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Abstract

In this thesis the ability of the Generalized Langevin Equation (GLE)

to mimic the dynamics of solute modes in liquid solvents is inves-

tigated. The GLE formalism constitutes a reduced description of a

system in a non-Markovian environment whose influence is reduced

to dissipation and noise. The theoretical background is presented in

detail shedding light onto the approximations and models involved as

well as the numerical treatment. The dynamics is probed by means

of linear absorption spectroscopy. First, the spectra are analyzed with

respect to simple test systems illustrating the physical mechanisms

of non-Markovian system-bath interactions. Afterwards, the central

question about the applicability of the formalism to dynamics of so-

lute modes in liquid solvents is probed by the ability of the GLE to

reproduce spectra obtained from explicit Molecular Dynamics simu-

lations. For this purpose a protocol for extracting the herein needed

spectral density of the solvent from explicit Molecular Dynamics data

is established. The results show that only a linear form of the GLE

yields correct spectra, although at a price of projecting any anhar-

monicity from the system to the environment. Conversely, any non-

linear GLE preserving the system anharmonicity suffers from a fun-

damental mathematical problem and, hence, yields incorrect results.

A possible solution of this problem is sketched giving an outlook on

how to explicitly include anharmonicity of the system potential into

the formalism.
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Zusammenfassung

In der vorliegenden Arbeit wird die Anwendbarkeit der verallgemei-

nerten Langevin Gleichung (VLG) zur Beschreibung von Schwingungs-

dynamik in Lösungen behandelt. Bei dem VLG-Formalismus handelt

es sich um eine reduzierte Beschreibung von Systemen in einer nicht-

Markovschen Umgebung, dessen wesentlicher Einfluss durch Dissi-

pation und Rauschen modelliert wird. Die theoretischen Grundlagen

werden detailliert dargestellt, die gemachten Näherungen und Model-

le erläutert sowie eine Methode zur numerischen Behandlung vorge-

stellt. Zur Untersuchung der dynamischen Eigenschaften werden Me-

thoden der linearen Absorptionsspektroskopie verwendet. Zunächst

werden die Spektren anhand von einfachen Modellsystemen unter-

sucht und die wesentlichen physikalischen Mechanismen einer nicht-

Markovschen System-Bad Wechselwirkung analysiert. Anschließend

wird die zentrale Frage nach der Anwendbarkeit des Formalismus auf

die Dynamik von Schwingungsmoden in Lösungen beleuchtet. Hierbei

wird untersucht inwieweit die VLG in der Lage ist, lineare Spektren

aus expliziten Molekulardynamik Simulationen zu reproduzieren. Ei-

ne Methode zur Bestimmung der dazu benötigten Spektraldichte des

Lösungsmittels wird vorgestellt. Insgesamt zeigt sich, dass lediglich

eine lineare Form der VLG, wo jedoch sämtliche Anharmonizität im

Systempotential formal in die Umgebung projiziert wird, erfolgrei-

che Ergebnisse liefert. Nichtlineare Formen der VLG, in denen die

Anharmonizität explizit gewahrt bleibt, liefern unbrauchbare Ergeb-

nisse, welches durch das Auftreten eines mathematischen Problems

begründet werden kann. Ein möglicher Ansatz zur expliziten Einbe-

ziehung von Anharmonizität wird skizziert um den Formalismus für

zukünftige Untersuchungen zu erweitern.
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Introduction

“God does not care about our mathematical difficulties. He integrates
empirically.”

— Albert Einstein

Studying complex dynamics of many-particle systems has become one of the main

goals in modern molecular physics. The fundamental understanding of the underlying

processes requires the interplay of elaborate experimental techniques and sophisti-

cated theoretical approaches. Experimentally, (non-)linear spectroscopy revealed it-

self as a powerful tool for probing the dynamics and for determining the characteris-

tic timescales for the processes of interest. With the rapid development of the laser

technology in the past years it has become more and more feasible to resolve these

timescales down to the sub-picosecond range. For interpreting the experimental spec-

tra theoretical models are needed which give insight into the atomistic dynamics on a

microscopic level. Specifically, computer simulations provide the bridge between ex-

perimental observations and a theoretical understanding of the processes under study.

The fast progress in computer facilities allows theoreticians to thrust into the field of

many-body systems with increasing size and complexity.

At the beginning of the twentieth century physicists realized that new fundamental

concepts like the Heisenberg Uncertainty Principle, a Wave-Particle Duality as well as

a Discretization of Energy have to be built into the theoretical description of systems

on the atomistic scale. These quantum effects are especially important for light parti-

cles at low temperatures and high densities. Their proper inclusion generally requires

to solve the full time-dependent Schrödinger Equation (TDSE) accounting for both

nuclei and electrons as well as their mutual interactions. Methods like MCTDH [1]

can provide an efficient quantum description on the basis of a pure state wavepacket

propagation being valid at 0 K. However, simulations of large systems with strong

coupling suffer from the curse of dimensionality, which states an exponential increase

3



4 Introduction

of numerical effort with growing system size also known as the exponential wall. This

makes a numerical treatment on the basis of the full TDSE impossible for large or even

moderate size systems and, hence, meaningful approximate methods are required to

overcome this fundamental problem. As a first big step the Born-Oppenheimer approx-

imation is involved [2]. Its basic idea is that since electronic masses are about three

orders of magnitudes smaller than nuclei masses, the electronic motion takes place on

a much smaller timescale than the nuclei dynamics. This allows one to assume that

electrons follow the nuclear configuration nearly instantaneously. The electronic influ-

ence can then be reduced to an effective nuclear pair interaction which is given by the

electronic charge distribution around the cores. For the nuclear dynamics the remain-

ing task is to solve an effective TDSE being completely freed from explicit electronic

contributions. Further approximations are obtained by a systematic expansion of the

TDSE in terms of the Planck constant ~ leading to various semiclassical methods [3].

Finally, the ~ → 0 limit amounts to a fully classical description. Treating the nuclei

as point particles allows one to calculate the effective nuclear potential by solving the

electronic time-independent Schrödinger Equation (TISE) with the nuclei fixed at their

present configuration. Here, state-of-the-art quantum chemistry methods like Coupled

Cluster, Møller-Plesset Perturbation Theory as well as Density Functional Theory [4]

come into play. A parametrization of the effective potentials to force fields finally re-

moves the necessity to repeat time consuming quantum-chemical calculations and the

nuclear motion can be described by means of robust Molecular Dynamics (MD) sim-

ulations. In many cases, the classical limit is the only feasible way to simulate large

many-particle systems like biological molecules with reliable computational effort.

Having in mind the various approximations and simplifications made in deriving

classical MD one might be surprised about its undisputed success [2]. Nevertheless,

it has been found out by M. L. Koszykowski et al. in 1982 that, in the case of the

anharmonic Morse oscillator, good agreement between quantum and classical spec-

tral intensities is obtained when employing classical trajectories with a semiclassically

chosen action [5]. Further, it has been shown by R. B. Shirts in 1987 that, within

the same model, Fourier amplitudes of classical trajectories yield exact agreement

with quantum-mechanical expectation values for a selection of quantum observables

whereas the classical Fourier amplitudes for off-diagonal elements are shown to be

not exact but remarkably accurate [6]. Although these examples show that a classi-

cal description of nuclear dynamics can be successful for simple, isolated oscillators

it is desirable to extend such quantum vs. classical comparisons to realistic complex

many-body systems at finite temperature, where these oscillators are coupled to en-
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vironmental degrees of freedom (DOFs). However, as mentioned above, a precise

quantum benchmark is hardly affordable via explicit quantum simulations.

Great potential can be expected from implicit formalisms whose basic idea is to se-

lect a small subset of DOFs to be followed explicitly, whereas others are considered as

unimportant and are described implicitly by modeling their influence on the system.

One of the common approaches is based on the idea of Brownian motion, where the

environmental influence on the system is reduced to dissipation and fluctuation, which

are added to the unperturbed equation of motion (EOM). The most simple formulation

of this idea is provided by the Markovian Langevin Equation, where the dissipation is

a standard friction and the fluctuation takes the form of white noise [7–10]. This phe-

nomenological equation has found application, for instance, in the theory of chemical

reaction rates [11, 12] or diffusion [7–9]. A generalization of this equation to a non-

Markovian regime is provided by the Generalized Langevin Equation (GLE) [13–15].

Here, memory effects are explicitly accounted for via a non-Markovian dissipation and

a fluctuating force with a finite correlation time. This generalized equation has been

involved, for instance, in the theory of vibrational relaxation for estimating character-

istic relaxation times [16–19]. The microscopic origin of the GLE can be rationalized

starting from different standpoints. In a physical picture it can be derived from the

so-called Multimode Brownian Oscillator (MBO) model, where the environment is as-

sumed to be a collection of independent harmonic oscillators bilinearly coupled to the

system [10, 14, 20]. This model has been widely used in analyzing and interpreting

(non-)linear spectroscopic experiments on systems in condensed phase [21–26]. One

of the benefits of this model is that it interpolates between the limits of homogenous

and inhomogenous linebroadening providing a microscopic explanation of these ef-

fects [20]. Importantly, deriving an implicit description from this model gives rise

to memory effects and noise being exactly of GLE form [10, 14, 27]. Another, more

formal ansatz for justifying the GLE is to employ projection operator techniques in

order to rearrange the system’s EOM into a GLE form [10, 13, 15, 28]. In this ap-

proach noise and dissipation can be mathematically defined as projected quantities.

Independently of the standpoint from which the GLE is justified, practical use of this

equation can only be made in connection with a stochastic model for the noise term

being the main assumption in the formalism. The general advantage of the stochastic

GLE is that dissipation and the statistical properties of the noise are entirely described

by one single function of time, the so-called memory kernel. Due to its simplicity and

intuitive physical background the GLE formalism seems to be a promising candidate

for a reduced description of systems in macroscopic environments. Moreover, it sets
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the stage for a quantum vs. classical comparison, since a quantum version of the GLE

is also available [27, 29, 30]. However, the validity of the GLE can be questioned

as in the rigorous derivation from projection operator techniques the explicit system

forces loose their original form, whereas the possibility to utilize the MBO model,

where these forces are preserved, is not apparent in the general case due to the very

special assumptions made in this model. The practical applicability of the GLE is the

central question in this thesis. Specifically, the possibility to simulate realistic, lin-

ear vibrational spectra of systems in liquid solvent environments is the main object of

investigations.

In order to utilize the framework of the GLE a memory kernel has to be constructed

such that dissipation and noise correctly mimic the environmental behaviour. Com-

mon approaches involve classical MD simulations where the environment is explicitly

taken into account. Often, one calculates the memory kernel as the time-correlation

function (TCF) of the forces exerted on a freezed system coordinate [16, 17, 19].

A formal justification of such an ansatz can only be achieved when the system ap-

proaches the high frequency limit [31]. Another family of methods is based on ex-

tracting the memory kernel from a Volterra-type integro-differential equation for the

momentum-autocorrelation function (MAF). From this equation the memory kernel

can be computed from explicit MD TCFs involving either discretization schemes in

time-domain [32–35] or Laplace domain techniques [34, 36, 37]. However, the latter

suffer from numerical instabilities especially when transforming from Laplace domain

back to time domain. In this thesis a Fourier domain protocol is proposed which allows

one to directly parametrize the Fourier transform of the memory kernel, the so-called

spectral density. Here, the numerical problems in a back transform to time domain are

avoided.

The thesis is structured as follows. In the first chapter the theoretical background of

the GLE formalism is presented focusing on the models and approximations employed.

In the second chapter the principal mechanisms of non-Markovian system-bath inter-

actions and their spectral signatures are discussed and a reliable protocol to set up

implicit GLE simulations is established. In the third chapter, the main question of the

thesis, the applicability of the GLE to vibrational spectroscopy of real solute dynamics,

is probed via the ability to reproduce the explicit spectra obtained from MD simulations

where the system-bath interactions are accounted for explicitly. Finally, the findings

are summarized and an outlook describing the emerged perspectives is given.



Chapter 1.

Theoretical Background

1.1. The Generalized Langevin Equation

1.1.1. An Overview

The original idea of Brownian motion is based on a very intuitive picture and finds its

physical formulation in the (generalized) Langevin equation. The physical situation

to be described in this thesis will be a single molecule that is embedded in a large

environment. In particular, the main focus will be on a single molecular coordinate x

which might correspond to some vibrational mode and which is referred to as system
in the following. All the environmental DOFs are denoted as {Q} and will be called

bath in the subsequent discussion. Without loss of generality the total potential of

system and bath can be decomposed into

V (x, {Q}) = VS (x) + VB ({Q}) + VS−B (x, {Q}) , (1.1)

where VS labels the system part, VB the bath part and VS−B their mutual coupling.

In principle, the complete knowledge of all positions and momenta of system and

bath at one time is sufficient to predict all dynamical properties in the future. The

deterministic time evolution of the system’s state can be computed from the Hamilton

EOMs, which read

ẋ(t) =
p(t)

m

ṗ(t) = − ∂

∂x
VS (x(t))− ∂

∂x
VS−B (x(t), {Q(t)}) , (1.2)

7



8 Theoretical Background

with m being an effective mass associated with the coordinate x. This equation shows

that the dynamics of the bath, {Q(t)}, enters the system’s EOM via the system-bath

coupling term VS−B which implies that, in order to get a closed solution for x(t), one

has to follow this detailed time evolution as well. This is a task that becomes more

and more unfeasible when the number of bath DOFs approaches a macroscopic value

(i.e. ∼ 1023). One way to overcome this difficulty is to invoke the central idea of Brow-

nian motion [7–10]. The principal inability of an observer to follow the deterministic

bath dynamics amounts to a lack of information being necessary to predict the exact

forces stemming from system-bath interactions. Due to this incomplete knowledge the

system-bath coupling and, hence, the whole system’s motion appears to be of non-

deterministic, stochastic nature. This leads to the idea of mimicking the coupling VS−B

via stochastic forces R(t). Further, experience teaches one that in many situations the

bath hinders the system’s motion via a friction force which can be most easily repre-

sented by a term −γp, with γ denoting a phenomenological friction coefficient. In this

simple picture of Brownian motion the difficult coupling term in Eq. (1.2) is reduced

to these two effects and the corresponding EOM reads

ẋ =
p

m

ṗ = − ∂

∂x
VS (x)− γp+R(t) (1.3)

making the explicit coordinate dependence on bath variables vanishing. The random

force R(t) is set up as Gaussian white noise meaning that it is Gaussian distributed,

has zero mean and is delta-correlated

〈R(t)〉 = 0

〈R(0)R(t)〉 = mkTγδ(t) , (1.4)

where T is the temperature, k the Boltzmann constant and 〈...〉 indicate expectation

values. The latter relation is also known as fluctuation-dissipation theorem (FDT) which

states that in thermal equilibrium, the fluctuations expressed by the stochastic forces R

must be related to the dissipation determined by the friction coefficient γ [8, 10, 13].

The delta-correlation of the stochastic forces implies that past events have no influence

on the force felt at the present time. This means that the system has no memory

about its history which is the characteristic of Markovian dynamics. If, conversely,

memory effects were important, the dynamics would be called non-Markovian and a

finite correlation of the random forces would have to be accounted for.
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The aforementioned stochastic EOM constitutes the original form of Langevin dy-

namics (LD) as has been used for describing various quantities like chemical reaction

rates [11, 12] or collective transport properties like diffusion constants [7–9] on a

statistical-mechanical basis. So far, it is a simple but empirical ansatz for a reduced

description of a condensed phase system providing physically sensible results for pur-

poses of MD simulations that can be probed, e.g., via vibrational spectroscopy. For

instance, LD can serve as a thermostat giving correct canonical distributions of posi-

tions and momenta without affecting dynamical properties if the friction coefficient

γ is set small enough [38, 39]. In the previous work it has been applied to ensure

the canonical ensemble for an HDO molecule in gas phase [39]. The results have

shown that spectroscopic features like homogeneous line broadening, that reveals it-

self via a Lorentzian spectral shape [20, 39, 40], can be obtained from the dynamics

induced by Eq. (1.3). However, spectra simulated with an explicit bulk water en-

vironment show significant deviations from a Lorentzian lineshape (see [41, 42] or

results in Sec. 3.2). This indicates that the simple system-bath coupling description

in Eq. (1.3) lacks important effects and has to be extended properly. Specifically, the

Markovian assumption of an immediate memory loss in the system-bath interaction

becomes questionable as can be illustrated by simple physical arguments. In con-

densed phase, the surrounding usually forms a characteristic structure located around

the system. If at a certain time the system perturbs the environment, it will begin to

rearrange its structure on a finite characteristic timescale. Thus, it becomes obvious

that the environmental forces exerted on the system at later times would depend on

the present state of the system which gives rise to memory effects and thus requires

a non-Markovian version of LD. Indeed, such a Generalized Langevin equation (GLE)

has been exploited, for instance, in successful studies of vibrational relaxation in bulk

systems [16–19]. The herein used GLE reads

ẋ =
p

m

ṗ = − ∂

∂x
VS(x)−

tˆ

0

ξ(t− τ)p(τ)dτ +R(t) , (1.5)

where the dissipative force is formed by an integral over all the momenta lying in the

system’s past, weighted with a memory kernel ξ(t). The random force R(t) used in this



10 Theoretical Background

approach is given the statistical properties

〈R(t)〉 = 0

〈R(0)R(t)〉 = mkTξ(t) , (1.6)

with the latter formula being the generalized FDT that incorporates a finite correlation

time [10, 13–15]. Apparently, the Markovian Langevin Equation, Eq. (1.3), is the

limiting case of the GLE for a fast memory loss ξ(t) → γδ(t). In the later discussions

it will be more convenient to think in terms of spectral densities, which are defined as

the half-sided Fourier-transform of the memory kernel

J(ω) ≡
∞̂

0

e−iωtξ(t)dt . (1.7)

In the Markovian case the spectral density becomes a constant, i.e. J(ω) = γ, whereas

for any non-Markovian situation it is a function of finite width. For this reason one

often refers to the Markovian noise as white noise, whereas its non-Markovian coun-

terpart is often called colored noise. Note that in the literature one often includes an

additional prefactor ω in the definition of J(ω), which will not be adopted in this the-

sis. Further, in subsequent discussions only the real part of J(ω) will be considered

since the imaginary part is related to the real part via Kramers-Kronig relations and,

hence, its knowledge completely determines the former.

The main subject of this thesis is the dynamics of a selected vibrational mode of

a molecule embedded in liquid surroundings, whose influence shall be described by

the GLE and probed via linear absorption spectroscopy. Before applying the formalism

presented above, it is necessary to study its microscopic origin since this will demon-

strate possible limitations and approximations of the method, which so far has been

motivated by physical arguments only. The following subsections are thus aimed at

shedding light on the theoretical background of the GLE by presenting formal deriva-

tions of its different prototype forms. In anticipation of the subsequent discussion it

will turn out that the only exact justification of Eq. (1.5) is based on a linear form in

which the system’s explicit potential, VS, is replaced by an effective harmonic one. As

already has been put forward in the introduction, an important criterion for a reduced

system-bath formalism is a meaningful connection to quantum applications when a

quantum vs. classical comparison shall be performed. Unfortunately, this linear GLE

will turn out inappropriate for this purpose and, hence, a non-linear GLE should be
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preferred. Therefore, three approximate approaches for an explicit inclusion of non-

linearities into the GLE are discussed. After having presented the theoretical back-

ground a numerical scheme is described in order to obtain solutions of the GLE. Here,

the machinery of colored noise thermostats developed by Cerrioti et al. [43–46] is in-

volved.

