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ABSTRACT 
This thesis is concerned with the development of interactive systems for smart environments. 

One of the characteristic of smart environments is the need to support different interaction para-

digms at runtime. On the one hand interaction is performed explicitly: the user performs an ac-

tion in order to interact with the system (e.g., pressing a button to adjust the light). On the other 

hand actions of the user are interpreted by the smart environment, even though they have not 

been performed primarily to interact with the system: implicit interactions (e.g., walking to the 

speaker’s desk to give a talk). A smart environment tries to infer those interactions to assist the 

user in her work (e.g., display slides at the projection canvas). Both interaction paradigms origi-

nate from different research fields and are currently treated independently although implicit and 

explicit interaction mutually influence each other and occur interleaved. 

To address this shortcoming, in this thesis a holistic approach to interaction development inte-

grating both interaction paradigms is proposed. For this purpose task models are utilized which 

have been proven successful in Human-Computer Interaction for user interface design (a special 

branch of explicit interaction). User tasks are specified and transformed in diverse model-based 

development steps in order to semi-automatically generate the user interface. An analogous 

approach based on task models for implicit interaction is proposed in this thesis. To base the 

development of implicit and explicit interaction on task models leads to better integration of 

both interaction paradigms and supports the alternation and transition from one paradigm to the 

other at runtime. 

Through the new field of application for task models, namely smart environments, additional 

requirements for task modeling languages have been revealed as tasks are tightly coupled to the 

technologies present in the smart environment and the contextual dependencies of tasks are of 

high relevance for implicit interaction (e.g., where is a certain task executable in the smart envi-

ronment?). Thus, a part of this thesis is the newly designed task modeling language, CTML, 

which support typical features of task modeling, such as hierarchical decomposition and tem-

poral operators, but also comprises new concepts like preconditions and effects based on loca-

tion, device and domain knowledge. In smart environments cooperative aspects of task perfor-

mance are of particular importance because tasks are usually performed by multiple users. 

Therefore concepts for synchronization of tasks of different users and teams are integrated in the 

language. 

Another research objectives tackled in this thesis was the development of an integrated devel-

opment approach based on task models for interaction development in smart environments. An 

iterative, incremental model has been selected since it supports user feedback and experience 

better than classical software engineering methods. In such an approach, models are not created 

in one sweep but iteratively being evaluated and perfected with each iteration. Model adaptation 

is therefore a common issue and needs to be supported. Different refinement relations for 

CTML models are part of the development methodology which determine whether a certain 

adaptation is valid with respect to the base model. The relations are categorized into structural 

and behavioral refinement. In case of the latter one can further distinguish between fully-
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automated refinement checks and interactive priorization of tasks by so called meta operators. In 

particular, behavioral refinement is a helpful device to verify adaptations with respect to their 

base model. Different refinement relations are employed depending on the current phase of de-

velopment: While models in early phases are compared with less stringent relations, during 

specification and design rather strict relations are advocated. The integration of these refinement 

relations into the development approach is another contribution towards the methodic develop-

ment of smart environments. 

With this thesis a practical as well as methodical contribution to the research field of smart envi-

ronments is accomplished. The developed concepts are utilized through tool support. 

 

Keywords: Task Modeling, Smart Environment, implicit and explicit Interaction, Refinement 
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ZUSAMMENFASSUNG 
Die vorliegende Arbeit behandelt die Entwicklung von interaktiven Systemen in intelligenten 

Umgebungen. Als Besonderheit dieser Umgebungen ist zu beachten, dass verschiedene Interak-

tionsparadigmen während der Benutzung zu unterstützen sind. Auf der einen Seite erfolgt die 

Interaktion explizit: der Nutzer führt Aktionen aus, um zu interagieren (z.B. Drücken eines 

Knopfes um die Helligkeit anzupassen). Auf der anderen Seite werden auch Aktionen des Nut-

zers durch die intelligente Umgebung interpretiert, die jedoch nicht primär zur Interaktion aus-

geführt wurden, sogenannte implizite Interaktionen (z.B. Vortreten zum Rednerpult, um einen 

Vortrag zu halten). Eine intelligente Umgebung versucht diese implizite Interaktion zu erken-

nen, um dem Nutzer zu assistieren (z.B. Projektion der Vortragsfolien). Diese beiden Paradig-

men der Interaktion stammen aus verschiedenen Forschungsbereichen und wurden bisher wei-

testgehend isoliert betrachtet, obwohl sie sich wechselseitig beeinflussen und gleichzeitig auf-

treten. 

Daher wird in dieser Arbeit ein ganzheitlicher Lösungsansatz bezüglich beider Interaktionsfor-

men vorgeschlagen. Dazu wird auf Aufgabenmodelle zurückgegriffen, die sich im Forschungs-

bereich der Mensch-Maschine Interaktion für die Oberflächenentwicklung (ein spezieller Zweig 

der expliziten Interaktion) bewährt haben. Mittels solcher Modelle werden die Aufgaben des 

Nutzers spezifiziert, um daraus durch verschiedene modellbasierte Entwicklungsverfahren eine 

Oberfläche zu erzeugen. Eine analoge Verfahrensweise basierend auf Aufgabenmodellen für die 

Entwicklung der impliziten Interaktion wird in dieser Arbeit vorgeschlagen. Implizite und ex-

plizite Interaktion auf Aufgabenmodellen beruhen zu lassen, resultiert in einer besseren Integra-

tion beider Paradigmen und der Unterstützung von Wechseln der Interaktionsform während des 

Betriebs der intelligenten Umgebung. 

Durch die Verwendung von Aufgabenmodellen für die implizite und explizite Interaktion in 

intelligenten Umgebungen ergeben sich neue Anforderungen an eine Aufgabenmodellierungs-

sprache, da die Aufgaben und deren Ausführbarkeit in einer intelligenten Umgebung stark an 

die Technologien innerhalb der Umgebung gebunden sind und die kontextabhängige Ausführ-

barkeit der Aufgaben für die implizite Interaktion von großer Bedeutung ist (z.B.: An welchem 

Ort innerhalb einer intelligenten Umgebung ist eine Aufgabe ausführbar?). Daher wurde im 

Rahmen dieser Arbeit eine neue Aufgabenmodellierungssprache, CTML, entwickelt, die sowohl 

klassische Konzepte der Aufgabenmodellierung, wie z.B. hierarchische Dekomposition und 

temporale Operatoren unterstützt, aber auch neue Konzepte wie Vorbedingungen und Effekte 

basierend auf Orts-, Geräte- und Domänenwissen unterstützt. Eine besondere Bedeutung im 

Umfeld der intelligenten Umgebungen fällt dem kooperativen Aspekt der Aufgabenausführung 

zu, da im Allgemeinen mehrere Nutzer gemeinsam an Aktivitäten beteiligt sind. Daher sind 

Konzepte zur Synchronisation von Aufgaben verschiedener Nutzer und von Teams  in der Spra-

che integriert.  

Ein weiteres Ziel der Arbeit bestand in der Herausarbeitung eines integrierten Entwicklungsan-

satzes basierend auf Aufgabenmodellen für die Interaktion in intelligenten Umgebungen. Ein 

iteratives, inkrementelles Modell wird vorgeschlagen, da es unter anderem Nutzerfeedback bes-
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ser als klassische Softwareentwicklungsmethoden unterstützt. Dabei werden Modelle „Schritt 

für Schritt“ entwickelt und gegenüber dem Nutzer evaluiert und gegebenenfalls adaptiert. Eine 

Herausforderung bei dieser Art von Vorgehen ist die Konsistenz des weiterentwickelten Mo-

dells bezüglich des Ausgangsmodells. Daher wurden in dieser Arbeit sogenannte Verfeine-

rungsrelationen für CTML Modelle entwickelt, die auf der formalen Syntax und Semantik von 

CTML basieren. Grundsätzlich wird zwischen struktureller Verfeinerung und Verhaltensverfei-

nerung unterschieden. Bei der Verhaltensverfeinerung ist zwischen vollautomatisierten Verfah-

ren und interaktiver Priorisierung von Aufgaben mittels Meta-Operatoren zu unterscheiden. 

Insbesondere die Verhaltensverfeinerung ist ein sehr hilfreiches Werkzeug, um Adaptionen auf 

ihre Korrektheit bezüglich des Ausgangsmodells zu überprüfen. Die entwickelten Relationen 

zur Beschränkung der Änderbarkeit von Modellen kommen jeweils in unterschiedlichen Ent-

wicklungsphasen zum Einsatz: Während weniger stringente Relationen zumeist in der Analyse 

verwendet werden, sind die Relationen während der Spezifikation und des Designs wesentlich 

strenger. Die Einbettung der Relationen in den modellbasierten Entwicklungsansatz stellt einen 

weiteren Beitrag dieser Arbeit zur methodischen Entwicklung intelligenter Umgebungen dar. 

Mit der Arbeit wird sowohl ein methodischer als praktischer Beitrag im Forschungsfeld der 

intelligenten Umgebungen geleistet. Für die entwickelten Konzepte wurde eine Werkzeugunter-

stützung bereitgestellt.  

 

Schlüsselwörter: Aufgabenmodellierung, intelligente Umgebung, implizite und explizite Inter-

aktion, Verfeinerung 
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Introduction  

1 

Chapter 1 
1 Introduction 

Interaction design is a complex task even for desktop systems. With the advent of miniaturiza-

tion and seamless integration of devices into everyday life technology-enhanced physical spac-

es, so called Smart Environments (SmE(s)), are becoming possible. A SmE is a physical space 

in which technology is seamlessly integrated in order to assist the user in performing tasks to 

reach its goal more conveniently than without supportive technology. SmEs are not limited to a 

particular domain and therefore for almost all kind of physical places in which tasks are per-

formed a SmE can be imagined in order to support the user. However, SmEs are limited to 

physical places and as such exclude some aspects which are relevant for ubiquitous and perva-

sive computing e.g., mobility, communication, and failures beyond the physical boundaries of 

the SmE.  

The interaction design for such environments comprises a fundamentally higher complexity in 

several dimensions. In order to cope with such a complexity new methods need to be developed. 

The research field of Human Computer Interaction (HCI) has developed techniques for interac-

tion design which are partially suitable for SmEs. However, they are not useful out of the box as 

the special constraints for SmEs are naturally not incorporated.  

1.1 Problem Statement 

HCI methods have become more and more mature in order to manage the complexity involved 

in developing interactive software systems. The methods developed range from entire develop-

ment methodologies, requirements engineering techniques to specific methods based on models 

with corresponding tool support. Especially in the field of model-based user interface develop-

ment (MB-UI) and Multiple User Interfaces (MUI) elaborate approaches exist [Luyten, 2004; 

Paternò, 1999; Seffah & Javahery, 2004; Vanderdonckt, 2008].  

As the interaction with the software system is shifting from being explicit, usually involving 

desktop systems, to be more and more implicit, as it is the case in SmEs, those methods fail to 

incorporate the increased complexity. Several causes contribute to this complexity: SmEs are 

technical enhanced, physical environments where tasks are usually performed in a collaborative 

manner using tools and artifacts. Therefore the potential task performance is strongly interre-

lated to the environment’s state and the group activity. In order to cope with such a complexity 

new methods need to be designed. 
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The research field of SmEs is dominated by technology driven approaches leaving out (to some 

extent) development methodologies, requirement elicitation and user needs. HCI methods can 

therefore offer different viewpoints on challenges in SmEs and additionally present solutions for 

these challenges. 

Interaction design for SmEs has been tackled by two distinct research communities: First, there 

are researchers investigating how to develop explicit user interfaces (UI(s)) for SmEs. MB-UI 

development is a particular branch of that community. Research questions posed by UI devel-

opment for SmEs are amongst others migratability, multiple modalities, suspendability, plastici-

ty, location-awareness, platform independency, and composibility [Blumendorf et al., 2007; 

Demeure & Calvary, 2003; Luyten et al., 2003]. MB-UI development is able to partially solve 

some of those issues even though this naturally depends on the choice of approach and models 

involved. Second, the research field of implicit interaction examines interaction design based on 

gestures, movement and other behaviors of users which are not performed with the intention of 

interaction [Schmidt et al., 2005]. The various approaches supporting implicit interaction are 

mainly technically driven and no conceptual modeling is performed during development. There-

fore, the following research hypothesis can be identified: 

1. Missing Integration of Explicit and Implicit Interaction. The separate development 

of interaction in SmE is inconvenient. As both interaction techniques occur interleaved 

a coherent approach needs to be developed in order to achieve a usable interaction. Bas-

ing the interaction development of both types on the same process model and artifacts 

ensures better transitions of interaction and better combination of both interaction tech-

niques at same time. 

As model-based development has been successfully applied to explicit interaction, an integrated 

methodology may also be beneficial for the integration of both interaction techniques. The rea-

sons for following a model-based approach are multifold: design is raised to a higher level of 

abstraction which enables conceptual modeling instead technology-driven design. Abstracting 

from concrete technologies allows for migrating a solution to another platform more easily. 

Design decisions are made at a conceptual level and thus better support forward and reverse 

engineering as well as cost, risk and time management. In order to employ a MB-UI develop-

ment approach for explicit interaction appropriate models are needed.  

Task analysis and modeling has been a vital research interest in HCI for decades. It has been 

successfully applied to numerous domains and application areas ranging from requirement elici-

tation to system operation. One particular application area of task modeling is MB-UI develop-

ment in which task modeling is the first artifact to be created [Forbrig et al., 2003]. Various task 

driven approaches exist tackling explicit interaction [Luyten, 2004; Paternò, 1999; Vander-

donckt, 2008]. However, when examining the current development methodologies for implicit 

and explicit interaction for SmEs and applying the existing task modeling techniques to SmEs 

diverse limitations exist: 

2. Lack of Expressiveness. Current task modeling techniques are not expressive enough 

in order to model tasks in SmEs adequately. Task models are often too abstract and miss 

important aspects of the domain of SmEs. In essence, the models do not incorporate the 

special constraints and concepts such as multiple users, location-awareness, and state 
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dependency. Moreover existing task modeling languages also lack the incorporation of 

interfaces to lower levels to continue design.  

3. Lack of Methodical Engineering. SmEs are technology driven prototypes and usually 

not engineered. Such an approach implies the loss of some important features: reusabili-

ty, consistency, traceability, cost and risk management [Kruchten, 2003; Sommerville, 

2006; Vanderdonckt, 2008]. 

In this thesis a model-based approach for the interaction development in SmEs is proposed. 

More precisely, the Collaborative Task Modeling Language (CTML) is introduced in order to 

tackle the three issues named above (1.,2. and 3.) to improve the development of implicit and 

explicit interaction in SmEs. We attempt to bridge the gap between HCI and the research area of 

SmEs by introducing a task-based development methodology. A high level modeling approach 

is proposed which is able to specify the tasks in SmEs adequately in order to drive the develop-

ment of explicit and implicit interaction. The task driven methodology introduced in this thesis 

makes use of refinement in order to guide the adaptations of CTML models which relies on a 

formal syntax and semantics. Having iteratively created a CTML model, transformations to 

artifacts used in explicit and implicit interaction can be derived (semi-) automatically. Interfaces 

to other artifacts are identified to continue design or derive a task model based on existing arti-

facts involved. 

1.2 Scope, Aims and Contribution 

1.2.1 Scope 

The thesis attempts to bridge two worlds: SmEs and HCI task modeling. The first research area 

usually treats development as technical challenges whereas the latter takes into account user 

needs and the implications of the interaction presented by a system. The interaction in SmEs is 

complex to develop as implicit and explicit interaction are mingled at runtime. Nevertheless, the 

development of the interaction is usually underemphasized. Applying HCI task modeling to 

SmEs can be one approach to make interaction development more engineering-like. A process 

model needs to be established in order to create a structured procedure for interaction develop-

ment.  

However, the thesis does not claim that task models are appropriate to solve all issue in SmEs. 

In essence, we argue that they are suitable artifacts which can be discussed and refined based on 

user needs. When a proper task model has been defined new artifacts are derived that are used to 

further drive design (e.g., the dialog model in MB-UI) or operate the (sub) system of the SmEs 

(e.g., Hidden Markov model (HMM) for intention recognition). 

The thesis is classified according to the methodological research framework given by Hevner et 

al. [2004]. The instantiated framework for the thesis is depicted in Figure 1-1. On the right hand 

side the environment the research is performed in is given which outlines the boundaries of 

research and defines the problem. On the right hand side the theories serving as foundation of 

the research in this thesis are listed. Those theories are applied in order to conduct the research 

in the center of the figure. In the remainder of the introduction Figure 1-1 serves as reference 
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point in order to precisely define research objectives, contributions and research methods ap-

plied in this thesis. 

 

Figure 1-1 The Instantiated Research Framework according to [Hevner et al., 2004] 

1.2.2 Research Objectives 

Based on the problem statement and the scope of the thesis we identified the following research 

objectives: 

Iterative Development Methodology. The primary objective of this thesis is an integrated de-

velopment methodology for the interaction in SmEs. Two core requirements can be identified: 

the incorporation of iterative design and the usage of tasks as building blocks for the methodol-

ogy. The reason for both is to support a user-centered design process [Gulliksen et al., 2005]. 

The development methodology based on tasks will serve as guidance during all stages of devel-

opment and will give advice in which phases of the project what kind of activities are carried 

out. Depending on the stage of development, analysis, requirements or design, task modeling is 

performed (at different levels of abstraction). Due to the stepwise evolution of modeling arti-

facts in an iterative development methodology different refinement relations are needed to an-

swer the question whether a certain adaptation of a model is still a valid implementation of its 

predecessor. In order to do so the modeling language to be developed implementing the metho-

dology needs to be formally founded. 

Enhancing Task Modeling. Task modeling for SmEs is to our knowledge an untackled re-

search area in HCI. In the research field of SmEs languages exist for specifying the potential 

behavior of actors within such an environment. However those languages are mainly used for 

modeling system operations and have not been designed for user-centered design. HCI task 

models solve this issue as they are understandable by non-computer scientist (e.g., stakeholders, 

users) which fosters the capability for user-centered design. Classical task modeling languages 

are however not expressive enough to model tasks for SmEs adequately. Therefore several ex-

tensions need to be introduced in order to incorporate multi-user scenarios, location awareness 

and state-dependent task modeling. 
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Formal Foundation of Task Modeling. A superior expressiveness of a modeling language 

usually results in loss of understandability and increased ambiguity. This also applies to task 

modeling even though this is particular unfortunate as these are primary aspects of task model-

ing. To address this shortcoming, validation and verification algorithms are employed which 

base upon a formal syntax and semantics of CTML. Moreover, the semantic foundation is able 

to rule out ambiguities which fosters model sharing and cross platform implementations. In 

order to do so a suitable semantic model needs to be selected which captures the envisioned 

behavior best. Based on the formal foundation, a set of refinement relations are defined support-

ing the task modeler during all stages of development. More precisely, a flexible approach to 

refinement is needed that allows for defining which parts of a specification needs to be retained 

(and which can be dismissed) in the subsequent development steps. 

Integration of Related Artifacts. Task modeling is not the only activity during interaction 

design. Requirement specifications may exist before task modeling is performed. In addition 

specifications may be derived based on task models. Therefore an integrated development me-

thodology should advice the interaction designer how to transit from one specification to anoth-

er. The task model can be either the transformation source or target. In order to integrate task 

modeling in software engineering practice interfaces to related artifacts need to be established. 

Therefore an elicitation approach needs to be developed which enables the designer to first de-

rive an analysis task model. During the different phases this task model is adapted and refined. 

Eventually the created model needs to be transformed into a more detailed description which 

has to be supported by the development methodology as well. 

Tool Support. To effectively make use of a modeling language suitable tool support needs to 

be provided. The functionality of such tools range from creation, manipulation, animation, vali-

dation and verification of models but also includes the support of the methodology defined in 

accordance with the modeling language. Moreover it is desirable to elicit early feedback through 

an integrated tool environment which presents the different functionalities of the tool in a ho-

mogenous manner.  

1.2.3 Contributions 

(1) The Collaborative Task Modeling Language (CTML). The modeling language pre-

sented in this thesis is characterized by its superior expressiveness with respect to its 

application domain. It extends CTT-like notations ([Paternò, 1999]) in several dimen-

sions in order to support task modeling for SmEs. It inherently supports multi-user sce-

narios by a role-based task modeling approach and explicitly allows for modeling multi-

user, device, location and state dependencies in a formal manner. A corresponding in-

terpreter has been developed. More precisely, the modeling language is capable of spe-

cifying the interrelation of tasks of different actors within the environment on a role 

based level which enhances the cooperational aspect of the task modeling approach 

published by Mori et al. significantly [2002]. Preliminary results with regard to model-

ing cooperation have been published in [Wurdel et al., 2008a; Wurdel et al., 2008e]. An 

integration of location dependencies in task modeling has been described in [Wurdel, 

2009] whereas the interplay of task modeling and device modeling has been proposed in 
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[Forbrig & Wurdel, 2010]. In [Wurdel et al., 2008b] the bond of domain modeling and 

task modeling has been emphasized. 

(2) The CTML Development Approach. The methodology in which CTML is embedded 

assumes a two-folded approach for task modeling. Either task modeling is performed in 

order to develop the explicit or the implicit interaction in a SmE. Both approaches natu-

rally consist of a series of iteratively performed activities which not only involve task 

modeling but also include the following: analysis and requirement specification docu-

ments such as use cases, scenarios or questionnaires need to be integrated in order to 

bridge the gap between software engineers and interaction designer. As task modeling is 

also performed in different phases of development the development methodology gives 

advice how task modeling is supposed to be treated in each stage. In detail, the metho-

dology defines the level of abstraction for performing task modeling and defines how 

transition from one development phase to another can be performed. In order to facili-

tate these transitions refinement relations have been defined to verify the validity of 

adaptations. However, simply creating a set of task models is insufficient. Eventually 

other artifacts need to be created. The development approach also covers the detailed 

design phase which employs other artifacts depending on the scope of development 

(explicit or implicit interaction). Preliminary results addressing the early stages of de-

velopment have been published in [Wurdel & Forbrig, 2009] whereas [Wurdel et al., 

2008c] and [Wurdel et al., 2008e] primary focus on the task modeling stages of devel-

opment. Interfaces to lower level design artifacts have been proposed in [Wurdel et al., 

2007]. 

(3) Formal Foundation and Refinement based on Meta Operators. In order to manage 

complexity when using CTML formal methods are employed. To do so the syntax and 

semantics have been defined formally. The abstract syntax is defined using set theory 

whereas the semantic domain of choice is LTSs. This approach results in an interleaving 

semantics which in turn enables different comparison semantics for CTML specifica-

tions. The existing comparison semantics (such completed trace semantics) are well 

suited for task modeling but miss the flexibility which is needed to effectively use re-

finement. Especially when transiting between different development phases such gener-

al comparison semantics hamper the development and adaptation of models. Therefore 

an approach is proposed which makes use of interactively assigned meta operators to 

tasks in order to define which tasks need to be retained or can be dismissed in the sub-

sequent model. Amongst others, we introduce the novel comparison semantics manda-

tory scenario equivalence and mandatory scenario inclusion. The defined refinement 

relations for CTML are used to drive the design of CTML models and therefore are the 

core instruments of the development methodology. The approach has been partially 

published in [Wurdel et al., 2008d]. 

(4) The CTML Editor, Validator and Verifier. To effectively make use of CTML and its 

development methodology a tool suite integrated in the Eclipse IDE (integrated devel-

opment environment) has been developed. First, there is the CTML editor which allows 

the task modeler to create and manipulate CTML specification graphically. Next, the 
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CTML validator can be used to interactively explore the created specification. Different 

visual modes have been developed to allow validation by animation. Moreover well-

formedness criteria are checked to ease the design of CTML specifications. The refine-

ment relations defined over CTML specifications are implemented by the CTML verifi-

er. This tool takes two models as input and transforms both into LTSs which are then 

compared according to the interactively selected comparison semantics. The tool suite 

for CTML is integrated in the tools developed in our research group. Therefore the de-

rivation of dialog models based on CTML models can be conveniently performed to 

further continue model-based UI (MB-UI) development. For implicit interaction hidden 

Markov models can automatically be created based on CTML specifications which are 

used to operate the intention recognition module of our experimental SmE (published in 

[Wurdel et al., 2007]). The tool suite has been described in [Wurdel et al., 2008e] and 

[Wurdel et al., 2009]. 

1.3 Organization of the Thesis 

The thesis is divided into two main parts. The first part reiterates through background informa-

tion and related work which is sub-divided into three separate chapters: 

In Chapter 2 the basic terms of this thesis are clarified and the implications of interaction in 

SmEs are identified. Moreover the need for a structured engineering approach is claimed. Sub-

sequently HCI and software engineering (SE) viewpoints are explained with respect to SmEs 

and task-driven development. Moreover in Chapter 3 also existing task modeling approaches 

and languages are additionally assessed with respect to the scope of this thesis. The last chapter 

of the first part (Chapter 4) examines preexisting semantic domains, their application, their 

individual assets and drawbacks. Based on these explanations the semantic domain of choice for 

CTML is selected. 

In the second part of the thesis the language and development approach of CTML are explained 

in detail. The requirements of an illustrating scenario are elicited on which the design of the 

language and its methodology are based on. Chapter 5 introduces the usage scenario within the 

domain of SmEs, a technology-enhanced meeting  room, and task models in order to illustrate 

the requirements for CTML. In Chapter 6 the language is explained in detail. The chapter starts 

with an informal graphical description of the modeling elements and their semantics. Subse-

quently the formal abstract syntax and semantics based on LTSs are given. Moreover the re-

finement relations necessary to drive the design of CTML models are defined and described. In 

order to ease the understanding a running example accompanies the definitions. The develop-

ment approach covering analysis, requirements and design is illustrated in Chapter 7. It is 

shown how a CTML model is best developed depending on the phase of development. Moreo-

ver it is shown which refinement relations are used during all stages of design in order to verify 

that defined requirements are truthfully transmitted to design and implemented accordingly.  

Chapter 8 summarizes the thesis and highlights the major contributions of the thesis. In addi-

tion future research avenues are presented. 
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Chapter 2 
2 Smart Environments 

2.1 Disambiguation 

Before going into details about the research field of SmEs various related terms are examined 

and defined to build a common ground to start from. This is particular of importance as the re-

search field of SmEs and similar research fields are rather young and do not provide a valid and 

sound basis. 

2.1.1 Ubiquitous Computing  

The term ubiquitous computing coined by Weiser describes the vision of a world where infor-

mation can be accessed everywhere and at any time not by having a mobile device but by the 

existence of accessible devices in our surroundings which we are eventually not even aware of 

[1991]. In contrast to a virtual environment ubiquitous computing augments the reality with a 

vast amount of devices being connected via wireless network making a PDA unnecessary. Cen-

tral to this vision is the omnipresence of small and cheap devices capable of delivering informa-

tion services to ease everyday tasks and making information available at any place and any time. 

In order to integrate those devices into the surroundings they need to be physically small and 

network attached to cooperate seamlessly. Even though Weiser stresses that wireless network-

ing is a major issue other challenges are posed by this paradigm (hard- and software compatibil-

ity, protocols, security, privacy) [1993]. Moreover with respect to HCI an innovative interaction 

paradigm is needed [Weiser, 1991]:  

“The most profound technologies are those that disappear. They weave themselves 

into the fabric of everyday life until they are indistinguishable from it.”  

In order to implement the so called invisible computer a new interaction paradigm needs to be 

developed from being explicit as it is the case in desktop environments to being more and more 

implicit. Implicit interaction is defined as an action which is not primarily performed to interact 

with a system but is used by the system as input or trigger [Schmidt, 2000]. In this vein gestures 

can become an interaction modality even though the user is not even aware of. Implicit interac-

tion modalities add an enormous complexity in terms of development effort and rationale for 

interactive systems. 

Originally not stated by Weiser but a very important point of a ubiquitous computing environ-

ment is context-awareness which is a prerequisite to implement implicit interaction. A system is 

called context-aware if its behavior is depending on continuously measured values characteriz-
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ing the user or her preferences. The most often used source of context is location since it is by 

far the easiest one to measure and exhibits a high level of semantic information [Schmidt et al., 

1998]. Dey defines context as [Dey & Abowd, 2000]: 

 “… any information that can be used to characterize the situation of an entity.” 

This definition shows the dilemma of a generally applicable definition of context. What consti-

tutes to context information depends on the domain as well as the environment the system is 

installed in. If the system is developed to help elder people in performing everyday tasks in their 

home location is definitive a relevant context information. In contrast in office set up not neces-

sarily location information are needed as the person might only move once in a while to get a 

coffee.  

The concept of ubiquitous computing has already been implemented in experimental setups 

(e.g., [Bauer et al., 2004; Cook et al., 2009]) and is still a research field. However those proto-

types show potential application fields and implications of a device augmented world. As devic-

es become more integrated and cheaper they will make their way into everyday life in a suffi-

cient manner to build reasonable ubiquitous computing environment. 

2.1.2 Pervasive Computing  

The vision of pervasive computing is also built upon the upcoming omnipresence of devices it 

has no substantial differences to ubiquitous computing. Throughout the remainder of the thesis 

ubiquitous computing is used as it is the older term [Ronzani, 2009]. 

2.1.3 Ambient Intelligence 

Ubiquitous computing and pervasive computing are paradigms addressing primarily the tech-

nical challenges implicated by the omnipresence of devices. Taking for granted that networking 

issues are mainly solved and the omnipresence of interconnected device exists in small scena-

rios the need for services/ applications using those devices arises.  

The research field of ambient intelligence (AmI) tackles this question. Originally defined as 

electronic environments being aware and responsive to users [Aarts et al., 2002], new defini-

tions emphasize the need for such a system to be “non-obtrusively integrated into everyday ob-

jects and environments” (ambient) and incorporate “specific forms of social interaction” (intel-

ligence) [Aarts & de Ruyter, 2009]. By social interaction the authors mean the following charac-

teristics of AmI applications:  

 Context-awareness. As explained earlier, context-awareness describes the ability of a 

system to adapt its behavior according to the context of use which can be all relevant 

data according to the domain and user. When running a system over time it needs to 

adapt itself according to the users’ habits and usage patterns in order to be supportive 

for the user.  

 Personalization. Usually information services of ambient applications comprise perso-

nalized data. In order to be truly supportive this data can be taken into account. Based 

upon observation and queried data of the user, personalization can be implemented. In 

this vein AmI applications are able to react individualized according to the users’ needs. 
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 Proactiveness. The most discussed characteristic of AmI applications is pro-activeness. 

It is understood as system actions performed without explicit interaction based upon ob-

servation. It is a fascinating idea to have a system being able to anticipate users’ next 

action and perform it on behalf of the user (or a supportive task). Numerous proactive 

applications have been developed in the last years. However field studies document that 

users are often not comfortable when the system is acting autonomously without expli-

citly invoking an action [Koskinen et al., 2006]. 

AmI needs to be unobtrusive and supportive. Whereas the first can be partly achieved by minia-

turization and integration; both challenges can only be sufficiently tackled by focusing on the 

human needs. Actually the human needs and tasks are key objectives of such systems as they 

are supposed to serve the user. Therefore other requirements addressing the user needs can be 

stated: 

 Control. As already briefly mentioned above users are not feeling comfortable when 

control is shifting from people to machine. Consequently developers need to bear in 

mind that AmI applications need to offer the opportunity to let the user control the sys-

tem at least to a certain degree.  

 Correctness. As long as the system delivers the correct services the user is fine but as 

soon as errors occur trust into the system ceases. Considering that proactive systems 

will always be incorrect in some cases mechanisms are needed to provide feedback to 

the users why the system performed a certain action. Additionally interfaces are needed 

to let users correct decisions made by the system. 

 Interfaces. One lesson learned from mobile computing is that rendered UIs for desktop 

systems cannot just be scaled down to meet the requirements of a PDA or cell phone. 

The UI must be adapted substantially to meet the different contexts and device capabili-

ties. Even though this raises the complexity of development it is still manageable. How-

ever for AmI applications the way how people will interact is not yet clear. Of course 

mobile devices will play an important role but other types of interfaces are interesting as 

well. In terms of explicit interaction tangible UIs are a candidate. They are physical ob-

jects belonging to the surroundings but used as control and representation of digital val-

ues which is totally new concept compared to display based UIs [Ullmer & Ishii, 2000]. 

There is no distinction between input and output device as tangible user interfaces com-

prise both. Hence they integrate seamlessly into the environment by being a part of 

them. An advantage of tangible UIs to ordinary GUIs is the bond of manipulated data 

and the interface itself. Therefore it is more intuitive to the user. An example of a tangi-

ble UI would be the control of a steerable projector with 3D objects whereas the rota-

tion of the objects leads to the accordant rotation of the projector. By moving the focus 

can be adjusted. 

 Automation. The reassignment of tasks from a human being to an automated system 

has been always discussed controversially. When this is performed explicitly the human 

is aware of the reassignment. In AmI application the reassignment may be performed si-

lently and as such may not be anticipated or approved by the user which can lead to un-
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satisfying experience. A thorough analysis of users’ behavior as well as users’ need for 

automation is needed to avoid this pitfall. Research conducted in this area has been 

conducted by Sheridan [2002]. 

2.1.4 Smart Environments 

According to Cook & Das a SmE (intelligent environment) is a physical place equipped with 

devices working to make the lives of the users more comfortable [2004]. As this is a generic 

definition they go into more detail and ground their definition upon the term smart. They state 

that such an environment should be able to acquire and apply knowledge autonomously about 

the users and the environment itself and to adapt to users’ needs in order to improve their expe-

rience. What constitutes to an improvement depends on the type of environment, the individuals 

as well as the interaction facilities of the environment.  

The concept of SmEs does not define on which level of abstraction “smartness” is implemented. 

Therefore a certain routing algorithm can constitute to a SmE as well as a certain sensor or inte-

raction modality. It is even not clear whether the term smart really refers to intelligence as used 

for human beings but to just a new level of automation, user experience and usability. Cook & 

Das already state that SmEs try to make the user experience more comfortable which is not nec-

essarily the case by the usage of artificial intelligence [2004].  

Kirste refines the terms smartness in this context by the capability of an environment to react to 

the user’s objectives and not to pure sensor data [2006]. To do so, according to Kirste, the envi-

ronment needs knowledge about the user’s point of view in the environment. This results in a 

conceptual framework with two source of information: sensor data and a prio knowledge used 

to interpret the sensor data resulting in appropriate solutions for the user. The definition of 

Kirste is therefore adopted in the remainder of the thesis. 

In comparison to the provided definitions above it is to say that ubiquitous computing and AmI 

are both concepts to create a SmE. Providing a room with numerous devices realizing a certain 

value for the user can be a SmE implemented through ubiquitary presence of devices. However, 

having a set of devices in an environment being able to connect to the mobile devices of users 

implementing a service can be considered as SmE as well. Generally speaking the term which 

suits best to SmEs is AmI. Developing an AmI application for a physical environment results in 

a SmE. The characteristics of AmI can be straightforwardly applied to SmEs if they are bound 

to a limited physical space. 

2.1.5 HCI Engineering 

HCI is a multi disciplinary field involving, besides computer science, among others, psycholo-

gy, organization studies, ergonomics, sociology, and engineering. However computer science is 

still the central discipline of HCI. The field HCI is working on can be characterized by the quote 

of Dix et al. [1997]: 

 “… HCI involves the design, implementation and evaluation of interactive systems 

in the context of the user’s task and work.”  

In order to design such a system sub processes addressing the software engineering life cycle 

need to be considered as well. Analysis and requirements engineering are important steps to-
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wards a valid design of an interactive system. The same applies for the implementation which 

involves coding as well, discussion, revision and high level design choices. The third part, ac-

cording to Dix et al., concerns the evaluation of an existing interactive system or of a prototype 

during design or implementation. The major topic of usability engineering and methods are 

belonging to this category. 

Even though those activities highly correspond to software engineering practices a qualitative 

difference exists: design, implementation and evaluation are performed bearing in mind the 

user’s task and natural work environment. This also includes studying the potential user(s) of 

the interactive system in accordance with their characteristics, capabilities and knowledge. 

Roughly speaking the idea of a task driven approach to create an interactive system relies on the 

hypothesis that the closer the interaction with the system is to the natural task performance the 

easier the user is willing to accept the developed system. On the one hand task analysis and 

modeling are central concepts to HCI as they help to incorporate the user’s tasks into the devel-

opment process; on the other hand HCI is much more than task analysis and modeling. Even 

though there is no unified theory of HCI there are commonly used techniques which help to 

improve the interaction varying from software development processes, requirements elicitation, 

design patterns, user involvement strategies to various evaluation techniques.  

As a software engineer one is interested in the potential application areas during the software 

development process. This is when engineering comes into play. Engineering describes the 

structured way of achieving a design or artifact with respect to a certain criteria like quality, 

maintainability, traceability. According to this definition engineering the interaction means to 

apply HCI techniques to develop the interaction of the software system in a structured way. The 

criteria with respect to HCI can be, among others, usability, maintainability or soft criteria like 

appearance, low learning curve. Hence the development can be eased and less error-prone due 

to the structured way of developing.  

Tool support can help in various ways to do so. In particular it helps to create, edit, manipulate, 

visualize, validate and verify certain artifacts. Moreover they can provide a basis for the imple-

mentation of a development process by making certain steps of the process supported by the 

tool. This becomes particularly important when artifacts become quite complex to understand 

and visualization techniques and verification algorithms are needed. In order to support an engi-

neering process in HCI tools serve as a vehicle to reduce complexity, disburden the developer 

and foster development approaches.  

The research field of MB-UI development serves as a good example of HCI engineering. UI 

design has been mostly treated as a creative process involving a UI designer creating the UI 

itself and a software engineer creating the functionality accessible via the UI. From HCI pers-

pective this approach tackles the objective of creating the UI insufficiently. The HCI community 

agrees that a separate design process of the UI and the application core can easily fail because of 

a misleading UI being not appropriate for the developed functionality as well as the missing 

opportunity to create prototypes covering the UI and application core. The MB-UI process is 

able to solve those issues by integrating the user tasks in early stages of development. Hence 

prototypes of the UI can be created easily in accordance with the application core. The MB-UI 

process can also be considered as engineering method since it allows tracing design decisions, 
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fosters maintenance, helps to improve usability, reduces complexity and allows for creation for 

UIs for multiple platforms. The various MB-UI tools (e.g., [Mori et al., 2002; Reichart et al., 

2008; UsiXML, 2010]) for the creation, visualization and interpretation of models involved in 

creation of UIs in a model-based way are also a good example for the facilitation of a process 

through a tool chain. 

2.2 Interacting with a Smart Environment 

Generally speaking there are two ways of interaction within a SmE: implicitly and explicitly. 

This distinction was first discovered by Schmidt [2000]. Whereas explicit interaction is the 

standard concept since the invention of text-based interfaces, implicit interaction is a new para-

digm developed in the research field of context-awareness in HCI. Although this distinction 

exists both paradigms are needed to implement a robust and usable system [Ju & Leifer, 2008]. 

Even current desktops systems involve explicit (e.g., using the mouse) and implicit interaction 

(e.g., starting the screensaver) even if it is rather simple. 

Please note that there also other means for classifying SmEs. In [Shirehjini, 2007] a design 

space for SmE is proposed. Among others initiative is design decision for a SmE which is of 

interest here. Others are goal vs. functions based, modality or device selection. However such 

criteria play a minor role for the issues tackles in this thesis.  

2.2.1 Explicit Interaction 

As stated above explicit interaction is the common way of interacting with a software system. 

The concept is very simple: the system performs an action triggered by an explicit command of 

the user. The system changes its state accordingly to the performed action and provides feed-

back to the user who may in turn invoke another command resulting in an action. 

According to Norman there are seven stages of actions how people do things and consequently 

interact with an interactive software system [2000]. Normans’ model is depicted in Figure 2-1. 

The stages can be further classified to goal (1.), execution (2.-4.) and evaluation phase (5.-7.).  

People start an action because they want to achieve a certain goal. According to Norman goals 

(“Dimming the light”) are rather abstract and as such need to be concretized evolving into inten-

tions (“Dimming the light by switch off lamp”). The steps 2.-4. create an action sequence im-

plementing the intention (“Walk to the switch”, “Press switch”). The next three steps are part of 

the evaluation phase. First, the new state of the world is perceived providing feedback to the 

prior executed actions. Second, the perceived state is interpreted according users’ expectations 

and last evaluated with respect to the goal to be achieved. Even though those steps seem to be 

very rigid they are only a template where concrete procedure may fit into.  

 

Figure 2-1 Norman’s Model of Explicit Interaction 
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Certain steps can be dismissed whereas others might be iteratively executed. By defining these 

three phases (goal, execution and evaluation) two problems in HCI are identified: the gulf of 

execution and the gulf of evaluation. The first refers to the gap of available functions of a sys-

tem and the available tasks from the user’s point of view. The more the functions correspond to 

the tasks the more effective the interaction is. The later means the gap of presentation of the 

state of the device and the expectations from users’ perspective. If the user perceives the presen-

tation of the device state according to her expectations the gap is small and consequently the 

interaction effective. Hence the two gulfs can be kept small by delivering an appropriate UI as 

well as through the ability of users which can be trained. Certainly both approaches can be 

combined. However building the better UI is in most cases the reasonable option. This rather 

simple model is intuitive, easy to use and highlights primary issues for the development of in-

teractive systems. Based upon that model Norman derives design aids to develop in a user-

centered way resulting in a more usable system [2000].  

After having investigated explicit interaction isolated it is now continued with the discussion of 

implicit interaction and development approaches implementing such an interaction technique. 

2.2.2 Implicit Interaction 

Due to its novelty implicit interaction has not been as thoroughly researched as explicit interac-

tion. According to Schmidt et al. implicit human computer interaction is understood as [2005]: 

…the interaction of a human with the environment and with artifacts which is 

aimed to accomplish a goal. Within this process the system acquires implicit input 

from the user and may present implicit output to the user… 

The predominant approach of considering implicit interaction only as a one-way approach 

which interprets actions of the users in order to assist is extended by Schmidt et al. because the 

reciprocity of input and output during interaction is considered. An implicit input is an action of 

the user which is not primarily performed in order to interact with the software system, SmE 

respectively, whereas an implicit output is a seamlessly integrated presentation of information to 

the user. The process of implicitly giving input to the software system can be conceptualized as 

layered model of intention recognition and strategy synthesis (e.g., turning on the light when a 

person enters the room, provisioning resources based on the predicted action). The seamless 

presentation of information is performed by embedding information presentation devices into 

the surroundings of the environment (e.g., LEDs, the cell phone, digital post-its). As embedded 

visualization of information is not in the scope of this thesis it will be left out from examination 

in the remainder. 

In the following paragraphs existing conceptual framework addressing the development of im-

plicit interaction are examined. 

Goal-based Interaction 

One particular design strategy in order to achieve implicit interaction is goal based interaction 

proposed by Heider and Kirste [2002]. In [Heider & Kirste, 2005] a layered model is suggested 

which employs formally defined goals. The model is based upon those goals to reduce complex-

ity. On the highest level of abstraction the users’ intention is analyzed which is directly mapped 
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to a goal. Certainly a goal may be achieved by different actions sequences. The derivation and 

selection of action sequences is performed on the next level of abstraction: strategy planning. 

The resulting sequences of actions can be triggered to support the users’ intention. The interface 

between both layers is the goal which is derived first and then achieved by a certain synthesized 

action sequence. 

The model has only been validated for a technology enhanced meeting room and is therefore 

designed for this domain even though it seems to be prosperous to apply goal-based interaction 

to other types of SmEs and to a general case of interaction.  

The Implicit Interaction Framework 

A conceptual framework for the development of implicit interaction has been proposed by Ju et 

al. [2008; Ju & Leifer, 2008]. 

In Figure 2-2 the design space of implicit interaction according to Ju et al. is given [2008]. On 

the horizontal axis the initiative is depicted. This dimension defines the degree of automation 

and proactiveness the software system exhibits which matches the classification of Sheridan 

who proposed eight levels of automation and their implications [2002]. On the vertical axis 

attentional demand of the user in order to interact with the system is shown. The more the sys-

tem is in the foreground the more attention is given by the user and is needed to use the system, 

and vice versa. The reason for defining such a design space is that the boundaries of implicit 

interaction are rather a continuum than a fixed set of properties. The first quadrant (Reactive, 

Foreground) is the design space where explicit interaction is used. The fourth quadrant (Proac-

tive, Background) denotes the ideal case of an implicit interaction even though the degree of 

attentional demand and initiative may differ. Quadrant two and three are border cases as qua-

drant two (Proactive, Foreground) demand attention of the user while being proactive whereas 

quadrant three (Reactive, Background) needs explicit input but introduces automation to a cer-

tain degree.  

The Implicit Interaction Framework classifies not only the design space for implicit interaction 

but also defines the boundaries of explicit and implicit interaction. Moreover due to its generali-

ty it is a domain independent model and can therefore be applied to any kind of SmE.  

 

Figure 2-2 Implicit Interaction Framework by Ju et al. [2008] 

However the generality of the approach is also a burden as only rather abstract guidance is given 

how to appropriately design implicit interaction. No artifacts and methods are proposed in order 

to develop interaction. Thus, the framework is useful for early stages of development in order to 
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assess the envisioned way of interaction defining the degree of automation and attentional de-

mand of the system under construction.  

Contrariwise the novelty of the approach is the consideration of a transition of explicit to impli-

cit interaction and an according continuous design space. 

In order to fully cope with the different types of interaction in SmE a novel development ap-

proach is needed which takes into account both paradigms resulting in an integrated develop-

ment methodology for the interaction in SmEs. 

2.2.3 Explicit & Implicit Interaction  

In [Kirste, 2006] a brief overview of existing prototypes of SmEs with respect to interaction is 

given. Kirste classifies the projects into three categories: implicit Interaction, explicit Interac-

tion, and, explicit interaction with individual appliances. However the combination of all cate-

gories is actually the usual case. Here it is not distinguished between the different types of ex-

plicit interaction in contrast to Kirste. 

Certainly simply applying the models from explicit interaction to implicit interaction is only 

with limited value. For example in Norman’s model the user creates and executes an action 

sequence by herself which achieves the goal. In implicit interaction those actions are interpreted 

in order to derive the current intention which is used to trigger actions supporting the user in this 

current situation. To address this situation an adapted version of an interaction models is identi-

fied which is shown in Figure 2-3. The flow of events is very similar to Norman’s original mod-

el but new steps are introduced comprising implicit interaction (A, B, and C). The new steps are 

not performed by the user but by the software system implementing the implicit interaction.  

 

Figure 2-3 An Adapted Model of Interaction to incorporate Implicit Interaction 

Only when the user executes an action implicit interaction is possible. What is considered as 

action to be interpreted depends naturally on the supported task and the level of automation to 

be envisioned [Ju & Leifer, 2008; Sheridan, 2002]. If such an action occurs it needs to be inter-

preted (A) in order to derive the current intention (B) of the user. Finally a mapping of the de-

rived intention to a certain sequence of actions of the software system is performed. After the 

execution of the supportive tasks Norman’s model of interaction is continued. However the 

perception, interpretation and evaluation of the result may need more work load as besides the 

executed action by the user also the supportive actions needs to be evaluated. The software de-

veloper of implicit interaction should bear that in mind. In certain cases the user may even be 

not able to perceive the current world state if the executed action sequence of the system per-
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forms invisible action from users’ perspective or the gap between the last perceived state and 

state after the execution is just too big (“Gulf of Execution” and “Gulf of Evaluation” according 

to [Norman, 2000]). 

