
MODEL-DRIVEN DEVELOPMENT OF CONTENT-BASED

IMAGE RETRIEVAL SYSTEMS ON TOP OF

OBJECT-RELATIONAL DATABASE MANAGEMENT

SYSTEMS

Modellgetriebene Entwicklung inhaltsbasierter

Bildretrieval-Systeme auf der Basis von objektrelationalen

Datenbank-Management-Systeme

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

vorgelegt von
Temenushka Ignatova, geb. am 18.10.1976 in Kyustendil, Bulgarien
aus Rostock

Rostock, den 02.07.2008

rs121
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2008-0130-3

Gutachter:
Prof. Dr. Andreas Heuer, Universität Rostock
Prof. Dr. Klaus Meyer-Wegener, Friedrich-Alexander-Universität Erlangen-Nürnberg
Prof. Dr. Susanne Boll, Carl von Ossietzky Universität Oldenburg

Tag der Promotionsverteidigung: 18. September 2008

Abstract

Digital images are increasingly used for capturing information. The growing amount of such
data requires the development of adequate techniques for its reliable storage and efficient
retrieval. Different computer science communities, such as computer vision, information
retrieval, database systems, artificial intelligence etc., have devoted their efforts and expertise
to providing a solution for this challenge. The search for meaningful visual characteristics
of images, which can be used to automatically compare images by similarity, is an ongoing
process. This is due to the fact that each application domain, each user and even each
situation require different information from the image to be considered for the comparison.
For these characteristics, suitable measures for calculating the similarity between them have
been proposed. However, these measures must also be tested and parametrized for a particular
application. Robust image processing algorithms for extracting the visual characteristics from
the raw image data have to be implemented so that as few as possible information from the
original image is lost. Data Mining techniques have been applied for deriving semantic data
from the low-level image characteristics in order to bring the computer-based representation
of the image content as close as possible to the human way of describing images. And finally,
ways to associate the image data with other context dependent data in order to provide an
integrated system to the user or gain more information about the content of the images have
been investigated.
All these techniques have been implemented in so called Content-based Image Retrieval Sys-
tems (CBIRS). The prior idea of these systems was to support the similarity search for any
kind of image collection. It was relatively fast recognized that this is not possible due to the
different requirements of different application domains concerning the image characteristics
and measures used for the retrieval. On the one hand, picking the right algorithms for a
particular application is one of the challenges with which a developer of a CBIRS has to deal.
On the other hand, building the application requires the definition of an architecture, data
structures and functionality components. The basic architecture of these systems does not
differ much, also in the specialized applications. Therefore, in order to help building such
specialized applications by focusing mainly on choosing the right combination of algorithms
an adequate development support mechanism is required. The first attempts to achieve this
are based on software frameworks and source code libraries. However, these techniques do not
provide enough flexibility with respect to platform independence and the resulting application
are not compact specialized applications, but rather an extended version of the framework
system.
In this thesis, the model-driven software development paradigm is employed as a development
support technique for CBIRS. Therefore, two groups of techniques are elaborated, modeling
and transformation techniques. Modeling techniques, based on a conceptual framework model

i

ii Abstract

are proposed for modeling the components for image storage, feature extraction and image
retrieval of a CBIRS architecture. Therefore, generic data structures and operations for the
update, storage and retrieval of images are defined as a framework model, which can be used by
developers to derive their own application specific conceptual models for CBIRS. In this thesis,
transformation techniques for the automatized implementation of the model in an ORDBMS
environment are defined. These are specified in terms of transformation rules for mapping
the platform independent model concepts onto concepts of a platform specific model for
object-relational database management systems (ORDBMS). Database management systems
were chosen as a target platform for the implementation in this thesis because of the well
established mechanisms for inserting and updating information which these systems provide,
e.g. transaction management. Furthermore, database systems can be used to link other
information to the image data in form of textual metadata, for which they can provide efficient
access. However, since the conceptual model is platform independent, any other platform can
be considered for the implementation of the model. In particular ORDBMS were used because
of the insufficient support for multimedia data in relational database management system,
and the need for such support in information integration applications, such as digital libraries,
multimedia information systems.
The transformation techniques are evaluated by verifying the quality of the transformation
rules. The criteria assuring the quality of the transformation were derived from the require-
ment for information capacity preservation of the transformation known in the database design
theory. The investigation of the mapping rules showed that the derived quality requirements
are fulfilled.
The elaborated modeling techniques are applied for the modeling of a CBIR system for storing
images of music scores, and identifying their scribes, based on the visual handwriting charac-
teristics of the images. In addition, a CBIRS application for the retrieval of similar images of
2D-electrophoresis Gels is derived from the CBIRS framework model. And finally, the model
is evaluated for an application for the annotation of photos. These test cases showed that a
large class of CBIRS fits well into the generic framework model, i.e. these applications can
be easily modeled by making use of the proposed modeling techniques.

Kurzfassung

Immer häufiger werden digitale Bilder zur Aufnahme verschiedenster Informationen einge-
setzt. Für die effiziente Verwaltung dieser Informationen werden passende Techniken für ihre
Speicherung und Suche benötigt. Verschiedene Forschungszweige der Informatik, wie beispiel-
sweise die Bildverarbeitung, Information Retrieval, Datenbanksysteme und Künstliche Intelli-
genz, stellen sich diesen Herausforderungen. Im Zentrum dieser Lösungsversuche steht immer
wieder das Finden relevanter visueller Bildmerkmale, mit deren Hilfe Ähnlichkeiten zwischen
digitalen Bildern gefunden werden sollen. Die Frage, inwieweit sich Bilder ähnlich sind, muss
für jedes neue Anwendungsgebiet und jede neue Nutzeranforderung anders gestellt werden.
Die relevanten Informationen aus den Bildern sind für jedes einzelne Gebiet ebenso vielfältig
wie die Ansätze, diese als Basis für einen Bildvergleich zu klassifizieren. Die verschiedenen
relevanten Bildmerkmale in den zu vergleichenden Bildern werden immer wieder neu mit spez-
ifischen Ähnlichkeitsmaßen versehen, um die Ähnlichkeit mathematisch erfassen zu können.
Diese müssen getestet und parametrisiert werden, um die menschliche Wahrnehmung für
Ähnlichkeit so genau wie möglich zu simulieren. Dazu werden komplexe Bildverarbeitungsal-
gorithmen entwickelt, um die gewünschten Merkmale fehlerfrei und effizient aus den Bildern zu
extrahieren. Auf die Ergebnisse dieser Algorithmen werden Data Mining Techniken angewen-
det. Damit lassen sich einfachen, messbaren Merkmalen wie zum Beispiel der Farbe und der
Textur semantische Konzepte, in etwa Sonne oder Himmel, zuordnen. Und schließlich werden
Möglichkeiten untersucht, um andere kontextabhängige Informationen mit den Bildern zu
assoziieren, um den Inhalt der Bilder zuverlässiger automatisch erkennen zu können.
Das Zusammenspiel dieser Techniken wird in so genannten inhaltsbasierten Bildretrieval-
Systemen (auf Englisch: Content-based Image Retrieval Systems CBIRS) verwendet. Das ur-
sprüngliche Ziel für den Einsatz dieser Systeme war es, die Ähnlichkeitssuche auf verschieden-
ste Bildinhalte gleichermaßen zu unterstützen. Jedoch wurde schon frühzeitig erkannt, dass
diese Verschiedenheit der Bilder eine zu große Hürde für CBIRS darstellt. Daher muss der
Entwickler solcher Systeme zum einen eine auf jede Bildanwendung zugeschnittene Auswahl
an Algorithmen zur Merkmalsextraktion und zur Ähnlichkeitssuche verwenden. Zum anderen
müssen vom Entwickler eine für die Bildanwendung passende Softwarearchitektur, Daten-
strukturen und Funktionskomponenten entworfen werden. Die Softwarearchitektur selbst un-
terscheidet sich bei den verschiedensten Anwendungen jedoch nur geringfügig. Die Entwick-
lung einer solchen Architektur lässt sich daher mit übergreifenden Mechanismen unterstützen,
die die jeweils passende Kombination von entsprechenden Algorithmen zur Verfügung stellen.
Die ersten Versuche, solche Mechanismen zu erstellen, basieren auf Software Frameworks und
Quellcode-Bibliotheken. Diese Techniken bieten jedoch nicht genügend Flexibilität in Bezug
auf die Plattformunabhängigkeit und die Ergebnisse sind keine maßgeschneiderten, kompak-
ten Anwendungen, sondern vielmehr erweiterte Versionen der Frameworks.

iii

iv Kurzfassung

In dieser Dissertation wird das Paradigma des modellgetriebenen Softwareentwurfs als Hilfs-
technik für die Erstellung von CBIRS angesetzt. Hierfür werden zwei Gruppen von Tech-
niken verwendet: Modellierungs- und Transformationstechniken. Die Modellierungstechniken
basieren auf einem konzeptuellen Frameworkmodell und werden für die Modellierung der
Bildspeicherung, der Merkmalsextraktion und der Komponenten für die Ähnlichkeitssuche in
CBIRS eingesetzt. Das Frameworkmodell definiert die generische Datenstruktur und Funk-
tionalität für die Speicherung, Aktualisierung und Suche in Bildern. Dieses kann vom Ent-
wickler eines CBIRS für den Entwurf eines eigenen, auf die Anwendung zugeschnittenen,
konzeptuellen Modells verwendet werden. In dieser Arbeit werden weiterhin Transformations-
techniken für die automatische Generierung von Implementierungen in Objektorientierten
Datenbank-Management-Systemen (ORDBMS) aus dem konzeptuellen Modell erarbeitet.
Diese werden in Form von Transformationsregeln zur Abbildung plattformunabhängiger Mo-
dell-Konzepte auf Konzepte der Zielplattform dargestellt. In dieser Arbeit werden Objekt-
orientierte Datenbank-Management-Systeme (ORDBMS) als Implementierungsplattform ge-
wählt. Diese Systeme bieten ausgereifte Mechanismen zum Einfügen und Aktualisieren per-
sistenter Informationen, zum Beispiel durch das Transaktionsmanagement. Weiterhin sind
ORDBMS eine der häufigsten Anwendungen zur Integration von Daten aus verschieden-
sten Quellen, beispielsweise Bilddaten von Medienservern und Textdaten aus Datenbanken
oder von Fileservern. Dennoch kommen aufgrund der Tatsache, dass die konzeptuellen
CBIRS Modelle plattformunabhängig sind, weitere Zielplattformen in Betracht. Für die
jeweilige Zielplattform müssen dementsprechende Transformationsregeln definiert werden.
Objektorientierten Datenbank-Management-Systemen wird gegenüber Relationalen Daten-
banken der Vorzug gegeben, weil Relationale Datenbanken keine hinreichende Unterstützung
für Multimedia-Daten bieten. Eine solche Unterstützung ist jedoch für integrative Anwen-
dungen wie Digitale Bibliotheken, Multimedia-Informationssysteme usw. essentiell.
Für die Evaluierung der Transformationstechniken wird die Qualität der definierten Transfor-
mationsregeln überprüft. Die aus der Theorie des Datenbankentwurfs bekannten Anforderung-
en zur Kapazitätserhaltung der Transformation dienen als Kriterien für die erforderliche
Qualität der Transformation. Die Untersuchung der Transformationsregeln ergibt, dass die
Qualitätsanforderungen erfüllt sind.
Die entwickelten Modellierungstechniken werden beispielhaft für die konzeptuelle Model-
lierung eines CBIRS zur Speicherung digitaler Musikhandschriften und zur Identifizierung
deren Schreiber angewendet. Weiterhin kommt eine CBIR Anwendung zur Ähnlichkeitssuche
in Bildern aus der 2D-Gelelektrophorese zum Einsatz. Eine dritte CBIR Testanwendung dient
der Speicherung und automatischen Annotation von Fotos. Diese drei Anwendungen zeigen,
dass verschiedenste CBIRS aus dem generischen CBIRS Frameworkmodell abgeleitet und
dass diese mit Hilfe der dargestellten Modellierungstechniken ohne Schwierigkeiten umgesetzt
werden können.

Acknowledgments

I would like to express my gratitude to all the people who believed in me and gave me their
support during the long years of researching and writing on this dissertation.
I wish to thank my adviser Prof. Dr. Andreas Heuer, who opened opportunities for me by
giving me the right hints at the right time, by encouraging me in taking challenges, and by
teaching me not to doubt my ideas.
Prof. Dr. Heidrun Schumann has also supported me with very important hints for the repre-
sentation of my ideas. I thank her for her encouraging remarks.
My colleagues and friends have been a great assistance by sparing their time for fruitful
discussions, by sharing their experience with me, and by being always glad to help or simply
listen. In particular, I would like to thank, Ilvio Bruder, Andreas Finger and Matthias Rust
for the productive and pleasant cooperation on the topic of multimedia information systems
development, Dr. Meike Klettke and Dr. Holger Meyer for their valuable comments on the
written work, and Sebastian Schick for his assistance in the design of the implementation.
I would like to thank all the students, whose projects and theses were supervised by me, for
giving their best to understand and implement my ideas and for helping me come up with
new ones.
Prof. Dr. Susanne Boll and Prof. Dr. Klaus Meyer-Wegener played also a decisive role not
only at the end as reviewers of my thesis, but also by showing me their interest in the topic
during the elaboration of the thesis.
I thank my family for all the warmth and optimism, and finally, I would like to thank my
dear Christian for so much understanding and love.

v

Table of Contents

Abstract i

Kurzfassung iii

Acknowledgments v

Table of Contents vii

1 Introduction 1

1.1 Motivation . 1

1.2 Underlying Problems . 3

1.3 Existing Solutions for CBIRS Development Support 4

1.3.1 Software Frameworks for CBIRSs . 4

1.3.2 Alternative Support for the Development of CBIRSs 6

1.3.3 Conclusions . 6

1.4 Employing the MDSD Paradigm for the Development of CBIRSs 7

1.4.1 Modeling Techniques . 7

1.4.2 Generation Techniques . 9

1.5 Structure of the Thesis . 9

2 Basic Principles and State of the Art of Used Technologies 11

2.1 CBIR Systems - State of the Art . 11

2.1.1 CBIR Systems Architecture . 13

2.1.2 Implementation Paradigms for CBIR Systems 18

2.1.3 Building CBIR Systems on Top of Extendable DBMSs 19

2.1.4 Summary of CBIRS Technologies . 21

2.2 Model-Driven Software Development - Basic Principles 22

2.2.1 Characteristics and Aims . 22

vii

viii TABLE OF CONTENTS

2.2.2 Models for Model-Driven Software Development 22

2.2.3 Model Transformations and Code Generation 25

2.2.4 Summary of MDSD Technology . 29

3 Requirements Analysis and Conceptual Design 31

3.1 Domain-Specific Modeling for CBIRSs . 31

3.1.1 Requirements for a Domain-Specific Model for CBIRSs 33

3.1.2 Requirements Towards the Quality of the Model 40

3.1.3 Evaluation of Existing Conceptual Image Models 42

3.1.4 Conclusions . 63

3.2 Transforming the CBIRS PIM to a PSM . 68

3.2.1 Choosing a Software Architecture and an Implementation Platform for
CBIRSs . 69

3.2.2 A Platform Specific Model for ORDBMSs 70

3.2.3 Model-to-Model Transformation . 74

3.3 Summary . 81

4 A Generic and Adaptable Conceptual Model for Image Retrieval 83

4.1 The Modeling Approach . 84

4.1.1 Framework Model . 84

4.1.2 UML for Frameworks . 85

4.2 Modeling the Data Structure of CBIRS Components 86

4.2.1 StillImage . 86

4.2.2 Metadata . 87

4.2.3 Region . 87

4.2.4 Feature . 88

4.2.5 Key Attributes and OIDs . 88

4.2.6 Application-specific Classes . 88

4.2.7 CBIRS Data Types . 89

4.2.8 Instantiating the Framework . 90

4.3 Modeling Functionality of CBIRS Components 92

4.3.1 Updates . 93

4.3.2 Queries . 96

4.3.3 Modeling Retrieval Functionality . 96

4.3.4 Implicit Object Behavior . 103

TABLE OF CONTENTS ix

4.3.5 Instantiating the Framework . 103

4.4 Summary . 104

5 Mapping Rules for Generating CBIRSs on Top of ORDBMSs 105

5.1 Modeling Deployment . 105

5.2 Meta Models . 106

5.2.1 PIM Meta Model . 106

5.2.2 PSM Meta Model . 110

5.3 Mapping PIM onto PSM . 113

5.3.1 Class . 114

5.3.2 Associations . 117

5.3.3 Dependency . 119

5.3.4 Generalization, GeneralizationSet . 120

5.3.5 Interface . 121

5.3.6 Package . 121

5.3.7 DataType . 122

5.3.8 Applying the Mapping Rules . 122

5.4 Quality of the Transformation . 123

5.4.1 Direct mappings . 123

5.4.2 Not-directly-mappable concepts . 123

5.4.3 Multiple mapping possibilities . 124

5.4.4 Mappings resulting in the same PSM Concept 124

5.4.5 Implementation specific concepts . 129

5.5 Implementation of an Image Database Generator 130

5.6 Summary . 132

6 Evaluation 133

6.1 Test Case eNoteHistory . 134

6.1.1 Requirements Analysis . 135

6.1.2 Modeling the eNoteHistory CBIRS . 140

6.2 Test Case 2D-Gel Electrophoresis Images . 143

6.2.1 Requirements Analysis . 143

6.2.2 Modeling the 2D-Gel Electrophoresis CBIRS 146

6.3 Test Case Photo Album . 148

6.3.1 Requirements Analysis . 148

x TABLE OF CONTENTS

6.3.2 Modeling the Image Annotation Application 149

6.4 Estimating the Gain From the Result of the Transformation 151

6.4.1 Mapping Data Structure . 151

6.4.2 Mapping Functionality . 151

6.5 Summary . 154

7 Conclusions and Prospective Research Directions 155

Bibliography 161

List of Figures 177

List of Tables 181

List of Abbreviations 183

Appendix 185

A PIM Metamodel 187

B PSM Metamodel 207

C Large Versions of Selected Figures 235

D Screenshots of the Image Database Generator Plug-In 253

Chapter 1

Introduction

1.1 Motivation

Still images are a popular form of recording visual information and are associated with a wide
variety of human activities. In order to organize and manage the growing amount of image
data, adequate techniques for its digital storage and retrieval are needed.
Personal photo collections, for example, are currently stored mostly directly in the file system
and are accessed either through file system navigation tools, e.g. Microsoft Explorer, directly,
or through specialized tools for browsing and organizing image data found in the file system,
such as Google’s Picasa. In order to be able to search for specific photos, e.g. for a presentation
on the home entertainment system, or for the digital photo frame, the user usually in advance
arranges the photos according to the date, place and time they were taken. However, if she
would like to include only photos made at the beach in her presentation, it would take a
lot of time to pick the right photos. For this access scenario, content-based image retrieval
techniques, which can sort the images automatically in predefined classes, such as “beach
photos”, “mountain photos” etc., can be applied. In order to achieve this, content-based
image retrieval systems make use of image processing techniques to extract information from
the images, such as color, object shapes, texture information and apply machine learning
algorithms to associate these so called features to semantic concepts, such as sea, sand, sky etc.
The difficulties of applying these approaches are mainly the choice of the right combination of
features, similarity measures, and data mining algorithm parameterization which can reflect
the human perception of similarity and semantic concepts.
Apart from content-based data which can be extracted from raw image data, image context
related data is produced simultaneously with the image capture. This data can also be used
to arrange or classify the information accordingly. In the case of digital photos, these could
be for example GPS coordinates and camera technical data, such as aperture and exposure
time. Additionally, such context data can be associated to the image at a later point of
time, for example by matching the GPS coordinates with geographical name tags or the time
stamp with a personal calender event. These data are currently stored in the image headers,
which poses a lot of difficulties for its updating. For example, there are no mechanisms in this
case which can assure data integrity when updating the GPS coordinates or the geographical
name tags. This problem is even more significant for images produced as results in the area of
experimental sciences. The devices producing these images usually generate a lot of additional

1

2 Chapter 1. Introduction

experiment data, which do not even fit into the image header, but has to be saved in separate
files. In order to integrate these data, to assure consistent update operations, and provide
secure access to sensitive data, database management system techniques have to be used.
There are a number of other reasons for turning to databases when developing content-
based image retrieval systems (CBIRSs), addressed in [VC02, AJO04]. However, existing
database management systems (DBMSs) were neither originally designed to store complex
data types such as images, nor could these systems foster content-based image retrieval.
Proposed DBMS extensions (IBM DB2 Extenders, Oracle Options, Informix Datablades)
and standards (SQL2003, SQL/MM) consider only a rudimentary set of functions for content
extraction, content representation possibilities, similarity measures and indexing mechanisms.
The customization or adaptation of these extensions for specialized CBIR applications is also
limited. Therefore, in order to solve real-life CBIR problems each time a CBIR application
is needed a new extension has to be developed.
The attempts to build universal CBIR applications have failed mostly because each specific
domain requires adequate adaptation of the system components. This problem has been tack-
led on an implementation basis by offering adaptable software architectures, such as CBIR
frameworks (e.g. GIFT [MSMP99], PicSOM [LKO02], VizIR [EB03], GRAID [GY00]), which
can be extended and configured to support different CBIR applications. This approach has
the disadvantage that the resulting applications are not tailored to the specific problem but
contain much more functionality than needed and that the frameworks limit the implemen-
tation to a specific platform and software architecture.
The aim of this thesis is to create a more efficient development approach for CBIR applica-
tions, which builds upon the fact that CBIR applications use similar components that have
to be adapted for specific applications. The proposed approach allows the adaptation of the
components on a conceptual design level so that the resulting applications can be deployed on
different platforms and system architectures. To achieve this aim, techniques for model-driven
software development are adopted. First, an adaptable generic model is defined to allow the
adaptation of the CBIR application on a conceptual design level. Second, the mapping of
this model onto an ORDBMS Schema is automated, with the aim to provide assistance for
the CBIR system developers to generate a platform-specific implementation of the conceptual
application.
This approach can be very useful for building specialized CBIR applications, such as scientific
image databases, which use particular image characteristics (features) and domain knowledge
in order to derive new information or analyze the content of large image sets. The develop-
ment of such systems requires the incorporation of domain-specific data and corresponding
retrieval mechanisms. Therefore, universal CBIR systems cannot be used for these applica-
tions and new applications have to be implemented. The development of multidisciplinary
applications, such as digital libraries or multimedia information systems, where images orig-
inate from various domains is also a target application field for the developed approach. In
these applications, different collections of images have to be managed in different ways, which
requires appropriate methods for their retrieval to be developed and implemented. Therefore,
a tailor-made application has to be implemented and then integrated as part of the digital
library or multimedia information system for each image collection.

1.2. Underlying Problems 3

1.2 Underlying Problems

The model-driven methodology for developing CBIRS represented in this thesis is elaborated
systematically by analyzing and elaborating each of the underlying problems. These problems
can be summaries in four question outlined in the following paragraphs.
Current research and development in the field of multimedia content-based retrieval systems
focuses on integrating new aspects in such systems in order to improve their effectiveness as
described in [LZLM07]. Low-level features, directly derived from the images, have turned out
to be insufficient to solve the problem of retrieving or classifying images by their content.
There are two main approaches to resolving this issue. On one side there is the endeavor to
consider as much external information for the images as possible. Examples of this include the
association of context data to images coming from camera devices, and associating textual
descriptions from multimedia documents by identifying text related to the image. On the
other side the aim is to bridge the semantic gap by deriving more meaningful information
from the low-level features through applying machine learning techniques, using ontologies
etc. The integration of these new aspects requires additional components to be implemented
and interchanged in CBIR Systems. This leads to difficulties in determining a universal
CBIR architecture. In order to develop a framework model for CBIR applications generic
components have to be defined that can be adapted for a particular domain problem. The
main question to which an answer is sought is “What should be modeled?”, i.e what are the
components of a CBIR system, and which of these can be modeled conceptually?
At the same time, the different possibilities for combining the components of a CBIR system
have to be investigated. These have to be considered when choosing a software architecture
for the application and higher-level platforms. Thereby, an answer to the question “What
should be generated?” is sought. For example, a choice between a two-tiered, three-tiered
or distributed software architecture has to be made. This decision influences the answer to
the question “What should be modeled?” because the software architecture also determines
the system components which have to be modeled. For example, the choice of a persistence
layer based on an ORDBMS would suggest that the CBIR System model does not have to
additionally include a persistent management component.
After the components and the software architecture for the CBIR application are determined,
a suitable modeling language has to be found for representing the concepts of a CBIR systems.
A domain-specific modeling language can be evolved for this particular purpose or an existing
CBIR model or universal modeling paradigm can be applied. Therefore, the expressive power
of modeling languages has to be investigated based on the criteria for modeling CBIR appli-
cations. In this case, an answer to the question “How should it be modeled?” is sought. The
modeling language should also allow the adaptation and extension of the conceptual design
by the developer.
The final question which remains to be answered is “How should it be generated?”. In this case
techniques for the mapping of the conceptual model onto an implementation platform have
to be investigated and applied. Mapping rules for the chosen model language and platform
language have to be determined. The preservation of the information capacity during mapping
as well as other transformation characteristics such as bidirectionality, traceability etc. have
to be considered. The application of these rules has to be automated as far as possible.
These questions are treated in detail later in this thesis.

