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To my nieces, Liza and Leonie, and all children –

may the beaches you discover be full of joy, sand, and living things.......

Börgerende beach in sunlight





Thesis Abstract

This is the first study to investigate the spatial and temporal variations of microplastic con-

centrations in beach sediments at the German Baltic coast. Two extraction methods, cen-

trifugation and air-venting in high-density saline solutions, are tested, and air-venting in

calciumchloride solution is found to be most efficient and least biased for the extraction of

microplastics from beach sediments. With the aim to study the sources of anthropogenic mi-

croplastic influx, a total of 11 locations were sampled to analyse spatial variations, including

four beaches along the west-east current in the wider Rostock area, four beaches around

the island of Rügen, and two beaches in the Oder/Peene estuary. One location at the North

Sea Jade Bay known to be contaminated with microplastics was chosen for comparison.

The four Rostock locations were sampled over a period of 5 months from March to July

2014 to investigate temporal fluctuations. Visual inspection under dissecting microscopes

was employed to distinguish microplastics from residual natural sediment. With this method,

coloured particles and fibres are shown to provide the safest identification of microplastics.

Between zero and 9 coloured particles/kg dry sediment are found, with typical numbers of 1-

3 particles/kg observed in most samples. The highest anthropogenic contamination in both

microplastic particles and glass fragments is detected near the Oder/Peene outlet into the

Baltic Sea, suggesting that industrial and urban river discharge as well as the nearby fishing

harbour contribute substantially to microplastic contamination. Comparable concentrations

of 1-11 coloured fibres/kg dry sediment are found, and high concentrations of several tens

to hundreds of transparent fibres are detected in all samples. The highest total fibre concen-

tration is observed in July at Warnemünde beach, indicating that touristic activity increases

the fibre load by up to one order of magnitude. The microplastic concentrations observed

in Baltic coast sediments are consistent with the concentrations of coloured particles and

fibres reported in earlier studies on the North Sea island of Norderney and on beaches at

the Belgian coast using similar methods.
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1 INTRODUCTION 1

1 Introduction

1.1 Microplastics in the marine environment

The existence of microplastics in the marine environment has been known for more than

four decades (Buchanan 1971, Carpenter et al. 1972, Carpenter & Smith 1972, Colton

et al. 1974) and is confirmed ubiquitously in seawater and sediment samples today (see

e.g. the complete review of all microplastics studies until mid 2013 by Ivar do Sul et al. 2014).

Carpenter & Smith (1972) were also the first scientists to recognise the ingestion of resin

pellets in a variety of pelagic fish species. While pictures of macroplastic debris in the Pa-

cific and Atlantic gyres and of the excessive accumulation of litter on beaches in the most

remote locations worldwide have fostered the awareness of plastic pollution over the past

13 years since the pioneering studies by Moore at al. (2001), microplastics have emerged

as a an imminent source of plastic contamination in the marine envrionment only recently as

a consequence of their eluding presence in sediments and seawater. Over the past decade,

microplastics detections have become a growing concern in the scientific community, with

a wide range of concentrations between one and thousands of potential plastic particles

per kg of dry sediment or per liter of seawater reported (see Tables 4.1 and 4.3 in Leslie et

al. 2011 for an overview). These numbers clearly raise the concern for contamination lev-

els that will inadvertantly affect the marine food chain from the smallest planktivours to the

largest fish and marine mammal species. Today, the chemical fingerprints of microplastics

are detected in the muscle and blubber tissue of the largest filter feeders such as basking

sharks and fin whales (Fossi et al. 2012, 2014). As microplastics cannot easily be removed

from the marine environment, their presence not only causes health-adverse effects to ma-

rine organisms on all scales but are already shown to loop back and infiltrate the human

food web (Van Cauwenberghe & Janssen 2014), such that health-adverse effects to hu-

mans must also be expected with the long-term presence and exposure to microplastics.

With research on microplastics just emerging today and given its high migration potential,

it is crucial to quantify the contamination levels and the distribution of microplastics in the

world’s oceans and seas to assess the ecological risks to sea-dwelling species on all scales

from invertebrates to seabirds as well as humans.

Despite increasing standardisation attempts over the past decade, the comparison between

studies is still limited by the methodology and the inspection methods employed for mi-

croplastics identificaton. The most common procedures include the extraction of microplas-

tic particles and fibres from sediment via floatation and air-venting in high-density saline
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solutions, followed by filtration and visual inspection under dissecting microscopes. Spec-

troscopy is known to be the unique secure way to identify polymers and distinguish espe-

cially transparent microplastics from natural minerals (e.g., Hidalgo-Ruz et al. 2012). How-

ever, microscopic FTIR or Raman spectroscopy necessary to analyse microplastic samples

are rarely available in standard biological or chemical laboratories, and the analysis of large

samples of sediment is not feasible even with micro-imaging spectrometry. The evaluation

of apparent microplastic particles with micro-spectroscopy after sample extraction was re-

cently shown to be dominated by natural sediment particles rather than synthetic polymers

(Lorenz 2014). In addition, synthetic particle losses from artificially enriched samples were

shown to increase with the number of refilling and handling steps during the extraction pro-

cess (Imhof et al. 2012), such that a minimised number of processing steps increases the

chances to obtain unbiased microplastics number counts. From these results, it has to be

deduced that previous studies were biased in two different directions. First of all, only a

small fraction of microplastic particles might have been recovered as a consequence of nu-

merous refilling steps during extraction. Secondly, and more concerningly, large amounts

of sediment might have been contaminating microplastics source counts extracted in high-

density saline solutions. In this thesis, the biases during sediment extraction are quantified

using a simple air-venting method to extract microplastics from sediments as might be used

for monitoring purposes. The pitfalls of visual inspection and the consequences of natural

mineral suspension in high-density solutions are revealed with the aim to raise awareness

of these quantification biases, such that an increasing number of quantitatively comparable

studies can be obtained in the near future.

Microplastics are now known to be omnipresent in the marine environment. To date, more

than one hundred studies were conducted to measure the concentration of microplastic par-

ticles and fibres in surface waters (neustonic net samples), occasionally in the water column,

and in sediments along coastlines. The locations and results of these studies were anno-

tated into a world coverage map of microplastic detections as part of the extensive review by

Ivar do Sul et al. (2014) reproduced in Fig. 1. This map shows the discovery of microplastics

in coastal regions of all inhabited continents, but also illustrates how sparse our knowledge

on microplastic contamination is at the present time. Note, in particular, that no measure-

ments were obtained so far in the Baltic Sea. For sediments alone, Ivar do Sul et al. (2014)

review 28 studies covering the Mediterranean, the Hawai’ian archipelago and North Pacific

Central gyre, Southern Pacific beaches, the British coast including the English channel, the

North Sea and Frisian islands, the South Atlantic Ocean, as far as the Japanese and Singa-
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pore coasts (see Sec. 2.2 in Ivar do Sul et al. 2014 for individual references). Although the

concentrations of microplastics display large variations among beach samples, all published

surveys detected microplastic fragments and/or fibres and pellets/granules in their sediment

samples. While early studies reported on large concentrations of pre-production pellets as

primary microplastic contaminants, the majority of microplastics are composed of degraded

fragments and synthetic fibres in varying relative amounts more recently, and hence of sec-

ondary sources. While the occurence of primary pellets could be traced to industrial plastic

production sites, and contamination levels have declined since better precautions against

spilling are in place (e.g., Moore et al. 2001, Ivar do Sul et al. 2014), the contamination by

secondary fragments was shown to have increased in recent decades in the North Atlantic

survey region (Morét-Ferguson et al. 2010). Secondary microplastics originate from a much

larger number of more diffuse sources, with the implication that their influx into the marine

environment cannot be as easily controlled and diminished. The degradation of macroplas-

tics to meso- and microplastics over time renders microplastics increases almost impossible

to counteract unless an ecologically sensitive way is found to remove macroplastics from

the marine world.

The durability of plastics, rendering synthetic polymers 1 beneficial materials in the produc-

tion of consumer and industrial goods, is also the cause for the long-term persistence of

plastic contamination in the marine environment. Although macroplastics break down to

microplastic and possibly nanoplastic sizes, mineralisation under marine conditions is slow

compared to air exposure (Andrady 2011), and the polymer content is expected to survive

over hundreds of years (Thompson et al. 2004). Especially in deeper ocean layers, either in

the benthos or in sediments not exposed to mechanical wave action and UV radiation from

sunlight, plastics degradation is expected to be very slow (e.g., Andrady et al. 1998). Until

the polymeric structure of individual molecules is broken up into monomers and harmless

carbon-hydrate compositions (mineralisation), plastics cannot be considered biodegraded.

During the entire time of this process, plastics serve both as adsorbers for persistent or-

ganic compounds and as leachers of chemical and organic additives. With an increasing

number of studies on microplastic contamination and the transfer through the food chain,

the consequences for marine organisms are just beginning to emerge.
1Polymers such as polyhydroxyalkanoates are produced naturally by bacteria under certain conditions and

can also be metabolised for energy consumption when conditions change, and the degradation processes of
such natural polymers are reviewed in Shah et al. (2008). Throughout this thesis, the term “polymers” refers to
synthetic, anthropogenic materials unless otherwise mentioned.
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1.2 Definition & origin of marine microplastics

In the executive summary of the International Research Workshop on the Occurrence, Ef-

fects, and Fate of Microplastic Marine Debris (IRW), microplastics are defined as particles

with sizes of less than 5mm (Arthur et al. 2009). The IRW sets this upper boundary to allow

for ecological effects beyond the accumulation in gastrointestinal tracts to be considered

(see page 10 in Arthur et al. 2009 for details). No lower boundary is determined, although

seawater samples are frequently limited to 333µm by the mesh size of neuston nets. The

minimum boundary of sediment samples is frequently lower when 50-100µm sieves or 1-

5µm filters are used to collect particles (see also Dubaish & Liebezeit 2013).

Two kinds of marine microplastics are distinguished throughout the literature on the basis

of their origin, and were also defined by the IRW (Arthur et al. 2009). Primary microplastics

originate from spillage during plastic production or recycling, from sandblasting in shipyards

and other abrasives, and from microcleansing particles in personal care products. All of

these primary microplastics share the common property that they are designed to be small

during their production process. Secondary microplastics comprise broken fragments of

larger plastic pieces, including, but not limited to, marine litter, derelict fishing gear from in-

dustrial and recreational fishing, litter from landfills, painting flakes from ship hulls, synthetic

fibres from laundry discharge, and foil fragments from packaging, industrial or agricultural

sources.

In the European Union (EU), 57 million tonnes of plastics were produced in 2012 (Plas-

ticsEurope 2013), and global plastic production increased by 2.8% from 2011 to a total of

288 million tonnes in 2012. Of the 25.2 million tonnes post-consumer plastics accrued in

the EU in 2012, about 60% (15.6 mio t) are claimed to be recycled or burned for energy

recovery, while almost 40% (9.6 mio t) needed to be disposed off in landfills (Figure 10 in

PlasticsEurope 2013). While in Germany 98% of post-consumer plastic waste is quoted to

be recycled or combusted, many other European countries predominantly use landfills to

dispose of plastics (disposal rate in countries with landfills between 37% and 87%, Figure

13 in PlasticsEurope 2013). The fraction of plastic litter entering the seas from this reser-

voir is not known. From the large amount of macroplastics produced and discarded both

in industry and in household items every year, and from the observation that a significant

fraction of macroplastic litter at sea originates from fisheries and ship transport (OSPAR

2009), it can be expected that secondary plastics comprise by far the largest volume of mi-

croplastic debris found in the marine environment. Biodegradation is extremely slow, which

creates the valueable effect of durability of plastic products, but causes a major problem in
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the marine environment. As all rivers flow to the sea, the oceans provide the largest sink for

undegraded synthetic polymers down to molecular sizes. With UV, oxidation, mechanical

or bacterial degradation times of several hundred years (Thompson et al. 2004), the cur-

rent rate of increasing plastic production and the expected enrichment of the environment

and oceans with both macro- and microplastics imply that contamination of the food chain

will proceed, even if particle input could be stopped instantaneously. The contribution of

fishing line fibres and the degradation timescale of synthetic net material are presently un-

known. Synthetic clothing likely comprises a major fibre source especially in coastal waters.

A single polyester fibre shirt released 1900 fibres in a single washing (Browne et al. 2011).

One particular problem for marine and riverine environments is that both fibres as sec-

ondary microplastics as well as (primary) microspheres from personal care products can

pass sewage treatment plants (Magnussen & Norén 2014). While rivers serve as transport

vectors for anthropogenic litter, sea and ocean sediments serve as the ultimate sink for both

light-weight and heavy polymer fragments (see also Leslie et al. 2011). Yet, concentrations

found in the seawater column also point towards a land-based origin. In a seawater survey

along the North Canadian coast and into the Pacific, Desforges et al. (2014) found a 4-27

times increase of microplastics concentrations from the open ocean to near-shore locations

(Fig. 2, left panel). In their seawater samples at a depth of 4.5m, average fibre concentra-

tions are 75% of all microplastic pieces, yet fibre concentrations of > 90% are found near

the shore (Fig. 2, right panel), which leads Desforges et al. to conclude that land-based

sources are the most likely origin of the high microplastic concentrations. Desforges et

al. also found that microplastic concentrations are unexpectedly high in the little inhabited

Queen Charlotte Sound, suggesting that closed ocean basins are particularly sensitive to

the capture and enrichment of seawater with microplastics. The same conclusion is antic-

ipated for enclosed estuaries such as the Oder/Peene river outlet into the Baltic Sea, and

trapping causes the Baltic Sea Basin to serve as a sink for microplastics.
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Figure 2: Map of the concentration of potential microplastic pieces (including fragments,
filaments, thin foils, and fibres) in 0-10000 pieces/m3 sampled at a seawater depth of 4.5m
from the Canadian Coast into the open Pacific Ocean (left panel), and percentage of syn-
thetic fibres among all microplastic pieces (right panel). Figures reproduced from Desforges
et al. (2014), their Figs. 1 and 2.
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1.3 Detections of microplastics in the marine environment

In Baltic Sea coastal waters, Magnusson & Norén (2011) found average concentrations of

4 fibres/liter and 32 anthropogenic debris particles/liter, as quoted in the WP3 GES-REG

report (Ojaveer et al. 2013, p. 3, original study not in english). While further studies in

the Baltic Sea area are not yet available, several groups have addressed microplastics

contamination in the North Sea. In seawater samples obtained in a Skagerak transect at

the outlet of the Baltic into the North Sea, Norén & Naustvoll (2011) found blue particles

in 15 of 17 of their samples, with a predominant size range of 10-100µm. Alarmingly high

concentrations of 102 microplastic spheres per liter of seawater are found by Norén (2008)

in Stenungsund industrial harbour near a polyethylen production plant. The characteristic

size range of 0.5-2mm of these spheres is large for marine microplastics and covers the size

range of prey for juvenile fish. Increasing evidence indicates that the vicinity of urban areas

increases the concentration of microplastics in surface waters and in beach sediments. In

excess of 1200 particles/liter, by far the highest microplastics concentrations reported in the

North Sea environment, are detected in seawater samples in the densely populated Jade

Bay serving as a discharge site for industry and the Wilhelmshaven sewage treatment plant

(Dubaish & Liebezeit 2013).

In submerged sediments in the UK, microplastics and fibres are found in 23 out of 30 sam-

ples (Thompson et al. 2004), indicating that microplastics were effectively transported from

the water column to sediments over the past decades, and are omnipresent in benthal en-

vironments today. As in seawater samples, a wide variety of concentrations of potential

microplastic particles is reported in sediments as well. In remote locations, microplastic

contaminations between 1-2 particles/kg dry sediment are found at the island of Norderney

(Dekiff et al. 2014), while a maximum of 50,000 particles/kg is reported for the island of

Kachelotplate (Liebezeit & Dubaish 2012). However, Lorenz (2014) recently found between

34 and 74 particles/kg dry sediment in three off-shore locations on the wider Helgoland

shelf and two beach sediment samples on the island of Sylt and showed that a significant

fraction of particles after floatation are natural minerals using FTIR spectroscopy, rendering

previous high number counts uncertain.

Globally, maximum meso- to microplastic loads are observed in sediment samples obtained

close to the drift line at the highly littered Kamilo beach on Hawai’i, where a mean plastic

load of 3.3% and a maximum of 30% by weight is observed (Carson et al. 2011). In the

most recent ecological status report from the ∼ 50 year timebase of the Continuous Plank-

ton Recoder (CPR), the amount of microplastic fragments is mentioned to be increasing
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in the Northeast Atlantic region, and an increasing number of captures of monofilament

netting at the CPR unit are recorded in the southern North Sea (Edwards et al. 2007). In

the North Atlantic region, the number concentration of microplastic particles increased by

18% between 1991 and 2007 (Morét-Ferguson et al. 2010, but see also Law et al. 2010),

although the concentration of plastics per weight decreased in the same timeframe. During

a period of ∼ 40 years, an increase of marine microplastics is observed in the North Pacific

central gyre (Goldstein et al. 2012). Comparably high concentrations (0.3 particles/m2 of

seawater) as found in the North Pacific gyre are also reported for the Mediterranean Sea

(Collignon et al. 2012, Fossi et al. 2012), and can be expected to increase further with the

increasing influx of litter and degradation over time. If fragmentation is the major source

of secondary microplastics, this implies that increasingly smaller sizes are available to be

mistaken for food and infuse the marine food web.

Beaches with high macroplastic loads are reported to contain microplastics as well, e.g.

on Hawai’ian beaches (Carson et al. 2011) and in the Greek Archipelago (Archipelagos

institute 2014). Beach litter at the German Baltic Coast and the North Sea is dominated

by plastics, with 59% of all beach macrodebris found to be plastics on North Sea Beaches

(Umweltbundesamt 2010a). At German North Sea beaches, fishing gear (rope & net) and

shipping litter constitute the majority of marine debris (OSPAR 2009), whereas plastic bags

and bottles from land-based sources are the predominant litter items at the Baltic coast

(Umweltbundesamt 2010a). While broken down fragments are expected to accumulate at

severely littered beaches, microplastics and macroplastics are exposed to different mechan-

ical forces over the course of time. A systematic investigation on the North Sea island of

Norderney yielded no direct spatial correlation between beach microplastics and macrode-

bris (Dekiff et al. 2014). Such a correlation is also not expected on physical grounds, as

microparticles and -fibres must have different wind and water (rain or surf) resistence and

relocation properties than macrolitter pieces. Microplastics are therefore expected to accu-

mulate in locations that cannot be deduced from the presence and amount of macrolitter

alone. One of the major differences between macro- and microplastics is the expected in-

fusion of sediments with microparticles and -fibres, which might lead to increasing levels of

plastic enrichment over time. The large volume of microplastics increases the chances of

chemical leaching, such that microplastics have a higher per weight capability to release

toxic additives into the environment. At the same time, they resemble prey items for a

substantially larger variety and number of zooplankton species, but possibly also for beach-

feeding bird species such as sandpipers, thereby penetrating the marine food web from the

bottom upwards at an unknown scale. For these reasons, microplastics have to be moni-
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tored individually and the presence of microplastics and their potential for adverse effects in

the marine environment cannot be deduced from the quantity of macroplastics alone.

With this study, we contribute to the detection of microplastic particles and fibres, and hope

to contribute to the definition of standardised methods for the extraction, observation, and

quantification of microplastic contents in sediments.

1.4 Hazards of microplastics

The numbers of potential synthetic particles are found to be increasing with decreasing

sizes (Norén 2008). In a Skagerrak seawater survey, 95% of particles with sizes 10-500µm

were found to be smaller than 100µm and hence in the same size range as phyto- and

zooplankton (Norén & Naustvoll 2011), rendering microplastics probable prey targets for

plankton feeders. As microplastic particles and fibres with their resemblance to phyto- and

zooplankton occupy the bottom of the marine food chain, contained toxic compounds infil-

trate the marine ecosystem from filter feeders to increasingly larger predators.

Both macro- and microplastics contain on average 4% of chemical additives, predominantly

plasticizers such as phtalates, phenols, and bisphenol A now known for their adverse health

effects in humans (Meeker et al. 2009, Umweltbundesamt 2010b), on animals with potential

relevance for human health (Talsness et al. 2009), and on wildlife including marine species

(Oehlmann et al. 2009).

Additives may consist of persistent organic compounds with high toxicity levels which en-

ter the tissue of marine organisms upon consumption, e.g. as endocrine disruptors shown

to interrupt the natural sexual development of fish (Oehlmann et al. 2009). Microplastics

build up a growing surface area as they fragment, facilitating the adsorption of hydrophobic

persistent organic pollutants (POP) and toxic molecules from the water column. POP con-

centrations were observed to be 105−106 times higher in resin pellets collected on Japanese

beaches than in surrounding seawater (Mato et al. 2001, Endo et al. 2005), and were found

to be similar to concentrations in microplastic particles collected in the North Pacific Central

Gyre (Rios et al. 2007, Teuten et al. 2009). Surveys find elevated POP levels in plastic

debris collected both in the open ocean and in beach samples (Hirai et al. 2011), and pel-

lets are used as tracers for global mapping of POP contamination from fertilisers and other

anthropogenic sources (Ogata et al. 2009). In contrast to the spatial distribution of species,

microplastics are not limited by the thermal and trophic food production boundaries of ma-

rine ecosystems. The large ocean circulations distribute both macro- and microplastics and

their constituents across the worlds ocean bodies continuously (e.g., Moore et al. 2001,
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Law et al. 2010). With the potential accumulation of microplastics in the marine food web,

microplastics and their additives are prone to come back to the human plate. Knowledge of

health effects in humans is still limited, but becomes a growing concern in the presence of

the plastic mixing in the oceans.

A large number of studies concerned plastic intake of seabirds and the variation of plastic

amounts and types over time. Microplastics are frequently mentioned, yet specific studies

for microplastics are not reported, and macro- and microplastics are not analysed sepa-

rately. Nevertheless, the intake of small plastic fragments is certainly concerning in seabirds

as well as pelagic marine species. As ingestion in plankton species is more specific to the

problem of microplastics in near-shore environments addressed in this project, we focus on

pelagic species here. A concise summary of microplastic intake by seabirds is given in Ivar

do Sul et al. (2014).

In laboratory experiments, ingestion of microplastic granules is evidenced in a growing va-

riety of marine species (Fig. 3). Among them bivalves (Blue Mussel, von Moos et al. 2012),

copepods (Cole et al. 2013), as well as amphipods, barnacles and lugworms (Thompson et

al. 2004), representing some of the most omnipresent zooplankton species in the oceans.

A concise overview of the increasing amount of references is given in the introduction of

Van Cauwenberghe & Janssen (2014). Although the microspheres used in laboratory feed-

ing and transport experiments are 1-2 orders of magnitude smaller than the microplastics

investigated in this study, they illustrate the potential for ingestion of microplastics on all

trophic levels of the food chain.

Figure 3: Ingested microplastic particles in mussel tissue produced for human consumption
(left panel, Van Cauwenberghe & Janssen 2014, their Fig. 1), fluorescence marked micro-
spheres ingested in copepods (middle panel, Cole et al. 2013, their Fig. 1), and transported
into the gill lamella of crabs after feeding on microplastics-fed mussels (right panel, Farrell
& Nelson 2013, their Fig. 2).
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Laboratory exposure of different types of invertebrates resulted in microplastics ingestion

(Graham & Thompson 2009). The ingestion and transfer of microplastic spheres of 10µm

size from mesozooplankton to the macrozooplanktonic level was shown by Setälä et al. (2014).

