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Abstract
A search for the rare two-body decays Λb → D0Λ and Ξ0

b → D0Λ is performed with proton-
proton collision data, corresponding to an integrated luminosity of 6 fb−1, collected by the
LHCb experiment at a center-of-mass energy of 13 TeV. The decay Λb → D0Λ is seen with a
statistical significance of 5.5 standard deviations, and constitutes the discovery for this decay.
The branching fraction, measured using the Λb→ D0pπ− decay for normalization, is

B(Λb→ D0Λ) = (9.9± 2.3± 1.6± 1.1)× 10−6 ,

where the uncertainties are statistical, systematic, and external, respectively. An excess of
Ξ0

b → D0Λ candidates w.r.t. the background is observed with a statistical significance of 1.8
standard deviations and is used to estimate the upper limit

fΞ0
b

fΛb

× B(Ξ0
b → D0Λ)

B(Λb→ D0Λ)
< 0.5 (CL = 95%) ,

where fΞ0
b
/fΛb

is the ratio of the fragmentation fractions of b-quarks into Ξ0
b and Λb baryons.

Kurzfassung
In dieser Arbeit wird eine Suche nach den seltenen Zweikörper-Zerfällen Λb → D0Λ und
Ξ0

b → D0Λ mit Proton-Proton Kollisionen präsentiert. Der analysierte Datensatz entspricht
einer integrierten Luminosität von 6 fb−1 und wurde durch das LHCb Experiment bei einer
Schwerpunktsenergie von 13 TeV aufgezeichnet. Der Zerfall Λb→ D0Λ wird mit einer statisti-
schen Signifikanz von 5,5 Standardabweichungen beobachtet und ist somit als Neuentdeckung
einzustufen. Das gemessene Verzweigungsverhältnis mit statistischem, systematischem und ex-
ternem Fehler, normiert mit gemessenen Λb→ D0pπ− Zerfällen, ist

B(Λb→ D0Λ) = (9,9± 2,3± 1,6± 1,1)× 10−6 .

Eine Anhäufung von Ξ0
b → D0Λ Kandidaten gegenüber dem Untergrund wird mit einer statis-

tischen Signifikanz von 1,8 Standardabweichungen beobachtet und zur Berechnung einer Ober-
grenze benutzt:

fΞ0
b

fΛb

× B(Ξ0
b → D0Λ)

B(Λb→ D0Λ)
< 0,5 (CL = 95%) .

Dabei bezeichnet fΞ0
b
/fΛb

das Verhältnis der Fragmentierungsanteile von b Quarks in Ξ0
b und

Λb Baryonen.





Introduction
The idea of simplifying the description of different types of matter by introducing fundamental
substructures is old. In Ancient Greece the elements earth, water, air and fire were assumed
to be fundamental. In the early 1800s, John Dalton used the concept of atoms to explain
why elements always react in ratios of small whole numbers. Later, in the early 1900s, Ernest
Rutherford discovered the nucleus. Today, the concept of protons, neutrons and electrons
building different types of atoms is well established and taught in school. The standard model
of particle physics (SM) introduces a new layer of fundamental particles. Particles like the
proton and the neutron are hadrons, composed of quarks. The electron stays fundamental
and joins the group of the fundamental leptons. There are more quarks than one finds within
protons and neutrons, and there are more fundamental leptons than the electron. However,
these particles are not stable and decay until only the lightest particles are left, i.e., in nature
we only observe protons, neutrons and electrons most of the time. The proton is a baryon
and the only stable hadron. The neutron is a long-living particle but eventually decays via the
β-decay,

n→ pe−νe.

Mesons are another possible combination of quarks. Instead of consisting of three quarks
(baryon), they are made of one quark and one anti-quark. Whereas there is one stable baryon,
all mesons are unstable. The lightest mesons are the pion triplet (π+, π0, π−) and their
dominant decay modes are:

π0 → 2γ,

π+ → µ+νµ,

π− → µ−νµ,

where the final states of the charged (neutral) pions are leptons (bosons).
Classical atomic models do not need mesons, since their physics is dominated by the inter-

action between the protons, neutrons and electrons. The lion’s share of the visible matter in
our universe is baryonic and not mesonic. On the one hand, it is the CP violation in meson
decays that is well studied at colliders but, on the other hand, one of the unsolved mysteries of
our universe is its large baryon anti-baryon asymmetry (and not meson anti-meson asymmetry)
which can be considered as the largest known macroscopic CP violation. The SM of particle
physics (as well as the SM of cosmology) yet have failed explaining the order of magnitude of
this asymmetry, whereas at the same time results of CP violation in meson decays are in great
agreement with the SM predictions.

In the present analysis we contribute to the experimental foundation for studies of CP vio-
lations in baryon decays by searching for two-body decays of the Λb and the Ξ0

b baryon which
can be used at future experiments to estimate the CP violation parameter γ.
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Conventions
After spending years in the field of experimental high energy physics, adopting a certain kind
of jargon and unspoken conventions is unavoidable. The author tried his best to avoid jargon
when possible and summarize abbreviations in a glossary on page 103.

Throughout this work we will frequently refer to invariant masses, e.g., as m(Λb) or m(D0Λ).
Whereas the former typically refers to the measured mass of the given hadron (the Λb baryon
in this example), the latter notation is meant as an abbreviation: It should be read as the
result of summing the invariant masses of a D0 candidate and a Λ candidate, according to
four-momentum addition where candidates are themselves recursively obtained by such four-
momentum additions. We note that in particular for recorded data, this does not only include
the desired decay channel (Λb → D0Λ in the above example), but potentially also include
random track combinations and other kind of background contributions. On top of this, our
notation of invariant masses also always implicitly includes the respective CP conjugated par-
ticles, e.g., the invariant mass distribution m(D0Λ) is the result of a four-momentum addition
of D0 and Λ candidates (e.g., Λb→ D0Λ), as well as D0 and Λ candidates (e.g., Λb→ D0Λ).
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Chapter 1

Theory
When working toward the solution of a problem, it always helps if you know the

answer.

— Rule of Accuracy, from Arthur Bloch’s book Murphy’s Law.

The standard model of particle physics (SM) is a theory which describes three of the four known
fundamental interactions, i.e., the strong, the weak and the electromagnetic interaction. Grav-
ity is not yet included in this theory, but since its coupling is weak w.r.t. the other fundamental
interactions at scales of particle accelerator energies, the impact can be neglected for all pro-
cesses within the present analysis. The standard model uses the framework of a quantum field
theory to describe the dynamics of all known fundamental particles. The description is Lorentz
invariant, obeys locality1 and probability conservation, and is thus considered a healthy theory.

The (fundamental) particles are quarks, like the u- and d-quark forming the hadronic matter
(e.g., protons and neutrons), leptons (e.g., electrons and electron neutrinos), and bosons (e.g.,
photons). Within the SM, these particles are the fundamental excitations of respective fields.

The gauge bosons of this theory arise from Yang-Mills fields. In total, there are eight massless
bosons of the strong interaction (gluons), three massive bosons (W± and Z) and one massless
boson (photon) of the electro-weak interaction. One additional boson arises from the Higgs
mechanism and brings masses to all fundamental particles which do interact with this boson.
The fundamental fermions of the standard model are arranged in multiplets based on the local
symmetries given by the respective Yang-Mills theory:

ℓiL = (1,2)−1 i = 1, 2, 3 ,

ℓiR = (1,1)−2 i = e−, µ−, τ− ,

qiL = (3,2) 1
3

i = 1, 2, 3 ,

uR = (3,1) 4
3

u = u, c, t ,

d′R = (3,1)− 2
3

d = d, s, b ,

where the subscripts L and R indicate whether the particle is left (L) or right (R) handed,
and the bold faced numbers are the representation of the gauge group of the strong interaction
and the weak isospin, respectively. The lower number indicates the weak hypercharge. The
electric charge q of each particle can be determined by the Gell-Mann-Nishijima formula [1, 2],
yielding a charge of q = 2/3 |e| for the up-type quarks u, c, t and q = −1/3|e| for the down-type
quarks d′, s′, b′. The leptons e−, µ− and τ− are charged equally with q = −|e|, whereas the
neutrinos are neutral and therefore do not couple electro-magnetically. Every fermion comes
with one anti-fermion. From a group theoretical point of view, these particles originate from
the conjugated fermion representation, whereas from a field theoretical point of view they are
obtained by mirroring the charge (C) and the parity (P ) of the respective fermion.

1The action only contains terms in which the fields and their derivatives are evaluated at the same space-time
point.
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Chapter 1. Theory

In total, there are six left- and three right-handed leptons, where the former are arranged
in weak isospin doublets, i.e., (e−L , νe), (µ

−
L , νµ) and (τ−L , ντ ) and the latter appear in singlets

(e−R), (µ
−
R), (τ

−
R ).

The six known quarks u, c, t, d′, s′, b′ also appear left and right handed. Again, the latter
appears in weak iso-singlets, whereas the former are arranged in weak iso-doublets, i.e., (u, d′),
(c, s′) and (t, b′). The weak interaction describes the transitions of the left-handed up-type
quarks (u, c, t) to the left-handed down-type quarks (d′, s′, b′). This conversion within the weak
iso-doublets is mediated via the coupling between the W± bosons and the charged weak current

J CC
µ = (u, c, t) γµ (1− γ5)

⎛⎝d′s′
b′

⎞⎠ .

In the next section we will elaborate that (d′, s′, b′) are the weak flavor eigenstates and differ
from the mass eigenstates of the quarks. Taking this into account leads to the introduction of
an unitary matrix that connects flavor and mass eigenstates. This matrix is called the CKM
matrix and brings four additional degrees of freedom, i.e., three mixing angles and one CP
violating phase.

The gauge groups are described within the framework of semisimple Lie algebras such that
the total gauge symmetry of the standard model is:

F = SU(3)× SU(2)×U(1) ,

where SU(3) is the gauge group of the strong interaction and SU(2) × U(1) is the respective
gauge group of the electro-weak interaction. The Higgs mechanism (spontaneously) breaks this
symmetry down to

F = SU(3)× SU(2)×U(1)
Higgs↦−−−→ SU(3)×U(1)em .

The Lagrangian of the standard model reads:

L = −1

2
tr (Fµν F

µν) + ψi /Dψ + LYuk + (Dµ φ)
2 − V (φ) ,

where we abbreviated

Fµν F
µν = Gµν G

µν +Wµν W
µν +

1

2
Bµν B

µν

and introduced the covariant derivative

Dµ ψ = (∂µ + igsGµ + igWµ + ig′Bµ)ψ .

All fermions fields are gathered in ψ, whereas φ is the Higgs field, coupling left and right handed
fermions via a Yukawa coupling LYuk with an according potential V (φ). The tensors Gµν , Wµν

and Bµν are the field-strength tensors of the gauge bosons. The former tensor corresponds to
the strong interaction, whereas the latter tensors correspond to the electro-weak interaction.
All three tensors are functions of the corresponding gauge fields and of the generator of their
gauge groups, e.g.,

Gµν = ∂µGν − ∂νGµ + igs [Gµ, Gν ]

=
(︁
∂µG

a
ν − ∂νG

a
µ − gsfabcG

b
µG

c
ν

)︁ λa

2
,
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where Ga
µ are the gluon fields (index a takes values 1 . . . 8), fabc is the structure constant and

λa are the generator of the SU(3) group. The fields Ga
µ are chosen such that the transformation

of the field strength tensor is:

Gµν(x)
SU(3)↦−−−−→ U(x)Gµν(x)U

†(x) ,

with U(x) ≡ U(x) being an arbitrary transformation of SU(3), thus leaving the total Lagrangian
invariant. We note that applying the trace operation to Gµ ≡ G†

µ = Ga
µ(x)

λa

2 only affects the
generator space

trGµ ≡ Ga
µ(x) tr

λa

2
,

thus yielding

tr (Gµν G
µν) = Ga

µν G
µν
b tr

λaλb

4
=

1

2
Ga

µν G
µν
a .

The same holds for the electro-weak case where the generators of the electro-weak SU(2)×U(1)
group are the weak isospin σa/2 (Pauli matrices) and the weak hypercharge Y .

While the gauge symmetry of the strong interaction is unbroken and all gluons are indis-
tinguishable, the electro-weak sector of the standard model is broken and the respective field
excitations become distinguishable. The physical fields are the charge eigenstates W+

µ , W−
µ ,

Zµ, and the photon field Aµ. They are obtained via the transformations

W±
µ = W1

µ ± iW2
µ ,(︃

Zµ

Aµ

)︃
=

(︃
cosϑW − sinϑW
sinϑW cosϑW

)︃(︃
W3

µ

Bµ

)︃
.

This coupling also affects their coupling constants g and g′, hence it is sensible to introduce the
weak mixing angle ϑW as

e = g sinϑW =
gg′√︁
g2 + g′2

,

where e is the electric charge. With this, the (classical2) standard model of particle physics has
18 free parameters in total,

• 3 couplings: gs, e, sinϑw,
• 2 boson masses: mW , mH ,
• 3 lepton masses: me, mµ, mτ ,
• 6 quark masses: mu, md, ms, mc, mt, mb,
• 4 parameters of the CKM matrix.

For the sake of completeness we note that we did not account for any affects from renor-
malization in the Lagrangians shown above, although the standard model is a renormalizable
theory. Renormalization changes the behavior of charges and couplings and make these quanti-
ties effectively momentum dependent. When doing actual calculations it is mandatory to take
this into account, not least because of observable properties such as the running of coupling
constants. However, the topic of renomoralization is complex and will neither significantly
enrich this brief overview substantively, nor yield deeper insights into the presented analysis.

2Without neutrino masses.
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Chapter 1. Theory

1.1 CP Violation
Above, we have seen that the charged current J CC

µ couples the weak eigenstates. This coupling
is diagonal such that there is no mixing of the eigenstates. The flavor eigenstates, however, do
not correspond to the mass eigenstates, but there is one arbitrary rotation between flavor and
mass eigenstates of the up-type quarks and the down-type quarks each. These two rotations
cancel for all terms of the Lagrangian, except for the charged current J CC

µ , since this is the
only term connecting up- and down-type quarks. In J CC

µ both rotations appear in product,
thus collapsing to one unitary matrix V :

J CC
µ = (u′, c′, t′) γµ (1− γ5)

⎛⎝d′s′
b′

⎞⎠ = (u, c, t) γµ (1− γ5)V

⎛⎝ds
b

⎞⎠ ,

where the prime indicates mass eigenstates.
The matrix V is called the CKM matrix and was first introduced by Kobayashi and Maskawa [3]

as an extension of the two-dimensional Cabibbo matrix [4]. The CKM matrix is parametrized by
three mixing angles and one CP violating phase. Conventionally, one multiplies V to the right,
thus mixing down-type mass eigenstates. When referring to mass eigenstates, each up-type
quark now decays to a superposition of three down-type quarks:⎛⎝u′c′

t′

⎞⎠ =

⎛⎝uc
t

⎞⎠ but

⎛⎝d′s′
b′

⎞⎠ =

⎛⎝Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞⎠⎛⎝ds
b

⎞⎠ .

The probability of finding a down-type quark after the decay of an up-type quark ui in a
specific mass eigenstate dj is proportional to the square of the respective matrix element Vij .
Since these matrix elements are complex they differ from the decay of the respective anti-quarks
in a complex phase, i.e., the transition ui → dj is proportional to the square of V ∗

ij . In the
absence of multiple decay channels, this phase is unphysical and vanishes after squaring the
matrix element. In the case of multiple decay channels, all joining the same final state but
bringing different strong phases, this phase yields a physical effect in different real valued decay
amplitudes between particles and the respective anti-particles. This effect is called direct CP
violation.

The CKM matrix exhibits a clear hierarchy, often expressed in the Wolfenstein parameteri-
zation [5]:

V =

⎛⎝Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞⎠
=

⎛⎝ 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎞⎠+O(λ4) ,

where the four parameters (A, λ, ρ, η) are real numbers. Here, λ ≈ 0.23 is the sine of the
Cabibbo angle and plays the role of an expansion parameter, whereas η represents the CP
violating phase. Note, that this representation only assigns complex phases to the matrix
elements Vub and Vtd. Expanding the CKM matrix in higher orders of λ, brings additional
phases to three other matrix elements.

The CKM matrix is unitary, thus yielding twelve distinct complex relations among the matrix
elements: (︁

V V †)︁
ij
=
(︁
V †V

)︁
ij
= δij .
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1.2. Quark Model

Six of these twelve relations (i ̸= j) can be represented geometrically as triangles in the complex
plane, e.g.,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ,

where the length of the edges are given by the absolute values of each addend. The three angles
are given by the argument of the ratio of neighboring edges, i.e.,

α = arg

(︃
− VtdV

∗
td

VudV ∗
ub

)︃
≈ arg

(︃
−1− ρ− iη

ρ+ iη

)︃
,

β = arg

(︃
−VcdV

∗
cb

VtdV ∗
tb

)︃
≈ arg

(︃
− 1

1− ρ− iη

)︃
,

γ = arg

(︃
−VudV

∗
ub

VcdV ∗
cb

)︃
≈ arg (ρ+ iη) .

The unitary of the CKM matrix implies α+β+γ = π, as well as equal areas of all triangles. Any
discrepancy of these relations would indicate a non unitary CKM matrix and thus corresponding
to physics beyond the standard model. At the time of writing, the CKM angle γ is among the
least well known constraints, therefore, being an excellent probe of new physics [6, 7].

At this point it seems appropriate to mention, that neutrinos are set massless within in the
classical standard model, thus excluding lepton mixing. Ever since the discovery of neutrino
oscillation [8, 9, 10] we yet know that neutrinos must have finite masses and therefore leptons
mix also. The corresponding mixing matrix is called the PMNS matrix [11] and allows CP vio-
lation for leptons. (See e.g., Ref. [12] for some exciting results for CP violation measurements
in neutrino oscillations.) There are at least two (conflicting) extensions to the classical stan-
dard model that explain the finite neutrino masses but since there is no clear preference from
experimental data which of these extensions can be excluded, we did not account for them in
our previous parameter counting. Anyhow, finite neutrino masses will not influence the results
of the present analysis since we are dealing with pure hadronic states.

Another source of CP violation could occurs in strong decays. It is easy to extend the standard
model accordingly and this extension is occasionally considered more natural. Experiments
show, however, that the strong interaction seems to conserve CP . This conservation is not yet
fully understood and is known as the Strong CP Problem in literature [7, 13, 14], but appears
in perfect agreement with all experimental results so far. Therefore, the only source of CP
violation in the classical standard model are weak decays.

1.2 Quark Model
Quantum Chromodynamics (QCD) is the quantum field description of the strong interaction
that enlarges the pool of quantum numbers of the standard model. All quarks now possess
the new quantum number color which can take on three different values. QCD is an unbroken
SU(3) gauge symmetry, acting on the color quantum number. The eight generators of this
Lie-Algebra induce eight massless gauge bosons, called gluons.

QCD is a non-abelian gauge theory, hence gluons are charged and interact with each other.
Similar to Quantum Electrodynamics (QED), there exist quark loops which screen the (color)
charge at large distances. In marked contrast to QED the gauge bosons of QCD carry charge
themselves, therefore allowing gluon loops at the same level. The gluon loops anti-screen and
dominate the quark loops, hence QCD becomes stronger at large distances. This feature of
QCD confines quarks and gluons such that none of them can be isolated. Only states forming
color singlets can be observed at large distance scales, i.e., the possible combinations of quarks q
and anti-quarks q are mesons (qq), baryons (qqq), tetraquarks (qqqq) and pentaquarks (qqqqq),
as well as their respective anti-particles. These combinations are called hadrons. Furthermore,
combinations of two gluons forming a color singlet (glueballs) are possible.
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The masses of quarks forming a hadron are much lighter than the masses of the respective
hadron. The reason for that can be found in the two different mechanisms providing masses to
quarks and to hadrons. The former originates directly from the spontaneous symmetry breaking
by the Higgs mechanism, the latter originates from the energy of quark and gluon condensates
of the QCD vacuum. The QCD vacuum includes virtual qq pairs that also contribute to the
absolute mass of the hadron. In order to distinguish between these and the valence quarks, we
call these virtual quarks sea quarks.

The quark model of particle physics is a classification scheme for hadrons in terms of their
valence quarks. The quantum numbers of the quarks are added, obeying the rules of spin
algebras, such that each hadron is uniquely defined by their sum. Besides spin, quarks have
another charge of a SU(2) symmetry, isospin. The two lightest quarks u and d are arranged
in iso-doublets, all other quarks are iso-singlets. This quantum number turns out to be useful,
since QCD is unbroken in terms of isospin, thus giving rise to a conserved quantity. (Different
masses and electrical charges break this symmetry in the electro-weak sector of the standard
model.) Adding the isospin of quarks, one finds the isospin of hadrons by analyzing the outer
product, e.g., combining a u- and d-quark (taken form the (u, d) doublet 2), and a s-quark
(singlet 1) yields,

2⊗ 2⊗ 1 = 3⊕ 1 ,

a triplet and a singlet. The triplet (isospin I = 1) consists of the three baryons Σ+ (uus),
Σ0 (uds) and Σ− (dds), the singlet (I = 0) is the Λ baryon (uds) where we have given the
valence quark contents in parentheses. Note, that the Σ0 and the Λ have the same valence
quark content, but different isospin. Therefore they are distinguishable. Another prominent
example of an isospin pair is the nucleon, having isospin I = 1/2. The two states, that differ
in their valence quark content but are anyhow indistinguishable in strong interactions, are the
proton (uud) and the neutron (udd).

Below, we give a short overview over the intermediate particles Λb, Ξ0
b , Λ and D0 which play

a major role in the present analysis. All figures, even though not explicitly marked, are taken
from the Particle Data Group [15]:

Λb Baryon In the quark model, the Λb baryon is an iso-singlet state, consisting of valence
quarks u, d and b. The lightest Λb baryon has I(JP ) = 0(1/2+). The mass is measured
as

m(Λb) = 5.61960(17)GeV/c2,

thus it is the lightest baryon with one b- or b-quark. Energy conservation does not allow
for any strong decays, therefore the Λb decays weakly which explains its relatively long
lifetime τ(Λb),

τ(Λb) = 1.471(9) ps,
corresponding to a narrow natural width of roughly ℏ/τ ≈ 0.4meV. The dominant decay
modes are Λb → Λcℓ

−νℓ and Λb → ΛcD
−
s with a relative decay rate of 10.3(2.2)% and

1.10(0.10)%, respectively. The decays Λb → DΛ and Λb → D∗Λ that we study in the
present analysis have not yet been observed.

Ξ0
b Baryon In the quark model the Ξb baryons, Ξ0

b (bsu) and Ξ−
b (bsd), are the constituents of

an iso-doublet with I(JP ) = 1/2(1/2+). Both resonances were discovered at the Tevatron
collider in the years 2011 and 2007 [16, 17, 18] (more than a quarter of a century after
the Λb discovery [19]). The mass of the Ξ0

b baryon is measured as

m(Ξ0
b ) = 5.7919(5)GeV/c2,

which makes it 172.5(4)MeV/c2 heavier than the Λb baryon and thus forbids any strong
decays such as Ξ0

b → ΛbK
0. In the framework of heavy quark expansion all weakly decay-

ing charmless b-hadrons have the same lifetime up to corrections at the order (ΛQCD/mb)
2,
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1.3. Strong Isospin

where ΛQCD is the energy scale at which the strong coupling becomes large and mb is
the mass of the b-quark [20]. The measured mean lifetime ratio of the Ξ0

b and the Λb

hadron, τ(Ξ0
b )/τ(Λb) = 1.006(21) [21], confirms this expectation. None of the (weak)

decays into the final states D0Λ, D∗Λ, D0Σ0 or D0Ξ0, that we consider as signal or
(potential) background contributions in the present analysis, have yet been observed.

Λ Baryon We have discussed the Λ baryon and its role in the quark model previously. The
mass is measured as

m(Λ) = 1.115683(6) GeV/c2.

The dominant decay modes of the I(JP ) = 0(1/2+) baryon are Λ→ pπ− and Λ→ nπ0

with branching fractions of 63.9(5)% and 35.8(5)%, respectively. Whereas the latter
mode is almost impossible to reconstruct at LHCb, the reconstruction of the former is
feasible, albeit with the caveat that due to the long lifetime of the V 0 particle,

τ(Λ) = 263.2(20) ps,

most decays will take place outside of the VELO (cf. Chap. 2).

D0 Meson The D0 is a I(JP ) = 1/2(0−) meson, consisting of valence quarks c and u with a
mass of

m(D0) = 1.86483(5) GeV/c2.

The PDG lists more than 300 measured (weak) decay modes of the D0 meson which
explains its relatively short lifetime (in comparison with other weakly decaying hadrons),

τ(D0) = 0.4101(15) ps.

Modes of particular interest for the present analysis (and at future prospects) are the
D0→ hh′ modes, where h and h′ refer to pions or kaons, and D0→ K∓π±π+π− modes.
The mode D0 → K−π+ (i.e., h = K− and h′ = π+) is referred to as the Cabibbo
favored mode due to its c→ sud transition (proportional to 1 − λ2 in the Wolfenstein
parameterization). Similarly, the modes D0 → K+K− and D0 → π+π− are referred to
as Cabibbo suppressed (proportional to λ) and finally D0→ K+π− is referred to as the
Cabibbo doubly suppressed mode (proportional to λ2).

1.3 Strong Isospin
In contrast to the electro-weak interaction that breaks various symmetries by allowing flavor
transitions, QCD appears to be invariant under several symmetries. These symmetries can be
categorized into gauge symmetries, e.g., color SU(3), accidental symmetries, such as the baryon
number conservation, and approximate symmetries. The (strong) isospin is an approximate
symmetry of the SM, but can be considered a conserved symmetry for QCD. Quarks multiplets
as shown above are broken in the context of the complete SM due to finite mass differences
of the u- and d-quarks, introduced by the Yukawa couplings (Higgs mechanism), and different
electric charges of up and down type quarks. Nevertheless, isospin turned out to be useful as an
approximately conserved quantum number in certain contexts, for example in nucleon nucleon
scattering processes, in predicting states of the quark model as part of the Eightfold Way or as
starting point of various lattice QCD calculations [22, 23, 24, 25].

In general, assuming isospin invariance of QCD with finite quark masses is a good approxi-
mation, since the quark masses of the u- and d-quark are a small perturbation on the hadronic
scales of QCD, making the corresponding baryons proton and neutron almost degenerated.
Isospin invariance makes the Hamiltonian of the strong interaction a scalar in iso-space and
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thus gives rise to a special case of the Wigner-Eckart theorem which states that strong decay
ratios are governed by Clebsch-Gordan (GC) coefficients.

The CG coefficients can be used as a proxy for testing the precision of the isospin approxima-
tion either qualitatively for explaining strong suppression of decays (corresponding to vanishing
CG coefficients) or even quantitatively for predicting branching fractions. A canonical examples
for the former is the decay ρ0 → π0π0 (not yet seen3) and (more recently) Λb → J/ψΣ0 [26].
Examples for the latter are the production of ∆++ and ∆0 resonances in pπ− and pπ+ collisions
(cf. Fig. 1.1 with data taken from Ref. [27]) and K∗ decays into Kρ and Kω. In both cases CG
coefficients predict a relative branching fraction of a factor of three which is in good agreement
with experimental results as shown in Fig. 1.1 for the production rate of ∆ resonances and with
the results of Ref. [28] for K1(1270) decays:

B
(︁
K1(1270)→ K+ρ0

)︁
B (K1(1270)→ K+ω)

=
0.42± 0.06

0.11± 0.02
= 3.8± 0.9 .

Fig. 1.1. Production rate of pπ+ → ∆(1232)++ and pπ− → ∆(1232)0 with data taken from
the Particle Data Group [27]. (Data files are courtesy of the COMPAS Group, IHEP,
Protvino, Russia). Isospin conservation predicts an exact ratio of 3 which is in good
agreement with the measurements shown above (note the scaling of the pπ− data).

An interesting case of isospin violation in strong decays is the decay η→ 3π. This strong
decay of a IG

(︁
JPC

)︁
= 0+ (0−+) state into 1−

(︁
0−(+)

)︁
states is forbidden by G-parity. Since

G-parity is a combination of isospin and C-parity and the latter is conserved, this decay indeed
violates isospin symmetry. Interestingly, η→ 2π decays are forbidden by C-parity which makes
the 3π decays, albeit (approximately) forbidden, the dominant decay modes4 [29, 30, 31]

B
(︁
η→ π+π−π0

)︁
= 22.6± 0.5% ,

B
(︁
η→ π0π0π0

)︁
= 34.0± 0.8% ,

B
(︁
η→ π+π−)︁ < 1.3× 10−5 (CL = 90%) ,

B
(︁
η→ π0π0

)︁
< 3.5× 10−4 (CL = 90%) ,

and the branching fractions similar to the (isospin violating) electro-magnetic decay η→ γγ [29]

B (η→ γγ) = 38.5± 0.5% .

3Challenging analysis due to the irreducible background mode ρ0 → π0π0γ which explain the absence of
measured upper limits.

4This also explains the exceptionally narrow width of η.
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1.4. Σ0→ Λγ Background

These measurements shine light onto the quantitative power of the isospin argument by showing,
that strong, isospin forbidden decays are on the same level as QED transitions (O(α2) in
this case). In general, isospin breaking effects can be large in electro-weak decays but are
suppressed when strong decays can contribute. Furthermore, the suppression of isospin violation
is considered largely independent of the momentum transfer (Q-value), i.e., isospin mixes two
mass eigenstates, for example

Λb→ J/ψ
(︁
cos(θ)Λ+ sin(θ)Σ0

)︁
,

where the mixing angle θ is largely independent of the momentum transfer [32] and thus allows
inferring the isospin suppression between decays with different Q-values.

1.4 Σ0→ Λγ Background
Λ and Σ baryons are part of the baryon octet. The former is an isospin singlet and the latter
three resonances Σ−, Σ0, and Σ+ form an isospin triplet. The quantum numbers of the Λ and
the Σ0 baryons are identical, including the common valence quarks (uds), except for the isospin
which separates the former as a singlet and the latter as part of the triplet. The Σ0 baryon can
thus decay fast without quark transitions into the singlet state Λ via emission of a soft photon.
Transitions between the Σ0 and Λ via strong interaction are forbidden due to the small isospin
splitting, m(Σ0)−m(Λ) = 76.959(23)MeV/c2 [15], which is lighter than any meson mass. Other
decay channels besides Σ0→ Λγ are B(Σ0→ Λγγ) < 3% (experimentally measured at a 90 %
CL) and B(Σ0→ Λe+e−) = 5× 10−3 (theoretical QED calculation) [33, 34].

Due to the small isospin splitting, the photon of the radiative transition will almost always
escape undetected at LHCb and is therefore not included in the reconstruction step of the
present analysis which makes the Σ0 resonance a partially reconstructed background in most
analyses with intermediate Λ baryons.

1.4.1 Limitations of naïve SU(2) Arguments
Since both, Λ and Σ0 share the same valence quarks, the decision which of both actually
hadronizes in decays is imposed by QCD. The production of Λ and Σ0 baryons in QCD was
studied at lepton colliders, e.g., by the BESIII collaboration in J/ψ and ψ(2S) decays [35]. The
results of Ref. [35] are summarized in Tab. 1.1.

Tab. 1.1. Results for branching fractions B of Λ and Σ0 production in charmonia decays taken
from Ref. [35]. Statistical and systematic uncertainties are added in quadrature.
Additionally, we calculate the ratio of Σ0 and Λ branching fractions, based on the
published results of Ref. [35] and assign uncertainties obtained from linear error
propagation while ignoring correlations.

Channel B (×10−4) Ratio
J/ψ→ ΛΛ 19.43± 0.33

0.599± 0.016
J/ψ→ Σ0Σ0 11.64± 0.23
ψ(2S)→ ΛΛ 3.97± 0.12

0.615± 0.033
ψ(2S)→ Σ0Σ0 2.44± 0.11

In the case of Λ andΣ0 production from charmonia resonances, hadrons are not only produced
via QCD (OZI suppressed decays), but also via QED, e.g., J/ψ → γ→ ΛΛ. Assuming isospin
conservation for QCD, only the latter process gives rise to isospin breaking decays such as
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J/ψ→ ΛΣ0 which is a transition from an isospin singlet state |I = 0, I3 = 0⟩ into |I = 1, I3 = 0⟩.
Even though QED breaks isospin conservation, the single photon allows only one quark anti-
quark pair to form a I = 0 or I = 1 state. All other pairs still obey QCD and are thus isospin
singlets, i.e., only final states of at most ∆I = 1 are possible. The Clebsch-Gordan (CG)
coefficients for a Σ0Σ0 pair are

|1, 0⟩⏞ ⏟⏟ ⏞
Σ0

⊗ |1, 0⟩⏞ ⏟⏟ ⏞
Σ0

=

{︃
1

3
|0, 0⟩ , 2

3
|2, 0⟩

}︃
.

Thus, even in the case of isospin violating ∆I = 1 processes, ΛΛ and Σ0Σ0 pairs can only form
a I = 0 state. Consequently, the branching ratio of ΛΛ and Σ0Σ0 pairs should be governed
by the corresponding CG coefficients, and thus be 1 : 1/3. Experimentally, a ratio of 60% is
measured, thus pointing towards an additional isospin breaking contribution, such as final state
interactions and possible corrections of a full SU(3) consideration.

When created in (OZI suppressed) strong decays, the initial isospin state of the u-, d- and
s-quarks is well known due to the isospin conservation of QCD, whereas the situation is more
complicated in weak decays, since isospin conservation is not guaranteed anymore and thus the
initial isospin state of the quarks is typically unknown. K→ ππ decays have a long history of
revealing counter intuitive selection rules between different isospin states, i.e., the amplitudes
of KS → π0π0, KS → π+π− and K+→ π+π0 can be used to unfold amplitudes corresponding
to isospin states I = 0 and I = 2.5 Experimentally, the ratio of the amplitudes for I = 0 and
I = 2 is measured to be larger than expected from the CG coefficients, thus hinting towards a
suppression of large isospins beyond a naïve angular momentum coupling description. In this
particular case, this deviation is known as the so-called ∆I = 1/2 rule for kaons and is well
described in theory, for example in the framework of chiral perturbation theory [36].

1.4.2 Background Contamination by Σ0→ Λγ at LHCb
Since the soft photon in Σ0 → Λγ cannot be reconstructed at LHCb, most analysis with
intermediate Λ resonances will be contaminated with the partially reconstructed background
events of Σ0 decays which are irreducible.

For example, this is the case in the charmless two-body decay B+ → pΛ, analyzed at
LHCb [37]. Penguin contributions with a b→ s loop are expected to dominate, but tree-level
and annihilation diagrams also contribute. Electro-weak penguins and tree diagrams create a
uu or dd pair that couples with the spectator quark either into an isospin I = 1/2 or I = 3/2
state, corresponding to ∆I = 0 and ∆I = 1, respectively. The other qq pair is created from
the QCD vacuum and thus does not change the total isospin. In case of the annihilation dia-
gram and gluon penguins, two qq pairs are created form the QCD vacuum and only ∆I = 0 is
possible.

The quark states can hadronize as either pΛ or pΣ0, i.e.,

pΛ :

⃓⃓⃓⃓
1

2
,
1

2

⟩︃
⊗ |0, 0⟩ =

⃓⃓⃓⃓
1

2
,
1

2

⟩︃
,

pΣ0 :

⃓⃓⃓⃓
1

2
,
1

2

⟩︃
⊗ |1, 0⟩ =

{︃
1

3

⃓⃓⃓⃓
1

2
,
1

2

⟩︃
,
2

3

⃓⃓⃓⃓
3

2
,
1

2

⟩︃}︃
.

Inferring a suppression of ∆I = 1 from the ∆I = 1/2 selection rule for kaons, Σ0 resonances
would be suppressed by a factor of 1/3. Vice-versa, if ∆I = 0 would be suppressed, then electro-
weak penguins and tree diagrams would induce an increase of Σ0 hadronization. The fit to

5The I = 1 final state is unreachable for pairs of pions due to their bosonic nature, i.e., bosons are described
by symmetric wave functions, whereas combinations of odd angular momentum L or odd isospin I quantum
numbers are antisymmetric. Hence L and I must either be both odd or both even. For kaon decays, L = 0
and therefore I can have only even values.
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1.4. Σ0→ Λγ Background

recorded B+→ pΛ events at LHCb prefers the former option by finding N(B+→ pΣ0) being
compatible with zero but N(B+→ pΛ) = 13.0+5.1

−4.3 [37]. We note, that the amount of available
statistics in this channel is similar to Λb → D0Λ where we expect the very same suppression
factor. (Even without relying on “mysterious ∆I rule[s]”, cf. Ref. [36].)

In Tab. 1.2 we show a selection of Λb decays with an intermediate Λ baryon together with
the corresponding Λ-Σ0 asymmetry

a(Λ : Σ0) :=
f(Λ)− f(Σ0)

f(Λ) + f(Σ0)
, (1.1)

where f(Λ) and f(Σ0) refer to the amounts of Λ and Σ0, respectively. An asymmetry of −1,
0, +1 thus corresponds to a pure Σ0, balanced Λ and Σ0, and pure Λ decay, respectively.