Which technologies to be used in order to interpret actions, which actions to be interpreted as 

well as the same issues for the intention and supportive actions is not considered in this generic 

framework. To our knowledge a combined approach for the development of both interaction 

paradigms tackling the combination of explicit and implicit interaction has not been approached 

yet. 

In the PhD thesis of Giersich it is stated that the ultimate goal is a pure implicit interaction 

[2009]: 

“How can an ad-hoc smart environment optimally support a team of users in a 

meeting without explicit interaction?“ 

However we believe that such an approach is counterproductive as there is always a transition 

between implicit interaction and explicit interaction. In fact the use of implicit interaction al-

ways implicates explicit interaction in the long run as users learn how the system reacts under 

certain conditions and interactions. In order to exemplify this fact the example of an automatic 

transmission of cars is consulted.  

The idea of an automatic transmission is that the driver (user) of the car (system) does not need 

to care about which gear is appropriate at a certain speed. If the driver presses the gas pedal 

rather softly the car accelerates. However when pressing the gas pedal harder the transmission 

switches the gear in order to boost acceleration as the torsion is higher (as it is assumed that a 

high acceleration is needed). When passing a car the difference in speed of passing and passed 

car is crucial in order to reduce the distance needed to pass the car. Therefore a high accelera-

tion is needed. Drivers using a manual transmission therefore switch the gear before starting 

the passing process which is not possible with an automatic transmission. When using an auto-

matic transmission for the first time the passing process is performed by pressing the gas pedal 

hardly while passing the car. However switching the gear beforehand is much more desirable 

as it speeds up the passing process. Therefore some drivers of cars with an automatic transmis-

sion press the gas pedal hardly once before starting the passing process in order to force gear 

shifting to have a higher acceleration. Then they start the passing process. With respect to inte-

raction a manual transmission is purely explicit. The user states what is needed by explicit inte-

raction. Automatic transmission is partially implicit interaction as it is coded in the electronics 

of the system when gear shifting is performed. However this kind of interaction is not the best in 

all situations (e.g., passing a car). Therefore users derive a pattern how the system (e.g., the 

automatic transition) works and how it can be manipulated in order to suit their needs best. 

Pressing the gas pedal in order to make the transmission shift the gear (which has not been 

intended by the designer) is an explicit interaction.  

This simple example already shows that users being in touch with a software system with impli-

cit interaction tend to derive patterns about how the system works. Having formed a model 

about the system, the system is used with respect to that model. As the model is usually not 

complete implicit interaction may still occur but some former implicit interactions may become 
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explicit. Therefore a combined approach is not only desired but mandatory in order to represent 

interaction SmEs adequately. 

2.3 Smart Environments Prototypes 

After having investigated the general interaction techniques applicable for SmEs more general 

examination about currently existing prototypes and their development are conducted.  

2.3.1 Existing Prototypes 

Industry and academia has produced numerous prototypes of SmEs. Naturally they differ in the 

field the research is conducted in which leads the development of the prototype. The most 

prominent projects accompanied by short abstracts are listed below:  

 Adaptive Home. The aim of the project was the creation of a house which offers no 

additional UIs while being equipped with modern technology. The house is able to pre-

dict the behavior of its user by employing Artificial Neural Networks. Therefore the se-

quences of action to be executed are not hard wired but learned by the system. The 

software system ACHE (Adaptive Control of Home Environments) is used in order to 

adjust the light and ventilation of the environment. With respect to interaction only im-

plicit interaction is used [Mozer, 1998; Mozer, 2004]. 

 Aware Home. Based on the findings of the Classroom 2000 project by Abowd a tech-

nology enhanced living environment was set up in order to design a living environment 

extensively making use of computing devices and services [1999]. The primary goal of 

the project was the assessment of potential supportive technologies in a home environ-

ment for elderly people and families. In order to do so different applications have been 

developed which can be found in [Kientz et al., 2008]. With respect to technology loca-

lization tracking, image processing and machine learning techniques are used as build-

ing blocks to enable the development of the supportive software systems [Kientz et al., 

2008]. No statements are made about the interaction techniques used in the Aware 

Home. Based on the given information implicit interaction is assumed as sensing tech-

nology is employed. To which degree a combination of implicit and explicit interaction 

is used is not stated as well as development approaches for interaction in general are not 

tackled by the project.  

 EasyLiving. Mircosofts initiative for the development of SmEs employs fixed rules in 

order to provide more comfortable experience. More precisely the predefined sequences 

of actions are triggered by conditions which need to hold in order to execute a certain 

sequence. With respect to interaction a combined approach of explicit and implicit inte-

raction is envisioned even though explicit interaction is still an open issue [Brumitt et 

al., 2000]. 

 MavHome. The application domain of this project is a technology enhanced home en-

vironment. In order to achieve this, a learning and prediction approach is followed [Das 

& Cook, 2005]. Based on predefined profiles representing common sets of sensor data 

and context information the future’s context of the inhabitants of the environment are 
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predicted. Moreover optimization of user goals can be achieved (energy consumption, 

manual interaction). With respect to interaction the authors’ goal is to optimize the de-

gree of manual (explicit) interaction. Therefore MavHome uses explicit as well as im-

plicit interaction even though one of the major goals is implicit interaction. How inte-

raction is developed is not stated.  

 Interactive Room. The Interactive Workspaces project at the University of Stanford set 

up the Interactive Room (in short iRoom) as experimental infrastructure equipped with 

multiple stationary display which are able to communicate with mobile devices by 

means of a software system, so called iCrafter, in order to exchange information which 

can be used to control the displays, use an installed printing service in the environment 

or using a PDA as input device and the multiple displays of the environment as output 

devices [Ponnekanti et al., 2002]. According to [Johanson et al., 2002] iCrafter not only 

bridges the gap between different physical devices and their individual operating system 

but also generates UIs based on the available services in the surroundings. Therefore 

explicit interaction is the interaction type of choice in the iRoom. 

 Embassi. The joint research project Embassi investigates new paradigms for the inte-

raction with the technical infrastructure of the everyday life such as infotainment and 

home entertainment. In order to do so goal-based interaction is used (see Section 2.2.1) 

which employs speech, gestures and haptics. Those implicit interactions communicate 

goals to the system which in turn are achieved by means of assistance. Even though 

Embassi focuses on implicit interaction it is considered as important that explicit inte-

raction still occurs. To which degree and how different interaction types are mingled is 

not part of the research in Embassi. Beside interaction also other research questions are 

tackled: dynamic composition of services, distribution of components forming an ad 

hoc ensemble which are not relevant for the thesis here [Kirste et al., 2001]. 

 Intelligent Room. MIT’s initiative to design intelligent spaces is the Intelligent Room 

project. In order to tackle common issues, such as heterogeneity, concurrency, distribu-

tion, etc., in SmEs a middleware, so called Metaglue, is proposed [Coen et al., 1999]. 

During research several software systems and intelligent rooms basing on Metaglue 

have been developed which mainly focus on meeting scenarios. With respect to interac-

tion explicit and implicit interaction components have been developed and evaluated 

but are developed isolated. For explicit interaction speech recognition and computer vi-

sion are used [Brooks, 1997]. 

 Smart Office. Another prototype focusing on work environments is the Smart Office 

project. It uses a location tracking system in order to derive the users’ intention which is 

used to display potential useful information on a display. Contrary also explicit interac-

tion via speech is used to control the Smart Office [Le Gal et al., 2001]. 

The survey is to no extent comprehensive but gives an overview of existing projects and chal-

lenges in the domain of SmEs. Numerous other prototypes exist: The UMASS Intelligent Home 

Project [Lesser et al., 1999], iDorm [Sharples et al., 1999], Intelligent Classroom [Franklin & 

Hammond, 2001],  OxyGen, Gaia [Christopher et al., 2001], and Aura [Garlan et al., 2002]. 
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2.3.2 Current Challenges of Smart Environments 

The challenges in SmEs with respect to feasibility are diverse. However explorative prototypes 

as shown before have produced rich showcases which exemplify the technical challenges in 

SmEs. Besides that, other challenges exist. Especially in the field of human factors proactive 

assistance is argued controversial. Therefore in this section still existing and recently discovered 

issues are examined. It is started with technical challenges which are investigated rather briefly. 

Subsequently, challenges with respect to the user are investigated more thoroughly which are 

important for the design of SmEs and interaction in particular. Finally it is shown that there are 

also research challenges with respect to method engineering. 

Technical Challenges 

An early survey about the encountered challenges while developing a SmE has been published 

by Coen et al. [1999]. In the paper seven properties of SmEs are stated and also tackled by the 

software system Metaglue. However those properties are partially not fundamental but provide 

the basis in order to introduce Metaglue. In [Kumar, 2009] numerous challenges for ubiquitous 

computing in general are investigated in a very low level manner resulting in a comprehensive 

survey of technical issues. Another more fundamental survey on challenges for ubiquitous com-

puting has been published by Edward & Grinter which focuses on home environments [2001]. 

Based upon the named publications above a set of technical challenges has been distilled and 

are presented here briefly. 

 Distribution. SmE are inherently distributed systems and therefore research questions 

related to this issue needs to be tackled. However distribution is a common challenge in 

various domains of Computer Science and has been researched thoroughly. With re-

spect to quality criteria of the distributed components SmEs may have particular re-

quirements (e.g., response time, reliability). 

 Heterogeneity and Interoperability. Numerous components constitute a SmE. The 

devices are of different types (such as sensors, display, etc.) but are also created by dif-

ferent vendors. Therefore standardization and knowledge about the components of the 

SmE are crucial in order to enable interoperability on various level of abstraction (net-

work layer, application layer). 

 Administration. Ideally the components of a SmE administer themselves. To a certain 

degree autonomous configuration is feasible. However when it comes to hardware prob-

lem maintenance by people is necessary. For work environments this is not a problem 

but in home settings administration can be a crucial factor.   

 Dynamic Changes. During operation of a SmE components may occur which consti-

tute the SmE as long as they are within the physical boundaries of the SmE. Therefore 

SmEs are constantly changing with respect to the components they are consisting of. 

Moreover such an environment cannot be “switched off” or “restarted” in order to plug 

in a new device. 

 Inference in Situation of Ambiguity. Due to the use of sensors and inference on the 

produced sensor data a certain degree of ambiguity is usually part of a SmE. The taken 
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decisions by the systems are naturally error-prone. Therefore the implications of infe-

rence should be bear in mind when implementing a SmE. It may be reasonable to use 

inference carefully. Moreover it should be analyzed to which degree the envisioned user 

is willing to accept non-determinism and potential wrong inferred intention of the user. 

 Consistency of Multimodal Adaptive UIs. The general ability of a UI to adapt itself to 

the context of use while preserving usability is referred as plasticity [Sottet et al., 2006]. 

Even though the idea of plasticity exists and MB-UI development is one approach to 

tackle it, it has not been reached yet. In SmEs the context of use is even more important 

than in typical scenarios of MB-UI as devices may appear and disappear. Moreover the 

modality of explicit interaction needs also to be taken into account. Besides GUIs, the 

user may interact via speech, touch, tangible UIs ([Ullmer & Ishii, 2000]) or any kind of 

combination. Combining plasticity and multi-modality with the characteristics of SmEs 

with respect to device heterogeneity consistency can hardly be assured. 

Even though those bullets are vital research areas most of them do not tangent interaction in 

SmEs in particular (except for the last three). Human factors are much more important with 

respect to interaction and therefore are covered in the subsequent sub section. 

Human Factors 

As SmEs are physical spaces enriched with technology the impact of use on people is much 

higher than with ordinary desktop systems because they become part of the everyday life. 

Therefore the human factors of such applications are crucial to make them even usable and de-

sirable for people. The vision of an autonomous working system sometimes scares people in-

stead of seeing the potential benefits. Based upon the surveys and analytical insights given in 

[Hermann et al., 2009; Langheinrich et al., 2005] a set of essential factors concerning users are 

distilled: 

 Social Implications. Currently computing systems in our surroundings can be easily 

switched off. However in the vision of Ubiquitous Computing the devices are even not 

visible anymore. With the devices the opportunities to switch them off disappear as 

well. Designers need to bear in mind that people may not want to live in a SmE each 

and every day. Moreover it might also be the case that a sub set of devices constituting 

the SmE is wanted to be switched off.  Besides technology dependability, long term is-

sues can also be disappearing of borders between human and machine, physical and 

cognitive involution, unnatural behavior, etc. 

 Privacy. Several surveys ([Hong & Landay, 2004]) have shown that privacy manage-

ment is the cornerstone of a SmE if personalized data is being processed during opera-

tion. Even today privacy is becoming difficult to maintain with applications sharing 

personalized information. In SmEs due to their network capabilities and distribution an 

implicit handling of privacy is not adequate. Explicit concepts showing which data is 

being processed by which software system is needed in order to make people share their 

personalized data. 

 Control. The reassignment of tasks from user to computing system exists since the en-

tering of computers into work environments. Tasks that have been accomplished by the 
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human are automated in order to ease the work (e.g., calculator). With respect to SmEs 

some new challenges are introduced. Task allocation can be dynamic meaning that de-

pending on the current state of the SmE a task may be automated whereas under differ-

ent circumstances (e.g., a certain device is not present) this is not possible. Such a dy-

namic allocation may also make users feel to be at the mercy of the computer system. 

Dedicated control mechanism can help to avoid this issue. Moreover the propagation of 

the current state of the system also helps to make users feel more comfortable as task al-

location is traceable [Molich & Nielsen, 1990]. 

 Decision Making by the System. A related issue to the last one is the autarkic decision 

making of a computing system which may lead to an uncomfortable user experience. 

Transparency and traceability of decisions are necessary in order to provide the user 

with means to understand how and why the system decided in this way. 

Development Processes 

In their current state SmEs are research prototypes or as Kidd et al. state with respect to the 

Aware Home “Living Laboratories” [1999]. Prototypes are created incrementally from scratch 

based on the current needs and research focus. However in order to make SmEs enter everyday 

life method engineering is needed to provide a basis to develop SmEs well structured. More 

precisely as interaction is much more complex in SmEs analysis and requirements engineering 

addressing the interaction (UI requirements) are crucial to cope with the challenges elaborated 

above. The same applies for functional requirements. Especially the areas of integration of hete-

rogeneous systems and devices, middleware, network infrastructure and others need to be ex-

amined beforehand. With respect to interaction a user-centered design approach seems to be 

suitable. The examination of different design processes and the selection of an appropriate one 

are given in Section 3.2. 

2.3.3 The Human in the Loop 

In the last sections existing prototypes of SmEs have been investigated with respect to technical 

challenges and human factors. These issues are very important in order to provide suitable 

means for interaction. What kind of interaction technique is useful in SmEs has been shown in 

Section 2.2. The given explanations lead to the conclusion that the crucial issues are user re-

lated. In order to develop suitable interaction techniques and a usable system the user has to be 

kept in the loop. This applies not only for the operation but also for the development of SmEs. 

One way to achieve user involvement during development is user-centered design (UCD), hu-

man centered software engineering (HCSE) and agile methods. During operation explicit inte-

raction can be used to integrate the user into decision making and to guide the system what kind 

of proactive assistance and implicit interaction is suitable in a certain situation. Explicit interac-

tion needs to be dosed well. On the one hand, an overload of explicit interaction corrupts the 

disadvantages of SmEs as the user cannot focus on the current task but needs to interact. On the 

other hand too less explicit interaction may disregard the users’ needs in this situation as impli-

cit interaction always assumes the intention. Therefore a balanced interaction concept with re-

spect to the user needs to be developed which can even shift during runtime as less explicit inte-

raction is needed after long term use (or vice versa). 
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2.3.4 Perspectives on Smart Environments 

This far it has been shown which prominent prototypes of SmEs exist and what kinds of chal-

lenges are involved during development. It has been stressed that human factors are extremely 

important to consider when developing supportive systems as the trust in such a system may 

cease as erroneous behavior occurs. Based upon the conducted survey in Section 2.3.1 two gen-

eral perspectives on SmEs can be identified: 

Smart Environments as Assistive Agent 

The basic principle of this kind of approach is to use the metaphor of an autonomously acting 

agent which tries to assist the user while acting in a SmE. Woolridges defines an agent as 

[2002]: 

“An agent is a computer system that is situated in some environment, and that is 

capable of autonomous action in this environment in order to meet its delegated 

objectives.” 

For SmEs it is rather unclear whether to consider the entire SmE as an agent or such an envi-

ronment as a multi agent system. Nevertheless, certain properties need to be present to classify a 

SmE as agent based system at all. According to [Russell & Norvig, 2003] an agent needs to 

perceive the environment through sensors and is able to perform actions on the environment 

through actuators. Applying this concept to SmEs the complete appliance of devices and com-

puting resources serves as actuators and the user actions are interpreted by the agent as percep-

tion upon which it reacts. Agent-based systems have been characterized by numerous properties 

such as reactivity, social ability, rationality, learnability, etc. The actual property which is of 

most interest for SmEs is proactiveness. To which degree is an agent or agent-based system (in 

this case the SmE) able to react upon the actions of user and execute meaningful goal-directed 

behavior? Taking the perspective of a SmE as agent-based system this question is the actual 

research question to be answered. Such a perspective inherently incorporates the idea of implicit 

interaction. 

Smart Environments as Complex Interactive System 

From users’ perspective a SmE is an appliance of numerous devices which have to be used in 

order to achieve a certain goal. The interaction with those devices constituting the SmE is com-

plex as they are spatially distributed and have their individual capabilities and limitations with 

respect to in- and output, computing power, network access, etc. Such a user-centered perspec-

tive is mainly taken by approaches from HCI which claim that user focus deserves the highest 

interest. In this perspective a SmE is actually a more complex interactive system compared to 

desktop systems, MUI and context-aware applications (see Section 3.1) because of the special 

constraints a SmE has (e.g., spatial distribution, distributed interaction, proactiveness, etc.). In 

this vein autonomy is not a mandatory property as the SmEs purpose is user satisfaction. This 

does not need to be achieved by an intelligent, autonomic agent but also by predefined sequence 

of actions or hard-wired behavior of the system. This perspective does not make any claims 

with respect how the SmE is to be implemented (in contrast to the assistive agent) but empha-
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sizes user satisfaction. Usability, natural task accomplishment, suitable interaction with respect 

to context of use and user characteristics are in line with this term. 

Currently existing software engineering processes which will be examined in Section 3.2 inte-

grate better with this perspective as the actual development process of the interactive systems is 

similar even though more complex. Moreover, explicit interaction as it is a commonly tackled 

field in software engineering is better supported by this perspective as implicit interaction. 
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Chapter 3 
3 HCI Aspects 

Having defined the terms and concepts involved in SmEs and the according interaction tech-

niques it is now continued with an in-depth research of relevant HCI aspects in order to enhance 

the development of SmEs. First, it is shown that HCI is able to tackle the development of UIs 

for classic desktop application and MUIs. Then, it is exemplified why context-awareness adds 

additional complexity with respect to interaction development which is even exceeded by SmEs. 

In the subsequent section different development processes are introduced which are relevant 

with respect to interaction development. Eventually MB-UI development is introduced in order 

to tackle explicit interaction for different types of applications. Furthermore it is exemplified 

why a suitable task modeling language is needed to provide means for MB-UI development for 

SmEs. 

3.1 Dimensions of Complexity of Applications 

The development of interactive applications is becoming more and more complex for several 

reasons. First UIs need to be more appealing in terms of functionality and usability as users 

employ systems more consciously nowadays. This applies for all types of applications even 

though this issue can be addressed for single platform applications, compared to the subsequent 

ones, easier. However the diversity of platforms in use for the very same interactive system 

raises the need for different UIs for the diverse capabilities and limitations of each platform still 

providing a consistent look and feel. This issue is mainly addressed by MUIs [Seffah & Java-

hery, 2004]. Certainly the development efforts for MUIs increase with the set of platforms. In 

order to develop an appropriate UI for a certain platform the context of use needs to be investi-

gated [Gulliksen et al., 2005]. 

Delivering the UI for different platforms is by far not sufficient as devices are mobile these days 

and rapid changes of context may occur. Therefore adaptation at runtime is consequently the 

next step and comprises new challenges. Context-awareness has been a research area since the 

1990s (an overview of the roots can be found in [Dey & Abowd, 2000]) and investigates adapta-

tion mechanisms for software systems with respect to continuously changing context of use 

[Schilit et al., 1994].  

It has been constantly discussed what constitutes context, how it is formalized best and how an 

application should make use of it. The range of context used in system design varies a lot. Ex-

emplary the authors in [You et al., 2009] use power consumption of sensor nodes as context for 

routing whereas in [Oliver & Flores-Mangas, 2006] the physiological state of the user is consi-
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dered as context of use. Those examples already indicate that there is not yet a common agreed 

set of features to be considered as context for a particular domain. From our point of view that is 

one of the reasons why it is still cumbersome to implement a context-aware application as me-

thodical knowledge of engineering as well as implementation frameworks for context-aware 

applications are still not comprehensive enough.  

Beyond that, there is also the research field of implicit interaction in which interaction is taking 

place even the user is not aware of [Schmidt, 2000]. Implicit interaction is rooted in context-

aware computing. Intelligent assistance [Boy & Gruber, 1990], SmE [Cook & Das, 2004] and 

ambient intelligence [Aarts et al., 2002] are currently vital research areas in which implicit inte-

raction is under investigation. To implement implicit interaction the context of use and the do-

main the user is confronted with are enormously important as actions may have a totally differ-

ent semantics under a slightly different context or domain. Usually implicit interaction is ac-

companied, at least by a certain degree of, explicit interaction to synchronize the concurrently 

acting user and the executing system.  

 

Figure 3-1 Complexity Chart for Application Types 

The interaction paradigm used for SmEs differ vastly. Especially approaches in the HCI focus 

on explicit interaction in which UIs are generated dynamically. In [Blumendorf et al., 2008] the 

authors propose an approach based on mobile devices whose UIs adapt according to the availa-

ble services in the surroundings. Clerckx et al. follow a similar approach [2006]. Other related 

approaches can be found in [Duarte & Carri, 2006; Sottet et al., 2008]. In the research commu-

nity of SmEs, implicit interaction is the prevalent paradigm to reduce explicit interaction to a 

minimum. Goal-based interaction which has been investigated before is a representative of such 

an approach.  

A classification of the prior named types of applications is illustrated by Figure 3-1. The chart 

shows the relation of the importance of context and the complexity of development for each 

type of application. The color denotes the amount of explicit interaction. The brighter the color 

the less interaction is necessary to use the application in an ideal case. This implies that even 
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single platform applications and MUIs already support implicit interaction to a certain degree. 

This is actually the case as background processes may be started and assumptions about the 

users’ habits are encoded in the system [Ju & Leifer, 2008]. The increasing complexity in de-

velopment from single platform application to MUIs is due to the diverse platforms. The relev-

ance of context increases because an application developed for MUIs is used in different con-

texts; one for each platform in the simplest case. The shift from MUIs to context-awareness is 

explained by the use of any kind of sensor to adapt the system accordingly. This applies for both 

axes as the sensors contribute to the context as well as to the complexity in development. Mov-

ing to SmEs context becomes even more influencing as explicit interaction is minimized result-

ing in implicit interaction based upon context. Certainly incorporating more context information 

and using them to provide proactive assistance adds a vast amount of complexity in develop-

ment. For both, context-awareness and SmEs, adaptability plays also a major role for the com-

plexity in development as systems of those kinds should adapt to users’ needs accordingly.  

In SmEs an additional fact comes into play. The interaction may be performed in spatially dis-

tributed way. Certain information might be provided by the user explicitly using personal or 

stationary devices, other information may be sensed and the output of the SmE can be visua-

lized on device in the surroundings. The potential implications of such distribution for the user 

need to be investigated with respect to the usability and feasibility of the system for the envi-

sioned users.  

In Figure 3-1 only three dimensions (context of use, complexity in development and explicit 

interaction (by the color)) are depicted. Yet this chart can be easily extended to other dimen-

sions: 

 Attentional Demand. When interacting explicitly the users’ attention is focused on the 

system. If systems disappear into the background and so do their interaction the atten-

tional demand of the user is no longer bound to the system but to the actual goal [Ju & 

Leifer, 2008] which is one of the major objectives of context-aware systems and SmEs. 

Attentional demand can therefore be seen as an indicator for the quality of a context-

aware system, SmE respectively. 

 Modality. The usage of multiple modalities (gestures, voice, pointing) may result in an 

increased relevance of context and definitively adds new complexity in terms of devel-

opment. Semantic unification of the multimodal application is of enormous interest to 

ensure a seamless integration of the different modalities [Oviatt, 1999]. Please note that 

some modalities are only available in context-aware computing and SmEs as sensors 

may be needed. 

 Initiative. Who takes the initiative is highly related to the interaction paradigm of a sys-

tem [Ju & Leifer, 2008]. If implicit interaction is prevalent the system may be more 

proactive then in explicit interaction. Proactiveness is a cornerstone to implement SmEs 

but should be used with care as users are frustrated easily by erroneous proactive beha-

vior of systems. 

 Automation. Initiative and attentional demand can be combined to scales of automa-

tion. In [Sheridan, 2002] the author investigates eight scales of automation. The scales 
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start with no automation offered by the system and gradually allocates tasks to the sys-

tem until the whole process is automated.  

Again, those dimensions named above are only related to interaction. In fact, from system de-

velopment viewpoint dimensions like system integration, network topology and others may be 

added as well. 

Concluding, it is stated that the development of SmEs exceeds the development of all other 

types of applications named here. This applies for several types of dimensions but in particular 

for the interaction. Moreover the interaction techniques employed for SmEs comprise all others 

(see Figure 3-1) and shifts to implicit interaction even though explicit interaction is still used. 

The more implicit interaction is desired the more important the context of use becomes. 

3.2 Software Engineering in HCI 

One of the current issues of the development of SmEs is the lack of suitable and reliable process 

models for development (see Section 1.1 and Section 2.3.2). In order to improve the develop-

ment a survey of relevant software engineering practices is given here. Moreover further inves-

tigations are presented with respect to interaction development and software engineering which 

serve as basis for the development methodology presented in this thesis in Chapter 7. 

3.2.1 Classical Software Engineering Processes 

A software engineering process embeds the low level activities, such as coding, testing, etc, 

involved in creating a software system into a higher context. In order to structure software de-

velopment the various software development processes introduce phases where certain activities 

are performed. Those process models also define the sequence of low and high level activities as 

well as potential iteration cycles within a phase.  

Before introducing process models relevant to HCI a brief overview of existing software engi-

neering processes will be given: 

 Waterfall model. In principle the model, first introduced by Royce [1987], consists of 

sequences of phases whereas the subsequent phase can only be started after the comple-

tion of the previous one. In detail the phases are requirements analysis, software design, 

implementation and testing, integration and operation. Each phase creates an output 

which is needed as input for the subsequent phase (e.g., requirements document as out-

put of requirements analysis phase and input for design). During each phase problems 

may be discovered which lead to revision of documents defined previously. Thus itera-

tion cycles are incorporated. However, more flexible approaches are needed incorporat-

ing early feedback and incremental delivery. 

 Iterative, incremental models. As an extension to the waterfall model iterative, incre-

mental models have emerged incorporating the delivery of prototypes and intermediate 

result to the customer even as productive system [Sommerville, 2006]. An increment is 

understood as a self-contained, deployable, tested piece of software. This kind of me-

thod allows for feedback of the stakeholder or user which can be incorporated in the 

next increment. The phases are mainly the same as in the waterfall model, but for each 
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increment a whole iteration cycle s performed. This approach is much more flexible 

since it allows for packaging of requirements for each increment. Representatives of in-

cremental models are the spiral model [Boehm, 1988] and the Rational Unified Process 

(RUP) [Larman, 2004] which is depicted in Figure 3-2. 

 

Figure 3-2 The Rational Unified Process [Kruchten, 2003] 

 Agile methods. In recent years the need for more flexible approaches emerged in order 

to successfully complete rather smaller projects. Those methods are also incremental 

processes but with small iteration cycles to incorporate feedback faster. Agile methods 

try to reduce the overhead of plan-based development by concentrating on the pro-

gramming of the actual system. The crucial advantage of agile methods is the incorpora-

tion of potential adaptations of requirements during the project life cycle. Even though 

there are different agile methods (Scrum [Schwaber & Beedle, 2001], XP [Beck, 2000], 

etc.) they all share common principles: customer involvement, incremental deployment, 

focus on people, made for change, refactoring and simplicity [Sommerville, 2006]. As 

those methods are made for smaller teams and projects they fail for long term projects 

and bigger teams.  

3.2.2 Limitations according to HCI 

As those process models are general software development processes they do not focus their 

activities on usability or the end user. Though, there are certain criteria making a process more 

or less suitable to incorporate usability and user-centeredness [Ferre et al., 2004]. Due to the 

fact that the level of usability of the envisioned software system cannot be predicted in advance 

continuous usability evaluation is needed to revise certain design decisions. This can only be 

achieved by employing an iterative approach resulting in an artifact at the end of each iteration 

which can be evaluated according to qualitative and quantitative criteria [Dix et al., 1997; 

Hackos & Redish, 1998]. However, an iterative approach only enables a user-centered process 

but does not assure a system to be usable. Besides this crucial requirement of a user-centered 

process, two others exist: user involvement and user understanding. Whereas the first means 

that the end user of the system should participate within all stages of development, at least to a 

certain degree, the latter stands for the analysis of the current user tasks and her context as well 

as the envisioned way of performing tasks while interacting with the software system. For both 

criteria HCI techniques exist covering all steps of development from requirement analysis to 

testing.  
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According to the three characteristics named above various HCI design processes have been 

proposed either as autarkic processes or as enhancement to existing software engineering 

processes examined above. In the next Section representatives of such processes are examined.   

3.2.3 Human-Centered Software Engineering 

According to Seffah et al. HCSE tries to bridge the gap of software engineering techniques and 

HCI [2005]. More precisely the integration of usability methods and software engineering is 

addressed. HCSE can be achieved by various techniques on different levels of abstraction. It can 

be implemented by guidelines spanning the entire software engineering lifecycle as well as by 

low level activities like early prototyping. The key issue to be addressed is how software sys-

tems can be developed fitting the user’s needs. Usability engineering offers a lot of techniques 

being usable to improve exactly that issue but has rarely been adopted in most software engi-

neering methods, and vice versa. Even if usability methods are considered in software engineer-

ing they are seldom used in every phase but the usability is assessed before deployment. Besides 

classical usability methods (such as expert evaluation, cognitive walkthrough, etc.) also certain 

methods from software engineering can be employed to provide the basis for a usable system. 

The International Organization for Standardization (ISO) has addressed this issue by the stan-

dard 13407 “Human-centred design processes for interactive systems” [ISO, 1999]. It is stated 

that certain principles constitute the creation of a usable system: user involvement, an appropri-

ate allocation of functions to human and machine, iterative development, multidisciplinary. 

Moreover, to establish such a development process, time needs to be dedicated to assess inter-

mediate results and prototypes with the user. Other activities have to be performed to meet the 

requirements of a human-centered design process: analysis of the context of use of the software 

system under construction and assessment of the quality of the intermediate solutions with re-

gard to the requirements and usability.  

One principle that has been used successfully is user involvement. During the process of creat-

ing a software system the end users should be continuously integrated into the development 

progress. Certainly, the appropriate artifacts need to be presented which can be assessed by the 

users. Invaluable feedback should be integrated in the subsequent development steps. To do so, 

only an iterative development process is suitable as already stated above. User involvement is 

an interactive method which presents prototypes (vertical, horizontal, paper, etc.) to the user 

which are evaluated with regard to usability criteria (appropriateness, functionality, etc.). 

3.2.4 User-Centered Design  

In the same vein user-centered design (UCD) advocates an iterative approach to system design 

to enable feedback during the entire project lifecycle [Gulliksen & Goransson, 2001]. In con-

trast to HCSE, UCD is rather understood as a set of design guidelines or principles enabling to 

design a usable system. Naturally, such guidelines have an impact on the process model they are 

applied to, and therefore has to be adapted accordingly. Therefore HCSE can be understood as 

one way to perform UCD. Besides demanding an iterative process model, UCD can be applied 

to any development approach by supporting guidelines congruent to HCSE and further ones 

[Gulliksen et al., 2005]. 



HCI Aspects 

35 

One of the major principles of UCD is the thorough analysis of current work situation of the 

user. This involves examining the domain of interest, the task the user is executing, the user 

itself and the surrounding of the user. Different techniques have been developed to support such 

an analysis. The domain can be analyzed with object-oriented analysis and design using objects 

and relations between those objects (or their generalization: classes) [Booch et al., 2007].  

Often the user is a rather abstract notion in development. Personas can help to make the later 

user more visible to the developer. The envisioned users are analyzed and a representative is 

modeled as persona [Cooper, 2004]. Yet there is no common agreed on technique to analyze 

and specify the environment the user is acting in.  

In terms of analyzing the task world of the user task analysis has been applied successfully over 

decades. Moreover task analysis does not try to study tasks isolated but also considers the work-

ing artifacts, the surroundings and users of the system [Hackos & Redish, 1998]. Advocates of 

UCD claim that a system suits the user better if the task world of the user has been analyzed and 

based on that a system is developed. Therefore, different methodologies exist proposing to use a 

task-driven approach to system development. The most relevant ones are examined in the sub-

sequent section. 

3.3 Task-Driven Development Methodologies 

Interaction design has been tackled of diverse research communities employing different tech-

niques. Task-based approaches have been successful due to the incorporation of the task world 

of the user. By doing so the gap between the normal way tasks are executed and the way tasks 

are to be executed using the envisioned software system under construction can be kept close. 

This is important as users are able to map their normal way of task execution to the new compu-

terized way. Figure 3-3 shows the basic idea of task-based processes to interaction development. 

The ordinary way tasks are performed are depicted on the left hand side. The user applies the 

knowledge about the tasks and the domain in order to get the work done and achieve the goal. 

After having deployed the new software system the tasks and the domain are still existent (even 

though adapted) but being encapsulated by the system. Now the user interacts with the system 

in order to work in her domain. Therefore an interaction based on the task world of the user 

leads to a more consistent and appropriate interaction. 

 

Figure 3-3 The Idea of Task-based Processes 
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Task-driven approaches can be classified into two categories: task modeling as documentation 

of requirements and task modeling as specification mechanism. In the first category task model-

ing is used as knowledge transmission tool for software designer and user/customer in order to 

present intermediate solutions to the user/customer. In accordance with the principles of HCSE 

and UCD this approach is highly beneficial as task models can be already considered as first 

prototypes. Thus iterative development is facilitated. Moreover those created models can, after 

several iteration cycles, serve as requirement documents in order to start design. 

3.3.1 Analysis, Requirements Engineering & Design Techniques  

Collaborative Interactive Applications Methodology (CIAM) is a representative of this kind of 

approach [Molina et al., 2008]. It is conceived to design groupware UIs based on a set of graph-

ical notations (among task models). It makes use of modeling approaches from HCI, software 

engineering and computer supported cooperative work (CSCW). CIAM relies on several stages 

of modeling (Sociogram Development, Inter-Action Modeling, Responsibilities Modeling, 

Work-in group Tasks Modeling and Interaction Modeling). As the names already indicate the 

social and organizational structure as well as the group tasks are modeled in the first stages. In 

the subsequent phases the focus shifts from group to role perspective. First, roles and their re-

sponsibilities are specified. Next, group tasks are gradually refined by role-based tasks defining 

collaboration and cooperation. Last for each identified (groupware) task an interaction model is 

created which use Concur Task Tree (CTT) as notation. CIAM is an elegant high level model-

ing approach which focuses on the dependencies involved when developing groupware applica-

tion. Unfortunately the authors do not make any statements whether principles of UCD are sup-

ported within the development methodology. Moreover, tool support for diverse proposed mod-

els does not exist as well as no execution semantics of the high level models is defined. Thus, 

created models can only serve as requirement specification documents with limited value be-

cause they have to be reimplemented using an executable language to construct the envisioned 

system [Selic, 2003].  

In the same vein as the approach mentioned before Penichet et al. investigate how the develop-

ment of groupware applications can be improved by thoroughly performing analysis, require-

ments engineering and eventually design [2009]. The approach primarily focuses on analysis 

and requirement gathering for UIs for groupware systems and therefore offers a dedicated meta-

model in order to adequately represent the analysis and requirements models. In order to do so, 

the special constraints of groupware applications are taken into account resulting in novel mod-

els and diagrams emphasizing the interaction involved in groupware. In order to perform struc-

tural analysis of the system under construction class diagrams ([UML, 2010]) and a novel type 

of diagram, the organizational structure diagram, is introduced. An example taken from [Peni-

chet et al., 2009] is depicted in Figure 3-4.  

According to the TOUCHE process, which is the development methodology defined by Peni-

chet, an organizational structure diagram specifies the organizational units relevant with respect 

to the groupware system to be developed. The entities involved are decomposed into groups, 

roles, users and system components (e.g., in Figure 3-4 the whole system is decomposed into 

internal and external groups and system agent responsible for notifying, etc.). The decomposi-

tion in this kind of diagram is continued until a user or a system agent has been reached. 
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Figure 3-4 Organizational Structure Diagram from [Penichet et al., 2009] 

During analysis not only decomposition of organizations are modeled but also other relation-

ships can be defined. More precisely, the play relationship which connects an actor, agent or 

group and a role in order to define that the entity is fulfilling this role (e.g., Chair_author and 

Chair_writer). Next, the hierarchy relationship exists defining a dependency between certain 

entities (e.g., Authors and Reviewers). However the name and semantics of this type of relation-

ship is rather unclear. Having analyzed the organizational unit within the domain in order to 

elicit the UI requirements for the groupware application a more fine-grained model is needed 

specifying not only structural properties but taking also into account behavior. Different models 

are proposed to enable and capture the behavioral analysis of groupware systems. First, Cooper-

ative Concur Task Trees (CCTT) are used to model user and system interaction by means of 

temporal ordering of tasks of different actors and system (CCTT is explained in detail in Section 

3.4.3). Second, so called Co-interaction diagrams are used in order to model interactions of us-

ers among each others. For each envisioned usage scenario a Co-interaction diagram is mod-

eled. It sets into relation previously defined actors and agents of the system by means of tasks. 

Basically it is defined which entities of the organizational structure diagram cooperate by means 

of tasks described in the CCTT models. 

TOUCHE which is also described in [Penichet et al., 2008; Penichet et al., 2010] offers analysis 

models and a process for groupware systems. It furthermore focuses on the requirements elicita-

tion before development has been started. The models are suitable and rich for analysis but fail 

when used for design as they are not executable and therefore cannot be interactively explored. 

With respect to SmEs several relevant entities are missing (e.g., modeling of location, devices).  

3.3.2 Task-Based Specification Methodologies 

This kind of approaches employs task models as specification mechanism which are interpreted 

by a software system to create the interactive system. Usually an interpreter is employed to ei-

ther derive a lower level model or the specification is interpreted at runtime to tailor the UI dy-

namically [Vanderdonckt, 2008]. New challenges are thereby introduced (machine independent 

semantics, machine readable format, deadlocks of distributed execution, etc.). Basically the 

approaches have the objective of building UIs in a model-based manner.  
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In the same vein as the Model-Driven Architecture (MDA) [MDA, 2010] tackles the question 

whether the development of the application core can be eased (in terms of time, budget, main-

tenance, etc.) by the usage of declarative models, refinement of models and transformations, 

MB-UI development is concerned with the development of UIs. The idea of a model-driven (or 

model-based) approach is to reduce complexity by having a model for each viewpoint on the 

system on an arbitrary level of abstraction and transformations relating those models. Models 

are adapted and transformed until an appropriate level of abstraction is reached which serves as 

executable model. In the MDA a set of models has been established being the de facto standard: 

computation independent model, platform independent model, platform specific model. As the 

names already suggest those model are used on different levels of abstraction. During each 

transformation additional aspects are taken into account (e.g., platform). Such an evolution can 

also be noticed for MB-UI development. 

In particular MB-UI development is a major research area in HCI focusing on engineering the 

interaction for different types of applications by techniques adopted from MDA. Various devel-

opment methodologies for interactive systems based on tasks exist: TERESA [Paternò et al., 

2008], UsiXML [Limbourg et al., 2005], UC-TM [Sinnig, 2009], MASP [Feuerstack & Blu-

mendorf, 2007] and Dygimes [Luyten, 2004]. Naturally, they differ in level of abstraction, used 

notation, focus and procedure. However over the years consent about the general rationale of 

MB-UI process has emerged [Paternò et al., 2008; Vanderdonckt, 2008]. 

Figure 3-5 shows the rationale of the general MB-UI process. It mainly consists of four steps. 

Starting with task and domain analysis a conceptual model of the task world of the user is re-

trieved. In HCI, it is commonly agreed upon that task modeling is a good starting point for MB-

UI design [Forbrig et al., 2003]. Software enables the user to achieve a goal by the execution of 

tasks. Those tasks need to be presented in a UI which shows the relation of a UI and a corres-

ponding task model. Task-based approaches argue that the closer the UI corresponds to the nat-

ural way a goal is achieved the better the user perceives the UI. 

After that the tasks are specified with regard to the envisioned software system under construc-

tion, an abstract UI (AUI) description is created. In the next phase AUI components may be 

replaced by concrete ones, so called concrete UI (CUI). For MUIs an abstract UI is used to de-

rive a concrete UI for each platform. So, AUIs are platform independent whereas CUIs are not. 

In the last step the final UI is generated into a specific technology. Design adaptations might be 

needed to fine-tune the final UI (beautification) [Vanderdonckt, 2008]. 

 

Figure 3-5 Basic Model-based UI Process 
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MB-UI design is not a straightforward process which is indicated by the smaller arrows from 

right to left in Figure 3-5. It is an iterative design process driven by evaluation and feedback. 

This can be achieved by prototyping on each level of abstraction within the development life-

cycle. In order to support an iterative process model adaptations need to be inherently supported 

by the involved artifacts, the tool support and the process model itself. 

With respect to the AUI a standard notation has not been yet identified. Dialog modeling is one 

technique to derive the first abstract canonical prototype. Tasks are grouped into dialogs and 

transitions of dialogs are defined by means of task execution [Reichart et al., 2004]. A related 

approach has been published by Traetteberg in which data flow of dialogs is emphasized [2008]. 

In UsiXML the AUI consists of different containers on various levels of abstractions which 

eventually consist of abstract controls. A tree of containers is created whose leafs are controls. 

Tasks are assigned to containers and the enabled task set is used to drive the flow of the UIs 

[Montero & López-Jaquero, 2008]. This approach has been originally proposed Luyten [2004]. 

The CUI is typically expressed by a UI markup language such as UsiXML(USer Interface eX-

tensible Markup Language), UIML (User interface markup language), XUL (XML User Inter-

face Language), etc. [Vanderdonckt et al., 2004]. Concrete UI elements are mapped to AUI 

elements (e.g., a selection control is replaced by a combo box). Depending on the envisioned 

modality the mapping can be of different complexity. For GUIs the mapping process is quite 

straightforward whereas for voice interfaces the mapping is much more complicated. 

TERESA in its current version supports the previously depicted process with special regards to 

multimodal interaction on the abstraction level of abstract and concrete UIs [Paternò et al., 

2008].  

In the same vein UsiXML approaches MB-UI development but also takes into account the con-

text of use considered as the platform, devices and users of the system [Limbourg et al., 2005]. 

Both methodologies support multi-path development meaning that the software designer may 

start on any level of abstraction which is very practical especially in early stages of develop-

ment. In [Limbourg et al., 2005] those paths are further concretized by explicit path steps: reifi-

cation, abstraction and translation. Reification defines the transformation of a model to lower 

level model in MB-UI chain in Figure 3-5. Abstraction is the complementary transformation. 

Translation defines the process of translating a model for a certain context of use (e.g., desktop 

environment) to another one (e.g., mobile setting). 

However, recently the task concepts and their tool support has been enhanced by FlowiXML 

[Garcia et al., 2008]. In this work task modeling is studied in context of workflow modeling. 

More precisely extensions to task modeling have been introduced to combine high level 

workflow modeling and task modeling for workflow items as necessary. Workflows are mod-

eled by means of adapted Petri-nets. Task modeling comes into play by further defining transi-

tions using extended CTT models as described before. The rationale of this approach is based 

on the assumption that task models highlight the user’ point of view on the system much better 

than a process model [García et al., 2008b]. Unfortunately there are no statements how such a 

combined modeling approach of workflows and task models suits with UsiXML. Still this ap-
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proach overcomes the limits of CTT task modeling to incorporate modeling of distributed ac-

tions of different users. In FlowiXML workflows are used to specify the casual dependencies of 

tasks of different users, in FlowiXML called workers, from different organizational units. This 

is definitely an enhancement of CTT and CCTT in terms of expressiveness. Moreover such an 

approach bridges the gap of two worlds: business process modeling and task modeling which 

have been mostly considered separately. Beside the modeling facilities FlowiXML also offers 

modeling elicitation methods and tools. Task identification criteria are introduced in [García et 

al., 2008a] and an appropriate tool is shipped with FlowiXML. A precise classification of tasks 

becomes indispensable especially if tasks are considered in the context of workflow modeling as 

there are also processes and workflows involved. A distinction of tasks, processes and 

workflows is necessary to keep the level of abstraction consistent on each layer while modeling. 

Another elicitation tool offered by FlowiXML uses text-based scenarios to elicit modeling enti-

ties in the text. 

As FlowiXML employs Petri-nets for workflow modeling and CTT as task modeling language 

semantics can be defined. However, to our knowledge such an interpreter (e.g., a workflow 

management system or task model interpreter) is not included in FlowiXML. This is actually 

unfortunate as animation has been proven as an excellent validation tool. Moreover, an interpre-

ter may also be used at runtime to govern the information and control flow. Without an interpre-

ter transformations are necessary to derive executable models. Without interpreter or transfor-

mation models are limited to be requirements artifacts or documentations. 

In his PhD thesis Sinnig proposed a development process for interactive applications bridging 

the gap of software engineering and UI development [2009]. It is based on use cases and task 

models which are in each domain the prevalent requirement specification mechanism. More 

precisely he states that use cases specifying the functional requirements and task model specify-

ing the UI requirement should be developed in accordance. This approach does not advocate 

MB-UI design itself but the development approach can be used to enhance MB-UI design. 

The design of UIs has been considered as an interactive process involving design iterations and 

discussion. As a result of such a process a design solution, a UI, is created. However there are 

scenarios where a UI cannot be created at design time but needs to be tailored at runtime. Luy-

ten proposed an approach based on task models to derive a UI for versatile devices in his PhD 

thesis [2004]. This approach analyzes the task model and calculates the enabled task sets 

([Paternò, 1999]) in order to group tasks in dialogs appropriately. More precisely tasks of an 

enabled task set are grouped into one dialog. To derive an abstract UI UIML fragments are at-

tached to tasks. UIML is a device independent interface description language based on XML 

[Constantinos, 2000]. In essence, in Dygimes only task models with UIML fragments are speci-

fied. At runtime those extended task models are interpreted and a UI is generated dynamically. 

Moreover Dygimes supports context-sensitive task models to incorporate different contexts of 

use at runtime but does not incorporate means for multi modalities. 

The MASP (Multi-Access Service Platform) has been developed by several PhD students at the 

DAI-Labor in Berlin [Blumendorf, 2009; Feuerstack, 2009]. The aim of this project is to em-

ploy UI models, like the task model, abstract UI model, etc., to automatically generate UIs for 

SmEs. Moreover explicit layout modeling is performed to create more appealing UIs [Feuers-
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tack et al., 2008]. The approach relies on the basic model-based process but the final UI is not 

created at design time but is generated at runtime [Feuerstack, 2009]. Depending on the current 

context of use at runtime an appropriate UI is derived based on the model defined at design 

time. Therefore a context-sensitve UI can be created. 

