(x0)

x0

Ωl=̂Sl

G(x− x0, ω)

Figure 3.1: The illustration shows the
geometry for the synthesis a virtual
sound field S(x, ω). For the 3D sce-
nario, synthesis is supposed to be
achieved inside Ωl using the secondary
sources positioned around Ω, i.e. along
its boundary ∂Ω. The counterparts for
the 2D problem are denoted as Sl, S ,
and ∂S , respectively. �

3.1 Problem Formulation

The fundamental task is to synthesise a desired a.k.a. virtual sound
field s(x, t) with its frequency spectrum S(x, ω) within a defined
target region Ωl ⊆ Ω, see Fig. 3.1. For the case where Ωl = Ω, ap-
proaches are usually referred to as conventional SFS. The remaining
case, i.e. Ωl ⊂ Ω, is usually termed LSFS. In order to achieve cor-
rect synthesis a distribution of secondary sources is positioned along
the regions’ boundary ∂Ω. Each secondary source is oriented along
the inward pointing boundary normal n0. Although approaches for
SFS exist, where the loudspeakers’ directivity is incorporated,23 the 23 Ahrens and Spors (Aug. 2009). “An

Analytical Approach to 2.5D Sound
Field Reproduction Employing Circular
Distributions of Non-Omnidirectional
Loudspeakers”. In: Proc. of 17th Eu-
ropean Signal Processing Conference (EU-
SIPCO). Glasgow, UK.

sound field emitted by an individual secondary source is commonly
modelled by a monopole point source, cf. Eq. (2.11). As mentioned
by Schultz,24 this model is in reasonable agreement with today’s

24 Schultz (2016). “Sound Field Syn-
thesis for Line Source Array Applica-
tions in Large-Scale Sound Reinforce-
ment”. PhD thesis. University of Ro-
stock, Sec. 2.2.1.

loudspeakers, especially at low frequencies. The sound field is thus
given by the free-field Green’s function G(x|x0, ω) = G(x − x0, ω).
Each individual secondary source is driven by its respective driving
signal D(x0, ω), whereas x0 ∈ ∂Ω denotes the position of the sec-
ondary source on the boundary. The resulting superposition of all
secondary sources constitutes the reproduced sound field P(x, ω).
The driving signals have to be chosen such that the reproduced and
the desired sound field coincide within Ωl. Mathematically, this is
subsumed by the 3D Single Layer Potential (SLP)

S(x, ω)
!
= P(x, ω) =

∫︂∫︂

∂Ω
D(x0, ω)G(x|x0, ω)dA0 ∀x ∈ Ωl . (3.1)

Based on the discussions on the HIE and the usefulness of boundary
conditions in Sec. 2.1.3, finding the correct driving signal is equiva-
lent to solving the scattering problem stated in (2.31). Hence,

D(x0, ω) = −∇x0,n0 ST(x0, ω) (3.2)

where∇x0,n0 ST(x0, ω) describes the directional derivative of the total
sound field on the surface of a sound-soft scatterer with the same
shape as Ω and S(x, ω) as the impinging sound field.

For many practical applications, sound field synthesis is restricted
to the horizontal plane, i.e. z = 0, with the secondary sources posi-
tioned on a contour ∂S enclosing the target area Sl ⊆ S , i.e. z0 = 0.

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig01
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Within the described scenario, it is assumed that the virtual sound
field does only propagate in horizontal directions. The z-component
of its local wavenumber vector kS(x, ω) defined by (2.53) is zero. The
3D SLP specialises to the line integral

S(x, ω)
!
= P(x, ω) =

∫︂

∂S
D(x0, ω)G(x|x0, ω)dl0 ∀x ∈ Sl , (3.3)

which will be referred to as the 2D SLP. A suitably chosen differ-
ential line segment is denoted as dl0 = dl(x0, y0). According to
Williams,25 the required sound field emitted by an individual sec- 25 Williams (1999). Fourier Acoustics:

Sound Radiation and Nearfield Acoustical
Holography. London, UK: Academic
Press, Sec. 8.6.2.

ondary source to achieve perfect synthesis would have to coincide
with the one of a line source.26 As already mentioned, the usually

26 see Sec. 2.1.2employed loudspeakers with closed cabinets exhibit point-source-
like radiation characteristics. This dimensionality mismatch is usu-
ally subsumed under the term 21/2-dimensional (2.5D) synthesis.27 27 Verheijen (1997). “Sound Reproduc-

tion by Wave Field Synthesis”. PhD
thesis. Delft University of Technology,
Sec. 2.3.

As a consequence, the amplitude decay of the synthesized sound
field differs from that of the desired one. These deviations of the
amplitude decay are systemic so that there is no general cure. The
synthesized sound field can be referenced to a given contour or loca-
tion inside S on which/at which the complex amplitude is correct.
This was exemplarily shown for WFS28 and NFCHOA.29 28 Firtha et al. (2017). “Improved Ref-

erencing Schemes for 2.5D Wave Field
Synthesis Driving Functions”. In:
IEEE/ACM Trans. Audio, Speech, Lan-
guage Process. 25.5, pp. 1117–1127.
29 Winter et al. (May 2016). “On An-
alytic Methods for 2.5-D Local Sound
Field Synthesis Using Circular Distri-
butions of Secondary Sources”. In:
IEEE/ACM Trans. Audio, Speech, Lan-
guage Process. 24.5, pp. 914–926,
Sec. II.B.

3.2 Wave Field Synthesis (WFS)

According to the extensive overview by Schultz,30 the history of

30 Schultz, op. cit., pp. 14–16.

WFS dates back to the late 1980s. Berkhout proposed an approach
for acoustic holography using loudspeaker arrays31 which was later

31 Berkhout, op. cit.

termed Wave Field Synthesis.32 Research and development of WFS

32 Berkhout et al. (1993). “Acoustic con-
trol by wave field synthesis”. In: J.
Acoust. Soc. Am. 93.5, pp. 2764–2778.

was dominated by the Delft University of Technology until the be-
ginning of the next millennium including important dissertations by
Vogel,33 Start,34 and Verheijen.35 The theory of WFS was revisited by

33 Vogel (1993). “Application of wave
field synthesis in room acoustics”. PhD
thesis. Delft University of Technology.
34 Start (1997). “Direct Sound Enhance-
ment by Wave Field Synthesis”. PhD
thesis. Delft University of Technology.
35 Verheijen, op. cit.

Spors et al.,36 where it was put in the greater context by considering

36 Spors et al. (May 2008). “The theory
of Wave Field Synthesis revisited”. In:
Proc. of 124th Aud. Eng. Soc. Conv.
Amsterdam, The Netherlands.

it to be an implicit solution to the SLP. A modern framework for
WFS using the concept of the local wavenumber vector and linking
the above approaches was published by Firtha.37 It had, moreover, a

37 Firtha (2019). “A Generalized Wave
Field Synthesis Framework with Ap-
plication for Moving Virtual Sources”.
PhD thesis. Budapest University of
Technology and Economics.

special focus on moving virtual sound sources.

3.2.1 Driving Signals in the Frequency Domain

Driving Signal for 3D Scenarios: WFS is based upon the Kirchhoff
approximation38 of the equivalent scattering problem: For high fre-

38 Colton and Kress (2013). Inverse
acoustic and electromagnetic scattering the-
ory. 3rd ed. Vol. 93. Applied Math-
ematical Sciences. Springer Science &
Business Media, p. 57.

quencies, i.e. short wavelengths, a convex scatterer can be assumed
to be locally planar with n0 being the normal vector of the plane at
x0. The directional gradient of the total sound field then reads39

39 Ibid., Eq. (3.35).

∇x0,n0 ST(x0, ω) ≈ aS(x0, ω)2∇x0,n0 S(x0, ω) , (3.4)

where aS(x0, ω) divides the ∂Ω into a region “illuminated” by the
impinging sound field and a shadowed area. With the help of the
local wavenumber vector it is generally expressed as40

40 Firtha et al., op. cit., Eq. (46).
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Figure 3.2: The plots show the nor-
malised absolute error

20 log10

⃓⃓
⃓⃓ P(x, ω)− Ppw(x, ω)

Ppw(x, ω)

⃓⃓
⃓⃓

between synthesised sound
field P(x, ω) (3.1) and a virtual
monochromatic plane wave Ppw(x, ω)
with the propagation direction
npw = [0,−1, 0]T, see Eq. (2.21) and
Fig. 2.5. A quasi-continuous (2450
secondary sources), spherical SSD
centred around the coordinates’ origin
with a radius of 1.5 m (black line) is
driven by 3D WFS, see (3.6b). The
dashed part of the SSD is inactive
due to the secondary source selection
criterion given by (3.5). For the bottom
row an additional tapering is applied,
see Eq. (3.7). �

aS(x0, ω) =

⎧
⎨
⎩

1 , if ⟨kS(x0, ω)|n0⟩ ≥ 0 and

0 , otherwise.
(3.5)

In the context of WFS, aS(x0, ω) is often referred to as the secondary
source selection criterion.41 The 3D WFS driving signal is given as42 41 Spors (Oct. 2007). “Extension of an

Analytic Secondary Source Selection
Criterion for Wave Field Synthesis”. In:
Proc. of 123rd Aud. Eng. Soc. Conv. New
York, USA.
42 Ahrens, op. cit., Eq. 2.54.

DWFS
3D (x0, ω) = −2 aS(x0, ω)∇x0,n0 S(x0, ω) (3.6a)

≈ 2j
ω

c
aS(x0, ω) ⟨k̂S(x0, ω)

⃓⃓
n0⟩S(x0, ω) . (3.6b)

The high-frequency approximation of the sound field gradient given
by (2.55) was used for the second expression.43 The secondary source 43 Firtha, op. cit., Eq. (4.4).

selection can be interpreted as a rectangular truncation window of
the driving signal. For simple source models, e.g. plane waves or
point sources, aS(x0, ω) can be derived by geometrical considerations
and is independent of the frequency. A list of the relevant criteria is
later given in Tab. 3.1.
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Figure 3.3: The plots show the magni-
tude spectra of the sound field synthe-
sised using WFS. The same synthesis
setup as for Fig. 3.2 is used. In (b),
the additional tapering defined in (3.7)
is employed. �

In order to demonstrate the effect of the truncation, synthesis
examples are shown in Fig. 3.2. The plots show the error between
the synthesised sound field and a plane wave serving as the virtual
sound field. For the plots in top row, the secondary source selection
defined by (3.5) was used. The error generally decreases as the fre-
quency increases. Here, the Kirchhoff approximation becomes more
accurate for high frequencies. The observed fluctuations in the sound
field are due to the secondary source selection or, more specifically,
due to its discontinuity at the transition between the illuminated and
the shadowed SSD (solid and dashed part). It was discussed by
Verheijen44 and Spors45 that the employment of window functions

44 Verheijen, op. cit., Sec. 2.4.1.
45 Spors, op. cit., Sec. 5.

other than the rectangular one, usually referred to as tapering, has
a homogenising effect on the synthesis error. This can be observed
in bottom row of Fig. 3.2, where the tapered secondary selection
criterion

aS(x0, ω) =

⎧
⎨
⎩
⟨kS(x0, ω)|n0⟩ , if ⟨kS(x0, ω)|n0⟩ ≥ 0 and

0 , otherwise.
(3.7)

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig02
https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig03
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Point Source Plane Wave Focused Point Source
DWFS

2.5D,ps(x0|xps, ω) DWFS
2.5D,pw(x0|npw, ω) DWFS

2.5D,fs(x0|xfs, nfs, ω)

aS(x0, ω) = 1, if ... ⟨x0 − xps|n0⟩ ≥ 0 ⟨npw|n0⟩ ≥ 0
⟨xfs − x0|nfs⟩ ≥ 0 and
⟨xfs − x0|n0⟩ ≥ 0

∆S(x0)
|x0 − xps||x0 − xref|
|x0 − xps|+ |x0 − xref|

|x0 − xref| −|x0 − xfs|
[︃

1 +
|x0 − xfs|
|xref − xfs|

]︃

⟨k̂S(x0, ω)|n0⟩
⟨x0 − xps|n0⟩
|x0 − xps|

⟨npw|n0⟩ ⟨xfs − x0|n0⟩
|x0 − xfs|

S(x0, ω) S̃(ω)
e−j ω

c |x0−xps|

4π|x0 − xps|
S̃(ω)e−j ω

c ⟨x0|npw⟩ S̃(ω)
e+j ω

c |x0−xfs|

4π|x0 − xfs|

Table 3.1: Quantities for the 2.5D Wave
Field Synthesis (WFS) driving signal in
(3.9a).

is applied. Although the error for the tapered criterion is generally
higher than for the original one, fewer fluctuations are visible. The
findings are confirmed by the magnitude spectra of the synthesised
sound field shown in Fig. 3.3. The tapering results in fewer fluctu-
ations in the spectra. As a drawback, the pressure loss at low fre-
quencies is more pronounced for the tapered driving signals. Also,
an incorrect magnitude different from the desired 0 dB is observed
at x = [0.5, 0, 0]T m.

Driving Signal for 2.5D Scenarios: For the derivation of the 2.5D
WFS approach, the volume Ω shown in Fig. 3.4 is considered: In
the xy-plane, a 2D convex area S is defined. The 3D region Ω is
constructed by extruding S in z-direction towards ±∞. Hence, the
shape of Ω and its surface normal n0 are independent from the z-
coordinate. The SLP (3.1) together with the 3D WFS driving signal
(3.6a) migrates to

∂Ω
Ω

x

y

z

∂S

x
x0S

Figure 3.4: The geometry for the deriva-
tion of the 2.5D WFS approach consid-
ers a 2D area S which is extruded along
the z-direction to form the 3D region Ω.
�

S(x, ω) ≈
∫︂

∂S

∫︂ ∞

−∞
DWFS

3D (x0, ω)G(x|x0, ω)dz0 dl0 . (3.8)

The integral w.r.t. z0 is solved using the Stationary Phase Approxi-
mation (SPA). It is introduced in App. A. Since the approximation in-
volves the whole integrand of (3.8), the calculus heavily depends on
the specific virtual sound field. For detailed derivation, the reader is
referred to Firtha et al.46,47 The remaining integral over ∂S matches

46 Firtha et al., op. cit.
47 Firtha, op. cit., Sec. 4.1

the 2D SLP given by (3.3). The generic 2.5D WFS driving signal and
approximate solution of the 2D SLP is given by48

48 Firtha et al., op. cit., Eq. (47)

nfs

xfs

Figure 3.5: For a focused point source
located at xfs and oriented along nfs. A
plane along the dashed black line sep-
arates the converging (white arrows)
from the diverging (grey arrows) half
spaces from each other. �

DWFS
2.5D (x0, ω) = −aS(x0, ω)

√︄
8π∆S(x0)

j ω
c

∇x0,n0 S(x0, ω) (3.9a)

≈ aS(x0, ω)

√︃
j
ω

c
8π∆S(x0)⟨k̂S(x0, ω)

⃓⃓
n0⟩S(x0, ω) .

(3.9b)

Again, the high-frequency approximation of the sound field gradient
given by (2.55) was used for the second expression.49 The distance 49 Firtha, op. cit., Eq. (4.14).
factor ∆S(x0) can be used to reference the synthesised sound field
to a given contour or position on which/at which asymptotically driving_function_mono_wfs

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig04
https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig05
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_monochromatic/driving_function_mono_wfs.m
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Figure 3.6: The top plots show the
synthesis sound field P(x, ω) (3.3) us-
ing a quasi-continuous (1024 secondary
sources), circular SSD centred around
the coordinates’ origin with a radius of
1.5 m (black line). It is driven by 2.5D
WFS (3.9b) with the quantities given in
Tab. 3.1 according to the titles above
each plot. The dashed part of the SSD
is inactive due to the secondary source
selection criterion. The bottom plots
show the normalised absolute error

20 log10

⃓⃓
⃓⃓ P(x, ω)− S(x, ω)

S(x, ω)

⃓⃓
⃓⃓

to the desired sound fields S(x, ω),
which are a point source at [0, 2.5, 0]T m,
a plane wave with npw = [0,−1, 0]T,
and a point source at [0, 0.5, 0]T m with
a monochromatic ( f = 1 kHz) source
signal. The reference coordinate xref is
set to [0, 0, 0]T m (black cross). �

(ω → ∞) correct synthesis is achieved. For more details, the reader
is referred to Firtha et al.50 The quantities of the 2.5D WFS driving

50 Firtha et al., op. cit.

signal for a virtual point source and a plane wave51 are listed in 51 Schultz, op. cit., Eq. (2.137) and
(2.177).Tab. 3.1. The involved coordinate xref defines the reference position

where asymptotically correct synthesis is achieved.
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Figure 3.7: Magnitude of the syn-
thesised monochromatic focused point
source located at xfs = [0, yfs, 0] evalu-
ated at the coordinates’ origin 0. The
simulation was performed for different
frequencies (coloured lines). For the
synthesis, the same setup as for Fig. 3.6
was used. For comparison, the magni-
tude of a point source at xfs = [0, yfs, 0]
is plotted in dashed black. �

It was explained in Sec. 2.1.3 that the synthesis of inhomogeneities
such as point sources inside S is not possible with an SSD located
at ∂S . However, amongst other SFS methods, WFS allows for the
synthesis of focused sound sources. They act as approximations of
the virtual inhomogeneities inside a part of S . For a point source, this
can be achieved by emitting a sound field that converges towards
a focus point xfs and diverges afterwards. As shown in Fig. 3.5,
converging and diverging half space are separated via a plane with
the normal vector nfs located at the focus point xfs. The underlying
principle is termed acoustic focusing by time reversal/phase conju-
gation.52,53,54 The according quantities for the driving signal55 are

52 Yon et al. (2003). “Sound focusing
in rooms: The time-reversal approach”.
In: J. Acoust. Soc. Am. 113.3.
53 de Vries and Berkhout (1981). “Wave
theoretical approach to acoustic focus-
ing”. In: J. Acoust. Soc. Am. 70.3.
54 Fink (Sept. 1992). “Time reversal of
ultrasonic fields. I. Basic principles”.
In: IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control 39.5, pp. 555–566.
55 Winter et al. (June 2019a). “A Geo-
metric Model for Prediction of Spatial
Aliasing in 2.5D Sound Field Synthe-
sis”. In: IEEE/ACM Trans. Audio, Speech,
Language Process. 27.6, pp. 1031–1046,
Eq. (64).

also given in Tab. 3.1.
An example for the synthesis resulting from the three different

driving functions is shown in Fig. 3.6. For the point source and
the plane wave, the wave fronts match the expectations. The corre-
sponding plots at bottom indicate, that the error near the reference
position xref (black cross) is reduced but not negligible. Perfect syn-
thesis at this location can be only achieved for asymptotically high
frequencies and distances, as WFS constitutes a high-frequency/far-
field approximation. For the focused point source, ripples in the
wave fronts are visible resulting in an comparatively high synthesis
error. In Fig. 3.7, the magnitude of the focused point source at the ref-
erence position is compared to the desired point source for different
frequencies and source positions. It can be deduced, that the focused
source approximates the point source best for high frequencies and
large distances, i.e. high yfs.

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig06
https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig07
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3.2.2 Practical Realisation of Model-Based Rendering56 56 Parts of this section are published in
Winter and Spors (Aug. 2016). “On
Fractional Delay Interpolation for Lo-
cal Wave Field Synthesis”. In: Proc.
of 24th European Signal Processing Con-
ference (EUSIPCO). Budapest, Hungary,
pp. 2415–2419; and in Winter and Spors
(Mar. 2017). “Time-Domain Realisa-
tions of 2.5-Dimensional Local Sound
Field Synthesis”. In: Proc. of German
Annual Conference on Acoustics (DAGA).
Kiel, Germany, pp. 1134–1137.

driving_function_imp_wfs

The 2D SLP in (3.3) constitutes the integration of the driving signal
over a continuous SSD, which cannot be implemented with today’s
loudspeaker technology. For the implementation of WFS, it is hence
necessary to spatially discretise the SSD. A finite number N0 of loud-
speakers has to be placed at discrete points on the boundary ∂S . The
SLP transforms to a sum over finite set of secondary source positions
x(ν)0 . It is known, that this discretisation may lead to spatial aliasing,
which will be discussed extensively in Ch. 4. As a consequence of
digital audio processing, temporal sampling of the driving signals is
also considered. It is conveniently modelled by multiplying a time-
continuous signal s̃(t) with a Dirac comb.57 A discrete-time signal

57 Girod et al. (2001). Signal and Systems.
Wiley, Sec. 11.3.1.

s̃[n] corresponds to the samples s̃(nTs) where Ts defines the sampling
period as the reciprocal of the sample rate fs. The discrete-time sig-
nal is connected to the desired continuous frequency spectrum S̃(ω)

via the Discrete Time Fourier Transform (DTFT)58, which should not

58 Manolakis and Ingle (June 2011). Ap-
plied Digital Signal Processing: Theory and
Practice. Cambridge, USA: Cambridge
University Press, Sec. 4.3.2.

be confused with the Discrete Fourier Transform (DFT)59. For the

59 Ibid., Sec. 7.2.

virtual source types listed in Tab. 3.1, the 2.5D WFS driving signal
exhibit the general structure of

DWFS
2.5D (x0, ω) = S̃(ω)

√︃
±j

ω

c⏞ ⏟⏟ ⏞
pre-filter

w(x0)
⏞ ⏟⏟ ⏞
weight

e−jωτ(x0)

⏞ ⏟⏟ ⏞
delay

(3.10)

s̃[n]

hpre[n]

option I

(fractional)
delayline

τ(x(0)0 )

×
w(x(0)0 )

+

h p
re
[n
]

d[x(0)0 , n]

τ(x(1)0 )

×
w(x(1)0 )

+

h p
re
[n
]

d[x(1)0 , n]

τ(x(N0−1)
0 )

×
w(x(N0−1)

0 )

+

h p
re
[n
]

d[x(N0−1)
0 , n]

other
virtual
sources

option II

. . .

. . .

. . .

. . .

Figure 3.8: Block diagram showing the
time domain realisation of WFS for
one virtual source. Contributions from
other virtual sources are incorporated
via the addition-operators. �

stating a geometry-independent pre-filtering of the source signal fol-
lowed by geometry-dependent real-valued weight w(x0) and delay
τ(x0). The option ± for the pre-filter depends on the sign of the
distance factor ∆S(x0) in the 2.5D WFS driving signal. The equation
covers the driving signals for a single virtual source. In practice, the
driving signals for different virtual sources are added in order to
render the whole scene. This is illustrated by the addition operators
in Fig. 3.8. The results are then D/A converted, amplified and played
back over the loudspeakers. The rendering for a single virtual source
is implemented in two essential steps described in the following.

Pre-Filtering: As the pre-filter hpre[n] is geometry independent it
can be either directly applied to the source signal s̃[n] (option I) or to
the driving signals of each loudspeaker (option II). The first strategy
is more efficient, if the number of loudspeakers is larger than the
number of virtual sources. If all source signals are known a-priori, an
offline pre-filtering may also be considered. As the number of loud-
speakers is subject to tighter practical constraints than the number
of virtual sources, option I is a sensible standard strategy. However,
option II was chosen in some implementations of WFS.60,61

60 Geier and Spors (Nov. 2012). “Spatial
Audio with the SoundScape Renderer”.
In: Proc. of 27th Tonmeistertagung – VDT
Internation Convention. Cologne, Ger-
many.

61 Wierstorf and Spors (Apr. 2012).
“Sound Field Synthesis Toolbox”. In:
Proc. of 132nd Aud. Eng. Soc. Conv.
Budapest, Hungary.

An analytic formulation for hpre[n] with the desired transfer func-
tion was derived by Schultz.62 Since it is of infinite length, Schultz

62 Schultz, op. cit., Sec. 2.5.

designed an Finite Impulse Response (FIR) approximation by ap-
plying the windowing method.63 An alternative approach uses an

63 Manolakis and Ingle, op. cit.,
Sec. 10.3.

Infinite Impulse Response (IIR) approximation.64 However, the men-

64 Salvador (May 2010). “Wave Field
Synthesis Using Fractional Order Filters
and Fractional Delays”. In: Proc. of
120th Aud. Eng. Soc. Conv. London,
UK.

http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_time_domain/driving_function_imp_wfs.m
https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig08
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tioned solutions do not allow to incorporate additional practical as-
pects for WFS:65 Due to the diffraction artefacts, a pressure loss of 65 Schultz et al. (Mar. 2013). “Derivation

of IIR-pre-filters for soundfield synthe-
sis using linear secondary source distri-
butions”. In: Proc. of German Annual
Conference on Acoustics (DAGA). Meran,
Italy, Sec. "IIR Filter Design".

approximately −3 dB per Octave in the low frequency region can be
observed in the synthesised sound field.66 Further, spatial aliasing

66 Spors and Ahrens (May 2010a).
“Analysis and Improvement of Pre-
equalization in 2.5-dimensional Wave
Field Synthesis”. In: Proc. of 128th Aud.
Eng. Soc. Conv. London, UK, Sec. 7.2.

leads to an energy boost at high frequencies with an average increase
of approximately 3 dB per Octave.67 This is exemplarily shown for a

67 Ibid., Sec. 6.3.

virtual plane wave in Fig. 3.10b. A shelving of the pre-filter depicted
in Fig. 3.10a flattens out the mentioned effects. Within this thesis,
a least-squares FIR approximation of the ideal shelved spectrum is
used. It allows to define the two corner frequencies for the low and
high-frequency shelve in a flexible manner. Alternatively, shelved wfs_fir_prefilter

IIR pre-filters were presented by Schultz et al.68 68 Schultz et al., op. cit.
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Figure 3.9: Plot (a) shows the idealised
magnitude spectra of the fullband and
shelved pre-filters. The resulting spec-
tra of the sound field synthesised are
plotted for the coordinates’ origin in
(b). A circular SSD with a radius of
1.5 m and 56 equi-angularly positioned
secondary sources was employed to
synthesise a virtual plane wave. The
WFS driving signal is given by (3.9b)
together with Tab. 3.1. �

(Fractional) Delay and Weighting: Afterwards, the potentially pre-
filtered source signal s̃[n] is stored in a delayline. A delayline is
essentially a signal buffer, from which delayed versions of the source
signal can be requested. The geometry-dependent weighting w(x0)

may also be included in each request. It is worth noting, that the
source signal is only written once into the delayline while the num-
ber of requests scales linearly with the number of loudspeakers N0.
In terms of computational effort, the request process is most critical.
The required delays τ(x0) are generally not an integer multiple of the
sample period Ts. Furthermore, the change of the scene geometry
over time, e.g. moving sound sources, results in time-variant delays.
Interpolation has to be applied to the sampled source signal in order
to retrieve signal values for inter-sample positions. An extensive
overview about the realisation of fractional delay interpolation and
arbitrary sample rate conversion for WFS is given by Franck.69 It is

69 Franck (2011). “Efficient Algorithms
for Arbitrary Sample Rate Conversion
with Application to Wave Field Synthe-
sis”. PhD thesis. Technische Universität
Ilmenau, p. 269.

sufficient here to list some of the most practical interpolation strate-
gies.

The nearest neighbour interpolation w.r.t. the sample position
is regarded as the simplest and computationally cheapest method:
It has been shown by Ahrens et al.70 that this approach is percep-

70 Ahrens et al. (May 2010). “Percep-
tual Assessment of Delay Accuracy and
Loudspeaker Misplacement in Wave
Field Synthesis”. In: Proc. of 128th Aud.
Eng. Soc. Conv. London, UK, Sec. 7.

tually sufficient for stationary scenarios reproduced with a circular
loudspeaker array (1.5 m radius, 56 loudspeakers) at a sampling fre-
quency of 44.1 kHz. Own research71 suggests, that this transparency

71 Winter and Spors, “On Fractional De-
lay Interpolation for Local Wave Field
Synthesis”.

is due to significant spatial aliasing artefacts introduced by the re-
production setup. They dominate the artefacts caused by the delay
interpolation. As a rule of thumb, a better delay interpolation is re-
quired, if the spatial aliasing artefacts are less prominent. According
to Franck et al.,72 audible artefacts occur in dynamic scenarios even

72 Franck et al. (Sept. 2007). “Repro-
duction of Moving Sound Sources by
Wave Field Synthesis: An Analysis of
Artifacts”. In: Proc. of 32nd Intl. Aud.
Eng. Soc. Conf. on DSP For Loudspeakers.
Hilleroed, Danmark, Sec. 3.2.

for slow source movements with this interpolation strategy.
The second option interpolates the source signal upon request

e.g. by applying a suitable fractional delay filter depending on the
requested delay. Two well-known filter types are the Lagrange FIR
filter and the Thiran IIR Allpass filter.73 The accuracy of the interpo-

73 Laakso et al. (Jan. 1996). “Splitting
the unit delay [FIR/all pass filters de-
sign]”. In: IEEE Signal Process. Mag.
13.1, pp. 30–60.

lation generally increases with the number of filter coefficients. Due
to the filtering and the (re-)calculation of the filter coefficients, the
computational cost per request are comparatively high.

http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_time_domain/wfs_fir_prefilter.m
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_general/delayline.m
https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig09
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A delay independent preprocessing is an efficient extension to
the prior category. A prominent approach is the oversampling of
the signal about an integer factor. After the upsampling, missing
samples are calculated via a delay-independent interpolation filter,
which is efficiently implemented using polyphase structures.74 The

74 Manolakis and Ingle, op. cit., Sec. 12.2

oversampled signal is stored in the delayline. Upon request, the
delay is rounded to the next integer or is interpolated by a low-
order Fractional Delay (FD) filter in the oversampled domain. The
delayed signal is then downsampled, again. As a drawback, the
memory required to store the oversampled signal scales with the
upsampling factor. Within own work,75 an oversampling of factor 8

75 Winter and Spors, op. cit.

with a Parks-McClellan76 linear-phase FIR interpolation filter of 512

76 McClellan and Parks (2005). “A per-
sonal history of the Parks-McClellan al-
gorithm”. In: IEEE Signal Process. Mag.
22.2, pp. 82–86

taps and a 9th-order Lagrange interpolator for the individual delays
showed close to no artefacts for a sampling frequency of 44.1 kHz.
It will be used as the reference, high accuracy FD method in this
thesis. A comparison between the reference method and the nearest-
neighbour interpolation is conducted in Fig. 3.10: For the discrete
SSD, the pressure of the synthesised sound field is dominated by
spatial aliasing artefacts at high frequencies. The chosen delay in-
terpolation has close to no influence. Without spatial aliasing in the
continuous, the impact becomes observable.
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Figure 3.10: Plots shows the magni-
tude spectra of the synthesised sound
field at the coordinates’ origin. A cir-
cular SSD with a radius of 1.5 m is
driven by WFS to synthesise a virtual
plane wave. The driving signal is given
(3.9b) together with the quantities in
Tab. 3.1. A discrete SSD consist of
56 equi-angularly positioned secondary
sources. The coloured lines indicate the
used delay interpolation method. �

3.3 Near-Field-Compensated Higher-Order Ambisonics

The complicated terminology of Near-Field-Compensated Higher-
Order Ambisonics (NFCHOA) already suggest, that this SFS method
is an extension to Ambisonics which was originally published by
Gerzon.77 According to Ahrens,78 Ambisonics assumes the virtual

77 Gerzon (1973). “Periphony: With-
Height Sound Reproduction”. In: J.
Aud. Eng. Soc. 21.1, pp. 2–10.
78 Ahrens (2012). Analytic Methods of
Sound Field Synthesis. T-Labs Series
in Telecommunication Services. Berlin
Heidelberg, Germany: Springer-Verlag,
Sec. 1.2.4 and Sec. 3.3.5.

sound field and the sound field emitted by each secondary source
to be plane waves. The driving signals are then calculated in the
Spherical Harmonics domain. Zotter et al.79 give an alternative in-

79 Zotter et al. (May 2010). “Ambisonic
Decoding with and without Mode-
Matching: A Case Study Using the
Hemisphere”. In: Proc. of 2nd Int.
Symp. on Ambisonics and Spherical Acous-
tics. Paris, France, Sec. 2.

terpretation for Ambisonics, where the a virtual point source is co-
located on a unit sphere together with all secondary sources. Both
interpretations yield the same driving signals. Fazi80 mentioned in

80 Fazi (2010). “Sound field repro-
duction”. PhD thesis. University of
Southampton, Sec. 1.1.2.

his review, that early approaches were restricted to the zeroth and
the first order of Spherical Harmonics although the theory of Gerzon
did not involve any restrictions in that regard. Several extensions
towards higher orders subsumed under Higher Order Ambisonics
(HOA) were presented, from which the works of Bamford81 and 81 Bamford (1995). “An Analysis of Am-

bisonics Sound Systems of First and
Second Order”. MA thesis. Waterloo,
Canada: University of Waterloo.

Daniel82 are mentioned exemplary. Finally, the near-field compensa-

82 Daniel (2001). “Représentation de
champs acoustiques, application à la
transmission et à la reproduction de
scènes sonores complexes dans un con-
texte multimédia”. PhD thesis. Univer-
sité Paris 6.

tion83 models the secondary sources as point sources and constitutes

83 Idem, “Spatial Sound Encoding In-
cluding Near Field Effect: Introducing
Distance Coding Filters and a Viable,
New Ambisonic Format”.

NFCHOA. The approach was further generalised to incorporate di-
rective secondary sources.84

84 Ahrens and Spors, op. cit.

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig10
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Source type Denotations
⋄

Dm(ω) Condition

Driving Function Coefficients

Point Source DNFCHOA
2.5D,ps (x0|xps, ω)

⋄
DNFCHOA

m,ps (ω) S̃(ω)
h(2)|m|(

ω
c rps)

2πR h(2)|m|(
ω
c R)

e−jmϕps R < rps, ϑps =
π
2

Line Source DNFCHOA
2.5D,ls (x0|xls, ω)

⋄
DNFCHOA

m,ls (ω) S̃(ω)
jm−|m| H(2)

m (ω
c ρls)

2 ω
c R h(2)|m|(

ω
c R)

e−jmϕls R < ρls

Plane Wave DNFCHOA
2.5D,pw (x0|npw, ω)

⋄
DNFCHOA

m,pw (ω) S̃(ω)
2 j1−|m|

ω
c R h(2)|m|(

ω
c R)

e−jmϕpw ϑpw = π
2

Table 3.2: Circular Harmonics coeffi-
cients

⋄
Dm of the 2.5D NFCHOA driving

signal (3.17) for selected virtual sound
fields.

3.3.1 Driving Signals in the Frequency Domain

Driving Signal for 3D Scenarios: NFCHOA states the solution to the
specialised SLP85 85 Schultz and Spors (2014). “Compar-

ing Approaches to the Spherical and
Planar Single Layer Potentials for In-
terior Sound Field Synthesis”. In:
Acta Acustica united with Acustica 100.5,
pp. 900–911.
driving_function_mono_nfchoa

S(x, ω)
!
=
∫︂ 2π

0

∫︂ π

0
D(x0, ω)G(x|x0, ω)R2 sin ϑ0 dϑ0 dϕ0 ∀x|r < R

(3.11)
for a spherical SSD of constant radius R centred at the coordinates’
origin. The equivalent scattering problem is solved in the Spherical
Harmonics domain and the driving signal is given as86,87,88 86 Ahrens, op. cit., Sec. 3.4.

87 Fazi and Nelson (2013). “Sound field
reproduction as an equivalent acousti-
cal scattering problem”. In: J. Acoust.
Soc. Am. 134.5, pp. 3721–3729, Eq. (22).
88 Schultz and Spors, op. cit., Sec. 5.2.

DNFCHOA
3D (x0, ω) =

∞

∑
n=0

n

∑
m=−n

S̆m
n (ω)

−j ω
c R2h(2)n (ω

c R)
Ψm

n (ϑ0, ϕ0) , (3.12)

where S̆m
n (ω) denotes the interior spherical expansion coefficients89 89 see Sec. 2.2.1

of the virtual sound field. Since, the 3D NFCHOA driving signal
is the exact analytic solution to the SLP in (3.11), the correspond-
ing synthesis matches the virtual sound field everywhere inside the
spherical SSD. As this was already confirmed by Ahrens90,91 via 90 Ahrens, “The Single-layer Potential

Approach Applied to Sound Field
Synthesis Including Cases of Non-
enclosing Distributions of Secondary
Sources”, Sec. 3.2.2.
91 Idem, Analytic Methods of Sound Field
Synthesis, Sec. 3.3.2.

numerical simulations, examples for the synthesised sound field are
omitted, here.

Driving Signal for 2.5D Scenarios: In the 2.5D synthesis scenario,
the spherical secondary source distribution reduces to a circle, here
in the xy-plane. The synthesis problem specialises to

S(x, ω)
!
=
∫︂ 2π

0
D(x0, ω)G(x|x0, ω)R dϕ0 ∀x|ρ < R, z = 0 , (3.13)

which states a circular convolution. Ahrens and Spors92 derived the 92 Ahrens and Spors (2008). “An An-
alytical Approach to Sound Field Re-
production using Circular and Spher-
ical Loudspeaker Distributions”. In:
Acta Acustica united with Acustica 94.6,
pp. 988–999.

driving signal directly from the synthesis integral using the convolu-
tion theorem of the Circular Harmonics.93 However, this derivation

93 Williams, op. cit., Sec. 1.2.

does only provide little insight into the connection between the 3D
and the 2.5D synthesis problem. An alternative derivation based on
the 3D driving signal (3.12) is presented here: expanding the fraction
in (3.12) about Ψ−m

n (π
2 , 0) yields

DNFCHOA
3D (x0, ω)=

1
R2

∞

∑
n=0

n

∑
m=−n

S̆m
n (ω)Ψ−m

n (π
2 , 0)

(−j ω
c )h

(2)
n (ω

c R)Ψ−m
n (π

2 , 0)
Ψm

n (ϑ0, ϕ0)

(3.14)

http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_monochromatic/driving_function_mono_nfchoa.m
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Figure 3.11: The top plots show the
reproduced sound field (3.3) using a
quasi-continuous, circular secondary
source distribution centred around the
coordinates’ origin with a radius of
1.5 m (black line). It is driven by
2.5D NFCHOA (3.17) to synthesise a
monochromatic plane wave Ppw(x, ω)
with the propagation direction npw =
[0,−1, 0]T and varying frequency f .
The bottom plots show corresponding
normalised absolute error defined as

20 lg
⃓⃓
⃓⃓ P(x, ω)− Ppw(x, ω)

Ppw(x, ω)

⃓⃓
⃓⃓ . �

Taking Tab. 2.1 into account, the denominator constitutes the regular
spherical expansion coefficients of a point source or more precisely,
the free-field Green’s function with xs = [R, 0, 0]T. Both, the numer-
ator and the denominator are replaced by their sectorial approxima-
tions (2.46) yielding

DNFCHOA
3D (x0, ω) ≈ (3.15)

1
R2

∞

∑
n=0

n

∑
m=−n

S̆m
|m|(ω)

(−j ω
c )h

(2)
|m|(

ω
c R)Ψm

|m|(
π
2 , 0)

Ψ−m
n

(︂π

2
, 0
)︂

Ψm
n (ϑ0, ϕ0)

window type ⋄wM
m for |m| ≤ M

rectangular 1
max-rE cos

(︁
π
2

m
M+1

)︁

Table 3.3: Selected modal weighting
functions a.k.a. modal windows ⋄wM

m .
The windows always yield zero for
|m| > M.

The summation can be written as ∑∞
m=−∞ ∑∞

n=|m|, whereas the sum-
mation w.r.t. n

∞

∑
n=|m|

Ψ−m
n

(︂π

2
, 0
)︂

Ψm
n (ϑ0, ϕ0) =

1
2π

δ(cos(ϑ0))e+jmϕ0 (3.16)

is derived in Sec. B.1. Eq. (3.15) is inserted together with (3.16) into
(3.11). The integral w.r.t. ϑ0 is solved with the sifting property94,95 94 Girod et al., op. cit., Eq. (8.15).

95 Gel’fand and Shilov (1964). General-
ized functions: Vol. 1. Properties and op-
erations. New York, London: Academic
Press, p. 4.

of the Dirac delta distribution. The resulting line integral coincides
with the original synthesis problem in (3.13). The driving signal is
given as
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Figure 3.12: The plots show the angular
spectra wM(ϕ) for the rectangular and
max-rE window with M = 7. The neg-
ative abscissa is omitted due to symme-
try. �

DNFCHOA
2.5D (x0, ω) =

∞

∑
m=−∞

S̆m
|m|(ω)

−j2π ω
c Rh(2)|m|(

ω
c R)Ψm

|m|(
π
2 , 0)

⏞ ⏟⏟ ⏞
⋄
Dm(ω)

e+jmϕ0 .

(3.17)
The Circular Harmonics coefficients of the driving signal are denoted
as

⋄
Dm(ω). Tab. 3.2, shows the coefficients for selected virtual sound

fields. The derivation reveals, that the 2.5D NFCHOA driving sig-
nal is based on the conversion of the desired sound field and the
free-field Green’s function into their 2D approximations, which are
only exact at the coordinates’ origin. The plots in Fig. 3.11 confirm
that the synthesised and virtual sound field only coincide at this

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig11
https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig12
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Figure 3.13: The top plots show the
reproduced sound field (3.3) using a
quasi-continuous, circular secondary
source distribution centred around the
coordinates’ origin with a radius of
1.5 m (solid black line). It is driven
by 2.5D bandwidth-limited NFCHOA
(3.18) to synthesise a monochromatic
plane wave Ppw(x, ω) with the propa-
gation direction npw = [0,−1, 0]T. The
dashed black circles mark the area of
high synthesis accuracy with a radius
of Mc/2π f . The temporal frequency, the
modal bandwidth M, and used modal
window type are indicated above the
plots. The black arrows in the bottom
plots show the according normalised
local wavenumber vector k̂P(x, ω) de-
scribing the local propagation direction
of the synthesised sound field. It is
numerically computed using Eq. (2.53).
The colour encodes the angle between
the vector and the desired propagation
direction npw in degrees. The angle is
defined as

arccos
(︂
⟨k̂P(x, ω)|npw⟩

)︂
. �

position. Here, the error between the two quantities is negligible
compared to other positions. Opposite to WFS, no diffraction arte-
facts are visible since no discontinuous truncation by a secondary
source selection criterion is applied.

Spatial Bandwidth Limitation: In order to be computationally fea-
sible, the summation in (3.17) has to be truncated to sensible value.
This is usually termed Spatial Bandwidth Limitation (SBL) and mod-
elled by multiplying

⋄
Dm(ω) with a finite-length weighting function

a.k.a. modal window ⋄wM
m . Assuming symmetric truncation, the

window is only non-zero between ±M, which usually referred to
as the modal bandwidth. The truncated driving signal then reads

DNFCHOA
2.5D (x0, ω) =

M

∑
m=−M

⋄wM
m
⋄

Dm(ω)e+jmϕ0 . (3.18)

The window types of interest are listed in Tab. 3.3: A simple trunca-
tion of the sum at ±M is equivalent to the rectangular weighting.
It has been shown in the context of Ambisonics that the max-rE

weighting96 has a positive effect on spatial perception.97 To compare 96 Daniel et al. (Sept. 1998). “Ambison-
ics Encoding of Other Audio Formats
for Multiple Listening Conditions”. In:
Proc. of 105th Aud. Eng. Soc. Conv. San
Francisco, USA, Eq. (19).
97 Frank (June 2013a). “Phantom
Sources using Multiple Loudspeakers
in the Horizontal Plane”. PhD thesis.
Graz, Austria: Institute of Electronic
Music and Acoustics, p. 31ff.

the different window types, the angular spectrum

wM(ϕ) =
M

∑
m=−M

⋄wM
m e+jmϕ (3.19)

constituting the Inverse Circular Harmonics Transform (ICHT)98 of

98 see Eq. (2.37)

⋄wM
m is used. It can be deduced from Fig. 3.12, that the max-rE win-

dow suppresses the side-lobes in the angular spectrum at the cost
of a broader main lobe compared to the rectangular window. As
a consequence, the overall emitted energy is concentrated to fewer
loudspeakers in direction of the virtual source, if the max-rE window
is used. Formally, the max-rE window maximises the length of the
so-called energy-vector rE which is defined as99,100

99 Daniel et al., op. cit., space-
continuous version of Eq. (14).

100 Zotter et al. (2012). “Energy-
Preserving Ambisonic Decoding”. In:
Acta Acustica united with Acustica 98.1,
space-continuous version of Eq. (19).

