
A quantum logic-based query processing approach for
extending relational query languages

Sebastian Lehrack
Institut für Informatik

Brandenburgische Techn. Universität Cottbus
slehrack@informatik.tu-cottbus.de

May 1, 2009

Abstract

Evaluating a traditional database query against a data tuple returns a true on match
and a false on mismatch. Unfortunately, there are many application scenarios where such
an evaluation is not possible or does not adequately meet users needs. A further problematic
application area is text retrieval where in general finding a complete match is impossible.
Thus, there is a need for incorporating impreciseness and proximity into a logic-based query
language: Objects fulfill such a similarity condition to a certain degree which is expressed
by a result value out of the interval [0, 1]. In this work we will sketch a quantum logic-based
approach, which provides the combination of classical Boolean predicates and similarity
conditions into one integrating formalism.

1 Introduction

To motivate our query processing approach we want to consider an example, which is dealing
with the assessment of TV sets. So, in an online shop a user may look for a very comfortable but
inexpensive TV set by means of a query expressing these requirements. In a database following
attributes are saved for a certain TV set: name, price, status, handling and image_quality.
The two last attributes contain a rating of the respective properties decoded as marks from 1 to
6. Thereby, the mark 1 stands for an excellent test result and the mark 6 confirms an inadequate
quality for the tested feature. The Table 1 gives an extracted part of the entire data spreadsheet.
The user defines his query more precisely as: I want to find a device, which can be handled
as easy as possible and its price does not exceed 1.000 Euro. If otherwise the cost of a certain
TV set is more than 1.000 Euro, it should provide the best possible quality of image at least.

TV sets
name price handling image_quality . . .

TV1 500 (1) 3 (0) 4 (0) . . .
TV2 800 (1) 2 (1) 2 (1) . . .
TV3 900 (1) 1 (1) 4 (0) . . .
TV4 2000 (0) 2 (1) 1 (1) . . .
.

Table 1: Spreadsheet of tested TV sets

The vagueness of the subconditions handling
as easy as possible and best possible quality of
image cannot be mapped to Boolean truth
values. In Table 1 the truth values for a
Boolean evaluation are given in parentheses,
when the threshold value for an acceptable
mark is assumed to 2.

Obviously, important informations are
getting lost by the usage of classic Boolean
logic. Thus, the provided result items are not
distinguishable at all. For instance, the TV sets TV2, TV3 and TV4 return all the same positive

Session 4 - Information Retrieval

63

query result true, in spite of the fact that TV set TV2 has to be acknowledged as the best choice,
when all three subconditions are taken into account.

Next section gives a short overview to the theoretical model behind the quantum-logic query
processing and introduces similarity calculus CQQL: Commuting Quantum Query Language.
Section 3 will sketch the structure of the similarity language family based on CQQL.

2 The Quantum Query Language CQQL

In the following section we present an introduction to the theoretical model behind CQQL.
Especially, we will sketch the structure and the evaluation of a CQQL query. A more detailed
description of theory can be found in [1].

In general, CQQL enables the logic-based construction of queries from traditional Boolean
and similarity conditions. The underlying idea is to apply the theory of vector spaces, also known
from quantum mechanics and quantum logic, for query processing. Table 2 gives the correspon-
dences between query processing concepts and the adapted vector space model of CQQL.

query processing vector space model of CQQL
query system - vector space H
tuple to be queried ti vector v[ti]
query q vector subspace vs[q]
evaluation eval(ti, q) squared cosine of the angle cos2(α(v[ti], vs[q]))

between v[ti] and vs[q]

Table 2: Correspondences between query processing and the model of CQQL

Before we go in more detail, we want to summarise the basic idea of evaluating a given tuple ti
against a given CQQL query q. We start by considering a vector space H containing all encoded
elements of the query processing (see Table 2). All attribute values of a tuple ti are embodied
by the direction of a normalized tuple vector v[ti]. The query q itself corresponds to a vector
subspace vs[q] located in H. The position and the expansion of the subspace vs[q] bijectively
correlates to the semantic of q. To distinguish the subspace vs[q] from the containing vector
space H we will denote vs[q] as query space.

Furthermore, the evaluation result of a tuple ti against the query q is determined by the
minimal angle, denoted as α(v[ti], vs[q]), between the tuple vector v[ti] and the query space vs[q]
in H. The squared cosine of this angle is a value out of the interval [0, 1] and can therefore
be interpreted as a similarity measure as well as a score-value. If the tuple vector belongs to
the query space, i.e. α(v[ti], vs[q]) = 0◦, then we interpret the query outcome as a complete
match: cos2(0◦) = 1. Contrarily, a right angle of 90◦ between v[ti] and vs[q] leads to a complete
mismatch: cos2(90◦) = 0.

