

Maik Wurdel

An Integrated Formal Task Specification

Method for Smart Environments

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2011-0151-9

ii

Die vorliegende Arbeit wurde von der Fakultät für Informatik und Elektrotechnik der Universi-

tät Rostock als Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-

Ing.) angenommen. Die Verteidigung der Dissertation fand am 29.06.2011 statt.

Gutachter:

Prof.-Dr.-Ing. habil. Peter Forbrig

Universität Rostock, Lehrstuhl für Softwaretechnik

Prof. Dr.-Ing. Thomas Kirste

Universität Rostock, Lehrstuhl für Mobile Multimediale Informationssysteme

Prof. Jean Vanderdonckt

Université catholique de Louvain, Louvain School of Management

iii

ABSTRACT
This thesis is concerned with the development of interactive systems for smart environments.

One of the characteristic of smart environments is the need to support different interaction para-

digms at runtime. On the one hand interaction is performed explicitly: the user performs an ac-

tion in order to interact with the system (e.g., pressing a button to adjust the light). On the other

hand actions of the user are interpreted by the smart environment, even though they have not

been performed primarily to interact with the system: implicit interactions (e.g., walking to the

speaker’s desk to give a talk). A smart environment tries to infer those interactions to assist the

user in her work (e.g., display slides at the projection canvas). Both interaction paradigms origi-

nate from different research fields and are currently treated independently although implicit and

explicit interaction mutually influence each other and occur interleaved.

To address this shortcoming, in this thesis a holistic approach to interaction development inte-

grating both interaction paradigms is proposed. For this purpose task models are utilized which

have been proven successful in Human-Computer Interaction for user interface design (a special

branch of explicit interaction). User tasks are specified and transformed in diverse model-based

development steps in order to semi-automatically generate the user interface. An analogous

approach based on task models for implicit interaction is proposed in this thesis. To base the

development of implicit and explicit interaction on task models leads to better integration of

both interaction paradigms and supports the alternation and transition from one paradigm to the

other at runtime.

Through the new field of application for task models, namely smart environments, additional

requirements for task modeling languages have been revealed as tasks are tightly coupled to the

technologies present in the smart environment and the contextual dependencies of tasks are of

high relevance for implicit interaction (e.g., where is a certain task executable in the smart envi-

ronment?). Thus, a part of this thesis is the newly designed task modeling language, CTML,

which support typical features of task modeling, such as hierarchical decomposition and tem-

poral operators, but also comprises new concepts like preconditions and effects based on loca-

tion, device and domain knowledge. In smart environments cooperative aspects of task perfor-

mance are of particular importance because tasks are usually performed by multiple users.

Therefore concepts for synchronization of tasks of different users and teams are integrated in the

language.

Another research objectives tackled in this thesis was the development of an integrated devel-

opment approach based on task models for interaction development in smart environments. An

iterative, incremental model has been selected since it supports user feedback and experience

better than classical software engineering methods. In such an approach, models are not created

in one sweep but iteratively being evaluated and perfected with each iteration. Model adaptation

is therefore a common issue and needs to be supported. Different refinement relations for

CTML models are part of the development methodology which determine whether a certain

adaptation is valid with respect to the base model. The relations are categorized into structural

and behavioral refinement. In case of the latter one can further distinguish between fully-

iv

automated refinement checks and interactive priorization of tasks by so called meta operators. In

particular, behavioral refinement is a helpful device to verify adaptations with respect to their

base model. Different refinement relations are employed depending on the current phase of de-

velopment: While models in early phases are compared with less stringent relations, during

specification and design rather strict relations are advocated. The integration of these refinement

relations into the development approach is another contribution towards the methodic develop-

ment of smart environments.

With this thesis a practical as well as methodical contribution to the research field of smart envi-

ronments is accomplished. The developed concepts are utilized through tool support.

Keywords: Task Modeling, Smart Environment, implicit and explicit Interaction, Refinement

Computing-Reviews-Classification: D.2.1 Requirements/Specification, H.1 Models and Prin-

ciples, H.5.2 User Interfaces

v

ZUSAMMENFASSUNG
Die vorliegende Arbeit behandelt die Entwicklung von interaktiven Systemen in intelligenten

Umgebungen. Als Besonderheit dieser Umgebungen ist zu beachten, dass verschiedene Interak-

tionsparadigmen während der Benutzung zu unterstützen sind. Auf der einen Seite erfolgt die

Interaktion explizit: der Nutzer führt Aktionen aus, um zu interagieren (z.B. Drücken eines

Knopfes um die Helligkeit anzupassen). Auf der anderen Seite werden auch Aktionen des Nut-

zers durch die intelligente Umgebung interpretiert, die jedoch nicht primär zur Interaktion aus-

geführt wurden, sogenannte implizite Interaktionen (z.B. Vortreten zum Rednerpult, um einen

Vortrag zu halten). Eine intelligente Umgebung versucht diese implizite Interaktion zu erken-

nen, um dem Nutzer zu assistieren (z.B. Projektion der Vortragsfolien). Diese beiden Paradig-

men der Interaktion stammen aus verschiedenen Forschungsbereichen und wurden bisher wei-

testgehend isoliert betrachtet, obwohl sie sich wechselseitig beeinflussen und gleichzeitig auf-

treten.

Daher wird in dieser Arbeit ein ganzheitlicher Lösungsansatz bezüglich beider Interaktionsfor-

men vorgeschlagen. Dazu wird auf Aufgabenmodelle zurückgegriffen, die sich im Forschungs-

bereich der Mensch-Maschine Interaktion für die Oberflächenentwicklung (ein spezieller Zweig

der expliziten Interaktion) bewährt haben. Mittels solcher Modelle werden die Aufgaben des

Nutzers spezifiziert, um daraus durch verschiedene modellbasierte Entwicklungsverfahren eine

Oberfläche zu erzeugen. Eine analoge Verfahrensweise basierend auf Aufgabenmodellen für die

Entwicklung der impliziten Interaktion wird in dieser Arbeit vorgeschlagen. Implizite und ex-

plizite Interaktion auf Aufgabenmodellen beruhen zu lassen, resultiert in einer besseren Integra-

tion beider Paradigmen und der Unterstützung von Wechseln der Interaktionsform während des

Betriebs der intelligenten Umgebung.

Durch die Verwendung von Aufgabenmodellen für die implizite und explizite Interaktion in

intelligenten Umgebungen ergeben sich neue Anforderungen an eine Aufgabenmodellierungs-

sprache, da die Aufgaben und deren Ausführbarkeit in einer intelligenten Umgebung stark an

die Technologien innerhalb der Umgebung gebunden sind und die kontextabhängige Ausführ-

barkeit der Aufgaben für die implizite Interaktion von großer Bedeutung ist (z.B.: An welchem

Ort innerhalb einer intelligenten Umgebung ist eine Aufgabe ausführbar?). Daher wurde im

Rahmen dieser Arbeit eine neue Aufgabenmodellierungssprache, CTML, entwickelt, die sowohl

klassische Konzepte der Aufgabenmodellierung, wie z.B. hierarchische Dekomposition und

temporale Operatoren unterstützt, aber auch neue Konzepte wie Vorbedingungen und Effekte

basierend auf Orts-, Geräte- und Domänenwissen unterstützt. Eine besondere Bedeutung im

Umfeld der intelligenten Umgebungen fällt dem kooperativen Aspekt der Aufgabenausführung

zu, da im Allgemeinen mehrere Nutzer gemeinsam an Aktivitäten beteiligt sind. Daher sind

Konzepte zur Synchronisation von Aufgaben verschiedener Nutzer und von Teams in der Spra-

che integriert.

Ein weiteres Ziel der Arbeit bestand in der Herausarbeitung eines integrierten Entwicklungsan-

satzes basierend auf Aufgabenmodellen für die Interaktion in intelligenten Umgebungen. Ein

iteratives, inkrementelles Modell wird vorgeschlagen, da es unter anderem Nutzerfeedback bes-

vi

ser als klassische Softwareentwicklungsmethoden unterstützt. Dabei werden Modelle „Schritt

für Schritt“ entwickelt und gegenüber dem Nutzer evaluiert und gegebenenfalls adaptiert. Eine

Herausforderung bei dieser Art von Vorgehen ist die Konsistenz des weiterentwickelten Mo-

dells bezüglich des Ausgangsmodells. Daher wurden in dieser Arbeit sogenannte Verfeine-

rungsrelationen für CTML Modelle entwickelt, die auf der formalen Syntax und Semantik von

CTML basieren. Grundsätzlich wird zwischen struktureller Verfeinerung und Verhaltensverfei-

nerung unterschieden. Bei der Verhaltensverfeinerung ist zwischen vollautomatisierten Verfah-

ren und interaktiver Priorisierung von Aufgaben mittels Meta-Operatoren zu unterscheiden.

Insbesondere die Verhaltensverfeinerung ist ein sehr hilfreiches Werkzeug, um Adaptionen auf

ihre Korrektheit bezüglich des Ausgangsmodells zu überprüfen. Die entwickelten Relationen

zur Beschränkung der Änderbarkeit von Modellen kommen jeweils in unterschiedlichen Ent-

wicklungsphasen zum Einsatz: Während weniger stringente Relationen zumeist in der Analyse

verwendet werden, sind die Relationen während der Spezifikation und des Designs wesentlich

strenger. Die Einbettung der Relationen in den modellbasierten Entwicklungsansatz stellt einen

weiteren Beitrag dieser Arbeit zur methodischen Entwicklung intelligenter Umgebungen dar.

Mit der Arbeit wird sowohl ein methodischer als praktischer Beitrag im Forschungsfeld der

intelligenten Umgebungen geleistet. Für die entwickelten Konzepte wurde eine Werkzeugunter-

stützung bereitgestellt.

Schlüsselwörter: Aufgabenmodellierung, intelligente Umgebung, implizite und explizite Inter-

aktion, Verfeinerung

Computing-Reviews-Klassifizierung: D.2.1 Requirements/Specification, H.1 Models and

Principles, H.5.2 User Interfaces

vii

ACKNOWLEDGEMENTS

Research is never done alone. Numerous people have been involved while writing this thesis. I

am grateful to a number of individuals and organizations:

First and foremost I thank my supervisor Prof. Forbrig who gave me the chance of doing the

PhD in his group. His critical thinking and way of listening made this thesis what it is.

My co-supervisors, Prof. Kirste and Prof. Vanderdonckt, for their feedback and ideas especially

in the last year. I am thankful for the cooperation with Prof. Kirste in the last four years and in

particular in the last year in MuSAMA. I deeply appreciate the numerous discussions at confe-

rences with Prof. Vanderdonckt and his way of connecting people.

The German Research Foundation for the financial support over a protracted period of time.

My colleagues from my research group Softwaretechnik, especially Gregor and Jens, who have

been striving with the same issues. Gregor for the unreasonable amount of proofreading.

The Graduate School MuSAMA for the opportunity to work in an interesting field of diverse

research areas. The former and current scholars of MuSAMA for invaluable discussions and

moral backup over the last four years. Special thanks to Florian, Christoph, Christian, Henry,

Christiane, and Michael.

I thank the following colleagues and friends: Dr. Daniel Sinnig for the endless paper writing

sessions, Dr. Krishnan for his support during my diploma thesis who motivated me doing the

PhD. Frank and Andre for the coffee breaks. My friends who helped me relaxing from problems

during research.

My family, my sister Caroline, my mother and father, and my grandparents for the backup and

support over the years as student. Without you there wouldn’t be a thesis today.

Above all, I am grateful for my own little family. My love, Jana, and the sunshine in our life,

Lion.

ix

TABLE OF CONTENTS
LIST OF FIGURES ... XII

LIST OF TABLES ... XIV

LIST OF ABBREVIATIONS .. XV

1 Introduction .. 1

1.1 Problem Statement .. 1
1.2 Scope, Aims and Contribution .. 3

1.2.1 Scope ... 3
1.2.2 Research Objectives .. 4
1.2.3 Contributions .. 5

1.3 Organization of the Thesis ... 7

I. SMART ENVIRONMENTS, SOFTWARE ENGINEERING, HCI AND FORMAL METHODS ... 9

2 Smart Environments ... 11

2.1 Disambiguation .. 11

2.1.1 Ubiquitous Computing .. 11
2.1.2 Pervasive Computing ... 12
2.1.3 Ambient Intelligence .. 12
2.1.4 Smart Environments .. 14
2.1.5 HCI Engineering ... 14

2.2 Interacting with a Smart Environment ... 16

2.2.1 Explicit Interaction ... 16
2.2.2 Implicit Interaction ... 17
2.2.3 Explicit & Implicit Interaction ... 19

2.3 Smart Environments Prototypes ... 21

2.3.1 Existing Prototypes .. 21
2.3.2 Current Challenges of Smart Environments ... 23
2.3.3 The Human in the Loop .. 25
2.3.4 Perspectives on Smart Environments ... 26

3 HCI Aspects ... 29

3.1 Dimensions of Complexity of Applications ... 29
3.2 Software Engineering in HCI ... 32

3.2.1 Classical Software Engineering Processes .. 32
3.2.2 Limitations according to HCI ... 33
3.2.3 Human-Centered Software Engineering .. 34
3.2.4 User-Centered Design.. 34

3.3 Task-Driven Development Methodologies ... 35

3.3.1 Analysis, Requirements Engineering & Design Techniques ... 36
3.3.2 Task-Based Specification Methodologies .. 37

3.4 Existing Approaches to Task Modeling .. 41

3.4.1 Task Analysis ... 41
3.4.2 From Task Analysis to Task Modeling ... 42
3.4.3 Task Modeling ... 43

x

3.5 Specification Mechanisms for Implicit Interaction ... 49
3.6 Other Relevant Background Work.. 50
3.7 Conclusion .. 52

4 Semantic Domains ... 53

4.1 Introduction & Illustration ... 53
4.2 Evaluation of Semantic Domains ... 54

4.2.1 Interleaving Semantics ... 55
4.2.2 Non- Interleaving Semantics ... 57

4.3 Other Relevant Semantics ... 58
4.4 Semantics for Task Specifications ... 58
4.5 Refinement ... 59
4.6 Conclusion .. 67

II. APPLYING HCI TASK MODELING TO SMART ENVIRONMENTS .. 69

5 Bridging the Gap: HCI Task Modeling and Smart Environments .. 71

5.1 Interaction Development for Smart Environments ... 71

5.1.1 An Example “The SmartLab” .. 73
5.1.2 Requirements for Task Modeling in Smart Environments ... 74
5.1.3 Task Structures of Interaction .. 78
5.1.4 Feasibility of Task Modeling .. 80

5.2 Explicit Interaction with Task Models .. 81
5.3 Implicit Interaction with Task Models ... 81
5.4 Conclusion .. 82

6 Modeling Tasks for Smart Environments – CTML .. 83

6.1 Overview of Syntax, Semantics and Design Rationale .. 83

6.1.1 Cooperation Model ... 84
6.1.2 Configuration... 88
6.1.3 Semantics .. 90
6.1.4 Cooperation / Team Modeling .. 93
6.1.5 Device Modeling ... 97
6.1.6 Location Modeling .. 99
6.1.7 Domain Modeling ..101

6.2 Executability ..103
6.3 Formal Syntax of CTML ..104
6.4 Semantics of CTML ...109

6.4.1 Transformation ..110
6.4.2 Inference Rules ...121

6.5 Refinement ...131

6.5.1 Comparison Semantics for CTML ..131
6.5.2 Structural Refinement...136
6.5.3 Introducing Flexibility through Meta Operators..137
6.5.4 Conclusion ..143

6.6 Deadlock Analysis ...144
6.7 Tool Support for the CTML ...145

6.7.1 Architecture of the CTML Tool Suite ..145
6.7.2 Creation and Editing ..146
6.7.3 Visualization and Validation ..147

xi

6.7.4 Verification .. 149
6.7.5 Interfaces .. 150
6.7.6 Conclusion .. 150

7 CTML Development Approach ..153

7.1 Involved Artifacts ... 156

7.1.1 Scenarios ... 156
7.1.2 Use Cases .. 156
7.1.3 Dialog Model ... 157
7.1.4 Hidden Markov Model .. 158
7.1.5 Conclusion .. 160

7.2 Development Steps and Artifacts ... 160
7.3 Adapting CTML Specifications ... 163

7.3.1 Phase Transitions ... 163
7.3.2 Guidance for Usage of Meta Operators .. 166

7.4 Creating the Design Artifacts .. 167

7.4.1 Explicit Interaction: From CTML Specifications to Dialog Graphs ... 167
7.4.2 Implicit Interaction: From CTML Specifications to Hidden Markov Models ... 169

7.5 Integration with further Software Engineering Disciplines .. 174
7.6 Further Application Areas ... 175
7.7 Summary and Conclusion... 176

8 Conclusion & Outlook ...177

8.1 Summary .. 177
8.2 Outlook .. 180

References ..183

III. APPENDIX ..197

A.1 The Running Example “Conference Session” ...199

xii

LIST OF FIGURES
Figure 1-1 The Instantiated Research Framework according to [Hevner et al., 2004] ... 4
Figure 2-1 Norman’s Model of Explicit Interaction ... 16
Figure 2-2 Implicit Interaction Framework by Ju et al. [2008] ... 18
Figure 2-3 An Adapted Model of Interaction to incorporate Implicit Interaction .. 19
Figure 3-1 Complexity Chart for Application Types .. 30
Figure 3-2 The Rational Unified Process [Kruchten, 2003] .. 33
Figure 3-3 The Idea of Task-based Processes .. 35
Figure 3-4 Organizational Structure Diagram from [Penichet et al., 2009] ... 37
Figure 3-5 Basic Model-based UI Process .. 38
Figure 3-6 Evolution of Task Models in Task Analysis and Modeling ... 43
Figure 3-7 Task Types in CTT and CCTT .. 44
Figure 3-8 CTT Model for “Give Presentation” .. 45
Figure 3-9 HTA Example of "Give Presentation" .. 45
Figure 3-10 Cooperative CTT Model for "Presentation" ... 46
Figure 3-11 Pools and Swimlanes in BPMN from [BPMN, 2010] ... 51
Figure 4-1 Example LTS .. 60
Figure 4-2 Excerpt of Partial Orders of Interleaving Semantics ... 61
Figure 4-3 Trace Equivalent LTS ... 62
Figure 4-4 Extended Examples with Successful Termination ... 63
Figure 4-5 Non Failure Equivalent LTSs ... 63
Figure 4-6 Bisimulation Example .. 65
Figure 5-1 Goal-based Interaction [Kirste, 2006] and Extended Framework for Interaction 72
Figure 5-2 Experimental Infrastructure of MuSAMA: “SmartLab” .. 73
Figure 5-3 Visual Representation of the Illustrating Scenario "Conference Session".. 75
Figure 5-4 The Envisioned Process of Interaction Development ... 82
Figure 6-1 Schematic Cooperation Model for Meeting Scenario ... 84
Figure 6-2 Task Tree for Chairman at a Conference ... 86
Figure 6-3 Configuration “Scenario 1” for Cooperation Model "Conference Session" .. 88
Figure 6-4 Task Life Cycle as State Chart ... 91
Figure 6-5 Generic State Chart of a Temporal Operator ... 92
Figure 6-6 Task Expression for Chairman at “Conference Session” during Animation ... 92
Figure 6-7 CTML Animation of “Conference Session” of “Scenario 1” (see Figure 6-3) .. 93
Figure 6-8 Team Model for "Conference Session" ... 94
Figure 6-9 Role Dependency for "Conference Session" ... 96
Figure 6-10 Task Tree for Presenter at “Conference Session” ... 96
Figure 6-11 Device Dependency for “Conference Session” .. 97
Figure 6-12 Simplified Behavioral Specification of Notebook for the “Conference Session” 98
Figure 6-13 Location Model for “Conference Session” .. 100
Figure 6-14 Location Dependency of Presenter to SmartLab .. 100
Figure 6-15 Domain Model for “Conference Session” .. 102
Figure 6-16 Domain Dependency of Presenter to Domain Model ... 102
Figure 6-17 Example of an Object Diagram for Domain Model in Figure 6-15 .. 103
Figure 6-18 Semantic Definition of CTML ... 110
Figure 6-19 Partial Task Expression of the Role Chairman .. 120
Figure 6-20 The Semantics of a Task Expression visualized as LTS .. 122
Figure 6-21 Visual Representation of the LTS ... 130
Figure 6-22 Base Specification for Role Chairman ... 134
Figure 6-23 Refinement of Base Specification for Role Chairman ... 134
Figure 6-24 Another Refinement of Base Specification for Role Chairman ... 134

xiii

Figure 6-25 Structurally Refined Task Expression for Role Chairman ... 137
Figure 6-26 Base Specification with Meta Operators for Role Chairman ... 142
Figure 6-27 Refinement of Base Specification with Meta Operators for Role Chairman .. 142
Figure 6-28 Specification for Role Chairman with Deadlock .. 144
Figure 6-29 Layered Architecture of the CTML Tool Suite and its Modules ... 145
Figure 6-30 Visual Editor for Cooperation Model .. 146
Figure 6-31 Tool Support for Designing Preconditions and Effects .. 147
Figure 6-32 Two Wizard Pages of the CTML Creation Wizard ... 147
Figure 6-33 2D-View on CTML Animation ... 149
Figure 6-34 Refinement Dialog for two CTML Models ... 150
Figure 7-1 Process Model for CTML for SmEs ... 154
Figure 7-2 Use Case “Give Presentation” in Summary Level .. 157
Figure 7-3 Modeling Elements in Dialog Model of Reichart ... 157
Figure 7-4 Example of Dialog Graph for “Give Presentation” .. 158
Figure 7-5 Graphical Representation of the Transition Model of the Example HMM .. 159
Figure 7-6 Semantic Relations of Involved Artifacts ... 162
Figure 7-7 Task Model for Role Chairman for Explicit Interaction .. 168
Figure 7-8 Dialog Graph for Role Chairman for Task Model in Figure 7-7 ... 168
Figure 7-9 Canonical Abstract Prototypes during Dialog Graph Animation .. 169
Figure 7-10 Refined Dialog “Configure Room” ... 169
Figure 7-11 Task Tree for Implicit Interaction in SmartLab ... 171
Figure 7-12 LTS for the Task Tree of the SmartLab .. 172
Figure 7-13 The derived HMM for Implicit Interaction in the SmartLab .. 174

xiv

LIST OF TABLES
Table 6-1 Semantics of CTML Operators ... 85
Table 6-2 Task States, Symbols and Semantics .. 91
Table 6-3 Semantics of Triggers... 95
Table 6-4 Exemplary Triggers for Team Model in Figure 6-8 ... 95
Table 6-5 Preconditions for Tasks of Role Presenter at “Conference Session” .. 96
Table 6-6 Preconditions and Effects for Role Presenter with respect to Device Modeling .. 98
Table 6-7 Preconditions and Effects for Role Presenter with respect to Location Modeling 100
Table 6-8 Preconditions and Effects for Role Presenter with respect to Domain Modeling 103
Table 6-9 Transformation of Actors ... 115
Table 6-10 Transformation of an Actor .. 116
Table 6-11 Transformation of a Qualified Task Expression... 116
Table 6-12 Transformation of Preconditions ... 118
Table 6-13 Transformation of Effects ... 120
Table 6-14 Transformation of a Qualified Task Name ... 120
Table 6-15 Mapping of Labels to Expressions for the Example ... 122
Table 6-16 Labels and States of Example LTS ... 128
Table 6-17 Transition Matrix and Applied Inference Rule ... 129
Table 6-18 Meta Operators for CTML in Support for Behavioral Refinement ... 138
Table 6-19 Validity of Meta Operator Nesting ... 140
Table 7-1 CTML Development Process, Artifacts, and Instrument .. 160
Table 7-2 Phase Transitions for each Artifact ... 164

xv

LIST OF ABBREVIATIONS
ACP Algebra of Communicating Processes

AI Artificial Intelligence

AmI Ambient Intelligence

AUI Abstract User Interface

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

CSCW Computer Supported Cooperative Work

CSP Communicating Sequential Processes

CCS Calculus of Communicating Systems

CCTT Cooperative Concur Task Trees

CTT Concur Task Trees

CUI Concrete User Interface

FDR Failures Divergence Refinement

GOMS Goals Operators Methods Selection Rules

GTA Groupware Task Analysis

HCI Human Computer interaction

HCSE Human Centered Software Engineering

HTA Hierarchical Task Analysis

IDE Integrated development environment

K-MAD Kernel of Model for Activity Description

LOTOS Language of Temporal Ordering Specification

LTS Labeled Transition System

MAD* Méthode Analytique de Description des taches

MDA Model-Driven Architecture

MDD Model-Driven Development

MB-UI Model-based user interface

MUI Multiple User Interfaces

OCL Object Constraint Language

POMSET Partial ordered multi set

POSET Partial ordered set

RUP Rational Unified Process

SE Software engineering

SmE Smart Environment

TAG Task Action Grammar

TKS Task Knowledge Structures

UI User Interface

UCD User Centered Design

VTMB Visual Task Model Builder

WIMP Windows Icons Menu Pointing Device

Introduction

1

Chapter 1
1 Introduction

Interaction design is a complex task even for desktop systems. With the advent of miniaturiza-

tion and seamless integration of devices into everyday life technology-enhanced physical spac-

es, so called Smart Environments (SmE(s)), are becoming possible. A SmE is a physical space

in which technology is seamlessly integrated in order to assist the user in performing tasks to

reach its goal more conveniently than without supportive technology. SmEs are not limited to a

particular domain and therefore for almost all kind of physical places in which tasks are per-

formed a SmE can be imagined in order to support the user. However, SmEs are limited to

physical places and as such exclude some aspects which are relevant for ubiquitous and perva-

sive computing e.g., mobility, communication, and failures beyond the physical boundaries of

the SmE.

The interaction design for such environments comprises a fundamentally higher complexity in

several dimensions. In order to cope with such a complexity new methods need to be developed.

The research field of Human Computer Interaction (HCI) has developed techniques for interac-

tion design which are partially suitable for SmEs. However, they are not useful out of the box as

the special constraints for SmEs are naturally not incorporated.

1.1 Problem Statement

HCI methods have become more and more mature in order to manage the complexity involved

in developing interactive software systems. The methods developed range from entire develop-

ment methodologies, requirements engineering techniques to specific methods based on models

with corresponding tool support. Especially in the field of model-based user interface develop-

ment (MB-UI) and Multiple User Interfaces (MUI) elaborate approaches exist [Luyten, 2004;

Paternò, 1999; Seffah & Javahery, 2004; Vanderdonckt, 2008].

As the interaction with the software system is shifting from being explicit, usually involving

desktop systems, to be more and more implicit, as it is the case in SmEs, those methods fail to

incorporate the increased complexity. Several causes contribute to this complexity: SmEs are

technical enhanced, physical environments where tasks are usually performed in a collaborative

manner using tools and artifacts. Therefore the potential task performance is strongly interre-

lated to the environment’s state and the group activity. In order to cope with such a complexity

new methods need to be designed.

Introduction

2

The research field of SmEs is dominated by technology driven approaches leaving out (to some

extent) development methodologies, requirement elicitation and user needs. HCI methods can

therefore offer different viewpoints on challenges in SmEs and additionally present solutions for

these challenges.

Interaction design for SmEs has been tackled by two distinct research communities: First, there

are researchers investigating how to develop explicit user interfaces (UI(s)) for SmEs. MB-UI

development is a particular branch of that community. Research questions posed by UI devel-

opment for SmEs are amongst others migratability, multiple modalities, suspendability, plastici-

ty, location-awareness, platform independency, and composibility [Blumendorf et al., 2007;

Demeure & Calvary, 2003; Luyten et al., 2003]. MB-UI development is able to partially solve

some of those issues even though this naturally depends on the choice of approach and models

involved. Second, the research field of implicit interaction examines interaction design based on

gestures, movement and other behaviors of users which are not performed with the intention of

interaction [Schmidt et al., 2005]. The various approaches supporting implicit interaction are

mainly technically driven and no conceptual modeling is performed during development. There-

fore, the following research hypothesis can be identified:

1. Missing Integration of Explicit and Implicit Interaction. The separate development

of interaction in SmE is inconvenient. As both interaction techniques occur interleaved

a coherent approach needs to be developed in order to achieve a usable interaction. Bas-

ing the interaction development of both types on the same process model and artifacts

ensures better transitions of interaction and better combination of both interaction tech-

niques at same time.

As model-based development has been successfully applied to explicit interaction, an integrated

methodology may also be beneficial for the integration of both interaction techniques. The rea-

sons for following a model-based approach are multifold: design is raised to a higher level of

abstraction which enables conceptual modeling instead technology-driven design. Abstracting

from concrete technologies allows for migrating a solution to another platform more easily.

Design decisions are made at a conceptual level and thus better support forward and reverse

engineering as well as cost, risk and time management. In order to employ a MB-UI develop-

ment approach for explicit interaction appropriate models are needed.

Task analysis and modeling has been a vital research interest in HCI for decades. It has been

successfully applied to numerous domains and application areas ranging from requirement elici-

tation to system operation. One particular application area of task modeling is MB-UI develop-

ment in which task modeling is the first artifact to be created [Forbrig et al., 2003]. Various task

driven approaches exist tackling explicit interaction [Luyten, 2004; Paternò, 1999; Vander-

donckt, 2008]. However, when examining the current development methodologies for implicit

and explicit interaction for SmEs and applying the existing task modeling techniques to SmEs

diverse limitations exist:

2. Lack of Expressiveness. Current task modeling techniques are not expressive enough

in order to model tasks in SmEs adequately. Task models are often too abstract and miss

important aspects of the domain of SmEs. In essence, the models do not incorporate the

special constraints and concepts such as multiple users, location-awareness, and state

Introduction

3

dependency. Moreover existing task modeling languages also lack the incorporation of

interfaces to lower levels to continue design.

3. Lack of Methodical Engineering. SmEs are technology driven prototypes and usually

not engineered. Such an approach implies the loss of some important features: reusabili-

ty, consistency, traceability, cost and risk management [Kruchten, 2003; Sommerville,

2006; Vanderdonckt, 2008].

In this thesis a model-based approach for the interaction development in SmEs is proposed.

More precisely, the Collaborative Task Modeling Language (CTML) is introduced in order to

tackle the three issues named above (1.,2. and 3.) to improve the development of implicit and

explicit interaction in SmEs. We attempt to bridge the gap between HCI and the research area of

SmEs by introducing a task-based development methodology. A high level modeling approach

is proposed which is able to specify the tasks in SmEs adequately in order to drive the develop-

ment of explicit and implicit interaction. The task driven methodology introduced in this thesis

makes use of refinement in order to guide the adaptations of CTML models which relies on a

formal syntax and semantics. Having iteratively created a CTML model, transformations to

artifacts used in explicit and implicit interaction can be derived (semi-) automatically. Interfaces

to other artifacts are identified to continue design or derive a task model based on existing arti-

facts involved.

1.2 Scope, Aims and Contribution

1.2.1 Scope

The thesis attempts to bridge two worlds: SmEs and HCI task modeling. The first research area

usually treats development as technical challenges whereas the latter takes into account user

needs and the implications of the interaction presented by a system. The interaction in SmEs is

complex to develop as implicit and explicit interaction are mingled at runtime. Nevertheless, the

development of the interaction is usually underemphasized. Applying HCI task modeling to

SmEs can be one approach to make interaction development more engineering-like. A process

model needs to be established in order to create a structured procedure for interaction develop-

ment.

However, the thesis does not claim that task models are appropriate to solve all issue in SmEs.

In essence, we argue that they are suitable artifacts which can be discussed and refined based on

user needs. When a proper task model has been defined new artifacts are derived that are used to

further drive design (e.g., the dialog model in MB-UI) or operate the (sub) system of the SmEs

(e.g., Hidden Markov model (HMM) for intention recognition).

The thesis is classified according to the methodological research framework given by Hevner et

al. [2004]. The instantiated framework for the thesis is depicted in Figure 1-1. On the right hand

side the environment the research is performed in is given which outlines the boundaries of

research and defines the problem. On the right hand side the theories serving as foundation of

the research in this thesis are listed. Those theories are applied in order to conduct the research

in the center of the figure. In the remainder of the introduction Figure 1-1 serves as reference

Introduction

4

point in order to precisely define research objectives, contributions and research methods ap-

plied in this thesis.

Figure 1-1 The Instantiated Research Framework according to [Hevner et al., 2004]

1.2.2 Research Objectives

Based on the problem statement and the scope of the thesis we identified the following research

objectives:

Iterative Development Methodology. The primary objective of this thesis is an integrated de-

velopment methodology for the interaction in SmEs. Two core requirements can be identified:

the incorporation of iterative design and the usage of tasks as building blocks for the methodol-

ogy. The reason for both is to support a user-centered design process [Gulliksen et al., 2005].

The development methodology based on tasks will serve as guidance during all stages of devel-

opment and will give advice in which phases of the project what kind of activities are carried

out. Depending on the stage of development, analysis, requirements or design, task modeling is

performed (at different levels of abstraction). Due to the stepwise evolution of modeling arti-

facts in an iterative development methodology different refinement relations are needed to an-

swer the question whether a certain adaptation of a model is still a valid implementation of its

predecessor. In order to do so the modeling language to be developed implementing the metho-

dology needs to be formally founded.

Enhancing Task Modeling. Task modeling for SmEs is to our knowledge an untackled re-

search area in HCI. In the research field of SmEs languages exist for specifying the potential

behavior of actors within such an environment. However those languages are mainly used for

modeling system operations and have not been designed for user-centered design. HCI task

models solve this issue as they are understandable by non-computer scientist (e.g., stakeholders,

users) which fosters the capability for user-centered design. Classical task modeling languages

are however not expressive enough to model tasks for SmEs adequately. Therefore several ex-

tensions need to be introduced in order to incorporate multi-user scenarios, location awareness

and state-dependent task modeling.

Introduction

5

Formal Foundation of Task Modeling. A superior expressiveness of a modeling language

usually results in loss of understandability and increased ambiguity. This also applies to task

modeling even though this is particular unfortunate as these are primary aspects of task model-

ing. To address this shortcoming, validation and verification algorithms are employed which

base upon a formal syntax and semantics of CTML. Moreover, the semantic foundation is able

to rule out ambiguities which fosters model sharing and cross platform implementations. In

order to do so a suitable semantic model needs to be selected which captures the envisioned

behavior best. Based on the formal foundation, a set of refinement relations are defined support-

ing the task modeler during all stages of development. More precisely, a flexible approach to

refinement is needed that allows for defining which parts of a specification needs to be retained

(and which can be dismissed) in the subsequent development steps.

Integration of Related Artifacts. Task modeling is not the only activity during interaction

design. Requirement specifications may exist before task modeling is performed. In addition

specifications may be derived based on task models. Therefore an integrated development me-

thodology should advice the interaction designer how to transit from one specification to anoth-

er. The task model can be either the transformation source or target. In order to integrate task

modeling in software engineering practice interfaces to related artifacts need to be established.

Therefore an elicitation approach needs to be developed which enables the designer to first de-

rive an analysis task model. During the different phases this task model is adapted and refined.

Eventually the created model needs to be transformed into a more detailed description which

has to be supported by the development methodology as well.

Tool Support. To effectively make use of a modeling language suitable tool support needs to

be provided. The functionality of such tools range from creation, manipulation, animation, vali-

dation and verification of models but also includes the support of the methodology defined in

accordance with the modeling language. Moreover it is desirable to elicit early feedback through

an integrated tool environment which presents the different functionalities of the tool in a ho-

mogenous manner.

1.2.3 Contributions

(1) The Collaborative Task Modeling Language (CTML). The modeling language pre-

sented in this thesis is characterized by its superior expressiveness with respect to its

application domain. It extends CTT-like notations ([Paternò, 1999]) in several dimen-

sions in order to support task modeling for SmEs. It inherently supports multi-user sce-

narios by a role-based task modeling approach and explicitly allows for modeling multi-

user, device, location and state dependencies in a formal manner. A corresponding in-

terpreter has been developed. More precisely, the modeling language is capable of spe-

cifying the interrelation of tasks of different actors within the environment on a role

based level which enhances the cooperational aspect of the task modeling approach

published by Mori et al. significantly [2002]. Preliminary results with regard to model-

ing cooperation have been published in [Wurdel et al., 2008a; Wurdel et al., 2008e]. An

integration of location dependencies in task modeling has been described in [Wurdel,

2009] whereas the interplay of task modeling and device modeling has been proposed in

Introduction

6

[Forbrig & Wurdel, 2010]. In [Wurdel et al., 2008b] the bond of domain modeling and

task modeling has been emphasized.

(2) The CTML Development Approach. The methodology in which CTML is embedded

assumes a two-folded approach for task modeling. Either task modeling is performed in

order to develop the explicit or the implicit interaction in a SmE. Both approaches natu-

rally consist of a series of iteratively performed activities which not only involve task

modeling but also include the following: analysis and requirement specification docu-

ments such as use cases, scenarios or questionnaires need to be integrated in order to

bridge the gap between software engineers and interaction designer. As task modeling is

also performed in different phases of development the development methodology gives

advice how task modeling is supposed to be treated in each stage. In detail, the metho-

dology defines the level of abstraction for performing task modeling and defines how

transition from one development phase to another can be performed. In order to facili-

tate these transitions refinement relations have been defined to verify the validity of

adaptations. However, simply creating a set of task models is insufficient. Eventually

other artifacts need to be created. The development approach also covers the detailed

design phase which employs other artifacts depending on the scope of development

(explicit or implicit interaction). Preliminary results addressing the early stages of de-

velopment have been published in [Wurdel & Forbrig, 2009] whereas [Wurdel et al.,

2008c] and [Wurdel et al., 2008e] primary focus on the task modeling stages of devel-

opment. Interfaces to lower level design artifacts have been proposed in [Wurdel et al.,

2007].

(3) Formal Foundation and Refinement based on Meta Operators. In order to manage

complexity when using CTML formal methods are employed. To do so the syntax and

semantics have been defined formally. The abstract syntax is defined using set theory

whereas the semantic domain of choice is LTSs. This approach results in an interleaving

semantics which in turn enables different comparison semantics for CTML specifica-

tions. The existing comparison semantics (such completed trace semantics) are well

suited for task modeling but miss the flexibility which is needed to effectively use re-

finement. Especially when transiting between different development phases such gener-

al comparison semantics hamper the development and adaptation of models. Therefore

an approach is proposed which makes use of interactively assigned meta operators to

tasks in order to define which tasks need to be retained or can be dismissed in the sub-

sequent model. Amongst others, we introduce the novel comparison semantics manda-

tory scenario equivalence and mandatory scenario inclusion. The defined refinement

relations for CTML are used to drive the design of CTML models and therefore are the

core instruments of the development methodology. The approach has been partially

published in [Wurdel et al., 2008d].

(4) The CTML Editor, Validator and Verifier. To effectively make use of CTML and its

development methodology a tool suite integrated in the Eclipse IDE (integrated devel-

opment environment) has been developed. First, there is the CTML editor which allows

the task modeler to create and manipulate CTML specification graphically. Next, the

Introduction

7

CTML validator can be used to interactively explore the created specification. Different

visual modes have been developed to allow validation by animation. Moreover well-

formedness criteria are checked to ease the design of CTML specifications. The refine-

ment relations defined over CTML specifications are implemented by the CTML verifi-

er. This tool takes two models as input and transforms both into LTSs which are then

compared according to the interactively selected comparison semantics. The tool suite

for CTML is integrated in the tools developed in our research group. Therefore the de-

rivation of dialog models based on CTML models can be conveniently performed to

further continue model-based UI (MB-UI) development. For implicit interaction hidden

Markov models can automatically be created based on CTML specifications which are

used to operate the intention recognition module of our experimental SmE (published in

[Wurdel et al., 2007]). The tool suite has been described in [Wurdel et al., 2008e] and

[Wurdel et al., 2009].

1.3 Organization of the Thesis

The thesis is divided into two main parts. The first part reiterates through background informa-

tion and related work which is sub-divided into three separate chapters:

In Chapter 2 the basic terms of this thesis are clarified and the implications of interaction in

SmEs are identified. Moreover the need for a structured engineering approach is claimed. Sub-

sequently HCI and software engineering (SE) viewpoints are explained with respect to SmEs

and task-driven development. Moreover in Chapter 3 also existing task modeling approaches

and languages are additionally assessed with respect to the scope of this thesis. The last chapter

of the first part (Chapter 4) examines preexisting semantic domains, their application, their

individual assets and drawbacks. Based on these explanations the semantic domain of choice for

CTML is selected.

In the second part of the thesis the language and development approach of CTML are explained

in detail. The requirements of an illustrating scenario are elicited on which the design of the

language and its methodology are based on. Chapter 5 introduces the usage scenario within the

domain of SmEs, a technology-enhanced meeting room, and task models in order to illustrate

the requirements for CTML. In Chapter 6 the language is explained in detail. The chapter starts

with an informal graphical description of the modeling elements and their semantics. Subse-

quently the formal abstract syntax and semantics based on LTSs are given. Moreover the re-

finement relations necessary to drive the design of CTML models are defined and described. In

order to ease the understanding a running example accompanies the definitions. The develop-

ment approach covering analysis, requirements and design is illustrated in Chapter 7. It is

shown how a CTML model is best developed depending on the phase of development. Moreo-

ver it is shown which refinement relations are used during all stages of design in order to verify

that defined requirements are truthfully transmitted to design and implemented accordingly.

Chapter 8 summarizes the thesis and highlights the major contributions of the thesis. In addi-

tion future research avenues are presented.

9

I. Smart Environments, Software

Engineering, HCI and Formal Methods

Smart Environments

11

Chapter 2
2 Smart Environments

2.1 Disambiguation

Before going into details about the research field of SmEs various related terms are examined

and defined to build a common ground to start from. This is particular of importance as the re-

search field of SmEs and similar research fields are rather young and do not provide a valid and

sound basis.

2.1.1 Ubiquitous Computing

The term ubiquitous computing coined by Weiser describes the vision of a world where infor-

mation can be accessed everywhere and at any time not by having a mobile device but by the

existence of accessible devices in our surroundings which we are eventually not even aware of

[1991]. In contrast to a virtual environment ubiquitous computing augments the reality with a

vast amount of devices being connected via wireless network making a PDA unnecessary. Cen-

tral to this vision is the omnipresence of small and cheap devices capable of delivering informa-

tion services to ease everyday tasks and making information available at any place and any time.

In order to integrate those devices into the surroundings they need to be physically small and

network attached to cooperate seamlessly. Even though Weiser stresses that wireless network-

ing is a major issue other challenges are posed by this paradigm (hard- and software compatibil-

ity, protocols, security, privacy) [1993]. Moreover with respect to HCI an innovative interaction

paradigm is needed [Weiser, 1991]:

“The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.”

In order to implement the so called invisible computer a new interaction paradigm needs to be

developed from being explicit as it is the case in desktop environments to being more and more

implicit. Implicit interaction is defined as an action which is not primarily performed to interact

with a system but is used by the system as input or trigger [Schmidt, 2000]. In this vein gestures

can become an interaction modality even though the user is not even aware of. Implicit interac-

tion modalities add an enormous complexity in terms of development effort and rationale for

interactive systems.

Originally not stated by Weiser but a very important point of a ubiquitous computing environ-

ment is context-awareness which is a prerequisite to implement implicit interaction. A system is

called context-aware if its behavior is depending on continuously measured values characteriz-

Smart Environments

12

ing the user or her preferences. The most often used source of context is location since it is by

far the easiest one to measure and exhibits a high level of semantic information [Schmidt et al.,

1998]. Dey defines context as [Dey & Abowd, 2000]:

 “… any information that can be used to characterize the situation of an entity.”

This definition shows the dilemma of a generally applicable definition of context. What consti-

tutes to context information depends on the domain as well as the environment the system is

installed in. If the system is developed to help elder people in performing everyday tasks in their

home location is definitive a relevant context information. In contrast in office set up not neces-

sarily location information are needed as the person might only move once in a while to get a

coffee.

The concept of ubiquitous computing has already been implemented in experimental setups

(e.g., [Bauer et al., 2004; Cook et al., 2009]) and is still a research field. However those proto-

types show potential application fields and implications of a device augmented world. As devic-

es become more integrated and cheaper they will make their way into everyday life in a suffi-

cient manner to build reasonable ubiquitous computing environment.

2.1.2 Pervasive Computing

The vision of pervasive computing is also built upon the upcoming omnipresence of devices it

has no substantial differences to ubiquitous computing. Throughout the remainder of the thesis

ubiquitous computing is used as it is the older term [Ronzani, 2009].

2.1.3 Ambient Intelligence

Ubiquitous computing and pervasive computing are paradigms addressing primarily the tech-

nical challenges implicated by the omnipresence of devices. Taking for granted that networking

issues are mainly solved and the omnipresence of interconnected device exists in small scena-

rios the need for services/ applications using those devices arises.

The research field of ambient intelligence (AmI) tackles this question. Originally defined as

electronic environments being aware and responsive to users [Aarts et al., 2002], new defini-

tions emphasize the need for such a system to be “non-obtrusively integrated into everyday ob-

jects and environments” (ambient) and incorporate “specific forms of social interaction” (intel-

ligence) [Aarts & de Ruyter, 2009]. By social interaction the authors mean the following charac-

teristics of AmI applications:

 Context-awareness. As explained earlier, context-awareness describes the ability of a

system to adapt its behavior according to the context of use which can be all relevant

data according to the domain and user. When running a system over time it needs to

adapt itself according to the users’ habits and usage patterns in order to be supportive

for the user.

 Personalization. Usually information services of ambient applications comprise perso-

nalized data. In order to be truly supportive this data can be taken into account. Based

upon observation and queried data of the user, personalization can be implemented. In

this vein AmI applications are able to react individualized according to the users’ needs.

Smart Environments

13

 Proactiveness. The most discussed characteristic of AmI applications is pro-activeness.

It is understood as system actions performed without explicit interaction based upon ob-

servation. It is a fascinating idea to have a system being able to anticipate users’ next

action and perform it on behalf of the user (or a supportive task). Numerous proactive

applications have been developed in the last years. However field studies document that

users are often not comfortable when the system is acting autonomously without expli-

citly invoking an action [Koskinen et al., 2006].

AmI needs to be unobtrusive and supportive. Whereas the first can be partly achieved by minia-

turization and integration; both challenges can only be sufficiently tackled by focusing on the

human needs. Actually the human needs and tasks are key objectives of such systems as they

are supposed to serve the user. Therefore other requirements addressing the user needs can be

stated:

 Control. As already briefly mentioned above users are not feeling comfortable when

control is shifting from people to machine. Consequently developers need to bear in

mind that AmI applications need to offer the opportunity to let the user control the sys-

tem at least to a certain degree.

 Correctness. As long as the system delivers the correct services the user is fine but as

soon as errors occur trust into the system ceases. Considering that proactive systems

will always be incorrect in some cases mechanisms are needed to provide feedback to

the users why the system performed a certain action. Additionally interfaces are needed

to let users correct decisions made by the system.

 Interfaces. One lesson learned from mobile computing is that rendered UIs for desktop

systems cannot just be scaled down to meet the requirements of a PDA or cell phone.

The UI must be adapted substantially to meet the different contexts and device capabili-

ties. Even though this raises the complexity of development it is still manageable. How-

ever for AmI applications the way how people will interact is not yet clear. Of course

mobile devices will play an important role but other types of interfaces are interesting as

well. In terms of explicit interaction tangible UIs are a candidate. They are physical ob-

jects belonging to the surroundings but used as control and representation of digital val-

ues which is totally new concept compared to display based UIs [Ullmer & Ishii, 2000].

There is no distinction between input and output device as tangible user interfaces com-

prise both. Hence they integrate seamlessly into the environment by being a part of

them. An advantage of tangible UIs to ordinary GUIs is the bond of manipulated data

and the interface itself. Therefore it is more intuitive to the user. An example of a tangi-

ble UI would be the control of a steerable projector with 3D objects whereas the rota-

tion of the objects leads to the accordant rotation of the projector. By moving the focus

can be adjusted.

 Automation. The reassignment of tasks from a human being to an automated system

has been always discussed controversially. When this is performed explicitly the human

is aware of the reassignment. In AmI application the reassignment may be performed si-

lently and as such may not be anticipated or approved by the user which can lead to un-

Smart Environments

14

satisfying experience. A thorough analysis of users’ behavior as well as users’ need for

automation is needed to avoid this pitfall. Research conducted in this area has been

conducted by Sheridan [2002].

2.1.4 Smart Environments

According to Cook & Das a SmE (intelligent environment) is a physical place equipped with

devices working to make the lives of the users more comfortable [2004]. As this is a generic

definition they go into more detail and ground their definition upon the term smart. They state

that such an environment should be able to acquire and apply knowledge autonomously about

the users and the environment itself and to adapt to users’ needs in order to improve their expe-

rience. What constitutes to an improvement depends on the type of environment, the individuals

as well as the interaction facilities of the environment.

The concept of SmEs does not define on which level of abstraction “smartness” is implemented.

Therefore a certain routing algorithm can constitute to a SmE as well as a certain sensor or inte-

raction modality. It is even not clear whether the term smart really refers to intelligence as used

for human beings but to just a new level of automation, user experience and usability. Cook &

Das already state that SmEs try to make the user experience more comfortable which is not nec-

essarily the case by the usage of artificial intelligence [2004].

Kirste refines the terms smartness in this context by the capability of an environment to react to

the user’s objectives and not to pure sensor data [2006]. To do so, according to Kirste, the envi-

ronment needs knowledge about the user’s point of view in the environment. This results in a

conceptual framework with two source of information: sensor data and a prio knowledge used

to interpret the sensor data resulting in appropriate solutions for the user. The definition of

Kirste is therefore adopted in the remainder of the thesis.

In comparison to the provided definitions above it is to say that ubiquitous computing and AmI

are both concepts to create a SmE. Providing a room with numerous devices realizing a certain

value for the user can be a SmE implemented through ubiquitary presence of devices. However,

having a set of devices in an environment being able to connect to the mobile devices of users

implementing a service can be considered as SmE as well. Generally speaking the term which

suits best to SmEs is AmI. Developing an AmI application for a physical environment results in

a SmE. The characteristics of AmI can be straightforwardly applied to SmEs if they are bound

to a limited physical space.

2.1.5 HCI Engineering

HCI is a multi disciplinary field involving, besides computer science, among others, psycholo-

gy, organization studies, ergonomics, sociology, and engineering. However computer science is

still the central discipline of HCI. The field HCI is working on can be characterized by the quote

of Dix et al. [1997]:

 “… HCI involves the design, implementation and evaluation of interactive systems

in the context of the user’s task and work.”

In order to design such a system sub processes addressing the software engineering life cycle

need to be considered as well. Analysis and requirements engineering are important steps to-

Smart Environments

15

wards a valid design of an interactive system. The same applies for the implementation which

involves coding as well, discussion, revision and high level design choices. The third part, ac-

cording to Dix et al., concerns the evaluation of an existing interactive system or of a prototype

during design or implementation. The major topic of usability engineering and methods are

belonging to this category.

Even though those activities highly correspond to software engineering practices a qualitative

difference exists: design, implementation and evaluation are performed bearing in mind the

user’s task and natural work environment. This also includes studying the potential user(s) of

the interactive system in accordance with their characteristics, capabilities and knowledge.

Roughly speaking the idea of a task driven approach to create an interactive system relies on the

hypothesis that the closer the interaction with the system is to the natural task performance the

easier the user is willing to accept the developed system. On the one hand task analysis and

modeling are central concepts to HCI as they help to incorporate the user’s tasks into the devel-

opment process; on the other hand HCI is much more than task analysis and modeling. Even

though there is no unified theory of HCI there are commonly used techniques which help to

improve the interaction varying from software development processes, requirements elicitation,

design patterns, user involvement strategies to various evaluation techniques.

As a software engineer one is interested in the potential application areas during the software

development process. This is when engineering comes into play. Engineering describes the

structured way of achieving a design or artifact with respect to a certain criteria like quality,

maintainability, traceability. According to this definition engineering the interaction means to

apply HCI techniques to develop the interaction of the software system in a structured way. The

criteria with respect to HCI can be, among others, usability, maintainability or soft criteria like

appearance, low learning curve. Hence the development can be eased and less error-prone due

to the structured way of developing.

Tool support can help in various ways to do so. In particular it helps to create, edit, manipulate,

visualize, validate and verify certain artifacts. Moreover they can provide a basis for the imple-

mentation of a development process by making certain steps of the process supported by the

tool. This becomes particularly important when artifacts become quite complex to understand

and visualization techniques and verification algorithms are needed. In order to support an engi-

neering process in HCI tools serve as a vehicle to reduce complexity, disburden the developer

and foster development approaches.