3.4 Existing Approaches to Task Modeling 

Almost each prior investigated methodology introduces its customized version of a task model. 

Even though nowadays a set of features can be found in almost each task modeling language 

those concepts are often extended. In this section it is clarified why task analysis and task mod-

eling is beneficial for the design of interactive systems and what kind of modeling languages 

exist. More precisely it is started with task analysis which is not bound to any modeling lan-

guage but provides means to elicit a valid task description from a certain problem domain. 

3.4.1 Task Analysis 

The application domains for task analysis are not limited to the development of interactive sys-

tems but includes training, development, assessment of mental workload, performance and error 

prediction just to name a few [Hackos & Redish, 1998]. The overall goal of such an analysis is 

to enable designers to understand the user’s work situation which can be of any kind (e.g., work, 

leisure) in order to improve design (e.g., training plan). According to Johnson:  

“…the role for the task analysis is to provide an idealized, normative model…” 

of the tasks users carry out to achieve goals in a particular domain [1992]. With regard to inter-

active system development task analysis is important to elicit UI requirements (which are usual-

ly not captured by functional requirements) and detect potential usability flaws. UI requirements 

detectable via task analysis are in turn function allocation (to user or system), logical decompo-

sition of dialogs, consistent ordering of tasks and appropriateness of a UI for a certain user [Dix 

et al., 1997; Kirwan & Ainsworth, 1992]. 

Task analysis is not primary performed when a new system is to be developed but during all 

phases of development even maintenance. More precisely task analysis cannot be performed 

from scratch as it needs some situation which is under investigation (e.g., a legacy system a user 

is working with, the work situation without a software system). The feasibility of an analysis of 

the user and her tasks is rather limited if the circumstances of the user during task execution are 

omitted. Thus task analysis is not only about tasks but also about user goals (why is somebody 

performing a certain task?), the user itself (who is executing a certain task?) and the environ-

ment (where is somebody executing a certain task?). Such a holistic understanding is necessary 

to provide a valid view on the task world of the user.  

To perform task analysis different techniques have proved its value over time. The easiest one 

which is also used in domain-driven design [Evans, 2003] is establishing a vocabulary of tasks 

(task inventory according to [Hackos & Redish, 1998]). As users naturally tend to decompose 

tasks into more simply ones task descriptions are usually hierarchically arranged. Besides the 

pure tasks a user analysis needs to be performed reflecting the skills and capabilities of stereo-

typical users. Different concepts to do so exist. Either the different levels of capabilities with 
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respect to the system are analyzed or the domain specific users are taken into account. Whereas 

the first results in users like “novice”, ”beginner” or “expert” the latter leads to roles existing in 

the domain (“editor” and “author” in book writing). Moreover task specifications should natu-

rally reflect such a classification of users. In order to develop analysis documents truly reflect-

ing the way tasks are performed direct interacting with the users is invaluable. Therefore visit-

ing the user and discussing the way the user is performing the task can be very helpful to gain 

understanding as assumptions are often misleading or just wrong. Interviews, questionnaires, 

card sorting or thinking aloud are techniques which can be applied during a site visit [Johnson, 

1992]. 

Recently proposed task analysis techniques focus on groupware applications. As coordinative 

task accomplishment comprises much more complexity analysis techniques need to adapt ac-

cordingly. In [Penichet et al., 2008] a conceptual framework is proposed which clearly distin-

guishes between different types of groupware tasks. Even though such a distinction seems to be 

beneficial no statements about the implications of the different types of tasks are given. As a 

pure analysis method no new modeling technique is introduced to effectively make use of the 

fine-grained classification of tasks.  

3.4.2 From Task Analysis to Task Modeling 

The result of task analysis should be an artifact specifying the tasks the different users are cur-

rently performing. However when a system is build the task world actually changes as tasks are 

reallocated, new tasks may be introduced and others are obsolete. Therefore there is also an 

envisioned way tasks are performed using the software system under construction. Thus there is 

a gap between the tasks the users are currently performing in their work environment and the 

work situation after a new system has been introduced. One of the reasons why users may not 

accept a certain system can be the divergence of these two models. This issue is known in the 

HCI and has been taken into account by task analysis methods and MB-UI processes. Van der 

Veer and van Welie distinguish between those two task models and emphasized their impor-

tance as the analysis model comprises the knowledge of the user about the current work situa-

tion whereas the envisioned task model specifies the refined task situation in accordance with 

technology. The second is usually designed by an expert of the system under construction and 

the user (as the knowledge of the users is integrated) [2000]. In the same Wilson et al. distin-

guish between those two types of models but further state that restructuring the tasks should not 

only be supported by the methodology and task analysis technique but also by the tool support 

[1993].  

Figure 3-6 depicts the evolution of a task model for the development of interactive systems. It is 

started with the first version of the model of the current work situation. This model is iteratively 

refined by discussion with the users. Once this model is of sufficient quality (Task model 1.4 in 

Figure 3-6) the envisioned work situation is derived. The first version of this model (2.1) is na-

turally based on the last version (1.4) of the current task situation but incorporates the envi-

sioned support of technology for the task execution. 
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Figure 3-6 Evolution of Task Models in Task Analysis and Modeling 

Task model 2.1 is usually created by an expert of the system under construction who knows best 

the capabilities of automation, reallocation of functions etc. Certainly this model needs adjust-

ment to meet the requirements of the user which is achieved by iterative validation with the user 

(denoted by 2.2, 2.3 and 2.4). The eventually created task model (2.4) can therefore be consi-

dered as contract between user and interaction designer in terms of interaction for the system 

under construction. Again, the task model cannot be regarded as isolated but needs naturally to 

be defined in accordance with the domain and user model [Dittmar & Forbrig, 1999].  

As each (intermediate) task model may be discussed with the user an understandable notation is 

necessary to enable iterative task analysis and modeling. Therefore the notation and its tool 

support have a great impact on the UI design. In the next section common approaches are ex-

amined with regard to origin, expressiveness, application domain and other criteria. 

3.4.3 Task Modeling 

In the last decades several languages have been created to specify tasks and their interrelation 

with respect to the application domain. This section provides an overview of current research of 

relevant modeling languages and motivates the need for the developed language CTML. 

In essence, task modeling languages can be classified according to their origins [Limbourg & 

Vanderdonckt, 2003; Pontico et al., 2007]: 

Cognitive psychology. Task modeling is understood as vehicle to transmit knowledge about 

how users interact with machines or software. Task analysis identifies cognitive processes dur-

ing interaction and task structures. In addition assessment of work load, performance, task allo-

cation and usability can be performed. Representatives of task modeling languages of this type 

are Hierarchical Task Analysis (HTA) [Annett & Duncan, 1967], Task Knowledge Structures 

(TKS) [Johnson, 1992], Goals Operators Methods Selection Rules (GOMS) [Card et al., 1983], 

Task Action Grammar (TAG) [Payne & Green, 1986], Méthode Analytique de Description 

(MAD*) [Scapin & Pierret-Goldbreich, 1989]. 

Software Engineering. Task models are used as specification mechanism in various stages of 

software engineering. Task analysis can be used in early stages to elicit requirements which in 

turn may be specified by means of task models [Hackos & Redish, 1998; Reichart et al., 2004] 

as it the case in MB-UI development. As already hinted in the last sections, task models may 

also be used at runtime which requires a machine readable format and precisely defined seman-

tics especially for remote systems. Therefore some task modeling language (CTT [Paternò, 

1999], TaoSpec [Dittmar & Forbrig, 2003]) can be traced back to process algebras such as CSP 

[Hoare, 1978]. In addition, domain specific extensions may be introduced to incorporate the 



HCI Aspects 

44 

special constraints and concepts of the domain of interest [Bomsdorf, 2007; Giersich et al., 

2007; Sinnig et al., 2007; Wurdel et al., 2009]. 

Ethnography. Ethnography studies, among others, the interacting of humans through empirical 

studies. Different methods are employed to gather the data such as interviews or observation. 

Task modeling can be another source of data as task models can be discussed with the humans 

under observation. Groupware Task Analysis (GTA) [van der Veer et al., 1996] is one repre-

sentative of this type of task model. 

After classifying the task modeling approaches based on their origins it is now continued with a 

detail examination of most relevant ones. Among the most popular task modeling languages are 

GOMS [Card et al., 1983], HTA [Annett & Duncan, 1967], TKS [Johnson, 1992], and CTT 

[Paternò, 1999]. Even though all notations differ in terms of presentation, level of formality and 

expressiveness, they assume the following common tenet: tasks are performed to achieve a cer-

tain goal. Moreover, complex tasks are decomposed into more basic tasks until an atomic level 

has been reached.  

Within the domain of HCI, CTT is the most popular notation, as it contains the richest set of 

temporal operators and it is supported by a tool, CTTE [Mori et al., 2002], which facilitates the 

creation, visualization and sharing of task models.  

 

Figure 3-7 Task Types in CTT and CCTT 

Tasks are arranged hierarchically, with more complex tasks decomposed into simpler sub-tasks. 

CTT distinguishes between several task types, which are represented by the icon representing 

the task node. There are abstract tasks, which are further decomposable into combinations of the 

other task types including interaction, application and user tasks (see Figure 3-7 for an overview 

of the available task types). The task type denotes the responsibility of execution (human, ma-

chine, interaction, cooperation with human). CTT includes a set of binary (enabling, choice, 

order independence, concurrency, disabling, suspend/resume) and unary operators (optional, 

iteration). The former are used to temporally link sibling tasks at the same level of decomposi-

tion whereas the latter are used to identify optional and iterative (unbounded iteration and n-

times iteration) tasks (see Table 6-2 for accurate descriptions of the semantics of the identical 

operators used in CTML). A comprehensive overview on CTT can be found in [Paternò, 1999]. 

An example of CTT model is given in Figure 3-8 which shows how a presenter may give a talk. 

The abstract root task “Give Presentation” is decomposed into four children tasks. The tasks on 

the second level of abstraction are connected with the enabling operator ( ) in order to specify 

that one task has to be performed before the other can start (e.g., “Present” can only be per-

formed after having executed “Configure Equipment”). 

An exception to this is “Leave Room” as it can be performed at any time due to the deactivation 

operator (  ) resulting in a prematurely abortion of the currently running task. “Configure 

Equipment” is furthermore consisting of the tasks “Start Projector”, “Start Laptop” and “Con-

nect Laptop & Projector”.   
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Figure 3-8 CTT Model for “Give Presentation” 

Those basic tasks are connected with the orderindependence (   ) and enabling operator. The 

orderindependence operator defines the sequential execution of the tasks in arbitrary order 

meaning that once one of the tasks is started the other has to wait for the first one to terminate. 

Tasks which are not further decomposed are actions and considered as atomic. They represent 

the smallest entity of execution (e.g., Start Projector). 

In the following paragraphs the concepts of hierarchical decomposition and temporal operators 

to restrict the task execution order are referred to CTT-like notation as those concepts are used 

in most task modeling approaches. 

HTA being one of the first attempts to task modeling decomposes tasks until an atomic unit is 

reached [Annett & Duncan, 1967]. Instead of temporal operators so called plans are used to 

restrict the execution order of tasks. Plans are informal descriptions of conditions of task execu-

tion on the same level of abstraction. They are very powerful but are not interpretable by a tool. 

In Figure 3-9 the running example of “Give Presentation” is specified by means of HTA. Boxes 

represent tasks and lines denoted hierarchical decomposition. Plans are annotated in order to 

comment the intended temporal order. 

GOMS has been developed to assess the time needed to achieve a certain goal. Therefore in 

GOMS goals are decomposed until a goal can be achieve by operators [Card et al., 1983]. Me-

thods specify how operators are combined and selection rules define which methods to use un-

der certain circumstances. MAD is a CTT-like notation but actions are attached to atomic tasks 

which define how to perform the atomic task (e.g., the atomic task get a drink is implemented 

by go to the bar tender). This formalism is very similar to CTT. 

 

Figure 3-9 HTA Example of "Give Presentation" 

In order to support the spsecification of collaborative (multi-user) interactive systems, CTT has 

been extended to CCTT (Cooperative ConcurTaskTrees) [Mori et al., 2002]. Similar to the co-

operative task modeling language presented in this thesis, CCTT uses a role-based approach. A 

CCTT specification consists of multiple task trees. One task tree for each involved user role and 

one task tree that acts as a “coordinator” and specifies the collaboration and global interaction 
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between involved user roles. An example for the formalism is given in Figure 3-10. The role 

task models for “Presenter” and “Listener” are given on top, on the lower right hand side re-

spectively. The model specifying the coordination of the individual tasks is depicted on the low-

er left hand side. For each action in the coordinator task model a counterpart in the role specific 

task model has to be defined which is denoted by the dotted lines in Figure 3-8. In essence, the 

coordinator task specification adds additional execution constraints to the individual task mod-

els. In the given example it is specified that “Wait for Questions” of the role “Presenter” needs 

to be performed before the “Listener” is allowed to perform “Ask Question”. After that “An-

swer Question” of the role “Presenter” can eventually be executed. 

 

Figure 3-10 Cooperative CTT Model for "Presentation" 

The main shortcoming of CCTT is that the language does not provide means to model several 

actors simultaneously fulfilling the same role as well as that an actor is assumed to fulfill only 

one role within a CCTT specification (strict one to one mapping of actors and roles).  

Groupware Task Analysis (GTA) developed by van der Veer et al. primarily focuses on analysis 

and modeling of multi user task achievement [1996]. The approach bridges two worlds, HCI 

and CSCW (Computer supported Cooperative Work), by applying techniques from both areas. 

More precisely classical task analysis and modeling techniques from HCI and groupware analy-

sis from CSCW are used. The authors embed task modeling into a higher level context by also 

considering roles, work, objects and agents as entities relevant for task modeling. The task mod-

el uses the common set of features ([Welie et al., 1998]) explained before but actions are em-

ployed as top level elements in a dialect of UAN (User Action Noation) diagrams which is used 

as low level notation determining the dialog structure [van der Veer & van Welie, 2000]. More-

over, in contrast to CTT and similar notations each task is assigned a goal even on lower levels 

of abstractions. Artifacts and tools necessary to accomplish a task (by manipulation or creation) 

are modeled by means of UML class diagrams. On the higher level of abstraction roles describe 

stereotypical users and their tasks to be performed. Agents play one or more roles and a role can 

be played by several agents. An agent is not necessarily a user as it may also be the system. The 

situatedness of actions is addressed by events and triggers. Whereas the first defines the cir-

cumstances when an event occurs, the latter indicates the task relevant for the event. The model 

entities are represented in GTA by different representations: task tree, workflow model and 
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object model. The first is the way tasks are represented in HCI. The workflow model classifies 

tasks with respect to time, order and roles. In GTA a so called “variation of UML Activity dia-

gram” is used which uses swim lanes to collocate tasks of the same role and control flow to 

order tasks accordingly. Moreover a goal lane is added to represent which goal is currently be-

ing worked on. GTA is the richest approach in HCI for task analysis and modeling for group-

ware applications as it does not only cover a modeling language but also a lightweight process, 

means for evaluation and usability engineering. Moreover tool support for model creation and 

documentation is offered. From our point of view the approach only lacks formality and execu-

tability. As modeling distributed actions becomes quite complex validation and verification 

analysis of GTA is important to ensure consistency. Currently this issue has not been addressed 

yet. A formal basis would also allow for model interpretation and which would in turn facilitate 

prototyping which is even considered as highly important by the authors [van der Veer & van 

Welie, 2000]. Interestingly in the very same paper the authors also suggest to incorporate the 

physical layout of the working environment to complete the task specifications. However this 

issue is not tackled in GTA. 

Bomsdorf [2007] as well as Klug and Kangasharju [2005] introduced an extension to task mod-

els where a task is not regarded as an atomic entity (like in CTT) but has a complex lifecycle, 

modeled by a so-called task state machine. Bomsdorf defines a task by a state chart to trigger 

additional events as the specification is more fine-grained. Hence in this vein also external 

events which may occur in web based interfaces (closing the browser) can be handled. Klug and 

Kangasharju use a state chart based approach to define temporal operators with information 

exchange more precisely. The former approach does not consider tasks being not enabled (in-

itiated) whereas the latter does not consider abortion or skipping of tasks. 

Tasks are always performed within a certain context or environment and hence their interplay 

with the environment should be taken into account. This issue was first tackled by Bierre et al. 

[1999a]. The authors proposed to model the execution environment in accordance with the task 

specification. The environment captures the domain entities which are manipulated, created or 

needed for the performance of a certain task. Based upon a CTT-like notation conditions can be 

defined over the object world state. A task in the Visual Task Model Builder is only executable 

if its preconditions are fulfilled. Moreover through performance of a task objects may also be 

created, manipulated, destroyed or assigned to a variable. The language is supported by a tool 

incorporating editing of all entities and interpreting the model for interactive validation. The 

approach is very rich and offers a very robust and usable tool. Modeling of the domain is per-

formed by object-oriented design with limited expressiveness (no multivalued associations). 

The interplay of object and task modeling has not only been tackled by Biere et al. In [Caffiau 

et al., 2008] an overview on that issue is given. In essence, most task modeling languages con-

sider objects as noteworthy but are used informally as properties, relationships (like “uses”) or 

as preconditions to perform a task. Rarely objects are used to constrain the task execution (and 

in turn task execution may manipulate objects) in order to construct more realistic task models 

being usable for MB-UI development and to generate early prototypes.  

TaOSpec [Dittmar & Forbrig, 2003] is one of the few. In the same vein as the Visual Task 

Model Builder, TaoSpec allows for modeling task specifications with binding to the execution 
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environment. Unfortunately the approach by Dittmar and Forbrig is not very well integrated 

with standard software engineering models as a new concept for domain modeling is intro-

duced. With respect to expressiveness and modeling of realistic scenarios TaOSpec is a major 

contribution in the domain of task modeling. 

Kernel of Model for Activity Description (K-MAD) is a task modeling language based on 

MAD* which explicitly advocates the use of objects in preconditions and postconditions of 

tasks [Caffiau et al., 2008]. Moreover termination conditions of iterations can be defined over 

objects. Objects are modeled in very restricted object-oriented fashion. So called “abstract ob-

jects” are classes whereas “concrete objects” represent objects being instances of classes. Sets, 

lists and stacks of abstract objects can also be specified. Inheritance, associations and methods 

are not considered in the approach which limits the approach to pure records or structs. K-

MADe is the tool facilitating the use of the language which is equipped with editors for all enti-

ties of the language as well as a simulator which allows for rapid feedback cycles. K-MAD en-

hances the previously presented approaches in terms of integration of domain modeling.  

AMBOSS is a task modeling environment dedicated to modeling of safety critical systems (e.g., 

medicine, aviation) [Giese et al., 2008]. In contrast to most prior examined languages the objec-

tive of AMBOSS is not MB-UI development but modeling of work of actors within their envi-

ronment. It is a CTT-like notation offering some novel extensions addressing the challenges of 

the domain it is used for. Thus an AMBOSS task model does not specify an idealized way of 

task performance with respect to safety criticalness but explicitly models risks and assurance. 

Exemplary barriers can be specified representing conditions need to hold at simulation time in 

order to prevent harm or damage to humans or material. Cooperation is modeled in AMBOSS 

by a role assignment to tasks (including machines). Therefore no task type similar to CTT exists 

as this information is already specified by the role. In contrast to CCTT not for each role a task 

tree is defined but a single monolithic task model specifies the task execution of all actors which 

may result in complex specifications which are difficult to manage. Formal preconditions are 

incorporated by AMBOSS addressing barriers as mentioned earlier (a task is only executable if 

its barrier holds) and message flows. In AMBOSS message flows can be specified between 

arbitrary tasks. At simulation time the receiving task can only be executed if the message has 

already been sent. This concept is actually very powerful as it allows for defining complex de-

pendencies between tasks of different levels of abstractions. Object modeling is also supported 

by AMBOSS but is restricted to concrete objects. Those objects are very similar to resources in 

workflow modeling [Russell et al., 2005]. Preconditions cannot be defined directly addressing 

object states. As AMBOSS is designed to specify how people perform work within physical 

environments spatial information are from interest because an actor may be needed to be co-

located with a certain object to perform a task. Therefore location modeling has been integrated 

using a logical hierarchical model of locations. For each task it can be defined where it needs to 

be performed. However it is unclear how such information is taken into account during simula-

tion. AMBOSS is the first approach which integrates location modeling, object modeling and 

task modeling. Hence, it is one of the few approaches dedicated to the specification of work 

situation in physical environments. 
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Besides the pure task modeling concepts some approaches present the tasks and their dependen-

cies (such as context of use, platform, user handicaps, etc.) explicitly in one model. Representa-

tives of such approaches are [Vanderdonckt et al., 2008] and [Luyten et al., 2006]. Whereas the 

former approach defines an extensive meta-model as UML class diagram in order to incorporate 

the different factors constituting the relevant context of use, the latter uses ontologies to define 

complex dependencies between tasks and their execution environment. 

3.5 Specification Mechanisms for Implicit Interaction 

In the following paragraphs vital research areas concerned with the model-based development 

of implicit interaction are investigated. The conducted examination especially focuses on the 

capability of specifying on a high level of abstraction as the model-based approach for implicit 

interaction should start with such a description (in order to benefit from model-based develop-

ment).  

The current research activities in the field of implicit interaction can be categorized into model-

free and model-based approaches. The first infers the intention without explicit models of the 

envisioned implicit interaction (which is actually the behavior of interest of a human in the 

SmE) whereas the later relies on models specifying the envisioned behavior of the user. In this 

thesis model-free approach for implicit interaction are out of scope as the thesis explicitly pro-

poses modeling to boost the quality of the system under construction. Moreover, the developed 

system exhibits higher quality and integrates much better with principles of UCD and HCSE as 

human needs are considered within the development explicitly when following an iterative 

model-based approach. 

For the model-based development of implicit interaction different approaches exist. They are 

not as well-defined as MB-UI development due to novelty of the research area which has been 

started with the definition of Schmidt [2000]. Basically the question to be answered is whether 

one can infer the intention of the user which is expressed by implicit interactions (e.g., ges-

tures). On a lower level of abstraction probabilistic models are used for intention recognition 

which explicitly makes use of observations and hidden states as the intention of the user can 

only be determined by the observed behavior. Artifacts such as the Hidden Marko Model 

(HMM) or more general Dynamic Bayesian Networks are used. Therefore research activities 

how to use such models are excluded in this explanation here (low level models for explicit 

interaction have not been reiterated either).  

In general, two major research avenues can be identified for model-based development of impli-

cit interaction. Either the model is created in a top-down approach (as it is the case while task 

modeling) or atomic actions are designed individually and are composed as needed which is a 

bottom-up approach. The subsequent paragraphs comprise examinations about representatives 

of the previously named categories of high-level description formalism being transformable to 

probabilistic models such as the HMM. After having investigated the existing approaches they 

are assessed with respect to task modeling.  

In [Kiefer & Stein, 2008] context-free grammars are proposed in order to specify potential in-

tention in accordance with the individual behavior of the user expressing the intention. There-
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fore non-terminals are intentions and terminals represent behavior. From perspective of user 

modeling this distinction is rather unclear as also complex behavior may constitute an intention. 

To achieve location-awareness production rule of the grammar are annotated with region (or 

locations). Only when a user is at an annotated region the production rule can be applied. In 

order to create a parsing tree terminals are further defined by certain sensor data. In the given 

example of Kiefer & Stein GPS data is used. The approach seems to be fruitful and prosperous 

especially with respect to the close bond of intention and behavior. However from our point of 

view the major shortcoming of the approach is the missing generality. As explained above in-

tentions may also be defined by complex behavior (non-terminals) which is not an intention. 

Another major shortcoming is the missing of means to specify concurrent behavior which is 

fundamentally to truly reflect users adequately. More precisely, this is a general shortcoming of 

context-free grammars. 

In the same vein probabilistic context-free grammars are used. Actually introduced by Charniak 

for natural language processing they can also be employed to parse potential intentions to infer 

behavior of people [1997]. They extend ordinary grammars by adding a function which assigns 

each production rule a probability. Such an extension allows assigning a probability to each 

word, sentence respectively, of the grammar. 

[Burghardt & Kirste, 2008] proposed a novel approach to integrate a priori knowledge into in-

tention analysis. Instead of starting with high-level activities and gradual refine them a bottom-

up approach is taken. Atomic actions are specified by means of Planning Domain Definition 

Language (PDDL) which can be composed into sequences of actions representing the potential 

execution sequences valid in the current state. By calculating the valid sequences the set of ac-

tions of the user in the current states can be derived representing the intention. As the actions are 

independent new actions can easily be added at runtime. This allows for coping with dynamism 

in SmEs. However the shortcoming of this approach is that such a modeling approach in not 

intuitive. From our perspective gradual refinement and decomposition of high level activities 

into more basic ones is natural to humans and should therefore be supported by the modeling 

languages used to drive the design of implicit interaction.  

3.6 Other Relevant Background Work 

After having reviewed task-driven development approaches, task modeling languages and de-

velopment approaches for explicit and implicit interaction it is continued with further relevant 

work which does not match the former categories.  

According to [Garrido & Gea, 2002], the most important aspects for the development of interac-

tive systems for collaborative environments are user groups, roles and tasks. In their approach, 

groups and roles are modeled using state charts whereas the definition of a task is specified by 

activity diagrams. As semantic domain Petri nets [Petri, 1962] have been chosen which allow 

the animation of the models as well as the verification of properties. The behavioral specifica-

tion of this approach is sound but lacks the integration with the domain model which is an im-

portant aspect to consider when developing those systems. A development methodology has not 

been defined. 
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Workflow systems have been a focus of research over decades. Distribution of work in time and 

space are inherently factors of such systems. Traditionally workflows do not model cooperation 

by several workflows and glue them by preconditions and effects but by a monolithic workflow 

whose activities are allocated to different actors in the system. Therefore cooperation is modeled 

by sequence flow, allocation and message flow [White, 2004]. However in the Business Process 

Modeling Language (BPMN) no means for explicit cooperation exist. To visualize activities of 

different participants pools and swimlanes are used.  

A pool is a container for process which involves cooperation. It can be either subdivided into 

swinlanes representing activities of one participant or can be considered as atomic containing 

the activities of the process. In Figure 3-11 an example of BPMN specification is given which is 

taken from the BPMN specification [BPMN, 2010]. Financial Institution and Supplier are 

pools. Moreover Supplier is subdivided into Sales and Distribution specified as swimlanes. 

Swimlanes are atomic and cannot be further decomposed. Activities belonging to the participant 

are arranged within its swimlane. Cooperation is modeled by sequence flow (e.g., Process Or-

der of Sales and Pack Goods of Distribution) or by message flow (Authorize Payment of Sales 

and Credit Card Authorization of Financial Distribution). Pools and swimlanes rather structure 

a workflow properly than model cooperation as the actual dependencies between the activities 

are modeled by sequence and message flow. The expressiveness of such a modeling approach is 

powerful even though some limitations exist. It is not clear how to model cooperation of mul-

tiple participants with the same activities (e.g., multiple Sales participants) and no precise ex-

ecution semantics for BPMN is given even though the Business Process Execution Language 

(BPEL) exists. The transformation of BPMN specifications into BPEL (and technological spe-

cific BPEL extensions like BPEL4WS) is defined by an informal mapping which has rather the 

form of a proposal than a semantic definition [Ouyang et al., 2006; White, 2004]. 

 

Figure 3-11 Pools and Swimlanes in BPMN from [BPMN, 2010] 

Dynamic composition is another current challenge of workflow specification and web services 

(which are the state of the art implementation mechanism of workflows). Similar languages to 

BPMN have therefore been designed. The semantic web as a formalism to enhance syntactical 

interface matching to a semantic level is one approach to do so (e.g., DAML-S is one represent-

ative [Paolucci & Sycara, 2003]). Such approaches are certainly feasible for SmEs which has 

been exemplified in [Reisse et al., 2008]. Yet the existing approaches focus on modeling device 

capabilities and software services. The special constraints of human behavior modeling as 

tackled here are not taken into account. 
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The ambient calculus developed by Cardelli and Gordon is used to specify processes with re-

spect to mobility [1998]. More precisely, process algebra is used to specify the diverse compu-

ting resources. The special concept ambients is used to denote a certain boundary of execution. 

Ambients can be moved to represent the mobility of a certain process. In this vein the compu-

ting resources are modeled in accordance with the relevant topology of the system. Even though 

the approach is sound with respect to formality only the boundary of execution of a process is 

considered. A suitable language also needs to incorporate other facts but the ambient of a 

process, activity respectively. 

In the area of safety critical applications and UIs human behavior modeling is also relevant. In 

[Basnyat et al., 2007] an approach is discussed which employs Petri-nets as language for speci-

fying the potential behavior of the user. In essence, the system and user model is specified as 

Petri-nets. Moreover barriers are defined which represent threshold to avoid erroneous states. 

Having defined the entire behavior by means of Petri-nets formal analysis of the model with its 

barriers can be performed. 

3.7 Conclusion 

Different types of applications comprise different complexity with respect to interaction devel-

opment. In this chapter it has been shown what constitutes the complexity for each of the ex-

amined types, such as single platform, MUIs, context-aware applications and SmEs. In order to 

tackle the most complex type of application, namely SmEs, common approaches from the HCI 

and MB-UI are introduced which are from our point of view highly beneficial to investigate and 

to enhance. In order to do so task modeling has been investigated in-depth as the task model is 

the starting point for MB-UI development and is also suitable for implicit interaction which has 

not been researched thoroughly in HCI. 

Furthermore the rationale and basic idea of task-driven approaches have been illuminated which 

relies on the hypothesis that a system is more appropriate if the work processes are kept as close 

as possible to the previously existing work processes. Therefore analysis task models are de-

signed which are in turn enhanced to introduce the system under construction. 

As a task model is usually an idealized normative description ([Johnson, 1992]) about the real 

world task performance certain facts are omitted. Even though this is in the nature of abstraction 

also important issues are sometimes not considered. Naturally this is due to the domain a task 

modeling language has been developed in. None of the languages presented in the last section 

have been designed in order to model tasks in SmEs. Therefore certain relevant facets are disre-

garded and application domains of task modeling are missed. Based on the existing ones new 

concepts need to be introduced in order to cope with the complexity in SmEs. 
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Chapter 4 
4 Semantic Domains 

In this chapter of the thesis the potential foundations of the semantics of CTML are dis-

cussed. In the first part the advantages of assigning formal semantics to a language are high-

lighted. Subsequently an evaluation of existing semantic domains is conducted which serves 

as guidance for selecting an appropriate semantic domain for CTML. Finally the notion of 

refinement with respect to the semantic domains is introduced and different approaches for 

refinement are formally defined and exemplified. 

4.1 Introduction & Illustration 

In software engineering it is well-known that the earlier an error is detected the less it costs 

to eliminate it. Prominent example of that finding is the 1:10:100 rule which states that costs 

of fixing problems rise exponentially with project progress [Oleson et al., 2009]. Therefore 

the assessment of quality properties of a certain model is of high interest. In some cases the 

erroneous execution cannot even be rolled back (e.g., air traffic, nuclear power plants). With-

in such projects it is mandatory and not optional that the software system holds certain quali-

ty thresholds. 

In order to assess the quality of a model an unambiguous semantics must be defined. It not 

only rules out any confusion about meaning it can also serve as reference point to define 

refinement relation between two specifications. Sharing of artifacts between different tools 

can only be performed if semantics are defined in a technology independent format in order 

to avoid misunderstanding. Tools for creation, editing, exploration and operation also rely on 

the semantics assigned as usually different tools are created which need to share the same 

model. Further reasons for formal syntax and semantics can be found in the subsequent para-

graphs. 

Managing Complexity 

As development progresses models can become quite complex. In order to oversee the 

created artifacts different means need to be provided. Not only formal methods can be em-

ployed for that but also visualization of structural properties based on the formal syntax (e.g., 

dependence graphs). Modularization is another tool based on the syntax to do so. However 

when it comes to behavior syntax is useless. Semantics can be another source of information 

to oversee issues created during the development process. 
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Validation  

Another reason to assign semantics is the opportunity to enable validation algorithms. This 

concept is often referred to as “Validation by Animation” and describes an interactive walk-

through using a tool [Hallerstede et al., 2010]. Modeling mistakes can be found by animating 

the model several times to gain insights of the model. Validation can be performed using 

different configurations highlighting the current focus of evaluation. It is a complementary 

tool to verification. 

Verification 

Validation is a good tool to improve models as the behavior of the model is interactively 

explored. Therefore validation is a kind of testing because a model is tested with respect to 

different inputs by the user. However validation has its limitations or as Dijkstra states 

[1972]: 

“Program testing can be used to show the presence of bugs, but never to show 

their absence!” 

The aim of verification is to proof properties for a certain model. Therefore algorithms based 

on formal methods are necessary. Basically verification algorithms answer the question 

whether a certain model exhibits a desired property. One of the most prominent examples is 

deadlock analysis. Informally a deadlock during execution occurs if no action is executable 

in a certain non-final state. The property of interest is deadlock freedom describing the fact 

that a certain model cannot deadlock. Other properties of interest depending on the domain 

are liveness and safety [Magee & Kramer, 2000].  

The feasibility of verification algorithms strongly depends on the selected semantic founda-

tion. If the model used to define the semantics is not able to capture the case of a deadlock a 

corresponding analysis cannot be performed. Contrary if the semantics of the model are too 

expressive the models cannot be verified as algorithms do not exist. 

Refinement 

In modern software engineering, the development lifecycle is divided into a series of itera-

tions. With each iteration a set of disciplines and associated activities are performed while 

the resulting artifacts are incrementally perfected and refined. In order to assess that the en-

hanced version is a valid adaptation of its origin appropriate refinement relations are needed. 

Such relations can be based on structural and behavioral properties of a model. What consti-

tute a valid refinement depends on the model, the domain the model is used in, the designer 

as well as the phase of the project. A comprehensive overview of refinement relations is 

given in Section 4.5. 

4.2 Evaluation of Semantic Domains 

In the following sections an introduction about potential formal semantic domains, accom-

panied with examples, is given. Moreover the differences of each are given in order to select 

an appropriate semantics for CTML.  
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Task models are belonging to the class of scenario-based specifications meaning that a task 

model specifies a set of “runs” by means of traces or scenarios. Scenario-based specifica-

tions has been proven successful for the specification of requirements by means of different 

techniques ([Uchitel et al., 2004]) such as use cases, message sequence charts and state 

charts [UML, 2010]. A scenario refers to a successful run through the specification which 

can be easily understood even by non computer scientists. There is also the term scenario-

based design by [Carroll, 1995] proposing to drive the development of the system by scena-

rios. However, in [Carroll, 1995] the term scenario is used in a much more informal sense 

even though the meanings are very similar. The design method is based on concrete scenario 

to transmit knowledge from stakeholder to developer and vice versa. 

There are two semantic domains for scenario-based specifications: truly concurrent seman-

tics (non-interleaving semantics) and interleaving semantics. Both are models for the specifi-

cation of concurrent behavior. Whereas the former is based on the assumption that actions 

are truly distributed and parallel execution is inherently occurring, the latter eliminates true 

concurrent behavior by the nondeterministic choice of the sequentialization of parallel ac-

tions [Cleaveland & Smolka, 1996]. Exemplary, true concurrent behavior is the usage of 

multiple processors for several processes while a sequentialization of several processes on 

one processor results in an interleaved execution. Followers of interleaving semantics argue 

that their model is a suitable abstraction whereas advocates of non-interleaving semantics 

say that their model is more accurate and realistic [Marr, 2007]. 

A basic example of the difference of both types of semantics can be shown by the processes 

        and    . The first one specifies that either the sequence of   and   or the sequence 

of   and   is executed. The latter specification describes the concurrent execution of   and 

 . One can easily see that the traces and scenarios of the two are equal (scenarios: 

             ), please note that if two processes are scenario equivalent they are also trace 

equivalent). Those specifications cannot be distinguished by interleaving semantics. In con-

trast, non-interleaving semantics is able to recognize the difference as it is examined which 

events can occur simultaneously. In the first example no action can be performed at the same 

time whereas in the latter   and   may be performed simultaneous. 

In what follows, representatives of approaches for the definition of interleaving and non-

interleaving semantics are examined. An overview of different semantic definitions is given 

which enables a deliberate selection of an appropriate definition of the semantics of CTML. 

4.2.1 Interleaving Semantics 

Interleaving models are characterized by the property that there is a total order (being a bi-

nary, antisymmetric, transitive, total relation) of events meaning that for each arbitrary pair 

of events one can say which happened before [Garg, 2002]. Thus the run of a system is de-

fined by a sequence of events in the interleaving model. Simultaneous occurring events can-

not happen as all events are only interleaved. 

The theory of processes has been examined for decades and is well understood. A process 

can be anything of interest (e.g., an algorithm, a vending machine [Hoare, 1978], a network 

protocol [Fokkink, 2000], etc.) The reason for specifying something as a process is mainly 
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verification of certain properties like correctness, congruence, deadlock and lifelock freedom 

[Cleaveland & Smolka, 1996; Roscoe, 1997]. The basic idea is that systems are consisting of 

an arbitrary number of processes running concurrently exchanging data and synchronizing 

their actions. As those systems become quite complex mechanisms are needed to prove cer-

tain desired properties. Process theory offers a wide range of mathematically founded lan-

guages (such as Communicating Sequential Processes (CSP) [Hoare, 1978], Calculus of 

Communicating Systems (CCS) [Milner, 1980] and Algebra of Communicating Processes 

(ACP) [Baeten & Weijland, 1990]) offering analysis of processes and algorithms to prove 

congruence of processes. Different means have been proposed to define the semantics of 

process algebras. In [Roscoe, 1997] three different ways are examined for CSP. First, opera-

tional semantics via deduction rules and Labeled Transition Systems (LTS(s)) is proposed. 

Process terms are interpreted via inference rules to determine the actions a certain process 

enables. More precisely, a process has a certain action if and only if that is deducible based 

on the given inference rules. For each CSP operator a set of corresponding inference rules 

exists. These rules can be used to map a process term to a LTS based on action relations. An 

action relation defines that a certain process   can evolve into the process   by the action   

[van Glabbeek, 1990]. A LTS is a graph in which vertexes represent states and links 

represent state changes triggered by (invisible or observable) actions. In the corresponding 

LTS the processes     are mapped to a LTS state whereas   is mapped to a LTS transition 

between the corresponding states of   and  . By virtue of this approach the whole state 

space of a process is explored by means of a LTS which represents the entire semantics of 

the process. Model analysis and verification algorithms are performed on the deduced LTS. 

Several tools to do so exist. FDR (Failures Divergence Refinement) presented in [Roscoe, 

1997] not only allows for comparing behavioral relations but also enables users to perform 

refinement checks and deadlock analysis. Hence it makes use of partial order reduction 

[Peled, 1993] to reduce the state space to be explored in order to accelerate the checks. The 

LTS analyzer by [Magee & Kramer, 2000] allows for validation and verification of LTS 

based models. Validation is achieved by animation whereas deadlock analysis and certain 

safety properties such as progress are verified. As comparison semantics the authors state 

that from their point of view strong equivalence and weak equivalence are useful being syn-

onyms of simulation semantics (with invisible actions and without invisible actions). 

As hinted above there are also other instruments for defining interleaving semantics for 

processes. Denotational semantics by means of traces, scenarios, failure and divergences can 

be defined. Basically a mapping of process terms to traces, respectively scenarios, failure 

and divergences, is defined. Even though denotational semantics is drastically different from 

operational semantics congruence can be proofed [Roscoe, 1997]. Semantics has also been 

defined in terms of axioms defining the semantics of process terms [Bergstra & Klop, 1990]. 

This approach is called algebraic semantics. 

Different extensions for process algebras have been introduced. There are timed process 

algebras [Reed & Roscoe, 1986], stochastic process algebras [Herzog, 1990] and priority 

process algebras [Cleaveland et al., 2000]. 
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LOTOS (Language of Temporal Ordering Specification), standardized in [ISO, 1989], is a 

formal description language for distribute systems [Bolognesi & Brinksma, 1987] which is 

based on process algebras and as such is not more expressible. The basic concepts are similar 

even though the concrete syntax differs to most process algebras. Equivalent to process alge-

bras an operational semantics is defined by virtue of LTS. Over the years several interpreters 

and model checkers have been implemented to facilitate the use of LOTOS [Garavel & 

Hautbois, 1993; Jeong et al., 1997; Logrippo et al., 1988]. They include validation, specifi-

cation comparison by means of bisimulation and code generation. 

4.2.2 Non- Interleaving Semantics 

Interleaving semantics is characterized by a total order of all events. However for truly con-

current systems this might not hold. By giving up the total order of events and defining a 

partial order true concurrency can be introduced [Pratt, 1986]. In contrast to a total order, a 

partial order (being a binary, reflexive, antisymmetric, transitive relation) defines that not all 

pairs of events need to be comparable. Intuitively one would call the relation precedes. Ele-

ments that neither precedes the other are allowed to occur simultaneous.  

The most common approach to non-interleaving semantics are Petri-nets [Petri, 1962]. Petri-

nets are bipartite graph structures in which vertexes are either places or transitions which in 

turn are connected by directed edges. Places are used to store token(s) which represent the 

state of the system at a time. The distribution of tokens over a Petri-net is called marking. 

The operational semantics of a Petri-net net is defined by firing rules. For a Petri-net a transi-

tion is enabled if and only if all input places (places directly connected with the transition as 

destination) exhibit enough tokens (the amount of tokens to enable a transition can be mod-

eled). If a transition fires the tokens of the input places are consumed and new tokens (the 

amount of tokens to be placed can be modeled) are placed on the output places (places di-

rectly connected with the transition as origin). The firing of a transition is considered as 

atomic action and is as such non-interruptible. Please note that if a transition is enabled does 

not imply that it fires since if a Petri-net contains several enabled transition only one fires. 

Concurrent behavior can be modeled by having a transition with more than one subsequent 

place. If such a transition fires each place is supplied and the subsequent transitions may fire 

independent of each other. By applying this model true concurrency is not yet formally in-

troduced. A more rigorous semantic definition is needed to do so. The most common way of 

giving meaning to Petri-nets are partial order sets (POSETs) [Pratt, 1986]. Due to its popu-

larity Petri-nets have been extended in numerous ways. One can classify the extensions into 

two categories: convenience and semantic extensions. Extensions belonging to the first cate-

gory are only for reasons of convenience (e.g., colored Petri-nets [Jensen, 1987], hierarchical 

Petri-nets [Huber et al., 1991]) and can be transformed into semantically equal basic Petri-

nets. In contrast, the latter adds real value to the expressiveness of Petri-nets (e.g., timed 

Petri-nets [Ramchandani, 1974]) which allows for modeling more complex scenarios but 

also  may prohibit the potential automated analysis of the net. Verification algorithms for 

basic Petri-nets include amongst others reachability of a certain marking, boundedness or 

liveness (see [Murata, 1989] for a comprehensive overview). 
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Partial ordered sets (POSETs) are one formalism to assign truly concurrent semantics to 

Petri-nets and other models of concurrent behavior [Pratt, 1986]. Basically a POSET defines 

a potential run through the system (as sequences do for interleaving semantics) whereas a set 

of POSETs (as set of sequences do for interleaving semantics) define the entire behavior of 

the system. Other models for non-interleaving semantics are trace theory [Mazurkiewicz, 

1977] and event structures [Winskel, 1980]. 

4.3 Other Relevant Semantics 

Even though the two given semantic domains are suitable for scenario-based specifications 

also other relevant definitions of semantics can be applied for task modeling. One major 

drawback of the interleaving and non interleaving semantics is the limitation of considering 

only actions as relevant for the semantics. The actual state of the system is implicitly en-

coded in the order, partial order respectively, of events. A representative of state-based foun-

dations of semantics is Temporal Logic of Actions [Lamport, 1994]. Temporal formulas 

specify the system on which reasoning should be applied. Properties such as liveness, safety, 

fairness can be proven for a certain specified system (set of formulas). 

4.4 Semantics for Task Specifications 

Formal task specifications have their semantic origins in process algebras. CTT the most 

common notation for basic task models adopted its operators from LOTOS ([Paternò & San-

toro, 2001]). CTT offers similar but yet not identical operators as LOTOS. The semantics of 

CTT are defined by a set of inference rules (one for each operator) eventually translating a 

CTT expression into a LTS (an operational interleaving semantics). The translation of CTT 

to LTS is not comprehensive and misses several aspects like successful termination and 

some operators.  

User Action Notation (UAN), another task notation, has been successfully translated into 

process terms in [MacColl & Carrington, 2000]. The approach aims on defining system 

components based on formal task models to start a rigorous development approach taking 

into account user needs expressed by task models. System development is driven by the de-

rived CSP specification and used for development, testing and verification purposes. How-

ever the authors do not make clear how UAN and CSP are used in the development lifecycle 

of interactive systems. Moreover the described translation is rather informal. 

Van den Bergh and Coninx [2007] translate entire task expressions into state charts. As a 

result a generic state machine is created for leaf tasks as well as for complex task expres-

sions. Transitions are used to implement temporal operators by connecting the corresponding 

task state charts appropriately. The approach lacks of formality as the transformation is only 

described informally and no automatic transformation algorithm has been developed. There-

fore the feasibility stays unclear.  

Sinnig proposed a formal unification of task models and use cases [2009]. In order to do so 

he translates an extended CTT like notation into nondeterministic finite state machines and 

set of partial order sets. Whereas the first defines an interleaving semantics the second sup-
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ports truly concurrent behavior. In the defined development methodology the different se-

mantic domains are used as needed to define suitable refinement relationships depending on 

the phase of software creation (requirements and design). In the same vein as proposed in 

[Wurdel et al., 2008d] Sinnig defines structural and behavioral refinement for task models 

(Sinnig also proposes refinement of use cases which is not in the scope of the thesis). In 

more detail, during requirements engineering Sinnig only allows to refine a task model by 

scenario inclusion but with the constraint of only restricting user choices. It is argued that 

restricting user choices lead to more intuitive and less error-prone ways of executing tasks. 

Moreover the restriction of system choices is forbidden as it would contradict to the func-

tional requirement defined in terms of use cases serving as foundation for the task model. 

When moving from requirements to design the refinement relation becomes more rigid. Sce-

nario equivalence is demanded. The same applies for refinement on the level of design. 

Structural refinement is allowed in every phase of development. The approach of Sinnig is 

comprehensive in terms of software engineering and formality. However shortcomings exist. 

Such strict refinement relations may hamper the development of task models. A more cus-

tomizable refinement relation as proposed in [Wurdel et al., 2008d] seems to be more suita-

ble to meet the requirements of an iterative, incremental software engineering process. 

4.5 Refinement 

As stated earlier refinement relations are of interest in order to integrate model adaptations 

into the software engineering lifecycle. They need to be tailored with respect to the semantic 

foundations of the modeling language and the domain of interest. Especially the usage of the 

modeling language in practice influences the criteria constituting a suitable refinement rela-

tion. Different refinement relations may be defined in order to allow a flexible approach 

depending on the state of software engineering and the current quality criteria. 

The term refinement has been used in a rather wide manner. Therefore this section will ex-

amine the term and highlight differences in interpretation. Moreover it is shown that the dif-

ferent examined refinement relations exhibit a certain relation (being a lattice) which can be 

used to rule out a set of inappropriate refinement relations with respect to the domain of ap-

plication here. 