1.1.2. The linear Form of the GLE

First, the derivation of a linear GLE is given involving the mathematically rigorous

concept of linear projection operators in the Hilbert space of dynamical functions. An

extension to the non-linear case is given in the next section. The derivation starts with

the definition of the linear projection operator onto the system’s linear subspace. Then,

an operator identity is applied to the Hamilton EOMs in order to separate the forces

acting on the system into terms which lie in the linear subspace and those orthogonal

to it [10, 13, 15]. The EOM obtained this way has a similar form to that of the GLE in

Eq. (1.5). Particular differences are discussed after the derivation.

In general, one can understand a classical dynamical variable A to be a function

defined on the system’s phase space spanned by all positions and their conjugate mo-

menta, A ≡ A(Γ) with Γ = (x1, x2, ..., xf , p1, p2, ..., pf )
T . A Hilbert space can be con-

structed out of these phase space functions by considering a distribution function f(Γ)

which can in principal be chosen arbitrarily. The only requirement for f(Γ) is that the

set of observables under interest lies in the following function space

H =

{
A(Γ) :

ˆ
f(Γ) |A(Γ)|2 dΓ <∞

}
. (1.8)

The distribution function f(Γ) acts as an integration measure and is often chosen to

be the canonical distribution function of the total system

f(Γ) =
1

Z
exp

[
− 1

kT
H(Γ)

]
, (1.9)

with the partition function Z, or to be some non-equilibrium distribution function

when a non-equilibrium process is described [10, 28]. The function space defined in
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Eq. (1.8) is a Hilbert space with respect to the following scalar product

〈A|B〉 =

ˆ
f(Γ)A(Γ)B(Γ)dΓ , (1.10)

which now enables full use of Hilbert space properties. Note that in the literature

one often includes the complex conjugated variable, A∗(Γ), into the definition of the

scalar product. Since classical dynamic variables are usually real-valued, the complex

conjugation is not included into the definition here.

Given the aforementioned mathematical framework one can define the linear pro-

jection operator for a set of N dynamical variables {Ai} , i = 1, ..., N whose dynamics

is followed explicitly. Others are be graded as unimportant and are regarded as a

part of the bath. For shortening the notation in the later derivation it is convenient to

introduce the N -dimensional vectors

A ≡


A1

A2

...

AN

 , 〈A|B〉 ≡


〈A1|B〉

〈A2|B〉
...

〈AN |B〉

 . (1.11)

The former consists of all dynamical varibles {Ai} and the latter comprises all scalar

products of some dynamical function B and the varibales {Ai}. Finally the scalar

product of an N -dimensional vector A with an M -dimensional vector B is defined as

a N ×M matrix

〈A|B〉 ≡


〈A1|B1〉 〈A1|B2〉 ... 〈A1|BM〉

〈A2|B1〉 〈A2|B2〉
...

... . . .

〈AN |B1〉 ... 〈AN |BM〉

 . (1.12)

With these conventions, the linear projection operator P̂ onto the subspace spanned

by the variables A can be obtained by defining its action on an arbitrary B ∈ H as

P̂B ≡ 〈A|B〉T 〈A|A〉−1A , (1.13)
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written explicitly as

P̂B =
N∑

i,j=1

〈Ai|B〉 ·
(
〈A|A〉−1)

ij
·Aj . (1.14)

Note that the set of observables does not need to be orthonormal which means that the

matrix 〈A|A〉 can have off-diagonal elements. Now, the time evolution of the vector

A is considered. According to the Hamilton EOM A propagates via

∂

∂t
A(t) = {A(t), H}

≡ LA(t) , (1.15)

where the action of the Poisson bracket, {•, H} with the Hamilton function H defines

the Liouville operator L•. Note that the action of the Lioville operator and the time

derivative on an N -dimensional vectors A is defined componentwise and, thus, the

result is an N -dimensional vector as well. The formal solution of this equation can be

written as

A(t) = etLA(0) , (1.16)

where A(0) denotes the initial function, i.e. A(0) ≡ A [Γ(0)]. Armed with the projec-

tion operator defined above the derivation of the GLE can be started. The key formula

used herein is the following operator identity [10, 15, 28]

etL = et(1−P̂ )L +

tˆ

0

e(t−τ)LP̂Leτ(1−P̂ )Ldτ , (1.17)

which can be implicitly proven by taking the Laplace transform of both sides of the

equation or explicitly via direct differentiation. Applying this identity to (1− P̂ )LA(0)

yields for the left hand side of Eq. (1.17)

etL(1− P̂ )LA(0) =
∂

∂t
A(t)− etLP̂LA(0)

=
∂

∂t
A(t)− 〈A|LA〉T 〈A|A〉−1A(t)

=
∂

∂t
A(t)−ΩA(t) , (1.18)
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with the matrix Ω defined as

Ω ≡ 〈A|LA〉T 〈A|A〉−1 . (1.19)

Note that the product of the two matrices 〈A|LA〉T and 〈A|A〉−1 is a usual matrix

multiplication. For the first term on the right hand side of Eq. (1.17) one gets

F (t) ≡ et(1−P̂ )L(1− P̂ )LA(0) , (1.20)

which will turn out to be the counterpart of the fluctuating force R(t) in Eq. (1.5). In

the remaining integral one notices that the term F (t) appears. Upon carrying out the

projection one obtains

tˆ

0

e(t−τ)LP̂Leτ(1−P̂ )L(1− P̂ )LA(0)dτ =

tˆ

0

e(t−τ)LP̂LF (τ)dτ

=

tˆ

0

e(t−τ)L 〈A|LF (τ)〉T 〈A|A〉−1A(0)dτ

= −
tˆ

0

K(τ)A(t− τ)dτ , (1.21)

with the memory matrix defined as

K(t) ≡ 〈LA|F (t)〉T 〈A|A〉−1 . (1.22)

To obtain this result the antihermitian property of the Liouville operator with respect

to the scalar product defined in Eq. (1.10) has been employed. Combining the results

collected so far, one can write down a formal GLE for the dynamical functions A

∂

∂t
A(t) = ΩA(t)−

tˆ

0

K(τ)A(t− τ)dτ + F (t) . (1.23)

Further, the generalized FDT, that can be directly read off Eq. (1.22), is validated

K(t) = 〈LA|F (t)〉T 〈A|A〉−1

=
〈

(1− P̂ )LA|F (t)
〉T
〈A|A〉−1

= 〈F (0)F (t)〉T 〈A|A〉−1 . (1.24)
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Note that the second line has been obtained by inserting a redundant projector 1− P̂ .

The hermitian property of projectors allows one to let 1 − P̂ act on F (t), which itself

contains the same projector, see Eq. (1.20). The redundancy of this projector then

follows from its idempotency property. In the third line the definition of the scalar

product, Eq. (1.10) has been used. At this point the derivation of the GLE is finished.

To be more concrete one can apply the formalism to a special pair of variables namely

the system’s coordinate x and momentum p. Here, the vector A becomes A = (x, p)T

and, as shown in appendix A, the noise F (t) as well as Ω and the memory matrixK(t)

take the forms

F (t) =

 0

R(t)

 , Ω =

 0 1/m

−kT/
〈
x2
〉

0

 , K(t) =

 0 0

0 ξ(t)

 , (1.25)

if the canonical distribution function, Eq. (1.9), is used in the scalar product. These

equations define the random force R(t) and the memory kernel ξ(t). The correspond-

ing GLE then reads

ẋ(t) =
p(t)

m

ṗ(t) = − kT〈
x2
〉x(t)−

tˆ

0

ξ(t− τ)p(τ)dτ +R(t)

〈R(0)R(t)〉 = mkTξ(t) . (1.26)

This formally exact GLE derived from linear projection operator techniques looks very

similar to the common GLE in Eq. (1.5) motivated by purely physical arguments.

Throughout this thesis Eq. (1.26) is given the abbreviation LP-GLE. Its derivation math-

ematically shows why and how memory effects and noise arise in a reduced descrip-

tion.

However, the LP-GLE has certain differences to the common GLE which are worth

discussing further. At first, it has to be stressed that the noise term is given explicitly

via Eq. (1.20) and is formally not random at all. Nevertheless, since it propagates

according to a physically counter-intuitive propagator et(1−P̂ )L its deterministic time

evolution is hard to follow explicitly especially for an increasing size of the environ-

ment. In the spirit of the aforementioned Brownian motion idea one can motivate a

stochastic model for this term keeping the FDT as its main statistical property. A sec-

ond difference lies in the explicit force, which in Eq. (1.5) is given by the full system
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force −∂xVS. In contrast, the force in Eq. (1.26) is always linear, or in other words

always appears as an effective harmonic force with the frequency ω̃2 = kT/m
〈
x2
〉
,

even if the real system is arbitrarily anharmonic. This is the direct consequence of

invoking linear projections, which project out all non-linearities to the bath. Here,

several conceptual problems arise. First, it should be stressed that the later applica-

tions of the LP-GLE, see Chap. 3, show that the effective harmonic frequency can be

hardly connected to the real parameters of the intramolecular potential VS employed.

In contrast, they artificially contain frequency shifts usually being a consequence of

system-bath interactions. This mixing of system and bath contributions completely

disguises the atomistic picture of the dynamical processes under study. The second

problem concerns the intention of a quantum vs. classical comparison. Conceptually,

such a comparison can be done by adopting the classical memory kernel for a quan-

tum dynamical simulation. Quantum effects in vibrational spectra are mostly expected

for anharmonic systems since, spectroscopically, a classical harmonic oscillator is iden-

tical to a quantum harmonic oscillator. If the LP-GLE memory kernel, where all the

anharmonicity is included, was used for quantum simulations, one would effectively

keep the anharmonicity classical and, hence, no differences in quantum and classical

spectra would arise. Finally, in future applications it is desirable to probe the LD via

non-linear spectroscopy. Due to the linear structure of the LP-GLE it is expected that

only linear response functions are described correctly, whereas the proper inclusion

of non-linear effects arising from anharmonicity in the intermolecular potential VS be-

comes questionable. For these reasons, the LP-GLE derived above is not of much use

and one would prefer a form of the GLE which keeps the explicit system force non-

linear. The different strategies on how to explicitly include non-linearities into the GLE

are presented in the following section.

1.1.3. Non-linear Forms of the GLE

As it has been discussed in the previous section the linear GLE is not the proper concept

in various physical situations. In this section, three ways to explicitly preserve non-

linearities of the system potential in the corresponding GLE will be discussed in detail.
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Ad hoc anharmonic GLE

The most simple approach to keep the anharmonicity would be to add it to the LP-GLE

directly. In particular, the resulting GLE reads

ẋ =
p

m

ṗ = −mω̃2x+mχx2 −
tˆ

0

ξ(t− τ)p(τ)dt+R(t) , (1.27)

where the anharmonicity of the potential has been restricted to a cubic term only. Tech-

nically, the anharmonicity constant χ can be obtained from a third order Taylor expan-

sion of the real system potential VS occuring in Eq. (1.1). The memory kernel ξ(t), the

harmonic frequency ω̃ as well as the FDT for the noise R(t) are simply adopted from

the LP-GLE introduced in the previous section. A possible argumentation for justifying

this approach is that memory kernel and noise should entirely be determined by the

system-bath interactions which, in turn, should be independent on the intramolecular

system potential VS according to the system-bath partitioning in Eq. (1.1). However,

as is explained in the previous section, using the LP-GLE leads to a rather counter-

intuitive partitioning where system properties, namely the anharmonicity, constitute

a part of the bath. In contrast, it is rather obvious that the corresponding memory

kernel and FDT depend on system properties as well, which can be for instance seen

in Eq. (1.22). From this perspective the non-linear GLE presented above lacks a formal

justification. Still, in order to elucidate the practical consequences of these shortcom-

ings it will be included into the scope of this thesis and will be referred to as the ad
hoc anharmonic GLE.

GLE from the Multimode Brownian Oscillator Model

The Multimode Brownian Oscillator (MBO) model introduced in this section has en-

joyed a broad application in the analysis of non-linear spectroscopic signals arising in

experiments in condensed phase [21–26]. Here, it serves as a model for the system-

bath coupling from which a non-linear GLE can be derived following R. Zwanzig

in [10, 14].

Within the MBO model the bath is assumed to be a set of harmonic oscillators with

masses Mj, positions Qj, momenta Pj and a bilinear coupling to the system quantified
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by the coupling strengths gj [10, 14, 20]. The total potential reads

V = VS +
∑
j

1

2
Mjω

2
j

(
Qj −

gj

Mjω
2
j

x

)2

. (1.28)

The Hamilton EOMs derived from this potential read for the particle

ẋ =
p

m

ṗ = −∂VS

∂x
+
∑
j

gj

(
Qj −

gj

Mjω
2
j

x

)
(1.29)

and for the bath oscillators

Q̇j =
Pj
Mj

Ṗj = −Mjω
2
jQj + gjx . (1.30)

From Eq. (1.30) one sees that the bath undergoes independent harmonic oscillations

which are driven by the system’s trajectory x(t). Thus, the homogenous solutions of

the set of equations for the bath oscillators can be written down easily

QH
j (t) = Qj(0)cos(ωjt) +

Pj(0)

Mjωj
sin(ωjt) , (1.31)

whereas the inhomogenous solution can be expressed in terms of the system’s trajec-

tory x(t) as

QI
j(t) = gj

tˆ

0

x(τ)
sin[ωj(t− τ)]

Mjωj
dτ , (1.32)

which can be proven directly by differentiation. Combining the homogenous and inho-

mogenous solutions into the general solution and integrating the inhomogenous term

by parts one can obtain the following relation

Qj(t)−
gj

Mjω
2
j

x(t) =

[
Qj(0)−

gj

Mjω
2
j

x(0)

]
cos(ωjt) +

Pj(0)

Mjωj
sin(ωjt)

−
gj

Mjω
2
j

tˆ

0

p(τ)

m
cos[ωj(t− τ)]dτ . (1.33)
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Direct substitution into Eq. (1.29) yields a GLE of the form of Eq. (1.5)

ẋ =
p

m

ṗ = −∂VS

∂x
−

tˆ

0

ξ(t− τ)p(τ)dτ +R(t) . (1.34)

The explicit forms of the memory kernel ξ(t) and the noise R(t) read

ξ(t) =
∑
j

g2
j

mMjω
2
j

cos(ωjt) (1.35)

R(t) =
∑
j

gj
Pj(0)

Mjωj
sin(ωjt) +

∑
j

gj

(
Qj(0)−

gj

Mjω
2
j

x(0)

)
cos(ωjt) . (1.36)

Further, the FDT

〈R(0)R(t)〉 = mkTξ(t) (1.37)

can be directly verified by carrying out the canonical ensemble average.

The GLE obtained from the MBO model coincides with Eq. (1.5) in all aspects. Es-

pecially an inclusion of anharmonic effects is possible, which was the major drawback

of the LP-GLE. Another advantage of the MBO model is that it can be treated quan-

tum mechanically in a similar fashion with the only difference of a quantum-corrected

FDT [27]. Thus, it provides a proper stage for a quantum vs. classical comparison with

the only disadvantage that it is based on a special model whose microscopic justifica-

tion for an arbitrary system is questionable. Such a justification can be achieved in a

normal mode description of the bath as pointed out by Goodyear and Stratt [36]. In

this representation the form of the MBO model, Eq. (1.28), can be derived with the Qi

being the normal mode coordinates of the bath. Of course, the validity of this descrip-

tion then depends on the harmonicity of the bath under study, which is not given in

the general case. Later, Eq. (1.34) derived from the MBO model is referred to as the

MBO-GLE.
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GLE from the non-linear Projection Operator Technique

The MBO model introduced in the previous section provides a direct way to preserve a

system anharmonicity explicitly in the GLE. However, as has been pointed out before,

the MBO model assumes a very special form of bath and system-bath coupling. Hence,

it is not clear whether a realistic system can be described by it or not. In this section,

a mathematically rigorous derivation of the GLE that includes non-linear effects in the

explicit forces is presented. The procedure is very similar to that used in Sec. 1.1.2,

with the only difference that non-linear projections are employed [15, 28].

The starting point is the same Hilbert space of dynamic functions as in Sec. 1.1.2

with the very same scalar product defined in Eq. (1.10). Given a vector of dynamical

variables A ≡ A(Γ) = (A1(Γ), A2(Γ), .., AN(Γ))T the subspace of all functions of A

F =

{
F (A(Γ)) :

ˆ
f(Γ) |F (A(Γ))|2 dΓ <∞

}
(1.38)

is now considered. Note that in Sec. 1.1.2 the subspace was linearly spanned by the

variables, whereas here all non-linear functions are included in F . In order to define

the projector P̂ onto F consider a complete basis
{

Φj(A)
}
, j = 1, 2, ..,∞ on F which

is assumed to be orthonormal. Then the projector P̂ is defined in a similar way as in

Sec. 1.1.2

P̂B ≡
∞∑
i=1

〈Φi|B〉Φi . (1.39)

Now, the further procedure is identical to that in Sec. 1.1.2: the operator identity

in Eq. (1.17) is applied to the quantity (1 − P̂ )LA in order to separate the Liouville

propagator etL into terms lying in F and those orthogonal to it. The only difference is

the non-linear projection, Eq. (1.39), instead of the linear one. According to Kawai et
al. [28] the respective terms are

etLP̂LA = 〈∂tA;A(t)〉

et(1−P̂ )L(1− P̂ )LA ≡ F (t)

e(t−τ)LP̂LF (τ) = −
∞∑
i=1

Φi [A(t− τ)] 〈{∇AΦi ·F (0)}F (τ)〉 , (1.40)

where the first term forms the explicit part, the second term the noise and the last term

the memory kernel. In the latter, ∇A denotes the gradient with respect to the vector of
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variablesA, which being applied to a function Φ gives a vector of same dimensionality

as A. Note that the product in curly braces is understood as a usual vector scalar

product. Hence, the whole term in 〈...〉 becomes a vector of the dimensionality of F .

The first line in Eq. (1.40) is formed by the average of the time derivative ∂tA under

the condition that A carries the trajectory value A(t). This conditional average can

generally be defined as

〈B;a〉 ≡ P (a)−1

ˆ
f(Γ)δ(A(Γ)− a)B(Γ)dΓ , (1.41)

with a = A(t) being the condition and P (a) the reduced distribution function for a

P (a) =

ˆ
f(Γ)δ(A(Γ)− a)dΓ . (1.42)

For the derivation details of the Eqs. (1.40) consult the paper of Kawai et al. [28].

Combining the terms in Eqs. (1.40) yields the non-linear version of the GLE

∂

∂t
A(t) = 〈∂tA;A(t)〉 −

tˆ

0

∞∑
i=1

Φi [A(t− s)] 〈{∇AΦi ·F (0)}F (s)〉 ds+ F (t) , (1.43)

which being applied to the special choice of A = (x, p)T using the canonical distribu-

tion function in the scalar product reduces to

ẋ =
p

m

ṗ = Fm(x)−
tˆ

0

ξ [τ ;x(t− τ), p(t− τ)] dτ +R(t) , (1.44)

with the memory kernel

ξ [τ ;x(t− τ), p(t− τ)] ≡
∞∑
i=1

Φi [p(t− τ), x(t− τ)]

〈
∂Φi(x, p)

∂p
R(0)R(τ)

〉
(1.45)

and the mean-field force

Fm(x) ≡ −∂Vm

∂x
(1.46)

≡
〈
− ∂

∂x′
{
VS(x′) + VS−B(x′, {Q})

}
;x

〉
. (1.47)
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Note that the noise R(t) is a scalar and has no vector character anymore. This is

because a particular noise term associated with the x component is vanishing. The

details of the derivation of Eq. (1.44) from Eq. (1.43) are given in appendix B. In the

canonical ensemble, the mean-field potential Vm(x) can be calculated from the reduced

distribution function P (x) of the tagged coordinate x

Vm(x) = −kT · lnP (x) , (1.48)

as has been shown by Lange et al. [34] and as is proven explicitly in appendix B. The

non-linear GLE as it is written down in Eq. (1.44) is valid for arbitrary systems and

provides the general way to include non-linearities via the mean-field in Eq. (1.46).