The research field of MB-UI development serves as a good example of HCI engineering. UI

design has been mostly treated as a creative process involving a UI designer creating the UI

itself and a software engineer creating the functionality accessible via the UI. From HCI pers-

pective this approach tackles the objective of creating the UI insufficiently. The HCI community

agrees that a separate design process of the UI and the application core can easily fail because of

a misleading UI being not appropriate for the developed functionality as well as the missing

opportunity to create prototypes covering the UI and application core. The MB-UI process is

able to solve those issues by integrating the user tasks in early stages of development. Hence

prototypes of the UI can be created easily in accordance with the application core. The MB-UI

process can also be considered as engineering method since it allows tracing design decisions,

Smart Environments

16

fosters maintenance, helps to improve usability, reduces complexity and allows for creation for

UIs for multiple platforms. The various MB-UI tools (e.g., [Mori et al., 2002; Reichart et al.,

2008; UsiXML, 2010]) for the creation, visualization and interpretation of models involved in

creation of UIs in a model-based way are also a good example for the facilitation of a process

through a tool chain.

2.2 Interacting with a Smart Environment

Generally speaking there are two ways of interaction within a SmE: implicitly and explicitly.

This distinction was first discovered by Schmidt [2000]. Whereas explicit interaction is the

standard concept since the invention of text-based interfaces, implicit interaction is a new para-

digm developed in the research field of context-awareness in HCI. Although this distinction

exists both paradigms are needed to implement a robust and usable system [Ju & Leifer, 2008].

Even current desktops systems involve explicit (e.g., using the mouse) and implicit interaction

(e.g., starting the screensaver) even if it is rather simple.

Please note that there also other means for classifying SmEs. In [Shirehjini, 2007] a design

space for SmE is proposed. Among others initiative is design decision for a SmE which is of

interest here. Others are goal vs. functions based, modality or device selection. However such

criteria play a minor role for the issues tackles in this thesis.

2.2.1 Explicit Interaction

As stated above explicit interaction is the common way of interacting with a software system.

The concept is very simple: the system performs an action triggered by an explicit command of

the user. The system changes its state accordingly to the performed action and provides feed-

back to the user who may in turn invoke another command resulting in an action.

According to Norman there are seven stages of actions how people do things and consequently

interact with an interactive software system [2000]. Normans’ model is depicted in Figure 2-1.

The stages can be further classified to goal (1.), execution (2.-4.) and evaluation phase (5.-7.).

People start an action because they want to achieve a certain goal. According to Norman goals

(“Dimming the light”) are rather abstract and as such need to be concretized evolving into inten-

tions (“Dimming the light by switch off lamp”). The steps 2.-4. create an action sequence im-

plementing the intention (“Walk to the switch”, “Press switch”). The next three steps are part of

the evaluation phase. First, the new state of the world is perceived providing feedback to the

prior executed actions. Second, the perceived state is interpreted according users’ expectations

and last evaluated with respect to the goal to be achieved. Even though those steps seem to be

very rigid they are only a template where concrete procedure may fit into.

Figure 2-1 Norman’s Model of Explicit Interaction

Smart Environments

17

Certain steps can be dismissed whereas others might be iteratively executed. By defining these

three phases (goal, execution and evaluation) two problems in HCI are identified: the gulf of

execution and the gulf of evaluation. The first refers to the gap of available functions of a sys-

tem and the available tasks from the user’s point of view. The more the functions correspond to

the tasks the more effective the interaction is. The later means the gap of presentation of the

state of the device and the expectations from users’ perspective. If the user perceives the presen-

tation of the device state according to her expectations the gap is small and consequently the

interaction effective. Hence the two gulfs can be kept small by delivering an appropriate UI as

well as through the ability of users which can be trained. Certainly both approaches can be

combined. However building the better UI is in most cases the reasonable option. This rather

simple model is intuitive, easy to use and highlights primary issues for the development of in-

teractive systems. Based upon that model Norman derives design aids to develop in a user-

centered way resulting in a more usable system [2000].

After having investigated explicit interaction isolated it is now continued with the discussion of

implicit interaction and development approaches implementing such an interaction technique.

2.2.2 Implicit Interaction

Due to its novelty implicit interaction has not been as thoroughly researched as explicit interac-

tion. According to Schmidt et al. implicit human computer interaction is understood as [2005]:

…the interaction of a human with the environment and with artifacts which is

aimed to accomplish a goal. Within this process the system acquires implicit input

from the user and may present implicit output to the user…

The predominant approach of considering implicit interaction only as a one-way approach

which interprets actions of the users in order to assist is extended by Schmidt et al. because the

reciprocity of input and output during interaction is considered. An implicit input is an action of

the user which is not primarily performed in order to interact with the software system, SmE

respectively, whereas an implicit output is a seamlessly integrated presentation of information to

the user. The process of implicitly giving input to the software system can be conceptualized as

layered model of intention recognition and strategy synthesis (e.g., turning on the light when a

person enters the room, provisioning resources based on the predicted action). The seamless

presentation of information is performed by embedding information presentation devices into

the surroundings of the environment (e.g., LEDs, the cell phone, digital post-its). As embedded

visualization of information is not in the scope of this thesis it will be left out from examination

in the remainder.

In the following paragraphs existing conceptual framework addressing the development of im-

plicit interaction are examined.

Goal-based Interaction

One particular design strategy in order to achieve implicit interaction is goal based interaction

proposed by Heider and Kirste [2002]. In [Heider & Kirste, 2005] a layered model is suggested

which employs formally defined goals. The model is based upon those goals to reduce complex-

ity. On the highest level of abstraction the users’ intention is analyzed which is directly mapped

Smart Environments

18

to a goal. Certainly a goal may be achieved by different actions sequences. The derivation and

selection of action sequences is performed on the next level of abstraction: strategy planning.

The resulting sequences of actions can be triggered to support the users’ intention. The interface

between both layers is the goal which is derived first and then achieved by a certain synthesized

action sequence.

The model has only been validated for a technology enhanced meeting room and is therefore

designed for this domain even though it seems to be prosperous to apply goal-based interaction

to other types of SmEs and to a general case of interaction.

The Implicit Interaction Framework

A conceptual framework for the development of implicit interaction has been proposed by Ju et

al. [2008; Ju & Leifer, 2008].

In Figure 2-2 the design space of implicit interaction according to Ju et al. is given [2008]. On

the horizontal axis the initiative is depicted. This dimension defines the degree of automation

and proactiveness the software system exhibits which matches the classification of Sheridan

who proposed eight levels of automation and their implications [2002]. On the vertical axis

attentional demand of the user in order to interact with the system is shown. The more the sys-

tem is in the foreground the more attention is given by the user and is needed to use the system,

and vice versa. The reason for defining such a design space is that the boundaries of implicit

interaction are rather a continuum than a fixed set of properties. The first quadrant (Reactive,

Foreground) is the design space where explicit interaction is used. The fourth quadrant (Proac-

tive, Background) denotes the ideal case of an implicit interaction even though the degree of

attentional demand and initiative may differ. Quadrant two and three are border cases as qua-

drant two (Proactive, Foreground) demand attention of the user while being proactive whereas

quadrant three (Reactive, Background) needs explicit input but introduces automation to a cer-

tain degree.

The Implicit Interaction Framework classifies not only the design space for implicit interaction

but also defines the boundaries of explicit and implicit interaction. Moreover due to its generali-

ty it is a domain independent model and can therefore be applied to any kind of SmE.

Figure 2-2 Implicit Interaction Framework by Ju et al. [2008]

However the generality of the approach is also a burden as only rather abstract guidance is given

how to appropriately design implicit interaction. No artifacts and methods are proposed in order

to develop interaction. Thus, the framework is useful for early stages of development in order to

Smart Environments

19

assess the envisioned way of interaction defining the degree of automation and attentional de-

mand of the system under construction.

Contrariwise the novelty of the approach is the consideration of a transition of explicit to impli-

cit interaction and an according continuous design space.

In order to fully cope with the different types of interaction in SmE a novel development ap-

proach is needed which takes into account both paradigms resulting in an integrated develop-

ment methodology for the interaction in SmEs.

2.2.3 Explicit & Implicit Interaction

In [Kirste, 2006] a brief overview of existing prototypes of SmEs with respect to interaction is

given. Kirste classifies the projects into three categories: implicit Interaction, explicit Interac-

tion, and, explicit interaction with individual appliances. However the combination of all cate-

gories is actually the usual case. Here it is not distinguished between the different types of ex-

plicit interaction in contrast to Kirste.

Certainly simply applying the models from explicit interaction to implicit interaction is only

with limited value. For example in Norman’s model the user creates and executes an action

sequence by herself which achieves the goal. In implicit interaction those actions are interpreted

in order to derive the current intention which is used to trigger actions supporting the user in this

current situation. To address this situation an adapted version of an interaction models is identi-

fied which is shown in Figure 2-3. The flow of events is very similar to Norman’s original mod-

el but new steps are introduced comprising implicit interaction (A, B, and C). The new steps are

not performed by the user but by the software system implementing the implicit interaction.

Figure 2-3 An Adapted Model of Interaction to incorporate Implicit Interaction

Only when the user executes an action implicit interaction is possible. What is considered as

action to be interpreted depends naturally on the supported task and the level of automation to

be envisioned [Ju & Leifer, 2008; Sheridan, 2002]. If such an action occurs it needs to be inter-

preted (A) in order to derive the current intention (B) of the user. Finally a mapping of the de-

rived intention to a certain sequence of actions of the software system is performed. After the

execution of the supportive tasks Norman’s model of interaction is continued. However the

perception, interpretation and evaluation of the result may need more work load as besides the

executed action by the user also the supportive actions needs to be evaluated. The software de-

veloper of implicit interaction should bear that in mind. In certain cases the user may even be

not able to perceive the current world state if the executed action sequence of the system per-

Smart Environments

20

forms invisible action from users’ perspective or the gap between the last perceived state and

state after the execution is just too big (“Gulf of Execution” and “Gulf of Evaluation” according

to [Norman, 2000]).

Which technologies to be used in order to interpret actions, which actions to be interpreted as

well as the same issues for the intention and supportive actions is not considered in this generic

framework. To our knowledge a combined approach for the development of both interaction

paradigms tackling the combination of explicit and implicit interaction has not been approached

yet.

In the PhD thesis of Giersich it is stated that the ultimate goal is a pure implicit interaction

[2009]:

“How can an ad-hoc smart environment optimally support a team of users in a

meeting without explicit interaction?“

However we believe that such an approach is counterproductive as there is always a transition

between implicit interaction and explicit interaction. In fact the use of implicit interaction al-

ways implicates explicit interaction in the long run as users learn how the system reacts under

certain conditions and interactions. In order to exemplify this fact the example of an automatic

transmission of cars is consulted.

The idea of an automatic transmission is that the driver (user) of the car (system) does not need

to care about which gear is appropriate at a certain speed. If the driver presses the gas pedal

rather softly the car accelerates. However when pressing the gas pedal harder the transmission

switches the gear in order to boost acceleration as the torsion is higher (as it is assumed that a

high acceleration is needed). When passing a car the difference in speed of passing and passed

car is crucial in order to reduce the distance needed to pass the car. Therefore a high accelera-

tion is needed. Drivers using a manual transmission therefore switch the gear before starting

the passing process which is not possible with an automatic transmission. When using an auto-

matic transmission for the first time the passing process is performed by pressing the gas pedal

hardly while passing the car. However switching the gear beforehand is much more desirable

as it speeds up the passing process. Therefore some drivers of cars with an automatic transmis-

sion press the gas pedal hardly once before starting the passing process in order to force gear

shifting to have a higher acceleration. Then they start the passing process. With respect to inte-

raction a manual transmission is purely explicit. The user states what is needed by explicit inte-

raction. Automatic transmission is partially implicit interaction as it is coded in the electronics

of the system when gear shifting is performed. However this kind of interaction is not the best in

all situations (e.g., passing a car). Therefore users derive a pattern how the system (e.g., the

automatic transition) works and how it can be manipulated in order to suit their needs best.

Pressing the gas pedal in order to make the transmission shift the gear (which has not been

intended by the designer) is an explicit interaction.

This simple example already shows that users being in touch with a software system with impli-

cit interaction tend to derive patterns about how the system works. Having formed a model

about the system, the system is used with respect to that model. As the model is usually not

complete implicit interaction may still occur but some former implicit interactions may become

Smart Environments

21

explicit. Therefore a combined approach is not only desired but mandatory in order to represent

interaction SmEs adequately.

2.3 Smart Environments Prototypes

After having investigated the general interaction techniques applicable for SmEs more general

examination about currently existing prototypes and their development are conducted.

2.3.1 Existing Prototypes

Industry and academia has produced numerous prototypes of SmEs. Naturally they differ in the

field the research is conducted in which leads the development of the prototype. The most

prominent projects accompanied by short abstracts are listed below:

 Adaptive Home. The aim of the project was the creation of a house which offers no

additional UIs while being equipped with modern technology. The house is able to pre-

dict the behavior of its user by employing Artificial Neural Networks. Therefore the se-

quences of action to be executed are not hard wired but learned by the system. The

software system ACHE (Adaptive Control of Home Environments) is used in order to

adjust the light and ventilation of the environment. With respect to interaction only im-

plicit interaction is used [Mozer, 1998; Mozer, 2004].

 Aware Home. Based on the findings of the Classroom 2000 project by Abowd a tech-

nology enhanced living environment was set up in order to design a living environment

extensively making use of computing devices and services [1999]. The primary goal of

the project was the assessment of potential supportive technologies in a home environ-

ment for elderly people and families. In order to do so different applications have been

developed which can be found in [Kientz et al., 2008]. With respect to technology loca-

lization tracking, image processing and machine learning techniques are used as build-

ing blocks to enable the development of the supportive software systems [Kientz et al.,

2008]. No statements are made about the interaction techniques used in the Aware

Home. Based on the given information implicit interaction is assumed as sensing tech-

nology is employed. To which degree a combination of implicit and explicit interaction

is used is not stated as well as development approaches for interaction in general are not

tackled by the project.

 EasyLiving. Mircosofts initiative for the development of SmEs employs fixed rules in

order to provide more comfortable experience. More precisely the predefined sequences

of actions are triggered by conditions which need to hold in order to execute a certain

sequence. With respect to interaction a combined approach of explicit and implicit inte-

raction is envisioned even though explicit interaction is still an open issue [Brumitt et

al., 2000].

 MavHome. The application domain of this project is a technology enhanced home en-

vironment. In order to achieve this, a learning and prediction approach is followed [Das

& Cook, 2005]. Based on predefined profiles representing common sets of sensor data

and context information the future’s context of the inhabitants of the environment are

Smart Environments

22

predicted. Moreover optimization of user goals can be achieved (energy consumption,

manual interaction). With respect to interaction the authors’ goal is to optimize the de-

gree of manual (explicit) interaction. Therefore MavHome uses explicit as well as im-

plicit interaction even though one of the major goals is implicit interaction. How inte-

raction is developed is not stated.

 Interactive Room. The Interactive Workspaces project at the University of Stanford set

up the Interactive Room (in short iRoom) as experimental infrastructure equipped with

multiple stationary display which are able to communicate with mobile devices by

means of a software system, so called iCrafter, in order to exchange information which

can be used to control the displays, use an installed printing service in the environment

or using a PDA as input device and the multiple displays of the environment as output

devices [Ponnekanti et al., 2002]. According to [Johanson et al., 2002] iCrafter not only

bridges the gap between different physical devices and their individual operating system

but also generates UIs based on the available services in the surroundings. Therefore

explicit interaction is the interaction type of choice in the iRoom.

 Embassi. The joint research project Embassi investigates new paradigms for the inte-

raction with the technical infrastructure of the everyday life such as infotainment and

home entertainment. In order to do so goal-based interaction is used (see Section 2.2.1)

which employs speech, gestures and haptics. Those implicit interactions communicate

goals to the system which in turn are achieved by means of assistance. Even though

Embassi focuses on implicit interaction it is considered as important that explicit inte-

raction still occurs. To which degree and how different interaction types are mingled is

not part of the research in Embassi. Beside interaction also other research questions are

tackled: dynamic composition of services, distribution of components forming an ad

hoc ensemble which are not relevant for the thesis here [Kirste et al., 2001].

 Intelligent Room. MIT’s initiative to design intelligent spaces is the Intelligent Room

project. In order to tackle common issues, such as heterogeneity, concurrency, distribu-

tion, etc., in SmEs a middleware, so called Metaglue, is proposed [Coen et al., 1999].

During research several software systems and intelligent rooms basing on Metaglue

have been developed which mainly focus on meeting scenarios. With respect to interac-

tion explicit and implicit interaction components have been developed and evaluated

but are developed isolated. For explicit interaction speech recognition and computer vi-

sion are used [Brooks, 1997].

 Smart Office. Another prototype focusing on work environments is the Smart Office

project. It uses a location tracking system in order to derive the users’ intention which is

used to display potential useful information on a display. Contrary also explicit interac-

tion via speech is used to control the Smart Office [Le Gal et al., 2001].

The survey is to no extent comprehensive but gives an overview of existing projects and chal-

lenges in the domain of SmEs. Numerous other prototypes exist: The UMASS Intelligent Home

Project [Lesser et al., 1999], iDorm [Sharples et al., 1999], Intelligent Classroom [Franklin &

Hammond, 2001], OxyGen, Gaia [Christopher et al., 2001], and Aura [Garlan et al., 2002].

Smart Environments

23

2.3.2 Current Challenges of Smart Environments

The challenges in SmEs with respect to feasibility are diverse. However explorative prototypes

as shown before have produced rich showcases which exemplify the technical challenges in

SmEs. Besides that, other challenges exist. Especially in the field of human factors proactive

assistance is argued controversial. Therefore in this section still existing and recently discovered

issues are examined. It is started with technical challenges which are investigated rather briefly.

Subsequently, challenges with respect to the user are investigated more thoroughly which are

important for the design of SmEs and interaction in particular. Finally it is shown that there are

also research challenges with respect to method engineering.

Technical Challenges

An early survey about the encountered challenges while developing a SmE has been published

by Coen et al. [1999]. In the paper seven properties of SmEs are stated and also tackled by the

software system Metaglue. However those properties are partially not fundamental but provide

the basis in order to introduce Metaglue. In [Kumar, 2009] numerous challenges for ubiquitous

computing in general are investigated in a very low level manner resulting in a comprehensive

survey of technical issues. Another more fundamental survey on challenges for ubiquitous com-

puting has been published by Edward & Grinter which focuses on home environments [2001].

Based upon the named publications above a set of technical challenges has been distilled and

are presented here briefly.

 Distribution. SmE are inherently distributed systems and therefore research questions

related to this issue needs to be tackled. However distribution is a common challenge in

various domains of Computer Science and has been researched thoroughly. With re-

spect to quality criteria of the distributed components SmEs may have particular re-

quirements (e.g., response time, reliability).

 Heterogeneity and Interoperability. Numerous components constitute a SmE. The

devices are of different types (such as sensors, display, etc.) but are also created by dif-

ferent vendors. Therefore standardization and knowledge about the components of the

SmE are crucial in order to enable interoperability on various level of abstraction (net-

work layer, application layer).

 Administration. Ideally the components of a SmE administer themselves. To a certain

degree autonomous configuration is feasible. However when it comes to hardware prob-

lem maintenance by people is necessary. For work environments this is not a problem

but in home settings administration can be a crucial factor.

 Dynamic Changes. During operation of a SmE components may occur which consti-

tute the SmE as long as they are within the physical boundaries of the SmE. Therefore

SmEs are constantly changing with respect to the components they are consisting of.

Moreover such an environment cannot be “switched off” or “restarted” in order to plug

in a new device.

 Inference in Situation of Ambiguity. Due to the use of sensors and inference on the

produced sensor data a certain degree of ambiguity is usually part of a SmE. The taken

Smart Environments

24

decisions by the systems are naturally error-prone. Therefore the implications of infe-

rence should be bear in mind when implementing a SmE. It may be reasonable to use

inference carefully. Moreover it should be analyzed to which degree the envisioned user

is willing to accept non-determinism and potential wrong inferred intention of the user.

 Consistency of Multimodal Adaptive UIs. The general ability of a UI to adapt itself to

the context of use while preserving usability is referred as plasticity [Sottet et al., 2006].

Even though the idea of plasticity exists and MB-UI development is one approach to

tackle it, it has not been reached yet. In SmEs the context of use is even more important

than in typical scenarios of MB-UI as devices may appear and disappear. Moreover the

modality of explicit interaction needs also to be taken into account. Besides GUIs, the

user may interact via speech, touch, tangible UIs ([Ullmer & Ishii, 2000]) or any kind of

combination. Combining plasticity and multi-modality with the characteristics of SmEs

with respect to device heterogeneity consistency can hardly be assured.

Even though those bullets are vital research areas most of them do not tangent interaction in

SmEs in particular (except for the last three). Human factors are much more important with

respect to interaction and therefore are covered in the subsequent sub section.

Human Factors

As SmEs are physical spaces enriched with technology the impact of use on people is much

higher than with ordinary desktop systems because they become part of the everyday life.

Therefore the human factors of such applications are crucial to make them even usable and de-

sirable for people. The vision of an autonomous working system sometimes scares people in-

stead of seeing the potential benefits. Based upon the surveys and analytical insights given in

[Hermann et al., 2009; Langheinrich et al., 2005] a set of essential factors concerning users are

distilled:

 Social Implications. Currently computing systems in our surroundings can be easily

switched off. However in the vision of Ubiquitous Computing the devices are even not

visible anymore. With the devices the opportunities to switch them off disappear as

well. Designers need to bear in mind that people may not want to live in a SmE each

and every day. Moreover it might also be the case that a sub set of devices constituting

the SmE is wanted to be switched off. Besides technology dependability, long term is-

sues can also be disappearing of borders between human and machine, physical and

cognitive involution, unnatural behavior, etc.

 Privacy. Several surveys ([Hong & Landay, 2004]) have shown that privacy manage-

ment is the cornerstone of a SmE if personalized data is being processed during opera-

tion. Even today privacy is becoming difficult to maintain with applications sharing

personalized information. In SmEs due to their network capabilities and distribution an

implicit handling of privacy is not adequate. Explicit concepts showing which data is

being processed by which software system is needed in order to make people share their

personalized data.

 Control. The reassignment of tasks from user to computing system exists since the en-

tering of computers into work environments. Tasks that have been accomplished by the

Smart Environments

25

human are automated in order to ease the work (e.g., calculator). With respect to SmEs

some new challenges are introduced. Task allocation can be dynamic meaning that de-

pending on the current state of the SmE a task may be automated whereas under differ-

ent circumstances (e.g., a certain device is not present) this is not possible. Such a dy-

namic allocation may also make users feel to be at the mercy of the computer system.

Dedicated control mechanism can help to avoid this issue. Moreover the propagation of

the current state of the system also helps to make users feel more comfortable as task al-

location is traceable [Molich & Nielsen, 1990].

 Decision Making by the System. A related issue to the last one is the autarkic decision

making of a computing system which may lead to an uncomfortable user experience.

Transparency and traceability of decisions are necessary in order to provide the user

with means to understand how and why the system decided in this way.

Development Processes

In their current state SmEs are research prototypes or as Kidd et al. state with respect to the

Aware Home “Living Laboratories” [1999]. Prototypes are created incrementally from scratch

based on the current needs and research focus. However in order to make SmEs enter everyday

life method engineering is needed to provide a basis to develop SmEs well structured. More

precisely as interaction is much more complex in SmEs analysis and requirements engineering

addressing the interaction (UI requirements) are crucial to cope with the challenges elaborated

above. The same applies for functional requirements. Especially the areas of integration of hete-

rogeneous systems and devices, middleware, network infrastructure and others need to be ex-

amined beforehand. With respect to interaction a user-centered design approach seems to be

suitable. The examination of different design processes and the selection of an appropriate one

are given in Section 3.2.

2.3.3 The Human in the Loop

In the last sections existing prototypes of SmEs have been investigated with respect to technical

challenges and human factors. These issues are very important in order to provide suitable

means for interaction. What kind of interaction technique is useful in SmEs has been shown in

Section 2.2. The given explanations lead to the conclusion that the crucial issues are user re-

lated. In order to develop suitable interaction techniques and a usable system the user has to be

kept in the loop. This applies not only for the operation but also for the development of SmEs.

One way to achieve user involvement during development is user-centered design (UCD), hu-

man centered software engineering (HCSE) and agile methods. During operation explicit inte-

raction can be used to integrate the user into decision making and to guide the system what kind

of proactive assistance and implicit interaction is suitable in a certain situation. Explicit interac-

tion needs to be dosed well. On the one hand, an overload of explicit interaction corrupts the

disadvantages of SmEs as the user cannot focus on the current task but needs to interact. On the

other hand too less explicit interaction may disregard the users’ needs in this situation as impli-

cit interaction always assumes the intention. Therefore a balanced interaction concept with re-

spect to the user needs to be developed which can even shift during runtime as less explicit inte-

raction is needed after long term use (or vice versa).

Smart Environments

26

2.3.4 Perspectives on Smart Environments

This far it has been shown which prominent prototypes of SmEs exist and what kinds of chal-

lenges are involved during development. It has been stressed that human factors are extremely

important to consider when developing supportive systems as the trust in such a system may

cease as erroneous behavior occurs. Based upon the conducted survey in Section 2.3.1 two gen-

eral perspectives on SmEs can be identified:

Smart Environments as Assistive Agent

The basic principle of this kind of approach is to use the metaphor of an autonomously acting

agent which tries to assist the user while acting in a SmE. Woolridges defines an agent as

[2002]:

“An agent is a computer system that is situated in some environment, and that is

capable of autonomous action in this environment in order to meet its delegated

objectives.”

For SmEs it is rather unclear whether to consider the entire SmE as an agent or such an envi-

ronment as a multi agent system. Nevertheless, certain properties need to be present to classify a

SmE as agent based system at all. According to [Russell & Norvig, 2003] an agent needs to

perceive the environment through sensors and is able to perform actions on the environment

through actuators. Applying this concept to SmEs the complete appliance of devices and com-

puting resources serves as actuators and the user actions are interpreted by the agent as percep-

tion upon which it reacts. Agent-based systems have been characterized by numerous properties

such as reactivity, social ability, rationality, learnability, etc. The actual property which is of

most interest for SmEs is proactiveness. To which degree is an agent or agent-based system (in

this case the SmE) able to react upon the actions of user and execute meaningful goal-directed

behavior? Taking the perspective of a SmE as agent-based system this question is the actual

research question to be answered. Such a perspective inherently incorporates the idea of implicit

interaction.

Smart Environments as Complex Interactive System

From users’ perspective a SmE is an appliance of numerous devices which have to be used in

order to achieve a certain goal. The interaction with those devices constituting the SmE is com-

plex as they are spatially distributed and have their individual capabilities and limitations with

respect to in- and output, computing power, network access, etc. Such a user-centered perspec-

tive is mainly taken by approaches from HCI which claim that user focus deserves the highest

interest. In this perspective a SmE is actually a more complex interactive system compared to

desktop systems, MUI and context-aware applications (see Section 3.1) because of the special

constraints a SmE has (e.g., spatial distribution, distributed interaction, proactiveness, etc.). In

this vein autonomy is not a mandatory property as the SmEs purpose is user satisfaction. This

does not need to be achieved by an intelligent, autonomic agent but also by predefined sequence

of actions or hard-wired behavior of the system. This perspective does not make any claims

with respect how the SmE is to be implemented (in contrast to the assistive agent) but empha-

Smart Environments

27

sizes user satisfaction. Usability, natural task accomplishment, suitable interaction with respect

to context of use and user characteristics are in line with this term.

Currently existing software engineering processes which will be examined in Section 3.2 inte-

grate better with this perspective as the actual development process of the interactive systems is

similar even though more complex. Moreover, explicit interaction as it is a commonly tackled

field in software engineering is better supported by this perspective as implicit interaction.

HCI Aspects

29

Chapter 3
3 HCI Aspects

Having defined the terms and concepts involved in SmEs and the according interaction tech-

niques it is now continued with an in-depth research of relevant HCI aspects in order to enhance

the development of SmEs. First, it is shown that HCI is able to tackle the development of UIs

for classic desktop application and MUIs. Then, it is exemplified why context-awareness adds

additional complexity with respect to interaction development which is even exceeded by SmEs.

In the subsequent section different development processes are introduced which are relevant

with respect to interaction development. Eventually MB-UI development is introduced in order

to tackle explicit interaction for different types of applications. Furthermore it is exemplified

why a suitable task modeling language is needed to provide means for MB-UI development for

SmEs.

3.1 Dimensions of Complexity of Applications

The development of interactive applications is becoming more and more complex for several

reasons. First UIs need to be more appealing in terms of functionality and usability as users

employ systems more consciously nowadays. This applies for all types of applications even

though this issue can be addressed for single platform applications, compared to the subsequent

ones, easier. However the diversity of platforms in use for the very same interactive system

raises the need for different UIs for the diverse capabilities and limitations of each platform still

providing a consistent look and feel. This issue is mainly addressed by MUIs [Seffah & Java-

hery, 2004]. Certainly the development efforts for MUIs increase with the set of platforms. In

order to develop an appropriate UI for a certain platform the context of use needs to be investi-

gated [Gulliksen et al., 2005].

Delivering the UI for different platforms is by far not sufficient as devices are mobile these days

and rapid changes of context may occur. Therefore adaptation at runtime is consequently the

next step and comprises new challenges. Context-awareness has been a research area since the

1990s (an overview of the roots can be found in [Dey & Abowd, 2000]) and investigates adapta-

tion mechanisms for software systems with respect to continuously changing context of use

[Schilit et al., 1994].

It has been constantly discussed what constitutes context, how it is formalized best and how an

application should make use of it. The range of context used in system design varies a lot. Ex-

emplary the authors in [You et al., 2009] use power consumption of sensor nodes as context for

routing whereas in [Oliver & Flores-Mangas, 2006] the physiological state of the user is consi-

HCI Aspects

30

dered as context of use. Those examples already indicate that there is not yet a common agreed

set of features to be considered as context for a particular domain. From our point of view that is

one of the reasons why it is still cumbersome to implement a context-aware application as me-

thodical knowledge of engineering as well as implementation frameworks for context-aware

applications are still not comprehensive enough.

Beyond that, there is also the research field of implicit interaction in which interaction is taking

place even the user is not aware of [Schmidt, 2000]. Implicit interaction is rooted in context-

aware computing. Intelligent assistance [Boy & Gruber, 1990], SmE [Cook & Das, 2004] and

ambient intelligence [Aarts et al., 2002] are currently vital research areas in which implicit inte-

raction is under investigation. To implement implicit interaction the context of use and the do-

main the user is confronted with are enormously important as actions may have a totally differ-

ent semantics under a slightly different context or domain. Usually implicit interaction is ac-

companied, at least by a certain degree of, explicit interaction to synchronize the concurrently

acting user and the executing system.

Figure 3-1 Complexity Chart for Application Types

The interaction paradigm used for SmEs differ vastly. Especially approaches in the HCI focus

on explicit interaction in which UIs are generated dynamically. In [Blumendorf et al., 2008] the

authors propose an approach based on mobile devices whose UIs adapt according to the availa-

ble services in the surroundings. Clerckx et al. follow a similar approach [2006]. Other related

approaches can be found in [Duarte & Carri, 2006; Sottet et al., 2008]. In the research commu-

nity of SmEs, implicit interaction is the prevalent paradigm to reduce explicit interaction to a

minimum. Goal-based interaction which has been investigated before is a representative of such

an approach.

A classification of the prior named types of applications is illustrated by Figure 3-1. The chart

shows the relation of the importance of context and the complexity of development for each

type of application. The color denotes the amount of explicit interaction. The brighter the color

the less interaction is necessary to use the application in an ideal case. This implies that even

HCI Aspects

31

single platform applications and MUIs already support implicit interaction to a certain degree.

This is actually the case as background processes may be started and assumptions about the

users’ habits are encoded in the system [Ju & Leifer, 2008]. The increasing complexity in de-

velopment from single platform application to MUIs is due to the diverse platforms. The relev-

ance of context increases because an application developed for MUIs is used in different con-

texts; one for each platform in the simplest case. The shift from MUIs to context-awareness is

explained by the use of any kind of sensor to adapt the system accordingly. This applies for both

axes as the sensors contribute to the context as well as to the complexity in development. Mov-

ing to SmEs context becomes even more influencing as explicit interaction is minimized result-

ing in implicit interaction based upon context. Certainly incorporating more context information

and using them to provide proactive assistance adds a vast amount of complexity in develop-

ment. For both, context-awareness and SmEs, adaptability plays also a major role for the com-

plexity in development as systems of those kinds should adapt to users’ needs accordingly.

In SmEs an additional fact comes into play. The interaction may be performed in spatially dis-

tributed way. Certain information might be provided by the user explicitly using personal or

stationary devices, other information may be sensed and the output of the SmE can be visua-

lized on device in the surroundings. The potential implications of such distribution for the user

need to be investigated with respect to the usability and feasibility of the system for the envi-

sioned users.

In Figure 3-1 only three dimensions (context of use, complexity in development and explicit

interaction (by the color)) are depicted. Yet this chart can be easily extended to other dimen-

sions:

 Attentional Demand. When interacting explicitly the users’ attention is focused on the

system. If systems disappear into the background and so do their interaction the atten-

tional demand of the user is no longer bound to the system but to the actual goal [Ju &

Leifer, 2008] which is one of the major objectives of context-aware systems and SmEs.

Attentional demand can therefore be seen as an indicator for the quality of a context-

aware system, SmE respectively.

 Modality. The usage of multiple modalities (gestures, voice, pointing) may result in an

increased relevance of context and definitively adds new complexity in terms of devel-

opment. Semantic unification of the multimodal application is of enormous interest to

ensure a seamless integration of the different modalities [Oviatt, 1999]. Please note that

some modalities are only available in context-aware computing and SmEs as sensors

may be needed.

 Initiative. Who takes the initiative is highly related to the interaction paradigm of a sys-

tem [Ju & Leifer, 2008]. If implicit interaction is prevalent the system may be more

proactive then in explicit interaction. Proactiveness is a cornerstone to implement SmEs

but should be used with care as users are frustrated easily by erroneous proactive beha-

vior of systems.

 Automation. Initiative and attentional demand can be combined to scales of automa-

tion. In [Sheridan, 2002] the author investigates eight scales of automation. The scales

HCI Aspects

32

start with no automation offered by the system and gradually allocates tasks to the sys-

tem until the whole process is automated.

Again, those dimensions named above are only related to interaction. In fact, from system de-

velopment viewpoint dimensions like system integration, network topology and others may be

added as well.

Concluding, it is stated that the development of SmEs exceeds the development of all other

types of applications named here. This applies for several types of dimensions but in particular

for the interaction. Moreover the interaction techniques employed for SmEs comprise all others

(see Figure 3-1) and shifts to implicit interaction even though explicit interaction is still used.

The more implicit interaction is desired the more important the context of use becomes.

3.2 Software Engineering in HCI

One of the current issues of the development of SmEs is the lack of suitable and reliable process

models for development (see Section 1.1 and Section 2.3.2). In order to improve the develop-

ment a survey of relevant software engineering practices is given here. Moreover further inves-

tigations are presented with respect to interaction development and software engineering which

serve as basis for the development methodology presented in this thesis in Chapter 7.

3.2.1 Classical Software Engineering Processes

A software engineering process embeds the low level activities, such as coding, testing, etc,

involved in creating a software system into a higher context. In order to structure software de-

velopment the various software development processes introduce phases where certain activities

are performed. Those process models also define the sequence of low and high level activities as

well as potential iteration cycles within a phase.

Before introducing process models relevant to HCI a brief overview of existing software engi-

neering processes will be given:

 Waterfall model. In principle the model, first introduced by Royce [1987], consists of

sequences of phases whereas the subsequent phase can only be started after the comple-

tion of the previous one. In detail the phases are requirements analysis, software design,

implementation and testing, integration and operation. Each phase creates an output

which is needed as input for the subsequent phase (e.g., requirements document as out-

put of requirements analysis phase and input for design). During each phase problems

may be discovered which lead to revision of documents defined previously. Thus itera-

tion cycles are incorporated. However, more flexible approaches are needed incorporat-

ing early feedback and incremental delivery.

 Iterative, incremental models. As an extension to the waterfall model iterative, incre-

mental models have emerged incorporating the delivery of prototypes and intermediate

result to the customer even as productive system [Sommerville, 2006]. An increment is

understood as a self-contained, deployable, tested piece of software. This kind of me-

thod allows for feedback of the stakeholder or user which can be incorporated in the

next increment. The phases are mainly the same as in the waterfall model, but for each

HCI Aspects

33

increment a whole iteration cycle s performed. This approach is much more flexible

since it allows for packaging of requirements for each increment. Representatives of in-

cremental models are the spiral model [Boehm, 1988] and the Rational Unified Process

(RUP) [Larman, 2004] which is depicted in Figure 3-2.

Figure 3-2 The Rational Unified Process [Kruchten, 2003]

 Agile methods. In recent years the need for more flexible approaches emerged in order

to successfully complete rather smaller projects. Those methods are also incremental

processes but with small iteration cycles to incorporate feedback faster. Agile methods

try to reduce the overhead of plan-based development by concentrating on the pro-

gramming of the actual system. The crucial advantage of agile methods is the incorpora-

tion of potential adaptations of requirements during the project life cycle. Even though

there are different agile methods (Scrum [Schwaber & Beedle, 2001], XP [Beck, 2000],

etc.) they all share common principles: customer involvement, incremental deployment,

focus on people, made for change, refactoring and simplicity [Sommerville, 2006]. As

those methods are made for smaller teams and projects they fail for long term projects

and bigger teams.

3.2.2 Limitations according to HCI

As those process models are general software development processes they do not focus their

activities on usability or the end user. Though, there are certain criteria making a process more

or less suitable to incorporate usability and user-centeredness [Ferre et al., 2004]. Due to the

fact that the level of usability of the envisioned software system cannot be predicted in advance

continuous usability evaluation is needed to revise certain design decisions. This can only be

achieved by employing an iterative approach resulting in an artifact at the end of each iteration

which can be evaluated according to qualitative and quantitative criteria [Dix et al., 1997;

Hackos & Redish, 1998]. However, an iterative approach only enables a user-centered process

but does not assure a system to be usable. Besides this crucial requirement of a user-centered

process, two others exist: user involvement and user understanding. Whereas the first means

that the end user of the system should participate within all stages of development, at least to a

certain degree, the latter stands for the analysis of the current user tasks and her context as well

as the envisioned way of performing tasks while interacting with the software system. For both

criteria HCI techniques exist covering all steps of development from requirement analysis to

testing.

HCI Aspects

34

According to the three characteristics named above various HCI design processes have been

proposed either as autarkic processes or as enhancement to existing software engineering

processes examined above. In the next Section representatives of such processes are examined.

3.2.3 Human-Centered Software Engineering

According to Seffah et al. HCSE tries to bridge the gap of software engineering techniques and

HCI [2005]. More precisely the integration of usability methods and software engineering is

addressed. HCSE can be achieved by various techniques on different levels of abstraction. It can

be implemented by guidelines spanning the entire software engineering lifecycle as well as by

low level activities like early prototyping. The key issue to be addressed is how software sys-

tems can be developed fitting the user’s needs. Usability engineering offers a lot of techniques

being usable to improve exactly that issue but has rarely been adopted in most software engi-

neering methods, and vice versa. Even if usability methods are considered in software engineer-

ing they are seldom used in every phase but the usability is assessed before deployment. Besides

classical usability methods (such as expert evaluation, cognitive walkthrough, etc.) also certain

methods from software engineering can be employed to provide the basis for a usable system.

The International Organization for Standardization (ISO) has addressed this issue by the stan-

dard 13407 “Human-centred design processes for interactive systems” [ISO, 1999]. It is stated

that certain principles constitute the creation of a usable system: user involvement, an appropri-

ate allocation of functions to human and machine, iterative development, multidisciplinary.

Moreover, to establish such a development process, time needs to be dedicated to assess inter-

mediate results and prototypes with the user. Other activities have to be performed to meet the

requirements of a human-centered design process: analysis of the context of use of the software

system under construction and assessment of the quality of the intermediate solutions with re-

gard to the requirements and usability.

One principle that has been used successfully is user involvement. During the process of creat-

ing a software system the end users should be continuously integrated into the development

progress. Certainly, the appropriate artifacts need to be presented which can be assessed by the

users. Invaluable feedback should be integrated in the subsequent development steps. To do so,

only an iterative development process is suitable as already stated above. User involvement is

an interactive method which presents prototypes (vertical, horizontal, paper, etc.) to the user

which are evaluated with regard to usability criteria (appropriateness, functionality, etc.).

3.2.4 User-Centered Design

In the same vein user-centered design (UCD) advocates an iterative approach to system design

to enable feedback during the entire project lifecycle [Gulliksen & Goransson, 2001]. In con-

trast to HCSE, UCD is rather understood as a set of design guidelines or principles enabling to

design a usable system. Naturally, such guidelines have an impact on the process model they are

applied to, and therefore has to be adapted accordingly. Therefore HCSE can be understood as

one way to perform UCD. Besides demanding an iterative process model, UCD can be applied

to any development approach by supporting guidelines congruent to HCSE and further ones

[Gulliksen et al., 2005].

HCI Aspects

35

One of the major principles of UCD is the thorough analysis of current work situation of the

user. This involves examining the domain of interest, the task the user is executing, the user

itself and the surrounding of the user. Different techniques have been developed to support such

an analysis. The domain can be analyzed with object-oriented analysis and design using objects

and relations between those objects (or their generalization: classes) [Booch et al., 2007].

Often the user is a rather abstract notion in development. Personas can help to make the later

user more visible to the developer. The envisioned users are analyzed and a representative is

modeled as persona [Cooper, 2004]. Yet there is no common agreed on technique to analyze

and specify the environment the user is acting in.

In terms of analyzing the task world of the user task analysis has been applied successfully over

decades. Moreover task analysis does not try to study tasks isolated but also considers the work-

ing artifacts, the surroundings and users of the system [Hackos & Redish, 1998]. Advocates of

UCD claim that a system suits the user better if the task world of the user has been analyzed and

based on that a system is developed. Therefore, different methodologies exist proposing to use a

task-driven approach to system development. The most relevant ones are examined in the sub-

sequent section.

3.3 Task-Driven Development Methodologies

Interaction design has been tackled of diverse research communities employing different tech-

niques. Task-based approaches have been successful due to the incorporation of the task world

of the user. By doing so the gap between the normal way tasks are executed and the way tasks

are to be executed using the envisioned software system under construction can be kept close.

This is important as users are able to map their normal way of task execution to the new compu-

terized way. Figure 3-3 shows the basic idea of task-based processes to interaction development.

The ordinary way tasks are performed are depicted on the left hand side. The user applies the

knowledge about the tasks and the domain in order to get the work done and achieve the goal.

After having deployed the new software system the tasks and the domain are still existent (even

though adapted) but being encapsulated by the system. Now the user interacts with the system

in order to work in her domain. Therefore an interaction based on the task world of the user

leads to a more consistent and appropriate interaction.

Figure 3-3 The Idea of Task-based Processes

HCI Aspects

36

Task-driven approaches can be classified into two categories: task modeling as documentation

of requirements and task modeling as specification mechanism. In the first category task model-

ing is used as knowledge transmission tool for software designer and user/customer in order to

present intermediate solutions to the user/customer. In accordance with the principles of HCSE

and UCD this approach is highly beneficial as task models can be already considered as first

prototypes. Thus iterative development is facilitated. Moreover those created models can, after

several iteration cycles, serve as requirement documents in order to start design.

3.3.1 Analysis, Requirements Engineering & Design Techniques

Collaborative Interactive Applications Methodology (CIAM) is a representative of this kind of

approach [Molina et al., 2008]. It is conceived to design groupware UIs based on a set of graph-

ical notations (among task models). It makes use of modeling approaches from HCI, software

engineering and computer supported cooperative work (CSCW). CIAM relies on several stages

of modeling (Sociogram Development, Inter-Action Modeling, Responsibilities Modeling,

Work-in group Tasks Modeling and Interaction Modeling). As the names already indicate the

social and organizational structure as well as the group tasks are modeled in the first stages. In

the subsequent phases the focus shifts from group to role perspective. First, roles and their re-

sponsibilities are specified. Next, group tasks are gradually refined by role-based tasks defining

collaboration and cooperation. Last for each identified (groupware) task an interaction model is

created which use Concur Task Tree (CTT) as notation. CIAM is an elegant high level model-

ing approach which focuses on the dependencies involved when developing groupware applica-

tion. Unfortunately the authors do not make any statements whether principles of UCD are sup-

ported within the development methodology. Moreover, tool support for diverse proposed mod-

els does not exist as well as no execution semantics of the high level models is defined. Thus,

created models can only serve as requirement specification documents with limited value be-

cause they have to be reimplemented using an executable language to construct the envisioned

system [Selic, 2003].

In the same vein as the approach mentioned before Penichet et al. investigate how the develop-

ment of groupware applications can be improved by thoroughly performing analysis, require-

ments engineering and eventually design [2009]. The approach primarily focuses on analysis

and requirement gathering for UIs for groupware systems and therefore offers a dedicated meta-

model in order to adequately represent the analysis and requirements models. In order to do so,

the special constraints of groupware applications are taken into account resulting in novel mod-

els and diagrams emphasizing the interaction involved in groupware. In order to perform struc-

tural analysis of the system under construction class diagrams ([UML, 2010]) and a novel type

of diagram, the organizational structure diagram, is introduced. An example taken from [Peni-

chet et al., 2009] is depicted in Figure 3-4.

According to the TOUCHE process, which is the development methodology defined by Peni-

chet, an organizational structure diagram specifies the organizational units relevant with respect

to the groupware system to be developed. The entities involved are decomposed into groups,

roles, users and system components (e.g., in Figure 3-4 the whole system is decomposed into

internal and external groups and system agent responsible for notifying, etc.). The decomposi-

tion in this kind of diagram is continued until a user or a system agent has been reached.

HCI Aspects

37

Figure 3-4 Organizational Structure Diagram from [Penichet et al., 2009]

During analysis not only decomposition of organizations are modeled but also other relation-

ships can be defined. More precisely, the play relationship which connects an actor, agent or

group and a role in order to define that the entity is fulfilling this role (e.g., Chair_author and

Chair_writer). Next, the hierarchy relationship exists defining a dependency between certain

entities (e.g., Authors and Reviewers). However the name and semantics of this type of relation-

ship is rather unclear. Having analyzed the organizational unit within the domain in order to

elicit the UI requirements for the groupware application a more fine-grained model is needed

specifying not only structural properties but taking also into account behavior. Different models

are proposed to enable and capture the behavioral analysis of groupware systems. First, Cooper-

ative Concur Task Trees (CCTT) are used to model user and system interaction by means of

temporal ordering of tasks of different actors and system (CCTT is explained in detail in Section

3.4.3). Second, so called Co-interaction diagrams are used in order to model interactions of us-

ers among each others. For each envisioned usage scenario a Co-interaction diagram is mod-

eled. It sets into relation previously defined actors and agents of the system by means of tasks.

Basically it is defined which entities of the organizational structure diagram cooperate by means

of tasks described in the CCTT models.

TOUCHE which is also described in [Penichet et al., 2008; Penichet et al., 2010] offers analysis

models and a process for groupware systems. It furthermore focuses on the requirements elicita-

tion before development has been started. The models are suitable and rich for analysis but fail

when used for design as they are not executable and therefore cannot be interactively explored.

With respect to SmEs several relevant entities are missing (e.g., modeling of location, devices).

3.3.2 Task-Based Specification Methodologies

This kind of approaches employs task models as specification mechanism which are interpreted

by a software system to create the interactive system. Usually an interpreter is employed to ei-

ther derive a lower level model or the specification is interpreted at runtime to tailor the UI dy-

namically [Vanderdonckt, 2008]. New challenges are thereby introduced (machine independent

semantics, machine readable format, deadlocks of distributed execution, etc.). Basically the

approaches have the objective of building UIs in a model-based manner.

HCI Aspects

38

In the same vein as the Model-Driven Architecture (MDA) [MDA, 2010] tackles the question

whether the development of the application core can be eased (in terms of time, budget, main-

tenance, etc.) by the usage of declarative models, refinement of models and transformations,

MB-UI development is concerned with the development of UIs. The idea of a model-driven (or

model-based) approach is to reduce complexity by having a model for each viewpoint on the

system on an arbitrary level of abstraction and transformations relating those models. Models

are adapted and transformed until an appropriate level of abstraction is reached which serves as

executable model. In the MDA a set of models has been established being the de facto standard:

computation independent model, platform independent model, platform specific model. As the

names already suggest those model are used on different levels of abstraction. During each

transformation additional aspects are taken into account (e.g., platform). Such an evolution can

also be noticed for MB-UI development.

In particular MB-UI development is a major research area in HCI focusing on engineering the

interaction for different types of applications by techniques adopted from MDA. Various devel-

opment methodologies for interactive systems based on tasks exist: TERESA [Paternò et al.,

2008], UsiXML [Limbourg et al., 2005], UC-TM [Sinnig, 2009], MASP [Feuerstack & Blu-

mendorf, 2007] and Dygimes [Luyten, 2004]. Naturally, they differ in level of abstraction, used

notation, focus and procedure. However over the years consent about the general rationale of

MB-UI process has emerged [Paternò et al., 2008; Vanderdonckt, 2008].

Figure 3-5 shows the rationale of the general MB-UI process. It mainly consists of four steps.

Starting with task and domain analysis a conceptual model of the task world of the user is re-

trieved. In HCI, it is commonly agreed upon that task modeling is a good starting point for MB-

UI design [Forbrig et al., 2003]. Software enables the user to achieve a goal by the execution of

tasks. Those tasks need to be presented in a UI which shows the relation of a UI and a corres-

ponding task model. Task-based approaches argue that the closer the UI corresponds to the nat-

ural way a goal is achieved the better the user perceives the UI.

After that the tasks are specified with regard to the envisioned software system under construc-

tion, an abstract UI (AUI) description is created. In the next phase AUI components may be

replaced by concrete ones, so called concrete UI (CUI). For MUIs an abstract UI is used to de-

rive a concrete UI for each platform. So, AUIs are platform independent whereas CUIs are not.

In the last step the final UI is generated into a specific technology. Design adaptations might be

needed to fine-tune the final UI (beautification) [Vanderdonckt, 2008].

Figure 3-5 Basic Model-based UI Process

HCI Aspects

39

MB-UI design is not a straightforward process which is indicated by the smaller arrows from

right to left in Figure 3-5. It is an iterative design process driven by evaluation and feedback.

This can be achieved by prototyping on each level of abstraction within the development life-

cycle. In order to support an iterative process model adaptations need to be inherently supported

by the involved artifacts, the tool support and the process model itself.

With respect to the AUI a standard notation has not been yet identified. Dialog modeling is one

technique to derive the first abstract canonical prototype. Tasks are grouped into dialogs and

transitions of dialogs are defined by means of task execution [Reichart et al., 2004]. A related

approach has been published by Traetteberg in which data flow of dialogs is emphasized [2008].

In UsiXML the AUI consists of different containers on various levels of abstractions which

eventually consist of abstract controls. A tree of containers is created whose leafs are controls.

Tasks are assigned to containers and the enabled task set is used to drive the flow of the UIs

[Montero & López-Jaquero, 2008]. This approach has been originally proposed Luyten [2004].

The CUI is typically expressed by a UI markup language such as UsiXML(USer Interface eX-

tensible Markup Language), UIML (User interface markup language), XUL (XML User Inter-

face Language), etc. [Vanderdonckt et al., 2004]. Concrete UI elements are mapped to AUI

elements (e.g., a selection control is replaced by a combo box). Depending on the envisioned

modality the mapping can be of different complexity. For GUIs the mapping process is quite

straightforward whereas for voice interfaces the mapping is much more complicated.

TERESA in its current version supports the previously depicted process with special regards to

multimodal interaction on the abstraction level of abstract and concrete UIs [Paternò et al.,

2008].

In the same vein UsiXML approaches MB-UI development but also takes into account the con-

text of use considered as the platform, devices and users of the system [Limbourg et al., 2005].

Both methodologies support multi-path development meaning that the software designer may

start on any level of abstraction which is very practical especially in early stages of develop-

ment. In [Limbourg et al., 2005] those paths are further concretized by explicit path steps: reifi-

cation, abstraction and translation. Reification defines the transformation of a model to lower

level model in MB-UI chain in Figure 3-5. Abstraction is the complementary transformation.

Translation defines the process of translating a model for a certain context of use (e.g., desktop

environment) to another one (e.g., mobile setting).

However, recently the task concepts and their tool support has been enhanced by FlowiXML

[Garcia et al., 2008]. In this work task modeling is studied in context of workflow modeling.