Refinement between two specifications has been investigated for decades and definitions 

have been proposed for various models [Brinksma et al., 1995; Khendek et al., 2001; Sinnig, 

2009]. Except for Sinnig, to our knowledge a generically applicable notion of refinement has 

never been defined for task models. The approach of Sinnig who introduced refinement on 

task models and use cases with its assets and drawbacks has been investigated in the pre-

vious section. 

The distinction between truly concurrent and interleaving semantic models is naturally im-

portant for the definition of refinement as the behavioral properties of a model (which are 

captured by the semantic domain) are compared during refinement analysis. Therefore the 

defined refinement relations of each semantic domain are fundamentally different. 
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For interleaving semantics various refinement and equivalence criteria have been defined. 

Among the most popular ones are trace-, testing- and bisimulation equivalence [Bergstra, 

2001]. They are all based on LTS. Therefore LTS are defined formally: 

Definition 4-1 (    -Labeled Transition System): A Labeled Transition System (   ) is 

defined by the quadruple             : 

1.   is the set of numerable states. 

2.     defines the finite set of actions. 

3.                is the action relation. 

4.      is the initial state. 

Intuitively the action relation defines the states in which a certain action is executable and to 

which states the execution is leading.  

Definition 4-2 ( -Tick): In order to denote a successful termination of a process the special 

symbol  is used. The set of actions with   is denoted by               .   can-

not be added explicitly to the alphabet of actions. 

Definition 4-3 (  -Tau): In order to denote an invisible action the special symbol   is used. 

The set of actions with   is denoted by               .   is never part of the observa-

tions of a LTS and cannot be added explicitly to the alphabet of actions. 

The set of actions with   and   is consequently denoted by       . Moreover     de-

notes the set of finite sequence over    . The set of all LTS satisfying the prior given defi-

nition of a LTS is denoted by  . 

 

Figure 4-1 Example LTS 

Figure 4-1 depicts an example of a LTS with                               , and 

                                           . 

Definition 4-4 (Set of         ): Let   be an arbitrary LTS (   ) and   be an arbitrary 

state of   (   ) then the set of enabled actions of   are: 

                                   

Please note that in the prior definition    . One can easily define the initials of a LTS with 

    and    the initial state of   by: 

  

                                    

An abbreviated notation for           is  
 
   (if        the cascading executing of 

the sequence is intended). This notation is preferred throughout the thesis. Thus the prior 

given definition can be abbreviated by: 
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The initials of      depicted in Figure 4-1 are the action   and  : 

                     

Furthermore the initials of the state   is the set    . 

                

Definition 4-5 (Set of         ): Let   be an arbitrary LTS (   ) and   be an arbitrary 

state of   (   ) then the set of refusals of   are: 

                                    

The set of refusals of a LTS in a certain state denotes all sub sets of actions which do not 

contain any of the enabled action in the current state  . Due to the finiteness of       is 

finite as well. 

By defining a binary relation over the set of equivalences which can be paraphrased as “is 

equal to or coarser than” a lattice is created over the different equivalences [van Glabbeek, 

1990]. 

Definition 4-6 (  -“Is Equal To or Coarser Then” Relation over Interleaving Seman-

tics): Let the semantics   form an equivalence relation    on LTSs   and let   and   be 

semantics over LTSs  . Then we write      to denote that   includes all criteria of   to 

define the semantics. To be more precise:  

                         

In order to generalize this relation on all existing LTS it is written: 

              

It has been proven that the existing different equivalences on LTSs form a partial order with 

the prior defined operator  . An abstract of this partial order is depicted in Figure 4-2. It 

illustrates the coarsest grained semantics (traces) as well as the most fined grained semantics 

for LTSs (bisimulation). Several others are omitted being in between the shown ones de-

noted by horizontal doted lines.  

In the subsequent paragraphs four of the eleven semantics are examined more in detail (trace, 

completed trace, failure, and bisimulation semantics). This will not only show the difference 

of each but will also serve as basis to define a suitable equivalence semantics for the task 

specification language in this thesis.  

 

Figure 4-2 Excerpt of Partial Orders of Interleaving Semantics 



Semantic Domains 

62 

Definition 4-7 (    Trace Equivalence): Trace equivalence is the weakest known equiva-

lence on LTSs. The LTSs are trace equivalent if two LTSs produce the same set of traces: 

                                    

The set of traces of a LTS u can be defined by: 

                           

 
    

This definition states that each valid sequence of actions starting from the initial state is a 

trace of  . Please note that the empty sequence is always included in the set of traces. For the 

given example LTS in Figure 4-1 the set of traces are: 

                                                      

A trace equivalent LTS to      is given in Figure 4-3 because              

            . Therefore            applies. 

This example shows already that trace semantics (and the other equivalences to some extent 

as well) does not investigate the structure of the LTS itself but only the observable behavior 

of the LTS. Trace semantics define what a LTS is able to do but do not say what they have to 

do. In order to overcome this limitation more comprehensive semantics exist. Depending on 

the way complete trace semantics is defined it is possible to determine what a LTS needs to 

do in order to terminate successfully. This approach is followed here. 

 

Figure 4-3 Trace Equivalent LTS 

Definition 4-8 (     Completed Trace Equivalence): Two LTS   and   are completed 

trace equivalent iff: 

                                            

The set of completed traces of the LTS   is defined as follows (  denotes the concatenation 

operator of sequences): 

                                     

 
            

Two LTS are therefore completed trace equivalent if the set of successful terminated traces 

are equal. Completed trace semantics has also been defined without the restriction of suc-

cessful termination. However it is claimed that the approach here is more comprehensive. In 

order to give an example the LTSs need to be extended to mark successful termination (see 

Figure 4-4). The completed traces of the given models: 
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Therefore     
  and     

  are not completed trace equivalent (    
        

 ). Without 

introducing the restriction of successful termination these models would indeed be com-

pleted trace equivalent. 

 

Figure 4-4 Extended Examples with Successful Termination 

As        (see Figure 4-2) every two LTS being completed trace semantics equivalent are 

also trace equivalent [van Glabbeek, 1990]. Contrary there are LTSs which are not distin-

guishable by trace semantics but by complete trace semantics (e.g.,     
       

  and 

    
        

 ). 

Both introduced semantics examine a LTS from the perspective what the LTS is able to do. 

On the first glance this approach seems to be comprehensive. However one can also investi-

gate what the LTS cannot accept as input in a certain state. This approach is followed by 

failure semantics which was proposed by Brookes et al. [1984]. In the partial order of se-

mantics it is the subsequent of completed trace semantics and makes therefore less identifica-

tions than completed trace semantics (identifying less LTSs as equal). 

Definition 4-9 (    Failure Equivalence): Two LTSs   and   are failure equivalent iff: 

                             

The set of failure of a LTS is defined as (with   denoting the power set of a set): 

                                      

 
                  

In contrast to the previously investigated semantics the set of failures contains pairs of action 

sequences and arbitrary sub sets of actions. The first element of a failure pair denotes the 

current trace under investigation whereas the other element state which actions are not ac-

cepted as input after having executed the trace. The set of failure pairs are all failure pairs of 

a LTS. More in detail for each trace all sets of refusals are recorded.  

    
  and     

  shown in Figure 4-5 are completed trace equivalent (    
        

 ) 

because: 

                    
                       

                     

 

Figure 4-5 Non Failure Equivalent LTSs 
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However calculating the set of failure of both LTSs reveals that those two LTS are not fail-

ure equivalent (    
       

 ) as they have different sets of failure pairs: 

             
                         

                     

                           

                          

             
                         

                                                              

                           

                          

The failure pairs for the traces          and       are equal but having executed the trace 

        
  only prohibits to execute   (resulting in the failure pairs         and          ) 

whereas     
  due to its non determinism refuses   and/or   depending which way through 

the LTS is taken. The corresponding failure pairs are therefore 

                                      . 

As        (see Figure 4-2) every two LTS being failure equivalent are also completed 

trace equivalent [van Glabbeek, 1990]. Contrary there are LTSs which are not distinguisha-

ble by completed trace semantics but by failure semantics (e.g.,     
        

  and 

    
       

 ). 

After having defined the coarsest-grained semantics for LTSs it is now continued with the 

finest one. The reason to introduce this semantics is to show to what extent one can distin-

guish between LTSs. In the semantic domain of LTSs there is no semantics making less 

identifications of LTSs. Moreover bisimulation comprises all other semantics as it is the 

maximum element of the partial order  . 

Definition 4-10 (    Bisimulation Equivalence): Two LTSs   and   are bisimulation 

equivalent iff there exists a bisimulation    with        (   and    are the initial state of 

 ,   respectively).  

Let    be the set of states of LTS   then the relation    satisfies the following constraints 

with      ,                  : 

1. If        and   

 
   , then       

 
    and        

2. If        and   

 
   , then       

 
    and        

In order to exemplify the interpretation of    (and consequently   ) an extended example 

of Roscoe is consulted which is shown in Figure 4-6 [1997]. The dotted lines show bisimular 

states of the LTSs (e.g.,               ). Following the first rule if      and 

one can transit to   via action  , then   must be reachable by the same action and      

has to hold. The second rule states the same symmetrically for the LTS  . In order to proof 

that the given LTSs are bisimulation equivalent (  ) the initial states need to be bisimular 
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which implies that all reachable states need to be included in the bisimulation relation   . 

As this is the case here those LTSs are bisimular (          ). 

 

Figure 4-6 Bisimulation Example 

The previously examined semantics have individual assets and drawbacks with respect to the 

application domain. In order to decide for or dismiss a certain equivalence the application 

domain needs to be taken into account. Naturally this is task modeling in the context of mod-

el-based development for explicit and implicit interaction here. The relation of these differ-

ent refinement equivalences and task modeling is examined in Section 6.5. 

The relation   defines that certain equivalence are finer than others meaning that if two 

LTSs are equivalent in certain semantics they are also equivalent in all coarser semantics. 

Hence it is shown that                [van Glabbeek, 1990].  

Trace semantics only states what a LTS can produce. There is no notion of deadlock or suc-

cessful termination as all potential sequences of actions are captured independent of their 

further behavior in the LTS. Thus rather soft constraints are defined. Completed trace seman-

tics is able to detect deadlocks and also states what a LTS needs to do (in order to terminate 

successfully) which is a stronger constraint than trace semantics. Failure semantics not only 

defines what a LTS needs to produce but also examine a LTS with respect to what it cannot 

produce. This is a different approach to assign semantics to LTSs then before. For each path 

taken through the LTS the sets of refusals are specified. Thus it is specified which actions are 

not possible in a certain state in the LTS (more precisely which sets and sub sets of actions). 

Therefore the constraints are extended with respect to the refused actions in a certain state. 

Several semantics are finer then failure semantics and coarser then bisimulation. Bisimula-

tion is the finest grained semantics. In order that two LTSs are bisimular the nodes of each 

LTS are assigned to equivalence classes. Moreover there is a bijective mapping of equiva-

lence classes from the first to the second LTSs equivalence classes. Then for each transition 

connecting a source state with a target state the corresponding equivalence classes must be 

reached in the second LTS via the action assigned to the transition (and vice versa). The only 

equivalence which is finer then bisimulation is graph isomorphism (in addition to bisimula-

tion nodes are mapped by a bijective function).  

In the last paragraphs different semantic equivalences have been introduced. However some-

times strict equivalence is not desired but behavioral inclusion or extension may also be of 

interest. Taken the example of model-based development for an adapted version of an arti-

fact not only the previously defined behavior may be desired but also some new features are 
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added on purpose. Strict equivalence is counterproductive in this case but behavioral exten-

sion may be appropriate. In the same vein a specialization of an artifact supporting only a 

sub set of features of the previously resulting in a restriction can be defined. In this case in-

clusion may be desired. Therefore the given definitions can be extended to inclusion and 

extension for several types of semantics equivalences.  

Definition 4-11 (   - Restriction, Extension of LTS regarding Semantics  ): The LTS   

restricts the LTS  , the LTS   extends the LTS   respectively with regard to semantic   iff: 

      

This definition can then be applied to the concrete semantics such as trace, completed trace 

semantics or failure semantics. A LTS   extends a LTS   with respect to trace semantics iff: 

                                    

The same can be defined analogously for completed trace semantics and failure semantics. 

Whether strict equivalence, inclusion or restriction is appropriate for a certain model de-

pends, again, on the application domain and the stage of development in a process.  

The proposed semantics are all based on interleaving semantics. The characteristics of true 

concurrency have been examined in Section 4.2.2. For this type of semantics the necessity of 

refinement exists for the same reasons as for interleaving semantics. However as it is shown 

in this thesis true concurrency is not of interest for the task modeling language presented 

here. The reasons for that are given in Section 6.3 and 6.4. 

In general when examining a model one can distinguish between structural and behavioral 

properties in order to define equivalences or refinement relations. The prior given definitions 

of refinement are only based on the observable behavior of the models. The structural prop-

erties of a model may also constitute a proper refinement relation. With regard to LTSs ac-

tions may be typed and not allowed to be adapted during refinement just to name a simple 

example. Moreover as LTSs serve usually as semantic foundation and not as source specifi-

cation structural properties can be checked on a higher level of abstraction.  

The definition of refinement for a specific model is a complex task as the usage of the model 

in practice and the application domain needs to be taken into account. However even the 

general notion of refinement still offers some challenges which are presented in the follow-

ing paragraphs.  

Actions are considered as atomic units in interleaving and non-interleaving semantics. How-

ever if an actions in a source model is further refined in a sub specification (replaced by a 

complex expression) so called action refinement is performed [van Glabbeek & Goltz, 

2000]. The stepwise development of a system or model was already advocated by Wirth with 

the term of stepwise refinement [1971]. With the advent of iterative, incremental develop-

ment processes such a case is even more common. Especially in interleaving semantics ac-

tion refinement cannot be defined properly or as Pratt states [1986]: 

“A serious difficulty with the interleaving model is that exactly what is inter-

leaved depends on which events of a process one takes to be atomic.” 
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More precisely in [van Glabbeek & Goltz, 2000] a canonical example is given in which two 

bisimlar processes are given which are not even trace equivalent after a simple action re-

finement. In contrast in partial order sets which is a representative of truly concurrent beha-

vior action refinement can be introduced while preserving the existing equivalence relation 

[van Glabbeek & Goltz, 2000]. 

4.6 Conclusion 

In this chapter formal semantics with respect to task specifications have been investigated. 

More precisely, it has been started with explanations about the reasons for assigning formal 

semantics to models. Next, two different semantic domains have been evaluated with respect 

to their suitability for task modeling. Subsequently, existing approaches to assign semantics 

to task models have been examined. Based on that survey and the evaluation before inter-

leaving semantics seems to be very fruitful to investigate as the refinement relations re-

searched in the subsequent section are suitable for task specifications.  

With regard to refinement different comparison semantics have been reiterated. Moreover it 

has also been shown that two specifications cannot only be compared by means of the com-

parison semantics but also by the type of refinement (equivalence, restriction, and exten-

sion). The refinement relations for CTML are defined and explained in Section 6.5. 
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Chapter 5 
5 Bridging the Gap: HCI Task 

Modeling and Smart 
Environments 

Having reiterated through relevant background information it is now continued with the in-

depth examination of interaction design and the reasons for following a task-driven approach 

in this thesis. The complexity of SmEs with respect to interaction design is exemplified by a 

scenario which is, first, used as vehicle to distill the requirements of the task modeling lan-

guage and, second, consulted as running example in the remainder of the thesis. During this 

chapter the experimental infrastructure in our university is introduced as well. 

5.1 Interaction Development for Smart Environments 

Interaction design is usually developed in accordance with the functional components of the 

system and is therefore driven by the functional requirements. According to [Heider, 2009] 

the functional components of a SmE are implemented using different approaches (for rea-

sons of brevity explanations are omitted, see [Heider, 2009] for details): 

 Custom-tailored by the software designer.  

 Plan recognition. 

 Learning by observation.  

 Matchmaking.  

These are the basic approaches in order to implement functional components of a SmE. 

However no statements about the interaction technique (and its development) are made. The 

interaction is naturally influenced by the implementation of the functional components even 

though it is not dependent. Therefore explicit and implicit interaction can be used in each 

type of approach for developing proactive assistance. This fact is also stressed by Kirste who 

therefore divides the development into two distinct layers: intention recognition and strategy 

planning [2006].  

Whereas the first refers to implicit interaction, the latter is one approach to implement the 

strategy synthesis of the SmE (Ad hoc composition of services). In Figure 5-1 on the left 

hand side the principle of goal-based interaction of Kirste is depicted. Based on the users’ 

behavior the intention of the user is derived (more precisely it is tried to do so as this is quite 
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a complex task). Each intention is mapped to a set of goals which are then examined in order 

to generate a valid action sequence to satisfy the goals. Those actions are eventually assigned 

to (and executed by) devices in the environment. 

 

Figure 5-1 Goal-based Interaction [Kirste, 2006] and Extended Framework for Interaction 

Even though this principle has been defined in order to achieve implicit interaction and ad 

hoc service composition it can be validly adapted to a general framework which divides a 

SmE into two distinct categories: Interaction and Strategy Synthesis. How interaction is im-

plemented, following an explicit, implicit or combined approach, in a concrete SmE depends 

on the envisioned behavior of the system. Usually a combined approach is preferred. This 

also applies for Strategy Synthesis as different approaches can be used in order to implement 

proactive assistance with either interaction technique. The adapted layered model is depicted 

on the right hand side of Figure 5-1.  

Such architecture is excellent for interaction design as it is independent of the Strategy Syn-

thesis and as such can be tackled independently. As explicit and implicit interaction are 

usually used combined a holistic interaction development approach should incorporate both 

paradigms as well as should be founded on the same artifacts in order to assure consistency 

between both interaction techniques. This is important if the user of a SmE changes the inte-

raction technique during runtime which is not necessarily an intended process.  

The research community of MB-UI development investigates the challenge of an engineer-

ing approach to UI development for decades [Molina, 2004] which has been shown in Sec-

tion 3.3.2. Diverse approaches have been highlighted tackling explicit interaction in SmEs 

based on MB-UI [Blumendorf, 2009; Luyten et al., 2006; Paternò et al., 2008]. The ap-

proaches validate the general rationale of explicit interaction for SmEs based on a task-

driven approach using model-based development. The advantages of such an approach are: 

 Advantages of model-based engineering. Such as separation of concerns, multiple 

viewpoints, high level decision making, short turnaround cycles, technology inde-

pendence, roundtrip engineering, declarative models and transformations, etc. 

 Incorporation of task world of the user. As already shown in Figure 3-3 focusing 

on tasks of the users helps to incorporate their real needs. Task models are the preva-
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lent tool for specifying UI requirements as they are understandable, expressive and 

describe tasks on a high level of abstraction. 

 Gradual refinement. Declarative models, such as the task model, can be incremen-

tally enhanced. However not only on the same level of abstraction gradual refine-

ment is desired but also between the different modeling stages. The existing MB-UI 

chain is therefore a reference point for UI development.  

As stated before interaction development needs to be founded on the same artifacts indepen-

dent of the type of interaction to withstand switches of interaction (from explicit to implicit 

interaction, and vice versa) at runtime and provide a consistent interaction. As explicit inte-

raction for SmEs is currently developed by MB-UI which is started by task modeling it is 

investigated whether task models are an appropriate tool to start development of implicit 

interaction as well in order to ground both interaction techniques on the same artifact. 

Despite the employment of task models within the interaction development process it has to 

be assessed whether the currently existing task modeling languages are able to cope with the 

complexity of SmEs. Therefore it is now continued with an example of a SmE which has 

been set up within our Graduate School MuSAMA (Multimodal Smart Appliance Ensembles 

for Mobile Applications)
1
 at the University of Rostock. After that an envisioned scenario of 

use is given in order to distill the requirements with respect to task modeling to adequately 

represent task structures in SmEs. 

5.1.1 An Example “The SmartLab” 

In order to exemplify existing research questions and evaluate developed concepts an expe-

rimental infrastructure is very helpful. In our Graduate School we are in the fortune situation 

of having a technology enhanced environment which enables us to test the developed con-

cepts in concrete settings. In Figure 5-2 the SmartLab while being used is shown. It is a multi 

display environment with currently nine projectors and six projection surfaces installed. It 

has been designed to serve as technology enhanced meeting environment to support people 

during knowledge work. 

 

Figure 5-2 Experimental Infrastructure of MuSAMA: “SmartLab” 

                                                      

1 http://www.musama.de/ 
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The research conducted in order to deliver the envisioned support is ranging amongst other 

from network infrastructure, localization algorithms based on Bluetooth and RFID to interac-

tion development and usability evaluation. 

Even though the experimental infrastructure defines a particular domain of interest and the 

scenarios based upon such infrastructure, we claim the methods developed in this thesis can 

also be applied to other SmEs (e.g., home entertainment, elderly care). This fact is evidenced 

by projects at the University of Rostock addressing assistive technologies for elderly care. 

Other assistive applications and other types SmEs are also closely coupled to the task the 

user is executing (or will execute). Therefore, the approach is also feasible for other types of 

SmEs. Within the conducted research especially elderly care task performance has been also 

analyzed and modeled by means of the developed language presented in this thesis. The re-

sults are promising. 

5.1.2 Requirements for Task Modeling in Smart Environments 

The given task modeling languages examined in Section 3.4 have been designed in order to 

support task modeling in a certain domain and for a special purpose (e.g., MB-UI develop-

ment for groupware applications). With respect to SmEs no dedicated language exists. In 

order to assess the languages a scenario is introduced which highlights the requirements for 

task modeling. 

An Illustrating Scenario 

The characteristics of task modeling in SmEs are exmplefied best by a scenario which is also 

used in as running example throughout the remainder of the thesis. It will not only highlight 

the complexity of task modeling in SmEs but will also serve as means to elicit requirements 

for a task modeling language in an intuitive manner. Even though SmEs are not limited to 

function rooms but they are one prominent example in which assistance is appreciated.  

More specifically the running example is a “Conference Session” in a technology enhanced 

meeting room. The challenges of such scenarios are multi-layered. On each level of abstrac-

tion research challenges can be identified. To emphasize the challenges with respect to task 

modeling an appropriate scenario has been chosen. It can be paraphrased as follows: 

The session chair Dr. Sheldon Cooper introduces himself and defines the topic of the ses-

sion. Afterward he gives the floor to the first speaker, Dr. Leonard Hofstadter, who enters 

the presentation area and sets up the equipment. The laptop switches to presentation mode 

and the speaker starts with the talk. A presentation device is used to switch back and forth 

between the slides. During the presentation the audience accesses additional information 

related to the talk using personal devices. After finishing the talk the chairman asks for 

questions from the plenum which are answered by the speaker. Eventually the chairman 

closes the talk and announces the next one. Subsequent talks are given in the same manner 

until the chairman encourages an open discussion, wraps up the session and finally closes 

it. 



Bridging the Gap: HCI Task Modeling and Smart Environments 

75 

 

Figure 5-3 Visual Representation of the Illustrating Scenario "Conference Session" 

In Figure 5-3 a visual representation in bird's eye view of the scenario is given. It shows the 

relevant entities from task modeling perspective. The scenario includes multiple actors (Dr. 

Cooper, each presenter and the listeners), whose behavior is characterized by the role they 

are fulfilling (chairman, listener, presenter). More in detail tasks are performed with regard 

to the role the actor is fulfilling. However they are not undertaken isolated but in accordance 

with other attendees meaning the actors need to synchronize their actions. During the paper 

presentations the role of the actors is not fixed but fluent. In this particular scenario an actor 

is a listener first (listening to a presentation), then becomes a presenter (presenting his/her 

own paper) and eventually after finishing the presentation goes back to being a listener 

again. 

Moreover the location of an actor strongly influences the tasks the actor is able to perform as 

devices may need to be present in the near surroundings or predefined zones (presentation 

area for a presenter). Hence stationary and personal devices assist the actors during their task 

performance. Laptops are used to store slides or mobile devices may be employed in order to 

access information during the presentation and a stationary projector is utilized to show the 

slides. Besides those functional properties static properties of devices may be relevant. The 

network adapters or in- and output capabilities of a device may be relevant in order to model 

tasks in such a scenario appropriately. 

The domain also needs to be taken into account. Tasks may only be executable if certain 

objects of the domain are in a desired state or present at all. Domain objects can be either 

virtual (e.g., slides) or physical (e.g., switch, pen). Moreover the execution of tasks may also 

manipulate a certain device or domain object. Moreover due to the execution of tasks the 

location of actors may also change. 

Besides those rather obvious facts also other relevant characteristics can be identified. 

Amongst others there is cognitive load, stress level, etc. Presenting a paper in front of an 

audience is a stressful task to accomplish. Another fact which is necessary to consider is the 

organizational structure of the attendees of the session which actually influences the cogni-

tive load of the attendees (e.g., giving a lecture in front of students is less stressful than de-

fending a project against external reviewers). Also the ambient noise level, temperature, light 

conditions, and other physical properties of the environment can influence how tasks are 

performed.  
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Based upon the scenario and the last paragraphs a set of requirements that are particular for a 

specification framework for SmEs can be distilled. However, also some properties are left 

out. Cognitive load and stress level are very hard to formulize adequately and therefore are 

not included in the formal specification language in this thesis. Contrary, physical properties 

can be modeled quite easily (continuous values need to be discretized) but are not considered 

as major influencing factors of the task performance. We have summarized the requirements 

into the following distinct three categories which in turn are further subcategorized. 

Modeling Approach 

The modeling approach relies on a user-centered design methodology and therefore proposes 

the use of tasks as central building blocks of the modeling language. Due to this perspective 

the user needs can be incorporated better which fosters the user satisfaction during the use of 

the developed system. The following two subcategories have been identified: 

(1) Task-Based Specification. The concept of a "Task" is central to SmEs. Typically 

various actors collaborate and interact with each other by sharing, synchronizing on, 

and triggering common and related tasks respectively. Therefore, we believe that a 

specification framework for collaborative environments should be built around the 

concept of a task. It should furthermore intrinsically support well-known task related 

concepts such as decomposition into subtasks and temporal ordering. Such an ap-

proach is also necessary to allow high-level modeling using a top-down approach 

which is intuitive for human behavior modeling. 

(2) Modeling Cooperation. SmEs are inherently multi user systems. Naturally the task 

performance of individuals is influenced by others. In order to model collaborative 

work, synchronization constructs to coordinate task performance are needed. Exam-

ples of such constructs are preconditions and effects. The former denotes additional 

constraints defined over the state of the SmE whereas the latter defines state modifi-

cations as a result of task execution. 

Context Modeling 

The context of use as set of influencing external factors has not only been discussed in the 

research field of context-aware applications but also in UCD and HCSE (see ISO 13407 

[ISO, 1999]). The definitions of context are manifold as already explained in Section 3.1. 

For CTML we found the following subcategories of context expedient and relevant to con-

sider for task specification method for SmEs: 

(3) Location Modeling. To be able to model tasks performed in physical environments 

location modeling and its integration into task modeling is an important feature to be 

supported. This feature allows for building location aware computing based on a 

task-driven approach. Van der Veer and van Welie already emphasized that the 

physical layout of environment in which tasks are performed needs to be considered 

[2000]. However GTA which is the task specification technique of the authors does 

not incorporate that feature. Additionally, in recent years available location tracking 

systems using different technologies such as GPS, RFID, Bluetooth or Ultra Wide-

band have become sufficiently precise. Therefore, the location of an actor is not only 
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very relevant but also quite easy to measure which is a key requirement when using 

the approach in real world settings. 

(4) Device Modeling. The functional and static properties of devices and even their 

presence in a SmE are relevant to adequately represent the tasks performable by the 

users. In HCI, and consequently in task modeling, devices have been rather consi-

dered as platforms for UIs. In SmEs a wider context is necessary as tasks also de-

pend on the functional state of devices (e.g., the projector has to be switched on to 

present slides). Moreover the present devices and their functionalities are not only 

relevant for the executability of the tasks but also influence to which degree assis-

tance can be provided as the assistive technology needs a platform and computing 

power. Actually dynamic reassignment of human task to system tasks is mainly 

based on the present devices in a SmE. 

(5) Domain Modeling. The interplay of objects and tasks are commonly known and 

considered as important. Several approaches have been proposed in order to com-

bine both descriptions (see Section 3.4.3). Those approaches are considered as im-

portant and need to be adopted by a task modeling language dedicated to SmEs. 

Moreover there are also approaches in the research field of ubiquitous computing in 

which the importance of objects for tasks is emphasized and taken into account. For 

example, in [Bellotti et al., 2008] a framework is proposed which enables software 

developers to use RFID sensors to detect objects in the near surroundings without 

caring about RFID hardware and sensor evaluation. 

Means of Engineering 

The pure modeling concepts are by far not sufficient. In order to allow an engineering ap-

proach which relies on a structured way of modeling and evaluation other requirements can 

be derived. Such means for engineering can guide the software developer how to make effec-

tively use of the language, rule out any ambiguities, assure consistency throughout the use of 

the modeling language and provide interfaces to other modeling languages, code respective-

ly. With respect to SmEs the following criteria are of main interest and should be supported 

by a task modeling language. 

(6) Development Methodology. Software engineering is a process of a set of iteratively 

performed activities and not an isolated modeling step. Therefore low level activities 

such as creating a model need to be embedded into a higher level context. Such a 

process model not only guides the software developer which model is created on 

which level of abstraction but also provides interfaces to other models and helps to 

transits between different phases of the process model. 

(7) Formal Syntax and Semantics. In order to make effective use of the task specifica-

tion language formally defined syntax and semantics are needed. The underlying 

formal model will not only rule out ambiguities but also serve as a reference point 

for the definition of a refinement relation between two specifications. It is also an 

obvious precondition for sophisticated tool support. 
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(8) Support for Refinement. In general, software development consists of a series of 

transformations in which models (or code) are iteratively refined. Modeling colla-

borative environments is no exception to this rule. Often a coarse-grained, even in-

complete specification is successively transformed into more complete fine-grained 

specifications. With each transformation step it is important to ensure that the result-

ing model is a valid refinement of the base specification. 

(9) Tool Support. Another key requirement for a formal specification framework is tool 

support that assists developers in handling collaborative task specifications. In par-

ticular tools can facilitate the actual specification of the collaborative model, per-

form automated refinement checks, simulate/animate the specification, and allow de-

rivation of other models/code. Most desirable is an integrated tool environment 

(CASE Tool) which allows for accessing the above named functionalities in a cohe-

rent manner. 

None of the examined languages in Section 3.4 supports all features named above. More 

precisely location modeling and integration in task modeling, behavioral device modeling, 

and refinement are not supported by any of the languages. Moreover CCTT only supports 

very limited capabilities of modeling cooperation of actors. 

All categories are addressed in the task modeling language, CTML, presented in this thesis 

in order to support explicit and implicit interaction development. Moreover to effectively 

make use of the language a methodology is proposed covering all major phases of software 

engineering in order to develop the interaction of a SmE in an integrated manner.  

Besides being able to specify tasks in SmEs in a natural manner explicit and implicit interac-

tion is the domain of interest and must therefore be supported via the task modeling lan-

guage.  

5.1.3 Task Structures of Interaction 

The difference of implicit and explicit interaction has been exemplified in Section 2.2. An 

interesting issue to investigate is the impact of the interaction type on the task structure of 

the user interacting. Generally it can be stated that explicit interactions (e.g., GUIs) are more 

rigid in the execution order of tasks. If a certain GUI element is not visible or enabled it can-

not be pressed in order to trigger a function. On the other hand during implicit interaction 

user action cannot be prevented. If the user wants to perform an action she can do it. This 

obvious result has a direct impact on the design of task models for both interaction types as 

the enabled task set in each task execution step divergent from explicit to implicit interaction 

(and vice versa). This finding can be further explained by considering the enabled task set 

according to the definition in [Paternò, 1999]: 

“An enabled task set is a set of tasks that are logically enabled to start their 

performance during the same period of time” 

A task model may define multiple enabled task sets and one task may belong to several 

enabled task sets. 
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For explicit interaction the task models are more rigid as actions can be forbidden due to the 

interface. Therefore fewer tasks are enabled simultaneously. In general, the cardinality of the 

enabled task set for explicit interaction is smaller than for implicit interaction. Due to this, 

the cardinality of the set of enabled task sets which are defined by the structure of the task 

model is higher as each task needs to belong to at least one enabled task set. 

Besides the difference in the set of enabled task sets another difference can be identified. 

When specifying tasks for implicit interaction the set of actions (atomic task) is rather small 

compared to task models for explicit interaction. Our finding during modeling is that the 

atoms of task models for implicit interaction are reoccurring. Typical reoccurring atoms are 

move to and take. With respect to our experimental infrastructure, presented in Section 5.1.1, 

also sit and present are typical atomic tasks. Naturally, in task models for explicit interaction 

atoms are also reoccurring but in HCI there is still an ongoing discussion whether tasks such 

as pressing a button or click events are really tasks or facts that should be specified on the 

level of dialog modeling. 

Another insight which has turned out through ongoing modeling in practice is that the task 

structures in task models for explicit interaction are much deeper compared to those of im-

plicit interaction. Task models designed for being used as input for MB-UI development 

easily span over five or six levels of abstractions whereas in implicit interaction the depth of 

three is usually not exceeded. The reason for this difference is from our point of view two-

fold. In implicit interaction the work processes cannot be specified as precise as for explicit 

interaction as the user cannot be prevented from executing an action if she wants to. Because 

of that it is not practical to specify the task model in a very detailed manner. Another issue 

which needs to be taken into account is that the work processes in SmEs do not need to im-

plement certain business rules or accomplish the goal in the manner as specified. For exam-

ple, in safety critical applications the UI has to assure that a certain goal is reached in the 

different ways it has been designed. The same applies for other systems. A fully specified 

model is therefore mandatory to ensure consistency and traceability. Currently, such criteria 

are not relevant for implicit interaction in SmE. 

Based on the given explanations it is hypothesized that four main differences in the structure 

of task models for explicit and implicit interaction development exist: 

1. Number of Concurrent Enabled Tasks. In implicit interaction more tasks need to 

be enabled concurrently in order to represent the task execution in physical envi-

ronment adequately as the user cannot be hindered from executing a certain task.  

2. Number of Enabled Task Sets. Due to the first bullet the number of sets of concur-

rently enabled tasks is much higher in task model for implicit interaction. 

3. Number of Actions. The set of atomic tasks in task models for implicit interaction is 

smaller  compared to task models used to specify explicit interaction as actions are 

usually more often reoccurring. 

4. Depth of the Task Models. Task models for implicit interaction usually do not span 

over three levels of abstractions. In MB-UI development the task models easily ex-

ceed this level. Basically this is due to the precision needed in explicit interaction 
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and the ambiguity in the design of task models in implicit interaction which makes it 

impractical to further refinement certain actions. 

The results of the properties above are mainly that task models for implicit interaction are 

less precise and define much more scenarios than task models for explicit interaction in 

which the course of actions are much more structured. 

5.1.4 Feasibility of Task Modeling 

Task analysis and task modeling has been successfully applied to ordinary GUI systems for 

decades. Due to the application of these methods the developed UIs can be improved and 

suit the needs of the user better. For GUIs and explicit interaction in general the task model 

is a valid description as the explicit performance of a certain action is part of the model. 

Moreover GUIs are somehow limited in their way tasks can be performed (e.g., if a button is 

not displayed it cannot be pressed). Due to the limited possibilities of deciding for or against 

a certain task (the user cannot select an invisible/not enabled action) this approach is feasi-

ble. Therefore, a complete description of the tasks the user is able to perform with the UI is 

feasible in general. However, when moving from explicit interaction to implicit interaction 

the question is raised whether task modeling is still a good vehicle to specify the diverse 

actions a user can perform to interact implicitly. The main difference between explicit and 

implicit interaction with respect to task modeling is that (most) actions performed by the user 

within a physical environment cannot be prohibited by the SmE (e.g., going in front of the 

audience) even though it contradicts to the specified interaction model. The user can select 

any task even if it is not meaningful and not anticipated by the designer. In explicit interac-

tion such inconsistent actions (from designer perspective) can be avoided. This new degree 

of freedom in task execution needs to be taken into account not only by the modeling lan-

guage but also by the interpretation what the task model actually specifies. In explicit inte-

raction the task model specifies all potential ways a task is performed and a goal is achieved. 

Due to the freedom of behavior such a view is not valid in implicit interaction. In contrast to 

explicit interaction an open world assumption is needed which means with respect to task 

modeling that there can also be other ways of achieving the goal. The completeness of task 

modeling as specification mechanism can be regarded as an unrealistic assumption. By dis-

missing the assumption the task model becomes a pattern of behavior which represents the 

intended way tasks are executed under the current circumstances. In practice such an ap-

proach means that the user can be assisted as long as she sticks to the defined pattern of be-

havior. For certain situations and configurations of the SmEs different task models can be 

designed or selected at runtime. Therefore a task model can only be a blueprint for achieving 

a goal and not a complete description. This is not necessarily a drawback. Not yet specified 

ways of achieving a goal can be observed and traced in order to integrate them into the task 

model during the next development cycle. In this vein the artifact is gradually improved by 

the observed behavior of the user which is the most natural way a task is performed. There-

fore task models for implicit interaction are considered as behavioral patterns of the user 

within a SmE and not as complete descriptions of the performable actions. 
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5.2 Explicit Interaction with Task Models 

The MB-UI development process has been proven as successful even for SmEs [Feuerstack 

& Blumendorf, 2007; Feuerstack et al., 2008; Luyten, 2004]. The maturity of MB-UI devel-

opment is based upon a set of identified and commonly agreed on models and transformation 

which allows for gradually adding information in order to eventually generate the final UI. In 

the research community of HCI the set of models has been identified over years. The basic 

MB-UI process is depicted in Figure 3-5 in Chapter 3. This process model is also valid for 

SmEs even though that due to unforeseen configurations and situations the UI may need to 

be generated automatically or adapted based on the given situation. In Section 3.3 examples 

of such approaches have been explained.  

Based on the given example we claim that the MB-UI chain is working well for such dynam-

ic systems and should therefore be continued in the same manner. Therefore the process 

given in Figure 3-5 is also used in this thesis to driven the explicit interaction process. 

5.3 Implicit Interaction with Task Models 

It has already been clarified why MB-UI development is the method of choice for explicit 

interaction. It is assumed that implicit interaction can also be tackled by a model-driven ap-

proach via task models (the assumption is actually strengthened by [Giersich et al., 2007]). If 

that assumption holds an integrated methodology for interaction development in SmEs can 

be derived.  

With respect to Section 3.5 task modeling is the most appropriate modeling formalism as it 

combines several advantages: 

 Focus on User. When modeling tasks the developer focuses on the way tasks are 

performed by the user and not how the system needs to be developed. Such a view-

point enables the developer to focus on the user instead of specifying already the in-

teraction. Especially for implicit interaction the natural behavior of users needs to be 

reflected in order to avoid unnatural behavior. 

 Top-Down Approach. People tend to decompose complex tasks into smaller one. In 

order to model tasks adequately this concept should be supported. This will not only 

help the developer in modeling tasks but will also be more natural for the user being 

integrated in the development process according to a UCD process. 

 Temporal and Causal Modeling. Modeling temporal ordering of tasks is common 

in existing task modeling languages. However in the task modeling language pre-

sented here also dependencies based on the current world state are considered. Such 

a combined approach allows for modeling tasks more easily and can be used as pre-

ferred.  

 Modeling of Concurrency. Modeling of multiple users and concurrent behavior of 

individuals is crucial. A modeling language which is not able to cope with concur-

rency is not purposeful. Moreover synchronization constructs needs to be offered by 

the modeling language because parallel activities need to be synchronized. 
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Based upon these bullets CTML has been designed as modeling language for activities in 

SmEs. The created models can be used for intention recognition and therefore for implicit 

interaction.  

 

Figure 5-4 The Envisioned Process of Interaction Development 

The combined development process and the involved artifacts are depicted in Figure 5-4. It 

implements the requirements of a common artifact for the interaction development in gener-

al. Moreover it relies on a model-based approach. Therefore gradual refinement and separa-

tion of concerns are supported. How explicit (on the top of Figure 5-4) and implicit (on the 

bottom of Figure 5-4) interaction development is performed in detail is explained in Section 

7.4. 

5.4 Conclusion 

In this chapter it has been shown that the functional components of a SmE can be either ac-

cessed using implicit or explicit interaction. Therefore the development framework of Kirste 

is extended to both kinds of interaction. Based upon that extended framework it is argued 

that both interaction paradigms need to be tackled by the same artifacts in order to support 

smooth transitions between the interaction types and assure consistency during the whole 

interaction process. An artifact suitable for interaction design in SmEs is the task model. For 

explicit interaction it has been used for decades in HCI and certain research projects have 

shown the feasibility of task-driven approach for UI design in SmEs [Feuerstack & Blumen-

dorf, 2007; Feuerstack et al., 2008; Luyten, 2004]. The same applies partially for implicit 

interaction. In [Giersich et al., 2007] and [Wurdel et al., 2007] task models have been used 

for intention recognition which is one of the most fundamental components in a SmE. The 

advantages of task modeling for both interaction paradigms have also been compiled and a 

model-driven approach has been advocated. 

To be able to follow a model-driven approach based on task models a suitable task modeling 

language is needed. An illustrating scenario based on the experimental infrastructure of the 

university has been consulted to show the complexity and relevant entities with respect to 

task modeling. The scenario is used to distill a set of requirements for a task modeling lan-

guage suitable for SmEs. In the last part of the chapter implicit and explicit interaction are 

investigated with respect to interaction design based on task modeling. 
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Chapter 6 
6 Modeling Tasks for Smart 

Environments – CTML 

After having shown why task modeling is of high interest for interaction development of 

SmEs and having identified the requirements for task modeling useful for SmEs it is now 

continued with the detailed specification of the task modeling language of this thesis. More 

precisely the language addresses each of the named requirements in Section 5.1.2 explicitly. 

During this chapter not only the modeling elements and their purpose are highlighted but 

also the design decisions during the development of the language are underpinned by related 

work and explanations. 

In order to foster understanding an overview of the modeling elements, their purpose, their 

relation to other modeling elements and related approaches in various research fields is giv-

en. Subsequently, the formal syntax and semantics is explained. Based upon that, various 

appropriate refinement relations on CTML models are introduced. In the end of this chapter 

the tool support for CTML is described which help to create, edit and validate specifications. 

6.1 Overview of Syntax, Semantics and Design Rationale 

In this section we present the collaborative task modeling language (CTML). We first de-

scribe the syntax of CTML, explain its design rationale and provide an example. Then we 

present the semantics of collaborative task expressions and collaborative task models.  

The design of CTML is based on four fundamental assumptions:  

1. Role-based Modeling. In limited and well-defined domains the behavior of an actor 

can be approximated through her role [Constantine & Lockwood, 1999; Penichet et 

al., 2009].  

2. Hierarchal Decomposition and Temporal Ordering. The behavior of each role 

can be adequately expressed by an associated collaborative task expression.  

3. Causal Modeling. The execution of tasks may depend on the current state of the en-

vironment (defined as the accumulation of the states of all available objects) and in 

turn may lead to a state modification.  

4. Individual and Team Modeling. The execution of task of individual users may 

contribute to a higher level team task. 
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Based on these assumptions we define a collaborative task model in a two-folded manner:  

 Cooperation Model. Specifies the structural and behavior properties of the model. 

 Configuration(s). Holds runtime information (like initial state, assignment) and si-

mulation/animation configurations.  

For each Cooperation Model several Configurations may exist in order to describe different 

situations in which the model is used.  

6.1.1 Cooperation Model 

Figure 6-1 shows a schematic sketch of a cooperation model. Elements in the inner blue cir-

cle show modeling entities of the cooperation model (post fixed with “-1”) whereas diagrams 

outside of the blue circle show specifications realizing the corresponding entities (post fixed 

with “-2”).  

 

Figure 6-1 Schematic Cooperation Model for Meeting Scenario 

On a higher level of abstraction the cooperation model specifies the entities relevant to task 

modeling in SmEs. Therefore roles (e.g., A-1), devices (e.g., B-1), a location model (C-1), a 

domain model (D-1) and a team model (E-1) can be specified. Roles categorize users of the 

same kind in terms of capability, responsibility, experience and limitations according to the 

domain. Thus roles are abstractions of actors sharing the same characteristics. Role modeling 

is a common concept in software engineering ([Constantine & Lockwood, 1999; Larman, 

2004]) to reduce complexity and build systems for diverse users. What constitutes to a cer-

tain role and distinguishes it from another one relates to the system and development ap-

proach. In [Larman, 2004] it is stated that a user is not limited to one role at a time and role 
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switching is often taking place. In CTML the role concept is employed to define the pool of 

actions of a user by means of task expressions. In task analysis and modeling this approach is 

quite common but is usually restricted to a one-to-many relation of role and user [Molina et 

al., 2008; Mori et al., 2002]. However this is a rather rigorous constraint. In the domain of 

SmEs it is frequently the case that an actor changes her role at runtime and that one role is 

being performed by several actor simultaneously (being a many to many relation of role and 

user). The role concept implemented in CTML incorporates this case. Moreover a user can-

not only perform roles concurrently but also other relations such as choice, orderindepen-

dence, enabling, disabling and suspend/resume are considered (adapted from temporal opera-

tors) which allows for modeling more realistic scenarios. In the example in Figure 6-1, a 

meeting scenario, the roles are Presenter, Listener and Chairman. They represent the differ-

ent types of stereotypical behavior in the meeting scenario. 

In CTML the potential action a user is able to perform is determined by her role(s). More 

precisely a role is associated with a collaborative task expression (A-2 in Figure 6-1). which 

is visually represented by a task tree in a CTT-like notation [Paternò, 1999]. Tasks are ar-

ranged hierarchically defining a tree structure. Atomic tasks, non refined tasks, are referred 

as actions. In addition tasks on the same level of abstraction can be connected via temporal 

operators defining the temporal order of task execution. The precise semantics of those oper-

ators are explained in Table 6-1.  

N-Ary Operators (           ) 

Choice ([]) Only one operand task is executed 

Order Independence (|=|) Operand tasks are executed in any order with no interleaving 

of subtasks 

Concurrent (|||) Interleaved execution of operand tasks and their subtasks 

Enabling (>>) Operand tasks are executed sequentially 

Binary Operators (     ) 

Disabling ([>) Execution of    is aborted as soon as    is started 

Suspend/Resume (|>) At any time the execution of    may be interrupted by   . After 

   has finished its execution    resumes.  

Unary Operators ( )  

Iteration (t*) Repetitive execution of   

Optional ([t]) Execution of   is optional 

Table 6-1 Semantics of CTML Operators 

Each task is attributed with a (unique) identifier, a set of precondition and a set of effects. 

Preconditions add additional execution constraints to a task as a task may only be performed 

if its precondition is satisfied. An effect denotes a state change of the system or environment 

as a result of a task execution. Both, preconditions and effects are needed to model collabo-

ration and synchronization across collaborative task expressions. They also denote the bind-

ing to the devices, location and domain. 
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An exemplary task tree (informally the term tree is used here even though the abstract syntax 

is defined by an expression) is shown in Figure 6-2. It shows how a chairman may chair a 

session at a conference. First she enters the room, followed by an introduction. After doing 

so she manages the individual talks of each presenter. However she may also interrupt the 

presenter while supervising the talk. Optionally she opens a discussion for each talk. After 

having listened to all talks the session is closed. Finally she leaves the room. Please note that 

the symbol  denotes that a task which is further refined but whose children are currently 

not visible. Thus Introduce Session and Close Session are not atomic. 