4 Chapter 1. Introduction

1.3 Existing Solutions for CBIRS Development Support

Despite the large number of current CBIRSs, there is no universal solution which can han-
dle different application domains. Generic CBIR Systems (e.g., QBIC [FBF+94], imgSeek
[img06], IMatch [IMa06]) make use of generic low-level features such as color, texture and
shape, which do not always represent the visual information used to estimate the similar-
ity of images for a specific application. Specialized CBIR Systems, such as a system for
recognizing similar images in a set of 2D-Electrophoresis Gel Images [AHF+88], identifying
peoples’ faces [JV03] or trademark recognition [Lew01] are implemented only for a certain
application domain and are normally highly effective for this domain, but cannot be applied
effectively in any other applications. Such specialized applications have to be designed to
meet the specific application requirements. The first attempts to facilitate this task have
been built as software frameworks (e.g., GIFT [MSMP99], VizIR [Viz06], PicSOM [LKO02],
GRAID [GY00], CBIRFrame [CI03]). They offer extensible software architectures for devel-
oping domain-specific CBIR applications. The idea of these frameworks is to allow flexible
addition or removal of features to the system, feature extraction functions or retrieval func-
tions or using different back-end systems. Some of these frameworks, such as PicSOM and
VizIR were developed as research frameworks in order to be able to test different retrieval
algorithms, and not with the intention of making them available to the public to help building
their own applications. However, they can be regarded as the first steps towards supporting
the development of specialized CBIR systems.
The CBIR frameworks about which information could be found during the time in which this
thesis is written are summarized below. This overview focuses on how these frameworks can
be used and adapted to implement domain specific CBIR applications more easily. A detailed
analysis of the frameworks is represented in [Thi08].

1.3.1 Software Frameworks for CBIRSs

GIFT [MSMP99] (GNU Image-Finding Tool) is an open framework for content based im-
age retrieval distributed under the GNU GPL. It has been developed by the Computer Vision
Group of the University of Geneva and is under continuous improvement. It is implemented
in C++ and uses MRML (Multimedia Retrieval Markup Language) for the communication
between the CBIR clients and servers. It supports the extraction of local, global, simple color
and texture features. These features are indexed in an inverted file. The system also sup-
ports relevance feedback techniques. For retrieval it uses separate normalization and classical
inverse document frequency. The back-end used for storing the images and features is the file
system.
GIFT is built around a kernel part and a collection of plug-ins. At the moment only the
Viper plug-in is integrated which implements the currently available CBIR functionality.
Developers can create their own plug-ins with the feature extraction and retrieval functionality
they require. Detailed documentation for writing plug-ins is, however, not available for this
project, so the developers have to learn about it through the source code of the application.

VizIR [EB03] (Visual Information Retrieval) is a framework of resources (mainly software
components implemented in Java) that are needed to build visual information retrieval pro-
totypes. The components include classes for media access, transportation and visualization,

1.3. Existing Solutions for CBIRS Development Support 5

for feature extraction (MPEG-7 descriptors), for querying and refinement based on a 3D
retrieval and browsing panel, user-interface design and visualization of media data, evalua-
tion and benchmarking. A data management layer for the feature vectors is used to manage
the multidimensional data efficiently. The database management is based on object-oriented
persistence management. The object/relational mapping to a specific DBMS is implemented
with Hibernate.
The components of the framework can be interchanged freely. Each of them provides an
extensible structure, which can be adapted for a specific application. For example, the query
component of the framework provides a class for the formulation of the query from an XML
string, which can contain an arbitrary number of parameters. This class should be adapted
to support different query types. The corresponding query engine, which processes the query,
must implement the interface QueryEngine of the framework and the methods for preparing
the query and executing it. The result of the query processing can be passed to a specializa-
tion of the QueryResult class, which will take care of preparing the results for the delivery
to the user-interface, for example. The other components of the framework are, however, not
so well documented. Thus, adding new features to the framework would require more pro-
found analysis of the source code. The communication between the framework components
is implemented using the MRML communication protocol developed by the GIFT project
team.

GRAID [GY00] (General Purpose Architecture for Image Databases) focuses on the im-
plementation of a middleware layer on top of a DBMS which provides an infrastructure for
constructing image retrieval applications. The architecture does not consider the conceptual
design of the image database. Only the retrieval flow of an image database is part of the
framework.
A simple implementation of the GRAID framework, named WIRED (Web-based Image Re-
trieval on Databases), is developed in Java. GRAID constitutes components such as Query
Processor, DBMS Mediator, Image processing Pool, Image Interpreter. Additional developer
tools for adapting these components are provided in WIRED:

• Configuration interface for adding new image processing algorithms to the pool

• Image-processing Pool interface for choosing available image-processing algorithms for
an application

• Application-retrieval interface with tools for setting up the retrieval application accord-
ing to the GRAID programming approach.

The query language used in the resulting application has to be defined by the developer. The
WIRED implementation of GRAID is, however, not available as source code and thus cannot
be evaluated.

CBIRFrame [CI03] (Content-based Image Retrieval Framework) is designed as an object-
oriented framework which can be used as a basis for developing CBIR applications. It is
based on C++ template classes and a five-tier architecture, which should allow the designed
system to run in a distributed environment and make the components of the framework
independent from each other. The authors of the framework define the following adaptable
system components:

6 Chapter 1. Introduction

• domain component comprising of modules for feature extraction and image construction;

• user-interface component;

• data management component;

• user-interface facade and finally a data management facade.

In this way, the authors claim to provide the possibility to implement platform-independent
domain components or integrate existing image databases in order to provide portability and
interoperability, respectively.
In order to build a CBIR application using this framework, a developer has to subclass the
template classes and provide implementations for the virtual functions. The parameters of
the template classes also have to be specified. The framework provides some basic data types,
such as color and container class of pixels, in order to support the developer. [CI03] describes
the classes that have to be subclassed in order to add feature extraction or similarity measure
functions. The source code of CBIRframe is not available to the public and, therefore, this
framework cannot be evaluated completely.

1.3.2 Alternative Support for the Development of CBIRSs

MetaXa [BSST07] (Content-based and Context-driven metadata enhancement architec-
ture) is described as a component-based architecture for the automatic feature extraction
and meta data enhancement of photo collections. The feature extraction and enhancement
algorithms are implemented as plug-ins in MetaXa. Depending on the domain of the photo
collection different plug-ins can be used through a predefined workflow to extract the needed
information from the images and their context data. The images and their features can be
stored in the file system or in an Oracle DBMS. The retrieval components are, however, not
part of this architecture. The developer has to build an own retrieval engine or use the query
mechanisms of the DBMS to query the extracted features.

Virage Image Search Engine1 [BFG+96] is a commercial CBIR engine which encapsu-
lates the retrieval functionality of a CBIR system. It can be adapted to a specific application
and integrated as a retrieval component into a CBIR system.

LIRE2 (Lucene Image REtrieval) is a reusable CBIR source code library available under
the GNU GPL license. It can be integrated into Java CBIR projects to extract features
and create and search indexes of these features. This development aid, however, does not
determine the overall system architecture of the CBIRS.

1.3.3 Conclusions

It is delusional to imagine a system that will meet the requirements of all possible domains
of image retrieval. This is also not the aim when developing specialized applications. These
have to be made suitable, effective, and efficient only for a particular domain. Therefore,

1http://www.virage.com/home/index.en.html
2http://www.semanticmetadata.net/lire/

1.4. Employing the MDSD Paradigm for the Development of CBIRSs 7

developing new applications is an inevitable step towards effective software. The question is
how to make this development easier so that it does not have to be done always from scratch.
Most of the reviewed CBIR frameworks have well structured modular architectures, at least
as far as it can be judged from their documentation, which intrinsically allow relatively
easy extensions of the source code and exchange of components. Additional documentation
about creating tailor-made applications, such as the one provided by VizIR enables even
more efficient use of the frameworks. However, these frameworks are implemented for specific
platforms and do not offer flexible data storage possibilities. This disadvantage is common for
software frameworks in general [FSJ99]. Furthermore, regardless of the fact that only a part
of their functionality is needed for a specific domain it is difficult to adapt the applications to
contain only the required parts. The result of adapting these frameworks for a specific domain
application is not a compact specialized application, but rather an extended version of the
large framework application. Additionally, most of the frameworks are only conceptually
described and no open source implementation is provided in order to practically apply them.
The alternative development support solutions either consider only part of the CBIRS compo-
nents, e.g. feature extraction in MetaXA, or provide a reusable code library without a system
architecture design. These alternatives are also developed for concrete platforms. The com-
bination of source code libraries with reusable framework architectures should be considered
in future developments.
In this thesis, a new method for development support, which can abstract from the concrete
platform, allow the generation of compact, tailor-made applications and combine the reuse of
system architecture and algorithms, is proposed.

1.4 Employing the MDSD Paradigm for the Development of
CBIRSs

Applying model-driven development techniques for generating CBIR Systems has not yet
been considered as a means of providing a development support for CBIRSs. The recognition
of the fact that CBIR systems share a common architectural design but require different
functionality of the building blocks depending on the particular application domain has led
to the development of so called CBIR-Frameworks which offer extensibility mechanisms at
the source code level for adapting to the domain needs. In this thesis, the new idea of moving
the adaptation processes to the modeling level and automation of the source code creation, by
applying model-driven software development techniques, is investigated. The aims pursued by
applying this development approach for CBIR systems are to enable a platform independent
application design, domain-tailored applications and reuse of a system architecture design.
Therefore, two groups of MDSD techniques are designed for the model-driven development
of CBIRSs as shown in Figure 1.1, modeling techniques for supporting the conceptual de-
sign of CBIRSs and generation techniques for mapping the conceptual model onto a specific
implementation platform.

1.4.1 Modeling Techniques

These techniques have to support the developer in creating a platform independent model
(PIM) for a specialized CBIR system. Therefore, a generic and adaptable model for CBIRSs

8 Chapter 1. Introduction

 Techniques for modeling
 CBIRS

 Techniques for generating
 CBIRS implementations

CBIRS developer

MDSD Techniques for CBIRS

eN
ot

e
C

B
IR

S

Implementation
platform A

Implementation
platform N

G
el

 C
B

IR
S

eN
ot

e
C

B
IR

S

G
el

 C
B

IR
S

Figure 1.1: MDSD techniques for the development of CBIRSs

- GiACoMo - is proposed. GiACoMo defines the generic functionality and classes of a CBIRS.
It is defined as an instance of an extended UML class diagram meta model. The extensions of
the UML class diagram meta model comprise mainly framework model stereotypes and data
types for the CBIR application domain which can be used to derive application-specific CBIRS
PIMs. The proposed modeling approach for CBIRSs is published in [IB05] for modeling
multimedia documents, where images are only one kind of media. In [Ign06] preliminary
ideas for the application of this approach for the modeling of CBIRSs are represented.
Due to the big variety of application fields that have been addressed by content-based image
retrieval, such as medicine, biology, astronomy and geology etc. it is not trivial to abstract
the generic components of a CBIRS. Each of these fields require quite different approaches
to solve the domain-specific retrieval problems. In the current work, the generic components
of CBIRSs have been defined based on generic CBIRS architectures, found in the literature
[MF02, VC02, VT02, RHC99, Bim99]. For the detailed description of the structure and
functionality of the generic components, in Chapter 3, an example application in the field
of musicology is used. This reference application is applied for the recognition of scribes in
historical music manuscripts, based on the visual characteristics of their handwritings. Due
to the complexity of the features used for this retrieval task, and the two different retrieval
mechanisms developed to solve the retrieval task, this application sets a good example for
formulating the requirements of a generic CBIRS model. A system for solving this image
retrieval problem was implemented as part of the efforts in the cross-disciplinary project
eNoteHistory3. The eNoteHistory application is described in more detail in Chapter 6. The
conceptual design and implementation issues for the CBIRS functionality in eNoteHistory are
published in [BFHI03, BIM04].

3www.enotehistory.de

1.5. Structure of the Thesis 9

1.4.2 Generation Techniques

These techniques comprise mainly the mapping rules for the automatic transformation of
the CBIRS PIM into a platform specific model (PSM). The mapping rules depend on the
choice of a software architecture and an implementation platform for the application. In this
work, the implementation of CBIRSs on top of ORDBMSs is taken into consideration for
developing mapping rules. However, other platforms can also be used for the implementation
of CBIRSs. Each platform requires the definition of new mapping rules. Some preliminary
considerations for mapping the CBIR PIM onto the object-relational model are published in
[Ign06]. Two existing approaches for mapping UML class diagrams onto ORDBMSs are com-
pared in [Spi06]. In the same work, they are used for transforming a conceptual multimedia
data model, defined in [IB05], onto an ORDBMS for building a multimedia document archive
for digital libraries. In this thesis, these and some additional transformation approaches are
evaluated. The informal mapping approaches described in [CT06, VVCM07, DU04] are used
and extended to define the mapping rules for the CBIRS PIM. Requirements towards the
transformation rules are defined to assure that the resulting target model (PSM) preserves
the information capacity of the source model (PIM). The formulated rules are then evaluated
against these quality requirements.
Not all the platform specific concepts can be modeled in the PIM. Therefore, either default
values have to be considered during the transformation or the transformation has to make
the decisions by interacting with the developer. In any case, it is desirable that the result of
the transformation can be adapted by the developer in a modeling environment. Therefore,
the generation techniques designed in this thesis provide also a UML-Profile for representing
the object-relational concepts of SQL:2003 required to build a PSM of a CBIRS. This profile
is designed as an extended compilation of existing SQL profiles [Rat03, Amb03, VVCM07].
The final task of the generation techniques is to interpret the platform-specific models and
automatically create a platform-specific implementation of the model, e.g., for a specific
database system SQL dialect. Therefore, some of the discrepancies between the SQL standard
and the different DBMS implementations have to be considered. In [Czy05, Spi06] these
differences are described for the IBM DB2 DBMS. In [VVCM07] the mapping rules are defined
for the Oracle DBMS. Therefore, in this thesis, this problem is not further discussed.

1.5 Structure of the Thesis

The remainder of this thesis elaborates the idea of providing a more efficient development
approach for building CBIRSs on top of ORDBMSs, and is structured as follows.
In Chapter 2, basics and current state of the art of the two technology fields blended in
this thesis are described. In the first half of this chapter, the current state of the art of
CBIR systems is discussed. Architectural aspects and different implementation paradigms
for CBIRSs are also reviewed. The possibilities of using Database Management Systems as
an implementation are considered. Challenges and advantages of using ORDBMSs as an
implementation platform are discussed. Finally, the reasoning behind choosing an ORDBMS
as a target platform in this thesis is given. The second half of this chapter outlines the
basic principles of the model-driven software development (MDSD) process. It represents the
main concepts of MDSD, such as meta modeling, platform independent and platform specific
models, and transformation techniques.

10 Chapter 1. Introduction

In Chapter 3, the design of the two groups of MDSD techniques is described. For the mod-
eling techniques different ways of representing domain-specific CBIRS models are compared,
and the requirements for a generic and adaptable image retrieval model are set. Furthermore,
the functionality which has to be provided by the transformation techniques is discussed in de-
tail. Decisions about the target architecture and platform for CBIRSs are made based on this
discussion. The requirements for a platform specific model for ORDBMSs and transformation
approaches are defined.
Chapter 4 introduces a new Generic and Adaptable Conceptual Model for Image Retrieval
Systems (GiACoMo-IRS), which can be used as a starting point and a conceptual framework
for building domain-specific CBIR systems. The structural, as well as the functional aspects of
modeling CBIR systems are abstracted in this generic model. Adaptability and extensibility
concepts are introduced in order to provide the possibility to derive a tailor-made CBIR model
from GiACoMo-IRS.
Chapter 5 defines transformation rules for generating a platform specific implementation
for the conceptual model. Furthermore, the quality of a transformation based on these trans-
formation rules is analyzed. In particular, the ability of the transformation to preserve the
information capacity of the conceptual model in the platform-specific model is evaluated.
In Chapter 6, the model-driven development techniques elaborated in the previous two
chapters are applied for three test case applications. The eNoteHistory CBIR module for
identifying scribes of historical manuscripts, introduced in this chapter, a CBIR system for the
similarity-based retrieval of 2D-Gel electrophoresis images and a Photo annotation application
are modeled using the GiACoMo-IRS framework model. Additionally, in this chapter, the
effort which has to be performed by a developer of CBIRSs using these techniques is discussed.
Chapter 7 concludes with a summary of the achievements of the thesis and suggests direc-
tions for further research.

Chapter 2

Basic Principles and State of the
Art of Used Technologies

2.1 CBIR Systems - State of the Art

Content-based image retrieval systems are developed in order to support browsing, searching,
classification, identification etc. of information represented as digital images. The information
contained in digital images, which can be perceived by an observer is also referred to as visual
content. Visual content can be represented in different ways, based on different levels of
abstraction or depending on the point of view or background knowledge of the observer. A
grouping of visual content representations according to their level of abstraction is shown in
Figure 2.1. Pixel level characteristics of an image such as color, texture, and shape represent
visual content which is most of the time similarly estimated by different observers. These
kinds of characteristics are also called low-level features of an image. A question of subjective
assessment, however, is visual content represented by more abstract characteristics such as
semantic concepts and objects. The interpretation and recognition of such content reflects
the more sophisticated knowledge and reasoning of the observer. Therefore, these groups of
characteristics are also called high-level features.
One of the main aims of a CBIR system is to make human interpretation of visual content
understandable for a machine. Therefore, a common language for describing visual content is
sought. The direct approach for a person is to annotate images manually or semi automatically
using text, since it is the natural way for people to express their information needs. The
machine can subsequently apply text retrieval techniques to process queries. The problem
with this approach is the low accuracy of the descriptions due to subjective perception.
Therefore, the development of automatic annotation techniques was pursued. During the early
years of CBIR, which are surveyed in studies like [RHC99], [SWS+00] continuous efforts in
the content-based image retrieval community have focused on the development of techniques
for representing the content of an image with high precision. As a result algorithms for
the automatic extraction of pixel level image characteristics have been developed. These
algorithms can achieve a very precise description of the low-level features in terms of complex
numerical values. Retrieval techniques for image features, such as histogram methods, central
moments etc. have been developed, most often using text retrieval techniques as a basis.
Since people cannot limit themselves only to the notion of color, texture or shape, when

11

12 Chapter 2. Basic Principles and State of the Art of Used Technologies

Semantic level

Concepts corresponding to events, emotions etc.
e.g., a happy girl at her birthday

Object level

Identified objects
e.g., sun, flower, cake

Pixel level

Pixel intensities
Color

Texture
Shape

Spatial relationships

high-level features

low-level features

Figure 2.1: Levels of abstraction of visual content

searching for visual information, an automatic annotation on a higher-level of abstraction
which reflects the image semantics has to be provided. This problem has received the name
”semantic gap“ and is the focus of numerous works in progress in different scientific fields,
such as computer vision, machine learning, information retrieval, databases etc. In each of
these fields the problem of the semantic gap is handled from a different perspective, either
trying to derive as much as possible information from the image itself, to associate content-
independent (context) data or create a domain knowledge representation and map the low-
level image content to this domain knowledge. The latest results in these research directions
have been summarized in [LSDJ06] and [LZLM07]. Techniques such as ontologies, relevance
feedback, classification, ranking etc. have thus become an integral part of new generation
CBIR Systems.
Currently, there is a large variety of visual information descriptors, retrieval measures, and
techniques for bridging the semantic gap. However, bringing all these together in one applica-
tion does not guarantee to lead to a universal application which can solve all domain-specific
problems. A domain-specific problem requires normally only a small well chosen subset of
these techniques in order to effectively fulfill the requirements of the application. Neverthe-
less, CBIR applications consist of similar basic components corresponding to one or more
groups of techniques. In this chapter, basic architectural components of CBIR systems are
identified and their realization for different applications are discussed.

2.1. CBIR Systems - State of the Art 13

2.1.1 CBIR Systems Architecture

CBIR systems often consist of similar basic building blocks which implement the required
functionality. Almost each survey or introduction chapter on CBIR systems begins with a
typical architecture of a CBIR system and a description of its components. In Chapter 2 of
[MF02] a generic CBIR system comprises:

• user interfaces for querying the database and browsing and viewing the results;

• a collection of algorithms to perform the database search as a search engine;

• a digital image archive to store the images;

• visual summaries to represent the image content in a concise way;

• indexes to access visual summaries more efficiently;

• a component for the digitalization and compression of images;

• a cataloging component for extracting and indexing the features from the images.

Other representations of CBIR architectures can be found in Chapter 5 of [MF02] and in
[VC02, VT02, RHC99, Bim99]. These consist of similar system components and claim to
cover a broad range of CBIR applications. This fact leads to the conclusion that for a large
class of CBIR systems these components are the same. In this chapter, an integrated view
of a generic CBIR architecture is introduced and different approaches for the design and
implementation of its components are discussed. The main components of a CBIR system
and the interfaces between them are illustrated in Figure 2.2. This integrated view of CBIR
architecture represents a class of CBIR systems which should be modeled and generated by
the model-driven development techniques proposed in this thesis. It is used in the following
chapter to identify the components of a CBIR system which can be modeled.
The processes which take place in such a CBIR system through the interaction of the compo-
nents realize the adequate pre-processing, feature extraction and indexing of the data related
to the image, which is depicted with the dotted arrows in Figure 2.2. Furthermore, the inter-
action with the user for the query formulation and the representation and exploration of the
results is realized, which is depicted with the continuous arrows in Figure 2.2. The implemen-
tation of these generic components can, however, differ quite a lot depending on the chosen
communication pattern, respectively the software architecture, the application domain, and
the needs of the users.

User Interfaces in the diagram on Figure 2.2 represent the main functions of a CBIRS
available to the user. These blocks can be realized by specific graphical user interfaces and
input mechanisms for loading images. The setup of these user interfaces largely depends
on the available underlying functionality in the CBIR system, but they can also implement
additional functionality to support a more sophisticated interaction with the system. Many
types of CBIR user interfaces exist, depending on factors such as system requirements, device
requirements (e.g., support for mobile, ubiquitous devices), and user requirements (e.g., dif-
ferentiate between expert and non-expert users). Functionality aspects such as visualization
and exploration of the results, multimodal query formulation, interactive query enhancement,

14 Chapter 2. Basic Principles and State of the Art of Used Technologies

Input
Images

Query/Browse
Images

Display
Results

Image
Preprocessing

Result
Postprocessing

Feature
Extraction

Indexing

Query
Preprocessing

Retrieval

Image Store Feature Store

Feature Index

User Interfaces

Compensators

Core CBIRS
Components

Figure 2.2: An integrated view of a CBIR system

adjustment and advanced user query formulation play an important role in building CBIR
user interfaces.
A lot of work in the area of CBIR explicitly focuses on the development of user interfaces
for CBIR. Techniques for the exploration of large query result sets or classifications have
been proposed in [TSMR03, JWY+06, NMH03]. How to allow interactive query formulation
and refinement through relevance feedback is discussed in [LPS+04]. Support for multimodal
query formulation techniques has been studied in [BKPS03]. How to build such interfaces for
mobile, web-based retrieval applications is discussed in [YTD04]. Usability is an important
criterion in designing such interfaces. It is, however, not yet fully investigated for CBIRS user
interfaces. In [vdBKV04] the usability of color selection interfaces in particular in CBIR is
studied. Which kinds of user interfaces are suitable for particular kinds of CBIRSs currently
remains an open question.