However, it is much more complex in comparison to the MBO-GLE and of less use in

the present form. The latter is due to the functional dependence of the memory kernel

on the coordinates of the system, see Eq. (1.45). In order to use this non-linear GLE

one should make further approximations. The formal structure of Eq. (1.45) already

suggests in which direction to proceed: truncating the (infinite) sum after a certain

power in x and p. One can do this systematically by orthonormalizing the functions

x, p, x2, p2, xp, ... up to the desired power to construct the orthonormal set Φj(x, p).

This will result in a sequence of integral terms

−
∞∑

i,j=1

tˆ

0

ξij(τ)xi(t− τ)pj(t− τ)dτ (1.49)

and will for each combination i, j introduce an additional memory kernel ξij(t), which

is itself a pure function of time. As an example, truncating the expansion after the first

order (see appendix B) results in

ẋ =
p

m

ṗ = Fm(x)−
tˆ

0

ξ(τ)p(t− τ)dτ +R(t)

〈R(0)R(t)〉 = mkTξ(t) , (1.50)

which is exactly of the MBO-GLE form with the only difference that the mean-force

replaces the intramolecular system force [28]. In other words, the form of the MBO

model is preserved in this first order approximation. Further, it has to be stressed

that if one applied the non-linear projection to a system whose Hamiltonian is of
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MBO form, i.e. Eq. (1.28), one would end up with the very same GLE as Eq. (1.34)

since all higher order contributions in the integral kernel vanish [10]. Additionally,

all the mean-field corrections become zero because of the special bilinear form of the

system-bath coupling and the fact that bath modes are Gaussian distributed. In later

discussions it is referred to the here-presented non-linear projection GLE as NLP-GLE.

Additionally, the linearization of the NLP-GLE will be called linearized NLP-GLE.

1.1.4. Numerical Propagation of the GLE via Colored Noise

Thermostats

For the numerical treatment of the GLE it is more useful to express it in a different form

than that of Eq. (1.5) since a direct propagation requires time consuming operations.

These are, on one hand, the calculation of the convolution integral, i.e. the dissipative

force, at every time step. On the other hand generating the random forces directly

with correct correlation as required by the FDT, Eq. (1.6), implies dealing with corre-

lation matrices whose size grows from timestep to timestep. An elegant approach to

overcome these performance problems is to express the GLE as an effective Markovian

process by introducing auxiliary DOFs which are coupled to the system’s coordinates.

This formalism, which is referred to as Colored Noise, has been introduced by Ceriotti

et al. [43–46] and is presented in the remainder of this section.

Consider the following stochastic process ṗ

ẏ

 =

 −∂V
∂x

0

−A

 p

y

+ Bξ(t)

=

 −∂V
∂x

0

−
 app aTpy

ayp Ayy

 p

y

+

 bTpξ

Byξ

 ξ(t) , (1.51)

where x and p are the system coordinate and its conjugate momentum and the vector

y denotes auxiliary momenta. All momenta are linearly coupled via the so-called drift

matrix A, which has a block form consisting of a number app, two vectors ayp, aTpy as

well as a submatrix Ayy. The number app represents the Markovian friction coefficient.

The vectors ayp and aTpy have the dimensionality N if N auxiliary momenta are in-

cluded. These vectors describe the mutual coupling between the physical momentum

and the auxiliary ones. Additionally, the auxiliary momenta y are mutually coupled
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via the submatrix Ayy being of dimension N × N . The vector ξ represents Marko-

vian fluctuations, meaning that its components comprise Gaussian white noise with

the properties given in Eq. (1.4). These noise components are linearly coupled via the

diffusion matrix B, which consists of an (N + 1)-dimensional vector bTpξ determining

the coupling to the physical momentum and an N × (N + 1)-dimensional submatrix

Byξ for the coupling to all components of y. Treating the white noise as well as the

trajectory p(t) as an inhomogeneity for y one can formally write down the solution

y(t) under the assumption that y(0) = 0

y(t) =

tˆ

0

ds e−(t−s)Ayy
[
−aypp(s) + Byξξ(t)

]
. (1.52)

Substituting y(t) back into Eq. (1.51) yields for the remaining EOM for p

ṗ = −∂V
∂x
−

tˆ

0

dsK(t− s)p(s) + R(t) , (1.53)

where the memory kernel K(t) and the force R(t) read

K(t) = appδ(t)− aTpye
−tAyyayp

R(t) = bTpξξ(t)−
tˆ

0

ds aTpye
−(t−s)AyyByξξ(s) . (1.54)

The force R(t) constitutes the new stochastic force taking all auxiliary DOFs into ac-

count. Further, one can show that R(t) satisfies the FDT when the matrices A and B

have the relationship

mkT
(
A + AT

)
= BBT . (1.55)

One might be surprised that, in order to propagate the GLE, one goes back to an

extended variable space although the reduction of the dimensionality in the GLE orig-

inally was the key ansatz for making the propagation feasible. As will be seen later,

just a few auxiliary DOFs are sufficient to cover a wide class of memory kernels.
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Based on Eq. (1.51) one can derive an integrator for the time propagation using a

Trotter factorization of the Liouville propagator [45, 46]

eL∆t = eLpy∆t/2eLp∆t/2eLx∆teLp∆t/2eLpy∆t/2 . (1.56)

The inner steps of the propagation exactly correspond to the usual velocity Verlet

propagator

p ← p− ∂

∂x
V (x) · ∆t

2

x ← x+
p

m
∆t

p ← p− ∂

∂x
V (x) · ∆t

2
, (1.57)

whereas the outermost operations, eLpy∆t/2, can be expressed as p

y

← C1

 p

y

+
√
mkTC2ξ(t) . (1.58)

The propagation matrices can be shown to obey

C1 = e−∆t/2 ·A

CT
2 C2 = I−CT

1 C1 , (1.59)

where the matrix C2 is a lower triangular matrix calculated from a Cholesky decom-

position given in the second line of Eq. (1.59).

Writing the GLE as an effective Markovian process leads to the advantage that a

Verlet-like integrator can be used for its propagation being symmetric and local in time

instead of a global and, hence, more time consuming integration scheme as would be

required by the original form of the GLE, Eq. (1.5). Also the calculation of the com-

pletely uncorrelated random forces, ξ(t), does not involve large correlation matrices

to deal with. Nevertheless, one recognizes from Eq. (1.54) that the mapping of the

GLE onto the multi-dimensional process, Eq. (1.51), only works for a special class of

memory kernels K(t), namely for those which can be written as a superposition of

exponential forms

K(t) =
∑
i

aiexp(−bi · t) . (1.60)
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The fact that the matrix Ayy can in principle have complex eigenvalues also allows for

oscillatory damped functions via complex-valued coefficients bi. As an example, one

can show that the matrix

A =

 0 a

−a b

 (1.61)

corresponds to the memory function

K(t) = a2exp(−bt) , (1.62)

where only one additional degree of freedom must be included [46]. The matrix

A =


0 a a

−a b ω

−a −ω b

 (1.63)

yields an oscillatory damped memory function of the form

K(t) = 2a2exp(−bt)cos(ωt) (1.64)

and requires two auxiliary momenta [46]. Further, one can show that if the matrices

A and Ã provide the memory functions K(t) and K̃(t) respectively, the matrix

A =


app + ãpp aTpy ãTpy

ayp Ayy 0

ãyp 0 Ãyy

 (1.65)

corresponds to the sum of both memory kernels [46]. Hence, the matrices in Eqs. (1.61)

and (1.63) can be used as building blocks for constructing a general memory kernel of

the form given in Eq. (1.60).
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1.2. Linear Absorption Spectroscopy

After having discussed the EOM that accounts for the system-bath coupling in a con-

densed phase environment, a brief summary will be given on how to probe the corre-

sponding dynamics via linear absorption spectroscopy. The details of the underlying

theoretical description can be found in the literature at many places, see e.g. [20, 40,

47].

The key quantity in linear absorption spectroscopy is the frequency-dependent ab-

sorption coefficient α(ω), which according to the Lambert-Beer absorption law de-

scribes the intensity loss of monochromatic radiation with frequency ω and initial in-

tensity I0 after propagating through a medium of thickness l

I(l, ω) = I0e
−α(ω)l . (1.66)

The microscopic mechanism for the intensity loss is the coupling of the electromagnetic

field to the particular motion of the molecules in the medium, which can be resonantly

excited if the radiation frequency fits the frequency of a particular mode. Hence,

the intensity loss probed by varying the radiation frequency unravels the frequency

distribution of the atomistic motion within the medium. This is the central idea of

linear absorption spectroscopy.

For interpreting the results of such absorption experiments a bridge must be built

to a theoretical description of the underlying microscopic processes, which can be

achieved by finding theoretical expressions for the absorption coefficient α(ω). This is

usually done starting from a full quantum description of the medium’s polarization as a

functional of the incoming electromagnetic field treating the light-matter interaction in

dipole approximation [20, 40]. Then perturbation theory is performed in order to sort

the particular contributions according to their power in the electromagnetic field [20,

40]. By restricting the perturbation series to first order one finds an expression for the

linear absorption coefficient [47]

α(ω) ∼ ω

~

(
1− exp

[
−~ω
kT

])
I(ω) , (1.67)
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with the quantum lineshape function

I(ω) =
1

2π
Re

∞̂

−∞

exp[−iωt]Tr
{
ρ̂eqµ̂(0)µ̂(t)

}
dt . (1.68)

Here, µ̂ stands for the dipole moment operator and Tr{ρ̂eq•} denotes the quantum-

mechanical ensemble average with respect to the equilibrium density operator ρ̂eq.

The overall expression under the Fourier integral represents a quantum dipole auto-

correlation function (DAF). In the classical description of the medium based on a GLE,

one needs to take the classical limit, i.e. ~→ 0, of Eq. (1.67). Then the quantum DAF

becomes a classical one

Tr
{
ρ̂eqµ̂(0)µ̂(t)

}
−→ 〈µ(0)µ(t)〉cl =

ˆ
feq(x0, p0)µ(0; x0, p0)µ(t; x0, p0)dx0dp0 , (1.69)

where it is integrated over the initial conditions x0, p0 weighted by the canonical equi-

librium distribution function feq(x0, p0). The classical expression for the absorption

coefficient becomes

α(ω) ∼ ω2

kT
Icl(ω) , (1.70)

where Icl(ω) is the classical lineshape function defined as the real part of the clas-

sical DAF’s Fourier transform. In the one-dimensional case the dipole moment of a

particular mode is given by

µ(t) = q · x(t) , (1.71)

with x being the mode coordinate (usually a bondlength). For this case, the DAF can

be written as

〈µ(0)µ(t)〉cl = q2 〈x(0)x(t)〉cl . (1.72)

Using the relation

− d2

dt2
〈x(0)x(t)〉cl =

1

m2 〈p(0)p(t)〉cl (1.73)

and the fact that a second time-derivative results in frequency factor ω2 in Fourier

domain, one can also calculate the absorption coefficient from the Fourier transform
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of the momentum autocorrelation function (MAF) denoted as Spp(ω)

α(ω) ∼ 1

kT
Re{Spp(ω)} . (1.74)

In this thesis this is the basic formula to calculate the linear absorption spectra from

the trajectories provided by explicit or implicit simulations.

1.3. Concluding Remarks

In this chapter the theory of the GLE has been introduced putting emphasis on its

statistical-mechanical origin. It has been shown that the only way to justify the com-

mon form of the GLE, i.e. Eq. (1.5), is to involve the MBO model, which assumes a

harmonic bath and bilinear system-bath coupling. However, in the general case one

can derive prototype forms of the GLE by means of linear or non-linear projection op-

erator techniques, which differ from the common GLE form in Eq. (1.5) such that the

explicit system force is altered. In the LP-GLE the explicit force is exclusively linear

meaning that all the anharmonicity in the real potential is projected into the bath. In

the NLP-GLE the explicit force consists of a mean-force obtained from a conditional

average of the total force over bath DOFs. Further, a functional dependence of the

friction term on system coordinates arises, which can be brought into the common

form of the non-Markovian friction, Eq. (1.5), in a first order expansion only.

It has been discussed that in certain situations like in non-linear spectroscopy or

in a quantum vs. classical comparison the explicit force should be kept anharmonic

and, hence, a non-linear GLE is preferred. In this case, the form of GLE with an

anharmonic explicit force cannot be justified in full generality since either the friction

integral in the NLP-GLE must be expanded up to first order, the MBO model must

be invoked or anharmonicity has to be added in an ad hoc way after parametrizing

the memory kernel for the LP-GLE. The applicability of these three approaches is the

main subject of this thesis, and is probed via the ability of the (non-linear) GLEs to

reproduce vibrational spectra calculated from explicit MD simulations.
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Chapter 2.

Spectral Features of non-Markovian
Dynamics

Armed with the theoretical understanding of the GLE as well as with the implemen-

tation of the numerical algorithm described in the previous chapter, the formalism is

principally ready to be applied to real physical problems. However, it is convenient

to first study some general physical properties of non-Markovian dynamics and to get

hands-on experience with the physical interpretation of the observed effects. Further,

it is sensible to investigate the error behavior of the physical quantities of interest:

time-correlation functions (TCFs) and vibrational spectra. These two issues will be

addressed in this chapter. Specifically, a statistical convergence analysis of TCFs com-

puted from numerical GLE trajectories is employed in order to establish a reliable

simulation protocol. Afterwards, the non-Markovian dynamics as such is investigated

putting emphasis on the interplay of the spectral density and the system’s dynamical

properties in terms of TCFs and vibrational spectra. Throughout this chapter the va-

lidity of the GLE in its common form, i.e. Eq. (1.5) is assumed without questioning its

principal applicability. The applicability of the GLE, especially in its non-linear forms,

will be the subject of the next chapter.
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2.1. Setting up a Colored Noise Simulation Protocol

2.1.1. The Block Averaging scheme

In this thesis the dynamical properties of interest are vibrational spectra computed

from MAFs according to Eq. (1.74). In the standard protocol the MAFs are calculated

employing both time averages along a single trajectory and a subsequent average over

an ensemble of independent trajectories

C(k ·∆t) =
1

Nt

Nt∑
i=1

C(i)(k ·∆t) . (2.1)

Here, Nt labels the number of trajectories and C(i)(k ·∆t) the MAF calculated as a

time-average along the ith trajectory comprising N timesteps of size ∆t each

C(i)(k ·∆t) =
1

N − k

N−k∑
j=1

C
(i)
j (k ·∆t) (2.2)

≡ 1

N − k

N−k∑
j=1

p(i)(j ·∆t) · p(i) ([j + k] ·∆t) . (2.3)

Principally, one can think of two different types of errors being present in the MAFs

calculated in this manner. On one hand there are errors stemming from the numerical

integration of the EOMs. On the other hand the GLE data are subject to statistical

fluctuations requiring a meaningful number of samples (i.e. timesteps and trajectories)

to be sufficiently averaged out. In practice, the numerical integration errors can be

kept sufficiently small by properly choosing the timestep ∆t of the simulation. In

comparison to that, the statistical fluctuations of the individual samples are usually

larger and thus the following error analysis will be restricted to this source of errors

only. In this thesis, the statistical error of the MAF at the timestep k

ε(k) = s · σ(k) (2.4)

is understood as a multiple of the standard deviation σ(k) of the sample average.

Note, that here and further the explicit notation of the timestep ∆t will be omitted.

The factor s determines the tolerance level and is here set to s = 2 leading to a

tolerance of about 95%. According to Eqs. (2.1) and (2.2) the individual samples
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Figure 2.1.: The Block Averaging scheme is shown exemplarily for k = 2 and a block size of
b = 2. The number of samples from which the standard deviation is calculated
according to Eq. (2.5) is then reduced by half.

C
(i)
j (k) being averaged to give the MAF at the step k are formed by all the products

of momenta displaced by k timesteps. The total number of samples is thus given by

Ns(k) = Nt · (N − k). A naive way of calculating the standard deviation would be to

employ the estimator

σ(k) =

√
1

Ns(k)[Ns(k)− 1]

∑
i,j

(
C

(i)
j (k)− C(k)

)2

. (2.5)

However, this estimator gives reliable standard deviations only if the individual sam-

ples are uncorrelated – a condition that is clearly violated in the non-Markovian dy-

namics studied here. If the standard deviation was calculated from Eq. (2.5), the

errors would be underestimated dramatically.

The correct way to estimate the standard deviation in the presence of correlation

is to group the samples within a trajectory into n blocks of size b and to calculate the

average C(i)
l (k) , l = 1...n of all samples within the blocks. Note, that the index l la-

bels blocks within the ith trajectory. The resulting block averages are then treated as

uncorrelated numbers and the standard deviation of the sample average is calculated

via Eq. (2.5). This procedure known as Block Averaging [48] is illustrated in Fig 2.1.

Since the standard deviations depend on the blocksize b one should repeat the Block

Averaging for systematically increased values of b. The standard deviation will even-

tually arrive at a plateau, which can be regarded as the meaningful estimate for σ(k)

in the presence of correlation between the samples, see Fig. 2.2 in the next section.
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2.1.2. Statistical Convergence Analysis

The statistical convergence analysis is performed for a simple guinea pig model being

a harmonic oscillator with the frequency ω0 = 0.4 coupled to a bath described by the

memory kernel ξ(t) = 2a2 exp[−bt] cos(ωt) with the parameters a = 0.03, b = 0.03

and c = 0.4. On one hand this system constitutes a simple model for a solute mode

being the main objects of investigations in the next chapter. On the other hand this

system provides an exact reference MAF, which can be compared against the numerical

GLE results. As shown in appendix D the MAF’s Fourier transform for the harmonic

oscillator is available analytically and reads

Spp(ω) =
ω

ωJ(ω) + i(ω2 − ω2
0)
, (2.6)

with the spectral density J(ω) defined in Eq. (1.7). Exact references in time domain

can be computed from a numerically exact inversion of the Fourier transform.
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Figure 2.2.: Estimates for the standard deviations at the minima of the MAF as a function of
the blocksize, are shown for k = 350 (red), k = 658 (green), k = 2612 (blue) and
k = 3914 (orange), with k defined in Eq. (2.2).
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gether with the exact reference (red). The thickness of the blue curves stands for
the trusted interval of 2σ around the calculated points and hence measures the
statistical error according to Eq. (2.4). The right panels zoom in on the range
150− 350 where a small revival occurs.

For the analysis of the convergence two numerical parameters have to be taken

into account: the number of trajectories and the number of timesteps per trajectory.