More precisely extensions to task modeling have been introduced to combine high level

workflow modeling and task modeling for workflow items as necessary. Workflows are mod-

eled by means of adapted Petri-nets. Task modeling comes into play by further defining transi-

tions using extended CTT models as described before. The rationale of this approach is based

on the assumption that task models highlight the user’ point of view on the system much better

than a process model [García et al., 2008b]. Unfortunately there are no statements how such a

combined modeling approach of workflows and task models suits with UsiXML. Still this ap-

HCI Aspects

40

proach overcomes the limits of CTT task modeling to incorporate modeling of distributed ac-

tions of different users. In FlowiXML workflows are used to specify the casual dependencies of

tasks of different users, in FlowiXML called workers, from different organizational units. This

is definitely an enhancement of CTT and CCTT in terms of expressiveness. Moreover such an

approach bridges the gap of two worlds: business process modeling and task modeling which

have been mostly considered separately. Beside the modeling facilities FlowiXML also offers

modeling elicitation methods and tools. Task identification criteria are introduced in [García et

al., 2008a] and an appropriate tool is shipped with FlowiXML. A precise classification of tasks

becomes indispensable especially if tasks are considered in the context of workflow modeling as

there are also processes and workflows involved. A distinction of tasks, processes and

workflows is necessary to keep the level of abstraction consistent on each layer while modeling.

Another elicitation tool offered by FlowiXML uses text-based scenarios to elicit modeling enti-

ties in the text.

As FlowiXML employs Petri-nets for workflow modeling and CTT as task modeling language

semantics can be defined. However, to our knowledge such an interpreter (e.g., a workflow

management system or task model interpreter) is not included in FlowiXML. This is actually

unfortunate as animation has been proven as an excellent validation tool. Moreover, an interpre-

ter may also be used at runtime to govern the information and control flow. Without an interpre-

ter transformations are necessary to derive executable models. Without interpreter or transfor-

mation models are limited to be requirements artifacts or documentations.

In his PhD thesis Sinnig proposed a development process for interactive applications bridging

the gap of software engineering and UI development [2009]. It is based on use cases and task

models which are in each domain the prevalent requirement specification mechanism. More

precisely he states that use cases specifying the functional requirements and task model specify-

ing the UI requirement should be developed in accordance. This approach does not advocate

MB-UI design itself but the development approach can be used to enhance MB-UI design.

The design of UIs has been considered as an interactive process involving design iterations and

discussion. As a result of such a process a design solution, a UI, is created. However there are

scenarios where a UI cannot be created at design time but needs to be tailored at runtime. Luy-

ten proposed an approach based on task models to derive a UI for versatile devices in his PhD

thesis [2004]. This approach analyzes the task model and calculates the enabled task sets

([Paternò, 1999]) in order to group tasks in dialogs appropriately. More precisely tasks of an

enabled task set are grouped into one dialog. To derive an abstract UI UIML fragments are at-

tached to tasks. UIML is a device independent interface description language based on XML

[Constantinos, 2000]. In essence, in Dygimes only task models with UIML fragments are speci-

fied. At runtime those extended task models are interpreted and a UI is generated dynamically.

Moreover Dygimes supports context-sensitive task models to incorporate different contexts of

use at runtime but does not incorporate means for multi modalities.

The MASP (Multi-Access Service Platform) has been developed by several PhD students at the

DAI-Labor in Berlin [Blumendorf, 2009; Feuerstack, 2009]. The aim of this project is to em-

ploy UI models, like the task model, abstract UI model, etc., to automatically generate UIs for

SmEs. Moreover explicit layout modeling is performed to create more appealing UIs [Feuers-

HCI Aspects

41

tack et al., 2008]. The approach relies on the basic model-based process but the final UI is not

created at design time but is generated at runtime [Feuerstack, 2009]. Depending on the current

context of use at runtime an appropriate UI is derived based on the model defined at design

time. Therefore a context-sensitve UI can be created.

3.4 Existing Approaches to Task Modeling

Almost each prior investigated methodology introduces its customized version of a task model.

Even though nowadays a set of features can be found in almost each task modeling language

those concepts are often extended. In this section it is clarified why task analysis and task mod-

eling is beneficial for the design of interactive systems and what kind of modeling languages

exist. More precisely it is started with task analysis which is not bound to any modeling lan-

guage but provides means to elicit a valid task description from a certain problem domain.

3.4.1 Task Analysis

The application domains for task analysis are not limited to the development of interactive sys-

tems but includes training, development, assessment of mental workload, performance and error

prediction just to name a few [Hackos & Redish, 1998]. The overall goal of such an analysis is

to enable designers to understand the user’s work situation which can be of any kind (e.g., work,

leisure) in order to improve design (e.g., training plan). According to Johnson:

“…the role for the task analysis is to provide an idealized, normative model…”

of the tasks users carry out to achieve goals in a particular domain [1992]. With regard to inter-

active system development task analysis is important to elicit UI requirements (which are usual-

ly not captured by functional requirements) and detect potential usability flaws. UI requirements

detectable via task analysis are in turn function allocation (to user or system), logical decompo-

sition of dialogs, consistent ordering of tasks and appropriateness of a UI for a certain user [Dix

et al., 1997; Kirwan & Ainsworth, 1992].

Task analysis is not primary performed when a new system is to be developed but during all

phases of development even maintenance. More precisely task analysis cannot be performed

from scratch as it needs some situation which is under investigation (e.g., a legacy system a user

is working with, the work situation without a software system). The feasibility of an analysis of

the user and her tasks is rather limited if the circumstances of the user during task execution are

omitted. Thus task analysis is not only about tasks but also about user goals (why is somebody

performing a certain task?), the user itself (who is executing a certain task?) and the environ-

ment (where is somebody executing a certain task?). Such a holistic understanding is necessary

to provide a valid view on the task world of the user.

To perform task analysis different techniques have proved its value over time. The easiest one

which is also used in domain-driven design [Evans, 2003] is establishing a vocabulary of tasks

(task inventory according to [Hackos & Redish, 1998]). As users naturally tend to decompose

tasks into more simply ones task descriptions are usually hierarchically arranged. Besides the

pure tasks a user analysis needs to be performed reflecting the skills and capabilities of stereo-

typical users. Different concepts to do so exist. Either the different levels of capabilities with

HCI Aspects

42

respect to the system are analyzed or the domain specific users are taken into account. Whereas

the first results in users like “novice”, ”beginner” or “expert” the latter leads to roles existing in

the domain (“editor” and “author” in book writing). Moreover task specifications should natu-

rally reflect such a classification of users. In order to develop analysis documents truly reflect-

ing the way tasks are performed direct interacting with the users is invaluable. Therefore visit-

ing the user and discussing the way the user is performing the task can be very helpful to gain

understanding as assumptions are often misleading or just wrong. Interviews, questionnaires,

card sorting or thinking aloud are techniques which can be applied during a site visit [Johnson,

1992].

Recently proposed task analysis techniques focus on groupware applications. As coordinative

task accomplishment comprises much more complexity analysis techniques need to adapt ac-

cordingly. In [Penichet et al., 2008] a conceptual framework is proposed which clearly distin-

guishes between different types of groupware tasks. Even though such a distinction seems to be

beneficial no statements about the implications of the different types of tasks are given. As a

pure analysis method no new modeling technique is introduced to effectively make use of the

fine-grained classification of tasks.

3.4.2 From Task Analysis to Task Modeling

The result of task analysis should be an artifact specifying the tasks the different users are cur-

rently performing. However when a system is build the task world actually changes as tasks are

reallocated, new tasks may be introduced and others are obsolete. Therefore there is also an

envisioned way tasks are performed using the software system under construction. Thus there is

a gap between the tasks the users are currently performing in their work environment and the

work situation after a new system has been introduced. One of the reasons why users may not

accept a certain system can be the divergence of these two models. This issue is known in the

HCI and has been taken into account by task analysis methods and MB-UI processes. Van der

Veer and van Welie distinguish between those two task models and emphasized their impor-

tance as the analysis model comprises the knowledge of the user about the current work situa-

tion whereas the envisioned task model specifies the refined task situation in accordance with

technology. The second is usually designed by an expert of the system under construction and

the user (as the knowledge of the users is integrated) [2000]. In the same Wilson et al. distin-

guish between those two types of models but further state that restructuring the tasks should not

only be supported by the methodology and task analysis technique but also by the tool support

[1993].

Figure 3-6 depicts the evolution of a task model for the development of interactive systems. It is

started with the first version of the model of the current work situation. This model is iteratively

refined by discussion with the users. Once this model is of sufficient quality (Task model 1.4 in

Figure 3-6) the envisioned work situation is derived. The first version of this model (2.1) is na-

turally based on the last version (1.4) of the current task situation but incorporates the envi-

sioned support of technology for the task execution.

HCI Aspects

43

Figure 3-6 Evolution of Task Models in Task Analysis and Modeling

Task model 2.1 is usually created by an expert of the system under construction who knows best

the capabilities of automation, reallocation of functions etc. Certainly this model needs adjust-

ment to meet the requirements of the user which is achieved by iterative validation with the user

(denoted by 2.2, 2.3 and 2.4). The eventually created task model (2.4) can therefore be consi-

dered as contract between user and interaction designer in terms of interaction for the system

under construction. Again, the task model cannot be regarded as isolated but needs naturally to

be defined in accordance with the domain and user model [Dittmar & Forbrig, 1999].

As each (intermediate) task model may be discussed with the user an understandable notation is

necessary to enable iterative task analysis and modeling. Therefore the notation and its tool

support have a great impact on the UI design. In the next section common approaches are ex-

amined with regard to origin, expressiveness, application domain and other criteria.

3.4.3 Task Modeling

In the last decades several languages have been created to specify tasks and their interrelation

with respect to the application domain. This section provides an overview of current research of

relevant modeling languages and motivates the need for the developed language CTML.

In essence, task modeling languages can be classified according to their origins [Limbourg &

Vanderdonckt, 2003; Pontico et al., 2007]:

Cognitive psychology. Task modeling is understood as vehicle to transmit knowledge about

how users interact with machines or software. Task analysis identifies cognitive processes dur-

ing interaction and task structures. In addition assessment of work load, performance, task allo-

cation and usability can be performed. Representatives of task modeling languages of this type

are Hierarchical Task Analysis (HTA) [Annett & Duncan, 1967], Task Knowledge Structures

(TKS) [Johnson, 1992], Goals Operators Methods Selection Rules (GOMS) [Card et al., 1983],

Task Action Grammar (TAG) [Payne & Green, 1986], Méthode Analytique de Description

(MAD*) [Scapin & Pierret-Goldbreich, 1989].

Software Engineering. Task models are used as specification mechanism in various stages of

software engineering. Task analysis can be used in early stages to elicit requirements which in

turn may be specified by means of task models [Hackos & Redish, 1998; Reichart et al., 2004]

as it the case in MB-UI development. As already hinted in the last sections, task models may

also be used at runtime which requires a machine readable format and precisely defined seman-

tics especially for remote systems. Therefore some task modeling language (CTT [Paternò,

1999], TaoSpec [Dittmar & Forbrig, 2003]) can be traced back to process algebras such as CSP

[Hoare, 1978]. In addition, domain specific extensions may be introduced to incorporate the

HCI Aspects

44

special constraints and concepts of the domain of interest [Bomsdorf, 2007; Giersich et al.,

2007; Sinnig et al., 2007; Wurdel et al., 2009].

Ethnography. Ethnography studies, among others, the interacting of humans through empirical

studies. Different methods are employed to gather the data such as interviews or observation.

Task modeling can be another source of data as task models can be discussed with the humans

under observation. Groupware Task Analysis (GTA) [van der Veer et al., 1996] is one repre-

sentative of this type of task model.

After classifying the task modeling approaches based on their origins it is now continued with a

detail examination of most relevant ones. Among the most popular task modeling languages are

GOMS [Card et al., 1983], HTA [Annett & Duncan, 1967], TKS [Johnson, 1992], and CTT

[Paternò, 1999]. Even though all notations differ in terms of presentation, level of formality and

expressiveness, they assume the following common tenet: tasks are performed to achieve a cer-

tain goal. Moreover, complex tasks are decomposed into more basic tasks until an atomic level

has been reached.

Within the domain of HCI, CTT is the most popular notation, as it contains the richest set of

temporal operators and it is supported by a tool, CTTE [Mori et al., 2002], which facilitates the

creation, visualization and sharing of task models.

Figure 3-7 Task Types in CTT and CCTT

Tasks are arranged hierarchically, with more complex tasks decomposed into simpler sub-tasks.

CTT distinguishes between several task types, which are represented by the icon representing

the task node. There are abstract tasks, which are further decomposable into combinations of the

other task types including interaction, application and user tasks (see Figure 3-7 for an overview

of the available task types). The task type denotes the responsibility of execution (human, ma-

chine, interaction, cooperation with human). CTT includes a set of binary (enabling, choice,

order independence, concurrency, disabling, suspend/resume) and unary operators (optional,

iteration). The former are used to temporally link sibling tasks at the same level of decomposi-

tion whereas the latter are used to identify optional and iterative (unbounded iteration and n-

times iteration) tasks (see Table 6-2 for accurate descriptions of the semantics of the identical

operators used in CTML). A comprehensive overview on CTT can be found in [Paternò, 1999].

An example of CTT model is given in Figure 3-8 which shows how a presenter may give a talk.

The abstract root task “Give Presentation” is decomposed into four children tasks. The tasks on

the second level of abstraction are connected with the enabling operator () in order to specify

that one task has to be performed before the other can start (e.g., “Present” can only be per-

formed after having executed “Configure Equipment”).

An exception to this is “Leave Room” as it can be performed at any time due to the deactivation

operator () resulting in a prematurely abortion of the currently running task. “Configure

Equipment” is furthermore consisting of the tasks “Start Projector”, “Start Laptop” and “Con-

nect Laptop & Projector”.

HCI Aspects

45

Figure 3-8 CTT Model for “Give Presentation”

Those basic tasks are connected with the orderindependence () and enabling operator. The

orderindependence operator defines the sequential execution of the tasks in arbitrary order

meaning that once one of the tasks is started the other has to wait for the first one to terminate.

Tasks which are not further decomposed are actions and considered as atomic. They represent

the smallest entity of execution (e.g., Start Projector).

In the following paragraphs the concepts of hierarchical decomposition and temporal operators

to restrict the task execution order are referred to CTT-like notation as those concepts are used

in most task modeling approaches.

HTA being one of the first attempts to task modeling decomposes tasks until an atomic unit is

reached [Annett & Duncan, 1967]. Instead of temporal operators so called plans are used to

restrict the execution order of tasks. Plans are informal descriptions of conditions of task execu-

tion on the same level of abstraction. They are very powerful but are not interpretable by a tool.

In Figure 3-9 the running example of “Give Presentation” is specified by means of HTA. Boxes

represent tasks and lines denoted hierarchical decomposition. Plans are annotated in order to

comment the intended temporal order.

GOMS has been developed to assess the time needed to achieve a certain goal. Therefore in

GOMS goals are decomposed until a goal can be achieve by operators [Card et al., 1983]. Me-

thods specify how operators are combined and selection rules define which methods to use un-

der certain circumstances. MAD is a CTT-like notation but actions are attached to atomic tasks

which define how to perform the atomic task (e.g., the atomic task get a drink is implemented

by go to the bar tender). This formalism is very similar to CTT.

Figure 3-9 HTA Example of "Give Presentation"

In order to support the spsecification of collaborative (multi-user) interactive systems, CTT has

been extended to CCTT (Cooperative ConcurTaskTrees) [Mori et al., 2002]. Similar to the co-

operative task modeling language presented in this thesis, CCTT uses a role-based approach. A

CCTT specification consists of multiple task trees. One task tree for each involved user role and

one task tree that acts as a “coordinator” and specifies the collaboration and global interaction

HCI Aspects

46

between involved user roles. An example for the formalism is given in Figure 3-10. The role

task models for “Presenter” and “Listener” are given on top, on the lower right hand side re-

spectively. The model specifying the coordination of the individual tasks is depicted on the low-

er left hand side. For each action in the coordinator task model a counterpart in the role specific

task model has to be defined which is denoted by the dotted lines in Figure 3-8. In essence, the

coordinator task specification adds additional execution constraints to the individual task mod-

els. In the given example it is specified that “Wait for Questions” of the role “Presenter” needs

to be performed before the “Listener” is allowed to perform “Ask Question”. After that “An-

swer Question” of the role “Presenter” can eventually be executed.

Figure 3-10 Cooperative CTT Model for "Presentation"

The main shortcoming of CCTT is that the language does not provide means to model several

actors simultaneously fulfilling the same role as well as that an actor is assumed to fulfill only

one role within a CCTT specification (strict one to one mapping of actors and roles).

Groupware Task Analysis (GTA) developed by van der Veer et al. primarily focuses on analysis

and modeling of multi user task achievement [1996]. The approach bridges two worlds, HCI

and CSCW (Computer supported Cooperative Work), by applying techniques from both areas.

More precisely classical task analysis and modeling techniques from HCI and groupware analy-

sis from CSCW are used. The authors embed task modeling into a higher level context by also

considering roles, work, objects and agents as entities relevant for task modeling. The task mod-

el uses the common set of features ([Welie et al., 1998]) explained before but actions are em-

ployed as top level elements in a dialect of UAN (User Action Noation) diagrams which is used

as low level notation determining the dialog structure [van der Veer & van Welie, 2000]. More-

over, in contrast to CTT and similar notations each task is assigned a goal even on lower levels

of abstractions. Artifacts and tools necessary to accomplish a task (by manipulation or creation)

are modeled by means of UML class diagrams. On the higher level of abstraction roles describe

stereotypical users and their tasks to be performed. Agents play one or more roles and a role can

be played by several agents. An agent is not necessarily a user as it may also be the system. The

situatedness of actions is addressed by events and triggers. Whereas the first defines the cir-

cumstances when an event occurs, the latter indicates the task relevant for the event. The model

entities are represented in GTA by different representations: task tree, workflow model and

HCI Aspects

47

object model. The first is the way tasks are represented in HCI. The workflow model classifies

tasks with respect to time, order and roles. In GTA a so called “variation of UML Activity dia-

gram” is used which uses swim lanes to collocate tasks of the same role and control flow to

order tasks accordingly. Moreover a goal lane is added to represent which goal is currently be-

ing worked on. GTA is the richest approach in HCI for task analysis and modeling for group-

ware applications as it does not only cover a modeling language but also a lightweight process,

means for evaluation and usability engineering. Moreover tool support for model creation and

documentation is offered. From our point of view the approach only lacks formality and execu-

tability. As modeling distributed actions becomes quite complex validation and verification

analysis of GTA is important to ensure consistency. Currently this issue has not been addressed

yet. A formal basis would also allow for model interpretation and which would in turn facilitate

prototyping which is even considered as highly important by the authors [van der Veer & van

Welie, 2000]. Interestingly in the very same paper the authors also suggest to incorporate the

physical layout of the working environment to complete the task specifications. However this

issue is not tackled in GTA.

Bomsdorf [2007] as well as Klug and Kangasharju [2005] introduced an extension to task mod-

els where a task is not regarded as an atomic entity (like in CTT) but has a complex lifecycle,

modeled by a so-called task state machine. Bomsdorf defines a task by a state chart to trigger

additional events as the specification is more fine-grained. Hence in this vein also external

events which may occur in web based interfaces (closing the browser) can be handled. Klug and

Kangasharju use a state chart based approach to define temporal operators with information

exchange more precisely. The former approach does not consider tasks being not enabled (in-

itiated) whereas the latter does not consider abortion or skipping of tasks.

Tasks are always performed within a certain context or environment and hence their interplay

with the environment should be taken into account. This issue was first tackled by Bierre et al.

[1999a]. The authors proposed to model the execution environment in accordance with the task

specification. The environment captures the domain entities which are manipulated, created or

needed for the performance of a certain task. Based upon a CTT-like notation conditions can be

defined over the object world state. A task in the Visual Task Model Builder is only executable

if its preconditions are fulfilled. Moreover through performance of a task objects may also be

created, manipulated, destroyed or assigned to a variable. The language is supported by a tool

incorporating editing of all entities and interpreting the model for interactive validation. The

approach is very rich and offers a very robust and usable tool. Modeling of the domain is per-

formed by object-oriented design with limited expressiveness (no multivalued associations).

The interplay of object and task modeling has not only been tackled by Biere et al. In [Caffiau

et al., 2008] an overview on that issue is given. In essence, most task modeling languages con-

sider objects as noteworthy but are used informally as properties, relationships (like “uses”) or

as preconditions to perform a task. Rarely objects are used to constrain the task execution (and

in turn task execution may manipulate objects) in order to construct more realistic task models

being usable for MB-UI development and to generate early prototypes.

TaOSpec [Dittmar & Forbrig, 2003] is one of the few. In the same vein as the Visual Task

Model Builder, TaoSpec allows for modeling task specifications with binding to the execution

HCI Aspects

48

environment. Unfortunately the approach by Dittmar and Forbrig is not very well integrated

with standard software engineering models as a new concept for domain modeling is intro-

duced. With respect to expressiveness and modeling of realistic scenarios TaOSpec is a major

contribution in the domain of task modeling.

Kernel of Model for Activity Description (K-MAD) is a task modeling language based on

MAD* which explicitly advocates the use of objects in preconditions and postconditions of

tasks [Caffiau et al., 2008]. Moreover termination conditions of iterations can be defined over

objects. Objects are modeled in very restricted object-oriented fashion. So called “abstract ob-

jects” are classes whereas “concrete objects” represent objects being instances of classes. Sets,

lists and stacks of abstract objects can also be specified. Inheritance, associations and methods

are not considered in the approach which limits the approach to pure records or structs. K-

MADe is the tool facilitating the use of the language which is equipped with editors for all enti-

ties of the language as well as a simulator which allows for rapid feedback cycles. K-MAD en-

hances the previously presented approaches in terms of integration of domain modeling.

AMBOSS is a task modeling environment dedicated to modeling of safety critical systems (e.g.,

medicine, aviation) [Giese et al., 2008]. In contrast to most prior examined languages the objec-

tive of AMBOSS is not MB-UI development but modeling of work of actors within their envi-

ronment. It is a CTT-like notation offering some novel extensions addressing the challenges of

the domain it is used for. Thus an AMBOSS task model does not specify an idealized way of

task performance with respect to safety criticalness but explicitly models risks and assurance.

Exemplary barriers can be specified representing conditions need to hold at simulation time in

order to prevent harm or damage to humans or material. Cooperation is modeled in AMBOSS

by a role assignment to tasks (including machines). Therefore no task type similar to CTT exists

as this information is already specified by the role. In contrast to CCTT not for each role a task

tree is defined but a single monolithic task model specifies the task execution of all actors which

may result in complex specifications which are difficult to manage. Formal preconditions are

incorporated by AMBOSS addressing barriers as mentioned earlier (a task is only executable if

its barrier holds) and message flows. In AMBOSS message flows can be specified between

arbitrary tasks. At simulation time the receiving task can only be executed if the message has

already been sent. This concept is actually very powerful as it allows for defining complex de-

pendencies between tasks of different levels of abstractions. Object modeling is also supported

by AMBOSS but is restricted to concrete objects. Those objects are very similar to resources in

workflow modeling [Russell et al., 2005]. Preconditions cannot be defined directly addressing

object states. As AMBOSS is designed to specify how people perform work within physical

environments spatial information are from interest because an actor may be needed to be co-

located with a certain object to perform a task. Therefore location modeling has been integrated

using a logical hierarchical model of locations. For each task it can be defined where it needs to

be performed. However it is unclear how such information is taken into account during simula-

tion. AMBOSS is the first approach which integrates location modeling, object modeling and

task modeling. Hence, it is one of the few approaches dedicated to the specification of work

situation in physical environments.

HCI Aspects

49

Besides the pure task modeling concepts some approaches present the tasks and their dependen-

cies (such as context of use, platform, user handicaps, etc.) explicitly in one model. Representa-

tives of such approaches are [Vanderdonckt et al., 2008] and [Luyten et al., 2006]. Whereas the

former approach defines an extensive meta-model as UML class diagram in order to incorporate

the different factors constituting the relevant context of use, the latter uses ontologies to define

complex dependencies between tasks and their execution environment.

3.5 Specification Mechanisms for Implicit Interaction

In the following paragraphs vital research areas concerned with the model-based development

of implicit interaction are investigated. The conducted examination especially focuses on the

capability of specifying on a high level of abstraction as the model-based approach for implicit

interaction should start with such a description (in order to benefit from model-based develop-

ment).

The current research activities in the field of implicit interaction can be categorized into model-

free and model-based approaches. The first infers the intention without explicit models of the

envisioned implicit interaction (which is actually the behavior of interest of a human in the

SmE) whereas the later relies on models specifying the envisioned behavior of the user. In this

thesis model-free approach for implicit interaction are out of scope as the thesis explicitly pro-

poses modeling to boost the quality of the system under construction. Moreover, the developed

system exhibits higher quality and integrates much better with principles of UCD and HCSE as

human needs are considered within the development explicitly when following an iterative

model-based approach.

For the model-based development of implicit interaction different approaches exist. They are

not as well-defined as MB-UI development due to novelty of the research area which has been

started with the definition of Schmidt [2000]. Basically the question to be answered is whether

one can infer the intention of the user which is expressed by implicit interactions (e.g., ges-

tures). On a lower level of abstraction probabilistic models are used for intention recognition

which explicitly makes use of observations and hidden states as the intention of the user can

only be determined by the observed behavior. Artifacts such as the Hidden Marko Model

(HMM) or more general Dynamic Bayesian Networks are used. Therefore research activities

how to use such models are excluded in this explanation here (low level models for explicit

interaction have not been reiterated either).

In general, two major research avenues can be identified for model-based development of impli-

cit interaction. Either the model is created in a top-down approach (as it is the case while task

modeling) or atomic actions are designed individually and are composed as needed which is a

bottom-up approach. The subsequent paragraphs comprise examinations about representatives

of the previously named categories of high-level description formalism being transformable to

probabilistic models such as the HMM. After having investigated the existing approaches they

are assessed with respect to task modeling.

In [Kiefer & Stein, 2008] context-free grammars are proposed in order to specify potential in-

tention in accordance with the individual behavior of the user expressing the intention. There-

HCI Aspects

50

fore non-terminals are intentions and terminals represent behavior. From perspective of user

modeling this distinction is rather unclear as also complex behavior may constitute an intention.

To achieve location-awareness production rule of the grammar are annotated with region (or

locations). Only when a user is at an annotated region the production rule can be applied. In

order to create a parsing tree terminals are further defined by certain sensor data. In the given

example of Kiefer & Stein GPS data is used. The approach seems to be fruitful and prosperous

especially with respect to the close bond of intention and behavior. However from our point of

view the major shortcoming of the approach is the missing generality. As explained above in-

tentions may also be defined by complex behavior (non-terminals) which is not an intention.

Another major shortcoming is the missing of means to specify concurrent behavior which is

fundamentally to truly reflect users adequately. More precisely, this is a general shortcoming of

context-free grammars.

In the same vein probabilistic context-free grammars are used. Actually introduced by Charniak

for natural language processing they can also be employed to parse potential intentions to infer

behavior of people [1997]. They extend ordinary grammars by adding a function which assigns

each production rule a probability. Such an extension allows assigning a probability to each

word, sentence respectively, of the grammar.

[Burghardt & Kirste, 2008] proposed a novel approach to integrate a priori knowledge into in-

tention analysis. Instead of starting with high-level activities and gradual refine them a bottom-

up approach is taken. Atomic actions are specified by means of Planning Domain Definition

Language (PDDL) which can be composed into sequences of actions representing the potential

execution sequences valid in the current state. By calculating the valid sequences the set of ac-

tions of the user in the current states can be derived representing the intention. As the actions are

independent new actions can easily be added at runtime. This allows for coping with dynamism

in SmEs. However the shortcoming of this approach is that such a modeling approach in not

intuitive. From our perspective gradual refinement and decomposition of high level activities

into more basic ones is natural to humans and should therefore be supported by the modeling

languages used to drive the design of implicit interaction.

3.6 Other Relevant Background Work

After having reviewed task-driven development approaches, task modeling languages and de-

velopment approaches for explicit and implicit interaction it is continued with further relevant

work which does not match the former categories.

According to [Garrido & Gea, 2002], the most important aspects for the development of interac-

tive systems for collaborative environments are user groups, roles and tasks. In their approach,

groups and roles are modeled using state charts whereas the definition of a task is specified by

activity diagrams. As semantic domain Petri nets [Petri, 1962] have been chosen which allow

the animation of the models as well as the verification of properties. The behavioral specifica-

tion of this approach is sound but lacks the integration with the domain model which is an im-

portant aspect to consider when developing those systems. A development methodology has not

been defined.

HCI Aspects

51

Workflow systems have been a focus of research over decades. Distribution of work in time and

space are inherently factors of such systems. Traditionally workflows do not model cooperation

by several workflows and glue them by preconditions and effects but by a monolithic workflow

whose activities are allocated to different actors in the system. Therefore cooperation is modeled

by sequence flow, allocation and message flow [White, 2004]. However in the Business Process

Modeling Language (BPMN) no means for explicit cooperation exist. To visualize activities of

different participants pools and swimlanes are used.

A pool is a container for process which involves cooperation. It can be either subdivided into

swinlanes representing activities of one participant or can be considered as atomic containing

the activities of the process. In Figure 3-11 an example of BPMN specification is given which is

taken from the BPMN specification [BPMN, 2010]. Financial Institution and Supplier are

pools. Moreover Supplier is subdivided into Sales and Distribution specified as swimlanes.

Swimlanes are atomic and cannot be further decomposed. Activities belonging to the participant

are arranged within its swimlane. Cooperation is modeled by sequence flow (e.g., Process Or-

der of Sales and Pack Goods of Distribution) or by message flow (Authorize Payment of Sales

and Credit Card Authorization of Financial Distribution). Pools and swimlanes rather structure

a workflow properly than model cooperation as the actual dependencies between the activities

are modeled by sequence and message flow. The expressiveness of such a modeling approach is

powerful even though some limitations exist. It is not clear how to model cooperation of mul-

tiple participants with the same activities (e.g., multiple Sales participants) and no precise ex-

ecution semantics for BPMN is given even though the Business Process Execution Language

(BPEL) exists. The transformation of BPMN specifications into BPEL (and technological spe-

cific BPEL extensions like BPEL4WS) is defined by an informal mapping which has rather the

form of a proposal than a semantic definition [Ouyang et al., 2006; White, 2004].

Figure 3-11 Pools and Swimlanes in BPMN from [BPMN, 2010]

Dynamic composition is another current challenge of workflow specification and web services

(which are the state of the art implementation mechanism of workflows). Similar languages to

BPMN have therefore been designed. The semantic web as a formalism to enhance syntactical

interface matching to a semantic level is one approach to do so (e.g., DAML-S is one represent-

ative [Paolucci & Sycara, 2003]). Such approaches are certainly feasible for SmEs which has

been exemplified in [Reisse et al., 2008]. Yet the existing approaches focus on modeling device

capabilities and software services. The special constraints of human behavior modeling as

tackled here are not taken into account.

HCI Aspects

52

The ambient calculus developed by Cardelli and Gordon is used to specify processes with re-

spect to mobility [1998]. More precisely, process algebra is used to specify the diverse compu-

ting resources. The special concept ambients is used to denote a certain boundary of execution.

Ambients can be moved to represent the mobility of a certain process. In this vein the compu-

ting resources are modeled in accordance with the relevant topology of the system. Even though

the approach is sound with respect to formality only the boundary of execution of a process is

considered. A suitable language also needs to incorporate other facts but the ambient of a

process, activity respectively.

In the area of safety critical applications and UIs human behavior modeling is also relevant. In

[Basnyat et al., 2007] an approach is discussed which employs Petri-nets as language for speci-

fying the potential behavior of the user. In essence, the system and user model is specified as

Petri-nets. Moreover barriers are defined which represent threshold to avoid erroneous states.

Having defined the entire behavior by means of Petri-nets formal analysis of the model with its

barriers can be performed.

3.7 Conclusion

Different types of applications comprise different complexity with respect to interaction devel-

opment. In this chapter it has been shown what constitutes the complexity for each of the ex-

amined types, such as single platform, MUIs, context-aware applications and SmEs. In order to

tackle the most complex type of application, namely SmEs, common approaches from the HCI

and MB-UI are introduced which are from our point of view highly beneficial to investigate and

to enhance. In order to do so task modeling has been investigated in-depth as the task model is

the starting point for MB-UI development and is also suitable for implicit interaction which has

not been researched thoroughly in HCI.

Furthermore the rationale and basic idea of task-driven approaches have been illuminated which

relies on the hypothesis that a system is more appropriate if the work processes are kept as close

as possible to the previously existing work processes. Therefore analysis task models are de-

signed which are in turn enhanced to introduce the system under construction.

As a task model is usually an idealized normative description ([Johnson, 1992]) about the real

world task performance certain facts are omitted. Even though this is in the nature of abstraction

also important issues are sometimes not considered. Naturally this is due to the domain a task

modeling language has been developed in. None of the languages presented in the last section

have been designed in order to model tasks in SmEs. Therefore certain relevant facets are disre-

garded and application domains of task modeling are missed. Based on the existing ones new

concepts need to be introduced in order to cope with the complexity in SmEs.

Semantic Domains

53

Chapter 4
4 Semantic Domains

In this chapter of the thesis the potential foundations of the semantics of CTML are dis-

cussed. In the first part the advantages of assigning formal semantics to a language are high-

lighted. Subsequently an evaluation of existing semantic domains is conducted which serves

as guidance for selecting an appropriate semantic domain for CTML. Finally the notion of

refinement with respect to the semantic domains is introduced and different approaches for

refinement are formally defined and exemplified.

4.1 Introduction & Illustration

In software engineering it is well-known that the earlier an error is detected the less it costs

to eliminate it. Prominent example of that finding is the 1:10:100 rule which states that costs

of fixing problems rise exponentially with project progress [Oleson et al., 2009]. Therefore

the assessment of quality properties of a certain model is of high interest. In some cases the

erroneous execution cannot even be rolled back (e.g., air traffic, nuclear power plants). With-

in such projects it is mandatory and not optional that the software system holds certain quali-

ty thresholds.

In order to assess the quality of a model an unambiguous semantics must be defined. It not

only rules out any confusion about meaning it can also serve as reference point to define

refinement relation between two specifications. Sharing of artifacts between different tools

can only be performed if semantics are defined in a technology independent format in order

to avoid misunderstanding. Tools for creation, editing, exploration and operation also rely on

the semantics assigned as usually different tools are created which need to share the same

model. Further reasons for formal syntax and semantics can be found in the subsequent para-

graphs.

Managing Complexity

As development progresses models can become quite complex. In order to oversee the

created artifacts different means need to be provided. Not only formal methods can be em-

ployed for that but also visualization of structural properties based on the formal syntax (e.g.,

dependence graphs). Modularization is another tool based on the syntax to do so. However

when it comes to behavior syntax is useless. Semantics can be another source of information

to oversee issues created during the development process.

Semantic Domains

54

Validation

Another reason to assign semantics is the opportunity to enable validation algorithms. This

concept is often referred to as “Validation by Animation” and describes an interactive walk-

through using a tool [Hallerstede et al., 2010]. Modeling mistakes can be found by animating

the model several times to gain insights of the model. Validation can be performed using

different configurations highlighting the current focus of evaluation. It is a complementary

tool to verification.

Verification

Validation is a good tool to improve models as the behavior of the model is interactively

explored. Therefore validation is a kind of testing because a model is tested with respect to

different inputs by the user. However validation has its limitations or as Dijkstra states

[1972]:

“Program testing can be used to show the presence of bugs, but never to show

their absence!”

The aim of verification is to proof properties for a certain model. Therefore algorithms based

on formal methods are necessary. Basically verification algorithms answer the question

whether a certain model exhibits a desired property. One of the most prominent examples is

deadlock analysis. Informally a deadlock during execution occurs if no action is executable

in a certain non-final state. The property of interest is deadlock freedom describing the fact

that a certain model cannot deadlock. Other properties of interest depending on the domain

are liveness and safety [Magee & Kramer, 2000].

The feasibility of verification algorithms strongly depends on the selected semantic founda-

tion. If the model used to define the semantics is not able to capture the case of a deadlock a

corresponding analysis cannot be performed. Contrary if the semantics of the model are too

expressive the models cannot be verified as algorithms do not exist.

Refinement

In modern software engineering, the development lifecycle is divided into a series of itera-

tions. With each iteration a set of disciplines and associated activities are performed while

the resulting artifacts are incrementally perfected and refined. In order to assess that the en-

hanced version is a valid adaptation of its origin appropriate refinement relations are needed.

Such relations can be based on structural and behavioral properties of a model. What consti-

tute a valid refinement depends on the model, the domain the model is used in, the designer

as well as the phase of the project. A comprehensive overview of refinement relations is

given in Section 4.5.

4.2 Evaluation of Semantic Domains

In the following sections an introduction about potential formal semantic domains, accom-

panied with examples, is given. Moreover the differences of each are given in order to select

an appropriate semantics for CTML.

Semantic Domains

55

Task models are belonging to the class of scenario-based specifications meaning that a task

model specifies a set of “runs” by means of traces or scenarios. Scenario-based specifica-

tions has been proven successful for the specification of requirements by means of different

techniques ([Uchitel et al., 2004]) such as use cases, message sequence charts and state

charts [UML, 2010]. A scenario refers to a successful run through the specification which

can be easily understood even by non computer scientists. There is also the term scenario-

based design by [Carroll, 1995] proposing to drive the development of the system by scena-

rios. However, in [Carroll, 1995] the term scenario is used in a much more informal sense

even though the meanings are very similar. The design method is based on concrete scenario

to transmit knowledge from stakeholder to developer and vice versa.

There are two semantic domains for scenario-based specifications: truly concurrent seman-

tics (non-interleaving semantics) and interleaving semantics. Both are models for the specifi-

cation of concurrent behavior. Whereas the former is based on the assumption that actions

are truly distributed and parallel execution is inherently occurring, the latter eliminates true

concurrent behavior by the nondeterministic choice of the sequentialization of parallel ac-

tions [Cleaveland & Smolka, 1996]. Exemplary, true concurrent behavior is the usage of

multiple processors for several processes while a sequentialization of several processes on

one processor results in an interleaved execution. Followers of interleaving semantics argue

that their model is a suitable abstraction whereas advocates of non-interleaving semantics

say that their model is more accurate and realistic [Marr, 2007].

A basic example of the difference of both types of semantics can be shown by the processes

 and . The first one specifies that either the sequence of and or the sequence

of and is executed. The latter specification describes the concurrent execution of and

 . One can easily see that the traces and scenarios of the two are equal (scenarios:

), please note that if two processes are scenario equivalent they are also trace

equivalent). Those specifications cannot be distinguished by interleaving semantics. In con-

trast, non-interleaving semantics is able to recognize the difference as it is examined which

events can occur simultaneously. In the first example no action can be performed at the same

time whereas in the latter and may be performed simultaneous.

In what follows, representatives of approaches for the definition of interleaving and non-

interleaving semantics are examined. An overview of different semantic definitions is given

which enables a deliberate selection of an appropriate definition of the semantics of CTML.

4.2.1 Interleaving Semantics

Interleaving models are characterized by the property that there is a total order (being a bi-

nary, antisymmetric, transitive, total relation) of events meaning that for each arbitrary pair

of events one can say which happened before [Garg, 2002]. Thus the run of a system is de-

fined by a sequence of events in the interleaving model. Simultaneous occurring events can-

not happen as all events are only interleaved.

The theory of processes has been examined for decades and is well understood. A process

can be anything of interest (e.g., an algorithm, a vending machine [Hoare, 1978], a network

protocol [Fokkink, 2000], etc.) The reason for specifying something as a process is mainly

Semantic Domains

56

verification of certain properties like correctness, congruence, deadlock and lifelock freedom

[Cleaveland & Smolka, 1996; Roscoe, 1997]. The basic idea is that systems are consisting of

an arbitrary number of processes running concurrently exchanging data and synchronizing

their actions. As those systems become quite complex mechanisms are needed to prove cer-

tain desired properties. Process theory offers a wide range of mathematically founded lan-

guages (such as Communicating Sequential Processes (CSP) [Hoare, 1978], Calculus of

Communicating Systems (CCS) [Milner, 1980] and Algebra of Communicating Processes

(ACP) [Baeten & Weijland, 1990]) offering analysis of processes and algorithms to prove

congruence of processes. Different means have been proposed to define the semantics of

process algebras. In [Roscoe, 1997] three different ways are examined for CSP. First, opera-

tional semantics via deduction rules and Labeled Transition Systems (LTS(s)) is proposed.

Process terms are interpreted via inference rules to determine the actions a certain process

enables. More precisely, a process has a certain action if and only if that is deducible based

on the given inference rules. For each CSP operator a set of corresponding inference rules

exists. These rules can be used to map a process term to a LTS based on action relations. An

action relation defines that a certain process can evolve into the process by the action

[van Glabbeek, 1990]. A LTS is a graph in which vertexes represent states and links

represent state changes triggered by (invisible or observable) actions. In the corresponding

LTS the processes are mapped to a LTS state whereas is mapped to a LTS transition

between the corresponding states of and . By virtue of this approach the whole state

space of a process is explored by means of a LTS which represents the entire semantics of

the process. Model analysis and verification algorithms are performed on the deduced LTS.

Several tools to do so exist. FDR (Failures Divergence Refinement) presented in [Roscoe,

1997] not only allows for comparing behavioral relations but also enables users to perform

refinement checks and deadlock analysis. Hence it makes use of partial order reduction

[Peled, 1993] to reduce the state space to be explored in order to accelerate the checks. The

LTS analyzer by [Magee & Kramer, 2000] allows for validation and verification of LTS

based models. Validation is achieved by animation whereas deadlock analysis and certain

safety properties such as progress are verified. As comparison semantics the authors state

that from their point of view strong equivalence and weak equivalence are useful being syn-

onyms of simulation semantics (with invisible actions and without invisible actions).

As hinted above there are also other instruments for defining interleaving semantics for

processes. Denotational semantics by means of traces, scenarios, failure and divergences can

be defined. Basically a mapping of process terms to traces, respectively scenarios, failure

and divergences, is defined. Even though denotational semantics is drastically different from

operational semantics congruence can be proofed [Roscoe, 1997]. Semantics has also been

defined in terms of axioms defining the semantics of process terms [Bergstra & Klop, 1990].

This approach is called algebraic semantics.

Different extensions for process algebras have been introduced. There are timed process

algebras [Reed & Roscoe, 1986], stochastic process algebras [Herzog, 1990] and priority

process algebras [Cleaveland et al., 2000].

Semantic Domains

57

LOTOS (Language of Temporal Ordering Specification), standardized in [ISO, 1989], is a

formal description language for distribute systems [Bolognesi & Brinksma, 1987] which is

based on process algebras and as such is not more expressible. The basic concepts are similar

even though the concrete syntax differs to most process algebras. Equivalent to process alge-

bras an operational semantics is defined by virtue of LTS. Over the years several interpreters

and model checkers have been implemented to facilitate the use of LOTOS [Garavel &

Hautbois, 1993; Jeong et al., 1997; Logrippo et al., 1988]. They include validation, specifi-

cation comparison by means of bisimulation and code generation.

4.2.2 Non- Interleaving Semantics

Interleaving semantics is characterized by a total order of all events. However for truly con-

current systems this might not hold. By giving up the total order of events and defining a

partial order true concurrency can be introduced [Pratt, 1986]. In contrast to a total order, a

partial order (being a binary, reflexive, antisymmetric, transitive relation) defines that not all

pairs of events need to be comparable. Intuitively one would call the relation precedes. Ele-

ments that neither precedes the other are allowed to occur simultaneous.

The most common approach to non-interleaving semantics are Petri-nets [Petri, 1962]. Petri-

nets are bipartite graph structures in which vertexes are either places or transitions which in

turn are connected by directed edges. Places are used to store token(s) which represent the

state of the system at a time. The distribution of tokens over a Petri-net is called marking.

The operational semantics of a Petri-net net is defined by firing rules. For a Petri-net a transi-

tion is enabled if and only if all input places (places directly connected with the transition as

destination) exhibit enough tokens (the amount of tokens to enable a transition can be mod-

eled). If a transition fires the tokens of the input places are consumed and new tokens (the

amount of tokens to be placed can be modeled) are placed on the output places (places di-

rectly connected with the transition as origin). The firing of a transition is considered as

atomic action and is as such non-interruptible. Please note that if a transition is enabled does

not imply that it fires since if a Petri-net contains several enabled transition only one fires.

Concurrent behavior can be modeled by having a transition with more than one subsequent

place. If such a transition fires each place is supplied and the subsequent transitions may fire

independent of each other. By applying this model true concurrency is not yet formally in-

troduced. A more rigorous semantic definition is needed to do so. The most common way of

giving meaning to Petri-nets are partial order sets (POSETs) [Pratt, 1986]. Due to its popu-

larity Petri-nets have been extended in numerous ways. One can classify the extensions into

two categories: convenience and semantic extensions. Extensions belonging to the first cate-

gory are only for reasons of convenience (e.g., colored Petri-nets [Jensen, 1987], hierarchical

Petri-nets [Huber et al., 1991]) and can be transformed into semantically equal basic Petri-

nets. In contrast, the latter adds real value to the expressiveness of Petri-nets (e.g., timed

Petri-nets [Ramchandani, 1974]) which allows for modeling more complex scenarios but

also may prohibit the potential automated analysis of the net. Verification algorithms for

basic Petri-nets include amongst others reachability of a certain marking, boundedness or

liveness (see [Murata, 1989] for a comprehensive overview).

Semantic Domains

58

Partial ordered sets (POSETs) are one formalism to assign truly concurrent semantics to

Petri-nets and other models of concurrent behavior [Pratt, 1986]. Basically a POSET defines

a potential run through the system (as sequences do for interleaving semantics) whereas a set

of POSETs (as set of sequences do for interleaving semantics) define the entire behavior of

the system. Other models for non-interleaving semantics are trace theory [Mazurkiewicz,

1977] and event structures [Winskel, 1980].

4.3 Other Relevant Semantics

Even though the two given semantic domains are suitable for scenario-based specifications

also other relevant definitions of semantics can be applied for task modeling. One major

drawback of the interleaving and non interleaving semantics is the limitation of considering

only actions as relevant for the semantics. The actual state of the system is implicitly en-

coded in the order, partial order respectively, of events. A representative of state-based foun-

dations of semantics is Temporal Logic of Actions [Lamport, 1994]. Temporal formulas

specify the system on which reasoning should be applied. Properties such as liveness, safety,

fairness can be proven for a certain specified system (set of formulas).

4.4 Semantics for Task Specifications

Formal task specifications have their semantic origins in process algebras. CTT the most

common notation for basic task models adopted its operators from LOTOS ([Paternò & San-

toro, 2001]). CTT offers similar but yet not identical operators as LOTOS. The semantics of

CTT are defined by a set of inference rules (one for each operator) eventually translating a

CTT expression into a LTS (an operational interleaving semantics). The translation of CTT

to LTS is not comprehensive and misses several aspects like successful termination and

some operators.

User Action Notation (UAN), another task notation, has been successfully translated into

process terms in [MacColl & Carrington, 2000]. The approach aims on defining system

components based on formal task models to start a rigorous development approach taking

into account user needs expressed by task models. System development is driven by the de-

rived CSP specification and used for development, testing and verification purposes. How-

ever the authors do not make clear how UAN and CSP are used in the development lifecycle

of interactive systems. Moreover the described translation is rather informal.

Van den Bergh and Coninx [2007] translate entire task expressions into state charts. As a

result a generic state machine is created for leaf tasks as well as for complex task expres-

sions. Transitions are used to implement temporal operators by connecting the corresponding

task state charts appropriately. The approach lacks of formality as the transformation is only

described informally and no automatic transformation algorithm has been developed. There-

fore the feasibility stays unclear.

Sinnig proposed a formal unification of task models and use cases [2009]. In order to do so

he translates an extended CTT like notation into nondeterministic finite state machines and

set of partial order sets. Whereas the first defines an interleaving semantics the second sup-

Semantic Domains

59

ports truly concurrent behavior. In the defined development methodology the different se-

mantic domains are used as needed to define suitable refinement relationships depending on

the phase of software creation (requirements and design). In the same vein as proposed in

[Wurdel et al., 2008d] Sinnig defines structural and behavioral refinement for task models

(Sinnig also proposes refinement of use cases which is not in the scope of the thesis). In

more detail, during requirements engineering Sinnig only allows to refine a task model by

scenario inclusion but with the constraint of only restricting user choices. It is argued that

restricting user choices lead to more intuitive and less error-prone ways of executing tasks.

Moreover the restriction of system choices is forbidden as it would contradict to the func-

tional requirement defined in terms of use cases serving as foundation for the task model.

When moving from requirements to design the refinement relation becomes more rigid. Sce-

nario equivalence is demanded. The same applies for refinement on the level of design.

Structural refinement is allowed in every phase of development. The approach of Sinnig is

comprehensive in terms of software engineering and formality. However shortcomings exist.

Such strict refinement relations may hamper the development of task models. A more cus-

tomizable refinement relation as proposed in [Wurdel et al., 2008d] seems to be more suita-

ble to meet the requirements of an iterative, incremental software engineering process.

4.5 Refinement

As stated earlier refinement relations are of interest in order to integrate model adaptations

into the software engineering lifecycle. They need to be tailored with respect to the semantic

foundations of the modeling language and the domain of interest. Especially the usage of the

modeling language in practice influences the criteria constituting a suitable refinement rela-

tion. Different refinement relations may be defined in order to allow a flexible approach

depending on the state of software engineering and the current quality criteria.

The term refinement has been used in a rather wide manner. Therefore this section will ex-

amine the term and highlight differences in interpretation. Moreover it is shown that the dif-

ferent examined refinement relations exhibit a certain relation (being a lattice) which can be

used to rule out a set of inappropriate refinement relations with respect to the domain of ap-

plication here.

Refinement between two specifications has been investigated for decades and definitions

have been proposed for various models [Brinksma et al., 1995; Khendek et al., 2001; Sinnig,

2009]. Except for Sinnig, to our knowledge a generically applicable notion of refinement has

never been defined for task models. The approach of Sinnig who introduced refinement on

task models and use cases with its assets and drawbacks has been investigated in the pre-

vious section.

The distinction between truly concurrent and interleaving semantic models is naturally im-

portant for the definition of refinement as the behavioral properties of a model (which are

captured by the semantic domain) are compared during refinement analysis. Therefore the

defined refinement relations of each semantic domain are fundamentally different.

Semantic Domains

60

For interleaving semantics various refinement and equivalence criteria have been defined.

Among the most popular ones are trace-, testing- and bisimulation equivalence [Bergstra,

2001]. They are all based on LTS. Therefore LTS are defined formally:

Definition 4-1 (-Labeled Transition System): A Labeled Transition System () is

defined by the quadruple :

1. is the set of numerable states.

2. defines the finite set of actions.

3. is the action relation.

4. is the initial state.

Intuitively the action relation defines the states in which a certain action is executable and to

which states the execution is leading.

Definition 4-2 (-Tick): In order to denote a successful termination of a process the special

symbol is used. The set of actions with is denoted by . can-

not be added explicitly to the alphabet of actions.

Definition 4-3 (-Tau): In order to denote an invisible action the special symbol is used.

The set of actions with is denoted by . is never part of the observa-

tions of a LTS and cannot be added explicitly to the alphabet of actions.

The set of actions with and is consequently denoted by . Moreover de-

notes the set of finite sequence over . The set of all LTS satisfying the prior given defi-

nition of a LTS is denoted by .

Figure 4-1 Example LTS

Figure 4-1 depicts an example of a LTS with , and

 .

Definition 4-4 (Set of): Let be an arbitrary LTS () and be an arbitrary

state of () then the set of enabled actions of are:

Please note that in the prior definition . One can easily define the initials of a LTS with

 and the initial state of by:

An abbreviated notation for is

 (if the cascading executing of

the sequence is intended). This notation is preferred throughout the thesis. Thus the prior

given definition can be abbreviated by:

Semantic Domains

61

The initials of depicted in Figure 4-1 are the action and :

Furthermore the initials of the state is the set .

Definition 4-5 (Set of): Let be an arbitrary LTS () and be an arbitrary

state of () then the set of refusals of are:

The set of refusals of a LTS in a certain state denotes all sub sets of actions which do not

contain any of the enabled action in the current state . Due to the finiteness of is

finite as well.

By defining a binary relation over the set of equivalences which can be paraphrased as “is

equal to or coarser than” a lattice is created over the different equivalences [van Glabbeek,

1990].

