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Abstract

As shown by Peter McMullen in 1983, the coefficients of the Ehrhart polynomial
of a lattice polytope can be written as a weighted sum of facial volumes. The
weights in such a local formula depend only on the outer normal cones of faces or,
equivalently, on their cones of feasible directions, but are far from being unique. In
this thesis, we present the local formulas p as established by Achill Schiirmann and
the author in [RS19]. The construction is based on choices of fundamental domains
whose lattice translates tile the space and thus allows a geometric interpretation
of the values of p. Additionally, we expand u to a function on rational polytopes
that determines the coefficients of Ehrhart quasipolynomials, we prove new results
about the symmetric behavior of u and introduce a variation of u that is well-suited
for implementations.
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Introduction

Solutions of systems of linear inequalities and therefore polyhedra are important
concepts in a great variety of mathematical areas and applications. They are
central objects in optimization, and in many cases it is necessary to consider
integer solutions and thus to determine and count lattice points in polyhedra. The
number of lattice points in a polytope is also called its discrete volume and is
the subject of research of Ehrhart theory. This theory has strong connections to
various fields of mathematical studies such as toric varieties in algebraic geometry
(see [Ful93], [CLS11], [Dan78]) as well as areas of application such as social choice
theory (see [Sch13]).

Let V' be an n-dimensional Euclidean space and A C V' a lattice of rank n, e.g.
A =7". Let P be a lattice polytope, i.e. a polytope whose vertices are in A with
d := dim(P). In 1962 Ehrhart [Ehr62] showed that the function Ep : Z>¢y — Zx
that is sending a non-negative integer to the number of lattice points in the ¢-th
dilate tP of P, has a particularly nice form: It coincides with a polynomial in ¢ of
degree d,

Ep(t) := #(ANtP) = eqt? + eq 1t + ... + ert + ep. (1)

He further showed that if P is not a lattice polytope but a rational polytope,
meaning that the vertices of P are rational with respect to the lattice, then the
function Ep is still a so-called quasipolynomial, a generalization of a polynomial
where the coefficients are allowed to be periodic functions with integer period (cf.
Chapter 2).

The coefficients of Ehrhart (quasi-)polynomials are called Ehrhart coefficients.
Despite being a vivid area of research, the knowledge of Ehrhart coefficients is still
very limited. For lattice polytopes, it is known that e; equals the relative volume
of P, e4_1 is one half times the sum of the relative volumes of the facets of P and
the constant term ey equals 1. In dimension 2 this provides a full description of
the Ehrhart polynomial that had already been proved by Pick in 1899 [Pic99] and
is known as Pick’s Theorem:

#(ANtP) = vol(P)t* + %t + 1, (2)
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where vol(P) is the area of P and Bp is the number of lattice points on the
boundary of P, which equals the sum of the relative volumes of the edges. Pick’s
Theorem therefore establishes a connection between discrete entities (the number
of lattice points) and continuous ones (the relative volumes). It is desirable to gain
such an elegant and geometrically motivated description for Ehrhart coefficients
in general. Such a description is still missing, though. A simple interpretation of
the coefficients as volumes of faces is not possible, if only because starting from
dimension three the coefficients can be negative, as for example in the case of the
Reeve tetrahedron [Ree57]. In this work we present a geometric interpretation in
form of a more complex combination of sums and differences of volumes.

Our starting point is a connection between the i-th Ehrhart coefficient e; and
the volumes of the i-dimensional faces of P. This connection was suggested by
Danilov in 1978 [Dan78] and positively answered by proofs of McMullen [McM83]
and later also by Morelli [Mor93]. They showed the existence of what we now call
a local formula, which is a function ® from polyhedral cones to the real numbers
that satisfies

e = Z ®(normal(f, P))vol(f), (3)
f<p
dim(f)=1

where f < P are the faces of P, normal(P, f) the normal cone of P in f and vol(f)
is the relative (i-dimensional) volume of f (see Section 1.1). Since the normal cone
of an ¢-dimensional face does not change under dilation and the volume changes
with exponent i, we equivalently have that a local formula is a function satisfying

Ep(t) = Y @ (normal(P, f)) vol(tf), Vt € Zso.
f<P

Comparing the definition to Equation (2), we see that a local formula is a natural
generalization of Pick’s Theorem. Due to the first proof of existence, local formulas
are also referred to as McMullen’s formulas. We here stick to the more descriptive
name local formulas as the fact that such a formula only depends on the normal
cone means that global information about its boundary, neighboring faces and
volume are not available. The normal cone only stores the information about the
structure of the face in the vicinity of a point in the relative interior of the face,
which is what makes it local.

Local formulas are an example for the close connection between counting lattice
points in polyhedra and algebraic geometry. Danilov [Dan78] as well as Morelli
[Mor93] both approached the topic in the context of toric varieties, using that a
formula for the Todd class of a toric variety yields a formula for the number of
lattice points in the corresponding polytope (see [Ful93]).
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Figure 1: The domain complex of a polytope and the fundamental domains in the
vicinity of a generic point on an edge with vy = 2.

The use of the plural "local formulas’ is due to the fact that they are far from
being unique, thus enabling mathematicians to find different ways of determining
and interpreting Ehrhart coefficients. Though the proofs by McMullen and Morelli
are not constructive, Morelli also gave a construction, where the weights are ratio-
nal functions on certain Grassmanians. The first construction with rational values
was given by Pommersheim and Thomas in 2004, [PT04], in the context of alge-
braic geometry. In 2007, Berline and Vergne [BV07] gave a construction of local
formulas as Euler-Maclaurin formulas for polytopes.

In this work we present a different approach, based on a tiling of space by
so-called fundamental domains. The idea goes back to an idea of Schiirmann in
2004 as presented in [Sch04], with some changes, since the construction suggested
there is not well-defined. At this point, we want to give an idea of our construction
without going into detail. To this end, we only give an illustrative description of
the necessary terminology, thorough definitions and details are given in Chapter
1. A fundamental domain is a set T' C V whose main characteristic is that lattice
point translates x + T with x € A form a tiling of V. Since the relative volume of
a fundamental domain is 1, we can use it to interpret the number of lattice points
as a volume by the equality

#(ANtP)=vol((ANtP)+T). (4)

The set (ANtP)+ T is called the domain complex of tP. An example is given in
Figure 1 in the middle. Given a face f < P, this step now allows us to determine a
ratio called the relative domain volume vy of how much (not necessarily an integer
amount) of the domain complex appears around a generic lattice point of a face.
Generic means a lattice point that is not too close to the boundary of the face. See
Figure 1 for an example of the relative domain volume. Throughout this work, we
denote by u the functions that we construct as local formulas. The construction
of u is inductive, descending in the dimension of the considered face, just as the
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constructions that are known in the literature so far. Starting with the polytope
P as a face of itself, we observe that per inner lattice point of the polytope,
there is exactly one complete fundamental domain to be counted, determining
p(normal(P, P)) as 1. Figure 1 also shows that the structure of the fundamental
domains around a face of the polytope is periodic with respect to the lattice points
in the face. That means that the ratio around one lattice point can be applied to
all other generic lattice points in that face.

This reasoning is only true around generic lattice points of a face f and not for
the points close to and on the relative boundary of f. However, taking the value
p(normal(P, f)) - vol(f) in the computation of the Ehrhart coefficient assumes
that the computed ratio is evenly spread across the whole face f. The u-value
accounts for that 'mistake’ in the subsequent steps of the induction by subtracting
a correction volume for f in the computation of all lower-dimensional faces that
bound f.

That way we get the u-value for a face f of P as

p(normal(P, f)) = vy — Z wglu(normal(P, 9)),

f<g<P

where vy is the domain volume around a generic point in f and wg the correction
volume, which both only depend on the normal cones of the faces. To specify what
we mean by ’around a generic point’ we define regions that determine the relevant
area in the vicinity of a lattice point for each given cone.

The main step to proving that the construction gives a local formula is to show
that we get a certain tiling that covers the polytope by regions (cf. Section 1.4,
Theorem 1). See Figure 2, left, for an example. This tiling ensures that when
the u values are put together according to formula (3), we exactly determine the
volume in (4) and thus the number of lattice points in tP. We thereby can show
our main theorem:

Theorem 2. The function p as defined in Section 1.2 is a local formula for Ehrhart
coefficients.

This work is about the above described construction of a local formula pu, its
properties, its applications, modifications and implementation.

For a rational polytope P, let Ep(t) = cq(t)t? 4+ cq_1 (1)t + ... + co(t) be its
quasipolynomial, where the coefficients cy, .. ., c¢; are periodic functions in ¢ € Z>.
To determine the coefficients in the way we did for lattice polytopes, we need
the translation class trl(A, f) of the face f with respect to the lattice A as an
additional input value. Then it is possible to define a modified version of regions
and a function p* on tuples of cones and translation classes in a similar way to
the definition of u. We again get a tiling by regions in Theorem 3 and can prove
a generalization of Theorem 2:



Figure 2: A simplex covered by tilings of regions.

Theorem 4. For a rational polytope P with Erhart quasipolynomial
Ep(t) = ca(t)t* + ca_1 (Ot + ...+ co(2),

the i-th coefficient is given by

¢(t) = Z p*(feone(P, f), trl(tf, A))vol(tf).
f<p
dim(f)=1

One very important property of the functions p and p* is that they behave
very nicely under symmetries. The functions depend on a choice of fundamental
domains and an inner product of V. This fact can be used to systematically
exploit symmetries. Given a lattice polytope P and a symmetry group G of P,
it is possible to compute so-called Dirichlet—Voronoi cells (see Section 3.1) that
are invariant under G. Dirichlet—Voronoi cells are closed and can be turned into
fundamental domains by choosing the boundary to be half-open. While this step
breaks some of the symmetry of the cell, Theorem 5 in Section 3.2 shows that this
change of the boundary is negligible in the way that p (and with some adjustments
also ©*) is invariant under G, if the closures of the chosen fundamental domains
are symmetric with respect to G (cf. Figure 2, right). Another nice behavior
of p under symmetry is given in Section 3.3, Theorem 6: If the closure of the
fundamental domain is centrally symmetric, the p-value on facets always equals
1/2, which nicely confirms the fact that the second highest Ehrhart coefficient
equals 1/2.

When implementing the function pu, the biggest obstacle is that the regions it
is defined on are not necessarily convex. The most common computer algebra sys-
tems working with polyhedra are not primarily designed to handle non-convex sets.
A way around that is presented in Section 4: A variant of the function p called the
brick version, denoted as . It is very similar to the original version, but ensures
that all regions are unions of fundamental domains. This way, most operations are
reduced to operations on discrete finite sets, which encode the translation vector
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of the fundamental domains. The operations that cannot be simplified that way,
as for example the computation of the correction volume, can still be reduced to
operations on convex polytopes withing each fundamental domain. This approach
enables us to implement the local formula p;, in a SageMath program [ST16]. The
price to pay when changing from g to py, is that some of the symmetric behavior of
the original version is lost due to the fact that the brick version is more sensitive to
the boundary structure of the fundamental domains. Hence, for theoretical results
along the lines of [CL18] for instance, the original version is preferable. For specific
examples, however, the brick version is practical. Some computations of Ehrhart
polynomials using the brick version are given in Section 4.3. Plots of the computed
regions using jReality [GHS'17] after a conversion into polymake [GJ0O0] are
shown in the same section as well as on the titlepage.

An interesting question is how exactly our constructions relate to the few pre-
vious ones, which leads us to several open questions. In [CL18], Castillo and
Liu analyse the construction by Berline and Vergne [BV07] to investigate whether
generalized permutohedra, a certain well-known class of polytopes, are Ehrhart
positive, i.e. whether all their Ehrhart coefficients are nonnegative. Along the
way, Castillo and Liu show that all local formulas that have a certain property,
namely that they are symmetric about the coordinates [CL18, Def. 3.17], have the
same values on the normal cones of faces of general permutohedra. In the case of
centrally symmetric fundamental domains, e.g. Dirichlet—Voronoi cells, our con-
struction of p naturally has the property of being symmetric about the coordinates
(cf. Chapter 3) and thus the values are determined and equal to the ones in the
construction of Berline and Vergne on normal cones of generalized permutohe-
dra. Despite contrary conjectures, they do not agree in general, as values in easy
2-dimensional examples can differ. An interesting yet open question is, whether
previous constructions can be recovered by our construction using the fact that
the great variety of fundamental domains gives us many different local formulas p
(cf. Section 5.1). It is still unclear though whether the local formulas given here
are valuations meaning that it is possible to decompose cones and to compute the
value of the whole cone from the values on the parts. The mentioned previous
constructions have this nice property, while to this point there has neither been
found a proof nor a counterexample for p. A different and interesting approach to
the constructions in this work is a generalization via generating functions that the
author has been working on with Lukas Katthan and Sebastian Manecke. This
approach is promising and some appearances of the formulas seem to suggest that
it can be interpreted as a discretization of the Berline-Vergne construction. This
work is still fresh though and further research is required to give substantiated
conjectures and results.

The thesis is structured as follows: Section 1.1 establishes the preliminaries
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necessary to this work as well as important definitions, including the ones men-
tioned in this introduction. We then give the construction of the regions and of
the function p in a precise and brief way. To give an understanding of that defini-
tion, Section 1.3 retraces the first few inductive steps on a general polytope and,
concurrently, on a simplex in dimension two as a concrete example. Section 1.4
contains the proof of Theorem 2. It is divided into two subsections, the first of
which shows general properties of the regions, most importantly that the regions
are bounded, which ensures that the function p is well defined. The second part
then considers the construction given an actual polytope P. It is proved that the
regions along the generic points of the faces of P form a tiling of V' (Theorem 1)
and, finally, that p is a local formula. The results in Sections 1.2 and 1.4 have
been published by Schiirmann and the author in [RS19]. The difference here is
that instead of the normal cone, the cone of feasible directions, short fcone is taken
as input value. This equivalent construction has the advantage of being more di-
rect and thus shortening notation. The proofs in Section 1.4 have been revised by
the author and partly improved. Section 1.3 follows loosely the elaboration of the
authors overview article in [Rin19].

Chapter 2 generalizes the constructions from Chapter 1 to rational polytopes
and Ehrhart quasipolynomials. The results in this chapter are original to this
work. In Chapter 3 we study the symmetric behavior of . We start by introducing
the well known Dirichlet—Voronoi cells and show how they can be used to realize
symmetry invariance of p. The main result is Theorem 5, which is original to this
work. In Section 3.3 we show that the values on fcones of facets are 1/2 with
a revised proof of the author’s one in [Rinl9]. Chapter 4.1 introduces the brick
version . The source code of its implementation can be found in the Appendix
and a description of the program is given in Section 4.2. The chapter finishes
by showing examples computed with the program. The results in this chapter
and the source code of the program are written by the author and have not been
published yet. Finally, Chapter 5 gives additional information on two important
components of this work, fundamental domains and the duality between normal
cones and fcones. Section 5.1 analyses the definition of fundamental domains
with relevant examples to show what is and what is not possible. Section 5.2
elaborates on the order of fcones and on the connections to normal cones and faces
of polytopes. Since this is the first work, where the approach via fcones is chosen
instead of via normal cones, it provides a guideline for switching between the two
equivalent approaches, closing with an overview in Table 5.1.
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Chapter 1

A local formula for Ehrhart
coefficients

1.1 Definitions and preliminaries

Throughout this thesis, let V' be a Euclidean space and A C V' a lattice of full
rank, i.e. A is a discrete additive subgroup generated by a vector space basis of
V. A polyhedron @) in V is the solution of finitely many linear inequalities, or,
respectively, the intersection of finitely many halfspaces. A polyhedron is called
rational with respect to the lattice A, if it is given by inequalities (n;, z) < «,
with n; € A and «; € Z for 7 in some finite index set I. The dimension of a
polyhedron is the dimension of its affine hull, dim(Q) := dim(aff(Q)). A face of
@ is the intersection of ) with a hyperplane that does not intersect the relative
interior of (). The faces are again polyhedra. For two polyhedra f and @), we write
f<Qif fisaface of Q and f < Q if f = @ is allowed. Formally, the empty
set is a face of every polyhedron, but since we never use it, we shorten notation
by assuming f # @ whenever we talk about faces f < g. If the dimension of @
is d, the (d — 1)-dimensional faces of @) are called facets and the zero-dimensional
faces are called vertices. A polytope P is the convex hull of finitely many points,
P = conv(vy,...,v,). Due to a nontrivial theorem (see, for instance, Beck and
Robins [BR15, Appendix]), sometimes referred to as the Minkowski Farkas-Weyl
Theorem, every polytope can be written equivalently as the convex hull of finitely
many points as well as the bounded intersection of finitely many halfspaces .

A cone here always means a convex polyhedral cone, i.e. a polyhedron that is
the solution of only homogeneous linear inequalities. For a polyhedron @) and a
face f of ) we define the cone of feasible directions of () in the face f, short fcone
of @ in f, by picking an s in the relative interior int(f) of f and defining

fcone(Q, f) :={x €V |Fe > 0: s+ex € Q}.
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The resulting cone is independent of the choice of s € int(f). This cone contains
local information about the polytope in the vicinity of the interior of the face f
and it is the dual of the normal cone of () in f as defined in Section 5.2. As such,
the fcone and the normal cone can interchangeably be used as input value for local
formulas. More information on this connection can be found in Section 5.2.

Let further lineal(Q) be the lineality space of @, i.e. the biggest linear subspace
contained in Q. We denote as lat(Q) := A N lineal(Q) the sublattice in lineal(Q)
induced by A.

A tiling of a set A C V is a set 2 of subsets of A such that A is the disjoint
union of the elements of . The construction we will give of local formulas relies
on a choice of certain lattice tiles, namely fundamental domains as defined be-
low. Different choices lead to different values and thus give an infinite family of
constructions.

Definition 1. For a subspace U C V with induced sublattice lat(U) = U N'A, a
fundamental domain T(U) is a bounded subset of U such that {z +T(U) | = €
lat(U)} is a tiling of U and that every intersection of T'(U) with an affine subspace
of V' is Lebesgue-measurable.