Based on this main idea we want to further discuss the two central issues: (1) the construction
of the tuple vector v[ti] and the query space vs[q] and (2) the fast computation of the evaluation
result as cos2(α(v[ti], vs[q])). To study these both topics we assume the following example query,
which is associated with the already known TV set scenario:

q = {(name, status, handling, . . .) | TV (name, status, handling, . . .) ∧ (status = a
∨status = o) ∧ handling ≈ 1}

The domain of the attribute status contains the three values available, sold and ordered,
whereby the underlined abbreviations are used for the sake of convenience, i.e. Dom(status) =
{a, s, o}. Thus, the query determines all TV sets, which are available or ordered and own a
handling mark as good as possible. This query will be validated against the two tuple t1 =
(TV 1, o, 3, . . .) and t2 = (TV 2, s, 2, . . .).

Session 4 - Information Retrieval

64

2.1 Construction of the tuple vector v[ti] and the query space vs[q]

To construct the elements v[ti] and vs[q] we employ a typical bottom-up strategy based on the
logical composition of q. Thus, atomic conditions, also called predicates, can be considered as
smallest evaluable entities, which are getting combined by the logical connectors ∧,∨ and ¬ to
form the final query q. We will exploit this construction principle (going from single predicates
over combined subconditions to the final query) to deploy the intended elements.

According to their semantic atomic conditions can be divided in two different main types:
Boolean and similarity predicates. For instance, the introduced example query includes three
atomic conditions ‘handling ≈ 1’, ‘status = a’ and ‘status = s’, whereby the first one can be
classified as a similarity predicate and the last two conditions are typical Boolean predicates.
The left relation predicate TV (name, status, handling, . . .) is also a Boolean predicate, but for
the discussion of this special case we refer to [1]. At the first construction step we set up a
separate vector space Hpj

for each Boolean and similarity predicate pj .
These single vector spaces possess the character of basic modules for the construction of the

final vector space H. This behaviour is similar to the structural meaning which is owned by
predicates according to the query q. In the following we simple name this kind of a separate
vector space as a basic module.

There are two information entities, which have to be encoded in such a basic module. On
one hand, we have the value of the queried tuple attribute. For example, taking the predicate
‘status = a’ we must encode the value o for the attribute status of t1, which has to be tested
against the predicate condition: Is o equal to a? So, the value o forms the tuple vector v[tstatus

1].
On the other hand, the comparison constant of the predicate condition, e.g. the constant 1 for
handling ≈ 1, must be integrated into Hpj

as the query space vs[handling ≈ 1].
The applied method for the encoding directly depends on the predicate type, whereby several

implications must be considered. Primarily, the encoding must guarantee a valid outcome for
the minimal angle between v[tattr

i] and vs[pj]. So, the angle α(v[tattr
i], vs[pj]) has to be either 0◦

or 90◦ for a Boolean predicate. In contrast, for a similarity predicate the angle α(v[tattr
i], vs[pj])

can be evaluated as a value between 0◦ and 90◦. These constraints determine the structure of a
basic module Hpj

as well the integration of v[tattr
i] and vs(pj) into Hpj

.

a) b) c)

bS

bA

v[tst
1]

bO

bA

bS

bO

v[tst
2]

vs[st=a]

v[tha
2]

vs[ha≈1]

v[tst
2]

v[tst
1]

v[tha
1]

vs[st=a∨st=o]

Figure 1: Basic modules

Basic modules for Boolean predicates For Boolean predicates each domain value of the
queried attribute constitutes a orthonormal basis vector for Hpj

. So, for instance a 3-dimensional
basis module is built for the Boolean predicate ‘status = a’, whereby the basic vectors bA, bS

and bO represent the domain values available, sold and ordered.
To encode the attribute value of tattr

i and the condition constant of pj we map the corre-
sponding elements v[tattr

i] and vs[pj] to basis vectors embodying the same domain value. Figure
1a) depicts the basic module for the Boolean predicate ‘status = a’ including the query space
vs[st = a], and the tuple vectors v[tst1] and v[tst2]. Please notice that in a basic module the query
space vs[pi] only spans one dimension and is therefore equivalent to a single vector. By studying

Session 4 - Information Retrieval

65

Figure 1a) we can confirm that all angles between tuple vectors and query spaces must be either
0◦ or 90◦ depending on the considered attribute values and condition constants. In this example
both attribute values o (for t1) and s (for t2) leads to a mismatch: α(v[tsti], vs[st = a]) = 90◦ for
i = 1, 2.

Basic modules for similarity predicates A basic module for an arbitrary similarity predicate
has always two dimensions. So, the attribute value and the condition constant must be repre-
sented by non-orthogonal vectors embedded in the 2-dimensional vector space Hpj

. In Figure
1b) the basic module for the similarity predicate ‘handling ≈ 1’ is given. We conclude that the
angles between the attribute vectors v[tha

1], v[ha
2] and the query space vs[ha ≈ 1] express the

similarity between these elements in an interval from 0 (cos2(90◦)) to 1 (cos2(0◦)).

