Aus dem Institut für Anatomie der Universität Rostock Direktor: Prof. Dr. med. A. Wree

Konnektomik von viralen Tract-tracing Verbindungen des Nervensystems der Laborratte

Inauguraldissertation zur Erlangung des akademischen Grades Doktor der Medizin der Medizinischen Fakultät der Universität Rostock

vorgelegt von

Jörg-Christian Jenssen

Einreichung:2018

Verteidigung:2019

https://doi.org/10.18453/rosdok_id00002610

Dekan: Prof. Dr. med. E. Reisinger

1. Gutachter: Prof. Dr. med. O. Schmitt, Institut für Anatomie der Universität Rostock

2. Gutachter: Prof. Dr. rer. nat. Georg Füllen, Institut für Biostatistik und Informatik in Medizin und Alternsforschung der Universität Rostock

3. Gutachter: Dr. Marc Tittgemeyer, Max Planck Institute for Metabolism Research in Köln

Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Konnektomik	1
	1.2	Tract-tracing	3
	1.3	Virales Tract-tracing (VTT)	6
	1.3.1	Monosynaptische Retroviren	8
	1.3.2	2 Adeno-Associated Virus (AAV)	9
	1.3.3	3 Adenoviren	10
	1.3.4	Alphaviren	10
	1.3.5	5 Transsynaptische Viren	11
	1.	3.5.1 Die Herpesviren HSV und PRV	11
	1.	3.5.2 Die Rhabdoviren RABV und VSV	13
	1.3.6	Monosynaptische und restriktierte transsynaptische virale Tracing Systeme	14
	1.4	Detektion viraler Tracer	15
	1.5	Fragestellungen	16
2	Mat	erial und Methoden	18
	2.1	neuroVIISAS	19
	2.2	Literaturauswertung	20
	2.3	Tabellen	22
	2.3.1	Kodierung von viralen Konnektivitäten	25
	2.4	Regionenauswahl für Konnektivitätsanalysen	26
	2.5	Konventionen zur Bezeichnung von Hirnregionen in dieser Arbeit	31
	2.6	Visualisierung in Graphiken	31
	2.7	Graphen und Netzwerke	31
3	Erg	ebnisse	35
	3.1	Ausgewertete Publikationen	35
	3.2	Neuroontologie des BS-Konnektoms	35
	3.3	Ubersicht über die Gesamtheit der Virus Tract-tracing Verbindungen	38
	3.4	Konnektivitätsmatrizen	40
	3.4.1	Connectivity Matching Matrix	44
	3.4.2	2 Distanz Matrix	46
	3.5	Globale Parameter des VTT-Konnektoms	47
	3.5.1	Gruppierungen der VTT-Konnektom Gebiete	49
	3.6	Lokale Konnektivitätsanalyse	
	3.6.	Zyklische Verbindungen	
	3.6.2	2 Motiv-Analyse	
	3.6.3	6 Rich-club Analyse	61
	3.7	Differentielle Konnektomanalyse	64
	3.7.1	Differenzenanalyse der globalen Netzwerkparameter	65
	3.7.2	Differentielle Reziprozitaten	6/
	3.7.3	Differentielle Distanzenmatrix	68
	3.7.4	Differentielle Connectivity matching matrix	/0
	5./.5	Differentielle lokale inetzwerkparameter	12
	5./.($K_{1}(n) = K_{1}(n) $	/4
	3.1.	Violaubilaung im n V I I und c V I I	/8
4	3./.ð	b) Difference ine Motiv-Analyse im n v I I und c v I I	/9
4		(USSION	80
	4.1	Lusammeniassung der Analysen	80
	4.2	vergieich mit anderen wietastudien dasierten Konnektomen	84

	4.3	Kritische Analyse der Ergebnisse	
	4.4	Kritischer Vergleich mit Befunden anderer Arbeitsgruppen	
	4.5	Alleinstellungsmerkmale des VTT-Konnektoms der Ratte	
	4.6	Ausblick	
	4.7	Beantwortung der Fragestellung dieser Arbeit	90
5	Lite	raturverzeichnis	
6	Tab	ellenanhang	
7	Bild	anhang	
8	The	sen	
9	Pub	likationen	
10	Erk	ärung	
11	Leb	enslauf	
12	Dan	ksagung	

Abkürzungen

5	Trigeminal nucleus
7	Facial nucleus
12DM	Dorsomedial subdivision of the hypoglossal nucleus
12P	Hypoglossal nerve
12SC	Caudal part of the hypoglossal nucleus
12SD	Dorsal part of the hypoglossal nucleus
12SDL	Hypoglossal nucleus dorsolateral part
12SL	Hypoglossal nucleus lateral part
12Sprinvm	Ventromedial subnucleus of the hypoglossal nucleus
12Sr	Hypoglossal nucleus rostral part
12SV	Hypoglossal nucleus ventral part
12SVL	Ventrolateral hypoglossal nucleus
A4	A4 noradrenaline cells
A5	A5 noradrenaline cells
A7	A7 noradrenaline cells
AA	Anterior amygdaloid area
AAV	Adeno associated Virus
Ac	Accumbens nucleus
ACPu	Associative striatum
Acs5	Accessory trigeminal nucleus
ADC	Adrenaline cell group
AI	Agranular insular cortex
AIN	Anterior interposed nucleus
Amb	Ambiguus nucleus
AnsiL	Ansiform lobule
AOS	Accessory ontic system
AU	Auditory regions
AutoIG	Jugular ganglion
AutoI SG	Lumbar sympathetic ganglia
AutoN	Autonomic nerves
AutoOG	Otic ganglion
A t D C	
AllfoPatterv	Cervical sympathetic ganglia
AutoPaGcerv	Coeliaco-mesenteric ganglia
AutoPaGcerv AutoParGcmgc AutoPelvicP	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus
AutoPaGcerv AutoParGcmgc AutoPelvicP	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Ptervgonalating ganglion
AutoPaGcerv AutoParGcmgc AutoPelvicP AutoPpG AutoTSG	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia
AutoPaGcerv AutoParGcmgc AutoPelvicP AutoPpG AutoTSG BI	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amyodaloid nucleus
AutoPaGcerv AutoParGemge AutoPelvicP AutoPpG AutoTSG BL BM	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus
AutoPaGcerv AutoParGcmgc AutoPelvicP AutoPpG AutoTSG BL BM Bo	Coeliaco-mesenteric ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Bactzinger complex
AutoPaGcerv AutoParGcmgc AutoPelvicP AutoPpG AutoTSG BL BM Bo BSTA	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division
AutoPaGcerv AutoParGemge AutoPelvicP AutoPpG AutoTSG BL BM Bo BSTA BSTapI	Coeliaco-mesenteric ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Red nucleus of the stria terminalis anterior division
AutoPaGcerv AutoParGemge AutoPelvicP AutoPpG AutoTSG BL BM Bo BSTA BSTAL BSTanL BST:	Coeliaco-mesenteric ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis interolateral area Bed nucleus of the stria terminalis intracasular part
AutoPaGcerv AutoParGemge AutoPelvicP AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTanL BSTj BSTP	Coeliaco-mesenteric ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis poetarior division
AutoPaGcerv AutoParGemge AutoPelvicP AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTJ BSTP BZCEiPC	Coeliaco-mesenteric ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anteriolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division
AutoPaGcerv AutoParGemge AutoPelvicP AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTAL BSTj BSTP BZCEiRC BZCEIC	Coeliaco-mesenteric ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis guxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones
AutoPaGcerv AutoParGemge AutoPelvicP AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTAL BSTj BSTP BZCEiRC BZCERCL	Coeliaco-mesenteric ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anteriolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers
AutoPaGcerv AutoParGemge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTAL BSTJ BSTP BZCEiRC BZCERCL c CAALL	Coevical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient
AutoPaGcerv AutoParGemge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTAL BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL1	Coevical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Coatral autonomic nucleus of lumbar segment 1
AutoPaGcerv AutoParGemge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTAL BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL2	Coevical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of lumbar segment 2
AutoPaGcerv AutoPaGcerv AutoPaGcenge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTA BSTTA BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAT12 CAAT12	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of horacal segment 12 Central autonomic nucleus of thoracal segment 12
AutoPaGcerv AutoPaGcerv AutoParGemge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTA BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAT13 CAAT13	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Central autonomic nucleus of thoracal segment 13
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTA BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAT12 CAAT13 CAn CCPPE	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus
AutoPaGcerv AutoPaGcerv AutoParGemge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTA BSTTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAT12 CAAT13 CAn CBRF C	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Carten l curvedelicid runcleus
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAT12 CAAT13 CAn CBRF Ce CD	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central anygdaloid nucleus
AutoPaGcerv AutoPaGcerv AutoParGemge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTA BSTTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAn CBRF Ce CeD CEpt	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Cerebellar cortex D zones Caudomadial antochinal cortex
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAn CBRF Ce CeD CEnt CEPC	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Cerebellar cortex D zones Caudomedial entorhinal cortex
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAn CBRF Ce CeD CEnt CERCca CEB T CERCCa	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Cerebellar cortex D zones Caudomedial entorhinal cortex Caudal part of cerebellum
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAA CBRF Ce CeD CENT CERCca CERCCa CERCCA	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Cerebellar cortex D zones Caudomedial entorhinal cortex Caudal part of cerebellum Central cerbellar nuclei
AutoPaGcerv AutoPaGcerv AutoParGemge AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAA CBRF Ce CeD CERT CERCCA CERCFL CERCE CERFL CERFL	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Caudal bulbar reticular formation Central anygdaloid nucleus Caudal part of cerebellum Central cerbellar nuclei Flocculonodular lobe
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAA CBRF Ce CeD CERT CERCCa CERCE	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Caudal bulbar reticular formation Central anygdaloid nucleus Caudal part of cerebellum Central cerbellar nuclei Flocculonodular lobe Cerebellar lobule 10
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAA CBRF Ce CeD CENT CERCCa CERCE	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Caudal part of cerebellum Central cerbellar nuclei Flocculonodular lobe Cerebellar lobule 10 Posterior interposed nucleus
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BST7 BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAA CBRF Ce CeD CERF CeRCCa CERCCA CERCE CERCCA CEREFL CERL10 CERDA CERA CERA	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Caudal part of cerebellum Central cerbellar nuclei Flocculonodular lobe Cerebellar lobule 10 Posterior interposed nucleus Centebellar cortex A zones
AutoPaGcerv AutoPaGcerv AutoPaGcerv AutoPpG AutoTSG BL BM Bo BSTA BSTA BSTA BSTA BSTJ BSTP BZCEiRC BZCERCL c CAAL1 CAAL2 CAAL1 CAAL2 CAAT13 CAA CBRF Ce CeD CERF CeRCA CERCA CERCA CERCA CERCA CERFL CERL10 CERDA CGA	Cervical sympathetic ganglia Coeliaco-mesenteric ganglion complex Pelvic plexus Pterygopalatine ganglion Thoracic sympathetic ganglia Basolateral amygdaloid nucleus Basomedial amygdaloid nucleus Basomedial amygdaloid nucleus Boetzinger complex Bed nucleus of the stria terminalis anterior division Bed nucleus of the stria terminalis anterolateral area Bed nucleus of the stria terminalis juxtacapsular part Bed nucleus of the stria terminalis posterior division Cerebellar cortex intermediate part B zones B-zone of the cerebellar cortex layers Korrelationskoeffizient Central autonomic nucleus of lumbar segment 1 Central autonomic nucleus of thoracal segment 12 Central autonomic nucleus of thoracal segment 13 Cortical amygdaloid nucleus Caudal bulbar reticular formation Central amygdaloid nucleus Cerebellar cortex D zones Caudomedial entorhinal cortex Caudal part of cerebellum Central cerbellar nuclei Flocculonodular lobe Cerebellar lobule 10 Posterior interposed nucleus Central gray alpha part

CL	Centrolateral thalamic nucleus
CM	Central medial thalamic nucleus
CMAM	Mammillary body
CON	Cochlear nucleus
cos	Commissural systems
CPud	Dorsal striatum
CPu1	Lateral striatum
CPur	Rostral striatum
CPuv	Ventral striatum
cvtolD	Deep cortical layer of the cerebral cortex
DBB	Diagonal hand of Broca
	Dargel commissure of the dereal horné
DCoCo	Dorsal column
DDUCI	Does dered how Cl
DDHC2	Deep dorsal horn C1
DDIIC2	Deep dorsal horn C2
DDHC3	Deep dorsal hom C4
DDHC4	Deep dorsal hom C4
DDHCS	Deep dorsal horn C5
DDHC0	Deep dorsal hom Co
DDHC/	Deep dorsal horn C/
DDHLI	
DDHL2	Deep dorsal hom2
DDHL3	Deep dorsal horn3
DDHL4	Deep dorsal horn4
DDH110	Deep dorsal horn 110
DDH111	Deep dorsal horn 111
DDH112	Deep dorsal norm 112
DDH113	Deep dorsal horn 113
DHK	Dorsal region
DHSIDC	Dorsal commissure of the dorsal horn S1
DK	Nucleus of Darkschewitsch
DLEnt	Dorsolateral entorninal cortex
DLG	Dorsal geniculate nucleus
DLNL6	Dorsolateral nucleus lumbal segment 6
	Doreolatoral normaniaductal grav
DLIAG	
DMHy DMHy	Dorsonedial hypothalamic nucleus
DMHy DMPAG	Dorsonatial periaqueductal gray Dorsomedial periaqueductal gray
DMHy DMPAG DMpz	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone]
DELAG DMHy DMPAG DMpz DPAG	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray
DMHy DMPAG DMpz DPAG DT	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract
DMHy DMPAG DMpz DPAG DT DTg	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus
DMHy DMPAG DMpz DPAG DT DTg ExSL1	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL2	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures 1 Extra spinal segmental structures 2
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL4	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL5	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSL6	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSL6	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures S1 Extra spinal segmental structures S1
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExST10	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures S1 Extra spinal segmental structures T10
DLIAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL4 ExSL5 ExSL6 ExSS1 ExST10 ExST11 ExST11	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures S1 Extra spinal segmental structures T10 Extra spinal segmental structures T11
DLIAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL4 ExSL5 ExSL6 ExSS1 ExST10 ExST11 ExST12 ExST2	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures S1 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12
DELAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExST10 ExST11 ExST12 ExST13 ExST0	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures S1 Extra spinal segmental structures T10 Extra spinal segmental structures T12 Extra spinal segmental structures T12 Extra spinal segmental structures T13
DHAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS10 ExST10 ExST11 ExST12 ExST3 ExST8 ExST8 ExST0	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures S1 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T8
DHAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExST10 ExST11 ExST12 ExST13 ExST8 ExST9 Ex	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures 1 Extra spinal segmental structures 2 Extra spinal segmental structures 3 Extra spinal segmental structures 4 Extra spinal segmental structures 5 Extra spinal segmental structures 6 Extra spinal segmental structures 51 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9
DHAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures 1 Extra spinal segmental structures 2 Extra spinal segmental structures 3 Extra spinal segmental structures 4 Extra spinal segmental structures 5 Extra spinal segmental structures 6 Extra spinal segmental structures 710 Extra spinal segmental structures T10 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex
DHAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS1 ExSS10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES	Dorsomedial hypothalamic nucleus Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures 1 Extra spinal segmental structures 2 Extra spinal segmental structures 3 Extra spinal segmental structures 4 Extra spinal segmental structures 5 Extra spinal segmental structures 6 Extra spinal segmental structures 71 Extra spinal segmental structures T10 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord
DHAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS1 ExSS12 ExSS11 ExSS12 ExSS13 ExST13 ExST13 ExST8 ExST9 FrA GMES HAB	Dorsonedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula
DHAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS1 ExSS10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES HAB HIPPC	Dorsonedial periaqueductar gray Dorsonedial periaqueductar gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula Hippocampal cortex
DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES HAB HIPPC HSV	Dorsonatial periaqueductal gray Dorsonedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula Hippocampal cortex Herpes simplex Virus
DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES HAB HIPPC HSV I5	Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula Hippocampal cortex Herpes simplex Virus Intertrigeminal nucleus
DMHX0 DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES HAB HIPPC HSV I5 I8	Dorsonatilar periaqueductar gray Dorsomedial periaqueductar gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula Hippocampal cortex Herpes simplex Virus Interstitial nucleus of the vestibulocochlear nerve
DHAG DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExSS1 ExSS1 ExSS10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES HAB HIPPC HSV I5 I8 ICj	Dorsonedial periaqueductal gray Dorsonedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula Hippocampal cortex Herpes simplex Virus Interstitial nucleus of the vestibulocochlear nerve Islands of Calleja
DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExST10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES HAB HIPPC HSV I5 I8 ICJ ICIL1	Dorsonatical periaqueductal gray Dorsonedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures S1 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula Hippocampal cortex Herpes simplex Virus Intertrigeminal nucleus Interstitial nucleus of the vestibulocochlear nerve Islands of Calleja Intercalated nucleus1
DMHy DMPAG DMpz DPAG DT DTg ExSL1 ExSL2 ExSL3 ExSL4 ExSL5 ExSL6 ExSS1 ExST10 ExST11 ExST12 ExST13 ExST8 ExST9 FrA GMES HAB HIPPC HSV I5 I8 ICj ICIL1 ICIL2 EXEV GMES	Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial periaqueductal gray Dorsomedial hypothalamic nucleus [Periventricular zone] Dorsal periaqueductal gray Dorsal terminal nucleus of the accessory optic tract Dorsal tegmental nucleus Extra spinal segmental structures1 Extra spinal segmental structures2 Extra spinal segmental structures3 Extra spinal segmental structures4 Extra spinal segmental structures5 Extra spinal segmental structures6 Extra spinal segmental structures T10 Extra spinal segmental structures T11 Extra spinal segmental structures T12 Extra spinal segmental structures T13 Extra spinal segmental structures T8 Extra spinal segmental structures T9 Frontal association cortex Gray matter of spinal cord Habenula Hippocampal cortex Herpes simplex Virus Intertrigeminal nucleus Interstitial nucleus of the vestibulocochlear nerve Islands of Calleja Intercalated nucleus1 Intercalated nucleus2

ICIS1	Intercalated nucleus S1
IC1S2	Intercalated nucleus S2
ICIT10	Intercalated nucleus T10
ICIT11	Intercalated nucleus T11
ICIT12	Intercalated nucleus T12
ICIT13	Intercalated nucleus T13
ICIT8	Intercalated nucleus T8
ICIT9	Intercalated nucleus T0
	Inferior colliculus
	Inferior concuras
ILIL	
ILN D.G	
IML	Intermediolateral cell column
IMLCI	Intermediolateral cell column Cl
IMLC2	Intermediolateral cell column C2
IMLC3	Intermediolateral cell column C3
IMLC4	Intermediolateral cell column C4
IMLC5	Intermediolateral cell column C5
IMLL1	Intermediolateral cell column1
IMLL2	Intermediolateral cell column2
IMLL3	Intermediolateral cell column3
IMLL4	Intermediolateral cell column4
IMLL5	Intermediolateral cell column5
IMLL6	Intermediolateral cell column6
IMLS1	Intermediolateral cell column S1
IMLS2	Intermediolateral cell column S2
IMLS3	Intermediolateral cell column S3
IMLT10	Intermediolateral cell column T10
IMLT11	Intermediolateral cell column T11
IMLT12	Intermediolateral cell column T12
INIL T12	Intermedialetaral coll column T12
	Internetiolateral cell column 115
INIL 19	Intermediolateral cell column 19
InC	Interstitial nucleus of Caial
IOD I	
IODvL	Inferior olive dorsal nucleus ventral leaf
IODvL IOK	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus
IODvL IOK IOMH	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus
IODvL IOK IOMH IOMV	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus
IODvL IOK IOMH IOMV IOMVe	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus
IODvL IOK IOMH IOMV IOMVe IOPr	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus
IODvL IOK IOMH IOMV IOMVe IOPr IPAC	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C5 Intermediate zone C6
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC8	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC8 izVHC8 izVHT11	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C8 Intermediate zone C8 Intermediate zone T11
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 I 3an	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Iumbar segment 3 autonomic nucleus
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an I 4an	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC6 izVHC7 izVHC8 izVHC11 izVHT11 izVHT12 L3an L4an I San	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 4 autonomic nucleus
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC6 izVHC7 izVHC8 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L 6ap	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC4 izVHC5 izVHC6 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an I CX	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C7 Intermediate zone C7 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus
IODvL IOK IOMH IOMV IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex Lambdoid septal zone Lateral cone discussion Lateral executed autonomic nucleus
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LG	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 7 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 7 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 7 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex Lateral penciculate complex Lateral geniculate complex
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LG LGP	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 7 autonomic nucleus Lumbar segment 7 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 7 autonomic nucleus Luteral penculate complex Lateral geniculate complex Lateral geniculate complex Lateral globus pallidus
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LG LGP LH	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex Lambdoid septal zone Lateral geniculate complex Lateral globus pallidus Lateral hypothalamic area
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LG LGP LH LO	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8 Intermediate zone C7 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex Lambdoid septal zone Lateral geniculate complex Lateral globus pallidus Lateral hypothalamic area Lateral orbital cortex
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LG LGP LH LO Iof	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex Lateral geniculate complex Lateral geniculate complex Lateral globus pallidus Lateral orbital cortex Longitudinal fascicles
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LG LGP LH LO Iof LOFC	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C5 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex Lateral geniculate complex Lateral geniculate complex Lateral orbital cortex Longitudinal fascicles Lateral orbital cortex
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LG LGP LH LO Iof LOFC LP	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C6 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C7 Intermediate zone C7 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 4 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral neocortex Lateral globus pallidus Lateral dist cortex Longitudinal fascicles Lateral orbital cortex Lateral orbital cortex
IODvL IOK IOMH IOMV IOMVe IOPr IPAC IS izVHC1 izVHC2 izVHC3 izVHC4 izVHC5 izVHC6 izVHC7 izVHC6 izVHC7 izVHC8 izVHC7 izVHC8 izVHT11 izVHT12 L3an L4an L5an L6an LCX Ld LGP LH LO Iof LOFC LP IPFC	Inferior olive dorsal nucleus ventral leaf Inferior olive cap of Kooy of the medial nucleus Horizontal lamella of the inferior olive medial nucleus Vertical lamella of the inferior olive medial nucleus Ventral protion of the inferior olive medial nucleus Inferior olive principal nucleus Interstitial nucleus of the posterior limb of the anterior commissure Inferior salivatory nucleus Intermediate zone C1 Intermediate zone C2 Intermediate zone C3 Intermediate zone C4 Intermediate zone C6 Intermediate zone C6 Intermediate zone C7 Intermediate zone C7 Intermediate zone C8 Intermediate zone T11 Intermediate zone T12 Lumbar segment 3 autonomic nucleus Lumbar segment 4 autonomic nucleus Lumbar segment 5 autonomic nucleus Lumbar segment 6 autonomic nucleus Lumbar segment 6 autonomic nucleus Lateral enocortex Lateral goibus pallidus Lateral orbital cortex Lateral orbital cortex Lateral orbitofrontal cortex

LPSyL6	Lumbar parasympathetic nucleus6
LS	Lateral septal nucleus
LSpC1	Lateral spinal nucleus C1
LSpC2	Lateral spinal nucleus C2
LSpC3	Lateral spinal nucleus C3
LSpC4	Lateral spinal nucleus C4
LTGA	Lateral tegmental area
MD	Mediodorsal thalamic nucleus
Me	Medial amygdaloid nucleus
MEntLy	Medial entorhinal cortex layers
MeObvm	Ventromedial medulla oblongata
MESauto	Autonomic cell column
MEScen	Central cervical nucleus
MESin	Spinal cord interneurons
MESL1	Spinal cord lamina 1
MGL9C3	Motoneuron groups of layer 9 C3
MGL9C4	Motoneuron groups of layer 9 C4
MGL9C5	Motoneuron groups of layer 9 C5
MGP	Medial globus pallidus
Mi	Mitral cell layer of the olfactory bulb
MLR	Mesencephalic locomotor region
MnR	Median raphe nucleus
MO	Medial orbital cortex
mPFC	Medial prefrontal cortex
MRF	Mesencephalic reticular formation
MS	Medial septal nucleus
MSB	Main spinal bundle
mSC	Superior colliculus medial part
MTZ	Medial thalamic zone
MuscDig	Digastricus muscle
MuscFo	Forelimb
MuscHi	Hindlimb
MuscMast	Masticatory muscles
MuscStyG	Styloglossus muscle system
NACg	Noradrenalin cell group
NEOCXL5	Neocortex layer 5
OBglo	Glomerular layer of the olfactory bulb
OBgra	Granular cell layer of the olfactory bulb
OrgCLi	Clitoris
OrgHLS	Hindlimb surface
OrgNaCa	Nasal cavity
OrgOC	Oral cavity
OrgsKid	Kidney
OrgsStomS	Stomach
OrgsTras	Trachea side
OrgUrBLa	Urinary bladder
OrgUTs	Uterus side
Pa	Paraventricular hypothalamic nucleus
Pa5	Paratrigeminal nucleus
PaD	Paraventricular hypothalamic nucleus dorsal part
PAGe	Periaqueductal gray caudal part
PaPaP	Nucleus paraventricularis parvocellular part
PBK	Periorachial region
PCX	Peduncular cortex
PDHLI	Nucleus proprius i
PDHL2	Nucleus proprius2
PDHL3	Nucleus proprius 3
PDHL4	Nucleus proprius4
PDHL3	Nucleus proprius
PDHL0	Nucleus proprius
	Nucleus proprius 110
PDH111	Nucleus proprius 111
PDH112	Nucleus proprius 112
	Nucleus proprius 115 Deriventrieuler hynotholomie nucleus
re DeD LIM	renvenurcular hypothalamic nucleus
reknivi	Area pervenuricularis hypothalamica communis [Kegio nypothalamus medius]

PF	Parafascicular thalamic nucleus
PF1	Paraflocculus
PHA	Posterior hypothalamic area
phren	Phrenic nerve
PirL	Piriform cortex layers
PMTCG	Cell groups of the paramedian tract
Pn	Pontine nuclei
PnR	Pontine raphe nucleus
PNS	peripheres Nervensystem
POA	Periolivary area
PPN	Peduncularpontine nucleus
PREn	Preoptic nucleus
PREOV	Ventral preoptic area
PrLDL	Prelimbic cortex deep layers
РТ	Paratenial thalamic nucleus
PtA	Parietal association cortex
PTG	Posterior group
PV	Paraventricular thalamic nucleus
PYR	Pyramis
Re	Reuniens thalamic nucleus
RETgcL	Retina ganglion cell layer
RETn	Reticulotegmental nucleus
Rh	Rhomboid thalamic nucleus
Ro	Nucleus of Roller
ROb	Raphe obscurus nucleus
RSCx	Retrosplenial cortex
Rt	Reticular thalamic nucleus
RVL	Rostroventrolateral reticular nucleus
S1	Primary somatosensory cortex
SChpnz	Suprachiasmatic nucleus perinuclear zone
SChS	Suprachiasmatic nucleus shell region
SCL	Superior colliculus lateral part
SCL10L3	Area X3
SCL10L4	Area X4
SCL10L5	Area X5
SCnVL	Suprachiasmatic nucleus ventrolateral part
SCs	Superior colliculus superficial layers
SCS	Subcallosal streak
SDHL1	Superficial dorsal horn1
SDHL2	Superficial dorsal horn2
SDHL3	Superficial dorsal horn3
SDHL4	Superficial dorsal horn4
SDHL5	Superficial dorsal horn5
SDHL6	Superficial dorsal horn6
SDHS1	Superficial dorsal horn S1
SDHT10	Superficial dorsal horn T10
SDHT11	Superficial dorsal horn T11
SDHT12	Superficial dorsal horn T12
SDHT13	Superficial dorsal horn T13
SGLncx	Supragranular layers of the neocortex
SiNBC	Substantia innominata nucleus basalis complex
SMC	Striatal matrix compartment
SN	Substantia nigra A9
Sol	Nucleus of the solitary tract
SPC	Striatal patch compartment
SPSN	Sacral parasympathetic nucleus
SPSyS1	Sacral parasympathetic nucleus S1
SPSyS2	Sacral parasympathetic nucleus S2
STh	Subthalamic nucleus
Su5	Supratrigeminal nucleus
SuPZ	Subparaventricular zone
SuS	Superior salivatory nucleus
T1	Thoracal segment 1
T2	Thoracal segment 2
Т3	Thoracal segment 3
T4	Thoracal segment 4

T5	Thoracal segment 5
Т6	Thoracal segment 6
Τ7	Thoracal segment 7
TC	Tuber cinereum area
TuO	Olfactory tubercle
UNCG	Unclassified cell group
VAL	Ventral anterior-lateral complex of the thalamus
VB	Ventrobasal complex
VHCo1	Ventral horn Co1
VHL4	Ventral horn4
VHL5	Ventral horn5
VHL6	Ventral horn6
VHMES	Ventral horn of spinal cord
VIS	Visual system
VLH	Ventrolateral hypothalamic nucleus
VLO	Ventrolateral orbital area
VLPAG	Ventrolateral periaqueductal gray
VLTg	Ventrolateral tegmental area
VM	Ventromedial thalamic nucleus
VMES	Ventral spinal cord
VMH	Ventromedial hypothalamic nucleus
VMRF	Ventromedial reticular formation
VMSe	Ventral medial septum
VMT	Ventral medial nucleus of the thalamus
Vnc	Vestibular nuclei
VO	Ventral orbital cortex
VocA	Vomeronasal cortical like amygdala
VOFC	Ventral orbitofrontal cortex
VPFC	Ventral prefrontal cortex
VTg	Ventral tegmental nucleus
wmtf	White matter tractus fibers 7
XVES	X cell group of the vestibular complex
Z	Nucleus Z
ZI	Zona incerta
ZNS	Zentrales Nervensystem
ZVES	Z cell group of the vestibular complex

1 Einleitung

1.1 Konnektomik

Sämtliche neuronale Verbindungen eines Nervensystems werden als Konnektom zusammengefasst. Der Begriff "Konnektom" setzt sich aus dem englischen Wort "connection", also "Verbindung" und dem griechischem Suffix -om zusammen. In der zellulären und molekularen Biologie bedeutet das Suffix -om bei der Verwendung von Substantiven: "alle einzelnen Bestandteile eines betrachteten Kollektivs" (Oxford English Dictionary). Die Erforschung der neuronalen Konnektome wird dem Fachgebiet der Konnektomik zugeordnet. Historisch gesehen wurde mit dem Wort "Genom", welches von dem deutschen Botaniker Hans Winkler im Jahr 1920 geprägt wurde, das Fundament für zahlreiche weitere "-om" Arbeitsbereiche in der Naturwissenschaft gelegt. In den nachfolgenden Jahrzehnten sind viele weitere "-om" Begriffe entstanden. Das Proteom bezeichnet die Gesamtheit der Proteine in einer Zelle oder Region eines Organismus und wird u.a. im Nervensystem verschiedener Spezies intensiv untersucht (Neuroproteomics) (Wille et al., 2015; Weiss et al., 2014; Lessner et al., 2010). Das Metabolom ist folglich die Gesamtheit der Moleküle des Metabolismus (Holtorf et al., 2002). Ursprünglich zurückzuführen ist der Begriff des Konnektoms auf die Arbeitsgruppen um die Neurowissenschaftler Olaf Sporns von der Indiana Universität, sowie Patric Hagmann von der Universität Lausanne, die den Begriff des Konnektoms unabhängig voneinander in ihren Publikationen einführten (Sporns et al., 2005; Sporns, 2011a; Hagmann, 2005). Hervorzuheben ist, dass nicht nur einzelne Verbindungen an sich, sondern auch Gliederungen (Hierarchien) sowie Sortierungen von Regionen (Knoten), Verbindungs-Gewichte und Lateralitäts-Eigenschaften wichtige Komponenten eines Konnektoms sein können.

Das Ziel der Konnektomforschung ist die Erstellung kompletter neuronaler Netzwerke unterschiedlicher Spezies. Von besonderem Interesse ist die Kartierung des menschlichen Gehirnes mit den etwa 86 Milliarden (Azevedo et al., 2009) Neuronen und ihren Synapsen. Die Problematik beim Studium von komplexen Nervensystemen von Wirbeltieren besteht zum einen in der höheren Anzahl der Neurone und ihrer Verbindungen und der damit verbundenen höheren Komplexität, zum anderen unterliegt das Nervensystem infolge seiner neuronalen Plastizität dynamischen Prozessen, die zu Veränderungen der Konnektivität führen (Bargmann, 2012). Aufgrund dieser Vielschichtigkeit wurden auch Konnektome einfacherer Vielzeller generiert. Anfang des 20. Jahrhunderts wurden erste Beschreibungen von Konnektivitäten in einfachen Nervensystemen beispielsweise an Spulwürmern und Großkopfringelnattern vorgenommen (Goldschmidt, 1908; Goldschmidt, 1909). Im Jahr 1986 gelang unter Zuhilfenahme eines Elektronenmikroskops die komplette Kartierung der 302 Neurone des Fadenwurms C. elegans mit seinen rund 7000 Synapsen (White et al., 1986) (Abbildung 1).

Später konnte mit weiter fortgeschrittenen Methoden das Konnektom von C. elegans ergänzt werden (Varshney et al., 2011). Weitere aktuelle Informationen zu C. elegans sind auf den Internetseiten http://www.wormatlas.org und http://www.openworm.org enthalten.

Abbildung 1: Überblick über das Konnektom oder die Verbindungsmatrix des Nervensystems von C. elegans. Die farblich illustrierten Punkte mit den dazugehörigen Abkürzungen repräsentieren die einzelnen Neurone. Die Linien zwischen den Punkten stellen die jeweiligen Verbindungen dar (© Ph. D. D. Chklovskii).

Der Anfang der humanen Konnektomforschung wurde mit der detaillierten Beschreibung von strukturellen und funktionellen Hirnarealen gemacht. Neuronale Strukturen von Primaten (Bailey et al., 1940; Fellemann und van Essen, 1991) und speziell des Menschen (Bailey und von Bovin, 1951) wurden untersucht und miteinander verglichen (Miranda-Dominguez et al., 2014). In den vergangenen Jahren wurden zahlreiche Projekte in der humanen Konnektomforschung etabliert. Dazu zählt exemplarisch das amerikanische Human Connectome Project (http://www.humanconnectomeproject.org), das chinesische Brainnetome Project (http://www.brainnetome.org/en/), das Open connectome Project (http://www.openconnectomeproject.org), sowie das NIH Human Connectome Project (http://www.humanconnectome.org/). Die im Jahr 1992 untersuchten Konnektivitäten der Makaken (Stephan et al., 2000) sind auf der Website http://www.cocomac.org zu finden.

Grundvoraussetzung für die Konnektomanalyse ist ein standardisierter Arbeitsablauf zur Erfassung der Konnektivitäten (Zakiewicz et al., 2011). Für die Auswertung und Interpretation der komplexen Konnektomdaten wird die Graphenanalyse und Netzwerkanalyse verwendet (Stephan et al., 2001; Rubinov und Sporns, 2010; Kaiser, 2011). In der Graphentheorie (Diestel, 2017) entsprechen neuroanatomische Regionen jeweils den Knoten (nodes) und axonale Verbindungen den Kanten (edges) (Butts, 2009). Die Bezeichnung der Elemente ist von der

räumlichen Auflösung der Betrachtung abhängig. Die Betrachtungsebenen gliedern sich grundsätzlich in die Mikroskala, Mesoskala und Makroskala (Swanson und Lichtman, 2016). Auf der "Mikroskala", deren Auflösung im Mikrometerbereich liegt, werden einzelne Neurone und ihre Synapsen abgebildet. Die "Mesoskala" stellt strukturelle und funktionelle Neuronenpopulationen mit einer Auflösung von bis zu mehreren 100 Mikrometern dar. Große neuronale Regionen werden im Millimeter- bis Zentimeterbereich aufgelöst und werden der "Makroskala" zugeordnet. Je nach Betrachtungsebene kommen unterschiedliche noninvasive oder invasive Methoden zum Einsatz (Rah et al., 2015; Sporns et al., 2005).

In der Neuroinformatik wird die Verarbeitung von Informationen in komplexen neuronalen Systemen untersucht. Verschiedene Software-Projekte wurden für die Kartierung, Administration, Speicherung, Analyse und Visualisierung der großen Mengen von Konnektomdaten (Big Data) etabliert. Zu erwähnen ist das *Connectome Viewer Toolkit* (Gerhard et al., 2011), *neuroVIISAS* (Schmitt und Eipert, 2012), *NeuARt II* (Burns et al., 2006), die Datenbank *CoComac* (Stephan et al., 2001) sowie die Anwendung der *CocoTools* (Blumenfeld et al., 2014).

Die funktionelle Konnektomik befasst sich mit der Analyse von dynamischen Prozessen zwischen Elementen (Neurone) oder Regionen in einem Nervensystem (Sporns, 2011a). Von besonderem Interesse ist die Erforschung der physiologischen und pathologischen Prozesse, um einerseits ein besseres Verständnis der Funktionsweise zu erlangen (Schmitt et al., 2014; Schmitt et al., 2012a; Briggmann et al., 2011; Geerling, 2006; Pérez-Manso et al., 2006; Fellemann und van Essen, 1991), andererseits um neurologische und psychiatrische Erkrankungen deterministisch zu verstehen, neuronale Dynamik vorherzusagen und innovative Therapieansätze zu entwickeln (van Essen und Barch, 2015; Kaiser, 2013).

1.2 Tract-tracing

Vor der Anwendung von Tract-tracing Substanzen zur Erkennung neuronaler Verbindungen wurde die "Wallersche Degeneration" (Waller, 1850) verwendet, um Verbindungen zu beschreiben. Die degenerierten Axonterminalen konnten nach den Läsionen mit Silberfärbungen dargestellt werden (Hoff, 1932; Glees, 1946; Nauta und Gygax, 1951; Fink und Heimer, 1967). Eine weitere Methode zur Darstellung von ganzen Neuronen ist die Golgi-Imprägnation, die jedoch nicht geeignet ist, um längere Verbindungen im Nervensystem sichtbar zu machen (Ramón y Cajal, 1909).

Eine Voraussetzung für das neuronale Tract-tracing ist der 1948 entdeckte "axonale Fluss" bzw. axonale Transport (Weiss und Hiscoe, 1948). Auch die passive Diffusion durch die Lipid-Phase von Myelinscheiden wurde sehr viel später genutzt, um neuronale Verbindungen aufzudecken. Tract-tracing basiert auf der Applikation (stereotaktische Injektion gelöster Tracing-Substanzen, Platzierung von Kristallen in der Zielregion, Schwammbetupfung) von neuronalen Tract-Tracern (Pomerat et al., 1967; Weiss und Holland, 1967; Goldberg und Kotani, 1967; Grafstein, 1968; Lasek et al., 1968; Grafstein, 1969; Kristensson und Olsson, 1971; LaVail und

LaVail, 1972; LaVail, 1975; Mesulam, 1982). Diese markieren einzelne Neurone oder neuronale Pfade sowie deren Verlauf bis zu dem jeweiligen terminalen Axon. Eine Übersicht über nicht virale Tract-tracing Substanzen gibt Tabelle 1.

Mitte der 60er Jahre wurde herausgefunden, dass der anterograde Transport durch Axone zur Markierung von Axonen und damit neuronalen Verbindungen verwendet werden kann (Taylor und Weiss, 1965; Lasek et al., 1968). Hierbei werden radioaktiv markierte Aminosäuren zunächst von Perikaryen mittels Endozytose aufgenommen. Anschließend werden sie in Proteine eingebaut, welche dann per anterograden axonalen Transport zu axonalen Terminalen transportiert werden. Anfang der 70er Jahre wurde der retrograde Transportmechanismus zum Nachweis von neuronalen Verbindungen entdeckt. Zunächst mittels Fluorochrom markierten Albumin (Kristensson, 1970) und dann mit Meerrettichperoxidase (HRP) (Kristensson, 1977). Später kamen weitere Tracer hinzu, wie Phaseolus vulgaris-leucoagglutinin (PHAL) (Gerfen und Schawchenko, 1984), Biozytin (King et al., 1989) und biotinyliertes Dextran Amin (BDA) (Veenman et al., 1992), mit denen eine bessere Darstellung von Perikarya (retrograd) oder axonalen Terminalen (anterograd) gelang. Eine effizientere Aufnahme von HRP im Injektionsbereich gelang mit der Konjugation von Wheat germ agglutinin (WGA) (Gonatas et al., 1979). Weitere Tracer Substanzen folgten: cholera toxin B (Trojanowski et al., 1981; 1982), tetanus toxin (Stoeckel und Thoenen, 1975; Schwab und Agid, 1979), die mit Gangliosiden der Zelloberfläche interagieren und sich dort anreichern (Stoeckel et al., 1977). Hinzu kamen anorganische Fluorochrome, die ebenfalls axonal transportiert wurden (Kuypers et al., 1979; Bentivoglio et al., 1980). Eine ausführliche Tabelle der nicht viralen Tract-tracing Substanzen ist im Tabellenanhang wiedergegeben (Tabelle 6).

Tracer Familie	Beispiele	Richtung	Geschwindigkeit	Publikation
Proteine	Horseradish peroxidase (HRP)	R/A	S	Kristensson and Olsson, 1971
	Albumin			LaVail and LaVail, 1972
	Imunglobulin M (IgM)	R		Fabian, 1990
Anorganische fluoresz. Moleküle	Fast Blue (FB)	R	М	Kuypers et al., 1979
	Diamidino yellow (DY)	R		Bentivoglio et al., 1980a
	Fluoro-gold (FG)	R		Schmued and Fallon, 1986
	Diamidino yellow (DY)	R		Keizer et al, 1983
Dextrane	Fluoro-Ruby (FR)	A/R	М	Glover et al., 1986
	Biotinylated dextran amine (BDA)	A/R		Nance and Burns, 1990; Veenman et al., 1992
Lektine	Wheat germ agglutinin (WGA; WGA-HRP)	R/A	S	Schwab et al., 1978
	Bandeiraea simplicifolia isolectin B4 (IB4)	Α		Shehab et al., 2008
	Phaseolus vulgaris-leucoagglutinin (PHA-L)	Α		Gonatas et al., 1979; Gerfen and Sawchenko, 1984
Beads	Latex Mikrosphären	R	S	Katz et al., 1984; Katz and Iarovici, 1990
Bakterielle Toxine	Tetanus	R	S	Stoeckel et al., 1977
	Cholera Toxin B Fragment (CTB)	R/A		Schwab and Agid, 1979; Trojanowski et al., 1981
	Botulinum Toxin A (BoTu)	R/A		Restani, 2011
Wachstumsfaktoren (Trophine)	Nerve growth factor (NGF)	R	S	Hendry et al., 1974
	Brain-derived neurotrophic factor (BDNF)			Stoeckel and Thoenen, 1975
	GDNF	Α		Holstege et al., 1998; Jongen et al., 1999
	CNTF	R		Curtis et al., 1993
Aminosäuren	³ H-Leucin	Α		Cowan et al., 1972
	³ H-Prolin	Α	S/L	Hendrickson, 1982
	Biocytin			King et al., 1989
Carbocyanin Farbstoffe	DiI	A/R	L	Honig and Hume, 1986
	DiO			Honig and Hume, 1989

Tabelle 1: Übersicht über nicht-virale Tract-tracing Substanzen (Tracer). S: schnell, M: mittel, L:langsam, R: retrograd, A: anterograd.

Die Verbindungsinformationen lassen sich aus Publikationen extrahieren, um neuronale Verbindungen oder Konnektome aufzubauen. Der aktive axonale Transport und die passive Diffusion von spezifischen Tract-tracing Substanzen löste die relativ unspezifischen (Stephan, 2003) postläsionalen Degenerationsstudien (Walker, 1938; Nauta und Gygax, 1954; Fink und Heimer, 1967) sowie die Strychnin-Neuronographie (Dusser de Barenne und McCulloch, 1938; Dusser de Barenne und McCulloch, 1939) ab.

Grundlage des neuronalen Tract-tracing ist meist der aktive axonale Transportmechanismus des Tracers entweder als anterograder, retrograder oder bilateraler Transport (Köbbert et al., 2000). Lipophile Tracer (DiI, NeuroVue) breiten sich über laterale Diffusion innerhalb der Zellmembran aus (Fritzsch et al., 2016; Köbbert et al., 2000; Honig und Hume, 1989). Hierzu werden in die neuronal innervierten Strukturen (Hirnareal, Organ, Muskel) lipophile Substanzen (Tracer) oder nicht-lipophile Tracer (pressure injection, iontophoretic injection) injiziert. Nach der Applikation des Tracers in ein ausgewähltes Gebiet erfolgt dessen Ausbreitung entlang der Nervenfasern. Die Geschwindigkeit des Transportes ist von dem Injektionsort, der Konzentration und der Substanzklasse des Tracers, den tracerspezifischen molekularen Transportmechanismen, der elektrischen Aktivität des Axons und des physiologischen Zustandes des Tieres abhängig (Oztas, 2003; Van Haeften und Wouterlood, 2000). Anschließend wird der Tracer nach einer festgelegten Zeitspanne in den miteinander verbundenen Regionen lokalisiert. Prinzipiell können verschiedene Transportrichtungen des Tracers beobachtet werden. Bei einer überwiegenden Ausbreitungsrichtung vom Soma/Perikaryon zu der terminalen Synapse hin, wird von anterograd gerichtetem Tracing gesprochen. Anterograde Tracer sind beispielsweise Wheat-germ agglutinin (WGA) und Phaseolus vulgaris leucoagglutinin (PHA-L). Im Gegensatz dazu erfolgt der Transport beim retrograden Tracing größtenteils umgekehrt von der terminalen Synapse zum Soma/Perikaryon. Beispiele hierfür sind Fluoro-Gold (FG) und Choleratoxin subunit b (CTB). Ein bilateraler Prozess liegt vor, wenn der Tracer in beide Richtungen transportiert wird (Abbildung 2).

Die anschließende Detektion erfolgt je nach eingesetztem Tracer über die Sichtbarmachung von radioaktiv markierten Aminosäuren per Autoradiographie, über die Erfassung der Reaktionsprodukte oder bei fluoreszierenden und immunhistochemischen Tracern über den optischen Nachweis durch Licht- oder Elektronenmikroskopie (Kamper, 2004; Oztas, 2003; Van Haeften und Wouterlood, 2000).

Eine detaillierte Übersicht, eine Hilfestellung bei der Auswahl sowie die Vor- und Nachteile der gängigen Tracer beinhalteten die Publikationen von Lanciego und Wouterlood (2011) und Vercelli et al. (2000).

Neuere Tracer basieren auf der Technologie der Genepression. Zuerst werden genetisch veränderte Organismen, die in speziellen Neuronentypen ein Enzym exprimieren, generiert. Nach der Injektion eines viralen Vektors, der eine Sequenz für ein Fluoreszensprotein transportiert, kommt es bei erfolgreicher Transfektion in der speziellen Neuronengruppe zur Synthese und Akkumulation des fluoreszierenden Proteins. Vorteil dieses Verfahrens ist eine sehr detaillierte Darstellung kleiner Neuronenverbände (Wouterlood et al., 2014; Porreroa et al., 2010).

Eine zukünftige Methode für die Entschlüsselung des Konnektoms könnte die Sequenzierung der neuronalen DNA mit der Einbringung einer einzigartigen Sequenz von Nukleotiden in die Neurone sein. Synaptisch verbundene Neurone tauschen diese Sequenzen aus und können anschließend sequenziert werden (Zador et al., 2012).

Abbildung 2: Schematische Darstellung von den verschiedenen Transportrichtungen bei Injektion eines spezifischen Tracers. A) Injektion eines retrograden Tracers (blaue Kreise): Aufnahme und retrograder Transport des Tracers vom terminalen Axon über das Axon zum Soma. B) Injektion eines anterograden Tracers (grüne Kreise): Die Aufnahme des Tracers findet am Soma statt. Der Transport verläuft anterograd entlang des Axon zum Axonterminale. C) Injektion eines bilateralen Tracers (rote Kreise). Der Tracer wird nach der Resorption über das Axon sowohl zum Soma als auch zum terminalen Axon befördert. Modifiziert nach Card und Enquist (2014).

1.3 Virales Tract-tracing (VTT)

In der vorliegenden Arbeit beschränkt sich die Auswertung der Tract-tracing Studien auf diejenigen, in denen die virale Tract-tracing-Technik (VTT) in der Ratte eingesetzt wurde. Die gesammelten Daten wurden im Rahmen einer Metaanalyse untersucht, zusammengefasst und gespeichert.

Bei der Methode des VTT werden lebende, neurotrophe Viren als Tracer eingesetzt. Diese haben die Fähigkeit nach erfolgreicher Infektion im Nukleus eines Neurons sich zu replizieren und können, sofern sie sich transsynaptisch ausbreiten, die miteinander synaptisch verbundenen Neurone der "zweiten Stufe" oder höherer Ordnung infizieren. Auf diese Weise ist eine weitaus intensivere Markierung der verbundenen Neurone als bei konventionellen Tracern realisierbar (Abbildung 3). Dieses Verfahren ermöglicht eine Verfolgung sequentiell verbundener Neurone und die Abgrenzung neuronaler Netzwerke (Lanciego und Wouterlood, 2011).

Virale Tracer werden besonders häufig eingesetzt, um periphere Zielstrukturen zu markieren und deren neuronale Pfade zum zentralen Nervensystem (ZNS) (retrograd) und weiter innerhalb des ZNS zu verfolgen. Häufig ausgesuchte Zielareale sind Muskeln (Fay et al., 1993; Billig et al., 2007; Ugolini, 2008), Organe (Ter Horst et al., 1993; Jang et al., 2003; Cano et al., 2004; Levinthal und Strick, 2012) oder Regionen innerhalb des Gehirns (Brown et al., 2005; Bratincsak et al., 2008; Groutsi et al., 2008).

Die Untersuchung der viralen Ausbreitung in einem Nervensystem begann Anfang bis Mitte des 20. Jahrhunderts durch Wissenschaftler wie Sabin Albert oder David Bodian. Sie führten Experimente mit dem Poliovirus durch (Sabin und Olitsky, 1938; Bodian und Howe, 1947) und entwickelten auf der Grundlage ihrer Untersuchungen die orale Polioschutzimpfung. Ab den 1970er Jahren führten die schwedischen Forscher Kristensson und Olsson intensive Studien über die Infektion des Herpes simplex Virus durch (Kristensson et al., 1974; Kristensson et al., 1982).

Im Folgenden wird ein Überblick über die neurotrophen Viren gegeben, die für neuronales Tract-tracing geeignet sind. Neurotrophe Viren beinhalten Nukleinsäuren bzw. sind Informationsträger, die in anterograder oder retrograder Richtung axonal transportiert werden können. Manche neurotrophe Viren sind auch in der Lage Synapsen zu passieren (transsynaptische Ausbreitung). Viren können auch genutzt werden, um Virus-fremde und/oder Wirts-fremde Gene in Neurone einzuführen wie z.B. das green fluorescent protein (GFP), welches dann im Nachhinein nachgewiesen werden kann. Ein weiterer Mechanismus des Einschleusens von Genen durch neurotrophe Viren besteht in der Integration von funktionellen Genen. Diese Arten von Übertragungen von nicht-funktionellen Markern und funktionellen Genen wird als Gen-Transfer bezeichnet. Ein Vektor ist ein Fremd-Gen tragender Virus, der als Vehikel eingesetzt wird, um gezielt ein Fremd-Gen in einen Wirtsorganismus zu übertragen. Viren sind von einer Hülle umgeben, die aus einer Wirts-Plasmamembran stammt. In der Virus-Hülle sind Glykoproteine enthalten, welche substituiert werden können. Die Viren, die von solchen substituierten Virushüllen umgeben sind, werden als Pseudotypen bezeichnet, die sich in anderen oder mehr Wirten replizieren können (Hirst und Gotlieb, 1953). Vor allem virale Vektoren werden zum neuronalen Tract-tracing eingesetzt.