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig13
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|rE| =
∫︁ 2π

0 |wM(ϕ)|2 cos(ϕ)dϕ
∫︁ 2π

0 |wM(ϕ)|2 dϕ
. (3.20)

In Fig. 3.13, the effect of the SBL on the synthesised sound field
can be observed. Due to the limitation, the sound field is only syn-
thesised accurately in a circular area around the array centre, see
dashed circle in the top plots. Its radius can be approximated by
|x| ≈ Mc/2π f .101 The linear dependency between radius and modal 101 Ahrens, op. cit., Eq. (2.41).

bandwidth motivates to set M as high as possible. However, in order
to include the whole area surrounded by the circular loudspeaker
array of radius R up to a maximum frequency fmax, a modal band-
width of M = 2πR fmax/c is necessary. As an example, fmax = 20 kHz
and R = 1.5 m would lead to M ≈ 550 resulting in a considerable
computational effort. Furthermore, it will be later shown for discrete
SSDs in Ch. 4, that spatial aliasing can be reduced by decreasing
M. The top plots in Fig. 3.13 further show, that the max-rE window
leads to a smoother synthesis of the desired sound field compared
to its rectangular counterpart. Here, ripples in the wave front are
observable especially near the boundary of the dashed circles. The
according normalised local wavenumber vectors k̂P(x, ω) of the syn-
thesised sound fields are shown in the remaining plots. Here, the
max-rE window leads to less fluctuations of the propagation direc-
tion.
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Figure 3.14: Magnitude spectra of the
synthesised sound field for the same
scenario as in Fig. 3.13. Two different
modal bandwidth M and windows ⋄wM

m
are used. The two evaluation positions
x are encoded by the saturation of the
line colour. The black dashed line indi-
cates f = Mc/2π|x|. �

In order to further investigate the impact of the SBL on the spectral
properties of the synthesised sound field, some examples are plotted
in Fig. 3.14. As already shown for the sound fields in Fig. 3.11, the ap-
proximation f = Mc/2π|x| by Ahrens102 yields a reasonable threshold

102 Ibid., Eq. (2.41).

for an artefact-free synthesis. In Fig. 3.14, the dashed line indicates
these frequencies for |x| = 0.5 m. Above this frequencies, the arising
artefacts heavily depend on the direction along which the evaluation
position is shifted away from the centre relative to the propaga-
tion direction of the plane wave. If the shift is perpendicular, e.g.
x = [0.5, 0, 0]T m (weakly saturated lines), a significant loss in sound
pressure is observable. The effect is stronger for the max-rE window
(blue) in comparison to the rectangular window (red). Shifting the
evaluation position along or antiparallel to the propagation causes
only minor distortions of the spectrum. This can be recognised by
the spectra for x = [0, 0.5, 0]T m (strongly saturated lines). Here, the
fluctuations are more pronounced for the rectangular window. The
findings agree with the work of Hahn and Spors,103 where the error 103 Hahn and Spors (Mar. 2015a).

“Modal Bandwidth Reduction in Data-
based Binaural Synthesis including
Translatory Head-movements”. In:
Proc. of German Annual Conference
on Acoustics (DAGA). Nuremberg,
Germany, pp. 1122–1125.

induced by the SBL of a plane wave also showed a strong dependence
on the azimuth of x relative to its propagation direction npw.

3.3.2 Practical Realisation of Model-Based Rendering
driving_function_imp_nfchoa

As for WFS, spatial and temporal sampling has to be applied to the
driving signals, which results in

dNFCHOA
2.5D [x(ν)0 , n] =

M

∑
m=−M

⋄wM
m
⋄

dm[n]e+jmϕ
(ν)
0 . (3.21)

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig14
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_time_domain/driving_function_imp_nfchoa.m
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If the loudspeakers are equi-angularly distributed, i.e. ϕ
(ν)
0 = 2πν/N0,

the summation states an Inverse Discrete Fourier Transform (IDFT)104 104 Manolakis and Ingle, op. cit., Sec. 7.2.

and is efficiently implemented via an Inverse Fast Fourier Transform
(IFFT), see bottom of Fig. 3.15.

IFFT for conjugate
symmetric input

×
�wM

0

+

×
g0

� h 0
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+
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Figure 3.15: Block-Diagram showing
the time-domain realisation of NF-
CHOA for one virtual point source or
plane wave emitting the source sig-
nal s[n]. Contributions from other vir-
tual sources are incorporated via the
addition-operators. �

Since the final driving signals and ⋄wM
m are real-valued,

⋄
dm[n] has to be

conjugate symmetric, i.e. the coefficients for ±m have to form conju-
gate complex pairs. This simplifies the computation, as only positive
m have to be considered. As the remaining task, the time-discrete
Circular Harmonics coefficients

⋄
dm[n] have to be realised. While no

stable realisation for the virtual line source is known to the author,
the coefficients for a plane wave and a point source are implemented
via IIR filters. A short outline of the major design steps is presented
here. For details, the reader is referred to the original publication105

105 Daniel, op. cit., Sec. 3.

and revisiting discussions.106,107 With the Laplace-domain (jω → s)

106 Spors et al., “Efficient realization
of model-based rendering for 2.5-
dimensional near-field compensated
higher order Ambisonics”.
107 Hahn and Spors (May 2017). “Fur-
ther Investigations on the Design of Ra-
dial Filters for the Driving Functions of
Near-Field Compensated Higher-Order
Ambisonics”. In: Proc. of 142nd Aud.
Eng. Soc. Conv. Berlin, Germany.

representation of the spherical Hankel function,108 the coefficients in

108 Pomberger (2008). “Angular and Ra-
dial Directivity Control for Spherical
Loudspeaker Arrays”. Diploma Thesis.
University of Music and Dramatic Arts,
Graz, Austria, Eq. (3.20).

Tab. 3.2 for the point source and the plane wave can be expressed in
the frequency domain as

⋄
DNFCHOA

pw,m (ω) = S̃(ω) e−j ω
c (rps−R)

⏞ ⏟⏟ ⏞
delay τ

e−jmϕps

2πrps⏞ ⏟⏟ ⏞
weight gm

[︄
θ|m|

(︁ rps
c s
)︁

θ|m|
(︁ R

c s
)︁
]︄

s=jω⏞ ⏟⏟ ⏞
⋄

Hm,pw(ω)

, and

(3.22a)

⋄
DNFCHOA

ps,m (ω) = S̃(ω) e+j ω
c R

⏞ ⏟⏟ ⏞
delay τ

2(−1)me−jmϕpw

⏞ ⏟⏟ ⏞
weight gm

[︄
s|m|

θ|m|
(︁ R

c s
)︁
]︄

s=jω⏞ ⏟⏟ ⏞
⋄

Hm,ps(ω)

.

(3.22b)

The expressions state, that the source signal is first delayed about τ.
The delay depends on the radius of the array R and on the distance
of the point source rps, if applicable. As for WFS, it is applied to the
source signal via a (fractional) delay line, see top of Fig. 3.15. The
computational effort for the delay interpolation is however less criti-
cal as for WFS, since the number of delay operations is independent
of the number of loudspeakers.

The delayed signal is filtered by a system whose transfer func-
tion (brackets) is given in the Laplace domain as a rational function,
where θ|m| denotes the |m|th-order reverse Bessel polynomial.109 As

109 Grosswald (1978). Bessel Polynomials.
Vol. 698. Lecture Notes in Mathematics.
Berlin Heidelberg, Germany: Springer-
Verlag, Cha. 2.

all coefficients of the polynomial are real-valued, the zeros and poles
of the ratio are either real-valued or conjugate complex pairs. The ra-
tio can be factorised into first- and second-order real-valued rational
functions a.k.a. first- and second-order-sections. In order to achieve
factorisation, the non-trivial zeros and poles have to be calculated by
finding the roots of the reverse Bessel polynomials. As pointed out
by Hahn and Spors,110 root-finding-algorithms which are specialised 110 Hahn and Spors, op. cit.

to the reserve Bessel polynomials outperform standard methods, es-
pecially for high orders. It is worth noting, that the roots can be
computed offline w.r.t. s and are then scaled on-the-fly by c/R or c/rps.
In order to derive digital filters, the bilinear transform111 is applied to 111 Manolakis and Ingle, op. cit.,

Sec. 11.3.2.

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig15
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the first- and second-order-sections. In the literature, alternative filter
design techniques such as the matched z-transform method112 or the 112 Ifeachor and Jervis (2002). Digital

Signal Processing: A Practical Approach.
2nd ed. Pearson Education, Sec. 8.7.

Corrected Impulse Invariance Method (CIIM)113 were investigated
113 Jackson (Oct. 2000). “A correction to
impulse invariance”. In: IEEE Signal
Process. Lett. 7.10, pp. 273–275.

for the current implementation. Compared to the bilinear transform,
their performance was reported to be only subtly better114 or much

114 Hahn and Spors, op. cit., Sec. 5.
worse,115 respectively.

115 Spors et al., op. cit., Sec. 4.2.
After filtering, the complex conjugate symmetric gain factor de-

noted as gm is applied. As the contributions from other virtual
sources are added afterwards, the computational effort for the modal
windowing and the IFFT is independent of the number of virtual
sources.

3.4 Local Wave Field Synthesis using Spatial Bandwidth
Limitation116 116 Parts of this section are published

in Winter et al. (Aug. 2017c). “Time-
Domain Realisation of Model-Based
Rendering for 2.5D Local Wave Field
Synthesis Using Spatial Bandwidth-
Limitation”. In: Proc. of 25th European
Signal Processing Conference (EUSIPCO).
Kos Island, Greece, pp. 688–692.

It was shown for NFCHOA, that the SBL establishes a region of high
synthesis accuracy around the centre of a circular loudspeaker array.
This motivates an extended approach, where the location of this re-
gion can be shifted away from the centre. Analytic extensions to NF-
CHOA published in117 achieve this using multipole re-expansion118 117 Winter et al., “On Analytic Meth-

ods for 2.5-D Local Sound Field Synthe-
sis Using Circular Distributions of Sec-
ondary Sources”, Sec. IV.A.
118 Gumerov and Duraiswami (2004).
Fast multipole methods for the Helmholtz
equation in three dimensions. Oxford, UK:
Elsevier Science, Sec. 3.2.

in the circular/spherical harmonics domain. A time-domain imple-
mentation of the required re-expansion coefficients using IIR filter
banks was presented by Baumgartner.119 The complexity of this ap-

119 Baumgartner (2011). “Time Do-
main Fast-Multipole Translation for
Ambisonics”. MA thesis. Graz, Aus-
tria: Institute of Electronic Music and
Acoustics.

proach increases drastically with the spatial bandwidth M. As its
major drawback, NFCHOA restricts the array geometry to circles or
spheres. As WFS is more flexible in that regard its extension called
LWFS-SBL120 is presented, here. It uses the same SBL mechanism.

120 Hahn et al., op. cit.
3.4.1 Driving Signals in the Frequency Domain

driving_function_mono_localwfs_sblThe SBL is applied to the interior circular expansion (2.39) of the
virtual sound field around the expansion centre xc. The resulting
approximation of the sound field reads

S(x, ω) ≈ SB
M(x, xc, ω) =

M

∑
m=−M

⋄wM
m Šm(xc, ω)Im(x†, ω) . (3.23)

The bandwidth limited sound field is denoted as SB
M(x, xc, ω). The

vector x† = x− xc describes a position in a shifted coordinate frame
with the expansion centre xc as its origin. A similar approach can
be taken to apply SBL to the regular spherical expansion of the
virtual sound field.121 However, for 2.5D synthesis scenarios, the 121 Winter et al., op. cit.

circular expansion serves as a sufficient example. While in the origi-
nal publication122 the WFS driving signal is directly computed from 122 Hahn et al., op. cit.

the truncated interior circular expansion in (3.23), an intermediate
representation is chosen here: The bandwidth-limited virtual sound
field is converted to a 2D PWD (2.49) with its coefficients

S̄B
M(ϕpw, xc, ω) =

M

∑
m=−M

⋄wM
m jm Šm(xc, ω)e+jmϕpw (3.24)

http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_monochromatic/driving_function_mono_localwfs_sbl.m
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Figure 3.16: The top plots show the
reproduced sound field (3.3) using a
quasi-continuous (512), circular SSD
centred around the coordinates’ origin
with a radius of 1.5 m (black line). It is
driven by 2.5D LWFS-SBL (3.25) to syn-
thesise a monochromatic ( f = 1000 Hz)
plane wave Ppw(x, ω) with the propa-
gation direction npw = [0,−1, 0]T. The
expansion centre xc, the modal band-
width M, and used modal window type
are indicated above the plots. The
dashed black circles mark the area of
high synthesis accuracy around xc with
a radius of Mc/ω. The bottom plots
show corresponding normalised abso-
lute error defined as

20 lg
⃓⃓
⃓⃓ P(x, ω)− Ppw(x, ω)

Ppw(x, ω)

⃓⃓
⃓⃓ . �

computed from the circular expansion coefficients. Because the inte-
gral in the PWD (2.49) is a linear operation, the WFS driving signal
can be applied to each individual plane wave. Finally, the LWFS-SBL
driving signal is given

DLWFS−SBL
2.5D (x0, ω) = (3.25)

1
2π

∫︂ 2π

0
S̄B

M(ϕpw, xc, ω)DWFS
2.5D,pw(x

†
0|npw, ω)dϕpw

It states the superposition of conventional 2.5D WFS driving func-
tions DWFS

2.5D,pw(x
†
0|npw, ω) for an ensemble of plane waves with their

propagation direction npw = [cos ϕpw, sin ϕpw, 0]T continuously dis-
tributed over the unit circle. The position of the secondary source x†

0
is also given in the shifted coordinate frame. The driving signal for
each plane wave is weighted by the according expansion coefficient
S̄B

M(ϕpw, xc, ω).
An example of the synthesised sound fields is shown in Fig. 3.16.

The effect of the modal bandwidth M and the weighting function
is similar to the effect observed for NFCHOA. A region of high
accuracy with the radius Mc/2π f evolves around the expansion centre
xc. The error plots in the bottom row confirm an increased synthesis
accuracy. As a major benefit compared to NFCHOA, the location of
the area can now be defined.

3.4.2 Practical Realisation of Model-Based Rendering
driving_function_imp_localwfs_sbl

In addition to the obligatory spatial sampling of the SSD and the
temporal sampling of the involved signals, discretisation has to be
applied to the PWD coefficients. The continuous expansion in (3.25)
is approximated by a sum over Npw equidistant samples on the unit

circle, i.e. ϕ
(l)
pw = 2πl/Npw. The discrete-time driving signal and the

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig16
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_time_domain/driving_function_imp_localwfs_sbl.m
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PWD coefficients of the bandwidth-limited sound field read

dLWFS−SBL
2.5D [x(ν)0 , n] ≈ 1

Npw

Npw−1

∑
l=0

s̄B
M[ϕ

(l)
pw, xc, n] ∗n dWFS

2.5D,pw[x
†,(ν)
0 |n(l)

pw, n] ,

(3.26a)

s̄B
M[ϕ

(l)
pw, xc, n] =

M

∑
m=−M

⋄wM
m jm šm[xc, n] e

+j 2π
Npw lm

. (3.26b)
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Figure 3.17: Block-Diagram showing
the time-domain realisation of LWFS-
SBL for one virtual source. Contribu-
tions from other virtual sources are in-
corporated via the addition-operators.
The dashed elements are only neces-
sary for the synthesis of a virtual point
source. �

The discrete-time convolution is denoted by ∗n. The realisation of
LWFS-SBL is illustrated in Fig. 3.17. A conventional WFS renderer
(bottom) presented in Sec. 3.2.2 is used to implement (3.26a). For
each ϕ

(l)
pw, a virtual plane wave with the according propagation di-

rection n(l)
pw and source signal s̄[ϕ(l)

pw, xc, n] is rendered via WFS. The
required signals are defined in (3.26b) as an IDFT w.r.t. m. Since
the plane wave signals are expected to be real-valued, an efficient
implementation is, again, given by an IFFT for conjugate symmetric
input. Hence, the remaining structure shown in Fig. 3.17 is very sim-
ilar to the NFCHOA implementation (red frame). The coefficients for
an interior circular expansion around xc are given in the frequency
domain as

Špw,m(xc, ω) = S̃(ω) e−j ω
c ⟨xc|npw⟩

⏞ ⏟⏟ ⏞
delay τ

j−m e−jmϕpw

⏞ ⏟⏟ ⏞
weight gm

, and (3.27a)

Šps,m(xc, ω) = S̃(ω) e−j ω
c r†

ps⏞ ⏟⏟ ⏞
delay τ

jme−jmϕ†
ps

4πr†
ps⏞ ⏟⏟ ⏞

weight gm

⎡
⎣ θ|m|

(︁ r†
ps
c s
)︁

s|m|

⎤
⎦

s=jω⏞ ⏟⏟ ⏞
⋄

Hm,ps(ω)

. (3.27b)

The azimuth ϕ†
ps and the radius r†

ps define the position x†
ps = xps− xc

of the point source in the shifted coordinate frame. The implemen-
tation for the virtual plane wave is straight-forward, as the signal is
delayed and weighted. Contrary to the realisation of the radial fil-
ters in NFCHOA, an IIR implementation of

⋄
Hm,ps(ω) is not possible

without further treatment. Due to its |m|-order pole, the filter is not
stable. Also an FIR implementation, e.g. via the frequency-sampling
method,123 is challenging as the pole in

⋄
Hm,ps(ω) induces very high

123 Manolakis and Ingle, op. cit.,
Sec. 10.4.

amplitudes for low frequencies. In the context of SFA using spherical
microphone arrays, Lösler and Zotter124 used Linkwitz-Riley (LR)125

124 Lösler and Zotter (Mar. 2015). “Com-
prehensive radial filter design for prac-
tical higher-order Ambisonic record-
ing”. In: Proc. of German Annual Confer-
ence on Acoustics (DAGA). Nuremberg,
Germany, pp. 452–455.
125 Linkwitz (1976). “Active Crossover
Networks for Noncoincident Drivers”.
In: J. Aud. Eng. Soc. 24.1, pp. 2–8.

filters to stabilise the radial filters. This approach is adapted, here.
LR filters are squared Butterworth filters and do only exist for even
orders 2η. A LR pair consists of a lowpass HLP

2η (ω) and the highpass
HHP

2η (ω) with the same cut-off frequency. They have a joined allpass
characteristic of

HAP
2η (ω) = HLP

2η (ω) + HHP
2η (ω) . (3.28)

with |HAP
2η (ω)| = 1. All three filter-types have the same phase re-

sponse. In the original approach,126 an individual LR highpass filter 126 Lösler and Zotter, op. cit.

of order 2η = 2⌈|m|/2⌉ was applied to
⋄

Hm,ps(ω) to compensate the
pole at s = 0. Since different filters were used for each m, different

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig17


3.4. Local Wave Field Synthesis using Spatial Bandwidth Limitation 40

kind of phase distortions are implied for each mode. When recom-
bining all modes via the IDFT these phase mismatches would lead to
undesired destructive interferences. Phase match between the modes
is preserved by a cascade of (M− 1) LR allpass filters with the same
phase response as for the LR highpass filter applied to the other
modes. This results in a cascade of M filters for each mode. While
this is feasible for a low M (≈ 4) which is common for spherical
microphone arrays, model-based SFS may require much higher M.
In the current approach, computational complexity is reduced by
applying the same highpass filter to all modes. The necessary order
of the LR highpass filter to compensate all poles is 2η = 2⌈M/2⌉. The
resulting stabilised radial filters read

⋄
H′m,ps(ω) =

⋄
Hm,ps(ω)HHP

2η (ω) =

⎡
⎣ θ|m|

(︁ r′ps
c s
)︁

s2η−|m|

[Bη(
s

ωc
)]2

⎤
⎦

s=jω

. (3.29)

The Butterworth polynomials127 are denoted as Bη(·) and the cross- 127 Lipshitz and Vanderkooy (1983). “A
Family of Linear-Phase Crossover Net-
works of High Slope Derived by Time
Delay”. In: J. Aud. Eng. Soc. 31.1/2,
pp. 2–20, Tab. 1.

over or cut-off frequency is defined via ωc = 2π fc. As for NF-
CHOA the digital IIR implementation

⋄
h′m,ps[n] is achieved via first-

and second-order sectioning and the bilinear transform. Since the
same highpass filter is applied to all modes, the entire driving func-
tion is highpass filtered. The effective driving signal in frequency
domain becomes

D2.5D(x0, ω) = DLWFS−SBL
2.5D (x0, ω)HHP

2η (ω) . (3.30)

This results in a lack of energy at lower frequencies for the repro-
duced sound field. Since, conventional WFS is expected to be ac-
curate at low frequencies, the LWFS-SBL is augmented by the WFS
driving signal within this range. The source signal is filtered by
the LR lowpass filter HLP

2η (ω) corresponding to the highpass filter
used for the stabilisation of the radial filters. The filtered signal is
directly fed into the WFS renderer as the source signal for a virtual
point source with the same parameters as for the LWFS-SBL driving
signal. This is illustrated by the dashed signal path in Fig. 3.17.
At the output of the renderer low- and high-frequency component
combine to

D2.5D(x0, ω) = DWFS
2.5D,ps(x0, ω)HLP

2η (ω) + DLWFS−SBL
2.5D,ps (x0, ω)HHP

2η (ω) .
(3.31)

as the effective driving signal. ωc may be chosen according to the
aliasing frequency, i.e. the frequency up to which WFS does not
introduce significant aliasing to the reproduced sound field. As an
optional processing step, the allpass characteristic of the crossover
pair is compensated by applying its inverse HAP

2η (ω)−1 directly to
the source signal. Since the inverse of an allpass generally results
in an unstable filter, the so-called backward filtering approach is
utilised: The inverse of an allpass filter is equivalent to its conju-
gate complex, which corresponds to a time inversion of the allpass’
impulse response hAP

2η [n]. Latter behaviour can also be achieved by
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Figure 3.18: The plots show the time-
snapshots of the reproduced sound
fields using different (filtered) parts of
the LWFS-SBL driving signal. The
colour encodes the logarithmically
scaled pressure magnitude. A circu-
lar SSD with a radius of 1.5 m and
56 equi-angularly positioned secondary
sources was employed to synthesise a
point source at [0, 2.5, 0]T m emitting a
broadband impulse. For LWFS-SBL, the
expansion centre xc = [−0.5,−0.75, 0]T

and modal the bandwidth M = 28.
The time in each snapshot is set to t =
|xps−xc |/c. The green line indicates of
the wave front of the virtual sound field
as the ground truth. For the Linkwitz-
Riley LR Filter pair, the crossover fre-
quency fc = 1 kHz and the order 2η =

28. �

time-inverting the input signal and time-inverting the resulting out-
put signal, again. An online, block-based approach for backward
filtering was published by Powell and Chau.128 The effective driving

128 Powell and Chau (Nov. 1991). “A
technique for realizing linear phase IIR
filters”. In: IEEE Trans. Signal Process.
39.11, pp. 2425–2435.

signal reads

D2.5D(x0, ω) = (3.32)

DWFS
2.5D,ps(x0, ω)|HLP

2η (ω)|+ DLWFS−SBL
2.5D,ps (x0, ω)|HHP

2η (ω)| .

The plots in Fig. 3.18 illustrate the effect of the processing steps on
the synthesised sound field: In Fig. 3.18a, the conventional WFS
driving signals result in the characteristic first wave front followed
by the additional aliasing wave fronts. Applying the LR lowpass
filter HLP

2η (ω) as in (3.31), suppresses the aliasing contributions in
Fig. 3.18b . Due to the non-linear phase of the filter, the wave front is
smeared and exhibits a visible delay compared to the ground truth
(green line). The sound field for the stabilised LWFS-SBL driving
signal (3.30) is plotted Fig. 3.18c, where a decent reconstruction of the
first wave front at the expansion centre xc (red cross) is observable.
Again, subsequent contributions are caused by the phase distortions
of the LR highpass HHP

2η (ω). As shown Fig. 3.18d, the crossover
(3.31) combines the filtered driving signals, resulting in a fullband
sound field with significant phase distortions. The additional allpass
compensation (3.32) leads to the desired aliasing-free wave front at
the expansion centre, see Fig. 3.18e.

3.5 Local Wave Field Synthesis using Virtual Secondary
Sources129 129 Parts of this section are published in

Winter and Spors (May 2015). “Physical
Properties of Local Wave Field Synthe-
sis using Linear Loudspeaker Arrays”.
In: Proc. of 138th Aud. Eng. Soc. Conv.
Warsaw, Poland.

Focused point sources as introduced in Sec. 3.2.1 approximate the
sound field of a point source located inside the area surrounded by
the SSD. Since a point source is equivalent to the free-field Green’s
function, a set of focused point source may be utilised to approxi-
mately synthesise a second, virtual SSD. The basic concept of LWFS-
VSS130 is to distribute this virtual secondary sources around the 130 Spors and Ahrens, “Local Sound

Field Synthesis by Virtual Secondary
Sources”.

target region. They are driven by WFS in order to reproduce the
desired sound field within the target region. The focused sources
are then synthesised by the real loudspeakers. As for LWFS-SBL,
the basic principle can also be implemented via NFCHOA. However,
due to its limitations w.r.t. to the geometry and the simplicity of
WFS, the latter is preferred and presented here.

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig18
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Figure 3.19: The geometry for 2.5D
LWFS-VSS shows the focused sources
(grey dots) distributed along the
boundary of the target region Sl as a
virtual SSD. The “real” SSD along ∂S is
used to synthesis the focused sources.
�

3.5.1 Driving Signals in the Frequency Domain
driving_function_mono_localwfs_vss

The underlying geometry for the 2.5D synthesis is shown in Fig. 3.19.
The concept can, however, be easily generalised towards 3D synthesis
scenarios. Assuming an SSD (grey dots) on the boundary ∂S l of the
target region, the 2D SLP is modified to

S(x, ω)
!
= P(x, ω) =

∮︂

∂S l

D(x0, ω)G(x|xl, ω)dll ∀x ∈ Sl . (3.33)

The free-field Green’s function G(x|xl, ω) states an inhomogeneity
inside S . According to the discussion on the integral formulation
of the wave equation Sec. 2.1.3, an inhomogeneity cannot be syn-
thesised correctly using the SSD along ∂S . It is approximated via a
focused source whose sound field is given as

G(x|xl, ω) ≈
∮︂

∂S
DWFS

2.5D,fs(x0|xl, nl, ω)G(x|x0, ω)dl0 . (3.34)

The 2.5D WFS driving function DWFS
2.5D,fs(x0|xl, nl, ω) for a focused

source at xl and oriented along nl is given by (3.9b) and Tab. 3.1.
Since the sound field of the focused source is divided into a diverging
and converging part, it only yields a sensible approximation of the
free-field Green’s function in one half-space defined by nl. If the
target region Sl is non-convex, there potentially exist x ∈ ∂S l, which
are part of the converging half-space. It is assumed, that Sl is convex
in order to avoid this problem. After inserting (3.34) into (3.33) and
rearranging the order of the integrals, the reproduced sound field is
expressed by

P(x, ω) =
∮︂

∂S

∮︂

∂S l

D(xl, ω)DWFS
2.5D,fs(x0|xl, nl, ω)dll

⏞ ⏟⏟ ⏞
DLWFS−VSS

2.5D (x0,ω)

G(x|x0, ω)dl0

(3.35)
with DLWFS−VSS

2.5D (x0, ω) as the 2.5D LWFS-VSS driving signal. In or-
der to support arbitrary convex target regions, 2.5D WFS is used to
drive the virtual SSD. The resulting LWFS-VSS driving signal reads

DLWFS−VSS
2.5D (x0, ω) =

∮︂

∂S l

DWFS
2.5D (xl, ω)DWFS

2.5D,fs(x0|xl, nl, ω)dll . (3.36)

Fig. 3.20 shows examples for a circular virtual SSD (dashed line).
Contrary to NFCHOA and LWFS-SBL, the size of the target region

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig19
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_monochromatic/driving_function_mono_localwfs_vss.m
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Figure 3.20: The top plots show the
reproduced sound field (3.3) using a
quasi-continuous, circular secondary
source distribution centred around the
coordinates’ origin with a radius of
1.5 m (black line). It is driven by
2.5D LWFS-VSS (3.36) to synthesise a
monochromatic plane wave Ppw(x, ω)
with the propagation direction npw =
[0,−1, 0]T. The dashed black circles
marks the quasi-continuous circular
virtual SSDs of different radii Rl cen-
tred around xl. The bottom plots show
corresponding normalised absolute er-
ror defined as

20 lg
⃓⃓
⃓⃓ P(x, ω)− Ppw(x, ω)

Ppw(x, ω)

⃓⃓
⃓⃓ . �

is not a function of frequency without further modifications. Al-
though the characteristics of the planar wave front are generally
reconstructed correctly (top row), ripples in the synthesised sound
field are observable. This is further substantiated by the plots in the
bottom row, where the synthesis error is reduced but is also heav-
ily fluctuating inside the target region. These artefacts are partially
caused by diffraction artefacts stemming from the secondary source
selection criterion. In LWFS-VSS, the criterion is applied to the SSD
for each focused source and to the virtual SSD. It was furthermore
discussed in Sec. 3.2.1, that the focused source approximates a mo-
nopole point source most accurate for high frequencies and large
distances. Fig. 3.21a confirms, that the size of the target region and,
consequentially, the distance to the focused sources have a significant
influence on the magnitude fluctuations. The artefacts are reduced
for larger radii Rl. Adding a cosine tapering to the secondary source
selection in Fig. 3.21b results in a smoothing of the magnitude spec-
tra. As a drawback, this leads to a deviation from the desired mag-
nitude of 0 dB and a stronger loss of power at low frequencies. The
shelving of the pre-filter131 has to be adjusted accordingly. 131 see Sec. 3.2.2

3.5.2 Practical Realisation of Model-Based Rendering
driving_function_imp_localwfs_vss

Similar to the realisation of LWFS-SBL, additional discretisation has
to be applied to the virtual SSD. The discrete time driving signals
read

dLWFS−VSS
2.5D [x(ν)0 , n] =

Nl−1

∑
m=0

dWFS
2.5D [x

(l)
l , n] dWFS

2.5D,fs[x
(ν)
0 |x

(l)
l , n(l)

l , n] .

(3.37)
The position of the Nl virtual secondary sources are denoted as x(l)l .
For the implementation of this formula, Spors and Ahrens132 pro- 132 Ibid., Sec. 2.2.

posed to use two concatenated WFS renderers. A sketch is shown
in Fig. 3.22. The source signal is fed into the first renderer to cal-

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig20
http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_time_domain/driving_function_imp_localwfs_vss.m
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culate the driving signals dWFS
2.5D [x

(l)
l , n] for the virtual SSD. For each

x(l)l , a focused source with the according position and orientation is
rendered in the second WFS instance.
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Figure 3.21: The plots show the magni-
tude spectra of the sound field synthe-
sised using Local Wave Field Synthesis
(LWFS) (colored) and WFS (black). The
same synthesis setup as for Fig. 3.20 is
used. For LWFS, xc = [0.25, 0, 0]T and
different radii Rl of the target region
were used. The reference position xref
was set to xc. The spectra are evalu-
ated at xc. In (b), an additional cosine-
shaped tapering was employed. For the
simulations, a fullband pre-filter was
used. �

The driving signals dWFS
2.5D [x

(l)
l , n] are fed into in the renderer as the

source signals for the focused sources. A demonstrator combining
two instances of an existing WFS real-time rendering software133 was

133 Geier and Spors, op. cit.

successfully implemented by Immohr.134

134 Implementation was part of Immohr
(Mar. 2017). “Zuhörerverfolgung für
lokale Schallfeldsynthese”. Bachelor’s
Thesis. University of Rostock, which
was supervised by the author.
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Figure 3.22: Block-Diagram showing
the time-domain realisation of LWFS-
VSS for one virtual source. �

3.6 Summary

This chapter revisited the problem of (L)SFS and presented a selec-
tion of analytic methods for its solution. In particular, the impact of
various parameters, possible design choices, and practical implica-
tions have been discussed. For all four methods, spatial discretisation
of the SSD potentially leads to spatial aliasing artefacts. For the two
LWFS methods, the sampling of the involved PWD or the virtual SSD
states another source of aliasing. This will be discussed extensively
in Ch. 4.

For 3D WFS, the driving signals were derived using the Kirch-
hoff approximation of the equivalent scattering problem. Due to
the involved secondary source criterion, the SSD is discontinuously
truncated and diffraction artefacts are observable by magnitude fluc-
tuations in the synthesised sound field. They lead to a pressure loss
at low frequencies. The usage of a more smooth spatial window
a.k.a. tapering leads to smaller fluctuations at the cost of a more
pronounced loss in magnitude. The 2.5D driving signal is derived
by applying the SPA to the 3D SLP in order to reduce its dimen-
sionality. In addition to the diffraction artefacts, characteristic 2.5D
magnitude mismatches are now present in the synthesised sound
field. In the discrete-time domain, model-based rendering is realised
by a geometry-independent pre-filter and a geometry-dependent de-
lay and weighting. A sensible design of the pre-filter can be used
to partly compensate the pressure loss from the diffraction and a
potential pressure boost due to spatial aliasing artefacts caused by
the discretised SSD. For the geometry-dependent part, the effects of
delay interpolation have been discussed.

3D NFCHOA was revisited as a solution of the equivalent scatter-
ing problem for spherical SSDs. Its 2.5D counterpart for a circular
SSD was derived by using the approximative Circular Harmonics
representation for the virtual sound field and free-field Green’s func-
tion. It provided a closer connection between the two driving signals
than alternative derivations using the convolution theorem of the
Circular Harmonics.135 Similar to WFS, 2.5D magnitude mismatches

135 Ahrens and Spors, op. cit.occur in the synthesised sound field. For the chosen driving signals,
the sound field is only exact at the centre of the circular SSD. As
a practical consideration, the inverse Circular Harmonics transform
of the driving signal has to be truncated. This SBL restricts the
area of approximately correct synthesis to a circle around the centre,
whose radius is frequency-dependent. Here, the smoother shape

https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig21
https://github.com/fietew/phd-thesis/tree/master/03_sfs/fig22
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of the truncation window, e.g. max-rE, leads to fluctuations in the
synthesised sound field. For the discrete-time domain, an IIR filter
bank and an IFFT are the essential parts of the implementation.

LWFS-SBL extends NFCHOA about an adjustable position of the
prioritised synthesis area. It uses a spatially bandwidth-limited Cir-
cular Harmonics representation of the virtual sound field, converts
it into a PWD, and synthesises each individual plane wave with con-
ventional WFS. It shares similar properties regarding the SBL with
NFCHOA. LWFS-SBL is implemented as a combination of a modified
NFCHOA renderer and a WFS renderer. For a virtual point source,
LR highpass filters are necessary to stabilise the involved IIR filters.
The magnitude loss at low frequencies in the driving signals is com-
pensated by adding a lowpass filtered driving signals of conventional
WFS. The crossover frequency between the two contributions has to
be sensibly chosen.

LWFS-VSS utilises focused sources as a virtual SSD surrounding
the target region. The focused sources are driven by conventional
WFS to synthesise the virtual sound field. They are synthesised by
the real SSD using the according WFS driving signals. Thus, LWFS-
VSS inherits some of the properties from WFS: The secondary source
selection of the virtual SSD leads to additional diffraction artefacts.
As for WFS, a smooth tapering suppresses these fluctuations with the
drawback of larger magnitude losses as low frequencies. LWFS-VSS
is implemented as two concatenated WFS renderers.



4Spatial Discretisation and Aliasing

The probably most prominent implication for the practical real- This introduction was published in ma-
jor parts as Winter et al. (June 2019a).
“A Geometric Model for Prediction of
Spatial Aliasing in 2.5D Sound Field
Synthesis”. In: IEEE/ACM Trans. Audio,
Speech, Language Process. 27.6, pp. 1031–
1046, Sec. I

isation of SFS is the employment of a finite set of loudspeakers as
opposed to the continuous secondary source distributions required
by the synthesis integrals of the previous chapters. Selected rea-
sons for this limitation have been presented in Sec. 1.1. The spatial
discretisation of the SSD leads to spatial aliasing artefacts impair-
ing the synthesis accuracy. Several theoretical treatises investigated
spatial aliasing in SFS with a dedicated focus on the aliasing fre-
quency. This frequency describes the largest temporal frequency
up to which aliasing artefacts are negligible for a given synthesis
scenario. Exceeding this frequency can be regarded as a violation
of the anti-aliasing criterion. For linear and circular SSDs driven by
WFS, criteria were derived for fundamental virtual sound fields such
as plane and spherical waves.1,2 A comparison to NFCHOA with re-

1 Spors and Rabenstein (May 2006).
“Spatial Aliasing Artifacts Produced by
Linear and Circular Loudspeaker Ar-
rays used for Wave Field Synthesis”. In:
Proc. of 120th Aud. Eng. Soc. Conv.
Paris, France.
2 Spors and Ahrens (Oct. 2009). “Spatial
Sampling Artifacts of Wave Field Syn-
thesis for the Reproduction of Virtual
Point Sources”. In: Proc. of 126th Aud.
Eng. Soc. Conv. Munich, Germany.

spect to the aliasing properties was presented by Spors and Ahrens.3
3 Spors and Ahrens (Oct. 2008). “A
comparison of wave field synthesis and
higher-order Ambisonics with respect
to physical properties and spatial sam-
pling”. In: Proc. of 125th Aud. Eng. Soc.
Conv. San Fransisco, USA.

The found criteria are listening position independent. However, nu-
merical simulation of the synthesised sound fields suggest a spa-
tial heterogeneity of the aliasing frequency. Corteel et al.4 used a 4 Corteel et al. (May 2008). “Wave Field

Synthesis Rendering with Increased
Aliasing Frequency”. In: Proc. of 124th
Aud. Eng. Soc. Conv. Amsterdam, The
Netherlands.

time-domain model based on path-lengths to predict the position-
dependent aliasing frequency for virtual point sources. It was further
utilised by Oldfield5 for his investigations on focused point sources

5 Oldfield (Apr. 2013). “The analysis
and improvement of focused source re-
production with wave field synthesis”.
PhD thesis. Salford, UK: University of
Salford.

in WFS. Within own work,6 a model was published that predicts the

6 Winter et al. (May 2016). “On Analytic
Methods for 2.5-D Local Sound Field
Synthesis Using Circular Distributions
of Secondary Sources”. In: IEEE/ACM
Trans. Audio, Speech, Language Process.
24.5, pp. 914–926.

occurrence of spatial aliasing for virtual plane waves synthesised by
an NFCHOA approach for LSFS.7 It was further used to predict the

7 Ahrens (2012). Analytic Methods of
Sound Field Synthesis. T-Labs Series
in Telecommunication Services. Berlin
Heidelberg, Germany: Springer-Verlag,
Sec. 4.4.5.

method’s optimal parametrisation to avoid aliasing. The model was
extended and applied to multizone SFS by Donley et al.8 There, the

8 Donley et al. (June 2018). “Multizone
Soundfield Reproduction With Privacy-
and Quality-Based Speech Masking Fil-
ters”. In: IEEE/ACM Trans. Audio,
Speech, Language Process. 26.6, pp. 1041–
1055.

impact of the spatial aliasing caused by the synthesis of the bright
zone on the sound pressure inside the quiet zone was modelled.
Analytic solutions for the aliasing frequency were derived for vir-
tual plane waves synthesised by linear and circular SSDs. Firtha
discussed spatial aliasing within his unified WFS framework.9 He

9 Firtha (2019). “A Generalized Wave
Field Synthesis Framework with Ap-
plication for Moving Virtual Sources”.
PhD thesis. Budapest University of
Technology and Economics, Sec. 4.4.

utilised the concept of the local wavenumber vector to derive anti-
aliasing criteria.

This chapter introduces a geometric model to predict spatial alias-
ing in SFS. It heavily relies on the local wavenumber vector as a
description of the local propagation direction of the virtual sound
field. Other than Firtha,10 the model does not explicitly utilise a

10 Ibid., Sec. 4.4.

spatial frequency domain to describe the aliasing. The approaches
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are however closely related, which will be shown in the upcom-
ing sections. The model predicts the spatial occurrence of aliasing
artefacts as a function of the listening position, the geometry of the
SSD, and the virtual sound field. It generalises the approaches from
the literature towards the mentioned dependencies. The framework
is based on a high-frequency, i.e. ray-based, approximation of the
underlying SFS problem.

As a baseline for discussion, a traditional approach to model spa-
tial aliasing in SFS for circular SSDs is presented in Sec. 4.1. An
anti-aliasing criterion independent of the listening position and the
virtual sound field is derived, which easily generalises to other SSD
geometries. In Sec. 4.2, the geometric model for WFS is developed for
a linear SSD and then further generalised towards arbitrary convex
SSDs. The model is applied to different synthesis scenarios including
the effect of non-uniform discretisation of the SSD. Also, optimal
sampling schemes w.r.t. the aliasing frequency are discussed. The
model is extended towards NFCHOA in Sec. 4.3 incorporating effects
of the SBL. The two LWFS approaches are covered in the subsequent
sections. Here, the additional discretisation of the PWD and the
virtual SSD involved in the practical realisation of the two methods
is discussed.

4.1 Traditional Model11 11 Parts of this section are published as
Winter et al., op. cit., Sec. III-C.

In the following, a conventional approach to describe spatial aliasing
in SFS is revisited. Although a circular SSD is used as an example,
the theory can be easily generalised towards other geometries such
as lines,12,13 planes,14 or spheres.15,16 The sound field reproduced 12 Ahrens, op. cit., Sec. 4.6.

13 Spors and Rabenstein, op. cit., Sec. 3.
14 Ahrens, op. cit., Sec. 4.5.
15 Fazi (2010). “Sound field repro-
duction”. PhD thesis. University of
Southampton, Sec. 7.1.
16 Ahrens, op. cit., Sec. 4.3.

by the circular discretised SSD consisting of N0 equiangularly spaced
secondary sources reads

PS(x, ω) =
N0−1

∑
ν=0

D(x(ν)0 , ω)G(x− x(ν)0 , ω)∆ϕR , (4.1)

with x(ν)0 = R[cos(ν∆ϕ), sin(ν∆ϕ), 0]T and the angular spacing of
∆ϕ = 2π/N0. This results in a difference in arc length between the sec-
ondary source of ∆x0 = ∆ϕR. A commonly used model to describe
the sampling process is the multiplication of the continuous driving
signal by a Dirac impulse comb X(·).17 The sampled driving signal 17 Girod et al. (2001). Signal and Systems.

Wiley, Sec. 11.3.1.reads

DS(x0, ω) = D(x0, ω)∆ϕ

N0−1

∑
ν=0

δ(ϕ0 − ν∆ϕ)

⏞ ⏟⏟ ⏞
:=X

(︃
ϕ0
∆ϕ

)︃

(4.2)

with δ(ϕ0− ν∆ϕ) being the Dirac delta distribution18 imposed at ν∆ϕ. 18 Ibid., Sec. 8.3.

Note, that DS(x0, ω) is still a continuous function, only non-zero at
integer multiples of ∆ϕ. It is treated as the original driving signal
D(x0, ω) and is inserted into the SLP for circular SSD given by (3.13).
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Figure 4.1: The block diagrams illus-
trate the sampling of the driving signal
and reconstruction of the samples us-
ing the free-field Green’s function. The
spatial domain is shown at the top, the
Circular Harmonics domain at the bot-
tom. �

The resulting sound field reproduced by the discrete SSD is given by

PS(x, ω) =
∫︂ 2π

0
DS(x0, ω)G(x− x0, ω)R dϕ0 , (4.3)

which states the circular convolution of the sampled driving signal
with the free-field Green’s function. It may be interpreted as a con-
tinuous spatial filter used to reconstruct the reproduced sound field
PS(x, ω) given the samples of the driving signal. The sampling-and-
reconstruction process is illustrated in Fig. 4.1 (top): The continuous
driving signal is computed from the virtual sound field depending
on the employed SFS method. After sampling with the angular dis-
tance ∆ϕ, the filtering with the free-field Green’s function constitutes
the reproduced sound field. As for any sampling-and-reconstruction
process, two types of artefacts can occur: First, an insufficient sam-
pling rate (or distance) violating the Nyquist-Theorem19,20 intro- 19 Ibid., Sec. 11.3.2.

20 Manolakis and Ingle (June 2011). Ap-
plied Digital Signal Processing: Theory and
Practice. Cambridge, USA: Cambridge
University Press, Sec. 6.1.

duces aliasing in the sampled quantity. Second, the lowpass char-
acteristic of the reconstruction filter is not ideal, such that undesired
parts of signal spectrum caused by the prior sampling are not suffi-
ciently suppressed.21 These two phenomenons are usually referred 21 Ibid., Sec. 6.2.

to as pre- and postaliasing, respectively.22,23 22 Fazi and Nelson (2013). “Sound field
reproduction as an equivalent acousti-
cal scattering problem”. In: J. Acoust.
Soc. Am. 134.5, pp. 3721–3729,
Sec. 7.1.5.
23 Schultz (2016). “Sound Field Synthe-
sis for Line Source Array Applications
in Large-Scale Sound Reinforcement”.
PhD thesis. University of Rostock.