According to the Block Averaging scheme it is sensible to set the number of timesteps

at least to the minimal blocksize needed for a proper estimate of the standard devia-

tion. This minimal blocksize corresponds to the characteristic correlation length in the

system and can be determined by blocking a sufficiently long trajectory. In Fig. 2.2 the

blocking of one long GLE trajectory of 10, 000, 000 timesteps has been performed. The

standard deviations of the MAF are probed in dependence of the blocksize for a selec-

tion of timesteps k. It becomes visible that in all cases the standard deviation reaches

a plateau at a blocksize of about Ncorr = 4000 timesteps, which should be chosen as

the minimal length of the trajectories. In order to increase the statistics at the tail of

the MAF the number of timesteps is set to N = 5Ncorr = 20000. For the following con-

vergence analysis with respect to the number of trajectories the statistical errors are
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calculated involving a blocksize of b = N = 20000, which implies that no additional

blocking within one trajectory is required.

In Fig. 2.3 the numerical MAFs for different numbers of trajectories (blue curves)

are plotted within their statistical errors together with the exact reference (red curves).

In all cases the statistical errors are extremely small at the beginning of the MAF, which

shows that for this part already 50 trajectories are more than enough. However, at

larger times, where a small revival occurs, the error becomes larger and hence more

then 50 trajectories should be involved in order to resolve this characteristic feature

with sufficient accuracy. Here, 500 GLE trajectories seem to be the optimal choice.

The Colored Noise propagation scheme, hence, reveals itself as an extremely efficient

algorithm providing MAFs that converge fast with respect to the number of trajectories

to be employed.

2.2. Non-Markovian Spectra and Time-Correlation

Functions

Exploring the wide range of non-Markovian effects in dissipative dynamics can be a

very far reaching undertaking. This is because the spectral density, the fundamental

quantity characterizing the system-bath interaction, can possess very different forms

depending on the physical situation under study for which there exist different the-

oretical models. The Ohmic spectral density, for instance, possesses an exponential

decaying form Re{J(ω)} ∼ e−ω/ωc [40] with ωc representing a characteristic cut-off

frequency. A common model for polar solvents, the Debye spectral density, consists

of a Lorentzian form Re{J(ω)} ∼ 1/(ω2 + ω2
c ) centered at zero frequency [20, 40].

The two aforementioned models describe a monotonous decay with the main contri-

butions being located at low frequencies and are often used to describe electron or

exciton transfer dynamics in dissipative environments [40]. However, for vibrational

spectroscopy of solute dynamics in solvents they do not reflect the correct charac-

teristic behavior. In anticipation of the results in Chap. 3 the spectral densities for

the solvents discussed in this thesis rather comprise peaked contributions localized

around distinct frequencies. Their typical functional form can be better described by
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Lorentzian functions

Re{J(ω)} = a2 b

b2 + (ω − c)2 + a2 b

b2 + (ω + c)2 , (2.7)

where the parameter c determines the frequency position, b the width and a the mag-

nitude. For this reason, the subsequent discussion of the non-Markovian effects will be

restricted to this functional form only. Note, that the memory kernel ξ(t) correspond-

ing to J(ω) in Eq. (2.7) reads ξ(t) = 2a2e−bt cos(ct) and therefore perfectly matches

the function type required for employing the Colored Noise propagation scheme (see

Sec. 1.1.4).

For setting the stage of the subsequent investigations a general spectroscopic crite-

rion for the presence of non-Markovianity is defined first. Afterwards, the main ques-

tion of this section is addressed: how does the Lorentzian spectral density in Eq. (2.7)

impact spectra and TCFs in terms of its magnitude, width and position relative to the

system frequency? The observed non-Markovian features will be first illustrated on

the basis of the same harmonic oscillator as in the previous section. Afterwards, the

investigations are extended to an anharmonic regime. Note that, although no units

will be specified, the presented parameters and quantities are given values in realistic

units for typical solutes. These units are fs for time, fs−1 for frequency and K for tem-

perature. If desired, the reader can think of all parameters and quantities to be given

in these special units.

2.2.1. Spectroscopic Criterion for non-Markovian Dynamics

Consider the Markovian dynamics of a harmonic oscillator according to the original

Langevin equation, Eq. (1.3), where the spectral density has the special form J(ω) =

γ = const. The corresponding spectrum follows from Eq. (2.6) as

α(ω) ∼ Re{Spp(ω)}

=
ω2γ

ω2γ2 + (ω2 − ω2
0)2 . (2.8)

It becomes apparent that Markovian dynamics provides a very specific lineshape which

is shown in Fig. 2.4 via the black curves. In contrast, the spectral density for non-

Markovian dynamics can, in principle, have an arbitrary form and thus provides a

variety of qualitatively different lineshapes. Based on this observation one can for-



38 Spectral Features of non-Markovian Dynamics

 0

 50

 100

 150

 200

 250

 300

 0.68  0.7  0.72  0.74  0.76

Sp
ec

tru
m

 (a
rb

.u
.)

frequency (fs-1)
 0.68  0.7  0.72  0.74  0.76

 0

 20

 40

 60

 80

 100

frequency (fs-1)

Figure 2.4.: The vibrational spectra of an anharmonic OH-stretch in a Markovian surround-
ing with γ = 0.001 (left panel) and γ = 0.025 (right panel) are plotted in red.
The data have been obtained via a LD simulation according to Eq. (1.3) and are
adopted from the previous work [39]. The black curves constitute fits to the
functional form of the Markovian spectrum for a harmonic oscillator given in
Eq. (2.8).

mulate a criterion for the presence of non-Markovianity in the dynamics under study:

whenever the linear absorption spectrum cannot be fitted to the special functional form
in Eq. (2.8) the dynamics is non-Markovian. The opposite of this statement is equally

true: whenever the linear absorption spectrum can be fitted to the special functional form
in Eq. (2.8) the dynamics is Markovian.

Since the derivation of the lineshape in Eq. (2.8) is based on the assumption that

the system is harmonic one might argue about the general validity of the criteria

formulated above. However, as has been discussed in Sec. 1.1.2 any system can be

mapped onto an effective harmonic oscillator via linear projections resulting in a LP-

GLE. In this sense, the aforementioned criterion for non-Markovianity can be seen as

generally valid for anharmonic systems as well. Nevertheless, special care should be

taken in the physical interpretation of the lineshape since the counter-intuitive system-
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bath partitioning in the LP-GLE can be misleading in certain situations. To illustrate

this further the linear absorption spectrum of an anharmonic OH-stretch vibration in a

truly Markovian bath is shown in Fig 2.4 for small (left panel) and high friction (right

panel). The spectral lines have been fitted to the Markovian functional form given

in Eq. (2.8). In the high friction regime the fit perfectly coincides with the spectral

line and thus, the criterion correctly states Markovianity of the underlying dynamics.

In contrast, the spectrum in the low friction regime has an asymmetric shape being

slightly skewed to the red. As can be seen in Fig. 2.4 it cannot be fitted to the func-

tional form in Eq. (2.8) and thus, according to the criterion given above, the system-

bath interactions would be declared non-Markovian. From the physical perspective,

however, it is clear that the asymmetric lineshape is a consequence of the anharmonic-

ity in the system potential alone and has nothing to do with a non-Markovian behavior

of the bath [39]. From the rather counter-intuitive viewpoint of the effective harmonic

LP-GLE, anharmonicity is seen as a part of the bath and has to be accounted for via a

non-Markovian GLE.

2.2.2. Influence of a non-Markovian Spectral Density

Having established the criterion for non-Markovianity in harmonic systems, we are in

position to discuss the impact of a Lorentzian spectral density on vibrational spectra

and MAFs. Fig. 2.5 contains the vibrational spectrum and the corresponding MAF of

a harmonic oscillator with frequency ω0 = 0.4 for the different spectral density pa-

rameters a, b and c according to Eq. (2.7). In the panels a) – f) the spectral density

is located around the system frequency, describing a resonant coupling of the system

to the bath. In this regime the spectrum generally has a double peak structure with

the two maxima lying above and below the harmonic frequency. The corresponding

MAFs possess several revivals and an overall dephasing behavior. Increasing the spec-

tral density’s magnitude, see panels a) – c), amounts to a stronger separation between

the two maxima in the spectra and an increased number of revivals in the MAF. The

overall dephasing time appears to be independent on the magnitude. Small spectral

density widths, see panels d) – f), lead to sharply peaked spectra with clearly distin-

guishable maxima. When increasing the width the two peaks become more and more

indistinguishable and the spectral line gets broader. In the corresponding MAF one

then observes less revivals and an overall faster dephasing. In the panels g) – i) the

spectral density has been shifted with respect to the system frequency corresponding
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Figure 2.5.: Spectral density (panels a, d, g), vibrational spectrum (panels b, e, h) and MAFs
(panels c, f, i) are shown for different spectral density’s magnitudes (panels a-c),
widths (panels d-f) and peak position (panels g-i). The color code within one line
is such that all spectral densities, spectra and MAF carrying the same color belong
together. The spectra are obtained from the analytic formula in Eq. (2.6) and the
corresponding MAFs by a numerical Fourier back-transform. For better visibility
only the MAF’s envelopes are plotted. The frequency of the harmonic oscillator is
ω0 = 0.4.

to an off-resonant coupling to the bath. Here, it is visible that the spectrum looses its

symmetric double-peak structure with increasing displacement. Further, the spectrum

becomes narrow and is more closely located to the oscillator frequency. In the MAF

the beat structure disappears and the dephasing gets significantly slower.

The aforementioned observations can be interpreted with the help of a simple phys-

ical picture, which is mainly motivated by the imagination of harmonic bath oscillators

in the spirit of the MBO model in Sec. 1.1.3. If the bath couples resonantly to the sys-
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coupling to the bath and remains unchanged when the off-resonant peaks in the
spectral density are removed. Adding the off-resonant contributions to the spec-
tral density only amounts to small side peaks in the spectrum (red curves) shown
in an enlarged format in the two insets.

tem, panels a) – f), one obtains a regime of energy transfer similar to that of two

coupled pendulums: the vibrational energy is exchanged periodically between system

(first pendulum) and bath (second pendulum). The particular reflux of energy from

the bath into the system can be observed in the corresponding MAFs as periodic re-

vivals. Mathematically, such revivals are obtained by interfering two oscillations of

slightly different frequencies. Consequently, the corresponding spectrum has the dou-

ble peak structure as observed above. The energy exchange is favored by a stronger

coupling to the environment, which amounts to a higher frequency of revivals in the

MAF and thus to a stronger peak separation in spectra, see panels a) – c) of Fig. 2.5.

The impact of the spectral density’s width, panels d) – f), can be connected to the

MAF’s decay: if the frequency distribution of the bath becomes broader, the energy is

distributed over neighboring, off-resonant modes as well. The respective off-resonant
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back coupling destroys the phase relation between system and resonant bath mode

and thus leads to faster dephasing, less revivals and broader spectra. When increasing

the width further the revivals in the MAF and the double peaks in the spectra will dis-

appear completely and one approaches the Markovian regime, see blue curve in panel

e). In contrast, if the bath’s frequency distribution becomes narrow, the energy is more

and more concentrated in the resonant bath mode. Then, a fixed phase relation be-

tween system and bath is maintained for a longer time leading to a slowly decaying

MAF and narrow peaks in the spectrum. Approaching the limit of a vanishing width

the dephasing is expected to disappear completely. In the regime of off-resonant cou-

pling, panels g) – i), the oscillators cannot exchange energy efficiently. Hence, their

particular motion does not influence each other and the oscillators evolve undisturbed.

This results in slowly decaying MAFs and very narrow spectra comparable to those of

a gas phase regime.

The distinction whether the bath couples resonantly or off-resonantly to the system

is of fundamental importance in what follows. Since off-resonant coupling weakly

perturbs the system one can draw the conclusion that off-resonant peaks in the spec-

tral density can in general be neglected. This statement is underlined by Fig. 2.6,

where the spectral contributions stemming from off-resonant coupling are compared

to those from resonant coupling. Here, it becomes apparent that although the mag-

nitude of the off-resonant parts in the spectral density are five times larger than the

resonant ones, the corresponding off-resonant peaks in the spectrum are two orders of

magnitude smaller than the resonant ones. This provides a great simplification when

spectral densities of realistic systems, which usually comprise a lot of distinct peaks

(see Sec. 3.2), shall be fitted. Restricting the fit to the resonant frequency region re-

duces the number of fit functions as well as the number of auxiliary momenta to be

introduced in the Colored Noise propagation scheme significantly.

2.2.3. Anharmonic spectral Regime

So far the interplay of spectral densities and corresponding spectra has been discussed

for a harmonic regime only. In this section the investigations are extended to an

anharmonic system which is represented by a particle of unit mass in a Morse potential

V (x) = D [1− exp (−α(x− x0))]2 , (2.9)
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Figure 2.7.: The anharmonic spectra are compared for different temperatures. The spectral
density, displayed in the inset, is located at c = 0.38 and is thus slightly red-
shifted from the harmonic frequency of ω0 = 0.4. The colors for anharmonic
spectra correspond to red: T = 50, green: T = 300, blue: T = 900 and orange:
T = 1500. The reference harmonic spectrum is shown in black.

with the parameters D = 0.02, α = 2.0 and x0 = 0. The resulting harmonic frequency

ω0 = α
√

2D/m = 0.4 coincides with the one used in the previous section for the

harmonic oscillator. The main anharmonic feature is that the frequency of the Morse-

oscillator depends on its vibrational energy E [39]

ω(E) = α

√
2(D − E)

m
. (2.10)

This energy dependence provides the key difference between the harmonic and anhar-

monic regime: an explicit temperature dependence of the spectral lineshapes. Note

that although the temperature enters the GLE formalism through the FDT, Eq. (1.6),

the resulting lineshape of a harmonic oscillator in Eq. (2.6) does not depend on it.

In Fig. 2.7 the vibrational spectrum of the Morse oscillator is shown for different

temperatures together with the one of its harmonic counterpart. The herein used
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spectral density is red-shifted (c = 0.38) from the harmonic frequency, see inset in

Fig. 2.7. The harmonic spectrum therefore possesses a sharp gas phase peak and a

small wing originating from the off-resonant coupling to the bath. The anharmonic

oscillator shows almost the same behavior at T = 50, see red curve in Fig. 2.7. Upon

increasing the temperature the spectrum shifts to lower frequencies, becomes signif-

icantly broader and the magnitude of the off-resonant peak grows. This effect is a

consequence of the explicit energy dependence of the Morse oscillator frequency. In-

creasing the temperature implies that, according to Eq. (2.10), lower frequencies of the

Morse oscillator are probed. Within the picture that emerged in the previous section

this means that the spectral density, which interacted off-resonantly at low tempera-

tures, becomes resonant with increasing temperature. Hence, the spectral line adopts

the double-peak structure observed in the previous section for the resonant coupling

regime, see blue and orange curves in Fig. 2.7.

2.3. Concluding Remarks

In this chapter two aspects have been discussed. First, a statistical error analysis via

the Block Averaging technique was performed in order to check the convergence of

TCFs computed from the Colored Noise propagating scheme and to establish a reli-

able simulation protocol. The number of timesteps per trajectory should be at least

equal to the characteristic correlation length. If the number of timesteps was set to

five times the correlation length, then 500 GLE trajectories were sufficient in order to

achieve TCFs with appropriate accuracy. Second, the properties of a non-Markovian

dynamics have been investigated. Here, a spectroscopic criterion for the presence of

non-Markovianity in the dynamics under study has been formulated for harmonic sys-

tems. According to this criterion, non-Markovianity is present whenever the spectral

line cannot be fitted to the functional form given in Eq. (2.8). Further, the interplay

between the spectral density and the resulting vibrational spectra and MAFs has been

analyzed. The discussions were limited to Lorentzian-type spectral densities, which

are appropriate for describing solute dynamics in liquid solvents as will be studied

in the next chapter. The non-Markovian features have been investigated on the basis

of a purely harmonic system first. It has been found that for a resonant system-bath

coupling the energy transfer between system and bath can be interpreted in analogy

to that of two coupled pendulums providing an intuitive picture for interpreting the

physical observations. Further, it has been shown that the resonant coupling regime
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yields much stronger contributions than those from off-resonant coupling, which can

be neglected accordingly. This is an advantage since in the particular applications con-

sidered later the spectral densities could be restricted to the resonant frequency region

only. Finally, a comparison to an anharmonic system has been made. The qualitative

understanding of the anharmonic oscillator can be obtained with the same physical

picture of resonant and off-resonant coupling between system and bath. The only dif-

ference to the harmonic regime is that one has to account for a temperature-dependent

distribution of frequencies and hence a temperature dependence of vibrational spectra

emerges.
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Chapter 3.

Applications to vibrational
Spectroscopy of Solute Dynamics

After having investigated general properties of non-Markovian dynamics provided by

the GLE it is now time to apply the formalism to realistic dynamics. Specifically, the

central question of this thesis, the ability of the three non-linear GLEs to describe vibra-

tional spectra of realistic solutes in solvent environments, is addressed in this chapter.

Conceptually, the applicability is determined as follows. First, force field-based MD

simulations of solute and solvent are employed taking the full system-bath interac-

tions into account. Then, the system is simulated via the different non-linear GLEs

proposed in Chap. 1. Their applicability is judged upon the ability to reproduce ex-

plicit MD spectra. Although the LP-GLE does not provide a proper stage for a quantum

vs. classical comparison and, hence, is not of main interest in this thesis, it is still em-

ployed for cross-checking purposes. In order to employ GLE simulations one needs a

parametrization of the spectral density which correctly mimics the solvent’s influence

on the system. Thus, a method for extracting the proper spectral density from explicit

MD data is introduced first. Finding a reliable protocol for this purpose is neither triv-

ial nor straightforward due to a strong accumulation of numerical errors. Therefore

the developed method is supported by a detailed error analysis.

3.1. Spectral Densities from explicit MD Simulations

The problem of extracting spectral densities from explicit MD simulations emerges in

various branches of physics and chemistry. In particular the spectral density enters

47
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the expressions for chemical reaction rates [12], whereas in studies of vibrational re-

laxation it is needed for estimating characteristic relaxation times [16–19, 26, 31] to

mention but two. The common approach is to calculate the memory kernel as the

correlation function of the forces exerted by the surrounding on the frozen vibrational

mode [16, 17, 19]. In the framework of the MBO model this procedure is justified

by the FDT, Eq. (1.6), as the memory kernels are entirely given by the system-bath

coupling strengthes, which are independent on the system. In contrast, for the GLEs

derived from projection operator techniques the memory kernel does depend on the

system’s behavior and, hence, deviations from the common approach are expected.

However, Tuckerman and Berne have shown that the common approach is justified if

the system’s frequency is much larger than those of the bath modes [31]. Since the

system frequencies studied in this thesis are comparable to that of the bath the validity

of this approach becomes questionable. Therefore, an aim of having a more general

protocol becomes apparent. A procedure without restrictions to such frequency sepa-

rations has been developed in the framework of this thesis.

3.1.1. Method

The method which shall be developed here is based on the integro-differential equa-

tion for the momentum autocorrelation function (MAF) Cpp(t) = 〈p(0)p(t)〉

Ċpp(t) = CpF (t)−
tˆ

0

ξ(t− τ)Cpp(τ)dτ . (3.1)

As it is shown in appendix C such an equation can be derived from any GLE being of

the form in Eq. (1.5), which, in this thesis, are the LP-GLE, the MBO-GLE and the NLP-

GLE with linearized memory functional. In Eq. (3.1) the function CpF (t) = 〈p(0)F (t)〉
denotes the momentum-force cross-correlation (MFC), with F (t) being the explicit

part of the force. This force consists of the effective harmonic force in the LP-GLE,

the intramolecular force in the MBO-GLE and the mean-force in the linearized NLP-

GLE. Now, the basic idea is to use Eq. (3.1) for calculating the proper memory kernel

from the MAF and MFC computed via MD simulations where the system-bath coupling

is accounted for explicitly. Note that for the ad hoc anharmonic GLE, which is also

considered here, the spectral density is simply adopted from the LP-GLE.
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Figure 3.1.: Fourier transform (left panel) and Laplace transform (right panel) of a memory
kernel consisting of a superposition of two exponentially damped cosine func-
tions. Their individual contributions are plotted in black dotted lines.