Ein Vektor, der als transsynaptischer Tracer eingesetzt werden soll, muss mehr infektiöse Virion Partikel in der ursprünglichen "Starter" Zelle bilden können (Replikations-kompetenter Vektor), so dass synaptisch verbundene Neurone durch einen Transmissions-Mechanismus ebenfalls infiziert werden können. Ein solcher Prozess ist für bestimmte Verbindungs-Untersuchungen sinnvoll, um Mikroschaltkreise sichtbar zu machen. Als *replikations-kompetente kompetente* Vektoren sind beispielsweise der Pseudorabies Virus (PRV; Card und Enquist, 2014) sowie der Rabies Virus (RABV; Kelly und Strick, 2000) geeignet. Eine weitere Gruppe von Viren stellen die *Replikations-konditionierten* Vektoren dar. Diese Viren replizieren sich nur, wenn ihnen die Gene *in trans* zugeführt werden, die ihnen zuvor entfernt wurden. Ein Beispiel sind die cre-dependent PRV Vektoren (DeFalco et al., 2001) und die Glykoprotein (G)-deleted RABV Vektoren (Wickersham et al., 2007a). Die dritte Gruppe stellen *replikations-inkompetente* Vektoren dar. Herpesviren amplicon Vektoren besitzen diese Eigenschaft und können sich nicht transsynaptisch ausbreiten (Spaete und Frenkel, 1982). Allerdings konnten die Replikations-inkompetenten Viren derart modifiziert werden, dass sie sich mit Hilfe von zusätzlichen Genen transsynaptisch ausbreiten können (Replikations-konditionierte Vektoren). So kann beispielsweise ein virales G-Gen durch einen Replikations-konditionierten RABV (G-deleted) Virus zu vervollständigen (komplementieren). Für Viren wie beispielsweise HSV Vektoren können inzwischen verschiedene Arten von Replikationen angewendet werden, um unterschiedliche Genom-Manipulationen durchzuführen (Lilley et al., 2001; Krisky et al., 1998; Ugolini et al., 1989; Spaete und Frenkel, 1982).

Es gibt zahlreiche neurotrophe Viren, die Nervenzellen infizieren können, aber nur eine begrenzte Anzahl von Viren, die die Fähigkeit besitzen sich synaptisch über verbundene Neurone auszubreiten (Nassi et al., 2015; Pomeranz et al., 2005; Card, 1998a). Der nachfolgende Abschnitt enthält eine Übersicht über die wichtigsten viralen Tracer (Tabelle 2). Im Vordergrund steht die Beschreibung und Charakterisierung der Virenstämme und bestimmter Modifikationen bzw. Rekombinaten.

	8 8 1		0	0)	4	2
Familie	Virus	Abk.	Genom	Größe	Richtung	Zytotoxitität
Retroviren			psDNA	9-12 Kb	-	-
	Gamma-Retrovirus		ssRNA->cDNA			
	Moloney Murine Leukemia Virus	MMLV				
	Lentivirus (HIV)					
Parvoviren	Adeno-assoziierter Virus	AAV	ssDNA	4,8 Kb	-	-
Adenoviren	Humaner Adenovirus 5	Ad5	dsDNA	36 Kb	-	-
	Caniner Adenovirus	CAV	dsDNA	36 Kb	-	-
Herpesviren			dsDNA	153 Kb	R/A	+
	Alpha Herpes Virus					
	HSV-1					
	Pseudorabies Virus	PRV		144 Kb	R	-
Rhabdoviren			nsRNA, ssRNA	12 Kb	R/A	+
	Rabies Virus	RABV				
	Vesicular stomatitis Virus	VSV				
Alphaviren			psRNA, ssRNA	12 Kb	-	+
	Sindbis Virus	SIN				
	Semliki forest Virus	SFV				

 Tabelle 2: Zusammenfassung von Viren, die für neurobiologische Untersuchungen besonders relevant sind.

 psDNA: positiv Strang DNA, ssRNA: Einzelstrang RNA, ssDNA: Einzelstrang DNA, dsDNA: Doppelstrang DNA, nsRNA: Negativstrang RNA, psRNA: Positivstrang RNA. R: retrograd, A: anterograd.

1.3.1 Monosynaptische Retroviren

Retroviren sind umhüllte (enveloped) einzelsträngige RNA-Viren. Die Virushülle (viral envelope) ist aus Phospholipiden als Lipid-Doppelmembran aufgebaut und stammt von der

Wirtszelle (host cell). Zusätzlich sind virale Proteine in die Hülle integriert. Die Virushülle umgibt häufig ein Kapsid, welches virale Nukleinsäuren umschließt. In Abhängigkeit von der Virusart entsteht die Hülle aus der Plasmamembran oder aus den Membranen des Endoplasmatischen Retikulums (ER) oder auch des Golgi-Apparates der Wirts-Zelle. Eine besondere Eigenschaft von Retroviren ist die Fähigkeit, stabil und über längere Zeit Gene in der Wirts-Zelle zu exprimieren, nachdem diese aus der Virus-RNA in das Wirts DNA-Genom integriert wurden (Knipe und Howley, 2013). Im Gegensatz zu anderen Vektoren, wie AAV, reduziert sich nicht das Virus-Genom nach Zellteilungen der Wirts-Zelle. Genutzt wird diese Eigenschaft für die Einführung von viralen Rezeptoren (avian tumor virus receptor A: TVA) in Bereiche, aus denen vor allem Progenitorzellen in der frühen ZNS-Entwicklung hervorgehen (Woodworth et al., 2017; Sun et al., 2014). Zu einem späteren Entwicklungszeitpunkt lassen sich dann alle TVA tragenden Zellen identifizieren und die spätere Ziel-Zell Infektion mit tracing Viren, die das verwandte Glykoprotein EnvA aufweisen, erleichtern. Nach der Infektion der Wirtszelle erzeugen RNA Viren eine DNA-Kopie von sich selbst, welche dann in das Genom der Wirtzelle integriert wird, so dass das virale Genom mittels Cre- oder Flpvermittelter Rekombination modifiziert werden kann (Gonçalves et al., 2010; Sommer et al., 2010), um zelluläre Promotoren zu nutzen.

Von den beiden Retroviren, die als virale Vektoren verwendet werden, haben Lentiviren, im Gegensatz zu Gamma-Retroviren, den Vorteil, dass sie die intakte Kernmembran der Wirtszelle passieren können, um ihr genetisches Material in das Wirts-Zell Genom einzuschleusen (Naldini et al., 1996). Die Viren wurden so modifiziert, dass sie *replikations-inkompetent* wurden, um sie als sicheres Werkzeug im Labor zu verwenden und zu vermeiden, dass Tiere erkranken (Schambach et al., 2013; Hacein-Bey-Abina et al., 2003).

Die Genom-Größe von Lentiviren ist ungefähr 10 Kb (Kumar et al., 2001) und daher besser geeignet zur Expression von mehr als einem Promotor (Pol III Promotor H1 und U6 sowie zusätzlich Pol II Promotor für Complexine I und II (Ahmad et al., 2012)) oder regulatorischen Genen im Vergleich mit AAV (4,8 Kb). Gamma-Retroviren werden vor allem in mitotischen Zellen angewendet, um Differenzierungs- und Entwicklungsvorgänge von Zelllinien zu untersuchen (Turner und Cepko, 1987). Für gentherapeutische Ziele kann auch der Gentransfer in postmitotische Zellen wichtig sein, wofür Lentiviren infrage kommen (Wiznerowicz und Trono, 2005; Hacein-Bey-Abina et al., 2014).

1.3.2 Adeno-Associated Virus (AAV)

AAV beinhalten eine einzelsträngige DNA und besitzen ein Kapsid, welches nicht von einer Virushülle umgeben ist (Knipe und Howley, 2013; Murlidharan et al., 2014). Die zur Gruppe der Parvoviridae gehörenden AAV zeichnen sich durch eine lang anhaltende und stabile Gen Expression sowie eine geringe Toxizität in Neuronen aus (Kaspar et al., 2002). Aufgrund einer Vielzahl von AAV "Spezies" bzw. Serotypen lassen sich unterschiedliche Zelltypen infizieren (Gao et al., 2004). In Abhängigkeit vom AAV-Serotyp besteht eine Spezifität der Infektion von

Ziel-Zellen (Burger et al., 2004; Cearley und Wolfe, 2006; Taymans et al., 2007; Zincarelli et al., 2008; Aschauer et al., 2013). Ferner kann das Kapsid retrograd (Taymans et al., 2007; Hollis et al., 2008; McFarland et al., 2009; Towne et al., 2010; Masamizu et al., 2011; Aschauer et al., 2013; Castle et al., 2014) und/oder anterograd (Castle et al., 2014) transportiert werden. Eine weitere Möglichkeit der Infektion neben der direkten stereotaktischen Injektion (Inokulation) ist die intravaskuläre Perfusion, wobei in Abhängigkeit der Kapsid-Eigenschaften das PNS und ZNS mit unterschiedlicher Effizienz infiziert werden kann (Zhang et al., 2011). AAVs werden relativ häufig für VTT eingesetzt, zumal ihr Genom nach einer Infektion von der einzelsträngigen gepackten Form in eine doppelsträngige DNA konvertiert wird. Das Genom von AAV kann auch mittels Rekombinase-Techniken modifiziert werden (Cre-abhängige Vektoren, die loxP Abschnitte verwenden bzw. Flip-excision (FLEx) Vektoren) (Schnütgen et al., 2003). Cre-abhängige AAV Vektoren werden für transsynaptische Tract-tracing Protokolle eingesetzt, um optogenetische Nachweise von Protein Expressionen in spezifischen Cre exprimierenden Neuronen durchzuführen (Atasoy et al., 2008). Ein Nachteil von AAVs ist die begrenzte Genom Kapazität (4,8 Kb) (Dong et al., 2010), so dass sich nur ein oder zwei kleinere Gene einbringen lassen. Sollen jedoch mehrere und längere Gene übertragen werden, kommen Lentiviren oder Adenoviren zur Anwendung.

1.3.3 Adenoviren

Adenoviren sind nicht umhüllte, doppelsträngige DNA Viren mit einem relativ großen Genom und Kapsid. Allerdings sind sie nicht ganz so groß wie HSV Viren (Knipe und Howley, 2013). Viele Adenoviren stammen vom humanen Adenovirus Ad5 ab mit dem gentherapeutische Experimente durchgeführt werden (Gonçalves und de Vries, 2006). Eine neue Generation dieser Viren sind *helper-dependent adenovirus* oder HDVs, von dem die meisten Gene entfernt wurden, um für das Virus eine größere Immuntoleranz zu ermöglichen und Platz für transkriptionelle regulatorische Elemente sowie mehrere neue Gene zu schaffen (Parks et al., 1996; Ehrhardt und Kay, 2005). Das Genom der Adenoviren wird nicht in das Wirtszell Genom integriert und die Viren sind nicht geeignet, um Untersuchungen an mitotischen Zellen durchzuführen. Der Canine Adenovirus (CAV) ist besonders gut für den retrograden Transport geeignet (Kremer et al., 2000; Soudais et al., 2001; Kissa et al., 2002; Peltékian et al., 2002; Hnasko et al., 2006) und kann auch Cre sowie andere Gene wie GFP (Kremer et al., 2000) tragen.

1.3.4 Alphaviren

Semliki Forest Virus (SFV) und Sindbis Viren (SIN) sind Alphaviren, die eine Umhüllung aufweisen und einzelsträngige RNA tragen. Sie können zu replikations-inkompetenten Viren modifiziert werden. Alphaviren können relativ hohe Titer induzieren, was gleichzeitig zu einer schnellen Gen-Expression führt, allerdings auch toxische Nebenwirkungen hat. Sie wurden beispielsweise eingesetzt, um eine robuste Markierung einer kleinen Anzahl von Axonen nahe der Injektionsstelle im Gehirn zu bewirken (Ghosh et al., 2011; Kuramoto et al., 2015).

1.3.5 Transsynaptische Viren

1.3.5.1 Die Herpesviren HSV und PRV

Herpesviren sind relativ große Lipid umhüllte doppelsträngige DNA-Viren. Insbesondere HSV-1 und PRV werden für neuronales Tract-tracing verwendet. Ebenso wie PRV gehört das HSV1 zur Familie der Alpha Herpes Viren. Für das virale Tract-tracing wird das humanpathogene Herpes simplex Virus (HSV1) verwendet.

Erstmals wurde die Ausbreitung von Herpesviren entlang von Nerven in den 1920er Jahren beschrieben (Goodpasture und Teague, 1923). 1989 wurden Herpesviren erstmals von Ugolini et al. (1989) für neuronales Tract-tracing angewendet. Experimente zeigten eine überwiegende retrograde Transportrichtung, jedoch gibt es auch Virusstämme bei denen eine anterograde Transportrichtung beobachtet wurde (Zemanick et al., 1991). Ein weiterer Herpes-Virusstamm ist der Pseudorabies Virus (PRV), der kurze Zeit später im ZNS angewendet wurde (Card et al., 1990; Strack und Loewy, 1990). In diesen frühen Studien wurden replikationskompetente Viren angewendet, die sich über synaptische Spalten ausbreiten und mehrere Synapsen passieren können. Für die transsynaptische Ausbreitung ist mindestens ein Replikations-Zyklus erforderlich. PRV können keine Primaten über periphere Nerven infizieren, aber Neurone im ZNS können nach Exposition oder nasaler Instillation mit PRV absterben (Hurst, 1933; Baskerville und Lloyd, 1977). HSV-1 ist jedoch ein Human pathogenes Virus, welches über genitale und orale Läsionen zu Infektionen führen kann (Lafferty et al., 2000).

Bestimmte Herpesviren-Stämme weisen spezifische Ausbreitungsmerkmale auf. Der für Säugetiere pathogene Pseudorabies-Virus (PRV) zählt zu den Alpha Herpesvirinae, einer Unterfamilie der Herpesviridae, und wird auch als Suides Herpesvirus 1 (SuHV-1) bezeichnet. Die Viren nutzen Schweine als primäres Reservoir und sind Verursacher der Aujeszky-Krankheit (Pomeranz et al., 2005). PRV ist zudem in der Lage periphere und zentrale Neurone von vielen Säugetieren (Enquist, 1994), insbesondere von Versuchstieren wie Laborratten, Mäusen, Kaninchen, Hamstern, Frettchen (Song et al., 2005) und auch Vögel (Brideau et al., 2000) zu infizieren. Im Anschluss an die Injektion sind aufgrund der geringen Viruskonzentrationen nach Invasion und Abtransport des Virus markierte Neurone erst nach der Replikation erkennbar. Der Replikationszyklus beträgt in der Regel sechs Stunden (Aston-Jones und Card, 2000).

Molekularbiologische Untersuchungen ergaben Erkenntnisse über das Genom, die Struktur, den Replikationszyklus, die Latenzzeit und die Neuroinvasivität des Virus (Ben-Porat und Kaplan, 1985; Card, 1998; Mettenleiter, 1999; Pomeranz et al., 2005). Über die letzten Jahrzehnte wurden mehrere Virusstämme isoliert und genetisch modifiziert. Eine Auflistung der aktuell von der National Institutes of Health – Center for Neuroanatomy with Neurotropic

Viruses (NIH CNNV) zur Verfügung stehenden Virusstämme sowie eine Charakterisierung einschließlich der Infektions- bzw. Transportrichtung sind aus Tabelle 5 (Tabellenanhang) zu entnehmen.

Im Jahr 1961 gelang dem ungarischen Veterinärmediziner Adorjan Bartha die Entdeckung von dem attenuierten und nach ihm benannten Virusstamm "Bartha" (Mettenleiter et al., 2008). Dieser Stamm wurde in der überwiegenden Mehrheit der ausgewerteten Publikationen in den Experimenten eingesetzt. Der Transport verläuft selektiv in retrograder Richtung (Aston-Jones und Card, 2000). Attenuierte Virenstämme enthalten Mutationen, die die Virulenz reduzieren. Im Vergleich weist PRV-Bartha in Mäusen im Gegensatz zu virulenten Virusstämmen (PRV-Becker, PRV-Kaplan oder PRV NIA 3) eine dreimal längere Überlebenszeit (~220 h) auf (Brittle et al., 2004). Diese Zeit schafft die Voraussetzung für eine weitere, tiefere Infiltration in den neuronalen Schaltkreis. Überdies machen das große Wirtsspektrum, die eingeschränkte Pathogenität und die detaillierte, umfangreiche Verteilung innerhalb des Neurons PRV-Bartha zu einem attraktiven transsynaptischen Tracer (Card 1998). Für eine verringerte Neuroinvasivität und den retrograd gerichteten Transport ist die Funktion von drei PRV Proteinen erforderlich, Protein gE, Protein gI und Protein Us9. Die Entfernung eines dieser Proteine führt zu der Entstehung eines selektiven neuroinvasiven Virus. Zudem sind die Proteine gE und gI entscheidend für die charakteristischen Symptome und den schnellen Tod des Organismus (Song et al., 2005). Virenstämme wie PRV-Becker und PRV-Kaplan besitzen andere mikrobiologische Eigenschaften und werden sowohl anterograd als auch retrograd transportiert (Jansen und Loewy, 1994; Brittle et al., 2004; Pomeranz et al., 2005).

Aufgrund der Tatsache, dass PRV "Bartha" Neurone des peripheren Nervensystems, die zum zentralen Nervensystem projizieren, infizieren kann und auch Nervenzellen innerhalb des Gehirns befällt, wurde eine Vielzahl von Studien, die sich mit der Regulation des autonomen und somatischen Nervensystem beschäftigt, durchgeführt (Pomeranz et al., 2005). Die Publikationen umfassen Organe wie das Herz (Standish et al., 1995), das Pankreas (Loewy und Haxhiu 1993), die Niere (Schramm et al., 1993; Sly et al., 1999; Cano et al., 2001a; Cano et al., 2004; Zermann et al., 2005), die Nebenniere (Buijs et al., 1999; Tóth et al., 2008), die Schilddrüse (Kalsbeek et al., 2000), der Thymus (Trotter et al., 2007), die Leber (Kalsbeek et al., 2001) sowie funktionelle Regulationen wie die Erektionsfunktion (Bancila et al., 2002), die Leptin vermittelte Nahrungsaufnahme (Williams und Smith, 2006; Babic et al., 2001), die zirkadiane Rhythmik (Levine et al., 1994; Moore et al., 1995; Aston-Jones et al., 2001), die Thermoregulation (Bratincak et al., 2008), das mesolimbische System (O'Donnell et al., 1997) und der Schluckakt (Barrett et al., 1994; Broussard et al., 1998).

Der PRV Bartha Virusstamm ist in der Lage sich nur retrograd axonal auszubreiten (Card et al., 1992; Levine et al., 1994; Moore et al., 1995). Der HSV-1 Stamm H129 (Zemanick et al., 1991; Sun et al., 1996) breitet sich hingegen anterograd transsynaptisch aus. Die retrograde Ausbreitung des Bartha-Stammes wird auf die Elimination von drei viralen Genen

zurückgeführt (Lomniczi et al., 1987), während die anterograde Ausbreitung des H129-Stammes bislang ungeklärt ist (Szpara et al., 2010). Zwar kann die DNA modifiziert werden, um die Herpesviren effektiver als Marker zu verwenden, allerdings kann auch sehr leicht die Fitness der Viren bei DNA-Modifikationen beeinträchtigt werden. So wurde beispielsweise die Brainbow Kassette für unterschiedlich fluoreszierende Proteine in das Genom von Herpesviren eingebaut (Boldogkoi et al., 2009; Kobiler et al., 2010). Zudem ist es möglich durch das Einbringen von Cre, Cre-Expressionsmuster in transgenen Mäusen für das Tracing von spezifischen Mikroschaltkreisen zu nutzen (DeFalco et al, 2001; Lo und Anderson, 2011). Des Weiteren lassen sich Schaltkreise mit Hilfe der Expression von mehreren Transgenen kartieren (Boldogkoi et al., 2009; Kobiler et al., 2010). Kürzlich wurde eine Variante des PRV entwickelt, die den Master Transskriptions Regulator von endogenen PRV Genen nicht mehr besitzt, aber immer noch Transgene exprimieren kann, ohne dass eine Replikation erforderlich ist und damit die Toxizität entfällt (Oyibo et al., 2014).

1.3.5.2 Die Rhabdoviren RABV und VSV

Rhabdoviren sind umhüllte einzelsträngige RNA Viren von denen zwei Mitglieder nämlich Rabies Virus (RABV, RBV) und der Vesicular Stomatitis Virus (VSV) für transsynaptisches Tract-tracing in Frage kommen. Da es sich um RNA Viren handelt, die keine DNA-Phase in ihrer Replikation besitzen, können keine DNA Rekombinasen wie Cre genutzt werden.

RABV infizieren Neurone am axonalen Ende und können retrograd zum Perikaryon transportiert werden, sowie sich transsynaptisch ausbreiten (Astic et al., 1993; Ugolini, 1995; Kelly und Strick, 2000). Aufgrund ihrer häufigen Letalität bei infizierten Menschen werden RABV seltener für neuronales Tract-tracing verwendet als HSV. In nicht-humanen Primaten wurden RABV erfolgreich für retrogrades transsynaptisches tracing angewendet (Nassi und Callaway, 2006; Nassi et al., 2006; Rathelot und Strick, 2006; 2009). Erste Untersuchungen gehen auf Iwasaki und Clark (1975), Charlton und Casey (1979) sowie Tsiang et al. (1983) zurück. Der zeitliche Ablauf der Infektion und Ausbreitung wurde analysiert, um Mikroschaltkreise zu bestimmen. So wurde in einer Studie von Ugolini (1995) über die Injektion der Zunge die RABV-Ausbreitung über vier Tage untersucht. Nach einem Tag Überlebenszeit wurden die infizierten Neurone erster Ordnung identifiziert. Nach 2-3 Tagen Überlebenszeit die Neurone zweiter bis dritter Ordnung und nach 4 Tagen Neurone dritter Ordnung. Somit konnte eine Kette bzw. mehrere Ketten von Verbindungen beschrieben werden. RABV wurde von Etessami et al. (2000) zu einem replikations-konditionierten Typ modifiziert, indem das G-Gen aus dem Genom entfernt wurde. RABV konnte nun deutlich sicherer verwendet werden, um neuronale Projektionen zu spezifischen Zielen zu identifizieren (Nassi und Callaway, 2007; Wickersham et al., 2007a). Der nächste Fortschritt wurde mit der Generierung eines replikations-konditionierten Virus für monosynaptische retrograde Ausbreitung erzielt (Wickersham et al., 2007b). Mit diesem monosynaptisch retrograden viralen Tracer-System ist es nunmehr möglich, hochspezifischen synaptischen Input von

definierten neuronalen Typen sichtbar zu machen. Allerdings liegen auch vereinzelt Beobachtungen von glialen Infektionen vor, was die Spezifität von RABV etwas reduziert. Für das VSV wurden Replikationen im ZNS nachgewiesen (Lundh, 1990; Plakhov et al., 1995; van den Pol et al., 2002; 2009). Es wurde auch nachgewiesen, dass sich VSV transsynaptisch ausbreiten kann (Beier et al., 2011b). Die Ausbreitungsrichtung von VSV steht im Zusammenhang mit dem G-Gen. Eine anterograde Ausbreitung erfolgt bei Vorliegen des ursprünglichen VSV G-Gens, eine retrograde Ausbreitung findet statt, wenn das G-Gen von RABV in das VSV Genom eingebracht wurde (Beier et al., 2011b). Da VSV nicht pathogen ist, lässt es sich in seiner replikations-kompetenten Form sicher als polysynaptischer Tracer anwenden. Eine Infektion des peripheren Nervensystems führt zu einer relativ schnellen Reduktion der VSV-Replikation infolge einer Immunantwort (Junt et al., 2007). Allerdings können VSV Wildtyp Injektionen auch zu einer schnellen zentralen Ausbreitung mit Todesfolge für das Versuchstier führen (Sabin und Olitsky, 1937). Die rekombinanten VSV, die fluoreszierende Proteine kodieren und andere virale Glykoproteine (RABV-G) breiten sich jedoch langsamer im ZNS aus als der VSV-Wildtyp (Roberts et al., 1998; Beier et al., 2011b). Ferner wurden monosynaptische VSV-Varianten entwickelt (Beier et al., 2011b).

1.3.6 Monosynaptische und restriktierte transsynaptische virale Tracing Systeme

Viren, die sich transsynaptisch ausbreiten, haben zwei Nachteile. Zum einen werden Neurone im Injektionsbereich unspezifisch infiziert und zum anderen stellen Überlebenszeit, variable virale Replikations-Geschwindigkeiten, variabler intrazellulärer Transport und die variable neuronale Geometrie mehrfache Einflußgrößen dar, die eine exakte Ordnung von sequentiellen Konnektivitäten von Neuron zu Neuron reduzieren (Nassi et al., 2015). Diese Einflußgrößen "verwischen" die Genauigkeit einer exakten konnektionalen Ordnung oder führen "Rauschen" in die Beobachtungen ein.

Daher wurden Zelltyp-spezifische Viren entwickelt (DeFalco et al., 2001). PRV wurde derart modifiziert, dass die zur Replikation von PRV notwendige Thymidin Kinase (TK) Creabhängig wurde und nur NPY oder Leptin Rezeptor exprimierende Neurone markiert wurden. Trotz dieses Fortschrittes blieb jedoch unklar, ob die beobachteten Konnektivitäten tatsächlich monosynaptische Inputs von "starter neuronen" bzw. primär infizierter Neuronen darstellen. Hierzu wurde RABV modifiziert, so dass nur ein spezifischer Zelltyp infiziert wurde und die Ausbreitung monosynaptisch erfolgte (Wickersham et al., 2007b).

Neben der Suche nach neuen Virenstämmen werden stets neue virale Tracing Techniken entwickelt. So wird versucht mittels dualer Tract-tracing Verfahren zu prüfen, ob verschiedene periphere Regionen von einer übergeordneten neuronalen Region Projektionen empfangen. Dafür werden zwei verschiedenartige, rekombinierte Viren eingesetzt, die jeweils andere Fluoreszenzproteine (beispielsweise grünes EGFP oder rotes Fluoreszenzprotein) exprimieren. Jedes rekombinierte Virus wird in eine zu untersuchende, meist periphere Zielregion injiziert und im Anschluss wird das ZNS mittels monoklonaler Antikörper nach doppelt markierten Regionen abgesucht. Eine andere Methode kombiniert das Tract-tracing Verfahren und die Erfassung elektrophysiologischer Daten von infizierten, lebenden Neuronen. Aus den gewonnenen Informationen werden hinterher die elektrophysiologischen Eigenschaften der infizierten Neurone abgeleitet (Pomeranz et al., 2005).

Monosynaptisches Tracing

Abbildung 3: Schematische Gegenüberstellung von konventionellen, monosynaptischen und viralen, transsynaptischen Tracern in neuronalen Kreisläufen. A) Bei Injektion eines konventionellen Tracers ist die Markierung auf das Neuron erster Ordnung limitiert. B) Laufende Infektion nach Injektion eines viralen Tracers. Nach stattgefundener Infektion der Neurone erster Ordnung erfolgt über die synaptisch verbundenen Neurone die Ausbreitung auf die Neurone zweiter und dritter Ordnung. Modifiziert nach Card und Enquist (2014).

1.4 Detektion viraler Tracer

Die Detektion der Tracer erfolgt wie auch bei konventionellen Tracern per Immunhistochemie. Infizierte Neurone werden unter Verwendung von Antiseren, die antivirale Proteine erkennen, visualisiert. Überdies wurden eine hohe Anzahl von rekombinanten Virenstämmen, die Enzyme oder fluoreszierende Moleküle exprimieren, hergestellt. Beispielsweise trägt der Stamm PRV- BaBlu das lacZ-Gen. Befallene Zellen produzieren das Enzym Beta-Galaktosidase, welches durch Immunhistochemie und eine Chromogenreaktion sichtbar gemacht werden kann (Abbildung 4).

Andere konstruierte Virenstämme infizieren die Zellen und bilden fluoreszierende Proteine, wie zum Beispiel das grün fluoreszierende Protein (GFP) oder das monomere rote fluoreszierende Protein (mRFP). In Kombination mit Antikörpern bietet dieses Verfahren die Möglichkeit eine dauerhafte Aufzeichnung der Infektion zu gewährleisten (Song et al., 2005).

Abbildung 4: Exemplarische Detektion von viralen Tracer: (A) Injektion von PRV152 mit EGFP Fluoreszens in das inguinale weiße Fettgewebe, (B) Injektion von PRV 1614 mit mRFP Fluoreszens in das interskapuläre braune Fettgewebe, (C) Resultat: kombiniert infizierte Neurone (gelblich gefärbt) im hypothalamischen paraventrikulären Nukleus weisen auf eine Verbindung zum weißen und braunen Fettgewebe hin (Song et al., 2005).

1.5 Fragestellungen

In den letzten Jahren wurden einige Metastudien von zahlreichen Tract-tracing Publikationen (van den Heuvel et al., 2016; Swanson et al., 2016a; Bota et al., 2015; Kettlitz, 2013; Bota et al., 2012; Philipp, 2012; Sugar et al., 2011) der Ratte durchgeführt. Im Gegensatz zu den nicht viralen Tract-tracing Studien gibt es gegenwärtig noch keine Metastudien von viralen Tract-tracing Publikationen der Ratte. Im Rahmen dieser Arbeit wird eine solche Metastudie nun erstmals durchgeführt. Die erhobenen Daten und gesammelten Informationen wurden in einem speziellen System gespeichert und anschließend quantitativ ausgewertet. Die folgenden Fragestellungen wurden in dieser Arbeit behandelt:

- 1. Wieviele Verbindungen wurden bislang überhaupt mit Hilfe von viralen Tract-tracing in der Laborrate beschrieben?
- 2. Welche ipsi- und kontralateralen Verbindungen wurden mittels viralen Tract-tracing gefunden?
- 3. In welchen Teilgebieten des Nervensystems verlaufen neuronale Verbindungen, die nach Anwendung von viralen Tract-tracing gefunden wurden?
- 4. Welche Verbindungen werden mit viralen Tract-tracing gefunden, die nicht mit nicht viralen Tract-tracing beschrieben werden?
- 5. Welche viralen Verbindungen korrelieren mit nicht viralen Verbindungen?
- 6. Wie stark unterscheidet sich ein Konnektom, das ausschließlich aus nicht viralen Tracttracing Verbindungen aufgebaut ist, von einem Konnektom mit gleichen Regionen (Knoten) aber zusätzlichen viralen Tract-tracing Verbindungen?

2 Material und Methoden

Als auszuwertende Literatur wurden Publikationen verwendet, in denen Tract-tracing mittels viraler Tracer angewendet wurde. Zur Erstellung dieser Arbeit wurden vor allem aus der Literaturdatenbank *Pubmed* (http://ncbi.nlm.nih.gov) Publikationen, in denen Tract-tracing-Experimente bei der Ratte beschrieben wurden, ausgewertet. Diese umfangreiche und stets aktuelle Datenbank enthält ungefähr 24 Millionen Publikationsdatensätze. Zusätzlich wurden ebenfalls Publikationen von *Google Scholar* (http://scholar.google.de/) und *Web of Science* (http://apps.webofknowledge.com/) ausgewertet. Es kamen nur Tract-tracing Studien des Nervensystems der postnatalen Laborratte zur Auswertung, da in diesem Säugetier besonders viele Tract-tracing Versuche durchgeführt wurden und sich daher ein besonders dichtes Konnektom aufbauen lässt. Hierzu wurden alle Artikel des peripheren und zentralen Nervensystems berücksichtigt. Um die relevanten Publikationen für die vorliegende Arbeit zu erhalten, wurden folgende Parameter in die Suchzeile für die Filterung der Suche eingegeben:

rat AND brain AND (pathway* OR projection* OR afferent* OR efferent* OR connect*) AND (trace* OR traci* OR retrog* OR anterog*) AND (virus or viral)

Pub Med.gov	PubMed V ferent* OR efferent* OR connect*) AND (trace* OR traci* OR retrog* OR anterog*) AND (vir Create RSS Create alert Advanced	us or viral) 📀 Search Help
100010101010101010		
Article types	Format: Summary + Sort by: Most Recent + Per page: 20 + Send to +	Filters: Manage Filters
Review		Tial
Customize	Search results	Basic fibroblast growth factor enhances
Text availability Abstract	Rellis, 1 to 20 to 343 <<< Hist < Piev Page 1 of 18 Next > Last >>	Retrograde, transneuronal spread of
Free full text Full text	Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral	pseudorabies virus in defined nr [J Virol. 1999]
PubMed Commons	 Dempsey B, Le S, Turner A, Bokiniec P, Ramadas R, Bjaalie JG, Menuet C, Neve R, Allen AM, Conductive Mathematics S 	cord from the ovary [Neuroendocrinology. 1998]
Reader comments Trending articles	Goodening Arx, including S. Front Neural Circuits. 2017 Mar 1;11:9. doi: 10.3389/fncir.2017.00009. eCollection 2017.	See more
Publication dates	Similar articles	Find related data
5 years 10 years Custom conno	The Input-Output Relationship of the Cholinergic Basal Forebrain.	Database: Select
Species	 Grielow (Wrk, Zaborszky) L. Cell Rep. 2017 Feb 14;18(7):1817-1830. doi: 10.1016/j.celrep.2017.01.060. DWD: 2010925 Excent details 	
Humans Other Animals	Similar articles	
Clear all	Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by	Search details ("rats"[MeSH Terms] OR
Show additional filters	3 Sensary stimulu, Tornero D, Tsupykov O, Granmo M, Rodriguez C, Grenning-Hansen M, Thelin J, Smozhanik E, Laterza C, Wattananit S, Ge R, Taranishni J, Grealsh S, Brustle O, Sikibo G, Parmar M, Schouenborg J, Lindral D, Kokaia Z.	"rats"[All Fields] OR "rat"[All Fields]) AND ("brain"[McSH Terns] OR "brain"[All Fields]) AND ([pathway[All Fields] OR pathway"[All Fields] OR
	Bran. 2017 Mar († 40(3):892-706. dor. 10.1083/brain/aww.347. PMD: 29115364 Similar articles	Search See more
	Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus	Recent Activity
	 Iscandulated and the set of the	Turn Off Clear at AND brain AND (pathway* OR projection* OR afferent* OR effere PubMed
	Similar articles	Q "Journal Impact Factor"[Majr] (1371) PubMed
	Targeting Corticotropin-Releasing Factor Projections from the Oval Nucleus of the Bed Nucleus of 5. the Stria Terminalis Using Cell-Type Specific Neuronal Tracing Studies in Mouse and Rat Brain.	Q "FASEB J'[Title Abbreviation] (1) NUM Catalog
	Dabrowska J, Martinon D, Moaddab M, Rainnie DG. J Neurcendocrinol. 2016 Dec;28(12). doi: 10.1111/jne.12442. putro: 7280572	Experimental Biology 95. Washington, D.C., April 14-17, 1996. Abstracts. PubMed
	Similar articles	Q Similar articles for PubMed (Select 10064625) (50) PubMed
	 Darsomedial hypothalamic NPY Affects cholecystokinin-induced satiety via modulation of brain starsonalise the series of the series	See more
	Depamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury. 7. Hou S, Carson DM, Wu D, Klaw MC, Houlé JD, Tom VJ. Exp.Neural 2016 Nov2894 B1135-146. doi: 10.1016/j.expneurol.2015.12.001. Epub 2015 Dec 2. PMD: 28655672 Free PMC Article	

Mit dem Filter wurden 349 Arbeiten ermittelt (Abbildung 5).

Abbildung 5: Suchergebnis von Pubmed nach Anwendung des Suchausdruckes für virales Tract-tracing. (s.o.).

Im Laufe der Auswertung wurden Läsionsstudien, elektronenmikroskopische Studien, Studien mit unklarem Injektionsort (wie z.B. Faserbahnen), Studien ohne Tracertransport (z.B. bei viraler Fluoreszenzmarkierung) und Studien ohne experimentellen Anteil ausgeschlossen. In gleicher Weise wurde mit Artikeln, die andere Spezies oder embryonale und pränatale Ratten zum Gegenstand haben, verfahren. Die Konnektivitätserfassung erfolgte geschlechtsunabhängig. Insgesamt wurden 322 von 349 Publikationen gefunden, die diesen Kriterien entsprechen.

Im Folgenden wurden die Publikationen über PubMed und von den Websites der Wissenschaftsverlage über den Universitätszugang heruntergeladen. Die meisten Artikel konnten über eine Direktverlinkung des jeweiligen Verlages (z.B. Elsevier, Springer) von PubMed oder über die Suchmaschine "Google" als pdf geladen werden.

Die relevanten Publikationen, wurden dann entweder direkt über die digitalen Datenbanken der Verlage, mittels der Suchmaschine Google oder auch über die Fernleihe der Universitäts-Bibliothek Rostock angefordert. Die nach den zuvor benannten Auswahlkriterien herausgefilterten Publikationen wurden dann in das Open Source Literaturprogramm *JabRef* (http://jabref.sourceforge.net/) eingepflegt. Dies ermöglicht es die gesamten Tracerstudien als Textdatei im *BibTex*-Format zu speichern und sie dann in das Auswertungs-Programm *neuroVIISAS* zu importieren. Dadurch gelingt eine exakte Referenzierung von eingelesenen Publikationsdaten und ermittelten konnektionalen Daten.

2.1 neuroVIISAS

Die Softwarebezeichnung *neuroVIISAS* steht für das **neuro** Visualization Image Information System Analysis and Simulation Programm (Schmitt und Eipert 2012) und ist eine generische (speziesunabhängige) Plattform zur Integration und Simulation von neurowissenschaftlichen Daten. Es können anatomische Atlanten speziesunabhängig in das Programm eingepflegt werden. Mittlerweile enthält das Projekt der Ratte mehr als 178.000 ipsilaterale und 73.350 kontralaterale Konnektivitäten. Die gesammelten Daten werden zuerst in *neuroVIISAS* eingelesen und können dann analysiert und in Projekten gespeichert werden. Weiterhin besteht die Möglichkeit des Renderings und der dreidimensionalen Visualisierung der zusammengetragenen Verbindungen. Grundlage dieser Arbeit ist die Projektdatei ratFrontal_13_06_2017variants.brain. Bei der Übertragung der Ursprungs- und Zielgebiete aus den Artikeln in eine Excel Tabelle konnten mithilfe der integrierten Suchfunktion die Kurznamen der jeweiligen Gebiete ermittelt werden (Abbildung 6). Die primären Kurznamen stellen eindeutige Verweise auf Regionen dar, denen eine Verbindung zugeordnet wird.

Abbildung 6: Dargestellt ist das Hauptfenster von *neuroVIISAS*. Der linke Teil zeigt die Gebietshierarchie. Mit der Suchmaske können einzelne Regionen mittels Abkürzungen oder Langnamen gesucht werden. Die mittlere Ansicht zeigt die Lage des jeweiligen Anschnittes. Transparent eingefärbt wurden die in diesem Schnitt sichtbaren Regionen des Kleinhirns.

2.2 Literaturauswertung

Die Artikel wurden zu Beginn der Auswertung auf das Vorhandensein von viralen Tract Tracern kontrolliert. Wie bereits oben erwähnt, wurden sowohl andere Spezies (wie z.B. Studien mit Mäusen, Hamstern und Affen), als auch Studien mit non viralen Tracern nicht ausgewertet. Die Gattung der Ratte (z.B. Wistarratte, Sprague Dawley Ratte) wurde in der Arbeit nicht erfasst, allerdings wurde im Laufe der Arbeit das Geschlecht der Ratte in "male", "female" und "unknown" differenziert.

Der reguläre Aufbau der Artikel beinhaltet die Anteile "Abstract", "Introduction", Material & Methods, "Results" und im abschließenden Abschnitt die "Discussion". Aus dem Abstract und der Introduction konnte sich erstens eine Übersicht über den Artikel verschafft werden und zweitens wurden ausgeschriebene Namen mit ihren entsprechenden Abkürzungen markiert, um sich später eine zeitraubende Suche der Langnamen zu ersparen. Im Abschnitt "Material & Methods" werden die Gattung und das Geschlecht der Ratte, die zum Einsatz gekommenen viralen Tracer und der Injektionsort beschrieben. In der Einleitung und im Anhang liegen tabellarische Übersichten der eingesetzten viralen Tracer vor (Tabelle 2 und Tabelle 5). Der

überwiegende Anteil der Konnektivitäten mit ihrer dazugehörigen Wichtung wurde aus dem Teil "Results" entnommen. Diese waren sowohl in Tabellen und Grafiken, als auch in Textform in den Artikeln enthalten. Anschließend wurden die Verbindungen detektiert und farblich gekennzeichnet. In den Abschnitten "Discussion" wurden die beobachteten Konnektivitäten funktionell interpretiert und mit anderen Arbeiten verglichen. Von Autoren selbst erstellte Grafiken mit transsynaptischen Prozessen wurden ebenfalls ausgewertet und die darin enthaltenen konnektionalen Informationen erfasst.

Bei der Auswertung wurde das Gewicht (Dichte von Verbindungen) der einzelnen Konnektivitäten ebenfalls dokumentiert. Das Gewicht spiegelt u.a. das Ausmaß der viralen Infektion oder die Dichte von Verbindungen wider. Die Einteilung der Gewichte wurde in 12 Stufen mit aufsteigender Intensität vorgenommen (Tabelle 3 und Tabelle 7 im Tabellenanhang). Jeder Grad einer Gewichtung hat Schlüsselwörter, die einer Gewichtungskategorie zugeordnet werden können. So haben beispielsweise die Wörter " a few labeled", "occassional labeled" und "small number of" eine Gewichtung von 1,0 und Wörter wie "heavy labeled", "impressive number of" und "dense fields of" ein Gewicht von 3,0. Ein Großteil der Artikel konnte auf diese Weise ausgewertet werden. Trotz des Einteilungssystems mussten in einigen Publikationen die beschriebenen Gewichte in Relation zueinander ausgewertet werden. Beispielsweise wurde folgende Formulierung verwendet: "Less than before" oder "fewer than dense". In diesem Fall wurden die auf ihre Ausgangsgröße bezogenen Gewichte entsprechend nach unten abgestuft. Teilweise wurden in den Artikeln von den Autoren selbst generierte Einteilungsmethoden verwendet und mussten an dieses System angepasst werden, weil die Einteilungen weniger Abstufungen (meistens drei Abstufungen, die mit Symbolen wie z.B. ***, **, * oder +++, ++, + dargestellt wurden) beinhalteten. Zusätzlich gab es Publikationen, bei denen keine Gewichtungen beschrieben wurden oder deren Gewichtungen unklar waren, so dass die Existenz von neuronalen Verbindungen mit einem Gewicht von -0,5 ("exist") klassifiziert wurde.

Gewicht	Terminus
-3	unknown, not known
-2	fibers of passage
-1	not clear
-0,5	exists
0	not present
0,5	very light
1	light / sparse
1,5	light /moderate
2	moderate / dense
2,5	moderate / strong
3	strong
4	very strong

Tabelle 3: Gewichte der Verbindungen und die dazugehörigen Bezeichnungen.

Die Bezeichnung des Injektionsortes und der Zielstrukturen musste aufgrund der außerordentlichen Vielfalt an Synonymen, die von diversen Autoren uneinheitlich verwendet werden, mit der Nomenklatur der neuroVIISAS Datenbank des Rattenkonnektoms abgeglichen neuroVIISAS werden. In der Datenbank werden Begriffe mit höchsten der Trefferwahrscheinlichkeit zuerst angezeigt. Zusätzlich werden auch Synonyme ("Aliasnamen"), soweit sie in das Programm eingegeben wurden, bei dem Suchergebnis vorgeschlagen. Das Kerngebiet des "ventromedial hypothalamic nucleus" und die Region "ventromedial hypothalamus" werden beispielsweise als gleiches Gebiet betrachtet und mit einem oder mehreren Kurznamen (VMH, VM, AHNvn, VMN) versehen, da diese auch derart variabel in den Tract-tracing Publikationen bezeichnet werden. Im Falle von neuen Begriffen müssen diese in neuroVIISAS integriert werden. Die aus der Literatur entnommenen Daten wurden in eine Excel-Tabelle übertragen. Bei der Auswertung wurden ipsilaterale und kontralaterale Projektionen unterschieden und in Excel aufgeführt. Bei einigen Strukturen gab es eine Vielzahl von Aliasnamen mit den jeweiligen Abkürzungen.

Paraventricular hypothalamic nucleus Kurzname: Pa

- Aliasnamen: Paraventricular nucleus of hypothalamus
- Alternativkurzname: PVN, PVHap, PVH, Parav. Nu.

2.3 Tabellen

Die aus der Literatur herausgelesenen Daten wurden in eine Tabellenvorlage mit 25 Spalten und einer Kopfzeile eingetragen. Die Tabellengliederung wurde von Burns (1997) entworfen und wurde durch zusätzliche Spalten ergänzt (Abbildung 7).

🖬 🖂												Cumul	lative_results	_02-12-2014	ods - Lib	reOffice Calc								
Datei Bearbeiten Ansicht Einfüge	en Eormat	Extras Date	n Fenster Hilfe																					
: 🖬 • 🖻 • 🔒 🔛 📢 🖼 🤅	🔁 I 💥 📮	n 🖻 • 🌲 I	5 · C · Q	Ab 🖷			1 10 11 11 1	7 📼 🌔	D 🖽	Ω	e 🔒 🗆		🏥 🖂 I 🖪	3										
							P 8/ 00 50	001						-										
i Anai 🚺 🕴 🛋		<u> </u>	= = = :>				🥡 %• 0,0 🛄	.000 0	23 4	2 100	t lie t		_ = =	•										
sı 💽 🏂 🔀 🖬	Transport	ntDirection																						
A	B	C	D	E	F	G	н	1	J	К	L	M	N	0	P	Q	R	s	Т	U	V	W	X	Y
Description of source	Source	Target	Description of target	Weight	Lessips	i NC	Reference	Tracer	Case	Animal	Labeling	Soma	SomaNote	Laterality	Terminal	TerminalNote	Terminalic	TransportDirection	Modality	Page	Annotation	Collator	Date	Sex
2	RETg	SC		-0.5			Pernet:2005	FG						CONTRA				r	T	76		Jenssen	22-11-2014	1 F
3	RETg	SC		3			Pernet:2005	AAVR						LR.				ta		77		Jenssen	22-11-2014	1 F
4	RETg	SC		3			Pernet:2005	AAVR						RL				ta		77		Jenssen	22-11-2014	1 F
5	RETg	DLGI		3			Pernet:2005	AAVR						LR				ta		77		Jenssen	22-11-2014	1 F
6	RETg	DLGI		3			Pernet:2005	AAVR						RL				ta		77		Jenssen	22-11-2014	1 F
7	RETg	SC		0.5			Pernet:2005	AAVR						Щ				ta		77		Jenssen	22-11-2014	1 F
8	RETg	SC		0.5			Pernet:2005	AAVR						RR				ta		77		Jenssen	22-11-2014	1 F
9	RETg	DLGI		0.5			Pernet:2005	AAVR						<u>u</u>				ta		77		Jenssen	22-11-2014	1 F
10	RETg	DLGI		0.5			Pernet:2005	AAVR						RR				ta		77		Jenssen	22-11-2014	1 F
11 dorsal gray commisure T13	SCL10T13	OrgRepSV		4			Sun:2009	PRV						Щ				tr		789		Jenssen	23-11-2014	1 M
12 dorsal gray commisure T13	SCL10T13	OrgRepSV		4			Sun:2009	PRV						RR				tr		789		Jenssen	23-11-2014	1 M
13 dorsal gray commisure L1	SCL10L1	OrgRepSV		4			Sun:2009	PRV						Щ				tr		789		Jenssen	23-11-2014	1 M
14 dorsal gray commisure L1	SCL10L1	OrgRepSV		4			Sun:2009	PRV						RR				<u>t</u>		789		Jenssen	23-11-2014	1 M
15 dorsal gray commisure L2	SCL10L2	OrgRepSV		4			Sun:2009	PRV						Ц				<u>y</u>		789		Jenssen	23-11-2014	1 M
16 dorsal gray commisure L2	SCL10L2	OrgRepSV		4			Sun:2009	PRV						RR				tr		789		Jenssen	23-11-2014	1 M
17 dorsal gray commisure L3	SCL10L3	OrgRepSV		4			Sun:2009	PRV						Щ				tr		789		Jenssen	23-11-2014	1 M
18 dorsal gray commisure L3	SCL10L3	OrgRepSV		4			Sun:2009	PRV						RR				tr		789		Jenssen	23-11-2014	1 M
19 dorsal gray commisure L4	SCL10L4	OrgRepSV		4			Sun:2009	PRV						Щ				tr		789		Jenssen	23-11-2014	1 M
20 dorsal gray commisure L4	SCL10L4	OrgRepSV		4			Sun:2009	PRV						RR				tr		789		Jenssen	23-11-2014	1 M
21 dorsal gray commisure L5	SCL10L5	OrgRepSV		4			Sun:2009	PRV						Ц				<u>y</u>		789		Jenssen	23-11-2014	1 M
22 dorsal gray commisure L5	SCL10L5	OrgRepSV		4			Sun:2009	PRV						RR				tr		789		Jenssen	23-11-2014	1 M
23 dorsal gray commisure S1	SCL10S1	OrgRepSV		4			Sun:2009	PRV						Щ				tr		789		Jenssen	23-11-2014	1 M
24 dorsal gray commisure S1	SCL10S1	OrgRepSV		4			Sun:2009	PRV						RR				tr		789		Jenssen	23-11-2014	1 M
25	IMLT13	OrgRenSV		4			Sun:2009	PRV						11				tr		789		Jenssen	23-11-2014	1 M

Abbildung 7: Ausschnitt der Tabellenstruktur des Tabellenkalkulationsprogramms Calc (Open Office) nach der Auswertung von Verbindungen. Bevor die Daten in *neuroVIISAS* importiert werden, müssen die Spalten A und D für die Langnamen entfernt werden.

Die Bearbeitung der Tabelle erfolgte mit dem Tabellenkalkulationsprogramm Excel von Microsoft oder mit dem frei verfügbaren Programm Open Office von der Apache Software Foundation. Nach Fertigstellung der Tabelle wird die Datei im ".csv" Format exportiert. Die einzelnen Spalten der Tabelle müssen, bevor sie in *neuroVIISAS* exportiert werden, durch einen Tabulator als Separator abgegrenzt werden. Bei der ".csv" Datei werden nur die Abkürzungen von "Source" und "Target" benutzt (Abbildung 8). Die csv-Datei konnte dann über das Importfenster von *neuroVIISAS* eingelesen werden (Abbildung 9).

Die Bedeutung der einzelnen Spalten wird im folgenden Abschnitt erläutert (Philipp, 2012). Teilweise wurde die Tabelle entsprechend des viralen Tract-tracing modifiziert und ergänzt.

S: Source: Ursprungsregion einer Konnektivität, die Somata der projizierenden Neuronen enthält. In der Spalte vor Source wurde die vom Autor verwendete Bezeichnung der jeweiligen Region zur eindeutigen Identifizierung eingetragen.