For the discussion of both artefacts, the spectral a.k.a. Circular
Harmonics domain is more suitable. The according block diagram
in Fig. 4.1 (bottom) results from the CHT of (4.3). Following the
multiplication theorem of the Fourier series,24 a multiplication with

24 Ahrens, op. cit., Sec. D.1.

the Dirac comb in the spatial domain results in a convolution with
its coefficients in the Circular Harmonics domain. They are given by

a Dirac comb 1
N0

X
(︂

m
N0

)︂
, again. Using the sifting property25,26 of

25 Girod et al., op. cit., Eq. (8.15).
26 Gel’fand and Shilov (1964). General-
ized functions: Vol. 1. Properties and op-
erations. New York, London: Academic
Press, p. 4.

the Dirac delta distribution, the Circular Harmonics coefficients of
the sampled driving signal are given by27

27 Spors and Rabenstein, op. cit.,
Eq. (15).

⋄
DS

m(ω) =
∞

∑
η=−∞

⋄
Dm−ηN0(ω) . (4.4)

The equation constitutes the superposition of shifted versions of
⋄

Dm

occuring at integer multiples of N0. As an example, the 2.5D NF-
CHOA driving signal for a virtual plane wave is considered.28 The 28 see Eq. (3.17) and Tab. 3.2

according coefficients
⋄

Dm plotted in Fig. 4.2a exhibit a lowpass char-
acteristic w.r.t. m. The spatial bandwidth, i.e. the range of coefficients
with a magnitude considerably greater than zero, increases with the
frequency f . The range is approximated by m ≈ ±ω

c R,29 see yellow 29 Ahrens, op. cit., Eq. (2.40).

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig01
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Figure 4.2: (a) shows the Circular Har-
monics coefficients of the continuous
2.5D NFCHOA driving signal for a vir-
tual plane wave with the propagation
direction npw = [0,−1, 0]T and R = 1.5
m, see Eq. (3.17). Its sampled coun-
terpart given by (4.4) with N0 = 56 is
plotted in (b). The coefficients of the
synthesised sound field are given in (c).
All coefficients are normalised to their
respective value at m = 0, f = 1 kHz
and are logarithmically scaled. The yel-
low and magenta lines correspond to
the approximated bandwidth of

⋄
Dm(ω)

and its spectral repetitions, respectively.
The green line indicates the frequency
f = 2.5 kHz, for which the synthesised
sound field is plotted in (d). The area
above the magenta line is corrupted
by spatial aliasing. The remaining fig-
ures in the bottom row show the analo-
gous quantities for the driving function
weighted by a rectangular modal win-
dow ⋄wM

m with M = 27, see Eq. (3.18).
The yellow circle in (h) indicates the
area |x| ≤ Mc/2π f . �

lines. The coefficients for the sampled driving signal are depicted in
Fig. 4.2b. A considerable overlap of the spectral repetitions (η ̸= 0,
yellow) and the original spectrum (η = 0, magenta) above a given
temporal frequency can be observed. Using the mentioned approx-
imations for the spatial bandwidth of the spectra, the limit is given
by

f S ≈ N0c
4πR

=
c

2∆ϕR
=

c
2∆x0

(4.5)

which constitutes the aliasing frequency f S. It is related to the well-
known half-wavelength criterion:30 The distance between two actua-

30 Van Trees (2004). Detection, estimation,
and modulation theory, optimum array pro-
cessing. John Wiley & Sons, Eq. (2.130).

tors, here given by arc length ∆x0 = ∆ϕR, has to be smaller than half
of the wavelength in order to avoid spatial aliasing. For frequencies
above this limit, aliasing is present in the coefficients of the synthe-
sised sound field, see interference patterns in Fig. 4.2c. This leads
to spatial aliasing artefacts in the synthesised sound field as plotted
in Fig. 4.2d. However, the artefacts are not homogeneously distribu-
ted in space. For positions below the magenta line no considerable
spatial aliasing is observable. The presented criterion only detects, if
and not where spatial aliasing occurs. It is, thus, unable to explain
this phenomenon.

A common approach to avoid the pre-aliasing is to apply a low-
pass filter a.k.a. antialiasing pre-filter to the continuous signal before
the sampling.31,32,33 In the chosen example, this is equivalent to 31 Manolakis and Ingle, op. cit.,

Sec. 6.5.1.
32 Girod et al., op. cit., p. 282.
33 Schultz, op. cit., Sec. 3.1.

the multiplication of the coefficients
⋄

Dm with the modal window
⋄wM

m . This is also known as SBL and was already introduced by
(3.18). The coefficients filtered by a rectangular window are shown in
Fig. 4.2e. After sampling no overlap of the original spectrum and the
repetitions is present, see Fig. 4.2f. The largest aliasing-free modal
bandwidth is given as M = ⌊(N0−1)/2⌋.34 Although the overlap of 34 Ahrens, op. cit., Sec. 4.26.

the spectral repetitions is prevented, the coefficients of the synthe-

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig02
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sised sound field in Fig. 4.2g still contain post-aliasing (outside the
yellow lines). This is due to the imperfect lowpass characteristics
of the free-field Green’s function as a spatial reconstruction filter. It
was discussed by various authors35,36,37,38 that the deployment of 35 Start (1997). “Direct Sound Enhance-

ment by Wave Field Synthesis”. PhD
thesis. Delft University of Technology,
Sec. 5.3 and 5.4.
36 Ahrens, op. cit., Sec. 4.4.6 and 4.6.6.
37 Schultz, loc. cit.
38 Firtha, op. cit., Sec. 4.4.3.

directive secondary sources results in a stronger suppression of the
spectral repetitions. As already outlined in Sec. 3.3.1, the bandwidth
limitation leads to a restriction of the area of correct synthesis to a
circular area of radius Mc/2π f ,39 see yellow circle in Fig. 4.2h. Due

39 Ahrens, op. cit., Eq. (2.41).
to the imperfect reconstruction undesired contributions to the sound
field are still present above the magenta line. Their spatial occurrence
cannot be predicted by the presented traditional model.

4.2 Geometric Model for Wave Field Synthesis40 40 Major parts of this section are pub-
lished as Winter et al. (June 2019a). “A
Geometric Model for Prediction of Spa-
tial Aliasing in 2.5D Sound Field Syn-
thesis”. In: IEEE/ACM Trans. Audio,
Speech, Language Process. 27.6, pp. 1031–
1046, Sec. III and IV.

In the previous section, SFS with a discrete SSD was modelled as
the concatenation of spatial sampling and reconstruction using the
free-field Green’s function. Spatial aliasing resulted from an overlap
of spectral repetitions in the spatial frequency domain. The approach
was not able to describe the spatial structure of the aliasing artefacts
occurring in the synthesised sound field. In the following, a deriva-
tion of a geometric model for spatial aliasing in 2.5D WFS will be pre-
sented. In order to establish this, a high frequency approximation of
the underlying synthesis problem, which treats sound waves as rays
is reasonable. It was discussed in Sec. 3.2, that 2.5D WFS with the
involved Kirchhoff approximation states the solution to the 2D SLP
for asymptotically high frequencies. Hence, its 2.5D driving signal
given by Eq. (3.9b) fulfils the requirements for ray based modelling.
First, the derivations will be carried out for a linear SSD and then
generalised to convex geometries.

4.2.1 Continuous Linear Secondary Source Distribution

x

y

∂S
x∗0

k̂S(x∗0 , 0, ω)

x
k̂G(x− x∗0 , y, ω)

Figure 4.3: The image shows an exem-
plary synthesis scenario for a continu-
ous linear Secondary Source Distribu-
tion (SSD) along the x-axis. A virtual
point source (grey dot) is to be synthe-
sised in the upper half plane (y > 0).
The stationary phase point x∗0 is de-
fined as the coordinate, where k̂G and
k̂S point into the same direction. �

In the following, a continuous linear SSD along the x-axis is assumed,
see grey line in Fig. 4.3. The secondary source positions are denoted
by x0 = [x0, 0, 0]T and the boundary normal vector n0 points into the
positive y-direction. Correct synthesis is supposed to be achieved
inside the positive y-half plane. The SLP given by (3.3) specialises to
an 1D convolution integral

S(x, y, ω)
!
= P(x, y, ω) =

∫︂ ∞

−∞
D(x0, ω)G(x− x0, y, ω)dx0 , ∀y > 0 ,

(4.6)
where the dependencies on the spatial variables are split, for clarity.
The 3D free-field Green’s function

G(x− x0, y, ω) =
1

4π
√︁
(x− x0)2 + y2

⏞ ⏟⏟ ⏞
AG(x−x0,y,ω)

e−j ω
c

√
(x−x0)2+y2

⏞ ⏟⏟ ⏞
e+j ΦG(x−x0,y,ω)

(4.7)

is expressed via the amplitude-phase notation which was introduced
in Sec. 2.3. The 2.5D WFS driving signal (3.9b) for this geometry

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig03
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Figure 4.4: (a) shows the real part of
a monochromatic ( f = 1 kHz) point
source located at xps = [0,−1, 0]T m
which serves as the virtual sound field.
The sound field (4.9) synthesised by a
quasi-continuous linear SSD along the
x-axis is plotted in (b). Each coloured
line indicates the positions x for which
the secondary source at the start of the
according line (circles) is the stationary
secondary source x∗0 . For the secondary
source at the green circle, (c) shows
the SPA of the synthesised sound field
(4.10) and (d) plots the normalised error

20 lg
⃓⃓
⃓⃓ PSPA(x, y, ω)− P(x, y, ω)

P(x, y, ω)

⃓⃓
⃓⃓ . �

specialises to

DWFS
2.5D (x0, ω)=

√︃
j
ω

c

√︂
8π∆S(x0) k̂S,y(x0, 0, ω)AS(x0, 0, ω)e+jΦS(x0,0,ω),

(4.8)
where the phase-amplitude notation of the virtual sound field was
used. The virtual sound field is evaluated at y = 0 as the secondary
sources are distributed along the x-axis. The y component of the
normalised local wavenumber vector is denoted as k̂S,y. Inserting the
driving signal and the free-field Green’s function into the synthesis
integral (4.6) yields

P(x, y, ω) =

√︃
j
ω

c

∫︂ ∞

−∞

√︂
8π∆S(x0) k̂S,y(x0, 0, ω) (4.9)

· AS(x0, ω) AG(x− x0, y, ω)e+j(ΦS(x0,0,ω)+ΦG(x−x0,y,ω)) dx0 .

It is approximated by using the SPA defined in (A.1). It reads

PSPA(x, y, ω) = 4π

√︃
j
ω

c
S(x∗0 , 0, ω) G(x− x∗0 , y, ω) k̂S,y(x∗0 , 0, ω)

·
√︄

∆S(x∗0)
|Φ′′S(x∗0 , 0, ω) + Φ′′G(x− x∗0 , y, ω)| · e

+j π
4 sgn(Φ′′S (x∗0 ,0,ω)+Φ′′G(x−x∗0 ,y,ω))

(4.10)

and states that the major part of the reproduced sound field at x
is contributed by an individual secondary source located at x∗0 =

[x∗0 , 0, 0]. The stationary phase point x∗0 has to fulfil the condition

0 !
= Φ′S(x∗0 , y, ω) + Φ′G(x− x∗0 , y, ω) . (4.11)

The terms Φ′·(·) and Φ′′· (·) denote the first- and second-order deriva-
tive of the phase w.r.t. x0 evaluated at the according arguments. With
the definition of the normalised local wavenumber vector in (2.54),
the condition is equivalent to

k̂S,x(x∗0 , 0, ω)
!
= k̂G,x(x− x∗0 , y, ω) (4.12)

where k̂·,x denotes the x-component of the respective vector. For
the 2.5D synthesis scenarios defined in Sec. 3.1, the z-component
of the involved vectors is fixed to zero. With their unit length, the
normalised local wavenumber vectors are determined by one of their
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remaining components (x and y) despite an unknown sign of the
other component. For the virtual sound field, latter ambiguity can
be resolved taking the synthesis scenario in Fig. 4.3 into account:
As all virtual sources are supposed to be located in the negative-y
halfspace, the local wavenumber vector has a positive y-component.
The normalised local wavenumber vector of the 3D free-field Green’s
function is given by

k̂G(x− x∗0 , y, ω) =
1√︂

(x− x∗0)
2 + y2

⎡
⎢⎣

x− x∗0
y
0

⎤
⎥⎦ , (4.13)

which also has a positive y-component for the target region y > 0.
Further, k̂G is independent of the angular frequency ω. Hence,

k̂S(x∗0 , 0, ω)
!
= k̂G(x− x∗0 , y) ∀y > 0 , (4.14)

is the equivalent condition for the normalised local wavenumber vec-
tors. This relation is illustrated in Fig. 4.3: At the stationary phase
point x∗0 , the vector k̂S and k̂G are aligned. Eqs. (4.13) and (4.14) are
solved for x yielding

⎡
⎢⎣

x
y
0

⎤
⎥⎦ =

⎡
⎢⎣

x∗0
0
0

⎤
⎥⎦+ γ

⎡
⎢⎣

k̂S,x(x∗0 , 0, ω)

k̂S,y(x∗0 , 0, ω)

0

⎤
⎥⎦ , 0 ≤ γ ≤ ∞ (4.15)

which is the parametric definition of a ray starting at x∗0 with the
direction k̂S(x∗0 , 0, ω). For asymptotically high frequencies, the re-
produced sound field along the given ray is mainly determined by
the secondary source located at x∗0 = [x∗0 , 0, 0]T. Fig. 4.4 compares
the sound field of a virtual point source with the corresponding
synthesis and its SPA. The rays (coloured lines in Fig. 4.4b) are per-
pendicular to the wave fronts of the synthesised sound field. Fig. 4.4d
shows the error between synthesised sound field and its SPA for a
distinct x∗0 (green circle): Along the corresponding ray (green line),
the error is significantly lower. The derived approximation can be
regarded as reasonable.

4.2.2 Uniformly Discretised Linear Secondary Source Distribu-
tion ∆x x∗0

∂S
x

y

k̂S

k̂S,x

x

k̂G

k̂G,x

Figure 4.5: The image shows an ex-
emplary synthesis scenario for a dis-
crete linear Secondary Source Distribu-
tion (SSD) along the x-axis with the
sampling distance ∆x . A virtual point
source (grey dot) is to be synthesised in
the upper half plane (y > 0). �

For the uniform discretisation of a linear SSD depicted in Fig. 4.5, the
reproduced sound field P(x, y, ω) is given by

PS(x, y, ω) =
∞

∑
ν=−∞

D(ν∆x, ω) G(x− ν∆x, y, ω)∆x (4.16)

with the sampling distance denoted by ∆x. As already discussed in
Sec. 4.1, a commonly used model to describe this sampling process
is the multiplication of the continuous quantity by a Dirac impulse
comb X(·).41 The sampled driving signal reads 41 Girod et al., op. cit., Sec. 11.3.1.
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DS(x0, ω) = D(x0, ω) ∆x

∞

∑
ν=−∞

δ(x0 − ν∆x)

⏞ ⏟⏟ ⏞
:=X( x0

∆x )

=
∞

∑
η=−∞

D(x0, ω)e−j2πη
x0
∆x

⏞ ⏟⏟ ⏞
:=DS

η(x0,ω)

.

(4.17)
The second equality follows from the Fourier series of the Dirac
comb.42 The η-th aliasing component of the discrete driving signal is 42 Williams (1999). Fourier Acoustics:

Sound Radiation and Nearfield Acoustical
Holography. London, UK: Academic
Press, Sec. 1.7.

denoted by DS
η(x0, ω), whereas the zeroth component is the original

continuous driving signal. The η-th aliasing component of the sound
field PS(x, y, ω) synthesised by the discrete SSD is given by

PS
η (x, y, ω) =

∫︂ ∞

−∞
DS

η(x0, ω)G(x− x0, y, ω)dx0 . (4.18)

Superimposing PS
η (x, y, ω) for all η will result in PS(x, y, ω) given

by (4.16). Since the aliasing components are individually accessible,
they can be approximated separately via the SPA given by (A.1). The
resulting approximation reads

PS
η,SPA(x, y, ω) =4π

√︃
j
ω

c
S(x∗0 , 0, ω) G(x− x∗0 , y, ω)e−j2πη

x∗0
∆x

· k̂S,y(x∗0 , 0, ω)

√︄
∆S(x∗0)

|Φ′′S(x∗0 , 0, ω) + Φ′′G(x− x∗0 , y, ω)|
· e+j π

4 sgn(Φ′′S (x∗0 ,0,ω)+Φ′′G(x−x∗0 ,y,ω)) . (4.19)

Compared to (4.11), the condition for the stationary phase point x∗0
is extended with an additional phase term belonging to the aliasing
component of the discrete driving signal. It reads

0 !
= Φ′S(x∗0 , y, ω) + Φ′G(x− x∗0 , y, ω)− η

2π

∆x
. (4.20)

The equivalent condition for the x-components of the normalised
local wavenumber vectors is given by

k̂S,x(x∗0 , 0, ω) +
ηc

∆x f
!
= k̂G,x(x− x∗0 , y) . (4.21)

At the stationary phase point x∗0 , the difference between the x-com-
ponents of k̂G and k̂S is an integer multiple of the wavelength λ = c/ f

normalised by the sampling distance ∆x. The same approach as of
Sec. 4.2.1 is taken to solve the equation for x. The corresponding ray
equation for the aliasing components reads

⎡
⎢⎣

x
y
0

⎤
⎥⎦ =

⎡
⎢⎣

x∗0
0
0

⎤
⎥⎦+ γ

⎡
⎢⎢⎢⎣

k̂S,x(x∗0 , 0, ω) + ηc
∆x f√︃

1−
(︂

k̂S,x(x∗0 , 0, ω) + ηc
∆x f

)︂2

0

⎤
⎥⎥⎥⎦ , 0 ≤ γ ≤ ∞ .

(4.22)
It is evident from the square-root-term defining the y-component of
the ray’s direction vector, that the condition

⃓⃓
⃓⃓k̂S,x(x∗0 , 0, ω) +

ηc
∆x f

⃓⃓
⃓⃓ ≤ 1 (4.23)
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Figure 4.6: (a) and (b) show the real
part of aliasing components PS

η (x, y, ω)
for η = −1 and −2, respectively. The
same virtual sound field as in Fig. 4.4
was synthesised using using a discrete
linear SSD along the x-axis with ∆x =
1 m. Each coloured line indicates the
positions x for which the secondary
source at the start of the respective
line (circles) is the stationary secondary
source x∗0 . The yellow circles mark sec-
ondary sources, for which the condition
in (4.23) is not fulfilled. For the sec-
ondary source at the green circle, (c)
and (d) plot the according SPA of the
aliasing component (4.19). (e) and (f)
show the normalised error

20 lg

⃓⃓
⃓⃓
⃓

PS
η,SPA(x, y, ω)− PS

η (x, y, ω)

PS
η (x, y, ω)

⃓⃓
⃓⃓
⃓ .

Due to the axial symmetry the plots for
positive η can be generated by negating
the x-coordinate. �

has to be fulfilled in order to have a real-valued solution. Other-
wise the η-th aliasing component is not excited by the secondary
source located at x∗0 . It is a generalisation of the condition derived
by Spors43 for virtual plane waves towards arbitrary sound fields. 43 Spors (Mar. 2008). “Investigation of

spatial aliasing artifacts of wave field
synthesis in the temporal domain”. In:
Proc. of German Annual Conference on
Acoustics (DAGA). Dresden, Germany,
Eq. (3).

Fig. 4.6 shows an example for the aliasing components and their cor-
responding ray approximations. As for the continuous SSD, the rays
are locally perpendicular to the wavefront curvature of the sound
fields. The normalised error between the aliasing component and its
SPA is significantly lower along the given ray indicating that the SPA
is a meaningful tool.

4.2.3 Discrete Convex Secondary Source Distribution
u

∆x0
x∗0

k̂S

k̂S,t0

x

k̂G

k̂G,t0

t0

n0

Figure 4.7: The sketch shows a synthe-
sis scenario for a discrete convex SSD
(black arc). �

The presented model for the linear SSD will now be extended to-
wards general convex boundaries, including non-uniform sampling
of the SSD. The boundary ∂S is described as a curve x0(u) depending
on the parameter u ∈ [umin, umax], see Fig. 4.7. The component-wise
derivative of x0 w.r.t. u is denoted as x′0 = x′0(u). It is oriented
along the unit tangent vector t0. The inward pointing boundary
normal vector n0 is perpendicular to x′0 and t0. The 2D SLP in (3.3)
is rewritten as the line integral

P(x, ω) =
∫︂ umax

umin

D(x0(u), ω)G(x− x0(u), ω)|x′0(u)|du. (4.24)

There exist an infinite number of parametrisations describing the
same boundary. For example, x0 = [u, 0, 0]T and x0 = [u3, 0, 0]T de-
scribe the same linear SSD for u ∈ [−∞, ∞]. However, an equidistant
sampling w.r.t. u would lead to different sampling schemes w.r.t.
x0. Limiting the upcoming discussion to equidistant sampling for
u is sufficient since any deterministic non-uniform scheme can be
realised with a suitable parametrisation. Analogous to the linear
SSD, the sampling results in aliasing components for the driving
signal and synthesised sound field. For the SPA of the sound field

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig06
https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig07
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components, the stationary phase point u∗ has to fulfil

η
2π

∆u

!
=

∂ΦS(x0(u), ω) + ΦG(x− x0(u), ω)

∂u

⃓⃓
⃓⃓
u=u∗

, (4.25)

with ∆u being the sampling distance in the u-domain. The chain rule
for differentiation is used together with the definition of the local
wavenumber vector in (2.53) to formulate the equivalent condition

⟨ x′∗0 | kS(x∗0 , ω) ⟩+ η
2π

∆u

!
= ⟨ x′∗0 | kG(x− x∗0 , ω) ⟩ (4.26)

for the local wavenumber vectors. The asterisk denotes the accord-
ing entities evaluated at u∗. Normalising all involved vectors while
preserving equality yields

ω

c
⟨ t∗0 | k̂S(x∗0 , ω) ⟩⏞ ⏟⏟ ⏞

:=k̂S,t0 (x
∗
0 ,ω)

+η
2π

∆x0(x
∗
0)

!
=

ω

c
⟨ t∗0 | k̂G(x− x∗0) ⟩⏞ ⏟⏟ ⏞

:=k̂G,t0 (x−x∗0)

, (4.27)

where k̂·,t0 denotes the tangential component of the respective vec-
tor.44 The length of x′0 and the sampling distance ∆u are combined 44 see Fig. 4.7

to ∆x0(x0) := |x′0|∆u, which can be interpreted as the local sam-
pling distance in Cartesian space. The equation establishes a con-
nection between the tangential components of the normalised local
wavenumber vectors. Analogous to their x and y components, the
tangential and normal components of the unit vectors cannot be
chosen independently. Thus, (4.27) uniquely defines k̂G(x− x∗0) for
x ∈ S under the assumption that ∂S is convex. Solving it for x yields
the desired ray equation

x = x∗0 + γ R∗0

⎡
⎢⎢⎢⎣

k̂S,t0(x
∗
0 , ω) + ηc

∆x0 (x
∗
0 ,ω)) f√︃

1−
(︂

k̂S,t0(x
∗
0 , ω) + ηc

∆x0 (x
∗
0) f

)︂2

0

⎤
⎥⎥⎥⎦ , 0 ≤ γ ≤ ∞ .

(4.28)
The rotation matrix R0 = [t0 n0 uz] contains the listed vectors as
its columns. Analogous to the discrete linear SSD in Sec. 4.2.2, a
real-valued solution for the rays’ direction only exists, if

⃓⃓
⃓⃓k̂S,t0(x

∗
0 , ω) +

ηc
∆x0(x

∗
0) f

⃓⃓
⃓⃓ ≤ 1 (4.29)

is fulfilled. For cross-validation of the calculus, a uniformly sampled
linear SSD may be chosen as a special case of the convex SSD: x0 =

[u, 0, 0]T, ∆u = ∆x, t0 = ux, n0 = uy, R∗0 = I (identity matrix), and
k̂·,t0 = k̂·,x. Consequently, (4.22) is a special case of (4.28).

4.2.4 Estimation of the Spatial Aliasing Frequency

In the previous sections, the connection between the listening po-
sition x, the secondary source position x0, the sampling distance
∆x0(x0), and the temporal frequency f was established for the oc-
currence of spatial aliasing. This relation will now be used to derive
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the highest frequency up to which no propagating spatial aliasing
artefacts occur a.k.a. the spatial aliasing frequency. Exceeding this
frequency can be regarded as a violation of the anti-aliasing crite-
rion. In the following, different aliasing frequencies are derived. For
practical relevance, lower bounds for the aliasing frequency covering
arbitrary virtual sound fields are explicitly formulated. In the calcu-
lus, the asterisk of the stationary phase point for x0 is skipped for
the sake of brevity.

kt0

ω
c

ω
c k̂S,t0 (x0, ω)

4πc
∆x0

2πc
∆x0

−2πc
∆x0

−4πc
∆x0

ω
c k̂G,t0 (x− x0)

k t 0
=

ω c

k
t0 =
−

ω
c

Figure 4.8: Illustration of (4.27). �

Aliasing Frequency at the Position x: The quantities involved in the
SPA condition of (4.27) are illustrated in Fig. 4.8: Due to the dis-
cretisation of the SSD, ω

c k̂S,t0(x0, ω) (solid red) is repeated at integer
multiples of 2π/∆x0 (x0) (dashed red). Although the present approach
does not explicitly make use of any spatio-spectral representations,
these images can be interpreted as the spectral repetitions discussed
within the traditional aliasing model. This is further substantiated by
Firtha:45 He showed, that the direction of the wavenumber vectors 45 Firtha, op. cit., Sec. 3.3.3.

locally define the sound fields’ spectra in the spatial Fourier domain.
As for the traditional model, an intersection between the repetitions
and the free-field Green’s function (blue) constitutes spatial aliasing.
In order to derive the spatial aliasing frequency, the SPA condition in
(4.27) has to be solved for f . The involved normalised wavenumber
vector k̂S(x0, ω) of the virtual sound field is generally a function
of f . This is illustrated by the bend red lines in Fig. 4.8, which
would be straight, if k̂S is frequency-independent. Without further
assumptions and knowledge about the virtual sound field, an an-
alytic solution to (4.27) is not possible. Fundamental sound fields
such as plane, point or line sources exhibit frequency-independent
propagation directions, i.e. k̂S(x, ω) = k̂S(x). As discussed in
Sec. 2.1.1, more complex virtual sources are described by a distribu-
tion of monopole sources weighted by the source density QS(x, ω).
As long as this density is frequency-dependent also the propagation
direction follows this dependency. In the far-field46 and for high- 46 The term far-field refers to a large dis-

tance from the monopole distribution in
comparison to its spatial extent.

frequencies47 these sound fields can be approximated as a single

47 The term high-frequency refers to an
according short wavelength in compar-
ison to the spatial extent of the mono-
pole distribution

point source weighted with an angular directivity pattern.48,49 As

48 Meyer (1984). “Computer Simulation
of Loudspeaker Directivity”. In: J. Aud.
Eng. Soc. 32.5, pp. 294–315.
49 Ahrens, op. cit., Sec. 2.2.5.

these assumptions are in agreement with the geometric model, k̂S

can be regarded as independent of f . The solution to (4.27) yields
the frequency

f S,WFS
η (x, x0) =

ηc
∆x0(x0)(k̂G,t0(x− x0)− k̂S,t0(x0))

, (4.30)

at which the secondary source located at x0 considerably contributes
the η-th aliasing component PS

η to a distinct position x inside the
target region. Since the aliasing frequency defines the bound up to
which no aliasing is contributed to x, the mininum of | f S,WFS

η ̸=0 (x, x0)|
over all aliasing components has to be considered. For this pair of
listening and secondary source positions it reads

f S,WFS(x, x0) =
c

∆x0(x0)
⃓⃓
k̂G,t0(x− x0)− k̂S,t0(x0)

⃓⃓ . (4.31)

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig08
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1: function AliasingWFS(S , x)
2: f S,WFS ← ∞
3: for x0, x′0 ← ∂Ω do ▷ (4.24), densely sampled
4: if aS(x0) = 0 then ▷ (4.33)
5: continue ▷ next secondary sources
6: end if
7: ∆x0 ← ∆u|x′0|
8: f ← c

∆x0

⃓⃓
k̂G,t0(x− x0)− k̂S,t0(x0)

⃓⃓ ▷ (4.31)

9: f S,WFS ← min( f S,WFS; f ) ▷ (4.33)
10: end for
11: return f S,WFS

12: end function

Figure 4.9: Brute-force search algorithm
to determine the aliasing frequency
f S,WFS(x) given by (4.31) and (4.33). �

An infinite aliasing frequency is obtained, when k̂G,t0(x − x0) and
k̂S,t0(x0) coincide. This is fulfilled, if the direction of x relative to
the secondary sources is aligned with the propagation direction of
the virtual sound field k̂S(x0). It agrees with the work of Firtha50 50 Firtha, op. cit., Sec. 4.4.2.

showing that aliasing-free synthesis can be achieved for exactly this
case.

As k̂G,t0(x− x0) and k̂S,t0(x0) cannot exceed ±1, the frequency is
lower bounded by

f S,WFS(x, x0) ≥
c

∆x0(x0)
(︁
1 + |k̂G,t0(x− x0)|

)︁ ≥ c
2∆x0(x0)

. (4.32)

The first inequality defines the lower bound for arbitary virtual sound
fields. Additionally, arbitrary positions x relative to x0 are included
by the second bound. It corresponds to the half-wavelength sampling
criterion ∆x0(x0) ≤ λ/2,51 which was already mentioned in conjunc- 51 Van Trees, loc. cit.

tion with the traditional aliasing model in Sec. 4.1. The inequalities
substantiate, that the geometric model generalises the traditional
model towards the listening position and the virtual sound field.
The predictions of both models coincide, if these dependencies are
unknown or arbitrary.

The aliasing frequency f S,WFS(x) for the position x is defined as
the frequency up to which no secondary source contributes any alias-
ing to x. Hence, the minimum of f S,WFS(x, x0) over all secondary
sources defines this frequency

f S,WFS(x) = min
x0|aS(x0) ̸=0

f S,WFS(x, x0). (4.33)

Sh

k̂
max
Gk̂

min
G u

x0 t0

n0

k̂max
G,t0

k̂min
G,t0

Figure 4.10: Illustration of the involved
quantities for the estimation of the
aliasing frequency of an extended area
Sh. �

The minimisation is carried out over the part of the boundary
where the secondary source selection criterion aS(x0) is non-zero.
Contrary to its definition in (3.5), the criterion is not a function of fre-
quency, since the propagation direction k̂S of the virtual sound field
is assumed to be frequency-independent. Analytical solutions to the
minimisation problem for elementary virtual sound fields S(x, ω),
e.g. point sources and plane waves, and simple geometries of the
SSD are subject to further research. In order to illustrate the prin-
ciple of the prediction model, it is sufficient to use a brute-force

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig09
https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig10
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1: function AliasingExtendedWFS(S ,Sh)
2: f S,WFS

Sh
← ∞

3: for x0, x′0 ← ∂S do ▷ (4.24), densely sampled
4: if aS(x0) = 0 then ▷ (4.36)
5: continue ▷ next secondary sources
6: end if
7: k̂min

G,t0
, k̂max

G,t0
← MinMaxWavenumber(Sh, x0)

8: f ← c

∆x0 max
(︂⃓⃓

k̂min
G,t0
− k̂S,t0(x0)

⃓⃓
;
⃓⃓
k̂max

G,t0
− k̂S,t0(x0)

⃓⃓)︂

9: f S,WFS
Sh

← min( f S,WFS
Sh

; f ) ▷ (4.36)
10: end for
11: return f S,WFS

Sh
12: end function

Figure 4.11: Brute-force search algo-
rithm to determine the aliasing fre-
quency f S,WFS

Sh
for an extended lis-

tening area Sh given by (4.34) and
(4.36). An example of the function
MinMaxWavenumber for a circular
region is given in Fig. 4.13. �

minimisation on a dense grid of x0. The algorithm used to pre-
dict the aliasing-frequency is given in Fig. 4.9. While it is not the
most efficient approach to a specific scenario, this method is feasible
for the scenarios that are investigated later in Sec. 4.2.5. Moreover,
numerical approaches like brute-force or iterative optimisation al-
gorithms might be the only alternative for scenarios with complex
virtual sound fields and more sophisticated SSD geometries. For
these scenarios, an analytical solution cannot be derived in closed
form.

xhRh

Ch

u

x0 t0

n0

k̂max
G,t0

k̂min
G,t0

(a) x0 is part of the circle.

xh
Ch

Rh u

x0 t0

n0

k̂max
G,t0

k̂min
G,t0

(b) x0 is not part of the circle, but the
circle intersects with the boundary ∂S .

xh
Ch

R
h

u

x0 t0

n0

k̂max
G,t0

k̂min
G,t0

(c) The circle is completely inside S .

Figure 4.12: The three sketches illus-
trate the three different cases that have
to be considered for the computation
of k̂max

G,t0
(x0) and k̂min

G,t0
(x0) for a circular

region Ch. �

Aliasing Frequency for an Extended Listening Area: So far, the alias-
ing frequency for a distinct position x ∈ S has been discussed. It
is of further interest to find anti-aliasing conditions for the extended
area Sh ⊆ S . It can be utilised to model, if aliasing affects one
or multiple listeners located in this area. Thus, the index h was
chosen as an abbreviation for the listener’s head. Fig. 4.10 shows
an exemplary geometry. As a starting point, the aliasing frequency
f S,WFS(x, x0) for a distinct pair of x and x0 is considered, see (4.31).
The minimum over all listening positions x inside Sh yields the
aliasing frequency f S,WFS

Sh
(x0) for a secondary source not radiating

any aliasing components into Sh. For a convex boundary ∂S , the
angle between the normalised wavenumber vector k̂G(x − x0) and
the tangent vector t0 is in the range [0, π]. Hence, the tangential
component k̂G,t0(x− x0) as the cosine of this angle is a monotonically
decreasing function. Searching for the minimum w.r.t. x, only the
extremal values kmin

G,t0
(x0) and kmax

G,t0
(x0) have to be considered, see

Fig. 4.10. The aliasing frequency is given by

f S,WFS
Sh

(x0) = min
x∈Sh

f S,WFS(x, x0) =
c

∆x0(x0)
(4.34)

·min

(︄
1⃓⃓

k̂max
G,t0

(x0)− k̂S,t0(x0)
⃓⃓ ; 1⃓⃓

k̂min
G,t0

(x0)− k̂S,t0(x0)
⃓⃓
)︄

.

It can be seen that for fixed shape and size of Sh, the angular distance
between k̂

min
G (x0) and k̂

max
G (x0) decreases the further Sh is moved

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig11
https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig12
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1: function MinMaxWavenumberCircle(Ch, x0)
2: xh, Rh ← Ch ▷ centre and radius of circle
3: ϱh ← Rh/|xh−x0| ▷ (B.7)
4: k̂h,t0 ← k̂G,t0(xh − x0) ▷ (B.10)

5: if ϱh > 1 or−
√︂

1− ϱ2
h > k̂h,t0 then ▷ (B.12)

6: k̂min
G,t0
← −1

7: else
8: k̂min

G,t0
← k̂h,t0

√︂
1− ϱ2

h − ϱh

√︂
1− k̂2

h,t0
▷ (B.11)

9: end if
10: if ϱh > 1 or +

√︂
1− ϱ2

h > k̂h,t0 then ▷ (B.12)

11: k̂max
G,t0
← +1

12: else
13: k̂max

G,t0
← k̂h,t0

√︂
1− ϱ2

h + ϱh

√︂
1− k̂2

h,t0
▷ (B.11)

14: end if
15: return k̂min

G,t0
, k̂max

G,t0
16: end function

Figure 4.13: Algorithm to determine
the minimum and maximum tangen-
tial component of the local wavenum-
ber vector for a secondary source po-
sition x0 and a circular region Ch with
radius Rh and centre xh. �

away from x0. For the limiting case, kmin
G,t0

(x0) and kmax
G,t0

(x0) finally

coincide. Analogous to (4.32), the lower bound of f S,WFS
Sh

(x0) for
arbitrary virtual sound fields

f S,WFS
Sh

(x0) ≥
c

∆x0(x0)
(︂

1 + max
(︁
|k̂max

G,t0
(x0)|; |k̂min

G,t0
(x0)|

)︁)︂ (4.35)

is found by inserting the extreme values for k̂S,t0(x0) into (4.34). A
further generalisation towards arbitrary listening areas Sh yields a
lower bound corresponding to the half-wavelength sampling crite-
rion, again.

The aliasing frequency for Sh as the minimum over all active sec-
ondary sources reads

f S,WFS
Sh

= min
x0|aS(x0) ̸=0

f S,WFS
Sh

(x0) . (4.36)

The algorithm for this aliasing frequency is shown in Fig. 4.11. Com-
pared to the baseline algorithm in Fig. 4.9, it is augmented by the
function MinMaxWavenumber(Sh, x0). It determines kmin

G,t0
(x0) and

kmax
G,t0

(x0) for a given secondary source position x0 and listening area
Sh. For arbitrary shapes of Sh, this determination is challenging as it
requires to find the locations on ∂Sh whose tangents are intersecting
with ∂S at x0.

A circular listening area Ch—for practical relevance—simplifies
the following discussion. Moreover, it is often regarded as an approx-
imation of the listener’s head. As shown in Fig. 4.12, three different
cases have to be considered for the circular area centred at xh ∈ S
with radius of Rh: In Fig. 4.12a, the distance between xh and x0 is
smaller than the radius Rh. The secondary source is located inside
the circle. No further restriction is applied to the tangential compo-
nents and they take the according extremal values of ±1. A similar

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig13
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Figure 4.14: The plots (a)-(d) show the
real part of a virtual point source lo-
cated at xps = [0, 2.5, 0]T m synthe-
sised by WFS for different frequencies.
The according error ε̂(x, ω) caused by
aliasing is plotted in (e)-(h), see (4.37).
For the positions above the solid black
lines, the predicted anti-aliasing crite-
rion involving f S,WFS(x) is violated. (i)
shows the aliasing frequency f S,WFS(x)
estimated by the algorithm in Fig. 4.9.
A discrete colormap is used for better
visibility. �

scenario is shown in Fig. 4.12b, where Rh and/or the angle between
xh − x0 and the normal vector n0 are large enough for the circle to
be partly outside S . Depending on the halfspace (w.r.t. n0) in which
xh is located, either the kmin

G,t0
(x0) or the kmax

G,t0
(x0) component reach its

extremal value. The last alternative depicted in Fig. 4.12c covers the
case, where the circular area is completely inside S . The derivation
of kmin

G,t0
(x0) or kmax

G,t0
(x0) for the three cases is given in Sec. B.2. The

resulting algorithm to determine kmin
G,t0

(x0) and kmax
G,t0

(x0) is given in
Fig. 4.13.

4.2.5 Application and Validation

To further study the performance of the model, the predicted aliasing
frequency will be compared to numerical simulations of the synthe-
sised sound fields as well as to results of other theoretical treatises
in the literature. Hereby, a circular SSD of radius R is assumed. It
is chosen to later allow the upcoming comparisons with 2.5D NF-
CHOA, which is restricted to the circular geometry. All simulations
use R = 1.5 m, which corresponds to an existing loudspeaker setup
at Technische Universität (TU) Berlin, Germany. The setup will also
be used for perceptual evaluations presented in Ch. 5 and Ch. 6
in order to allow comparisons with the results of Wierstorf.52 The 52 Wierstorf (2014). “Perceptual Assess-

ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Sec. 5.1 and 5.2.

secondary source positions are given by x0 = R[cos ϕ0, sin ϕ0, 0]T.
The tangent and normal vector read t0 = [− sin ϕ0, cos ϕ0, 0]T and
n0 = −[cos ϕ0, sin ϕ0, 0]T, respectively. The sound field P(x, ω) syn-
thesised by the continuous, circular SSD is given by the specialised
SLP in (3.13). Its counterpart for the discrete SSD is denoted as
PS(x, ω). The normalised error between the synthesised sound fields

ε̂(x, ω) = 20 log10

⃓⃓
⃓⃓P

S(x, ω)− P(x, ω)

P(x, ω)

⃓⃓
⃓⃓ (4.37)

measures the influence of the spatial sampling on the synthesis accu-
racy. Note that the measure takes the synthesised sound field P(x, ω)

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig14
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Figure 4.15: In (a) and (b), the solid
lines show the error ε̂(x, ω) defined in
(4.37) for the same synthesis scenario as
in Fig. 4.14. The lines have been shifted
to enhance visibility. The according
0 dB reference is indicated by horizon-
tal dashed lines of the same colour. The
circles mark the estimated aliasing fre-
quencies f S,WFS(x) given by (4.33). Plot
(c) depicts the evaluated positions x
with their corresponding index. �

of the continuous SSD instead of the virtual sound field S(x, ω) as
the reference. This intentionally excludes other synthesis artefacts
such as diffraction and 2.5D amplitude errors from the evaluation.
These were discussed in Ch. 3. If the error decreases considerably
below the predicted aliasing frequency, the result of the model can
be regarded as reasonable.

Uniformly Discretised SSD: A uniform sampling of the circular SSD
yields the sampling distance ∆x0 = 2πR/N0. For the simulations,
N0 = 56 corresponding to mentioned setup at TU Berlin was cho-
sen. The according half-wavelength sampling criterion is then met
at approximately 1 kHz for this parametrisation. The sound field
reproduced by the discrete SSD reads

PS(x, ω) =
2πR
N0

N0−1

∑
ν=0

D(x(ν)0 , ω)G(x− x(ν)0 , ω) , (4.38)

with x(ν)0 = R[cos(ν 2π
N0

), sin(ν 2π
N0

), 0]T. For a virtual point source, the
2.5D WFS driving function is given by (3.9b) together with Tab. 3.1.
The synthesised sound field, the sampling error, and the predicted
aliasing frequency are shown in Fig. 4.14. The spatial structure of
aliasing with stronger artefacts at positions closer to the virtual point
source is in agreement with the plotted sound fields. A signifi-
cant drop of the sampling error is observable near the predicted
boundary between the aliasing-corrupted and aliasing-free region.
As the presented ray model is an approximation of the underlying
SFS problem, the strict separation between aliasing-free and aliased
regions does not reflect the nature of the artefacts gradually reducing
with increasing distance to the SSD. In Fig. 4.15, the error is plotted
over frequency for ten different positions. Here, the drastic decrease
of spatial aliasing artefacts near the predicted frequency (circular
markers) becomes even clearer.

The driving signal for a focused point source is given by (3.9b)
together with Tab. 3.1. The according synthesised sound field, the
sampling error, and the predicted aliasing frequency are shown in
Fig. 4.16. An aliasing-free region around the focus point evolves,
which narrows with increasing frequency. This phenomenon is cor-
rectly predicted by the geometrical model (black lines). For an in-
finite linear SSD with sampling distance ∆x, Wierstorf53 empirically 53 Ibid., Eq. (3.4).

found a formula for the radius of an aliasing-free circular region
around the focus point. It is a function of the minimum distance
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Figure 4.16: The plots show the quan-
tities analogous to Fig. 4.14 for a vir-
tual focused point source located at
xfs = [0, 0.75, 0]T m with the orientation
nfs = [0,−1, 0]T (yellow cross and ar-
row). For the positions outside the area
surrounded by the black lines, the anti-
aliasing criterion involving f S,WFS(x) is
violated, see (4.33). In addition, the
cyan circle indicates the aliasing-free
area according to (4.39). �

ds between the focus point and the linear SSD. Transferring it to a
circular SSD the minimum distance is given by ds = R− ρfs, whereas
ρfs ≤ R is the distance of the focal point from the centre of the SSD.
The modified formula reads

Rl =
dsc
f ∆x

=
(︂

1− ρfs
R

)︂ N0c
2π f

. (4.39)

Its results are plotted as the cyan circles in Fig. 4.16: For 1 kHz,
the radius underestimates the aliasing-free region. In the remain-
ing plots, the circular region slightly exceeds the predictions of the
geometric model. The higher the frequency, the closer the two pre-
dictions match. As the formula assumes a circular region, it is not
capable of predicting the correct contour of the aliasing-free region.
The radius Rl in (4.39) may be replaced by the distance of a distinct
coordinate x from the focus point xfs. Solving the equation for f
yields the position-dependent aliasing frequency

f S,WFS(x) =
N0c
2πR

R− ρfs
|x− xfs|

(4.40)

predicted by the model of Wierstorf. For the synthesis scenario un-
der investigation, Wierstorf’s prediction yields approximately 2 kHz
for the centre position, i.e. x = 0. This also agrees with the plot
of Fig. 4.16b, where the cyan circle barely includes the origin for
f = 2 kHz. The geometric model estimates an aliasing frequency of
approximately 4 kHz. The coarse approximation of the aliasing-free
region by a circle in Wierstorf’s model hence yields to an underesti-
mation of the aliasing frequency by a factor of 2.