There exist different numerical schemes to solve Eq. (3.1) for the memory kernel

ξ(t). On one hand an iterative scheme can be derived from a discretization of Eq. (3.1)

in time domain [32–35]. Other methods are based on transforming Eq. (3.1) into

Laplace domain, where the convolution becomes a product and, hence, the integro-

differential equation turns into a simple algebraic equation, which can be easily solved

for the memory kernel [34, 36, 37]. However, the back transform of the memory ker-

nel into the time domain is a rather delicate task, since it involves a contour integra-

tion in the complex plane [49]. In practice, one therefore postulates certain functional

forms to which the MAF and MFC are fitted and from which the inverse Laplace trans-

form of the memory kernels is available analytically [34].

In this thesis a slight reformulation of the Laplace domain technique is used. Since

the Colored Noise scheme for solving the GLE (see Sec. 1.1.4) requires a fit of the

kernel to exponentially damped forms, whose Laplace transforms are well-known, one

can omit the complicated transform back into time domain and perform the fits directly

in Laplace domain. Equation (3.1) transformed into Laplace domain reads

sSpp(s)− Cpp(0) = SpF (s)− J(s) ·Spp(s) , (3.2)

where S denotes the Laplace-transformed correlation function C

S(s) =

ˆ ∞
0

exp[−st]C(t)dt , (3.3)

J(s) stands for the transformed memory kernel and s is the Laplace variable. Note

that a time derivative turns into a multiplication by s in Laplace domain. For the sub-
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sequent fitting procedure and for a more intuitive interpretation of the memory kernel

it is helpful to represent it in Fourier domain, where it is referred to as the spectral

density J(ω). The advantage of the Fourier domain compared to the Laplace domain

is illustrated in Fig. 3.1. Here, the Laplace and Fourier transforms of two oscillatory

damped memory kernels (Eq. (1.64)) and their superpositions are plotted. It can be

seen that the differences of the two contributions are significantly more pronounced in

the Fourier domain. Thus, the Laplace transforms of the memory kernels are expected

to be numerically less sensitive to such differences. The transition into Fourier do-

main can be achieved by setting the Laplace variable imaginary, i.e. s ≡ iω. Then, the

Laplace transform becomes equal to the half-sided Fourier transform. Solving Eq. (3.2)

for the spectral density yields

J(ω) =
1 + SpF (ω)

Spp(ω)
− iω , (3.4)

which forms the basic formula for calculating the spectral density from explicit MD

simulations. Note that in Eq. (3.4) both Cpp(t) and CpF (t) have been normalized to

the value Cpp(0).

The formula derived above is valid for the GLE with arbitrary (non-linear) forces.

A simplification can be achieved when the force is harmonic. In this case the MFC,

CpF (t) = −mω2
0Cpx(t), can be expressed as

CpF (t) = −ω2
0

tˆ

0

Cpp(τ)dτ , (3.5)

where ω0 is the harmonic frequency and m is the system’s mass. Substitution into

Eq. (3.1) yields

Ċpp(t) = −
tˆ

0

K(t− τ)Cpp(τ)dτ , (3.6)

where the memory kernel K(t) = ξ(t) + ω2
0 is defined. The corresponding spectral

density, labelled JK(ω), is then computed via

JK(ω) =
1

Spp(ω)
− iω . (3.7)
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This form provides an advantage when the spectral density for the LP-GLE shall be

computed since a calculation of the MFC can be omitted. Further, the effective har-

monic frequency ω̃, see Eq. (1.26), can be calculated from JK(ω) without knowledge

of
〈
x2
〉

as from the definition of K(t) it follows that

JK(ω) = J(ω) + πω̃2δ(ω)− i ω̃
2

ω
. (3.8)

The hyperbola in the imaginary part is a consequence of taking the half-sided Fourier

transform only. This suggests that the effective harmonic frequency is accessible via

fitting the hyperbola in the imaginary part of JK(ω).

The practical use of Eqs. (3.4) and (3.7) encounters different sources of numerical

errors which need to be reduced. On one hand MAFs and MFCs usually possess large

statistical errors in their unconverged tails, which mainly cause noisy results. On the

other hand the numerical transform into frequency domain involves integration errors.

In the following, two ways are proposed to overcome these numerical problems. As a

first approach Gaussian filtering is applied to the MD data in order to reduce the noise

level. Here, the TCFs are multiplied with a Gaussian window

G(t) = exp

[
− t2

2T 2

]
, (3.9)

which corresponds to a convolution with a Gaussian function of the width ∆ω = 1/T in

Fourier domain. This width has to be adjusted to build a compromise between optimal

noise reduction and minimal smoothing errors. Further details about Gaussian filtering

can be found in appendix E.

As a second approach the TCFs are least-squares fitted to superpositions of

f(t) = a1 exp[−b1t] cos(c1t) + a2 exp[−b2t] sin(c2t) , (3.10)

whose transforms into frequency domain are known analytically [49]. The charm of

this procedure is that one introduces no additional errors on the way to the spectral

density once a successful fit has been established. A comparison of these two ap-

proaches is made in the next section based on a detailed error analysis. Afterwards,

the successful method is tested for self-consistency on a set of various test systems.



52 Applications to vibrational Spectroscopy of Solute Dynamics

3.1.2. Error Analysis

The discussion of the error analysis starts with the first approach based on smooth-

ing the TCFs via Gaussian filtering. Afterwards, the comparison with the second ap-

proach, the fit procedure of TCFs in time domain, is made. The error analysis is done

with the same test system as already has been used in Sec. 2.1.2: a harmonic os-

cillator of frequency ω0 = 0.4 in a Lorentzian bath described by the memory kernel

ξ(t) = 2a2 exp[−bt] cos(ct) with parameters a = 0.03, b = 0.03 and c = 0.4. The nec-

essary numerical data are computed from the Colored Noise scheme as presented in

Sec. 1.1.4. The successful procedure should exactly reproduce the kernel ξ(t) explicitly

set up above. This is the main criterion for the accuracy of the method.

Smoothing Procedure

In the smoothing procedure one encounters two types of errors. The first error origi-

nates from the numerical integration in calculating the half-sided Fourier transforms.

These are carried out both with the help of the C-library FFTW3 [50] providing a fast

O(N logN) algorithm and a self-implemented O(N2) scheme based on the Simpson

integration rule [49]. The second error is the smoothing error stemming from the use

of a Gaussian window. Both errors are illustrated in Fig. 3.2.

The left panel of Fig. 3.2 shows that the FFTW3 algorithm yields surprisingly large

errors for the timestep of 0.3, which is a reasonable choice for a molecular system with

hydrogen atoms in, if the typical units (fs) are employed. Decreasing the timesteps to

0.2 and 0.1 still does not lead to a reasonable result. Contrary to this, the Simpson-

based scheme yields a spectral density, that perfectly matches the exact one already

for the largest step size. The reason is that the FFTW3 algorithm is based on the

simplest single-sided integration scheme, whose accuracy is only of first order in the

integration step [49, 50]. In contrast, the Simpson’s rule is of fourth order and is,

hence, much more accurate. The error behavior of the FFTW3 scheme shows that this

algorithm is not applicable for the present purpose and the Simpson-based scheme

should be preferred. Since the Fourier transforms have to be performed only once

for each TCF the additional computational cost of this slower O(N2) algorithm hardly

makes a difference compared to the cost of performing explicit MD simulations.

The right panel in Fig. 3.2 contains a comparison of the computed spectral densities

for different time widths T of the Gaussian window, see Eq. (3.9). It can be observed



Applications to vibrational Spectroscopy of Solute Dynamics 53

-0.015

 0

 0.015

 0.03

 0.045

 0.2  0.3  0.4  0.5  0.6

Sp
ec

tra
l D

en
si

ty

frequency

FFTW3: dt=0.1
FFTW3: dt=0.2
FFTW3: dt=0.3

Simpson: dt=0.3
exact

 0

 0.01

 0.02

 0.03

 0.2  0.3  0.4  0.5  0.6

Sp
ec

tra
l D

en
si

ty

frequency

T=50
T=100

T=5000
T=500
exact

Figure 3.2.: The spectral densities illustrating the two sources of errors emerging in the
smoothing approach are shown. In the left panel, FFTW3-based spectral den-
sities are plotted for various time steps compared to the Simpson-based and the
exact one. The width of the Gaussian window is T = 500, which corresponds
to a frequency width of ∆ω = 0.002. In the right panel, the spectral densities
are shown for various widths T of the Gaussian window compared to the exact
one. The Fourier transform has been carried out using the Simpson’s rule. The
numerical parameters of corresponding Colored Noise simulations are the same
as in Sec. 2.1.2.

that the curves become smoother the smaller T becomes and more noisy for large

T . Too small choices of T yield too broad spectral densities. These findings can be

easily understood, since a multiplication with a Gaussian function having the width T

in time domain is equivalent to convoluting with a Gaussian function with the width

∆ω = 1/T in frequency domain. There exists an optimal value of T = 500 (blue

dots in right panel) which establishes a compromise between the noise level and the

smoothing error. This value is comparable to the characteristic correlation time of the

system, see Fig. 2.3 in Sec. 2.1.2, which can be used as a criterion for setting T .

Fit Procedure

Since the fit is performed to functions whose analytical Fourier transform is known, the

only errors induced by the entire procedure are the fit errors themselves. In Fig. 3.3

(panel a) the resulting spectral density is compared against the analytic one. The result

of the successful smoothing procedure from the previous section is displayed in panel

b). Surprisingly, the fit procedure causes errors (panel d), which are unacceptably

large. Fig. 3.4 shows the Fourier transforms of the TCF fits (panel a), of the smoothed
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Figure 3.3.: The numerical (red lines), first-order corrected (blue dots) and exact (black lines)
spectral densities are shown for a) the fit procedure and b) the smoothing pro-
cedure. For the fit procedure 3 fit functions of the form given in Eq. (3.10) have
been used. In the smoothing procedure the width of the Gaussian window has
been set to T = 500. The relative errors rJ of the absolute values are given
in panels c) and d). The numerical parameters for corresponding colored noise
simulations are the same as in Sec. 2.1.2.

TCFs (panel d) and the particular relative error of the absolute values (panels b and e).

Here, fit and smoothing errors have the same order of magnitude although the errors

in the spectral densities are dramatically different. This apparent paradox suggests to

inspect the error accumulation in more detail.

In the following the numerical TCF-transforms S(num)(ω) are written in the form

S(num)(ω) = S(ω) + ε(ω) , (3.11)

where S(ω) denotes the exact function and ε(ω) the (complex-valued) error. Substitut-

ing this into Eq. (3.4) and performing a first order Taylor expansion around ε(ω) = 0
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Figure 3.4.: The real parts of Spp and SpF (panels a and d), the relative errors of their absolute
values (panels b and e), as well as the phase differences (panels c and f) are
shown for the fit procedure (panels a – c) and the smoothing procedure (panels d
– f). Red and green curves indicate a correspondence to Spp and SpF , respectively,
and the black curve denotes exact results. The numerical parameters are the same
as in Fig. 3.3.

one finds for the numerical spectral density J (num)(ω)

J (num)(ω) = J(ω)− [J(ω) + iω]
εpp(ω)

Spp(ω)
+
εpF (ω)

Spp(ω)
+O(ε2) , (3.12)

from which the first order expression for the error εJ(ω) = J (num) − J(ω) can be read

off

ε
(1)
J (ω) = − [J(ω) + iω]

εpp(ω)

Spp(ω)
+
εpF (ω)

Spp(ω)
. (3.13)

Upon utilizing the symbol r(ω) = ε(ω)/S(ω) for relative errors and employing the rela-

tion SpF (ω) = iω2
0/ω ·Spp(ω) valid in the harmonic regime, see Eq. (D.4) in appendix D,
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one obtains

ε
(1)
J (ω) = − [J(ω) + iω] rpp(ω) + i

ω2
0

ω
rpF (ω) , (3.14)

where ω0 represents the oscillator frequency. In Fig. 3.3 the first order-corrected spec-

tral densities are plotted (blue dots) giving very good agreement with the exact func-

tions in both cases. This allows one to estimate the error up to the first order and

Eq. (3.14) can be used to draw further conclusions. Note that such a correction can

only be made because the exact spectral density J(ω) in Eq. (3.14) is known in the

error analysis performed here. It does not provide a useful correction for practical

applications where the exact spectral densities are unknown.

In order to gain more insight into the mechanisms of the error accumulation im-

plied by Eq. (3.14) one can write the relative errors in Euler form r = |r| · ei∆φ, where

the explicit frequency argument shall be dropped from now on. This yields for the first

order correction

ε
(1)
J = −J |rpp| · ei∆φpp + i · ei∆φpF

[
|rpF |

ω2
0

ω
− |rpp|ω · ei(∆φpp−∆φpF )

]
, (3.15)

where it becomes apparent that the error accumulation is sensitive to the phase differ-

ence ∆φpp −∆φpF . Error cancellation is supported in the vicinity of ω0, for instance, if

the magnitudes of the relative errors are comparable, |rpF | ≈ |rpp| = |r| and the phase

difference is a multiple of 2π. In such a case the frequency-dependent expression in

Eq. (3.15) vanishes and the error reduces to∣∣∣ε(1)
J

∣∣∣ = |J | · |r| (3.16)

meaning that the relative error for the absolute value of J(ω) is the same as for the

TCFs in Fourier space. If, in the opposite, the phase differences are close to odd

multiples of π, the error strongly accumulates since the term in braces introduces a

frequency-dependent error ∣∣∣ε(1)
J

∣∣∣ = |r| ·
√
|J |2 + 4ω2 . (3.17)

In Fig. 3.4 the errors |rpp| and |rpF | (panels b and e) as well as the phase differences

∆φpp−∆φpF (panels c and f) are shown for the fitted and smoothed TCFs correspond-

ingly. It is evident that the errors and phase differences for the smoothed curves obey
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quite strictly the aforementioned conditions, which support error cancellation. Con-

trary to this, the errors and phase differences for the fit procedure are less regular and

hardly predictable. In the worst case the error accumulates strongly as can be seen in

Fig. 3.3.

The detailed error analysis presented above suggests that smoothing the raw data

via Gaussian filtering is the method of choice since the phases of the errors as well

as their magnitudes are changed in a way which is convenient for error cancellation.

The fit procedure suffers from large error accumulation and yields useless results. In

the next section the smoothing procedure is verified further via self-consistency tests,

showing the success of the method for other test systems in addition to the one used

throughout this section.

3.1.3. Self-consistency Tests

Since it has been shown in the previous section, that the proposed smoothing pro-

cedure favors strong error cancellation, the question may arise, whether this hap-

pens in the general case as well. In the remainder of this section the success of

the method will be demonstrated for three additional, qualitatively different systems.

These are a free particle in a bath described by an exponentially damped kernel

ξ(t) = a2e−bt with the parameters a = 1.0 and b = 1.0, an anharmonic oscillator in

a bath corresponding to the memory kernel ξ(t) = 2a2e−bt cos(ct) with a = 0.015,

b = 0.005 and c = 0.37 as well as an anharmonic oscillator in a bath described

by ξ(t) = 2a2
1e
−b1t cos(c1t) + 2a2

2e
−b2t cos(c2t) with a1 = 0.02, b1 = 0.03, c1 = 0.42,

a2 = 0.015, b2 = 0.007 and c2 = 0.38. The anharmonic oscillators are modelled by a

Morse potential, Eq. (2.9), with D = 0.05 and α = 1.265 resulting in the harmonic fre-

quency ω0 = 0.4. The memory kernel for the anharmonic oscillator in the first example

is constructed such that the corresponding spectral density is narrow and slightly off-

resonant from the harmonic frequency. As has been discussed in Chap. 2 this causes

long dephasing times and hence very narrow peaks in the Fourier transforms of the

TCF. The reason for the choice of this regime is that the TCFs are expected to be less

sensitive to the memory kernels. In the second anharmonic oscillator example the

spectral density possesses a sharp peak below the oscillator frequency and a broad

peak above.
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In Fig. 3.5 the results for the three examples together with the one for the harmonic

system studied in the previous section are shown. The coincidence of the exact spectral

densities and the numerical ones is reasonable for all systems considered. The largest

deviations are obtained at the maxima of sharply peaked contributions since there

the curvature is very large, see panels c) and d). Negligible deviations are obtained

for broader curves of low curvature, see panels a), b) and d). This illustrates where

the principal limitation of the method lies, although it should be stressed that sharply

peaked spectral densities are rather untypical for liquid systems as can be seen in the

next sections. Thus, the developed method for extracting the spectral densities from

explicit simulations, based on smoothing the raw data for noise reduction, can be

graded as successful and is ready for application to real solute dynamics.
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Figure 3.5.: Four examples of qualitatively different spectral densities are shown. Blue dots
indicate the numerical results from the smoothing procedure and black lines stand
for the exact spectral density. The systems are a free particle (panel a) with ξ(t) =

a2e−bt, the harmonic oscillator from the previous section (panel b), anharmonic
oscillators with ξ(t) = 2a2e−bt cos(ct) (panel c) and with ξ(t) = 2a2

1e
−b1t cos(c1t)+

2a2
2e
−b2t cos(c2t) (panel d), see text for the values of the constants. Numerical

parameters of Colored Noise simulations and the width T of the Gaussian window
are chosen such that numerical convergence is obtained.
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3.2. Vibrational Spectra of Solutes in liquid Solvents

3.2.1. Systems

In order to probe the applicability of the non-linear GLEs, representative test-cases

have been chosen according to the following guidelines. First, it is aimed at describing

realistic solvent environments which, additionally, should have a significant influence

on the solute’s vibrational mode under investigation. Second, the test-cases should be

chosen to represent qualitatively different physical situations in order to draw more or

less general conclusions.

In order to meet these requirements one of the most important solvents in the

everyday life has been chosen as a first guinea pig: water. As a solute mode, the

OH-stretch of an HOD molecule is taken, whose gas phase spectra have already been

investigated in a previous work [39]. In bulk water, this molecule participates in a

network of hydrogen bridges, which strongly influence the solute stretching motion.

Especially, one expects a strong resonant energy flow between the OH-stretches in

HOD and water. Additionally to the OH-stretch, HOD possesses internal vibrational

modes formed by the OD-stretch and HOD bends. Due to the system-bath partition-

ing, chosen in this thesis, these motions are considered as a part of the bath resulting

in a rather counter-intuitive picture. Hence, it is desirable to consider a solute with no

additional internal motion, i.e. whose state is entirely described by one single coordi-

nate. Therefore, as a second system, a diatomic OH molecule embedded in the same

bulk water surrounding is studied. The third system has been chosen to represent a

qualitatively different situation: the ionic liquid [C2mim] [NTf2]. Here, solute and sol-

vent have a much more complex mode structure than that in the water examples and

their Coulomb interaction is remarkably strong. The vibrational mode of interest is

the C(2)− H stretch on the imidazolium ring (see Scheme 1 of [51] for a sketch). The

three systems are all simulated at an ambient temperature of 300 K.

