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1. Introduction

Understanding the dynamics of complex many-body systems is one of the most important and
challenging issues in molecular physics. Investigation of the (non-)linear spectra provides a
useful tool for probing the dynamics. Since the absorption and emission of light can be mea-
sured experimentally, corresponding theories and models can be tested for their applicability.
If experiment validates thus the theoretical model, then it can be in turn used to explain the
experimental results, providing microscopic information that is often not available by means of
experiment. Nowadays, especially computer simulations serve as a bridge between the experi-
mental observations and the theoretical models describing the underlying dynamics. Due to the
rapid increase of the computational capabilities in the last decades, one is able to investigate
more and more complex systems by means of simulations.
At the beginning of the twentieth century, physicists found the classical physics unable to

describe several phenomena measured in the experiment. For example the radiation of a black
body [1] or the interference of scattered electrons [2] could not be explained by the theories
existing at that time. In order to predict the correct dynamics, physics had to be extended by
quantum mechanics. Here, two fundamental contributions were Werner Heisenberg’s matrix
mechanics [3] and Erwin Schrödinger’s wave mechanics [4]. As a third contribution, the so-
called Wigner formulation of quantum mechanics was introduced independently by Eugene
Wigner [5] and Hermann Weyl [6]. The focus of this thesis is on yet another, path integral
(PI), formulation of quantum mechanics [7] introduced by Richard Feynman in 1948. It turns
out that all four approaches to quantum physics are fully equivalent. With the theoretical basis
at hand, the exact description of the system’s dynamics would require a rigorous treatment of
one of the theories. Achieving this goal for realistic systems consisting of numerous nuclei and
electrons is in most cases impossible analytically and not feasible numerically due to the ”curse of
dimensionality”, that is the exponential scaling with the number of particles. Thus, it becomes
necessary to employ approximations. One of the most common is the Born-Oppenheimer
approximation (BOA) [8]. Here, one assumes that the electron’s dynamics can be separated
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1. Introduction

from the nuclei’s one. Since the latter are at least three orders of magnitude heavier than the
former, both dynamics proceed on completely different time scales. In other words, an electron
reacts nearly instantaneously on a new core configuration. The charge density around the
cores induces then an effective potential for the nuclei’s motion. In a further step the effective
potential can be parametrized to known analytical functions. Finally, the complete influence
of the electrons is implicitly contained in a force field depending on a few parameters. The
remaining task is to describe the nuclei’s quantum dynamics in that force field explicitly and
precisely, which is still unfeasible for realistic systems without further reductions.
Starting from the BOA, there are several methods to consider the nuclear dynamics. One

possibility is to treat the nuclei as classical point particles and simulate the dynamics via the
classical equations of motion. This method, called classical molecular dynamics (MD) yields
useful results for many systems [8] but it obviously does not contain truly quantum mechanical
properties, which could be crucial for certain systems, e.g. if light atoms like hydrogen are
involved or if the phase information is important, as it is for spectra. Another possibility lies
in Wigner-based semi-classical approaches [9], where one systematically expands the quantum
equations of motion in orders of the reduced Planck’s constant ~. A compromise between a
full quantum and a pure classical description of dynamics is provided by quasi-classical meth-
ods based on Feynman’s PI approach. Here, one makes use of the isomorphism between the
quantum mechanical partition function and a purely classical configuration integral [10]. In a
nutshell, each particle is now described by a more complicated classical object referred to as the
ring polymer. To exploit this isomorphism, one can use well-established methods of classical
mechanics to simulate static quantum mechanical properties, whereas the time evolution is not
rigorously included in the formalism and, thus, the phase information is not recovered. Still,
for calculating the spectrum, dynamics need to be involved. There exist two quasi-classical
approximations based on PI, namely centroid molecular dynamics (CMD) [11] and ring poly-
mer molecular dynamics (RPMD) [12]. Within both methods dynamical information is ad hoc
extracted from the ring polymer propagated according to the classical equations of motion. Al-
though both methods yield a quasi-classical approximation to quantum dynamics, they suffer
from intrinsic artifacts. The RPMD method exhibits artificial resonances in infrared spectra
[13], whereas spectra for stretching vibrations obtained via CMD are unphysically redshifted
due to the ”curvature problem” [14, 13]. Although the authors of Ref. [15] claim that the cur-
vature problem has no consequences for the OH/OD vibration of HOD in a surrounding of
H2O or D2O molecules, the magnitude of the redshift for an arbitrary vibrational system is
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1. Introduction

still unknown in the absence of exact benchmarks. As a reliable quantum reference the authors
of Ref. [15] suggested the mixed quantum-classical scheme [16, 17], which is bound to several
approximations and assumptions.
It is in general a demanding task to develop a methodology that can produce exact (or very

precise) benchmarks, that can in turn be used for validating of classical or quasi- and semi-
classical approximations. In the vast majority of cases, a complex molecular system can be
partitioned into a small subsystem and a bath consisting of the remaining numerous particles.
Usually, the dynamics of the subsystem are of interest, whereas the knowledge of the bath’s
time evolution is not desired explicitly. An exact solution of the time-dependent Schrödinger
equation for the system would require the treatment of the high-dimensional wave function that
contains all, necessary and unnecessary, dynamical information of the system-bath complex
(SBC). A more attractive approach to a pure quantum description of the dynamics is provided
by the real time PI formalism. Here, the motion of a quantum object from one point to another
can be described by the integration over an infinite number of classical paths that connect the
two points. It has to be emphasized that in contrast to the quasi-classical CMD and RPMD,
no ad hoc assumptions are involved and, thus, the full quantum character of the system and
all phase information are covered. Referring to [18], the PI can be formulated such that the
bath can be treated implicitly via the so-called influence functional. In case the system-bath
interaction is described by the multi-mode Brownian oscillator (MBO) model [19, 20, 21], the
expression for the influence functional can be carried out analytically [18]. Moreover, the MBO
model provides an unified framework for treating quantum and (quasi-)classical dynamics of
the system in contact with a non-Markovian bath on equal footing. Thus, it is ideally tailored
for the present purpose.
In spite of the great profit of treating the numerous bath particles implicitly via the influence

functional, the evaluation of the PI is far from being a simple task. Since an analytical solution
is not known for any realistic SBC, a numerical scheme is required that is able to treat the
PI discretely in time and space with the nowadays computer capabilities. The attempt to
discretize the PI directly leads to a high-dimensional integral with a complex integrand, thus,
the use of the well-established Monte-Carlo methods is prohibited [22, 23]. Since two and
a half decades the research group of Nancy Makri1 progresses successfully in formulating a
feasible numerical approach to real time PIs, mostly applied to electronic transfer problems.

1Department of Physics, University of Illinois, Urbana, USA; Department of Chemistry, University of Illinois,
Urbana, USA
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1. Introduction

With a specific factorization of the time evolution operators it is possible to discretize the
time into rather long time slices [24]. Moreover, the discretization of space is optimized by
the use of the so-called discrete variable representation (DVR) [25]. In order to calculate time-
dependent expectation values for an arbitrary long time, the discrete PI can be reformulated as
an iterative propagation scheme [26, 27]. It turns out that not all paths contribute significantly
to the PI, thus, unimportant paths can be filtered out [28], which reduces the numerical effort
dramatically. The ideas for calculating the real time PI have been then transferred to a complex
time PI that can be used to extract time-dependent equilibrium properties [29, 30] like the
time-correlation function, that is the key quantity for linear spectroscopy. Moreover, this
methodology can also be extended to non-linear spectroscopy [30]. In the last three years,
several improvements of the numerical algorithms have been published [31, 32]. Additionally
a PI methodology has been presented, where the system is treated quantum mechanically,
whereas the bath is approximated purely classically [33, 34]. With the given references at hand,
the implementation of the PI formalism as an exact quantum reference and its application to
vibrational systems in a realistic environments is the goal of this thesis. The focus is then put
on the applicability to the special system consisting of the OH/OD bond solvated in liquid H2O

or D2O, in order to shed light on the magnitude of artifacts induced by the curvature problem.
The thesis is organized as follows. The first chapter serves as a theoretical basis for the

quantum dynamics of system-bath complexes, where the quantities of interest are introduced,
namely time-dependent expectation values and equilibrium correlation functions. In the second
chapter, the continuous PI expressions of these two quantities are derived. The focus of the
third chapter is on quantum dynamical quantities expressed as discrete PIs, which are recast
into an iterative propagation scheme. In the first section of the fourth chapter, a comparison
to literature data is performed. Then, in the second section, the applicability of the discrete
PI formalism to vibrational systems is debated. Finally in the fifth chapter, a conclusion and
an outlook are given.
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2. Quantum dynamics of a system
coupled to a bath

2.1. Theoretical basics

The goal of this chapter is to present a formalism which is capable to describe the quantum
dynamics of a system S with a coordinate and a momentum operators ŝ and p̂, respectively,
in contact with a bath B. The bath is characterized by a vector of D coordinate operators
Q̂ = (Q̂1, . . . , Q̂D)T with conjugate momentum operators P̂ = (P̂1, . . . , P̂D)T. Such a situation
is described by the Hamiltonian

Ĥ(ŝ, p̂; Q̂, P̂) =
p̂2

2m
+ V̂S(ŝ) +

D∑

i=1

P̂ 2
i

2Mi

+ V̂B(Q̂) + V̂int(ŝ, Q̂) (2.1)

≡ ĤS(ŝ, p̂) + ĤB(Q̂, P̂) + V̂int(ŝ, Q̂) (2.2)

≡ ĤS(ŝ, p̂) + ĤSB(ŝ, Q̂, P̂) , (2.3)

where ĤS(ŝ, p̂) depends only on the degrees of freedom (DOFs) of the system, ĤB(Q̂, P̂) corre-
sponds to an isolated bath B, V̂S(ŝ) and V̂B(Q̂) are respective potential operators and V̂int(ŝ, Q̂)

takes the coordinate-dependent interaction between the system and the bath into account. This
definition of system, bath and their mutual interaction is employed throughout the thesis and
the arguments of the aforementioned Hamiltonians and potentials will be omitted in the fol-
lowing. In general, the time evolution of a pure state |Ψ(t)〉 of the SBC is given by the formal
solution of the time-dependent Schrödinger equation

|Ψ(t)〉 = Û(t) |Ψ(0)〉 , Û(t) = exp
{
−iĤt/~

}
, (2.4)
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2. Quantum dynamics of a system coupled to a bath

where Û(t) is the Heisenberg time evolution operator. Since the bath is usually large, if not
macroscopic, a calculation of |Ψ(t)〉 in any basis is not possible analytically apart from special
cases, and is hardly feasible numerically. Moreover, the wavefunction contains dynamical in-
formation for the bath, which is in many cases not of explicit interest. In order to circumvent
the redundancy of the information, the SBC is first described by the density operator instead
of the wavefunction

|Ψ(t)〉 → ρ̂(t) . (2.5)

The great benefit of such a description is the ability to consider reduced dynamics of the
system, which will be subject of Sec. 3.1. It is worth mentioning, that a density operator can
be naturally used for treating mixed states. The time evolution of ρ̂(t), which can be found as
the formal solution of the von Neumann equation, reads

ρ̂(t) = Û(t)ρ̂(0)Û †(t) , (2.6)

where the symbol Û †(t) stands for the adjoint of the time evolution operator. If one assumes
that the interaction V̂int is switched on at t = 0, then the system and the bath are initially
uncorrelated, thereby setting the initial condition as

ρ̂(0) ≡
(
ρ̂S(0)⊗ 1̂B

)
·
(
1̂S ⊗ ρ̂B(0)

)
, (2.7)

where ⊗ is the tensorial product. If the bath has a macroscopic number of DOFs the density
operator has the limit

lim
t→∞

ρ̂(t) =
1

Z(β)
e−βĤ , Z(β) = Tr

[
e−βĤ

]
, (2.8)

where β = 1/(kBT ) is the inverse temperature, Z denotes the partition function and the trace is
taken in any orthonormal basis of the SBC. This limit is referred to as the canonical equilibrium
or Boltzmann operator and is independent of the initial preparation of the system.
The definitions given in this section serve as basis for what follows. In the next section the

connection of the operators to measurable quantities is briefly discussed.
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2. Quantum dynamics of a system coupled to a bath

2.2. Expectation values and spectra

2.2.1. Time-dependent expectation values

In the previous section it was mentioned that the dynamics of the system are described by the
time evolution of the density operator ρ̂(t). The advantage of that description is the possibility
to formulate reduced dynamics. The key quantity here is the reduced density operator of the
system S defined as

ρ̂S(t) ≡ TrB [ρ̂(t)] , (2.9)

where the trace is taken in any orthonormal basis of the bath’s Hilbert space and, thus, the
bath’s DOFs are integrated out and do not enter the dynamics of the system explicitly. If
the state of the system is known at a certain time, then the reduced density operator can be
propagated to arbitrarily long times. With the knowledge of this time evolution, one is able to
extract dynamical information of any system operator Ω̂ in the form of a complex function of
time. The particular function is referred to as the expectation value of Ω̂ and is calculated via

〈
Ω̂
〉
t
≡ TrS

[
ρ̂S(t)Ω̂

]
, (2.10)

where the trace is now taken in any orthonormal basis of the system’s Hilbert space. In case Ω̂ is
a Hermitian operator, that is if Ω̂ = Ω̂†, the expectation value represents a measurable quantity.
Hence, results for

〈
Ω̂
〉
t
obtained by theoretical means can be compared to an experiment and,

thus, the given theoretical framework can be validated.

2.2.2. The linear absorption spectrum

As it was stated in the introduction, the study of linear absorption spectra gives an insight into
the microscopic dynamics of a system. A detailed theoretical fundament for linear spectroscopy
can be found in Refs. [35, 20, 36]. The starting point is the Lambert-Beer absorption law

I(d, ω) = I0e−γ(ω)d . (2.11)

that describes quantitatively the light absorption of a considered system or medium. It can be
verbally formulated as: the loss of the intensity I(d, ω) of an incoming monochromatic electro-
magnetic wave with frequency ω and an initial intensity I0 depends on the thickness of the
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2. Quantum dynamics of a system coupled to a bath

medium d and its frequency-dependent linear absorption coefficient γ(ω). The idea behind linear
spectroscopy is thus to vary the radiated frequency and to measure the intensity as a function
of ω. The logarithm of the resulting I(d, ω) yields the desired linear absorption coefficient. In
order to assign the measured features to microscopic characteristics of the system one has to
derive the theoretical counterpart of γ(ω). This can be achieved by treating the interactions
between the system and the incoming electro-magnetic field in the dipole approximation [20, 35]
by means of the first order perturbation theory[36]

γ(ω) ∼ ω

2π~

(
1− e−β~ω

)
<





∞̂

−∞

dt e−iωtCµµ(t)



 , (2.12)

where < stands for the real part. The key quantity that connects the experimentally available
γ(ω) and microscopic dynamics of the system is the equilibrium dipole auto-correlation function

Cµµ(t) ≡ 1

Z(β)
Tr
[
e−βĤ µ̂ Û †(t)µ̂ Û(t)

]
, (2.13)

where µ̂ is the system’s dipole operator, which is usually assumed to be directly proportional
to the position operator. Since we are interested in the absorption behavior of the system, this
assumption implies µ̂ ∼ ŝ.
In the following chapter it will be shown that the operators Û(t) and e−βĤ can be alternatively

represented as functional integrals, namely the PIs. With that representation at hand, one is
able to formulate also the time-evolution of the reduced density operator and the equilibrium
correlation function within that framework.
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3. Quantum dynamics in path integral
formulation

3.1. Reduced dynamics in PI formulation

In this section it will be shown that the time evolution of the reduced density operator can be
expressed as a path integral, whereas the influence of the macroscopic bath will be implicitly
contained in the so-called influence functional.
The starting point to the PI formulation of Eq. (2.9) is the reduced density operator in the

system’s coordinate basis
ρS(s+, s−; t) ≡ 〈s+ |ρ̂S(t)| s−〉 , (3.1)

which is then a time-dependent function of two arguments s+, s− with ŝ |s±〉 = s± |s±〉. Note
in anticipation of the next steps that red-colored coordinates correspond to paths the system
follows forward in time, whereas blue-colored coordinates form the paths that are followed
backward in time. The trace over bath DOFs in Eq. (2.9) is taken in the coordinate basis of
the bath

ρS(s+, s−; t) =

∞̂

−∞

dQ
〈
s+Q

∣∣∣Û(t)ρ̂(0)Û †(t)
∣∣∣ s−Q

〉
, (3.2)

where
´∞
−∞ dQ ≡ ∏D

i=1

´∞
−∞ dQi, |sQ〉 ≡ |s〉 ⊗ |Q1〉 ⊗ |Q2〉 · · · ⊗ |QD〉 with Q̂i |Qi〉 = Qi |Qi〉.

Inserting the closures

1̂ =

∞̂

−∞

ds+
0

∞̂

−∞

dQ+
0

∣∣s+
0 Q

+
0

〉 〈
s+

0 Q
+
0

∣∣ =

∞̂

−∞

ds−0

∞̂

−∞

dQ−0
∣∣s−0 Q−0

〉 〈
s−0 Q

−
0

∣∣ (3.3)

9



3. Quantum dynamics in path integral formulation

on the right of Û(t) and on the left of Û †(t) in Eq. (3.2), respectively, yields after rearrangement

ρS(s+, s−; t) =

∞̂

−∞

dQ
∞̂

−∞

ds+
0

∞̂

−∞

ds−0

∞̂

−∞

dQ+
0

∞̂

−∞

dQ−0

×
〈
s+

0 Q
+
0

∣∣ ρ̂(0)
∣∣s−0 Q−0

〉 〈
s−0 Q

−
0

∣∣∣Û †(t)
∣∣∣ s−Q

〉〈
s+Q

∣∣∣Û(t)
∣∣∣ s+

0 Q
+
0

〉
. (3.4)

Reading the integrand from the right to the left permits the following interpretation. The SBC
is propagated from the initial coordinate state

∣∣s+
0 Q

+
0

〉
at time 0 forward in time via Û(t) to

the final coordinate state |s+Q〉 at time t. Then the SBC is propagated from another final
state |s−Q〉 at time t backward in time via Û †(t) to the initial coordinate state

∣∣s−0 Q−0
〉
at

time 0. Subsequently the integrand is weighted by the complex number
〈
s+

0 Q
+
0

∣∣ ρ̂(0)
∣∣s−0 Q−0

〉

related to the initial density operator ρ̂(0) and the initial states
∣∣s+

0 Q
+
0

〉
,
∣∣s−0 Q−0

〉
. The reduced

density ρS(s+, s−; t) is then the result of an integration over all initial coordinate states of the
entire SBC and all final coordinate states of the bath as a result of the trace. The propagation
of the SBC in time can be described by the time contour ct as it is depicted in Fig. 3.1.

Figure 3.1.: Time contour ct. See text for explana-
tion.

The quantity
〈
s+Q

∣∣∣Û(t)
∣∣∣ s+

0 Q
+
0

〉
in Eq. (3.4)

is the probability amplitude that the SBC
evolves from the state

∣∣s+
0 Q

+
0

〉
at time

0 to |s+Q〉 at time t. The expression〈
s−0 Q

−
0

∣∣∣Û †(t)
∣∣∣ s−Q

〉
would then correspond

to the probability amplitude that the SBC
evolves from the state |s−Q〉 at time t to∣∣s−0 Q−0

〉
at time 0. The possibility to express the probability amplitude as a functional in-

tegral is at the heart of the PI formulation of quantum mechanics, which is briefly sketched in
the following. In particular, one can show (App.A) that

〈
s
∣∣∣exp

{
∓i
(
p̂2/(2m) + V̂ (ŝ)

)
t/~
}∣∣∣ s0

〉
=

sˆ

s0

D(0,t)s(τ) exp

{
± i
~
A(0,t) [s(τ)]

}
, (3.5)

where
´ s
s0
D(0,t)s(τ) is defined as the functional integral over the complete space of continuous

functions s(τ), defined on the interval (0, t) with boundaries s(0) = s0, s(t) = s. Note that the
parentheses ( · , · ) denote a closed interval, whereas the brackets [ · ] are reserved for functional
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3. Quantum dynamics in path integral formulation

arguments. The quantity A(0,t)[s(τ)] is the classical action

A(0,t)[s(τ)] ≡
tˆ

0

dτ
{

1

2
mṡ2(τ)− V (s(τ))

}
, (3.6)

where V (s) is the classical counterpart of V̂ (ŝ). If one first focuses on the upper sign in
Eq. (3.5), which corresponds to the normal time evolution forward in time, then the following
interpretation for the aforementioned equivalence emerges [37]. The probability amplitude that
the quantum system evolves from a state |s0〉 at time 0 to a state |s〉 at time t is a complex-
weighted superposition of all possible histories the classical counterpart of the system could
have had if it would go from s0 and s within time t, see Fig. 3.2.

Figure 3.2.: Superposition of classical histories. The thickest line symbolizes the classical path.
For further explanations see text.

Each history is characterized by a continuous function s(τ) which can be considered as a
classical trajectory or path. The phases exp

{
i
~A(0,t)[s(τ)]

}
are determined by the classical

action along a particular system path s(τ). In contrast to this summation over all paths, the
time-evolution in classical mechanics is fully determined by one path, namely the path for which
the action is extremal. Paths in the vicinity of the classical path are stationary and, hence,
they are weighted by similar phases with the same sign. These paths have consequently a large
contribution to the integral. Conversely, for non-stationary paths, far away from the extremum,
the integrand changes its sign rapidly and, hence, contributions of these paths cancel each other.
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3. Quantum dynamics in path integral formulation

For the lower sign in Eq. (3.5) the same interpretation holds with the system following the path
backward in time from s(t) = s to s(0) = s0. In the following these paths are called backward
paths denoted by s−(τ), whereas paths resulting from the normal time-evolution are called
forward paths denoted by s+(τ). It is worth mentioning that one could take the right hand side
of Eq. (3.5) as a starting point for a quantum description of mechanics, then the Schrödinger
equation and fundamental commutator relations would follow [7].
With Eq. (3.5) at hand, one can now recast the reduced density in Eq. (3.4) as a PI

ρS(s+, s−; t) =

∞̂

−∞

dQ
∞̂

−∞

dQ+
0

∞̂

−∞

dQ−0

∞̂

−∞

ds+
0

∞̂

−∞

ds−0

×
Q̂

Q
+
0

D(0,t)Q
+(τ)

Q̂

Q
−
0

D(0,t)Q
−(τ)

s+ˆ

s
+
0

D(0,t)s
+(τ)

s−ˆ

s
−
0

D(0,t)s
−(τ)

× ρ(s+(0), s−(0), Q+(0), Q−(0); t) · exp

{
− i
~
(
AS

(0,t)[s
−(τ)] + ASB

(0,t)[s
−(τ), Q−(τ)]

)}

× exp

{
i

~
(
AS

(0,t)[s
+(τ)] + ASB

(0,t)[s
+(τ), Q+(τ)]

)}
, (3.7)

whereQ = (Q1, . . . , QD)T,Q(τ) = (Q1(τ), . . . ,QD(τ))T,
´

Q

Q0
D(0,t)Q(τ) ≡∏D

i=1

´
Qi

Q0,i
D(0,t)Qi(τ).

In the exponents the classical actions of the bare system and the interacting bath appear ac-
cording to Eq. (3.6) as

AS
(0,t)[s(τ)] ≡

tˆ

0

dτ
{

1

2
mṡ2(τ)− VS (s(τ))

}
(3.8)

ASB
(0,t)[s(τ), Q(τ)] ≡

tˆ

0

dτ

{
D∑

i=1

1

2
MiQ̇i

2
(τ)− VB (Q(τ))− Vint(s(τ);Q(τ))

}
. (3.9)

The initial density operator is now represented by the multi-dimensional complex function

ρ(s+(0), s−(0), Q+(0), Q−(0); t) ≡
〈
s+

0 Q
+
0

∣∣ ρ̂(0)
∣∣s−0 Q−0

〉
, (3.10)

depending on the coordinates of the forward and backward paths at time zero. Due to the
absence of initial correlation, as it is assumed in Eq. (2.7), the initial condition can be separated

12



3. Quantum dynamics in path integral formulation

into

ρ(s+(0), s−(0), Q+(0), Q−(0); t) = ρS(s
+(0), s−(0); 0) · ρB(Q+(0), Q−(0); 0) . (3.11)

Since the integrand in Eq. (3.7) just consists of complex numbers, one can rearrange it such
that bare system and system-bath parts are separated. Then the bath’s DOFs can be formally
integrated out

ρS(s+, s−; t) =

∞̂

−∞

ds+
0

∞̂

−∞

ds−0

s+ˆ

s
+
0

D(0,t)s
+(τ)

s−ˆ

s
−
0

D(0,t)s
−(τ)

× F(0,t)[s
+(τ), s−(τ)] · ρS(s+(0), s−(0); 0) · exp

{
i

~
(
AS

(0,t)[s
+(τ)]− AS

(0,t)[s
−(τ)]

)}
(3.12)

with

F(0,t)[s
+(τ), s−(τ)] ≡

∞̂

−∞

dQ
∞̂

−∞

dQ+
0

∞̂

−∞

dQ−0

Q̂

Q
+
0

D(0,t)Q
+(τ)

Q̂

Q
−
0

D(0,t)Q
−(τ)

× ρB(Q+(0), Q−(0); 0) · exp

{
i

~
(
ASB

(0,t)[s
+(τ), Q+(τ)]− ASB

(0,t)[s
−(τ), Q−(τ)]

)}
. (3.13)

Equation (3.13) defines the influence functional, which contains the information about all inter-
actions between system and bath if the system follows the forward path s+(τ) and the backward
path s−(τ). This representation of the system’s reduced density operator was first introduced
by R. Feynman and F.Vernon in their seminal work [18]. Note that the subscript (0, t) in
F(0,t)[s

+(τ), s−(τ)] takes account for the total duration of the system-bath interaction. For the
sake of brevity the following notations are introduced

S(0,t)

[
s±(τ)

]
≡ exp

{
i

~
(
AS

(0,t)[s
+(τ)]− AS

(0,t)[s
−(τ)]

)}
(3.14)

s±ˆ
D(0,t)s

±(τ) ≡
∞̂

−∞

ds+
0

∞̂

−∞

ds−0

s+ˆ

s
+
0

D(0,t)s
+(τ)

s−ˆ

s
−
0

D(0,t)s
−(τ) (3.15)

R
[
s±(τ)

]
≡ ρS(s

+(0), s−(0); 0) . (3.16)
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3. Quantum dynamics in path integral formulation

The functional which is defined by Eq. (3.14) is referred to as the bare system part of the PI.
The functional integral in Eq. (3.15) means now an integral over all combinations of forward
and backward paths s+(τ), s−(τ) spanning the time t with fixed points s±(t) = s±. Equation
(3.16) defines the multi-time reduced density functional R

[
s±(τ)

]
≡ ρS(s

+(0), s−(0); 0), which
plays an important role in the numerical implementation (Sec. 4.1.1). Note that the term is
inspired by Ref. [28], where the authors introduce the ”extended multi-time reduced density
matrix”. With the given notations the time evolution of the system’s reduced density operator
in its PI formulation has the compact form

ρS(s±; t) =

s±ˆ
D(0,t)s

±(τ)F(0,t)

[
s±(τ)

]
·R
[
s±(τ)

]
· S(0,t)

[
s±(τ)

]
, (3.17)

with the abbreviations ρS(s±; t) ≡ ρS(s+, s−; t) and F(0,t)

[
s±(τ)

]
≡ F(0,t)[s

+(τ), s−(τ)]. The
value of the integrand in Eq. (3.17) depends on three mutual independent quantities. First, the
functional S(0,t)

[
s±(τ)

]
takes account of the bare system that is propagated along the forward

path s+(τ) and the backward path s−(τ). Second, the integrand is weighted by the multi-time
reduced density functional R

[
s±(τ)

]
related to the initial reduced density operator ρ̂S(0) and

the coordinates s±(0). Third, the integrand is additionally weighted by influence functional
F(0,t)

[
s±(τ)

]
, which contains implicitly the interaction between system and bath.