Combining basic modules For the combining of basic modules to the final vector space H we
use the tensor product of two vector spaces [1]. By the usage of this algebraic operation two vector
spaces Hpj

and Hpk
are getting entangled in a new generated vector space: Hpj

⊗Hpk
= Hcl

.
The dimensionality of the product space Hcl

is in general higher than the dimensionalities of
both input spaces.

The attribute tuples and the query spaces within Hpj
and Hpk

are also getting transfered
into the product vector space, whereby the two attribute vectors merge to a single multi-attribute
vector and the query spaces express a combined condition.

The specific combining operation for query spaces corresponds to the logical operators ∧,∨
and ¬ of the underlying formula q. For example, two query spaces vs[c1] and vs[c2] are getting
intersected, when the respective subconditions c1 and c2 are connected conjunctively. Following
operations for the merging of query spaces are defined:

vs(c1 ∧ c2)
def
= vs(c1) ∩ vs(c2),

vs(c1 ∨ c2)
def
= closure(vs(c1) ∪ vs(c2)),

vs(¬c1)
def
= Hc1 \ vs(c1).

The closure operation generates the set of all possible vector linear combinations. By applying
these rules the final vector space H, the multi-attribute tuple vector v[ti] and the combined query
space vs[q] can be constructed recursively.

The Figure 1c) gives an idea for the combination of query spaces. The condition ‘status = a∨
status = o’ generates a combined query space as a plane spanned by the vectors bA and bO. Since
the considered condition only queries the attribute status, the query space vs[st = a∨ st = o] is
still placed in a single basic module instead of a product space. The measurement of the angle
between v[tst1] and vs[st = a ∨ st = o] returns 0◦. It correlates to the fact that tst1 = o fulfill
the subcondition ‘st = a ∨ st = o’. On the other side, there is an angle of 90◦ between vs[tst2]
and the query space vs[st = a ∨ st = o], which is affirming a mismatch between tst2 = s and
‘st = a ∨ st = o’.

2.2 Fast computation of cos2(α(v[tattr
i], vs[p]))

Generally, the squared cosine of the minimum angle between v[ti] and vs[q] can be computed by
using a set of basis vectors for the constructed query space vs[q]. From a computational view
point such a method is quite inefficient, because in general the cardinality of a basis vector set
increases tremendously.

An alternative method is developed in [1]. It allows to evaluate a tuple ti against a complex
CQQL query q by using of simple arithmetic operations recursively:

Session 4 - Information Retrieval

66

eval(ti, p) := ϕattr(tattr
i , p),

eval(ti, c1 ∧ c2) := eval(ti, c1) ∗ eval(ti, c2),
eval(ti, c1 ∨ c2) := eval(ti, c1) + eval(ti, c2)− eval(ti, c1 ∧ c2),
eval(ti,¬c) := 1− eval(ti, c),

whereby p is an atomic condition (predicate) and c, c1 and c2 are arbitrary subconditions. The
function ϕattr(tattr

i , p) returns cos2(α(v[tattr
i], vs[p])) for the predicate p and the respective at-

tribute value of ti.
For the correct application of the defined operations a specific syntactical form of the CQQL

query q is needed. Since our language obeys the same transformation rules as held by the
Boolean logic we can convert every CQQL query into the required syntactical form. An algorithm
performing this transformation is presented in [1].

3 Language family

CQQL
QA QSQL

nCQQL
nQA

SQL-99

WS-QBE

normalisation

evaluation

user

end-user

Figure 2: Similarity query languages

Since Codd has introduced the relational data
model in the 70s a lot of relational query
languages have been proposed. Especially,
the relational calculuses, the relational alge-
bra and the database query language SQL
have grown a strong theoretical and practical
significance. Under certain circumstances all
three languages can be considered as equiv-
alent expressive. However, they distinguish
from each other by their areas of application
and their user groups.

In the previous section we presented the
basic ideas of our query processing approach
by an informal introduction to the calcu-
lus language CQQL. The underlying concepts
and basic constraints, which have been derived from the vector space model, are encapsulated in
the CQQL semantic.

The challenge is now to incorporate these principles into further relational query languages.
For this purpose a whole quantum logic-based language family has been developed. To preserve
the compatibility to existing object-relational data base systems we also evolved several mappings
between the languages (Fig. 3), which are all ending up to the SQL-99 standard. Following
languages belongs to our group of similarity languages:

• WS-QBE: QBE-based extension for the input of multimedia and similarity conditions

• CQQL: extension of the relational domain calculus

• QA: extension of the relational algebra

• QSQL: special SQL dialect based on SQL-92

• nCQQL: normalised CQQL-version

• nQA: normalised QA-version

References

[1] Schmitt, Ingo: QQL: A DB&IR Query Language. The VLDB Journal, 17(1):39–56, 2008.

Session 4 - Information Retrieval

67