All of the six varied mesozooplankton species exposed to microspheres ingested these plas-

tics at various levels, and zooplankton prey as well as marked microspheres were identified

in mysid shrimp intestines after just 3 hours of exposure to microsphere-fed mesozooplank-

ton. In a similar study, feeding 0.5µm fluorescent microspheres to mussels which were then

offered to crabs, the microspheres occupied vital organs including the gills and ovaries and

had penetrated into the haemolymph of the crabs (Fig. 3 (right panel), Farrell & Nelson

2013). In addition, tissue inflammation was observed in mussels after microplastic parti-

cles were deposited in their intestinal tracts (von Moos et al. 2012). The presence of mi-

croplastics was recently confirmed in aquacultured bivalves produced for human consump-

tion (Fig. 3, left panel). Van Cauwenberghe & Janssen (2014) found on average 0.4 ± 0.1

particles/g of wet tissue in mussels (Mytilus edulis) commercially cultured in the German

North Sea and Atlantic oysters (Crassostrea gigas) from France. Estimating an average

intake of 1800 microparticles/year for typical amounts of yearly European bivalve consump-

tion per person, the study shows that microplastic particles do not only affect the marine

ecosystem but perfuse the human food chain already today.

Although lab experiments work with high concentrations of microspheres and not under

typical environmental conditions, the ingestion of microplastics is demonstrated in an in-

creasing number of species in the wild. In the North Pacific Central Gyre, 33% of goose-

neck barnacles comprising the rafting community on macroplastic debris contain ingested

microplastics (Goldstein & Goowdin 2013). Similarly, Lusher et al. (2013) analysed the di-

gestive tracts of five pelagic and five benthic fish species and found microplastic pieces in

36.5% of all animals, with a precedence for fibres (68%). The material of recovered plastic

pieces was identified to be polyamide, polyester, and rayon by FTIR spectroscopy, suggest-

ing anthropogenic fibres (fishing net, clothing, hygiene products) as the source for plastic

intake. Comparable fractions of plastic intake are found in fish residing in the North Pacific

Central Gyre (Boerger et al. 2010) and Brasilian estuaries (Possatto et al. 2011, see also

the discussion in Lusher et al. 2013).

The IRW report identifies three physico-chemical effects on zooplankton species upon in-

gestion of microplastics (Arthur et al. 2009). The physical blockage of the digestive tract is

reminiscent to the effects of macroplastics on species in higher trophic levels of the food

chain. The large surface-to-volume ratio of microplastics and the adsorbing power for or-

ganic compounds raises the toxicity level with increasing microplastic intake. Leaching of
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toxic and endocrine disruptive molecules in the intestinal tracts of zooplankton species might

contaminate the blood stream and directly affect the neural system. Leaching of endocrine

disruptive chemicals into the water was claimed responsible for changes in both the sex dis-

tribution of fish as well as for abnormal transsexual mutagenesis and limited reproduction

capability (Oehlmann et al. 2009, Carlisle et al. 2009). These effects would be enhanced if

leaching occurs inside the organism instead of into the ambient water at a much higher rate

of dilution. The third effect of concern is bioaccumulation, which affects all species through-

out the food web via direct or indirect intake of microplastics. Plastic additives (phtalates)

were detected in the muscle tissue of basking sharks (Fossi et al. 2014) and in the blubber

of stranded Mediterranean fin whales (Balaenoptera physalus) by Fossi et al. (2012), who

correlated the phtalate rates to the measured abundance of microplastics in surface water

samples and their phtalate content, concluding that microplastics are a likely origin, causing

phtalates to be accumulated in the blubber through the large amounts of filtered water and

small prey intake in these baleen whales (see also the discussion in Baulch et al. 2014).

The map presented by Fossi et al. (2012) of the concentration distribution of microplastic

particles in the Mediterranean shows the strongest concentrations in coastal waters, where

the breeding grounds of fisheries are located. The same authors provide a summary of

the detections of microplastic particles in vito in a diversity of planctivorous fish species in

different benthic layers (see their Sec. 4, and references therein). Although not discussed

in their study, their map is one of the first indications that microplastic contamination might

be capable of influencing the juvenile stages of higher marine species dependent on phyto-

and zooplankton in the sensitive coastal ecosystems.

Lithner et al. (2009) showed that leachates from 32 plastic materials caused toxic effects in

freshwater fleas Daphnia magna. Toxic effects of the most common microplastic materials

found in the marine environment were established in green algae, Baltic Sea amphipods,

and freshwater fleas (Balode & Muzikante 2013). On the basis of these tests, negative

effects were observed on all zooplankton species from 60% of the analysed plastic prod-

ucts. Polyurethan in the form of dishwashing sponges had the most adverse effects of all

polymers tested. While this is not surprising for green algae, where adverse effects are

warranted to avoid algae growth in wet sponges, the high mortality rate of 30-100% ob-

served after 72h exposure in freshwater amphipods in the presence of dishwashing sponge

leachates is particularly concerning, as comparable items and materials are used in most

household kitchens. Of the six materials tested, polypropylen proved to have the least ad-

verse effects on crustaceans.

In addition to toxicity effects, microplastics are capable of altering the physical properties
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of beach sediments. Carson et al. (2011) analysed sediment cores designed to repre-

sent the mean sediment grain and microplastic size distribution as found in the drift line at

Hawai’ian Kamilo beach. Carson et al. demonstrated that the permeability of beach sedi-

ments had increased due to the addition of 15% or more microplastics (by weight) with a

larger mean particle size than the natural sediments. Increased water flow into and evap-

oration from the sediment might change the distribution of nutrients and organic matter

as well as zooplankton species and hence the biological and chemical composition of the

litoral and sublitoral zones. At the same time, thermal transport and maximum warming

temperatures are decreased with only 1.5% microplastics as compared to uncontaminated

beach sediments with the same natural properties. These physical changes might affect

hatching of beach-nesting species and particularly might alter the sex determination in sea

turtles in a systematic way. Carson et al. (2011) suggest that the decrease in temperature

could lead to a lower fraction of female seaturtles, possibly increasing the high strain on the

populations even further. This is particularly crucial as Hawai’ian beaches are one of the

predominant nesting sites for various turtle species, but also in view of the fact that increas-

ing numbers of Asian beaches are littered with plastics. Although the impairing effects of

such a bias on other populations are not yet known, the evolutionary adaptations of nesting

and sand-dwelling species on thermal properties of selective beaches are undermined in

the presence of altered physical conditions imposed by microplastics.

In addition to transport of toxic compounds not naturally found in the marine environment,

microplastics (and plastics in general) were suggested to facilitate the transport of pathogenic

germs and plankton species from their native regions into uncontaminated zones. Mi-

croplastics serve as floatation devices, but might also serve as feeding grounds for or-

ganisms in the presence of biofouling (algae, bacterial growth, Ye & Andrady 1991).

In the most current census, 663 species of marine animals and birds are found to be af-

fected by marine debris (Galgani et al. 2013). While most of the physical encounters be-

tween species and marine debris are linked to entanglement in derelict fishing gear (Gal-

gani et al. 2013), the ingestion of both macro- and microplastics has become an increasing

thread with the rising levels of debris deposited in the marine environment. With the aim

to counteract the described hazards and ensure the good ecological status of the Euro-

pean marine environment, the European Union explicitely refers to marine litter in Descrip-

tor 10 of the Marine Strategy Framework Directive (EU, MSFD, Annex III), and requests

the characterisation of “trends in the amount, distribution and, where possible, composition

of microparticles (in particular microplastics)” (Criterion 10.1.3), including microplastics in-

gested by marine animals (Criterion 10.2.1). Even though international initiatives exist on
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the alleviation of marine litter (e.g., UNEP regional seas, Jeftik et al. 2009, MARPOL, HEL-

COM), microplastics are not included in the monitoring guidelines for marine litter due to the

technical challenges involved (UNEP/IOC Guidelines on Survey and Monitoring of Marine

Litter, Cheshiere & Adler 2009, see especially page 16). The fact that no uniform monitoring

strategy is presently available, and that the true extent and influence of microplastics in the

marine ecosystem are only beginning to emerge, underlines the necessecity for systematic

microplastics analyses.

1.5 Technical challenges in the detection of microplastics

Naively, the assumption might be made that microplastics are light-weight particles that al-

ways float on the water surface. With specific densities of up to 1.5 g/cm3 for polyvinylchlo-

ride (PVC), one of the most frequently employed material for hardshell plastics (DVDs,

drinking bottles, cell phones, and many more standard household items), this assumption

fails for a majority of secondary plastic fragments. In addtion, biofouling causes sinking

of buoyant plastics (Ye & Andrady 1991), such that sediments from the deep sea to the

litoral regime are expected to contain increasing levels of microplastics (Leslie et al. 2011).

Among these, beach sediments are most easily accessible, and reflect the amount of mi-

croplastics washed towards the coastlines with the tidal flows and storm events as well as

local influx pathes from the shore.

The methods for collecting microplastics from water and sediment samples were recently

reviewed by Hidalgo-Ruz et al. (2012). For the extraction of microplastics from sediments,

two methods are identified, which are both based on density separation between microplas-

tic particles and fibres from natural minerals with a higher specific density: i) air-venting or

shaking in high-density saline solutions (zincchloride ZnCl2, sodium tungstate Na2WO4, and

sodium iodide NaI) and decanting of the supernatant onto membrane filters, and ii) centrifu-

gation of small amounts of sediment, possibly with a previous floatation stage. These den-

sity extraction methods are sensitive to two types of biases. Depending on the decantation

of the supernatant from the saline solution and on the chosen solution density, the smallest

size fraction of natural sediment particles (minerals) is likely to contaminate the light-weight

floating particles. Indeed, the spectroscopic examination of presumable microplastics ex-

tracted via air-venting in ZnCl2 solution confirmed only a few percent as synthetic polymers,

while in excess of 90% of the extracted particles were natural minerals (G. Gerdts, private

communication). In this case, density separation without further inspection methods has

led to a severe overestimation of the microplastics contamination in sediments. The second
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bias relates to the high level of stickiness of microplastics even to smooth glass and metal

walls. Imhof et al. (2012) systematically analysed sediment samples artifially enriched with

the eight microplastic particle types predominantly retrieved from ecological systems and

found loss rates of up to 70% due to refilling and handling steps. Designing a cylindric

metal extraction system optimised for sediment-plastic separation in zincchloride solution,

the Munich Plastic Sediment Separator (MPSS), Imhof et al. (2012) were able to recover

95+-2% of small plastic particles < 1mm, while they found that on average only 40% of the

same type of particles were extracted with the standard density separation procedures em-

ployed in previous studies. These authors added raman microspectroscopy as a final step

for particle characterisation, and found neither residual minerals nor organic material in their

floating fraction after density separation. While this system provides by far the most unbi-

ased extraction system available at the present time, it is expensive and build individually

(see Imhof et al. 2012 for details), and hence will not be available for monitoring purposes

in standard biological/chemical laboratories across Europe or worldwide. Furthermore, the

system is currently operated with toxic ZnCl2 solution, and only the topmost few 100 ml

of the supernatant are extracted. The use of cheaper and non-toxic salts such as NaCl

or calciumchloride (CaCl2) with no health-impairing potential imply a lower specific density

of the solution, and their extraction efficiency with the MPSS system still has to be exam-

ined. Extracting only the top layer of the supernatant especially in lower-density solutions

might again lead to a significant loss of higher-density plastics such as PVC, but might also

hamper the detection of particles and fibres exposed to biofouling from natural environment

samples.

With these options in mind, one of the major aims of this thesis was to quantify the po-

tential biases imposed by extraction methods with standard laboratory equipment likely to

be used for monitoring purposes, and to reveal the losses of low-density particles as well

as the positive biases of residual sediments in the decanted solutions. For this purpose, a

series of technical methodology tests were performed with standard laboratory equipment

as described in Sec. 2, with results presented in Sec. 3.1 to Sec. 3.3. The most commonly

employed method of visual inspection of the extracted samples is applied to Baltic coast

sediment samples with results presented in (Sec. 3.4). As the identification of microplastics

among sediment introduces the largest uncertainty in the measurements, the applied meth-

ods are scrutinised throughout the thesis, with a conclusive discussion provided in Sec. 4.

The possible origins of microplastics in individual locations are discussed in Sections 4.4

to 4.5, and a detailed comparison of detected microplastics concentrations with literature

values is given in Sec. 4.6. The major findings are summarised in Sec. 5.
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1.6 Hypothesis

At the start of this project, we phrased the hypothesis to be tested as follows: Microplastics

reach the sea from a diversity of anthropogenic sources. If the concentration of microplas-

tics is not influenced by tides and weather events on a daily or weekly basis, the spatial and

temporal distribution of microplastics is expected to indicate the sources (entry pathways)

at each location and in each season.

With the aim to shed light on the origins of microplastics, the spatial and temporal concen-

tration fluctuation of microplastics in Baltic Sea beaches and river outlets were sampled

from March 2014 to September 2014.

During the course of the project, the distinction between microplastics and natural minerals

revealed itself as the major problem when employing visual inspection after density sepa-

ration to detect microplastics among sediment samples. Similarly, the distinction between

synthetic and organic fibres, especially fibres originating in or near the marine habitat such

as crustacean or insect antennae, proved difficult to discern. In a recent study of seawater

samples, Norén & Naustvoll warned that

“... one conclusion is that contamination of the samples is a serious threat for overesti-

mation of particle concentrations. Due to [the] contamination problem, previous reported

concentrations should be handled with care and are not reliable.”

Norén & Naustvoll 2011, p. 5

Sediment samples are even more susceptible to misidentifications than seawater. The

spectroscopic identification of minerals and polymers in North Sea sediment samples previ-

ously extracted via density separation revealed a residual contamination rate of more than

90% natural minerals instead of 100% polymer material (G. Gerdts, private communication).

With this high failure rate in mind, we set out to characterise the extraction of microplastics

from sediment samples with various methods and chemical solution compositions in the first

part of the thesis. In the second part, the spatial and temporal concentrations of identified

microplastics from the sediment and water samples in four survey locations at the Baltic

and North Sea coasts are analysed. These results are discussed in the context of previous

findings with similar methods, and the biases and pitfalls of the current most widely used

techniques are exposed.
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2 Methods & Materials

2.1 Methodological background

In this chapter, the sampling of beach sediments and water samples is introduced, and

the methodology applied for density separation of natural sediment and synthetic materials

is described. With the general steps of sieving, density separation, filtration, and visual

inspection we follow the suggestions of Hidalgo-Ruz et al. (2012) for microplastic extraction

from sediments and sea surface water samples. The first to describe saturated saline (NaCl)

solution for the extraction of microplastics from sediment was Thompson et al. 2004. The

method was later modified by Claessens et al. (2011) to allow for larger sample sizes of up

to 1 kg sediment to be analysed. A combination of these previous procedures was used to

optimise the extraction of microplastics from beach sediments, as described below.

2.2 Materials

The materials used in the laboratory were restricted to glass whereever possible. Only

glass flasks were used, including in particular the 2 liter Erlenmeyer flasks employed for

air-venting. The surface solution was extracted with a 30 ml graded glass pipette after air-

venting. Nevertheless, the use of synthetic materials was unavoidable at several stages.

The suction bulb attached to the glass pipette was made of red rubber, and the lint-free

cleaning cloth consisted of light-blue polyamide. In the initial experiments, glass fibre filters

were adopted to filtrate the heavy saline solution to the clean level required prior to sample

contact. Over the course of the experiment, fibre “nests” were routinely found in a large

number of samples. These were initially not thought to originate from breakup of glass fibre

filters, yet approximately in the middle of the experiment blind reference samples were also

found to contain fibre nests. After this point, glass fibre filters were replaced with polyacetat

membrane filters with a pore size of 5µm for pre-filtering to avoid glass fibre filters as an

entry path for fibres.

Even though no clean room was available to analyse the samples, all clothes worn by the

author in the lab were made of cotton. During the initial tests light-blue rubber gloves were

worn to handle the toxic zincchloride samples. These gloves showed signs of flaking after

contact with the aggressive zincchloride solution. After switching to non-toxic calciumchlo-

ride solutions, no gloves were used for sample handling to avoid flaking and synthetic rubber

as an entry path for microplastic particles.
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Materials in direct contact with samples:

• Stainless steel sieves with pore sizes 0.063, 0.5, 1.0, and 2.0 mm

• 2l Erlenmeyer flask

• 25cm glass tube for air-venting (approximate opening diameter 2mm)

• 30 ml glass pipette

• 250 ml filtration glass flask

• 55µm mesh size zooplankton net, cut to 7cm filter size

• plastic & wire-mesh filter holder

Glass fibre pre-filters and 5µm polyacetat membrane filters were used to clean the saline

solution after every experiment. For the methodical experiments, samples were extracted

onto glass fibre or membrane filters for analysis under the dissecting microscope, while all

science samples were filtered through zooplankton nets to allow sediments to be rinsed into

deionised water for particle and fibre counting.

2.3 Sampling locations

Four areas were sampled: 5 locations along the Rostock coast, 4 locations on the island of

Rügen, 2 sites at the Oder/Peene outlet into the Baltic Sea, and 2 sites at the Jade outlet

towards the North Sea (Jade Bay). An overview of sampling locations with geodesic coordi-

nates and sampling conditions is given in Table 7 in Appendix C. With the aim to probe the

expected anthropogenic sources, sediments and seawater were sampled in the following

scheme:

Rostock gradient

With ∼ 700, 000 visitors per year (Statistisches Amt der Stadt Rostock 2014), Rostock is

one of the most frequented cities at the German Baltic coast. The seaside resorts of

Warnemünde, Markgrafenheide, Hohe Düne, and Diedrichshagen account for half of the

overnight stays. Adding day tourists, Warnemünde beach faces a visitor density comparable

to the heavily frequented seaside resort of Binz on the island of Rügen. The Warnemünde

quaye is host to the international cruise ship terminal and the ferry terminal to the Nordic

states, and Rostock city hosts several warfts as well as the commercial overseas harbour.
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Table 1: Sampling locations and strategies.

Area Location Sampling strategy

Rostock gradient Nienhagen/Börgerende West to East sampling
Wilhelmshöhe along westward coastal current &
Warnemünde seasonal March to July sampling (tourist activity)
Markgrafenheide Warnow & overseas harbour outlet

Rügen gradient Dranske Westbeach, moderate activity & fishing
Heidehof Northbeach, low tourist activity
Breege Eastbeach, moderate tourist activity
Binz/Seaside resort Eastbeach, high tourist activity

Oder/Peene estuary Kamminke inner Oder estuary “Stettiner Haff”
Freest outer Peene estuary, Oder effluent into Baltic Sea

Jade Bay Varel/Nordender Leke Freshwater sampling at paper recycling plant
Dangast beach Seawater & sediment methodology testing

Samples were obtained both at expected low and high anthropogenic impact sites. Five

sampling sites were chosen to monitor the gradient of microplastic contamination in beach

sediments along the coast in the wider Rostock region. From West to East, the sites as

shown in Fig. 4 cover Nienhagen/Börgerende assumed to be a low touristic/anthropogenic

plastic contamination site 2, Wilhelmshöhe halfway towards Warnemünde as an intermedi-

ate station along the westerly current, Warnemünde main beach as a major tourist impact

site, and Markgrafenheide to the East of the Warnow outlet. The latter location was chosen

to monitor the influence of monthly harbour activity as well as beach contamination carried

in the Warnow outflow from the Rostock municipal water treatment plant.

Rügen

The island of Rügen served as a comparison site to Warnemünde as a major tourist area

without the urban influence of Rostock and the overseas harbour. Four locations were sam-

pled on Rügen, as shown in Fig. 5. With the main beach in Binz, a seaside resort hosting

1.8 million overnight stays in 2011 (Statistisches Amt Mecklenburg-Vorpommern 2011), one

of the predominant tourist destinations of Rügen was captured, while Breege beach faces

with a length of almost 7km less dense activity, yet lies close to several touristic villages.
2The sampling location was moved from Nienhagen beach to the east end of Börgerende Bay below the

sand cliff from May 2014 onwards, as Nienhagen beach proved to be more crowded in the summer season
than originally expected.
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Figure 4: Sampling locations along the Rostock sea coast. The sites Nienhagen and
Börgerende are analysed as one location. Green points mark the sampling sites.

Dranske and Heidehof, on the other hand, contain one to a few holiday camps, and hence

are less influenced by touristic activities than Binz and Breege. These sites on the west and

north-west coast of Rügen also receive fresh seawater directly from the open Baltic Sea

transported on the westerly current.

Oderfahne

As a nutrient-rich and chemically loaded comparison location to the Warnow river outlet,

two samples were obtained in the region of the river Oder estuary. The first sample was

obtained at the freshwater inland “Bodden” side of the Stettiner Haff. A fine-sanded beach

near Kamminke was chosen to collect a drift-line sample similar to the sea-side samples. In

addition to a smaller outlet near Świnoujście (Poland), the bulk of the Oder waters flow into

the Peenestrom and enter the Baltic Sea near Peenemünde. The second sampling location

was chosen at a beach West of the Freest harbour at the West side of the Peene outlet into

the Baltic Sea, where the bulk of the combined Oder/Peene flow discharges. Both sampling

sites are shown in Fig. 5.

Jade Bay

As no microplastic sediment or water sample analysis was available in the Baltic Sea

ecosystem in the literature at the time of writing, one location at the Jade Bay was mea-

sured with the same method to allow the direct comparison with earlier studies (Dubaish &

Liebezeit 2013). Locations claimed to be heavily loaded with microplastics in the immediate
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Figure 5: Left panel: Rügen island sampling locations. Green points mark the sampling
sites. Binz and Breege beach are major tourist destinations, while Dranske and Heidehof
are less frequented holiday camps.
Right panel: River Oder/Peene estuary sampling locations. Green points mark the sampling
sites. Kamminke is located at the inner “Bodden” waters of the Stettiner Haff, while Freest
captures the outer Peene flow into the Baltic Sea.

vicinity of a paper recycling plant in the city of Varel were chosen to ensure good number

statistics (Fig. 6). Here, Dubaish & Liebezeit (2013) found more than 1200 particles/liter in

seawater samples obtained 20 cm below the water surface. As previous studies analysed

surface water samples, both water and sediment were sampled at this location. One fresh-

water sample was obtained from the surface of the Nordender Leke, a small canal passing

directly in front of the factory grounds, with the paper recycling stacks in sight at a distance

of about 50 meters. The second sampling site at Dangast beach was chosen such that

both sea water and sediment could be sampled at the same location. The Varel coast is

a protected mud flat area and does not provide direct access to a sediment bank where

samples could have been obtained. Dangast is the nearest beach to the North of Varel, at a

distance of ∼5 km from both the Varel Jade estuary as well as from the discharge pipeline

extending into the central Jade Bay.

In Dangast, where clay and silt dominate the top-layer sediment, the surface 1-2mm of fine

sand was collected with a flat spoon to obtain a comparable grain size distribution as at the

Baltic Coast. The seawater sample was drawn several meters into the water at the same

beach point where the sediment was obtained. Surface water was allowed to flow freely

into two 5l canisters at a total water depth of 50-70cm. The comparison between seawater

contamination and sediment contamination was expected to allow quantification of the input

and trapping of microplastic particles in sediment from the water column.
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Figure 6: Sampling locations at the Jade Bay. Sediment and water were sampled at Dan-
gast, while one freshwater sample was drawn from the Nordender Leke in the city of Varel
opposite the paper recycling plant (distance less than 50m). Green points mark the sam-
pling locations.