To extract time-dependent expectation values for a system operator Ω̂ one has to perform
the additional integration over the end points

〈
Ω̂
〉
t

=

∞̂

−∞

ds±Ω(s∓)

s±ˆ
D(0,t)s

±(τ)F(0,t)

[
s±(τ)

]
·R
[
s±(τ)

]
· S(0,t)

[
s±(τ)

]
, (3.18)

with
´∞
−∞ ds± ≡

´∞
−∞ ds+

´∞
−∞ ds− and Ω(s∓) ≡

〈
s−

∣∣∣Ω̂
∣∣∣ s+

〉
. The expectation value can be

considered as the integral over all bare system forward and backward paths that are quasi-
connected at time zero via ρ̂S(0) and at time t via Ω̂, see Fig. 3.3. A quasi-connection means
that the forward-backward time evolution is not necessarily continuous.
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3. Quantum dynamics in path integral formulation

Figure 3.3.: Bare system propagation in time and space. Note that the time contour ct in
Fig. 3.1 is the projection of the entire path on the time axis.

3.2. Equilibrium time-correlation functions in PI

formulation

Equilibrium TCFs contain important information about the dynamics of the system, e.g., for the
calculation of absorption spectra. In this section it is shown that there exists a PI expression
for the TCF, which is formally similar to Eq. (3.18). The derivation would show that this
expression includes an integration over paths that span an imaginary time interval stemming
from the Boltzmann operator.
The time-correlation function CΓΩ(t) of two arbitrary operators Γ̂ and Ω̂ which act in the

Hilbert space of the system is defined as the ensemble average over the entire SBC

CΓΩ(t) ≡ 1

Z(β)
Tr
[
e−βĤ Γ̂ Û †(t)Ω̂ Û(t)

]
. (3.19)

To find the PI expression of Eq. (3.19) the trace is taken in the coordinate space of the SBC

CΓΩ(t) =
1

Z(β)

∞̂

−∞

ds0

∞̂

−∞

dQ0 〈s0Q0| e−βĤ/2 Γ̂ Û †(t) Ω̂ Û(t) e−βĤ/2 |s0Q0〉 , (3.20)

where the invariance of the trace under cyclic exchange of operators was exploited. The spe-
cific splitting of the Boltzmann operator in Eq. (3.20) is advantageous for the purposes of the
numerical implementation presented in Sec. 4.2. Note in anticipation of the next steps that
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3. Quantum dynamics in path integral formulation

variables colored in green correspond to imaginary time paths. Analogously to Eq. (3.4) spatial
closures are inserted in between the operators yielding

CΓΩ(t) =
1

Z(β)

∞̂

−∞

ds0

∞̂

−∞

ds+
0

∞̂

−∞

ds−0

∞̂

−∞

dsΩ

∞̂

−∞

dst

∞̂

−∞

dsΓ

∞̂

−∞

dQ0

∞̂

−∞

dQt

∞̂

−∞

dQ+
0

∞̂

−∞

dQ−0

×
〈
s0Q0

∣∣ e−βĤ/2
∣∣sΓQ

−
0

〉 〈
sΓ

∣∣ Γ̂
∣∣s−0
〉 〈
s−0 Q

−
0

∣∣ Û †(t)
∣∣stQt

〉

×
〈
st
∣∣ Ω̂
∣∣sΩ

〉 〈
sΩQt

∣∣ Û(t)
∣∣s+

0 Q
+
0

〉 〈
s+

0 Q
+
0

∣∣ e−βĤ/2
∣∣s0Q0

〉
. (3.21)

Note that the operator Γ̂ does not act on bath states, thus, 〈sQ| Γ̂
∣∣s′Q′

〉
= 〈s| Γ̂

∣∣s′
〉
δ
(
Q−Q′

)
.

The integration over Q′ or Q can then be performed immediately, yielding
〈
sΓ

∣∣ Γ̂
∣∣s−0
〉
in the

equation above. The very same is valid for Ω̂ yielding
〈
st
∣∣ Ω̂
∣∣sΩ

〉
therein. In order to interpret

Eq. (3.21), the following isomorphism is exploited. The time evolution operator Û(t) acts in the
same way as exp(−βĤ/2) if one would virtually set t = −iβ~/2. For that reason one can claim
that the operator exp(−βĤ/2) propagates the SBC in the imaginary time from zero to −iβ~/2.
Note that the imaginary time −iβ~/2 is exclusively determined by the temperature and does
not depend on the real time t. Analogously to Eq. (3.4) one can now read the integrand in
Eq. (3.21) from the right to the left. The SBC starts in the state |s0Q0〉 and is propagated
within the imaginary time −iβ~/2 to

∣∣s+
0 Q

+
0

〉
. Further the SBC evolves forward in the real

time to |sΩQt〉 at time t. At this point the SBC has reached the complex time

χ ≡ t− iβ~/2 (3.22)

After the operator Ω̂ has been evaluated, the SBC goes backward in the real time from
∣∣stQt

〉

to
∣∣s−0 Q−0

〉
at time −iβ~/2. Here, the evaluation of Γ̂ takes place. In the final step the SBC is

propagated from the state
∣∣sΓQ

−
0

〉
to the initial state

∣∣s0Q0

〉
at time −iβ~. The propagation

in time can be characterized by the complex time contour cχ visualized in Fig. 3.4. As a result
of the trace in Eq. (3.19), the TCF has the form of an integral over all coordinate states the
SBC occupies during the propagation. In order to express the TCF as a PI, one follows the
same line of reasoning as for the reduced density operator in Eq. (3.4). It can be shown that
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3. Quantum dynamics in path integral formulation

Figure 3.4.: Complex time contour cχ.

the following equivalence (App.A) holds

〈
s
∣∣∣exp

{
−β/2

(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
=

sˆ

s0

D(0,β~/2)s(τ) exp

{
−1

~
E(0,β~/2)[s(τ)]

}
, (3.23)

with the so-called Euclidean action

E(0,β~/2)[s(τ)] =

β~/2ˆ

0

dτ
[

1

2
mṡ2(τ) + V (s(τ))

]
. (3.24)

Note that the Euclidean action differs from the classical action in the sign of the potential
energy. The paths appearing in Eqs. (3.23,3.24) do not depend on the real time, thus they can
not be considered as classical trajectories, but they can be interpreted as paths spanning the
imaginary time −iβ~/2. Following Tuckerman [37], the variation of the Euclidean action yields
the same Euler-Lagrange equation as the variation of the classical action. Thus, if the classical
path provides the minimum of the classical action, then the Euclidian action also becomes
minimal for this particular path. If a path differs crucially from the classical one, the Euclidean
action has a high magnitude, thus, its contribution to the PI in Eq. (3.23) is damped strongly
due to the exponential integrand. In contrast, paths similar to the classical one have a large
contribution, since their Euclidean action is close to the minimal one. With the Eqs. (3.5,3.23)
at hand, one can express the TCF in Eq. (3.21) as an integral over forward/backward paths
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3. Quantum dynamics in path integral formulation

s+
re(τ), s−re(τ) spanning the real part of the complex time χ and paths s+

im(τ), s−im(τ) that span
the imaginary part. Note that for the latter paths the superscript ± does not imply a forward
or backward direction in imaginary time. Inspired by Ref. [30], the paths s+

im(τ) span the
imaginary time interval (0, −iβ~/2), whereas s−im(τ) span the interval (−iβ~/2, −iβ~). The
TCF rewritten as a PI then reads

CΓΩ(t) =
1

Z(β)

∞̂

−∞

ds0

∞̂

−∞

ds−0

∞̂

−∞

ds+
0

∞̂

−∞

dst

∞̂

−∞

dsΓ

∞̂

−∞

dsΩ

×
s
+
0ˆ

s0

D(0,β~/2)s
+
im(τ)

sΓˆ

s
+
0

D(0,t)s
+
re(τ)

stˆ

s
−
0

D(0,t)s
−
re(τ)

s0ˆ

sΓ

D(0,β~/2)s
−
im(τ)

× exp

{
i

~
(
AS

(0,t)[s
+
re(τ)]− AS

(0,t)[s
−
re(τ)]

)
− 1

~
(
ES

(0,β~/2)[s
+
im(τ)] + ES

(0,β~/2)[s
−
im(τ)]

)}

×F(0,χ)[s
+
re(τ), s−re(τ), s+

im(τ), s−im(τ)] ·
〈
s−im(0)

∣∣ Γ̂
∣∣s−re(0)

〉 〈
s−re(t)

∣∣ Ω̂
∣∣s+

re(t)
〉
, (3.25)

where 〈
s−im(0)

∣∣ Γ̂
∣∣s−re(0)

〉 〈
s−re(t)

∣∣ Ω̂
∣∣s+

re(t)
〉
≡
〈
sΓ

∣∣ Γ̂
∣∣s−0
〉 〈
st
∣∣ Ω̂
∣∣sΩ

〉
(3.26)

and the complex time influence functional is defined as

F(0,χ)[s
+
re(τ), s−re(τ), s+

im(τ), s−im(τ)] ≡
∞̂

−∞

dQ0

∞̂

−∞

dQt

∞̂

−∞

dQ+
0

∞̂

−∞

dQ−0

×
Q

+
0ˆ

Q0

D(0,β~/2)Q
+
im(τ)

Qtˆ

Q
+
0

D(0,t)Q
+
re(τ)

Qtˆ

Q
−
0

D(0,t)Q
−
re(τ)

Q0ˆ

Q
−
0

D(0,β~/2)Q
−
im(τ)

× exp

{
i

~
(
ASB

(0,t)[s
+
re(τ), Q+

re(τ)]− ASB
(0,t)[s

−
re(τ), Q−re(τ)]

)}

× exp

{
−1

~
(
ESB

(0,β~/2)[s
+
im(τ), Q+

im(τ)] + ESB
(0,β~/2)[s

−
im(τ), Q−im(τ)]

)}
(3.27)
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3. Quantum dynamics in path integral formulation

with the Euclidean actions

ESB
(0,β~/2)[s(τ),Q(τ)] =

β~/2ˆ

0

dτ

{
D∑

i=1

1

2
MiQ̇i

2
(τ) + VB (Q(τ)) + Vint (s(τ);Q(τ))

}
(3.28)

ES
(0,β~/2)[s(τ)] =

β~/2ˆ

0

dτ
[

1

2
mṡ2(τ) + VS (s(τ))

]
. (3.29)

As it was done in Sec. 3.1, the PI expression can be compressed with the introduction of the
complex time bare system part of the path integral

S ΓΩ
(0,χ)

[
s±re(τ), s±im(τ)

]
≡
〈
s−im(0)

∣∣ Γ̂
∣∣s−re(0)

〉 〈
s−re(t)

∣∣ Ω̂
∣∣s+

re(t)
〉

× exp

{
i

~
(
AS

(0,t)[s
+
re(τ)]− AS

(0,t)[s
−
re(τ)]

)
− 1

~
(
ES

(0,β~/2)[s
+
im(τ)] + ES

(0,β~/2)[s
−
im(τ)]

)}
(3.30)

and the notation

·ˆ

s0

D(0,β~/2)s
+
im(τ)

ˆ

·

D(0,t)s
+
re(τ)

ˆ
D(0,t)s

−
re(τ)

s0ˆ
D(0,β~/2)s

−
im(τ) ≡

∞̂

−∞

ds+
0

∞̂

−∞

ds−0

∞̂

−∞

dst

∞̂

−∞

dsΩ

∞̂

−∞

dsΓ

×
s
+
0ˆ

s0

D(0,β~/2)s
+
im(τ)

sΩˆ

s
+
0

D(0,t)s
+
re(τ)

stˆ

s
−
0

D(0,t)s
−
re(τ)

s0ˆ

sΓ

D(0,β~/2)s
−
im(τ) . (3.31)

The functional integral in Eq. (3.31) is taken over all imaginary paths s+
im(τ) that start at the

coordinate s0 and end where the forward path s+
re(τ) starts, i.e. s+

im(β~/2) = s+
re(0) as indicated by

the dots. The paths s+
re(τ) and s−re(τ) as well as s−re(τ) and s−im(τ) are not connected continuously.

Note that the imaginary path s−im(τ) ends where s+
im(τ) starts, namely at the coordinate s0, as

the result of the trace in Eq. (3.19). Employing these definitions, the TCF in the path integral
formulation finally reads
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3. Quantum dynamics in path integral formulation

Figure 3.5.: Bare system propagation in complex time and space. The marked coordinates
on the space axis are from the left to the right s+

re(t), s
+
im(0) = s−im(β~/2), s+

im(β~/2) =

s+
re(0), s−re(t), s

−
re(0), s−im(0). Note that the time contour cχ in Fig. 3.4 is the projection of

the entire path on the complex time plane.

CΓΩ(t) =
1

Z(β)

∞̂

−∞

ds0

·ˆ

s0

D(0,β~/2)s
+
im(τ)

ˆ

·

D(0,t)s
+
re(τ)

ˆ
D(0,t)s

−
re(τ)

s0ˆ
D(0,β~/2)s

−
im(τ)

×F(0,χ)[s
±
re(τ), s±im(τ)] ·S ΓΩ

(0,χ)

[
s±re(τ), s±im(τ)

]
. (3.32)

The integrand is determined by two mutually independent factors. First, the value of the
functional S ΓΩ

(0,χ)

[
s±re(τ), s±im(τ)

]
, that depends on the system operators Γ̂ and Ω̂ and takes

account of the bare system that follows the paths s±re(τ), s±im(τ) in the complex time. Second, the
complex time influence functional weights the integrand according to the interaction between
the system and bath. The value of the TCF can then be considered as an integral over all bare
system paths, that are quasi-closed in space, see Fig. 3.5. Here, quasi-closed means that the
paths s+

re(τ) and s−re(τ) are discontinuously connected by the operator Ω̂ and s−re(τ) and s−im(τ)

are discontinuously connected by Γ̂, whereas the starting point of s+
im(τ) and the end point of

s−im(τ) coincide.
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4. Numerical treatment of path
integrals

The first part of this chapter contains a derivation of the time evolution of the reduced density
operator formulated as a discrete PI. In order to obtain closed expressions for the discrete
influence functional the bath is described by an ensemble of uncoupled harmonic oscillators
with an arbitrary spectral density, whereas system-bath coupling is linear. This particular
description of system and bath is referred to as the multi-mode Brownian oscillator model
(MBO) [19, 20, 21]. The discrete PI formalism derived in this chapter serves as a basis for an
iterative propagation scheme and related algorithms [26, 27, 28, 31]. The second part is focused
on the application of the very same ideas to the propagation of equilibrium time-correlation
functions [30, 29].

4.1. Propagation of the reduced density operator

4.1.1. Derivation of the discrete PI

The goal of this subsection is to construct the discrete counterpart of Eq. (3.17), which then can
be used as a basis for a numerical implementation. Note that a direct discretization of Eq. (3.17)
causes problems as stated in Introduction. Therefore, the starting point is the general time
evolution of the reduced density operator

ρ̂S(t) = TrB
[
Û(t)ρ̂(0)Û †(t)

]
. (4.1)

The time t is formally discretized into N time slices by using the identity

exp
{
∓iĤt/~

}
=
(

exp
{
∓iĤ∆t/~

})N
, (4.2)
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4. Numerical treatment of path integrals

where ∆t ≡ t/N . Equation (4.1) can then be rewritten as

ρ̂S(t) = TrB
[
e−iĤ∆t/~ · · · e−iĤ∆t/~
︸ ︷︷ ︸

N times

ρ̂(0) eiĤ∆t/~ · · · eiĤ∆t/~
︸ ︷︷ ︸

N times

]
. (4.3)

The next step consists of an insertion of a set of 2N spatial closures for a system coordinate

1̂S =

∞̂

−∞

ds |s 〉〈 s| (4.4)

in between each pair of operators in Eq. (4.3). The integrals inserted on the left of ρ̂(0) are per-
formed over the variables s+

k , whereas the integrals on the right go over s−k with k = 0, . . . , N−1.
In anticipation of what follows, the coordinates colored in red will form discrete forward paths
and blue-colored coordinates will correspond to discrete backward paths. The reduced density
operator in the coordinate representation can then be written as

〈s+ |ρ̂S(t)| s−〉 = TrB




∞̂

−∞

ds+
0 · · ·

∞̂

−∞

ds+
N−1

∞̂

−∞

ds−0 · · ·
∞̂

−∞

ds−N−1

〈
s+

∣∣∣ e−iĤ∆t/~
∣∣∣s+
N−1

〉〈
s+
N−1

∣∣∣e−iĤ∆t/~
∣∣∣ s+

N−2

〉
· · ·
〈
s+

1

∣∣∣e−iĤ∆t/~
∣∣∣ s+

0

〉

×
〈
s+

0

∣∣∣ρ̂(0)
∣∣∣ s−0
〉〈

s−0

∣∣∣eiĤ∆t/~
∣∣∣ s−1
〉
· · ·
〈
s−N−2

∣∣∣eiĤ∆t/~
∣∣∣ s−N−1

〉〈
s−N−1

∣∣∣ eiĤ∆t/~
∣∣∣s−
〉

 , (4.5)

where ŝ |s±〉 = s± |s±〉. For a numerical treatment the continuous space coordinate s is approx-
imated by a set of M discrete grid points s̃i leading to the quadrature rule

1̂S =

∞̂

−∞

ds |s〉 〈s| ≈
M−1∑

i=0

∆s̃i · |s̃i〉 〈s̃i| , (4.6)

where ŝ |s̃i〉 = s̃i |s̃i〉 and ∆s̃i is the weight of the i-th grid point. Since the states |s̃i〉 are not
orthonormal, the normalized spatial grid states are defined as

|s̃i〉 ≡
√

∆s̃i |s̃i〉 , (4.7)
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which obey

1̂S ≈
M−1∑

i=0

|s̃i〉〈s̃i| (4.8)

and
ŝ|s̃i〉 = s̃i|s̃i〉,

〈
s̃i
∣∣s̃j
〉

= δij , (4.9)

where δij is the Kronecker delta. Combining Eqs. (4.8,4.9) implies that theM states |s̃i〉 related
to the spatial grid

SM ≡ {s̃i} (4.10)

form an orthonormal basis for an M -dimensional subspace of the system’s Hilbert space. Note
that the approximation in Eq. (4.6) is exact for M → ∞. In order to recast Eq. (4.5) into
a numerically approachable expression, two steps are performed. First, the reduced density
operator is represented as a time-dependent matrix ρ̃S(N∆t) ∈ CM×M in the basis of the
spatial grid states. The matrix ρ̃S(N∆t) is referred to as the reduced density matrix (RDM) of
the system and has the elements

ρ̃S+,−(N∆t) ≡ 〈s̃+|ρ̂S(t)|s̃−〉 , (4.11)

where ”+” and ”−” symbolically represent the integer numbers 0, . . . , M − 1. Second, the
integrals in Eq. (4.5) are replaced by sums

∞̂

−∞

ds+
k

∣∣s+
k

〉〈
s+
k

∣∣→
M−1∑

i
+
k =0

∣∣∣s̃i+k
〉〈
s̃
i
+
k

∣∣∣ ,
∞̂

−∞

ds−k
∣∣s−k
〉〈
s−k
∣∣→

M−1∑

i
−
k =0

∣∣∣s̃i−k
〉〈
s̃
i
−
k

∣∣∣ , (4.12)
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according to Eq. (4.6). The final result is the time propagation of the RDM elements on a
discrete spatial grid

ρ̃S

+,−(N∆t) = TrB




M−1∑

i
+
0 =0

· · ·
M−1∑

i
+
N−1=0

M−1∑

i
−
0 =0

· · ·
M−1∑

i
−
N−1=0〈

s̃+

∣∣∣e−iĤ∆t/~
∣∣∣s̃i+N−1

〉〈
s̃
i
+
N−1

∣∣∣e−iĤ∆t/~
∣∣∣s̃i+N−2

〉
· · ·
〈
s̃
i
+
1

∣∣∣e−iĤ∆t/~
∣∣∣s̃i+0

〉

×
〈
s̃
i
+
0

∣∣∣ρ̂(0)
∣∣∣s̃i−0

〉〈
s̃
i
−
0

∣∣∣eiĤ∆t/~
∣∣∣s̃i−1

〉
· · ·
〈
s̃
i
−
N−2

∣∣∣eiĤ∆t/~
∣∣∣s̃i−N−1

〉〈
s̃
i
−
N−1

∣∣∣eiĤ∆t/~
∣∣∣s̃−
〉

 . (4.13)

In the following, the time evolution by a time-step ∆t of the entire system is approximated by
the Trotter factorization

exp

{
− i
~
Ĥ∆t

}
≈ exp

{
− i

2~
ĤSB∆t

}
exp

{
− i
~
ĤS∆t

}
exp

{
− i

2~
ĤSB∆t

}
. (4.14)

Note that this factorization is only an approximation, since the system’s momentum operator
p̂ in ĤS does not commute with the system’s position operator ŝ in ĤSB. The error induced by
this approximation is proportional to ∆t3 [24], thus, in the limit of N → ∞ it becomes exact
for an arbitrarily long but finite time t. With this approximation the quantities in Eq. (4.13)
can be further evaluated, e.g.

〈
s̃
i
+
k+2

∣∣∣e−iĤ∆t/~
∣∣∣s̃i+k+1

〉〈
s̃
i
+
k+1

∣∣∣e−iĤ∆t/~
∣∣∣s̃i+k

〉
≈

exp

{
− i

2~
ĤSB

(
s̃
i
+
k+2

)
∆t

}
exp

{
− i
~
ĤSB

(
s̃
i
+
k+1

)
∆t

}
exp

{
− i

2~
ĤSB

(
s̃
i
+
k

)
∆t

}

×
〈
s̃
i
+
k+2

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+k+1

〉〈
s̃
i
+
k+1

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+k

〉
, (4.15)

where
ĤSB

(
s̃
i
+
k

)
≡ ĤSB

(
s̃
i
+
k
, Q̂, P̂

)
(4.16)

is the system-bath interaction Hamiltonian depending parametrically on the system coordi-
nate s̃

i
+
k
. Note that operators of the bath’s Hilbert space do not act on the states

∣∣∣s̃i+k
〉

and

ĤSB

(
ŝ, Q̂, P̂

) ∣∣∣s̃i+k
〉

= ĤSB

(
s̃
i
+
k
, Q̂, P̂

) ∣∣∣s̃i+k
〉
. Equation (4.15) can be easily transferred to the
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quantities on the right hand side of ρ̂(0), that is depending on the variables s̃
i
−
k
. Note that,

according to Eq. (2.7), the following equality holds

〈
s̃
i
+
0

∣∣∣ρ̂(0)
∣∣∣s̃i−0

〉
=
〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
ρ̂B(0) . (4.17)

By the insertion of the spatial closures, all operators in the system’s Hilbert space are repre-
sented by complex numbers, see Eqs. (4.15-4.17). It is now possible to rearrange the quantities
such that all bare system quantities in Eq. (4.13) are separated from that depending on the
system and the bath or exclusively on the bath. The equation for the RDM rewritten this way
reads

ρ̃S

+,−(N∆t) =
M−1∑

i
+
0 =0

· · ·
M−1∑

i
+
N−1=0

M−1∑

i
−
0 =0

· · ·
M−1∑

i
−
N−1=0

f
(
s̃
i
+
0
, . . . , s̃

i
+
N−1

, s̃+, s̃i−0 , . . . , s̃i
−
N−1

, s̃−

)〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉

×
〈
s̃
i
−
0

∣∣∣eiĤS∆t/~
∣∣∣s̃i−1

〉
· · ·
〈
s̃
i
−
N−2

∣∣∣eiĤS∆t/~
∣∣∣s̃i−N−1

〉〈
s̃
i
−
N−1

∣∣∣eiĤS∆t/~
∣∣∣s̃−
〉

×
〈
s̃+

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+N−1

〉〈
s̃
i
+
N−1

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+N−2

〉
· · ·
〈
s̃
i
+
1

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+0

〉
, (4.18)

where the multi-dimensional function

f
(
s̃+

0 , . . . , s̃
+
N−1, s̃

+, s̃−0 , . . . , s̃
−
N−1, s̃

−) ≡
TrB

[
e−iĤSB(s̃

+
,)∆t/(2~)e−iĤSB(s̃

+
N−1)∆t/~ · · · e−iĤSB(s̃

+
1 )∆t/~e−iĤSB(s̃

+
0 )∆t/(2~)ρ̂B(0)

× eiĤSB(s̃
−
0 )∆t/(2~)eiĤSB(s̃

−
1 )∆t/~ · · · eiĤSB(s̃

+
N−1)∆t/~eiĤSB(s̃

−
)∆t/(2~)

]
. (4.19)

carries all the information about the system-bath interaction. The function f defines the
discrete influence functional, as it would be pointed out below. Note at this point that the
approximation due to discretization in time and space becomes exact in the limit

lim
∆t→0,M→∞

ρ̃S

+,−(N∆t) = ρS(s̃+, s̃−; t) , (4.20)

where ∆t → 0 induces N → ∞. This implies that a numerical scheme based on Eq .(4.18)
produces numerically exact results, i.e. up to a given accuracy. Equation (4.18) would be
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rewritten in a more compact form in the following. The basis of this recast is the substitution
of a grid point sequence s̃

i
+
0
, . . . , s̃

i
+
N−1

, s̃+, s̃i−0 , . . . , s̃i
−
N−1

, s̃− by a new variable referred to as
the discrete forward backward path combination (FBC)

s̃± ≡
(

s̃+
0 s̃+

1 · · · s̃+
N−1

s̃−0 s̃−1 . . . s̃−N−1

)
=

(
s̃
i
+
0

s̃
i
+
1
· · · s̃

i
+
N−1

s̃
i
−
0

s̃
i
−
1

. . . s̃
i
−
N−1

)
(4.21)

with the end points s̃±. Note that the end points are not included in the definition of s̃±. This
specific definition is more convenient for formulating the iterative propagation scheme later in
Sec. 4.1.4. In order to motivate the introduction of FBCs in Eq. (4.21), let us restrict ourselves
to the special case N = M = 3, where the time-space grid contains 4×3 points as it is depicted
in Fig. 4.1. The focus is now put on the RDM element ρ̃S

0,1(3∆t), i.e. ”+”= 0, ”−”= 1, which
is determined by

ρ̃S

0,1(3∆t) =
2∑

i
+
0 =0

2∑

i
+
1 =0

2∑

i
+
2 =0

2∑

i
−
0 =0

2∑

i
−
1 =0

2∑

i
−
2 =0

f
(
s̃
i
+
0
, s̃

i
+
1
, s̃

i
+
2
, s̃0, s̃i−0 , s̃i

−
1
, s̃

i
−
2
, s̃1

)〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉

×
〈
s̃
i
−
0

∣∣∣eiĤS∆t/~
∣∣∣s̃i−1

〉〈
s̃
i
−
1

∣∣∣eiĤS∆t/~
∣∣∣s̃i−2

〉〈
s̃
i
−
2

∣∣∣eiĤS∆t/~
∣∣∣s̃1

〉

×
〈
s̃0

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+2

〉〈
s̃
i
+
2

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+1

〉〈
s̃
i
+
1

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+0

〉
, (4.22)