T: Target: Zielregion einer Konnektivität die Axonendigungen der projizierenden Neuronen enthält. In die auf Target folgenden Spalte wurde analog zu Source die vom Autor verwendete Bezeichnung der jeweiligen Region zur eindeutigen Identifizierung eingetragen.

d: Weight: Gewicht bzw. Dichte der Projektion (siehe Tabelle 3).

IC: Ipsicontra: Relationen in Hinblick auf Lateralität.

Nc: nicht definiert.

Reference: Publikationsschlüssel der bibtex Datei von JabRef.

I: Tracer: Abkürzung der Tracersubstanz.

Case: Abbildungsnummer, die die jeweilige Konnektivität dokumentiert.

M: Animal number: Nummer des Versuchstieres, in welchem eine Konnektivität gefunden wurde

λ: Labeling density: Gewicht einer Konnektivität.

Soma: Eindeutige Abkürzung der Region, die Zellkörper einer Projektion enthält.

Soma Notes: Kommentare zu der Region, die Zellkörper einer Projektion enthält.

Lateralität:

- bei monosynaptischen viralen Prozessen: ipsilateral: bei linker Seite "LL", bei rechter Seite "RR" oder "IPSI"; contralateral: von links auf rechts "LR", von rechts auf links "RL" oder von linker Seite auf rechte Seite und rechte auf linke Seite "CONTRA"

- bei transsynaptischen viralen Prozessen: ipsilateral: bei linker Seite "LL", bei rechter Seite "RR": contralateral: von linke auf rechte Seite "LR", von rechte auf linke Seite "RL": keine Verwendung von IPSI und CONTRA bei transsynaptischen Prozessen

Terminals: Eindeutige Abkürzung der Region, die die Axonterminale enthält.

Terminal Notes: Freie Kommentare zu der Region, die die Axonterminale einer Projektion enthält.

Terminals ipsi – contra: bei ipsilateralen Verbindungen: "IPSI", bei kontralateralen Verbindungen "CONTRA",

TransportDirection: Richtung des viralen Tracertransports:

Bei monosynaptischen viralen Prozessen: retrograd "tmr", anterograd "tma", retrograd und anterograd "tma/r"

Bei transsynaptischen viralen Prozessen: transsynpatisch retrograd -,,tr", transsynaptisch anterograd ,,ta", transsynaptisch retrograd und anterograd ,,ta/r"

Modality: Verknüpfung von transsynaptischen Pfaden oder Kollateralen, Verlinkung bei Pfaden "P", Verlinkung bei Kollateralen "C", Verlinkung bei Pfaden und Kolateralen "P,C"

Page: Seitennummer der Konnektivität in der Publikation

Annotation: Anmerkung

Collector: Name des Auswerters

Date: Eingabedatum der Auswertung

Sex: Geschlecht der Versuchstiere: "M", "F" oder "M, F" oder keine Angabe

2.3.1 Kodierung von viralen Konnektivitäten

Im Gegensatz zu konventionellen Tract Tracern sind einige virale Tracer in der Lage transsynaptische Verbindungen zu markieren. Aus diesem Grund wurde eine Anpassung für die Kodierung von viralen Tract-tracing Prozessen durchgeführt. In der überwiegenden Anzahl der Publikationen wurden der Injektionsort und das Ziel der Tracerausbreitung des Virus beschrieben. Mögliche synaptische Zwischenstationen wurden häufig nicht bzw. unvollständig beschrieben. In diesem Fall wurden als Richtungs-Kodierungen die Abkürzung "ta", "tr", oder "ta/r" verwendet. Die Bedeutung dieser Richtungs-Codes ist:

- ta: anterograder Transport über mindestens eine Synapse
- tr: retrograder Transport über mindestens eine Synapse
- ta/r: anterograder und retrograder Transport über mindestens 1 Synapse
- tma: monosynaptischer anterograder Transport ohne Diffusion des Tracers über eine Synapse
- tmr: monosynaptischer retrograder Transport ohne Diffusion des Tracers über eine Synapse

Zusätzlich muss eine Lateralitätskodierung vorgenommen werden, die maximal viele Freiheitsgrade erlaubt und nicht die einfache Kodierung der konventionellen non-viralen Tracer in Form von IPSI oder CONTRA:

- LL: von der linksseitigen zur linksseitigen Region
- LR: von der linksseitigen zur rechtsseitigen Region
- RR: von der rechtsseitigen zur rechtsseitigen Region
- RL: von der rechtsseitigen zur linksseitigen Region

Diese Kodierung erlaubt auch eine eindeutige unilaterale Spezifikation von Konnektivitäten neben ipsilateralen, kontralateralen und bilateralen Verbindungen. Unilaterale Verbindungen sind insbesondere für afferente und efferente Projektionen unpaarer Bauchorgane von Bedeutung.

Für die "csv"-Version werden die Langnamen der Kerngebiete aus der Tabelle entfernt. Für den Datenimport muss ein Tabulatorzeichen als "Delimiter" eingefügt werden, damit die Abgrenzung der einzelnen Zellelemente möglich wird.

Datei Bearbeiten Ansicht Lesezeichen B	Extras Einstell	lungen	Hilfe																						
🔍 Neu 🎴 Öffnen 🔚 Speichern 📈 Sp	eichern unter	🙆 Sch	ließen	Rúckgž	ingig 🥐	Wederhers	tellen																		
Description of source - Source - Targ	et Descript:	ion of	target	Weight	LessIp	1	NC -	Reference Tracer	Case	Animal	Labelli	na	Sona	SomaNot	e -	Latera	lity-	Termina	1-	Termin	alNote	Termin	alic	TransportDin	ection
rostral mesopontine tegmental anesth	esia area - F	RMTGA	PPTo		3			Sukhotinsky: 2005	BDA				RMTGA		CONTRA	PPTo		IPSI	a -				Beier	24-10-2014	M
rostral mesopontine tegmental anesth	esia area - F	RMTGA	PAG		2			Sukhotinsky: 2005	BDA				RMTGA		IPSI	PAG		IPSI	a				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area - F	RMTGA	PAG		-0.5			Sukhotinsky: 2005	BDA .				RMTGA		CONTRA	PAG		IPSI	a				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area - F	RMTGA	DR		3			Sukhotinsky: 2005	BDA				RMTGA		IPSI	DB		IPSI	a				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area - F	RMTGA	DR		-0.5			Sukhotinsky: 2005	BDA				RMTGA		CONTRA	DB		IPSI	a				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area - F	RMTGA	PB ·		3			Sukhotinsky:2005	BDA				RMTGA		IPSI	PB ·		IPSI	a>				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area - F	RMTGA	LC-		2			Sukhotinsky: 2005	BDA				RMTGA		IPSI	LC		IPSI	a				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area> F	RMTGA	SubC		2			Sukhotinsky: 2006	BDA				RMTGA		IPSI	SubC		IPSI	ar				Beier	24-10-2014	M
rostral mesopontine tegmental anesth	esia area - F	RMTGA	Gi		3			Sukhotinsky: 2006	BDA				RMTGA		IPSI	Gi		IPSI	a				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area- F	RMTGA	GiA		3			Sukhotinsky: 2005	BDA				RMTGA		IPSI	GiA		IPSI	a				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area> F	RMTGA	RMg>		2			Sukhotinsky: 2005	BDA				RMTGA		IPSI	RMg >		IPSI	a				Beier	24-10-2014	M
rostral mesopontine tegmental anesth	esia area - F	RMTGA	MVL		1.			Sukhotinsky: 2006	BDA				RMTGA		IPSI	MVL		IPSI	a>				Beier	24-10-2014	M
rostral mesopontine tegmental anesth	esia area- F	RMTGA	MVL		-0.5			Sukhotinsky: 2005	BDA -				RMTGA		CONTRA	MVL		IPSI	a -				Beier	24-10-2014	м
rostral mesopontine tegmental anesth	esia area> F	RMTGA	MdDd		1.			Sukhotinsky: 2005	BDA				RMTGA		IPSI	MdDd		IPSI	a				Beier	24-10-2014	M
rostral mesopontine tegmental anesth	esia area - F	RMTGA	MdDd		-0.5			Sukhotinsky: 2006	BDA				RMTGA		CONTRA	MdDd		IPSI	a				Beier	24-10-2014	M
dorsal mesopontine tegmental anesthe	sia area 🛛 🕻	DMTGA	PPTq -		3			Sukhotinsky: 2005	BDA -				DMTGA		CONTRA	PPTg		IPSI	a -				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area 🛛 🕻	DMTGA	PAG		3			Sukhotinsky: 2005	BDA				DMTGA		IPSI	PAG		IPSI	a				Beier	24-10-2014	M
dorsal mesopontine tegmental anesthe	sia area 🛛 🛛	DMTGA	PAG		-0.5			Sukhotinsky: 2005	BDA				DMTGA		CONTRA	PAG		IPSI	ar				Beier	24-10-2014	M
dorsal mesopontine tegmental anesthe	sia area 🛛 🕻	DMTGA	DR		3			Sukhotinsky: 2005	ADB				DMTGA		IPSI	DR		IPSI	a -				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area 🛛 🕻	DMTGA	DR		-0.5			Sukhotinsky: 2005	BDA				DMTGA		CONTRA	DR		IPSI	a				Beier	24-10-2014	M
dorsal mesopontine tegmental anesthe	sia area 🛛 🛛	DMTGA	PB ·		3			Sukhotinsky: 2005	BDA				DMTGA		IPSI	PB		IPSI	a				Beier	24-10-2014	M
dorsal mesopontine tegmental anesthe	sia area 🛛 🕻	DMTGA	LC		3			Sukhotinsky: 2005	BDA				DMTGA		IPSI	LC		IPSI	a -				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area 🛛 🕻	DMTGA	SubC		3			Sukhotinsky: 2006	BDA				DMTGA		IPSI	SubC		IPSI	a				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area 🛛 🛛	DMTGA	Gi		3			Sukhotinsky: 2005	BDA				DMTGA		IPSI	Gi		IPSI	a				Beier	24-10-2014	M
dorsal mesopontine tegmental anesthe	sia area 🛛 🛛	DMTGA	GiA		3			Sukhotinsky:2005	BDA				DMTGA		IPSI	GiA		IPSI	a -				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area (DHTGA	RMg -		2			Sukhotinsky:2005	BDA				DMTGA		IPSI	RMg		IPSI	a				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area 🛛	DMTGA	MVL-		1-			Sukhotinsky:2005	BDA				DMTGA		IPSI	MVĹ		IPSI	a				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area 🛛 🛛	DMTGA	MVL		-0.5			Sukhotinsky:2005	BDA				DMTGA		CONTRA	MVL		IPSI	a -				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area [DHTGA	MdDd		2			Sukhotinsky:2005	BDA				DMTGA		IPSI	MdDd		IPSI	a:				Beier	24-10-2014	м
dorsal mesopontine tegmental anesthe	sia area 🛛	DMTGA	MdDd		-0.5			Sukhotinsky:2006	BDA				DMTGA		CONTRA	MdDd		IPSI	a>				Beier	24-10-2014	м
<[

Abbildung 8: Struktur einer Textdatei, die aus einem Tabellenprogramm exportiert wurde. Diese csv-Textdateien lassen sich in *neuroVIISAS* einlesen.

Tree hierarchy Name Colaterals Am	ferent colate	rals Paths			Conne	ction to Claustrum_L fr	om:			
Basal ganglia L						Brainre	gion		Weight	
- Claustrum I					Prelim	bic_cortex_L				3 🔺
Cornus striatum I					Perirhi	nal_cortex_anterior_po	rtion_layer_3_to_l:	ayer_5		2
Subthalamic nucleus I					Perirhi	nal_cortex_anterior_po	rtion_layer_5_to_l:	ayer_6		3
Subulalanic_nucleus_c					Perirhi	nal_cortex_anterior_po	rtion_layer_6_L			2
Striatonypotnaiamic_nucleus	_L				Rostra	l_endopiriform_region_	L			1
Bed_nucleus_of_the_anterior_co	ommissure_	L			Middle	_endopiriform_region_	L			1
🔶 📑 📕 Cerebral_cortex_L					Cauda	l_endopiriform_region_	L			1
🖕 📺 Commissural_systems_L					Preen	dopiriform_region_L				0
🗢 📑 🗧 Geniculate_body_L					Dorsa	_raphe_nucleus_caud	al_part_non_serot	toniner		0,5
- 📑 Interpeduncular nucleus L					Dorsa	_raphe_nucleus_dorsa	al_part_non_serot	oniner		0,5
- C Olfactory system L					Dorsa	_rapne_nucleus_intern	ascicular_part_noi	n_sero		0,5
Daracommissural nucleus of th	a nosterior	commissure I			Dorsa	_rapne_nucleus_latera	il_wing_non_sero	toniner		0,5
Sental region					Dorsal	_raphe_nucleus_mun	suocauuai_pait_i	non_s		0,5
Septal_region_L					Doreal	_raphe_nucleus_rostra	al_part_non_serve	toniner		0,5
• stria_terminalis_L					Doreal	_raphe_nucleus_ventra	al_part_non_seror	seroto		0,5
- Cona_limitans_L					Infralin	hic cortex I	natoral_part_non_			2
Close_to_the_septum_L					Prelim	bic cortex ventral part	1			1.5
Ventral_telencephalon_L					Prelim	bic cortex dorsal part	 L			1.5
Mesodiencenhalic junction 1					Cingul	ate cortex area 1 cau	 idal part L			1.5
					Cingul	ate cortex area 2 cau	idal part L			1.5
					Fronta	I cortex area 2 L				2
					Latera	_hypothalamic_area_L				3
Functional_systems_L					Dorso	medial_hypothalamic_r	nucleus_[Medial_z	one]_L		3
entral_nervous_system_R				-	Latera	l_hypothalamic_area_p	erifornical_part_L			3
bheral_nervous_system					Dorso	medial_hypothalamic_r	nucleus_dorsome	dial_p		3
				•	Basola	ateral_nucleus_rostral_	part_L			2
•			I	•	Substa	antia_nigra_medial_par	t_L			1 🗸
Search Nar Connections from Claustrum_L	me		Short name	Connections		Bibliographical Refe	rence Experim	nents (2)	Brainregio	n
Search Nar Connections from Claustrum_L Connections	me [7	Short name Details	Connections		Bibliographical Refe	rence Experim	nents (2)	Brainregio	n
Search Nar Connections from Claustrum_L Connections F_CI_L_T_APir_L	me [Weight 1	Name	Short name Details F_CI_L_T_APir_L	Connections		Bibliographical Refe Unknown Santiago:2005	rence Experim	nents (2)	Brainregio	n
Search Nar Connections from Claustrum_L Connections	me [Weight 1 4	Name	Short name Details F_CI_L_T_APir_L	Connections		Bibliographical Refe Unknown Santiago:2005	rence Experim	nents (2)	Brainregio	n
Search Nar Connections from Claustrum_L	Weight 4	Name From:	Short name Details F_CI_L_T_APir_L Claustrum_L	Connections		Bibliographical Refe Unknown Santiago:2005	rence Experim	nents (2) W	Brainregio	n
Search Nar Connections from Claustrum_L Connections F_CI_L_T_APir_L F_CI_L_T_PT_L F_CI_L_T_AGm_L	Weight 4	Name From:	Short name Details F_CI_L_T_APir_L Claustrum_L	Connections		Bibliographical Refe Unknown Santiago:2005	rence Experim	nents (2)	Brainregio /eight 0 at:	n
Search Nar Connections from Claustrum_L Connections F_CL_T_Prir_L F_CL_T_PriL F_CL_T_AGm_L F_CL_T_AGm_R F_CL_T_RAM	Weight 1 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	Name From: To:	Short name Details F_CL_L_APir_L Claustrum_L Amygdalopiriform_transition_area_L	Connections		Bibliographical Refe Unknown Santiago:2005	rence Experim	nents (2)	Brainregio	n
Search Nar Connections from Claustrum_L Connections F_CITPT_L F_CITAGm_L F_CITAGm_L F_CI_TAGm_L F_CI_T_TAGm_L F_CI_T_TAGm_L F_CI_T_TAGm_L F_CI_T_TAGm_L F_CI_T_TAGm_L F_CI_T_TAGm_L	Weight 1 4 5 0,5 3 3 3 3	Name From: To:	Short name Details F_CI_L_T_APir_L Claustrum_L Amygdalopiriform_transition_area_L Claustrum_L	Connections		Bibliographical Refe Unknown Santiago:2005	rence Experim Tracer: Tracing type: Tracer code	nents (2)	Brainregio /eight 0	n
Search Nar Connections from Claustrum_L Connections F_CI_L_T_APir_L F_CI_L_T_AGm_L F_CI_L_T_AGm_R F_CI_L_T_AGm_R F_CI_L_T_PfL_L F_CI_L_T_LL F_CI_L_T_MDL_L F_CI_L_T_MDL_L	Weight 1 4 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1	Name From: To: Weight	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse	Connections		Bibliographical Refe Unknown Santiago:2005	rence Experim Tracer: Tracing type: Tracer code Case:	nents (2)	/eight 0 at:	n More
Search Nar Connections from Claustrum_L Connections F_O_L_T_APir_L F_O_L_T_AGm_L F_O_L_T_AGm_R F_O_L_T_L_L F_O_L_T_L_L F_O_L_T_L_L F_O_L_T_L_L F_O_L_T_L_L	Weight 1 4 1 4 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1	Name From: To: Weight	Short name Details F_CL_L_T_APir_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Ibbbd/amt	Connections		Bibliographical Refe Unknown Santiago:2005 Delete	rence Experim Tracer: Tracing type: Tracer code Case: Add attribute	nents (2)	/eight 0 at:	n
Search Nar Connections from Claustrum_L Connections F_CITPT_L F_CITAGm_L F_CITAGm_L F_CI_TAGm_L F_CI_TPT_L F_CI_TPT_L F_CI_TPT_L F_CI_TPT_L F_CI_TPT_L F_CI_TPT_L F_CI_TPT_L F_CI_TPT_L F_CI_TPT_L_ F_CI_TPT_L F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_ F_CI_TTLL_	Weight 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Name From: To: Weight Transmitter 	Short name Details F_CI_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Intervent	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes:	Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	nents (2) W	Brainregio	n
Search Nar Connections from Claustrum_L Connections F_CL_T_PAir_L F_CL_T_PT_L F_CL_T_AGm_L F_CL_T_RGm_R F_CL_T_RGM_R F_CL_T_RGM_R F_CL_T_RGM_R F_CL_T_RL_ F_CL_T_RL_ F_CL_T_TULL_ F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L	Weight 1 4 0,5 3 3 2 2 2 2 1 1	Name From: To: Weight Transmitter Effect	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes:	Tracer: Experim	nents (2)	Brainregio /eight 0 at:	n
Search Nar Connections from Claustrum_L Connections F_CL_T_APir_L F_CL_T_AGm_L F_CL_T_AGm_L F_CL_T_AGm_L F_CL_T_AGm_L F_CL_T_AGm_L F_CL_T_TALL F_CL_T_TALL F_CL_T_TULL F_CL_T_TULL F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L F_CL_T_TULA_L	Weight 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Name From: To: Weight Transmitter Effect Cell twpe 	Short name Details F_CI_L_T_APir_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes:	Tracer: Tracer: Tracer: Tracer: Tracer: Code Code Code Code Code Code Code Code	nents (2) W C;	Brainregio	n
Search Nar Connections from Claustrum_L Connections F_CITPT_L F_CITAGm_L F_CITAGm_L F_CI_T_AGm_L F_CITPT_LL F_CI_T_TIL_L F_CITMDL_L F_CI_T_TIL_L F_CITMDL_L F_CI_T_TIL_L F_CITMAL_L F_CI_T_TIL_L F_CITMAL_L F_CI_T_TILAL F_CIT_HAB_L F_CI_T_TILAL F_CIT_THAB_L F_CI_T_TILAL F_CI_T_THAB_L F_CI_T_TILAL F_CI_T_THAB_L F_CI_T_TILAAMAL F_CI_T_THAB_T F_CI_T_TILAAMAL	Weight 1 4 0,6 3 2 2 2 2 1 1 1 3 3 2	Name From: To: Weight Transmitter Effect Cell type	Short name Details F_CI_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes:	Tracer: Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	nents (2) V C	/eight 0 at:	n More
Search Nar Connections from Claustrum_L Connections F_Cl_T_ABit_L F_Cl_T_ABm_L F_Cl_T_ABm_L F_Cl_T_ABm_L F_Cl_T_T_Mom_L F_Cl_T_T_MDL_L F_Cl_T_T_MDL_L F_Cl_T_T_MDL_L F_Cl_T_T_MDL_L F_Cl_T_T_HAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L F_Cl_T_T_LHAB_L	Weight 1 1 4 0.5 3 3 2 2 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopirlform_transition_area_L 1.0 light/sparse Unbekannt Unknown L Unbekannt	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes:	Tracer: Tracer: Tracer: Tracer ode Case: Add attribute	nents (2)	Brainregio	n More
Search Nar Connections from Claustrum_L Connections F_CITAPir_L F_CITABm_L F_CITABm_L F_CI_TABm_L F_CITABm_L F_CI_TABM_L F_CI_T_TABL_L F_CI_TABL_L F_CI_T_TABL_L F_CI_T_TABL_L F_CI_T_TABL_L F_CI_TABL_L F_CI_T_TABL_L F_CI_TABL_L F_CI_T_TABL_L F_CI_TABL_L F_CI_T_TABL_L F_CI_TABL_L	Weight 1 4 0.5 3 2 2 2 1 3 3 3 3 3 3 3 3 3 3 3 4	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unbekannt Unbekannt New connection	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes:	Tracer: Tracer: Tracing type: Tracing type: Case: Add attribute	nents (2)	Brainregio	More
Search Nar Connections from Claustrum_L Connections F_CI_L_T_ADm_L F_CI_L_T_AGm_L F_CI_L_T_AGm_R F_CI_L_T_L_ F_CI_L_T_NDL_L F_CI_L_T_NDL_L F_CI_L_T_HAL F_CI_L_T_HAL F_CI_L_T_HAL F_CI_L_T_LLAR_L F_CI_L_T_LHAR_L F_CI_L_T_LHAR_L F_CI_T_T_HAL F_CI_T_T_HAR_L F_CI_T_T_HAR_L F_CI_T_T_HAR_L F_CI_T_T_HAR_L F_CI_T_T_HAR_L F_CI_T_T_HAR_L F_CI_T_T_HAR_L F_CI_T_T_HAR_L F_CI_T_T_HAR_R F_CI_T_T_HAR_R F_CI_T_T_HAR_R F_CI_T_T_RAR_R F_CI_T_T_RAR_R F_CI_T_T_RAR_R F_CI_T_T_RAR_R F_CI_T_T_RAR_R	Weight 1 1 4 0,5 3 2 2 2 1 1 3 3 4 0,5 0,5	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown Unbekannt New connection	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes:	Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	nents (2)	Brainregio	More
Search Nar Connections from Claustrum_L Connections F_CL_T_APir_L F.CL_T_AGm_L F_CL_T_AGm_L F.CL_T_AGm_L F_CL_T_AGm_L F.CL_T_AGm_L F_CL_T_TALL F.CL_T_HAM_L F_CL_T_TULH_L F.CL_T_HAM_L F_CL_T_TULHA_L F.CL_T_LHAM_L F_CL_T_TULHA_L F.CL_T_TULHA_L F_CL_T_TULA_L F.CL_T_TULHA_L F_CL_T_TULA_L F.CL_T_TULA_L F_CL_T_TULA_L F.CL_TULA_L F_CL_T_TULA_L F.CL_TULA_L F_CL_T_TULA_L F.CL_TULA_L F_CL_T_TULA_L F.CL_TULA_L	Weight 1 1 4 0,5 3 3 2 2 2 2 1 1 1 3 3 4 0,5 0,5 2	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CI_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown Unbekannt New connection Find asymmer	Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes:	Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	nents (2)	Brainregio	n More
Search Nar Connections from Claustrum_L Connections F. Cl. L. T. APIr. L. F. Cl. L. T. PT. L. F. Cl. L. T. PT. L. F. Cl. L. T. MGM. L. F. Cl. L. T. ML F. Cl. L. T. ML F. Cl. L. T. ML F. Cl. L. T. MDL L. F. Cl. L. T. MAL F. Cl. L. T. LHAB. L. F. Cl. L. T. J. LHAB. L. F. Cl. L. T. LHAB. L. F. Cl. L. T. J. LHAB. L. F. Cl. L. T. MMB. L.	Weight Weight 1 4 0,5 3 3 2 2 2 2 2 2 2 1 1 1	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unbekannt Unbekannt Inbekannt Unbekannt Inbekannt Unbekannt Find asymmer Inbekannt Inbekannt	Connections Connections Delete connection c connections End missing avp		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes:	Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	nents (2)	Brainregio	n
Search Nar Connections from Claustrum_L Connections F_OL_T_ABrit_L F_OL_T_ABm_L F_OL_T_ABm_L F_OL_T_ABm_L F_OL_T_TABM_L F_OL_T_TABM_L F_OL_T_TMDLL F_OL_T_TMDLL F_OL_T_TLHAB_L F_OL_T_TMMA_L F_OL_T_TMMA_L F_OL_T_TBAT_L F_OL_T_TLAB_L F_OL_T_TBAT_L F_OL_T_TBAT_L F_OL_T_TBAT_L F_OL_T_TBAT_L F_OL_T_TBAT_L F_OL_T_TBAT_L F_OL_T_TBAT_L F_OL_T_TOL_T	Weight 1 1 1 4 0.5 3 3 2 2 2 2 1 1 1 3 3 3 4 0.5 0.5 0.5 2 0.5 1 1	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CI_L_T_APir_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown Unbekannt Unbekannt Index Connection Find asymmer Update weights	Connections Connections Delete connection c connections Find missing exp		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes:	Tracer: Tracer: Tracer: Tracer code Case: Add attribute	nents (2)	Prainregio	n More
Search Nar Connections from Claustrum_L Connections F_OL_T_APir_L F.OL_T_ABM_L F_OL_T_ABM_L F.OL_T_ABM_L F_OL_T_ABM_L F.OL_T_ABM_L F_OL_T_TULL_L F.OL_T_TULL_L F_OL_T_TULL_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TOPX_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TULA_L F_OL_T_TULA_L F.OL_T_TOPX_L F_OL_T_TOPK_L F.OL_T_TOPK_L F_OL_T_TOPK_L F.OL_T_TOPK_L F_OL_T_TOPK_L F.OL_T_TOPK_L F_OL_T_TOPK_L F.OL_T_TOPK_L	Weight I 1 1 1 4 0.5.5 3 2 2 2 2 1 1 3 3 3 3 4 0.5.5 0.5 0.5 0.5 1	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown Unbekannt Unbekannt New connection Find asymmer Update weights Find error	Connections Connections Delete connection c connections Find missing exp		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes:	Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	nents (2)	feight 0	n More
Search Nar Connections from Claustrum_L Connections F_CI_L_TAPIr_L F_CI_L_TAGm_L F_CI_T_TAGL_ F_CI_T_TORL_ F_CI_T_TORL_ F_CI_T_TORL_	Weight 1 1 4 0.5 2 2 2 2 2 1 3 3 3 3 3 3 4 0.5 2 0.5 1 2 2.5	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_LT_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unbekannt Unbekannt Unbekannt Unbekannt Find asymmer Update weights Find error Double links Find error	Connections Connections Delete connection ic connections Find missing exp Non conform switax		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes: Deated to the second s	rence Experim Tracer: Tracing type: Tracer code Case: Add attribute	nents (2)	feight 0	n
Search Nar Connections from Claustrum_L Connections F_CITAPir_L F_CITABm_L F_CITABm_L F_CITABm_L F_CITABm_L F_CITABm_L F_CITABM_L F_CITABM_L F_CITABMA_L F_CITYOL F_CITYOL	Weight 1 4 0.5 3 2 2 2 1 1 3 2 0.5 3 4 0.5 2 0.5 2 0.5 2 0.5 1 2 0.5 2 0.5 1 2 0.5 2 0.5 3 2 0.5 3 2 2 3 3	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CI_L_T_APir_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unknown Unbekannt Unbekannt Find asymmer Update weights Find error Double links Find error Double links	Connections Connections Delete connection ic connections Find missing exp Non conform syntax Connections		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes: Date 12:11-2014	Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	ents (2)	Prainregio	n h
Search Nar Connections from Claustrum_L Connections F. Cl. L. T. APIr. L. F. OL L. T. APIr. L. F. OL L. T. PL F. OL L. T. AGM_L F. OL L. T. AGM_L F. OL L. T. NGM_R F. OL L. T. MAL F. OL L. T. TULH_L F. OL L. T. UHAL F. OL L. T. DEVL F. OL L. T. DEVL F. OL L. T. DEVL F. OL L. T. MYe L F. OL L. T. DEVL F. OL L. T. VOL F. OL L. T. VOL F. OL L. T. VOL	Weight 1 4 0.5 3 2 3 4 0.5 0.5 1 2 2.5 3 -1	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unbekannt Unbekannt Unbekannt Unbekannt Find asymmer Update weights Find error Double links Search for double entries	Connections Connections Delete connection c connections Find missing exp Non conform syntax Show all tracing types		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes: Date [12-11-2014 Collator Botha	Tracer: Tracer: Tracing type: Tracer code Case: Add attribute	eents (2)	eight 0	n
Search Nar Connections from Claustrum_L Connections F_OL_T_ABrit_L F_OL_T_ABm_L F_OL_T_ABm_L F_OL_T_ABm_L F_OL_T_TABm_L F_OL_T_TABM_L F_OL_T_TULH_L F_OL_T_TULH_L F_OL_T_TULHA_L F_OL_T_TULA_L F_OL_T_TULA_L F_OL_T_TULA_L F_OL_T_TOCL_T_Bar_L F_OL_T_TOCL_T_BAR_L F_OL_T_TOCL_T_WAS_L F_OL_T_TOCL_T_WAS_L F_OL_T_TOUL	Weight 1 1 4 0.5 3 2 2 2 1 1 3 2 1 3 4 0.5 0.5 2 0.5 2 2.5 3 -1	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CI_L_T_APir_L Claustrum_L Amygdalopirform_transition_area_L 1.0 light/sparse Unbekannt Unknown Unbekannt Unbekannt Unbekannt Find asymmer Update weights Find error Double links Search for double entries	Connections Delete connection c connections Find missing exp Non conform syntax Show all tracing types Smechronics identifies takes		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes: Date [12:11-2014 Collator Botha	rence Experim Tracer: Tracing type: Tracer code Case: Add attribute	ents (2)	Prainregio	n More
Search Nar Connections from Claustrum_L Connections FCIT_APir_L FCIT_AGm_L FCIT_AGm_L FCIT_AGm_L FCIT_AGm_L FCIT_AGm_L FCIT_HL FCIT_HL FCIT_HL FCIT_HL FCIT_HLA FCIT_HAA_L FCIT_CL_L FCIT_PCK_L FCIT_PCK_L FCIT_PCK_L FCIT_PCK_L FCIT_YO_L FCIT_YO_L FCIT_ACCa_L FCITCCCa_L	Weight 1 4 0.5 3 2 2 2 1 3 2 2 1 3 4 0.5 0.5 0.5 2 2 1 3 4 0.5 0.5 2.5 3 -1 -1	Name From: To: Weight Transmitter Effect Cell type Receptor	Short name Details F_CL_L_T_APIr_L Claustrum_L Amygdalopiriform_transition_area_L 1.0 light/sparse Unbekannt Unbekannt Unbekannt Indexemption Unbekannt Indexemption Unbekannt Indexemption Unbekannt Indexemption Indexemption Find asymmetric Update weights Find error Double links Search for double entries Import Import	Connections Connections Delete connection to connections Find missing exp Non conform syntax Show all tracing types Synchronize sides		Bibliographical Refe Unknown Santiago:2005 Delete Soma notes: Terminal notes: Date 12-11-2014 Collator Botha	rence Experim Tracer: Tracing type: Tracing type: Case: Add attribute	eents (2)	feight 0	n More

Abbildung 9: Importfenster von *neuroVIISAS*. Nach der Auswahl des Reiters "Experiments" und "More" können die Tracing Codes der Modalität "Viral" oder "Non Viral" zugeordnet werden.

2.4 Regionenauswahl für Konnektivitätsanalysen

Die in den csv-Textdateien kodierten Verbindungen der ausgewerteten Tract-tracing Publikationen wurden alle in *neuroVIISAS* importiert (Abbildung 10). Anschließend müssen alle Tracer im Importfenster über eine Tracer Code Tabelle eindeutig der Virus-Modalität zugeordnet werden (Abbildung 10). Diese explizite Zuordnung ist wichtig, um einen verallgemeinerbaren Ansatz zum Import und zur Analyse beliebiger konnektionaler Datenstrukturen (fMRI, neurophysiologische Stimulation und Ableitungen, Läsions-basierte
Konnektivität u.a.) verfügbar zu machen. Danach wurden aus der Neuroontologie des Ratten-Konnektom-Projektes die Verbindungen, die mit viralen Tracern gefunden wurden im Modul *Erweiterte Konnektivitäten-Analyse* gefiltert. Dies ist ein zweistufiger Vorgang. Zuerst wurden alle Regionen ermittelt, die Input oder Output Verbindungen aufweisen, die mittels viralen Tract-tracing gefunden wurden (Hierarchy \rightarrow Automatic node selection (Tracer code) \rightarrow Viral). Nun lassen sich über den Verbindungsfilter für hierarchisch kumulierte Verbindungen (Symbol für kumulierte Filter \rightarrow re. Mausklick in Filter Tabelle \rightarrow Create \rightarrow Tracer Code property) vier verschiedene Konnektivitätmodalitäten konfigurieren (Abbildung 11):

Abbildung 10: Zuordnung von Tracer Codes zur Modalität des Virus basierten Tract-tracing.

- ausschließlich Virus Tract-tracing Verbindungen ("All tracer codes have to match the condition" + Category "Viral" + "True")
- Virus Tract-tracing Verbindungen und non-viral Verbindungen ("At least one tracer code has to match the condition" + Category "Viral" + "True")
- ausschließlich non-viral Tract-tracing Verbindungen ("All tracer codes have to match the condition" + Category "Viral" + "False")
- muss keine Virus Tract-tracing Verbindung sein, kann aber eine Virus tract Verbindung sein ("At least one tracer code has to match the condition" + Category "Viral" + "FALSE")

Zur Auswahl eines Konnektoms mit möglichst vielen Verbindungen, die mittels viralen Tracttracing gefunden wurden, wurde die Konfiguration "At least one tracer code has to match the condition" + Category "Viral" + "True" im kumulativen Verbindungsmodus gewählt. Im zweiten Schritt wurden Regionen entfernt, die keine Verbindungen aufweisen. Danach wurden die untersten Hierarchieebenen Ebene für Ebene eingeklappt und die Anzahl der verbleibenden Virus Tract-tracing Verbindungen berechnet. Die Ebenen konnten noch dreimal eingeklappt werden bis es zu einer deutlichen Abnahme der Anzahl von Virus Tract-tracing Verbindungen kam. Schließlich kam eine Regionenauswahl zustande, die eine besonders große Virus Tract-tracing Verbindungsdichte aufweist. Diese Auswahl von Regionen und deren Virus Tract-tracing Verbindungen stellt die Grundlage der weiteren Analyse dar (Abbildung 13).

	Filter for cumulated edges	3	\odot \otimes \otimes						
Right mouse click to define cr	iterias the edges have to	satisfy							
Transynaptic observations are disabled by default. You have to include the tracing types $7=ta$, $8=tr$ or $9=ta/r$ in a filter to see connections only described transsynaptically.									
Filter for cumula	ted edges	Number							
AND OR NOT									
Apply filter									
Selected filter:									
	Filter: Tracer code propert	У	\odot \odot \otimes						
At least on tracer code has	s to match the condition								
 All tracer codes have to m 	atch the condition								
Choose category and define c	ondition								
Category Viral	•								
🖲 True 🔾 False									
Only existing connections									
Accept									

Abbildung 11: Filter Tabelle für kumulierte Verbindungen und Filterkonfiguration für virale Verbindungen.

Abbildung 12: Die primäre Selektion von Regionen mit Verbindungen, die mittels viralen Tract-tracing ermittelt wurden, ergab eine relativ große Adjazenzmatrix. Auf der linken Seite ist das Adjazenzmatrix Navigationsfenster zu sehen, mit einem kleineren Ausschnitt, der im rechten Fenster vergrößert dargestellt ist. In dieser primären Auswahl werden alle viralen und non viralen monosynaptischen Verbindungen dargestellt.

Abbildung 13: Nach der Filterung und dem Einklappen von Hierarchieebenen ergibt sich eine maximale Darstellung von Verbindungen und Regionen, zwischen denen mittels Virus Tract-tracing Verbindungen beschrieben wurden. Die Auswahl ist bilateral. Oben rechts sind in der Hierarchie die Teilbäume peripherer Organe wiedergegeben.

Abbildung 14: Hierarchische Gliederung der Gebiete, deren Verbindungen u.a. mittels viralen Tract-tracing beobachtet wurden. Aufgrund der Länge der Hierarchie wurde die Hierarchie auf 6 fortlaufende Teile verteilt. Es sind die links- und rechtsseitigen ZNS Gebiete sowie das PNS und die Organe abgebildet.

2.5 Konventionen zur Bezeichnung von Hirnregionen in dieser Arbeit

Es werden die gleichen Bezeichnungen der Regionen verwendet, wie sie in englischsprachigen Publikationen genutzt werden. Somit lassen sich Neubildungen von Begriffen durch Übersetzungen vermeiden. Ferner lassen sich die angloamerikanischen Begriffe direkt zur Recherche in den Literatur- und Neuroanatomie-Datenbanken wie Neurolex, Braininfo und BAMS verwenden.

2.6 Visualisierung in Graphiken

Die meisten Abbildungen wurden im eps-Grafikformat in diese Arbeit importiert, so dass es in der pdf-Version dieser Arbeit möglich ist, sehr feine Details interaktiv mit einem pdf-Viewer sichtbar zu machen. Die eps-Grafiken werden jedoch in der Bildschirmanzeige der WORD-Version nur relativ unscharf wiedergegeben.

2.7 Graphen und Netzwerke

Die Verbindungen zwischen Neuronen oder Gruppen von Neuronen wie beispielsweise Kerngebieten oder kortikalen Arealen sind als Graphen darstellbar. Die mathematische Graphentheorie behandelt Graphen als Strukturen, die aus Objekten und deren Verbindungen bestehen. Diese Graphen sind aus Knoten und Kanten aufgebaut. Die Knoten (Vertex, Vertices) des Graphen können als neuroanatomische Kerngebiete oder Hirnregionen interpretiert werden. Kanten stellen Verbindungen bzw. Konnektivitäten (Axone) zwischen den Knoten dar und sind somit die Übertragungswege für Aktionspotentiale. Durch die Anwendung von antero- und retrograden Tracersubstanzen lassen sich Ursprünge (Perikaryen) und Ziele (Axonterminalen) bestimmen, die Graphen mit orientierten Verbindungen hervorbringen. Dies gilt sowohl für konventionelle nicht-virale Tracer als auch für virale Tract-tracing Methoden. Graphen, die aus gerichteten Kanten aufgebaut sind, heißen auch Digraphen oder gerichtete Graphen. Die ordinalskalierten Gewichte von Kanten sind Schätzungen von axonalen Dichten und können als eine Kanteneigenschaft betrachtet werden. In diversen Publikationen, die Tract-tracing Befunde beschreiben, erfolgt die Angabe derartiger Schätzungen axonaler Dichten semiquantitativ. Eine gerichtete Verbindung zweier neuroanatomischer Entitäten lässt sich auch durch mehrere Axone oder Axonkolateralen repräsentieren. Graphen, in denen zwei Knoten durch mehrere Kanten (entsprechenden Axonen) verbunden werden, werden als Multigraphen bezeichnet. Multigraphen dürfen auch Schleifen oder Selbstreferenzen aufweisen. Eine solche Schleife entspricht aus der neuroanatomischen Sicht einer Projektion eines Neurons zurück zu sich selbst. Im einfachsten Fall wird dies über eine Autapse realisiert. Meist wird ein Digraph mit gewichteten Kanten in der Graphentheorie als Netzwerk bezeichnet. Das im Folgenden analysierte Virus Tract-tracing basierte Konnektom ist also in diesem Sinn ein Netzwerk (Diestel, 2017).

Die meisten Neurone sind aus einem Axon und mehreren Dendriten aufgebaut, deren Endigungen sich außerhalb der Region befinden können, in welcher das Perikaryon des Neurons lokalisiert ist. "Außerhalb des Gebietes" steht im Zusammenhang mit der betrachteten räumlichen Auflösung. Im Rahmen dieser Konnektomstudie wird eine vergleichbare räumliche Auflösung, wie im stereotaktischen Atlas (Paxinos, 2014), genutzt. Soweit bekannt, wurde in keiner Konnektom-Studie bisher untersucht, wie sich die im graphentheoretischen Sinn punktförmigen Ursprünge und Ziele von Verbindungen in Hinblick auf die häufig gebietsübergreifende Morphologie von Neuronen besser definieren lassen. Beispielsweise liegen die Somata von großen Pyramidenzellen häufig in der Lamina 5, aber deren dendritische Endigungen in den Laminae 1-3. Eine punktförmige Abstraktion eines solchen Neurons bezüglich aller seiner Fortsätze kann nicht eindeutig der Lamina 5 oder einer anderen Lamina zugeordnet werden. In der vorliegenden Arbeit wurde eine eindeutige Zuordnung von Ursprung und Ziel einer Verbindung für das Axon-Initialsegment festgelegt. Dieses wird als kleinste umschriebene subzelluläre Struktur angesehen, die eindeutig einer Region zugeordnet werden kann. Dieser kleinste biologische Bezugspunkt wird auch als charakteristischer Punkt bezeichnet (Stereologie). Ursprünge und Ziele von Verbindungen sind charakteristische Punkte, wenn sie eindeutig neuroanatomischen Gebieten zugeordnet werden können. Für das periphere Nervensystem muss ebenfalls ein charakteristischer Punkt für den Ursprung von neuronalen Erregungen ("dendritisches Axon") festgelegt und die Definition angepasst werden, da der Ursprung einer Erregung sehr weit vom Axon-Initalsegment entfernt liegen kann.

Außerdem muss die Gerichtetheit einer neuronalen Verbindung definiert werden, da zwei Sichtweisen möglich sind. Einerseits kann der Ursprung einer neuronalen Verbindung strukturell definiert werden: die Verbindung hat ihren Ursprung dort, wo sich der charakteristische Punkt befindet und von hier läuft sie zum Zielgebiet. Womit sich diese Definition der Verbindung allein auf den räumlichen Verlauf von dem charakteristischen Punkt zu mindestens einem Ende des Axons (präsynaptischer Abschnitt) oder zu den Endigungen mindestens zweier Kolateralen bezieht. Letztere können in unterschiedlichen Regionen terminieren. Andererseits lässt sich Gerichtetheit bezüglich der Ausbreitung eines Aktionspotentials unter normalen in vivo Bedingungen, also nicht in einem artifiziellen experimentellen System definieren. Damit wäre die Gerichtetheit über die Ausbreitungsrichtung vom charakteristischen Punkt zu den Axonterminalen definiert. Ausnahmen stellen axo-axonale Kopplungen mit antidromer axonaler Reizleitung dar (Schmitz et al., 2001). In den meisten Fällen entspricht die strukturelle Definition der neuronalen Gerichtetheit im ZNS der funktionellen Gerichtetheit. Da während der Auswertung von Publikationen häufig uneindeutige Beschreibungen von Verbindungen gefunden wurden, ist eine klare Definition dieser Begriffe wichtig. Die Orientierung neuronaler Verbindungen steht in einem direkten Zusammenhang mit der neuronalen Dynamik in Netzwerken. Diese wird vor allem durch die Ausbreitungsrichtung von Aktionspotentialen bestimmt. Ausgehend von der funktionellen Gerichtetheit einer neuronalen Verbindung wurden Ursprung und Ziel einer

Verbindung in Bezug auf die Funktion festgelegt. Eine Ausnahme bildet das periphere Nervensystem bezüglich transganglionärer Verbindungen, deren Ursprung nicht somanah ist, sondern somafern in der Körperperipherie. Die Ziele dieser Verbindungen sind häufig ebenfalls nicht somanah, sondern somafern im Zentralnervensystem auf spinaler oder supraspinaler Ebene gelegen.

Ergänzend müssen noch weitere einfache aber häufig verwendete Begriffe erläutert werden. Diese sind für die Untersuchung und Beschreibung von Konnektomen wichtig und können unterschiedlich verstanden werden: *unilateral, bilateral, ipsilateral und kontralateral*. Eine strukturelle oder funktionelle Verbindung ist *unilateral*, sofern diese nur auf einer Seite des Nervensystems existiert bzw. nachgewiesen wurde. *Bilaterale* Verbindungen hingegen sind solche, die in beiden Hemisphären gleiche Regionen verbinden und außerdem eine Ursprungsregion A der linken Hemisphäre mit einer Zielregion B in der rechten Hemisphäre (erster kontralateraler Anteil der bilateralen Verbindung) verbindet und umgekehrt (zweiter kontralateraler Anteil der bilateralen Verbindung).

Ipsilateral ähnelt zwar dem Begriff unilateral wird aber meist für Beschreibung von Beobachtungen nach der Anwendung von Tracing-Substanzen oder experimentell eingesetzten Substanzen (Neurotoxine, neuroprotektive Substanzen etc.) verwendet. Der Begriff *ipsilateral* bezeichnet eine Verbindung oder die Anwendung einer Substanz sowie die Beobachtung eines Effektes innerhalb einer Hemisphäre. Mit *kontralateral* wird hingegen eine Verbindung oder ein experimenteller Effekt einer Hemisphäre zur gegenüberliegenden Hemisphäre bezeichnet.

Die Gliederung der kortikalen Regionen lässt sich als azyklischer Graph oder auch als hierarchische Gliederung wiedergeben (Abbildung 14 und Abbildung 15). Die Relationen der Regionen in einer solchen Hierarchie werden durch Kantenattribute definiert ("Teil von", "benachbart zu", "eingeschlossen von", die eine wesentliche Eigenschaft von Ontologien (Konzepte zur Wissensdarstellung) sind. Die zuvor erläuterten neuronalen Verbindungen eines neuronalen Netzwerkes werden ebenfalls als Graph abgebildet. Dieser ist jedoch zyklisch und repräsentiert eine ganz andere Wissenskategorie. Neuronale Verbindungen zwischen den in Abbildung 11 dargestellten Enden der Hierarchie (Blätter), werden im Weiteren als direkte Verbindungen bezeichnet. Häufig lassen sich die Blätter aber noch weiter neuronanatomisch oder funktionell unterteilen. Diese nicht "aufgeklappten" oder vollständig erweiterten Blätter können auf einer bestimmten Betrachtungsebene noch unsichtbar sein. Ein zentrales Visualisierungsmerkmal von neuroVIISAS besteht darin, solche verdeckten neuronalen Verbindungen den sichtbaren Blättern zuzuordnen bzw. zu akkumulieren. Diese zusammengefassten Verbindungen von Untergebieten, die einem übergeordneten Knoten zugeordnet werden, werden im Folgenden als akkumulierte oder kumulierte Verbindungen bzw. Kanten bezeichnet. Fast alle graphenanalytischen und statistischen Funktionen des Auswertungssystems neuroVIISAS können auf direkte oder kumulierte Verbindungsrepräsentationen angewendet werden. Diese Funktionalität hat den Vorteil,

besonders komplexe Verbindungsarchitekturen auf spezifizierte Beschreibungsebenen zu reduzieren, um leichter allgemeine Verbindungsprinzipien zu erkennen und zu visualisieren (Abbildung 12).

Abbildung 15: Die Konzepte direkte Kanten und kumulierte Kanten sind hier dargestellt. a) Beispiel einer Hierarchie von Regionen mit den drei Regionen a, b und c. Hellgraue Pfeile zeigen die Konnektivitäten zwischen den Regionen. Die Gebiete und ihre Verbindungen wurden in der unteren Adjazenzmatrix abgebildet. b) Die gleiche Gliederung wie in a) ist hier gezeigt. Aber die Hierarchie beinhaltet weitere Untergebiete, die in a) verdeckt oder nicht "aufgeklappt" bzw. erweitert wurden. Hier seien es die Gebiete d und e deren gestrichelte Hierarchieverbin-

dungen anzeigen, dass sie nicht sichtbar sind, sofern sie nicht erweitert wurden. Diese nicht aufgeklappten Gebiete können Verbindungen besitzen, z.B. zu dem aufgeklappten Gebiet b. Diese nicht-sichtbaren Verbindungen werden in der darunter abgebildeten Adjazenzmatrixdarstellung als *kumulierte Verbindungen* bezeichnet. Die mittelgraue Verbindung von d nach b und die hellgraue Verbindung von e nach b werden im übertragenden Sinn als *indirekte Kanten* in der Adjazenzmatrixdarstellung akkumuliert und wurden mit einer dunkelgrauen quadratischen Fläche $(d \rightarrow b)$ und einem hellgrauen Rahmen $(e \rightarrow b)$ dargestellt. In den Adjazenzmatrizen werden solche indirekten Verbindungen jedoch mit Zahlenwerten akkumuliert und farbkodiert, um Verbindungsmuster leichter zu erkennen. Die kumulierte Kantendarstellung bietet also eine vollständigere Sicht der Verbindungen einer Knotenauswahl. Zugleich ist diese Darstellung eine Abstraktion und eine Distanzierung von der konkreten Verbindungsbeschreibung einer Publikation. Wichtig ist bei der Analyse von direkten und kumulierten Verbindungen, dass die entsprechenden Regionen der Adjazenzmatrizen identisch sind, die Verbindungsinhalte der Matrizen jedoch meist sehr unterschiedlich sein können.

3 Ergebnisse

3.1 Ausgewertete Publikationen

Die Suche nach Publikationen in den Datenbanken PubMed, GoogleScholar und Web of Science, mit Hilfe der im Material- und Methodenteil definierten Suchfilter (siehe Abschnitt 2.1), lieferte nach einer Filterung 322 Arbeiten, in denen Verbindungen mittels viralen Tracttracing in der Laborratte beschrieben werden. In 41 weiteren Publikationen wurden ebenfalls virale Tract-tracing Verbindungen erfasst, aber die methodischen Details waren nicht über Datenbankanfragen verifizierbar, so dass insgesamt 363 Arbeiten in das Virus Tract-tracing basierte Konnektom eingegangen sind. Nach der Auswertung (siehe Abschnitt 2.4) der einzelnen Publikationen wurden die Daten in das Programm *neuroVIISAS* zu den bestehenden Verbindungen, die durch nicht virale Methoden vorliegen, sind in der gleichen Datenbank abrufbar, unterscheidbar und vergleichbar. Dies hat den Vorteil, dass unterschiedliche Methoden zur Erfassung von Konnektivitäten differentiell bzw. vergleichend analysiert werden können.