Definition 4-6 (-“Is Equal To or Coarser Then” Relation over Interleaving Seman-

tics): Let the semantics form an equivalence relation on LTSs and let and be

semantics over LTSs . Then we write to denote that includes all criteria of to

define the semantics. To be more precise:

In order to generalize this relation on all existing LTS it is written:

It has been proven that the existing different equivalences on LTSs form a partial order with

the prior defined operator . An abstract of this partial order is depicted in Figure 4-2. It

illustrates the coarsest grained semantics (traces) as well as the most fined grained semantics

for LTSs (bisimulation). Several others are omitted being in between the shown ones de-

noted by horizontal doted lines.

In the subsequent paragraphs four of the eleven semantics are examined more in detail (trace,

completed trace, failure, and bisimulation semantics). This will not only show the difference

of each but will also serve as basis to define a suitable equivalence semantics for the task

specification language in this thesis.

Figure 4-2 Excerpt of Partial Orders of Interleaving Semantics

Semantic Domains

62

Definition 4-7 (Trace Equivalence): Trace equivalence is the weakest known equiva-

lence on LTSs. The LTSs are trace equivalent if two LTSs produce the same set of traces:

The set of traces of a LTS u can be defined by:

This definition states that each valid sequence of actions starting from the initial state is a

trace of . Please note that the empty sequence is always included in the set of traces. For the

given example LTS in Figure 4-1 the set of traces are:

A trace equivalent LTS to is given in Figure 4-3 because

 . Therefore applies.

This example shows already that trace semantics (and the other equivalences to some extent

as well) does not investigate the structure of the LTS itself but only the observable behavior

of the LTS. Trace semantics define what a LTS is able to do but do not say what they have to

do. In order to overcome this limitation more comprehensive semantics exist. Depending on

the way complete trace semantics is defined it is possible to determine what a LTS needs to

do in order to terminate successfully. This approach is followed here.

Figure 4-3 Trace Equivalent LTS

Definition 4-8 (Completed Trace Equivalence): Two LTS and are completed

trace equivalent iff:

The set of completed traces of the LTS is defined as follows (denotes the concatenation

operator of sequences):

Two LTS are therefore completed trace equivalent if the set of successful terminated traces

are equal. Completed trace semantics has also been defined without the restriction of suc-

cessful termination. However it is claimed that the approach here is more comprehensive. In

order to give an example the LTSs need to be extended to mark successful termination (see

Figure 4-4). The completed traces of the given models:

Semantic Domains

63

Therefore
 and

 are not completed trace equivalent (

). Without

introducing the restriction of successful termination these models would indeed be com-

pleted trace equivalent.

Figure 4-4 Extended Examples with Successful Termination

As (see Figure 4-2) every two LTS being completed trace semantics equivalent are

also trace equivalent [van Glabbeek, 1990]. Contrary there are LTSs which are not distin-

guishable by trace semantics but by complete trace semantics (e.g.,

 and

).

Both introduced semantics examine a LTS from the perspective what the LTS is able to do.

On the first glance this approach seems to be comprehensive. However one can also investi-

gate what the LTS cannot accept as input in a certain state. This approach is followed by

failure semantics which was proposed by Brookes et al. [1984]. In the partial order of se-

mantics it is the subsequent of completed trace semantics and makes therefore less identifica-

tions than completed trace semantics (identifying less LTSs as equal).

Definition 4-9 (Failure Equivalence): Two LTSs and are failure equivalent iff:

The set of failure of a LTS is defined as (with denoting the power set of a set):

In contrast to the previously investigated semantics the set of failures contains pairs of action

sequences and arbitrary sub sets of actions. The first element of a failure pair denotes the

current trace under investigation whereas the other element state which actions are not ac-

cepted as input after having executed the trace. The set of failure pairs are all failure pairs of

a LTS. More in detail for each trace all sets of refusals are recorded.

 and

 shown in Figure 4-5 are completed trace equivalent (

)

because:

Figure 4-5 Non Failure Equivalent LTSs

Semantic Domains

64

However calculating the set of failure of both LTSs reveals that those two LTS are not fail-

ure equivalent (

) as they have different sets of failure pairs:

The failure pairs for the traces and are equal but having executed the trace

 only prohibits to execute (resulting in the failure pairs and)

whereas
 due to its non determinism refuses and/or depending which way through

the LTS is taken. The corresponding failure pairs are therefore

 .

As (see Figure 4-2) every two LTS being failure equivalent are also completed

trace equivalent [van Glabbeek, 1990]. Contrary there are LTSs which are not distinguisha-

ble by completed trace semantics but by failure semantics (e.g.,

 and

).

After having defined the coarsest-grained semantics for LTSs it is now continued with the

finest one. The reason to introduce this semantics is to show to what extent one can distin-

guish between LTSs. In the semantic domain of LTSs there is no semantics making less

identifications of LTSs. Moreover bisimulation comprises all other semantics as it is the

maximum element of the partial order .

Definition 4-10 (Bisimulation Equivalence): Two LTSs and are bisimulation

equivalent iff there exists a bisimulation with (and are the initial state of

 , respectively).

Let be the set of states of LTS then the relation satisfies the following constraints

with , :

1. If and

 , then

 and

2. If and

 , then

 and

In order to exemplify the interpretation of (and consequently) an extended example

of Roscoe is consulted which is shown in Figure 4-6 [1997]. The dotted lines show bisimular

states of the LTSs (e.g.,). Following the first rule if and

one can transit to via action , then must be reachable by the same action and

has to hold. The second rule states the same symmetrically for the LTS . In order to proof

that the given LTSs are bisimulation equivalent () the initial states need to be bisimular

Semantic Domains

65

which implies that all reachable states need to be included in the bisimulation relation .

As this is the case here those LTSs are bisimular ().

Figure 4-6 Bisimulation Example

The previously examined semantics have individual assets and drawbacks with respect to the

application domain. In order to decide for or dismiss a certain equivalence the application

domain needs to be taken into account. Naturally this is task modeling in the context of mod-

el-based development for explicit and implicit interaction here. The relation of these differ-

ent refinement equivalences and task modeling is examined in Section 6.5.

The relation defines that certain equivalence are finer than others meaning that if two

LTSs are equivalent in certain semantics they are also equivalent in all coarser semantics.

Hence it is shown that [van Glabbeek, 1990].

Trace semantics only states what a LTS can produce. There is no notion of deadlock or suc-

cessful termination as all potential sequences of actions are captured independent of their

further behavior in the LTS. Thus rather soft constraints are defined. Completed trace seman-

tics is able to detect deadlocks and also states what a LTS needs to do (in order to terminate

successfully) which is a stronger constraint than trace semantics. Failure semantics not only

defines what a LTS needs to produce but also examine a LTS with respect to what it cannot

produce. This is a different approach to assign semantics to LTSs then before. For each path

taken through the LTS the sets of refusals are specified. Thus it is specified which actions are

not possible in a certain state in the LTS (more precisely which sets and sub sets of actions).

Therefore the constraints are extended with respect to the refused actions in a certain state.

Several semantics are finer then failure semantics and coarser then bisimulation. Bisimula-

tion is the finest grained semantics. In order that two LTSs are bisimular the nodes of each

LTS are assigned to equivalence classes. Moreover there is a bijective mapping of equiva-

lence classes from the first to the second LTSs equivalence classes. Then for each transition

connecting a source state with a target state the corresponding equivalence classes must be

reached in the second LTS via the action assigned to the transition (and vice versa). The only

equivalence which is finer then bisimulation is graph isomorphism (in addition to bisimula-

tion nodes are mapped by a bijective function).

In the last paragraphs different semantic equivalences have been introduced. However some-

times strict equivalence is not desired but behavioral inclusion or extension may also be of

interest. Taken the example of model-based development for an adapted version of an arti-

fact not only the previously defined behavior may be desired but also some new features are

Semantic Domains

66

added on purpose. Strict equivalence is counterproductive in this case but behavioral exten-

sion may be appropriate. In the same vein a specialization of an artifact supporting only a

sub set of features of the previously resulting in a restriction can be defined. In this case in-

clusion may be desired. Therefore the given definitions can be extended to inclusion and

extension for several types of semantics equivalences.

Definition 4-11 (- Restriction, Extension of LTS regarding Semantics): The LTS

restricts the LTS , the LTS extends the LTS respectively with regard to semantic iff:

This definition can then be applied to the concrete semantics such as trace, completed trace

semantics or failure semantics. A LTS extends a LTS with respect to trace semantics iff:

The same can be defined analogously for completed trace semantics and failure semantics.

Whether strict equivalence, inclusion or restriction is appropriate for a certain model de-

pends, again, on the application domain and the stage of development in a process.

The proposed semantics are all based on interleaving semantics. The characteristics of true

concurrency have been examined in Section 4.2.2. For this type of semantics the necessity of

refinement exists for the same reasons as for interleaving semantics. However as it is shown

in this thesis true concurrency is not of interest for the task modeling language presented

here. The reasons for that are given in Section 6.3 and 6.4.

In general when examining a model one can distinguish between structural and behavioral

properties in order to define equivalences or refinement relations. The prior given definitions

of refinement are only based on the observable behavior of the models. The structural prop-

erties of a model may also constitute a proper refinement relation. With regard to LTSs ac-

tions may be typed and not allowed to be adapted during refinement just to name a simple

example. Moreover as LTSs serve usually as semantic foundation and not as source specifi-

cation structural properties can be checked on a higher level of abstraction.

The definition of refinement for a specific model is a complex task as the usage of the model

in practice and the application domain needs to be taken into account. However even the

general notion of refinement still offers some challenges which are presented in the follow-

ing paragraphs.

Actions are considered as atomic units in interleaving and non-interleaving semantics. How-

ever if an actions in a source model is further refined in a sub specification (replaced by a

complex expression) so called action refinement is performed [van Glabbeek & Goltz,

2000]. The stepwise development of a system or model was already advocated by Wirth with

the term of stepwise refinement [1971]. With the advent of iterative, incremental develop-

ment processes such a case is even more common. Especially in interleaving semantics ac-

tion refinement cannot be defined properly or as Pratt states [1986]:

“A serious difficulty with the interleaving model is that exactly what is inter-

leaved depends on which events of a process one takes to be atomic.”

Semantic Domains

67

More precisely in [van Glabbeek & Goltz, 2000] a canonical example is given in which two

bisimlar processes are given which are not even trace equivalent after a simple action re-

finement. In contrast in partial order sets which is a representative of truly concurrent beha-

vior action refinement can be introduced while preserving the existing equivalence relation

[van Glabbeek & Goltz, 2000].

4.6 Conclusion

In this chapter formal semantics with respect to task specifications have been investigated.

More precisely, it has been started with explanations about the reasons for assigning formal

semantics to models. Next, two different semantic domains have been evaluated with respect

to their suitability for task modeling. Subsequently, existing approaches to assign semantics

to task models have been examined. Based on that survey and the evaluation before inter-

leaving semantics seems to be very fruitful to investigate as the refinement relations re-

searched in the subsequent section are suitable for task specifications.

With regard to refinement different comparison semantics have been reiterated. Moreover it

has also been shown that two specifications cannot only be compared by means of the com-

parison semantics but also by the type of refinement (equivalence, restriction, and exten-

sion). The refinement relations for CTML are defined and explained in Section 6.5.

69

II. Applying HCI Task Modeling to

Smart Environments

Bridging the Gap: HCI Task Modeling and Smart Environments

71

Chapter 5
5 Bridging the Gap: HCI Task

Modeling and Smart
Environments

Having reiterated through relevant background information it is now continued with the in-

depth examination of interaction design and the reasons for following a task-driven approach

in this thesis. The complexity of SmEs with respect to interaction design is exemplified by a

scenario which is, first, used as vehicle to distill the requirements of the task modeling lan-

guage and, second, consulted as running example in the remainder of the thesis. During this

chapter the experimental infrastructure in our university is introduced as well.

5.1 Interaction Development for Smart Environments

Interaction design is usually developed in accordance with the functional components of the

system and is therefore driven by the functional requirements. According to [Heider, 2009]

the functional components of a SmE are implemented using different approaches (for rea-

sons of brevity explanations are omitted, see [Heider, 2009] for details):

 Custom-tailored by the software designer.

 Plan recognition.

 Learning by observation.

 Matchmaking.

These are the basic approaches in order to implement functional components of a SmE.

However no statements about the interaction technique (and its development) are made. The

interaction is naturally influenced by the implementation of the functional components even

though it is not dependent. Therefore explicit and implicit interaction can be used in each

type of approach for developing proactive assistance. This fact is also stressed by Kirste who

therefore divides the development into two distinct layers: intention recognition and strategy

planning [2006].

Whereas the first refers to implicit interaction, the latter is one approach to implement the

strategy synthesis of the SmE (Ad hoc composition of services). In Figure 5-1 on the left

hand side the principle of goal-based interaction of Kirste is depicted. Based on the users’

behavior the intention of the user is derived (more precisely it is tried to do so as this is quite

Bridging the Gap: HCI Task Modeling and Smart Environments

72

a complex task). Each intention is mapped to a set of goals which are then examined in order

to generate a valid action sequence to satisfy the goals. Those actions are eventually assigned

to (and executed by) devices in the environment.

Figure 5-1 Goal-based Interaction [Kirste, 2006] and Extended Framework for Interaction

Even though this principle has been defined in order to achieve implicit interaction and ad

hoc service composition it can be validly adapted to a general framework which divides a

SmE into two distinct categories: Interaction and Strategy Synthesis. How interaction is im-

plemented, following an explicit, implicit or combined approach, in a concrete SmE depends

on the envisioned behavior of the system. Usually a combined approach is preferred. This

also applies for Strategy Synthesis as different approaches can be used in order to implement

proactive assistance with either interaction technique. The adapted layered model is depicted

on the right hand side of Figure 5-1.

Such architecture is excellent for interaction design as it is independent of the Strategy Syn-

thesis and as such can be tackled independently. As explicit and implicit interaction are

usually used combined a holistic interaction development approach should incorporate both

paradigms as well as should be founded on the same artifacts in order to assure consistency

between both interaction techniques. This is important if the user of a SmE changes the inte-

raction technique during runtime which is not necessarily an intended process.

The research community of MB-UI development investigates the challenge of an engineer-

ing approach to UI development for decades [Molina, 2004] which has been shown in Sec-

tion 3.3.2. Diverse approaches have been highlighted tackling explicit interaction in SmEs

based on MB-UI [Blumendorf, 2009; Luyten et al., 2006; Paternò et al., 2008]. The ap-

proaches validate the general rationale of explicit interaction for SmEs based on a task-

driven approach using model-based development. The advantages of such an approach are:

 Advantages of model-based engineering. Such as separation of concerns, multiple

viewpoints, high level decision making, short turnaround cycles, technology inde-

pendence, roundtrip engineering, declarative models and transformations, etc.

 Incorporation of task world of the user. As already shown in Figure 3-3 focusing

on tasks of the users helps to incorporate their real needs. Task models are the preva-

Bridging the Gap: HCI Task Modeling and Smart Environments

73

lent tool for specifying UI requirements as they are understandable, expressive and

describe tasks on a high level of abstraction.

 Gradual refinement. Declarative models, such as the task model, can be incremen-

tally enhanced. However not only on the same level of abstraction gradual refine-

ment is desired but also between the different modeling stages. The existing MB-UI

chain is therefore a reference point for UI development.

As stated before interaction development needs to be founded on the same artifacts indepen-

dent of the type of interaction to withstand switches of interaction (from explicit to implicit

interaction, and vice versa) at runtime and provide a consistent interaction. As explicit inte-

raction for SmEs is currently developed by MB-UI which is started by task modeling it is

investigated whether task models are an appropriate tool to start development of implicit

interaction as well in order to ground both interaction techniques on the same artifact.

Despite the employment of task models within the interaction development process it has to

be assessed whether the currently existing task modeling languages are able to cope with the

complexity of SmEs. Therefore it is now continued with an example of a SmE which has

been set up within our Graduate School MuSAMA (Multimodal Smart Appliance Ensembles

for Mobile Applications)
1
 at the University of Rostock. After that an envisioned scenario of

use is given in order to distill the requirements with respect to task modeling to adequately

represent task structures in SmEs.

5.1.1 An Example “The SmartLab”

In order to exemplify existing research questions and evaluate developed concepts an expe-

rimental infrastructure is very helpful. In our Graduate School we are in the fortune situation

of having a technology enhanced environment which enables us to test the developed con-

cepts in concrete settings. In Figure 5-2 the SmartLab while being used is shown. It is a multi

display environment with currently nine projectors and six projection surfaces installed. It

has been designed to serve as technology enhanced meeting environment to support people

during knowledge work.

Figure 5-2 Experimental Infrastructure of MuSAMA: “SmartLab”

1 http://www.musama.de/

Bridging the Gap: HCI Task Modeling and Smart Environments

74

The research conducted in order to deliver the envisioned support is ranging amongst other

from network infrastructure, localization algorithms based on Bluetooth and RFID to interac-

tion development and usability evaluation.

Even though the experimental infrastructure defines a particular domain of interest and the

scenarios based upon such infrastructure, we claim the methods developed in this thesis can

also be applied to other SmEs (e.g., home entertainment, elderly care). This fact is evidenced

by projects at the University of Rostock addressing assistive technologies for elderly care.

Other assistive applications and other types SmEs are also closely coupled to the task the

user is executing (or will execute). Therefore, the approach is also feasible for other types of

SmEs. Within the conducted research especially elderly care task performance has been also

analyzed and modeled by means of the developed language presented in this thesis. The re-

sults are promising.

5.1.2 Requirements for Task Modeling in Smart Environments

The given task modeling languages examined in Section 3.4 have been designed in order to

support task modeling in a certain domain and for a special purpose (e.g., MB-UI develop-

ment for groupware applications). With respect to SmEs no dedicated language exists. In

order to assess the languages a scenario is introduced which highlights the requirements for

task modeling.

An Illustrating Scenario

The characteristics of task modeling in SmEs are exmplefied best by a scenario which is also

used in as running example throughout the remainder of the thesis. It will not only highlight

the complexity of task modeling in SmEs but will also serve as means to elicit requirements

for a task modeling language in an intuitive manner. Even though SmEs are not limited to

function rooms but they are one prominent example in which assistance is appreciated.

More specifically the running example is a “Conference Session” in a technology enhanced

meeting room. The challenges of such scenarios are multi-layered. On each level of abstrac-

tion research challenges can be identified. To emphasize the challenges with respect to task

modeling an appropriate scenario has been chosen. It can be paraphrased as follows:

The session chair Dr. Sheldon Cooper introduces himself and defines the topic of the ses-

sion. Afterward he gives the floor to the first speaker, Dr. Leonard Hofstadter, who enters

the presentation area and sets up the equipment. The laptop switches to presentation mode

and the speaker starts with the talk. A presentation device is used to switch back and forth

between the slides. During the presentation the audience accesses additional information

related to the talk using personal devices. After finishing the talk the chairman asks for

questions from the plenum which are answered by the speaker. Eventually the chairman

closes the talk and announces the next one. Subsequent talks are given in the same manner

until the chairman encourages an open discussion, wraps up the session and finally closes

it.

Bridging the Gap: HCI Task Modeling and Smart Environments

75

Figure 5-3 Visual Representation of the Illustrating Scenario "Conference Session"

In Figure 5-3 a visual representation in bird's eye view of the scenario is given. It shows the

relevant entities from task modeling perspective. The scenario includes multiple actors (Dr.

Cooper, each presenter and the listeners), whose behavior is characterized by the role they

are fulfilling (chairman, listener, presenter). More in detail tasks are performed with regard

to the role the actor is fulfilling. However they are not undertaken isolated but in accordance

with other attendees meaning the actors need to synchronize their actions. During the paper

presentations the role of the actors is not fixed but fluent. In this particular scenario an actor

is a listener first (listening to a presentation), then becomes a presenter (presenting his/her

own paper) and eventually after finishing the presentation goes back to being a listener

again.

Moreover the location of an actor strongly influences the tasks the actor is able to perform as

devices may need to be present in the near surroundings or predefined zones (presentation

area for a presenter). Hence stationary and personal devices assist the actors during their task

performance. Laptops are used to store slides or mobile devices may be employed in order to

access information during the presentation and a stationary projector is utilized to show the

slides. Besides those functional properties static properties of devices may be relevant. The

network adapters or in- and output capabilities of a device may be relevant in order to model

tasks in such a scenario appropriately.

The domain also needs to be taken into account. Tasks may only be executable if certain

objects of the domain are in a desired state or present at all. Domain objects can be either

virtual (e.g., slides) or physical (e.g., switch, pen). Moreover the execution of tasks may also

manipulate a certain device or domain object. Moreover due to the execution of tasks the

location of actors may also change.

Besides those rather obvious facts also other relevant characteristics can be identified.

Amongst others there is cognitive load, stress level, etc. Presenting a paper in front of an

audience is a stressful task to accomplish. Another fact which is necessary to consider is the

organizational structure of the attendees of the session which actually influences the cogni-

tive load of the attendees (e.g., giving a lecture in front of students is less stressful than de-

fending a project against external reviewers). Also the ambient noise level, temperature, light

conditions, and other physical properties of the environment can influence how tasks are

performed.

Bridging the Gap: HCI Task Modeling and Smart Environments

76

Based upon the scenario and the last paragraphs a set of requirements that are particular for a

specification framework for SmEs can be distilled. However, also some properties are left

out. Cognitive load and stress level are very hard to formulize adequately and therefore are

not included in the formal specification language in this thesis. Contrary, physical properties

can be modeled quite easily (continuous values need to be discretized) but are not considered

as major influencing factors of the task performance. We have summarized the requirements

into the following distinct three categories which in turn are further subcategorized.

Modeling Approach

The modeling approach relies on a user-centered design methodology and therefore proposes

the use of tasks as central building blocks of the modeling language. Due to this perspective

the user needs can be incorporated better which fosters the user satisfaction during the use of

the developed system. The following two subcategories have been identified:

(1) Task-Based Specification. The concept of a "Task" is central to SmEs. Typically

various actors collaborate and interact with each other by sharing, synchronizing on,

and triggering common and related tasks respectively. Therefore, we believe that a

specification framework for collaborative environments should be built around the

concept of a task. It should furthermore intrinsically support well-known task related

concepts such as decomposition into subtasks and temporal ordering. Such an ap-

proach is also necessary to allow high-level modeling using a top-down approach

which is intuitive for human behavior modeling.

(2) Modeling Cooperation. SmEs are inherently multi user systems. Naturally the task

performance of individuals is influenced by others. In order to model collaborative

work, synchronization constructs to coordinate task performance are needed. Exam-

ples of such constructs are preconditions and effects. The former denotes additional

constraints defined over the state of the SmE whereas the latter defines state modifi-

cations as a result of task execution.

Context Modeling

The context of use as set of influencing external factors has not only been discussed in the

research field of context-aware applications but also in UCD and HCSE (see ISO 13407

[ISO, 1999]). The definitions of context are manifold as already explained in Section 3.1.

For CTML we found the following subcategories of context expedient and relevant to con-

sider for task specification method for SmEs:

(3) Location Modeling. To be able to model tasks performed in physical environments

location modeling and its integration into task modeling is an important feature to be

supported. This feature allows for building location aware computing based on a

task-driven approach. Van der Veer and van Welie already emphasized that the

physical layout of environment in which tasks are performed needs to be considered

[2000]. However GTA which is the task specification technique of the authors does

not incorporate that feature. Additionally, in recent years available location tracking

systems using different technologies such as GPS, RFID, Bluetooth or Ultra Wide-

band have become sufficiently precise. Therefore, the location of an actor is not only

Bridging the Gap: HCI Task Modeling and Smart Environments

77

very relevant but also quite easy to measure which is a key requirement when using

the approach in real world settings.

(4) Device Modeling. The functional and static properties of devices and even their

presence in a SmE are relevant to adequately represent the tasks performable by the

users. In HCI, and consequently in task modeling, devices have been rather consi-

dered as platforms for UIs. In SmEs a wider context is necessary as tasks also de-

pend on the functional state of devices (e.g., the projector has to be switched on to

present slides). Moreover the present devices and their functionalities are not only

relevant for the executability of the tasks but also influence to which degree assis-

tance can be provided as the assistive technology needs a platform and computing

power. Actually dynamic reassignment of human task to system tasks is mainly

based on the present devices in a SmE.

(5) Domain Modeling. The interplay of objects and tasks are commonly known and

considered as important. Several approaches have been proposed in order to com-

bine both descriptions (see Section 3.4.3). Those approaches are considered as im-

portant and need to be adopted by a task modeling language dedicated to SmEs.

Moreover there are also approaches in the research field of ubiquitous computing in

which the importance of objects for tasks is emphasized and taken into account. For

example, in [Bellotti et al., 2008] a framework is proposed which enables software

developers to use RFID sensors to detect objects in the near surroundings without

caring about RFID hardware and sensor evaluation.

Means of Engineering

The pure modeling concepts are by far not sufficient. In order to allow an engineering ap-

proach which relies on a structured way of modeling and evaluation other requirements can

be derived. Such means for engineering can guide the software developer how to make effec-

tively use of the language, rule out any ambiguities, assure consistency throughout the use of

the modeling language and provide interfaces to other modeling languages, code respective-

ly. With respect to SmEs the following criteria are of main interest and should be supported

by a task modeling language.

(6) Development Methodology. Software engineering is a process of a set of iteratively

performed activities and not an isolated modeling step. Therefore low level activities

such as creating a model need to be embedded into a higher level context. Such a

process model not only guides the software developer which model is created on

which level of abstraction but also provides interfaces to other models and helps to

transits between different phases of the process model.

(7) Formal Syntax and Semantics. In order to make effective use of the task specifica-

tion language formally defined syntax and semantics are needed. The underlying

formal model will not only rule out ambiguities but also serve as a reference point

for the definition of a refinement relation between two specifications. It is also an

obvious precondition for sophisticated tool support.

Bridging the Gap: HCI Task Modeling and Smart Environments

78

(8) Support for Refinement. In general, software development consists of a series of

transformations in which models (or code) are iteratively refined. Modeling colla-

borative environments is no exception to this rule. Often a coarse-grained, even in-

complete specification is successively transformed into more complete fine-grained

specifications. With each transformation step it is important to ensure that the result-

ing model is a valid refinement of the base specification.

(9) Tool Support. Another key requirement for a formal specification framework is tool

support that assists developers in handling collaborative task specifications. In par-

ticular tools can facilitate the actual specification of the collaborative model, per-

form automated refinement checks, simulate/animate the specification, and allow de-

rivation of other models/code. Most desirable is an integrated tool environment

(CASE Tool) which allows for accessing the above named functionalities in a cohe-

rent manner.

None of the examined languages in Section 3.4 supports all features named above. More

precisely location modeling and integration in task modeling, behavioral device modeling,

and refinement are not supported by any of the languages. Moreover CCTT only supports

very limited capabilities of modeling cooperation of actors.

All categories are addressed in the task modeling language, CTML, presented in this thesis

in order to support explicit and implicit interaction development. Moreover to effectively

make use of the language a methodology is proposed covering all major phases of software

engineering in order to develop the interaction of a SmE in an integrated manner.

Besides being able to specify tasks in SmEs in a natural manner explicit and implicit interac-

tion is the domain of interest and must therefore be supported via the task modeling lan-

guage.

5.1.3 Task Structures of Interaction

The difference of implicit and explicit interaction has been exemplified in Section 2.2. An

interesting issue to investigate is the impact of the interaction type on the task structure of

the user interacting. Generally it can be stated that explicit interactions (e.g., GUIs) are more

rigid in the execution order of tasks. If a certain GUI element is not visible or enabled it can-

not be pressed in order to trigger a function. On the other hand during implicit interaction

user action cannot be prevented. If the user wants to perform an action she can do it. This

obvious result has a direct impact on the design of task models for both interaction types as

the enabled task set in each task execution step divergent from explicit to implicit interaction

(and vice versa). This finding can be further explained by considering the enabled task set

according to the definition in [Paternò, 1999]:

“An enabled task set is a set of tasks that are logically enabled to start their

performance during the same period of time”

A task model may define multiple enabled task sets and one task may belong to several

enabled task sets.

Bridging the Gap: HCI Task Modeling and Smart Environments

79

For explicit interaction the task models are more rigid as actions can be forbidden due to the

interface. Therefore fewer tasks are enabled simultaneously. In general, the cardinality of the

enabled task set for explicit interaction is smaller than for implicit interaction. Due to this,

the cardinality of the set of enabled task sets which are defined by the structure of the task

model is higher as each task needs to belong to at least one enabled task set.

Besides the difference in the set of enabled task sets another difference can be identified.

When specifying tasks for implicit interaction the set of actions (atomic task) is rather small

compared to task models for explicit interaction. Our finding during modeling is that the

atoms of task models for implicit interaction are reoccurring. Typical reoccurring atoms are

move to and take. With respect to our experimental infrastructure, presented in Section 5.1.1,

also sit and present are typical atomic tasks. Naturally, in task models for explicit interaction

atoms are also reoccurring but in HCI there is still an ongoing discussion whether tasks such

as pressing a button or click events are really tasks or facts that should be specified on the

level of dialog modeling.

Another insight which has turned out through ongoing modeling in practice is that the task

structures in task models for explicit interaction are much deeper compared to those of im-

plicit interaction. Task models designed for being used as input for MB-UI development

easily span over five or six levels of abstractions whereas in implicit interaction the depth of

three is usually not exceeded. The reason for this difference is from our point of view two-

fold. In implicit interaction the work processes cannot be specified as precise as for explicit

interaction as the user cannot be prevented from executing an action if she wants to. Because

of that it is not practical to specify the task model in a very detailed manner. Another issue

which needs to be taken into account is that the work processes in SmEs do not need to im-

plement certain business rules or accomplish the goal in the manner as specified. For exam-

ple, in safety critical applications the UI has to assure that a certain goal is reached in the

different ways it has been designed. The same applies for other systems. A fully specified

model is therefore mandatory to ensure consistency and traceability. Currently, such criteria

are not relevant for implicit interaction in SmE.

Based on the given explanations it is hypothesized that four main differences in the structure

of task models for explicit and implicit interaction development exist:

1. Number of Concurrent Enabled Tasks. In implicit interaction more tasks need to

be enabled concurrently in order to represent the task execution in physical envi-

ronment adequately as the user cannot be hindered from executing a certain task.

2. Number of Enabled Task Sets. Due to the first bullet the number of sets of concur-

rently enabled tasks is much higher in task model for implicit interaction.

3. Number of Actions. The set of atomic tasks in task models for implicit interaction is

smaller compared to task models used to specify explicit interaction as actions are

usually more often reoccurring.

4. Depth of the Task Models. Task models for implicit interaction usually do not span

over three levels of abstractions. In MB-UI development the task models easily ex-

ceed this level. Basically this is due to the precision needed in explicit interaction

Bridging the Gap: HCI Task Modeling and Smart Environments

80

and the ambiguity in the design of task models in implicit interaction which makes it

impractical to further refinement certain actions.

The results of the properties above are mainly that task models for implicit interaction are

less precise and define much more scenarios than task models for explicit interaction in

which the course of actions are much more structured.

5.1.4 Feasibility of Task Modeling

Task analysis and task modeling has been successfully applied to ordinary GUI systems for

decades. Due to the application of these methods the developed UIs can be improved and

suit the needs of the user better. For GUIs and explicit interaction in general the task model

is a valid description as the explicit performance of a certain action is part of the model.

Moreover GUIs are somehow limited in their way tasks can be performed (e.g., if a button is

not displayed it cannot be pressed). Due to the limited possibilities of deciding for or against

a certain task (the user cannot select an invisible/not enabled action) this approach is feasi-

ble. Therefore, a complete description of the tasks the user is able to perform with the UI is

feasible in general. However, when moving from explicit interaction to implicit interaction

the question is raised whether task modeling is still a good vehicle to specify the diverse

actions a user can perform to interact implicitly. The main difference between explicit and

implicit interaction with respect to task modeling is that (most) actions performed by the user

within a physical environment cannot be prohibited by the SmE (e.g., going in front of the

audience) even though it contradicts to the specified interaction model. The user can select

any task even if it is not meaningful and not anticipated by the designer. In explicit interac-

tion such inconsistent actions (from designer perspective) can be avoided. This new degree

of freedom in task execution needs to be taken into account not only by the modeling lan-

guage but also by the interpretation what the task model actually specifies. In explicit inte-

raction the task model specifies all potential ways a task is performed and a goal is achieved.

Due to the freedom of behavior such a view is not valid in implicit interaction. In contrast to

explicit interaction an open world assumption is needed which means with respect to task

modeling that there can also be other ways of achieving the goal. The completeness of task

modeling as specification mechanism can be regarded as an unrealistic assumption. By dis-

missing the assumption the task model becomes a pattern of behavior which represents the

intended way tasks are executed under the current circumstances. In practice such an ap-

proach means that the user can be assisted as long as she sticks to the defined pattern of be-

havior. For certain situations and configurations of the SmEs different task models can be

designed or selected at runtime. Therefore a task model can only be a blueprint for achieving

a goal and not a complete description. This is not necessarily a drawback. Not yet specified

ways of achieving a goal can be observed and traced in order to integrate them into the task

model during the next development cycle. In this vein the artifact is gradually improved by

the observed behavior of the user which is the most natural way a task is performed. There-

fore task models for implicit interaction are considered as behavioral patterns of the user

within a SmE and not as complete descriptions of the performable actions.

Bridging the Gap: HCI Task Modeling and Smart Environments

81

5.2 Explicit Interaction with Task Models

The MB-UI development process has been proven as successful even for SmEs [Feuerstack

& Blumendorf, 2007; Feuerstack et al., 2008; Luyten, 2004]. The maturity of MB-UI devel-

opment is based upon a set of identified and commonly agreed on models and transformation

which allows for gradually adding information in order to eventually generate the final UI. In

the research community of HCI the set of models has been identified over years. The basic

MB-UI process is depicted in Figure 3-5 in Chapter 3. This process model is also valid for

SmEs even though that due to unforeseen configurations and situations the UI may need to

be generated automatically or adapted based on the given situation. In Section 3.3 examples

of such approaches have been explained.

Based on the given example we claim that the MB-UI chain is working well for such dynam-

ic systems and should therefore be continued in the same manner. Therefore the process

given in Figure 3-5 is also used in this thesis to driven the explicit interaction process.

5.3 Implicit Interaction with Task Models

It has already been clarified why MB-UI development is the method of choice for explicit

interaction. It is assumed that implicit interaction can also be tackled by a model-driven ap-

proach via task models (the assumption is actually strengthened by [Giersich et al., 2007]). If

that assumption holds an integrated methodology for interaction development in SmEs can

be derived.

With respect to Section 3.5 task modeling is the most appropriate modeling formalism as it

combines several advantages:

 Focus on User. When modeling tasks the developer focuses on the way tasks are

performed by the user and not how the system needs to be developed. Such a view-

point enables the developer to focus on the user instead of specifying already the in-

teraction. Especially for implicit interaction the natural behavior of users needs to be

reflected in order to avoid unnatural behavior.

 Top-Down Approach. People tend to decompose complex tasks into smaller one. In

order to model tasks adequately this concept should be supported. This will not only

help the developer in modeling tasks but will also be more natural for the user being

integrated in the development process according to a UCD process.

 Temporal and Causal Modeling. Modeling temporal ordering of tasks is common

in existing task modeling languages. However in the task modeling language pre-

sented here also dependencies based on the current world state are considered. Such

a combined approach allows for modeling tasks more easily and can be used as pre-

ferred.

 Modeling of Concurrency. Modeling of multiple users and concurrent behavior of

individuals is crucial. A modeling language which is not able to cope with concur-

rency is not purposeful. Moreover synchronization constructs needs to be offered by

the modeling language because parallel activities need to be synchronized.

Bridging the Gap: HCI Task Modeling and Smart Environments

82

Based upon these bullets CTML has been designed as modeling language for activities in

SmEs. The created models can be used for intention recognition and therefore for implicit

interaction.

Figure 5-4 The Envisioned Process of Interaction Development

The combined development process and the involved artifacts are depicted in Figure 5-4. It

implements the requirements of a common artifact for the interaction development in gener-

al. Moreover it relies on a model-based approach. Therefore gradual refinement and separa-

tion of concerns are supported. How explicit (on the top of Figure 5-4) and implicit (on the

bottom of Figure 5-4) interaction development is performed in detail is explained in Section

7.4.

5.4 Conclusion

In this chapter it has been shown that the functional components of a SmE can be either ac-

cessed using implicit or explicit interaction. Therefore the development framework of Kirste

is extended to both kinds of interaction. Based upon that extended framework it is argued

that both interaction paradigms need to be tackled by the same artifacts in order to support

smooth transitions between the interaction types and assure consistency during the whole

interaction process. An artifact suitable for interaction design in SmEs is the task model. For

explicit interaction it has been used for decades in HCI and certain research projects have

shown the feasibility of task-driven approach for UI design in SmEs [Feuerstack & Blumen-

dorf, 2007; Feuerstack et al., 2008; Luyten, 2004]. The same applies partially for implicit

interaction. In [Giersich et al., 2007] and [Wurdel et al., 2007] task models have been used

for intention recognition which is one of the most fundamental components in a SmE. The

advantages of task modeling for both interaction paradigms have also been compiled and a

model-driven approach has been advocated.

To be able to follow a model-driven approach based on task models a suitable task modeling

language is needed. An illustrating scenario based on the experimental infrastructure of the

university has been consulted to show the complexity and relevant entities with respect to

task modeling. The scenario is used to distill a set of requirements for a task modeling lan-

guage suitable for SmEs. In the last part of the chapter implicit and explicit interaction are

investigated with respect to interaction design based on task modeling.

Modeling Tasks for Smart Environments – CTML

83

Chapter 6
6 Modeling Tasks for Smart

Environments – CTML

After having shown why task modeling is of high interest for interaction development of

SmEs and having identified the requirements for task modeling useful for SmEs it is now

continued with the detailed specification of the task modeling language of this thesis. More

precisely the language addresses each of the named requirements in Section 5.1.2 explicitly.

During this chapter not only the modeling elements and their purpose are highlighted but

also the design decisions during the development of the language are underpinned by related

work and explanations.

In order to foster understanding an overview of the modeling elements, their purpose, their

relation to other modeling elements and related approaches in various research fields is giv-

en. Subsequently, the formal syntax and semantics is explained. Based upon that, various

appropriate refinement relations on CTML models are introduced. In the end of this chapter

the tool support for CTML is described which help to create, edit and validate specifications.

6.1 Overview of Syntax, Semantics and Design Rationale

In this section we present the collaborative task modeling language (CTML). We first de-

scribe the syntax of CTML, explain its design rationale and provide an example. Then we

present the semantics of collaborative task expressions and collaborative task models.

The design of CTML is based on four fundamental assumptions:

1. Role-based Modeling. In limited and well-defined domains the behavior of an actor

can be approximated through her role [Constantine & Lockwood, 1999; Penichet et

al., 2009].

2. Hierarchal Decomposition and Temporal Ordering. The behavior of each role

can be adequately expressed by an associated collaborative task expression.

3. Causal Modeling. The execution of tasks may depend on the current state of the en-

vironment (defined as the accumulation of the states of all available objects) and in

turn may lead to a state modification.

4. Individual and Team Modeling. The execution of task of individual users may

contribute to a higher level team task.

Modeling Tasks for Smart Environments – CTML

84

Based on these assumptions we define a collaborative task model in a two-folded manner:

 Cooperation Model. Specifies the structural and behavior properties of the model.

 Configuration(s). Holds runtime information (like initial state, assignment) and si-

mulation/animation configurations.

For each Cooperation Model several Configurations may exist in order to describe different

situations in which the model is used.

6.1.1 Cooperation Model

Figure 6-1 shows a schematic sketch of a cooperation model. Elements in the inner blue cir-

cle show modeling entities of the cooperation model (post fixed with “-1”) whereas diagrams

outside of the blue circle show specifications realizing the corresponding entities (post fixed

with “-2”).

Figure 6-1 Schematic Cooperation Model for Meeting Scenario

On a higher level of abstraction the cooperation model specifies the entities relevant to task

modeling in SmEs. Therefore roles (e.g., A-1), devices (e.g., B-1), a location model (C-1), a

domain model (D-1) and a team model (E-1) can be specified. Roles categorize users of the

same kind in terms of capability, responsibility, experience and limitations according to the

domain. Thus roles are abstractions of actors sharing the same characteristics. Role modeling

is a common concept in software engineering ([Constantine & Lockwood, 1999; Larman,

2004]) to reduce complexity and build systems for diverse users. What constitutes to a cer-

tain role and distinguishes it from another one relates to the system and development ap-

proach. In [Larman, 2004] it is stated that a user is not limited to one role at a time and role

Modeling Tasks for Smart Environments – CTML

85

switching is often taking place. In CTML the role concept is employed to define the pool of

actions of a user by means of task expressions. In task analysis and modeling this approach is

quite common but is usually restricted to a one-to-many relation of role and user [Molina et

al., 2008; Mori et al., 2002]. However this is a rather rigorous constraint. In the domain of

SmEs it is frequently the case that an actor changes her role at runtime and that one role is

being performed by several actor simultaneously (being a many to many relation of role and

user). The role concept implemented in CTML incorporates this case. Moreover a user can-

not only perform roles concurrently but also other relations such as choice, orderindepen-

dence, enabling, disabling and suspend/resume are considered (adapted from temporal opera-

tors) which allows for modeling more realistic scenarios. In the example in Figure 6-1, a

meeting scenario, the roles are Presenter, Listener and Chairman. They represent the differ-

ent types of stereotypical behavior in the meeting scenario.

In CTML the potential action a user is able to perform is determined by her role(s). More

precisely a role is associated with a collaborative task expression (A-2 in Figure 6-1). which

is visually represented by a task tree in a CTT-like notation [Paternò, 1999]. Tasks are ar-

ranged hierarchically defining a tree structure. Atomic tasks, non refined tasks, are referred

as actions. In addition tasks on the same level of abstraction can be connected via temporal

operators defining the temporal order of task execution. The precise semantics of those oper-

ators are explained in Table 6-1.

N-Ary Operators ()

Choice ([]) Only one operand task is executed

Order Independence (|=|) Operand tasks are executed in any order with no interleaving

of subtasks

Concurrent (|||) Interleaved execution of operand tasks and their subtasks

Enabling (>>) Operand tasks are executed sequentially

Binary Operators ()

Disabling ([>) Execution of is aborted as soon as is started

Suspend/Resume (|>) At any time the execution of may be interrupted by . After

 has finished its execution resumes.

Unary Operators ()

Iteration (t*) Repetitive execution of

Optional ([t]) Execution of is optional

Table 6-1 Semantics of CTML Operators

Each task is attributed with a (unique) identifier, a set of precondition and a set of effects.

Preconditions add additional execution constraints to a task as a task may only be performed

if its precondition is satisfied. An effect denotes a state change of the system or environment

as a result of a task execution. Both, preconditions and effects are needed to model collabo-

ration and synchronization across collaborative task expressions. They also denote the bind-

ing to the devices, location and domain.

Modeling Tasks for Smart Environments – CTML

86

An exemplary task tree (informally the term tree is used here even though the abstract syntax

is defined by an expression) is shown in Figure 6-2. It shows how a chairman may chair a

session at a conference. First she enters the room, followed by an introduction. After doing

so she manages the individual talks of each presenter. However she may also interrupt the

presenter while supervising the talk. Optionally she opens a discussion for each talk. After

having listened to all talks the session is closed. Finally she leaves the room. Please note that

the symbol denotes that a task which is further refined but whose children are currently

not visible. Thus Introduce Session and Close Session are not atomic.

Figure 6-2 Task Tree for Chairman at a Conference

In CTML, devices (e.g., B-1) represent types of devices relevant to the task performance of

users in the SmE. In HCI device modeling has been mostly performed to model platforms on

which tasks are executed [Mori et al., 2002]. In this vein physical and technical properties

are used to characterize the devices. This approach is suitable when the task execution need

to be constrained by a property of the device or a task need to be assigned to a certain device

(e.g., a task needs a certain display size or input capability). However in some situations it is

also useful to model the behavioral properties of devices. Especially when tasks are executed

by the user themselves and not hosted on a device but the device is still relevant for the task

execution (which is uncommon in MB-UI) only static properties are insufficient. There is

also the distinction between tools and artifacts (even though more in the field of domain

modeling). Whereas tools are supporting certain tasks in changing an object, artifacts are

objects to be changed by the task performance [Forbrig et al., 2003]. Thus behavioral speci-

fications are expedient for tools as it would formalize the process of changing an artifact but

the notion of behavioral specification is not tackled in this field. Behavioral models of devic-

es are relevant for SmEs (e.g., taking the example of Figure 6-1: the projector needs to be

connected to the presenters’ notebook and the notebook needs to be in presentation mode).

CTML allows structural and behavioral specifications of devices. Basically it can be speci-

fied whether a device type has or has not certain technical features (like wireless network,

touchpad or display) which can also be parameterized (e.g., display size and resolution).

Additionally, name/value pairs can be specified to characterize the device types adequately.

Behavioral specifications are achieved by means of state machines (B-2). Basically each

device specification is characterized by a finite state machine in order to model the functions

and states necessary (e.g., the function “Switch to presentation mode” and the state “Presen-

tation mode”).

The importance of location information for task execution in physical environments as SmEs

is obvious. For both, explicit and implicit interaction, location information is relevant. Expli-

Modeling Tasks for Smart Environments – CTML

87

cit interaction can only be performed with immediate proximity to the UI and implicit inte-

raction is based on context information such as location information. Even though location

information is a very selective type of context information but it is, compared to other types

of context, easy to measure and model. In CTML one can specify a location model (C-1 and

C-2) which allows for modeling local geometrical locations.

The device model captures the behavioral and structural properties of electronic objects ex-

hibiting a well defined behavior in the environment. However there are also virtual objects

(e.g., slides on a notebook) and physical objects which are not devices (e.g., whiteboard and

pen). In order to be able to capture those obviously important aspects for task performance a

domain model has been introduced. It captures domain specific concepts and objects as well

as associates them to each other. Moreover the existing roles can also be related to domain

objects (e.g., a presenter brings her slides on her notebook”). The distinction between device

and domain objects is done by its activeness. A passive device is modeled as domain objects

whereas an entity which exhibits a certain well-defined behavior is modeled by a device

specification. Nevertheless devices are a sub set of the domain objects as they contribute to

the concepts of the domain and may support task performance. Thus in CTML devices can

be additionally modeled as objects of the domain if the dedicated domain model does not

capture all important aspects relevant to the domain (e.g., the relation of the device to other

domain objects by means of associations). As the domain model serves also as vocabulary

(“visual dictionary” [Larman, 2004]) for the software developer, user and stakeholder the

implied redundancy of modeling a device in the domain model and device model is not a

problem as a comprehensive model of the objects involved in the domain helps to foster

understanding. The domain model (D-1 and D-2 in Figure 6-1) is represented using an UML

class diagram ([UML, 2010]) as this is the de facto standard for domain modeling in industry

and known to software developers [Constantine & Lockwood, 1999; Larman, 2004]. In

software engineering there is a clear differentiation between a conceptual domain model and

a data model even though they share information and are often treated as the same. A domain

model captures concepts and their relations whereas a data model specifies persistent data for

implementation. In CTML data modeling is not of interest since CTML is used in early stag-

es of software engineering and persistence is not an aspect.

Individual task performance in multi user environments is usually coordinated by a higher

level plan. Perhaps certain tasks of actors can only be started after the execution of tasks of

others. This kind of cooperation is necessary to be described and needs to be considered for

task modeling. Additionally certain task state configurations may constitute to a higher level

state. In CTML this is called team state. The corresponding model is the team model (E-1

and E-2 in Figure 6-1) which is basically a task model consisting of tasks of a certain type

which in turn are defined by statements when a certain team task is being activated and com-

pleted. Details on that issue are discussed in Section 6.1.4.

In the following Section the runtime information necessary to instantiate a Cooperation

Model are exaplined

Modeling Tasks for Smart Environments – CTML

88

6.1.2 Configuration

Besides the cooperation model a CTML specification also contains one or more configura-

tions providing essential runtime information for the cooperation model. A configuration

represents necessary information for a concrete situation. This allows for testing different

settings for the same cooperation model without much effort by defining different configura-

tions.

As the cooperation model relies on a role-based specification actors operating in the envi-

ronment need to be defined in accordance with a corresponding actor-role mapping. More

precisely an actor may fulfill more than one role concurrently and a role may be assigned to

different actors simultaneously (many-to-many relation). Moreover not only concurrent role

fulfilling is allowed but also all other temporal operators defined in CTML are implemented

(see Table 6-1). None of currently existing task modeling supports this assumption even

though this is a common case in SmEs. Taking the example of the “Conference Session” one

can imagine the case of an actor presenting a paper in front of the audience but also listening

to other presentations afterward. Therefore the simultaneous (or more precisely ordered)

performance of more than one role is an important feature of the language as it also allows

separating roles from another since they are assembled at runtime. Thus modularization and

separation of concerns are achieved. Additionally some properties for actors are defined

(e.g., initial position in the environment).

On the left hand side of Figure 6-3 an example Configuration for the schematic Cooperation

Model in Figure 6-1 is depiected. Not all before mentioned information have visual counter-

parts but the actor-role mapping is represented by blue arrows. More precisely it is specified

that Leonard only acts as Presenter whereas Penny fulfills the role Presenter and Listener

simultaneously. Sheldon acts as Chairman. The precise assignment of temporal operators for

an actor fulfilling more than one role is performed in a dialog which is shown on the right

hand side. Currently it is specified that Penny first acts as Presenter and afterward as Listen-

er.

Figure 6-3 Configuration “Scenario 1” for Cooperation Model "Conference Session"

As the domain model is defined using a UML class diagram an object diagram is needed to

define the initial state of the domain objects when starting an animation, simulation respec-

tively (“Domain Instance Sz.1” in Figure 6-3). The object diagram is a visual representation

of the objects which needs to be valid with respect to the defined domain model in the coop-

Modeling Tasks for Smart Environments – CTML

89

eration model. A detailed description of domain modeling and the object diagram is given in

Section 6.1.7.

A configuration can be considered as a concrete scenario under which the cooperation model

is tested or used. However sometimes one might test only certain features of the model.

Therefore simulation modes have been introduced to vary the models to be considered dur-

ing animation and simulation. A certain simulation type defines whether a model (e.g., loca-

tion or domain model) is considered during runtime. This also implies whether a precondi-

tion or/and an effect defined over the model is considered at runtime. The modes can be free-

ly combined. The following modes exist:

 Task Mode. By enabling this mode precondition and effects defined over the task

model are being considered during runtime. Thus additional execution constraints

limited to the role based task expression are enabled.

 Task Cooperation Mode. In contrast to the task mode the task cooperation mode is

used for preconditions and effects defined over other role based task expressions.

This mode enables means for modeling cooperation and synchronization between

different roles.

 Device Mode. A cooperation model can have a set of device models which can be

used to enrich the task expressions by preconditions and effects. Whether those de-

vice models are considered during runtime is defined by this mode.

 Location Mode. In the same vein as the device mode the location mode defines

whether the location model and correspondingly defined preconditions and effects

are to be considered at runtime.

 Domain Mode. This mode specifies whether the domain model is considered at run-

time. Accordingly this also applies for preconditions and effects defined over the

domain model.

By the usage of those modes certain features of a CTML specification can be tested and va-

lidated in a more flexible manner.

The concept of explicit defined goals has been rarely tackled in task modeling languages

even though user goals are considered in various HCI and task analysis methods [Dix et al.,

1997; Hackos & Redish, 1998; Kirwan & Ainsworth, 1992]. Kirwan and Ainsworth define

goals as [1992]:

“desired states of systems under control or supervision”

which is a common definition of the term. Goals are treated usually as informal descriptions

and as such cannot be interpreted and evaluated during runtime. Especially when taken into

account that implicit interaction can be implemented through explicit formal goals this con-

cept becomes interesting for CTML. There are two ways of specifying a goal in CTML:

 State based Goals. Tasks are performed to reach a certain goal which is defined by

a certain state of the system. Therefore CTML allows for defining goals by means of

expressions over the domain model, device model and location model as those de-

Modeling Tasks for Smart Environments – CTML

90

fine the state of the SmE. State based goals correspond to the definition of goals

from literature.

 Task based Goals. The execution of a task changes the state of the system and may

lead to the achievement of a certain goal. Therefore, tasks are rather means to

achieve goals than defining a goal. However the goal of cooperative task perfor-

mance can be easily specified through a set of tasks to be performed. One can con-

sider the state of the SmE not only by the union of state of the devices, objects and

location but also by the task state of each actor. Task based goals are a valid and

easy to use method. This approach is rather pragmatic and may be substituted by a

state based goal based on the effect of the task of the task based goal.

Goals define a state in which the performance of tasks is successfully finished. Once the goal

is reached no other tasks can be executed anymore. This also applies for multi user specifica-

tions. More precisely when an actor executes a task reaching the goal defined in the currently

applied Configuration not only the actors’ task performance is finished but also the task per-

formance of all other actors is successfully terminated. This implements the hypothesis of a

common high level goal of all actors which CTML relies on. Obviously there are cases in

which this hypothesis does not hold. As goals are an optional feature the concept can be

omitted.