Examples of and more information on fundamental domains can be found in
Sections 3.1 and 5.1.

For a subset A C V' we denote as lin(A) the linear subspace parallel to its affine
hull. The relative volume of A is the volume normalized such that a fundamental
domain in lin(A) with respect to the lattice A Nlin(A) has volume 1. Note that
it is a lower dimensional volume if aff(A) is lower dimensional. As a convention
we further set vol(A N B) to be the relative volume in lin(A) N lin(B), which, in
particular, means that vol(A N B) = 0, if dim(A N B) < dim(lin(A) Nlin(B)).

We will use the fundamental domains to interpret the number of lattice points
inside a polyhedron as the volume of a certain set called the domain complex.

Definition 2. Let ) be a polyhedron and T a fundamental domain of V. The
domain compler DC(Q) of @ is the set of all fundamental domains translated by
lattice points in Q:

DCQ) = |J z+7T

zEANQ

The covering domain compler CDC(Q) of @ is the union of all lattice point trans-
lates of T" that intersect Q:

CpC@) = |J =+T

zEA
(z4+T)NQ#2
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Both, the domain complex and the covering domain complex of a polyhedron @)
are unions of lattice point translates of the fundamental domain 7. The covering
domain complex of ) naturally covers @ as well as DC(Q), which justifies the
name.

For a polyhedron @) and a fundamental domain T'(lineal(Q)) in the induced
sublattice we define the strip of () as

strip(Q) := T'(lineal(Q)) + lineal(Q)™*.

Here we use the orthogonal space lineal(Q)* of lineal(Q) that we get by taking an
inner product on V' and using it to identify V' with its dual. This identification
can also be avoided by taking any complementary subspace of lineal(Q), i.e. a
subspace U of V with lineal(Q)) NU = 0 and lineal(Q)) + U = V. The version with
the orthogonal complement, however, can be used to gain invariance under certain
symmetries as described in Section 3.1. In any case, we have that {x + strip(Q) |
x € lat(Q)} is a tiling of V.

Given a (lattice) polytope P, the region will be defined inductively on the fcone
of P in f for the faces f < P. Inductively here means that we start with the fcone
of P in itself and we will go down in the dimension of the face. This way, when
constructing the region for fcone(P, f), we can assume to have constructed the
region for fcone(P, g) for all faces f < g < P. Since the benefit of a local formula
is that it can be described purely on cones, independently of the polytope, we
introduce the partial order "<’ on cones that corresponds reciprocally to the order
of faces of P:

D <C :& D =fcone(C,F) for a face I’ with lineal(C) < F < C.

This way, given two faces f and g of P, we have fcone(P, g) < fcone(P, f), if and
only if g > f.

If equality is allowed, we further write C' < D instead of C' < D or C' = D.
It D < C, we say that D is an fcone of C. Two cones C' and D are called
comparable if D < C or C = D. Otherwise, they are called incomparable. For
our inductive construction we use the fact that going up in this order means
going down in the dimension of the lineality space in the sense that if D < C|
then lineal(C') C lineal(D) and dim(lineal(C)) < dim(lineal(D)). An inductive
construction is thus possible starting with the whole space and going down in the
dimension of the lineality space. More on this order and the connections to the
normal fan of a polytope can be found in Section 5.2.

1.2 Construction of regions and definition of u

Given a choice of fundamental domains we define a function p from rational cones
to R. In Section 1.4 we will show that u is indeed a local formula as defined in the
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introduction, Equation (3). We here give a formal and very compact description
of u. For a step-by-step construction with examples and pictures, see Section 1.3.
The aim of this section is to give a clear, short and formally precise definition of
the construction.

The values are determined inductively, descending in the dimension of the
lineality space of the cone. For not full-dimensional cones we intersect V' with
the linear span of the cone and consider that as our ambient space. To determine
i, we will first inductively define a map R from rational cones to subsets of V,
associating a region to each cone. From these regions, the values of u can be
computed via volume computations.

Let C' be a full-dimensional rational cone in V. For each subspace A C V we
assume to have chosen a fundamental domain 7'(A).

IfC =V, we set

R(V):=T(V).

Otherwise, if C'# V, we assume we have constructed the regions R(D) for all
cones D < C. We define the set of generic lattice points X§ of D with respect to
C' to be the set of all points x in lat(D) that fulfill the conditions:

(I) For all halfspaces H < C such that H £ D:
r+ R(D) Cint(H)

(IT) For all E < C, such that E is incomparable to D and for all 2’ € lat(FE):
(x+ R(D))N (2" + R(E)) =2

For later use, we also set X& := lat(C'), which is consistent with the above in the
way that conditions (I) and (II) are trivially satisfied if D = C.
Then we define

R(C) := (strip(C) N CDC(C)\ | (X5 + R(D)) .

From this we can compute the values of the relative domain volume v in the
region R(C') as:
ve = vol(R(C) N DC(C)).
And further the correction volumes for each D < C"

w$ := vol(R(C) N C N lineal(D)).

Then we get the value for C' as

w(C) =ve — Y wh - u(D).

D<C
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In Section 1.4 we will prove that u is a local formula for Ehrhart coefficients
(Theorem 2). In particular, we will prove in Lemma 1.3 that R(C) is bounded,
which means that p and the volumes ve and w§ as given above are well defined.

1.3 Application to polytopes

In addition to the definition of x on cones in its most general way, it is useful
to see how the values are determined given an actual polytope. To make this
discussion as graphic as possible, we follow the inductive steps given a general full-
dimensional polytope and, concurrently, given a specific simplex in the plane R2.
In this section, we loosely follow the elaboration of the author’s overview article
in [Rin19]. Throughout this section, let P be a full-dimensional lattice polytope
inV.

Example. Let S = conv(vy,ve,v3) be the
simplex in R? with vertices v; = (1,0), vy = vs
(2,1) and vz = (0,2). We consider it as a lattice
polytope in R? with respect to the lattice Z2.

We will use S as running example in this £ U2
section. To avoid unreadable expressions, we
expand pu, R, X,v and w to functions on the

N

fs

faces of S, by setting u(f) := p(fecone(S, f)), “
R(f) = Rlfeone(S, f)), X{ = Xpoeh)
fcone(S, f)

Uf i= Vgcone(s,f) aNd Wy := wy oo/, whenever the simplex S is given.

1(P) for P as a face of itself. First, we choose and fix a fundamental domain
T(A) for each subspace A C V and denote T':= T'(V'). Since fcone(P, P) =V, we
get
R(V)=T
and
vy = vol(R(V)NDC(V)) = vol(T) = 1.

Since V' is minimal in the ’<’-order, there are no correction volumes to consider.
Thus, the relative domain volume directly determines the value of u as

M(V) = Vy = 1.

Remark. Using this result to compute the d-th Ehrhart coefficient via Equation (3)
for local formulas, we get

ea =Y p(fcone(P, f)) vol(f) = p(V)vol(P) = 1 - vol(P) = vol(P)
fE€F4



as desired, since the highest Ehrhart coefficient is known to be the relative volume
of the polytope.

u(S) for S as a face of itself. The region R(S) is given as the fundamental
domain T = T'(R?) of Z?, which here we choose to be the square with edge length 1
and the origin as barycenter. Then we have p(S) = vg = vol(T) = 1.

u(F) for facets F of P. Let F < P be a facet of P. Then H' := fcone(P, F) is a
halfspace containing a hyperplane H. Following the construction from Section 1.2,
we need to determine the sets of generic lattice points X " for cones D < H*,
which means D = fcone(P, g) for some g > F. Since F' is a facet, we have g = P
and D = fcone(P, P) = V. The only halfspace containing H* is H™ itself and
H* £ V. Thus the points = € A satisfying Property (I), are the ones with

z+ R(V) Cint(H").

Regarding Property (II), there is nothing to check, since all fcones of H' are
comparable to V. Altogether, the region R(H™) is defined as

R(H*) = (strip(H) N CDC(H*)) \ ()(5+ + T) , (1.1)
with the set of generic lattice points given as
X" ={zeA|(x+R(V)) CHY}.
We can simplify (1.1) due to
CDC(H™)\ ()(5+ + T> =Yy + T,
where we define Yy :={z € A| (z+T)NH # @ } and thus
R(H") =strip(H)N (Yg +T),

That means that R(H™) equals strip(H) intersected with the union of all lattice
translates of the fundamental domain 7" that intersect H.
After the construction of R(H™), the relative domain volume in R(H™) can be
computed as
v+ = vol(R(HY)NDC(H™))
and the correction volume as
wl™ = vol(R(HT) N HY).

That yields the value of p as

+ +

p(H) =vgr —wil - u(V) = vge —wil.



p(f;) for the edges f;,f and f3 of
S. In all 1-dimensional subspaces, we
choose the fundamental domain to be the
line segment with barycenter at the ori-
gin. For ¢ € {1,2,3}, let L; be the line
through the origin parallel to the affine
hull of f;, i.e. L; = lineal(fcone(S, f;))

strip(Ly)

and let L] := fcone(S, f;). As shown P ////
above for a general polytope, the regions - oty | / /
R(f;) look as follows: B S 7 ') e
f
R(f;) = strip(Li) N CDC(Ly)\(XE +1T) o
= StI'lp(Ll) N (YLz + T), L ,,,,%”, : o

] P — . J‘
where strip(fi) := T(Li) + Li and Figure 1.1: Construction of R(f;). The

Y, ={z €2 | (z+T)NL; # 2} lattice points marked with an "X’ are
the points in X gl, the ones in Y;, are
An illustration of the construction of the marked ’o’.
region R(f) is given in Figure 1.1.
The areas of vy, and of wf;l are shown
in Figure 1.2. Altogether we get

w(fr) = vy, —wlh =2-3/2=1/2.

Analogously, we can construct R(f;) and

R(fs) and compute vy,, vy,, w and w?

to get

R(f1)

f17§
Wg =3

pu(fe) = vy, —wl =2

ulfa) = vg, —wf =1 -

Later, in Section 3.3, we will see that the values for facets always equal 1/2, as
long as the fundamental domains are chosen to be centrally symmetric.

u(f) for codimension 2 faces f of P. Let f be a codimension two face of P.
Then there are exactly two facets F} and Fy of P that meet in f. That means that
W := fcone(P, f) is a wedge defined by the intersection of the halfspaces H; :=
fcone(P, F}) and Hy := fcone(P, Fy), whose lineality spaces are the hyperplanes
H, and H,, respectively. W has three faces that are not equal to H; N Hy, namely
W itself, W N Hy; and W N Hy with fecone(W, W) =V, fcone(W,W N H,) = H;"

7



and fecone(W, W N Hy) = H,". We thus have to consider the sets of generic lattice
points for V, H;" and H,:

XY ={reA |
|

¢ +T) Cint(W) }.
XIV}} = {x € lat(H;) -

int(H;) and for all 2’ € lat(H, ) :
N (2’ + R(HY)) = @} and
Cint(H;{") and for all 2’ € lat(H;") :

)('JLVIVZ+ = {x € lat(H")

Then the region R(W) is given by
R(W) =strip(W) N CDC(W)
\ (X +T) U (X3 + ROH) U (Xp + R(H))
The relative domain volume is
vy = vol(R(W) N DC(W)).
We also have to consider three correction volumes:

w)y = vol(R(W)N W),

w, = vol(R(W) N H, N W) and

wW, = vol(R(W) N Hy N W).
The value of (W) then is

HOOV) = o =l () =l - () = wlf (V)

p(vi) for the vertices vy, vo and v of S For i € {1,2,3}, the fcone C; :=
fcone(S, v;) is a two-dimensional pointed cone with apex in 0. Since lineal(C;) =
{0}, the only fundamental domain we can choose for C; is T(C;) = {0}. Since
lineal(C;)* = R?, we have strip(C;) = R%. We start with the construction of the

region of the vertex vy. S has three faces g with v, < g < S, namely S itself, f;
and f3. Thus, the region R(v,) is given as

R(vy) = B3\ ((X}? + T(L1)) U (X} + T(Ls))

U (X2 + T)).



X | X | X[ X|X]|X]|X

X | X | X | X | X|X|X

X | X | X | X |xX]|X] e
X | X [ X | X|X

Figure 1.3: Construction of R(vs).

The construction of R(vy) is shown in Figure 1.3. One might already see that the
union of all regions in the picture forms the set CDC(C5), a fact that is the subject
of Lemma 1.2.

Having constructed the region, we can directly compute the relative domain
volume v,, and the correction volumes wg’, w}’ and w?, as shown in Figure 1.4.
Note that while v,, and w¢ are full-dimensional volumes, the correction volumes
wy? and w;i are relative volumes taken in the one-dimensional subspaces L; =
lineal(fcone(S, f1)) and Ly = lineal(fcone(sS, f2)), respectively. Altogether we get
the p-value for the fcone of S at the vertex vy as

(v2) = vy, —wi - p(fr) —wi - p(fs) —wg - p(S)
1 1 11 7

_Z .z - .z -2 .1

v2
7
4 2 2 2 2 8
3
L

Analogously, we can compute p(vs) = 1/4 and u(v;) = 3/8. For reasons of sym-
metry, the latter has to equal the value p(vy) — see Section 3.1 for details.




1.4 Proof of Theorem 2

In this section, we prove that the function pu we constructed is indeed a local
formula. The proof can roughly be divided into two parts. In the first part we
show general properties of the regions, the most important ones being that we get
a tiling of the covering domain complex of a cone by regions and that the regions
are bounded. Boundedness ultimately means that the function p as a combination
of the relative domain volumes and the correction volumes is well defined. The
second part then takes the view from a polytope and we use the tiling from the
first part to give a tiling of the covering domain complex of the polytope. This
tiling then enables us to show that the u-values on its fcones indeed determine the
Ehrhart coefficients as required for a local formula.

1.4.1 Properties of the regions and well-definedness of u

The most important property we want to show about the regions is that they are
bounded, which means that p is well defined. In order to show this, we need some
other properties, especially that for a cone C' we can get a tiling of the covering
domain complex CDC(C) by translates of R(C) and of R(D) for D < C. A
picture of this tiling coming arises in the construction of R(vs) in the Example
of the Simplex in Section 1.3 and can be seen in Figure 1.3. This result is given
in Lemma 1.2. To prove it, we first show lat(C')-invariance of the set of generic
lattice points:

Lemma 1.1. Let C be a full-dimensional cone and D < C'. Then the set of generic
lattice points X§ of D is invariant under translation by points in lat(C).

Proof. Let y € lat(C) = lineal(C') N A. We want to show that = + y is in X§ if
and only if ¥ € X§. Since int(H) is invariant under translation by lineal(C') for all
halfspaces H with H < C, in particular under translation by —y, it immediately
follows that Property (I) is satisfied for « if and only if it is satisfied for x + y.
Also, for all E < C, we have lat(C) C lat(F). That means

(y+z+ R(D))N (2 +R(E)) =2 for all 2’ € lat(E)

is equivalent to

(x+ R(D)N(z"+ R(E)) =2 for all 2" € lat(FE)
by setting «” = —y + 2. This shows that x + y satisfies Property (II) if and only
if x does, which finishes the proof. n
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Using this, we can show that we get a tiling of the covering domain complex
CDC(C) by regions. This result is a basis for most of the following results and can,
in particular be used to create a tiling by regions around the faces of a polytope
as shown in Theorem 1 in the following subsection.

Lemma 1.2. For any full-dimensional cone C' we have a tiling
{r+R(D): D=C, z€ X5}

of the covering domain compler CDC(C'), consisting of lattice point translates of
TegIONS.

Proof. In general, for a lattice L in V' (not necessarily of full rank) and subsets
A, B CV with the properties that A+ L =V and B + L = B we have that

L+ (ANB)=0B. (1.2)
We show both inclusions:

C: L+(ANnB)C L+ B=5.
D: Letxz € B. Since V =L+ A, we can write z = [+ a with [ € L and a € A.
Thena=x—1€ B+ L =B and hence z € L+ (AN B).

By definition strip(C) = T'(C) +lineal(C')* and we have lat(C') +strip(C) = V.
Since A N C' is invariant under translation by lat(C'), we have that CDC(C) =
{z +T | x € AN C} is invariant under translation by lat(C'). Using Lemma 1.2,
the set

B:=CDC(O)\ | X5+ R(D),
D=<C

is lat(C)-invariant. With L := lat(C') and A := strip(C') Equation 1.2 then yields
lat(C) + R(C) = CDC(O)\ | J X5 + R(D). (1.3)
D=<C
Thus, we have

CDC(C) =(lat(C) + R(C)) U | ) X§ + R(D)
D<C

= |J X5 + R(D),

D=C

using X§& = lat(C).
Since R(C) C strip(C'), we know that the translates of R(C') by points in
lat(C') do not intersect. For each D < C, the set X§ is a subset of lat(D), so the

11



same argument shows that the sets {z + R(D) : = € X§} have pairwise empty
intersections. Now we only need to show that for two faces D, D" < C' the sets of
the form x + R(D) and y + R(D') with x € X§ and y € X§, do not intersect. If
D or D' is an fcone of the other one, say D' < D, we have

XS + R(D) C lat(D) + R(D)

= epo(D)\ ( U (xR + R(E)))

C CDC(D)\ (XB + R(D"))
C CDC(D)\ (X§, + R(D")).

The last inclusion follows from the property that X§, C X5, whenever D’ < D <
C, since there are just more restrictions in X§,. If D and D’ are incomparable,
then X§ + R(D) and X§, + R(D') do not intersect by Property (II) of X§. O

We can now show that the regions are bounded. This is a highly non-trivial
result. We show that there is a radius r € R such that R(C) is contained in a
certain bounded set determined by the radius r. Since efficient computation of the
regions relies heavily upon a good estimate for this radius, particular attention is
paid to the exact constraints needed for r to be a sufficiently large bound.

Lemma 1.3. Let C be a full-dimensional cone. Then R(C') is bounded.