In order to calculate a specific summand, called σ with i+0 = 0, i+1 = 0, i+2 = 1 and i−0 = 1, i−1 =

2, i−2 = 1, the following operation has to be performed

σ = f (s̃0, s̃0, s̃1, s̃0, s̃1, s̃2, s̃1, s̃1) 〈s̃0|ρ̂S(0)|s̃1〉
× 〈s̃1|eiĤS∆t/~|s̃2〉〈s̃2|eiĤS∆t/~|s̃1〉〈s̃1|eiĤS∆t/~|s̃1〉
× 〈s̃0|e−iĤS∆t/~|s̃1〉〈s̃1|e−iĤS∆t/~|s̃0〉〈s̃0|e−iĤS∆t/~|s̃0〉 . (4.23)

The calculation of σ can be divided into three mutually independent tasks; note that the
expression has to be read from the right to the left.
First, the bare system is stepwise propagated forward in time on the spatial grid due to

ĤS, see Fig. 4.1. During this propagation the system is localized along the discrete forward
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Figure 4.1.: Propagation of the bare system on the space-time grid. The forward/backward
path is shown in the left/right panel, correspondingly.

path s̃+ ≡
(
s̃+

0 , s̃
+
1 , s̃

+
2

)
= (s̃0, s̃0, s̃1). Note that the end point s̃+ = s̃0 , where the system

is localized at time 3∆t is not included in the definition of s̃+. Subsequently the system is
propagated backward in time starting at the coordinate s̃− = s̃1 at time 3∆t. Then the system
follows reversely the discrete backward path s̃− ≡

(
s̃−0 , s̃

−
1 , s̃

−
2

)
= (s̃1, s̃2, s̃1). Note that the

coordinates building the backward path are still ordered in the forward direction of time. In
analogy to the discrete forward path, the coordinate s̃− is also referred to as the end point
of the discrete backward path, despite that it is, in fact, the starting point of the backward
propagation. According to the last two lines in Eq. 4.23, the first task in order to calculate σ
requires the propagation of the bare system along the FBC

s̃± =

(
s̃+

0 s̃+
1 s̃+

2

s̃−0 s̃−1 s̃−2

)
(4.24)

with the end points s̃±. Note that the end points are exclusively determined by the RDM ele-
ment on the right hand side of Eq. (4.23), thus, they are the same in all summands contributing
to this particular RDM element.
The second task in order to calculate σ involves the weighting of the summand by the

complex number
〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
= 〈s̃0|ρ̂S(0)|s̃1〉 =

〈
s̃+

0

∣∣ρ̂S(0)
∣∣s̃−0
〉
, which is given by the initial

RDM related to the first coordinate s̃+
0 of the forward path and the first coordinate s̃−0 of the

backward path.
The third task is to compute the multi-dimensional function f , which appears as an additional

weighting factor in the first line of Eq. (4.23). According to Eq. (4.19), the function f in the
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Figure 4.2.: Interaction potential experienced by the bath. The vertical axis is referred to the
”strength” of the system-bath interaction. The forward/backward evolution in time is
shown in the left/right panel, respectively.

case N = M = 3 reads as

f (s̃0, s̃0, s̃1, s̃0, s̃1, s̃2, s̃1, s̃1) = f
(
s̃+

0 , s̃
+
1 , s̃

+
2 , s̃+, s̃

−
0 , s̃

−
1 , s̃

−
2 , s̃−

)
=

∞̂

−∞

dQ

∞̂

−∞

dQ+
0

∞̂

−∞

dQ−0
〈
Q+

0

∣∣ ρ̂B(0)
∣∣Q−0

〉

×
〈
Q−0
∣∣ eiĤSB(s̃

−
0 )∆t/(2~)eiĤSB(s̃

−
1 )∆t/~eiĤSB(s̃

−
2 )∆t/~eiĤSB(s̃−)∆t/(2~)

∣∣∣Q
〉

×
〈
Q
∣∣∣ e−iĤSB(s̃+)∆t/(2~)e−iĤSB(s̃

+
2 )∆t/~e−iĤSB(s̃

+
1 )∆t/~e−iĤSB(s̃

+
0 )∆t/(2~)

∣∣Q+
0

〉
,

(4.25)

where the trace is taken in the bath’s coordinate basis and two spatial closures´∞
−∞ dQ+

0

∣∣Q+
0

〉〈
Q+

0

∣∣ ,
´∞
−∞ dQ−0

∣∣Q−0
〉〈

Q−0
∣∣ are inserted on the left and on the right of ρ̂B(0), re-

spectively. Note additionally that the sequence of the system coordinates s̃0, s̃0, s̃1, s̃0, s̃1, s̃2, s̃1,

s̃1 is now expressed in terms of the FBC s̃± with end points s̃±. If the integrand is read from
the right to the left, then the following interpretation emerges. The bath starts at time 0 from
the initial state

∣∣Q+
0

〉
, then it is propagated due to ĤSB(s̃+

0 ) by a half time step forward in time.
The downscaling of the time step by two is the result of the Trotter factorization in Eq. (4.14).
Within the time ∆t/2 the system coordinate is fixed to s̃+

0 and, thus, the interaction potential
is fixed to V̂int(s̃

+
0 , Q̂) accordingly, see Fig. 4.2. Afterwards the bath is propagated by two full

time steps experiencing the fixed interaction V̂int(s̃
+
1 , Q̂) and V̂int(s̃

+
2 , Q̂), respectively, followed

by a half step with V̂int(s̃+, Q̂). At this point the bath is in the final state |Q〉 at time 3∆t. The
next propagation step evolves the bath ∆t/2 backward in time, with the interaction potential
being fixed to V̂int(s̃−, Q̂). Analogously to the propagation forward in time, two full steps and a
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half step backward in time follow. At the end the bath is in the state
∣∣Q−0

〉
and the integrand

is weighted by the complex number
〈
Q+

0

∣∣ ρ̂B(0)
∣∣Q−0

〉
related to the initial density operator of

the bath. The actual value of f is then the integral over all initial and final states the bath
could have had within the described propagation.
To summarize, the specific summand σ is determined by the propagation of the bare system

following the particular FBC s̃± with end points s̃±. Then σ is weighted by the complex number〈
s̃+

0

∣∣ρ̂S(0)
∣∣s̃−0
〉
related to the initial RDM and the initial coordinates of the forward and backward

paths. The multi-dimensional function f additionally weights the summand σ. The value of
f is calculated according to the averaged system-bath interaction, where the corresponding
interaction potential can be described by an operator-like step function, see Fig. 4.2. The
magnitude of the interaction potential depends on the coordinates of the particular FBC and
its end points, see also Fig. 4.2. If one now calculates all other summands that contribute to
the RDM element ρ̃S

0,1(3∆t), then the values s̃+ = s̃0 and s̃− = s̃1 are fixed but the indices
i+k , i

−
k , k = 0, 1, 2 are varying. Each summand represents a particular combination of forward

and backward paths, which is combinatorially constructed out of 2N = 6 spatial grid points
contained in the set S3. That means the six-fold sum in Eq. (4.22) can be replaced by one
sum over all possible FBCs that can be build out of six grid points. Since all considerations of
this paragraph are easily transferable to arbitrary RDM elements and arbitrary N,M , one can
transform Eq. (4.18) into a discrete path integral (DPI)

ρ̃S

±(N∆t) =
∑

s̃
±∈PN,M

F̃(0,N)

[
s̃±, s̃±

]
S̃(0,N)

[
s̃±, s̃±

]
R̃
[
s̃±
]
, (4.26)

where ρ̃S

±(N∆t) ≡ ρ̃S

+,−(N∆t). The set PN,M is the 2N -fold Cartesian product of the spatial
grid

PN,M ≡ (SM)2N (4.27)

and has the number of elements LN,M given by

LN,M ≡
∣∣PN,M

∣∣ = M2N . (4.28)

Each element of PN,M is a FBC s̃± that spans N − 1 time steps and is defined according to
Eq. (4.21). Naturally the set PN,M contains all FBCs that are possible on an N×M time-space
grid. Each summand in Eq. (4.26) requires the calculation of three independent quantities.
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First, the discrete bare system part of the DPI is calculated via

S̃(0,N)

[
s̃±, s±

]
≡

N−1∏

k=0

S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
, (4.29)

where
S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
≡
〈
s̃+
k+1

∣∣e−iĤS∆t/~∣∣s̃+
k

〉〈
s̃−k
∣∣eiĤS∆t/~∣∣s̃−k+1

〉
, (4.30)

is the bare system point-to-point propagator, which propagates the bare system from the time
k∆t to (k + 1)∆t. Note that in Eqs. (4.29,4.30) for k = N − 1 the following definition is valid

s̃±N = s̃± . (4.31)

Second, the summand is weighted by the discrete multi-time reduced density functional

R̃
[
s̃±
]
≡
〈
s̃+

0

∣∣ρ̂S(0)
∣∣s̃−0
〉
. (4.32)

The value R̃
[
s̃±
]
for a particular FBC s̃± can be considered as one element of the multi-time

reduced density vector R̃ ∈ CLN,M . As it was already stated in Sec. 3.1, the importance of the
definition in Eq. 4.32 would become clear in Sec. 4.1.4.
Third, the summand is additionally weighted by the discrete influence functional defined as

F̃(0,N)

[
s̃±, s̃±

]
≡ f

(
s̃+

0 , . . . , s̃
+
N−1, s̃+, s̃

−
0 , . . . , s̃

−
N−1, s̃−

)
. (4.33)

The value of F̃(0,N)

[
s̃±, s̃±

]
depends on the particular FBC s̃± and the end points s̃±, which

span together the time interval (0, N∆t). In order to calculate the time-dependent expectation
value of an arbitrary system operator Ω̂, one has to perform an additional summation over the
end points

〈
Ω̂
〉
t

=
M−1∑

±=0

Ω̃∓ · ρ̃S

±(N∆t)

=
M−1∑

±=0

Ω̃∓ ·
∑

s̃
±∈PN,M

F̃(0,N)

[
s̃±, s̃±

]
S̃(0,N)

[
s̃±, s̃±

]
R̃
[
s̃±
]

(4.34)

where Ω̃∓ ≡ 〈s̃−|Ω̂|s̃+〉 and
∑M−1
±=0 symbolically represents a two-fold sum over the indices ”+”
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and ”−”.
Equation (4.26) offers in principal a recipe to perform the time evolution of the RDM numer-

ically. However, the feasibility of this approach is debatable due to the numbers of FBCs LN,M
which contribute to the DPI. Here, two problems with respect to the numerical costs arise. The
number of FBCs and, hence, the number of operations during the propagation strongly depend
on M , see Eq. (4.28). Moreover, the numbers grow exponentially with the propagation step
N . The first problem can be reduced by employing a system-dependent grid, which reasonably
approximates the continuous system space by just few grid points. The construction of this
specific grid is the subject of the following subsection. The second problem is due to the struc-
ture of Eq. (4.26). In order to propagate the RDM to a certain time step N , one always has
to start from the initial condition at time 0. If N is incremented by one, the space-time grid
grows by M spatial grid points, thus, the set PN,M grows by M2 elements. Such a propagation
scheme is referred to as global. The aim is now to reformulate Eq. (4.26) such, that already
calculated time steps can be used as starting points for following time steps. Within such a
successive propagation, the number of FBCs is independent on the total propagation time. A
scheme of this kind is called iterative and its application to the discrete PI is the subject of
Sec. 4.1.4.

4.1.2. The discrete variable representation

As it was mentioned in the end of the previous subsection, the number of FBCs increases rapidly
with the number M of spatial grid points. Hence, the aim of this subsection is to find a set
of coordinates SM = {s̃i}, with M being as small as possible, such that the approximation in
Eq. (4.6) still remains reasonable.
As a starting point one assumes that the perturbation induced by the bath is small enough,

such that the reduced density operator has approximately the limit

lim
t→∞

ρ̂S(t) ≈
1

ZS(β)
e−βĤS , (4.35)

which corresponds to the canonical equilibrium of the bare system with the system’s partition
function ZS(β). The operator on the right hand side of Eq. (4.35) can be written down as a
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sum over the system’s eigenstate projectors

e−βĤS =
∞∑

n=0

e−βεn |n〉 〈n| , (4.36)

where the states obey the stationary Schrödinger equation

ĤS |n〉 = εn |n〉 . (4.37)

If one assumes additionally that the thermal energy 1/β = kBT is much smaller than the energy
differences εn − ε0 for n > 0, the sum in Eq. (4.36) can be truncated after few summands. In
other words, high energy states have negligible weight in the equilibrium statistics of the system
in a weakly-coupled environment at typical temperatures. If the lowest M energy eigenstates
of the system are sufficient to describe the equilibrium statistics without a loss of accuracy, one
can claim that

1̂S ≈
M−1∑

n=0

|n〉 〈n| (4.38)

is a reasonable approximation. Since the PI formulation of quantum dynamics requires the
coordinate representation, the task is now to find a set of position eigenstates

{
|s̃i〉
}
that span

the same subspace as the energy eigenstates in Eq. (4.38) do. This criterion is fulfilled if there
exist coefficients Tin that obey

|s̃i〉 =
M−1∑

n=0

Tin |n〉 , (4.39)

under the condition 〈
s̃i
∣∣ŝ
∣∣s̃j
〉

= s̃iδij . (4.40)

A combination of Eqs. (4.39,4.40) yields

M−1∑

k=0

M−1∑

l=0

T ∗ik 〈k| ŝ |l〉Tjl = s̃iδij , (4.41)
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which can be expressed as the diagonalization of a matrix s via the unitary transformation

T†sT =




s̃0

. . .

s̃M−1


 , (4.42)

where s, T ∈ CM×M have the elements skl = 〈k| ŝ |l〉 and Tin = 〈n|s̃i〉, respectively, and
T† = T−1. Note that s is the matrix representation of the system’s position operator in the
truncated basis formed by the M lowest energy eigenstates of the system itself. Consequently,
the eigenvalues s̃0, . . . , s̃M−1 form a system-dependent spatial grid and the corresponding basis
given by the states

{
|s̃i〉
}

is called the discrete variable representation (DVR). In comparison
to another spatial discretization, the DVR indeed requires a very small number of grid points
as it will be shown in Sec. 5.2.
To conclude, the recipe to determine a reasonable spatial grid is as follows. First, the station-

ary Schrödinger equation of the bare system has to be solved for the M lowest eigenstates, see
Eq. (4.37). Subsequently the matrix s has to be calculated and diagonalized, see Eq. (4.42). The
resulting eigenvalues are then the grid points. Additionally, the elements of the transformation
matrix T can be employed to calculate the discrete bare system part in Eqs. (4.33,4.29) via

〈
s̃i
∣∣e∓iĤS∆t/~∣∣s̃j

〉
=

M−1∑

n=0

e∓iεn∆t/~〈s̃i|n〉〈n|s̃j〉 =
M−1∑

n=0

e∓iεn∆t/~TjnT
†
ni . (4.43)

4.1.3. The multi-mode Brownian oscillator model

The remaining task is to recast the global propagation of the RDM in Eq. (4.26) as an iterative
scheme. First let us figure out the main obstacles hindering it. In Eq. (4.19) one notices that
the influence functional depends on the coordinates of all time steps in the past simultaneously.
In other words, the influence functional is non-local in time as a result of the bath’s ”memory”.
Thus, the RDM at the N -th time step depends explicitly on all previous time steps up to the
zeroth. The goal of this subsection is to express the discrete influence functional as a product of
point-to-point propagators similar to the discrete bare system part in Eqs. (4.29, 4.30). Since in
the vast majority of cases the memory time of the bath is finite, this product can be truncated
and, thus, the explicit dependence on very early time steps vanishes.
In order to derive a specific form of the influence functional, one assumes the multi-mode
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Brownian oscillator (MBO) model, whose system-bath Hamiltonian reads

Ĥ(ŝ, p̂; Q̂, P̂) =
p̂2

2m
+ V̂S(ŝ) +

D∑

i=1

{
P̂ 2
i

2Mi

+
1

2
Miω

2
i

(
Q̂i −

giŝ

Miω
2
i

)2
}

. (4.44)

Here, the system with an arbitrary potential V̂S(ŝ) is bilinearly coupled to the bath comprised
by D harmonic oscillators with frequencies ωi and masses Mi. The coupling to each oscillator
is determined by the parameters gi, which are given by the spectral density

J(ω) =
π

2

D∑

i=1

g2
i

Miωi
δ(ω − ωi) . (4.45)

The spectral density fully determines the characteristics of the bath and if the number of har-
monic oscillators approaches infinity this function becomes continuous. Note that the harmonic
oscillators are uncoupled from each other. This particular definition of the system-bath Hamil-
tonian is assumed for all following considerations. For the MBO Hamiltonian, the error resulting
from the Trotter factorization in Eq. (4.14) can be explicitly given [24] to be proportional to

∆t3
D∑

i=1

[
p̂2,

[
p̂2,

(
Q̂i −

giŝ

Miω
2
i

)2
]]

, (4.46)

where [· , ·] denotes the commutator. The major advantage of the MBO model is, that the influ-
ence functional in Eq. (4.33) can be expressed analytically. Thus, the calculation of F̃(0,N)

[
s̃±, s±

]

in Eq. (4.33) can be performed without treating the numerous bath’s DOFs numerically. The
possibility to find an analytical expression for the influence functional is a consequence of the
particular assumption of the MBO Hamiltonian, as it is briefly sketched in the following. Each
oscillator in the bath experiences individually the external force

K̂ext

i (ŝ) ≡ i

~

[
V̂int(ŝ, Q̂) , P̂i

]
= gi1̂Bŝ , (4.47)

according to the Heisenberg equation of motion, where V̂int(ŝ, Q̂) = −Q̂iŝ + g2
i /(Miω

2
i )ŝ

2. Due
to the bilinear coupling between system and bath, the force scales just linearly with the system
coordinate ŝ. In the framework of the PI formalism, as presented in Sec. 3.1, the system
coordinate is described by a combination of a forward path s+(τ) and a backward path s−(τ).
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Consequently, the force in Eq. (4.47) in the PI formulation depends on the system path and,
thus, it is parametrically time-dependent

K̂ext,±
i (τ ) ≡ gi1̂Bs

±(τ) . (4.48)

Following Feynman [18], the continuous influence functional can then be written down analyt-
ically as

F(0,t)

[
s±(τ)

]
= exp



−

1

~

tˆ

0

dτ
τˆ

0

dτ ′
(
B(τ − τ ′)s+(τ ′)−B∗(τ − τ ′)s−(τ ′)

)
·
(
s+(τ)− s−(τ)

)




× exp



−i

π

~

∞̂

0

dω
J(ω)

ω

tˆ

0

dτ
(
s+(τ)2 − s−(τ)2

)


 . (4.49)

Note that it is additionally assumed that the bath is in the canonical equilibrium at time zero

ρ̂B(0) =
1

ZB

e−βĤB . (4.50)

All characteristics of the bath are contained in the bath response function

B(τ − τ ′) ≡ 1

π

∞̂

0

dωJ(ω)
cos
(
ω
(
τ − τ ′ + iβ~/2

))

sinh (β~ω/2)
. (4.51)

Referring back to the discrete PI in Eq. (4.26), the interaction potential appearing in the discrete
influence functional is a step function as depicted in Fig. 4.2. The magnitude depends on the
FBC s̃± and the end points s±, thus, in the discrete case the external force can be expressed
accordingly

K̂ext,±
i (τ ) = gi1̂B ·





s̃±0 , 0 ≤ τ < ∆t/2

s̃±k ,
(
k − 1

2

)
∆t ≤ τ <

(
k + 1

2

)
∆t,

s±,
(
N − 1

2

)
∆t ≤ τ ≤ N∆t ,

k = 1, . . . N − 1 (4.52)

where the first and the last time interval are half-sized as the result of the Trotter factorization
in Eq. (4.14). By inserting this special form of the external force into Eq. (4.49), the time
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integration can be carried out, yielding the discrete influence functional [26]

F̃(0,N)

[
s̃±, s̃±

]
= exp



−

1

~

N∑

k=0

k∑

k
′
=0

(
η
k
′
k
s̃+

k
′ − η∗k′ks̃

−
k
′

)
·
(
s̃+
k − s̃−k

)


 , (4.53)

with the memory coefficients

ηk′k =

τk+1ˆ

τk

dτ

τ
k
′
+1ˆ

τ
k
′

dτ ′B(τ − τ ′) , k 6= k′ (4.54)

ηkk =

τk+1ˆ

τk

dτ




τk+1ˆ

τk

dτ ′B(τ − τ ′) + iπ

∞̂

0

dω
J(ω)

ω


 , (4.55)

where the times τk match the time intervals given in Eq. (4.52)

τk =





0 , k = 0
(
k − 1

2

)
∆t , k = 1, . . . , N

N∆t , k = N + 1

. (4.56)

The memory coefficients ηk,k can be formulated as closed expressions depending on the spectral
density and are given in App.B.1. One can show that ηk′k depend only on the difference
∆k = k−k′ if k, k′ 6= 0 and k, k′ 6= N . The Eq. (4.53) permits the following interpretation. The
exclusively bath-dependent coefficients ηk′k are connecting points s̃±

k
′ in the past with present

points s̃±k of a system path. That means the coefficients are mediating the memory of the bath
to the dynamics of the system and the non-locality in time, therefore, manifests itself in ηk′k.
Since the primitive of the integrand in Eq. (4.51) is proportional to 1/(τ − τ ′), one can expect
the limit

lim
τ−τ ′→∞

B(τ − τ ′) = 0 , (4.57)

see Fig. 4.3 for an example. The limit in Eq. (4.57) implies that also the memory coefficients
ηk′k tend to zero if k′ � k. This behavior accounts for the finite memory of the bath, which is
mandatory for the iterative procedure as presented in the following subsection.
The initially formulated goal of this subsection is to recast the discrete influence functional
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Figure 4.3.: Bath response function for an Ohmic spectral density. The graph corresponds to
the Ohmic spectral density J(ω) = π

2�ξω exp (−ω/ωc).

as a product of point-to-point propagators. By applying the MBO model this aim is fulfilled,
since Eq. (4.53) can be written as

F̃(0,N)

[
s̃±, s̃±

]
=

N∏
k=0

k∏
k
′
=0

F̃
(k
′
,k)

(
s̃±
k
′ , s̃

±
k

)
, (4.58)

with the point-to-point influence

F̃
(k
′
,k)

(
s̃±
k
′ , s̃

±
k

) ≡ exp

{
−1

�

(
η
k
′
k
s̃+
k
′ − η∗

k
′
k
s̃−
k
′
) · (s̃+k − s̃−k

)}
. (4.59)

In order to simplify the derivation of the iterative scheme, the identity

N∏
k=0

k∏
k
′
=0

F̃
(k
′
,k)

(
s̃±
k
′ , s̃

±
k

)
=

N∏
k
′
=0

N∏
k=k

′
F̃
(k
′
,k)

(
s̃±
k
′ , s̃

±
k

)
(4.60)

is employed in the following. The effect of the point-to-point influences can be visualized if
one writes the double product on the right hand side of Eq. (4.58) in a more pictorial way and
omitting the arguments, see Figs. 4.4. After substitution of Eq. (4.58) in Eq. (4.26) the RDM is
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Figure 4.4.: Effect of the point-to-point influences. Shown for the special case N = 4. Each
point in the past influences each point in the future.

propagated globally via

ρ̃S

±(N∆t) =
∑

s̃
±∈PN,M




N∏

k
′
=0

N∏

k=k
′

F̃(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)


(
N−1∏

k=0

S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
)
R̃
[
s̃±
]
. (4.61)

In the following subsection the global propagation scheme in Eq. (4.61) is transfered into an
iterative one.

4.1.4. The iterative calculation of the PI

As it was mentioned in the previous subsection, the memory coefficients ηk′k appearing in the
discrete influence functional tend to zero if k′ � k. Here and further we thus assume that ηk′k
can be neglected without loss of accuracy if k − k′ > κ, which corresponds to a finite memory
or correlation time tκ ≡ κ∆t of the bath. For any κ > 0 the bath is referred to as a non-
Markovian bath. A point-to-point influence in Eq. (4.61) that connects two points separated
by a time larger than tκ acts like unity, thus, the double product in Eq. (4.58) can be truncated

F̃(0,N)

[
s̃±, s±

]
=

N∏

k
′
=0

min{N, k′+κ}∏

k=k
′

F̃(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
. (4.62)
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Figure 4.5.: Truncation of the point-to-point influences. Shown for the special case N = 3. The
grey-colored factor is equal to one, thus, the influence visualized by the grey dashed line
is neglected.