Compensators represented by green blocks in Figure 2.2. They represent additional com-
pensation or enhancement functionality of the CBIRS. These components can offer the end-
user a better mapping of the user’s query to the system’s representation or vice versa. Further-
more, during the storage of the image data compression or enhancement functions can allow
better integration of the images into the system. Thus, these components can be regarded as

2.1. CBIR Systems - State of the Art 15

an enhancement of both the user-interface and of the core system functionality.

The Core CBIR components can be grouped in storage and retrieval components. These
components can vary depending on the domain of the application. Their implementation is
discussed in more depth in the following sections.

2.1.1.1 Components for Extracting and Storing Image Content

This group of components fulfills tasks concerned with making the images persistent as well
as extracting and persistently storing their content representations. The raw images are used
mostly only as input and output of the retrieval process, but not during the retrieval process
itself. However, a CBIRS should provide ways to store these raw images. Usually, specialized
devices, such as optical discs are needed to physically store these data. Apart from the im-
ages themselves image properties and content abstraction need to be extracted from the raw
images and stored in order to provide efficient ways for image retrieval. Which kinds of im-
age characteristics should be extracted depends on the application domain and the retrieval
task which has to be served. Color, texture and shape characteristics are used in almost
any general purpose CBIR system, such as QBIC, Photobook, Virage, MARS, SIMPLIcity,
and VisualSEEK. Such systems can be used to help compare images from different domains
according to some low-level characteristics, but cannot be applied to effectively solve partic-
ular search scenarios. Special purpose features, or purpose-oriented combination of generic
features have been defined for particular applications, such as trademark recognition [Lew01].
Face recognition applications for example require specialized features, e.g., rectangle features
[JV03] to compare images. A special kind of a feature - edge orientation autocorrelogram -
is used to compare images in a patent database in [TB04].
Additionally, there is the content-independent data, sometimes referred to as metadata of
an image, which cannot be derived from the visual characteristics of an image. Metadata is
defined as the data describing the image, independent of the content. Some standards have
suggested sets of metadata for describing images.

• Dublin Core Image Metadata: defines image metadata which can be used for retrieval,
based on bibliographic data and document properties.

• ANSI/NISO Z39.87–2006 “Data Dictionary – Technical Metadata for Digital Still Im-
ages”, Approved December 18. 2006: these metadata can be used to describe technical
properties of images.

Metadata are an important asset for content-based image retrieval because they can play a
decisive role in the classification of images by helping the machine learning mechanisms to
improve the final result. For example if a CBIR system has to decide if a photo of a sun
above the ocean is a sunset or a sunrise, the timestamp or the location of the photo would
make the decision more precise.

“Image Store” and “Feature Store” Components How to represent these image char-
acteristics in order to store them for retrieval is the first question that arises when imple-
menting the “Image Store” and “Feature Store” storage components. There are different
classifications and taxonomies of image content used for image retrieval. A common view is

16 Chapter 2. Basic Principles and State of the Art of Used Technologies

the grouping of different content characteristics in different levels of abstraction starting with
the physical, through logical or structural to the semantic level of content data as shown in
Figure 2.1. For the implementation of a CBIRS, however, a data model for storing such kinds
of data is required. Since each CBIRS stores a different set of features, it is difficult to define
a generic data model that can be applied for any arbitrary CBIR system. Existing works
dealing with this problem are compared in Chapter 3. One of the most prominent examples
of such a model is the MPEG-7 Visual Features1.
Another question that arises during the implementation of the storage components is the
choice of a storage mechanism. Whereas some CBIR systems rely on the usage of relational
or object-relational (e.g. QBIC, Virage, VizIR, Chabot) and even native XML database
management systems (some techniques are presented in [Li05, WK03]) as storage mechanisms,
there are others which prefer managing the data in proprietary databases (e.g. IMatch) or
directly in the file system. The choice of a storage mechanism also depends to some extent
on the model used to represent the data. For example, the MPEG-7 model would suggest
using a native XML database for the storage of the XML descriptors, since it is based on an
XML-Schema.

“Feature Extraction” Component The component for extracting the image related data
also belongs to the group of storage components. Although this component is called simply
“Feature Extraction” its realization can be very complex, for example if it is expected to
support the automatic recognition of objects and scene description, i.e. to derive high-level
features from digital images. In other domains it would be the task of the “Feature Extrac-
tion” component to only automatically determine the average color of an image or even just
extract the EXIF header information from the image. Some feature extraction mechanism use
machine learning techniques to classify the images in previously defined concepts, based on
their perceptual characteristics (support vector machines, hidden markov models, neuronal
networks). Others try to combine image and text descriptors, by using a training set of previ-
ously annotated images to achieve automatic annotation of images [DDL+90, ZG02, MGP03].
Finally, to make the a priori knowledge used by people for interpreting image content avail-
able to machines, different knowledge data structures can be used (ontologies, thesaurus,
term lists). These approaches allow the representation and comparison (based on predefined
rules) of relatively well structured content. These methods are especially used in scientific
applications. However, for the correct assignment of concepts manual interaction is needed.

2.1.1.2 Components for Retrieving Images based on their Content

From an architectural point of view (see Figure 2.2) there are basically two ways to query
the images by their content. Either querying by example - a query image is received which
should be analyzed to extract the needed content information such as features, and then the
content data would be compared against the content of a previously analyzed set of images.
Or querying by content directly - where a query contains an explicit set of features that
has to be compared against the features of the previously analyzed images. If query by
example retrieval is chosen the first step is to extract the features from the image, using the
“Feature Extraction” component from the storage group and then send the feature data to
the “Retrieval” component.

1http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm

2.1. CBIR Systems - State of the Art 17

“Retrieval” Component The component responsible for the processing of these queries
is the “Retrieval” component. How a query should be processed depends on one hand on
the types of features, based on which images have to be compared with each other. On the
other hand different retrieval tasks require different retrieval mechanisms to be applied. For
example, the task “find all images from a database similar to a given image by color histogram”
would require the usage of a metric, such as the Euclidean or Manhattan to compare the color
histograms of the images. The choice of the right metric to use is, however, a difficult task
since the metric has to correspond to the human perception of similarity. This choice becomes
even more difficult when more than one feature has to be considered in the comparison. In
this case, in addition to the metrics used to compare the single features aggregation functions
have to be also applied to combine the results from the single metrics meaningfully. In order
to solve the task of the type “identify the person on the photo” the application of machine
learning techniques, such as artificial neuronal networks, support vector machines etc., may be
more appropriate than similarity metrics. These techniques include a preparation or training
phase before the retrieval or classification phase can take place. This phase may need to be
carried out again in case the images in the database change. These two groups of approaches
for retrieving images by content are most common in CBIR applications. Both of them may
require additional data representing domain knowledge and adjustable parameters.

“Indexing” and “Feature Index” Components In order to process retrieval tasks more
efficiently CBIR systems use special indexing structures for storing the data used to compare
images. The “Indexing” and “Feature Index” retrieval components represent the indexing
mechanisms and structures responsible for creating, updating and storing the indexes. Since
the data used for the comparison of images is represented by multiple features, objects and
sometimes also relationships between them, the indexing structures applied in CBIR systems
have to be able to deal with multidimensional data and still remain more efficient than
the sequential search. Choosing the right multidimensional indexing mechanism is not a
trivial task and depends a lot on the kind of data to be indexed. Usually the indexed data
are represented as points in a multidimensional space spanned by the features used for the
retrieval. Castelli and Bergman [VC02] differentiate between vector space indexes and metric
space indexes for high-dimensional indexing of image data. The vector space indexes the
regions or points representing image features and the metric space indexes are used to index
the distances between feature vectors, representing image content. Indexing methods can
also be grouped in nonhierachical (e.g., space-filling curves, Grid-File, G-Tree), recursively
partitioning (e.g., quad-trees, k-d-trees and R-trees), projection based (e.g., pyramid tree,
clustering with singular value decomposition) etc. according to [VC02].
There are different ways to implement these indexing mechanisms in a CBIR system. If the
CBIR system is implemented without using a database management system as a basis, the
indexing mechanisms are usually implemented straightforwardly as parts of the CBIR appli-
cation. In this case, the index structures are stored directly in the file system. If a database
management system is used as an implementation platform for the CBIR application there
are different approaches to provide adequate indexing mechanisms. Database management
systems usually offer their own indexing mechanisms, which should facilitate the work of the
developers of CBIR systems. However, existing DBMSs support only basic indexing mecha-
nisms (B-tress, R-trees), which cannot be applied to high-dimensional image data. Therefore,
extendable DBMSs (ORDBMSs) offer extension mechanisms for implementing user-defined

18 Chapter 2. Basic Principles and State of the Art of Used Technologies

indexing methods. Kriegel et. al [KPPS03] define three approaches for implementing user-
defined indexing methods in DBMSs: the integrated approach, the generic approach and the
relational indexing approach. Each of these approaches has its advantages and limitations and
can be applied under given conditions. The most efficient approach is considered to be the
integrated approach, which suggests that the indexing methods are implemented by extending
the code of the DBMS directly. This approach requires full access to the source code of the
DBMS and can thus lead to unexpected side effects. The relational approach suggests that
the new indexing structures are implemented using the features of the relational database
and thus leads to a more robust and secure implementation. It has the disadvantage that the
new indexing mechanism builds on top of the database internal indexing mechanisms. The
generic approach aims at providing a generic indexing mechanism in the DBMS, which can
be adapted to any new user-defined indexing method. An example of such a generic indexing
mechanism is GiST introduced in [HNP95]. It is, however, difficult to construct a mechanism
that is so generic that it will support the development of any index mechanism. In [Söl07a] a
generic indexing mechanism for creating user-defined high-dimensional indexes based on the
relational approach is developed.

The components of a CBIRS reviewed in this section try to cover the whole functionality of
a full-fledged CBIRS. Depending on the implementation platform some of these components
might already be available in the platform, as in the case of a DBMS as an implementa-
tion platform where the storage components are partially already available to the developer.
In the following sections different implementation approaches and platforms for CBIRS are
represented.

2.1.2 Implementation Paradigms for CBIR Systems

There are three larger research communities dealing with building CBIR applications: In-
formation Retrieval, Databases, and Computer Vision. These communities follow different
implementation paradigms, respectively. According to Gudivada [Gud93] the following ap-
proaches for developing CBIR Systems exist:

• CDBMSs (Conventional Database Management Systems) as Image Retrieval Systems

• Image Processing Systems with Database Functionality as Image Retrieval Systems

• Extended/Extensible Database Systems as Image Retrieval Systems

In addition to this classification the information retrieval approach for building image retrieval
systems should also be mentioned. Such systems are represented as search engines, e.g. the
Virage Image Engine [BFG+96], which implement only the retrieval functionality and do not
deal with the storage of the image data in particular. Virage has been used as a basis for the
image retrieval functionality as an add-on to existing database management systems such as
Oracle and Informix.
Until now, most applications that have been developed for searching in image collections
are centralized applications. Recent works turn to the development of CBIR in distributed
environments. A reason for investigating distributed environments is the need to integrate

2.1. CBIR Systems - State of the Art 19

different resources available on the Internet for processing CBIR queries. A survey of web-
based CBIRSs is given in [KZB04]. Distributed environments also enable the use of different
feature extraction and retrieval algorithms as services provided by different participants in a
network, as in peer-to-peer CBIR applications like DISCOVIR [KNS04]. Such systems have
to provide additional CBIR system components, e.g., a gatherer in the web-based CBIRSs or
modules for combining the results of different peers in the peer-to-peer CBIRSs.
It is difficult to provide a development methodology that can cover all these implementation
approaches. Therefore, in this thesis the focus lies on using extensible database systems as a
platform for building the core functionality of centralized CBIR applications. The reason for
choosing to support this implementation architecture is the large number of CBIR applications
based on it, which can be used as a reference. The reason for choosing extensible databases in
particular as an implementation platform is the lack of methodologies and support to design
domain-specific CBIR extensions for these.

2.1.3 Building CBIR Systems on Top of Extendable DBMSs

In order to build a CBIR system, at least the core components described in the beginning
of this chapter have to be implemented. The core components require the implementation of
some feature extraction mechanisms or algorithms and a persistence management mechanism
for the images and the extracted features. The results of feature extraction algorithms are
often complex structures, which have to be represented through appropriate data models. The
second group of components is the retrieval components group. Therefore, query processing
mechanisms for similarity search in image collections have to be provided. These query
processing mechanisms are mostly based on information retrieval approaches such as the
vector space model, but they can also implement data mining algorithms such as artificial
neuronal networks. In order to provide efficient search mechanisms, robust indexing methods
for multidimensional data have to be applied.
Since storage and retrieval functionality for managing large amounts of data are features of
database management systems, CBIRSs are very often referred to as image databases. The
idea behind image databases is to use database management systems as an implementation
platform for domain specific CBIRSs. The main advantages of this implementation approach
are the availability of storage management and retrieval optimization techniques, such as
transaction management, recovery and backup, and query optimization. However, existing
databases were not originally designed to handle complex data types and thus do not have
functionality for management and retrieval of complex data types such as multimedia. Sim-
ple extensions of DBMSs are not sufficient to meet the requirements of multimedia data. For
example, integrating information retrieval techniques such as ranking similarity query results
is still a problem for DBMSs. The advantages and shortcomings of applying database man-
agement systems for storing multimedia data have been discussed in Chapter 1 of [KB94], in
Chapter 3 of [ABH97] and Chapters 7 and 8 in [MW03]. Thus, different paths for solving these
shortcomings have been followed. One of them is to further extend existing DBMSs with new
mechanisms for managing multimedia data and the other is building specialized multimedia
DBMSs to meet the specific requirements of these applications. The developments in these
two directions are summarized below.

20 Chapter 2. Basic Principles and State of the Art of Used Technologies

2.1.3.1 Multimedia Database Management Systems

The first works in the area of multimedia databases followed the intuitive idea of building
specialized multimedia database management systems with the aim to provide more adequate
support for multimedia data. Some of the results of this “first wave”, such as MediaWay,
JASMINE, and ORION have been cited in [KD05]. Only a few of these systems have survived
on the market, e.g., MediaWay.
A lot of theoretical work on the development of MMDBMS has been done to provide a more
stable basis for building such systems. Architectural aspects, modeling, querying and indexing
have all been considered. One of the first attempts to provide a complete theoretical back-
ground of MMDBMS is the work of Marcus and Subrahmanian summarized in [MS96]. The
authors present a mathematical model of multimedia data and query processing operations
based on this model. Architectural matters of MMDBMS have been tackled in [Gha95] and
Chapter 5 of [KB94]. Later on Santini and Gupta [SG02a] describe the general architecture
of a database system for multimedia (image) data, and in detail the components for schema
design and a feature algebra. They propose an extensible feature management engine for
image retrieval which uses the services of a traditional relational database with the addition
of user-defined indexing schemes and with a bespoke database model.
This research leads to the recognition that existing DBMSs can be extended or adapted to
support multimedia data types and more complex retrieval functionality. Therefore, bigger
commercial DBMSs provided support for user-defined data types and functionality. Freeware,
open source and research DBMSs have also been developed with the possibility of being
applied to complex data types.

2.1.3.2 Object-Relational and Object-Oriented Databases

During the past years leading DBMS manufacturers such as IBM, Informix and Oracle have
tried to offer support for managing multimedia data through database extensions. In response
to this effort the SQL standard initiative has released new versions of the SQL Standard -
SQL:1999 and SQL:2003 - which introduce object-oriented concepts into relational DBMSs
to allow extensions of database functionality for different applications, such as multimedia
applications. These new versions of the SQL standard are summarized in [Tür03]. How these
new concepts can be used to build object-relational databases, is discussed in [CT06]. Design
issues for object-relational database systems have been discussed in [DU04]. Additionally, the
ISO SQL/MM Standard has been released, which proposes a way to support media types such
as still images and spatial data in SQL-based DBMSs. A presentation and a discussion of the
standard is given in [Sto01]. The SQL/MM standard, however, describes no more than what
the earlier existing DBMS extensions already offered. Systems complying with this standard
include Oracle interMedia and IBM DB2 Image Extender part of the AIV Extenders group.
The extensions of DBMSs for still images have been reviewed in [Sto02].
The SQL/MM standard limits itself to the definition of user-defined types, methods and
functions for supporting content-based storage and retrieval of images based on some of their
perceived characteristics, such as global and local color, and texture. High-level features are
not considered. The existing implementations are thus also limited and do not provide further
possibilities for including other features or distance measures. The IBM DB2 Image Extender
is no longer supported in the newest version V.9.1 of the DBMS. The manufacturer provides

2.1. CBIR Systems - State of the Art 21

a tutorial of how to build bespoke image extensions complying with the SQL/MM:Still Image
Standard in DB2 [Sto05] for users interested in this functionality.
Neither the standard nor existing DBMSs extensions have met other requirements of mul-
timedia databases, such as support for multidimensional indexing mechanisms, combining
similarity query results or optimizing the processing of similarity queries. Therefore, these
topics have since been the focus of database research. In [KPPS03] different approaches for
integrating user-defined indexing methods in DBMSs have been compared. [Söl07b] shows
how the relational indexing paradigm can be used to implement multidimensional indexing
mechanisms in ORDBMSs. The support of information retrieval techniques, such as combin-
ing weighted vague results of sub queries in a SQL query, is tackled in [SSH05] by proposing
a similarity calculus as a basis of a multimedia query language and extending query language
based on the relational domain calculus. Finally, query optimization techniques for extended
SQL queries have been proposed in Chapter 7.5 of [VC02].
Application considerations about image database management systems are noted in Nes’ dis-
sertation [Nes00]. On the basis of an image algebra, Nes defines the basic features of an image
management system and implements an image model with its corresponding operations in the
non-commercial, research DBMS MonetDB [Mon05]. MonetDB is a main-memory, object-
oriented database, which supports various extensions and aims to bridge the gap between
information retrieval and DBMSs [HZdVB07].
In the DISIMA project [OÖL+97] an image database system was built on top of the object-
oriented DBMS ObjectStore. The data model is reminiscent of the VIMSYS model [GWJ91],
with the representation of the different levels of abstraction and views of an image. The main
aim of this model is to model the different views (interpretations) of image content. This
model uses MOQL for query formulation and an ODMG Schema to implement the model.
In spite of the remaining problems of database extensions, object-relational DBMSs offer a
sophisticated implementation platform for image databases. Existing example applications
and development approaches can be used as guidelines. Therefore, these DBMSs have been
chosen as target environments for deploying CBIR systems.

2.1.4 Summary of CBIRS Technologies

In this section, the basic functional principles of a CBIR were described. Although CBIR
systems are implemented differently depending on the domain that they have been created
for, their functionality can be abstracted in common components. These generic components
were represented above in an integrated CBRIS architecture which can be applied for a broad
range of CBIRS applications. Various possibilities for the realization of the components for
concrete applications have been summarized.
Different implementation paradigms and platforms can be used for the implementation of
CBIRSs. For this thesis, a centralized architecture, based on an extensible database man-
agement system is considered to set the requirements towards the target implementation
platform.

22 Chapter 2. Basic Principles and State of the Art of Used Technologies

2.2 Model-Driven Software Development - Basic Principles

2.2.1 Characteristics and Aims

The Model-Driven Software Development (MDSD) approach aims to improve the software
development process, in particular to increase the development efficiency through reuse and
stable architectures and to provide a good basis for increasing software quality. The Object
Management Group (OMG) standardizes this development approach with the Model-Driven
Architecture (MDA) paradigm and focuses on two other major aims of MDSD, namely inter-
operability (better inter-software communication) and portability (platform independence).
MDA also provides the basic terminology used for MDSD.
In order to achieve the above aims the development process is shifted from the source code
level to the more abstract, but also more domain-specific modeling level. Model transfor-
mations are introduced to translate the abstract models into executable source code. In
Figure 2.3 the MDA development process is illustrated. The starting point is a platform
independent model (PIM). This model, describes only application domain specific artifacts
and contains no information about the technology used for the implementation. Through one
or more transformation steps the PIM is converted to a platform-specific model (PSM) which
contains more specific details about the implementation. The second transformation step
transforms the PSM into source code. The idea behind this development process is to provide
an automated forward engineering pipeline for propagating changes made in the platform
independent model to the source code or platform specific model. Thus, more than one iter-
ation of this pipeline is possible. However, these iterations have to start from the PIM level
in the general case, because it cannot be assumed that a reverse transformation, especially
from PSM to PIM is always possible. In fact, most often these models are not isomorph.
Despite of that, manual changes in the source code are often needed, and actually required
to provide the final implementation of the application. Therefore, special techniques have to
be applied in order to preserve manually edited source code or protect generated source code
etc. In this chapter, the main terms and techniques in model-driven software development
are briefly summarized.

2.2.2 Models for Model-Driven Software Development

Models in MDSD are used to describe particular aspects of an application domain, which are
of interest for the development of a software system. The formalization of these models should
allow the application of automated mechanisms for their interpretation, transformation and
eventually execution. Therefore, software modeling has a lot of similarities with software
programming. In fact, some authors as in [PM06, SVEH07] suggest that programs are also
kinds of models, i.e. a programming language is a kind of modeling language. In that case,
models also need a modeling language with corresponding syntax and semantics, in which
they can be expressed, analogously to programming languages. Programming languages are
usually represented textually, whereas models often use graphical representations. Behind
each representation, which is referred to as concrete syntax, a robust abstract syntax should
be defined. Modeling languages are also referred to as meta models. A meta model should
be defined for each different type of model participating in the MDSD process, PIM and
PSM. Moreover, different kinds of meta models may be suitable for different aspects of the
application, such as persistence, business logic and graphical user interfaces. In MDA the

2.2. Model-Driven Software Development - Basic Principles 23

Base Level: UML
Platform-Independent

Model of Business
Functionality & Behaviour

Automated
Transformation

M
od

el
in

g
Sp

ac
e

C
od

e
Sp

ac
e

Modeling in a technology-
independent UML profile allows
a precise representation of
business process/rules.

Executed by MDA tool which
follows OMG-standards mappings.
Resulting PSM may need some
manual adjustments.

Modeled in a technology-
specific UML profile.
Represents every aspect of a
coded application, but in UML.

Executed by MDA tool.
Many tools on the market today
execute this step very well.

Following some manual editing,
the generated code and auxiliary files
are ready for compilation, linking
and deployment.

Intermediate Level: UML
Platform-Specific Model(s)

on selected platforms
generated from PIM

Top Level:
Implementaton(s)

generated from PSMs

Automated
Transformation

Figure 2.3: Basic structure of OMG’s Model Driven Architecture (based on [Jon02])

meta models are defined as UML Profiles and thus are instances of the Meta Object Facility
(MOF). However, also other modeling facilities are supported by existing modeling tools,
such as Ecore - the meta meta model from the Eclipse Modeling Framework. This meta meta
model can be used to define domain-specific meta models. Ecore is similar to the reduced
version of MOF, known as essential MOF (EMOF). Other meta meta models, such as XML,
abstract syntax trees and domain-specific languages have been reviewed in [SVEH07]. The
choice of a meta model influences the implementation of the model parser, but also that of
the transformator/code generator. In fact, model transformations are defined based on the
meta model and executed on the concrete models.
In Figure 2.4 the different meta levels of MDA are shown. The PIM and the PSM are models
of the level M1 in Figure 2.4. They can be instances of UML or of domain-specific extensions
of UML (UML Profiles) from level M2 as shown in Figure 2.5. The PSM or PIM UML Profile
is referred to as the meta model of the PSM or PIM, respectively. An example of a meta
model for PIM would be a UML-Profile, representing the concepts of the Entity-Relationship
model, such as entities, attributes, relationships. And a meta model for a corresponding PSM

24 Chapter 2. Basic Principles and State of the Art of Used Technologies

 M3: Meta-Metamodel

describes

describes

instanceof

instanceof

Typ: Classifier
ID: 5346456
Name: Classifier

Typ: Classifier
ID: 764535
Name: Class
Features: Attributes,
Operations, Associations ...

Typ: Class
ID: 3985485
Name: Person
Attribute: Name, FirstName
Operation: ...
Association: ...