 

Figure 6-2 Task Tree for Chairman at a Conference 

In CTML, devices (e.g., B-1) represent types of devices relevant to the task performance of 

users in the SmE. In HCI device modeling has been mostly performed to model platforms on 

which tasks are executed [Mori et al., 2002]. In this vein physical and technical properties 

are used to characterize the devices. This approach is suitable when the task execution need 

to be constrained by a property of the device or a task need to be assigned to a certain device 

(e.g., a task needs a certain display size or input capability). However in some situations it is 

also useful to model the behavioral properties of devices. Especially when tasks are executed 

by the user themselves and not hosted on a device but the device is still relevant for the task 

execution (which is uncommon in MB-UI) only static properties are insufficient. There is 

also the distinction between tools and artifacts (even though more in the field of domain 

modeling). Whereas tools are supporting certain tasks in changing an object, artifacts are 

objects to be changed by the task performance [Forbrig et al., 2003]. Thus behavioral speci-

fications are expedient for tools as it would formalize the process of changing an artifact but 

the notion of behavioral specification is not tackled in this field. Behavioral models of devic-

es are relevant for SmEs (e.g., taking the example of Figure 6-1: the projector needs to be 

connected to the presenters’ notebook and the notebook needs to be in presentation mode).  

CTML allows structural and behavioral specifications of devices. Basically it can be speci-

fied whether a device type has or has not certain technical features (like wireless network, 

touchpad or display) which can also be parameterized (e.g., display size and resolution). 

Additionally, name/value pairs can be specified to characterize the device types adequately.  

Behavioral specifications are achieved by means of state machines (B-2). Basically each 

device specification is characterized by a finite state machine in order to model the functions 

and states necessary (e.g., the function “Switch to presentation mode” and the state “Presen-

tation mode”). 

The importance of location information for task execution in physical environments as SmEs 

is obvious. For both, explicit and implicit interaction, location information is relevant. Expli-
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cit interaction can only be performed with immediate proximity to the UI and implicit inte-

raction is based on context information such as location information. Even though location 

information is a very selective type of context information but it is, compared to other types 

of context, easy to measure and model. In CTML one can specify a location model (C-1 and 

C-2) which allows for modeling local geometrical locations.  

The device model captures the behavioral and structural properties of electronic objects ex-

hibiting a well defined behavior in the environment. However there are also virtual objects 

(e.g., slides on a notebook) and physical objects which are not devices (e.g., whiteboard and 

pen). In order to be able to capture those obviously important aspects for task performance a 

domain model has been introduced. It captures domain specific concepts and objects as well 

as associates them to each other. Moreover the existing roles can also be related to domain 

objects (e.g., a presenter brings her slides on her notebook”). The distinction between device 

and domain objects is done by its activeness. A passive device is modeled as domain objects 

whereas an entity which exhibits a certain well-defined behavior is modeled by a device 

specification. Nevertheless devices are a sub set of the domain objects as they contribute to 

the concepts of the domain and may support task performance. Thus in CTML devices can 

be additionally modeled as objects of the domain if the dedicated domain model does not 

capture all important aspects relevant to the domain (e.g., the relation of the device to other 

domain objects by means of associations). As the domain model serves also as vocabulary 

(“visual dictionary” [Larman, 2004]) for the software developer, user and stakeholder the 

implied redundancy of modeling a device in the domain model and device model is not a 

problem as a comprehensive model of the objects involved in the domain helps to foster 

understanding. The domain model (D-1 and D-2 in Figure 6-1) is represented using an UML 

class diagram ([UML, 2010]) as this is the de facto standard for domain modeling in industry 

and known to software developers [Constantine & Lockwood, 1999; Larman, 2004]. In 

software engineering there is a clear differentiation between a conceptual domain model and 

a data model even though they share information and are often treated as the same. A domain 

model captures concepts and their relations whereas a data model specifies persistent data for 

implementation. In CTML data modeling is not of interest since CTML is used in early stag-

es of software engineering and persistence is not an aspect. 

Individual task performance in multi user environments is usually coordinated by a higher 

level plan. Perhaps certain tasks of actors can only be started after the execution of tasks of 

others. This kind of cooperation is necessary to be described and needs to be considered for 

task modeling. Additionally certain task state configurations may constitute to a higher level 

state. In CTML this is called team state. The corresponding model is the team model (E-1 

and E-2 in Figure 6-1) which is basically a task model consisting of tasks of a certain type 

which in turn are defined by statements when a certain team task is being activated and com-

pleted. Details on that issue are discussed in Section 6.1.4. 

In the following Section the runtime information necessary to instantiate a Cooperation 

Model are exaplined 
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6.1.2 Configuration 

Besides the cooperation model a CTML specification also contains one or more configura-

tions providing essential runtime information for the cooperation model. A configuration 

represents necessary information for a concrete situation. This allows for testing different 

settings for the same cooperation model without much effort by defining different configura-

tions. 

As the cooperation model relies on a role-based specification actors operating in the envi-

ronment need to be defined in accordance with a corresponding actor-role mapping. More 

precisely an actor may fulfill more than one role concurrently and a role may be assigned to 

different actors simultaneously (many-to-many relation). Moreover not only concurrent role 

fulfilling is allowed but also all other temporal operators defined in CTML are implemented 

(see Table 6-1). None of currently existing task modeling supports this assumption even 

though this is a common case in SmEs. Taking the example of the “Conference Session” one 

can imagine the case of an actor presenting a paper in front of the audience but also listening 

to other presentations afterward. Therefore the simultaneous (or more precisely ordered) 

performance of more than one role is an important feature of the language as it also allows 

separating roles from another since they are assembled at runtime. Thus modularization and 

separation of concerns are achieved. Additionally some properties for actors are defined 

(e.g.,  initial position in the environment). 

On the left hand side of Figure 6-3 an example Configuration for the schematic Cooperation 

Model in Figure 6-1 is depiected. Not all before mentioned information have visual counter-

parts but the actor-role mapping is represented by blue arrows. More precisely it is specified 

that Leonard only acts as Presenter whereas Penny fulfills the role Presenter and Listener 

simultaneously. Sheldon acts as Chairman. The precise assignment of temporal operators for 

an actor fulfilling more than one role is performed in a dialog which is shown on the right 

hand side. Currently it is specified that Penny first acts as Presenter and afterward as Listen-

er. 

 

Figure 6-3 Configuration “Scenario 1” for Cooperation Model "Conference Session" 

As the domain model is defined using a UML class diagram an object diagram is needed to 

define the initial state of the domain objects when starting an animation, simulation respec-

tively (“Domain Instance Sz.1” in Figure 6-3). The object diagram is a visual representation 

of the objects which needs to be valid with respect to the defined domain model in the coop-
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eration model. A detailed description of domain modeling and the object diagram is given in 

Section 6.1.7. 

A configuration can be considered as a concrete scenario under which the cooperation model 

is tested or used. However sometimes one might test only certain features of the model. 

Therefore simulation modes have been introduced to vary the models to be considered dur-

ing animation and simulation. A certain simulation type defines whether a model (e.g., loca-

tion or domain model) is considered during runtime. This also implies whether a precondi-

tion or/and an effect defined over the model is considered at runtime. The modes can be free-

ly combined. The following modes exist: 

 Task Mode. By enabling this mode precondition and effects defined over the task 

model are being considered during runtime. Thus additional execution constraints 

limited to the role based task expression are enabled.  

 Task Cooperation Mode. In contrast to the task mode the task cooperation mode is 

used for preconditions and effects defined over other role based task expressions. 

This mode enables means for modeling cooperation and synchronization between 

different roles. 

 Device Mode. A cooperation model can have a set of device models which can be 

used to enrich the task expressions by preconditions and effects. Whether those de-

vice models are considered during runtime is defined by this mode. 

 Location Mode. In the same vein as the device mode the location mode defines 

whether the location model and correspondingly defined preconditions and effects 

are to be considered at runtime.  

 Domain Mode. This mode specifies whether the domain model is considered at run-

time. Accordingly this also applies for preconditions and effects defined over the 

domain model. 

By the usage of those modes certain features of a CTML specification can be tested and va-

lidated in a more flexible manner.  

The concept of explicit defined goals has been rarely tackled in task modeling languages 

even though user goals are considered in various HCI and task analysis methods [Dix et al., 

1997; Hackos & Redish, 1998; Kirwan & Ainsworth, 1992]. Kirwan and Ainsworth define 

goals as [1992]: 

“desired states of systems under control or supervision” 

which is a common definition of the term. Goals are treated usually as informal descriptions 

and as such cannot be interpreted and evaluated during runtime. Especially when taken into 

account that implicit interaction can be implemented through explicit formal goals this con-

cept becomes interesting for CTML. There are two ways of specifying a goal in CTML: 

 State based Goals. Tasks are performed to reach a certain goal which is defined by 

a certain state of the system. Therefore CTML allows for defining goals by means of 

expressions over the domain model, device model and location model as those de-
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fine the state of the SmE. State based goals correspond to the definition of goals 

from literature. 

 Task based Goals. The execution of a task changes the state of the system and may 

lead to the achievement of a certain goal. Therefore, tasks are rather means to 

achieve goals than defining a goal. However the goal of cooperative task perfor-

mance can be easily specified through a set of tasks to be performed. One can con-

sider the state of the SmE not only by the union of state of the devices, objects and 

location but also by the task state of each actor. Task based goals are a valid and 

easy to use method. This approach is rather pragmatic and may be substituted by a 

state based goal based on the effect of the task of the task based goal. 

Goals define a state in which the performance of tasks is successfully finished. Once the goal 

is reached no other tasks can be executed anymore. This also applies for multi user specifica-

tions. More precisely when an actor executes a task reaching the goal defined in the currently 

applied Configuration not only the actors’ task performance is finished but also the task per-

formance of all other actors is successfully terminated. This implements the hypothesis of a 

common high level goal of all actors which CTML relies on. Obviously there are cases in 

which this hypothesis does not hold. As goals are an optional feature the concept can be 

omitted. 

Explicit goals are useful in different ways. In terms of expressiveness of the language they 

help to define a successful run in an easy to use manner. Especially for cooperative task per-

formance where the envisioned goal is difficult to specify by means of the state of an object 

task based goals offer a simple solution. Another application of explicit goal description for 

CTML is deadlock analysis which will be explained in Section 6.6. Please note that the con-

cept of goals is not defined formally for CTML and is used in a pragmatic way. 

6.1.3 Semantics  

In the last section a brief description of the syntax of CTML has been given. To complete the 

overview the intuitive semantics follows in this section. Please note that this section does not 

provide a rigorous semantic definition (which is given in 6.4) but aims to foster the under-

standing of the rationale of CTML specification. To do so a bottom up approach is em-

ployed. First the semantics of a single task expression is defined. Based upon that, the se-

mantics of a composed task expression for each actor can be defined accordingly. Eventual-

ly, the semantics of the complete CTML animation/simulation based on the prior explana-

tions is described. 

The execution order of the tasks of a single collaborative task expression (e.g., Figure 6-2) is 

determined by the following three criteria: (1) The defined temporal operators (see Table 

6-1), (2) the task-subtasks decomposition, and (3) the preconditions defined for each task. 

In order to illustrate the interplay of all three criteria, let us consider the lifecycle of a task. 

As depicted in Figure 6-4 each task starts in the state disabled. Upon receiving the message 

"enable" a task moves from state disabled to enabled. If, and when, an "enable" message is 

sent depends on the super-ordinate temporal operator as well as the task state of the sibling 

tasks. Table 6-1 gives an intuitive definition of the semantics of all temporal operators de-
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fined in CTML. Upon receive of message "start" an enabled task starts executing by transit-

ing into state running, given that its precondition is satisfied. In state running the task ex-

ecutes its predefined effect (denoted by "do/effect") which becomes externally visible. A 

successful run of the task is denoted by the "end" transition to state completed.  

 

Figure 6-4 Task Life Cycle as State Chart 

At any time a task may be prematurely aborted, as a result of the disabling operator (see Ta-

ble 1 for details). A task that is enabled, or already running can be suspended upon receive of 

the "suspend" message. Once a task is suspended it returns back to its previous state when it 

receives "resume". 

As long as a task is not started, it can be skipped, which is either due to an optional (unary 

[]), iterative (*) or choice ([]) operator. Additionally a task may be skipped when a super-

ordinate task becomes skipped or disabled. Note that each state of the task state chart is 

equipped with so called entry actions whose purpose is to notify the state charts of sub- and 

super-ordinate tasks of state changes. This implements an update mechanism to assure syn-

chronization between all state charts. Table 6-2 summarizes the semantics of task states. 

State  Symbol Semantics 

Disabled        Initial state of a task. It is waiting to become enabled. 

Enabled   or  The task is waiting to start its execution. The first symbol denotes the 

ordinary case: the assigned preconditions are fulfilled and the task can 

be activated. The latter denotes that one or more preconditions are 

currently not satisfied and the task cannot be started (implemented by 

a guard in Figure 6-4). 

Running       The task is currently under execution. It has been started but the ex-

ecution is not yet finished. 

Suspended        The task has been suspended. Keeps waiting until it is resumed. 

Completed        The task has been executed successfully (Final State).  

Skipped        Execution of the task has been skipped (Final State). 

Aborted        Prematurely abortion of task (Final State). 

Table 6-2 Task States, Symbols and Semantics 

In CTML, not only each task but also each temporal operator is represented by a state chart 

which formally implements the semantics given in Table 6-1. 
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Figure 6-5 Generic State Chart of a Temporal Operator 

In Figure 6-5 the generic state chart for a temporal operator is given. It starts in state waiting 

in which messages from superordinate state charts are dispatched to its children. An excep-

tion to this rule is the "enable" message which triggers a state transition to state enableChild-

ren in which the set of subordinate task state charts are enabled according to the semantics of 

the operator (e.g., in case of the choice operator (  ) each child becomes enabled whereas in 

case of the enabling operator ( ) only the first child becomes enabled). Figure 6-5 also por-

trays how the operator state chart handles a temporally inconsistent state which is due to a 

state change of a child. Depending on the current state of the changing child the state chart 

implements the semantics of each temporal operator (e.g., if a child task of the choice opera-

tor is executed all other children become skipped, whereas if a child task of an enabling op-

erator is executed the next sibling task becomes enabled). The operator state chart changes 

its state to completed, if, and only if, all children state charts are in a final state. Otherwise it 

returns to the state waiting.  

By mapping each task and operator to a state chart a network of communicating state charts 

is created, where operator state charts mediate messages between task state charts of adjacent 

levels of abstraction.  

 

Figure 6-6 Task Expression for Chairman at “Conference Session” during Animation 

Figure 6-6 illustrates an exemplary animation of the task expression shown in Figure 6-2 

(here the full task tree is shown). The symbols attached to the task nodes represent the cur-

rent state in accordance with Table 6-2 and Figure 6-4. The tasks Enter Room, Welcome 

Presenter, Present Agenda, Announce Talk and Interrupt Talk have been executed 

(represented by the Completed state). The tasks Open Discussion, Close Session, Announce 

Open Discussion and Wrap-up Session are executable (denoted by the symbol for Enabled 

state). The abstract task Manage Talks is currently under execution and Sit and Listen has 

been skipped. Leave Room is not yet executable since it is in the state Disabled. 



Modeling Tasks for Smart Environments – CTML 

93 

This far we have defined the execution semantics of individual collaborative task expres-

sions. It is now continued with the definition of semantics of a collaborative task model. 

Thereby, the main principles are as follows:  

1. For each role, based on the associated task expression, a network of communicating 

state machines (as shown previously) is created.  

2. With respect to the selected Configuration, for each actor, an individual copy (in-

stance) of the corresponding role state machine network is created.  

3. The resulting state machine networks are composed and run concurrently at anima-

tion time. In essence, a collaborative task model is transformed into a set of concur-

rently running networks consisting of task state machines and operator state ma-

chines. 

An exemplary animation of the Cooperation model in Figure 6-1 with the Configuration 

“Scenario 1” (see Figure 6-3) is depicted in Figure 6-7. The screenshot shows three columns, 

one for each actor. Each column is vertically divided in two parts. The upper part shows the 

currently enabled tasks for the actor (which can be activated on click) whereas the task ex-

pression animation for each role of the actor is shown in the lower part. A tree-like illustra-

tion is used in which the root nodes represent the role-based animations. 

 

Figure 6-7 CTML Animation of “Conference Session” of “Scenario 1” (see Figure 6-3) 

After having introduced the (informal) semantics of CTML specification the different facets 

of CTML specifications for modeling cooperation, devices, locations and the domain are 

examined in detail. The integration of those models into task modeling is achieved by means 

of preconditions and effects. More in detail, tasks are assigned preconditions making state-

ments about a certain state to be fulfilled with respect to cooperation, devices, location 

and/or domain. On the other hand the execution of a task may result in a state change with 

respect to the devices, location and/or domain.  

6.1.4 Cooperation / Team Modeling 

Tasks of individuals in the context of multi user environments or systems are never per-

formed isolated but need to be synchronized with actions of the other individuals involved. 

The dependencies of cooperational tasks performance can be quite complex and are influ-

enced by different aspects such as relation of the individuals, context (work, leisure, etc.), 

organizational structure and others. With respect to task modeling not all such cases can be 
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supported. However, as it had been shown previously the currently existing means to model 

cooperation on a high level of abstraction defining a precise behavior are very limited [Mori 

et al., 2002; Penichet et al., 2008; van der Veer & van Welie, 2000]. Moreover the coopera-

tion of actor of a SmE can be defined on different levels of abstraction: 

 Team-based. Tasks are often not orchestrated directly but by a higher level context. 

In a conference session an agenda usually defines the action items in temporal order. 

In CTML this model is called team model. It defines the orchestration of high level 

tasks and their definition by role based tasks. Exemplary one can define the team 

state Introduction which is based upon the task Introduction of the Chairman. 

 Role-based. Specifying task dependencies on role based level integrates well with 

the CTML modeling approach as tasks are specified on a role based level generally. 

Basically one would specify that a Presenter needs to perform a certain task to let 

the Chairman perform another. As a role can be fulfilled by several actors simulta-

neously quantified statements are needed.  

 Actor-based. Task dependencies are specified between two (or more) actors within 

a configuration. In this vein dependencies can be specified very accurate but need to 

be defined for each pair of actors in every configuration. Regarding the running ex-

ample one would specify that Leonard needs to perform a certain task before Shel-

don starts another. Due to the complexity of such specification mechanism this ap-

proach is dismissed and not followed in CTML. 

In the following paragraphs the used approaches in CTML, namely team-based and role-

based cooperation, are explained in detail. 

As stated above, in CTML a dedicated team model synchronizes role based task specifica-

tions of actors.  

In CTML team-based cooperation is modeled by a dedicated team task model. A team model 

is a certain type of task expression with the constraint that each atomic task is of the type 

team (denoted by a different symbol). In Figure 6-8 an example of a team model is depicted. 

It specifies that Presentation 1, Presentation 2 and Presentation 3 are given in arbitrary or-

der and finally a Discussion is taking place. What constitutes to each team task is defined by 

means of triggers. 

 

Figure 6-8 Team Model for "Conference Session" 

A trigger defines the condition under which a certain team task is started respectively com-

pleted. The conditions are based on simulation states, quantified tasks states (see Table 6-2) 

or location of actors. The semantics of the two types of triggers are described in Table 6-3. 

The explanations in Table 6-3 show that team tasks are virtual tasks as they cannot be ex-

ecuted directly but their state is derived based upon states of role based tasks. 
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Trigger Type  Semantics 

Start Trigger Defines a condition under which a team task is started if it is enabled 

with respect to the semantics of the used temporal operators. 

End Trigger Defines a condition under which a running team task is completed. The 

next team task to be started is selected by examining the enabled task 

set and corresponding Start triggers. 

Table 6-3 Semantics of Triggers 

In Table 6-4 examples of Start and End Triggers are given. The first column specifies the 

team task the triggers are assigned to whereas the latter contains the triggers. The triggers of 

Presentation 1 can be paraphrased as follows: Presentation 1 is started if one Presenter has 

been started the task Start Presentation. Presentation 1 is finished if one Presenter has fi-

nished the talk. In the same vein the semantics of the triggers of the task Discussion can be 

described but in contrast to the prior description the allInstances quantifier is used meaning 

the all actors fulfilling the role named in the trigger need to complete the task to pull the 

trigger.  

The usage of quantifiers (oneInstance, allInstances) is a general approach in CTML whenev-

er a statement is made about a set of tasks which can only occur if the role the task is belong-

ing to is fulfilled by multiple actors. They quantifiers in CTML are comparable to the quan-

tifiers of first-order logic (   ). 

Start Triggers 

Task Trigger 

Presentation 1 Presenter.oneInstance.StartPresentation 

Discussion Presenter.allInstances.FinishTalk 

End Triggers 

Task Trigger 

Presentation 1 Presenter.oneInstance.FinishTalk 

Discussion Chairman.allInstances.CloseSession 

Table 6-4 Exemplary Triggers for Team Model in Figure 6-8 

So far the team model only observes the states of animation/simulation of CTML specifica-

tions. To be truly effective a mechanism is needed to influence the potential task execution. 

In CTML, precondition can be based on team tasks and their states (see Figure 6-4) as team 

tasks run through the same task life cycle by automated triggered transitions. In this vein the 

task execution can be restricted until a certain team state is reached. This allows for model-

ing rich dependencies in handy manner. In summary, team states can be defined over the task 

states of actors and the task execution of actors can be constrained by the employment of 

team tasks for preconditions. 

The modeling of cooperation by means of a dedicated team model is one option in CTML. 

More precisely, CTML allows also for specifying task dependencies on the level of role-

based task expressions as already hinted earlier. Before actual defining the dependencies an 
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interface needs to be defined. Figure 6-9 shows the visual representation of such an interface 

by means of a link. The link specifies that the task execution of the role Presenter can be 

constrained and affected by tasks of the role Chairman (denoted by <<uses>>). The com-

plete interface comprises also the actual tasks to be used in the affected task expression (Pre-

senter in this case). This information is specified by a dialog which has been omitted here. 

Bidirectional dependencies are possible as well.  

In CTML the definition of interfaces between model entities in the cooperation model is a 

general approach. It allows for separation of concerns and helps to manage complexity while 

defining preconditions and effects. Furthermore dependencies are made explicit and as such 

are visible at first glance. 

 

Figure 6-9 Role Dependency for "Conference Session" 

After defining explicitly the interface between two roles the cooperation can be modeled by 

means of preconditions on a role based level. Task based preconditions can address all tasks 

defined in the interface. Again, since several actors may fulfill more than one role quantified 

statements are needed.  

 

Figure 6-10 Task Tree for Presenter at “Conference Session” 

In Figure 6-10 a task expression for the role Presenter is presented. It specifies the process of 

giving a talk at a conference session. First, the Presenter introduces herself followed by the 

configuration of the equipment. The talk is given by explaining each slide denoted by an 

iteration (*). In the end the Presenter responds to the raised questions. Finally the presenter 

leaves the environment. With respect to the task expressions of the role Chairman (depicted 

in Figure 6-2) and the role Presenter (depicted in Figure 6-10) the preconditions shown in 

Table 6-5 can be defined.  

Role Task Precondition 

Presenter Start Presentation Chairman.oneInstance.Announce Talk 

Presenter Respond to Question Chairman.oneInstance.Open Disucssion 

Chairman Announce Open Discussion Presenter.allInstances.End Presentation 

Table 6-5 Preconditions for Tasks of Role Presenter at “Conference Session” 

The first precondition defines that the Presenter is only allowed to start her presentation if 

she had been announced by a Chairman. The second states that responding to questions can 

only be performed if the Chairman has opened the discussion. The precondition of the 
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Chairman states that an open discussion can only be announced if all Presenters have fi-

nished the presentation. Preconditions defined on this level of abstraction integrate well with 

the CTML approach of role based descriptions. Quantifiers are able to specify how many 

actors fulfilling the role are addressed (one or all).  

Please note that team-based modeling is very convenient way of specifying cooperational 

aspects of a CTML specification. However, they are actually syntactic sugar as each precon-

dition addressing a team state can be replaced by an appropriate rephrasing of the trigger. 

This finding is especially important for the rigorous semantics given in 6.4. 

6.1.5 Device Modeling 

In HCI devices have usually been considered as platform on which a UI is rendered and 

which is used to interact with the user. However in SmEs this viewpoint is not sufficient. 

Additionally, devices are used to define the actual capabilities of a SmE and therefore the 

functional state of a device enables, disables respectively, the execution of a task. Therefore 

in CTML not only the static properties characterizing the capabilities are considered but also 

the behavior by means of functions and states.  

In order to allow a high level description device types are specified. Moreover it is defined 

whether a certain role needs a certain device in order to assist the actor fulfilling the role 

during the task performance. Again, this is specified by dependencies on the level of the 

Cooperation Model as depicted in Figure 6-11. 

 

Figure 6-11 Device Dependency for “Conference Session” 

In Section 6.1.2 the concept of Configurations has been discussed. Amongst others it has 

been stated that actors fulfill roles. If a device dependency to a device types exists the actor 

naturally needs a device which fulfills the requirement defined in the dependency (e.g., a 

device capable of operating as Notebook in the given example). Therefore a mapping is 

needed to specify which devices of an actor fulfilling a certain role operate as needed device 

specification. In the same vein as roles abstract from actors, device specifications (e.g., 

Notebook) abstract from a certain device of an actor (e.g., the device of Leonard). 

Besides such personal device specifications bound to a role also stationary devices exists. 

They define the permanent available devices in the environment. Projectors in meeting 

rooms are prominent examples of that issue. The same type of dependencies can be defined 

to roles but no mapping for actors is needed as stationary devices are deployed at runtime 

directly (one for each stationary device defined). 

The properties of a device specification are defined by two different means: 

 Structural Properties. Predefined device components for each device can be as-

signed. They represent the in- and output, network and other capabilities of a device 

specification. Also a generic component exist which can be used to define custom 

properties. 
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 Behavioral Properties. State machines can be used to define the potential device 

state and transition between the states (called functions in the remainder of the the-

sis).  

Please note that the behavior of devices cannot expressed by a finite state machine (due to 

the finity of states). However finite state machines can still be a valid way of abstraction. 

Moreover CTML has not been designed in order to operate a SmE but as means to do analy-

sis, requirement engineering and design with respect to interaction. According to this field of 

application finite state machines are fully sufficient.  

In Figure 6-12 a simplified device specification of a notebook used for presentation purposes 

is given. The notation is taken from the UML [2010]. Rectangles denote states whereas tran-

sitions are represented by direct edges. Moreover the final state is denoted by black dot with 

a circle and the initial state by a black dot. 

The model specifies that the device starts in the state off and transits to on by executing the 

function switchOn (more precisely upon the event switchOn). Then, either the function 

switchOff or startPresentation can be executed which either leads back to off or the state 

presentationStarted, etc.  

 

Figure 6-12 Simplified Behavioral Specification of Notebook for the “Conference Session” 

In order to integrate device modeling into task modeling in CTML also preconditions and 

effects are used. In essence, preconditions assigned to a task with respect to device modeling 

express that the device needs to be in a certain state to execute the task. Contrary, an effect 

with respect to device modeling states the function to be executed when performing the task. 

In this vein the binding of task modeling and device modeling is achieved. 

Role Task Precondition 

Presenter Start Presentation self.device.presentationStarted 

Presenter Leave Room self.device.off 

Role Task Effect 

Presenter Set to Presentation Mode self.device.startPresentation 

Presenter End Presentation self.device.stopPresentation 

Table 6-6 Preconditions and Effects for Role Presenter with respect to Device Modeling 
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In Table 6-6 example of preconditions and effects addressing the device model given above 

are presented. In essence, the device to be addressed needs to be specified. In the examples 

the standard device of the actor is addressed. They can also be addressed by name. Then, for 

preconditions the state needed to enable the task the precondition is assigned to follows. The 

first precondition can therefore be paraphrased as follows: the task Start Presentation can 

only be executed if the device of the actor is in the state presentationStarted. In order to 

leave the room the device needs to be in the state off. For effects, not states are defined but 

functions to be executed when performing a certain task. Thus, the first effect states that 

when executing the task Set to Presentation Mode the function startPresenation is executed 

(if possible). Hence, when ending the presentation the device stops the presentation. 

Please note that deterministic finite state machines are demanded in order to perform formal 

analysis explained in Section 6.5 and Section 6.6. 

6.1.6 Location Modeling 

The integration of location modeling into task modeling for physical spaces is of enormous 

interest. When actors performing tasks in a physical environment like a SmE they move or 

change their places. Certain tasks may only be executable when standing at the right spot. 

This certainly needs to be considered while modeling tasks for SmE. For MB-UI develop-

ment this is important to allocate the UI to an appropriate device whereas in implicit interac-

tion location is used as source of context [Rodden et al., 1998]. 

Different attempts have been made to model the spatial relation of objects and actors in 

physical environments. There are geometric models which define the spatial relation by 

coordinates of the objects. Applications can easily derive containment relation of objects and 

location. A disadvantage of those models is that properties like is connected to are not easy 

to derive.  

Graph-based location models explicitly model this relation. A node specifies a location and 

edges represent connections between locations. Weights can be added to model distances 

between locations. Another type of models uses sets to specify locations and their decompo-

sition into sub-locations. An atomic location is specified by a shape and position. Composed 

locations are defined by a set of existing locations. The containment relation of locations can 

be easily expressed using sub-set relations. Hierarchical models are also based on a set of 

locations which are ordered according to the containment relation. The most used types of 

model combine several modeling approaches to suit the special needs of the application 

[Becker & Dürr, 2005]. 

For CTML a local geometric model which uses a simple set of geometric figures (rectangle, 

ellipse, point) and their compositions. This enables the developer for specifying complex, 

nested locations without making location modeling a burden. In Figure 6-13 a screenshot of 

the location model (and its corresponding graphical editor) is shown. It uses a 2-d model of 

the SmartLab as background to ease location modeling. Moreover, several locations relevant 

for the scenario used before are defined. In essence, the door zone and outside zone are used 

to determine the entering, leaving respectively, presentation and whiteboard zone on the 

upper right hand side are used to define presentation areas. Several further zones are used to 
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determining listening to presentations exist. Please note that the composed location Chairs 

aggregates all zones in which listening to a presentation is envisioned.  

 

Figure 6-13 Location Model for “Conference Session” 

Moreover, to model that a certain role uses the location model an appropriate dependency 

needs to be defined accordingly. In Figure 6-14 such a dependency is depicted. The rationale 

is analogous to the before mentioned dependencies. An interface can be used to define pre-

conditions and effects based on the location model. 

 

Figure 6-14 Location Dependency of Presenter to SmartLab 

With respect to the task expression for the role Presenter denoted by Figure 6-10 the precon-

ditions and effects given in Table 6-7 are defined. The first precondition explicitly demands 

the actor to be in the Presentation Zone to start the presentation. The same applies for the 

second preconditions which states that the actor needs to be in the Door Zone to execute the 

task Leave Room. Hence, the effect of leaving the environment has the results that the actor 

is now in the location Outside. 

Role Task Precondition 

Presenter Start Presentation self.isIn(Presentation Zone) 

Presenter Leave Room self.isIn(Door Zone) 

Role Task Effect 

Presenter Leave Room self.is(Outside) 

Table 6-7 Preconditions and Effects for Role Presenter with respect to Location Modeling 
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6.1.7 Domain Modeling 

In several task modeling languages domain modeling has been integrated successfully. Tasks 

are always executed within a certain work environment and application domain. Considering 

the task model as isolated entity is often insufficient. During executing domain objects can 

be created, destroyed, manipulated or relations between objects are established. In other situ-

ations objects may need to be present or in a certain state in order to execute a task. In Sec-

tion 3.4.3 an overview of existing task modeling languages and different extensions to CTT-

like notations is given. Several extensions fall in the category of domain modeling. Three 

limitations according to the theory and practice of domain and task modeling have been 

identified: 

 Lack of Expressiveness. Some approaches only support very limited capabilities of 

domain modeling. In certain cases only objects are defined (no abstraction of class 

and object). Common concepts like abstractions, associations and generalization are 

not considered. However domain modeling is a complex task which needs appropri-

ate artifacts to truly reflect the domain adequately. In essence, more complex domain 

modeling concepts are needed to provide suitable means for domain modeling 

[Evans, 2003]. Approaches of this category are AMBOSS [Giese et al., 2008] and 

VTMB [Biere et al., 1999b]. 

 Custom Notations for Domain Model. In current software engineering practices 

domain modeling is performed via object oriented analysis and design. State of the 

art artifact for that are the UML class diagrams [Booch et al., 2005; UML, 2010]. 

However in different approaches for task modeling objects are specified using other 

types of formalisms. Representatives of that kind are TaoSpec [Dittmar & Forbrig, 

2003] and CTT [Paternò, 1999]. This is actually very unfortunate as a lingua franca 

is invaluable especially for practice.  

 Lack of Integration. Most task modeling languages consider objects as at least 

noteworthy even though only a few integrate domain modeling in the task analysis 

and modeling process [Caffiau et al., 2008]. Actually most languages consider do-

main objects as notes assigned to tasks. The integration with respect to executability 

of a task and the effect a task has on the environment has only been tackled by a few 

languages such as VTMB [Biere et al., 1999b], TaoSpec [Dittmar & Forbrig, 2003], 

and K-MAD [Caffiau et al., 2008].  

In order to overcome the named limitations above UML class diagrams are used to specify 

domain models. The integration of task modeling and domain modeling is achieved by OCL 

(Object Constraint Language) constraints [UML, 2010; Warmer & Kleppe, 2003] which are 

used as preconditions and effects in CTML. Naturally only a subset of the OCL language is 

employed. OCL is a formal, declarative language based on predicate calculus to define addi-

tional constraints not expressible by other UML model (e.g., the class diagram). Models are 

enriched with OCL constraints to avoid ambiguity and misinterpretation [Fowler, 2004]. 

OCL constraints allow for navigating through the models and making statement about cer-

tain facts that need to hold and define assertion. 
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In order to illustrate the general rationale an example of a domain model with respect to the 

scenario is given in Figure 6-15. If the reader is not familiar with UML class diagrams 

[Booch et al., 2005; UML, 2010] are suggested for further readings. In the illustration the 

relevant entities which have not been captured by the task, location, and device model are 

specified. More precisely devices can be modeled in the device model and domain model 

depending on the viewpoint and elements to be considered as important. Passive elements 

are modeled within the domain model, in contrast to active entities which are represented by 

the device model. 

 

Figure 6-15 Domain Model for “Conference Session” 

The domain model in Figure 6-15 represents the relevant entities for a presenter giving a talk 

in a conference session. In essence, it is specified that a presenter may have a pen and a 

notebook. Moreover a presentation can be stored on a notebook which in turn can be owned 

by the presenter. A presentation consists of slides having a title. Other properties are speci-

fied as well. For example, a flag has been defined in order to denote whether the presentation 

has been already given. Based on such a domain model precondition and effects can be de-

fined representing the binding of task execution and the domain of interest.  

In the same vein as for location and device modeling an interface to the role needs to be de-

fined on the level of the Cooperation Model. The interface specifies the domain types needed 

for the role in order to execute the tasks successfully (see Figure 6-16). In essence, these 

types are used to define preconditions and effects with respect to the domain model. 

 

Figure 6-16 Domain Dependency of Presenter to Domain Model 

A domain precondition is basically a simplified OCL constraint with a Boolean value. An 

effect addressing the domain determines a value to be changed and set a new value. There 

are two ways of specifying preconditions and effects in CTML. Either by starting to navigate 

through the domain model from the actor fulfilling the current role (e.g., Presenter in this 

case) or by defining the context and making a general statement. The latter is used when a 

certain fact needs to be ensured for all instances of a certain type of the model. To illuminate 

both cases example are given in Table 6-8 and can be paraphrased as follows: The first pre-

condition defines that the actor needs a notebook to execute the task Start Presentation. 

Next, it is stated that the notebook of the Presenter need to store the slides of the Presenter 
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for that presentation. An effect defined in this particular case is that ending the presentation 

sets the flag of having presented. 

Role Task Precondition 

Presenter Start Presentation self.notebook<>null 

Presenter Start Presentation self.notebook.stores->includes(self.owns) 

Role Task Effect 

Presenter End Presentation self.presented = true 

Table 6-8 Preconditions and Effects for Role Presenter with respect to Domain Modeling 

As explained before during animation a configuration is selected and used to “instantiated” 

the CTML specification. When using the domain model a representation of the object in-

volved is needed. Object diagrams according to the guidelines of the UML are used [UML, 

2010].  

 

Figure 6-17 Example of an Object Diagram for Domain Model in Figure 6-15 

In Figure 6-17 an example of potential objects is depicted. It represents a concrete situation 

of the domain (the state of the objects). The actor Leonard is defined by an object and he 

owns the presentation to be given. Moreover the presentation has a certain name and consists 

of two slides. With respect to Table 6-8 it can be stated that none of the given preconditions 

are fulfilled. However due to task execution the object model might change and the precon-

dition may become satisfied. An example of an effect is given and results in changing the 

attribute presented of Leonard (if Leonard is the currently executing actor). 

6.2 Executability 

Having explained the modeling elements of CTML, their rationale and the reasons for design 

it is now continued with an important principle of CTML: Validation by Animation which is 

also referred as executability. 

A full CTML specification consists of multitude of entities. When creating such an entity it 

is important to be able to inspect the model. Different ways for doing so exist. Graphical 

editors and viewers can help to foster the understanding of the artifact. Each editor (viewer) 

may highlight different characteristics of the entities. However, such a static view on the 

model is not always sufficient. If the behavior of the model is well-defined (the model is 

successfully validated) it should also be explorable by an interactive walkthrough. By allow-
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ing to explore each model isolated and in combination with other entities different view-

points of the behavior are offered. Therefore, the following guidelines have been defined for 

CTML and its tool support: 

1. Animation. Each entity exhibiting behavior should be interactively explorable in 

isolation and in combination with the whole CTML specification. 

2. Viewpoints. Different tools for animation should be offered to highlight the beha-

vior from different perspectives and on different levels of abstraction. 

These rules have not only been applied for the task model but also for the device specifica-

tions which can also be animated isolated and in accordance with the complete CTML mod-

el. 

6.3 Formal Syntax of CTML 

After defining the syntax and intuitive semantics of CTML in section 6.1 it is now continued 

with a more rigorous definition of the syntax and semantics of CTML specifications. The 

state chart based approach to assign meaning to CTML is appropriated for an intuitive defi-

nition of the semantics. However, also other possibilities exist to do so. Especially in the area 

of process algebra prosperous approaches exist supporting verification algorithms out of the 

box.  

Section 6.1 has already given an overview of the modeling concepts and their composition. 

The concrete syntax has been shown by means of screenshots of the graphical editors. In the 

following paragraphs only the abstract syntax is presented. 

We start to define the syntax in a top-down approach. Basically we decompose a CTML 

model into its subcomponents until a convenient level of detail is reached.  

Definition 6-1 (    ): CTML is defined by the following tupel: 

               

1.      denotes the Cooperation Model (Section 6.1.1) and 

2.   is the set of configurations (Section 6.1.2) used to hold runtime information for a 

concrete animation.  

Definition 6-2 (    -Cooperation Model): The cooperation model is defined by the tupel: 

                                

    are the set of roles, respectively task names.   is a total function assigning each task 

name a certain task type: 

                                           

   denotes the set of task expressions with: 

                                

Please note that in the remainder of the thesis     always denotes the task expression of the 

role   even though this is formally not correct as    is a set. In detail, a function is needed to 

specify such mapping. For reasons of brevity this function is omitted as it is trivial. 
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       is the set of task expressions valid for the role  . To introduce        we need 

further definitions: 

Definition 6-3 (   -Qualified Task Names for r): Let   be a role and   be a set of task 

names then     is defined as:  

                

    defines the set of qualified task names for the role   in accordance with the set of task 

names  . Based upon this definition we define        inductively as follows: 

Definition 6-4 (      -Qualified Task Expressions for r): Let     be the set of quali-

fied task names of  . Let    and    be qualified task expressions (             ), 

      and         
 and         

 be preconditions and effects 

with                      and                  , then the following expres-

sions are also qualified task expressions: 

                                                       

    
    

                
              

  

Please note that no effect related to tasks exists. This is due to ensure semantic consistency 

throughout CTML as effects with respect to tasks would imply to manipulate tasks which are 

not executed by any actor of the system. Moreover, Definition 6-4 only allows the definition 

of effects for atoms (in contrast to preconditions). This restriction is necessary to allow a 

consistent semantics which is only feasible if atoms change the world state (e.g., what is the 

effect of a choice expression?). 

Definition 6-5 ( -Location Model):   defines the location model (Section 6.1.6) of     . 

More precisely,   is defined by the tuple: 

          

Let   be the set of location names, and   be an irreflexive, antisymmetric, transitive function 

assigning locations its super-ordinate locations (compose-of function): 

         

Definition 6-6 (  -Device Specifications):    is a set of Device Specifications ( ) whe-

reas: 

                        

With      being a unique identifier,     are non-empty sets of states and functions, respec-

tively,      is the initial state,         defines the non-empty set of final states, 

        is the transition function mapping a pair of state and function with a proceed-

ing state. 

Definition 6-7 (   -Stationary Device Specifications):    is the set of stationary devices 

which are denotes by: 

      

As a device may be assigned to a role as equipment a relation is needed expressing this: 
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The formalization of UML class diagram is still a vita research area, in particular with re-

spect to OCL constraints as the usage of the entire expressiveness of OCL leads to undecida-

bility [Cabot et al., 2008] as first-order logic itself is undecidable in general and OCL is 

more expressive. In [Berardi et al., 2005] a formalization of UML class diagrams based on 

first order logic is proposed which does not only give advice how to formulize a certain class 

diagrams but also supports the definition of formulas ensuring certain validation (type con-

sistency of associations, multiplicity of associations, inheritance properties such as disjoint-

ness, completeness, etc.). The general approach relies on introducing a predicate for each 

class, association, and attribute. Even though the approach has been defined for refactoring 

UML class diagram to prove congruence and equivalence between two specifications, it is 

also valid to formulize the domain model here. In order to do so, some syntactical elements 

are not considered here for reasons of understandability. The entire formulization can be 

found in [Berardi et al., 2005]. The definition of the domain model is very simple as the 

structural properties are not relevant during animation, execution respectively. 

Definition 6-8 (  -Domain Model): The domain model is defined by the tuple: 

                

with            being a set of predicates for classes, associations, and attributes, respec-

tively. 

In order to exemplify this rather simple definition it is shown how the domain model given 

in Figure 6-15 can be formulized using Definition 6-8. Here, only a part of the whole forma-

lization is given. The complete model is given Appendix A.1. 

For each class a unary predicate is defined which denotes that a certain object belongs to a 

class (here only for presentation and slide): 

                              

For each association a binary predicate is defined denoting that two object in relation with 

each other (here only for consistsOf): 

                        

For each attribute a binary predicate is defined denoting the object and the corresponding 

value of that attribute (here only for title). Please note that types are omitted here: 

                                   

As stated before, in [Berardi et al., 2005] a set of formulas in first order logic are given 

which assures consistency and structural validity. A formula expressing that the attribute title 

can only be defined for objects of the type Slide: 

                        

Having defined the major entities of the Cooperation Model, it is now continued with pre-

conditions and effects of different types. 

Definition 6-9 (       -Task Precondition): A task precondition is defined by the tuple: 
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with         (     of     ) and                    . Whereas the first defines the 

task to be addressed by the precondition the latter defines whether all actors fulfilling the 

role need to execute the task ( ), only one actor need to perform the task ( ) or only the cur-

rently executing actor ( ). 

Definition 6-10 (         -Domain Precondition): A domain precondition is defined by 

the tuple  

                       

with              (see Definition 6-19) being a object name,              being 

an association or attribute name and       being the value to be tested. 

Definition 6-11 (         -Device Precondition): A device precondition is defined by the 

tuple: 

                   

with       and         (of  ). A device precondition defines that a certain device (de-

noted by   ) needs to be in a certain state in order to be fulfilled. 

Definition 6-12 (           -Location Precondition): A location precondition is defined 

by  

          

with     (of   of     ). This definition states that the currently fulfilling actor needs to be 

at a certain location ( ) to fulfill the precondition. 

Definition 6-13 (         -Domain Effect):  

                       

with              (see Definition 6-19) being a object name,              being 

an association or attribute name and       being the value to be set. 

Definition 6-14 (         - Device Effect): A device effect is defined by the tuple: 

                      

with       and            (of  ). A device effect defines that a function is executed 

on a certain device (denoted by   ). 

Definition 6-15 (           -Location Effect): A location effect is defined by  

             

with     (of   of     ). This definition states that the currently fulfilling actor moves to 

the location ( ) by executing the assigned task. 

After having defined the tupel      the abstract syntax of configurations   needs to be de-

fined. 

Definition 6-16 (  -Configurations):   is the set of configurations where each item has the 

following form: 

                  

A configuration is consisting of a set of actors and the objects.  
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Definition 6-17 (     ): An actor is defined by the following tuple: 

                                             

with      being a unique identifier,          denoting the initial location of the actor 

               , and     being the set of device names belonging to the actor.   denotes 

the projection of a tuple (                     ). This notation is used in the remainder of 

the thesis. 

   defines the set of roles the actor is fulfilling: 

       

Moreover the total function              assigns each device specification assigned to the 

roles of the actor a corresponding device of the actor in order to fulfill the requirements of 

the device specification of the Cooperation Model. 

                              

                      

The actor expression    defines the temporal order of roles an actor is fulfilling: 

         

Definition 6-18 (      -Actor Expression of  ): Let    be the set of roles for the 

actor  . Let    and    be an actor expressions (           ),     , then the follow-

ing expressions are also actor expressions: 

                                                           
    

       

Definition 6-19 (       ): Let                 be a domain model, then the set of 

        is defined by the tuple             with   being a set of object names,     being 

the set of existing associations according to the defined association predicates in    , and 

    being the set of attributes for each object according to the defined predicates in      

In order to exemplify the given definition above the Scenario shown in Figure 6-3 is formu-

lized in the following paragraphs. Please note that not all specified information have visual 

counterparts in Figure 6-3. In such a case the reader is reminded and further information is 

given. 

The Running Example – Configuration Scenario 1 

A scenario is a tuple consisting of a set of actors and objects: 

                            

The set of actors is defined as follows: 

                

(Abbreviated for sh - Sheldon, le - Leonard, pe - Penny) 

Each actor is a tuple as well. The first item denotes the name of the actor. The second one 

specifies the initial location of the actor which is specified with respect to the complete run-

ning example in Appendix A.1 (out is abbreviated for outside). There is no visual representa-

tion of the initial location in  Figure 6-3. The location is specified in a dialog. Next, the set of 
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device instances is defined which denotes the personal devices the actor is carrying with. 

Again no visual counterpart exists. This information is specified in a dialog as well. In the 

case of Sheldon (sh) the set is empty. Leonard (le) and Penny (pe) each carry a notebook. 

The next item defines the set of role the actors is fulfilling. Sheldon acts as Chairman (c), 

Leonard as Presenter (p) and Penny as Listener (l) and Presenter. Then, a mapping is speci-

fied which associates device specifications with device instance of the actors. This informa-

tion is specified in a dialog as well. This mapping is needed to denote what kind of role the 

device instance is going to play in the scenario. Finally, the actor expression is given. In case 

of Sheldon and Leonard only the role name is used as actor expression. Therefore the beha-

vior is only defined by the role task expressions defined in the Cooperation Model. In case of 

Penny a complex actor expression is specified. It specifies that Penny firsts acts as Presenter 

followed by being a Listener. 