2.4 Beach sediment sampling

Samples of wet sand were obtained predominantly at the drift line above sea water level.

All samples were obtained during calm conditions with low wave activity. Fine sediment was

sampled as a larger number of microplastics were expected to be bound in the fine-grain

layer than among coarse grains regularly rinsed with sea water. The majority of samples

was collected at the drift line where small shell fragments were found to concentrate, un-

der the assumption that microplastics would also accumulate there. Shallow-water samples

were retrieved below the characteristic ridge of coarse gravel found a few meters below the

drift line. Beach sediments at the Baltic Coast cover a wide variety of grain sizes from fine

sediment < 0.5mm to large rocks. As a consequence, layers with grain sizes larger than

2mm (coarse gravel) are found at varying height levels less than 1 cm below the sand sur-

face inside and outside the water near the surf zone. These conditions prohibit single-height

sediment cores to be extracted. With the aim to avoid the coarse gravel zone, samples were

scraped off the surface layer with a stainless steel table spoon either at the drift line or were

carefully spooned off the surface of sand ripples under water with the same flat table spoon.

Samples were limited to the top 1-2cm at most and frequently did not exceed 1cm depth.

Studying the stratification of sediment cores to a depth of 25cm, Carson et al. (2011) found

that 50% of mircoplastic fragments were contained in the topmost 5cm of each core, and

that the top 15cm hosted 95% of all detected plastic particles. We therefore expect to

capture the largest concentrations of microplastics when sampling the sediment surface.

Samples were collected 500 ml each into screw cap glasses.
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2.5 Water sampling

In addition to sediment samples, three water samples were obtained for comparison with

the sediment content. Seawater was sampled at Warnemünde beach, the location used for

all methodical experiments. In addition, one North Sea water sample was drawn at Dangast

at the Jade Bay and one freshwater sample was drawn in the Nordender Leke in Varel near

a paper recycling plant for comparison with earlier microplastic measurements extracted

from water samples near these locations. For all water samples, surface water at the top

layer at a depth of 2-4 cm was allowed to flow freely into 5-10l canisters previously rinsed

several times with the ambient water. These samples were filtered over 55µm zooplankton

net and treated with 30% H2O2 solution for 24 hours to dissolve organic matter. In the case

of the Nordender Leke freshwater sample, organic content was so high that net filters were

treated for a second 24 hour period after rinsing with deionised water.

Special treatment of Dangast seawater sample

Seawater was poured into a cleaned glass flask and over zooplankton net filters without

any previous treatment or handling. Because of the extreme zoo- and phytoplankton load

of these samples, 500µm nets were used to retain the majority of plankton species. The

residual solution was poured through 55µm net filters. The first filtering step was necessary

to detect any particles and fibres among the dense layer of plankton on each net. At the

same time, this step implied that only small particles and fibres could be analysed in these

samples. The 55µm nets were soaked in 30% H2O2 for 24 hours to dissolve organic mate-

rial, as in all other science samples.

All water sample zooplankton nets were then counted under the dissecting microscope,

rinsed into deionised water, and recounted following the same procedures as for counting

sediment extracted samples (see Sec. 3.1.4.2 below).

2.6 Preparation of Warnemünde test samples

Prior to analysis, all test samples were dried in a standard hot-air drying oven at 55oC for 8

hours. The resulting clumpiness was smoothed with a spoon during sieving.

Each sample was first manually sieved through a 3-stage sieve. Stainless steel sieves

with mesh sizes 0.5mm, 1mm, and 2mm were used, such that three fractions with grain

sizes < 2mm were obtained. Given that samples were selected from the fine grained sand
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fractions at the beach, there were no particles larger than 2mm in the top sieve. The largest

fraction with particle sizes of 1-2mm was by far the smallest fraction by weight (∼ 0.2 %,

or 1.4-1.7g in 500ml sediment). This fraction was investigated under the microscope, and

not processed in a density separation bath. Several methods of density separation were

tested to separate possible microplastic fragments from the sand in the medium fraction

(0.5-1mm), as described below. This fraction contained 2-10% by weight or 13g to 61g in

500ml. The large variation is surprising in view of the homogeneously taken test samples,

and might result from the drying and sieving procedure. Especially the larger fragments

frequently consisted of glued finer particles, and were pushed through the sieve gently with

a spoon. A slightly different clumpiness or stickiness after drying might have resulted in

a larger fraction of medium-sized “grains”. After sieving, the fractions were kept in glass

containers and analysed separately.

The medium-size fraction (0.5-1mm) was analysed first using two separation methods sug-

gested in the literature, centrifugation and air-venting in saline solutions for plastic extrac-

tion, as described in Sec. 2.8. Both procedures were then repeated with the small-sized

fraction (< 0.5mm).

2.7 Preparation of science samples

After clumpiness was detected as a potential source of size bias in the Warnemünde test

samples, all Rostock science samples were wet-sieved with 1l of deionised water. Wet-

sieving provided the additional advantage that the drying procedure in the hot air oven,

which likely introduced fibres from the sucked lab air into the samples, was avoided. The

final science samples obtained at beaches in the Rostock area were sieved through 0.5mm,

1.0mm, and 2.0mm stainless steel mesh sieves. A separation of the large microplastic

fraction > 0.5mm and the small fraction < 0.5mm is recommended in the review of Hidalgo-

Ruz et al. (2012) for comparability with previous studies. Wet-sieved science samples were

then transferred directly to the Erlenmeyer flask used for density separation. As in the case

of the test samples, density separation was only applied to the 0.5−1.0mm and the< 0.5mm

fractions, while the small amounts of even larger grains > 1mm were visually scrutinised

under the dissecting microscope without further processing.

During the investigation presented here, it was found that the selective collection of fine-

grained sediment contained only small amounts of coarse sediment > 0.5mm, varying

between a few and a few 10 grams, with the exception of the Markgrafenheide samples

containing a maximum of 360g of coarse sediment (0.5-1mm, see also Table 7 in Appendix
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C). Because of this large variation, all Rostock samples were consistently sieved, and

the coarse and fine fractions underwent density separation and microplastic extraction in-

dividually. Given the time-consuming nature of this process, and as only small amounts of

coarse material were found in particularly fine-grained samples comparable to all other sur-

vey locations, scientific samples beyond the four Rostock locations were not sieved. This

implies that the four Rügen locations, the two Oder/Peene locations, and the Jade location

were treated to only one density separation in which each complete 500ml sample was

processed.

2.8 Density separation methods

Several density separation methods were tested with the aim to find a simple, efficient tech-

nique to extract light-weight plastic particles and fibres with mean densities of < 1.2g/cm3

from natural sediment with a specific dry density of solid quartz, 2.65 g/cm3 (Nuelle et

al. 2014). Separation methods included centrifugation and air venting with high-density

zincchloride and calciumchloride solutions. A compilation of plastic materials and corre-

sponding densities observed in the marine environment is provided in Table 2 together with

the relative frequency of their occurence in North Sea sediment samples (Lorenz 2014).

The low-density materials polypropylene (PP) and polyethylene (PE) together account for

more than 80% of all microplastic particles classified with infrared microspectroscopy, with

PP contributing with 77.9% by far the largest fraction of microplastics. The solubilities of

NaCl and the high-density salts used here for plastic extraction are shown for comparison

in Table 3. Especially the predominant light-weight materials PP and PE have specific den-

sities significantly below the densities of ZnCl2 and CaCl2 solutions.

2.9 Centrifugal density separation

Most studies use a time-intensive density separation method to extract synthetic polymers

with characteristic densities < 1.4g/cm3 from sand grains with densities > 2g/cm3. As a

first step, the sediment is air-vented in a high-density salt solution, typically a zincchloride

solution at 1.4-1.6 g/ml densities. Air-venting is applied for several hours, before the floating

light-weight particles are extracted from the surface. The currently most ideal method of

analysis was described by Imhof et al. (2012), where the surface of the solution is contained

in the filtering device, such that no decanting is necessary. In order to extract the plastic

particles, the filtering tube is turned around, and the solution previously on the surface is

immediately filtered and the zincchloride washed off with distilled water. The advantage of
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Table 2: Characteristic specific densities of the most frequent plastic polymers, and the
frequency of their occurence in percent of all eight spectroscopically identified synthetic
polymers in North Sea sediment samples according to Lorenz (2014).

Material ρ [g/cm3] frequency [%] reference for ρ

Synthetic Polymers & Fibres

Ethylene-Vinyl Acetat (EVA) 0.93 1.3 (1)
Polyethylene (PE) 0.92-0.96 6.1 (1,2)
Polypropylene (PP) 0.9-1.0 77.9 (1,2)
Polystyrene (PS) 1.05 3.9 (1,2)
Acrylamide (Acrylic) 1.13 – (3)
Polyamide (PA, Nylon) 1.01-1.14 0.9 (1,2,3)
Polymethyl methacrylat (PMMA) 1.16-2.0 6.1 (1,2)
(acryl glass/plexiglass)
Polyvinyl chloride (PVC) 1.2-1.4 1.7 (1,2)
Polyester (Polycarbonate, PC) 1.2-1.4 2.2 (1,3)
Polyethylene terephthalate (PET) 1.37-1.40 – (1)
(Thermoplastic Polyester)

Narutal fibres & materials

Cotton 1.40-1.55 – (3)
Flax, Jute, Hemp 1.50 – (3)
Silk 1.33-1.60 – (3)
Wool 1.31 – (3)
Viscose 1.5 – (3)
Glass (Silicate) 2.45-2.55 – (3)
Sand, quartz 2.65 – (4)

References: (1) - http://www.kern-gmbh.de: EVA fact sheets; (2) http://wiki.polymerservice-
merseburg.de/index.php/Dichte, Table: Comparison of polymer densities with other raw materials; (3)
Australian International fibre centre (IFC), 4.1.04 – Table of Fibre Densities (natural and synthetic),
www.ifc.net.au; Polyester (PC, also denoted as PES in other references) – density of fibres, note that PES
can also represent the entire group of ester polymers, and is used for sulfonic polymers in other contexts; (4)
Nuelle et al. (2014).

this system is that no particles are lost on the container walls during decanting or pipetting

of the surface solution.

As especially our medium-size fraction consists of very small samples, we attempted to sim-

plify and shorten this procedure. Here, we followed suggestions in Claessens et al. (2013),

where a combination of floatation in a high-volume stream of tap water and centrifugation

is used to extract polymer particles from sediment. As our samples consisted of at most

32g of material, we did not apply the water-intensive floatation step. Instead, we split each

sample into two to four portions of 6-10g each, which were filled with high-density saline

solution into centrifugation tubes. Following the procedure in Claessens et al. (2013), the

tubes were shaked vigorously before centrifuging at 3500 × g for 3 × 5min. After each 5min
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Table 3: Specific densities ρsp and solubilities of salts in water at room temperature (20oC).
The solubility corresponds to the maximum density of the saturated saline solution that can
be achieved at room temperature in the lab.

Salt ρsp solubility
[g/cm3] [g/ml]

NaCl 2.17 1.20

CaCl2 2.15 1.47

ZnCl2 2.91 2.14

spin, 7ml solution were pipetted off the surface of each tube, and vaccuum-sucked through

a 5µm polyacetate membrane filter. The filtered solution was used to refill the tubes to the

same level of ∼40ml, shaked and centrifuged again. After 3 centrifugations, each filter was

washed with 250ml of deionised water in the case of the acidic zincchloride solution, and

with at least 100ml of deionised water to remove residual calciumchloride. All filters were

then air-dried under a slanted glass cover for protection against further fibre input.

2.10 Air-venting density separation

In order to test density separation with the methods used predominantly in the literature, the

sediment samples were air-vented inside a 2l Erlenmeyer flask with 0.5-1.1l of high-density

saline solution. Pressured air was pushed through a glass pipe with an opening diameter

of 2 mm inserted in the Erlenmeyer flask such that the pipe nearly touched the ground. The

flask was tilted at an angle of ∼ 10 degrees to allow for sediment to flow towards the bottom

part of the flask (Fig. 7), where the air was inserted, and rotated at semi-regular intervals

of 15-30 minutes to expose the complete sediment volume to the air flow. The air flow

was adjusted such that the sediment was easily lifted from the ground, yet keeping a safe

marging to avoid splashing through the neck of the flask. A constant air flow was kept for 3

to 4 hours in accordance with the amount of sediment to be stirred, and sedimentation was

allowed thereafter for 12 hours (typically over night). Between 200 and 400 ml of the surface

of the solution were pipetted off with a 30ml pipette, which was moved over the surface to

capture the area of the dense solution as much as possible. Moving the pipette over the

surface was applied to compensate the slow flow of the high-density solution towards the

pipette. The pipetted solution was then filtered onto glass fibre or membrane filters (test

samples) or zooplankton net (science samples, see Sec. 2.13), and the solution remaining

above the sediment was decanted and filtered separately. Procedural details for extractions

with the ZnCl2 and CaCl2 solutions are given in Sections 2.11 and 2.12 below.
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Figure 7: Laboratory equipment used for density separation.
Left: Erlenmeyer flasks (2l) were used for air-venting and settling of sediments in high-
density saline solution. The glass filtering equipment used to extract samples onto filters is
shown on the left. Right: Erlenmeyer flask during air-venting.

2.11 Density separation in zincchloride solution

In the first test (sample P1 in Table 5 in Appendix A), a zincchloride solution with a den-

sity of 1.43 g/ml was used as a density separator. The solution was available in the lab,

and was filtered through paper filters to remove particles. In test 1, the 32g of medium-

sized 0.5-1mm sediment were split into 4 portions of 8g each and filled into 4 centrifugation

tubes. The tubes were filled up to a total volume of 40ml with 37ml of ZnCl2 solution. In

addition to the sediment probes, 4 reference tubes were filled with 37ml ZnCl2 solution only.

All tubes were centrifuged three times. The surface of the sediment tubes was pipetted as

described in Sec. 2.9, and washed with deionised water to remove residual zincchloride.

In this test exclusively, each centrifugation run was pipetted onto a separate filter. As re-

ported by Claessens et al. (2013), practically no fibers and particles were found after the

third centrifugation. Very few, very short fibers were still present, which could be explained

by contamination from laboratory air and clothing. After the second centrifugation, however,

a significant number of particles was observed on the filter. Three centrifugation runs were

therefore used for all tests hereafter. In addition to the 3 sediment centrifugation runs, the

top 7ml of the solution in the reference tubes were also pipetted onto one filter to probe the

level of fibre contamination during processing. Finally, the remaining zincchloride solution

above the sediment in the samples and the solution in the reference tubes were decanted

and filtered separately to probe any remaining particles in the water column below the sur-

face.
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Because the initial goal was to find particles with sizes larger than 0.5mm, and in an attempt

to avoid polymer material used in membrane filters as a source of contamination, glass fibre

filters were used in test 1. It turned out that most detected objects were fibres, which were

difficult to separate from the glass fibre structure, even if they were clearly seen under the

dissecting microscope. Therefore, membrane filters were employed for all following tests.

In order to probe the small size fraction (< 0.5mm) with the centrifugation method, small

portions needed to be selected to allow for the efficient separation of high- and low-density

sediment. For comparison with the medium-sized fraction, 4 tubes were again filled with

32g of small-grained sediment with 8g in each tube. Tubes were filled up to 40ml with ZnCl2

solution and processed in the same way as described for the medium-size fraction.

In the second test (P2 in Table 5), the sediment samples were infused with 1.1l of zincchlo-

ride solution in a 2l Erlenmeyer flask vented with a glass pipe from the bottom of the flask.

The air flow was adjusted such that bubbles readily lifted the sediment particles from the

ground without overshooting the neck of the flask. To allow for the exchange of particles

from the sides into the bubble stream, the flask was tilted slightly and rotated regularly (see

Sec. 2.10). Air-venting was applied for 4 hours as described above, and the sediment was

allowed to settle over night thereafter. The top 750ml of the ZnCl2 solution was pipetted off

and vacuum-sucked over a 5µm membrane filter. Care was taken to pipette off the surface

of the solution covering as much area as accessible. The pipetting method was used to

avoid decanting the solution, as Imhof et al. (2012) had shown that up to 60% of the float-

ing plastic particles are lost during decanting alone. The pipette was rinsed with deionised

water to capture all remaining small particles possibly stuck to the pipette walls. As in the

case of the centrifugation experiment, the remaining solution was decanted over a separate

filter to check for residual synthetic material in the water column above the sediment. The

same procedure was applied to both the 0.5-1mm and the < 0.5mm grain size fractions.

2.12 Density separation in calciumchloride solution

The experiments were repeated with a second 500ml sample of Warnemünde beach sedi-

ment, which contained only 13.2g of medium-sized 0.5-1mm particles (P3 in Table 5). The

sample was therefore split into 2 portions of 6.3g and 6.9g of sediment in 2 tubes filled up

with 37ml of calciumchloride (CaCl2) solution. These tubes, along with 2 reference tubes

filled only with CaCl2 solution, were then centrifuged 3 times and filtered over a membrane

filter as described above. Given the results from test 1, all 3 centrifugation runs were filtered
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over the same filter. The reference tubes were decanted over a separate filter, as in test 1.

To probe for residual material in the sediment after the 3× centrifugation process, the sed-

iment was retrieved from the tubes and filled into the clean Erlenmeyer flask. The flask

was filled with 500ml of CaCl2 solution because of the low sediment amount of only 13g,

and air-vented for 3 hours. The flask was manually rotated approximately every 15 minutes

during this time. After air-venting was turned off, the solution was allowed to sediment and

cleared entirely within several minutes. The 300ml solution of the surface area was pipetted

off and vaccuum sucked over a membrane filter, and calciumchloride was rinsed off with

100ml of deionised water. The remaining solution was decanted over a separate filter, as

in the case of the ZnCl2 experiment. The same procedure was conducted with 40g of small

grained sediment (< 0.5mm) after centrifugation. Here, the finer sediment was allowed to

settle over night prior to filtration.

2.13 Filtration & digestion

After air-venting and settling samples over night, the surface supernatant of each sam-

ple was extracted by moving a 30ml pipette across the solution surface, and expelling the

pipette onto a membrane or glass fibre filter with a pore size of 5 − 10µm. The remaining

supernatant was decanted over a separate filter to analyse particles and fibres lower in

the water column individually. Filters were air-dried in small petri dishes with lids almost

closed to minimise laboratory air contamination. After the test samples were conducted, it

was found that visual inspection on filters was hampered in the presence of large residual

sediment loads. The pipetted and decanted fractions of scientific samples were therefore

extracted onto zooplankton net filters precut to a diameter of ∼ 7cm with a mesh size of

55µm. This mesh size provides the lower detection limit in all scientific samples.

Depending on the nutrient content and the grain properties of the sediment, a varying

amount of organic material was observed. Organic matter can be efficiently disintegrated

to distinguish potential microplastic particles and natural minerals from organic protein and

carbohydrate structures by digestion with hydrogen peroxide (H2O2), as shown in Lorenz

(2014). The remains after digestion will contain natural sediments, plastic particles with

the exception of polyamides (dissolved in H2O2), and chitin-based crustacean or insect

shell and exoscelleton fragments. The latter could, in principle, be dissolved with chitinase

(Lorenz 2014), but the long treatment times rendered this extra digestion step impractical

for the large volume of samples analysed here. All membrane and zooplankton net filters

were soaked in 30% H2O2 solution for 24 hours and rinsed with deionised water afterwards
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in the clean filtering equipment.

2.14 Visual inspection

All filters were inspected under a dissecting stereo microscope (Olympus SZ51 or similar)

with 3-4× magnification. Suspicious particles and fibres were analysed under the Olympus

SZX16 stereo microscope equipped with the DP21 digital camera with a magnification of

up to 11 to facilitate the distinction between microplastics and natural sediment or organic

matter, as well as between synthetic/anthropogenic fibres and organic fibres. Because

spectroscopy was not availabe, no distinction is made between synthetic and non-synthetic

anthropogenic fibres in the remainder of the thesis. Potential microplastic particles and

synthetic fibres were photo-catalogued with the Olympus SZX16 stereo microscope or the

Zeiss BH2 stereo polarisation microscope. Microplastics and natural materials were distin-

guished on the basis of colour, surface structure, and morphology (shape). As transparent

particles are most susceptible to misclassification by visual inspection, transparent particles

are only included as potential microplastics if their surface structure was clearly distinct from

natural sediment. All particles and fibres investigated by visual inspection alone are con-

sidered potential microplastics (e.g., Dekiff et al. 2014). As material proof via spectroscopic

identification was not available, we implicitely assume all pieces to be potential microplastics

when the terms microplastic particles and fibres are used throughout this thesis. Particles

and fibres with colours different from natural sediment, such as intense blue, green, pink,

and violet, are visually identified as the most certain microplastic contaminants.

2.15 Artificial samples

Two artificially enriched samples were created by adding 200 polyethylen particles (PE) with

a density of 0.9 g/cm3 to ∼500 ml of sediment with grain sizes < 0.5mm, corresponding to

a sediment dry weight of 802.6g and 743.3g, respectively. Before enriching sediment with

PE particles, microplastic particles were extracted from Nienhagen beach March and April

sediment samples as described in Sec. 3.1.4.1. The PE particles were cleaned, post-

processed recycling fragments covering the approximate size range 100µm-1mm.

The original PE mix contains predominantly transparent and white-transparent particles,

which are difficult to distinguish from natural sediment. While the freshly produced recy-

cling fragments can be distinguished on the basis of their surface structure and shape, it is

likely that aged plastic particles in the natural Baltic environment are not easily discerned on

the basis of their surface structure. With the aim to test our method to separate light-weight
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particles from natural sediment, and the efficiency of air-venting and lifting of plastics in

the high-density saline solution, a large number of coloured particles was selected to en-

hance statistical recovery in these artificial samples. The artificially enriched samples were

air-vented for 4 hours in ∼ 1l calciumchloride solution with a density of 1.24 g/ml. Each

sample was allowed to settle overnight for at least 12 hours after air-venting. 400-500ml of

the surface solution were extracted by moving the pipette across the surface systematically

as in the case of the science samples. The remaining saline solution above the bottom sed-

iment was decanted onto a separate zooplankton net filter, and the pipetted and decanted

fractions were counted individually. The results of these tests are evaluated in Sec. 3.2.
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3 Results

3.1 Results of Warnemünde test samples

3.1.1 General results

Density separation of the Warnemünde test samples was carried out in ZnCl2 as well as

CaCl2 solution, and centrifugation was also used as a means to separate light-weight par-

ticles from sediment in small samples of up to 40g. Although zincchloride can theoretically

be saturated to densities of 2.1 g/ml, the ZnCl2 solution proved difficult to saturate, and

densities above 1.45 g/ml were not achieved. A likely cause for the low densities are im-

purities in the available ZnCl2 salt. In contrast, the CaCl2 solution was readily saturated to

densities of 1.35 g/ml, close to the saturation density of 1.43 g/ml at 20oC. While ZnCl2 is a

highly toxic, oxidising, and chemically aggressive medium, CaCl2 is non-toxic and suitable

for use in food as a coagulation agent. Given the minimal difference between the achieved

solution densities, and the substantial difference in ecological impact and handling in the

lab, all scientific samples were air-vented with CaCl2 solution at densities between 1.3 and

1.35 g/ml.