For some of the decays listed in Tab. 1.2 W -exchange diagrams are also possible (e.g.,
Ref. [38]) which are often considered suppressed in the literature. We note, that a strong
suppression is only given for mesons due to the required spin alignment of the quark and
anti-quark pair, but that this is not necessarily the case for baryons.

The decays Λb → Λhh′, Λb → Λφ and Λb → J/ψΛ were analyzed at LHCb [39, 40, 41],
whereas the other decays are subject of the present analysis. The ranges for the values of the
Λ-Σ0 asymmetry arises from the yet unknown ∆I selection rules we mentioned above. For
example, the u-quark produced via W -exchange in the Λb → Λφ decay can either end within
a |0, 0⟩ or a |1, 0⟩ state together with the spectator, corresponding to a Λ-Σ0 asymmetry of
either 1 or −1, respectively. In the case of tree and penguin decays of the Λb baryon, we can
further constrain the possible combinations by observing, that the spectator diquark (ud) is an
isospin singlet state |0, 0⟩ which is, since not involved in the decay in leading order, conserved.
In decays via W -exchange, this initial singlet state is broken, though, and the spectator quark
can contribute in the subsequent isospin coupling.

Most interesting for the present analysis is the ratio of the absolute amount of reconstructed
decays with intermediate Λ and Σ0 in order to estimate the background contamination of
Λb → D0Σ0 in Λb → D0Λ. Unfortunately, there are a couple of caveats with naïvely inter-
preting the yields of the fitted modes. For example in the analysis of Λb → Λhh′ decays, the
authors could only account for partially reconstructed background components with a missing
soft photon in general, due to the lack of experimental data of further Λb background candi-
dates [39]. Contributions of Σ0 → Λγ are, however, most physically motivated, but only one
reasonable instance. Unfortunately, the partially reconstructed background Σ0 → Λγ peak in
roughly the same place as the cross-feed contribution, which is quite well understood, but as the
corresponding signal yields are small, this results in a reasonable uncertainty on which contri-
butions are which. Additionally, the same problem occurs in the Λb→ Λch control mode where
the Λc can either decay into Λπ+ or Σ0π+. Both of these amplitudes are measured by the
BESIII collaboration and found to be significantly greater than zero [42] and thus pollute the
interpretation of the fitted yields as the true charmless decays, without Λc component. Luckily
for the present analysis, this effect is most pronounced in the Λπ+π− final state (cf. Chap. 7).
The branching fractions for corresponding modes with kaons are considerably more suppressed.

1.4.3 Summary
Isospin (non-)conservation is helpful for deciding whether or not a decay is suppressed. Finding
exact branching ratios, though, can be error prone as we saw in the case of ΛΛ vs. Σ0Σ0

production or due to yet unknown ∆I selection rules. However, in the case of Λb → D0Λ the
situation is much easier and we do not expect large corrections neither to the tree, nor to the
W -exchange diagram.

Regarding the available statistics, we will not be able to constrain or extract the relative
branching ratio but we find it noteworthy to mention, that the Σ0 modes are of great interest
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Tab. 1.2. Selection of Λb decays with an intermediate Λ baryon, primary quark transitions,
and Λ-Σ0 asymmetry a(Λ : Σ0) as defined in Eq. (1.1). For decays via W -exchange
the spectator quark has to be included into the isospin coupling (flavor is shown in
parentheses).

Channel Quark transition Λ-Σ0 asymmetry
Λb→ Λπ+π− b→ usu (tree & penguin) 1/9 . . . 1/3

b→ sdd (penguin) 1/9 . . . 1/3
bu(d)→ us(d) (exchange) 1/9 . . . 1/3

Λb→ ΛK+π− b→ udu (tree & penguin) −1/6 . . . 1/3
b→ dss (penguin) 1/3
bu(d)→ ud(d) (exchange) −1/6 . . . 1/3

Λb→ ΛK+K− b→ suu (tree & penguin) 0 . . . 1/2
b→ sss (penguin) 1/2
bu(d)→ us(d) (exchange) 0 . . . 1/2

Λb→ Λφ b→ sss (penguin) 1
bu(d)→ us(d) (exchange) −1 . . . 1

Λb→ J/ψΛ b→ ccs (tree & penguin) 1
bu(d)→ us(d) (exchange) −1 . . . 1

Λb→ D0Λ b→ cus (tree) 1/2
bu(d)→ cs(d) (exchange) 1/2

Λb→ D0Λ b→ usc (tree) 1/2

Ξ0
b → D0Λ b→ cdu (tree) −1 . . . 1/2

bu(s)→ cd(s) (exchange) 1/2

Ξ0
b → D0Λ b→ udc (tree) −1 . . . 1/2
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for future experiments for at least two reasons: First, for the same reasons CP violation is
expected in Λb→ DΛ, it is also expected for Λb→ DΣ0 with different strong phases. Secondly,
SU(3) considerations yield relations among the amplitudes of Λb → D0X and Ξ0

b → D0X
decays [43]:

1−
√
3
A(Λb→ D0Λ)

A(Λb→ D0Σ0)
+

√
2
A(Ξ0

b → D0Ξ0)

A(Λb→ D0Σ0)
= 0 ,

1 +
√
3
A(Λb→ D0Λ)

A(Λb→ D0Σ0)
− 2

λs
λd

A(Ξ0
b → D0Σ0)

A(Λb→ D0Σ0)
= 0 ,

1− 2
λd
λs

A(Λb→ D0Σ0)

A(Ξ0
b → D0Σ0)

+
√
3
A(Ξ0

b → D0Λ)

A(Ξ0
b → D0Σ0)

= 0 ,

1−
√
3
A(Λb→ D0Λ)

A(Λb→ D0Σ0)
+

√
2
λs
λd

A(Λb→ D0n)

A(Λb→ D0Σ0)
= 0 ,

with

λd := V ∗
udVcb ,

λs := V ∗
usVcb .

These should be tested and used to constrain decays that are unavailable for current experiments
such as Λb→ D0n.

1.5 CP Violation in b-Baryon Decays
CP violation is an interference effect and originates from the complex phases of the CKM
matrix. In order to get a measurable physical quantity in amplitudes the given observable has
to come from the superposition of two (or more) decay modes that contribute a CP even and
a CP odd term (CKM phases are CP odd) such that the interference term does not cancel
in the magnitude. In general, such decay modes are categorized into three classes, direct CP
violation, CP violation in mixing, and CP violation in interference of mixing and decays (cf.
any good text book about flavor physics for more details). Mesons offer a rich laboratory for
measuring CP violation among all three classes, e.g., Refs. [44, 45]. In baryonic systems, and
in particular in decays of b-baryons such as the Λb or Ξ0

b baryon, there can be no mixing due
to conservation of baryon number and therefore no indirect CP violation. Studies of direct
CP violations are often limited to measuring asymmetries, since the CP even phases have to
be taken from theory which makes the result model dependent and typically come with large
uncertainties [46, 47]. Lately, two methods have been proposed to overcome this issue [48, 49].
They reinterpret methods original proposed by Atwood, Dunietz and Soni [50, 51], referred
to as ADS, and a method first proposed by Gronau, London and Wyler [52, 53], referred to
as GLW, that are already successfully carried out in decays of mesons [54], now for decays
of baryons. As proposed, these methods allow a clean extraction of the CKM phase γ in a
model independent way6 and at the same time neither require tagging nor time-dependence.
In particular, in the ADS method γ can be extracted by the study of the six decays Λb→ D0Λ,
Λb→ D0Λ, Λb→ DCPΛ, and the respective Λb modes, where

DCP ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⃓⃓
D0
⟩︁
+
⃓⃓
D0
⟩︁

√
2

if CP -even modes are considered,⃓⃓
D0
⟩︁
−
⃓⃓
D0
⟩︁

√
2

else.

6In particular the proposed modes do not suffer from penguin pollution.
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(a) Λb→ D0Λ (b) Λb→ D0Λ

Fig. 1.2. Feynman diagrams of the decays Λb → D0Λ and Λb → D0Λ. The latter decay is
strongly suppressed w.r.t. to the former due to the b→ u transition. The suppression
can be reduced by reconstructing D→ K+π− which is Cabibbo doubly suppressed
for the former but Cabibbo favored for the latter.

Key to the present analysis is the idea, to enhance the CP violating contribution by reconstruct-
ing Λb→ [K+π−]DΛ which compensates the suppression of Λb→ D0Λ by favoring the Cabibbo
(doubly) suppressed D0 → K+π− mode in the Λb → D0Λ decay (cf. Fig. 1.2). Further, the
statistics of the studies can be enriched by also including the four-body modes D→ K±π∓π+π−.
Similarly, the same technique is applicable to other two-body decays, such as Ξ0/−

b → DΞ0/−

and Ω−
b → DΩ0 but also to the various backgrounds of the present analysis (cf. Chap. 7) and

also three-body decays such as Λb → D0pK− or Λb → Λπ+π− [55]. (The latter is also well
suited for measurement of T violation with triple products [56].) We note further that in all
these modes, the CP violation is encoded in the entire decay chain, do not rely on CP violation
in the D meson system and thus genuinely leverages the observation of CP violation in baryon
decays. The same holds for the cited GLW method where the D0 and D0 are reconstructed in
CP eigenstates K+K− and π+π−.

In contrast to the two-body decay modes, the three-body decay modes have to be studied
in Dalitz plots that require a meticulous description of the various background and resonance
contributions. On the contrary, two-body decays come with significant smaller sample sizes
at LHCb, due to the lower branching fraction, and reconstruction and trigger inefficiencies of
the long living Λ baryons, but offer a much easier to analyze decay topology. Since none of
the Λb→ DΛ decays have been observed at the time of writing, the main focus of the present
analysis is to establish a branching ratio for Λb→ D0Λ by reconstructing D0→ K−π+ (and thus
neglecting Cabibbo doubly suppressed contributions from Λb → D0Λ). We find the available
dataset also sensitive to the decay Ξ0

b → D0Λ which is on its own a candidate for measuring CP
violation. We note that a CP violation study of the Ξ0

b decay using the ADS method does not
suffer from a contamination of charmless backgrounds7 as it is the case for CP violation studies
of the corresponding Λb decay, whereas the expected amount CP violation is much lower.

7Due to the absence of Ξ0
b → ΛK+π− decays, cf. Sec. 7.3.
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Chapter 2

The LHCb Detector at the LHC

The LHCb experiment is one of the four major HEP experiments at the Large Hadron Collider
(LHC) and understands its primary focus in the realm of b- and c-physics. The LHC is a particle
accelerator located at the CERN facility. Its main component is a storage ring with a total
length of 26.7 km in which protons are collided symmetrically. At the time of writing the LHC
is the most powerful particle accelerator in the world.1 Since the year 2011, the proton beam
energy has increased from 3.5TeV to 4TeV in the year 2012 and to 6.5TeV in the year 2015.
The periods of data taking are divided into the so-called Run 1 and Run 2 where the former
refers to the years 2011 and 2012 and the latter to the years 2015 until 2018, corresponding to
and integrated luminosity of roughly 3 fb−1 and 6 fb−1, respectively.

Due to the large center-of-mass energy at the LHC the highly correlated b- and b-hadrons
are predominately produced in the same forward or backward cone. The LHCb detector is
thus designed as a (single arm) forward spectrometer, covering a forward cone from 15 mrad to
300 mrad in the bending plane and 15 mrad to 250 mrad in the non-bending plane. The detector
configuration consists of several tracking stations and calorimeters to reconstruct charged and
neutral particles. An effective particle identification is provided by a large dipole magnet and
two Cherenkov radiators. Different stages of hard- and software triggers reduce the event rate
to a frequency at which events can be stored to disks.

In the present analysis we analyze the full available Run 2 dataset, recorded in the years 2015
until 2018. Data recorded during the years 2011 and 2012 (Run 1) are not taken into account
for several reasons: First, from a technical point of view the experimental setup was frequently
changed during Run 1. This includes changes to the trigger configuration which would require a
separate analysis of data recorded during 2011 and the first and second half of 2012. Secondly,
only the second half of 2012 includes an efficient dedicated Λ trigger, diminishing the total
selection efficiency of the previous parts. Thirdly, even though the Λb production fraction is
larger at small energies, this advantage is overcompensated by far due to the smaller bb cross-
section, making Run 2 significantly more efficient in terms of the overall signal efficiency. Taking
into account the larger data sample in terms of luminosity we conclude that adding Run 1 data
could not help to significantly improve our results, but would imply disproportionate larger
complexity and is therefore disfavored.

2.1 Experimental Setup

In the following we give a short overview about a selection of detector components that are rele-
vant for the present analysis. More detailed information, illustrations and thorough descriptions
of the entire detector can be found in Refs. [59, 60].

1Although powerful, it will most likely not destroy earth [57, 58].
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Fig. 2.1. Schematic view of the LHCb detector by R. Lindner (2008).

2.1.1 Tracking

A vertex locator (VELO) provides the precise measurements of tracks near of the pp interaction
point. Besides track reconstruction this information is also useful to distinguish primary vertices
(PV), e.g., from particles originating directly from the interaction point, and secondary vertices
from long living b- and c-hadrons. The VELO consists of 42 silicon modules, each of them
equipped with radial and azimuthal strips. The modules are semicircularly shaped and arranged
in pairs such that they surround the beam pipe perpendicularly. The pitches of the silicon
sensors increase linearly from 38 µm at the inner radius (r = 8.2mm) to 102 µm at the outer
radius (r = 42mm). The spatial design of the modules was chosen such that charged particles
with a pseudo rapidity 1.6 < η < 4.9 cause at least three hits inside the VELO. The total
length of the VELO is not sufficient to cover all end vertices of long living V 0 particles such as
the Λ baryon or the KS meson. If both daughters of a V 0 two-body decay are reconstructed
within the VELO we refer to the reconstructed tracks as long tracks (LL). Otherwise, if the
reconstruction is only based on hits in the tracking stations TT and T1-T3, we refer to them
as downstream tracks (DD). For the sake of brevity, we categorize entire decays chains, such
as Λb → D0Λ, also as LL (DD) if both Λ daughters are reconstructed as long (downstream)
tracks.

Besides the VELO, four more tracking systems are placed, referred to as the TT, located
upstream, and the modules T1, T2 and T3, located downstream of the spectrometer magnet.
The TT and the inner parts of the T1-T3 stations are constructed from p-on-n silicon microstrips
detectors with a hit efficiency above 99 % and a hit resolution of approximately 50 µm. The
silicon microstrips are arranged in four layers, corresponding to an active area of approximately
8m2. The resolution of the T1-T3 stations varies from the innermost towards the outer parts.
Whereas silicon strips are used for the inner parts, the outer parts of the T1-T3 stations are
straw-tubes. The straw-tubes measure the drift time of ionised charges with a total delay below
75 ns.
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2.1.2 Ring Imaging Cherenkov Detectors
Two Ring Imaging Cherenkov detectors (RICH), referred to as RICH1 and RICH2, detect
Cherenkov light. Cherenkov radiation is an electromagnetic radiation that gets emitted by
charged particles in a dielectric medium if the velocity v of the particles is greater than the
(group) velocity cm of the given medium. For constant velocities the emitted light cone has a
constant opening angle φ,

sin
φ

2
=
cm
v

=
c0
nv

,

and thus directly allows the inference of v if the refractive index n (and the speed of light
in vacuum c0) is known. Inside the RICH units, Cherenkov cones are mapped to spherical
coordinates (r, ϑ), where r is a function of the opening angle φ and ϑ is the azimuthal part
of the Cherenkov photons trajectory. This projection is achieved via spherical mirrors which
reflect the photons to Hybrid Photon Detectors where they are detected. By combining the
measurements of the opening angle φ as a function of v and the deflection in the magnetic
field, a hypothesis for the invariant mass can be set and thus allow to identify the particle
(cf. Sec. 2.1.7). Each RICH unit is filled with a different gas admixture, corresponding to
different refractive indices to lower the Cherenkov thresholds and to allow a diverse momentum
resolution. Since Run 2, RICH1 is filled with C4F10, whereas CF4 is used as the radiator in
RICH2, making the units sensitive to the momentum ranges 2 to 60 GeV/c and 15 to 100 GeV/c,
respectively. (Particle dependent thresholds are listed in Tab. 2.1.)

2.1.3 Calorimeters
Neutral particles like photons are neither deflected in magnetic fields, nor do they emit Cherenkov
light, nor are they detected in the VELO, TT and T1-T3, hence a calorimeter system is nec-
essary. The calorimeters bring a large amount of material into the detector as they have to
stop the passing particles completely to measure the deposited energy. In order to not affect
the measurements in the tracking stations, they are placed downstream of them. In total, four
types of calorimeters are used in the LHCb detector. Together they provide the identification
of electrons, protons and other hadrons, as well as the energies and positions of photons and
neutral hadrons. Furthermore, the calorimeter measurements are used to select candidates with
high transverse momentum for the first trigger level L0. The four calorimeter systems are a
scintillating pad detector (SPD), a preshower calorimeter (PS), an electromagnetic calorimeter
(ECAL) and an hadronic calorimeter (HCAL). The first two systems consist of plain scintillator
tiles, separated from each other by a thin lead layer (2.5 radiation lengths), and the ECAL (25
radiation lenghts) and HCAL systems have a shashlik2 and a sampling construction3, respec-
tively. During the traversal, the particles are stopped in the lead and iron layers and deposit
their energy. This energy produces light in the (organic) scintillators which is transmitted via
optical fibers to photo multipliers where the photons are detected. Since the hit density varies
over the calorimeter surface perpendicular to the beam axis, a variable lateral segmentation is
adopted. The outer dimension is chosen such that it projectively matches those of the tracking
system and the inner dimension is limited by the beam pipe. During Run 2, the ECAL and
HCAL are predominantly used for contributing to the trigger decisions, cf. Sec. 2.1.6.

2.1.4 Muon System
Although muons are charged particles their interaction is small compared to hadrons like pions
or kaons due to their leptonic nature, and also small to the electron due their large invariant
mass. Muons thus do not deposit their entire energies in the calorimeters and dedicated muon

2A sampling scintillator and lead structure perpendicular to the beam axis.
3A sampling scinitillator and iron structure parallel to the beam axis.
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systems are necessary. In total, five rectangular shaped muon stations M1-M5 are placed up-
and downstream of the calorimeter systems. M1 is a triple gas electron multiplier and is placed
upstream in front of the calorimeter stations in order to improve measurements of the transverse
momentum within the trigger logic. The stations M2-M5 are multi wire proportional chambers
and are placed downstream behind all other detector units. In order to discriminate muons
against the abundant hadronic background and cosmic rays, muons are required to produce
aligned hits in all five stations, corresponding to a minimum momentum above 6 GeV/c. The
stations are interleaved by thick iron absorbers of 20 nuclear interaction lengths. The chambers
cover an active area of 435m2, have a time resolution below 4.5 ns and differ in their lateral
segmentation similar to the tracking stations and the calorimeter systems.

2.1.5 Dipole Magnet

The spectrometer magnet is a warm dipole magnet with a saddle-shaped coil design in a win-
dow frame yoke with sloping poles. It provides an integrated magnet field of roughly 4Tm for
particles with a track length of 10m. Three smaller dipole magnets inside this magnet compen-
sate the impact on the LHC beam. In order to analyze and cancel asymmetries of the detector
units between oppositely charged tracks, the polarity of the magnetic field can be switched. In
the following we refer to these states as mag. up and mag. down. Unfortunately, the magnetic
field is not known exactly throughout the entire detector (neither temporal, nor spatial), thus
leading to an inexact calibration of the particle momenta. Furthermore, charged particles loose
energy by ionization or by emitting photons when they traverse material or are deflected in a
magnet field. The emitted particles (typically electrons or photons) tend to have low energies
and therefore remain undetected. Such losses are only reproduced partially in simulations,
hence the reconstructed energy of particles is too low, resulting in asymmetries in the inferred
momenta. Additionally, misalignment effects of the detector units lower the resolution.

Software tools are available that mitigate these effects by correcting the momentum scale
phenomenological. During the present analysis we use a tool which calibrates the scale with
the two-body decays J/ψ → µ+µ− and B0 → J/ψK+ where in the former the dimuon pair
and in the latter the K+ is used for the calibration. The samples are split w.r.t. the product
of particle charge and magnet polarity and thus removes a potential bias due to whether the
particles are deflected inwards or outwards by the magnet field.

2.1.6 Trigger System

The LHC machine operates with a bunch crossing frequency of 40MHz which is unfeasible for
any kind of unfiltered reconstruction or data storing. A dedicated trigger system thus select
bunch crossings with at least one inelastic pp interaction and further reduces its rate below
12.5 kHz by applying filter criteria which, in general, aim to select b- and c-quark decays. The
trigger system is arranged in two different tiers, referred to as the low level trigger L0 and the
high level trigger HLT.

The L0 trigger is directly implemented in hardware and reduces the event rate below 1.1MHz
by combining information of the calorimeters and the muon systems. The complexity of L0
decisions are strictly limited by the LHC bunch crossing frequency and latency constraints,
and allows only read-outs of the transverse energy deposited by showers in clusters in the
calorimeter systems SPD, PS, ECAL and HCAL, as well as transverse momenta measured in
the muon chambers.

The trigger decision in the calorimeter is based on the transverse energy ET of single clusters
where a cluster consists of 2 × 2 calorimeter cells. The transverse energy of each cell ET,i is
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corrected by an inclination angle θi of a hypothetical neutral particle, accumulated,

ET =
4∑︂

i=1

ET,i sin θi ,

and tested against thresholds. In particular, the L0 decision for hadrons is based on single
tracks and thus is insensitive to different decay topologies, e.g., Λb→ D0pπ− and Λb→ D0(Λ→
pπ−) have a similar L0 responses if the invariant mass of pπ− is close to m(Λ), whereas for
Λb → D0pπ− and Λb → D0pK− the L0 response can vary due to different hadronic showers
signatures of π− and K−. Unlike the ET based decisions of showers in the calorimeters, the
transverse momenta measured in the muon chambers does take combinations of up to two
tracks into account and thus leverages an effective triggering of dimuon pairs for example in
high statistics modes such as Λb→ J/ψΛ.

The L0 trigger system rejects collisions for further processing if the transverse energy of
clusters (calorimeter) or transverse momenta (muon chambers) are below certain thresholds.
The nominal value of each threshold is the objective of an online maximization of the signal
efficiency under different LHC conditions and are tuned during data taking. MC simulated
events typically scale these thresholds and do not reflect temporal changes since this would
imply an unnecessary waste of computing intensive detector simulations. The fidelity of the L0
trigger response in MC simulated events thus has to be studied carefully if needed.

The latency of an individual L0 decision is 4 µs which allows a subsequent read-out of the
entire detector for the HLT trigger which include a full off-line event reconstruction. The HLT
was completely redesigned for the Run 2 data taking period due to changes of the bunch crossing
frequency and the amount of visible interactions per bunch crossing, and now differs strongly
from its previous design outlined in Ref. [61]. During Run 2 the HLT performs partial and
full event reconstructions in software applications running on computing farms and stores the
events at a rate of 12.5 kHz. An in-depth description, as well as efficiency studies of the LHCb
trigger system can be found in Refs. [62, 63] (L0 and HLT studies for Run 1) and Ref. [64] (L0
and HLT studies for Run 2).

Terminology-wise, events of a decay directly involved in setting a trigger (line) are called TOS
(trigger on signal) events. If set, triggers typically cause the entire event to be stored to disk,
including the decay tree initiated by the other associated b- or c-quark, even if not necessarily
involved in the trigger decision. These events are called TIS events (trigger independent of
signal). We note that both decay trees of a bb or cc pair can set trigger (lines). In this case
they are both considered TOS and TIS.

2.1.7 PID
The particle identification (PID) at LHCb is built upon information of four different detector
parts. The calorimeters mainly contribute to the recognition and identification of neutral par-
ticles (γ, π0) or electrons, muon chambers identify muons and the two RICH systems primarily
identify charged hadrons (π+, π−, K+, K−, p, p) and contribute to the identification of charged
leptons (e, µ) as well.

This information is gathered by two different approaches. In the first method the likelihood
information of each of the four subsystems is accumulated in a combined log-likelihood differ-
ence. During analysis we refer to it as DLL, for example DLL(X − Y ), where X and Y are
two different mass hypotheses. The second method utilizes a shallow neural network with the
information of the four subsystems as the input layer, one hidden layer and six output neurons
which are trained w.r.t. the particle hypotheses e, µ, K, π, p and ghost, where the latter refers
to trajectories that do not correspond to a single particle (cf. Ghost Prob.). These neural net-
works thus also encode correlations between the detector units and typically outperform the
more canonical approach of linear adding log-likelihoods differences [60, 61, 65]. In the present
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analysis we refer to the numerical value of a neuron (output layer) corresponding to a particle
hypothesis X for a given particle Y as ProbNNx(Y ). The neurons are trained to yield large
values if a given hypothesis is met, e.g., requiring large values for ProbNNk(p) could be used as
a veto against kaons for proton candidates. The numerical value is normalized to the interval
[0, 1] and is thus said to be interpretable as probabilities for the given particle hypothesis (hence
the name). We adopt the name but avoid the probability interpretation in the following.4

The PID value of the RICH systems are based on DLL(X − Y ) values where X and Y are
two different mass hypotheses. For the RICH to yield a meaningful number for this (i.e. not
zero) it requires:

• The track is in the acceptance of at least one of the two RICH radiator volumes.
• The expected signature in the RICH is different for X and Y .

The former criterion does not change with the mass hypothesis assigned to a track, but depends
dominantly on the path length of particles that traverse the RICH volumes. The latter means
that at least one of the two hypothesis X or Y (the lightest) needs to be above threshold, in at
least one RICH radiator. If one of X or Y is below threshold, that does not matter, as long as
the other is above. The momentum thresholds for different (charged) particles, calculated from
the (measured) RICH refractive indices are given in Tab. 2.1 below.

Tab. 2.1. Momentum thresholds in GeV/c of the RICH systems for different charged parti-
cles, calculated from the measured refractive indices of the RICH systems and the
respective particle masses.

Particle RICH1 [GeV/c ] RICH2 [GeV/c ]
e± 0.009 78 0.0170
µ± 2.02 3.52
π± 2.67 4.65
K± 9.45 16.4
p, p 17.9 31.3

d, d 35.9 62.6

2.2 Variables and Acronyms used as Selection Criteria
During analysis we frequently use abbreviations and acronyms which refer to variables that
are used for discriminating background events. Below, we give a short overview over the most
common ones and occasionally refer to this list in the subsequent chapters.

∆χ2
IP Difference between the χ2 value of the PV reconstructed with and without the track

under consideration. Clearly, by adding an additional DoF the χ2 value will always
improve, however the improvement is less pronounced for spurious than for genuine tracks
on average.

DLL(X − Y ) Delta log-likelihood of PID values of the RICH systems w.r.t. the different mass
hypotheses X and Y .

DIRA Cosine of the angle between the momentum of the particle and the direction vector from
some reference vertex or 3D-point to the end-vertex of the particle.

4This clearly depends on the given definition of probability. Recent results show that the output of certain
neural network can in fact be interpreted as probabilities via Bayesian inference [66, 67]. However, the
shallow networks used for PID in the present analysis do not use such techniques.
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DOCA Distance of closest approach for pairs of tracks. This quantity is evaluated before
applying a DTF since the latter forces this value to zero for all daughters of a common
mother. In general, the DOCA of the daughters of a (common) decay is small (albeit
non-zero due to finite resolution effects) and large for random track combinations on
average.

|m(X) − PDG| The absolute difference between the invariant mass of particle X as obtained
from four momentum addition and the respective nominal value (typically provided by
the PDG).

Best fit probability If multiple PVs are reconstructed for a single event the matching is am-
biguous in DTFs with constraint PV. We disambiguate by choosing the PV corresponding
to the best fit in terms of the evaluated χ2 value and refer to it as the best fit.

Ghost Prob. Output of a neural network based algorithm to identify tracks which do not
correspond to the trajectory of a (single) true particle but rather originates from detector
noise or multiple particles due to mismatching [68].
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Reconstruction and Stripping Efficiencies
The combined reconstruction and stripping efficiency is determined with MC simulated events.
A full MC simulation of a single event includes a time consuming simulation of the interactions
of the particle shower with the detector material, as well as the response of the detector itself.
The reconstruction efficiency of the LHCb detector is well below 100 %, e.g., particles with
a transverse momentum below a certain threshold will almost never be stored to disk due
to the associated noisy detector response, unmet trigger requirements, or geometric cut-offs.
During simulations, decays which only produce such particles are skipped to save the time
intensive simulation of the detector traversal. This so-called Generator Cut has no counterpart
in recorded data but will not change the overall efficiency when the latter is defined wide enough
such that it covers selection requirements which would filter out these events for good. For the
present analysis the stripping phase obeys this requirement such that, from a technical point
of view, the product of reconstruction and stripping efficiency is given by1

rec. × strip. eff. = εgen × #DTT
#DST

, (3.1)

where εgen is the generator cut efficiency, and #DST and #DTT are technical abbreviations for
the total amount of events after the detector simulation and the number of events after the
respective stripping phase.

These efficiencies are not stable during Run 2, since (high) level triggers are under permanent
changes as well as the simulation algorithms. In Appx. A we list the trigger and simulation
versions for the decays under consideration (cf. Tab. A.1) and show graphical representations
of the respective generator cut efficiencies (cf. Fig. A.1). The combined reconstruction and
stripping efficiency is shown in Fig. 3.1. The corresponding values are listed in Tab. A.2 and
Tab. A.3. The efficiencies shown in Fig. 3.1 are normalized to the respective weighted mean
of each decay for the full available data set (still separated w.r.t. the track types LL and DD)
where we find the weighted mean ε of N efficiencies pi = ni/Ni by calculating2

ε =

∑︁N
i wi pi εgen,i∑︁N

i wi

,

where wi is the inverse sum in quadrature of the uncertainty of the generator cut efficiency
σgen,i and the respective binomial uncertainty

wi = σ−2
i =

(︃
σ2

gen,i +
pi(1− pi)

Ni

)︃−1

.

Several things in Fig. 3.1 are striking:
1Trigger decisions are only set as trigger bits at this point and are thus are not part of any selection requirement

yet.
2In order to unfold relative deviations among different MC simulated decays from biases introduced by fit

models, we use truth-matched events for this task.
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Fig. 3.1. Combined reconstruction and stripping efficiency for the decays under consideration.
For the sake of brevity, magnet polarities are referred to as Down and Up for mag.
down and mag. up, respectively. In order to compensate for their wide spread, each
value is normalized to the respective weighted mean of each decay for the full available
data set. (Not all decays are simulated for the years 2017 and 2018.) For example
y ≈ 0.95 for Λb → ΛKK (DD) at x = 15 Down reads as a 5 % deviation from the
weighted mean of all simulated Λb → ΛKK decays with DD tracks, where x and y
refer to the abscissa and ordinate, respectively.

• The discrepancy between simulated Λb→ D0Λ and Ξ0
b → D0Λ decays is larger than antic-

ipated: The kinematics of both topologically identical decays should be very similar such
that the deviation was more likely introduced by the various updates to the simulation
framework (Sim09c → Sim09h/g). Therefore, we take simulated Ξ0

b → D0Λ decays as the
better proxy of genuine Λb → D0Λ decays than the dedicated Λb → D0Λ simulation for
determining the combined generator cut and stripping efficiency.

• The efficiency drop for Λb→ D0ph− for the year 2018: For the present analysis this drop
affects Λb → D0pπ− and stays unclear. For comparison we added the efficiency of MC
simulated Λb→ D0pK− and Λb→ ΛK+K− where the drop is only visible for the former,
hinting towards a correlation with the D0 meson.

• The difference between LL and DD tracks is compatible for Λb → J/ψΛ and Λb →
ΛK+K−: Even though the detector response for the former can be very different due
to the dimuon pair in the final state, the difference between the track types of the Λ
daughters should be similar for the former and the latter. Further, we see that the vari-
ation of DD tracks is smaller than for LL tracks in both cases for the years 2015 and
2016.

• Similarly, the double ratio of Λb→ D0Λ and Ξ0
b → D0Λ and both track types is compatible

with one. Hence, the ratio of the products of reconstruction and stripping efficiency for
Λb→ D0Λ and Ξ0

b → D0Λ does not depend on the track type in good approximation.

The observed deviations do come with uncertainties and pinpointing exact causes is not possible.
When reliable values of the efficiencies are needed, we will therefore add a 10 % uncertainty to
compensate for deviations that where introduced in the MC simulated events but do not have
any counterpart in recorded data. This is a conservative approximation and will likely, based
on the presented study, cover the true deviation.

Taking the ratios of the combined reconstruction and stripping efficiency of two Λb decay
modes gives access to suppression factors up to the stripping process. There are two relevant
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cases, first the relative suppression of Λb → D0pπ− and Λb → D0Λ, needed for estimating
the relative branching fraction of both, and secondly, the suppression of physical background
contributions of Λb→ D0pπ− and Λb→ ΛK+K− in the invariant mass of D0 and Λ candidates.

For estimating the former, we use MC simulated Λb → D0pπ− events, reconstructed as
Λb→ D0pπ−, and MC simulated Ξb→ D0Λ events, reconstructed as Λb→ D0Λ (the difference
between reconstructed Λb and Ξb is only the name tag). The ratio as a function of different
simulation conditions and track types of the Λ daughters is shown in Fig. 3.2. The weighted

(a) Λ reconstructed with LL tracks (b) Λ reconstructed with DD tracks

Fig. 3.2. Ratio of the combined reconstruction and stripping efficiency of Λb → D0pπ− and
Λb→ D0Λ where we used Ξb→ D0Λ simulated decays as a proxy for the latter and
differentiate between the track type of the Λ daughters. The weighted means (grey
box) are 17.04(15) and 7.26(5) for LL tracks (left) and DD tracks (right), respectively.

means are 17.04(15) and 7.26(5) for LL and DD tracks, respectively.
The suppression factor s of the background contribution of Λb→ D0pπ− in the invariant mass

m(D0Λ) is only relevant for LL tracks and is given by the ratio of the combined reconstruction
and stripping efficiency ε of simulated Λb→ D0pπ− decays when reconstructed as D0pπ− and
D0Λ. This suppression factor s reduces the amount n of reconstructed Λb → D0pπ− decays,
determined by an appropriate fitting technique in recorded data3,

n/s = n

/︄
ε
(︁
Λb→ D0pπ− ⇝ D0pπ−)︁
ε(Λb→ D0pπ− ⇝ D0Λ)

,

where ⇝ indicates the reconstruction state, hence n/s is the expected amount of background
contributions in m(D0Λ) up to the stripping stage.

Since the recorded Λb→ D0pπ− sample allows a clean extraction of n, whereas the available
samples of Λb→ ΛK+K− is noisier due to the smaller branching fraction and more pronounced
background contributions (cf. Ref. [39]), we also use n for estimating the background contribu-
tions of charmless backgrounds. We therefore take the results of the PDG,

B(Λb→ ΛK+K−)

B(Λb→ Λcπ−)
= (3.29± 0.39)× 10−3 ,

B(Λb→ D0pπ−)

B(Λb→ Λcπ−)
= 0.13± 0.01 ,

3In particular this means n ̸= #DTT as used in Eq. (3.1).
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which are derived from the reported results of Refs. [39, 69], and find

κ :=
B(Λb→ D0pπ−)

B(Λb→ ΛK+K−)
= 40± 6 ,

assuming uncorrelated errors. The latter assumption only holds for the statistical uncertainty
strictly since both analyses are using different decay channels. The systematic uncertainties
though, do include a non-vanishing correlation, in particular because both analyses where car-
ried out using data from the same detector. Unfolding of correlated and uncorrelated fractions,
however, is non-obvious and we will therefore use the conservative assumption of purely uncor-
related contributions which will slightly overestimate the total uncertainty.

Using κ as the correction factor, the amount of reconstructed Λb → ΛK−K+ decays thus
reads

n/s′ = n

/︄(︄
κ×

ε
(︁
Λb→ D0pπ− ⇝ D0pπ−)︁

ε(Λb→ ΛK−K+ ⇝ D0Λ)
× B(D0→ K−π+)

B(Λ→ pπ−)

)︄
.

The values of s and s′ are shown in Fig. 3.3. The weighted mean values are

s = 24.4± 0.4 , (3.2a)

s′ =

{︄
530± 80 (LL) ,
210± 30 (DD) .

(3.2b)

Fig. 3.3. Suppression factors s (left) and s′ (right) as defined in Eqs. (3.2) and respective
weighted mean values (box).
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Chapter 4

Tuning MC Simulated Events by
Determining Weights

Light weight, baby!

— Ronnie Coleman.