3.2 Neuroontologie des BS-Konnektoms

Nach der Auswahl von Regionen zwischen denen Verbindungen existieren, die mittels Virus Tract-tracing (VTT) gefunden wurden, zeigte sich, dass gleiche und zusätzliche Verbindungen auch mit nicht-viralen Tract-tracing identifiziert worden sind. In einer ersten Übersicht wurden 716 Regionen durch 34566 virale und nicht-virale Kanten verbunden. In diesem Netzwerk sind alle Regionen verbunden, so dass sich eine Zusammenhangskomponente ergibt. Das VTT-Konnektom besteht also aus 716 Gebieten, die auf 14 Hierarchieebenen verteilt sind. Die linke und die rechte Seite des ZNS sowie das PNS und periphere Organe sind in dieser Auswahl enthalten. Wird der VTT-Filter aktiviert, so dass nur Verbindungen im Netzwerk verbleiben, die mittels VTT ermittelt wurden, so verbleiben noch 3323 Verbindungen. In dieser Konfiguration treten keine isolierten Gebiete auf, aber es ergeben sich fünf Zusammenhangskomponenten (Abbildung 16). Von vier nicht zusammenhängenden Komponenten verteilen sich jeweils 2 auf eine Seite: 12Sr (hypoglossal nucleus rostral part) und MuscStyG (styloglossus muscle) auf der linken sowie auf der rechten Seite. Des Weiteren Cent (caudomedial entorhinal cortex) und VPFC (ventral prefrontal cortex) ebenso jeweils auf der rechten und linken Seite. Der größte Teil der links- und rechtsseitigen Gebiete ist jedoch als eine Zusammenhangskomponente verbunden. Die Hierarchie der VTT Gebiete wurde in Abbildung 17 dargestellt. Einige Gebiete besitzen noch Untergebiete mit zahlreichen Verbindungen (kumulierte Verbindungen), die jedoch nicht notwendigerweise durch VTT-Beobachtungen zustande gekommen sein müssen.

Abbildung 16: a) Zirkuläre hierarchische Darstellung der Gebietsauswahl. Hier sind die Gebiete wiedergegeben, zwischen denen Verbindungen mittels VTT gefunden wurden. b) In der planaren organischen Netzwerkdarstellung werden die 5 Netzwerkkomponenten deutlich. Die kleinen 2 Knoten-Komponenten sind am unteren Bildrand zu sehen.

Abbildung 17: Hierarchische Darstellung der Gebiete mit VTT-Verbindungen. Die schwarzen Balken geben die Menge an kumulierten Verbindungen an und die gelben Balken die Menge der direkten Verbindungen. b) Die Tree-Map Darstellung der VTT-Regionen.

3.3 Übersicht über die Gesamtheit der Virus Tract-tracing Verbindungen

Nach Abschluss der Auswertungen von viralen Verbindungen wurde zunächst eine allgemeine Analyse der virusspezifischen Verbindungen durchgeführt. Einige Arbeiten mit viralen Verbindungsbeschreibungen wurden bereits von anderen Auswertern ausgewertet, so dass insgesamt 363 Publikationen Daten mit Virus-basierten Tract-tracing Befunden berücksichtigt werden konnten (Abbildung 18). Die Gesamtzahl von Beobachtungen viraler Verbindungen beträgt 37733, von denen 26744 Verbindungen nicht mehrfach beschrieben wurden. Diese 26744 Verbindungen verlaufen links-ipsilateral und rechts-ipsilateral sowie links-rechtskontralateral und rechts-links-kontralateral. Hiervon sind 317 Verbindungen reziprok. 16652 Verbindungen besitzen transsynaptische Eigenschaften, so dass die Verbindung mindestens über eine Synapse verläuft. Die Gesamtzahl der Pfad-Verbindungen beträgt 1864, von denen 1281 Pfade eine Synapse besitzen und 489 2 Synapsen. Die maximale Pfadlänge beträgt 6 und beinhaltet 5 Synapsen. Die Anzahl kontralateraler Pfade liegt bei 64. Auch Kolateralen-Projektionen wurden mittels viralen Tract-tracing erfasst und die Gesamtzahl an Kolateralen-Verbindungen beträgt 167. Am häufigsten wurden 2-fach Kolateralen Verbindungen beschrieben (80). Das Maximum an Kolateralen-Beobachtungen liegt bei 17. Am meisten (26007) wurde die "tr" Kodierung zur Beschreibung der Ausbreitungsrichtung und transsynaptischen Konnektivität verwendet. Dies bedeutet, dass die meisten Beobachtungen auf retrograden Virus Tract-tracing basieren mit nicht eindeutig beschriebenen 2ten, 3ten oder nten Neuronen oder Regionen von einem eindeutig definierten Ursprungsgebiet der Tracer-Applikation bis zum eindeutig definierten Zielgebiet des Virusnachweises. Diverse virale Projektionsbeschreibungen wurden auch semiquantitativ in den ausgewerteten Publikationen beschrieben. Am häufigsten wurden die Kategorie des nicht-quantifizierbaren bzw. qualitativen Nachweises genutzt ("exist": 9786) gefolgt von "strong" mit 3957 und "light/sparse" mit 3763 Erwähnungen (Abbildung 18).

Aus Abbildung 18c geht hervor, dass nicht nur Verbindungen zwischen Regionen einer Hierarchieebene bestehen, sondern zahlreiche Verbindungen zwischen Hierarchieebenen. Besonders viele Verbindungen wurden mit einer Oberflächendarstellung in Abbildung 18c hervorgehoben. Die meisten Verbindungen liegen zwischen Hierarchieebene 11 und 7. Mit den Verbindungen zwischen Hierarchieebenen wird auch verständlich weshalb nach der Filterung von viralen Tracern (Abbildung 11) 3355 Verbindungen gefunden wurden und nach der globalen Konnektivitätsanalyse (s.u.) nur noch 3323 Verbindungen. Die Differenz der Verbindungen liegt zwischen den Hierarchieebenen oberhalb der ausgewählten Blätter und lässt sich nicht direkt in der Verbindungsmatrix darstellen. Die Häufigkeiten, mit der bestimmte Virussysteme für neuronales Tract-tracing angewendet wurden, sind in Abbildung 19a wiedergegeben. Am häufigsten wurden Pseudorabies Viren zum Nachweis neuronaler Verbindungen verwendet. Außerderm wurden die Anzahlen von Publikationen bestimmt (Abbildung 19b), in denen ein bestimmtes Virussystem zum Nachweis neuronaler Verbindungen diente. In den meisten Publikationen wurde wiederum der Pseudorabies Virus verwendet, gefolgt von Adenoviren.

		Welshi (Osessellere)		IDOI	0.1						_		18							
		vveight (Connections)	All	IPSI	Contra															
Publications cited in connections	7413	unknown	16	16	0								17							
Publication not suitable	1/045	fibers of passage	0	0	0															
-ublications not analysed yet	0	not cloar.	765	602	162								16							
Sumber of observations	37733	not creat	0700	7000	102								16							
lumber of ranions	54013	exists	9786	7298	2488								15							
lumber of regions Bilateral	53868	not present	82	82	0								14							
Jumber of regions Asymmetric	78	very light	414	349	65								7.4							
lumber of leafs	40585	Light/ an area	2762	2050	704								13							
lumber of region names	74083	light sparse	3703	3039	704															
lumber of region abbreviations	59561	light/ moderate	134	104	30								12							
lumber of regions with contours	3155	moderate/ dense	2338	2019	319															
fidline regions	572	moderate/ strong	49	49	0								11							
aximum hierarchy depth	22	inoderater strong	40	40	070															
lumber of connectivity data	26744	strong	3957	3587	370		_						10							
umber of existing connections	10092	very strong	551	499	52															
eciprocal edges	317	All	21855	17665	4190								9							
en-reterences	20	2.41	21000	11000	4100															
ranssynaptic observations	27455			18.01									8							
lumber of naths	1864	Weight (Experiments)	All	IPSI	Contra															
ath length=2	1281	unknown	35	35	0								/							
ath length=3	489	fibere of pageage	0	0	0								<i>,</i>							
ath length=4	34	inters of passage	500	500	0								D							
ath length=5	42	not clear	532	532	U								5							
ath length=6	18	exists	5432	4674	758								,							
lumber of left ipsilateral paths	900	not present	0	0	0							1. Contraction 1. Con	4							
lumber of left contralateral paths	32	verylight	124	116	0	4 5 6 7 8	9	10 11 1	2 13	14 15	16	17 18								
lumber of left paths switching side repeatedly	1	veryingin	124	110	0															
iumber of right ipsilateral paths	888	light/sparse	1801	1619	182		0-500	500-1000	$\equiv 1000$	-1500										
umber of right contralateral paths	32	light/ moderate	34	34	0															
Jumber of colaterals	107	moderate/ dense	929	807	122	Hierarchy depth	4	5	6	7	8	9	10	11	12	13	14	15	16	17
lumber of targets=2	6	and donated attacks	020	0.07	0	a contraction of the second		0	0			0		0		0	0		0	0
lumber of targets=3	11	moderate/ strong	2	2	U	4	U	0	U	U	U	0	4	0	4	0	U	U	U	0
lumber of targets=5	11	strong	1287	1081	206	5	0	0	0	4	18	18	46	78	92	34	48	40	10	0
lumber of targets=6	9	verv strong	102	60	42	6	0	10	4	4	56	70	170	88	262	88	86	124	64	0
lumber of targets=7	5		1			7	0	38	44	70	66	80	130	94	186	70	62	80	42	0
lumber of targets=8	10	Tracing turce		lu una la se se		8	20	136	116	214	98	38	80	58	90	32	30	0	2	0
lumber of targets=9	4	Tracing types	r	Number		0	26	124	120	106	100	60	154	122	170	116	66	4	2	0
lumber of targets=10	4	a	2			9	30	134	130	100	100	00	104	122	1/0	110	00	4	2	-0
lumber of targets=11	8	tma/tmr	4			10	104	304	380	573	258	152	240	380	352	218	148	8	4	0
lumber of targets=12	5	traatraar	0			11	148	934	556	1175	530	217	363	385	612	268	180	28	50	14
lumber of targets=13	8	una/una	0			12	196	566	596	869	350	216	462	540	712	324	374	92	32	16
umber of targets=14	2	tmr	8088			13	42	376	288	414	191	100	186	346	285	172	116	32	18	0
umber of targets=1.5	2	tma	2143			14	267	1002	200	0.45	402	40	222	106	406	76	50	0	40	2
umber of left insilateral colaterals	76	trot	1			14	201	1003	230	340	402	40	332	190	+30	7.0	0.9	0	40	4
umber of left contralateral colaterals	8	4-	1 1 1 0			15	29	127	1/2	209	55	34	42	67	190	/4	22	10	2	U
umber of right insilateral colaterals	75	ta	1448			16	2	46	34	54	14	28	14	18	60	24	2	4	18	0
Anneer en right granaveral colaverala	0	tr	26007			17	0	2	8	20	6	4	6	16	16	8	4	2	2	0
Sumber of right contralateral colaterals	1.14													1.1.1						

Abbildung 18: Virus Tract-tracing spezifische Projekt Statistik. a) Allgemeine Häufigkeiten von Verbindungen, die Pfade und Kolateralen bilden u.a. b) Charakteristika der Virus spezifischen Verbindungen bezüglich ihrer semiquantitativen Gewichte und Tracing-Typen. c) Häufigkeiten von VTT-Verbindungen zwischen verschiedenen Gebieten auf unterschiedlichen Ebenen der Gebietshierarchie. Aus der Oberflächenvisualisierung der Daten wird deutlich, dass es einige Hierarchiebereiche (orange eingefärbt) gibt, zwischen denen offensichtlich mehr Verbindungen bestehen.

Abbildung 19: Häufigkeiten von Virustypen, die für neuronales Tract-tracing in der Ratte verwendet werden. a) Häufigkeiten von Verbindungen, die mit einem bestimmten Virus nachgewiesen wurden. b) Häufigkeit der Publikationen, in denen ein bestimmter Virus zum neuronalen Tract-tracing angewendet wurde.

3.4 Konnektivitätsmatrizen

Die *Adjazenzmatrix* der VTT-Verbindungen zwischen Regionen des ZNS und PNS wurde optimiert ausgewählt, insofern eine maximale Anzahl von VTT-Verbindungen dargestellt ist. Die Matrix wird einmal in einer direkten und ein weiteres Mal in einer kumulierten Version gezeigt, um die deutlich dünner besetzte Matrix der direkten Verbindungen zu vergleichen (Abbildung 20).

Zur Berechnung der Matrizen wurde das "Advanced Connectivity Analysis" Modul über das "Analysis" Menü in *neuroVIISAS* verwendet. Die Adjazenzmatrix (Verbundmatrix, Verbindungsmatrix) ist eine $n \times n$ Matrix für n Knoten, die hier für neuroanatomische Regionen stehen, mit Zeilen für die Output-Verbindungen (Efferenzen) und Spalten für die Input-Verbindungen (Afferenzen). Eine spezifische Position (i, j) (i: Output-Zeile, j: Input-Spalte) in dieser Matrix kann eine 1 oder eine 0 beinhalten, wenn der efferente Knoten über eine Verbindung zu einem afferenten Knoten verfügt (1) oder eben keine Verbindung vorhanden ist (0). Diese Zuordnung erzeugt *gerichtete Graphen*. In Abhängigkeit von den Inhalten der Adjazenzmatrizen werden diese unterschiedlichen Kategorien zugeordnet. Oben wurde die einfachste Kategorie beschrieben. Es ist eine *einfache, binäre Adjazenzmatrix*, in der die Verbindungen als existent (1) oder nicht vorhanden (0) eingetragen sind. Im Unterschied zu den binären Adjazenzmatrizen handelt es sich bei der *erweiterten Adjazenzmatrix*, um eine Matrix in der den Verbindungen Gewichte zugeordnet wurden.

In Abbildung 20 sind die direkten und kumulierten Konnektivitäten vergleichend dargestellt. Zudem wurden die Verbindungsmatrizen in einer VTT-gefilterten und ungefilterten Version wiedergegeben. Beim Vergleich von Abbildung 20a und Abbildung 20c fällt die deutlich dichtere Matrix mit kumulierten Kanten auf. In diesen beiden Abbildungen wurden sowohl VTT, als auch nicht-VTT-Verbindungen dargestellt. Ungefähr zehnmal weniger Verbindungen verbleiben nach der Anwendung des VTT-Filters und ausschließlichen Visualisierung von VTT-Gebieten in direkter (Abbildung 20b) und kumulierter Darstellung (Abbildung 20d). Hieraus kann zunächst geschlossen werden, dass die beiden Tract-tracing Methoden (viral und nicht-virale Methoden) visuell komplementäre konnektionale Information enthalten. Der Umfang an komplementären Verbindungen dieser beiden Methodengruppen kann mit den in *neuroVIISAS* vorliegenden Techniken genauer untersucht werden. Aufgrund der vollständigeren Abbildung von Konnektivitäten werden im Folgenden die kumulierten Varianten der VTT- und nicht-VTT-Adjazenzmatrizen betrachtet.

Abbildung 20: a) Adjazenzmatrix von allen direkten Konnektivitäten von VTT und nicht-VTT-Verbindungen. b) Direkte Konnektivitäten nach VTT-Filterung. c) Adjazenzmatrix von allen kumulierten Konnektivitäten von VTT und nicht VTT-Verbindungen. d) Adjazenzmatrix der kumulierten Konnektivitäten nach VTT-Filterung. Der obere linke Quadrant der linkshemisphärischen ipsilateralen Konnektivität wurde gelb umrahmt. Haupt- und Nebendiagonalen wurden ebenfalls hervorgehoben.

Mit diesem Konnektom werden erstmals Gebiete und Verbindungen, welche in Bereichen des peripheren Nervensystems eines Säugetiers liegen, mitberücksichtigt (Abbildung 21). Die gesamte Peripherie wurde hier nicht aufgeklappt und als Adjazenzmatrix dargestellt (Abbildung 21a), sondern nur die Gebiete, die im Rahmen von VTT-Studien besonders häufig Verbindungsinformation besitzen (Abbildung 21b, c). Alle peripheren Gebiete sind in Abbildung 21a in der Hierarchiedarstellung expandiert. Es handelt sich um 2679 Regionen. Im Gegensatz hierzu beträgt die Anzahl von expandierten Gebieten im VTT-Konnektom lediglich 50. Diese besitzen aber besonders viele mittels VTT nachgewiesene Verbindungen. Da von einigen Regionen des Rückenmarkes und Vorderhirns Atlaskartierungen und Oberflächenrekonstruktionen vorliegen, wurde in Abbildung 22 eine 3D-Visualisierung der Regionen und der VTT-Verbindungen wiedergegeben.

С

Abbildung 21: Ausgewählte periphere Regionen und peripheres Nervensystem. Diese Gebiete beinhalten relativ viele konnektionale Informationen. a) Die Gesamtheit der im Rattenprojekt enthaltenen Gebiete beträgt 2679. b) Gebiete mit besonders zahlreichen Verbindungen, die mittels VTT nachgewiesen wurden. c) Adjazenzmatrix der peripheren Gebiete mit dem CNS als Einheit. Daher sind in dieser kumulierten Darstellung auch viele Afferenzen und Efferenzen des CNS in der ersten Zeile und ersten Spalte eingetragen.

Abbildung 22: 3D-Rekonstruktion von einigen Gebieten des VTT-Konnektoms mit gewichteten Verbindungen. Die rot gefärbten langgezogenen Gebiete im linken Teil der Teilabbildungen sind Abschnitte des Rückenmarkes. a) Ohne Verbindungen. b) Mit Verbindungen.

Um einen Überblick über die Häufigkeit von Beobachtungen einzelner Verbindungen (Abbildung 23) zu erhalten, wurden diese in einer "Edge count" VTT-Adjazenzmatrix farblich kodiert (Abbildung 24). Wurde eine Verbindung mindestens einmal mittels VTT nachgewiesen, wurde ausgezählt wie häufig weitere Beobachtungen in anderen Publikationen entweder mittels VTT oder nicht-VTT diese Verbindung beschrieben haben. Es ergibt sich, dass die meisten Verbindungen einmal beschrieben wurden. Es kommt jedoch auch vor, dass diverse VTT-Verbindungen mehrfach beschrieben wurden und somit besonders zuverlässig in Hinsicht auf ihr tatsächliches biologisches Vorkommen sind.

Abbildung 23: Häufigkeit mit der einzelne Verbindungen im VTT-Konnektom beobachtet wurden (Abbildung 24). Ordinate: Häufigkeit der Beobachtungen. Abszisse: Anzahl der Beobachtungen. Die Verteilung wird interpretiert wie folgt: Verbindungen die jeweils 2-mal beobachtet wurden, kommen ca. 650-mal vor oder 650-mal wurden Verbindungen zweimal beobachtet.

Abbildung 24: Adjazenzmatrix der kumulierten VTT-Verbindungen mit Darstellung der Beobachtungshäufigkeiten von Verbindungen.

3.4.1 Connectivity Matching Matrix

Der Connectivity Matching Index (CMI) kann für jedes Paar von Regionen bestimmt werden. Mit CMI sind Aussagen über die Ähnlichkeit von Konnektivitätsmustern zweier Regionen möglich. Die Afferenzen und Efferenzen werden in der CMI All Matrix insgesamt betrachtet. Die hellen Matrixfelder symbolisieren einen hohen Grad an Efferenzen- und Afferenzenähnlichkeit und die dunkleren Felder das Gegenteil. Die CMI-Werte liegen zwischen 0 und 1 und sind relative Häufigkeiten bzw. prozentuale Angaben der Ähnlichkeit. Besonders ähnliche Verbindungsmuster zwischen Paaren von Regionen sind um die Hauptdiagonale der CMI Matrix zu erkennen. Ferner fallen starke kontralaterale CMI-Werte zwischen spinalen Regionen auf. Aber auch hohe CMI-Werte von ipsilateralen spinalen Regionenpaaren heben sich von anderen Werten ab.

Abbildung 25: CMI Matrix der Input- und Output-Verbindungen. Große Ähnlichkeiten von Input- und Output-Verbindungen wurden mit helleren Farbwerten kodiert. Die Spalten- und Zeilenhistogramme zeigen die Summen der CMI-Werte.

3.4.2 Distanz Matrix

Die Distanz-Matrix (Abbildung 26) zeigt die Länge der kürzesten Verbindungen zwischen den Gebieten des VTT-Konnektoms. Bei dieser Distanz handelt es sich um die kleinste Anzahl der Verbindungen, um von einer Region zur anderen Region zu gelangen (graphentheoretische Distanz). Nicht alle Gebiete sind erreichbar, was durch die schwarzen Bereiche in der Matrix zum Ausdruck kommt. Dies zeigt u.a., dass VTT nicht zu einer unspezifischen Ausbreitung von Viren im Konnektom führt. Des Weiteren wurde ein gelb markierter Streifen der Matrix hervorgehoben, der dienzephale und kortikale Gebiete umfasst und in dem weniger schwarze Bereiche liegen. Der grün markierte dichtere Bereich beinhaltet hauptsächlich Verbindungen von peripheren Organen.

		=

Abbildung 26: Distanzmatrix des VTT-Konnektoms. Die schwarzen Bereiche der Matrix zeigen, dass nicht alle Gebiete über die VTT-Verbindungen erreichbar sind. Ein Streifen mit relativ dichten Distanzeinträgen von dienzephalen Gebieten wurde gelb markiert und Verbindungen von Organen grün.

3.5 Globale Parameter des VTT-Konnektoms

Die Berechnung globaler Parameter des VTT-Konnektoms erlaubt es einen Überblick über das Netzwerk zu bekommen. Die Berechnung erfolgte in der kumulierten Verbindungsdarstellung und basiert auf 716 Regionen, die über 3323 Verbindungen verfügen (Abbildung 27). 496 kontralaterale Verbindungen sind vorhanden und die mittlere Anzahl von Verbindungen pro Region beträgt 9,3. Kolateralen und Pfad-Verbindungen kennzeichnen das VTT-Netzwerk. Es wurde bereits beschrieben, dass das Netzwerk aus 5 Komponenten besteht, von denen sich 4 nur aus 2 Gebieten zusammensetzen und zudem noch bilateral auftreten. 204 VTT-Verbindungen sind reziprok. Die mittlere Pfadlänge beträgt 4,1 und der mittlere Clusterkoeffizient ist relativ klein und liegt bei 0,13. Hingegen ist die Small-Worldness Eigenschaft mit 21,8 relativ groß, genauso wie die Modularität, die 0,6 beträgt. Zudem ist der Fehler der Scale-Free property von 0,6 klein, so dass es sich hier um ein skalenfreies Netzwerk handelt. Die Bedeutung der weiteren Parameter können dem Programm neuroVIISAS oder der Benutzeranleitung zu dem Programm entnommen werden. Das reale VTT-Netzwerk oder empirische Netzwerk wurde mit randomisierten Netzwerkmodellen verglichen. Hierzu wurden 8 verschiedene Modelle mit der gleichen Anzahl an Gebieten und Verbindungen 1000-mal simuliert. Es zeigte sich, dass das rewiring Model mit Konstanthaltung der Anzahl der Reziprozitäten den kleinsten relativen Unterschied mit dem empirischen VTT-Netzwerk aufweist gefolgt von dem einfachen rewiring Model. Beide Modelle sind Grad-erhaltend, was bedeutet, dass die Anzahl der Verbindungen pro Gebiet gleich bleibt. Vor kurzem wurde das neue Klemm-Eguílez Model (KE) in neuroVIISAS implementiert (Klemm und Eguílez, 2002). Es handelt sich um ein skalenfreies Netzwerk, welches zugleich Kleine-Welt-Eigenschaften besitzt. Die beiden Parameter mittlere Pfadlänge bzw. charakteristische Pfadlänge und der mittlere Clusterkoeffizient wurden gegeneinander für alle Modelle und das empirische Netzwerk in einem Diagramm aufgetragen (Abbildung 28). Das empirische Netzwerk hat einen relativ kleinen Clusterkoeffizienten und eine relativ große charakteristische Pfadlänge im Vergleich zu den Klemm-Eguílez Model, Barabasi-Albert und Watts-Strogatz Modellen. Im nicht-VTT Konnektom liegen der Clusterkoeffizient bei 0,37 und die charakteristische Pfadlänge bei 2,4. Der verhältnismäßig kleine Clusterkoeffizient kann durch die Selektion der Regionen und Verbindungen aufgrund der VTT-Methodik zustande kommen. Daher soll untersucht werden, inwieweit nicht-VTT Konnektivität die Parameter ändert. Dies wird mit der differentiellen Konnektomanalyse durchgeführt.

Nodes Edges	Self-references	lpsilateral_L	lpsilateral_R	lpsilateral_R Contralateral		Line density	Су	CyC	Avg_HD		
716 3323	32	1384	1385	496	9,2821	0,6491%	2640	0,0051	11		
Colat Source I Colat Source C Co	plat Target IP Colat	Farget C Colat com	plete AffColat Sourc	AffColat Sourc A	AffColat Target AffC	olat Target AffCola	t compl Paths con	plete Path of lengt	h 2 Path of length 3		
66 66 92	92	14	1	1 0	0	0	62	26	36		
Randomizations 🔽 Erdos Renyi	✓ Watts-Strogatz	🖌 Barabasi-Alber	t 🗾 Modified BA	🖌 Modified OHC	Rewiring	🖌 Reciprocal	🖌 Klemm SV	V			
Number 1000	1000	1000	1000	1000	1000	1000	1000				
Parameter	0.2 β		1.0 β				0.1 β				
Name	Real network	Erdos Renyi	Watts-Strogatz	Barabasi-Albert	Modified BA	Modified OHO	Rewiring	Reciprocal	Klemm SW		
Isolated nodes	0	0,065	0	160	69,037	0	0	0	0		
Connected components	5	1	1	1	1,295	1	2,006	2,208	1		
Reciprocal edges	204	10,776	1066,354	109,8	78,936	868,356	29,876	204	975,22		
Heterogeneity	1,4989	0,3268	0,2275	1,3236	1,0411	0,628	1,4989	1,4989	1,425		
Degree distribution entropy	2,9059	2,5052	2,087	2,5649	3,2334	2,7118	2,9059	2,9059	2,3643		
Diameter	9	9,399	11,243	7,134	8,663	12,131	10,7	10,049	9,486		
Average path length	4,0893	4,4362	5,6049	3,3304	3,6985	5,5457	3,9902	3,882	4,4889		
Average path length - Self-reference	2,7705	4,2991	1,9733	3,1434	3,408	1,9965	3,5378	2,7672	2,0794		
Centrality	0,1238	0,0153	0,0084	0,1597	0,0751	0,0306	0,1289	0,1247	0,1372		
Central point dominance	0,9805	0,7654	0,7528	0,982	0,9427	0,9733	0,961	0,9617	0,9727		
Average subgraph centrality	10,5143	1,2229	6,9405	141,9653	18,2065	12,0075	4,8096	15,7475	1108,009		
Average cluster coefficient	0,1299	0,0065	0,2278	0,0451	0,0228	0,2787	0,049	0,044	0,3633		
Average flow coefficient	0,1159	0,2514	0,5756	0,2025	0,2104	0,4773	0,0964	0,1108	0,5032		
Small-worldness	21,7616	1	27,8392	9,279	4,232	34,4322	8,4083	7,7622	55,4391		
Modularity	0,6231	0,2951	0,7179	0,2594	0,2774	0,7657	0,2686	0,2854	0,7258		
Transitivity	0,0587	0,0065	0,2711	0,0348	0,0253	0,1691	0,0405	0,0386	0,0913		
Global Efficiency	0,0674	0,2385	0,1964	0,1923	0,1975	0,202	0,115	0,1172	0,2484		
Harmonic mean	14,8394	4,1937	5,0926	5,202	5,065	4,9516	8,701	8,5338	4,0524		
Vulnerability	0,0588	0,0043	0,0041	0,0311	0,0148	0,0284	0,0314	0,0313	0,0534		
Local Efficiency	0,1548	0,0066	0,3111	0,0488	0,0255	0,3873	0,0602	0,0537	0,4539		
Directed assortativity coefficient	-0,3649	-0,0019	0,3647	-0,0584	-0,0109	0,2351	-0,2449	-0,2481	-0,2986		
Cyclic coefficient	0,022	0,0769	0,106	0,0798	0,0703	0,1232	0,0225	0,0244	0,1285		
Average search information	2,7433	9,0565	11,5119	5,7928	6,5421	15,0501	4,3508	4,2511	12,7808		
Knotty-centredness	0,123	0,0055	0,0088	0,22	0,0441	0,1893	0,1008	0,1182	0,0937		
	∆=0,6	∆=4	∆=6.2	∆=1,3	∆=1.4	∆=1.5	∆=0,6	∆=0,6	∆=1,5		
Scale-Free property	y=1,12	γ=0,07	γ=1,33	γ=1,38	y=1,32	γ=2,38	y=1,12	γ=1,12	γ=1,24		
	α=0,27	α=0,04	α=0,95	α=0,47	α=0,42	α=9,86	α=0,27	α=0,27	α=0,29		
	∆=1,5	∆=3,9	∆ =6	∆=1,5	∆=0.5	∆=0,7	∆=1.5	∆=1,5	∆=1,9		
Exponential approximation	y=26,2	γ=12,82	γ=5,13	γ=37,68	γ=12,28	γ=6,62	γ=26,2	γ=26,2	γ=64,8		
	α=0,03	α=0,07	α=0,35	α=0,01	α=0,07	α=0,23	α=0,03	α=0,03	α=0,01		

Abbildung 27: Globale Parameter des VTT-gefilterten kumulierten Konnektoms. In den ersten Zeilen sind die allgemeinen Größen des Netzwerkes wiedergegeben. Es wurden alle 8 Zufallsmodelle 1000mal wiederholt, um abzuschätzen, welches Modell die ähnlichsten globalen Netzwerkparameter im Vergleich mit dem empirischen Netzwerk aufweist.

Gleichmäßig zufällig Geordnet Kleine-Welt

Abbildung 28: Vergleich von empirischen VTT-Konnektom (roter Stern) mit gleichgroßen Zufallsnetzwerken. Netzwerkkategorien wurden von den Ecken ausgehend, schattiert dargestellt.

3.5.1 Gruppierungen der VTT-Konnektom Gebiete

Mit der globalen Netzwerkanalyse wird auch die Modularität berechnet. Hierbei werden die Gebiete zu Gruppen zusammengefasst, die innerhalb der Gruppe mehr Verbindungen besitzen als zu Gebieten in anderen Gruppen. Eine nicht-gewichtete Berechnung und eine gewichtete Berechnung ist durchführbar (Abbildung 29). Es wurde das Louvain Modularitätsverfahren (Louvain Method for community detection) angewendet (Blondel et al., 2008). Im VTT-Konnektom lassen sich mit der Modularitätsanalyse Gruppierungen von Gebieten bestimmen, die eine größere Anzahl von Verbindungen untereinander aufweisen als mit anderen Gruppen.

Abbildung 29: Modularitätsanalyse des VTT-Konnektoms. Auch in diesem Konnektom wurden Module gefunden. a) Ungewichtete VTT-Modularitätsanalyse ergab 16 Module. Die Anzahlen der Verbindungen zwischen und innerhalb der Module sind in der daneben plazierten Matrix wiedergegben. b) Gewichtete Modularitätsanalyse. Die semiquantitativen Kantendichten sind auf die Verbindungen projiziert worden. c) Untersuchung des γ -Parameters. Die meisten gleichen Anzahlen von Modulen ergaben sich um einen γ -Wert von 1.

Für die Modulberechnung wurde eine y-Abschätzung durchgeführt, um einen Parameterbereich zu finden, für den möglichst gleiche Anzahlen von Modulen berechnet werden (module stability). Hier wurde ein iteratives Verfahren über 1000 rewiring Randomisierung durchgeführt (Fortunato und Barthélemy, 2007). Ein y-Wert um 1 ergab 18 Module (Abbildung 29c). Mittels dieser Umgruppierung oder Umsortierung ergab sich die Adjazenzmatrix mit Konzentration von Verbindungen um die Hauptdiagonale (Abbildung 30). Die 18 Module sind auf der Hierarchieebene des Clusterungs-Ergebnisses zu erkennen und mittels eines Pfeiles (oben rechts in der Dreieckshierarchie von Abbildung 30) hervorgehoben. Die Identifikation der Regionen lässt sich mit der Treemap-Darstellung vereinfachen (Abbildung 31). Größere und kleinere Gruppen von spinalen Regionen haben sich gebildet. Des Weiteren sind medulläre Gruppen mit Raphe, Pontinen und PAG Kernen in Gruppen zusammengefasst. Außerdem wurde eine Gruppe mit subkortikalen Kerngebieten und einigen kortikalen Regionen gebildet. Ferner ist eine hypothalamische Gruppe erkennbar. Die meisten Gruppen setzen sich jedoch sowohl aus subkortikalen Kerngebieten als auch kortikalen Regionen zusammen. Regionen außerhalb des ZNS sind teilweise Gruppen zugeordnet worden, die hauptsächlich aus spinalen Regionen zusammengesetzt sind. Auch finden sich periphere Regionen in Gruppen medullärer und mesenzephaler Module. Dann ist noch ein großes Modul gebildet worden, welches ausschließlich periphere Regionen enthält. Diese Konnektivität kommt vor allem durch Verbindungen über Ganglien innerhalb und außerhalb von Organen zustande.

Abbildung 30: Modularitäts-Clustering und Umsortierung der Gebiete mit Anreichung von Konnektivitäten um die Hauptdiagonale. Das Ergebnis der Cluster-Darstellung in Form einer Hierarchie ist im oberen Teil der Abbildung wiedergegeben. Der rote Pfeil rechts zeigt auf die Hierarchieebene, welche die 18 Module widerspiegelt.

Abbildung 31: Treemap der mittels der Louvain-Modularitätsanalyse erzeugten Umgruppierung der VTT-Regionen. Die grauen Rahmen entsprechen den hierarchischen Clusterebenen.

3.6 Lokale Konnektivitätsanalyse

Die lokale Konnektivitätsanalyse berechnet die lokalen Netzwerk-Parameter des unilateralen VTT-Konnektoms. Im Tabellenanhang wurden von den 716 Regionen lediglich 59 wiedergegeben, da es sich bei diesen Regionen um besonders wichtige Gebiete des VTT-Konnektoms handelt. Von den 55 Spalten der Ergebnistabelle der lokalen Parameteranalyse beinhalten 50 Spalten Netzwerkparameter. Von diesen 50 Parametern kamen in der endgültigen Tabelle 8 besonders wichtige Parameter zur Darstellung. Von jedem Parameter wurden unabhängig von anderen Parametern die Ränge für jede Region bestimmt. Dies geschieht durch eine absteigende Sortierung der Werte eines Parameters, womit sich eine Reihenfolge bzw. Rangfolge ergibt. Je kleiner die Rangzahl bzw. Rangposition, desto größer ist der Parameter. Parameter deren kleine Werte eine große Bedeutung für eine Region im Netzwerk widerspiegeln, wurden entsprechend an die Rangfolgenberechnung angepasst. Danach wurden die mittleren Rangwerte (AvgRang) für alle Regionen berechnet und bezüglich der mittleren Rangwerte die Regionen sortiert. Die 59 Regionen mit den kleinsten mittleren Rangwerten wurden in Tabelle 8 wiedergegeben. Die formalen Definitionen der Parameter und Erläuterungen sind den Supplementen von Schmitt et al. (2012a, 2014) zu entnehmen. Meist wird zwischen Parametern und Bedeutung einer Region im Konnektom eine Beziehung gesehen, was für den Fall eines umfangreichen Konnektoms mit besonders vielen Regionen und Parametern in einer vollständigen Darstellung unübersichtlich ist. Zur Vereinfachung lassen sich die Regionen aufsteigend bezüglich ihres mittleren Ranges (AvgRang) sortieren. In Tabelle 8 sind die aufgeführten Regionen mit VTT-Verbindungen aufsteigend nach ihren mittleren Rängen der lokalen Parameter sortiert, welche sich annähernd umgekehrt proportional zur Summe der Werte für DGo (Efferenzen) und DGi (Afferenzen) und gleichläufig wie die Shapley-Werte verhalten. Ferner wurden 29 von 50 lokalen Parameter in einem Rangdiagramm visualisiert (Abbildung 37). Die Berechnung lokaler Parameter erfolgte für ungewichtete Verbindungen.

Die obersten Ränge (Tabelle 8) werden von der peribrachialen Region (PBR), dem lateralen prefrontalen Kortex (IPFC), der Oral-cavity (OrgOC), dem Nucleus of the solitary tract (SOL) sowie der Zona incerta (ZI) belegt. Es handelt sich offensichtlich um Gebiete, die relativ große Unterschiede bezüglich ihrer räumlichen Lage, Funktion und Lokalisation im ZNS und PNS aufweisen. Eine bevorzugte Häufung von Regionen, die infolge VTT markiert werden und eine besonders große Bedeutung im Netzwerk aufweisen, ist nicht mittels Rangbildung zu erkennen. Werden die Regionen nach der Anzahl von Input- und Output-Verbindungen sortiert, so ergibt sich ein ganz anderes Bild. Der Flocculonodular lobe hat 102 Afferenzen und Efferenzen (CEREFL=102), der Paraflocculus (PFl=92), die extra spinal segmental structures (ExSL=69-71) und schließlich Stomach (OrgsStom=66). Es fällt auf, dass der Input Anteil an der Gesamtzahl der Verbindungen dieser Regionen, stets um ein Vielfaches größer ist als der Output Anteil. Der Convergence Divergence Coefficient (CDC= DG_{in}/DG_{all}) liegt für diese Regionen weit über 0,5, was den quantitativ starken Input widerspiegelt.

Der mittlere Rang (Average rank) zeigt eine andere Regionenfolge als die Sortierung nach der Anzahl der Input- und Output-Verbindungen (degree all: DG_{all}) pro Region (Abbildung 32). Der mittlere Rang ergibt einen deutlich geringeren Abfall als die mittlere Rangkurve. Dies zeigt, dass diese beiden Parameter nicht direkt linear zusammenhängen. Der DG_{all} zeigt für die Regionen mit den größten DG_{all} Werten den stärksten Abfall. Die restlichen ca. ³/₄ der Regionen haben relativ wenige Verbindungen, was sich in geringen Änderungen des DG_{all} Wertes zeigt. Schließlich geht aus dem Diagramm hervor, dass Regionen mit einem großen mittleren DG_{all} Wert nicht notwendigerweise auch einen besonders großen mittleren Rang aufweisen müssen (siehe Regionenbezeichnungen auf den beiden Abszissen).

Regions (average rank)

Abbildung 32: Der mittlere Rang (average rank) und die Gesamtzahl der Verbindungen pro Region (degree all) wurden jeweils normiert (Ordinaten) und in dieses Diagramm eingetragen. Die Regionenbezeichungen für degree all finden sich in der oberen Abszisse wieder und die für den mittleren Rank in der unteren Abszisse. Es wird deutlich, dass Regionen mit vielen Verbindungen (degree all) nicht notwendigerweise einen großen average rank besitzen müssen.

Die maximale Anzahl an Afferenzen und Efferenzen hat der Flocculonodular lobe im VTT Konnektom. Seine 102 Verbindungen, die mittels VTT nachgewiesen wurden und im VTT-Konnektom intrinsisch verlaufen, verteilen sich auf lediglich 7 Efferenzen und 95 Afferenzen. Auf dem zweiten Rang befindet sich der Paraflocculus mit 92 Verbindungen bzw. 4 Efferenzen und 88 Afferenzen. Eine Gruppe von peripheren Strukturen, die das Dorsal root ganglion, die Dorsal root, und die Ventral root des Spinalnervens umfassen, werden als Extra spinal segmental structures Gruppe oder Region zusammengefasst. In den Segmenten L3 bis L6 werden hier zwischen 69-71 Verbindungen beschrieben, von denen jeweils 54 Verbindungen afferent sind.

Dann folgt ein in der VTT-Literatur intensiv untersuchtes Organ: Stomach. Die 66 Verbindungen verteilen sich auf 59 Afferenzen und 7 Efferenzen. Zwei weitere häufig beschriebene Gebiete bei VTT-Experimenten sind der Paraventricular hypothalamic nucleus (Pa) (16 Afferenzen, 41 Efferenzen) und der Nucleus of the solitary tract (Sol) (12 Afferenzen, 43 Efferenzen). Pa und Sol sind die ersten beiden zentralnervösen Kerngebiete, bei denen das Verhältnis bei einem relativ großen DG_{ALL} -Wert erstmals für die efferenten Verbindungen größer ist als für die Afferenzen (**c**onvergence **d**ivergence **c**oefficient: CDC-Werte < 0,5).

Betrachtet man die Rangbildung bzw. Sortierung der Regionen des VTT-Konnektoms für den mittleren Rang (AvgRank), dann ergibt sich eine andere Rangfolge. An erste Stelle steht die Peribrachial region mit einem relativ ausgewogenen Verhältnis von Efferenzen (21) und Afferenzen (18) und demzufolge einem CDC-Wert von 0,4615. Dann folgt der Lateral prefrontal cortex mit 11 Efferenzen und 31 Afferenzen. An der dritten Stelle liegt ein peripheres

Organ bzw. ein Abschnitt einer Körperhöhle, nämlich die Oral cavity mit 5 Efferenzen und 16 Afferenzen. Dann wieder Sol mit 43 Efferenzen und lediglich 12 Afferenzen.

Der *Katz-Index* kann als Wichtigkeit eines Knotens innerhalb eines Netzwerkes interpretiert werden und ist die Summe der direkten und indirekten Verbindungen eines Knotens, die mit α^k gewichtet wird, wobei k die Pfadlänge der Inputs darstellt und α zwischen 0 und dem größten absoluten Eigenwert der Adjazenzmatrix liegt. Ein niedriger *Katz-Index* eines Gebietes weist auf eine geringe Bedeutung dieses Gebietes für das Netzwerk hin. Große *Katz-Index* Werte sind meist mit großen DG_{ALL} Werten korreliert (c=0,605) (Abbildung 33). Den Gebieten Stomach (\approx 8268), Extra spinal segmental structures (\approx 6297), sowie spinalen Strukturen wie verschiedene thorakale spinale Segmente und der Nucleus proprius (\approx 3527-3121) kommt eine relativ große Bedeutung im VTT-Netzwerk zu. Den mit Abstand niedrigsten Wert für den *Katz-Index* (\approx 0,2261) besitzt intermediolateral cell columns auf mehreren zervikalen Segmenten. Zahlreiche Regionen weisen nur Efferenzen auf, aber nicht beide Verbindungsarten. Solche Regionen haben einen *Katz-Index* von 0.

Abbildung 33: Darstellung des *Katz-Indexes* in Abhängigkeit von Input- und Output-Verbindungen (DG_{All}) des VTT-Konnektoms. Die lineare Korrelationsanalyse ergibt einen Wert von c=0,605. Dargestellt sind die Regressionsgrade. Die Farbwerte der Punkte entsprechen den Farbwerten der VTT-Regionen.

Die *Betweeness-Zentralität (BC)* ist der Quotient der Anzahl kürzester Pfade zwischen zwei Gebieten a nach b über ein Zwischengebiet v und der Gesamtzahl kürzester Pfade von a nach b. BC ist ein Maß für die Zentralität einer Region in dem VTT-Netzwerk. Mit der Annahme, dass der Signalfluss den kürzesten Weg durch das Netzwerk nimmt, hat eine Region mit einer großen BC den größten Einfluss auf die Übertragung von Signalen. Eine große BC unterstreicht die Wichtigkeit eines Knotens bzw. einer Region für das gesamte Netzwerk bzw. das BS-Netzwerk. Die BC ist mit dem DG_{All} korreliert: c=0,552. Die Gebiete Sol (BC \approx 0,049), Stomach (BC $\approx 0,0343$), Lateral prefrontal cortex (BC $\approx 0,0193$) und Oral cavity (BC $\approx 0,0178$) haben die größten BC-Werte und damit eine relativ große Relevanz für das Netzwerk. Die Verteilung der BC-Werte in Abhängigkeit von der Gesamtzahl von Verbindungen pro Region ist in Abbildung 34 dargestellt.

Abbildung 34: Darstellung der Betweeness-Zentralität (BC) in Abhängigkeit von Input- und Output-Verbindungen (DG_{All}) des VTT-Konnektoms.

Mit der *Eigenvektorzentralität (EC)* werden Gebiete gefunden, die mit anderen wichtigen – aus der Sicht der Netzwerk-Konnektionalität - Gebieten verbunden sind. Diese haben eine besondere Bedeutung für die Übertragung von Signalen im BS-Netzwerk. EC-Werte gegen 1 weisen eine besonders große Bedeutung eines Knotens im Netzwerk hin. Für Sol wurde ein maximaler EC-Wert von 1 berechnet. Danach folgen A5 noradrenaline cells mit 0,8129, Pa mit 0,7142 und Caudal bulbar reticular formation mit 0,6582. Der Korrelationskoeffizient c=0,465 in der linearen Korrelationsanalyse von BC und dem DG_{All}–Wert (Abbildung 35).

Abbildung 35: Darstellung der Eigenvektor-Zentralität (EC) in Abhängigkeit von Input- und Output-Verbindungen (DG_{All}) des VTT-Konnektoms.

Der Shapley-Index (S) ist ebenfalls ein Zentralitätsparameter, der Gruppenbildungen von Knoten bzw. Regionen und deren Interkonnektionalität bestimmt. Somit besteht ein Unterschied zu den zuvor erwähnten Parametern, die gruppierungsunabhängige Zentralitätsmaße darstellen (Michalak et al., 2013). Der Shapley-Index geht aus der mathematischen Spieltheorie bzw. kooperativen Spieltheorie hervor (game theoretic network centrality measure). Kleine Shapley-Werte (negative Werte) spiegeln eine große Bedeutung eines Gebietes im Netzwerk wider (Kötter et al., 2007). Für die Oral cavity (S=-3,794, DG_{All}=21), Sol (S=-3,694, DG_{All}=55), Substantia nigra (S=-1,855, DG_{All}=28) und Extra spinal segmental structures (S=-1,434, DG_{All}=69) weicht die Reihenfolge der Größen deutlich zu ihren mittleren Rängen ab. Differenzen in der Reihenfolge der Input- und Output-Verbindungsanzahlen (DG_{All}) der Regionen treten ebenfalls auf, was darauf zurückzuführen sein könnte, dass speziell die konnektionalen Eigenschaften einer Region im Netzwerk neben der Anzahl der Verbindungen wichtig für Bedeutung eines Gebietes im Konnektom ist (Abbildung 36).

Abbildung 36: Der Shapley-Index (Shapley) in Abhängigkeit von Input- und Output-Verbindungen (DG_{All}) des VTT-Konnektoms.

Ergänzend wurden die lokalen Parameter des VTT-Konnektoms vergleichend graphisch dargestellt im Abbildungsanhang (Abbildung 55c, d). Das Verhältnis von Input- und Output-Verbindungen für den Verbindungsgrad, den Clusterkoeffizienten (CluC), Closeness Zentralität (CC), Centroid Wert (Cen), Exzentrizität (Ecc), Lateralität (LL), Participation Koeffizient (PC), Radialität (Rad) und Z-score (Z) sind in Abbildung 55a und b wiedergegeben. Der graphische Vergleich von Input- und Output-Verbindungen zeigt deutlich, dass die Regionen mehr Input-Verbindungen als Output-Verbindungen aufweisen. Sol und PA zeigen vermehrte Output-Informationen. SN, LH und PBR zeigen ein ausgewogenes Input-Output-Verbindungsverhältnis, was sich auch am Clusterkoeffizienten und den übrigen Parametern zeigt.

3.6.1 Zyklische Verbindungen

Um von einer Region zur selben Region über die im VTT-Konnektom vorhandenen Verbindungen zurückzugelangen, kann es diverse Pfade bzw. Möglichkeiten geben. Im einfachsten Fall liegt einfach eine Verbindung innerhalb der Region vor (Schleife, Loop, Selbstreferenz). Wenn ein weiteres Gebiet passiert werden muss, um zum Ursprungsgebiet zurückzugelangen sind zwei Gebiete und 3 Verbindungen in den zyklischen Pfad involviert. Genauso sind auch höhergradige zyklische Verbindungen möglich. Die Möglichkeiten von zyklischen Verbindungen nehmen mit wachsender Zahl an zu passierenden Gebieten zu. Hier wurden 10 mögliche Gebiete bei der Berechnung von zyklischen Verbindungen zugelassen und über die Häufigkeit von Zyklen über 9 Gebiete absteigend sortiert (Abbildung 37). Nach der Sortierung ergibt sich eine Rangfolge von Sol, Stomach, Pa, Extra spinal segmental structures und caudal bulbar reticular formation, also Gebiete, die auch bei anderen Analysen erste Ränge in Sortierungen eingenommen haben.