Non-Uniformly Discretised SSD: In order to demonstrate the capa-
bilities of the geometric model to incorporate non-standard SSDs, an
exponentially spaced circular SSD is chosen. The secondary source
positions read x0(u) = R[cos ϕ0(u), sin ϕ0(u), 0]T with the azimuth
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Figure 4.17: The plots (a)-(c) show the
real part of a monochromatic ( f = 2.0
kHz) virtual point source located at
xps = [0, 2.5, 0]T m synthesised with
an exponentially sampled circular SSD.
The number of secondary sources N0
and the spacing parameter µ for the
exponential sampling are given above
each plot. The SSD is driven by WFS.
The according error ε̂(x, ω) caused by
aliasing is plotted in (d)-(f), see (4.37).
For the positions above the solid black
lines, the predicted anti-aliasing cri-
terion involving f S,WFS(x) is violated.
The aliasing frequency f S,WFS(x) is es-
timated by the algorithm in Fig. 4.9. �

angle given as

ϕ0(u) = π sgn(u)
eµ|u| − 1
eµ − 1

+
π

2
, u ∈ [−1, 1] . (4.41)

Depending on whether the spacing parameter µ is negative/positive,
the angle between two adjacent secondary sources in-/decreases the
closer the secondary source azimuth is to π/2. Different examples are
plotted in Fig. 4.17. The sound field reproduced by the discrete SSD
given by (4.38) has to be adjusted to

PS(x, ω) =
N0−1

∑
ν=0

D(x(ν)0 , ω)G(x− x(ν)0 , ω)∆x0(u
(ν)) , (4.42)

together with x(ν)0 = x0(u(ν)), ∆x0(u) = (2πR eµ|u|)/(N0(eµ−1)), and
u(ν) = (2ν−N0)/N0. The synthesised sound field and the sampling
error are shown in Fig. 4.17 for three different parametrisations of
the SSD. The same point source as for uniform case serves as the
virtual sound field. The spacing parameter µ and the number of
secondary sources N0 have been chosen such that the number of
active secondary sources selected by the selection criterion (3.5) is
equal to the uniform case. It allows for comparability as the sound
field is always synthesised by same number of secondary sources.
For Fig. 4.17b/e, the positive µ leads to a denser SSD around π/2.
Compared to the uniform case in Fig. 4.17a/d, the area of low alias-
ing error is smaller. A sparser sampling around π/2 is chosen for
Fig. 4.17c/f: Here, an improvement w.r.t. the aliasing error can be
observed. For both parametrisations, the predictions of the aliasing
frequency by the geometric model (black lines) agree with the error
plots. The findings agree with the investigation by Corteel,54 which 54 Corteel (Sept. 2006). “On the use of ir-

regularly spaced loudspeaker arrays for
Wave Field Synthesis, potential impact
on spatial aliasing frequency”. In: Proc.
of 9th Int. Conf. on Digital Audio Effects
(DAFx-06). Montreal, Canada, pp. 209–
214.

indicated a possibly positive impact of irregularly spaced arrays on
the aliasing properties.
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Optimal Discretisation Schemes: The last example showed, that spa- published as Winter et al. (Mar. 2019b).
“Array Design for Increased Spatial
Aliasing Frequency in Wave Field Syn-
thesis Based on a Geometric Model”.
In: Proc. of German Annual Conference on
Acoustics (DAGA). Rostock, Germany,
pp. 463–466

tial aliasing artefacts in WFS are significantly influenced by the cho-
sen discretisation scheme. It will be demonstrated now, that the
geometric model can be used to optimise the sampling on a given
SSD contour w.r.t. to the aliasing frequency for specific virtual sound
fields. It is assumed, that a (suboptimal) parametrisation x0(u) is
given and allows to explicitly calculate the secondary source po-
sitions. x0(v) is the optimal, yet unknown parametrisation. Since
x0(u) and x0(v) describe the same boundary, there is a pair of u and
v corresponding to the same secondary source position x0. Thus,
v may be expressed as a function of u, i.e. v(u). The bijectivity
requires v(u) to be either strictly increasing or decreasing. Without
loss of generality, it is assumed that v′(u) > 0 (for increasing v(u))
and both parameters share the same support, i.e. umax = v(umax),
umin = v(umin), and ∆u = ∆v. The task is to find the parametrisation
x0(v) that maximizes the aliasing frequency. It is shown in Sec. B.3,
that

v′opt(u) =
(umax − umin)∫︂ umax

umin

1

f S,WFS
u (µ)

dµ

· 1

f S,WFS
u (u)

(4.43)

defines this optimal relation between v and u. The aliasing frequency
for a distinct secondary source with the u-parametrisation is denoted
by f S,WFS

u (u) = f S,WFS(x0(u)). The variable can be replaced by e.g.
(4.31), or (4.34) in order to optimise the sampling w.r.t. to a spe-
cific scenario. Inserting (4.43) into (B.17a) yields the optimal aliasing
frequency

f S,WFS
opt =

(umax − umin)∫︂ umax

umin

1

f S,WFS
u (µ)

dµ

. (4.44)

The relation basically constitutes the optimal aliasing frequency as
the reciprocal of the arithmetic mean of the inverse aliasing frequen-
cies w.r.t. u.

While the relation between u and v is known, an explicit formula
for x0(v) is not available. In order to perform equidistant sampling
w.r.t. v, the samples u(ν) corresponding to v(ν) = ν · ∆u + umin are
computed. For this, the equation

ν · ∆u =
∫︂ u(ν)

umin

v′opt(µ)dµ (4.45)

has to be solved. It can be evaluated by combining numerical in-
tegration and root finding algorithms. The resulting positions are
given by x0(u(ν)).

Fig. 4.18 shows the effect of the optimised SSD discretisation for
the synthesis of a virtual point source. The secondary source are
distributed on an arc of radius R = 1.5 m. The length of the arc is
chosen such, that all secondary sources are activated by the selection
criterion. The sampling was optimised for the aliasing frequency
f S,WFS
Ch

for a circular listening region Ch (red circle) given by (4.36).
Compared to the equidistant sampling in Fig. 4.18a, less aliasing



4.3. Geometric Model for Near-Field-Compensated Higher-Order Ambisonics 65

−1

0

1

equidistant

−1

0

1

Rh = 0.25 m

−1

0

1

Rh = 0.50 m

−1

0

1

−1 0 1 −1 0 1 −1 0 1

y
/

m
(a) (b)

−1

0

1(c)
y

/
m

x / m

(d)

x / m

(e)

x / m

1 kHz

1.5

2

2.5

3(f)

Figure 4.18: The plots in the top row
show a monochromatic ( f = 2 kHz) vir-
tual point source at xps = [0, 2.5, 0]T m
synthesised by a circular SSD (N0 = 21,
black dots) with different non-uniform
spacing patterns. (b) and (c) correspond
to optimisation w.r.t. to f S,WFS

Ch
for a

circular area area Ch located at xh =
[−0.75, 0, 0]T m with Rh = 0.25 m and
0.5 m (red circle). For coordinates above
the black line, the predicted aliasing fre-
quency f S,WFS(x) defined by (4.33) is
lower than 2 kHz. This frequency is
shown in the bottom plots in more de-
tail. A discrete colourmap is used for
better visibility. �

artefacts are present inside Ch in (b) and (c). This is also reflected
by the estimated aliasing frequencies f S,WFS(x) shown Fig. 4.18d-e.
Additional simulations using (4.36) reveal, that the f S,WFS

Ch
is about

1.62 (Rl = 0.25 m) and 1.48 (Rl = 0.5 m) times as high as for the
equiangular pattern. As rule of thumb, a smaller target area allows
for larger increase of the aliasing frequency inside it. For Rl → ∞, the
SSD is only optimised w.r.t. to the virtual sound field and f S,WFS

Ch
is

only 1.16 times as high in comparison to the equidistant case. If the
virtual sound field is assumed to be arbitrary or unknown, f S,WFS

Ch
would be equivalent to the half-wavelength criterion. The optimal
sampling scheme for this criterion is the equi-angular pattern. Again,
the presented geometric framework includes the prediction of the
traditional model of Sec. 4.1 as a special case.

4.3 Geometric Model for Near-Field-Compensated Higher-
Order Ambisonics

It was stated by Ahrens55 and further discussed by Schultz et al.,56 55 Ahrens, op. cit.
56 Schultz et al. (Mar. 2019). “On the
Connections of High-Frequency Ap-
proximated Ambisonics and Wave Field
Synthesis”. In: Proc. of German Annual
Conference on Acoustics (DAGA). Ros-
tock, Germany, pp. 1446–1449.

that 2.5D WFS is a high-frequency approximation of spatially full-
band 2.5D NFCHOA. Thus, the 2.5D driving signal (3.17) is approx-
imated as

DHOA
2.5D (x0, ω)

ω→∞≈ aS(x0)

√︃
j
ω

c

√︂
8π∆S(x0)⟨k̂S(x0, ω)

⃓⃓
n0⟩S(x0, ω) ,

(4.46)
where the right-hand side of the equation is the 2.5D WFS driv-
ing function given by (3.9b). As the high-frequency approximation
agrees with the assumptions made for the geometric model for WFS,
it can be directly applied to predict the aliasing artefacts of fullband
NFCHOA. For the bandwidth-limited counterpart given by (3.18),
the effect of the spatial bandwidth limitation on the aliasing prop-
erties has to be investigated. This will be done in the upcoming
section.
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Figure 4.19: (a) shows a monochro-
matic ( f = 2 kHz) point source lo-
cated at xps = [−1, 2.5, 0]T m. Its band-
width-limited (M = 27) version is plot-
ted in (b). The normalised error

20 lg

⃓⃓
⃓⃓
⃓

SB
M(x0, ω)− S(x0, ω)

S(x0, ω)

⃓⃓
⃓⃓
⃓

is given by (c). (d) shows the absolute
angle between in the propagation direc-
tions k̂S and k̂SB

M
(arrows) of the two

sound field. The solid lines indicate the
positions x for which ω

c |x× k̂S(x, ω)| =
M. The dashed circle has a radius of
Mc/2π f . �

4.3.1 Spatial Bandwidth Limitation

According to (3.17) and (3.18), the bandwidth limitation in the driv-
ing function is directly applied to the coefficients of the virtual sound
field S̆m

|m|(ω) by weighting them with the modal window ⋄wM
m . The

weighted coefficients may be interpreted as the coefficients belonging
to a bandwidth-limited sound field denoted as SB

M(x, ω). Bandwidth-
limited NFCHOA essentially corresponds to a fullband synthesis of
this sound field. The high-frequency approximation of the driving
signal in (4.46) adapts to

DHOA
2.5D (x0, ω)≈ aSB

M
(x0)

√︃
j
ω

c

√︂
8π∆SB

M
(x0)⟨k̂SB

M
(x0, ω)

⃓⃓
n0⟩SB

M(x0, ω) .

(4.47)
Thus, it is necessary to discuss the properties of SB

M(x, ω) in order
to derive a meaningful model for spatial aliasing in NFCHOA. An
exemplary point source and its bandwidth-limited version are com-
pared in Fig. 4.19. According to Ahrens,57 the error between the 57 Ahrens, op. cit.

bandwidth-limited and fullband sound field is negligible inside a
circular area around the origin with the radius Mc

ω . This is confirmed
by Fig. 4.19c, where the error significantly drops inside the dashed
circle. The mentioned criterion is independent of the sound field
and of the direction, i.e. the azimuth, of x relative to the origin.
However, it was shown by Hahn and Spors 58 and in Sec. 3.2.1 for

58 Hahn and Spors (Mar. 2015a).
“Modal Bandwidth Reduction in Data-
based Binaural Synthesis including
Translatory Head-movements”. In:
Proc. of German Annual Conference
on Acoustics (DAGA). Nuremberg,
Germany, pp. 1122–1125

bandwidth-limited plane waves, that the error has a dependence on
the azimuth relative to the propagation direction of the plane wave.
This can also be seen for the point source in Fig. 4.19b, where the
sound pressure significantly decreases for positions outside the area
contained by the solid black lines. In Fig. 4.19c, these positions ex-
hibit a high error. Inside the fan-shaped area, but outside the dashed
circle, the error is mostly caused by amplitude variations. According
to Hahn and Spors59 and based on the analysis in Sec. 3.2.1, these

59 Ibid.

result in fluctuations in temporal frequency spectrum of the sound
field. Fig. 4.19d shows, that the propagation direction of the band-
width-limited sound field is stable within the fan-shaped area. Only
minor differences to the fullband sound field can be observed.

The described observations are further substantiated by analytic
derivations given in Sec. A.1. A high-frequency approximation of

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig19
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Figure 4.20: (a) shows a bandwidth-lim-
ited (M = 27) monochromatic ( f =
2 kHz) point source located at xps =
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high-frequency approximations given
by (4.48) and (4.50) with µ = ω
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M holds. �

the bandwidth limited sound field is given by

SB
M(x, ω)

ω→∞≈ ⋄wM
(︂ω

c
|x× k̂S(x, ω)|

)︂
S(x, ω) , (4.48)

with the sinc60 interpolation of the modal window ⋄wM
m defined as 60 Girod et al., op. cit., Eq. (9.21).

⋄wM(µ) :=
M

∑
m=−M

⋄wM
m sinc ((m− µ)π) . (4.49)

An exemplary bandwidth-limited point source and the approxima-
tion are shown in Fig. 4.20a and b: Besides the mentioned ampli-
tude variations, the wave fronts of SB

M(x, ω) and its approximation
coincide within the area contained by the black lines. The sound
pressure outside the mentioned area decreases in both plots, whereas
the decrease is more abrupt for the approximation. This effect be-
comes even stronger, the more the temporal frequency f is increas-
ing. Hence, a second high-frequency approximation for SB

M(x, ω)

may be introduced, where the sound pressure outside the black lines
is set to zero. It reads

SB
M(x, ω) ≈ ⋄aM

(︂ω

c
|x× k̂S(x, ω)|

)︂
S(x, ω) (4.50)

with

⋄aM(µ) ≈

⎧
⎨
⎩

⋄wM(µ) , if µ ≤ M

0 , otherwise.
(4.51)

It is depicted in Fig. 4.20c and exhibits no visible difference to the first
approximation in Fig. 4.20b. Since ⋄aM(µ) is a real-valued function,
the phase of SB

M(x, ω) in (4.50) coincides with the phase of S(x, ω).
Thus, the local wavenumber vector k̂SB

M
(x, ω) and k̂S(x, ω) match

for this approximation. The approximation of the 2.5D NFCHOA
driving signal in (4.47) may be refined to

DHOA
2.5D (x0, ω) ≈aS(x0)

√︃
j
ω

c

√︂
8π∆S(x0)⟨k̂S(x0, ω)

⃓⃓
n0⟩

· ⋄aM
(︂ω

c
|x0 × k̂S(x0, ω)|

)︂
S(x0, ω)

(4.52)

Compared to the fullband driving signal approximated in (4.47), the
factor ⋄aM is the only difference. It is interpreted as an additional
secondary source selection criterion, which is frequency dependent
and exhibits a lowpass characteristic. Assuming that k̂S(x, ω) is
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frequency-independent, the frequency

f B
M(x0) =

Mc
2π|x0 × k̂S(x0)|

(4.53)

defines the threshold up to which a secondary source is still active. If
the aliasing frequency of a single secondary source, e.g. f S,WFS

Sh
(x0), is

greater than f B
M(x0), it does not contribute any aliasing components

due to its inactivity. For the secondary source x0, the NFCHOA
aliasing frequency for an extended listening area Sh is given by

f S,NFCHOA
Sh

(x0) =

⎧
⎨
⎩

f S,WFS
Sh

(x0) for f S,WFS
Sh

(x0) ≤ f B
M(x0) ,

∞ , otherwise.
(4.54)

It is always greater or equal to the WFS aliasing frequency f S,WFS
Sh

(x0).
Hence, the SBL in NFCHOA potentially reduces spatial aliasing arte-
facts and increases the aliasing frequency. For the fullband case, i.e.
M → ∞, the constraint has no effect. This agrees with the prior
statement, that WFS and fullband NFCHOA share similar properties.
Analogously to the aliasing frequency (4.36) for WFS, the minimum
over the secondary sources with non-zero aS(x0) constitutes the over-
all aliasing frequency

f S,NFCHOA
Sh

= min
x0|aS(x0) ̸=0

f S,NFCHOA
Sh

(x0) . (4.55)

An algorithm for its estimation is shown in Fig. 4.21. The NFCHOA
aliasing frequency f S,NFCHOA(x) for a distinct position x is a special
case of f S,NFCHOA

Sh
for a circular area Sh = Ch with xh = x and Rh = 0.

It is estimated with the same algorithm. It can be deduced from the
presented calculus, that the predicted aliasing frequencies depend
on the chosen modal bandwidth M but are independent of the actual
shape of the modal window ⋄wM

m . Potential effects of the shape on the
aliasing properties are not covered by the developed model.

4.3.2 Application and Validation

Influence of SBL: For 2.5D synthesis scenarios, NFCHOA states the
explicit solution to the SLP defined in (3.13). Thus, only a circular
SSD can be used for the evaluation. For comparability, the same
uniformly discretised SSD as for WFS is used, i.e. R = 1.5 m, N0 =

56, and ∆x0 = 2πR/N0. It synthesises a virtual point source located at
xps = [0, 2.5, 0]T m. The driving signal is given by (3.18) and Tab. 3.2.
In order to quantify the synthesis accuracy, the normalised error used
for WFS is re-defined to

ε̂(x, ω) := 20 log10

⃓⃓
⃓⃓P

S(x, ω)− Pref(x, ω)

P(x, ω)

⃓⃓
⃓⃓ . (4.56)

As a reference, Pref(x, ω) denotes the sound field reproduced by a
continuous SSD without spatial bandwidth limitation. Thus, the
error incorporates the combined effects of spatial aliasing and the
SBL.
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1: function AliasingExtendedNFCHOA(S ,Sh, M)
2: f S,NFCHOA

Sh
← ∞

3: for x0, x′0 ← ∂S do ▷ (4.24), densely sampled
4: if aS(x0) = 0 then ▷ (4.55)
5: continue ▷ next secondary sources
6: end if
7: ∆x0 ← ∆u|x′0|
8: k̂min

G,t0
, k̂max

G,t0
← MinMaxWavenumber(Sh, x0)

9: f ← c

∆x0 max
(︂⃓⃓

k̂min
G,t0
− k̂S,t0(x0)

⃓⃓
;
⃓⃓
k̂max

G,t0
− k̂S,t0(x0)

⃓⃓)︂

10: f B
M ←

Mc
2π|x0 × k̂S(x0)|

▷ (4.53)

11: if f ≤ f B
M then ▷ (4.54)

12: f S,NFCHOA
Sh

← min( f S,NFCHOA
Sh

; f ) ▷ (4.55)
13: end if
14: end for
15: return f S,NFCHOA

Sh
16: end function

Figure 4.21: Brute-force search al-
gorithm to determine the NFCHOA
aliasing frequency f S,NFCHOA

Sh
for an

extended area Sh given by (4.54).
An example of the function Min-
MaxWavenumber for a circular re-
gion is given in Fig. 4.9. �

Fig. 4.22 shows the synthesised sound field and the according er-
ror for different modal windows. As already discussed in Sec. 3.2.1,
the max-rE weighting function leads to less amplitude fluctuations
and smoother wave fronts compared to the rectangular window of
same M. The estimated frequencies f B

M(x) (dashed) and f S,NFCHOA(x)
(solid) do not take the window type into account. The geometric
model is not capable to explain this phenomenon. For M = 20, the
error is mainly caused by SBL for both window types. This is pre-
dicted correctly by using the frequency f B

M(x). Increasing the band-
width to M = 34, increases the area which is free of SBL artefacts.
Larger values of M cause more spatial aliasing as the artefacts-free
area is now dominantly restricted by the solid black lines symbol-
ising the estimated aliasing frequency f S,NFCHOA(x). For M = 300,
the SBL has no effect. The spatial structure of the sound field and
the error are very similar to WFS.61 This agrees with the prior state- 61 see Fig. 4.14c/g

ment, that fullband NFCHOA exhibits similar aliasing properties as
WFS. Overall, the results confirm, that spatial aliasing increased with
larger value of M. For a low spatial bandwidth, the artefacts of the
SBL are dominating.

Optimal Modal Bandwidth: It was shown in the previous example
that a small modal bandwidth reduces spatial aliasing but has the
drawback of a small listening region with high synthesis accuracy.
In the literature,62 the optimal modal bandwidth w.r.t. a trade-off 62 Ahrens, op. cit., Eq. (4.26).

between spatial aliasing and bandwidth limitation is given by M =

⌊(N0−1)/2⌋. This value will be compared with the predictions of the
model: A circular listening region Ch with radius Rh concentric to

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig21
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Figure 4.22: The plots (a)-(e) show the
real part of a monochromatic ( f = 2
kHz) virtual point source located at
xps = [0, 2.5, 0]T m synthesised by NF-
CHOA for different modal windows
⋄wM

m . The according error ε̂(x, ω) caused
by aliasing and SBL is plotted in (f)-
(j), see (4.56). For the positions x
above the solid black lines, the pre-
dicted anti-aliasing criterion involving
f S,NFCHOA(x) is violated, see (4.55). It
is estimated using the algorithms in
Fig. 4.13 and Fig. 4.21 for Sh = Ch with
Rh = 0 and xh = x. For positions,
which are not contained by the dashed
black lines, f B

M(x) < f , see (4.53). �

the circular SSD is considered. The SBL frequency is given as

f B
M(x) =

Mc
2π|x× k̂S(x)|

≥ Mc
2π|x| ≥

Mc
2πRh

, ∀x ∈ Ch . (4.57)

The first inequality results from the length of the cross-product which
takes its maximum value, if the involved vectors are perpendicular.
In this case, it is equal to the product of the individual lengths of
the two vectors. It results in a lower bound for f B

M(x) for an arbi-
trary virtual sound field, i.e. arbitrary k̂S(x). The second inequality
considers the maximum for |x| inside the circular area.

For the aliasing frequency of the area, (4.54) and (4.34) have to
be considered. The necessary values for k̂min

G,t0
(x0) and k̂max

G,t0
(x0) for a

circular area are given by (B.12). Due to the circular symmetry of the
scenario, k̂min

G,t0
(x0) and k̂max

G,t0
(x0) can be further simplified to

k̂{min,max}
G,t0

(x0) =

⎧
⎨
⎩
∓ Rh

R if Rh ≤ R ,

∓1 if Rh > R ,
(4.58)

where the upper and lower option for ∓ applies for k̂min
G,t0

(x0) and
k̂max

G,t0
(x0), respectively. Inserting the values together with ∆x0 =

2πR/N0 into (4.34) results in

f S
Ch
(x0) =

⎧
⎪⎨
⎪⎩

cN0
2πR(1+|k̂S,t0 (x0)|)

if Rh > R ,

cN0
2π(Rh+R|k̂S,t0 (x0)|)

if Rh ≤ R .
(4.59)

According to (4.57), the radius Rh which is free of artefacts caused by
SBL is lower bounded by Mc

2π f . Inserting the radius into (4.59) leads

to an implicit formulation w.r.t. f S
Ch
(x0). Its solution reads

f S
Ch
(x0) =

⎧
⎪⎨
⎪⎩

N0c
2πR(1+|k̂S,t0 (x0)|)

if M > N0
1+|k̂S,t0 (x0)|

,

(N0−M)c
2πR|k̂S,t0 (x0)|

if M ≤ N0
1+|k̂S,t0 (x0)|

.
(4.60)

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig22
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In order to have an infinite aliasing frequency f S
Ch|M(x0), see (4.54),

f B
M(x0) has to be smaller than f S

Ch
(x0) for all secondary sources. Tak-

ing the definition of f B
M(x0) in (4.53) into account, the condition is

formulated via

cM
2πR|k̂S,t0(x0)|

!
<

⎧
⎪⎨
⎪⎩

cN0
2πR(1+|k̂S,t0 (x0)|)

if M > N0
1+|k̂S,t0 (x0)|

,

c(N0−M)

2πR|k̂S,t0 (x0)|
if M ≤ N0

1+|k̂S,t0 (x0)|
.

(4.61)

Hereby, it was exploited that |x0 × k̂S(x0)| = R|k̂S,t0(x0)| holds for
circular SSDs. The condition is further simplified resulting in two
(independent) constrained conditions:

M
!
< N0

|k̂S,t0(x0)|
1 + |k̂S,t0(x0)|

, if M >
N0

1 + |k̂S,t0(x0)|
, or (4.62a)

M
!
<

N0

2
, if M ≤ N0

1 + |k̂S,t0(x0)|
, (4.62b)

Since |k̂S,t0(x0)| is always positive and less or equal 1, there is no
value for M, that fulfils the first condition without violating its con-
straint. All M fulfilling the second condition automatically comply
with the according constraint independent of |k̂S,t0(x0)|. Thus, it is
necessary for M to be smaller than N0/2. Under the premise that
the size of the available listening area is supposed to be as large as
possible, the best choice for M is the largest integer fulfilling this
criterion. The prediction of the geometric model for optimal modal
bandwidth in NFCHOA reads M = ⌊(N0−1)/2⌋ and agrees with the
result from Sec. 4.1 and from the literature.63 According to the model, 63 Ibid., Eq. (4.26).

it corresponds to a circular region with Rh = Mc
2π f around the SSD

centre, which is free of artefacts caused by spatial aliasing and the
SBL.

4.4 Geometric Model for Local Wave Field Synthesis us-
ing Spatial Bandwidth Limitation

An appropriate choice for the spatial bandwidth M can be utilised
to reduce spatial aliasing. However, without further modification
NFCHOA does not allow for shifting the area of high synthesis ac-
curacy from the array centre. LWFS-SBL uses the same mechanism
as NFCHOA to avoid spatial aliasing. In this method, it is possible
to adjust the expansion centre xc of the Circular Harmonics repre-
sentation of the virtual sound field and shift the location of the area
with high synthesis accuracy to this position. This was demonstrated
in Sec. 3.4. In Sec. 4.4.1, the geometric model for NFCHOA will be
generalised to incorporate bandwidth-limited sound fields, which
were expanded around positions other than the coordinates’ origin.
It enables the prediction of the spatial aliasing frequency in LWFS-
SBL.

The practical realisation of LWFS-SBL was discussed in Sec. 3.4.2:
The CHT of the desired sound field is converted into a discrete PWD.
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This discretisation constitutes a second sampling process in addition
to the spatial sampling caused by the discrete SSD. Contrary to the
secondary sources, the resolution of the PWD is only constrained
by the computational effort and thus less critical. A discussion on
the effects of the discrete PWD is presented in Sec. 4.4.2. It should
be noted, that the frequency crossover between WFS and LWFS-SBL
necessary to synthesise point sources is not taken into account, here.

4.4.1 Continuous Plane Wave Decomposition

For a continuous PWD, the 2.5D LWFS-SBL driving signal is given
by (3.25). For convenience, it is given here again:

DLWFS−SBL
2.5D (x0, ω) =

1
2π

∫︂ 2π

0
S̄(ϕpw, xc, ω)DWFS

2.5D,pw(x0 − xc|npw, ω)dϕpw .
(4.63)

The integral describes the weighted superposition of the 2.5D WFS
driving signal DWFS

2.5D,pw for virtual plane waves with their propaga-
tion directions npw distributed on the unit circle. The weights are
given by the plane wave coefficients S̄ of the virtual sound field
expanded around xc. A high-frequency approximation of the LWFS-
SBL driving signal based on the SPA is derived in Sec. A.2.1. It reads

DLWFS−SBL
2.5D (x0, ω)

ω→∞≈
√︃

j
ω

c

√︂
8π|x0 − xref| aS(x0)⟨k̂S(x0, ω)|n0⟩S(x0, ω) .

(4.64)

Despite of the different distance correction factors, the approxima-
tion is very similar to the high-frequency approximation of the band-
width-limited NFCHOA driving signal given by (4.47). Thus, sim-
ilar steps are taken to incorporate the SBL into the approximation.
The expansion around xc instead of coordinates’ origin 0 is handled
by a shift of the coordinate frame. Analogous to the discussion in
Sec. 4.3.1, the driving signal is further approximated to

DLWFS−SBL
2.5D (x0, ω) ≈

√︃
j
ω

c

√︂
8π|x0 − xref|aS(x0)⟨k̂S(x0, ω)

⃓⃓
n0⟩

· ⋄aM
(︂ω

c
|(x0 − xc)× k̂S(x0, ω)|

)︂
S(x0, ω) .

(4.65)
⋄aM is defined in (4.51). As the major difference to NFCHOA, the
argument of ⋄aM contains the shifted secondary source position x0 −
xc. The SBL frequency (4.53) is adopted to

f B
M(x0, xc) =

Mc
2π|(x0 − xc)× k̂S(x0)|

. (4.66)

The aliasing frequency for a single secondary source given by (4.54)
is adjusted according to the shift and reads

f S,LWFS−SBL
Sh

(x0) =

⎧
⎨
⎩

f S,WFS
Sh

(x0) for f S,WFS
Sh

(x0) ≤ f B
M(x0, xc) ,

∞ , otherwise.
(4.67)



4.4. Geometric Model for Local Wave Field Synthesis using Spatial Bandwidth Limitation 73

1: function AliasingExtendedLWFS-SBL(S ,Sh, M, xc)
2: f S,LWFS−SBL

Sh
← ∞

3: for x0, x′0 ← ∂S do ▷ (4.24), densely sampled
4: if aS(x0) = 0 then ▷ (4.55)
5: continue ▷ next secondary sources
6: end if
7: ∆x0 ← ∆u|x′0|
8: k̂min

G,t0
, k̂max

G,t0
← MinMaxWavenumber(Sh, x0)

9: f ← c

∆x0 max
(︂⃓⃓

k̂min
G,t0
− k̂S,t0(x0)

⃓⃓
;
⃓⃓
k̂max

G,t0
− k̂S,t0(x0)

⃓⃓)︂

10: f B
M ←

Mc
2π|(x0 − xc)× k̂S(x0)|

▷ (4.53)

11: if f ≤ f B
M then ▷ (4.54)

12: f S,LWFS−SBL
Sh

← min
(︂

f S,LWFS−SBL
Sh

; f
)︂

▷ (4.55)
13: end if
14: end for
15: return f S,LWFS−SBL

Sh
16: end function

Figure 4.23: Brute-force search al-
gorithm to determine the LWFS-SBL
aliasing frequency f S,LWFS−SBL

Sh
for an

extended area Sh given by (4.54).
An example of the function Min-
MaxWavenumber for a circular re-
gion is given in Fig. 4.9. �

Thus, the aliasing frequency for LWFS-SBL is estimated by modify-
ing the algorithm for NFCHOA in Fig. 4.21 such that it incorporates
xc for f B

M. Again, the aliasing frequency f S,LWFS−SBL(x) for a single
position x is a special case of f S,LWFS−SBL

Sh
where Sh collapses to a

single point in space. The algorithm is given in Fig. 4.23.

4.4.2 Discrete Plane Wave Decomposition

It was discussed in Sec. 3.4.2, that the chosen practical realisation
of LWFS-SBL requires the discretisation of the involved PWD. The
continuous PWD is approximated via a summation over discrete
angles ϕ

(l)
pw = 2π

Npw
l. In the frequency domain, the resulting driving

signal reads

DLWFS−SBL,S
2.5D (x0, ω) = (4.68)

1
Npw

Npw−1

∑
l=0

S̄(ϕ(l)
pw, xc, ω)DWFS

2.5D,pw(x0 − xc|n(l)
pw, ω) .

Similar to the discretised linear SSD in Sec. 4.2.2, the sampling is
modelled as the multiplication of the continuous PWD S̄ with a Dirac
comb.64 Using the Fourier series of the Dirac comb,65 the discretised 64 see (4.17)

65 Williams, loc. cit.plane wave coefficients can be separated into different aliasing com-
ponents indexed by ζ. The according aliasing components of the
LWFS-SBL driving signal are defined as

DLWFS−SBL,S
2.5D,ζ (x0, ω) = (4.69)

1
2π

∫︂ 2π

0
S̄(ϕpw, xc, ω)e−jζNpwϕpw DWFS

2.5D,pw(x0 − xc|npw, ω)dϕpw .

It should be emphasised, that DLWFS−SBL,S
2.5D,ζ describes the aliasing

components w.r.t. the discrete PWD. They shall not be confused with

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig23
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the aliasing components of the driving signal caused by the discrete
SSD. These are indexed by η. Summing all the components over ζ

leads to the continuous driving signal as given in (4.63). It is derived
in Sec. A.2.2, that the aliasing components of the driving function
can be high-frequency approximated via

DLWFS−SBL,S
2.5D,ζ (x0, ω) ≈ (4.70)
√︃

j
ω

c

√︂
8π|x0 − xref| aSS

ζ
(x0)⟨k̂SS

ζ
(x0, ω)|n0⟩SS

ζ (x0, ω) .

The derivation is analogous to the approximation for the continuous
case which resulted in (4.64). The sound field SS

ζ (x0, ω) defines the
ζ-th aliasing component of the virtual sound field originating from
a discretised PWD.66 aSS

ζ
(x0) and k̂SS

ζ
(x0, ω) denote the secondary 66 see (A.30a)

source selection criterion and the normalised local wavenumber vec-
tor according to the aliasing component SS

ζ (x0, ω). The propagation

direction k̂SS
ζ
(x0, ω) is necessary to derive the spatial aliasing fre-

quency from (4.27). A meaningful expression is found in Sec. A.2.2.
The normalised wavenumber vector can be related to the original
virtual sound field via

k̂SS
ζ
(x0, ω) ≈ k̂S(xS

ζ(x0, ω), ω) (4.71)

with xS
ζ(x0, ω) fulfilling the implicit equation (A.34)

u

x0

S(x, ω)

k̂S(x0, ω)

k̂SS
ζ
(x0, ω)

xS
ζ

k̂S(xS
ζ , ω)

ζ
N pw

c
ω

x

k̂G(x− x0)

t0

n0

Figure 4.24: The sketch shows a synthe-
sis scenario for LWFS-SBL with a dis-
crete convex SSD (black arc) and dis-
crete PWD. The grey dot illustrates an
exemplary virtual point source. �

ζNpw
c
ω

!
=
⟨︂

xS
ζ − x0

⃓⃓
⃓R π

2
k̂S(xS

ζ , ω)
⟩︂

. (4.72)

R π
2

denotes a rotation matrix causing a counter-clockwise rotation of

k̂S(xS
ζ , ω) about π/2. A geometric interpretation of the condition is

depicted in Fig. 4.24. The signed distance (red line) between x0 and
the ray defined by xS

ζ and k̂S(xS
ζ , ω) is equal to ζNpw

c
ω . It can also be

seen, that the resulting k̂SS
ζ
(x0, ω) differs from the propagation direc-

tion of the original virtual source field k̂S(x0, ω). As the condition is
implicit w.r.t. xS

ζ , the equation cannot be solved without additional
knowledge about the virtual sound field. Solutions to specific virtual
sound fields remain for future research. Assuming the solution to be
known, the derivation is carried on by inserting k̂S(xS

ζ(x0, ω), ω) into
(4.27):

⟨t0 | k̂S(xS
ζ(x0, ω), ω)⟩+ ηc

∆x0(x0) f
!
= ⟨ t0 | k̂G(x− x0) ⟩ . (4.73)

It was stated in Sec. 4.2.4, that an explicit expression for the aliasing
frequency in WFS can be given by (4.30), if the propagation direction
of the virtual sound field is independent of f , i.e. k̂S(x0, ω) = k̂S(x0).
However, this assumption does not allow to solve Eq. (4.73) for f ,
since the position xS

ζ(x0, ω) remains as a function of frequency. With-
out knowledge of the specific virtual sound field, no analytic solution
is possible for the aliasing frequency in LWFS-SBL with a discrete
PWD.

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig24
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Figure 4.25: The plots (a)-(e) show the
real part of a monochromatic ( f = 2
kHz) virtual point source located at
xps = [0, 2.5, 0]T m synthesised with
LWFS for different M. The expansion
centre is set to xc = [−0.5, 0.75, 0]T m
(cross). The plots (f)-(j) below show the
error according ε̂(x, ω), see (4.56). For
the positions x above the solid black
lines, the predicted anti-aliasing crite-
rion involving f S

M(x) is violated, see
(4.67). It is estimated using the algo-
rithms in Fig. 4.13 and Fig. 4.21 for
Sh = Ch with Rh = 0 and xh = x with a
coordinate frame shifted about xc. For
positions, which are not contained by
the dashed black lines, f B

M(x− xc) < f ,
see (4.53). �

4.4.3 Application and Validation

With this example, the predictions of the geometric model extended
towards LWFS-SBL are compared to numeric simulations. In addi-
tion, the influence of spatial bandwidth M and the expansion centre
xc on the predicted aliasing frequency is examined. As for NFCHOA,
an equi-angularly sampled circular SSD with N0 = 56 loudspeakers
and R = 1.5 m radius is considered. Fig. 4.25 shows the synthesised
sound fields, and the normalised error67 for xc = [−0.5, 0.75, 0]T m

67 see Eq. (4.56)

and different bandwidths. The plots show a dominance of the SBL
artefacts (dashed lines) for low M. Spatial aliasing (solid lines) in-
creases with higher M. For the circular SSD under investigation
(N0 = 56), M = 27 is optimal for the centre position in NFCHOA.
It can be seen in Fig. 4.25e/j, that xc is already corrupted by spatial
aliasing for this spatial bandwidth. Obviously, the optimal M w.r.t.
a trade off between spatial aliasing and SBL is a function of xc.

The aliasing frequency as a function of M is shown in Fig. 4.26
for ten different positions xc. The plot can also be used to find the
optimal, i.e. aliasing-free, M for a given frequency. For comparison,
the aliasing frequency for M → ∞ corresponding to conventional
WFS is also shown. A circular listening region Ch with Rh = 8.5 cm
was chosen for the simulation to approximate the human head.68 68 Algazi et al. (2001). “Elevation local-

ization and head-related transfer func-
tion analysis at low frequencies”. In: J.
Acoust. Soc. Am. 109.3, pp. 1110–1122,
Sec. IV.F.

For all positions, the aliasing frequencies increase with decreasing
M. The observable discontinuities can be explained as follows: The
aliasing frequency is computed as the minimum over all active sec-
ondary sources. Thus, it is possible, that a single secondary source
determines f S

Ch|M for a wide range of values for M. If this source is
deactivated due to the SBL, the aliasing frequency increases drasti-
cally.

Low values for M have the drawback that SBL artefacts have to
be taken into account. The red-shaded area in Fig. 4.26a marks the
SBL frequency f B

Ch|M for a circular region Ch. The optimal trade-off

between the two artefacts is given by the intersection points of f B
Ch|M

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig25


4.5. Geometric Model for Local Wave Field Synthesis using Virtual Secondary Sources 76

40

1

10

∞0 10 20 30 40 50 60 70 80 90

fS C h
|M

/
kH

z

M

0
1

2

3
4

5
6 7

8
9

f B
Ch |M

(a)

0 1 2

3 4 5

6 7 8
9

(b)
Figure 4.26: (a) shows the estimated
aliasing frequency f S

Ch |M , see (4.67) as a
function of M. The aliasing frequency
was computed using the algorithms in
Fig. 4.21 and Fig. 4.13. The parameters
are Rh = 8.5 cm, and xh = xc. The
area shaded in red indicates f S

Ch |M <

f B
Ch |M = Mc

2πRh
. (b) depicts the positions

xh = xc with their index corresponding
to the left plot. �

and f S
Ch|M (coloured circles). The corresponding frequency will be

referred to as the maximum artefact-free frequency and will be used
for the upcoming discussion: At the positions 0 to 5, the artefact-
free frequency is between ≈ 9.3 (pos. 5) and ≈ 17.3 (pos. 0) times
as high as the aliasing frequency of WFS (M = ∞). With at least
17.9 kHz (pos. 5), the frequency reaches to the end of the audible
range. For the positions 6 to 9, which are closer to the virtual point
source, the aliasing frequency is comparatively low: A very small
value for M has to be chosen to avoid spatial aliasing. Compared
to the positions discussed before, the gain w.r.t. spatial aliasing
frequency is relatively small. At pos. 9, the artefact-free frequency
(black circle) is about 2.9-times as high as the frequency for WFS.

4.5 Geometric Model for Local Wave Field Synthesis us-
ing Virtual Secondary Sources
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Figure 4.27: The sketch shows a syn-
thesis scenario for a discrete convex
SSD (loudspeaker symbols) and a con-
tinuous convex virtual SSD (grey line).
�

In the following, the geometric model for WFS will be generalised
towards LWFS-VSS. As presented in Sec. 3.5, LWFS-VSS utilises fo-
cused sources as Virtual Secondary Sources (VSSs) which are dis-
tributed on the boundary of the target listening region ∂S l. The
geometrical model will be applied to LWFS-VSS with a continuous
virtual SSD in Sec. 4.5.1. In a practical implementation of LWFS-VSS,
the virtual SSD has to be sampled. Similar to PWD in the previous
section, the resolution of this discretisation is mainly constrained
by the computational effort and is not systemically limited. Its im-
pact on the spatial aliasing will be discussed within the geometrical
framework in Sec. 4.5.2.

4.5.1 Continuous Virtual Secondary Source Distribution

The 2.5D LWFS-VSS driving signal given in (3.36) states a superposi-
tion of the driving signals DWFS

2.5D,fs(x0|xl, nl, ω) to synthesise a distinct
focused source filtered by the driving signal DWFS

2.5D (xl, ω) for the fo-
cused source to synthesise the virtual sound field. It is rewritten as

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig26
https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig27
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the line integral

DLWFS−VSS
2.5D (x0, ω) = (4.74)
∫︂ vmax

vmin

DWFS
2.5D,fs(x0|xl(v), nl(v), ω)DWFS

2.5D (xl(v), ω) |x′l(v)|dv .

Analogous to the real SSD, the boundary ∂S l of the local target
region is described as a curve xl(v) depending on the parameter
v ∈ [vmin, vmax], see Fig. 4.27. The component-wise derivative of
xl w.r.t. v, the unit tangent vector, and inward pointing boundary
normal vector are accordingly given by x′l, tl, and nl. The integral is
approximated by DLWFS−VSS

2.5D,SPA using the SPA defined in Gleichung A.1.
For the stationary VSS x∗l = xl(v∗), the condition

0 !
=

∂ΦS(xl(v), ω) + Φfs(x0 − xl(v), ω)

∂v

⃓⃓
⃓⃓
v=v∗

(4.75)

has to hold. Similar to the derivation for WFS, ΦS is the phase of the
virtual sound field included in DWFS

2.5D . The phase of DWFS
2.5D,fs is denoted

by Φfs. Following the definition in Tab. 3.1 its phase is the negated
phase of the free-field Green’s function, i.e. Φfs(xl) = −ΦG(xl − x0).
The SPA constraint for the involved normalised wavenumber vector
is given by

k̂S(x∗l , ω)
!
= k̂G(x∗l − x0) . (4.76)

Its solution x∗l = x∗l (u) = xl(u, v∗) is generally a function of u due
to the involved x0(u). As shown in Fig. 4.27, the direction of x∗l
relative to x0 has to be aligned with the propagation direction of the
virtual sound field at x∗l . The high-frequency approximation states,
that the LWFS-VSS driving signal for x0 is mainly determined by
the x∗l fulfilling this condition. Vice versa, xl is the stationary VSS
for all secondary sources along the ray defined as x0(xl, ω) = xl −
γk̂S(xl, ω) with γ > 0. Thus, x0 corresponds to the intersection point
of the ray and the SSD boundary ∂S . With xl ∈ S and ∂S being
convex, x0 is uniquely defined by (4.76).

The SPA of the LWFS-VSS driving signal is inserted into the SLP
for the convex boundaries defined by (4.24). The result reads

P(x, ω) ≈
∫︂ umax

umin

DLWFS−VSS
2.5D,SPA (x0(u), ω)G(x− x0(u), ω) |x′0(u)|du.

(4.77)
After incorporating spatial sampling of the SSD, the SPA condition
w.r.t. u is formulated as

∂ΦS(x∗l (u), ω) + Φfs(x0(u)− x∗l (u), ω) + ΦG(x− x0(u))
∂u

⃓⃓
⃓⃓
u=u∗

!
= η

2π

∆u
.

(4.78)
The chain rule of differentiation, i.e. ∂

∂u = ∂
∂v∗

∂v∗
u , and (4.75) are used

to derive the equivalent condition for the normalised wavenumber
vectors as

⟨t0 | k̂G(x∗l (u
∗)− x0(u∗))⟩+

ηc
∆x0(x0) f

!
= ⟨ t0 | k̂G(x− x0(u∗)) ⟩ .