Typ: Person
ID: 984223
Name: Doe
FirstName: John

describes

describes instanceof

instanceof

 M2: Metamodel

 M1: Model

 M0: Instances

Figure 2.4: Meta levels in MDA (based on [SVEH07])

MOF

PIM-Metamodel PSM-Metamodel

M3

M2

<<instanceof>>

M1

<<instanceof>>

PIM PSM

<<instanceof>> <<instanceof>>

Transformation

“meta“

“abstract“

Figure 2.5: UML PIM and PSM meta models (based on [SVEH07])

2.2. Model-Driven Software Development - Basic Principles 25

would be a UML-Profile, describing relational concepts, such as tables, columns, primary key
etc. This example is illustrated in [CH06].

2.2.3 Model Transformations and Code Generation

The next step in model-driven development after the design of the application-specific PIM
is the transformation into a PSM. The PSM is a representation of the PIM in terms of the
so called platform model (PM). This means that the PSM uses the interfaces and concepts
provided by the particular platform, represented by the PM. In a straightforward transfor-
mation a PSM is the generated source code from the PIM. However, it is not always possible
to generate source code from the PIM directly. Additional refinements of the model are often
required in order to generate a platform specific implementation. Therefore, intermediate
transformations can be carried out before generating the code. For example, the PIM can
be transformed into a logical schema (PSM) in which some refinements can be made by the
developer before generating the source code.

2.2.3.1 Choosing a Platform

According to the authors of [PM06] the term platform in MDA refers to a specific hardware
or application environment. Platforms usually build on top of one another to form a so called
platform-stack. A platform-stack may consist of hardware and an operating system which
resemble the first two platforms in the stack and an application environment platform on top,
which is aware of the existence only of the operation system platform. In [OMG03] the follow-
ing comment for a platform is given “...What counts as a platform is relative to the purpose
of the modeler. For many MDA users, middleware is a platform, for a middleware developer
an operating system is the platform. Thus, a platform-independent model of middleware
might appear to be a highly platform-specific model from the point of view of an applica-
tion developer...”. CBIR systems are implemented as applications on top of one or more
specific application environments. Architecturally a CBIR system may consist of more than
one component, which can be realized in different application environments. For example,
the data storage and manipulation part could be implemented in a database system environ-
ment and the retrieval component as a database middleware in a C++ environment. The
client applications for CBIR systems could be implemented in a Java Enterprise application
environment.

2.2.3.2 Model Transformations

After choosing a target platform for the implementation of the CBIR system the platform
independent model has to be mapped onto the platform specific model. This transformation
process is one of the main concepts discussed in Model-Driven Software Engineering as well as
in database design. The aim of the transformation is to translate the concepts of the PIM (in
database design the PIM corresponds to the conceptual model) into concepts of the platform.
Therefore, in MDA the so called Platform Model has been introduced, which represents a
meta model of the platform. The resulting PSM is, therefore, an instance of the Platform
Model. In Figure 2.6 the transformation process in MDA is illustrated. The transformation
of a PIM into a PSM is in the general case a translation of the concepts, represented in the
PIM in terms of the abstract PIM meta model into terms of the concrete PSM meta model

26 Chapter 2. Basic Principles and State of the Art of Used Technologies

PIM

Transformation
profiles, meta models,
markings, mapping,
transformation rules

Platform Model

PSM (Code)

Figure 2.6: Transforming PIM to PSM (based on [PM06])

(PM). It is also referred to as an exogenous transformation. The opposite is the endogenuous
transformation which is defined between two representations of the model in the same meta
model. This transformation is also referred to as rephrasing and is used for tasks, such as
optimization, refactoring etc. If the transformation maps a concept from the source model
(meta model PIM) to exactly one concept from the target model (meta model PSM) then
the transformation can be regarded as a function and can have also further properties such
as being injective, reverse, bijective.
The formalization of transformations is needed in order to support the automatic execution
of the transformation. Therefore, a transformation language should be defined. A model
transformation language should meet different requirements in order to assure quality of the
transformation. The following requirements for transformation definition languages have been
addressed in the literature:

• formalism [Kuz05] - the transformation language should be based on a well-formed
grammatic in order to be executed automatically.

• universality [Kuz05] - the transformation language should allow the definition of trans-
formations of various platforms through tuning and parameterisation. This requirement
is also considered in [CH06] by the tunability property of transformations.

• integrity preservation [Kuz05] - model-driven development often requires additional iter-
ative changes of the source and generated models. Therefore, the mappings which take
place during the generation step should be recorded so that the conformity between the
source and target model can be checked when changes are undertaken. In [CH06] this
requirement was referred by the traceability property of transformations.

• incrementality [CH06] - focuses on required properties of transformations, such as target
incrementality (change propagation) for incrementing the target model with changes
from the source, source incrementality assures that only the changed elements of a
source are recompiled if needed and preservations of user edits in the target should be
provided in case that user changes in the target model should not be overwritten by
changes in the source model (e.g. by synchronisation).

• directionality [CH06] - depending on the application a transformation may need to be

2.2. Model-Driven Software Development - Basic Principles 27

executed not only in one direction, but in the inverse direction also. Therefore, bi- or
multidirectional transformations should also be possible.

More practical properties of model transformations, such as scalability, simplicity and ease
of adoption have been considered in [GGKH03]. Especially for the graph-transformation-
based approach, semantic properties such as confluence (unique result) and termination (the
transformation should terminate) play an important role.
What most of the works on model transformations for model-driven software engineering do
not consider is the requirement to preserve the semantic equivalence between the source and
the target model. Such a requirement towards the transformation function can be defined by
means of information capacity [Hul86].
To what extend these requirements have to be fulfilled depends also on the application domain.
In Chapter 3, the applicability of these requirements for the transformation of the CBIRS
PIM onto an ORDBMS PSM is discussed.

Model-to-Model transformations are used not only for model-driven software develop-
ment, i.e. for generating platform specific models from platform independent models. Schema
matching, schema evolution, database design are other applications where model-to-model
transformations are needed. We can distinguish between intra- and inter-model transforma-
tions, where in the first case a model expressed through a meta model is transformed into
another representation or instance of the same meta model, as for example providing different
views on the data stored in a database. Whereas in the second case the model is translated
into the terms of another meta model, as for example translating a PIM into a PSM. For the
transformation of the CBIR system PIM into an SQL model the intra-model transformations
are of interest.
The Object Management Group (OMG) has acknowledged the need of formalizing such
transformations by issuing a Request for Proposal in 2002 on Query/Views/Transformations
(QVT). Formalizing transformations should enable their integration in MDA-tools, which can
carry out the transformations automatically. Multiple responses to this request have led to
the final adopted QVT specification in 2005 [OMG05] and to the development of numerous
transformation techniques and tools. Existing transformation techniques have been catego-
rized, based on a proposed feature model for their description in [CH03, CH06]. The following
categories of transformation techniques, grouped according to their characteristics and design
choices were proposed in [CH06].

• Direct manipulation approach. This is the most straightforward transformation ap-
proach. It provides an internal representation of the model and interfaces for its ma-
nipulation, as well as transformation classes implemented in a programming language.
Object-oriented frameworks are used to provide a basic structure for the transforma-
tion, which has to be implemented for a particular transformation technique. One of
the advantages of this approach is the freedom which the programmer has to define
transformation exactly as he/she needs them, without being limited by a transforma-
tion language, as is the case with templates. One disadvantage is that due to this
freedom, more time is required for the implementation of the transformations, and the
implementation is more error prone.

• Structure-driven approach. The idea of this transformation approach is to copy all the

28 Chapter 2. Basic Principles and State of the Art of Used Technologies

elements of the source model to the target and adapt them in the target model in order
to achieve transformation. Implementations of this approach provide frameworks which
take care of scheduling and copying. The users need to provide only the transformation
rules.

• Operational approach. This approach is similar to the direct manipulation approach,
but instead of a regular programming language, extensions of modeling languages with
imperative constructs are used to implement the transformations, e.g. MOF with exe-
cutable OCL. Adequate interpretors of these transformation models have to be provided.

• Template-based approach. In this approach, the target model is provided as a template
with blanks, conditions, iterations etc. which have to be filled out depending on the
source model. The routines for filling the blanks can be provided separately or within
the template.

• Relational approach. Such an approach uses mathematical relations or constraints to
declare the transformations which have to take place. Target model elements are created
implicitly and do not allow in place transformations, i.e. there is always a source and a
target model. This approach also supports multidirectional transformation rules.

• Graph-transformation-based approach. This approach is especially suitable for class
model transformations, since it operates on typed, attributed, labeled graphs, which
can be used as the formal representation of class diagrams. Therefore, a left hand
side (LHS) pattern is matched in the source model to find the concepts which have to
be transformed and is replaced by a right hand side (RHS) pattern in place. These
transformations are performed in one direction.

Exact borders to differentiate between these techniques do not exist. The different techniques
can also be combined in some applications. Some of them can be regarded as a specialization
of others, for example the operational approach is a more specific direct manipulation. The
feature model used to make this classification can be used to choose an appropriate tech-
nique for implementing the transformation. Before the features of the transformation can
be formalized, the transformation rules or mappings have to be conceptually clearly defined.
The target and source model and their presentation (textual, graphical, classes etc.) have
to be determined. A transformation technique can be applied on the concrete syntax of a
model, such as XSLT on XMI. However, the transformations should be kept independent of
the concrete syntax, because it may vary as suggested in [VS06]. For example, different tools
support different versions of XMI.

Model-to-Code The transformations needed to generate the source code of the designed
application are a subset of the model-to-model transformations. This is due to the fact
that code generation actually is a transformation onto a programming language, which can
be regarded as a textually represented meta model. In [CH06] the following model-to-code
approaches have been classified in the following groups.

• Visitor-based approach. This approach corresponds to the direct manipulation model-
to-model transformation, and additionally states that the direct manipulation technique
should use the visitor mechanism to traverse the internal representation.

2.2. Model-Driven Software Development - Basic Principles 29

• Template-based approach. The approach is analogous to the model-to-model template
transformation approach.

These different implementation approaches for transformation rules are considered when
choosing a way to define the transformation rules for the CBIRS application in Chapter
5. However, it is concluded that a textual description of the rules is more appropriate at
the formalization, conceptual stage. The above approaches are more relevant for the imple-
mentation of the specified rules. In the students project of Andre Schefe [Sch07] the direct
manipulation was chosen to implement a generation plugin for the generation of an image
database.

2.2.4 Summary of MDSD Technology

MDSD describes a software development approach which aims at automating the generation of
application implementations and allow developers to focus on domain-specific problems when
designing the software. Therefore, a set of techniques have been suggested for developing
domain-specific models and transforming them to platform-specific source code. Often for
each application domain new modeling languages have to be specified in order to represent
domain artifacts adequately. Platform-specific languages have been already specified for a
large variety of platforms, e.g. RDBMS, but often they need to be extended to support more
concrete or new features. These modeling languages can be created or adapted by using the
UML or MOF meta modeling languages.
Regardless of which transformation technique is applied in the MDA tools, at first an adequate
description of the mapping rules has to be provided. The characteristics of the mapping
functions have to be analyzed in order to assure high quality of the transformation.

Chapter 3

Requirements Analysis and
Conceptual Design of MDSD
Techniques for CBIRSs

Model-driven software development requires two groups of techniques, namely modeling tech-
niques and transformation techniques. Each of these techniques has to be adapted, i.e. de-
signed, for the concrete application and technology domains. In this chapter, first the require-
ments towards the modeling techniques for each component of a CBIRS are described. Based
on these requirements, existing generic models of image retrieval systems are evaluated. In the
second section of the chapter, transformation techniques for mapping platform-independent
models represented by the Unified Modeling Language onto a platform-specific model repre-
sented by the ORDBMS model, are reviewed. Existing meta models for the platform-specific
model are also described. Furthermore, properties of the transformation, which can be used
to prove its quality are defined. The concrete adaptation of these two groups of techniques is
explained in the following two chapters, respectively.

3.1 Domain-Specific Modeling for CBIRSs

In order to design the modeling techniques for the first step of the MDSD process of CBIR,
illustrated in Figure 3.1, the generic components of a CBIRS system which have to be modeled
are identified and their properties and functionality are described.
A model of an application represents one or more common aspects of the application domain
through some more or less formal modeling language. In model-driven design it is essential
to use well formalized modeling languages, because these have to be transformed later on
automatically into executable code. Choosing a suitable modeling language depends to a great
extent on what exactly has to be modeled. The domain-specific modeling approach suggests
that for each application or technology domain a specialized modeling language should be
provided. Domain-specific modeling languages have been provided for technologies, such as
web applications [NFG06] and mobile phone applications [DB07], as well as for applications
in the field of ERP (Enterprise Resource Planing) [BLPR07], health care [MC07] etc. More
examples of domain-specific modeling languages are represented on the website of the Domain-

31

32 Chapter 3. Requirements Analysis and Conceptual Design

 Techniques for modeling
 CBIRS

 Techniques for generating
 CBIRS implementations

CBIRS developer

MDSD Techniques for CBIRS

eN
ot

e
C

B
IR

S

Implementation
platform A

Implementation
platform N

G
el

 C
B

IR
S

eN
ot

e
C

B
IR

S

G
el

 C
B

IR
S

Figure 3.1: MDSD techniques for the development of CBIRSs - Modeling

Specific Modeling Forum1. Other modeling approaches prefer to adopt a generic modeling
language, such as the Unified Modeling Language for representing their application design.
However, generic languages usually have to be extended to support domain-specific concepts
in a better way. Thus, generic modeling languages transform into domain-specific languages.
A domain-specific modeling language would facilitate the design of CBIR systems. However,
one of the aims of this thesis is to provide a reusable design methodology. Therefore, a generic
model of a CBIRS has to be also elaborated, so that the developer can profit from reusing an
architectural design. The generic model should allow flexible adaptation to the developer’s
requirements. To choose an appropriate modeling approach, at first a decision has to be
made about which aspects of a CBIR system should be modeled and generated. Referring
to the generic CBIRS architecture in Figure 2.2, three horizontal groups of components can
be identified: the user interfaces, the compensators and the core components. The focus of
this thesis is the modeling and generation of the core CBIRS components. The idea is to
provide the core data structure and functionality of the CBIR system for use by different
client applications. Multiple client applications may be later on implemented to meet diverse
user needs. Therefore, the aim of the current work is not to provide a particular graphical user
interface for the system. Usually CBIR systems require the design of complex user interfaces
to support user-friendly interaction with the CBIR core. Furthermore, different technical
environments, such as mobile devices, set special requirements for user-interfaces. Therefore,
additional information apart from the basic functionality and data structure of the system
has to be considered when modeling graphical user interfaces. For the model-driven design of
advanced user interfaces, a technique based on task models has been proposed in [WFDR05].
User interfaces, however, play an important role when specifying the main functionality of
the system, e.g. to define what kind of queries have to be supported. Therefore, they should
be included in the model for the specification of the interfaces of the core components. In

1http://www.dsmforum.org/cases.html

3.1. Domain-Specific Modeling for CBIRSs 33

Query/Browse
Images

Display
Results

Feature
Extraction Retrieval

Input
Images

Core CBIRS
Components

User Interfaces

Image Store Feature Store

Figure 3.2: Core CBIR components to be modeled by the CBIRS Generator

the next section, the modeling requirements for the core components of a CBIR system are
systematized. Their generic and varying characteristics are highlighted.

3.1.1 Requirements for a Domain-Specific Model for CBIRSs

The core CBIRS components, which have to be modeled and generated, are shown in Figure
3.2. These comprise the “Feature Extraction”, “Image Store”, “Feature Store” components for
extracting and storing image content, and the “Retrieval” component for retrieving images
based on their content. In Chapter 2, the “Feature Index” is also part of the core CBIR
components. The data used for content-based image retrieval is multi-dimensional data which
can lead to very inefficient retrieval when a sequential search is used for a large collection
of images. Thus, appropriate multi-dimensional indexing mechanisms (R-tree, SS-tree) can
be employed in a CBIR system to improve the efficiency of content-based image retrieval.
Indexing mechanisms comprise usually an intermediate representation of the data used for
the retrieval and corresponding update and access operations. Essentially, index structures
are another representation of the image data which can be used to apply corresponding
retrieval operations in order to answer specific queries more efficiently. This representation
is platform dependent, and therefore, is not considered for the modeling of CBIRSs. The
other core components have to be included in the CBIRS model. Each of these components
sets different requirements to the model. These requirements are described in detail in the
following paragraphs.
As mentioned in Chapter 1, the eNoteHistory scribe recognition application is used to define
the scope of the CBIRS development approach proposed in this thesis. Therefore, in addi-
tion to a general description of the requirements towards a CBIRS component, a concrete
application example from the eNoteHistory application is given. The eNoteHistory CBIRS is
described in detail in Chapter 6.

34 Chapter 3. Requirements Analysis and Conceptual Design

3.1.1.1 “Image Store”, “Feature Store” Components

When designing the storage components of an image retrieval system, the aim is to determine
and represent the characteristics of an image based on which an observer decides whether
the images are similar or not. Two types of characteristics can be distinguished, those which
can be directly derived from the raw image or visual representation of the image (content-
dependent characteristics) and those which are independent of the information encoded in
the image (content-independent characteristics).

Requirements for Modeling Content-Dependent Characteristics

One of the most common classification of image content is that of abstraction levels as illus-
trated in Chapter 2, Figure 2.1. In this classification, all content characteristics are grouped
according to a so called level of abstraction which is often used in the image processing
literature.
A single matrix of pixel intensities representing the raw image can be associated to each
image. Although content-based retrieval on whole images is very rarely carried out based
on all the pixels of an image, this information can be useful for comparing smaller regions
of images. Furthermore, the image matrix can be used to derive compressed representations
of the image using, for example, Fourier or Cosine transformations which can be used for
image comparison. Although color distribution, texture, and shape are derived from the
pixel-matrix, i.e. a higher level of abstraction is reached, these characteristics are classified
as physical level characteristics because they can be regarded as a summary of the pixel
information. They also are often referred to as low-level features in CBIR systems. They can
be used directly to compare images or to derive higher-level characteristics, such as objects
corresponding to regions in the image with the same color of pixels.
The characteristics at the logical level are related to the identification of objects in the im-
age and the structural arrangement of these objects. In the case of large image collections
this process cannot be carried out manually. Thus, the segmentation of an image has to be
carried out by image processing algorithms which search for connected regions in the image
with homogeneous physical-level characteristics. An object itself is nothing else but a set
of pixels from the image which correspond to a certain 2-dimensional shape. Therefore, all
characteristics that a whole image possesses can also be associated to a single object of that
image. The structural layout of the objects is represented by spatial relationships, such as
topological or directional relationships. For these relationships there are different represen-
tation possibilities: 2D-Strings [CSY87] and their variations [LC03] and attribute relational
graphs (ARGs) [PF97] are some of these to name. The transition from the logical level to the
semantic level is not so straightforward as from the physical to the logical level, because much
more context and knowledge than available from the physical and logical characteristics is
required in order to assign the correct semantic concepts to the image and objects. It should
be mentioned that the transitions between different characteristics can be integrated into
the data structure through relationships between the characteristics, similarly to the spatial
relationships, for example, through an interpreted relationship between the characteristics.
The semantics of such relationships depends on the transition functions which transforms the
low-level characteristic into a higher level characteristic.
Semantic level characteristics can be textual descriptions or conceptual terms associated with

3.1. Domain-Specific Modeling for CBIRSs 35

a whole image or with image objects. Different semantic interpretations are possible, for in-
stance, depending on the users point of view or the time of the analysis. Extracting semantics
from the image is a task which requires additional knowledge about the context and origin of
the images. Therefore, reliable algorithms for automatic annotation of images are still under
development. Most of these algorithms try to bridge the gap between the logical, the physical
level, and the semantic level characteristics, by mapping lower-level features onto higher-level
semantic concepts and thus defining relationships between semantic concepts and features
used for their derivation. Content-independent information, if available, can also be used to
derive semantic characteristics.

Requirements for Modeling Content-Independent Characteristics

Although this type of characteristics has no direct connection to the content of the image,
there are cases where indirect dependencies can be very useful for determining the content.
Some authors refer to this data also as the context of an image [BSST07]. For example, if
we have an image of a desert and have to decide whether it is an image of a wall or of a
landscape, one entry in the meta data of the image: place=“Sahara” would make it perhaps
easier to make the decision. For each application domain there are different requirements for
content-independent image data. In photography and medical imagery these data can have a
completely different structure. However, it provides valuable information which can be used
by the feature extraction or retrieval process later on. In Chapter 2, some standards aiming
at classifying such metadata are mentioned.

Example

In the eNoteHistory CBIR application the following characteristics of the image are needed
in order to compare the handwriting of scribes.

1. Region of Interest (ROI), which resembles a larger rectangular region of the image
containing only the handwriting. If more than one scribe wrote the page then multiple
ROIs can be expected in an image. At least one ROI should be detected in an image
so that it can be used for comparison. In Figure 3.3 an example of such as ROI is
illustrated.

2. Music objects each ROI can contain a set of smaller regions corresponding to music
elements. Each region is characterized by its minimum bounding rectangle (MBR),
i.e. two pairs of xy coordinates. Furthermore, the regions are assigned to concepts
corresponding to note heads, note stems, bar lines. Note heads and stems can be
combined into notes.

3. Content-independent characteristics, which can help in the retrieval task in this ap-
plication are bibliographical data, such as the name of the music work or the name
of the composer or publisher. At the time these manuscripts were copied (rewritten)
by scribes who were employed by a particular composer or publisher for a longer time
period. Thus, the identification of the scribe can be supported by such information.

36 Chapter 3. Requirements Analysis and Conceptual Design

Figure 3.3: A Region of Interest (ROI) from a music manuscript image and MBRs of the
detected music objects

Conclusion

A CBIRS model should be able to represent the data structures for different types of image
characteristics. Each application may require a different combination of these characteristics.
The generic parts of such data structures comprise some kind of an image identifier and a
raw image representation. Optionally an image may be partitioned into several image regions
with associated image characteristics. However, the exact types of regions or characteristics
depend on the application. Mechanisms for managing the persistence of these data structures
have to be modeled if there is no persistent storage management mechanism provided by the
implementation platform. These mechanisms can be provided as a generic component in the
CBIRS model.

3.1.1.2 “Feature Extraction” Component

Another task for the designer of an image retrieval system is to determine the way all image
characteristics come into the system. By providing as much as possible automation for this
process, a more efficient, scalable, and more objective extraction of the characteristics can
be assured. However, the decreasing accuracy especially in the higher levels of abstraction
can lead to imprecise characteristics and later on to bad retrieval results. Therefore, only
well-performing algorithms should be considered for the automatic extraction of features.

Requirements for Modeling Feature Extraction Functionality

Feature extraction refers to the process of transforming the images into representations in
terms of characteristics. If this process is supposed to take place automatically or semi-
automatically the algorithms responsible for these operations should be included in the image
model. Manual feature extraction is regarded as part of the user-interface modeling. There-
fore, it is not modeled in the “Feature Extraction” component. Each type of feature and
each level of abstraction requires an adequate feature extraction algorithm. The image seg-

3.1. Domain-Specific Modeling for CBIRSs 37

mentation can also be considered as a feature extraction algorithm, because its result is the
identification of image objects, which are logical level characteristics of the image. These
algorithms may be a subject of change, because more and more effective algorithms for the
extraction of a feature may be implemented. In this case, the features gained from older
algorithms could be replaced with the results of the new ones or they could be stored along
with the new ones.

Example

In the eNoteHistory application regions representing note heads, stems and bar lines are
extracted by an image processing algorithm, which can also determine the minimum bound-
ing rectangles (MBRs) and minimum bounding ellipses (MBEs) of the objects and other
features as well as assign each region to a corresponding concept. Determining the ROI is a
non-trivial task for image processing algorithms, thus it is determined manually by the user.

Conclusion

It is difficult to define generic feature extraction algorithms, but placeholders for such func-
tions can allow adapting these functions through framework development techniques. A useful
help for the developer of such extraction algorithms can be source code libraries for extracting
standard image characteristics.