Index Name 1 2 3 4 5 6 7 8 9 10 70 Nucleus, of, the_solitary, tract, R 1 7 71 10 620 6866 2451 25569 94266 6868219 600 Stomach_L 0 5 9 308 981 7385 687622 891770 8271166 601 Stomach_L 0 2 6 32 238 1006 11222 7335 483782 2866296 252 Edra, spinal_segmental_structures_L_L 0 15 0 00 68 7725 7663 338162 470457 5039804 246 Edra, spinal_segmental_structures_L_L 0 13 0 546 161629 6228 23285 386507 4739811 247 Edra, spinal_segmental_structures_L_L 0 13 0 546 161637 6204 232375 6639524 4739567 270 Edr	CycleCount											1,
70 Nucleus, of, the, solitary, tract, R. 1 72 1106 620 6886 24351 235569 934265 696216 600 Stomach, L. 0 5 9 308 12386 21209 367622 811770 8271166 601 Stomach, R. 0 5 9 308 392 12385 12209 367622 811770 8271166 130 Paraventricular, hypothalamic, nucleus, L. 0 2 6 33 238 1086 11222 78335 483783 3966326 242 Extra, spinal, segmental, structures, L.S. 0 15 0 602 681 7257 7563 38182 420457 5539904 44 Cata, spinal, segmental, structures, L.S. 0 13 0 646 51 6266 6226 32386 386507 4738671 254 Extra, spinal, segmental, structures, L.4. 0 13 0 644 51 6137 6140 6145 6143 6404 32906 7868574 730662 737666 73068	Index Name	1	2	3	4	5	6	7	8	9 🕶	10	Γ
403 Nucleus, of, me, soltary, fract_R 1 7 72 160 620 6886 24351 235569 94286 6980 500 500 300 389 12386 21209 36762 811770 8271166 6 691 510 302 389 12386 21209 36762 811700 8271166 6 32 281 5006 11222 78336 483783 2866296 439 Paramenticular, hypothalamic, nucleus, L 0 15 0 602 681 7255 7563 38162 420457 5039804 634 Extra_spinal_segmental_structures, L_S R 0 15 0 602 681 7255 7563 38162 420457 5039804 44 Gaudal Lubar, relocutar, formaton, R 13 17 6836 1656 1226 53168 382271 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 1832397 <	70 Nucleus of the solitary tract L	1	7	27	180	620	6886	24351	235569	934265	6968218	
6603 5 0 306 399 12385 21209 367622 811770 8271166 106 Paraventicular, hypothalamic, nucleus, L 0 2 6 33 238 1908 11222 78336 483782 396622 249 Paraventicular, hypothalamic, nucleus, R 0 2 33 288 1098 11222 78336 483782 3966226 242 Extra, spinal, segmental, structures, L5, L 0 15 0 602 68 1723 7663 38182 420457 5039044 44 Caudal, hubbar, relevata, formation, L 1 17 766 380 1655 12267 53168 92270 1832397 247 Extra, spinal, segmental, structures, L4 0 19 0 646 51 16267 630 632276 366396 4723657 254 Extra, spinal, segmental, structures, L4 0 12 0 614 15646 5477 31062 37356 455533	403 Nucleus_of_the_solitary_tract_R	1	7	27	180	620	6886	24351	235569	934265	6968218	
691 Stomach_R 0 5 9 308 9285 12385 21209 367622 81770 8271662 439 Paraventicular_typothalamic_nucleus_R 0 2 6 33 238 1908 11222 7833 438783 2966264 432 Extra_spinal_segmental_structures_L5_R 0 15 0 602 68 17253 7663 38182 420457 5039004 444 Caudal_bulbar_reticular_formation_R 1 9 17 665 380 1655 12267 51168 982270 1832397 247 Extra_spinal_segmental_structures_L3_R 0 13 0 644 51 16236 6228 23885 388507 4739881 254 Extra_spinal_segmental_structures_L4_R 0 13 0.644 51 16237 66136 622373 5663964 4728657 270 Extra_spinal_segmental_structures_L4_R 0 13 0.644 51 66137 66402 232075 656532 260 Extra_spinal_segmental_structures_L6_R </td <td>690 Stomach_L</td> <td>0</td> <td>5</td> <td>9</td> <td>308</td> <td>389</td> <td>12385</td> <td>21209</td> <td>367692</td> <td>891770</td> <td>8271166</td> <td></td>	690 Stomach_L	0	5	9	308	389	12385	21209	367692	891770	8271166	
106 Paraventicular_typothalamic_nucleus_L 0 2 6 33 238 1006 11222 7835 483783 2966296 2439 Paraventicular_typothalamic_nucleus_L 0 15 0 602 68 17253 7663 381821 20457 5039904 242 Extra_spinal_segmental_structures_L5_L 0 15 0 602 68 17253 7663 381821 20457 5039904 247 Extra_spinal_segmental_structures_L3_L 0 13 0 686 116269 6228 23865 86807 4739881 246 Extra_spinal_segmental_structures_L4_R 0 13 0 644 51 16137 6204 323275 663664 4723657 263 Extra_spinal_segmental_structures_L6_L 0 12 0 614 42 15546 5476 314062 33756 455532 620 Extra_spinal_segmental_structures_L6_L 0 12 0 614 42 15546 5476 314062 33756 455532 620 Ex	691 Stomach_R	0	5	9	308	389	12385	21209	367692	891770	8271166	
439 Paraventricular_inyoothalamic_nucleus_R 0 2 6 33 238 1908 11222 7835 48378 2966280 634 Extra_spinal_segmental_structures_L5_R 0 15 0 602 68 17253 7663 38182 420457 5039904 44 Caudal_bublar_refocutar_formation_R 1 3 17 665 360 1655 12267 53168 392270 1832397 247 Extra_spinal_segmental_structures_L4_R 0 13 0 546 51 16256 6226 323865 386507 4739891 254 Extra_spinal_segmental_structures_L4_R 0 13 0 546 51 16137 6040 32375 365584 4738677 256 Extra_spinal_segmental_structures_L6_R 0 12 0 514 42 15548 5473 310022 37356 4555532 266 Grta_spinal_segmental_structures_L6_R 0 12 0 514 42 15548 5473 310022 37356 4555532 66607al_carty_R	106 Paraventricular_hypothalamic_nucleus_L	0	2	6	33	238	1908	11222	78335	483783	2996296	L
262 Extra_spinal_segmental_structures_L5_L 0 60 60 72.53 7663 338162 420467 5039904 44 Caudal_bubbar_efectural_formation_L 1 3 17 65 300 1655 12267 53168 382270 1832397 247 Extra_spinal_segmental_structures_L3_L 0 13 0 548 5165 12267 53168 382270 1832397 247 Extra_spinal_segmental_structures_L3_L 0 13 0 548 51 16269 6228 323863 386507 4739681 256 Extra_spinal_segmental_structures_L4_L 0 13 0 544 511 6137 6204 322375 663364 4723657 250 Extra_spinal_segmental_structures_L6_R 0 12 0 514 42 15546 5476 314062 33756 455532 260 Fat_aspinal_segmental_structures_L6_R 0 12 0 514 42 15546 5476 314062 33756 455532 260 Fat_aspinal_segmental_structures_L6_R<	439 Paraventricular_hypothalamic_nucleus_R	0	2	6	33	238	1908	11222	78335	483783	2996296	
634 Extra_spinal_segmental_structures_L5_R 0 60 668 7223 7683 338122 42075 50393 5038122 503297 50333 503297 50333 503297 503297 503297 503297 503297 503297 503297 503297 503297 503297 503297 503297 503297 1832397 172357 1863396 1472357 186396 143256 1547 14062 337356 455533 6686 12267 53164 185612 185612 185612 1863531 1866171 1865612 1863612 1863612 1863612 1863612 18661613 18661613 18661613 18661613 18661613 18661613 18661613 18661116137 18661616134 186616	262 Extra_spinal_segmental_structures_L5_L	0	15	0	602	68	17253	7563	338182	420457	5039904	
44 (Caudal_bublar_telcular_formation_L 1 3 17 665 1207 53168 392270 1832397 237 (Caudal_bublar_telcular_formation, R 1 3 17 665 12267 53168 392270 1832397 237 (Caudal_bublar_telcular_butures_L3_L 0 13 0 548 51 16289 6228 323863 368077 4739801 254 (Etria_spinal_segmental_structures_L4_L 0 13 0 544 51 16137 6204 322375 366396 4723657 270 (Etria_spinal_segmental_structures_L6_R 0 12 0 514 421 15648 5476 314062 37366 455532 680 (Oral_cavity_R 0 3 22 67 342 1582 936 45649 29800 1656112 176 Lateral_prefrontal_cortex_L 0 5 16 79 440 2406 12037 61875 316706 1706421 176 Lateral_prefrontal_cortex_R 0 5 10 7440 2406 12037 61875 316706	634 Extra_spinal_segmental_structures_L5_R	0	15	0	602	68	17253	7563	338182	420457	5039904	1
377 Caudal_bubar_releval_formation_R 1 3 17 65 300 1655 1227 53168 392270 183297 247 Exta_spinal_segmental_structures_L3_R 0 13 0 548 51 1628 6228 323865 386507 4739891 254 Exta_spinal_segmental_structures_L4_R 0 13 0 544 51 16137 6204 322375 366396 4723657 262 Exta_spinal_segmental_structures_L6_R 0 12 0 514 421 1546 5476 314062 337366 4555532 668 Oral_card_R 0 3 22 67 342 1568 9368 45649 329803 1685112 176 Labral_prefnortal_cortex_L 0 5 16 79 440 2406 12037 61875 316708 1706421 176 Partizzania_mic_noctex_L 0 5 30 124 595 2730 12644 6339 24561 1499818 4339 1306417 3766708 37465	44 Caudal_bulbar_reticular_formation_L	1	3	17	65	360	1655	12267	53168	392270	1832397	
247 [Extra_spinal_segmental_structures_L4_L 01 0 548 51 16:298 6:228 32:3985 386007 4739891 254 [Extra_spinal_segmental_structures_L4_L 01 0 548 51 16:37 6:204 32:3275 366396 472:3657 256 [Extra_spinal_segmental_structures_L6_R 01 0 544 51 16:137 6:204 32:3275 366396 472:3657 270 [Extra_spinal_segmental_structures_L6_R 0 12 0 514 42 15:468 576 31:002 37:356 45:55532 688 [Oral_cavity_L 0 3 22 67 34:2 16:89 36:649 329803 16:85112 1599[Lateral_prefontal_covitx_L 0 5 16 76 440 2406 12037 61875 16706 170:6421 1698[Oral_cavity_R 0 5 16 76 440 2406 12037 61875 16706 170:6421 1698[Oral_cavity_R 0 2 14 65 30 124 595 2700 12646 60319	377 Caudal_bulbar_reticular_formation_R	1	3	17	65	360	1655	12267	53168	392270	1832397	
619 Extra_spinal_segmental_structures_L3_R 0 51 6228 5228 523865 36807 473967 524 Extra_spinal_segmental_structures_L4_R 0 13 0 544 51 6137 6204 522375 366396 4723657 526 Extra_spinal_segmental_structures_L6_R 0 12 0 514 42 15548 5476 314062 337366 4555532 642 Extra_spinal_segmental_structures_L6_R 0 12 0 514 42 15548 5476 314062 337366 455532 643 Oral_cavity_R 0 9 22 67 342 1582 9356 45640 329802 1695112 176 Lateral_prefrontal_cortex_L 0 6 16 79 444 2406 12037 61875 316708 1706421 176 Berbiracain_lamic_nucleus_L 0 5 10 12 16 63 303 1483 8134 42359 25541 1499818 439 Mediodorsal_malamic_nucleus_L 0 1 7 42 551302 7567 74465	247 Extra_spinal_segmental_structures_L3_L	0	13	0	548	51	16269	6228	323895	368507	4739981	
254 Extra_spinal_segmental_structures_L4_L 0 13 0 544 51 16137 6204 322375 366396 4723657 260 Extra_spinal_segmental_structures_L6_L 0 12 0 514 4516 16137 6204 322375 366396 4723657 270 Extra_spinal_segmental_structures_L6_L 0 12 0 514 421 15548 5476 314062 337266 455532 688 Oral_cavity_L 0 3 22 67 342 1582 9368 45649 329803 1685112 176(Lateral_perfontal_covitex_L 0 5 16 76 440 1646 10377 61875 16706 1706421 1690 Lateral_perfontal_covitex_R 0 5 30 124 595 2730 12684 60319 295641 1499616 449 Mediodorsal_malamic_nucleus_L 0 5 30 124 595 2730 12644 60319 295641 1499616 449 Mediodorsal_malamic_nucleus_R 0 2 14 63 30 148 <t< td=""><td>619 Extra_spinal_segmental_structures_L3_R</td><td>0</td><td>13</td><td>0</td><td>548</td><td>51</td><td>16269</td><td>6228</td><td>323895</td><td>368507</td><td>4739981</td><td></td></t<>	619 Extra_spinal_segmental_structures_L3_R	0	13	0	548	51	16269	6228	323895	368507	4739981	
628 [btrda_spinal_segmental_structures_L4_R 0 13 0 644 611 6137 6224 522375 36636 4723657 270 [btrda_spinal_segmental_structures_L6_R 0 12 0 514 421 5548 5476 314062 337366 4555532 642 [btrda_spinal_segmental_structures_L6_R 0 3 22 67 342 1582 9368 456491 329031 1685112 688 [oral_cavity_L 0 3 22 67 342 1582 9368 456491 329031 1685711 176 [btraised] prefrontal_cortex_R 0 5 16 79 440 2406 12037 61875 316706 1706421 176 [btraised] prefrontal_cortex_R 0 5 30 124 565 2730 12646 60319 285441 1498618 439 [btraised] prefrontal_cortex_R 0 5 30 124 65 3073 1246 622110 1152011 1396417 376 Pertractinal_region_L 0 2 14 65 303 1	254 Extra_spinal_segmental_structures_L4_L	0	13	0	544	51	16137	6204	322375	366395	4723657	
2270 Extra_spinal_segmental_structures_L6_R 0 12 0 514 42 15548 5476 314002 337366 4555332 688 Joral_cavity_L 0 3 22 67 342 1588 9578 45649 329803 1685112 1760 Lateral_prefrontal_contex_L 0 3 22 67 342 1582 9358 45649 329803 1685112 1760 Lateral_prefrontal_contex_R 0 5 16 76 440 2406 12037 61875 316706 1706421 1760 Medioasal_thalamic_nucleus_R 0 5 30 124 595 770 12684 60319 295541 1499816 439 Mediodorsal_thalamic_nucleus_R 0 2 14 65 303 1483 8134 42369 250511 136617 736 Penthrachial_region_R 0 2 14 65 303 1483 8134 42369 250511 136617 430 Lateral_mynothalamic_area_R 0 1 7 47 255 1366 7687 37465	626 Extra_spinal_segmental_structures_L4_R	0	13	0	544	51	16137	6204	322375	366395	4723657	
642 Extra_spinal_segmental_structures_L6_R 0 12 0 512 0 514 215 6456 6456532 6456532 6880/oral_cavity_L 0 3 22 67 342 1582 9358 45649 32903 1695112 6880/oral_cavity_L 0 3 22 67 342 1582 9358 45649 32903 1695112 150 Jata 167 140 1676 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1366 136 186 134 1325 250511 136641 1396417 1366 1366 1366 1366 1366 1366 1366 1366 1366 16767 3767 37465	270 Extra_spinal_segmental_structures_L6_L	0	12	0	514	42	15548	5476	314062	337356	4555532	
688 (oral_cavity_L 0 3 22 67 342 1582 9358 45649 32903 1695112 176(Lateral_prefrontal_contex_R 0 3 22 67 342 1582 9358 45649 32903 1695112 176(Lateral_prefrontal_contex_R 0 5 16 79 440 2406 12037 61875 316705 1706421 159(Lateral_prefrontal_contex_R 0 5 30 124 595 2730 12694 60319 295641 1499818 439(Mediodorsal_thalamic_nucleus_R 0 5 30 124 595 2730 12694 62319 295641 1499818 439(Mediodorsal_thalamic_area_R 0 1 7 47 555 1862 7867 37465 22110 1152301 430(Lateral_hypothalamic_area_R 0 1 67 477 555 1862 7867 37465 22110 1152301 150(Lateral_hypothalamic_area_R 0<	642 Extra_spinal_segmental_structures_L6_R	0	12	0	514	42	15548	5476	314062	337356	4555532	
689 Oral_cavity_R 0 3 22 67 342 1582 9358 45649 32980 169511 176 [Lateral_prefrontal_contex_R 0 5 16 79 440 2406 12037 61875 316705 1706421 159[Lateral_prefrontal_contex_R 0 5 10 79 440 2406 12037 61875 316705 1706421 159[Mediodorsal_thalamcucutes_L 0 5 30 124 595 2730 12644 63319 256541 1499818 43] Peritractinal_region_L 0 2 14 65 303 1483 8134 4236 250511 1386417 376 Peritractinal_region_R 0 1 7 47 255 1362 7567 37465 22110 1152301 180 Lateral_prothalamic_grave_R 0 1 9 47 254 1366 7302 3366 208396 1116231 130 47 25	688 Oral_cavity_L	0	3	22	67	342	1582	9358	45649	329803	1695112	
176 Lateral_prefrontal_contex_R 0 5 16 79 440 2406 12037 61875 316705 1706421 159 Jateral_prefrontal_contex_R 0 5 10 79 440 2406 12037 61875 316705 1706421 116 Mediodorsal_thalamic_nucleus_R 0 5 30 124 595 2730 12894 60319 295641 1499816 439 Peribrachial_region_L 0 2 14 63 3031 4438 8134 42359 255111 1366417 976 Peribrachial_region_R 0 1 7 47 255 1362 7587 37465 22110 1152301 180 Lateral_mpothalamic_area_R 0 1 7 47 255 1362 7587 37465 22110 1152301 180 Lateral_onthal_contex_L 0 1 64 3190 9354 44028 16666 1081634 150 Lateral_onthal_contex_L 0 1 94 224 1366<	689 Oral_cavity_R	0	3	22	67	342	1582	9358	45649	329803	1695112	
509_Lateral_prefrontal_contex_R 0 5 16 76 440 2406 12037 61875 31760 1706 1616_Mediodorsal_thalamic_nucleus_R 0 5 30 124 595 2730 12844 60319 295541 1499816 439 Mediodorsal_thalamic_nucleus_R 0 5 30 124 595 2730 12844 60319 295541 1499816 439 Petritrachial_region_R 0 2 14 63 303 443 8134 42359 255111 1366117 97 Lateral_mpothalamic_area_R 0 1 7 47 255 1362 7567 37465 22110 1152011 150 Lateral_orbital_contex_R 0 1 7 47 255 1362 7567 37465 22110 1152011 160 Accumbens_nucleus_R 0 1 9 47 254 1366 7560 3366 20396 1116201	176 Lateral_prefrontal_cortex_L	0	5	16	79	440	2406	12037	61875	316705	1706421	
116 Mediodorsal_mtaimic_nucleus_L 0 5 30 124 595 2730 12694 60319 295541 1499816 439 Mediodorsal_mtaimic_nucleus_R 0 5 30 124 595 2730 12694 60319 295541 1499816 4376 Pertbrachial_region_L 0 2 14 63 3031 1483 8134 42359 250511 1396417 376 Pertbrachial_region_L 0 1 7 47 255 1862 7867 37465 22110 1152301 1430 Lateral_orbital_cortex_L 0 1 6 7420 1960 9350 44029 216666 108134 150 Accumbens_nucleus_L 0 1 9 47 254 1366 7362 38366 208396 111621 423 Accumbens_nucleus_L 0 1 9 47 254 1366 7363 38366 208396 111621 423 Antorad_segment_6_L 0 4 056 633 41	509 Lateral_prefrontal_cortex_R	0	5	16	79	440	2406	12037	61875	316705	1706421	
449/Mediodorsal_mtalamic_nucleus_R 0 5 30 124 595 2730 126944 60319 29541 1499615 439/Petritoratial_region_R 0 2 14 63 303 1483 8134 42359 250511 1396417 97Liateral_mypothalamic_area_R 0 1 7 47 255 1362 7567 37465 22110 1152301 430/Lateral_mypothalamic_area_R 0 1 7 47 255 1362 7567 37465 222110 1152301 150/Lateral_mothal_contex_R 0 3 16 87 430 1990 9364 44029 216066 1081634 150/Accumbens_nucleus_R 0 1 94 7254 1366 7362 33366 20396 1118021 324 1360 7603 440 190 55 6331 4102 133037 20366 202133 1990 130441 1052074 324 1360 150 77 137 1157 137 137 1391 41080<	116 Mediodorsal_thalamic_nucleus_L	0	5	30	124	595	2730	12694	60319	295541	1499818	
43)Peritrachial_region_L 0 2 14 68 303 1483 8134 42359 25011 1396417 376)Peritrachial_region_L 0 2 14 68 303 1483 8134 42359 250111 1396417 376)Peritrachial_region_L 0 1 7 47 255 1362 7587 37465 122110 1152301 180(Lateral_otrial_cortex_L 0 3 16 87 430 1990 9350 44029 16066 108134 150(Accumbers_nucleus_R 0 1 9 47 254 1366 7362 3886 208366 118021 232/Interacal_segment_6_L 0 1 9 47 254 1366 7362 3886 20836 118021 232/Interacal_segment_6_L 0 4 0 190 55 6031 4101 13037 203668 201233 236/Interacal_segment_6_L 0 2 1<12	449 Mediodorsal_thalamic_nucleus_R	0	5	30	124	595	2730	12694	60319	295541	1499818	
376 Pertbrachial_region_R 0 2 14 63 303 1483 8134 42369 25011 1396417 97 Lateral_hypothalamic_area_R 0 1 7 47 255 1362 7567 37465 22110 1152301 430 Lateral_hypothalamic_area_R 0 1 7 47 255 1382 7567 37465 22110 1152301 150 Lateral_orbital_cortex_R 0 3 16 87 430 1990 9350 44029 126066 108134 150 Accumbens_nucleus_R 0 1 9 47 254 1366 7362 33866 208366 118021 434 HoracaLsegment_6_R 0 1 9 47 254 1366 7362 33866 208366 118021 434 HoracaLsegment_6_R 0 4 190 55 6331 4102 13307 203669 201233 513 73 77 77 177 1177 11837 40189	43 Peribrachial_region_L	0	2	14	63	303	1483	8134	42359	250511	1396417	
97 Lateral_mpothalamic_area_L 0 1 7 47 256 1362 7587 37465 222110 1152301 1430_Lateral_probhalamic_area_R 0 1 7 47 256 1362 7587 37465 222110 1152301 150_Lateral_onbial_contex_L 0 3 16 87 430 1990 9350 44029 216066 108134 153 Lateral_onbial_contex_L 0 1 6 7430 1890 9350 44029 216066 108134 153 Lateral_segment_6_L 0 1 9 47 254 1366 762 38366 108036 118021 232 Intrarcal_segment_6_L 0 4 0 190 55 6031 4101 13037 203669 2201233 159 Intrarcal_segment_7_L 0 2 17 361 7730 8137 40188 18814 1052074 252 Intrarcal_segme	376 Peribrachial_region_R	0	2	14	63	303	1483	8134	42359	250511	1396417	
430 Lateral_hypothalamic_area_R 0 1 7 47 255 1362 7587 37465 22110 115201 115201 130 Lateral_orbital_cortex_L 0 3 16 87 430 1990 9350 44029 16066 1081634 150 Accumbens_nucleus_L 0 1 6 7 430 1990 9350 44029 16066 1081634 433 Accumbens_nucleus_R 0 1 9 47 2544 1366 7362 33866 208366 118021 433 Accumbens_nucleus_R 0 1 9 47 2544 1366 7302 33866 208366 118021 324 Thoracal_segment_6_R 0 4 0 190 55 631 4102 133037 203669 201133 139 Dana_inerta_R 0 5 13 77 387 1730 8137 40189 198314 1052074 452 Dana_actimatine_calls_L 0 2 14 112	97 Lateral_hypothalamic_area_L	0	1	7	47	255	1362	7587	37465	222110	1152301	
100_Lateral_orbital_cortex_L 0 3 16 87 430 1909 9350 44029 1216066 1081634 153 Lateral_orbital_cortex_R 0 3 16 87 430 1909 9350 44029 1216066 1081634 153 Lateral_orbital_cortex_R 0 1 9 47 254 1366 7362 38366 208396 1118021 234 Atronacal_segment_6_L 0 1 9 47 254 1366 7362 38366 208396 201133 234 Thoracal_segment_6_R 0 4 0 190 55 6031 4102 13037 203669 220133 128 Zona_meerta_L 0 5 13 77 36 1730 8137 40186 18831 105207 40148 186122 255 Intracal_segment_7_L 0 2 1 11 100 311 5073 9014 181406	430 Lateral_hypothalamic_area_R	0	1	7	47	255	1362	7587	37465	222110	1152301	
513 Lateral_orbital_cortex_R 0 3 16 87 430 1990 9300 44029 21606 1081634 150 Accumbens_mucleus_L 0 1 9 47 254 1366 7302 3366 208396 1118021 483 Accumbens_mucleus_R 0 1 9 47 254 1366 7302 3366 208396 1118021 324 Thoracal_segment_6_R 0 4 0 190 55 631 4102 13037 203669 220133 598 Thoracal_segment_6_R 0 4 0 190 55 631 4102 13037 203669 220133 592 Thoracal_segment_7_L 0 2 1 12 106 3911 5073 9014 19406 1691322 596 Thoracal_segment_7_L 0 2 1 112 106 3911 5073 9014 19406 1691322 596 As_noradrenatine_cells_L 0 0 2 14 110 1032 5252 43345 1898261 1361653	180 Lateral_orbital_cortex_L	0	3	16	87	430	1990	9350	44029	216066	1081634	
150\Decumbens_nucleus_L 0 1 9 47 254 1366 7302 3366 200396 1118021 324 Athorsacl_segment_6_L 0 1 9 47 254 1366 7302 3366 200396 1118021 324 Thoracal_segment_6_L 0 1 9 47 254 1366 7302 3366 200396 201233 324 Thoracal_segment_6_L 0 4 0 190 55 6031 4102 13037 203669 2201233 129 Zona_incerta_L 0 5 13 77 367 1730 8137 40189 189314 1052074 255 Thoracal_segment_7_L 0 2 1 112 106 3911 5073 96014 191406 1681222 36/A5_noradrenaline_cells_L 0 0 2 14 110 1032 522 43345 189825 1361653 36/A5_noradrenaline_cells_L 0 0 2 14 110 1032 522 43345	513 Lateral_orbital_cortex_R	0	3	16	87	430	1990	9350	44029	216066	1081634	
483Accumbens_nucleus_R 0 1 9 47 254 1366 7382 38366 208306 1118021 324Throracal_segment_6_R 0 4 0 190 55 6031 4102 13037 203669 220133 598Throracal_segment_6_R 0 4 0 190 55 6031 4102 13037 203669 220133 598Throracal_segment_6_R 0 4 0 190 73 817 701887 1708817 8137 40189 198344 1052074 452Zbroracinserda_segment_7_L 0 2 1 112 106 3911 5073 90014 191405 1691322 596A5_noradrenaline_cells_L 0 0 2 14 110 1032 5252 43345 198251 1361653 369A5_noradrenaline_cells_R 0 0 2 14 110 1032 5252 433451 198251 1361653 369A5_noradrenaline_cells_R 0 0 2 14 102 1257 5252 1371	150 Accumbens_nucleus_L	0	1	9	47	254	1366	7362	38366	208396	1118021	
324 [httpracal_segment_6_L 0 4 0 190 55 6031 4102 13037 203669 220133 1989[httpracal_segment_6_L 0 4 0 190 55 6031 4102 13037 203669 220133 199[httpracal_segment_6_L 0 5 13 77 387 1730 8137 40189 198314 1052074 2257[httpracal_segment_7_L 0 2 1 112 106 311 5073 96014 191405 1691322 36A5_noradrenaline_cells_R 0 0 2 14 110 1032 5252 43345 198625 1361653 369A5_noradrenaline_cells_R 0 0 2 14 110 1032 5252 43345 198625 1361653 369A5_noradrenaline_cells_R 0 0 2 14 110 1032 5254 43345 198625 1361653 3666_etvica_sympathet_ganglia_L 0 0 <	483 Accumbens_nucleus_R	0	1	9	47	254	1366	7362	38366	208396	1118021	
598 Dhoracal_segment_6_R 0 4 0 190 55 6031 4102 133027 203680 201133 129/Zona_incerta_R 0 5 13 77 387 7730 8137 40180 198314 1052074 462/Zona_incerta_R 0 5 13 77 387 1730 8137 40180 198314 1052074 452/Fhoracal_segment_7_L 0 2 1 112 106 3911 5073 90014 191405 1691322 599/Fhoracal_segment_7_L 0 2 1 112 106 3911 5073 90014 191405 1691322 36/A5_noradrenaline_cells_L 0 0 2 14 110 1032 5222 43345 19825 131653 36/A5_noradrenaline_cells_R 0 0 2 12 11402 13121 1411 7074 35137 174095 93386 510 Medial_prefontal_contex_L 1	324 Thoracal_segment_6_L	0	4	0	190	55	6031	4102	133037	203669	2201233	
129 Zona_incerta_L 0 5 13 77 387 1730 8137 40189 198214 1052074 452 Zona_incerta_R 0 5 13 77 387 1730 8137 40189 198314 1052074 325 Thoracal_segment_7_L 0 2 1 112 106 3911 5073 9014 191405 1691322 366A5_noradrenatine_cells_R 0 2 14 110 032 5522 43345 198925 1361653 369A5_noradrenatine_cells_R 0 0 2 14 110 032 5522 43345 189825 1361653 177 Medial_prefrontal_cortex_L 1 2 11 49 281 1411 7074 35137 174089 903966 510 Medial_prefrontal_cortex_L 1 2 11 49 281 1411 7074 35137 174089 903966 510 Medial_prefrontal_cortex_L 1 2 11 49 281 1411 7074 35137 174089 903966	598 Thoracal_segment_6_R	0	4	0	190	55	6031	4102	133037	203669	2201233	
462[Zona_incerta_R 0 5 13 77 307 1730 8137 40198 1098214 1052074 325[Thoracal_segment_7_L 0 2 1 112 106 3011 5073 90014 191405 1691322 599[Thoracal_segment_7_R 0 2 1 112 106 3011 5073 90014 191405 1691322 36/A5_noradenaline_cells_L 0 0 2 14 110 1032 5222 43345 19925 131653 309A5_noradenaline_cells_R 0 0 2 14 110 1032 5222 43345 19925 131653 309A5_noradenaline_cells_R 0 0 2 12 14 102 114 7074 35137 174095 90386 510 Medial_prefontal_contex_R 1 2 114 49 281 11411 7074 35137 174095 90386 510 Medial_prefontal_contex_R 0 1	129 Zona_incerta_L	0	5	13	77	367	1730	8137	40198	198314	1052074	
325 Thoracal_segment_7_L 0 2 1 112 106 311 5073 96014 191405 1691322 369A5_noradenaline_cells_L 0 2 112 106 311 5073 96014 191405 1691322 369A5_noradenaline_cells_R 0 0 2 14 110 1032 5252 43345 198925 1361653 377Medial_preforntal_cortex_R 1 2 11 49 281 1411 7074 35137 174095 90386 666 cervical_sympathetic_ganglia_R 0 0 1 2 12 662 4522 16998 17197 731527 679 Cervical_sympathetic_ganglia_R 0 0 1 2 127 662 4522 16998 17197 731527 679 Cervical_sympathetic_ganglia_R 0 0 1 2 127 662 4522 16998 171977 731527 71 Dor	462 Zona_incerta_R	0	5	13	77	367	1730	8137	40198	198314	1052074	
599 [horacal_segment_7_R 0 2 1 112 106 3111 6073 96014 191405 16015 16153 36/A5_norademailme_cells_R 0 0 2 14 110 1032 5224 43345 198925 131653 36/A5_norademailme_cells_R 0 0 2 14 110 1032 5224 43345 198925 131653 377 [Medial_prefontal_cortex_L 1 2 14 49 281 1411 7074 35137 174095 903986 610 (Medial_prefontal_cortex_L 1 2 11 49 281 1411 7074 35137 174095 903986 660 Cervical_sympathetic_ganglia_L 0 0 1 2 127 652 4522 16986 17197 731527 71 [Dorsal_cell_colum_L 0 1 4 13 124 648 4785 18521 65298 734039 404 [Dorsal_cell_colum_L 0 <td< td=""><td>325 Thoracal_segment_7_L</td><td>0</td><td>2</td><td>1</td><td>112</td><td>106</td><td>3911</td><td>5073</td><td>96014</td><td>191405</td><td>1691322</td><td></td></td<>	325 Thoracal_segment_7_L	0	2	1	112	106	3911	5073	96014	191405	1691322	
36A5_noradrenaline_cells_L 0 0 2 14 110 1032 5252 43345 198925 1361653 369A5_noradrenaline_cells_R 0 0 1 1110 1032 5252 43345 198925 1361653 177 Medial_prefrontal_cortex_R 1 2 11 49 281 14111 7074 35137 174095 903866 666 Cervical_sympathetic_ganglia_L 0 0 1 2 127 562 4522 16986 171971 731527 679 Cervical_sympathetic_ganglia_L 0 0 1 2 127 562 4552 16526 16259 734039 404 Dorsal_cell_column_L 0 1 4 13 129 468 4786 1552 16259 734039 404 Dorsal_cell_column_L 1 1 137 160 720 4337 2564 158226 689727 137 Tidgemia_nucleus_R 1 2 11 37 160 720 4337 256	599 Thoracal_segment_7_R	0	2	1	112	106	3911	5073	96014	191405	1691322	
369A5_noradrenalme_cells_R 0 0 2 14 110 1032 5252 43345 1980553 1361653 177Medial_prefrontal_cortex_L 1 2 14 49 281 1411 7074 35137 174095 903966 660Cervical_sympathetic_panglia_L 0 0 1 2 127 652 4522 16998 17197 731527 679Cervical_sympathetic_panglia_L 0 0 1 2 127 652 4522 16998 17197 731527 71Dorsal_cell_column_L 0 1 4 13 129 468 4786 18552 162593 734039 404Dorsal_cell_column_L 1 1 17 160 720 4337 22564 158226 689277 397Tinjernmal_nucleus_L 1 2 11 37 160 720 4337 22564 689277 346 348 349 349 349 1 3 14 48 282 1234 5705 26438 12271 650286 347 15 17 731527 15 15 14 48 282 1234 5705 26438 12271 65028	36 A5_noradrenaline_cells_L	0	0	2	14	110	1032	5252	43345	189825	1361653	
177 [Medial_prefontal_cortex_R 1 2 11 49 281 1411 7074 35137 174095 903986 666 [Cenvical_sympathetic_ganglia_L 0 0 1 2 127 662 4522 16988 17197 731527 679 [Cenvical_sympathetic_ganglia_L 0 0 1 2 127 652 4522 16988 17197 731527 679 [Cenvical_sympathetic_ganglia_R 0 0 1 2 127 652 4522 16988 17197 731527 71 [Dorsal_cell_column_L 0 1 4 13 129 468 4785 18552 162593 734039 404 [Dorsal_cell_column_R 0 1 4 13 129 468 4785 18552 162598 734039 404 [Drigeminal_nucleus_R 1 2 11 37 160 720 4337 22564 158228 689727 397 [Trigeminal_nucleus_R 1 3 14 48 282 1337 15481 5002 640528 689727 398 [Substanta_nigra_A9_L 1 3 14 48 282 1337 15502 64381 129271	369 A5_noradrenaline_cells_R	0	0	2	14	110	1032	5252	43345	189825	1361653	
510 Medial_prefrontal_cortex_R 1 2 11 49 281 1411 7074 35137 174096 903986 903986 903986 903986 903986 903986 903986 90387 91598 711977 71527 7579 Cerxical_sympathetic_ganglia_L 0 0 1 2 127 562 4522 19988 171977 731527 771 Dorsal_cell_column_L 0 1 4 13 129 468 4786 18521 162593 734039 404 Dorsal_cell_column_L 0 1 4 13 129 468 4786 18521 162593 734039 404 Dorsal_cell_column_L 1 1 37 160 720 4337 22564 158226 689727 397 Titigerninal_nucleus_R 1 2 14 48 282 124 5705 26438 129271 650286 348 Substantis_njorg_A_9L 1 </td <td>177 Medial_prefrontal_cortex_L</td> <td>1</td> <td>2</td> <td>11</td> <td>49</td> <td>281</td> <td>1411</td> <td>7074</td> <td>35137</td> <td>174095</td> <td>903986</td> <td></td>	177 Medial_prefrontal_cortex_L	1	2	11	49	281	1411	7074	35137	174095	903986	
666(Cevical_sympathetic_ganglia_L 0 0 1 2 127 662 4522 16998 17197 771527 679(Cevical_sympathetic_ganglia_R 0 0 1 2 127 662 4522 16998 17197 771527 77)Dorsal_cell_column_L 0 1 4 13 129 468 4785 18552 162593 734339 404 Dorsal_cell_column_R 0 1 4 13 129 468 4785 18552 162593 734339 64/ frigerninal_nucleus_L 1 2 11 37 160 720 4337 22564 168226 689727 165/Ubstantia_nigra_A9_L 1 3 14 48 222 124 5705 26438 129271 650286 348 Substantia_nigra_A9_R 1 3 14 48 282 1234 5705 26438 129271 650286 420 Reticular_thalamic_nucleus_L 1	510 Medial_prefrontal_cortex_R	1	2	11	49	281	1411	7074	35137	174095	903986	
679(Cevical_sympathetic_ganglia_R 0 1 2 127 662 4522 16998 17117 711271 7111 7111	666 Cervical_sympathetic_ganglia_L	0	0	1	2	127	562	4522	16998	171971	731527	
71 Dorsal_cell_column_L 0 1 4 129 468 4785 18522 162298 734039 040 Dorsal_cell_column_R 0 1 4 13 129 468 4785 18522 162298 734039 64 Trigerninal_nucleus_L 1 2 11 37 160 720 4337 22564 158226 689727 397 Trigerninal_nucleus_R 1 2 11 37 160 720 4337 22564 158226 689727 15 Substantia_nigra_A9_L 1 3 14 48 282 1234 5705 26438 19271 650286 27 Pericular_thalamic_nucleus_L 1 2 12 61 300 1370 6058 27258 125426 600063 460 Pericular_thalamic_nucleus_L 1 2 16 300 1370 6058 27258 125426 6000063 460	679 Cervical_sympathetic_ganglia_R	0	0	1	2	127	562	4522	16998	171971	731527	L
404 Dorsal_cell_column_R 0 1 4 13 129 468 4785 18552 162593 734039 46 Trigeminal_nucleus_L 1 2 11 37 160 720 4337 22564 158226 689727 397 Trigeminal_nucleus_R 1 2 11 37 160 720 4337 22564 158226 689727 35 Ubistantia_njora_A9_L 1 3 14 48 282 123 5705 26438 129271 650266 368 Divistantia_niora_A9_R 1 3 14 48 282 1234 5705 26438 129271 650266 360 Reticular_thalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125462 600063 460 Reticular_thalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125462 600063 148 Lateral_jolous_palidus_R 0 2 <td>71 Dorsal_cell_column_L</td> <td>0</td> <td>1</td> <td>4</td> <td>13</td> <td>129</td> <td>468</td> <td>4785</td> <td>18552</td> <td>162593</td> <td>734039</td> <td></td>	71 Dorsal_cell_column_L	0	1	4	13	129	468	4785	18552	162593	734039	
64 Trigerninal_nucleus_L 1 2 11 37 160 720 4337 22564 1582268 689727 397 Trigerninal_nucleus_R 1 2 11 37 160 720 4337 22564 1582268 689727 15 Substantia_nigra_A9_R 1 3 14 48 282 1234 5705 26438 129271 650286 348 Substantia_nigra_A9_R 1 3 14 48 282 1234 5705 26438 129271 650286 427 Resticutar_inhamic_nucleus_L 1 2 12 61 300 1370 6058 27258 125426 600063 400 Paticutar_thalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125426 600063 448 Lateral_globus_pallidus_R 0 2 6 46 208 1052 5015 24551 123200	404 Dorsal_cell_column_R	0	1	4	13	129	468	4785	18552	162593	734039	
397 [Trigeminal_nucleus_R 1 2 11 37 160 720 4337 22564 158220 899721 15/Substanta_nigra_A9_L 1 3 14 48 282 1234 5705 26438 129271 650286 348 Substanta_nigra_A9_R 1 3 14 48 282 1234 5705 26438 129271 650286 127 Perticular_Inhalamic_nucleus_L 1 2 12 61 300 1370 6058 27258 125462 600063 460 Reticular_Inhalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125462 600063 148 Lateral_jolous_palidus_R 0 2 6 46 208 1052 5015 24631 12300 655019 4481 Lateral_jolous_palidus_R 0 2 6 46 208 1052 5015 24631 132300 655019	64 Trigeminal_nucleus_L	1	2	11	37	160	720	4337	22564	158226	869727	L
15\Substantia_nigra_A9_L 1 3 14 46 282 1234 5705 26438 129271 650286 348\Substantia_nigra_A9_R 1 3 14 46 282 1234 5705 26438 129271 650286 127 Reficular_thalamic_nucleus_L 1 2 12 61 300 1370 6058 27258 125422 600063 460 Petricular_thalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125422 600063 460 Petricular_thalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125422 600063 461 Lateral_globus_pallidus_L 0 2 6 46 208 1052 5015 24853 123200 635018 481 Lateral_globus_pallidus_R 0 2 6 46 208 1052 5015 24853 123200 635018	397 Trigeminal_nucleus_R	1	2	11	37	160	720	4337	22564	158226	869727	L
348 Buustantia_nigra_M_R 1 3 14 46 282 1234 5705 26438 12927 650266 127 Peticular, Inhalamic_nucleus_L 1 2 12 61 300 1370 65028 600063 460 Reticular, Inhalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125462 600063 148 Lateral_globus_pallidus_L 0 2 6 46 208 1052 5015 24651 123200 635018 461 Lateral_globus_pallidus_R 0 2 6 40 208 1052 5015 24651 123200 635018	15 Substantia_nigra_A9_L	1	3	14	48	282	1234	5705	26438	129271	650286	Ľ
127 Pelicular_thalamic_nucleus_L 1 2 12 61 300 1370 6058 27258 125462 600063 460 Reticular_thalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125462 600063 148 Lateral_globus_pallidus_L 0 2 6 46 208 1052 5015 24653 13200 635018 481 Lateral_globus_pallidus_R 0 2 6 46 208 1052 5015 24653 123200 635018	348 Substantia_nigra_A9_R	1	3	14	48	282	1234	5705	26438	129271	650286	Ľ
460 [Relicular_thalamic_nucleus_R 1 2 12 61 300 1370 6058 27258 125426 260063 148[Lateral_globus_pallidus_R 0 2 6 46 208 1052 5015 2463 13200 635018 48[Lateral_globus_pallidus_R 0 2 6 46 208 1052 5015 2463 132200 635018	127 Reticular_thalamic_nucleus_L	1	2	12	61	300	1370	6058	27258	125462	600063	
148 Lateral_globus_pallidus_L 0 2 6 46 208 1052 5015 24853 123200 635018 481 Lateral_globus_pallidus_R 0 2 6 46 208 1052 5015 24853 123200 635018	460 Reticular_thalamic_nucleus_R	1	2	12	61	300	1370	6058	27258	125462	600063	Ľ
481 Lateral_globus_pallidus_R 0 2 6 46 208 1052 5015 24853 123200 635018	148 Lateral_globus_pallidus_L	0	2	6	46	208	1052	5015	24853	123200	635018	Ľ
	481 Lateral_globus_pallidus_R	0	2	6	46	208	1052	5015	24853	123200	635018	

Abbildung 37: Zyklenhäufigkeiten über 1 bis 10 Gebiete. Die Sortierung erfolgte absteigend über 9er Zyklen.

3.6.2 Motiv-Analyse

Motivanalysen bestimmen die Häufigkeit von definierten kleineren Verbindungsmustern (Motive) in einem realen empirischen und in zufälligen Netzwerken. Motive oder Subgraphen sind relativ kleine Netzwerke mit wenigen Verbindungen zwischen wenigen Knoten, die in einem Konnektom vorliegen können. 3 Knoten Motive mit gerichteten Kanten erlauben die Bildung von maximal 13 verschiedenen Motiven (Abbildung 38), sofern keine Schleifen auftreten sollen. Neben den 13 Motiven wurden 9 spezielle Motive definiert, die reziproke (r4ca, r5ca) 4- und 5-Knoten Kettenmotive (projektive Motive) aufweisen sowie Motive (syC, syI, syO) mit einem zentralen Knoten, der zwei Verbindungen besitzt, die zu identischen reziprok verbundenen Knotenpaaren führen (lokal regulative Motive) (Gutierrez et al., 2013).

Mit der Motiv-Analyse soll herausgefunden werden, ob im VTT-Konnektom bestimmte Motive besonders häufig oder selten auftreten im Vergleich mit randomisierten Netzwerken gleicher Dimension (gleiche Kantenzahl und Regionenzahl).

Es wurden die Häufigkeiten von 22 Motiven (Abbildung 38) in dem VTT-Netzwerk bestimmt. Um festzustellen, inwiefern diese Motive ebenso in zufälligen Netzwerken mit der gleichen Anzahl von Regionen und Verbindungen vorkommen und ob die Häufigkeiten bestimmter Motive in Zufallsnetzwerken Unterschiede zu dem empirischen VTT-Netzwerk aufweisen, wurden 1000 zufällige rewiring Netzwerke mit der gleichen Anzahl an Knoten und Verbindungen erzeugt und für jede der 1000 Randomisierungen die Häufigkeit der 22 Motive bestimmt. Jede Häufigkeit wird in dem abgebildeten Motiv-Diagramm (Abbildung 38) mit einem schwarzen Punkt symbolisiert. Die ersten drei Motive liegen mit ihrer Häufigkeit im Bereich des Zufallsmodells. Die Motive 3-04 (seltener) und 3-05 (häufiger) sind signifikant. Interessant ist, dass das Motiv 3-07 signifikant häufiger im empirischen VTT-Netzwerk auftritt als in 1000 Randomisierungen. In diversen anderen Studien zeigt sich für dieses zirkuläre Motiv stets eine geringe Ausprägung, die meist im Zufallsbereich liegt. Auch die Motive 3-08 bis 3-11 sind signifikant gering häufiger als im Zufallsmodell. Wiederum interessant ist das signifikant seltenere Auftreten des vollständig reziproken Motivs 3-13, welches in diversen anderen Konnektomanalysen stets signifikant häufiger gefunden wurde. Das komplexe syO Motiv zeigt ein leicht häufiger signifikantes Auftreten im empirischen Netzwerk. Bis auf r4ci sind die übrigen komplexen Motive entweder deutlich seltener oder wenig seltener signifikant. In Tabelle 9 wurden die Häufigkeiten von Beteiligung der Regionen des VTT -Konnektoms an der Bildung von 13 3-Knoten Motiven für die Regionen mit einem Rang kleiner 50 aufgeführt. Jede Region zeichnet sich durch eine spezifische Beteiligung an der Bildung dieser 18 Motive aus. Die Häufigkeiten der Regionenbeteiligungen wurden Motiv-unabhängig sortiert und die Ränge berechnet, so dass für jede Region ein mittlerer Rang an der Beteiligung von Motiven über alle Motive berechnet wurde. Sol (mittlerer Rang: 14,8), MD (26,8), CEREFL (27,36) und Stomach (30,7) sind die häufigsten Regionen, die sich an der Bildung von Motiven beteiligt haben. Auffallend ist, dass der mediodorsale thalamic nucleus sich 7-mal an der Bildung des seltenen zirkulären Motivs 3-07 beteiligt hat. Die Peribrachial region ist hier 4-mal beteiligt und der Lateral orbital cortex sowie die Substantia nigra 3-mal. Die übrigen Regionen sind meist nicht an der Bildung von Motiv 3-07 beteiligt oder sehr selten einmal. Besonders häufig erfolgen Bildungen des Motives 3-03 durch CEREFL (4027), den Paraflocculus (3773) und den Caudal part of cerebellum (1172), die allesamt Regionen des Kleinhirns sind. Alle übrigen Regionen sind mit weniger als 1000-mal an der Motivbildung beteiligt. Diese großen Häufigkeiten treten nur bei den Kleinhirnregionen auf.

Abbildung 38: Motiv-Analyse des VTT-Konnektoms mit 1000 Randomisierungen des rewiring Verfahrens. Die Häufigkeit eines Motivs im Zufallsmodel wurde mit einem schwarzen Punkt markiert. Die Punktewolke spiegelt die Häufigkeiten aus allen Randomisierungen wider. Die blauen Punkte geben die Motivhäufigkeiten im empirischen VTT-Konnektom wieder. Die Ordinate ist logarithmisch skaliert. Motiv-Variationen (3 Knoten ohne Selbstbezüglichkeiten) 3-01: Divergenz, 3-02: Kette, 3-03: Konvergenz, 3-04: Kette mit Reziprozität, 3-05: Divergenz mit Konvergenz, 3-06: Kette mit Reziprozität, 3-07: Kreis, 3-08: Konvergenz mit Reziprozität, 3-09: Doppelte Reziprozität, 3-10: Kreis mit Reziprozität, 3-11: Divergenz mit Reziprozität, 3-12: doppelte Reziprozität mit Konvergenz, 3-13: komplette Reziprozität. Danach folgen 9 komplexere Motive.

3.6.3 Rich-club Analyse

Regionen, die zur Rich-Club Menge gehören, haben besonders zahlreiche Verbindungen zu Regionen außerhalb der Rich-Club Menge, als auch untereinander. Der Rich-Club Koeffizient φ wird für alle im Konnektom vorhandenen Anzahlen von Verbindungen k (Grad eines Knotens) bestimmt. Schließlich wird die Anzahl von existierenden Verbindungen durch die Anzahl von maximal möglichen Konnektivitäten mit genau solchen Regionen, die mehr Verbindungen bzw. ein größeres k haben, geteilt (McAuley et al., 2007). Somit lässt sich herausfinden, welche Regionen mit besonders zahlreichen Verbindungen miteinander und im Verhältnis zu nicht-Rich-Club Regionen verbunden sind (Abbildung 39). Die rote Kurve der empirischen Gradverteilungen verläuft bis zu einem Grad von 66 unter der grünen Kurve der Randomisierungen. Zwischen Grad 69 und 71 ist ein deutlicher Anstieg zu sehen, so dass ab hier von Rich-Club Regionen gesprochen werden kann. Diese wenigen Regionen mit einem DG_{All} > 69 besitzen jedoch untereinander kaum Verbindungen, so dass in dem VTT-Konnektom keine Rich-Club Infrastruktur vorliegt.

Wird nach dem Auftreten einer ersten größeren Grad-Differenz von φ unabhängig von der Lage der empirischen zur randomisierten Verteilung gesucht, so zeigt sich zwischen k=48 und k=44 ein solcher Unterschied der $\varphi(k)$ und rand(k) Kurven (Abbildung 39). Folgende 28 Regionen besitzen mindestens 44 Verbindungen und gehören zum Rich-Club (Reihenfolge entspricht k-Rangfolge): CEREFL, PFl, ExSL3-6, OrgsStomS, Pa, Sol, mPFC, MD, OrgUrBLa, A5 (jeweils der linken und der rechten Seite) (Abbildung 40). Diese 28 bilateralen Regionen wurden im planaren Netzwerkdiagramm mit Verbindungsgewichten und dem lokalen Parameter Verbindungsanzahlen (Degree All) visualisiert (Abbildung 41) und zeigen deutliche ipsi- und kontralaterale Verbindungen. Diese intensiven Verbindungen untereinander sind zwar typisch für Rich-Club Regionen aber die Verbindungsanzahlen liegen unter denen einer mittleren Zufallsverteilung, so dass hier nicht von Rich-Club Regionen gesprochen werden kann. Zusammenfassend muss festgestellt werden, dass das VTT-Konnektom keine Rich-Club Architektur aufweist, aber es Regionen mit vielen Verbindungen gibt, die untereinander ebenfalls intensiv verbunden sind.

Abbildung 39: Diagramm von Gradverteilungen $\varphi(k)$, rand(k) und dem entsprechenden Quotienten. Bei k=44 bis 48 liegt ein Unterschied über mehrere Grade zwischen $\varphi(k)$ und rand(k) vor, so dass dieser Schwellwert für die Filterung der Regionen gewählt wurde. Gradverteilung des empirischen VTT-Konnektoms (rot) und von 1000 rewiring Randomisierungen (grün).

Abbildung 40: Die 28 "Rich-Club" Regionen sind im unteren Bogen angeordnet und sind intensiv untereinander verbunden (schwarze Linien, werden bei starker Vergrößerung sichtbar). Die anderen Regionen, die direkte Verbindungen von "Rich-Club" Regionen erhalten sind im zweiten Bogen dargestellt. Im dritten Bogen folgen die Regionen, die direkte Verbindungen zu den verbliebenen Regionen haben. Im vierten Bogen kommen nur noch 2 Regionen vor. Verbindungen zwischen Regionen innerhalb eines Bogens sind blau dargestellt.

Abbildung 41: Planare Netzwerkvisualisierung der "Rich-Club" Regionen bzw. Regionen mit einem $DG_{All} > 43$. Die gestrichelten Verbindungen verlaufen kontralateral und die durchgezogenen Linien ipsilateral. Der Balken unter den Regionenabkürzungen zeigt den mittleren Rank über alle lokalen Netzwerkparameter an.

3.7 Differentielle Konnektomanalyse

Die kumulierte binäre Adjazenzmatrix der Regionen des VTT Konnektoms besteht aus Verbindungen, in denen mindestens einmal eine VTT-Methode angewendet wurde (Instanz 0). Es sind 3355 VTT-Verbindungen enthalten. Dann wurden von den gleichen Regionen die Verbindungen gefiltert, die nicht durch VTT-Methodik bestimmt wurden, also Verbindungen mit konventionellen Tracern (Instanz 1). Hierzu wurde der Filter wie folgt konfiguriert: Category: viral: false, Aktiviert: "All tracer codes have to match the condition", Aktiviert: "Only existing connections". Anschließend wurde die Funktion "Differentielle Konnektomanalyse" gewählt, um das Differenzen-Fenster von neuroVIISAS zu öffnen (Abbildung 42). Im Differenzen-Fenster wurde zunächst ein "Refresh" durchgeführt, um die beiden Instanzen zu laden. Danach wurden die Instanzen in der Vergleichskontrollmatrix gewählt, da auch mehr als zwei Instanzen geladen werden können, aber nur ein paarweiser differentieller Vergleich durchführbar ist.

Abbildung 42: Differenzen Analyse Fenster von *neuroVIISAS* mit zwei geladenen Differenzen, die über die im oberen Bereich des Fensters sichtbare Kontroll-Matrix zum paarweisen Vergleich gewählt wurden.