(4.79)
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1: function AliasingExtendedLWFS-VSS(S ,Sh,Sl) ▷ S and Sl are assumed to be convex
2: f S,LWFS−VSS

Sh
← ∞

3: for xl, x′l ← ∂S l do ▷ (4.74), densely sampled
4: if aS(xl) = 0 then ▷ (4.82)
5: continue ▷ next virtual secondary source
6: end if
7: x0, x′0 ← FindIntersection(xl, k̂S(xl),S) ▷ intersection of ray xl − γk̂S(xl) and ∂S
8: ∆x0 ← ∆u|x′0|
9: k̂min

G,t0
, k̂max

G,t0
← MinMaxWavenumber(Sh, x0)

10: f ← c

∆x0 max
(︂⃓⃓

k̂min
G,t0
− k̂G,t0(xl − x0)

⃓⃓
;
⃓⃓
k̂max

G,t0
− k̂G,t0(xl − x0)

⃓⃓)︂

11: f S,LWFS−VSS
Sh

← min( f S,LWFS−VSS
Sh

; f )
12: end for
13: return f S,LWFS−VSS

Sh
14: end function

Figure 4.28: Generic brute-force search
algorithm to determine the aliasing fre-
quency f S,LWFS−VSS

Sh
given by (4.82). The

aliasing frequency f S,LWFS−VSS(x) for a
single position can be computed by us-
ing a circular region Sh with zero ra-
dius. An example of the function Min-
MaxWavenumber for a circular re-
gion is given in Fig. 4.13. �

Since x0 is uniquely defined for a given x∗l by the SPA condition (4.76)
of the first integral, (4.79) is expressed in terms of x∗l via

⟨t0 | k̂G(x∗l − x0(x∗l , ω))⟩+ ηc
∆x0(x0(x∗l , ω)) f

!
= ⟨t0 | k̂G(x− x0(x∗l , ω))⟩.

(4.80)
Under the assumption, that the k̂S is not a function of frequency,
x0(x∗l , ω) is also independent of ω. Thus, the aliasing frequency for
a pair x and xl reads

f S,LWFS−VSS(x, xl) = (4.81)
c

∆x0(x0(xl))
⃓⃓
k̂G,t0(x− x0(xl))− k̂G,t0(xl − x0(xl))

⃓⃓ .

The frequency for a single position x is given by

f S,LWFS−VSS(x) = min
x0|aS(xl) ̸=0

f S,LWFS−VSS(x, xl) . (4.82)

The aliasing frequency is further generalised towards extended lis-
tening areas Sh as it was presented for WFS in Sec. 4.2.4. An algo-
rithm to estimate the corresponding frequency f S,LWFS−VSS

Sh
is shown

in Fig. 4.28. The major differences to the WFS algorithm in Fig. 4.11
are the minimisation over ∂S l instead of the ∂S and the function
FindIntersection to determine x0 for a given xl.

4.5.2 Discrete Virtual Secondary Source Distribution

v
∆ x l
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Figure 4.29: The sketch shows a synthe-
sis scenario for a discrete convex SSD
(loudspeaker symbols) and a discrete
convex virtual SSD (grey dots). �

As shown in Fig. 4.29, the virtual SSD (grey dots) is now spatially
discretised. The sampling distance in the v-domain is denoted as ∆v.
The resulting distance in the Cartesian space is defined as ∆xl(xl) :=
∆vx′l. The integration over the continuous virtual SSD in (4.74) is
approximated as summation over an equidistant grid w.r.t. v. As for
the LWFS-SBL in Sec. 4.4.2, this discretisation results in additional
aliasing components which shall not be confused with the compo-
nents stemming from the SSD sampling. The components w.r.t. v

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig28
https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig29
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read

DLWFS−VSS,S
2.5D,ζ (x0, ω) = (4.83)
∫︂ vmax

vmin

DWFS
2.5D,fs(x0|xl(v), nl(v), ω)DWFS

2.5D (xl(v), ω)e−jζ 2π
∆v v |x′l(v)|dv .

For the SPA of this integral, the additional phase term jζ 2π
∆v

v has to
be considered. The condition for the continuous virtual SSD in (4.76)
is modified to

⟨t0 | k̂S(x∗l , ω)⟩+ ζc
∆xl(x

∗
l ) f

!
= ⟨ t0 | k̂G(x∗l − x0) ⟩ . (4.84)

The ray equation, which defines the secondary source position x0 for
which x∗l is all stationary VSS is given analogously to (4.28) by

x0 = x∗l + γ R∗l

⎡
⎢⎢⎢⎢⎣

k̂S,tl(x
∗
l , ω) + ηc

∆xl (x
∗
l ,ω)) f√︄

1−
(︃

k̂S,tl(x
∗
l , ω) + ηc

∆xl (x
∗
l ) f

)︃2

0

⎤
⎥⎥⎥⎥⎦

, 0 ≤ γ ≤ ∞

(4.85)
The rotation matrix Rl = [tl nl uz] contains the listed vectors as
its columns. It can be seen from this equation, that even with the
assumption, that k̂S is frequency independent, x0 still remains a
function of frequency for ζ ̸= 0. Inserting, x0 into the SPA condition
for the discrete SSD in (4.79) will lead to an implicit relation w.r.t.
f . Similar to the discussions in Sec. 4.5.2 on the discrete PWD for
LWFS-SBL, the resulting equation cannot be solved without further
assumptions. However, further insight into the mathematical struc-
ture of the resulting aliasing frequency is gained, if (4.79) and (4.85)
are rearranged to

ζ
c
f

!
= ∆xl(x

∗
l )⟨ t0 | k̂G(x∗l − x0)− k̂S(x∗l , ω) ⟩, and (4.86a)

η
c
f

!
= ∆x0(x

∗
0)⟨ t0 | k̂G(x− x∗0)− k̂G(x∗l − x∗0) ⟩ . (4.86b)

The right-hand sides of both equations are integer multiples of the
wavelength λ = c/ f . Vice versa, λ is a common divisor of both right-
hand sides. The aliasing frequency for a triple x0, xl, and x as the
smallest f fulfilling both equations is determined by the Greatest
Common Divisor (GCD) of the right-hand sides. The numerical
computation of the GCD is challenging as the involved quantities
are in general real-valued. Furthermore, the aliasing frequency for
an extended area Sh cannot be derived as beforehand, where simply
the extremal values of ⟨t0 | k̂G(x− x0)⟩ had to be considered. Distinct
combinations of x0, xl, and x ∈ Sh might share a larger GCD and,
thus, a lower aliasing frequency than for the extremal values.

4.5.3 Application and Validation

A circular SSD with N0 = 56 equi-angularly spaced loudspeakers
and a radius of R = 1.5 m is used for the numerical simulations.
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Figure 4.30: The plots (a)-(e) show the
real part of the synthesised sound field
for a monochromatic ( f = 2.5 kHz)
virtual point source located at xps =
[0, 2.5, 0]T m. It is synthesised with
LWFS-VSS using a circular virtual SSD
of different radii Rl (dashed) and cen-
tre around xl = [0.5, 0, 0]T m (cross).
The plots (f)-(j) below show the accord-
ing error ε̂(x, ω), see (4.37). For the
positions x above the solid black lines,
the predicted anti-aliasing criterion in-
volving f S,LWFS−VSS(x) is violated, see
(4.82). It is estimated using the algo-
rithms in Fig. 4.13 and Fig. 4.28 for
Sh = Ch with Rh = 0 and xh = x. �

A continuous virtual SSD on a circular boundary Cl with radius Rl

and centre xl is assumed. The connection between these parameters
on the aliasing frequency is investigated. The error defined in (4.37)
measures the influence of the spatial sampling on the synthesis ac-
curacy. It does not incorporate diffraction and near-field artefacts
of the focused sound sources. These phenomena are not covered
by the geometric model. Sound field simulations for a varying ra-
dius Rl are shown in Fig. 4.30: As expected, the aliasing artefacts
become stronger, the larger Rl gets: Especially for the scenarios
in Fig. 4.30d/e, synthesis error inside Cl (dashed circle) are clearly
visible. The geometric model correctly predicts the increased errors
shown in Fig. 4.30i/j.

The aliasing frequency as a function of Rl is shown Fig. 4.31 for ten
different positions xl. A circular listening region Ch with Rh = 8.5 cm
and xh = xl was chosen for the simulation to approximate the head69 69 Ibid., Sec. IV.F.

of a human listener located inside Cl. For the different positions, the
evaluated range of Rl is individually chosen in order to prevent an
intersection of Cl with the SSD. In general, an increase of the aliasing
frequency with decreasing Rl can be observed. The red-shaded area
in Fig. 4.31 marks radii xl which are smaller than the head radius.
The coloured circles mark the aliasing frequencies for xh = xl: At
the positions 0-6, the aliasing frequency is between ≈ 17 (pos. 5) and
≈ 33 (pos. 0) times as high as the aliasing frequency of WFS. Despite
of position 9, the aliasing frequencies reach to the end of the audible
range with a least 18.0 kHz (pos. 8). A trend similar to LWFS-SBL70 70 see Sec. 4.4.3

can be observed, where the gain w.r.t. the aliasing frequency de-
creases for positions which are closer to the virtual point source. At
pos. 9, the artefact-free frequency (black circle) is about 5.4-times as
high as the frequency for WFS. In general, LWFS-VSS reaches higher
frequencies in comparison to LWFS-SBL. This can be explained by
comparing the two mechanisms which are used in the two methods
to achieve LSFS: In LWFS-VSS, the size of target area is explicitly

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig30
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Figure 4.31: (a) shows the estimated
aliasing frequency f S,LWFS−VSS

Ch
, see

(4.82) as a function of the radius Rl. The
aliasing frequency was computed using
the algorithms in Fig. 4.13 and Fig. 4.28.
The parameters are Rh = 8.5 cm, and
xh = xl. The area shaded in red indi-
cates Rl < Rh. (b) depicts the positions
xh = xl with their index corresponding
to the left plot. �

defined by Rl = Rh and it is independent of the temporal frequency
f . For LWFS-SBL, the spatial bandwidth M leads to an frequency-
dependent size of the target region, which may be unnecessarily
larger than Rh at a distinct frequency. This potentially activates more
secondary sources contributing additional spatial aliasing to the lis-
tening region. A frequency-dependent choice of M( f ) to establish a
constant radius or a secondary source specific M(x0) to individually
avoid aliasing might be suitable extension to LWFS-SBL. A similar
approach was taken by Firtha71 with a position-dependent low-pass 71 Firtha, loc. cit.

filtering of the driving signals to locally avoid spatial aliasing.

4.6 Summary

This chapter presented a ray-based approximation of SFS allowing
the description of spatial aliasing artefacts. From this, anti-aliasing
conditions for different scenarios and synthesis methods were de-
rived. In general, the estimated aliased regions agree with the spa-
tial structure of the aliasing artefacts observed in the numerically
simulated sound fields. Other than the traditional approach72 and 72 see Sec. 4.1

prior approaches, the resulting criteria incorporate the specific vir-
tual sound field and geometric parameters such as the listening po-
sition or the SSD geometry. It was further shown that the derived
aliasing frequencies are lower bounded by the half-wavelength cri-
terion, if the mentioned parameters are unknown or arbitrary. The
criterion demands the distance between adjacent secondary sources
to be half the wavelength to avoid aliasing frequency. As this bound
is also the outcome of the traditional model, the presented geometric
model includes the traditional approach as a special case. With the
presented framework, a generic tool to predict the spatial aliasing
frequency without the actual simulation of the synthesised sound
field emerged.

For WFS, the model correctly predicts the influence of non-uniform
discretisation of the SSD. As an outstanding capability, the geometric
framework allowed to derive an analytic solution to optimise the
sampling schemes in order to maximise the aliasing frequency for a
given SSD contour.

https://github.com/fietew/phd-thesis/tree/master/04_aliasing/fig31
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The model was further generalised to incorporate NFCHOA and
the two LWFS approaches. Here, the geometric model was used to
find optimal parametrisations of the SFS techniques. For NFCHOA
and LWFS-SBL, the frequency f B

M was additionally introduced to
quantify the artefacts arising from the SBL. As a trade-off between
SBL and spatial aliasing, the optimal spatial bandwidth M in NF-
CHOA was analytically derived within the framework. The result
agrees with prior treatises in the literature. In general, the model
correctly predicted that LSFS is capable of increasing the spatial
aliasing frequency. LSFS becomes less effective the closer the target
region is located to the active loudspeakers.

As the geometric model is based upon high-frequency approxi-
mations, some phenomena cannot be predicted. The impact of dif-
ferent modal windows in NFCHOA and LWFS-SBL and the near-
field artefacts of the focused sources in LWFS-VSS are not covered
by the model. The additional discretisation of the involved PWD
and the virtual SSD in LWFS-SBL and LWFS-VSS was discussed. The
concatenation of two sampling processes did however not allow for
analytic expressions for the aliasing frequency.



5Spatial Perception:
Azimuthal Localisation

In Sec. 1.1, SFS was motivated by the assumption that a physically
perfect synthesis of a desired sound field guarantees perceptual au-
thenticity. The required physical accuracy is, however, very unlikely
to be achieved in practical SFS systems. This became especially clear
in the last chapter, where spatial aliasing was revisited as a major
artefact in SFS. Hence, the impact of the physical artefacts on the
perception of the synthesised sound fields has to be investigated.
As LSFS is capable of enhancing the synthesis accuracy around the
listener’s position, the potential reduction of perceptual impairments
constitutes an interesting research item.

Rumsey et al.1 investigated in how far spatial fidelity contributes 1 Rumsey et al. (2005). “On the rela-
tive importance of spatial and timbral
fiedelities in judgements of degraded
multichannel audio quality”. In: J.
Acoust. Soc. Am. 118.2, pp. 968–976.

to the overall audio quality in home cinema surround sound re-
production: With approximately thirty percent, its contribution is
significant and has to be regarded in investigations on sound qual-
ity. As an important aspect of spatial fidelity in SFS, the auditory
localisation caused by the synthesised sound field is supposed to
align with the position of the virtual sound sources relative to the
listener. To clarify the difference between physics and perception,
the terms sound event and auditory event are commonly used.2 In 2 Blauert (1997). Spatial hearing: the

psychophysics of human sound localization.
MIT press, pp. 2–3.

the literature,3 auditory localisation is split into the three dimensions

3 Ibid., Cha. 2.of a head centred spherical coordinate system: The localisation of the
azimuthal/horizontal direction is mainly determined by the binaural
cues Interaural Level Difference (ILD) and Interaural Time Difference
(ITD). The displacement of the auditory event is only influenced by
the ITD in the fine structure of signal components below 1.6 kHz.4 4 Ibid., p. 173.

Due to the diffraction of the head and torso, the ILD becomes more
prominent at higher frequencies. Above the mentioned frequency
threshold, it is the dominant mechanism together with the ITD be-
tween the signal envelopes. The reliability of the individual cues is
attributed to the Interaural Coherence (IC).5 For the frontal direction, 5 Faller and Merimaa (2004). “Source

localization in complex listening situa-
tions: Selection of binaural cues based
on interaural coherence”. In: J. Acoust.
Soc. Am. 116.5, pp. 3075–89.

humans are able to notice a change of approximately one degree in
sound source azimuth6 a.k.a. the Minimum Audible Angle (MAA).7

6 Blauert, op. cit., Tab. 2.1.
7 Mills (1958). “On the Minimum Audi-
ble Angle”. In: J. Acoust. Soc. Am. 30.4,
pp. 237–246.

Spectral cues are used in the median plane to localise the direction
of elevated sources. As most practical setups for SFS restrict the
synthesis to the horizontal plane, i.e. 2.5D synthesis, elevated vir-
tual sources are not supposed to be synthesised. Although artefacts
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of SFS might result in a perceivable elevation of the corresponding
auditory event, azimuthal localisation is expected to be the dominat-
ing phenomenon. Human distance perception is less accurate and
hence less critical for SFS than directional localisation. Zahorik et
al.8 reported in their research summary, that many studies ascertain 8 Zahorik et al. (2005). “Auditory Dis-

tance Perception in Humans: A Sum-
mary of Past and Present Research”. In:
Acta Acustica united with Acustica 91.3,
pp. 409–420, Sec. 2.

an underestimation of the distance to far sources and an overestima-
tion for close sources. Moreover, human distance perception heav-
ily depends on environmental parameters determining cues like the
direct-to-reverberant energy ratio.9 As the most critical dimension, 9 Ibid., Sec. 3.1.2.

the azimuthal localisation is selected as the target of investigation in
order to assess the spatial fidelity in SFS.

In order to compare different studies with each other, consis-
tent definitions of the terms describing the localisation accuracy are
necessary. The MAA is measured within a two-alternative forced
choice test, where subjects had to indicate, whether an auditory
event occurred to the left or to the right of a reference event.10 It is 10 Hartmann (1983). “Localization of

sound in rooms”. In: J. Acoust. Soc. Am.
74.5, pp. 1380–1391, Appendix C.

defined as the difference in angle between the corresponding sound
events, where 75 percent of the subjects’ responses were correct.
Blauert defines the MAA under the term localisation blur.11 The 11 Blauert, op. cit., Sec. 2.1.

term blur is however used by various authors12,13 within the con- 12 Wierstorf (2014). “Perceptual Assess-
ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Sec. 5.1.
13 Verheijen (1997). “Sound Reproduc-
tion by Wave Field Synthesis”. PhD
thesis. Delft University of Technology,
Sec. 6.2.

text of a source-identification task: The subjects had to indicate the
azimuth of the auditory event using a suitable pointing method. Al-
though differently defined, the blur generally quantifies the spread
in azimuth around the average location (bias) as a kind of standard
deviation. This ambiguous usage is partly14 caused by the fact that

14 Ibid., p. 144.the MAA and standard deviation in the source-identification task
were reported as close to equal.15 MAA and standard deviation are 15 Hartmann, loc. cit.

however not equivalent as they are defined w.r.t. different experi-
mental setups. Later research by Hartmann and Rakerd16 involving 16 Hartmann and Rakerd (1989). “On

the minimum audible angle—A deci-
sion theory approach”. In: J. Acoust.
Soc. Am. 85.5, pp. 2031–2041.

decision theory moreover showed, that the MAA is interpreted incor-
rectly leading to an even larger deviation between the two definitions
of the localisation blur. Within this chapter, the term blur is omitted
completely. The accuracy in the conducted source-identification ex-
periment will be quantified by the bias and the standard deviation.

Various localisation experiments for WFS conducted at Delft Uni-
versity17,18 showed a standard deviation below 1.5◦ for linear arrays

17 Vogel (1993). “Application of wave
field synthesis in room acoustics”. PhD
thesis. Delft University of Technology,
Sec. 4.6.
18 Verheijen, op. cit., Sec. 6.2.

with a loudspeaker distance of 11 cm, which is slightly increased by
approximately 0.5◦ for 22 cm. For the two distances, an MAA below
1◦ and 2◦ was measured by Start.19 Wierstorf et al.20,21 showed

19 Start (1997). “Direct Sound Enhance-
ment by Wave Field Synthesis”. PhD
thesis. Delft University of Technology,
Sec. 6.5.
20 Wierstorf, loc. cit.
21 Wierstorf et al. (2017). “Assessing lo-
calization accuracy in sound field syn-
thesis”. In: J. Acoust. Soc. Am. 141.2,
pp. 1111–1119.

in their studies, that even with a large distance between the loud-
speakers (≈ 67 cm) the localisation bias in WFS is below 5◦ for all
investigated listening positions. Since WFS does not actively avoid
spatial aliasing, this type of artefact does not seem to have a major
influence on the localisation accuracy. Wierstorf et al. argued that
for the tested conditions, the ITD cues below the aliasing frequency
resemble the ones of the target sound field. Thus, humans focus
on the unimpaired cues leading to the desired spatial perception.
Moreover, low-frequency ITD cues exhibit a dominant role in the
localisation.22,23 As an alternative explanation, WFS accurately syn-

22 Wightman and Kistler (1992). “The
dominant role of low-frequency inter-
aural time differences in sound local-
ization”. In: J. Acoust. Soc. Am. 91.3,
pp. 1648–1661.

23 Macpherson (June 2013). “Cue
weighting and vestibular mediation of
temporal dynamics in sound localiza-
tion via head rotation”. In: Proc. of
Meetings on Acoustics 19.1.
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thesises the first wave front which is then followed by the additional
aliasing contributions.24 This might trigger the precedence effect,25 24 Ahrens (2012). Analytic Methods of

Sound Field Synthesis. T-Labs Series
in Telecommunication Services. Berlin
Heidelberg, Germany: Springer-Verlag,
Sec. 4.4.4.2.
25 Litovsky et al. (1999). “The prece-
dence effect”. In: J. Acoust. Soc. Am.
106.4, pp. 1633–1654.

where the first wave front dominates the perceived direction. Ahrens
also mentions, that the time intervals between the different wave
fronts are so small that they should trigger summing localisation,26

26 Blauert, op. cit., Sec. 3.1.

instead.
For NFCHOA with a rectangular modal window,27 different loud-

27 see Sec. 3.3.1

speaker distances and spatial bandwidths M were investigated by
Wierstorf et al.:28 For listening positions near the array centre, lo-

28 Wierstorf et al., op. cit.calisation was very close to transparent. For off-centre positions,
however, a significant impairment of localisation and even source
splitting, i.e. the perception of multiple auditory events, were ob-
served. The artefacts became stronger the lower the modal order
M. This can be explained by the limited region of high synthesis
accuracy around the centre caused by the SBL in NFCHOA. Its size
increases with M. The findings are supplemented by experiments for
HOA without near-field-compensation. Frank et al.29 investigated 29 Frank et al. (Nov. 2008). “Localization

experiments using different 2D Am-
bisonics decoders”. In: Proc. of 25th
Tonmeistertagung – VDT Internation Con-
vention. Leipzig, Germany.

first, third, and fifth-order Ambisonics for an irregular loudspeaker
setup in an echoic environment: The localisation accuracy generally
increased with M and is highest for the central listening position.
The max-rE window outperformed the rectangular one for the off-
centre listening position. Frank30 further showed for an off-centre 30 Frank (June 2013a). “Phantom

Sources using Multiple Loudspeakers
in the Horizontal Plane”. PhD thesis.
Graz, Austria: Institute of Electronic
Music and Acoustics.

listening position in a circular 8-channel array, that source splitting
occurs in third-order Ambisonics with a rectangular window. Stitt31

31 Stitt (June 2015). “Ambisonics
and Higher-Order Ambisonics for Off-
Centre Listeners: Evaluation of Per-
ceived and Predicted Image Direction”.
PhD thesis. Belfast, UK: Queen’s Uni-
versity Belfast, Sec. 5.5.

concluded in his study on first and third-order Ambisonics for a
circular array of 2.2 m radius, that the localisation error is largely
influenced by the spatial relation between the off-centre position and
the target source direction. The error is maximum, if the listener is
shifted away from the centre into a direction which is perpendicular
to the source direction.

This chapter extends the work of Wierstorf et al. towards LWFS-
SBL and LWFS-VSS and compares their localisation attributes with
the conventional SFS techniques. As the key research hypothesis, the
potential improvement of the localisation accuracy is investigated.
The chapter is structured as follows: The evaluation method for
azimuthal localisation is revisited in Sec. 5.1. Its validation exper-
iment including the results is presented in Sec. 5.2. The main study
comparing the localisation of the SFS approaches is comprised in
Sec. 5.3. A summary is given afterwards.

5.1 Evaluation Method32 32 This section has been published in a
modified version in Winter et al. (May
2017b). “Improvement of the reporting
method for closed-loop human localiza-
tion experiments”. In: Proc. of 142nd
Aud. Eng. Soc. Conv. Berlin, Germany.

The realisation of listening tests with different physically existing
loudspeaker setups including a varying, possibly very high num-
ber of loudspeakers and different geometries is infeasible in prac-
tice. Furthermore the localisation shall not be influenced by the
properties of the listening room and the directional characteristics
of real loudspeakers, as the focus of this work lies on the artefacts
introduced by the synthesis method. In order to investigate differ-
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ent listening positions, listeners would have to be positioned in a
reproducible manner. The awareness of being moved may bias the
listener not least because of visual effects. Moreover, randomised
test designs are difficult to implement taking the mentioned aspects
into account. It is thus sensible to use dynamic binaural synthesis
to simulate SFS under free-field conditions over headphones. The
evaluation method is very similar to the one of Wierstorf,33 which 33 Wierstorf, op. cit., Ch. 4.

was validated34 and successfully used in localisation experiments 34 Wierstorf et al. (Sept. 2012). “Percep-
tion and evaluation of sound fields”.
In: 59th Open Seminar on Acoustics.
Boszkowo, Poland.

for SFS. In the following subsections the details of the evaluation
method and its difference to the one of Wierstorf are presented. If
not stated otherwise, the descriptions apply for both setups. After
the evaluation method has been described, potential drawbacks and
sources of error introduced by the apparatus are discussed.

5.1.1 Dynamic Binaural Synthesis
ir_generic.m

φh

x†
y†

x

y

x†
s

S̃(ω)HL(x†
s , ω)

HR(x†
s , ω)

Figure 5.1: A sound source at xs is
simulated by convolving its signal S̃(ω)
with H{L,R}(x†

s , ω) corresponding to the

apparent source position x†
s . �

Fundamental Principle: A Head-Related Impulse Response (HRIR)
represents the acoustic free-field transmission path from a sound
source to the outer ears. Its Fourier transform35 is commonly re-

35 see Eq. (2.2)

ferred to as the Head-Related Transfer Function (HRTF). Both terms
will be used equivalently. The characteristics of the HRTFs are ex-
ploited by the human auditory system in order to deduce spatial
information. HRTFs differ amongst individuals due to variations
w.r.t. anatomy. They depend on the orientation and position of the
listener relative to the source. The head-above-torso orientation has
to be considered as a additional degree of freedom.36 It mostly effects

36 Brinkmann et al. (Sept. 2014). “Au-
dibility of head-above-torso orientation
in head-related transfer functions”. In:
Proc. of Forum Acusticum. Kraków,
Poland.

spectral cues and its influence on ITD and ILD is below the audible
threshold.37,38 Thus, for the investigation of azimuthal localisation it

37 Popko (Sept. 2013). “Zur Hörbarkeit
und Interpolation von Kopf-über-
Torso-Orientierungen bei Aufnahmen
mit einem Kopf-und-Torso-Simulator”.
Bachelor’s Thesis. Technische
Universität Berlin, Sec. 4.3.
38 Brinkmann et al. (Aug. 2015). “Audi-
bility and Interpolation of Head-Above-
Torso Orientation in Binaural Technol-
ogy”. In: IEEE J. Sel. Topics Signal Pro-
cess. 9.5, pp. 931–942, Sec. III.A.2.

is sufficient to assume that the HRTF H{L,R}(x†
s , ω) only depends on

the source position x†
s in the xy-plane. Fig. 5.1 shows, that the source

position is defined in a shifted and rotated coordinate frame relative
to the listener’s position and head orientation ϕh. Dynamic binaural
synthesis utilising HRTFs is a common approach to auralise a virtual
sound source. The desired ear signals are synthesised by filtering the
dry source signal S̃(ω) emitted by a sound source with the accord-
ing impulse response. The generated ear signals are played back
over headphones. The orientation of the listener’s head is tracked
simultaneously and the impulse responses are switched according
to the apparent source position. The transmission path from the
headphones to the ear drums has to be compensated using a suitable
Headphone Compensation Filter (HPCF). Since dynamic binaural
synthesis simulates the ear signals corresponding to a given acoustic
environment it may also be used to simulate a whole loudspeaker
array driven by SFS. An example is illustrated in Fig. 5.2: A virtual
point source emitting the signal S̃(ω) is synthesised by a circular
loudspeaker array using a suitable SFS method. Each loudspeaker is
treated as a individual source which is supposed to be simulated
over headphones. The individual driving functions D(x0, ω) are
filtered by the HRTF H{L,R}(x†

0, ω) corresponding to the apparent

http://github.com/sfstoolbox/sfs/blob/2.5.0/SFS_binaural_synthesis/ir_generic.m
https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig01
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loudspeaker positions x†
0 relative to the listener. The superposition

of all loudspeakers results in the ear signals

S̃(ω)D(x0, ω)

H{L,R}(x†
0, ω)

Figure 5.2: Binaural Synthesis of a cir-
cular loudspeaker array which is driven
by SFS in order to reproduce a virtual
point source emitting S̃(ω) (black dot).
�

B{L,R}(x, ϕh, ω) = S̃(ω)∑
x0

D(x0, ω)H{L,R}(x
†
0, ω)

⏞ ⏟⏟ ⏞
HSFS
{L,R}(x,ϕh,ω)

. (5.1)

The result of the summation may be interpreted as the Binaural
Transfer Functions (BTFs) HSFS

{L,R}(x, ϕh, ω) of the loudspeaker array
for a given SFS method (including its parameters), listening position
and head orientation. The BTFs may be computed offline for a given
resolution w.r.t. ϕh and fed directly into a binaural renderer for
auralisation.

Implementation: The basic principle of binaural synthesis as a tool
for dynamically generating the necessary stimuli is illustrated in
Fig. 5.3. The head tracker provides the horizontal orientation of
the listener’s head which is fed into the convolution core of the
system. Based on the current head orientation the corresponding
impulse response is selected from the current BTF dataset. All BTF
datasets had a resolution of one degree. The input signal which
is supposed to be emitted by the virtual sound source is convolved
with selected impulse response in a block-wise manner. Each block is
1024 samples long. Possible changes in head orientation are handled
by convolving the current signal block separately with the old and
new impulse response and cosine-shaped cross-fading the results
within the duration of one block. The SoundScape Renderer39 was 39 Geier and Spors (Nov. 2012). “Spatial

Audio with the SoundScape Renderer”.
In: Proc. of 27th Tonmeistertagung – VDT
Internation Convention. Cologne, Ger-
many.

utilised as the convolution core. The input signal for the SoundScape
Renderer was provided by Pure Data40 which allows to root the

40 Puckette (Sept. 1996). “Pure Data:
another integrated computer music en-
vironment”. In: Proc. of the Sec-
ond Intercollege Computer Music Concerts.
Tachikawa, Japan, pp. 37–41.

dry source signal into different convolution instances of the Sound-
Scape Renderer. Each instance contains the BTFs corresponding to
a specific condition, i.e. SFS method and listening position. This
means that the system was able to instantaneously switch between
different conditions without having to restart the playback of the dry
audio signal. All components operated at a sampling frequency of
44.1 kHz.

Dry Source Signal: A Gaussian white noise pulse train of 100 s
length was used as the signal emitted by the sound source. Each
pulse had a duration of 700 ms followed by a pause of 300 ms. The
noise signals of each pulse were statistically independent. A cosine-
shaped fade-in/fade-out of 20 ms length was applied at the begin
and the end of each pulse. The signal was bandpass filtered with a
fourth order Butterworth filter between 125 Hz and 20000 Hz. In the
experiment, the signal was played back in a loop and was filtered by
the current BTF for binaural reproduction.

Head-Related Transfer Functions: The HRTF dataset used to create
the desired BTFs was measured in an anechoic chamber with a Head
and Torso Simulator (HATS). A sound source was placed in the

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig02
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BTFs
HSFS
{L,R}(x, φh, ω)

filtering &
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provides

head azimuth φh

dry
source signal

S̃(ω)

simulated loudspeaker array

CC BY 3.0 DE, Wierstorf 2014
Figure 5.3: Basic system components
for dynamic Binaural Synthesis. The
illustration was originally published in
Wierstorf (2014). “Perceptual Assess-
ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Fig. 4.1 �

horizontal plane (at height of the ears) with a distance of 3 m and
an azimuth varying from 0◦ to 359◦ with 1◦ resolution. Details about
the measurement procedure and involved equipment can be found in
the original publication.41 For non-measured source directions, the 41 Wierstorf et al. (May 2011). “A Free

Database of Head Related Impulse Re-
sponse Measurements in the Horizon-
tal Plane with Multiple Distances”. In:
Proc. of 130th Aud. Eng. Soc. Conv.
London, UK.

HRTFs were linearly interpolated using the two nearest measured
HRTFs. For distances smaller or larger than the measured 3 m the
delay and the amplitude of the HRTFs were adjusted according to the
speed of sound and the free-field distance attenuation, respectively.
The HPCF for the AKG 601 headphones provided with the dataset is
applied to the BTFs.

Minor modifications to the interpolation strategies were later ap-
plied for the main study in Sec. 5.3. They were not regarded in the
validation study as no additional modifications to the original study
should be made. Instead of the 3 m distance, the HRTFs for 2 m
were chosen from the same dataset. The 2 m distance is closer to the
distances between the listener and the loudspeakers occurring in the
used evaluation setup. For non-measured source directions, a linear
interpolation scheme was separately applied to the magnitude and
phase spectrum of the HRTFs. It results in a better preservation of
the impulse shape in the interpolated HRIRs. This required a low-
frequency correction of the dataset.42 42 Erbes et al. (May 2017). “Free

Database of Low Frequency Corrected
Head-Related Transfer Functions and
Headphone Compensation Filters”. In:
Proc. of 142nd Aud. Eng. Soc. Conv.
Berlin, Germany.

5.1.2 Location and Hardware

The listening test by Wierstorf et al. took place in a 83 m3 acoustically
damped listening room (room Calypso in the Telefunken building of
TU Berlin, Germany). The listeners sat on a heavy rotatable chair,

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig03
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CC BY 3.0 DE, Wierstorf 2014

visual mark laser spot
laser pointer

keyboard

Figure 5.4: Listener during the lo-
calisation experiment in the current
study (left) and for the investigations
of Wierstorf et al. (right). The rooms
were dark during the experiment. The
right picture was originally published
in Wierstorf (2014). “Perceptual Assess-
ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Fig. 4.3 �

1.5 m in front of a straight curtain. They wore open headphones
(AKG K601) with an attached head tracker (Polhemus Fastrak). The
head tracker had an update rate of 120 Hz, but due to further data
processing the effective update rate was 60 Hz. Its measured tracking
accuracy is around 1◦. As shown in Fig. 5.4 (right), the listeners had a
keyboard for entering the response. In a separate room, a computer
equipped with a multichannel sound card including D/A converters
(RME Hammerfall DSP MADI) played back all sounds. The sig-
nals travelled through a headphone amplifier (Behringer Powerplay
Pro-XL HA 4700) and an analogue cable to the headphones in the
listening room, a distance of approximately 5 m.

The present listening tests were conducted in a 86 m3 acoustically
damped room (Audio laboratory at the Institute of Communications
Engineering, University of Rostock, Germany). The listeners sat on
a rotatable chair and were surrounded by a circular curtain with a
radius of approximately 1.5 m. They wore open headphones (AKG
K601) with six optical markers attached to it, which form a trackable
rigid body. The head tracking was achieved with an optical tracking
system using eight infra-red cameras (NaturalPoint OptiTrack). The
tracking system has an update rate of 120 Hz. The listeners had a
keypad in their hands for entering the response.43 In a separate 43 see Fig. 5.4 (left)

room, a computer equipped with a stereo sound card (Focusrite
Scarlett 2i2, 1st Generation) was used for audio playback. The signals
travelled through an analogue cable of approximately 6 m length to
the head phones inside the listening room.

5.1.3 Procedure

Various conditions are presented successively to listeners via the
headphones using the technique for dynamic binaural synthesis de-
scribed in Sec. 5.1.1. The participants are instructed to determine
the horizontal direction of the perceived auditory event, while the
vertical position should be ignored. They are explicitly instructed to
select the dominant event, if multiple auditory events are perceived.
A pointing method similar to the one of Makous and Middlebrooks44 44 Makous and Middlebrooks (1990).

“Two-dimensional sound localization
by human listeners”. In: J. Acoust. Soc.
Am. 87.5, pp. 2188–2200.

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig04
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was used, where the listeners were asked to point into the direction
using the laser pointer while the sound event is present. The laser
pointer was mounted on the headphone. This has the advantage that
the listener is directly facing the source, a region in which the MAA
is the smallest.45 The curtain served as a projection surface for the 45 Mills, op. cit.

laser. If the listeners were sure to point into the correct direction,
they pressed a key on the input device. The localisation result was
calculated as the arithmetic mean of 10 values obtained from the
head tracker. For the respective update rate, this corresponds to
a time of 167 ms (Wierstorf et al.) and 83 ms (current). After the
key press, the next condition started instantaneously. In an a-priori
calibration phase, the listener was indicated to point towards a given
visual mark on the curtain. Wierstorf et al. pasted a small permanent
mark on the curtain. In current study, a steady laser cross was pro-
jected onto the curtain and switched off after the calibration stage.
The room was darkened after calibration.

5.1.4 Discussion on Potential Sources of Error

Dynamic binaural synthesis itself cannot be regarded as a transpar-
ent reproduction method: Even with individual HRTFs including
individual HPCFs it is likely to be distinguishable from the acous-
tic scenario it simulates, especially for broadband noise signals.46 46 Brinkmann et al. (2017). “On the au-

thenticity of individual dynamic binau-
ral synthesis”. In: J. Acoust. Soc. Am.
142.4, pp. 1784–1795, Sec. IV.

Moreover, the measurement effort to acquire the individual HRTFs
is considerably large. While non-individual HRTFs decrease this
effort, it adds additional artefacts to the binaural synthesis: An-
thropomorphic differences, e.g. the shape of the pinna, between
the listener and the HATS used for the measurements are likely to
cause deviations in the magnitude spectrum of the HRTFs. Same
holds for the non-individual HPCFs which are only available for the
HATS. The neglected dependency of the HRTF on the head-above-
torso orientation potentially causes additional spectral deviations.47 47 Brinkmann et al., loc. cit.

As human localisation in the median plane relies on spectral cues,
such distortions may add elevation to the perceived direction of the
auditory event. As the distance between ears of the HATS might also
deviate from the one of the listener, the ITD cues are distorted and
may cause artefacts in the azimuthal localisation for lateral sound
sources. As the listener has the task to turn to the perceived direction
of the auditory event, the ITD should be close to zero, if the sound
source is finally in front of listener’s head. This is independent of
individual or non-individual HRTFs. However, if multiple sources
as in SFS are superimposed, it is unknown how this distorted ITDs
effect the azimuthal localisation.

An additional source of error is the mounting of the pointing de-
vice on the listener’s head, which is illustrated in Fig. 5.5. It has been
already discussed for the original study,48 that the relative location 48 Wierstorf et al., “Perception and eval-

uation of sound fields”.of the laser pointer on the headphones might vary among the lis-
teners (and sessions). This can be caused by e.g. undesired contact,
switching on/off the pointer, or changing the batteries. Moreover,
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the position of the headphones is different each time it is mounted
on the listener’s head. Consequently, the orientation of the point-
ing device and the listener’s median plane do not necessarily align.
During the calibration phase, the listener has to point to the visual
calibration mark using the laser pointer. The resulting orientation
is calibrated as zero degree head azimuth. If now the binaurally
simulated scenario is perceived directly in front, i.e. in the median
plane, the listener is forced to turn the head in order to align the
laser beam with this direction. Simultaneously, the perceived event
is not in front any more due to the head motion. Hence, a bias is
potentially introduced to the localisation result for each session.

curtain

median plane

laser beam

calibration
m

ark

Figure 5.5: Sketch of an exaggeratedly
misplaced laser pointer leading to a de-
viation of the listener’s median plane
and the direction of the laser pointer. �

Being aware of the particular drawbacks of using binaural syn-
thesis for investigating azimuthal localisation in SFS, a particular
question arises: How small can the effects of the possible artefacts in
SFS on the azimuthal localisation be, so that they are still detectable
with the presented evaluation method? In other words, how accurate
are listeners able to localise in the horizontal plane using the pre-
sented method? Different studies were conducted, that compared the
perceived direction of a real loudspeaker and its binaural synthesis.
As long as head tracking was applied, the localisation errors were
usually in the range of 1◦ to 5◦.49,50,51 One reason for the varying 49 Makous and Middlebrooks, op. cit.

50 Bronkhorst (1995). “Localization of
real and virtual sound sources”. In: J.
Acoust. Soc. Am. 98.5, pp. 2542–53.
51 Seeber (2003). “Untersuchung
der auditiven Lokalisation mit einer
Lichtzeigermethode”. PhD thesis.
Technischen Universität München.

results for the localisation performance found in the literature is the
fact that such experiments are critical regarding the utilised pointing
method. In the study of Wierstorf et al.,52 the localisation accuracy

52 Wierstorf et al., op. cit.

was around 1◦ for real as for the simulated loudspeaker, but only
if the loudspeakers were not positioned more than 30◦ to the side.
For loudspeaker positioned further to the side, an undershoot in the
reported angle occurred in both cases: the test subjects tend to lo-
calise lateral sources closer to the front. It is suspected by the author,
that the finite projection plane, i.e. the straight curtain, was the main
reason for this observation. As it is replaced by a circular curtain in
the current study, a comparison between both studies is reasonable.

5.2 Validation of Evaluation Method53 53 This section has been published in a
modified version in Winter et al., op. cit.

This section describes the details of the localisation experiment to
validate the evaluation method presented in Sec. 5.1. As already
stated, the method is very similar to the one used by Wierstorf et
al..54 Besides some minor modification such as the used hardware, 54 Wierstorf et al., op. cit.

the shape of the curtain for the pointing method is considered to
be a major difference between the two experiments, see Fig. 5.6.
Therefore, it is obligatory to re-validate the new apparatus and com-
pare the results of both studies. Note, that the aim in the origi-
nal study was to compare human localisation of real sound sources
with their respective simulation via anechoic binaural synthesis or
binaural synthesis with room reflections. The focus is now shifted
towards localisation in anechoic binaural synthesis only and how the
reporting method can be improved.

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig05
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5.2.1 Conditions

The experiment contained 11 unique listening conditions55 where a 55 Due to the additional presentation
techniques, i.e. binaural room simula-
tion and real loudspeakers, the experi-
ment by Wierstorf et al. originally con-
tained 33 different conditions.

single sound source emitting the source signal described in Sec. 5.1.1
was simulated. The positions of the sound sources are indicated in
Fig. 5.6. Each listener had to pass each condition six times leading
to 66 trials in total. The order of presentation was randomised with
respect to repetitions and condition, while the first 11 trials where
meant for training and contained each unique condition exactly once.
In the experiment of Wierstorf et al.,56 the remaining 55 trials were 56 Ibid.

split into two sessions with 22 and 33 trials containing each unique
condition exactly two and three times, respectively.

0.15
m

virtualloudspeakers

curtain (Wierstorf)

≈ 1.5 m

curtain (current)

Figure 5.6: Sketch of experimental
setup and the linear array consisting
of the 19 virtual sound sources (loud-
speaker symbols) with a spacing of
0.15 m. The eleven source positions
used in the experiment are shaded
dark. �

5.2.2 Participants

11 listeners were recruited for both experiments. The age of the
participants ranged from 21 to 33 years for the study of Wierstorf et
al. and from 26 to 60 in the current study with a respective average
of 28.6 and 38 years. 4 and 2 of the listeners had prior experience
with listening tests.

5.2.3 Methods for Data Analysis

This section presents the statistical methods used to evaluate and
compare the acquired data. As a result of each listening experi-
ment the four-dimensional dataset ϕb

ls(ϕc) describes the perceived
azimuths. The index l corresponds to one of the L listeners. The
listening condition and respective ground truth source azimuth are
denoted by c and ϕc, respectively. The total number of conditions
is C = 11. As each condition is presented B times to each listener,
these repetitions are indicated by b. In the study of Wierstorf et al.,57 57 Ibid.

the experiment was split into two sessions, which is considered via
the index s. It is assumed, that all samples ϕb

ls(ϕc) are statistically
independent due to the randomisation of the presentation order. The
signed localisation error is given as

∆b
ls(ϕc) = ϕb

ls(ϕc)− ϕc . (5.2)

As already discussed in Sec. 5.1.4, two systemic artefacts in the
evaluation method were identified: First, the discrepancy between
the direction of the laser point and the listeners’ median plane in-
troduces a direction independent bias to the results. It varies among
the listeners (and sessions). Second, a localisation undershoot was
reported by Wierstorf et al.58,59 and may also be present in the cur- 58 Ibid., Sec. 3.

59 Wierstorf, op. cit., Sec. 4.2.8.rent study. The undershoot would manifest itself as a systematic
dependency between the localisation error and the azimuth of the
loudspeaker. A linear mixed-effects model60 is fit to both datasets 60 Henderson (1975). “Best Linear Unbi-

ased Estimation and Prediction under a
Selection Model”. In: Biometrics 31.2,
pp. 423–447, Eq. (1).

separately in order to investigate both artefacts. The term mixed
hereby refers to a combination of fixed and random effects. The

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig06
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model specification reads

∆b
ls(ϕc) = β0 + γ0ls + (β1 + γ1ls)ϕc + ϵlcbs (5.3a)
[︄

γ0ls

γ1ls

]︄
i.i.d.∼

ls
N
(︄

0,

[︄
σ2

0 σ01

σ01 σ2
1

]︄)︄
(5.3b)

ϵlcbs
i.i.d.∼
lcbs
N (0, σ) (5.3c)

The model assumes a fixed linear dependency described by the slope
β1. If there is a localisation undershoot present in the data, this
parameter would be significantly smaller than zero. β0 denotes a
fixed intercept. The Best Linear Unbiased Estimates (BLUEs)61,62,63 61 Ibid., Eq. (5).

