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Abstract 

While the majority of coastal sediments consist of sandy and permeable material, 
in some areas marine ingression caused the submergence of terrestrial carbon-rich 
soils in the form of peatlands. These processes have implications for the nearshore 
marine carbon balance as peat represents a potential source of carbon-containing 
solutes and gases. This PhD-study combines both: geophysical and geochemical 
analysis of field data with hydrological processes and their effects on 
biogeochemical mineralization processes. Onshore- and offshore sediment cores 
and geo-acoustic surveys reveal that Holocene peat deposits with high organic 
contents (Corg 37–53 %) continue more than 90 m (areal extent: 0.16–0.2 km2) in 
front of the adjoining coastal peatland and nature reserve “Heiligensee und 
Hütelmoor”. The study site was subject to the interdisciplinary research project 
Baltic TRANSCOAST, investigating the exchange processes across the land-sea 
interface. The results of the carbon ages point to a much earlier onset of the 
peatland formation (14C-dated to 6725 ±87 cal yr BP) than previously reported. The 
C-isotopic signature of the lowermost offshore peat suggests a purely terrestrial 
origin (δ13C −28.9 ‰) while no fractionation processes or contamination with marine 
organic carbon could be detected. The outer boundary of the peat deposits roughly 
coincides with the offshore limit of a dynamic coast-parallel longshore bar. In the 
northern coastal area, temperature, salinity and bottom water CH4 anomalies 
coincided with shallower outcropping peat deposits. The different influences of 
peat-containing, and non-peat containing coastal sands on the carbon balance in 
shallow water were therefore simulated under controlled conditions in an 
experimental study. The column experiments using naturally layered sediments 
were performed in order to better constrain the coupled flow and biogeochemical 
processes governing carbon transformations in submerged peat under coastal 
fresh groundwater discharge and recirculation of brackish water. The columns, 
containing sediments with and without peat layers (organic carbon, Corg, content 39 
±14 wt %), were alternately supplied with oxygen-rich brackish water from the top 
(salinity ~18) and oxygen-poor, low-saline groundwater from the bottom (salinity 
~1.6). The discharge of low-saline groundwater through the peat layers was 
accompanied by increasing concentrations of dissolved organic carbon (DOC), 
having the same C-isotopic composition as the solid phase. The release and ascent 
of DOC-enriched porewater additionally resulted in the production of dissolved 
inorganic carbon (DIC) and emission of carbon dioxide (CO2), which implies organic 
matter mineralization likely to be associated with oxygen respiration, sulfate (SO4

2-

) reduction and methane (CH4) formation. In contrast, oxygenated brackish water 
intrusion lowered DOC and DIC porewater concentrations and led to a significant 
decrease of CH4 and CO2 emissions. This PhD- study illustrates the strong 
dependency of carbon cycling in shallow coastal areas containing submerged peat 
deposits on the flow and mixing dynamics within the freshwater-seawater transition 
zone. 
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Zusammenfassung 

Zwar bestehen die Küsten größtenteils aus durchlässigen, sandigen Sedimenten, 
doch verursachte der Rückgang der Küsten in einigen Gebieten eine seeseitige 
Überflutung und Erosion von kohlenstoffreichen, terrestrischen Moorsedimenten. 
Dies hat Auswirkungen auf die marine Kohlenstoffbilanz in der Küstenregion, da 
Torf eine potenzielle Quelle für gelösten Kohlenstoff darstellt. Im Rahmen dieser 
Doktorarbeit wurden geophysikalische und geochemische Felddaten mit 
hydrologischen Prozessen und deren Auswirkungen auf biogeochemische 
Mineralisierungsprozesse kombiniert. Vor der Küste des untersuchten Gebietes 
wurde die submarine Ausdehnung Holozäner, organikreicher Torfvorkommen (Corg 
37–53 %) mit Hilfe von land- und seeseitigen Sedimentkernen und 
geophysikalischen Methoden nachgewiesen. Das Untersuchungsgebiet ist Teil des 
interdisziplinären Forschungsprojektes Baltic TRANSCOAST, das 
Austauschprozesse über die Land- und Seegrenze untersucht. Diese Holozänen 
Torfe erstrecken sich mehr als 90 m (flächenhafte Ausdehnung: 0,16–0,2 km2) in 
die Ostsee. Die Alter der Kohlenstoffe (14C-Alter) deuten auf einen früheren Beginn 
der Moorbildung hin (6725 ±87 cal yr BP) als bisher angenommen. Die 
Isotopensignaturen des untersten Torfes deutet auf einen rein terrestrischen 
Ursprung hin (δ13C -28.9 ‰), wobei keine Fraktionierungsprozesse oder 
Verunreinigungen mit marinem organischem Kohlenstoff festgestellt wurden. Die 
Grenze der Torflagerstätten stimmt in etwa mit der seeseitigen Grenze eines 
dynamischen, küstenparallelen Sandrückens überein. In der nördlichen 
Küstenregion decken sich Anomalien (Temperatur, Salzgehalt, CH4) im 
Bodenwasser mit dem Auftauchen der Torfe. Die unterschiedlichen 
Wechselwirkungen von torfhaltigem Küstensand auf den Kohlenstoffhaushalt im 
Flachwasser wurden in einem Säulenexperiment unter kontrollierten Bedingungen 
untersucht. Mit natürlich geschichteten Sedimenten konnte die Kopplung zwischen 
Flüssen und biogeo- chemische Prozessen, welche die Kohlenstoffumwandlung in 
Torfen unter küstennahen submarinen Grundwasserabflüssen steuern, zeigen. Die 
Säulen enthielten Sedimente mit und ohne Torfschichten (organischer Kohlenstoff, 
Corg, Gehalt 39 ±14 Gew.-%), die abwechselnd mit sauerstoffreichem Brackwasser 
von oben (Salzgehalt ~18) und sauerstoff-, und salzarmem Grundwasser von unten 
(Salzgehalt ~1,6) versorgt wurden. Die Einleitung von salzarmem Grundwasser 
durch die Torfschichten ging mit steigenden Konzentrationen an gelöstem 
organischem Kohlenstoff (DOC) einher, die im salzarmen Porenwasser 
übereinstimmende Isotopenverhältnisse wie die Festphase aufweisen. Die 
Freisetzung und der Aufstieg von DOC-angereichertem Porenwasser wurde von 
der Produktion von gelöstem anorganischem Kohlenstoff (DIC) und der Emission 
von Kohlendioxid (CO2) begleitet, was eine Mineralisierung der organischen 
Substanz impliziert (z.B. Sauerstoffatmung, Sulfatreduktion (SO4

2-) und 
Methanbildung (CH4)). Im Gegensatz dazu führte das Eindringen von 
sauerstoffhaltigem Brackwasser zu niedrigeren DOC- und DIC-
Porenwasserkonzentrationen und deutlich niedrigeren CH4- und CO2- Emissionen. 
Diese Doktorarbeit veranschaulicht die starke Abhängigkeit des 
Kohlenstoffkreislaufs in flachen Küstengebieten mit submarinen Torfablagerungen 
von der Strömungs- und Mischdynamik innerhalb der Grundwasser-Brackwasser-
Übergangszone. 
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Figure 7: Measurements of salinity, temperature (°C), and concentrations of dissolved oxygen (mg 

l-1), methane (nmol l-1) and nitrous oxide (nmol l-1) at station 33 in July 2017.  

Figure 8: Methane concentrations in bottom water are plotted against the distance to the waterline. 

Along the beach face the concentrations show a strong variation with a mean value of about 100 

times the atmospheric equilibrium concentrations of ~3 nmol l-1. The concentrations measured at 0 
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Figure 13: Top: Bathymetry and location of the study area along the southwestern Baltic Sea coast. 

White line parallel to the shore in southwest-northeastern direction indicates the bathymetric cross 

section shown underneath. The positions of sediment cores (red stars) and grab samples (white 

crosses) are also indicated. The black lines show the locations of the seismic profiles. The longshore 
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days of the experiment period and under GW and SW flow regimes. The white arrows show the flow 
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Motivation 

The coastline of the study area represents a threshold zone between terrestrial and 

marine ecosystems. As a result of environmental interactions regarding 

hydrological exchange, solute transport and biogeochemical processes, this zone 

is subject to temporal and spatial changes of highly variable scales and magnitudes. 

Research on emissions of climate-relevant trace gases (e.g. CH4 and N2O) from 

shallow coastal areas, in particular from the southern Baltic Sea, is rare, although 

coastal zones contribute the bulk of marine trace gas production both on a global 

scale and in the North Sea and Baltic Sea regions. The overall objective of this 

thesis was to better understand the interactions between these adjacent and tidely 

connected systems and to assess important drivers of nearshore biogeochemical 

cycles and trace gas production. 

During the first year of this research project, the focus lay on intensive field work, 

involving research in coastal offshore areas with scientific diver missions, repetitive 

surveys along a near coastal transect and investigations along the interface 

between the Baltic Sea and the coastal peatland “Heiligensee und Hütelmoor”. 

Specific methodological approaches were used to investigate the subterranean 

mixing zone of land-derived groundwater and seawater. The main goals of the 

surveys along the waterline and along the offshore transects in 2016 were to identify 

pore- and surface water anomalies of solutes and temporal patterns with respect to 

physicochemical parameters and solutes. 

At the same time, the shallow offshore continuation of peat deposits at the southern 

coast of the Baltic Sea was investigated, using a combination of hydro-acoustic 

methods, geologic surveys and physical and geochemical characterization of 

surface sediments and sediment cores, which leaded to a full geophysical and 

geological assessment of the development of the seabed. The objectives were to 

determine the sedimentary surface and subsurface structure offshore the wetland 

area with the extensions of former terrestrial peat deposits into the Baltic Sea and 

to estimate the Holocene dynamics of the wetland formation and erosion. Knowing 

the extension and age of the peat sediments in the Baltic Sea, allowed to constrain 

the onset of the peatland formation and to estimate the total extent of submerged 

terrestrial organic matter and its rate of degradation in shallow coastal areas. These 

findings motivated the multi- component/interdisciplinary column experiments that 

were conducted, in order to improve the fundamental, process-based 
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understanding of the biogeochemical processes governing carbon and nutrient 

transformations and exchange of trace gases in shallow waters impacted by 

terrestrial nutrient input from the coastal peatland. In 2017, the mobilization of peat-

derived DOC and biogeochemical processes that govern carbon transformations 

were investigated, by flow-through column experiments using natural sediments 

sampled at the study site. During the experiments, we imposed alternating cycles 

of upward flowing oxygen-depleted groundwater and downward flowing oxygen-rich 

brackish water. The main goal of the experimental study was to monitor the 

biogeochemical processes governing carbon transformations in submerged coastal 

peat in the mixing zone between low-salinity groundwater and recirculated brackish 

water. Therefore, the emissions of CH4 and CO2 from the cores were measured in 

the experiments. To the best of our knowledge, this was the first experimental study 

investigating DOC mobilization and mineralization processes in submerged coastal 

peat soil and the production of climate relevant trace gases under dynamic 

(bidirectional) flow conditions, that were controlled to simulate freshwater-seawater 

mixing in the subterranean estuary. It can be hypothesized that submerged, 

formerly terrestrial peat deposits in the surf zone of the study area affect 

biogeochemical processes by inhibiting seawater recirculation, while emitting 

degradable dissolved organic carbon compounds. These processes could increase 

microbial activity, likely result in increased marine production and release of trace 

gases at the study site. 
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1. Introduction 

1.1. Climate relevant trace gases in coastal zones 

Coastal zones are important for ecological, social, economical and scientific 

reasons, for example development of coastlines, land usage and infrastructure, 

archeology, sediment dynamics and biogeochemical fluxes (Boynton et al., 1980; 

Slomp and Van Cappellen, 2004; Small and Nicholls, 2003; Valiela, 2009; Wong et 

al., 2014). Given their special interface with land and atmosphere, coastal zones 

are among the most productive regions on earth and at the same time subject to 

constant natural and anthropogenic modification and destruction. The main cause 

for the poor ecological status of coastal areas is considered to be an excess supply 

of nutrients, referred to as eutrophication. Although difficult to estimate the 

consequences, eutrophication is a major ecological problem in coastal areas and 

estuaries, enhancing growth of algae and plants, which, after sedimentation of the 

organic residues, increases oxygen demand in bottom waters and may constrain 

or eliminate aerobic benthic organism due to anoxia (Rosenberg, 1985; Vallius, 

2006). The formation of such anoxic bottom water layers can enhance anoxic 

organic matter mineralization, increasing the production of climate-relevant trace 

gases such as methane (CH4) and nitrous oxide (N2O), as these are strongly 

controlled by the oxygen (O2) concentration (Bange et al., 2010; Gelesh et al., 

2016). Thus, on global scales the coastal regions, especially estuaries, lagoons and 

upwelling zones have been identified as a major contributor of marine trace gases 

(Bange et al., 2010; Bange, 2006; Heyer and Berger, 2000; Rhee et al., 2009; 

Weiss et al., 1992). 

 

1.1.1. Methane 

Methane (CH4) is the most important greenhouse gas after water vapour and 

carbon dioxide (CO2) with a global warming potential 25 times more potent than 

CO2 over a 100 year time horizon (Koch et al., 2014). On a global scale, the 

atmospheric CH4 concentration has increased by about 257 % since 1750, 

contributing ~32 % of the anthropogenic radiative forcing (Stocker et al., 2013) and 

has nowadays reached 1845 ppb (WMO 2016). Global methane emissions from 

https://paperpile.com/c/5lR3Uh/ycuX+thco+tmas+KFqF+sCau
https://paperpile.com/c/5lR3Uh/ycuX+thco+tmas+KFqF+sCau
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the open ocean into the atmosphere are modest (0.4–1.8 Tg CH4 yr-1) compared to 

the emissions from wetlands (117.2 ±49.7 Tg CH4 yr-1), continental shelves (13 Tg 

CH4 yr-1) and estuaries (between 1 and 7 Tg CH4 yr-1) (Bange et al., 1994; Borges 

et al., 2016; Zhang et al., 2017). Together, coastal regions and estuaries generate 

approximately 75 % of the total marine CH4 emissions to the atmosphere (Bange 

et al., 1994), though this number remains highly uncertain. 

The most abundant process of marine CH4 production is microbial methanogenesis 

(Cicerone and Oremland, 1988) (e.g. CO2 + 4H2 → CH4 + 2H2O), a form of 

anaerobic respiration, using CO2 instead of O2 as the electron acceptor. The 

majority of methane production worldwide, however, results from acetate 

degradation (e.g. CH3COOH → CO2 + CH4) (Deppenmeier, 2002). The formation 

and release of CH4 into the water column in the marine environment is closely 

associated to the microbial reduction of sulfate (SO4
2-) to hydrogen sulfide (H2S), 

which is the dominating metabolic process of organic matter mineralization in 

anoxic marine sediments (Zehnder and Mitchell, 1978). Sulfate-reducing bacteria 

(SRB) are able to successfully outcompete methanogens during organic matter 

degradation (Whiticar, 2002) for available free hydrogen (H2) e.g. 4H2 + SO4
2- → 

HS- + OH- + 3H2O (Sørensen et al., 1981). Additionally, methanotrophic microbes 

(bacteria and archaea) oxidize CH4 to CO2 as their source of carbon and energy 

under oxic and anoxic conditions using oxygen (O2) and sulfate (SO4
2-), respectively 

(Jørgensen et al., 2001; Schmaljohann, 1996). Thus, in marine environments high 

SO4
2- concentrations sustain anaerobic CH4 oxidation, which provides an effective 

barrier preventing sedimentary CH4 from reaching the water column (Dale et al., 

2008; Iversen and Blackburn, 1981; Jørgensen et al., 2001; Reeburgh and Alperin, 

1988). Nevertheless, in near-coastal shallow regions, sediment-derived CH4 still 

represents a significant source of dissolved CH4 in the water column (Bange, 2006; 

Borges et al., 2016; Gelesh et al., 2016). 

 

1.1.2. Nitrous oxide 

Coastal seas and shelf areas are affected by high loads of land-derived nitrogen, 

most of it being of anthropogenic origin. Dissolved nitrogen can serve as a 

fundamental source for the production and release of marine nitrous oxide (N2O) 

(Bange et al., 2010; Hsiao et al., 2014; Seitzinger et al., 2000; Sonesten et al., 

https://paperpile.com/c/5lR3Uh/VeER+Uby4+xwts
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https://paperpile.com/c/5lR3Uh/S989+HBoP+j6eB+MZ9p
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2018). On a global scale coastal oceans and estuaries contribute between 0.5 and 

2.9 Tg N yr-1 of the total natural and anthropogenic N2O sources of 17.7 Tg N yr-1 

(IPCC, 2007). The present day concentration within the atmosphere is 328 ppb and 

rises at a rate of 0.25 % y-1 (Prinn et al., 1990). Nitrous oxide has an atmospheric 

residence time of 114 years. It is a major ozone-depleting substance and has a 

global warming potential nearly 300 times greater than that of carbon dioxide, 

making it the third most important climate-relevant gas in the atmosphere (Ehhalt 

et al., 2001; Forster et al., 2007; Smith, 2010). In marine ecosystems N2O is formed 

by microbial processes predominantly nitrification (NH4
+ → N2O → NO2

− →NO3
−) 

and denitrification (NO3
−→ N2O→ N2) under oxic to suboxic conditions (Bange et 

al., 2010; Bange, 2006) and is dependent on external parameters such as 

temperature, O2 concentration and organic matter supply. Higher concentrations of 

N2O in the water relative to the atmosphere will lead to concentration compensation 

and thus represents a source of atmospheric nitrous oxide. Equilibrium 

concentrations are dependent on water temperature, salinity, ambient air pressure 

and the atmospheric N2O concentrations (Bange, 2006; Weiss and Price, 1980). 

So far N2O was measured in the northern and south-western Baltic Sea (Rönner, 

1983) showing concentrations of 79 to 148 % and 91 to 312 %, respectively, 

compared to an atmospheric equilibrium concentration of 10 nmol l-1 (Bange et al., 

1998). Strong oversaturation of N2O was also detected in the Bornholm basin with 

values up to 31.3 nmol l-1 (equivalent to 3 times equilibrium with the atmosphere) 

and also in the shallow estuarine waters of the Limfjord and Norsminde Fjords, 

Denmark, with concentrations up to 490 nmol l-1 (Bange et al., 2010; Myllykangas 

et al., 2017). 