Proof. Since it is used frequently, we denote L¢ := lineal(C') for full-dimensional
cones C' C V. We prove the lemma inductively going down in the dimension of L.
We want to show that there exists a certain bounded set that contains R(C). The
bounded sets we want to consider are cylinders around Lo with radius r» € R.g:

Cyl(r,C) := (L¢ + B,) Nstrip(C),

where B, is the open ball around the origin with radius r. Since T(C) C L¢, we
can alternatively describe Cyl(r¢, C) as

Cyl(r,C) = T(C) + (B, N Lc™b).

For C' =V we simply notice that R(V') = T', which is bounded.

Now let C' be a full-dimensional cone with V' < C and we assume that R(D) C
Cyl(rp, D) for all faces D < C' with suitable rp € Rs,. By construction, R(C) C
strip(C'). What we now need to show is that R(C) C (L¢ + B,) for some r € R.,.
We choose r defined by the following constraints:

12



Construction of r:
For each face D < C we have R(D) C Cyl(rp, D) by the inductive
hypothesis. We further define ap, @ € Ryg by

ap:=rp+2-maxrg
E<D

and

o = Mmaxop.
D=<C

We recall that by Lemma 1.2 we have a tiling of CDC(D) such that
CDC(D) = | J (X7 + R(E)).
E=<D
So there exists [ € R+ such that
vp)y=\J) | z+RE) (1.4)
EXD zeXPnBg

contains Cyl(ap, D) N CDC(D). As a finite union of bounded sets,
U(D) is bounded and we can find vp € Ry such that U(D) C B,,.

For D,E < C with CNLpNLg = L¢c and for all e € Ry, there
exists an §(e, D, E') € Ry such that for all z € C'N Lp:

dist(z, L¢) > d(e, D, E) = dist(z,Lg) > ¢
We define § as the maximum
§ :=max{0(yp +ve,D,E) | D,E < C with CNLpNLg=Lc}.

Next, we define ¢ as a radius such that 7'(D) C B, for all D < C.
And finally we define r as

ri=/(6+2t)% + a2

By construction we know that R(C') C strip(C)NCDC(C). Let p € CDC(C') with
dist(p, L¢) > r. To prove the statement, we need to prove that p ¢ R(C).

Case 1: For all V # D < C, we have dist(p, Lp) > ap
In particular we have

dist(p, Ly) > ag > 2ry (1.5)

for all halfspaces H < C. Let © € A be the lattice point with p € (x + T).
Since T' C B,,,, we have dist(p,x) < 2ry. Thus, Equation 1.5 shows that either
(x+T)C Cor(x+T)NC =@. The second case is not possible, since we chose
p € CDC(C). Hence, x + T C C. Together with Equation 1.5 that means

r+T=x+R(V)Cint(H)
for all halfspaces H < C. Hence, z € X5 and p ¢ R(C).
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Case 2: There exists a D < C, with D # V and dist(p, Lp) < ap.
Under all fcones of C' with the above property, let D be the maximal one in the
fcone order <.

Define y := p|L, to be the orthogonal projection of p onto Lp and let z €
lat(D) with y € x 4+ T(D). That means p € z + Cyl(ap, D). We also have
p € CDC(C) C CDC(D). Thus, p € (z+ Cyl(ap, D)) NCDC(D), which is covered
by z +U(D). p € v + U(D) means there is a Dy = D and an a € X} , such that
p € (z+a+ R(Dy)).

Our goal is to show that (z +a) € X , which directly yields

p€ (z+a+ R(Dy)) CV\R().

To this end, we use our carefully defined radii to show that there is a certain
minimal distance between x and the linear spaces Lg for all F < C' incomparable
to D.

First of all, the Pythagorean theorem yields

dist(y, L¢o)? + dist(p, Lp)? = dist(p, Le)?.
Using dist(p, Lp) < ap, dist(p, Le) > r and the definition of r then gives us
dlSt(y7 LC)2 = dlSt(p7 LC>2 - dlSt(pa LD)2

>r?—af =(0+2t)?+a*—a}

> (0 +2t)°
We have now shown that dist(y, Lc) > 6 + 2t and since dist(z,y) < 2t, we have
dist(x, Le) > 0. We further have x € C' N Lp, since D was chosen maximal
and otherwise there would have been another cone D' with D < D’ < C with
dist(p, Lp/) < apr. By definition of §, we then get

dist(x, LE) >vp +YE (16)

for all £ < C' incomparable to D and CNLp N Lg = Le¢.

To show that (1.6) holds for all £ < C' incomparable to D, let E < C be
incomparable to D with Lo € C' N Lp N Lg. Then there is a cone C’ with
D,E<C' <Cand C"NLpNLg = Le. This cone C' is the join of D and F,
more information on this can be found in Section 5.2.

By minimality of Lp, we have that

dlSt(p, LC’) > Qo > o

Then with exactly the same arguments as above, substituting C' by C’ in every
step on the way, we also get

dist(z, Lg) > vp + V&-
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Together with (1.6), it shows that
dist(x,LE) >vp +VE (17)

for all £ < C incomparable to D.
Since (zr+a+ R(Dy)) CU(D) C B, and R(E) C B,, C B,,,, we have
=g

(a+ R(Dy))N(b+ R(E))

for all £ < C incomparable to D and b € lat(E) C Lg.

If there is an F < C' comparable to D but not to D;, transitivity of <’
only admits the case £ < D. We have a € X[ and thus by Lemma 1.1 also
(x4 a) € Xp . Hence,

(a+ R(Dy)N(b+ R(E)) =

for all £ < D incomparable to Dy and b € lat(E) C Lg by Property (II).

Let H < C be a halfspace with H A D. Then (z + B,,) N Ly = & by
Equation (1.7). That means = + B, is either completely inside or completely
outside of H, not intersecting the boundary. Assuming it is outside means that p
is also outside. But since also p € CDC(C), we have dist(p, Ly) < 2ry < vy for
all halfspaces H < C' with H A D, which is a contradiction to Inequality (1.7).
Hence, = + B,, C H and therefore also z + a + R(D;) is in int(H).

Now if H < C with H < D but H £ Dy, we can use Property (I) of XF for
T + a and, again, get

(x +a+ R(Dy)) Cint(H).

Together it shows that = + a also complies with Property (I) of X§ and thus we
have shown (z + a) € X§. That means p € (x + a + R(D;)) € V\R(C).
Hence, we have shown that R(C') is bounded. O

The following two results are further properties of the regions that we will need
later on.

Lemma 1.4. Let C be a full-dimensional cone. Then T(C) C R(C).

Proof. For C =V, we have R(V) = T(V) and nothing is show.
Otherwise,

R(C) = strip(C) N CDC(C)\ | J (X§ + R(D)).

D<C

T(C) is the fundamental domain in lineal(C') and lineal(C') C CDC(C'). Also,
T(C) C strip(C) = T(C) + lineal(C)*+. Therefore, we only need to check that

(XS +RD)NT(C)=w2, forall D<C.
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Since T'(C') C lineal(C'), it suffices to show that
(XS + R(D)) Nlineal(C) = @, for all D < C.

For each D < C, there is at least one halfspace H < C' that does not contain D
and thus for all z € X§ we have

(x + R(D)) C int(H)
by property (I) for X§. Using lineal(C') C bd(H), we conclude
(X§ + R(D)) Nlineal(C) = @,
as we wanted to show. ]

Lemma 1.5. X§ C C Nlineal(D).

Proof. By construction, X§ C lat(D) = A Nlineal(D). To show that X§ C C, we
use the fact that
c= (] E

H<C
Hhalfspace

from Section 5.2. We already have X§ C lineal(D) C H for all halfspaces H < D.
For a halfspace H < C' with H £ D Property (I) of X§ yields z+R(D) C int H for
all z € X§. Since by Lemma 1.4 x € 2+ T(D) C z+ R(D), we have X§ C C. O

1.4.2 From fcones to Ehrhart coefficients

In this section, we consider a full-dimensional lattice polytope P and its dilates

tP for t € Z-y. To shorten notation, for faces f < P we write R(f) instead of
R(fcone(P, f)) and for f < g < P we write X/ instead of Xffsggs(gg ) but keep in
mind that these sets do not depend on the faces but only their fcones. Note that in
particular fcone(P, f) = fcone(tP,tf) for all f < P and t € Z~q (cf. Section 5.2),
so that we also have R(f) = R(fcone(tP,tf)).

To gain a tiling of the covering domain complex of P, we compose the tilings
from Lemma 1.2 for the fcones of the vertices using the following sets of generic

lattice points in a face:
Definition 3. For a face f < P define X(tf) C A, the set of all generic lattice

points in tf, as the following:

X(tf)= (] Xj+tv. (1.8)

v vertex of f

Since X! = lat(fcone(P,v)) = {0} for a vertex v of P, this definition is also valid
for X(tv) and yields X (tv) = twv.
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Since dilated vertices are lattice points, the sets X'(tf) are indeed subsets of A
and they are also subsets of ¢f as we can quickly show:

Lemma 1.6. For all f < P andt € Z~o, we have X(tf) C tf.
Proof. By applying Lemma 1.5, we get
X7} C lineal(fcone(P, f)) N fcone(P,v) = fcone(f,v).
Using
ﬂ fcone(P,v) + v = P,
v vertex of P
thus yields

X(tf) C ﬂ fcone(f,v) + tv = tf.

v vertex of f

More information on the properties of fcones, among which are the ones we used
here, can be found in Section 5.2. n

Theorem 1. Let P C V be a full-dimensional lattice polytope. Then there exists
a ty € Zo such that for each t > ty we have a tiling of CDC(tP) into translated
regions of the form

{z+R(f)| f<PxeX(if)} (1.9)

Proof. Let P be a full-dimensional lattice polytope with vertices vy, ..., v, € A.
We start by specifying to. Lemma 1.3 yields that R(f) is bounded for each f < P.
Thus, for any f,g < P that do not intersect, there is a ty;, € Z-o such that
(R(f) +trg- f) N (R(g) + tsg - g) = D. We set

to = max{ty, | f,g < Pand fNng=a}.

By Lemma 1.6 we know that X'(tf) C tf for all f < P. Thus the choice of ¢y shows
that for all ¢ € Z-( with ¢t > ¢, the sets x + R(f) and y + R(g) with z € X(tf)
and y € X(tg) have empty intersections.

If fng+# @, wefind j € {1,...,m} such that v; € fNg. Then for x € X(tf)
and y € X(tg), we have (x — tv;) € X}}j and (y — tv;) € X4’. By Lemma 1.2 for
fcone(P, v;), the sets (x — tv;) + R(f) and (y — tv;) + R(g) do not intersect, which
then also holds for their translations z + R(f) and y + R(g).
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It remains to show that (1.9) is indeed a covering of CDC(¢P) . To this end,
let p € CDC(tP) be an arbitrary point. Translating the sets in Lemma 1.2 by the
respective vertex yields

tv; + CDC(fcone(P, v;)) = U (X}” + tv; + R(f))

<P
v Ef

for each vertex v; of P. Hence, for each i € {1,...,m} we find f; < P with v; € f;
and z; € X' such that p € (z; + tv; + R(fi)).

Let v; be a vertex, such that f; is smallest in dimension. Without loss of
generality we can assume i = 1. Then we have p € (z; + tvy + R(f1)). We want
to show that z1 + tv; € X(tf1), because then x; + tv; + R(f1) is an element of the
set in (1.9) and contains p.

Let’s assume this is not the case. After possibly renumbering, we can assume
that (z1 +tv1) ¢ (X7 + tvz). In particular, we have vy € f;.

But then we can find fo < P with vy € f; and 2y € X}’; such that p €
(x9 + tvg + R(f2)). This yields

pE (l’Q + tUQ —+ R(fg)) N (l’l + t’Ul —+ R(fl)) s
and thus

(22 + R(f2)) N (x1 + tvy — tva +R(f1)) # @, (1.10)

€lat(f1)

which contradicts z» € X2 by property ((II)), unless f and f, are comparable.
The case fo C fi is not possible, since dim(fy) > dim(f;) by assumption on
the minimality of the dimension of f;. The case f; = fy is not possible either,
since x9 +tvy + R(f1) and x1 +tvy + R(f1) can only intersect if xo + tvy = 21 + tuy,
in which case 1 + tv, € (X;ﬁ; + tvg).
We are left with the case f; C f5 to be excluded. We now can consider X };1
and have the inclusion X;> C X };1 (since we only add conditions when going

from X]’f; to X;ij) Since zy € X}’j, we also have z, € X]J;l Then the sets
(x1 + tvg — tve + R(f1)) and (zo + R(f2)) are part of the tiling that we get by
applying Lemma 1.2 to fcone(P, fi). But, as we see in equation (1.10), the two
sets do intersect, which is a contradiction. So the assumption was wrong and we
have shown that the sets in (1.9) cover CDC(tP).

]
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Theorem 2. The function p on full-dimensional rational cones in 'V as defined
in Section 1.2 1s a local formula for Ehrhart coefficients. That is, for every lattice
polytope P with Ehrhart polynomial Ep(t) = eqt?+eq 1t - deittey, t € L=,
we have

= Y plicone(P, f))vol(f),

f<p
dim(f)=1

foralli € {0,...,d}.
We recall the definition of u for full-dimensional cones C' C V' as
p(C) = e = 3wl -u(D),
D=C

where v¢ is the relative domain volume given by
ve = vol(R(C) N DC(C))
and w§ is the correction volume for D < C, given as
w$ = vol(R(C) N C Nlineal(D)).

Analogously to R(f) and X/ we also abbreviate u(f) := p(fcone(P, f)), vy :=
fcone(P, f)

Utcone(P,f) and wg = wfcone(P,g) ’
Proof. To make the structure of the proof easier to grasp, we delay some steps
into lemmas, that are shown subsequently.

Recall that T is a fundamental domain of A. Since the relative volume is nor-
malized, such that every fundamental domain has volume 1, we have the following
equation for every t € Zs:

tP N A = vol((tP N A) + T) = vol(DC(tP)). (1.11)

Instead of counting the (discrete) number of lattice points in ¢P, we thus can
compute the (continuous) volume of fundamental domains around each lattice
point in tP.

Let t € Z~o be big enough, such that we have a tiling of CDC(¢P) by regions
as in Theorem 1:

{z+R(f)| f<P xeX(tf)}

We will show in Lemma 1.7 below that we can divide the volume of the domain
complex into the parts in each region, which equals the DC-volume in R(f) :

vol(DC(tP)) = Y X (tf)] - vy

f<p
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We have now divided the number of lattice points into a part that is purely in
tf, namely X(tf), and a part that is only depending on the fcone, namely vy =
Utcone(P,f), for each f < P. But |X(tf)| is only an (integer) approximation of
vol(t f) This can be corrected by transferring a part of vy to |X'(¢f)|, which is
where the correction volume comes into play.

With the definition of u(f) solved for vy we get

[ANEP| =) |X())

<P
- [mtf)\ - (u(f) Pl u<h>)] |
<P h>f

Note that for faces f, h of P we have f < h if and only if fcone(P, h) < fcone(P, f).
See Section 5.2 for more information.
We can now expand the product and combinatorially rearrange the sum to

single out pu(f):

AP =37 1] - () + 12 en] -3 wf - al ]

f<p L h>f
=> 1D 1xg)] - wh| -ulf).
f<pP Lg<f
—V(tf)

In the last line the expression wf for the correction volume technically has not

been defined yet — we simply set wf := 1 for faces f < P, which is a consistent
extension of the definition of the correction volume.
In Lemma 1.9 below we show that indeed we have

V(tf) = vol(tf),
which yields
(tP A= vol(tf) - p(f) (1.12)
J<P

for all t € Zs( with t > ¢, for a certain ty € Z>o. By Ehrhart’s Theorem [Ehr62],
we know that Ep(t) = [tP N A| is a polynomial in ¢, as is the right hand side
of Equation (1.12). Since these polynomials agree for infinitely many ¢, we have
equality and get

= > u(Np)vol(tf)

f<p
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for all t € Z>y. O

Lemma 1.7. We have

vol(DC(tP)) = Y |X(tf)|
f<P

for allt € Z>q big enough in the sense of Theorem 1.

Proof. Let t € Z>( be big enough, such that by Theorem 1 we have a tiling of the
covering domain complex CDC(¢P) into regions:

{r+R(Ny): f<P xeX(tf)}

To compute the volume of the domain complex DC(¢P) we can thus compute the
volume in each region and add everything up:

vol(DC(tP)) =Y > wvol((z + R(f)) NDC(tP)). (1.13)

f<PazeX(tf)
We recall the definition of the relative domain volume:
vy = vol(R(f) + DC(fcone(P, f))). (1.14)
Our aim is to show that
vol( (z + R(f)) NDC(tP)) = vy

for all x € X(tf). Since volume is translation invariant and DC( ) commutes with
translation by lattice points, we have

vy = vol((x + R(f)) N DC(x + fcone(P, f))). (1.15)
Since x € X(tf) C tf by Lemma 1.6, we have tP C x + fcone(P, f) and thus
(x + R(f)) NDC(tP) C (z+ R(f)) N DC(x + fcone(P, f)) (1.16)

To show the reverse inclusion, let y € ((x + fcone(P, f)) N A) and assume that
y ¢ tP. We want to show that

(+R(f)Ny+T)=2. (1.17)

y ¢ tP means there is a vertex v of P with y ¢ tv + fcone(P,v). v = f is not
possible since then x = tv which contradicts the assumption y € x + fcone(P, f).
If v is not a vertex of f, we can enlarge ¢, such that we can assume the boundary
of tv + fecone(P,v) to be arbitrarily far away from ¢f and thus also from the
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bounded set x + R(f), since z € X(tf) C tf. Thus, Equation (1.17) holds, since
x + R(f) C tv + fcone(P,v), but y € tv + fcone(P,v).

We are left to show Equation (1.17) for y ¢ tv + fcone(P, v) for a vertex v of
f not equal to f. v < f means there is a facet F' of P containing v but not f,
such that the translated halfspace tv + H := tv 4 fcone(P, F') does not contain y.
If y ¢ CDC(tv + H), then (y +T) N (tv+ H) = &, but since x — tv € X}, we have
z+ R(f) C tv+ H due to Property (I) and thus Equation (1.17) holds.