One of the aims of this thesis was to develop a method that allows comparability between

spatially and temporally separated measurements. When counting particles on illuminated

filters, the dominating uncertainty originated in the fact that particle counts suffered from

insufficient size limits. On membrane or glass fibre filters, the detected number of particles

and fibres varied according to the provided contrast on the filter material available with sur-

face light or transmitted light at the microscope. While membrane filters displayed a higher

contrast compared to glass fibre filters, it was still difficult to discern fibres among larger

amounts of sediment and sediment particles from organic matter. The most subjective de-

cision process originated from the smallest particle to count. With large numbers of several

hundred to thousand particles, it is not practically feasible to measure the size of each ob-

ject near the counting lower limit. While the upper size limit is set by the sieve to 1mm, the

smallest fraction with grain sizes < 0.5mm includes numerous tiny pieces of sediment and

organic material as well as microplastics.

The use of zooplankton nets with a pore size of 55µm allowed to set a fixed lower limit,

below which particles were excluded from the science samples. Despite their synthetic

material, plankton nets displayed several advantages when used in the final test sample.

First of all, zooplankton nets are not a potential source of plastic contamination. Even when

the hand-cutted filter edges disintegrated, the mesh was so characteristically woven that
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zooplankton net pieces were easily discerned from all other synthetic matter in the samples

(see Fig. 8).

Figure 8: Image showing sediment
grains and extracted net fibre on zoo-
plankton net with a mesh size of 55µm.
Note the characteristic curly shape and
thickness of the zooplankton net fibre in
the centre of the image.

In sample 4 (P4 in table 5 in Appendix

A), the pipetted and decanted surface so-

lutions were poured over zooplankton nets

and counted under the microscope in two

different stages. First, the material on the

net was counted, including all particles and

fibres visible unless particle numbers were

too high to count. In a second step, zoo-

plankton nets were rinsed with deionised

water into glass petri dishes, and high-

density material located on the ground as

well as material floating on the surface was

counted individually. The total of the hence-

forth called “ground” and “float” fractions was then compared to the total number of particles

and fibres counted on the plankton net prior to rinsing. In general, very small particles might

stick to the net pores and might be lost in the count rate. On the other hand, clear fibres

comprising the dominant amount of all fibres detected are substantially easier to recognise

after rinsing, such that fibre numbers increased. Therefore, this two-stage procedure was

applied to all latter science samples. Except for very small particles and dissolved organic

matter after treatment with 30% hydrogen peroxide solution, the rinsed zooplankton nets

were very clean. Because of the more objective counting method before and after rinsing,

this net material was cut to filter-size circles and used as filters in all science samples.

3.1.2 Number counts of particles and fibres

3.1.2.1 Centrifugation

A small amount of sediment, 30-40g, distributed into 4 plastic centrifugation tubes, could

be analysed in each centrifugation experiment. Naively, one would expect that most light-

weight particles (plastics) and fibres flow on the surface after the first of the three centrifu-

gation runs (see Sec. 2.9), and that the lowest number of low-density material remains in

the decanted solution. The number counts of fibres and particles on the filter after centrifu-

gation in ZnCl2 solution are shown in Fig. 9. The three centrifugation runs are denoted c1

to c3, and number counts of the decanted extraction are denoted dec. The coarse and fine
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Figure 9: Results of particle (left) and fibre (right) extraction via centrifugation in ZnCl2
solution. The three centrifual runs (c1-c3) and the decanted supernatant (dec) are counted
on glassfibre filters individually for the coarse 0.5 − 1mm (blue bars) and fine-grained <
0.5mm (green bars) sediment fractions. Note the particularly high particle counts after all
three centrifugation runs in the fine-grained sediment fraction < 0.5mm. Number counts of
the reference solution without sediment sample are derived for the pipetted surface solution
(“p”) and the decanted solution (“d”) individually (red bars).

sediment fractions are displayed in blue and green, respectively, and the reference ZnCl2

solution containing no sediment is shown in red. The extraction of fibres and coarse parti-

cles is most efficient in the second centrifugation run c2, and declines, as expected, rapidly

after the third centrifugation. However, in the small size fraction, particles are comparably

frequent in the 7ml pipetted surface soluation after all three centrifugation runs, suggesting

that sediment is stirred up shortly after centrifugation in the heavy ZnCl2 solution and floats

above the bottom sediment layer. The fact that unexpectedly large numbers of particles are

located near or at the surface implies that centrifugation in a heavy ZnCl2 solution does not

provide a clean means to extract synthetic particles from sediment samples. This result is

strengthened by the fact that even after the third centrifugation c3, more than 200 particles

reside near the surface of the saline solution. Even in the coarse size fraction (0.5-1mm),

particle numbers are larger after the second centrifugation run than after the first. In both

size fractions, the fibre detection rate also does not follow a systematic decrease from the

first to the third centrifugation run. Furthermore, the decanted solution remaining after pipet-

ting off 7ml from the surface after the third centrifugation run contains a significant number

of fibres and particles.

The reference sample with ZnCl2 solution and no sediment displays a concerningly large

number of 70 fibres (pipetted plus decanted, red histograms in the right panel of Fig. 9),

which might be introduced in the process of extensive handling during the centrifugation ex-

periment (opening of tubes, pipetting, re-filling with residual solution, decanting). As ZnCl2
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Figure 10: Comparison of density separation methods using ZnCl2 and CaCl2 solutions.
Particle and fibre number counts are shown as concentrations per gramm of dry weight
sediment for comparison (blue: coarse sediment 0.5 − 1mm, green: fine-grained sediment
< 0.5mm). The left two panels display concentrations of fibres (left) and particles (middle
left) after centrifugation and the right two panels display concentrations of fibres (middle
right) and particles (right) after air-venting.

is extremely sticky, this large reference fibre load might also be the cause for the differences

between centrifugation in the ZnCl2 and CaCl2 solutions, with only 15 fibres found in the ref-

erence sample of the CaCl2 solution. The differences between the centrifugation samples

P1 with ZnCl2 and P3 with CaCl2 are displayed in Fig. 10, where the numbers of fibres and

particles are shown relative to the total weight of each sample. Only fibres and particles

extracted with the pipette are displayed, as the decanted number counts were influenced by

sand stirred up during extraction. Particle concentrations are higher after both centrifugation

and air-venting in three of the four test samples with ZnCl2 solution, and fibre densities are

higher with ZnCl2 in the case of centrifugation (left panels in Fig. 10). Despite subtraction

of the reference sample number counts prior to weight scaling, the 0.5-1mm fraction shows

more than twice the fibre load after centrifugation in ZnCl2. The large particle load in the

fine-grained sediment fraction discussed above stands out prominently even after subtract-

ing the reference sample number counts and scaling with the total weight of each sample.

As a consequence of these effects, the particle and fibre load per weight of sediment is

inconsistent within and between the test samples.

Two additional problems occured during centrifugation. After three centrifugal runs, the re-

maining sediment is expected to contain no more fibres and light-weight particles according

to Claessens et al. (2013). This expectation seemed justified, as the first centrifugation

tests showed low number counts particularly after the third centrifugal run. However, as

discussed above, this trend could not be confirmed in the later tests. In addition, a large

number of fibres is detected in the four blanks used as reference, where tubes were filled



3 RESULTS 38

with ZnCl2 solution only. The 37 and 33 fibres detected in the pipetted and decanted part

of these solutions, respectively, suggest that without clean-room conditions, the tubes or

the handling might introduce fibres from the lab into the samples. In order to test this re-

sult further, the second centrifugation sample, P3, was air-vented in CaCl2 solution after

the 3 centrifugation runs were completed. If the extraction were near complete, only small

amounts of fibres and light-weight particles are expected to remain after the bubble bath.

However for the coarse as well as the small size fraction, large amounts of fibres are found

both in the pipetted surface solution as well as in the decanted solution despite the previous

centrifugal extraction. This lends additional evidence that either centrifugation introduces

fibres or that the extraction is highly incomplete. These results supported our conclusion

that the centrifugal method, while interesting, is not sufficiently robust for a spatio-temporal

comparison study.

In summary, both particles and fibres do not show the expected number decrease during

the three centrifugal extractions. A significant number of potential synthetic particles and

fibres remains above the bottom sediment, and can only be extracted when decanting the

remaining solution. It is questionable that the majority of these particles can be claimed

plastics, as their optical appearance is not distinguishable from bottom sediment. In view of

the small weight fractions of ∼ 40g that can be processed within the one hour centrifugation

procedure, centrifugation does not seem an efficient method to extract microplastics from

larger sediment samples. Nevertheless, centrifugation in a lower-density solution might

be a valueable method to extract microplastics from small residual sediment samples after

another density separation method, such as air-venting, was already applied.

3.1.2.2 Air-venting in high-density saline solution

Both air-venting in ZnCl2 and CaCl2 solutions enabled the extraction of lighter particles and

fibres from substantial amounts of up to 800g sediment samples. The fact that calcites

dissolve in the aggressive ZnCl2 environment, while CaCl2 preserves mussel and other

calciferous material, led to substantial differences in the optical analysis of both samples.

The ZnCl2 sample (P2 in Table 5 in Appendix A) produced thick layers of calcites on the

filter (Fig. 11), biasing the detection and count rate of both fibres and particles. Fibres were

particularly affected, as the detection of thin threads is practically impossible in a dense layer

of calciferous material. This aspect adds to the arguments that calciumchloride substantially

facilitates the density separation method, material handling, and optical analysis.

In the right panels of Fig. 10, number counts from both air-venting experiments are com-
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Figure 11: Comparison between a glass fibre filter with the supernatant of sediment air-
vented in zincchloride (left) and calciumchloride (right) solution. The ZnCl2 filter is densely
covered in calcites originating from dissolved mussel shell. The glass fibre structure is
exposed on the CaCl2 filter, and a long, blue fibre is visible across the center.

pared. Fibres could not be counted on the ZnCl2 filter, because the large number of more

than 6000 particles pipetted off the ZnCl2 solution from just 217g of fine sediment (< 0.5mm)

prohibited the detection of fibres. Even in the coarse sediment fraction (0.5-1mm), 744 sed-

iment grains were counted in the pipetted solution extracted near the surface even after

settling for at least 12 hours. As these particles are visually indistinguishable from sediment

grains, small grains appear to be easily suspended in the ZnCl2 solution, which implies

that a clean sediment-plastic separation is difficult in such a medium. The more viscous

zincchloride solution lifts a larger number of small sediment particles than the less viscous

calciumchloride solution. As a consequence, synthetic particles will be more easily picked

out after air-venting with calciumchloride, where the residual contamination with sediment

is not as extreme. Fibres are more easily extracted in the case of air-venting with CaCl2

(middle right panel in Fig. 10), suggesting that fibres are extracted efficiently in the calcium-

chloride solution when air-venting is applied. Fibres were also more readily counted when

lower numbers in the range of several hundred particles were present on the zooplankton

net adopted in experiment P4 for the first time. Rinsing of the net had the additional ad-

vantage that a large percentage of more than 50% of the sediment particles were sinking

to the ground in deionised water, additionally facilitating the counting of both particles and

fibres (Fig. 12). While particles are easily detected on the plankton net, especially clear

fibres can be lost among the sediment heaps and are more readily detected after rinsing

into a petri dish with deionised water. Particle counts on the zooplankton nets in these

test samples are overestimated as compared to the scientific samples presented below, as

very small particles and remains of organic matter were counted in these comparative tests.
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Figure 12: Fibre and particle counts in the Warnemünde test sample (P4) air-vented with
calciumchloride solution. The coarse-grained sample with sizes 0.5-1mm is shown as blue
bars, the fine-grained sample < 0.5mm is shown in green. Number counts of the pipetted
and decanted solutions are displayed individually, as indicated on the x-axis. Dry counts
on zooplankton net are shown as dark bars, and counts retrieved after rinsing into aqueous
solution are shown as light bars separated into the ground and the floating fraction. Particles
in the decanted solution of fine-grained sediment were too numerous to be counted, hence
the outermost bars are missing in the right panel.

Identifiable organic matter and particles < 70µm were not counted in the scientific samples.

Note that the large numbers of fibres observed in all of these test samples can be caused

by contamination from the dry oven. This source of contamination is excluded in the final

wet-sieving procedure applied to all science samples. Hence, absolute fibre number counts

and concentrations are meaningless in these test experiments.

3.1.3 Polarisation microscopy

With the aim to distinguish synthetic from natural fibres, including anthropogenic natural cot-

ton fibres, Zubris & Richards (2005) have employed high-resolution polarisation microscopy.

Examples of fibres in polarised light with a magnification of 430 are shown in Fig. 13 (Zubris

& Richards 2005).

Figure 13: High-resolution fibre selection imaged with a magnification of 430 in polarised
light (dark-field polarisation) as shown by Zubris & Richards (2005).

Fibres were collected from the filters of the test samples onto a microscope sled, and were
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Figure 14: Examples of fibres and particles in polarised transmitted light. a) Cotton wipe
at 20×magnification, b) natural sediment (4×mag), c) blue fibre (likely cotton, 10×mag), d)
red synthetic fibre with disintegration marks, fibre kernel-husk structure is clearly seen at
the fibre end, e) red fibre overgrown with algae, f) human hair, g) microsphere embedded in
organic fibrous matter, h) synthetic fibre mix.
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compared with likely contaminants from the lab. These samples included clothing worn

during the experiments and polymer cloth fibres used for surface wiping. Several of the

fibres detected in the test samples showed a uniform structure and diameter, suggesting

a synthetic origin (Fig. 14 d,e). Nevertheless, fibres could not be distinguished uniquely

under polarised light, as cotton and wool fibres also exhibited polarisation. In addition, the

dark-field polarised light microscopy employed here required light transmission through the

sample, such that fibres and particles analysed under the polariser had to be picked off the

filter or the plankton net samples. Especially fibres and small particles were frequently lost

in the test process when sticking to the collecting equipment. As polarised light microscopy

is also used to highlight plastic particles in thin-layer organic material such as mussel tis-

sue, the polarising properties of potential microplastic particles were compared to sediment

polarision. However, the crystalline structure of the natural sediment caused strong po-

larisation signals as well, which were indistinguishable from possible transparent synthetic

polymer signals (Fig. 14b). Given the limited possibility to collect large numbers of particles

and fibres without loss from each sample, and the restricted distinction of synthetic and

natural materials found in these experiments, polarised light microscopy was only used in

occasions where the synthetic nature of particularly suspicious fibres should be confirmed.
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3.1.4 Analysis procedure of scientific samples

3.1.4.1 Extraction of light particles and fibres from sediments

After the experiments with Warnemünde test samples, and following as far as possible the

recommendations in Imhof et al. (2012) and Hidalgo-Ruz et al. (2012) using inexpensive

laboratory equipment available in standard chemical or biological laboratories, the proce-

dure was refined to encompass the steps displayed in Fig. 15.

Figure 15: Procedure employed for all scientific samples.

Sieving:

Separating size fractions with <500µm sieve, 0.5-1 mm sieve, 1-2 mm, and >2 mm sieves

(Rostock gradient samples).

Air-venting:

Stirring sediments in calciumchloride solution with densities of 1.30-1.35 g/ml.

Extraction:

Pipetting 200-400 ml off the surface onto zooplankton net filters, decanting the remaining

CaCl2 solution above the settled sediment to maximise extraction of higher-density particles

and fibres, including particles affected by biofouling.
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Digestion:

Treatment of zooplankton net samples with hydrogen peroxide (H2O2), rinsing with deionised

water after 24 hours.

Visual inspection:

Visual inspection with 3-4 x magnification with a standard laboratory dissecting microscope,

photographic documentation of suspicious items with up to 11 x magnification under Olym-

pus SZX16 stereo microscope.

This procedure is designed to maximise the extraction rates of potential microplastic parti-

cles and fibres while minimising the exposure of samples to laboratory air and minimising

the number of handling steps to reduce the risk of contamination with fibres. Following

the recommendations in Imhof et al. (2012), the number of refilling stages is also kept to

a minimum to avoid the sticking of microplastic particles and fibres to flask walls and the

corresponding biases.

3.1.4.2 Counting procedure

The counting procedure established in test sample P4 was used for all scientific samples.

Particles and fibres were first counted after filtration on the zooplankton net filters under a

dissecting microscope at 3-4x magnification (dry count). Zooplankton nets were then rinsed

with deionised water into petri dishes, and particles and fibres settled to the bottom of the

petri dish were counted separately from fragments floating on the surface of the aqueous

solution (ground and float number counts). Although particles and fibres floating on the

surface are expected to have a higher likelyhood to be composed of synthetic polymers,

intensely coloured particles and fibres were routinely discovered in the ground fraction as

well (as expected for nylon or polyamide with a higher specific density than deionised water).

Hence, both ground and float fractions were counted in all scientific samples. After counting,

every zooplankton filter sample was rinsed off the petri dish into a small glass flask for

preservation.
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3.2 Artificial samples

In the test samples artificially enriched with 200 polyethylen recycling particles (Sec. 2.15),

coloured particles are used as tracers for the potential to recover plastics among large

amounts of sediment. Examples of inserted particles and sediment samples containing

recovered coloured particles are displayed in Fig. 16.

Figure 16: Top left: Polyethylen recycling fragments inserted in sediments to create artifi-
cial samples. The scale bar is 500µm, and particle sizes are typically less than 1mm. When
all inserted particles are considered, transparent particles are more ambundant than shown
here. Top right and bottom panels: Examples of recovered microplastic particles on zoo-
plankton net (bottom panels) and floating on the surface after rinsing with deionised water
(top right). Note that blue, green, and pink particles are easily detected by eye, while the
yellow particle in the bottom right panel could be mistaken for sediment.

As in the real samples, the obtained count statistics are dominated by coloured particles,

which easily stand out from the natural sediment (Fig. 16). This is particularly true for

blue, green, and violet particles and fibrous structures (employed to mimick the discovery of

coloured fibres). The redetection of yellow, orange and pink particles proved more difficult

because natural sediment is interleaved with red-orange granite and light-rose and yellow

transparent quartz grains.

Recovery rates assorted by colour are shown in Fig. 17 and number counts are provided
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Figure 17: Numbers of coloured inserted and recovered polyethylen particles in the two
artificially enriched sediment samples. Inserted particle numbers are shown as the left bar
of each colour, and recovered particle numbers are reported in each right bar. Colours
indicate the colours of inserted particles, although PE pieces were more lightly coloured
than shown.

in Table 4. Recovery rates of intensely coloured particles range from 60-100%, while

sediment-coloured particles are not always recovered, with rates ranging from 47% to 0%

for yellow, pink, and light orange particles. Particles with colours blue, lightblue, light violet,

and green stand out particularly clearly: recovery rates can be as high as 92-100%, espe-

cially after rinsing zooplankton filters into petri dishes and counting particles in the floating

fraction. Particles of these colours are also easily detected even through thin layers of nat-

ural sediment when mixed into sediment heaps on the dry zooplankton nets, such that high

detection rates of blue, green, and violet microplastics are also expected in the science

samples. Yellow particles, on the other hand, are difficult to discern from both sediment and

organic material in real samples, and orange particles are barely recovered.

The combination of dry number counts on the zooplankton filters and recounts after rinsing

with deionised water into petri dishes proved very efficient for the recovery of both coloured

and transparent plastic particles. Especially clear particles are not easily distinguished in

the natural sediment heaps on the net filter, while their surface structure and charateristic

shapes stand out more prominently when floating on the surface above the majority of the

sediment in aqueous solution. The very small number of just 200 particles in a large volume

of sediment achieves total recovery rates of 49% and 62% in both samples when transpar-

ent particles are included. These high recovery rates affirm air-venting in saline solutions

as a valueable method to extract light-weight plastics from natural sediment. In addition

to particles, five fibrous structures located in the PE recycling mix were also introduced to

each sample. As in the case of particles, coloured fibres were easily recovered, while white
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fibres could not be retrieved among residual sediment.

Table 4 also illustrates that both pipetting and decanting are important to obtain high re-

covery rates of synthetic particles and fibres. The majority of coloured plastic particles and

fibrous structures are only recovered in the decanted solution. This suggests that pipetting

or extracting the surface solution, despite containing a much lower residual sediment load,

is not sufficient for a maximum microplastics detection rate. Even light-weight particles and

fibres with a lower density than water, such as the PE particles with a density of 0.9 g/cm3

employed in this experiment, are frequently attached to natural sediment and hence kept in

the water column or at the wall of the glass flask as a consequence of adhesive forces. In

the pipetted solution, the floating islands after rinsing of the plankton net are dominated by

plastics. In the decanted solution, up to 1200 particles were floating on the water surface.

Nevertheless, a few plastic particles and fibres were located at the ground among the sedi-

ment. These fragments were likely bonded to the sediment by adhesion. Adhesion is also

prominent among the floating islands, as both floating sediment and plastic pieces come

together rapidly after being rinsed into the petri dish. In addition, several plastic particles

were sticking to the edge of the petri dish immediately after rinsing. This illustrates how

readily microplastics are captured by the surfaces of the laboratory equipment, which was

identified by Imhof et al. 2012 as one of the major sources of plastic particle losses dur-

ing extraction experiments, confirming our attempt to avoid extra refilling steps whereever

possible prior to the number count.
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Table 4: Results of artificially enriched samples: Inserted particle numbers (column 2)
sorted by colour (column 1). Particles recovered in the pipetted (“pip”, column 3) and de-
canted (“dec”, column 4) solutions are shown separately, and the sum of all recovered
particles (“pip+dec”) is given in column 5. The recovery rate is calculated as the fraction
of recovered to inserted particles in column 6. Columns 7 & 8 show the number of recov-
ered particles in deionised water after rinsing the plankton net filter (total of plastic particles
attached to ground sediment plus floating particles) and the corresponding recovery rate,
respectively.

PN3 + 200 PE particles

Colour insert pip dec pip+dec rate aqua rate

blue (bl) 9 1 7 8 0.88 9 1.00
lightblue (lb) 5 3 1 4 0.80 5 1.00
green (gr) 4 1 2 3 0.75 3 0.75
violet (vi) 6 2 3 5 0.83 5 0.83
yellow 9 2 0 2 0.22 3 0.33
pink 9 0 0 0 – 3 0.33
orange 3 0 0 0 – 0 –

coloured 45 9 13 22 0.49 28 0.62
bl+lb+gr+vi 24 7 13 20 0.83 22 0.92

transparent 155 70 0.45

all 200 98 0.49

PN4 + 200 PE particles

Colour insert pip dec pip+dec rate aqua rate

blue (bl) 23 7 7 14 0.61 12 0.52
lightblue (lb) 8 4 4 8 1.00 8 1.00
green (gr) 6 2 2 4 0.67 4 0.50
violet (vi) 7 1 5 6 0.86 2 0.29
yellow 15 2 5 7 0.47 5 0.33
pink 17 2 6 8 0.47 7 0.41
orange 3 0 0 0 – 1 0.33

coloured 79 18 29 47 0.59 39 0.49
bl+lb+gr+vi 44 14 18 32 0.73 26 0.59

transparent 121 76 0.63

all 200 123 0.62
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Two results are most striking when interpreting the numbers of microplastic particles re-

covered. i) In both samples, the largest number of microplastic pieces is recovered in the

decanted solution. Two reasons are identified for this behaviour. First, the mentioned ad-

hesive forces cause microplastic particles to stick to the edge of the Erlenmeyer flask, such

that they are missed by the pipette, but are recovered when the remaining solution is care-

fully decanted while turning the flask. Secondly, synthetic particles as well as fibres are

routinely found in the water column rather than at the surface in all of our scientific and test

samples. This suggests that synthetic particles sink more easily than expected from their

pure material density alone. Additives might additionally increase the density of particles,

as shown in Nuelle et al. (2014, see their Table 5). The fact that this also occurs in light-

weight PE particles (0.9 g/cm3) not exposed to biofouling indicates that adhesion cannot

be ignored. ii) The number counts are optimised when both dry and wet counts are used.