For describing the interactions in the two aqueous systems the q-SPC/Fw water

model has been employed [41], where the harmonic stretching potential has been sub-

stituted with an anharmonic one according to the q-TIP4P/F force field [52]. This com-

bination of the two water force fields has been adopted from Paesani and Voth [53].

Particularly for HOD, the OH- and OD interactions are formed by Morse potentials,

Eq. (2.9), whereas the potential for HOD bending is harmonic with respect to the
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HOD-angle θ

V (θ) =
kθ
2

(
θ − θeq

)2
. (3.18)

All intermolecular interactions are of Lennard-Jones and Coulomb type

V (inter)(r) =
∑
i,j

4εij

[(
σij
Rij

)12

−
(
σij
Rij

)6
]

+
qiqj
Rij

, (3.19)

with a sum that runs over all particle pairs being not within the same molecule. The

diatomic OH molecule is simulated with exactly the same setup as for HOD with the

only difference that the deuteron has been removed. The ionic liquid [C2mim] [NTf2] is

parametrized according to the force field given by Ludwig et al. [51]. Again, the origi-

nal harmonic stretching potentials are replaced by Morse potentials whose parameters

are chosen according to an ab initio (DFT-B3LYP) calculation performed by T. Zentel

in [54].

In all cases the solute systems are considered as one-dimensional with the OH/CH-

bondlength being the coordinate associated with x in the GLE. According to Sec. 3.1.1

one needs to calculate the MAF and MFC corresponding to this coordinate in order to

extract the spectral density from explicit MD simulations. The conjugate momentum

p, needed for the MAF, is calculated as

p(t) = µ~n(t) · (~v1(t)− ~v2(t)) , (3.20)

with the normalized bondvector ~n, the individual velocities ~v1,2 of the two particles

participating in the bond and their reduced mass µ. The forces, needed for the MFC,

are calculated depending on the kind of GLE involved. In general, it has the form

F (t) = − ∂V

∂x

∣∣∣∣
x=x(t)

(3.21)

with the potential V being the full Morse potential, Eq. (2.9), in the case of the MBO-

GLE and the mean-field potential for the NLP-GLE. For parametrizing the LP-GLE the

MFC calculation can be omitted since the spectral density is exclusively determined by

the MAF, see Sec. 3.1.1.
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3.2.2. Simulation Details

First, explicit MD simulations of the three systems have been carried out in order to ob-

tain the MAF and MFC needed for both calculating explicit vibrational spectra through

Eq. (1.74) and extracting the memory kernels according to the procedure developed in

the previous section. For the explicit MD simulations the GROMACS simulation pack-

age v. 4.6.5 has been used [55]. For HOD and OH in bulk water the solute molecule

has been included in a cubic and periodic simulation box with the edge of 2.4 nm to-

gether with 465 water molecules forming the bulk surrounding. For the ionic liquid

a periodic box of 4.5 nm comprising 216 ion pairs has been used. In all systems the

calculation of the Lennard-Jones forces has involved a cut-off radius of 0.9 nm and a

switch radius of 0.8 nm. For Coulombic forces the particle-mesh Ewald method with a

cut-off radius of 0.9 nm and a switch radius of 0.89 nm has been exploited. The cut-off

radius for nearest-neighbor list generation has been set to 1.1 nm, which allows one to

update the pair lists every 1000 timesteps, preserving sufficiently good energy conser-

vation. TCFs have been calculated both as time-averages along a single microcanonical

(NVE) trajectory and a subsequent average over a swarm of NVE-trajectories whose

initial conditions were sampled from the canonical (NVT) ensemble, see Sec. 2.1.1.

Specifically, a swarm of 1000 independent trajectories per stretch each of 6 ps length

and a timestep of 0.1 fs has been involved. The initial conditions have been sampled

in equidistant steps of 0.2 ps from a NVT-trajectory thermostatted via a Langevin ther-

mostat with a coupling strength of τ = 0.04 ps. Data production has started after an

equilibration time of 20 ps.

The spectral densities have been extracted from the explicit MD data according to

the procedure discussed in the previous section. The Gaussian width T has been cho-

sen to minimize the smoothing errors in the resulting spectral densities (see Sec. 3.1.2).

A good choice for T has been the correlation time within the system under study. After

extracting the spectral density its real parts have been least-squares fitted to superpo-

sitions of

Re{J(ω)} = a2b ·
[

1

b2 + (c− ω)2 +
1

b2 + (c+ ω)2

]
, (3.22)

which correspond to superpositions of the memory kernels ξ(t) = 2a2e−bt cos(ct) [49].

The fit coefficients determine the elements of the drift matrices for the Colored Noise

simulations according to Sec. 1.1.4. The explicit forces used in the GLE have been

set to the explicit Morse force for the MBO-GLE and the mean-force for the linearized
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NLP-GLE. A bondlength distribution function f(x) has been calculated from the ex-

plicit MD trajectories in order to give access to the mean-field potential via Eq. (1.48).

Employing the LP-GLE requires to compute the effective harmonic frequencies. These

have been fitted from the hyperbola in the imaginary part of the spectral density as ex-

plained in Sec. 3.1.1. Finally, the ad hoc anharmonic GLE has been utilized. Therefore,

an anharmonic term proportional to x2 calculated from a third order Taylor expansion

of the Morse potential employed in MD simulations has been added to the LP-GLE. For

data production Colored Noise simulations of 1000 independent trajectories with 6 ps

length and a timestep of 0.1 fs have been employed. Vibrational spectra have been cal-

culated from the MAF in the same manner as in explicit simulations described above.

3.2.3. Results

The presentation of the results starts with showing the spectral densities of the three

systems under investigation. Afterwards, the spectra obtained from the different GLE

simulations are compared against the explicit MD result. From this comparison, con-

clusions about the GLE’s applicability are drawn.

Spectral Densities

Figure 3.6 contains the spectral densities for the three investigated systems corre-

sponding to the LP-GLE (red), the MBO-GLE (green) and the linearized NLP-GLE (or-

ange). Note that for the ad hoc anharmonic GLE the spectral density coincides with

that of the LP-GLE by construction. In all cases the spectral densities have a peaked

structure instead of being broad and continuously distributed along the frequency axis.

The particular contributions can be assigned to vibrational modes of the bath. For in-

stance, the peak at 2600 cm−1 in the HOD spectral density (panel a) is connected to

the OD vibration and is missing in the OH spectral density (panel b), where this mode

has been removed by construction. Further contributions at 1500 cm−1 can be assigned

to the bending modes and the continuum at lower frequencies corresponds to libra-

tion bands of the molecules within the hydrogen bridges network. In the case of the

ionic liquid [C2mim][NTf2] the low frequency part of the spectral density is much more

complex since noticeably more vibrational modes are available.
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Figure 3.6.: The real parts of the spectral densities are shown for HOD in bulk water, OH
in bulk water and the ionic liquid [C2mim][NTf2] in the panels a), b) and c),
respectively. The right plots within one panel show the spectral density zoomed
into the resonant region. The colors correspond to the LP-GLE (red), MBO-GLE
(green) and the linearized NLP-GLE (orange).

Comparing the spectral densities derived from the LP-GLE, the MBO-GLE and lin-

earized NLP-GLE for each system, reveals the significant differences only in the region

of the spectral density where the system-bath coupling is resonant with the system

mode (about 3600 cm−1 for HOD and OH and about 3300 cm−1 for the ionic liquid, see

Fig. 3.7). These regions are shown in the right column of Fig. 3.6. Here, the spectral

density turns out to be very sensitive to the presence of anharmonicity in the system.

In particular, the spectral densities obtained from LP-GLE and MBO-GLE parametriza-

tions are similar in shape but different in intensity, the former being four and two

times larger than the latter for the water systems and the ionic liquid, respectively.

As it was discussed in Sec. 2.2, resonant coupling is most important since off-resonant

coupling causes spectral amplitudes which are about two orders of magnitudes smaller

than those arising from resonant coupling. Fortunately, this allows one to restrict the
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least-squares fit of the spectral densities to the resonant region providing a great sim-

plification especially for the ionic liquid.

An interesting feature which is worth discussing at this point, is the strong peak

lying at the overtone frequency of the system, being only visible in the LP-GLE spectral

densities. The only difference between the LP-GLE and non-linear GLE spectral densi-

ties must be in the system anharmonicity, which, has been put entirely into the bath in

the former case (see discussions in Sec. 1.1.2). Therefore, the additional overtone in

the LP-GLE spectral density must be a consequence of the system anharmonicity. On

the contrary, in the MBO spectral density, where the full anharmonic Morse potential

is kept explicitly, this contribution is absent. This nicely underlines the fundamental

differences of the system-bath partitioning performed in the different kinds of GLEs.

The spectral density from the linearized NLP-GLE shows an unphysical behaviour in

this overtone region since it becomes negative in the case of HOD and OH. However,

this overtone is off-resonant with the system frequency and hence anyway neglected

in the GLE simulations as was pointed out before.

According to [17–19] the LP-GLE spectral densities contain further dynamical in-

formation: the vibrational relaxation times T1. If the solute mode is excited to a

non-equilibrium state, this time determines the characteristic energy decay back to

thermal equilibrium. The so-called Landau-Teller formula [17–19]

T−1
1 = Re{J(ω̃)} (3.23)

provides a connection between this relaxation time and and the LP-GLE spectral den-

sity. The effective harmonic frequencies ω̃ for the three systems are 3628.79, 3524.32

and 3316.48 cm−1 leading vibrational relaxation times of 35 fs, 28 fs and 143 fs for HOD,

OH and the ionic liquid, respectively. Note, that the effective frequencies ω̃ occuring

in the LP-GLE must be used instead of the harmonic frequencies ω0 stemming from a

second order Taylor expansion of the employed Morse potentials. These harmonic fre-

quencies are 3886.39 cm−1 for HOD/OH and 3326.02 cm−1 for the ionic liquid, which,

for the aqueous systems, are significantly blue-shifted from the effective ones. Hence,

the vibrational relaxtion times would be dramatically overestimated if these frequen-

cies were used.
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The Applicability of the GLEs to vibrational Spectra

The vibrational spectra of the three systems obtained from explicit MD simulations

as well as from the different types of GLEs are displayed in Fig. 3.7. In all systems

the spectra obtained from the LP-GLE (red stars) perfectly coincide with the explicit

MD results (black curves). This is expected since the LP-GLE is the only one having a

mathematically rigorous foundation. This also illustrates that in terms of linear spec-

troscopy any anharmonic system can be entirely mapped onto an effective harmonic

one. However, the effective frequencies, see previous subsection, cannot be connected

to the real Morse potentials employed in the explicit simulations. In contrast, they

artificially include the redshifts usually being a consequence of the system-bath cou-

pling. This again underlines that a rather counter-intuitive system-bath partitioning is

performed when the linear projection operator formalism is used.
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Figure 3.7.: Vibrational spectra shown for a) HOD in bulk water, b) OH in bulk water and c)
the ionic liquid [C2mim][NTf2]. The explicit MD results (black curve) are com-
pared against the results of the LP-GLE (red stars), MBO-GLE (green curve), the
linearized NLP-GLE (orange curve) and the the GLE with ad hoc anharmonicity
(blue curve).
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The spectra provided by the MBO-GLE (green curves) dramatically deviate from

the MD ones as they are blue-shifted by 250, 330, 30 cm−1 in panels a), b), c), respec-

tively, are too narrow and of wrong shape in all cases. This is because the harmonic

frequencies of the employed Morse potentials are off-resonant to the spectral density

and hence the spectral peak hardly differs from that in gas phase, see discussion in

Chap. 2. The results of the linearized NLP-GLE (orange curves) improve in terms of

peak positions but still yield incorrect shapes. The spectra from the ad hoc anharmonic

GLE are very close to the explicit ones although deviations are still visible for HOD

and OH. However, given the excellent quality of the LP-GLE results none of the three

non-linear GLEs reveals itself as successful. This shows that the attempts to include

anharmonicity explicitly into the GLE are not applicable for purposes of linear vibra-

tional spectroscopy. In contrast, there seems to be no room for anharmonicity as the

LP-GLE already yields exact spectra on the basis of an effective harmonic description.

The Invertibility Problem

Unfortunately, the only successful GLE, the LP-GLE, is of limited use for the purposes

of a classical vs. quantum comparison and non-linear spectroscopy. Therefore, it is

important to discover the exact reasons for the breakdown of the employed non-linear

GLEs and to find possible improvements. In the following the problem shall be formu-

lated in a formal mathematical way and the deep reason for the breakdown of any of

the employed non-linear GLEs will be unraveled from this perspective.

According to the procedure developed in Sec. 3.1.1 one extracts the memory kernel

ξ(t) from the MAF and MFC calculated via explicit MD simulations. Mathematically,

this defines a mapping

A :
{
Cpp(t);CpF (t)

}
7→ ξ

[
Cpp(t);CpF (t)

]
, (3.24)

where two functions, Cpp(t) and CpF (t) are mapped onto one memory kernel ξ(t).

Specifically, the spectral density is calculated from the TCFs Fourier transforms ac-

cording to Eq. (3.4)

J(ω) =
1 + SpF (ω)

Spp(ω)
− iω , (3.25)



Applications to vibrational Spectroscopy of Solute Dynamics 67

which uniquely defines the memory kernel in time domain via a back Fourier trans-

form. Conversely, a mapping B can be defined which maps one kernel ξ(t) onto two

functions C ′pp(t) and C ′pF (t)

B : ξ(t) 7→
{
C ′pp [ξ(t)] ;C ′pF [ξ(t)]

}
. (3.26)

This mapping is defined via the (non-linear) GLE itself, since once the memory ker-

nel has been fixed for a given temperature the corresponding TCFs are determined

uniquely through the corresponding LD. The requirement for the GLE to be successful

is that it should reproduce exactly that pair of Cpp(t) and CpF (t) from which the mem-

ory kernel has once been extracted. Mathematically speaking, the mapping B should

be exactly the inverse mapping of A

B
!

= A−1 . (3.27)

Having established a mathematical formulation of the problem one easily recognizes

from Eq. (3.25) that the mapping A is not injective, since one can think of infinitely

many pairs of functions Cpp(t) and CpF (t) which yield the same memory kernel ξ(t). In

principle, this set of infinite pairs can be artificially constructed by setting one function,

say CpF (t), to a specific form and calculating the other, Cpp(t), from Eq. (3.25) keeping

the spectral density fixed. The missing injectivity implies that the mapping A is not

invertible and, hence, the requirement for B to be the inverse mapping of A cannot be

fulfilled. This serious problem, referred to as the invertibility problem in the following,
clearly puts forward the reason why any of the proposed non-linear GLEs cannot meet

the requirement for their general applicability as formulated in Eq. (3.27).

In order to exclude the possibility that some yet unknown dependence between

Cpp(t) and CpF (t) restricts the choice to a single pair, the numerical evidence for the

invertibility problem has been obtained. This can be impressively seen with the help

of Fig. 3.8 that contains two pairs of Cpp(t) and CpF (t), one from explicit MD (plugged

into mapping A) and the other coming from the corresponding non-linear GLEs (re-

sults of mapping B with the same kernel). Although the two pairs of TCFs are dramat-

ically different they yield exactly the same memory kernels when put into mapping

A. One might wonder why the invertibility problem does not occur in the LP-GLE

formalism. The reason for this is, that since the effective force is purely harmonic

the corresponding MFC can be expressed entirely in terms of the MAF as discussed

in Sec. 3.1.1. In mapping A only one function is then needed for calculating ξ(t)
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according to Eq. (3.7). This fact makes A injective and hence the desired condition

formulated in Eq. (3.27) realizable.
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Figure 3.8.: MAF (panels a and c) and MFC (panels b and d) shown for HOD in bulk water.
The panels a) and b) correspond to explicit MD (black) vs. MBO-GLE (green). In
panels c) and d) explicit MD results (black) are compared against the linearized
NLP-GLE results (orange).

Ansatz to solve the Invertibility Problem

The aforementioned invertibility problem prohibits the use of the MBO-GLE in the

general case. It can still be successful by chance if for a particular system mapping A

happens to be invertible on a special subset of functions CpF (t) and Cpp(t). However,

for the NLP-GLE there might be a systematic way to avoid the invertibility problem

by taking into account higher orders in the expansion of the memory functional in

Eq. (1.45). The basic idea is to include so many terms in the expansion that, similar

to the LP-GLE, the number of memory kernels introduced by each term coincides with

the number of TCFs needed for their extraction. To illustrate this idea further a second
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order expansion of the NLP-GLE is performed in appendix F. The resulting second

order NLP-GLE reads

ẋ =
p

m

ṗ = −∂Vm

∂x
−

tˆ

0

ξ1(t− τ)p(τ)dτ −
tˆ

0

ξ2(t− τ)p(τ)x(τ)dτ +R(t) , (3.28)

with two memory kernels ξ1(t), ξ2(t) and a noise term obeying the two FDT relations

〈R(0)R(t)〉 = mkTξ1(t)

〈x(0)R(0)R(t)〉 = mkT
〈
x2
〉
ξ2(t) . (3.29)

As before, Vm(x) stands for the mean-field potential. The corresponding integro-

differential equation for the MAF reads

Ċpp(t) = CpF (t)−
tˆ

0

ξ1(t− τ)Cpp(τ)dτ −
tˆ

0

ξ2(t− τ)Cpxp(τ)dτ , (3.30)

with the additional correlation function Cpxp(t) = 〈p(0)x(t)p(t)〉. So far, this equation

does not seem to be helpful, since there will be always one TCF, the MFC CpF (t), more

than memory kernels. However, if one can expand the mean-force up to second order

Fm(x) = −mω2
0x+mχx2 (3.31)

the MFC can be expressed in terms of Cpp(t) and Cpxp(t) in the same spirit as the

effective harmonic force in the LP-GLE could be entirely expressed in terms of Cpp(t).

To see this one can write CpF (t) as

CpF (t) = −mω2
0Cpx(t) +mχC

px
2(t) . (3.32)

Using Cpx(t) = 1/m
´ t

0
Cpp(τ)dτ as well as C

px
2(t) = 2/m

´ t
0
Cpxp(τ)dτ one obtains

CpF (t) = −ω2
0

tˆ

0

Cpp(τ)dτ + 2χ

tˆ

0

Cpxp(τ)dτ (3.33)
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and, hence, Eq. (3.30) reduces to

Ċpp(t) = −
tˆ

0

K1(t− τ)Cpp(τ)dτ −
tˆ

0

K2(t− τ)Cpxp(τ)dτ , (3.34)

with the new kernels

K1(t) = ξ1(t) + ω2
0

K2(t) = ξ2(t)− 2χ . (3.35)

The procedure shown above suggests that a successful inclusion of anharmonicity

could become possible on the basis of a second order NLP-GLE if the mean-force can be

expanded up to the second order as well. Further it is expected, that if the mean-force

truncates at nth order, then an expansion of the memory functional must be likewise

performed to nth order. This provides a clear mathematical statement on where to

truncate the expansion if the fundamental invertibility problem shall be avoided. How-

ever, in order to formulate a practical scheme for extracting the two memory kernels

in Eq. (3.35) one needs a second equation additionally to Eq. (3.34). Unfortunately,

such an equation has not been found up to the present time. Furthermore, the second

order NLP-GLE, Eq. (3.28), cannot be translated into the Colored Noise propagation

scheme and thus a new algorithm has to be developed for its practical implementation.