Otherwise, y € CDC(tv + H), but y ¢ tv + H, means y — tv ¢ XE and
thus y — tv + T C lat(H) + R(F) by Lemma 1.2. Since x —tv € X} and by
Property (IT) of X} we have (v —tv+ R(f)) N (lat(H) + R(F)) = @ . That yields
(x —tv+ R(f))N(y —tv+T) = @ and thus Equation (1.17) holds.

Hence, equality holds in Equation (1.16):

(x+ R(f)) NDC(tP) = (x + R(f)) N DC(x + fcone(P, f)) (1.18)
Summarized we have shown that

vol(DC(tP)) = Y > wvol((x+ R(f)) NDC(tP))

f<PzeX(tf)

Z Z vol((x + R(f)) N DC(z + fcone(P, f)))

f<PzeX(tf)

Z Z vol(R(f) N DC(fcone(P, f)))

f<PzeX(tf)

(114 Z Z v

f<PzeX(tf)

D oIXEN] vy,

f<pP
which finishes the proof. m

Lemma 1.8. There exists a tg € Z~q such that for each t > ty the dilation of a
face f < P byt satisfies

tf < | (X(tg) + R(9)) -

g<f

Proof. For ty big enough, Theorem 1 yields that

tf < |J (X(tg) + R(9)) (1.19)

g<P
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for all t > t5. We need to show that in (1.19) the translated regions of faces ¢
of P with ¢ £ f do not intersect ¢f. We consider the two cases f N g = & and
fNg # @. First, let ¢ < P such that g does not intersect f. Since R(g) is
bounded and X (tg) C tg by Lemma 1.6, we can choose t; big enough to ensure
that (x + R(g))Ntf = o for all t >ty and x € X(tg).

For the second case, let ¢ < P such that g does intersect f. Then there exists
avertex v € fNg. Since g £ f, we either have f < g or f and g are incomparable.
Either way, we find a facet F' of P that contains f but not g. Since v < f, we also
have v < F. Let t >ty and let x € X(tg). Then (z —tv) € X;. In particular (by
property ((I))), that means ((z — tv) + R(g)) C int(fcone(P, F')). But tf — tv is
on the boundary of fcone(P, F') and we get that (z —tv + R(g)) N (tf —tv) = @
and hence, (x + R(g)) Ntf = @.

Hence, we have shown that for all faces g with g £ f the intersection ¢f N
(X(tg) + R(g)) is empty, which leaves The covering in Equation (1.19) as

tf < | (X(tg) + R(g))
g<f
as we wanted to show. O

Lemma 1.9. There exists a tg € Z~o such that for each t > tg and every face
f < P, we have

vol(tf) = Z|X tg)| |X(tf)|+Z|X(t9)|

9<f g<f

In other words, the volume of ¢f is given by |X'(¢f)|, the number of generic
lattice points in ¢ f, plus the correction volumes times | X (tg)| for each face g < f.

Proof. We recall that for g < f, the correction volume w? is defined by
w$ = vol (R(g) N fecone(P, g) Nlineal(fcone(P, f)))

and wjf = 1. From Lemma 1.8 we get a covering of ¢ f, which by Theorem 1 is also
disjoint, such that

vol(tf) = vol (U ((X(tg) + R(g)) N tf))

g<f

—Z Z vol ((x + R(g)) Ntf).

g<f zeX(tg)

It thus suffices to show that

vol ((z + R(g)) Ntf) = w} (1.20)
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for all ¢ < f and z € X(tg).
For a facet F' of P, let Ar be the affine hyperplane that contains F'. Let further
A7 be the affine halfspace bounded by Ar that contains P. Then

tf= () A n (] Ak

F facet of P F facet of P
f<F

Let g < f and = € X(tg), then since z € tg C tf (Lemma 1.6), we have

(z + lineal(fcone(P, f))) N (z 4 fecone(P, g)) = m Ar N ﬂ Af
F facet of P F facet of P
f<F g<F

By translation invariance of the volume we have
w$ = vol ((x + R(g)) N (z + lineal(fcone(P, f))) N (z + feone(P, g))) .

To proof that Equation (1.20) holds, we thus need to show that AzN(x+R(g)) = &
for all facets F' of P that do not contain g. Let F' be such a facet of P. If FNg # @,
then there is a vertex v of P contained in F' as well as in g. Since z € X(tg),
x —tv € X and by Property (I) of X, we get that

r —tv+ R(g) Cint(AL — tv). (1.21)

If FNg = @, we can assume ty big enough, such that tg + R(g) C A} and in
particular z + R(g) C A}, for all ¢ > t,.
O
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Chapter 2

Rational polytopes

Let P be a d-dimensional rational polytope with respect to the lattice A. That
is, the vertices of P have rational coordinates with respect to a lattice basis.
The least common multiple of the denominators of these coordinates is called the
denominator of P. As in the lattice polytope case, we can consider the function
Ep: Z>y — Z>o that counts the lattice points in dilations of P by a nonnegative
integer ¢,

Ep(t) = |tP N /\|7 for t € ZZO‘

In contrast to the case of lattice polytopes, Ep(t) can not necessarily be described
as a polynomial. An easy way to see this is to consider a zero-dimensional polytope
(i.e. a point) that is not a lattice polytope, for example Py = {%} C R in the
Euclidean line R with lattice Z. Then the dilation ¢ - Py by a nonnegative integer
t contains one lattice point if ¢ is even and none if ¢ is odd. Hence, Ep is not the
zero function but it has infinitely many roots, so that it cannot be a polynomial.
However, if we only consider even ¢ € Z> or, respectively only odd ¢, we see that
we can split Ep, into two (constant) polynomials depending on the parity of the
input:

1, teven
E — ) )
Fo {o t odd.

More general, we call such a function a qusipolynomial:

Definition 4 ([BR15]). A quasipolynomial Q is an expression of the form
Qt) = oWt + e (D", .. co(2),

where cq, ..., ¢, are periodic functions in ¢. The least common period of ¢y, ..., ¢,
is called the period of (). Alternatively, for a quasipolynomial (), there exists a
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positive integer N and polynomials pg, p1, ..., py_1 such that Q(t) = p;(t), when
t =4 mod N. The minimal such N is the period of @) and for this minimal N the
polynomials pg, p1,...,pn_1 are called the constituents of (). The degree of Q) is
the maximal degree of its constituents.

In this definition, it is obvious that Ep, is a quasipolynomial. This is no
coincidence. It is also due to Ehrhart [Ehr62], that for rational polytopes Ep is a
quasipolynomial.

2.1 Local formulas for Ehrhart quasipolynomials

As shown by McMullen [McM83| and realized by Berline and Vergne [BV07], it is
still possible to attain a kind of local formulas for Ehrhart quasipolynomials. In
this case, however, as further information the translation class trl( f, A) of the face
f with respect to the lattice A, as defined below, is needed. A local formula for
Ehrhart quasipolynomials is a real valued function p* on cones with translation
classes modulo the lattice such that for each rational polytope P we have

Ep(t) =Y p*(feone(P, f), trl(t, f)A)vol(tf).

f<p

To define a local formula p*, we give a very similar construction as the one
in Section 1.2, but in a ’shifted’ way, by translating it by a representative of
the translation class. In order to distinguish between the construction before,
we call this the affine version, as opposed to the version before, which we here
refer to as the linear version. In the linear version, the objects we considered, i.e.
fundamental domains, domain complex, regions and so on all contained zero. In
the affine version this will not necessarily be the case, which justifies the name.
Whenever we consider an object that we essentially have seen before, but that we
now define with translated objects, we will denote it with a ’x’.

To define the translation class, we recall that for a subset A C V', the affine
span of A, aff(A), is the smallest affine subspace containing A. We denote by
lin(A) the linear subspace parallel to aff(A). As before, lineal(A) is the biggest
linear subspace contained in A.

Definition 5. Given a subset B C V| the translation class of B with respect to
the lattice A is the set of all points p such that the affine hull of B translated by
p contains lattice points:

trl(B,A) = {p € V| (—p +aff(B)) N A # &}.
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Given a linear subspace U C V| we call a set Trl C V' a translation class of U
(w.r.t. A) if there is an affine space A C V with lin(A) = U and trl(A4, A) = Trl.

To give a concrete construction, we choose representatives of translation classes.
In order to ensure that the choices fit together, we have to assume certain repre-
sentatives to be compatible in the following sense:

Definition 6. Given a set U of linear subspaces and for each U € U translation
classes Trly of U w.r.t. A, we call a choice of representatives p(U) € Trly of the
translation classes for each U € U compatible if

(p(Ur) +Uh) € (p(Uz) + Uz) N (p(Us) + Us)

whenever Ul, UQ,Ug € U with U1 g U2 N U3.

2.2 Construction of ;1 on cones with translation
classes

For each pair (U, Trl) with U a linear subspace of V' and Trl a translation class of
U with respect to A, we choose and fix a fundamental domain T(U) as well as a
representative p(U, Trl) € Trl.

Let C C V be a cone and Trl a translation class of lineal(C') with respect
to A. Then for all D < C there is a unique translation class Trlp of lineal(D)
with Trl C Trlp. As long as C' and Trl are clear from the context, for D < C' we
write p(D) instead of p(lineal(D), Trl) and define the affine fundamental domain
in p(D) + lineal(D) to be

T*(D) := p(D) + T(lineal(D)).

In the following, we further assume the set of representatives {p(D) | D =< C} to
be compatible. Also, we write D* for the translated cone p(D)+ D, for all D < C.

If C' is not full-dimensional in V' and aff(C*) N A = @, we set R*(C, Trl) := @.
If C is not full-dimensional, but aff(C*) does contain lattice points, we intersect
everything with aff(C*), so that we can simplify the construction by assuming
aff(C*) to be our ambient space with lattice A N aff(C*).

So let ¢ C V be full-dimensional. We denote T := T*(V) for the (affine)
fundamental domain of V' < . For a rational polyhedron ), we adjust the
domain complex and the covering domain complex to an affine version:
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DC Q)= |J 2+7T

zeEANQ

CpC (@) = |J =+T
zEA
(z4+T*)NQ#2
And the affine strip of (C,Trl) is defined analogously to the strip before as:
strip*(C) = T*(C) + lineal(C)~.
If C' =1V is the whole space, we define
R*(V,p(V))=T".

If C is a full-dimensional cone with V' # C|, we can assume to have constructed
R*(D,p(D)) for all D < C and we define the set of affine generic lattice points
X*G(p(C)) as all points x in lat(D) such that

(I*) For all halfspaces H < C' with H £ D:
r+ R*(D,p(D)) C int(H")
(II*) For all £ < C with E incomparable to D and for all 2’ € lat(E):
(z+ B (D,p(D))) N (2" + B*(E, p(E))) = @

Consistently with the above, we further set X*5(p(C)) := lat(C).
Then we can define the region

R*(C,p(C)) = (strip*(C) N CDC*(C)\ | X*5(p(C)) + R*(D, p(D)).

D=<C

From this we can compute the values of the affine relative domain volume v,
in the region R*(C,p(C)) as:

vg = vol(R*(C,p(C)) N DC*(C)).
And further the affine correction volumes for each D < C"
w*G == vol(R*(C, p(C)) N C* N (p(D) + lineal(D))).
Then we get the value for (C, Trl) as

w(C,Trl) == p*(C,p(C)) : Z w* p(D)).

D=<C



2.3 Dependence on the choice of representatives

Given that we make a choice of representatives of the translation classes, it is
interesting to see in which way these choices affect the outcome. As it turns out, a
different choice of representatives can be reduced to choosing different fundamental
domains, so that no real new variation is added to the construction.

Lemma 2.1. Letx € A be a lattice point. If we choose {(lineal(D),z+p(D)) | D <
C'} as the compatible set of representatives instead of {(lineal(D), p(D)) | D < C'},
the value of p* does not change.

Proof. By taking = + p(D) instead of p(D) for all D < C| the affine fundamental
domain T7*(D), the strip, the affine cones D* and as a result all regions are trans-
lated by x, which, in turn does not change the affine domain volume and the affine
correction volumes.

Another way to look at this is to consider the origin to be shifted to another
lattice point. And since the whole construction is made with respect to the lattice,
indifferent of where the origin is, nothing changes. O

Lemma 2.2. Let {(lincal(D),p(D)) | D < C} be a compatible choice of repre-
sentatives of some translation classes. Let E = C and y € lineal(FE). Then the
regions R*(D,p(D)), where we substitute p(E) by y + p(E) are the same as if we
constructed everything with p(E), but substitute T'(lineal(E)) by y + T (lineal(E)).

Proof. In both cases, the affine fundamental domain 7*(E) is y+p(£)+1 (lineal(E)).
Since y € lineal(E), we also have p(E) + E =y +p(E) + E. O

Given two representatives p; and ps of the same translation class of some
subspace U, the difference p; — po can be written as p; —ps = [ +u with [ € A and
uw € U. Combining Lemmas 2.1 and 2.2, we conclude that the differences in the
construction resulting from the choices of representatives of the translation classes
are included in the variations given by the choices of fundamental domains.

2.4 Properties of the affine regions

There are certain properties that the linear regions had that we now also want
for the affine regions. More specifically, we want to show a version of Lemmas 1.1
through 1.4 applied to the context of affine regions. In these cases the proofs are
surprisingly easy to adapt so that we will give the correct forms of the lemmas here
with only a few remarks on how to adjust the proofs. However, not all results can
effortlessly be adapted to the new situation; namely Lemma 1.5 cannot be shown
in the same way. We will thus prove a slightly different result instead.
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In the following, let C' be a full-dimensional cone with a given translation class
Trl and given choices of representatives p(D) and affine fundamental domains

T*(D) for all D < C.

Lemma 2.3. For all D < C, X*$(p(C)) is invariant under translation by points
in lat(C).

Proof. Since also H* = p(H)+ H is invariant under translation by points in lat(C')
for all halfspaces H < (', the assertion can be shown analogously to Lemma 1.1.
O

Lemma 2.4. We have a tiling
{z + R(D,p(D)) | D = C,z € X*5(p(C))}

of the covering domain compler CDC*(C*), consisting of lattice point translates of
TegioNSs.

Proof. As in the proof of Lemma 1.2, we have lat(C') + strip*(C') = V. We also
have that CDC(C™) is invariant under translation by lat(C'), since C* is. The
rest of the proof follows with exactly the same arguments, substituting X§ by

X*G(p(C)), R(C) by R*(C,p(C)), CDC(C) by CDC*(C*) and so on. O
Lemma 2.5. R*(C,p(C)) is bounded.

Proof. Though Lemma 1.3 is rather hard to prove, adjusting it to the affine case
is quite easy, since there are no fundamental arguments that have to be changed.

Instead of Lo we consider LY, := lineal(C) + p(C') € C*. Then adjusting the
proof of Lemma 1.3 simply consists of adding a "x’ whenever possible. O

Lemma 2.6. We have T*(C) C R*(C, p(C)).

Proof. As in the linear case, we have T*(C) C strip*(C)NCDC*(C*). Then in the
proof of Lemma 1.4 we substitute lineal(C') by p(C) + lineal(C') and all arguments
hold analogously. O]

The strict adaptation of Lemma 1.5 does not hold in the affine case. It is
possible, however, to show a slightly different version that, as we will see, suffices.
As in the proof of Lemma 2.5, we set L}, := p(C) + lineal(C).

Lemma 2.7. We have X*$(p(C)) + T*(D) C C* N Lk,

C* = ﬂ H*.

H<C
H a halfspace

Proof. We use that
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Let z € X*$(p(C)). We have lat(D)+T*(D) = L% C D* and thus z+T*(D) C L,
and also x + T*(D) C H* for all halfspaces H < D. Regarding the halfspaces
H < C with H £ D, we can apply Lemma 2.6 and Property (I*) for XS (p(C))
and get  +T*(D) C x+ R*(D,p(D)) C int(H*). Altogether, we have shown that
x4+ T*(D) C C* for all z € X*$(p(C)). O

2.5 Proof of Theorem 4

To prove that p* is indeed a local formula for Ehrhart quasipolynomials, we need
to change our perspective from cones to polytopes. Let P be a rational polytope.
For each face f < P we have a translation class, which changes under dilation,
and cones of feasible directions, which do not change under dilation. If aff( P) does
not contain integer points, then all regions we construct are empty and all values
of pu* are zero. If aff(P) does contain integer points, we intersect everything with
aff(P). We can thus assume that P is a full-dimensional rational polytope.

We assume affine fundamental domains to be given for every affine subspace of
V. As a result of Lemmas 2.1 and 2.2, the differences in the construction can be
traced back to the choice of these affine fundamental domains. To proof that u*
is a local formula for Ehrhart quasipolynomials, it thus suffices to give one valid
choice of representatives for the occurring translation classes.

Let K € Z~q be the denominator of P. Then for every integer 0 < k < K we
can compute the translation class trl(kf, A) of aff(kf) with respect to the lattice
A. If we choose a point pys € kf for every face f < P and k < K, then for each
vertex v of P, the set {(lineal(fcone(P, f)),prs) | v < f < P} is a compatible set
of representatives of the translation class trl(kf, A). We choose this as the given
set of representatives and define for all f < P and ¢ € Zx:

p(tf) = p(lin(aff(tf)), trl(tf, A)) = ps,
where 0 < k < K with t =k mod K. We further denote
T*(tf) := T"(lineal(fcone(P, f)), p(tf))

for the affine fundamental domain in p(tf) + lineal(fcone(P, f)). Since we assume
P to be full-dimensional, the translation class of P with respect to A does not
change under dilation and we denote 7™ := T*(fcone(P, P), p(P)).

We further shorten notation by setting

R (tf) = R*(fcone(P, f), p(tf)),
X(t) = X fomet ) (p(t0)),

VF(t) = Veone(p,p) (P(ES)) and
w(t) == w' e D (pltg)),  forg < f<P.

31



Though not obvious from the notation, we keep in mind that p(tf), T*(tf), R*(tf),
X*4(t), vi(t) and w*%(t) do not depend on ¢ but only on the residue class of ¢
modulo K.