Explicit goals are useful in different ways. In terms of expressiveness of the language they

help to define a successful run in an easy to use manner. Especially for cooperative task per-

formance where the envisioned goal is difficult to specify by means of the state of an object

task based goals offer a simple solution. Another application of explicit goal description for

CTML is deadlock analysis which will be explained in Section 6.6. Please note that the con-

cept of goals is not defined formally for CTML and is used in a pragmatic way.

6.1.3 Semantics

In the last section a brief description of the syntax of CTML has been given. To complete the

overview the intuitive semantics follows in this section. Please note that this section does not

provide a rigorous semantic definition (which is given in 6.4) but aims to foster the under-

standing of the rationale of CTML specification. To do so a bottom up approach is em-

ployed. First the semantics of a single task expression is defined. Based upon that, the se-

mantics of a composed task expression for each actor can be defined accordingly. Eventual-

ly, the semantics of the complete CTML animation/simulation based on the prior explana-

tions is described.

The execution order of the tasks of a single collaborative task expression (e.g., Figure 6-2) is

determined by the following three criteria: (1) The defined temporal operators (see Table

6-1), (2) the task-subtasks decomposition, and (3) the preconditions defined for each task.

In order to illustrate the interplay of all three criteria, let us consider the lifecycle of a task.

As depicted in Figure 6-4 each task starts in the state disabled. Upon receiving the message

"enable" a task moves from state disabled to enabled. If, and when, an "enable" message is

sent depends on the super-ordinate temporal operator as well as the task state of the sibling

tasks. Table 6-1 gives an intuitive definition of the semantics of all temporal operators de-

Modeling Tasks for Smart Environments – CTML

91

fined in CTML. Upon receive of message "start" an enabled task starts executing by transit-

ing into state running, given that its precondition is satisfied. In state running the task ex-

ecutes its predefined effect (denoted by "do/effect") which becomes externally visible. A

successful run of the task is denoted by the "end" transition to state completed.

Figure 6-4 Task Life Cycle as State Chart

At any time a task may be prematurely aborted, as a result of the disabling operator (see Ta-

ble 1 for details). A task that is enabled, or already running can be suspended upon receive of

the "suspend" message. Once a task is suspended it returns back to its previous state when it

receives "resume".

As long as a task is not started, it can be skipped, which is either due to an optional (unary

[]), iterative (*) or choice ([]) operator. Additionally a task may be skipped when a super-

ordinate task becomes skipped or disabled. Note that each state of the task state chart is

equipped with so called entry actions whose purpose is to notify the state charts of sub- and

super-ordinate tasks of state changes. This implements an update mechanism to assure syn-

chronization between all state charts. Table 6-2 summarizes the semantics of task states.

State Symbol Semantics

Disabled Initial state of a task. It is waiting to become enabled.

Enabled or The task is waiting to start its execution. The first symbol denotes the

ordinary case: the assigned preconditions are fulfilled and the task can

be activated. The latter denotes that one or more preconditions are

currently not satisfied and the task cannot be started (implemented by

a guard in Figure 6-4).

Running The task is currently under execution. It has been started but the ex-

ecution is not yet finished.

Suspended The task has been suspended. Keeps waiting until it is resumed.

Completed The task has been executed successfully (Final State).

Skipped Execution of the task has been skipped (Final State).

Aborted Prematurely abortion of task (Final State).

Table 6-2 Task States, Symbols and Semantics

In CTML, not only each task but also each temporal operator is represented by a state chart

which formally implements the semantics given in Table 6-1.

Modeling Tasks for Smart Environments – CTML

92

Figure 6-5 Generic State Chart of a Temporal Operator

In Figure 6-5 the generic state chart for a temporal operator is given. It starts in state waiting

in which messages from superordinate state charts are dispatched to its children. An excep-

tion to this rule is the "enable" message which triggers a state transition to state enableChild-

ren in which the set of subordinate task state charts are enabled according to the semantics of

the operator (e.g., in case of the choice operator () each child becomes enabled whereas in

case of the enabling operator () only the first child becomes enabled). Figure 6-5 also por-

trays how the operator state chart handles a temporally inconsistent state which is due to a

state change of a child. Depending on the current state of the changing child the state chart

implements the semantics of each temporal operator (e.g., if a child task of the choice opera-

tor is executed all other children become skipped, whereas if a child task of an enabling op-

erator is executed the next sibling task becomes enabled). The operator state chart changes

its state to completed, if, and only if, all children state charts are in a final state. Otherwise it

returns to the state waiting.

By mapping each task and operator to a state chart a network of communicating state charts

is created, where operator state charts mediate messages between task state charts of adjacent

levels of abstraction.

Figure 6-6 Task Expression for Chairman at “Conference Session” during Animation

Figure 6-6 illustrates an exemplary animation of the task expression shown in Figure 6-2

(here the full task tree is shown). The symbols attached to the task nodes represent the cur-

rent state in accordance with Table 6-2 and Figure 6-4. The tasks Enter Room, Welcome

Presenter, Present Agenda, Announce Talk and Interrupt Talk have been executed

(represented by the Completed state). The tasks Open Discussion, Close Session, Announce

Open Discussion and Wrap-up Session are executable (denoted by the symbol for Enabled

state). The abstract task Manage Talks is currently under execution and Sit and Listen has

been skipped. Leave Room is not yet executable since it is in the state Disabled.

Modeling Tasks for Smart Environments – CTML

93

This far we have defined the execution semantics of individual collaborative task expres-

sions. It is now continued with the definition of semantics of a collaborative task model.

Thereby, the main principles are as follows:

1. For each role, based on the associated task expression, a network of communicating

state machines (as shown previously) is created.

2. With respect to the selected Configuration, for each actor, an individual copy (in-

stance) of the corresponding role state machine network is created.

3. The resulting state machine networks are composed and run concurrently at anima-

tion time. In essence, a collaborative task model is transformed into a set of concur-

rently running networks consisting of task state machines and operator state ma-

chines.

An exemplary animation of the Cooperation model in Figure 6-1 with the Configuration

“Scenario 1” (see Figure 6-3) is depicted in Figure 6-7. The screenshot shows three columns,

one for each actor. Each column is vertically divided in two parts. The upper part shows the

currently enabled tasks for the actor (which can be activated on click) whereas the task ex-

pression animation for each role of the actor is shown in the lower part. A tree-like illustra-

tion is used in which the root nodes represent the role-based animations.

Figure 6-7 CTML Animation of “Conference Session” of “Scenario 1” (see Figure 6-3)

After having introduced the (informal) semantics of CTML specification the different facets

of CTML specifications for modeling cooperation, devices, locations and the domain are

examined in detail. The integration of those models into task modeling is achieved by means

of preconditions and effects. More in detail, tasks are assigned preconditions making state-

ments about a certain state to be fulfilled with respect to cooperation, devices, location

and/or domain. On the other hand the execution of a task may result in a state change with

respect to the devices, location and/or domain.

6.1.4 Cooperation / Team Modeling

Tasks of individuals in the context of multi user environments or systems are never per-

formed isolated but need to be synchronized with actions of the other individuals involved.

The dependencies of cooperational tasks performance can be quite complex and are influ-

enced by different aspects such as relation of the individuals, context (work, leisure, etc.),

organizational structure and others. With respect to task modeling not all such cases can be

Modeling Tasks for Smart Environments – CTML

94

supported. However, as it had been shown previously the currently existing means to model

cooperation on a high level of abstraction defining a precise behavior are very limited [Mori

et al., 2002; Penichet et al., 2008; van der Veer & van Welie, 2000]. Moreover the coopera-

tion of actor of a SmE can be defined on different levels of abstraction:

 Team-based. Tasks are often not orchestrated directly but by a higher level context.

In a conference session an agenda usually defines the action items in temporal order.

In CTML this model is called team model. It defines the orchestration of high level

tasks and their definition by role based tasks. Exemplary one can define the team

state Introduction which is based upon the task Introduction of the Chairman.

 Role-based. Specifying task dependencies on role based level integrates well with

the CTML modeling approach as tasks are specified on a role based level generally.

Basically one would specify that a Presenter needs to perform a certain task to let

the Chairman perform another. As a role can be fulfilled by several actors simulta-

neously quantified statements are needed.

 Actor-based. Task dependencies are specified between two (or more) actors within

a configuration. In this vein dependencies can be specified very accurate but need to

be defined for each pair of actors in every configuration. Regarding the running ex-

ample one would specify that Leonard needs to perform a certain task before Shel-

don starts another. Due to the complexity of such specification mechanism this ap-

proach is dismissed and not followed in CTML.

In the following paragraphs the used approaches in CTML, namely team-based and role-

based cooperation, are explained in detail.

As stated above, in CTML a dedicated team model synchronizes role based task specifica-

tions of actors.

In CTML team-based cooperation is modeled by a dedicated team task model. A team model

is a certain type of task expression with the constraint that each atomic task is of the type

team (denoted by a different symbol). In Figure 6-8 an example of a team model is depicted.

It specifies that Presentation 1, Presentation 2 and Presentation 3 are given in arbitrary or-

der and finally a Discussion is taking place. What constitutes to each team task is defined by

means of triggers.

Figure 6-8 Team Model for "Conference Session"

A trigger defines the condition under which a certain team task is started respectively com-

pleted. The conditions are based on simulation states, quantified tasks states (see Table 6-2)

or location of actors. The semantics of the two types of triggers are described in Table 6-3.

The explanations in Table 6-3 show that team tasks are virtual tasks as they cannot be ex-

ecuted directly but their state is derived based upon states of role based tasks.

Modeling Tasks for Smart Environments – CTML

95

Trigger Type Semantics

Start Trigger Defines a condition under which a team task is started if it is enabled

with respect to the semantics of the used temporal operators.

End Trigger Defines a condition under which a running team task is completed. The

next team task to be started is selected by examining the enabled task

set and corresponding Start triggers.

Table 6-3 Semantics of Triggers

In Table 6-4 examples of Start and End Triggers are given. The first column specifies the

team task the triggers are assigned to whereas the latter contains the triggers. The triggers of

Presentation 1 can be paraphrased as follows: Presentation 1 is started if one Presenter has

been started the task Start Presentation. Presentation 1 is finished if one Presenter has fi-

nished the talk. In the same vein the semantics of the triggers of the task Discussion can be

described but in contrast to the prior description the allInstances quantifier is used meaning

the all actors fulfilling the role named in the trigger need to complete the task to pull the

trigger.

The usage of quantifiers (oneInstance, allInstances) is a general approach in CTML whenev-

er a statement is made about a set of tasks which can only occur if the role the task is belong-

ing to is fulfilled by multiple actors. They quantifiers in CTML are comparable to the quan-

tifiers of first-order logic ().

Start Triggers

Task Trigger

Presentation 1 Presenter.oneInstance.StartPresentation

Discussion Presenter.allInstances.FinishTalk

End Triggers

Task Trigger

Presentation 1 Presenter.oneInstance.FinishTalk

Discussion Chairman.allInstances.CloseSession

Table 6-4 Exemplary Triggers for Team Model in Figure 6-8

So far the team model only observes the states of animation/simulation of CTML specifica-

tions. To be truly effective a mechanism is needed to influence the potential task execution.

In CTML, precondition can be based on team tasks and their states (see Figure 6-4) as team

tasks run through the same task life cycle by automated triggered transitions. In this vein the

task execution can be restricted until a certain team state is reached. This allows for model-

ing rich dependencies in handy manner. In summary, team states can be defined over the task

states of actors and the task execution of actors can be constrained by the employment of

team tasks for preconditions.

The modeling of cooperation by means of a dedicated team model is one option in CTML.

More precisely, CTML allows also for specifying task dependencies on the level of role-

based task expressions as already hinted earlier. Before actual defining the dependencies an

Modeling Tasks for Smart Environments – CTML

96

interface needs to be defined. Figure 6-9 shows the visual representation of such an interface

by means of a link. The link specifies that the task execution of the role Presenter can be

constrained and affected by tasks of the role Chairman (denoted by <<uses>>). The com-

plete interface comprises also the actual tasks to be used in the affected task expression (Pre-

senter in this case). This information is specified by a dialog which has been omitted here.

Bidirectional dependencies are possible as well.

In CTML the definition of interfaces between model entities in the cooperation model is a

general approach. It allows for separation of concerns and helps to manage complexity while

defining preconditions and effects. Furthermore dependencies are made explicit and as such

are visible at first glance.

Figure 6-9 Role Dependency for "Conference Session"

After defining explicitly the interface between two roles the cooperation can be modeled by

means of preconditions on a role based level. Task based preconditions can address all tasks

defined in the interface. Again, since several actors may fulfill more than one role quantified

statements are needed.

Figure 6-10 Task Tree for Presenter at “Conference Session”

In Figure 6-10 a task expression for the role Presenter is presented. It specifies the process of

giving a talk at a conference session. First, the Presenter introduces herself followed by the

configuration of the equipment. The talk is given by explaining each slide denoted by an

iteration (*). In the end the Presenter responds to the raised questions. Finally the presenter

leaves the environment. With respect to the task expressions of the role Chairman (depicted

in Figure 6-2) and the role Presenter (depicted in Figure 6-10) the preconditions shown in

Table 6-5 can be defined.

Role Task Precondition

Presenter Start Presentation Chairman.oneInstance.Announce Talk

Presenter Respond to Question Chairman.oneInstance.Open Disucssion

Chairman Announce Open Discussion Presenter.allInstances.End Presentation

Table 6-5 Preconditions for Tasks of Role Presenter at “Conference Session”

The first precondition defines that the Presenter is only allowed to start her presentation if

she had been announced by a Chairman. The second states that responding to questions can

only be performed if the Chairman has opened the discussion. The precondition of the

Modeling Tasks for Smart Environments – CTML

97

Chairman states that an open discussion can only be announced if all Presenters have fi-

nished the presentation. Preconditions defined on this level of abstraction integrate well with

the CTML approach of role based descriptions. Quantifiers are able to specify how many

actors fulfilling the role are addressed (one or all).

Please note that team-based modeling is very convenient way of specifying cooperational

aspects of a CTML specification. However, they are actually syntactic sugar as each precon-

dition addressing a team state can be replaced by an appropriate rephrasing of the trigger.

This finding is especially important for the rigorous semantics given in 6.4.

6.1.5 Device Modeling

In HCI devices have usually been considered as platform on which a UI is rendered and

which is used to interact with the user. However in SmEs this viewpoint is not sufficient.

Additionally, devices are used to define the actual capabilities of a SmE and therefore the

functional state of a device enables, disables respectively, the execution of a task. Therefore

in CTML not only the static properties characterizing the capabilities are considered but also

the behavior by means of functions and states.

In order to allow a high level description device types are specified. Moreover it is defined

whether a certain role needs a certain device in order to assist the actor fulfilling the role

during the task performance. Again, this is specified by dependencies on the level of the

Cooperation Model as depicted in Figure 6-11.

Figure 6-11 Device Dependency for “Conference Session”

In Section 6.1.2 the concept of Configurations has been discussed. Amongst others it has

been stated that actors fulfill roles. If a device dependency to a device types exists the actor

naturally needs a device which fulfills the requirement defined in the dependency (e.g., a

device capable of operating as Notebook in the given example). Therefore a mapping is

needed to specify which devices of an actor fulfilling a certain role operate as needed device

specification. In the same vein as roles abstract from actors, device specifications (e.g.,

Notebook) abstract from a certain device of an actor (e.g., the device of Leonard).

Besides such personal device specifications bound to a role also stationary devices exists.

They define the permanent available devices in the environment. Projectors in meeting

rooms are prominent examples of that issue. The same type of dependencies can be defined

to roles but no mapping for actors is needed as stationary devices are deployed at runtime

directly (one for each stationary device defined).

The properties of a device specification are defined by two different means:

 Structural Properties. Predefined device components for each device can be as-

signed. They represent the in- and output, network and other capabilities of a device

specification. Also a generic component exist which can be used to define custom

properties.

Modeling Tasks for Smart Environments – CTML

98

 Behavioral Properties. State machines can be used to define the potential device

state and transition between the states (called functions in the remainder of the the-

sis).

Please note that the behavior of devices cannot expressed by a finite state machine (due to

the finity of states). However finite state machines can still be a valid way of abstraction.

Moreover CTML has not been designed in order to operate a SmE but as means to do analy-

sis, requirement engineering and design with respect to interaction. According to this field of

application finite state machines are fully sufficient.

In Figure 6-12 a simplified device specification of a notebook used for presentation purposes

is given. The notation is taken from the UML [2010]. Rectangles denote states whereas tran-

sitions are represented by direct edges. Moreover the final state is denoted by black dot with

a circle and the initial state by a black dot.

The model specifies that the device starts in the state off and transits to on by executing the

function switchOn (more precisely upon the event switchOn). Then, either the function

switchOff or startPresentation can be executed which either leads back to off or the state

presentationStarted, etc.

Figure 6-12 Simplified Behavioral Specification of Notebook for the “Conference Session”

In order to integrate device modeling into task modeling in CTML also preconditions and

effects are used. In essence, preconditions assigned to a task with respect to device modeling

express that the device needs to be in a certain state to execute the task. Contrary, an effect

with respect to device modeling states the function to be executed when performing the task.

In this vein the binding of task modeling and device modeling is achieved.

Role Task Precondition

Presenter Start Presentation self.device.presentationStarted

Presenter Leave Room self.device.off

Role Task Effect

Presenter Set to Presentation Mode self.device.startPresentation

Presenter End Presentation self.device.stopPresentation

Table 6-6 Preconditions and Effects for Role Presenter with respect to Device Modeling

Modeling Tasks for Smart Environments – CTML

99

In Table 6-6 example of preconditions and effects addressing the device model given above

are presented. In essence, the device to be addressed needs to be specified. In the examples

the standard device of the actor is addressed. They can also be addressed by name. Then, for

preconditions the state needed to enable the task the precondition is assigned to follows. The

first precondition can therefore be paraphrased as follows: the task Start Presentation can

only be executed if the device of the actor is in the state presentationStarted. In order to

leave the room the device needs to be in the state off. For effects, not states are defined but

functions to be executed when performing a certain task. Thus, the first effect states that

when executing the task Set to Presentation Mode the function startPresenation is executed

(if possible). Hence, when ending the presentation the device stops the presentation.

Please note that deterministic finite state machines are demanded in order to perform formal

analysis explained in Section 6.5 and Section 6.6.

6.1.6 Location Modeling

The integration of location modeling into task modeling for physical spaces is of enormous

interest. When actors performing tasks in a physical environment like a SmE they move or

change their places. Certain tasks may only be executable when standing at the right spot.

This certainly needs to be considered while modeling tasks for SmE. For MB-UI develop-

ment this is important to allocate the UI to an appropriate device whereas in implicit interac-

tion location is used as source of context [Rodden et al., 1998].

Different attempts have been made to model the spatial relation of objects and actors in

physical environments. There are geometric models which define the spatial relation by

coordinates of the objects. Applications can easily derive containment relation of objects and

location. A disadvantage of those models is that properties like is connected to are not easy

to derive.

Graph-based location models explicitly model this relation. A node specifies a location and

edges represent connections between locations. Weights can be added to model distances

between locations. Another type of models uses sets to specify locations and their decompo-

sition into sub-locations. An atomic location is specified by a shape and position. Composed

locations are defined by a set of existing locations. The containment relation of locations can

be easily expressed using sub-set relations. Hierarchical models are also based on a set of

locations which are ordered according to the containment relation. The most used types of

model combine several modeling approaches to suit the special needs of the application

[Becker & Dürr, 2005].

For CTML a local geometric model which uses a simple set of geometric figures (rectangle,

ellipse, point) and their compositions. This enables the developer for specifying complex,

nested locations without making location modeling a burden. In Figure 6-13 a screenshot of

the location model (and its corresponding graphical editor) is shown. It uses a 2-d model of

the SmartLab as background to ease location modeling. Moreover, several locations relevant

for the scenario used before are defined. In essence, the door zone and outside zone are used

to determine the entering, leaving respectively, presentation and whiteboard zone on the

upper right hand side are used to define presentation areas. Several further zones are used to

Modeling Tasks for Smart Environments – CTML

100

determining listening to presentations exist. Please note that the composed location Chairs

aggregates all zones in which listening to a presentation is envisioned.

Figure 6-13 Location Model for “Conference Session”

Moreover, to model that a certain role uses the location model an appropriate dependency

needs to be defined accordingly. In Figure 6-14 such a dependency is depicted. The rationale

is analogous to the before mentioned dependencies. An interface can be used to define pre-

conditions and effects based on the location model.

Figure 6-14 Location Dependency of Presenter to SmartLab

With respect to the task expression for the role Presenter denoted by Figure 6-10 the precon-

ditions and effects given in Table 6-7 are defined. The first precondition explicitly demands

the actor to be in the Presentation Zone to start the presentation. The same applies for the

second preconditions which states that the actor needs to be in the Door Zone to execute the

task Leave Room. Hence, the effect of leaving the environment has the results that the actor

is now in the location Outside.

Role Task Precondition

Presenter Start Presentation self.isIn(Presentation Zone)

Presenter Leave Room self.isIn(Door Zone)

Role Task Effect

Presenter Leave Room self.is(Outside)

Table 6-7 Preconditions and Effects for Role Presenter with respect to Location Modeling

Modeling Tasks for Smart Environments – CTML

101

6.1.7 Domain Modeling

In several task modeling languages domain modeling has been integrated successfully. Tasks

are always executed within a certain work environment and application domain. Considering

the task model as isolated entity is often insufficient. During executing domain objects can

be created, destroyed, manipulated or relations between objects are established. In other situ-

ations objects may need to be present or in a certain state in order to execute a task. In Sec-

tion 3.4.3 an overview of existing task modeling languages and different extensions to CTT-

like notations is given. Several extensions fall in the category of domain modeling. Three

limitations according to the theory and practice of domain and task modeling have been

identified:

 Lack of Expressiveness. Some approaches only support very limited capabilities of

domain modeling. In certain cases only objects are defined (no abstraction of class

and object). Common concepts like abstractions, associations and generalization are

not considered. However domain modeling is a complex task which needs appropri-

ate artifacts to truly reflect the domain adequately. In essence, more complex domain

modeling concepts are needed to provide suitable means for domain modeling

[Evans, 2003]. Approaches of this category are AMBOSS [Giese et al., 2008] and

VTMB [Biere et al., 1999b].

 Custom Notations for Domain Model. In current software engineering practices

domain modeling is performed via object oriented analysis and design. State of the

art artifact for that are the UML class diagrams [Booch et al., 2005; UML, 2010].

However in different approaches for task modeling objects are specified using other

types of formalisms. Representatives of that kind are TaoSpec [Dittmar & Forbrig,

2003] and CTT [Paternò, 1999]. This is actually very unfortunate as a lingua franca

is invaluable especially for practice.

 Lack of Integration. Most task modeling languages consider objects as at least

noteworthy even though only a few integrate domain modeling in the task analysis

and modeling process [Caffiau et al., 2008]. Actually most languages consider do-

main objects as notes assigned to tasks. The integration with respect to executability

of a task and the effect a task has on the environment has only been tackled by a few

languages such as VTMB [Biere et al., 1999b], TaoSpec [Dittmar & Forbrig, 2003],

and K-MAD [Caffiau et al., 2008].

In order to overcome the named limitations above UML class diagrams are used to specify

domain models. The integration of task modeling and domain modeling is achieved by OCL

(Object Constraint Language) constraints [UML, 2010; Warmer & Kleppe, 2003] which are

used as preconditions and effects in CTML. Naturally only a subset of the OCL language is

employed. OCL is a formal, declarative language based on predicate calculus to define addi-

tional constraints not expressible by other UML model (e.g., the class diagram). Models are

enriched with OCL constraints to avoid ambiguity and misinterpretation [Fowler, 2004].

OCL constraints allow for navigating through the models and making statement about cer-

tain facts that need to hold and define assertion.

Modeling Tasks for Smart Environments – CTML

102

In order to illustrate the general rationale an example of a domain model with respect to the

scenario is given in Figure 6-15. If the reader is not familiar with UML class diagrams

[Booch et al., 2005; UML, 2010] are suggested for further readings. In the illustration the

relevant entities which have not been captured by the task, location, and device model are

specified. More precisely devices can be modeled in the device model and domain model

depending on the viewpoint and elements to be considered as important. Passive elements

are modeled within the domain model, in contrast to active entities which are represented by

the device model.

Figure 6-15 Domain Model for “Conference Session”

The domain model in Figure 6-15 represents the relevant entities for a presenter giving a talk

in a conference session. In essence, it is specified that a presenter may have a pen and a

notebook. Moreover a presentation can be stored on a notebook which in turn can be owned

by the presenter. A presentation consists of slides having a title. Other properties are speci-

fied as well. For example, a flag has been defined in order to denote whether the presentation

has been already given. Based on such a domain model precondition and effects can be de-

fined representing the binding of task execution and the domain of interest.

In the same vein as for location and device modeling an interface to the role needs to be de-

fined on the level of the Cooperation Model. The interface specifies the domain types needed

for the role in order to execute the tasks successfully (see Figure 6-16). In essence, these

types are used to define preconditions and effects with respect to the domain model.

Figure 6-16 Domain Dependency of Presenter to Domain Model

A domain precondition is basically a simplified OCL constraint with a Boolean value. An

effect addressing the domain determines a value to be changed and set a new value. There

are two ways of specifying preconditions and effects in CTML. Either by starting to navigate

through the domain model from the actor fulfilling the current role (e.g., Presenter in this

case) or by defining the context and making a general statement. The latter is used when a

certain fact needs to be ensured for all instances of a certain type of the model. To illuminate

both cases example are given in Table 6-8 and can be paraphrased as follows: The first pre-

condition defines that the actor needs a notebook to execute the task Start Presentation.

Next, it is stated that the notebook of the Presenter need to store the slides of the Presenter

Modeling Tasks for Smart Environments – CTML

103

for that presentation. An effect defined in this particular case is that ending the presentation

sets the flag of having presented.

Role Task Precondition

Presenter Start Presentation self.notebook<>null

Presenter Start Presentation self.notebook.stores->includes(self.owns)

Role Task Effect

Presenter End Presentation self.presented = true

Table 6-8 Preconditions and Effects for Role Presenter with respect to Domain Modeling

As explained before during animation a configuration is selected and used to “instantiated”

the CTML specification. When using the domain model a representation of the object in-

volved is needed. Object diagrams according to the guidelines of the UML are used [UML,

2010].

Figure 6-17 Example of an Object Diagram for Domain Model in Figure 6-15

In Figure 6-17 an example of potential objects is depicted. It represents a concrete situation

of the domain (the state of the objects). The actor Leonard is defined by an object and he

owns the presentation to be given. Moreover the presentation has a certain name and consists

of two slides. With respect to Table 6-8 it can be stated that none of the given preconditions

are fulfilled. However due to task execution the object model might change and the precon-

dition may become satisfied. An example of an effect is given and results in changing the

attribute presented of Leonard (if Leonard is the currently executing actor).

6.2 Executability

Having explained the modeling elements of CTML, their rationale and the reasons for design

it is now continued with an important principle of CTML: Validation by Animation which is

also referred as executability.

A full CTML specification consists of multitude of entities. When creating such an entity it

is important to be able to inspect the model. Different ways for doing so exist. Graphical

editors and viewers can help to foster the understanding of the artifact. Each editor (viewer)

may highlight different characteristics of the entities. However, such a static view on the

model is not always sufficient. If the behavior of the model is well-defined (the model is

successfully validated) it should also be explorable by an interactive walkthrough. By allow-

Modeling Tasks for Smart Environments – CTML

104

ing to explore each model isolated and in combination with other entities different view-

points of the behavior are offered. Therefore, the following guidelines have been defined for

CTML and its tool support:

1. Animation. Each entity exhibiting behavior should be interactively explorable in

isolation and in combination with the whole CTML specification.

2. Viewpoints. Different tools for animation should be offered to highlight the beha-

vior from different perspectives and on different levels of abstraction.

These rules have not only been applied for the task model but also for the device specifica-

tions which can also be animated isolated and in accordance with the complete CTML mod-

el.

6.3 Formal Syntax of CTML

After defining the syntax and intuitive semantics of CTML in section 6.1 it is now continued

with a more rigorous definition of the syntax and semantics of CTML specifications. The

state chart based approach to assign meaning to CTML is appropriated for an intuitive defi-

nition of the semantics. However, also other possibilities exist to do so. Especially in the area

of process algebra prosperous approaches exist supporting verification algorithms out of the

box.

Section 6.1 has already given an overview of the modeling concepts and their composition.

The concrete syntax has been shown by means of screenshots of the graphical editors. In the

following paragraphs only the abstract syntax is presented.

We start to define the syntax in a top-down approach. Basically we decompose a CTML

model into its subcomponents until a convenient level of detail is reached.

Definition 6-1 (): CTML is defined by the following tupel:

1. denotes the Cooperation Model (Section 6.1.1) and

2. is the set of configurations (Section 6.1.2) used to hold runtime information for a

concrete animation.

Definition 6-2 (-Cooperation Model): The cooperation model is defined by the tupel:

 are the set of roles, respectively task names. is a total function assigning each task

name a certain task type:

 denotes the set of task expressions with:

Please note that in the remainder of the thesis always denotes the task expression of the

role even though this is formally not correct as is a set. In detail, a function is needed to

specify such mapping. For reasons of brevity this function is omitted as it is trivial.

Modeling Tasks for Smart Environments – CTML

105

 is the set of task expressions valid for the role . To introduce we need

further definitions:

Definition 6-3 (-Qualified Task Names for r): Let be a role and be a set of task

names then is defined as:

 defines the set of qualified task names for the role in accordance with the set of task

names . Based upon this definition we define inductively as follows:

Definition 6-4 (-Qualified Task Expressions for r): Let be the set of quali-

fied task names of . Let and be qualified task expressions (),

 and
 and

 be preconditions and effects

with and , then the following expres-

sions are also qualified task expressions:

Please note that no effect related to tasks exists. This is due to ensure semantic consistency

throughout CTML as effects with respect to tasks would imply to manipulate tasks which are

not executed by any actor of the system. Moreover, Definition 6-4 only allows the definition

of effects for atoms (in contrast to preconditions). This restriction is necessary to allow a

consistent semantics which is only feasible if atoms change the world state (e.g., what is the

effect of a choice expression?).

Definition 6-5 (-Location Model): defines the location model (Section 6.1.6) of .

More precisely, is defined by the tuple:

Let be the set of location names, and be an irreflexive, antisymmetric, transitive function

assigning locations its super-ordinate locations (compose-of function):

Definition 6-6 (-Device Specifications): is a set of Device Specifications () whe-

reas:

With being a unique identifier, are non-empty sets of states and functions, respec-

tively, is the initial state, defines the non-empty set of final states,

 is the transition function mapping a pair of state and function with a proceed-

ing state.

Definition 6-7 (-Stationary Device Specifications): is the set of stationary devices

which are denotes by:

As a device may be assigned to a role as equipment a relation is needed expressing this:

Modeling Tasks for Smart Environments – CTML

106

The formalization of UML class diagram is still a vita research area, in particular with re-

spect to OCL constraints as the usage of the entire expressiveness of OCL leads to undecida-

bility [Cabot et al., 2008] as first-order logic itself is undecidable in general and OCL is

more expressive. In [Berardi et al., 2005] a formalization of UML class diagrams based on

first order logic is proposed which does not only give advice how to formulize a certain class

diagrams but also supports the definition of formulas ensuring certain validation (type con-

sistency of associations, multiplicity of associations, inheritance properties such as disjoint-

ness, completeness, etc.). The general approach relies on introducing a predicate for each

class, association, and attribute. Even though the approach has been defined for refactoring

UML class diagram to prove congruence and equivalence between two specifications, it is

also valid to formulize the domain model here. In order to do so, some syntactical elements

are not considered here for reasons of understandability. The entire formulization can be

found in [Berardi et al., 2005]. The definition of the domain model is very simple as the

structural properties are not relevant during animation, execution respectively.

Definition 6-8 (-Domain Model): The domain model is defined by the tuple:

with being a set of predicates for classes, associations, and attributes, respec-

tively.

In order to exemplify this rather simple definition it is shown how the domain model given

in Figure 6-15 can be formulized using Definition 6-8. Here, only a part of the whole forma-

lization is given. The complete model is given Appendix A.1.

For each class a unary predicate is defined which denotes that a certain object belongs to a

class (here only for presentation and slide):

For each association a binary predicate is defined denoting that two object in relation with

each other (here only for consistsOf):

For each attribute a binary predicate is defined denoting the object and the corresponding

value of that attribute (here only for title). Please note that types are omitted here:

As stated before, in [Berardi et al., 2005] a set of formulas in first order logic are given

which assures consistency and structural validity. A formula expressing that the attribute title

can only be defined for objects of the type Slide:

Having defined the major entities of the Cooperation Model, it is now continued with pre-

conditions and effects of different types.

Definition 6-9 (-Task Precondition): A task precondition is defined by the tuple:

Modeling Tasks for Smart Environments – CTML

107

with (of) and . Whereas the first defines the

task to be addressed by the precondition the latter defines whether all actors fulfilling the

role need to execute the task (), only one actor need to perform the task () or only the cur-

rently executing actor ().

Definition 6-10 (-Domain Precondition): A domain precondition is defined by

the tuple

with (see Definition 6-19) being a object name, being

an association or attribute name and being the value to be tested.

Definition 6-11 (-Device Precondition): A device precondition is defined by the

tuple:

with and (of). A device precondition defines that a certain device (de-

noted by) needs to be in a certain state in order to be fulfilled.

Definition 6-12 (-Location Precondition): A location precondition is defined

by

with (of of). This definition states that the currently fulfilling actor needs to be

at a certain location () to fulfill the precondition.

Definition 6-13 (-Domain Effect):

with (see Definition 6-19) being a object name, being

an association or attribute name and being the value to be set.

Definition 6-14 (- Device Effect): A device effect is defined by the tuple:

with and (of). A device effect defines that a function is executed

on a certain device (denoted by).

Definition 6-15 (-Location Effect): A location effect is defined by

with (of of). This definition states that the currently fulfilling actor moves to

the location () by executing the assigned task.

After having defined the tupel the abstract syntax of configurations needs to be de-

fined.

Definition 6-16 (-Configurations): is the set of configurations where each item has the

following form:

A configuration is consisting of a set of actors and the objects.

Modeling Tasks for Smart Environments – CTML

108

Definition 6-17 (): An actor is defined by the following tuple:

with being a unique identifier, denoting the initial location of the actor

 , and being the set of device names belonging to the actor. denotes

the projection of a tuple (). This notation is used in the remainder of

the thesis.

 defines the set of roles the actor is fulfilling:

Moreover the total function assigns each device specification assigned to the

roles of the actor a corresponding device of the actor in order to fulfill the requirements of

the device specification of the Cooperation Model.

The actor expression defines the temporal order of roles an actor is fulfilling:

Definition 6-18 (-Actor Expression of): Let be the set of roles for the

actor . Let and be an actor expressions (), , then the follow-

ing expressions are also actor expressions:

Definition 6-19 (): Let be a domain model, then the set of

 is defined by the tuple with being a set of object names, being

the set of existing associations according to the defined association predicates in , and

 being the set of attributes for each object according to the defined predicates in

In order to exemplify the given definition above the Scenario shown in Figure 6-3 is formu-

lized in the following paragraphs. Please note that not all specified information have visual

counterparts in Figure 6-3. In such a case the reader is reminded and further information is

given.

The Running Example – Configuration Scenario 1

A scenario is a tuple consisting of a set of actors and objects:

The set of actors is defined as follows:

(Abbreviated for sh - Sheldon, le - Leonard, pe - Penny)

Each actor is a tuple as well. The first item denotes the name of the actor. The second one

specifies the initial location of the actor which is specified with respect to the complete run-

ning example in Appendix A.1 (out is abbreviated for outside). There is no visual representa-

tion of the initial location in Figure 6-3. The location is specified in a dialog. Next, the set of

Modeling Tasks for Smart Environments – CTML

109

device instances is defined which denotes the personal devices the actor is carrying with.

Again no visual counterpart exists. This information is specified in a dialog as well. In the

case of Sheldon (sh) the set is empty. Leonard (le) and Penny (pe) each carry a notebook.

The next item defines the set of role the actors is fulfilling. Sheldon acts as Chairman (c),

Leonard as Presenter (p) and Penny as Listener (l) and Presenter. Then, a mapping is speci-

fied which associates device specifications with device instance of the actors. This informa-

tion is specified in a dialog as well. This mapping is needed to denote what kind of role the

device instance is going to play in the scenario. Finally, the actor expression is given. In case

of Sheldon and Leonard only the role name is used as actor expression. Therefore the beha-

vior is only defined by the role task expressions defined in the Cooperation Model. In case of

Penny a complex actor expression is specified. It specifies that Penny firsts acts as Presenter

followed by being a Listener.

The object model of Scenario 1 is given in Figure 6-17 and can be formulized as follows:

The set of object names is:

The set of associations of the objects is:

The set of attributes of the objects is:

6.4 Semantics of CTML

After having defined the abstract syntax in an unambiguous manner it is now continued with

a precise semantic definition of CTML.

CTML has been defined to model the potential behavior and interaction of users and system

in SmEs. Moreover modeling is performed from user perspective and user tasks are the cen-

tral driving force of progress in the model. However CTML is a model which may contain

inconsistencies and therefore a rigorous semantic definition is beneficial.

For CTML an interleaving semantics is used as semantic foundation. This decision has been

made for several reasons. First and foremost it is claimed that interleaving semantics is a

suitable abstraction for task modeling. Naturally real world tasks are executed simultaneous-

ly but with respect to interaction interleaved execution is fully sufficient. Next, interleaving

semantics is an intuitive semantic domain for CTML. The interleaving semantics of a task

Modeling Tasks for Smart Environments – CTML

110

expression can already be comprehended at a glance for skilled users. This is particular of

importance while designing the model to shorten feedback cycles. In the subsequent para-

graphs it is shown that CTML can be straightforwardly transformed into in an appropriate

artifact which in turn has already been mapped to interleaving semantics.

In comparison to the previously explained meaning of CTML based on state charts it can be

said that interleaving semantics is a simplification of the state chart based approach of Sec-

tion 6.1.3. Subsequently it is shown that the hierarchical decomposition of tasks is eliminat-

ed. Task models are therefore considered only as expression in which only leaf tasks are

represented by their identifiers.

Precise semantics in CTML are assigned by a preprocessing step which normalizes CTML

models. Then, based upon inference rules a LTS (see Definition 4-1) is derived. The LTS

precisely defines the state space of the CTML specifications as well as the transitions by

means of executing an action (an atomic task).

Figure 6-18 Semantic Definition of CTML

The basic idea is to derive a LTS based on a task expression (see Figure 6-18). In order to do

so it is started with a Cooperation Model and a selected Configuration. Then, the model is

transformed into a homogeneous qualified task expression and a representation of the initial

world state by literals and functions assigning the qualified task (sub) expressions their nor-

malized preconditions and effects. The first represents the task expression to be translated

into a LTS whereas the second and third are used to give meaning to preconditions and ef-

fects. Afterward inference rules are used to derive a LTS from the qualified task expression

which eventually defines the semantics precisely. More precisely the qualified task expres-

sion is stepwise translated into a LTS model.

6.4.1 Transformation

As depicted in Figure 6-18 the input for this phase is a CTML Specification with a selected

Configuration. The result of the transformation is an intermediate specification consisting of

a qualified task expression, a set of literals, and functions assigning task expression precon-

ditions and effects (see Definition 6-26). In the following paragraphs the creation of each

item is explained in detail.

More precisely, the transformed model represents the initial state of the LTS on which the

inference rules are applied until the complete state space is explored. In this vein the result-

ing LTS is obtained.

Modeling Tasks for Smart Environments – CTML

111

Given a CTML () with a select configuration () the following

definitions are needed in order to specify a transformation:

Definition 6-20 (-Qualified Task Names for CTML): Let of and

let (denoting the projection of the tuple, in this case), then we

define the set of qualified task expression of a model as:

 consists of triples with . It defines all atomic

actions for a given CTML with respect to a selected Configuration .

Definition 6-21 (-Qualified Task Expressions for CTML): Let be

the set of qualified task names of a CTML model. Let and be qualified task expressions

for a CTML specification (), , , , be func-

tion symbols, then the following expressions are also qualified task expressions:

Please note that according to this definition preconditions may be assigned to complex quali-

fied task expression whereas effects are only valid for atoms (qualified task names) as a state

change of a system need to be bound to an action. By allowing complex task expressions it

would not be possible to determine which action is responsible for a certain state change

(e.g., the effect of) is not clear).

In order to introduce the set of literals used in the prior given definition further definitions

are needed. The definitions of terms, function symbols and predicates are adopted from First

Order Logic [Russell & Norvig, 2003].

Definition 6-22 (-Set of Terms): A term is inductively defined by:

(1) Any constant is a term ().

(2) Any variable is a term ().

(3) Function symbols are terms: denotes the function symbol with

 are terms themselves. is the arity of the function symbol ().

Definition 6-23 (-Set of Predicates): Let be terms then all Predicates

(e.g.,) defined over () are belonging to .

Please note that this form of Predicates is often also referred as Atomic Sentences of First

Order Logic [Russell & Norvig, 2003].

In order to define the transformation the set of terms and predicates for the domain of CTML

need to be defined.

Definition 6-24 (-Set of Terms for CTML): Terms for a CTML model are the

following ():

(1) All names of actors of the selected configuration are constants and as such are terms

(of).

Modeling Tasks for Smart Environments – CTML

112

(2) All names of locations defined in the Location model of are constants and as

such are terms (of the of).

(3) All names of objects defined in the of the selected Configuration are con-

stants and as such are terms (of).

(4) All names of devices specifications defined in the set of device specifications of

 are constants and as such are terms (of of).

(5) All device states of each device specification of the set of device specifications (

of) of are constants and as such are terms (denoted by the set of).

(6) All functions of each device specification of the set of device specifications (of

) of are constants and as such are terms (denoted by the set of).

(7) All names of devices of each actor of the selected configuration are constants and as

such are terms (denoted by the set of each actor).

Having defined the terms for a CTML model it is now continued with the definition of pre-

dicates specifying relations of terms:

Definition 6-25 (-Set of Literals): Let be

terms then the following predicates over are Literals ():

(1) associates a certain actor (name) with a certain location (name). The

interpretation is that an actor is at a certain location.

(2) associates a certain object (name) with a certain

attribute name with its value. The interpretation is that the attribute with the name

 of object is of the value . Please note that value can be of any kind.

Thus also association relating two objects can be specified by means of the attribute

predicate.

(3) associates a certain device (name) with a certain device speci-

fication (name) and a certain device state (name). The interpretation is that a device

is in a certain state by fulfilling a certain device specification.

(4) associates a certain device specification (name) with a current

state (name), a function (name) and the resulting state (name) after executing .

Intuitively the terms define the entities in a CTML model. The predicates represent the

knowledge about those entities necessary to interpret preconditions and effects. During the

transformation process the abstract preconditions and effects introduced (in Definition 6-9 -

Definition 6-15) are translated into statements querying or manipulating the defined know-

ledge ().

After having defined all necessary prerequisites it is now continued with the definition of the

intermediate specification and its creation based on a CTML model and a selected configura-

tion.

Definition 6-26 (-Intermediate Specification): The result of the transformation in

Figure 6-18 is an intermediate specification which can be defined as the tuple

Modeling Tasks for Smart Environments – CTML

113

with denoting the qualified task expression for a CTML specifica-

tion with respect to a selected configuration (). () denotes the set of literals

expressing the initial state of all actors and devices which are necessary information to eva-

luate preconditions and apply effects.

The unary function (with) maps

qualified task expressions to a tupel consisting of a quantifier and a sub set of qualified task

names which serve as precondition. Informally the quantifier denotes which tasks (either all

or one) of the qualified task names need to be executed in order to enable the precondition.

 is a unary function mapping qualified task expressions to a set of preconditions

(). denotes the power set of .

In contrast is a unary function mapping qualified task names to tupels specifying the

effects of the task. An effect is defined by the tupel
 . specifies the set of

variables, denotes the set of predicates with variables which needs to hold to apply the

effect. define the set of positive, negative respectively effects to implement the effect.

In order to implement preconditions and effects the situation calculus is used. For each ac-

tion manipulation or needing the world state in order to be executable entries in these func-

tions are created. The functions define how the execution of an action affects the world state.

Within an effect, the positive effects are facts which are true after execution (e.g., the actor is

in front of the audience) whereas negative effects state the facts which are false after execu-

tion (e.g., the actor is not behind the audience). In the situation calculus the current world

state is not defined explicitly but by the initial world state and the execution history manipu-

lating the world state and thus defining the current world state implicitly [Russell & Norvig,

2003]. In CTML the preconditions and effects are rather simple with respect to the theory of

the situation calculus. Thus functions are fully sufficient. Moreover negative effects are syn-

thesized from the positive effects which is clarified in the subsequent paragraphs.

In order to create an initial state representing the knowledge about the entities in a CTML a

sub set of is created by applying the following rules:

(1) For each actor of the selected configuration the initial location is specified by the

 predicate ().

(2) For each object belonging to the selected Configuration the attributes are specified

by the attribute predicate (,). Please note that

the elements in the set are binary predicates with the predicate name denoting

the name of the attribute. In the formalization of the world state a general attribute

predicate is introduced taking as parameter the name of the attribute. Moreover asso-

ciations also formulized by this approach.

Modeling Tasks for Smart Environments – CTML

114

(3) For each device belonging to an actor the device specifications the device is fulfil-

ling and their initial state is captured.

(4) For each stationary device specification a device is created and specified in the

 predicate in accordance with its initial state ().

(5) For each device specification the transitions function is expressed using the

predicate.

The initial world state is therefore specified by the following formula:

In (1) the initial locations of each actor are collected and specified as predicate

with the actor name (using the projection of tuples). (2) formulizes attributes and association

of the objects of the domain using the predicate. Next, (3), the personal devices of

each actor are specified as literals with the device specification they are fulfilling and the

initial state with respect to the device specification as state chart. In (4) the initial state of

each stationary device is specified as literal. In the last formula the transition function of

each device specification is expressed via the predicate. Whereas the rules (1) - (4)

represent facts which may change over time the last rule specifies structural knowledge

about the present device specifications. These facts are not adapted due to task execution but

used in order to interpret effects.

In order to exemplify the given definition Scenario 1 in Figure 6-3 is consulted. The scenario

has already been formulized in Section 6.3. Please note that the actors Sheldon and Penny

are omitted here. The complete example can be found in Appendix A.1.

The Running Example – The Initial State of Scenario 1

The complete initial state is consisting of the following sets:

For each actor (in the example only for Leonard) the predicate is used to specify

the initial location of the actor. The interpretation of the predicate is that Leonard is Outside.

Modeling Tasks for Smart Environments – CTML

115

For each attribute and association an predicate is created which specifies the name

of the attribute, association respectively, the object it is belonging to and the value. For ex-

ample the predicate expresses that Leonard (le) has the

name Leonard, etc.

For each device instance the assigned device specification with its initial state is specified by

the predicate. In the example only Leonard has a device instance with the name

 which fulfills the device specification whose initial state is .

In the same vein as for the device instance the standalone devices are formulized. The only

difference is that the device instance is filled up with the device specification name. This is

not necessary but avoids the definition of a binary predicate.

For each device specification the state transition relation is specified by the predicate.

This is necessary to encode the device specification in the state to apply effects. For exam-

ple the predicate specifies that for the device specification

 by executing the function in the state leads to .

Having defined the initial state of CTML model with respect to a certain configuration it is

now continued with the description of how to transform a CTML model with a certain Con-

figuration into a homogenous task expression.

Let of (), be actor expressions of (of),

 be a role (of), be task expression of (), be a quali-

fied task name of the role (), then the qualified task expression of a CTML model

 is created as follows:

The transformation algorithm itself is top down algorithm starting with composing the quali-

fied task expression of all actors of the selected configuration using the concurrent opera-

tor (rule (1)):

(1)

Table 6-9 Transformation of Actors

An actor is transformed by transforming the role expression of (rule (2)) with (

). Moreover the algorithm transforms complex actor expressions by transforming each

Modeling Tasks for Smart Environments – CTML

116

sub expression (rule (3),(4),(5), and (6)). When a role is encountered the task expression

is transformed by rule (7).

(2)

(3)

(4)

(5)

(6)

(7)

Table 6-10 Transformation of an Actor

A task expression is transformed in the same vein as an actor expression by descending in

the hierarchy of complex task expressions until an atom is reached (rules (8), (9), (10), and

(11)). In addition preconditions and effects are part of task expressions and need to be trans-

formed following the same approach (rule (13) and (14)).

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Table 6-11 Transformation of a Qualified Task Expression

As preconditions and effects in the role based task specifications contain abstract precondi-

tions they need to be adapted in order to address the fulfilling actor. Therefore a transforma-

tion of those preconditions and effects need to be performed accordingly. In order to do so

the type of precondition respectively effects is used. For each type a specific translation is

given in Table 6-12 and Table 6-13.

The translation of task precondition depends on the used quantifier. In the intermediate spe-

cification the preconditions in the task expression are homogenous. Three different quantifi-

ers exist: for all (), exist () and exactly one (). The first two are translated by adopting the

quantifier and collecting the qualified task names to be addressed (rule (15)). The addressed

tasks are all qualified task names of actors who are performing the role specified in the pre-

condition. For the latter no counterpart in the intermediate specification exists. The meaning

of the quantifier is that exactly the executing actor is addressed by the precondition. There-

Modeling Tasks for Smart Environments – CTML

117

fore the quantifier can be rewritten by the all quantifier with the appropriate task name (rule

(16)).

The subsequent preconditions (rule (17), (18), and (19)) do not address the tasks but the do-

main, devices and location of actors. In order to implement these formally first order logic

introduced earlier is used. In essence, the current true facts during task execution are speci-

fied by means of literals according to Definition 6-25.

Domain preconditions specify that certain domain objects need to be present in order to ex-

ecute a task. The specification of a domain precondition already contain all entities to create

a suitable representation based on the predicate (rule (17)). More precisely, the

preconditions are transformed by adding a suitable entry in the function which assigns

task expression to evaluable preconditions.

Device preconditions define that a certain device needs to be in defined state in order to ex-

ecute the addressed tasks. A CTML specification contains only abstract device preconditions

which need to be translated accordingly. More in detail, during modeling device specifica-

tions are referenced. When translating the model into an intermediate specification those

device specifications need to be bound to devices of actors (rule (18)). If the device is a sta-

tionary device then is used directly as name. In the other case the devices of the current actor

are consulted in order to determine the device of the actor implementing the device specifi-

cation of interest. The result of the translation is a statement which can be evaluated with

respect to the set of literals for the CTML specification ().

In the same vein as device preconditions location preconditions are translated (rule (19)).

More precisely, an abstract precondition is translated into a predicate evaluable with respect

to the set of literals. As preconditions may not only be assigned to atomic task the nested

task expression of the precondition needs to be transformed (denoted by).

Please note that denotes the name of the element . More precisely the following formula

assigns to each element a name:

As the sets (denoting the actors of the selected Configuration) and (denoting the de-

vice specifications of) consisting of tuples the projection to their names is used. Oth-

erwise it is assumed that is a name.

The overriding operator () is used to update functions (such as) which

creates a function based on two functions by the union of pairs but with the restricting of

overriding the already mapped values of the first function with the values from the second

one. The operator is adopted from Z [Woodcock & Davies, 1996].

(15)

Modeling Tasks for Smart Environments – CTML

118

(16)

(17)

(18)

(19)

Table 6-12 Transformation of Preconditions

In the same vein as the preconditions effects are translated accordingly. The general ap-

proach of substituting the abstract effects with function symbols which can be interpreted by

inference rules with respect to the current world state is identical. However the function

associates atoms () with tuples specifying the effect of the action execution. An ef-

fect consists of the tuple
 . As the world state is of importance to apply an ef-

fect appropriately it is not an option to ground the terms already. For example the following

state after executing a function on a device depends on the current state when applying an

effect. Therefore variables are needed (). When applying the effect those variables are re-

placed by appropriate values depending on the world state. In order to do so statements are

necessary characterizing the needed literals in the world state to apply an effect (). When

applying the effect the variables are grounded so that is true in the current world state.

This grounding is then applied to the positive and negative effects. Thus state dependent

effects can be defined. If does not contain any literals no restriction on the positive and

negative effects is defined. All suitable literals are removed in case of negative effects or

added in case of the positive effects to the world state.