In the first artificial sample, the wet count caused more plastic particles to be exposed and

a larger recovery rate was obtained after the wet count. In the second sample, the sedi-

ment content both on the ground and in the floating fraction was very high after rinsing the

plankton net, impeding redetection of several coloured particles. In the dry count, however,

searching systematically through the sediment allowed a redetection rate of ∼ 60% among

coloured particles despite the very high sediment load of several thousand sediment parti-

cles in the decanted fraction. In both samples, transpartent and white microplastics were

only recovered in the aqueous solution. Especially in residual sediment, the structure of

transparent particles does not stand out, and only a few isolated particles were identified

on the plankton net of the pipetted fraction. On the water surface, however, the structure

of PE particles is clearly discerned from the smoothed surfaces of natural sediment. While

this structural difference might change after exposure to wave forces in the natural sea en-

vironment, this observation stresses that several means of visual inspection enhance the

chances of microplastics discovery.

Summary of artificial experiments

Coloured particles, especially in shades of blue, green, and violet, are most easily dis-

covered among natural sediment, even if their average size is smaller than the size of

the immersing sediment layers. Particles as small as ∼ 70µm are easily spotted by eye

through the dissecting microscope with a magnification of 3. We therefore conclude that the

air-venting, pipetting plus decanting method employed here to retrieve plastics from natural

sediment works most efficiently on blue-tinged fragments, and that the detection of coloured
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particles in these colour regimes should be complete to at least 60% (Table 4).

For transparent and yellow, orange, or pink particles, spectroscopy would be particularly

beneficial in order to unambiguously identify all synthetic polymers among the mix of natural

sediment. Despite larger losses, the overall recovery rates range from 50% to 60% when

both coloured and transparent particles are taken into account. The fact that about half

of the 200 particles with sizes less than 1mm could be extracted from 800g of sediment

renders the developped method highly efficient.

It has to be noted here, however, that in natural sediment, we expect the detection rate to

be lower. Bleaching and the presence of large amounts of white and transparent fragments

will decrease the detection rate. From the artificial experiments, it becomes immediately

clear that the detection of transpartent particles, especially after biofouling or mechanical

smoothing, faces severe limitations when visual inspection has to be used to distinguish

microplastics from natural sediment. This point will be stressed further during the analysis

of the scientific samples, yet special emphasis will be placed on both coloured particles and

coloured fibres because of this finding.

3.3 Blind & reference samples

Blind samples were processed in the same way as science samples as much as feasible.

Cleaning procedures of the Erlenmeyer flasks, the filtering equipment, and the zooplankton

net filters were identical to the procedures applied between sediment samples. Air-venting

for 4 hours with pre-filtered calciumchloride solution in the same Erlenmeyer flasks was

conducted. The solution was then decanted, and in two blind samples pipetted as well as

decanted, over cleaned zooplankton net filters as in the case of the real samples.

The results of the blind sample number counts are shown in Table 6 in Appendix B. From

five blind samples, the laboratory contamination of particles and fibres is expected to be

low. For particles, the blinds contain between 1 and 8 particles as counted on the zoo-

plankton net filters (dry count), and after rinsing with deionised water, between 0 and 3 to

5 particles are found in the floating fraction and on the ground, respectively. The average

particle contamination in the dry count is 3.4 fragments, while it is 2-3 particles in the ground

and floating fractions in aqueous solution. This low particle contamination is expected, as

sediment is not easily entering clean sample volumes in the lab. The counted particles are

likely residual contamination in the Erlenmeyer flasks or in the filtering equipment, or were

stuck to the plankton nets after cleansing due to sticky protein residuals. Given the large

volume of 2l of each flask, as well as the several handling steps, and the fact that the net
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filters cannot be cleaned to an entirely pristine state, the contamination of 1-8 transparent

particles in all blind samples is very low, and no coloured particles are found.

For fibres, the situation is not as clear. In two of the blind samples, small fibre nests were

observed. This suggests that glass fibre material was disintergrated from the glass fibre

filters during pre-filtering of the CaCl2 solution. As the first blind sample (18 Aug 2014) did

not contain any glass fibre residuals, this finding came as a surprise. After fibre nests were

detected in the blind samples, the calciumchloride solutions for all scientific samples were

pre-filtered through 5µm polyacetate membrane filters instead. The fibre contamination in

the first blind plus the membrane-filtered blind samples was as low as 1-8 fibres in the

dry count. As fibres are harder to see on the plankton net material, fibre loads in the wet

count are slightly higher, with an average of 9 fibres on the ground and 7 fibres floating

on the surface, implying a total fibre contamination of 16 fibres on average. This fibre

load increases to 21 when the two samples with obvious fibre nests are included in the

mean. Most of the detected fibres are thin and transparent, and at the thin edge of being

counted in scientific samples. However, each blind contained on the order of 1-2 long, thick

fibres, several of which are also intensely coloured. As a consequence, we expect up to 2

coloured fibres to be introduced from laboratory air and/or handling procedures into each

sample. This is confirmed by the laboratory air sample also shown in Table 6. After drawing

laboratory air through a membrane filter for 2 hours, 2 coloured, long fibres are detected on

the filter. Note that the numerous very small particles and fibres also counted on this air filter

are very small (particles) and thin (fibres) and would not be included in the real samples, as

they would be removed by the 55µm zooplankton net filter. As actively drawing lab air for 2

hours through a membrane with a vacuum pump is longer than all of the scientific sample

handling, we can consider the 2 coloured fibres detected on the air filter again as an upper

limit of contamination from laboratory air alone.

In the first blind sample, 2 microspheres were detected on the plankton net. One of these

spheres was recovered in the aqueous solution, while the second sphere was lost in the wet

count. This is the only blind sample that contained any microspheres. Both spheres, despite

displaying different sizes and different colouring, had the appearance of potential cosmetic

polymer spheres also found in several of the scientific samples. One of them, with a yel-

lowish hue, was particularly similar to the spheres detected in the Nienhagen May samples,

where microspheres featured prominently among the raps pollen. No such microspheres

were found in either of the laboratory water samples also included for reference in Table 6.

In 10l of cold tap water, only 1 particle and 1 fibre were found on the plankton net. In the 10l

deionised water sample, on the other hand, in addition to the 1 particle, 13 fibres were de-
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tected, and one of these fibres was intensely coloured in red. The higher fibre load is likely

a consequence of the longer processing time and handling in the lab, as deionised water is

first pulled through the deionisation tank, then filled into a rinsed canister, and refilled into

either glass flasks or the laboratory spray bottle. The two spheres found in the first blind

sample are therefore likely remnants from the previous science sample (the Warnemünde

May sample) on the Erlenmeyer flask walls. The high stickiness of microplastic fragments

and spheres renders the cleaning of flask walls to a zero contamination level practically

impossible. As all 4 later blinds do not show any microsphere contamination, and as no

spheres are found in either tap or deionised water, the contamination with microspheres is

expected to be less than 1 microsphere on average in each science sample.

In summary, the most important source of contamination are coloured and transparent fi-

bres. On the order of 16 contaminating fibres can be expected in the aqueous solution, and

up to two coloured fibres are found in blind samples. This contamination level is surprisingly

low in view of the fact that clean room conditions were not available for these experiments.

The contamination with particles and microspheres is found to be negligible.



3 RESULTS 53

3.4 Analysis of Baltic Sea and North Sea coastal samples

All scientific samples were processed as described in Sec. 3.1.4.1, and particle and fibre

numbers were counted on zooplankton net filters (dry count) and in aqueous solution with

individually counted ground and floating fractions. The detailed results of all sample counts,

along with comments about the appearance of each sample and special particles and fi-

bres standing out among natural sediment, are provided in Appendix D (Tables 8 to 14).

Examples of detected microplastic particles and fibres are shown for illustration in Figs. 32

to 37 in Appendix E. The results are summarised in histograms presented in Sections 3.4.2

to 3.4.5 for each corresponding location. Before analysing source counts in detail quanti-

tatively, a brief overview of the general results observed in all samples is presented in the

next section.

3.4.1 General observations

Most particles (> 99%) extracted after air-venting have the same optical appearance as the

sediment particles in all samples. In particular, even most particles floating on the surface of

the aqueous solution after rinsing of the filters are visually indinstinct from natural sediment

(see Fig. 33 in Appendix E for examples). Only a small number of uniquely identifiable plas-

tic particles are found in all sediment samples. These particles stand out mostly on the basis

of their intense blue, turquoise, green, or bright red colours, in agreement with the finding

in the artificial samples above. Orange particles with smooth surfaces are frequently de-

tected, yet those particles are visually indistinct from natural orange-red quartz fragments.

Several microplastic pieces are discovered on the basis of their shape and their surface

structure together with their floatation properties. Another source of anthropogenic contam-

ination in the sediment samples that might enter the food chain are glass pieces, although

the absence of toxic additives leaching into the tissue of absorbing organisms suggest less

adverse health effects than feeding on microplastics. Green glass pieces down to very small

size scales (∼ 70µm) are regularly detected in almost all sediment samples. Most green

glass bits are tiny and smoothed by erosion and must have been exposed in sediment and

water for a prolonged time. Despite their similarity to sediment in shape, the characteristic

green colours stand out among natural grains prominently, consistent with the high recovery

rates of coloured fragments regardless of shape and size in the artificially enriched samples.
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3.4.2 Results of Rostock gradient

3.4.2.1 Analysis of particle & fibre number counts

Particles:

With the finding in mind that particles floating on the surface of extracted samples after air-

venting are visually indistinguishable from natural sediment, the particle number counts in

Fig. 18 are not discussed under the presumption that all particles floating near the surface in

heavy saline solution are mircoplastics. The fluctuation is large both in the coarse 0.5-1mm

size fraction as well as in the small <0.5mm size fraction. In the pipetted solution, particle

numbers can range from zero to more than 150, and are most frequently between 10 and

50 in the plankton net counts as well as in the combined wet (ground + float) counts. The

instances where particle numbers are particularly high in the May Warnemünde and March

Markgrafenheide samples had a large fraction of fine-grained sediment floating above the

settled bottom sediment in the Erlenmeyer flask. Under the microsope at a magnification of

3-4, these grains were visually indistinguishable from natural sediment despite being more

numerous than in the other samples. The fluctuations in particle numbers are observed

to be even larger in the decanted solution, where the layers above the settled bottom sed-

iment are sifted onto the zooplankton net filter. In the coarse sediment fraction, number

counts in excess of 100 particles are observed in the April Nienhagen, Wilhelmshöhe, and

Markgrafenheide samples. Especially in the small size fraction, most sediment counts are

lower limits because of the very high sediment loads of several hundreds to thousands of

particles. The maximum number count in excess of 2000 particles is again observed in the

Nienhagen April sample. Systematic seasonal variations are not observed from March to

July in either of the locations, and systematic spatial trends between each of the four loca-

tions are also not detected.

Fibres:

Substantial statistical differences are observed in the fibre loads both in sediment and sea-

water samples. Between a few and several hundred fibres are observed. Nevertheless,

the distinction of natural and anthropogenic fibres is not as ambiguous as for uncoloured

particles. Although natural fibres might also be included in the presented number counts

in Fig. 19, several fibres displayed a long, thick and very regular structure unlikely to be

found in natural organisms. It would be interesting to study the appearance of natural fibres



3 RESULTS 55

Figure 18: Spatial and temporal variation of particle number counts observed along the
Rostock west-east gradient. Sampling locations are displayed from left to right: Nienhagen
(blue), Wilhelmshöhe (green), Warnemünde (red), Markgrafenheide (blue). The x-axis la-
bels denote monthly measurements for March (3), April (4), May (5), and July (7). Particle
numbers are counted on zooplankton net filters (dry count, dark bars) and in aqueous solu-
tion after rinsing of the filters (lighter bars). Arrows indicate lower limits, or cases where the
dry count was prohibited by dense sediment on the filter. Particles sunken to the ground
(bottom part of lighter bars) and particles floating on the surface (light part of lighter bars)
are displayed separately. The fine fraction with grain sizes < 0.5mm (right panels) and the
coarse fraction with grain sizes 0.5-1mm (left panels) were analysed individually. Note the
different scale in the bottom right panel.

in detail and create a comparison database, but this is beyond the scope of this thesis.

The distinction between natural and synthetic or at least anthropogenic fibres is more eas-

ily obtained for coloured fibres than for coloured particles, as natural fibres do not display

intense colouring. With the aim to increase the likelyhood to count synthetic fibres, the

number counts in Fig. 19 were derived from either long, thick transparent fibres or intensely

coloured fibres. The comparison between the darker and the lighter parts of the bars corre-

sponding to number counts in aqueous solution indicates that fibres are comparably likely

to be found on the ground along with the settled sediment fraction as well as in the floating

“islands” on the surface. In particular, fibres are by no means predominantly floating on the

water surface. In both the large and small size fractions, fibre numbers in the pipetted sur-
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face solution range from 10-40 in most samples and stay below 30 in all pipetted <0.5mm

surface samples. Fluctuations from a few fibres (consistent with lab background levels, see

Sec. 3.3) to 25 fibres are detected for grain sizes <0.5mm, and do not show systematic

patterns for specific locations or months, such that no seasonal trend is observed for fi-

bres among small grains. In the pipetted solution of the coarse grain 0.5-1mm fraction, two

peaks with fibre counts above 40 stand out among all other samples. The highest fibre load

in coarse sediments is observed in Nienhagen in April, reaching levels of 80 fibres. The

large fibre load is confirmed in the decanted solution of the fine-grained <0.5mm fraction of

the same sample (110 fibres). The second peak that stands out prominently concerns the

Warnemünde July sample. This sample displays a high fibre load in the 0.5-1mm pipetted

solution, but additionally exceeds all fibre loads in the coarse and fine-grained decanted

fractions with count rates of 220 and >120 fibres, respectively. The fibre number counts in

Markgrafenheide, on the other hand, do not stand out significantly. With numbers between

20 and 40 in most Markgrafenheide samples, with only the April sample reaching a maxi-

mum of ∼ 70 fibres, the numbers are comparable to Nienhagen and Wilhelmshöhe.

Microspheres:

A total of 18 microspheres is observed in 6 of 18 Rostock sediment samples.3 Microspheres

display a perfectly spherical shape with a diameter of 70-100µm. Most microspheres are

highly transparent with a light-yellow hue, and are identical in size and colour. Exerting

mechanical tension with the lanzette on one of the spheres, the shell of the sphere yielded

to pressure and a thick gel emerged. The shell proved to be extremely stable and the

exerted pressure had to be high to break the surface. Up to a magnification of 11, no

substructure was observed inside the shells or in the escaping gel.

3.4.2.2 Occurence of coloured particles and fibres

The least ambiguous anthropogenic contaminants in beach sediment are intensely coloured

particles and fibres. Although the numbers of coloured particles and fibres are generally low

(Fig. 20), almost all samples contain coloured fibres and about half of the samples contain

coloured particles. Qualitatively, coloured microplastics serve as tracers for anthropogenic

influx of synthetic material into natural beach sediment and seawater (see also Dekiff et
3There is no fixed term in the literature for spherical microplastic structures. Encountered terms included

spheres, microsperes, globules, and round, spherical particles. We use the term microsphere here for simplicity
when implying potential microplastics with a perfectly spherical shape.
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Figure 19: Spatial and temporal variation of fibre number counts observed along the Ros-
tock west-east gradient. Locations and colour coding are as indicated in the legends (see
also Fig. 18). The x-axis labels denote monthly measurements for March (3), April (4),
May (5), and July (7). Fibre numbers as counted on zooplankton net filters (dry count) are
shown as dark bars and in aqueous solution after rinsing of the filters as light bars. Arrows
indicate lower limits or cases where dense sediment on the filters prohibited the dry count.
Coarse (left panels) and fine-grained (right panels) samples are displayed separately. Note
the different scales.

al. 2014). Number counts of intensely coloured fibres and particles are therefore compiled

in Fig. 20, where the displayed colours in each sample reflect the colour range of the dis-

covered particles and fibres. As expected from the artificially enriched samples discussed

in Sec. 3.2, coloured fibres and particles are particularly well separated from sediment in

hues of blue, turquoise, intense green, and intense red by visual inspection.

Coloured Particles:

The spatial and temporal variation in the number counts of coloured particles is shown in

the left panel of Fig. 20. Between zero and five intensely coloured particles are found in all

samples, with the maximum load of coloured particles detected in the March Warnemünde

sample. As no coloured particles are observed in laboratory reference samples (Sec. 3.3),
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Figure 20: Number counts of intensely coloured particles (left panel) and fibres (right panel)
observed from March (3) to July (7) at each Rostock sampling location. Colours are approx-
imately coded to represent the real detected colour range. No bar indicates no coloured
pieces were found, except for the April (4) Warnemünde position, where no sample was
obtained. Coloured particle and fibre counts of laboratory blind samples are shown in the
last bins to the right in each panel. No coloured particles were observed in the reference
samples.

and as transparent plastic particles are not readily discerned from natural sediments by

visual inspection, these numbers are considered the minimum microplastic particle load

in Rostock beach sediments. While coloured fibres are detected in almost all samples,

coloured particles are found in only 6 out of 15 samples or 40% of the Rostock beach

sediment samples. A significant variation in the presence of microplastic particles is ob-

served among the four sampling locations. Nienhagen, Wilhelmshöhe, and Markgrafen-

heide contain coloured microplastics only in April, and no coloured particles are detected in

the March, May, and July samples. In the April samples, fibre loads are also exceptionally

high, as discussed below. In contrast to these three sampling locations, Warnemünde has

coloured microplastics in every sample (note that no sample was taken in April at this lo-

cation). Numbers of microplastic particles range from 3 to 5 in all samples where intensely

coloured particles are detected, with the highest number of microplastic particles observed

in Warnemünde sediments in March. Especially blue and turquoise plastic particles are

usually very small with sizes 50-100µm. These tiny particles were also not observed in any

of the blind samples, but are observed in almost all sediment samples. That these parti-

cles are not contamination during lab processing should be confirmed with larger sediment

sample sizes to provide better number statistics. Red particles unambiguously identified as

plastics are only detected in the Warnemünde samples. One of the red particles dissolved

in H2O2, suggesting polyamide as the polymer compound.
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Coloured Fibres:

Coloured fibre number counts of all Rostock locations are shown in the right panel of Fig. 20.

Coloured fibres are found in almost all sediment samples. However, up to two coloured fi-

bres are also observed in several blind samples, such that contamination from laboratory

air is not at the zero level, as expected without cleanroom conditions. In the blind samples,

blue and darkblue/black fibres dominate, and only one yellow fibre was found. Blind samples

contain between 0 and 2 fibres typically, and only one out of five blinds contains 3 coloured

fibres. Sediment samples with only 2 coloured fibres can therefore not be distinguished from

laboratory background levels. With 5 to 9 coloured fibres significantly above background

levels, the Nienhagen, Wilhelmshöhe, and Markgrafenheide samples show large coloured

fibre contents in April and/or May. This is consistent with the overall higher fibre loads dis-

cussed in the previous section, and with the intensely coloured plastic particles observed in

these April samples. The coloured fibre load is with 4 fibres in the July Warnemünde sample

moderately high compared to the March and May observations, where fibre contents were

consistent with background levels.

In general, coloured fibres are more numerous than coloured particles. Fibre numbers

range from zero to 9 coloured fibres per sample, while the maximum particle number is 5.

So far, the focus of sediment studies was rarely on synthetic fibres. The fact that coloured

fibres are present in almost all samples indicates that synthetic fibres represent a significant

fraction of the microplastics contamination and should be studied in more detail in the future.

3.4.2.3 Warnemünde Seawater Sample

Despite drawing seawater from the surface layer at a position where the water was more

than 50 cm deep, a total of 69 particles are detected in the 7l water sample. Most particles

lifted into the water column and collected in the seawater sample are very small as com-

pared to sediment particles collected from the ground. The comparably small size range of

these particles suggests that smaller-sized grains are supported more easily and for longer

periods of time on the water surface than larger-sized grains. The most conspicious floating

particle displays the shape of a droplet with a length of 1.6mm (see Fig. 21) and is clearly

identified as microplastics. In addition, thin “foil” fragments are observed in the seawater

sample, and one blue particle was attached to such fragments (see Fig. 21, right panel).

While the darkblue particle is likely of anthropogenic origin, whether the thin foil fragments
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Figure 21: Microplastic particles discovered in the Warnemünde seawater sample.
Left: Hard plastic droplet with a length of 1.6mm swimming on the surface after filtration
of the Warnemünde seawater sample (scalebar 1mm). This is one of the largest and un-
ambiguously identified microplastic particle found in all samples. Right: Thin foil fragments
with darkblue particle attached (scalebar 1mm).

are organic matter or synthetic polymer sheets cannot be deduced without spectroscopic

identification.

At the same time, there are surprisingly few fibres, and especially only 3 long, thick, coloured

fibres (2 black, 1 blue) were suspended on the surface. This finding is consistent with

the above observation that fibres, and especially thick, synthetic fibres, sink to the ground

rapidly and would hence not be suspended at the water surface in large amounts.

3.4.3 Rügen gradient

3.4.3.1 Particle and fibre number counts

The visual inspection of the Rostock samples showed that coloured particles and fibres pro-

vide the safest identification of microplastic contaminants in sediment samples. Hence, the

coloured particles and fibres as potential microplastics are predominantly discussed below.

As not intensely coloured particles are suspected to be natural sediment, only the total fi-

bre number counts are shown in Fig. 22. The detections of coloured particles and fibres

are displayed in Fig. 23. At the main beach in the seaside resort of Binz, both drift line

and shallow water sediment samples were obtained. While the shallow water sample is not

directly comparable to the drift line samples, the results are included in the discussion of

microplastic contamination where appropriate.

Particles:
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A total of seven tiny plastic particles are observed in the Rügen drift line samples when

all coloured, potential microplastic pieces are counted (see Fig. 23). One additional blue

particle was extracted from the shallow water sample. In each individual sample, between

one and three coloured particles are detected. As in all other samples, coloured plastic

pieces are predominantly smaller than 100µm and are dominated by blue and turquoise

colours, as those stand out most prominently among natural sediment. Two intensely red

coloured particles are identified, which is rare among coloured particle samples. Other than

the dark red particles observed in the Rügen samples, brightly coloured red particles were

only retrieved from Warnemünde beach sediments. These two beaches have the highest

visitor density of all locations.

Fibres:

In the whole set of five Rügen samples obtained at four locations, only 5 coloured fibres are

found (Fig. 23). With only 1-2 coloured fibres per sample, these numbers are consistent

with laboratory background levels. Note that laboratory exposure is lower without sieving

due to the decreased number of handling steps and exposure to lab air and equipment.

The total load of 0-20 long fibres per sample (pipetted plus decanted solutions, Fig. 22) is

also extremely low. This is even true for the touristic beach at Binz, where samples were

obtained in the main beach area next to the sea bridge.