As in the linear case, we want to give a tiling by translated regions of the
covering domain complex of dilations tP of P. To this end, we define the set of
generic lattice points X*(tf) in tf for f < P and t € Z+ as

X*(tf) = ﬂ X7 (t) + tv — p(tv).

v vertex of P
v<f

Lemma 2.8. For all f < P andt € Z~,, we have X*(tf) +T*(tf) C tf.

Proof.

tf =aff(tf) N ﬂ fcone(P,v) + tv

v vertex of f

=aff(tf) N ﬂ p(tv) + fecone( P, v) 4 tv — p(tv)

v vertex of f

By Lemma 2.7 for each vertex v of f we have
X" (t) + T(D) C p(tv) + fcone(P, v),
which shows that

X*(tf)+T*(tf) C ﬂ fcone(P,v) + tv.

v vertex of f

Also due to Lemma 2.7, we have
X75(8) + T7(tf) € Licone(r,p) = lineal(fcone(P, f)) + p(Lf),
and hence,
X*(tf)+T*(tf) C lineal(fecone(P, f)) + p(tf) + tv — p(tv) = aff(tf),
since p(tf) — p(tv) € lineal(fcone(P, f)) for every vertex v of f. O

Theorem 3. There exists a ty € Z~qo such that for every integer t > to the set
{r+ R (tf)| v € X*(tf)}.
is a tiling of the covering domain complexr CDC*(tP).
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Proof. Lemma 2.5 shows that all regions are bounded. By Lemma 2.8, we have
X*(tf)+T*(tf) Ctf and by Lemma 1.4 we have T*(tf) C R*(fcone(P, f),p(tf)).
That means there is a certain 7y > 0 such that

X*(tf)+ R(tf) Ctf + B,,.

Since by dilating P we can ensure non-intersecting faces to have a distance bigger
than a given one, we find a ty € Z~( such that

(z+ R*(tf))N(y+ R*(tg) =@

for all faces f,g < P with fNg =0, x € X*(tf), y € X*(tg) and all t € Z~, with
t > to.

If f and g are faces of P that do intersect, then there is a vertex v of P
that is contained in both, f and g. Let z € X*(tf) and y € X*(tg). Then
r—tv+p(tv) € X*4(t) and y—tv+p(tv) € X*;(t) and the sets z—tv+p(tv)+R*(Lf)
and y — tv + p(tv) + R*(tg) do not intersect as part of the tiling in Lemma 2.4.
This implies that the also

(x4 R*(tf)) Ny + (R*(tg)) = 2.

The remainder of the proof is analogous to the one of Theorem 1 with "+’ in the
right places with one further adjustment: As we did in the first part of this proof,
every time we translate by tv for some vertex v of P in the proof of Theorem 1,
here we translate by tv — p(tv). Then using the fact that if v; and vy are both
vertices of a face fi < P we have —p(tvy) + p(tv) € lat(f1), every step works
exactly as in the original proof. O

Theorem 4. For a rational polytope P with Ehrhart quasipolynomial
Ep(t) = ca(®)t + ca_1 (Ot + ...+ co(2),

the i-th coefficient is given by
ci(t) = Z w*(feone(P, f), trl(tf, A))vol(tf).

f<p
dim(f)=1

Proof. The proof is completely analogous to the one of Theorem 2. The respective
versions of Lemmas 1.7, 1.8 and 1.9 are given below in Lemmas 2.9, 2.10 and 2.11.
We use the fact that as for polynomials, two quasipolynomials are equal if they
agree on all but finitely many values of t € Z~,. ]

Lemma 2.9. We have
vol(DC*(tP)) = Y |X*(tf)] - v}(t)

f<p
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Proof. The structure of the proof is, again, analogous to the one of Lemma 1.7,
but since the adjustments are more nuanced than adding a "+ in the right places,
we give the proof in more details.

By Theorem 3, for all t € Z~( big enough, we have a tiling of the affine covering
domain complex, which covers DC*(¢P), so that we can compute the volume of
the affine domain complex in each part of the tiling:

vol(DC*(tP)) =Y Y vol((z + R*(tf)) NDC*(tP)). (2.1)

f<PzeX*(tf)
We recall that the affine relative domain volume is defined as
v(t) = vol(R*(tf) N DC*(p(tf) + fcone(P, f))).

We want to show that for f < P, each summand of the inner sum in (2.1) equals
v3(t). To follow the proof of 1.7, we first need to show that X*(tf) C A. Let
x € X*(tf). Then

r € tv — p(tv) + X7 (t) (2.2)

for a vertex v < f. By definition, X*%(¢) C A and since p(tv) is an element of the
translation class of tv with respect to A, we also have tv — p(tv) € A. Therefore,
we can use that the affine domain complex commutes with translation by a lattice
point and we get

v(t) = vol((x + R*(tf)) N DC*(x + p(tf) + fcone(P, f))).
We thus want to show that
(x + R*(tf)) N DC*(z + p(tf) + fecone(P, f)) = (x + R*(tf)) N DC*(tP). (2.3)

To show inclusion from right to left, it suffices to show that tP C x + p(tf) +
fcone(P, f). From Equation (2.2) we can deduce that

z+p(tf) € tv—p(tv) +p(tf) + X*4(1)

and since X*%(t) C lineal(fcone(P, f)) = lin(aff(tf)), tv € tf and —p(tv) +p(tf) €
lineal(fcone(P, f)), we get x + p(tf) C aff(tf) and thus

tP Cx+ p(tf) + fcone(P, f).

To show the inclusion from left to right in Equation (2.3), we need to show
that

(+RAH)NYy+T") =2
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for all y € AN (z + p(tf) + fecone(P, f)) with y ¢ tP.
y ¢ tP means there is a vertex v of P with y ¢ v + fcone(P,v). If f = v we
have x € X*(tv) with X*(tv) = {tv — p(tv)} and thus by assumption we have

y € x + p(tf) + fcone(P, f)
= tv — p(tv) + p(tv) + fcone(P, v)
= tv + fcone( P, v).

If v is not a vertex of f then by assuming ¢ big enough (as we did in Theorem 3),
we can ensure that tf and also z + R*(tf) are inside of tv + fcone(P, f) with a
large enough distance to the boundary, such that (x + R*(tf)) N (y +T*) = @.

We are left with the case y ¢ tv + fcone(P,v) for a vertex v < f. In this
case there is a facet F' of P that contains v but not f and for that we have
y ¢ tv + fcone(P, F).

If y+ T* ¢ CDC*(tv + fcone(F, P)), then by definition of the covering domain
complex we have (y+7~)N (tv+fcone(F, P)) = &. But since z—tv+p(tv) € X}(t),
we have by Property (I*) that

r—tv+p(tv) + R (tf) C p(tF) + fecone(P, F).

Since p(tF) —p(tv) € fecone(P, F'), the above implies 2+ R*(tf) C tv+fcone(P, F'),
such that y + 7" and « + R*(tf) do not intersect.

Otherwise, y + T* C CDC*(tv + fcone(F, P)). But since y € y + T* and
y ¢ tv + fcone(P, v) we have

y —tv+ p(tv) + T* € p(tv) + fecone(F, P) C p(tF) + fcone(F, P),
which means y — tv + p(tv) ¢ X*E(t). Using Lemma 2.4 we see that then
y —tv + p(tv) + T* C lat(fcone(P, F)) + R*(tf).
Since x — tv + p(tv) € X*%, we have by Property (II*)
(x —tv + p(tv) + R*(tf)) N (lat(fcone(P, F)) + R*(tf)) = @

and hence (x — tv + p(tv) + R*(tf)) N (y — tv + p(tv) + T*) = @. That yields
(x+ R*(tf))N(y+T*) = & as we wanted to show. O

Lemma 2.10. There exists a ty € Z~qo such that for each t > tg we have

tf < |Jx (tg) + B*(t9))-

g<f

Proof. The proof is a straightforward adaptation of the proof of Lemma 1.8. [
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Lemma 2.11. There exists a tyg € Z~o such that for each t > tg and every face
f < P we have

vol(tf) = Y |X*(tf)] - w(tg).

g<f

Proof. The proof is a straightforward adaptation of the proof of Lemma 1.9. [
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Chapter 3

Symmetry

Symmetry of p can be achieved by choosing symmetric fundamental domains, for
example by taking Dirichlet—Voronoi cells, as is shown below. Exploiting sym-
metries has many advantages, for theoretical results as well as computationally.
Given central symmetry, the values on halfspaces and thus on fcones of facets of a
polytope are always 1/2. We will show this in Section 3.3.

3.1 Dirichlet—Voronoi cells and symmetry

Possibly the most natural choice of fundamental domains are Dirichlet—Voronos:
cells. Given a space V' and an inner product (-,-) with induced norm || - ||, the
Dirichlet—Voronoi cell of a sublattice L C A is defined as

DV(L,(-,-)) :=={xz €lin(L) : ||z|| < ||z — al| for all @ € L}.

Dirichlet—Voronoi cells of a lattice are always convex polytopes [CS99]|. They are
naturally centrally symmetric and can be forced to have certain symmetries by
choosing a suitable inner product:

Let P be a lattice polytope and G a subgroup of all lattice symmetries of P,
i.e. G is a finite matrix group with A-P:={A-z:2x € P} = Pand A-A = A for
all A € G. Then we can define a G-invariant inner product by taking

(z,y)g := 2'Gy for all z,y € V, (3.1)

with the Gram matrix G given by

G— L D AtA (3.2)
|Q| Aeg
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Let || - ||g be the induced norm and let D be the Dirichlet—Voronoi cell for A given
by that particular inner product,

D :=DV(A, (-, )g) ={z €V :|z]lg < ||z — p|lg for all p € A}.
Then D is invariant under the action of G: Let x € D, then for A € G we have
|Az]lg = [|z]lg < [lz — pllg = Az — Apl|g for all p € A.

Since AN = A, we get AD C D for all A € G. Substituting A by A~ we get
A71D C D which yields D C AD and hence AD = D.

From Dirichlet—Voronoi cells to fundamental domains. In the definition
given above, a Dirichlet—Voronoi cell is not yet a fundamental domain of the lat-
tice L, since for [ € L\{0}, the sets DV (L, (-,-)) and [ + DV(L, (-, -)) can intersect
on their boundaries. To fix that, we want to consider a half open variant of the
Dirichlet—Voronoi cell. To give a construction, we consider wvisible and inwvisible
points from a general direction in the following sense. Though the proofs here
are due to the author, this concept is not new—see, for instance, Képpe and
Verdoolaege [KV08, Theorem 3] for a more general result of this kind.

Definition 7. Let A C V be a closed convex set and v an element of V. We call
a point a € A invisible from the direction of v, if there exists an € > 0 such that
a—cv € A If a € Aisnot invisible, i.e. for all ¢ > 0 we have a —ev ¢ A, it is
called wisible from the direction of v. We denote the invisible part of A from the
direction of v as inv,(A).

Definition 8. Let P be a polytope in V and v € lin(P) an element of the linear
space parallel to the affine span of P. Then we say v is a general direction with
respect to P, if v is not orthogonal to any of the normal vectors of the facets of P.

An example of a non-general and a general direction is shown in Figure 3.1. One
can think of this concept as a parallel light rays in the direction of v and everything
on the boundary of P that is lit is called visible, every other point of P is dark and
thus called invisible. We want the light not to shine in a direction aligned with
a facet, which would mean that this facet is on the threshold between light and
dark. Hence the notion of general position is introduced, excluding exactly this
case. Mathematically, a general direction yields that for a point x € P, any point
x — ev for € > 0 cannot be in the same facet as x. Another consequence is that
if we have a pair of parallel facets, exactly one of them is visible and the other
one is invisible (except possibly for its boundary). The interior of a polytope P is
always contained in inv,(P).

Using the concept of (in-)visibility from a general direction, we can turn Dirichlet—
Voronoi cells into fundamental domains:
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Figure 3.1: Non-general and general direction.

Lemma 3.1. Let D := DV(L,(-,-)) be a Dirichlet-Voronoi cell of a sublattice
L C A andletv €V be a general direction with respect to D. Then inv,(D) is a
fundamental domain of L.

Proof. We first want to show that lattice point translates of inv, (D) by two distinct
points have empty intersection. Since we can assume one point to be the origin,
it suffices to show that the intersection of inv,(D) and [ + inv,(D) is empty for
all [ € L\{0}. We assume the contrary: Let [ € L and x € inv,(D) such that
x € l+inv, (D). That means z—I € inv, (D). Applying the definition of invisibility
and general direction, we get scalars ¢ > 0 and ¢ > 0 such that © — ev € int(D)
and (x — ) — v € int(D). Since D is convex, by taking the minimum of € and ¢,
we can assume € = §. But that yields z — ev € int(D) N (I 4 int(D)), which is a
contradiction, since int(D) is the set of all points strictly closer to the origin than
to any other lattice point, and hence, int(D) and [ 4 int(D) are disjoint.

We have int(D) C inv, (D) C D. Since the union of all lattice point translates
of D equals lin(L), in order to show that the union of lattice point translates of
inv,(D) equals lin(L), it suffices to show that for each x € bd(D) there exists
an | € L such that x € [ + inv,(D). To this end, let € bd(D). Since v is a
general direction with respect to D, for all € > 0 small enough = — cv is not on
the boundary of [ + D for any [ € L. Thus, there exists an [ € L with x € [ + D
and x —ev € [ + int(D). That means z — [ — ev € int(D), which, together with
x —1 € D yields x — [ € inv,(D) and hence x € [ + inv,(D) as we wanted to
show. O
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3.2 From symmetric fundamental domains to in-
variant local formulas

Coming back to the lattice polytope P with a given symmetry group G, we see
that for all faces f in the same G-orbit their fcones are mapped onto each other.
Assuming the same holds for the chosen fundamental domains in the construction
of the regions, it is easy to see that then A- R(C') = R(A-C) for all fcones C of P
and all A € G. Thus p(Cy) = p(Cy), whenever Cy and Cy are in the same G-orbit
of fcones of P.

At this point it is natural to ask about the existence
of symmetric fundamental domains. We have seen that
given a matrix group §G it is easy to construct a G-
symmetric Dirichlet—Voronoi cell. The problem is that
turning it into a fundamental domain by taking the
invisible part of the cell can break most of its symme-
tries. However, the change of the boundary does not
effect the value of i as shown in the following theorem:

Theorem 5. Let A € G and A-cl(T(D)) = cl(T'(A-D))
for all D X C. Then Figure 3.2: Simplex S
with symmetric regions.
1(C) = u(A-C).

Example. We consider the simplex S from Section 1.3. The example given there
is symmetric under reflection at a line in the direction (1, —1). So is the square
that we chose as fundamental domain in that example. It is thus not surprising
that the values for the fcones of v; and vy are the same.

Taking a closer look at S, we note that it is also symmetric under the action of
the matrix group G generated by the matrix ( % 1) of order 3. The G-invariant
inner product that we can compute according to Section 3.1 is given by the Gram
matrix G = (21). The resulting Dirichlet—Voronoi cell is the hexagon shown in
Figure 3.1. With this inner product and the hexagonal fundamental domain we
can construct the regions for the fcones of faces of S and get the ones shown in
Figure 3.2. Then the p-values for all fcones of vertices are 1/3, while the values

on all fcones of facets are still 1/2.

Before we can prove Theorem 5, we need another quite useful property of
the regions. The following lemma shows that adding a region that was cut out
originally does not change the value, allowing is to change the regions if necessary.
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Lemma 3.2. Let C be a cone with region R(C). Let D < C and x € X§. Then
the p-value of C' does not change if we take R(C) := R(C) U (z + R(D)) instead
of R(C) to compute the value.

Proof. If we set
ve = vol(R(C) N DC(C)),
wy = vol(R(C) N C Nlineal(F))
for ' < C' and then
wC) =vc— > wh - u(E),

E<C
what we want to show is that

w(C) = (Y.
Using that R(C') and = + R(D) are disjoint and the same arguments as in the

proof of Lemma 1.7, we get
o = vol(R(C) N DC(C))
= vol((R(C)NDC(C)) U ((x + R(D))nDC(C)))
= ve + vol(R(D) N DC(D))
= Vo + Up.

Then for w§ we get

w$, = vol(R(C)' N C Nlineal(E))
= vol(R(C) N C Nlineal(£)) + vol((z + R(D)) N C N lineal(E))
= w$ + vol(R(D) N D N lineal(E))
w§ +0, if E£D
=cwh +w§, if E<D
w4+ 1, if E=D.
Line three and the first case follow from Property (I) for x, while the second
case comes from applying the definition and the third is due to the fact that

R(D) Nnlineal(D) = T(D), as we have shown in Lemma 1.4.
Altogether we get

WCY =0 — S @ - u(E)

E<C
—votop— Yy wh-p(E)= > wp - u(E) —1-pu(D)
E<C E<D
= u(C) + (D) — (D) = pu(C),
as we wanted to show. O
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The lemma shows that we can add a translate of a region R(D) with D < C'
to R(C) without changing the p-value. This extends to finitely many translates
of regions and ultimately allows us to be a little less careful around the boundary
as stated in Theorem 5.

Proof of Theorem 5. Here, we cannot assume that C' is full-dimensional, since the
linear span of C' and of A - C' might differ.

Yet, for C' = lin(C) a linear subspace, we have R(C) = T(C) and u(C) =
vol(T'(C)) =1l aswellas R(A-C)=T(A-C) and u(A-C) =vol(T(A-C)) = 1.

To show that the boundary of the fundamental domains does not change the
p-values, we show that the values do not change if we change the definition of the
regions in the following way:

For a cone (' that is not a linear subspace of V, we define the sets X§ anal-
ogously to X§ as the set of all points = € lat(D) that comply with the following
constraints:

(I) For all halfspaces H < C such that H £ D:
z+ cl(R(D)) C int(H)

(II) For all E < C| such that E' is incomparable to D and for all 2’ € lat(E):

(z + c(R(D))) N (¢ + l(R(E))) = @

In other words, we want to be a little stricter regarding the regions that we
can cut out when constructing R(C). We define the region R(C) given by X§ as
follows:

R(C) := (strip(C) nCDCO)\ | (X§ + R(D)) .