Anschließend konnte die differentielle Adjazenzmatrix aus zwei binären Instanzenmatrizen berechnet werden. In diesem Fall liegen identische Matrizen bezüglich der Regionenauswahlen vor, so dass die Konfiguration des Vergleiches eindeutig ist. Die Differenzen Berechnung kann mittels Quotientenbildung oder Differenzenbildung durchgeführt werden. Hier wurde die letztere Methode gewählt. Die Berechnung ergibt 1766 Verbindungen, die sowohl mit viralen als auch nicht viralen Methoden beschrieben wurden (weiße Dreiecke). Ferner wurden 1599

Verbindungen gefunden, die ausschließlich mit viralen Methoden beschrieben wurden (grüne Quadrate). 31413 Verbindungen wurden ausschließlich mit nicht-viralen Methoden beschrieben (rote Quadrate). Hieraus folgt, dass die VTT-Konnektivität die nicht-VTT Konnektivität ergänzt. Des Weiteren soll untersucht werden, welche Auswirkungen eine Berücksichtigung von VTT-Verbindungen in einem nicht-VTT Konnektom haben.

		Nai 1	
			in an
	meg		
	یا ت ۳. ک. ۱۰۰۰ میں میں اور بواق (۱۹۹۵ کا ۲۰۰۰ ۲۰۰۶)	n serie of constant an s <mark>erie serie s</mark> erie filo an serie serie series	
	i = 13 (100) = 100 (100) = 100 (100) = 100 (100)		
		ado a ser de la constante de la	
2点、14、14 11 - 11 - 11			 11

Abbildung 43: Differentielle Adjazenzmatrix der binären VTT und nicht-VTT Matrizen. Die weißen Symbole zeigen Übereinstimmungen von VTT- und nicht-VTT-Verbindungen. Die grünen Symbole stehen für Verbindungen, die ausschließlich im VTT-Konnektom vorkommen und die roten Symbole kennzeichnen Verbindungen, die nur im nicht-VTT-Konnektom auftreten.

3.7.1 Differenzenanalyse der globalen Netzwerkparameter

Unterschiedliche Vergleiche von Netzwerken sind möglich, deren Verbindungen mit VTT und mit nicht-VTT Methoden generiert wurden. Der Unterschied zwischen einem Netzwerk, welches ausschließlich mit VTT Methoden generiert wurde und einem Netzwerk, das ausschließlich mit nicht-VTT Methoden erzeugt wurde, ist sehr groß. So sind die 716 Regionen

des VTT Netzwerkes durch 3323 Kanten verbunden und in dem nicht-VTT Netzwerk sind die gleichen 716 Regionen durch 32635 Kanten verbunden. Das 9,8 fache an Kanten in dem nicht-VTT Netzwerk führt zu einer grundlegend anderen Netzwerkarchitektur als im VTT-Netzwerk. Daher ist es sinnvoll Netzwerke zu vergleichen, die ähnliche Liniendichten bei gleicher Knotenanzahl aufweisen. Dies ist der Fall für den Vergleich des nicht-VTT (nVTT) Netzwerkes mit dem Netzwerk, welches sämtliche Verbindungen des nicht-VTT-Netzwerkes enthält als auch alle VTT-Verbindungen. Dieses bezüglich der Konnektivitäten vollständigere Netzwerk wird kurz als *komplettes-VTT* (cVTT) Netzwerk bezeichnet. Vergleichend wurde die VTT-nVTT und die cVTT-nVTT Differenz der globalen Netzwerkparameter zusammen dargestellt (Abbildung 44).

Die Liniendichte im VTT-Konnektom liegt mit 0,6491% deutlich unter der nVTT Liniendichte von 6,3748%. Beim Vergleich von cVTT (Liniendichte: 6,752%) und nVTT fallen 34 isolierte Regionen auf, die im nVTT keine Input- oder Output-Verbindungen aufweisen. Im cVTT liegt eine Zusammenhangskomponente vor, womit jede Region mindestens eine Verbindung besitzt. Die Verbindungen, die mittels VTT in cVTT zusätzlich vorliegen, sind notwendig, um die 34 isolierten Regionen zu einer Zusammenhangskomponente zusammenzufügen. Fast 6% mehr Verbindungen liegen im cVTT als im nVTT bzw. steuern die VTT-Verbindungen zusätzlich zur konnektionalen Vervollständigung des Netzwerkes bei. Globale Parameter, die einen relativ großen Unterschied aufweisen (außer der "Average subgraph centrality", die in einem anderen Wertebereich liegt), sind die Small-Worldness bzw. Kleine-Welt-Eigenschaft und die Modularität. Die Modularität nimmt beim cVTT-Netzwerk um 12,47% zu und die Small-Worldness nimmt um 10,57% ab. Obwohl bei dem cVTT eine Zusammenhangskomponente vorliegt, steigt die Vulnerabilität leicht um 9,5% von 0,0063 auf 0,0069. Die "Average search information" zeigt ebenfalls einen Anstieg um 8,97%. Diese Größe gibt an wie schwierig es im Mittel ist, um eine Region von einer bestimmten anderen Region im Netzwerk zu erreichen. Da nicht nur die Kantenzahl im cVTT um ca. 6% zugenommen hat, sondern auch alle Gebiete in einer Zusammenhangskomponente vorliegen, ist auch die Lokalisation schwieriger geworden und die "Average search information" ist größer geworden.

Zusammenfassend lässt sich feststellen, dass durch die Berücksichtigung von VTT-Verbindungen zusätzlich zu den nVTT-Verbindungen neue Regionen in dem nVTT-Netzwerk erreichbar werden und sich die Netzwerkstruktur leicht ändert, was u.a. an der Abnahme der Small-Worldness und Zunahme der Modularität erkennbar ist.

Omeran Region Datine Politismo D Instalance 1					a Compare Carifiel Notice 0 718 103 100 708 708 100 708 708	0 25 25 50	nstance Project Variant ra6FrontVirus-R C ra6FrontVirus-R C	View Filter Adjace unxil., At least., Cumul., J umul., All trac., Cumul., J	Filter A., Weight, Weights Eleast., Edge w., Linear., Hi frac., Edge w., Linear.,
	Order Parameter Parameter Parameter Notes Parameter Parameter Eggen Parameter Unit Research Parameter Valiational, L 11 Valiational, Valiationa, Valiational, Valiational, Valiationa, Valiational, Va	instance 0 6 22 44 45 46 46 2021 44 41 40 40 40 40 40 40 40 40 40 40 40 40 40	Instance 1 16 20255 20255 20257 2025	Difference 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Magnitude 39312 1414 1414 1416 00687 00687 00587 0	Quotant 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	Rei Increase % 0 882/2045 686.75 77 882/2045 2211 2049 882/2048 882/2048 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rei Dirt (6-1 00 01 (6-2) 3,000 1	Ret Det II-0 R
	Parts completion to P Parts completion to P Recepcial digst 12 Recepcial digst 12 Diameter digst 12 Diameter digst 12 Diameter digst 12 Diameter distribution ethys 2 Diameter di diameter	4 4 6062 6062 6063	253 253 253 253 253 253 254 254 254 254 254 254 254 254	34 45 47 48 48 48 48 48 48 48 48 48 48	8 373 9 374 9 375 9 377 9 377 9 377 9 378 9 379 9	5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 400 3007 540 (117,107 117,107 117,107 117,107 117,107 117,107 117,107 117,107 117,107 118,007 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 50 50 50 50 50 50 50 50 50 50 50 50 5
	Exponential approximation	0.6 1,12 0.27 1.5 122 0.03	5.000 e0,19 e0,19 se0,02 br0,2 se0,02 se0,02 se0,01	0.000 0.0000 0	2010 000 4 000 5 000 5 0000 5 0000 5 0000 5 0000 5 0000 5 0000 5 0000 5 0000 5 0	2,713 3-3 	100,1100,200 (+127,1785 (-12	View Fiber Adjace wmdi Fiber Adjace wmdi Cumul Cumul	All (1997) All (1
rations) Nations P_CX	Gobal Parameters Parameter Nodes 71	Instance 0	Instance 1	Difference 0	Magritude	Quatient	Ral. Increase %	Rel. Diff. ID-1	Rel. Diff. 11-0
	Light Light Vestimized, R. Y Vestimized, R. Y <t< th=""><th>546 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>21615 116274 116274 116271 11627 11627 11623 117652 117652 1176 116 116 116 116 116 116 116 116 11</th><th>1 101 101 101 101 101 101 101 101</th><th>521 665 665 667 55350 541 55350 500 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>2013 2015</th><th>0 0 0 0 0 0 7 8324 7 8344 5 917 5 917 6 9606 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>000 x236 000 x235 000 x235 000 x234 000 x237 000 x237 000 x237 000 000 000 000 000 000 000 0</th><th>944 9 944 9 959 9774 959 9774 959 9774 953 9774 954 7135 954 7135 954 7135 954 7135 957 757 957 757 100 100 100 100 100 100 100 10</th></t<>	546 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21615 116274 116274 116271 11627 11627 11623 117652 117652 1176 116 116 116 116 116 116 116 116 11	1 101 101 101 101 101 101 101 101	521 665 665 667 55350 541 55350 500 8 8 8 8 8 8 8 8 8 8 8 8 8	2013 2015	0 0 0 0 0 0 7 8324 7 8344 5 917 5 917 6 9606 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 x236 000 x235 000 x235 000 x234 000 x237 000 x237 000 x237 000 000 000 000 000 000 000 0	944 9 944 9 959 9774 959 9774 959 9774 953 9774 954 7135 954 7135 954 7135 954 7135 957 757 957 757 100 100 100 100 100 100 100 10
h	Cannade composition Francesca composition Intercenter al composition Network and the second second Network and the second second second second second second Network and the second se	81 9079 90 9079 90	1 3 3 3 3 3 3 3 3 3 3 3 3 3	6 0 0 0 0 0 0 0 0 0 0 0 0 0	9 300 37 300 30 300 300 300 300	603 504 504 504 504 504 504 504 504	δ 5 50941 50941 4 644 50942 50951 50951 50951 50951 51951 50951 52951 50951 52951 50951 52951 50951 52951 50951 52951 50951 52951 50951 52952 50951 52953 50951 52953 50951 52953 50951 52954 50951 52953 50951 52954 50951 52953 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954 50951 52954	000 05 2014 05 2014 05 2014 05 2014 05 2014 000 000 010 2014 010 2014 01000000000000000000000000000000000	100 55 (2) A (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

Abbildung 44: Differentielle globale Netzwerkparameter. a) VTT (Instanz $0 = I_0$) und nVTT (Instanz $1 = I_1$) Vergleich. b) cVTT (Instanz $0 = I_0$) und nVTT (Instanz $1 = I_1$) Vergleich. In der ersten Spalte sind die globalen Parameter aufgeführt. In der "Instance 0" und "Instance 1" Spalte sind die Absolutwerte und in der "Difference" Spalte die Differenzen von I₀-I₁ aufgeführt. Dann folgt in der "Magnitude" Spalte der Absolutwert der Differenz. Die Werte der Spalte "Quotient" ergeben sich aus I₀:I₁. Die "Rel. Increase %" Spalte gibt die relative Änderung von I₀ gegenüber I₁oder umgekehrt wieder. Die letzten beiden Spalten "Rel. Diff. I₀-I₁" bzw. "Rel. Diff. I₁-I₀"

3.7.2 Differentielle Reziprozitäten

Eine quadratische Adjazenzmatrix, die ausschließlich reziproke Verbindungen enthält, entspricht einer Spiegelung der Verbindungswerte einer Dreiecksmatrix an der Hauptdiagonalen (Abbildung 45). Nicht-reziproke Verbindungen wurden aus dieser Matrix entfernt. Grüne Elemente der Reziprozitätsmatrix kodieren reziproke Verbindungen des nVTT-Netzwerkes. Rote Elemente kodieren reziproke Verbindungen des VTT-Netzwerkes. Weiße Dreiecke in den Elementen der Reziprozitätsmatrix symbolisieren reziproke Verbindungen, die sowohl in dem VTT als auch in dem nVTT Netzwerk vorkommen. Identische Reziprozitäten sind relativ selten. Zwei Bereiche (markiert mit Orange) um die Hauptdiagonale enthalten Häufungen von reziproken Verbindungen, die vor allem im VTT-Netzwerk vorkommen. Diese Regionen liegen in lumbalen Rückenmarkssegmenten und sind lokale spinale Verbindungen.

Abbildung 45: Differentielle Reziprozitätenmatrix. Auf der Hauptdiagonalen liegen auf beiden Seiten des Lumbalmarkes mehrere Regionen, die untereinander reziproke Verbindungen aufweisen. Diese rot gefärbten Elemente der Matrix wurden nur mit VTT nachgewiesen.

Kontralaterale Reziprozitäten sind deutlich seltener als ipsilaterale. Ein dichter Bereich reziproker Verbindungen wird von subkortikalen und hypothalamischen Unterregionen gebildet, die auch etwas häufiger zu entsprechenden kontralateralen Gebieten projizieren und damit diskrete Nebendiagonalen in der Differenzenmatrix bilden.

3.7.3 Differentielle Distanzenmatrix

Die kürzesten Distanzen zwischen Gebieten wurden ebenfalls differentiell dargestellt. Gebietspaare, zwischen denen keine Verbindungen gefunden wurden, sind mit schwarzen Einträgen versehen worden. Distanzen des nVTT Netzwerkes wurden in grünen Farbtönen kodiert und die des VTT-Netzwerkes in roten Farbtönen. Sind die kürzesten Distanzen zwischen zwei Regionen im nVTT und VTT gleich, dann wurden sie mit einem weißen Dreieckssymbol hervorgehoben (Abbildung 46). Da aus dieser differentiellen Distanzenmatrix nicht ersichtlich ist, ob ein großer oder kleiner Distanzenwert durch die eine oder andere Matrix zustande kommt, wurde eine Grauwert kodierte Dreieckssymbolmatrix berechnet. Wenn ein Dreieck in der oberen linken Hälfte eines Matrixelementes liegt, dann besteht nur eine kürzeste Distanz im VTT Netzwerk und nicht im nVTT. Liegt das Dreieck in der rechten unteren Ecke des Matrixelementes, gibt es nur eine kürzeste Distanz im VTT-Netzwerk. Befinden sich im oberen und unteren Matrixelement zwei Dreiecke bzw. ist das Matrixelement komplett ausgefüllt, so kann nun abgelesen werden, dass eine Distanzdifferenz für die nVTT als auch für die VTT Matrix in beide Richtungen besteht (Abbildung 47).

Abbildung 46: Differentielle Distanzenmatrix in Farbkodierung der kürzesten Distanzenunterschiede (Erklärung siehe Text).

Abbildung 47: Differentielle Distanzenmatrix in symbolischer Dreiecksdarstellung, um die Differenzen kürzester Distanzen in zwei Richtungen zu verdeutlichen.

Aus der differentiellen Distanzenmatrix wird deutlich, dass bestimmte Regionen nur über Verbindungen erreichbar sind, die aus dem VTT-Netzwerk hervorgehen. Typische Beispiele sind die kürzesten Distanzen von BZCERC, 12SVL, Acs5 und ZVES u.a.

3.7.4 Differentielle Connectivity matching matrix

Unterschiede in den Verbindungsmustern zweier Regionen werden in der differentiellen Connectivity matching all (CMA) Matrix dargestellt (Abbildung 48). "All" bezieht sich hierbei auf Input- als auch Output-Verbindungen. Wenn die Input-Verbindungen und Output-Verbindungen einer Region identisch sind wie die einer zweiten Region, so liegt ein CMA-Wert von 1 (maximales Verbindungs-Matching) vor. Hier wurden wieder die nVTT- und die cVTT-Netzwerke bezüglich der CMA-Matrizen verglichen.

Abbildung 48: Differentielle "Connectivity Matching All" Matrix (CMA). Grüne Werte zeigen Differenzen (je heller desto größer die Differenz) der CMA-Werte im cVTT- im Vergleich mit dem nVTT-Netzwerk an. Rote CMA Werte (je heller desto größer die Differenz) stehen für Differenzen im nVTT-Netzwerk. Die weißen Dreiecke sind wiederum die Symbole für gleiche CMA Werte im nVTT- und cVTT-Netzwerk.

Ein heller roter Eintrag in der differentiellen CMA-Matrix bedeutet, dass ein relativ großer CMA-Wert im nVTT-Netzwerk vorliegt. Ein heller grüner Eintrag bedeutet, dass ein relativ großer CMA-Wert im cVTT-Netzwerk vorhanden ist. Die Verbindungsähnlichkeiten oder "matches" des cVTT-Netzwerkes sind größer als in dem nVTT-Netzwerk, welches keine VTT-Verbindungen besitzt. Außerdem fällt auf, dass eine Nebendiagonale mit helleren Grüntönen für kontralaterale supraspinale CMA-Werte sichtbar ist. Dies bedeutet, dass relativ große Ähnlichkeiten von Verbindungen zwischen Paaren homologer kontralateraler Gebiete im cVTT-Netzwerk im Vergleich zum nVTT-Netzwerk bestehen.

3.7.5 Differentielle lokale Netzwerkparameter

Die meisten lokalen Netzwerkparameter dienen der Abschätzung, ob Regionen oder Knoten von Netzwerken eine größere oder kleinere Bedeutung im Vergleich mit anderen Knoten des Netzwerkes besitzen. Insgesamt lassen sich 50 unterschiedliche lokale Netzwerkparameter in neuroVIISAS berechnen. Alle Parameter oder auch Gruppen ähnlicher (Zentralitätsmaße) Parameter lassen sich unabhängig voneinander sortieren und die Ränge bestimmen, welche dann wieder für jede Region gemittelt werden können, so dass sich ein mittlerer Rang (AvgRang) für jede Region ergibt (Tabelle 4). Dies wurde für das cVTT- und das nVTT-Netzwerk durchgeführt. Danach wurde nochmals über die mittleren Ränge aufsteigend sortiert: jeweils für das cVTT- und das nVTT-Netzwerk, um Unterschiede in der Bedeutung von Regionen einmal im Netzwerk mit VTT-Verbindungen und einmal ohne diese Verbindungen zu erkennen (Abbildung 50). Zahlreiche lokale Parameter weisen lineare, exponentielle oder logarithmische Abhängigkeiten mit dem Degree All Parameter auf. Zwischen dem mittleren Rang und dem Parameter Degree All gibt es im nVTT eine relativ große Korrelation von -0,961 (y=65,873 ln (x+1) + 572,345) (Abbildung 49). Viele der lokalen Parameter (Korrelationsmatrix der lokalen Parameter lässt sich in neuroVIISAS anzeigen) weisen relativ große Korrelationen mit dem grundlegenden Parameter Degree All auf.

Tabelle 4: Rangbildung lokaler Parameter im nVTT und cVTT. DG All gibt die Summe der Input- und Output-Verbindungen pro Region wieder. Die linke Tabellenhälfte wurde über nVTT aufsteigend sortiert und die rechte Hälfte über cVTT. Nur die 20 Regionen von 713 mit den höchsten Rängen (kleinsten Rangnummern) wurden hier wiedergegeben.

Row	Name	AvgRang	AvgRang	AvgRang	DG AII	DG All	DG AII	Row	Name	AvgRang	AvgRang	AvgRang	DG All		DG All
		DVTT	CVII	Diff	nVTT	¢VTT	Diff			nVTT	CVII	Diff	DVIT	çVII	Diff
463	Zona incerta R	159,6531	163,6327	-3,9796	362	377	-15	463	Zona incerta_R	159,6531	163,6327	-3,9796	362	377	-15
130	Zona_incerta_L	160,1429	164	-3,8571	362	377	-15	130	Zona incerta L	160,1429	164	-3,8571	362	377	-15
98	Lateral_hypothalamic_area_L	160,8571	173,3469	-12,4898	571	583	-12	475	Central_amygdaloid_nucleus_R	162,8367	165,9184	·3,0816	287	297	-10
431	Lateral_hypothalamic_area_R	161,3061	173,5918	·12,2857	571	583	-12	142	Central_amygdaloid_nucleus_L	163,8571	166,9796	·3,1224	287	297	-10
475	Central_amygdaloid_nucleus_R	162,8367	165,9184	·3,0816	287	297	-10	44	Peribrachial region L	166,3878	170,3061	·3,9184	602	608	-6
142	Central_amygdaloid_nucleus_L	163,8571	166,9796	·3,1224	287	297	-10	377	Peribrachial region R	166,9592	170,9592	-4	601	607	-6
44	Peribrachial region L	166,3878	170,3061	·3,9184	602	608	·6	98	Lateral_hypothalamic_area_L	160,8571	173,3469	·12,4898	571	583	-12
377	Peribrachial region R	166,9592	170,9592	-4	601	607	·6	431	Lateral_hypothalamic_area_R	161,3061	173,5918	·12,2857	571	583	-12
107	Paraventricular_hypothalamic_nucleus_L	167,898	181,2653	-13,3673	446	457	-11	376	Mesencephalic reticular formation R	172,6735	173,6531	·0,9796	365	375	-10
440	Paraventricular_hypothalamic_nucleus_R	168,2449	181,5714	-13,3265	446	457	-11	349	Substantia_nigra_A9_R	172,6735	175,0612	-2,3878	245	255	-10
425	Substantia_innominata_nucleus_basalis_complex_R	171,0408	175,1224	-4,0816	207	209	-2	425	Substantia_innominata_nucleus_basalis_complex_R	171,0408	175,1224	-4,0816	207	209	-2
406	Median <u>raphe_nucleus_</u> R	171,1429	175,7143	·4,5714	210	211	-1	43	Mesencephalic reticular formation L	174,7347	175,6735	-0,9388	365	375	-10
349	Substantia_nigra_A9_R	172,6735	175,0612	-2,3878	245	255	-10	406	Median_raphe_nucleus_R	171,1429	175,7143	·4,5714	210	211	-1
376	Mesencephalic reticular formation R	172,6735	173,6531	·0,9796	365	375	-10	16	Substantia_nigra_A9_L	176,0408	177,5306	·1,4898	245	255	-10
73	Median <u>raphe_nucleus_</u> L	174,4286	178,3061	·3,8776	210	211	-1	73	Median_raphe_nucleus_L	174,4286	178,3061	·3,8776	210	211	-1
43	Mesencephalic reticular formation L	174,7347	175,6735	-0,9388	365	375	-10	100	Posterior hypothalamic_area_L	175,4286	179	·3,5714	269	272	-3
100	Posterior_hypothalamic_area_L	175,4286	179	·3,5714	269	272	.3	92	Substantia_innominata_nucleus_basalis_complex_L	176,102	179,4694	·3,3673	207	209	-2
16	Substantia_nigra_A9_L	176,0408	177,5306	·1,4898	245	255	-10	433	Posterior_hypothalamic_area_R	177,2041	179,4898	·2,2857	269	272	-3
92	Substantia_innominata_nucleus_basalis_complex_L	176,102	179,4694	-3,3673	207	209	-2	65	Trigeminal nucleus_L	177,898	180,898	-3	435	437	-2
435	Ventromedial_hypothalamic_nucleus_R	176,6939	181,8163	-5,1224	239	243	-4	107	Paraventricular_hypothalamic_nucleus_L	167,898	181,2653	-13,3673	446	457	-11

Im nVTT-Netzwerk liegen die Zona incerta, Lareral hypothalamic area und der Central amygdaloid nucleus auf den obersten 3 Rängen. Die Rangfolgen der weiteren 17 Regionen von 716 sind Tabelle 4 zu entnehmen. Aus der Tabelle geht auch hervor, dass ein hoher Rang nicht notwendigerweise mit einem großen *Degree All* einhergehen muss. Werden die mittleren Ränge im cVTT-Netzwerk aufsteigend sortiert, so bleibt die Zona incerta auf Rang 1 gefolgt vom

Central amygdaloid nucleus und danach der Peribrachial region. Nach der Peribrachial region folgt an 4. Stelle (linke und rechte Seite werden in dieser Betrachtung zusammengefasst), dann die Lateral hypothalamic area, die im nVTT auf dem 2. Rang steht. Eine parallele Visualisierung der Rangfolgen für nVTT und cVTT ist in Abbildung 50a und b gezeigt.

Abbildung 49: Die Korrelation von mittleren Rang (Ordinate) und Degree all (Abszisse) ist logarithmisch fallend. Die Gebiete sind entsprechend ihren Farben als Punkte dargestellt.

Werden nun die Differenzen der mittleren Ränge (nVTT-cVTT) gebildet und aufsteigend nach den Differenzen die Sortierung und damit Rangbildung vorgenommen, so zeigen sich größere Unterschiede für einen Skelettmuskel, nämlich dem Musculus digastricus, dann die Intermediomediale Zellsäule im Rückenmark und für den Raphe obscurus nucleus. Die Differenzen sind negativ und bei der angewendeten Sortierung liegen die besonders großen positiven Differenzen am Ende der Tabelle. Hier weist das nVTT größere mittlere Ränge für spinale Interneurone und die striatale Matrix sowie das striatale Patch compartment auf.

Abbildung 50: Rangbildung der lokalen Netzwerkparameter. Über mehrere lokale Netzwerkparameter wurden die mittleren Ränge berechnet und anschließend aufsteigend für das nVTT-Netzwerk (a) und das cVTT-Netzwerk (b) sortiert. Die ersten 20 Regionen mit den höchsten Rängen wurden wiedergegeben. c) Werden die Differenzen von nVTT und cVTT der mittleren Ränge sortiert, so ergeben sich größere Unterschiede zwischen nVTT und cVTT für den Musculus digastricus, die intermediomediale Zellsäule und das Raphe obscurus Kerngebiet.

3.7.6 Rich clubs im nVTT und cVTT

Die Rich-Club Regionen des nVTT und cVTT können sich unterscheiden. Daher wurden die Verteilungen der Verbindungen in den beiden empirischen Netzwerken mit denen von zufälligen Netzen mit gleicher Knoten- und Kantenanzahl verglichen. In Abbildung 51 sind die Verteilungen für das nVTT und cVTT wiedergegeben. Ab einer Kantenanzahl von ungefähr 240 Verbindungen zeigen sich größere Abweichungen von der Verteilung der zufällig generierten Kanten (Abbildung 51).

Abbildung 51: Gradverteilungen der empirischen nVTT (a) und cVTT (b) Netzwerke sind mit Rot dargestellt und die Zufallsmodelle (100 Iterationen) sind mit Grün abgebildet. Eine größere Abweichung der empirischen Kurven von der Kurve des Zufallsmodells wurde mit einer schwarzen Linie um einen Grad von 240 (Abszisse) hervorgehoben. Auf der Ordinate sind die Liniendichten aufgetragen (prozentualer Anteil der Kanten von der Gesamtzahl der Kanten).

Der Vergleich der nVTT- und cVTT-Kurven lässt einen ähnlichen Verlauf erkennen, so dass hier kein größerer Unterschied zwischen dem nVTT und cVTT-Netzwerk vorliegt. Im bogenförmigen Rich-Club Diagramm ist die Kantendichte massiv (Abbildung 52), so dass sich hier keine Besonderheiten visualisieren lassen. Daher wurde der Rich-Club des nVTT- mit dem cVTT-Netzwerk verglichen. In beiden Mengen kommen die gleichen 56 Regionen vor. Im nVTT sind 12 Kanten weniger vorhanden. Die Konnektivität der Rich-Club Regionen ist sehr dicht (Liniendichte ca. 74%). Auffallend ist auch die hohe Dichte an kontralateralen Verbindungen der Rich-Club Regionen. In der differentiellen Rich-Club Matrix sind die Unterschiede der fehlenden Verbindungen im nVTT-Netzwerk (grün gefärbte Matrixelemente) deutlich zu erkennen. Verbindungen die im nVTT im Vergleich mit dem cVTT fehlen, liegen vor allem im Dienzephalon (thalamische und hypothalamische Gebiete) sowie im Central amygdaloid nucleus, also einer Region, die einen besonders großen Rang (s. Lokale Netzwerkparameter) besitzt.

d

Abbildung 52: Rich-Club Analyse des nVTT- und cVTT-Netzwerkes. a) Rich-Club Diagramm nVTT und b) cVTT. Die Rich-Club Regionen befinden sich im untersten Bogen. Neben den Rich-Club Diagrammen sind die gewichteten Adjazenzmatrizen gestellt worden. Einige Unterschiede zwischen der nVTT- und cVTT-Matrix sind zu erkennen, da in der nVTT-Matrix einige Verbindungen nicht vorliegen. Deutlich werden diese durch die daneben stehende Differenzenmatrix. Die grün gefärbten Verbindungen sind nicht in der nVTT-Matrix vorhanden. c) Planares Netzwerk-Diagramm mit Kantengewichten für die Rich-Club Regionen des nVTT und d) cVTT-Netzwerkes.

3.7.7 Modulbildung im nVTT und cVTT

Die Modularitätsanalyse mittels des Louvain Verfahrens ergab für das nVTT-Netzwerk 8 Module (Abbildung 53). Die Modularitätsberechnung erfolgte für die gewichteten nVTT- und cVTT-Netzwerke. Die semiquantitativen Gewichte wurden logarithmisch transformiert:

 $f(x) = 10^{\left(-\frac{16}{49}x(x-4)^2\right)}$. Aus Abbildung 53a geht hervor, dass auch isolierte Gebiete vorliegen, die keine Verbindungen mehr zur größten Zusammenhangskomponente und untereinander besitzen. Die in nVTT fehlenden VTT-Verbindungen sind die Ursache für die isolierten Knoten. In Abbildung 53b sind 8 Module zu erkennen, die aus dem cVTT-Netzwerk generiert wurden. Modul 6 und 8 sind sehr klein. Ein Vergleich der Modulzusammensetzung des nVTT- und cVTT-Netzwerkes ist schwierig. Die Modulgrößen unterscheiden sich teilweise erheblich. Die Einfärbungen der Gebiete ermöglichen einen groben Vergleich. So sind das nVTT Modul 5 und cVTT Modul 3 trotz der Größenunterschiede aufgrund der Häufung von "blauen" Regionen bzw. Gebieten des Hirnstammes ähnlich. Ferner besteht Ähnlichkeit zwischen nVTT Modul 2 und cVTT Modul 7 hinsichtlich der peripheren Gebiete (braune Farbtöne). nVTT und cVTT scheinen von der Tendenz her zu ähnlichen Gebietszuordnungen zu Modulen zu führen, was für eine konnektionale modulare Konsistenz spricht. Eine Entfernung von VTT-Verbindungen führt jedoch zu einer deutlichen Änderung der Modulzusammensetzung, obgleich grundlegende Gebietsverteilungen erhalten bleiben.

Abbildung 53: Louvain Modularitäts Analyse des nVTT (a) und cVTT-Netzwerkes (b). Die Anzahlen von Verbindungen pro Modul sind in der Matrix unter (c) für nVTT und unter (d) für das cVTT-Netzwerk wiedergegeben.

3.7.8 Differentielle Motiv-Analyse im nVTT und cVTT

Die differentielle Modulanalyse des nVTT- und cVTT-Netzwerkes zeigt zunächst eine etwas größere Häufigkeit von Modulen im cVTT (Abbildung 54). Die Häufigkeit der Motive wurde zum Vergleich mit dem empirischen nVTT- (große rote Punkte in Abbildung 54) and cVTT-Netzwerken (große blaue Punkte in Abbildung 54) auch mit allen 8 randomisierten Netzwerken (Erdös Rényi (ER), Watts Strogats (WS), Barabasi Albert (BA), modifiziertes Barabasi Albert (MB), modifiziertes Oho (MO), rewiring (RW), rewiring mit reziproker Kanten Erhaltung (RR), Klemm-Eguílez (KSW) Randomisierungen sind jeweils mit kleinen blauen bzw. roten Punkten für die Motiv-Häufigkeiten dargestellt). Aufgrund der relativ großen Kanten- und Knotenzahl wurden lediglich 30 Simulationen massiv parallel über 2 Monate berechnet. Ein spezifischer Unterschied der Motiv-Häufigkeiten, der durch die Berücksichtigung von Konnektivitäten, die mittels VTT ermittelt wurde, ist nicht vorhanden. Die größte Ähnlichkeit hat das RR-Randomisierungsmodell mit den empirischen cVTT- und nVTT-Netzwerken.

Abbildung 54: Differentielle Motiv-Analyse des nVTT- und cVTT-Netzwerkes mit 8 Randomisierungsmodellen. Ähnlichste Häufigkeiten bestehen zwischen nVTT- und cVTT-Netzwerken für die RR-Randomisierung Ein stärkerer Unterschied bezüglich eines oder mehrerer Motive zwischen dem nVTT- und cVTT-Netzwerk ist nicht zu erkennen.

4 Diskussion

Die Ergebnisse der Untersuchungen sollen zunächst zusammengefasst und kritisch diskutiert werden. Außerdem werden Befunde und Konnektomik-Konzepte anderer Arbeitsgruppen vergleichend besprochen. Schließlich werden die in der Einleitung aufgeführten Fragestellungen beantwortet und ein Ausblick auf weitere Entwicklungen gegeben.

4.1 Zusammenfassung der Analysen

Neuronale Verbindungen zwischen einzelnen Neuronen und Regionen des peripheren und zentralen Nervensystems werden nicht nur mit nicht viralen Tracing-Substanzen erforscht, sondern auch mit viralen Tracern. Bislang wurden jedoch keine Arbeiten publiziert, in denen die mittels viralen Tract-tracing erfassten neuronalen Verbindungen systematisch in einer Metastudie aus den Originalpublikationen zusammengestellt wurden. Daher gibt es bislang auch noch keine Netzwerkanalyse von derartigen Verbindungen, die mittels VTT beschrieben wurden, in Tabellen übertragen. In diesen Arbeiten wurden u.a. virale tract tracer verwendet. Verbindungen, die in diesen Arbeiten mittels nicht viralen Tract-tracing beschrieben wurden, wurden ebenfalls extrahiert und in das Rattenkonnektom des *neuroVIISAS*-Systems eingelesen. Virale und non-virale Verbindungsdaten lassen sich explizit über Filtermechanismen in *neuroVIISAS* trennen, so dass diese Verbindungen gemeinsam als auch getrennt voneinander in partiellen Konnektomen betrachtet und analysiert werden können.

Die Gebiete des peripheren und zentralen Nervensystems können über Nomenklaturen spezifiziert werden. Sie lassen sich als Listen von Gebieten (Paxinos, 2014) organisieren, in Form von typischen hierarchischen Nomenklaturen (azyklische Graphen), Ontologien (strukturierte Wissenskonzepte), aber auch zirkulären Graphen. neuroVIISAS erlaubt die Erzeugung von Listen, Hierarchien und Ontologien zur Strukturierung und Verwaltung beliebiger biologischer Nomenklaturen. Im Fall des Rattenkonnektoms wurde eine Ontologie Struktur verwendet, in welcher die Nomenklatur von zentralen und peripheren Gebieten zum einen hierarchisch dargestellt ist und zum anderen mit Wissens-Attributen und Relationen zu einer Ontologie erweitert wurde. Beliebige Gliederungen von anatomischen und funktionellen Gebieten lassen sich in einem solchen System konsistent abbilden. Da Bezeichnungen in Nomenklaturen als Synonyme und partiell überlappend als auch ausschließend verwendet werden, wurde das Ontologie System um einen variationellen Ansatz (Varianten) erweitert, das es erlaubt, die Basis-Ontologie beliebig "umzubauen" und an die variierenden Nomenklaturen als auch Weiterentwicklungen von Nomenklaturen anzupassen. Für die Analyse von Netzwerken bzw. Graphen in denen die Knoten den hierarchisch organisierten Gebieten entsprechen, ergeben sich hier gewisse Probleme. So können neuronale Verbindungen in die Gebiete auf Originalpublikationen beschrieben werden, unterschiedlichen Hierarchieebenen verbinden. Hierzu lassen sich Verbindungen aus einer direkten oder kumulierten Konfiguration in ein Konnektom integrieren.

Im Folgenden wurde die kumulierte Konfiguration verwendet. Über einen automatischen Optimierungsansatz wurden 716 bilaterale Regionen bestimmt, zwischen denen besonders viele Verbindungen verlaufen, die mittels viralen Tract-tracing beobachtet wurden. Diese 716 Regionen sind über 14 Hierarchieebenen der Ontologie verteilt. Insgesamt sind die Regionen über 34566 Verbindungen durch virale und nicht-virale Tracer beschrieben worden. Zunächst wurde ein partielles Konnektom bestimmt, in dem alle Gebiete über Verbindungen, die mittels viralen Tract-tracing gefunden wurden, miteinander in Verbindung stehen. Es ergaben sich 3323 Verbindungen in diesem Konnektom, was auch als VTT-Konnektom bezeichnet wird. Die Gesamtzahl von VTT-Verbindungen beträgt 37733, von denen 26744 nicht mehrfach beschrieben wurden. Die 10989 mehrfach beschriebenen Verbindungen spiegeln häufig Forschungsschwerpunkte von mehreren Arbeitsgruppen wieder, die ähnliche Gebiete mit ähnlichen Methoden untersuchen. 317 der 26744 VTT-Verbindungen sind reziprok. Auch Pfade mit mehr als einer synaptischen Verbindung finden sich im Konnektom der Ratte wieder. Des Weiteren wurden auch Kolateralen Verbindungen beschrieben. Am häufigsten wurden Pseudorabies Viren für das VTT verwendet.

Das aus 716 links- und rechtsseitigen peripheren und zentralen Gebieten bestehende Konnektom enthält 3355 Verbindungen von denen 3323 für graphentheoretische Auswertungen genutzt werden können, da die übrigen Verbindungen zwischen Hierarchieebenen inmitten der Hierarchie verlaufen. Ähnliche Verbindungsmuster im VTT-Netzwerk weisen spinale Gebiete auf.

In der globalen Netzwerk-Analyse fand sich ein relativ kleiner mittlerer Clusterkoeffizient bei einer großen Small-Worldness. Außerdem spricht der kleine Fehler bzw. die Abweichung von der Scale-Free property für ein skalenfreies Netzwerk. Aus Simulationen mit 8 unterschiedlichen Zufallsmodellen geht hervor, dass das VTT-Netzwerk relativ viel Ähnlichkeit mit dem Watts-Strogatz und dem rewiring Modell (mit Konstanthaltung reziproker Verbindungen) besitzt.

Nach Abschätzung der Modul-Stabilität führte die Modularitätsanalyse zu der Bildung von 18 Modulen. Die lokale Netzwerkanalyse wurde genutzt, um mittels Rangbildung, die für die Netzwerkstruktur besonders wichtigen Gebiete zu identifizieren. Als besonders wichtige Regionen stellten sich die peribrachiale Region, der laterale prefrontale Kortex, die oral-cavity, der nucleus of the solitary tract und die zona incerta heraus. Der Vergleich von mittleren Rängen und dem Degree All zeigte, dass diese beiden Größen nicht direkt im VTT-Netzwerk zusammenhängen und sich andere Rangfolgen von Regionen ergeben, wenn bezüglich dieser beiden Größen Sortierungen vorgenommen werden. Ein großer Degree All muss also nicht mit einem großen mittleren Rang einhergehen.

Einige lokale Parameter wurden bezüglich ihrer Korrelationen untersucht. Zwischen dem Katz-Index und dem Degree All ergab sich ein Korrelationskoeffizient von c=0,605, zwischen der Betweenness Zentralität und dem Degree All betrug c=0,551 und zwischen der Eigenvektor Zentralität und Degree All ist c=0,465. Die Anzahl der Zyklen im VTT-Netzwerk wurde für alle Regionen ermittelt und es zeigt sich, dass der nucleus of the solitary tract an vorderster Stelle steht bzw. durch dieses Kerngebiet verlaufen die meisten zyklischen Verbindungen.

Die Motiv-Analyse des VTT-Netzwerkes zeigte eine leicht signifikante Häufung des zirkulären 3-07 Motivs im Vergleich mit 1000 Iterationen des rewiring Randomisierungs Modelles. Dies ist insofern bedeutsam, als in vielen anderen partiellen Konnektom Analysen, dieses Motiv stets sehr selten im empirischen Netzwerk vorkommt und sich nicht signifikant von Zufallsprozessen unterscheidet (Basalganglien-Konnektom, Amygdala-Konnektom u.a.).

Die Gradverteilung und der Vergleich mit 1000 Iterationen eines Zufallsmodells ergab deutlich niedrigere Verbindungshäufigkeiten von geringeren Anzahlen von Verbindungen von Knoten. Ab einer Verbindungshäufigkeit von 44 wurde der Schwellwert für die Rich-Club Regionen festgelegt, die in einer planaren Netzwerkdarstellung zahlreiche kontralaterale Verbindungen aufweisen. Typische Kandidaten des Rich-Clubs sind Pa, Sol, A5, MD, mPFC und PFI.

Im zweiten Teil der Untersuchungen wurde eine differentielle Analyse der 716 VTT-Regionen durchgeführt. Das komplette VTT-Netzwerk (cVTT) besteht aus allen Verbindungen, die mittels viralen Tract-tracing als auch mit nicht-viralen Tract-tracing gefunden wurden. Dieses wurde mit dem nVTT-Netzwerk verglichen, welches keine Verbindungen enthält, die mittels viralen Tract-tracing gefunden wurden. Der Vergleich der beiden partiellen Konnektome mit identischen Knoten zielt darauf ab, eine Aussage über die Bedeutung einer Berücksichtigung von viralen Tract-tracing Verbindungen zu machen. Die Verbindungen wurden im kumulativen Modus den Konnektomen zugeordnet. Es zeigte sich, dass 1766 Verbindungen sowohl mit viralen, als auch mit nicht viralen Tract-tracing Methoden im VTT-Netzwerk vorliegen. 1599 Verbindungen des VTT-Netzwerkes wurden ausschließlich mit viralen Tract-tracing gefunden. Würden diese Verbindungen in einer Metastudie des Rattenkonnektoms nicht berücksichtigt werden, kann dies mit einer Änderung der konnektionalen Struktur des Konnektoms einhergehen, was im Ergebnisteil auch gezeigt wurde. Andererseits wurden 31413 Verbindungen zwischen den Regionen des VTT gefunden, die ausschließlich mit nicht viralen Tract-tracing Methoden beschrieben wurden.

Die globalen Parameter wurden im differentiellen Modus in zwei Konfigurationen bestimmt: zum einem zwischen VTT und nVTT und zum anderen zwischen nVTT und cVTT. Da nVTT und cVTT hinsichtlich der Netzwerkdimensionen gut vergleichbar sind, wurden die Ergebnisse aus diesem Vergleich herausgestellt. Der deutlichste relative Unterschied ergab sich für den globalen Parameter Small-Worldness von 10% und von der Modularität von 12%. Hieraus lässt sich schließen, dass eine Berücksichtigung von VTT-Konnektivität wichtig ist und die Konnektomstruktur vervollständigt. Auch Matrizen, wie die Reziprozitätsmatrix, Distanzenmatrix und Connectivity matching matrix, wurden im differentiellen Modus dargestellt, damit die Unterschiede zwischen nVTT und cVTT deutlich werden.

Die differentielle Analyse der lokalen Netzwerkparameter wurde für die ersten 20 Regionen von 716 wiedergegeben. Die Rangfolge im nVTT war Zona incerta, Lateral hypothalamic area und Central amygdaloid nucleus. Im cVTT-Netzwerk war die Rangfolge Zona incerta, Central amygdaloid nucleus und peribrachial area. Danach folgte erst die Lateral Hypothalamic area. Also zeigte sich auch an dieser Stelle der Auswertung ein Unterschied zwischen nVTT und cVTT, was wieder die Bedeutung von VTT-Verbindungen unterstreicht.

Die Rich-Club Analyse zeigte keinen größeren Unterschied zwischen nVTT und cVTT auf. Die Erkennung eines Schwellwertes der empirischen Kantenverteilung im Vergleich mit den randomisierten Verteilungen war deutlicher als bei dem reinen VTT-Netzwerk. Die Rich-Club Regionen haben eine besonders hohe kontralaterale Konnektivität. Die Louvain Modularitätsanalyse ergab 6 Module im nVTT- und 8 Module im cVTT-Netzwerk. Außerdem fielen die isolierten Gebiete im nVTT-Konnektom hier besonders auf, so dass auch an dieser Stelle von einem deutlichen Unterschied zwischen nVTT und cVTT gesprochen werden kann, womit die Bedeutung von VTT-Verbindungen erneut hervorgehoben werden muss.

4.2 Vergleich mit anderen Metastudien basierten Konnektomen

Das Herauslesen von Daten, die die Methoden zur Detektion von Verbindungen und die neuronalen Verbindungen an sich beschrieben, wurde aus begutachteten (peer reviewed) Veröffentlichungen vorgenommen. Die meisten dieser Veröffentlichungen sind "original research paper" und ein kleinerer Teil Methoden-Artikel. Verbindungen zwischen Regionen des Nervensystems von Laborratten wurden aus begutachteten Tract-tracing-Artikeln in Tabellenform überführt, um die genauen Richtungs- und Auflösungsdaten dieser Verbindungen in gefilterter und abstrahierter Form zu erhalten. Dieses Vorgehen ist eine etablierte retrospektive Methode und wird ebenfalls von anderen Arbeitsgruppen angewendet (Felleman und van Essen, 1991; Stephan et al., 2000, 2001; Sugar et al., 2011; Bota et al., 2012).

Im Gegensatz zu anderen Arbeitsgruppen wurden aber nicht nur Artikel berücksichtigt, die ausschließlich Befunde zu neuronalen Verbindungen beschreiben, sondern auch Publikationen, die VTT lediglich als Überprüfungsmethode anwenden. Somit wurde keine Selektion von Publikationen durchgeführt, die sich nur auf konnektionale Aspekte konzentrieren, sondern alle Publikationen berücksichtigt, die VTT in der Laborratte angewendet haben und neuronale Verbindungen im ZNS oder PNS beschreiben. Somit wurde eine vollständige Rohdatenextraktion aus der verfügbaren Tract-tracing Literatur vorgenommen. Die aus den Artikeln extrahierten Daten wurden in der Konnektomik-Arbeitsgruppe des Institutes überprüft. Eine wiederholte Auswertung der identischen Publikationen durch weitere unabhängige Personen mit Fachkenntnissen der Neuroanatomie ist aufgrund des arbeits- und zeitintensiven Prozesses der Daten-Extraktion nicht möglich gewesen. Vergleichssauswertungen könnten jedoch zu einer Abschätzung der Zuverlässigkeit von ausgelesenen Verbindungsdaten führen. Ein solcher Validierungs-Prozess wird bereits für eine kleinere Teilauswertung von Publikationen zu Verbindungen des Hypothalmus ausgeführt. Aufgrund von detaillierten Besprechungen der ausgelesenen Verbindungsbefunde jedes ausgewerteten Artikels wurden jedoch die Genauigkeit der Auswertungen und die Reproduzierbarkeit erhöht.

Während der Auswertung fiel auf, dass es für die meisten sehr aufwendigen viralen Tracttracing Studien relativ wenige terminologische Konventionen und experimentelle Standardisierungen gibt. Dies betrifft vor allen die Applikationsstrategie als auch die semiquantitative Beschreibung von Verbindungsgewichten und neuroanatomische Definition von afferenten und efferenten, zentralen und peripheren Gebieten. Neben den Variationen der Applikationsmodi sind die Volumina und Konzentrationen der Virusproben unterschiedlich. Eine fehlende Standardisierung von "Zeitprotokollen" vor allem für transsynaptische VTT-Studien ist nicht vorhanden und macht es schwierig Verbindungsbefunde unterschiedlicher Studien zu vergleichen. Die Metainformationen der Verbindungsdaten zeigen Variationen des Geschlechts, Alters und der Tierlinien (Strains). Allerdings ist es üblich, dass in vergleichbaren Metastudien von Konnektomen, die Daten gepoolt werden und Verbindungsinformationen von Tieren unterschiedlichen Geschlechts und Alters sowie der Tierlinien zusammengefasst werden. Bestimmte Publikationen wurden von der Auswertung ausgeschlossen. Dazu gehören Läsionsstudien (knife cut lesions, Kainsäure Läsion u.a.), die aufgrund der Genauigkeit der Lokalisation von afferenten und efferenten Gebieten nicht berücksichtigt wurden. Des Weiteren wurden nur Artikel ausgewertet, die Befunde in adulten Laborratten beschreiben oder Verbindungen in postnatalen Tieren (juvenile, young) darstellen, die ebenso im adulten Tier nachgewiesen wurden. Tract-tracing Publikationen, in denen Verbindungen auch von anderen Organismen (z.B. Künzle, 2009) erfasst wurden, kamen nur zur Auswertung, sofern Verbindungen von Laborratten enthalten waren. Verbindungen von weiblichen und männlichen Tieren wurden ausgewertet, wobei männliche Tiere häufiger in Tract-tracing Untersuchungen verwendet werden. Publikationen mit phylogenetisch verwandten Nagern (Rehkämper et al., 1994), wie z.B. Blindmäuse (Spalax ehrenbergi) wurden nicht ausgewertet. Ebenso wurden Publikationen nicht berücksichtigt, in denen Experimente mit Transplantaten oder neuropharmakologische Untersuchungen durchgeführt wurden (z.B. Thanos, 1997), da es wahrscheinlich ist, dass Verbindungen zerstört oder durch neuronale Plastizität umstrukturiert worden sind.

Das Konnektom- und Atlasanalysesystem neuroVIISAS ermöglicht es gezielt, die zusammengefassten Daten durch Filtermechanismen wieder zu separieren, so dass geschlechtsspezifische Konnektome untersucht werden können. Außerdem erlaubt das System unterschiedliche Terminologien (Variantenkonzept) als Varianten abzubilden. Die semiquantitativen Verbindungsgewichte (visuelle Abschätzungen der Dichte von Verbindungen, die mittels Tract-tracing sichtbar gemacht werden) können durch unterschiedliche logarithmische Transformationen oder Benutzer-definierte Transformationen umgerechnet werden, so dass aus der Ordinal-skalierten Gewichts-Variablen metrische Variablen geschätzt werden können (Bota et al., 2015). Da jede Verbindung über das Datenbanksystem von neuroVIISAS mit der die Verbindung beschreibenden Publikation verknüpft ist, kann direkt in der Publikation die Verbindungsinformation geprüft werden. Diese Methode ermöglicht eine zusätzliche Absicherung und eine gewissenhafte Auswertung. Solche Möglichkeiten sind in keinem vergleichbaren System (CoCoMac, Ferretome, BAMS) verfügbar (Bota et al., 2005; Sukhinin et al., 2016; Kötter, 2004; Stephan et al., 2001).

Weitere Methoden zur Erfassung von Verbindungen im Nervensystem der Ratte sind DTI-Messungen (Figini et al., 2015), indirekte fMRI (Song et al., 2015; Wang et al., 2017) Analysen oder eine neue PET basierte Tracing Methode zur Darstellung von niedrigaufgelöster neuronaler Konnektivität *in vivo* (Napieczynska et al., 2017). Diese haben jedoch den Nachteil, dass der Ursprung (Perikaryon) und das Ziel (Axonterminalen) einer Verbindung nicht eindeutig bestimmbar sind. Aus diesen Daten resultieren meist nur ungerichtete Verbindungen. Das Verfahren vom Allen-Institut zur Erstellung des Mouse-Connectoms, basiert auf einen high-throughput Ansatz, der nunmehr nach Abschluss des Projektes nicht mehr in der Lage ist, die Konnektivität des peripheren Nervensystems zu erfassen (Oh et al., 2014).