 

1.2. Geology and physical processes in coastal regions 

The present shorelines of the Baltic Sea have been shaped during the Littorina Sea 

period since about 8000 cal yr BP (Lemke 1998; Björck 1995) after the last glacial 

maximum (LGM). During the Holocene retreat of the glaciers and the associated 

rise in sea level (Lampe, 2005) submarine terraces of former shorelines have 

developed (Kolp, 1990). With the onset of the Littorina transgression (Lampe, 2002; 

Reimann et al., 2011), the southern Baltic Sea level rose rapidly to about 2 m below 

today's sea level, about 8000 cal yr BP. At 5800 cal yr BP a stabilization of the sea 

https://paperpile.com/c/5lR3Uh/S989+HBoP+j6eB+MZ9p
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level was observed and has remained largely stable in this area since 4000 cal yr 

BP facilitating the formation of coastal wetlands. The age and position of basal peat 

deposits, as formed in former coastal wetlands, can be used to obtain information 

about past sea level (Feldens and Schwarzer, 2012; Gehrels and Anderson, 2014; 

Milliman and Emery, 1968). Ongoing isostatic movements cause a subsidence of 

the southern Baltic Sea coast by about 0.1–0.2 cm yr-1 (Lampe, 2005; Lampe et al., 

2011; Rosentau et al., 2007). The relative sea level rise of approximately 0.1–0.12 

cm yr-1 (Dietrich and Liebsch, 2000) increases the pressure on the local coastal 

wetlands caused by the eustatic sea level rise, and thus affects the presence of 

bedforms in shallow waters. 

Ongoing coastal water dynamics such as waves and currents-induced erosion, 

sediment transport and accumulation have influenced the evolution of coastlines 

immensely and have led to coastline displacement due to land-loss or land 

reclamation and therefore changed spatial extensions of coastal ecosystems and 

habitats (Harff et al., 2009; Lehfeldt and Milbradt, 2000; Schlungbaum and Voigt, 

2001). In the Baltic Sea, local sea-level rise can vary widely due to isostatic 

adaptation (Köster 1961). The majority of global coastlines such as the wadden sea 

and shallow beaches, river deltas, estuaries, cliffs but also tropical mangroves, 

marchland and other types of coastal wetlands consist of permeable, soft sediments 

and increasingly suffer from adverse processes such as erosion, flooding and 

submergence. The impact of submergence on coastal areas is accelerated by sea 

level rise and land subsidence caused by large-scale drainage for agricultural use 

and will therefore stress and shape coastal urban living areas and ecosystems in 

the future (Hooijer et al., 2012; Nieuwenhuis and Schokking, 1997). Along the Baltic 

Sea, about 1800 km2 of coastal low-lying wetland is influenced by saltwater 

intrusion (Sterr, 2008). Sea level rise is further expected to result in a loss of wetland 

areas in inland direction, provided that accumulation of sediments is lower than 

erosion and the vertical growth rate is below that of sea level rise (Lampe and 

Janke, 2004a; Vestergaard, 1997). Although coastal wetlands account for only ~15 

% of the global wetland area, their ecosystem services are estimated to account for 

43.5 % of the value of all natural biomes (Davidson et al., 2019) and have long been 

recognized as highly endangered by sea water intrusion, erosion and submergence 

(Nicholls and Cazenave, 2010; Vestergaard, 1997; Wong et al., 2014). 
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1.3. Hydrological processes across the terrestrial marine interface 

The coastal systems in which subterranean land-derived freshwater measurably 

dilutes coastal seawater within the coastal aquifer, contain a so-called subterranean 

estuary as they show the most important features of surface estuaries (Moore, 

1999). The land-sea interface is subject to hydrological exchange with significant 

impacts on mineralization processes within the subterranean estuary (Michael et 

al., 2005; Moore, 1999; Robinson et al., 2007; Slomp and Van Cappellen, 2004) 

and wetlands (Hahn et al., 2015; Neubauer, 2013). These exchange processes will 

be enforced by more frequently occuring storm events and sea-level rise in the 

future (Nicholls and Cazenave, 2010; Plag and Jules-Plag, 2013; Wang et al., 

2016). In some areas of the Baltic Sea, coastline retreat has caused submergence 

of terrestrial, organic carbon rich peat sediments (Kreuzburg et al., 2018; Lampe et 

al., 2010; Sergeev et al., 2015a). Erosion and submergence are reinforced by land 

subsidence of peatland and can alter the hydrologic exchange processes and 

pathways across the land-sea interface (Hooijer et al., 2012; Nieuwenhuis and 

Schokking, 1997) such as seawater intrusion, surficial runoff, sub-surface mixing, 

and submarine groundwater discharge (SGD). 

Submarine groundwater discharge, comprises all flow of water from the seabed into 

the coastal ocean (Burnett et al., 2003) and consists predominantly of recirculated 

seawater, driven through permeable sediments by wave action, density gradients 

and sea level dynamics (Cyberski, 2011; Moore, 2010; Robinson et al., 2007; 

Santos et al., 2012). Only a minor fraction of SGD is freshwater and typically 

amounts to about 4–10 % (Burnett et al., 2006; Li et al., 1999; Moore, 2010). This 

fraction is mainly controlled by groundwater recharge and the hydraulic gradients 

between land and sea, and is often O2-depleted and enriched in nutrients, methane 

(CH4) and free hydrogen (H2) (Andersen et al., 2005; Bugna et al., 1996; Slomp and 

Van Cappellen, 2004). Since coastal peatlands mostly exhibit low topographic 

relief, their hydraulic gradients and freshwater discharge into coastal areas tend to 

be relatively low (Barlow and Reichard, 2010). Nonetheless, even in coastal regions 

of low elevation, SGD can reach values of up to 200 cm d-1 (Rapaglia, 2005) and 

can therefore deliver high fluxes of chemical compounds to the coastal 

environment. For instance, SGD-borne nitrogen fluxes can be of the same order of 

magnitude as those delivered by rivers (Knee et al., 2010; Knee and Paytan, 2012; 

Seitzinger and Harrison, 2008) and has been identified as a source of dissolved 

https://paperpile.com/c/5lR3Uh/QCz4
https://paperpile.com/c/5lR3Uh/QCz4
https://paperpile.com/c/5lR3Uh/R9fC+lqRo+QCz4+thco
https://paperpile.com/c/5lR3Uh/R9fC+lqRo+QCz4+thco
https://paperpile.com/c/5lR3Uh/PvSL+PXP3
https://paperpile.com/c/5lR3Uh/uE2W+HpyM+G284
https://paperpile.com/c/5lR3Uh/uE2W+HpyM+G284
https://paperpile.com/c/5lR3Uh/oGxh+MQS6+6amR
https://paperpile.com/c/5lR3Uh/oGxh+MQS6+6amR
https://paperpile.com/c/5lR3Uh/anTm+nVsh
https://paperpile.com/c/5lR3Uh/anTm+nVsh
https://paperpile.com/c/5lR3Uh/iIwe
https://paperpile.com/c/5lR3Uh/q9xi+HMmO+lqRo+HqXW
https://paperpile.com/c/5lR3Uh/q9xi+HMmO+lqRo+HqXW
https://paperpile.com/c/5lR3Uh/ddX4+mszX+HqXW
https://paperpile.com/c/5lR3Uh/thco+roNo+qzGK
https://paperpile.com/c/5lR3Uh/thco+roNo+qzGK
https://paperpile.com/c/5lR3Uh/gxTV
https://paperpile.com/c/5lR3Uh/iT16
https://paperpile.com/c/5lR3Uh/mJ2h+GMf9+Tuqd
https://paperpile.com/c/5lR3Uh/mJ2h+GMf9+Tuqd
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carbon to nearshore marine environments (Bugna et al., 1996; Bussmann and 

Suess, 1998; Porubsky et al., 2013; Schlüter et al., 2004). Thus, SGD can have a 

considerable impact on biogeochemical processes and influence ecosystems in 

coastal regions (Hu et al., 2006; Leote et al., 2008; Paerl, 1997). 

 

1.3.1. Coastal interactions with peatlands 

Peatlands cover only 3 % of the earth’s surface but store about 30 % of global soil 

organic carbon (Corg) and 12 to 21 % of global soil organic nitrogen (Gorham, 1995; 

Limpens et al., 2008; Menon et al., 2007; Strack, 2008; Wang et al., 2016). Located 

along the coastal margins, peatlands can act as a major source of organic carbon 

and and nitrogen to coastal and shelf areas (Freeman et al., 2001; Mulholland, 

2003; Wang et al., 2016). The uptake capacity of organic matter is predominantly 

controlled by the prevailing hydrological conditions (Roulet et al., 1992; Zauft et al., 

2010). When drained, peatlands can switch from being a carbon sink to emitting 

greenhouse gases such as CO2 (Sirin and Laine, 2008; Strack, 2008). By contrast, 

flooded peatlands usually represent a source of atmospheric CH4 (Gatland et al., 

2014; Hahn et al., 2015) and have repetitively been recognized as a major source 

for N2O (Marushchak et al., 2011; Menon et al., 2007; Palmer et al., 2012; Repo et 

al., 2009). Hydrologic exchange such as saltwater intrusion between coastal 

peatlands and the adjacent shoreline may impact onshore ecosystems and 

biogeochemical processes in different magnitudes (Charman and Others, 2002; 

Hahn et al., 2015; Hoggart et al., 2014). Seawater-derived solutes such as chloride 

(Cl-), dissolved oxygen (O2) and sulfate (SO4
2-) can affect the mineralization of 

organic matter in the seabed (Chambers et al., 2014; Mulholland, 1981; 

Rezanezhad et al., 2016; Weston et al., 2011). A number of experimental 

approaches have identified the ionic strength of advective porewater, measured by 

electrical conductivity (EC), as an important impact factor for DOC concentrations 

and mobilization, where an increasing EC results in decreasing DOC release from 

organic soils and vice versa (Clark et al., 2011; Kalbitz et al., 2000; Limpens et al., 

2008; Tiemeyer et al., 2017; Tipping and Hurley, 1988). Furthermore, Tiemeyer et 

al., (2017) reported that the production of DOC is dependent on the residence time 

of the porewater, showing a clear negative correlation between DOC 

concentrations and higher porewater velocities in the effluent of a saturated column 

https://paperpile.com/c/5lR3Uh/roNo+lyxo+1x5X+c0gJ
https://paperpile.com/c/5lR3Uh/roNo+lyxo+1x5X+c0gJ
https://paperpile.com/c/5lR3Uh/xiGW+BZTh+Pwq0
https://paperpile.com/c/5lR3Uh/2zSx+kSXY+uE2W+phKX+Rt3Kk
https://paperpile.com/c/5lR3Uh/2zSx+kSXY+uE2W+phKX+Rt3Kk
https://paperpile.com/c/5lR3Uh/xXwx+0Dfa+uE2W
https://paperpile.com/c/5lR3Uh/xXwx+0Dfa+uE2W
https://paperpile.com/c/5lR3Uh/f133+qdMS
https://paperpile.com/c/5lR3Uh/f133+qdMS
https://paperpile.com/c/5lR3Uh/kSXY+X4CO
https://paperpile.com/c/5lR3Uh/PvSL+RlAv
https://paperpile.com/c/5lR3Uh/PvSL+RlAv
https://paperpile.com/c/5lR3Uh/MNHw+2zSx+kpse+1Kz1
https://paperpile.com/c/5lR3Uh/MNHw+2zSx+kpse+1Kz1
https://paperpile.com/c/5lR3Uh/NmP8+PvSL+LZID
https://paperpile.com/c/5lR3Uh/NmP8+PvSL+LZID
https://paperpile.com/c/5lR3Uh/ruIT+6Run+i0AG+Fxup
https://paperpile.com/c/5lR3Uh/ruIT+6Run+i0AG+Fxup
https://paperpile.com/c/5lR3Uh/NGuD+phKX+Pt5V+TL8o+J3or
https://paperpile.com/c/5lR3Uh/NGuD+phKX+Pt5V+TL8o+J3or
https://paperpile.com/c/5lR3Uh/NGuD
https://paperpile.com/c/5lR3Uh/NGuD
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experiment. Positive correlations between the concentration and production of CH4 

and DOC were previously found, which could further be linked to a common 

subsurface organic carbon (buried peat) source (Aravena and Wassenaar, 1993; 

Liu et al., 2011). Marine organic-rich peat sediments can be found in offshore 

environments of adjoining peatlands (Delaune et al., 1994; Kreuzburg et al., 2018; 

Taffs et al., 2012), where they are constantly supplied with high amounts of SO4
2-. 

How these submerged peat deposits contribute to biogeochemical cycling, 

however, is not well understood. 

1.4. Study site 

The study site is located in the northeast of Rostock-Warnemünde, northern 

Germany, and comprises a nearshore (within 1 km offshore) shallow coastal area 

with water depth mostly <6 m and an adjacent shoreline of 3 km length in front of 

the coastal peatland and nature reserve “Heiligensee und Hütelmoor” (Figure 1). 

The coastline of the study area is mainly facing west wind conditions. 

 

 
Figure 1: Overview of the study site with (a) south western Baltic Sea, (b) lower Warnow river 
system and study site in the north east of Rostock and (c) on- and offshore study area with nearshore 
shallow water stations and the nature reserve “Heiligensee und Hütelmoor” 

 

1.4.1. Onshore area 

The peatland extends roughly 1.6 km in the north-south direction and 1.4 km in the 

east-west direction and is surrounded by the Rostocker Heide, a forest area with 

sandy soils. The peat layer consists of Carex and Phragmites with a thickness of 

https://paperpile.com/c/5lR3Uh/Sy4i+oW2V
https://paperpile.com/c/5lR3Uh/Sy4i+oW2V
https://paperpile.com/c/5lR3Uh/oGxh+7m4y+03VA
https://paperpile.com/c/5lR3Uh/oGxh+7m4y+03VA
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up to 3 m behind the dunes and thins out in landwards direction. The entire nature 

reserve experienced large anthropogenic disturbances. It was drained for 

agricultural purposes until the 1970s (Dahms, 1991; Voigtländer et al., 1996), and 

subsequently rewetted for restoration of the biodiversity in the 1990s (Hahn et al., 

2015; Hübner and Gräff, 2013; Miegel et al., 2016). Aside from the northern area, 

where lake Heiligensee has been developed, the peatland still drains through an 

extensive channel system towards the south. The drainage with open ditches 

started in the 1970s, causing a severe degradation of the upper peat horizons and 

subsidence of the soil surface. In order to restore pristine conditions, drainage was 

reduced and a dam was constructed in 2010. In the last decades, the onshore area 

has been subject to a wide range of investigations, including gas emissions and 

hydrology monitoring programs as well as geologic surveys (Jurasinski et al., 2018; 

Koch et al., 2014; Koebsch et al., 2015; Kreuzburg et al., 2018; Lasak et al., 2010; 

Miegel et al., 2016; Voigtländer et al., 1996; Wen et al., 2018). 

 

 

Figure 2: The photographs of the beach areas illustrate the strongly alternating dynamics along the 
shoreline showing (a) low water level events (0.6 m b.s.l.) (February, 2017, M. Ibenthal) with 
outcropping peat deposits at the waterline and (b) flooding events showing high water level (+1.6 m 
a.m.s.l.) (February, 2019, H Burchard), resulting in the erosion of peat blocks (c). The aerial view 
shows the coastal area in front of the lake Heiligensee (d), which is subject to strong coastal erosion 
and with outcropping peat deposits along the beach face (L. Tiepolt, 2014) 

 

https://paperpile.com/c/5lR3Uh/zg5Mp+75t1B
https://paperpile.com/c/5lR3Uh/PvSL+RmKE1+7ZErQ
https://paperpile.com/c/5lR3Uh/PvSL+RmKE1+7ZErQ
https://paperpile.com/c/5lR3Uh/fV1b+WAVi9+bncQw+cQnjH+zg5Mp+RmKE1+oGxh+w9kr
https://paperpile.com/c/5lR3Uh/fV1b+WAVi9+bncQw+cQnjH+zg5Mp+RmKE1+oGxh+w9kr
https://paperpile.com/c/5lR3Uh/fV1b+WAVi9+bncQw+cQnjH+zg5Mp+RmKE1+oGxh+w9kr
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1.4.2. Waterline and offshore area 

The shoreline has been subject to beach nourishments, groin and dyke 

constructions after several wash-over events (Kolp, 1957; Voigtländer et al., 1996). 

Based on the observed coastal retreat rates, rough calculations of 20 to 115 cm yr-

1 (Rebentrost, 1973) assume a total land loss of ~3 km of this low-lying (-0.1 to +0.7 

m above mean sea level) wetland since the onset of its formation (Bohne and 

Bohne, 2008; Voigtländer et al., 1996). To reduce coastal erosion and flooding, an 

artificial dune dike was built in 1903, separating and protecting the low-lying 

peatland from flooding of the Baltic Sea (Bohne and Bohne, 2008; Miegel et al., 

2016; Voigtländer et al., 1996). Nevertheless, the area was flooded several times, 

most recently in 1995, which necessitated the reconstruction of the dune dike in 

1996. Since 2000, the dune dike has not been rebuilt in order to achieve 

renaturation and the restoration of natural dynamics, resulting in estimated coastal 

retreat rates of 120–210 cm yr-1 (General Plan Küsten und Hochwasserschutz, 

Mecklenburg-Vorpommern). Physical stress of coastal dynamics and retreat results 

in outcropping peat-layers along the beach in the northern area of the study site, 

whereas the central and southern area is covered by permeable heterogeneous 

sediments (Hübner and Gräff, 2013; Kreuzburg et al., 2018). 

1.4.3. Warnow-river 

The Warnow-river enters the Baltic Sea ~6 km southwest of the coastal study site 

and represents the only significant supply of river water to the coastal area (Figure 

1). The Warnow is subdivided into two sections. The majority of the river course 

with a total length of 152 km is river dominated (upper Warnow), whereas the 

shorter section (~13 km) of the Warnow is strongly dominated by Baltic Sea water 

(lower Warnow or Warnow estuary), showing increasing salinity towards the outlet 

(Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg Vorpommern, 

LUNG-MV). Due to the low discharge (50–60 m3) and mixing, the estuary is strongly 

stratified and is characterized by a near-bottom net inflow of saline Baltic Sea water 

and a near-surface low saline outflow (Buer et al., 2018; Jurasinski et al., 2018; 

Thäns, 2012). Both the lower Warnow and minor streams such as the 

Prahmgraben, which connects the Warnow with the coastal peatland via the 

Breitling (Figure 1) (Miegel et al., 2016), are considered to be strongly eutrophic 

due to agricultural fertilization (LUNG–MV, 2008). 

https://paperpile.com/c/5lR3Uh/WYvZa+zg5Mp
https://paperpile.com/c/5lR3Uh/WhqWl
https://paperpile.com/c/5lR3Uh/WzGq1+zg5Mp
https://paperpile.com/c/5lR3Uh/WzGq1+zg5Mp
https://paperpile.com/c/5lR3Uh/zg5Mp+WzGq1+RmKE1
https://paperpile.com/c/5lR3Uh/zg5Mp+WzGq1+RmKE1
https://paperpile.com/c/5lR3Uh/7ZErQ+oGxh
https://paperpile.com/c/5lR3Uh/bncQw+svsG+ZOlU
https://paperpile.com/c/5lR3Uh/bncQw+svsG+ZOlU
https://paperpile.com/c/5lR3Uh/RmKE1
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2. Methods 

Scientific investigations in shallow water regions (0–10 m) are very difficult due to 

poor accessibility. In addition, they are limited by methods usually applied in marine 

sciences and using tools often developed for large research vessels and greater 

water depths. The resulting gap in knowledge was termed the „white coastal band“ 

(personal communication with Klaus Schwarzer, 2015). To address this issues, 

IOW‘s Klaashahn platform was used as a state-of-the-art research working boat 

over the past years to enhance the understanding of these shallow coastal regions. 