3.1.1.3 “Retrieval” Component

Apart from providing a data schema to store image data, a CBIRS model should provide
means to model operations for processing image queries based on these characteristics. These
operations should provide mechanisms to search for similarity in the image database. The
authors of [ABH97, Sch04] have provided an overview of the recent research and techniques
for the processing of content-based similarity queries for multimedia data.
The notion of similarity in queries has been formalized by Jagadish, Mendelzon and Milo in
[JMM95]. They defined a context free pattern language for defining objects, a transformation
rule language to specify the similarity between objects, and a general query language. This has
been further on used as a basis for the development of a multi-similarity algebra [ABSS98],
where similarity operators have been defined to address the need of query optimization in
similarity-based retrieval and to combine different similarity implementations in one query.
Further research on the definition of a similarity algebra and similarity operators has been
represented in the works of Santini and Gupta [GS00b, SG01, SG02b], and by Atnafu et
al. in [ABK01]. Atnafu et al. show also how their operators can be integrated in a DBMS
environment.
Queries on image data can consist of multiple predicates which can be combined with each
other. Algorithms for the processing of such combined queries have been offered: TA-
Algorithm [FLN03], Algorithms for combining streams [PF95, HR03] as well as the Gen-
eralized VA-File Based Search (GeVAS) [BMSW01]. The first two have been implemented
as middleware for ORDBMSs. In [AG01] the same problems have been studied especially for
digital images.

38 Chapter 3. Requirements Analysis and Conceptual Design

What kind of algorithms should be applied to perform an automatic image similarity search
is the second decision which the developer has to make with respect to the functionality of
the system. Thereby, the kinds of queries which the system will support should be defined
together with the characteristics which should be used to process these queries. The way
these characteristics are combined is also an important question, in the case of queries over
more than one characteristic, which is the way images are most often compared.

Requirements for Modeling Retrieval Functionality

The retrieval algorithms represent the main functionality of a CBIR system. They depend,
on one hand, on what kinds of retrieval tasks the system should be able to process according
to the requirements of the users. On the other hand, they depend on the mechanisms which
can be applied to interpret image content and measure image similarity.
In [SWS+00] content-based image retrieval tasks have been categorized in exact queries, where
the query answer comprises the images from a given image set satisfying some set of criteria,
and approximate queries, where the result from the query is a ranking of the images from
a given image set with respect to the query, based on an appropriate similarity measure.
Each of these categories has been further subdivided depending on whether the query relates
to the global image characteristics, spatial image characteristics or to a group of images.
Figure 3.4 from [SWS+00] shows examples for these types of queries and possible results from
the Corel image database. Each of these three query types can in fact be assigned to one
of the three levels of abstraction for representing image content. Spatial predicate queries
are based on the spatial relationships and location of objects (salient regions) in the image.
Queries on image predicates are queries using global image characteristics. In group predicate
queries, the interpretation of the image content in terms of categories or classes is used for the
retrieval. Furthermore, these queries can be combined in more complex queries, for example,
querying the images based on local features combining spatial predicate queries with image
predicate queries. It can be argued if the exact query example of the image predicate query
is really exact. The features used in the predicate “sky” and “sand” are not exact, since they
are subjective or difficult to measure exactly. However, the predicate represents an exact
comparison.

Similarity Measures: Different mechanisms can be applied to answer such types of queries.
Most of these mechanisms deal with proposing a representation of image similarity as per-
ceived by the user in the domain of image characteristics. Therefore, for each type of char-
acteristics a similarity operation should be defined. This operation can be used to compare
the values of these types with respect to similarity. More often a similarity operation to
measure the similarity between aggregated characteristics for processing complex queries is
needed. One example of an aggregated characteristic is a feature vector comprising values for
different types of features. A hierarchical aggregation is employed where local image char-
acteristics referring to the features of image objects and their spatial relationships are used
for comparing the images. To integrate retrieval functionality into the image model, the so
defined similarity operations should be included in the model. Many different approaches
which can be used to implement similarity operations exist. In [SWS+00] a systematization
of similarity measure approaches is given where these approaches are grouped with respect
to the types of image characteristics on which they can be applied.

3.1. Domain-Specific Modeling for CBIRSs 39

Figure 3.4: Example queries for the six query types and possible results from the Corel image
database (from [SWS+00])

One of the most used similarity models is the metric model, where the similarity between
images is represented by a distance function on their feature representations. This model
requires that the feature space is a metric space. Other possible similarity models are the
probabilistic model cited in [SWS+00], Tversky’s model and the transformational distances
model cited in [Bim99]. Measuring the similarity of aggregated features can also be performed
by a distance function, such as the Minkowski distances for comparing color histograms,
but also by nonparametric test statistics as mentioned in [SWS+00]. For comparing shape
features, represented by points in space, the Hausdorff distance measure [HKRR93] has been
employed. For processing spatial predicate queries different techniques for representing spatial
similarity in images have also been proposed. Attributed Relational Graphs, different types
of 2D-Strings, for example, have been used for representing spatial structures and different
matching algorithms have been applied to compare these structures, e.g. Lp metric [PF97] or
the Earth Movers Distance [KKYL04]. To compare images by similarity using their semantic
level characteristics, techniques from the text retrieval field have been adopted, for example
for comparing concept terms or annotations of images.

40 Chapter 3. Requirements Analysis and Conceptual Design

Image Classification: A second group of mechanisms for answering the types of queries
defined above tackles the problem of interpreting the content of an image by assigning a
meaning to an image through domain concepts. These mechanisms can be used to answer
especially the group predicate queries. Their aim is to try to classify or cluster images, based
on their characteristics, into classes of previously trained samples. Often an intermediate
representation of the data is required apart from the retrieval operations in order to build
these mechanisms. This task is similar to the feature extraction task of mapping low-level
features onto semantic characteristics.

Example

The retrieval task in the eNoteHistory CBIR application is to identify the scribe of a manuscript
by comparing the handwriting of the given manuscript with the handwritings of manuscripts
in the database with known scribes. The similarity between two between two manuscript im-
ages I and Q based on the handwriting characteristics can be represented by its opposite, i.e.
the distance between these images. The distance between the whole images can be calculated
by aggregating the distance measures on the image characteristics. Thus, the aggregated
distance for the whole images can be represented with the following formula:

D(I,Q) = fi=1..l,j=1..m(gk=1..n(δfk
(fk

ri , fk
rj))

where fk
ri is a feature, of a region i of a given query image I and fk

rj is a feature of the
region j in an image Q from the database. The function g is an aggregation function which
combines the distances from the distance measures δ into a meaningful representation of the
distance between the two regions i and j. The function f is an aggregation function which
combines the distances between all regions of the images into a meaningful representation
of the distance D between the images. This formula is explained in more details in section
4.3.3.1.

Conclusion

Because of the big diversity of image retrieval mechanisms a generic retrieval functionality
model can be induced only if it is abstracted from the concrete mechanisms. This means that
a generic model needs to integrate retrieval functionality as concepts which can be adapted
to support the different image retrieval mechanisms.

3.1.2 Requirements Towards the Quality of the Model

The quality of the model is a very important requirement to consider in the development of
a modeling approach, because the aim is to use the model for the automatic generation of
the implementation. Quality goals should be defined in order to avoid ambiguousness and
incompleteness of the model.
In the area of software engineering quality properties and metrics for software products have
been studied extensively. A quality model for software products and metrics to achieve
quality goals was issued as an ISO standard [ISO91]. In database research, models also play
a very important role throughout the whole process of database design and implementation.

3.1. Domain-Specific Modeling for CBIRSs 41

Models are used at different stages of the development: abstract models, such as the Entity-
Relationship Model, are employed for the database design for capturing the requirements and
thus is also referred to as a conceptual model; logical models, such as the Relational Model, are
employed for the implementation logic of the conceptual models. In [Moo98] a set of metrics
for evaluating the quality of Entity-Relationship Models has been defined. These metrics have
been considered for the evaluation of conceptual data models in general. Some of them to
name are: completeness - expresses whether the data model contains all information required
to meet the user requirements; integrity - the extent to which the business rules (integrity
constraints) which apply to the data are enforced by the model; flexibility - measures the effort
for adapting the model according to changing requirements; understandability - reflects the
ease with which data models can be understood by the users; correctness - ensures that the
model adheres to the rules of the modeling technique being used , i.e. that it is syntactically
and grammatically correct, and redundancy-free.
The evaluation of conceptual models with respect to quality is, however, still an often disputed
research topic. Different frameworks have been proposed to determine quality goals and
mechanisms to achieve them, but none has yet become a standard. For each specific purpose
and requirement a different degree of fulfilling the quality goals may be desirable, thus quality
has been regarded also in the sense of “fitness for use”. Therefore, the authors of [LSS94]
have introduced a feasibility factor, which should be considered for each quality measure in
such cases. They also offer a systematic classification of quality goals by introducing three
kinds of quality:

• Syntactic quality: The more closely the model adheres to the language rules, the higher
the syntactic quality. Syntactic errors occur when the statements in the model are not
according to the syntax. These can be morphological errors or syntactic incompleteness.

• Semantic quality: It represents the similarity between the model and the domain (real
world). Two semantic goals are validity and completeness. Validity expresses whether
all statements made by the model are correct and relevant to the problem domain. In
this case, completeness expresses whether the model contains all the statements about
the domain. These goals are hard to achieve for complex domains, therefore the notions
of feasible validity and completeness have been introduced, which consider the criteria
satisfied as long as the costs for achieving them do not exceed the profit of having
them. Other quality goals such as consistence and unambiguity have been considered
as subsumed by the first two.

• Pragmatic quality: It shows how well a model can be understood or interpreted by
its users. The only pragmatic goal is comprehension. Again the notion of feasibility
was introduced to smoothen this requirement. The achievement of this goal is often
related to additional support for annotation, extended visualization and other features
supported by modeling tools.

The results from an empirical analysis of the framework published in [MSBS03], showed
that syntactic quality has a 27% influence on the overall quality, semantic quality 39%, and
pragmatic quality 34%, respectively.
The following quality criteria are considered for the modeling approach described in this
thesis. These criteria are compiled from the quality goals for database models and conceptual

42 Chapter 3. Requirements Analysis and Conceptual Design

models in general, taking also into account the requirements towards an image model from
the previous section.

• Syntactic correctness estimates to what extent the model adheres to all modeling
language rules, in case these are known and well defined.

• Validity ensures that only concepts relevant to the problem are included in the model.
These concepts are defined in the requirements from the previous section. The question
is to what extent should domain-specific concepts be considered as relevant for the
general model. Since one aim of the model is to support the designer in the development
of domain-specific models any reusable concepts in the model may be useful. Therefore,
including domain-dependent concepts in the model should not be regarded as violation
of validity. However, such concepts must be defined as optional, so that they may be
omitted in case that the application does not require them. The idea is to keep the
resulting domain-specific model as compact and simple as possible.

• Completeness requires that the model contains all the statements about the domain.
This quality feature is also based on the requirements for the model described in the
previous section. The model should be able to represent all structural and operational
features stated above. With regard to a general model this goal should be softened to
assure that as few extensions as possible for the model are necessary when applying
it to a specific model. The general model should provide more means for adaptation
rather than for extending the model.

• Flexibility estimates the possibility to adapt or extend the model for a particular
application domain. Well-defined interfaces and mechanisms for these processes should
be offered by the model.

• Understandability estimates to which extent the model is understandable for users
and if there are existing tools which can support the users in understanding the model,
such as visualization tools. In this particular case of a general model, it is also important
to provide well-defined mechanisms for using the model for deriving a domain-specific
model. Usually, so called cookbooks, tutorials or supporting examples can be used for
that.

• Implementability estimates how easy it is to map the model onto a specific imple-
mentation model (e.g., programming language). It proves whether there are existing
mapping methodologies or do they still need to be defined.

3.1.3 Evaluation of Existing Conceptual Image Models

For the design of almost each existing CBIR system, a bespoke conceptual image data model
has been used. These models have a lot in common, but very often they remain application
specific, such as image models for the retrieval of medical or satellite images, images of human
faces etc. Therefore, it has been an on-going aim for scientist to formalize a general image data
model, which can be used for a broad range of application domains. In this section, a survey
of some image models, which are considered as applicable for a broader range of applications
and/or offer adaptability or extensibility possibilities is proposed. At first, models dealing

3.1. Domain-Specific Modeling for CBIRSs 43

explicitly with the representation of images and their content are discussed. At the end, two
multimedia models with extensive support for representing image content are considered. It
is to note that a lot of the existing CBIR systems have not formalized their data models, that
is why they are not mentioned in this survey.
Each of the listed models is represented through a detailed description, based on existing
literature sources on the respective model. The eNoteHistory example application introduced
in Chapter 1 and used as an example for formulating the requirements in the previous section,
is used for the evaluation of the models. The idea is to check to what extent these models
satisfy the quality criteria, defined in the previous section, by applying them for the modeling
of a particular CBIR application. Completeness and validity are evaluated by proving whether
all eNoteHistory data structures and functionality can be modeled. Flexibility is evaluated
based on the effort which is required to extend the model in order to represent additional
concepts or functionality etc. Finally, the evaluation of the models is summarized using the
quality criteria defined in the previous section.

3.1.3.1 Conceptual Image Data Models

Several domain-independent image data models have been developed on a very abstract level
in the early years of CBIR. A brief overview is provided in [GS00a] and [SB00].

3.1.3.1.1 Adaptive Image Retrieval Data Model (AIR)

Description: Gudivada et. al proposed the AIR image data model in [GRV96] as a unified
framework for retrieval in image databases which can be adapted for a class of image retrieval
applications. The framework offers a domain independent data model and an associated
retrieval model which can vary widely across domains. According to the authors, the image
data model supports four types of retrieval:

• Retrieval by Browsing: the user searches for the needed information by narrowing the
search space using visual query language techniques;

• Retrieval by Objective Attributes: in this case the queries use meta attributes (meta-
data) and/or logical attributes to formulate the query which is later on evaluated as an
exact match query;

• Retrieval by Spatial Constraints: this retrieval technique comprises exact and similarity
queries based on spatial relations between objects found in the images;

• Retrieval by Semantic Attributes: the images in this case are matched based on their
semantic attributes, which can be extracted automatically from the images or provided
as domain specific annotations by a user.

However, the image processing and retrieval functions are outside the scope of the proposed
framework. For the representation of the model a semantic data model proposed in [Urb87] is
used. The semantic data model diagram of the AIR model is shown in Figure 3.5. The AIR
image data model represents the image in several levels of abstraction - a physical represen-
tation and multiple corresponding logical representations, and transformations between them

44 Chapter 3. Requirements Analysis and Conceptual Design

Meta-Attribute

has-image-
annotation

has-image-
physical-rep

(R)

has-object

has-object-annotation has-image-logical-rep

has-object-logical-rep

has-object-
semantic

has-object-
physical-rep

LEGEND:

R required

multi-valued

is-abstraction-of

Image Image-Base-Rep

Rule-Programs

Semantic-Attribute Image-Object Object-Base-Rep Object-Logical-Rep

Image-Logical-Rep

Figure 3.5: AIR Data Model (based on [GRV96])

in terms of domain-dependent image processing and interpretation techniques. The model
consists of the following concepts:
abstract classes: Image, Image-Object, Image-Base Representation, Image Object-Base Rep-
resentation are abstract classes corresponding to the images, the objects they comprise and
their persistent storage presentations, respectively. Furthermore Image Logical Representa-
tion (ILR) and Image-Object Logical Representation (OLR) abstract classes are defined. ILR
can be used to model spatial relationships and OLR to model geometrical attributes such
as area, centroid, MBR, for example. The abstract class Semantic Attribute captures the
high-level domain concepts and can be assigned to images and objects. These attributes can
be derived by applying user-defined transformations, represented by the abstract class Rule-
Programs, on the Image-Base and Object-Base Representations, logical attributes and also
from instances of the Meta-Attribute class. Meta attributes are independent from the content
of the image, they correspond to the content-independent image characteristics or metadata
of an image described in section 3.1.1.1.
properties: Properties represent the relationships between classes. A multivalued property
is represented by a double-headed arrow which corresponds to a set-valued functional rela-
tionship. A property may be defined as required R which indicates that the value set of
the property must have at least one value. The original semantic model is extended with an
additional construct - isAbstractionOf - which is used to model transformations between
image representations. This construct represents the fact that an image representation is
derived from another one by applying domain-dependent image-processing techniques.

3.1. Domain-Specific Modeling for CBIRSs 45

Evaluation: The application of the AIR model was tested by the authors of [GRV96] for
two application domains: real estate marketing and face retrieval. We will try now to apply
this generic model for the music manuscripts example. We can represent the whole image and
its physical storage structure as derived from the abstract classes Image and Image-Base-Rep,
respectively. The ROIs and music objects can be represented as Image-Objects. However, the
relationships between them cannot be represented in a straightforward way. Spatial relation-
ships in the AIR model are represented by the Image-Logical-Rep class and have no relation
to the Image-Object class. If we represent the objects in the Image-Logical-Rep we will not be
able to associate with them any semantic or logical characteristics, such as music concept or
shape. This relationship is not foreseen in the current generic AIR model. For determining
the shape of these regions the isAbstractionOf relationship between Object-Base-Rep and
Object-Logical-Rep may be used (In the image the arrow should be in the opposite direction).
The concepts, which can be derived for each music object, can be represented by Semantic
Attributes associated to the image-objects. However, semantic attributes can also be derived
from other semantic attributes, e.g., a note can be derived from the combination of a note
head and a note stem. This requires, as in the case of the spatial relationships between ob-
jects, a kind of relationship between the semantic attributes. Meta-Attributes can be used to
represent bibliographical data related to the image. Feature extraction operations for extract-
ing the objects of interest can be defined as isAbstractionOf between the Image-Base-Rep
and Object-Base-Rep, but no further details about the operations can be given. Assigning
a music concept to the objects can be represented by Rule-Programs for deriving semantic
concepts from the logical attributes. For representing retrieval operations no concepts have
been defined in the model.
In conclusion, it can be stated that the model fulfills the requirement for validity, however, it is
not possible to represent some of the domain-specific concepts from the example application
without further extensions to the model. In order to represent the specific requirements,
such as spatial relationships between image objects, additional relations in the model are
required. For representing retrieval operations new concepts have to be added to the generic
model. Since the basis for the model is a semantic model, its implementation onto a specific
platform, for example an object-oriented programming language, should be easily realizable.
Understandability is also given only to a certain extent through the visualization possibility
of the model. However, no guidelines for the application of the model for a specific domain
are specified. It is not clear how the abstract classes should look like in a concrete model. No
mechanisms for extending or adapting the model have been defined.

3.1.3.1.2 Visual Information Management System (VIMSYS)

Description: The VIMSYS [GWJ91] model proposed by Gupta, Weymouth, and Jain,
combines object-oriented and functional models in a layered image model which represents
the domain knowledge concepts corresponding to the image objects and their characteristics in
four planes as shown in Figure 3.6. On the highest level the plane which represents the domain
objects and the relations between them (DO) and the plane containing the domain events
and their relations (DE) are defined. The intermediate plane consists of the image objects
and their relations (IO). At the lowest level the plane comprising the so called representations
and their relations (IR) is represented.
Representations in the IR plane are the underlying data types based upon which all the objects

46 Chapter 3. Requirements Analysis and Conceptual Design

IR
O1

O1

F1

F2

R1

R2

R3

R4

F3

F4

F1 o F2 o F3

Set_of Has_a

Is_A FeaturePart_of

Adjacent
O4

O3

O2

O5 O6

O7

O1

Part_of
Is_A Is_Inside E1 E2

O1

O1,2

Instance_Of

Instance_Of

C_Set C_Set

IO

DO
DE

O5 O6

O4O3

O2

Figure 3.6: Layers of the VIMSYS image model (based on [GWJ91])

from the higher planes are constructed. They are interconnected in a functional model through
functional relationships. Basic representations are, for example, char, int, float, boolean and
string etc. The constructors are set of, tuple of, vector of, matrix of, graph of, sequence of.
These constructors can also be used in the higher planes. A function is a separate data
type, and can serve as the type of any relation. An image representation is an abstract
data type for each image object in the IO plane. Multiple image representations for an
image object are possible. New image representations and functions can be added without
affecting the rest of the model. The IO plane comprises three basic classes of objects: image,
image feature, and feature organization. These objects are interconnected in an object graph
through set-of, generalization (is-a), and feature-of relationships. Images are organized in
image sets by the set-of relationship. An image consists of a set of regions which are members
of the class geometric feature. Regions can themselves be related to other feature types,
such as texture through the feature of relationship. The geometric feature allows organizing
the regions of an image in an appropriate spatial structure. All features are members of
the generic class image feature and can be further specified. Feature classes can also be
combined in new ones by applying constructors defined in the IO plane or the additional
append constructor, introduced in the IO plane. The DO plane consists of a semantic level
specification of domain entities, built upon the two previous levels. The objects are connected
through an object-relation graph. Any object in the DO plane may be a subclass or prototype
of one or more objects in the IO plane. The DE plane is used to represent the events defined
over image sequences. A domain event can be used to connect different domain objects by
spatio-temporal relationships. For still images, however, it is not used to assign a temporal
attribute to images, but to associate a description of an event represented in a sequence of

3.1. Domain-Specific Modeling for CBIRSs 47

images, such as the rotation of ice blocks in the Arctic circle.
Query processing is not part of the VIMSYS model. It is designed in a separate module of
the VIMSYS system. The data model is used to formulate the queries by allowing the users
to determine which image characteristics should be used for processing the query. However,
the query processing path is predefined and the end-user can influence the path by making
certain decisions such as choosing a threshold or a distance function from a predefined library.

Evaluation: The model was elaborated as part of the VIMSYS project which examined the
challenges for the design of three types of image retrieval systems: images of faces, newscast
video clips, and satellite images of Arctic ice regions. The VIMSYS model offers a very
extensive base which was used for the implementation of the Virage Image Search Engine.
The Virage Image Search Engine is currently one of the leading players in the field of content-
based video search. We can now try to build a model for our concrete example, based on the
VIMSYS layered model. Since we have a concrete domain, we can start from the DO plane
by defining the domain-specific objects we would like to represent with the model and then
adapt or extend the lower level planes as needed. According to the requirements we need to
represent a set of music manuscript images with their corresponding ROIs, where each image
can consist of several ROIs. Each ROI can contain music objects, such as note heads, note
stems, and bar lines. These objects can be organized in a hierarchical structure, such that one
object can contain other objects. For each of these concepts, a corresponding object in the
DO plane should be defined. They should be connected by arrows indicating that the source
object contains a method which generates the destination object. These methods could be
segmentation from music manuscript image to ROI, feature extraction from ROI to music
object, i.e. to note head, note stem, bar line. In the IO plane images and their ROIs can
be represented as the classes image and region connected by a consists of relationship. It is
possible to represent the ROIs and the MBRs by the same class, but we should consider the
fact that music object MBRs may have different attributes than the ROIs. Therefore, MBRs
shall be regarded as features of ROIs. ROIs and MBRs need an associated organizational
structure, for example a hierarchy. ROIs, MBRs, and their organization can be members of a
generic geometric feature class. Each class contains its own attributes and methods which can
be used to define segmentation and feature extraction algorithms. The content-independent
data have to be represented as a kind of a feature which is associated to an image or an
object of an image. At the IR plane we have to define the representation of the images, the
ROIs and the music object MBRs as well as suitable organizations for each kind of regions,
for example a hierarchy. Adaptable implementations for the methods can also be defined at
the IR plane. Although the model does not foresee the integration of retrieval mechanisms
an extension could be defined for incorporating these.
Concluding it can be stated that the VIMSYS satisfies to a great extent validity and com-
pleteness goals. It is, however, quite complex and requires a more detailed description which
cannot be found in currently available articles on the topic. The existing articles provide a
high-level overview of the model structure. Due to its complexity and usage of different types
of modeling approaches at the different planes it is expected that the implementation of the
model will not be straightforward. Flexibility with respect to adaptability is well supported
through the independent-layers modeling approach. Extensibility to support retrieval opera-
tions, however, requires a more profound examination and understanding of the model which
is difficult because of the lack of applicability examples or tutorials.