Figure 22: Fibre number counts at the four Rügen sampling locations. Locations are as
indicated in the legends: Heidehof in the north (blue), Dranske in the west (green), Breege
(red) and Binz (blue) in the east of the island. Dry counts are reported as dark bars, and
counts in aqueous solution as lighter bars. Note the different scales and corresponding
lower number counts as compared to Fig. 19 in both the pipetted solution (left) and the
decanted solution (right). Fibres on the sediment-rich plankton net filters of the decanted
solution could not be counted, as indicated by the arrows, such that fibre counts are only
shown after rinsing into aqueous solution.
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Figure 23: Coloured particle (“Par”) and fibre
(“Fib”) number counts at all four Rügen sam-
pling locations. In the case of Binz, both the drift
line (“beach”) and the shallow water (“water”)
sample are shown as both displayed coloured
microplastic fragments. The Binz beach sam-
ple did not contain coloured fibres.

The decanted solution of the Breege and

Dranske samples contains large amounts

of fine, thin, and short fibres not counted

in Fig. 22. While the sediment sam-

ple taken under the gravel line in shallow

water in Binz shows a similarly rich fre-

quency of very thin fibres, both the Binz

and Heidehof drift line samples display no

thin fibres at all. These are among the

cleanest samples taken during the whole

summer of 2014 in the entire Baltic coast

sampling area. The fact that many fine fi-

bres are observed in the Binz underwater

sample, but not in the Binz drift line sam-

ple, suggests a possible natural marine origin of these thin fibres. Further samples and

research are required to monitor the seasonal variation in fine fibre loads. A correlation

between the growth rate of mussels and zooplankton species or other crustaceans and a

detailed comparison with organic antennae would be beneficial to quantify the expected

natural thin fibre load.

In summary, the five samples analysed from the island of Rügen show low numbers of tiny

plastic fragments. At the same time, they display the lowest fibre content in all samples, and

visually identifiable synthetic fibre numbers remain low even at the most frequented Rügen

beaches.

3.4.4 Oder/Peene estuary

3.4.4.1 Detection of anthropogenic particles, fibres, and glass pieces

Sediment samples of the outlet of the Oder into the Baltic Sea were taken landwards at

the freshwater sand beach of Kamminke at the Stettiner Haff, near the Polish border, and

seawards at the western Peene outlet near the Freest fishing harbour. As sieving did not

yield distinctive results between the fine and coarse fractions in the Rostock samples, and

as Oder samples are composed of fine-grained silt, the Freest and Kamminke samples were

not sieved. Especially the Freest sample is dominated by very fine silt, such that numerous

tiny sediment pieces (several 1000 to 10000 per sample) were found in the pipetted and

decanted surface solutions above the bottom sediment layer, prohibiting sediment/particle
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counts. Because large amounts of organic material (insect/crustacean shields, dragon-

fly shedded skins, waterplant blades, and dark-green algae) rapidly clogged the net, the

remaining solution above the bottom sediment had to be decanted over 4 plankton nets

instead of one. After rinsing the decanted solution from the plankton nets, large islands of

mixed organic material and fine-grained sediment were floating on the surface of deionised

water. Even tiny green glass bits were caught and suspended in these floating islands.

To further test whether these floating particles are dominated by microplastics or natural

sediment, the surface solution of two decanted nets was carefully poured from the petri dish

into two centrifugation tubes, which were then filled to 37ml water level with deionised water.

These tubes were centrifuged at low speed with 800 rotations/minute for 3 minutes. After

centrifugation, all particles had sunk to the bottom of the tubes, indicating that the floating

particles were dominated by fine-grained sediment with a higher density than water. Only a

few insect shield and 5 skin/foil pieces as well as 4 fibres were still found at the surface of

each sample (recovered fibre and foil number counts were identical in both samples), and

no indication of transparent plastic particles was found in these samples after centrifugation.

Figure 24: Oder/Peene fibre and coloured particle and fibre number counts.
Left panel: Fibre number counts in the Kamminke Stettiner Haff and Freest Oder/Peene
estuary sediment samples. Plankton net counts (dry counts) were prohibited by the large
number of fine-grained sediment on each filter, as indicated by the arrows. Note that a
logarithmic scale is chosen in this plot, as fibre counts in the aqueous solution were very
low in Kamminke and exceptionally high in Freest sediment.
Right panel: Coloured particles, fibres (left), and glass fragments (right) detected in the
Kamminke (left bars) and Freest (right bars) samples, respectively. Bar colours indicate the
colours of discovered particles and fibres.

Fibres were counted in the ground/float fractions after rinsing the zooplankton nets, as they

were barely visible among the sediment heaps on the net. Results of the fibre counts, and

remarks on the general appearance of the samples, are given in Table 13 in Appendix D and

are shown in Fig. 24. The Kamminke Bodden sample contained one blueish plastic particle
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Figure 25: Selection of glass fragments detected in the Peene outlet sample obtained near
Freest fishing harbour. In the left image, glass pieces identified in sediment heaps on the
basis of their colour and shape are marked with arrows, and in the right image, a collection
of glass pieces of various sizes and shades is shown.

and only 11 long fibres in total. Fine, thin fibres usually present in all Rostock samples were

not observed. This unusually low fibre content might be a consequence of the lower tourist

density and the fact that Kamminke beach is not a frequented bathing beach. In addition, no

fibre influx is present from extensive fisheries or from sewage treatment plants discharging

laundry effluent in the immediate vicinity of Kamminke. Nine green glass pieces with sizes

on the order of 100µm are observed among the fine-grained sediment at the ground of the

petri dish. Contamination is much larger in the Freest samples, where a total of 206 tiny

green glass pieces were counted among the fine-grained sediment. Examples of the sizes

and colours of glass pieces are shown in Fig. 25. Five small likely plastic pieces are found

among the fine-grained sediment either at the surface or among the ground sediment (2

blue, 1 turquoise, 1 green, and 1 clear-apricot rod, Fig. 24). The fibre load in the 500ml

Freest sample, identical to the sediment volume of the Kamminke sample, was 302 fibres

instead of just 11. Among these were several very long (up to 2 cm length) and thick

fibres both in the bottom as well as in the floating material. Although an organic origin

for these fibres, e.g. chitin crustacean antennae, can not be excluded without chitinase

digestion, the very regularly shaped structure of numerous fibres hints towards a synthetic

origin. In addition to the large number of transparent fibres, 8 coloured fibres are found

in the Freest sample (3 petrol, 2 blue, 1 rose, 1 red, 1 orange-ochre, Fig. 24). The low

anthropogenic contamination in the Stettiner Haff at Kamminke beach starkly contrasts the

very high microplastics and glass load at the Freest Peene outlet into the Baltic Sea.
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3.4.5 Jade Bay comparison sample

The North Sea Jade Bay, known from earlier studies to be contaminated with microplastics,

was chosen for method validation and comparison with Baltic coast sediment and seawater

samples.

3.4.5.1 Particle and fibre number counts

The particle and fibre counts, including coloured pieces, of the Jade Bay samples are shown

in Fig. 26. As in the Baltic coast samples, the number fluctuations are particularly high

for particles. Particle counts in seawater and the decanted solution of sediment samples

range from a few hundred to a few thousand, while only few particles are observed in the

freshwater sample. The fluctuation in the fibre contents is not as extreme. Between a

few and a few tens of fibres are found in both sediment and water samples. A maximum

fibre load of 77 fibres is observed in the canal Nordender Leke near Varel’s paper recycling

plant, where the load of 20 coloured fibres also exceeds detections in all previous samples.

Remarks on the individual Jade Bay samples are provided in the following sections.

Figure 26: Particle (left panel) and fibre (right panel) number counts of all Jade Bay sam-
ples, including freshwater, seawater, and two sediment samples. Sediment samples are
displayed in green, while water samples are shown in blue. For sediment samples, counts
in the pipetted (“pip”) and decanted (“dec”) solutions are displayed individually. Dry counts
and wet counts are separated in dark and light bars, as in previous figures. Arrows indi-
cate prohibited dry counts due to dense organic material on the filters. Coloured fibres and
particles are shown next to each sample, colour-coded to mimick the true colour variations
found in potential microplastic particles and anthropogenic fibres, and annotated with the
total number of coloured pieces above each bar. The majority of fibres displays various
shades of blue. Note the differing logarithmic scales.

Dangast seawater sample

The high concentration of organic material in the Dangast seawater sample required that
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particles and fibres were extracted onto three 55µm zooplankton net filters. After rinsing

with deionised water, a total of 448 particles were counted with 3× magnification on all

three 55µm nets (Fig. 26, left panel). The particles had a similar appearance to the sedi-

ment samples, and the seawater sample was overall very similar to the beach sample taken

at the same location. Seven blue fibres of likely anthropogenic origin were detected, as well

as one violett plastic particle (see Fig. 26). Among the 31 fibres counted in total, several

fibres as long as 0.8-1.5cm were found. The fact that the longer fibres were folded into

dense knots suggests that these fibres are composed of persistent synthetic material.

Varel freshwater sample

The freshwater sample of the Nordender Leke contained the largest load of coloured fibres.

In a total of 20 coloured fibres, 13 were blue, 3 violet, 3 green, and one was black (Fig. 26).

Two transparent particles showed a structured surface that indicated microplastics rather

than sediment (in addition to the fact that no sediment was found, nor was expected, in the

freshwater surface sample of the canal). A large number of 10 pieces with the appearance

of (plastic/celluloid) foil were also observed.

Dangast sediment samples

In contrast to the freshwater sample, the two independent Dangast sediment samples con-

tained a comparatively low overall fibre load of only 11 fibres in sample 1 and 36 fibres in

sample 2 (right panel in Fig. 26). Except for one white fibre, all of the fibres in the first

sample were transparent and might be of organic origin, given the large load of organic

material in the Jade sediment. In the second sample, 7 coloured fibres with a potential

anthropogenic origin were found. Despite the general appearance of most particles, espe-

cially in the decanted solution, being consistent with natural sediment, several plastic and

likely plastic pieces were detected. In sample 1, one dark red, one blue-green, and one

green particle share the appearence of plastic. An additional three clear particles were

identified that display a surface structure consistent with synthetic material. Because of the

large particle load in the decanted fraction, and the large number of particles floating on

the surface of deionised water after rinsing off the plankton net, the surface solution was

carefully poured into centrifugation tubes and centrifuged at 3000 rotations/minute. After

centrifugation, no particles remained on the surface, yet several fibres were floating in the

water column at various heights. This supports the conclusion obtained from the Rostock
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samples that synthetic material is not predominantly floating on the surface.

In summary, the freshwater, seawater, and sediment samples taken at the Jade Bay display

a large load of likely synthetic (colourful) fibres, a larger amount of small pieces with a

plastic-like appearence, and a large amount of apparent foil fragments that might either

originate from paper recycling or might be floating in the water column due to the high

organic zooplankton load observed in each of these samples.

3.5 Summary of particle & fibre number counts

All samples display large numbers of hundreds to thousands of particles especially in the

decanted solution extracted above the settled sediment in the Erlenmeyer flasks. Particles

were in shape and visual appearance indinstinguishable from natural sediment. Although

the pipetted surface solution allowed a cleaner extraction with much lower natural sediment

levels, most coloured particles and fibres were detected in the decanted solution. Hence, a

complete extraction of anthropogenic microplastics requires analysis of the decanted solu-

tion when densities of 1.3 g/ml are employed for plastic-sediment separation. Fibre number

counts covered a large range from a few fibres to several hundred long, thick fibres as

well. For transparent fibres, a unique distinction between organic fibrous material and fibres

of anthropogenic origin (both natural and synthetic) was not possible by visual inspection

under a dissecting microscope. Coloured fibres ranged from 1 to 9 in all sediment and

seawater samples, and reached a maximum of 20 in the Varel freshwater sample. A high

synthetic particle and fibre contamination is observed at the Peene outlet into the Baltic

Sea, while a low coloured particle and fibre content is detected near the Warnow outlet at

Markgrafenheide beach. No systematic trends are observed both spatially and temporarily

in the Rostock and Rügen gradient samples.
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4 Discussion

4.1 Method testing

One of the major findings of this study is that air-venting with high-density saline solutions

(1.3-1.4 g/ml) does not provide a method to cleanly separate microplastics from natural sedi-

ment. Although small amounts of∼ 200 microplastic particles with low densities of 0.9 g/cm3

are efficiently extracted from sediment samples with total weights of up to 800g (Sec. 3.2),

all samples contained varying amounts of residual natural sediment in the floating pipetted

or decanted solutions above the settled sediment as well. This implies that previous studies

finding large particle loads with this method have to be treated with caution, and should be

confirmed with more sophisticated methods where possible.

From the methods testing presented above, one of the major problems in microplastic de-

tection is that natural mineral particles and transparent plastic fragments are visually indis-

tinguishable. This is particularly severe for particles counted on filters, as the bright filter

background renders the distinction even harder. Transparent fibres are difficult to detect

on filter material as well. Using zooplankton net or stainless steel mesh filters allows the

rinsing of particles and fibres into aqueous solution, which enabled a more reliable detec-

tion of both fibres and plastic particles on the basis of their shape and surface structure. A

focus on intensely coloured particles and fibres increases the likelyhood that observed frag-

ments are indeed synthetic polymers of anthropogenic origin. Especially after treatment

with H2O2 only resistent coloured polymers should persist. This simple and cost-effective

step allows the removal of organic residual matter from sediments and plastics, and causes

synthetic fibres and particles to stand out more prominently among the sediment mix (see

also Lorenz 2014). Polyamide/nylon particles and fibres are the only polymers that are dis-

solved by hydrogen peroxide, as was indeed observed for one red particle in Baltic coast

samples. Coloured fibres were present in almost all sediment samples along the German

Baltic coast, and coloured particles were present in 40% of the drift line samples. Coloured

particles and fibres are therefore predominantly used as the basis for the discussion and

literature comparison provided below.

4.2 General conclusions for particle extraction

The particle number counts in all samples display large fluctuations between several tens

and thousands of particles. Among the particles extracted in calciumchloride solution, only

a few particles can be identified as microplastics on the basis of their colour, shape or sur-
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face structure. This implies that more than 99% of particles above the bottom sediment in

calciumchloride solution are visually indistinguishable from natural sediment. Such particles

would have to be claimed plastics under the assumption that high-density saline solutions

provide a clear separation between microplastics and natural sediment. After centrifuga-

tion, sediment-like particles condensed at the bottom implying a higher density than water.

Hence, caution has to be applied when the number counts of floating particles after air-

venting in high-density saline solution are used unselectively to count microplastic particles.

The systematically higher particle numbers extracted from the fine-grained sediment frac-

tions indicate that smaller grains are more likely to contaminate microplastic samples. This

finding is consistent with earlier observations by Imhof et al. (2012), who found that only the

topmost volume in zincchloride solution at even higher densities of 1.6-1.8 g/ml was domi-

nated by artificially added microplastic fragments. While their experiments were focused on

the recovery rates of microplastics in artificially enriched sediments, the focus here is on the

levels of contamination when real sediment samples are analysed. From the observations

presented in Sec. 3, however, even in this topmost volume a large number of contaminating

natural sediment particles is expected rather than pure microplastics.

Previous studies mostly used the top layer of the saline solution to search for microplastics.

While this is advantageous in view of the results found by Imhof et al. (2012), in all sam-

ples presented in Sec. 3 many of the coloured microplastic particles were detected in the

decanted rather than the pipetted solutions. In addition to high-density PVC and polyamide

fibres and particles, aging and biofouling in the natural seawater environment might cause

particles and fibres to sink, thus prohibiting their detection in the surface layer. In North

Sea sediment samples, more than 80% of marine synthetic materials are composed of low-

density polypropylen and polyethylen (Lorenz 2014, see also Table 2 in Sec. 2.8). If the

Baltic coast samples are dominated by similar materials, the fact that numerous particles

and fibres are found in the water column implies that biofouling or other effects must have

altered the floatation properties of microplastics. Although evidence for biofouling is increas-

ing with the increasing number of plastic degradation studies available (e.g., Ye & Andrady

1991), aging and sinking effects in microplastics have not been quantitatively studied so

far. The visual inspection presented here leads to the conclusion that additional means

are required after air-venting in high-density saline solution to ensure that a representative

sample of light-weight and heavier microplastics are extracted.
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4.3 Seawater samples and sediment floatation

Both the Warnemünde and the Dangast seawater samples contained substantial amounts

of 69 and 450 particles. Both samples were drawn from the surface in shallow water near the

beach. Finding sediment fragments on the water surface strengthens our conclusion that

microplastics and sediment particles are not unambiguously separated from their floatation

properties. The Dangast beach samples contained the finest-grained sediment among all

locations. The large number of floating particles indicates that tiny, lighter-weight sediments

are suspended more easily. As in the particles extracted from the sediment samples, sur-

face tension must play a rôle in keeping particles on the surface. In this case, the water

surface tension has to balance the gravitational pull causing high-density particles to sink.

The gravitational force of a single particle, assumed to be spherical for simplicity, is given

by

Fg = g V ρ = g 4
3πr

3ρ

where g is the gravitational acceleration (9.81 m/s), ρ the particle’s density, and V and r the

particle volume and radius, respectively. Gravity is counterbalanced by the force exerted

by surface tension, which acts to minimise the energy E and hence the area: ∆E = σ∆A,

where σ is the surface tension and ∆A is the change in area (Gerthsen Physik, p. 100-101).

For a spherical particle:

∆E = σ 2πr∆h

where r is the radius of the sphere touching the surface, and ∆h is the height of the sphere

segment with surface area ∆A = 2πr∆h causing the indentation. The surface tension

force, Fs = ∆E/∆h, acts as the force parallel to the surface of contact between the particle

and the water. The vertical component of Fs counterbalances the gravitational force and

increases with the angle of indentation (as mesaured from the horizontal water surface):

Fs = σ 2πr sinθ

where θ is the indentation angle between the object and the surface, and σ, the surface ten-

sion of the liquid, is 72.7×10−3 N/m for water at 25oC. For natural sediment, a characteristic

density of 2.5 g/cm3 and a particle radius of 100µm are assumed, consistent with observed

grain sizes. With these values, the gravitational force of a single sediment particle is esti-

mated to be Fg = 1.0 × 10−7 N. Assuming an indentation angle between the water surface

and the surface of the sphere of 30o, the surface tension exerts a force of Fs = 2.3× 10−5 N

on the particle. Thus, the suspending force due to water surface tension is two orders of
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magnitude larger than the gravitational pull of particles with a radius of 100µm and a density

of 2.5 g/cm3. Note that the suspending force depends linearly on the size of the particle,

while the gravitational force scales as r3. With the same simplyfied assumptions, the grav-

itational force exceeds the surface suspension force for a particle with a radius of 1.5 mm

(rlim =
√

3σsinθ
2ρg ) causing larger particles to sink. Given these considerations, the assump-

tion that particles floating on the wave surface are of a lower density than water and natural

sediment and hence have to be plastics needs to be revised. A very low surface tension

appears to be sufficient to keep mineral grains floating for an extended period of time after

being stirred into the water column from the bottom, e.g. by wave motion, touristic or boat

activity. This conclusion implies that more sophisticated techniques are required to unam-

biguously distinguish microplastics from natural sediment even in seawater (or freshwater)

samples. The major conclusion from this estimate is that natural sediment grains with di-

ameters < 1mm are also expected to float on the surface of aqueous solution after rinsing

of the zooplankton net filters.

4.4 Sediment samples along the Baltic coast

4.4.1 Rostock sediment samples

Almost all Rostock samples contained both coloured particle or fibre loads. Coloured mi-

croplastic particle contamination is found to be low in 500ml samples, ranging from 1 to 5

particles, with most samples displaying 1-3 coloured synthetic particles. Although number

statistics are small, the fact that all Warnemünde samples contain coloured microplastics

strengthens the strong anthropogenic influx of synthetic materials at this most touristic Ros-

tock beach. While the fibre load is found to be exclusively large in the July seasonal sample

(see below), microplastic particles appear to be persistent in all seasons, implying that par-

ticles have a longer resilience time than fibres in beach sediments. Particles might not be as

affected by photo-induced UV bleaching as fibres, possibly retaining their synthetic colours

for more extended periods of time.

The contamination with coloured, likely synthetic, fibres displays a much larger variety. Sea-

sonal samples along Rostock beaches from March to July display a maximum of 9 coloured

fibres in 500ml sediment (approximately 750-800g dry weight), with no evident seasonal

pattern in the numbers of detected coloured fibres alone. Touristic activity and the proximity

to the Warnow outlet carrying city and harbour discharge into the Baltic Sea are most likely

responsible for the relatively high synthetic fibre loads. Transparent fibres are particularly



4 DISCUSSION 72

numerous in the July Warnemünde sample, while coloured fibres are only moderately en-

hanced, suggesting rapid bleaching under the influence of UV-intense solar radiation. The

origin of the ecxeedingly high increase in the fibre load is likely seasonal touristic activ-

ity. Warnemünde is the most frequented beach in the Rostock area, and a major tourist

destination as well as a major place for weekend recreation of the local communities. Vis-

itor numbers in Warnemünde are on the order of one million beach guests in the vacation

season, with July and August being the peak months (Statistisches Amt der Stadt Rostock

2013). Hence, the observed increase in fibre numbers is most likely caused by increased

numbers of people on the beach and in the water. Here, the fact that swimsuits as well as

UV protection clothes are made of synthetic fibres adds to the contamination load.

The seasonal variations in the fibre loads in the three other Rostock locations are not

as extreme as in Warnemünde, as expected if touristic activity is one of the dominant

sources of fibres. In particular, no systematic monthly trend in the fibre loads can be iden-

tified. The comparatively large pre-seasonal total and coloured fibre loads in the Nien-

hagen/Börgerende and Wilhelmshöhe April samples were particularly unexpected. Both

locations were chosen as low anthropogenic influx sites as compared to Warnemünde and

Markgrafenheide. Following the west-east drift as the major direction of wind and water flux,

the heavy touristic activity westward of Nienhagen/Börgerende might influence the beach

sediment contamination all the way to Warnemünde. A total of 410.000 guests with 2.4 Mil-

lion overnight stays in Kühlungsborn (Kühlungsborn fact sheet 2013) might contribute to a

high influx of synthetic fibres along the entire Rostock coastal area. A second possible ori-

gin of fibres is the artificial reef located 1.5km into the Baltic Sea from the Nienhagen coast.

The reef is built from a combination of concrete structures and net material (http://www.riff-

nienhagen.de), and the mesh netting could be a continuous source of disintegrating fibres.

In these locations, the seasonal fibre load could be washed ashore and accumulate over the

stormier fall and winter seasons, where wave activity during both the westwind drift as well

as north-easterly winds drive the currents towards Nienhagen Bay (see, e.g., Staatliches

Amt für Umwelt und Landwirtschaft Mecklenburg-Vorpommern 2014). After storm events, a

larger amount of macrodebris was observed in the Nienhagen and Börgerende beach areas

(Fig. 27). However, not all observed fibres need to be of anthropogenic origin. Increased

natural activity in zooplankton/crustaceans and insect species enriching the samples with

appendages, antennae, leg hair, and other fibrous material in the spring season cannot be

excluded as the origin for the large fibre contents at the present time. In contrast to byssus

fibres, any chitin fibres will not be dissolved in H2O2 and hence will be present on the zoo-
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plankton nets and in the aqueous solution after sample processing. Without spectroscopy or

a more complete digestion procedure with chitinase, it remains unclear whether these fibres

are of organic or synthetic (anthropogenic) origin. Even if of anthropogenic origin, cotton

or wool fibres are expected to disintegrate by natural processes more rapidly than synthetic

fibres, and would not enter the marine food chain as a hazard. On the other hand, coloured

anthropogenic fibres are observed inside dissolved organic matter (e.g. small crustaceans)

as well. Whether these fibres already entered the food chain or were captured on the sticky

dissolving proteins during sample processing needs to be studied further. In any event, a

method to distinguish uncoloured synthetic fibres from organic material is urgently needed

to quantify the potentially harmful microfibre load.