 

2.1. Geochemical field surveys 

2.1.1. Offshore water sampling 

In the offshore area, seven surveys of water sampling were carried out during which 

bottom- and surface water was sampled at 25 stations (Figure 1c) on one-day 

cruises with the research work boat Klaashahn in 2016 (March, April, June, July, 

September, December) and 2017 (June). Samples for analysis of CH4, N2O and 

nutrients were collected with a Niskin bottle in 100 ml crimp vials. All samples were 

filled with overflow to avoid atmospheric contamination and were immediately 

closed on board and preserved with saturated HgCl solution equivalent of 0.25 % 

of the sample volume. The vials were stored upside down at 4 °C until analysis. 

2.1.1.1. Water column characteristics 

A cruise on the research vessel Elisabeth Mann Borgese (EMB) in 2017 enabled 

repetitive investigation of the water column at Station 33 (Figure 1). Salinity and 

temperature were recorded using a Sea-and-Sun CTD connected with Aanderaa 

Type 3835 for measuring the distribution of oxygen concentrations. Additionally, 

multilevel sampling for analysis of CH4 and N2O was conducted in order to obtain 

information about the distribution of trace gas concentrations in the water column 

and its temporal variability. 
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2.1.1.2. Mini chamber lander system 

At offshore stations 33, 25, and 35 (Figure 1) a Mini-Chamberlander System 

(Unisense®) was installed in 2017 for durations between 24 and 30 h, following the 

methods previously described by Thoms et al., (2018). The system is equipped with 

a ~27 litres incubation chamber, open at its base, enclosing and isolating a 0.09 m2 

area of the sediment-surface-water interface (Figure 3). Syringes of 60 ml were 

installed in a syringe-rosette to sample the incubated water in 2 h time intervals. 

Changes in physical parameters and chemistry of the incubated water were 

analyzed from the water samples (concentrations of CH4, N2O, Nutrients) and 

sensors of conductivity, temperature, oxygen. Samples from inside the incubation 

chamber were used to detect the accumulation or depletion of nutrients and gas 

concentrations and were used to calculate flux rates of CH4 and N2O according to 

the formula 1: 

 

where F is the flux (µmol m-2 d-1), dC/dt is the concentration change over time, V is 

the volume of water inside the incubation chamber, and A is the area enclosed by 

the incubation chamber. Further, oxygen and conductivity was recorded inside and 

outside the chamber. 

 

 
Figure 3: Schematic representation of the mini-chamber-lander system with syringes rosette on top 
of the lander, the incubation chamber partly installed in the sediment, and the multimeter system. 
 
 
 

https://paperpile.com/c/5lR3Uh/NMa9
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2.1.2. Shoreline field campaigns 

The shoreline along the coastal peatland was investigated with respect to the 

characteristics of the surface and porewater in February 2016 and June, July and 

August 2017 (for onshore stations see Figure 1). Porewater samples were extracted 

from sediments using 1m push-point porewater lances and subsequently analyzed 

for oxygen, salinity, nutrients (NH4
+, NO3

-, Si, PO4
3-) and trace gas concentrations 

(CH4, N2O). 

2.1.3. Investigations of the Warnow-river system 

The water masses from the Warnow-river system was first investigated in a 

sampling survey in June 2016. It was the aim to better estimate the impact of river 

water reaching the study site with the potential changes of the concentration of 

dissolved trace gases (N2O, CH4). The survey clearly indicated a downstream 

gradient with decreasing concentrations towards the outlet of the Warnow estuary 

and bottom water concentrations of 1115 nmol l-1 in the upper end of the estuary, 

Stadthafen (see Figure 1b). According to these high concentrations a study was 

planned to investigate to what extent the Warnow is a potential source of trace 

gases for the atmosphere, the Baltic Sea and the study site in front of the coastal 

peatland “Heiligensee und Hütelmoor”. This study was embedded in this PhD thesis 

and conducted from January to June 2017 mainly by Anne Breznikar in the 

framework of her master thesis: “Klimarrelevante Spurengase im Warnowausstrom 

- Anne Breznikar, 2017”. 

2.1.4. Analytical methods used for samples from the field campaigns 

2.1.4.1. Gas Chromatography 

Quantitative determinations of methane (CH4) and nitrous oxide (N2O) 

concentrations in seawater samples were conducted with a purge and trap system 

(P&T) by dynamic headspace method. An inert ultra-high purity carrier gas (Helium 

99.999 % and additional preparation by purifier) purges volatile dissolved gas 

compounds, which is cryofocussed and injected via thermal desorption. The gases 

were then analyzed by a gas chromatograph (GC) (Shimadzu GC-2014), equipped 

with a flame ionization detector (FID) for CH4 measurements and an electron 

capture detector (ECD) for N2O measurements. The Flame Ionization Detector 
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works at 200 °C and is based on the detection of ions formed during combustion of 

organic compounds in a hydrogen flame. The generation of these ions is 

proportional to the gas concentration in the sample. The ECD works at 345 °C and 

measures the flow of moving electrons by the ionized carrier gas. If the sample 

contains molecules with electronegative functional groups such as nitrous oxide, 

electrons will be captured and the current will be reduced. The reduction in electron 

flow is proportional to the quantity of trace gas components. The main analytical 

system is composed of a purge chamber (200 x 24 mm, with integrated frit, porosity 

2, Erich Eydam KG, Kiel, Germany), a gas trap (stainless steel, 700 mm x 1/8”, U-

shaped, filled with HayeSep D, 60/80 mesh, CS Chromatographie Service GmbH, 

Langerwehe, Germany), a sampling loop (incorporation of gas standards) and a 

GC to detect CH4 and N2O.  

The saturation values in % (with 100 % = atmospheric equilibrium concentrations) 

were calculated as the ratio between the expected equilibrium concentration of the 

gas as a function of the mole fraction within the ambient atmosphere and the 

detected concentration of dissolved gas in seawater. Equilibration concentrations 

of N2O and CH4 were calculated after (Bange, 2008) and (Wiesenburg and 

Guinasso, 1979), respectively. 

 

Figure 4: Schematic of purge and trap system (P&T) (in-house design), showing a general overview 

of the main components and correlated valve links and depicts the GC-internal pathway of the 

analytes ending with the detection of methane (left site), and of nitrous oxide (right site). The system 

was evaluated within an intercomparison study in the framework of the SCOR WG 142 (Wilson et 

al., 2018). 

https://paperpile.com/c/5lR3Uh/6kyi
https://paperpile.com/c/5lR3Uh/6EYm
https://paperpile.com/c/5lR3Uh/6EYm
https://paperpile.com/c/5lR3Uh/u5PJ
https://paperpile.com/c/5lR3Uh/u5PJ
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2.1.4.2. Nutrients 

Seawater samples were deep-frozen (-20 °C) until analyzation to determine nutrient 

concentrations and were measured colorimetrically according to Grasshoff et al., 

(1999) by means of a Seal Analytical QuAAtro39 automated Continuous Segment 

Flow Analyzer (CFSA) and allows quantitative determinations of ammonia, nitrate 

and nitrite, phosphate, and silicate. Each component requires a specific method: 

Ammonia concentrations are determined by the reaction of Berthelot, in which a 

blue-green colored complex is formed which is measured at 660nm. Sodium 

salicylate is used instead of phenol (Method No. Q-033-04 Rev. 6). Limit of 

quantification is 0,5 µmol l-1. The method for the automated determination of nitrate 

and nitrite was developed by the Royal Netherlands Institute for Sea Research 

(NIOZ) at which nitrate is reduced to nitrite at pH 8 in a copperized cadmium 

reduction coil (Method No. Q-068-05 Rev. 8 for nitrate and Q-070-05 Rev. 5 for 

nitrite). Total nitrite (reduced nitrate plus primarily contained nitrite) reacts under 

acidic conditions with sulphanilamide to form a diazo compound. Subsequent 

resulting Diazo compounds that then couples with N-1-naphthylethylenediamine 

dihydrochloride (NEDD) to form a reddish-purple azo-dye measured at 520 nm. 

Limit of quantification for nitrate and nitrite is 0.2 μmol/L and 0.05μmol/L, 

respectively. The determination of phosphate is based on the colorimetric Method 

No. Q-048-04 Rev. 2 and is conducted by the formation of a blue phospho-

molybdenum complex, caused by the reaction of phosphate, molybdate ion and 

antimony ion followed by the reduction of with ascorbic acid. Limit of quantification 

for phosphate is 0.1 μmol/L, respectively. Soluble silicates were determined using 

Method No. Q-005-04 Rev. 2, which is based on the reduction of silico- molybdate 

complex in acid solution to molybdenum blue by ascorbic acid. Additional oxalic 

acid reduces interference from phosphate. The absorbance is measured at 820 nm. 

Limit of quantification for phosphate is 0.1 µmol l-1. 

 

 

 

 

 

https://paperpile.com/c/5lR3Uh/WESG
https://paperpile.com/c/5lR3Uh/WESG
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2.2. Geophysical surveys 

The chapters 2.2.1. to 2.2.4. are published in Kreuzburg et al., 2018. Sub-marine 
Continuation of Peat Deposits From a Coastal Peatland in the Southern Baltic Sea 
and its Holocene Development. Frontiers in Earth Science, 6(103). Available at: 
https://www.frontiersin.org/articles/10.3389/feart.2018.00103/full. 

2.2.1. Geophysical data 

Bathymetric and backscatter intensity data were collected with a Norbit iwbms 

multibeam echo sounder, which was pole-mounted on the research boat 

Klaashahn. Data in shallow waters (1.5 to 7 meters) were recorded in June 2016 

and July 2017. The Norbit iwbms uses an 80 kHz wide chirp signal centered at 400 

kHz and an opening angle of 130° to 155°, set depending on water depth. 

Navigation data were acquired using an Applanix Surfmaster inertial navigation 

system utilizing the EGNOS correction. Total navigation accuracy was about 0.5 m 

both in the latitude and longitude direction. In addition to continuous sound velocity 

measurements at the multibeam transducer head, water column sound velocity was 

measured using an SVP probe. The preparation of bathymetric data was completed 

using the Hypack 2016 software. Data processing included a quality control, the 

automatic and manual removal of spikes, the correction of roll and pitch offsets, as 

well as the application of water column SVP profiles. Data were then gridded to a 

resolution of 0.5 m. Backscatter intensity data were processed using mbsystem 

(Caress and Chayes, 1995). A correction for the angular varied gain, including the 

multibeam residual beam pattern, was applied using mbbackangle. The backscatter 

data were passed through a gaussian low-pass filter to reduce speckle noise and 

gridded to a resolution of 0.5 m. Seismic data were acquired using an INNOMAR 

standard parametric echo sounder during the June 2016 survey. In total, seismic 

data were acquired for the area covering a distance of 30 km. The system was pole-

mounted on the Klaashahn research work boat. Data were recorded at frequencies 

of 8, 10 and 15 kHz, of which the 15 kHz frequency is shown in this study. A low 

pass swell filter was applied to remove heave artefacts caused by a malfunctioning 

motion sensor. However, due to the rapid movements of the small work boat, the 

wave impact could not be entirely removed. Two-way-travel time were converted to 

depths using a sound velocity of 1480 m/s. 

 

https://paperpile.com/c/5lR3Uh/5GpoY
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2.2.2. Ground-truthing 

For seafloor ground-truthing of the backscatter data, twelve 30 cm sediment cores 

were taken during scientific-diver missions and 20 surface sediment grab samples 

were taken from a boat. Deeper vertical ground-truthing of the seismic data was 

achieved using 4 sediment cores (Figure 15) retrieved from maximum sediment 

depths of 280 cm with hand-pulling extraction tools from the BOREAS drilling 

platform (Lampe et al., 2009). The closed probe heads (STITZ) of 1 m and 2 m, 

respectively were fitted with customized PVC liners of Ø46 mm for core extraction. 

In total 7 sediment cores on land were taken with a percussion driller 

(Rammkernsonde). Open metal rods of Ø40 mm were used to sample sediment 

cores to a depth of -3.5 m below sea level (bsl). To assess the peat thickness in 

more detail, peat probings were conducted in the shallow coastal water. A Ø1 cm 

metal rod was pushed through the peat and stopped by the sand layer. All drilling 

and sampling locations were levelled with a real-time kinematic and differential GPS 

(Leica Viva Net-Rover). 

 

2.2.3. Grain size distribution 

Given the sandy composition of the analyzed sediments, no chemical pretreatment 

was performed. The grain size distribution of surface sediments (grab samples) was 

determined from sub-samples (~150 g) of homogenized sediments. Dry sieving was 

conducted with DIN standard ISO 3310-1 sieves. Fractions <0,063 mm were lost 

during washing and were determined by weight difference compared to the total 

weight after washing and drying. Fractions >2 mm were retained. Automated 

sieving was conducted by a computer-controlled sieving tower (AS200) and a 

coupled Sartorius balance. The grain size distribution of the sediment cores was 

determined by laser diffraction using a CILAS 1180, as not enough material for 

traditional sieving was available. However, grain sizes larger than 1 mm cannot be 

measured with this method. To allow a comparison between the grain size 

distributions obtained with both methods, the first mode is used as the central 

statistical parameter. The mode is unaffected by removing the fine (mechanical 

sieving) or coarse (optical grain size distribution) sediment fraction, and can be 

used for bimodal sediments. All grain sizes are shown using the PHI scale, with PHI 

= -log2d, where d is the grain size in mm. 

https://paperpile.com/c/5lR3Uh/g9ubK
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2.2.4. Geochemical sediment analysis and 14C age-determination 

Organic carbon contents (Corg, after digestion with HCl) and stable C isotope 

analysis of bulk material were performed on 2 onshore- and 3 offshore sediment 

cores using an infrared Elemental Analyzer Multi EA 2000 CS. Oven-dried samples 

were ground and homogenized in an agate motor mill. Splits of 10–20 mg 

powdered, homogenized sample were weighed in tin (Cinorg) and silver (Corg) 

containers (Nieuwenhuize et al., 1994). Stable C isotope analysis were performed 

using an Isotope Ratio Mass Spectrometer (IRMS, Thermo Fisher Scientific), 

connected to an elemental analyzer via an open split interface. The C isotope data 

are reported in delta notation with δ13C (‰) = {(13C/12C) sample / (13C/12C) standard -1} 

x 1000. The used reference gas was ultra-pure CO2 calibrated against international 

standards (IAEA-C3, IAEA-C6, NBS 22) at the Leibniz-Institute for Baltic Sea 

Research (IOW). Calibration for carbon quantities was done with the reagent 

acetanilide. The lab internal standard was peptone (Merck) with a standard 

deviation of <0.2 ‰. AMS 14C age control of plant material, shells, wood and bulk 

organic carbon dating (Table 1) was done by the commercial testing laboratory Beta 

Analytics (https://www.radiocarbon.com). Calibration of 14C ages was done 

following (Reimer et al., 2013). 

2.3. Column experiment study 

In this study, the mobilization of peat-derived DOC and biogeochemical processes 

that govern carbon transformations was investigated by flow-through column 

experiments using natural sediments (Figure 5). During the experiments, 

alternating cycles of upward flowing oxygen-depleted groundwater and downward 

flowing oxygen-rich brackish water was imposed. The main goal of the study was 

to monitor the biogeochemical processes governing carbon transformations in 

submerged coastal peat in the mixing zone between low-salinity groundwater and 

recirculated brackish water. The water level above all sediment columns was ~10 

cm to simulate coastal shallow water conditions. Three of the six 40 cm long 

sediment cores were filled with submerged peat in the lower half and overlain with 

marine sand. The other three cores only contained sand. For both column types 

one column (P1/S1) was used to sample dissolved reactants and products of 

mineralization processes (e.g., SO4
2-, DIC, DOC), one column (P2/S2) was used 

for monitoring the vertical aqueous oxygen distribution, and one additional column 

https://paperpile.com/c/5lR3Uh/MzfUr
https://www.radiocarbon.com/
https://paperpile.com/c/5lR3Uh/5vM48
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was used for additional control-measurements (P3/S3). The emissions of CH4 and 

CO2 were measured in all six cores. To the best of our knowledge, this is the first 

experimental study investigating DOC mobilization and mineralization processes in 

submerged coastal peat soil, in conjunction with the production of climate relevant 

trace gases, under dynamic (bidirectional) flow conditions mimicking freshwater-

seawater mixing in the subterranean estuary (Moore, 1999). The natural sediment 

cores were collected in ca. 20 cm water depth off the nature reserve “Heiligensee 

und Hütelmoor” on the 25th of August 2017 using 60 cm long and 7.5 cm wide PVC 

liners. The cores (P1, P2, P3) were collected in shallow coastal waters near location 

54.222139°N and 12.168361°E (Figure 12, station B4), a sample site characterized 

by outcropping peat layers of minor decompositional degree of H 3–4 according to 

von Post, (1922), covered with 10–20 cm of marine sand. Sand cores (S1, S2, S3) 

were collected at location 54.2108°N and 12.1582°E (Figure 12, station B8). One 

core of each sample site was kept as a reference to pristine geochemical 

parameters with that of altered conditions. In order to ensure similarity of the four 

replicates, cores were taken within an area of <0.25 m2. Immediately after sampling, 

the cores were sealed at the top and bottom with gas- and water-tight end caps and 

transported to the laboratory, where they were stored at 4 °C with supernatant 

water. On September 3rd, the cores were drained, packed with ice in a cryobox and 

transported to the University of Waterloo, Canada. After visual inspection the 

sediment sequence of the cores remained intact, but slight changes in sediment 

deposition cannot be excluded. 

 

2.3.1. Column experiment and instrumentation 

The experimental setup included 8 columns (6 for sediment cores and 2 for water 

storage) made of acrylic glass matching the sediment core size. A computerized, 

multi-channel pump was used to control the water flow through all cores. The 

column system was formerly described in Rezanezhad et al., (2014) but has been 

specifically modified for the variable water flow regimes in this study. The columns 

were filled from the bottom by a custom-made lifting jack device and packed with 

tin-foil to prevent sub-sedimentary photosynthetic activity. Three of the columns 

were filled with 40 cm peat-sand cores containing ~20 cm of sand at the top. The 

other three columns were filled with 40 cm sand cores. The top and bottom of the 

https://paperpile.com/c/5lR3Uh/QCz4
https://paperpile.com/c/5lR3Uh/3bHHv
https://paperpile.com/c/5lR3Uh/X4UGR
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columns were closed with acrylic glass end-caps sealed tightly by O-rings inside of 

the end-caps. A filter membrane (Soil Measurement Systems, LLC, USA, bubbling 

pressure: 600 mbar) closed off the bottom of the columns with a nylon mesh (Soil 

Measurement Systems, LLC, USA, bubbling pressure: 32 mbar) was placed on top 

of the filter membrane. For each column, three steel rods connected the acrylic top 

and bottom end-caps and were secured with bolts. The sediment columns were 

connected to the water storage columns with chemically resistant polyurethane 

tubing. In order to completely replace the air-filled pore space with water, the initial 

filling was conducted from the bottom with artificially produced groundwater (see 

4.2.1) at a rate of 0.3 ml min-1. The total headspaces above the sediment surface 

were partly filled with water amounting to ~888 cm3 in columns P1, P2 and P3 and 

~1002 cm3 in columns S1, S2 and S3, respectively. All columns contained ~478 

±57 cm3 of air-filled headspace above the water (Figure 5). 