                      

                                             

                                                 

The object model of Scenario 1 is given in Figure 6-17 and can be formulized as follows: 

                       

The set of object names is: 

                                         

The set of associations of the objects is: 

     
                                                    

                            
  

The set of attributes of the objects is: 

     

                                                               

                                     

                                            
  

6.4 Semantics of CTML 

After having defined the abstract syntax in an unambiguous manner it is now continued with 

a precise semantic definition of CTML.  

CTML has been defined to model the potential behavior and interaction of users and system 

in SmEs. Moreover modeling is performed from user perspective and user tasks are the cen-

tral driving force of progress in the model. However CTML is a model which may contain 

inconsistencies and therefore a rigorous semantic definition is beneficial.  

For CTML an interleaving semantics is used as semantic foundation. This decision has been 

made for several reasons. First and foremost it is claimed that interleaving semantics is a 

suitable abstraction for task modeling. Naturally real world tasks are executed simultaneous-

ly but with respect to interaction interleaved execution is fully sufficient. Next, interleaving 

semantics is an intuitive semantic domain for CTML. The interleaving semantics of a task 
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expression can already be comprehended at a glance for skilled users. This is particular of 

importance while designing the model to shorten feedback cycles. In the subsequent para-

graphs it is shown that CTML can be straightforwardly transformed into in an appropriate 

artifact which in turn has already been mapped to interleaving semantics. 

In comparison to the previously explained meaning of CTML based on state charts it can be 

said that interleaving semantics is a simplification of the state chart based approach of Sec-

tion 6.1.3. Subsequently it is shown that the hierarchical decomposition of tasks is eliminat-

ed. Task models are therefore considered only as expression in which only leaf tasks are 

represented by their identifiers. 

Precise semantics in CTML are assigned by a preprocessing step which normalizes CTML 

models. Then, based upon inference rules a LTS (see Definition 4-1) is derived. The LTS 

precisely defines the state space of the CTML specifications as well as the transitions by 

means of executing an action (an atomic task). 

 

Figure 6-18 Semantic Definition of CTML 

The basic idea is to derive a LTS based on a task expression (see Figure 6-18). In order to do 

so it is started with a Cooperation Model and a selected Configuration. Then, the model is 

transformed into a homogeneous qualified task expression and a representation of the initial 

world state by literals and functions assigning the qualified task (sub) expressions their nor-

malized preconditions and effects. The first represents the task expression to be translated 

into a LTS whereas the second and third are used to give meaning to preconditions and ef-

fects. Afterward inference rules are used to derive a LTS from the qualified task expression 

which eventually defines the semantics precisely. More precisely the qualified task expres-

sion is stepwise translated into a LTS model.  

6.4.1 Transformation 

As depicted in Figure 6-18 the input for this phase is a CTML Specification with a selected 

Configuration. The result of the transformation is an intermediate specification consisting of 

a qualified task expression, a set of literals, and functions assigning task expression precon-

ditions and effects (see Definition 6-26). In the following paragraphs the creation of each 

item is explained in detail. 

More precisely, the transformed model represents the initial state of the LTS on which the 

inference rules are applied until the complete state space is explored. In this vein the result-

ing LTS is obtained. 
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Given a CTML (             ) with a select configuration (     ) the following 

definitions are needed in order to specify a transformation: 

Definition 6-20 (      -Qualified Task Names for CTML): Let           of    and 

let                   (denoting the projection of the tuple,    in this case), then we 

define the set of qualified task expression of a      model as: 

                              

 

   

  

       consists of triples         with                   . It defines all atomic 

actions for a given CTML with respect to a selected Configuration   . 

Definition 6-21 (         -Qualified Task Expressions for CTML): Let        be 

the set of qualified task names of a CTML model. Let    and    be qualified task expressions 

for a CTML specification (               ),          ,     ,     ,      be func-

tion symbols, then the following expressions are also qualified task expressions: 

                                                         

    
    

                                  

Please note that according to this definition preconditions may be assigned to complex quali-

fied task expression whereas effects are only valid for atoms (qualified task names) as a state 

change of a system need to be bound to an action. By allowing complex task expressions it 

would not be possible to determine which action is responsible for a certain state change 

(e.g., the effect of       ) is not clear). 

In order to introduce the set of literals used in the prior given definition further definitions 

are needed. The definitions of terms, function symbols and predicates are adopted from First 

Order Logic [Russell & Norvig, 2003]. 

Definition 6-22 (    -Set of Terms): A term is inductively defined by: 

(1) Any constant is a term ( ). 

(2) Any variable is a term (     ). 

(3) Function symbols are terms:            denotes the function symbol   with 

        are terms themselves.   is the arity of the function symbol (           ). 

Definition 6-23 ( -Set of Predicates): Let              be terms then all Predicates 

(e.g.,      ) defined over      (                    ) are belonging to  .  

Please note that this form of Predicates is often also referred as Atomic Sentences of First 

Order Logic [Russell & Norvig, 2003]. 

In order to define the transformation the set of terms and predicates for the domain of CTML 

need to be defined.  

Definition 6-24 (        -Set of Terms for CTML): Terms for a CTML model are the 

following (             ): 

(1) All names of actors of the selected configuration are constants and as such are terms 

(  of   ). 
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(2) All names of locations defined in the Location model of      are constants and as 

such are terms (  of the   of     ). 

(3) All names of objects defined in the         of the selected Configuration are con-

stants and as such are terms (        of    ). 

(4) All names of devices specifications defined in the set of device specifications of 

     are constants and as such are terms (  of    of     ). 

(5) All device states of each device specification of the set of device specifications (   

of     ) of      are constants and as such are terms (denoted by the set  of  ). 

(6) All functions of each device specification of the set of device specifications (   of 

    )  of      are constants and as such are terms (denoted by the set   of  ). 

(7) All names of devices of each actor of the selected configuration are constants and as 

such are terms (denoted by the set     of each actor). 

Having defined the terms for a CTML model it is now continued with the definition of pre-

dicates specifying relations of terms: 

Definition 6-25 (        -Set of Literals): Let                             be 

terms then the following predicates over          are Literals (         ): 

(1)               associates a certain actor (name) with a certain location (name). The 

interpretation is that an actor is at a certain location. 

(2)                         associates a certain object (name)   with a certain 

attribute name with its value. The interpretation is that the attribute with the name 

     of object   is of the value      . Please note that value can be of any kind. 

Thus also association relating two objects can be specified by means of the attribute 

predicate. 

(3)                     associates a certain device (name) with a certain device speci-

fication (name) and a certain device state (name). The interpretation is that a device 

is in a certain state by fulfilling a certain device specification.  

(4)                  associates a certain device specification (name) with a current 

state (name), a function (name) and the resulting state (name) after executing  . 

Intuitively the terms define the entities in a CTML model. The predicates represent the 

knowledge about those entities necessary to interpret preconditions and effects. During the 

transformation process the abstract preconditions and effects introduced (in Definition 6-9 - 

Definition 6-15) are translated into statements querying or manipulating the defined know-

ledge (       ).  

After having defined all necessary prerequisites it is now continued with the definition of the 

intermediate specification and its creation based on a CTML model and a selected configura-

tion. 

Definition 6-26 (      -Intermediate Specification): The result of the transformation in 

Figure 6-18 is an intermediate specification which can be defined as the tuple 
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with                   denoting the qualified task expression for a CTML specifica-

tion with respect to a selected configuration (  ).   (        ) denotes the set of literals 

expressing the initial state of all actors and devices which are necessary information to eva-

luate preconditions and apply effects.  

The unary function                       (with                    ) maps 

qualified task expressions to a tupel consisting of a quantifier and a sub set of qualified task 

names which serve as precondition. Informally the quantifier denotes which tasks (either all 

or one) of the qualified task names need to be executed in order to enable the precondition. 

     is a unary function mapping qualified task expressions to a set of preconditions 

(                          ).      denotes the power set of  . 

In contrast     is a unary function mapping qualified task names to tupels specifying the 

effects of the task. An effect is defined by the tupel        
     .   specifies the set of 

variables,    denotes the set of predicates with variables which needs to hold to apply the 

effect.       define the set of positive, negative respectively effects to implement the effect.  

In order to implement preconditions and effects the situation calculus is used. For each ac-

tion manipulation or needing the world state in order to be executable entries in these func-

tions are created. The functions define how the execution of an action affects the world state. 

Within an effect, the positive effects are facts which are true after execution (e.g., the actor is 

in front of the audience) whereas negative effects state the facts which are false after execu-

tion (e.g., the actor is not behind the audience). In the situation calculus the current world 

state is not defined explicitly but by the initial world state and the execution history manipu-

lating the world state and thus defining the current world state implicitly [Russell & Norvig, 

2003]. In CTML the preconditions and effects are rather simple with respect to the theory of 

the situation calculus. Thus functions are fully sufficient. Moreover negative effects are syn-

thesized from the positive effects which is clarified in the subsequent paragraphs. 

In order to create an initial state representing the knowledge about the entities in a CTML a 

sub set of         is created by applying the following rules: 

(1) For each actor of the selected configuration the initial location is specified by the 

         predicate (        ).  

                           

 

   

      

(2) For each object belonging to the selected Configuration the attributes are specified 

by the attribute predicate (              ,                ). Please note that 

the elements in the set     are binary predicates with the predicate name denoting 

the name of the attribute. In the formalization of the world state a general attribute 

predicate is introduced taking as parameter the name of the attribute. Moreover asso-

ciations also formulized by this approach. 
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(3) For each device belonging to an actor the device specifications the device is fulfil-

ling and their initial state is captured. 

                                                                  

 

   

 

(4) For each stationary device specification a device is created and specified in the 

            predicate in accordance with its initial state (           ). 

                                      

 

   

       

(5) For each device specification the transitions function   is expressed using the       

predicate. 

                                      

 

   

           

The initial world state is therefore specified by the following formula: 

                   

In (1) the initial locations of each actor are collected and specified as          predicate 

with the actor name (using the projection of tuples). (2) formulizes attributes and association 

of the objects of the domain using the           predicate. Next, (3), the personal devices of 

each actor are specified as literals with the device specification they are fulfilling and the 

initial state with respect to the device specification as state chart. In (4) the initial state of 

each stationary device is specified as literal. In the last formula the transition function of 

each device specification is expressed via the       predicate. Whereas the rules (1) - (4) 

represent facts which may change over time the last rule specifies structural knowledge 

about the present device specifications. These facts are not adapted due to task execution but 

used in order to interpret effects. 

In order to exemplify the given definition Scenario 1 in Figure 6-3 is consulted. The scenario 

has already been formulized in Section 6.3. Please note that the actors Sheldon and Penny 

are omitted here. The complete example can be found in Appendix A.1. 

The Running Example – The Initial State of Scenario 1 

The complete initial state is consisting of the following sets: 

                      

For each actor (in the example only for Leonard) the          predicate is used to specify 

the initial location of the actor. The interpretation of the predicate is that Leonard is Outside. 
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For each attribute and association an           predicate is created which specifies the name 

of the attribute, association respectively, the object it is belonging to and the value. For ex-

ample the predicate                            expresses that Leonard (le) has the 

name Leonard, etc. 

                                     

For each device instance the assigned device specification with its initial state is specified by 

the             predicate. In the example only Leonard has a device instance with the name 

      which fulfills the device specification          whose initial state is    . 

                                           

In the same vein as for the device instance the standalone devices are formulized. The only 

difference is that the device instance is filled up with the device specification name. This is 

not necessary but avoids the definition of a binary             predicate. 

   

                                                         

                                                               

                                                            
  

For each device specification the state transition relation is specified by the       predicate. 

This is necessary to encode the device specification in the state to apply effects.  For exam-

ple the predicate                             specifies that for the device specification 

          by executing the function     in the state     leads to   . 

Having defined the initial state of CTML model with respect to a certain configuration it is 

now continued with the description of how to transform a CTML model with a certain Con-

figuration into a homogenous task expression. 

Let           of    (      ),       be actor expressions of    (            of   ), 

  be a role (     of   ),          be task expression of   (            ),   be a quali-

fied task name of the role   (     ), then the qualified task expression of a CTML model 

     is created as follows: 

The transformation algorithm itself is top down algorithm starting with composing the quali-

fied task expression of all actors of the selected configuration    using the concurrent opera-

tor (rule (1)): 

(1)  
                 

           

                                 
  

 

Table 6-9 Transformation of Actors 

An actor is transformed by transforming the role expression of   (rule (2)) with (         

     ). Moreover the algorithm transforms complex actor expressions by transforming each 
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sub expression (rule (3),(4),(5), and (6)). When a role is encountered the task expression     

is transformed by rule (7). 

(2)                        

(3)                                                           

(4)         
            

  

(5)         
            

  

(6)                        

(7)                     
 

Table 6-10 Transformation of an Actor 

A task expression is transformed in the same vein as an actor expression by descending in 

the hierarchy of complex task expressions until an atom is reached (rules (8), (9), (10), and 

(11)). In addition preconditions and effects are part of task expressions and need to be trans-

formed following the same approach (rule (13) and (14)).  

(8)                                                              

(9)          
             

  

(10)          
             

  

(11)                          

(12)                                          

(13)                                          

(14)                    
 

Table 6-11 Transformation of a Qualified Task Expression 

As preconditions and effects in the role based task specifications contain abstract precondi-

tions they need to be adapted in order to address the fulfilling actor. Therefore a transforma-

tion of those preconditions and effects need to be performed accordingly. In order to do so 

the type of precondition respectively effects is used. For each type a specific translation is 

given in Table 6-12 and Table 6-13.  

The translation of task precondition depends on the used quantifier. In the intermediate spe-

cification the preconditions in the task expression are homogenous. Three different quantifi-

ers exist: for all ( ), exist ( ) and exactly one ( ). The first two are translated by adopting the 

quantifier and collecting the qualified task names to be addressed (rule (15)). The addressed 

tasks are all qualified task names of actors who are performing the role specified in the pre-

condition. For the latter no counterpart in the intermediate specification exists. The meaning 

of the quantifier is that exactly the executing actor is addressed by the precondition. There-
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fore the quantifier can be rewritten by the all quantifier with the appropriate task name (rule 

(16)). 

The subsequent preconditions (rule (17), (18), and (19)) do not address the tasks but the do-

main, devices and location of actors. In order to implement these formally first order logic 

introduced earlier is used. In essence, the current true facts during task execution are speci-

fied by means of literals according to Definition 6-25. 

Domain preconditions specify that certain domain objects need to be present in order to ex-

ecute a task. The specification of a domain precondition already contain all entities to create 

a suitable representation based on the predicate           (rule (17)). More precisely, the 

preconditions are transformed by adding a suitable entry in the      function which assigns 

task expression to evaluable preconditions. 

Device preconditions define that a certain device needs to be in defined state in order to ex-

ecute the addressed tasks. A CTML specification contains only abstract device preconditions 

which need to be translated accordingly. More in detail, during modeling device specifica-

tions are referenced. When translating the model into an intermediate specification those 

device specifications need to be bound to devices of actors (rule (18)). If the device is a sta-

tionary device then is used directly as name. In the other case the devices of the current actor 

are consulted in order to determine the device of the actor implementing the device specifi-

cation of interest. The result of the translation is a statement which can be evaluated with 

respect to the set of literals for the CTML specification (     ). 

In the same vein as device preconditions location preconditions are translated (rule (19)). 

More precisely, an abstract precondition is translated into a predicate evaluable with respect 

to the set of literals. As preconditions may not only be assigned to atomic task the nested 

task expression of the precondition needs to be transformed (denoted by          ). 

Please note that    denotes the name of the element  . More precisely the following formula 

assigns to each element a name: 

    
             
             

      

  

As the sets   (denoting the actors of the selected Configuration) and   (denoting the de-

vice specifications of     ) consisting of tuples the projection to their names is used. Oth-

erwise it is assumed that   is a name. 

The overriding operator ( ) is used to update functions (such as              ) which 

creates a function based on two functions by the union of pairs but with the restricting of 

overriding the already mapped values of the first function with the values from the second 

one. The operator is adopted from Z [Woodcock & Davies, 1996]. 

(15)                                    
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(16)                                    

                             

                                      

(17)                                         

                        

                                                      

(18)                                         

                  

                                                        

    
        

                                              
  

(19)                                     

         

                                             
 

Table 6-12 Transformation of Preconditions 

In the same vein as the preconditions effects are translated accordingly. The general ap-

proach of substituting the abstract effects with function symbols which can be interpreted by 

inference rules with respect to the current world state is identical. However the function     

associates atoms (      ) with tuples specifying the effect of the action execution. An ef-

fect consists of the tuple        
     . As the world state is of importance to apply an ef-

fect appropriately it is not an option to ground the terms already. For example the following 

state after executing a function on a device depends on the current state when applying an 

effect. Therefore variables are needed ( ). When applying the effect those variables are re-

placed by appropriate values depending on the world state. In order to do so statements are 

necessary characterizing the needed literals in the world state to apply an effect (  ). When 

applying the effect the variables are grounded so that    is true in the current world state. 

This grounding is then applied to the positive and negative effects. Thus state dependent 

effects can be defined. If    does not contain any literals no restriction on the positive and 

negative effects is defined. All suitable literals are removed in case of negative effects or 

added in case of the positive effects to the world state. 

An abstract domain effect is implemented by adding an entry to the function assigning a task 

expression to a transformed effect which is consulted during evaluation of the effect (rule 

(20)). According to the given explanations above the tuple of      is constructed using only 

one variable  . The positive effects are specified by the attribute predicate which needs an 

object name, an attribute name and a value. The negative effects state that the old values 
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need to be removed. If the tuple specified in the abstract domain effect represents an attribute 

(see Definition 6-19) then only the old value of the attribute needs to be removed. Associa-

tions are also specified by the attribute predicate and defined by only one literal. In essence, 

they are specified as ordinary attributes. However, as associations can also be navigatable 

from the other object involved both “sides” need to be considered. Thus, two literals are 

named in the negative effects    which represent both cases. 

A device effect is transformed by a function symbol in the task expression (    ) and with 

appropriate entries in the function     (rule (21)). The tuple of      is constructed accor-

dingly to the given explanation above. More precisely two variables are needed.   is 

representing the current state of the device whereas   is denoting the subsequent state which 

results from executing the device function  . In order to ground   and  ,    states that the 

current device state need to exist in the world state (                     ) and that the 

device is able to transit from this current state by the function   to the subsequent state 

(                 ). The positive and negative effects are then defined accordingly. The 

positive effect is the new state of the device. The negative effect specifies that the old state 

of the device is not available anymore.  

For location effects the approach is analogous but slightly simpler as no variable is needed to 

represent the subsequent location as this is not state dependent (rule (22)). 

(20)                                     

                      

            
                  

                           

                               

    

                                            

 
                      

                     
                      

  

                          

(21)                                     
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(22)                                   

         

            
                  

                    

                     

                    

                          
 

Table 6-13 Transformation of Effects 

The transformation result of qualified task name of an actor with a certain role is the triple of 

actor, role and task name. This is the most fine-grained entity in the intermediate specifica-

tion. When an atom is reached (     ) it is transformed by the function     (rule (23)). 

(23)                                                     
 

Table 6-14 Transformation of a Qualified Task Name 

By applying the rules (1)-(23) a CTML model (             ) with a selected configu-

ration (  ) is translated into a homogenous qualified task expression in which each atom has 

the form         with         ,            , and            .  

The Running Example – Transformation to Qualified Task Expression 

In order to show the rationale of the previously described transformation algorithm an ex-

cerpt of the running example (which is completed described in Appendix A.1) according to 

the “Conference Session” is used. The task expression in Figure 6-19 has been selected. For 

each atomic task, Welcome Presenter and Present Agenda, a location precondition is defined 

to ensure that these tasks are only executable if the currently executing actor is in the Presen-

tation Zone (               ). 

 

Figure 6-19 Partial Task Expression of the Role Chairman  

The abstract syntax of the given task expression is as follows: 

                                 

To be able to transform that task expression to an intermediate specification a scenario is 

needed, named            , which precisely assigns actors to roles (amongst others). Taking 

a slightly adapted version of the Scenario 1 which defines that Sheldon acts as Chairman 

(with the task model for the chairman given above) the transformation can be started as de-

fined by the given rules: 
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Rule(s)          
                                     

(1)         

(2)           

(7)             

                                        

(8)                                                  

(12), (19)                                             

                                                

(12), (19)                                             

                                                

(14),(23)                                           

(14),(23)                                      

Accumulated the function assigning preconditions based on the state defined in   can be 

expressed by: 

                                                                   

Having applied the previously rules and transformed the model into a homogeneous task 

expression with according functions specifying preconditions (     as given above and 

      ) and effects (     ) the LTS can be created. 

6.4.2 Inference Rules 

Throughout this thesis LTSs (see Section 4.5 for the formal definition) are the semantic do-

main of choice. They define an interleaving semantics. In order to define a precise semantics 

for CTML the intermediate specification (see Figure 6-18) is translated to a LTS by a set of 

inference rules. The derivation is based inference rules which transform an expression into 

another when certain hypotheses are fulfilled. The basic structure of such an inference rule is 

as follows: 

                       

          
 

The statement above the fraction defines the situation when the conclusion, the statement 

under the fraction, is derivable. Each rule defines how a certain expression is stepwise trans-

lated to a LTS. In more detail, an action (an atomic task) is only executable if and only if it is 

derivable from the inference rule. By the execution of an action the task expression is trans-

formed by the applied inference rule. Additionally the action history and the word state 

needs to be adapted accordingly. 
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In order to understand the semantic domains of LTSs for CTML it has to be defined what 

constitute a state in the LTS. A state represents the current task expression which is to be 

further transformed (e.g.,    ), the action history (denoting the set of already executed 

actions) (e.g.,        ) and the set of currently true literals (e.g., 

                                        ). The initial state of the LTS can be 

straightforwardly derived from the intermediate specification as the task expression is part of 

the tuple       . The action history is empty in the initial state and the set of literal. In es-

sence, a LTS state is defined by the tuple         with   being the task expression in the 

current state,   being the literals in the current state and   being the set of already executed 

tasks. The functions assigning preconditions and effects in the intermediate specifications are 

consulted but do not constitute the state because they not modified during creation of the 

LTS. 

In terms of a LTS executing an action results in a transition from the current state into the 

subsequent state. Thus with each transition the task expression is translated until only an 

action is left which is also eventually translated to the empty task expression. Finally a spe-

cial state is created denoting the termination. 

In order to foster the understanding of this approach an example of a LTS is given here. The 

initial task expression is given by            . 

 

Figure 6-20 The Semantics of a Task Expression visualized as LTS 

The LTS                                                                               
                                     can be visualized as the graph depicted in Figure 

6-20. For reasons of clarity numeric labels instead of the actual task expressions are used 

(Table 6-15 explains the mapping). Please note that invisible actions and corresponding 

states are removed from the example in order to foster understanding. 

Label Expression  Label Expression 

1                    6               

2                7               

3                8                    

4                9                 

5                  

Table 6-15 Mapping of Labels to Expressions for the Example 
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A LTS is interpreted by its current state and the action enabled in its current state which are 

represented by outgoing transitions. In Figure 6-20 the initial state of the LTS is    

        . Thus the first action being executable are   and  . When   is activated the 

state of the LTS switches to       in which   is enabled. The subsequent actions are 

performed in the same vein until the empty task expression      has been reached. Then the 

LTS propagates  and successfully terminates in the state   (more precisely 

               ). It is the special state which is added to the definition of a LTS for con-

venience in order to denote the termination. The other branch can be traced in the same man-

ner. 

In the following paragraphs for each operator and for preconditions and effects the inference 

rules are listed and explained. In order to illustrate the inference rules the intended semantics 

of the operators are explained in detail. 

Again it is pointed out that not only the qualified task expression        is stepwise trans-

lated but also the action history   (denoting the history of action executed) and the literals 

which are needed to give meaning to preconditions and effects (which are empty in the ex-

ample above). Moreover the action history   is used to evaluate preconditions based on 

tasks. 

Before introducing the inference rule some syntactical transformations are performed to re-

duce the number of inference rules. More precisely, the unary optional operator is replaced 

by the binary choice and the unary finite iteration operator is flattened by the binary enabling 

operator. 

              

An optional execution of a task can be rewritten by the choice of the task and the empty task 

expression. In order to simplify the rules the empty task expression is introduced. Following 

the convention of process algebra the empty task expression is named     . 

The same applies for the finite iteration operator. The semantics of the unary finite iteration 

operator is the n-ary execution of  . It can be rewritten by     enabling expression. It is 

transformed by the following the recursive algorithms: 

                     

        

Having normalized optional and iterative task expressions, the inference rules for CTML are 

given and illustrated. Please note that the inference rules transform LTS states based on the 

initial state derivable from the intermediate specification. However, most rules focus on the 

pure task expression. Therefore the standard way of interpreting such a rule is only to con-

sider the state as task expression. In this vein, obsolete projections on tuples are avoided. If 

the whole state including action history and state of literals is of interest it is explicitly stated.  

The simplest task expression is the empty task expression. The only action      can produce 

is  after it terminates. The corresponding rule for this special term is as follows: 
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Successful Ter-

mination 

(1)  

    
 
   

 

 

The next rule specifies the execution of an action. There is no hypothesis as no condition is 

necessary in order to derive the LTS for this case. It defines that an action can be translated 

to an empty expression by defining a transition in the LTS between those states. Moreover it 

states that the execution of an action adds the action to the action history  . In order to do so 

the complete LTS states need to be considered which is denoted by the tuples. More formal-

ly, the LTS state in which an element of        (being an atom or action) represents the 

task expression can be transformed by executing   to the LTS state in which the task expres-

sion is the empty task expression (    ) and the extended action history by  . The state of 

literals   is not changed. 

As      is produced each execution produces a   before the final state is produced (see rule 

(1)). In certain situations this fact needs to be kept in mind when writing the rules (e.g., see 

the Enabling Operator).  

Action Execu-

tion 

         

(2)  

         
 
                          

 

 

The rule above also shows the structure of such rules. Under the fraction on the left hand 

side of the arrow an existing state of the LTS is given. The arrow defines which task is ex-

ecuted on the state. On the right hand side the resulting state of the LTS is given which if not 

present in the LTS is created. The same applies for the transition. 

Now it is continued with complex task expressions. For the subsequent rules it is referred to 

   as arbitrary qualified task expression of the specification (             ) 

The first one is the choice operator. In CTML the operator is interpreted as external choice. 

In process algebras it is distinguished between external and internal choice and also ap-

proaches in task modeling considered such a distinction [Roscoe, 1997; Sinnig et al., 2007]. 

Thus the choice of actions is performed deterministically here. Let          be a choice ex-

pression with (               ) then by selecting an action of    the second expression 

becomes unavailable (and vice versa). The rules define that the choice expression can be 

translated to another expression if one of the actions of the choice expression is translatable 

to   . Please note that these rules also capture the case when    or    are atomic units as   can 

be the empty task expression     . This applies for all subsequent operators as well. The 

handling of atomic actions is therefore completely solved by rule (4) and the      expres-

sion. These two rules sufficiently define the choice operator. 

As the choice operator does not affect the action history or the state of the literals the brief 

notation is used in this rule.  
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Choice 

         

(3)    
 
    

        
 
   

 
  

 
    

        
 
   

 
 

 

The order independent expressions is intended to define that two tasks can be performed in 

any order but once one the tasks is started the other has two wait until the first one terminates 

successfully. Therefore this operator can be defined by means of the enabling operator ( ). 

Under the condition that one can transform    to    the order independent expression can be 

translated to the sequence of    and    as    has already been started which restrict the execu-

tion to a simple sequence. The same rule is given for starting task   . 

Order Inde-

pendent 

          

(4)    
 
    

         
 
        

 
  

 
    

         
 
        

 
 

 

With respect to an interleaving semantics concurrent means the interleaving of all actions of 

   and   . Therefore no restriction is made by the inference rule given for the concurrent 

operator which reflects the intuition of the concurrent operator adequately. Rule (5) is not 

sufficient as each operand may produce a   to notify its termination. This termination can-

not be propagated as the expression is not terminated when one of its operands terminates 

but if both terminate successfully. Therefore synchronization between the termination of 

both operands is needed which is specified by rule (5), (6) and (7). To be more specific rule 

(6) specifies the need to catch the   produced when the first operand terminates. Eventually 

the concurrent expression terminates successfully when both operands terminated (rule (7)). 

In this situation   is propagated. 

Concurrent 

        

(5)    
 
    

       
 
        

 
  

 
    

       
 
        

     

(6)  
  
 
    

       
 
       

 
  
 
    

       
 
       

  

(7)  

     
 
  

  

 

The disabling (also referred as deactivation) operator defines that the second operand may 

disable the first operand at any time (rule (10)). Moreover when the first operand terminates 

successfully the   is not propagated but the second operand needs to terminate first which is 

specified in rule (9). Rule (8) defines the normal case of executing actions of the first ope-

rand. 

Disabling 

         

 

(8)    
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 (9)  
  
 
    

        
 
     

  

(10)    
 
    

        
 
     

  

 

The intuitive meaning of the suspend resume operator is the iterative execution of the second 

operand (rule (12)) until the first operand is executed successfully (rule (11)). In any state of 

the first operand the second operand may be started (suspension). After termination the first 

operand may be continued. Please note that the second operand is defined as optional as a   

may be produced in rule (11) leading to termination. 

Suspend 

Resume 

         

 

 

(11)    
 
    

        
 
         

 

(12)    
 
    

        
 
              

 

 

The enabling operator defines a sequential execution of both operands. The stepwise execu-

tion of the first operand is specified in rule (13). However if the first operand terminates rule 

(14) needs to be applied as the  must not be propagated since the second operand needs to 

executed first. More in detail, when the first operand terminates the expression is trans-

formed to the execution of the second operand. 

Enabling 

        

(13)    
 
    

       
 
        

      

(14)  
  
 
    

       
 
     

  

 

After having defined the semantics of all binary operators it is now continued with the ex-

planation of the unary operators. As the optional execution of a task denoted by     has been 

eliminated beforehand (substitution by the binary choice operator) no rule for this operator 

exist. 

The iteration operator specifies the repetitive execution of a certain task expression  . Once 

an iteration is started (rule (15)) it needs to be completed until a new iteration can be trig-

gered. After having finished an iteration (denoted by  ) either the repetitive execution may 

be stopped (    ) or a new iteration cycle can be triggered (  ) which is specified in rule 

(16). 

Iteration 

     

(15)   
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 (16)  
 
 
   

    
 
            

  

 

In the case of a task based precondition certain actions need to be executed in order to enable 

the precondition. As the history of actions is captured in the sequence   the evaluation of a 

task based precondition is straightforward. As seen in rule (2) when executing an action the 

sequence   is extended in order to define the current state (according to the situation calcu-

lus) and to evaluate task based preconditions. Moreover during the transformation process 

described in the last section the function      is stepwise created. Please note that         

(           ) under the fraction is a term whereas         above the fraction is a func-

tion assigning a qualified task expression its task based precondition. The evaluation of such 

a precondition is given in rule (17) and (18). Under the assumption that   can be transformed 

to    by the action   the composed task expression         can be transformed to    given 

that the assigned precondition (being the tupel      ) is fulfilled (with   being a quantifier 

and   being a set of qualified task names). The interpretation of the preconditions depends 

on the used quantifier   of the precondition. If an all quantifier is used all qualified task 

names need to be included in the action history   (rule (17)). In contrast if an exist quantifi-

er has been used only one action of   needs to be contained in the sequence of actions al-

ready executed (rule (18)). 

Precondition 

        

(17)         
 
                                   

             
 
           

 

(18)         
 
                                   

             
 
           

 

 

In the same vein as a task based precondition state based preconditions are evaluated. More 

precisely the current situation denoted by   is consulted in order to check that the assigned 

state precondition (       ) is fulfilled. A state based precondition is fulfilled iff the predi-

cates assigned to the task expression are contained in the current world state  . 

Precondition II 

        

(19)         
 
                      

             
 
           

 

 

In contrast to preconditions effects denote the state change of the system due to the execution 

of an action. More precisely not only the positive effects but also the negative effects of an 

action need to be considered to define the world state consistently because the positive ef-

fects only state the facts which are true after executing which is not sufficient as some facts 

may be false after execution which needs to specify as well.  

As effects are only assigned to qualified task names (      ) effects are applied in conjunc-

tion with action execution. As already state during the transformation of effects in the pre-

vious section effects are consisting of the following tuple        
     . The reason for 
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such a complex formalization is due to the state dependence of effects. When executing a 

function on a device as effect the new state of the device depends on the current state. There-

fore effects need to take into account the current world state. To be able to do so variables 

are needed.   denotes the set of variables for an effect.    specifies the needed situation con-

taining variables which are substituted accordingly so that    is true in the current situation 

(    ). This substitution is then applied to the positive and negative effects which contain 

variables of  . Thus all variables are eliminated.  

Rule (20) states if   can be transformed to    by the action   and a substitution of variables 

exists which eliminates all variables in    so that the grounded predicates in    are contained 

in the current situation   which means that   is true in that situation, then the effect can be 

applied. It is applied by transforming the task expression into    and creating the new situa-

tion after executing   (denoted by   ). By applying the substitution for the positive and nega-

tive effects grounded predicates are created. The new situation is then derived by subtracting 

all negative effects from the current situation and adding all positive effects to it.  

Effect 

       

(20)         
 
                          

              

            
 
                     

     

 
 

 

Having defined the inference rule the LTS representing the semantics of a CTML specifica-

tion can be derived.  

The Running Example – LTS Creation 

Taking the running example of the “Conference Session” the example of the intermediate 

specification is now transformed into a LTS. According to the explanation given above a 

preprocessing step is necessary to eliminate optional tasks and finite iterations. As neither of 

them exists in the example no adaptation is necessary. In Table 6-16 and Table 6-17 the re-

sulting LTS is specified. The visual presentation of the LTS is given in Figure 6-21. In Table 

6-17 the applied inference rules in order to derive the subsequent state and the produced 

action are named. 

Label State 

1                                                          

2                                                       

3                                               

4                                                       

5                                               

6                                              

7                                           

Table 6-16 Labels and States of Example LTS  
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The initial state of the LTS is given by the task expression in the intermediate specification, 

the set of true literals also defined in the intermediate specification and the empty set of al-

ready executed actions. This tuple entirely defines the initial state of the LTS. Not the infe-

rence rules are applied. Depending on the structure of the expression which is an order inde-

pendent expression in the case of the initial state, the appropriate rule is applied. Hence, not 

only one rule is applied but in order to proof that the hypotheses above the fraction of the 

inference rule can be proven. To exemplify this approach the initial state of the LTS is used. 

As already stated the initial state is an order independence expression. Rule (4) can (and 

therefore is) applied if the hypothesis can be proven. The rule to be applied is: 

  
 
    

         
 
        

 

The rule can be paraphrased as follows: an order independence expression can be trans-

formed into a enabling expression if the first operand can be transformed to   . Therefore an 

appropriate inference rule for the first operand, namely                , is applied. As the 

expression is a state precondition rule (19) is consulted which checks whether the assigned 

precondition (the function      defines the assigned precondition) is fulfilled in the current 

world state, here                . It is not only checked whether the precondition is ful-

filled but also whether the inner expression of the precondition can be further derived 

(         ). As this an atom the action execution rule ((2)) can be applied which translated 

the atom to the empty task expression     and adds the executed action to the action histo-

ry. The selection of the other operand of the order independence expression is analogous as 

this operator is symmetric (state 4).  

Source State Target State Action Inference Rules 

1 2           (4),(19),(2)  

2 3   (14), (1) 

1 4           (4),(19),(2)  

4 5   (14), (1) 

3 6           (19),(2)  

5 6           (19),(2)  

6 7   (1) 

Table 6-17 Transition Matrix and Applied Inference Rule 

Now the previously created enabling expression which represents partially state 2 is further 

derived. According to rule (14) an invisible action is created and the enabling expression 

resolved to the second operand if the action derivable from the first operand is  . As the 

first operand is      which can be translated to   using rule (1) which in turn produces 

 the hypothesis holds. Therefore rule (14) can be applied which produces   and converts 

the enabling expression to the second operand which in turn is an atom and can be translated 
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as described before. Finally the      expression is reached which can be further transformed 

into  .   is used as action to denote the successful termination.  

The other path through the LTS (by selecting the other task as first action to execute) is de-

rived analogous.  

 

Figure 6-21 Visual Representation of the LTS 

Semantics for Sub Specifications 

During the creation of CTML specifications task expressions are created. The interactive 

exploration of those sub specifications is an important feature to be supported. The isolated 

interactive exploration of single task trees does not reveal their full semantics (as dependen-

cies to other role based task models are not interpretable) but already show the meaning of 

the task structure and the results of the precondition and effects defined over the task expres-

sion and the domain model. Being able to animate intermediate specification helps to shorten 

feedback cycles and improve the artifact. 

The approach of assigning semantics to a single task tree relies on synthesizing a simple 

CTML model based on the task tree. A configuration with a single actor which fulfills a syn-

thesized role which in turn uses the task expression is created. 

Let   be a single task expression of the following form                      with    

being the set of task names of the task tree,   assigning each task name a task type (in the 

same vein as in Definition 6-2),   being the role name,    be the task expression according 

to Definition 6-4.     being the domain model and   the corresponding objects, then a 

CTML model with                and                                 can 

be synthesized as follows. The cooperation model is defined by: 

1.       

2.      

3.      

4.          

5.           

6.             

7.          

The set of configurations   is defined by the only one element: 

1.        
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with                

1.       with                       

2.             

In this vein the same formalism can be used to assign semantics for sub specifications of 

CTML model. Therefore all algorithms (such as refinement) are also usable for single task 

trees. 

6.5 Refinement 

During software development models are adapted and incremental refined. To answer the 

question whether a certain refined model is a valid adaptation of the base specification re-

finement checks are supportive. This applies particularly for models employed in an itera-

tive, incremental process models. Therefore refinement is of interest for CTML models. In 

order to define an appropriate notion of refinement different refinement relations are ex-

amined and assessed with respect to the usage for CTML. As LTSs have been selected as 

ultimate semantic domain for CTML models refinement relation based on LTSs as examined 

in Chapter 4 can be used. However it is shown that those approaches are not sufficient in all 

cases. A more flexible approach is therefore proposed in the second part of this section. 

6.5.1 Comparison Semantics for CTML 

In Section 4.5 several notions of refinement have been examined. Here the different pro-

posed comparison semantics are assessed with respect to CTML. Moreover it is shown that 

even though that some proposed semantics are suitable they do not fulfill all requirements in 

order to allow a flexible approach to introduce refinement for CTML specifications. 

Trace semantics is the most coarse-grained semantics for LTSs. It gives meaning to a LTS 

with respect to what it is able to produce. However as there is no notion of successful termi-

nation it does not state what a LTS needs to do. Thus trace semantics gives only little infor-

mation about the equivalence of two CTML specifications, respectively LTSs derivable from 

CTML models.  

Definition 6-27 (        Semantic Mapping): Let   be a CTML model and   the se-

lected configuration of  , then        denotes the semantic mapping function with 

                         which assigns the CTML model and the selected confi-

guration an LTS with respect to the given definitions in Section 6.4. 

Definition 6-28 (    Trace Equivalence): Let       and       be two CTML specifi-

cations,    
 and    

 the selected configurations of       and      , respectively, then the 

CTML models are trace equivalent iff: 

          
             

                    
                     

   

The set of traces of the LTS   is defined as follows: 

                           

 
    

In the same vein trace inclusion and trace extension can be defined. 
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Completed trace semantics however introduces the notion of successful termination. This is 

of particular interest for CTML as task modeling relies on the hypothesis that task are ex-

ecuted in order to reach a goal which is not considered in trace semantics. Completed trace 

semantics is therefore a much more suitable semantic model for CTML. Moreover it is also 

an intuitive semantic model for CTML. This item should not be underestimated as the task 

modeler is able to comprehend the model while designing. Completed trace semantics offers 

this opportunity because it represents how people consider the execution of tasks (a task is 

complete when its goal has been reached e.g., cleaning a car is reached when the car is 

cleaned) and completed trace semantics is also assumed by most task modeling languages 

(but not formally defined) [Limbourg & Vanderdonckt, 2003; Paternò, 1999; van Welie et 

al., 1998]. Due to the notion of successful termination also deadlock detection is possible in 

completed trace semantics. 

Completed trace semantics consider to LTS equivalent if they have the same set of com-

pleted traces (successful terminated runs). Applied to CTML completed trace semantics de-

fines the two CTML models are equal if they exhibit the same set of sequences of action 

reaching the goal.  

Failure semantics not only states what a LTS needs to do but also examines a LTS with re-

spect to what is not able to do. More precisely, failure semantics captures which actions are 

not executable after having executed a certain traces. As already stated earlier failure seman-

tics includes completed trace semantics and as such is a finer comparison semantics. Due to 

the inclusion of completed trace semantics successful termination and deadlocks can be de-

tected. However failures semantics is the semantics which investigate the structure of the 

model itself and not only the observations (executed actions). For modeling of human activi-

ty this is counterproductive as the internal structure of actions a human being cannot be in-

vestigated anyways.  

The comparison semantics of LTSs form a lattice as already stated earlier. Having consi-

dered failure semantics as too fine for CTML no other comparison semantics (except for 

simulation semantics [van Glabbeek, 1990]) needs to be examined as all others are finer and 

therefore make less identifications over the set LTSs. Simulation semantics is independent of 

completed trace semantics and failure semantics but is not appropriate for CTML because it 

focuses additionally on the branching structure of the LTS which is not of interest for CTML 

(the branching structure represents the internal structure of the actions of a human being 

again). 

Beside the comparison semantics to be used for CTML it needs to be examined what kind of 

refinement is allowed. Is a sub specification always an extension to its base specification or 

is a sub specification required to exhibit the exactly same behavior? This question cannot be 

answered by the examination of the modeling language but needs to be solved with respect 

to the usage of the modeling language within the development process. For CTML on the 

analysis level substantial model adaptation may be allowed but when moving from require-

ments to design this might be counterproductive. A cautious approach is needed in this case.  

For CTML restricting the behavior in a sub specification is inappropriate as gradual refine-

ment is one of the core concepts of hierarchical task modeling. During development atomic 
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units are further refined constituting an extended behavior even though action refinement 

cannot be consistently defined with interleaving semantics. Equivalence behavior is desirable 

when only minor model adaptations are valid in the current phase of development (e.g., in 

the final phase of design). Extending the behavior of the base specification is definitely also 

a case to consider in order to define an appropriate refinement relation for CTML.  

Under which circumstances the different types of refinement can be applied is answered in 

Chapter 7 which introduces a development approach by explicitly using the refinement rela-

tions proposed in the remainder of this chapter.  

In the domain of LTS a completed trace refers to the successful run through the LTS. In task 

modeling an analogous term exists. A successful run through a task model is referred as sce-

nario [Paternò, 1999; Wurdel et al., 2008d]. As it has been shown previously completed 

trace semantics is an appropriate model of abstraction for CTML. In order to stick to the 

convention of task modeling the first comparison semantics for CTML is referred as scenario 

semantics: 

Definition 6-29 (    Scenario Equivalence): Let       and       be two CTML spe-

cifications,    
 and    

 the selected configurations of       and      , respectively. Let 

further        be the semantic mapping assigning a CTML specification ( ) and a se-

lected configuration ( ) its corresponding LTS as explained in Section 6.4, then the CTML 

models are scenario equivalent iff: 

          
             

                 
                  

   

The set of scenarios of the LTS   is defined as follows: 

                         

 
            

Accordingly scenario inclusion can be defined: 

Definition 6-30 (    Scenario Inclusion): Let       and       be two CTML specifi-

cations and    
 and    

 the selected configurations of       and      , respectively, then 

      refines       by scenario inclusion iff: 

          
             

                 
                  

   

This definition states a refinement which is based on extension. A sub specification needs to 

exhibit at least the behavior of its base specification. If additionally scenarios are defined 

scenario inclusion still holds. Scenario extension can be easily defined accordingly but is not 

of interest for CTML. 

Those two given definitions are the basic notions of refinement in this thesis. In order to 

show the rationale of the definitions their applications are shown in the subsequent exam-

ples. 

The Running Example – Scenario Equivalence and Inclusion 

In Figure 6-22 an adapted version of the running example of the “Conference Session” is 

given. In this example managing talks is considered as atomic for reasons of brevity. 
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Figure 6-22 Base Specification for Role Chairman 

The scenarios of the base specification are the following (please note that qualified task ex-

pression (                    ) are not used here, as actor and role are identical in all 

actions): 

                

                                                      
                                                      

                                               
  

An adaptation of the model given above is depicted in Figure 6-23. In the refinement the 

order independent operators are substituted by the enabling operator and the task Leave 

Room is optional. 

 

Figure 6-23 Refinement of Base Specification for Role Chairman 

The scenarios of the refinement are the following: 

                                                                    

Because of                                the models are not scenario equivalent. 

Moreover,                                no scenario inclusion exists between those 

models. The example exemplifies how scenario inclusion impacts the refinement process as 

it preserves the scenarios of the base specification. Such an approach ensures that defined 

requirements, design respectively, are not violated in later development steps. 

Another adaptation is visualized in Figure 6-24. Here the order independent operator on the 

left hand side is replaced by the concurrent operator which allows the interleaved execution 

of all tasks. Moreover a new task Make List of Participants is introduced which is marked 

with the unary optional operator. 

 

Figure 6-24 Another Refinement of Base Specification for Role Chairman 

The scenarios of the second refinement are the following: 
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Because of                                the models are not scenario equivalent. 

However, as                                scenario inclusion exists between those 

models. The refined model preserves all existing scenarios before and adds some additional 

ones. This reflects the approach of adding iteratively requirements, designs respectively, to 

the models. 

The examples already show that scenario equivalence and inclusion are efficient utilities in 

order to assure the valid implementation of base specifications. During model adaptation 

refinement checks can be applied repetitively in order to check whether the same (sub) set of 

scenarios are defined. However such a rigid approach exhibits also some drawbacks: 

(1) Model Adaptation. Adapting models is part of engineering and as such is intended. 

Therefore especially in early phases models underlie substantial changes during de-

velopment. Prototypes are created, adapted and dismissed. A more flexible approach 

is needed to support such a process. Moreover with gradual advance of modeling in-

termediate results are created which exhibit partially valuable results whereas other 

parts might still be constantly changing. Those more mature parts need to be treated 

with different quality criteria as the others. 

(2) Action Refinement. As already explained in Section 4.5 action refinement cannot 

be consistently defined over interleaving semantics. Therefore another approach for 

gradual refinement of task models needs to be considered since action refinement or 

gradual refining atomic tasks is a common case in task modeling. 

(3) Detailed Design. The general adaptation cycle consisting of adaptation and refine-

ment check is expedient throughout all development stages. However when fine tun-

ing the model in detailed design tasks might be introduced which are not conceptual-

ly important but necessary for technical reasons (e.g., in MB-UI development). In 

such a case it might be reasonable to exclude those tasks from the refinement checks. 

Therefore a more flexible approach is desired.  

(4) Structural Refinement. The approaches so far, including scenario semantics, only 

observe the behavior of the system, model respectively. In many cases this is com-

pletely sufficient. Nevertheless also structural properties constitute the validity of a 

model and therefore also its refinement. What kind of properties are considered as 

important in order to refine a model validly with respect to its structure depend on 

the usage of model within the development process. 

For these reasons a more flexible approach is introduced in the subsequent sections. The first 

approach examines the structure of CTML in order to define structural refinement. The 

second approach define a new semantic equivalence which makes use of so called meta op-

erators to define which tasks are considered during the refinement checks. Therefore the 
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syntax and semantics of CTML is extended and new semantic equivalences are introduced. 

This will conclude the set of refinement relations for CTML. Subsequently it is shown when 

each method of refinement is appropriate in the development life cycle of CTML. 