The pieces we this way add to R(C) in each inductive step are of the form
strip(C) N (lat(C) + z + R(D))

with € X§. Note that with z € X§ we also have z +1at(C) C X§. Thus adding
lat(C') and intersecting with strip(C) is essentially the same as taking = + R(D)
dissected in pieces. We can thus apply Lemma 3.2 finitely many times and get
that the p-values do not change when taking R(C) instead of R(C).

What we now gained is that we can make the construction of regions invari-
ant under changes on the boundary of the fundamental domains in the way that
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c(R(C)) = cl(R(A-C)) for A € G. Since ve is a dim(C)-dimensional volume, it
does not change when changing the boundary of R(C). For D < C we have

w$ = vol(R(C) N C Nlineal(D)),

which is a dim(lineal(D))-dimensional volume. To show that this also does not
change when taking cl(R(C)) instead of R(C'), we assume that there is a part of
the boundary of R(C) that has a nonempty relative volume in lineal(D). That
cannot come from strip(C') or CDC(C), since both are dim(C')-dimensional and
the boundary of the former is lower dimensional in in lineal(D) and the boundary
of the latter does not intersect C. It thus has to come from y+ R(E) with y € X§.
If E # D, the closure of y + R(F) does not intersect lineal(D) by Property (I). If
E = D, its boundary intersected with lineal(D) is the boundary of T'(D) and as
such also lower-dimensional in lineal(D).

We have thus shown that considering the closure of R(C) instead of R(C)
itself does not change ve and w$ and thus also not the value of u. Together with

c(R(C)) = cl(R(A - C)) for A € G, we have shown that u(C) = p(A - C) for all
Aeg. O

Remark. Theorem 5 can easily be adjusted to hold for the function p* as defined
in Chapter 2 as well, with the group not only acting on the cones, but also their
translation classes.

3.3 Codimension one

It is known that the second highest Ehrhart coefficient always equals 1/2 times
the sum over the relative volumes of the facets of a polytope. A natural conjecture
would be that all values of McMullen’s formulas corresponding to facets (in this
case all values on halfspaces) have the value 1/2. This is not true in general for p,
but we show here that it does hold when the closures of the chosen fundamental
domains are centrally symmetric. In particular, this result always holds when
taking Dirichlet—Voronoi cells as fundamental domain — regardless of the inner
product. The results in this section have been published by the author in [Rin19].

Theorem 6. Let T'(A) be a fundamental domain with centrally symmetric closure
for each subspace A C V. Let P be a lattice polytope and F < P a facet. Then

J(fcone(P, F)) — %

Proof. In the following, let T'(A) be a fundamental domain with centrally sym-
metric closure for each A C V. Again, we denote T :=T'(V).

43



Figure 3.3: left: A cone C with H = lineal(C) and H~ = V\C; right: strip(C) =
T(C)+ H*

Let P be a full-dimensional polytope and F a facet of P with fcone C' :=
fcone(P, F'). Then C is a halfspace in V. We denote H := lineal(C) for the
hyperplane contained in C';, H" for the open halfspace contained in C' and H~ for
the open halfspace on the other side of H.

Using what we have established in Section 1.3 for regions of halfspaces, we have
R(C) = strip(C)N (Yu + 1),

where Yy = {z € A| (x +T) N H # &}. That means Yy + 7T = CDC(H) and we
can write R(C') as

R(C) = CDC(H) N strip(C).
Recall that u(C) for the halfspace C' is defined as

W) =ve — u(V) - wf
= vol(R(C)NDC(C)) —1-vol(R(C)NC).

To show that p(C') = 1/2, we show that everything but half the fundamental

domain around the origin cancels out nicely. We use the fact that everything is
centrally symmetric in the following sense:

Let o be the point reflection at the origin:

oo: V=V
v = —v

Then oo(cl(T)) = c|(T") and oo(cl(T(C))) = cl(T(C)) by assumption and we
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further have

oo(H) = H,

oo(H") =H",
oo(H)=HT,
oo(cl(CDC(H))) = cl(CDC(H)),
on(el(strip(C))) = el(strip(C))

and as a result also
ao(cl(R(C))) = cl(R(C)).
Then R(C') can be partitioned into three parts

R(C) =(Yy + T) Nstrip(C)
=((Yg N H)+T) Nstrip(C)
\:;{0—/

U((Yy N HT)+T) Nstrip(C)
T
U ((Yg N H™)+T) Nstrip(C),

—_———
=X_

where the unions are disjoint, since Xy, X, X_ are. For an illustration see Fig-
ure 3.4.

Figure 3.4: (Yg + T) and R(C)

By definition, lat(C') = A Nlineal(C) = AN H, and therefore, X, C lat(C).
Since 0 € T, we also have lat(C) C Yy and thus X, = lat(C).

We now want to show that vol(strip(C) N (X + 7') = 1. We use the fact that
two translates of T and also of strip(C') by different lattice points z,y € lat(C)
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are disjoint and that lat(C') + strip(C') =V to get

vol(strip(C) N (Xo + T)) = vol( | ] strip(C) N (x + T))

= Z vol(strip(C) N (x +T))

I
g
M
] 2
Q
<
,O_

—z + strip(C)) N T)

= vol( U (—x +strip(C)) N T)
z€lat(C)

=vol(VNT)
= vol(7T)
= 1.

Since og does not change the volume, we can use it to gain information on the
occurring volumes by using the equality:

o0((Xo + cl(T)) Ncl(strip(C)) N H) = (Xo + cl(T)) N cl(strip(C)) N H ™.

Since Xo + T, strip(C), H" and H~ are full-dimensional, a consideration of the
boundaries can be neglected when taking the volume so that we get

vol (((Xo + 1) Nstrip(C)) N HY) = vol(((Xo + T) Nstrip(C)) N H™) .

The sum of both volumes equals vol(strip(C') N (X + 7")) = 1 and hence,

vol (((Xo +T) Nstrip(C))NH™) ==

Figure 3.5: vo, w9 and w§ — ve

Then since

oo (((X= + cl(T) Nel(strip(C))) N HY) = (X1 + cl(T)) N el(strip(C))) N H ™,
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the two have equal volume. Now we can, again, use the fact that a full-dimensional
volume can be dissected into the part inside of H and the one inside H ™, while
the intersection with H can be neglected. In particular, we can exploit the fact
that the volume of the intersection with the closed halfspace C' equals the volume
of the intersection with the open halfspace H* and get

w$ =vol(R(C) N C)
=vol(((Xo + T') Nstrip(C
+ vol((Xy + T') N strip
+ vol((X_ +T) Nstrip(C)) N H")
=vol(((Xo + T') Nstrip(C)) N HY)

) VHT)

(

(

)
+ vol((Xy 4+ T) Nstrip(C)) N H+)

(

)

(

)
C))NHT)

+vol((Xy + T) Nstrip(C)) N H™)
=vol(((Xo + T') N strip(C
+ vol((X; + T') Nstrip

)N HT)
C)))-
Together with

ve =vol(R(CYN ((CNA)+T))
= vol((Xo + 1) Nstrip(C)) + vol((X4 + T') Nstrip(C))

we finally get

w(C) = ve — wy;
= vol(R(C) N CDC(C)) — vol(R(C) N C)

= vol((Xo + T) Nstrip(C)) — vol(((Xo +T) Nstrip(C)) N C™T)
= vol(((Xo +T) Nstrip(C)) N C™)
1
T2
as we wanted to show. O

Remark. To adjust this result to hold for the function p* from Chapter 2, the
fundamental domains 7%(A) for subspaces A C V have to be point symmetric at
the chosen representatives of the translation classes instead of centrally symmetric
at the origin.
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Chapter 4

Brick version and
implementations

The largest obstacle in implementing the local formula p is that the regions are not
convex. The regions are inductively defined as the complement of regions of lower
fcones translated by generic lattice points (see Section 1.2). As in the example of
the simplex S in Section 1.3, already for halfspaces the regions can be non-convex.
One way to deal with that is to use the tiling we get from Lemma 1.2 and to
define the region as the union of regions that are not in their complement. To
determine these regions is rather involved, but possible. The regions can then be
considered as collections of (convex) polytopes that have nontrivial intersection.
To compute the values for the relative domain volume and the correction volume,
we can then use the inclusion-exclusion-principle. The author has a working proto-
type in SageMath [ST16] implementing the construction this way. But since the
cardinality of the collection of polytopes in each region and thus the complexity of
all operations on the regions is very high and growing exponentially, this version
is not useful already in many cases in dimension three.

Instead, we give the brick version p, as a variation of u that elegantly cir-
cumvents the issue with non-convex polyhedral structures. Although we have to
trade in some properties of symmetry, the computability outruns by far the above
described implementation of the original .

4.1 Brick version

In this section, we want to present a version of the local formulas where the regions
are unions of full translates of fundamental domains. Because of the appearing
shapes we will call this variation the brick version of u, notated as u, and con-
struct it from brick regions R, — in the hope that after some chapters of heavy
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terminology some figurativeness might help the mind distinguish between the orig-
inal and the newly introduced version. The reason to introduce the brick version
is that besides looking nice it has computational advantages: The brick regions
have a natural dissection into convex polytopes, as they can be seen as a collection
of translations of fundamental domains rather than non-convex polyhedral struc-
tures. So that operations and algorithms on convex polyhedra can naturally be
used. Additionally, in many cases, operations can even be reduced to operations
on finite point sets. See Section 4.2 for details.

As something made up of bricks, the term wall is imminent and thus we in-
troduce the following definition. Again, we assume to have chosen and fixed a
fundamental domain 7'(U) that contains the origin for each subspace U of V' with
respect to the lattice U N A. For a polyhedron @ we set T(Q) := T'(lineal(Q)).
Due to its frequent use we further set 7' := T'(V).

Definition 9. A set A C V is called a wall if DC(A) = A, where we recall that
the domain complex of A is defined as DC(A) = (ANA) +T.

Since the origin is the unique lattice point contained in 7', for a set A to be
a wall thus means that A is of the form A = X + T for some subset X C A.
Examples for walls are the domain complex and the covering domain complex of
a set. In our analogy we deliberately ignore the fact that real-life walls do have
trimmed bricks in them and that one rarely comes across a brick in the shape of
a thombic dodecahedron, to say the least.

If we recall the definition of the regions in Chapter 1, we note that the inter-
section with the strip is the main obstacle to being a wall. And, as it turns out,
it is the only thing we need to change to achieve regions that are walls. We recall
that for a polyhedron Q the strip of @ is defined as strip(Q) = T'(Q) + lineal(Q)*.
Then from the lattice points of strip(Q)) we get the brick strip (or pillar)

strip,(Q) := DC(strip(Q)).

Then the definition of the brick regions R, is exactly the same as the original
regions, just using the brick strip instead of the original strip:

As before, we can assume the cones to be full-dimensional as otherwise we can
intersect everything with the affine span and take that as our ambient space. The
definition of R, is recursive, starting with the unique minimal element in the so-
called order of fcones that we introduced in Section 1.1 and will elaborate on in
Section 5.2. We define

Rb(V) =1T.

Now let C' be a full-dimensional cone with V' < C and we assume we have con-
structed the brick regions R,(D) for all cones D < C.
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The set of brick generic lattice points of D with respect to C' is the set of all
points z € lat(D) that fulfill the conditions:

(I,) For all halfspaces H < C such that H £ D:
T+ Rb(D) g int(H)

(IT) For all E < C, such that F is incomparable to D and for all 2’ € lat(F):
(x4 Ry(D)) N (2" + Ry(E)) = @

We further set X& :=lat(C).
Then the brick region is given as

Ry(C) := (strip,(C) NCDC(C)\ | (X5 + Ro(D)) .
D=<C

Having constructed the regions, we can compute the values of the (brick) rel-
ative domain volume vyc in the region R,(C') as:

e = vol(Ry(C) NDC(C)).
And further the (brick) correction volumes for each D < C"
w5 1= vol(Ry(C) N C N lineal(D)).
Then we get the value of y;, for C' as
w(C) = — > _ W - (D).
D<C

We will show below that R,(C) is a wall and thus vy¢ is the volume of a wall.
Hence, the brick relative domain volume is—in contrast to the original vo—always
a (positive) integer.

Lemma 4.1. Let C be a full-dimensional rational cone. Then Ry(C) is a wall.

Proof. The statement is obviously true for C' =V, since R,(C) = T. Now let C'
be a full-dimensional cone with V' < C' and we assume we have shown that Ry(D)
is a wall for all cones D < C'. Let y € A and A be a wall. Let X := AN A such
that A= X +T. For y € A we have y + A = (y + X) + T and since y + X C A,
we see that translations of walls by lattice points are again walls. Since walls are

completely defined by their lattice points, it is also easy to see that intersections,
complements and (even infinite) unions of walls are again walls. Writing R, as

Ry(C) = (strip,(C) nCDC(C)\ | | (= + Re(D))

D<C xeXg

thus shows the statement. O
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The proof that pu, is also a local formula is similar to the proof for u to such a
large extent that we only give a few remarks on where the proof changes.

Lemmas 1.1 to 1.3 work out exactly the same, using in the proof of Lemma 1.2
the fact that for a full-dimensional cone C' we still have a tiling of V' by {z +
strip,(C) | = € lat(C)}. The statement of Lemma 1.4 does not hold the exact
same way, since T'(C') is not necessarily a subset of the brick strip. But with the
same arguments it holds that strip,(C)Nlineal(C') C R,(C') and, in particular that
the origin is in R(C), which is enough to show Lemma 1.5. Then Lemmas 1.6
to 1.9, as well as Theorems 1 and 2 hold and can be proven completely analogously.

Symmetry. The brick version is still invariant under all symmetries of the cones
that can be realized as symmetries on the fundamental domains. It is, however,
more sensitive regarding the boundary. That is to say there is no analogous state-
ment along the lines of Theorem 5 as shown in Section 4.3 Example 3. The reason
why this happens is that it is a zero-one decision whether a fundamental domain
is in the region or not. That means that if a lattice point is on the boundary of
the strip, it is in or out of the region depending on the exact boundary structure
of the fundamental domain. In cases where no lattice points are on the boundary
of the strip, symmetric invariance of the values of p; is maintained.

Even though the brick version is more sensitive to symmetry regarding the
boundary of the fundamental domains, the result from Theorem 6 still holds:

Corollary 1. Let T(A) be a fundamental domain with centrally symmetric closure
for each A C V. Let P be a lattice polytope and F' < P a facet. Then

pp(fcone(P, F)) = %

Proof. In the brick version, things get even a little easier, since we can write R(C')
as

Ry(C) = (strip(C)NYy) + T,

and while most steps of the proof are essentially the same as the proof of Theorem 6
(just intersection with strip(C') and Minkowski sum with 7" interchanged), the
proof that

vol((strip(C) N Xo)+T) =1

follows immediately from the fact that the origin is the only lattice point in

strip(C') N Xy = strip(C) N lat(C).
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4.2 Implementation

The brick version is quite straightforward to implement. The full source code can
be found in the appendix. In this section, we give a few remarks on the code. In
the code we introduce the class fcones given by their inequalities and the class
brickRegions. The regions can be determined by the fcone they are constructed
for and their essential information are the lattice points self._pts and the fun-
damental domain se1f._vo0 that determine their structure. For an fcone, we can
compute Dirichlet—Voronoi cells in the lineality space of the fcone via the function
Voronoi, we can construct a brick region via the function construct_brickRegion
and compute its p-value via brick_mu. In order to reduce computation time, the
output of all three functions is stored in maps.

The given code assumes that the lattice is Z", where n is the ambient dimension
of the polytope. Note that it is not necessarily the dimension of the polytope itself,
as it is often useful to consider polytopes in a higher dimensional space, e.g. the
permutahedra. The fundamental domains used in the code are Dirichlet—Voronoi
cells with respect to the standard scalar product. A general direction to determine
in which way the fundamental domains are half open is computed as a heuristic
in the function general_direction. Optionally, a list of general directions for
certain subspaces can be given as input. In that case, the program only checks
whether the given directions are indeed in general position and if yes, they are
taken. This can be essential when exploiting symmetries that are only respected
for specific choices of the boundary.

The program has two main functions, all_mu_values_polyhedron and
Ehrhart_coeff. The first function takes a polyhedron and returns the p,-values
of the fcones of all its faces. The output is a list of tuples where the first entry
codes the fcone and the second one is the pp-value. The fcone is given by the
inner normal vectors of its facets, which is due to the way SageMath gives the
inequalities of polyhedra. In a11_mu_values_polyhedron, a cone can be given as
input as long as it is in the base class of polyhedra.

The second main function Ehrhart_coeff takes a lattice polytope as input
and returns the coefficients of its Ehrhart polynomial, which is computed using
the local formula py.

Both functions have several optional inputs. Ehrhart_coeff has the input
down_to which is set to 0 by default and stops the computation of the Ehrhart
coefficients at a given index. The coefficients are computed inductively starting
with the coefficient of the highest exponent and going down to the constant. By
this, the computation time can be reduced largely if one is only interested in
higher coefficients. To compare running times, both functions have the optional
input timer, which prints the computation time in seconds if set to True.

A very important input is the radius. It is an estimate for how big the regions
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can be. If the radius is too small, the values are simply wrong. If the radius
is big, the computation time increases with exponent n, where n is the ambient
dimension. When computing the Ehrhart coefficients, it is easy to check whether
the chosen radius was big enough as the last coefficient, the constant should equal
1. If that is not the case, a warning is raised and the most likely problem is that
the radius has to be bigger. The use of the radius in the program is a rough
implementation of the bounding radius established in the proof of Lemma 1.3.
The program and its running time can be improved by a more detailed realization
and an automatic determination of the radius given in the proof of Lemma 1.3.

Due to the implementation of the brick version instead of the original version,
the regions have the simple structure of the fundamental domain denoted by vo
translated by a set of lattice points. Thus, many operations on regions, as, for
instance, union, intersection and translation are merely a simple operation on
finite sets of points. The computation of the volume as well as of the relative
domain volume of a region are reduced to the counting of points. Only when
intersecting with a polyhedron it is necessary to consider the actual translated
fundamental domains.