 

 

Figure 5: Schematic diagram of the controlled flow regime column system. The six soil columns 
were simultaneously and alternatingly exposed to advective flow with artificial seawater from the top 
and artificial groundwater from the bottom (pump and reservoirs not displayed). Intrusive measuring 
devices were installed for porewater sampling (P1/S1) and optical oxygen monitoring (P2/S2). 
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The storage columns were filled with artificial seawater (SW), which was 

continuously sparged with air, and artificial, fresh groundwater (GW), which was 

continuously sparged with argon to ensure oxygen-depleted conditions (details of 

the GW and SW compositions are given in 4.2.1). The columns were incubated at 

24 ±2 ˚C during the entire course of the experiment. Each sediment column had 18 

lateral ports (1/8” NPT compression fittings) equally spaced every 3 cm for 

porewater sampling. The ports were airtight and fitted with Teflon septa. In the 

following, all depths are referenced with respect to the sediment surface. The ports 

of four columns (P1, P3, S1, S3) were equipped with ceramic samplers, 5 cm in 

length and 0.25 cm in diameter, with a filter pore-size of 0.15 µm (CSS5 

MicroRhizon™ samplers, Ejikelamp, Netherlands, #19.21.23F) (Seeberg-Elverfeldt 

et al., 2005). The samplers were introduced horizontally into the sediment matrix, 

below the sediment surface, to extract porewater samples for porewater chemical 

and dissolved gas analysis (Figure 5). A vacuum pump (Soil Measurement 

Systems, LLC, USA, #CL-042) set at -100 mbar was used to extract porewater 

through the samplers. The headspace above the stable water surface in the 

columns was periodically closed in order to measure sediment-derived trace gas 

accumulation. 

 

2.3.2. Ground and seawater flow regimes 

The upwards flowing GW and downwards flowing SW were set to simulate 

discharge and recirculation regimes through permeable coastal sediment impacted 

by submerged peat. The porewater flow velocities were adapted from the column 

experiment conducted by Tiemeyer et al., (2017). The height of the water table 

within the sediment columns was imposed using a computerized, multi-channel 

pump connected to the water storage reservoirs. The constant ponding of the water 

above the sediment surfaces ensured complete water saturation in the sediments 

and resulted from the equilibrium between the programmed pump rate and the 

water outflow, whereby the water in the sediment column was continuously 

exchanged. The GW upwards flow was pump-controlled at rates of 2.5 cm d-1 and 

the water level height was limited by the water outlet ~10 cm above the sediment 

surface. The SW downwards flow was controlled by the valve setting with measured 

rates of 10.3 ±2 cm d-1 through peat-sand cores and 13.4 ±3.7 cm d-1 through sand 

https://paperpile.com/c/5lR3Uh/8A5WM
https://paperpile.com/c/5lR3Uh/8A5WM
https://paperpile.com/c/5lR3Uh/NGuD
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cores. During the different flow regimes, the water was discharged on the opposite 

side of the inflow. Flow direction and water type was adjusted using valve settings. 

The level of the water table in the soil columns fluctuated between 7.5 and 10 cm 

above the soil surface. 

Coastal aquifers can be strongly depleted in oxygen (Andersen et al., 2005; Bugna 

et al., 1996), while shallow water along the shoreline is usually saturated with 

oxygen due to constant mixing with the atmosphere. To imitate similar conditions, 

argon gas was used to de-oxygenate the GW and air from the laboratory was used 

to saturate the SW with oxygen. The artificial groundwater salinity was set at S ≈ 

1.6, which is slightly lower than the measured values in the field (S ≈ 3), but allowed 

a better differentiation of the endmember concentrations. The salinity of artificial 

SW is based on highest salinity measured (S ≈ 18) along the shoreline of the study 

site (all observations from 2017). The salinity based chloride (Cl-) concentrations 

were 882 ±66 mg l-1 (range: 806–1015) for GW and 8666 ±407.1 mg l-1 (range: 

7987–9577) for SW. Chloride was used as a conservative tracer, to describe 

physical transport behavior and as a measure of salinity with S = 0.00180665 x Cl- 

mg l-1 (Lyman, 1969). The ratio of the remaining elements in respect to chloride was 

set based on SGD surveys in Kiel Bay, Baltic Sea in 2015 (unpublished data). 

Although the salinity of the Baltic Sea is largely described, there is a lack of 

stoichiometric data on shallow shorelines and coastal aquifers. The detailed 

composition of GW and SW endmembers are given in Table 1. All six columns were 

fed with SW and GW, from identical water reservoirs for the 50 day-period of the 

experiment. 

 

Table 1: Composition of artificial groundwater (GW) and artificial seawater (SW) used in the 
groundwater discharge experiment 

 
 

 

 

 

https://paperpile.com/c/5lR3Uh/qzGK+roNo
https://paperpile.com/c/5lR3Uh/qzGK+roNo
https://paperpile.com/c/5lR3Uh/tsMym
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2.3.3. Analytical methods 

2.3.3.1. Gas fluxes among the air-water interface 

The gas flux, Fgas, from the ponding water into the air-filled headspace of each 

column was obtained by measuring the change in gas concentration over time in 

the headspace after closure from the laboratory atmosphere, according to formula 

2: 

 

where dCgas/dt describes the changing gas concentration (ppm) over time, V (m3) 

is the volume of the headspace and A (m2) is the exposed water surface area. P is 

the atmospheric pressure (Pa), R is the gas constant (8.314 Pa m3 K-1 mol-1), T is 

the absolute temperature (K). To avoid uncontrolled gas accumulation and to 

minimize evaporative loss from the sediments over time, the air-filled headspaces 

of the sediment columns were continuously flushed with water-saturated air by 

passing the air through a water-filled vial. In order to determine the gas emissions 

from the aqueous phase into the headspace, the air ventilation was stopped. 

Fluctuations of the headspace volumes were taken into account in every gas flux 

measurement. The fluxes of CH4 (µmol m-2 d-1) were monitored 2–3 times a week 

from all six cores. The concentrations were determined at the beginning (t0) and 

end (tN) of incubation (24 ±6 h) by sampling 10 ml of headspace gas using glass 

syringes and were subsequently measured by Gas Chromatography (Shimadzu 

Gas Chromatograph (Model GC-2014) equipped with an advanced Flame 

Ionization Detector (FID) and an Electron Capture Detector (ECD). For standards, 

a three-point calibration was used with the following reference gases: Level 3 (CH4 

100 ppm; CO2 900 ppm; N2O 50 ppm), Level 2 (CH4 9.8 ppm; CO2 100 ppm; N2O 

10 ppm) and Level 1 (CH4 5 ppm; CO2 600 ppm; N2O 1 ppm). In total, 6 ml of 

gaseous sample was injected into the gas chromatograph, 5 ml of which were used 

for flushing the 1 ml sample loop. The porewater samples for dissolved CH4 were 

extracted in peat-sand columns from the sediment at depths of -1 (i.e. above the 

sediment), 2, 5, 8, 17, 20, 23, 26, 38 cm and from the sand column at sediment 

depths of -4.5, -1.5, 1.5, 10.5 19.5 and 34.5 cm. Before sampling, 0.5 ml of water 

was extracted for flushing and to eliminate the air-filled void in the syringe. 1 ml 

porewater samples were collected with 10 ml watertight, pre-treated (HgCl = 25 µl) 
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glass syringes (MICRO-Mate®) by connecting them to the MicroRhizonTM water 

samplers. The volume of the porewater within the syringes was determined by the 

weight using a high precision balance. 8 ml of helium was then added to form a 

headspace for gas equilibration. After 2 hours of equilibration time, by carefully 

shaking the syringes, which has been shown to strip at least 95 % of CH4 from the 

solution (Dillon et al., 1999), the headspace was injected into the GC. All samples 

were analyzed on the same day of collection. The water-headspace CO2 fluxes 

were sampled daily by an automated multiplexer CO2 flux measurement system (LI-

8100, LI-COR Biosciences, Lincoln, NE, USA) via two lateral ports (Figure 5). Air 

from the headspace above the water surface was then circulated through the 

infrared gas analyzer (IRGA) of the LI-8100 and back to the column. The rate 

(dCco2/dt) was estimated from six consecutive 180 s observation windows 

spanning a total time interval of 15 min. Volume (m3) is a combination of the 

headspace volume and the sampling loop through which the headspace gas 

circulates. 

2.3.3.2. Porewater geochemical analysis 

Porewater samples (8 ml per sample depth; peat-sand n = 134, sand n = 97 in total) 

were extracted from cores P1 and S1 with MicroRhizonTM samplers (Cabrera, 1998; 

Knight et al., 1998; Seeberg-Elverfeldt et al., 2005) and were sub-sampled into 

separate vials. One ml of each water sample was filtered through a 0.2 μm 

membrane filter (Thermo Scientific Polysulfone filter) for analysis of Cl-, SO4
2-, NO3

-

, and acetate (C2H3O2
-) by Ion chromatography (IC, Dionex ICS-5000 with a 

capillary IonPac® AS18 column). DIC and DOC concentrations were determined 

from 1 ml sub-samples each following non-purgeable organic carbon (NPOC) 

method using a total organic Carbon analyzer (Shimadzu TOC-LCPH/CPN). All 

samples analyzed for DOC were pretreated with HCl. One ml water samples were 

collected to measure pH using the Horiba B-213 Twin pH (two-point calibration at 

pH 4 and 7) and electrical conductivity (EC), using a WTW EC Meter (three-point 

calibration at 99.1, 999, 9976 µScm-1). 

For stable C isotope analysis (δ13CDoc) sample fractions equivalent to 0.2 mg 

carbonate were removed from the sample aliquots and injected into 12 ml flat 

bottom Exetainer vials (Labco #739W) and subsequently treated with ortho-

phosphoric acid and potassium persulfate. The addition of phosphoric acid converts 

https://paperpile.com/c/5lR3Uh/joXBw
https://paperpile.com/c/5lR3Uh/8A5WM+HALWs+WT3C7
https://paperpile.com/c/5lR3Uh/8A5WM+HALWs+WT3C7
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inorganic carbonates present in the sample to CO2, which is removed by bubbling 

the sample with a helium gas stream for about 10 minutes (EPA SOP for DOC, 

2002; IsoPrime, 2014). Samples were then sealed and microwaved. During this 

heating treatment, the potassium persulfate oxidizes the dissolved organic carbon 

in the sample to CO2, which is then sampled from the headspace vial and analyzed 

for its isotopic composition. Standards ranged from -12 ‰ (EIL-36 - cane sugar) to 

-26.5 ‰ (EIL-35 - beet sugar). Delta values obtained by dual inlet MS calibrated 

with IAEA carbonate standards and verified by EA-IRMS analysis normalized with 

IAEA-CH3 (cellulose) + IAEA-CH6 (sugar), USGS-40 and USGS-41 (L-Glutamic 

Acid) (Stainton et al., 1977; St-Jean, 2003). The results of the samples and all 

standard runs were statistically evaluated and calculated uncertainties were ≤0.2 

‰ on the d13C. 

2.3.3.3. Monitoring of dissolved oxygen 

The sediment cores P2 and S2 were equipped with multi-fibre optode (MuFO) 

oxygen sensors to measure the dissolved O2 concentration at regular depth 

intervals. The sensor ends were installed into the sediment columns, eight installed 

in each column, at 2, 5, 8, 14, 17, 20, 38 cm and above the sediment (-1 cm) in the 

peat-sand column and at 1.5, 4.5, 7.5, 10.5, 16.5, 31.5 cm and above the sediment 

(-4.5, -1.5 cm) in the sand column. The MuFO, a luminescence-based optode 

technique, uses sensors made of fibre optic cables, with each cable having one 

sensing tip and one imaging tip (Larsen et al., 2011). The sensor was built in-house 

using a sensing solution containing Pt(II) mesoTetra (pentaflourophenyl) -porphine 

(PtTFPP) as the luminophore (Badocco et al., 2012). The uncoated ends were 

placed in front of a DSLR camera and blue LED light (447.5 nm wavelength) in a 

similar setup as described in (Larsen et al., 2011). The emitted light was 

photographed every 2 hours for the duration of the experiment and, following image 

processing using ImageJ software (Rasband, 2015), the light intensity was related 

to the O2 concentration through the Stern-Volmer relationship. The sensors were 

calibrated by obtaining the relation between light intensity and O2 concentration. As 

the optode light intensity responses as a function of salinity, calibrations for each 

sensor were conducted at a range of different salinities prior to the experiment. 

Statistical data analysis was performed to identify significant levels among the water 

flow regime under changing salinities and DOC and DIC production. Moreover, the 

https://paperpile.com/c/5lR3Uh/DQiFj+7dzpI
https://paperpile.com/c/5lR3Uh/DQiFj+7dzpI
https://paperpile.com/c/5lR3Uh/Texoz+UFHMF
https://paperpile.com/c/5lR3Uh/j6oue
https://paperpile.com/c/5lR3Uh/INeEH
https://paperpile.com/c/5lR3Uh/j6oue
https://paperpile.com/c/5lR3Uh/t2lPr
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relationship between salinity and O2 as well as between SO4
2- concentrations and 

CH4 and CO2 fluxes were statistically analyzed. Significant differences were 

accepted when the p-value was smaller than significance level α = 0.05. Gridding 

of porewater concentrations was performed using the R-package ggplot in R (R 

Foundation for Statistical Computing, Vienna, Austria) within RStudio. 

2.3.3.4. Solid phase geochemistry 

At the end of the experimental period, all peat-sand and sand cores were drained 

overnight, extracted from the columns and sliced in 3 cm thick pieces. The sediment 

slices from each depth were homogenized and separate aliquots were taken for 

geochemical characterization. For the latter, the samples were freeze-dried and 

stored at room temperature. Organic carbon contents (Corg) were measured after 

removal of carbonates with 10 % HCl. The stable isotopic composition of solid 

organic carbon (δ13C) was determined on the initial and post-experimental sediment 

cores. The samples were ground in an agate mortar mill. Splits of 10–20 mg 

powdered, homogenized sample material were weighed in tin and silver containers 

(Nieuwenhuize et al., 1994). The isotopic composition of stable carbon isotopes 

(δ13C) was analyzed at the Leibniz-Institute for Baltic Sea Research (IOW) using 

an Isotope Ratio Mass Spectrometer (IRMS), Thermo Fisher Scientific, connected 

to an elemental analyzer via an open split interface (Multi EA 2000 CS). The 

reference gas was ultra-pure CO2 from a bottle calibrated against international 

standards (IAEA-C3, IAEA-C6, NBS 22). The calibration for carbon quantities was 

done with acetanilide reagent. The lab internal standard was peptone (Merck) with 

a standard deviation of <0.2 ‰. Considering the 3 cm slice thickness, the depth 

data was interpreted and compared with the initial and untreated cores. 

2.3.3.5. Quantification of methanogens and sulfate reducers 

Genomic DNA was extracted from 0.2–0.3 g of duplicates of sediment and peat 

samples retrieved from column P2 at the end of the experiment using an EURx 

GeneMatrix Soil DNA Purification Kit (Roboklon, # E3570, Berlin, Germany). DNA 

concentrations were quantified with a Nanophotometer P360 (Implen GmbH, 

Munich, Germany) and Qubit 2.0 Fluorometer (Thermo Fisher Scientific, 

Darmstadt, Germany). Quantitative polymerase chain reaction (qPCR) for the 

determination of functional gene copy numbers of methanogenic archaea and 

https://paperpile.com/c/5lR3Uh/MzfUr
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sulfate reducing bacteria was performed via SybrGreen assays on a Bio-Rad CFX 

instrument (Bio-Rad, Munich, Germany), similar to as described by Wen et al., 

(2018) and Vuillemin et al., (2018) with slight modifications. In detail, the methyl 

coenzyme M reductase alpha subunit (mcrA) as being the functional methanogenic 

gene was amplified with the primer combination mlas-F/mcra-R (ggT ggT gTM ggD 

TTC ACM CAR TA/ CgT TCA TBg CgT AgT TVg gRT AgT) with primer annealing 

at 60 °C. The dissimilatory sulfite reductase beta subunit (dsrB) as a functional gene 

of sulfate reducing bacteria was quantified with the primers dsrB2060-F/dsrB4-R 

(CAA CAT CgT YCA YAC CCA ggg/ gTg Tag CAG TTA CCg CA) with annealing 

at 62 °C. Different DNA template dilutions (1:10, 1:50, 1:100) were tested prior to 

the qPCR runs to determine optimal template concentration without inhibitions 

through co-extracts. The 25 µl reactions contained 12.5 µl of KAPA SYBR® FAST 

mastermix (Life Technologies, CA, USA), 0.25 µM concentrations of the primers, 

and 5 µl of DNA template. Data acquisition was done at 80 °C to avoid quantification 

of primer dimers. The specificity of each run was verified through melt-curve 

analysis and gel electrophoresis. Only runs with efficiencies between 80 and 105 

% were used for further analysis. Measurements were performed in triplicates. 

Equimolar DNA mixtures of Methanosarcina barkeri, Methanobacterium lacus and 

Methanosarcina soligelidi SMA21 were used for plasmid standards of mcrA and of 

Desulfovibrio vulgaris for dsrB. 
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3. Results 

3.1. Trace gas investigation within the study site 

3.1.1. Offshore concentrations of CH4 and N2O 

The record of methane concentrations in bottom waters showed mean values of 27 

±29 nmol l-1 (range: 5–162 nmol l-1) and revealed a clear impact on distinct water 

masses along the shoreline showing varying temperatures and salinities. 

Additionally, the bottom water concentration of CH4 exhibits strong temporal 

variations ranging with mean values of 8 ±3 nmol l-1 (201 ±74 %) at the 3rd of March 

2016 (3.2 ±0.2 °C) to 80 ±42 nmol l-1 (2845 ±1624 %) at the 26th of September 2016 

(15.9 ±0.3 °C) 2016 (Figure 6). The highest CH4 concentration in bottom waters of 

162 nmol l-1 (5994 %) was observed in September, when pronounced salinity 

differences across the water column were detected between bottom (~19) and 

surface (~9) water. This observation is supported by a correlation between the ratio 

of bottom and surface water salinities and the concentration of dissolved CH4 in 

bottom waters (r2 = 0.6, p <0.001, n = 24). At this condition, high CH4 was observed 

to accumulate in the central trough area of the offshore study site at a mean water 

depth of 5.4 ±0.5 m (Figure 13). In contrast, bottom water concentrations of CH4 

revealed cross-slope gradients during periods with a less stratified water column. 