Nevertheless, the formalism outlined above seems to be promising and suggests the

route to explicitly include anharmonicity into the GLE.



Conclusions and Outlook

The main goal of this thesis has been to investigate the applicability of the generalized

Langevin equation (GLE) formalism to vibrational spectroscopy of realistic solute dy-

namics in liquid solvents. The charm of the GLE approach is that only a few (here one)

selected degrees of freedom (DOFs) evolve under the explicit influence of the system

forces, whereas the influence of the other DOFs, called bath, is described implicitly

via non-Markovian dissipation and stochastic fluctuations. Their properties are fully

determined by a single function being the so-called memory kernel in time domain, or

alternatively its Fourier transform referred to as the spectral density.

In the first chapter the detailed theoretical background of the GLE has been pre-

sented in order to explore the models and approximations employed. It has been

shown that the common form of the GLE can be obtained in a direct way by postu-

lating the so-called Multimode Brownian Oscillator (MBO) model, which assumes a

harmonic bath and a bilinear system-bath coupling. A truly rigorous approach to de-

rive the (non-)linear prototype forms of the GLE from (non-)linear projection operator

techniques has been presented. It has been put forward that the linear version deviates

from the common form by the explicit system force, which is mapped onto an effective

harmonic force. As a consequence of the linear projections involved, any system an-

harmonicity is projected into the bath leading to a rather counter-intuitive system-bath

partitioning. In turn, in the non-linear GLE, the system force is modified by mean-field

corrections given as a conditional average of the system-bath coupling over the envi-

ronmental DOFs. Further, the dissipative term involves a functional dependence on

system coordinates, which can be only brought into the common GLE form by a first

order expansion. It has been concluded that a microscopic justification of the common

form of the GLE, that is with the system anharmonicity preserved, cannot be obtained

in a rigorous way since either an MBO model has to be postulated, the memory kernel

in the GLE from non-linear projections has to be approximated up to the first order or

anharmonicity has to be added in an ad hoc way to the rigorously derived GLE from

linear projections.
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After theoretical studies, a numerical propagator has been implemented based on

the method of Colored Noise thermostats developed by Ceriotti et al. [43–46]. In the

second Chapter, this propagator has been investigated in order to set up a reliable

protocol for calculating time-correlation functions (TCFs) and vibrational spectra. It

turns out, that 500 trajectories are needed for sufficient convergence, which can be

calculated with small numerical effort for the systems studied. In the remainder of the

Chapter, the mechanisms of a non-Markovian system-bath coupling have been inves-

tigated and a spectroscopic criterion for non-Markovian dynamics has been proposed

for harmonic systems.

In the last chapter of this thesis the applicability of the GLE formalism to solute

dynamics in solvents has been discussed. A method for extracting the spectral density

from explicit MD data has been proposed. In this technique the time-correlation func-

tions (TCFs) are calculated from explicit MD simulations and the resulting integro-

differential equation is solved for the spectral density via transforming it to Fourier

domain, where it becomes a simple algebraic equation. A big challenge in the practi-

cal application of this method is to obtain an appropriate noise reduction in the Fourier

domain. Therefore, two protocols have been suggested for this purpose. The first is

based on fitting the MD TCFs to functional forms whose Fourier transforms are known

analytically. The second involves Gaussian filtering techniques for smoothing MD data

in time domain. It has been shown that the fit procedure suffers from a large error ac-

cumulation of the resulting fit errors and, hence, should not be used. In contrast, the

Gaussian filtering technique has revealed itself as a successful approach for extract-

ing spectral densities corresponding to different physical scenarios. After extracting

the spectral densities from explicit MD data the GLE formalism has been applied to

stretching modes of three systems which are the OH-stretch of an HOD molecule in

bulk water, a diatomic OH molecule in bulk water and a CH-stretch of the ionic liquid

[C2mim][NTf2]. The quality of the GLE results has been measured upon the ability to

reproduce the linear vibrational spectra from explicit MD simulations. Main emphasis

has been put onto the performance of non-linear GLEs, namely those derived from

the MBO model, from the non-linear projection with linearized memory kernel and

from adding anharmonicity in an ad hoc way. The quality of all non-linear GLE spectra

were found to be bad in all systems studied, with the GLE from the MBO model yield-

ing the largest deviations. In contrast, the linear GLE excellently agrees with explicit

spectra as it is the only GLE being derived in a mathematically rigorous way without

any approximation or postulation of a particular model. This underlines that in lin-

ear vibrational spectroscopy any system can be mapped onto an effective harmonic
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system and, hence, there is no need to introduce anharmonicity into the physical pic-

ture. However, using an effective harmonic system is possible at a prize of loosing the

correct microscopic picture of the dynamical processes under study, since the effective

harmonic frequencies can hardly be connected to the real system potentials employed.

The breakdown of the non-linear GLEs has been discussed on a formal, mathe-

matical basis. It has turned out that they suffer from an invertibility problem, which

states that the mappings employed to extract the spectral densities are not invertible.

This means that a spectral density does not uniquely define the TCFs needed for its

extraction. Indeed, it has become numerically evident that significantly different TCFs

can correspond to the very same spectral density and, hence, non-linear GLEs cannot

reproduce TCFs calculated from MD simulations. This serious problem has been iden-

tified to be the deep reason behind the breakdown of the non-linear formalisms and

has been shown to be absent when the linear GLE is invoked giving a purely math-

ematical reason why a mapping onto an effective harmonic system is successful. It

can be therefore concluded, that in future applications the invertibility problem needs

to be avoided. For the GLE derived from the MBO model a solution of this problem

is not foreseen. For the GLE derived from non-linear projection operator techniques

a possible solution has been sketched, which amounts to performing a higher order

expansion of the memory functional, which would in turn produce higher order mem-

ory kernels. It has been shown that a step towards solving the invertibility problem

can be done. However, the set of equations needed for extracting the memory ker-

nels could not be closed yet. Furthermore, the practical applicability of higher order

non-linear GLEs needs to be investigated further since a completely new algorithm for

their numerical treatment has to be developed.

Finally, it can be concluded that the GLE formalism does not provide a promising

method for describing realistic solute dynamics in liquid solvents. In contrast, a more

sophisticated theoretical framework needs to be employed. The initial charm of this

simple reduced formalism is overshadowed by a principal inapplicability stemming

from either too crude models or too rough approximations. Thus, the description of

macroscopic condensed phase systems remains a challenging task in modern physical

research. The Holy Grail of many-particle physics is still to be found.
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Appendix A.

Memory kernel, Noise and explicit
Force in the LP-GLE

In this appendix the explicit calculation of the matrix Ω defined in Eq. (1.19) as well

as the form of the memory matrix K(t), Eq. (1.22), and the noise F (t), Eq. (1.20), is

presented for the specific pair of variables A = (x, p)T being the system’s coordinate

and conjugate momentum. As a first step the matrix 〈A|A〉 needs to be calculated and

inverted in order to carry out the linear projections. For x and p this matrix reads

〈A|A〉 =

 〈
x2
〉
〈xp〉

〈px〉
〈
p2
〉
 (A.1)

where the special form of the scalar product, Eq. (1.10), results in ensemble averages

denoted as 〈...〉. If f(Γ) in Eq. (1.10) is chosen to be the canonical distribution func-

tion, the off-diagonal matrix elements vanish since 〈xp〉 = 〈x〉 〈p〉 and 〈p〉 = 0. Further,

the second moment of the momentum p becomes
〈
p2
〉

= mkT which results in the

matrix

〈A|A〉 =

 〈
x2
〉

0

0 mkT

 (A.2)

that can easily be inverted

〈A|A〉−1 =

 1/
〈
x2
〉

0

0 1/mkT

 . (A.3)
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Further one needs the vector

LA = (Lx,Lp)T

= (p/m,−∂xH)T (A.4)

where the Hamilton EOMs have been involved and H denotes the total Hamilton

function of system and bath. With these expressions one finds for Ω

Ω = 〈A|LA〉T 〈A|A〉−1

=

 〈xp〉 /m −〈x · ∂xH〉〈
p2
〉
/m −〈p · ∂xH〉

T  1/
〈
x2
〉

0

0 1/mkT


=

 0 kT

−kT 0

 1/
〈
x2
〉

0

0 1/mkT


=

 0 1/m

−kT/
〈
x2
〉

0

 , (A.5)

where the equipartion theorem has been used in order to equate 〈x∂xH〉 = kT .

For the noise term F (t) = et(1−P̂ )L(1 − P̂ )LA = et(1−P̂ )L(1 − P̂ )(p/m,−∂xH)T one

realizes that the projection (1− P̂ ) applied to p vanishes because P̂ p = p by construc-

tion, see Eq. (1.14). Hence, the first component of the noise acting on positions x

vanishes and it remains

F (t) =

 0

R(t)

 (A.6)

with

R(t) = −et(1−P̂ )L(1− P̂ )∂xH . (A.7)
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For the memory matrix K(t) one needs the matrix 〈LA|F (t)〉 which reduces to

〈LA|F (t)〉 =

 0 〈p ·R(t)〉 /m

0 −〈∂xH ·R(t)〉


=

 0 0

0 −〈∂xH ·R(t)〉

 (A.8)

where it has been used that, according to the definition given above, R(t) cannot

carry an explicit dependence on p. Further, in the canonical ensemble individual mo-

menta are uncorrelated to the other phase space coordinates and hence the average

〈p ·R(t)〉 = 〈p〉 〈R(t)〉 = 0 vanishes. Finally, the memory matrix reads

K(t) = 〈LA|F (t)〉T 〈A|A〉−1 (A.9)

=

 0 0

0 −〈∂xH ·R(t)〉 /mkT

 (A.10)

which defines the memory kernel

ξ(t) = −〈∂xH ·R(t)〉 /mkT

=
〈

(1− P̂ )∂xH ·R(t)
〉
/mkT

= 〈R(0)R(t)〉 /mkT (A.11)

where in the latter equation the FDT can be obtained. The possibility to insert a

redundant projector 1− P̂ is justified through the hermitian and idempotency property

of projectors.
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Appendix B.

Memory kernel, Noise and explicit
Force in the linearized NLP-GLE

In this appendix the linearization of the NLP-GLE will be performed explicitly. Further,

the formula for the potential of the mean-force, Eq. (1.48) is proven. As in the linear

case, the formalism is applied to the special pair of variables A = (x, p)T being the

coordinate x and conjugate momentum p. For this special pair of variables the noise

term reads

F (t) = et(1−P̂ )L(1− P̂ )LA

= et(1−P̂ )L(1− P̂ )(p/m,−∂xH)T

= et(1−P̂ )L(1− P̂ )(0,−∂xH)T , (B.1)

where the Hamilton EOMs for x and p have been used involving the Hamilton functions

H of the total system. In the last line it has been used P̂ p = p and hence (1− P̂ )p = 0.

Similar to the LP-GLE the noise term has only a component acting on momenta p

R(t) = −et(1−P̂ )L(1− P̂ )∂xH . (B.2)
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In the expansion of the memory functional (integral term in Eq. (1.43)) one finds

−
∞∑
i=1

Φi [A(t− τ)] 〈[∇A ·F (0)]F (τ)〉 =
∞∑
i=1

−Φi[x(t− τ), p(t− τ)]

×
〈[

∂Φi

∂x
· 0 +

∂Φi

∂p
R(0)

]
· (0, R(τ))T

〉
=

∞∑
i=1

−Φi[x(t− τ), p(t− τ)]

×
(

0,

〈
∂Φi

∂p
R(0) ·R(τ)

〉)T
(B.3)

which, similar to the noise, only contributes in the EOM for p. Now the general equa-

tion for the memory functional is expaned up to first order in x and p. In order to

calculate memory kernel and noise one needs to construct an orthogonal set {Φj(x, p)}
of functions. Since all expansions shall be truncated after first order in x and p, these

functions are easily found

Φ1(x, p) =
x√〈
x2
〉

Φ2(x, p) =
p√
mkT

, (B.4)

where x and p have been asssumed to be canonically distributed. Note, that x and p

are already orthogonal and just need to be normalized. Inserting the two functions

Φ1,Φ2 one finds for the averages

−Φ1[x(t− τ), p(t− τ)]

〈
∂Φ1

∂p
R(0) ·R(τ)

〉
= 0 (B.5)

and

−Φ2[x(t− τ), p(t− τ)]

〈
∂Φ2

∂p
R(0) ·R(τ)

〉
= −p(t− τ)

mkT
〈R(0)R(τ)〉 (B.6)

which directly defines the memory kernel ξ(t) via a FDT relation

ξ(t) =
1

mkT
〈R(0)R(t)〉 . (B.7)
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The overall integral term in the linearized NLP-GLE reduces to the familiar form

tˆ

0

ξ[τ ;x(t− τ), p(t− τ)]dτ =

tˆ

0

p(t− τ)ξ(τ)dτ . (B.8)

The explicit part of the NLP-GLE is given by the conditional average

〈∂tA;A(t)〉 =

 〈p; p(t)〉 /m

−〈∂xH;x(t)〉


=

 p(t)/m

Fm[x(t)]

 ,

with the mean-force

Fm(x) =

´
f(x′,Q)δ(x′ − x)F (x′,Q)dx′dQ´

f(x′,Q)δ(x′ − x)dx′dQ
(B.9)

= [P (x)]−1

ˆ
f(x′,Q)δ(x′ − x)F (x′,Q)dx′dQ . (B.10)

Here, the definition in Eq. (1.41) has been involved where the configurational part of

the phase space variables Γ has been written out explicitly in terms of bath coordinates

Q and system coordinate x. Further, F (x,Q) denotes the total force exerted on the

system, i.e. including system-bath interactions. In the canonical ensemble the potential

Vm(x) of the mean-force can be calculated as

Vm(x) = −kT · ln[P (x)] (B.11)

with P (x) being the reduced distribution function for the system’s coordinate

P (x) =

ˆ
f(x′,Q)δ(x− x′)dx′dQ

=

ˆ
f(x,Q)dQ . (B.12)

This statement can proven via direct differentiation

− ∂

∂x
Vm(x) = kT · ∂P

∂x
· [P (x)]−1 . (B.13)
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For the calculating the derivative of P (x) one uses the special form of the canonical dis-

tribution function f(x,Q) = 1/Z · exp[−V (x,Q)/kT ] with Z being the configurational

partition function and V (x,Q) the total potential of system and bath. One finds

∂P

∂x
=

1

Z

ˆ
∂

∂x
exp[−V (x,Q)/kT ]dQ

= − 1

ZkT

ˆ
exp[−V (x,Q)/kT ]

∂V

∂x
dQ

=
1

kT

ˆ
f(x,Q)F (x,Q)dQ . (B.14)

Combining this result with Eq. (B.13) one ends up with the definition of the mean-

force Fm(x). For further reading it is referred to [10, 15, 28].



Appendix C.

Integro-differential Equations for
Time-Correlation Functions

The MAFs obey characteristic integro-differential equations which are connected to

the underlying GLE of the common form given in Eq. (1.5) in a simple matter. The

resulting equations are of the same GLE structure apart from a missing noise term.

The usefulness of these equations becomes apparent in Sec. 3.1.1 where it is discussed

how the memory kernel can be extracted from explicit MD MAFs. In this appendix the

systematic way to derive these equations is presented. The general idea is to apply the

ensemble average 〈p(0) · ...〉 to the GLE

〈p(0)ṗ(t)〉 = 〈p(0)F [x(t)]〉 −
tˆ

0

ξ(t− τ) 〈p(0)p(τ )〉 dτ + 〈p(0)R(t)〉

Ċpp(t) = CpF (t)−
tˆ

0

ξ(t− τ)Cpp(τ)dτ + 〈p(0)R(t)〉 . (C.1)

Here, the symbol CAB(t) = 〈A(0)B(t)〉, which denotes the correlation function of

variable A and B has been introduced. Further, it has been used that time integration

and time differenciation commute with the ensemble average 〈...〉.

The treatment of the correlation function with the noise term R(t) depends on the

type of GLE involved. In the GLEs based on projection operators one needs to calculate

〈p(0)R(t)〉 =
〈
p(0)et(1−P̂ )L(1− P̂ )Lp(0)

〉
(C.2)
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where one should remember that the projector P̂ projects onto the closed subspace

which includes the variable p. Then, from the Hilbert projection theorem, which states

that for projectors P̂ onto closed subspaces the projectors 1 − P̂ project onto the or-

thogonal complement of P̂ , it follows that〈
p(0)(1− P̂ )A(0)

〉
= 0 (C.3)

for any dynamical variable A. This has the consequence that p(0) is uncorrelated with

the noise R(t)

〈p(0)R(t)〉 = 0. (C.4)

Note, that in the non-linear projection operator technique, where one projects onto

the subspace of all (non-linear) functions F (x, p), this can be generalized to

〈F [x(0), p(0)]R(t)〉 = 0. (C.5)

For the linear projection, in contrast, this is only valid for correlations with linear

functions F (x, p) = c1x+ c2p. For the MBO-GLE one can use the explicit expression of

the noise term

〈p(0)R(t)〉 =
∑
j

gj

〈
p(0)Pj(0)

〉
Mjωj

sin(ωjt)

+
∑
j

gj

(〈
p(0)Qj(0)

〉
−

gj

Mjω
2
j

〈p(0)x(0)〉

)
cos(ωjt) (C.6)

where all occuring averages vanish in the canonical ensemble.

In all GLEs involved it can be explicitly shown that the correlation of momentum

and noise becomes zero and, hence, the integro-differential equation for the MAF

reduces to

Ċpp(t) = CpF (t)−
tˆ

0

ξ(t− τ)Cpp(τ)dτ . (C.7)



Appendix D.

Analytic Spectrum for a harmonic
Oscillator

For the special case of a harmonic oscillator the vibrational spectrum can be analyti-

cally expressed in terms of the spectral density. This short derivation is presented in

this appendix. According to Eq. (1.74) the absorption coefficient is given by the real

part of the MAF’s Fourier transform which can be easily obtained by transforming the

MAF’s integro-differential equation into Fourier domain

iωSpp(ω)− Cpp(0) = SpF (ω)− J(ω)Spp(ω). (D.1)

Note, that the term Cpp(0) appears because only the half-sided Fourier transforms

are taken. For the harmonic oscillator the force F entering the MFC has the form

F = −mω2
0x and hence CpF (t) = −mω2

0Cpx(t). The correlation function Cpx(t) is

connected to Cpp(t) via

Ċpx(t) =
Cpp(t)

m
(D.2)

which, transformed into the Fourier space, reads

iωSpx(ω)− Cpx(0) =
Spp(ω)

m
. (D.3)
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Taking into account that Cpx(0) = 〈p(0)x(0)〉 = 0 for the canonical ensemble the

Fourier transform SpF (ω) follows from the above relation

SpF (ω) = i
ω2

0

ω
Spp(ω) . (D.4)

Combining these relations one can find for Spp(ω)

Spp(ω) =
ωCpp(0)

ωJ(ω) + i(ω2 − ω2
0)
, (D.5)

which is entirely given by the spectral density J(ω). Note, that the MAF is often

normalized to its initial value which implies Cpp(0) = 1.



Appendix E.