Monte Carlo (MC) simulated events are a product from chaining various different software
frameworks that use MC methods to simulate the interaction and passage of particles through
matter. In particular the simulation of the passage of particles through matter highly relies on a
high fidelity of the description of the detector assembly. At the same time, a meticulous detector
description slows down the simulation significantly and neither geometric, nor material specific
properties of all sub-components can be known exactly. For example, it is only possible to
measure the magnetic field when the detector is partially disassembled. The spatial distribution
of the magnetic field of the assembled detector, which is a crucial input parameter for the particle
simulation, thus already relies on error-prone estimations. Further shortcomings are inaccurate
alignments of detector units or imprecise physical input parameters, such as polarizations of
initial state particles.

Some of these effects also limit the resolution of recorded data, but typically affect recorded
data and MC simulated events differently. In the end, recorded data and MC simulated events
will never match exactly. In particular, it is known that the distributions of transverse momen-
tum pT and pseudorapidity η of simulated Λb baryons can deviate significantly.

The idea of the following section is to weight simulated Λb decays w.r.t. pT(Λb) and η(Λb)
in such a way that they match the distribution of recorded data. When using the same set
of selection requirements for simulated and recorded data, the extracted weights are selection
independent scale factors (weights) that transform feature distributions of simulated Λb decays
to the corresponding distributions of recorded data. In particular this means that those weights
should not depend on kinematic properties, such as lifetime (and thus track type) of the re-
spective daughters and grand-daughters of the Λb, and thus are applicable also for different
decay modes of the Λb baryon.1 In order to minimize trigger dependent deviations we only use
L0 TIS triggered Λb→ J/ψΛ events to extract weights and use them in a subsequent step for
weighting MC simulated Λb/Ξ

0
b → D0Λ events.

Properties that deviate between recorded and simulated data due to correlations with pT(Λb)
or η(Λb) will automatically improve with this technique. We check this by comparing the
momentum distribution p(Λb) of unweighted and weighted MC simulated Λb→ J/ψΛ events.

We try two different strategies for extracting weights. The former minimizes deviations for
both pT(Λb) and η(Λb), whereas the latter uses pT(Λb) only. In the subsequent analysis we
use the latter approach but incorporate deviations when using the weights obtained with the
former strategy as a systematic uncertainty. A description of the selection criteria used to
increase the purity of the Λb→ J/ψΛ data samples is given in Sec. 4.1. A detailed explanation

1We further use these weights to correct simulated Ξ0
b decays and incorporate deviations as a systematic

uncertainty.
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and discussion of the two different weighting schemes is given in Sec. 4.2.2 and Sec. 4.2.3. We
further briefly motivate the use of sideband subtraction rather than relying on truth-matching
in Sec. 4.2.1.

4.1 The Decay Λb→ J/ψΛ

The decay Λb→ J/ψΛ is a high statistics channel at LHCb and was used there in the past to
measure for example polarization effects [70]. Due to its large branching fraction this decay was
one of the first discovered Λb decay channels [71] and measurements of the product of production
fraction and branching fraction f(b→ Λb)× B(Λb→ J/ψΛ) at the D0 and the CDF collabora-
tions [72, 73] are still used today for determining branching fractions from measurements of Λb

branching ratios.
In the following we use Λb → (J/ψ → µ−µ+)(Λ→ pπ−) to extract weights for calibrating

the MC samples for Λb → D0Λ. In order to minimize systematic uncertainties introduced by
imprecise simulated trigger responses, only L0 TIS triggered events are used. In the following
we will outline the selection steps which we divide into a preselection, a loose, and a tight
selection.

4.1.1 Preselection
We use the full recorded data set of Run 2 and the stripping versions listed in Tab. 4.1. Despite
their different naming, there are no major differences between different stripping versions for the
involved stripping lines. Mother particles are reconstructed from daughter particles that passed

Tab. 4.1. Stripping and Reco versions used for reconstructing Λb→ J/ψΛ.
Year Stripping Reco
2015 24r1 15a
2016 28r1 16
2017 29r2 17
2018 34 18

dedicated combination selections. Properties of the reconstructed mother particle are refined
through the vertex fit procedure (no advanced constraints, such as mass or PV constraints, are
applied) and are subject to dedicated mother selections, whereas properties of the respective
daughter particles are not updated for subsequent selection steps. All selection criteria of the
preselection step are listed in Tab. B.1.

4.1.2 Loose Selection
A decay tree fit is applied and the corresponding χ2

DTF distribution2 is used for discriminating
combinatorial background. The χ2

DTF distribution has 8 degrees of freedom (cf. Sec. C for a
more detailed discussion):

• Mass constraint of Λ and J/ψ : 2 DoF
• Λ vertex constraint: 1 DoF
• Λb→ µ+µ−Λ vertex constraint: 3 DoF

2We will later find that this distribution does not exactly follow the distribution of a true χ2-distribution. For
the sake of brevity we will nevertheless refer to it as a χ2

DTF.
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• Λb PV constraint: 2 DoF
The PV constraint leverages an ordering of different PV hypotheses (if available) w.r.t. the
goodness of a respective DTF (in terms of χ2

DTF). We use this to select only candidates
corresponding to the best PV hypothesis for the following steps.

The selection criteria of the loose selection are shown in Tab. 4.2 and are grouped into five
categories: Category 1 reduces combinatorial background in the signal region, category 2 ensures
disjunct samples w.r.t. the track types LL and DD, and category 3 reduces disk consumption.
The momentum requirements for the final state particles in category 1 are motivated by the
fact that particles do have to have a minimal velocity to emit Cherenkov radiation. Cherenkov
light is instrumented in the RICH detectors for the particle identification at LHCb. Particle
identification (PID) below this threshold and above ⪆ 150 GeV/c is ineffective. (These selection
requirements supersede the implicit cut-off of p > 1.4 GeV/c due to magnet banding.) The
fiducial selection criteria (category 4) are a common choice for initial state particles at LHCb.
These selections help to avoid known issues with the fidelity of the detector geometry description
in the inner- and outermost regions and turned out to be a conservative choice when the overall
statistic is sufficient. Category 5 minimizes the effect of poorly described trigger in simulated
data which could potentially introduce a systematic difference between recorded and simulated
events.

Tab. 4.2. Selection criteria of loose selection used for reconstructing Λb → J/ψΛ. The selec-
tions are grouped into five categories which are explained in Sec. 4.1.2.

Particle Selection Category
p 9 ≤ p ≤ 150 GeV/c 1
π 3 ≤ p ≤ 150 GeV/c 1
Λ decay length ≥ 0 1
Λ (LL) z-pos. of decay vertex < 0.5m 2
Λ (DD) z-pos. of decay vertex ≥ 0.5m 2
Λb 5.47 ≤ m ≤ 5.77 GeV/c2 3
Λb 2 ≤ η ≤ 4.5 4
Λb pT ≤ 20 GeV/c 4
Λb L0 TIS events only 5

The data samples are split w.r.t. the different track types of the Λ daughters which are
referred to as LL and DD. In order to optimize a FoM, we define a signal region spanning 5.58 ≤
m(J/ψΛ) ≤ 5.66 GeV/c2. Events outside this region (upper and lower sideband) are considered
pure combinatorial background, whereas events inside the signal region are considered to be an
admixture of signal and (combinatorial) background events. Physical background processes are
neglected in this part of the analysis since no visible contributions are visible in the invariant
mass distributions.

4.1.3 Tight Selection
The objective of the tight selection is to maximize the signal significance as the FoM for nsig
signal events and nbkg background events in the defined signal region,

FoM := FoM(nsig, nbkg) =
nsig√

nsig + nbkg
. (4.1)

The signal significance is maximized for selection requirements w.r.t. the χ2
DTF distribution

of the DTF and the flight distance significance of the Λ baryon, where the latter is defined as
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the flight distance FD(Λ) over the corresponding standard deviation uFD(Λ) of the Λ baryon,

Λ flight dist. sig. := FD(Λ)

uFD(Λ)
.

The cumulative distributions for both of these features are shown in Fig. 4.1 and Fig. 4.2
for recorded data in the defined signal region and MC simulated events. The cumulative dis-
tribution of χ2

DTF indicates a strong separation power between signal and background events,
whereas the cumulative distributions of the Λ flight distance only show minor differences be-
tween recorded data and simulated events, hinting towards a low background contamination
for the Λ baryon, i.e., the background in m(J/ψΛ) predominantly consists of combinatorial
background events with genuine Λ baryons.

Fig. 4.1. Cumulative distribution (solid line) of the χ2
DTF distribution over DoF for different

track types (top and bottom), and for recorded data in the defined signal regions
(left) and truth-matched simulated events in the signal region (right). The gray
shaded areas indicate the corresponding distributions of χ2

DTF/DoF.

The combinatorial background in m(J/ψΛ) (rec. data) is sufficiently linear such that the FoM
as defined in Eq. (4.1) can be evaluated with a sideband-subtraction, cf. Fig. 4.3. (Definition
of the signal and background regions are given in Sec. 4.1.2.) The signal significance for a
selection w.r.t. χ2

DTF has a maximum for LL and DD tracks, implying that signal events prefer
smaller values of χ2

DTF, i.e., stronger support for the assumed hypothesis of the DTF, and thus
motivates the selection criterion for the tight selection

χ2
DTF

!
≤

{︄
3 (LL),
2 (DD),

(4.2)

whereas the FoM of the Λ flight distance significance is monotonic for requirements that either
prefer large or low values and thus discourage an additional selection w.r.t. this feature. In
Fig. 4.4 we show the invariant mass m(J/ψΛ) after applying this and all previously mentioned
selection requirements.
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Fig. 4.2. Cumulative distribution (solid line) of the Λ flight distance over the corresponding
standard deviation for different track types (top and bottom), and for recorded data
in the defined signal regions (left) and truth-matched simulated events in the signal
region (right). The gray shaded areas indicate the corresponding distributions of the
respective significance of the flight distance itself.

Efficiency Determination of the Tight Selection

The technique of sideband subtraction also leverages the estimation of a data driven efficiency
determination of the selections given in Eq. (4.2) by evaluating

ε :=
nsig

nsig + n̄sig
,

where nsig and n̄sig are the amount of signal events that pass the selection and the amount of
events that are rejected, respectively. The uncertainty uε of each of these figures is given by
the uncertainty of the mean background (f√nsideband =

√︁
fnbkg), the fluctuation of the true

background around the mean background in the signal region (√nbkg) and the fluctuation of
the true signal around the mean signal (√nsig)

uε =
√︂
nsig + (1 + f)nbkg ,

where f is the scale factor that translates the number of observed background events in the
sideband region nsideband to the estimated number of background events in the signal region
nbkg = f × nsideband. The amounts nsig and n̄sig are statistically independent, hence the
uncertainty of the cut efficiency ε can be extracted by ordinary error propagation. In Tab. 4.3
we show nsig with its associated uncertainty

√︁
(1 + f)nbkg, as well as the selection efficiencies ε.
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(a) FoM for veto events if χ2
DTF/DoF > x.

(b) FoM for veto events if Λ flight distance significance < x.

(c) FoM for veto events if Λ flight distance significance > x.

Fig. 4.3. FoM defined as signal efficiency (solid black line) obtained by sideband-subtraction in
recorded data and the corresponding distribution of truth-matched simulated events
(grey shaded area). The FoM of the Λ flight distance significance is monotonic for
requirements that either prefer large or low values and thus discourage an additional
selection w.r.t. this feature.

— 32 —



4.2. Extraction of Weights

(a) Λ candidates rec. from LL tracks. (b) Λ candidates rec. from DD tracks.

Fig. 4.4. Combined invariant mass of J/ψ and Λ candidates after tight selection from recorded
data. (Including L0 TIS only requirement.) This selection is used for determining
the weights for tuning MC simulated Λb decays.

Tab. 4.3. Total amount of signal events nsig after applying the tight selection to recorded
Λb→ J/ψΛ data, as well as the respective selection efficiency ε.

nsig ε

LL 3653± 33 (91.4± 1.2)%
DD 9590± 70 (79.1± 0.9)%

4.2 Extraction of Weights
The features transverse momentum pT(Λb) and pseudorapidity η(Λb) of the Λb are not uncor-
related, but related via the identity relation

η = artanh
pz
p

= artanh

√︄
1−

(︃
pT
p

)︃2

,

where artanh is the inverse hyperbolic tangent (aka area hyperbolic tangent), and pz and p the
z-component and magnitude of the momentum, respectively.

Due to this non-negligible correlation, altering one distribution will also affect the other and
vice versa. Ideally, the extraction of weight factors should be performed in the 2d-plane of
both variables. Reliable weights, though, also require decent statistics which turned out to be
problematic, especially for LL tracks.

We try two different schemes for extracting weights. First, we only consider the respective
marginal distributions and find the weights in an iterative approach. The underlying assumption
is a factorization of the weights in the 2d-plane w(pT, η) = w1(pT) × w2(η) and thus, per
definition, ignores all correlation contributions. We cross-check this assumption with a third
quantity p(Λb) which is another marginal distribution in the pT-η space.

In this first scheme we discover unexpected deviations between the distributions of η(Λb) for
different track types but at the same time a decent compatibility with one for all η(Λb) weights
w.r.t. the given statistical uncertainties. This motivates our second scheme where weights are
extracted based on pT(Λb) only.
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4.2.1 Truth Matched vs. Sideband Subtracted MC Simulated Events

Similar to recorded data, MC simulated events contain not only signal, but also background
events coming either from true physical background processes or are combinatoric remnants. A
marked difference between recorded and simulated events is that the latter could be attached
with a label and thus, in theory, can be unambiguously identified as signal (truth-matched)
or background event (unmatched). However, in practice this approach suffers from a non-zero
mistag probability during reconstruction which introduces an unphysical error. This error has
no counter part in recorded data which is critical when correlated with the variables that are
the objective of the weighting scheme.

Fig. 4.5. Comparison of the ratio of unmatched and truth-matched (referred to as truth) with
the ratio of unmatched and sideband corrected events (referred to as corr. sig.) in
bins of pT(Λb) (top) and η(Λb) (bottom) for track types LL (left) and DD (right).
The values of δ, as defined in Eq. (4.3), are shown at the same y-axis. The given
error bars do not account for the strong correlations between unmatched and truth-
matched events.

In the Fig. 4.5 we compare the ratio of unmatched and truth-matched events with the ratio
of unmatched and sideband corrected events as a function of pT(Λb) and η(Λb). The samples
used for determining the ratios are pairwise uncorrelated, whereas the ratios themselves are
strongly correlated which has to be taken into account when comparing the distribution of the
ratios. We define δ as the correction when using truth-matched events during the weighting
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procedure instead of sideband corrected simulated events,

1 + δ :=
b′

b
= 1 +

∆

a/b′
, (4.3)

where a, b and b′ are the amount of unmatched, truth-matched and sideband corrected simulated
events, respectively and ∆ is defined as the difference

∆ :=
a

b
− a

b′
.

We note that in the limit of empty sidebands b′ = b + a and thus δ = a/b, as expected. From
Fig. 4.5 we infer O(δ) = 5%. Non uniform contributions of δ will skew the distributions of the
weights. Further, if δ is correlated differently for LL and DD, this introduces an unphysical dif-
ference between the track types. (An absolute difference of δ introduces a uniformly distributed
difference and is thus less critical.) From these figures, such a correlation cannot be excluded
with high confidence and we will therefore not use truth-matched, but sideband corrected MC
simulated events for the weighting process.

4.2.2 Scheme 1
In this first scheme we extract weights by iteratively improving the pT(Λb) and η(Λb) dependent
weight w,

w(pT, η) = w1(pT)× w2(η) ,

and validate its values in the p(Λb) distribution.
In Fig. 4.6 and Fig. 4.7 we show the distributions of pT(Λb) and η(Λb) for recorded data, as

well as for simulated events as obtained from sideband subtractions. These distributions are
used pairwise to get the binned ratio of recorded data and simulated events for each of these
features as shown in Fig. 4.8, where each bin corresponds to the ratio of the respective bin in
the histogram of reconstructed and MC simulated data.

After taking the ratios, the histograms are normalized to unity such that in case of a common
underlying distribution every bin entry should be one (within uncertainty). The distributions of
the ratios show that this is neither the case for pT(Λb) and η(Λb), nor for p(Λb). This deviation
is expected and motivates the recalibration of the MC simulated events with weights. In the
following we will use the distribution of the three-momentum magnitude p(Λb) to benchmark
the performance of the calibration. If recorded data and simulated events follow the same
underlying distribution, the sum

χ2 ≡
n∑︂

i=1

χ2
i

of the normalized deviation from one χ2
i for each bin i,

χ2
i ≡

(︃
ri − 1

u(ri)

)︃2

,

where ri and u(ri) is the central value and its uncertainty of the i-th bin, respectively, is then
χ2-distributed with n DoF (number of bins). For LL (DD) we find χ2 ≈ 21 (χ2 ≈ 109) and
thus reject the hypothesis of a common underlying distribution for recorded data and simulated
events on a > 98% confidence level according to Eq. (D.1).

Weights are calculated by taking the binned, normalized ratio of the marginal distributions
of recorded and simulated events for pT or η in subsequent steps. The data set is split w.r.t.
the track types LL and DD. The resulting histograms of ratios w1(pT) and w2(η), binned
for the given quantity pT and η, are then used to calculated the pT and η dependent weight
w(pT, η) := w1(pT)× w2(η) for a given simulated event. The iteration procedure is structured
as following:
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Fig. 4.6. Distributions of the transverse momentum of the Λb baryon for recorded data (left),
simulated events (right) and different track types LL and DD (top and bottom) as
obtained from sideband subtractions.

Fig. 4.7. Distributions of the pseudorapidity of the Λb baryon for recorded data (left), sim-
ulated events (right) and different track types LL and DD (top and bottom) as
obtained from sideband subtractions.
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Fig. 4.8. Ratio of the (binned) distributions of the transverse momentum (top), pseudorapidity
(middle) and three-momentum magnitude (bottom) of the Λb baryon for recorded
data and MC simulated events. The ratios are split w.r.t. the track types LL (left)
and DD (right).
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1. Initialize all weights with one.
2. Update w1(pT) using weight factors from the previous iteration.
3. Update w(pT, η) = w1(pT)× w2(η).
4. Update w2(η) using the updated w1(pT) and w2(η) from the previous iteration.
5. Update w(pT, η) = w1(pT)× w2(η).
6. Continue with step 2 until convergence is reached.

Each iteration yields a factor w1(pT) and w2(η) for a given pT and η bin. The final weights
are their product. The convergence of this approach is measured in the weight update for each
bin, separately.

Starting from the first iteration the histograms for (weighted) simulated events are filled with
tuples of the particle event with an associated weight (xi, wi). After filling, the content of a
bin j is the sum of its weights w(j)

i and the associated uncertainty u(j) is

u(j) =

√︄∑︂
i

(︂
w

(j)
i

)︂2
.

We note that for w(j)
i = 1 ∀i, j this scheme is equivalent to unweighted events where the

uncertainty of each bin with bin content n is given by
√
n.

Fig. 4.9. Convergence of w1(pT) (top) and w2(η) (bottom) during the iterative weighting
process for LL and DD tracks (left and right).
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In Fig. 4.9 we show the convergence of the iterative weighting process for LL and DD tracks.
Each solid line is the weight update of a bin as a function of the iteration number. Convergence
is achieved when all multiplicative updates have approached the value one. In the above case,
we stop the iteration after six iterations and consider the product of all weight updates (starting
with the value one of the zeroth iteration) as the converged final weight for each bin.

The significance of the obtained weights is quantized in the p-values corresponding to the hy-
pothesis of a common underlying distribution for recorded and simulated events, i.e., w1(pT ) =
1 and w2(η) = 1, respectively. These p-values are listed in Tab. 4.4 after six successive it-
erations. Incompatibilities with these hypotheses are expected and indicate the necessity of
the scaling process, whereas the p-value for r(p) = 1, where r(p) is the (binned) ratio of the
three-momentum magnitude distribution of recorded data and simulated events, exhibits the
improvement of features that are scaled implicitly due to correlations with pT and η. The
change of r(p) during the iterations is also listed in Tab. 4.4 and shows the improvement of the
fidelity of the MC simulated events due to the scaling with w(pT, η).

Fig. 4.10. Product of w1(pT) and the mean of w2(η) (top) and vice versa (bottom) for LL
(left) and DD (right) tracks.

It is worthwhile to mention that the final weights do differ from the initial ratio of recorded
and yet unweighted simulated events due to the correlation between pT and η. It is the product
of w1(pT) and w2(η) that will eventually reproduce the initially observed ratios, not the marginal
distributions themself. A visualization of this is given in the Fig. 4.10 that shows the product
of w1(pT) and the mean of w2(η) and vice versa for LL and DD tracks.

A priori, the distribution of weights cannot expected to be smooth, since each bin is corrected
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Tab. 4.4. p-values w.r.t. the hypotheses w1(pT) = 1 and w2(η) = 1 after six successive itera-
tions, as well as the change of the p-value for r(p) = 1, where r(p) is the (binned)
ratio of the three-momentum magnitude distribution of recorded data and simulated
events, during the iterations.

LL DD
w1(pT) 3% 0%
w2(η) 71% 59%

r(p) 2% ↦→ 53% 0% ↦→ 24%

individually. However, due to correlations, each pT bin is linked to an entire set of η bins and
vice versa. A correction of one bin will therefore also influence the weights of neighboring
bins, hence a smoothing algorithm can be applied to reduce DoF and compensate uncertainties
partially of each bin.

The separate weighting of LL and DD tracks was chosen, because doing so takes different selec-
tion criteria and heterogeneous sample sizes trivially into account. However, separate weighting
is not physically motivated, since the genuine pT and η distributions of Λb particles should be
the same and independent of a specific decay mode or the track type of a (grand-)daughter.
In order to include this physical constraint back in, smoothing by fitting (natural) equidistant
cubic splines with four DoF (cf. Appx. E) is performed separately for w1(pT) and w2(η), but
simultaneously for the different track types. The resulting fits are shown in Fig. 4.11 together
with the distributions of w1(pT) and w2(η) and show an unphysical discrepancy between LL
and DD tracks for w2(η).

Since the weights w1(pT) and w2(η) should neither depend on kinematic properties of Λb

daughters, nor on the decay channel itself, sensitivity is increased by combining our weights
with weights extracted in a Λb→ D0pπ− analysis [74]. (All final state particles are long tracks
in this decay.) We find a common set of weights by determining the weighted average of our
simultaneously fitted w(pT, η) distribution and the corresponding one of the Λb→ D0pπ− anal-
ysis. The fit results are shown in Fig. 4.12 and exhibit a good agreement for w1(pT), but large
deviations for w2(η). The combination reduces the statistical uncertainty and hints towards
a difference between LL and DD that was already visible previously, but yet insignificant. In
comparison with the distributions of the non-normalized ratios of LL and DD, this difference is
mostly promoted as an accumulation in the ratio of recorded and simulated data for LL tracks
and η(Λb) ⪆ 3.25.

In Appx. F we summarize some investigations that exclude various possible explanations for
the observed deviations in w2(η). Eventually, the reason for this discrepancy stays unclear and
motivates the second weighting scheme, outlined in the next section.

4.2.3 Scheme 2
In the considered sample of Λb → J/ψΛ events, the weights w2(η) are compatible with one in
good approximation, cf. Tab. 4.4. Hence, a conservative approximation is to use w(pT , η) = 1×
w′

2(pT ). Since pT (Λb) and η(Λb) are correlated, it is not sufficient to simply set w2(pT ) ≡ w′
2(pT )

in w(pT , η) = w1(pT ) × w2(η). Instead the ratio of recorded data and unweighted simulated
events is taken as weights. (Since there is only one variable, there is no need to perform this in
an iterative approach.)

The ratios are smoothed using a (natural) cubic spline with four DoF (cf. Appx. E). Again,
the spline is fitted simultaneously to LL and DD tracks. Subsequently, the smoothed weights
are used to weight the MC simulated events. The resulting distributions, as well as the corre-
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Fig. 4.11. Weights w1(pT) (top) and w2(η) (bottom) for LL (left) and DD (right) tracks,
as well as two equidistant (natural) cubic spline fits, each with four DoF. The
distributions for LL and DD tracks are fitted simultaneously.
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Fig. 4.12. Averaged fit results of weights for Λb → J/ψΛ (simultaneously for LL and DD
tracks) and Λb→ D0pK− events (taken from Ref. [74]).

Fig. 4.13. pT-dependent weights obtained by weighting scheme 2, as well as spline fit, evalu-
ated simultaneously for LL and DD tracks.
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sponding spline fits for pT(Λb) and both track types are shown in Fig. 4.13.
In Fig. 4.14 we show the ratio of recorded data and weighted MC simulated events for pT(Λb)

and p(Λb). The combined p-values for both track types w.r.t. the hypothesis of a common
underlying distribution for recorded and simulated events are approximately 8% (χ2 ≈ 30)
and 0.1% (χ2 ≈ 45) for the p(Λb) and pT(Λb) distributions, respectively. These values do not
include uncertainties of the spline fit and thus reflect only the p-value for a specific choice of
weighting function.

Fig. 4.14. Ratio of recorded data and weighted MC simulated events according to weighting
scheme 2 for the transverse momentum of the Λb baryon pT(Λb) (top) and its three-
momentum magnitude p(Λb) (bottom).
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Chapter 5

MVA of the Decay Λb→ D0Λ

You wanted a banana but what you got was a gorilla holding the banana and the
entire jungle.

— Joe Armstrong, creator of Erlang, on software reusability.

Multivariate analysis (MVA) techniques using machine learning algorithms have a long tradition
in particle physics. Ever since the year 2014 (deep) neural networks enrich the pool of utilized
algorithms [75]. Over time, their popularity in applications of high energy physics has increased.
Moreover, image and four-vector-based neural networks, as well as taggers relying on additional
considerations from relativistic kinematics or theory expectations, have outperformed classical
approaches [76, 77].

On the one hand, classical approaches that dominated analyses of Run 1 data, such as BDTs
or SVMs are still used for classifying signal and background (e.g., a recent analysis uses a BDT
to set an upper limit on B+→ K+µ±e∓ [78]). The reason for this sustained success of canonical
techniques over neural networks is based on the fact that decay reconstructions such as B+→
K+µ±e∓ or Λb→ D0Λ are characterized by a small set of high level features and classifiers are
boosted by specific domain knowledge of these features. Encoding domain knowledge into neural
networks, which typically are build upon low level features, is challenging and networks have to
spend many iterations until they learn high level features up to a comparable degree to canonical
MVA approaches. A large number of iterations requires a large training set which is typically
limited by the number of available MC simulated events. In practice, neural networks therefore
often cannot catch up with canonical approaches which benefit from their fast convergence.1
On the other hand, neural networks really shine when the feature set is large and domain
knowledge is either unimportant or error prone, for example due to imperfect (MC) simulations.
An example for this case is the problem of jet tagging which can be carried out on calorimeter
images entirely where the feature space is spanned by each pixel. Here, neural networks have
outperformed canonical approaches and pushed authors to even consider dropping theory input
from MC simulations completely (e.g., Ref. [76]).

The present analysis clearly falls into the former class. The feature set that we use to
describe the decay Λb→ D0Λ comprises 18 features and the data set is limited by the amount of
available MC simulated events. We therefore concentrate on training classical MVA algorithms,
thoroughly compare their performance and eventually use support vector machines (SVMs) to
separate genuine Λb→ D0Λ decays from combinatorial background.

The outline of this chapter is twofold: In Sec. 5.1 we describe the preprocessing step which
cleans and reduces the data set up to a point where it becomes feasible to apply MVA algorithms.
In Sec. 5.2 we then describe and compare various MVA algorithms which combine into a strong
learner that we subsequently use to classify the recorded data of Run 2.

1Given that the problem can be characterized with a small set of high level features.
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5.1 Preprocessing
Before starting with the MVA of the decay Λb→ D0Λ we apply a set of (rectangular) selection
criteria grouped in a preselection step (cf. Sec. 5.1.1) and a loose selection (cf. Sec. 5.1.2). The
preselection is part of the mandatory stripping phase and can be considered immutable for the
present analysis. The main focus of the loose selection is to further remove obvious background
and outlier candidates from the samples. These filtering steps help against overfitting in general
and, from a technical point of view, makes the usage of SVMs as classifiers feasible (cf. the
O(m2...3 × n) scaling as explained in Appx. J).

5.1.1 Preselection
We use the full recorded data set of Run 2 and the output of the stripping line Stripping-
Lb2D0Lambda0{LL,DD}D02HHBeauty2CharmLine. The stripping versions are listed in Tab. 5.1.
Despite their different naming, the selection requirements vary slightly between versions. These
differences are compensated by adopting the tightest selection requirement among conflicting
values if necessary.

Tab. 5.1. Stripping and Reco versions used for reconstructing Λb→ D0Λ.
Year Stripping Reco
2015 24r1 15a
2016 28r1 16
2017 29r2 17
2018 34 18

All selection criteria of the preselection step are listed in Tab. B.2 where we use the same
nomenclature that we introduced in Sec. 4.1.1. Additionally, at least one HLT trigger flag
among Hlt2.*IncPhi.*Decision and Hlt2Topo.*Decision is required, cf. Refs. [64, 79] for
more detailed information.

5.1.2 Loose Selection
Similar to the previous analysis of Λb → J/ψΛ we apply two DTFs to improve the resolution
of kinematic features, such as the flight distances of intermediate particles. Both DTFs fit the
entire decay chain Λb→ D0Λ and constrain the PV, as well as the mass of the D0 candidates, but
only the second DTF further constrains the mass of Λ candidates. This approach is motivated by
the fact that we train a dedicated Λ classifier against combinatorial background in the invariant
mass m(pπ−), where we extract the distribution of the latter in sidebands of Λ candidates. Since
we apply a selection w.r.t. the DTF probability before, a m(Λ) constraint would suppress the
sidebands completely. The fit probability of the second DTF is used as a feature in the MVA
described in Sec. 5.2.2.

We again select only events corresponding to the best PV hypothesis for the following steps.
All other selection criteria of the loose selection, as well as their approximated efficiencies are
shown in Tab. 5.2, Tab. 5.3 and Tab. 5.4, and are grouped into five categories. Categories 1 to 4
are the same that we introduced previously in Sec. 4.1.2. The purpose of selection requirements
of category 5 are to reject physical backgrounds coming from Λb→ D0pπ− and charmless decays.
Requiring a finite flight distance reduces these otherwise irreducible backgrounds effectively as
shown and discussed in dedicated chapters.

The efficiencies listed in Tab. 5.3 and Tab. 5.4 are approximations of the signal and back-
ground efficiencies, where we use truth-matched MC simulated events for the former and 50k
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randomly drawn events from the recorded data set for the latter. We cannot use calibrated
events for the former since most of the rejected events lie outside the definition range of the
calculated weights. We consider this a minor flaw since the estimated efficiencies are well above
90% for each of the selection requirements individually and these efficiencies only contribute in
second order to our ratio measurement with Λb→ D0pπ− decays where similar deviations are
expected and common fidelity issues thus cancel. The background efficiency is approximated
by counting the total amount of recorded data before and after requiring a specific selection cri-
terion. This approach is motivated by the fact that at this stage the overwhelming majority of
the recorded data are not genuine Λb→ D0Λ decays and can thus be considered as background
only events in good approximation.

Besides the physically motivated selection requirements w.r.t. the flight distance of the Λ
baryon, the most critical selection in terms of possible signal efficiency loss, as shown in Tab. 5.3
and Tab. 5.4, is the requirement

3 ≤ p(π) ≤ 150 GeV/c,

where p(π) refers to the three-momentum magnitude of the π− meson (Λ decay). This selection
is motivated if reliable PID information for this particle is necessary, e.g., for rejecting physical
background processes. This is not the case for the Λ→ pπ−, hence we skip this criterion and
will not use PID information for this meson in the following.

The total efficiencies of the loose selections for the MC simulated events are 72.90(35)% and
75.52(23)% for LL and DD tracks, respectively. The uncertainties are found by evaluating
the variance

√︁
σ2(p) =

√︁
p(1− p)/N or equivalently by ordinary error propagation of pN and

(1− p)N , assuming Poisson uncertainties, where p is the efficiency and N the total amount of
MC simulated events.

Tab. 5.2. Selection criteria of the loose selection used for reconstructing Λb → D0Λ. The
selections are grouped into five categories which are explained in Sec. 5.1.2. To
avoid ambiguity we refer to the daughters of the D0 → K−π+ decay as h. The
selection requirement w.r.t. the three-momentum magnitude of the pion from the
decay Λb→ pπ− (marked with †) is skipped for the subsequent analysis.

Particle Selection Category
p 9 ≤ p ≤ 150 GeV/c 1
π† 3 ≤ p ≤ 150 GeV/c 1
h 3 ≤ p ≤ 150 GeV/c 1
Λ (LL) z-pos. of decay vertex < 0.5m 2
Λ (DD) z-pos. of decay vertex ≥ 0.5m 2
Λ (LL) 10 ≤ FD sig. ≤ 500 5
Λ (DD) 0 ≤ FD sig. ≤ 500 5
D0 0 ≤ FD sig. ≤ 100 5
D0 ∆χ2

IP w.r.t. best PV ≥ 5 1
Λb 5 ≤ m ≤ 6.1 GeV/c2 3
Λb 2 ≤ η ≤ 4.5 4
Λb pT ≤ 20 GeV/c 4
Λb ∆χ2

IP w.r.t. best PV ≤ 25 1
Λb ∃ converged DTF 1
Λb χ2

DTF/DoF ≤ 10 (DTF w/o m(Λ) constraint) 1
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5.2 Tight Selection using MVA Techniques
In this section we study different MVA techniques to maximize the signal efficiency of Λb→ D0Λ,
while at the same time optimizing the suppression of the combinatorial background. The
suppression of physical background processes, such as charmless decays Λb → ΛK−K+, are
not the main focus of this selection step, albeit their suppression will clearly benefit from
the outlined techniques, and will be studied later. The related decay Ξ0

b → D0Λ has the
same topological signature as Λb → D0Λ and a very similar kinematic behavior is expected.
Optimizing the signal efficiency of Λb→ D0Λ thus also increases the sensitivity to this decay.

We train a classifier which itself is built upon both trivial and complex sub-classifier, to
distinguish between signal and (combinatorial) background events on labeled training data.
The training data set X ∈ Rm×n is an admixture of calibrated MC simulated events for the
former (label signal) and recorded data for the latter (label background). The events of class
signal are calibrated truth-matched MC simulated events where the calibration factors are the
weights that we established in Chap. 4. These factors are taken into account during the training
of our classifiers2 and during the evaluation. Technically, the calibration is encoded into a vector
of event based weights w ∈ Rm which is passed to the classifier together we the associated labels
y ∈ Rm. In total we use n = 18 features for the classification where one is the fit probability of a
DTF of the entire decay chain Λb→ D0Λ including a PV constraint and mass constraints for the
D0 and Λ candidates (seven DoF in total), and two of them, ProbNNp(p) and ProbNNk(K), are
themselves the output of (pre-trained) neural networks that fuse PID information as described
in Sec. 2.1.7. The remaining 15 features are the following five kinematic properties of the Λ,
D0 and Λb candidates:

1. Transverse momentum pT.
2. DIRA w.r.t. the best PV, transformed as − lg(1− DIRA).
3. ∆χ2

IP, transformed as log10(∆χ
2
IP).

4. Fit probability of the end vertex.
5. Significance of the flight distance. (Refined by a DTF which constrains the PV as well as

the masses of the Λ, D0 and Λb candidates.)

The kinematic properties are split into two disjunct groups (5+10) and are used as the features
of two separate classifiers, a Λ classifier using only Λ properties and a Λb-D0 classifier which
uses the remaining 10 properties as features. Eventually, the output of the classifiers, the fit
probability of the DTF, as well as ProbNNp(p) and ProbNNk(K) responses are fed into a second
classifier tier, as shown in Fig. 5.1. The reason behind the outlined design decision, as well as
detailed explanations of the classifiers are given in the following sections and in Appx. M.

5.2.1 The Data Pipeline
Before the data are fed into the different MVA algorithms, certain transformation and filtering
steps have to be applied. Most steps are necessary for the training and evaluation step (e.g.,
standardization), whereas others (e.g., balancing) should only be applied during training. For-
mally, we split the training and evaluation phase into the two separate steps fit and transform
and implement them as steps of a pipeline as shown in Fig. 5.2. During the fit step only certain
rows (i.e., instances) of X, y and w are selected which reflects balancing and cross-validation.
(The technique of cross-validation as used in the present analysis in explained in Appx. H.)
Features that are used for the training of one of the classifiers are

1. standardized,
2SVMs as well as decision trees are capable of taking instance based weights into account.

— 50 —



5.2. Tight Selection using MVA Techniques

X, y,w
Loose /

(pre-)selection DTF prob.

Λb-D0 classifier

Λ classifier

ProbNNp(p)

ProbNNk(K)

Rectangular
cut classifier

Fig. 5.1. Data flow of the MVA. The data matrix X ∈ Rm×n (m instances and n features),
respective labels y ∈ Rm and weights w ∈ Rm are filtered by the preselection and
loose selection step and then pass through two tiers of MVAs.