In July, April and December a significant increase could be observed towards the 

shallow coast. During these surveys, the highest CH4 concentration of 55 nmol l-1 

(1961 %) was observed at station 35 (~50 m distance to the waterline) in July 

(Figure 6) that coincided with a slight temperature increase and decreasing 

salinities at the north eastern part of the study site (Jurasinski et al., 2018), where 

outcropping peat deposits have been observed (Figure 13). During the same field 

campaigns, the spatial and temporal concentrations of nitrous oxide (N2O) were 

investigated, showing only minor fluctuations (96 ±14 %) and no significant relation 

to bathymetry or shoreline structures. Yet it is noticeable, that during July a spatial 

variation with highest N2O concentration of 16 nmol l-1 (177 %) in the south-west 

and lowest concentration of 4.8 nmol l-1 (53 %) was observed in bottom water 

temperatures of 18 °C (Figure 6). 

https://paperpile.com/c/5lR3Uh/bncQw
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Figure 6: The distribution of bottom water CH4 (a) and N2O (b) at the 25 stations in front of the 
coastal peatland area. Each data plot implies a single sampling campaign on a one-day cruise 
between March 2016 and June 2017. In July and December CH4 show a remarkable cross-slope 
gradient with higher CH4 concentrations towards the coastline. In September CH4 accumulated in 
deeper bottom waters, showing highest CH4 concentrations of up to 161 nmol l-1. 
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Stationary water column investigations at station 33 (Figure 1) revealed the 

distribution and temporal variability of dissolved gases (CH4, N2O, O2) and physico-

chemical parameters such as temperature and salinity in July 2017. Within five days 

the three sampling campaigns revealed strong dynamics, showing that the water 

masses are constantly subject to modifications and substitution (Figure 7). 

Whereas at 24th of July, salinity and CH4 evenly increased from 10.8 to 12.1 and 

from 35.4 to 56.8 (1209 to 1995 %), respectively, temperature and oxygen were 

slightly decreasing from 18.4 to 17.8 °C and from 7.5 to 7.2 mg l-1 towards the 

bottom. At the 26th of July a homogenous water column revealed a lower 

temperature (~16.1 °C), constant oxygen concentrations (~7.3 mg l-1) and water 

column CH4 concentrations (~17 nmol l-1; ~505 %) with slightly increased salinities 

(12.4), but a sudden increase of bottom water salinities (to 14.7) and bottom water 

CH4 (20.2 nmol l-1; 631 %) was observed. The following sampling campaign (28th 

of July) revealed a significant decrease in salinity (8.7), higher oxygen (~8.7 mg l-

1), coinciding with high CH4 concentrations in surface waters (36.7 and 37.7 nmol l-

1; 1147 %), showing a strong decrease to CH4 of 6.5 nmol l-1 (282 %) towards the 

bottom. The bottom water, however, is characterized by a sudden increase in 

salinity (to 14.7), which is close to values of the previous sampling campaign, two 

days earlier. The N2O concentrations in the water column ranged from 9.3 to 10.5 

nmol l-1, showing no clear pattern related to changing water masses at the 

investigated station and were close to saturation values (102 ±4.6 %) during the 

same period. 

 

Figure 7: Measurements of salinity, temperature (°C), and concentrations of dissolved oxygen (mg 
l-1), methane (nmol l-1) and nitrous oxide (nmol l-1) at station 33 in July 2017. 
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3.1.2. Trace gas concentrations along the waterline 

The shallow water along the beach was sampled for CH4 concentrations during 10 

one-day surveys between July and September 2017. Mean values of dissolved CH4 

in shallow bottom waters sampled during the offshore sampling campaigns (Figure 

6) and the CH4 concentrations sampled in <60 cm of water depth during surveys 

along the waterline (beach) are compared in Figure 8. The surveys exhibited 

average CH4 concentrations of 355 ±779 nmol l-1 (sampled CH4 concentrations 

ranged from: 3–3358 nmol l-1). The CH4 concentrations along the waterline 

exceeded the offshore bottom water concentrations of CH4 (sampled during 

different seasons) by a factor of 11–17 (Figure 8). 

  

Figure 8: Box plots of methane concentrations in bottom water are plotted against the distance to 
the waterline. Along the beach face the concentrations showed a strong variation with a mean value 
of about 100 times the atmospheric equilibrium concentrations of ~3 nmol l-1. The concentrations 
measured at the 0 distance were sampled in shallow water along the beach in <60 cm of water 
depth. 

 

 

Measured parameters in pore- and surface water along the waterline of the study 

site showed strong spatial variability. Especially in the northern area, where peat 

sediments emerge (Figure 2a, d, 13), the porewater salinity was observed to remain 

significantly lower with minor fluctuations (8.5 ±1.5) than in the central and southern 

part of the study site (12.7 ±2.8) (Figure 9). The porewater in the northern area 

exhibited anomalies with elevated concentrations of DIC and exceptional low 

δ13CDIC (unpublished data, provided by Julia Westphal, 2017). Furthermore, high 
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concentrations of CH4 (0.9 mmol l-1), and NH4
+ have been observed (Figure 9). At 

the onshore stations 67 and 76 escaping gas bubbles have been observed during 

several sampling campaigns. High nitrous oxide concentrations of 94 nmol l-1 were 

detected at station 75 in July 2016. In contrast, significantly lower concentrations of 

most solutes were measured in the central and southern areas except from station 

22 at which low salinities, elevated DIC, CH4 and additionally high concentrations 

of N2O (131 nmol l-1) have been detected in permeable sands in September 2016. 

 

 

Figure 9: Porewater salinity and concentrations of DIC (mmol l-1), δ13CDIC (‰) (provided by J. 
Westphal, 2017), CH4 (nmol l-1), N2O (nmol l-1), NH4

+ (mmol l-1), along the southwestern to 
northeastern transect (stations 1 to 76) along the shallow water beach area. The box in the 
northeastern end of the transect marks an area of outcropping peat deposits, characterized by 
concentration anomalies of most solutes compared to the central and southerly area. 
 

3.1.3. Flux measurements from chamber lander incubations 

The accumulation of trace gases was investigated with in-situ incubation 

experiments. The results of three different incubation experiments are summarized 

in Table 2. No significant fluxes of N2O were detected. In contrast, the increase of 

concentration increase of CH4 over time indicated fluxes with moderate (r2 = 0.5) to 

stronger (r2 = 0.7) correlations (dC/dt), but in 2 out of 3 cases these correlations 
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were weak or not significant. Fluxes, however, were highest (4.5 µmol m-2 d-1) at 

offshore station 25 and about a third of the magnitude at station 35 (Figure 1c). The 

CH4 flux measurements during the incubation experiment at station 33 (Figure 1c) 

were lowest (0.87 µmol m-2 d-1) and are supported by a high correlation and 

significance.  

 

Table 2: Calculated accumulation rates of methane and nitrous oxide within the Incubation chamber, 
which are suggested to origin from sedimentary fluxes. 

 

 

3.1.4. Impacts of the Warnow-river on trace gas distribution 

The outcome of the studies mainly conducted by Anne Breznikar concerning the 

export of trace gases from the Warnow-river system identified the Warnow-river as 

a net source for atmospheric climate relevant trace gases. The river water revealed 

mean surface water concentrations of N2O = 21.1 ±10.3 (range: 5.7–46 nmol l-1; n 

= 20) and CH4 428 ±464 nmol l-1 (range: 42–2515 nmol l-1; n = 20). Contrary to CH4, 

the Warnow-river could not be confirmed as N2O source for the Baltic Sea, showing 

near equilibrium concentrations at the river outlet in Warnemünde (Figure 10, 11). 

The same study revealed that dissolved CH4 enters the Baltic Sea with the Warnow-

river discharge, albeit concentrations being subject to seasonal fluctuations (Figure 

10). At the river outlet (Warnemünde) CH4 concentrations typically increases with 

increasing temperature, but were, however, also high in winter during the first 

campaign in January, which may be related to the high concentrations found near 

Petridamm (Figure 10). 
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Figure 10: Dissolved methane concentrations sampled in 2017 (Anne Breznikar) within the river 
stream of the Warnow at four stations (for locations see Figure 1b, 11). 
 
 

 
Figure 11: Distribution of bottom water methane and nitrous oxide in the Warnow-river in June 2016, 
revealing high concentrations of methane at the upper-most section of the Warnow-river and a 
decreasing downstream gradient towards the outlet. In contrast, concentrations of nitrous oxide are 
increasing towards the outlet. 
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3.2. Geological surveys 

The contents of the chapters 3.2.1. to 3.2.5. are published in Kreuzburg et al., 2018. 
Sub-marine Continuation of Peat Deposits From a Coastal Peatland in the Southern 
Baltic Sea and its Holocene Development. Frontiers in Earth Science, 6(103). 
Available at: https://www.frontiersin.org/articles/10.3389/feart.2018.00103/full. 

 

3.2.1. Onshore 

The sedimentary stratigraphy extending along the beach (Figure 12, for location 

see Figure 13) shows fine sand at the base, which is covered to a large extent by 

gyttja and peat, followed by marine medium to coarse, partly gravelly sands. The 

sequence overlaying the fine sand in the northeastern part of the transect is 

interrupted by silty to clayey sediments of up to 2.5 m thickness, from grey-blue to 

whitish in color. The surface of the peat layer below the top edge of the terrain 

descends along the transect from 0.15 m bsl (NE) in core B5 to 2.84 m bsl (SW) in 

core B8 with peat thickness decreasing from 1.6 m (B9) and 1.4 m (B4) to 0.1 m 

(B8) in the same direction. The continuation of the peat layer has been observed 

further inland (southeast of core B7), along the coastal areas where peat got partly 

eroded. Seawards, a subsidence of the peat surface between cores B3 and B5 

could also be determined by additional peat explorations. Further inland behind the 

dune dike (MP2, Figure 13), a sediment core displayed a peat layer between -0.7 

m and -3 m depths bsl underlain by a 10 cm thick layer of gyttja both continuing the 

stratigraphy observed at the beach (B6). 

 
Figure 12: Geological profile along the beach with drilling locations (B3 to B9); sediment depth in 
meter above mean sea level (m amsl). Refer to Figure 13 for core locations. 
 
 
 
 



35 

3.2.2. Bathymetry 

Bathymetry measurements of the seafloor in the studied shallow coastal area 

illustrate its heterogeneity, with a field of submarine sand ridges in the southwestern 

area and a flat trough-like area in the central part. This trough, which opens to the 

north, extends over a total length of 1.2 km in SW/NE direction. It is enclosed to the 

east by a coast parallel sandbar and to the southwest by sand ridges. The water 

depth in the broad northern part of the trough mostly exceeds ~6 m. In this area, 

numerous boulders and glacial till ridges, which have been observed during diver 

missions, are found. The northern part of the trough is crossed by several east-west 

to northwest-southeast oriented elevations of 450 m in length and up to 1.2 m in 

height. Likewise, decreasing water depths are observed towards the sea to the west 

and southwest of the trough. Here, a number of east-west oriented up to 320 m 

long sand ridges, 0.6 to 1.5 m in height and mostly 75–250 m in width with a single 

ridge reaching a width of 375 m, could be observed. They are oriented oblique (40°–

60°) to the coastline in water depths of 3 to 4 m. Based on bathymetric data, that 

were recorded further offshore, a maximum extend of the sand ridges of about 1 

km could be estimated (Figure 13). Most of the ridges incline with gentle angels 

(<0.5°) and partly show asymmetric cross sections with wider and less inclined 

north to northwest flanks (profile in Figure 13). In combination with seismic data, a 

shore-parallel longshore bar could be identified in front of the entire beach face. 

The height of this longshore bar is approximately 1 m and its width has been 

estimated to 50–100 m. 
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Figure 13: Top: Bathymetry and location of the study area along the southwestern Baltic Sea coast. 
White line parallel to the shore in southwest-northeastern direction indicates the bathymetric cross 
section shown underneath. The positions of sediment cores (red stars) and grab samples (white 
crosses) are also indicated. The black lines show the locations of the seismic profiles. The longshore 
bar was identified from the parametric echosounder data (INNOMAR, see Methods). Bottom: 
Bathymetric SW-NE transect at the upper shoreface indicating the distribution of the main geological 
features. 

 

3.2.3. Seafloor composition 

Three larger facies building up the investigated seabed could be distinguished by 

evaluating backscatter mosaics verified with gravel samples and short sediment 

cores (Figure 14): well sorted fine sand, medium sand with low gravel percentage, 

and poorly sorted coarse sand and gravel. The well sorted fine sand fraction is 

characterised by low backscatter intensities showing with a generally smooth and 
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homogeneous texture. It is mainly observed forming the sand ridges in the south 

and south-western part of the study area in water depths of 4 to 6 m and can be 

further subdivided. Although difficult to distinguish by acoustic data of the used 

frequency only, additionally data obtained by ground-truthing indicate a combined 

clay and silt content of about 5 % in the trough (Figure 14) separating the sand 

ridges from the beach face. This clay or silt fraction is missing in the sand ridges 

and, in contrast to the latter, contains a higher proportion (~5 %) of medium to 

coarse sand. The medium sized sand fraction with low gravel content, showing 

medium backscatter intensities, can be observed along the runnels in between 

sandridges and at the boundaries to coarser sediment deposits. Finally, poorly 

sorted coarse sand and gravel, with gravel content up to 50 % and numerous 

stones, boulders and uncovered glacial till, build up the remaining seabed and is 

characterized by high backscattering intensities. These deposits are predominantly 

observed in the north-eastern part of the study area (Figure 14). 

 

Figure 14: Left: Available backscatter data with grab samples for surficial ground-truthing and near-
coastal peat observations. Right: Manual clustering of the backscatter data into three seafloor facies 
A-C. Representative grain size distributions for each facies are displayed using the PHI scale, with 
PHI = -log2d, where d is the grain size in mm, with A) fine sand (black), B) gravelly medium sand 
(grey) and (C) gravelly coarse sand (light grey). The insert in the right panel indicates the grain size 
distribution (PHI-scale) in Vol %. 
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3.2.4. Sediment cores 

Seismic reflections 3 m bsl and in parallel to the sediment surface indicate the sub-

sedimentary continuation of the peat layers. This interpretation was verified with 

sediment core C3 (Figures 15).  

Sediment core C1 was retrieved in a water depth of 6.5 m (Figure 15, for location 

see Figure 13). The sediment sequence at the core base (280–248 cm depth) 

contains fine sand with scattered shell fragments, followed by decimetre-thick 

coarse and fine sand units, interrupted by overlying fine sand layers. A sharp 

boundary follows at a core depth of ca. 190 cm with two dark gytta layers (5 and 3 

cm thick, respectively) containing shell fragments that are separated by well sorted 

fine sand. Two radiocarbon ages (14C) from the lower organic layer were 

determined for shell fragments as well as organic sediments from one sample 

(Table 3). The marine shell fragments (Peringia ulva, Macoma Baltica) yield a 

significantly older age with 8586 ±256 cal yr BP as compared to the organic 

sediments (Corg 5.12 %, δ13C -25.2 ‰, C/N-ratio 11.97) showing an age of 4972 

±137 cal yr BP.  

The sediment core C3 (Figure 15) with a total length of 197 cm was extracted at a 

water depth of 1.8 m. The lowest unit (171–197 cm) consists mainly of fine sand 

including dark layers which yield Corg of 0.4 %, δ13C of -27.2 ‰ and C/N ratios of 

11.6. The unit is followed by a gyttja layer (Corg 8.1 %, δ13C -28.6 ‰, C/N-ratios 

15.2) containing wooden fragments, that were dated to 7024 ±73 cal yr BP (C3.2) 

and a peat layer at 146–160 cm depth. Peat material from this core, showing 

organic carbon contents of 36.9 and 37.5 %, was dated to 6725 ±87 cal yr (C3.1), 

and yielded stable isotope signatures (δ13C) of -28.9 and -27.1 ‰ and C/N ratios of 

21.3 and 36.4. The sediments above the peat are separated by an erosion horizon 

and consist mostly of fine to medium sand with little change in grain size distribution.  

The sediment core C4 with a total length of 120 cm was sampled at a water depth 

of 5.3 m, with the bottom part (113–120 cm) being composed of glacial till. The 

sediments above are separated by a sharp boundary and alternate between fine 

and medium sand. The surface sediments (4–12 cm) consist of dark coarse sand 

and coarse gravel (grain size 2–3 cm) overlayed by dark fine-sand. 
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The sediment core C5 was sampled in a water depth of 1 m and has a length of 

117 cm. In this core the soil sediment consists of medium sized sand with poorly-

rounded fine gravel. A diffuse transition is followed by two different layers of 

minerogenic lake sediments at 110–93 cm and 88–62 cm, separated by a well 

sorted fine sand layer of ~5 cm thickness. On top, the sediments become 

increasingly coarser with medium- to coarse-grained sands, being interrupted at 38 

cm by a black layer of ~3 mm thickness having Corg of 1.22 %, δ13C of -24.36 ‰ 

and C/N of 10.66. 

Figure 15: Sediment depths (cm), 14C ages, photographs, lithology, grain size distribution (with PHI 
= -log2d, where d is the grain size in mm), organic carbon content (%), δ13C (‰), carbon/nitrogen 
ratios (C/N) of the 4 offshore sediment cores (C1, C3, C4, C5) retrieved from the study site. 

Table 3: Determined 14C ages in the study area. Age intervals are given at a 95.4 % confidence 
level. 

 



40 

3.2.5. Subsurface structure 

Subsurface information is inferred from seismic reflection data (Figure 16, for 

location see Figure 13) and ground-truthing using sediment cores of different 

lengths. Glacial till forms the acoustic basement for the high-frequency seismic 

survey and marks the base of the observed stratigraphy. It is generally dipping from 

North to South. In addition, the surface of the till is slightly inclined towards the 

offshore direction (NW) and is characterized by steep irregularities, that might 

indicate similar structure as compared to the outcropping till ridges in the northern 

area observed in the bathymetric data. The burial depth of the till surface controls 

the thickness of sediment on top. These irregularities are partially filled with 

acoustically homogeneous to transparent material (Figure 16A-D, labeled as 

medium sand). In areas, where these sediments protrude from the seabed, medium 

sand with a low gravel content was collected in grab samples (Figure 16B). 