In a practical application the value κ is determined by the correlation time of the bath. The
truncation in Eq. (4.62) can now be employed to recast the global propagation in Eq. (4.26)
into an iterative scheme. For the sake of illustration we consider the special case κ = 2. The
effect of the truncation on the mutual influence of the time steps is shown in Figs. 4.5,4.6.
Here, it becomes visible that the set of interactions in Fig. 4.6 can be built upon the set at the
previous time step visualized in Fig. 4.5. The same would hold for the next time step (N = 5)

and also for following time steps. The number of additional interactions is constantly κ + 1

and, thus, independent of N . One can expect that the discrete PI can be formulated such that
the number of arithmetic operations is constant for arbitrary N in contrast to an exponential
increase, typical for global propagation schemes. To illustrate that it is indeed possible, let us
first focus on the special case N = 3, κ = 2. The sum over the set PN,M in Eq. (4.61) is now
unfolded back into the 2N -fold sum in Eq. (4.18). According to Eq. (4.61) an arbitrary RDM
element is calculated via

ρ̃S

±(3∆t) =
M−1∑

i
+
0 =0

M−1∑

i
+
1 =0

M−1∑

i
+
2 =0

M−1∑

i
−
0 =0

M−1∑

i
−
1 =0

M−1∑

i
−
2 =0


3∏

k
′
=0

min{3, k′+2}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)

 ·

(
2∏

k=0

S̃(k,k+1)

(
s̃
i
±
k
, s̃
i
±
k+1

))〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
. (4.63)

All quantities that depend on the indices i+0 , i
−
0 and, thus, k = k′ = 0 can be grouped together,

such that the summation over these indices can be done separately. Note especially that the
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Figure 4.6.: Truncation of the point-to-point influences. Shown for the special case N = 4. The
grey-colored factors are equal to one, thus, the influences visualized by the grey dashed
lines are neglected.

point-to-point influences with k′ = 0 are pulled out of the double product in Eq. (4.62). After
the rearrangement the propagation of the RDM can be expressed as

ρ̃S

±(3∆t) =
M−1∑

i
+
1 =0

M−1∑

i
+
2 =0

M−1∑

i
−
1 =0

M−1∑

i
−
2 =0




3∏

k
′
=1

min{3, k′+2}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)

 ·

(
2∏

k=1

S̃(k,k+1)

(
s̃
i
±
k
, s̃
i
±
k+1

))

×
M−1∑

i
+
0 =0

M−1∑

i
−
0 =0




min{3, 2}∏

k=0

F̃(0,k)

(
s̃
i
±
0
, s̃

i
±
k

)

 · S̃(0,1)

(
s̃
i
±
0
, s̃
i
±
1

)〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
. (4.64)

Note that
∏3

k
′
=1

∏min{3, k′+2}
k=k

′ can be replaced by
∏3

k
′
=1

∏3
k=k

′ and
∏min{3, 2}

k=0 F̃(0,k)

(
s̃
i
±
0
, s̃

i
±
∆k

)
=

∏2
k=0 F̃(0,k)

(
s̃
i
±
0
, s̃

i
±
∆k

)
corresponds to the uppermost row of factors in Figs. 4.5,4.6. A new

quantity that corresponds to the last line in Eq. (4.64) can be defined as

r
(
s̃
i
±
1
, s̃
i
±
2

; ∆t
)
≡

M−1∑

i
+
0 =0

M−1∑

i
−
0 =0

(
2∏

k=0

F̃(0,k)

(
s̃
i
±
0
, s̃

i
±
k

))
· S̃(0,1)

(
s̃
i
±
0
, s̃
i
±
1

)〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
. (4.65)

Note that r
(
s̃
i
±
1
, s̃
i
±
2

; ∆t
)
does not depend on the indices i±0 since they are summed over. The

complete information of the zeroth time step is now implicitly contained in r
(
s
i
±
1
, s
i
±
2

; ∆t
)
. If

one calculates the elements of the RDM for the next time step, that is for N = 4, the following
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equation emerges

ρ̃S

±(4∆t) =
M−1∑

i
+
0 =0

M−1∑

i
+
1 =0

M−1∑

i
+
2 =0

M−1∑

i
+
3 =0

M−1∑

i
−
0 =0

M−1∑

i
−
1 =0

M−1∑

i
−
2 =0

M−1∑

i
−
3 =0


4∏

k
′
=0

min{4, k′+2}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)

 ·

(
3∏

k=0

S̃(k,k+1)

(
s̃
i
±
k
, s̃
i
±
k+1

))〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
. (4.66)

At this point, the definition of r
(
s̃
i
±
1
, s̃
i
±
2

; ∆t
)
can be inserted and all quantities depending on

indices i±1 and, thus, k = k′ = 1 can be grouped together leading to

ρ̃S

±(4∆t) =
M−1∑

i
+
2 =0

M−1∑

i
+
3 =0

M−1∑

i
−
2 =0

M−1∑

i
−
3 =0




4∏

k
′
=2

min{4, k′+2}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)

 ·

(
3∏

k=2

S̃(k,k+1)

(
s̃
i
±
k
, s̃
i
±
k+1

))

×
M−1∑

i
+
1 =0

M−1∑

i
−
1 =0




min{4, 3}∏

k=1

F̃(1,k)

(
s̃
i
±
1
, s̃

i
±
k

)

 · S̃(1,2)

(
s̃
i
±
1
, s̃
i
±
2

)
r
(
s̃
i
±
1
, s̃
i
±
2

; ∆t
)
. (4.67)

Note again that
∏4

k
′
=2

∏min{4, k′+2}
k=k

′ =
∏4

k
′
=2

∏4
k=k

′ and
∏min{4, 3}

k=1 F̃(1,k)

(
s̃
i
±
1
, s̃

i
±
k

)
=

∏3
k=1 F̃(1,k)

(
s̃
i
±
1
, s̃

i
±
k

)
corresponds to the second rows in Figs. 4.5,4.6. Equation (4.67) is for-

mally identical to Eq. (4.64) if all indices therein are shifted by one and
〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
is

substituted by r
(
s̃
i
±
1
, s̃
i
±
2

; ∆t
)
. This similarity between the previous and the current time step

is at the heart of an iterative propagation scheme. As the next step, the complete information
of the first two time steps reduces to the quantity

r(s̃
i
±
2
, s̃
i
±
3

; 2∆t) ≡
M−1∑

i
+
1 =0

M−1∑

i
−
1 =0

(
3∏

k=1

F̃(1,k)

(
s̃
i
±
1
, s̃

i
±
k

))
· S̃(1,2)

(
s̃
i
±
1
, s̃
i
±
2

)
r
(
s̃
i
±
1
, s̃
i
±
2

; ∆t
)

(4.68)

and so on. It is straightforward to generalize the presented iterative procedure to arbitrary κ
and N > κ. To calculate the RDM for the N -th step, one has to perform the following steps.
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First, the quantity r has to be propagated step by step via

r
(
s̃
i
±
N−κ

, . . . , s̃
i
±
N−1

; (N − κ)∆t
)

=
M−1∑

i
+
N−κ−1=0

M−1∑

i
−
N−κ−1=0

(
N−1∏

k=N−κ−1

F̃(N−κ−1,k)

(
s̃
i
±
N−κ−1

, s̃
i
±
k

))

× S̃(N−κ−1,N−κ)

(
s̃
i
±
N−κ−1

, s̃
i
±
N−κ

)
r
(
s̃
i
±
N−κ−1

, . . . s̃
i
±
N−2

; (N − κ− 1)∆t
)
. (4.69)

The initial condition is given by

r
(
s̃
i
±
0
, . . . s̃

i
±
κ−1

; 0
)
≡
〈
s̃
i
+
0

∣∣∣ρ̂S(0)
∣∣∣s̃i−0

〉
. (4.70)

Second, the additional summation has to be performed

ρ̃S

±(N∆t) =
M−1∑

i
+
N−κ=0

· · ·
M−1∑

i
+
N−1=0

M−1∑

i
−
N−κ=0

· · ·
M−1∑

i
−
N−1=0




N∏

k
′
=N−κ

N∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)



×
(

N−1∏

k=N−κ
S̃(k,k+1)

(
s̃
i
±
k
, s̃
i
±
k+1

))
r
(
s̃
i
±
N−κ

, . . . , s̃
i
±
N−1

; (N − κ)∆t
)
. (4.71)

Equations (4.70-4.71) represent an iterative scheme for the propagation of the RDM, since the
quantity r

(
s̃
i
±
N−κ

, . . . , s̃
i
±
N−1

; (N − κ)∆t
)
is exclusively constructed out of its counterpart at the

previous time step. Note that for 0 < N ≤ κ, the RDM is propagated globally with details
given in App.C. Importantly, there is no possibility to propagate the RDM iteratively within
the correlation time of the bath, since the influence functional can not be truncated in this
case.
In analogy to Eq. (4.26), the iterative scheme for any N > κ is reformulated in terms of FBC

segments s̃± =

(
s̃+

0 · · · s̃+
κ−1

s̃−0 · · · s̃−κ−1

)
with the end points s̃± employing the following substitu-

tions.
First, the discrete influence functional can be found by index shifting and grouping the
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coordinates s̃
i
±
k

to path segments s̃±

N∏

k
′
=N−κ

min{N, k′+κ}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)
k
′→k′+N−κ−→

κ∏

k
′
=0

κ∏

k=k
′

F̃(k
′
+N−κ,k+N−κ)

(
s̃±
k
′ , s̃
±
k

)
= F̃(N−κ,N)

[
s̃±, s̃±

]
,

(4.72)
where, according to Eq. (4.59)

F̃(k
′
+N−κ,k+N−κ)

(
s̃±
k
′ , s̃
±
k

)
= exp

{
−1

~

(
η
k
′
+N−κ,k+N−κ s̃

+

k
′ − η∗k′+N−κ,k+N−κ s̃

−
k
′

)
·
(
s̃+

k
− s̃−

k

)}
.

(4.73)

Note that the indices k, k′ are now in the range 0, . . . , κ.
Second, the discrete bare system part is obtained likewise

N−1∏

k=N−κ
S̃(k,k+1)

(
s̃
i
±
k
, s̃
i
±
k+1

)
k
′→k′+N−κ−→

κ−1∏

k=0

S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
= S̃(N−κ,N)

[
s̃±, s̃±

]
, (4.74)

where, according to Eq. (4.30)

S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
=
〈
s̃+
k+1

∣∣e−iĤS∆t/~∣∣s̃+
k

〉〈
s̃−k
∣∣eiĤS∆t/~∣∣s̃−k+1

〉
. (4.75)

Note that the bare system part is independent of the total propagation time and, thus,
S̃(N−κ,N)

[
s̃±, s̃±

]
= S̃(0,κ)

[
s̃±, s̃±

]
, whereas the point-to-point influences in Eq. (4.73) depend

explicitly onN due to the memory coefficients. The virtual character of the memory coefficient’s
time-dependence is shown in Sec. 4.1.5. In Eqs. (4.72-4.75) the end points enter as s̃±κ ≡ s̃±.
Third, the quantity r

(
s̃
i
±
N−κ

, . . . , s̃
i
±
N−1

; (N − κ)∆t
)

is replaced by the time-dependent dis-

crete multi-time reduced density functional R̃
[
s̃±; (N − κ)∆t

]
with s̃

i
±
N−κ
→ s̃±0 , . . . , s̃i±N−1

→
s̃±κ−1. Here each value R̃

[
s̃±; (N − κ)∆t

]
for a particular s̃± can be considered as an element

of the time-dependent multi-time reduced density vector R̃ ((N − κ)∆t) ∈ CLκ,M .

• Fourth, the quantity r
(
s̃
i
±
N−κ−1

, . . . s̃
i
±
N−2

; (N − κ− 1)∆t
)

at the previous time step is

substituted by R̃
[
r̃±; (N − κ− 1)∆t

]
, where s̃

i
±
N−κ−1

→ r̃±0 , . . . , s̃i±N−2
→ r̃±κ−1, that is s̃

±

shifted by one time step. Note that the third and the fourth substitution imply

r̃±1 = s̃±0 , . . . , r̃
±
κ−1 = s̃±κ−2 . (4.76)
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Fifth, the weighting factor in Eq. (4.69) defines the lambda propagator




N−1∏

k=N−κ−1

F̃(N−κ−1,k)

(
s̃
i
±
N−κ−1

, s̃
i
±
k

)

 S̃(N−κ−1,N−κ)

(
s̃
i
±
N−κ−1

, s̃
i
±
N−κ

)
k→k+(N−κ−1)−→

S̃(0,1)

(
r̃±0 , r̃

±
1

)
(
κ−1∏

k=0

F̃(N−κ−1,k+N−κ−1)

(
r̃±0 , r̃

±
k

)
)
F̃(N−κ−1,N−1)

(
r̃±0 , s̃

±
κ−1

)

≡ Λ(N−κ−1,N−1)

[
r̃±, s̃±

]
. (4.77)

With the given substitutions at hand, the iterative scheme can be formulated as follows. If
one wants to calculate the RDM element ρ̃S,±(N∆t), where N > κ, one has to propagate each
element of R̃(k∆t) time step by time step up to k = N − κ via

R̃
[
s̃±; (N − κ)∆t

]
=

∑

r̃
±∈Pκ,M [s̃±]

Λ(N−κ−1,N−1)

[
r̃±, s̃±

]
· R̃
[
r̃±; (N − κ− 1)∆t

]
. (4.78)

with the initial condition
R̃
[
s̃±; 0

]
≡
〈
s̃+

0

∣∣ρ̂S(0)
∣∣s̃−0
〉
. (4.79)

The set Pκ,M
[
s̃±
]
is a subset of Pκ,M = (SM)2κ and it contains the FBCs r̃± that share all

points except the first with s̃± according to Eq. (4.76)

Pκ,M
[
s̃±
]
≡
{
r̃± ∈ Pκ,M

∣∣ r̃±k = s̃±k−1, k = 1, . . . , κ− 1
}
, s̃± ∈ Pκ,M . (4.80)

Within the propagation in Eq. (4.7) each element of R̃ (k∆t) is the complex-weighted super-
position of certain elements of the previous R̃

(
(k − 1)∆t

)
, where the weight is given by the

lambda propagator. The elements R̃
[
r̃±; (k − 1)∆t

]
, which contribute to a certain R̃

[
s̃±; k∆t

]

correspond to the FBC segments r̃± ∈ Pκ,M
[
s̃±
]
. This can be interpreted as the set Pκ,M

[
s̃±
]

contains all possible histories r̃± of the FBC segment s̃± within the correlation time, see Fig. 4.7.
Since R̃ (k∆t) can be determined exclusively with the knowledge of R̃

(
(k − 1)∆t

)
at the pre-

vious time step, the propagation of the multi-time reduced density vector is local in time or in
other words, its time evolution is effectively Markovian. Note that the specific form of Eq. (4.78)
could not have been written down, if the end points s̃± would be included in the definition of s̃±.
The final step to calculate ρ̃S,±(N∆t) is the summation over all FBCs that span the correlation
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Figure 4.7.: Propagation of the discrete multi-time reduced density vector. Shown for the
special M = 3, κ = 3. Forward/Backward paths are shown in left/right panel, respec-
tively.

time together with the end points s̃±

ρ̃S

±(N∆t) =
∑

s̃
±∈Pκ,M

F̃(N−κ,N)

[
s̃±, s̃±

]
R̃
[
s̃±; (N − κ)∆t

]
S̃(N−κ,N)

[
s̃±, s̃±

]
. (4.81)

The vector R̃
(
(N − κ)∆t

)
serves as a starting point for this summation, see Fig. 4.8. It is

worth mentioning that in contrast to Eq. (4.26), the set Pκ,M in Eq. (4.81) contains Lκ,M =

M2κ elements independently of N . Each element of Pκ,M is an FBC segment containing a
constant number of coordinates. However, the fixed initial condition R̃

[
s̃±
]
in Eq. (4.26) is

now replaced by R̃
[
s̃±; (N − κ)∆t

]
, which depends explicitly on the global time step N , thus,

the key quantity of the iterative scheme is the discrete multi-time reduced density functional
R̃
[
s̃±; (N − κ)∆t

]
.

The task of this subsection is fulfilled and the RDM propagation has been recast into an
iterative scheme. Note at this point that the RDM calculated via Eq. (4.81) has the limit

lim
∆t→0,M,κ→∞

ρ̃S

±(N∆t) = ρS(s̃±; t) , (4.82)

which permits numerical convergence. The number of FBCs entering the propagation is con-
stant (though usually very large) within the whole propagation. That is the gross improvement
against the exponentially growing number of FBCs within the global scheme. The following
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Figure 4.8.: Iterative propagation of the RDM. Shown for the special M = 3, κ = 3. For-
ward/Backward paths are shown in left/right panel, correspondingly.

section will show that this number can be further reduced if unimportant paths are filtered out.

4.1.5. Virtual time-dependence of the memory coefficients

To recapitulate, the memory coefficients ηk′k depend on the absolute value of k if one of k
and k′ is equal to zero or N . It is shown in App.B.1 that coefficients like ηk′+N−κ,k+N−κ in
Eq. (4.72) with k′, k = 0, . . . κ do not depend on N if N > κ, hence, they do not change during
the iteration. These coefficients are called ηmid-fin

k
′
k

in the following. Accordingly, the influence
functional for any N > κ reads

F̃(N−κ,N)

[
s̃±, s̃±

]
= F̃mid-fin

(0,κ)

[
s̃±, s̃±

]
≡

κ∏

k=0

κ∏

k=k
′

F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
, (4.83)

with
F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
≡ exp

{
−1

~
(
ηmid-fin

k
′
k

s̃+

k
′ −
(
ηmid-fin

k
′
k

)∗
s̃−
k
′

)
·
(
s̃+
k − s̃−k

)}
. (4.84)

For the caseN ≤ κ the coefficients, referred to as ηinit-fin
k
′
k

, depend explicitly onN , see App.B.1 for
the expressions. The corresponding F̃ init-fin

(0,N)

[
s̃±, s̃±

]
and F̃ init-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
are given by Eqs. (4.83,4.84)

if ηmid-fin

k
′
k

is replaced by ηinit-fin
k
′
k

. For the lambda propagator in Eq. (4.77) the coefficients ηk′k in
the point-to-point influence depend only on ∆k = k − k′ if N > κ + 1, hence, they are also
fixed within the propagation, see App.B.1. Consequently, the lambda propagator itself does
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not depend on the absolute propagation time. The memory coefficients for N > κ + 1 are
labeled by ηmid

k
′
k
and

Λ(N−κ−1,N−1)

[
r̃±, s̃±

]
= Λmid

(0,κ)

[
r̃±, s̃±

]
≡ S̃(0,1)

(
r̃±0 , r̃

±
1

) κ−1∏

k=0

F̃mid
(0,k)

(
r̃±0 , r̃

±
k

)
· F̃mid

(0,κ)

(
r̃±0 , s̃

±
κ−1

)
,

(4.85)
with

F̃mid
(0,k)

(
s̃±0 , s̃

±
k

)
≡ exp

{
−1

~
(
ηmid

0k s̃
+
0 −

(
ηmid

0k

)∗
s̃−0
)
·
(
s̃+
k − s̃−k

)}
. (4.86)

For N = κ + 1 the coefficients, labeled ηinit-mid

k
′
k

, are given in App.B.1. The corresponding
Λinit-mid

(0,κ)

[
r̃±, s̃±

]
and point-to-point influence F̃ init-mid

(0,k)

(
s̃±0 , s̃

±
k

)
are given by Eqs. (4.85,4.86) if

ηmid
0k is replaced by ηinit-mid

0k . Due to the behavior of the coefficients it is sufficient to recalculate
the point-to-point influences only for the first κ+ 1 time steps. For all following time steps the
propagators are fixed.

4.1.6. Path filtering

As it was derived in the previous section, the RDM can be propagated for arbitrary long times
by summing over a constant set of M2κ path segments. This is already much more feasible
than the number M2N growing exponentially with the propagation time in the global scheme.
Still, the number M2κ depends exponentially on the correlation time of the bath, which can
be large for particular SBCs as discussed in Sec. 5.2. In this section it will be shown that it is
not necessary to sum over all possible FBCs, thus, the number of arithmetic operations can be
significantly reduced further.
According to Eq. (4.81) the absolute value of an RDM element with N > κ can be estimated

via the triangular inequality as

|ρ̃S

±(N∆t)| ≤
∑

s̃
±∈Pκ,M

∣∣∣F̃mid-fin
(0,κ)

[
s̃±, s̃±

]
S̃(0,κ)

[
s̃±, s̃±

]
R̃
[
s̃±; (N − κ)∆t

]∣∣∣ (4.87)

≤ |C|
∑

s̃
±∈Pκ,M

∣∣∣∣∣∣




κ−1∏

k
′
=0

κ−1∏

k=k
′

F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)



κ−2∏

k=0

S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
∣∣∣∣∣∣
, (4.88)
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where

C ≡ max
s̃
±∈Pκ,M



R̃

[
s̃±; (N − κ)∆t

]



κ∏

k
′
=0

F̃mid-fin

(k
′
,κ)

(
s̃±
k
′ , s̃±

)

 S̃(κ−1,κ)

(
s̃±κ−1, s̃±

)


 (4.89)

Note that C is defined such that the sum in Eq. (4.88) is neither time-dependent nor depends
on the end points s̃±, thus all terms in the sum are equal for any N and any RDM element.
The summand for particular s̃± is now defined as its path weight

wκ−1

[
s̃±
]
≡

∣∣∣∣∣∣




κ−1∏

k
′
=0

κ−1∏

k=k
′

F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)



κ−2∏

k=0

S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
∣∣∣∣∣∣
. (4.90)

Due to the complex exponential character of the point-to-point influences and the bare system
point-to-point propagators, the value wκ−1

[
s̃±
]
for some FBCs might approach unity. There-

fore, one can assume that paths, for which wκ−1

[
s̃±
]
� 1, do not contribute significantly to

discrete PI. It in turn means that one can replace the set Pκ,M in Eq. (4.81) by the filtered
subset

Pθκ,M ≡
{
s̃± ∈ Pκ,M

∣∣ wκ−1

[
s̃±
]
> θ
}

(4.91)

without changing the propagation of the RDM crucially for a given threshold θ, where the
actual value of θ serves as a convergence parameter. The subset Pκ,M

[
s̃±
]
appearing in the

propagation of the multi-time reduced density vector is filtered accordingly

Pθκ,M
[
s̃±
]
≡
{
r̃± ∈ Pθκ,M

∣∣ r̃±k = s̃±k−1, k = 1, . . . , κ− 1
}

, s̃± ∈ Pθκ,M . (4.92)

Depending on the system and its interaction with the bath, a noticeable part of Pκ,M could be
filtered out, thus, the number of paths can be reduced significantly with respect to M2κ. The
actual impact of the system characteristics on the quality of the filtering is discussed in Sec. 5.2.
Note that the RDM calculated iteratively as a sum over the filtered set of FBCs has still the

exact limit with θ → 0

lim
∆t,θ→0,M,κ→∞

ρ̃S

±(N∆t) = ρS(s̃±; t) . (4.93)

Recapitulating the similar limits presented in the previous subsections, Eqs. (4.20,4.82,4.93),
the number of convergence parameters has subsequently increased to four at this point.
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4.2. Propagation of the equilibrium TCF

4.2.1. Derivation of the discrete PI

In this subsection the discrete counterpart for the equilibrium TCF in Eq. (3.32) is derived. As
it was explained in the Introduction, the direct discretization is hindered by numerical obstacles.
Analogously to the propagation of the RDM, the starting point of this derivation is the general
expression

CΓΩ(t) ≡ 1

Z(β)
Tr
[
e−βĤ/2Γ̂ Û †(t)Ω̂ Û(t)e−βĤ/2

]
. (4.94)

First, the imaginary time −iβ~/2 is split into P slices with the length ∆β ≡ β~/(2P ) leading
to the equality

exp
{
−βĤ/2

}
=
(

exp
{
−Ĥ∆β/~

})P
. (4.95)

Remember that β is the inverse temperature. The real time t is again divided into N time
slices with the length ∆t as in Eq. (4.2). With the given definitions Eq. (4.94) takes the form

CΓΩ(N∆t) =
1

Z(β)

× Tr
[
e−Ĥ∆β/~ · · · e−Ĥ∆β/~
︸ ︷︷ ︸

P times

Γ̂ eiĤ∆t/~ · · · eiĤ∆t/~
︸ ︷︷ ︸

N times

Ω̂ e−iĤ∆t/~ · · · e−iĤ∆t/~
︸ ︷︷ ︸

N times

e−Ĥ∆β/~ · · · e−Ĥ∆β/~
︸ ︷︷ ︸

P times

]
.

(4.96)

In the following the trace in the system’s Hilbert space is taken in the coordinate basis, whereas
the trace in the bath’s Hilbert space is left arbitrary, i.e.

Tr [ · ] = TrB



∞̂

−∞

ds0 〈s0| · |s0〉


 . (4.97)

As the next step one inserts a set of 2(N + P ) spatial closures in Eq. (4.96), where N > 0.
The special case N = 0 corresponds to a pure imaginary time propagation and is considered in
App.D. The first P integrals go over the variables s+

k , k = 1, . . . , P and are inserted in between
the imaginary time propagators on the right side within the trace. The next N integrals over
the variables s+

k , k = P + 1, . . . , P + N are placed in between the real time propagators on
the right of the operator Ω̂. The rest is inserted in between the propagators on the left of
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Ω̂. The integration variables are labeled by s−k , k = 1, . . . , P and s−k , k = P + 1, . . . , P + N ,
respectively. The TCF can then be rewritten as

CΓΩ(N∆t) =
1

Z(β)
TrB




∞̂

−∞

ds0

∞̂

−∞

ds+
1 · · ·

∞̂

−∞

ds+
P

∞̂

−∞

ds+
P+1 · · ·

∞̂

−∞

ds+
P+N

×
∞̂

−∞

ds−1 · · ·
∞̂

−∞

ds−P

∞̂

−∞

ds−P+1 · · ·
∞̂

−∞

ds−P+N

×
〈
s0

∣∣ e−Ĥ∆β/~ ∣∣s−1
〉 〈
s−1
∣∣ e−Ĥ∆β/~ ∣∣s−2

〉
· · ·
〈
s−P−1

∣∣ e−Ĥ∆β/~ ∣∣s−P
〉

×
〈
s−P

∣∣∣Γ̂eiĤ∆t/~
∣∣∣ s−P+1

〉〈
s−P+1

∣∣∣eiĤ∆t/~
∣∣∣ s−P+2

〉
· · ·
〈
s−P+N−1

∣∣∣ eiĤ∆t/~
∣∣∣s−P+N−1

〉 〈
s−P+N

∣∣ s+
P+N

〉

×
〈
s+
P+N

∣∣∣ Ω̂e−iĤ∆t/~
∣∣∣s+
P+N−1

〉〈
s+
P+N−1

∣∣∣e−iĤ∆t/~
∣∣∣ s+

P+N−2

〉
· · ·
〈
s+
P+1

∣∣∣e−iĤ∆t/~
∣∣∣ s+

P

〉

×
〈
s+
P

∣∣ e−Ĥ∆β/~ ∣∣s+
P−1

〉
· · ·
〈
s+

2

∣∣ e−Ĥ∆β/~ ∣∣s+
1

〉 〈
s+

1

∣∣ e−Ĥ∆β/~ ∣∣s0

〉

 . (4.98)

Note that there are no closures inserted in between the system operators Γ̂, Ω̂ and the propa-
gators eiĤ∆t/~ , e−iĤ∆t/~, respectively. This slightly reduces the number of integration variables
and, thus, the effort for the numerical evaluation of the TCF. It is assumed that the products
Γ̂eiĤ∆t/~ and Ω̂e−iĤ∆t/~ propagate the system with an effective time step not larger than ∆t,
hence, the numerical stability remains unchanged. Note further that

∞̂

−∞

ds+
P+N

∞̂

−∞

ds−P+N

〈
s−P+N−1

∣∣ eiĤ∆t/~ ∣∣s−P+N

〉 〈
s−P+N

∣∣ s+
P+N

〉 〈
s+
P+N

∣∣ Ω̂e−iĤ∆t/~ ∣∣s+
P+N−1

〉
=

∞̂

−∞

ds
〈
s−P+N−1

∣∣∣ eiĤ∆t/~
∣∣∣s
〉〈

s
∣∣∣ Ω̂e−iĤ∆t/~

∣∣∣s+
P+N−1

〉
, (4.99)

which also reduces the number of integration variables by one. What follows now is very similar
to Sec. 4.1.1. Therefore, the derivation steps are just commented on and the corresponding
equations can be found in App. E.

In order to calculate the TCF numerically the integrals in Eq. (4.98) are replaced by dis-
crete sums over the DVR states of the system (Sec.4.1.2), see Eq. (E.3). In order to separate
the bare system quantities from expressions that depend on the system-bath interaction, the
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forward/backward time evolution operators are split according to Eq. (4.14). The same fac-
torizations is applied to the imaginary time propagators, see Eq. (E.4). The error induced by
the Trotter factorization is analogously proportional to ∆β3 [38] and, thus, dependent on the
temperature. In a practical application the numerical parameter ∆β and, hence, P has to be
determined by convergence. Performing the Trotter splitting according to Eq. (E.4) supple-
mented by inserting the respective closures reduce all system operators in the DVR basis to
complex numbers. Thus, the trace over the bath’s Hilbert space evaluates exclusively the bath-
dependent operators ĤSB. Therefore, each summand in Eq. (E.3) can be rearranged yielding
Eq. (E.6). Here, the calculation of each summand can be divided into two mutually independent
steps.
First, the value of each summand is determined by the bare system propagation in complex

time along a grid point sequence s̃i0 , s̃i+1 , . . . , s̃i+P , s̃i+P+1
, . . . , s̃

i
+
P+N−1

, s̃i, s̃i0 , s̃i−1 , . . . , s̃i
−
P
, s̃
i
−
P+1

. . . ,

s̃
i
−
P+N−1

, s̃i. In analogy to Sec. 4.1.1 the coordinates are grouped into the new variable referred
to as the complex time FBC

s̃± ≡
(

s̃0 s̃+
1 · · · s̃+

P s̃+
P+1 · · · s̃+

P+N−1

s̃0 s̃−1 · · · s̃−P s̃−P+1 . . . s̃−P+N−1

)
=

(
s̃i0 s̃

i
+
1
· · · s̃

i
+
P

s̃
i
+
P+1

· · · s̃
i
+
P+N−1

s̃i0 s̃
i
−
1
· · · s̃

i
−
P

s̃
i
−
P+1

· · · s̃
i
−
P+N−1

)

(4.100)
with the shared end point s̃i. The term forward-backward combination is adopted from
Sec. 4.1.1. Here forward with respect to a complex time means the time evolution along the up-
per branch of the complex time contour c̃χ, whereas backward corresponds to the lower branch
of c̃χ, see Fig. 3.4. Note that the end point s̃i is shared by the forward and backward part of the
complex time FBC due to Eq. (4.99). As the result of the trace in the system’s Hilbert space,
also the first coordinate s̃0 coincides in the forward and backward branches. This implies that
here the path is indeed closed, not quasi-closed as in Sec. 3.2. As before, the end point is not
included in the definition of s̃±, since it is more convenient in order to formulate the iterative
propagation scheme. A particular complex time FBC for N = P = M = 3 is depicted in
Fig. 4.9, which is described in detail in App. E. By comparing Fig. 4.9 with Fig. 4.1, it becomes
visible that the complex time propagation is very similar to the pure real time propagation,
which is the consequence of splitting the Boltzmann operator, see Eq. (3.20).