Gaussian Filtering

In this appendix the technique of Gaussian filtering, as has been used in this thesis

for reducing the noise level in spectra and spectral densities, is presented in greater

detail. Consider a TCF C(t) which has been computed numerically and which can be

decomposed into

C(t) = C0(t) + ε(t) , (E.1)

where C0(t) is the exact TCF and ε(t) represents the statistical error. For calculating

the spectrum of C(t) a numerical time integration must be performed

S(ω) =

∞̂

0

C(t)e−iωtdt

≈
Tmaxˆ

0

C(t)e−iωtdt

=

Tmaxˆ

0

C0(t)e−iωtdt+

Tmaxˆ

0

ε(t)e−iωtdt , (E.2)

which cannot be employed to infinity and, hence, must be truncated at a sufficiently

large time Tmax. This time has to be chosen such that the function C0(t) has come

sufficiently close to zero. However, the statistical error ε(t) usually gets larger in the

unconverged tails since the number of samples from which the TCF is calculated lin-

early decreases with time (see Sec. 2.1.1). Thus a cut of ε(t) at large times Tmax causes

errors in the spectra which have a highly oscillating behavior. Further, converging the
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tail of the TCF is no option especially for systems with large correlation times since

this would require a large amount of trajectories and timesteps to be involved.

The central idea to overcome this problem without a significant increase of the

sampling length is to average out these highly oscillating errors. In Gaussian filtering

the spectrum at frequency ω is averaged with respect to a Gaussian weight

S̄(ω) =

+∞ˆ

−∞

S(ω′)
1√

2π∆ω2
exp

[
(ω′ − ω)2

2∆ω2

]
dω′ (E.3)

with a parameter ∆ω that determines the frequency width to which the average is

restricted. On one hand this parameter has to be chosen such that the error is averaged

over sufficiently many oscillations to give

+∞ˆ

−∞

ε(ω′)
1√

2π∆ω2
exp

[
(ω′ − ω)2

2∆ω2

]
dω′ ≈ 0. (E.4)

On the other hand it should have a minimal affect on the exact part of the spectrum

+∞ˆ

−∞

S0(ω′)
1√

2π∆ω2
exp

[
(ω′ − ω)2

2∆ω2

]
dω′ = S0(ω) + εS(ω) (E.5)

with a small smoothing error εS(ω) ≈ 0. The smoothing error can be calculated directly

starting from a Taylor expansion of S0(ω′) around ω

S0(ω′) = S0(ω) +
∞∑
n=1

S
(n)
0 (ω)

n!
(ω′ − ω)n (E.6)

and subsequent convolution with the Gaussian weight requiring to calculate the cen-

tral moments of a Gaussian function. These vanish for odd powers of ∆ω whereas for

even powers one gets [49]

+∞ˆ

−∞

(ω′ − ω)2k 1√
2π∆ω2

exp

[
(ω′ − ω)2

2∆ω2

]
dω′ =

(2k)!

2kk!
∆ω2k . (E.7)
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Hence, for the smoothing error one finds

εS(ω) =
∞∑
k=1

S
(2k)
0 (ω)

2kk!
∆ω2k

=
S ′′0 (ω)

2
∆ω2 +O(∆ω4) (E.8)

being at minimum of second order in the frequency width. Apperantly the smooth-

ing error is large at high curvatures S ′′0 (ω) typically being the situation at the cusps

of narrow spectral lines. Here, one is limited to small values of ∆ω at a price of a

higher noise level. Practically, the two requirements for the choice of ∆ω cannot be

fulfilled exactly at the same time since averaging out the noise generally requires large

∆ω whereas rather small widths are needed in order to minimally affect the exact

part S0(ω). This means that one has to find the optimal compromise between noise

reduction and small smoothing errors depending on the particular system under study.

Technically, the easiest way to perform the average in frequency domain is to mul-

tiply the time-domain signal C(t) by a Gaussian window G(t) = exp
[
t2/2T 2

]
before

transforming into Fourier domain. The average in Eq. (E.3) is then performed auto-

matically since due to the convolution theorem a product in time domain becomes a

convolution in Fourier domain

∞̂

0

C(t) ·G(t)e−iωtdt =
1

2π

∞̂

−∞

S(ω′)G(ω′ − ω)dω′ .. (E.9)

The Fourier transform of the Gaussian window is of Gaussian form as well and reads

G(ω) =
√

2πT 2e−
1
2
T

2
ω
2

, (E.10)

where the relation between ∆ω and the window width T becomes apparent

∆ω =
1

T
. (E.11)

A multiplication with a Gaussian window in time domain acts as a low-pass filter re-

jecting the contributions located at times t > T . This is the reason why this smoothing

procedure involving a Gaussian window is referred to as Gaussian filtering throughout

this thesis.
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Appendix F.

Derivation of a second order NLP-GLE

In this appendix the second order NLP-GLE is derived. This means, that the expansion

of the memory kernel

ξ[τ ;x(t− τ), p(t− τ)] =
∞∑
i=1

−Φi[x(t− τ), p(t− τ)] ·
〈
∂Φi

∂p
R(0)R(τ)

〉
(F.1)

is truncated after quadratic terms in x and p. Technically, the functions x, p, xp, x2, p2

are orthonormalized via the Gram-Schmidt orthonormalization scheme [49] in order

to give the second order set {Φi(x, p)}. The first two functions of the orthonormal set

can be adopted from appendix B

Φ1(x) =
x√〈
x2
〉

Φ2(p) =
p√
mkT

. (F.2)

The third function Φ3(x, p) is constructed from the product term xp upon invoking the

Gram-Schmidt orthonormalization

Φ3(x, p) = N3 (xp− 〈Φ1|xp〉Φ1 − 〈Φ2|xp〉Φ1)

= N3

(
xp−

〈
x2p
〉〈

x2
〉 x− 〈xp2

〉
mkT

p

)
= N3 (xp− 〈x〉 p) , (F.3)

where in the second line the definition of the scalar product in terms of ensemble

averages, Eq. (1.10), has been used. The discussions in this thesis are always restricted
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to the canonical ensemble. Therefore, the special property of the canonical ensemble

that all moments of postions are uncorrelated to moments of the momenta, i.e.

〈xnpm〉 = 〈xn〉 〈pm〉 , (F.4)

can be used in the last line. Further, the relations 〈p〉 = 0 and
〈
p2
〉

= mkT were

invoked. The normalization factor N3 of Φ3(x, p) follows after some algebra as

N 3 =
1√

mkT
(〈
x2
〉
− 〈x〉2

) (F.5)

=
1√

mkTσ2
x

, (F.6)

giving the final expression for Φ3(x, p)

Φ3(x, p) =
xp− 〈x〉 p√
mkTσ2

x

. (F.7)

Note, that the symbol σ2
x =

〈
x2
〉
− 〈x〉2 has been used to denote the variance of x.

For contructing the next two basis functions Φ4(x, p) and Φ5(x, p) out of x2 and p2

the Gram-Schmidt orthonormalization scheme must, in principle, be continued ac-

cordingly. However, since the terms arising from these two functions will turn out to

vanish it will be restricted to give their functional form only. Upon carrying out the

orthonormalization and using Eq. (F.4) one finds

Φ4(x) = C1x
2 + C2x

Φ5(x, p) = D1p
2 +D2x+D3x

2 , (F.8)

with coefficients C1/2 and D1/2 which are not specified further. After having con-

structed the orthonormal set all expectation values
〈
∂Φi

∂p
R(0)R(τ)

〉
need to be calcu-

lated. This is a very straigthforward task〈
∂Φ1

∂p
R(0)R(τ)

〉
= 0〈

∂Φ2

∂p
R(0)R(τ)

〉
=

1√
mkT

〈R(0)R(τ)〉
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〈
∂Φ3

∂p
R(0)R(τ)

〉
=

1√
mkTσ2

x

〈(x− 〈x〉)R(0)R(τ)〉〈
∂Φ4

∂p
R(0)R(τ)

〉
= 0〈

∂Φ5

∂p
R(0)R(τ)

〉
= 2D1 〈pR(0)R(τ)〉

= 2D1 〈p〉 〈R(0)R(τ)〉

= 0 .

Note, that in the last average the random force does not depend on the variable p being

completely uncorrelated to all other phase space variables. Therefore, its average

〈p〉 = 0 can be moved in front of 〈R(0)R(τ)〉 making the whole expression vanishing.

From the relations given above it becomes apparent that the only difference to a first

order expansion of the NLP-GLE is one additional term stemming from the function

Φ3. Combining all the results one can write down the second order NLP-GLE

ẋ =
p

m

ṗ = Fm(x)−
tˆ

0

p(t− τ)ξ1(τ)dτ −
tˆ

0

p(t− τ){x(t− τ)− 〈x〉}ξ2(τ)dτ +R(t) ,

with the two memory kernels that are given by

mkTξ1(t) = 〈R(0)R(t)〉

mkTσ2
xξ2(t) = 〈(x− 〈x〉)R(0)R(t)〉 . (F.9)

The first memory kernel, ξ1(t), coincides with the one from the linearaized NLP-GLE

whereas the latter introduces a second FDT relation. Note, that in the main text of the

thesis is has been assumed 〈x〉 = 0 which can be always realized by a proper variable

substitution. Note also, that the mean-force Fm(x) does not depend on the expansion

of the memory functional and is hence exactly the same as in the linearized NLP-GLE.
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Appendix G.

Short Documentation of the current
Colored Noise Implementation

In the framework of this thesis an implementation of the Colored Noise thermostat

method according to Ceriotti et al. [43–46] has been established. A short documenta-

tion of the current implementation shall be given here. I have to stress at this point

that there is room for optimization especially in the useability of the written packages.

However, the correctness of the procedures has been tested comprehensively for the

systems investigated in this thesis. In case of questions feel free to contact me. Further,

I would be grateful if I receive your messages concerning bugs and errors.

G.1. Headers and Object Files

The Colored Noise package has been written in the programming language C and is

constructed in a semi object-oriented way. The written procedures are contained in

header and object files which have to be included into the main C-programme. The

header files to be included are

1. mathop.h: containing mathematical operations like matrix multiplications, a

cholesky decomposition scheme, a Gaussian random number generator and much

more

2. dynamics.h: containing necessary routines and variables needed for the time

propagation. Further, it provides a routine for calculating TCFs and for creating

distribution functions of dynamical quantities
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3. GLE.h: containing the routines needed for performing GLE simulations based on

the method of Colored Noise thermostats

The implementation of the routines are contained in the object files name.c corre-

sponding to the header files name.h. The files are provided by me, so please contact

me in the case you want to use them. If you use the GNU-compiler the object files

need to be compiled with the -c option: gcc -c name.c -o name.o -lm.

G.2. Data Structure and Variables

At the current state of the implementation the routines for propagating the system

involve a specific set of variables which the user has to adopt exactly. These variables

are listed in the following table.

variable name data type explanation

Dim integer spacial dimensionality

Npart integer number of particles

length double edge of the cubic simulation box

PBC integer periodic boundary conditions (on: 1, off: 0)

dt double timestep

NStep integer number of timesteps per trajectory

Ntraj integer number of trajectories

NEqui integer number of equilibration steps

Nnext integer sampling distance of trajectories

Ncorr integer number of timesteps in TCF

NBins integer number of bins for distribution function

xmin double lower boundary of bin interval

xmax double upperr boundary of bin interval

Table G.1.: Variables used in the Colored Noise implementation

The Trajectories of Npart particles are stored in arrays of data type double. Po-

sitions and forces are stored in arrays of size Npart*Dim if Dim is the spacial dimen-

sion. Momenta are stored arrays of size Npart*Dim*(Ns+1) with Ns auxiliary mo-

menta per degree of freedom. The data structure is organized as follows: if one wants
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to access the jth spacial component of the ith particle’s position or force one has

to dereference the arrays as x[i*Dim+j] or F[i*Dim+j], repsectively. The jth com-

ponent of the momentum corresponding to the ith particle is to be dereferenced as

p[i*Dim*(Ns+1)+j*(Ns+1)]. The user just needs to declare the position, momentum

and force arrays in the main programme. Functions for allocating these arrays in the

correct way are provided. The initial positions have to be given by the user taking care

of not producing too strong initial forces. Allocating and initializing the drift matrices

for the Colored Noise scheme can be done by calling a function as well. Inverse masses

(which are used here instead of masses) and charges, being arrays of size Npart, are

allocated in a function but need to be initalized in the main code.

G.3. Routines

Here, a short explanation of the routines needed in the main programme is given.

1. After declaration of necessary variables the function SetupDyn(FILE *IN), to

which a file pointer has to be passed, needs to be called. This function reads

the input file ’dynamics_in’ from which all variables in table G.1 are extracted.

2. The function SetupGLE(FILE *IN,double **imass, double **charge, double

**F) needs to be called next. Here, the input file ’GLE_in’ specifying the thermo-

stat properties is read and the drift matrices are set up. Further, inverse masses,

charges and forces are allocated. Note, that arguments have to declared as point-

ers but have to be passed via the &-operator

3. Positions and momenta are allocated via GLEallocate(double **x, double **p).

Further, this function initializes all momenta to zero. Note, that positions must

be initialized in the main programme. Note also, that the arguments have to be

passed with the &-operator.

4. As has been mentioned above, the function that calculates forces has to be writ-

ten by the user himself. Here, it is mandatory to explicitly call this function

forces(double *x, double *F) with x being the position array and F the force

array.
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5. The function GLEpropagate(double *x, double *p, double *F, int tag) per-

forms one GLE-propagation step if tag is set to 1. If tag is set to 0 the function

performs one NVE-propagation step.

6. The function binning(FILE *Bin, double *binvariable) creates a distribution

function of the data stored in binvariable. This array consitutes a list of the

values to be binned over timesteps. The distribution function is normalized to

unity, i.e. the integral over the whole bin interval is 1. The distribution function

is always written to a file called ’Bin.dat’.

7. The function Correlation(double *obs1, double *obs2, double *corr, int

D) calculates the TCF of the data in obs1 and obs2 and stores the result in corr.

The arrays can have a dimension D which is not necessarily equal to Dim. The

data structure of the arrays must be such that obs[i*D+j] dereferences the jth

component of obs at the ith timestep. Note, that this function calculates the

correlation function as a time-average and accumulates this average over the

trajectories. One therefore needs to call it in the loop over trajectories.

G.4. Input Files

There are two input files to be prepared. The input file ’dynamics_in’ contains a list

of the parameters given in the table G.1. The parameters have to be listed in the

same order as in they appear in this table. The second input file ’GLE_in’ contains the

specifications of the Colored Noise thermostat. The first line therein is the Boltzmann

parameter β = 1/kT. The second line specifies the Markovian friction called app in

Eq. (1.51). In the next three lines one needs to specify the number of exponential

functions, damped cosine functions and damped sine functions (in this order!) used

to build the memory kernel. Note, that a sine function is included in the implemen-

tation but should not be used at the present state because its implications are not

comprehensively tested. After specifying the number of functions their corresponding

parameters are listed. First one has to list the blocks of coefficients a, b corresponding

to an exponentially damped a2 exp[−bt]. Afterwards, all the blocks of coefficients a, b, c

according to the damped cosine functions 2a2 exp[−bt] cos[ct] are listed. To give an

example, the file ’GLE_in’ corresponding to β = 1, app = 0, app = 0.0, two exponential

function with a = 1, b = 2 and a = 3, b = 4, one damped cosine function with a = 5,
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b = 6, c = 7 and zero sine functions reads 1.0 0.0 2 1 0 1.0 2.0 3.0 4.0 5.0 6.0

7.0 with a line break after each number.

G.5. Example Code

In the following example code the MAF of a harmonic oscillator is calculated and

its momentum distribution function is printed. When compiling this code, called

colored.c, via the GNU compiler one has to correctly link it with the object files

via gcc colored.c -o colored.x mathop.o dynamics.o GLE.o -lm , where it is as-

sumed that the object files are in the same directory as the code. Note, that linking

with the math library is neccessary.
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colored.c 27.08.14 16:08

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "mathop.h"
#include "dynamics.h"
#include "GLE.h"

double *charge;

/*******************************************************************/
/*                           FORCE FIELD                           */
/*******************************************************************/

// Calculate forces.
// An implementation of a force field library is in progress.
// So far, you have to write forces yourself
// In this example a harmonic oscillator is set up
void force(double *x, double *F)
{
    int i;
    double k=0.16;  // force constant

    for(i=0;i<Dim*Npart;i++)
        F[i]=-k*x[i];
}

/*******************************************************************/
/* MAIN FUNCTION                          */
/*******************************************************************/

int main()
{

int i,j,k;
    double *x,*p,*F;        // positions, momenta, force
    double *imass;          // inverse masses
    double *xequi,*pequi;   // position and momenta for equilibration

double *D_pp;           // Samples for which correlation function
                            // is calculated

double *binvariable;    // Samples to be binned
FILE *Bin,*IN;          // FILE pointers
double *C_pp;           // array that containts correlation

                            // function of D_pp data

/******************************* ALLOCATIONS ***********************/
   
    // Reads input file "dynamics_in" and sets up variables needed
    // for propagation
    SetupDyn(IN);
    
    // Reads input file "GLE_in" and sets up propagation matrices
    // for Colored Noise and allocates masses, charges and
    // a force array (note: you need only one force array)
    SetupGLE(IN,&imass, &charge, &F);
    
    // Allocates two pairs of positions and momenta
    GLEallocate(&x,&p);



Page 2 of 3

colored.c 27.08.14 16:08

    GLEallocate(&xequi,&pequi);
    
    // Set the seed of randum numbers (time.h needs to be included!)
    srand(time(NULL));
    
    // Allocation of correlation function
    C_pp=malloc(NStep* sizeof(double));

    // Allocates help arrays to store data sequence from which
    // correlation functions shall be calculated
    D_pp=malloc(NStep* sizeof(double));

    
    // Data sequence from which a histogram shall be established

binvariable=malloc( (Ntraj*NStep)* sizeof(double));
    
    
/****************************** INITIALISATIONS ********************/

    // initialize masses of particles (here set to 1)
    for(i=0;i<Npart;i++)
        imass[i]=1.0;
    
    // initial positions
    // Note: momenta are initialized in GLEallocate
    // CAUTION: Choose initial configuration carefully
    // not to produce large initial forces
    for(i=0;i<Npart*Dim;i++)
        xequi[i]=0.0;
    
    
    // initalise forces!
    // CAUTION: Do not forget this
    force(xequi,F);
    
    // initialize correlation function to zero!
    for(i=0;i<NStep;i++)
        C_pp[i]=0.0;

/***************************** TIME PROPAGATION ********************/

// 1.) equilibration
    for(i=0;i<NEqui;i++)
        GLEpropagate(xequi,pequi,F,imass,1);
    

for(i=0;i<Ntraj;i++)
{

        // copy equilibration arrays to production arrays
        // function is provided in mathop.h
        Copy(x,xequi,Dim*Npart);
        Copy(p,pequi,(Ns+1)*Dim*Npart);

// 2.) propagate ensemble member
for(j=0; j<NStep;j++)
{

            
            // stores data for binning

*(binvariable+j+i*NStep)=*p;

            // stores data for correlation function
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            // here: momentum of first particle
            D_pp[j]=*p;
            
            // performs one GLE step
            GLEpropagate(x,p,F,imass,1);

}

// 3.) progress correlation function
            Correlation(D_pp,D_pp,C_pp,1);
        

// 4.) generate next ensemble member
        for(j=0;j<Nnext;j++)
            GLEpropagate(xequi,pequi,F,imass,1);

}

/************************** OUTPUT OF DATA *************************/

// Output time-correlation function
    // prints on stdout. Needs to be redirected into file
    for(i=0;i<Ncorr;i++)
        printf("%lf \t %lf\n", i*dt,C_pp[i]);
    
  // Output histogram (stored in File "Bin.dat")

binning(Bin,binvariable);

return 0;
}
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