2. decorrelated according to the respective signal distributions via a PCA transformation,
and

3. subsequently ordered w.r.t. the Wasserstein distance (signal vs. background) of the re-
spective PCA components,

where the last two steps are skipped for SVMs. Each of these steps involves a trivial fitting
step (e.g., finding the mean and standard deviation for the standardization) which then yields
parameters that are used to transform the data. These parameters are obtained during the
training step (fit pipeline) and are kept constant during the evaluation step. Fixing these
values during the latter step is important, since, for instance, the mean of a given feature can
deviate between the training and testing sample (i.e., (X, y,w) ̸= (X ′, y′, w′) in Fig. 5.2).

The standardization of features helps to improve the performance of classifiers that are sen-
sitive to the (different) scales of the features (e.g., SVMs), whereas the decorrelation step
increases the performance of classifiers that are based on rectangular selection requirements
(e.g., decision trees). We note that the evaluation of the mean and standard deviation, as well
as the correlation matrix is carried out on a balanced subset of the available data (fit pipeline)
and will therefore not necessarily standardize or decorrelate the entire data set. The ordering
of the PCA components allows a first order approximation of the importance hierarchy of the
features. The decorrelation via PCA transformation, as well as the subsequent ordering via the
Wasserstein metric is elaborated in Appx. I.

5.2.2 The Λ Classifier
The Λ classifier is designed to increase the purity of the Λ candidates, i.e., the trained classifier
should have learned to identify genuine Λ→ pπ− decays and reject random combinations, as well
as reflections. It is therefore trained on the lower and upper sidebands of the invariant mass
distribution m(pπ−) (background) and with calibrated truth-matched MC simulated events
(signal).

The detector response critically depends on the lifetime of the Λ baryon (i.e., the track type
of the Λ daughters) as discussed previously. We therefore split the samples w.r.t. to the track
types LL and DD and train two separate classifiers. The invariant mass distribution m(pπ−) as
well as the sideband boundaries are shown in Fig. 5.3. The numerical values for the sideband
boundaries are listed in Tab. 5.5.

In order to find the efficiency of the final classifier, we split the data sample into a training
and a test sample. Subsequently, the classifier is optimized and trained on the former and
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Fig. 5.3. Distribution of the invariant mass of Λ candidates after the loose selection for the dif-
ferent track types LL (left) and DD (right). The dashed lines indicate the sidebands
used for training the Λ classifier.

Tab. 5.5. Definition of the low and high edge of the lower and upper sidebands of m(pπ−).
The different sizes for LL and DD tracks are motivated by the different signal peak
resolution and the amount of available data.

lower sideband upper sideband
low [GeV/c2 ] high [GeV/c2 ] low [GeV/c2 ] high [GeV/c2 ]

LL 1.090 1.107 1.125 1.140
DD 1.090 1.104 1.128 1.140
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eventually evaluated on the latter. The ratio of the sizes of the training and test samples is the
objective of a min-max problem: A large training sample allows low-biased, complex classifier
but the evaluation of the efficiency on the testing sample also comes with a large uncertainty
due to the low statistics of this sample. Let p be the true signal efficiency of the classifier that
categorizes nsig signal and nbkg background events from n = nsig + nbkg given instances:

p :=
nsig

n
.

Its uncertainty up is then given by the standard deviation of a binomial distribution

up
p

=

√︃
1− p

p

1

n
.

For estimation, n is the number of (MC simulated) signal events in the testing sample and nsig
(nbkg) is the number of TP (FN). In Fig. 5.4 we show the amount of (MC simulated) signal
events that corresponds to 1%, 5% and 10% uncertainty of the classifier efficiency as a function
of the efficiency itself. We choose n = 1000 which corresponds to a sub 5% uncertainty for
classifier efficiencies above 30%.

Fig. 5.4. Amount of events n that corresponds to 1%, 5% and 10% uncertainty of the classifier
efficiency as a function of the efficiency itself.

It is well known that imbalanced data in classification tasks can reduce classification power
of classifiers dramatically by having a bias towards the majority classes in the data set [80, 81].
We therefore balance our dataset each time before training one of our classifiers and since the
accuracy is limited by the amount of available (MC simulated) signal events anyhow, we also
prune our dataset with DD tracks for the evaluation steps for the sake of computational ease.
In Tab. 5.6 we list the sizes of the pruned trainings and testing sets for LL and DD tracks.
An additional pruning to balance the data set, as described in Sec. 5.2.1, happens during the
training step and is not reflected in Tab. 5.6.

We train five classifiers (twice for LL and DD tracks) using different machine learning algo-
rithms for each (tier 1.1), as well as a stacking classifier (tier 1.2), which combines the output
of the former five classifiers. In Tab. 5.7 we list the classifiers, as well as their respective
hyper-parameters and whether or not they were optimized or fixed during the training phase.

Tier 1.1

The five tier 1.1 classifiers are
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Tab. 5.6. Sizes of training and testing samples for LL and DD tracks used for the MVA. (The
background sample (rec. data) was pruned in a previous step.)

LL DD
Label Training Testing Training Testing
Signal 10 491 1000 26 176 1000
Background 10 151 10 000 50 000 10 000

Tab. 5.7. Hyper-parameters of the Λ classifiers and Λb-D0 classifiers. Parameter values are
optimized via a 5-fold cross-validation if not marked with †.

Value
Classifier Hyper-parameter Λ Clf. Λb-D0 Clf.

SVM Kernel RBF† RBF†

γ (kernel coefficient) 0.1 0.1
C (regularization) 50 (LL), 1 (DD) 1 (LL), 5 (DD)

Extra Trees Criterion Gini† Gini†
Number of trees 100 100
Max. depth 10 20

Random Forest Criterion Gini† Gini†
Number of trees 100 100
Max. depth 10 20

BDT Loss Deviance† Deviance†
Criterion Friedman MSE† Friedman MSE†

Number of trees 100 100
Max. depth 5 5

Ada. BDT Loss Exponential† Exponential†
Criterion Friedman MSE† Friedman MSE†

Number of trees 100 100
Max. depth 5 5

Stacking Kernel RBF† –
γ (kernel coefficient) 0.1 –
C (regularization) 10 –
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1. a SVM,
2. Extra Trees,
3. a Random Forest,
4. a BDT using gradient boosting, and
5. a BDT using adaptive boosting.

We give a short introduction, as well as an explanation of the hyper-parameters listed in Tab. 5.7
for SVMs in Appx. J, as well as for the ensemble learning algorithms (2. - 5.) in Appx. K. The
hyper-parameters are optimized in a 5-fold cross-validation scheme (cf. Appx. H) where the
optimization objective is the ROC-AUC in the aggregation of the testing folds (i.e., not the
previously separated testing set). In Fig. 5.5, Fig. 5.6 and Fig. 5.7 we show the ROC-AUC
on the testing and the training folds for different hyper-parameter configurations. Plotting
the latter has the advantage to easily identify configurations that suffer from overfitting (large
difference between ROC-AUC values), and low variance but high bias configurations (small
ROC-AUC values). The desired maximum is typically located at the point in configuration
space where the ROC-AUC values between testing and training folds start to diverge. The
evaluation of the SVMs are computationally intense (cf. Appx. J). We therefore only scan
two slices of the two-dimensional C-γ configuration space, whereas we use full grid-search for
optimizing the decision tree ensembles. The points (C, γ) = (50, 0.1) and (C, γ) = (1, 0.1) for
LL and DD tracks, respectively, are scanned twice by the former technique and yield slightly
different ROC-AUC values due to the randomized partitioning.3

Ever since the advent of neural networks, early stopping (e.g., Ref. [82]) has become a com-
monly used regularization technique approach to prevent models to perform badly in the testing
set after training a certain amount of iterations4 (e.g., Ref. [83]). The very same behavior due
to overfitting is observed when using boosting techniques in particular, or gradient descent
techniques in general, and early stopping techniques have proven to be an effective antidote
[84, 85]. Whereas additional regularization is required for these kind of learners, a key advan-
tage of SVMs is their intrinsic regularization such that additional regularization by applying
early stopping is not necessary here, albeit occasionally applied in order to shortcut training
time [86]. We therefore use early stopping techniques for training the ensemble learners (at
each point in the hyper-parameter configuration space) to prevent overfitting and rely on in-
trinsic regularization of SVMs. A consistency check for the latter assumption is given by the
convergence behavior of the SVMs shown in Fig. 5.8.

Tier 1.2 (Stacking)

In the second tier we aggregate the output of the classifiers of tier 1.1 and use them as the
feature set of a next classifier. Again, the features are transformed before the training phase
of the tier 1.2 classifier begins. The transformation involves a standardization and subsequent
decorrelation via a PCA transformation, followed by a sorting of the PCA components w.r.t.
their separation power between signal and background, measured in the Wasserstein l1 metric.
The feature set before and after decorrelation is shown in Fig. L.1, Fig. L.2, and Fig. L.3,
Fig. L.4, respectively. A strong correlation among the features is apparent, pointing towards a
redundancy of the classifiers due to an exhaustion of the available information which resembles
the findings of Refs. [87, 88]. We account for this degeneration by only using the first and second
PCA components in the tier 1.2 classifier. We use a SVM with an RBF kernel for classifying
the two-dimensional feature set and optimize the corresponding hyper-parameters C and γ via

3The estimation of the performance of the final classifier is not obtained via cross-validation but on the separated
testing set. Hence, no uncertainty due to fluctuation in the cross-validation processes is taken into account
for subsequent steps.

4In the context of neural networks another commonly used technique is Dropout.
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Fig. 5.5. Performance of the SVM (Λ classifier) measured with the ROC-AUC for different
values of the hyper-parameter C (top) and γ (bottom) and track types LL (left)
and DD (right). The performance is evaluated via a 5-fold cross-validation which
explains the minor fluctuation of configurations that are evaluated twice.

— 57 —



Chapter 5. MVA of the Decay Λb→ D0Λ

(a) Extra Trees (LL) (b) Extra Trees (DD)

(c) Random Forest (LL) (d) Random Forest (DD)

Fig. 5.6. Performance of Extra Trees (top) and a Random Forest (bottom) measured with the
ROC-AUC for different values for the maximal allowed tree depth (x-axis) and num-
ber of trees (n), evaluated on the testing folds (solid lines) and training folds (dashed
lines).
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(a) Gradient boosting (LL) (b) Gradient boosting (DD)

(c) Adaptive boosting (LL) (d) Adaptive boosting (DD)

Fig. 5.7. Performance of BDT classifiers (using gradient (top) and adaptive (bottom) boost-
ing) measured with the ROC-AUC for different values for the maximal allowed tree
depth (x-axis) and number of trees (n), evaluated on the testing folds (solid lines)
and training folds (dashed lines).
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(a) LL tracks (b) DD tracks

Fig. 5.8. Convergence of the SVMs (Λ classifier) given by the ROC-AUC values for different
sample sizes where a sample size of 100% corresponds to the size of the full trainings
set. The ROC-AUC is evaluated via a 5-fold cross-validation scheme on the training
(solid line) and testing folds (dashed line).

a 5-fold cross-validation scheme. The results are listed in Tab. 5.7 (referred to as Stacking) and
shown visually in Fig. 5.9. Additionally, the limited size of the feature set allows for a simple
graphical representation of the decision boundary of the optimized classifier which is given in
Fig. 5.10.

Evaluation

The performance of all trained classifiers are judged w.r.t. their ROC-AUC values, evaluated on
the separated testing set. The corresponding ROC curves are shown in Fig. 5.11 for LL and DD
tracks. The training of the stacking classifier (tier 1.2) does not show any improvement over

Tab. 5.8. ROC-AUC values in percent for tier 1.1 and tier 1.2 Λ classifiers (separately trained
for LL and DD tracks), evaluated on the training and testing set.

Training Testing
Classifier LL [%] DD [%] LL [%] DD [%]
SVM 93.25 82.92 92.86 83.25
Extra Tree 93.02 82.69 91.45 82.44
Random Forest 96.50 87.07 92.34 83.38
BDT 95.30 85.16 92.60 83.47
Ada. BDT 94.92 84.86 92.51 83.37
Stacking 95.46 87.57 90.87 80.42

the tier 1.1 classifiers. For the sake of consistency (also with the Λb-D0 classifier), we therefore
use the tier 1 SVM as our final classifier, both for LL and DD tracks. The response, as well
as the efficiency for given thresholds are shown graphically in Fig. 5.12. Further, we show the
distribution of the marginal and linear correlation distributions of the five-dimensional feature
space before and after the PCA transformation in Fig. 5.13, Fig. 5.14 and Fig. 5.15, Fig. 5.16,
where we color-coded misclassified events in red (signal events classified as background) and
blue (background events classified as signal) when using a threshold of zero.
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Fig. 5.9. Performance of the stacking classifier (SVM with an RBF kernel) measured with
the ROC-AUC for different values of the hyper-parameter C and γ, evaluated via a
5-fold cross-validation scheme.

Fig. 5.10. Decision boundary for LL (left) and DD (right) tracks of the stacking classifier (SVM
with an RBF kernel) overlayed with 400 instances of the signal and background class
(200 each). The signal (background) class is depicted with circles (triangles) and
the corresponding classifier response in blue (red).
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Fig. 5.11. ROC curves of the optimized Λ classifiers, evaluated on the testing set.

Fig. 5.12. Efficiency (solid and dashed line) when using a given threshold (x-axis) for classi-
fying signal and background, and response function (histogram) of the tier 1 SVM
(Λ classifier), trained separately for LL (left) and DD (right) tracks.
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Fig. 5.13. Marginal and linear correlation distributions of the feature space (Λ classifier) be-
fore applying PCA transformation for LL tracks. In the correlation distributions
misclassified events are color-coded in red (signal events classified as background)
and blue (background events classified as signal) when using a threshold of zero.
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Fig. 5.14. Marginal and linear correlation distributions of the feature space (Λ classifier) be-
fore applying PCA transformation for DD tracks. In the correlation distributions
misclassified events are color-coded in red (signal events classified as background)
and blue (background events classified as signal) when using a threshold of zero.
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Fig. 5.15. Marginal and linear correlation distributions of the PCA components (Λ classifier)
for LL tracks. In the correlation distributions misclassified events are color-coded in
red (signal events classified as background) and blue (background events classified
as signal) when using a threshold of zero.
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Fig. 5.16. Marginal and linear correlation distributions of the PCA components (Λ classifier)
for DD tracks. In the correlation distributions misclassified events are color-coded
in red (signal events classified as background) and blue (background events classified
as signal) when using a threshold of zero.
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5.2.3 The Λb-D0 Classifier
The Λb-D0 classifier is trained and optimized very similar to the Λ classifier that we described
in the previous section. Differences are the increased feature set (10 features instead of 5) and
the fact that the background sample for the Λb-D0 classifier is the full recorded Λb → D0Λ
data set, rather than sidebands as used for training the Λ classifier. The decision for the latter
is motivated by the fact that classification algorithms typically tolerate impure labels (e.g.,
Ref. [89, 90]) and that the expected impurity in the case m(D0Λ) is extremely low. At the
same time, this approach minimizes the risk of a selection bias by a non-trivial correlation of
the invariant mass m(D0Λ) and the feature set. The invariant mass distribution m(D0Λ) is
shown in Fig. L.7 and is apparently dominated by combinatorial background. Separation of the
latter and genuine Λb→ D0Λ decays is thus the main objective of the Λb-D0 classifier.

The approximation of the performance of the classifiers is limited by the amount of available
MC simulated events (signal) and, for the sake of computational ease, the data set is pruned,
yielding the same sample sizes as listed in Tab. 5.6, except for a larger training set of LL tracks
(pruned to 20 000 instances). We test and optimize the same type of classifiers as we did in the
previous section and thereby find, that the SVM performs best and that a stacking classifier
does not help to improve the overall performance. For the sake of brevity we thus suppress the
separation into tier 1.1 and tier 1.2 and only list the results of tier 1.1 in the following. The
optimized hyper-parameter of the classifiers are listed in Tab. 5.7.

A key feature of a PCA analysis, especially when paired with ordering w.r.t. the separation
power (as proposed in Appx. I) is the possibility to reduce the feature set and thus evade the
curse of dimensionality5 up to a certain degree. In Fig. 5.17 we show the ROC-AUC value
(evaluated on the test set) for the different classifiers, when only the first n = 2 to 10 PCA
components are used for the training. Even though the beginning of saturation is visible after
n ⪆ 7, the performance gain still justifies the increasing of the dimensionality of the feature
space. Hence, we use the full available feature set and use the PCA transformation to decorrelate
the feature set (without reduction) in order to increase the performance of the decision tree
based classifiers.

Fig. 5.17. ROC-AUC values (evaluated on the test set) for the different Λb-D0 classifiers, when
only the first n = 2 to 10 PCA components (ordered w.r.t. the separation power)
are used for the training.

5In order to train learner effectively and avoid overfitting, the number of training instances should increase
with the number of features. The Curse of dimensionality [91] describes the highly non-linear relation
between both which can lead to a reduced performance if the amount of the former is limited. A common
mitigation is to reduce the number of features and only concentrate on the most important ones, e.g., via
PCA transformation. Other and more complex dimensionality reduction schemes are Kernel PCA [92] or
LLE [93] (which both come with an additional set of hyper-parameters that have to be learned).
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The output, as well as the correlation of the classifiers are shown in Fig. 5.18 and Fig. 5.19.
The corresponding ROC-AUC values are listed in Tab. 5.9. By not only evaluating the ROC-
AUC values on the testing set of corresponding track type, but also on the other set (as listed
in Tab. 5.9), it is possible to verify the necessity of splitting the Λb-D0 classifiers w.r.t. the
track type of Λ (candidate) daughters. An impact of the latter cannot be assumed a priori, but
seemingly influences the performance of the classifiers (for instance via resolution dependent
correlations) such that it makes sense (a posteriori) to split the available data set and train into
two, rather than one, specialized classifiers.

Fig. 5.18. Distributions of the responses and correlations of the Λb-D0 classifiers for LL tracks,
separated for signal (S) and background (B). On top of the correlation distributions,
we show the PCC as a measure for the linear correlation.

Resting on the ROC-AUC values of the classifiers, we again chose the SVM as the Λb-D0

classifier. The respective ROC curves for LL and DD tracks, as well as the response functions
are shown in Fig. L.5 and Fig. 5.20, respectively. Similar to Sec. 5.2.2, we investigate the
convergence of the SVM and show the result in Fig. L.6.
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Fig. 5.19. Distributions of the responses and correlations of the Λb-D0 classifiers for DD tracks,
separated for signal (S) and background (B). On top of the correlation distributions,
we show the PCC as a measure for the linear correlation.

Tab. 5.9. ROC-AUC values in percent for tier 1.1 and tier 1.2 Λb-D0 classifiers (separately
trained for LL and DD tracks). ROC-AUC values are evaluated on the testing sets
of both track types, e.g., LL trained and DD tested refers to the ROC-AUC value
of a classifier that was trained with LL tracks, but evaluated on the testing set with
DD track candidates.

LL trained DD trained
Classifier LL tested [%] DD tested [%] LL tested [%] DD tested [%]
SVM 91.09 89.34 83.71 94.51
Extra Tree 90.87 79.05 84.16 94.00
Random Forest 90.68 82.29 83.15 94.17
BDT 91.33 82.93 84.19 94.44
Ada. BDT 91.33 82.93 84.19 94.44
Stacking 91.32 82.25 84.12 94.43
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Fig. 5.20. Efficiency (solid and dashed line) when using a given threshold (x-axis) for classify-
ing signal and background, and response function (histogram) of the SVM (Λb-D0

classifier), trained separately for LL (left) and DD (right) tracks.

5.2.4 The Tier 2 Classifier

After having trained optimized Λ and Λb-D0 classifiers, we fuse the normalized output of these
classifiers with the DTF probability, as well as the output of PID providing neural networks
ProbNNp(p) and ProbNNk(K), and use these five variables as the feature set of the Tier 2
classifier. The (marginal) distribution, as well as the correlations of the feature set are shown
in Fig. 5.21 (LL tracks) and Fig. 5.22 (DD tracks).

The Tier 2 classifier is intentionally kept rudimentary and applies only a single threshold
requirement (rectangular cut) to each feature. By design, each feature is expected to have
values close to one for signal-like events, and values close to zero else. The threshold requirement
therefore reads as a required lower bound ti for each feature fi, i.e.,

signal :⇔ (f1 > t1) ∧ (f2 > t2) ∧ . . . ∧ (f5 > t5) .

Doing so makes the Tier 2 classifier unable to learn any higher level features beyond the marginal
distributions (such as correlation) of the features. In particular this renders the need to recal-
ibrate the ProbNNp and ProbNNk correlations in MC simulated events unnecessary which is an
error prone business and requires decent statistics. In Appx. M we find that selection require-
ments for the last three features introduce deviations between recorded and simulated data for
thresholds close to one, whereas the fidelity of the first two features (Λ and Λb-D0 classifier) is
sufficient. We will therefore not aggressively optimize thresholds requirements with the Tier 2
classifier, but choose loose selection requirements and tighten them in a subsequent step using
only the output of the Λ and Λb-D0 classifiers.

As a cross-check we compare the results with the decisions of a canonically trained binary
decision tree (Gini criterion and max. depth of 5). The ROCs of all classifiers (i.e., feature set
and both Tier 2 variants) are shown in Fig. 5.23 and the respective ROC-AUC values are listed
in Tab. 5.10.

The Rectangular Cut Classifier

For uncorrelated features, the relations between TPR, FPR, FNR and TNR (cf. Appx. G for
our definitions of true, false, positive and negative) in the presence of rectangular selection
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Fig. 5.21. Marginal distributions and correlations of the feature set of the Tier 2 classifier for
LL tracks. Instances of the signal (S) and the background (B) class are color-coded
in blue and red, respectively.

Tab. 5.10. ROC-AUC values in percent for Tier 2 Λ classifiers (separately trained for LL
and DD tracks), evaluated on the training and testing set. For numerical reasons,
the ROC curve of the rectangular cut classifier (Rec. Clf.) is only evaluated for
TPR < 90% (cf. Fig. 5.23) which explains the inhibited ROC-AUC values for this
classifier.

Training Testing
Classifier LL [%] DD [%] LL [%] DD [%]
Λ Clf. 93.46 82.93 89.48 82.09
Λb-D0 Clf. 92.69 94.90 90.76 94.62
DTF prob. 94.32 91.60 93.72 91.86
ProbNN(p) 79.82 74.95 78.72 74.31
ProbNN(K) 86.32 84.82 85.96 84.61

Decision Tree 97.74 96.96 96.77 96.78
Rec. Clf. 94.98 93.67 94.86 93.06
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Fig. 5.22. Marginal distributions and correlations of the feature set of the Tier 2 classifier for
DD tracks. Instances of the signal (S) and the background (B) class are color-coded
in blue and red, respectively.
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Fig. 5.23. ROC curves of the feature set used to train Tier 2, i.e., the decision tree (Dec. Tree)
and the rectangular cut classifier (Rec. Clf.), as well the respective ROC curves of
the Tier 2 classifiers themselves. Note that we evaluated the rectangular classifier
only for TPR < 90% due to numerical instability.

requirements read

TPR = TPR1 × TPR2 × . . . ,

FPR = FPR1 × FPR2 × . . . ,

FNR = 1− TPR = 1− FNR1 × FNR2 × . . . ,

TNR = 1− FPR = 1− (1− TNR1)× (1− TNR2)× . . . ,

and in particular TNR ̸=
∏︁

i TNRi. In our case we are striving to minimize the overall FPR
for a given target TPR p̂TPR by requiring thresholds t⃗:

∇⃗t⃗,λL
!
= 0 with L

(︁
t⃗, λ
)︁
= FPR

(︁
t⃗
)︁
− λ

[︁
TPR

(︁
t⃗
)︁
− p̂TPR

]︁
. (5.1)

In case of uncorrelated features
TPRi = (p̂TPR)

1/n (5.2)
solves this optimization problem. However, a certain degree of correlation is expected for the
feature set of the Tier 2 classifier and we therefore have to solve Eq. (5.1) numerically. The
Lagrange multiplier λ in Eq. (5.1) is unbound which makes numerical approaches difficult.
Hence, we rewrite the problem as

∇⃗t⃗ L
!
= 0 with L

(︁
t⃗
)︁
= FPR

(︁
t⃗
)︁
+ log

(︁⃓⃓
TPR

(︁
t⃗
)︁
− p̂TPR

⃓⃓
+ ϵ
)︁⏞ ⏟⏟ ⏞

penalty

. (5.3)

where we replaced the latter part of the Lagrangian function with a penalty term. Due to the
discontinuities of the derivatives of L, gradient descent techniques will not work sufficiently. We
therefore use simulated annealing [94] with initial values taken from Eq. (5.2) to find thresh-
olds t⃗ for a given TPR p̂TPR while keeping the overall FPR minimal. This method becomes
numerically unstable for p̂TPR < 0.1 and p̂TPR > 0.9, hence we limit the TPR scanning to
0.1 ≤ p̂TPR ≤ 0.9. The optimized thresholds for a given TPR are shown for each feature in
Fig. 5.24a. In Fig. 5.24b we show the TNRi of feature i as a function of the overall TPR.

As the objective of the loose optimization of the Tier 2 classifier we choose a FoM,

FoM(TPR) =
TPR√
FPR

∼ fsig√︁
fbkg

, (5.4)
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(a) Overall TPR vs. thresholds

(b) Overall TPR vs. TNRi

Fig. 5.24. Thresholds (top) and TNRi of each feature i of the Tier 2 classifier as function of
the overall TPR. Note that the latter is not equivalent to the ROC curve (as shown
Fig. 5.23) since we use the overall TPR as the x-axis, as opposed to the TPRi of
the respective feature i.
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where fsig and fbkg are the signal efficiency and the fraction of background events in the signal
channel, respectively, which makes Eq. (5.4) an approximation of the signal efficiency in the
limit of large background. In particular this allows an evaluation of the FoM without extracting
a signal yield from recorded data,6 which would require a fit of the signal component Λb→ D0Λ
and does not befit an unbiased search for this decay. The maximum of Eq. (5.4) thus is not
necessarily the true maximum of the significance, but allows for an unbiased optimization.

In Fig. 5.25 we show the inverted ROC curve, as well as the FoM as defined in Eq. (5.4)
as a function of the overall TPR. The thresholds are calculated w.r.t. Eq. (5.3) and fixed for
the subsequent steps at values that correspond to a TPR of 60 % (40 %) for LL (DD) tracks in
Fig. 5.25. The subsequent (tight) maximization of the FoM w.r.t. the responses of the Λ and
Λb-D0 classifiers is shown in Fig. 5.26 and the final thresholds are listed in Tab. 5.11. In Appx. L
we show the invariant mass distributions of the D0 and Λ candidates from recorded data and
truth-matched simulated events after applying the thresholds. After refining the thresholds of

(a) TPR vs. FPR (b) TPR vs. TPR/
√

FPR

Fig. 5.25. FPR and signal significance approximation of the Tier 2 classifier for track types
LL and DD as a function of the overall TPR. The corresponding thresholds for
each feature are optimized w.r.t. Eq. (5.3) and refined in an subsequent step (not
shown).

the Λ and Λb-D0 classifiers, the overall TPR (test set) is 55.3(16) % and 18.0(12) % for LL and
DD tracks, respectively.

From the ROC curves shown in Fig. 5.23 we see that the rectangular classifier performs
similar to the decision tree (and even outperforms it slightly for LL tracks and TPR < 90%).
The depth of the decision tree is limited to 5 which is still enough to pick up correlations of
the five dimensional feature space. The fact that this additional information does not help to
increase the overall classification power, justifies the outlined usage of a rectangular classifiers
and reduces the source of additional uncertainties.

6See Ref. [95] for a comprehensive discussion of different FoMs in the context of high energy physics.
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Fig. 5.26. Approximation of the signal efficiency as a function of the responses of the Λ and
Λb-D0 classifiers. (The other three feature thresholds are kept fix.)

Tab. 5.11. Optimized thresholds (required lower bounds) for each feature of the Tier 2 clas-
sifier and the overall TPR for LL and DD tracks. The TPR is evaluated on the
training and test set, and is given w.r.t. the events that are left after the loose
selection.

LL DD
Λ Clf. 0.67 0.70
Λb-D0 Clf. 0.73 0.77
DTF prob. 0.012 0.15
ProbNNp(p) 0.60 0.60
ProbNNk(K) 0.30 0.57

TPR (training) 55.8(5)% 18.33(23)%
TPR (test) 55.3(16)% 18.0(12)%
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Chapter 6

The Normalization Channel Λb→ D0pπ−

A normalization channel should comprise two key characteristics: First, the decay topology
should be as close as possible to the primary decay channel such that common uncertainties
and biases cancel. Secondly, the normalization channel should be well established, clean to
extract and contribute to the error budget as little as possible.

Obvious candidates for the present analysis are Λb→ D0pπ−, Λb→ ΛK+π−, Λb→ J/ψΛ and
B0

(s) → D0KS. Despite its large branching fraction and clean reconstruction, the J/ψΛ mode,
in particular if the J/ψ is reconstructed in its dimuon mode, will differ strongly in its detector
response and trigger signature and thus requires a careful study of the corresponding simulation
fidelity of both modes and therefore is not an ideal candidate. The branching fractions of the
other modes, as reported by the PDG, are

B(Λb→ D0pπ−) = (6.3± 0.7)× 10−4 ,

B(Λb→ ΛK+π−) = (5.7± 1.3)× 10−6 ,

B(B0→ D0K0) = (5.2± 0.7)× 10−5 ,

B(B0
s → D0K0) = (4.3± 0.9)× 10−4 ,

which do not include the b-hadron production fractions which themselves depend on the kine-
matics of the b quark [96, 97]. Further, only roughly half of the K0 mesons decay as KS

and within a similar detector acceptance as Λ baryons.1 The other part will most likely es-
cape undetected. Taking both effects into account qualifies Λb→ D0pπ− as the most efficient
candidate.

The final states of the charmless three-body decay approximate the signature of Λb→ D0Λ
best, but this advantage is compensated by its small branching fraction and the noisy back-
ground (cf. Ref. [39]). We note that this valuation will likely change in the future and future
experiments might rank charmless three-body decays as their most suitable normalization can-
didate if provided with a sufficiently large set of Λb decays.

The listed b-meson decays also have a long living V 0 particle in their decay chain. During
analysis, KS → π+π− decays have to be grouped w.r.t. their track types LL and DD, similar
to Λ→ pπ−. On the one hand, this leverages the access to track type specific properties which
could cancel partially in the branching ratio, on the other hand, splitting the data sample
hampers the analysis and, even though KS and Λ are both V 0 particles, the final states π+π−

and pπ− can cause different signatures in the LHCb detector which make D0pπ− the better
proxy for D0Λ, especially for LL tracks. At the same time, the fidelity of MC simulated Λb

decays is known for being imperfect, especially in terms of kinematic distributions. Using Λb

decays in the primary decay, as well as the normalization mode minimizes this uncertainty
source in the branching fraction.

Considering the listed arguments, we use Λb→ D0pπ− as the normalization mode. We will
briefly discuss the decay in Sec. 6.1 and will then outline the selection strategy. In Sec. 6.2 we
will then extract signal yields which we will use later for determining the branching fraction.

1Neglecting small CP violating corrections and assuming similar lifetimes of the KS state and the Λ baryon.
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6.1 The Decay Λb→ D0pπ−

The decay Λb→ D0pπ− is a high statistics channel and leveraged the discovery of the Λb baryon
in 1981 [19]. The final states are the same as in Λb → D0Λ but due to the different quark
transitions, it is much less susceptible for CP violation.2 The large branching fraction gives
a good signal to background ratio after applying simple rectangular selection requirements.
Rather than optimizing these selection requirements for Λb → D0pπ−, the opulent signal to
background ratio allows the use of a subset of the optimized requirements for the primary
decay Λb → D0Λ with some minor corrections. These selections are split into a preselection
and a loose selection part which are outlined in the following sections.

6.1.1 Preselection
We use the full recorded data set of Run 2 and the stripping versions listed in Tab. 5.1. Despite
their different naming, the selection requirements vary slightly. These differences are compen-
sated by adopting the tightest selection requirement among conflicting values if necessary.

Tab. 6.1. Stripping and Reco versions used for reconstructing Λb→ D0pπ−.
Year Stripping Reco
2015 24r1 15a
2016 28r1 16
2017 29r2 17
2018 34 18

All selection criteria of the preselection step are listed in Tab. B.3 where we use the same
nomenclature that we introduced in Sec. 4.1.1. Additionally, at least one HLT trigger flag
among Hlt2.*IncPhi.*Decision or Hlt2Topo.*Decision is required, cf. Refs. [64, 79] for
more detailed information.

6.1.2 Loose Selection
Similar to the previous analyses of Λb → J/ψΛ and Λb → D0Λ decays, we select only events
corresponding to the best PV hypothesis for the following steps. All selection criteria of the
loose selection are shown in Tab. 6.2 and are grouped into five categories. Again, categories 1 to
4 are the same that we used and described previously in Sec. 4.1.2 and Sec. 5.1.2. The purpose
of selection requirements of category 5 is to reject physical backgrounds such as B0→ D0π+π−,
B0→ D0K−π+ or B0

s → D0K−π+ and Λb→ D0pK− by requiring a minimal threshold w.r.t.
ProbNNp(p) and a veto against large values of ProbNNk(π), respectively. Since most of the
charge tracks in an event are caused by genuine pions, the former selection requirement also
helps to suppress combinatorial background (category 1). The combined efficiency for MC
simulated events is 71.10(25)% where the uncertainty only takes statistical fluctuations into
account (cf. Sec. 5.1.2).

6.1.3 Calibration
Three-body decays typically have resonances among their final states, whereas in two-body
decays the only possible resonance is the mother of the decay chain itself. In particular, Λb→
D0pπ− decays have a rich set of resonances among D0p and D0π− pairs [69]. These resonances

2Changing the pion to a kaon reduces the branching fraction by a factor of λ2 (Wolfenstein parameterization)
but now allows an effective extraction of the CKM phase γ (cf. Sec. 1.5).
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Tab. 6.2. Selection criteria of loose selection used for reconstructing Λb→ D0pπ−. The selec-
tions are grouped into four categories which are explained in Sec. 6.1.2.

Particle Selection Category
π 3 ≤ p ≤ 150 GeV/c 1
K 3 ≤ p ≤ 150 GeV/c 1
p 9 ≤ p ≤ 150 GeV/c 1
p ProbNNp ≥ 0.2 1, 5
π ProbNNk ≤ 0.3 5
D0 0 ≤ FD sig. ≤ 100 1
D0 ∆χ2

IP w.r.t. best PV ≥ 5 1
Λb ∆χ2

IP w.r.t. best PV ≤ 25 1
Λb 5 ≤ m ≤ 6 GeV/c2 3
Λb 2 ≤ η ≤ 4.5 4
Λb pT ≤ 20 GeV/c 4
Λb ∃ converged DTF 1
Λb χ2

DTF/DoF ≤ 10 1

are not taken into account during the generation of the MC simulated decays. Instead, the
decays are simulated flat in the so-called square Dalitz plot (cf. Refs. [98, 99] and in particular
Ref. [100] for the definition of a square Dalitz plot). In order to make recorded data and MC
simulated event comparable we calibrate the former by assigning weights to each event.3 The
weights are the inverted values of the (normalized) smoothed square Dalitz plot profile, where
the smoothing is performed in bins using a 5× 5 kernel function

K =

⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 2 2 2 0
1 2 5 2 1
0 2 2 2 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠ .

The smoothed profile is the result of a convolution with K and a subsequent normalization where
kernel pixels that extends past the boundary are set to zero (Kernel Crop). Below, we apply this
efficiency correction to recorded data after the respective selection steps but suppress an explicit
mention for the sake of brevity. As a consequence, we also use (binned) weighted minimum
χ2-fits in the following instead of a (single entry) maximum likelihood method. Calibrating the
recorded data changes the shapes of the physical background, whereas the impact on the fitted
signal yields is less than 14%.