Second, the summand is weighted by the discrete complex time influence functional
F̃(0,P+N)

[
s̃±, s̃i

]
. Note that the subscript (0, P +N) implies that the paths span P imaginary

and N real time steps. A more detailed consideration is given in App. E. Similar to a time-
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Figure 4.9.: Propagation of the bare system in the complex time. The forward/backward path
is shown in the left/right panel, respectively

dependent observable, Eq. (4.34), the discrete TCF can be formulated for any N > 0 as a
discrete PI

C̃ΓΩ(N∆t) =
1

Z(β)

M−1∑

i=0

∑

s̃
±∈PP+N,M

F̃(0,P+N)

[
s̃±, s̃i

]
S̃ ΓΩ

(0,P+N)

[
s̃±, s̃i

]
, (4.101)

where S̃ ΓΩ
(0,P+N)

[
s̃±, s̃i

]
, referred to as the discrete complex time bare system part of the discrete

PI, represents the bare system as it is propagated in the complex time along the discrete paths
s̃±, according to the last four lines of Eq. (E.6), see also Figs. 3.5,4.9. A detailed definition can
be found in Eqs. (E.11,E.12). The set PP+N,M is a subset of PP+N,M = (SM)2(P+N) and it is
defined as

PP+N,M ≡
{
s̃± ∈ PP+N,M

∣∣ s̃+
0 = s̃−0 = s̃0

}
. (4.102)

Note that due to the constraint s̃+
0 = s̃−0 = s̃0, the number of elements LP+N,M ≡

∣∣PP+N,M

∣∣ =

M2(P+N)−1. With the given definitions the discrete PI in Eq. (4.101) has the same form as
its continuous counterpart given in Eq. (3.32). Again, the approximations employed in this
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subsection provide the exact limit

lim
∆β,∆t→0,M→∞

C̃ΓΩ(N∆t) = CΓΩ(t) . (4.103)

Concerning the numerical applicability of Eq. (4.101), the same arguments hold as presented
in the last paragraph of Sec. 4.1.1. A reasonable implementation is hindered by the number
of FBCs LP+N,M contributing to the PI. The amount of paths is very sensitive to the number
of grid points M and it grows exponentially with propagation time according to LP+N,M =

M2(P+N)−1. The recipe to circumvent the first problem is already given by the employment
of the DVR basis, see Sec. 4.1.2. The remaining task is to recast Eq. (4.101) into an iterative
propagation scheme, which would circumvent the second problem. It is shown in the following
subsection how exploiting the features of the MBO model helps to achieve this goal.

4.2.2. Iterative propagation of the TCF

As it was sketched in Sec. 4.1.3, the specific form of the interaction potential in the MBO model
provides an analytical expression for the discrete real time influence functional F̃(0,N)

[
s̃±, s±

]
.

There, it was exploited that the bath consists of harmonic oscillators and the system is bilinearly
coupled to the bath. Considering the results of the previous subsection, one notices that the
discrete complex time influence functional F̃(0,P+N)

[
s̃±, s̃i

]
has a similar structure to its real

time counterpart, see Figs. 4.2,E.1 or Eqs. (4.25,E.7). Employing the same techniques as in
Sec. 4.1.3, it is possible to express the discrete complex time influence functional as a closed
expression [30]

F̃(0,P+N)

[
s̃±, s̃i

]
=

ZB(β) exp

{
− 1

~

P+N∑

k=0

k∑

k
′
=0

(
η++

k
′
k
s̃+

k
′ s̃

+

k
+ η−−

k
′
k
s̃−
k
′ s̃
−
k

+ η−+

k
′
k
s̃−
k
′ s̃

+

k
+ η+−

k
′
k
s̃+

k
′ s̃
−
k

)
}

,

(4.104)

where ZB(β) is the partition function of the isolated bath and s̃±P+N ≡ s̃i. The complex time
memory coefficients η±±

k
′
k
and η±∓

k
′
k
, given in App.B.2, depend on the complex time bath response
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function

B(τ − τ ′) ≡ 1

π

∞̂

0

dωJ(ω)
cos
(
ω
(
τ − τ ′ + iβ~/2

))

sinh (β~ω/2)
. (4.105)

Note that B(τ − τ ′) is formally identical to the real time bath response function B(τ − τ ′) but
here the argument consists of the complex times τ, τ ′ lying on the complex time contour cχ as
shown in Fig. 3.4. Equation (4.104) permits a similar interpretation as Eq. (4.53), though here
the memory of the bath spans a complex time. In Sec. 4.1.3 it was claimed thatB(τ−τ ′) vanishes
for a growing real time argument. This behavior was referred to as finite memory or finite
correlation time. The argument of the complex time bath response function in Eq. (4.105) has
a non-zero imaginary part causing an additional exponential decay in the imaginary direction
of time. Since the imaginary time corresponds to temperature, this decay can be assigned to
thermal fluctuations that destroy long correlation effects. Combining the decay in real time
direction with the decay in imaginary time, one can suggest that there exists the following limit

lim
|τ−τ ′|→∞

B(τ − τ ′) = 0 , (4.106)

see also Fig. 4.10 for a special example. Note that the times τ, τ ′ lie on the complex time contour
cχ. As a consequence of Eq. (4.106), the complex time memory coefficients η±±

k
′
k
and η±∓

k
′
k
also

tend to zero for k � k′. In the following it is thus assumed that coefficients with k−k′ > κ can
be neglected without loss of accuracy in the numerical results. This assumption serves as the
basis for an iterative propagation scheme, which is schematically derived in following paragraph
with details given in App. E.1.
In analogy to Sec. 4.1.3 the discrete complex time influence functional can be written as a

product of complex time point-to-point influences, see Eqs. (E.14,E.15). If the memory coeffi-
cients are neglected for k−k′ > κ, then the corresponding complex time point-to-point influence
acts like unity, thus, the double product in Eq. (E.15) can be truncated, see Eq. (E.17) and also
Figs. 4.5,4.6. In the following it is assumed that it is sufficient to divide the imaginary time
−iβ~/2 into P = κ slices. This assumption can be justified by the fact, that the errors due to
the Trotter factorization in real time and imaginary time behave identically, see Eqs. (4.14,E.4).
One can claim that both approximations have the same quality if ∆t ≈ ∆β, which is equivalent
to P ≈ κ · β~/(2tκ), where tκ is the correlation time introduced in Sec. 4.1.4. For a typical
temperature of 300K the imaginary time spans approximately β~/2 ≈ 500 ~/Eh, where Eh is
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0
100

300
500

0

−iβh̄/4

−iβh̄/2

0
100

300
500

0

−iβh̄/4

−iβh̄/2

Figure 4.10.: Complex time bath response function for a spectral density of Ohmic type. The
vertical axis in the left/right panel corresponds the real/imaginary part of B(τ − τ ′),
respectively. The axis labeled with numbers measures the real part of the time difference
τ − τ ′ [�/Eh], where Eh is the energy unit Hartree. The remaining axis takes account of
the imaginary time.

the energy unit Hartree. Since in this thesis the focus is put on vibrational spectroscopy in
solvents, a typical correlation time is about tκ ≈ 12000 �/Eh [39]. Therefore, in order to achieve
an equal quality of the real and imaginary time discretization, it is absolutely sufficient to set
P = κ. Of course, the assumption has to be individually ensured for the application to other
SBCs at lower temperatures.

With the detailed derivation in App. E.1 at hand, the iterative propagation of the discrete
TCF for any N > 0 can be formulated as follows. First, the time-dependent discrete multi-time
TCF functional has to be propagated step by step to N − κ via

R̃
[
s̃±; (N − κ)Δt

]
=

∑
r̃
±∈Pκ,M [s̃

±]

L(N−1,N+κ)

[
r̃±, s̃±

]
R̃

[
r̃±; (N − κ− 1)Δt

]
, (4.107)

where the FBC r̃± and the set Pκ,M

[
s̃±
]

have the same meaning as in Sec. 4.1.4 apart from the
fact that r̃± spans complex time. Note that R̃

[
s̃±; (N − κ)Δt

]
has a special initial condition

taking the constraint s̃+0 = s̃−0 = s̃0 into account. The calculation of the discrete TCF itself
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requires then the additional summation

C̃ΓΩ(N∆t) =
1

Z(β)

M−1∑

i=0

∑

s̃
±∈Pκ,M

F̃(N,N+κ)

[
s̃±, s̃i

]
S̃ ΓΩ

(N,N+κ)

[
s̃±, s̃i

]
R̃
[
s̃±; (N − κ)∆t

]
.

(4.108)
As explained in detail in App. E.1, one can exploit the same features as presented in Secs. 4.1.5,

4.1.6 for the iterative propagation of the TCF, leading to a numerical scheme that provides the
exact limit

lim
θ,∆t→0,M,κ→∞

C̃ΓΩ(N∆t) = CΓΩ(t) . (4.109)

Note that θ corresponds to the path filtering threshold and κ→∞ induces ∆β → 0 since it is
assumed that P = κ.
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5.1. Comparison to reference data

In order to verify the implementation, that is the main outcome of this thesis, its results are
compared to published literature data.

5.1.1. Three-site electron transfer model

The first model system considered is adopted from Ref. [28]. The system Hamiltonian

ĤS =
2∑

i=0

εi|s̃i〉〈s̃i|+
1∑

i=0

V ·
(
|s̃i〉〈s̃i+1|+ |s̃i+1〉〈s̃i|

)
(5.1)

describes a three-site electron transfer, where only neighboring sites are interacting. The pa-
rameter V 6= 0 represents the strength of the coupling. Note that a site state is equivalent
to a DVR state |s̃i〉 and the values εi correspond to the diagonal of the Hamiltonian in the
DVR basis, whereas the coupling V stands for off-diagonal terms. The MBO model is assumed,
namely the system is bilinearly coupled to a set of harmonic oscillators, according to Eq. (4.44),
with an Ohmic spectral density

J(ω) =
π

2
~ξω exp (−ω/ωc) . (5.2)

The observable of interest is the time evolution of the site populations Pi(t), given that the
electron is initially localized at the site with the highest energy, i.e.

ρ̂S(0) = |s̃0〉〈s̃0| , (5.3)

and
Pi(t) = TrS

[
ρ̂S(t)|s̃i〉〈s̃i|

]
. (5.4)
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ε0 [Eh] ε1 [Eh] ε2 [Eh] V [Eh] s̃0 [bohr] s̃1 [bohr] s̃2 [bohr]
0.0 −1.33 −2.67 0.067 −1.0 0.0 1.0

(a) System parameters.

β [1/Eh] ξ [1] ωc [Eh/~] M ∆t [~/Eh] θ

0.72 0.1 1 3 0.3 10−5

(b) Bath specific and numerical parameters.

Table 5.1.: Simulation setup for the three-site electron transfer.

The latter equation is evaluated as a discrete PI via the iterative scheme as presented in
Sec. 4.1.1. The results of the current implementations for different correlation times, i.e. for
different parameters κ are depicted in Fig. 5.1a. All other numerical parameters are given in
Tab. 5.1. The calculated data is in excellent agreement with the results obtained by the authors
of Ref. [28] as it can be seen by comparing panels a) and b) in Fig. 5.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

P
i(
t)

t [-h/Eh]

(a) (b)

Figure 5.1.: Time evolution of the site populations for different correlation times. Panel a):
Results of the current implementations. Panel b): Results directly taken from Ref. [28].
Dashed lines: κ = 8. Solid lines: κ = 12. Markers: κ = 16. The units in both panels
coincide. Note that the indices of the populations in panel b) are shifted by one with
respect to the numbering within this thesis. Note further that the data indicated by
”Norm” is calculated via TrS

[
ρ̂S(t)1̂S

]
, where 1̂S =

∑2
i=0 |s̃i〉〈s̃i| .
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ε0 [Eh] ε1 [Eh] V [Eh] s̃0 [bohr] s̃1 [bohr]
0.0 1.0 1.0 −1.0 1.0

(a) System parameters.

β [1/Eh] ξ [1] ωc [Eh/~] M ∆t [~/Eh] κ θ
5.0 0.1 7.5 2 0.15 9 0.0

(b) Bath specific and numerical parameters.

Table 5.2.: Simulation setup for the asymmetric two-level system. Note that the threshold θ
is set to zero, corresponding to an unfiltered set of paths.

5.1.2. Asymmetric two-level system

The second model is adopted from Ref. [26]. The Hamiltonian

ĤS =
1∑

i=0

εi|s̃i〉〈s̃i|+ V ·
(
|s̃0〉〈s̃1|+ |s̃1〉〈s̃0|

)
(5.5)

describes a two-level system with different site energies ε0 < ε1. Both sites are coupled due to
the coupling parameter V 6= 0. In order to describe the interaction with the bath, the MBO
model is employed. The bath’s spectral density is again of Ohmic type, see Eq. (5.2). The
initial condition for the system is set to

ρ̂S(0) = |s̃1〉〈s̃1| , (5.6)

meaning that the starting population is exclusively at the first site. The time evolution of two
expectation values are considered: the population of the first site

P1(t) = TrS

[
ρ̂S(t)|s̃1〉〈s̃1|

]
. (5.7)

and the expectation value of the system’s position operator

〈ŝ〉t = TrS [ρ̂S(t)ŝ] . (5.8)

The results are shown in Fig. 5.2a, where the numerical parameters are given in Tab. 5.2. Both
simulated expectation values agree fine with the reference literature [26, 40] as it can be seen
by comparing panels a) and b) in Fig. 5.2.
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(a) (b)

Figure 5.2.: Time-dependent expectation values of the two-level system. Panel a): Results
of the current implementation with κ = 9. Upper panel b): Results for the position
expectation value directly taken from Ref. [26] with κ = 1, 3, 5, 7 and 9 (dotted, dashed,
chain-dotted and solid lines and squares, respectively). Lower panel b): Results for the
population P1(t) directly taken from Ref. [40]. Red, green, blue and purple curves are
obtained with the hierarchy equation of motion (HEOM) methodology [41, 42, 43], where
the purple curve correseponds to the highest accuracy. The data indicated by hollow
circles is calculated via the discrete PI methodology presented in Ref. [26]. The units in
the respective panels coincide.

5.1.3. The equilibrium TCF for a symmetric two-level system

In order to test the calculation of the TCF via the methodology presented in Sec. 4.2, a
symmetric two-level system is considered. The obtained results are compared with the data
presented in Ref. [29]. The corresponding Hamiltonian is identical to Eq. (5.5) if ε0 = ε1 = 0.
Note that the system is equivalent to a two-level harmonic oscillator with a transition frequency
ω = 2V/�. The frequencies of bath oscillators are again distributed according to the Ohmic
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spectral density, see Eq. (5.2). The focus is put on the position auto-correlation function

C̃ss(t) =
1

Z(β)
Tr
[
e−βĤ ŝ Û †(t)ŝ Û(t)

]
. (5.9)

All numerical parameters are given in Tab. 5.3

ε0 [Eh] ε1 [Eh] V [Eh] s̃0 [bohr] s̃1 [bohr]
0.0 0.0 1.0 −1.0 1.0

(a) System parameters.

β [1/Eh] ξ [1] ωc [Eh/~] M ∆t [~/Eh] ∆β [~/Eh] κ θ
1.0 0.2 7.5 2 0.1 1.0/12 6 0.0

(b) Bath specific and numerical parameters.

Table 5.3.: Simulation setup for the symmetric two-level system.

By comparing the results in Fig. 5.3a and the reference data from [29] in Fig. 5.3b one
notices that the curves do agree only qualitatively. There is a small but noticeable

quantitative discrepancy in the positions and the magnitudes of maxima and minima.
Moreover, the imaginary part of C̃ss(t) in Fig. 5.3a has an unphysical kink at time t = κ∆t,

not seen with the present figure scales. It remains unclear whether it is present in the
reference data. Since the origin of the discrepancies is not understood yet, all following
considerations are restricted to dynamics obtained by the propagation of the RDM.
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Figure 5.3.: Equilibrium position auto-correlation function of a symmetric two-level sys-
tem. Panel a): Results of the current implementation. Panel b): Results for the position
auto-correlation function directly taken from Ref. [29]. In both panels the solid/dashed
line is the real/imaginary part of the TCF, respectively. The units coincide in both panels.

5.2. Failure of the discrete PI approach to vibrational

systems in environment with realistic correlation

times

The main goal of this thesis has been to provide a quantum methodology, applicable to realistic
SBCs like vibrational systems in a liquid solvent. The obtained data should serve as a bench-
mark for other quantum methods or classical and quasi-classical approximations. Especially a
quantitative benchmark for the artifacts induced by the curvature problem was desired as it
was stated in the Introduction. Therefore, the following considerations are focused on the OH
vibration of the HOD molecule in contact with a bath of H2O molecules at ambient conditions.
The OH bond has been chosen, since one expects here stronger quantum effects than for the
OD bond, as the deuterium atom is heavier than the hydrogen one. Additionally the transition
frequency of the system is similar to the transition frequencies of the H2O molecules. Hence,
potential resonances favor a significant influence of the bath onto the system’s dynamics. As
it was already mentioned in the Introduction, the MBO model provides the possibility to put
quantum dynamics and (quasi-)classical approximations to it on equal footing, since the spec-
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tral density, as the input of the MBO Hamiltonian, remains unchanged in all considerations.
Thus, for the present purpose it is assumed that the the spectral density stemming from clas-
sical MD simulations of HOD in liquid H2O [39] can be used to perform quantum simulations
with the discrete PI formalism. It is noted in passing that the applicability of the MBO model
to realistic systems was carefully investigated recently [39]. It was concluded that it is prin-
cipally unable to describe a system if the system’s potential is anharmonic. Importantly, the
spectral densities parametrized under the assumption of effectively harmonic system cannot be
transfered to the respective anharmonic case.
In this section it is shown that the successful PI description of the OH vibration in a water-like

environment is unfortunately also inhibited by several obstacles. One problem of the discrete
PI treatment of the OH vibration lies in the long correlation time resulting from the narrow
spectral density of the bath, see Fig. 5.4. Another obstacle originates from the characteristics
of the vibrational system itself, as it will be discussed below. For the simulations, that will be
the basis for that discussion, the following parameters have been chosen. According to Ref. [39]
the effective harmonic frequency of the OH vibration in liquid H2O is ωOH = 0.0165 Eh/~ ≈
3700cm−1, where the qSPC/Fw force field model has been employed [15]. In order to carry out
highly accurate classical MD simulations, the time step can be set to ∆t = 4.0 ~/Eh ≈ 0.1 fs

[39] and thus it is has been the initial choice for the time step in the discrete PI treatment as
well. Test simulations have shown that the three lowest energy states are sufficient to describe
the dynamics and thermodynamics of the OH bond at 300K. This means M = 3 grid points
are required to discretize the space coordinate within the discrete PI framework, thanks to
the DVR basis. If one would try to simulate the system dynamics numerically exactly via
the iterative scheme (Sec. C.4), then the involved FBC segments have to span the correlation
time tκ = 12000 ~/Eh ≈ 300 fs, see Fig. 5.4b. Hence, the corresponding parameter would be
κ = tκ/∆t = 3000. The resulting number of FBCs that contribute to the discrete PI in
Eq. (4.81) without path filtering is Lκ,M = 38000 ≈ 9 ·103816 according to Eq. (4.28). That would
of course require numerical calculations that can not be handled within any finite time with
any imaginable data storage. In the following section the performance of the path filtering,
presented in Sec. 4.1.6, is investigated. The achieved reduction of the paths’ number is rather
spectacular though still insufficient in order to span the total correlation time for a typical
vibrational system.
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Figure 5.4.: Spectral density and bath response function for HOD in H2O. Panel a): Spectral
density in the vicinity of the OH vibration frequency ωOH = 0, 0165 Eh/~. Note that it
was shown in Ref. [39] that only this part of the spectral density has influence on the
classical system’s dynamics. Panel b): Corresponding bath response function. The filled
circle indicates the correlation time 80 ~/Eh for which the numerical results are obtained
in the following subsection. The data for J(ω) is taken from Ref. [39].

5.2.1. The performance of the path filtering

Before proceeding to the numerical investigations for the path filtering, a word about the
discrepancy between electron transfer and vibrational systems is appropriate. The general
Hamiltonian in the DVR basis takes the matrix form

ĤS =
2∑

i=0

εi|s̃i〉〈s̃i|+
2∑

i=0

i−1∑

j=0

Vij ·
(∣∣s̃i

〉〈
s̃j
∣∣+
∣∣s̃j
〉〈
s̃i
∣∣
)
, (5.10)

which applies equally to electron transfer and vibrational problems. The difference between the
two is contained in the magnitude of the coupling parameters Vij that correspond to the off-
diagonal elements of the Hamiltonian above. If one sets V02 = V20 = 0 and V01 = V10 = −αε0,

where α is fairly small, e.g., α = 10−2 or α = 10−1, one obtains a typical three-site electron
transfer problem, where only the neighboring sites are interacting. The corresponding potential
curves exhibit barriers depending on the magnitude of α in between the DVR grid points as
depicted in Fig. 5.5. In contrast, if V02 = V20 ≈ 0.1ε0 and V01 = V10 ≈ −0.4ε0 the barriers
vanish and the system corresponds to a harmonic oscillator ĤS = p̂

2

2m
+ 1

2
mω2ŝ2, see black line

therein. By increasing α further, e.g. up to 1.1 with V02 = V20 = 0, the potential energy curve
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describes again a vibrational system, with the potential being a higher order polynomial, yellow
line therein. In the following it is shown that the particular shape of the potential, or in other
words the magnitude of the Hamiltonian’s off-diagonal has an immense impact on the quality
of the path filtering.
In order to probe the influence of the Hamiltonian’s off-diagonal elements systematically, two

electron transfer and two vibrational systems with the aforementioned parameters have been
chosen.

Figure 5.5.: Potential energy curves for different coupling strengths α. For explanation see
text.

According to the considerations in the beginning of this section, the frequency of the harmonic
oscillator is set to the effective harmonic frequency of the OH vibration of the HOD molecule,
i.e.ω = ωOH = 0.0165 Eh/~. The corresponding mass is set to the reduced mass of the OH
bond, thus m = mOmH/(mO + mH) = 1740.9me, where me is the electron mass. The DVR
states and the corresponding grid points for the harmonic oscillator are determined using the
protocol in Sec. 4.1.2. The resulting diagonal elements εi of the Hamiltonian in the DVR basis
and the grid points s̃i, listed in Tab. 5.4, are used for all the systems studied. All systems are
coupled to the same implicit bath that is described by spectral density adopted from Ref. [39],
see Fig. 5.4. All other numerical parameters, given in Tab. 5.4, also coincide for the systems
under investigation.
As it was stated above, an astronomical number of path segments would be required to

obtain converged results with respect to the correlation time. One can strongly expect that
even with path filtering the treatment of the total correlation time is not feasible. Therefore,
all following numerical results are obtained by neglecting all non-local interactions that are
separated by a time larger than 80 ~/Eh, i.e. for ∆t = 4.0 ~/Eh such that κ = 20, marked with
a filled circle in Fig. 5.4b. For each system the focus is put on the number of paths Lθκ,M that
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have a path weight larger than the threshold θ, where θ is varied in the range 10−9 . . . 10−5.

Figure 5.6.: Legend for Figs. 5.7-5.9.

Additionally, the convergence of the time-dependent
position expectation value 〈ŝ〉t is investigated with re-
spect to θ. The initial condition is in all cases set to
ρ̂S(0) = |s̃0〉〈s̃0|. It implies that the system is initially
located at the coordinate s̃0 or in other words the os-
cillators are displaced from the equilibrium by s̃0.

ε0 [Eh] ε1 [Eh] ε2 [Eh] s̃0 [bohr] s̃1 [bohr] s̃1 [bohr] β [1/Eh] M ∆t [~/Eh] κ
0.0275 0.0193 0.0275 −0.23 0.0 0.23 1052.58 3 4.0 20

Table 5.4.: Simulation setup. The grid-points are given by the DVR states of the harmonic oscil-
lator. The value of β corresponds to a temperature of 300K.

The results of the simulations are visualized in
Fig. 5.7, where the focus is first on the number of paths shown in the left panels of Fig. 5.7. Note
the different ranges and logarithmic scaling of the y-axes. Overall, by comparing the black line
representing the unfiltered exponential growth to the colored ones depicting the results of the
filtering with various thresholds θ, one can see that the number of paths reduces dramatically
if the filtering is employed. For the different systems and for all values of θ the path number
increases with a similar functional form. It turns out that the number Lθκ,M can be best fitted
to

Lθκ,M = aκb , (5.11)

where a and b are parameters which generally depend on M, ∆t, θ and, of course, on the
features of the system and the spectral density. The quality of the fit itself can be verified by
considering Fig. 5.8 and the parameters’ error behavior shown in Tab. 5.5. With the fit functions
at hand, one is able to approximately predict the number of paths for arbitrary correlation time
and a certain threshold as it is discussed later on.
Referring back to Fig. 5.7, it becomes visible that the number of paths increases rapidly with

the value of α for a given threshold θ. For example in the case of the electron transfer system
α = 10−2 and θ = 10−9 (panel 1, red curve) one has to take into account 2 · 105 path segments.
Note that the curves for θ = 10−6, 10−7 and 10−8 are overlaying, which implies that the amount
of paths with the weights in the range 10−8 . . . 10−6 is negligible. For α = 10−1, panel 2 therein,
the number has increased already to 3 · 106 with the same threshold (red curve). Again the
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curves for θ = 10−6, 10−7 as well as for θ = 10−8, 10−9 are overlaying for the same reasons as
in the previous case. Switching to the vibrational systems, for the harmonic oscillator with
θ = 10−9 the set of paths contains 7 · 108 path segments, i.e. two orders of magnitude more
than for the worst electron transfer case considered, see panel 3, red curve. The local computer
resources were not sufficient to simulate the corresponding dynamics due to the unavailability
of the required memory. The resumption of this behavior can be seen in the example of α = 1.1

with θ = 10−6, where using this considerably large threshold resulted in 2 · 108 path segments
that contribute significantly to the discrete PI (panel 4, turquoise curve). Here, the dynamics
could not be simulated due to the same reasons as for the harmonic oscillator.
The right panels of Fig. 5.7 are dedicated to the convergence behavior of the position ex-

pectation value 〈ŝ〉t; other expectation values exhibit similar trends (data not shown). For
illustration, the difference 〈ŝ〉θt − 〈ŝ〉

θ
∗

t is plotted, where 〈ŝ〉θt is the expectation value simulated
with the threshold θ. Here θ∗ denotes the lowest threshold within 10−9 . . . 10−5 that has been
employed in the dynamical simulations. One notices that the speed of convergence decreases
with the increase of the coupling parameter α. For the system with the smallest inter-site
coupling α = 10−2, panel 1a therein, the convergence with respect to the threshold is already
sufficient for θ = 10−6. In the case α = 10−1, panel 2a, dynamics simulated with θ = 10−5 were
unstable and for θ = 10−6, 10−7 the data remained unconverged; here the curves for θ = 10−6

and θ = 10−7 are overlaying. The dynamics for the harmonic oscillator for all thresholds
θ > 10−8 turn out to be unstable, see panel 3a. Unfortunately there is no dynamical data
available for θ = 10−9 due to the aforementioned reasons. Therefore, one can not state that
the results for θ = 10−8 are converged with respect to the threshold but it is natural to expect
that they are not. For the strongest coupling with α = 1.1 the local computer resources were
only able to handle dynamics for θ = 10−5. Here, the results are also not physically reasonable
due to numerical instabilities.
To summarize, the quality of the path filtering is very low for vibrational systems (α ≥ 0.4)

in comparison to typical electron transfer systems (α � 0.4). The number of path segments
required to obtain converged results grows with the coupling parameter α and, moreover, the
speed of convergence decreases.
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Figure 5.7.: The quality of the path filtering depending on α. Panels 1), 1a); 2), 2a); 3),
3a); and 4), 4a) correspond to α = 10−2; α = 10−1; harmonic oscillator and α = 1.1,
respectively. The colors stand for various thresholds as shown in Fig. 5.6. The left panels
illustrate the behavior of the number of paths Lθκ,M with the correlation time κ. The black
line represents the exponential growth, M2κ, that corresponds to the unfiltered number
of paths. The convergence behavior of the difference 〈ŝ〉θt − 〈ŝ〉

θ
∗

t is depicted in the right
panels. For 1) and 2) θ∗ = 10−9 and for the harmonic oscillator θ∗ = 10−8. For 4) only
with θ = 10−5 dynamics could be calculated.