Figure 27: After a storm event in June 2014, insulation squares with a size of about 7cm had
washed up in large numbers on Nienhagen beach. The squares were located underneath
the sand cliff and coastal forest, a remote area where no construction activity is expected
nearby.

A surprising result is that the fibre counts in Markgrafenheide do not stand out significantly.

The effluent of the Warnow with its sewage treatment plant discharge as well as all dis-

charges from the overseas harbour passes on the westerly current from the Warnow outlet

directly in front of Markgrafenheide. However, the expectation of a particularly high fibre

load at Markgrafenheide main beach is not confirmed. Further analysis of Warnow water

samples and direct samples of the sewage treatment plant effluent would be valueable to

compare these low fibre numbers with the discharge contamination. Such a study would

provide a more detailed view on the amount of anthropogenic and synthetic fibres accumu-

lating on nearby beaches and carried out to Sea. The comparison between Markgrafen-

heide and Warnemünde suggests that the influx of anthropogenic fibres accumulating in

beach sediments is higher in beaches with the highest touristic activity than in beaches

with passing river discharge near the Warnow outlet (but see Sec. 3.4.4 for a comparison

with Oder discharges). From this finding, immediate and local anthropogenic fibre influx
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seems to be a major source of synthetic fibres at Rostock beaches. The large fibre loads

observed in Nienhagen and Wilhelmshöhe before the main summer season additionally in-

dicate that in the wider urban area, other influx pathes add major contamination levels of

plastic particles and of synthetic fibres to the total microplastics load.

4.4.2 Rügen sediment samples

The low fibre number counts observed in all Rügen locations are in stark contrast to the high

fibre loads observed in Warnemünde in the tourist season (compare Fig. 22 to Fig. 19).

Taken towards the end of June, on June 22 and 28, the Rügen samples are drawn dur-

ing peak summer vacation. In the Binz drift line sample, total fibre counts amount to

only 13 fibres (pipetted + decanted), and comparably low fibre counts are found both in

beach sediment and in sediment retrieved in shallow water near the beach. In both sam-

ples together, only one petrol coloured fibre is found, and it cannot be excluded that this

fibre was introduced in the lab. In the July drift line sample taken in Warnemünde, on

the other hand, in excess of 300 fibres are counted (see also Fig. 19). Surprisingly, the

total number of overnight visitors is comparable in both locations. Binz hosted 1.78 Mil-

lionen overnight stays in the summer season of 2010 (Touristic report, Statistisches Amt

Mecklenburg-Vorpommern 2011, numbers for 2013/2014 were not available at the time of

writing), while Rostock including Warnemünde hosted a total of 1.8 Million overnight stays

in 2013 (Statistiches Amt der Stadt Rostock 2014). The very low fibre contamination found

in Rügen beach sediments might therefore indicate that the waterflow around the island is

generally stronger than along the Rostock coast, rapidly carrying off synthetic material.

4.4.3 Oder/Peene sediment samples

The fibre content in the Peene estuary sediment sample of 302 fibres is comparable to

the excess fibre load in the July Warnemünde sample, and thus one of the largest fibre

contents in all samples. With 5 coloured particles and 8 coloured fibres, the unambigu-

ous microplastic contamination is also high in the Freest sample. Substantial fibre loads,

coloured particles, and the large number of green glass fragments render the Freest sample

the most evidently contaminated sample with anthropogenic particle and fibre influx. The

high synthetic particle and fibre contamination observed at the Peene outlet into the Baltic

Sea suggest that the Oder discharge carries substantial amounts of microplastics. The low

coloured particle and fibre content detected near the Warnow outlet at Markgrafenheide
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beach indicates a lower microplastic influx from the Rostock sewage treatment plant and

harbour. The westward current along the Rostock coastline could additionally foster the fast

dispersal of effluent into a wider area. Sampling along both extended Warnow and Oder

river sections would be beneficial for quantifying the flux of microplastics towards the Baltic

Sea.

Origin of the Oder/Peene anthropogenic contamination

Although a few green glass pieces are regularly encountered in most samples, the large

number of 206 glass fragments found at the Freest beach location is not observed in any

of the other samples. With its high fibre load, the Freest sample is also one of the most

fibre-rich samples, comparable to the total fibre load in Warnemünde in the peak sea-

son. As the beach in Freest is not heavily frequented by tourists, two likely contamination

sources are identified. The first source of fibre influx is, as expected, the Oder river with

discharge waters from the city of Szczecin (Stettin), while a second origin of fibres might

be the fishing industry. Freest itself has a fishing harbour with 54 small fishing vessels (Fis-

chereigenossenschaft Peene/Freest 2010). Possible sources for the unusually large glass

fragment content are therefore the glass spheres employed in the fishing industry for net

floatation before plastic swimming spheres became available. A city discharge origin might

seem less likely in the case of glass fragments as compared to plastic fragments, as glass

sinks with sediment and is only transported into the Baltic Sea when sediment is washed

out with river runoff during storm seasons. As glass behaves identical to natural sediment,

those scenarios cannot be distinguished from the Freest samples alone.

In conclusion, the Freest sample obtained near the Peene/Oder outlet is the sample with

the highest anthropogenic contamination in our survey. Although the proximity to the Freest

fishing harbour and the military station at Peenemuende on the eastern side of the estu-

ary likely contributes to the large anthropogenic particle, glass, and fibre load, the Peene

runoff into the Baltic Sea is the major discharge location of the Oder river. Carrying effluent

from the city of Szczecin and industrial areas along the river, a fraction of the anthropogenic

contamination likely originates from urban and industrial activities along the river bank. Sed-

iment sampling from the Freest outlet towards Szczecin at sediment deposit sites along the

river would shed light on the spatial distribution of glass fragments and microplastics in the

Oder/Peene estuary, and thus on the predominant entry pathes of anthropogenic microplas-

tics (and glass pieces) into the Baltic Sea from the Oder river runoff.
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4.4.4 Possible origin of microspheres

In 6 of all 18 Rostock sediment samples, including both beach and shallow water samples,

a total of 18 round, glass-like spheres are detected. Most of these spheres have a yellow-

ish tinge (Fig. 28, left panel), with a few being colourless. The sizes are identical within

the visual inspection limitations and on the order of 80µm for the yellowish microspheres.

Colourless or milkywhite spheres were smaller, ∼ 60µm in diameter, and just retained by

the mesh size. One of the yellow spheres was destroyed with a lancette, and a thick liq-

uid emerged from a sturdy shell with the soft, sticky consistency of a natural or synthetic

polymer. Although we cannot definitely determine the origin of these microspheres, this

observation is reminiscent of skin-care spheres containing oily substances in personal care

products such as shower gels and lotions which unfold their skin-protecting virtue after the

cleaning stage (Fig. 28, middle panel). Inside the microspheres, no substructure was ob-

served. One potential natural origin of perfectly spherical shells without substructure could

be unfertilised or undevelopped fish eggs (Fig. 28, right panel).

Figure 28: Microsphere (dark sphere near image center) found among raps pollen (white
irregular particles) in the May Börgerende sample (left panel) with a size of approximately
80µm compared to silver-coated microspheres produced by Cospheric (middle panel). Un-
fertilised eggs of the marbled rockcod also display a perfectly spherical shape without sub-
structure. Note the large size of these fish eggs (source & copyright: Aquatichyk 2012).

However, no more evolved or fertilised stages of fish eggs are present in any of the sam-

ples. Although fish spawning events can be highly synchronised, this would not explain

the detection of identical spheres in later samples. The small overall numbers of spheres

are also atypical for spawning events. Even if unlikely, a natural origin cannot be entirely

excluded at this point. Just one sphere each is found in four of the samples, while the

Nienhagen/Börgerende April sample featured 4 microspheres. The largest number of 10

spheres is detected in the May Börgerende sediment sample, where foil-like structures are

also prominent (see Table 10 for reference). This sample is rich with more than 2000 raps

pollen, suggesting that spheres and foil fragments were introduced with the pollen into the

surface layer of beach sediment from the raps field directly above the sand cliff connect-
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ing Börgerende to the Nienhagen coastal forest. The seawater was also rich with yellow

raps pollen, confirming air-blown input from the nearby field. In a systematic study of field

soils, Zubris & Richards (2005) found that synthetic fibres from sewage sludge fertilised

fields are retained 15 years after the application. In the case of the Nienhagen sample, the

application of sewage sludge could not be confirmed, yet a treatment with either sewage

sludge or with other material containing sludge remnants would explain the high fragment

and microsphere load found exclusively in the May sample. May samples from the other

three Rostock locations do not show these anthropogenic contaminants, supporting the in-

flux from raps pollen. An analysis of field soils at the Börgerende site would be valueable to

confirm this tentative interpretation.

4.5 North Sea Jade Bay samples

4.5.1 Anthropogenic contamination in the Jade Bay

With 20 coloured fibres, the freshwater sample obtained in Varel’s Nordender Leke near a

paper recycling plant contains the largest coloured fibre load of all samples. As the plant

does not discharge into the rivulet at a distance of just 50m to the paper stacking court,

the origin of the large influx is most likely wind carriage. Fibres, including synthetic fibres

from acrylic colour layers, are a natural byproduct of paper recycling due to the shredding

process. Hydrogen peroxide is a potent bleaching agent employed in the paper industry that

acts destructive to cellulose. The treatment with hydrogen peroxide is therefore expected to

either dissolve or bleach cellulose paper fibres. The coloured fibres observed are therefore

likely not cellulose fibres. Magazin covers can be laminated and might be stained with

acrylic colours. These colours, and any fibrous material shredded from such papers, would

be more persistent to the treatment with H2O2. Especially the observed coloured fibres are

therefore likely synthetic fibres.

The seawater and sediment samples obtained at Dangast contained moderately high colour-

ed fibre loads of 8 and 6 mostly blue fibres as well. These fibres cannot be traced to a unique

origin. Dangast beach has modest touristic activity, especially in the month of September,

and bathing is limited due to the muddy consistence of beach sediments. On the other

hand, Wilhelmshaven to the North of Dangast with the harbour area and the sewage treat-

ment plant is a major source of anthropogenic discharge into the Jade Bay. As the North

Sea water currents flow into the bay from the western side, passing Wilhelmshaven first on

their journey through Jade Bay, and turn around towards the eastern coast in the South, it is

expected that city discharge water passes Dangast beach and contributes to the microplas-
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tic contamination.

In contrast to fibres, the number of 1-3 coloured particles in both sediment and water sam-

ples is low. The total numbers of uncoloured particles in the decanted solution above the

sediment samples exceeds 1000 fragments. Even the seawater sample poured over zoo-

plankton net filters without further extraction contained 451 particles. The seawater was col-

lected in the shallows near the beach at a depth of 0.5m where surface water was allowed

to flow freely into the canister. The observed particles are, nevertheless, indistinguishable

in shape and colour from the sediment obtained in the nearby drift line. Following the ar-

guments in Sec. 4.3, the particles floating on the surface are most likely natural sediment

suspended by surface tension. These considerations suggest that the Jade Bay beach

sediment and seawater samples do not contain particularly large synthetic particle counts,

neither does the Varel freshwater sample drawn near the recycling plant contain particularly

high microplastic particle contamination levels.

In summary, while the coloured fibre contamination is very large near the paper recycling

plant, the Dangast beach samples do not show higher anthropogenic contamination loads

than the sampling locations at the Baltic Sea coast.

4.5.2 Comparison to Baltic samples

One significant difference between the Jade samples and the Baltic samples was the salin-

ity. With a salinity of 30.7 ‰ as measured in the lab, the Jade Bay water provides for a

larger floatation capability of small grains and fibres. It is therefore expected that Jade Bay

or North Sea samples have a larger mean load of fibres and particles near the surface, con-

sistent with the observations. At this point, it is impossible to conclude unambiguously that

the large fibre, foil, and plastic particle load is an effect of the industrial and city discharge

into the Jade. Further studies will be required, and especially the salinity dependence of

floating synthetic material has to be analysed in more detail before Baltic and North Sea

samples can be compared. Nevertheless, it is striking that a large load of coloured fibres

are found in the Jade samples, and it stresses the fact that fibres of anthropogenic origin

are a major source of contamination, outnumbering plastic particles as the predominant

contaminant for the marine food chain.

4.5.3 Comparison to previous studies in the Jade Bay

Previous studies by Dubaish & Liebezeit (2013) of seawater in the Vareler Tief at the outlet

of the discharge pipeline of Varel’s paper recycling plant found in excess of 1200 potential
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plastic particles per liter of seawater. In their study, seawater-samples were drawn near the

coast 20cm below the surface, vacuum-sucked through 1.2µm cellulose nitrate filters then

treated with H2O2, and potential microplastic particles were counted on these filters with up

to 80x magnification. While particles in these samples were too numerous to be counted,

fibre counts near Varel and Dangast, in the same areas where our seawater and sedi-

ment samples were obtained, ranged approximately from 300 to 900 fibres/liter (Dubaish

& Liebezeit 2013, see their Fig. 5). These very high fibre loads are not confirmed in our

samples. With a total of 31 fibres in 10 liters or 3 fibres/liter in the seawater sample ob-

tained at Dangast beach, very few fibres are observed. A higher total fibre load of 77 fibres

in 4l is found in the freshwater sample in Varel, corresponding to ∼ 20 fibres/l. Although

this fibre load is likely caused by the paper recycling plant, it is more than one order of

magnitude lower than the fibre loads observed in offshore locations by Dubaish & Liebezeit

(2013). One reason for this discrepancy is the fact that we counted fibres above a length

of ∼ 70µm, while fibres as small as a few micron could be counted with up to 80x magnifi-

cation by Dubaish & Liebezeit (2013). However, the authors found fibres with predominant

length scales of 100µm to 1mm, identical to the length scale sampled here. The time of the

day, tidal effects, as well as the time of the year might influence the fibre statistics. Further

long-term studies are required to conclude on the mean fibre load in the Jade Bay.

In 10 liters of surface seawater, we detect 451 particles or 45 P/liter. Although most of

those particles have the visual appearance of the ambient natural sediment, these particle

numbers are still substantially lower than the amount of particles detected by Dubaish &

Liebezeit. There are two technical differences to the analysis of our samples. First of all,

Dubaish & Liebezeit might not have sampled from the beach, but at offshore locations, as in

the case of the discharge pipeline site. Further offshore, wave activity is likely to be higher,

and mechanical stirring of the sediment is expected to be larger than at the calm, shallow

beach location in Dangast. This is particularly true in the plume of the pipeline, where the

influx of 3500 m3/day (according to Dubaish & Liebezeit 2013) causes strong mechanical

forces on the underlying sediment. Secondly, particles down to a few micrometer are con-

sidered in their study with typical sizes below 100µm, while the mesh size of the zooplankton

net filters limited our size fraction to > 55µm. One of the major differences therefore likely

originates from sampling to a much smaller size regime (see also Norén 2008).

The same authors studied sediments on the North Sea islands of Spiekeroog, Kachelot-

plate, and a tidal flat in front of Nordland hosting a mussel bank. From these sediments,

potential microplastics were extracted in zincchloride solution and the supernatant was de-

canted, which is directly comparable to the treatment of sediment samples presented in
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this thesis. In these North Sea island sediments, Liebezeit & Dubaish (2012) detect be-

tween 300 and 900 particles/kg dry weight, and observe that higher particle numbers are

correlated with finer-grained sediments. In the Dangast sediment samples presented here,

more than 1000 particles per sample are observed, corresponding to approximately 1600

and 2000 particles/kg of dry sediment. Given the high content of clay underneath sedi-

ments in Dangast, these particles are very fine-grained in comparison to all other analysed

sediments, suggesting that floatation in calciumchloride is more readily achieved for Jade

sediment particles than for all other sampling locations. As discussed in Sec. 4.3, a corre-

lation of floatation and size scale is expected if particles are suspended by surface tension.

Furthermore, the surface tension in North Sea water at a measured salinity of 30.7 ‰ might

be sufficient to suspend fine-grained silt for extended periods of time, which would explain

the large particle numbers found in seawater samples at the pipeline discharge site. This

problem has to be addressed further before final conclusions on the potential contamination

with microplastics in the Jade Bay can be made.

4.6 Comparison of Baltic coast microplastic concentrations to other loca-

tions

For comparison with previous and forthcoming studies, the overall particle and fibre concen-

trations scaled to the weight of each sample are displayed in the two left panels of Fig. 29.

Mean and standard deviations are derived from summing up pipetted and decanted num-

ber counts in aqueous solution (ground + float) for each location (Tables 8 to 14). The large

particle counts in the left panel are caused by natural sediment contamination. Fibre num-

ber counts per kg sediment dry weight (DW) as shown in the second panel contain both

organic fibres as well as anthropogenic influx. The mean fibre concentration in the Rostock

area exceeds fibre counts in all other sampling locations by at least a factor of 4. The large

mean fibre load and variation observed along the wider Rostock coastline is influenced by

the high number counts in spring samples and the maximum fibre load of more than 300

fibres in the Warnemünde July sediment sample during peak tourist season. In the two right

panels in Fig. 29, the mean and variation of coloured particles and fibres as the most likely

candidates for microplastics are shown, and the coloured microplastic content in sea- and

freshwater samples is summarised on a per liter basis in Fig. 30.

The maximum concentrations of 4-7 coloured particles/kg and 9-12 coloured fibres/kg dry

sediment observed in Freest and Dangast indicate that the Oder and Jade river basins are

severely contaminated by anthropogenic microplastic influx (see also Dubaish & Liebezeit
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Figure 29: Combined measurements of all samples in the four sampling locations.
Left two panels: Mean number counts of particles and fibres per kg of dry weight sediment
are shown with standard deviations where more than one measurement was available. For
the Oder estuary, only the Freest sample is shown for comparison with all other Baltic coast
sediment samples (particles in this sample could not be counted due to the high organic
matter content).
Right two panels: Mean numbers of coloured particles and fibres per kg of dry weight sedi-
ment observed in each sampling area with standard deviations where more than one mea-
surement was available. No coloured fibres were observed in the Oder estuary Kamminke
sample.

2013). While Oder discharges are expected to transport urban and industrial runoff, the

Jade Bay receives effluent from Varel’s paper recycling plant as well as Wilhelmshaven’s

sewage treatment plant and overseas harbour. Estuaries with their specialised brackwater

communities and river basins serving as ecological niches for juvenile fish populations can

be considered particularly sensitive ecosystems. The severe contamination with microplas-

tics in the Oder estuary and Jade Bay suggest that both leaching of toxins from microplas-

tics into the marine coastal habitats and the entry into the food chain through juvenile fish

and other plankton feeders are hazards to a healthy estuarine environment. The elevated

concentrations of microplastics in sediment and water samples indicate that the water flow

along both coastal areas does not efficiently remove microplastics from estuaries and river

basins. If river basins serve as long-term repositories for microplastics, sewage treatment

and industrial water treatment processes will have to be redesigned to reduce further mi-

croplastic influx into the marine environment.

In the following sections, the values obtained are compared to previous studies without the

claim of completeness. Comparison studies are primarily selected on the basis that extrac-

tion and counting methods are comparable to the methods presented here. For scientific

merit, only studies in the North Sea and Baltic areas are selected, as conditions in terms of

ship traffic, touristic activity, waste treatment, and fisheries are assumed to be more com-
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Figure 30: Numbers of coloured particles and fibres per liter in seawater and freshwater
samples. The freshwater sample in Varel was drawn from the canal Nordender Leke near
a paper recycling plant, while the Dangast seawater sample represents a beach location
northward of Varel in the Jade Bay.

parable between the North Sea and the Baltic Sea than between the Baltic and the large

oceans. In addition, both seas are too small for the built-up of gyres capturing plastics,

although smaller eddies might contain plastic waste for the limited time of their existence

(Omstedt et al. 2014). The microplastic concentrations reported in the text below are sum-

marised in Fig. 31.

This is one of the first systematic studies of microplastic content in beach sediments at the

Baltic Coast. The closest region probed for microplastics previously was sampled by boat

between the Danish and the Norwegian coast. Norén & Naustvoll (2011) counted coloured

or structured particles with sizes 10-500µm in seawater samples across a Skagerak tran-

sect. Their counting procedure using visual inspection and unnatural properties of particles

was similar to the procedures established in this work. They discovered blue particles in 15

of their 17 seawater tows. FTIR analysis indicated that the particles were epoxybased paint

flakes as used for ship hull sealing. With sizes of 30-70µm, the particles depicted in their

Fig. 5 are similar in shape and appearance to the tiny blue fragments detected in most of

our sediment and seawater samples. We therefore tentatively conclude that the tiny blue

fragments might also be paint flakes with ship paintings being a likely origin.

A second study using floatation in saline solution counted microplastics in beach sediments

at the North Sea island of Norderney (Dekiff et al. 2014). In their study, the means of visual

selection of microplastics on the basis of colour and structure/morphology were particularly

similar to the selection choices employed here. Dekiff et al. (2014) distinguish particles

and fibres as colourless and intensely coloured, and found between 23 and 213 colourless
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fibres/kg dry sediment with a mean of 114 ± 48 F/kg, which covers the same range and

large variation observed in Baltic sediment samples (Fig. 29). For coloured fibres, Dekiff

et al. (2014) found 4-25 F/kg with a mean of 16 ± 4 F/kg, which in their studies is indistin-

guishable from laboratory blank fibre counts. In our Baltic Sea beach samples, between 2

and 11 fibres/kg dry sediment are found, with a substantial number of samples well above

the level of our blanks, where a maximum of 2 fibres per blank is observed. In three dif-

ferent beach locations on Norderney, Dekiff and colleagues found a total of 59 potential

microplastic particles in 26 of their 36 samples, implying that 72% of the beach samples

contained microplastic particles indentified on the basis of colour and structure. We ob-

serve coloured potential microplastic particles in 12 out of 23 samples, or slightly more than

50% of our samples. Numbers range from 1-7 coloured particles/kg dry sediment in our

samples (Fig. 29). Dekiff et al. (2014) report 1-2 particles/kg with a maximum of 4 par-

ticles/kg detected, covering a similar range of particle concentrations as compared to the

Baltic beach sediments. In their study, the authors were able to confirm 15 particles with

gas chromatography as polymers with PP, PE, and PET being the dominant contributors,

giving high confidence to the adopted selection procedures. The similarity of North Sea

island and Baltic beach sediments is surprising in view of the fact that numbers as high as

hundreds to thousands of microplastic particles were claimed in comparable island loca-

tions at the North Sea coast (Liebezeit & Dubaish 2012, see Sec. 4.5.3). While the island

of Norderney might be particularly pristine in view of the westerly current and the moderate

touristic activity, it is also one of the most comparable locations to the more remote Rostock

and Rügen beaches investigated here.