6.2 Yield Extraction
The distribution of the invariant mass m(D0pπ−) after applying the loose selection requirements
is shown in Fig. 6.1. An exhaustive fit model that comprises a precise signal model, as well as
all background components such as partially reconstructed Λb→ D∗0pπ− (large enhancement
between 5.3 GeV/c2 and 5.5 GeV/c2) or reflections from Λb → D0pK− decays or other B0

and B0
s decays requires a thorough analysis of all these components, cf. Ref. [69]. For the

3Technically, the parameters m′ and θ′ (cf. Ref. [100]), are evaluated with a DTF where all intermediate particle
masses (i.e., including m(Λb) itself) are constrained to increase the resolution of the Dalitz distribution.
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Fig. 6.1. Invariant mass distribution of D0, p and π− candidates after applying the loose
selection requirements. The regions I and III are used for extracting the shape of
the combinatorial background. Region II indicates the signal region that is used
for extracting the signal yield. The dashed line indicate the fitted shape of the
combinatorial background.

present analysis we find that a simple yet flexible fit model suffices, while not contributing to
the overall error budget excessively. Within this fit model, the signal region is limited tightly
to 5.58 ≤ m(D0pπ−) ≤ 5.66 GeV/c2 (region II in Fig. 6.1) and thus reduces the impact of
physical background contribution, in particular of reflections below m(Λb). The shape of the
combinatorial background is parametrized with the exponential function given in Eq. (Q.3)
and is extracted from a lower sideband 5.2 ≤ m(D0pπ−) ≤ 5.3 GeV/c2 and an upper sideband
5.7 ≤ m(D0pπ−) ≤ 6 GeV/c2, referred to as region I and III in Fig. 6.1. The signal yield is
obtained by extrapolating the fitted background PDF into region II, scaling with the number
of events in regions I and III, and subtracting the result from the number of events in region II.
Applying this fitting strategy to the distribution of the invariant mass m(D0pπ−) after the
loose selection, as shown in Fig. 6.1, yields 7.04(6) × 104 signal events where the uncertainty
only takes statistical fluctuations into account. In order to estimate the systematic uncertainty
we use the same fitting strategy to extract the yields from two further reduced samples, where
the former (latter) sample is obtained by requiring ProbNNk ≥ 0.3 (0.57) for the kaon and a
DTF probability above 0.01. The thresholds of the selection requirements w.r.t. the ProbNNk
responses are the optimized values for LL and DD tracks that we found for the Λb→ D0Λ decay
in Chap. 5, whereas the threshold w.r.t. the DTF probability is chosen ad hoc and proven to
significantly improve the signal to background ratio. Both samples are shown in Fig. 6.2.

Requiring both of these selection criteria results in a cleaner data sample but also unveils a
bias of the fit model at the lower tail of the Λb signal peak. The fitted yields of these two fits are
shown in Tab. 6.3. Applying the very same fitting strategy to MC simulated events gives access
to the (MC predicted) efficiency of the required selection and allows the extrapolation to the
total amount of events before requiring the selection. Both of these extrapolated numbers should
match the number we found with our first fit. The deviation is an admixture of deviations due
to fidelity issues of the MC simulated events and an overestimation of the signal yield due to a
bias of the fitting model. A conservative approach to approximate the systematic uncertainty
of the fit is to ignore the former part and take the entire deviation between the three fitted
yields as an upper limit of the uncertainty interval,

n = 7.0(5)× 104 .

The uncertainty corresponds to a relative uncertainty of 7% which is sufficient for the sake
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Fig. 6.2. Combined invariant mass distributions of D0, p and π− candidates, as well as the fit
of the combinatorial background (dashed line). The distributions are the result of
a set of selection criteria that resembles part of the tight selection for LL (left) and
DD (right) Λb→ D0Λ decays.

of the present analysis. As stated, this approximation is conservative and renders additional
studies, such as the unfolding of the strongly correlated systematic uncertainties of the three
samples, unnecessary.

Tab. 6.3. Efficiencies of applying additional selection criteria (LL sel.) and (DD sel.) on
top of the loose selection of Λb→ D0pπ− decays, evaluated by fitting MC simulated
events. These efficiencies are then used to extrapolate (ext.) the fitted yields (fit 2) of
recorded data and compared with the fitted yield (fit 1) of the respective distribution
after requiring only the loose selection.

LL sel. DD sel.
MC efficiency 77.020(34)% 71.70(4)%
Rec. data (fit 2) 5.746(34)× 104 5.301(32)× 104

Rec. data (ext.) 7.45(4)× 104 7.39(4)× 104

Rec. data (fit 1) 7.04(6)× 104

In Chap. 9 we argue that only events with a positive L0 TIS trigger decision are needed
for the normalization of the branching ratio. The corresponding distributions of the invariant
mass m(D0pπ−) and the respective fits for recorded data are shown in Fig. 6.3. The fits yield
(including our 7% uncertainty estimation) n = 3.93(28) × 104 and n = 3.60(25) × 104 for the
LL and DD selection, respectively.
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Fig. 6.3. Combined invariant mass of D0, p and π− candidates from recorded data. The
selection criteria resembles parts of the tight selection for LL (left) and DD Λb→ D0Λ
decays. Additionally, the L0 TIS trigger is required.
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Chapter 7

Physical Backgrounds
Today’s prediction is tomorrow’s prior.

— Glen Cowan, during TAE summer school 2017

Regarding G. Cowan’s quote about tomorrow’s prior, decays that were first observed during
Run 1, such as Λb→ Λhh′ and B0

s → D0KS not only have become today’s prior, they already
have to be considered as background candidates in Run 2 analyses. In this section we discuss
those and other physical background contributions which we separate into non-resonant back-
grounds (Sec. 7.1), partially reconstructed backgrounds (Sec. 7.2), and reflections (Sec. 7.3).
While we find that most background contributions can be neglected due to a sufficiently strong
suppression, partially reconstructed decays including D∗0 resonances or Σ0 baryons, stay a
nuisance and enter the fit model of the subsequent m(D0Λ) fit.

7.1 Non-Resonant Background
Λb → D0pπ− decays have the potential of being a dangerous (non-resonant) background for
the Λb → D0Λ mode, if the Λ daughters are reconstructed as LL tracks. If not sufficiently
suppressed, this background is irreducible in the m(D0Λ) distribution and very hard to unfold
from genuine Λb → D0Λ decays by conventional fitting approaches. Luckily for the present
analysis, the kinematic suppression of the stripping phase already gives a strong suppression,1

as shown in Chap. 3. Applying the dedicated tight Λb → D0Λ selection (cf. Sec. 5.2) gives
an additional suppression and accepts 65 of 46 740 (weighted) events, where the latter is the
amount of events that already pass the dedicated pre- and loose Λb→ D0Λ selection steps.2 A
95 % confidence interval of the corresponding efficiency is [1.1 . . . 1.8] × 10−3. The efficiencies
of each selection step individually, without requiring any of the other criteria, are shown in
Tab. 7.1. Combining this efficiency with the suppression factor of the stripping phase leverages
the estimation of an upper limit of the accumulated probability P of seeing at most n genuine
Λb→ D0pπ− events in the invariant mass of D0 and Λ candidates:

P =
n∑︂

k=0

(︃
N
k

)︃
pk(1− p)N−k .

In Fig. 7.1 we show the accumulated probability for p = 9×10−5 (dashed line) which corresponds
to a conservative approximation of both factors. We argue that this suppression on its own is
not sufficient. In the following we will therefore tighten the mass window of m(pπ−) around
m(Λ) and establish a veto against small values of the Λ flight distance significance. These
additional requirements decrease the combined efficiency to at most p = 8 × 10−6 at a 95 %
CL (solid line in Fig. 7.1), corresponding to a probability of seeing not more than three events
above 99%.

1Mostly due to the required finite mass window around m(Λ).
2Technically, we use so-called filtered events for this task. Filtered events give larger yields but estimating

the combined reconstruction and stripping efficiency is more challenging than for ordinary simulated events
(which we used for the latter task).

— 83 —



Chapter 7. Physical Backgrounds

Tab. 7.1. Efficiencies of applying the tight selection criteria as found in Sec. 5.2 of the Λb→
D0Λ selection to genuine Λb→ D0pπ− decays, evaluated with MC simulated events.

Selection criterion Efficiency [%]
Λ Clf. ≥ 0.67 4.68(10)
Λb-D0 Clf. ≥ 0.73 19.26(18)
ProbNNp ≥ 0.6 22.87(19)
ProbNNk ≥ 0.3 23.35(20)
DTF prob. ≥ 0.012 0.61(4)

Combination 0.139(17)

Fig. 7.1. Probability of seeing more than n genuine Λb→ D0pπ− decays in m(D0Λ). The solid
(dashed) line corresponds to our choice of selection steps, including (excluding) the
additional selection requirements w.r.t. m(pπ−) and the Λ flight distance significance.

Fig. 7.2. Combined invariant mass of p and π− candidates of simulated Λb→ D0pπ− decays,
reconstructed and fitted via a DTF as Λb→ D0Λ. The loose selection (left) and tight
selection (right) are the dedicated Λb→ D0Λ selections as described in Sec. 5.1.
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7.2. Partially Reconstructed Backgrounds

In Fig. 7.2 we show the invariant mass distribution of m(pπ−) before and after applying the
dedicated Λb → D0Λ tight selection. Apparently, it is not flat but strongly (asymmetrically)
suppressed for m(pπ−) > m(Λ). We find that this structure is introduced by requiring a
minimum flight distance (cf. Sec. 5.1.2) and simultaneously constraining the Λ mass in a DTF
(cf. Appx. C for a more detailed description of this correlation.) We choose

m(pπ−)−m(ΛPDG)
!
> −4MeV ,

Λ FD sig.
!
> 25 ,

where m(ΛPDG) is taken from Ref. [15], as thresholds for m(pπ−) and the flight distance signif-
icance of the Λ baryon which leaves, when applied in combination, only one event left (weight
1.12). In Fig. 7.3 we show the cumulative distribution of the latter in combination with and
without the tight selection. With n < 2 and a preselection suppression factor of 20 this corre-
sponds to an 95 % confidence interval of [0.26 . . . 8] × 10−6.

Fig. 7.3. Cumulative distribution of selections w.r.t. the flight distance significance of the (spu-
rious) Λ candidates from Λb → D0pπ− decays after (solid line) and before (dashed
line) applying the dedicated tight Λb→ D0Λ selection.

We refer to Ref. [69] for studies of Dalitz plots of Λb → D0pπ− decays and note that the
Λ baryon is located at low values of m2

pπ and large values of m2
Dp. Both areas show no large

resonance structures and thus support the conservative trait of our approximation.

7.2 Partially Reconstructed Backgrounds

In the present analysis partially reconstructed backgrounds come from intermediate states that
decay to either a soft photon or a soft neutral pion. These low energetic particles typically escape
undetected at LHCb and thus making the respective backgrounds irreducible. In particular,
we will consider Λb/Ξ

0
b → D0Σ0 and Ξ0

b → D0Ξ0 decays, as well as Λb/Ξ
0
b → D∗0Λ, where

in the former cases the γ (π0) from Σ0 → Λγ (Ξ0 → Λπ0), and in the latter case the γ (π0)
from D∗0 → D0γ (D∗0 → D0π0) is lost. We devoted the entire Sec. 1.3 of our theory part to
the discussion of the irreducible Σ0→ Λγ background. In addition we analyze its kinematics,
as well as the kinematics of the other partially reconstructed background sources in depth in
Appx. O. Since these backgrounds are irreducible we will encounter them in our fitting model.
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7.3 Reflections
Apart from random track combinations, non-resonant and partially reconstructed decays, so-
called reflections potentially contaminate the signal region in the invariant mass distribution
m(D0Λ). Reflections are fully reconstructed decays where a spurious mass hypothesis was
assigned to at least one of the particles within the respective decay chain. Since reconstruction
is typically performed in the upstream direction of the respective decay chain, this wrong
assignment also propagates as a shift and dilution of the mass distributions. Decays, such
as B0

s → D0KS, can contaminate the signal region if the kaon decay KS → π+π− becomes a
reflection by misidentifying the π+ as a proton and thus fakes a Λ→ pπ− decay. This smears
the invariant mass distribution of the KS, as well as the B0

s meson mass distribution and
consequently introduces background contributions to the invariant mass distribution m(D0Λ).

For a given n-body decay the invariant mass of the mother M is given by the invariant masses
mi and three-momenta p⃗i of the daughters via the relation

M2 =

(︄
n∑︂

i=1

√︂
m2

i + p⃗ 2
i

)︄2

−

(︄
n∑︂

i=1

p⃗i

)︄2

.

The shift of M in case of a spurious mass hypothesis mj → mj+δmj is non-linear in δmj and de-
pends on the respective momenta, hence the transformation of the invariant mass distributions
due to reflections is non-trivial and depend on the momentum distributions.

In the following we discuss the two main sources of reflections in the present analysis. In
Sec. 7.3.1 we study charmless three-body decays and then discuss the possible contamination
of genuine KS decays in Sec. 7.3.2. Both background candidates are eventually found to be
negligible given the amount of available statistics after applying the dedicated tight Λb→ D0Λ
selection and are thus not included in the subsequent m(D0Λ) fit model.

7.3.1 Charmless Decays
Charmless three-body decays Λb/Ξ

0
b → Λhh′ are a nuisance in searches for CP violation in

Λb→ D0Λ decays when hh′ are spuriously reconstructed as D0→ hh′. The reported branching
fractions are (cf. Refs. [15, 39])

B(Λb→ ΛK+K−) = (1.62± 0.23)× 10−5 ,

B(Λb→ ΛK+π−) = (5.7± 1.3)× 10−6 ,

B(Λb→ Λπ+π−) = (4.7± 1.9)× 10−6 ,

and thus will appear as physical background in the relevant ADS and GLW modes. Similarly,
Ξ0

b → ΛK+K−, Ξ0
b → ΛK−π+ and Ξ0

b → π+π− decays are background candidates in Ξ0
b → D0Λ

analyses. All these modes are hard to control and require decent statistics to, for example,
estimate their contribution to the signal yields by analyzing the combined invariant masses of
D0 and Λ candidates in slices of the D0 flight distance. Beneficially for the present analysis, the
Λb→ ΛK−π+ decay is suppressed w.r.t. Λb→ ΛK+π− with at least a factor of a box diagram
and neither Λb → ΛK−π+, nor Ξ0

b → ΛK−π+ were observed experimentally at the time of
writing.

For the present analysis where we reconstruct the D0 meson as D0 → K−π+, the Λb →
ΛK+K− background only enters indirectly via reflection. Below, we show that we can suppress
the contribution coming from Λb → ΛK+K− decays (largest branching fraction) sufficiently
and thus renders dedicated analyses of the remaining Λb → Λhh′ modes unnecessary. We use
weighted, truth-matched MC simulated events3 for this task where we rely on the established
weights without adding acceptance corrections due to the limited dataset.

3Generated flat in phase space.
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First, we apply the dedicated Λb → D0Λ preselection step with the tightened requirements
we established in Sec. 7.1 which already greatly reduces the Λb→ ΛK+K− data set from 2875
to 570 and 7055 to 1785 events4 for LL and DD tracks, respectively.5 Secondly, we apply
the selection steps w.r.t. the DTF probability, and the responses of the ProbNNp and ProbNNk
classifiers for the p and K−, respectively. The corresponding efficiencies are listed in Tab. 7.2.
The efficiencies for the selection requirements w.r.t. ProbNNp and ProbNNk are compatible with
those we found for genuine Λb → D0Λ decays, whereas the DTF reveals its strong separation
power due to the D0 mass constraint.

Tab. 7.2. Efficiencies of the dedicated Λb → D0Λ tight selection requirements when applied
to Λb→ ΛK+K−, reconstructed as Λb→ D0Λ, and genuine Λb→ D0Λ decays. The
efficiencies are obtained from weighted MC simulated events.

Λb→ ΛK+K− Λb→ D0Λ
LL [%] DD [%] LL [%] DD [%]

DTF prob. 43.5(21) 28.1(11) 89.16(31) 82.07(24)
ProbNNp(p) 94.2(10) 86.6(8) 92.87(26) 81.54(25)
ProbNNk(K) 91.3(12) 84.7(9) 92.51(26) 84.50(23)

Combination 26.4(18) 24.9(10) 88.51(32) 88.67(20)

The efficiencies of applying the Λ and Λb-D0 classifier selection requirements are estimated
after applying all previous discussed selections and are listed in Tab. 7.3. Interestingly, both
classifiers show a strong separation power, except for the Λ classifier when applied to LL tracks.
In order to understand this behavior we train SVMs on the reduced data set using all pairwise
combinations of two features to estimate each feature importance. For the Λb-D0 classifier we
find that almost the entire separation power stems from the D0 flight distance feature. This
is expected, since in the case of genuine Λb→ ΛK+K− decays, the fitted flight distance of the
K+K− pair is smaller on average than for genuine D0 meson. More surprisingly, the Λ classifier
is also capable to separate between genuine Λb→ D0Λ and Λb→ ΛK+K− decays. The rather
large deviation for LL and DD tracks is rooted in the mild thresholds of the former but adjusts
when the thresholds are raised. Using the same technique we used previously, we find that the
separation power is driven by deviations in the pT distributions which we discuss in detail in
Appx. N.2.

Tab. 7.3. Efficiencies of the optimized Λb → D0Λ tight selection requirements when applied
to Λb → ΛK+K−, reconstructed as Λb → D0Λ, and genuine Λb → D0Λ decays.
The efficiencies are obtained from weighted MC simulated events after applying the
selection steps listed in Tab. 7.2.

Λb→ ΛK+K− Λb→ D0Λ
LL [%] DD [%] LL [%] DD [%]

Λ Clf. 97.5(11) 34.3(27) 96.54(21) 50.3(4)
Λb-D0 Clf. 68(4) 31.0(26) 80.0(5) 47.0(4)

Combination 67(4) 18.9(21) 77.9(5) 33.5(4)

Applying the entire dedicated Λb→ D0Λ tight selection leaves 122 and 72 weighted events left
4The reduced numbers are the accumulated weights of the MC simulated events.
5This strong suppression is driven by the fact that the dedicated Λb→ D0Λ preselection step already includes

requirements w.r.t. the fit probability, D0 flight distance, etc.
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for LL and DD tracks, respectively. Their corresponding invariant mass distributions m(D0Λ)
are shown in Fig. 7.4. (We refer to Appx. N.1 for a brief discussion of these mass distributions.)
Using the suppression factor for LL and DD tracks that we established in Sec. 3, we expect
7.8(15) and 4.8(9) genuine Λb→ ΛK+K− events after the dedicated Λb→ D0Λ tight selection
steps.

Fig. 7.4. Combined invariant mass of D0→ K−π+ and Λ→ pπ− candidates from MC simu-
lated Λb→ ΛK−K+ decays for LL (left) and DD (right) tracks.

In theory, these amounts could be suppressed further by requiring a minimal flight distance
of the D0 candidates. For example, requiring

D0 FD sig. > 2 , (7.1)

reduces the expectation of genuine Λb → ΛK+K− events to 2.6(6) and 0.79(26), but also
suppresses Λb → D0Λ to 83.6(5)% and 80.7(5)% for LL and DD, respectively (cf. Fig. N.4).
Alternatively, the reflection shape can be parametrized and fitted in recorded data. However,
regarding the limited data sample, we find in Chap. 8 that an unfolding from Ξ0

b → D∗0Λ
contributions is not possible and since the latter component is disfavored by our fit model,
we argue that Λb → ΛK+K− contributions in the signal region are negligible without further
suppression. We cross-check this assumption by requiring Eq. (7.1) and fitting the invariant
mass of D0 and Λ candidates from recorded data in configuration 1. (See Chap. 8 for a
description of the fit model and its configurations, as well as Fig. P.9 for a projection of the
fit to recorded data.) The fitted signal yield of Λb→ D0Λ decays reduces from 31(7) to 23(6).
Assuming a reduction of 82% (combination of both track types), the expected yield is 25.4(21)
and thus includes the fitted yield within two standard deviations. We thus conclude that
Λb → ΛK+K− events contribute negligible in the signal region. Since Ξ0

b → ΛK−π+ decays
are expected to behave similarly and due to the additional CKM suppression w.r.t. Ξ0

b → D0Λ
decays, we argue further that the contribution of charmless backgrounds in the Ξ0

b mode is
negligible, too.

7.3.2 KS Reflections from b-Meson Decays
In the decay Λb→ D0Λ we expect reflections coming from B0 and B0

s meson decays to D0KS,
caused by a misidentification of the π+ in KS→ π+π−. The leading contribution to the decays
B0 → D0KS and B0

s → D0KS are internal, color-suppressed tree diagrams, where the former
includes the Cabibbo suppressed b→ csu transition and the latter the Cabibbo favored b→ cdu
transition. The respective B0 branching fraction is well established, measured by the Babar and
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Belle collaborations [101, 102], and the B0
s mode was first observed and measured at LHCb [103]:

B(B0→ D0K0) = (5.2± 0.7)× 10−5 ,

B(B0
s→ D0K0) = (4.3± 0.9)× 10−4 .

Besides being very useful for leveraging access to the CKM phase γ and even φs in the latter
case, both branching fractions are significantly larger than the expected branching fraction of
Λb → D0Λ [49], making them also background candidates for the present analysis. However,
it is the fraction κ of misidentified B0 and B0

s mesons in the signal region of Λb → D0Λ that
has to be considered. This fraction can be estimated by the product of ratios of the b-hadron
productions (I), the branching fractions of the respective decay modes (II), the reconstruction
efficiencies (III), and the selection efficiencies (IV):

κ(B0
(s)) :=

fB0
(s)

fΛb⏞ ⏟⏟ ⏞
I

×
B(B0

(s)→ D0KS)

B(Λb→ D0Λ)
× B(KS→ π+π−)

B(Λ→ pπ−)⏞ ⏟⏟ ⏞
II

×
εrec(B

0
(s)→ D0KS)

εrec(Λb→ D0Λ)⏞ ⏟⏟ ⏞
III

×
εsel(B

0
(s)→ D0KS)

εsel(Λb→ D0Λ)⏞ ⏟⏟ ⏞
IV

.

The relative production rates (I) are measured by LHCb [96, 97]. Factor II is found by inserting
the theory prediction from Ref. [49] and the respective established branching ratios,6:

B(B0
(s)→ D0KS)

B(Λb→ D0Λ)
× B(KS→ π+π−)

B(Λ→ pπ−)
=

{︄
6.2(8) for B0→ D0KS ,

51(11) for B0
s→ D0KS .

The final approximation will be dominated by the vague uncertainty of the theory prediction
for B(Λb→ D0Λ), hence we aim for an upper limit of κ. In this context we assume the ratio of
the reconstruction efficiencies (III) to be one in good approximation. Factor IV for B0

s→ D0KS

is found using weighted simulated events and used as an upper limit of B0 → D0KS. Due
to the lack of a sufficient amount of MC simulated events we use the simulation framework
RapidSim [104] instead. These simulated events are calibrated with weights obtained from B0→
J/ψKS rather than Λb → J/ψΛ decays due to the initial b-meson, using the same techniques
outlined in Sec. 4.2.2. Similar to the previous sections,7 we find a sufficient suppression, due to
the very broad m(pπ−) distribution for misidentified KS → π+π− decays, on its own allowing
a suppression (factor IV) below 3% without loosing any genuine Λ→ pπ− event. Applying the
entire Λb→ D0Λ tight selection eventually reduces κ(B0

s) below 4% at a 95 % confidence level,
rendering an additional suppression, e.g., via a m(K0) veto unnecessary.

6The kaon in the decay of the B0 (B0
s ) meson is produced in an unmixed flavor eigenstate K0 (K0), whereas the

time-evolution propagates the mass eigenstates KL and KS. Here, we assume |⟨KS|K0⟩|2 = |⟨KS|K0⟩|2 = 1/2
and thus neglecting CP violating effects in the kaon system which are known to be at a level of 10−3 [15].

7For the sake of brevity we abstain from a detailed discussion. The chosen techniques are equivalent to the ones
that were outlined previously, and the remarkable strong suppression of rectangular selections w.r.t. mass
and ProbNNp tolerate large uncertainties. RapidSim’s fidelity issues concerning the resolution of KS particles
is found to be negligible in this context.
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Chapter 8

Yield Estimation
With four parameters I can fit an elephant, and with five I can make him wiggle

his trunk.

— Discovered by John von Neumann and exercised in Ref. [105].

In this chapter we establish a fit model to extract signal yields from 260 signal candidates which
are left after applying the previously outlined selection criteria to the Run 2 data sample. This
sparse data sample forces us to assume certain constraints and work with approximations. We
outline our assumptions and meticulously evaluate our fit model which eventually allows us to
obtain signal yields and yield significances for the decay modes Λb→ D0Λ and Ξ0

b → D0Λ.

8.1 The Fit Model
Due to the small amount of available recorded signal candidates that passed the dedicated filter-
ing steps and the absence of a precise background model in terms of statistics and polarization,
we base our fit model onto the following assumptions:

• The kinematic properties of the final states of signal and background events are following
similar distributions, since they would have been filtered out by the preceding filtering
steps otherwise. Their resolution is thus given by the signal shape of the Λb or Ξ0

b baryon
which are accessible through the respective MC simulated decays in good approxima-
tion. This assumption is based on the short lifetime of the b-hadrons w.r.t. the detector
resolution, corresponding to a natural width of roughly 0.4 meV/c2.

• Due to the absence of a priori knowledge concerning the polarization of the D∗0 and Σ0

states in Λb→ D∗0Λ and Λb→ D0Σ0, it is not possible to unfold the contribution of the
latter from the broad D0π0 and D0γ decay modes of the former (cf. Tab. O.1). We verify
this assumption with pseudo-experiments. The same assumption holds for the very broad
(potential) background of Ξ0

b → D0Ξ0 decays.

• For similar reasons we fix the yield ratio of the fit components of D∗0 → D0π0 and
D∗0→ D0γ to its central value of 1.83 measured by the Babar and BESIII collaborations
and fitted by the PDG [106, 107, 15]. Further, neither the ratio of the fitted yields of
Λb → D0Λ and Λb → D∗0Λ, nor of Ξ0

b → D0Λ and Ξ0
b → D∗0Λ, nor of Λb → D0Λ and

Ξ0
b → D0Λ itself, should depend on the track type of the daughters of the Λ baryon and

are therefore fitted simultaneously for both track types. For Λb→ D0Λ and Ξ0
b → D0Λ,

we cross-check this assumption with MC simulated events. The double ratio (cf. Tab. 8.1)
is 1.026(23) and barely significantly deviates from one. The central value is less than 3%
which is negligible w.r.t. the total systematic uncertainties.

• The combinatorial background follows an exponential function which we parametrize ac-
cording to Eq. (Q.2). Our choice of parameter k’s sign is physically motivated but not

— 91 —



Chapter 8. Yield Estimation

required during the fits. We note that this implicitly includes the linear model 1± kx for
small values of k and in particular the uniformly distributed (combinatorial) background
for k = 0.

The fit is applied to the combined invariant mass of D0 and Λ candidates and evaluated si-
multaneously on the unbinned datasets of simulated and recorded events of both track types.
The total amount of available events for each of these six samples is listed in Tab. 8.1. The fit

Tab. 8.1. Amount of MC simulated and recorded events available for fitting. The fit is eval-
uated simultaneously in all six samples. Further, we give the (weighted) fraction
for the MC simulated events w.r.t. the amount of events N , after the preselection.
The double ratio of these fractions is 1.025(24) and thus barely deviate from one
significantly.

LL DD
n n/N [%] n n/N [%]

MC sim. Λb→ D0Λ 5682 36.0(4) 5548 13.81(19)
MC sim. Ξ0

b → D0Λ 6244 35.0(4) 6432 13.27(18)
rec. data 113 – 147 –

model is a normalized, weighted sum of the three components S, D and B, describing the Λb/
Ξ0

b signal, the D∗0 background and the combinatorial background, respectively,

L :=

⃦⃦⃦⃦
⃦⃦
⎛⎝S
D
B

⎞⎠⃦⃦⃦⃦⃦⃦
f⃗

≡ (1− f1)× S + (1− f2)f1 ×D + f1f2 × B . (8.1)

For brevity we introduced the shorthand notation⃦⃦⃦
V⃗
⃦⃦⃦
f⃗
:=

n∑︂
j=1

pj

(︂
f⃗
)︂
× Vj ,

which wraps the (normalized) weighted sum of the components V⃗ = (V1, . . .Vn) with weights
f⃗ = (f1, . . . fn−1), by defining pj according to

pj := (1− fj)

j−1∏︂
i=1

fi for j < n ,

pn :=

n−1∏︂
i=1

fi .

Using this notation we define S and D for Λb and Ξb:

S :=

⃦⃦⃦⃦(︃
G(2)(Ξb)
G(2)(Λb)

)︃⃦⃦⃦⃦
fs

,

D :=

⃦⃦⃦⃦
⃦
(︄
K(Ξb) ∗ G(2)

c (Λb)

K(Λb) ∗ G(2)
c (Λb)

)︄⃦⃦⃦⃦
⃦
fD∗

,

where G(2) (G(2)
c ) refers to a double Gaussian with shared (zero) mean

G(2) :=

⃦⃦⃦⃦(︃
G1

G2

)︃⃦⃦⃦⃦
fG

,
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and K are the kernel functions for Λb/Ξ
0
b → D∗0Λ decays as introduced in Appx. O. More

precisely, the latter is composed of the fixed superposition of the D∗0 modes D∗0→ D0π0 and
D∗0 → D0γ, and is convoluted with the resolution function as motivated previously. During
evaluation of the likelihood for the MC simulated samples, the corresponding signal component
is separated by enforcing (f1, fs) = (0, 0) or (f1, fs) = (0, 1). Besides that, f2 and fs are
constrained to not depend on the track type, whereas f1 is allowed to vary among different
track types. Similarly, the Gaussian shapes

G1 :=

{︄
G(x|µ, σ(LL)

1 ) for LL ,
G(x|µ+∆µ, σ

(DD)
1 ) for DD ,

G2 :=

{︄
G(x|µ, σ(LL)

2 ) for LL ,
G(x|µ+∆µ, σ

(DD)
2 ) for DD ,

are allowed to deviate among different track types. This includes fG and the shared mean value,
technically encoded by the shared shift ∆µ.

The unbinned, single entry fit w.r.t. Eq. (8.1) is performed with different configurations
of fixed and floating parameters and within the two different mass ranges 5.5 ≤ m(D0Λ) ≤
6 GeV/c2 and 5.2 ≤ m(D0Λ) ≤ 6 GeV/c2. We tried different combinations of floating and fixed
polarizations in the D∗ kernel functions K but could not obtain reasonable results. Thus we
stick to an unpolarized description, leaving with six configurations which yield converging fits:

1. Using the narrow mass range 5.5 ≤ m(D0Λ) ≤ 6 GeV/c2 cuts off most of the Λb→ D∗0Λ
background. The value of the fraction fD∗ is thus fixed to zero, making f2 the yield
of Ξ0

b → D∗0Λ and leaves 22 floating parameters that are optimized by the fit. The fit
converges successfully, but prefers f2 = 1 (upper boundary). The fitted values are listed
in Tab. P.1. In Fig. 8.1 we show the accumulated projection of recorded data and the fit
function. Other projections are shown in Appx. P.

2. In order to extract the significance of the signal yields observed with the previous fit,
we fix all contributions coming from MC simulated events, keep fD∗ fixed to zero and
disable D∗0 contributions in accordance with the previous results by enforcing f2 to one.
The likelihood Eq. (8.1) is then maximized with fs fixed to one and zero, corresponding
to the removal of the Ξ0

b and Λb component, respectively, and then compared with the
results when fs is a floating parameter. The projection of recorded data of the former
two fits is shown in Fig. P.6 together with respective fit projections. Since the fits with
fs set to one and zero have exactly one DoF less than the fit which allows floating values
for fs, the difference of their respective log-likelihoods ∆lnL can be used to approximate
the (statistical) significance S =

√
−2∆lnL. Doing so, we estimate a signal significance

of S = 5.5 and S = 1.8 for the decays Λb → D0Λ and Ξ0
b → D0Λ, respectively. This

approximation is based on Wilks theorem [108] whose applicability is tested with a pseudo-
experiment in Sec. 8.3.

3. In order to estimate the significance of the Λb → D∗0Λ background, we reevaluate the
fit using the broad mass range 5.2 ≤ m(D0Λ) ≤ 6 GeV/c2 and keep all fit parameters
floating. The invariant mass distributions and fit projections of recorded data are shown
in Fig. P.7. We note that f2 does not depend on the track type, presumably causing the
combinatorial background for LL tracks to overshoot at low m(D0Λ) values.

4. Extending the fit model and allowing f2 to take on different values for different tack types
fixes the issues that we observed during the previous fit (cf. Fig. P.8). The fitted values
for f2 are 0.66(12) and 0.98(9) for LL and DD tracks, respectively, differ strongly and
cannot be physically motivated.
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5. We repeat the fit in configuration 3 but this time replace the resolution function used for
smearing the D∗0 kernel functions K with the centralized Ξ0

b signal shape.

6. We artificially enrich the data set by drawing n instances from a smeared, unpolarized
Λb → D0Σ0 distribution, as derived in Appx. O, to the recorded data sample. The
amount of drawn instances n is fixed to 1/3 of the fitted Λb signal yield in accordance
with our estimations in Sec. 1.3. Since we expect genuine Λb → D0Σ0 in the recorded
data, we consider this is a conservative approximation of this background. We abstain
from a similar cross-check of Ξ0

b → D0Σ0 decays due to the low Ξ0
b → D0Λ yields and the

unclear branching ratio of the Σ0 mode.

7. In the previous configurations the mass difference m(Ξ0
b )−m(Λb) was fixed to its nominal

value 172.5 MeV/c2. The PDG states an uncertainty of 0.4 MeV/c2 which we use to test
the sensitivity of our model to this value by setting m(Ξ0

b )−m(Λb) to 172.1 MeV/c2 (7a)
and 172.9 MeV/c2 (7b).

Regarding the yields of the decays Λb → D0Λ and Ξ0
b → D0Λ, the results of the outlined fits

are compatible and give almost identical values for both modes as listed in Tab. 8.2.

Fig. 8.1. Combined invariant mass of D0 and Λ candidates (of both track types), as well as
the accumulated projection of the fit in configuration 1. Since f2 is compatible with
one (at upper limit), the corresponding D∗0 background contribution is suppressed
(graphically).

8.2 Yield Extraction
According to our definition of the likelihood in Eq. (8.1) the expanded fractions of Λb→ D0Λ
and Ξ0

b → D0Λ are (1− f1)× fs and (1− f1)× (1− fs), respectively. The yields for each track
type are found by multiplication with the amount of recorded events of the given track type nLL
and nDD. Consequently, the accumulated expanded fraction for both track types is given by
the weighted sum of the track type dependent fractions where nLL and nDD are the respective
weights. We note that for estimating the yields by multiplication with N = nLL + nDD, the
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Tab. 8.2. Corrected yields as obtained from (unbinned, single-entry) likelihood maximization
in the configurations 1 and 3 - 7. The extraction and correction of the yields is
discussed in Sec. 8.2.

Λb→ D0Λ Ξ0
b → D0Λ

Configuration LL & DD LL DD LL & DD LL DD
Fit 1 31± 7 16± 5 15± 5 6± 4 3.2± 2.2 3.0± 2.2
Fit 3 32± 7 16± 5 16± 5 6± 4 2.8± 2.1 2.9± 2.3
Fit 4 32± 7 16± 5 16± 5 6± 4 3.1± 2.2 2.9± 2.2
Fit 5 32± 7 16± 5 16± 5 6± 4 2.9± 2.2 2.9± 2.3
Fit 6 32± 7 16± 5 16± 5 6± 4 3.0± 2.2 3.0± 2.3
Fit 7a 32± 7 16± 5 16± 5 6± 4 3.1± 2.3 2.8± 2.2
Fit 7b 32± 7 16± 5 16± 5 6± 4 3.0± 2.4 3.2± 2.3

statistical uncertainty of nLL and nDD only contributes in N , not in the weights since they
are part of the chosen (exact) projection of the fit.1 Besides that, we find that ordinary error
propagation with the fitted correlations of f1 and fs and symmetric uncertainties is sufficient
due to the low asymmetry of each of the respective asymmetric uncertainties of 3% or less.

In order to investigate a possible bias of the yields and to test the validity of the error
estimates we run a pseudo-experiment where we draw N = nLL + nDD random events from
the fitted PDF (configuration 1) and apply the very same unbinned maximum likelihood fit to
these generated data that was used to obtain the parameters of the PDF itself. In Fig. 8.2 we
show the distribution of the fitted yields of the Λb → D0Λ and Ξ0

b → D0Λ components after
1000 consecutive runs of the outlined technique. (Also see Appx. P for more figures of the
pseudo-experiments.) For an unbiased fit with valid error estimates, both distributions should

Fig. 8.2. Difference of the fitted signal yields of pseudo-experiments and recorded data (resid-
ual) where the latter was used during generation of the former, as well as the differ-
ence of the respective expected and actual sample mean (r̄) and standard deviation
(σ). If r̄ = 0 and if the standard deviation is consistent with those found by the fit to
recorded data, then the fit is unbiased and has valid error estimations, respectively.

be distributed according to a clipped Gaussian distribution (cf. Appx. R). If so, the sample mean
and the standard deviation would follow Eq. (R.1) and Eq. (R.2), respectively, and the difference

1This Poisson part contributes less than 7% to the total uncertainty of the estimated yields. The rest is the
multinomial error.
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of the expected and actual sample mean (referred to as r̄ in Fig. 8.2) should be compatible with
zero. From Fig. 8.2 we see that the expectations are met for both standard deviations and the
mean value of the pseudo-experiments of the Λb→ D0Λ fit, within the respective uncertainties,
corresponding to a valid error estimation and an unbiased fit, respectively. For fitted Ξ0

b → D0Λ
yields though, the results are larger by an offset of 0.29(14) on average, which is less than 5% of
the nominal value. In a first order approximation we correct for this bias by subtracting fitted
yields with the offset. The corrected signal yields are listed in Tab. 8.2.