An abstract domain effect is implemented by adding an entry to the function assigning a task

expression to a transformed effect which is consulted during evaluation of the effect (rule

(20)). According to the given explanations above the tuple of is constructed using only

one variable . The positive effects are specified by the attribute predicate which needs an

object name, an attribute name and a value. The negative effects state that the old values

Modeling Tasks for Smart Environments – CTML

119

need to be removed. If the tuple specified in the abstract domain effect represents an attribute

(see Definition 6-19) then only the old value of the attribute needs to be removed. Associa-

tions are also specified by the attribute predicate and defined by only one literal. In essence,

they are specified as ordinary attributes. However, as associations can also be navigatable

from the other object involved both “sides” need to be considered. Thus, two literals are

named in the negative effects which represent both cases.

A device effect is transformed by a function symbol in the task expression () and with

appropriate entries in the function (rule (21)). The tuple of is constructed accor-

dingly to the given explanation above. More precisely two variables are needed. is

representing the current state of the device whereas is denoting the subsequent state which

results from executing the device function . In order to ground and , states that the

current device state need to exist in the world state () and that the

device is able to transit from this current state by the function to the subsequent state

(). The positive and negative effects are then defined accordingly. The

positive effect is the new state of the device. The negative effect specifies that the old state

of the device is not available anymore.

For location effects the approach is analogous but slightly simpler as no variable is needed to

represent the subsequent location as this is not state dependent (rule (22)).

(20)

(21)

Modeling Tasks for Smart Environments – CTML

120

(22)

Table 6-13 Transformation of Effects

The transformation result of qualified task name of an actor with a certain role is the triple of

actor, role and task name. This is the most fine-grained entity in the intermediate specifica-

tion. When an atom is reached () it is transformed by the function (rule (23)).

(23)

Table 6-14 Transformation of a Qualified Task Name

By applying the rules (1)-(23) a CTML model () with a selected configu-

ration () is translated into a homogenous qualified task expression in which each atom has

the form with , , and .

The Running Example – Transformation to Qualified Task Expression

In order to show the rationale of the previously described transformation algorithm an ex-

cerpt of the running example (which is completed described in Appendix A.1) according to

the “Conference Session” is used. The task expression in Figure 6-19 has been selected. For

each atomic task, Welcome Presenter and Present Agenda, a location precondition is defined

to ensure that these tasks are only executable if the currently executing actor is in the Presen-

tation Zone ().

Figure 6-19 Partial Task Expression of the Role Chairman

The abstract syntax of the given task expression is as follows:

To be able to transform that task expression to an intermediate specification a scenario is

needed, named , which precisely assigns actors to roles (amongst others). Taking

a slightly adapted version of the Scenario 1 which defines that Sheldon acts as Chairman

(with the task model for the chairman given above) the transformation can be started as de-

fined by the given rules:

Modeling Tasks for Smart Environments – CTML

121

Rule(s)

(1)

(2)

(7)

(8)

(12), (19)

(12), (19)

(14),(23)

(14),(23)

Accumulated the function assigning preconditions based on the state defined in can be

expressed by:

Having applied the previously rules and transformed the model into a homogeneous task

expression with according functions specifying preconditions (as given above and

) and effects () the LTS can be created.

6.4.2 Inference Rules

Throughout this thesis LTSs (see Section 4.5 for the formal definition) are the semantic do-

main of choice. They define an interleaving semantics. In order to define a precise semantics

for CTML the intermediate specification (see Figure 6-18) is translated to a LTS by a set of

inference rules. The derivation is based inference rules which transform an expression into

another when certain hypotheses are fulfilled. The basic structure of such an inference rule is

as follows:

The statement above the fraction defines the situation when the conclusion, the statement

under the fraction, is derivable. Each rule defines how a certain expression is stepwise trans-

lated to a LTS. In more detail, an action (an atomic task) is only executable if and only if it is

derivable from the inference rule. By the execution of an action the task expression is trans-

formed by the applied inference rule. Additionally the action history and the word state

needs to be adapted accordingly.

Modeling Tasks for Smart Environments – CTML

122

In order to understand the semantic domains of LTSs for CTML it has to be defined what

constitute a state in the LTS. A state represents the current task expression which is to be

further transformed (e.g.,), the action history (denoting the set of already executed

actions) (e.g.,) and the set of currently true literals (e.g.,

). The initial state of the LTS can be

straightforwardly derived from the intermediate specification as the task expression is part of

the tuple . The action history is empty in the initial state and the set of literal. In es-

sence, a LTS state is defined by the tuple with being the task expression in the

current state, being the literals in the current state and being the set of already executed

tasks. The functions assigning preconditions and effects in the intermediate specifications are

consulted but do not constitute the state because they not modified during creation of the

LTS.

In terms of a LTS executing an action results in a transition from the current state into the

subsequent state. Thus with each transition the task expression is translated until only an

action is left which is also eventually translated to the empty task expression. Finally a spe-

cial state is created denoting the termination.

In order to foster the understanding of this approach an example of a LTS is given here. The

initial task expression is given by .

Figure 6-20 The Semantics of a Task Expression visualized as LTS

The LTS
 can be visualized as the graph depicted in Figure

6-20. For reasons of clarity numeric labels instead of the actual task expressions are used

(Table 6-15 explains the mapping). Please note that invisible actions and corresponding

states are removed from the example in order to foster understanding.

Label Expression Label Expression

1 6

2 7

3 8

4 9

5

Table 6-15 Mapping of Labels to Expressions for the Example

Modeling Tasks for Smart Environments – CTML

123

A LTS is interpreted by its current state and the action enabled in its current state which are

represented by outgoing transitions. In Figure 6-20 the initial state of the LTS is

 . Thus the first action being executable are and . When is activated the

state of the LTS switches to in which is enabled. The subsequent actions are

performed in the same vein until the empty task expression has been reached. Then the

LTS propagates and successfully terminates in the state (more precisely

). It is the special state which is added to the definition of a LTS for con-

venience in order to denote the termination. The other branch can be traced in the same man-

ner.

In the following paragraphs for each operator and for preconditions and effects the inference

rules are listed and explained. In order to illustrate the inference rules the intended semantics

of the operators are explained in detail.

Again it is pointed out that not only the qualified task expression is stepwise trans-

lated but also the action history (denoting the history of action executed) and the literals

which are needed to give meaning to preconditions and effects (which are empty in the ex-

ample above). Moreover the action history is used to evaluate preconditions based on

tasks.

Before introducing the inference rule some syntactical transformations are performed to re-

duce the number of inference rules. More precisely, the unary optional operator is replaced

by the binary choice and the unary finite iteration operator is flattened by the binary enabling

operator.

An optional execution of a task can be rewritten by the choice of the task and the empty task

expression. In order to simplify the rules the empty task expression is introduced. Following

the convention of process algebra the empty task expression is named .

The same applies for the finite iteration operator. The semantics of the unary finite iteration

operator is the n-ary execution of . It can be rewritten by enabling expression. It is

transformed by the following the recursive algorithms:

Having normalized optional and iterative task expressions, the inference rules for CTML are

given and illustrated. Please note that the inference rules transform LTS states based on the

initial state derivable from the intermediate specification. However, most rules focus on the

pure task expression. Therefore the standard way of interpreting such a rule is only to con-

sider the state as task expression. In this vein, obsolete projections on tuples are avoided. If

the whole state including action history and state of literals is of interest it is explicitly stated.

The simplest task expression is the empty task expression. The only action can produce

is after it terminates. The corresponding rule for this special term is as follows:

Modeling Tasks for Smart Environments – CTML

124

Successful Ter-

mination

(1)

The next rule specifies the execution of an action. There is no hypothesis as no condition is

necessary in order to derive the LTS for this case. It defines that an action can be translated

to an empty expression by defining a transition in the LTS between those states. Moreover it

states that the execution of an action adds the action to the action history . In order to do so

the complete LTS states need to be considered which is denoted by the tuples. More formal-

ly, the LTS state in which an element of (being an atom or action) represents the

task expression can be transformed by executing to the LTS state in which the task expres-

sion is the empty task expression () and the extended action history by . The state of

literals is not changed.

As is produced each execution produces a before the final state is produced (see rule

(1)). In certain situations this fact needs to be kept in mind when writing the rules (e.g., see

the Enabling Operator).

Action Execu-

tion

(2)

The rule above also shows the structure of such rules. Under the fraction on the left hand

side of the arrow an existing state of the LTS is given. The arrow defines which task is ex-

ecuted on the state. On the right hand side the resulting state of the LTS is given which if not

present in the LTS is created. The same applies for the transition.

Now it is continued with complex task expressions. For the subsequent rules it is referred to

 as arbitrary qualified task expression of the specification ()

The first one is the choice operator. In CTML the operator is interpreted as external choice.

In process algebras it is distinguished between external and internal choice and also ap-

proaches in task modeling considered such a distinction [Roscoe, 1997; Sinnig et al., 2007].

Thus the choice of actions is performed deterministically here. Let be a choice ex-

pression with () then by selecting an action of the second expression

becomes unavailable (and vice versa). The rules define that the choice expression can be

translated to another expression if one of the actions of the choice expression is translatable

to . Please note that these rules also capture the case when or are atomic units as can

be the empty task expression . This applies for all subsequent operators as well. The

handling of atomic actions is therefore completely solved by rule (4) and the expres-

sion. These two rules sufficiently define the choice operator.

As the choice operator does not affect the action history or the state of the literals the brief

notation is used in this rule.

Modeling Tasks for Smart Environments – CTML

125

Choice

(3)

The order independent expressions is intended to define that two tasks can be performed in

any order but once one the tasks is started the other has two wait until the first one terminates

successfully. Therefore this operator can be defined by means of the enabling operator ().

Under the condition that one can transform to the order independent expression can be

translated to the sequence of and as has already been started which restrict the execu-

tion to a simple sequence. The same rule is given for starting task .

Order Inde-

pendent

(4)

With respect to an interleaving semantics concurrent means the interleaving of all actions of

 and . Therefore no restriction is made by the inference rule given for the concurrent

operator which reflects the intuition of the concurrent operator adequately. Rule (5) is not

sufficient as each operand may produce a to notify its termination. This termination can-

not be propagated as the expression is not terminated when one of its operands terminates

but if both terminate successfully. Therefore synchronization between the termination of

both operands is needed which is specified by rule (5), (6) and (7). To be more specific rule

(6) specifies the need to catch the produced when the first operand terminates. Eventually

the concurrent expression terminates successfully when both operands terminated (rule (7)).

In this situation is propagated.

Concurrent

(5)

(6)

(7)

The disabling (also referred as deactivation) operator defines that the second operand may

disable the first operand at any time (rule (10)). Moreover when the first operand terminates

successfully the is not propagated but the second operand needs to terminate first which is

specified in rule (9). Rule (8) defines the normal case of executing actions of the first ope-

rand.

Disabling

(8)

Modeling Tasks for Smart Environments – CTML

126

 (9)

(10)

The intuitive meaning of the suspend resume operator is the iterative execution of the second

operand (rule (12)) until the first operand is executed successfully (rule (11)). In any state of

the first operand the second operand may be started (suspension). After termination the first

operand may be continued. Please note that the second operand is defined as optional as a

may be produced in rule (11) leading to termination.

Suspend

Resume

(11)

(12)

The enabling operator defines a sequential execution of both operands. The stepwise execu-

tion of the first operand is specified in rule (13). However if the first operand terminates rule

(14) needs to be applied as the must not be propagated since the second operand needs to

executed first. More in detail, when the first operand terminates the expression is trans-

formed to the execution of the second operand.

Enabling

(13)

(14)

After having defined the semantics of all binary operators it is now continued with the ex-

planation of the unary operators. As the optional execution of a task denoted by has been

eliminated beforehand (substitution by the binary choice operator) no rule for this operator

exist.

The iteration operator specifies the repetitive execution of a certain task expression . Once

an iteration is started (rule (15)) it needs to be completed until a new iteration can be trig-

gered. After having finished an iteration (denoted by) either the repetitive execution may

be stopped () or a new iteration cycle can be triggered () which is specified in rule

(16).

Iteration

(15)

Modeling Tasks for Smart Environments – CTML

127

 (16)

In the case of a task based precondition certain actions need to be executed in order to enable

the precondition. As the history of actions is captured in the sequence the evaluation of a

task based precondition is straightforward. As seen in rule (2) when executing an action the

sequence is extended in order to define the current state (according to the situation calcu-

lus) and to evaluate task based preconditions. Moreover during the transformation process

described in the last section the function is stepwise created. Please note that

() under the fraction is a term whereas above the fraction is a func-

tion assigning a qualified task expression its task based precondition. The evaluation of such

a precondition is given in rule (17) and (18). Under the assumption that can be transformed

to by the action the composed task expression can be transformed to given

that the assigned precondition (being the tupel) is fulfilled (with being a quantifier

and being a set of qualified task names). The interpretation of the preconditions depends

on the used quantifier of the precondition. If an all quantifier is used all qualified task

names need to be included in the action history (rule (17)). In contrast if an exist quantifi-

er has been used only one action of needs to be contained in the sequence of actions al-

ready executed (rule (18)).

Precondition

(17)

(18)

In the same vein as a task based precondition state based preconditions are evaluated. More

precisely the current situation denoted by is consulted in order to check that the assigned

state precondition () is fulfilled. A state based precondition is fulfilled iff the predi-

cates assigned to the task expression are contained in the current world state .

Precondition II

(19)

In contrast to preconditions effects denote the state change of the system due to the execution

of an action. More precisely not only the positive effects but also the negative effects of an

action need to be considered to define the world state consistently because the positive ef-

fects only state the facts which are true after executing which is not sufficient as some facts

may be false after execution which needs to specify as well.

As effects are only assigned to qualified task names () effects are applied in conjunc-

tion with action execution. As already state during the transformation of effects in the pre-

vious section effects are consisting of the following tuple
 . The reason for

Modeling Tasks for Smart Environments – CTML

128

such a complex formalization is due to the state dependence of effects. When executing a

function on a device as effect the new state of the device depends on the current state. There-

fore effects need to take into account the current world state. To be able to do so variables

are needed. denotes the set of variables for an effect. specifies the needed situation con-

taining variables which are substituted accordingly so that is true in the current situation

(). This substitution is then applied to the positive and negative effects which contain

variables of . Thus all variables are eliminated.

Rule (20) states if can be transformed to by the action and a substitution of variables

exists which eliminates all variables in so that the grounded predicates in are contained

in the current situation which means that is true in that situation, then the effect can be

applied. It is applied by transforming the task expression into and creating the new situa-

tion after executing (denoted by). By applying the substitution for the positive and nega-

tive effects grounded predicates are created. The new situation is then derived by subtracting

all negative effects from the current situation and adding all positive effects to it.

Effect

(20)

Having defined the inference rule the LTS representing the semantics of a CTML specifica-

tion can be derived.

The Running Example – LTS Creation

Taking the running example of the “Conference Session” the example of the intermediate

specification is now transformed into a LTS. According to the explanation given above a

preprocessing step is necessary to eliminate optional tasks and finite iterations. As neither of

them exists in the example no adaptation is necessary. In Table 6-16 and Table 6-17 the re-

sulting LTS is specified. The visual presentation of the LTS is given in Figure 6-21. In Table

6-17 the applied inference rules in order to derive the subsequent state and the produced

action are named.

Label State

1

2

3

4

5

6

7

Table 6-16 Labels and States of Example LTS

Modeling Tasks for Smart Environments – CTML

129

The initial state of the LTS is given by the task expression in the intermediate specification,

the set of true literals also defined in the intermediate specification and the empty set of al-

ready executed actions. This tuple entirely defines the initial state of the LTS. Not the infe-

rence rules are applied. Depending on the structure of the expression which is an order inde-

pendent expression in the case of the initial state, the appropriate rule is applied. Hence, not

only one rule is applied but in order to proof that the hypotheses above the fraction of the

inference rule can be proven. To exemplify this approach the initial state of the LTS is used.

As already stated the initial state is an order independence expression. Rule (4) can (and

therefore is) applied if the hypothesis can be proven. The rule to be applied is:

The rule can be paraphrased as follows: an order independence expression can be trans-

formed into a enabling expression if the first operand can be transformed to . Therefore an

appropriate inference rule for the first operand, namely , is applied. As the

expression is a state precondition rule (19) is consulted which checks whether the assigned

precondition (the function defines the assigned precondition) is fulfilled in the current

world state, here . It is not only checked whether the precondition is ful-

filled but also whether the inner expression of the precondition can be further derived

(). As this an atom the action execution rule ((2)) can be applied which translated

the atom to the empty task expression and adds the executed action to the action histo-

ry. The selection of the other operand of the order independence expression is analogous as

this operator is symmetric (state 4).

Source State Target State Action Inference Rules

1 2 (4),(19),(2)

2 3 (14), (1)

1 4 (4),(19),(2)

4 5 (14), (1)

3 6 (19),(2)

5 6 (19),(2)

6 7 (1)

Table 6-17 Transition Matrix and Applied Inference Rule

Now the previously created enabling expression which represents partially state 2 is further

derived. According to rule (14) an invisible action is created and the enabling expression

resolved to the second operand if the action derivable from the first operand is . As the

first operand is which can be translated to using rule (1) which in turn produces

 the hypothesis holds. Therefore rule (14) can be applied which produces and converts

the enabling expression to the second operand which in turn is an atom and can be translated

Modeling Tasks for Smart Environments – CTML

130

as described before. Finally the expression is reached which can be further transformed

into . is used as action to denote the successful termination.

The other path through the LTS (by selecting the other task as first action to execute) is de-

rived analogous.

Figure 6-21 Visual Representation of the LTS

Semantics for Sub Specifications

During the creation of CTML specifications task expressions are created. The interactive

exploration of those sub specifications is an important feature to be supported. The isolated

interactive exploration of single task trees does not reveal their full semantics (as dependen-

cies to other role based task models are not interpretable) but already show the meaning of

the task structure and the results of the precondition and effects defined over the task expres-

sion and the domain model. Being able to animate intermediate specification helps to shorten

feedback cycles and improve the artifact.

The approach of assigning semantics to a single task tree relies on synthesizing a simple

CTML model based on the task tree. A configuration with a single actor which fulfills a syn-

thesized role which in turn uses the task expression is created.

Let be a single task expression of the following form with

being the set of task names of the task tree, assigning each task name a task type (in the

same vein as in Definition 6-2), being the role name, be the task expression according

to Definition 6-4. being the domain model and the corresponding objects, then a

CTML model with and can

be synthesized as follows. The cooperation model is defined by:

1.

2.

3.

4.

5.

6.

7.

The set of configurations is defined by the only one element:

1.

Modeling Tasks for Smart Environments – CTML

131

with

1. with

2.

In this vein the same formalism can be used to assign semantics for sub specifications of

CTML model. Therefore all algorithms (such as refinement) are also usable for single task

trees.

6.5 Refinement

During software development models are adapted and incremental refined. To answer the

question whether a certain refined model is a valid adaptation of the base specification re-

finement checks are supportive. This applies particularly for models employed in an itera-

tive, incremental process models. Therefore refinement is of interest for CTML models. In

order to define an appropriate notion of refinement different refinement relations are ex-

amined and assessed with respect to the usage for CTML. As LTSs have been selected as

ultimate semantic domain for CTML models refinement relation based on LTSs as examined

in Chapter 4 can be used. However it is shown that those approaches are not sufficient in all

cases. A more flexible approach is therefore proposed in the second part of this section.

6.5.1 Comparison Semantics for CTML

In Section 4.5 several notions of refinement have been examined. Here the different pro-

posed comparison semantics are assessed with respect to CTML. Moreover it is shown that

even though that some proposed semantics are suitable they do not fulfill all requirements in

order to allow a flexible approach to introduce refinement for CTML specifications.

Trace semantics is the most coarse-grained semantics for LTSs. It gives meaning to a LTS

with respect to what it is able to produce. However as there is no notion of successful termi-

nation it does not state what a LTS needs to do. Thus trace semantics gives only little infor-

mation about the equivalence of two CTML specifications, respectively LTSs derivable from

CTML models.

Definition 6-27 (Semantic Mapping): Let be a CTML model and the se-

lected configuration of , then denotes the semantic mapping function with

 which assigns the CTML model and the selected confi-

guration an LTS with respect to the given definitions in Section 6.4.

Definition 6-28 (Trace Equivalence): Let and be two CTML specifi-

cations,
 and

 the selected configurations of and , respectively, then the

CTML models are trace equivalent iff:

The set of traces of the LTS is defined as follows:

In the same vein trace inclusion and trace extension can be defined.

Modeling Tasks for Smart Environments – CTML

132

Completed trace semantics however introduces the notion of successful termination. This is

of particular interest for CTML as task modeling relies on the hypothesis that task are ex-

ecuted in order to reach a goal which is not considered in trace semantics. Completed trace

semantics is therefore a much more suitable semantic model for CTML. Moreover it is also

an intuitive semantic model for CTML. This item should not be underestimated as the task

modeler is able to comprehend the model while designing. Completed trace semantics offers

this opportunity because it represents how people consider the execution of tasks (a task is

complete when its goal has been reached e.g., cleaning a car is reached when the car is

cleaned) and completed trace semantics is also assumed by most task modeling languages

(but not formally defined) [Limbourg & Vanderdonckt, 2003; Paternò, 1999; van Welie et

al., 1998]. Due to the notion of successful termination also deadlock detection is possible in

completed trace semantics.

Completed trace semantics consider to LTS equivalent if they have the same set of com-

pleted traces (successful terminated runs). Applied to CTML completed trace semantics de-

fines the two CTML models are equal if they exhibit the same set of sequences of action

reaching the goal.

Failure semantics not only states what a LTS needs to do but also examines a LTS with re-

spect to what is not able to do. More precisely, failure semantics captures which actions are

not executable after having executed a certain traces. As already stated earlier failure seman-

tics includes completed trace semantics and as such is a finer comparison semantics. Due to

the inclusion of completed trace semantics successful termination and deadlocks can be de-

tected. However failures semantics is the semantics which investigate the structure of the

model itself and not only the observations (executed actions). For modeling of human activi-

ty this is counterproductive as the internal structure of actions a human being cannot be in-

vestigated anyways.

The comparison semantics of LTSs form a lattice as already stated earlier. Having consi-

dered failure semantics as too fine for CTML no other comparison semantics (except for

simulation semantics [van Glabbeek, 1990]) needs to be examined as all others are finer and

therefore make less identifications over the set LTSs. Simulation semantics is independent of

completed trace semantics and failure semantics but is not appropriate for CTML because it

focuses additionally on the branching structure of the LTS which is not of interest for CTML

(the branching structure represents the internal structure of the actions of a human being

again).

Beside the comparison semantics to be used for CTML it needs to be examined what kind of

refinement is allowed. Is a sub specification always an extension to its base specification or

is a sub specification required to exhibit the exactly same behavior? This question cannot be

answered by the examination of the modeling language but needs to be solved with respect

to the usage of the modeling language within the development process. For CTML on the

analysis level substantial model adaptation may be allowed but when moving from require-

ments to design this might be counterproductive. A cautious approach is needed in this case.

For CTML restricting the behavior in a sub specification is inappropriate as gradual refine-

ment is one of the core concepts of hierarchical task modeling. During development atomic

Modeling Tasks for Smart Environments – CTML

133

units are further refined constituting an extended behavior even though action refinement

cannot be consistently defined with interleaving semantics. Equivalence behavior is desirable

when only minor model adaptations are valid in the current phase of development (e.g., in

the final phase of design). Extending the behavior of the base specification is definitely also

a case to consider in order to define an appropriate refinement relation for CTML.

Under which circumstances the different types of refinement can be applied is answered in

Chapter 7 which introduces a development approach by explicitly using the refinement rela-

tions proposed in the remainder of this chapter.

In the domain of LTS a completed trace refers to the successful run through the LTS. In task

modeling an analogous term exists. A successful run through a task model is referred as sce-

nario [Paternò, 1999; Wurdel et al., 2008d]. As it has been shown previously completed

trace semantics is an appropriate model of abstraction for CTML. In order to stick to the

convention of task modeling the first comparison semantics for CTML is referred as scenario

semantics:

Definition 6-29 (Scenario Equivalence): Let and be two CTML spe-

cifications,
 and

 the selected configurations of and , respectively. Let

further be the semantic mapping assigning a CTML specification () and a se-

lected configuration () its corresponding LTS as explained in Section 6.4, then the CTML

models are scenario equivalent iff:

The set of scenarios of the LTS is defined as follows:

Accordingly scenario inclusion can be defined:

Definition 6-30 (Scenario Inclusion): Let and be two CTML specifi-

cations and
 and

 the selected configurations of and , respectively, then

 refines by scenario inclusion iff:

This definition states a refinement which is based on extension. A sub specification needs to

exhibit at least the behavior of its base specification. If additionally scenarios are defined

scenario inclusion still holds. Scenario extension can be easily defined accordingly but is not

of interest for CTML.

Those two given definitions are the basic notions of refinement in this thesis. In order to

show the rationale of the definitions their applications are shown in the subsequent exam-

ples.

The Running Example – Scenario Equivalence and Inclusion

In Figure 6-22 an adapted version of the running example of the “Conference Session” is

given. In this example managing talks is considered as atomic for reasons of brevity.

Modeling Tasks for Smart Environments – CTML

134

Figure 6-22 Base Specification for Role Chairman

The scenarios of the base specification are the following (please note that qualified task ex-

pression () are not used here, as actor and role are identical in all

actions):

An adaptation of the model given above is depicted in Figure 6-23. In the refinement the

order independent operators are substituted by the enabling operator and the task Leave

Room is optional.

Figure 6-23 Refinement of Base Specification for Role Chairman

The scenarios of the refinement are the following:

Because of the models are not scenario equivalent.

Moreover, no scenario inclusion exists between those

models. The example exemplifies how scenario inclusion impacts the refinement process as

it preserves the scenarios of the base specification. Such an approach ensures that defined

requirements, design respectively, are not violated in later development steps.

Another adaptation is visualized in Figure 6-24. Here the order independent operator on the

left hand side is replaced by the concurrent operator which allows the interleaved execution

of all tasks. Moreover a new task Make List of Participants is introduced which is marked

with the unary optional operator.

Figure 6-24 Another Refinement of Base Specification for Role Chairman

The scenarios of the second refinement are the following:

Modeling Tasks for Smart Environments – CTML

135

Because of the models are not scenario equivalent.

However, as scenario inclusion exists between those

models. The refined model preserves all existing scenarios before and adds some additional

ones. This reflects the approach of adding iteratively requirements, designs respectively, to

the models.

The examples already show that scenario equivalence and inclusion are efficient utilities in

order to assure the valid implementation of base specifications. During model adaptation

refinement checks can be applied repetitively in order to check whether the same (sub) set of

scenarios are defined. However such a rigid approach exhibits also some drawbacks:

(1) Model Adaptation. Adapting models is part of engineering and as such is intended.

Therefore especially in early phases models underlie substantial changes during de-

velopment. Prototypes are created, adapted and dismissed. A more flexible approach

is needed to support such a process. Moreover with gradual advance of modeling in-

termediate results are created which exhibit partially valuable results whereas other

parts might still be constantly changing. Those more mature parts need to be treated

with different quality criteria as the others.

(2) Action Refinement. As already explained in Section 4.5 action refinement cannot

be consistently defined over interleaving semantics. Therefore another approach for

gradual refinement of task models needs to be considered since action refinement or

gradual refining atomic tasks is a common case in task modeling.

(3) Detailed Design. The general adaptation cycle consisting of adaptation and refine-

ment check is expedient throughout all development stages. However when fine tun-

ing the model in detailed design tasks might be introduced which are not conceptual-

ly important but necessary for technical reasons (e.g., in MB-UI development). In

such a case it might be reasonable to exclude those tasks from the refinement checks.

Therefore a more flexible approach is desired.

(4) Structural Refinement. The approaches so far, including scenario semantics, only

observe the behavior of the system, model respectively. In many cases this is com-

pletely sufficient. Nevertheless also structural properties constitute the validity of a

model and therefore also its refinement. What kind of properties are considered as

important in order to refine a model validly with respect to its structure depend on

the usage of model within the development process.

For these reasons a more flexible approach is introduced in the subsequent sections. The first

approach examines the structure of CTML in order to define structural refinement. The

second approach define a new semantic equivalence which makes use of so called meta op-

erators to define which tasks are considered during the refinement checks. Therefore the

Modeling Tasks for Smart Environments – CTML

136

syntax and semantics of CTML is extended and new semantic equivalences are introduced.

This will conclude the set of refinement relations for CTML. Subsequently it is shown when

each method of refinement is appropriate in the development life cycle of CTML.

6.5.2 Structural Refinement

The structure of a whole CTML specification is quite complex. Various modeling elements

can be examined in order to assure structural equivalence (or structural inclusion). Structural

equivalence can be easily defined by equivalence of two CTML models. However such a

notion of equivalence is not appropriate since it implies identity (or more general the exis-

tence of a bijection). Therefore a less rigid equivalence is used here.

Definition 6-31 (Structural Equivalence): Let and be two well-

formed CTML specifications and there exists a bijective function assigning each element

of an element of , then the CTML models are structural equivalent iff the fol-

lowing conditions hold:

1. Role Set. The set of roles are identical.

2. Mapping Consistency. Only elements of and are associated if they

are of the same type. It assures that roles are only associated with roles, etc.

3. Task Structures. The defined task expressions need to be identical in both models.

This definition states that there is a bijective mapping of the set of roles, set of task names,

task type assignment, task expressions assigned to roles, locations, set of device specifica-

tions, set of stationary device specifications, device assignments to roles and domain models

are equal of each cooperation model. Moreover, the task definitions are to be identical.

Please note that such a definition does not exact behavioral equivalence in any semantics

examined before as the configurations are excluded from the definition. Therefore, two

structural equivalent CTML specifications do not need to be trace or scenario equivalent

even though this is possible.

Definition 6-32 (Structural Inclusion): Let and be two well-formed

CTML specifications and there exists a surjective function assigning elements of to

 , then structurally includes iff the following conditions hold:

1. Role Set Inclusion. The set of roles are extended by the refining model.

2. Mapping Consistency. Only elements of and are associated if they

are of the same type. It assures that roles are only associated with roles, etc. Explicit-

ly excluded are task names as certain task names may not exist in the refining model.

Modeling Tasks for Smart Environments – CTML

137

3. Task Structures. The defined task expressions in the refining model are on-

ly allowed to refine former atomic actions into complex task expressions. Let be

the task expression for role of the base model and be the refining

task expression for , then structural refines validly if a function

 exist which assigns atomic qualified task names their refine-

ment. So that by replacing all atomic actions with its assigned complex expres-

sion. This needs to apply for all role task expressions of the .

Structural equivalence is very helpful in order to synchronize two CTML models according

to their structural properties. For model refinement it is inoperative as it does not give for

means adaptations. Contrary, structural inclusion is a very suitable device for refinement as it

allows comparing two models even though one extends the other. More precisely, the defini-

tion of structural inclusion demands that the refining model extends the set of roles (identity

is also understood as extension). Moreover the mapping function is only allowed to associate

model elements of the same kind. The most interesting part of the definition is part three:

Task Structures. Intuitively, the definition demands that only atomic actions in the base

model are allowed to be refined in the refining model. Such a definition of refinement goes

along with task modeling practices since intermediate specifications leaves certain tasks

atomic which are to be refined in later modeling steps. Such a practice is supported by struc-

tural inclusion above.

The Running Example – Structural Inclusion

In order to show the rationale of structural inclusion an example according to the “Confe-

rence Session” is used. Structural inclusion (or structural refinement) is only exemplified for

the third criteria. Therefore, the task expression given in Figure 6-22 is used as base specifi-

cation. The refining model is depicted in Figure 6-25.The task Manage Talks has been struc-

turally refined. No further adaptations are performed.

Figure 6-25 Structurally Refined Task Expression for Role Chairman

In order to highlight the rationale of the definition the function is specified (the role has

been omitted here):

6.5.3 Introducing Flexibility through Meta Operators

Section 6.5.1 has shown that strict comparison semantics adopted from interleaving seman-

tics by means of LTSs are not appropriate in all cases. Scenario semantics seems to be a suit-

able semantic abstraction but lacks flexibility by means of prioritization of certain tasks and

Modeling Tasks for Smart Environments – CTML

138

action refinement. Therefore this section introduces a set of unary operators which are as-

signed to tasks to denote their importance during refinement checks. Based on this syntactic-

al change of CTML new comparison semantics can be defined which are still based on traces

and scenarios. Preliminary results on this topic have been presented in [Wurdel et al.,

2008d].

Unlike temporal operators, meta operators do not determine the execution order of tasks, but

define which tasks must be retained or may be omitted in the refining task model. As de-

picted in Table 6-18, we distinguish between four different meta operators: shallow binding,

deep binding, exempted shallow binding, and exempted deep binding. All four operators

denote tasks which need to be preserved in all subsequent refining task models. While shal-

low binding only applies to its direct operand task, deep binding applies to the entire subtask

tree.

Operator Symbol Interpretation

Shallow Binding Denotes a mandatory task which needs to be preserved in subse-

quent refining models. Subtasks may be omitted or modified and the

task type may be changed.

Deep Binding Denotes a mandatory task which, including all its subtasks and their

types, needs to be preserved in subsequent refining models.

Exempted Shal-

low Binding
 Denotes a newly introduced mandatory task, which is not present in

the base task model, but which should be preserved in all subse-

quent refining task models even though the subtasks can be mod-

ified.

Exempted Deep

Binding
 Denotes a newly introduced mandatory task, which is not present in

the base task model, but which (including all its subtasks) should be

preserved in all subsequent refining task models.

Table 6-18 Meta Operators for CTML in Support for Behavioral Refinement

In Table 6-18 the existing meta operators for CTML are given. The first two are used to state

a certain task (and all its subtasks in case of the deep binding operator) is mandatory in the

subsequent development step (and all following). More precisely, the shallow binding opera-

tors define that a task is to be preserved but its hierarchical decomposition and the subordi-

nated tasks can be freely adapted. This operator is especially helpful when redesigned work

processes but considering the process itself as highly important. In contrast to the shallow

binding operator, the deep binding operator does not allow any adaptation of the whole sub

tree on which it is assigned. These operators provide the basic means for defining flexible

behavioral refinement on CTML specifications. However in some cases more complex

means are needed. The exempted binding operators help to solve such cases. They have been

defined to enable the software designer to introduce new tasks which are not considered in

the current refinement check (naturally in the refining model) but are considered in the sub-

sequent refinement step (when the model becomes the base model). The distinction between

shallow and deep has been made for the same reasons as the first two operators.

Modeling Tasks for Smart Environments – CTML

139

To be able to introduce the meta operators to CTML the syntax of CTML needs to be ex-

tended. Based on the Definition 6-4 which specifies how a task expression is syntactical

valid a slightly adaptation is introduced:

Definition 6-33 (
 -Qualified Task Expressions for r with Meta Operator):

Let be the set of qualified task expressions of and , then the fol-

lowing expressions are qualified task expressions with meta operator:

CTML with meta operators can then be straightforwardly defined by using Definition 6-33

as domain to form task expressions.

In order to perform the refinement check on two CTML specifications (base model and re-

fining model) certain steps need to be executed in order to base the semantics on the pre-

viously introduced ones:

1. Renaming of Tasks. During adaptation certain tasks of the refining model might be

renamed. This issue is supported by the refinement checker. A mapping of tasks of

base and refining model can be established if necessary.

2. Validation of Consistency of Nested Meta Operators. Meta operators are not al-

lowed to bet be nested without constraints. Therefore a syntactical validation of con-

sistent nesting of meta operators is needed. Well-formedness criteria are defined lat-

er.

3. Reduction of CTML Models. The introduced meta operators of Table 6-18 already

give a hint that a preprocessing step is needed in order to check refinement formally.

Certain sub trees are chopped in the base and refining task model. This step is ac-

tually implementing the semantics of the meta operators. After that an ordinary, not

annotated, CTML specifications is created representing the so called reduced CTML

specifications.

4. Refinement Check on Reduced CTML Models. The refinement algorithms are the

same as presented in Section 6.5.1 but use the reduced CTML specifications as in-

put.

The steps are executed in order to provide the mandatory scenarios, respectively traces of the

base and refining CTML models.

The first step can be defined by a simple mapping function assigning each qualified task

name of the refining model a new name (potentially the identical name):

Definition 6-34 (-Renaming Function): Let be the set of task names of a

CTML model, then, rename is a total function assigning another qualified task name:

Definition 6-33 defines task expression with meta operators recursively. Therefore nesting of

operators is syntactically correct. However, due to the semantics of the operators only a mi-

nor subset of nestings is also semantically useful (e.g., is semantically

not useful).

Modeling Tasks for Smart Environments – CTML

140

The check of validity of nested meta operators is performed with respect to the criteria given

in Table 6-19. The reasons for permitting or forbidding the nesting are also given.

Assigned Op-

erator to Task

Assigned Operator

on Nested Task

Validity Explanation

(exempted)

Shallow

(exempted)

Shallow

 The shallow binding operator states that sub-

task can be freely adapted. This meaning is

violated by such a nesting. Therefore it is not

allowed.

(exempted)

Shallow

(exempted)

Deep

 For the same reason as before such a nesting is

also forbidden.

(exempted)

Deep

(exempted)

Shallow

 The deep binding operator states that no adap-

tation is allowed in the subordinated task tree.

This constraint is violated by a nested task

which subtasks can be rearranged. Such a

nesting is not permitted.

(exempted)

Deep

(exempted)

Deep

 As deep binding does not allow any adaptation

this meta operator can be freely nested.

Table 6-19 Validity of Meta Operator Nesting

The reduction step is much more complex and distinguishes between base model and refin-

ing model. The reduction process itself is structured in four sub steps:

1. Base Model: Shallow Binding Reduction. According to the given interpretation of

the meta operators in Table 6-18 the first step during the reduction of the base model

is to remove all subordinated tasks marked with the (exempted) shallow binding op-

erator as those sub trees can be freely defined in the refining model.

2. Refining Model: Complex Task Reduction. Complex tasks of the refining model

which occur in the base model as leaf tasks are reduced in order to make base and re-

fining task model comparable. This allows to compare the specification with respect

to action refinement which is a common issue in interleaving semantics [van Glab-

beek & Goltz, 2000]. This reduction is performed independent of any meta opera-

tors.

3. Refining Model: Reduction of Exempted Tasks. Tasks that are newly introduced

in the model are not to be compared with the current base specification. Therefore

subtasks of tasks marked with one of the exempted operators which have been intro-

duced into the refining model in the current refinement step are chopped off.

4. Based Model: Reduction of Ordinary Tasks. If a task is not marked with any me-

ta- operator and this applies recursively for all subtasks then these tasks can be re-

moved from the CTML model. All meta operators can be dismissed to check re-

finement. The reduced based task model is created.

5. Refining Task Model: Reduction of Ordinary Tasks. In the same vein as in step 4

the not marked tasks of the refining model are also removed if recursively no sub-

tasks are marked with a meta operator. All meta operators can be dismissed to check

Modeling Tasks for Smart Environments – CTML

141

refinement. The reduced refining task model is created. Moreover refinement of

tasks marked with the shallow binding operator are reduced.

The complete process comprising renaming, validation and reduction can be considered as

normalization of a CTML specification to its reduced form in ordinary syntax of CTML.

Therefore the process is considered as function assigning each CTML

model with meta operators a reduced one without meta operators. As base and refining mod-

el are normalized differently an index is attached to the function to denote the difference

(,)

Having reduced the base and refining model the reduced version of each model is derived.

This model provides the means to derive the mandatory scenario, traces respectively, in or-

der to test for refinement of different kinds.

Definition 6-35 (Mandatory Scenario Equivalence): Let
 and

 be two CTML specifications with meta operators,

 and
 the selected confi-

gurations of
 and

 , respectively, then
 and

 are mandatory scenario equivalent iff:

Accordingly scenario inclusion can be defined:

Definition 6-36 (Mandatory Scenario Inclusion): Let
 and

be two CTML specifications with meta operators,
 and

 the selected configurations of

 and

 , respectively, then
 refines

 by

mandatory scenario inclusion iff:

Well-formedness Criteria for CTML with Meta Operators

In the following enumeration criteria of validity of the CTML specifications with meta oper-

ators are named. Naturally all criteria have to hold in order to validate a CTML specification

successfully.

1. Nesting of Meta Operators. Table 6-19 already defines which kind of nesting of opera-

tors in one model is allowed. These rules are very important need to be observed.

2. Conversion of Meta Operators. During the diverse iteration cycles of refinement meta

operators are naturally adapted. A shallow operator may become a deep operator. There-

fore rules need to be provided defining also the valid adaptation of meta operators. The

following rules apply:

2.1. Shallow to Deep. The shallow binding operator can only be transformed into a

deep binding operator. The rule is obvious with respect to their definition.

2.2. Exempted Shallow to Exempted Deep. The same applies for the exempted opera-

tors. Only more a more rigid operators is allowed to use instead of an exempted

shallow operator.

Modeling Tasks for Smart Environments – CTML

142

The Running Example – Refinement with Meta Operators

In Figure 6-26 an adapted version of the running example of the “Conference Session” is

given. It is very similar to the one used to exemplify scenario equivalence and inclusion.

Only Introduce Session is marked with the shallow binding operator and Close Session is

marked with the deep binding operator.

Figure 6-26 Base Specification with Meta Operators for Role Chairman

The model can be expressed by the following expression:

After having performed the first reduction step (1. Base Model: Shallow Binding Reduction)

the model is reduced to this model:

Now the final reduction step for the base model is performed which is only performed to

reduce time and calculation steps while doing the refinement check (4. Based Model: Reduc-

tion of Ordinary Tasks).

The refining model is given in Figure 6-27. Introduce Session has been redefined and Man-

age Talks is not considered as atomic anymore. Moreover the Leave Room has been dis-

missed.

Figure 6-27 Refinement of Base Specification with Meta Operators for Role Chairman

The corresponding task expression is:

Further refined tasks from the base specification are reduced according to step 2 (Refining

Model: Complex Task Reduction):

Next task marked with one of the exempted operators are reduced from the refining model

(3. Refining Model: Reduction of Exempted Tasks). In this example no exempted operators

are used. Therefore this step can be skipped.

Modeling Tasks for Smart Environments – CTML

143

The final step of normalization of the refining model comprises the reduction of ordinary

tasks not marked with any of the meta operators (5. Refining Task Model: Reduction of Or-

dinary Tasks.):

In both models the meta operators are removed. Now, the refinement check can be per-

formed according to the previously defined scenario equivalence and scenario inclusion:

Therefore, holds.

6.5.4 Conclusion

In the last sections different notions of refinement for CTML have been defined and as-

sessed, namely trace equivalence, scenario equivalence and inclusion, structural equivalence

and inclusion and mandatory scenario equivalence and inclusion. Each of the introduced

comparison semantics has its assets and drawbacks. Whereas behavioral comparison seman-

tics are more suitable to analyze the runtime behavior of the model, structural properties can

be better inspected via structural refinement. Scenario equivalence is the finest-grained se-

mantic model for CTML proposed here (more fined-grained models can be defined such as

bisimulation equivalence but are not suitable for CTML). Scenario equivalence is however

rather inappropriate for model adaptation as it allows no additional scenarios. In contrast,

scenario inclusion demands the scenarios of the base specification but also allows additional

scenarios. Such a definition is much more suitable for adaptation processes in the software

engineering lifecycle. The same argumentation can be applied for trace equivalence and in-

clusion. The drawback of trace semantics in general is the missing notion of successful ter-

mination. Structural equivalence and inclusion is, as stated before, a suitable validation de-

vice in order to asses that two models are structurally similar. Both comparison semantics do

not demand any behavioral similarity. The most flexible notions of semantics are mandatory

scenario equivalence and inclusion because the importance of a certain task within the re-

finement process is interactively assigned by so called meta operators. During the refinement

check the base and refining models are analyzed with respect to the used meta operators in

order to calculate the mandatory scenarios of each model. Mandatory scenario equivalence

demands that both models need to define the same set of mandatory scenarios whereas man-

datory scenario inclusion demands that the refining model needs to be comprise all mandato-

ry scenario of the base model.

The defined refinement relations have not been defined to assess the quality of a certain

model, but to compare a base specification with its refinement. The comparison criteria defi-

nitely change during the development process which makes it unfeasible to define only one

comparison semantics. Therefore, the various comparison semantics defined in the last sec-

tions serve as toolbox and have to be smoothly integrated into the interaction development

process. Such integration is proposed in Chapter 7.

Modeling Tasks for Smart Environments – CTML

144

6.6 Deadlock Analysis

Deadlock analysis has been tackled in a various fields of application. Having selected a se-

mantic model with a notion of successful termination deadlocks can be detected. Informally

with respect to LTSs a deadlock can occur if a LTS state exists which is not final and has no

outgoing transitions.

Definition 6-37 (Deadlock on LTS): According to the Definition 4-1 a LTS is defined by

the tuple , then a deadlock can occur in a LTS iff:

Please note that does not contain the symbol for successful termination (). The defi-

nition states a certain state have to be reachable via the action relation (without using)

and that this certain state has no outgoing transition defined by the action relation.

Accordingly deadlock freedom on LTS can be defined.

Definition 6-38 (Deadlock Freedom on LTS): According to the Definition 4-1 a LTS is

defined by the tuple , then a LTS is deadlock free iff:

Using the semantic mapping defined before these definitions can be easily applied to CTML

specifications.

The Running Example – Deadlock Analysis

By only using the temporal operators deadlock cannot be modeled. However, with the usage

of arbitrary preconditions assigned to tasks deadlocks can be easily introduced into a model.

In the example in Figure 6-28 a slightly adapted version of the task model for the role

Chairman is used. In the given example another task specifying how to login into the confe-

rence management system is defined. Such a system is used to provide additional informa-

tion regarding the current talk and the progress about the whole session. In detail, the task

defines that first the login screen is presented and the user needs to provide her credentials.

Finally the system either accepts or refuses the credentials. During managing a talk the

chairman can mark a certain talk as given once it is finished. However this is only possible if

the login has been successful which is expressed by the corresponding precondition.

Figure 6-28 Specification for Role Chairman with Deadlock

According to Definition 6-37 a deadlock exists if not further action can be executed and

has not been propagated yet. Such trace is . After having executed

Open Discussion the next potential executable task would be Mark Talk as Given. However

Modeling Tasks for Smart Environments – CTML

145

this is prohibited by the precondition which requires Show Successful Login Screen to be

executed earlier.

6.7 Tool Support for the CTML

One of the requirements for an adequate task modeling language stated in Section 5.1.2 is the

supply of tool support for that language. To effectively make use of a language suitable tools

need to be provided in order to foster creation, sharing, editing, visualization and usage in

general of the language. For CTML four main areas of function can be identified: Creation

and Editing, Visualization and Validation, Verification, and Interfaces. All areas are covered

by the tool support for CTML and explained in the subsequent paragraphs. First, a basic

introduction about the architecture of the tool support is given. Next, each area named above

is examined thoroughly accompanied by screenshots exemplifying the usage of the tools.

Finally some concluding remarks about the tool suite are given.

6.7.1 Architecture of the CTML Tool Suite

Software engineering usually comprises several languages edited and used in different IDEs.

However this is a rather insufficient situation. The process model should be supported by one

IDE covering all stages in which computer assisted manipulation of artifacts is taking place.

Therefore the different components of CTML are all integrated into one environment. More-

over as other modeling languages are also relevant for CTML the de facto standard for cod-

ing and modeling has been selected as foundation for the CTML components, namely the

Eclipse Platform as it furthermore supports a solid and flexible plug-in concept and diverse

supportive libraries for development which are shown in Figure 6-29 on the first four layers.

The EMF framework has been used for modeling the entities of CTML which also covers

serialization to share models. Moreover a rudimental editor comes with EMF. On top of

EMF the GEF and GMF framework have been used to create visual editors and validation

tools. On top of that, custom code has been implemented separated in different modules.

Hence, third level libraries have been used by certain modules which is denoted by black

lines.

Figure 6-29 Layered Architecture of the CTML Tool Suite and its Modules

Modeling Tasks for Smart Environments – CTML

146

6.7.2 Creation and Editing

The creation of CTML models can be become quite complex as multiple entities on different

levels of abstractions are involved. For each model in CTML (cooperation model, device

model, location model, domain model, and task model) an appropriate visual editor has been

implemented. Due to the fact that EMF always comes with a rudimental editor which is suit-

able for hierarchical models as it is tree-based multiple editors for a model exist. Figure 6-30

shows the high level editor for CTML models. It allows the designer to drag-and-drop the

high level entities on the canvas in order to create the corresponding model entities. The

palette is used to select the desired type of modeling element. Moreover, after having defined

the CTML model tools exist to start or stop the current animation.

Figure 6-30 Visual Editor for Cooperation Model

After the high level entities are specified the model needs to be gradually refined. The mean-

ing of the modeled elements can be defined by other visual editors (e.g., a role is specified

by a task expression). A model created with the task model editor is given in Figure 6-2. In

the same vein as in the Cooperation Model tasks can be easily created by simply dragging

them onto the canvas. Relations, such as hierarchical decomposition and temporal operator,

can be defined by connecting the tasks as desired. Syntactical validation is also supported.

To use CTML effectively also preconditions and effects need to be defined. Figure 6-31

shows the dialog which supports the convenient creation of preconditions and effects for

tasks. It can be accessed by opening the properties of tasks. The tabs are used to distinguish

between the definition of preconditions and effects (a). The select box helps to distinguish

between the different types of preconditions, effects respectively (e.g., location precondition,

device precondition) in order to support their creation (b). A text field can be used to enter

the preconditions, effects respectively by hand (c). Moreover for each type assistance in

terms of selection support is provided (d) which helps to avoid syntactical errors.

Modeling Tasks for Smart Environments – CTML

147

Figure 6-31 Tool Support for Designing Preconditions and Effects

Visual editors for all types of models exist. Location modeling is supported by a bird view

on the SmartLab to provide visual means to design the relevant location for the CTML speci-

fication. Device modeling is performed by a visual state chart editor. The domain model is

defined by a UML class diagram. An appropriate editor is provided by the EMF framework

delivered with the Eclipse distribution.

Specifying each entity separately can be quite cumbersome. Therefore the wizard pattern has

been applied to create CTML specifications conveniently from scratch. A top-down ap-

proach is followed which starts with role creation (left hand side of Figure 6-32) and assign-

ing appropriate task models (top of right hand side of Figure 6-32). Moreover devices and

corresponding device specifications can be designed, created respectively. Eventually a con-

figurations can created to test the model immediately. In this vein the creation process of

CTML models is guided.

Figure 6-32 Two Wizard Pages of the CTML Creation Wizard

6.7.3 Visualization and Validation

Due to the complexity of a fully dressed CTML specification various visualizations and vali-

dation tools are offered. First and foremost the CTML editor shows the Cooperation Model

with its Configurations (see Figure 6-30). It can be adequately adapted to emphasize the

Modeling Tasks for Smart Environments – CTML

148

entities of interest (e.g., hiding of links and/or nodes of certain types, rearrangement, etc.).

Moreover for each model several views may exist to highlight the model from different

viewpoints. The same applies for all other graphical editors (e.g., location model, device

model, etc.). Moreover for each model a tree-based editor generated by the EMF framework

is integrated into the tool environment.

For validation purposes CTML specifications can be animated on different levels of abstrac-

tions and using different visualizations. A CTML model can be created following a top-

down or bottom-up approach. In either way the different animation tools can be used which

are explained here following a bottom-up approach.

Having created a task expression for a role using the graphical editor shown in Figure 6-2 it

can be animated. During an animation the model is transformed into an executable specifica-

tion according to the semantics defined in Section 6.4. In animation mode tasks are hig-

hlighted according to their current state by visual signs as shown in Figure 6-6. Tasks can be

executed by double click or selection in a special widget. Further information such as execu-

tion history is displayed using other widgets. In the context of a Cooperation Model this

animation enables the isolated validation of task expressions for roles. Naturally not all pre-

conditions can be evaluated on this level of abstraction (e.g., a task precondition of another

role).

Another entity which can be animated is the device model. Devices are specified by means

of finite state machines (see Figure 6-12) whose behavior is defined by the words they pro-

duce. More precisely, within a certain state a set of action (being element of the alphabet) are

accepted. In order to validate such a device specification an animation has also been imple-

mented. In essence, the current state the finite state machine is in is visualized and the out-

going actions (transitions) can be selected. In this vein, the state space can be interactively

explored.

Please note that the domain and location model do not have a behavior in a sense but give

structure to the CTML model and are used to constrain the task execution. Therefore no be-

havioral animation of the models themselves can be defined. However for all editors syntac-

tical and semantic checks are offered to check the rationale of the current edited artifact.

Have defined the low level entities of the CTML model the Cooperation Model can be de-

signed (see Figure 6-30). This model actually consolidates the previously defined models,

such as the device model. Due to the various specifications involved the fully-dressed CTML

model can become quite complex and needs means for validation as well. In the same vein as

for a single task expression an animation of a certain configuration can be started. For each

actor a task animation is created and visualized (such an animation is given in Figure 6-7).