6.5.2 Structural Refinement 

The structure of a whole CTML specification is quite complex. Various modeling elements 

can be examined in order to assure structural equivalence (or structural inclusion). Structural 

equivalence can be easily defined by equivalence of two CTML models. However such a 

notion of equivalence is not appropriate since it implies identity (or more general the exis-

tence of a bijection). Therefore a less rigid equivalence is used here. 

Definition 6-31 (   Structural Equivalence): Let       and       be two well-

formed CTML specifications and there exists a bijective function   assigning each element 

of       an element of      , then the CTML models are structural equivalent iff the fol-

lowing conditions hold: 

1. Role Set. The set of roles are identical. 

                                           

2. Mapping Consistency. Only elements of       and       are associated if they 

are of the same type. It assures that roles are only associated with roles, etc. 

                                       

3. Task Structures. The defined task expressions need to be identical in both models. 

                                      

This definition states that there is a bijective mapping of the set of roles, set of task names, 

task type assignment, task expressions assigned to roles, locations, set of device specifica-

tions, set of stationary device specifications, device assignments to roles and domain models 

are equal of each cooperation model. Moreover, the task definitions are to be identical. 

Please note that such a definition does not exact behavioral equivalence in any semantics 

examined before as the configurations are excluded from the definition. Therefore, two 

structural equivalent CTML specifications do not need to be trace or scenario equivalent 

even though this is possible. 

Definition 6-32 (   Structural Inclusion): Let       and       be two well-formed 

CTML specifications and there exists a surjective function   assigning elements of       to 

     , then       structurally includes       iff the following conditions hold: 

1. Role Set Inclusion. The set of roles are extended by the refining model. 

                                           

2. Mapping Consistency. Only elements of       and       are associated if they 

are of the same type. It assures that roles are only associated with roles, etc. Explicit-

ly excluded are task names as certain task names may not exist in the refining model.  
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3. Task Structures. The defined task expressions in the refining model       are on-

ly allowed to refine former atomic actions into complex task expressions. Let     be 

the task expression for role   of the base model and               be the refining 

task expression for  , then        structural refines     validly if a function 

              exist which assigns atomic qualified task names their refine-

ment. So that by replacing all atomic actions    with its assigned complex expres-

sion. This needs to apply for all role task expressions of the      . 

Structural equivalence is very helpful in order to synchronize two CTML models according 

to their structural properties. For model refinement it is inoperative as it does not give for 

means adaptations. Contrary, structural inclusion is a very suitable device for refinement as it 

allows comparing two models even though one extends the other. More precisely, the defini-

tion of structural inclusion demands that the refining model extends the set of roles (identity 

is also understood as extension). Moreover the mapping function is only allowed to associate 

model elements of the same kind. The most interesting part of the definition is part three: 

Task Structures. Intuitively, the definition demands that only atomic actions in the base 

model are allowed to be refined in the refining model. Such a definition of refinement goes 

along with task modeling practices since intermediate specifications leaves certain tasks 

atomic which are to be refined in later modeling steps. Such a practice is supported by struc-

tural inclusion above. 

The Running Example – Structural Inclusion 

In order to show the rationale of structural inclusion an example according to the “Confe-

rence Session” is used. Structural inclusion (or structural refinement) is only exemplified for 

the third criteria. Therefore, the task expression given in Figure 6-22 is used as base specifi-

cation. The refining model is depicted in Figure 6-25.The task Manage Talks has been struc-

turally refined. No further adaptations are performed.  

 

Figure 6-25 Structurally Refined Task Expression for Role Chairman 

In order to highlight the rationale of the definition the function   is specified (the role has 

been omitted here): 

                     

6.5.3 Introducing Flexibility through Meta Operators 

Section 6.5.1 has shown that strict comparison semantics adopted from interleaving seman-

tics by means of LTSs are not appropriate in all cases. Scenario semantics seems to be a suit-

able semantic abstraction but lacks flexibility by means of prioritization of certain tasks and 
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action refinement. Therefore this section introduces a set of unary operators which are as-

signed to tasks to denote their importance during refinement checks. Based on this syntactic-

al change of CTML new comparison semantics can be defined which are still based on traces 

and scenarios. Preliminary results on this topic have been presented in [Wurdel et al., 

2008d]. 

Unlike temporal operators, meta operators do not determine the execution order of tasks, but 

define which tasks must be retained or may be omitted in the refining task model. As de-

picted in Table 6-18, we distinguish between four different meta operators: shallow binding, 

deep binding, exempted shallow binding, and exempted deep binding. All four operators 

denote tasks which need to be preserved in all subsequent refining task models. While shal-

low binding only applies to its direct operand task, deep binding applies to the entire subtask 

tree. 

Operator Symbol Interpretation 

Shallow Binding   Denotes a mandatory task which needs to be preserved in subse-

quent refining models. Subtasks may be omitted or modified and the 

task type may be changed. 

Deep Binding   Denotes a mandatory task which, including all its subtasks and their 

types, needs to be preserved in subsequent refining models. 

Exempted Shal-

low Binding 
   Denotes a newly introduced mandatory task, which is not present in 

the base task model, but which should be preserved in all subse-

quent refining task models even though the subtasks can be mod-

ified. 

Exempted Deep 

Binding 
   Denotes a newly introduced mandatory task, which is not present in 

the base task model, but which (including all its subtasks) should be 

preserved in all subsequent refining task models. 

Table 6-18 Meta Operators for CTML in Support for Behavioral Refinement 

In Table 6-18 the existing meta operators for CTML are given. The first two are used to state 

a certain task (and all its subtasks in case of the deep binding operator) is mandatory in the 

subsequent development step (and all following). More precisely, the shallow binding opera-

tors define that a task is to be preserved but its hierarchical decomposition and the subordi-

nated tasks can be freely adapted. This operator is especially helpful when redesigned work 

processes but considering the process itself as highly important. In contrast to the shallow 

binding operator, the deep binding operator does not allow any adaptation of the whole sub 

tree on which it is assigned. These operators provide the basic means for defining flexible 

behavioral refinement on CTML specifications. However in some cases more complex 

means are needed. The exempted binding operators help to solve such cases. They have been 

defined to enable the software designer to introduce new tasks which are not considered in 

the current refinement check (naturally in the refining model) but are considered in the sub-

sequent refinement step (when the model becomes the base model). The distinction between 

shallow and deep has been made for the same reasons as the first two operators. 
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To be able to introduce the meta operators to CTML the syntax of CTML needs to be ex-

tended. Based on the Definition 6-4 which specifies how a task expression is syntactical 

valid a slightly adaptation is introduced: 

Definition 6-33 (      
    -Qualified Task Expressions for r with Meta Operator): 

Let        be the set of qualified task expressions of   and         , then the fol-

lowing expressions are qualified task expressions with meta operator: 

              

CTML with meta operators can then be straightforwardly defined by using Definition 6-33 

as domain to form task expressions. 

In order to perform the refinement check on two CTML specifications (base model and re-

fining model) certain steps need to be executed in order to base the semantics on the pre-

viously introduced ones: 

1. Renaming of Tasks. During adaptation certain tasks of the refining model might be 

renamed. This issue is supported by the refinement checker. A mapping of tasks of 

base and refining model can be established if necessary. 

2. Validation of Consistency of Nested Meta Operators. Meta operators are not al-

lowed to bet be nested without constraints. Therefore a syntactical validation of con-

sistent nesting of meta operators is needed. Well-formedness criteria are defined lat-

er. 

3. Reduction of CTML Models. The introduced meta operators of Table 6-18 already 

give a hint that a preprocessing step is needed in order to check refinement formally. 

Certain sub trees are chopped in the base and refining task model. This step is ac-

tually implementing the semantics of the meta operators. After that an ordinary, not 

annotated, CTML specifications is created representing the so called reduced CTML 

specifications. 

4. Refinement Check on Reduced CTML Models. The refinement algorithms are the 

same as presented in Section 6.5.1 but use the reduced CTML specifications as in-

put. 

The steps are executed in order to provide the mandatory scenarios, respectively traces of the 

base and refining CTML models.  

The first step can be defined by a simple mapping function assigning each qualified task 

name of the refining model a new name (potentially the identical name): 

Definition 6-34 (       -Renaming Function): Let     be the set of task names of a 

CTML model, then, rename is a total function assigning another qualified task name:  

                
  

Definition 6-33 defines task expression with meta operators recursively. Therefore nesting of 

operators is syntactically correct. However, due to the semantics of the operators only a mi-

nor subset of nestings is also semantically useful (e.g.,              is semantically 

not useful). 
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The check of validity of nested meta operators is performed with respect to the criteria given 

in Table 6-19. The reasons for permitting or forbidding the nesting are also given. 

Assigned Op-

erator to Task 

Assigned Operator 

on Nested Task 

Validity Explanation 

(exempted) 

Shallow 

(exempted) 

Shallow 

  The shallow binding operator states that sub-

task can be freely adapted. This meaning is 

violated by such a nesting. Therefore it is not 

allowed. 

(exempted) 

Shallow 

(exempted) 

Deep 

  For the same reason as before such a nesting is 

also forbidden.  

(exempted) 

Deep 

(exempted) 

Shallow 

  The deep binding operator states that no adap-

tation is allowed in the subordinated task tree. 

This constraint is violated by a nested task 

which subtasks can be rearranged. Such a 

nesting is not permitted. 

(exempted) 

Deep 

(exempted) 

Deep 

  As deep binding does not allow any adaptation 

this meta operator can be freely nested. 

Table 6-19 Validity of Meta Operator Nesting 

The reduction step is much more complex and distinguishes between base model and refin-

ing model. The reduction process itself is structured in four sub steps: 

1. Base Model: Shallow Binding Reduction. According to the given interpretation of 

the meta operators in Table 6-18 the first step during the reduction of the base model 

is to remove all subordinated tasks marked with the (exempted) shallow binding op-

erator as those sub trees can be freely defined in the refining model.  

2. Refining Model: Complex Task Reduction. Complex tasks of the refining model 

which occur in the base model as leaf tasks are reduced in order to make base and re-

fining task model comparable. This allows to compare the specification with respect 

to action refinement which is a common issue in interleaving semantics [van Glab-

beek & Goltz, 2000]. This reduction is performed independent of any meta opera-

tors. 

3. Refining Model: Reduction of Exempted Tasks. Tasks that are newly introduced 

in the model are not to be compared with the current base specification. Therefore 

subtasks of tasks marked with one of the exempted operators which have been intro-

duced into the refining model in the current refinement step are chopped off.  

4. Based Model: Reduction of Ordinary Tasks. If a task is not marked with any me-

ta- operator and this applies recursively for all subtasks then these tasks can be re-

moved from the CTML model. All meta operators can be dismissed to check re-

finement. The reduced based task model is created.  

5. Refining Task Model: Reduction of Ordinary Tasks. In the same vein as in step 4 

the not marked tasks of the refining model are also removed if recursively no sub-

tasks are marked with a meta operator. All meta operators can be dismissed to check 
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refinement. The reduced refining task model is created. Moreover refinement of 

tasks marked with the shallow binding operator are reduced. 

The complete process comprising renaming, validation and reduction can be considered as 

normalization of a CTML specification to its reduced form in ordinary syntax of CTML. 

Therefore the process is considered as function                assigning each CTML 

model with meta operators a reduced one without meta operators. As base and refining mod-

el are normalized differently an index is attached to the function to denote the difference 

(        ,        ) 

Having reduced the base and refining model the reduced version of each model is derived. 

This model provides the means to derive the mandatory scenario, traces respectively, in or-

der to test for refinement of different kinds. 

Definition 6-35 (      Mandatory Scenario Equivalence): Let      
     and 

     
     be two CTML specifications with meta operators,    

 and    
 the selected confi-

gurations of      
           and      

    , respectively, then       
     and 

     
     are mandatory scenario equivalent iff: 

      
        

          
        

                 
         

                 
         

  

Accordingly scenario inclusion can be defined: 

Definition 6-36 (     Mandatory Scenario Inclusion): Let      
     and      

     

be two CTML specifications with meta operators,    
 and    

 the selected configurations of 

     
           and      

    , respectively, then       
     refines      

     by 

mandatory scenario inclusion iff: 

      
        

          
        

                 
         

                 
         

  

Well-formedness Criteria for CTML with Meta Operators 

In the following enumeration criteria of validity of the CTML specifications with meta oper-

ators are named. Naturally all criteria have to hold in order to validate a CTML specification 

successfully. 

1. Nesting of Meta Operators. Table 6-19 already defines which kind of nesting of opera-

tors in one model is allowed. These rules are very important need to be observed. 

2. Conversion of Meta Operators. During the diverse iteration cycles of refinement meta 

operators are naturally adapted. A shallow operator may become a deep operator. There-

fore rules need to be provided defining also the valid adaptation of meta operators. The 

following rules apply:  

2.1. Shallow to Deep. The shallow binding operator can only be transformed into a 

deep binding operator. The rule is obvious with respect to their definition. 

2.2. Exempted Shallow to Exempted Deep. The same applies for the exempted opera-

tors. Only more a more rigid operators is allowed to use instead of an exempted 

shallow operator. 
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The Running Example – Refinement with Meta Operators 

In Figure 6-26 an adapted version of the running example of the “Conference Session” is 

given. It is very similar to the one used to exemplify scenario equivalence and inclusion. 

Only Introduce Session is marked with the shallow binding operator and Close Session is 

marked with the deep binding operator. 

 

Figure 6-26 Base Specification with Meta Operators for Role Chairman 

The model can be expressed by the following expression: 

                                               

After having performed the first reduction step (1. Base Model: Shallow Binding Reduction) 

the model is reduced to this model: 

                
                           

Now the final reduction step for the base model is performed which is only performed to 

reduce time and calculation steps while doing the refinement check (4. Based Model: Reduc-

tion of Ordinary Tasks).  

                
                  

The refining model is given in Figure 6-27. Introduce Session has been redefined and Man-

age Talks is not considered as atomic anymore. Moreover the Leave Room has been dis-

missed. 

 

Figure 6-27 Refinement of Base Specification with Meta Operators for Role Chairman 

The corresponding task expression is: 

                                                      

Further refined tasks from the base specification are reduced according to step 2 (Refining 

Model: Complex Task Reduction): 

               
                                  

Next task marked with one of the exempted operators are reduced from the refining model 

(3. Refining Model: Reduction of Exempted Tasks). In this example no exempted operators 

are used. Therefore this step can be skipped. 
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The final step of normalization of the refining model comprises the reduction of ordinary 

tasks not marked with any of the meta operators (5. Refining Task Model: Reduction of Or-

dinary Tasks.): 

               
                  

In both models the meta operators are removed. Now, the refinement check can be per-

formed according to the previously defined scenario equivalence and scenario inclusion: 

                          
                           

   

                                                          

Therefore,                            holds. 

6.5.4 Conclusion 

In the last sections different notions of refinement for CTML have been defined and as-

sessed, namely trace equivalence, scenario equivalence and inclusion, structural equivalence 

and inclusion and mandatory scenario equivalence and inclusion. Each of the introduced 

comparison semantics has its assets and drawbacks. Whereas behavioral comparison seman-

tics are more suitable to analyze the runtime behavior of the model, structural properties can 

be better inspected via structural refinement. Scenario equivalence is the finest-grained se-

mantic model for CTML proposed here (more fined-grained models can be defined such as 

bisimulation equivalence but are not suitable for CTML). Scenario equivalence is however 

rather inappropriate for model adaptation as it allows no additional scenarios. In contrast, 

scenario inclusion demands the scenarios of the base specification but also allows additional 

scenarios. Such a definition is much more suitable for adaptation processes in the software 

engineering lifecycle. The same argumentation can be applied for trace equivalence and in-

clusion. The drawback of trace semantics in general is the missing notion of successful ter-

mination. Structural equivalence and inclusion is, as stated before, a suitable validation de-

vice in order to asses that two models are structurally similar. Both comparison semantics do 

not demand any behavioral similarity. The most flexible notions of semantics are mandatory 

scenario equivalence and inclusion because the importance of a certain task within the re-

finement process is interactively assigned by so called meta operators. During the refinement 

check the base and refining models are analyzed with respect to the used meta operators in 

order to calculate the mandatory scenarios of each model. Mandatory scenario equivalence 

demands that both models need to define the same set of mandatory scenarios whereas man-

datory scenario inclusion demands that the refining model needs to be comprise all mandato-

ry scenario of the base model. 

The defined refinement relations have not been defined to assess the quality of a certain 

model, but to compare a base specification with its refinement. The comparison criteria defi-

nitely change during the development process which makes it unfeasible to define only one 

comparison semantics. Therefore, the various comparison semantics defined in the last sec-

tions serve as toolbox and have to be smoothly integrated into the interaction development 

process. Such integration is proposed in Chapter 7. 
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6.6 Deadlock Analysis 

Deadlock analysis has been tackled in a various fields of application. Having selected a se-

mantic model with a notion of successful termination deadlocks can be detected. Informally 

with respect to LTSs a deadlock can occur if a LTS state exists which is not final and has no 

outgoing transitions. 

Definition 6-37 (Deadlock on LTS): According to the Definition 4-1 a LTS is defined by 

the tuple             , then a deadlock can occur in a LTS iff: 

               

 
                          

Please note that      does not contain the symbol for successful termination ( ). The defi-

nition states a certain state   have to be reachable via the action relation (without using  ) 

and that this certain state has no outgoing transition defined by the action relation. 

Accordingly deadlock freedom on LTS can be defined. 

Definition 6-38 (Deadlock Freedom on LTS): According to the Definition 4-1 a LTS is 

defined by the tuple             , then a LTS is deadlock free iff: 

               

 
                          

Using the semantic mapping defined before these definitions can be easily applied to CTML 

specifications. 

The Running Example – Deadlock Analysis 

By only using the temporal operators deadlock cannot be modeled. However, with the usage 

of arbitrary preconditions assigned to tasks deadlocks can be easily introduced into a model. 

In the example in Figure 6-28 a slightly adapted version of the task model for the role 

Chairman is used. In the given example another task specifying how to login into the confe-

rence management system is defined. Such a system is used to provide additional informa-

tion regarding the current talk and the progress about the whole session. In detail, the task 

defines that first the login screen is presented and the user needs to provide her credentials. 

Finally the system either accepts or refuses the credentials. During managing a talk the 

chairman can mark a certain talk as given once it is finished. However this is only possible if 

the login has been successful which is expressed by the corresponding precondition. 

 

Figure 6-28 Specification for Role Chairman with Deadlock 

According to Definition 6-37 a deadlock exists if not further action can be executed and   

has not been propagated yet. Such trace is                        . After having executed 

Open Discussion the next potential executable task would be Mark Talk as Given. However 
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this is prohibited by the precondition which requires Show Successful Login Screen to be 

executed earlier. 

6.7 Tool Support for the CTML 

One of the requirements for an adequate task modeling language stated in Section 5.1.2 is the 

supply of tool support for that language. To effectively make use of a language suitable tools 

need to be provided in order to foster creation, sharing, editing, visualization and usage in 

general of the language. For CTML four main areas of function can be identified: Creation 

and Editing, Visualization and Validation, Verification, and Interfaces. All areas are covered 

by the tool support for CTML and explained in the subsequent paragraphs. First, a basic 

introduction about the architecture of the tool support is given. Next, each area named above 

is examined thoroughly accompanied by screenshots exemplifying the usage of the tools. 

Finally some concluding remarks about the tool suite are given. 

6.7.1 Architecture of the CTML Tool Suite 

Software engineering usually comprises several languages edited and used in different IDEs. 

However this is a rather insufficient situation. The process model should be supported by one 

IDE covering all stages in which computer assisted manipulation of artifacts is taking place. 

Therefore the different components of CTML are all integrated into one environment. More-

over as other modeling languages are also relevant for CTML the de facto standard for cod-

ing and modeling has been selected as foundation for the CTML components, namely the 

Eclipse Platform as it furthermore supports a solid and flexible plug-in concept and diverse 

supportive libraries for development which are shown in Figure 6-29 on the first four layers. 

The EMF framework has been used for modeling the entities of CTML which also covers 

serialization to share models. Moreover a rudimental editor comes with EMF. On top of 

EMF the GEF and GMF framework have been used to create visual editors and validation 

tools. On top of that, custom code has been implemented separated in different modules. 

Hence, third level libraries have been used by certain modules which is denoted by black 

lines. 

 

Figure 6-29 Layered Architecture of the CTML Tool Suite and its Modules 
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6.7.2 Creation and Editing 

The creation of CTML models can be become quite complex as multiple entities on different 

levels of abstractions are involved. For each model in CTML (cooperation model, device 

model, location model, domain model, and task model) an appropriate visual editor has been 

implemented. Due to the fact that EMF always comes with a rudimental editor which is suit-

able for hierarchical models as it is tree-based multiple editors for a model exist. Figure 6-30 

shows the high level editor for CTML models. It allows the designer to drag-and-drop the 

high level entities on the canvas in order to create the corresponding model entities. The 

palette is used to select the desired type of modeling element. Moreover, after having defined 

the CTML model tools exist to start or stop the current animation. 

 

Figure 6-30 Visual Editor for Cooperation Model 

After the high level entities are specified the model needs to be gradually refined. The mean-

ing of the modeled elements can be defined by other visual editors (e.g., a role is specified 

by a task expression). A model created with the task model editor is given in Figure 6-2. In 

the same vein as in the Cooperation Model tasks can be easily created by simply dragging 

them onto the canvas. Relations, such as hierarchical decomposition and temporal operator, 

can be defined by connecting the tasks as desired. Syntactical validation is also supported. 

To use CTML effectively also preconditions and effects need to be defined. Figure 6-31 

shows the dialog which supports the convenient creation of preconditions and effects for 

tasks. It can be accessed by opening the properties of tasks. The tabs are used to distinguish 

between the definition of preconditions and effects (a). The select box helps to distinguish 

between the different types of preconditions, effects respectively (e.g., location precondition, 

device precondition) in order to support their creation (b). A text field can be used to enter 

the preconditions, effects respectively by hand (c). Moreover for each type assistance in 

terms of selection support is provided (d) which helps to avoid syntactical errors. 
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Figure 6-31 Tool Support for Designing Preconditions and Effects 

Visual editors for all types of models exist. Location modeling is supported by a bird view 

on the SmartLab to provide visual means to design the relevant location for the CTML speci-

fication. Device modeling is performed by a visual state chart editor. The domain model is 

defined by a UML class diagram. An appropriate editor is provided by the EMF framework 

delivered with the Eclipse distribution. 

Specifying each entity separately can be quite cumbersome. Therefore the wizard pattern has 

been applied to create CTML specifications conveniently from scratch. A top-down ap-

proach is followed which starts with role creation (left hand side of Figure 6-32) and assign-

ing appropriate task models (top of right hand side of Figure 6-32). Moreover devices and 

corresponding device specifications can be designed, created respectively. Eventually a con-

figurations can created to test the model immediately. In this vein the creation process of 

CTML models is guided. 

 

Figure 6-32 Two Wizard Pages of the CTML Creation Wizard 

6.7.3 Visualization and Validation 

Due to the complexity of a fully dressed CTML specification various visualizations and vali-

dation tools are offered. First and foremost the CTML editor shows the Cooperation Model 

with its Configurations (see Figure 6-30). It can be adequately adapted to emphasize the 
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entities of interest (e.g., hiding of links and/or nodes of certain types, rearrangement, etc.). 

Moreover for each model several views may exist to highlight the model from different 

viewpoints. The same applies for all other graphical editors (e.g., location model, device 

model, etc.). Moreover for each model a tree-based editor generated by the EMF framework 

is integrated into the tool environment. 

For validation purposes CTML specifications can be animated on different levels of abstrac-

tions and using different visualizations. A CTML model can be created following a top-

down or bottom-up approach. In either way the different animation tools can be used which 

are explained here following a bottom-up approach. 

Having created a task expression for a role using the graphical editor shown in Figure 6-2 it 

can be animated. During an animation the model is transformed into an executable specifica-

tion according to the semantics defined in Section 6.4. In animation mode tasks are hig-

hlighted according to their current state by visual signs as shown in Figure 6-6. Tasks can be 

executed by double click or selection in a special widget. Further information such as execu-

tion history is displayed using other widgets. In the context of a Cooperation Model this 

animation enables the isolated validation of task expressions for roles. Naturally not all pre-

conditions can be evaluated on this level of abstraction (e.g., a task precondition of another 

role). 

Another entity which can be animated is the device model. Devices are specified by means 

of finite state machines (see Figure 6-12) whose behavior is defined by the words they pro-

duce. More precisely, within a certain state a set of action (being element of the alphabet) are 

accepted. In order to validate such a device specification an animation has also been imple-

mented. In essence, the current state the finite state machine is in is visualized and the out-

going actions (transitions) can be selected. In this vein, the state space can be interactively 

explored. 

Please note that the domain and location model do not have a behavior in a sense but give 

structure to the CTML model and are used to constrain the task execution. Therefore no be-

havioral animation of the models themselves can be defined. However for all editors syntac-

tical and semantic checks are offered to check the rationale of the current edited artifact. 

Have defined the low level entities of the CTML model the Cooperation Model can be de-

signed (see Figure 6-30). This model actually consolidates the previously defined models, 

such as the device model. Due to the various specifications involved the fully-dressed CTML 

model can become quite complex and needs means for validation as well. In the same vein as 

for a single task expression an animation of a certain configuration can be started. For each 

actor a task animation is created and visualized (such an animation is given in Figure 6-7). 

Moreover when instantiating the animation the models to be considered during animation 

can be selected (so called Simulation Modes, see Section 6.1.2). This allows for testing the 

CTML model from different viewpoints and emphasizes a certain model (e.g., the impact of 

the location model on the CTML model). As the state of the current environment (the accu-

mulation of device states, location of actors, etc.) is of importance during animation to eva-

luate preconditions and apply effects another widget display this information to the software 

designer. 
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Figure 6-33 2D-View on CTML Animation 

In order to make the animation more realistic another visualization of the animation of a 

CTML model has been implemented which is depicted in Figure 6-33. It uses the specified 

location model as basis to display the actors and their current position with respect to the 

(initial) locations. The actors can be selected to execute one of its tasks shown on the right 

hand side of Figure 6-33. This type of animation is especially helpful if location information 

is considered as particular important for the CTML model as changes in the location of ac-

tors can directly be investigated (which is the case in our experimental infrastructure, see 

Section 5.1.1). 

6.7.4 Verification 

Animation of CTML models is suitable to interactively explore the model and its state space. 

However due to the complexity certain features of the model may be kept concealed. There-

fore more rigorous methods are needed to detect erroneous models. The CTML Verifier has 

been implemented to enable the software designer to perform refinement checks and dead-

lock analysis with respect to the definitions in Section 6.5 and 6.6. 

The tool support for refinement checks can be accessed by the project explorer through the 

selection of two artifacts on which refinement is to be checked. These can either be fully-

dressed CTML models or task trees (task expressions). Moreover several configurations of 

the same CTML specification can be checked for refinement as well. In Figure 6-34 the re-

finement check dialog for two task trees is depicted. Several properties can be adapted in 

order to make use of the different refinement types defined in Section 6.5. In order to ease 

the selection of properties predefined profiles exist which implement the guidelines of suita-

ble refinement relation with respect to the development stages (a, see Section 7.3 for details). 

Besides that, it has to be specified which model is the base and refining model for this par-

ticular refinement check (b). Next, the concrete properties of this check are selected (c, e.g., 

which type of refinement: behavioral and/or structural, whether meta operators are taken into 

account, comparison semantics, and type of refinement (inclusion, equivalence, restriction)). 
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Finally, a name mapping can be defined in order to allow the user to rename tasks during 

adaptation. After entering these details or selecting a predefined profile which is part of the 

development methodology presented in Chapter 7 the refinement check is performed. The 

result is presented and if it is negative a counterexample is given. 

 

Figure 6-34 Refinement Dialog for two CTML Models 

6.7.5 Interfaces 

As already discussed earlier task modeling is not the only activity during interaction design 

and implementation. In order to continue design and implementation within the same tool 

suite (semi) automatic transformations have been implemented whose results can be further 

adapted using the newly created or already existing editors integrated into the Eclipse IDE. 

More precisely, an interactive approach has been chosen to create dialog models based on 

CTML specifications (see Section 7.4.1) which is fully integrated and supported by the 

CTML Editor and Dialog Graph Editor. Basically after having created the task model a new 

dialog graph is created using the appropriate Eclipse Wizard. Then, the CTML specification 

is imported in the dialog graph and can be used as advised in Section 7.4.1 or in [Reichart et 

al., 2004]. In order to use task models for implicit interaction an automatic transformation to 

HMMs has been implemented which serve as input for the intention recognition module of 

the SmartLab. In this approach CTML models are annotated with additional information to 

synthesize the HMM (see Section 7.4.2). During creation of the CTML model this kind of 

information can be added using the property view. Having finished task modeling a right 

click on the model is used to generate the HMM. An appropriate HMM Editor has also been 

implemented to further adjust the generated artifact. After that, it can also be exported into C 

Code which is used to operate the intention recognition system. 

6.7.6 Conclusion 

Tool support is a prerequisite to effectively make use of a modeling language like CTML. In 

the last sections the tool support for CTML has been presented from different viewpoints. In 

the beginning of the explanations the architecture of the tool suite has been examined. It is an 

Eclipse based tool which employs different libraries of the Eclipse community and other 

third parties. Beside the graphical editors which are based on the GMF and GEF framework 
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different software modules have been implemented in order to implement CTML and its 

development approach. 

Afterward the major functionalities provided by the editors and implemented modules are 

presented in detail. First, the creation and editing of CTML model and sub models have been 

explained, then different validation techniques are highlighted which are used to improve 

CTML models. Subsequently the interface of the refinement checker has been presented and 

its rationale is explained. It implements gradual refinement during the major phases of soft-

ware engineering as proposed in Chapter 7. Finally the interfaces to subsequently used de-

sign artifacts have been shown. Concluding it can be stated the all phases in which CTML is 

relevant during interaction development are supported by the tool suite presented in the last 

sections. 
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Chapter 7 
7 CTML Development Approach 

In the last chapter CTML has been investigated in-depth. Now, the integration of CTML into 

a development process for interaction design is shown. It is based on an iterative, incremen-

tal model and offers several interfaces to other artifacts. CTML has been designed to specify 

the potential behavior and interaction in SmEs. Obviously the task model is not the only 

artifact involved during the software engineering lifecycle. Therefore task modeling needs to 

be applied in the appropriate phases and suitable artifacts need to be provided to derive a 

task model or being derivable from a task model. 

It has already been shown that CTML has been developed for early phases of development 

and therefore the development approach primarily focuses on these stages. Three different 

phases are considered within the CTML development approach, namely analysis, require-

ments specifications and design. Common phases such as implementation, test, and mainten-

ance are not covered by CTML as other artifacts are used in these phases. Two reasons can 

be stated why CTML primarily focuses on early stages of development: 

 In SmEs requirements engineering is currently no standard discipline. Solutions are 

usually technical driven and thorough analysis and requirements elicitation is not 

performed. 

 A lack of incorporation of user needs is observable. This issue actually relates to the 

first issue as user needs are gathered within the early stages of development. 

Based on the insights of Section 3.2 an iterative, incremental process model for SmE is pro-

posed to incorporate the principle of UCD and HCSE. The advantages of such an approach 

are the incorporation of the users’ needs, short iteration and feedback cycles, and user in-

volvement. In theory and practice it has been shown that iterative, incremental development 

approaches can be combined with UCD and HCSE [Göransson et al., 2003] though the com-

bination is not the case in general. 

The named principles of UCD and HCSE cannot be implemented by the language itself but 

by guidelines how to use the language and the process model of the software system under 

construction. For example, user involvement cannot be provided by the language but by 

process model which demands user involvement to review each increment. Contrary, the tool 

support and the language may offer visualizations and prototypes which are understandable 

by the user to support user involvement. From our point of view task models in general, and 

CTML in particular, are able to support the principles of UCD and HCSE if employed in an 

appropriate process model. Task models enable rapid prototyping to fasten feedback cycles, 
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are understandable by laypersons supporting user involvement and specify the system under 

construction from users’ perspective. 

 

Figure 7-1 Process Model for CTML for SmEs 

The process model for early stages in SmEs is depicted in Figure 7-1. There are three differ-

ent stages, namely Analysis, Interaction Specification, and Detailed Interaction Design, 

which roughly congruent to the classical software engineering phases analysis, requirements, 

and design but primarily focus on interaction development taking into account the special 

constraints of SmEs. Preliminary results have been published in [Wurdel et al., 2008c]. Dur-

ing Analysis the interaction of the users are analyzed. When developing the SmE from 

scratch the pure human to human interaction is analyzed. However this is usually not the 

case. With the advent of cell phones, laptops and other mobile devices certain components 

constituting the SmE under construction are already present. Still, the purpose of the analysis 

phase is to analyze the human interaction in such an environment in order to have a valid 

image of a “normal” situation. Based upon that, the requirements with respect to interaction 

can be derived. The advantage of a dedicated analysis stage is that the existing work 

processes can be taken into account in the requirement specification (this issue has been in-

vestigated in Section 3.4.2). This allows for smooth transition between existing and new 

software system and accounts for user acceptance. The requirements are specified with re-

spect to the whole SmE. It should be avoided to already specify which device is used to 

achieve a certain goal but a more abstract view is recommended. More precisely, the envi-

sioned interaction flow of users and SmE is to be taken into account. Also other valuable 

facts can be specified in this stage: the domain types and locations relevant for executing 

tasks can be integrated to determine the dependencies of tasks and the environment. The 

result of the Interaction Specification phase should be an abstract interaction flow between 

user and system which can be enriched with domain and location information. In this vein an 

abstract interaction flow is specified which can be gradually refined in later stages. Interac-

tions are reified with respect to modality and assignment to devices. This is performed in the 

Detailed Interaction Design stage. On this level of abstraction the device types potentially 

present in the SmE are specified with respect to their behavior (functions, states) and static 

properties (in- and output capabilities, network access, etc.). Moreover the binding of tasks 

to these devices is considered. “Which device types may support in which circumstances the 

execution of a task?” is a question to be answered here. The result of this stage is a fully 

dressed CTML specification being designed to serve as input for implicit or explicit interac-

tion. 

To be able to follow the interaction design process depicted in Figure 7-1 different means are 

offered to create the corresponding artifacts and increase their quality. The arrows in the 
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figure already indicate the useful instruments for each stage. Naturally this mapping is rather 

a hint and can be adapted according to the needs in the process. The instruments used during 

the development lifecycle are explained in the following enumeration (except for refinement 

as it has been explained extensively before). Furthermore reasons are given for the suitability 

of the instruments for certain phases: 

 Discussion and Feedback. Site visits to discuss the current used software system 

are very helpful during analysis but also feasible to discuss requirements and con-

crete design proposals [Hackos & Redish, 1998]. During analysis interviews and ob-

servations are used to get a picture about the current work situation. In subsequent 

stages instantiations (mock-ups, prototypes) of requirements or designs can be used 

to visualize the system under construction for the end user. Based on that feedback 

can be provided.  

 Animation. Having a specification formalism with an operational semantics sup-

ports the idea of animating the model to show its behavior in a very concrete way. 

Either an interactive walkthrough or an automated run can show the currently speci-

fied behavior. Following a model-based approach the specification can be gradually 

refined, enriched and transformed to create more sophisticated prototypes. Therefore 

animation is used in all phases of development presented in this thesis. Also differ-

ent ways of animating the very same model can be helpful to highlight certain view-

points of the model. 

 Validation. Animation is one way to validate a model. However syntactical and se-

mantic validations are other means to improve the quality of a model. Checking con-

sistency and cross references between models are representatives of this utility. Dur-

ing analysis too rigid validation constraints can even be counterproductive. The 

more mature the model becomes the more rigid validation can and should be ap-

plied. 

 Prototyping. An animation can be considered as abstract prototype. However paper 

prototypes and high fidelity prototypes are other types which are very helpful to 

show the current design. Even though prototyping is often considered as technique to 

detect usability flaws ([Walker et al., 2002]) it is actually an excellent utility to elicit 

requirements (by example) and evaluate potential design solutions. 

 Verification. As soon as specifications become quite complex formal methods are 

needed to keep track of the properties of the model. Deadlock analysis and refine-

ment checks are representatives of verification. During very early stages of devel-

opment formal methods may be a burden to the designer as they restrict the creativi-

ty of the design. As soon as the specifications become more stable verification is in-

valuable. 

These instruments are used to drive the design of the whole process. Some of them are not 

only used in intra stage design but also for inter stage design meaning that they are helpful to 

transit from one stage to the other. More in detail, it is claimed that refinement is an excellent 

vehicle to close the gap between the stages of development. The difference between intra and 
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inter stage design is that the adaptations are much more fundamental when moving from one 

phase to another. This needs to be taken into account by the refinement relations used. This 

issue is addressed in Section 7.3.1. 

7.1 Involved Artifacts 

As stated before the task model is not the only artifact used in the development lifecycle of 

interaction. To provide a solid basis for the explanations of the phases in detail each artifact 

is illuminated briefly. To further elaborate on these topics references to literature is given. 

7.1.1 Scenarios 

Scenarios are narrative text descriptions of the usage of a system. They are concrete (e.g., 

using real names) and do not contain choices or decisions to make. Therefore, they actually 

describe one way through the usage of a system or specify how a system has been used in the 

retrospective. In Section 5.1.2 an example of a scenario in the domain of SmEs is given. 

Scenarios are a helpful technique for brainstorming. They are easily to understand and ex-

plain. End user can be involved and new scenarios can be developed based on existing ones 

until the main scenarios of the system are covered. For further information about scenarios 

[Carroll, 1995] is suggested. Please note that scenario in this sense are similar but yet not 

identical to scenarios of a task model. Scenarios here are artificial stories how the system 

might be used in the future to analyze and elicit requirement. 

7.1.2 Use Cases 

In contrast to scenarios and similar to task models use cases are generalized descriptions. As 

such they specify a set of runs through the system (potentially all possible runs). Use cases 

are the de facto standard in industry for specifying functional requirements and the basic 

interaction flow of events between user and system. They specify the flow stepwise by text 

descriptions what is happening in each step. According to the guidelines defined by Cock-

burn use cases should start with the most common way a goal is achieved (“main success 

scenario”) and then add extensions to the ordinary case [2001]. Use case diagrams visualize 

the relation of several use cases (extension, generalization). In most software development 

processes use case modeling and specification are major steps while defining the require-

ments of the system under construction (e.g., RUP).  

Figure 7-2 depicts an example of a use case with respect to the scenario of a presentation at a 

conference. First, the name of the use case can be seen (“Give Presentation”) followed by the 

preamble. The primary actor is the subject who wants to achieve the goal and proactively 

interacts with the system. Secondary actors are supportive but do not take the initiative. Then 

the level of detail is specified which determines the granularity of the use case as they are 

modeled on different levels of abstraction. Here in the given example a precondition is de-

fined denote the necessary state under which the use case can be started. After the preamble 

the main success scenario starts. It is a stepwise text-based description of the main path 

through the use case. The actions 1-6 represent the main success scenario. In action 6 a loop 

is described informally. Naturally the main success scenario does not cover all cases. There-

fore extensions to it can be described. First, the condition under which the extension occurs 
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and the entry point is specified (e.g., alternative path for action 5. is 5a. when time is ex-

pired).  

 

Figure 7-2 Use Case “Give Presentation” in Summary Level 

Both artifacts explained before are requirement elicitation and specification tools. In the 

following paragraphs design artifacts for implicit and explicit interaction are explained as 

they are relevant in subsequent development steps based on CTML specifications.  

7.1.3 Dialog Model 

AUI specification languages exist in great numbers as shown in Section 3.3.2. Here, we fo-

cus on a particular representative as it is the most suitable artifact for GUI based system and 

integrates excellent with task modeling in general and CTML in particular. The dialog model 

introduced by Reichart et al. is an abstract visual representation of dialog structures based on 

task models [2004]. Formally it is a typed graph structure in which nodes represent different 

types of dialogs and transitions are represented by edges (see Figure 7-3). A dialog can only 

be instantiated once at a time but other can run concurrently (single dialog view) or multiple 

instances may exist (multiple dialog view). Moreover, another type of dialog blocks the 

whole application (model dialog view). Hence, different transitions exist. A sequential tran-

sition defines that the source dialog disappears while the target dialog is displayed. A con-

current transition creates a new dialog without close the source dialog when activated.   

 

Figure 7-3 Modeling Elements in Dialog Model of Reichart 

The integration of task modeling and AUIs, such as the dialog model, has been a research 

issue in HCI for years. A smooth transition from a high level model to AUI model is very 

difficult as work processes are mapped to abstract UI components [Limbourg et al., 2001]. 

Semi-automated processes such the one of Reichart et al. exhibit higher quality with respect 

to usability than the generated solutions of Limbourg et al. Actually, in GUI-based systems a 

dialog is a grouping of tasks. Exactly this approach is implemented by the dialog model pre-
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sented here. Tasks of a task model, such as a CTML specification, are assigned to dialog 

views. The execution of a task may or may not trigger a transition. The informal semantics 

are defined by the combination of the task model animation and the visibility of a task within 

the current visible dialogs during animation. If a task is not visible in any dialog it is not 

executable. Therefore dialog models add additional execution constraints to the task model.  

 

Figure 7-4 Example of Dialog Graph for “Give Presentation” 

Figure 7-4 shows a dialog graph based on a CTML model for the role Presenter. Configure 

Room is the starting view. The user can either enter coordinates or can switch the light on. 

When giving a presentation the next view to be shown is Presentation with Projector. In this 

view the projector is configured. By setting the slides on the projector the next view becomes 

visible (without closing the prior one due to the concurrent transition). This view may be 

instantiated several times. When executing the task Finishes Presentation the final dialog 

appears which can be used to switch off the light. 

The most expedient property of the dialog graph is its capability of being animatable. In the 

same vein as CTML, dialog graphs (enriched with CTML specifications) can be interactively 

explored. This integrates with the principles of agile development, UCD and HCSE. In Sec-

tion 7.4.1 this approach is exemplified. 

In order to continue the MB-UI chain an export to XUL can be triggered. Then, the abstract 

UI components can be replaced by more suitable ones based on the research conducted by 

Wolff [Wolff et al., 2005]. By adapting the generated XUL models the links to the more 

abstract models (task model, dialog graph) can be retained allowing for reverse engineering 

of the UI. 

7.1.4 Hidden Markov Model 

For intention recognition probabilistic models are one way to model the structure of actions 

of persons. The advantage of such an approach is that uncertainty can be expressed which is 

important when handling sensor data (e.g., location tracking). HMMs are the most simple 

Bayesian Networks as the state of the system is represented by a single variable [Russell & 

Norvig, 2003]. Moreover the system model is first order Markovian: the current state de-

pends only on the previous state and no other states. By further taking into account that typi-

cally the current state of the system cannot be observed directly, observations depending on 

(not observable) states are needed. So informally a HMM is a tuple consisting of a set of 

states, an initial probability of each state, a state transition relation with each transition hav-

ing a certain probability to occur and a set of observations which are mapped to states with a 

certain probability to occur. 
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The HMM can be used to infer the current state of the system based on the observations and 

the assigned probabilities. Different algorithms exist to do so which are extensively ex-

plained in [Russell & Norvig, 2003]. However the algorithms on the HMM are not of interest 

here but the model is used as design artifact with respect to intention recognition. More in 

detail, the question of deducing the current state of the system from the observations can be 

straightforwardly applied to the human behavior within a SmE. Therefore in our research lab 

the intention recognition module is driven by HMMs. One issue faced by this kind of model 

is state explosion. As the system needs to be represented by a single state numerous states 

are needed to model the system adequately for sizable systems. This issue is addressed by 

CTML as well. In order to do so the model is introduced here formally. 

Definition 7-1 (Hidden Markov Model): A Hidden Markov Model is defined by the tuple 

              with   being a set of numerable states,       assigning each state an 

initial probability with           ,       being the state transition relation and 

      mapping transitions to probabilities with                           

representing state transition probabilities.   being a set of observations and         

assigning states and observations a probability with                   . 

This rather abstract definition is exemplified by the following example which is depicted in 

Figure 7-5. Let               be the HMM with            ,           for all 

   . Let further       ,                           and             

              1, using      with                    ,                   . 

       denotes the normal distribution with mean   and standard deviation  . On the left 

hand side the state space of the HMM with its transition probabilities and initial probabilities 

is shown. On the right hand side the observation depending on the current state of the HMM 

are given. 

Please note that the given example sticks to the formal definition of   even though the nor-

mal distribution is used as observation probability. The normal distribution is a function over 

the observations and therefore assigns each observation in the example an element of  . 

In a more concrete example according to the experimental infrastructure in the SmartLab the 

set of observations can be a set of locations defined by x-y coordinates (e.g.,   

                           ) with                                    and 

                    . An according definition needs to specified for         . 

 

Figure 7-5 Graphical Representation of the Transition Model of the Example HMM 
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The introduced formal definition is used in Section 7.4.2 to formally defined how a CTML 

specification can be used to synthesize a HMM.  

7.1.5 Conclusion 

The artifacts examined in the previous sections have been partially designed for totally dif-

ferent purposes. However, all are relevant for the CTML development process. Whereas the 

first two models (scenarios and use cases) are used to support the design of a fully-dressed 

CTML model the latter two (dialog graph and HMM) are subsequent artifacts which can be 

derived based on a CTML specification. 

Scenarios are very handy during very early stages of development as they help to interact 

with the end user and let one specify which tasks are performed by whom in the current set-

ting. As it is stated in [Göransson et al., 2003] use cases are the prevalent specification me-

chanism for requirements nowadays. Here use cases are considered as an intermediate speci-

fication helpful to specify the abstract interaction flow between SmE and user. Next, task 

models are used to specify the interaction more precisely with respect to modality, needed 

devices, location information and domain dependencies. However design is not finished 

here. Task models can be further transformed or derived. For explicit interaction the dialog 

graph formalism is considered as most suitable as it tackles the mapping problem stated in 

[Limbourg et al., 2001] best. In a dialog graph the tasks relevant for the GUI are grouped 

and transitions between them are defined. A suitable further tool suite and development 

chain is provided to improve prototypes and eventually created the final UI. For implicit 

interaction probabilistic models are used. A first version of a HMM can be derived based on 

a CTML model. Further adaptations are usually necessary to design the detailed behavior not 

captured within the task model. The HMMs are employed to operate inference algorithms. 

The semantic relations of the artifacts are depicted in Figure 7-6. 

7.2 Development Steps and Artifacts 

During the development lifecycle which is shown in Figure 7-1 the involved artifacts are of 

different importance. As a rule of thumb, with respect to Figure 7-6 the artifacts on top are 

rather used in early stages and as more as fading to the bottom artifacts are more dominant in 

design. The mapping of artifacts to development phase and the used instruments to enhance 

the models is explained in Table 7-1. It actually combines Figure 7-1 and Figure 7-6. 

Phase Artifacts Instruments 

Analysis Scenario, Use Case, Task 

Model 

Discussion and Feedback, Animation, Validation, 

Refinement 

Interaction 

Specification 

Use Case, Task Model Animation, Validation, Prototyping, Refinement, 

Verification 

Detailed Inte-

raction Design 

Task Model, Dialog Graph, 

Hidden Markov Model, XUL 

Animation, Validation, Prototyping, Refinement, 

Verification 

Table 7-1 CTML Development Process, Artifacts, and Instrument 
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During analysis scenario, use cases and task models can be used depending on the system to 

be analyzed and the envisioned system. If interaction specification is to be emphasized in the 

current project task modeling is a suitable choice even for analysis purposes. However if the 

system is to be developed from scratch scenarios are useful to elicit the current work 

processes and specify them as use case or task model. The instruments to be used in this kind 

of phase to effectively make use of the models are first and foremost discussion and feed-

back with the end user, customer respectively, but also animating the first CTML specifica-

tion can be very helpful to detect erroneous analysis models. Having specified some use 

cases and task models also syntactical and semantic validation may be helpful to rule out 

early defects.  