The reason for the observed behavior is contained already in the structure of Eq. (4.81). As it
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was stated in Sec. 4.1.1, each summand of the PI consists of three mutually independent factors.
For all considered systems the initial condition, the spectral density and, hence, the influence
functional are the same. What remains is the discrete bare system part, defined in Eq. (4.29).
The value of each summand therein is mainly determined by a product of the probability
amplitudes

〈
s̃i
∣∣e±iĤS∆t/~∣∣s̃j

〉
. Hence, a path segment has a small weight if it contains a pair of

subsequent coordinates s̃i, s̃j that are connected by a small probability amplitude. Considering
again Fig. 5.5, it is foreseen that in the case of the smallest coupling constant α = 10−2 the
probability for the system to go from s̃0 to s̃1 is very small due to the high barriers between
the coordinates. All FBC segments that contain the factors 〈s̃1|e±iĤS∆t/~|s̃0〉 several times have
consequently a small path weight and can be filtered out. It is worth mentioning that the FBCs
containing this factor only once cannot be filtered out as they are responsible for the transfer
and the dynamics in their absence would be artificial. In contrast, the harmonic oscillator is
free to go from s̃0 to s̃1. Hence, the probability amplitude for that transition is rather high
and paths containing the sequence s̃0, s̃1 can not be filtered out without the loss of dynamical
information. To rephrase, there are no physical reasons for the amplitudes to be small in the
absence of the barriers. One can conclude that, the larger the coupling between the sites of
the system is, the worse is the quality of the path filtering. Or, in other words, the larger the
probability amplitude for the transition between two different coordinates of the discretized
system space is, the more paths are important for the dynamics.
All presented considerations were restricted to path segments that span the very short time of

80 ~/Eh, since there were neither time nor resources to investigate longer correlation times. In
order to estimate if there are any resources available that can treat the total correlation time of
12000 ~/Eh, one can employ the fit function introduced in Eq. (5.11). Since the relative fit errors
for the exponent b are very small, the fit functions are considered as reliable for large values
of κ. The fourth column of Tab. 5.5 contains the estimate of the path number for the various
systems studied. If one focuses on the harmonic oscillator, then the prediction reads 1.7 · 1023.
Let us assume one has formulated the optimal algorithm based on the methodology presented
in Sec. 4.2, where optimal means that there is no unnecessary memory storage. The only
quantity that has to be stored is the multi-time reduced density vector R̃ ((N − κ)∆t) ∈ CL

θ
κ,M ,

since it depends on its previous time step counterpart and, thus, it can not be recalculated.
Each element of R̃ ((N − κ)∆t) is a complex number (16 Byte with double precision) and the
number of elements is Lθκ,M = 1.7 · 1023. The vector R̃ ((N − κ)∆t) would require a storage of
1.7·1023 ·16 Byte = 2.72·1012 TB. For comparison, in 2013 the total data contained in the world
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wide web was estimated to occupy 4 · 109 TB [44]. With these numbers at hand, it becomes
apparent that there is no possibility to achieve converged results for the OH vibration in a bath
of H2O molecules via the discrete iterative PI methodology and the simulation setup given in
this subsection. This eventually implies, that either the methodology has to be reformulated
or approximations invoked.
In the following subsection it is discussed how the size of the time step influences the growth

of paths’ number and the convergence of results.
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Figure 5.8.: Fitting the number of paths. The y-axes are referred to the number of paths. See
Fig. 5.6 for color code.

α θ a ∆a/a b ∆b/b Lθ3000,M

10−2 10−6 20.3 2.30% 2.14 0.38% 570320642
10−1 10−8 6.10 2.61% 4.35 0.21% 7.8e+15
harm. 10−9 1.96 3.32% 6.60 0.17% 1.7e+23

1.1 10−6 1.61 7.64% 6.31 0.41% 1.4e+22

Table 5.5.: Fitting results. The value of θ corresponds to converged results for α = 10−2, 10−1. For
the harmonic oscillator and α = 1.1 the value of θ corresponds to the highest accuracy
that was possible with local computer resources in the given time.
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5.2.2. The quality of filtering for different sizes of time steps

As it was stated in the previous subsection, one of the main problems of the discrete PI treat-
ment of the OH vibration is the long correlation time of the bath. From a numerical point of
view, the origin of this problem lies in the ratio tκ/∆t = κ = 3000. That means a discrete
path that spans the total correlation time contains three thousand coordinates and, thus, there
exist numerous possibilities to construct that path on the time-space grid. Since the correlation
time tκ is set by nature and, hence, fixed, one can change the value of κ only by varying the
time step ∆t. Therefore, in this subsection the focus is put on the impact of the time step on
the convergence behavior and the number of paths. The considered system is the three-level
harmonic oscillator coupled to the spectral density as it is was used in the previous subsection.
All numerical parameters are taken from Tab. 5.4 except from ∆t and κ which are varied such
that κ∆t = 80.0 ~/Eh.

The results of the simulations are visualized in Fig. 5.9. The number of paths that span a time
80.0 ~/Eh and that have a weight larger than a fixed threshold θ decreases with an increasing
size of the time step. For example, if ∆t = 10.0 and θ = 10−8, see panel 3 therein, then a
number of ≈ 5 · 106 paths contribute significantly to the discrete PI, whereas for ∆t = 2.0 and
θ = 10−8, panel 2, more than 108 paths have to be taken into account. Noticeably the speed of
convergence improves with an increasing size of the time step as is shown in the right panels
of Fig. 5.9. For ∆t = 10.0 one can see already an acceptable convergence for θ = 10−8, whereas
for ∆t = 2.0 the dynamics obtained with θ = 10−8 are unstable. Therefore, the solution to
overcome the obstacles presented in the previous subsection seems the choice of a larger time
step, where of course the maximal reasonable time step has to be determined by convergence.
Unfortunately, the maximization of the time step circumvents the numerical problems only
virtually. That becomes clear by considering the predictions of the fit function in Eq. 5.11, see
Tab. 5.6. It turns out that the number of FBC segments that span the total correlation time
would be 6.6 · 1030, where it is assumed that the results are fully converged with ∆t = 10.0

and θ = 10−9. The resulting numerical effort is of course unfeasible by any means. For shorter
time steps the predictions of the fit functions seem to be advantageous. But since the dynamics
obtained with ∆t = 0.5 and ∆t = 2.0 and the investigated thresholds are not stable, one can
not state the numbers given the ninth column of Tab. 5.6 corresponds to converged results.
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Figure 5.9.: The quality of the path filtering depending on ∆t. Panels 1), 1a); 2), 2a) and 3),
3a) correspond to ∆t = 0.5; ∆t = 2.0 and ∆t = 10.0, respectively. The colors correspond
to different thresholds as shown in Fig. 5.6. The left panels show the number of paths
Lθκ,M . The black line represents the exponential M2κ that corresponds to the unfiltered
number of paths. The right panels show the convergence behavior of the position expec-
tation value. The difference 〈ŝ〉θt − 〈ŝ〉

θ
∗

t is plotted, where 〈ŝ〉θt is the expectation value
calculated with the threshold θ. The value of θ∗ corresponds to the lowest threshold
within

(
10−9, 10−5

)
for that dynamics were calculated. For 1), 2) and 3) θ∗ = 10−6,

θ∗ = 10−7 and θ∗ = 10−9 whereas for the harmonic oscillator θ∗ = 10−8. For 4) only with
θ = 10−5 numerical results could be obtained.
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∆t [~/Eh] κ θ a ∆a/a b ∆b/b κtot Lθκtot,M

0.5 160 10−6 64.43 0.19% 2.02 0.020% 24000 4.5 · 1010

2.0 40 10−8 35.72 1.35% 4.19 0.090% 6000 2.4 · 1017

10.0 8 10−9 0.0012 1.53% 10.96 0.067% 1200 6.6 · 1030

Table 5.6.: Fitting results. The parameter κtot is set such that κtot∆t = 12000 ~/Eh, which cor-
responds to the total correlation time of the H2O bath. The value of θ corresponds to
converged results for ∆t = 10.0. For ∆t = 2.0 and ∆t = 0.5 the value of θ corresponds to
the highest accuracy that was possible with local computer resources in the given time.

Since the result of the PI for the given correlation time should not depend on the time step,
the decrease of the time step (increase of κ) ultimately leads to an increase of the paths’ number
and, hence, to the decrease of the average contribution of a single path. Thus the absolute value
of the threshold has to be decreased accordingly. Not doing so leads to loosing the important
paths and unstable unphysical dynamics, as was shown above. Hence, the advantage suggested
by the predictions of the fit functions in Tab. 5.6 is only virtual.

73



6. Conclusion & Outlook

The goal of this thesis has been to understand and implement the path integral (PI) formalism
in order to provide precise benchmarks for the typical molecular systems probed by means of
infrared vibrational spectroscopy. The promising features of this formalism lie in the absence of
any approximations apart from necessary numerics. The iterative calculation of the real time
and the complex time PI as introduced by the research group of Nancy Makri, appeared as a
suitable methodology to obtain numerically exact quantum dynamics for a system coupled to
a non-Markovian macroscopic bath.
After a brief introduction, the theoretical basis have been provided in the second chapter.

With the separation of a system-bath complex (SBC) into small subsystem S and a bath B, one
is able to formulate reduced dynamics. The corresponding time-dependent expectation values
and the equilibrium time-correlation functions (TCFs) can be used to understand experimental
results in terms of microscopic dynamics. In the third chapter, the continuous PI framework has
been established. It has been presented that the time evolution of the reduced density operator
can be expressed as an integral over forward and backward paths available to the system. As an
important quantity, the so-called influence functional has been put forward, which contains the
complete influence of the bath onto the system implicitly. The second section of this chapter
has been devoted to TCFs. In terms of PIs, the TCF is an integral not only over paths the
system follows forward and backward in time but additionally over paths that span imaginary
time stemming from the Boltzmann operator and, thus, corresponding to the temperature.
In the fourth chapter, the focus has been on the numerical evaluation of the PI formalism,

where I have chosen most attractive and powerful algorithms to be adopted the corresponding
literature of the last two and a half decades. A gross effort has been put into the understanding
and unifying the terminology connected to the discrete treatment of PIs. In the first section of
the fourth chapter, the derivation of time evolution of the reduced density matrix (RDM) as
a discrete PI corresponding to global propagation has been presented. The peculiarity of this
thesis is the concise and practical formulation of the PI in terms of discrete forward-backward
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combinations of paths (FBCs). In order to optimize the spatial discretization the discrete vari-
able representation (DVR) has been utilized. The famous MBO model that sets the grounds
for quantum-classical comparison and leads to analytical expressions for the non-local influence
functional has been discussed. If the bath has a finite correlation time, then the non-local char-
acter of the influence functional is also finite. It is this finiteness that theoretically allows one
to recast the discrete PI into an iterative propagation scheme that circumvents the exponential
growth of the effort connected to a global propagation. In order to reduce the numerical effort
further, the concept of the path filtering has been employed. The described propagation scheme
for the RDM has been then implemented. The corresponding source code is kept general and
requires as input only the numerical parameters, an arbitrary system Hamiltonian in a matrix
or functional form as well as an arbitrary spectral density as raw data. In the second part of
the fourth chapter, the same line of reasoning has led to an iterative propagation scheme of the
TCF. The resulting algorithms have been also implemented.
In the first section of the fifth chapter the self-implemented algorithms have been tested

against published literature data. For the RDM propagation, an excellent agreement with the
references could be found. Unfortunately, the results for the TCF are not fully reliable. The
data agree qualitatively but not quantitatively with the reference one. Moreover, the imaginary
part of the TCF exhibits unphysical kinks and the responsible error could not be found yet.
The second section of the fifth chapter has been focused on the applicability of the discrete
PI formalism to electron transfer and vibrational systems coupled to a bath with a realistic
correlation time for a liquid solvent. It has turned out that the discrete PI formalism does not
provide a feasible methodology to simulate quantum dynamics for the latter, while it is perfectly
suitable for the former. This is the central conclusion of the thesis. The reason has been traced
down to the magnitude of the off-diagonal elements of the Hamiltonian matrix in the DVR
basis. With an increasing magnitude, the amount of paths that contribute significantly to
the discrete PI exceeds available computer resources by far. In the case of small off-diagonal
elements, which corresponds to a typical electron transfer problem, the growth of the path
number is much more moderate. In the last part of the fifth chapter it has been confirmed,
that in the case of the harmonic oscillator the variation of the time step size can not circumvent
an unfeasible amount of paths.
The outcome of this thesis opened more questions than solved. In order to proceed further

one should consider. First, the error within the iterative TCF propagation has to be located
and eliminated. Second, despite the failure for vibrational systems interacting with realistic
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baths, it still can enjoy application to electron transfer problems, which are common targets
in our group. Therefore the code can for sure be optimized. For example, a more user-friendly
interface for input parameters can be implemented in order make the code accessible for others.
Also an alternative storage of the paths as single numbers, where each coordinate is represented
as a digit, would noticeably reduce the amount of memory storage. Additionally some part of
the propagation could be carried out globally on each time step, to reduce the memory usage
further. Third, the current implementation is serial and, since PI techniques are tailored for
parallel computation, a suitable CPU and/or GPU parallelization is desired. Last but not
least, in order to extend the applicability to electron transfer problems, the comparison to
results obtained via, e.g., the hierarchy equations of motion (HEOM) [41, 42, 43] would provide
an indication of advantages and disadvantages of the discrete PI methodology.
Finally, it can be concluded that the discrete PI formalism has the charm to serve as method-

ology that produces numerically exact quantum dynamics. Unfortunately, it fails to provide
the vibrational infrared spectra for a system solvated in a bath with correlation time typi-
cal for a liquid environment. The reason for the failure appears to be an intrinsic feature of
vibrational systems in general. Thus, it is not expected that the corresponding numerical ob-
stacles can be circumvented within this framework, and a suitable reformulation or a reasonable
approximation are prospected.
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A. Derivation of path integrals

In this part of the appendix it is shown that

〈
s
∣∣∣exp

{
λ
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
≡

sˆ

s0

Dλs(τ) exp
{
Sλ[s(τ)]

}
, (A.1)

where

S∓it/~[s(τ)] = ± i
~
A(0,t)[s(τ)] = ± i

~

tˆ

0

dτ
[

1

2
mṡ2(τ)− V (s(τ))

]
(A.2)

contains the classical action with the measure

sˆ

s0

D∓it/~s(τ) =

sˆ

s0

D(0,t)s(τ) (A.3)

and

S−β[s(τ)] = −1

~
E(0,β~)[s(τ)] = −1

~

β~ˆ

0

dτ
[

1

2
mṡ2(τ) + V (s(τ))

]
(A.4)

contains the Euclidian action with the measure

sˆ

s0

D−βs(τ) =

sˆ

s0

D(0,β~)s(τ) (A.5)

Following [37] the first step of derivation employs the Trotter theorem

exp
{
λ(Â+ B̂)

}
= lim

P→∞

[
e
λ

2P
B̂e

λ
P
Âe

λ
2P
B̂
]P
, (A.6)
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A. Derivation of path integrals

where Â and B̂ are operators which do not commute in general and λ is a complex number and
P is integer. Substituting this theorem into Eq. () with Â = p̂2/(2m), B̂ = V̂ (ŝ) yields

〈
s
∣∣∣exp

{
λ
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
=

lim
P→∞

〈
s

∣∣∣∣∣

[
exp

{
λ

2P
V̂ (ŝ)

}
exp

{
λ

2mP
p̂2

}
exp

{
λ

2P
V̂ (ŝ)

}]P ∣∣∣∣∣ s0

〉

With the definition

Ω̂λ
P := exp

{
λ

2P
V̂ (ŝ)

}
exp

{
λ

2mP
p̂2

}
exp

{
λ

2P
V̂ (ŝ)

}
(A.7)

one can reformulate

〈
s
∣∣∣exp

{
λ
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
= lim

P→∞
〈s| Ω̂λ

P · Ω̂λ
P · · · Ω̂λ

P︸ ︷︷ ︸
P times

|s0〉 . (A.8)

An insertion of P − 1 closures

1̂ =

∞̂

−∞

dsi |si〉 〈si| (A.9)

between each Ω̂λ
P yields

〈
s
∣∣∣exp

{
λ
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
= lim

P→∞

∞̂

−∞

ds1 · · ·
∞̂

−∞

dsP−1

P−1∏

i=0

〈si+1| Ω̂λ
P |si〉 , sP ≡ s.

(A.10)
The quantities 〈si+1| Ω̂λ

P |si〉 can be further evaluated since ŝ |si〉 = si |si〉

〈si+1| Ω̂λ
P |si〉 = exp

{
λ

2P
V (si+1)

}
〈si+1| exp

{
λ

2mP
p̂2

}
|si〉 exp

{
λ

2P
V (si)

}
, (A.11)
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A. Derivation of path integrals

where V (s) is the classical correspondence of V̂ (ŝ) evaluated at the position s. By inserting a
closure of momentum eigenstates

1̂ =

∞̂

−∞

dp |p〉 〈p| , p̂ |p〉 = p |p〉 (A.12)

Eq. (A.11) becomes

〈si+1| Ω̂λ
P |si〉 = exp

{
λ

2P
(V (si+1) + V (si))

} ∞̂

−∞

dp 〈si+1| p〉 exp

{
λ

2mP
p2

}
〈p |si〉 , (A.13)

here 〈s| p〉 is nothing else than the momentum eigenstate in coordinate presentation namely
the wavefunction

〈s| p〉 =
1√
2π~

eips/~. (A.14)

With Eq. (A.14) one finds

〈si+1| Ω̂λ
P |si〉 = exp

{
λ

2P
(V (si+1) + V (si))

}
1

2π~

∞̂

−∞

dp exp

{
λ

2mP
p2

}
exp

{
ip (si+1 − si)

~

}
.

(A.15)
The momentum integral can be carried out analytically for <(λ) < 0

〈si+1| Ω̂λ
P |si〉 =

(
− mP

2πλ~2

)1/2

exp

{
λ

2P
(V (si+1) + V (si))

}
exp

{
mP

2λ~2 (si − si+1)2

}
. (A.16)

Inserting this result in Eq. (A.10) and performing the product, one gets

〈
s
∣∣∣exp

{
λ
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
= lim

P→∞

∞̂

−∞

ds1 · · ·
∞̂

−∞

dsP−1

×
(
− mP

2πλ~2

)P/2
exp

{
λ

2P
(V (s) + V (s0))

}

× exp

{
mP

2λ~2

P−1∑

i=0

(si − si+1)2 +
λ

P

P−1∑

i=1

V (si)

}
. (A.17)
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A. Derivation of path integrals

With the definitions l = Re(λ) + Im(λ) and ∆ = l/P the latter equation can be written as

〈
s
∣∣∣exp

{
λ
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
= lim

P→∞

∞̂

−∞

ds1 · · ·
∞̂

−∞

dsP−1

×
(
− ml

2π∆~2λ

)P/2
exp

{
λ

l

∆

2
(V (s) + V (s0))

}

× exp

{
m∆

2

l

λ

P−1∑

i=0

(
si − si+1

∆

)2

+
λ

l
∆

P−1∑

i=1

V (si)

}
(A.18)

Note that the limit P → ∞ also induces ∆ → 0. If one thinks of the coordinates si as values
of a continuous function s(i∆) = si then in the limit the difference si − si+1 vanishes and i∆
gets a continuous variable τ ∈ (0, l) thus

lim
P→∞

si − si+1

∆
= ṡ(τ). (A.19)

Additionally the sums can be formulated as integrals

lim
P→∞

{
P−1∑

i=1

V (si)∆ +
∆

2
(V (s) + V (s0))

}
=

lˆ

0

dτV (s(τ)) (A.20)

lim
P→∞

m

2

P−1∑

i=0

(
si − si+1

∆

)2

∆ =

lˆ

0

dτ
m

2
ṡ2(τ). (A.21)

The integration variables si get infinitely close in the limit but they always span the interval
(0, l) where the points s0 = s(0), s = s(l) are fixed and all points in between are varied from
−∞ to ∞. Thus one can think of the integral as a ”scanning” and summation over all possible
continuous functions that connect s0 and s within l. With this interpretation one can recast
the integration measure such that it is now a functional integration over all continuous function
s(τ) that span the interval (0,l) with boundaries s(0) = s0, s(l) = s. Such an integration shall
be denoted by

sˆ

s0

D(0,l)s(τ). (A.22)
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Now one can formulate the equivalence

〈
s
∣∣∣exp

{
λ
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
=

sˆ

s0

D(0,l)s(τ) exp




λ

l

lˆ

0

dτ

[(
l

λ

)2
1

2
mṡ2(τ) + V (s(τ))

]
 .

(A.23)
That means for λ = −β with the substitution τ → −~τ

〈
s
∣∣∣exp

{
−β
(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
=

sˆ

s0

D(0,β~)s(τ) exp



−

1

~

β~ˆ

0

dτ
[

1

2
mṡ2(τ) + V (s(τ))

]


(A.24)
and for λ = ∓it/~ with the substitution τ → ∓~τ

〈
s
∣∣∣exp

{
∓it/~

(
p̂2/(2m) + V̂ (ŝ)

)}∣∣∣ s0

〉
=

sˆ

s0

D(0,t)s(τ) exp



±

i

~

tˆ

0

dτ
[

1

2
mṡ2(τ)− V (s(τ))

]
 .

(A.25)
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B. Memory coefficients of the discrete
influence functional

B.1. Real time propagation

The memory coefficients for the global propagation scheme in Eqs. (4.54,4.55) can be given
explicitly as [28]

ηk′k =
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin2(ω∆t/2)e−iω∆t(k−k′), 0 < k′ < k < N , (B.1)

η00 = ηNN =
1

2π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)

(
1− e−iω∆t/2

)
, (B.2)

η0N =
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin2(ω∆t/4)e−iω(t−∆t/2) , (B.3)

η0k =
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω(k∆t−∆t/4) , 0 < k < N , (B.4)

ηk′N =
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω(t−k′∆t−∆t/4) , 0 < k < N , (B.5)

ηkk =
1

2π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)

(
1− e−iω∆t

)
, 0 < k < N . (B.6)
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B. Memory coefficients of the discrete influence functional

Note that ηN0, ηk0 and ηNk depend on the absolute values of k orN , respectively, since t = N∆t.
For the iterative propagation scheme the coefficients ηk′+N−κ,k+N−κ appear in Eq. (4.73),

where k, k′ = 0, . . . , κ. That means for N > κ and if k = κ the following coefficient has to be
evaluated

ηk′+N−κ,k+N−κ = ηk′+N−κ,N =
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)

× e−iω(t−(k
′
+N−κ)∆t−∆t/4) (B.7)

=
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)

× e−iω((κ−k′)∆t−∆t/4) , (B.8)

since t = N∆t. The coefficient depends on k, which is in each iterative step in the range
0, . . . , κ. Note that if N > κ the coefficients ηN0, ηk0 do not enter the iterative scheme any
more. Therefore, one can define the coefficients ηmid-fin

k
′
k

as discussed in Sec. 4.1.5 as

ηmid-fin

k
′
k

=
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin2(ω∆t/2)e−iω∆t(k−k′) , 0 ≤ k′ < k < κ (B.9)

ηmid-fin
κκ =

1

2π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)

(
1− e−iω∆t/2

)
, (B.10)

ηmid-fin

k
′
κ

=
2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω((κ−k′)∆t−∆t/4) , 0 ≤ k′ < κ

(B.11)

ηmid-fin
kk =

1

2π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)

(
1− e−iω∆t

)
, 0 ≤ k < κ . (B.12)

Since κ is constant and k, k′ are always in the range 0, . . . , κ the coefficients ηmid-fin

k
′
k

do not
change during the iteration.
For the case N ≤ κ the coefficients ηinit-fin

k
′
k

coincide with ηk′k corresponding to the global
propagation scheme. The coefficients corresponding to the lambda propagator read as
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ηmid
0k =

2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin2(ω∆t/2)eiωk∆t, 0 ≤ k ≤ κ (B.13)

and

ηinit-mid
00 =

1

2π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)

(
1− e−iω∆t/2

)
, (B.14)

ηinit-mid
0k =

2

π

∞̂

−∞

dω
J(ω)eβ~ω/2

ω2 sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω(k∆t−∆t/4) , 0 < k ≤ κ .

(B.15)

B.2. Complex time propagation

The complex time memory coefficients for the global propagation scheme in Eq. (4.104) read as

η++

k
′
k

=
(
η−−
k
′
k

)∗
=

τk+1ˆ

τk

dτ

τ
k
′
+1ˆ

τ
k
′

dτ ′B(τ − τ ′) , k 6= k′ (B.16)

η++
kk =

(
η−−kk

)∗
=

τk+1ˆ

τk

dτ




τk+1ˆ

τk

dτ ′B(τ − τ ′) + iπ

∞̂

0

dω
J(ω)

ω


 (B.17)

η+−
k
′
k

=
(
η−+

k
′
k

)∗
=

τ
∗
k+1−iβ~ˆ

τ
∗
k−iβ~

dτ

τ
k
′
+1ˆ

τ
k
′

dτ ′B(τ − τ ′) , k 6= k′ (B.18)

η+−
kk =

(
η−+
kk

)∗
=

τ
∗
k+1−iβ~ˆ

τ
∗
k−iβ~

dτ




τk+1ˆ

τk

dτ ′B(τ − τ ′) + iπ

∞̂

0

dω
J(ω)

ω


 . (B.19)
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The complex times

τk =





0 , k = 0

−i
(
k − 1

2

)
∆β , k = 1, . . . , P

(
k − P − 1

2

)
∆t− iβ~/2 , k = P + 1, . . . , P +N

N∆t− iβ~/2 , k = P +N + 1 .