8.3 Validation of Yield Significances with Pseudo-Experiments
When calculating the signal yield significances we made use of Wilks theorem [108] that states,
as the sample size tends to infinity, twice the log-likelihood ratio

2 log
L1

L2
≡ 2∆logL ,

tends to a χ2-distribution with k DoF, where k is the absolute difference of the DoF of L1 and
L2. This approximation works best if all k DoF are uncorrelated (trivially given for k = 1), but
quickly becomes worse otherwise. In order to verify the quality of the approximation we again
use a pseudo-experiment. We generate three sample sets where the first consists of instances
drawn from the full fitted PDF, and the latter two are drawn from a modified PDF where
fs is set to zero and one to disable the Λb and Ξ0

b signal component, respectively, and f1 is
adjusted to retain the same ratio between the remaining signal mode and the combinatorial
background B (cf. Appx. P and in particular Fig. P.1 and Fig. P.11 for more details). In
total we generate 1000 samples for each set and track type, and each sample consists of 50
(70) instances which corresponds to the amount of events of LL (DD) tracks within the fit
range. Each sample is fitted (in configuration 2, cf. Sec. 8.1) and the log-likelihood ratios are
calculated. The resulting distribution of twice these ratios is shown in Fig 8.3, as well as the
expected (clipped) χ2-distribution as derived in Appx. R. The distributions appear to be in

Fig. 8.3. Distribution of twice the log-likelihood ratio for 1000 samples of a pseudo-experiment
(Toy MC) used for validating the estimated Λb (left) and Ξ0

b (right) yield signifi-
cances. The samples are generated under the null hypothesis (no signal) and can
thus benchmark our actual observation of twice the log-likelihood ratio of roughly
31 (left) and 3 (right). The validity is based on Wilks theorem and is ensured, when
the distribution follows a (clipped) χ2-distribution (dashed line).

good agreement with the expected (clipped) χ2-distributions and thus validate the estimated
yield significance.

— 96 —



Chapter 9

Estimation of Branching Ratios
If enough data is collected, anything may be proven by statistical methods.

— Williams and Holland’s Law, from Arthur Bloch’s book Murphy’s Law.
With the available dataset and the established fit model we transform the measured yields
of Λb → D0Λ and Ξ0

b → D0Λ decays into branching ratios. In Sec. 9.1 we determine the
branching fraction of Λb→ D0Λ w.r.t. the three-body decay Λb→ D0pπ− and discuss systematic
uncertainties. In Sec. 9.2 we then determine the branching ratio of the Ξ0

b decay w.r.t. its
Λb counterpart which can be directly extracted from the fit. Since the Ξ0

b yield has a low
significance we estimate two-sided confidence intervals and upper limits for this ratio.

9.1 Branching Ratio B(Λb→ D0Λ)/B(Λb→ D0pπ−)

The data sample used for extracting the signal significances in the previous chapter was an
admixture of L0 TIS and L0 TOS triggered events. Especially for the former, MC techniques
cannot simulate the efficiency reliably. For the given dataset the amount of events with a
negative L0 TIS trigger decision (i.e., only L0 TOS trigger is set) is very low (cf. Fig. P.2) and
only four such events are found in the signal bin (5.60 < m(D0Λ) ≤ 5.64 GeV/c2). We argue that
excluding those four events by requiring a positive L0 TIS trigger decision does not significantly
impact the overall significance, but renders dedicated studies of L0 TOS trigger decisions, that
would come with their own set of statistical and systematic uncertainties, needless. In contrast
to L0 TOS triggered events, the L0 TIS efficiency cancels in good approximation in ratios of
decays with common final states, such as Λb → D0Λ and Λb → D0pπ−. The quality of the
approximation even improves, if contributions of non-trivial correlations among the b-hadrons,
that were produced during the pp interaction, cancel in the ratio because they are of the same
type (e.g., both are Λb baryons). Since both conditions are met for Λb→ D0Λ and Λb→ D0pπ−,
we discard events with a negative L0 TIS trigger decision for the estimation of the branching
fraction.

Applying the fit in configuration 1 to the reduced data sample yields

nTIS(Λb→ D0Λ) = 28± 7 =

{︄
14± 5 LL,
14± 5 DD.

The projections of this fit for LL and DD tracks are shown in Fig. 9.1.
The branching ratio is determined by correcting the ratio of the fitted yields by their com-

bined reconstruction and stripping efficiency εrec & strip (cf. Chap. 3), the efficiency of the tight
selection εsel and the branching fraction of the Λ→ pπ− decay:

B(Λb→ D0Λ)

B(Λb→ D0pπ−)
=

nTIS(Λb→ D0Λ)

nTIS(Λb→ D0pπ−)
× εrec & strip(Λb→ D0pπ−)

εrec & strip(Λb→ D0Λ)

× εsel(Λb→ D0pπ−)

εsel(Λb→ D0Λ)
× 1

B(Λ→ pπ−)
=

{︄
0.015± 0.005± 0.003 (LL),
0.017± 0.005± 0.004 (DD),

— 97 —



Chapter 9. Estimation of Branching Ratios

Fig. 9.1. Combined invariant mass of D0 and Λ candidates of track type LL (top) and DD
(bottom) from recorded data, as well as the corresponding projections of the simul-
taneous fit in configuration 1. For recorded data a positive L0 TIS trigger decision
is required.
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9.1. Branching Ratio B(Λb→ D0Λ)/B(Λb→ D0pπ−)

where the first (second) error is the total statistical (systematic) uncertainty as the result of an
ordinary error propagation. The components of this propagation are listed in Tab. 9.1 and are
discussed below:

Λb→ D0Λ/pπ− fit Fitted yields of L0 TIS triggered Λb → D0Λ and Λb → D0pπ− events.
The statistical error of the former is dominated by the multinomial part of the fit model.
Different variations of this fit model (cf. Sec. 8.1) did not reveal major deviations and we
therefore approximate the systematic uncertainty being less than 1 : 14 (< 10%). The
total error of the latter is dominated by the systematic uncertainty from the respective
fit model (cf. Sec. 6.2).

Rec. × strip. ratio Ratio of the combined reconstruction and stripping efficiency as derived
in Chap. 3. The figures are given relative to the total amount of generated Λb → D0Λ
decays and thus also account for the splitting ratio of Λ→ pπ− into LL and DD tracks.
The assumed systematic uncertainty of 10% is discussed in Chap. 3. We note that the
statistical uncertainty is correlated among Λb → D0Λ decays of both track types since
both of them use the same sample of Λb→ D0pπ− candidates for normalization. However,
the magnitude of the statistical uncertainties is small compared to the other contributions.
Thus they can be neglected.

Λb→ D0Λ/pπ− tight sel. Efficiency of the tight selection and Λb → D0pπ− veto for the
former, and efficiency of a subset of the tight selection for the latter, estimated with MC
simulated events. In order to avoid a potential bias, we use the subset of the available MC
simulated Λb→ D0Λ decays not used during training (and hyper-parameters optimization)
of the classifier at the cost of a slightly larger statistical uncertainty (cf. Sec. 5.2). This
restriction does not affect the efficiency estimation with MC simulated Λb→ D0pπ− decays
since this sample was not involved in the training procedure of the classifiers. The origin
of the systematic uncertainties is discussed in Appx. M and considered a conservative
approximation, since parts might cancel in the branching ratio due to the common set
of thresholds. The large amount of available MC simulated Λb → D0pπ− decays yields
a small systematic uncertainty which can be neglected (including its correlation) in the
context of the full error analysis.

MC calibration In Chap. 4 we established two different calibration schemes. We use Scheme
2 for the calibration of MC simulated events and take the deviation to Scheme 1 as a
systematic uncertainty.

The results for LL and DD tracks can be combined and averaged to improve the overall
significance

B(Λb→ D0Λ)

B(Λb→ D0pπ−)
= 0.016± 0.004± 0.003 .

Combining the ratio with the measured branching fraction

B(Λb→ D0pπ−) = (6.3± 0.7)× 10−4 ,

as reported by the PDG, yields

B(Λb→ D0Λ)

B(Λb→ D0pπ−)
× B(Λb→ D0pπ−) = (9.9± 2.3± 1.6± 1.1⏞ ⏟⏟ ⏞

3.0

)× 10−6 , (9.1)

where the first (second) uncertainty is statistical (systematic) and the third error is the (exter-
nal) uncertainty of the normalization. The total uncertainty is 3.0 × 10−6. Our result thus is
compatible with the theory prediction from Ref. [49]

Bpred(Λb→ D0Λ) = 4.56× 10−6
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Tab. 9.1. Nominal values (n), as well as statistical (ustat) and systematic (usys) uncertainties
involved in the estimation of the branching ratio of Λb→ D0Λ and Λb→ D0pπ− for
both track types. Uncertainties which are (partially) correlated among the estimated
branching ratios of LL and DD tracks are marked with †.

LL DD
n ustat usys n ustat usys

Λb→ D0Λ fit (L0 TIS) 14 31% < 10% 14 33% < 10%
Λb→ D0pπ− fit (L0 TIS) 39 300 < 1% 7% 36 000 < 1% 7%
Rec. × strip. ratio† 17.04 < 1% 10% 7.26 < 1% 10%
Λb→ D0Λ tight sel. 0.348 2.9% 7% 0.136 6.6% 19%
Λb→ D0pπ− tight sel.† 0.5476 < 1% 4.3% 0.5098 < 1% 4.9%
MC calibration – – 1.9% – – 5.5%
1/B(Λ→ pπ−)† [15] 1.565 – < 1% 1.565 – < 1%

31% 18% 33% 26%

within two standard deviations. We note that the measurement of B(Λb→ D0pπ−), although
dominated by an LHCb measurement, is not correlated with our measurement since the LHCb
analysis uses data recorded during Run 1 rather than Run 2 as we do in the present analysis [15,
69].

9.2 Branching Ratio B(Ξ0
b → D0Λ)/B(Λb→ D0Λ)

The constraint fit to the combined invariant mass of D0 and Λ candidates of both track types
allows a clean extraction of the branching ratio

B(Ξ0
b → D0Λ)

B(Λb→ D0Λ)
=
fΛb

fΞ0
b

× 1− fs
fs

, (9.2)

where fΛb
/fΞ0

b
is the ratio of the fragmentation fractions of b-quarks into Λb and Ξ0

b baryons,
and fs is a fit parameter that we established in Sec. 8.1. (Not to be confused with the fragmenta-
tion fractions of b-quarks into B0

s mesons.) The systematic uncertainty of this technique is very
low in comparison to the large statistical uncertainty. Fidelity issues in MC simulated events
play a minor role and enter only if they induce a non-trivial correction to the ratio Eq. (9.2)
which is disfavored by the MC simulated Λb → D0Λ and Ξ0

b → D0Λ decays (cf. Tab. 8.1). In
particular we find that the nominal value of the branching ratio is largely independent of our
choice of the MC calibration.

We estimate two confidence intervals (CI) following a frequentist interpretation by using
pseudo-experiments, and two CIs using a Bayesian interpretation by scanning the fitted likeli-
hood profiles of fs and assuming a uniformly distributed prior (1− fs)/fs. All these intervals
are shown in Fig. 9.2 and Tab. 9.2 with 68% and 90% CL. (We note that the upper boundary
of the two-sided shortest CIs (in both interpretations) with a 90% CL are equivalent to 95%
CL upper limits.) We also estimate a Bayesian upper limit when requiring a minimal flight
distance significance of D0 candidates to suppress charmless Ξ0

b backgrounds (cf. Sec. 7.3.1)
and append the result to Tab. 9.2. In Appx. S we give a more detailed overview about the
estimation of these CIs.

The measurements of absolute branching fractions are difficult to perform at hadron colliders
without using external input. In particular, measurements of absolute Ξb branching fractions
are limited by the amount of available data, thus it is still common to report branching ratios
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9.2. Branching Ratio B(Ξ0
b → D0Λ)/B(Λb→ D0Λ)

Fig. 9.2. Two-sided CIs with 68 % and 90 % coverage for (1−fs)/fs, estimated using different
frequentist and Bayesian approaches. We note that the upper boundaries of the
(two-sided) central CIs with 90 % CL are identical with 95 % CL upper limits.

Tab. 9.2. Two-sided CIs with 68 % and 90 % coverage, as well as 95 % CL upper limits for
(1 − fs)/fs, estimated using different frequentist and Bayesian approaches. The
limits shown in the last row (†) are the results of a fit when an additional veto
against charmless Ξ0

b backgrounds is required.
Method 68 % CL 90 % CL 95 % CL
Freq. CI (central) [0.089 . . . 0.363] [0.023 . . . 0.474] [0 . . . 0.474]
Freq. CI (shortest) [0.130 . . . 0.418] [0.063 . . . 0.519] –
Bayes CI (central) [0.133 . . . 0.438] [0.075 . . . 0.589] [0 . . . 0.589]
Bayes CI (shortest) [0.085 . . . 0.372] [0.031 . . . 0.517] –
Bayes CI (upper limit†) – [0 . . . 0.437] [0 . . . 0.537]
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involving Ξb baryons in product with the respective b-fragmentation ratios. Lately, first indirect
measurements of fΞ0

b
/fΛb

were carried out by the LHCb collaboration [21] and leveraged the
predictions fΞ0

b
/fΛb

= 0.065(20) [109] and fΞ0
b
/fΛb

= 0.054(20) [110]. Still, it is known from
precise measurements of b-fragmentations into different b-mesons and Λb baryons that these
values depend on transverse momentum and pseudo-rapidity [96, 97]. A first measurement of
fΞ−

b
/fΛb

at different center-of-mass energies confirms this dependence for Ξb baryons [111].
Since measurements and predictions of fΞ0

b
/fΛb

are still rare and kinematic dependencies are
not yet included in the predictions, we stick to the common practice and only report the product
of the branching fraction B(Ξ0

b → D0Λ)/B(Λb→ D0Λ) and the fragmentation ratio fΞ0
b
/fΛb

.

9.3 Summary and Outlook
Using the full available Run 2 data set we find the decay Λb→ D0Λ with a statistical significance
of 5.5 standard deviations and estimate the branching ratio

B(Λb→ D0Λ)

B(Λb→ D0pπ−)
= 0.016± 0.004± 0.003 , (9.3)

where the first uncertainty is statistical and the second is systematic. An excess of Ξ0
b → D0Λ

candidates is observed with a statistical significance of 1.8 standard deviations and used to
estimate upper limits, e.g.,

fΞ0
b

fΛb

× B(Ξ0
b → D0Λ)

B(Λb→ D0Λ)
< 0.5 (CL = 95%) . (9.4)

Let us recap how these results were obtained: In Chap. 4 we calibrated MC simulated events
and used them together with recorded data to train binary classifiers in Chap. 5 to separate
signal and combinatorial background. Contributions from physical backgrounds were analyzed
in Chap. 7 and were either found negligible after requiring dedicated selections or were included
in the fit model described in Chap. 8. Studies of the normalization mode were presented in
Chap. 6.

The results reported in Eq. (9.1), Eq. (9.3), and Eq. (9.4) are limited statistically, even though
the intermediate particles are reconstructed in their dominant modes, i.e., D0 → K−π+ and
Λ→ pπ−. The inclusion of more decay modes, for example D0 → K−π+π+π−, can increase
the significances slightly and allow CP measurements. However, to actually measure CKM
parameters, at least the Cabibbo suppressed decays D0→ K−K+ and D0→ π−π+ have to be
reconstructed, corresponding to the requirement of roughly 1/λ2 ≈ 20 times more data. This
is in reach within the next runs of the LHC. Additionally, charmless Λb decays will enter into
these modes as non-resonant background and require rich statistics to control, for example by
analyzing the lifetime of D0 candidates.

A sufficiently large data sample which would allow the reconstruction of the Cabibbo doubly
suppressed modes D0→ K+π−, would not just leverages an extraction of the CKM parameter
γ using ADS and GLW methods in decays of baryons, but would also allow a clean extraction of
B(Ξ0

b → D0Λ) due to the absence of charmless backgrounds in this mode. On top, an extraction
of Σ0 modes (both in Λb and Ξ0

b ) similar to Ref. [26] would become feasible and thus would
allow inference of yet unseen modes such as Ξ0

b → D0Ξ0 or Λb→ D0n.
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Glossary
∆χ2

IP Difference between the χ2 value of the PV reconstructed with and without the track
under consideration. 20, 47–50, 79, 120–122

ADS Method for extracting the CKM angle γ in decays such as Λb → DΛ, first proposed by
Atwood, Dunietz and Soni [50, 51], cf. Sec. 1.5. 13, 14, 86, 102

Babar Collaboration and HEP experiment at PEP-II. 88, 91

BDT (Gradient) Boosted Decision Tree, supervised (machine) learning model. 45, 55, 56, 59,
60, 69, 145

Belle Collaboration and HEP experiment at the KEKB accelerator. 89

BEPC II Circular e+e− Collider, operating at
√
s = 2 to 4.63 GeV. 103

BESIII Collaboration and HEP experiment at the Beijing e+e− Collider II (BEPC II). 9, 11,
91

CKM Unitary matrix which contains information on the magnitudes and complex phases for
flavor-changing weak interactions. 2–5, 13, 78, 88, 89, 102–104, 106

DD Both final state particles of a V 0 decay (e.g., Λ→ pπ− or KS→ π+π−) are reconstructed
as downstream tracks, cf. Sec. 2.1.1 for more details. 16, 23–26, 29, 30, 33–42, 47, 49, 51,
53–62, 64, 66, 68–72, 75–77, 80–82, 87, 88, 92, 93, 95–100, 117, 118, 120, 121, 127, 128,
133–135, 148, 150, 151, 155–159, 163, 164, 173–177, 179, 180

DIRA Direction angle, cosine of the angle between the momentum of the particle and the
direction vector from some reference vertex or 3D-point to the end-vertex of the particle.
20, 50, 120–122

DLL Delta log-likelihood. 19, 20, 120–122

DOCA Distance of closest approach. 21, 120–122

DoF Degrees of Freedom. 20, 28–30, 32, 35, 40, 41, 47–50, 79, 93, 96, 120–124, 127, 129, 133,
134, 158, 178, 185

DTF Decay tree fit. 21, 29, 30, 46–50, 70, 71, 76, 79, 80, 84, 85, 87, 123–125, 127, 128, 155–159,
163, 165

FN False Negative, cf. Appx. G. 54, 137

FNR False Negative Rate, cf. Appx. G. 70

FoM Figure of merit. 29, 30, 32, 73, 75

FP False Positve, cf. Appx. G. 137
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Glossary

FPR False Positve Rate, cf. Appx. G. 70, 73, 75

Ghost Prob. Output of an algorithm to identify tracks which do not correspond to the tra-
jectory of a (single) true particle but rather originate from detector noise or multiple
particles due to mismatching. 19, 21, 121, 122

GLW Method for extracting the CKM angle γ in decays such as Λb → DΛ, first proposed by
Gronau, London and Wyler [52, 53], cf. Sec. 1.5. 13, 14, 86, 102

HEP High Energy Physics. 15, 103, 155

HLT High level trigger, includes a full off-line reconstruction. 18, 19, 46, 78

KEKB Circular e+e− collider, operating at
√
s = m(Υ (4S)) = 10.57 GeV/c2. 103

L0 Level 0 trigger of the LHCb trigger system, implemented in hardware, followed by the high
level triggers. 17–19, 27–29, 33, 81, 82, 97–100, 136, 174

LL Both final state particles of a V 0 decay (e.g., Λ→ pπ− or KS→ π+π−) are reconstructed as
long tracks, cf. Sec. 2.1.1 for more details. 16, 23–26, 29, 30, 33–42, 47, 48, 51, 53–63, 65,
67–71, 75–77, 80–83, 87, 88, 92, 93, 95–100, 117, 118, 120, 121, 127, 128, 133–135, 147,
149, 151, 156–159, 163, 164, 173–177, 179, 180

MC Monte Carlo, refers to the used simulation strategy. The pp collisions are generated using
PYTHIA [112] with a specific LHCb configuration [113]. Decays of unstable particles are
described by EvtGen [114], where final-state radiations is generated using PHOTOS [115].
The interaction of the particles with the detector (and its response) are implemented using
the Geant4 toolkit [116, 117] as described in Ref. [118]. 19, 23–25, 27, 28, 30, 33–35, 37,
39, 40, 43, 45–51, 54, 67, 70, 77–81, 84, 86–89, 91–93, 97, 99, 100, 102, 133, 134, 153, 155,
156, 163–165, 175, 176

MVA Multi Variate Analysis. 45, 46, 50, 51, 55, 152, 153

PCA Principal Component Analysis, unsupervised (machine) learning technique, cf. Appdx. I.
51, 56, 60, 63–67, 141, 149, 150

PCC Pearson correlation coefficient, measure of the linear correlation between two variables.
For a given sample of paired data {(x1, y1), . . . (xn, yn)} the PCC is given by the estimates
of the covariance and variances:

PCC =

n∑︁
i=0

(xi − x)(yi − y)√︄
n∑︁

i=0

(xi − x)2

√︄
n∑︁

i=0

(yi − y)2

,

where x (y) is the sample mean of xi (yi). The denominator normalizes this expression,
according to the Cauchy-Schwarz inequality, to the interval [−1,+1], where +1 indicates
a total positive linear correlation, 0 no linear correlation and −1 a total negative linear
correlation. Higher order correlations are not reflected in the PCC. 68, 69, 147–150

PDF Probability Density Function. 80, 95, 96, 174, 187, 188
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Glossary

PDG Particle Data Group [15], collaboration of particle physicists that compiles and reanalyzes
published results. 7, 21, 25, 77, 91, 94, 99, 120, 121, 161

PEP-II Circular asymmetric-energy e+e− collider, operating at
√
s = 10.58 GeV/c2. 103

PID Particle identification. 19, 20, 29, 47, 50, 70

PV Primary Vertex, origin vertex of first particle in most decay chains, typically created by
pp-scattering close to the beam-pipe. 16, 20, 21, 28, 29, 46–50, 78, 79, 103, 120–124

reflection Background contribution due to misidentification of at least one particle. 51, 79, 80,
83, 86, 88, 162

RICH Ring Imaging Cherenkov, system of the LHCb detector providing identification of charged
particles. 17, 19, 20, 29

ROC Receiver Operating Characteristic (curve), graphical plot of TPR vs. TNR for varying
threshold. 60, 62, 68, 70, 71, 73–75, 151

ROC-AUC Area Under ROC Curve, probability that a given classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one. 56–61, 67–71, 151

Run 1 First major periode of data taking at the LHC, corresponding to L ≈ 1 fb−1 at
√
s =

7 TeV (2011) and L ≈ 2 fb−1 at
√
s = 8 TeV (2012). 15, 19, 45, 83, 100

Run 2 Second major periode of data taking at the LHC, corresponding to L ≈ 6 fb−1 and√
s = 13 TeV. 15, 17, 19, 23, 28, 45, 46, 78, 83, 91, 100, 102, 134, 135

stripping Set of selection criteria applied to data directly after data taking. 23–25, 28, 46, 78,
83, 119

SVM Support-Vector Machine, supervised (machine) learning model. 45, 46, 50, 51, 55–57,
60–62, 67–70, 87, 139, 143, 144, 151

Tevatron Circular pp collider at Fermilab operating at a beam energy of 1 TeV. 6

TIS trigger independent of signal. 19, 27–29, 33, 81, 82, 97–100, 136, 174

TN True Negative, cf. Appx. G. 137

TNR True Negative Rate, cf. Appx. G. 70, 74, 105

TOS trigger on signal. 19, 97, 136

TP True Positve, cf. Appx. G. 54, 137

TPR True Positve Rate, cf. Appx. G. 70, 71, 73–76, 105

truth-matched Each simulated track is attached with a label that allows a matching of tracks
and simulated decays. If the reconstruction hypothesis of a candidate matches the true
generated one (including all tracks), the given candidate is referred to as truth-matched.
23, 30–32, 34, 35, 46, 48–51, 75, 86, 105, 127, 128, 153

truth-matching Process of deciding whether a given simulated event is truth-matched or un-
matched. 28
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Glossary

VELO Vertex Locator, silicon vertex detector surrounding the interaction region. 7, 16, 17,
133, 158

Wolfenstein parameterization Parametrization of the CKM matrix, introduced by Lincoln
Wolfenstein with the four real parameters λ, A, ρ and η. 4, 7, 78
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Appendix A

Reconstruction and Stripping Efficiencies

Fig. A.1. Generator cut efficiencies of various decays for different simulation conditions. For
the sake of brevity magnet polarities are referred to as Down and Up for mag. down
and mag. up, respectively. In order to compensate for their wide numerical spread
(cf. Tab. A.1), each value is normalized to the respective mean of each decay for the
full available data set. (Not all decays are simulated for the years 2017 and 2018.)
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Appendix A. Reconstruction and Stripping Efficiencies

Tab. A.1. Simulation and trigger versions, as well as generator cut efficiencies (Gen. Cut) and
amounts (#DST) for different decays and simulation conditions. For the sake of
brevity, magnet configurations mag. down and mag. up are abbreviated with ↓ and
↑, respectively.

Decay Year Simulation Trigger Gen. Cut [%] #DST

Λb→ D0Λ 2015 ↓ Sim09c 0x411400a2 21.12(7) 2 009 840
2015 ↑ Sim09c 0x411400a2 21.28(7) 2 000 794
2016 ↓ Sim09c 0x6138160F 21.27(7) 2 040 356
2016 ↑ Sim09c 0x6138160F 21.05(7) 2 004 574

Ξ0
b → D0Λ 2015 ↓ Sim09h 0x411400a2 21.29(7) 1 000 273

2015 ↑ Sim09h 0x411400a2 21.29(7) 1 000 140
2016 ↓ Sim09g 0x6139160F 21.12(7) 3 005 698
2016 ↑ Sim09g 0x6139160F 21.17(7) 3 001 062

Λb→ D0pπ− 2015 ↓ Sim09d 0x411400a2 15.50(6) 151 253
2015 ↑ Sim09d 0x411400a2 15.61(6) 156 266
2016 ↓ Sim09d 0x6139160F 15.61(6) 606 368
2016 ↑ Sim09d 0x6139160F 15.64(5) 604 536
2017 ↓ Sim09f 0x62661709 17.25(19) 13 356 991
2017 ↑ Sim09f 0x62661709 17.57(18) 13 370 991
2018 ↓ Sim09f 0x617d18a4 17.23(19) 7 100 997
2018 ↑ Sim09f 0x617d18a4 17.61(19) 7 621 996

Λb→ D0pK− 2015 ↓ Sim09d 0x411400a2 17.04(6) 154 815
2015 ↑ Sim09d 0x411400a2 16.92(6) 154 293
2016 ↓ Sim09d 0x6139160F 16.94(6) 607 837
2016 ↑ Sim09d 0x6139160F 16.93(6) 604 865
2017 ↓ Sim09f 0x62661709 18.04(19) 13 316 384
2017 ↑ Sim09f 0x62661709 17.87(19) 13 857 088
2018 ↓ Sim09f 0x617d18a4 18.29(20) 7 382 992
2018 ↑ Sim09f 0x617d18a4 18.17(19) 7 487 998

Λb→ ΛK+K− 2015 ↓ Sim09c 0x411400a2 22.42(8) 1 002 336
2015 ↑ Sim09c 0x411400a2 22.51(8) 1 004 828
2016 ↓ Sim09c 0x6138160F 22.31(8) 2 502 437
2016 ↑ Sim09c 0x6138160F 22.45(8) 2 500 360
2017 ↓ Sim09f 0x62661709 22.57(8) 2 508 342
2017 ↑ Sim09f 0x62661709 22.55(8) 2 503 107
2018 ↓ Sim09f 0x617d18a4 22.37(7) 2 501 960
2018 ↑ Sim09f 0x617d18a4 22.35(7) 2 504 022

Λb→ J/ψΛ 2015 ↓ Sim09c 0x411400a2 19.89(5) 519 498
2015 ↑ Sim09c 0x411400a2 19.79(5) 506 398
2016 ↓ Sim09c 0x6139160F 19.84(5) 2 008 494
2016 ↑ Sim09c 0x6139160F 19.83(5) 2 008 422
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Appendix B

Stripping Selections
In this appendix we list preselection steps of the so-called stripping phase during reconstruction
of Λb → J/ψΛ, Λb → D0Λ, and Λb → D0pπ− decays in Tab. B.1, Tab. B.2 and Tab. B.3,
respectively. The optimization of these selection requirements was not objective of the present
analysis and, due to the deep encoding in the data storing process during data taking, should be
considered immutable in the context of the present analysis. Most requirements are considered
loose and are superseded by thresholds in the subsequent selection steps. We refer to Sec. 2.2
for an explanation of the acronyms and abbreviations.
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Appendix B. Stripping Selections

Tab. B.1. Selection criteria of the preselection step used for reconstructing Λb→ J/ψΛ. Com-
bination selections are evaluated before applying a vertex fit, whereas mother se-
lections are refined by such a fit. Variables and acronyms are explained Sec. 2.2.

Particle Type Selection
µ – pT > 0.5 GeV/c
µ – DLL(µ− π) > 0

p – p > 2 GeV/c
p – pT > 0.25 GeV/c
p (L) – DLL(p− π) > −5
p (L) – min. χ2 dist. to any PV > 9
p (D) – min. χ2 dist. to any PV > 4

π – p > 2 GeV/c
π – pT > 0.1 GeV/c
π (L) – DLL(p− π) > −5
π (L) – min. χ2 dist. to any PV > 9
π (D) – min. χ2 dist. to any PV > 4

at least one final state – p > 10 GeV/c
at least one final state – pT > 1.7 GeV/c
at least one final state – χ2/DoF of track fit < 4
at least one final state – min. dist. to any PV > 4σ and > 0.1mm
J/ψ combination |m(J/ψ )− PDG| < 150 MeV/c2

J/ψ combination χ2 of DOCA(µ+, µ−) < 20
J/ψ mother |m(J/ψ )− PDG| < 80 MeV/c2

J/ψ mother χ2 of end vertex < 16

Λ (LL) combination |m(Λ)− PDG| < 50 MeV/c2

Λ (DD) combination |m(Λ)− PDG| < 80 MeV/c2

Λ (LL) combination χ2 of DOCA(p, π−) < 30
Λ (DD) combination χ2 of DOCA(p, π−) < 25
Λ mother |m(Λ)− PDG| < 15 MeV/c2

Λ mother χ2 of end vertex < 20

Λb combination 5.02 ≤ m(Λb) ≤ 6.22 GeV/c2

Λb mother 5.12 ≤ m(Λb) ≤ 6.12 GeV/c2

Λb mother χ2/DoF of end vertex < 10
Λb mother lifetime w.r.t. best PV > 0.2 ps
Λb mother ∆χ2

IP w.r.t. best PV < 25
Λb mother DIRA w.r.t. best PV > 0.999
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Tab. B.2. Selection criteria of the preselection step used for reconstructing Λb→ D0Λ. Com-
bination selections are evaluated before applying a vertex fit, whereas mother se-
lections are refined by such a fit. Variables and acronyms are explained Sec. 2.2.
At this early stage of the analysis, the final states of D0 are not treated differently
and in order to avoid ambiguity with the π from Λ→ pπ− we refer to them as h for
the sake of brevity.

Particle Type Selection
p – p > 2 GeV/c
p – pT > 0.25 GeV/c
p (L) – DLL(p− π) > −5
p (L) – min. χ2 dist. to any PV > 9
p (D) – min. χ2 dist. to any PV > 4

π – p > 2 GeV/c
π – pT > 0.1 GeV/c
π (L) – DLL(p− π) > −5
π (L) – min. χ2 dist. to any PV > 9
π (D) – min. χ2 dist. to any PV > 4

h – p > 1 GeV/c
h – pT > 0.1 GeV/c
h – min. χ2 dist. to any PV > 4
h – χ2/DoF of track fit < 4
h – Ghost Prob. < 0.4

at least one final state – p > 10 GeV/c
at least one final state – pT > 1.7 GeV/c
at least one final state – χ2/DoF of track fit < 4
at least one final state – min. dist. to any PV > 4σ and > 0.1mm
all final states i –

∑︁
i pT

(i) > 5 GeV/c
any h – pT > 0.5 GeV/c
any h – p > 5 GeV/c

D0 combination 1764.84 ≤ m(K−π+) ≤ 1964.84 MeV/c2

D0 combination DOCA(K−, π+) < 0.5mm
D0 mother χ2/DoF of end vertex < 10
D0 mother χ2 distance to best PV > 36

Λ (LL) combination |m(Λ)− PDG| < 50 MeV/c2

Λ (DD) combination |m(Λ)− PDG| < 80 MeV/c2

Λ (LL) combination χ2 of DOCA(p, π−) < 30
Λ (DD) combination χ2 of DOCA(p, π−) < 25
Λ mother |m(Λ)− PDG| < 15 MeV/c2

Λ mother χ2 of end vertex < 20

Λb combination 5.02 ≤ m(Λb) ≤ 6.22 GeV/c2

Λb mother 5.12 ≤ m(Λb) ≤ 6.12 GeV/c2

Λb mother χ2/DoF of end vertex < 10
Λb mother lifetime w.r.t. best PV > 0.2 ps
Λb mother ∆χ2

IP w.r.t. best PV < 25
Λb mother DIRA w.r.t. best PV > 0.999
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Tab. B.3. Selection criteria of preselection used for reconstructing Λb→ D0pπ−. Combination
selections are evaluated before applying a vertex fit, whereas mother selections are
refined by such a fit. Variables and acronyms are explained Sec. 2.2. At this early
stage of the analysis, the final states of D0 are not treated differently and in order
to avoid ambiguity with the π− from Λb → D0pπ− we refer to them as h for the
sake of brevity.

Particle Type Selection
h – p > 1 GeV/c
p – p > 2 GeV/c
π – p > 2 GeV/c

p – DLL(p− π) > −10
π – DLL(K − π) < 20

at least one final state – p > 10 GeV/c
at least one final state – pT > 1.7 GeV/c
at least one final state – χ2/DoF of track fit < 4
at least one final state – min. dist. to any PV > 4σ and > 0.1mm
all final states – pT > 0.1 GeV/c
all final states – min. χ2 dist. to any PV > 4
all final states – χ2/DoF of track fit < 4
all final states – Ghost Prob. < 0.4
all final states i –

∑︁
i pT

(i) > 5 GeV/c
any among {p, π} – pT > 0.5 GeV/c
any among {p, π} – p > 5 GeV/c
any h – pT > 0.5 GeV/c
any h – p > 5 GeV/c

D0 combination 1764.84 ≤ m(K−π+) ≤ 1964.84 MeV/c2

D0 combination DOCA(K−, π+) < 0.5mm
D0 mother χ2/DoF of end vertex < 10
D0 mother χ2 distance to best PV > 36

pπ− combination pT > 1 GeV/c
pπ− combination m(pπ) < 5 GeV/c2

pπ− combination DOCA(p, π−) < 0.5mm
pπ− mother χ2 of end vertex < 16
pπ− mother χ2 dist. to best PV > 16

Λb combination 5.02 ≤ m(Λb) ≤ 6.22 GeV/c2

Λb mother 5.12 ≤ m(Λb) ≤ 6.12 GeV/c2

Λb mother χ2/DoF of end vertex < 10
Λb mother lifetime w.r.t. best PV > 0.2 ps
Λb mother ∆χ2

IP w.r.t. best PV < 25
Λb mother DIRA w.r.t. best PV > 0.999
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Decay Tree Fit
In complex decay chains, such as Λb→ (D0→ K−π+)(Λ→ pπ−), typically only the very first
particle in the decay chain (Λb) and the final state particles (K−, π+, p and π−) produce
signatures in the detector. In general, the initial particle is produced during the high energetic
pp-scattering which causes a plethora of detector signatures. Its position is therefore directly
reconstructible and referred to as the primary vertex (PV), whereas the latter are reconstructed
as (charged) tracks from multiple vertices, measured by various detector modules. The matching
of both is ambiguous in general and is additionally impeded by measurement inaccuracies. A
decay tree fit (DTF) refines those measurements in one global fit w.r.t. a set of constraints and
allows an ordering of the different track and PV combinations by their respective χ2 value. A
DTF is a fit of constraints1 and therefore a correction of the measured track parameters w.r.t.
given hypotheses. The measurements are assumed as external constraints with uncertainties,
whereas the assumed hypotheses are encoded as strict internal constraints. A DTF without any
constraints is pointless and has zero DoF. For n measured points and 0 < k < n constraints
the number of parameters is n− k since each constraint can be used to eliminate one measured
point by giving it in terms of the remaining measurements. Hence the DoF of the χ2 of the
DTF is n− (n− k) = k.

A DTF is used to fit an entire decay chain which can include intermediate states. Each
intermediate state can either be a short-living resonance or an intermediate state with a finite
decay length. Whether or not an intermediate state is considered short- or long-living depends
on the detector resolution. For the LHCb detector, J/ψ mesons are considered to be short-
living, whereas D0 mesons or Λ baryons are categorized as long-living intermediate states.
Each intermediate state contributes to the set of constraints by forcing origin- and decay-vertex
to be fixed points. For Λb→ (D0→ K−π+)(Λ→ pπ−) this leads to a set of three constraints,
i.e., three DoF in total (cf. Fig. C.1):

• The p and π− tracks should not be skewed. Their common intersection is the decay vertex
of the Λ baryon.