48 Chapter 3. Requirements Analysis and Conceptual Design

Figure 3.7: Example of describing an image with the EMIR2 model (from [Mec95a])

3.1.3.1.3 Extended Model for Image Representation and Retrieval (EMIR2)

Description: Mourad Mechkour formalizes in EMIR2 a general framework integrating all
aspects of image content used for image retrieval. The aim of the framework model is to offer
a generic structure that can be instantiated to fulfill application specificity. This framework is
described in two subsequent articles [Mec95a], [Mec95b]. A general mathematical formalism
and the Backus Normal Form are employed for the formalization of the framework in the
articles, respectively. EMIR2 combines different interpretations of an image building different
views which correspond to different levels of abstraction: Physical view and Logical view
(Structural, Spatial, Perceptive, Symbolic). Each view is based on a set of descriptors linked
together by relationships specific to the view. In Figure 3.7, an example for applying the model
for the description of an image of a house is shown. In [Mec95b], an implementation of the
formal model as an extended conceptual graph is provided. The logical views are represented
as canons in the conceptual graph formalism. The union of these canons constitutes the
image model canon. The description of an image is then a canonical graph according to the
defined canon. The physical view has not been transformed into the canonical graph model.
A partial canonical graph of the house example is shown in Figure 3.8.
Here, in order to describe the different views the formalizations from [Mec95a] are used,
because they express more details about the model than the ones in [Mec95b].
The physical view model is defined by the tuple:

Mph = (Iph, POINT, EC, TYPE, h, w, tc, pixels, type)

Iph is the set of physical view identifiers in EMIR2. POINT is the set of natural number
pairs representing the cartesian coordinates of possible points. EC is the color set defined in

3.1. Domain-Specific Modeling for CBIRSs 49

Figure 3.8: Image description example in EMIR2-CG (from [MBC95])

a particular color space. TYPE is the set of view types, such as Black&White, Grey Scale,
Pallette Color, True Color. h and w are functions which associate with each physical view
identifier a number corresponding to the image height or width, respectively. tc is a function
that associates with each Iph a set of colors used in the corresponding image. pixels is a
function which associates with each Iph the set of pixels (an association of a point and a
color) of the image. type is a function which associates the type of the image to each Iph.
Several constraints have been defined on the physical model, for example, the height and
width of the image gives the number of pixels. The authors mention that two categories of
operations to manipulate the physical view are defined, image processing functions and binary
operations, however, these are missing in the formal representation.
The structural view of an image is represented by a directed graph where the nodes are
the salient objects of the image and the arcs correspond to the composition relation between
these basic objects. Formally, the structural view model is given by the tuple:

Mst = (IIO, CONT)

IIO is a set of image identifiers in the structural view and CONT is the composition relation
between image objects which depends on the semantics associated to the image objects.
The spatial view of an image object represents the shape of the image objects and the
spatial relationships that indicate their relative positions inside the image. It is defined by:

Msp = (Isp, POINT, OS, RSPA, shape, Rsp)

Isp is the set of spatial object identifiers. POINT is the set of integer pairs which represent
the coordinates of all possible points. OS is the set of basic image objects that can be used to
represent the shape of an image, for example, segment, polygon. RSPA is the set of spatial
relations, for example, far, close, touch. shape associates with each Isp its shape, for example,
polygon, segment etc. Rsp is the relation that represents all possible spatial relations linking
the spatial objects.

50 Chapter 3. Requirements Analysis and Conceptual Design

The perceptive view includes all the visual attributes of the image and/or image objects.
It describes the appearance of the image components as perceived by an observer. In EMIR2

three basic visual attributes are considered, the color, the brightness, and the texture. The
perceptive view is defined by:

Mpe = (Ipe, TX, BR, CL, tx, br, cl)

Ipe is the set of perceptive object identifiers. TX, BR, CL are the sets of possible textures,
brightness values and color values in the model, respectively. And the functions tx, br, cl
associate a texture, brightness and color with the perceptive object identifier, respectively.
A symbolic view cannot be defined independent of the application, therefore, in EMIR2 the
symbolic view is defined as associations between an application semantic model and a set of
abstractions representing the symbolic view. The application semantic model is defined by:

Mapp = (IDcl, IS-A, IDpr, IDrs, VAL PROP, PROP , RSYMB, COMP , domain)

IDcl is the set of class identifiers organized by the IS-A relationship. IDpr and IDrs are the
set of property identifiers and symbolic relation identifiers, respectively. VAL PROP is the
set of possible values of the properties and domain the function which assigns these values to
the properties. PROP and RSYMB are the set of property and symbolic relation definitions,
respectively. COMP is the composition relation among classes.
The symbolic view model related to the above application semantic model associates with the
set of symbolic objects their semantic interpretations:

Msy = (Mapp, Isy, cl, RI, PI)

Isy is the set of symbolic objects identifiers. cl is the function that associates a class with
a symbolic object identifier. RI represents the symbolic relations between the Isy. PI is a
relation that represents all properties associated with symbolic objects.
Relationships between the different views can be used to assign views to particular image
objects from the structural view. As a result an image model is represented as an aggregation
of all models and a set of relations that represent the inter-view dependencies:

Mim = (Iim, Mph, Mst, Mpe, Msp, Msy, Lsp, Lsy, Lpe)

In addition to representing the content of images in [Mec95a] a correspondence (similarity
retrieval) model for EMIR2 is proposed, which is given by the requirements of a query language
and selection criteria for a correspondence function (similarity function). The selection criteria
comprise an aggregation of constraints on the different views which resembles which objects
of a view have to be considered in the similarity measure. The single constraints define the
similarity measures for the objects in the different views.

Evaluation: The conceptual graph model has been implemented on top of the object-
oriented DBMS (O2) as described in [MBC95]. According to the authors other operational
models could also be used for the implementation of the formal model, such as object-oriented
or first-order logic models. A model for the representation of music manuscript images can
be defined as follows:

3.1. Domain-Specific Modeling for CBIRSs 51

Mim ex = (Iim ex, Mph ex, Mst ex, Msp ex, Msy ex, Lsp ex, Lsy ex)

The perceptual view is left out, because there is no need to store any perceptual characteristics
for this type of images. The physical model is used to represent the pixel matrix of images on
which image processing functions such as segmentation and feature extraction can be applied
and included in the model. In the structural view model the ROIs and their associated MBRs
can be represented by an identifier and composition relationships between them. Their spatial
characteristics can be represented in the spatial view model and corresponding dependencies
between both views. The higher level concepts associated to the objects can be represented
by the symbolic view as follows:

Mapp ex = (IDcl ex, IS −A, IDpr ex, IDrs ex, VAL PROP, PROP , RSYMB, COMP , domain)

IDcl ex = {note head, note stem, bar line, note}
IDpr ex = {scribe}
IDrs ex = {belong to the same note}
VAL PROP = String
domain(scribe) = NScribe ⊂ VAL PROP, NScribe = {“Nicolai”, . . . } is the set of scribe names
PROP = {(Scribe × Image × NScribe)}
RSYMB = {({“belong to the same note”} × note head × note stem)}
COMP = {(note head, note), {(note stem, note)}

For a music score image with one ROI, with one note consisting of a note stem and a note
head, written by the scribe Nicolai the symbolic view model is defined as follows:

Msy ex = (Mapp ex, {sy o1, sy o2, sy o3, sy o4}, cl, PI, RI)
cl(sy o1) =Image, cl(sy o2) =ROI, cl(sy o3) = note head, cl(sy o4) = note stem
PI = {(scribe, sy o2, “Nicolai”)}
RI = {(“belongs to the same note”, sy o3, sy o4)}

The retrieval operations can be defined as constraints on the image model and the separate
views. Content-independent data is not regarded as separate type of data in the model. It
could be, however, represented through the concepts of the symbolic view.
With the expressiveness of the EMIR2 formal framework, all structural and functional re-
quirements of the example application can be met. The flexibility of the model with regard
to adaptability and extensibility is well supported thanks to the fact that the model is based
on a context-free description, close to a natural language description. However, no concrete
suggestions for adapting the model to the special requirements of a special domain are given.
Implementability with regard to other operational models such as an object-oriented model
requires a more detailed investigation, as well.

3.1.3.1.4 PIQ

Description: The Image Database Management System PIQ [SR96] designed by Shaft and
Ramakrishnan, also recognizes the fact that existing image retrieval systems are either too
specialized or too generic, and suggests a solution to the problem by introducing the idea

52 Chapter 3. Requirements Analysis and Conceptual Design

Figure 3.9: Example of a simple schema and an image (from [SR96])

of “image data modeling” based on an own Object Modeling Description Language(OMDL).
The authors aim at using the modeling technique to provide more flexibility and guidelines
in the feature extraction mechanisms and integrate semantics into the image descriptions in
order to build a system which can deal with different types of collections simultaneously.
A description of an image collection in terms of “image class” is represented by a so called
schema - a tree structure where each node represents an object of the image. Each internal
node has a type which determines how this node is derived (constructed) from its children.
The types of internal nodes are Union, Intersection, Difference, Set, and Or. Each leaf
node has a feature extraction algorithm associated with it which plays the role of a constructor
for these kinds of nodes. The type of the feature extraction algorithm is the type of a leaf
node. For a concrete application a summary tree is constructed for an image using the schema
tree as a basis. Each node of the schema tree can have attributes of a predefined type which
will correspond to values for these attributes in the summary tree. Restrictions can also be
defined to specify legal summaries. Thus, a summary tree is always built for an image in
the database in a bottom up manner and can be stored in an object-relational database such
that each schema can be converted to a few relations and each summary can be converted to
a set of tuples. The possible query types and mechanisms have been defined as SQL-queries
on the object-relational presentation. In the left part of Figure 3.9, an example of a schema
for describing a collection of images of the type illustrated in the right part of the figure is
shown. Figure 3.10 depicts a summary of the example image, based on the given schema.

Evaluation: The main advantage of PIQ is that the model insures flexible adaptation
to support new feature extraction algorithms and the resulting features. The bottom-up
modeling approach corresponds to the application of image processing for the extraction
and induction of image characteristics. However, retrieval algorithms are not considered in
the model. They are defined for the first time at the implementation level in a database
environment. For our test example we can define a schema which can be used to build
summaries of music score images as shown in Figure 3.11. At first glance, the requirements
for the representation of the data structures appear satisfied. However, there are problems
representing a hierarchical structuring of objects from the same type. More important, it

3.1. Domain-Specific Modeling for CBIRSs 53

Figure 3.10: A summary tree of the example image from Figure 3.9(from [SR96])

Music Manuscript
(set)

attributes:
scribe

Restriction: MBR(Note Head) touches MBR(Notes Stem)

ROI
(union)

attributes:
MBR

Note
(union)

attributes:
MBR

Bar Line
(bar line)

attributes:
MBR

Note Head
(note head)

attributes:
MBR

Note Stem
(note stem)

attributes:
MBR

Figure 3.11: Example PIQ schema for music manuscripts

54 Chapter 3. Requirements Analysis and Conceptual Design

is not always a bottom-up approach for describing an image which has to be followed. For
example the ROI of an image should be determined before the single objects from this ROI
are extracted. The model is also difficult to extend or adapt for specific requirements of
the application. Thus it does not fulfill the flexibility goal. Implementability in a relational
database environment has been tested by the authors.

3.1.3.1.5 Distributed Image Database Management System (DISIMA)

Description: For the DISIMA project a mathematical formalization of a model was de-
fined by the authors Oria, Özsu et al., in order to represent the content of an image which
can support a wide range of queries [OÖL+97]. It has similarities with the VIMSYS in its
representation of images and their content in layers as seen from Figure 3.12. The layers
are grouped in two blocks: the image and the salient objects block. The image block con-
sists of an image and an image representation layer which provide a so called representation
independence in the model.
In the image layer an image type classification, such as a hierarchy of classes to which an image
may be assigned (news image, medical image etc.), and functional relationships between the
images can be defined by the user. The image representation layer defines the representation
of the image in terms of format and type(raster, vector). An image in the DISIMA model is
defined by the tuple:

< i,R(i), C(i), D(i) >

where i is a unique image identifier, R(i) is the representation of the raw image, C(i) is the
content of i, D(i) is a set of descriptive alpha-numeric data associated with it. In DISIMA
the content of an image is a set of salient objects and spatial relationships between them.
The salient object block, which reflects this notion, consists of a physical, a logical salient
objects layer, and a layer of salient objects representations. The physical layer contains the
parts or regions (geometrical objects) of images with their properties such as shape, color,
texture. A logical salient object from the logical layer is associated to a physical salient object
and provides a semantic description for the physical object. Their representations are analog
to the image representations and are stored in the salient object representation layer. The
content of an image C(i) can then be defined as: < P i, s >, where P i is a subset of P, which is
a set of physical salient objects and s is a function which associates P i with the corresponding
logical salient objects from the set L.
Furthermore, predicates were introduced to support queries for the different kinds of objects.
For example, the contains predicate, which checks whether a salient object is found in an
image, and the shape and color similarity predicates, which can also be combined and applied
for comparing two images or salient objects with respect to their low-level features, are used.
Additionally, spatial predicates on physical salient objects are supported.
In [OÖ03] the model was extended with the mechanism of image views. This extension
enables the association of different logical salient objects to a physical salient object in order
to allow the representations of different interpretations for the same image to support different
context. A second extension allows an image to have different contents in terms of physical
salient objects. For the implementation of the model an object-oriented database environment

3.1. Domain-Specific Modeling for CBIRSs 55

Figure 3.12: The DISIMA image model (from [OÖL+97])

Image

MusicManuscriptImage

SalientObject

Note BarLine

NoteHead NoteStem

Figure 3.13: Image and Salient Object type classification for music manuscripts

was used. MOQL was used for query formulation and an ODMG Schema to implement the
model.

Evaluation: The model has been implemented to support the storage, management and
retrieval of images in the DISIMA system, which is built on top of an object-oriented database
management system ObjectStore. However, the model does not cover the feature extraction
functionality. This is a task of a separate module of the system. The retrieval module uses the
MOQL language to query the image model, which on its turn uses the similarity predicates
defined for different model components. We can now try to apply the model for representing
our example as far as possible. At first, the type classifications for the image and logical
salient objects layer are defined, as shown in Figure 3.13.
In the physical salient object layer objects corresponding to the MBRs of the ROI and the
music elements can be defined as well as spatial relationships between them. The image and

56 Chapter 3. Requirements Analysis and Conceptual Design

salient object representation layers should contain objects corresponding to the JPEG format
row images and salient objects, respectively. The automatic feature extraction operation can
be defined as methods of the image and salient objects. Predicates for comparison by shape
and for combining predicates can be defined to support the query mechanism.

3.1.3.1.6 Modeling Object-Oriented Data Semantics (MOODS)

Description: MOODS is an object-oriented modeling approach designed by Griffioen, Mehro-
tra, and Yavatkar, in order to support the modeling of a wide range of information types,
such as multimedia data. In [GMY93b, GMY93a] the image information modeling related fea-
tures are described. New features which this modeling technique, compared to the described
models above, introduces are the integration of structures capturing the sequence of image
transformations and the corresponding data. In addition, adaptable image processing func-
tionality is integrated in the data model. To support these features in their object-oriented
model, the authors have introduced new abstractions to the model: dynamic data semantics,
function groups, respectively. Data semantics is an additional concept, which can be assigned
to objects in the MOODS model, besides data structures and methods. It can change over
the lifetime of an object depending on the current data in the data structures, and thus,
allow to adjust the set of methods associated with the data. In this way, the model can
accommodate different application domains through associating various semantics as well as
storing dynamic semantics, corresponding to the changes of the semantics with time.
To model the image processing components of the system, the operations for image processing
are grouped into classes corresponding to the different stages of the processing sequence:
image enhancement, region segmentation, boundary detection, image display, primitive shape
detection, domain dependent labeling, domain dependent analysis. Applying each of these
function classes to the image produces new information which can be used to represent the
image. Applying different sorts of algorithms corresponding to these classes can provide
different views or interpretation of the image data. The groups of functions are defined as
global to the model and are accessible by all classes in the model. A set of methods in a
function group does not have to have the same input and produce the same output, however,
they should provide similar logical operations. The binding of a specific function from the
function group to a class is done at run time. This allows for the dynamic exchange of
algorithms. With this concept the model tackles the problem of defining abstract operations
to represent generic functionality.
The image structure derived from applying image processing functions can be represented
by semantic classes in the model. These objects are connected by arrows representing the
transformation functions between the different stages in the lifecycle of the image. An example
for applying the model for the two different application domains “Industrial Images” and
“Medical Images” is shown in Figure 3.14. Each circle represents a semantic class, with
data structures, data semantics and specific semantic functions. The lines between circles
represent the application of a particular function. The example is supposed to demonstrate
the flexibility of the system to adapt the processing to each application domain. With this
model, the semantics at each stage of the image processing can be saved and used by the
retrieval or for new analysis of the images.

3.1. Domain-Specific Modeling for CBIRSs 57

Initial Image

Enhanced
Image

Region
Segmentation

Image

Outline
Image

EchocardiogramMachinery Picture

Example 1 Example 2

Circle
Components

Square
Components

Polygonal
Contour

Ellipse/Circle
Components

Line
Components

Labeled
Squares Polygonal

Labels

Enhanced
Machinery Picture

Enhanced
Echocardiogram

Outlined imageSegmented Image

To Labeled
Components To Labeled

Components
Left Ventricle
Right Ventricle

User’s View

Panel
Control buton
Bolt

Identified
Square
Regions

Identified
Contour

Labeled Feature
Phase

Identified Feature
Phase

Feature Image
Phase

Enhanced Image
Phase

Raw Image
Phase

Figure 3.14: MOODS image information processing system (based on [GMY93b])

Evaluation: The description of the model in [GMY93b] focuses mostly on the newly intro-
duced concepts and does not give an exhaustive definition of a generic image model structure
as the models discussed before. Only the example shown in Figure 3.14 gives a hint about how
an image model can look like. Contemporary object-oriented models have other mechanisms
for defining abstract functionality, such as interfaces, but the newly introduced concepts to the
MOODS object-oriented model demonstrate an interesting approach for solving the problem
of integrating adaptability in the model. The semantic model of MOODS has been imple-
mented in an extended C++ language with the same name - MOODS. By coincidence, the
authors of the model describe in [GMY93a] the application of their model for the recognition
of music manuscripts, which corresponds to the feature extraction part of our test example.
This model is illustrated in Figure 3.15.
The model does not deal with the problem of retrieval at all. In fact it represents a model
which can be used for supporting an image processing system, rather than an image retrieval
system. Integrating retrieval functionality could be achieved by defining new function groups
for the classes and perhaps applying them in the opposite direction of the image processing
functions.

3.1.3.1.7 Other

In [ACB02], an image data model for medical image databases is proposed, that describes
image data in several levels of abstraction in terms of External Space, that describes the
general information associated with an image, which is not related to the content of the im-
age, such as context-oriented, domain-oriented, and image-oriented data. The Content Space
summarizes the content-related data such as physical, spatial and semantic features. The
model considers the visual feature description for still images of the MPEG-7 and DICOM
standards.
In [MSS97], an image retrieval model was defined using a kind of description logic, namely
the ALC logic. The model represents images both at the physical level (form level) and at the

58 Chapter 3. Requirements Analysis and Conceptual Design

Figure 3.15: MOODS semantic model for music manuscript recognition (from [GMY93a])

content level, as a set of logical assertions about the represented entities and about facts of the
subject matter used for the retrieval. Physical features are not represented explicitly in the
description logic, because it is better to manage them through some digital signal processing
techniques. They are used in the logical reasoning through a mechanism of “procedural
attachments”. For each feature an image layout is defined, which consists of a triple: a main
region, a partition of this region into non-empty connected regions - (atomic regions), and a
function assigning a value from the feature domain to each atomic region. The content of the
image is represented through description logic formalisms: primitive, concepts, primitive roles,
concepts and assertions, extended with fuzzy assertions to support uncertainty in retrieval. A
content description for an image is a set of fuzzy assertions resulting from the combination of
four components: the image identification, the object anchoring - identifying the region of the
image and the object depicted by the region, scene anchoring - what the whole scene shown
in an image is about, and the scene description - describes important facts about the image.
The queries addressing an image form or content are formulated through special predicate
symbols (SPS). SPS for global and local matching of images were defined. This modeling style
is an application of the integrating of concrete domains in description logic, where certain
symbols have an interpretation-independent meaning. Practically each occurrence of an SPS
can be seen as a call to a routine which implements the needed image processing technique -
procedural attachment. In [MSS01] this model was extended to a multimedia retrieval model.
The General Image Data Model proposed by Stanchev and Grosky [GS00a] resembles a taxon-
omy summarizing existing data modeling approaches (EMIR2, AIR, VIMSYS) in a so called
semantic schema. The taxonomy covers a physical and logical view of an image. The logical
view is further specified in global and content-based view. The physical view can be an image
header and/or an image matrix. The global view consists of meta- and semantic-attributes
of an image. And the content-based view is represented by objects further specified by color,
texture, shape and spatial. The relationships in this taxonomy are of the type multivalued-

3.1. Domain-Specific Modeling for CBIRSs 59

abstraction. This model resembles a higher-level model, which aims to be applicable for the
presentation of wide variation of image collections. However, it does not deal with modeling
functionality.
Another modeling technique utilizing XML schema given in [TXRN06], describes still images
using hierarchical tree structures similar to the summary trees of the PIQ model above [SR96]
and object-relation graphs. Both of these graphical representation have been proposed earlier,
but this work shows how to represent them in an XML Schema.

3.1.3.2 Multimedia Models with Extensive Support for Images

Digital images have been also modeled as part of broader data models, such as the multime-
dia data models. In [IB03] different kinds of multimedia models have been studied. External
multimedia such as SMIL, MHEG, HyTime and HTML, ZyX [BK01] as well as logical multi-
media document models reflecting aspects of different research fields, such as computer vision
in Chapter 2 of [WHKL00], information retrieval [CMF96] and databases [MSS01] (which was
already discussed in the previous section) have been reviewed. External models are used for
representing the gathered data, before storing it into a system, or for displaying the results
of a multimedia query. These models deal with multimedia data in raw formats. The log-
ical models have the task to convert the multimedia data into a presentation which can be
managed and queried efficiently by the multimedia information system. The logical models
are the types which are of interest for the current study. In this section, two multimedia
logical models are analyzed in respect to their ability to represent image data and support
content-based retrieval on these data. The first model is a representative of the more theo-
retical approaches suggested by Marcus and Subrahmanian. The second approach is the one
used by the MPEG-7 standard.

3.1.3.2.1 Multimedia Database Systems Formalization - Marcus, Subrahmanian

Description: In [MS93], a framework for integrating individual media implementations in
a multimedia information system in order to provide a unified logical query language for
these data has been defined. One challenge which this framework tries to solve is to provide
an answer to the following question: “What are multimedia database systems and can they
be formally defined so that they are independent of any specific application domain?”. The
basic concept which is introduced by the framework is a media-instance. A media-instance
consists of a body of information represented using some storage mechanism in some storage
medium, together with some functions and/or relations expressing various aspects, features
and/or properties of this media-instance. A media-instance can be used to represent an
image, a document, a video and even more general media types such as matrices, quad-trees,
object-oriented media-instances etc. A multimedia system is defined to be a set of such
media-instances.
The formal definition of a media-instance represents it as a 7-tuple:

mi = (ST , fe, λ,<,F , V ar1, V ar2)

where ST is a set of objects called states, fe is a set of objects called features, λ is a map
from ST to 2fe, V ar1 is a set of objects called range variables ranging over states, V ar2 is a

60 Chapter 3. Requirements Analysis and Conceptual Design

set of objects called feature variables ranging over features, < is a set of interstate relations
on the set of ST , and F is a set of feature-state relations. Each relation in F is a subset of
fei × ST where i ≥ 1.
For this media representation a query language has been defined. Each query is an existentially
closed conjunction of atoms. An atom is composed of predicates and variable-free terms. Each
constant symbols, such as f ∈ fei or s ∈ ST i and the combination of an n-ary function symbol
η with other terms, η(t1, . . . , tn), are terms in the query language. In Chapter 9 of [Sub98],
the media-instance tuple consists of one additional component ATTR, which represents a set
of objects called attribute values, which can be associated to a feature or a state object, for
example to represent some content independent data for an image - the date on which the
image was shot, by whom was it shot etc. In this book, the media-instance is called a media
abstraction and the two relationship sets < and F have exactly the opposite meaning: < is
a set of relations between features, attributes and states and F is a set of relations between
states.