62 McLean et al. (Feb. 1991). “A Uni-
fied Approach to Mixed Linear Mod-
els”. In: The American Statistician 45.1,
p. 54, Eq. (2).
63 Robinson (Feb. 1991). “That BLUP is
a Good Thing: The Estimation of Ran-
dom Effects”. In: Statistical Science 6.1,
pp. 15–32, Eq. (1.2).

of the fixed effects are denoted as β̂0 and β̂1, respectively. The sig-
nificance of both effects will be tested via a one-sample, two-tailed
t-test with ν = CLB− 2 degrees of the freedom.64,65 To incorporate

64 Howell (2010). Statistical Methods for
Psychology. 7th ed. Wadsworth, Cen-
gage Learning, Sec. 9.11.
65 Bortz and Schuster (2010). Statistik für
Human-und Sozialwissenschaftler. 7th ed.
Springer, Sec. 11.2.2.

differences of intercept and slope among listeners and sessions, the
random effects γ0ls and γ1ls are introduced. They are normally dis-
tributed with the according variances σ2

0 and σ2
1 and the covariance

σ01. The Best Linear Unbiased Predictions (BLUPs)66,67,68 of the

66 Henderson, loc. cit.
67 McLean et al., loc. cit.
68 Robinson, loc. cit.

random effects are denoted as γ̂0ls and γ̂1ls. The significance of the
random effects can be tested via a Likelihood-ratio test69 between a

69 Hox (2010). Multilevel Analysis: Tech-
niques and Applications. New York, USA:
Routledge, Sec. 3.2.2.

null model omitting these random effects and the model defined by
(5.3). A significant result indicates a strong variability among the
listeners, which does not allow to pool the data along this dimension
without further treatment. The normally distributed residual error
is denoted as ϵlcbs. With the BLUEs and BLUPs of the effects it is
possible to compensate the artefacts of the evaluation method. The
corrected localisation azimuth and signed localisation error read

ϕ̃b
ls(ϕc) =

ϕb
ls(ϕc)− β̂0 − γ̂0ls

(1 + β̂1 + γ̂1ls)
and (5.4a)

∆̃b
ls(ϕc) = ϕ̃b

ls(ϕc)− ϕc , respectively. (5.4b)

Note, that the compensation is done separately for each listener and
session. The remaining standard deviation of the corrected locali-
sation error can be interpreted as the combined localisation uncer-
tainty of the evaluation method and the listeners. An F-test70 with 70 Bortz and Schuster, op. cit., Sec. 8.6.1.

ν1 = ν2 = CLB− 1 degrees of freedom is conducted to compare the
standard deviations of both experiments.

5.2.4 Results and Discussion71 71 The raw data is published as Winter
et al. (2017a). Improvement of reporting
method for closed-loop human localization
experiments – Data. doi: 10 . 5281 /

zenodo.245826.

It turned out during data analysis, that the standard deviation of the
localisation error for one listener in each study was approximately
twice as high compared to the maximum among the other partici-
pants. These participants were excluded from the analysis resulting
into L = 10 subjects per study. The signed localisation error to-
gether with its corrected counterpart are shown in Fig. 5.7: For the
experiment by Wierstorf et al.,72 the regression revealed a significant 72 Wierstorf et al., op. cit.

dependency between the localisation error and the ground truth az-
imuth (see top left, black line): A significant73 slope of β̂1 ≈ −0.047 73 p ≈ 0.003, two-tailed t-test

https://doi.org/10.5281/zenodo.245826
https://doi.org/10.5281/zenodo.245826
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Figure 5.7: The top and the bottom
row show the results for the study of
Wierstorf et al. and the current study,
respectively. The left column shows
the signed localisation error ∆b

ls(ϕc) as
a function of the ground truth source
azimuth (grey). The solid black line
illustrates the relation β̂0 + β̂1ϕc with
the estimated intercept β̂0 and slope
β̂1. The dashed lines indicate the 99%-
confidence interval of the estimate. The
corrected error ∆̃b

ls(ϕc) is shown in the
right column (grey). The sample mean
per condition together with the 99%-
confidence interval of the according
population mean is plotted black. �

is observed. This can be interpreted as the localisation undershoot
since the listeners tend to localise towards the middle, i.e. 0◦. Sur-
prisingly, a significant74 intercept of β̂0 ≈ −2.447◦ is also present.

74 p ≈ 0.005, two-tailed t-test

For the current experiment, no significant75 fixed effects were found.

75 p > 0.6, two-tailed t-test

This can be observed in Fig. 5.7 (bottom left), as the confidence
interval of the regression line includes 0◦. For both experiments,
highly significant76 random effects could be found. The corrected

76 p ≪ 0.0001, Likelihood-ratio Test

localisation error is shown on the right side of Fig. 5.7. The overall
standard deviations for Wierstorf et al.77 and the current study are

77 Ibid.

4.5◦ and 2.9◦, respectively. The former is also significantly higher78

78 p ≪ 0.0001, F-test

than the latter.
The main reason for the absence of the localisation undershoot in

the current study is most probably the circular shape of the curtain
establishing a close to rotationally invariant projection plane for the
pointing method. As depicted in Fig. 5.4, the ends of the straight
curtain in the study of Wierstorf et al. define a clearly visible limit of
projection plane. Even in a dark room these limits are observable due
to the change of the reflection pattern of the laser pointer between the
curtain and the adjacent wall. Being aware of these limits might have
forced the participants to localise towards the centre of the curtain.
A reason for the decrease in standard deviation between the two
studies might be the increased update rate of head tracker.79 As a 79 see Sec. 5.1.3

constant number of values have been captured from the head tracker
for averaging, the listeners had to keep their head still for a shorter
time frame.

Both studies revealed significant random effects on the localisa-
tion error among listeners (and sessions). In order to meaningfully
combine the localisation results of individual listeners, the effects
had to be compensated for each listener as it was done by (5.4).
In the subsequent experiments, the azimuthal localisation for SFS
techniques is supposed to be evaluated using the presented appara-

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig07
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tus. Here, the random effects of the binaural synthesis add up to
possible artefacts introduced by the SFS methods. While the latter
are part of the investigation, the random effects have to be corrected.
Additional to the SFS conditions, single sound sources similar to the
11 listening conditions used within this study have to be presented
to the listener within each session. The same model as of (5.3) is
fitted to these calibration conditions. The listener/session specific
intercept and slope is compensated in localisation results for the SFS
conditions.

5.3 Comparison of (Local) Sound Field Synthesis
Methods

After the (re)-validation of the dynamic binaural synthesis as a mea-
surement tool, the different techniques for (L)SFS are finally com-
pared with respect to their azimuthal localisation. The investigation
focuses on the following aspects: (i) In order to conduct a fair com-
parison between the (L)SFS methods, the impact of their parametri-
sation on the localisation accuracy is to be investigated. (ii) LWFS
is compared to conventional SFS methods focusing on the question,
whether the extended approaches lead to a better azimuthal local-
isation than the non-local methods. (iii) It is evaluated, whether
a transparent azimuthal localisation can be achieved. For this, the
localisation accuracy for the individual SFS method should be indis-
tinguishable from the one for the reference condition.

5.3.1 Conditions

75 cm

50 cm

012

3456

789

Figure 5.8: A virtual point source (grey
dot) is synthesised by a circular array
of 56 loudspeakers (black dots). The
investigated listening position with the
initial listener orientation are plotted as
black crosses and blue arrows, respec-
tively. The according digit serves as an
identifier. The position for the refer-
ence/calibration condition is indicated
by the red circle. �

As the reference/calibration condition, a binaurally simulated point
source positioned at [0, 2.5, 0]T m with the listener at the coordinates’
origin was used, see Fig. 5.8. The point source emits the dry source
signal described in Sec. 5.1.1. A binaurally simulated, circular ar-
ray of 56 equiangularly spaced loudspeakers centred at the coor-
dinates’ origin with a radius of 1.5 m was employed to synthesise
this point source. The setup was chosen to have maximum compa-
rability with the experiments of Wierstorf.80 It also correspond to

80 Wierstorf, op. cit., Sec. 5.1.

an existing loudspeaker array at TU Berlin, Germany. The array is
driven by WFS, NFCHOA, LWFS-SBL, and LWFS-VSS with differ-
ent parametrisations. The listeners were positioned at ten different
listening positions and are initially oriented along the positive-y di-
rection. The order of presentation was randomised w.r.t. repetitions
and conditions.

The study was split into two experiments: As already mentioned
in the introduction of this chapter,81 the human localisation perfor- 81 see Ch. 5

mance in NFCHOA heavily depends on modal bandwidth M and
the modal window ⋄wM

m . In the first experiment,82 NFCHOA using 82 The data of this experiment was
acquired in coorperation with Paul
Frenkel as part of his Bachelor thesis,
see Frenkel (Apr. 2018). “Human Lo-
calisation in Near-Field-Compensated
Higher-Order Ambisonics”. Bachelor’s
Thesis. University of Rostock.

a rectangular and the max-rE window with M = 27, 13, and 6 are
investigated. It was stated by Ahrens,83 that WFS can be regarded as

83 Ahrens, op. cit.

a high-frequency approximation of NFCHOA for very high modal

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig08
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bandwidths. The rectangular window with M = 300 is additionally
considered in order to check whether both methods lead to similar
results. Together with the calibration condition which was presented
ten times, each listeners had to pass 80 stimuli in total.

The second experiment focused on the LWFS approaches and their
parametrisations. For LWFS-SBL, the modal bandwidths 27 and 3
combined with a rectangular and max-rE window were investigated.
A larger number of plane waves Npw = 1024 is used for the dis-
crete PWD to avoid additional spatial aliasing. The expansion centre
xc was set to the position of the listener. For LWFS-VSS, a quasi-
continuous84 circular virtual SSD was used. Its centre xl was located 84 the term refers to a discrete virtual

SSD with Nfs = 1024, which does not
lead to additional spatial aliasing arte-
facts

at the listening position. Three different radii Rl (15, 30, and 45 cm)
were investigated. The reference position xref was set to xl. In addi-
tion, WFS and NFCHOA with a rectangular window of M = 27 were
added. The reference position xref in WFS is fixed to the coordinates’
origin. The listeners had to pass 100 stimuli including 10 times the
reference/calibration condition.

For each stimuli, a fixed offset was added to the head tracking
data resulting in a circular shift of the corresponding BTF in head
azimuth. The offset was pseudo-randomly picked for each listener
and each condition from a discrete uniform distribution between
±30◦ degrees with 5◦ step size. A similar approach was taken by
Wierstorf85 to ensure a broader distribution of the sound events. 85 Wierstorf, op. cit., Sec. 5.1.1.

Moreover, the sudden shift between consecutive conditions helps the
listener to recognise, that the next stimulus is presented.

To avoid loudness differences as an additional cue among the
conditions, a loudness model86,87 was used to adjust the loudness 86 Procedure for the Computation of Loud-

ness of Steady Sounds (2007). Stan-
dard ANSI S3.4-2007. New York, USA:
American National Standards Institute.
87 Moore et al. (1997). “A Model for
the Prediction of Thresholds, Loudness,
and Partial Loudness”. In: J. Aud. Eng.
Soc. 45.4, pp. 224–240.

of all conditions to the calibration condition. The implementation
of the model is part of the GENESIS loudness toolbox.88 For the

88 GENESIS (Jan. 2010). Loudness Toolbox
1.0.

loudness estimation, the dry source signal was filtered by the BTF
for the initial listening orientation, i.e. the positive-y direction. The
estimated loudness was averaged across both ears. The difference
between the condition and the reference was then compensated for
the whole BTF set. After the compensation no severe loudness differ-
ences between the conditions were noticed during informal listening
tests. Moreover, the randomisation of the order of presentation and
the random offset added to the head tracking allows the assumption,
that listeners were not able to use loudness as an additional cue.

The current study is augmented by selected results from the ex-
periments of Wierstorf.89 Among other parametrisations, he inves- 89 Wierstorf, op. cit., Sec. 5.1.

tigated the same synthesis scenario for WFS and NFCHOA with
M = 28. The collected data90 will be analysed with the same sta- 90 available under Wierstorf (June 2016).

Listening test results for sound field syn-
thesis localization experiment. doi: 10.

5281/zenodo.55439.

tistical methods as the current study, if applicable.

5.3.2 Methods for Data Analysis

The results are of similar nature as the ones of the validation ex-
periment in Sec. 5.2. The data is contained in the four-dimensional
dataset ϕb

lm(x). m denotes one of the synthesis methods including

https://doi.org/10.5281/zenodo.55439
https://doi.org/10.5281/zenodo.55439
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the SFS approaches and the calibration condition mc. Again, b and
l describe the repetition and the listener, respectively. The listening
position is given by x. The number of repetitions Bm, listeners Lm and
positions Xm differ across the methods. The ground truth azimuth
ϕ

gt,b
lm (x) is the sum of the virtual point source azimuth relative to

the listening position and the random offset added to tracking data.
Using the localisation results for the calibration condition, the mixed
effects model

ϕb
lmc

(0) = β0 + γ0l + (β1 + γ1l)ϕ
gt,b
lmc

(0) + ϵlcb (5.5a)
[︄

γ0l

γ1l

]︄
i.i.d.∼

l
N
(︄

0,

[︄
σ2

0 σ01

σ01 σ2
1

]︄)︄
(5.5b)

ϵlcb
i.i.d.∼
lcb
N (0, σ) (5.5c)

is fit for each experiment, separately. The estimated fixed effects β̂0

and β̂1 and the predicted random effects γ̂0l and γ̂1l are used to
correct the localisation results. The corrected signed error reads

∆̃b
lm(x) =

ϕb
lm(x)− β̂0 − γ̂0l

β̂1 + γ̂1l
− ϕ

gt,b
lm (x) = ϕ̃b

lm(x)− ϕ
gt,b
lm (x) . (5.6)

whereby ϕ̃b
lm(x) denotes the corrected localisation azimuth. For the

results of Wierstorf,91 the raw azimuth measurements are not avail- 91 Ibid.

able since the stored data was already shifted about the random
offset. The calibration condition does always have the same ground-
truth ϕ

gt,b
lmc

(0), which does not allow to estimate the slopes β1 and γ1l .
For this case, the calibration is restricted to the intercept.

For the descriptive statistics, the mean signed localisation error

∆̄··m(x) =
1

LmBm
∑
b,l

∆̃b
lm(x) (5.7)

is introduced, which is an unbiased estimator for the true localisation
bias µm(x) of an SFS method m at the position x. The according
symmetric confidence interval for µm(x) with a confidence level of
(1− α) = 0.99 is computed via the t-distribution and LmBm − 1 de-
grees of freedom.92 To quantify the overall localisation performance 92 Howell, op. cit., Sec. 7.3.

for an SFS method, the Root-Mean-Square Error (RMSE)

RMSEm =
√︁

MSEm =

√︄
1

LmBmXm
∑
b,l,x

(∆̃b
lm(x))

2 (5.8a)

=

√︄
1

Xm
∑
x
(∆̄··m(x))2 +

1
LmBmXm

∑
b,l,x

(∆̃b
lm(x)− ∆̄··m(x))2

(5.8b)

is used. The Mean-Square Error (MSE) is an unbiased estimator of
σ2

m + τ2
m with τ2

m := 1
Xm

∑x µ2
m(x). Thus, it incorporates the systematic

deviations a.k.a. the bias for each listening position via τm, and also
stochastic variations via the standard deviation σm. In order to test
for the transparency of an SFS method, the RMSE of m is compared to
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the RMSE of the calibration condition mc via a one-tailed F-test.93 It 93 Bortz and Schuster, loc. cit.

uses the ratio MSEm
MSEmc

as its test statistic. The null hypothesis H0 states

equal standard deviations i.e. σ2
m = σ2

mc and zero bias i.e. τ2
m = 0.

It is hereby assumed, that the localisation error for the calibration
condition does not exhibit any bias after the data correction.

In the following, considerations about the involved variables and
the underlying distributions for the F-test are presented. They al-
low for a sophisticated test design and a better interpretation of the
results, later. For the assumed normal distributed corrected signed
error ∆̃b

lm(x), the ratio
MSEm

MSEmc

σ2
mc

σ2
m

(5.9)

follows the non-central F-distribution94 with the degrees of freedom 94 Howell, op. cit., Sec. 11.12.

ν1 = LmBmXm and ν2 = Lmc Bmc and non-centrality parameter δ =

ν1
τ2

m
σ2

m
. For the F-test, the null hypothesis H0 is rejected, if the test

statistic exceeds a critical value fcrit. A type-I error occurs, if the test
falsely rejects the null hypothesis. Its probability is quantified via

P
(︃

MSEm

MSEmc

> fcrit

⃓⃓
⃓⃓H0 : σ2

mc = σ2
m, τ2

m = 0
)︃
= 1− F( fcrit, ν1, ν2, 0) ,

(5.10)
where F denotes the cumulative distribution function of the non-
central F-distribution with δ = 0. Note, that the variances σ2

mc and
σ2

m in (5.9) cancel out, if the null hypothesis is true. Thus, the ratio
MSEm
MSEmc

follows the F-distribution described in (5.10). For the scenario
under investigation, a type-I error corresponds to falsely detecting a
difference in localisation although it does not exist. The probability
of a type-II error reads

P

(︄
MSEm

MSEmc

< fcrit

⃓⃓
⃓⃓
⃓

σ2
m

σ2
mc

,
τ2

m
σ2

m

)︄
= F

(︄
fcrit

σ2
mc

σ2
m

, ν1, ν2,
ν1τ2

m
σ2

m

)︄
(5.11)

and quantifies the chance of falsely stating transparency although
there exists an effect. It depends on the assumed effect sizes, which
are quantified by σ2

m/σ2
mc and τ2

m/σ2
m. As mentioned by Leventhal95 95 Leventhal (1986). “Type 1 and Type 2

Errors in the Statistical Analysis of Lis-
tening Tests”. In: J. Aud. Eng. Soc. 34.6,
pp. 437–453.

and Brinkmann et al.,96 significance tests are usually designed to

96 Brinkmann et al., op. cit., Sec. II.E.

achieve a small type-I error probability. However, this generally
reduces the power of the test i.e. its capability to detect differences:
It comes at the cost of an increased type-II error probability. In the
context of showing authenticity of audio presentation methods, the
mentioned design criterion is misleading as it favours judgements to-
wards authenticity. The Brinkmann et al. suggest to choose a specific
minimum effect size, which can be regarded as negligible. They then
choose a balanced test design, where both error types are equally
probable for this effect size. This strategy is adapted to the current
study: The SFS method is supposed to not further increase the lo-
calisation uncertainty. Thus a small increase of variance about 10
percent is accepted, i.e. σ2

m = 1.1 · σ2
mc . For the localisation bias,

its variation among the listening positions should not exceed the
localisation uncertainty, i.e. τ2

m = σ2
m. Together with these relations,
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the equality of (5.10) and (5.11) for the balanced test design results in

1− F( fcrit, ν1, ν2, 0) = F( fcrit/1.1, ν1, ν2, ν1) . (5.12)

It is numerically solved for fcrit via a root finding algorithm. The
results for the three experiments are listed in Tab. 5.1. Since a sig-
nificance test is conducted for each SFS method (18 in total), error
accumulation has to be considered. For the worst-case, the total
type-I and type-II error probabilities are given by the sum of the
individual errors. With approximately 0.0321, the error probability
is below the widely accepted 0.05 for the type-I error.

Exp. ν1 ν2 fcrit Prob.

1 200 200 1.5055 0.0020
2 200 200 1.5055 0.0020

3-1 600 360 1.5108 10−5

3-2 450 270 1.5113 0.0001

Table 5.1: Parameters for the F-tests
with balanced type-I and type-II error
probability for the experiments under
investigation. For the study of Wier-
storf, two different sample sizes were
used for WFS (3-1) and NFCHOA (3-2).

5.3.3 Results97

97 The raw data is published as Winter
and Frenkel (2019). Data of Listening
Experiments for Azimuthal Localisation in
(Local) Sound Field Synthesis. doi: 10.

5281/zenodo.3252380.

A summary of the results is given in Fig. 5.9: In general, a close-to-
zero bias is found for all methods at the centre line, i.e. x = 0. For
NFCHOA (M = 6) with the rectangular window98, strong localisa-

98 see Fig. 5.9a

tion artefacts can be observed for all positions which are not on the
centre line. The localisation bias increases, the further the listener
is positioned towards the negative y-direction. The RMSE of 60◦ is
reduced by increasing the modal bandwidth M to 13 and further to
27.99 The results from both experiments for M = 27 and the results 99 see Fig. 5.9a/c/e

from Wierstorf for M = 28 are very similar.100 All three show a 100 see Fig. 5.9e-g

significant increase of the RMSE compared to the calibration condi-
tion. Increasing the modal bandwidth further to M = 300 only leads
to a slight improvement of localisation accuracy.101 A similar yet 101 see Fig. 5.9e/i

reduced relation between the modal bandwidth and the localisation
accuracy bias is present for the max-rE window:102 Starting with a 102 see Fig. 5.9b/d/g

RMSE of 23.4◦ for M = 6, it decreases to 7.3◦ for M = 13 and further
to 4.5◦ for M = 27. As the only condition for NFCHOA, M = 27
with the max-rE window can be regarded as transparent, because
the RMSE is not significant. In summary, the results for NFCHOA
show, that an increase of the modal bandwidth and the usage of the
max-rE window has a positive effect on the localisation accuracy. The
improvements decrease for higher the modal bandwidths M.

The human localisation performance in WFS and NFCHOA (M =

300) can be regarded as very similar:103 In all three data collections 103 see Fig. 5.9i-k

localisation bias does not exceed 3.5◦. The results from Wierstorf
show narrower confidence intervals, since the sample size was larger
in comparison to the current study. All three methods exhibit a
significant increase of the RMSE w.r.t. the calibration condition.

For LWFS-VSS104 with Rl = 0.15 cm and 0.30 cm, listeners at posi- 104 see Fig. 5.9l-n

tions off the centre line, i.e. x ̸= 0, tend to localise the virtual source
further towards the centre. The effect is less pronounced for the
larger radius leading to a smaller RMSE. For Rl = 0.45 cm, an arte-
fact is observable for the "top left" position at x = [−1.0, 0.75, 0]T m
(red arrow): Here, the radius is large enough so that the virtual SSD
intersects with loudspeaker array and a subset of the focused sources
outside is not synthesised. With this outlier excluded from the RMSE
calculations, this parametrisation of LWFS-VSS is transparent. It is

https://doi.org/10.5281/zenodo.3252380
https://doi.org/10.5281/zenodo.3252380
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1.3◦23◦27◦

0.8◦36◦69◦

0.1◦7.0◦101◦

108◦

RMSE:
59.9◦
p-value:

< 10−5

(a) NFCHOA †
M = 6
rect.

0.2◦16◦45◦

1.5◦16◦13◦

0.8◦7.7◦3.3◦

12◦

RMSE:
23.4◦
p-value:

< 10−5

(b) NFCHOA †
M = 6
max-rE

1.3◦3.2◦18◦

0.1◦4.9◦10◦

0.1◦2.5◦26◦

21◦

RMSE:
18.3◦
p-value:

< 10−5

(c) NFCHOA †
M = 13
rect.

1.2◦5.1◦9.0◦

0.1◦6.5◦0.4◦

0.7◦0.3◦3.6◦

1.3◦

RMSE:
7.2◦
p-value:

< 10−5

(d) NFCHOA †
M = 13
max-rE

0.9◦5.9◦7.3◦

1.2◦0.4◦2.9◦

0.5◦1.0◦2.5◦

0.9◦

RMSE:
6.1◦
p-value:

< 10−5

(e) NFCHOA †
M = 27
rect.

0.2◦3.0◦6.6◦

0.5◦3.6◦0.0◦

1.6◦1.1◦0.8◦

1.2◦

RMSE:
8.0◦
p-value:

< 10−5

(f) NFCHOA ‡
M = 27
rect.

1.2◦1.5◦0.5◦

0.7◦1.8◦1.6◦

0.3◦0.0◦0.1◦

0.5◦

RMSE:
4.5◦
p-value:
0.00259

(g) NFCHOA †
M = 27
max-rE

0.7◦3.5◦11◦

1.7◦1.4◦0.4◦

1.3◦0.4◦0.9◦

2.4◦

RMSE:
6.3◦
p-value:

< 10−5

(h) NFCHOA ∗
M = 28
rect.

0.5◦1.9◦2.3◦

0.2◦0.3◦2.3◦

0.5◦1.7◦3.2◦

1.6◦

RMSE:
5.5◦
p-value:

< 10−5

(i) NFCHOA †
M = 300
rect.

2.0◦0.2◦0.4◦

0.9◦0.6◦2.8◦

1.3◦0.2◦1.3◦

0.1◦

RMSE:
6.3◦
p-value:
0.00019

(j) WFS ‡

1.0◦1.2◦0.1◦

0.4◦0.9◦2.6◦

0.2◦0.1◦1.1◦

0.1◦

RMSE:
4.1◦
p-value:

< 10−5

(k) WFS ∗

0.4◦2.3◦8.5◦

1.4◦3.6◦4.3◦

1.0◦0.7◦5.1◦

4.9◦

RMSE:
9.7◦
p-value:

< 10−5

(l) LWFS-VSS ‡
Rl = 15 cm

0.1◦0.6◦6.3◦

0.3◦1.2◦0.3◦

1.4◦1.2◦4.9◦

2.2◦

RMSE:
7.5◦
p-value:

< 10−5

(m) LWFS-VSS ‡
Rl = 30 cm

1.1◦2.5◦29◦

0.2◦1.3◦1.0◦

0.7◦0.6◦0.7◦

1.3◦

RMSE:
5.4◦
p-value:
0.08578

(n) LWFS-VSS ‡
Rl = 45 cm

0.1◦0.8◦2.2◦

0.1◦0.7◦2.1◦

1.5◦0.3◦1.0◦

1.4◦

RMSE:
7.0◦
p-value:

< 10−5

(o) LWFS-SBL ‡
M = 3
rect.

1.7◦1.3◦2.1◦

0.3◦1.4◦0.6◦

1.8◦0.8◦2.1◦

0.0◦

RMSE:
6.2◦
p-value:
0.00031

(p) LWFS-SBL ‡
M = 3
max-rE

0.1◦0.7◦2.2◦

0.2◦1.6◦0.9◦

1.5◦1.4◦1.0◦

2.4◦

RMSE:
6.5◦
p-value:

< 10−5

(q) LWFS-SBL ‡
M = 27
rect.

0.7◦0.6◦1.1◦

0.1◦0.2◦0.1◦

2.2◦1.2◦0.6◦

1.2◦

RMSE:
5.6◦
p-value:
0.02269

(r) LWFS-SBL ‡
M = 27
max-rE

Figure 5.9: Summary of the localisation
results from the two localisation exper-
iments (†, ‡) and selected results from
the study of Wierstorf (∗). The vir-
tual point source and loudspeaker ar-
ray are plotted in grey and black dots,
respectively. At each listening position,
an arrow together with a grey line in-
dicates the perceived direction as the
arithmetic mean of the azimuth among
all listeners and repetitions. The abso-
lute value of the mean signed localisa-
tion error |∆̄··m(x)| is written below, see
(5.7). The grey fan symbolises the 99%-
confidence interval of the localisation
azimuth. The p-value corresponds to
an F-test comparing the RMSE of the
SFS method and calibration condition.
The RMSE defined by (5.8) is written in
bold digits, if it is significant. In (n),
the localisation results for the position
marked by the red arrow are excluded
from the RMSE and p-value calcula-
tion. The reason for this is explained
in Sec. 5.3.3. �

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig09
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however not applicable for all listening positions due to the men-
tioned artefact.

All LWFS-SBL parametrisations105 exhibit a localisation bias that 105 see Fig. 5.9o-r

is below 3◦ for all listening positions. The RMSE values for M = 27
are slightly smaller in comparison to M = 3 for both window types.
The localisation accuracy for the rectangular window is inferior to
the max-rE weighting. However, the pairwise difference in RMSE
does not exceed 1◦ for both parameters. Transparency is reached for
M = 27 with the max-rE window.

5.3.4 Discussion

The results for NFCHOA agree with prior studies: The positive effect
of large modal bandwidths on the accuracy was already reported
by Wierstorf.106 The superiority of the max-rE window agrees with 106 Wierstorf, “Perceptual Assessment of

sound field synthesis”, Sec. 5.1.the findings of Frank et al.107 for HOA. Stitt108 showed for HOA,
107 Frank et al., op. cit.
108 Stitt, loc. cit.

that the localisation accuracy is heavily influenced by the position of
the virtual source relative to the off-centre positions. These findings
agree with the fact, that the accuracy for the centre line x = 0 was
nearly independent of the parametrisation of NFCHOA. Along the
centre line, the listener only moves towards or away from the virtual
point source. This was reported as the best-case by Stitt. For x ̸=
0, the listener is also shifted perpendicular to the source direction.
The impaired accuracy, especially for low orders, in this cases also
confirms the statements of Stitt. For low modal bandwidths, a wide
confidence interval of the localisation bias caused by a large standard
deviation at positions close to the loudspeaker array was observed in
the current study. It aligns with Wierstorf,109 who showed for a low

109 Wierstorf, loc. cit.

modal bandwidth, that the listeners likely perceive multiple sources
which is an artefact of NFCHOA. Due to the evaluation paradigm
used in the current study they are forced to choose one of the sources.
The number of a measurements in the current study is not sufficient
to identify the individual locations of the split sources. The source
splitting phenomenon was also reported by Frank.110

110 Frank, op. cit., Sec. 3.3.

The results for WFS and NFCHOA with M = 300 further support
the theoretical findings, that both SFS methods share very similar
properties for high modal bandwidths.

Independent of its parametrisation, the localisation bias in LWFS-
SBL is comparatively low at all investigated listening positions. The
increased RMSE for low orders and the rectangular weighting func-
tion is mostly attributed to an increased standard deviation. This
agrees with experiments of Frank,111,112 where the perceived source 111 Frank (2013b). “Source Width of

Frontal Phantom Sources: Perception,
Measurement, and Modeling”. In:
Archives of Acoustics 38.3, pp. 311–319,
Sec. 4.
112 Zotter and Frank (2019). Ambison-
ics. Springer International Publishing,
Sec. 2.3.1.

width for HOA increases, the smaller the length of the rE-vector.
Since larger modal bandwidths and the max-rE weighting increase
the length, the smaller localisation blur for the corresponding condi-
tions observed in the current study seems reasonable.

In LWFS-VSS, the largest radius of the virtual SSD led to the best
localisation performance, despite the mentioned artefact for one lis-
tening position. From a physical standpoint, the employed focused
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Figure 5.10: The plots show IC-
weighted histograms of the ITD for au-
ditory bands with centre frequencies
below 1.4 kHz. The ILD is shown for
frequencies above this threshold. (a)
shows the calibration condition with
the listener facing the source as a ref-
erence. For the remaining plots, the
listener was located at [1.25, 0, 0]T m,
see position 6 in Fig. 5.8. The listener
was either oriented towards the virtual
point source (ground truth) or in the
average localisation direction from the
listening experiment (perceived). For
WFS in (b), only one plot is shown, as
the both directions differ less then 1◦. �

sources approximate the desired point sources best for high frequen-
cies and large distances to the listener. This was shown in Sec. 3.2.1.
Thus, near-field artefacts are a possible explanation for the inferior
performance of smaller radii. Moreover, off-centre listening positions
result in different distances of the individual focused sources from
the loudspeaker array. This results into heterogeneous artefacts for
each of the focused sources.

In the following, the results are further discussed in the context of
psychoacoustics involving analysis on the invoked ITDs and ILDs.
Afterwards a potential connection between the predictions of the
geometric model introduced in Ch. 4 and the localisation accuracy
are investigated.

Relation to Psychoacoustic Phenomena: The low localisation bias
at positions with x = 0 for all SFS methods is not further surpris-
ing, as the synthesis scenario is completely symmetric at these posi-
tion. Possible artefacts of the SFS methods such as additional wave-
fronts approach the listener likewise from the positive and negative
x-halfspace with the same delay and amplitude. Summing localisa-
tion113 is triggered, where the combined auditory event is perceived 113 Blauert, op. cit.

"between" the individual sound events. Since the virtual point source

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig10
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is positioned on the y-axis, the invoked auditory localisation matches
its position.

The results for listening positions off the centre line are further
discussed in conjunction with the invoked binaural cues relevant for
humans’ azimuthal localisation. The procedure is very similar to the
discussions by Wierstorf et al.:114 The cues are estimated by a slightly 114 Wierstorf et al., “Assessing localiza-

tion accuracy in sound field synthesis”,
Sec. IV.

modified version of the binaural model published by May et al.115,116

115 May et al. (Jan. 2011). “A Probabilis-
tic Model for Robust Localization Based
on a Binaural Auditory Front-End”. In:
IEEE Trans. Audio, Speech, Language Pro-
cess. 19.1, pp. 1–13, Sec. II.
116 the implementation of the model
is part of Two!Ears Team (Oct. 2018).
Two!Ears Auditory Model 1.5. doi: 10.

5281/zenodo.1458420.

The required binaural signal is generated by filtering the dry source
signal with the BTF HSFS

{L,R}(x, ϕh, ω) corresponding to the exemplary

listening position x = [1.25, 0, 0]T m and selected SFS methods from
the experiment. The head orientation ϕh is either set to the relative
direction of the virtual point source as the physical ground truth or
to the perceived direction shown in Fig. 5.9. The left and right ear
signals are separately filtered by second-order Butterworth Bandpass
filter with its passband between 500 Hz and 2 kHz to approximate
the transfer function of the middle ear.117 The resulting signals are 117 Puria (2003). “Measurements of hu-

man middle ear forward and reverse
acoustics: Implications for otoacoustic
emissions”. In: J. Acoust. Soc. Am.
113.5, pp. 2773–2789.

processed by a fourth-order IIR Allpole Gammatone filterbank118 in

118 Lyon (1997). “All-pole models of au-
ditory filtering”. In: Diversity in Audi-
tory Mechanics, pp. 205–211.

order to mimic the frequency selectivity of the human cochlea. The
centre frequencies of the filters are equidistantly distributed on an
Equivalent Rectangular Bandwidth (ERB) scale119 with 1 ERB dis-

119 Glasberg and Moore (1990). “Deriva-
tion of auditory filter shapes from
notched-noise data”. In: Hearing Re-
search 47.1, pp. 103–138, Eq. (4).

tance. This results in 46 auditory channels per ear within the range
of 80 Hz to 16 kHz. The half-wave rectification and 1 kHz lowpass
filtering is applied afterwards to model neural transduction in the
inner hair cells.120 The binaural cues are individually estimated for

120 Dau et al. (1996). “A quantitative
model of the “effective” signal process-
ing in the auditory system. I. Model
structure”. In: J. Acoust. Soc. Am. 99.6,
pp. 3615–3622, Sec. B.1.

each auditory band on segments of 20 ms length with an overlap
of 10 ms. A Hann a.k.a. Hanning window121 was applied to each

121 Harris (Jan. 1978). “On the use of
windows for harmonic analysis with
the discrete Fourier transform”. In:
Proceedings of the IEEE 66.1, pp. 51–83,
Eq. (27a).

segment. The IC and ITD correspond to the maximum value and the
corresponding time of the normalised interaural cross-correlation.
The ILD results from the ratio of the time-averaged signal power
between both ears measured in decibel. ITD and ILD are defined
such, that positive values correspond to a lateralisation to the right.
The estimated values are aggregated over time to form histograms
for each auditory band. The bin sizes are set to 50 µs and 1 dB for ITD
and ILD, respectively. Each sample is weighted by the corresponding
IC value as a measure of reliability.122 122 Faller and Merimaa, op. cit.

For reference, the histograms of the calibration condition are plot-
ted in Fig. 5.10a. The minor deviations from zero in ITD and ILD are
most likely caused by asymmetries of the HATS used for measuring
the employed HRTF dataset. It was already found by Wierstorf et
al.,123 that WFS correctly reconstructs the ITD.124 The ILD is affected 123 Wierstorf et al., loc. cit.

124 see Fig. 5.10bby the spatial aliasing causing large deviations from the reference.
The broad width and small height of the distributions in the ILD
histograms further indicate a small reliability. As the perceived di-
rection follows the ITD cues, the results for WFS agree with the work
of Faller and Merimaa.125 The authors showed, that the selection of 125 Faller and Merimaa, op. cit.

the relevant binaural cues based on their reliability is beneficial for
localisation.

In addition to the deviations in ILD, the low modal bandwidth in
the selected NFCHOA condition causes less reliable and inconsistent

https://doi.org/10.5281/zenodo.1458420
https://doi.org/10.5281/zenodo.1458420
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ITD cues:126 The ITD values are clustered w.r.t. the centre frequen- 126 see Fig. 5.10c/d

cies. Lower auditory bands near the 80 Hz limit exhibit similar ITDs,
while bands near the 1.4 kHz limit also share a common yet different
set of ITDs. The broad distribution of the ITDs in between these clus-
ters can be interpreted as a kind of transition zone, where the ITDs
of the two groups are superimposed, leading to unreliable estimates.
The observations further substantiate the already discussed source
splitting phenomenon, where the different ITD groups are perceived
as individual auditory events.

For LWFS-VSS, the smallest radius of Rl = 15 cm leads to con-
tradicting cues.127 For the perceived direction, the ILD and ITD 127 see Fig. 5.10e/f

indicate a lateralisation to the left and to the right, respectively. Most
of the distributions are all relatively narrow stating a high reliability
which can be attributed to the reduced spatial aliasing. As a potential
interpretation, the auditory event is perceived as a non-trivial combi-
nation of ITD and ILD resulting in a direction which is "in between"
the directions corresponding to the individual cues. It is worth not-
ing, that ILD cues for high frequencies coincide with the reference,
which agrees with the focused sources being most accurate in this
frequency region. For the larger radius Rl = 45 cm, almost all ILD
cues match the reference, which can be explained by the decreased
near-field artefacts.128 Although the deviation between ITD and ILD 128 see Fig. 5.10g/h

is less pronounced, the ITDs still show a tendency towards the right
side. For this condition, localisation is dominated by the ILD cues.

Both parametrisations of LWFS-SBL reliably reconstruct the ITD
cues.129 Due to the stronger SBL for M = 3, the ILDs at high frequen- 129 see Fig. 5.10i-l

cies are corrupted. Moreover, their reliability is inferior compared
to the second LWFS-SBL condition, where all cues almost perfectly
match the reference condition. Despite this visible difference, the
localisation performance in both parametrisations is very similar.
This serves as another example, where the perceived direction is
dominated by the most reliable cues.

Relation to the Geometric Model: In Ch. 4, the geometric model
led to two fundamental frequencies describing the trade-off between
spatial aliasing and the limitation of the available listening area. The
aliasing frequency f S(x) and the SBL frequency f B

M(x) mark the
spectral bound up to which no considerable synthesis artefacts are
present in proximity to the listeners head. The absolute value of
the mean signed localisation error ∆̄··m(x) is put in relation to both
frequencies in Fig. 5.11. For all four tested SFS methods, the aliasing
frequency has nearly no influence on the localisation accuracy. The
bias is mainly determined by f B

M(x). Below the threshold of approx-
imately 1.5 kHz, the localisation bias increases significantly. This
establishes a link to the psychoacoustics interpretation as the ITD is
the dominant cue in the described frequency range. The lower the
f B
M(x), the more auditory bands for which the ITD is to be estimated

are corrupted.
It was already discussed in Ch. 4, that near-field artefacts of the fo-
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Figure 5.11: The bottom left plot
shows the aliasing frequency f S(x) and
SBL frequency f B

M(x) computed for all
tested conditions in the localisation ex-
periment. Both frequencies are com-
puted for a circular region centred at
the according listening position x with
a radius Rl = 8.5 cm as approximation
of the human head. The radius of the
circles around the data points symbol-
ises the logarithmically scaled mean lo-
calisation bias |∆̄··m(x)|. For compari-
son, three circles with their according
bias are shown in the bottom right. The
remaining plots show the marginal dis-
tributions of the bias. �

cused sources are not considered by the ray approximations involved
in the geometric model. The increased localisation bias for some
LWFS-VSS conditions caused by those artefacts cannot be explained
by the model. For some data points of NFCHOA and LWFS-SBL,
two concentric circles are plotted in the diagram. These represent the
localisation bias for the rectangular and the max-rE window with the
same spatial bandwidth and listening position. The geometric model
does not regard different modal window types and is not capable of
explaining these variations in localisation bias.

5.4 Summary

In this chapter, the selected analytic methods for (L)SFS were eval-
uated w.r.t. its azimuthal localisation. Prior to the actual listening

https://github.com/fietew/phd-thesis/tree/master/05_localisation/fig11
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tests, the used evaluation method was (re-)validated and compared
to the study of Wierstorf et al.130 in a separate experiment. As the 130 Wierstorf et al., “Perception and

evaluation of sound fields”.main difference to the original apparatus, a circular curtain as the
projection surface for the pointing method was used instead of a
straight curtain. Besides the rotational invariance, this setup also
allows for listening tests with sound sources located 360◦ around the
listener. Other than in the original experiment, no systematic de-
pendency of the signed localisation error and physical ground-truth
azimuth of the source was found. Thus, no localisation undershoot is
present. The statistical evaluation however revealed, that a session-
dependent bias is present in the localisation results. It is mainly
attributed to anthropomorphic differences and to an offset between
the listener’s median plane and the direction of the pointing device.
As a consequence for the subsequent experiment on the SFS meth-
ods, calibration conditions had to be added in order to compensate
for this.

Four SFS methods were investigated for a circular array of 56
loudspeakers and 1.5 m radius synthesising a virtual point source.
For all four approaches, parametrisations could be found, that led
to transparent or close-to transparent azimuthal localisation. For
these, the localisation bias was below 3◦. Prior findings regarding
the good localisation properties of WFS were confirmed. The accu-
racy in NFCHOA heavily depends on the listening position, the used
modal bandwidth and the weighting function. As a general rule of
thumb, max-rE weighting with a reasonably high bandwidth leads
to the most accurate and homogeneous localisation results over the
whole listening area. Again, it is confirmed that NFCHOA of very
high order shares similar properties to WFS. In LWFS-VSS, near-field
artefacts introduced by the employed focused source have to be con-
sidered. Best results were found for the largest radius of the virtual
SSD. This has the drawback, that the supported listening positions
have to be further restricted, as the virtual SSD must not intersect
with the loudspeaker array. Contrary to NFCHOA, the localisation
bias in LWFS-SBL did not show a strong dependency on the modal
bandwidth and weighting function. It can be attributed to the ex-
pansion centre of the Circular Harmonics representation, which is
shifted to the listening position.



6Perception of Timbre: Colouration

As already outlined in Sec. 1.1, timbral fidelity contributes approx- This chapter is published in major parts
as Winter et al. (Oct. 2018a). “Coloura-
tion in Local Wave Field Synthesis”. In:
IEEE/ACM Trans. Audio, Speech, Lan-
guage Process. 26.10, pp. 1913–1924

imately seventy percent to the overall quality humans perceive in the
context of surround sound.1 Timbre has been standardised2 as the

1 Rumsey et al. (2005). “On the rela-
tive importance of spatial and timbral
fiedelities in judgements of degraded
multichannel audio quality”. In: J.
Acoust. Soc. Am. 118.2, pp. 968–976.
2 Acoustical Terminology (1994). Stan-
dard ANSI S1.1-1994. New York, USA:
American National Standards Institute.

attribute that “enables a listener to judge that two nonidentical sounds,
similarly presented and having the same loudness and pitch, are dissimi-
lar”. Colouration describes the difference of two sounds in timbre,
whereas one is considered to be the uncoloured reference.3 It may

3 Wierstorf et al. (Aug. 2014). “Col-
oration in Wave Field Synthesis”. In:
Proc. of 55th Intl. Aud. Eng. Soc. Conf. on
Spatial Audio. Helsinki, Finland, Sec. 2.

be presented explicitly to the listener or has been built up internally
by prior listening experience. These options directly correspond to
the concepts of authenticity and plausibility discussed in the context
of quality assessment in Ch. 1. According to the extensive overview
of Wierstorf4 on different definitions of timbre, it is a multidimen-

4 Wierstorf (2014). “Perceptual Assess-
ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Sec. 5.2.

sional percept and the underlying metric measuring the colouration
between two sounds is unknown and non-trivial.

For WFS, it has been shown that spatial aliasing leads to a per-
ceivable colouration of the reproduced sound field compared to the
desired sound field as a reference.5,6,7 Since the spatial aliasing in- 5 Wittek et al. (Oct. 2007). “On the

Sound Color Properties of Wavefield
Synthesis and Stereo”. In: Proc. of 123rd
Aud. Eng. Soc. Conv. New York, USA.
6 Wierstorf et al., “Coloration in Wave
Field Synthesis”.
7 Wierstorf, loc. cit.

creases for larger distances between the loudspeakers, the perceived
colouration increases. Investigations on colouration in NFCHOA are
not known to the author. Numerical simulations of Solvang8 for

8 Solvang (2008). “Spectral Impairment
of Two-Dimensional Higher Order Am-
bisonics”. In: J. Aud. Eng. Soc. 56.4,
pp. 267–279.