(B.20)

are given by the complex time forward propagation of the bath within Eq. (E.7), see also the
upper panel of Fig. E.1. Closed expressions are given in Ref. [30] and read as

η++

k
′
k

=
(
η−−
k
′
k

)∗
=

2

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω(τk+1 − τk)/2)

sinh(β~ω/2)

× sin(ω(τk′+1 − τk′)/2)

× cos(ω(τk+1 + τk − τk′+1 − τk′ + iβ~)/2) , (B.21)

η++
kk =

(
η−−kk

)∗
=

1

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω(τk+1 − τk)/2)

sinh(β~ω/2)

× sin(ω(τk+1 − τk + iβ~)/2) , (B.22)

η+−
k
′
k

=
(
η−+

k
′
k

)∗
=

2

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω(τk+1 − τk)/2)

sinh(β~ω/2)

× sin(ω(τ ∗
k
′ − τ ∗

k
′
+1

)/2)

× cos(ω(τ ∗
k
′
+1

+ τ ∗
k
′ − τk+1 − τk − iβ~)/2) , (B.23)
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η+−
kk =

(
η−+
kk

)∗
=

2

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω(τk+1 − τk)/2)

sinh(β~ω/2)

× sin(ω(τ ∗k − τ ∗k+1)/2)

× cos(ω(τ ∗k+1 + τ ∗k − τk+1 − τk − iβ~)/2) , (B.24)

If N > κ the coefficients used for the iterative scheme read as

η++
k+N, k+N =

(
η−−k+N, k+N

)∗
=

1

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω∆t/2)

sinh(β~ω/2)

× sin(ω(iβ~ + ∆t)/2) , 0 ≤ k < κ (B.25)

η++

k
′
+N,k+N

=
(
η−−
k
′
+N,k+N

)∗
=

2

π

∞̂

−∞

dω
J(ω)

ω2

sin2(ω∆t/2)

sinh(β~ω/2)

× cos(ω((k′ − k)∆t− iβ~/2)) , 0 ≤ k′ < k < κ (B.26)

η++

k
′
+N,κ+N

=
(
η−−
k
′
+N,κ+N

)∗
=

2

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω∆t/4)

sinh(β~ω/2)

× sin(ω∆t/2)

× cos(ω((κ− k′ − 1/4)∆t+ iβ~/2)) , 0 ≤ k′ < κ (B.27)

η++
κ+N, κ+N =

(
η−−κ+N, κ+N

)∗
=

1

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω∆t/4)

sinh(β~ω/2)

× sin(ω(iβ~ + ∆t/2)/2) , (B.28)
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η+−
k+N, k+N =

(
η−+
k+N, k+N

)∗
=− 1

π

∞̂

−∞

dω
J(ω)

ω2 sin2(ω∆t/2) coth(β~ω/2) , 0 ≤ k < κ

η+−
k
′
+N,k+N

=
(
η−+

k
′
+N,k+N

)∗
=− 2

π

∞̂

−∞

dω
J(ω)

ω2

sin2(ω∆t/2)

sinh(β~ω/2)

× cos(ω((k′ − k)∆t+ iβ~/2)) , 0 ≤ k′ < k < κ (B.29)

η+−
k
′
+N,κ+N

=
(
η−+

k
′
+N,κ+N

)∗
=− 2

π

∞̂

−∞

dω
J(ω)

ω2

sin(ω∆t/4)

sinh(β~ω/2)

× sin(ω∆t/2)

× cos(ω((κ− k′ − 1/4)∆t− iβ~/2)) , 0 ≤ k′ < κ (B.30)

η+−
κ+N,κ+N =

(
η−+
κ+N, κ+N

)∗
=− 1

π

∞̂

−∞

dω
J(ω)

ω2 sin2(ω∆t/4) coth(β~ω/2) .

Note that all coefficients do not depend on the global time step N , thus one can define the
coefficients η±±,mid-fin

k
′
k

= η±±
k
′
+N,k+N

and η±∓,mid-fin

k
′
k

= η±∓
k
′
+N,k+N

where k, k′ = 0, . . . , κ according to
the last equations. The coefficients for the complex time lambda propagator read as η±±,mid

0k =

η±±,mid-fin
0k and η±∓,mid

0k = η±∓,mid-fin
0k for k = 0, . . . , κ− 1 and

ηmid,++
0,κ =

(
ηmid,−−
k
′
+N,k+N

)∗
=

2

π

∞̂

−∞

dω
J(ω)

ω2

sin2(ω∆t/2)

sinh(β~ω/2)

× cos(ω(−κ∆t− iβ~/2)) , (B.31)

ηmid,+−
0,κ =

(
ηmid,−+

k
′
+N,k+N

)∗
=− 2

π

∞̂

−∞

dω
J(ω)

ω2

sin2(ω∆t/2)

sinh(β~ω/2)

× cos(ω(−κ∆t+ iβ~/2)) . (B.32)
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C. Algorithms

For a numerical treatment the FBCs are enumerated and are labled by s̃l,±. The set Pθκ,M can
then be considered as an array, who’s elements are the FBCs.

C.1. Global propagation of the first steps

The first κ propagation steps employ a global propagation. At the beginning of the propagation
all convergence parameters ∆t, M, κ and θ are set to proper values. Within each step the set
Pθκ,M is build up successively. The pseudo code is as follows:

Algorithm C.1
# *** first step: N = 1 ***
Pθ1,M = {∅}, l = 0 # initialize set of paths and number of FBCs
for i = 0, . . .M − 1 do # go over all possible end points of the forward path
for j = 0, . . .M − 1 do # go over all possible end points of the backward path
l→ l + 1 # increment number of FBCs

s̃l,± ≡
(
si
sj

)
# construct new FBC with index l

Pθ1,M →
{
Pθ1,M , s̃l,±

}
# accept new FBC in the set

done
done
L = l # total number of FBCs

# calculate RDM
for i = 0, . . .M − 1 do # go over all possible end points of the forward path
for j = 0, . . .M − 1 do # go over all possible end points of the backward path
ρMS,i,j(∆t) =

∑L
l=1 F̃

init-fin
(0,1)

[
s̃l,±, si, sj

]
S̃(0,1)

[
s̃l,±, si, sj

]
R̃
[
s̃l,±, 0

]

done
done

done
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Algorithm C.2
# *** next steps: N = 2, . . . , κ ***
for N = 2, . . . , κ
PθN,M = {∅}, l′ = 0 # initialize set of paths and number of FBCs
for l = 1, . . . L do # sum over all FBCs of the previous time step
for i = 0, . . .M − 1 do # go over all possible end points of the forward path

for j = 0, . . .M − 1 do # go over all possible end points of the backward path

p̃± ≡
(
s̃l,±,

si
sj

)
with s̃l,± ∈ PθN−1,M # construct a new temporary FBC

if wN−1

[
p̃±
]
> θ # check path weight of temporary FBC

l′ → l′ + 1 # increment number of FBCs
s̃l
′
,± ≡ p̃± # new member of the set is indicated by l′

PθN,M →
{
PθN,M , s̃l

′
,±
}

# accept new FBC in the set
end if

done
done

done
L = l′ # new total number of FBCs

# calculate RDM
for i = 0, . . .M − 1 do # go over all possible end points of the forward path
for j = 0, . . .M − 1 do # go over all possible end points of the backward path
ρMS,i,j(N∆t) =

∑L
l=1 F̃

init-fin
(0,N)

[
s̃l,±, si, sj

]
S̃(0,N)

[
s̃l,±, si, sj

]
R̃
[
s̃l,±, 0

]

done
done

done

Note that at the end of this propagation the set Pθκ,M consisting of L elements is fully
determined and can be used for the iterative procedure.

C.2. Binning of the FBCs by their path weights

This section is a kind of preparation of the following section, which is focused on the lambda
propagator. An efficient way to calculate this propagator utilizes a histogram of the FBCs
binned by their path weights. This method is especially adopted from Ref. [31]. The goal
of this section is to create a histogram, which can be used to set up the lambda propagator
reasonably.
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The indices l = 1, . . . , L of all FBCs in Pθκ,M are distributed over nbins with respect to the
path weight wκ−1

[
s̃l,±
]
. Each bin Bi, i = 0, . . . , nbins−1 is then a set of integer numbers, where

each number number is the index of a particular FBC. The resulting histogram spans the total
interval

[
wmin ≡ minPθκ,M

{
wκ−1

[
s̃±
]}

, wmax ≡ maxPθκ,M

{
wκ−1

[
s̃±
]}]

. The goal is to fill up all
bins approximately equally, since this provides the most efficient calculation of the lambda
propagator, see Sec. C.3 and Sec. C.4. It can be seen that the majority of FBCs have very
small weights. Consequently, an equidistant slicing of the histogram would fail to distribute
the number of FBCs per bin equally. A much more efficient interval spacing is presented in
this thesis. The function g(w) that assigns a particular FBC s̃± ∈ Pθκ,M with the path weight
w = wκ−1

[
s̃±
]
to a bin index i is as follows

g(w) ≡ (nbins − 1) b

√(
w − wmin

wmax − wmin

)
, i = g(w) (C.1)

where b > 1 is an arbitrary integer and · denotes the floor function. The result of this
function are bins with an index-dependent width

∆wi =
(i+ 1)b − ib

(nbins − 1)b
, (C.2)

which is much more narrow for small i than in the case of equidistant spacing, where ∆w =

1/(nbins−1). The parameter b has to be chosen properly for given setup. With these definitions
at hand one can formulate the following algorithm for creating the histogram

Algorithm C.3
for i = 0, . . . , nbins − 1
Bi = {∅} # initialize all bins as empty sets

done

for l = 1, . . . , L do # go over all FBCs in Pθκ,M
w ≡ wκ−1

[
s̃l,±
]

# calculate path weight of the l-th FBC
i ≡ g(w) # determine the corresponding bin
Bi → {Bi, l} # put FBC index into the bin

done
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C.3. Preparation for the lambda propagator

In order to calculate the RDM for time steps N > κ the discrete multi-time reduced density
functional is propagated via Eq. (4.78). The goal is now to recast the propagation as

R̃
[
s̃l,±; (k + 1)∆t

]
=
∑

p∈Il

Λ(k,k+κ)

[
s̃p,±, s̃l,±

]
· R̃
[
s̃p,±; k∆t

]
, (C.3)

where s̃l,± and s̃p,± are in Pθκ,M . By doing this, one is able to evaluate Eq. (C.3) without the
explicit storage of the subset Pθκ,M

[
s̃l,±
]
. It is sufficient to know the set of indices Il of FBCs

in Pθκ,M that are possible histories of the particular FBC s̃l,±. The evaluation of Eq. (C.3)
then remains remains exclusively in the set Pθκ,M . How this set of indices is determined in the
following algorithm:

Algorithm C.4
# *** determine set of indices Il ***
for l = 1, . . . , L do # go over all FBCs in Pθκ,M
Il = {∅} # initialize set as empty set
for i = 0, . . .M − 1 do # go over all possible histories of s̃l,+

for j = 0, . . .M − 1 do # go over all possible histories of s̃l,−

p̃± ≡
(
si s̃+

0 . . . s̃+
κ−2

sj s̃−0 . . . s̃−κ−2

)
# define temporary FBC

w ≡ wκ−1

[
p̃±
]

# calculate weight of temporary FBC
if wκ−1

[
p̃±
]
> θ # has p̃± a sufficient weight?

k ≡ g(w) # determine bin of p̃±

for p ∈ Bk do # go over all indices in the bin
if p̃± = s̃p,± # compare temporary FBC with FBCs in the bin
Il = {Il, p} # collect the indices of all history FBCs of s̃l,±

break for loop
end if

done
end if

done
done

done
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C.4. The iterative propagation

This subsection describes the ongoing propagation for the time steps N = κ + 1, . . . , ∞. In
order to avoid redundant recalculations the following time-independent quantities are defined.
The propagator matrix P̌ ∈ CM

2×L with elements PiM+j,l and the lambda array consisting of
elements Λlp. Additionally the time-dependent multi-time reduced density vector R(N∆t) ∈ CL

with elements Rl(N∆t) and a temporary vector Y ∈ CL with elements Yl are defined. The
algorithm is as follows

Algorithm C.5
# *** first iterative step: N = κ+ 1 ***
for l = 1, . . . , L do # go over all FBCs in Pθκ,M
Yl =

〈
σ̃l,+0 |ρ̂S(0)| σ̃l,−0

〉
# initialize temporary vector with initial condition

Rl(0) = 0 # initialize multi-time reduced density vector
done
# propagate multi-time reduced density vector by one time step
for l = 1, . . . , L do # go over all FBCs in Pθκ,M
for p ∈ Il do # go over all possible histories of s̃l,±

Rl(∆t) → Rl(∆t) + Λinit-mid
[
s̃p,±, s̃l,±

]
· Yp # calculate new multi-time reduced density

vector
done

done
# set up propagator matrix
for l = 1, . . . , L do # go over all FBCs in Pθκ,M
for i = 0, . . .M − 1 do # go over all possible end points of the forward path
for j = 0, . . .M − 1 do # go over all end points of the backward path
PiM+j,l ≡ F̃mid-fin

(0,κ)

[
s̃l,±, si, sj

]
S̃(0,κ)

[
s̃l,±, si, sj

]

done
done

done
# calculate RDM
for i = 0, . . .M − 1 do # go over all possible end points of the forward path
for j = 0, . . .M − 1 do # go over all possible end points of the backward path
ρMS,i,j((κ+ 1)∆t) =

∑L
l=1 PiM+j,lRl(∆t)

done
done
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Algorithm C.6
# *** following iterative steps: N = κ+ 2, . . . , ∞ ***

# set up lambda array
for l = 1, . . . , L do
for p ∈ Il do

Λlp ≡ Λmid
[
s̃p,±, s̃l,±

]

done
done

# ongoing iterative propagation
for N = κ+ 2, . . .∞ do
for l = 1, . . . , L do # go over all FBCs in Pθκ,M
Yl = Rl((N − κ− 1)∆t) # initialize temporary vector
Rl((N − κ)∆t) = 0 # initialize multi-time reduced density vector

done
for l = 1, . . . , L do # go over all FBCs in Pθκ,M
for p ∈ Il do # go over all possible histories of s̃l,±

Rl((N−κ)∆t)→ Rl((N−κ)∆t)+Λlp ·Yp # calculate new multi-time reduced density
vector

done
done

# calculate RDM
for i = 0, . . .M − 1 do # go over all possible end points of the forward path
for j = 0, . . .M − 1 do # go over all possible end points of the backward path
ρMS,i,j(N∆t) =

∑L
l=1 PiM+j,lRl((N − κ)∆t)

done
done

done
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D. The discrete TCF for N = 0

For the special case N = 0 the calculation of the TCF corresponds to a pure imaginary time
propagation. In order to derive an expression that can be treated numerically, the TCF can be
rewritten as

CΓΩ(0) ≡ 1

Z(β)
Tr
[
e−Ĥ∆β/~ · · · e−Ĥ∆β/~
︸ ︷︷ ︸

P times

Γ̂Ω̂ e−Ĥ∆β/~ · · · e−Ĥ∆β/~
︸ ︷︷ ︸

P times

]
.

≡ 1

Z(β)
TrB




∞̂

−∞

ds0

∞̂

−∞

ds+
1 · · ·

∞̂

−∞

ds+
P−1

∞̂

−∞

ds+

∞̂

−∞

ds−1 · · ·
∞̂

−∞

ds−P−1

∞̂

−∞

ds−

×
〈
s0

∣∣ e−Ĥ∆β/~ ∣∣s−1
〉 〈
s−1
∣∣ e−Ĥ∆β/~ ∣∣s−2

〉
· · ·
〈
s−P−2

∣∣ e−Ĥ∆β/~ ∣∣s−P−1

〉 〈
s−P−1

∣∣ e−Ĥ∆β/~ ∣∣s−
〉

×
〈
s−
∣∣ Γ̂Ω̂

∣∣s+
〉 〈
s+
∣∣ e−Ĥ∆β/~ ∣∣s+

P−1

〉
· · ·
〈
s+

2

∣∣ e−Ĥ∆β/~ ∣∣s+
1

〉 〈
s+

1

∣∣ e−Ĥ∆β/~ |s0〉 , (D.1)

where spatial closures have been inserted in between the imaginary time propagators. After
replacing the continuous integrals by sums over the DVR states, the discrete TCF takes the
form

C̃ΓΩ(0) ≡ 1

Z(β)
TrB




M−1∑

i0=0

M−1∑

i
+
1 =0

· · ·
M−1∑

i
+
P−1=0

M−1∑

i
+

=0

M−1∑

i
−
1 =0

· · ·
M−1∑

i
−
P−1=0

M−1∑

i
−

=0〈
s̃i0

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i−1

〉〈
s̃
i
−
1

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i−2

〉
· · ·
〈
s̃
i
−
P−1

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i−

〉〈
s̃
i
−

∣∣∣Γ̂Ω̂
∣∣∣s̃i+

〉

×
〈
s̃
i
+

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i+P−1

〉
· · ·
〈
s̃
i
+
2

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i+1

〉〈
s̃
i
+
1

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i0
〉

 . (D.2)
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Employing the Trotter factorization in Eq. (E.4) and separating bare system parts from system-
bath dependent quantities leads to

C̃ΓΩ(0) =
1

Z(β)

M−1∑

i0=0

M−1∑

i
+
1 =0

· · ·
M−1∑

i
+
N+P−1=0

M−1∑

i
−
1 =0

· · ·
M−1∑

i
−
N+P−1=0

M−1∑

i=0

f
(
s̃i, s̃i+1 , · · · , s̃i+P−1

, s̃
i
+ s̃

i
−
1
, . . . , s̃

i
−
P−1

, s̃
i
−

)

×
〈
s̃i0

∣∣∣e−ĤS∆β/~
∣∣∣s̃i−1

〉〈
s̃
i
−
1

∣∣∣e−ĤS∆β/~
∣∣∣s̃i−2

〉
· · ·
〈
s̃
i
−
P−1

∣∣∣e−ĤS∆β/~∣∣s̃
i
−
〉

×
〈
s̃
i
−
∣∣Γ̂Ω̂

∣∣s̃
i
+

〉〈
s̃
i
+

∣∣e−ĤS∆β/~
∣∣∣s̃i+P−1

〉
· · ·
〈
s̃
i
+
2

∣∣∣e−ĤS∆β/~
∣∣∣s̃i+1

〉〈
s̃
i
+
1

∣∣∣e−ĤS∆β/~
∣∣∣s̃i0
〉
, (D.3)

where

f
(
s̃0, s̃

+
1 , · · · , s̃+

P−1, s̃
+, s̃−1 , . . . , s̃

−
P−1, s̃

− ) ≡
TrB

[
e−ĤSB(s̃0)∆β/(2~)e−ĤSB(s̃

−
1 )∆β/~ · · · e−ĤSB(s̃

−
P−1)∆β/~e−ĤSB(s̃

−
)∆β/(2~)

× e−ĤSB(s̃
+

)∆β/(2~)e−ĤSB(s̃
+
P−1)∆β/~ · · · e−ĤSB(s̃

+
1 )∆β/~e−ĤSB(s̃0)∆β/(2~)

]
(D.4)

contains the the influence from the bath onto the system. The sequence of coordinates
s̃i0 , s̃i+1 , . . . , s̃i

+
P−1

, s̃
i
+ , s̃

i
−
1
, . . . , s̃

i
−
P−1

, s̃
i
− is now replaced by an imaginary time FBC

s̃± ≡
(

s̃0 s̃+
1 · · · s̃+

P−1

s̃0 s̃−1 · · · s̃−P−1

)
=

(
s̃i0 s̃

i
+
1
· · · s̃

i
+
P−1

s̃i0 s̃
i
−
1
· · · s̃

i
−
P−1

)
(D.5)

with end points s̃
i
+ , s̃

i
− . Note that in contrast to the expression for C̃ΓΩ(N∆t), where N > 0,

the endpoints do not necessarily coincide. With the definition of the imaginary time FBC, the
TCF for N = 0 can be written as a discrete PI

C̃ΓΩ(0) =
1

Z(β)

M−1∑

i
±

=0

∑

s̃
±∈PP,M

F̃(0,P )

[
s̃±, s̃

i
±
]
S̃ ΓΩ

(0,P )

[
s̃±, s̃

i
±
]
, (D.6)

where

S̃ ΓΩ
(0,P )

[
s̃±, s̃

i
±
]
≡

P−1∏

k=0

S̃ ΓΩ
(k,k+1)

(
s̃±k , s̃

±
k+1

)
, (D.7)
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is the discrete imaginary time bare system part of the PI. The quantity S̃ ΓΩ
(0,P )

[
s̃±, s̃

i
±
]
is a

product of imaginary time bare system point-to-point propagators

S̃(k,k+1)

(
s̃±k , s̃

±
k+1

)
≡





〈
s̃−k
∣∣e−ĤS∆β/~∣∣s̃−k+1

〉〈
s̃+
k+1

∣∣e−ĤS∆β/~∣∣s̃+
k

〉
, 0 ≤ k ≤ P − 1

〈
s̃
i
−
∣∣Γ̂Ω̂

∣∣s̃
i
−
〉
, k = P

(D.8)

The influence of the bath is contained in the discrete imaginary time influence functional

F̃(0,P )

[
s̃±, s̃

i
±
]
≡ f

(
s̃0, s̃

+
1 , . . . , s̃

+
P , s̃i+ , s̃

−
1 , . . . , s̃

−
P , s̃i−

)
. (D.9)

Note that
∑M−1

i
±

=0
≡ ∑M−1

i
+

=0

∑M−1

i
-
=0

is a two-fold sum over the end points and the set PP,M is
defined in Eq. (4.102).
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Analogously to Sec. 4.1.1, the integrals in Eq. (4.98) are replaced by sums over M grid points
s̃i ∈ SM ∞̂

−∞

ds±k
∣∣s±k
〉〈
s±k
∣∣→

M−1∑

i
±
k =0

∣∣∣s̃i±k
〉〈
s̃
i
±
k

∣∣∣ (E.1)

and also ∞̂

−∞

ds0 〈s0| · |s0〉 →
M−1∑

i0=0

〈
s̃i0
∣∣ ·
∣∣s̃i0
〉
, (E.2)

where the states |s̃i〉 form the DVR basis according to Sec. 4.1.2. The result is the discrete
TFC

C̃ΓΩ(N∆t) ≡ 1

Z(β)
TrB




M−1∑

i0=0

M−1∑

i
+
1 =0

· · ·
M−1∑

i
+
N+P−1=0

M−1∑

i
−
1 =0

· · ·
M−1∑

i
−
N+P−1=0

M−1∑

i=0〈
s̃i0

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i−1

〉〈
s̃
i
−
1

∣∣∣e−Ĥ∆β/~
∣∣∣s̃i−2

〉
· · ·
〈
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i
−
P−1
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〉

×
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i
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P
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∣∣∣s̃i+P+N−2

〉
· · ·
〈
s̃
i
+
P+1

∣∣∣e−iĤ∆t/~
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The application of the Trotter factorization

exp

{
−1

~
Ĥ∆β

}
≈ exp

{
− 1

2~
ĤSB∆β

}
exp

{
−1

~
ĤS∆β

}
exp

{
− 1

2~
ĤSB∆β

}
(E.4)
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leads to the approximation

〈
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, (E.5)

which is transferable to quantities involving the states labeled by
∣∣∣s̃i−k

〉
. After the separation

of bare system parts and system-bath depending quantities, the discrete TCF becomes
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, s̃
i
−
1
, . . . , s̃

i
−
P+N−1

, s̃i

)

×
〈
s̃i0

∣∣∣e−ĤS∆β/~
∣∣∣s̃i−1

〉〈
s̃
i
−
1

∣∣∣e−ĤS∆β/~
∣∣∣s̃i−2

〉
· · ·
〈
s̃
i
−
P−1

∣∣∣e−ĤS∆β/~
∣∣∣s̃i−P

〉

×
〈
s̃
i
−
P

∣∣∣Γ̂eiĤS∆t/~
∣∣∣s̃i−P+1

〉〈
s̃
i
−
P+1

∣∣∣eiĤS∆t/~
∣∣∣s̃i−P+2

〉
· · ·
〈
s̃
i
−
P+N−1

∣∣∣eiĤS∆t/~
∣∣∣s̃i
〉

×
〈
s̃i

∣∣∣Ω̂e−iĤS∆t/~
∣∣∣s̃i+P+N−1

〉〈
s̃
i
+
P+N−1

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+P+N−2

〉
· · ·
〈
s̃
i
+
P+1

∣∣∣e−iĤS∆t/~
∣∣∣s̃i+P

〉

×
〈
s̃
i
+
P

∣∣∣e−ĤS∆β/~
∣∣∣s̃i+P−1

〉
· · ·
〈
s̃
i
+
2

∣∣∣e−ĤS∆β/~
∣∣∣s̃i+1

〉〈
s̃
i
+
1

∣∣∣e−ĤS∆β/~
∣∣∣s̃i0
〉
, (E.6)

where the system-bath interaction is implicitly contained in the multi-dimensional function

f
(
s̃0, s̃

+
1 , · · · , s̃+

P+N−1, s̃
−
1 , . . . , s̃

−
P+N−1, s̃i

)
≡

TrB
[
e−ĤSB(s̃0)∆β/(2~)e−ĤSB(s̃

−
1 )∆β/~ · · · e−ĤSB(s̃

−
P−1)∆β/~e−ĤSB(s̃

−
P )∆β/(2~)

× eiĤSB(s̃
−
P )∆t/(2~)eiĤSB(s̃

−
P+1)∆t/~ · · · eiĤSB(s̃

−
P+N−1)∆t/~eiĤSB(s̃i)∆t/(2~)

× e−iĤSB(s̃i)∆t/(2~)e−iĤSB(s̃
+
P+N−1)∆t/~ · · · e−iĤSB(s̃

+
P+1)∆t/~e−iĤSB(s̃

+
P )∆t/(2~)

× e−ĤSB(s̃
+
P )∆β/(2~)e−ĤSB(s̃

+
P−1)∆β/~ · · · e−ĤSB(s̃

+
1 )∆β/~e−ĤSB(s̃0)∆β/(2~)

]
, (E.7)

which will be later defined as the discrete complex time influence functional. In analogy to
Sec. 4.1.1 the grid point sequence s̃i0 , s̃i+1 , . . . , s̃i+P , s̃i+P+1

, . . . , s̃
i
+
P+N−1

, s̃
i
−
1
, . . . , s̃

i
−
P
, s̃
i
−
P+1

. . . , s̃
i
−
P+N−1

, s̃i
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is within this thesis substituted by a complex time FBC, which is defined as

s̃± ≡
(

s̃0 s̃+
1 · · · s̃+

P s̃+
P+1 · · · s̃+

P+N−1

s̃0 s̃−1 · · · s̃−P s̃−P+1 . . . s̃−P+N−1

)
=

(
s̃i0 s̃

i
+
1
· · · s̃

i
+
P

s̃
i
+
P+1

· · · s̃
i
+
P+N−1

s̃i0 s̃
i
−
1
· · · s̃

i
−
P

s̃
i
−
P+1

· · · s̃
i
−
P+N−1

)

(E.8)
with the shared end point s̃i. The motivation for this substitution is according to Sec. 4.1.1.
Note that Eq. (E.6) has to be read from the right to the left. If one considers the special case
N = P = M = 3 and the particular summand σ, where the indices are fixed to i0 = 2, i+1 =

1, i+2 = 0, i+3 = 0, i+4 = 0, i+5 = 1, i−1 = 1 , i−2 = 2, i−3 = 1, i−4 = 2, i−5 = 1 and i = 0, then two
independent operations have to be performed.
First, the bare system is propagated stepwise in imaginary time starting at time zero and

following the discrete imaginary time path s̃+
im ≡

(
s̃0, s̃

+
1 , s̃

+
2 , s̃

+
3

)
≡
(
s̃i0 , s̃i+1 , s̃i

+
2
, s̃

i
+
3

)
=

(s̃2, s̃1, s̃0, s̃0), see Fig. 4.9. The propagation ends at time −3i∆β. In the fifth line of Eq. (E.6)
follows a propagation forward in the real time, where system follows the discrete real time
forward path s̃+

re ≡
(
s̃+

4 , s̃
+
5

)
≡
(
s̃
i
+
4
, s̃

i
+
5

)
= (s̃0, s̃1). Within the last step, where the system is

propagated to the shared end point s̃i = s̃0 at the particular complex time χ ≡ 3∆t − 3i∆β,
the time propagator e−iĤS∆t/~ is multiplied by the operator Ω̂. Note that it is assumed that
the multiplication does not change the effective size of the time step and, hence, the numerical
stability is not affected. One can now attach the real time path to the imaginary time path
and define the discrete complex time forward path s̃+ ≡

(
s̃+

im, s̃
+
re

)
. Here, forward with respect

to a complex time is referred to a propagation, where the time argument changes as labeled on
the vertical axis in Fig. 4.9. In other words, a complex time forward path spans the upper half
of the complex time contour as depicted in Fig. 3.4. The fourth line in Eq. (E.6) represents a
propagation of the bare system backward in the real time. Here, the system starts at the end
point of the forward propagation s̃0. Afterwards it follows reversely the real time backward path
s̃−re ≡

(
s̃−4 , s̃

−
5

)
≡
(
s̃
i
−
4
, s̃

i
−
5

)
= (s̃2, s̃1). Within the last step backward in real time the system

is propagated to the pure imaginary time −3i∆β. Here, the propagator eiĤS∆t/~ is multiplied
by the operator Γ̂. It is assumed that the multiplication does not affect the numerical stabil-
ity. What follows in the third line of Eq. (E.6), is the resumption of the pure imaginary time
propagation of the sixth line. The system it follows reversely the coordinates of the discrete
imaginary time path defined as s̃−im ≡

(
s̃0, s̃

−
1 , s̃

−
2 , s̃

−
3

)
≡
(
s̃i0 , s̃i−1 , s̃i

−
2
, s̃

i
−
3

)
= (s̃2, s̃1, s̃2, s̃1).