Evaluation: In Chapter 9 of [Sub98], image data is described as an instance of a media-
abstraction. We will consider this version of the model for representing the music manuscripts
example. The states which have to be considered as the smallest piece of media data in our
example are image regions. These regions have to be organized in a hierarchy in order to
resemble that a ROI consists of MBRs. We can introduce also an image region representing
the whole image. The set of features, which we have to define is on the one hand the high-level
features such as, note head, note stem, bar line, and on the other hand a set of integer pairs
representing the shape of the ROIs and MBRs. λ shall contain the implementations for the
extraction of features from the image regions. The meta data, such as the names of the scribes
can be defined as attribute values. The relationships between regions, features and attribute
values can be represented as the set <. However, retrieval methods are not supported by the
model.

3.1.3.2.2 MPEG-7

Description: One of the most prominent multimedia conceptual data models is the one
defined by the MPEG-7 standard [SS02]. The main focus of the MPEG-7 standard is to
assure the interoperability between applications and devices by determining a set of features
(multimedia characteristics) which have to be described and by providing a way to organize,
structure and represent them with a common language. The MPEG-7 standard offers an
extensive multimedia content description interface, for media-specific descriptors (such as vi-
sual descriptors), as well as media type independent Multimedia Description Schemes. The
Description Definition Language (DDL) is used to define or extend the latter. “[...] The
DDL is not a modeling language such as Unified Modeling Language (UML), but a schema
language to represent the results of modeling audiovisual data, (i.e. descriptors and descrip-
tion schemes) [...] It also provides the syntactic rules by which users can combine, extend
and refine existing description schemes and descriptors to create application-specific descrip-
tion definitions or schemes [...]” [SS02]. An MPEG-7 schema defines a class of MPEG-7
documents. The instances of this schema are XML documents which describe concrete mul-
timedia documents and conform to the MPEG-7 schema. As a DDL, MPEG-7 employs an
XML Schema Language with MPEG-7 specific extensions, such as the array and matrix data

3.1. Domain-Specific Modeling for CBIRSs 61

Figure 3.16: UML representation of the image description scheme (from [BPC+00])

types. Description schemes and descriptors are grouped in MPEG-7 tools. For the descrip-
tion of an image, description schemes from different tools may be required, such as creation
information tools, still region tools, segment decomposition tools, semantic entity tools etc.
Most of the critics of the MPEG-7 model come from the usage of XML Schema as a DDL.
XML Schema does not provide the right structure for managing the data efficiently in a
database, as mentioned by Kosch in [Kos02]. A possible solution to the problem is offered
in the doctoral thesis of Westerman [Wes04], in which the author represents a Typed Data
Object Model as a generic data model for XML documents. In [TCLP04], the following
further problems of MPEG-7 are pointed out:

• not possible to define new descriptors

• derivation of new types does not match the object-oriented concept

• lack of modularity

• no formal semantics.

During the elaboration of the standard, the employment of a conceptual modeling technol-
ogy has been discussed in some publications. In [SB00], the usage of the Extended Entity-
Relationship model has been applied to model the MPEG-7 concepts, with the perspective
to use this model to generate an implementation as description schemes, database schemes or
software classes. In [BPC+00], description schemes including one for still images have been
elaborated as conceptual models, independent from the implementation using UML. The im-
plementation has been then illustrated using XML. In Figure 3.16 an UML representation of
the proposed image description scheme is shown.

62 Chapter 3. Requirements Analysis and Conceptual Design

Evaluation: For our test example we could give a description of a music manuscript doc-
ument using the existing schemas for describing image content. This is not a trivial task,
because these schemata are quite complex, since the aim is to support all possible application
domains. New descriptors require very good understanding of the MPEG-7 schema. A more
preferable approach would be to define a more compact and simpler schema for the concrete
domain and then describe the documents according to the simple schema. An example of an
MPEG-7 description of a music manuscript document is given below.

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"

5 xmlns:xml="http://www.w3.org/XML/1998/namespace"

6 xsi:schemaLocation="urn:mpeg:mpeg7:schema:2001 .\Mpeg7-2001.xsd">

7 <Description xsi:type="ContentEntityType">

8 <MultimediaContent xsi:type="ImageType">

9 <Image id="I1">

10 <MediaLocator>

11 <MediaUri>file://musicmanuscript.jpg</MediaUri>

12 </MediaLocator>

13 <CreationInformation>

14 <Creation>

15 <Title> Musica Saec. XVIII 29.1 </Title>

16 <Creator>

17 <Role><Name>Scribe</Name></Role>

18 <Person><Name> <GivenName>Nicolai</GivenName> </Name> </Person>

19 </Creator>

20 </Creation>

21 </CreationInformation>

22 <SegmentRef idref="sem" />

23 <SpatialDecomposition gap="true" overlap="true">

24 <StillRegion id="SR0">

25 <SpatialLocator>

26 <Box><Coords dim="2 2"> x0 y0 w0 h0</Coords></Box>

27 </SpatialLocator>

28 <SpatialDecomposition gap="true" overlap="true">

29 <StillRegion id="SR1">

30 <SpatialLocator>

31 <Box><Coords dim="2 2"> x1 y1 w1 h1</Coords></Box>

32 </SpatialLocator>

33 </StillRegion>

34 <StillRegion id="SR2">

35 <SpatialLocator>

36 <Box><Coords dim="2 2"> x2 y2 w2 h2</Coords></Box>

37 </SpatialLocator>

38 </StillRegion>

39 <StillRegion id="SR3">

40 <SpatialLocator>

41 <Box><Coords dim="2 2"> x3 y3 w3 h3</Coords></Box>

42 </SpatialLocator>

43 <Relation xsi:type="DirectionalSpatialSegmentRelationType" name="right" target="#SR2"/>

44 </StillRegion>

45 </SpatialDecomposition>

46 </StillRegion>

47 </SpatialDecomposition>

48 </Image>

49 </MultimediaContent>

50 </Description>

51 <Description xsi:type="SemanticDescriptionType">

52 <Semantics id="sem">

53 <Label>

54 <Name>Semantic description of a music score</Name>

55 </Label>

56 <SemanticBase xsi:type="ConceptType" id="C1">

57 <Label>

58 <Name> hote head</Name>

59 </Label>

60 <Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:symbol" target="#SR1"/>

61 </SemanticBase>

62 <SemanticBase xsi:type="note stem" id="C2">

63 <Label>

64 <Name> hote head</Name>

65 </Label>

66 <Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:symbol" target="#SR2"/>

67 </SemanticBase>

68 <SemanticBase xsi:type="bar line" id="C3">

69 <Label>

70 <Name> hote head</Name>

71 </Label>

72 <Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:symbol" target="#SR3"/>

73 </SemanticBase>

74 </Semantics>

75 </Description>

76 </Mpeg7>

3.1. Domain-Specific Modeling for CBIRSs 63

To describe the structural content of the example image, the description of type ContentEnti-
tyType and the corresponding semantic view with the SemanticDescriptionType description
are used. Even the content-independent data can be represented with the CreationInforma-
tion element. Thus, we can conclude that the MPEG-7 description schemes and descriptors
are exhaustive enough to represent our example. In fact, they offer much more representation
possibilities. This makes the effort to comprehend them too big in comparison with the gain
that we have of building such a small example. Functionality is, however, not part of the
MPEG-7 description schemes. Feature (descriptor) extraction functions and similarity met-
rics have been suggested for the experimentation initiative of the standard, but they are not
standardized or included in the MPEG-7 model. Adaptability and extensibility are limited
to adapting the schemas and descriptors. However, adding new descriptors is not possible.

3.1.4 Conclusions

The evaluation of the above models with regard to the predefined quality goals is summarized
in the following paragraphs. A compact summary of the criteria for each model is provided
at the end of this subsection in Table 3.1.

3.1.4.1 Syntactic quality

This quality goal, depends on the modeling language used for representing the models. Each
of the discussed models uses a different modeling paradigm. Sometimes they use standard
modeling techniques, such as semantic models or XML schema, but there are also models
which define their own mathematical formalisms or modeling languages. EMIR2 and the
model of Marcus and Subrahmanian, for example, use low-level modeling approaches such as
mathematical formalisms and then map them onto an operational model, such as conceptual
graphs. AIR and MOODS use a single modeling paradigm, in this case, a semantic model
and an extended object-oriented model, respectively. VIMSYS and DISIMA follow a more
sophisticated methodology by combining functional and object models and mathematical
formalisms in one model. PIQ and MPEG-7, on the other hand, have chosen a schema
language to define the structure of an image representation, employing an Object Modeling
Description Language (OMDL) and XML Schema, respectively. The analysis did not find
any concepts in the models which do not adhere to the corresponding syntactic rules of the
modeling paradigms.

3.1.4.2 Implementability

The possibilities to implement these models depend to a great extent on their corresponding
modeling paradigms. The low-level modeling approaches need to adopt an intermediate op-
erational model additionally. EMIR2 has chosen conceptual graphs as an operational model
and the object-oriented database system environment of O2 for the implementation platform.
The model of Marcus and Subrahmanian is defined as a theoretical framework for the analysis
of multimedia systems and no implementation for it is provided. The examples of the AIR
model have been implemented using the object-relational database system POSTGRES as
a backend. MOODS uses an extended version of the C++ programming language for the
implementation of the model. The VIMSYS model has been implemented as the center of the
Virage Image Search Engine. The Virage Engine is implemented as an extandable module,

64 Chapter 3. Requirements Analysis and Conceptual Design

which can be integrated in different applications. For example, it has been combined with
the object-relational database Illustra. The DISIMA model has been implemented within the
object-oriented database system ObjectStore. The authors of the PIQ model have demon-
strated its usage based on a relational database implementation. And finally the model,
which has the largest number of implementations, since it is also a standard, is the MPEG-7
model. Its XML-based representation suggest that for best efficiency a native XML storage
and querying environment such as an XML database system would be the best implementa-
tion platform. However, there have been also object-oriented implementations, for example
in the VizIR framework. To determine to which extent the models can be implemented on
other platforms, a more profound investigation is required.

3.1.4.3 Validity and Completeness

All of the above models offer good support for representing image data and structure. There
are, however, some missing concepts, for example, spatial relationships between images in the
AIR model, explicit support for content-independent data in PIQ. These could be added to
the models in a relatively straightforward way by appropriate extensions. Most of the models
are kept compact by focusing only on the general characteristics of images. Only the MPEG-7
model tries to be as exhaustive as possible by the definition of image descriptors. Neverthe-
less, these can be freely used or omitted from the concrete representations. With respect
to functionality, however, most of the models have not integrated all necessary functionality
for content-based image retrieval as corresponding modeling concepts. Exceptions make the
mathematical formalisms in EMIR2 and the model of Marcus and Subrahmanian, which sup-
port the definition of different functions on the sets of objects representing the image content.
However, the mapping of these functions onto an operational model has not been discussed.
MOODS and PIQ offer support for modeling feature extraction, functionality, but do not
represent retrieval functionality at all. AIR and VIMSYS can represent feature extraction
functionality through relationships between objects. These concepts, however, are described
in few details in the existing articles. Extending the models to support all needed function-
ality is not a trivial task, compared to additionally adding structural elements, because some
modeling paradigms, such as the XML Schema does not support the representation of func-
tionality at all, and others need the integration of new structures, which have to fit in the
existing data structures.

3.1.4.4 Flexibility

The flexibility of the models can be examined with respect to two aspects - extensibility
and adaptability. Only the MPEG-7 model from the above defines concrete interfaces for
extending and adapting the modeling structures, through refining description schemas and
descriptors. However, there are some limitations and drawbacks of the extensibility mecha-
nisms mentioned in [TCLP04], such as, no possibility to define new descriptors, the derivation
of new types does not match the object-oriented concept, lack of modularity, no formal se-
mantics. The mathematical formalism models also offer a relatively straightforward way for
adapting or extending them. First, they define modeling concepts with the help of sets of
objects, which can be further extended or refined, depending on the concrete application.
Secondly, because of the natural language form of the modeling approach, new mathematical
formalisms can always be added as long as certain constraints are met. PIQ and MOODS

3.1. Domain-Specific Modeling for CBIRSs 65

use their own modeling languages, which are not in detail described in the available articles.
They do not offer explicit extensibility interfaces and thus do not satisfy the flexibility goal.
VIMSYS and DISIMA aim at providing easier extensibility and adaptability of the model
through the layered architecture which separates the different modeling stages. Both models
do not describe general models for the different layers, but rather give partial examples how
the application specific models for the different layers may look like. Thus, the description
of the general model consists of mainly only of the layered architecture and no derivation or
reuse of a model at each layer is described. The AIR model provides such a general model
consisting of abstract classes, but it is not clear how this model can be adapted or extended
to represent an application-specific model. Therefore, it can be concluded that none of the
discussed models provides fully fledged extensibility and adaptability possibility, thus, they
do not fulfill the flexibility goal.

3.1.4.5 Understandability

This goal depends on the one hand to a great extent on the modeling paradigm, used for the
representation of the model. On the other hand, it depends on the availability and quality of
definitions and descriptions for the usage of the model for deriving domain-specific models.
Mathematical formalisms are difficult to comprehend, because there are no visualization tools
and the mapping onto some machine-understandable information representation is still needed
as an intermediate step towards implementation. Schema languages are easier to understand
until they expand a certain size. Visualization tools for these kind of languages are available for
example for XML-Schema. Semantic and object-oriented models also have their visualization
and case-tools support, however, mixing object models and functional models such as is
the case in the VIMSYS model additional support for dependencies between these models
is required. Understanding a general model from the view point of the developer of CBIR
systems includes not only understanding of the modeling paradigm, but also understanding
how this general model can be applied to derive a concrete domain-specific model. MPEG-
7 has been most often implemented, and therefore, there are a lot of examples where the
application of the model can be understood. All other models have mentioned examples of
employing the models for certain domain-specific applications, but have not shown how the
concrete domain-specific models are derived from the general models. Thus, none of the
models defines a methodology on how to apply (extend, adapt) them for domain-specific
applications.

66 Chapter 3. Requirements Analysis and Conceptual Design
T
ab

le
3.

1:
E

va
lu

at
io

n
of

th
e

Im
ag

e
R

et
ri

ev
al

M
od

el
s

X
X

X
X

X
X

X
X

X
X

X
M

o
d
el

C
ri

te
ri

a
Im

p
le

m
en

ta
b
il
it
y

V
al

id
it
y

an
d

C
om

p
le

te
n
es

s
F
le

x
ib

il
it
y

U
n
d
er

st
an

d
ab

il
it
y

A
IR

:
se

m
an

ti
c

da
ta

m
od

el

im
pl

em
en

te
d

on
to

p
of

P
os

tg
re

s
-

st
ru

ct
ur

e:
ge

ne
ri

c,
ha

s
to

be
ex

te
nd

ed
fo

r
th

e
te

st
ap

pl
ic

at
io

n;
-

fu
nc

ti
on

al
it
y:

on
ly

fe
at

ur
e

ex
tr

ac
ti

on
fu

nc
ti

on
al

it
y

ca
n

be
m

od
el

ed
th

ro
ug

h
re

la
ti

on
sh

ip
s

be
tw

ee
n

ob
je

ct
s;

no
ex

te
ns

ib
ili

ty
in

te
rf

ac
es

ex
pl

ic
it

ly
de

fin
ed

go
od

,
th

ro
ug

h
vi

su
al

iz
at

io
n

of
se

m
an

ti
c

m
od

el
s

V
IM

S
Y

S
:

co
m

bi
na

ti
on

of
fu

nc
ti

on
al

an
d

ob
je

ct
-o

ri
en

te
d

m
od

el
s,

an
d

m
at

he
m

at
ic

al
fo

rm
al

is
m

s

im
pl

em
en

te
d

as
V

ir
ag

e
Im

ag
e

Se
ar

ch
E

ng
in

e,
in

te
gr

at
ed

in
Il
lu

st
ra

-
st

ru
ct

ur
e:

ge
ne

ri
c,

th
e

st
ru

ct
ur

al
pa

rt
of

th
e

te
st

ap
pl

ic
at

io
n

fit
s

w
el

l
in

to
th

e
m

od
el

;
-

fu
nc

ti
on

al
it
y:

on
ly

fe
at

ur
e

ex
tr

ac
ti

on
fu

nc
ti

on
al

it
y

ca
n

be
m

od
el

ed
by

re
la

ti
on

-
sh

ip
s

be
tw

ee
n

m
od

el
s;

no
ex

te
ns

ib
ili

ty
in

te
rf

ac
es

ex
pl

ic
it

ly
de

fin
ed

di
ffi

cu
lt

du
e

to
th

e
co

m
bi

na
ti

on
of

di
ffe

re
nt

ty
pe

s
of

m
od

el
in

g
la

ng
ua

ge
s

E
M

IR
2
:

m
at

he
m

at
ic

al
fo

rm
al

is
m

s

co
nc

ep
tu

al
gr

ap
h

as
in

te
rm

ed
ia

te
m

od
el

,
im

pl
em

en
te

d
on

to
p

of
O

2

-
st

ru
ct

ur
e:

ge
ne

ri
c,

th
e

st
ru

ct
ur

al
pa

rt
of

th
e

te
st

ap
pl

ic
at

io
n

fit
s

w
el

l
in

to
th

e
m

od
el

;
-

fu
nc

ti
on

al
it
y:

th
e

m
at

he
m

at
ic

al
fo

r-
m

al
is

m
s

su
pp

or
ts

th
e

de
fin

it
io

n
of

di
ffe

r-
en

t
fu

nc
ti

on
s

on
th

e
se

t
of

im
ag

e
co

nt
en

t
ob

je
ct

s;

ex
te

nd
in

g
an

d
re

fin
in

g
ob

je
ct

se
ts

,
ex

te
nd

in
g

th
e

m
at

h-
em

at
ic

al
fo

rm
al

is
m

w
it

h
ne

w
co

nc
ep

ts

m
at

he
m

at
ic

al
fo

rm
al

is
m

di
ffi

cu
lt

to
co

m
pr

eh
en

d

P
IQ

:
ob

je
ct

m
od

el
in

g
de

sc
ri

pt
io

n
la

ng
ua

ge

im
pl

em
en

te
d

on
to

p
of

a
re

la
ti

on
al

D
B

M
S

-
st

ru
ct

ur
e:

ge
ne

ri
c,

ha
s

to
be

ex
te

nd
ed

fo
r

th
e

te
st

ap
pl

ic
at

io
n;

-
fu

nc
ti

on
al

it
y:

su
pp

or
t

fo
r

m
od

el
in

g
on

ly
fe

at
ur

e
ex

tr
ac

ti
on

fu
nc

ti
on

al
it
y;

m
od

el
in

g
la

ng
ua

ge
no

t
ex

pl
ai

ne
d

in
de

-
ta

il,
no

ex
te

ns
ib

ili
ty

in
te

rf
ac

es
ex

pl
ic

it
ly

de
fin

ed

di
ffi

cu
lt

,
be

ca
us

e
m

od
el

in
g

la
ng

ua
ge

no
t

ex
pl

ai
ne

d
in

de
ta

il

3.1. Domain-Specific Modeling for CBIRSs 67
T
ab

le
3.

1:
E

va
lu

at
io

n
of

th
e

Im
ag

e
R

et
ri

ev
al

M
od

el
s

X
X

X
X

X
X

X
X

X
X

X
M

o
d
el

C
ri

te
ri

a
Im

p
le

m
en

ta
b
il
it
y

V
al

id
it
y

an
d

C
om

p
le

te
n
es

s
F
le

x
ib

il
it
y

U
n
d
er

st
an

d
ab

il
it
y

D
IS

IM
A

:
co

m
bi

na
ti

on
of

fu
nc

ti
on

al
an

d
ob

je
ct

-o
ri

en
te

d
m

od
el

s,
an

d
m

at
he

m
at

ic
al

fo
rm

al
is

m
s

im
pl

em
en

te
d

on
to

p
of

O
b
je

ct
St

or
e

-
st

ru
ct

ur
e:

ge
ne

ri
c,

th
e

st
ru

ct
ur

al
pa

rt
of

th
e

te
st

ap
pl

ic
at

io
n

fit
s

w
el

l
in

to
th

e
m

od
el

;
-

fu
nc

ti
on

al
it
y:

m
od

el
in

g
re

tr
ie

va
l

fu
nc

-
ti

on
al

it
y

is
su

pp
or

te
d

se
pa

ra
te

ly
as

M
O

Q
L

qu
er

ie
s,

fe
at

ur
e

ex
tr

ac
ti

on
fu

nc
-

ti
on

al
it
y

is
no

t
pa

rt
of

th
e

m
od

el
;

no
ex

te
ns

ib
ili

ty
in

te
rf

ac
es

ex
pl

ic
it

ly
de

fin
ed

di
ffi

cu
lt

th
ro

ug
h

th
e

co
m

bi
na

ti
on

of
di

f-
fe

re
nt

ty
pe

s
of

m
od

-
el

in
g

la
ng

ua
ge

s

M
O

O
D

S
:

ex
te

nd
ed

ob
je

ct
-

or
ie

nt
ed

m
od

el

im
pl

em
en

te
d

as
C

+
+

ex
te

ns
io

n
-

st
ru

ct
ur

e:
in

su
ffi

ci
en

tl
y

de
sc

ri
be

d,
fo

cu
s

lie
s

on
im

ag
e

pr
oc

es
si

ng
fu

nc
ti

on
al

it
y;

-
fu

nc
ti

on
al

it
y:

su
pp

or
ts

fe
at

ur
e

ex
tr

ac
-

ti
on

,
bu

t
no

re
tr

ie
va

l
fu

nc
ti

on
al

it
y;

m
od

el
in

g
la

ng
ua

ge
no

t
ex

pl
ai

ne
d

in
de

-
ta

il,
no

ex
te

ns
ib

ili
ty

in
te

rf
ac

es
ex

pl
ic

it
ly

de
fin

ed

di
ffi

cu
lt

th
ro

ug
h

th
e

co
m

bi
na

ti
on

of
di

f-
fe

re
nt

ty
pe

s
of

m
od

-
el

in
g

la
ng

ua
ge

s

M
M

D
B

:
m

at
he

m
at

ic
al

fo
rm

al
is

m
s

on
ly

fo
rm

al
,

no
im

pl
em

en
ta

ti
on

kn
ow

n

-
st

ru
ct

ur
e:

ge
ne

ri
c,

th
e

st
ru

ct
ur

al
pa

rt
of

th
e

te
st

ap
pl

ic
at

io
n

fit
s

w
el

l
in

to
th

e
m

od
el

;
-

fu
nc

ti
on

al
it
y:

th
e

m
at

he
m

at
ic

al
fo

r-
m

al
is

m
s

su
pp

or
ts

th
e

de
fin

it
io

n
of

di
ffe

r-
en

t
fu

nc
ti

on
s

on
th

e
se

t
of

im
ag

e
co

nt
en

t
ob

je
ct

s;

ex
te

nd
in

g
an

d
re

-
fin

in
g

ob
je

ct
se

ts
,

ex
te

nd
in

g
th

e
m

at
h-

em
at

ic
al

fo
rm

al
is

m
w

it
h

ne
w

co
nc

ep
ts

m
at

he
m

at
ic

al
fo

r-
m

al
is

m
di

ffi
cu

lt
to

co
m

pr
eh

en
d

M
P

E
G

-7
:

X
M

L
Sc

he
m

a
im

pl
em

en
te

d
as

ob
je

ct
-o

ri
en

te
d

sy
st

em
,
X

M
L
D

B

-
st

ru
ct

ur
e:

ex
ha

us
ti

ve
da

ta
st

ru
ct

ur
e

w
it

h
co

nc
re

te
im

ag
e

de
sc

ri
pt

or
s,

ad
ap

te
d

to
th

e
ap

pl
ic

at
io

n
th

ro
ug

h
pi

ck
in

g
th

e
ne

ed
ed

de
sc

ri
pt

or
s;

-
fu

nc
ti

on
al

it
y:

no
t

su
pp

or
te

d;

ex
te

nd
in

g
an

d
ad

ap
ti

ng
m

od
el

in
g

st
ru

ct
ur

es
th

ro
ug

h
re

fin
in

g
de

sc
ri

pt
io

n
sc

he
m

as
an

d
de

-
sc

ri
pt

or
s

w
it

h
fe

w
lim

it
at

io
ns

ea
sy

to
co

m
pr

eh
en

d,
bu

t
ab

ov
e

ce
rt

ai
n

si
ze

be
co

m
es

to
o

un
-

cl
ea

r

68 Chapter 3. Requirements Analysis and Conceptual Design

 Techniques for modeling
 CBIRS

 Techniques for generating
 CBIRS implementations

CBIRS developer

MDSD Techniques for CBIRS

eN
ot

e
C

B
IR

S

Implementation
platform A

Implementation
platform N

G
el

 C
B

IR
S

eN
ot

e
C

B
IR

S

G
el

 C
B

IR
S

Figure 3.17: MDSD techniques for the development of CBIRSs - Mapping

Since none of the above models satisfies the requirements defined in the beginning of this
section to a satisfactory extent, in this thesis a domain-specific model for CBIRSs is proposed.
In Chapter 5, this adaptable conceptual image model, based on the object-oriented modeling
paradigm to support the model-driven generation of a CBIR system is represented. The
model aims at providing a general base for representing image data structure and retrieval
functionality as defined in the requirements in the previous section. It has to support the
implementability of the model on a large number of platforms and provide explicit mechanisms
for extending and adapting the model for domain-specific applications. Finally, it has to
achieve good understandability through a modeling paradigm supported by a wide range of
modeling tools and a comprehensive tutorial for applying the model for deriving a domain-
specific application model.
Having this model as a starting point in mind, in the following section the requirements
towards the second type of MDSD techniques for CBIR, the generation techniques, are defined.
Approaches for transforming the conceptual PIM into an implementation model, the PSM,
are reviewed. Finally, criteria for the quality of the transformation rules are induced.