HOA with rectangular weighting showed, that the colouration likely
increases for off-centre positions, if the number of loudspeakers is
higher than 2M + 1. The spatial bandwidth or Ambisonics order
is denoted by M. Frank9 investigated the colouration for moving

9 Frank (June 2013a). “Phantom Sources
using Multiple Loudspeakers in the
Horizontal Plane”. PhD thesis. Graz,
Austria: Institute of Electronic Music
and Acoustics, Sec. 5.3.

sources in HOA: The max-rE window led to less artefacts w.r.t. tim-
bre than the rectangular weighting for all investigated orders, num-
ber of loudspeakers and listening positions. Further, colouration is
less pronounced for 3rd-order with 8 loudspeakers than for 7th-order
with 16 loudspeakers.

As LSFS enhances the synthesis accuracy around the listener’s po-
sition, the question arises, whether the perceived colouration can be
reduced by such techniques as well. Within this chapter, the results
of two listening experiments comparing the colouration introduced
by WFS, NFCHOA, LWFS-VSS and LWFS-SBL are presented. The
study focuses on the following aspects:
1. The impact of different parametrisations of the LWFS methods on

the perceived colouration is investigated.
2. The influence of the audio content, i.e. the source signal emitted



6.1. Evaluation Method 108

by the virtual sound field, is analysed.
3. LWFS methods are compared to conventional SFS methods focus-

ing on the question, whether the extended approaches lead to a
less coloured reproduction than the non-local methods.

4. It is evaluated, whether transparent reproduction can be achieved,
that is, indistinguishable from a reference.

This chapter is organised as follows: The details of the evaluation
method are presented in Sec. 6.1. The main study comparing the
colouration of different SFS is comprised in Sec. 6.2. A summary is
given afterwards.

6.1 Evaluation Method

For the evaluation of colouration, binaural synthesis is used to sim-
ulate SFS under free-field conditions over headphones. The reasons
for employing binaural synthesis have been presented in conjunction
with the localisation experiments in Sec. 5.1. For rating the coloura-
tion a modified Multiple Stimulus with Hidden Reference and An-
chor (MUSHRA)10 paradigm is used. The method was validated11 10 Method for the subjective assessment of

intermediate quality level of audio systems
(2015). Standard ITU-R BS.1534-3. In-
ternational Telecommunication Union
Radiocommunication Assembly.
11 Wierstorf, op. cit., Sec. 4.4.

and successfully used in colouration experiments for SFS.12,13,14,15

12 Wittek et al., “On the Sound Color
Properties of Wavefield Synthesis and
Stereo”, p. 3.2.1.
13 Wittek (2007). “Perceptual differences
between wavefield synthesis and stere-
ophony”. PhD thesis. University of
Surrey, Sec. 8.2.2.
14 Wierstorf et al., “Coloration in Wave
Field Synthesis”.
15 Wierstorf, “Perceptual Assessment of
sound field synthesis”, Sec. 5.2.

In the following subsections the details of the evaluation method are
presented.

6.1.1 Static Binaural Synthesis

The study was performed using an approach for non-individual bin-
aural synthesis which is similar to the one for localisation experi-
ments in Ch. 5. For the details, the reader is referred to Sec. 5.1.1.
The originally used head tracking to dynamically adjust the appar-
ent source azimuth to the head orientation is deactivated to avoid
changes in timbre due to head rotation.16 Thus, only one BTF per

16 Ibid., Sec. 5.2.1.
SFS method and listening position is necessary as the head azimuth
is fixed. The BTFs are generated with the same HRTFs dataset and
interpolation strategies as for the main localisation experiment.

The first dry source signal S̃(ω) was a pink noise pulse train with a
pulse duration of 900 ms (including cosine-shaped fade-in/fade-out
of 50 ms, each) and a pause of 500 ms. It was double-checked with
the published experimental data,17 that this is the same stimulus as 17 Wierstorf and Hohnerlein (Nov.

2016). Coloration of a point source
in Wave Field Synthesis – data. doi:
10.5281/zenodo.164589.

in the study of Wierstorf.18 He motivated the choice of this stimu-

18 Wierstorf, op. cit., Sec. 5.2.

lus by stating that it already has been used by Wittek.19 However,

19 Wittek, “Perceptual differences be-
tween wavefield synthesis and stereo-
phony”, Sec. 8.2.

the definitions of Wittek20 regarding the pulse duration and fade-

20 Ibid., Sec. 7.3.2.

in/fade-out suggest, that the burst length for his experiments was
only 800 ms. Here, linguistic ambiguities whether the fade-in/fade-
out length is already included in the pulse duration could not be
finally resolved. The second signal was a female speech sample of
eight seconds duration. A music stimulus was used as a third signal
for training purposes. In the experiment, the signal was seamlessly
looped and filtered by the current BTF for binaural reproduction.

https://doi.org/10.5281/zenodo.164589
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6.1.2 Location and Hardware

The experiments were conducted separately at two different facili-
ties. At the University of Rostock, it took place in a 86 m3 acoustically
damped room (Audio laboratory, R8202, Institute of Communica-
tions Engineering). At the TU Berlin, the experiment was conducted
in a 54 m3 acoustically damped listening room (room Pinta, Tele-
funken Building). In both cases, the listeners wore open headphones
(AKG K601). In a separate room, a computer equipped with a sound
card (Focusrite Scarlett 2i2, 1st Gen. in Rostock and RME Hammer-
fall DSP MADI + Behringer HA4700 Powerplay Pro-XL in Berlin)
was used for audio playback. The signals were transmitted via an
analogue cable of approximately 6 m length to the headphones inside
the listening room.

6.1.3 Procedure

This study used a modified MUSHRA test paradigm.21 The original 21 Method for the subjective assessment of
intermediate quality level of audio systems.quality scale is replaced by a continuous scale ranging from no differ-

ence (0) to very different (1) and a different lower anchor is introduced.
The term "modified" is however skipped in the following for brevity.
The subjects were asked to use a Graphical User Interface (GUI) with
one slider per condition to assess the respective colouration com-
pared to an explicitly given reference stimulus. The numerical values
(0,1) of the scale were not shown to the subjects. Within each run, the
respective conditions (including differently parametrised SFS meth-
ods), the hidden reference and a lower anchor had to be rated. The
latter condition is a intentionally degraded version of the reference,
which is supposed to be rated as very different by all test participants.
The current MUSHRA standard22 also defines mid anchor, which is 22 Ibid., Sec. 5.1.

chosen such that it is rated in between the other conditions. Due
to the exploratory nature of the current study, no sensible choice for
the mid anchor in MUSHRA colouration experiments is known to the
author. It is thus omitted. The order of runs and the arrangement
of the conditions in the GUI were randomised. An additional run
had to be passed beforehand for training. During a single run, the
listener could switch instantaneously between the conditions as often
as desired.

6.1.4 Discussion

It was already discussed for the localisation experiments, that binau-
ral synthesis cannot be regarded as fully transparent.23 Wierstorf24 23 Brinkmann et al. (2017). “On the au-

thenticity of individual dynamic binau-
ral synthesis”. In: J. Acoust. Soc. Am.
142.4, pp. 1784–1795, Sec. IV.
24 Wierstorf, “Perceptual Assessment of
sound field synthesis”, Sec. 4.4.

supported his choice of binaural synthesis by a study of Olive et
al.25 where preference ratings for different loudspeakers were inde-

25 Olive et al. (May 2007). “Listener
Loudspeaker Preference Ratings Ob-
tained In Situ Match those Obtained Via
a Binaural Room Scanning Measure-
ment and Playback System”. In: Proc.
of 122nd Aud. Eng. Soc. Conv. Vienna,
Austria.

pendent between real loudspeakers and binaural simulations. He
further validated binaural synthesis as an evaluation tool by mea-
surements with a second HATS to create a mismatch to the employed
HRTF dataset: A single loudspeaker and different array configura-
tions driven by WFS to synthesise a virtual point source were used.
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The spectral deviations of the measured ear signals resulting from
the real loudspeakers or their non-individual binaural simulation are
nearly independent of the configuration, if the single loudspeaker or
the virtual point source is in front of the listener. Thus, the spectral
distortions introduced by non-individual synthesis can be regarded
as independent of the SFS setup. Wierstorf did not further discuss,
that the distortions lead to a frequency-dependent amplification or
attenuation of up to 15 dB. Thus, binaural synthesis has a filter-
ing effect and can emphasise, diminish or even mask colouration
artefacts in distinct frequency ranges. It has to be assumed for the
upcoming evaluations, that the mentioned distortions averaged over
all test participants are approximately zero due to the individual
anthropomorphic differences. Thus, the average colouration ratings
converge to the "true" colouration introduced by the SFS methods.

Besides the mentioned drawbacks, the binaural synthesis resolves
some issues a listening experiment conducted with real loudspeaker
arrays would introduce. A discussion on the benefits was already
given in Sec. 5.1.

6.2 Comparison of (Local) Sound Field Synthesis
Methods

6.2.1 Conditions

R

off-centre

centre

Figure 6.1: The blue and the red loud-
speakers illustrate the circular loud-
speaker array and the stereophonic
setup, respectively. The grey bullet
symbolises the virtual point source.
The two manikins are positioned at the
two listening positions. �

As the reference condition, a binaurally simulated point source po-
sitioned at [0, 2.5, 0]T m was used. It is depicted in Fig. 6.1. This
reference condition filtered by a 2nd-order Butterworth high pass
with a cutoff-frequency of 5 kHz served as the lower anchor. A
high-pass is chosen due to the nature of spatial aliasing, which adds
energy to the reproduced sound field at high frequencies. A binau-
rally simulated, circular array of 56 loudspeakers with R = 1.5 m,
centred at the coordinates’ origin was employed to synthesise this
point source using WFS, NFCHOA, LWFS-SBL, and LWFS-VSS. For
NFCHOA, the spatial bandwidth M = 27 and a rectangular window
is used.26 The reference position xref in WFS is set to the coordi- 26 see (3.18) and Tab. 3.3

nates’ origin.27 For LWFS-SBL, the expansion centre xc was set to 27 see (3.9a) and Tab. 3.1

the position of the listener. For LWFS-VSS, a quasi-continuous cir-
cular virtual SSD was used. Its centre xl was located at the listening
position. Additionally, a stereophonic setup with the loudspeakers
positioned at [±1.4, 2.5, 0]T m and the phantom source panned to the
centre between both loudspeakers was included.

As shown in Fig. 6.1, two listening positions were tested: The
centre position is co-located with the coordinates’ origin. The off-
centre position was set to [−0.5, 0.75, 0]T m. The positions correspond
to position 3 and 1 of the localisation experiments.28 The listener was 28 see Fig. 5.8

always oriented towards the virtual point source except for the off-
centre stereo condition, where the head pointed to the nearest loud-
speaker. It ensured that colouration was the only perceivable change
between conditions and the relative source position was fixed.

https://github.com/fietew/phd-thesis/tree/master/06_colouration/fig01
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Investigated Aspect
Source
Signal

Listening
Position Exp.

number of plane waves in LWFS-SBL noise centre 1
number of plane waves in LWFS-SBL noise off-centre 1

modal bandwidth in LWFS-SBL noise off-centre 1
modal windows in LWFS-SBL noise off-centre 2

radius of local region in LWFS-VSS noise centre 2
radius of local region in LWFS-VSS noise off-centre 2

influence of the source signal speech centre 1
influence of the source signal speech off-centre 1

comparison of all SFS methods noise centre 2
comparison of all SFS methods noise off-centre 2

Table 6.1: Summary of study

In order to avoid loudness differences as an additional cue among
the conditions, a loudness model29 was used to adjust the loudness 29 Procedure for the Computation of Loud-

ness of Steady Sounds (2007). Stan-
dard ANSI S3.4-2007. New York, USA:
American National Standards Institute;
Moore et al. (1997). “A Model for
the Prediction of Thresholds, Loudness,
and Partial Loudness”. In: J. Aud. Eng.
Soc. 45.4, pp. 224–240.

of all conditions to the reference condition. For the loudness esti-
mation, the noise stimulus was used as a dry source signal. The
implementation of the model is part of the GENESIS Toolbox.30

30 GENESIS (Jan. 2010). Loudness Toolbox
1.0.

As already outlined in the introduction, the study was split into
two experiments. Each experiment consisted of five MUSHRA runs.
Tab. 6.1 summarises the runs together with the investigated aspects
as well as the experiments they belong to. To investigate the influ-
ence of the discrete PWD involved in LWFS-SBL, the number of plane
waves Npw is varied from 64 to 1024. A base-2 logarithmic scale was
chosen in order to cover a large range of values. A rectangular modal
window with M = 27 was used. WFS, NFCHOA, and Stereo were
added as baseline conditions. Together with the reference and the
anchor, this resulted in ten conditions. The evaluation is carried out
for the centre and the off-centre position in two separate MUSHRA
runs. The influence of the modal bandwidth M and the modal win-
dow were investigated in two additional runs: for the first, M was
varied from 3 to 27 on a linear scale with a step size of 4 for the
rectangular modal weighting function. A comparison between the
rectangular and the max-rE window is performed in the second run.
For both runs, the off-centre position is used and WFS was added as
a baseline. The number of plane waves Npw is set to 1024.

For the parametrisation of LWFS-VSS, the radius Rl of the local
region was varied on a linear scale ranging from 15 to 45 cm in
17.5 cm steps. The number of focused sources Nfs was not further
investigated as the same effects as for Npw in LWFS-SBL are to be
expected. The investigation is repeated for the centre and off-centre
position.

In order to study the impact of the source signal on the perceived
colouration, the first two runs for LWFS-SBL are repeated for the fe-
male speech stimulus. The results are compared with the colouration
ratings for the noise stimulus.

Finally, the last two runs compare all four SFS approaches for
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both listening positions. Two parametrisations for each of the LWFS
methods were included.

6.2.2 Participants

The first experiment was conducted separately at the two facilities
mentioned in Sec. 6.1.2. 11 and 9 listeners were recruited for the
experiment in Rostock and Berlin, respectively. The age of the partici-
pants ranged from 19 to 60 years with an average of approximately 34
years. The second experiment was conducted exclusively in Rostock.
21 listeners were recruited. The age of the participants ranged from
22 to 60 years, with an average of approximately 34 years. All test
participants self-reported normal hearing.

6.2.3 Methods for Data Analysis

For each of the ten runs the results can be summarized in a two-
dimensional dataset mc

l of MUSHRA ratings, where l and c corre-
spond to one of the L listeners and to one of the listening conditions.
The pairwise difference of the ratings for two conditions c1 and c2

by the same listener is defined as ∆c1,c2
l := mc1

l −mc2
l . As the number

of participants is relatively small and the data is bounded to a finite
interval, normal distribution of the data cannot be assumed ruling
out several parametric statistic methods for data analysis.31 Sporer et 31 Sporer et al. (Oct. 2009). “Statistics of

MUSHRA Revisited”. In: Proc. of 127th
Aud. Eng. Soc. Conv. New York, USA,
Sec. 1.

al. further argue, that even for trained expert listeners, an equivalent
interpretation of the MUSHRA scale cannot be guaranteed. More-
over, doubts regarding the normality and statistical independence of
the ratings were raised by Mendonça and Delikaris-Manias.32 Hence, 32 Mendonça and Delikaris-Manias

(May 2018). “Statistical Tests with
MUSHRA Data”. In: Proc. of 144th Aud.
Eng. Soc. Conv. Milan, Italy.

non-parametric approaches assuming as little as possible about the
underlying distribution are used: for a given pair of conditions, the
rating differences are ordered in ascending order to get the respective
order statistics, with ∆c1,c2

(i) denoting the ith smallest rating.33 The 33 Hahn and Meeker (1991). Statisti-
cal Intervals: A Guide for Practitioners.
Vol. 392. John Wiley & Sons, p. 75/76.sample median ∆̃c1,c2 := 1

2 (∆
c1,c2
(⌊L/2⌋) + ∆c1,c2

(⌈L/2⌉)) serves as a good point

estimator for the respective population median µc1,c2
∆ . For its 95%-

confidence interval, the distribution-free method given by Hahn and
Meeker34 is used, which also utilises order statistics. 34 Ibid., p. 82/83.

To investigate whether a condition is perceived as coloured w.r.t.
the reference, Null Hypothesis Significance Testing (NHST) with H0 :
µc1,Ref

∆ ≤ 0 is used. Differences between c1 and the reference are
considered to be significant for p-values below 0.001. The test statis-
tic is computed via the non-parametric Wilcoxon signed-rank test,35 35 Wilcoxon (1945). “Individual Com-

parisons by Ranking Methods”. In: Bio-
metrics Bulletin 1.6, pp. 80–83.

which was recently recommended for MUSHRA.36 The test had the

36 Mendonça and Delikaris-Manias, op.
cit., Sec. 4.2.

following settings: For tied values, the average of the ranks spanned
by them is assigned.37 The ranks of differences being zero are re-

37 Siegel (1956). Nonparametric statistics
for the behavioral sciences. McGraw-hill,
p. 83.

garded in the negative and positive rank-sum with the weight of one
half. An analogous procedure is carried out to analyse a potential
improvement, i.e. reduced colouration, by LWFS compared to the
conventional SFS methods: The null hypotheses H0 : µc1,WFS

∆ ≥ 0
and H0 : µc1,NFCHOA

∆ ≥ 0 are considered to investigate the difference
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(a) Noise stimulus
rect. window, M = 27 (LWFS-SBL)
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Listener at [−0.5, 0.75, 0]T m

LWFS-SBL with varying Npw

(b) Noise stimulus
rect. window, Npw = 1024 (LWFS-SBL)

Listener at [−0.5, 0.75, 0]T m

LWFS-SBL with varying M

(c) Noise stimulus
Npw = 1024 (LWFS-SBL)

Listener at [−0.5, 0.75, 0]T m

LWFS-SBL with varying M and �wM
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(d) Noise stimulus
Nfs = 1024 (LWFS-VSS)

Listener at [0, 0, 0]T m

Listener at [−0.5, 0.75, 0]T m

LWFS-VSS with varying radius Rl / cm

(e) Speech Stimulus
rect. window, M = 27 (LWFS-SBL)

Listener at [0, 0, 0]T m

Listener at [−0.5, 0.75, 0]T m

LWFS-SBL with varying Npw

(f) Noise stimulus
Npw = Nfs = 1024 (LWFS-SBL, LWFS-VSS)

Listener at [0, 0, 0]T m

Listener at [−0.5, 0.75, 0]T m

LWFS-VSS LWFS-SBL

Figure 6.2: The plots show the sam-
ple median ∆̃c1 ,Ref (bullets) and the 95%
Confidence Interval (errorbars) for all
ten MUSHRA runs. Both values were
computed over all listeners from the
difference ∆c1 ,Ref

l between their individ-
ual ratings for the SFS method and the
reference condition. �

between c1 and the respective SFS method.
Effect sizes provide a convenient way to illustrate differences be-

tween conditions in a general way and thus complement NHST.
Here, the Vargha-Delaney A (VDA)38 is used, as it does not require

38 Vargha and Delaney (2000). “A Cri-
tique and Improvement of the "CL"
Common Language Effect Size Statis-
tics of McGraw and Wong”. In: Jour-
nal of Educational and Behavioral Statistics
25.2, pp. 101–132, Eq. (14).

the data to be normal distributed. Actual effect sizes are interpreted
according to the authors’ original recommendation: 0.50, 0.56, 0.64,
and 0.71 correspond to negligible, small, medium and large effects,
respectively.39

39 Ibid., Tab. 1.

For the comparison of the results for the two source signals the
quantity Γc1

l as the difference between the two colouration ratings
for noise and speech made by the same listener l for the same con-
dition c1 is introduced. Hereby, a positive value corresponds to a
larger rating for the noise stimulus. Again, NHST for the population
median µc1

Γ and the VDA is utilised to investigate the impact of the
source signal.

6.2.4 Results

The results of all ten MUSHRA runs are publicly available.40 For the 40 Winter et al. (2018b). Colouration in
Local Wave Field Synthesis – Data. doi:
10.5281/zenodo.1158027.

upcoming discussions, the sample medians ∆̃c1,Ref of the pairwise
differences versus the reference condition are plotted in Fig. 6.2. For
the centre listening position, the perceived colouration of LWFS-SBL
decreases as the number of plane waves Npw increases.41 Together

41 see Fig. 6.2a (blue)

https://github.com/fietew/phd-thesis/tree/master/06_colouration/fig02
https://doi.org/10.5281/zenodo.1158027
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H0 : µ
c1 ,Ref
∆ ≤ 0 H0 : µ

c1
Γ ≤ 0

noise speech

centre off-centre centre off-centre centre off-centre

condition c1 p VDA p VDA p VDA p VDA p VDA p VDA

WFS < .001 .96 < .001 .99 .013 .74 < .001 .91 < .001 .89 < .001 .80
NFCHOA .378 .51 < .001 .91 .594 .54 < .001 .84 .551 .51 .676 .53
Stereo < .001 .93 < .001 .99 .024 .70 < .001 .97 < .001 .87 .131 .57
LWFS-SBL Npw = 1024 .174 .56 < .001 .92 .636 .53 < .001 .78 .053 .60 < .001 .72
LWFS-SBL Npw = 512 .649 .52 < .001 .91 .066 .59 < .001 .79 .877 .47 .001 .78
LWFS-SBL Npw = 256 .115 .59 < .001 .91 .285 .59 < .001 .83 .273 .55 .013 .64
LWFS-SBL Npw = 128 < .001 .90 < .001 .95 .004 .71 < .001 .95 < .001 .85 .324 .53
LWFS-SBL Npw = 64 < .001 .94 < .001 .98 < .001 .89 < .001 .93 < .001 .79 .007 .67

Table 6.2: Comparison of p-values and
effect sizes (VDA) for the noise and
speech stimulus as the dry source sig-
nal. For H0 : µ

c1 ,Ref
∆ ≤ 0, p-values below

0.001 value suggests that there is a sig-
nificant difference in the perceived tim-
bre between c1 and the reference. For
H0 : µ

c1
Γ ≤ 0, statistical significance is

interpreted as a stronger colouration for
the noise than for the speech stimulus.

with NFCHOA, a transparent presentation is achieved for Npw =

1024, 512, and 256 as only non-significant small effects were found.42

42 p > 0.114, VDA < 0.60, see Tab. 6.2,
H0 : µ

c1 ,Ref
∆ ≤ 0, noise, centre

The corresponding results for the off-centre listening position are
shown in Fig. 6.2a (red): previously transparent presentations also
suffer from colouration, now. Significant large differences from the
reference were found for all methods.43

43 p < 0.001, VDA > 0.90, see Tab. 6.2,
H0 : µ

c1 ,Ref
∆ ≤ 0, noise, off-centre

The influence of M for a rectangular window can be observed in
Fig. 6.2b: Beginning from M = 27 colouration decreases until an
optimum at M = 19 is reached. If the modal bandwidth is further
decreased, the colouration ratings increase, again. Even for the op-
timal value of 19, LWFS-SBL is likely to be perceived as coloured at
the off-centre position.44 44 p < 0.001, VDA ≈ 0.87

The results for the shape of the modal window are shown in
Fig. 6.2c: with the max-rE window function, the colouration can be
further reduced for the off-centre listening position. However, many
listeners were still able to distinguish between the reference and the
reproduction: For all tested conditions, a significant difference with
a large effect of at least 0.85 was observed.45 45 p < 0.001, VDA > 0.85

For the centre listening position, the colouration of LWFS-VSS de-
creases with an increasing radius Rl.46 The results for the off-centre 46 see Fig. 6.2d (blue)

position are plotted in Fig. 6.2d (red) revealing no obvious depen-
dency on Rl. For both listening positions, none of the parametrisa-
tions reached transparent reproduction.47 47 p < 0.001, VDA > 0.80

Considering the results displayed in Fig. 6.2a/e for the centre
listening position (blue), the perceived colouration for the speech
signal is generally shifted towards zero compared to the noise signal.
Despite for methods, which have already been rated very close to
the reference for the noise stimulus (NFCHOA and LWFS-SBL with
Npw = 1024, 512, 256) NHST shows a significant large decrease of the
perceived colouration for the speech stimulus.48 For the mentioned 48 p < 0.001, VDA > 0.78, see Tab. 6.2,

H0 : µ
c1
Γ ≤ 0, centreconditions also the effect size for the difference to the reference de-

creases.49 A similar yet reduced effect can be observed in Fig. 6.2a/e 49 see Tab. 6.2, H0:µc1 ,Ref
∆ ≤ 0, compare

noise and speech for centrefor the off-centre position (red). The colouration ratings show only
a slight shift towards the reference. For both, noise and speech
signal, all methods have a significant difference from reference for
the off-centre position.50 Although still being large, the effects for

50 p < 0.001, see Tab. 6.2, H0 : µ
c1 ,Ref
∆ ≤

0, noise and speech, off-centre

the speech signal (VDA > 0.77) are smaller than for the noise signal
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H0 : µ
c1 ,Ref
∆ ≤ 0 H0 : µ

c1 ,WFS
∆ ≥ 0 H0 : µ

c1 ,NFCHOA
∆ ≥ 0

centre off-centre centre off-centre centre off-centre

condition c1 p VDA p VDA p VDA p VDA p VDA p VDA

WFS < .001 .98 < .001 .97 1.000 .99 1.000 .93
NFCHOA .187 .55 < .001 .99 < .001 .99 < .001 .93
LWFS-VSS ρl = 30 cm < .001 .88 < .001 .99 < .001 .89 < .001 .92 1.000 .90 .527 .50
LWFS-VSS ρl = 45 cm .004 .77 < .001 .97 < .001 .96 < .001 .86 1.000 .76 .994 .69
LWFS-SBL M = 27 max-rE < .001 .89 < .001 .85 < .001 .89 < .001 .96 1.000 .91 < .001 .95
LWFS-SBL M = 19 rect. .018 .68 < .001 .93 < .001 .97 < .001 .95 .994 .67 < .001 .86

Table 6.3: p-values and effect sizes
(VDA) for the comparison of different
synthesis methods. For H0 : µ

c1 ,Ref
∆ ≤

0, p-values below 0.001 value suggests
that there is a significant difference in
the perceived timbre between c1 and the
reference. For H0 : µ

c1 ,WFS
∆ ≥ 0 and H0 :

µ
c1 ,NFCHOA
∆ ≥ 0, statistical significance

is interpreted as a stronger colouration
for the respective SFS method than for
c1.

(VDA > 0.90).
The results of the comparison between the (L)SFS methods are

plotted in Fig. 6.2f. Visual inspection as well as the p-values for
H0 : µc1,WFS

∆ ≥ 0 listed in Tab. 6.3 suggest that all parametrisa-
tions of LWFS-SBL and LWFS-VSS lead to a significant improvement
of the synthesis w.r.t. perceived colouration compared to conven-
tional WFS. This holds for both listening positions, since large effects
(VDA > 0.86) could be observed. For the centre listening position, no
method outperforms NFCHOA, as non-significant differences were
observed.51 For the off-centre position, parametrisations for LWFS- 51 p > 0.994, see Tab. 6.3, H0 :

µ
c1 ,NFCHOA
∆ ≥ 0, centreSBL were found which are perceived significantly less coloured than

NFCHOA with a large effect.52 For LWFS-VSS, none of the parametri- 52 p > 0.994, VDA > 0.85 see Tab. 6.3,
H0 : µ

c1 ,NFCHOA
∆ ≥ 0, off-centresations achieved this improvement. Transparent synthesis is not

likely to be achieved by any SFS method for the off-centre position
as significant differences with large effects were found.53 53 p < 0.001, VDA > 0.84, see Tab. 6.3,

H0 : µ
c1 ,Ref
∆ ≤ 0, off-centre

6.2.5 Discussion

The discussion follows the same structure as for the localisation ex-
periments in Sec. 5.3.4. In the following, the results are further
analysed in the context of psychoacoustics with the invoked cues.
Afterwards, a potential connection between the predictions of the
geometric model introduced in Ch. 4 and the perceived colouration
is investigated.

Relation to Psychoacoustic Phenomena: The Composite Loudness
Level (CLL)54 essentially models the perceived binaural loudness

54 Pulkki et al. (1999). “Analyzing Vir-
tual Sound Source Attributes Using a
Binaural Auditory Model”. In: J. Aud.
Eng. Soc. 47.4, pp. 203–217

level as a function of frequency incorporating the selectivity of hu-
mans. Differences in the CLL to a reference have been shown to
correspond to the perceived colouration.55,56 The concept has been

55 Ono et al. (Nov. 2001). “Binaural
Modeling of Multiple Sound Source
Perception: Methodology and Col-
oration Experiments”. In: Proc. of 111th
Aud. Eng. Soc. Conv. New York, USA
56 Ono et al. (Apr. 2002). “Binaural
Modeling of Multiple Sound Source
Perception: Coloration of Wideband
Sound”. In: Proc. of 112th Aud. Eng.
Soc. Conv. Munich, Germany

successfully applied – partly in modified versions – to discuss or pre-
dict colouration in stereo panning57, VBAP58, HOA,59 and WFS.60

57 Pulkki et al., op. cit.
58 Pulkki (May 2001). “Coloration
of Amplitude-Panned Virtual Sources”.
In: Proc. of 110th Aud. Eng. Soc. Conv.
Amsterdam, The Netherlands
59 Frank, op. cit., Cha. 5.
60 Wierstorf et al. (Mar. 2015).
“Klangverfärbung in der Wellen-
feldsynthese - Experimente und
Modellierung”. In: Proc. of German
Annual Conference on Acoustics (DAGA).
Nuremberg, Germany, pp. 490–493.

The model used to extract CLL follows the descriptions by Pulkki et
al.61 with minor modifications: The dry source signal filtered by the

61 Pulkki et al., op. cit.

BTF HSFS
{L,R}(x, ϕh, ω) constitutes the input to the model. The binaural

signal is further processed with the same bandpass filter and Gam-
matone filterbank as described in Sec. 5.3.4 in order to model the
middle ear and the frequency selectivity of the human cochlea. For
each auditory band the time-averaged signal power is computed. In
the original publication, the values are compressed by 4

√· resulting in
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Figure 6.3: The plot shows the CLL
difference between selected conditions
and the reference. The noise stimulus
was used as the dry source signal. The
centre and the off-centre listening posi-
tions are marked in blue and red, re-
spectively. Each condition was incre-
mentally shifted about −20 dB to en-
hance visibility. �

the loudness measured in sone.62 The loudness of both ears is added 62 Ibid., Eq. (2).

for each band and converted to a loudness level spectra measured in
phon.63 Since, however, no calibrated measurement system was used 63 Ibid., Eq. (3).

in the present experiments, the values of the CLL are given in decibel.
Moreover, only differences in CLL w.r.t. the reference condition are
of interest.

The CLL differences for selected conditions are shown in Fig. 6.3.
The CLL were computed for the noise stimulus as the dry source
signal. It should be noted, that the overall loudness of the BTFs
was adjusted to the overall loudness for the colouration experiments.
Thus, the showed CLL differences directly correspond to the ear
signals provided to the test subjects.

For WFS64, the CLL difference show strong fluctuations at high 64 see Fig. 6.3a

frequencies caused by spatial aliasing. They lead to a perceivable
difference w.r.t. the reference for both listening positions. The find-
ings agree with the results from Wierstorf65 where all investigated 65 Wierstorf, op. cit., Sec. 5.2.

synthesis setups driven by WFS led to colouration.
For the centre listening position, no CLL difference over the whole

frequency range can be observed for NFCHOA.66 This is also re- 66 see Fig. 6.3b

flected by the colouration ratings in the experiment, where no dif-
ference to the reference was present. It is further in agreement with
prior expectations, since NFCHOA achieves high synthesis accuracy
around the centre of the loudspeaker array and is expected to per-
form at least as well as the LSFS techniques for this listening position.
Furthermore, it was shown in Sec. 4.3.2, that M = 27 corresponds to
the best trade-off between spatial aliasing and SBL artefacts for the

https://github.com/fietew/phd-thesis/tree/master/06_colouration/fig03
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employed loudspeaker setup.
For LWFS-SBL, strong fluctuations at high frequencies are present,

if the number of plane waves Npw is too low.67 As these artefacts 67 see Fig. 6.3c

are strongly attenuated for Npw = 1024,68 they can be attributed to 68 see Fig. 6.3d

spatial aliasing caused by the coarse discretisation of the involved
PWD. For the off-centre position, CLL differences are however still
present. It was shown in Sec. 4.4.3, that the chosen spatial bandwidth
M = 27 is too high for this listening position.69 Although dimin- 69 see pos. 7 in Fig. 4.26

ished, spatial aliasing is not completely prevented. The colouration
ratings agree with these findings, as this parameterisation of LWFS-
SBL was found transparent for the centre and still coloured for the
off-centre listening position.

The influence of the spatial bandwidth M on the colouration was
presented in combination with Fig. 6.2b and can be explained as
follows: as already discussed for the geometric model for LWFS-
SBL, the optimal choice M postulates a trade-off between spatial
aliasing and SBL artefacts. For values of M below 19, colouration
increases due to lowpass filtering of the reproduced sound field,
which is an artefact of the SBL. For M = 3, the CLL difference
is plotted in Fig. 6.3f and confirms the described level loss at high
frequencies. Even for the optimal M = 19, deviations in the CLL
spectrum shown in Fig. 6.3d (red) are observable. Thus, this con-
dition is still perceived as coloured. For M above 19, colouration
increases again due to significant aliasing contributions.70 The effect 70 see e.g. Fig. 6.3d (red)

of the max-rE weighting on the CLL difference is shown in Fig. 6.3g:
For the off-centre position, the spectrum is close to flat. Although still
distinguishable from the reference, this parametrisation led to a re-
duction of colouration compared to the conventional SFS techniques
and for the off-centre position. It can, however, be deduced from
the corresponding blue line and the colouration ratings in Fig. 6.2f
that it is likely to be perceived coloured for the centre position: A
level loss at high frequencies due to the SBL is present. In total, a
single position-independent choice for the spatial bandwidth M and
the modal window does not lead to optimal timbral properties for
all listening positions. Again, this agrees with the investigations in
Sec. 4.4.3 on spatial aliasing and SBL.

For LWFS-VSS, the small radius Rl = 15 cm of the virtual SSD
causes large deviations in CLL at the lower frequencies.71 Conse- 71 see Fig. 6.3h

quently, its colouration was rated as very different. Similar to the dis-
cussion on localisation in Sec. 5.3.4, the artefacts can be explained by
the low-frequency behaviour of the involved focused sources leading
to undesired interferences. The effect can be diminished by increas-
ing the radius, i.e. Rl = 45 cm.72 For the centre, CLL differences are 72 see Fig. 6.3i

only present at high frequencies. Thus, this condition was rated very
close to the reference. For the off-centre listening position, spatial
aliasing is more pronounced and the colouration generally increases.

Generally, it is not surprising that the speech stimulus led to less
colouration as its spectrum exhibits less energy at high frequencies,
where most of the artefacts introduced by the different SFS tech-
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Figure 6.4: The red plots show the sam-
ple median ∆̃c1 ,Ref (bullets) and the 95%
Confidence Interval (errorbars) for the
two MUSHRA runs already plotted in
Fig. 6.2b and 6.2c The prediction of the
linear mixed effects model described
by (6.1) is plotted in solid blue with
95% Confidence Interval (dashed). The
model was fit to the data in (a). �

niques are present. As the spatial aliasing increases for the off-centre
listening position, colouration is more likely to be perceived even for
the speech stimulus.

Relation to the Geometric Model: The geometric model in Ch. 4 is
able to predict the aliasing frequency f S and the SBL frequency f B.
These estimate the artefact-free frequency range. Contrary to the
localisation results, the colouration is not measured on an absolute
scale. As already outlined in Sec. 6.2.3, equivalent interpretation
of the MUSHRA scale among listeners and runs cannot be guaran-
teed.73 A pooled analysis of the acquired data as for the localisation 73 Zielinski et al. (Oct. 2007). “Potential

Biases in MUSHRA Listening Tests”.
In: Proc. of 123rd Aud. Eng. Soc. Conv.
New York, USA.

experiments is thus not sensible. As a proof of concept, the relation
between colouration ratings and the mentioned frequency will be
exemplarily discussed for two of the MUSHRA runs. The selected
results are, again, shown in Fig. 6.4. The linear mixed effects model

∆c1,Ref
l = β00 + β10 f S + β01 f B + β11 f S f B + γl + ϵlc1 (6.1a)

γl
i.i.d.∼

l
N (0, σ0) (6.1b)

ϵlc1

i.i.d.∼
lc1
N (0, σ) (6.1c)

for the pairwise difference between the reference and a condition c1

is fit to the data shown in Fig. 6.4a. The fixed effects β describe
a multiplicative interaction between the two frequencies. A ran-
dom intercept γl is added to model shifts in the MUSHRA scale
between different listeners. It partly models the effect of differently
interpreted scales, but does not cover skewing effects reported by
Zielinski et al.74 For WFS the infinite SBL frequency was truncated 74 Ibid., Sec. 4.5.

to 20 kHz. The result of the regression is plotted in blue. All fixed
effects are significant.75 As stated by Kruschke,76 care has to be 75 p ≪ 10−5, t-test

76 Kruschke (2015). Doing Bayesian data
analysis: A tutorial with R, JAGS, and
Stan. 2nd ed. Academic Press, Sec. 11.2.

taken when interpreting models with interaction terms. A possible
interpretation of the fixed effects considers the derivatives w.r.t. each
of the independent variables. With the BLUEs of the fixed effects β̂,

https://github.com/fietew/phd-thesis/tree/master/06_colouration/fig04
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they read

∂∆c1,Ref
l

∂ f S ≈ β̂10 + β̂11 f B ≈ 9.2 · 10−5Hz−1 − 5.9 · 10−9Hz−2 · f B

(6.2a)

∂∆c1,Ref
l

∂ f B ≈ β̂01 + β̂11 f S ≈ 6.6 · 10−5Hz−1 − 5.9 · 10−9Hz−2 · f S

(6.2b)

An interesting question is the weighting of the two phenomena,
namely SBL and spatial aliasing, for the judgement of colouration.
If both derivatives are equal, a change of f S or f B about the same
amount has the same impact on the colouration rating. This leads to
the relation

f S ≈ β̂10 − β̂01

β̂11
+ f B ≈ −4.4kHz + f B . (6.3)

The spatial aliasing frequency can be about 4.4 kHz smaller than
the SBL frequency is order to have the same (local) effect on the
colouration. Thus, the SBL artefacts are more critical then spatial
aliasing artefacts. It is however emphasised, that the regression was
applied to one single MUSHRA run and general statements about
the relation are not to be expected. The model fitted to the data in
Fig. 6.4a is used to predict the ratings for Fig. 6.4b: A general offset
between ratings and prediction can be observed. The general trend
of an increasing colouration with increasing M is correctly predicted.
However, the positive effect of the modal weighting function is not
covered. This was already mentioned in the description of the geo-
metric model in Sec. 4.3.2. The regression shows, that the results are
not easily generalised towards other MUSHRA experiments.

6.3 Summary

In this chapter, the selected analytic methods (L)SFS were evaluated
w.r.t. their timbral fidelity. The influence of the different LWFS-
SBL parameters on the colouration agrees well with the expectations
raised by prior analysis of physical properties in Ch. 3 and Ch. 4.
In the case of LWFS-VSS, the near-field artefacts introduced by the
utilised focused sources play an important role: For the centre lis-
tening position, the largest of the tested local target region radii led
to the smallest colouration rating, which contradicts the prediction
of the geometric model. For the off-centre position, a smaller radius
has to be chosen due to the increased spatial aliasing artefacts, which
dominate the near-field artefacts for this listening position.

The frequency spectrum of human speech comprises most energy
at frequencies below 4 kHz. Colouration caused by spatial alias-
ing and SBL which is occurring at high frequencies is not evoked
by a signal which does not have components at these frequencies.
The comparison of the colouration ratings for broadband noise and
speech confirmed this.
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For the given loudspeaker setup and the desired point source,
both LWFS techniques are able to decrease perceived colouration
compared to conventional WFS. For the tested off-centre position,
only LWFS-SBL outperformed NFCHOA, if parametrised accord-
ingly. Hereby, the max-rE window function reduced colouration.
However, for the investigated off-centre listening position, no (L)SFS
parametrisation leads to a fully transparent presentation of the de-
sired point source.

This chapter has shown that a more transparent reproduction com-
pared to conventional SFS is possible with LWFS. A comparison to
the predictions of the geometric model indicated that the upper fre-
quency limit due to SBL might be more critical w.r.t. colouration than
the spatial aliasing frequency. This has, however, to be confirmed on
a larger experimental scale, since only a single MUSHRA run was
investigated as a proof of concept.



7Conclusion

7.1 Summary

This thesis analysed the physical and perceptual properties of se-
lected approaches for LSFS and compared them to conventional SFS.
As a central research question, the potential improvement of physical
and perceptual fidelity with LSFS was investigated.

In Ch. 2, the fundamentals of linear acoustics were revisited. A
different view on the integral formulation of the linearised wave
equation was presented, where the sound field was separated into
a homogeneous and an inhomogeneous part with respect to a given
boundary. The resulting formulation of SFS coincides with well es-
tablished alternatives, namely the equivalent scattering problem and
the simple source formulation.1,2 1 Williams (1999). Fourier Acoustics:

Sound Radiation and Nearfield Acoustical
Holography. London, UK: Academic
Press, Sec. 8.7.
2 Ahrens (2010). “The Single-layer Po-
tential Approach Applied to Sound
Field Synthesis Including Cases of Non-
enclosing Distributions of Secondary
Sources”. PhD thesis. Berlin, Germany:
Technische Universität Berlin, Sec. 2.6.2.

In addition to WFS and NFCHOA for conventional SFS, Ch. 3
introduced the mathematical foundations of LWFS-SBL and LWFS-
VSS as the selected approaches to LSFS. Special attention was drawn
to the according discrete-time implementation and consequences on
the synthesis results. As already done for LWFS-VSS by Spors and
Ahrens,3 a discrete-time implementation for LWFS-SBL is proposed,

3 Spors and Ahrens (Oct. 2010b). “Local
Sound Field Synthesis by Virtual Sec-
ondary Sources”. In: Proc. of 40th Intl.
Aud. Eng. Soc. Conf. on Spatial Audio.
Tokyo, Japan.

which concatenates existing components for WFS and NFCHOA.
This is of special interest, as audio rendering software with real-
time capability are already available for the mentioned conventional
SFS approaches.4 The involved PWD for virtual point sources was

4 Geier and Spors (Nov. 2012). “Spatial
Audio with the SoundScape Renderer”.
In: Proc. of 27th Tonmeistertagung – VDT
Internation Convention. Cologne, Ger-
many.

stabilised using a dual-band approach with a frequency crossover
between WFS and LWFS-SBL.

A geometric model to predict spatial aliasing as a function of the
virtual sound field, the target region, and the loudspeaker array ge-
ometry was presented in Ch. 4. In particular, a trade-off between the
available listening area and spatial aliasing as a function of position
was shown. As a general guideline, LSFS becomes less effective
the closer the target region is located to the active loudspeakers.
The impact of some parameters on the synthesis accuracy cannot
be predicted by the geometric model, e.g. the modal window in NF-
CHOA and LWFS-SBL. The high-frequency approximation made to
derive the model does not incorporate the near-field/low-frequency
behaviour of the focused sources used in LWFS-VSS. Besides its pre-
diction capabilities, the model can also be applied to design optimal
spacing patterns for the employed loudspeaker array for a given vir-
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tual sound field and listening area. This was exemplarily shown for
WFS.

The four (L)SFS methods were perceptually evaluated in Ch. 5
and Ch. 6 regarding their spatial and timbral fidelity for a circular
loudspeaker array. The findings for WFS confirmed prior research5 5 Wierstorf (2014). “Perceptual Assess-

ment of sound field synthesis”. PhD
thesis. Technische Universität Berlin,
Sec. 5.1 and 5.2.

as a good localisation accuracy is preserved and severe colouration
is caused by spatial aliasing. Results from the literature6,7 on lo-

6 Frank (June 2013a). “Phantom Sources
using Multiple Loudspeakers in the
Horizontal Plane”. PhD thesis. Graz,
Austria: Institute of Electronic Music
and Acoustics, Cha. 3.
7 Stitt (June 2015). “Ambisonics
and Higher-Order Ambisonics for Off-
Centre Listeners: Evaluation of Per-
ceived and Predicted Image Direction”.
PhD thesis. Belfast, UK: Queen’s Uni-
versity Belfast, Sec. 5.5.

calisation accuracy in HOA panning agree with the behaviour of
NFCHOA. In general, a higher order and the max-rE weighting leads
to more accurate localisation especially for off-centre positions. With
the tested parametrisation, NFCHOA is only transparent w.r.t. tim-
bre in the centre position. LWFS-SBL turned out as very easy to
handle, since the localisation bias is only slightly affected by the
chosen parameters. Best accuracy could be achieved with the max-rE

weighting for high orders. For colouration, the trade-off between
the SBL and spatial aliasing could be accurately explained by the
frequencies predicted by the geometric model. LWFS-VSS turned out
to be more unpredictable regarding the effect of its parametrisation.
This is mostly due to the already mentioned characteristics of the
employed focused sources, which have to be additionally consid-
ered. The introduced artefacts contradict the central paradigm of
LSFS, where the synthesis accuracy increases with a smaller target
region. Thus, its behaviour is also less accurately predicted by the
geometric model. For the chosen parameters, LWFS-VSS leads to
inferior spatial and especially timbral fidelity compared to LWFS-
SBL. It was, however, possible with suitable parametrisation to im-
prove colouration and preserve good localisation in comparison to
its baseline algorithm WFS.