Exemplary inputs and outputs for the octahedron in R? with lattice Z3 are
given in Example 3 in Section 4.3.

4.3 Examples

Using the SageMath implementation for the brick version, it is easy to compute
examples. The figures in this section are created by translating the results of
the SageMath program into polymake [GJ00], [AGH"17] and plotting them
via jReality [GHST17]. In Example 1 we revisit the example from Section 1.3
so that a direct comparison between the brick version and the original version is
possible. An example for particularly easy and symmetric regions is the hypercube
in any dimension, which we discuss in Example 2. As a nontrivial example in
dimension 3 we look at the octahedron in Example 3.

Example 1. Constructing the brick Regions on the simplex S introduced in Sec-
tion 1.3 results in the regions given in Figure 4.1. It is very easy to compute the
value for the relative domain volumes of the faces as we only have to count the
number of fundamental domains whose interior lattice point lies in S

Vbs = ]-) Vo, = 27 Vof, = 27 Vofs = 17

val = 2, va2 =2 Vb’l)3 =4.
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Figure 4.1: The Simplex 6 - S with brick regions and a blow-up of the regions on
the boundary from the center to help distinguish.

Together with the correction volumes we then get

—1/2-1/2—1/2-1/2—-9/8-1=13/8
~3/2-1/2-3/2-1/2-9/4-1=1/4

Example 2. The hypercube H as the convex hull of all vectors with £1 entries in
R™ with lattice Z" is a particularly easy example. With the standard inner product
the fundamental domain in each subspace considered is again a hypercube itself
(with edge length 1 and barycenter in the origin). Moreover, there are no lattice
points on the boundaries of the strip so that the values are invariant under all
symmetries of the hypercube, even in the brick version. Hence, in the original
version as well as in the brick version, the Regions all consist of one n-dimensional
hypercube. See Figure 4.2 for examples in two and three dimensions.

Since the regions are that simple for the hypercube, it follows immediately that
vy = vy = 1 for each f < H. The correction volume is w} = w,/ = 1 /2dim{g)—dim(f)
and it can be shown via induction that the resulting values of the local formulas
are

p(f) = m(f) = 1/2"-4m0),
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Figure 4.2: The 2-dimensional hypercube (square) and 3-dimensional hypercube
(cube) with brick regions.

Example 3. An example where the symmetry of the original version is not main-
tained in the brick version is the octahedron O defined as the convex hull of the
standard basis vectors e;, i € {1,2,3}, and their negatives. O has the same sym-
metries as the cube so that the p-value of the fcones of its faces only depends on
the dimension of the face and is given as

dim(f)[3] 2| 1] o
w(f) [1]1/2 )29 176

In the brick version, this symmetry cannot be preserved fully. To see this, we
can take a look at strip(F") for any facet F' of O. For example, we can take F' =
conv(ey, es, e3). The fcone fcone(P, F') is the halfspace given by the outer normal
vector v := (—1,—1,—1). The Dirichlet-Voronoi cell T'(F') in the hyperplane
orthogonal to v with respect to the standard inner product is a hexagon and the
strip is the Minkowski sum of T'(F') with the line defined by v. The boundary
of this strip contains lattice points, for instance the point a = (0,0,1) and its
negative. Hence, the decision of which part of the boundary is included in T'(F')
and which one is not determines whether a + 7T is in strip,(F') or if —a + T is.
Thus, the region R,(F’) is not symmetrical with respect to central symmetry. The
resulting brick regions are shown in Figure 4.3. The values that arise for the fcones
of the faces of O for one choice of general directions are the following:
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Figure 4.3: The octahedron with brick regions.
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The first two lines are the exact input as entered into SageMath, everything
below is the output. The time is the time taken on a standard 2015 Laptop and
the output is given as a list of tuples, where the first set decodes the fcone and the
second one the pp-value. The fcone is given by a list of inequalities, which means
that the first entry is the whole space. A tuple of the form (a,b,c,d) stands for
the inequality

(bye,d)'z +a > 0.

We observe that, as expected, the values of facets (fcones given by exactly one
inequality) equals 1/2, but that most of the other values are not invariant under
the octahedral symmetries.

The Ehrhart polynomial computed with the function Ehrhart_coeff creates
the following output:

sage: Ehrhart_coeff (Oct,radius=6, timer=True)
Ehrhart polynomial: 4/3t"3+2t"24+8/3t+1
timer: 0.714751958847 seconds

(s, 4/31, tz, 21, 11, 8/31, [0, 1]]

The last line is the actual return of the function: a list of tuples (strictly
speaking lists with two entries), where the first entry is the index and the second
one the Ehrhart coefficient for that index. Because of the previous computations
of the py-values and their storing in maps, the running time here is only a fraction
of what it is above.
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Chapter 5

More on fundamental domains,
cones and duality

This chapter is a background chapter going into more detail on two concepts
that are fundamental to this work: The fundamental domains that determine our
local formulas and the cones that the formulas are defined on. Due to repeated
questions in talks, Section 5.1 discusses what fundamental domains can and cannot
look like and what happens if the definition was to be changed in some ways.
Historically, local formulas have been defined on normal cones (see, for instance,
McMullen [McM83]). These concepts are basically the same and connected via
duality. To facilitate a transition between both views, Section 5.2 shows their
connections. Since local formulas are defined inductively, we put an emphasis on
the order of fcones that was briefly introduced in Section 1.1 and examine it in
relation to the order of normal cones.

5.1 More on fundamental domains

The choice of fundamental domains is the determining factor for the local formulas
presented in this work. In Section 3.1, we have seen a class of examples, the
Dirichlet—Voronoi cells, that enable us to exploit symmetries in polytopes. These
are a natural choice of fundamental domains and are the ones mostly used in
practical computations. In this section, however, we are concerned with the more
unusual cases of fundamental domains to see what is still allowed and what is not.
We start by recalling the definition of fundamental domains:

Definition. For a subspace U C V with induced sublattice lat(U) = U N A, a
fundamental domain T(U) is a bounded subset of U such that {z +T(U) | = €
lat(U)} is a tiling of U and that every intersection of T'(U) with an affine subspace
of V' is measurable.
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The reader who is familiar with the term fundamental domain in topology or
group theory might know a fundamental domain as a subset of a topological space
containing exactly one point of each orbit under the action of some group G on the
space. In that sense, the fact that translates of fundamental domains form a tiling
of space ensures that the fundamental domains defined here are also fundamental
domains in the topological sense for the Euclidean space U with the lattice lat(U)
acting on it by translation.

Note that we do not require fundamental domains to be rational polyhedra.
In practical use, rational fundamental domains seem more convenient. A setting
where these non-standard fundamental domains can be useful, is, for example, if
you have a particular cone and a certain value and you want to find a local formula
that assigns that value to that cone.

Figure 5.1: Tiling of a square by regions constructed using fundamental domains
from Example 1 for n = 0 (left) and n = 1/7 (right).

Example 1. To create a fundamental domain that is not a rational polyhedron,
we can simply take any fundamental domain and translate it by an irrational point.
For example we can take

11 11
T1 = (7770) + [_§7§> X [_§7§> )

with € (0,1). Then T} is a fundamental domain in R? with lattice Z* and local
formulas can be defined based on it. A picture of the resulting regions for a square
are given in Figure 5.1. It is apparent that if n is not in QQ, then 77 is not rational.
The value of 1 depending on 7 for the fcones of the faces of the square are 1/2 —n
for the edge on the left, 1/2 + n for the edge on the right, 1/2 for the upper and
lower edge, 1/4 — 1/2 - n for the vertices of the left edge and 1/4 + 1/2 - n for the
vertices of the right edge.

Example 1 shows to which extent local formulas are not unique as it is possible
to shift the weights almost arbitrarily from one side to the other.
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e

Figure 5.2: Unbounded and, respectively, not connected fundamental domains 75
and T4 of R?.

It is quite natural to think of fundamental domains as bounded and since we
need to compute the volume and do not want to take any limits, we certainly need
them to be bounded. Example 2 shows that there exist subsets of R that fulfill all
requirements of being a fundamental domain except being bounded.

Example 2. Define the fundamental domain 75 of R? with lattice Z? as a union

of rectangles
DA DL |
TQ: U (n,n+1]x{ 2n s 2n+1 )

neZZQ

as shown in Figure 5.2. Then translates of T, by points (t,0) with ¢ € Z cover the
strip R x [0, 1) without pairwise intersections. This way, it is easy to see that the
translates by all lattice points in Z? form a tiling of R%. Thus, the only requirement
T, does not fulfill is being bounded. With this set 75, the regions could still be
defined, but for obvious reasons they would not be bounded and there can be no
results analogously to Lemma 1.3 and Theorem 1.

We do however admit fundamental domains to be not connected as all state-
ments and proofs work just fine with not connected fundamental domains, see
Example 3.

Example 3. Define the set T3 of R? with lattice Z?* as

we P13 v B[4

Then T3 is a fundamental domain but not connected.

The last property of a fundamental domain is that it is Lebesgue-measurable
in every intersection with an affine subspace. We use the fundamental domain to
define a relative volume by taking any measure on the considered subspace and
scaling it such that a fundamental domain has volume 1. Therefore, the funda-
mental domain has to be measurable. Since we also take volumes of intersections
with subspaces, we also need every intersection with an affine subspace to be mea-
surable.
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Example 4. To give an example for a set that is not measurable in the required
way but satisfies all other conditions of a fundamental domain, one can take a any
non-measurable set V C [0, 1] (cf. remark below) and unite it with its complement

V := 1[0, 1]\V shifted by 1: )
T, =VU((V+{1}).

Remark. In 1905, Giuseppe Vitali [Vit05] used a choice function to create a non-
measurable set, in the sense that there exists no translation-invariant countably
additive, positive real measure defined on the set. We briefly show the construction
of Vitali as given in [Moo82]. Let x € R\Q and define the set

Ay ={z+b|beQ}.

For each distinct A,, choose an element p in A, N (0, 3) and let Gy be the set of
all such p. Then for ¢ € Q, the sets

Gq ::q+G0

are disjoint congruent sets. If G is measurable, then so is each G. In particular,
as Go, G2, G1/3, G1ja, ... are all subsets of the interval [0, 1] such that the sum
of their measures is at most one. Since there are infinitely many of them, the
measure of each one and thus also the measure of each G,, with ¢ € Q, has to be
zero. But then the measure of R, which is the union of all of these, is also zero.
Any such set V C [0, 1] with the property that for each x € R there exists
exactly one y € V' such that y — x is a rational number is called a Vital: set.

5.2 Duality: Fcones and normal cones

Duality is a mighty and useful tool that appears in almost every corner of math-
ematics. Switching between one view and its dual can open up a stream of new
ideas and techniques. It can also be confusing at times. The duality that appears
in the context of local formulas is the one between normal cones and the cones
of feasible directions of a polyhedron. Historically, a local formula is defined on
the normal cones of a polytope. The local formulas presented in this work can be
defined in this way, see [RS19]. However, the author chose to give the construction
and all proofs from the point of view of fcones. The main reason for that is that
this way the description of the construction is more straightforward so that we gain
more clarity in our arguments. The aim of this section is to light up the duality
relevant to this work, as well as to give a detailed description of some connections
between polyhedra, cones and faces that we use at several points throughout this
thesis. Most of the content in this section is well-known, for more information on
this topic, see for instance Barvinok [Bar08] or Goodman et al. [GOT18].
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The aim of this section is to explain the order on fcones that is used to define
the local formulas in this work and to give a description of the analogy between
this order and the order on normal cones. By this we want to enable the reader
to see the connections and, if needed, to switch between the two. The essence of
these connections are presented in Table 5.1. We further go into some more detail
regarding results on fcones that are used in the proofs in Section 1.4.

Let @ C V be a rational polyhedron. The cone of feasible directions, short
feone, of P at a face f was defined in Section 1.1 as

fcone(Q, f) :={z €V |Je>0:s+ecx €@}

for any point s in the relative interior int(f) of f. The (outer) normal cone Ny of
Q@ at f is defined as

normal(@, f) :={x € V | (z,y —s) <0 Vy € Q}

for any vector s in the relative interior of f. If we have a cone C' with face D,

the fcone of C'in D has a particularly nice structure as fcone(C, D) = {¢—d | c €

C and d € D}, which is why the notation C' — D := fcone(C, D) is used at times.
Given a cone C' C V, the dual cone CV is defined as

CV:={zeV|{xr,y) <0VyeC}

As mentioned before, the normal cone and the fcone of a polyhedron at a face
f are dual to each other. The name cone of feasible directions is due to the fact
that it can be pictured as the cone that you get by translating P such that the
origin is in the relative interior of f and then taking the cone over all directions
that you can go without leaving P. Since the origin is in the relative interior of
this translation of f, all directions within f are feasible and thus the lineality space
of fecone(P, f) equals lin(f), the linear space parallel to the affine hull of f. That
implies dim(f) = dim(lineal(C})).

The face lattice and partial orderings on cones. For a polyhedron @), the
face lattice is the partially ordered set consisting of all faces of () with order given
by inclusion. We consider ) as a face of itself. This order is denoted by <’
and we write f < g if we want to exclude the case f = g. The face lattice is a
combinatorial lattice, since for every two faces f, g there exist a unique least upper
bound fV g called join and a unique greatest lower bound f A g called meet. fVg
is the smallest face of ) that contains both f and g, and f A g is given by the
intersection f M g. Here, we formally consider the empty set as a face of Q).
The set of normal cones of a polyhedron () at the faces f < @,

g = {normal(Q, f) | f < Q},
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is a (polyhedral) fan, called the normal fan of (). That means that every face of a
cone in Xq is also in ¥ and that for any two cones IV, M in ¥q their intersection
is a face of both N and M. This fan is also complete, meaning that the union of
all elements in ¢ is the whole space. The order of the faces of () is opposite to
the order on its normal fan since for faces f, g of () we have

f<g < normal(Q,g) < normal(Q, f).
The order on cones <’ that we introduced in Section 1.1 is defined as
D <C & D =fcone(C,F) for a face F' with lineal(C) < F < C.

To distinguish between the to orderings, we refer to this order as the fcone order
and to the order on the face lattice as the face order. The fcone order corresponds
to the face order on the duals in the following way:

D<C«<DY<(CV.
We further have

D < C:< D = fecone(C, F) for a face I’ with lineal(C) < FF < C
s DY <oV,

Since for a cone C the set of faces is finite, we also have that the set {D | D < C'}
is finite. This is essential for the recursive construction of our local formulas.
Whenever D < C, we have lineal(C') C lineal(D) and thus dim(lineal(C)) <
dim(lineal(D)) < dim(V). That means the dimension of the lineality spaces is
strictly increasing when going down in the order of fcones.

Let f, g be faces of a polyhedron (). Then we have

f<g < feone(Q,g) < fecone(Q, f).

The reason why we chose the order on fcones this way and not the opposite is that
while a higher dimensional face f of () has more information than its own faces,
the fcone of f has less information than the fcones of the faces of f. The fcone as
well as the normal cone of a polyhedron () in a face f are local in the way that
they only store information about the face locally around an inner point of the face
and forget about the rest of the polytope including the boundary of the face. One
result of this locality is that the fcones and normal cones of () do not change under
dilation, i.e. fcone(Q, f) = fcone(tQ,tf) and normal(Q, f) = normal(tQ,tf) for
all t € R>Q.

If @ is full-dimensional, then so are all fcones of faces f < @ and all normal
cones are pointed. The fcone of a facet F' of a full-dimensional polyhedron is
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always a halfspace and its normal cone is a ray. Due to the halfspace description
of polyhedra, we have for every polyhedron @)

Q= m F + fecone(Q, F). (5.1)
F facet of Q
In Lemma 1.5 we apply this to full-dimensional cones C' to get

c= (] E

H=<C
Hhalfspace

Using that

fcone(Q, f) = ﬂ fecone(Q, F),

fSFLQ

for all f < @, Equation (5.1) also yields that ¢ can be reconstructed from its
vertices and their fcones by

Q= ﬂ fcone(Q, v) + v,

v vertex of Q

which we use in the proof of Lemma 1.6. In the same proof we use that
lineal(fcone(P, f)) N fcone( P, v) = fcone(f,v).

This last equation is easy to verify, since the feasible directions of f in a vertex v
are the ones of P in v that are also in lin(f) = lineal(fcone(P, f)).

As we have seen, the fcones and the normal cones of a polyhedron () are in one-
to-one correspondence respecting the orderings that we have given on both sets.
This shows that as the set of normal cones with the face order form a combinatorial
lattice, so does the set of fcones with the fcone order. The meet of two normal
cones is their intersection, i.e. for f, g < @) we have

normal(Q, f) A normal(Q, g) = normal(Q, f) N normal(Q, g) = normal(Q, f V g),

where f V g is the smallest face of @) that contains both, f and g. In the fcone
order we have

fcone(Q, f) A fcone(Q, g) = fecone(Q, f V g).