Moreover when instantiating the animation the models to be considered during animation

can be selected (so called Simulation Modes, see Section 6.1.2). This allows for testing the

CTML model from different viewpoints and emphasizes a certain model (e.g., the impact of

the location model on the CTML model). As the state of the current environment (the accu-

mulation of device states, location of actors, etc.) is of importance during animation to eva-

luate preconditions and apply effects another widget display this information to the software

designer.

Modeling Tasks for Smart Environments – CTML

149

Figure 6-33 2D-View on CTML Animation

In order to make the animation more realistic another visualization of the animation of a

CTML model has been implemented which is depicted in Figure 6-33. It uses the specified

location model as basis to display the actors and their current position with respect to the

(initial) locations. The actors can be selected to execute one of its tasks shown on the right

hand side of Figure 6-33. This type of animation is especially helpful if location information

is considered as particular important for the CTML model as changes in the location of ac-

tors can directly be investigated (which is the case in our experimental infrastructure, see

Section 5.1.1).

6.7.4 Verification

Animation of CTML models is suitable to interactively explore the model and its state space.

However due to the complexity certain features of the model may be kept concealed. There-

fore more rigorous methods are needed to detect erroneous models. The CTML Verifier has

been implemented to enable the software designer to perform refinement checks and dead-

lock analysis with respect to the definitions in Section 6.5 and 6.6.

The tool support for refinement checks can be accessed by the project explorer through the

selection of two artifacts on which refinement is to be checked. These can either be fully-

dressed CTML models or task trees (task expressions). Moreover several configurations of

the same CTML specification can be checked for refinement as well. In Figure 6-34 the re-

finement check dialog for two task trees is depicted. Several properties can be adapted in

order to make use of the different refinement types defined in Section 6.5. In order to ease

the selection of properties predefined profiles exist which implement the guidelines of suita-

ble refinement relation with respect to the development stages (a, see Section 7.3 for details).

Besides that, it has to be specified which model is the base and refining model for this par-

ticular refinement check (b). Next, the concrete properties of this check are selected (c, e.g.,

which type of refinement: behavioral and/or structural, whether meta operators are taken into

account, comparison semantics, and type of refinement (inclusion, equivalence, restriction)).

Modeling Tasks for Smart Environments – CTML

150

Finally, a name mapping can be defined in order to allow the user to rename tasks during

adaptation. After entering these details or selecting a predefined profile which is part of the

development methodology presented in Chapter 7 the refinement check is performed. The

result is presented and if it is negative a counterexample is given.

Figure 6-34 Refinement Dialog for two CTML Models

6.7.5 Interfaces

As already discussed earlier task modeling is not the only activity during interaction design

and implementation. In order to continue design and implementation within the same tool

suite (semi) automatic transformations have been implemented whose results can be further

adapted using the newly created or already existing editors integrated into the Eclipse IDE.

More precisely, an interactive approach has been chosen to create dialog models based on

CTML specifications (see Section 7.4.1) which is fully integrated and supported by the

CTML Editor and Dialog Graph Editor. Basically after having created the task model a new

dialog graph is created using the appropriate Eclipse Wizard. Then, the CTML specification

is imported in the dialog graph and can be used as advised in Section 7.4.1 or in [Reichart et

al., 2004]. In order to use task models for implicit interaction an automatic transformation to

HMMs has been implemented which serve as input for the intention recognition module of

the SmartLab. In this approach CTML models are annotated with additional information to

synthesize the HMM (see Section 7.4.2). During creation of the CTML model this kind of

information can be added using the property view. Having finished task modeling a right

click on the model is used to generate the HMM. An appropriate HMM Editor has also been

implemented to further adjust the generated artifact. After that, it can also be exported into C

Code which is used to operate the intention recognition system.

6.7.6 Conclusion

Tool support is a prerequisite to effectively make use of a modeling language like CTML. In

the last sections the tool support for CTML has been presented from different viewpoints. In

the beginning of the explanations the architecture of the tool suite has been examined. It is an

Eclipse based tool which employs different libraries of the Eclipse community and other

third parties. Beside the graphical editors which are based on the GMF and GEF framework

Modeling Tasks for Smart Environments – CTML

151

different software modules have been implemented in order to implement CTML and its

development approach.

Afterward the major functionalities provided by the editors and implemented modules are

presented in detail. First, the creation and editing of CTML model and sub models have been

explained, then different validation techniques are highlighted which are used to improve

CTML models. Subsequently the interface of the refinement checker has been presented and

its rationale is explained. It implements gradual refinement during the major phases of soft-

ware engineering as proposed in Chapter 7. Finally the interfaces to subsequently used de-

sign artifacts have been shown. Concluding it can be stated the all phases in which CTML is

relevant during interaction development are supported by the tool suite presented in the last

sections.

CTML Development Approach

153

Chapter 7
7 CTML Development Approach

In the last chapter CTML has been investigated in-depth. Now, the integration of CTML into

a development process for interaction design is shown. It is based on an iterative, incremen-

tal model and offers several interfaces to other artifacts. CTML has been designed to specify

the potential behavior and interaction in SmEs. Obviously the task model is not the only

artifact involved during the software engineering lifecycle. Therefore task modeling needs to

be applied in the appropriate phases and suitable artifacts need to be provided to derive a

task model or being derivable from a task model.

It has already been shown that CTML has been developed for early phases of development

and therefore the development approach primarily focuses on these stages. Three different

phases are considered within the CTML development approach, namely analysis, require-

ments specifications and design. Common phases such as implementation, test, and mainten-

ance are not covered by CTML as other artifacts are used in these phases. Two reasons can

be stated why CTML primarily focuses on early stages of development:

 In SmEs requirements engineering is currently no standard discipline. Solutions are

usually technical driven and thorough analysis and requirements elicitation is not

performed.

 A lack of incorporation of user needs is observable. This issue actually relates to the

first issue as user needs are gathered within the early stages of development.

Based on the insights of Section 3.2 an iterative, incremental process model for SmE is pro-

posed to incorporate the principle of UCD and HCSE. The advantages of such an approach

are the incorporation of the users’ needs, short iteration and feedback cycles, and user in-

volvement. In theory and practice it has been shown that iterative, incremental development

approaches can be combined with UCD and HCSE [Göransson et al., 2003] though the com-

bination is not the case in general.

The named principles of UCD and HCSE cannot be implemented by the language itself but

by guidelines how to use the language and the process model of the software system under

construction. For example, user involvement cannot be provided by the language but by

process model which demands user involvement to review each increment. Contrary, the tool

support and the language may offer visualizations and prototypes which are understandable

by the user to support user involvement. From our point of view task models in general, and

CTML in particular, are able to support the principles of UCD and HCSE if employed in an

appropriate process model. Task models enable rapid prototyping to fasten feedback cycles,

CTML Development Approach

154

are understandable by laypersons supporting user involvement and specify the system under

construction from users’ perspective.

Figure 7-1 Process Model for CTML for SmEs

The process model for early stages in SmEs is depicted in Figure 7-1. There are three differ-

ent stages, namely Analysis, Interaction Specification, and Detailed Interaction Design,

which roughly congruent to the classical software engineering phases analysis, requirements,

and design but primarily focus on interaction development taking into account the special

constraints of SmEs. Preliminary results have been published in [Wurdel et al., 2008c]. Dur-

ing Analysis the interaction of the users are analyzed. When developing the SmE from

scratch the pure human to human interaction is analyzed. However this is usually not the

case. With the advent of cell phones, laptops and other mobile devices certain components

constituting the SmE under construction are already present. Still, the purpose of the analysis

phase is to analyze the human interaction in such an environment in order to have a valid

image of a “normal” situation. Based upon that, the requirements with respect to interaction

can be derived. The advantage of a dedicated analysis stage is that the existing work

processes can be taken into account in the requirement specification (this issue has been in-

vestigated in Section 3.4.2). This allows for smooth transition between existing and new

software system and accounts for user acceptance. The requirements are specified with re-

spect to the whole SmE. It should be avoided to already specify which device is used to

achieve a certain goal but a more abstract view is recommended. More precisely, the envi-

sioned interaction flow of users and SmE is to be taken into account. Also other valuable

facts can be specified in this stage: the domain types and locations relevant for executing

tasks can be integrated to determine the dependencies of tasks and the environment. The

result of the Interaction Specification phase should be an abstract interaction flow between

user and system which can be enriched with domain and location information. In this vein an

abstract interaction flow is specified which can be gradually refined in later stages. Interac-

tions are reified with respect to modality and assignment to devices. This is performed in the

Detailed Interaction Design stage. On this level of abstraction the device types potentially

present in the SmE are specified with respect to their behavior (functions, states) and static

properties (in- and output capabilities, network access, etc.). Moreover the binding of tasks

to these devices is considered. “Which device types may support in which circumstances the

execution of a task?” is a question to be answered here. The result of this stage is a fully

dressed CTML specification being designed to serve as input for implicit or explicit interac-

tion.

To be able to follow the interaction design process depicted in Figure 7-1 different means are

offered to create the corresponding artifacts and increase their quality. The arrows in the

CTML Development Approach

155

figure already indicate the useful instruments for each stage. Naturally this mapping is rather

a hint and can be adapted according to the needs in the process. The instruments used during

the development lifecycle are explained in the following enumeration (except for refinement

as it has been explained extensively before). Furthermore reasons are given for the suitability

of the instruments for certain phases:

 Discussion and Feedback. Site visits to discuss the current used software system

are very helpful during analysis but also feasible to discuss requirements and con-

crete design proposals [Hackos & Redish, 1998]. During analysis interviews and ob-

servations are used to get a picture about the current work situation. In subsequent

stages instantiations (mock-ups, prototypes) of requirements or designs can be used

to visualize the system under construction for the end user. Based on that feedback

can be provided.

 Animation. Having a specification formalism with an operational semantics sup-

ports the idea of animating the model to show its behavior in a very concrete way.

Either an interactive walkthrough or an automated run can show the currently speci-

fied behavior. Following a model-based approach the specification can be gradually

refined, enriched and transformed to create more sophisticated prototypes. Therefore

animation is used in all phases of development presented in this thesis. Also differ-

ent ways of animating the very same model can be helpful to highlight certain view-

points of the model.

 Validation. Animation is one way to validate a model. However syntactical and se-

mantic validations are other means to improve the quality of a model. Checking con-

sistency and cross references between models are representatives of this utility. Dur-

ing analysis too rigid validation constraints can even be counterproductive. The

more mature the model becomes the more rigid validation can and should be ap-

plied.

 Prototyping. An animation can be considered as abstract prototype. However paper

prototypes and high fidelity prototypes are other types which are very helpful to

show the current design. Even though prototyping is often considered as technique to

detect usability flaws ([Walker et al., 2002]) it is actually an excellent utility to elicit

requirements (by example) and evaluate potential design solutions.

 Verification. As soon as specifications become quite complex formal methods are

needed to keep track of the properties of the model. Deadlock analysis and refine-

ment checks are representatives of verification. During very early stages of devel-

opment formal methods may be a burden to the designer as they restrict the creativi-

ty of the design. As soon as the specifications become more stable verification is in-

valuable.

These instruments are used to drive the design of the whole process. Some of them are not

only used in intra stage design but also for inter stage design meaning that they are helpful to

transit from one stage to the other. More in detail, it is claimed that refinement is an excellent

vehicle to close the gap between the stages of development. The difference between intra and

CTML Development Approach

156

inter stage design is that the adaptations are much more fundamental when moving from one

phase to another. This needs to be taken into account by the refinement relations used. This

issue is addressed in Section 7.3.1.

7.1 Involved Artifacts

As stated before the task model is not the only artifact used in the development lifecycle of

interaction. To provide a solid basis for the explanations of the phases in detail each artifact

is illuminated briefly. To further elaborate on these topics references to literature is given.

7.1.1 Scenarios

Scenarios are narrative text descriptions of the usage of a system. They are concrete (e.g.,

using real names) and do not contain choices or decisions to make. Therefore, they actually

describe one way through the usage of a system or specify how a system has been used in the

retrospective. In Section 5.1.2 an example of a scenario in the domain of SmEs is given.

Scenarios are a helpful technique for brainstorming. They are easily to understand and ex-

plain. End user can be involved and new scenarios can be developed based on existing ones

until the main scenarios of the system are covered. For further information about scenarios

[Carroll, 1995] is suggested. Please note that scenario in this sense are similar but yet not

identical to scenarios of a task model. Scenarios here are artificial stories how the system

might be used in the future to analyze and elicit requirement.

7.1.2 Use Cases

In contrast to scenarios and similar to task models use cases are generalized descriptions. As

such they specify a set of runs through the system (potentially all possible runs). Use cases

are the de facto standard in industry for specifying functional requirements and the basic

interaction flow of events between user and system. They specify the flow stepwise by text

descriptions what is happening in each step. According to the guidelines defined by Cock-

burn use cases should start with the most common way a goal is achieved (“main success

scenario”) and then add extensions to the ordinary case [2001]. Use case diagrams visualize

the relation of several use cases (extension, generalization). In most software development

processes use case modeling and specification are major steps while defining the require-

ments of the system under construction (e.g., RUP).

Figure 7-2 depicts an example of a use case with respect to the scenario of a presentation at a

conference. First, the name of the use case can be seen (“Give Presentation”) followed by the

preamble. The primary actor is the subject who wants to achieve the goal and proactively

interacts with the system. Secondary actors are supportive but do not take the initiative. Then

the level of detail is specified which determines the granularity of the use case as they are

modeled on different levels of abstraction. Here in the given example a precondition is de-

fined denote the necessary state under which the use case can be started. After the preamble

the main success scenario starts. It is a stepwise text-based description of the main path

through the use case. The actions 1-6 represent the main success scenario. In action 6 a loop

is described informally. Naturally the main success scenario does not cover all cases. There-

fore extensions to it can be described. First, the condition under which the extension occurs

CTML Development Approach

157

and the entry point is specified (e.g., alternative path for action 5. is 5a. when time is ex-

pired).

Figure 7-2 Use Case “Give Presentation” in Summary Level

Both artifacts explained before are requirement elicitation and specification tools. In the

following paragraphs design artifacts for implicit and explicit interaction are explained as

they are relevant in subsequent development steps based on CTML specifications.

7.1.3 Dialog Model

AUI specification languages exist in great numbers as shown in Section 3.3.2. Here, we fo-

cus on a particular representative as it is the most suitable artifact for GUI based system and

integrates excellent with task modeling in general and CTML in particular. The dialog model

introduced by Reichart et al. is an abstract visual representation of dialog structures based on

task models [2004]. Formally it is a typed graph structure in which nodes represent different

types of dialogs and transitions are represented by edges (see Figure 7-3). A dialog can only

be instantiated once at a time but other can run concurrently (single dialog view) or multiple

instances may exist (multiple dialog view). Moreover, another type of dialog blocks the

whole application (model dialog view). Hence, different transitions exist. A sequential tran-

sition defines that the source dialog disappears while the target dialog is displayed. A con-

current transition creates a new dialog without close the source dialog when activated.

Figure 7-3 Modeling Elements in Dialog Model of Reichart

The integration of task modeling and AUIs, such as the dialog model, has been a research

issue in HCI for years. A smooth transition from a high level model to AUI model is very

difficult as work processes are mapped to abstract UI components [Limbourg et al., 2001].

Semi-automated processes such the one of Reichart et al. exhibit higher quality with respect

to usability than the generated solutions of Limbourg et al. Actually, in GUI-based systems a

dialog is a grouping of tasks. Exactly this approach is implemented by the dialog model pre-

CTML Development Approach

158

sented here. Tasks of a task model, such as a CTML specification, are assigned to dialog

views. The execution of a task may or may not trigger a transition. The informal semantics

are defined by the combination of the task model animation and the visibility of a task within

the current visible dialogs during animation. If a task is not visible in any dialog it is not

executable. Therefore dialog models add additional execution constraints to the task model.

Figure 7-4 Example of Dialog Graph for “Give Presentation”

Figure 7-4 shows a dialog graph based on a CTML model for the role Presenter. Configure

Room is the starting view. The user can either enter coordinates or can switch the light on.

When giving a presentation the next view to be shown is Presentation with Projector. In this

view the projector is configured. By setting the slides on the projector the next view becomes

visible (without closing the prior one due to the concurrent transition). This view may be

instantiated several times. When executing the task Finishes Presentation the final dialog

appears which can be used to switch off the light.

The most expedient property of the dialog graph is its capability of being animatable. In the

same vein as CTML, dialog graphs (enriched with CTML specifications) can be interactively

explored. This integrates with the principles of agile development, UCD and HCSE. In Sec-

tion 7.4.1 this approach is exemplified.

In order to continue the MB-UI chain an export to XUL can be triggered. Then, the abstract

UI components can be replaced by more suitable ones based on the research conducted by

Wolff [Wolff et al., 2005]. By adapting the generated XUL models the links to the more

abstract models (task model, dialog graph) can be retained allowing for reverse engineering

of the UI.

7.1.4 Hidden Markov Model

For intention recognition probabilistic models are one way to model the structure of actions

of persons. The advantage of such an approach is that uncertainty can be expressed which is

important when handling sensor data (e.g., location tracking). HMMs are the most simple

Bayesian Networks as the state of the system is represented by a single variable [Russell &

Norvig, 2003]. Moreover the system model is first order Markovian: the current state de-

pends only on the previous state and no other states. By further taking into account that typi-

cally the current state of the system cannot be observed directly, observations depending on

(not observable) states are needed. So informally a HMM is a tuple consisting of a set of

states, an initial probability of each state, a state transition relation with each transition hav-

ing a certain probability to occur and a set of observations which are mapped to states with a

certain probability to occur.

CTML Development Approach

159

The HMM can be used to infer the current state of the system based on the observations and

the assigned probabilities. Different algorithms exist to do so which are extensively ex-

plained in [Russell & Norvig, 2003]. However the algorithms on the HMM are not of interest

here but the model is used as design artifact with respect to intention recognition. More in

detail, the question of deducing the current state of the system from the observations can be

straightforwardly applied to the human behavior within a SmE. Therefore in our research lab

the intention recognition module is driven by HMMs. One issue faced by this kind of model

is state explosion. As the system needs to be represented by a single state numerous states

are needed to model the system adequately for sizable systems. This issue is addressed by

CTML as well. In order to do so the model is introduced here formally.

Definition 7-1 (Hidden Markov Model): A Hidden Markov Model is defined by the tuple

 with being a set of numerable states, assigning each state an

initial probability with , being the state transition relation and

 mapping transitions to probabilities with

representing state transition probabilities. being a set of observations and

assigning states and observations a probability with .

This rather abstract definition is exemplified by the following example which is depicted in

Figure 7-5. Let be the HMM with , for all

 . Let further , and

 1, using with , .

 denotes the normal distribution with mean and standard deviation . On the left

hand side the state space of the HMM with its transition probabilities and initial probabilities

is shown. On the right hand side the observation depending on the current state of the HMM

are given.

Please note that the given example sticks to the formal definition of even though the nor-

mal distribution is used as observation probability. The normal distribution is a function over

the observations and therefore assigns each observation in the example an element of .

In a more concrete example according to the experimental infrastructure in the SmartLab the

set of observations can be a set of locations defined by x-y coordinates (e.g.,

) with and

 . An according definition needs to specified for .

Figure 7-5 Graphical Representation of the Transition Model of the Example HMM

CTML Development Approach

160

The introduced formal definition is used in Section 7.4.2 to formally defined how a CTML

specification can be used to synthesize a HMM.

7.1.5 Conclusion

The artifacts examined in the previous sections have been partially designed for totally dif-

ferent purposes. However, all are relevant for the CTML development process. Whereas the

first two models (scenarios and use cases) are used to support the design of a fully-dressed

CTML model the latter two (dialog graph and HMM) are subsequent artifacts which can be

derived based on a CTML specification.

Scenarios are very handy during very early stages of development as they help to interact

with the end user and let one specify which tasks are performed by whom in the current set-

ting. As it is stated in [Göransson et al., 2003] use cases are the prevalent specification me-

chanism for requirements nowadays. Here use cases are considered as an intermediate speci-

fication helpful to specify the abstract interaction flow between SmE and user. Next, task

models are used to specify the interaction more precisely with respect to modality, needed

devices, location information and domain dependencies. However design is not finished

here. Task models can be further transformed or derived. For explicit interaction the dialog

graph formalism is considered as most suitable as it tackles the mapping problem stated in

[Limbourg et al., 2001] best. In a dialog graph the tasks relevant for the GUI are grouped

and transitions between them are defined. A suitable further tool suite and development

chain is provided to improve prototypes and eventually created the final UI. For implicit

interaction probabilistic models are used. A first version of a HMM can be derived based on

a CTML model. Further adaptations are usually necessary to design the detailed behavior not

captured within the task model. The HMMs are employed to operate inference algorithms.

The semantic relations of the artifacts are depicted in Figure 7-6.

7.2 Development Steps and Artifacts

During the development lifecycle which is shown in Figure 7-1 the involved artifacts are of

different importance. As a rule of thumb, with respect to Figure 7-6 the artifacts on top are

rather used in early stages and as more as fading to the bottom artifacts are more dominant in

design. The mapping of artifacts to development phase and the used instruments to enhance

the models is explained in Table 7-1. It actually combines Figure 7-1 and Figure 7-6.

Phase Artifacts Instruments

Analysis Scenario, Use Case, Task

Model

Discussion and Feedback, Animation, Validation,

Refinement

Interaction

Specification

Use Case, Task Model Animation, Validation, Prototyping, Refinement,

Verification

Detailed Inte-

raction Design

Task Model, Dialog Graph,

Hidden Markov Model, XUL

Animation, Validation, Prototyping, Refinement,

Verification

Table 7-1 CTML Development Process, Artifacts, and Instrument

CTML Development Approach

161

During analysis scenario, use cases and task models can be used depending on the system to

be analyzed and the envisioned system. If interaction specification is to be emphasized in the

current project task modeling is a suitable choice even for analysis purposes. However if the

system is to be developed from scratch scenarios are useful to elicit the current work

processes and specify them as use case or task model. The instruments to be used in this kind

of phase to effectively make use of the models are first and foremost discussion and feed-

back with the end user, customer respectively, but also animating the first CTML specifica-

tion can be very helpful to detect erroneous analysis models. Having specified some use

cases and task models also syntactical and semantic validation may be helpful to rule out

early defects.

In interaction specification scenarios are not useful as they are describing certain runs (one

scenario – one run). More general description formalisms are needed. Use cases and task

models are therefore more suitable. In general use cases are more abstract and independent

of the type of modality and interaction devices and as such should be used before task mod-

eling. Based on the specified use cases task models are designed. To assure consistency be-

tween both artifacts the approach of Sinnig can be used [2009]. Especially when already

having designed task models during analysis they are suitable as a smooth transition from

analysis to interaction specification is possible. Such a requirement specification is consi-

dered as contract between user, stakeholder respectively and software designer. This also

applies for SmEs. To be able to create such a specification models are enhanced by the

named instruments in Table 7-1. Animation and validation have the same purpose as in anal-

ysis. Prototyping is used to illuminate potential instantiations for the specified requirements

and to collect feedback. More formal methods like refinement and verification of properties

(such as deadlock freedom) can also be applied to assure quality and enhance models proper-

ly.

CTML Development Approach

162

Figure 7-6 Semantic Relations of Involved Artifacts

In the detailed design phase only task models are still suitable. Use cases are not appropriate

anymore as they only specify the interaction flow of user and the whole system. However in

this stage the interaction is specified in a more concrete way. The device types constituting

the environment are specified and their impact on the task world is designed. Therefore

CTML specifications serve as foundation of this stage. However subsequent design artifacts

are also used as design is not finished on the level of task modeling. Therefore for explicit

interaction the dialog graph formalism and for implicit interaction the HMM are used. Natu-

rally to continue design for explicit interaction via the MB-UI process the dialog model is

transformed into AUI and final UI. UI description languages such as XUL are further used

on this stage of the process.

In the last sections it has been examined which artifacts and instruments are used and applied

to create valuable models for interaction design. However there are still some issues left. It is

claimed that scenarios serve as input for use cases even though it has not been stated yet how

to transit from a set of scenarios to a use case. The same applies for the task model. Moreo-

ver, it can be distinguished between intra stage transitions and inter stage transitions meaning

that an artifact is either transformed in another in a certain development stage whereas the

CTML Development Approach

163

latter denotes the transformation of an artifact into another one between two stages of devel-

opment. As task models are used on every stage of development their transition from one

phase to another is of particular importance and is one of the major contributions of the the-

sis.

In order to provide guidance how artifacts are transformed to suit the needs of each phase

properly the subsequent sections elaborate on these issues. More in detail, general advice is

given how to work with scenarios, use case and task models and their transformations. Next,

the transformations and their consistent adaptation during the CTML development lifecycle

are examined thoroughly. Finally, the derivation of CTML models to design artifacts is ex-

plained.

7.3 Adapting CTML Specifications

Adaptation is a natural process in iterative incremental process models. The CTML devel-

opment approach is no exception to this rule. In this section it is examined what constitutes

valid refinement during the different steps of development in CTML.

Refinement can if applied appropriately be a very helpful device to ensure certain quality of

the designed artifacts. It can furthermore support the transformation of artifacts and guide the

phase transitions in a software engineering process. In essence, refinement can be a tool to

avoid and detect failures. However a valid refinement check does neither state the correct-

ness of the base nor of the refining model as it only indicates an adaptation which has been

performed according to or contradict to the given refinement relation used. Whether a certain

adaptation is useful or desired needs to be checked by the designer as it may contradict to the

refinement relation proposed but has been performed at purpose. The interpretation of re-

finement within the whole development process is even more complicated. Refinement is a

tool which is able to indicate erroneous adaptations and helps to ensure quality criteria but it

cannot assure purposeful implementations.

7.3.1 Phase Transitions

Based upon the given explanations of the last section the adaptation mechanisms useful for

the CTML development approach with respect to the involved artifacts are given in Table

7-2. In the first column the development stage or the transition phase of the two development

stages are depicted. The second column specifies the artifact. The last column contains the

instruments which are useful to enhance the particular artifact in this particular phase, phase

transition respectively.

Phase / Transition Artifact(s) Instruments

Analysis Scenario Gradual Informal Refinement

Scenario – Use Case Informal Generalization

Use Case Structural Refinement

Use Case – Task Model Mapping of use case step to tasks

CTML Development Approach

164

Phase / Transition Artifact(s) Instruments

Task Model Refinement: Trace or Scenario Inclusion with

Meta Operators, Structural Refinement

From Analysis to Interac-

tion Specification

Use Case Restriction of User Choices [Sinnig, 2009]

Use Case – Task Model Restriction of User Choices [Sinnig, 2009]

Task Model Refinement: Trace or Scenario Inclusion

(with Meta Operators), Structural Refinement

Interaction Specification Use Case Scenario Equivalence [Sinnig, 2009]

Use Case – Task Model Scenario Equivalence [Sinnig, 2009]

Task Model Refinement: Trace or Scenario Equivalence

with Meta Operators, Structural Refinement

From Interaction Specifi-

cation to Detailed Inte-

raction Design

Task Model Refinement: Scenario Equivalence with Meta

Operators, Structural Refinement, Structural

Refinement

Detailed Interaction

Design

Task Model Refinement: Scenario Equivalence (with

Meta Operators), Structural Refinement

Table 7-2 Phase Transitions for each Artifact

As stated earlier all three artifacts are used during analysis of the current work processes and

existing software systems. As scenarios are informal means to gather information and de-

scribe work processes in an end user friendly way only informal refinement can be per-

formed. Existing scenarios are gradually refined by further detailing certain steps. When

moving from scenarios to use case generalization is necessary as each scenario specifies a

certain run whereas a use case specifies a set of runs (see Figure 7-6 for details). The genera-

lization derives a set of use cases in which at least each scenario which is considered as rele-

vant is represented by a run through a use case. This process cannot be supported by refine-

ment checks as the scenario is informal. Once use cases are created they are refined as well.

In [Sinnig, 2009] refinement relations between use cases and task models for different de-

velopment phases are introduced. The approach is sound and partially used here. During

analysis it is proposed to structurally enhance use cases meaning that previously atomic use

case steps are further refined and detailed. When creating an analysis task model based on an

analysis use case the relevant interactive parts of the use case are specified by means of

tasks. The changes during analysis are rather fundamental and a flexible notion of refinement

for such changes between use cases and task models does not exist. Therefore a mapping as

described above is proposed. On the level of task modeling adaptations can be validated

through the use of meta operators which have been explained earlier. They provide means to

define what constitute a valid refinement in a flexible manner. On the analysis level major

adaptations occur rather often. Due to this not too rigid refinement relations are needed.

Therefore trace and scenario inclusion with meta operators are considered as valid during

analysis. Moreover as models are designed gradual structural refinement is an excellent tool

when adapting the model in a certain phase (intra stage transitions).

CTML Development Approach

165

When moving from analysis to interaction specification only use cases and task models are

considered as relevant as scenarios are too vague to describe the requirements with respect to

interaction. Use cases are the standard device to specify functional requirements whereas

task models are used to describe the UI requirements. However, usually the functional re-

quirements are specified which are then examined with respect to the envisioned interaction.

Therefore also use cases are relevant for this phase. Sinnig proposed to use a special notion

of scenario refinement which only allows for restricting user choices. In this vein the basic

set of scenarios are preserved but only potential interactions are restricted. Such an approach

preserves the functional requirements defined in the use case but gives the freedom to adapt

the interaction accordingly. Having created an analysis task model and using it to derive the

UI requirements a flexible notion of refinement is mandatory as the analysis model

represents the current work situation whereas the requirements model states the envisioned

behavior with the software system under construction (see Section 3.4.2). Therefore refine-

ment without meta operators is too rigid to allow a flexible adaptation process. With the sup-

port of meta operators it can easily be stated which tasks of the analysis task model (to which

degree of detail) need to be preserved in the requirements model.

With the gradual refinement during interaction specification the models become more mature

and stable. The more stable the model is the less adaptations are usually performed. There-

fore the refinement relations can be more rigid as well. Structural refinement is especially for

gradual refinement, meaning to detail a coarse-grained model, appropriate. For use cases the

approach of Sinnig is taken up. Scenario equivalence is a rigid but valid refinement relation

as once requirements are stated they need to be preserved in subsequent development to as-

sure their valid implementation. The same applies for the transition of use cases to task mod-

els as requirements stated in the use case need to be transferred to the task model. On the

level of task modeling the scenario equivalence with meta operators is considered as most

suitable refinement relation. The scenarios based on the meta operator can be considered as

contract of requirements which are needed to validly implement the system in the subsequent

stages.

The defined requirements need to be transferred to the detailed design stage in which tech-

nology specific tasks are introduced. In order to do so scenario equivalence with meta opera-

tors are considered as important. During transformation design specific tasks are usually not

marked with operator to avoid regarding them in the refinement checks.

Eventually, task model adaptations are performed in the detailed design stage. During that

phase the most fine-grained CTML model is created. The model is gradually refined and

therefore structural refinement can be used to guide this process. Moreover scenario equiva-

lence based on meta operators is proposed as most suitable refinement relation. Obviously

the refinement relation during design cannot be less rigid as in interaction specification to

avoid corruption and weakening of the requirements. Therefore scenario equivalence with

meta operator is used in this phase as well.

CTML Development Approach

166

7.3.2 Guidance for Usage of Meta Operators

It has been shown that the meta operators allow a flexible way of prioritizing the tasks of a

CTML specification. Naturally the defined operators have to be assigned with care with re-

spect to the project stage (see Figure 7-1) and the selected refinement type (see Table 7-2).

Therefore for each stage in which refinement with meta operators is applied advice is given

how to make effectively use of the defined operators. The advice is based on the proposed

refinement relations in Table 7-2.

Such general guidance is obviously not very detailed and cannot regard specific settings of

the project and domain. During use particular guidance may evolve or can be defined which

better suits the current needs. In this vein usage of patters can be created.

Analysis

The purpose of analysis is to understand users' behavior such that the requirements/design

artifacts for the envisioned software can be defined as closely to "natural" human activity as

possible. The analysis task model captures the current work situation and highlights elemen-

tary domain processes as well as exposes bottlenecks and weaknesses of the problem do-

main. It is important, that refinements of analysis models retain all crucial processes of the

domain. As a rule of thumb, tasks that correspond to elementary business/interaction

processes should be either marked with the shallow binding operator, or, if the process is

crucial and fixed in its tasks, with the deep binding operator.

Starting with a coarse-grained analysis model leaf tasks are further refined until a fully-

detailed version of the current work/interaction processes exists. During such chain of task

models the shallow binding operators are very suitable. They allow for stating which tasks

are necessary in subsequent development steps but allow for adapting their sub tasks. With

respect to the transition to the interaction specification the shallow operators also allow for

integrating the envisioned behavior smoothly. As a result the coarse-grained work processes

on a high level of abstraction which are considered as necessary to be preserved in all subse-

quent steps should be marked with the shallow operators. Their definition can be adapted to

the requirement and design in the according phases. The deep binding operators need to be

used with caution. They define a fixed process within all subsequent adaptations. However if

a new system is to be developed the work processes are usually restructured and reassigned

to human/computer. Therefore this kind of operators can be a burden.

Finally, it is noted that an excessive usage of the meta operators is not advisable. When mov-

ing to the requirements stage, the changes to the model are usually substantial due to the

introduction of the envisioned system. An overkill of meta operators (especially deep bind-

ing) unnecessarily restricts the specification of the requirements, which is often undesirable

and counterproductive.

Interaction Specification

During interaction specification the UI requirements are manifested based on the analysis

task model. Certain tasks are redefined and reallocated whereas others are dismissed or add-

ed. Generally, requirement task models specify the envisioned way tasks are performed us-

CTML Development Approach

167

ing the system under development. The artifacts gathered during requirements specification

are part of the contract between stakeholders about the future application. Therefore, it is

recommended to mark crucial tasks with the deep binding operator to ensure that all refining

models truly implement the requirements. However in certain situations a task is completely

restructured due to design specific adaptations. If such a situation is anticipated the shallow

binding operators should be used.

Detailed Interaction Design

During design, the various tasks of the requirements model need to be "instantiated" to a

particular interaction technique. It is important to ensure that the design truly implements the

requirements. Typically, when moving from requirements to design, mainly structural re-

finements are used, which further details a previously atomic task into a set of design specif-

ic subtasks. However as stated above, sometimes requirements are validly restructured (e.g.,

login task for a shop). Such an adaptation cannot be captured by structural refinement.

Therefore, meta operators are used as well. During design the final task specification is

created. For that reason basically all meta operators can be used here. Once a task tree is

considered as final it can be marked with the deep binding operators. In this vein further

adaptation is forbidden. If adaptations are envisioned for subsequent design steps only sub

trees should be marked with the deep binding operators or the task itself should be marked

with one of the shallow binding operators.

7.4 Creating the Design Artifacts

The artifacts and their relation used in CTML according to the process model are depicted in

Figure 7-6. The figure shows that based upon task models both explicit and implicit interac-

tion development are performed. In order to make the process feasible guidance is needed

how to transit from a fully-dressed CTML specification to the artifact of choice for explicit

interaction, namely dialog graphs, and implicit interaction, the HMM. In this section this

issue is tackled. More precisely, a semi automatic approach for creating dialog graphs from

CTML specifications is proposed as such an approach exhibits higher quality than fully au-

tomated algorithms even though they can be a good start. For implicit interaction an auto-

mated approach for the creation of HMMs is introduced. The main reason for that is the size

of the HMMs for this field of application. HMMs become quite complex as the number of

states easily reaches the thousand.

7.4.1 Explicit Interaction: From CTML Specifications to Dialog

Graphs

The assignment of interactive tasks to dialog structures is a complex task and depends on

various factors to create a usable system. The presented dialogs of the final UI need to be

suitable for the device (e.g., suitable amount of tasks in one dialog on a small device) and

user (e.g., avoid cognitive overload due to numerous devices). Due to the sensibility of the

UI with respect to the task assignment an interactive approach is followed for CTML. Tasks

are dragged & dropped onto dialogs in order to assign them. Moreover dialog transitions can

be defined by means of task execution. Basically for each role a dialog graph can be defined

CTML Development Approach

168

individually which is instantiated during animation time, respectively runtime. If an actor

fulfills several roles both dialog graphs are being displayed concurrently.

The Running Example

In accordance with the running example of the “Conference Session” a dedicated task model

for explicit interaction is presented here.

Figure 7-7 Task Model for Role Chairman for Explicit Interaction

In Figure 7-7 such a task tree for the role chairman is given. This model exhibits more tasks

related to explicit interaction such as entering data or login/logout. On the left hand side of

the task model authentication of the user for a conference management system is specified.

During the talk of the presenter the chairman can set the talk in the system as in progress and

eventually as been given. Moreover the chairman can configure the meeting room by dim-

ming the light, adjusting the canvases and controlling the steerable projector.

Figure 7-8 Dialog Graph for Role Chairman for Task Model in Figure 7-7

A possible dialog graph grouping the interactive tasks of the task model appropriately is

given in Figure 7-8. The start dialog is called Login in which the credentials are entered.

Having finished entering the password the dialog for the current talk is shown. While the talk

is been given the progress can be set in the conference management system. First, the talk

can be marked as in progress and eventually as finished. Moreover, a new dialog can be

opened by executing Start Configuration. Logout finishes the use of the conference man-

agement system. In the Configure Room dialog the controllable components of the meeting

room can be adjusted. Again, Logout leads to quitting the system.

Having created the dialog graph the entire model can be animated and validated based on the

task model animation and the defined dialog model. Figure 7-9 depicts such an animation in

progress. On the left hand side the abstract prototypes of the instantiations of the dialogs are

shown (During Talk and Configure Room are active). Moreover, within each dialog the as-

signed tasks are represented as buttons. If a task is not executable the corresponding button is

disabled. Enabled buttons can be pressed in order to trigger the execution of the task. Fur-

thermore, on the right hand side the entire task model animation is shown. As the task model

CTML Development Approach

169

is a complete model of the behavior of the actor within the environment not all tasks are

grouped in dialogs (e.g., Introduce Session). Therefore some tasks are executed without us-

ing the GUIs under construction. To tackle this issue those tasks need to be triggered inde-

pendently which is possible on the right hand side.

Figure 7-9 Canonical Abstract Prototypes during Dialog Graph Animation

Such an abstract prototype is the first functional canonical prototypes following the model-

based UI design paradigm. The designed navigation can be tested with respect to the tempor-

al operators of the task model

The dialog graph can be exported as XUL file which is the AUI definition language in this

process. The XUL files can be adapted and the buttons (serving as default placeholders for

tasks) can be further refined and replaced by other AUI elements such as text fields, select

boxes, etc. or complex AUI elements. In Figure 7-10 such a refined dialog based on the ex-

port of the dialog graph in XUL is shown. It is a rendered XUL file and represents the CUI,

final UI respectively.

Figure 7-10 Refined Dialog “Configure Room”

7.4.2 Implicit Interaction: From CTML Specifications to Hidden

Markov Models

The semantic domain of LTSs is actually very helpful to provide an interface to HMMs as

the general structure of execution is quite similar. In the HMM nodes represent tasks under

execution whereas edges represent transitions between those tasks under execution. The LTS

specifies these information implicitly as each transition in the LTS represents a task under

execution. Therefore, to derive the HMM transitions in the LTS are interpreted as nodes in

the HMM. The same applies for the states in the HMM which are derived based on the tran-

sitions (actions) in the LTS.

CTML Development Approach

170

According to Definition 7-1 more information need to be synthesized in order to create a

valid HMM based on CTML specifications. More precisely, the derived LTS does not con-

tain information about the initial probability of states, transition probability, observations and

corresponding observation probabilities. In order to fill in those missing information two

basic concepts are used. Either meta information are annotated to the task specification in

order to synthesize the missing information or suitable default values are generated.

To be able to generate a HMM the following additional properties are necessary:

1. Transition Probability. The transition probability in the HMM is synthesized by

assigning each atomic task of the CTML model a priority. The transition probability

is then calculated by the relative priority of the task with respect to all enabled tasks.

with being the set of qualified task names for the role .

2. Set of Observations. The set of observations is defined with respect to intention

recognition. Such information is not specified within the process of task modeling.

Usually observations are not constants but probability density functions mapping ob-

servations to probabilities (see the example in Section 7.1.4). The set of observations

is denoted by .

3. Observation Probability. The same applies for the probability that a certain obser-

vation occurs. For each atomic task an observation is assigned. The probability of

this observation is . Formally this is implemented by the function .

Having defined all necessary preliminaries it is now continued with the derivation of the

HMM based on a CTML specification and the necessary information above.

Let be a CTML model, the selected configuration with and

 (see Definition 4-1) be the assigned LTS according to Definition 6-27, then

the corresponding HMM is defined as follows:









 is defined in the preliminaries



CTML Development Approach

171

Please note that the set contains elements of the set of qualified task names of a CTML

model (see Definition 6-20) of the following form: with being an actor,

being a role and being a task name.

As already stated before the LTS and HMM are structural similar. Actions in the LTS are

states in the HMM. In order truly enroll the HMM properly not only the actions represent a

state in the HMM but the tuple of source state and actions. This approach is taken in order to

preserve the execution history implicitly defined in the LTS as it makes a difference in the

HMM whether an action is executable at the beginning or having executed a certain set of

actions. A special case is the initial state of the HMM which is added additionally. The initial

probabilities are synthesized by assigning the initial state the probability whereas for all

other it is . The transitions of the HMM are derived based on the state space of the LTS.

More precisely, for each state in the LTS a set of according HMM transition is created using

the incoming and outgoing actions of the state.

Having defined the structure of the state space it is now continued with additional properties

which are not part of the CTML model and LTS model itself. The transition probability is

synthesized with the support of the function which assigns each qualified task name

() a priority. In order to calculate the transition probability the relative priority of the

action (HMM state) of interest and to the sum of the priorities of all potential actions (HMM

states) is consulted. The set of observations is defined according to the needs of the intention

recognition (e.g., location information, RFID information) and is not part of the task model-

ing process. The observation can be imported accordingly. As each task is only assigned one

observation the probability of the occurrence of this observation is 1, for all others it is 0.

The Running Example

In order to exemplify the creation of a HMM based on a CTML specification the running

example is consulted. To keep the example as comprehensible as possible the derivation is

only shown for a single task expression (more precisely for a single actor, Sheldon, fulfilling

only one role, Chairman). However during the derivation process also other actors acting as

Presenter are used (Leonard, Penny). The task expression used to exemplify the derivation

process is shown in Figure 7-11. It is in line with example used in the whole and specifies

how a chairman may chair a conference session with two talks to present. Such situation is

typical in our SmartLab.

Figure 7-11 Task Tree for Implicit Interaction in SmartLab

The example is actually more concrete then the task models used in the other examples in the

thesis as it precisely defines that two talks are to be given. In this vein, it becomes more easi-

ly to derive the currently executing task as each talk has different observations.

CTML Development Approach

172

The corresponding LTS to the given task tree is depicted in Figure 7-12. Please note that

invisible actions are already removed. Due to space constraints abbreviated action names are

used (the names is abbreviated and the actor and role are omitted). The branching of states is

a typically result of the usage of the orderindependence operator ().

Figure 7-12 LTS for the Task Tree of the SmartLab

Formally the LTS can be represented by the tuple with:









In order to derive the corresponding HMM the additionally needed information need to be

provided. A function assigning qualified task names a certain priority is given by:

Moreover an observation for each action to be executed needs to be defined in order to de-

rive the currently executed action at runtime. Such a mapping represents the binding of the

model to the world state. In this example locations of the SmartLab are used as observations.

Given the location model in Figure 6-13 the following locations exist: SmartLab, Outside,

Presentation Zone, Whiteboard Zone, Door Zone, Right Chairs Zone, Rear Chairs Zone, Left

Chairs Zone and an accumulation of the different chair zones by Chairs. Moreover the ob-

servations are qualified with the actors in the environment in order to create an evaluable

statement. Therefore, the observations of this example are:

with () being the set of actors in the environment and being the set of loca-

tions ().

The observations are mapped to atomic tasks with a certain probability. Here and in Defini-

tion 7-1 the simplest case is used. Only one observation is assigned for each action. Such an

observation defines where each of the actors are in the environment. Therefore the probabili-

CTML Development Approach

173

ty of its occurrence is one. Please note that in this particular example the initial state does not

have assigned an observation as it is the only possible starting state.

Now, all information needed to create a HMM based on the LTS is given. The resulting

model is depicted in Figure 7-13. Formally it is represented by with:









 (as described above)



The states of the HMM represent the task under execution. The states have been renamed.

Given the definitions above a state is represented by the tupel with being the source

state in the LTS and being the action. The source state has been eliminated and an index is

introduced in order to avoid multiple occurrences of state names. In Figure 7-13 a visual

representation of the HMM is given. Black circles represent states, directed edges defines

state transitions. Numbers assigned to direct edges are transition probabilities. If a state has

only one outgoing transition the transition probability is 1. In such case the number is not

visualized in Figure 7-13. Red lines assign observations to states which in turn are visualized

by red circles. For each state, except for the initial state, three observations are assigned: for

each involved actor a sensor observation is needed to precisely describe the situation under a

state is reached. In Figure 7-13 for each state only one observation is shown. The two other

observations are not depicted as they only define that the other actors need to be present

somewhere in the environment (e.g., for the state the not shown observations are

CTML Development Approach

174

). The initial probability, the probability that a state is the initial state, is only

visualized for the state Initial as this is the only state with value other then 0. It is given by

the number in the underpart of the state.

In the last paragraphs it has been shown that annotated CTML specifications can be trans-

formed into fully-dressed HMMs. The lower quality of the generated HMM pays off when

the models become more complex (an HMM can easily reached the size of thousands of

states). Moreover, the generated artifact can be further refined and perfectly based on the

software designer needs. In this vein, task models are used on a high level of abstraction in

order to specify the basic structure of the behavior with its temporal and causal dependencies

which eventually results in a CTML specification which in turn is transformed into the

HMM. The HMM is used to derive the current tasks under execution at runtime. Based on

such intention recognition process the assistive technology can be smoothly introduced in

order to truly assist the user.

The assessment whether a HMM is appropriate and of sufficient quality is a complex task.

Of course, syntactical validation and consistency checks can be defined and implemented.

However the rationale of the specified model is not revealed by such analysis. In [Burghardt

et al., 2009] an approach is presented which uses recorded or artificial sensor data in order to

assess the quality of a defined HMM. This approach can also be used for the task model-

based HMM.

Figure 7-13 The derived HMM for Implicit Interaction in the SmartLab

7.5 Integration with further Software Engineering Dis-

ciplines

The CTML development approach and the language itself rely on common concepts and best

practice methods from the area of HCI and software engineering. Naturally in both areas

further application domains exist. In this section it is exemplified and substantiated which

disciplines can be smoothly integrated with CTML and its development approach. More

precisely, three disciplines have been assessed as most suitable for task modeling in general

and CTML in particular.

Developing the interaction of a software system in a model-based way has the advantage of

being able to use the models to perform usability tests in early phases. Usability evaluation

cannot only be performed after having created the final UI, intention recognition respective-

CTML Development Approach

175

ly, but also during all stages of development as proposed in [Propp et al., 2008]. Hence, task

models are a very suitable artifact for usability evaluation as they focus on the user perspec-

tive and the accomplishment of goals of the user which is the one major interests of usability

evaluation. Numerous techniques have been used to assess the usability of interaction for

desktop systems. In his PhD Thesis Propp discusses different techniques to enable usability

evaluation for SmEs based on task models. In essence, the major phases of software engi-

neering are covered with appropriate usability evaluation techniques suitable for the artifacts

in use. Techniques such as Wizard of Oz experiments, expert evaluation and cognitive walk-

through are offered and tool supported. The results of the thesis have also been published in

[Burghardt et al., 2009] and [Propp et al., 2008].

Besides the interaction, the application core of the system under construction needs to be

designed and implemented as well. In his PhD thesis Sinnig proposed an integrated devel-

opment methodology for software system in general which employs task models as artifact

for UI requirements and use case as artifact for functional requirements [2009]. In this vein

the requirements of the software system are specified in a comprehensive manner and re-

finement checks and validity checks can be performed between task models and use cases.

CTML can be integrated seamlessly into this prosperous methodology as the semantic do-

main of CTML is very similar to Sinnig’s approach.

Reuse and knowledge sharing is a common challenge in software engineering. Pattern-based

(pattern-oriented) design of software systems is one approach to tackle this issue. A pattern

is an adaptable best practice solution to a recurrent problem on a certain level of abstraction

[Gamma et al., 1995]. In [Forbrig et al., 2004] a two-folded approach for system develop-

ment based on patterns is proposed. In a unified step the first models are created, amongst

other the task model. Then, two separate approaches are followed to develop the application

core and the UI which are both based on patterns. On the one hand design patterns of Gam-

ma and the architectural patterns of Fowler ([2002]) are used to develop the application core.

On the other hand the UI is created through the employment of HCI patterns. This and simi-

lar approaches relying on patterns exist for interaction design. The main advantage of such

an approach is the reuse of solutions that have been successfully applied for similar problems

and therefore exhibit a higher quality than custom tailored solutions. In the research field of

HCI MB-UI development has already been enhanced by the application of pattern. In partic-

ular, several approaches introduced task pattern as reusable task structures [Breedvelt et al.,

1997; Sinnig, 2004]. In the domain of SmEs the usage of patterns seems to be fruitful as the

incorporation of a particular domain may reveal different patterns of usage but also other

patterns are conceivable (e.g., location patterns describing the layout of a particular SmE for

a certain purpose). Therefore the integration with pattern-oriented UI design can be achieved

and would enhance the development approach of CTML.

7.6 Further Application Areas

CTML and its development approach are not limited to the integration with other disciplines

but are also applicable for other applications in the field. A model of the tasks being current-

ly executed and are going to be executed in future is supportive for numerous applications in

CTML Development Approach

176

SmEs. Provisioning of resources of any kind (e.g., establishing a network connection, trans-

ferring data, etc.) and preparation of long lasting functions (e.g., steering a projector, shutting

the blinds, etc.) are prevalent general application areas of task models. However, also more

human centered related application areas exist which are illuminated in the subsequent para-

graphs.

The various enabled tasks in SmEs can also be a burden especially for novice users who are

not used to assistive technologies. Therefore highlighting the system state and the anticipated

tasks under execution of the user may help to explain certain decisions by the system. Such

an approach allows for making a SmE less autonomous from users’ perspective. Users may

feel more comfortable if decisions are made explicit based on the assumption the system has

about the user by means of a task model. Moreover the enabled tasks a user has and their

potential outcome can be explained and the user can be guided through the use of the system.

Hence, as already stated the task model is actually an assumption about the users’ intention

and actions. Such an explicit model and its visualization can be used to correct the assump-

tions and adapt the model according to the feedback of the user. Such approaches are gener-

ally referred to as end-user development [Sutcliffe, 2005].

7.7 Summary and Conclusion

In this chapter the CTML development methodology has been introduced. It is based on an

iterative, incremental development model and proposes different artifacts to be used. The

central building block is the developed language of this thesis: CTML. Moreover it has been

shown how a task model is created based on other artifacts such as scenarios or use cases.

Hence, the derivation of task models to models used in the development process of the dif-

ferent interaction types, namely explicit and implicit interaction, has been exemplified. Natu-

rally, the development methodology not only shows how to transform an artifact to a task

model and vice versa, but also shows how to enhance a CTML properly depending on the

stage of development. As this process of enhancing a CTML model is guided by refinement

with and without meta operators the development methodology also guides the designer how

to assign meta operators to tasks in a certain development stage. Beside guidance how to

perform each development step also other application domains and interfaces to other soft-

ware engineering disciplines have been provided.

Conclusion & Outlook

177

Chapter 8
8 Conclusion & Outlook

8.1 Summary

In this thesis we proposed an integrated development methodology for the interaction devel-

opment of SmEs based on the concept of tasks. The interaction in SmEs is significantly more

complex compared to ordinary desktop systems due to the diverse in- and output devices,

their individual capabilities and limitations and situatedness of task execution (e.g., unfore-

seen changes in the configuration of the SmE because of a mobile device entering or leaving

the ensemble). This issue naturally also raises the complexity of interaction development.

Task analysis and modeling have been successfully applied to interaction development over

decades in order to provide a basis to start development from. One particular application,

MB-UI development, tackles the question whether UIs can be created via a model-driven

process in which task modeling is used as starting point. In this thesis it is investigated

whether such a model-driven development process is feasible and prosperous for interaction

in SmEs.