Using colour as the major distinction criterion for microplastics, the resulting concentra-

tions are lower limits of the true microplastic contamination in each sample. Claessens et

al. (2011) analysed a large number of beach and subtidal harbour sediment samples along

the Belgian coast with a lower size limit of 38µm. Detected microplastic particles and fibres

were confirmed spectroscopically. Consistent with the observations presented above, they

found that the majority of all synthetic pieces were fibres (59% fibres as compared to 25%

granules). Polystyrene microspheres constituted as much as 12% of their micropieces and

were exclusively found in harbour sediment. In beach sediments, Claessens et al. (2011)

found on average 82± 33 fibres/kg and 6.3± 2.5 plastic fragments/kg with sizes > 38µm. A

large variation of 43-132 fibres/kg is also observed in the fibre content, while concentrations

for fragments range from 4 to 10 P/kg.

The amount and variation observed in total fibre and plastic fragment concentrations in
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Figure 31: Comparison of potential microplastic concentrations in sediments measured in
the North Sea and at beaches on the Baltic coast (this work). Total fibre concentrations
including both coloured and uncoloured fibres are shown in the left panel. The right panel
summarises the concentrations of particles confirmed to be microplastics either spectro-
scopically or on the basis of their colour. Boxes denote the mean (central line) and standard
deviations, while the lines indicate the minimum and maximum value reported for each lo-
cation. For Baltic Sea values, the mean and standard deviation are derived from all ten
Baltic coast locations. Beach sediments were sampled at Norderney (Dekiff et al. 2014),
Sylt (Lorenz 2014), and the Belgian coast (Claessens et al. 2011). The Belgian Continental
Shelf, Belgian Harbours (Claessens et al. 2011), and the Helgoland Shelf (Lorenz 2014)
report concentrations in sublitoral sediment. Norderney and Sylt contain only two values
each, such that no standard deviation could be derived.

Belgian beach sediments are comparable to the total fibre and coloured particle concentra-

tions found in Baltic and North Sea Jade Bay sediments. Claessens et al. (2011) compare

the increase in microplastic concentrations derived from beach sediment cores on a time-

base of 15 years (1993-2008) to the increase in annual global plastic production (see their

Fig. 2), and conclude tentatively that a correlation between the global plastic growth rate

and the deposited microplastics might be present. Microplastic concentrations are shown

to have tripled in beach sediments from 55 to 156 pieces/kg (including fibres, granules,

foil, and spheres) over just 15 years. The highest concentrations of microplastic particles

are observed in three harbour locations with recreational or industrial activity. Here, parti-

cle numbers are with 24-118 P/kg one order of magnitude higher than in beach sediments

(4-10 P/kg). Claessens et al. (2011) suggest that microplastics might be trapped in the har-

bours due to the enclosed geometry. On a larger scale, such trapping might affect the Jade

Bay samples investigated here, leading to increased microplastic loads in the bay area,

as discussed above. As in most of the Baltic coast samples, no clear correlation is found

between human activities and microplastic content when beach sediments and offshore
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sediments along the Belgian coast and continental shelf are compared. This suggests that

microplastics are more uniformly distributed by natural forces with time than macroplastics,

where accumulation on beaches near urban and recreational areas is more often observed,

stressing the necessity to sample the spatial and temporal distribution of microplastics indi-

vidually. Individual monitoring of microplastics is emphasised by a comparative study of the

water surface, beach sediments, and the seafloor, where the accumulation of microplastics

in seawater and on the seafloor is found to exceed the weight of macroplastics by a factor

of 100 and 400, respectively (Van Cauwenberghe et al. 2013). The same authors estimate

that a concentration of just 13 particles/kg dry sand correspond to a total microplastic load

of 3.3 × 106 to 7.7 × 107 particles on a beach extent of just 100m. With particle concen-

trations only marginally lower in the Baltic coast samples presented here, beach sediments

must be considered an important entry path of microplastics into the marine and coastal

environment and food chain.

The size range of particles targeted in our study was 55µm-1mm, where the lower limit

was fixed by the mesh size of the zooplankton net used for filtration and the upper limit

emerged from the majority of sediment grains by weight. In seawater samples drawn with

plankton net tows, mesh sizes frequently range from 333 to 450µm, such that most of the

seawater findings are not directly comparable to sediment studies. Studying the amount

of small plastic particles in seawater in 16 locations along the Swedish west coast, Norén

(2008) found microplastic numbers to be steeply increasing with decreasing sampling size.

A 1000-100,000 times higher concentration of particles plus fibres was found with 80µm

mesh samples as compared to a 450µm mesh width.

With 80µm mesh, concentrations of 0.15-2.4 plastic particles/liter of seawater are detected,

comparable to the concentrations of coloured particles and fibres found in seawater samples

at both Warnemünde and Dangast/Jade Bay (Fig. 30). Three harbour sites were sampled

by Norén (2008) for sediment, one industrial harbour and one commercial harbour near

Stenungsund, and one small harbour near Tjuvkils. Stenungsund industrial harbour was

sampled near a plastics production plant and yielded by far the highest microplastic con-

centrations in water and sediment. Two to five milkwhite or transparent plastic particles per

100ml sediment with sizes 1-7mm are found in the small harbour of Tjuvkils, while 332 mi-

crospheres with sizes 0.5-1mm were counted in Stenungsund industrial harbour per 100ml

sediment. Concentrations hence range from 20 particles/kg (conversion factor 1.6 g sed-

iment/1ml volume from our own wet sample experiments) to more than 2000 particles/kg

sediment. Similarly high concentrations were reported in the studies of Jade Bay sediments
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and seawater for particles down to a few micrometer in size near the paper recycling plant

by Dubaish & Liebezeit (2013), as discussed in Sec. 4.5.3. Despite the inherent uncertain-

ties with visual identification, the alarmingly high concentrations of microplastic particles,

spheres, and fibres found near industrial discharge sites call not only for more consistent

scientific monitoring of a representable range of locations in Europe, but also require the

rethinking of production discharge practices in view of the EU Marine Strategy Framework

Directive to reduce microplastic particle entry into the marine environment in the future.

4.7 Discussion of problems and biases

The observed difficulties in the distinction of microplastics from natural sediments and or-

ganic fibres have likely affected studies that were based on the visual inspection of samples

under the microscope. At the same time, photo-induced bleaching and the production pro-

cess cause substantially larger numbers of transparent and lightly coloured microplastics

to be expected in the marine environment. A complete microplastic extraction with more

accurate contamination rates requires micro-spectroscopy of transparent floating particles,

as conducted in Lorenz (2014). In beach sediments from the island of Sylt and sublitoral

sediments from the wider Helgoland shelf, Lorenz (2014) found 34-74 particles/kg dry sed-

iment. In her study, imaging microscopic spectroscopy (µFT-IR) was applied to identify the

materials of all particles extracted after zincchloride floatation. These values are about one

order of magnitude larger than particle concentrations detected in the Baltic sediment sam-

ples by visual inspection alone. The comparison of these values suggests that only 10% of

the particles might be detected with colour selection. However, this technology is costly and

analysis is time-consuming, such that more practical solutions for plastic-sediment separa-

tion must be developped. Our experiments suggest that adding a centrifugation step after

density separation in saline solutions improves the plastic-sediment separation efficiency.

Centrifugation provides a simple means to separate truely low-density particles from sus-

pended higher-density sediments with means available as standard laboratory equipment.

For the distinction of organic and synthetic fibres, however, this method would not be suffi-

cient. Here, adding a chitinase digestion step would allow a cleaner sample of transparent

synthetic fibres to persist. With these concerns in mind, we focused the microplastics anal-

ysis on coloured particles and fibres. The reported concentrations per kg of dry weight

sediment or per liter of seawater are therefore strict lower limits of the true microplastics

contamination in Baltic Sea beach sediments and surface waters.
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4.8 Future scientific goals

Standardised procedures to quantify the amount of microplastics in the marine environment

will be beneficial for a wide variety of applications. From the methodical testing described in

this thesis, an optimised minimal approach to extract microplastics from sediment samples

is suggested in Appendix F. The further development of a more uncomplicated polymer

identification system should be one of the major aims in methodical research. Recently,

Langhals et al. (2014) demonstrated the power of polymer characterisation with the decline

timescale in fluorescent lightcurves of irradiated plastic particles in the context of plastic

recycling. If these methodologies could be employed to characterise marine microplastics,

the time-consuming spectroscopy step would be avoided and polymer compositions could

be deduced for a large number of samples.

The development of more automated imaging-spectroscopy methods to distinguish natural

fibres from synthetic polymers is highly desirable especially given the high fibre loads found

in several Baltic Sea coast sediment samples. The fact that anthropogenic fibres from

laundry effluent are not exclusively made of synthetic polymers additionally complicates

fibre counts. For natural organic fibres of animal origin and natural anthropogenic fibres

such as cotton, wool or hemp, persistence times in the marine environment are unknown.

A comparison of resilience time scales between natural and synthetic anthropogenic fibres

would support the derivation of standardised synthetic fibre concentrations. Finally, as fibres

do not correspond in shape to the natural prey pattern of plankton feeders, do they enter

the food chain in substantial quantities? Before these open questions can be answered, it is

indispensable that scientists agree on a standardised extraction and identification procedure

for microplastic particles and fibres.

The results presented above revealed the difficulty to trace microplastic particles and fibres

to their sources. High-spectral resolution IR spectroscopy harbours the potential to iden-

tify plastic origins on the basis of additives and chemical compositions. Available polymer

databases contain the spectroscopic fingerprints of polymer materials produced worldwide,

such that the regional production origins might also be traced. Several studies suggested

a regional influx as the major source of microplastics in sediments, e.g. from sewage treat-

ment plants, the plastics industry, or paper recycling, as discussed extensively above. Yet,

secondary microplastics fragmented from macrodebris floating for extended periods of time

in the marine gyres must contribute to local pollution in varying amounts depending on lo-

cation and exposure to ocean streams. A correlation between the microplastic composition

and the spatial dispersal through small and large ocean systems such as gyres and streams
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could shed light on the lingering and breakup timescales, and hence the physical pathway

from macrodebris to microplastics. Quantifying the global contribution to local microplastic

pollution is urgently required to eliminate microplastics at the sources. For the same merrit,

the fragmentation processes that lead to the increase of microplastic particles in the envi-

ronment need to be understood. The combination between mechanical wave breakdown,

ingestion, and UV dissociation cause a different disintegration pattern than might be ob-

served for plastic materials on land. These fragmentation processes have to be quantified

to understand the full extent of the microplastic tide and predict its long-term evolution.

Despite the demonstrated omnipresence of plastics in the marine environment, there is

hope at the horizon. Concerning macroplastics, Ruanda was one of the first countries to

entirely ban shopping and consumer good plastic bags because floating bags were iden-

tified as a health hazard for humans and nature. In Mauritania, plastic bag ingestion was

found to be a major source of death in sheep and cattle, and bags were subsequently

banned. Banghladesh was one of the first countries to ban plastic bags in 2002, after

thin plastic bags were found to clogg the drainage system during a major floading event

(Surfrider Foundation 2014). Today, a large number of African countries including Ehtiopia,

Mali, Malawi, Mauritania, Ruanda, Uganda, and Tansania have either banned plastic bags,

thin plastic bags, or non-biodegradable plastic bags (Earth Policy Institute 2014), with other

places in the world slowly following. In terms of microplastics, primary sources are the

easiest to identify and remove. New York state is the first state worldwide to prohibit “the

manufacture, distribution and sale of personal cosmetic products containing microbeads” in

the “Microbead-Free Waters Act” (New York State 2014). These are a few very first steps

to reduce the influx of plastics into the environment, yet it can be hoped that they serve as

examples of short-term measures to mitigate the long-term hazards of microplastics in the

marine world.
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5 Summary

Plastic contamination in beach sediments at the German Baltic Sea coast

The content of potential microplastics in sediments along the German Baltic coast was

investigated. With the aim to characterise the entry pathes of plastics, the hypothesis was

phrased that microplastic concentrations are expected to correlate with urban and harbour

activity (Warnow, Oder outlets), touristic activity (Warnemünde, Rügen/Binz main beach

areas), and should be minimal in beach sediments with low visitor numbers (Nienhagen,

Rügen Dranske & Heidehof).

In the first methodical part of the thesis, the extraction efficiency of microplastics from natu-

ral sediment was tested using two common density separation methods: centrifugation and

air-venting in high-density zincchloride and calciumchloride solutions. Air-venting in CaCl2

proved an efficient, low-toxicity microplastic extraction method for both particles and fibres.

A prerequisite to recover plastic particles even at densities as low as 0.9 g/ml (polyethylen)

was that both the top-layer surface as well as the supernatant above the settled sediment

were analysed for microplastic content.

One of the major findings recurrent throughout the presented analysis was that particles

suspended on the surface of high-density saline solutions are visually indistinguishable from

natural mineral grains. Sediment particles with diameters of less than ∼1mm are shown to

be suspended by surface tension against immediate sinking. Care thus has to be taken in

experiments without spectroscopic material verification to prevent severe overcounting bias.

A positive correlation is found between floating particle numbers and finer grain sizes in the

sense that finer grains tend to be suspended by surface tension more easily while coarser

grains sink more readily. Coloured particles and fibres provide the safest microplastics

identification with visual inspection when spectroscopic verification is not available. From

these conclusions, a microplastic extraction strategy is designed to minimise counting bias

and allow a quantitative comparison of microplastic concentrations.

In the second part of the thesis, the spatial and temporal variation of microplastics in sed-

iments along the German Baltic coast was investigated. While no systematic spatial trend

is detected from west to east along the wider Rostock coastline, a maximum fibre load of

more than 300 fibres/kg dry sediment is observed at Warnemünde beach in July, suggest-

ing that touristic activity increases the presence of fibres in beach sediments and seawa-

ter. Warnemünde sediment samples were also found to contain coloured plastic fragments

in all samples from March to July, indicating a high density of anthropogenic material in
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beach sediments at the Rostock coast. Comparably high concentrations of microplastics

and fibres are not observed at equally frequented beaches on Rügen island, indicating that

local current patterns influence the persistence time of microplastics in beach sediments.

River basins display large variations in anthropogenic influx when the Warnow, Oder, and

Jade basins are compared. The location with the second highest microplastics load was

the Oder/Peene outlet into the Baltic Sea, where large coloured particle concentrations

are tentatively suggested to originate from urban and industrial discharge from cities along

the Oder river banks. From the results presented in this study of beach sediments along

the German Baltic coast, a detailed investigation of microplastic concentrations along the

Warnow and Oder estuaries and the continuous monitoring in heavily contaminated areas

such as Warnemünde beach is suggested to confirm the preliminary conclusions presented

above.

The fact that maximum microplastic concentrations are observed in estuaries and on the

most touristic beaches supports the hypothesis that microplastic monitoring has the po-

tential to reveal the entry pathes of microplastics into the marine environment. Over the

investigated timeframe of 5 months, systematic trends in the spatial and temporal variations

of microplastics concentrations are not detected. Longer-term studies with larger sample

sizes are required to conclusively distinguish the dominant anthropogenic entry pathways

of microplastics into the Baltic Sea and coast.

The omnipresence of microplastics in almost all sediment samples analysed, and the in-

creasing reports of microplastic detections in marine environments near coastlines and in

the open ocean, emphasise the urgency to develop methods to decrease the microplastics

influx into the marine ecosystem from the large variety of anthropogenic sources, including

marine littering and fisheries not addressed here.
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Appendix B: Laboratory air and reference samples
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Appendix C: Overview of all scientific samples
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öh
e

54
.1

76
46

2
12

.0
26

69
7

03
-0

6-
20

14
dr

ift
lin

e
14

11
7.

5
55

2.
7

1.
30

W
ar

ne
m

ün
de

54
.1

83
31

5
12

.0
83

08
2

22
-0

5-
20

14
dr

ift
lin

e
?

24
.5

58
5.

9
1.

36
/1

.3
7

M
ar

kg
ra

fe
nh

ei
de

54
.1

93
76

7
12

.1
39

27
9

22
-0

5-
20

14
dr

ift
lin

e
?

15
6.

1
45

5.
0

1.
32

/1
.3

1

R
os

to
ck

Ju
ly

20
14

N
ie

nh
ag

en
54

.1
57

51
4

11
.9

13
97

0
26

-0
7-

20
14

dr
ift

lin
e

20
10

5.
8

65
3.

5
1.

35
W

ilh
el

m
sh

öh
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Appendix D: Number counts and comments
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Appendix E: Selection of potential microplastic particles and fibres

Figure 32: Top rows: Particularly conspicious microplastic particles and fibres observed in
the Warnemünde test samples. Bottom row: Microsphere detected in one of the reference
samples containing only calciumchloride solution. The sphere displays no internal structure,
the two bright dots are reflections from the halogen lamp. Note the thick outer shell visible
after breaking, from which a gel-like liquid emerges.
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Figure 33: Illustration of the similarities between natural sediment grains and microplas-
tic particles. The top left panel shows particles floating on the surface in comparison to
sediment immediately sunken to the ground in deionised water. Thin foil fragments can
be of either organic or synthetic origin (top middle). Note that the two transparent parti-
cles (top right and middle left) have distinct surface structures compared to the majority
of sediment grains, while the shape and structure of the rose-coloured and orange parti-
cle are indistinguishable from the surrounding sediment. The bottom left panel displays
sediment spheres without the characteristic perfectly round and transparent appearence of
microplastic spheres.
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(a) White plastic ring (b) Occer particle

(c) Darkbrown fragment (d) Brown disc (glass?)

(e) Turquoise fragment

Figure 35: Conspicious particles found in beach sediments on the island of Rügen.
Note the unusual surface structure of the occer and darkbrown fragments.
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(a) Foil fragment (b) Cigarette filter or sanitary pad

(c) Foil or organic skin fragment (d) Blue plastic particle

(e) Blue synthetic fibre (f) Organic matter with coloured fibre
nest

(g) Very long fibre, synthetic or organic (h) Blue plastic particle & organic matter

Figure 36: Selection of potential microplastics found in the Oder/Peene outlet.
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(a) darkblue fibre (freshwater sample) (b) plastic particle in freshwater sample

(c) darkblue fibre (seawater sample) (d) clear particle likely plastics

(e) plastic or sediment particles (f) long fibre in seawater sample

(g) violet particle in organic matter (h) two microspheres

Figure 37: Selected synthetic particles and fibres detected in the Jade Bay. Freshwater
samples obtained in the rivulet Nordender Leke opposite the paper recycling plant in Varel:
a) and b). Note the large amount of organic material in this freshwater sample. Dangast
beach seawater samples: c) to g), Dangast sediment sample: h) two microspheres with
different sizes and colouring.
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Appendix F: Technical recommendations: An improved methodology

Although a diversity of methods were developped over the past decade to extract microplas-

tics from sediment and seawater samples, there is no standardised procedure ensuring

a reliable extraction and identification of microplastics from natural environments. In the

framework of the European marine strategy framework directive (MSFD), but also in view of

the fact that microplastics are omnipresent in the marine environment and need to be mon-

itored in order to find both quantitative arguments for policy makers as well as solutions for

the growing so-called “plastic soup” problem, time and cost efficient monitoring techniques

need to be developped. In this thesis, the attempt was made to use basic laboratory equip-

ment and accessible chemistry to extract and quantify the amount of microplastic particles

and fibres in sediments.

We find increasing amounts of floating particles in aqueous and saline solution with de-

creasing grain size. As those particles are visually indistinct from natural sediment, they

are likely suspended by surface tension due to their light overall weight. The high level

of contamination of presumed plastic samples with natural sediment is problematic in sedi-

ment, coastal and shallow water samples, but is not expected to influence zooplankton tows

obtained in the open sea. Methods suggested here include centrifugation after extraction

to separate higher and lower density material, and if possible spectroscopic analysis of a

subsample of extracted particles. After counting the artificially enriched sediment samples

(Sec. 3.2), centrifugation was used to separate natural sediment from plastic fragments in

the floating islands of the aqueous solution. Centrifugation (800 rotations/minute) of the

surface solution in the petri dish increases the detection rates especially of transparent mi-

croplastic particles, as suspended sediment particles sink to the bottom of the tube. As

for all density-separation extraction methods, however, this method is also limited to the

detection of particles lighter than both the sediment and the employed extraction medium.

For transparent and white fibres, a more extensive detection method has to be developped.

Digestion with natural enzymes or dissolution with hydrogen peroxide, as used to minimise

the content of organic matter in the Baltic sediment samples, can efficiently separate distinct

organic materials, such as proteins, chitin (with chitinase as detergence agent), and byssus

fibres. On the other hand, especially chitinase digestion requires substantial time frames

(one week per sample, following the procedures outlined in Lorenz 2014). Ultimately, FTIR-

microscope spectroscopy and similar methods are the principal way to uniquely identify

polymer particles and fibres in sediment and water samples. The timeconsuming nature of

this method, and the fact that costly laboratory equipment is required, unfortunately impede
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the use of spectra for large amounts of sediment as well as for every individual particle and

fibre found.

Based on our method testing, we suggest here a minimal approach to extracting microplas-

tics as readily conducted in a standard biological or chemical laboratory. The following steps

– combining several of the technical approaches employed in the literature previously – are

recommended for an efficient microplastic detection process:

0. Preparation & choice of equipment

Employment of glass equippment whereever possible is a prerequisite to minimise biases/losses

by sticking of plastic particles to the surface.

1. Polymer extraction

Air-venting sediment in high-density saline solutions, possibly with a preceding floatation

step (see Claessens et al. 2013), proved an efficient way to handle large samples. Refilling

steps should be kept to a minimum (Imhof et al. 2012).

2. Top-layer extraction & Filtration

Extracting the surface of the solution, preferably via separating funnels, or by pipetting as

a less efficient alternative, to capture low-density particles and fibres in the top layer, onto

stainless steel mesh or zooplankton net with a pre-defined lower size limit. Comparative

studies should be investigated prior to setting the lower size boundary to facilitate the quan-

titative comparison.

The distinction of natural sediment and organic fibres from synthetic polymers proved more

difficult when membrane filters were used. The use of filters that do not allow rinsing of the

captured material is therefore not recommended.

3. Water column extraction & Filtration

The supernatant should be decanted and analysed separately to include higher-density par-

ticles and fibres, and filtered in the same way as the extracted surface solution.
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4. Counting procedure

The combination of two different counting procedures yielded the highest microplastic re-

covery rates.

i) Dry count of particles and fibres on the zooplankton mesh.

ii) Wet count after rinsing of captured material from mesh filters into aqueous solution

for recounting of particles and fibres. Fibre number counts were substantially facilitated in

aqueous solution, and settled and floating material provided clues on the composition of

particles.

5. Centrifugation

Centrifugation of the extracted surface fraction to separate suspended high-density from

low-density particles is suggested to further distinguish natural minerals from microplastics.

6. Visual inspection

Distinction of plastic particles on the basis of colour and structure proved the most secure

means to visually select microplastics from natural sediment samples, especially when a

complete spectroscopic analysis is not feasible.

7. Spectroscopic confirmation

Spectroscopic confirmation of at least a subsample of extracted microplastics, including

both coloured and transparent particles and fibres, is highly desireable to obtain realistic mi-

croplastic densities from sediment samples (see also Lorenz 2014, and refernces therein).

This procedure further expands the suggestions given in Hidalgo-Ruz et al. (2012), and

further systematic testing would be beneficial to confirm the recovery rates of transparent

synthetic particles and fibres from natural sediment samples.
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