• Similarly, both, K− and π+, should intersect at the decay vertex of the D0 meson.

• The tracks of the intermediate states Λ and D0 that are inferred by four-momentum
conservation of the final state particles, should not be skewed lines either, but form the
decay vertex of the Λb baryon. Consequently, this vertex is also the origin vertex of the
intermediate states and can be used to determine the lifetime of the respective states.

For long-living intermediate states that decay via a two-body channel, each vertex constraint
contributes one additional DoF to the χ2 of the respective DTF. For short-living intermediate
states or decay channels with more than two final states the contribution is larger. For example,
the total DoF of the vertex constraints of a DTF of a Λb → (J/ψ → ℓ+ℓ−)(Λ→ pπ−) decay
sums up to four, since the J/ψ meson is a resonance and thus effectively makes the decay vertex
of the Λb a three point vertex Λb→ ℓ+ℓ−Λ that comes with three DoF.

1Technically, at LHCb the DTF is implemented as a Kalman filter, cf. Ref. [119] for more details.
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Additional constraints can be applied, e.g., in most cases it makes sense to constrain the
origin vertex of the very first particle of a given decay chain to the PV and since this is a fixed
point this constraint adds two DoF to the fit. Another useful constraint is a mass constraint
which forces the invariant mass, given by four-momentum addition of an intermediate state, to
match a given particle hypothesis. Each mass constraint adds one additional DoF to the fit.

(a) Λb→ D0Λ (b) Λb→ J/ψΛ

Fig. C.1. Decay topologies as seen by a DTF of the decays Λb→ D0Λ (left) and Λb→ J/ψΛ
(right). At LHCb the J/ψ is a (short-living) resonance and the decay vertex of the
Λb baryon appears as a three-point vertex Λb→ ℓ+ℓ−Λ during reconstruction (four
DoF w/o PV or mass constraints), whereas the flight lengths of the D0 meson and Λ
baryon can be measured significantly and finite decay lengths can be accommodated
in a DTF (three DoF w/o PV or mass constraints).

Constraining the mass of resonances, in general improves the resolution of related kinematic
features, but does also introduce non-trivial distortions of background components. For exam-
ple, during the analysis of the background contribution of Λb→ D0pπ− decays in the invariant
mass of D0 and Λ candidates, we discovered a dilution of the flight distance of Λ candidates. In
case of genuine Λb→ D0pπ− decays, the distribution of the flight distance of pπ− combinations,
spuriously forming a Λ candidate, is symmetrically smeared around zero due to resolution effects
in presence of no m(Λ) mass constraint and is uncorrelated with the invariant mass m(pπ−) as
shown in Fig. C.2a. Constraining m(Λ) to its nominal value significantly increases the smearing
and introduces a strong correlation between the flight distance and the invariant mass m(pπ−)
as shown in Fig. C.2b. (Clearly, the latter has to be evaluated before applying the DTF and
forcing its value to the nominal value.) The reason for this behavior is that a mass constraint
(similar to a PV constraint) affects the opening angle of the daughters of the Λ candidate:
If the combined invariant mass of the p and π− is below the constrained value of m(Λ), the
DTF pushes the three-momentum magnitudes towards larger values during the optimization. A
correlation with the decay tree of the corresponding D0 is evaded by simultaneously increasing
the opening angle between the three-momentum vectors which corresponds to an increase of
the reconstructed flight distance. Similarly, invariant masses above m(Λ) pushes the opening
angle towards smaller values and thus decrease the reconstructed flight distance.

In Fig. C.3 we compare the effects of requiring a minimal flight distance and a minimal DTF
probability for the quoted example of the non-resonant background Λb→ D0pπ− in m(D0Λ).
The data are simulated Λb→ D0pπ− decays after a preselection step. Before applying neither
of both criteria, the distribution of the invariant mass is flat in good approximation. Requiring
a minimal DTF probability symmetrically rejects events which are too far off the fixed m(Λ)
value, whereas the flight distance criterion rejects only events above this value, resulting in the
strongly asymmetric distribution we witnessed in Sec. 7.1.
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(a) DTF without m(Λ) constraint. (b) DTF with m(Λ) constraint.

Fig. C.2. Correlation of the combined invariant mass of p and π− candidates of genuine Λb→
D0pπ− decays, reconstructed as Λb → D0Λ and the flight distance significance in
presence of a DTF. Constraining the invariant mass m(pπ−) to m(Λ) (dashed line)
introduces a significant correlation and increases the smearing of the flight distance
distribution compared to the case of a DTF without a m(Λ) constraint (left). (Note
the different scaling of the y-axis.) The invariant mass shown on the x-axes (left
and right) is the result of a four-momentum addition before applying the respective
DTFs.

Fig. C.3. Effect of requiring a minimal flight distance (Λ FD) and a minimal DTF probability
(DTF) to simulated Λb→ D0pπ− decays that are reconstructed and fitted as Λb→
D0Λ to the combined invariant mass of p and π− candidates.
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Appendix D

Fit Probability
In Sec. 4.1.3 we use the distribution of χ2

DTF of a DTF to suppress combinatorial background.
An interesting transformation of the χ2

DTF distribution is achieved via the regularized upper
incomplete gamma function

χ2 ↦→ 1

Γ (DoF/2)

∞∫︂
χ2/2

dt tDoF/2−1e−t , (D.1)

where Γ(s) is the complete gamma function. The result of this transformation, which we refer
to as the fit probability Prob(χ2, n), is the probability that an observed χ2

obs exceeds the value
χ2 by chance, even for a correct model. The fit probability itself is distributed uniformly for
χ2-distributed events with DoF degrees of freedom.

Fig. D.1. Fit probability as a function of χ2 with 8 DoF as defined in Eq. (D.1).

For the selection requirements of the established tight selection of Λb → J/ψΛ decays,
χ2

DTF/DoF = 3 (2) for LL (DD) tracks with DoF = 8 (cf. Fig. D.1), the inverted fit prob-
ability is

1− Prob(3× 8, 8) = 99.8% ,

1− Prob(2× 8, 8) = 95.8% .

These numbers do not reproduce those found in data (cf. Tab. 4.3) and thus χ2
DTF/DoF is not

exactly χ2-distributed with 8 DoF. In Fig. D.2 we show the fit probability distribution of LL
and DD tracks, and for recorded data and (truth-matched) simulated events. Although none of
these distributions are flat as expected from a χ2-distribution, there is no significant discrepancy
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between recorded data and simulated events visible.1 The reason for the deviation from the
expected uniform distribution at small fit probability values is unclear. Small fit probability
values mean large χ2 values such that the accumulation at small fit probability values translates
into too many DTFs with large χ2 values, i.e., deviations of a Gaussian shape that raises χ2-tail
contributions.

There are two main reasons which could potentially cause accumulations at small fit proba-
bility values: Non-Gaussian effects and an incomplete uncertainty budget of the applied track
fit. Due to the central limit theorem, the former effect will get diluted for many different contri-
butions, eventually, whereas the latter remains, even for many different effects. Examples that
typically contribute to both of these categories are instrumental misalignment and imprecise
material calculations which both introduce additional scattering and other kinds of interactions.
Additionally, both of these could potentially impair the spatial and temporal resolution of the
magnetic field. On top of that, scattering at large angles of charged particles (all final state
particles in the present analysis are charged) with atomic electrons or nuclei, bend tracks that
are assumed to be straight lines in the DTF approach. All these effects increases the χ2 value
of the DTF and will affect the fit probability calculation if the corresponding uncertainties are
incompletely described during the track fit.

Fig. D.2. Fit probability of LL and DD tracks (top and bottom), and for recorded data (left)
and truth-matched, simulated events (right).

1In Appx. M we discuss the effect of deviations for large χ2 values. These deviations are a nuisance for efficiency
estimations, but not for the estimation of the calibration factors.
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Cubic Splines and their derivatives
Throughout the present analysis we occasionally use cubic splines for smoothing distributions,
by fitting yi for a fixed set of (xi, yi) tuples and calculating a spline between these points. Typ-
ically, each yi can be associated with an uncertainty and in order to propagate this uncertainty
to the resulting spline fit, the derivatives of a spline function are needed. Due to the lack of
available implementations for this specific problem, we roll out our own implementation of cubic
splines, based on the theory described below.

Splines are a model independent way to interpolate between grid points. Cubic splines realize
this interpolation with polynomial pieces of the form

fi(t) = ai + bit+ cit
2 + dit

3 for i = 1 . . . k ,

where t is a parameter t ∈ [0, 1]. For n = k + 1 grid points (x0, y0), . . . , (xk, yk) there are k
polynomial pieces fi. Each parameter t maps for the polynomial piece fi from the interval
t ∈ [0, 1] to x ∈ [xi, xi+1]

t = t(x) =
x− xi

xi+1 − xi

such that

f(x) =

⎧⎪⎪⎨⎪⎪⎩
f1(t) for x ∈ [x0, x1]
...
fk(t) for x ∈ [xk−1, xk]

has a gapless coverage on [x0, xk]. Each polynomial piece brings 4 DoF. Following Ref. [120]
these DoF are fixed by simultaneously satisfying the following set of constraints:

• fi(0) = yi for i = 1 . . . k ,
• fi(1) = yi+1 for i = 1 . . . k ,
• f ′i(1) = f ′i+1(0) for i = 1 . . . (k − 1) ,
• f ′′i (1) = f ′′i+1(0) for i = 1 . . . (k − 1) and,
• f ′′1 (0) = f ′′k (1) = 0 (natural splines).

These are k+ k+ (k− 1) + (k− 1) + 2 = 4k relations that constrain all 4k coefficients ai, bi, ci
and di. The latter relation defines natural (cubic) splines and is a boundary condition. Other
common boundary conditions are:

• not-a-knot: The third derivative is also continuous at (x1, y1) and (xk, yk).
• periodic: The interpolated functions is assumed to be periodic, i.e. (x0, y0) ≡ (xn, yn).
• clamped: The first derivative at curve ends are zero.

— 129 —



Appendix E. Cubic Splines and their derivatives

The coefficients ai, bi, ci and di are unambiguously defined by the given set of grid points
y0, . . . , yk:

ai = yi ,

bi = Di ,

ci = 3(yi+1 − yi)− 2Di −Di+1 ,

di = 2(yi − yi+1) +Di +Di+1 ,

with Di := f ′i(0). This set of equations translates into solving the matrix equation

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1
1 4 1

1 4 1
1 4 1

. . . . . . . . .
1 4 1

1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

=:T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0

D1

D2

D3

...
Dk−1

Dk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 − y0
y2 − y0
y3 − y1

...
yk−1 − yk−3

yk − yk−2

yk − yk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix T as defined above is a special case of the more general class of non-singular
tridiagonal matrices

T̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
c1 a2 b2

c2 a3 b3
. . . . . . . . .

cn−2 an−1 bn−1

cn−1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(missing entries correspond to nil entries). The solution for T̃−1 can be found in Refs. [121, 122]
and reads for the case T̃ = T :

(︁
T−1

)︁
ij
=
(︁
T−1

)︁
ji
= (−1)i+j θn−j

θi−1

θn
for i ≤ j ,

where θi is defined recursively by

θi = ai θi−1 − θi−2 for i = 2, 3, . . . , n

with initial conditions θ0 = 1, θ1 = a1 = 2.
From the construction of the coefficients we see that they are linear in yi (in particular there

are no cross combinations such as yiyj) and there are no constant offsets. Therefore, derivation
w.r.t. yj of fi is the same as replacing yr = δrj for r = 0 . . . k. Derivatives of fi w.r.t. yi are
again cubed polynomials in t,

∂fi
∂yj

= aij + bijt+ cijt
2 + dijt

3 . (E.1)
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For n = 4 the numerical values of the coefficients aij , bij , cij and dij are

ai,j+1 =

⎛⎝1 0 0 0
0 1 0 0
0 0 1 0

⎞⎠
i,j+1

,

bi,j+1 = 780×

⎛⎝−989 1254 −336 90
−362 −168 672 −180

97 −582 −12 630

⎞⎠
i,j+1

,

ci,j+1 = 780×

⎛⎝ 0 0 0 0
627 −1422 1008 −270

−168 1008 −1692 1080

⎞⎠
i,j+1

,

di,j+1 = 780×

⎛⎝ 209 −474 336 −90
−265 810 −900 450

71 −426 924 −930

⎞⎠
i,j+1

.

These derivatives do no longer depend on the particular choice of yi and they are symmetric
under i↔ (n− i), j ↔ (k − j) and t↔ (1− t) transformations:

∂fi(t)

∂yj
=
∂fn−i(1− t)

∂yk−j
,

for k splines and n = k + 1 grid points. In particular, these equations read for t = 0 or t = 1

ai,j+1 = (a+ b+ c+ d)n−i,k−j+1 = δi,j+1 .

Since these derivatives are the coefficients of a fi expansion w.r.t. the grid points yi, i.e.,

fi(t) =
k∑︂

j=0

qijyj =
k∑︂

j=0

∂fi(t)

∂yj
yj for i = 1 . . . k ,

they obey
∂fi(t = 0)

∂yj
=
∂fi−1(t = 1)

∂yj
= δij ,

that appear as maxima and periodic knots in Fig. E.1.
We note once more that qij is not a function of yi and is unambiguously defined by n. This is

also given for other expansions of fi w.r.t. the grid points, for instance in the sinc-interpolation

fi(t) =
k∑︂

j=0

sinc((t− j)π)yj

which resembles the shape of the derivatives shown in Fig. E.1 in good approximation. The
expansion coefficients qij of the sinc-interpolation do not even depend on n anymore and there
is no need to invert a n× n band matrix. However, this computational benefit is compensated
by the fact that sinc-interpolations tend to overshoot compared to the cubic spline approach,
even if damped with a Gaussian function, as shown in Fig. E.2.
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Fig. E.1. Natural cubic spline (dashed line, right axis) of n = 7 equidistant (xi, yi) tuples
(dots, right axis), as well as its derivatives w.r.t. yi (solid lines, left axis).

Fig. E.2. Sinc-interpolation w/o and with Gaussian damping (σ = 1), as well as a natural
cubic spline for n = 7 equidistant (xi, yi) tuples (dots).
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Appendix F

Weighting Scheme 1 Supplementaries
Below, we summarize some investigations that exclude various possible explanations for the
observed deviations in w2(η) (Scheme 1) that we established in Chap. 4.

F.1 Influence of Polarizations
Theoretically, polarizations could cause deviations, when not properly reproduced in simulated
events. The significant polarization of the Λ particle in Λb → J/ψΛ was predicted [123] and
measured by the LHCb collaboration [70]. However, assuming CP conservation, polarization
effects should cancel exactly for Λb and Λb. Since the weighting procedure outlined above con-
siders combined data sets of Λb and Λb (raw asymmetry in data 1−n(Λb)/n(Λb) = −3.9(1.9)%
for LL and −8.4(1.6)% for DD) and no enhancement is observed in η(Λb) distributions where
samples where explicitly split w.r.t. the proton charge, we exclude that polarization effects
introduce such an effect.

F.2 Influence of Misalignment
A major difference to the final state particles pπ− in Λb→ D0pπ− is that the origin vertex of
pπ− in Λb→ J/ψΛ is well displaced, even for LL tracks. Large values of the z-position of the Λ
decay vertex correspond to the case that less layers of the VELO are passed by the final state
particles and the sensitivity to misalignment effects become stronger. We therefore consider
the double ratio of recorded data and MC simulated events for η < 3.25 and η ≥ 3.25:

d

dz

(︃
data, η(Λb) < 3.25

MC, η(Λb) < 3.25

/︃
data, η(Λb) ≥ 3.25

MC, η(Λb) ≥ 3.25

)︃
< 0

⇔ missing MC events for η > 3.25 and large z.

The normalized double ratio and a fit of a linear function f(x|c1, c2) = c1 + c2x is shown in
Fig. F.1. The uncertainty band of the fit is calculated by ordinary error propagation

uf =

⌜⃓⃓⎷∑︂
ij

(︃
∂f

∂ci

∂f

∂cj

)︃2

cov(ci, cj) =
√︂
u2c1 + x2u2c2 + 2x cov(c1, c2) .

No tension for a preferred slope is visible w.r.t. the given uncertainties.

F.3 Influence of χ2
DTF

In order to exclude that the difference between LL and DD tracks is introduced by the χ2
DTF

selection criterion, we compare the distribution of the ratio of recorded data and simulated
events, parametrized in η(Λb), for χ2

DTF/DoF below and above the respective 50% quantiles of
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Fig. F.1. Normalized double ratio of (η < 3.25)/(η ≥ 3.25) and rec. data / MC sim. events
as a function of the z-position of the Λ decay vertex for LL (left) and DD (right)
tracks.

LL and DD tracks. The ratios are shown in Fig. F.2 and unveil the very same deviation that
was observed previously between LL and DD tracks for small values of η in both 50% quantiles.
We therefore exclude the hypothesis that χ2

DTF selections introduced the observed deviation.

Fig. F.2. Ratios of recorded data and simulated events, parametrized in η(Λb) for lower and
upper 50% quantiles of χ2

DTF/DoF.

F.4 Influence of temporal changes during data taking
MC simulated events are only available for the years 2015 and 2016, whereas we use the full
data set of recorded data of Run 2 in order to increase the significance of the extracted weights.
Since neither the center of mass energy, nor major changes to the apparatus separate the data
recorded in the years 2015 and 2016 from those recorded in 2017 and 2018, the same set of
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weights is expected when using recorded data of the years 2015 and 2016 only, albeit with larger
uncertainties. In Fig. F.3 we show w2(η) only using recorded data of the years 2015 and 2016.

Fig. F.3. Weighting factor w2(η) for LL (left) and DD (right) tracks found by using recorded
data of the years 2015 and 2016 instead of full Run 2 data.

Further, we check the impact of magnet polarity and splitting w.r.t. the sign of magnet
polarity and proton charge (+1 for p and −1 for p) on the observed accumulation of events for
η(Λb) ⪆ 3.25 and LL tracks, and show the corresponding distributions of w2(η) in Fig. F.4. The
accumulation in the subsample for a negative product of proton charge and magnet polarity,
Q(p) × pol. < 0, appears pronounced in comparison with Q(p) × pol. > 0, indicating an
misalignment or dead pixels in the left detector hemisphere in a up- to downstream orientation.
(Mag. up and mag. down are associated with +1 and −1, respectively.) However, these effects
are insignificant and it is unclear why they seem to be absent in Λb → D0pπ− but are not
correlated with the z-position of the Λ decay vertex.

Fig. F.4. Samples split w.r.t. the sign of the product of proton charge and magnet polarity.
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F.5 Summary
The reason for the deviation stays unclear. For the decay Λb→ J/ψΛ (L0 TIS triggered), this
effect could be a statistical fluctuation, due to misalignment effects that are not reproduced
well in the simulated events, or other reasons. The deviation w.r.t. Λb → D0pπ− decays (L0
TOS triggered) is significant but the reason also stays unclear. Further it is unclear, whether
TOS triggered Λb→ D0Λ will be distributed similar to Λb→ J/ψΛ and Λb→ D0pπ− or deviate
from both. (It is worthwhile to mention that for perfect simulations there should not be any
deviation in any of these samples.)
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Confusion Matrix
Our definitions of true and false, as well as positive and negative in the context of classification
throughout the present analysis are listed in the confusion matrix, shown in Fig. G.1. The
matrix reads as following: a row listed the predicted class label and a column shows the genuine
class label, e.g., we refer to events that are predicted being of class background, but are actually
genuine signal events as FN, whereas we refer to genuine background events, that are spuriously
classified as signal, as FP.

FN TN

TP FPSi
g.

Bk
g.

Sig. Bkg.

Pr
ed

ic
te

d

Actual

Fig. G.1. Confusion matrix as used in the present analysis for the classes signal (Sig.) and
background (Bkg.). The abbreviations TP, FP, FN and TN refer to true positive,
false positive, false negative, and true negative, respectively.
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Cross-Validation
Advanced machine learning algorithms typically come with a set of hyper-parameters, e.g.,
the C and γ parameter of SVMs or the number of trees in a random forest that are fixed
before the learning process begins and are not objective of the training process itself. The
choice of these values can impact the performance of the trained model and help convergence,
yet optimal values are unknown a priori. In a canonical approach one splits a second test
set and uses it to optimize the hyper-parameters since optimizing on the training (test) set
could seed overfitting1 (selection bias) which clearly comes by the costs of a reduced training
set. Cross-validation (e.g., Refs. [125, 126]) is an alternative technique that allows to optimize
hyper-parameters on the training set without suffering from overfitting. In the present analysis
we use a 5-fold cross-validation scheme where the training set is partitioned into five, equally
sized folds (cf. Fig. H.1). Hyper-parameters are optimized on each of these folds by training
the classifier on four and evaluated on the last fold (4+1). The loss of accuracy in terms of a
large uncertainty due to the small sample size of each of the folds used for the evaluation is
compensated by combining the results of the five independent folds.

Fig. H.1. Outline of a 5-fold cross-validation where hyper-parameters are optimized on folds
of the training set instead of the test set.

1Especially when scanning the hyper-parameter space exhaustively, this problem is similar to the so-called look
elsewhere effect [124].
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Principal Component Analysis
The Principal Component Analysis (PCA) is an unsupervised machine learning technique which
is often used to reduce the dimensionality of a given feature set. A data set is decorrelated by
diagonalization of the respective covariance matrix and subsequently ordered by the standard
deviation of each feature. A reduction is achieved by pruning features with a low standard
deviation (after being decorrelated).

The latter step is driven by the motivation that features with low standard deviations carry
less information than is needed to describe the distribution of the data. We note, however, that
in classification tasks the information needed to distinguish between a given set of categories
can be dominantly encoded in the features with a low standard deviation. We show such an
example in Fig. I.1.

Fig. I.1. Distribution of the two features x, y of a joint data sample of two categories (circle
and triangle). The canonical PCA transformation decorrelates the distribution by
introducing rotated features PCA 1 and PCA 2, ordered by their respective standard
deviations.

In the given example, PCA 1 clearly is not helpful at all for distinguishing between the
two categories, whereas PCA 2, albeit having a lower standard deviation, separates both dis-
tributions significantly. We propose to use the l1 Wasserstein distance for ordering the PCA
components instead of the standard deviation. As opposed to the more general p-th Wasserstein
distance, the calculation of the l1 distance is computational feasible, i.e.,

l1(u, v) =

∫︂
dx |U(x)− V (x)| ,

where U and V are the cumulative distributions of u and v, respectively (cf. Ref. [127]). In
Fig. I.2 we show the l1 distance for our pseudo-experiment. The l1 distance appear to be a
much better criterion for sorting PCA components than the standard deviation in the canonical
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approach. We note that in direct comparison with other metrics, such as the Kolmogorov-
Smirnov test, the Wasserstein l1 distance is also much more stable (numerically) for distributions
that differ strongly.

Fig. I.2. Distribution of PCA 1 (left) and PCA 2 (right). Even though PCA 1 has a larger
standard deviation, it is not helpful at all for distinguishing between the two cat-
egories (circle and triangle). In our proposed solution the Wasserstein metric l1 is
used which rank PCA 2 well above PCA 1 in this case.
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Support Vector Machines

Support Vector Machines (SVMs) are supervised machine learning models that are used in
their canonical form for linear (binary1) classification and regression, as well as for anomaly
detection (e.g., Ref. [129]). In its simplest form (hard margin), the training objective of an
SVM for a binary classification task is the parametrization of a hyperplane with normal vector
w⃗ and offset b (i.e., y⃗ in plane ⇔ w⃗ · y⃗+b = 0) such that |w⃗|2 becomes minimal and all instances
of different classes are separated by the hyperplane, i.e.,

ti

(︂
w⃗ · x⃗ (i) + b

)︂
≥ 1 ∀ i,

where x (i) ∈ Rn is the feature vector of the i-th instance and ti is given by the respective label
vector yi ∈ Rn,

ti :=

{︄
+1 if yi ∼ signal,
−1 if yi ∼ background.

Instances with the minimal distance ti
(︂
w⃗ · x⃗ (i) + b

)︂
= 1 are considered to lie on the margin

and are thus referred to as the supporting vectors of the classifier (hence the name). Obviously,
the hard margin problem is only solvable for linearly separable data. By introducing slack
variables ζi ≥ 0 for each instance i, this constraint is relaxed

argmin
w⃗,b,ζ⃗

1

2
|w⃗|22 + C|ζ⃗|1 subject to ti

(︂
w⃗ · x⃗ (i) + b

)︂
≥ 1− ζi and ζi ≥ 0 ∀ i . (J.1)

This relation makes the slack vector ζi (ζ⃗ ∈ Rm) interpretable as a measure of the margin
violation of the i-th instance. The objective of the optimization thus reads as the simultaneous
maximization of the margin, argmin |w⃗|2 ≡ argmin |w⃗|22, and minimization of the margin vio-
lations, argmin |ζ⃗|1. The relative weight between those contrary optimization goals is given by
the regularization parameter C.

Practically, C is a hyper-parameter that controls the influence of outliers and regularizes the
decision boundary of an SVM. In Fig. J.1 we show the decision boundaries of (linear) SVMs
that were trained on randomly generated data with C = 1 and C = 10. The generated data
set is partitioned w.r.t. two classes (circle and triangle) and appended by one outlier instance
of class circle at (x, y) = (1.5,−0.5). The influence of this outlier is tested by training one
classifier with the full dataset and the other one on a reduced data set where the outlier was
removed.

By their very nature, SVMs are linear classifiers for a given feature space x⃗. The dimension-
ality can yet be increased by encoding higher order combinations such as x2i or xi xj in x⃗ itself,

1Multiclass classification can be achieved via techniques such as one-against-all or one-against-one [128].
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Fig. J.1. Decision boundaries of linear SVMs with different values for their respective regu-
larization parameter C, trained on either the full data set (solid line) or a data set
where the outlier at (x, y) = (1.5,−0.5) was removed (dashed line).

e.g.,

x⃗ ≡
(︃
x1
x2

)︃
φ⃗↦−→ φ⃗ (x⃗) =

⎛⎜⎜⎜⎜⎝
x1
x2
x21
x1 x2
x22

⎞⎟⎟⎟⎟⎠ .

The optimization problem Eq. (J.1), as well its corresponding Lagrangian dual are quadratic
programming (QP) problems. The latter QP however, only depends on inner products x⃗ (i) ·x⃗ (j)

as opposed to Eq. (J.1) that depends on x⃗ (i) itself. This allows the application of the Mercer’s
theorem that guarantees the existence of a kernel function K

(︂
x⃗ (i), x⃗ (j)

)︂
such that

x⃗ (i) · x⃗ (j) φ⃗↦−→ φ⃗
(︂
x⃗ (i)

)︂
· φ⃗
(︂
x⃗ (j)

)︂
≡ K

(︂
x⃗ (i), x⃗ (j)

)︂
,

if φ⃗ respects the Mercer’s condition. In the present analysis we frequently use the (Gaussian)
RBF kernel,

K
(︂
x⃗ (i), x⃗ (j)|γ

)︂
≡ exp

{︃
−γ
⃓⃓⃓
x⃗ (i) − x⃗ (j)

⃓⃓⃓2
2

}︃
,

which corresponds to a function φ⃗(x⃗) that maps x⃗ into an infinite-dimensional space and thus
leverages the training of complex, non-linear classifier using SVMs.

For m training instances and n features, the complexity of training SVMs scales between
O(m2 × n) and O(m3 × n), due to the inversion of the kernel matrix which makes SVMs, even
if they are versatile machine learning models on small to medium sized data sets, impractical
to use on large data sets.
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Appendix K

Ensemble Learning
Trees sprout up just about everywhere in computer science.

— Donald Knuth, in his book Combinatorial Algorithms (4A).

Ensemble learning techniques build upon the observation that an ensemble of weak learners,
i.e., classifiers that were not provided with the complete set of available information during
training (e.g., in terms of number of training instances or number of features), can outperform
single classifiers that where provided with the entire available information, when aggregated
properly.

A straightforward realization of an ensemble learner is called stacking [130] where the output
of trained classifiers (tier 1) is fed into another classifier (tier 2). This tier 2 classifier aggregates
the outputs of tier 1, uses them as its feature set and outputs the final decision.

Another kind of ensemble learning is achieved by bagging (short for bootstrap aggrega-
tion) [131] where the same classifier is trained on different random subsets of the training set.
Additional randomness (and thus a greater diversity) is achieved by only using certain random
subsets of the available feature set. This again increases the diversity among the classifiers
which typically increase the bias of each classifier but decreases the overall bias and variance
of the aggregation. When bagging and feature sampling is used for growing decision trees, the
aggregation (typically referred to as the forest), is called a Random Forest [132]. Each tree
of such a forest is trained by optimizing thresholds which partition the data set at each node.
The thresholds are optimized w.r.t. a certain criterion (e.g., Gini impurity or entropy1) where
first, the best thresholds for each of the given features is found and secondly, the overall best
threshold among the optimized thresholds is used for partitioning. If the first step is replaced
by drawing a random threshold, the forest is called (a forest of) Extra Trees (short for Extremely
Randomized Trees) [133].

Boosting is yet another ensemble learning technique where sequentially trained classifiers
try to correct their predecessor. When using decision trees, two major kinds of boosting are
common, i.e., Gradient Boosting and Adaptive Boosting [134, 135]. For the former (typically
referred to as BDT) regression trees are fitted to the residual errors of the predecessor which
makes the aggregation the linear sum of all trained classifiers. The latter (typically referred to
as Ada. BDT) uses weights instead of the residuals in order to increase the focus on misclassified
events in subsequent evaluations. Note that in order to deal with residuals, regression trees
have to be used rather than ordinary binary decision trees and thus mean squared errors (MSE)
are used as a criterion. Technically, the aggregation is achieved by summing the decisions of the
sequentially trained classifiers in a loss function. For BDTs using gradient and adaptive boosting
the loss function is referred to as deviance and exponential, respectively. More information is
given in the literature, in particular in Ref. [136].

1Gini impurity G = 1−
∑︁

k p2k and entropy H = −
∑︁

k pk ln pk, where pk ∈ [0, 1] is the fraction of class k in a
given set.
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Appendix L

MVA Supplementaries

Fig. L.1. Distributions of the responses and correlations of the tier 1.1 Λ classifiers for LL
tracks, separated for signal (S) and background (B). On top of the correlation dis-
tributions we show the PCC as a measure for the linear correlation.
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Fig. L.2. Distributions of the responses and correlations of the tier 1.1 Λ classifiers for DD
tracks, separated for signal (S) and background (B). On top of the correlation dis-
tributions we show the PCC as a measure for the linear correlation.
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Fig. L.3. Distributions of the responses and correlations of the tier 1.1 Λ classifiers for LL
tracks after PCA transformation, separated for signal (S) and background (B). On
top of the correlation distributions we show the PCC as a measure for the linear
correlation.

— 149 —



Appendix L. MVA Supplementaries

Fig. L.4. Distributions of the responses and correlations of the tier 1.1 Λ classifiers for DD
tracks after PCA transformation, separated for signal (S) and background (B). On
top of the correlation distributions we show the PCC as a measure for the linear
correlation.
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(a) Λ classifier (b) Λb-D0 classifier

Fig. L.5. ROC curves of the SVMs used as the Λ classifier (left) and Λb-D0 classifier (right)
for LL and DD tracks.

Fig. L.6. Convergence of the SVMs (Λb-D0 classifier) given by the ROC-AUC values for dif-
ferent sample sizes where a sample size of 100% corresponds to the size of the full
trainings set. The ROC-AUC is evaluated via a 5-fold cross-validation scheme on
the training (solid line) and testing folds (dashed line).

Fig. L.7. Combined invariant mass of D0 and Λ candidates after loose selection from recorded
data, as used for training the Λb-D0 classifier (background class).
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Fig. L.8. Invariant masses of the D0 candidates (top) and Λ candidates (bottom), recon-
structed from recorded data that are classified as signal Λb → D0Λ decays by the
final MVA classifier.
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Fig. L.9. Invariant masses of MC simulated D0, Λ and Λb candidates (top to bottom), truth-
matched as genuine Λb→ D0Λ decays that are classified as signal Λb→ D0Λ decays
by the final MVA classifier.
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Appendix M

Cross-Checking the Efficiency Estimates of
MVA Features

Dowerjai, no prowerjai.

— Vladimir Lenin, allegedly.

In the realm of machine learning, interpretability of trained models has become an important
topic and new explanation methods pop up frequently, e.g., Refs. [137, 138, 139]. In HEP
applications and in particular in the context of (binary) classification problems where training
instances of the labels signal and background are drawn from separate sources, i.e., from MC
simulated events (signal) and recorded data (background), the question arises to what degree
these training data are representative of the real data. Again, various approaches came up
lately to tackle this question when the training data are not representative of the real data,
e.g., Refs. [140, 141]. In the context of the present analysis, we limit ourself to the study of the
fidelity of the classifier responses that we evaluate with MC simulated events in order to obtain
the efficiencies of our classification. If certain nuisance parameters would be present, which
would help our classifiers to learn to distinguish recorded data from simulated events rather
than signal and background signatures (in recorded data), the classifiers, as well as estimated
efficiencies would be worthless.

To keep our model verifiable w.r.t. the estimated efficiencies without using sophisticated
yet complex approaches as proposed in Ref. [140], we split our classifiers into two disjoint
sub-classifiers (cf. Sec. 5.2) which can now be verified using a data driven approach. These
two classifiers, the Λ classifier and the Λb-D0 classifier, are applied to recorded Λb → J/ψΛ
and Λb → D0pπ− candidates which we used previously for estimating the calibration factors
(cf. Chap. 4) and the normalization (cf. Chap. 6), respectively. The rich statistics and the
clean data samples allow an efficiency estimation using recorded data, leveraging the direct
comparison of these figures with the predictions from simulated events.1

In Sec. M.1 we outline our strategy for extracting the efficiencies. We will find a sufficient
fidelity of all used classifiers. The proxy modes also allow an estimation of the fidelity of the
DTF probability distribution where we witness a large deviation for DD tracks. The deviation,
as well as the implication are discussed in Sec. M.2.

M.1 Efficiency Estimation
The efficiency εf of a feature f is defined as the ratio

εf :=
nF
nF\f

,

1This approach implicitly assumes common fidelity issues of the respective features among the simulated Λb

decays.
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where nF is the amount of events that are left after requiring the full selection F (see below)
and nF\f is the corresponding amount if feature f is left out. The definition of the full selection
F depends on the proxy mode. Whether or not a feature is included in F of a given proxy mode
is listed in Tab. M.1, as well as the estimated efficiencies. If a given feature f is included in F ,
it obeys the selection thresholds of the dedicated Λb→ D0Λ tight selection (cf. Sec. 5.2), except
for the DTF probability of the Λb→ D0pπ− proxy. (The performance of the DTF probability
is discussed separately in Sec. M.2.) The amounts nF and nF\f are obtained using the outlined

Tab. M.1. Efficiency estimates of the tier 2 features, obtained from recorded data and MC
simulated events, as well as the corresponding (daughters of the) proxy modes.
The efficiencies εf are defined as the ratio of the amounts nF and nF\f , where nF
is the amount of events that are left after requiring features to obey the dedicated
Λb → D0Λ tight selection (if having a counter part in the proxy mode) and nF\f
is the corresponding amount if feature f is left out. In the last column we list the
residuals of the ratios which are taken as systematic deviations due to an imperfect
simulation fidelity. In the bottom row we give the sum in quadrature of these
uncertainties.

Rec. data [%] MC sim. [%] 1− ratio [%]
Feature Proxy LL DD LL DD LL DD
Λ Clf. J/ψΛ 85.5(13) 23.4(6) 85.8(7) 23.82(19) 0.4(18) 1.6(26)
Λb-D0 Clf. Dpπ 80.6(7) 38.8(4) 78.35(6) 37.79(5) −2.9(8) −2.8(11)
DTF J/ψΛ 85.4(14) 59.3(17) 87.9(7) 72.6(7) 2.9(18) 18.3(25)
DTF Dpπ 94.1(7) 94.4(11) 97.96(9) 97.67(18) 3.9(8) 3.3(12)
ProbNNp(p) J/ψΛ 90.5(13) 81.9(32) 94.4(8) 83.7(8) 4.1(16) 2(4)
ProbNNk(K) Dpπ 89.8(7) 81.2(10) 91.23(8) 84.26(15) 1.8(8) 3.6(12)

7% 19%

fit approaches in Sec. 4.1.3 and Sec. 6.2. In order to test the sensitivity of the calibration
of recorded Λb → D0pπ− data (cf. Sec. 6.1.3) we estimate the efficiency with and without
calibration and find deviations below 5%, i.e., our feature selection only depends weakly on
resonance structures. In Fig. M.1 we show the invariant mass distributions used for extracting
the efficiency of the ProbNNk classifier as an example. Since the efficiency is obtained by taking
the ratio of fitted yields, the bias of the fit model as discussed in Sec. 6.2 only plays a minor role
in the ratio. In the case of Λb→ J/ψΛ, the subset of the dedicated Λb→ D0Λ tight selection,
even though not optimized for the proxy mode, suppresses almost all background events as
shown in Fig. M.2, again allowing a low-bias extraction of the feature efficiencies.