In interaction specification scenarios are not useful as they are describing certain runs (one 

scenario – one run). More general description formalisms are needed. Use cases and task 

models are therefore more suitable. In general use cases are more abstract and independent 

of the type of modality and interaction devices and as such should be used before task mod-

eling. Based on the specified use cases task models are designed. To assure consistency be-

tween both artifacts the approach of Sinnig can be used [2009]. Especially when already 

having designed task models during analysis they are suitable as a smooth transition from 

analysis to interaction specification is possible. Such a requirement specification is consi-

dered as contract between user, stakeholder respectively and software designer. This also 

applies for SmEs. To be able to create such a specification models are enhanced by the 

named instruments in Table 7-1. Animation and validation have the same purpose as in anal-

ysis. Prototyping is used to illuminate potential instantiations for the specified requirements 

and to collect feedback. More formal methods like refinement and verification of properties 

(such as deadlock freedom) can also be applied to assure quality and enhance models proper-

ly. 
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Figure 7-6 Semantic Relations of Involved Artifacts 

In the detailed design phase only task models are still suitable. Use cases are not appropriate 

anymore as they only specify the interaction flow of user and the whole system. However in 

this stage the interaction is specified in a more concrete way. The device types constituting 

the environment are specified and their impact on the task world is designed. Therefore 

CTML specifications serve as foundation of this stage. However subsequent design artifacts 

are also used as design is not finished on the level of task modeling. Therefore for explicit 

interaction the dialog graph formalism and for implicit interaction the HMM are used. Natu-

rally to continue design for explicit interaction via the MB-UI process the dialog model is 

transformed into AUI and final UI. UI description languages such as XUL are further used 

on this stage of the process. 

In the last sections it has been examined which artifacts and instruments are used and applied 

to create valuable models for interaction design. However there are still some issues left. It is 

claimed that scenarios serve as input for use cases even though it has not been stated yet how 

to transit from a set of scenarios to a use case. The same applies for the task model. Moreo-

ver, it can be distinguished between intra stage transitions and inter stage transitions meaning 

that an artifact is either transformed in another in a certain development stage whereas the 
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latter denotes the transformation of an artifact into another one between two stages of devel-

opment. As task models are used on every stage of development their transition from one 

phase to another is of particular importance and is one of the major contributions of the the-

sis.  

In order to provide guidance how artifacts are transformed to suit the needs of each phase 

properly the subsequent sections elaborate on these issues. More in detail, general advice is 

given how to work with scenarios, use case and task models and their transformations. Next, 

the transformations and their consistent adaptation during the CTML development lifecycle 

are examined thoroughly. Finally, the derivation of CTML models to design artifacts is ex-

plained. 

7.3 Adapting CTML Specifications 

Adaptation is a natural process in iterative incremental process models. The CTML devel-

opment approach is no exception to this rule. In this section it is examined what constitutes 

valid refinement during the different steps of development in CTML. 

Refinement can if applied appropriately be a very helpful device to ensure certain quality of 

the designed artifacts. It can furthermore support the transformation of artifacts and guide the 

phase transitions in a software engineering process. In essence, refinement can be a tool to 

avoid and detect failures. However a valid refinement check does neither state the correct-

ness of the base nor of the refining model as it only indicates an adaptation which has been 

performed according to or contradict to the given refinement relation used. Whether a certain 

adaptation is useful or desired needs to be checked by the designer as it may contradict to the 

refinement relation proposed but has been performed at purpose. The interpretation of re-

finement within the whole development process is even more complicated. Refinement is a 

tool which is able to indicate erroneous adaptations and helps to ensure quality criteria but it 

cannot assure purposeful implementations. 

7.3.1 Phase Transitions 

Based upon the given explanations of the last section the adaptation mechanisms useful for 

the CTML development approach with respect to the involved artifacts are given in Table 

7-2. In the first column the development stage or the transition phase of the two development 

stages are depicted. The second column specifies the artifact. The last column contains the 

instruments which are useful to enhance the particular artifact in this particular phase, phase 

transition respectively. 

Phase / Transition Artifact(s) Instruments 

Analysis Scenario  Gradual Informal Refinement 

Scenario – Use Case Informal Generalization 

Use Case Structural Refinement 

Use Case – Task Model Mapping of use case step to tasks 
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Phase / Transition Artifact(s) Instruments 

Task Model Refinement: Trace or Scenario Inclusion with 

Meta Operators, Structural Refinement 

From Analysis to Interac-

tion Specification 

Use Case Restriction of User Choices [Sinnig, 2009] 

Use Case – Task Model Restriction of User Choices [Sinnig, 2009] 

Task Model Refinement: Trace or Scenario Inclusion 

(with Meta Operators), Structural Refinement 

Interaction Specification Use Case  Scenario Equivalence [Sinnig, 2009] 

Use Case – Task Model Scenario Equivalence [Sinnig, 2009] 

Task Model Refinement: Trace or Scenario Equivalence 

with Meta Operators, Structural Refinement 

From Interaction Specifi-

cation to Detailed Inte-

raction Design 

Task Model Refinement: Scenario Equivalence with Meta 

Operators, Structural Refinement, Structural 

Refinement 

Detailed Interaction 

Design 

Task Model  Refinement: Scenario Equivalence (with 

Meta Operators), Structural Refinement 

Table 7-2 Phase Transitions for each Artifact 

As stated earlier all three artifacts are used during analysis of the current work processes and 

existing software systems. As scenarios are informal means to gather information and de-

scribe work processes in an end user friendly way only informal refinement can be per-

formed. Existing scenarios are gradually refined by further detailing certain steps. When 

moving from scenarios to use case generalization is necessary as each scenario specifies a 

certain run whereas a use case specifies a set of runs (see Figure 7-6 for details). The genera-

lization derives a set of use cases in which at least each scenario which is considered as rele-

vant is represented by a run through a use case. This process cannot be supported by refine-

ment checks as the scenario is informal. Once use cases are created they are refined as well. 

In [Sinnig, 2009] refinement relations between use cases and task models for different de-

velopment phases are introduced. The approach is sound and partially used here. During 

analysis it is proposed to structurally enhance use cases meaning that previously atomic use 

case steps are further refined and detailed. When creating an analysis task model based on an 

analysis use case the relevant interactive parts of the use case are specified by means of 

tasks. The changes during analysis are rather fundamental and a flexible notion of refinement 

for such changes between use cases and task models does not exist. Therefore a mapping as 

described above is proposed. On the level of task modeling adaptations can be validated 

through the use of meta operators which have been explained earlier. They provide means to 

define what constitute a valid refinement in a flexible manner. On the analysis level major 

adaptations occur rather often. Due to this not too rigid refinement relations are needed. 

Therefore trace and scenario inclusion with meta operators are considered as valid during 

analysis. Moreover as models are designed gradual structural refinement is an excellent tool 

when adapting the model in a certain phase (intra stage transitions). 



CTML Development Approach 

165 

When moving from analysis to interaction specification only use cases and task models are 

considered as relevant as scenarios are too vague to describe the requirements with respect to 

interaction. Use cases are the standard device to specify functional requirements whereas 

task models are used to describe the UI requirements. However, usually the functional re-

quirements are specified which are then examined with respect to the envisioned interaction. 

Therefore also use cases are relevant for this phase. Sinnig proposed to use a special notion 

of scenario refinement which only allows for restricting user choices. In this vein the basic 

set of scenarios are preserved but only potential interactions are restricted. Such an approach 

preserves the functional requirements defined in the use case but gives the freedom to adapt 

the interaction accordingly. Having created an analysis task model and using it to derive the 

UI requirements a flexible notion of refinement is mandatory as the analysis model 

represents the current work situation whereas the requirements model states the envisioned 

behavior with the software system under construction (see Section 3.4.2). Therefore refine-

ment without meta operators is too rigid to allow a flexible adaptation process. With the sup-

port of meta operators it can easily be stated which tasks of the analysis task model (to which 

degree of detail) need to be preserved in the requirements model. 

With the gradual refinement during interaction specification the models become more mature 

and stable. The more stable the model is the less adaptations are usually performed. There-

fore the refinement relations can be more rigid as well. Structural refinement is especially for 

gradual refinement, meaning to detail a coarse-grained model, appropriate. For use cases the 

approach of Sinnig is taken up. Scenario equivalence is a rigid but valid refinement relation 

as once requirements are stated they need to be preserved in subsequent development to as-

sure their valid implementation. The same applies for the transition of use cases to task mod-

els as requirements stated in the use case need to be transferred to the task model. On the 

level of task modeling the scenario equivalence with meta operators is considered as most 

suitable refinement relation. The scenarios based on the meta operator can be considered as 

contract of requirements which are needed to validly implement the system in the subsequent 

stages. 

The defined requirements need to be transferred to the detailed design stage in which tech-

nology specific tasks are introduced. In order to do so scenario equivalence with meta opera-

tors are considered as important. During transformation design specific tasks are usually not 

marked with operator to avoid regarding them in the refinement checks. 

Eventually, task model adaptations are performed in the detailed design stage. During that 

phase the most fine-grained CTML model is created. The model is gradually refined and 

therefore structural refinement can be used to guide this process. Moreover scenario equiva-

lence based on meta operators is proposed as most suitable refinement relation. Obviously 

the refinement relation during design cannot be less rigid as in interaction specification to 

avoid corruption and weakening of the requirements. Therefore scenario equivalence with 

meta operator is used in this phase as well. 
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7.3.2 Guidance for Usage of Meta Operators 

It has been shown that the meta operators allow a flexible way of prioritizing the tasks of a 

CTML specification. Naturally the defined operators have to be assigned with care with re-

spect to the project stage (see Figure 7-1) and the selected refinement type (see Table 7-2). 

Therefore for each stage in which refinement with meta operators is applied advice is given 

how to make effectively use of the defined operators. The advice is based on the proposed 

refinement relations in Table 7-2. 

Such general guidance is obviously not very detailed and cannot regard specific settings of 

the project and domain. During use particular guidance may evolve or can be defined which 

better suits the current needs. In this vein usage of patters can be created. 

Analysis 

The purpose of analysis is to understand users' behavior such that the requirements/design 

artifacts for the envisioned software can be defined as closely to "natural" human activity as 

possible. The analysis task model captures the current work situation and highlights elemen-

tary domain processes as well as exposes bottlenecks and weaknesses of the problem do-

main. It is important, that refinements of analysis models retain all crucial processes of the 

domain. As a rule of thumb, tasks that correspond to elementary business/interaction 

processes should be either marked with the shallow binding operator, or, if the process is 

crucial and fixed in its tasks, with the deep binding operator.  

Starting with a coarse-grained analysis model leaf tasks are further refined until a fully-

detailed version of the current work/interaction processes exists. During such chain of task 

models the shallow binding operators are very suitable. They allow for stating which tasks 

are necessary in subsequent development steps but allow for adapting their sub tasks. With 

respect to the transition to the interaction specification the shallow operators also allow for 

integrating the envisioned behavior smoothly. As a result the coarse-grained work processes 

on a high level of abstraction which are considered as necessary to be preserved in all subse-

quent steps should be marked with the shallow operators. Their definition can be adapted to 

the requirement and design in the according phases. The deep binding operators need to be 

used with caution. They define a fixed process within all subsequent adaptations. However if 

a new system is to be developed the work processes are usually restructured and reassigned 

to human/computer. Therefore this kind of operators can be a burden. 

Finally, it is noted that an excessive usage of the meta operators is not advisable. When mov-

ing to the requirements stage, the changes to the model are usually substantial due to the 

introduction of the envisioned system. An overkill of meta operators (especially deep bind-

ing) unnecessarily restricts the specification of the requirements, which is often undesirable 

and counterproductive. 

Interaction Specification 

During interaction specification the UI requirements are manifested based on the analysis 

task model. Certain tasks are redefined and reallocated whereas others are dismissed or add-

ed. Generally, requirement task models specify the envisioned way tasks are performed us-
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ing the system under development. The artifacts gathered during requirements specification 

are part of the contract between stakeholders about the future application. Therefore, it is 

recommended to mark crucial tasks with the deep binding operator to ensure that all refining 

models truly implement the requirements. However in certain situations a task is completely 

restructured due to design specific adaptations. If such a situation is anticipated the shallow 

binding operators should be used.   

Detailed Interaction Design 

During design, the various tasks of the requirements model need to be "instantiated" to a 

particular interaction technique. It is important to ensure that the design truly implements the 

requirements. Typically, when moving from requirements to design, mainly structural re-

finements are used, which further details a previously atomic task into a set of design specif-

ic subtasks. However as stated above, sometimes requirements are validly restructured (e.g., 

login task for a shop). Such an adaptation cannot be captured by structural refinement. 

Therefore, meta operators are used as well. During design the final task specification is 

created. For that reason basically all meta operators can be used here. Once a task tree is 

considered as final it can be marked with the deep binding operators. In this vein further 

adaptation is forbidden. If adaptations are envisioned for subsequent design steps only sub 

trees should be marked with the deep binding operators or the task itself should be marked 

with one of the shallow binding operators. 

7.4 Creating the Design Artifacts 

The artifacts and their relation used in CTML according to the process model are depicted in 

Figure 7-6. The figure shows that based upon task models both explicit and implicit interac-

tion development are performed. In order to make the process feasible guidance is needed 

how to transit from a fully-dressed CTML specification to the artifact of choice for explicit 

interaction, namely dialog graphs, and implicit interaction, the HMM. In this section this 

issue is tackled. More precisely, a semi automatic approach for creating dialog graphs from 

CTML specifications is proposed as such an approach exhibits higher quality than fully au-

tomated algorithms even though they can be a good start. For implicit interaction an auto-

mated approach for the creation of HMMs is introduced. The main reason for that is the size 

of the HMMs for this field of application. HMMs become quite complex as the number of 

states easily reaches the thousand.  

7.4.1 Explicit Interaction: From CTML Specifications to Dialog 

Graphs 

The assignment of interactive tasks to dialog structures is a complex task and depends on 

various factors to create a usable system. The presented dialogs of the final UI need to be 

suitable for the device (e.g., suitable amount of tasks in one dialog on a small device) and 

user (e.g., avoid cognitive overload due to numerous devices). Due to the sensibility of the 

UI with respect to the task assignment an interactive approach is followed for CTML. Tasks 

are dragged & dropped onto dialogs in order to assign them. Moreover dialog transitions can 

be defined by means of task execution. Basically for each role a dialog graph can be defined 
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individually which is instantiated during animation time, respectively runtime. If an actor 

fulfills several roles both dialog graphs are being displayed concurrently. 

The Running Example 

In accordance with the running example of the “Conference Session” a dedicated task model 

for explicit interaction is presented here.  

 

Figure 7-7 Task Model for Role Chairman for Explicit Interaction 

In Figure 7-7 such a task tree for the role chairman is given. This model exhibits more tasks 

related to explicit interaction such as entering data or login/logout. On the left hand side of 

the task model authentication of the user for a conference management system is specified. 

During the talk of the presenter the chairman can set the talk in the system as in progress and 

eventually as been given. Moreover the chairman can configure the meeting room by dim-

ming the light, adjusting the canvases and controlling the steerable projector. 

 

Figure 7-8 Dialog Graph for Role Chairman for Task Model in Figure 7-7 

A possible dialog graph grouping the interactive tasks of the task model appropriately is 

given in Figure 7-8. The start dialog is called Login in which the credentials are entered. 

Having finished entering the password the dialog for the current talk is shown. While the talk 

is been given the progress can be set in the conference management system. First, the talk 

can be marked as in progress and eventually as finished. Moreover, a new dialog can be 

opened by executing Start Configuration. Logout finishes the use of the conference man-

agement system. In the Configure Room dialog the controllable components of the meeting 

room can be adjusted. Again, Logout leads to quitting the system. 

Having created the dialog graph the entire model can be animated and validated based on the 

task model animation and the defined dialog model. Figure 7-9 depicts such an animation in 

progress. On the left hand side the abstract prototypes of the instantiations of the dialogs are 

shown (During Talk and Configure Room are active). Moreover, within each dialog the as-

signed tasks are represented as buttons. If a task is not executable the corresponding button is 

disabled. Enabled buttons can be pressed in order to trigger the execution of the task. Fur-

thermore, on the right hand side the entire task model animation is shown. As the task model 
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is a complete model of the behavior of the actor within the environment not all tasks are 

grouped in dialogs (e.g., Introduce Session). Therefore some tasks are executed without us-

ing the GUIs under construction. To tackle this issue those tasks need to be triggered inde-

pendently which is possible on the right hand side. 

 

Figure 7-9 Canonical Abstract Prototypes during Dialog Graph Animation 

Such an abstract prototype is the first functional canonical prototypes following the model-

based UI design paradigm. The designed navigation can be tested with respect to the tempor-

al operators of the task model  

The dialog graph can be exported as XUL file which is the AUI definition language in this 

process. The XUL files can be adapted and the buttons (serving as default placeholders for 

tasks) can be further refined and replaced by other AUI elements such as text fields, select 

boxes, etc. or complex AUI elements. In Figure 7-10 such a refined dialog based on the ex-

port of the dialog graph in XUL is shown. It is a rendered XUL file and represents the CUI, 

final UI respectively. 

 

Figure 7-10 Refined Dialog “Configure Room” 

7.4.2 Implicit Interaction: From CTML Specifications to Hidden 

Markov Models 

The semantic domain of LTSs is actually very helpful to provide an interface to HMMs as 

the general structure of execution is quite similar. In the HMM nodes represent tasks under 

execution whereas edges represent transitions between those tasks under execution. The LTS 

specifies these information implicitly as each transition in the LTS represents a task under 

execution. Therefore, to derive the HMM transitions in the LTS are interpreted as nodes in 

the HMM. The same applies for the states in the HMM which are derived based on the tran-

sitions (actions) in the LTS. 
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According to Definition 7-1 more information need to be synthesized in order to create a 

valid HMM based on CTML specifications. More precisely, the derived LTS does not con-

tain information about the initial probability of states, transition probability, observations and 

corresponding observation probabilities. In order to fill in those missing information two 

basic concepts are used. Either meta information are annotated to the task specification in 

order to synthesize the missing information or suitable default values are generated. 

To be able to generate a HMM the following additional properties are necessary: 

1. Transition Probability. The transition probability in the HMM is synthesized by 

assigning each atomic task of the CTML model a priority. The transition probability 

is then calculated by the relative priority of the task with respect to all enabled tasks. 

          

   

   

with     being the set of qualified task names for the role  . 

2. Set of Observations. The set of observations is defined with respect to intention 

recognition. Such information is not specified within the process of task modeling. 

Usually observations are not constants but probability density functions mapping ob-

servations to probabilities (see the example in Section 7.1.4). The set of observations 

is denoted by  .  

3. Observation Probability. The same applies for the probability that a certain obser-

vation occurs. For each atomic task an observation is assigned. The probability of 

this observation is  . Formally this is implemented by the function  . 

       

   

   

Having defined all necessary preliminaries it is now continued with the derivation of the 

HMM based on a CTML specification and the necessary information above. 

Let             be a CTML model,    the selected configuration with         and 

             (see Definition 4-1) be the assigned LTS according to Definition 6-27, then 

the corresponding HMM               is defined as follows: 

                                     

       
              
      

  

   
                               

                                             
         

          
                               

                                       
 

   is defined in the preliminaries 

           
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Please note that the set     contains elements of the set of qualified task names of a CTML 

model        (see Definition 6-20) of the following form:         with   being an actor,   

being a role and   being a task name. 

As already stated before the LTS and HMM are structural similar. Actions in the LTS are 

states in the HMM. In order truly enroll the HMM properly not only the actions represent a 

state in the HMM but the tuple of source state and actions. This approach is taken in order to 

preserve the execution history implicitly defined in the LTS as it makes a difference in the 

HMM whether an action is executable at the beginning or having executed a certain set of 

actions. A special case is the initial state of the HMM which is added additionally. The initial 

probabilities are synthesized by assigning the initial state the probability   whereas for all 

other it is  . The transitions of the HMM are derived based on the state space of the LTS. 

More precisely, for each state in the LTS a set of according HMM transition is created using 

the incoming and outgoing actions of the state.  

Having defined the structure of the state space it is now continued with additional properties 

which are not part of the CTML model and LTS model itself. The transition probability is 

synthesized with the support of the      function which assigns each qualified task name 

(   ) a priority. In order to calculate the transition probability the relative priority of the 

action (HMM state) of interest and to the sum of the priorities of all potential actions (HMM 

states) is consulted. The set of observations is defined according to the needs of the intention 

recognition (e.g., location information, RFID information) and is not part of the task model-

ing process. The observation can be imported accordingly. As each task is only assigned one 

observation the probability of the occurrence of this observation is 1, for all others it is 0.  

The Running Example 

In order to exemplify the creation of a HMM based on a CTML specification the running 

example is consulted. To keep the example as comprehensible as possible the derivation is 

only shown for a single task expression (more precisely for a single actor, Sheldon, fulfilling 

only one role, Chairman). However during the derivation process also other actors acting as 

Presenter are used (Leonard, Penny). The task expression used to exemplify the derivation 

process is shown in Figure 7-11. It is in line with example used in the whole and specifies 

how a chairman may chair a conference session with two talks to present. Such situation is 

typical in our SmartLab. 

 

Figure 7-11 Task Tree for Implicit Interaction in SmartLab 

The example is actually more concrete then the task models used in the other examples in the 

thesis as it precisely defines that two talks are to be given. In this vein, it becomes more easi-

ly to derive the currently executing task as each talk has different observations. 
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The corresponding LTS to the given task tree is depicted in Figure 7-12. Please note that 

invisible actions are already removed. Due to space constraints abbreviated action names are 

used (the names is abbreviated and the actor and role are omitted). The branching of states is 

a typically result of the usage of the orderindependence operator (   ). 

 

Figure 7-12 LTS for the Task Tree of the SmartLab 

Formally the LTS can be represented by the tuple              with: 

                                         

                                        

    

                                                          
                                                      
                                                        

  

      

In order to derive the corresponding HMM the additionally needed information need to be 

provided. A function assigning qualified task names a certain priority is given by: 

        

 
 
 

 
 
        
        
        
        
      

  

Moreover an observation for each action to be executed needs to be defined in order to de-

rive the currently executed action at runtime. Such a mapping represents the binding of the 

model to the world state. In this example locations of the SmartLab are used as observations. 

Given the location model in Figure 6-13 the following locations exist: SmartLab, Outside, 

Presentation Zone, Whiteboard Zone, Door Zone, Right Chairs Zone, Rear Chairs Zone, Left 

Chairs Zone and an accumulation of the different chair zones by Chairs. Moreover the ob-

servations are qualified with the actors in the environment in order to create an evaluable 

statement. Therefore, the observations of this example are: 

      

with   (          ) being the set of actors in the environment and   being the set of loca-

tions (                             ). 

The observations are mapped to atomic tasks with a certain probability. Here and in Defini-

tion 7-1 the simplest case is used. Only one observation is assigned for each action. Such an 

observation defines where each of the actors are in the environment. Therefore the probabili-
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ty of its occurrence is one. Please note that in this particular example the initial state does not 

have assigned an observation as it is the only possible starting state. 

     

 
 
 
 
 

 
 
 
 
                              
                              
                               
                              
                               
                              
                               
                               
                               

  

Now, all information needed to create a HMM based on the LTS is given. The resulting 

model is depicted in Figure 7-13. Formally it is represented by               with: 

                                                                            

       
              
      

  

    

                                                            
                                                                  
                                                               

  

          

 
 
 
 

 
 
 
                 

                  

                  

                  

                   

                   

      

  

       (as described above) 

           
          

      
  

The states of the HMM represent the task under execution. The states have been renamed. 

Given the definitions above a state is represented by the tupel       with   being the source 

state in the LTS and   being the action. The source state has been eliminated and an index is 

introduced in order to avoid multiple occurrences of state names. In Figure 7-13 a visual 

representation of the HMM is given. Black circles represent states, directed edges defines 

state transitions. Numbers assigned to direct edges are transition probabilities. If a state has 

only one outgoing transition the transition probability is 1. In such case the number is not 

visualized in Figure 7-13. Red lines assign observations to states which in turn are visualized 

by red circles. For each state, except for the initial state, three observations are assigned: for 

each involved actor a sensor observation is needed to precisely describe the situation under a 

state is reached. In Figure 7-13 for each state only one observation is shown. The two other 

observations are not depicted as they only define that the other actors need to be present 

somewhere in the environment (e.g., for the state    the not shown observations are 
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               ). The initial probability, the probability that a state is the initial state, is only 

visualized for the state Initial as this is the only state with value other then 0. It is given by 

the number in the underpart of the state. 

In the last paragraphs it has been shown that annotated CTML specifications can be trans-

formed into fully-dressed HMMs. The lower quality of the generated HMM pays off when 

the models become more complex (an HMM can easily reached the size of thousands of 

states). Moreover, the generated artifact can be further refined and perfectly based on the 

software designer needs. In this vein, task models are used on a high level of abstraction in 

order to specify the basic structure of the behavior with its temporal and causal dependencies 

which eventually results in a CTML specification which in turn is transformed into the 

HMM. The HMM is used to derive the current tasks under execution at runtime. Based on 

such intention recognition process the assistive technology can be smoothly introduced in 

order to truly assist the user. 

The assessment whether a HMM is appropriate and of sufficient quality is a complex task. 

Of course, syntactical validation and consistency checks can be defined and implemented. 

However the rationale of the specified model is not revealed by such analysis. In [Burghardt 

et al., 2009] an approach is presented which uses recorded or artificial sensor data in order to 

assess the quality of a defined HMM. This approach can also be used for the task model-

based HMM. 

 

Figure 7-13 The derived HMM for Implicit Interaction in the SmartLab 

7.5 Integration with further Software Engineering Dis-

ciplines 

The CTML development approach and the language itself rely on common concepts and best 

practice methods from the area of HCI and software engineering. Naturally in both areas 

further application domains exist. In this section it is exemplified and substantiated which 

disciplines can be smoothly integrated with CTML and its development approach. More 

precisely, three disciplines have been assessed as most suitable for task modeling in general 

and CTML in particular. 

Developing the interaction of a software system in a model-based way has the advantage of 

being able to use the models to perform usability tests in early phases. Usability evaluation 

cannot only be performed after having created the final UI, intention recognition respective-
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ly, but also during all stages of development as proposed in [Propp et al., 2008]. Hence, task 

models are a very suitable artifact for usability evaluation as they focus on the user perspec-

tive and the accomplishment of goals of the user which is the one major interests of usability 

evaluation. Numerous techniques have been used to assess the usability of interaction for 

desktop systems. In his PhD Thesis Propp discusses different techniques to enable usability 

evaluation for SmEs based on task models. In essence, the major phases of software engi-

neering are covered with appropriate usability evaluation techniques suitable for the artifacts 

in use. Techniques such as Wizard of Oz experiments, expert evaluation and cognitive walk-

through are offered and tool supported. The results of the thesis have also been published in 

[Burghardt et al., 2009] and [Propp et al., 2008]. 

Besides the interaction, the application core of the system under construction needs to be 

designed and implemented as well. In his PhD thesis Sinnig proposed an integrated devel-

opment methodology for software system in general which employs task models as artifact 

for UI requirements and use case as artifact for functional requirements [2009]. In this vein 

the requirements of the software system are specified in a comprehensive manner and re-

finement checks and validity checks can be performed between task models and use cases. 

CTML can be integrated seamlessly into this prosperous methodology as the semantic do-

main of CTML is very similar to Sinnig’s approach. 

Reuse and knowledge sharing is a common challenge in software engineering. Pattern-based 

(pattern-oriented) design of software systems is one approach to tackle this issue. A pattern 

is an adaptable best practice solution to a recurrent problem on a certain level of abstraction 

[Gamma et al., 1995]. In [Forbrig et al., 2004] a two-folded approach for system develop-

ment based on patterns is proposed. In a unified step the first models are created, amongst 

other the task model. Then, two separate approaches are followed to develop the application 

core and the UI which are both based on patterns. On the one hand design patterns of Gam-

ma and the architectural patterns of Fowler ([2002]) are used to develop the application core. 

On the other hand the UI is created through the employment of HCI patterns. This and simi-

lar approaches relying on patterns exist for interaction design. The main advantage of such 

an approach is the reuse of solutions that have been successfully applied for similar problems 

and therefore exhibit a higher quality than custom tailored solutions. In the research field of 

HCI MB-UI development has already been enhanced by the application of pattern. In partic-

ular, several approaches introduced task pattern as reusable task structures [Breedvelt et al., 

1997; Sinnig, 2004]. In the domain of SmEs the usage of patterns seems to be fruitful as the 

incorporation of a particular domain may reveal different patterns of usage but also other 

patterns are conceivable (e.g., location patterns describing the layout of a particular SmE for 

a certain purpose). Therefore the integration with pattern-oriented UI design can be achieved 

and would enhance the development approach of CTML. 

7.6 Further Application Areas 

CTML and its development approach are not limited to the integration with other disciplines 

but are also applicable for other applications in the field. A model of the tasks being current-

ly executed and are going to be executed in future is supportive for numerous applications in 
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SmEs. Provisioning of resources of any kind (e.g., establishing a network connection, trans-

ferring data, etc.) and preparation of long lasting functions (e.g., steering a projector, shutting 

the blinds, etc.) are prevalent general application areas of task models. However, also more 

human centered related application areas exist which are illuminated in the subsequent para-

graphs. 

The various enabled tasks in SmEs can also be a burden especially for novice users who are 

not used to assistive technologies. Therefore highlighting the system state and the anticipated 

tasks under execution of the user may help to explain certain decisions by the system. Such 

an approach allows for making a SmE less autonomous from users’ perspective. Users may 

feel more comfortable if decisions are made explicit based on the assumption the system has 

about the user by means of a task model. Moreover the enabled tasks a user has and their 

potential outcome can be explained and the user can be guided through the use of the system.  

Hence, as already stated the task model is actually an assumption about the users’ intention 

and actions. Such an explicit model and its visualization can be used to correct the assump-

tions and adapt the model according to the feedback of the user. Such approaches are gener-

ally referred to as end-user development [Sutcliffe, 2005]. 

7.7 Summary and Conclusion 

In this chapter the CTML development methodology has been introduced. It is based on an 

iterative, incremental development model and proposes different artifacts to be used. The 

central building block is the developed language of this thesis: CTML. Moreover it has been 

shown how a task model is created based on other artifacts such as scenarios or use cases. 

Hence, the derivation of task models to models used in the development process of the dif-

ferent interaction types, namely explicit and implicit interaction, has been exemplified. Natu-

rally, the development methodology not only shows how to transform an artifact to a task 

model and vice versa, but also shows how to enhance a CTML properly depending on the 

stage of development. As this process of enhancing a CTML model is guided by refinement 

with and without meta operators the development methodology also guides the designer how 

to assign meta operators to tasks in a certain development stage. Beside guidance how to 

perform each development step also other application domains and interfaces to other soft-

ware engineering disciplines have been provided.  
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Chapter 8 
8 Conclusion & Outlook 

8.1 Summary 

In this thesis we proposed an integrated development methodology for the interaction devel-

opment of SmEs based on the concept of tasks. The interaction in SmEs is significantly more 

complex compared to ordinary desktop systems due to the diverse in- and output devices, 

their individual capabilities and limitations and situatedness of task execution (e.g., unfore-

seen changes in the configuration of the SmE because of a mobile device entering or leaving 

the ensemble). This issue naturally also raises the complexity of interaction development. 

Task analysis and modeling have been successfully applied to interaction development over 

decades in order to provide a basis to start development from. One particular application, 

MB-UI development, tackles the question whether UIs can be created via a model-driven 

process in which task modeling is used as starting point. In this thesis it is investigated 

whether such a model-driven development process is feasible and prosperous for interaction 

in SmEs. 

Explicit & Implicit Interaction 

To address these issues a distinction of interaction is proposed and used to establish a robust 

and holistic interaction framework comprising explicit and implicit interaction. Whereas 

explicit interaction is the predominant method of interaction in WIMP systems, implicit inte-

raction is a new interaction paradigm which makes use of user actions not primarily per-

formed to interact with the system but being interpreted by the system (e.g., walking). Both 

interaction types have been mainly treated separately even though they occur interleaved. In 

order to develop convenient means of interaction both interaction types need to be developed 

in an integrated matter as they are relying on the same work processes and domain. There-

fore, the integrated development methodology here is based on the common concept of tasks. 

Such a high level description mechanism is able to specify how goals are achieved by means 

of task execution which in turn can be used to develop explicit and implicit interaction. 

The Collaborative Task Modeling Language 

Task modeling has been considered as a normative and idealized model of task performance. 

However with the advent of model-driven development such idealized models are not suffi-

cient anymore. The special characteristics of SmEs are the diverse sensors used to derive 

knowledge about the user and the devices constituting the SmE which are used as means for 

in- and output. Especially the first is important for implementing implicit interaction as ac-
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tions of the user need to be recognized. The latter issue is important for explicit interaction as 

in- and output and as computing resource in general. Based upon these insights a set of re-

quirements has been distilled which are necessary to adequately reflect tasks in SmEs. These 

requirements can be categorized into the following categories: 

 Modeling Approach. On a high level of abstraction task modeling is suitable for 

representing the work processes involved in the domain of interest. This also applies 

for SmEs. Therefore a modeling language has been build around the concept of task. 

Moreover, as SmEs are inherently multi-user environments means for cooperation 

have been built into the language.  

 Context Modeling. A set of models for characterizing the context during the task 

execution have been integrated into task modeling by preconditions and effects. A 

certain task is only executable if a certain contextual property holds (e.g., the actor is 

at a certain location). On the other hand task execution may lead to a change of the 

contextual properties (e.g., the actor is in front of the audience). Three types of mod-

els have been considered as most important: Location modeling, device modeling, 

and domain modeling. However, the architecture allows for integrating further mod-

els with minimal effort. 

 Means of Engineering. In this category issues are subsumed which are needed to 

make effectively use of the language. A suitable development methodology and a 

tool suite supporting the development methodology are defined. Besides the de-

signed language, the development methodology and corresponding tool support are 

also part of the thesis. 

In order to address these requirements a new task modeling language, CTML, has been de-

signed. In order to share CTML models and rule out any ambiguities a formal syntax and 

semantics have been defined. Whereas the syntax is based on applied set theory the ultimate 

semantic domain of choice are labeled transition systems (LTS). A CTML model is trans-

lated to a LTS by two-step process in which the model is first converted into a homogenous 

intermediate specification and eventually translated into a LTS by inference rules. 

Refinement 

As modeling is usually not performed in a single sweep but rather iteratively instruments for 

supporting such an approach are meaningful for CTML. Refinement answers the question 

whether a certain adaptation is still a valid refinement of its origin. Therefore different re-

finement algorithms have been examined and a sub set has been selected. Based upon the 

semantic domains of LTSs the refinement relations trace and scenario inclusion and trace 

and scenario equivalence have been formally defined for CTML models in order to com-

pare two specifications with respect to their (allowed) behavior. In certain situations beha-

vioral refinement is not always purposeful. In such cases structural properties can be used to 

check refinement. Type consistency and structural refinement of non atomic tasks are 

checked within such a refinement check. 

While refining a task model a prioritization of tasks is desirable. Therefore a more flexible 

approach using so called meta operators has been defined. Tasks marked with one of the 
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meta operators are treated in special manner during the refinement checks. More precisely 

they define whether a certain task (ant its sub tasks) are considered during the refinement 

check. In this vein a totally new approach to refinement has been defined and implemented. 

Case studies have shown that the flexibility pays of the raised effort of assigning the meta 

operators. 

The CTML Development Approach 

The extended expressiveness of CTML compared to other task modeling languages and the 

developed refinement algorithms are much more valuable if applied in a coherent develop-

ment methodology. Therefore such a methodology has been created in order to develop in-

teractive systems for SmEs comprising explicit and implicit interaction. The approach is 

based on model-driven development which uses the task model as first formal model (scena-

rios and use cases are used to elicit and specify requirements). Based on the developed task 

models the artifacts dedicated for each interaction type, namely the dialog model for explicit 

and the HMM for implicit interaction, can be derived. In case of the first, an interactive ap-

proach is proposed whereas the latter can be automatically derived based on further meta 

information. 

The development approach comprises three stages which are mainly congruent with current 

software engineering practices of analysis, requirements specification and design stage. Na-

turally, the CTML development methodology is more focused on interaction and therefore 

takes into account UI requirements and functional requirements. The phases are: 

 Analysis 

 Interaction Specification 

 Detailed Interaction Design 

For each stage the relevant artifacts have been identified and guidance is offered how to ap-

ply them properly and advance development. Special attention has been paid to phase transi-

tions when one artifact is transformed into another type of artifact (e.g., use case – task mod-

el, task model – dialog graph). For those phase transitions the development methodology 

gives concrete advice how to perform them best. 

With respect to refinement the methodology specifies which refinement relation for CTML 

models is most suitable in which stages and whether meta operators should be considered 

during the refinement steps. The development approach also defines how meta operators 

should be assigned relative to the current development stage. This is of high importance as 

the meta operators are a new concept which may overtax the modeler. In order to ease this 

burden concrete guidance is offered. 

Tool Suite 

CTML, its methodology and the refinement algorithms are complemented with appropriate 

tool support. As task modeling is not the only activity throughout the whole development 

lifecycle the Eclipse IDE has been chosen as platform because it is one of the major standard 

software tools for development and coding and provides a solid and robust plug-in concept 

in order to develop editors and tools for other artifacts (such as the dialog model or HMM). 
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Integrated in the Eclipse IDE the CTML tool suite comprises the CTML Editor, Validator 

and Verifier. Whereas the CTML Editor enables the creation, manipulation, visualization 

and animation of CTML models, the Validator checks well-formnedness criteria. The CTML 

Verifier implements the refinement algorithms with and without meta operators. The com-

ponents are aligned to serve the development methodology by supporting each step regard-

ing task modeling and providing shortcuts for common use cases with respect to the devel-

opment methodology (e.g., type of refinement for each stage). 

8.2 Outlook 

In this thesis task modeling for SmEs has been investigated thoroughly. However, some re-

search questions still remain open, which are discussed next.   

Even though CTML has been designed to be able to specify tasks in SmEs the usage scena-

rio through the thesis was a particular SmE: a multi-user meeting setting. Further research 

need to be conducted to evidence the hypothesis that CTML is also feasible for other types 

of SmEs, such as home entertainment and elderly care. For the latter experimental modeling 

sessions have shown promising results.  

The models which have been integrated with task modeling (such as the location model) are 

the most salient ones. Naturally, especially with regard to the usage scenarios involving of 

explicit and implicit interaction further models can be considered as well. Location infor-

mation for example is only one source of sensor data. Physical properties such as tempera-

ture, day time, etc. can be considered as well and may have an impact on task execution. The 

same applies for other models as well. CTML and its tool suite are designed to allow for 

easy integration of new types of models with minimal effort.  

The creation of CTML models can become quite complex. The developed tool support tries 

to hide complexity as much as possible. A wizard has been implemented to ease the creation 

of a CTML model from scratch. Nevertheless, reuse on a higher level of abstraction is desir-

able. Patterns are one way to achieve such kind of reuse. Most prominent in software engi-

neering with the famous Gang of Four Design Patterns ([Gamma et al., 1995]) patterns have 

also entered HCI [Tidwell, 2005; van Duyne et al., 2006]. Even on the level of task model-

ing approaches exist which tackle the question whether task patterns can be used to enhance 

task modeling by offering generic solution to recurrent problems [Breedvelt et al., 1997; 

Wurdel, 2006]. These ideas can be further extended and applied to SmEs in which certain 

tasks are recurrent in different configurations. Moreover the models integrated in CTML 

may also exhibit patterns which can be applied in future models. 

The symbolic animation of CTML models is part of the tool suite and supports visualizations 

of the animated models on different levels of abstraction. A software interface, a text-based 

GUI, a tree-based animation and a 2-D bird view on the SmartLab have been implemented to 

allow the designer to animate the model from different viewpoints. Beyond that, a 3D visua-

lization could be the next step in order to create an even more concrete feeling about the 

CTML model under construction. This would allow to examine the model more thoroughly 

and to detect usability flaws regarding viewpoint occlusions and spatial issues. 
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One of the assets of model-driven development is the possibility of using the models at run-

time and evaluating the system with respect to the developed models. This allows for evalua-

tion on a higher level of abstraction (e.g., measuring the time performance of a certain task). 

Propp discussed the usage of task-based evaluation techniques in his PhD Thesis ([Propp et 

al., 2008; Propp et al., 2009]) and showed how different classical usability techniques such 

as Wizard of Oz experiments can be conducted based on the concepts of task modeling. The 

work of Propp and the thesis here propose an integrated approach to modeling and evalua-

tion. CTML has been used by Propp to enable usability methods. Further integration of 

these methods with CTML is another interesting research question. Especially with respect 

to the models which have been integrated as these models specify the context which is of 

high importance for the reason of executing a certain task in a certain manner. 
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A Appendix A.1 

A.1 The Running Example “Conference Session” 

 

Figure A-1 CTML Model “Conference Session” in CTML Editor 

                                  

Cooperation Model 

                                

                                          

 

Figure A-2 Task Tree for Chairman with Abstract Task Names 

 

Figure A-3 Task Tree for Presenter with Abstract Task Names 
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Figure A-4 Task Tree for Listener with Abstract Task Names 

                                                                      

      
                          

         
  

Preconditions & Effects 

Task Type Precondition Abstract Syntax 

Welcome Presenter LOCATION self.isIn(Presentation Zone)        

Present Agenda LOCATION self.isIn(Presentation Zone)        

Announce Talk TASK Listener.allInstances.Sit and Listen               

Announce Open Discus-

sion 

TASK Presenter.allInstances.End Presenta-

tion 

             

Table A-1 Preconditions of the Role Chairman 

Task Type Effect Abstract Syntax 

Enter Room LOCATION self.is(Presentation Zone)        

Leave Room LOCATION self.is(Outside)         

Table A-2 Effects of the Role Chairman 

Task Type Precondition Abstract Syntax 

Start Presentation TASK Chairman.oneInstance.AnnounceTalk              

Start Presentation LOCATION self.isIn(Presentation Zone)        

Start Presentation DEVICE self.Notebook.presentationStarted                   

Respond to Question TASK Chairman.oneInstance.OpenDiscussion              

Table A-3 Preconditions of the Role Presenter 

Task Type Effect Abstract Syntax 

Introduce DEVICE self.Notebook.switchOn                  

Introduce LOCATION self.is(Presentation Zone)        

Set to Presentation Mode DEVICE self.Notebook.startPresentation                     

Leave Room LOCATION self.is(Outside)         

Table A-4 Effects of the Role Presenter 
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Location Model 

The location model used here is depicted in Figure 6-13. 

        

   

                                                 

                                                        

                                                     
  

                             

Devices 

                        

           
                                    

                                               
  

    
                                                          
                                                   

  

 

Figure A-5 Visual Representation of the State Chart for Projector 
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Figure A-6 Visual Representation of the State Chart for Notebook 

               

                   

Domain Model 

The domain model used here is depicted in Figure 6-15. 

                

                                                              

                                                                             

                                                                   

Configurations 

                           

Scenario 1 

                            

                

(Abbreviated for sh - Sheldon, le-Leonard, pe-Penny) 

                      

                                             

                                                 

                       

The set of object names is: 
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The set of associations of the objects is: 

     
                                               

                            
  

The set of attributes of the objects is: 

     

                                                

                                     

                                            
  

Scenario 2 

                            

          

(Abbreviated for sh - Sheldon) 

                      

                   

Transformation to Intermediate Specification 

                                 

The Initial State    with respect to Scenario 1 

                   

                                                        

   

 
 

 
                                                

                                                                

                                                                  

                                      
 

 
 

                                    

                                           

   

                                                         

                                                               

                                                            
  

The Transformation with respect to Scenario 1 

Rule(s)          
                                   

(1)                            

(2)                                      

(3)                                             

(7)                                                        
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Rule(s)              

  
                                                          

 (8) 
                                                                  

(8) 
                                                                            

(12), (22)                              

                                                               

                                                                         

(14),(23) 
                                                                    

(8) 
                                                                             

(8) 
                                                                                     

(12), (22)                              

                                                                

                                                                                   

(14),(23) 
                                                                            

 

Rule(s)              

                                         

(8)                                                  

(12), (19)                                             

                                                

(12), (19)                                             

                                                

(14),(23)                                            
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(14),(23)                                      

 

Rule(s)              

 
                                               

 

   

(9) 
                                               

 

  

(8) 
                                                         

 

  

(8) 
                                                                  

 

  

(15)                                            

                                                        

 

  

(11) 
                                                        

 

  

(14),(23) 
                                                   

 

  

(14),(23)                                             
 
 

 

Rule(s)             

                            

(8)                                     

(14),(23)                                

(14),(23)                          

 

Rule(s)              

                                            

(8)                                                   
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(12), (15)                                                     

                                            

(14),(23)                                        

(14),(23)                                  

 

Rule(s)              

                                          

(8)                                               

(8)                                                       

(14),(23) 
                                                 

(14),(23) 
                                            

(14),(23)                                       

 

Rule(s)                            

 
                                                                            

(8) 
                                                                                 = 

(8) 
                                                                                           

(8) 
                                                                                                   

(12), (15) 
                                                 

                         

                                                                   

(12), (19)                                                
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(12), (18)                                                               

  
            
            

  

                                                                               

  

(14),(23) 
                                                                            

(8) 
                                                                                   

 

Rule(s)                           

                                       

(13), (22)                                   

                                                            

                                    

(13),(21)                             

      
                                                          
                                                       

  

         
            
            

  

                         

(14),(23)                    

 

Rule(s)                           

                                                   

(8)                                                          

(14),(23)                                                     
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(13),(21)                               

      
                                                             

                                                       
  

         
            
            

  

                                      

(14),(23)                                 

 

Rule(s)                           

                       
 
   

(9)                        
 
  

(8) 
                                 

 

  

(14),(23) 
                            

 

  

(14),(23)                        
 
 

 

Rule(s)                           

                                                        

(8)                                                               

(14),(23)                                                          

(8) 
                                                                

(12), (15)                                         

                                                         

(14),(23)                                                     

(13), (22)                             
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(14),(23)                                             

                                 

With  

     

 
 
 

 
                                                                     

                                                                            

                                                          
 
 

 
 

 

     

 
 
 

 
 

                                                            

                                              

                                              

                                                                      
 
 

 
 

 

 

       

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                                                        

                                                                         

                                                                             

                                                                             

 
                                                          
                                                       

                

 
                                                          
                                                       

                

 
                                                             

                                                       
                  

 
                                                             

                                                       
                  

                                                                         

                                                                         

  

The Initial State    with respect to Scenario 2 

                   

                      

     

     

                                           

   
                                                         

                                   
  

The Transformation with respect to Scenario 2 

Rule(s)          
                                   

(1)         

(2)           

(7)             
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(shown before) 

                                 

        

 

  
 
               

 

 

 
                                       

                                                      

 
 

                                             

 

 
 

 

  
 
 

    

                                                      

                                                         

                                   
  

       

                                                                   

      

  
                                                                        

                                                                         
  