Explicit & Implicit Interaction

To address these issues a distinction of interaction is proposed and used to establish a robust

and holistic interaction framework comprising explicit and implicit interaction. Whereas

explicit interaction is the predominant method of interaction in WIMP systems, implicit inte-

raction is a new interaction paradigm which makes use of user actions not primarily per-

formed to interact with the system but being interpreted by the system (e.g., walking). Both

interaction types have been mainly treated separately even though they occur interleaved. In

order to develop convenient means of interaction both interaction types need to be developed

in an integrated matter as they are relying on the same work processes and domain. There-

fore, the integrated development methodology here is based on the common concept of tasks.

Such a high level description mechanism is able to specify how goals are achieved by means

of task execution which in turn can be used to develop explicit and implicit interaction.

The Collaborative Task Modeling Language

Task modeling has been considered as a normative and idealized model of task performance.

However with the advent of model-driven development such idealized models are not suffi-

cient anymore. The special characteristics of SmEs are the diverse sensors used to derive

knowledge about the user and the devices constituting the SmE which are used as means for

in- and output. Especially the first is important for implementing implicit interaction as ac-

Conclusion & Outlook

178

tions of the user need to be recognized. The latter issue is important for explicit interaction as

in- and output and as computing resource in general. Based upon these insights a set of re-

quirements has been distilled which are necessary to adequately reflect tasks in SmEs. These

requirements can be categorized into the following categories:

 Modeling Approach. On a high level of abstraction task modeling is suitable for

representing the work processes involved in the domain of interest. This also applies

for SmEs. Therefore a modeling language has been build around the concept of task.

Moreover, as SmEs are inherently multi-user environments means for cooperation

have been built into the language.

 Context Modeling. A set of models for characterizing the context during the task

execution have been integrated into task modeling by preconditions and effects. A

certain task is only executable if a certain contextual property holds (e.g., the actor is

at a certain location). On the other hand task execution may lead to a change of the

contextual properties (e.g., the actor is in front of the audience). Three types of mod-

els have been considered as most important: Location modeling, device modeling,

and domain modeling. However, the architecture allows for integrating further mod-

els with minimal effort.

 Means of Engineering. In this category issues are subsumed which are needed to

make effectively use of the language. A suitable development methodology and a

tool suite supporting the development methodology are defined. Besides the de-

signed language, the development methodology and corresponding tool support are

also part of the thesis.

In order to address these requirements a new task modeling language, CTML, has been de-

signed. In order to share CTML models and rule out any ambiguities a formal syntax and

semantics have been defined. Whereas the syntax is based on applied set theory the ultimate

semantic domain of choice are labeled transition systems (LTS). A CTML model is trans-

lated to a LTS by two-step process in which the model is first converted into a homogenous

intermediate specification and eventually translated into a LTS by inference rules.

Refinement

As modeling is usually not performed in a single sweep but rather iteratively instruments for

supporting such an approach are meaningful for CTML. Refinement answers the question

whether a certain adaptation is still a valid refinement of its origin. Therefore different re-

finement algorithms have been examined and a sub set has been selected. Based upon the

semantic domains of LTSs the refinement relations trace and scenario inclusion and trace

and scenario equivalence have been formally defined for CTML models in order to com-

pare two specifications with respect to their (allowed) behavior. In certain situations beha-

vioral refinement is not always purposeful. In such cases structural properties can be used to

check refinement. Type consistency and structural refinement of non atomic tasks are

checked within such a refinement check.

While refining a task model a prioritization of tasks is desirable. Therefore a more flexible

approach using so called meta operators has been defined. Tasks marked with one of the

Conclusion & Outlook

179

meta operators are treated in special manner during the refinement checks. More precisely

they define whether a certain task (ant its sub tasks) are considered during the refinement

check. In this vein a totally new approach to refinement has been defined and implemented.

Case studies have shown that the flexibility pays of the raised effort of assigning the meta

operators.

The CTML Development Approach

The extended expressiveness of CTML compared to other task modeling languages and the

developed refinement algorithms are much more valuable if applied in a coherent develop-

ment methodology. Therefore such a methodology has been created in order to develop in-

teractive systems for SmEs comprising explicit and implicit interaction. The approach is

based on model-driven development which uses the task model as first formal model (scena-

rios and use cases are used to elicit and specify requirements). Based on the developed task

models the artifacts dedicated for each interaction type, namely the dialog model for explicit

and the HMM for implicit interaction, can be derived. In case of the first, an interactive ap-

proach is proposed whereas the latter can be automatically derived based on further meta

information.

The development approach comprises three stages which are mainly congruent with current

software engineering practices of analysis, requirements specification and design stage. Na-

turally, the CTML development methodology is more focused on interaction and therefore

takes into account UI requirements and functional requirements. The phases are:

 Analysis

 Interaction Specification

 Detailed Interaction Design

For each stage the relevant artifacts have been identified and guidance is offered how to ap-

ply them properly and advance development. Special attention has been paid to phase transi-

tions when one artifact is transformed into another type of artifact (e.g., use case – task mod-

el, task model – dialog graph). For those phase transitions the development methodology

gives concrete advice how to perform them best.

With respect to refinement the methodology specifies which refinement relation for CTML

models is most suitable in which stages and whether meta operators should be considered

during the refinement steps. The development approach also defines how meta operators

should be assigned relative to the current development stage. This is of high importance as

the meta operators are a new concept which may overtax the modeler. In order to ease this

burden concrete guidance is offered.

Tool Suite

CTML, its methodology and the refinement algorithms are complemented with appropriate

tool support. As task modeling is not the only activity throughout the whole development

lifecycle the Eclipse IDE has been chosen as platform because it is one of the major standard

software tools for development and coding and provides a solid and robust plug-in concept

in order to develop editors and tools for other artifacts (such as the dialog model or HMM).

Conclusion & Outlook

180

Integrated in the Eclipse IDE the CTML tool suite comprises the CTML Editor, Validator

and Verifier. Whereas the CTML Editor enables the creation, manipulation, visualization

and animation of CTML models, the Validator checks well-formnedness criteria. The CTML

Verifier implements the refinement algorithms with and without meta operators. The com-

ponents are aligned to serve the development methodology by supporting each step regard-

ing task modeling and providing shortcuts for common use cases with respect to the devel-

opment methodology (e.g., type of refinement for each stage).

8.2 Outlook

In this thesis task modeling for SmEs has been investigated thoroughly. However, some re-

search questions still remain open, which are discussed next.

Even though CTML has been designed to be able to specify tasks in SmEs the usage scena-

rio through the thesis was a particular SmE: a multi-user meeting setting. Further research

need to be conducted to evidence the hypothesis that CTML is also feasible for other types

of SmEs, such as home entertainment and elderly care. For the latter experimental modeling

sessions have shown promising results.

The models which have been integrated with task modeling (such as the location model) are

the most salient ones. Naturally, especially with regard to the usage scenarios involving of

explicit and implicit interaction further models can be considered as well. Location infor-

mation for example is only one source of sensor data. Physical properties such as tempera-

ture, day time, etc. can be considered as well and may have an impact on task execution. The

same applies for other models as well. CTML and its tool suite are designed to allow for

easy integration of new types of models with minimal effort.

The creation of CTML models can become quite complex. The developed tool support tries

to hide complexity as much as possible. A wizard has been implemented to ease the creation

of a CTML model from scratch. Nevertheless, reuse on a higher level of abstraction is desir-

able. Patterns are one way to achieve such kind of reuse. Most prominent in software engi-

neering with the famous Gang of Four Design Patterns ([Gamma et al., 1995]) patterns have

also entered HCI [Tidwell, 2005; van Duyne et al., 2006]. Even on the level of task model-

ing approaches exist which tackle the question whether task patterns can be used to enhance

task modeling by offering generic solution to recurrent problems [Breedvelt et al., 1997;

Wurdel, 2006]. These ideas can be further extended and applied to SmEs in which certain

tasks are recurrent in different configurations. Moreover the models integrated in CTML

may also exhibit patterns which can be applied in future models.

The symbolic animation of CTML models is part of the tool suite and supports visualizations

of the animated models on different levels of abstraction. A software interface, a text-based

GUI, a tree-based animation and a 2-D bird view on the SmartLab have been implemented to

allow the designer to animate the model from different viewpoints. Beyond that, a 3D visua-

lization could be the next step in order to create an even more concrete feeling about the

CTML model under construction. This would allow to examine the model more thoroughly

and to detect usability flaws regarding viewpoint occlusions and spatial issues.

Conclusion & Outlook

181

One of the assets of model-driven development is the possibility of using the models at run-

time and evaluating the system with respect to the developed models. This allows for evalua-

tion on a higher level of abstraction (e.g., measuring the time performance of a certain task).

Propp discussed the usage of task-based evaluation techniques in his PhD Thesis ([Propp et

al., 2008; Propp et al., 2009]) and showed how different classical usability techniques such

as Wizard of Oz experiments can be conducted based on the concepts of task modeling. The

work of Propp and the thesis here propose an integrated approach to modeling and evalua-

tion. CTML has been used by Propp to enable usability methods. Further integration of

these methods with CTML is another interesting research question. Especially with respect

to the models which have been integrated as these models specify the context which is of

high importance for the reason of executing a certain task in a certain manner.

References

183

References

Aarts, E. and B. de Ruyter (2009). "New research perspectives on Ambient Intelligence."

Journal of Ambient Intelligence and Smart Environments 1(1): 5-14.

Aarts, E., R. Harwig and M. Schuurmans (2002). Ambient intelligence. The invisible future:

the seamless integration of technology into everyday life, McGraw-Hill, Inc.: 235-

250.

Abowd, G. D. (1999). "Classroom 2000: an experiment with the instrumentation of a living

educational environment." IBM System Journal 38(4): 508-530.

Annett, J. and K. D. Duncan (1967). "Task Analysis and Training Design." Journal of Occu-

pational Psychology 41: 211-221.

Baeten, J. C. M. and W. P. Weijland (1990). Process algebra. Cambridge, Cambridge Uni-

versity Press.

Basnyat, S., P. Palanque, B. Schupp and P. Wright (2007). "Formal socio-technical barrier

modelling for safety-critical interactive systems design." Safety Science 45(5): 545-

565.

Bauer, M., L. Jendoubi and O. Siemoneit (2004). Smart factory - mobile computing in pro-

duction environments, University of Stuttgart : Collaborative Research Center SFB

627 (Nexus: World Models for Mobile Context-Based Systems).

Beck, K. (2000). Extreme programming explained : embrace change. Boston, MA, USA,

Addison-Wesley.

Becker, C. and F. Dürr (2005). "On location models for ubiquitous computing." Personal

Ubiquitous Computing 9(1): 20-31.

Bellotti, F., R. Berta, M. Margarone and A. D. Gloria (2008). "oDect: an RFID-based object

detection API to support applications development on mobile devices." Softw. Pract.

Exper. 38(12): 1241-1259.

Berardi, D., D. Calvanese and G. D. Giacomo (2005). "Reasoning on UML class diagrams."

Artif. Intell. 168(1): 70-118.

Bergstra, J. A. (2001). Handbook of Process Algebra, Elsevier Science Inc.

Bergstra, J. A. and J. W. Klop (1990). An introduction to process algebra. Applications of

Process Algebra. J. C. M. Baerten, Cambridge University press.

Biere, M., B. Bomsdorf and G. Szwillus (1999a). Specification and simulation of task mod-

els with VTMB. CHI '99 extended abstracts on Human factors in computing sys-

tems. Pittsburgh, Pennsylvania, ACM.

Biere, M., B. Bomsdorf and G. Szwillus (1999b). The Visual Task Model Builder. Proceed-

ings of the third international conference on Computer-aided design of user interfac-

es. Louvain-la-Neuve, Belgium, Kluwer Academic Publishers.

References

184

Blumendorf, M. (2009). Multimodal Interaction in Smart Environments: A Model-based

Runtime System for Ubiquitous User Interfaces. PhD in Elektrotechnik und Informa-

tik. Berlin, Germany, Technische Universität Berlin.

Blumendorf, M., S. Feuerstack and S. Albayrak (2007). "Multimodal user interaction in

smart environments: Delivering distributed user interfaces." Proc. AMI'07 Workshop

on MDSE for AmI Applications.

Blumendorf, M., S. Feuerstack and S. Albayrak (2008). Multimodal user interfaces for smart

environments: the multi-access service platform. Proceedings of the working confe-

rence on Advanced visual interfaces. Napoli, Italy, ACM.

Boehm, B. W. (1988). "A spiral model of software development and enhancement." Com-

puter 21(5): 61-72.

Bolognesi, T. and E. Brinksma (1987). "Introduction to the ISO specification language LO-

TOS." Comput. Netw. ISDN Syst. 14(1): 25-59.

Bomsdorf, B. (2007). "The WebTaskModel Approach to Web Process Modelling." TaMoDia

2007 4849: 240-253.

Booch, G., I. Jacobson and J. Rumbaugh (2005). The Unified Modeling Language User

Guide. Upper Saddle River, NJ, Addison-Wesley.

Booch, G., R. Maksimchuk, M. Engle, B. Young, J. Conallen and K. Houston (2007). Ob-

ject-oriented analysis and design with applications, third edition, Addison-Wesley

Professional.

Boy, G. A. and T. R. Gruber (1990). Intelligent Assistant Systems: Support for Integrated

Human-Machine Systems, Knowledge Systems, AI Laboratory, Stanford University.

BPMN. (2010). "Business Process Modeling Notation, V2.0 beta." Retrieved March 13,

2010, from http://www.omg.org/cgi-bin/doc?dtc/09-08-14.

Breedvelt, I., F. Paternò and C. Severiins (1997). Reusable Structures in Task Models. Pro-

ceedings Design, Specification, Verification of Interactive Systems ’97, Granada,

Springer Verlag.

Brinksma, E., G. Scollo and C. Steenbergen (1995). Lotos specifications, their implementa-

tions and their tests. Conformance testing methodologies and architectures for OSI

protocols, IEEE Computer Society Press: 468-479.

Brookes, S. D., C. A. R. Hoare and A. W. Roscoe (1984). "A Theory of Communicating

Sequential Processes." J. ACM 31(3): 560-599.

Brooks, R. A. (1997). The Intelligent Room project. Proceedings of the 2nd International

Conference on Cognitive Technology (CT '97), IEEE Computer Society.

Brumitt, B., B. Meyers, J. Krumm, A. Kern and S. Shafer (2000). EasyLiving: Technologies

for Intelligent Environments. Handheld and Ubiquitous Computing: 97-119.

Burghardt, C. and T. Kirste (2008). Synthesizing probabilistic models for team-assistance in

smart meetings rooms. Adjunct Proceedings of the 2008 ACM Conference on Com-

puter Supported Cooperative Work, San Diego, CA, USA.

Burghardt, C., S. Propp, T. Kirste and P. Forbrig (2009). Rapid Prototyping and Evaluation

of Intention Analysis for Smart Environments. Intelligent Interactive Assistance and

Mobile Multimedia Computing, Springer Berlin Heidelberg. 53: 239-250.

Cabot, J., R. Claris and D. Riera (2008). Verification of UML/OCL Class Diagrams using

Constraint Programming. Proceedings of the 2008 IEEE International Conference on

Software Testing Verification and Validation Workshop, IEEE Computer Society.

http://www.omg.org/cgi-bin/doc?dtc/09-08-14

References

185

Caffiau, S., P. Girard, D. L. Scapin, L. Guittet and L. Sanou (2008). Assessment of Object

Use for Task Modeling. Engineering Interactive Systems 2008. Pisa, Italy.

Card, S., T. P. Moran and A. Newell (1983). The Psychology of Human Computer Interac-

tion. Hillsdale, N.J., Erlbaum.

Cardelli, L. and A. Gordon (1998). Mobile ambients. Foundations of Software Science and

Computation Structures, Springer Berlin / Heidelberg. 1378: 140-155.

Carroll, J. M. (1995). Scenario-based design : envisioning work and technology in systems

development ; Workshop, on June 8, 1993. New York, NY u.a., Wiley.

Charniak, E. (1997). Statistical Parsing with a Context-free Grammar and Word Statistics.

Proceedings of the Fourteenth National Conference on Artificial Intelligence.

Christopher, R. C., C. K. Hess, M. Román and R. H. Campbell (2001). Gaia: A Development

Infrastructure for Active Spaces. Workshop on Application Models and Program-

ming Tools for Ubiquitous Computing. 6: 65-67.

Cleaveland, R. and S. Smolka, A. (1996). "Strategic directions in concurrency research."

ACM Comput. Surv. 28(4): 607-625.

Cleaveland, W. R., G. Lüttgen and V. Natarajan (2000). Priority in Process Algebras. Hand-

book of Process Algebra, Elsevier

Clerckx, T., C. Vandervelpen, K. Luyten and K. Coninx (2006). A task-driven user interface

architecture for ambient intelligent environments. Proceedings of the 11th IUI. Syd-

ney, Australia, ACM.

Cockburn, A. (2001). Writing effective use cases. Boston u.a., Addison-Wesley.

Coen, M., B. Phillips, N. Warshawsky, L. Weisman, S. Peters and P. Finin (1999). Meeting

the computational needs of intelligent environments: The metaglue system.

MANSE'99. Dublin, Ireland.

Constantine, L. L. and L. A. D. Lockwood (1999). Software for use : a practical guide to the

models and methods of usage-centered design. Reading, Mass. u.a., Addison Wesley

u.a.

Constantinos, P. (2000). UIML: A Device-Independent User Interface Markup Language.

PhD in Computer Science, Virginia Polytechnic Institute and State University: 249.

Cook, D. and S. Das (2004). Smart Environments: Technology, Protocols and Applications

(Wiley Series on Parallel and Distributed Computing), Wiley-Interscience.

Cook, D., M. Schmitter-Edgecombe, A. Crandall, C. Sanders and B. Thomas (2009). Col-

lecting and disseminating smart home sensor data in the CASAS project. Proc. of

CHI09 Workshop on Developing Shared Home Behavior Datasetsto Advance HCI

and Ubiquitous Computing Research.

Cooper, A. (2004). The Inmates Are Running the Asylum: Why High Tech Products Drive

Us Crazy and How to Restore the Sanity (2nd Edition), Pearson Higher Education.

Das, S. and D. Cook (2005). Designing Smart Environments: A Paradigm Based on Learning

and Prediction. Pattern Recognition and Machine Intelligence: 80-90.

Demeure, A. and G. Calvary (2003). Plasticity of user interfaces: towards an evolution mod-

el based on conceptual graphs. 15th French-speaking conference on human-

computer interaction. Caen, France, ACM.

Dey, A. K. and G. D. Abowd (2000). Towards a Better Understanding of Context and Con-

text-Awareness. CHI 2000 Workshop on The What, Who, Where, When, Why and

How of Context-Awareness.

References

186

Dijkstra, E. W. (1972). Notes on Structured programming. Structured programming. O.-J.

Dahl, E. W. Dijkstra and C. A. R. Hoare. London u.a., Acad. Press: 1-82.

Dittmar, A. and P. Forbrig (1999). Methodological and tool support for a task-oriented de-

velopment of interactive ssytems. Computer-Aided Design of User Interfaces. Lou-

vain-la-Neuve, Belgium, Kluwer Academic Publishers.

Dittmar, A. and P. Forbrig (2003). Higher-Order Task Models. Interactive Systems. Design,

Specification, and Verification: 219-230.

Dittmar, A., P. Forbrig, S. Heftberger and C. Stary (2004). "Tool Support for Task Model-

ling - A Constructive Exploration." Proc. EHCI-DSVIS'04.

Dix, A., J. Finlay, G. Abowd and R. Beale (1997). Human-computer interaction, Prentice-

Hall, Inc.

Duarte, C. and L. Carri (2006). A conceptual framework for developing adaptive multimodal

applications. Proceedings of the 11th IUI. Sydney, Australia, ACM.

Edwards, W. K. and R. E. Grinter (2001). At Home with Ubiquitous Computing: Seven

Challenges. Proceedings of the 3rd international conference on Ubiquitous Compu-

ting. Atlanta, Georgia, USA, Springer-Verlag.

Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of Software,

Addison-Wesley Professional.

Ferre, X., N. Juristo and A. M. Moreno (2004). Improving Software Engineering Practice

with HCI Aspects. Software Engineering Research and Applications: 349-363.

Feuerstack, S. (2009). A Method for the User-centered and Model-based Development of

Interactive Applications endnote. PhD in Elektrotechnik und Informatik. Berlin,

Germany, Technische Universität Berlin.

Feuerstack, S. and M. Blumendorf (2007). Prototyping of Multimodal Interactions for Smart

Environments based on Task Models. Workshop Proceedings of AmI 2007.

Darmstadt, Germany.

Feuerstack, S., M. Blumendorf, V. Schwartze and S. Albayrak (2008). Model-based layout

generation. Working conference on Advanced visual interfaces. Napoli, Italy, ACM.

Fokkink, W. (2000). Introduction to process algebra : with 11 figures and 11 tables. Berlin

u.a., Springer.

Forbrig, P., A. Dittmar, D. Reichart and D. Sinnig (2003). User-Centered Design and Ab-

stract Prototypes. Proceedings of BIR 2003. SHAKER. Berlin: 132 - 145.

Forbrig, P., A. Dittmar, D. Reichart and D. Sinnig (2004). From Models to Interactive Sys-

tems Tool Support and XIML. IUI / CADUI. Funchal, Portugal, CEUR-WS.org.

Forbrig, P. and M. Wurdel (2010). Integrating Collaborative Task Modeling with Device

Specifications. IADIS International Conference Interfaces and Human Computer In-

teraction. Freiburg, Germany, IEEE.

Fowler, M. (2002). Patterns of Enterprise Application Architecture, Addison-Wesley Long-

man Publishing Co., Inc.

Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage Addison-Wesley Professional.

Franklin, D. and K. Hammond (2001). The intelligent classroom: providing competent assis-

tance. Proceedings of the fifth international conference on Autonomous agents.

Montreal, Quebec, Canada, ACM.

References

187

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995). Design Patterns : Elements of

Reusable Object-Oriented Software. Reading, Mass., Addison-Wesley.

Garavel, H. and R.-P. Hautbois (1993). An Experiment with the Formal Description in LO-

TOS of the Airbus A340 Flight Warning Computer. First AMAST International

Workshop on Real-Time Systems. Iowa City, Iowa, USA.

García, J., J. Vanderdonckt and C. Lemaigre (2008a). Identification Criteria in Task Model-

ing. Human-Computer Interaction Symposium: 7-20.

García, J. G., C. Lemaigre, J. M. G. Calleros and J. Vanderdonckt (2008b). "Model-Driven

Approach to Design User Interfaces for Workflow Information Systems." Journal of

Universal Computer Science 14(19): 3160--3173.

Garcia, J. G., J. Vanderdonckt and J. M. G. Calleros (2008). "FlowiXML:; a step towards

designing workflow management systems." Journal of Web Engineering 4(2): 163-

182.

Garg, V. K. (2002). Elements of distributed computing, John Wiley & Sons, Inc.

Garlan, D., D. Siewiorek, A. Smailagic and P. Steenkiste (2002). "Project Aura: Toward

Distraction-Free Pervasive Computing." IEEE Pervasive Computing 1(2): 22-31.

Garrido, J. L. and M. Gea (2002). A Coloured Petri Net Formalisation for a UML-Based

Notation Applied to Cooperative System Modelling. DSV-IS 2002, Springer-Verlag.

Giersich, M. (2009). Concept of a Robust & Training-free Probabilistic System for Online

Intention Analysis in Teams. PhD in Faculty of Computer Science and Electrical

Engineering. Rostock, Germany, University of Rostock.

Giersich, M., P. Forbrig, G. Fuchs, T. Kirste, D. Reichart and H. Schumann (2007). "To-

wards an Integrated Approach for Task Modeling and Human Behavior Recogni-

tion." Human-Computer Interaction 4550: 1109-1118.

Giese, M., T. Mistrzyk, A. Pfau, G. Szwillus and M. von Detten (2008). AMBOSS: A Task

Modeling Approach for Safety-Critical Systems. Engineering Interactive Systems.

Pisa, Italy: 98-109.

Göransson, B., M. Lif and J. Gulliksen (2003). Usability Design-Extending Rational Unified

Process with a New Discipline. Interactive Systems. Design, Specification, and Veri-

fication: 303-310.

Gulliksen, J. and B. Goransson (2001). Reengineering the Systems Development Process for

User Centred Design. Proceedings of IFIP INTERACT'01: Human-Computer Inte-

raction.

Gulliksen, J., B. Göransson, I. Boivie, J. Persson, S. Blomkvist and Å. Cajander (2005). Key

Principles for User-Centred Systems Design. Human-Centered Software Engineer-

ing - Integrating Usability in the Software Development Lifecycle, Springer-Verlag

Netherlands. 8: 17-36.

Hackos, J. and J. Redish (1998). User and Task Analysis for Interface Design, Wiley.

Hallerstede, S., M. Leuschel and D. Plagge (2010). Refinement-Animation for Event-B -

Towards a Method of Validation. Proceedings ABZ 2010, Springer-Verlag.

Heider, T. (2009). A Unifed Distributed System Architecture for Goal-based Interaction with

Smart Environments. PhD in Faculty of Computer Science and Electrical Engineer-

ing. Rostock, Germany, University of Rostock.

Heider, T. and T. Kirste (2002). Supporting Goal-Based Interaction with Dynamic Intelligent

Environments. 15th European Conference on Artificial Intelligence. Lyon, France.

References

188

Heider, T. and T. Kirste (2005). Multimodal appliance cooperation based on explicit goals:

concepts & potentials. Proc.of the SOC-EUSAI 2005, Grenoble, France, ACM.

Hermann, F., R. Blach, D. Janssen, T. Klein, A. Schuller and D. Spath (2009). Challenges

for User Centered Smart Environments. Human-Computer Interaction. Ambient,

Ubiquitous and Intelligent Interaction: 407-415.

Herzog, U. (1990). Formal Description, Time and Performance Analysis. A Framework.

Entwurf und Betrieb verteilter Systeme, Fachtagung des Sonderforschungsbereiche

124 und 182, Springer-Verlag.

Hevner, A. R., S. T. March and J. Park (2004). "Design Science in Information Systems Re-

search." MIS Quarterly 28: 75-105.

Hoare, C. A. R. (1978). "Communicating sequential processes." Commun. ACM 21(8): 666-

677.

Hong, J. I. and J. A. Landay (2004). An architecture for privacy-sensitive ubiquitous compu-

ting. Proceedings of the 2nd international conference on Mobile systems, applica-

tions, and services. Boston, MA, USA, ACM.

Huber, P., K. Jensen and R. Shapiro (1991). Hierarchies in coloured petri nets. Advances in

Petri Nets 1990: 313-341.

ISO (1989). ISO 8807:1989 Information processing systems - Open Systems Interconnection

- LOTOS - A formal description technique based on the temporal ordering of obser-

vational behaviour. Geneva, Switzerland.

ISO (1999). ISO 13407:1999 - Human-centred design processes for interactive systems.

Geneva, Switzerland, ISO.

Jensen, K. (1987). Coloured Petri nets. Petri Nets: Central Models and Their Properties,

Springer. 254: 248-299.

Jeong, C., Y. Kim and Y. Chung (1997). TIV: A Toolset for Interactive Verification of Basic

LOTOS Specifications. International Conference on Advanced Computing.

Johanson, B., A. Fox and T. Winograd (2002). "The Interactive Workspaces Project: Expe-

riences with Ubiquitous Computing Rooms." IEEE Pervasive Computing 1(2): 67-

74.

Johnson, P. (1992). Human-computer interaction : psychology, task analysis and software

engineering. London u.a., McGraw-Hill.

Ju, W., B. A. Lee and S. R. Klemmer (2008). Range: exploring implicit interaction through

electronic whiteboard design. Proceedings of the 2008 ACM conference on Comput-

er supported cooperative work. San Diego, CA, USA, ACM.

Ju, W. and L. Leifer (2008). "The Design of Implicit Interactions: Making Interactive Sys-

tems Less Obnoxious." Design Issues 24(3): 72-84.

Khendek, F., S. Bourduas and D. Vincent (2001). Stepwise Design with Message Sequence

Charts. Proceedings of the IFIP TC6/WG6.1, Kluwer, B.V.

Kidd, C. D., R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. MacIntyre, E. D. Mynatt, T.

Starner and W. Newstetter (1999). The Aware Home: A Living Laboratory for Ubi-

quitous Computing Research. Proceedings of the Second International Workshop on

Cooperative Buildings, Integrating Information, Organization, and Architecture,

Springer-Verlag.

Kiefer, P. and K. Stein (2008). A Framework for Mobile Intention Recognition in Spatially

Structured Environments. 2nd Workshop on Behavior Monitoring and Interpretation

References

189

(BMI08), 31st German Conference on Artificial Intelligence Kaiserslautern, Germa-

ny.

Kientz, J. A., S. N. Patel, B. Jones, E. Price, E. D. Mynatt and G. D. Abowd (2008). The

Georgia Tech aware home. CHI '08 extended abstracts on Human factors in compu-

ting systems. Florence, Italy, ACM.

Kirste, T. (2006). Smart Environments. True Visions. E. Aarts and J. L. Encarnacao. Heidel-

berg, Springer: 323-339.

Kirste, T., T. Herfet and M. Schnaider (2001). EMBASSI: multimodal assistance for univer-

sal access to infotainment and service infrastructures. Proceedings of the 2001

EC/NSF workshop on Universal accessibility of ubiquitous computing: providing for

the elderly. Alcácer do Sal, Portugal, ACM.

Kirwan, B. and L. K. Ainsworth (1992). A Guide to Task Analysis: The Task Analysis

Working Group, Taylor & Francis.

Klug, T. and J. Kangasharju (2005). Executable Task Models. TaMoDia 2005. Gdansk, Pol-

and.

Koskinen, I., K. Kuusela, K. Battarbee, A. Soronen, F. Mäyrä, J. Mikkonen and M.

Zakrzewski (2006). Morphome: a constructive field study of proactive information

technology in the home. Proceedings of the 6th conference on Designing Interactive

systems. University Park, PA, USA, ACM.

Kruchten, P. (2003). The Rational Unified Process: An Introduction, Addison-Wesley

Longman Publishing Co., Inc.

Kumar, S. (2009). Challenges for Ubiquitous Computing. Fifth International Conference on

Networking and Services, Valencia, Spain

Lamport, L. (1994). "The Temporal Logic of Actions." ACM Trans. Program. Lang. Syst.

16(3): 872-923.

Langheinrich, M., V. Coroama, J. Bohn and F. Mattern (2005). "Living in a Smart Environ-

ment - Implications for the Coming Ubiquitous Information Society." Telecommuni-

cations Review 15: 132-143.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analy-

sis and Design and Iterative Development (3rd Edition), Prentice Hall PTR.

Le Gal, C., J. Martin, A. Lux and J. L. Crowley (2001). "Smart Office: Design of an Intelli-

gent Environment." IEEE Intelligent Systems 16: 60-66.

Lesser, V., M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent, T. Wagner, P. Xuan

and S. X. Q. Zhang (1999). The UMASS intelligent home project. Proceedings of

the third annual conference on Autonomous Agents. Seattle, Washington, United

States, ACM.

Limbourg, Q. and J. Vanderdonckt (2003). Comparing Task Models for User Interface De-

sign. The Handbook of Task Analysis for Human-Computer Interaction. D. Diaper

and N. Stanton, Lawrence Erlbaum Associates: 135-154.

Limbourg, Q., J. Vanderdonckt, B. Michotte, L. Bouillon and V. López-Jaquero (2005).

USIXML: A Language Supporting Multi-path Development of User Interfaces. En-

gineering Human Computer Interaction and Interactive Systems: 200-220.

Limbourg, Q., J. Vanderdonckt and N. Souchon (2001). The Task-Dialog and Task-

Presentation Mapping Problem: Some Preliminary Results. Interactive Systems De-

sign, Specification, and Verification: 227-246.

References

190

Logrippo, L., A. Obaid, J. P. Briand and M. C. Fehri (1988). "An interpreter for LOTOS, a

specification language for distributed systems." Softw. Pract. Exper. 18(4): 365-385.

Luyten, K. (2004). Dynamic User Interfaces Generation for Mobile and Embedded Systems

with Model-Based user Interface Development. PhD in. Maastricht, Universiteit

Maastricht.

Luyten, K., J. V. den Bergh, C. Vandervelpen and K. Coninx (2006). "Designing distributed

user interfaces for ambient intelligent environments using models and simulations."

Computers & Graphics 30(5): 702-713.

Luyten, K., T. Van Laerhoven, K. Coninx and F. Van Reeth (2003). "Runtime transforma-

tions for modal independent user interface migration." Interacting with Computers

15: 329-347.

MacColl, I. and D. Carrington (2000). "Translating UAN into CSP." ICFEM '00: Proceed-

ings of the 3rd IEEE International Conference on Formal Engineering Methods: 121.

Magee, J. and J. Kramer (2000). Concurrency : state models & Java programs. Chichester

u.a., Wiley.

Marr, C. (2007). Capturing Conflict and Confusion in CSP. Integrated Formal Methods:

413-438.

Mazurkiewicz, A. (1977). Introduction to Trace Theory. The book of traces. V. Diekert and

G. Rozenberg. Singapore u.a., World Scientific.

MDA. (2010). "Model Driven Architecture." Retrieved January 15, 2010, from

http://www.omg.org/mda/.

Milner, R. (1980). A Calculus of Communicating Systems. Berlin, Heidelberg ;Springer,.

Molich, R. and J. Nielsen (1990). "Improving a human-computer dialogue." Commun. ACM

33(3): 338-348.

Molina, A. I., M. A. Redondo, M. Ortega and U. Hoppe (2008). "CIAM: A Methodology for

the Development of Groupware User Interfaces." Journal of Universal Computer

Science 14: 1435-1446.

Molina, P. J. (2004). A Review to Model-Based User Interface Development Technology.

MBUI 2004. Funchal, Madeira, Portugal.

Montero, F. and V. López-Jaquero (2008). IdealXml: An Interaction Design Tool. Comput-

er-Aided Design Of User Interfaces V: 245-252.

Mori, G., F. Paternò and C. Santoro (2002). "CTTE: Support for Developing and Analyzing

Task Models for Interactive System Design." IEEE Trans. Softw. Eng. 28(8): 797-

813.

Mozer, M. C. (1998). The neural network house: An environment that adapts to its inhabi-

tants. American Association for Artificial Intelligence Spring Symposium on Intelli-

gent Environments, Menlo Park, CA, USA, AAAI Press.

Mozer, M. C. (2004). Lessons from an Adaptive Home. Smart Environments. S. K. D. Diane

J. Cook: 271-294.

Murata, T. (1989). "Petri nets: Properties, analysis and applications." Proceedings of the

IEEE 77(4): 541-580.

Norman, D. A. (2000). The design of everyday things. London, MIT Press.

Oleson, C., M. Hagan and C. DeMoss (2009). Achieving IT Service Quality: The Opposite

of Luck, Synergy Books.

http://www.omg.org/mda/

References

191

Oliver, N. and F. Flores-Mangas (2006). MPTrain: a mobile, music and physiology-based

personal trainer. Proceedings of the 8th conference on Human-computer interaction

with mobile devices and services. Helsinki, Finland, ACM.

Ouyang, C., W. M. P. van der Aalst, M. Dumas and A. H. M. ter Hofstede (2006). "Translat-

ing BPMN to BPEL."

Oviatt, S. (1999). "Ten myths of multimodal interaction." Commun. ACM 42(11): 74-81.

Paolucci, M. and K. Sycara (2003). "Autonomous Semantic Web Services." IEEE Internet

Computing 7(5): 34-41.

Paternò, F. (1999). Model-Based Design and Evaluation of Interactive Applications. London,

UK, Springer-Verlag.

Paternò, F. and C. Santoro (2001). The ConcurTaskTrees Notation for Task Modelling.

Technical Report at CNUCE-C.N.R.

Paternò, F., C. Santoro, J. Mantyjarvi, G. Mori and S. Sansone (2008). "Authoring pervasive

multimodal user interfaces." Int. J. Web Eng. Technol. 4(2): 235-261.

Payne, S. J. and T. R. G. Green (1986). "Task-Action Grammars: A Model of the Mental

Representation of Task Languages." Human-Computer Interaction 2(2): 93 - 133.

Peled, D. (1993). All from One, One for All: on Model Checking Using Representatives.

Proceedings of the 5th International Conference on Computer Aided Verification,

Springer-Verlag.

Penichet, V. M. R., M. D. Lozano, J. A. Gallud and R. Tesoriero (2008). Analysis models for

user interface development in collaborative systems. CADUI 2008. Alabcete, Spain.

Penichet, V. M. R., M. D. Lozano, J. A. Gallud and R. Tesoriero (2009). "User interface

analysis for groupware applications in the TOUCHE process model." Adv. Eng.

Softw. 40(12): 1212-1222.

Penichet, V. M. R., M. D. Lozano, J. A. Gallud and R. Tesoriero (2010). "Requirement-

based approach for groupware environments design." Journal of Systems and Soft-

ware 83(8): 1478-1488.

Petri, C. A. (1962). Fundamentals of a theory of asynchronous information flow. IFIP Con-

gress'62. Munich, Germany: 386-390.

Ponnekanti, S. R., L. A. Robles and A. Fox (2002). User Interfaces for Network Services:

What, from Where, and How. Proceedings of the Fourth IEEE Workshop on Mobile

Computing Systems and Applications, IEEE Computer Society.

Pontico, F., C. Farenc and M. Winckler (2007). Model-Based Support for Specifying eSer-

vice eGovernment Applications. TaMoDia.

Pratt, V. (1986). "Modeling concurrency with partial orders." International Journal of Paral-

lel Programming 15(1): 33-71.

Propp, S., G. Buchholz and P. Forbrig (2008). Task Model-Based Usability Evaluation for

Smart Environments. Engineering Interactive Systems, Springer Berlin / Heidelberg.

5247: 29-40.

Propp, S., G. Buchholz and P. Forbrig (2009). "Integration of Usability Evaluation and Mod-

el-Based Software Development." Adv. Eng. Softw. 40(12): 1223-1230.

Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Systems by Timed Petri

Nets, Massachusetts Institute of Technology.

Reed, G. and A. Roscoe (1986). A timed model for communicating sequential processes.

Automata, Languages and Programming: 314-323.

References

192

Reichart, D., A. Dittmar, P. Forbrig and M. Wurdel (2008). Tool Support for Representing

Task Models, Dialog Models and User-Interface Specifications. DSV-IS.

Reichart, D., P. Forbrig and A. Dittmar (2004). Task models as basis for requirements engi-

neering and software execution. TAMODIA, ACM: 51-58.

Reisse, C., C. Burghardt, F. Marquardt, T. Kirste and A. Uhrmacher (2008). Smart Environ-

ments Meet the Semantic Web. Proceedings of the 7th International Conference on

Mobile and Ubiquitous Multimedia. Umea, Sweden, ACM Press: 88-91.

Rodden, T., K. Chervest, N. Davies and A. Dix (1998). Exploiting Context in HCI Design

for Mobile Systems. in Workshop on Human Computer Interaction with Mobile De-

vices.

Ronzani, D. (2009). "The Battle of Concepts: Ubiquitous Computing, Pervasive Computing

and Ambient Intelligence in Mass Media." UbiCC Journal 4(2).

Roscoe, B. (1997). The Theory and Practice of Concurrency, Prentice Hall PTR.

Royce, W. W. (1987). Managing the development of large software systems: concepts and

techniques. ICSE '87: Proceedings of the 9th international conference on Software

Engineering, Monterey, California, United States, IEEE Computer Society Press.

Russell, N., A. ter Hofstede, D. Edmond and W. van der Aalst (2005). Workflow Data Pat-

terns: Identification, Representation and Tool Support. Conceptual Modeling – ER

2005.

Russell, S. and P. Norvig (2003). Artificial Intelligence: A Modern Approach (Second Edi-

tion), Prentice Hall.

Scapin, D. and C. Pierret-Goldbreich (1989). Towards a method for task description : MAD.

Proceedings of Work with Display Units (WWU '89), North-Holland: Elsevier

Science.

Schilit, B., N. Adams and R. Want (1994). Context-Aware Computing Applications. IEEE

Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US.

Schmidt, A. (2000). "Implicit Human Computer Interaction Through Context." Personal and

Ubiquitous Computing 4(2/3).

Schmidt, A., M. Beigl and H. W. Gellersen (1998). There is more to Context than Location.

Karlsruhe, University of Karlsruhe.

Schmidt, A., M. Kranz and P. Holleis (2005). "Interacting with the ubiquitous computer:

towards embedding interaction." sOc-EUSAI '05: Proceedings of the 2005 joint con-

ference on Smart objects and ambient intelligence: 147-152.

Schwaber, K. and M. Beedle (2001). Agile Software Development with Scrum, Prentice Hall

PTR.

Seffah, A., J. Gulliksen and M. Desmarais (2005). Human-Centered Software Engineering -

Integrating Usability in the Development Process (Human-Computer Interaction Se-

ries), Springer-Verlag New York, Inc.

Seffah, A. and H. Javahery (2004). Multiple User Interfaces : Cross-Platform Applications

and Context-Aware Interfaces. Hoboken, NJ, J. Wiley.

Selic, B. (2003). "The Pragmatics of Model-Driven Development." IEEE Softw. 20(5): 19-

25.

Sharples, S., V. Callaghan and G. Clarke (1999). "A multi-agent architecture for intelligent

building sensing and control." Sensor Review 19: 135-140.

References

193

Sheridan, T. B. (2002). Humans and Automation: System Design and Research Issues, John

Wiley \& Sons, Inc.

Shirehjini, A. N. (2007). A Multidimensional Classification Model for the Interaction in

Reactive Media Rooms. Human-Computer Interaction. HCI Intelligent Multimodal

Interaction Environments, Springer Berlin / Heidelberg. 4552: 431-439.

Sinnig, D. (2004). The Complicity of Patterns and Model-Based Engineering.

Sinnig, D. (2009). Use Case and Task Models: Formal Unification and Integrated Develop-

ment Methodology. PhD in Computer Science and Software Engineering. Montréal,

Canada, Concordia University.

Sinnig, D., M. Wurdel, P. Forbrig, P. Chalin and F. Khendek (2007). Practical Extensions for

Task Models. TaMoDia 2007, Springer. 4849: 42-55.

Sommerville, I. (2006). Software Engineering. Boston, MA, USA, Addison-Wesley Long-

man Publishing Co., Inc.

Sottet, J.-S., G. Calvary and J.-M. Favre (2008). Models at Run-time for Sustaining User

Interface Plasticity. Models@Runtime workshop at Models 2008: 1-10.

Sottet, J.-S., G. Calvary, J.-M. Favre, J. Coutaz, A. Demeure and L. Balme (2006). Towards

Model Driven Engineering of Plastic User Interfaces. Satellite Events at the MoD-

ELS 2005 Conference: 191-200.

Sutcliffe, A. (2005). "Evaluating the costs and benefits of end-user development." SIGSOFT

Softw. Eng. Notes 30(4): 1-4.

Tidwell, J. (2005). Designing Interfaces, O'Reilly Media, Inc.

Trætteberg, H. (2008). "Integrating Dialog Modeling and Domain Modeling - the Case of

Diamodl and the Eclipse Modeling Framework." JUCS 14(Human-Computer Inte-

raction).

Uchitel, S., J. Kramer and J. Magee (2004). "Incremental elaboration of scenario-based spe-

cifications and behavior models using implied scenarios." ACM Trans. Softw. Eng.

Methodol. 13(1): 37-85.

Ullmer, B. and H. Ishii (2000). "Emerging frameworks for tangible user interfaces." IBM

Syst. J. 39(3-4): 915-931.

UML. (2010). "Unified Modeling Language." Retrieved August 10, 2010, from

http://www.uml.org/.

UsiXML. (2010). "USer Interface eXtensible Markup Language." Retrieved March 10,

2010, from http://www.usiXML.org/.

van den Bergh, J. and K. Coninx (2007). "From Task to Dialog Model in the UML." TA-

MODIA 4849: 98-111.

van der Veer, G., B. Lenting and B. Bergevoet (1996). "GTA: Groupware Task Analysis -

Modeling Complexity." Acta Psychologica 91: 297-332.

van der Veer, G. and M. van Welie (2000). Task based groupware design: putting theory into

practice. Proceedings of the 3rd conference on Designing interactive systems:

processes, practices, methods, and techniques. New York City, New York, United

States, ACM.

van Duyne, D. K., J. A. Landay and J. I. Hong (2006). The Design of Sites: Patterns for

Creating Winning Web Sites (2nd Edition), Prentice Hall PTR.

van Glabbeek, R. (1990). The linear time - branching time spectrum. CONCUR '90 Theories

of Concurrency: Unification and Extension: 278-297.

http://www.uml.org/
http://www.usixml.org/

References

194

van Glabbeek, R. and U. Goltz (2000). "Refinement of actions and equivalence notions for

concurrent systems." Acta Informatica 37(4-5): 229-327.

van Welie, M., G. van der Veer and A. Eliëns (1998). An Ontology for Task World Models.

DSV-IS 98. Abingdon, United Kingdom, Springer.

Vanderdonckt, J. (2008). Model-Driven Engineering of User Interfaces: Promises, Suc-

cesses, Failures, and Challenges. Romanian National Conference of Human-

Computer Interaction -- RoCHI 2008, Bucarest, Romania.

Vanderdonckt, J., Q. Limbourg, B. Michotte, L. Bouillon, D. Trevisan and M. Florins

(2004). USIXML : a User Interface Description Language for Specifying Multimod-

al User Interfaces. W3C Workshop on Multimodal Interaction WMI'2004

Vanderdonckt, J., H. Mendonca and J. P. Molina Massó (2008). Distributed User Interfaces

in Ambient Environment. Constructing Ambient Intelligence, Springer Berlin Hei-

delberg. 11: 121-130.

Walker, M., L. Takayama and J. A. Landay (2002). "High-Fidelity or Low-Fidelity, Paper or

Computer? Choosing Attributes When Testing Web Prototypes." Human Factors and

Ergonomics Society Annual Meeting Proceedings 46: 661-665.

Warmer, J. and A. Kleppe (2003). The Object Constraint Language: Getting Your Models

Ready for MDA, Addison-Wesley Longman Publishing Co., Inc.

Weiser, M. (1991). The Computer for the 21st Century. Scientific American. 265: 94-104.

Weiser, M. (1993). "Hot topics-ubiquitous computing." Computer 26(10): 71-72.

Welie, M. v., G. v. d. Veer and A. Eliëns (1998). An Ontology for Task World Models. In-

ternational Eurographics Workshop on Design Specification and Verification of In-

teractive Systems, Abingdon, UK.

White, S. A. (2004). "An Introduction to BPMN." BPTrends: 1-11.

Wilson, S., P. Johnson, C. Kelly, J. Cunningham and P. Markopoulos (1993). Beyond Hack-

ing: a Model Based Approach to User Interface Design. Human Computer Interac-

tion, University Press: 217-231.

Winskel, G. (1980). Events in Computation. PhD Thesis in Department of Computer

Science. Edinburgh, University of Edinburgh.

Wirth, N. (1971). "Program development by stepwise refinement." Commun. ACM 14(4):

221-227.

Wolff, A., P. Forbrig, A. Dittmar and D. Reichart (2005). Linking GUI elements to tasks:

supporting an evolutionary design process. Proceedings of the 4th international

workshop on Task models and diagrams. Gdansk, Poland, ACM.

Woodcock, J. and J. Davies (1996). Using Z: specification, refinement, and proof, Prentice-

Hall, Inc.

Wooldridge, M. J. (2002). An introduction to multiagent systems. Chichester, Wiley.

Wurdel, M. (2006). Tool Support of Patterns for Task Models. University of Rostock.

Wurdel, M. (2009). Towards an Holistic Understanding of Tasks, Objects and Location in

Collaborative Environments. HCII. San Diego, USA.

Wurdel, M., C. Burghardt and P. Forbrig (2007). "Supporting Ambient Environments by

Extended Task Models." Proc. AMI'07 Workshop on MDSE for AmI Applications.

Wurdel, M., C. Burghardt and P. Forbrig (2009). Making task modeling suitable for smart

environments. International Conference on Ultra Modern Telecommunications &

Workshops, 2009. ICUMT '09.

References

195

Wurdel, M. and P. Forbrig (2009). Use Cases and Task Models as Driving Forces to Identify

Requirements in Smart Environments. IMC.

Wurdel, M., S. Propp and P. Forbrig (2008a). HCI-Task Models and Smart Environments.

Human-Computer Interaction Symposium: 21-32.

Wurdel, M., D. Sinnig and P. Forbrig (2008b). "CTML: Domain and Task Modeling for

Collaborative Environments." JUCS 14(Human-Computer Interaction).

Wurdel, M., D. Sinnig and P. Forbrig (2008c). Task-Based Development Methodology for

Collaborative Environments. Engineering Interactive Systems 2008. Pisa, Italy,

Springer. 5247: 118-125.

Wurdel, M., D. Sinnig and P. Forbrig (2008d). Task Model Refinement with Meta Opera-

tors. DSV-IS 2007. Kingston, Canada.

Wurdel, M., D. Sinnig and P. Forbrig (2008e). Towards a Formal Task-based Specification

Framework for Collaborative Environments. CADUI. Albacete, Spain.

You, J., D. Lieckfeldt, F. Reichenbach and D. Timmermann (2009). Context-aware geo-

graphic routing for sensor networks with routing holes. Proceedings of the WCNC,

Budapest, Hungary, IEEE Press.

197

III. Appendix

199

A Appendix A.1

A.1 The Running Example “Conference Session”

Figure A-1 CTML Model “Conference Session” in CTML Editor

Cooperation Model

Figure A-2 Task Tree for Chairman with Abstract Task Names

Figure A-3 Task Tree for Presenter with Abstract Task Names

200

Figure A-4 Task Tree for Listener with Abstract Task Names

Preconditions & Effects

Task Type Precondition Abstract Syntax

Welcome Presenter LOCATION self.isIn(Presentation Zone)

Present Agenda LOCATION self.isIn(Presentation Zone)

Announce Talk TASK Listener.allInstances.Sit and Listen

Announce Open Discus-

sion

TASK Presenter.allInstances.End Presenta-

tion

Table A-1 Preconditions of the Role Chairman

Task Type Effect Abstract Syntax

Enter Room LOCATION self.is(Presentation Zone)

Leave Room LOCATION self.is(Outside)

Table A-2 Effects of the Role Chairman

Task Type Precondition Abstract Syntax

Start Presentation TASK Chairman.oneInstance.AnnounceTalk

Start Presentation LOCATION self.isIn(Presentation Zone)

Start Presentation DEVICE self.Notebook.presentationStarted

Respond to Question TASK Chairman.oneInstance.OpenDiscussion

Table A-3 Preconditions of the Role Presenter

Task Type Effect Abstract Syntax

Introduce DEVICE self.Notebook.switchOn

Introduce LOCATION self.is(Presentation Zone)

Set to Presentation Mode DEVICE self.Notebook.startPresentation

Leave Room LOCATION self.is(Outside)

Table A-4 Effects of the Role Presenter

201

Location Model

The location model used here is depicted in Figure 6-13.

Devices

Figure A-5 Visual Representation of the State Chart for Projector

202

Figure A-6 Visual Representation of the State Chart for Notebook

Domain Model

The domain model used here is depicted in Figure 6-15.

Configurations

Scenario 1

(Abbreviated for sh - Sheldon, le-Leonard, pe-Penny)

The set of object names is:

203

The set of associations of the objects is:

The set of attributes of the objects is:

Scenario 2

(Abbreviated for sh - Sheldon)

Transformation to Intermediate Specification

The Initial State with respect to Scenario 1

The Transformation with respect to Scenario 1

Rule(s)

(1)

(2)

(3)

(7)

204

Rule(s)

 (8)

(8)

(12), (22)

(14),(23)

(8)

(8)

(12), (22)

(14),(23)

Rule(s)

(8)

(12), (19)

(12), (19)

(14),(23)

205

(14),(23)

Rule(s)

(9)

(8)

(8)

(15)

(11)

(14),(23)

(14),(23)

Rule(s)

(8)

(14),(23)

(14),(23)

Rule(s)

(8)

206

(12), (15)

(14),(23)

(14),(23)

Rule(s)

(8)

(8)

(14),(23)

(14),(23)

(14),(23)

Rule(s)

(8)
 =

(8)

(8)

(12), (15)

(12), (19)

207

(12), (18)

(14),(23)

(8)

Rule(s)

(13), (22)

(13),(21)

(14),(23)

Rule(s)

(8)

(14),(23)

208

(13),(21)

(14),(23)

Rule(s)

(9)

(8)

(14),(23)

(14),(23)

Rule(s)

(8)

(14),(23)

(8)

(12), (15)

(14),(23)

(13), (22)

209

(14),(23)

With

The Initial State with respect to Scenario 2

The Transformation with respect to Scenario 2

Rule(s)

(1)

(2)

(7)

210

(shown before)