7.2 Outlook

In both investigated LWFS methods, intermediate representations,
namely the PWD and the VSSs, were necessary to compute the driv-
ing signals. These representations had to be discretised, which po-
tentially led to additional spatial aliasing as discussed in Ch. 4. Addi-
tional effort has to be spent in order to find mathematical solutions to
circumvent the intermediate representations not only to avoid arte-
facts but also to reduce computational complexity. Promising results
were published by Hahn et al.8 for virtual plane waves in LWFS-SBL. 8 Hahn et al. (Aug. 2017). “Synthesis

of a spatially band-limited plane wave
in the time-domain using wave field
synthesis”. In: Proc. of 25th European
Signal Processing Conference (EUSIPCO).
Kos Island, Greece, pp. 673–677.

Moreover, the high-frequency approximations for bandwidth-limited
sound fields derived in Sec. A.1 may be directly fed into WFS to
achieve LSFS. Here, the impact of the involved approximations on
the synthesis accuracy has to be further analysed.

So far, LSFS was only investigated for static scenarios. Since a
major feature of LSFS is the optimised synthesis for a given location,
a dynamically tracked listener has to be considered. This requires
to revisit not only the time-domain implementations of the LSFS
approaches but also the perceptual attributes. In addition, dynamic
scenarios may include moving sound sources, which were recently
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investigated WFS by Firtha9 on theoretical level. 9 Firtha (2019). “A Generalized Wave
Field Synthesis Framework with Ap-
plication for Moving Virtual Sources”.
PhD thesis. Budapest University of
Technology and Economics.

As a proof of concept, the geometric model was applied to design
loudspeaker arrays in WFS. This functionality should be further ex-
tended towards other (L)SFS approaches. An interesting application
is the array design for large-scale sound reinforcement, where the
virtual sound field is fixed for certain scenarios.10 For this, future 10 Schultz (2016). “Sound Field Synthe-

sis for Line Source Array Applications
in Large-Scale Sound Reinforcement”.
PhD thesis. University of Rostock.

models need to support the frequency-dependent directivity of the
employed loudspeakers including individual drivers for different
frequency ranges.

Within this thesis, particularly important aspects of the overall
sound quality11 were investigated. Assessing the preference of the 11 Rumsey et al. (2005). “On the rela-

tive importance of spatial and timbral
fiedelities in judgements of degraded
multichannel audio quality”. In: J.
Acoust. Soc. Am. 118.2, pp. 968–976.

listeners12 for different (L)SFS approaches could be another step to-

12 Wierstorf et al. (2018). “Listener Pref-
erence for Wave Field Synthesis, Stereo-
phony, and Different Mixes in Popular
Music”. In: J. Aud. Eng. Soc. 66.5,
pp. 385–396.

wards an overall quality rating. It was shown in the cited publication,
that the preparation of the audio material a.k.a. the mix largely influ-
ences the ratings. Thus, experienced staff to master such scenes for
(L)SFS is needed. In additional, more sophisticated software tools
for mastering in LSFS similar to the ones used by the Ambisonics
community13 have to be developed.

13 Zotter and Frank (2019). Ambison-
ics. Springer International Publishing,
Sec. 5.9.

The localisation results in Ch. 5 were discussed in conjunction
with the relevant binaural cues predicted by an auditory model. As
an additional step, models might directly predict the perceived direc-
tion. This was already done by Wierstorf14 for WFS and NFCHOA 14 Wierstorf, op. cit., Ch. 6.

using the ITD model of Dietz et al.15 As mentioned by Frank,16 more 15 Dietz et al. (2011). “Auditory model
based direction estimation of concur-
rent speakers from binaural signals”.
In: Speech Communication 53.5, pp. 592–
605.
16 Frank, op. cit., Sec. 3.4.

sophisticated probabilistic models are necessary to predict effects like
the source splitting in NFCHOA. Promising approaches for auditory
localisation of multiple sources including head movements are avail-
able.17,18,19

17 May et al. (Apr. 2015). “Robust
localisation of multiple speakers ex-
ploiting head movements and multi-
conditional training of binaural cues”.
In: Proc. of 2015 IEEE International
Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). Brisbane, Aus-
tralia, pp. 2679–2683.
18 Schymura et al. (Sept. 2015). “Bin-
aural Sound Source Localisation and
Tracking using a dynamic Spheri-
cal Head Model”. In: Proc. of
16th Annual Conference of the Interna-
tional Speech Communication Association
(INTERSPEECH). Dresden, Germany,
pp. 165–169.
19 Ma and Brown (Sept. 2016). “Speech
Localisation in a Multitalker Mixture
by Humans and Machines”. In: Proc.
of 17th Annual Conference of the Interna-
tional Speech Communication Association
(INTERSPEECH). San Francisco, USA,
pp. 3359–3363.

In Sec. 6.2.5, the connection between the colouration ratings and
the prediction of the geometric model could only be discussed to
a limited extent. This was partly caused by the used MUSHRA
test paradigm making comparisons between different runs difficult.
Further research has to augment the findings in the present work by
using alternative test paradigms.

The thesis did not take any effects of the playback room into ac-
count as the theory and experiments assumed free-field conditions.
It was shown by Erbes and Spors20 for WFS, that room reflections

20 Erbes and Spors (Mar. 2017). “Influ-
ence of the Listening Room on Spec-
tral Properties of Wave Field Synthe-
sis”. In: Proc. of German Annual Con-
ference on Acoustics (DAGA). Kiel, Ger-
many, pp. 1057–1060.

mitigate the spectral fluctuations caused by spatial aliasing. Thus,
colouration due to the aliasing might be less critical. Additional
experiments for the timbral fidelity of (L)SFS in rooms have to be
conducted.



AHigh-Frequency Approximations

As a central concept of the upcoming derivations, the SPA is used
as a integral approximation. Given a complex-valued function F(u) =
AF(u)e+jϕF(u) with its phase term rapidly oscillating compared to
its slowly changing amplitude, the following approximation of the
integral1,2,3 1 Wong (2001). Asymptotic Approxima-

tions of Integrals. Vol. 34. Classics
in Applied Mathematics. Philadelphia,
PA: Society for Industrial and Applied
Mathematics (SIAM), Eq. (3.2).
2 Bleistein and Handelsman (1986).
Asymptotic Expansions of Integrals.
New York, USA: Dover Publications,
Eq. (6.5.1).
3 Bleistein (1984). Mathematical Meth-
ods for Wave Phenomena. Orlando, USA:
Academic Press, Eq. (2.7.18).

∫︂ b

a
F(u)du ≈ ∑

u∗∈[a,b]
F(u∗)

√︄
2π

|ϕ′′F(u∗)|
e+j π

4 sgn(ϕ′′F (u
∗)) (A.1)

holds. It constitutes the summation over the stationary points u∗ in
the interval [a, b], for which the first-order derivative of the phase
ϕ′F(u

∗) vanishes and the second-order derivative ϕ′′F(u
∗) is non-zero.

The integral is approximately zero, if no stationary point is present in
[a, b]. The approximation is based upon the idea that the integration
over a complex sinusoid with a rapidly changing phase yields zero
except for the contributions from u∗ and its neighbourhood. Rig-
orous derivations of the approximation are given in the mentioned
publications.4,5,6 4 Wong, op. cit., Sec. II.3.

5 Bleistein and Handelsman, op. cit.,
Sec. 6.1.
6 Bleistein, op. cit., Sec. 2.7.A.1 Bandwidth-Limited Sound Fields

The goal of this section is to derive a high-frequency approximation
of the sound field

SB
M(x, ω) =

∞

∑
m=−∞

⋄wM
m
⋄
Sm(ρ, ω)e+jmϕ (A.2)

bandwidth-limited in the Circular Harmonics domain by multiply-
ing the coefficients

⋄
Sm(ρ, ω) of the original sound field S(x, ω) with

the modal window ⋄wM
m . It will relate the bandwidth-limited version

to the original sound field in the spatial domain. In order to apply
the SPA to the summation, an integral representation of the ICHT
is derived in Sec. A.1.1. The resulting integrals are approximated in
Sec. A.1.2 and Sec. A.1.3 in order to derive the desired relation.
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A.1.1 Integral Representation of Inverse Circular Harmonics
Transform

In general, the ICHT of a 2π-periodic function F(ϕ) is given as the
Fourier series

F(ϕ) =
∞

∑
m=−∞

⋄
Fme+jmϕ (A.3)

with the coefficients
⋄
Fm. They can can be expressed as samples of

a continuous function denoted as
⋄
F(µ). The sampling is described

by the multiplication of
⋄
F(µ) with a Dirac comb.7 Using the sifting 7 Girod et al. (2001). Signal and Systems.

Wiley, Sec. 11.3.1.property of the Dirac delta distribution,8,9 the sound field can be
8 Ibid., Eq. (8.15).
9 Gel’fand and Shilov (1964). Generalized
functions: Vol. 1. Properties and oper-
ations. New York, London: Academic
Press, p. 4.

expressed as

F(ϕ) =
∫︂ ∞

−∞

∞

∑
m=−∞

δ(µ−m)
⋄
F(µ)e+jµϕ dµ . (A.4)

The Dirac Comb is expressed by its Fourier series,10 which results in 10 Girod et al., op. cit., Eq. (11.12).

F(ϕ) =
∞

∑
η=−∞

∫︂ ∞

−∞

⋄
F(µ)e+jµ(ϕ−2πη) dµ

⏞ ⏟⏟ ⏞
=Fcont(ϕ−2πη)

. (A.5)

Fcont(ϕ) can be interpreted as the non-periodic part of F(ϕ), which
is equal to F(ϕ) only for ϕ ∈ [0, 2π] and zero, otherwise. F(ϕ) is
expressed as the sum of shifted versions Fcont(ϕ) to preserve its 2π-
periodicity. The principle is analogous to the spectral repetitions
occurring in the temporal frequency domain, when sampling is ap-
plied to a continuous time signal.11 The corresponding CHT for the 11 Ibid., Sec. 11.3.

continuous coefficients reads

⋄
F(µ) =

1
2π

∫︂ 2π

0
F(ϕ)e−jµϕ dϕ (A.6)

Inserting the right-hand-side of (A.3) for F(ϕ), the continuous coeffi-
cients are related to the discrete coefficients via

⋄
F(µ) =

1
2π

∫︂ 2π

0

∞

∑
m=−∞

⋄
Fme+jmϕe−jµϕ dϕ =

∞

∑
m=−∞

⋄
Fmsinc ((m− µ)π) .

(A.7)
⋄
F(µ) states the interpolation of

⋄
Fm using the sinus cardinalis12 as the 12 Ibid., Eq. (9.21).

interpolation kernel.

A.1.2 Approximation of Circular Harmonics Transform

Applying (A.6) to the sound field S(x, ω) yields the continuous CHT
coefficients

⋄
S(µ, ρ, ω) =

1
2π

∫︂ 2π

0
S(x, ω)e−jµϕ dϕ . (A.8)

The amplitude-phase notation introduced in Sec. 2.3 is used to ex-
press the sound field as AS(x, ω)e+jΦS(x,ω). Thus, the phase term
involved in the integral and its corresponding first- and second-order
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derivative read

Φ(ϕ) = ΦS(x, ω)− µϕ , (A.9a)

∂Φ(ϕ)

∂ϕ
= Φ′S,ϕ(x, ω)− µ , (A.9b)

∂2Φ(ϕ)

∂ϕ2 = Φ′′S,ϕϕ(x, ω) . (A.9c)

The first- and second-order derivative of ΦS w.r.t. ϕ are denoted by
Φ′S,ϕ and Φ′′S,ϕϕ, respectively. In order to find the stationary point ϕ∗,
the first-order derivative in (A.9b) is set to zero. The resulting SPA
condition reads

µ
!
= Φ′S,ϕ(x, ω) =

⟨︃
∂x
∂ϕ

⃓⃓
⃓∇ΦS(x, ω)

⟩︃
= −

⟨︃
∂x
∂ϕ

⃓⃓
⃓kS(x, ω)

⟩︃
. (A.10)

The second equality is established by applying the chain-rule of
differentiation. The gradient is replaced by the local wavenumber
vector kS(x, ω) defined in (2.53) for the last equality. The solution
to the condition is the stationary phase point ϕ∗ = ϕ∗(ρ, µ) ∈ [0, 2π]

with the corresponding coordinate is denoted as x∗ = x∗(µ). The
derivative of (A.10) w.r.t. µ with the stationary phase point inserted
reads

1 =
∂Φ′S,ϕ(x

∗(µ), ω)

∂µ
=

∂ϕ∗

∂µ
Φ′′S,ϕϕ(x

∗, ω) . (A.11)

It is important for later derivations. Finally, the SPA of (A.8) reads

⋄
S(µ, ρ, ω) ≈ e+j π

4 sign(Φ′′S,ϕϕ(x
∗ ,ω))

√︂
2π|Φ′′S,ϕϕ(x

∗, ω)|
AS(x∗, ω)e+jΦS(x∗ ,ω)

⏞ ⏟⏟ ⏞
S(x∗ ,ω)

e−jµϕ∗ . (A.12)

A.1.3 Approximation of Inverse Circular Harmonics Transform

Utilizing (A.5) for the bandwidth-limited sound field SB
M(x, ω) yields

the expression

SB
M(x, ω) =

∞

∑
η=−∞

∫︂ ∞

−∞

⋄wM(µ)
⋄
S(µ, ρ, ω)e+jµ(ϕ−2πη) dµ . (A.13)

The SPA of the sound field’s coefficients (A.12) is inserted into (A.13)
for

⋄
S(µ, ρ, ω). The resulting relation reads

SB
M(x, ω) ≈

∞

∑
η=−∞

∫︂ ∞

−∞

⋄wM(µ)
e+j π

4 sign(Φ′′S,ϕϕ(x
∗ ,ω))

√︂
2π|Φ′′S,ϕϕ(x

∗, ω)|
(A.14)

· AS(x∗, ω)e+jΦS(x∗ ,ω)e+jµ(ϕ−2πη−ϕ∗) dµ .

Note, that x and x∗ have to share the same radius ρ, since the SPA
derived in Sec. A.1.2 does only involve the azimuth angle. The phase
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term involved in the integral and its according derivatives read

Φ(µ) = ΦS(x∗, ω) + µ(ϕ− 2πη − ϕ∗) (A.15a)

Φ′µ(µ) =
∂ϕ∗

∂µ

(︂
Φ′S,ϕ(x

∗, ω)− µ
)︂

⏞ ⏟⏟ ⏞
=0 , see (A.9b)

+(ϕ− 2πη − ϕ∗) (A.15b)

Φ′′µµ(µ) =
∂2ϕ∗

∂µ2

(︂
Φ′S,ϕ(x

∗, ω)− µ
)︂

⏞ ⏟⏟ ⏞
=0 , see (A.9b)

+
∂ϕ∗

∂µ

(︃
∂ϕ∗

∂µ
Φ′′S,ϕϕ(x

∗, ω)− 2
)︃

⏞ ⏟⏟ ⏞
=−

[︂
Φ′′S,ϕϕ(x

∗ ,ω)
]︂−1

, see (A.11)

.

(A.15c)

The second-order derivative in (A.15c) is of special interest, as it
relates Φ′′µµ(µ) to the second-order derivative Φ′′S,ϕϕ(x

∗, ω) of the SPA
in Sec. A.1.2. By setting Φ′µ(µ) to zero, the SPA condition reads

ϕ∗(ρ, µ)
!
= ϕ− 2πη . (A.16)

Its solution is the stationary phase point µ∗ = µ∗(ϕ, ρ). According
to the SPA condition for the CHT given by (A.10), ϕ∗(ρ, µ) must not
exceed [0, 2π] in order to have a non-zero approximation. For a given
ϕ, there exists only a single η in (A.16) for which ϕ∗(ρ, µ) lies in this
interval. Thus, the summation w.r.t. η in (A.14) vanishes since only
one non-zero contribution is present. The approximation reads

SB
M(x, ω) ≈

=1, see (A.15c)⏟ ⏞⏞ ⏟⎡
⎣e+j π

4

[︂
sign(Φ′′S,ϕϕ(x

∗(µ∗),ω))+sign(Φ′′µµ(µ
∗))
]︂

√︂
|Φ′′S,ϕϕ(x

∗(µ∗), ω)Φ′′µµ(µ
∗)|

⎤
⎦ ⋄wM(µ∗) (A.17)

· AS(x∗(µ∗), ω)e+jΦS(x∗(µ∗),ω)

⏞ ⏟⏟ ⏞
S(x∗(µ∗),ω)

e+jµ∗(ϕ−2πη−ϕ∗(µ∗))
⏞ ⏟⏟ ⏞

=1, see (A.15b)

.

As both x and x∗(µ) share the same radius ρ and are periodic w.r.t.
their azimuth angle, (A.16) results in x∗(µ∗) = x holds. Using (A.10),
µ∗ is substituted by Φ′S,ϕ(x, ω). This further simplifies the SPA to

SB
M(x, ω) ≈ ⋄wM(Φ′S,ϕ(x, ω))S(x, ω) . (A.18)

The modal windows ⋄wM
m considered in this thesis are even symmet-

ric, i.e. ⋄wM
m =

⋄wM
−m. Considering (A.7), their continuous counter-

parts are also even symmetric. Consequentially, ⋄wM(µ) =
⋄wM(|µ|)

holds. The absolute value of Φ′S,ϕ(x, ω) corresponds to the norm
of the vector product x × kS, see (A.10). The relation between the
bandwidth-limited and the fullband sound field is finally given by

SB
M(x, ω) ≈ ⋄wM(|x× kS|) S(x, ω) . (A.19)

A.2 Local Wave Field Synthesis using Spatial Bandwidth
Limitation

In this section, high-frequency approximations for the 2.5D LWFS-
SBL driving functions introduced in Sec. 3.4 are derived. Continuous
and discretised PWD are considered in Sec. A.2.1 and Sec. A.2.2,
respectively.
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A.2.1 Approximation for Continuous Plane Wave Decomposi-
tion

Using the definition of the PWD in (2.49) and the amplitude-phase
notation for the plane wave coefficients S̄(ϕpw, ω), the virtual sound
field S(x, ω) evaluated at x0 reads

S(x0, ω) =
1

2π

∫︂ 2π

0
AS̄(ϕpw, ω)e+jΦS̄(ϕpw,ω)

⏞ ⏟⏟ ⏞
=S̄(ϕpw,ω)

e−j ω
c ⟨x0|npw⟩ dϕpw .

(A.20a)
It is hereby assumed without loss of generality, that the expansion
centre xc coincides with the coordinates’ origin. The driving func-
tion of LWFS-SBL is given by (3.25). Inserting the amplitude-phase
notation for the plane wave coefficients and the WFS driving function
for the plane waves13 yields 13 see (3.9b) and Tab. 3.1

DLWFS−SBL
2.5D (x0, ω) =

1
2π

√︃
j
ω

c

√︂
8π|x0 − xref|

∫︂ 2π

0
apw(x0|npw)

· ⟨n0|npw⟩AS̄(ϕpw, ω)e+jΦS̄(ϕpw,ω)e−j ω
c ⟨x0|npw⟩ dϕpw (A.20b)

with the secondary source selection criterion apw(x0|npw) for a dis-
tinct plane wave given by Tab. 3.1. In both integrals, the involved
phase term and the according first- and second-order derivatives
read

Φ(ϕpw, ω) = ΦS̄(ϕpw, ω)− ω

c
ρ0 cos(ϕ0 − ϕpw) , (A.21a)

∂Φ(ϕpw, ω)

∂ϕpw
= Φ′̄S,ϕ(ϕpw, ω)− ω

c
ρ0 sin(ϕ0 − ϕpw) , (A.21b)

∂2Φ(ϕpw, ω)

∂ϕ2
pw

=Φ′′̄S,ϕϕ(ϕpw, ω) +
ω

c
ρ0 cos(ϕ0 − ϕpw) . (A.21c)

The first- and second-order derivative of ΦS̄ w.r.t. ϕ are denoted by
Φ′̄S,ϕ and Φ′′̄S,ϕϕ

, respectively. Since both integrals share the phase
term, the common SPA condition reads

Φ′̄S,ϕ(ϕpw, ω)
!
=

ω

c
ρ0 sin(ϕ0 − ϕpw) . (A.22)

The solution to it is the stationary phase point ϕ∗pw = ϕ∗pw(x0, ω). The
corresponding propagation direction is denoted as n∗pw = n∗pw(x0, ω).
The SPA of the virtual sound field reads

S(x0, ω) ≈ e
+j π

4 sign(Φ′′̄S,ϕϕ
(ϕ∗pw,ω)+ ω

c ⟨x0|n∗pw⟩)
√︂

2π|Φ′′̄S,ϕϕ
(ϕ∗pw, ω) + ω

c ⟨x0|n∗pw⟩|
(A.23)

· AS̄(ϕ
∗
pw, ω)e+jΦS̄(ϕ

∗
pw,ω)e−j ω

c ⟨x0|n∗pw⟩

and the SPA of the LWFS-SBL driving function is given by

DLWFS−SBL
2.5D (x0, ω) ≈

√︃
j
ω

c

√︂
8π|x0 − xref|apw(x0|n∗pw)⟨n0|n∗pw⟩

e
+j π

4 sign(Φ′′̄S,ϕϕ
(ϕ∗pw,ω)+ ω

c ⟨x0|n∗pw⟩)
√︂

2π|Φ′′̄S,ϕϕ
(ϕ∗pw, ω)+ ω

c ⟨x0|n∗pw⟩|
AS̄(ϕ

∗
pw, ω)e+jΦS̄(ϕ

∗
pw,ω)e−j ω

c ⟨x0|n∗pw⟩

⏞ ⏟⏟ ⏞
≈S(x0,ω), see (A.23)

.

(A.24)
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Since the approximate equality holds in (A.23), also the phase of the
left-hand and the right-hand side is approximately equal. The phase
term of virtual sound field reads

ΦS(x0, ω) ≈ ΦS̄(ϕ
∗
pw, ω)− ω

c
⟨x0|n∗pw⟩ . (A.25)

The relation can be used to express the local wavenumber vector14 of 14 see (2.53)

the virtual sound field as

kS(x0, ω) ≈ ω

c
n∗pw −∇x0 ϕ∗pw

∂Φ(ϕpw, ω)

∂ϕpw

⃓⃓
⃓⃓
ϕpw=ϕ∗pw⏞ ⏟⏟ ⏞

=0, see (A.21b)

. (A.26)

Using this equality together with the local dispersion relation in
(2.54), the stationary plane wave direction n∗pw in (A.24) is expressed
by the normalised local wavenumber vector k̂S(x0, ω). According to
Tab. 3.1 and (3.5), apw(x0|k̂S(x0, ω)) is equal to the virtual sound field
specific selection criterion aS(x0). The final approximation reads

DLWFS−SBL
2.5D (x0) ≈

√︃
j
ω

c

√︂
8π|x0 − xref|aS(x0)⟨n0|k̂S(x0, ω)⟩S(x0, ω) .

(A.27)

A.2.2 Approximation for Discrete Plane Wave Decomposition

The continuous PWD is approximated via a summation of over dis-
crete angles ϕ

(l)
pw = 2π

Npw
l. The resulting sound field reads

SS(x0, ω) =
1

Npw

Npw−1

∑
l=0

AS̄(ϕ
(l)
pw)e+jΦS̄(ϕ

(l)
pw)e−j ω

c ⟨x0|n(l)
pw⟩ (A.28)

The propagation direction belonging to ϕ
(l)
pw is denoted as n(l)

pw. By
inserting the amplitude-notation for S̄(ϕpw, ω) and the WFS driving
function for a plane wave into (4.68), the LWFS-SBL driving function
is analogously given as

DLWFS−SBL,S
2.5D (x0, ω) =

1
Npw

√︃
j
ω

c

√︂
8π|x0 − xref| (A.29)

Npw−1

∑
l=0

apw(x0|n(l)
pw)⟨n0|n(l)

pw⟩AS̄(ϕ
(l)
pw)e+jΦS̄(ϕ

(l)
pw)e−j ω

c ⟨x0|n(l)
pw⟩ .

The sampling in the PWD domain is modelled as a multiplication of
the continuous PWD with a Dirac comb.15 With its Fourier series,16 15 Girod et al., op. cit., Sec. 11.3.1.

16 Ibid., Eq. (11.12).the sound field and the driving function are split up into individual
aliasing components indexed by ζ. They read

SS
ζ (x0, ω) = (A.30a)

1
2π

∫︂ 2π

0
AS̄(ϕpw, ω)e+jΦS̄(ϕpw,ω)e−jζNpwϕpwe−j ω

c ⟨x0|npw⟩ dϕpw

and

DLWFS−SBL,S
2.5D,ζ (x0, ω) =

1
2π

√︃
j
ω

c

√︂
8π|x0 − xref|

∫︂ 2π

0
apw(x0|npw)

(A.30b)

· ⟨n0|npw⟩AS̄(ϕpw, ω)e+jΦS̄(ϕpw,ω)e−jζNpwϕpwe−j ω
c ⟨x0|npw⟩ dϕpw .
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Besides the additional exponential e−jζNpwϕpw , both integrals match
their counterpart in (A.20). The same derivation steps lead to

DLWFS−SBL,S
2.5D,ζ (x0, ω) ≈
√︃

j
ω

c

√︂
8π|x0 − xref| aSS

ζ
(x0)⟨n0|kSS

ζ
(x0, ω)⟩SS

ζ (x0, ω)
(A.31)

as the connection between the sound field and the aliasing compo-
nent of the driving function. The SPA condition

Φ′̄S,ϕ(ϕpw, ω)
!
=

ω

c
ρ0 sin(ϕ0 − ϕpw) + ζNpw (A.32)

accordingly differs from (A.22) about an additional term depend-
ing on ζ. The solution to it is the stationary phase point ϕ∗pw,ζ =

ϕ∗pw,ζ(x0, ω). The corresponding propagation direction is denoted as

n∗pw,ζ = n∗pw,ζ(x0, ω). Analogous to (A.26), k̂SS
ζ
(x0, ω) ≈ n∗pw,ζ holds.

For the geometric model in Sec. 4.4.2, the local wavenumber vector
of aliasing component kSS

ζ
is key to predict spatial aliasing. Although

it is unknown, a connection to the original sound field can be estab-
lished by considering an additional position xS

ζ . It is assumed that
the stationary plane wave direction n∗pw(xS

ζ , ω) for the continuous
driving function in (A.22) coincides with n∗pw,ζ(x0, ω). Considering
(A.26), the local wavenumber vectors are approximately equal, i.e.
k̂SS

ζ
(x0, ω) ≈ k̂S(xS

ζ , ω). Combining both SPA conditions (A.22) and

(A.32) allows to formulate

ω

c
ρ0 sin(ϕ0 − ϕ∗pw) + ζNpw

!
=

ω

c
ρS

ζ sin(ϕS
ζ − ϕ∗pw) . (A.33)

Together with (A.26), the condition is rearranged to

ζ
c
f

!
=

2π

Npw

⟨︂
xS

ζ − x0

⃓⃓
⃓R π

2
k̂S(xS

ζ , ω)
⟩︂

, (A.34)

where R π
2

denotes a rotation matrix rotating the normalised wave-

number vector k̂S(x†
0) about π/2.



BMiscellaneous Derivations

B.1 Relation between 2.5D and 3D Near-Field-Compen-
sated Higher-Order Ambisonics

The completeness relations of the Circular Harmonics and Spherical
Harmonics1 allow to postulate 1 Williams (1999). Fourier Acoustics:

Sound Radiation and Nearfield Acoustical
Holography. London, UK: Academic
Press, Eq. (1.26) and Eq. (6.47).

1
2π

∞

∑
m=−∞

e+jmϕ = δ(ϕ), and (B.1)

∞

∑
m=−∞

∞

∑
n=|m|

Ψ−m
n

(︂π

2
, 0
)︂

Ψm
n (ϑ, ϕ) = δ(cos(ϑ))δ(ϕ) . (B.2)

The Dirac delta distribution δ(ϕ) in (B.2) is replaced by the left-hand
side of (B.1). In addition, Ψm

n (ϑ, ϕ) = Ψm
n (ϑ, 0)e+jmϕ from Eq. (2.34)

is used resulting in
∞

∑
m=−∞

∞

∑
n=|m|

Ψ−m
n

(︂π

2
, 0
)︂

Ψm
n (ϑ, 0)e+jmϕ =

δ(cos(ϑ))
2π

∞

∑
m=−∞

e+jmϕ .

(B.3)
The orthogonality of the Circular Harmonics allows to directly com-
pare the coefficients for each m, which yields

∞

∑
n=|m|

Ψ−m
n

(︂π

2
, 0
)︂

Ψm
n (ϑ, 0) =

δ(cos(ϑ))
2π

. (B.4)

Again, Ψm
n (ϑ, ϕ) = Ψm

n (ϑ, 0)e+jmϕ from Eq. (2.34) is incorporated to
formulate Eq. (3.16). An alternative derivation is given by Poletti.2 2 Poletti (Mar. 2017). “Spherical coor-

dinate descriptions of cylindrical and
spherical Bessel beams”. In: J. Acoust.
Soc. Am. 141.3, pp. 2069–2078, App. A.B.2 Extremal Values of Tangential Components of the Lo-

cal Wavenumber Vector for a Circle

The tangential component of the local wavenumber vector for the
free-field Green’s function is given by

k̂G,t0(x− x0) = ⟨t0|k̂G(x− x0)⟩ =
⟨︄

t0

⃓⃓
⃓⃓
⃓

x− x0

|x− x0|

⟩︄
. (B.5)

If the circle Ch is completely inside Ω, see Fig. B.1c, the outer bounds
of the circle define the extremal values for the normalised local wave-
number vector of the free-field Green’s function. They are given by

k̂
{min,max}
G (x0) =

[︄
cos ϕC ∓ sin ϕC
± sin ϕC cos ϕC

]︄
k̂G(xh − x0) , (B.6)
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which defines a rotation of the normalised local wavenumber vector
k̂G(xh − x0) clockwise or counter-clockwise about the angle

ϕC = arcsin
(︃

Rh
|xh − x0|

)︃
= arcsin (ϱh) . (B.7)

For brevity, the ratio ϱh of the circle radius Rh and the distance
between x0 and the centre xh is introduced. If the ratio is larger than
1, the circle includes the x0 and the arcsin(·) has no real solution.
Hence, the case shown in Fig. B.1a applies and k̂min,max

G,t0
(x0) = ∓1

holds. Using the trigonometric identities, the bounding vectors can
be expressed by

xhRh

Ch

u

x0 t0

n0

k̂max
G,t0

k̂min
G,t0

(a) x0 is part of the circle.

xh
Ch

Rh u

x0 t0

n0

k̂max
G,t0

k̂min
G,t0

(b) x0 is not part of the circle, but the
circle intersects with the boundary ∂S .

xh
Ch

R
h

u

x0 t0

n0

k̂max
G,t0

k̂min
G,t0

(c) The circle is completely inside S .

Figure B.1: The three sketches illustrate
the three different cases that have to
be considered for the computation of
k̂max

G,t0
(x0) and k̂min

G,t0
(x0) for a circular re-

gion Ch. �

k̂
{min,max}
G (x0) =

⎡
⎣
√︂

1− ϱ2
h ∓ϱh

±ϱh

√︂
1− ϱ2

h

⎤
⎦ k̂G(xh − x0) . (B.8)

Their according tangential components are given by evaluating the
vector-matrix-vector multiplication

k̂{min,max}
G,t0

(x0) = ⟨t0|k̂{min,max}
G (x0)⟩

=
√︂

1− ϱ2
h

(︂
t0,x k̂G,x(xh − x0) + t0,y k̂G,y(xh − x0)

)︂

∓ ϱh

(︂
−t0,y k̂G,x(xh − x0) + t0,x k̂G,y(xh − x0)

)︂
.

(B.9)

The first bracket constitutes the scalar product of the tangent vector
t0 and the normalised wavenumber vector k̂G(xh − x0), which is the
tangential component

k̂h,t0 := k̂G,t0(xh − x0) =
⟨︂

t0
⃓⃓
k̂G(xh − x0)

⟩︂
. (B.10)

For the second bracket, the tangent vector is rotated about π/2, which
is equivalent to the normal vector n0. As xh lies inside the convex Ω,
the normal component is always positive. It can hence be expressed

by
√︂

1− k̂2
h,t0

. This yields

k̂{min,max}
G,t0

(x0) = k̂h,t0

√︂
1− ϱ2

h ∓ ϱh

√︂
1− k̂2

h,t0
. (B.11)

As the remaining task, the case depicted in Fig. B.1b has to be de-
tected. Here, the circle overlaps with the boundary ∂Ω. This is done
by inserting the ∓1 for k̂{min,max}

G,t0
(x0) and solving the equation for

k̂h,t0 . As a result, k̂h,t0 = ∓
√︂

1− ϱ2
h marks the critical value be-

low/above which k̂{min,max}
G,t0

(x0) has to be assigned to ±1. A con-
ditional expression covering all three cases of Fig. B.1 is given by

k̂{min,max}
G,t0

(x0) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∓1 if ϱh > 1 , else

∓1 if k̂h,t0 ≶
√︂

1− ϱ2
h ,

k̂h,t0

√︂
1− ϱ2

h ∓ ϱh

√︂
1− k̂2

h,t0
otherwise,

(B.12)

https://github.com/fietew/phd-thesis/tree/master/B_derivations/fig01
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where the upper and lower option for ∓ and ≷ applies for k̂min
G,t0

(x0)

and k̂max
G,t0

(x0), respectively.
For the special case of Ch being in the centre of a circular SSD with

radius R, k̂h,t0 = 0 and ϱh = Rh/R holds for all x0. This yields

k̂{min,max}
G,t0

(x0) =

⎧
⎨
⎩
∓1 if Rh

R > 1 , else

∓ Rh
R otherwise.

(B.13)

B.3 Optimal Sampling Scheme for Wave Field Synthesis

All aliasing frequencies derived in Sec. 4.2.4 exhibit the mathemat-
ical structure w.r.t. x0 and are, thus, jointly discussed. Equidistant
sampling w.r.t. u and v leads to the aliasing frequencies

f S,WFS
u (u) =

c
|x′0(u)| · ∆u · γ(x0(u))

, (B.14)

f S,WFS
v (v) =

c
|x′0(v)| · ∆v · γ(x0(v))

. (B.15)

The scenario-dependent function is denoted as γ and includes the
remaining terms given in e.g. (4.31), or (4.34), which do only depend
on x0, but no the actual parametrisation u and v. x0(u) = x0(v),
x′0(u) = v′(u)x′0(v), and ∆u = ∆v allows to formulate the relation
between the aliasing frequencies for the two parametrisations. Since
v′(u) > 0, it reads

f S,WFS
v (v) = v′(u) f S,WFS

u (u) . (B.16)

Since the aliasing frequency is calculated as the minimum over the
SSD, the resulting optimisation problem is formulated as

maximise
v′(u)

min
v

f S,WFS
v (v) = min

u

[︂
v′(u) f S,WFS

u (u)
]︂

(B.17a)

subject to umax − umin =
∫︂ umax

umin

v′(µ)dµ . (B.17b)

The condition in (B.17b) results from the fact, that u and v share the
same support. The solution to the problem is given by

v′opt(u) =
(umax − umin)∫︁ umax
umin

1
f S,WFS
u (µ)

dµ

1

f S,WFS
u (u)

. (B.18)

This can be proven via reductio ad absurdum: If v′opt(u) is not the op-
timal solution, there has to exist a function w(u), such that v′opt(u) +
w′(u) leads to larger minimum (B.17a) and still fulfils the condition
(B.17b). This leads to

0 < w′(u) f S,WFS
u (u) ∀u ∈ [umin, umax] , and (B.19a)

0 =
∫︂ umax

umin

w′(µ)dµ = w(umax)− w(umin) . (B.19b)

Since the aliasing frequency f S
u (u) is always positive, the first con-

dition is reformulated to w′(u) > 0. Thus, w(u) has to be a strictly
increasing function, which violates the second condition. v′opt(u) has
to be the optimal solution.



Acronyms

2.5D 21/2-dimensional 3, 25, 27–29, 32–34, 37, 38, 42–44, 48–51, 60, 61, 65, 67, 68, 72, 76, 83,
127, 131

2D two-dimensional 18–20, 24, 25, 27, 29, 33, 37, 42, 50, 54
3D three-dimensional 3, 4, 10–12, 19, 20, 24–27, 32, 42, 44, 50, 52, 131
a.k.a. also known as 10, 17, 24, 33, 34, 36, 44, 48, 49, 56, 83, 97, 103, 123
BLUE Best Linear Unbiased Estimate 93, 118
BLUP Best Linear Unbiased Prediction 93
BTF Binaural Transfer Function 87, 88, 96, 103, 108, 115, 116
CHT Circular Harmonics Transform 3, 18, 48, 71, 125, 127
CIIM Corrected Impulse Invariance Method 37
CLL Composite Loudness Level 115–117
D/A digital-to-analog 5, 29, 89
DFT Discrete Fourier Transform 29
DTFT Discrete Time Fourier Transform 29
e.g. exempli gratia 5, 8, 17, 22, 23, 26, 30, 35, 39, 45, 57, 64, 68, 90, 117, 121, 133
ERB Equivalent Rectangular Bandwidth 103
FD Fractional Delay 31
FIR Finite Impulse Response 29–31, 39
GCD Greatest Common Divisor 79
GUI Graphical User Interface 109
HATS Head and Torso Simulator 87, 90, 103, 109
HIE Helmholtz-Integral-Equation 15, 16, 24
HOA Higher Order Ambisonics 31, 85, 101, 107, 115, 122
HPCF Headphone Compensation Filter 86, 88, 90
HRIR Head-Related Impulse Response 86, 88
HRTF Head-Related Transfer Function 86–88, 90, 103, 108, 109
i.e. id est 8, 14–16, 19, 21, 24, 25, 28, 36, 38, 40, 47, 48, 56, 62, 64, 66, 68, 70, 74, 75, 77, 83,

85, 87, 91, 92, 94, 96, 98, 99, 107, 112, 117, 130
IC Interaural Coherence 83, 102, 103
ICHT Inverse Circular Harmonics Transform 3, 34, 124–126
IDFT Inverse Discrete Fourier Transform 36, 39, 40
IFFT Inverse Fast Fourier Transform 36, 37, 39, 45
IIR Infinite Impulse Response 29, 30, 36, 37, 39, 40, 45, 103
ILD Interaural Level Difference 83, 86, 102–104
ITD Interaural Time Difference 83, 84, 86, 90, 102–104, 123
ITU International Telecommunication Union 4



Acronyms 135

LR Linkwitz-Riley 39–41, 45
(L)SFS (Local) Sound Field Synthesis 2, 6–8, 44, 95–105, 110–120, 122, 123, 148, 149
LSFS Local Sound Field Synthesis 5–7, 22–24, 46, 80, 82, 83, 107, 116, 121–123, 148, 149
LTSI linear time and space invariant 12
LWFS Local Wave Field Synthesis 1–3, 7, 23, 37–45, 47, 71–82, 85, 95, 96, 99, 101, 104–108,

110–115, 117, 119–122, 127–130, 135
LWFS-SBL Local Wave Field Synthesis using Spatial Bandwidth Limitation 1–3, 7, 23, 37–43, 45,

71–75, 78–82, 85, 95, 96, 101, 104–107, 110, 111, 113–115, 117, 119–122, 127–130
LWFS-VSS Local Wave Field Synthesis using Virtual Secondary Sources 1, 2, 7, 23, 41–45, 76–80,

82, 85, 95, 96, 99, 101, 104–107, 110, 111, 114, 115, 117, 119, 121, 122
MAA Minimum Audible Angle 83, 84, 90
MSE Mean-Square Error 97
MUSHRA Multiple Stimulus with Hidden Reference and Anchor 108, 109, 111–113, 118–120,

123
NFCHOA Near-Field-Compensated Higher-Order Ambisonics 1–3, 5, 6, 23, 25, 31–42, 44–49,

60, 65–73, 75, 82, 85, 95, 96, 99, 101, 103, 105–107, 110, 111, 114–116, 120–123, 131
NHST Null Hypothesis Significance Testing 112–114
PWD Plane Wave Decomposition 3, 20, 23, 37–39, 44, 45, 47, 71–74, 76, 79, 82, 96, 111, 117,

121, 122, 127–129
QoE Quality of Experience 6
RMSE Root-Mean-Square Error 97–101
SBL Spatial Bandwidth Limitation 1–3, 7, 23, 34, 35, 37–45, 47, 49, 66, 68–75, 78–82, 85, 95,

96, 101, 104–107, 110, 111, 113–122, 127–130, 135
SFA Sound Field Analysis 22, 39
SFS Sound Field Synthesis 5, 6, 10, 14, 17, 20, 22–24, 28, 31, 40, 46–48, 50, 81–87, 90, 91,

94, 95, 97–104, 106, 108–113, 115, 117, 120, 121, 148, 149
SLP Single Layer Potential 24, 25, 27, 29, 32, 42, 44, 47, 50, 54, 60, 68, 77
SPA Stationary Phase Approximation 27, 44, 51–54, 56, 72, 77–79, 124, 126–128, 130
SSD Secondary Source Distribution 2, 22, 26, 28–32, 35, 38, 41–48, 50–58, 60–65, 68, 70–82,

96, 99, 101, 106, 110, 117, 133
TU Technische Universität 60, 61, 88, 95, 109
VBAP Vector Based Amplitude Panning 4, 6, 115
VDA Vargha-Delaney A 113
VSS Virtual Secondary Source 1, 2, 7, 23, 41–45, 76–80, 82, 85, 95, 96, 99, 101, 104–107, 110,

111, 114, 115, 117, 119, 121, 122, 135
w.r.t. with respect to 6–9, 11, 13, 14, 16, 18, 27, 30, 33, 36, 39, 41, 47, 48, 51, 54, 58, 60, 63–65,

69, 70, 73–80, 84, 86, 87, 95, 99, 104, 105, 107, 112, 115, 116, 118–120, 122, 126–128, 133
WFS Wave Field Synthesis 1, 3, 5, 6, 23, 25–31, 34–47, 50–65, 68, 69, 72, 74–78, 80, 81, 84,

95, 96, 99, 101–103, 106, 107, 109–111, 115, 116, 118, 120–123, 128, 129, 133
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Abstract

This thesis investigates the physical and perceptual properties of selected methods for (Local) Sound
Field Synthesis ((L)SFS). First, the mathematical foundations of the approaches are discussed. Special
attention is drawn to the implementation of the methods in the discrete-time domain as a consequence
of digital signal processing. The influence of their parametrisation on the properties of the synthesised
sound field is examined on a qualitative level. A geometric model is developed to predict spatial aliasing
artefacts caused by the spatial discretisation of the deployed loudspeaker arrays. In agreement with
numerical sound field simulations, the geometric model shows an increase of synthesis accuracy for LSFS
compared to conventional SFS approaches. However, the difference in accuracy gets smaller, the closer
the listener is located to the active loudspeakers.

With the help of binaural synthesis, the different (L)SFS approaches are assessed within listening
experiments targeting their spatial and timbral fidelity. The results show that LSFS performs at least as
good as conventional methods for azimuthal sound source localisation. A significant increase of timbral
fidelity is achieved with distinct parametrisations of the LSFS approaches.



Zusammenfassung

Die vorliegende Dissertation untersucht die physikalischen und perzeptiven Eigenschaften von aus-
gewählten Verfahren zur (lokalen) Schallfeldsynthese ((L)SFS). Zunächst werden die mathematischen
Grundlagen dieser Methoden diskutiert. Dabei liegt ein besonderes Augenmerk auf der zeitdiskreten
Implementierung der Verfahren. Der Einfluss verschiedener Parametrierungen auf die Eigenschaften der
synthetisierten Schallfelder wird qualitativ ausgewertet. Ein eigens entwickeltes geometrisches Modell
prädiziert räumliches Aliasing als Folge der räumlichen Abtastung durch die eingesetzten Lautsprechera-
nordnungen. Zusammen mit numerischen Simulationen zeigt das Modell, dass LSFS gegenüber konven-
tioneller SFS zu einer erhöhten Genauigkeit der Synthese führt. Je näher sich der Zuhörer jedoch an den
aktiven Lautsprechern befindet, desto kleiner ist der Genauigkeitsunterschied zwischen beiden Ansätzen.

Mit Hilfe der Binauralsynthese werden verschiedene (L)SFS Verfahren in Hörversuchen auf ihre räum-
liche und klangliche Treue untersucht. Im Bezug auf die horizontale Lokalisierung von Schallquellen
erreicht die LSFS eine Genauigkeit, welche mindestens gleich der von konventionellen Methoden ist.
Für bestimmte Parametrierungen der LSFS Verfahren wird eine signifikant verbesserte klangliche Treue
erreicht.
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