Laminated sedimentary units (marked H in Figure 16A-D) are as thin as till deposits 

and appear in the north of the research area. The layered sediments are 

characterized by high amplitudes, often show internal reflectors, indicating different 

layers of sediments and are of Holocene age, based on dates retrieved from the 

sediment cores C1 and C3. In several areas the Holocene deposits display chaotic 

and disturbed sequences, resulting in individual reflections in the seismic data that 

cannot be followed throughout. The Holocene sequence contains organic 

sediments and peat, samples of which were extracted from the C1 and C3 sediment 

cores. The exact location of the peat layer, as known from the sediment cores, is 

difficult to detect in the seismic data. Nevertheless, thin reflections, aligned 

approximately parallel to the sediment surface at a depth of about 3 m bsl (Figure 

16B-D), are interpreted to indicate the peat sequence observed in the cores at the 

same depth. The peat layer continues with reduced reflection intensities beneath 

the longshore sand bars, where it ends unconformably against its seaward base 

(Figure 16B-D). An interpretation about the peat layer continuation landwards to the 

core position is limited due to the shallow multiple. In the seismic data, a weakly-

visible, offshore orientated lamination can be identified within the longshore 

sandbar, which shows a medium to low acoustic transparency, and yields a 

maximum observed thickness of ca. 1.5 m. In the western and south-western part 

of the study area, ridges composed of fine sand (Figure 16A) unconformably overlie 

the layer deposits. Within these sand ridges with a maximum observed thickness 
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of ~1 m, a very homogeneous and transparent signature with almost no internal 

reflections was observed. The same acoustic reflections, which are caused by fine 

sand, can be observed in the north in form of isolated lenses of less than 1 m 

thickness that occur on top of the medium sand (Figure 16B). Several of the seismic 

profiles acquired in the coastal zone of the central study area intersect with a shore-

parallel sandbar. 

 
Figure 16: Seismic data of profiles A, B, C, and D. Sediment cores to prove the ground-truthing are 
indicated. The position of core C3 was extrapolated to the nearest shot points of seismic lines C and 
D. The distance to line C is 25 m, and the distance to line D is 15 m. Refer to Figure 13. for location 
of the seismic lines. 
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3.3. Column experiment 

3.3.1. Aqueous phase geochemistry 

3.3.1.1. Salinity 

Good correlations between salinity either calculated with Cl- or salinity deduced 

from electrical conductivity measurements were observed for both, peat-sand 

columns (r2 = 0.79, P <0.001, n = 134) and sand cores (r2 = 0.90, P <0.001, n = 97) 

(Figure 17). Since Cl- is known to be unaffected by sorption processes it was 

chosen as the preferred measure of salinity (S). The highest salinities (S >12) were 

measured during the three SW cycles throughout the entire peat-sand and sand 

columns. During the GW experiments, the salinity decreased along the column from 

~9.5 to ~6.7. The lowest salinity (S <5) was measured at the bottom of the peat-

sand column during the third upward GW flow after 14 days at the end of the 

experiment (Figure 18, 25). 

 

Figure 17: Correlation of salinity calculated with chloride (Cl-) and electronic conductivity (EC) in 

peat-sand (P1) and sand (S1). 
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Figure 18: The fluxes of CO2 and CH4 (upper graphs) derived from concentration change rates in 
the headspace of all columns for peat-sand (left) and sand (right). Depth distributions of aqueous 
concentrations of salinity, O2, DOC, DIC and SO4

2- are presented for each column set, over the 50 
days of the experiment period and under GW and SW flow regimes. The white arrows show the flow 
direction, the white lines indicate the advective flow rates with negative values indicating downwards 
SW flow and positive values showing upwards GW flow. The black dots represent the porewater 
sampling depths and the time of sampling. The grey bracket left of the peat-sand data indicates the 
position of the peat layer in the lower section (20 to 40 cm) of the core. 
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3.3.2. Porewater chemistry 

The dissolved oxygen (O2) concentrations in both peat-sand (P2) and sand columns 

(S2), varied following the SW and GW flow regimes and were highest during SW 

runs in the sand columns (Figure 18). In the peat-sand column the sediments were 

predominately oxygen-depleted at depths >15 cm. During the SW intrusions, the 

O2 concentrations in peat-sand columns were 42 ±10.9 µmol l-1 in shallower sands 

(<10 cm) and dissolved oxygen significantly decreased towards deeper peat layers. 

In contrast, the sand columns were entirely penetrated with oxygen. The highest O2 

concentrations (~150 ±10 µmol l-1) were observed in the upper part of the sand 

columns during SW downward flow regime. In both, peat-sand and sand columns, 

the concentration of dissolved SO4
2- in the porewater showed a positive correlation 

(Figure 19) with the SW downwards flow events (peat-sand: r2 = 0.85; sand: r2 = 

0.92). Thus, the SW could be generally identified as the source of SO4
2-, although 

SO4
2- concentrations showed larger scatter towards lower concentrations with 

increasing core depth (Figure 18, 25). 

 

 

Figure 19: Correlations between SO4
2- and chlorinity for peat-sand (P1) and sand column (S1) 

 

During the GW upwards flow, a significant increase in concentrations of DOC (r2 = 

0.81, P <0.001) correlating with decreasing salinities was detected in the peat-sand 

column. Furthermore, the increased production of DOC with advective groundwater 

upflow resulted in the ascent and finally enrichment of DOC in the sand sediment 

above the peat layer (Figure 18), which showed acetate concentrations of 6 ±1.2 

mg l-1 (GW1), 8.4 ±1.4 mg l-1 (GW2) and 4.6 ±1.3 mg l-1 (GW3) (data not shown). 

With increasing salinities during SW downward flow experiments, a significant 

decrease of DOC concentration in the porewater was observed. After the O2 
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content in the surface sediments was significantly increased in the downwards 

flowing SW2 phase, high concentrations of DIC in the upper 10 cm sediment 

occurred during the following GW2 upwards flow (Figure 18). The final GW3 

upwards flow event lasted for 14 days, significantly lowered the salinity and 

substantially increased the concentrations of DOC (17.9 mmol l-1) within all 

sediments of the peat-sand core (Figure 18). 

During this GW3-phase the C-isotopes of DOC (δ13CDOC) were 26.7 ±4.5 ‰ with 

lowest values of -26.9 to 27.7 ‰ at salinities of S ≤ 5. Slightly lighter δ13CDOC of -

26.7 to -25.6 ‰ and were detected at salinities S >5. A linear multiple regression 

between δ13CDOC, DOC and salinity indicates a moderate adjusted determination 

coefficient (r2 = 0.72) with lighter values found with higher DOC concentration and 

decreasing salinities. 

 

3.3.3. CO2 and CH4 fluxes 

During GW upwards flow regimes average CO2 fluxes from the ponding water into 

the air-filled headspace were significantly higher in peat-sand (11.4 ±5.8 mmol m-2 

d-1) and sand (6.9 ±5.7 mmol m-2 d-1) as compared to SW down flow regimes with 

4.6 ±3.4 mmol m-2 d-1 in peat-sand and 3.7 ±3.4 mmol m-2 d-1 in sand (Figure 18). 

The lowest average CO2 fluxes of 0.5 mmol m-2 d-1 were observed in the sand cores 

during the SW1 down flow regime. In both sediment cores, the highest fluxes 

occurred during GW2 (15.7 ±1.2 mmol m-2 d-1 in peat-sand and 12.9 ±0.9 mmol m-

2 d-1 in sand). Similar to what could be observed for CO2, also CH4 fluxes were 

systematically coupled to the flow dynamics. During the SW downwards flow 

regimes average CH4 fluxes were 1.5 ±26.6 µmol m-2 d-1 peat-sand and 8 ±15.4 

µmol m-2 d-1 in the sand core. Significantly higher average CH4 fluxes were recorded 

during GW upwards flow regimes with 35.7 ±26.3 µmol m-2 d-1 in the peat-sand core 

and 21.2 ±16 µmol m-2 d-1 in the sand core. The highest average CH4 fluxes in the 

sand cores were measured during GW2 (32.9 ±16.8 µmol m-2 d-1) and in the peat-

sand cores during GW3 (48.5 ±25.1 µmol m-2 d-1). The longer the GW flow condition 

persisted, the more CH4 was emitted (from 16.5 to 77.3 µmol m-2 d-1 within the last 

14 days, GW3). During SW intrusion regimes SW1 and SW3, an observed 

reduction of the CH4 concentrations in the headspace indicates negative fluxes. 
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3.3.4. Abundances of methanogenic archaea and sulfate reducing 

bacteria 

The results of the quantitative PCR in the peat-sand column, which were analyzed 

after drainage at the end of the experiments, reveal significantly lower abundances 

of methanogens (mcrA) and sulfate reducers (dsrB) in the upper 20 cm of sand 

sediment (mcrA: 1.2 x 103 ±1 x 103 copies/g; dsrB: 1.4 x 104 ±1.2 x 104 copies/g) 

compared to the lower peat section (mcrA: 5.6 x 105 ±2.1 x 105 copies/g; dsrB: 6.7 

copies/g) (Figure 25). The highest copy numbers of dsrB (1.9 x 107 copies/g) were 

detected in the transition zone (see Figure 20) of highly degraded peat, whereas 

mcrA revealed highest abundances (1.02 x 106 copies/g) in the lowermost sample 

where peat got least decomposed. Generally, sulfate reducers (dsrB) outnumber 

methanogens (mcrA), although the abundance of dsrB declined towards the bottom 

section. 

 

3.3.5. Solid phase geochemistry 

Results from C, N and stable carbon isotope analysis (δ13C) (Figure 20) revealed 

strong variations in elemental concentrations with depth within both, the six 

experimental cores (end) and the initial (init.) cores. The results of the solid phase 

geochemistry within the same sediment depth were summarized for peat-sand 

cores (P1, P2, P3) and sand cores (S1, S2, S3) and expressed in mean values. 

The stable isotopic composition (δ13C) of the peat layers were in the range from -

27.9 to -26.8 ‰, with a mean values of -27.3 ±0.3 ‰ (n = 6), and shows higher 

values in the upper 20 cm sand layer in the range of -25.3 to -22.6 ‰, with a mean 

value of -24.6 ±1.5 ‰ (n = 18). In peat-sand columns, the mean concentration of 

Corg in the deep peat layers (depth below 30 cm sediment depth) were 44.2 ±5.3 % 

(n = 15) compared to 15.9 ±20.2 % (n = 9) in the transition layer between the peat 

and sand (sediment depth of 30 – 21 cm) and 0.04 ±0.02 % in the upper sand layer 

(Figure 20). Total nitrogen could be detected only in the peat layers (TNmean 1.5 

±0.6 %) where it followed the distribution of Corg (r2 = 0.85, P = 0.007). The C:N 

ratios were 29.5 ±1.7 in the peat layer. In contrast to the peat substrate, the 

concentrations of Corg, Cinorg and TN in the sand in all the columns were very low 

and in some cases below detection limit. Additionally, in all the sand sediments a 

larger variability of the stable isotope values (δ13C) was observed (Figure 20). The 
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concentration of Cinorg within the peat layer and the sand on top of the peat-sand 

core (end.) was 6.5 ±5.3 % and 0.04 ±0.03 %, respectively, and significantly 

different to the peat-sand core (init.). 

 

 

Figure 20: Depth distribution of organic carbon contents (Corg %), total nitrogen (TN %), inorganic 
carbon contents (Cinorg %), stable isotopic signature of organic carbon (δ13C ‰) and carbon/nitrogen 
(C:N) ratios in the peat-sand and sand columns (mean values of all columns). The grey boxes 
indicate the peat sediment within the peat-sand columns, with light grey (20–30 cm) marking the 
transition zone (highly decomposed peat) and dark grey marking peat deposits of low 
decomposition. 
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4. Discussion 

4.1. Hydrodynamics and trace gas distribution 

The overall water masses of the southern Baltic Sea are part of an earth rotation-

derived north-eastern flowing current system (Elken and Matthäus, 2008), whereas 

the influence of the coriolis effect decreases towards nearshore coastal areas, 

where the current dynamics are mainly induced by wind (Krauss, 2001; Ostrowski 

et al., 2018). Flow velocities of up to 30 cm s-1 were measured near station 33 

(Figure 1) in the centre of the study site (personal communication with Xaver Lange, 

IOW, 2019). Therefore, it can be assumed, that the water masses within the 

sampling transects are constantly substituted and supplied with different water 

masses originating from (1) Baltic Sea, Mecklenburg Bay, (2) river water of the 

Warnow-river and (3) groundwater discharge originating from coastal sediments 

(Jurasinski et al., 2018) and coastal aquifers. This three sources of different water 

masses impacting up on the study side area are discussed in the following sections. 

 

4.1.1. Baltic Sea water 

Baltic Sea-water comprises the main fraction of the water masses and has therefore 

a major influence on the measured water chemistry in the study area in front of the 

Hütelmoor. For instance, Baltic Sea water is considered as the main source of 

sulfate (SO4
2-), an important component for anoxic mineralization processes of 

organic matter as well as anoxic methane oxidation (Jørgensen et al., 2001). The 

salinities within the Mecklenburg Bay are characterized by horizontal gradients 

ranging between 14 and 16 in the western opening (Fehmarn-Belt) and between 8 

and 10 in the north-eastern opening (Darßer Schwelle), which results in variations 

of the solute concentrations. Twentyfive bottom water stations in front of the 

Hütelmoor were repeatedly investigated for trace gas concentrations of nitrous 

oxide (N2O) and methane (CH4). Although the sampling campaigns throughout the 

year 2016 and 2017 exhibited variable conditions of salinity, nutrient concentrations 

and gradients within the water column, most N2O values recorded, were close or 

slightly below saturation (96 ±14 %) with varying concentrations being most likely 

the result of temperature caused solubility effects (Bange, 2008, 2006; Weiss and 

Price, 1980). In contrast, CH4 concentrations showed great spatial and seasonal 

https://paperpile.com/c/5lR3Uh/ja5z
https://paperpile.com/c/5lR3Uh/69ss+931U
https://paperpile.com/c/5lR3Uh/69ss+931U
https://paperpile.com/c/5lR3Uh/bncQw
https://paperpile.com/c/5lR3Uh/31TH
https://paperpile.com/c/5lR3Uh/yDWH+Rmuc+6kyi
https://paperpile.com/c/5lR3Uh/yDWH+Rmuc+6kyi


49 

variabilities. The general seasonal pattern showed a strong increase in bottom 

water CH4 concentrations and saturation (2845 ±1624 %) in late summer (Figure 

6). Furthermore, prevailing hydrodynamic conditions indicate a strong influence on 

the vertical distribution of trace gases across the water column. Although the origin 

of the water masses cannot be assessed due to limited data, it can be distinguished 

by means of salinity. Highest CH4 concentrations of ~161 nmol l-1 (5994 %) were 

observed in bottom waters in September 2016 with increasing stratification. It can 

be assumed that the CH4 accumulation in bottom waters increases due to limited 

water column mixing, which is indicated by a distinct salinity difference between 

bottom water (~18) and surface water (~8) (Figure 21a, b). The horizontal 

distribution of the CH4-enriched water body closely follows the bathymetry of the 

seabed (see Figures 6, 13), with CH4 concentrations clearly increasing at water 

depth >4 m (Figure 21a). The trough-like bathymetry (Figure 13) in combination 

with pronounced stratification may additionally reduce the water exchange and thus 

increase the methane accumulation in bottom water. Additionally, there may also 

be peat deposits outcropping along the deep seaward flank of the coastal longshore 

bars, although this could not be confirmed yet. Subsequent circulation of the water 

column e.g. due to a small-scale local upwelling events or enhanced boundary 

mixing may cause CH4 emissions into the atmosphere (Bange et al., 2010; 

Karstensen et al., 2014). 

 

 
Figure 21: The graphs show (a) higher methane concentrations in deeper water depths which are 
found in a trough-like are in the central transect and (b) a moderate relation between the the ratio of 
bottom water salinity and surface water salinity and CH4 concentrations (nmol l-1), indicating CH4 
accumulation in bottom waters due to stratification events in <6m water depth. 

https://paperpile.com/c/5lR3Uh/yXfW+9wNN
https://paperpile.com/c/5lR3Uh/yXfW+9wNN
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4.1.2. Warnow-river water 

Variations of physico-chemical parameters in the water column were detected 

during CTD-profiling at the central offshore station 33 (6 m water depth, see Figures 

1, 7) in July 2017. Within 5 days the properties of the water column completely 

changed, showing an increasing vertical salinity gradient, which indicated both the 

inflow of near bed saline water and low saline surface water during 24th and 28th of 

July (Figure 7). In contrast to almost constant N2O concentrations, the CH4 

concentrations varied considerably with time. In the first profile (24th of July), 

increasing salinities and CH4 concentrations (from 35 to 55 nmol l-1) correlate 

negatively with temperature. While the salinity at the surface increases in the 

following profile (26th of July) with decreasing CH4 concentration, a reversed pattern 

appears in the profile two days later (28th of July). This latter profile shows a 

significant decrease of the surface salinity, which is accompanied by an increase of 

CH4 concentrations. The increase of CH4 in the surface water likely results from the 

discharge of the Warnow-river plume. Modelling results have shown that, 

depending on the wind conditions, river water may reach the coastline of the study 

site (Jurasinski et al., 2018) and by this may alter the chemical composition 

including dissolved trace gas concentrations. Additionally, it has been reported 

previously (master thesis, Anne Breznikar, 2017), that the discharge of the Warnow 

river water can act as a source for dissolved CH4 into the Baltic Sea. In surface 

waters of the river outlet, measured CH4 concentrations yield values of 99.4 ±55. 4 

nmol l-1 (range: 42.1–194.3 nmol l-1, n = 12) (Warnemünde, Figure 10, 11). The 

model simulating the estuarine circulation (established by Xaver Lange) further 

indicates, that the magnitude of the Warnow river outflow can increase tenfold 

caused by a bed-near inflow of seawater and an enhanced surface outflow of low 

saline water. The stratification of shallow estuarine rivers have been observed to 

produce bottom water hypoxia (Stanley and Nixon, 1992). A strongly stratified water 

column was also observed in the transects of our study site and was most 

pronounced during a sampling period in September 2016, during which the salinity 

of bottom water was twice as high as that of surface water (Figure 21b). 

 

 

https://paperpile.com/c/5lR3Uh/bncQw
https://paperpile.com/c/5lR3Uh/RbG6
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4.1.3. Submarine groundwater discharge 

The role and magnitudes of submarine groundwater discharge (SGD) in the shallow 

coastal area in front of the coastal peatland could not be fully confirmed yet by 

available approaches. As SGD consists mainly of recirculated seawater (Li et al., 

1999; Moore, 2010), reliable tracers are required to determine SGD-derived fluxes 

of water and solutes into the shallow coastal area (Burnett et al., 2001). Assuming 

a two-component mixing of an inert tracer (e.g. salinity, radiogenic isotopes such 

as 222Rn, 224Ra) a two endmember components freshwater-seawater mixing model 

could theoretically be applied to calculate the land-derived SGD-fraction (Burnett et 

al., 2006; Dulaiova et al., 2005; Rapaglia et al., 2012; Schubert and Paschke, 2015), 

allowing relatively fast detection and quantification of SGD in the water column. 

However, along this coastal study site, the determination of appropriate 

endmember concentrations is difficult. The coastal aquifer has been observed to be 

constantly contaminated by seawater intrusion (confirmed by CTD divers installed 

within the peatland, personal communication with Julia Westphal and Miriam 

Ibenthal, 2017), while the seawater is continuously substituted and most likely 

contaminated with the signature of low-saline Warnow-river water. However, stable 

isotopes (δ18O, δ2H) can be applied in order to confirm a land-derived origin of 

submarine groundwater by comparing with the stable isotopic ratios of the meteoric 

water line (Rocha et al., 2015). At our study site, estimations have shown that the 

major fraction of submarine groundwater derives from the coastal peatland aquifer. 