The join of two normal cones is the smallest one that contains both and we

have for f,g < @

normal(Q, f) V normal(Q, g) = normal(Q, f A g) = normal(Q, f N g).
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On fcones we get

fcone(Q, f) V fcone(Q, g) = fecone(Q, f N g). (5.2)

Let @ be a polyhedron and let f be a face of (). We set Cy := fcone(Q, f) and
Ny :=normal(Q, f). The following table gives an overview over some connections
between normal cones and fcones:

fcone polyhedron normal cone
Cy = fcone(Q, f) fgone f normal Ny = normal(Q, f)
lineal(C'y)) = lin(f) = I\
dim(lineal(C)) = dim(f) = dim(V) — dim(N;)
dim(C) = dim(Q) = dim (V') — dim(lineal(N;))
dim(V) — dim(lineal(Cy)) =  dim(V) —dim(f) = dim(Ny)
{D|D=Cy} Eroqglf<g<qp e {M| M < Ny}
feone(Q, f) A feone(Q,g)  €2° Vg el ormal(Q, £) N normal(Q, g)

feone(Q, f) Vfcone(Q,g) 2 fAg=fng "% normal(Q, f) Vnormal(Q,g)

Table 5.1: Connections between faces of a polyhedron @), their fcones and normal
cones.
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Appendix

Source code

import time
from sage.geometry.polyhedron.base import is_Polyhedron

iz zadadaddsasasadasasasassdadadasasadadsdadasadasadadadasadadadaaadad
#tH##### A A A # A ##A#H brick regions ##############H#HAHAHFHARAHARAHFRARAS
[ZZZZE TSI Z LTI ST E TS TS S TS T TSI EEE LS EEEEEEEEE ST LS L L
class brickRegion :
def _ init__ (self, fcone, pts, VO0)

self._fcone=fcone

self._pts=pts

self._pts=[vector(v) for v in self._pts]

for v in self._pts: v.set_immutable()

self._pts=set (pts)

self._V0=V0

def intersect_bickRegions (self, DbReg2)
points=set ()
for x in self._pts
if x in bReg2._pts
points.add (x)
return brickRegion(self._fcone, points,self._VO0)

def unite_brickRegions(self, DbReg2)
return brickRegion (self._fcone,
self._pts.union(bReg2._pts),self._VO0)

def translate_brickRegion(self, pt)
points=set ()
for x in self._pts
a=x+pt
a.set_immutable ()
points.add(a)
return brickRegion(self._fcone, points, self._VO0)

def vol_brickRegion (self)
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return len(self._pts)

#the volume of a Region intersected with a polyhedron
def vol_reg_poly(self, Poly, VC)

vol=0

for x in self._pts
part=(self._VO.translation(x)) .intersection (Poly)
if part.dim()==VC.dim() :

rel_vol_part=rel_vol (part, VC)
vol=vol+rel_vol_part
return vol

def plot_brickRegion (self)
return sum ([ (x+self._VO0) .plot () for x in self._pts])

#test whether a region is contained in the interior of a polytope.
def Region_interior_inside(self, Poly)
all _vertices=][]
for x in self._pts
all_vertices=all_vertices+self._VO.translation (x).vertices_list ()
return all (Poly.interior_contains(v) for v in all_vertices)

def Region_outside(self, HI)
Poly_Hl=Polyhedron (iegs=1list (H1))
for x in self._pts
if Poly_ Hl.intersection/(
self._VO.translation(x)).dim()<self._VO0.dim()
return True
return False

idgdsdsda s dsdsdsdadadadadadadadadadsdadaad R d A EEEd kA
#####AF AR RS A #AAEA  fcones #E##A#HAFAAHAFEAFEAFAAFAFHAFEAFRAFAAHAFHAE
FEAFHAFEAFHAFAAFAFEAFRAFHAFAAAAFEAF A FAAFAFHAF R F A F AR F A F A F AR
class fcone

#maps to save already computed values

_mubmap = {} #map of brick—-mu values
_regbmap = {} #map of brick-regions
_vorcellmap = {} #map of Voronoi cells

def _ init_ (self, H, LinHull, n)
#H is a list of inequalities, LinHull the linear Hull
#and n the dimension of the ambient space
self. n =n
#canonical choice of inequalities (important for lower dim. case):
self._H=Polyhedron(iegs=H, egns=LinHull) .inequalities_list ()
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self._H=[[0]+h[1l:] for h in self._H]
#to ensure that H and 1inHull can be turned into sets:
self._H=[vector(v) for v in self._H]
for v in self._H : v.set_immutable ()
#convention: if LinHull has no equations,
#it is set to be the whole space
self. LinHull=LinHull
if self._ LinHull==[]
self._LinHull=[[0 for i in range(0,self._n+1)]]
self._LinHull=[vector(v) for v in self._ LinHull]
for v in self._LinHull : v.set_immutable()
self. H = set (self._H)
self._lowerFcones=lower_fcones(self._H,self._ _LinHull, self._n)
#creating an entry in each of the maps:
if not self in fcone._mubmap.keys ()
fcone._mubmap[self]=None
if not self in fcone._regbmap.keys()
fcone._regbmap[self]=None
if not self in fcone._vorcellmap.keys ()
fcone._vorcellmap[self]=None

def _ hash__ (self)
return sum(l._hash() for 1 in list(self. H)+self. LinHull)

def _ eq (self, other)
return self._H == other. H and self._LinHull == other._LinHull

#computing the voronoi cell in the lineality space of the fcone:
def Voronoi (self)
m = fcone._vorcellmap[self]
if m != None
return m
LinHull_Poly=Polyhedron (egns=self._LinHull)
V = VectorSpace (QQ,self._n)
Lineal_orth=V.subspace([h[l:] for h in list(self._H)+self._LinHull])
Lineal = Lineal_orth.complement () #lineality space of self
B = Lineal.intersection (FreeModule (ZZ,self._n)) .basis()
#(+/-) combinations of baslis vectors:
C = reduce(lambda T, b
[etaxb+t for eta in range(-2,3) for t in T],B, [Lineal(0)])
#resulting inequalities for the Voronoi cell:
VC_iegs = [[v.inner_product (v)/2] + v.list() for v in C]
VC = Polyhedron (eqns=1list (self._H), iegs=VC_ieqgs)& LinHull_ Poly
fcone._vorcellmap([self]=VC
return VC

def plot_fcone(self)
return Polyhedron (iegs=1list (self._H), egns=self._LinHull) .plot ()
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FHAFFFAAAAAAAAHHAH#H#H Construction of Regions ###########HHHHHHHFFFFFH#F#HH
def construct_brickRegion(self, acc, general_directions=[])
R = fcone._regbmapl[self]
if R != None
if R[1]>=acc:
return R[0]
general_directions_list=general_directions
#Voronoi cell in LinHull:
V0= fcone(set (), self._LinHull, self._n) .Voronoi()
zerovector = vector ([0 for i in range(0,self._n)])
zerovector.set_immutable ()
if self._ H==set ():
return brickRegion(self, [zerovector], VO)
#Voronoi cell in the lineality space of self:
VC = self.Voronoi ()
LinHull_Poly=Polyhedron (egns=self._LinHull)
#lineality space of self:
lineal = Polyhedron (egns=1list (self._H)+self._LinHull)
strip = Polyhedron (vertices=VC.vertices(),
lines=[h[l:] for h in self._H]+[h[1l:]
for h in LinHull_Poly.equations_1list ()])&LinHull_Poly
#search area depending on the radius ’acc
Area = V0.dilation (acc)
int_strip = (strip & Area) .integral_points()
for x in int_strip: x.set_immutable ()
int_strip=set (int_strip)
allX=set ()
#Computing the set of generic points for all lower cones in the
#order of fcones
for £ in self._lowerFcones:
Regf=fcone (f._H, self._LinHull, self._n).construct_brickRegion (acc)
#h#### A ###AES (I) inside ##############4#####H
#output list of points x in lat (H) that fulfil property (I)
#and that are outside of the covering domain complex
XHf=self.inside (f, Regf, V0, acc)
tH###########E (II) overlapping ##############H
#output: list of points x such that x+Reg(f) 1is inside
#AND does not intersect any y+Reg(g) for g incomparable to f
for g in self._lowerFcones:
if not akin(f, g)
XHf=fcone.non_intersect (£, g, XHf, VO, acc)
for x in XHf:
allX=allX.union (Regf.translate_brickRegion (x) ._pts)
points_of_region=int_strip.difference (allX)
#to account for the fact that strip is not bounded but half open
#we take out all visible points from a general direction
#the general direction is either given in general directions_1list

7 .
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#or computed here.
if strip.inequalities_1list () !=[]
if self._H in [L[0] for L in general_directions_list]
for [H1,v] in general_directions_list
if Hl==self._H:
gen_direc=v
else:
gen_direc=general_direction(strip.inequalities_list())
visible=[h for h in strip.inequalities_list ()
if gen_direc.inner_product (vector (h[1l:]))<0]
visible_halfsps=[Polyhedron(iegs=[h]) for h in visible]
visible_pts=[]
for x in points_of_region
if not all (halfsp.interior_contains (x)
for halfsp in visible_halfsps)
visible_pts=visible_pts+[x]
points_of_region=points_of_region.difference(set (visible_pts))
Regb=brickRegion(self, points_of_region,V0)
fcone._regbmap[self] = (Regb, acc)
return Regb

#HAF R A A AR A AR HAAAAS (I) inside ########HAEHFHAEHFHAHAHHALHAHAHHHAAHHHAS
def inside(self, f, Regf, V0, acc)
XHfl=1[]
lineal_f=Polyhedron (egns=1list (f._H)+f._LinHull)
#all facets of self that are no facets of f:
Hl=Polyhedron (iegs=list (self._H.difference(f._H)))
#a rough radius in which to test
pts_to_test_inside=(lineal_f & H1l &
(VO.dilation(2*xacc))) .integral_points ()
if f._H==set():
#to end up with a region in CDC,
#we take out all VO that are completely outside the cone:
pts_to_test_outside=(lineal_ f &
(VO.dilation (2xacc))) .integral_points ()
for x in pts_to_test_outside:
if Regf.translate_brickRegion (x) .Region_outside (self._H)
XHf1=XHfl+[x]
for x in pts_to_test_inside:
if Regf.translate_brickRegion(x).Region_interior_inside (H1)
XHf1=XHf1l+[x]
return XHf1

th##### A #A A A A #A##A# (II) non_intersect ##############A##A##A#ARFAA#AHSS
def non_intersect (f,g,XHf, V0, acc)
lineal_g=Polyhedron (eqns=1list (g._H) +g._LinHull)
pts_test_inters=(lineal_g & (VO.dilation(2xacc))) .integral_points{()
Regf=f.construct_brickRegion (acc)
Regg=g.construct_brickRegion (acc)
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for y in pts_test_inters
for x in XHE
Regf_pts=Regf.translate_brickRegion (x) ._pts
if Regf_pts.intersection(
Regg.translate_brickRegion(y) ._pts) !=set ()
XHf .remove (x)
return XHf

#H##E# A H AR A A A A A#AAF Computing mub ###########HHAEFAHHAHAAHAEHARFAAAARAS
def brick _mu(self, radius=4, general directions=[])
m = fcone._mubmap([self]
if m != None
if m[l]>=radius
return m[0]
gen=general_directions
lineal=Polyhedron (egns=1list (self._H)+self._LinHull)
fcone_Poly=Polyhedron (iegs=self._H, eqgns=self._LinHull)
Regionl=self.construct_brickRegion (radius, general_directions=gen)
#for the relative domain volume it suffices to count the lattice points
#in Regionl that are also in fcone Poly:
DC_vol=0
for x in Regionl._pts
if fcone_Poly.contains (x)
DC_vol=DC_vol+1l
#Computing the correction volumes:
CorVols=[]
for £ in self._ lowerFcones
lineal_f=Polyhedron (eqns=1list (f._H)+self._LinHull)
VC_f=f.Voronoi ()
CorVol_f= Regionl.vol_reg_poly(lineal_f & fcone_Poly, VC_f)
brick_mu_f=f.brick_mu ()
CorVols = CorVols + [(f, f.brick_mu() , CorVol_f£f)]
mub=DC_vol-sum(a*xb for (c, a,b) in CorVols)
fcone._mubmap([self] = (mub, radius)
return mub

FHAFHAFHAFHAFAAFAFRAFEAFAAFAFHAFHAFHAFAAFAFHAF R FHAFAAFAFHAFEAF A FAFHAFS
#HAFHAFRAFHAFAAFAFFAF MAIN HHAFHAFHAFAAFAFRAFEAFHAFAAFAFRAFEAF A FAFHAFS
HHHHAFFHAAFHRARFRARFRAAFFRARFRAAFFRAAFRARFFRAFFEAAFRAAFFRAAFRAAFHRAFFEAA

#### Computing all mub values ###############
#Input: Polyhedron, radius (optional), timer (optional, takes the time),
# general_directions (optional, can be given here manually)
#Caution, 1if radius is too small, values are wrong!
def all_mu_values_polyhedron (Poly, radius=4,
timer=False, general_ directions=[])
if timer==
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start=begintimer ()
gen=general_directions
r=radius
n=Poly.ambient_dim{()
LinHull=Poly.equations_1list ()
if LinHull==[]
[0 for i in range (0,n+1)]]
+

LinHull= [
LinHull=[[0]+h[1l:] for h in LinHull]
mu=[]
All_fcones_of_Poly=lower_fcones (Poly.inequalities_1list(),LinHull,n)

for £ in All_fcones_of_Poly:
mu=mu+ [ (f._H, f.brick_mu(radius=r, general_directions=gen)) ]
#ending timer, prints the time measured in seconds
if timer==
endtimer (start)
return mu

#tH## AR A A A HHFF#H#H## Computing Ehrhart coefficients ##############AAA#LS
#Input: Polytope,
# down_to (optional, down to which index the coefficients
should be computed)
radius (an estimate for a bound of the region —> needs to be big
enough to get a correct result, but smaller is faster)

H R HH K

timer (optional, time of computations in seconds)
def Ehrhart_coeff (Polytope, down_to=0, radius=4,
timer=False, general_directions=[]):
if timer==
start=begintimer ()

gen=general_directions

k=down_to

r=radius

n=Polytope.ambient_dim()

d=Polytope.dim()

AffHull=Polytope.equations_1list ()

if AffHull==][]

AffHull= [[0 for i1 in range(0,n+1)]]

LinHull=[[0]+h[l:] for h in AffHull]

All Inegs=Polytope.inequalities_list ()

fcone_of_Polytope=fcone(set (), LinHull, n)

VO=fcone_of_Polytope.Voronoi ()

Ehr=[[d, fcone (set (), LinHull, n) .brick_mu(radius=r)xrel_vol (Polytope,V0)]]
#going through all faces of dimension d-1,...,k to compute the coefficient:
L=range (k, d)

L.reverse ()

Ehr=Ehr+[[i,0] for i in L]

for (F, affine_F) in lower_fcones (All_Inegs, LinHull, n, aff=True )
face_F=Polyhedron (iegs=All_TIneqs, eqgns=affine_F)

i=face_F.dim{()

if i in L:
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mu_F=F.brick_mu(radius=r, general_directions=gen)
print ’'dim(F)=", 1
print 'mu_F’, mu_F
vol_F=rel_vol (face_F, F.Voronoi () )
Ehr[d-1i] [1]=Ehr[d-i] [1]+mu_F+*vol_F
if k==0:
string='\n’
string+='Ehrhart_polynomial: //
for j in range(0,len(Ehr)-1):
string+= str(Ehr[j][1])
if Ehr[j]1[0]==1 : string+="t’
else
string+t= 't"'
string+=str (Ehr[j] [0])
string+='+’'
string+= str(Ehr[len(Ehr)-1][1])
print string
if Ehr([d][1]!=1:
print ’'Warning, for_lattice_polytopes_c_0_should be 1!’
print ’'Possible_solution: _a bigger _radius:_Ehrhart (Poly,radius=_)"
if timer==
endtimer (start)
return Ehr

tt#d A AR AAFAARAAA A A FAARAAA A FFFAEAAAAAFFHAAAAA A FFHAAAAAAAFFHAAAAAA
#EH AR F AR A FFAAAF auxiliary functions #########FHFAFFAAFFHAAFHAAFFAAA
ddddisssadddsaassaddiaaassadadssastdadddsaaaddddddaaaatdddddddaddddi

def begintimer ()
return time.time ()

def endtimer (start)
end = time.time ()
print '\n’, ’timer:’, end-start, ’_seconds’, ’'\n’
return end-start

#computing the relative volume of a polytope w.r.t. a fundamental domain
def rel_vol (Poly, VO):
dl = v0.dim()
d2 = Poly.dim()
if d1>d2: return 0
if d2>di:
raise Exception("dim(Poly)>dim(fund.dom.) . _No_relative_ volume")
if d2==
return 1
return Poly.affine_hull () .volume () /V0.affine_hull () .volume ()

#generating a list of those fcones that are lower in the order of fcones
def lower_fcones (H,LinHull, n, aff=False):
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if H==set () : return []
Poly_LinHull=Polyhedron (egqns=LinHull)
P=Polyhedron (iegs=H) & Poly_LinHull
Pl=Polyhedron (egns=H) & Poly_LinHull
L=range (P1.dim()+1, Poly_LinHull.dim())
L.reverse()
lower_fcones=[]
if aff==True:
for i in L:
for £ in P.faces (i)
f=Polyhedron (iegs=f.ambient_Hrepresentation())
F=f.inequalities_1list ()

lower_fcones=lower_fcones+[ (fcone (F, LinHull, n), F)]
return lower_fcones
lower_fcones=[fcone(set (), LinHull, n)]

for i in L:
for £ in P.faces (1)
f=Polyhedron (iegs=f.ambient_Hrepresentation())
F=f.inequalities_list ()
lower_fcones=lower_fcones+[fcone (F, LinHull, n)]
return lower_fcones

#test for comparability of two cones
def akin(f,g)
if f._H.issubset (g._H)
return True
if g._H.issubset (f._H)
return True
return False

#heuristically computing a general direction:
#general means not parallel to the facets
#if given!=[], testing if it really is a general direction, otherwise
#computing a new one
def general_direction (vectors, given=[])
bad_orth_directions=[vector(v[l:]) for v in vectors]
if given!=[]:
gen_direc=given
if all(gen_direc.inner_product (v)!=0 for v in bad_orth_directions)
return gen_direc
else
print ’given _direction_not_a genral_direction. Compute_different_one’
gen_direc_heur=vector (bad_orth_directions[0])
for i in range (0, len(bad_orth_directions))
gen_direc_heur=gen_direc_heur+ ix bad_orth_directions[i]
if all(gen_direc_heur.inner_product (v) !=0 for v in bad_orth_directions)
return gen_direc_heur
#second heuristical try of a ’‘random’ combination:
gen_direc_heur=vector (bad_orth_directions[0])
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for i in range (0, len (bad_orth_directions))
gen_direc_heur=gen_direc_heur+ (i+l)+* bad_orth_directions[i]
if all(gen_direc_heur.inner_product (v) !=0 for v in bad_orth_directions)
return gen_direc_heur
raise Exception ("Computing_general direction_ failed")
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