Die neuronalen Verbindungen einer bestimmten Spezies, die mittels gleicher Tracer-Injektionsorte in unterschiedlichen Tract-tracing Publikationen gefunden werden, müssen nicht gleich sein, da die exakte räumliche Lokalisation (Diffusion des Tracers in Nachbargebiete) des Injektionsortes, die Applikationsart (Geschwindigkeit der Injektion, Druckinjektion, Iontophorese und Kombinationen) und der Tracer selber (Konzentration, Volumen, Konjugation) variabel angewendet, experimentell erfasst und dann auch noch sehr unterschiedlich in den Artikeln beschrieben werden können (Abbildungen, Tabellen, textliche Beschreibungs-Stile). Am häufigsten werden die Beschreibungen von Verbindungen aus den Ergebnisteilen von Publikationen interpretiert, um sie abstrahiert in standardisierte Tabellen zu überführen. Schwierig kann dies für die Beschreibungen von axonalen Terminalen nach anterograden Tract-tracing sowie Ausführungen über Perikaryenlokalisationen nach retrograden Tract-tracing sein, wenn gemeinsame Terminalen- und Perikaryen-Darstellungen bidirektionalem Tracer-Transport über mehrere Absätze der Publikation bei in verallgemeinerter Form erläutert werden. Des Weiteren können die Ergebnisse des Auslesens variabel werden, wenn zwar die Applikation des Tracers in die gleichen Strukturen sichergestellt ist, aber die Überlebenszeiten der untersuchten Tiere unterschiedlich sind. Gerade verlängerte Überlebenszeiten in unterschiedlichen Studien können dazu führen, dass deutlich mehr Projektionen markiert werden. Des Weiteren können zum Teil auch schwache Konnektivitäten infolge der längeren Überlebenszeit ein größeres semiquantitatives Gewicht erhalten. Die Beschreibungen von Injektionen in Faserbahnen oder Tracer-Lokalisationen in "fibers of passage" oder "bypassing fibers" wurden ebenfalls erfasst. Mittels eines spezifischen Gewichtswerts wurden diese Projektionen markiert, so dass solche Verbindungen bei der Auswertung wiederum gefiltert werden können. Sofern die Angaben zu Projektionsbahnen nicht eindeutig sind, insbesondere von benachbarten Regionen, wurden diese bei der Auswertung nicht berücksichtigt (z.B. Cho et al., 2004).

Das von Kamper (2004) erläuterte Parzellierungsproblem kann zu einer uneinheitlichen Gliederung von Regionen führen, da sich Regionen nach strukturellen und/oder funktionellen und/oder hodologischen und/oder neurochemischen Kriterien unterschiedlich organisieren lassen. Dies kann bei dem Vergleich verschiedener Tract-tracing Publikationen zu Überlappungen und Einschließungen von Regionen führen. Infolgedessen kann die genaue Zuordnung der Regionen, die Definition räumlich-ontologischer Relationen (Baldock und Burger, 2008; Bowden et al., 2007; Bowden und Dubach, 2005) und deren Vergleichbarkeit zwischen unterschiedlichen Publikationen in retrospektiven konnektionalen Analysen schwierig sein. Zwar soll die Entwicklung der Objektiven Relationalen Transformation (ORT) einen Lösungsansatz für dieses Problem bieten, aber eine entscheidende Voraussetzung für die Umsetzung von ORT ist die Verfügbarkeit von "Intermap Relations", welche den Vergleich verschiedener Hirnregionen erlaubt (Kamper, 2004). Differente Beziehungen zwischen bestimmten neuroanatomischen Regionen können durch einen Relation Code definiert werden. Die folgenden fünf Relationen zwischen jeweils zwei Regionen sind bei diesem Ansatz realisiert worden: identisch (RC = , I''), ein Areal ist größer als das andere (RC = , L''), beide Areale überlappen sich (RC = ,,O''), ein Areal ist Subareal des anderen (RC = ,,S'') oder beide Areale liegen getrennt voneinander (RC = "D") (Kamper, 2004). Eine konsequente und konsistente Anwendung dieser Relationen hängt jedoch von der Verfügbarkeit der notwendigen neuroanatomischen topographischen Informationen in den zugrundeliegenden Tract-tracing Publikationen ab. Diese Informationen liegen jedoch selten direkt oder explizit vor (die Publikationen wurden zur Beschreibung von Verbindungen geschrieben und nicht primär zur Erzeugung von Konnektomen), so dass sie meist aus Abbildungen und Beschreibungen im Text abgeleitet, geschätzt oder "interpretiert" werden müssen. Dieses Vorgehen kann wiederum zu Fehlerinterpretationen führen und bei komplexen Konnektomen neue Gliederungs-Fehler erzeugen. Daher wurde auf die Anwendung von ORT verzichtet.

4.3 Kritische Analyse der Ergebnisse

Die Ergebnisse des VTT Konnektoms der Laborratte sind komplex. Vor allem wenn die verschiedenen Arten von Verbindungen betrachtet werden:

Monosynaptische Konnektivität

- Transsynaptische, polysynaptische, multisynaptische Konnektivität
- Mono- und polysynaptische Kolateralenkonnektivität
- Transneuronale Konnektivität über pseudounipolare Neuronen
- Ipsi-, kontra-, unilaterale Konnektivität

Trotz der Komplexität können die einzelnen Verbindungen jedoch aus der Literatur (pdf Archiv) direkt nachvollzogen werden. Die durchgeführten Auswertungen der Arbeiten erfolgten stets unter dem Aspekt, die beschriebenen Verbindungen durch die Reduktion in Tabellenform von sources und targets dem Experten gegenüber begründen zu können. Somit lässt sich jede Verbindung des VTT-Konnektoms über die Originalliteraturstelle zurückverfolgen und in einem kontextuellen Zusammenhang begründen. Besonders eindeutig und teilweise auch sehr genau sind solche Verbindungsbeschreibungen, die bereits in Tabellenform vorliegen, da diese Daten keine weitere Interpretationen durch den Auswerter erfordern. Für bestimmte Verbindungen in Form von verallgemeinernden Aussagen wir z.B. "alle Rückenmarkssegmente" besitzen Verbindungen zu den Kerngebieten der Formatio reticularis, war die Interpretation nicht eindeutig. Angewendet wurde hier das Prinzip so dicht wie möglich an der "Rohdaten" Beschreibung zu bleiben und genau diese Beschreibung in der Gebietshierarchie des Rattenkonnektoms abzubilden. Daher wurde für diese verallgemeinernde Beschreibung eine Verbindung kodiert, die genauso allgemein wie beispielsweise die allgemeine Beschreibung "vom Rückenmark zur Formatio reticularis" die Verbindung kodiert. Dies ist natürlich nur möglich, da von vornherein eine hierarchische Nomenklatur bzw. Ontologie verwendet wurde, in der die übergeordneten Gebiete ebenso als Knoten verfügbar sind, wie Gebiete von Hirnatlanten und spezielle Untergliederungen von Gebieten bis hin zu einzelnen Neuronen, die in Hirnatlanten nicht mehr darstellbar sind.

Strukturelle Konnektome, wie das hier erzeugte Metastudien basierte Konnektom der Laborratte, bilden nicht die vollständige strukturelle Konnektionalität des Rattennervensystems ab. Spezielle Verbindungen wie konnektionale Plastizität (strukturelle synaptische Dynamik), Gliotransmission, nichtsynaptische Konnektivität über Gap junctions und Verbindungen die regeneriert werden im Zuge der Neuroplastizität des hippokampalen Systems und des rostralen olfaktorischen Pfades sind bislang in keinem der heutigen strukturellen Konnektome verfügbar. Die Abbildung von struktureller Dynamik in einem scheinbar statischen strukturellen konnektionalen System ist bislang konzeptionell nicht vorgesehen.

4.4 Kritischer Vergleich mit Befunden anderer Arbeitsgruppen

Die VTT-Verbindungen der Laborratte wurden hier zusammenfassend aus der Literatur extrahiert und analysiert. Mit dieser Arbeit wurden erstmals sämtliche VTT-Studien der Laborratte bilateral, gewichtet und hierarchisch organisiert erfasst und alle von Experten beobachteten Verbindungen aus der Literatur in ein konsistentes Datenbank-, Analyse- und Visualisierungssystem übertragen. Somit lässt sich ein kritischer Vergleich mit konnektionalen VTT-Daten anderer Arbeitsgruppen nicht durchführen.

4.5 Alleinstellungsmerkmale des VTT-Konnektoms der Ratte

Eine Konnektomanalyse sämtlicher VTT-Verbindungen in Kombination mit dem stereotaktischen Atlas von Paxinos ist bislang nur mit dem *neuroVIISAS* Framework möglich. In diesem System lassen sich die VTT-Konnektomdaten visualisieren und die räumlichen Beziehungen der VTT-Projektionen darstellen.

Ähnliche Systeme wie BAMS oder CoCoMac können lediglich Verbindungsdaten ansammeln und in Matrizenform wiedergeben, aber quantitative Analysen und konsistente 3D-Visualisierungen in stereotaktischen Atlasansichten sind nicht möglich. Die Berücksichtigung von Gerichtetheit, Gewichtung und Lateralität sind in den oben genannten Systemen nicht explizit vorgesehen. Zudem sind die Regionen des VTT-Netzwerkes in einer Hierarchie organisiert und in neuroontologische Datenstrukturen eingebettet, die zur Navigation und Filterung der Gebiete für die Konnektomanalyse genutzt werden. Auch dies ist mit anderen Konnektomanalyse-Umgebungen nicht möglich. Komplexe statistische Analysen wie multivariate Statistik und Netzwerk-spezifische Clusterverfahren sind in *neuroVIISAS* gebündelt implementiert. In dieser Arbeit wurden beispielsweise verschiedene Varianten (gewichtet, ungewichtet) der Louvain Modularitätsanalyse angewendet.

In dieser Arbeit wurde erstmals ein neues Modul in *neuroVIISAS* verwendet, das eine differentielle Konnektomanalyse ermöglicht. Auch eine solche fortgeschrittene Analysemethode ist in den oben genannten Systemen oder auch fortgeschrittenen Graphanalyse-Programmen (Gephi, <u>https://gephi.org/</u>) nicht verfügbar.

Durch ein speziell entwickeltes Kodierungskonzept lassen sich alle konnektionalen Typen in *neuroVIISAS* importieren und später bei Analysen filtern. Hierzu gehören Kolateralen, transsynaptische Pfade mit bekannten und unbekannten intermittierenden Knoten, kontralaterale Verbindungen, unilaterale Verbindungen. Kombinationen, wie transsynaptischer

Pfade mit kolateralen axonalen Terminalen, lassen sich genauso kodieren wie einfache ipsilaterale monosynaptische Konnektivität. Besonders wichtig ist jedoch die Möglichkeit neue Kodierungen zu generieren, um beispielsweise, neurohormonale Verbindungen, elektrische Synapsen, Gliotransmission, oder auch temporäre Konnektivität abzubilden und in das Konnektom einzulesen.

4.6 Ausblick

Bislang ist es noch nicht möglich funktionelle Konnektome in *neuroVIISAS* differentiell zu analysieren. Zwar lassen sich Populations-basierte Simulationen (NEST, Kunkel und Schenck, 2017) und resultierende Spike-Aktivierungsmuster als eine Form von Dynamik in strukturellen Konnektomen untersuchen, aber mean field Methoden (neural mass models) (Gollo und Breakspear, 2014; Abdelnour et al., 2014; Honey et al., 2009) und reaction diffusion Modelle (Hütt et al., 2014; Garcia et al., 2012; Nakao und Mikhailov, 2010) können zur Zeit nicht zur Analyse verwendet werden. Die differentielle Analyse der populationsbasierten Aktivitätsmuster in den Regionen von Konnektomen ist zurzeit nicht möglich.

Eine weiterführende Analyse von multiplen Differenzen also nicht nur paarweisen Differenzen wäre wichtig, um Kollektive von Konnektomen zu vergleichen. Bislang wurde in die differentielle Konnektomanalyse lediglich eine Matching-Funktion eingebaut, um alle Verbindungen und Gebiete in ein Ziel-Konnektom zusammenzuführen, welches aus Gebieten besteht, die in allen verglichenen Konnektomen vorkommen.

Ein weiterer differentieller Vergleich von VTT und einem traktographischen Konnektom sowie dem nVTT Konnektom wäre interessant, um zu beurteilen, ob ein traktographisches Konnektom eine vollständigere konnektionale Datenbasis liefern kann oder nicht. Problematisch wäre dieser Vergleich wahrscheinlich für die peripheren Verbindungen, die in traktographischen Analysen bislang nicht dargestellt wurden.

4.7 Beantwortung der Fragestellung dieser Arbeit

In der Einleitung wurden Fragen formuliert, die an dieser Stelle als Ergebnis der durchgeführten Auswertungen beantwortet werden. 1. Wieviele Verbindungen wurden bislang überhaupt mit Hilfe von viralen Tract-tracing in der Laborratte beschrieben?

In den 363 Publikationen, in denen virales Tract-tracing angewendet wurde, um neuronale Verbindungen zu identifizieren, wurden 37733 Verbindungen beschrieben. 26744 dieser Verbindungen wurden nicht mehrfach beschrieben.

2. Welche ipsi- und kontralateralen Verbindungen wurden mittels viralen Tract-tracing gefunden?

Im nicht viralen Tract-tracing Konnektom verlaufen 22758 Verbindungen ipsilateral und 11804 kontralateral (51,9%). Im viralen Tract-tracing Konnektom kommen deutlich weniger Verbindungen vor, von denen 2831 ipsilateral verlangen und 557 kontralateral (19,7%).

3. In welchen Teilgebieten des Nervensystems verlaufen neuronale Verbindungen, die nach Anwendung von viralen Tract-tracing gefunden wurden?

Die Verbindungen liegen in allen Abschnitten des zentralen Nervensystems inklusive des Rückenmarkes. Darüber hinaus wurden besonders viele Verbindungen im peripheren Nervensystem beschrieben. Zahlreiche Verbindungen sind efferent und verlaufen zu Organen der quergestreiften und glatten Muskulatur. Außerdem wurden diverse afferente Projektionen von der Peripherie zum Rückenmark oder über Hirnnerven erfasst.

- 4. Welche Verbindungen werden mit viralen Tract-tracing gefunden, die nicht mit nicht viralen Tract-tracing beschrieben werden?
 1599 Verbindungen wurden im 716 Knoten VTT-Konnektom detektiert, die nicht mit nicht viralen Tract-tracing gefunden wurden.
- Welche viralen Verbindungen korrelieren mit nicht viralen Verbindungen?
 1766 Verbindungen korrelieren mit viralen und nicht viralen Tract-tracing Verbindungen im VTT-Netzwerk, das aus 716 Gebieten besteht.
- 6. Wie stark unterscheidet sich ein Konnektom, das ausschließlich aus nicht viralen Tracttracing Verbindungen aufgebaut ist von einem Konnektom mit gleichen Regionen (Knoten), aber zusätzlichen viralen Tract-tracing Verbindungen?

Dieser Frage wurde mittels differentieller Konnektom Analyse nachgegangen. Zunächst ist es möglich in dem vollständigeren Konnektom (cVTT) weitere Regionen überhaupt zu erreichen, was in dem Konnektom, welches aus ausschließlich nicht viralen Tracttracing Verbindungen besteht, nicht möglich ist. Auffallend ist, dass sich durch das Hinzufügen von viralen Tract-tracing Verbindungen die Netzwerkstruktur bezüglich bestimmter globaler Netzwerkparameter nur leicht verändert (mittlere Pfadlänge, mittlere Clusterkoeffizient). Dafür nehmen die Modularität und die average search information des cVTT relativ stark zu, wohingegen die Small-Worldness im cVTT Netzwerk abnimmt.

5 Literaturverzeichnis

Abdelnour F, Voss HU, Raj A (2014) Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neuroimage 90: 335-347.

Ahmad M, Polepalli JS, Goswami D, Yang X, Kaeser-Woo YJ, Südhof TC, Malenka RC (2012) Postsynaptic complexin controls AMPA receptor exocytosis during LTP. Neuron 73: 260–267.

Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8: e76310.

Astic L, Saucier D, Coulon P, Lafay F, Flamand A (1993) The CVS strain of rabies virus as transneuronal tracer in the olfactory system of mice. Brain Res 619: 146–156.

Aston-Jones G, Card JP (2000) Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Methods 103: 51-61.

Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4: 732-738.

Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28: 7025–7030.

Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513: 532-541.

Babic T, Purpera MN, Banfield BW, Berthoud HR, Morrison CD (2010) Innervation of skeletal muscle by leptin receptor-containing neurons. Brain Res 1345: 146-155.

Bailey P, De Barenne JCD, Garol HW, McCulloch WS (1940) Sensory cortex of chimpanzee. J Neurophysiol 3: 469-485.

Bailey P, von Bonin H (1951) The isocortex of man. Urbana, University of Illinois Press.

Baldock RA, Burger A (2008) Anatomical Ontologies: Linking Names to Places in Biology. In: Burger A, Davidson D, Baldock R (Hrsg.) (2008) Anatomy Ontologies for Bioinformatics. Computational Biology Series 6: 197-211. DOI: 10.1007/978-1-84628-885-2_10.

Bancila M, Giuliano F, Rampin O, Mailly P, Brisorgueil MJ, Calas A, Vergé D (2002) Evidence for a direct projection from the paraventricular nucleus of the hypothalamus to putative serotoninergic neurons of the nucleus paragigantocellularis involved in the control of erection in rats. Eur J Neurosci 16: 1240-1248.

Banfield BW, Kaufman JD, Randall JA, Pickard GE (2003) Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications. J Virol 77: 10106-10112.

Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34: 458-65.

Barrett RT, Bao X, Miselis RR, Altschuler SM (1994) Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 107: 728-737.

Bartha A (1961) Experimental reduction of virulence of Aujesky's disease virus. Magny Allatorvosok Lapja 16: 42-45.

Baskerville A, Lloyd G (1977) Experimental infection of monkeys with Herpesvirus suis (Aujeszky's-disease virus). J Med Microbiol 10: 139–144.

Becker CH (1967) Zur primären Schädigung vegetativer Ganglien nach Infektion mit dem Herpes suis Virus bei verschiedenen Tierarten. Experientia 23: 209-210.

Beier KT1, Saunders A, Oldenburg IA, Miyamichi K, Akhtar N, Luo L, Whelan SP, Sabatini B, Cepko CL (2011b) Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc Natl Acad Sci U S A 108: 15414–15419.

Ben-Porat T, Kaplan AS (1985) Molecular Biology of Pseudorabies Virus. Plenum Press 3: 105-173.

Bentivoglio M, Kuypers HG, Catsman-Berrevoets CE, Loewe H, Dann O (1980) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci Lett: 18, 25–30.

Bentivoglio M, Kuypers HG, Catsman-Berrevoets CE (1980a) Retrograde neuronal labeling by means of Bisbenzimide and Nuclear Yellow (Hoechst S 769121). Measures to prevent diffusion of the tracers out of retrogradely labeled neurons. Neurosci Lett 18: 19-24.

Billig I, Foris JM, Enquist LW, Card JP, Yates BJ (2000) Definition of neuronal circuitry controlling the activity of phrenic and abdominal motoneurons in the ferret using recombinant strains of pseudorabies virus. J Neurosci 20: 7446-7454.

Billig I, Yeager MS, Blikas A, Raz Y (2007) Neurons in the cochlear nuclei controlling the tensor tympani muscle in the rat: a study using pseudorabies virus. Brain Res 1154: 124-136.

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. http://arxiv.org/abs/0803.0476.

Blumenfeld RS, Bliss DP, Perez F, D'Esposito M (2014) CoCoTools: open-source software for building connectomes using the CoCoMac anatomical database. J Cogn Neurosci 26: 722-745.

Bodian D, Howe HA (1947) The significance of lesions in peripheral ganglia in chimpanzee and in human poliomyelitis. J Exp Med 85: 231-242.

Boldogkoi Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, Roska B (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6: 127–130.

Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci U S A 112: E2093-E2101.

Bota M, Dong HW, Swanson LW (2005) Brain architecture management system. Neuroinformatics 3: 15-48.

Bota M, Dong HW, Swanson LW (2012). Combining collation and annotation efforts toward completion of the rat and mouse connectomes in BAMS. Front. Neuroinform. 6: 2

Bowden DM, Dubach M (2005) Neuroanatomical Nomenclature and Ontology. In: Koslow SH, Subramaniam S (Hrsg.) Databasing the Brain. Wiley-Liss: 27-45.

Bowden DM, Dubach M, Park J (2007) Creating Neuroscience Ontologies. In: Crasto CJ (Hrsg.) Neuroinformatics (Methods in Molecular Biology). Humana Press, Totowa 401: 67-87.

Bratincsák A, Kovács ZI, Palkovits M (2008) Direct neuronal projection from a brainstem thermosensitive cell group to the preoptic thermoregulatory center. Neuroscience 156: 966-972.

Brideau AD, Card JP, Enquist LW (2000) Role of Pseudorabies Virus Us9, a Type II Membrane Protein, in Infection of Tissue Culture Cells and the Rat Nervous System. J Virol. 74: 834-845.

Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471: 183-188.

Brittle EE, Reynolds AE, Enquist LW (2004) Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol 78: 12951-12963.

Broussard DL, Lynn RB, Wiedner EB, Altschuler SM (1998) Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology 114: 1268-1275.

Brown JE, Card JP, Yates BJ (2005) Polysynaptic pathways from the vestibular nuclei to the lateral mammillary nucleus of the rat: substrates for vestibular input to head direction cells. Exp Brain Res 161: 47-61.

Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, Kalsbeek A (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11: 1535-1544.

Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2 and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10: 302–317.

Burns G (1997) Neural connectivity of the rat: Theory, methods and applications. Dissertation, Magdalen College, Oxford.

Burns GA, Cheng WC, Thompson RH, Swanson LW (2006) The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases BMC Bioinformatics 7: 531.

Butts CT (2009) Revisiting the foundations of network analysis. Science 325: 414-416.

Cano G, Card JP, Sved AF (2004) Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in rat. J Comp Neurol 471: 462-481.

Cano G, Sved AF, Rinaman L, Rabin BS, Card JP (2001a) Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol-439: 1-18.

Card JP (1998) Practical considerations for the use of pseudorabies virus in transneuronal studies of neural circuitry. Neurosci Biobehav Rev 22: 685-94.

Card JP (1998a) Exploring brain circuitry with neurotropic viruses: new horizons in neuroanatomy. Anat Rec 253: 176-85.

Card JP, Rinaman L, Schwaber JS, Miselis RR, Whealy ME, Robbins AK, Enquist LW (1990) Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system. J Neurosci 10: 1974–1994.

Card JP, Whealy ME, Robbins AK, Enquist LW (1992) Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66: 3032–3041.

Card JP, Kobiler O, Ludmir EB, Desai V, Sved AF, Enquist LW (2011) A dual infection pseudorabies virus conditional reporter approach to identify projections to collateralized neurons in complex neural circuits. PLoS One 6: e21141.

Card JP, Enquist LW (2014) Transneuronal circuit analysis with pseudorabies viruses. Curr Protoc Neurosci: 1.5.1–1.5.39.

Castle MJ, Gershenson ZT, Giles AR, Holzbaur EL, Wolfe JH (2014) Adeno-associated virus serotypes 1, 8 and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25: 705–720.

Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno- associated virus vectors expressing cap serotypes 7, 8, 9 and Rh10 in the mouse brain. Mol Ther 13: 528–537.

Charlton KM, Casey GA (1979) Experimental oral and nasal transmission of rabies virus in mice. Can J Comp Med 43: 10–15.

Ch'ng TH1, Enquist LW (2005) Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E J Virol 79: 8835-8846.

Cho RH, Segawa S, Mizuno A, Kaneko T (2004) Intracellularly labeled pyramidal neurons in the cortical areas projecting to the spinal cord. I. Electrophysiological properties of pyramidal neurons.Neurosci Res 50: 381-394.

Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37: 21–51.

Curtis R1, Adryan KM, Zhu Y, Harkness PJ, Lindsay RM, DiStefano PS (1993) Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury. Nature 365: 253-255.

Daniels D, Miselis RR, Flanagan-Cato LM (2001) Transneuronal tracing from sympathectomized lumbar epaxial muscle in female rats. J Neurobiol 48: 278-290.

DeFalco J, Tomishima M, Liu H, Zhao C, Cai X, Marth JD, Enquist L, Friedman JM (2001) Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291: 2608–2613.

del Rio T1, Ch'ng TH, Flood EA, Gross SP, Enquist LW (2005) Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies. J Virol 79: 3903-3919.

Demmin GL1, Clase AC, Randall JA, Enquist LW, Banfield BW (2001) Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. J Virol 75: 10856-10869.

Diestel R (2017) Graphentheorie. 5. Aufl., Springer, Berlin, Heidelberg.

Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18: 87–92.

Dusser de Barenne JG, McCulloch WS (1938) Functional organization in the sensorycortex of the monkey. J Neurophysiol 1: 69-85.

Dusser de Barenne JG, McCulloch WS (1939) Physiological delimitation of neuronesin the central nervous system.Am J Neurophysiol 127: 621-628.

Ehrhardt A, Kay MA (2005) Gutted adenovirus: a rising star on the horizon? Gene Ther 12: 1540–1541.

Enquist LW (1994) Infection of the mammalian nervous system by pseudorabies virus (PRV).Seminars in Virology 5: 221-231.

Enquist LW, Husak PJ, Banfield BW, Smith GA (1998) Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 51: 237-347.

Etessami R, Conzelmann KK, Fadai-Ghotbi B, Natelson B, Tsiang H, Ceccaldi PE (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81: 2147-2153.

Fabian RH (1990) Uptake of antineuronal IgM by CNS neurons: comparison with antineuronal IgG. Neurology 40: 419-422.

Fay R, Gilbert KA, Lydic R (1993) Pontomedullary neurons transsynaptically labeled by laryngeal pseudorabies virus. Neuroreport 5: 141-144.

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in primate visual cortex. Cereb Cortex 1: 1-47.

Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4: 369-374.

Figini M, Zucca I, Aquino D, Pennacchio P, Nava S, Di Marzio A, Preti MG, Baselli G, Spreafico R, Frassoni C (2015) In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison. Magn Reson Imaging 33: 296-303.

Fortunato S, Barthélemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci U S A.104: 36-41.

Fritzsch B, Duncan JS, Kersigo J, Gray B, Elliott KL (2016) Neuroanatomical Tracing Techniques in the Ear: History, State of the Art, and Future Developments. Methods Mol Biol 1427: 243-262.

Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004). Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78: 6381–6388.

Garcia GC, Lesne A, Hütt MT, Hilgetag CC (2012) Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Front Comput Neurosci 6:50.

Geerling JC, Mettenleiter TC, Loewy AD (2006) Viral tracers for the analysis of neural circuits. In: Zaborszky L, Wouterlood FG, Lanciego JL (Hrsg.) (2006) Neuroanatomical Tract-tracing 3, Molecules, Neurons, and Systems. S. 263-303, Springer.

Gerendai I, Tóth IE, Boldogkoi Z, Medveczky I, Halász B (1998) Neuronal labeling in the rat brain and spinal cord from the ovary using viral transneuronal tracing technique. Neuroendocrinology 68: 244-256.

Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris-leucoagglutinin (PHA-L). Brain Res 290: 219–238.

Gerhard S, Daducci A, Lemkaddem A, Meuli R, Thiran J and Hagmann P (2011). The connectome viewer toolkit: an open source framework to manage, analyze and visualize connectomes. Front Neuroinform 5: 3.

Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T, Dokka K, Baldwin KK (2011) Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature 472: 217–220.

Glees P (1946) Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropathol Exp Neurol 5: 54–59.

Glover JC, Petursdottir G, Jansen JK (1986) Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. J Neurosci Methods 18: 243–254.

Goldberg S, Kotani M (1967) The projection of optic nerve fibers in the frog Rana catesbeiana as studied by radioautography. Anat Rec 158: 325-331.

Goldschmidt RB (1908) Das Nervensystem von Ascaris lumbricoides und megalocephala. Ein Versuch in den Aufbau eines einfachen Nervensystem einzudringen. I. Z wiss Zool 90: 73-136.
Goldschmidt RB (1909) Das Nervensystem von Ascaris lumbricoides und megalocephala. Ein Versuch in den Aufbau eines einfachen Nervensystem einzudringen. II. Z wiss Zool 92: 306-357.

Gollo LL, Breakspear M (2014) The frustrated brain: from dynamics on motifs to communities and networks. Philos Trans R Soc Lond B Biol Sci 369: pii: 20130532.

Gonatas NK, Harper C, Mizutani T, Gonatas JO (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem 27: 728–734.

Gonçalves MA, Janssen JM, Holkers M, de Vries AA (2010) Rapid and sensitive lentivirus vector-based conditional gene expression assay to monitor and quantify cell fusion activity. PLoS One 5: e10954.

Gonçalves MA, de Vries AA (2006) Adenovirus: from foe to friend. Rev Med Virol 16: 167–186.

Goodpasture EW, Teague O (1923) Transmission of the virus of herpes febrilis along nerves in experimentally infected Rabbits. J Med Res 44: 139–184.

Grafstein B (1968) Transport of protein by goldfish optic nerve fibers. Science 157: 196-196.

Grafstein B (1969) Axonal transport: communication between soma and synapse. Adv Biochem Psychopharmacol1: 11-25.

Groutsi F, Mason MR, Anderson PN, Martins S, Anesti M, Coffin RS, Campbell G (2008) Retrograde viral transduction of cortical pyramidal neurons from the spinal cord. Restor Neurol Neurosci 26: 509-520.

Gutierrez GJ, O'Leary T, Marder E (2013) Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77: 845–858.

Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419.

Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, Bleesing J, Blondeau J, de Boer H, Buckland KF, Caccavelli L, Cros G, De Oliveira S, Fernández KS, Guo D, Harris CE, Hopkins G, Lehmann LE, Lim A, London WB, van der Loo JC, Malani N, Male F, Malik P, Marinovic MA, McNicol AM, Moshous D, Neven B, Oleastro M, Picard C, Ritz J, Rivat C, Schambach A, Shaw KL, Sherman EA, Silberstein LE, Six E, Touzot F, Tsytsykova A, Xu-Bayford J, Baum C, Bushman FD, Fischer A, Kohn DB, Filipovich AH, Notarangelo LD, Cavazzana M, Williams DA, Thrasher AJ (2014) A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med 371: 1407–1417.

Hagmann P (2005) From Diffusion MRI to Brain Connectomics. Dissertation, École Polytechnique Fédérale de Lausanne.

Hendry IA, Stöckel K, Thoenen H, Iversen LL (1974) The retrograde axonal transport of nerve growth factor. Brain Res 68: 103–121.

Hendrickson AE (1982). "The orthograde axoplamic transport autoradiographic tracing technique and its implications for additional neuroanatomical analysis of the striate cortex". In Cytochemical Methods in Neuroanatomy. Eds: Chan-Palay V, Palay SL, Alan R (New York: Liss), 1–16.

Hirst GK, Gotlieb T (1953) The experimental production of combination forms of virus. I. Occurrence of combination forms after simultaneous inoculation of the allantoic sac with two distinct strains of influenza virus. J Exp Med 98: 41–52.

Hnasko TS, Perez FA, Scouras AD, Stoll EA, Gale SD, Luquet S, Phillips PE, Kremer EJ, Palmiter RD (2006) Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc Natl Acad Sci U S A 103: 8858–8863.

Hollis ER, Kadoya K, Hirsch M, Samulski RJ, Tuszynski MH (2008) Efficient retrograde neuronal transduction utilizing self- complementary AAV1. Mol Ther 16: 296–301.

Holstege JC, Jongen JL, Kennis JH, van Rooyen-Boot AA, Vecht CJ (1998) Immunocytochemical localization of GDNF in primary afferents of the lumbar dorsal horn. Neuroreport 9: 2893-2897.

Holtorf H, Guitton MC, Reski R (2002) Plant functional genomics. Naturwissenschaften 89: 235-249.

Hoff EC (1932) Central nerve terminals in the mammalian spinal cord and their examination by experimental degeneration. Proc R Soc B Biol Sci 111: 175–188.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106: 2035-2040.

Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103: 171–187.

Honig MG, Hume RI (1989) Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12: 333-335.

Hütt MT, Kaiser M, Hilgetag CC (2014) Perspective: network-guided pattern formation of neural dynamics. Philos Trans R Soc Lond B Biol Sci 369: pii: 20130522.

Hurst EW (1933) Studies on Pseudorabies (Infectious Bulbar Paralysis, Mad Itch): I. Histology of the disease, with a note on the symptomatology. J ExpMed 58: 415–433.

Iwasaki Y, Clark HF (1975) Cell to cell transmission of virus in the central nervous system. II. Experimental rabies in mouse. Lab Invest 33: 391-399.

Jang I, Cho K, Moon S, Ko C, Lee B, Ko B, Lee C (2003) A study on the central neural pathway of the heart, Nei-Kuan (EH-6) and Shen-Men (He-7) with neural tracer in rats. Am J Chin Med 31: 591-609.

Jansen AS, Loewy AD (1994) Viral tracing of innervation. Science 265: 121-122

Jongen JL, Dalm E, Vecht CJ, Holstege JC (1999) Depletion of GDNF from primary afferents in adult rat dorsal horn following peripheral axotomy. Neuroreport 10: 867-871.

Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, Fink K, Henrickson SE, Shayakhmetov DM, Di Paolo NC, van Rooijen N, Mempel TR, Whelan SP, von Andrian UH (2007) Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450: 110–114.

Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM (2000) Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141: 3832-3841.

Kalsbeek A, La Fleur S, Van Heijningen C, Buijs R (2004) Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J Neurosci 24: 7604-7613.

Kamper L (2004) Analyse und Computersimulation der Organisation und funktionellen Bedeutung thalamo-präfrontaler Projektionen. Medizinische Dissertation. Heinrich-Heine-Universität Düsseldorf.

Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57: 892-907.

Kaiser M (2013) The potential of the human connectome as a biomarker of brain disease. Front Hum Neurosci 7: 1-4.

Kaspar BK, Erickson D, Schaffer D, Hinh L, Gage FH, Peterson DA (2002) Targeted retrograde gene delivery for neuronal protection. Mol Ther 5: 50–56.

Katz LC, Burkhalter A, Dreyer WJ (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310: 498–500.

Katz LC, Iarovici DM (1990) Green fluorescent latex microspheres: a new retrograde tracer. Neuroscience 34: 511–520.

Keizer K, Kuypers HG, Huisman AM, Dann O (1983) Diamidino yellow dihydrochloride (DY . 2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell. Exp Brain Res 51: 179-91.

Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103: 63–71.

Kettlitz R (2013) Das Konnektom der Basalganglien der Ratte. Medizinische Dissertation. Universität Rostock.

King MA, Louis PM, Hunter BE, Walker DW (1989) Biocytin: a versatile anterograde neuroanatomical Tract-tracing alternative. Brain Res 497: 361–367.

Kissa K, Mordelet E, Soudais C, Kremer EJ, Demeneix BA, Brûlet P, Coen L (2002) In vivo neuronal tracing with GFP-TTC gene delivery. Mol Cell Neurosci 20: 627–637.

Klemm K, Eguílez VM (2002) Growing scale-free networks with small-world behavior. Phys Orev E Stat Nonlin Soft Matter Phys 65: 057102.

Klupp BG, Hengartner CJ, Mettenleiter TC, Enquist LW (2004) Complete, annotated sequence of the pseudorabies virus genome. J Virol 78: 424-440.

Knipe DM, Howley PM (2013) Fields virology. 6th Edn. Philadelphia, PA: Wolters Kluwer/Lippincott Williams and Wilkins Health.

Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW (2010) Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun 1: 146.

Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62: 327-351.

Kötter R (2004) Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2: 127-144.

Kötter R, Reid AT, Krumnack A, Wanke E, Sporns O (2007) Shapley Ratings in Brain Networks. Front Neuroinf 1: 2.

Kremer EJ, Boutin S, Chillon M, Danos O (2000) Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74: 505–512.

Krisky DM, Wolfe D, Goins WF, Marconi PC, Ramakrishnan R, Mata M, Rouse RJ, Fink DJ, Glorioso JC (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 5: 1593–1603.

Kristensson K (1970) Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol 16: 293–300.

Kristensson K (1977) Retrograde axonal transport of horseradish peroxidase. Uptake at mouse neuromuscular junctions following systemic injection. Acta Neuropathol 38: 143-147.

Kristensson K, Ghetti B, Wiśniewski HM (1974) Study on the propagation of Herpes simplex virus (type 2) into the brain after intraocular injection. Brain Res 69: 189-201.

Kristensson K, Nennesmo L, Persson L, Lycke E (1982) Neuron to neuron transmission of herpes simplex virus. Transport of virus from skin to brainstem nuclei. J Neurol Sci 54: 149-156.

Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res. 29, 363-365.

Kristensson K, Olsson Y (1971a) Uptake and retrograde transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon. Acta Neuropathol 19: 1–9.

Kristensson K, Olsson Y (1971b) Retrograde axonal transport of protein. Brain Res 29: 363–365.

Künzle H (2009) Tracing thalamo-cortical connections in tenrecA further attempt to characterize poorly differentiated neocortical regions, particularly the motor cortex. Brain Res 1253: 35-47.

Kumar M, Keller B, Makalou N, Sutton, RE (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12: 1893–1905.

Kunkel S, Schenck W (2017) The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code. Front Neuroinform11:40.

Kuramoto E, Ohno S, Furuta T, Unzai T, Tanaka YR, Hioki H, Kaneko T (2015) Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior- ventral lateral nuclear complex in the rat. Cereb. Cortex 25: 221–235.

Kuypers HG, Bentivoglio M, van der Kooy D, Catsman-Berrevoets CE (1979) Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies. Neurosci Lett 12: 1–7.

Lafferty WE, Downey L, Celum C, Wald A (2000) Herpes simplex virus type 1 as a cause of genital herpes: impact on surveillance and prevention. J Infect Dis 181: 1454–1457.

Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42: 157-183.

Lasek R, Joseph BS, Whitlock DG (1968) Evaluation of a radioautographic neuroanatomical tracing method. Brain Res 8: 319-336.

LaVail J (1975) The retrograde transport method. Fed Proc 34: 1618-1624.

LaVail J, LaVail M (1972) Retrograde axonal transport in the central nervous system. Science 176: 1416-1417.

Lessner G, Schmitt O, Haas S, Mikkat S, Kreutzer M, Wree A, Glocker MO (2010) Differential proteome of the striatum from hemiparkinsonian rats displays vivid structural remodeling processes. J Proteome Res 9: 4671-4687.

Levine JD, Zhao XS, Miselis RR (1994) Direct and indirect retinohypothalamic projections to the supraoptic nucleus in the female albino rat. J Comp Neurol 341: 214–224.

Levinthal DJ, Strick PL (2012) The motor cortex communicates with the kidney. J Neurosci 32: 6726-2731.

Lilley CE, Groutsi F, Han Z, Palmer JA, Anderson PN, Latchman DS, Coffin RS (2001) Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 75: 4343–4356.

Lo L, Anderson DJ (2011) A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 72: 938–950.

Loewy AD, Haxhiu MA (1993) CNS cell groups projecting to pancreatic parasympathetic preganglionic neurons. Brain Res 620: 323-330.

Lomniczi B, Watanabe S, Ben-Porat T, Kaplan AS (1987) Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus. J Virol 61: 796–801.

Lundh B (1990) Spread of vesicular stomatitis virus along the visual pathways after retinal infection in the mouse. Acta Neuropathol 79: 395–401.

Masamizu Y, Okada T, Kawasaki K, Ishibashi, H., Yuasa S, Takeda S, Hasegawa I, Nakahara K (2011) Local and retrograde gene transfer into primate neuronal pathways via adenoassociated virus serotype 8 and 9. Neuroscience 193: 249–258.

McAuley JJ, Costa L da F, Caetano TS (2007) The rich-club phenomenon across complex network hierarchies. arXiv:physics/0701290.

McFarland NR, Lee, JS, Hyman BT, McLean PJ (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5 and 8 in the rat nigrostriatal system. J Neurochem 109: 838–845.

Mesulam MM (1982) Principles of horseradish peroxidase neurochemistry and their applications for tracing neural pathways-axonal transport, enzyme histochemistry and light microscopic analysis. In: Mesulam, M.M. (Ed.), Tracing Neural Connections with Horseradish Peroxidase. IBRO Handbook Series: Methods in the Neurosciences. Wiley, New York, pp. 1-151.

Mettenleiter TC (1999) Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis--state of the art. Vet Res 31: 99-115.

Mettenleiter TC, Keil GM, Fuchs W (2008) Molecular biology of animal herpesviruses. In: Mettenleiter TC, Sobrino F., editors. Animal Viruses: Molecular Biology. Norfolk, U.K.: Caister Academic Press.

Michalak TP, Aadithya KV, Szczepanski PL, Ravindran B, Jennings NR (2013) Efficient Computation of the Shapley Value for Game-Theoretic Network Centrality. J Artif Intell Res 46: pages 607-650.

Miranda-Dominguez O, Mills BD, Grayson D, Woodall A, Grant KA, Kroenke CD, Fair DA (2014) Bridging the gap between the human and macaque connectome: a quantitative

comparison of global interspecies structure-function relationships and network topology. J Neurosci 34: 5552-5563.

Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352: 351–366.

Murlidharan G, Samulski RJ, Asokan A (2014) Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 7: 76.

Nakao H, Mikhailov AS (2010) Turing patterns in network-organized activator-inhibitor systems.Nature Physics 6: 544–550.

Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263–267.

Nance DM, Burns J (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull 25: 139–145.

Napieczynska H, Severin GW, Fonslet J, Wiehr S, Menegakis A, Pichler BJ, Calaminus C (2017) Imaging neuronal pathways with 52Mn PET. Toxicity evaluation in rats. Neuroimage 158: 112-125.

Nassi JJ, Callaway EM (2006) Multiple circuits relaying primate parallel visual pathways to the middle temporal area. J Neurosci 26: 12789–12798.

Nassi JJ, Lyon DC, Callaway EM (2006) The Parvocellular LGN provides a robust disynaptic input to the visual motion area MT. Neuron 50: 319–327.

Nassi JJ, Callaway EM (2007) Specialized circuits from primary visual cortex to V2 and area MT. Neuron 55: 799–808.

Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral! Front Neuroanat 9: 80.

Nauta WJ, Gygax PA (1951) Silver impregnation of degenerating axon terminals in the central nervous system: (1) Technic. (2) Chemical notes. Stain Technol 26: 5-11.

Nauta WJH, Gygax PA (1954) Silver impregnation of degenerating axons in the CNS. A modified technique. Stain Technol 29: 91-93.

O'Donnell P, Lavín A, Enquist LW, Grace AA, Card JP (1997) Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J Neurosci 17: 2143-2167.

Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508: 207-214.

Olsen LM1, Ch'ng TH, Card JP, Enquist LW (2006) Role of pseudorabies virus Us3 protein kinase during neuronal infection. J Virol 80: 6387-6398.

Oyibo HK, Znamenskiy P, Oviedo HV, Enquist LW, Zador AM (2014) Long-term Cremediated retrograde tagging of neurons using a novel recombinant pseudorabies virus. Front Neuroanat 8: 86.

Oztas E (2003) Neuronal tracing. Neuroanatomy 2: 2-5.

Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl Acad Sci U S A 93: 13565–13570.

Paxinos G (2014) The rat brain in stereotaxic coordinates. 7. Aufl. Elsevier, Amsterdam.

Peltékian E, Garcia L, Danos O (2002) Neurotropism and retrograde axonal transport of a canine adenoviral vector: a tool for targeting key structures undergoing neurodegenerative processes. Mol Ther 5: 25–32.

Pérez-Manso M, Barroso-Chinea P, Aymerich MS, Lanciego JL (2006) 'Functional' neuroanatomical tract tracing: analysis of changes in gene expression of brain circuits of interest. Brain Res 1072: 91-98.

Philipp K (2012) Das Amygdala Konnektom der Ratte. Medizinische Dissertation. Universität Rostock.

Plakhov IV, Arlund EE, Aoki C, Reiss CS (1995) The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology 209: 257–262.

Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69: 462-500.

Pomerat CM, Hendleman WJ, Raiborn CW Massey JF (1967) Dynamic amino acids to tissues in vitro. In: The Neuron. Ed. Hyden H, 119-178, Elsevier, Amsterdam.

Porrero C, Rubio-Garrido P, Avendaño C, Clascá F (2010) Mapping of fluorescent proteinexpressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345: 59-72.

Rah JC, Feng L, Druckmann S, Lee H, Kim J (2015) From a meso- to micro-scale connectome: array tomography and mGRASP. Front Neuroanat 9: 1-12.

Ramón y Cajal S (1909). Histologie du Systeme Nerveux de L'Homme et des Vertebres. Facsimile. Paris: Maloine.

Rathelot, J-A, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci U S A 103: 8257–8262.

Rathelot J-A, Strick PL (2009) Subdivisions of primary motor cortex based on corticomotoneuronal cells. Proc Natl Acad Sci U S A 106: 918–923. Rehkämper G, Necker R, Nevo E (1994) Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi: an architectonic and electrophysiologically controlled tracing study. J Comp Neurol 347: 570-584.

Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M (2011) Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci 31: 15650-15659.

Roberts A, Kretzschmar E, Perkins AS, Forman J, Price R, Buonocore L, Kawaoka Y, Rose JK (1998) Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol 72: 4704–4711.

Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52: 1059-1069.

Sabin AB, Olitsky PK (1937) Influence of host factors on neuroinvasiveness of vesicular stomatitis virus: I. Effect of age on the invasion of the brain by virus instilled in the nose. J Exp Med 66: 15–34.

Sabin AB, Olitsky PK (1938) Fate of nasally instilled poliomyelitis virus in normal and convalescent monkeys with special reference to the problem of host to host transmission. J Exp Med 68: 39-62.

Schambach A, Zychlinski D, Ehrnstroem B, Baum C (2013) Biosafety features of lentiviral vectors. Hum Gene Ther 24: 132–142.

Schmitt O, Eipert P (2012) neuroVIISAS: Approaching Multiscale Simulation of the Rat Connectome. Neuroinformatics 10: 243-267.

Schmitt O, Eipert P, Philipp K, Kettlitz R, Fuellen G, Wree A (2012a) The intrinsic connectome of the rat amygdala. Front Neural Circuits 6: 81.

Schmitt O, Eipert P, Kettlitz R, Leßmann F, Wree A (2014) The Connectome of the Basal Ganglia. Brain Struct Funct 221: 753-814.

Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heinemann U, Traub RD (2001) Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron 31: 831-840.

Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377: 147–154.

Schnütgen F, Doerflinger N, Calléja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21: 562–565.

Schramm LP, Strack AM, Platt KB, Loewy AD (1993) Peripheral and central pathways regulating the kidney: a study using pseudorabies virus. Brain Res- 616: 251- 62.

Schwab ME, Agid I (1979) Labelled wheat germ agglutinin and tetanus toxin as highly sensitive retrograde tracers in the CNS: the afferent fiber connections of the rat nucleus caudatus. Int J Neurol 13: 117–126.

Schwab ME, Javoy-Agid F, Agid Y (1978) Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res 152: 145–150.

Shehab SA1, Al-Marashda K, Al-Zahmi A, Abdul-Kareem A, Al-Sultan MA (2008) Unmyelinated primary afferents from adjacent spinal nerves intermingle in the spinal dorsal horn: a possible mechanism contributing to neuropathic pain. Brain Res 1208: 111-119.

Sly JD, Colvill L, McKinley JM, Oldfield JB (1999) Identification of neural projections from the forebrain to the kidney, using the virus pseudorabies. J Auton Nerv Syst 77: 73-82.

Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE, Enquist LW, Pickard GE (2000) Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci U S A 97: 9264-9269.

Smith GA, Gross SP, Enquist LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98: 3466-3470.

Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G (2010) Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28: 64–74.

Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111: 235-249.

Song T, Nie B, Ma E, Che J, Sun S, Wang Y, Shan B, Liu Y, Luo S, Ma G, Li K (2015) Functional magnetic resonance imaging reveals abnormal brain connectivity in EGR3 gene transfected rat model of schizophrenia. Biochem Biophys Res Commun 460:678-683.

Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 15: 2283–2285.

Spaete RR, Frenkel N (1982) The herpes simplex virus amplicon: a new eucaryotic defectivevirus cloning-amplifying vector. Cell 30: 295-304.

Sporns O, Tononi G, Kötter R (2005) The human connectome: A structural description of the human brain. PLoS Comput Biol 1: 0245-0251.

Sporns O (2011a) The human connectome: a complex network. Ann N Y Acad Sci 1224: 109-125.

Standish A1, Enquist LW, Miselis RR, Schwaber JS (1995) Dendritic morphology of cardiac related medullary neurons defined by circuit-specific infection by a recombinant pseudorabies virus expressing beta-galactosidase. J Neurovirol 1: 359-368.

Stephan KE, Zilles K, Kötter R (2000) Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). Philos Trans R Soc Lond B Biol Sci 355: 37–54.

Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kötter R (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol Sci 356: 1159-1186.

Stephan K (2003) Untersuchungen zur funktionellen Konnektivität des Gehirns. Medizinische Dissertation. Heinrich-Heine-Universität Düsseldorf.

Stoeckel K, Schwab M, Thoenen H (1977) Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res 132: 273–285.

Stoeckel K, Thoenen H (1975) Retrograde axonal transport of nerve growth factor: specificity and biological importance. Brain Res 85: 337–341.

Strack AM, Loewy AD (1990) Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J Neurosci 10: 2139–2147.

Sugar J, Witter MO, van Strien NM, Cappaert BL (2011) The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome. Front Neuroinf 5: 7.

Sukhinin DI, Engel AK, Manger P, Hilgetag CC (2016) Building the Ferretome. Front Neuroinform 10: 16.

Sun N, Cassell MD, Perlman S (1996) Anterograde, transneuronal transport of herpes simplex virus type 1 strain H129 in the murine visual system. J Virol 70: 5405–5413.

Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, Callaway EM, Xu X (2014) Cell-typespecific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. Cell Rep 7: 269-280.

Swanson LW, Lichtman JW (2016) From Cajal to Connectome and Beyond. Annu Rev Neurosci 39: 197-216.

Swanson LW, Sporns O, Hahn JD (2016a) Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome. Proc Natl Acad Sci U S A 113: E5972-E5981.

Szpara ML, Kobiler O, Enquist LW (2010) A common neuronal response to alphaherpesvirus infection. J Neuroimmune Pharmacol 5: 418–427.

Taylor AC, Weiss P (1965) Demonstration of axonal flow by the movement of tritium-labeled protein in mature optic nerve fibers. Proc Natl Acad Sci U S A 54: 1521–1527.

Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7 and 8 in mouse brain. Hum Gene Ther 18: 195–206.

Ter Horst GJ, Van den Brink A, Homminga SA, Hautvast RW, Rakhorst G, Mettenleiter TC, De Jongste MJ, Lie KI, Korf J (1993) Transneuronal viral labelling of rat heart left ventricle controlling pathways. Neuroreport 4: 1307-1310.

Thanos S (1997) Neurobiology of the regenerating retina and its functional reconnection with the brain by means of peripheral nerve transplants in adult rats. Surv Opthalmol 42 Suppl 1: S5-S26.

Tóth IE, Banczerowski P, Boldogkoi Z, Tóth JS, Szabó A, Halász B, Gerendai I (2008) Cerebral neurons involved in the innervation of both the adrenal gland and the ovary: a double viral tracing study. Brain Res Bull 77: 306-311.

Towne C, Schneider BL, Kieran D, Redmond, DE Jr, Aebischer P (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther 17: 141–146.

Trojanowski JQ, Gonatas JO, Gonatas NK (1981) Conjugates of horseradish peroxidase (HRP) with cholera toxin and wheat germ agglutinin are superior to free HRP as orthogradely transported markers. Brain Res 223: 381–385.

Trojanowski J, Gonatas J, Gonatas N (1982) Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrogradely transported markers than free HRP. Brain Res 231: 33–50.

Trotter RN, Stornetta RL, Guyenet PG, Roberts MR- (2007) Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci 131: 9-20.

Tsiang H, Koulakoff A, Bizzini B, Berwald-Netter Y (1983) Neurotropism of rabies virus: an in vitro study. J Neuropathol Exp Neurol 42: 439–452.

Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131–136.

Ugolini G, Kuypers HG, Strick PL (1989) Transneuronal transfer of herpes virus from peripheral nerves to cortex and brainstem. Science 243: 89–91.

Ugolini G (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol 356: 457–480.

Ugolini G (2008) Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis. Dev Biol131: 493-506.

van den Heuvel MP, Scholtens LH, de Reus MA (2016) Topological organization of connectivity strength in the rat connectome. Brain Struct Funct 221: 1719-1736.

van den Pol AN, Dalton KP, Rose JK (2002) Relative neurotropism of a recombinant rhabdovirus expressing a green fluorescent envelope glycoprotein. J. Virol. 76, 1309–1327.

van den Pol AN, Ozduman K, Wollmann G, Ho WS, Simon I, Yao Y, Rose JK, Ghosh P (2009). Viral strategies for studying the brain, including a replication- restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 516: 456–481.

Van Essen DC, Barch DM (2015) The human connectome in health and psychopathology. World Psychiatry 14: 154-157.

Van Haeften T, Wouterlood FG (2000) Neuroanatomical tracing at high resolution. J Neurosci Methods 103: 107-116.

Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comp Biol 7: e1001066.

Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41: 239–254.

Vercelli A, Repici M, Garbossa D, Grimaldi A (2000) Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 51: 11-28.

Walker AE (1938) The primate thalamus. Chicago. University of Chicago Press.

Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibres. Phil Trans R Soc Lond 140: 423–429.

Wang Y, David O, Hu X, Deshpande G (2017) Can Patel's τ accurately estimate directionality of connections in brain networks from fMRI? Magn Reson Med, doi: 10.1002/mrm.26583. [Epub ahead of print]

Weiss B, Haas S, Lessner G, Mikkat S, Kreutzer M, Glocker MO, Wree A, Schmitt O (2014) The proteome of the differentiating mesencephalic progenitor cell line CSM14.1 in vitro. Biomed Res Int 2014: 1-13.

Weiss P, Holland Y (1967) Neuronal dynamics and axonal flow. II. The olfactory nerve as model test object. Proc Natl Acad Sci U S A 57: 258-264.

Weiss P, Hiscoe HN (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107: 315-395.

White JG, Southgate E, Thomson JN, Brenner S (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans Royal Soc B 314: 1–340.

Wickersham IR, Finke S, Conzelmann K-KK, Callaway EM (2007a) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4: 47–49.

Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, Callaway EM (2007b) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53: 639–647.

Wille M, Schümann A, Wree A, Kreutzer M, Glocker MO, Mutzbauer G, Schmitt O (2015) The proteome profiles of the cerebellum of juvenile, adult and aged rats-an ontogenetic study. Int J Mol Sci 16: 21454-21485.

Williams KW, Smith BN (2006) Rapid inhibition of neural excitability in the nucleus tractus solitarii by leptin: implications for ingestive behaviour. J Physiol 573: 395-412.

Wiznerowicz M, Trono D (2005) Harnessing HIV for therapy, basic research and biotechnology. Trends Biotechnol 23: 42–47.

Woodworth MB, Girskis KM, Walsh CA (2017) Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet 18: 230-244.

Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K (2014) A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. J Neurosci Methods 235: 331-348.

Zador AM, Dubnau J, Oyibo HK, Zhan H, Cao G, Peikon ID (2012) Sequencing the connectome. PLoS Biol 10: 1-7.

Zakiewicz IM, van Dongen YC, Leergaard TB, Bjaalie JG (2011) Workflow and atlas system for brain-wide mapping of axonal connectivity in rat. PLoS One 6: 1-11.

Zemanick MC, Strick PL, Dix RD (1991) Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. Proc Natl Acad Sci U S A 88: 8048–8051.

Zermann DH, Ishigooka M, Doggweiler-Wiygul R, Schubert J, Schmidt RA (2005) Central autonomic innervation of the kidney. What can we learn from a transneuronal tracing study in an animal model? J Urol- 173: 1033-1038.

Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R, Wang H, Mueller C, Sena-Esteves M, Brown R, Xu Z, Gao G (2011) Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19: 1440–1448.

Zincarelli C, Soltys S, Rengo G, and Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16: 1073–1080.

6 Tabellenanhang

Virusstämme	Eigenschaften	Richtung	Publikationen
PRV-Becker	PRV Wildtyp Laborstamm PRV. Stark virulent	R/A	Becker 1967, Card et al. 1990, Enquist et al. 1999
PRV-Bartha	Attenuierter PRV für transneuronales Tract-tracing. Infizierte Tiere überleben deutlich länger als nach einer PRV-Becker Infektion	R	Bartha 1961
PRV-NIA3	PRV Wildtyp. Stark virulent	R/A	Klupp et al. 2004
PRV-Becker rel	kombinante Viren		
PRV-151	Enthält CMV-EGFP Reporter Gen Kassette im gG Lokus des Virus Genoms. CMV Promoter führt zur Expression des EGFP Gens	R/A	Demmin et al. 2001
PRV-180	Exprimiert mRFP-VP26 (Kapsid) Fusions Protein, das in Kapsiden vorliegt und in hoher Konzentration von Kernen infizierter Zellen enthalten ist	R/A	Del Rio et al. 2005
PRV-GS443	Exprimiert EGFP-VP26 (Kapsid) Fusions Protein, das in Kapsiden vorliegt und in hoher Konzentration von Kernen infizierter Zellen enthalten ist	R/A	Smith et al. 2001
PRV-181	Exprimiert mRFP-VP26 (Kapsid) und GFP-VP22 (Tegument) Fusions Proteine, die in zweifarbigen Viruspartikeln vorliegen.	R/A	Del Rio et al. 2005
PRV-760	Es fehlt das gE Envelope Glykoprotein Gen und es ist weniger virulent als PRV- 181	R	Ch'ng und Enquist 2005
PRV-813	Es fehlt das Us3 Gen und es ist weniger virulent als das PRV-Becker Virus, jedoch nicht so schwach virulent wie das attenuierte PRV Bartha Virus.	R/A	Olsen et al. 2006
PRV-823	Es fehlt das Us3 Gen und es wird das mRFP-VP26 (Kapsid) Fusions Protein exprimiert. Virus ist weniger virulent als PRV-813.	R/A	Olsen et al. 2006
PRV-833	Es fehlt das Us3 Gen und es wird das mRFP-VP26 (Kapsid) Fusions Protein sowie das eGFP-VP22 (Tegument) Fusions Protein exprimiert. Es ist etwas weniger virulent als PRV-823.	R/A	Olsen et al. 2006

Tabelle 5: PRV Stämme und rekombinante PRV Arten.

PRV-Bartha rekombinante Viren

PRV-BaBlu	Enthält ein β -Galactosidase Reporter Gen (lacZ) im gG Lokus. Der gG Promoter induziert die Expression des lacZ Gens	R	Standish et al. 1995
PRV-152	Enthält die CMV-EGFP Reporter Gen Kassette im gG Lokus. Der CMV Promoter induziert die Expression des EGFP Gens.	R	Demmin et al. 2001, Smith et al. 2000
PRV-154	Exprimiert das Us9-EGFP Fusions Protein am gG Lokus. Us9-EGFP wird im trans-Golgi Netzwerk konzentriert und in der Virushülle integriert.	R	Billig et al. 2000
PRV-614	Enthält CMV-mRFP Reporter Gen Kassette im gG Lokus. Ist isogen mit PRV- 152 und wird häufig zusammen mit PRV-152 in dualen Infektions Studien verwendet	R	Banfield et al. 2003
PRV-2001	Replikation und Expression von tau-EGFP ist abhängig von Cre Rekombinase vermittelter Rekombination des Virusgenoms	R	DeFalco et al. 2001
PRV-263	Enthält Brainbow 1.0 Kassette im gG Lokus. Expression des dTomato Reporter Gens in Anwesenheit von cre-Recombinase (Cre). Cre exzidiert das dTomato Gen und ermöglicht damit die Expression von EYFP oder mCerulean.	R	Kobiler et al. 2010
PRV-267	Enthält das Cre recombinase Gene im gG Lokus. Biologisch aktives Cre wird in neuronalen Schaltkreisen exprimiert über die transsynaptische Passage und Replikation.	R	Card et al. 2011

Abkürzung	Tracing Substanz	Transportrichtung
ADE	[³ H]adenosine	retrograd
AF	Alexa Fluor nonconjugated	retrograd
AF-CTB	Alexa Fluor conjucated CTB	retrograd
AMM	C14 labeled Aminoacid mix	anterograd
ASP	D-[³ H]aspartate	retrograd
BDA 3k / BD	Biotinylated Dextran Amine 3000 MW	retrograd
BDA10k / BD	Biotinylated Dextran Amine 10000 MW = Dextran Biotin	anterograd
BIO	Biocytin	anterograd/retrograd
BIS	Bisbenzamide	retrograd
B-WGA	Biotin-wheat germ agglutinin	retrograd
CHOL	[³ H]Choline	retrograd
CLC	Cobaltic lysine complex	anterograd
COL	Coumarin latex spheres	retrograd
CT, CTX, CTB, CTb	Cholera toxin subunit B	retrograd
CT-HRP	Cholera toxin subunit B conjugated with horseradish peroxidase	anterograd/retrograd
CTB488	Cholera toxin subunit B conjugated with Alexa 488	retrograd
CVS	Challenge virus strain of rabies virus	retrograd
DA3kDA	Dextran amin 3000 Mw	anterograd
DAPI	4',6-Diamidin-2-phenylindol	retrograd
DiA	4-(4-(dihexadecylamino)styryl)-N-methylpyridiniumiodide	retrograd
DiI	Lipophilic carbocyanine tracer	anterograd
DIL	Dioctadecyl-3,3,3,3-tetramethyllindocarbocyanine perchlorat	anterograd/retrograd
DR	Doxorubicin = Adriamycin (neurotoxic antibiotic)	retrograd
DTX	Dextran tetramethyl-rhodamine	anterograd
DY	Diamidino Yellow	retrograd
EB	Evans Blue	retrograd
FB	Fast blue	retrograd
FCM	Fluorescein-coated microspheres	retrograd
FDA	Dextran amin conjucated fluorescein	anterograd
FE	Fluoro-Emerald	retrograd
FG	Fluorogold	retrograd
FGr, FL-Gr	Fluoro-Green	retrograd
FR, FL-Re	Fluoro-Red	retrograd
FLB	Fluorescein labeled latex beeds, Fluorescent latex microspheres	retrograd
FITC	Fluorescein-isothiocyanate conjugated microspheres	retrograd
FRub	Fluoro-Ruby	anterograd/retrograd
GAB	[³ H]GABA	retrograd
GB	Granular Blue	retrograd
GLY	[3H]Glycin	retrograd
GOLD	Colloquial gold	retrograd
HRP	Horseradish peroxidase	retrograd
HRP-lectin	Horseradish peroxidase lectin	retrograd
ID	Iron dextran	retrograd
LEU	[³ H]Leucin	anterograd
[3H]MPTP	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine	retrograd
MIX	[³ H]Prolin -[³ H]Leucin -[³ H]Lysine	anterograd
MN2Cl	Mangan Chlorid	anterograd
MR	Micro Ruby = Mini Ruby	retrograd
NB	Neurobiotin	anterograd/retrograd
[1251]NT	Tyr3-Neurotensin	retrograd
NY	Nuclear yellow	retrograd
PRI	Primuline	retrograd
PI	Propidium iodide	retrograd
PHA-L	Phaseolus vulgaris leukoagglutinin	anterograd
PHA-P	Phaseolus vulgaris leukoagglutinin P-Form	anterograd
PHA-E	Phaseolus vulgaris leukoagglutinin E-Form	anterograd
PRO	['H]Prolin = tritiated prolin	anterograd
PROLEU	['H]Prolin and ['H]Leucin mixture	anterograd
[3H]Pro,Leu,Lys,Hist,Tyro	3H-COCKTAIL Rhodamine-labeled latex heads (Luma Fluor)	anterograd
RB	Rhodamine-labled fluorescent latex microspheres	retrograd
	-	-

Tabelle 6: Nicht virale Tract-tracing Substanzen, die in den ausgewerteten Artikeln neben den viralen Tracern verwendet wurden.

ReB	RetroBeads	retrograd
RCM	Rhodamine-coated microspheres	retrograd
RDA	Rhodamine-dextran-amine, Rhodamine-conjugate dextran	anterograd/retrograd
RFL	Radiofrequency lesion	anterograd
RHO-D	D"(tetramethylrhodamine-dextran)	anterograd
RHO-L	Rhodamine latex sphere, Rhodamine latex microspheres (Lumafluor)	retrograd
SEL	Selenium tracing	retrograd
SITS	4-acetamido-4-isothiocyanostilbene-2,2'-disulfonic acid	retrograd
SOSE	Sodium selenium (Na ₂ SeO ₃)	retrograd
TB	True Blue	retrograd
TMR-DA	Tetramethylrhodamine dextran amine	retrograd
TRITC	Tetramethylrhodamine isothiocyanate conjugated microspheres	retrograd
VASO	Vasopressin efferents of SCh and Pa	anterograd
WGA-HRP	Wheat germ agglutin horseradish peroxidase	retrograd
WGA-Au-HRP	Wheat germ agglutin conjugated to horseradish peroxidase coupled with gold	retrograd

Tabelle 7: Typische Wichtungs-Begriffe (Verbindungsgewichte) in Tract-traci	ng Publikationen und deren semic	uantitative Kodierung. BG: Background.
		0	

0	0,5	1	2	3	4
absence of terminal labeling	few faintly labeled	a few labeled	an accumulation of	a significant number of	a very large number of
absent	few, if any, labeled cells	a number of	an appreciable number	clearly visible at lower power magnification	dense collection of
almost free of label	extremely lightly	a small path of labeling	certain number	clumps of labeled fibers	extremely intense
clearly tend to avoid	just greater BG	conspicuous	fair projection	considerable number of	heavy localised clumps of innervation
completely free of labeled cells	minimal	did not projects strongly	labelled cells are prominent	crowed with terminal-like labeling	numerous intensely labelled
devoid of labeled fibers	much lighter	diffuse projections	mid level	dense fields of	very dense
devoid of reaction product	ocassionally	diffusely distributed	moderate	dense labeling	strikingly dense
largely devoid of fibers	occasional labbeled	discrete collection of	moderately dense	especially prominent	
largely free of innervation	only sparsely	discrete population of labeled cells	moderately heavy	extensive labeling	
negliable	rare	disperse fibers	moderate proportion of labeled	fibers are very concentrated	
negligible quantity of labeled cells	receive very little label	distinct groups of neurons	relative significantly	fibers heavily fill	
neither injection site produced sign. labeling	relative free of label	few	several labeled	filled with densely labeled cells	
nil	scant	few scattered	their numbers are more modest	heaviest terminal labeling	
no labeling	scanty innervated	gave rise to less labeling		heavy labeled	
remains void of labelled fibers	some disperse fibers	label was seen in patches		high density	
totally unlabelled	very light	label was reliably found		high concentration of terminals	
unlabeled	very lightly	light density of		high proportion of labeled neurons	
	very little fiber labelling	light projection		important contingent	
	very minor labeling	lightly labeled		impressive number of	
	very modest	limited number of		intense terminal label	
	very rarely	low		labeled fibrs were concentrated	
	very sparse	minor projection		labelling was strong	
	very scarce	modest projection		large numbers of	
		occasional labbeled		large proportion of labeled neurons	
		only a minor portion		many intensively labeled	
		paucity of stained elements		massive input	
		relatively few		most numerous	
		scant		most richly supplied area	
		scarse		much greater density	
		scattered		numerous labeled	
		significant contralateral label		produced pronounced labeling	
		slightly more pronounced		produce substantial numbers of	
		smal sliver show terminal labeling		profuse axonal labeling	
		small number of		prominent accumulation of	
		small population of lightly neurons		prominent aggregation	
		some		prominent axonal labeling	
		some disperse labeling		prominent group of labeled cells	
		some labeled		prominent terminal field	
		sometimes		prominent terminal-like	
		sparse		relative high density of	
		weak		relative numerous	
		weak axonal label		relative prominent collection of labeled cells	
				relative prominent labeling	
				rich source, richly supplies efferents	
				significant portion	
				sizable numbers of neurons	
				strong bundle of, strong labeling was	
				substantial number of	

Tabelle 8: Lokale Netzwerkparameter des bilateralen VTT-Konnektoms. Es wurden die 60 Regionen mit den größten mittleren Rängen wiedergegeben. Die Sortierung der Ränge erfolgte nach dem AvgRank Parameter (mittlerer Rang).

	*****			Ę	- *	2	00010001000100011	00100010001000100	01000100000	7	ري	7٩		********	Ħ		00010001000		************	******			è.			-		100000000
9 9	iz e		7)	Ľ.	N S	5 2	ا ت	N	S	ũ	ě.	ă			õ	П				٢)		SS	ple	= 3	₹ 2	-	_	
an a	an	8	ĕ	50	č Š	יל	2 Ă	(at	, Ac)n	200	$\tilde{\mathbf{O}}$,ev) (C	Ŋ	Ŋ	ũ	Ŋ	Ç	R	ç	tre	ha	•	i g	tad	Ē	'nt
		<u>v</u> ==	<u> </u>	<u> </u>		<u>, </u>		¥	<u> </u>	<u> </u>	<u><</u>	>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>0</u>	<u> </u>	<u> </u>	<u>S</u>	<u>0</u>	N		<u> </u>	<u> </u>	<u> </u>
Peribrachial region	PBK	K I I I	· ·	2 120,45	39 20	21	18 0,462	529,14	0,04	0,09	20,78	0,94	0,34	0,18	0,37	0,20	0,01	0,54	20,022	0,06	0,28	40845	0,22	2,39 0	1,52 2,9	5 2 5 2	0,47	0,12
Lateral prefrontal cortex	IDEC	D 1	2.	5 126 18	12	11	31 0 738	1206 32	0,04	0,09	10.03	0,94	0,54	0,18	0,37	0,20	0.02	0,54	56 802	0,00	0,28	40643	0,22	2,51 0),26 2,9.	7 3 98	0,47	0,12
Oral cavity	OrcOC	D	5. 1.	3 120,18	42 21	5	16 0.762	800 550	0,00	0,08	13.44	1 17	0,44	0,24	0,31	0,35	0,02	0,12	10 386	0.15	0,25	53008	3 70	5,05 0 1 27 0	00 2,7	5 3 76	0,03	0,22
Lateral prefrontal cortex	IPEC	T 1	+ .	5 127,00	42	11	31 0 738	1306 31	0,07	0,09	10.03	0.73	0,45	0,22	0,31	0,29	0,02	0.12	56 802	0,15	0,25	46517	-5,79	0 0 2 0),09 2,7.	2 3 98	0,05	0,08
Nucleus of the solitary tract	Sol	D 1	, . ,	7 127,10	55	11	12 0.218	1575.27	0,00	0,08	33.48	0,75	0.36	0.15	0,51	0,55	0.02	0,12	182 522	0,07	0,23	366282	3 60	2,95 0),22 2,72	6 3 82	0,05	0,22
Oral cavity	OreOC	I	<u>د</u> ۱	2 127,47	21	5	16 0.762	800 550	0,00	0,00	13.44	1 17	0,30	0,15	0.31	0,5	0,05	03	102,555	0.15	0.25	5300282	3 70	115 0	00 27	5 3 76	0,98	0,08
Nucleus of the solitary tract	Sol	T 1	, , ,	7 128 12	55	12	12 0.218	1575.27	0.06	0.06	33.49	0.81	0.36	0.15	0.41	0,29	0.05	0,5	182 522	0,15	0,23	366787	3.60	202 0),07 2,7.	6 3 82	0,05	0,00
Zona incerta	71	T 1	1 .	5 130.2	36	15	21 0.583	879 607	0.03	0.08	26.68	0,01	0.28	0.15	0.31	0,5	0.01	0.08	40 473	0.06	0.33	35038	-0.46	21 0	34 2 7	2 3 81	0.34	0,00
Caudal hulbar reticular formation	CBRE	R 1	3	3 130.69	36	31	5 0 139	523 942	0.08	0.07	43.12	0.72	0.07	0.1	0.35	0.28	0.02	0,66	68 614	0.04	0.14	40362	-0.27	1.05 0	169 289	a 3 71	1	0.04
Caudal bulbar reticular formation	CBRF	LI	3	3 131 18	36	31	5 0 1 3 9	523,941	0.08	0.07	43.12	0.72	0.07	0.1	0.35	0.28	0.02	0,66	68 614	0.04	0.14	40362	-0.27	1,05 0	165 2.89	9 3 71	1	0.04
Zona incerta	ZI	R 1	1	5 131.26	36	15	21 0 583	879 609	0.03	0.08	26.68	0.9	0.28	0.15	0.31	0.3	0.01	0.08	40 473	0.06	0.33	35038	-0.46	7 37	03 27	2 3 81	0 34	0.09
Trigeminal nucleus	5	R 1	3	2 132.8	22	13	9 0.409	731.431	0.08	0.15	29.6	0.89	0.03	0.17	0.31	0.28	0.01	0.17	31.187	0.05	0.3	26886	0.31	1.05 0	0,31 2.7	3 3.66	0.25	0.1
Trigeminal nucleus	5	L 1	3	2 133.1	22	13	9 0.409	731.431	0.08	0.15	29.6	0.89	0.03	0.17	0.31	0.28	0.01	0.17	31,187	0.05	0.3	26886	0.31 (0.94 0	0.31 2.7	3 3.66	0.25	0.1
Subthalamic nucleus	STh	R	9	3 133.24	22	8	14 0.636	786,101	0.07	0.15	24.11	0.67	0.09	0.18	0.27	0.29	0	0.05	29,643	0.05	0.32	13862	0.23	1.49	0 2.5	5 3.78	0.1	0.07
Lateral orbital cortex	LO	R 1	3	3 133.51	35	4	31 0.886	1225.23	0.08	0.1	18.22	0.73	0.39	0.28	0.26	0.3	0.01	0.05	39,757	0.07	0.12	14915	0.21	2.81 0	0.06 2.5	1 3.8	0.02	0.16
Subthalamic nucleus	STh	L	9	3 133.77	22	8	14 0.636	786.099	0.07	0.15	24.11	0.67	0.09	0.18	0.27	0.29	0	0.05	29,643	0.05	0.32	13862	0.23	1.36	0 2.5	5 3.78	0.1	0.07
Lateral orbital cortex	LO	L 1	3	3 133,96	35	4	31 0,886	1225,23	0,08	0,1	18,22	0,73	0,39	0,28	0,26	0,3	0,01	0,05	39,757	0,07	0,12	14915	0,21	2,72	0 2,5	1 3.8	0,02	0,16
Mediodorsal thalamic nucleus	MD	R 1	1 :	5 135,82	45	19	26 0,578	1310,82	0,06	0,09	20,25	0,71	0,44	0,27	0,29	0,32	0,02	0,07	65,772	0,06	0,31	54528	-0,41	3,36 0	0,24 2,60	5 3,93	0,16	0,21
Paraventricular hypothalamic nucleus	Ра	R 1	3	2 136,71	57	41	16 0,281	506,285	0,05	0,04	18,49	0,71	0,55	0,21	0,36	0,29	0,02	0,71	37,709	0,02	0,22	78638	0,33	1,49 0	0,64 2,92	2 3,74	0,35	0,13
Mediodorsal thalamic nucleus	MD	L 1	1 :	5 136,73	45	19	26 0,578	1310,82	0,06	0,09	20,25	0,71	0,44	0,27	0,29	0,32	0,02	0,07	65,772	0,06	0,31	54528	-0,41	3,35 0	0,17 2,60	5 3,93	0,16	0,21
Paraventricular hypothalamic nucleus	Pa	L 1	3 2	2 137,18	57	41	16 0,281	506,285	0,05	0,04	18,49	0,71	0,55	0,21	0,36	0,29	0,02	0,71	37,709	0,02	0,22	78638	0,33	,47 0	,62 2,92	2 3,74	0,35	0,13
Lateral hy pothalamic area	LH	R 1	1	1 137,22	41	25	16 0,39	526,073	0,03	0,08	28,08	0,83	0,3	0,17	0,34	0,28	0,01	0,18	24,321	0,03	0,26	53207	0,4	2,48 0	0,41 2,83	5 3,66	0,49	0,09
Accumbens nucleus	Ac	L 1	1	1 137,86	40	8	32 0,8	1388,85	0,06	0,1	25,72	0,6	0,28	0,22	0,27	0,35	0,01	0,05	24,878	0,05	0,17	40611	-0,43	2,2 0	0,38 2,50	5 4,11	0,1	0,31
Lateral hy pothalamic area	LH	L 1	1	1 138,04	41	25	16 0,39	526,072	0,03	0,08	28,08	0,83	0,3	0,17	0,34	0,28	0,01	0,18	24,321	0,03	0,26	53207	0,4	2,41 0	0,38 2,8	5 3,66	0,49	0,09
Extra spinal segmental structures4	ExSL4	R 1	1 1.	3 139,33	69	15	54 0,783	7085,07	0,06	0,01	13,55	0,91	0,7	0,14	0,22	0,33	0	0,25	248,083	0,09	0,26	94379	-0,61 4	4,32 0	0,44 2,2	1 4,01	0,01	0,7
Primary somatosensory cortex	S1	R 1	3 2	2 139,55	21	7	14 0,667	448,404	0,06	0,17	21,53	0,63	0,09	0,23	0,27	0,28	0	0,05	14,321	0,02	0,28	8864	-0,51	1,27 0	0,09 2,52	2 3,66	0,07	0,07
Extra spinal segmental structures3	ExSL3	R 1	1 1.	3 139,67	69	15	54 0,783	7085,07	0,06	0,01	13,55	0,91	0,7	0,14	0,22	0,33	0,01	0,25	248,083	0,09	0,26	94433	-1,43 4	4,32 0),44 2,2	4,01	0,01	0,7
Extra spinal segmental structures5	ExSL5	L 1	1 1:	5 139,73	71	17	54 0,761	7085,07	0,06	0,01	13,55	0,91	0,71	0,14	0,22	0,33	0,01	0,29	288,179	0,09	0,29	122004	-0,78 4	4,48 0),13 2,2	4,01	0,02	0,7
Central amy gdaloid nucleus	Ce	R 1	2	1 139,88	29	9	20 0,69	504,13	0,04	0,1	25,96	0,96	0,24	0,17	0,3	0,26	0	0,12	19,359	0,04	0,24	8998	0,07	1,93 0	0,19 2,68	8 3,53	0,24	0,14
Primary somatosensory cortex	S1	L 1	3 2	2 139,98	21	7	14 0,667	448,403	0,06	0,17	21,53	0,63	0,09	0,23	0,27	0,28	0	0,05	14,321	0,02	0,28	8864	-0,51	1,15 0	0,09 2,52	2 3,66	0,07	0,07
Stomach	OrgsStom 5	L	5 :	5 140,18	66	7	59 0,894	9303,07	0,06	0,01	13	0,95	0,7	0,16	0,31	0,32	0,03	0,2	168,519	0,15	0,11	376091	-0,78	3,29 0),37 2,72	2 3,97	0,05	0,6
Central amy gdaloid nucleus	Ce	L 1	2	1 140,24	29	9	20 0,69	504,13	0,04	0,1	25,96	0,96	0,24	0,17	0,3	0,26	0	0,12	19,359	0,04	0,24	8998	0,07	1,78 0),19 2,68	3 3,53	0,24	0,14
Extra spinal segmental structures6	ExSL6	R 1	1 12	2 140,29	69	15	54 0,783	7085,07	0,06	0,01	14,11	0,91	0,69	0,14	0,2	0,33	0,01	0,22	228,036	0,09	0,25	82215	-0,52 4	4,42 0	0,43 2,03	3 4,01	0,01	0,7
Substantia nigra A9	SN	L 1	1 :	3 140,61	28	14	14 0,5	662,396	0,05	0,12	28,6	0,9	0,17	0,18	0,28	0,28	0,01	0,06	39,267	0,07	0,32	22278	-1,86	1,68 0	0,19 2,6	1 3,7	0,32	0,03
Extra spinal segmental structures5	ExSL5	R 1	1 1:	5 141,22	71	17	54 0,761	7085,07	0,06	0,01	13,55	0,91	0,71	0,14	0,22	0,33	0,01	0,29	288,179	0,09	0,29	122004	-0,78 (0,68 0	0,46 2,2	4,01	0,02	0,7
Substantia nigra A9	SN	R 1	1 .	3 141,22	28	14	14 0,5	662,397	0,05	0,12	28,6	0,9	0,17	0,18	0,28	0,28	0,01	0,06	39,267	0,07	0,32	22278	-1,86	1,82	0,2 2,6	1 3,7	0,32	0,03
Stomach	OrgsStom 5	R	5 :	5 141,47	66	7	59 0,894	9303,07	0,06	0,01	13	0,95	0,7	0,16	0,31	0,32	0,03	0,2	168,519	0,15	0,11	376091	-0,78	3,22 0	0,58 2,72	2 3,97	0,05	0,6
Dorsal cell column	DCeCo	L 1	3	1 144,73	19	7	12 0,632	1738,1	0,05	0,12	30,67	0,71	-0,06	0,11	0,29	0,3	0	0,09	16,681	0,04	0,27	19331	0,16 (0,31 0	0,56 2,64	4 3,84	0,19	0,11
Dorsal cell column	DCeCo	R 1	3	1 145,04	19	7	12 0,632	1738,1	0,05	0,12	30,67	0,71	-0,06	0,11	0,29	0,3	0	0,09	16,681	0,04	0,27	19331	0,16	0,5	0,5 2,6	4 3,84	0,19	0,11
Medial prefrontal cortex	mPFC	R 1	3 2	2 145,08	48	7	41 0,854	1095,9	0,04	0,07	16,2	0,79	0,55	0,35	0,27	0,31	0,01	0,05	38,435	0,08	0,14	20820	-0,11	3,8 0	0,19 2,5:	5 3,9	0,07	0,19
Extra spinal segmental structures4	ExSL4	L 1	1 1.	3 145,65	69	15	54 0,783	7085,07	0,06	0,01	13,55	0,91	0,7	0,14	0,22	0,33	0	0,25	248,083	0,09	0,26	94379	-0,61 4	4,32 0	0,14 2,2	4,01	0,01	0,7
Medial prefrontal cortex	mPFC	L 1	3 2	2 145,9	48	7	41 0,854	1095,9	0,04	0,07	16,2	0,79	0,55	0,35	0,27	0,31	0,01	0,05	38,435	0,08	0,14	20820	-0,11	3,67 0	0,16 2,5	5 3,9	0,07	0,19
Extra spinal segmental structures3	ExSL3	L 1	1 1.	3 145,96	69	15	54 0,783	7085,07	0,06	0,01	13,55	0,91	0,7	0,14	0,22	0,33	0,01	0,25	248,083	0,09	0,26	94433	-1,43 4	4,32 0	0,14 2,2	4,01	0,01	0,7
Extra spinal segmental structures6	ExSL6	L 1	1 12	2 146,57	69	15	54 0,783	7085,07	0,06	0,01	14,11	0,91	0,69	0,14	0,2	0,33	0,01	0,22	228,036	0,09	0,25	82215	-0,52 4	4,24 0	0,16 2,03	3 4,01	0,01	0,7
Accumbens nucleus	Ac	R 1	1	1 151,47	40	8	32 0,8	1388,86	0,06	0,1	25,72	0,6	0,28	0,22	0,27	0,35	0,01	0,05	24,878	0,05	0,17	40611	-0,43 (0,11 0	0,38 2,50	> 4,11	0,1	0,31
Basolateral amy gdaloid nucleus	BL	R 1	3	1 151,57	15	11	4 0,267	365,139	0,09	0,2	39,29	0,69	-0,3	0,1	0,3	0,25	0	0,08	18,798	0,02	0,24	5747	0,4 (0,28 0	0,43 2,7	1 3,45	0,28	0,02
Adrenaline cell group	ADC	RI	0	1 152,28	17	15	2 0,118	195,63	0,06	0,13	24,13	0,8	-0,01	0,17	0,33	0,23	0	0,48	16,639	0,01	0,12	20388	0,01 0	J,06 0	0,62 2,8.	3 3,25	0,12	0,04
Reticular thalamic nucleus	Rt	K I	0 1	2 153,28	41	7	34 0,829	1067,95	0,04	0,09	18,36	0,61	0,43	0,31	0,24	0,3	0	0,03	36,527	0,06	0,16	16548	0,23	5,03 U),23 2,3	7 3,8	0,07	0,2
A draw line and more state	KI	LI	υ 1 0	2 154,33	41	/	34 0,829	105/,95	0,04	0,09	18,36	0,61	0,43	0,31	0,24	0,3	0	0,03	30,527	0,06	0,16	16548	0,23	2,93 0	18 2,3°	1 3,8	0,07	0,2
Adrenaline cell group	ADC		. 0	1 155	17	15	2 0,118	195,63	0,06	0,13	24,13	0,8	-0,01	0,17	0,33	0,23	0	0,48	16,639	0,01	0,12	20388	0,01),58 2,8.	3,25	0,12	0,04
Paraventricular thalamic nucleus	rv LCD	к l	1 (0 155,02	25	18	/ 0,28	208,199	0,06	0,11	27,04	0,92	0,13	0,15	0,27	0,22	0	0,07	0,126	0,01	0,21	32614	-0,59	1,10 0	1,41 2,5°	1 3,17	0,28	0,07
Lateral globus pallidus	LGP	K I	2 .	2 155,2	18	13	5 0,278	281,222	0,07	0,15	26,19	0,52	-0,09	0,14	0,51	0,25	0,01	0,1	20,409	0,01	0,26	25976	-0,28 (J,01 0	1,55 2,72	2 3,44	0,1	0,03
Lateral globus pailidus	DDD	L I	2 2	2 100,09	18	13	3 0,278	201,222	0,07	0,15	20,19	0,52	-0,09	0,14	0,31	0,25	0,01	0,1	20,409	0,01	0,20	239/6	-0,28 (1,52 0 05	0 2.72	2 3,44	0,1	0.03
Diagonal band of Broca	DI	к I т ı	υ .	2 100,9 1 156 22	15	9	4 0,308	203,912	0,09	0,28	20,09	0,51	-0,27	0,10	0,27	0,25	0	0,05	12,080	0,02	0,51	2015	0,55	0,3	0 2,50) 3,28	0,1	0.02
Diagonal hand of Broca	DE	LI	, , n '	1 150,55	13	11	4 0 309	205,139	0.09	0.29	28.00	0,09	-0,5	0.16	0,5	0,23	0	0.05	10,798	0.02	0,24	2015	0.33	,,+∠ 0 1.42	0 2 54	5,45 6 2 70	0,20	0.02
Thoragal sagment 6	T6	D I	n .	2 100,00 4 1580	21	10	11 0 524	205,711	0.09	0,20	47.65	0.30	0.24	0,10	0,27	0,23	0	0.19	12,000	0.04	0,31	56355	0,55 0	,,=2 0.2 0	0 2,30	, 3,20 7 3 75	0.30	0.02
Paraventricular thalamic nucleus	PV	L 1	1 4	0 158 55	25	18	7 0.28	208 199	0.06	0.11	27.04	0,39	013	0.15	0,27	0,29	0	0,10	6 1 2 6	0,04	0.29	32614	-0.59	0,20 1260	,,50 2,5) 29 2 5'	7 3 17	0,39	0.07
r ara cona louiar anarannio nuorous		- 1	• •	· 100,00	20	10	, 0,20	200,199	0,00	0,11	27,04	0,72	0,15	0,15	0,27	0,22	0	5,07	0,120	0,01	0,21	52014		.,20 0	,, _,J		0,20	0,07

Tabelle 9: Häufigkeiten vo	on Regionen de	s VTT-Netzwerkes,	die an der B	ildung von Mo	otiven beteiligt
sind. Mit rot hervorgehobe	n wurde das rel	lativ seltene zirkuläi	re Motiv 3-07	7.	

								- •,							
Langname	Kurzname	Rang	3-01	3-02	3-03	3-04	3-05	3-06	3-07	3-08	3-09	3-10	3-11	3-12	3-13
Nucleus of the solitary tract	Sol	14,846	596	308	731	277	50	233	1	36	14	10	10	14	1
Nucleus of the solitary tract	Sol	14,846	596	308	731	277	50	233	1	36	14	10	10	14	1
Mediodorsal thalamic nucleus	MD	26,846	229	352	329	84	60	128	7	13	5	16	22	7	0
Mediodorsal thalamic nucleus	MD	26,846	229	352	329	84	60	128	7	13	5	16	22	7	0
Flocculonodular lobe	CEREFL	27,308	248	175	4027	27	148	438	0	4	6	8	129	0	4
Flocculonodular lobe	CEREFL	27,308	248	175	4027	27	148	438	0	4	6	8	129	0	4
Stomach	OrgsStomS	30,769	285	213	1408	130	30	282	0	1	15	3	9	6	0
Stomach	OrgsStomS	30,769	285	213	1408	130	30	282	0	1	15	3	9	6	0
Zona incerta	ZI	33,308	153	219	436	64	36	125	1	5	13	8	15	4	0
Zona incerta	ZI	33,308	153	219	436	64	36	125	1	5	13	8	15	4	0
Caudal bulbar reticular formation	CBRF	33,923	363	112	858	80	27	158	0	18	8	11	3	4	1
Caudal bulbar reticular formation	CBRF	33,923	363	112	858	80	27	158	0	18	8	11	3	4	1
Peribrachial region	PBR	35,308	200	392	558	54	66	43	4	13	1	4	16	6	0
Peribrachial region	PBR	35,308	200	392	558	54	66	43	4	13	1	4	16	6	0
Lateral prefrontal cortex	lPFC	35,615	189	277	309	94	57	126	0	4	15	11	16	5	0
Lateral prefrontal cortex	lPFC	35,615	189	277	309	94	57	126	0	4	15	11	16	5	0
Caudal part of cerebellum	CERCca	35,923	227	248	1172	20	51	178	0	2	6	4	49	0	1
Caudal part of cerebellum	CERCca	35,923	227	248	1172	20	51	178	0	2	6	4	49	0	1
Medial prefrontal cortex	mPFC	37,154	166	246	719	24	118	118	2	4	2	7	7	2	0
Medial prefrontal cortex	mPFC	37,154	166	246	719	24	118	118	2	4	2	7	7	2	0
Accumbens nucleus	Ac	38,538	354	302	517	28	106	46	1	11	1	5	7	3	0
Accumbens nucleus	Ac	38,538	354	302	517	28	106	46	1	11	1	5	7	3	0
Reticular thalamic nucleus	Rt	39,154	203	215	511	30	89	53	2	8	1	5	14	5	0
Reticular thalamic nucleus	Rt	39,154	203	215	511	30	89	53	2	8	1	5	14	5	0
Extra spinal segmental structures5	ExSL5	39,462	372	158	725	88	20	596	0	2	144	0	6	0	0
Extra spinal segmental structures5	ExSL5	39,462	372	158	725	88	20	596	0	2	144	0	6	0	0
Lateral hypothalamic area	LH	40,231	361	420	586	25	103	56	1	4	2	6	7	0	0
Lateral hypothalamic area	LH	40.231	361	420	586	25	103	56	1	4	2	6	7	0	0
Paraventricular hypothalamic nucleus	Pa	41,154	840	739	313	83	77	55	0	36	4	2	5	4	0
Paraventricular hypothalamic nucleus	Pa	41.154	840	739	313	83	77	55	0	36	4	2	5	4	0
Extra spinal segmental structures4	ExSL4	41,308	387	174	800	71	24	536	0	2	115	0	2	0	0
Extra spinal segmental structures4	ExSL4	41,308	387	174	800	71	24	536	0	2	115	0	2	0	0
Extra spinal segmental structures3	ExSL3	41,462	383	174	800	79	24	536	0	2	111	0	2	0	0
Extra spinal segmental structures3	ExSL3	41,462	383	174	800	79	24	536	0	2	111	0	2	0	0
Lateral orbital cortex	LO	43,308	134	147	314	43	62	92	3	4	6	10	11	3	0
Lateral orbital cortex	LO	43,308	134	147	314	43	62	92	3	4	6	10	11	3	0
Extra spinal segmental structures6	ExSL6	47.154	386	215	873	79	34	505	0	2	100	0	0	0	0
Extra spinal segmental structures6	ExSL6	47,154	386	215	873	79	34	505	0	2	100	0	0	0	0
Cerebellar lobule 10	CERL10	49	175	226	462	19	34	184	0	0	6	4	28	0	1
Cerebellar lobule 10	CERL10	49	175	226	462	19	34	184	0	0	6	4	28	0	1
Substantia nigra A9	SN	49,154	75	163	419	38	40	61	3	2	5	9	8	2	0
Substantia nigra A9	SN	49,154	75	163	419	38	40	61	3	2	5	9	8	2	0
-															

7 Bildanhang

Abbildung 55: Vergleichende Darstellung lokaler Parameter. a) Übersicht des Input-Output Balken-Diagramms mit Markierung des vergrößerten Bereiches in b). Die magenta bis rosa Farbwerte markieren einen größeren Input Parameter. Die blauen Farbtöne einen ausgeglichenen Input- und Output-Parameter und die grünen bis türkisen Farbtöne eine größeren Output-Parameter. c) Übersicht über die Gebietsvergleichende Darstellung lokaler Parameter mittels Balken. d) Zeigt den vergrößerten Ausschnitt aus c). Die Grauwerte kodieren die Größen der Parameter.

8 Thesen

- Sämtliche 7052 begutachtete Publikationen, in denen Verbindungen des Nervensystems der Laborratte beschrieben werden, bilden ein gerichtetes und gewichtetes bilaterales Konnektom. Verbindungen aus 363 viralen Tract-tracing Studien wurden mit dieser Arbeit den nicht viralen Tract-tracing Daten hinzugefügt, so dass nunmehr 7415 Publikationen die Datengrundlage des Laborratten-Konnektoms bilden.
- In den meisten Arbeiten wurden Pseudorabies Viren gefolgt von Adenoviren und Herpes Viren f
 ür das neuronale Tract-tracing eingesetzt.
- Aus der hierarchischen Organisation der Regionen wurde eine spezifische Filterung von Gebieten vorgenommen, so dass besonders zahlreiche virale Tract-tracing Verbindungen in dieser Regionenfilterung sichtbar werden. Dieses Konnektom besteht aus 716 Regionen, die links- und rechtsseitig im zentralen und peripheren Nervensystem liegen.
- Werden nur Verbindungen in diesem 716-Knoten Netzwerk gefiltert, die durch virales Tract-tracing beobachtet wurden, so liegen 3323 Verbindungen im VTT-Konnektom vor.
- Die Gesamtzahl der Verbindungen, die mittels viralen Tract-tracing im Konnektom der Laborrate vorhanden sind, beträgt 3773.
- Poly- bzw. multisynaptische sowie kolaterale Verbindungen des viralen Tract-tracing sind ebenfalls im Konnektom integriert. Diese besonderen Verbindungsmodi wurden erstmals in ein umfangreicheres Konnektom eingebaut.
- Typisch f
 ür das virale Tract-tracing Konnektom sind zahlreiche efferente und afferente Verbindungen des peripheren Nervensystems sowie umfangreiche propriospinale Verbindungen. Diese kommen besonders gut in der connectivity matching Matrix auf der Hauptdiagonalen zur Darstellung.
- 8. In der Motiv-Analyse des VTT-Konnektoms fällt auf, dass das zirkuläre 3-07 Motiv signifikant häufiger vorkommt, was eine interessante Ausnahme im Vergleich mit anderen Konnektomstudien darstellt (Amygdala Konnektom, Basalganglien Konnektom). In anderen Konnektomen fand sich dieses Motiv entweder signifikant seltener oder genauso häufig wie in randomisierten Netzwerken.
- 9. Das virale Tract-tracing Konnektom (VTT) enthält nur Verbindungen, die mittels viralen Tract-tracing gefunden wurden und es wird abgegrenzt vom kompletten Konnektom (cVTT), welches zusätzlich sämtliche nicht viralen Verbindungen der gleichen Gebiete sowie dem Konnektom welches nur nicht virale Verbindungen

(nVTT) enthält. Das VTT-Konnektom lässt durch einen relativ großen Small-Worldness Parameter von über 21 als Kleines-Welt Netzwerk einstufen. Zudem hat es mit 204 reziproken Verbindungen deutlich mehr Reziprozität als in 1000 Iterationen des Erdös Rényi Zufallsnetzwerkes (10,08 Reziprozitäten).

- 10. Die differentielle Konnektomanalyse des nVTT- und cVTT-Konnektoms ergibt, dass die viralen Tract-tracing Verbindungen eine wichtige Ergänzung des nicht viralen Tract-tracing Konnektoms darstellen. So steigt die Modularität des Konnektoms, wenn das nVTT-Netzwerk virale Tract-tracing Verbindungen zusätzlich erhält (cVTT).
- 11. Die Rangberechnung der differentiellen lokalen Netzwerkparameter Analyse ergab, dass die Zona incerta den ersten Rang einnimmt, gefolgt von der Lateral hypothalamic area und dem Central amygdaloid nucleus.
- 12. Die Rich-Club Analyse ergab, dass sich ab einer Kantenanzahl von ca. 240 die Kurven der cVTT- und nVTT-Kantenverteilungen deutlich von den Kurven der randomisierten Netzwerke absetzen, so dass Regionen mit mehr als 240 Verbindungen zur Rich-Club Menge gehören. Diese besteht sowohl in nVTT, als auch cVTT aus den gleichen 56 Gebieten.
- 13. Die vergleichende Modularitätsanalyse der nVTT- und cVTT-Konnektome ergab deutliche Unterschiede in der Anzahl der Regionen der Module. Außerdem sieht man in der Regionen-Zusammensetzung der Module Ähnlichkeiten, so dass von einer konnektionalen modularen Konsistenz gesprochen werden darf.

9 Publikationen

Abstracts:

- Schmitt O, Eipert P, Hoffmann R, Morawska P, Klünker A-C, Meinhardt J, Lessmann F, Beier J, Kadir K, Karnitzki A, Jenssen J, Kuch L, Sellner L, Wree A (2014) Central and peripheral monosynaptic, polysynaptic and collaterals connectivity in the rat. INCF conference. Leiden 25.8.-27.8.2014.
- Schmitt O, Eipert P, Klünker A-C, Meinhardt J, Lessmann F, Beier J, Kadir K, Karnitzki A, Jenssen J, Kuch L, Wree A (2015) The rat connectome: All known connections of the rat nervous system in one database. 11th Göttingen Meeting of the German Neuroscience Society 2015.
- Schmitt O, Eipert P, Schwanke S, Klünker A-C, Meinhardt J, Leßmann F, Beier J, Karnitzki A, Jenssen J, Kadir K, Kuch L, Sellner L (2016) neuroVIISAS was also build for the ferretome. Ferret Brain Meeting 2016. Hamburg 30.6.1.7.2016.
- Schmitt O, Eipert P, Schwanke S, Klünker A-C, Meinhardt J, Leßmann F, Beier J, Karnitzki A, Jenssen J, Kadir K, Kuch L, Sellner L (2016) The cortical connectome of the rat. Anatomische Gesellschaft, Göttingen 2016.
- Schmitt O, Eipert P, Schwanke S, Klünker A-C, Meinhardt J, Leßmann F, Beier J, Karnitzki A, Jenssen J, Kadir K, Kuch L, Sellner L (2016) Hippocampal connectomics of the laboratory rat. Anatomische Gesellschaft, Göttingen 2016.
- Schmitt O, Lessmann F, Schwanke S, Eipert P, Meinhardt J, Beier J, Kadir K, Karnitzki A, Sellner L, Klünker A-C, Kuch L, Ruß F, Jenssen J, Wree A (2017) Differential connectomics of the rat thalamus. Computational Neuroscience Meeting 2017 Antwerpen.

Originalartikel:

- 1. Schwanke S, Jenssen J, Eipert P, Schmitt O (2017) Differential connectomics with neuroVIISAS. Neuroinformatics, eingereicht.
- Schmitt O, Eipert P, Schwanke S, Lessmann F, Meinhardt J, Beier J, Kadir K, Karnitzki A, Sellner L, Klünker A-C, Kuch L, Ruß F, Jenssen J (2017) Inter-rater and connection releability of a complete whole-body connectome metastudy of the laboratory rat. Bioinformatics, eingereicht.

10 Erklärung

Die Dissertation wurde bisher weder vorher noch gleichzeitig in gleicher oder ähnlicher Form bei einer anderen Prüfungsbehörde vorgelegt.

Ich versichere an Eides Statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe, bis auf die Personen denen in der Danksagung (Kapitel 11) gedankt wird, verfasst und andere als die von mir angegebenen Hilfsmittel und Quellen nicht benutzt habe. Die in den verwendeten Werken wörtlich oder inhaltlich entnommenen Stellen wurden als solche kenntlich gemacht.

Ich erkläre, dass ich noch kein Promotionsverfahren an einer anderen wissenschaftlichen Einrichtung erfolglos beendet habe und dass eine Aberkennung eines erworbenen Doktorgrades nicht vorliegt.

Rostock, den

11 Lebenslauf

Jörg-Christian Jenssen Geboren am 03.06.1987 in Lübeck ledig

Schulausbildung/ Berufsausbildung

09/1994 - 07/1998	Grundschule Malente
08/1998 - 07/2006	Johann-Heinrich-Voß Gymnasium, Eutin
08/2006 - 07/2009	Johanniter-Unfallhilfe e.V., Lübeck
08/2009 - 06/2010	Dorothea-Schlözer Berufsoberschule, Lübeck

Hochschulausbildung

10/2010 - 11/2016	Studium der Humanmedizin, Universität Rostock
Seit April 2017	Weiterbildungsassistent zum Facharzt für Anästhesiologie, Intensiv- und Schmerztherapie

Famulaturen

Nephrologie, Universität Rostock
Allgemeinmedizin, Rostock
Chirurgische Ambulanz, Sana Klinken Eutin
Anästhesie und Intensivmedizin, Kliniken Hochfranken

Praktisches Jahr

11/2015 - 03/2016	Chirurgisches Tertial, Klinikum Traunstein
04/2016 - 06/2016	Internistisches Tertial, Klinikum Traunstein
07/2016 - 10/2016	Anästhesiologisches Tertial, Südstadt Klinikum Rostock

12 Danksagung

Ich möchte mich zuallererst bei allen Mitarbeitern der Konnektom-Arbeitsgruppe des Institutes für Anatomie der Universität Rostock bedanken, die mich bei der Bearbeitung dieser Dissertation unterstützt haben.

Das größte Dankeschön gilt Herrn Professor Oliver Schmitt, der mir durch Vergabe dieser Dissertation einen Einblick in das Arbeitsgebiet der Konnketomik ermöglichte. Ich danke Herrn Professor Schmitt für seine ausgezeichnete und intensive Betreuung im Laufe der Fertigstellung dieser Arbeit. Ohne sein Mitwirken wäre diese Arbeit nicht abgeschlossen worden. Insbesondere leistete er vorbildliche Arbeit bei der Auswertung, Simulation und Visualisierung der Konnektomdaten mithilfe von NeuroVIISAS.

Auf gleicher Weise danke ich Herrn Dipl.-Math. Eipert für die Anpassung und Weiterentwicklung des NeuroVIISAS Programm zur Analyse von viralen Tract-tracing Daten. Auch Herrn Dipl.-Inf. Sebastian Schwanke danke ich für die Hilfe bei der differentiellen Konnektomanalyse.

Zuletzt möchte ich mich noch recht herzlich bei meinen Eltern und meinem Bruder bedanken, die mich in meinen unterschiedlichen Lebensphasen immer unterstützt haben.