The SGD is considered to appear at focussed as well as diffusive spots, mostly 

southwestern of the lake Heiligensee (Figure 1c) as well as in the central area in 

shallow coastal areas in front of the “Prahmgraben” (personal communication with 

Julia Westphal, IOW, 2018). At these locations investigated, (station 22, 61 to 76, 

see Figure 1c) the occurrence of SGD is indicated by lower surface sediment 

porewater salinities than ambient seawater (Figure 9) and by information of the 

applied tracer techniques (e.g. temperature) in the water column (Jurasinski et al., 

2018); personal communication with Julia Westphal, 2018). Although SGD-rates 

were not measured, elevated discharge of solutes were detected near outcropping 

peat deposits and coincided with elevated concentrations of CH4 in the water 

column (Jurasinski et al., 2018). The dissolved CH4 in the water column is assumed 

to originate from the coastal seabed, which is supported by anomalies of shallow 

porewater compositions showing high concentrations of CH4, DIC and NH4
+, 

https://paperpile.com/c/5lR3Uh/ddX4+HqXW
https://paperpile.com/c/5lR3Uh/ddX4+HqXW
https://paperpile.com/c/5lR3Uh/Bbic
https://paperpile.com/c/5lR3Uh/NL6A+mszX+gRAE+SgsI
https://paperpile.com/c/5lR3Uh/NL6A+mszX+gRAE+SgsI
https://paperpile.com/c/5lR3Uh/38vR
https://paperpile.com/c/5lR3Uh/bncQw
https://paperpile.com/c/5lR3Uh/bncQw
https://paperpile.com/c/5lR3Uh/bncQw
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additionally arguing for suboxic or anoxic organic matter mineralization processes 

such as sulfate reduction, denitrification and methanogenesis (Froelich et al., 

1979). Significantly lower permeabilities of the peat layers compared to marine sand 

sediments may further inhibit oxygen-rich seawater recirculation through the 

organic-rich peat layers, which reduces degradation rates. Despite the fact that it is 

14C dated to 6725 ±87 cal yr BP it still contains high amounts of organic carbon 

(Table 3). Thus it can be assumed, that submerged peat deposits may contribute 

to the production and release of decomposable dissolved organic carbon (DOC), 

being subject to physico-chemical solution processes (Ardón et al., 2013; Clark and 

Van Der Heijden, 2011; Tiemeyer et al., 2017). 

4.2. Coastal development and geomorphology 

The surface and subsurface structure of the seabed in front of the coastal peatland 

exhibit large heterogeneities between the on- and offshore area as well as the 

northern and the southern areas of the study site. This could be confirmed by the 

combination of high-resolution hydro-acoustics, seismic surveys and sediment 

composition analysis, showing that well sorted fine sands predominantly form the 

offshore sand ridges and cover the central trough area. On the other hand, medium 

sands with minor gravel fraction cover the transition to the sand ridges and the 

northern plain area where glacial deposits are located close to the seafloor surface. 

Towards the south, the decreasing water depth results from increasing 

sedimentation of medium to fine sand, which is indicated by internal lamination of 

Holocene deposits (Figure 16B, C, D) in the seismic data. Sand ridges are 

particularly common in the North Atlantic and the North Sea (van de Meene and 

van Rijn, 2000; Zeiler et al., 2008), but represent a special geomorphological 

feature in this nearshore study area. Some of these structures can persist for 

several thousand years (Snedden and Dalrymple, 1999) and are formed by both 

tidal currents (negligible in the Baltic Sea) as well as by wind/storm generated 

longshore currents, while formation of the ridges requires intense storm activity 

(Swift et al., 1978). To our knowledge, however, no shoreface sand ridges have 

been reported so far in the southern Baltic Sea. The apparently rare occurence of 

these features compared to other shelf regions is most likely due to the lack of 

sediment supply and the heterogeneous and patchy sediment composition in the 

Baltic Sea, causing sediment-starved conditions (Feldens et al., 2015; Schwarzer, 

https://paperpile.com/c/5lR3Uh/a4jx
https://paperpile.com/c/5lR3Uh/a4jx
https://paperpile.com/c/5lR3Uh/uVQ6+NGuD+ALyN
https://paperpile.com/c/5lR3Uh/uVQ6+NGuD+ALyN
https://paperpile.com/c/5lR3Uh/UF4Ht+VTton
https://paperpile.com/c/5lR3Uh/UF4Ht+VTton
https://paperpile.com/c/5lR3Uh/nA5mC
https://paperpile.com/c/5lR3Uh/F0gX8
https://paperpile.com/c/5lR3Uh/wBSjA+ltxCq
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2010). This might explain the lower variable length-to-width ratios of ~2 to 10 

(Pendleton et al., 2017) and the lower height (Nnafie et al., 2014) as compared to 

other nearshore ridges. The shallow bases of the sand ridges may further indicate 

a frequent reworking of the sand ridges by background wave action, while their 

orientation is in agreement with dominant SW-NE-directed longshore currents. 

The determined 14C date retrieved from the organic sediments and marine shells in 

core C1 (Figure 15) and seismic data provide information on the time of formation 

of the offshore sand ridges. The unconformity between the base of the sand ridges 

and the sediment material within core C1 (Figure 16A) indicates that the sand ridges 

were formed subsequent to the deposition of the youngest dated material below 

around 3582–3450 cal yr BP, a time when the Baltic Sea sea level reached its 

present value and remained almost stable (Figure 22). Coastal dynamics such as 

wave and longshore currents lead to sediment transport in a northeastern direction, 

accumulating along the barrier spit of the Fischland-Darß peninsula (Lampe et al., 

2011).The shoreline of the study site is featured by a longshore bar (Figure 13) 

consisting of fine to medium sand and is the result of nearshore sedimentation 

processes. In the Baltic sea and other micro-tidal sandy beach systems, longshore 

bars with asymmetric slope angles are common, with the steeper slope typically 

facing the beach (Guillén and Palanques, 1993; Zhang et al., 2011). The position 

and stability of longshore bars is influenced by coastal dynamics such as wave 

energy and sea level fluctuations with rising sea level forcing an upwards 

movement, as a result of higher wave energy (Lippmann and Holman, 1990; Wright 

and Short, 1984). In response, the movement of the coastal longshore bars controls 

the amount of wave energy reaching the shoreline and thus affecting sediment 

erosion and accumulation. Additionally, the longshore bar at the study site contains 

mid-Holocene peat deposits (6725 ±87 cal yr BP) (C3.1, Figure 15) and thus 

records information about associated paleo-landscapes, pre-existing floodplains, 

habitat migration, sediment stability and its seasonal equilibrium morphology 

(Gerdes et al., 2003; Plets et al., 2007; Westley and Dix, 2006). The formation and 

submergence of these peat deposits reflects the decline of the coast and 

processing of land-based sediments. In the northern nearshore coastal area, the 

longshore bar is less pronounced, which is likely caused by increased coastal 

erosion in this area. The submarine extension and formation time of the peat 

deposits is discussed in the following section. 

https://paperpile.com/c/5lR3Uh/wBSjA+ltxCq
https://paperpile.com/c/5lR3Uh/SrzWM
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Figure 22: Local Holocene sea level curve based on Lampe (2010) with age/depth relationships 
obtained in this study. The 14C-ages cover the local sea level curve, except from C1.2, which likely 
reflect measurements of reworked material. 

 

4.2.1. Peatland formation and sea level rise 

The coastal region and landscape of the southern Baltic Sea were predominantly 

shaped by the Weichselian glaciation around 115.000–13.000 b.p. (Niedermeyer et 

al., 2011), which led to sediment deposits of up to 50 m thickness. The northeast 

striking coastline of the study site is predominantly composed of marine sediments 

(medium and fine sand, gravel) but also contains former terrestrial peat deposits, 

exposed in the area of the coastal lake Heiligensee. These disclosed peat deposits 

result from coastal erosion processes in eastern direction (landwards), where the 

peatland and nature reserve “Heiligensee und Hütelmoor” is located. Low-lying 

coastal peatlands are unique features along the coastline, and were predominantly 

formed in the late Holocene during the sea level stagnation about 5800 cal yr BP 

(Lampe, 2002). The area of the present-day peatland has been formed in a former 

postglacial lake after the retreat of the glaciers (Kolp, 1957). The onset of the 

peatland formation “Heiligensee und Hütelmoor” could be determined from 

submerged peat detritus (basal organic/gyttja) to have been started as early as 

7024 ±73 cal yr BP (sample C3.2), which is earlier than the previously estimated 

formation age of 5400 yr BP, (Bohne and Bohne, 2008). Overlaying peat deposits 

were dated to 6725 ±87 cal yr BP (C3.1) and additionally peat detritus dated at 

https://paperpile.com/c/5lR3Uh/SkJJ
https://paperpile.com/c/5lR3Uh/SkJJ
https://paperpile.com/c/5lR3Uh/Ptzg
https://paperpile.com/c/5lR3Uh/WYvZa
https://paperpile.com/c/5lR3Uh/WzGq1
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B6.2: 5918 ±45 cal yr BP was found at the base of the peat deposits along the 

shoreline. Some peat deposits in the northern part of the study area were not dated, 

but given their base situated at 1 m bsl these can be assumed postdate the peat 

deposits in the central area (ca. 3 m bsl) (Figure 12). The time frame and depth of 

the sampled peat deposits coincide with a period of continuously decreasing sea 

level rise (from >0.1 cm yr-1 to 0.05–0.08 cm yr-1) starting around 7000 BP, thus 

allowing peat formation (~0.05–0.13 cm yr-1) to keep up with the rising water table 

(Lampe et al., 2011, 2010; van der Linden et al., 2008). According to the data 

available, an earlier onset of peatland formation is not apparent, particularly since 

the organic-rich peat layers originating from the offshore core C1 show indications 

of reworked material. The geochemical signatures (C/N ratios (11.97), δ13C isotope 

values (-25.2 ‰), observation of marine shell fragments of the bulk material) 

suggest organic material, typical for marine origin (Stein, 1991).  

The Hütelmoor can be defined as a paludification mire, which are generally subject 

to continuous horizontal water permeation below the surface of the terrain (Wheeler 

and Proctor, 2000). The earliest formation of the peatland, however, can be traced 

back to local depressions in which gyttja, a lake sediment, was deposited on top of 

silty and clayey sediments interpreted as clastic lacustrine or fluvio-lacustrine 

sediments due to their high content of silt or clay and their position between basin 

sand and gyttja. Terrestrialization of these depressions may have further resulted 

in peat accumulation and peatland growth. The autochthonous formation of the 

sediments is confirmed by a continuous basal sediment sequence observed in the 

offshore core C3 (Figure 15). Thus, the bottom sand was deposited under 

freshwater conditions, followed by formation of gyttja during the wetlands period 

and finally peat sediment accumulation during the Littorina transgression. 14C age 

dating of undisturbed sediment sequences containing basal peat deposits is a 

powerful method and can provide useful information to investigate Holocene sea 

level development (Heinrich et al., 2017; Lampe et al., 2010; Lampe and Janke, 

2004a, 2004b; Rößler et al., 2011). According to the local sea level curves of 

Fischland and Nord-Rügen (Lampe et al., 2010), the detected 14C ages show a 

slight tendency towards a lower sea level, as determined by ages in samples B6.1 

and B6.2 (Table 3). This observation agrees with different rates of glacial isostatic 

adjustment (Lampe, 2005), with the North of Rügen experiencing uplifting, and the 

more southern area (Hütelmoor) subsiding along the isostatic equilibrium line. 

https://paperpile.com/c/5lR3Uh/2LzUN+6amR+JObRY
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The transition from terrestrial peat material (i.e. freshwater environment) to marine 

sand (i.e. saltwater environment) is indicated by a sudden change in substrate and 

an erosional upper boundary on top of the peat deposits in both on- and offshore 

peat sediments. This indicates a sudden flooding of the former peatland. The 

change of the environmental conditions is also supported by geochemical data 

derived from the organic matter with carbon/nitrogen ratios increase from 21.3 in 

147 cm sediment depth and 36.4 in 157 cm sediment depth (C3, Figure 15), which 

are considered to be of terrestrial origin (Meyers, 1997). This is accompanied by a 

sudden increase of mean δ13C values from -27.9 ±0.95 in the peat and sand 

deposits below the erosive boundary to -24.3 ±0.8 in the marine sands above, 

suggesting a shift from a terrestrial, freshwater environment to a marine saltwater 

environment (Bickert, 2000). The deposition of this marine sand and the 

contemporaneous erosion of the underlying peat sediments can be constrained to 

a maximum age of 3516 ±87 cal yr BP (B6.1) under the assumption of a coherent 

peat system. At the same time this also provides information about the temporal 

onset of the coastal longshore bar. The submarine basal peat deposits as well as 

shallow near-coastal sediment deposition including exposed peat are subject to 

erosion in response to the position and stability of the longshore bar. Considering 

the total coastal retreat and the occurrence of former terrestrial peat deposits in the 

present-day offshore area, it can be assumed that the centre of the peatland has 

shifted from the present present-day offshore area to the current location of the 

Hütelmoor. This is also confirmed by peat detritus and peat of similar thickness 

deposited above on- and offshore basin sands in B6.2 (5918 ±45 cal BP), B9 (6769 

±128 cal BP) (Figure 12) and C3.2 (Figure 23) at similar depth. 

4.2.2. Submerged peat deposits in marine sediments 

The retreat of the coast has transformed former terrestrial peat deposits into marine 

sediments. Coastal erosion and flooding of the coastal peatland can be accelerated 

by different factors such as sea-level rise, reduced sediment availability, coastal 

stress due to storm events and landside subsidence (Lampe and Janke, 2004a; 

Vestergaard, 1997). The geomorphology of the peat deposits in the study area 

developed in response to the topography of the till, resulting in shallower peat 

deposit of ~1 m bsl in the northern part (core B4 and B5, Figure 12). These peat 

deposits are found on the beach surface near lake Heiligensee ("observed peat" in 

https://paperpile.com/c/5lR3Uh/dPeR
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Figure 13) and are therefore exposed to the dynamics of the coastal shoreline. 

Minor erosion can regularly be observed after storm surges, whereas large 

washover events as observed in January 2019 (Figure 2 b, c) have been reported 

to wash-out peat blocks of severals decimeter upon the beach (see also Krüger, 

1995). The absence of peat layers in core C5 confirms that the offshore continuation 

of peat deposits is constrained to the north. However, the sediment sequences 

consisting of minerogenic lake sediments and fine sand contained in C5 indicate a 

former submarine extension of the peat layer, given the corresponding sediment 

sequence found below the peat deposits in core B4 (Gerdes et al., 2003). In the 

southern and central part of the study site the deep peat deposits are better 

preserved (Figure 12) and extend below the longshore bar. This is confirmed by 

corresponding reflections in the seismic data below its base (Figure 16B), which 

show similar acoustic characteristics as compared to ground-truthed reflections 

near core C3. In the southern area, where peat deposits could be sampled both on- 

and offshore (C3, B9, Figure 13), the base peat is located ~2 m lower than in the 

north (B4, Figure 12). The underwater peat is interpreted as the seaward 

continuation of the peat deposits on land (Figure 17). This assumption is supported 

by a comparable age of formation (Table 3), the same sediment sequences of silty 

fine sand, gyttja and peat (Figure 15, 12, 23) with similar depths of these layers 

both on onshore and offshore, and corresponding horizontal reflections in the 

seismic data. The reflections in the seismic data imply a seaward extension of the 

peat layer that was detected in C3 to the seaward dipping base of the longshore 

sand bar (Figure 16C-D), with no indication of peat deposits underneath the 

offshore sand ridges (core C1). 

 
Figure 23: Geological profile perpendicular to the coast with drilling locations (MP2, B6, C3 - 
compare Figure 13 for core locations): sediment depths in m amsl. The information of sub-
sedimentary peat continuation is based on ground-truthing with core C3 and the continuation of 
internal reflectors in the seismic profiles. 

https://paperpile.com/c/5lR3Uh/t9UEK
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Towards the south-western periphery of the coastal peatland, the peat burial depth 

declines again and is completely absent in core B7 (Figure 12), but re-appears 

further south in sediment core LG Fsb -/1956 (Figure 13) containing peat deposits 

of 85 cm thickness. The hiatus in the peat deposits along the beach is most likely 

caused by a sturm surge in 1954, which eroded the surface sand layer and caused 

washover and erosion of peat blocks across a length of 100 m (Kolp, 1957). The 

sub-sedimentary, spatial continuation of peat deposits under the coastal sandbank 

can be roughly defined by seismic data (Figure 16B, -C, -D). A coherent submerged 

area of 0.16–0.2 km2 can be estimated under the assumption of a continuous 

deposition of peat along the coast with larger offshore extension in the central study 

site. This is constrained by the seaward boundary of the longshore bar and the 

disclosed peat deposits in the north. 

 

4.3. Experimental investigation of the interaction of submerged peat 

with advective groundwater and seawater flow 

4.3.1. Advective flow and solute transport 

The flow-through column experiments (Figure 5) were conducted, in order to 

improve the understanding of carbon transformations and exchange of trace gases 

from the submerged peat deposits that were found along the shoreline of the 

coastal peatland (see chapter 2.3 and 3.3). Therefore, naturally layered peat-sand 

and sand sediments were alternatively supplied with oxygen-rich seawater from 

above and oxygen-depleted groundwater from below. Geochemical variables and 

fluxes in the peat-sand core were significantly distinct from the homogenous sand 

core. Even though it was possible to generate comparable flow regimes in the two 

types of sediment cores by gravity driven, valve-controlled downwards flow and 

pump-controlled upwards flow, the mixing of the two salinity endmembers showed 

clear differences. Sand cores experiments showed stronger, internal mixing 

compared to the peat-sand cores (Figure 18, salinity of P1 and S1). The mixing of 

GW and SW in the sand core extended over the entire profile, resulting in a smooth 

vertical salinity gradient. The formation of low saline reservoirs in the pore spaces 

was in most cases inhibited and such reservoirs formed only during GW3 (S ≈ 1.6, 

Figure 18, 25). The higher density of saline SW compared to the low-saline GW 

https://paperpile.com/c/5lR3Uh/WYvZa
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underneath may have caused density-driven convection currents as described for 

permeable coastal sands (Robinson et al., 2007; Santos et al., 2012). In contrast, 

peat soils are highly complex porous media including open and connected, dead-

end and isolated pores, where flow and convergence of GW and SW is restricted 

to the hydrologically active pore space (Rezanezhad et al., 2016). Since 

biogeochemical exchange processes are related to the ionic strength of the 

solution, the formation of low-saline porewater reservoirs in submerged peat layers 

potentially enhances the concentration of DOC and formation and release of CH4 if 

O2 and SO4
2- are absent. In the Baltic Sea, where peat deposits and SGD are 

frequently observed along the coastal zones (Kotwicki et al., 2014; Kreuzburg et 

al., 2018; Peltonen, 2002; Schlüter et al., 2004; Sergeev et al., 2015b), these 

processes can have potential implications on the carbon balance and the release 

of methane into the water column and atmosphere. 