The bare system propagation ends at the time −6i∆β = −iβ~. Attaching the path s̃−re to s̃−im

creates the discrete complex time backward path s̃− ≡
(
s̃−im, s̃

−
re

)
. Here, the backward direction in
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the complex time is defined by lower half of the complex time contour in Fig. 3.4. To conclude,
according to the last four lines in Eq. (E.6), the first task in order to calculate the particular
summand σ requires the propagation of the bare system along the FBC

s̃± ≡
(

s̃0 s̃+
1 s̃+

2 s̃+
3 s̃+

4 s̃+
5

s̃0 s̃−1 s̃−2 s̃−3 s̃−4 s̃−5

)
=

(
s̃2 s̃1 s̃0 s̃0 s̃0 s̃1

s̃2 s̃1 s̃2 s̃1 s̃2 s̃1

)
. (E.9)

with the shared end point s̃i = s̃0.
Second, the multi-dimensional function f appearing in the first line of Eq. (E.6) has to be

evaluated. According to Eq. (E.7), f represents

f
(
s̃2, s̃1, s̃0, s̃0, s̃0, s̃1, s̃1, s̃2, s̃1, s̃2, s̃1, s̃0

)
=

f
(
s̃0, s̃

+
1 , s̃

+
2 , s̃

+
3 , s̃

+
4 , s̃

+
5 , s̃

−
1 , s̃

−
2 , s̃

−
3 , s̃

−
4 , s̃

−
5 , s̃i

)
=

TrB
[
e−ĤSB(s̃0)∆β/(2~)e−ĤSB(s̃

−
1 )∆β/~e−ĤSB(s̃

−
2 )∆β/~e−ĤSB(s̃

−
3 )∆β/(2~)

× eiĤSB(s̃
−
3 )∆t/(2~)eiĤSB(s̃

−
4 )∆t/~eiĤSB(s̃

−
5 )∆t/~eiĤSB(s̃i)∆t/(2~)

× e−iĤSB(s̃i)∆t/(2~)e−iĤSB(s̃
+
5 )∆t/~e−iĤSB(s̃

+
4 )∆t/~e−iĤSB(s̃

+
3 )∆t/(2~)

× e−ĤSB(s̃
+
3 )∆β/(2~)e−ĤSB(s̃

+
2 )∆β/~e−ĤSB(s̃

+
1 )∆β/~e−ĤSB(s̃0)∆β/(2~)

]
. (E.10)

Following the same line of reasoning as for Eq. (4.25), the expression within the trace in
Eq. (E.10) can be interpreted as a certain propagation of the bath. In contrast to Sec. 4.1.1 the
bath is here propagated in the complex time. Within the propagation the bath experiences the
interaction potential that parametrically depends on the coordinates of the discrete complex
time paths s̃+, s̃− and the shared end point s̃i. The interaction potential is kept constant during
the propagation steps and can therefore be described by an operator-like step function, as shown
in Fig. E.1. The trace evaluates then the integral over all initial and final states the bath could
have had within the propagation, see Eq. (4.25). Therefore, the second conclusion is as follows,
after σ is determined by the bare system propagation along the CFBC s̃±, the summand is
weighted by the function f . The value of f in turn takes account of the mutual interaction
between system and bath if the system follows s̃±. In order to calculate all other summands
that contribute to the discrete TCF in Eq. (E.6) the indices i0, i

±
k , k = 1, . . . , 5 are varying.

The sum over the index i and, hence, the sum over shared end points s̃i is treated individually
in the following. Each summand represents a particular FBC, which is a combinatoric sequence
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Figure E.1.: Interaction potential experienced by the bath. The forward/backward evo-
lution in the complex time is shown in the upper/lower panel, respectively. The
marked times on the complex forward time axis read from the left to the right
as 0, −i∆β/2, −3i∆β/2, −5i∆β/2, −3i∆β, ∆t/2 − 3i∆β, 3∆t/2 − 3i∆β, 5∆t/2 −
3i∆β, 3∆t − 3i∆β. The marked times on the complex backward time axis read
from the left to the right as −6i∆β, −11i∆β/2, −9i∆β/2, −7i∆β/2, −3i∆β, ∆t/2 −
3i∆β, 3∆t/2 − 3i∆β, 5∆t/2 − 3i∆β, 3∆t − 3i∆β. The vertical axis is referred to the
”strength” of the system-bath interaction.

of 2(P + N) = 12 grid points, where the discrete complex time forward and backward path
must share the same initial coordinate as the result of the trace, i.e. s̃+

0 = s̃−0 = s̃0.
In analogy to Sec. 4.1.1, for any N and P the 2(P +N)-fold sum in Eq. (E.6) is replaced by

one sum over all FBCs that can be constructed upon 2(P +N) grid points, where s̃+
0 = s̃−0 = s̃0,

see Eq. (4.101). Each summand consists of two mutually independent quantities.
First, the discrete complex time bare system part

S̃ ΓΩ
(0,P+N)

[
s̃±, s̃i

]
≡

P+N−1∏

k=0

S̃ ΓΩ
(k,k+1)

(
s̃±k , s̃

±
k+1

)
, (E.11)
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with the complex time bare system point-to-point propagator

S̃ ΓΩ
(k,k+1)

(
s̃±k , s̃

±
k+1

)
≡





〈
s̃−k
∣∣e−ĤS∆β/~∣∣s̃−k+1

〉〈
s̃+
k+1

∣∣e−ĤS∆β/~∣∣s̃+
k

〉
, 0 ≤ k ≤ P − 1

〈
s̃−P
∣∣Γ̂eiĤS∆t/~∣∣s̃−P+1

〉〈
s̃+
P+1

∣∣e−iĤS∆t/~∣∣s̃+
P

〉
, k = P

〈
s̃−k
∣∣eiĤS∆t/~∣∣s̃−k+1

〉〈
s̃+
k+1

∣∣e−iĤS∆t/~∣∣s̃+
k

〉
, P + 1 ≤ k ≤ P +N − 2

〈
s̃−P+N−1

∣∣eiĤS∆t/~∣∣s̃i
〉〈
s̃i
∣∣Ω̂e−iĤS∆t/~∣∣s̃+

P+N−1

〉
, k = P +N − 1 ,

(E.12)
where s̃+

0 = s̃−0 = s̃0.

Second, the summand is weighted by discrete complex time influence functional defined for
N > 0 as

F̃(0,P+N)

[
s̃±, s̃i

]
≡

f
(
s̃0, s̃

+
1 , . . . , s̃

+
P , s̃

+
P+1, . . . , s̃

+
P+N−1, s̃

−
1 , . . . , s̃

−
P , s̃

−
P+1 . . . , s̃

−
P+N−1, s̃i

)
, (E.13)

which contains implicitly the influence of the bath due to the interaction with the system if it
follows the FBC s̃±.

E.1. Iterative propagation of the TCF

In order to derive an iterative scheme for the propagation of the TCF, the discrete complex
time influence functional is written as a product of complex time point-to-point influences

F̃(0,P+N)

[
s̃±, s̃i

]
= ZB(β)

P+N∏

k=0

k∏

k
′
=0

F̃(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
(E.14)

or equivalently

F̃(0,P+N)

[
s̃±, s̃i

]
= ZB(β)

P+N∏

k
′
=0

P+N∏

k=k
′

F̃(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
, (E.15)

where

F̃(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
= exp

{
−1

~
(
η++

k
′
k
s̃+

k
′ s̃

+
k + η−−

k
′
k
s̃−
k
′ s̃
−
k + η−+

k
′
k
s̃−
k
′ s̃

+
k + η+−

k
′
k
s̃+

k
′ s̃
−
k

)}
. (E.16)
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In case of a finite memory the double product in Eq. (E.15) can be truncated

F̃(0,P+N)

[
s̃±, s̃i

]
= ZB(β)

P+N∏

k
′
=0

min{P+N,k
′
+κ}∏

k=k
′

F̃(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
. (E.17)

In order to make the following derivation more transparent, let us restrict ourselves at first
to the case where N = 1, P = κ = 3. The sum over FBCs in Eq. (4.101) is unfolded back
into the form of Eq. (E.6). With the definition of S̃(0,N−iP )

[
s̃±, s̃i

]
in Eqs. (E.11,E.12) and

F̃(0,P+N)

[
s̃±, s̃i

]
in Eq. (E.17) the discrete TCF can then be calculated via

C̃ΓΩ(∆t) =
1

Z(β)

M−1∑

i
+
0 =0

M−1∑

i
+
1 =0

M−1∑

i
+
2 =0

M−1∑

i
+
3 =0

M−1∑

i
−
0 =0

M−1∑

i
−
1 =0

M−1∑

i
−
2 =0

M−1∑

i
−
3 =0

M−1∑

i=0

ZB(β)




4∏

k
′
=0

min{4,k′+3}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)


(

3∏

k=0

S̃(k,k+1)

(
s̃
i
±
k
, s̃

i
±
k+1

))
δ
i
+
0 ,i
−
0
,

(E.18)

where s̃
i
±
4
≡ s̃i. Note that the Kronecker delta takes account of the fact that the complex

time forward and backward paths have the same beginning point as the result of the trace in
Eq. (4.94). All quantities depending on the indices i+0 , i

−
0 and, thus, k, k

′ = 0 can be grouped
with the following result

C̃ΓΩ(∆t) =
1

Z(β)

M−1∑

i
+
1 =0

M−1∑

i
+
2 =0

M−1∑

i
+
3 =0

M−1∑

i
−
1 =0

M−1∑

i
−
2 =0

M−1∑

i
−
3 =0

M−1∑

i=0

ZB(β)




4∏

k
′
=1

min{4,k′+3}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)


(

3∏

k=1

S̃(k,k+1)

(
s̃
i
±
k
, s̃

i
±
k+1

))

×
M−1∑

i
+
0 =0

M−1∑

i
−
0 =0




min{4,3}∏

k=0

F̃(0,k)

(
s̃i0 , s̃i±k

)

 S̃(0,1)

(
s̃i0 , s̃i±1

)
δ
i
+
0 ,i
−
0
. (E.19)
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The last line of Eq. (E.19) defines the new quantity

r(s̃
i
±
1
, s̃

i
±
2
, s̃

i
±
3

; −2∆t) ≡
M−1∑

i
+
0 =0

M−1∑

i
−
0 =0




min{4,3}∏

k=0

F̃(0,k)

(
s̃i0 , s̃i±k

)

 S̃(0,1)

(
s̃i0 , s̃i±1

)
δ
i
+
0 ,i
−
0
, (E.20)

where −2 = (N − κ). Keeping the last two equations in mind, one can now focus on the case
N = 2. According to Eqs. (E.6,E.11,E.17) the discrete TCF is calculated via

C̃ΓΩ(2∆t) =
1

Z(β)

M−1∑

i
+
2 =0

M−1∑

i
+
3 =0

M−1∑

i
+
4 =0

M−1∑

i
−
2 =0

M−1∑

i
−
3 =0

M−1∑

i
−
4 =0

M−1∑

i=0

× ZB(β)




5∏

k
′
=2

min{5,k′+3}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)


(

4∏

k=2

S̃(k,k+1)

(
s̃
i
±
k
, s̃

i
±
k+1

))

×
M−1∑

i
+
1 =0

M−1∑

i
−
1 =0




min{5,4}∏

k=1

F̃(1,k)

(
s̃
i
±
1
, s̃

i
±
k

)

 S̃(1,2)

(
s̃
i
±
1
, s̃

i
±
2

)
· r(s̃

i
±
1
, s̃

i
±
2
, s̃

i
±
3

; −2∆t) ,

(E.21)

where all quantities depending on s̃
i
±
1
and k, k′ = 1 are grouped and the definition of

r(s̃
i
±
1
, s̃

i
±
2
, s̃

i
±
3

; −2∆t) is inserted. Equation (E.21) is identical to Eq. (E.19) if one would shift
the indices k, k′ by one and replace r(s̃

i
±
1
, s̃

i
±
2
, s̃

i
±
3

; ∆t) by δ
i
+
0 ,i
−
0
. It is straight forward to apply

the presented concept to arbitrary N > 0 and κ. The result is an iterative propagation scheme
consisting of two subsequent calculations for each propagation step. First, the quantity r has
to be propagated via

r(s̃
i
±
N
, . . . , s̃

i
±
N+κ−1

; (N − κ)∆t) ≡
M−1∑

i
+
N−1=0

M−1∑

i
−
N−1=0




min{κ+N,κ+N−1}∏

k=N−1

F̃(N−1,k)

(
s̃
i
±
N−1

, s̃
i
±
k

)



× S̃(N−1,N)

(
s̃
i
±
N−1

, s̃
i
±
N

)

× r(s̃
i
±
N−1

, . . . , s̃
i
±
N+κ−2

; (N − κ− 1)∆t) (E.22)
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with the initial condition
r(s̃

i
±
0
, . . . , s̃

i
±
κ−1

; −κ∆t) = δ
i
+
0 ,i
−
0
. (E.23)

The calculation of the discrete TCF requires the additional summation

C̃ΓΩ(N∆t) =
1

Z(β)

M−1∑

i
+
N=0

· · ·
M−1∑

i
+
N+κ−1=0

M−1∑

i
−
N=0

· · ·
M−1∑

i
−
N+κ−1=0

M−1∑

i=0

× ZB(β)




N+κ∏

k
′
=N

min{N+κ,k
′
+κ}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)


(
N+κ−1∏

k=N

S̃(k,k+1)

(
s̃
i
±
k
, s̃

i
±
k+1

))

× r(s̃
i
±
N
, . . . , s̃

i
±
N+κ−1

; (N − κ)∆t) . (E.24)

With the following substitutions, the iterative scheme can be expressed in terms of complex
time FBC segments s̃± with the shared end point s̃i.
First, the discrete complex time influence functional takes the form

ZB(β)
N+κ∏

k
′
=N

min{N+κ,k
′
+κ}∏

k=k
′

F̃(k
′
,k)

(
s̃
i
±
k
′
, s̃

i
±
k

)
k
′→k′+N−→ ZB(β)

κ∏

k
′
=0

κ∏

k=k
′

F̃(k
′
+N,k+N)

(
s̃±
k
′ , s̃
±
k

)
= F̃(N,N+κ)

[
s̃±, s̃i

]

(E.25)
with

F̃(k
′
+N,k+N)

(
s̃±
k
′ , s̃
±
k

)
= exp

{
−1

~

(
η++

k
′
+N,k+N

s̃+

k
′ s̃

+

k
+ η−−

k
′
+N,k+N

s̃−
k
′ s̃
−
k

+η−+

k
′
+N,k+N

s̃−
k
′ s̃

+

k
+ η+−

k
′
+N,k+N

s̃+

k
′ s̃
−
k

)}
. (E.26)

Second, the discrete complex time bare system part is written as

N+κ−1∏

k=N

S̃ ΓΩ
(k,k+1)

(
s̃
i
±
k
, s̃

i
±
k+1

)
k
′→k′+N−→

κ−1∏

k=0

S̃ ΓΩ
(k+N,k+N+1)

(
s̃±k , s̃

±
k+1

)
= S̃ ΓΩ

(N,N+κ)

[
s̃±, s̃i

]
, (E.27)
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where

S̃ ΓΩ
(k+N,k+N+1)

(
s̃±k , s̃

±
k+1

)
≡





〈
s̃−k
∣∣e−ĤS∆β/~∣∣s̃−k+1

〉〈
s̃+
k+1

∣∣e−ĤS∆β/~∣∣s̃+
k

〉
, 0 ≤ k +N ≤ κ− 1

〈
s̃−k
∣∣Γ̂eiĤS∆t/~∣∣s̃−k+1

〉〈
s̃+
k+1

∣∣e−iĤS∆t/~∣∣s̃+
k

〉
, k +N = κ

〈
s̃−k
∣∣eiĤS∆t/~∣∣s̃−k+1

〉〈
s̃+
k+1

∣∣e−iĤS∆t/~∣∣s̃+
k

〉
, κ+ 1 ≤ k +N ≤ κ+N − 2

〈
s̃−k
∣∣eiĤS∆t/~∣∣s̃i

〉〈
s̃i
∣∣Ω̂e−iĤS∆t/~∣∣s̃+

k

〉
, k +N = κ+N − 1 ,

(E.28)
Note that for any N > κ the quantity S̃ ΓΩ

(N,N+κ)

[
s̃±, s̃i

]
consists constantly only of real time

propagators, thus

S̃ ΓΩ
(N,N+κ)

[
s̃±, s̃i

]
= S̃ ΓΩ,re

(0,κ)

[
s̃±, s̃i

]
≡

κ−1∏

k=0

S̃ ΓΩ,re
(k,k+1)

(
s̃±k , s̃

±
k+1

)
(E.29)

with

S̃ ΓΩ,re
(k,k+1)

(
s̃±k , s̃

±
k+1

)
≡





〈
s̃−k
∣∣eiĤS∆t/~∣∣s̃−k+1

〉〈
s̃+
k+1

∣∣e−iĤS∆t/~∣∣s̃+
k

〉
, 0 ≤ k ≤ κ− 2

〈
s̃−k
∣∣eiĤS∆t/~∣∣s̃i

〉〈
s̃i
∣∣Ω̂e−iĤS∆t/~∣∣s̃+

k

〉
, k = κ− 1 .

(E.30)

Third, the quantity r(s̃
i
±
N
, . . . , s̃

i
±
N+κ−1

; (N − κ)∆t) is replaced by the multi-time TCF func-

tional R̃
[
s̃±; (N − κ)∆t

]
with s̃

i
±
N
→ s̃±0 , . . . , s̃i±N+κ−1

→ s̃±κ−1

Fourth, the quantity r(s̃
i
±
N−1

, . . . , s̃
i
±
N+κ−2

; (N − κ − 1)∆t) at the previous time step is

substituted by R̃
[
r̃±; (N − κ− 1)∆t

]
, where s̃

i
±
N−1
→ r̃±0 , . . . , s̃i±N+κ−2

→ r̃±κ−1. Note that
r̃±1 = s̃±0 , . . . , r̃

±
κ−1 = s̃±κ−2.

Fifth, the complex time lambda propagator is defined




min{κ+N,κ+N−1}∏

k=N−1

F̃(N−1,k)

(
s̃
i
±
N−1

, s̃
i
±
k

)

 S̃ ΓΩ

(N−1,N)

(
s̃
i
±
N−1

, s̃
i
±
N

)
k→k+N−1−→

S̃ ΓΩ
(N−1,N)

(
r̃±0 , r̃

±
1

)
(
κ−1∏

k=0

F̃(N−1,k+N−1)

(
r̃±0 , r̃

±
k

)
)
· F̃(N−1,N+κ−1)

(
r̃±0 , s̃

±
κ−1

)

≡ L(N−1,N+κ)

[
r̃±, s̃±

]
. (E.31)

106



E. Numerical treatment of the TCF

Note that due to the constraint s̃+
0 = s̃−0 = s̃0 the the multi-time TCF functional has the special

initial condition

R̃
[
s̃±;−κ∆t

]
=





1, s̃+
0 = s̃−0

0, s̃+
0 6= s̃−0 .

(E.32)

With the given substitutions, the iterative propagation of the discrete TCF can be formulated
as written down in Sec. E.1.

E.2. Virtual time-dependence of memory coefficients

The memory coefficients η±±
k
′
k
and η±∓

k
′
k
depend on the absolute value of k if k, k′ ≤ κ, since

the real and imaginary parts of the propagation changes during the first κ iteration steps.
Consequently the times τk in Eqs. B.16-B.20, thus the memory coefficients have to calculated
accordingly. For the κ + 1-st step and all following steps the imaginary part of the complex
time is fixed. It is shown in App.B.2 that coefficients like η±±

k
′
+N,k+N

and η±∓
k
′
+N,k+N

in Eq. (E.26)
depend only on ∆k = k − k′ if N > κ, thus, they do not change during the iteration. These
coefficients are called η±±,mid-fin

k
′
k

and η±∓,mid-fin

k
′
k

, respectively in the following. Accordingly the
discrete complex time influence functional for any N > κ reads

F̃(N,N+κ)

[
s̃±, s±

]
= F̃mid-fin

(0,κ)

[
s̃±, s±

]
≡

κ∏

k=0

κ∏

k=k
′

F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
, (E.33)

with

F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
= exp

{
−1

~

(
η++,mid-fin

k
′
k

s̃+

k
′ s̃

+

k
+ η−−,mid-fin

k
′
k

s̃−
k
′ s̃
−
k

+η−+,mid-fin

k
′
k

s̃−
k
′ s̃

+

k
+ η+−,mid-fin

k
′
k

s̃+

k
′ s̃
−
k

)}
. (E.34)

For the complex time lambda propagator in Eq. (E.31) the coefficients η±±
k
′
k

and η±∓
k
′
k

in the
point-to-point influence depend only on ∆k = k − k′ if N > κ + 1, hence, they are also
fixed within the ongoing propagation, see App.B.1. Consequently, the complex time lambda
propagator itself does not depend on the absolute propagation time. The memory coefficients
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for any N > κ+ 1 are labeled by η±±,mid

k
′
k

and η±∓,mid

k
′
k

and

L(N−1,N+κ)

[
r̃±, s̃±

]
= L mid

(0,κ)

[
r̃±, s̃±

]
≡ S̃ re

(0,1)

(
r̃±0 , r̃

±
1

) κ−1∏

k=0

F̃mid
(0,k)

(
r̃±0 , r̃

±
k

)
· F̃mid

(0,κ)

(
r̃±0 , s̃

±
κ−1

)
,

(E.35)
with

F̃mid

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)
= exp

{
−1

~

(
η++,mid

k
′
k

s̃+

k
′ s̃

+

k
+ η−−,mid

k
′
k

s̃−
k
′ s̃
−
k

+η−+,mid

k
′
k

s̃−
k
′ s̃

+

k
+ η+−,mid

k
′
k

s̃+

k
′ s̃
−
k

)}
. (E.36)

Note that since N > κ the complex time bare system part consists only of real time propagators
as it was stated in the previous section. For any N ≤ κ + 1 the complex time memory
coefficients have to be calculated via the general expressions given in App.B.2. Due to the
presented features of the complex time memory coefficients, all parts of the discrete PI apart
from R̃

[
s̃±; (N − κ)∆t

]
are fixed if N > κ+ 1.

E.3. Path filtering

As it was derived in the previous sections, the TCF can be propagated for arbitrary long times
by summing over a constant set of M2κ path segments. In this section it will be shown that
in analogy the RDM propagation it is not necessary to sum over all possible FBCs, thus, the
number of arithmetic operations can be significantly reduced.
According to Eq. (4.108) the absolute value of the TCF for any N > κ can be estimated via

the triangular inequality as

∣∣∣C̃ΓΩ(N∆t)
∣∣∣ ≤ 1

Z(β)

M−1∑

i=0

∑

s̃
±∈Pκ,M

∣∣∣F̃mid-fin
(0,κ)

[
s̃±, s̃i

]
S̃ ΓΩ,re

(0,κ)

[
s̃±, s̃i

]
R̃
[
s̃±; (N − κ)∆t

]∣∣∣(E.37)

≤ |C|
M−1∑

i=0

∑

s̃
±∈Pκ,M

∣∣∣∣∣∣




κ−1∏

k
′
=0

κ−1∏

k=k
′

F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)



κ−2∏

k=0

S̃ ΓΩ,re
(k,k+1)

(
s̃±k , s̃

±
k+1

)
∣∣∣∣∣∣
,(E.38)
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where

C ≡ max
s̃
±∈Pκ,M



R̃

[
s̃±; (N − κ)∆t

]



κ∏

k
′
=0

F̃mid-fin

(k
′
,κ)

(
s̃±
k
′ , s̃i

)

 S̃ ΓΩ,re

(κ−1,κ)

(
s̃±κ−1, s̃i

)


 (E.39)

Note that C is defined such that the time-dependent R̃
[
s̃±; (N − κ)∆t

]
and the shared end

points s̃i do not occur in the sum in Eq. (E.38), thus the summands are equal for any N and
any shared end point. The summand for particular s̃± is now defined as its complex time path
weight

Wκ−1

[
s̃±
]
≡

∣∣∣∣∣∣




κ−1∏

k
′
=0

κ−1∏

k=k
′

F̃mid-fin

(k
′
,k)

(
s̃±
k
′ , s̃
±
k

)



κ−2∏

k=0

S̃ ΓΩ,re
(k,k+1)

(
s̃±k , s̃

±
k+1

)
∣∣∣∣∣∣
. (E.40)

Recapitulating the arguments given in Sec. 4.1.6, the set in Eq. (4.108) can be substituted by
the filtered subset

Pθκ,M ≡
{
s̃± ∈ Pκ,M

∣∣ Wκ−1

[
s̃±
]
> θ
}

(E.41)

without changing the propagation of the TCF crucially for a given threshold θ, where the actual
value of θ serves as a convergence parameter. The subset Pκ,M

[
s̃±
]
appearing in Eq. (4.107) is

filtered accordingly

Pθκ,M
[
s̃±
]
≡
{
r̃± ∈ Pθκ,M

∣∣ r̃±k = s̃±k−1, k = 1, . . . , κ− 1
}

, s̃± ∈ Pθκ,M . (E.42)
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