Deviations from one in the ratios of εf of recorded data and simulated events are considered
as systematic uncertainties due to fidelity issues of simulated events. The sum in quadrature
of the residuals (as listed in Tab. M.1) is used as a conservative approximation of the overall
uncertainty.

M.2 Fidelity of the DTF Probability Distribution

Splitting our handcrafted classifier into two parts, i.e., the Λ and Λb-D0 classifier, leverages
the outlined cross checking of the estimated efficiency in the proxy modes Λb → J/ψΛ and
Λb→ D0pπ−, respectively. This assumption of similar distributions among our primary mode
Λb→ D0Λ and the proxy modes does not hold for the χ2

DTF distribution of the DTF if they are
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Fig. M.1. Background fits to the invariant mass m(D0pπ−) used for extracting the signal yield
of Λb→ D0pπ− decays. The abbreviations LL sel. and DD sel. refer to the choice
of thresholds which obey the dedicated Λb → D0Λ tight selection for LL and DD
tracks, respectively. The yields are used to estimate the efficiency of the ProbNNk
classifier by taking the ratio of the fitted yields nF (top) and nF\f (bottom).

Fig. M.2. Invariant mass distribution of J/ψ and Λ candidates, refined via a DTF, as used for
estimating nF (Λb→ J/ψΛ proxy mode).
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not genuinely χ2-distributed with the correct DoF.2 On the one hand, the DTF probability is
not uniformly distributed as discussed in Appx. D. On the other hand we have no other way
to cross-check the efficiency of the DTF probability and therefore will stick to this approach
anyhow and consider the results as approximations.

As listed in Tab. M.1 we determined εf for the DTF probability in both proxy modes where
we took the thresholds of the dedicated Λb→ D0Λ tight selection for the Λb→ J/ψΛ proxy and
0.01 for the Λb→ D0pπ− proxy. The choice of the latter is rooted in a correlation between the
DTF probability and the bias of the respective fit model. We consider this a minor issue due to
redundancies in the Λb→ J/ψΛ mode. Further, we find that the large deviation for DD tracks
dominantly is caused by large χ2

DTF values (see below) and thus would likely have shown up
also for this lowered threshold, if present.

In Fig. M.3 we show the fit that we used to extract nF\f for the DTF probability (DD tracks).
Regarding the logarithmic y-axis we exclude that the deviation is introduced by a bias of the
fit model. In Fig. M.4 we show the cumulative distribution of the DTF probabilities for LL
and DD tracks. We see that the deviation for DD tracks comes from an initial offset at large
χ2

DTF values and then keeps this difference. Based on this we conclude that this effect has to be
attributed to the Λ baryon itself, due to the good agreement for LL tracks in both proxy modes.
Since daughters of track type DD of the Λ baryons are the only particles in our consideration
whose momentum information is not taken from the VELO (by definition), this issue is likely
to be rooted in an incomplete error matrix for DD tracks. Correcting this error matrix is out
of scope of the present analysis and we will therefore take the full deviation as an systematic
uncertainty.

Fig. M.3. Combined invariant mass of J/ψ and Λ candidates used to extract the signal yield
nF\f for the DTF probability (DD tracks) via sideband subtraction. The sideband
subtraction is evaluated twice, once using only the lower sideband, and a second time
using only the upper sideband. The difference between both evaluations is taken
as a systematic uncertainty. We note that regarding the large signal to background
ratio, biases of the fitting technique affect the numerical value of the yield only
slightly.

2If χ2 distributed with the correct DoF the distributions transform under Eq. (D.1) to uniform distributions
and are thus equal.
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Fig. M.4. Cumulative distribution function (CDF) of the DTF probability distributions for
LL and DD tracks. The CDFs are extracted via sideband subtraction and are thus
binned. The solid and dashed line refer to recorded data and simulated events,
respectively. The y-value of a bin with high-edge x thus corresponds to the sum of
all events with DTF probability ≤ x. In particular, the first bin includes the effects
of χ2

DTF cut-offs at large values.
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Appendix N

Kinematics of the Charmless Three-Body
Decay Λb→ ΛK+K−

The charmless three-body decay Λb→ ΛK+K− appears as a peaking background in m(D0Λ)
if not sufficiently suppressed. In Sec. 7.3.1 we establish such a suppression and benefit from
some particular kinematic features we want to discuss in this chapter. First, we discuss the
distribution of the reflected mass m(ΛK−π+) in Sec. N.1 and introduce some notation. We
then study the momentum distribution of the Λ baryon in Sec. N.2 which leveraged the strong
separation power of the Λ classifier.

N.1 Mass Distributions
For describing the relativistic kinematic of three-body decays M→ 1 2 3 one often uses combined
squared masses of two daughters, e.g., m2

12. Following the notation of the PDG, these squared
masses are given by the four momenta pi of the daughters

m2
ij := (pi + pj)

2
,

and obey useful relations, such as

m2
12 +m2

23 +m2
13 =M2 +m2

1 +m2
2 +m2

3 , (N.1)

where M (mi) refers to the mass of the decaying mother (daughter i). Eq. (N.1) can be rewritten

m2
12 =M2 +m2

3 − 2ME3 ,

where E3 is the energy of particle 3 in the rest frame (CMS) of M and thus allows the deter-
mination of the kinematic boundaries of m2

ij , e.g.,

maxm2
23 = (E∗

2 + E∗
3 )

2 −
(︃√︂

(E∗
2 )

2 −m2
2 −

√︂
(E∗

3 )
2 −m2

3

)︃2

,

minm2
23 = (E∗

2 + E∗
3 )

2 −
(︃√︂

(E∗
2 )

2 −m2
2 +

√︂
(E∗

3 )
2 −m2

3

)︃2

,

where

E∗
2 =

m2
12 −m2

1 +m2
2

2m12
and

E∗
3 =

M2 −m2
12 −m2

3

2m12

are the energies of particle 2 and 3 in the rest frame of m12.
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In the context of, the present analysis the three-body decay Λb → ΛK−K+ appears as a
(non-resonant) reflection in the m(D0Λ) distribution. More generally, a reflection occurs if
w.l.o.g. particle 3 with genuine mass m3 is reconstructed using the spurious mass hypothesis
mx. If so, the reconstructed invariant mass of the mother in the CMS M̃ cms is given by

M̃ cms =

√︂
m2

1 + p⃗ 2
1 +

√︂
m2

2 + p⃗ 2
2 +

√︂
m2

x + p⃗ 2
3

=
M2 +m2

1 −m2
23

2M
+
M2 +m2

2 −m2
13

2M
+

√︄(︃
M2 +m2

3 −m2
12

2M

)︃2

−m2
3 +m2

x

and thus

M̃ cms
(︁
m2

12|mx

)︁
=
M2 −m2

3 +m2
12

2M
+

√︄(︃
M2 +m2

3 −m2
12

2M

)︃2

−m2
3 +m2

x . (N.2)

We note two things: First, only if mx = m3 then M̃ cms = M for any frame of reference.
Otherwise, Eq. (N.2) only holds in the CMS of M . Secondly, if the invariant mass is determined
in the laboratory system whilst already assuming the spurious mass hypothesis, then the energy
and thus the boost of the respective particle is also wrong. In this case, this will result in a
smearing due to the inaccurate boosting of M̃ cms, degrading Eq. (N.2) to an approximation
rather than an exact solution.

In Fig. N.1 we show the Dalitz plot [98, 99] of m2
23 = m2

KK and m2
12 = m2

ΛK− , as well as the
correlation of m2

12 with the reflected mass m(ΛK−π+) together with the approximate solution
Eq. (N.2). The data points are calculated from unsmeared values taken from simulations with

Fig. N.1. Dalitz plot (right) of m2
23 = m2

KK andm2
12 = m2

ΛK− , as well as the correlation of m2
12

with the reflected mass m(ΛK−π+) using simulated data (left). The solid, orange
line on the left indicates the reflected invariant M̃ cms in the CMS of M , according
to Eq. (N.2). The data are filtered w.r.t. the (smeared) vicinity of m2

2x = m2
K−π+

to the D0 mass.

the framework RapidSim [104] and filtered w.r.t. the (smeared) vicinity of m2
2x = m2

K−π+

to the D0 mass. (See Ref. [39] for Dalitz plots from recorded data. Given the limited data
sample, resonance structures are not obvious to identify, however, known Λb decays, such as
Λb→ Λφ [40], are well separated in m2

KK .) The distribution of the invariant mass m(ΛK−π+) in
the CMS is (approximately) proportional to the product of the inverted derivative of Eq. (N.2)
(solid line in the left part of Fig. N.1) and the density of m2

12 ≡ m2
ΛK− , where the latter is flat

for the central part of m2
ΛK− , due to the narrow mass range centered around the m(D0) mass.
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At the sharp edges of the Dalitz distribution (i.e., the kinematic boundaries) m2
ΛK− gets sliced,

resulting in a smearing of m(ΛK−π+). The peak in the m(ΛK−π+) distribution (cf. Fig. 7.4),
caused by the steepness of the inverted derivative of Eq. (N.2), is thus naturally smeared. We
note that this smearing is often exclusively and imprecisely attributed to resolution effects of
the apparatus but in fact is an admixture of the outlined natural smearing in the CMS, a
broadening due to boosting and eventually due to the quoted resolution effects.

N.2 Kinematics of the Λ Baryon in Two and Three-Body
Decays

Naïvely, one might not expect major deviations between the kinematics of the Λ baryon in the
Λb→ D0Λ decay and its charmless counterpart. However, we saw deviations in the respective
pT distributions in Sec. 7.3.1 and saw the Λ classifier picking up this deviation to effectively
separate between both decays.

In Fig. N.2 we show the three-momentum magnitudes of Λ baryons in the Λb rest frame. For
the two-body decays Λb→ D0Λ, this value is a δ-spike (dashed line in Fig. N.2), sitting at

p∗ =

√︄[︁
m2

Λb
− (mD0 +mΛ)2

]︁ [︁
m2

Λb
− (mD0 −mΛ)2

]︁
4m2

Λb

,

whereas in three-body decays the distribution is broad. The maximal value in the latter case
corresponds to the configuration where the Λ goes back-to-back with the hh′ pair of the re-
spective Λb→ Λhh′ pair, allowing slightly larger values if mh +mh′ < mD0 , but the majority
of configurations results in values below p∗ as shown in Fig. N.2. In Fig. N.3 we show the

Fig. N.2. Distribution of three-momentum magnitudes of Λ baryons in the Λb rest frame
for LL and DD tracks for MC simulated Λb → ΛK−K+ decays (data points) and
Λb→ D0Λ decays (dashed line). On the left we show the unsmeared values and on
the right the refined values after applying a DTF assuming Λb→ D0Λ decays.

normalized pT distributions of the two and three-body decays. The deviation between both is
not as pronounced as the deviation between the flight distance significances of the D0 meson
(cf. Fig. N.4) that we utilize in the Λb-D0 classifier but still holds a certain separation power
that explains the suppression capability of the Λ classifier against charmless decays.

In the present analysis, Λb→ ΛK−K+ is considered a background, hence the implication of
applying a DTF assuming a decay tree Λb → D0Λ is of interest. In the right part of Fig. N.2
we show the three-momentum magnitude of the Λ baryon in the Λb rest frame after applying
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Fig. N.3. Transverse momentum distribution of Λ baryons from MC simulated Λb→ D0Λ and
Λb → ΛK−K+ decays. The distributions are normalized in order to compensate
their largely different yields for the sake of comparison. The transverse momentum
of the charmless three-body decay seemingly prefer smaller values (both for LL
tracks on the left, and DD tracks on the right) for reasons we elaborate in Sec. N.2.

Fig. N.4. CDF of flight distance significance of D0 mesons from MC simulated Λb→ D0Λ and
Λb→ ΛK−K+ decays where the latter is reflected as Λb→ ΛK−π+ and spuriously
reconstructed as Λb → D0Λ. For comparison reason we also show the CDF of a
Gaussian function (Error function).

— 164 —



N.2. Kinematics of the Λ Baryon in Two and Three-Body Decays

such a DTF. Unsurprisingly, the values are smeared and shifted towards larger values. As a
consequence, the very same behavior is observed when comparing the invariant masses m(D0Λ)
before and after applying the DTF, shown in Fig. 7.4 and Fig. N.5, respectively.

Fig. N.5. Combined invariant mass of D0 → K−π+ and Λ → pπ− candidates from MC
simulated Λb → ΛK−K+ decays after applying a DTF assuming the decay tree
Λb→ D0Λ.
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Partially Reconstructed Backgrounds
Decays where at least one particle is lost during reconstruction are called partially reconstructed
decays. In the following we discuss decays akin to Λb → D∗0Λ with D∗0 → D0X where the
X is lost during reconstruction. In particular, this description is applicable for the decays
Λb/Ξ

0
b → D∗0Λ with D∗0→ D0π0 and D∗0→ D0γ, as well as Λb/Ξ

0
b → D0Σ0 with Σ0→ Λγ,

and Ξ0
b → D0Ξ0 with Ξ0 → Λπ0 which are considered as critical (partially reconstructed)

background events in the invariant mass distribution of Λb/Ξ
0
b → D0Λ events. In the following

Fig. O.1. Decay topology of Λb→ D∗0Λ with D∗0→ D0X in the Λb rest frame.

we briefly introduce the notation and then find a explicit solution for the contribution of the
various partially reconstructed backgrounds to the invariant mass m(D0Λ) as a function of the
opening angle θ (cf. Fig. O.1). We then discuss the implications of polarization effects and
establish a universal fit model.

O.1 Kinematics of Partially Reconstructed Decays
The invariant mass is a Lorentz scalar and can thus be calculated in any frame of reference.
For the sake of simplicity, we choose the CMS of the Λb particle and determine the spurious,
reconstructed invariant mass of the Λb, denoted as M , here, without contributions from the left
out particle X as

M =

√︂
(EΛ + ED)

2 −
(︁
p− p∥,D

)︁2 − (pT,D)
2
, (O.1)

where EΛ and ED are the energies of the Λ and D0, p is the momentum of the Λb and D∗0, and
p∥,D and pT,D are the parallel and transversal components of the D0 momentum vector w.r.t.
the flight direction of the D∗0 particle, respectively.

The energy of the Λ particle is given by its invariant mass mΛ and its momentum p

EΛ =
√︂
m2

Λ + p2 ,

where p is given by the invariant masses of the Λb, D∗0 and Λ particle

p =

√︃(︂
m2

Λb
− (mD∗ +mΛ)

2
)︂(︂

m2
Λb

− (mD∗ −mΛb
)
2
)︂

2m2
Λb

.
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The energy and momentum of the D0 particle is found by boosting the corresponding energy
E′

D from the CMS of its mother D∗0 into the CMS of the Λb:

ED = γ
√︂
m2

D + p2 +
√︁
γ2 − 1 p′ cos θ ,

p∥,D =
√︂
(γ2 − 1) (m2

D + p′2) + γ p′ cos θ ,

pT,D = p′T,D = p′ sin θ ,

where we defined the angle θ as shown in Fig. O.1. The variable p′ is the momentum of the D0

and X particle in the CMS of the D∗0 particle and is given by the invariant masses of D∗0, D0

and x particle

p′ =

√︃(︂
m2

D∗ − (mD +mX)
2
)︂(︂

m2
D∗ − (mD −mX)

2
)︂

2m2
D∗

,

whereas the Lorentz factor γ is given by the kinematics of the D∗0 in the Λb CMS

γ =
ED∗

mD∗
=

√︁
m2

D∗ + p2

mD∗
=

√︄
1 +

(︃
p

mD∗

)︃2

.

Insertion into Eq. (O.1) yields

M2 =

(︃√︂
m2

Λ + p2 + γ

√︂
m2

D + (p′)
2
+
√︁
γ2 − 1p′ cos θ

)︃2

−

(︄
p−

√︃
(γ2 − 1)

(︂
m2

D + (p′)
2
)︂
− γp′ cos θ

)︄2

− (p′ sin θ)
2

= 2

[︃(︃√︂
m2

Λ + p2 + γ

√︂
m2

D + (p′)
2

)︃√︁
γ2 − 1

+

(︄
p−

√︃
(γ2 − 1)

(︂
m2

D + (p′)
2
)︂)︄

γ

]︄
p′ cos θ

+

(︃√︂
m2

Λ + p2 + γ

√︂
m2

D + (p′)
2

)︃2

−

(︄
p−

√︃
(γ2 − 1)

(︂
m2

D + (p′)
2
)︂)︄2

− (p′)
2

= 2

[︃√︂
(γ2 − 1) (m2

Λ + p2) + pγ

]︃
p′ cos θ

+m2
Λ +m2

D + 2

√︂
m2

D + (p′)
2

(︃
γ
√︂
m2

Λ + p2 + p
√︁
γ2 − 1

)︃

= 2
mΛb

mD∗
pp′ cos θ +m2

Λ +m2
D +

(︁
m2

Λb
−m2

Λ −m2
D∗

)︁√︄m2
D + (p′)

2

m2
D∗

.

In the case of D∗0→ D0γ the expression can be simplified further by using mX = 0:

(M(θ))
2
=
√︂(︁

m2
Λb

− (mΛ +mD∗)2
)︁ (︁
m2

Λb
− (mΛ −mD∗)2

)︁
× m2

D∗ −m2
D

2mΛb
m3

D∗
cos θ

×
m2

Λb
(m2

D∗ +m2
D) + (m2

Λ −m2
D∗)(m2

D∗ −m2
D)

2m2
D∗

.
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The spurious, reconstructed invariant mass m(Λb) =M(θ) is thus distributed as

M(θ) =
√︁
a2 + b2 cos(θ) ,

with positive constants a and b that are a given by the invariant masses of the decaying daughter
and grand-daughter particles. The kinematic boundaries are given by M(0) and M(π). In
Tab. O.1 we list the kinematic boundaries for Λb/Ξ

0
b → D∗0Λ withD∗0→ D0π0 andD∗0→ D0γ,

as well as Λb/Ξ
0
b → D0Σ0 with Σ0→ Λγ, and Ξ0

b → D0Ξ0 with Ξ0→ Λπ0.

Tab. O.1. Kinematic boundaries of the invariant mass m(D0Λ), as well as parameters a and
b (cf. Eq. (O.1)) for various Λb and Ξ0

b decays.
Decay channel min [MeV/c2 ] max [MeV/c2 ] a [MeV/c2 ] b MeV/c2

Λb→ D∗Λ, D∗→ Dπ 5350.2(4) 5452.06(23) 5401.36(19) 741.8(19)
Λb→ D∗Λ, D∗→ Dγ 5240.66(24) 5568.11(17) 5406.87(19) 1330.28(31)
Λb→ DΣ, Σ→ Λγ 5300.33(18) 5601.69(17) 5453.09(17) 1281.69(19)
Ξb→ D∗Λ, D∗→ Dπ 5514.5(6) 5620.9(5) 5568.0(5) 769.8(20)
Ξb→ D∗Λ, D∗→ Dγ 5400.0(5) 5742.1(5) 5573.7(5) 1380.48(35)
Ξb→ DΣ, Σ→ Λγ 5460.1(5) 5774.7(5) 5619.6(5) 1329.34(24)
Ξb→ DΞ, Ξ→ Λπ 5106.4(9) 5640.4(5) 5380.0(6) 1693.9(14)

O.2 Implication of Polarization
In general, cos θ in Eq. (O.1) will not be distributed uniformly for Λb/ Ξ0

b decays, even for
unpolarized Λb/ Ξ0

b particles, since all involved particles in the respective decay chain carry
non-zero spin themselves and therefore will be polarized. These polarizations are distributed
by the weak interaction in a non-trivial manner. For a given distribution of f(cos θ) in the Λb

rest frame, the function M(cos θ) =
√
a2 + b2 cos θ is distributed according to

g(m) =
f
(︁
M−1(m)

)︁
M ′(M−1(m))

=
2m

b2
f

(︃
m2 − a2

b2

)︃
.

For unpolarized decays, f(x) = const., this is a linear function g(m) ∝ mb−2. Below, we list
g(m) for a few simple polarization assumptions:

f1(x) =
1

2
→ g(m) =

m

b2
,

f2,3(x) =
1∓ x

2
→ g(m) =

m

b2
×
[︃
1∓

(︃
m2 − a2

b2

)︃]︃
,

f4(x) =
3(1− x2)

4
→ g(m) =

m

b2
× 3

2

[︄
1−

(︃
m2 − a2

b2

)︃2
]︄
,

f5(x) =
3

2
x2 → g(m) =

m

b2
× 3

(︃
m2 − a2

b2

)︃2

.

Due to the lack of experimental measurements of the polarization1 of the decays under consider-
ation none of these models can be favored a priori. Instead, the polarization could be measured

1More precisely, we use the term polarization to refer to the transverse polarization of particles since longitudinal
contributions are expected to vanish in pp collisions due to parity conservation in strong interactions [142].
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by fitting the distribution of recorded data with a generic, Taylor expansion based approach

gfit(m|α, β) = m

b2

[︄
1 + α

(︃
m2 − a2

b2

)︃
+ β

(︃
m2 − a2

b2

)︃2
]︄
.

In Fig. O.2 we show the distributions of the polarization assumptions fi, as well as an example
for the corresponding distributions of g(m) for the decay D∗0 → D0π0 (Λb decay). We note

Fig. O.2. Distribution g(m) for the decay Λb → D∗0Λ with D∗0 → D0π0 (right) assuming
different polarizations fi (left).

that the presence of polarization can change the shape significantly, e.g., f4 suppresses g(m) up
to zero, whereas the enhancement of f5 is maximal at the same point. Furthermore, we note
that the shape of g(m) is also imposed by the values of a and b which makes the unpolarized
shape of g(m) very flat, whereas in three-body decays, such as Λb → Σ0hh′, g(m) by itself,
is already steep [39]. Another example for the implication of polarization is the decay of the
pseudo-scalar particle B0 into two vector particles, B0→ DK∗0, where the very same partially
reconstructed background D∗0→ D0π0 and D∗0→ D0γ had to be described and found to differ
significantly from being unpolarized in both cases [54].

In recorded data this shape will typically be smeared out due to various factors, such as the
limited resolution of the experimental setup. A first order approximation is motivated by the
central limit theorem and state that the smearing can be parametrized by a convolution with
a centered Gaussian function Gc ≡ G(x|µ = 0, σ). For simple functions such as the partial
quadratic polynomial K,

K(x|a, b) =

{︄
1 + ax+ bx2 for x1 < x < x2 ,

0 else,

the convolution can be evaluated analytically:

(K ∗ Gc)(x) = −
1 + ax+ b

(︁
σ2 + x2

)︁
2

erf

(︃
x− y√

2σ

)︃
− σ2 (a+ b(x+ y))G(x|y, σ)

⃓⃓⃓⃓
⃓
y=x2

y=x1

, (O.2)

with

G(x|µ, σ) = 1√
2πσ2

exp

(︄
−1

2

(︃
x− y

σ

)︃2
)︄
.
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The normalization of (K ∗ Gc)(x) can also be found analytically by integration:∫︂
dx (K ∗ G)(x) = −

[︃
x− y

2
+ a

x2 − y2 − 3σ2

4
+ b

x3 + 3σ2x− y3

6

]︃
erf

(︃
x− y√

2σ

)︃
−
[︃
1 + a

x+ y

2
+ b

2σ2 + x2 + xy + y2

3

]︃
σ2G(x|y, σ)

⃓⃓⃓⃓y=x2

y=x1

.

If instead of using one Gaussian, a weighted sum centered Gaussian shapes Gc,i with zero
mean but different widths σi is used for the smearing, Eq. (O.2) can be generalized due to
distributivity and associativity with scalar multiplication of convolutions:

(K ∗
∑︂
i

wi Gc,i)(x) =
∑︂
i

wi(K ∗ Gc,i)(x)

= −
∑︂
i

1 + ax+ b
(︁
σ2
i + x2

)︁
2

wi erf

(︃
x− y√
2σi

)︃⃓⃓⃓⃓
⃓
y=x2

y=x1

−
∑︂
i

σ2
i (a+ b(x+ y)) wi G(x|y, σi)

⃓⃓⃓⃓
⃓
y=x2

y=x1

.
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Fit Supplementaries

Tab. P.1. Fit results of configuration 1, using the narrow mass range 5.5 ≤ m(D0Λ) ≤
6 GeV/c2. The value of fD∗ (marked with †) is fixed to zero. All other values
are floating parameters during the likelihood maximization.

Value
Parameter LL DD Unit
µ(Λb) 5.621 14(21) GeV/c2

µ(Ξb) 5.794 95(21) GeV/c2

∆µ(Λb) 0.001 62(32) GeV/c2

∆µ(Ξb) 0.001 31(31) GeV/c2

σ1(Λb) 0.014 35(28) 0.0151(7) GeV/c2

σ1(Ξb) 0.014 42(35) 0.0158(5) GeV/c2

σ2(Λb) 0.0346(27) 0.0248(16) GeV/c2

σ2(Ξb) 0.0283(17) 0.0280(18) GeV/c2

fG(Λb) 0.903(21) 0.72(9)
fG(Ξb) 0.838(35) 0.81(5)
fs 0.83(10)
k 5.2(16) 2.1(10) 1/(GeV/c2)
fD∗ 0†

f1 0.62(10) 0.77(8)
f2 1.0(7)
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Fig. P.1. PDFs (left) and their cumulative distributions (right) as fitted in the projection of LL
tracks in configuration 1 (solid line), as well as the shapes with disabled Λb→ D0Λ
or Ξ0

b → D0Λ component (dashed lines). The cumulative distributions (CDF) are
used for generating the pseudo-experiments.

Fig. P.2. Combined invariant mass of D0 and Λ candidates of track type LL (left) and DD
(right) from recorded data with a negative L0 TIS trigger decision.
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Fig. P.3. Combined invariant mass of D0 and Λ candidates of track type LL (top) and DD
(bottom) from MC simulated Λb → D0Λ decays, as well as the corresponding pro-
jections of the simultaneous fit in configuration 1.
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Fig. P.4. Combined invariant mass of D0 and Λ candidates of track type LL (top) and DD
(bottom) from MC simulated Ξ0

b → D0Λ decays, as well as the corresponding pro-
jections of the simultaneous fit in configuration 1.
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Fig. P.5. Combined invariant mass of D0 and Λ candidates of track type LL (top) and DD
(bottom) from recorded data, as well as the corresponding projections of the simul-
taneous fit in configuration 1.
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Fig. P.6. Combined invariant mass of D0 and Λ candidates from recorded data, as well as
the corresponding accumulated projections of the simultaneous fit for both track
types. These fits are used to extract the yield significance of Λb → D0Λ (top) and
Ξ0

b → D0Λ (bottom). The log-likelihood when both modes are enabled (one DoF
more) is lnL = 121.944.

— 178 —



Fig. P.7. Combined invariant mass of D0 and Λ candidates of track type LL (top) and DD
(bottom), as well as the corresponding projections of the fit in configuration 3. The
yield of the D∗0 background is constrained among both track types, presumably
causing the overshooting of the combinatorial background in the former mode.
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Fig. P.8. Combined invariant mass of D0 and Λ candidates of track type LL (top) and DD
(bottom) from recorded data, as well as the corresponding projections of the simul-
taneous fit in configuration 4. The fraction f2 is unconstrained and is allowed to
vary among different track types.
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Fig. P.9. Fit to combined invariant mass of D0 and Λ candidates of both track types from
recorded data, when the flight distance significance of D0 candidates is required to
be larger than 2.

Fig. P.10. Example of a distribution that was generated as part of the pseudo-experiment to
test for a bias and the validity of the error estimation of the fit. For the generation
and fitting both signals modes were kept enabled.
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Fig. P.11. Example of a distribution (data points) that was generated as part of the pseudo-
experiment to test the validity of the signal yield significance of the Λb → D0Λ
mode. During generation this mode was kept disabled (null hypothesis). The dis-
tribution is fitted twice, first with the Λb signal component enabled (top) and once
with disabled Λb signal component (bottom). The difference in the log-likelihood
values is then used to benchmark the null-hypothesis.
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Appendix Q

The Exponential Function as a PDF
The normalized exponential function f(x|k) has one free parameter k

f(x|k) = N e−kx ,

given a sufficient normalization factor N . For a given normalization interval [a1, a2] parts of
the normalization factor N can be moved into the argument of the exponential function

f(x|k) = k e−k(x−a1)

1− e−k(a2−a1)
. (Q.1)

In the limit k → 0 Eq. (Q.1) is well defined

lim
k→0

f(x|k) = 1,

but numerically unstable. Math libraries typically implement the relative error exponential
function

exprel(x) :=
ex − 1

x
,

to avoid the loss of precision that occurs when x is near zero. Using this definition of exprel
Eq. (Q.1) can be rewritten

f(x|k) = e−k(x−a1)

(a2 − a1) exprel(−k(a2 − a1))
, (Q.2)

and now allows sign flips of k during the fitting process.
Fitting an exponential function on a single interval can easily be generalized for piecewise fits

on two disjoint normalization intervals [a1, a2] and [b1, b2]. Doing so changes the normalization
factor and Eq. (Q.2) becomes

f(x|k) = e−k(x−a1)

(a2 − a1) exprel(−k(a2 − a1)) + (b2 − b1) e−k(b1−a1) exprel(−k(b2 − b1))
. (Q.3)

In both cases the integral in x can be written as∫︂ x2

x1

dx f(x|k) = (x2 − x1) exprel (−k(x2 − x1))× f(x1|k) . (Q.4)

This relation is useful when a fit for k is used to inter- or extrapolate yields in given regions. An
uncertainty approximation by applying ordinary error propagation needs the derivative w.r.t.
k of Eq. (Q.4) which is cluttered and again suffers from numerical instabilities. When error
propagation is needed, we will therefore revert to a numerical approach. Eq. (Q.4) is then
evaluated for Gaussian distributed values of k ∼ G(µ, σ), where µ and σ are the results of the
preceding fit, and sorted. The interval that spans a fraction of erf(1/

√
2) ≈ 68% of the sorted

values, centered at the median is then taken as an approximation of the uncertainty interval.
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Appendix R

Clipped Gaussian Distribution
A large part of the free parameters of the fit model that we establish in Chap. 8 are fractions,
such as f1 and fs, which are physically constrained to the interval [0, 1]. These boundaries
enhance the numerical stability of the fit and makes it easy to separate or disable components
of the likelihood by fixing the fractions to zero or one. By design, f ∈ [0, 1] guarantees 0 ≤
L ≤ 1 and forbids negative signal yields which are meaningless for the present analysis. As
a consequence, the nominal values of fitted yields f which can be assumed to be Gaussian
distributed, will accumulate excessively at f = 0, i.e., the assumed Gaussian distribution

G(x|µ, σ) = 1√
2πσ2

e
− 1

2

(︂
x−µ
σ

)︂2

,

transforms, since x is not distributed uniformly φ(x) = x, but rather clipped at negative values
φ(x) = Θ(x) x,

G(x|µ, σ) φ(x)=Θ(x) x↦−−−−−−−−→ δ(x)

2
erfc

µ√
2σ

+ G(x|µ, σ) =: G̃(x|µ, σ) .

This clipping changes the moments non-trivially, in particular,

⟨x⟩G̃ = µ

[︃
1− 1

2
erfc

µ√
2σ

]︃
+

σ√
2π

e−
1
2

(︁µ
σ

)︁2
̸= µ = ⟨x⟩G , (R.1)

⟨x2⟩G̃ =
(︁
µ2 + σ2

)︁ [︃
1− 1

2
erfc

µ√
2σ

]︃
+

µσ√
2π

e−
1
2

(︁µ
σ

)︁2
̸= µ2 + σ2 = ⟨x2⟩G . (R.2)

We note that, although the mean value is shifted, this does not contribute to a potential bias
of the fit if the genuine yield (fraction) is non-zero, since it does not affect all values, but only
unphysical f < 0 fluctuations.

If instead considering φ(x) = Θ(x)x2 which would corresponds to a χ2
1-distribution with one

DoF in the unclipped case with µ = 0 and σ = 1, the distribution now becomes a clipped
χ2-distribution:

G(x|0, 1) φ(x)=Θ(x) x2

↦−−−−−−−−−→ 1 + δ(x)

2

exp(−x/2)√
2πx

=
1 + δ(x)

2
χ2
1(x) =: χ̃2

1(x) .

The mean and variances of χ̃2
1(x) are

⟨x⟩χ̃2
1
=

1

2
⟨x⟩χ2

1
=

1

2
, (R.3)

⟨x2⟩χ̃2
1
− ⟨x⟩2χ̃2

1
=

1

2
⟨x2⟩χ2

1
− 1

4
⟨x⟩2χ2

1
=

3

2
− 1

4
=

5

4
. (R.4)
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Appendix S

Estimations of a CI for the Ξ0
b -Λb Ratio

The fit parameter fs of the model that we established in Sec. 8.1 can be used to estimate the
branching fraction of the Ξ0

b and Λb baryon into D0Λ up to corrections due to the different
b-fragmentations:

fΞ0
b

fΛb

× B(Ξ0
b → D0Λ)

B(Λb→ D0Λ)
=

1− fs
fs

=: f(Ξ0
b /Λb) , (S.1)

where fΛb
/fΞ0

b
is the ratio of the fragmentation fractions of b-quarks into Λb and Ξ0

b baryons.
Two frequentist confidence intervals (CI) according to Ref. [143] are calculated by drawing

random events from to the fitted PDF where all parameters are fixed, except for f1 and fs.
While f̂(Ξ0

b /Λb) is varied on the interval [0.0 . . . 0.6], the value of f1 is corrected such that
the ratio of the Λb signal and the combinatorial background fs(1− f1)/f1 stays constant. For
each value of f̂(Ξ0

b /Λb), 400 fits are performed. Each of these fits yields a value for fs which
is used to calculate fobs(Ξ

0
b /Λb), according to Eq. (S.1). CIs are estimated by finding intervals

in f̂(Ξ0
b /Λb) such that, according to the pseudo-experiment, for each value of f̂(Ξ0

b /Λb) within
this interval, intervals with a given coverage in fobs(Ξ

0
b /Λb) include the value that was found

with the fit to recorded data. In total, we evaluate 25 different f̂(Ξ0
b /Λb) values and smooth

the estimated boundaries with linear functions.
Two different methods of finding the intervals in fobs(Ξ

0
b /Λb) are used: In Fig. S.1 we show

the result of the central method where the 400 different outcomes are partitioned at the 16 %
(5 %) and 84 % (95 %) percentiles, i.e., the central interval corresponds to 68 % (90 %) CL. We
note that this method of constructing two-sided intervals implicitly gives the one-sided 84 %
(95 %) CL upper limit, too.

Fig. S.1. Frequentist CIs using the central method. Interval boundaries are estimated by
percentiles in fobs(Ξ

0
b /Λb) at 25 different f̂(Ξ0

b /Λb) positions. The boundaries (left)
are smoothed with linear functions (right).

In Fig. S.2 we show the result of the shortest method where for each value of f̂(Ξ0
b /Λb) the
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shortest interval in fobs(Ξ
0
b /Λb) with a 68 % and 90 % coverage is estimated. The output of

this method is noisier and does not allow an extraction of upper limits.

Fig. S.2. Frequentist CIs using the shortest method. Interval boundaries are estimated by
finding the shortest intervals in fobs(Ξ

0
b /Λb) with a coverage of 68 % and 90 % at

25 different f̂(Ξ0
b /Λb) positions. The boundaries (left) are smoothed with linear

functions (right).

As an alternative, we also calculate CIs using Bayesian methods by converting the fitted
likelihood, as shown in Fig. S.3, into an a posteriori probability density (using Bayes theorem).
This transformation involves a normalization and an assumption about the prior probability.
The latter is non-obvious and we decide to estimate intervals based on the assumption of a
uniform distribution of f(Ξ0

b /Λb). In Fig. S.4 we show the results of integrating the PDF when
using the central and shortest method. Again, 84 % CL and 95 % CL upper limits are implicitly
given by the central 68 % and 90 % interval, respectively. A comparison of the presented methods
is shown in Fig. 9.2 and Tab. 9.2.

Fig. S.3. Normalized log-likelihood ratio of fs as estimated by the fitting procedure. The
normalization is chose such that intervals using the likelihood ratio method can
directly be read off the y-axis.
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(a) Central (b) Shortest

Fig. S.4. Bayesian CIs by integrating the normalized likelihood of f(Ξ0
b /Λb) as estimated by

the fitting procedure, assuming a uniform distribution of the prior. On the left (right)
intervals are chosen according to the central (shortest) method.

Fig. S.5. Bayesian upper limits by integrating the normalized likelihood of f(Ξ0
b /Λb) as esti-

mated by the fitting procedure, assuming a uniform distribution of the prior, when
an additional veto against charmless Ξ0

b backgrounds is required.
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— Charles Dickens, from his book A Tale of Two Cities.
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