4.3.2. Solid phase geochemistry 

The shift from a terrestrial, freshwater environment (peat) to a marine saltwater 

environment (sand) is recorded by a sudden change of the substrate in the peat-

sand cores (P1, P2, P3). The peat layer is characterized by low C:N ratios of ~30 

and light δ13C values of ~-27 ‰. The change towards heavier isotopic compositions 

of the organic matter closer to the sand confirms a change into marine depositional 

conditions (Bickert, 2000) and is also supported by lower C:N ratios of the organic 

matter source (Meyers, 1997). Sediment cores without peat (S1, S2, S3) and the 

sandy parts of the peat-sand cores have higher δ13C values of -24.3 ±1 ‰, which 

is typical for a marine origin (Stein, 1991). The close proximity of marine sandy 

sediments with peat layers results in a high downcore gradient of organic matter of 

different composition and origin. Moreover, the degree of decomposition of the peat 

changed from less decomposed peat (H 3–4) in depths >30 cm to moderately 

decomposed peat (H 7–8) towards the peat-sand interface (i.e. within the transition 

layer), coinciding with a Corg decrease of 99.9 % (Figure 20). These findings indicate 

that peat soil covered with permeable sediments is subject to decomposition, 

progressing from the sand-peat interface into deeper regions. Peat soil in >30 cm, 

although exposed to the coastal wave dynamics, is assumed to be less affected by 

marine-related leaching effects due to their high contents of organic carbon (Figure 

20). 
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4.3.3. Carbon mineralization processes 

4.3.3.1. Mobilization and transformation of DOC 

Downcore concentration profiles of DIC, DOC, salinity and sulfate in the porewaters 

clearly show different slopes above and below the peat layer indicating different 

chemical and physical processes in these substrates. Throughout the cores, salinity 

always steadily increases, while the other substances undergo production, 

consumption and conversion processes. Within the organic-rich peat soil (>30 cm), 

porewaters were depleted in SO4
2-, which indicates sulfate reduction in the 

sediments above and favors CH4 production in deeper peat layers (Figure 18, 25). 

The generation of DOC from Corg appears to be primarily controlled by the ionic 

strength of the porewater, resulting in an inverse relation between the 

concentrations of Cl- and DOC. The impact of porewater flow velocities, different 

flow regimes, pH, and temperature can be relevant for DOC production from organic 

carbon (Evans et al., 2012; Kalbitz et al., 2000; Koehler et al., 2009; Tiemeyer et 

al., 2017; Tipping and Hurley, 1988). In contrast to most studies, Gosch et al., 

(2018) observed an increase of DOC release with increasing salinities, which was 

explained by the specific geochemical properties of the investigated peat substrate. 

However, in our study, elevated concentrations of DOC and a stronger conformity 

of δ13C values between DOC and Corg were observed with salinities <5, confirming 

peat as the carbon source for DOC in low salinity conditions (see supplementary 

Figure 24). Heavier δ13CDOC values were observed with increasing salinity 

conditions and can be the result of organic matter degradation by sulfate reduction 

(Anderson and Arthur, 1983; Boutton, 1991). 

 

 
Figure 24: Relation between the δ13CDOC and salinity and the concentration of DOC and salinity 

for peat-sand core (P1) 
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The upwards convection of DOC with advective fluxes is pronounced during GW 

flow regimes and is mostly pronounced during GW3, showing high concentrations 

(DOC ≈ 6.5 mmol l-1) even in discharging surface water (Figures 25) at day 50, 

which is likely caused by leaching of solid Corg. According to other studies (Berry et 

al., 1990; Gosch et al., 2018; Tiemeyer et al., 2017; Tipping and Hurley, 1988), the 

effects of ionic strength on DOC release are not consistent and alter with substrate 

and physicochemical factors (Kalbitz et al., 2000), but the mobilization of DOC from 

organic sediments is apparently reduced by increasing ionic strength. Sulfate 

reduction and oxygen respiration are responsible for the major share of DOC 

oxidation in marine endobenthic environments (Bender and Heggie, 1984; Henrichs 

and Reeburgh, 1987) and can be assumed that this is also true for the peat in our 

experiments. Highly decomposed peat lacks high amounts of decomposable 

organic matter that could be turned into DOC (Strehse et al., 2018). The peat in 

deeper layers shows significantly lower degrees of decomposition and has higher 

Corg contents, and thus may still contain significant amounts of decomposable DOC. 

The fate of this DOC in pore or surface waters containing mineralization-relevant 

substances (e.g. electron acceptors such as SO4
2-, O2) leads to the oxidation of 

DOC and transformation into DIC. Our results from porewaters indicate these 

processes, in particular at the end of the experiment, where an increase in DIC at 

the peat/sand interface coincides with a decrease in DOC and a deviation between 

SO4
2- and salinity (Figure 25). 

 

 

Figure 25: Concentrations of DIC, DOC, SO4
2-, salinity, CH4 and microbial abundances (repetitive 

measurements: a, b) of methanogens and sulfate reducers (P1) vs. sediment depth at day 50, the 
end of the experiment. 
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Previous studies have shown that with salinities S >10, SO4
2--driven DOC 

mineralization is the preferred metabolic process, causing increased CO2 

production due to DOC mineralization (Chambers et al., 2014; Weston et al., 2011). 

In contrast to O2, which is depleted in the surface sediments in our experiments 

(<10 cm, Figures 18) there is a correlation between Cl- and SO4
2-. Without any 

metabolic processes, the concentration of the main electron acceptors, O2 and 

SO4
2- in our experiment is pre-defined by the mixture of the two endmembers (SW 

and GW, for composition see Table 1). Under the assumption that the concentration 

within the GW end member is negligible, used electron acceptors (ΔEA) can be 

directly derived from the salt content: 

 

This allows calculating the loss of electron acceptors by calculating the difference 

between this “preformed” available electron acceptors and the observed O2 and 

SO4
2- at any point of the experiment (ΔO2 and ΔSO4

2-, see Figure 26). The data 

clearly indicate the higher consumption of electron acceptors in the peat-sand cores 

in comparison to the sand cores, indicating sulfate-fueled oxidation driven by 

penetration of sulfate into the decomposable peat layer. The upward advection of 

DOC and DIC during the GW stages leads to the increase of both parameters in 

the peat-overlying sands, where further oxygen-driven DOC decomposition might 

be partially responsible for oxygen demand. During phases of seawater intrusion, 

SO4
2- entering the decomposable DOC pool apparently enhances anaerobic DOC 

oxidation in the sediments at depth >20 cm. Full depletion of SO4
2- in organic-rich 

sediments, in particular during GW stages where almost no new SO4
2- enters the 

system, can facilitate methanogenesis. 

Depth profiling of microbial abundances supports the suggested electron acceptor 

utilization along the sediment column. The abundances of sulfate reducing bacteria 

(dsrB) and methanogens (mcrA) increases in the peat layer in an upwards direction, 

indicating SRB to prefer the transition zone in which sulfate and DOC is easily 

available (Figure 25). Although SRB overall dominate methanogens, the copy 

numbers of mcrA are stable across the whole peat section, suggesting their 

abundance neither being dependent on the peat characteristics nor on the 

increasing abundance of the sulfate reducers in an upwards direction. Instead, this 

could indicate that the high availability of peat-generated dissolved DOC enables 

https://paperpile.com/c/5lR3Uh/i0AG+Fxup
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the coexistence of both methanogenic and sulfate reducing microbial communities 

and that their activity is subject to the changing environmental conditions. However, 

it cannot be excluded that the detected overlap of both groups was at least to some 

extent triggered by advective fluxes in the peat-sand core. 

 

 
Figure 26: Depth distribution of O2 and SO4

2- deviating to the initial endmember concentration, 
presented for each column set (column P1 and S1), over 50 days of the experiment period. 

 

4.3.3.2. Formation, transport and emission of gases 

The upwards flowing GW decreases the porewater salinity and thus displaces 

required oxidants (SO4
2-) for SRB. This likely promotes anoxic DOC mineralization 

by methanogensis and CH4 formation (Stadtman and Barker, 1949; Whiticar et al., 

1986). It is further notable that CO2 emissions during GW1, GW2 and GW3 have 

reached similar and steady flux rates, which may indicate a limit of mineralization 

and oxidation activity controlled by the amount and composition of solutes present. 

Most pathways of microbial organic carbon oxidation, except for SO4
2- reduction, 

are less active with increased Cl- or HS- concentrations (Chambers et al., 2011; 

Joye and Hollibaugh, 1995; Luo et al., 2017). However, microbial DOC oxidation by 

SRB and methanogens can also co-exist (Figure 25) and may depend on access 

and quality of the substrate (Dar et al., 2008; Holmer and Kristensen, 1994; Sela-

Adler et al., 2017) and species-dependent metabolic traits (Ozuolmez et al., 2015). 

The emissions of CH4 have been described as the residual of CH4 production and 

-oxidation (e.g. aerobic and anaerobic CH4 oxidation), and can be governed by 

advective transport processes (Heyer and Berger, 2000). The transfer and 

extrapolation of CH4 emissions observed during the experiment to the field natural 

https://paperpile.com/c/5lR3Uh/jAxGI+ghAZr
https://paperpile.com/c/5lR3Uh/jAxGI+ghAZr
https://paperpile.com/c/5lR3Uh/tgVVV+yh02G+Vjl4s
https://paperpile.com/c/5lR3Uh/tgVVV+yh02G+Vjl4s
https://paperpile.com/c/5lR3Uh/9SI2X+EIcq3+MTEfr
https://paperpile.com/c/5lR3Uh/9SI2X+EIcq3+MTEfr
https://paperpile.com/c/5lR3Uh/s1WJ8
https://paperpile.com/c/5lR3Uh/xCJ0


64 

situations have to be treated with caution, as the microbial and physicochemical 

properties of the sediment cores might have changed during sampling, transport 

and construction of the column set-up, and the adjusted GW and SW flow were only 

approximations of natural conditions at the field site. Whereas molecular diffusion 

is often assumed to be the main driver of air-water CH4 transfer in experimental 

approaches (Moore and Dalva, 1993; van Winden et al., 2012), the emissions of 

CH4 in shallow water are often dominated by ebullition (Ostrovsky, 2003) and may 

display large spatial and temporal variabilities (Bange, 2006; Upstill-Goddard, 

2006). In the case of our experiment, the advective transport of dissolved methane, 

forced by alternating phases of advective in- and outflow, has a strong control on 

the gas flux into the water column (Figure 18). Our experimental CH4 fluxes during 

GW discharge (35.7 ±26.3 µmol m-2 d-1 peat-sand core; 21.2 ±16 µmol m-2 d-1 sand 

core) were in the range of the data reported by (Bange et al., (1994), where an 

average CH4 flux of 22–37 µmol m-2 d-1 from the continental shelves of the Baltic 

Sea and the North Sea, with total emissions ranging from 0.35–0.75 Tg C yr-1 

(Bange, 2006; Upstill-Goddard, 2006), were estimated. An extrapolation of the 

fluxes of the small coastal area off the Hütelmoor, where peat deposits covering an 

area of 1.6–2 km2 have been detected (Kreuzburg et al., 2018), would result in 

methane fluxes of 3.3 x 10-7–4.1 x 10-7 Tg C yr-1. Increasing CH4 fluxes were 

detected during GW3 (from 16.5–77.3 µmol m-2 d-1). These are comparable to 

studies where CH4 emissions of 126–134 µmol m-2 d-1 were associated with gassy 

sediments containing high fractions of organic matter (Borges et al., 2016). Studies 

investigating SGD-related CH4 fluxes report values exceeding our experimental 

values by a factor of 5-11, amounting 200–400 μmol m-2 d-1 (Bussmann and Suess, 

1998) and 900 µmol m-2 d-1 (Porubsky et al., 2013). However, these results were 

linked to higher SGD rates and might have accumulated products of organic matter 

decomposition on longer time scales. 
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5. Summary & Conclusions 

Offshore field studies were conducted with the working boat IOW-Klaashahn in front 

of the coastal peatland and nature reserve - “Heiligensee und Hütelmoor” in order 

to investigate the spatial and temporal distribution of trace gases such as methane 

(CH4) and nitrous oxide (N2O). In contrast to N2O, CH4 concentrations revealed 

spatial and temporal variations, which are interpreted mostly as the result of 

hydrodynamic conditions and forcing. The conditions in the water column of 

maximal ~6 m water depth were classified in (1) periods of less vertical mixing, 

showing high CH4 concentrations (up to 161 nmol l-1) in bottom waters and (2) in 

periods with increasing methane concentrations towards the coastline during 

situations of a well-mixed water column (Figure 6). The inhibited vertical mixing was 

clearly indicated by differences between bottom (18) and surface water (8) salinities 

(Figure 21a, b). Geochemical surveys and model data of the hydrodynamics have 

shown that, depending on wind conditions, the Warnow-river plume may pass the 

study area (Jurasinski et al., 2018), changing the vertical salinity distribution of the 

water column and influencing the measured water chemistry within the coastal 

study site. The continuous substitution and modification of the water body was 

verified by repetitive profiling at a central station (Figure 7), and is considered to be 

composed of (1) seawater from the Baltic Sea, (2) river water from the Warnow and 

(3) submarine groundwater discharge (SGD) originating from the coastal sediment 

and coastal aquifers. Although the water fraction contributed by shallow SGD is 

considered to be very low (Miegel et al., 2009), anomalies in temperature, salinity 

and radiogenic tracers (e.g. 224Ra) are interpreted to be the result of SGD. The 

anomalies coincided with the coastal area of emerging peat deposits and elevated 

bottom CH4 concentrations (25.3 ±9.3; range 15–55 CH4 nmol l-1), indicating 

potential sedimentary methane sources close to the beach (Jurasinski et al., 2018; 

Kreuzburg et al., 2018). Additional surveys along the coastline revealed methane 

concentrations of 3.3 µmol l-1 in coastal surface waters (Figure 8, 9) and 0.9 mmol 

l-1 in submarine porewater in coastal sediments, where outcropping peat deposits 

have been observed (Figure 13). 

As peat represents a potential source of carbon-containing solutes and gases, the 

submarine extension of former terrestrial peat deposits was investigated using a 

combination of geo-acoustic surveys, onshore- and offshore sediment cores and 

geochemical analysis. The peat deposits were found to continue more than 90 m 
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(areal extent: 0.16–0.2 km2) in front of the coastline. Geochemical analysis of the 

submerged peat deposits revealed high organic contents (Corg 37–53 %), point to 

terrestrial origin (δ13C −28.9 ‰), and indicate an earlier onset of the peatland 

formation (14C-dated to 6725 ±87 cal yr BP) than previously estimated (~5400 cal 

yr BP). The 14C ages of the basal peat deposits may indicate the former extension 

of the coastal peatland. The ongoing erosion of coastal peat-containing sediments 

and recirculation of sea- and groundwater through the coastal aquifer is assumed 

to have considerable impact on the nearshore marine carbon balance. In-situ 

carbon fluxes between the coastal seabed and the shallow coastal water could be 

quantified with an incubation chamber, but the results obtained are difficult to 

interpret given the uncontrolled conditions and high dynamics along the coastline. 

Therefore, a 50 days column experiment was designed and conducted at the 

ecohydrology research group, University of Waterloo, Canada in order to better 

understand the process-based release and transformation of peat-derived carbon. 

Naturally layered marine peat-sand and sand cores from the coastal area of the 

study site were alternatingly supplied with artificial oxygen-rich brackish water from 

above (salinity ~18) and oxygen-poor, low-saline groundwater from below (salinity 

~1.6). The main results of the experimental study are summarized in Figure 27 and 

illustrate (1) the recirculation of seawater through organic-rich sediments of 

terrestrial origin (peat deposits), resulting in sulfate reduction, with DIC as the end-

product and (2) the discharge of groundwater, driving the release of carbon dioxide 

and methane into the overlying water body. During the discharge of oxygen-

depleted and low-saline groundwater through the peat layers the dissolved organic 

carbon (DOC) and dissolved inorganic carbon (DIC) concentrations significantly 

increased, which was accompanied with increasing fluxes of CH4 and carbon 

dioxide (CO2). As sulfate reducers successfully outcompete methanogens for 

available free hydrogen (H+) and decomposable organic matter (Whiticar et al., 

1986) a dilution-caused decrease of sulfate (SO4
2-) with low saline groundwater 

may lead to a lack of sulfate reducing-relevant electron acceptors (SO4
2-) in the 

porewater. Thus, methanogens are assumed to benefit from low-sulfate conditions, 

which may result in increasing CH4 production, whereas the emission of carbon-

related solutes is assumed to be mostly related to porewater advection. Our results 

provide clear evidence of bioavailable DOC produced from peat layers already 

submerged for considerable time spans. The results furthermore show that 
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substrate, transport processes, redox condition and salinity control peat 

degradation, organic matter mobilization, and carbon dioxide and methane release. 

Peat containing sediments can be hot spots of increased organic matter 

mineralization and may play an important role in methane production of coastal 

zones worldwide. Submergence of peatlands due to sea level rise, subsidence as 

well as rewetting of drained coastal peatlands are thus likely to reshape the near 

shore coastal fluxes of various environmentally important compounds in the future. 

 

Figure 27: Conceptual extraction of the carbon exchange processes in the submarine, peat-
containing estuary along the shoreline of our study site with (1) elevated sea-level situation. The 
blue arrow visualizes the flow of SW through carbon rich sediments driven by wave dynamics, with 
the red arrows showing the production pathway of DIC. The process likely included a high activity 
of sulfate reducing bacteria resulting in discharge of DIC and (2) low sea-level situation and calm 
surface water conditions. The discharge of O2-depleted GW displaces methane oxidants, increases 
DOC release and facilitates methane emission into surface waters and the atmosphere. 
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6. Outlook 

Although knowledge about the dynamics of trace gases in shallow coastal regions 

is still associated with a high degree of uncertainty, this interdisciplinary study has 

demonstrated a dependence of trace gas production on sediment type with respect 

to the Holocene evolution of the southern Baltic Sea and coastal hydrodynamic 

processes. The in-situ investigations let to a deeper understanding of the 

distribution and formation of trace gases in shallow coastal water. However, 

hydrodynamic forcings, physicochemical properties and biogeochemical processes 

can strongly alter the carbon balance of shallow coastal regions on varying time 

scales not resolvable by classical field sampling schemes. Thus, this work also 

initiated a new approach to address the need of high temporal resolution of the 

relevant biogeochemical and physical data. Within the next PhD-project of 

subproject G2 of Baltic TRANSCOAST new state-of-the-art sensor technology will 

be deployed to better understand: 

 

(1) the conjunction, drivers and temporal dynamics of marine shallow water 

trace gas emissions, hydrodynamics and the influence of submerged former 

terrestrial organic-rich peat deposition 

(2)  the temporal evolution and change in magnitudes of trace gases in 

response to elevated hydrological exchange processes across the land-sea 

boundary, focussing on the development of biogeochemical fluxes as 

consequence of wetland restoration. 
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