3.2 Transforming the CBIRS PIM to a PSM

In order to design the mapping techniques for the second step of the MDSD process of CBIR
shown in Figure 3.17, the target platform and system architecture are determined.
The PSM in a straightforward sense is the generated source code of the application. However,
usually the development process consists of more than one transformation and refinements
before the final source code can be generated. Before generating the database schema for
the implementation of a CBIR system an intermediate model can be used as shown in Figure
3.18. In the intermediate model, the developer of a CBIR system can make decisions concern-
ing specific platform requirements, which cannot be made by an automatic transformation

3.2. Transforming the CBIRS PIM to a PSM 69

 CBIRS PIM in UML

Transformation
profiles, meta models,
markings, mapping,
transformation rules

 PM – SQL:2003 UML Profile

 CBIRS in UML
 Profile for SQL:2003

Transformation Database Schema / SPs

Figure 3.18: Transforming a CBIR System PIM to a Database Schema (based on [PM06])

algorithm, before moving to the source code.
As shown in Figure 3.18, two types of transformations are necessary to complete the model-
based generation of the CBIR application. The first transformation maps the PIM onto a
PSM and is thus referred to as model-to-model transformation. The second transformation
translates the PSM into SQL statements, which can be used directly in the DBMS to create
the schema of the CBIR system.
Since the platform specific model depends on the platform which will be used for the im-
plementation, first, some decisions about the target platform have to be made. Moreover,
these decision may have to be made for different components of the CBIRS. That means that
different parts of the applications may require different platforms. For each different plat-
form, first, a platform specific meta model is required, e.g., a UML Profile for the platform.
Secondly, rules for transforming the platform independent model are needed.
In the next section, the possible software architectures and platforms for CBIRSs are reviewed.
This discussion is used to choose the transformation approach which has to be supported for
the generation of a CBIRS.

3.2.1 Choosing a Software Architecture and an Implementation Platform
for CBIRSs

In Chapter 2, the architecture of a CBIR system is described. It is determined that the
framework for model-driven development should deal with the design only of the core parts
of the system, which can be used by different client applications. Therefore, the design of
a concrete graphical user interface is not the aim of the framework. The resulting system
should provide APIs for such client applications.
Mostly client/server software architectures are used for building CBIR systems. Different
combinations of the data management, application logic and user interface layers in 2-, 3- or

70 Chapter 3. Requirements Analysis and Conceptual Design

n-tier architectures are used to support the requirements of CBIR applications. The large
amount of data and complex algorithms for feature extraction and similarity matching require
that the data management and application logic tasks are done by more powerful comput-
ers. The availability of the CBIR systems as web-applications is another good reason to
use client/server architectures. Current research also reveals the possible use of other archi-
tectures for CBIR, such as Peer-to-Peer [KNS04] and Grid [RBPR06]. Major aims of these
decentralized architectures are to increase the speed of query processing, provide access to very
large and heterogeneous collections etc. These architectures still pose some difficulties for the
proper functioning of the systems, such as availability of resources, trustworthiness of sources,
and security. Moreover, these architectures normally comprise a number of client/server ar-
chitectures under the control of a corresponding decentralization mechanism implemented in
a middleware layer. Therefore, in this work we consider the client/server architecture as a
target software architecture for implementing the modeled domain-specific CBIR system.
The components of a CBIRS can be grouped corresponding to the layers of an information
system architectures defined in [ACKM04]: presentation layer, application logic layer and
resource management layer. Each of these layers of the CBIR architecture could be imple-
mented on separated platforms, but they can also be integrated in one platform. In Figure
3.19 common platform independent client/server architectures which group the three system
layers in different number of tiers are shown. Each tier corresponds to a platform.
Different implementation platforms can be used for each layer of the CBIR system, respec-
tively. Since the aim of the current framework is the implementation of the main-functionality
of the system we will consider only the storage management and application layers. As
mentioned in Chapter 2, for the implementation of the system the employment of an object-
relational database management system as an implementation platform is chosen. ORDBMSs
allow not only the management of the data resources but also the implementation of the main
application functionality as stored procedures and user-defined functions. Thus, the 2-tier
client/server architecture from Figure 3.19 is applied, where the server provides all necessary
interfaces to the CBIR system through the database API. This choice can be made in favor
for any other implementation platform if required since the conceptual model of a CBIRS
should not pose any platform limitations.

3.2.2 A Platform Specific Model for ORDBMSs

A domain-specific model should be implementable on any specific platform. The PIM should
not include any platform specific modeling concepts. In this thesis, the implementation onto
an object-relational database management system (ORDBMS) is considered, based on the
standard SQL:2003 [Tür03]. This environment is chosen in order to facilitate the possibility
for image database developers to design and implement customized database extensions for
storing and querying images by content in ORDBMSs. Existing database image extensions
(e.g. IBM AIV-Extenders) as CBIR applications belong to the first group of CBIR systems
from the classification in section 1.3 - generic CBIRSs. It is not possible to use or adapt these
extensions for a specific application domain. Perhaps exactly because of this limitation IBM
AIV Extenders in particular are not anymore supported in the newest version of the ORDBMS
IBM DB2 V.9.1. Instead, the product documentation points out that the implementation of
such extensions is left to the user. Therefore, the implementation onto an ORDBMS is an
adequate example and test case for the developed concepts.

3.2. Transforming the CBIRS PIM to a PSM 71

client

presentation
layer

In
fo

rm
at

io
n

sy
st

em

1-tier architecture

application logic
layer

In
fo

rm
at

io
n

sy
st

em

3-tier architecture

presentation
layer

client

middleware

In
fo

rm
at

io
n

sy
st

em

2-tier architecture

server

In
fo

rm
at

io
n

sy
st

em

N-tier architecture

client

middleware

Web browser

Web server

pr
es

en
ta

tio
n

la
ye

r

application logic
layer

resource management
layer

resource management
layer

resource management
layer resource management

layer

application logic
layer application logic

layer

presentation
layer

client

HTML filter

Figure 3.19: Client/Server architectures for information systems (based on [ACKM04])

72 Chapter 3. Requirements Analysis and Conceptual Design

The object-relational database model has emerged from the development of the relational
model to support object-oriented concepts. Since the SQL:1999 version of the SQL standard
the defined model is referred to as object-relational model. The current version of the SQL
standard is SQL:2003. Profound descriptions of the standard can be found in [Tür03, Mel02].
In addition, for the support of multimedia data in databases, a multimedia extension of the
SQL standard known as SQL/MM has been released. It can be regarded as a layer building
on top of the basic object-oriented extension of the standard to support the development of
multimedia database applications. It is described in a separate multipart package SQL/MM:
ISO/IEC 13249:2000 Information technology - Database languages - SQL Multimedia and
Application packages. It defines a number of packages of generic data types common to
various kinds of data used in multimedia and application areas, to enable that data to be
stored and manipulated in an SQL database. The SQL/MM standard consists of several
parts, one of which is dedicated to still images. The still image part ISO/IEC 13249-5:2003
defines user-defined functions and types to address the need to store, manage and retrieve
information based on aspects of inherent image characteristics such as height, width, and
format, and based on image features such as average color, color histogram, positional color
and texture. It also addresses the need to employ image manipulation functions, such as
rotation, scaling as well as similarity assessment. The existing multimedia extensions of the
major DBMSs are developed based on this standard.
Thus, the standard for object-relational DBMSs provides a formal representation of the plat-
form concepts which can be used as a basis for the platform specific meta model, i.e. platform
modeling language. There are already some preliminary works aiming at building a DBMS
meta model, which can be used in model-driven development tools. These meta models do not
claim to be exhaustive. They do not provide modeling concepts for all ORDBMSs features,
but offer possibilities for extensions, because all these ORDBMSs meta models are developed
as UML-Profiles.
There is still no standardized UML profile for SQL databases. The OMG (Object Management
Group) has issued a Call for Proposals in December 2005 to define a standard meta model for
Information Management, which should be used among others for the definition of a UML2
Profile for Relational Data Modeling, with a mapping to the IMM meta model and SQL DDL.
This effort is, however, not completed.
Rational’s Data Modeling Profile for relational databases [Rat03, Gor02] is one of the
first DBMS meta model used in the Rational Rose Data Modeler design tool. It provides ways
to model basic relational concepts such as: schemas, tables, columns, keys, relationships etc.
Stored procedures can be modeled as operations of a class, representing a container of these
procedures. This profile does not deal with object-relational concepts, such as user-defined
types, user-defined functions etc. A full list of the UML extensions for modeling relational
databases is given in Table 3.2.
A Data Modeling Profile for agile databases is proposed by Scott Ambler in [Amb03].
This approach refines the Rational UML Profile for Data as shown in Table 3.3, but also does
not consider object-relational concepts.
Marcos et al. propose for the first time a model-driven design methodology for object-
relational databases in [MVC04, VVCM07]. In addition they propose a set of transformation
rules for mapping conceptual UML models onto ORDBMS UML models. The authors provide
support for structured data types, typed tables, REF and collection types etc. They focus

3.2. Transforming the CBIRS PIM to a PSM 73

Database Element UML Element Stereotype
Tablespace Component �Tablespace�
Database Component �Database�
Schema Package �Schema�
Table Class �Table�
View Class �View�

Derive Association �Derive�
Column Attribute �Column�
Primary Key Attribute �PK�

Foreign Key Attribute �PK�

Combine Key Attribute �PFK�

Index Operation �Index�
Unique Constraint Operation �Unique�
Trigger Constraint Operation �Trigger�
Primary Key Constraint Operation �PK�

Foreign Key Constraint Operation �FK�

CHECK Constraint Operation �Check�
Identifying Relationship Association �Identifying�
Non-Identifying Relationship Association �Non-Identifying�
Stored Procedures Container Class �SP Container�
Stored Procedure Operation of �SP Container� �SP�

Table 3.2: UML Extensions for modeling DBMSs by Rational (based on [Rat03, Gor02])

on the structural part of the model and do not treat the problem of modeling functionality
in detail. The UML extensions, defined to model relational databases and object-relational
databases, proposed in [Mul99] are listed in Table 3.4.
Muller [Mul99] describes a practical design approach for databases using UML. The author
discusses the meaning of each object-oriented UML concept for building structural diagrams
(class diagrams) and how this semantics can be interpreted or extended in order to represent
concepts of ORDBMSs. The author thus defines UML as an advanced alternative to the
Entity-Relationship Model (ERM) for modeling databases. The extensions of the UML model
are not formalized in a UML-Profile, but each modeling topic is discussed verbosely and thus
the book provides a good practical reference for applying UML for modeling ORDBMSs.
UML modeling tools, such as Visual Paradigm, Magic Draw, Enterprise Architect, also
provide support for creating relational database models. They make use of predefined UML-
Profiles, which currently also do not represent the state-of-the-art in database management
systems. Modeling tools often allow the integration of predefined profiles and thus would
allow the reuse of a graphical modeling environment for a more extensive UML-Profile for
ORDBMSs.
Since none of the above models represents a complete ORDBMS Profile, a more exhaustive
ORDBMS UML-Profile has to be defined. Therefore, a compilation of the existing Profiles
can be used as a basis, by choosing the most adequate modeling policy from the different
alternatives. In addition, new stereotypes have to be defined in order to support better the

74 Chapter 3. Requirements Analysis and Conceptual Design

Database Element UML Element Stereotype
Table Class �Table�
View Class �View�

Index Class �Index�
Associative Table Class �Associative Table�
Lookup Table Class �Lookup Table�
Stored Procedures Class �Stored Procedures�
Identifying Relationship Association �Identifying�
Non-Identifying Relationship Association �Non-Identifying�
Dependency Association �Dependency�
Primary Key Attribute �PK�

Foreign Key Attribute �FK�

Alternate Key Attribute �AK�

Auto Generated Value Attribute �Auto Generated�
Column Attribute �Column�
Not Null Attribute �Not Null�
Nullable Attribute �Nullable�
Surrogate Key Attribute �Surrogate�
Stored Procedure Operation �Stored Procedure�
Trigger Operation �Trigger�

Table 3.3: UML Extensions for modeling DBMSs by Scott Ambler (based on [Amb03])

modeling of user-defined functionality.

3.2.3 Model-to-Model Transformation

In database design model-to-model transformations are applied broadly for different tasks such
as mapping of conceptual Entity-Relationship models (ERM) to relational models [Che75],
schema integration [MIR93], schema matching [RB01], design optimization etc. Many prob-
lems of model transformations for these purposes have been treated in order to provide a
good theoretical basis for the development of database applications.
In software development, model transformations techniques have been used even before model-
driven development approaches came into discussion. Compiler engines also function on
some kind of a model transformation basis. Only in this case, the models which have to be
transformed, are programs. The model-driven development approach applies transformation
on more abstract models instead. This development approach reminds a lot of the database
design approach, which also uses different models at consecutive design steps.
However, database design approaches have been developed for relational databases in the
very beginning and rely on using the Entity-Relationship model for conceptual modeling.
Approaches for mapping Entity-Relationship models onto relational schema are also inten-
sively studied and methodologies broadly used. The development of relational databases into
object-relational databases offers new possibilities to represent information. Therefore, new
conceptual modeling approaches had to be employed. Numerous extensions of the Entity-

3.2. Transforming the CBIRS PIM to a PSM 75

Database Element UML Element Stereotype
Relational Database Component �Database�

Schema Package �Schema�
Tablespace Component �Tablespace�
Index Class �Index�
Table Class �Table�
View Class �View�

Column Attribute �Column�
Primary Key Attribute �PK�

Foreign Key Attribute �FK�

NOT NULL Constraint Attribute �NOT NULL�
Unique Constraint Attribute �Unique�
Trigger Constraint �Trigger�
CHECK Constraint Constraint �Check�
Stored Procedure Class �Stored Procedure�

Object-relational Structured Type Class �UDT�

Typed Table Class �Object Type�
Knows Association �Knows�
REF Type Attribute �REF�
ARRAY Attribute �Array�
ROW Type Attribute �row�

Redefined Method Method �redef�
Deferred Method Method �def�

Table 3.4: UML Extensions for modeling ORDBMSs by Marcos et al. (based on [VVCM07])

Relationship model have been proposed to capture more semantics of the real world, which
partially reflect the object-oriented features of the databases. The extensions which have
been widely accepted are for example specialization and generalization relationships. How-
ever, there are object-oriented concepts, such as dynamic aspects, which are not considered
in these extensions. The object-oriented modeling concepts from the software design, such as
UML, seem to be a better alternative for the conceptual design of object-relational databases.
However, there is still an expressiveness gap between the representation possibilities of the
object-oriented model UML and the ORDBMS model. This is a well known phenomenon
and in the literature it is referred to as the “impedance mismatch” between object-oriented
and relational technologies. For example, the mapping of a generalization relationship to the
object-relational model requires the additional usage of triggers in order to implement the
generalization constraints. In relational databases the generalization constraint “disjoint”,
which requires that an object of the generalization cannot belong to different subclasses at
the same time, has to be assured through triggers. Triggers have to check each time a new
object is inserted into a table corresponding to a subclass if this object is already in another
subtable. Such cases still have to be handled with the help of workarounds and compromises,
but the longterm aim is to bring ORDBMSs one day to a state where they can support all
object-oriented design concepts, and at the same time more clearness in the semantics of
UML.

76 Chapter 3. Requirements Analysis and Conceptual Design

There is, however, a very fine but important difference between the database design approach
and the model-driven design approach that has to be considered. In the first case, the model
used at the conceptual level is especially designed for the modeling of relational or object-
relational databases. The ER model represents relational concepts, such as key attributes
and the UML conceptual models adopt extensions for class diagrams to represent object-
relational concepts, such as properties for operations, showing if these are stored procedures or
methods. In the model-driven design the starting point is a domain-specific model, which does
not specify platform-specific concepts, such as primary keys for example. Since the domain-
specific model in the current thesis is built using the object-oriented modeling language UML,
the mapping onto a platform specific model in UML can be also regarded as augmenting
the domain-specific model with platform-specific concepts. Therefore, the gap between the
conceptual and the logical models in the first case is smaller than the gap between the abstract
PIM and the PSM in the second. In the following section, existing approaches for object-
relational database design using UML as a conceptual modeling language are summarized.

3.2.3.1 Approaches for Mapping UML Models to ORDBMS Schema

Saake and Türker [CT06] The authors of this textbook have summarized different works
on the mapping of UML class diagram concepts onto an object-relational SQL schema. They
have described the mapping of basic UML concepts, such as classes, attributes, associa-
tions, association classes and class methods and inheritance hierarchies in their methodology.
Thereby, the most straightforward mapping possibilities are chosen. In addition, workarounds
for preserving the consistency of the data in cases where the database management system
does not offer enough support are discussed. For example, the associations between classes
are represented by reference data types, which need an additional mechanism, e.g. a trigger,
to assure that referenced instances are not deleted. To what extent normal form rules can be
applied to object-relational design has been also discussed. The authors leave out the design
of database functionality in form of operations for the user-defined types.
Marcos et al. [VVCM07] A methodology for the mapping of UML class diagrams onto
object-relational models and specific database management system models has been pro-
posed in [MVC04] and [VVCM07]. In this methodology, the starting point is a conceptual
data model represented in UML and the target is an object-relational data model represented
by means of an object-relational UML Profile. In the second paper cited above, the map-
pings have been further formalized with graph transformation rules in order to support the
model-driven development process. The described mappings in both papers, however, are not
exhaustive, for example, the mapping of operations is not discussed. The resulting database
structure is an almost direct mapping of the UML structures. This technique does not prove
the result of the transformation. Preservation of information capacity and integrity is not
discussed. The mapping rules, specified in the works of Marcos et al. are shown in Table 3.5.

Mok and Paper [MP01] In [GCR06] the approach of Marcos et al. is compared with a
more formal technique, presented in [MP01] for the transformation of UML class diagrams,
based on the graph theory. In this technique, two algorithms are applied subsequently on
the UML class diagram graph. The first algorithm removes semantically overloaded elements
from the graph and the second algorithm converts the resulting diagram in nested normal
form tables. The object-relational schema which is the result of the formal transformation

3.2. Transforming the CBIRS PIM to a PSM 77

Data PIM Standard Data PSM (SQL:2003)
Class Structured Type + Typed Table
Class Extension Typed Table
Attributes
Multivalued ARRAY/MULTISET
Composed ROW/Structured Type (column)
Calculated Trigger/Method
Association
One-to-One Ref/[Ref]
One-to-Many [Ref]/[Multiset/Array]
Many-to-Many Multiset/Multiset, Array/Array
Aggregation Multiset/Array
Composition Multiset/Array
Composition Types/Typed Tables
Operations
Signature of class operation signature of method of a structured type

Table 3.5: Mapping of UML PIM onto OR PSM by Marcos et al. (based on [VVCM07])

technique consists mostly of nested tables. This has the advantage that when transforming
large models a more compact representation with less tables is produced. However, some of
the information of the original UML model might get lost.
Dietrich and Urban [DU04] This is another textbook in which basic rules for mapping
UML classes, attributes, associations and inheritance onto object-relational features are pre-
sented. The authors verbosely describe in detail the mapping approaches for each of these
conceptual elements. The result of the mapping is represented in SQL DDL syntax. Inter-
preting platform specific features from the pure UML class diagram is supposed to be done
by the developer, e.g. choosing a key attribute. The authors also suggest that the mapping
onto object-relational concepts can be combined with a mapping onto relational model, but
in this thesis it is argued that only object-relational concepts should be used for mapping
object-oriented concepts onto ORDBMSs. In addition to the rules of Marcos et al. a special
attention is given to how associations with and without attributes, recursive associations,
n-ary associations and constraints can be mapped. The mapping of class hierarchies and
categories is also elaborated.

These works set a good basis for an ORDBMS design methodology using UML class diagrams
for the conceptual design. However, they leave some unsolved problems, which play an
important role for the task of automating the design process. First of all, the above approaches
do not cover enough the design of database functionality. The modeling and mapping of
user-defined functions is not treated at all. Not all concepts of UML class diagrams are
considered and it is not meaningful to forbid the usage of any parts of the modeling language
to the modeler. ORDBMSs are extended with a lot of features to support object-oriented
concepts. However, these are still not enough to guarantee consistency and integrity of data
stored in the database. Additional workarounds have to be implemented for that. Some
basic object-oriented concepts are still not supported fully, such as different variations of

78 Chapter 3. Requirements Analysis and Conceptual Design

inheritance, overlapping, disjoint subclasses etc. This makes the mapping of some design
elements difficult.
Some of the approaches suggest that also purely relational concepts can be used to implement
some object-oriented design concepts. However, this would be a step back in the development
of object-relational databases. The object-relational design should try to solve the imple-
mentation challenges by suggesting improvements for the support for object data instead of
looking for workarounds.
And finally, most of these methods are proposed to support the SQL standard specification
and only one or two real DBMSs. Real life DBMSs do not always comply completely with
the standard. They sometimes offer less features, as in the case of IBM DB2 where no
MULTISET and ARRAY data types are supported. Others go beyond the suggestions of the
standard, for example the PostgreSQL provides support for multiple inheritance. To have a
functioning application, the final generation step should produce source code for a particular
DBMS system. Therefore, adequate adaptations have to be carried out to the SQL schema.
The main conclusion from this discussion is that there are still a lot of gaps between object-
oriented and object-relational concepts, which have to be taken into account when using
ORDBMSs as an implementation platform for CBIRSs. The above considerations should
be taken into account when developing a methodology for mapping the CBIR PIM onto an
ORDBMS PSM.

3.2.3.2 Requirements for the Model-to-Model Transformation

Existing transformation approaches discussed in the previous section do not provide mapping
rules for all elements of the PIM meta model. This leads us to the question “Must all PIM
elements have a corresponding mapping in the PSM?”, “What consequences can missing
mappings have for the quality of the transformation?”. In order to provide an answer to
these questions some kind of quality criteria for the transformation has to be defined.
One of the aims of a transformation is to retain as much as possible information from the
higher abstraction level model in the implementation model. The differences in the expressive
power of both modeling languages should be analyzed. In this section, basic requirements
towards the transformation are set, which should assure information preservation and cor-
rectness of the resulting model.
The task of the model-to-model transformation in the current case is to translate the informa-
tion represented in a PIM modeling language into the terms of the PSM modeling language.
The transformation also implies that a more abstract model has to be converted into a more
concrete model of the application. These statements classify the needed transformation as
inter-model (exogenous) and vertical, respectively, according to the taxonomy of Mens and
Gorp [MG06].
As shown in Figure 3.20, in order to translate a PIM into a PSM, transformation rules have
to be defined at the meta model level. The mapping rules translate each concept of the source
meta model (PIM meta model) into concepts of the target meta model (PSM meta model).
These rules are then used to induce the transformation of a concrete PIM (source model) to
a concrete PSM (target model).
A model-to-model transformation can be regarded as a kind of function in the mathematical
sense. This means that for each element of the source model there exists at most one element

3.2. Transforming the CBIRS PIM to a PSM 79

PIM
(source model)

uses uses

usesgenerates

is instance of

is instance of

uses

Source metamodel

Transformation
(Generator)

Mapping
(Mapping language

and rules)

PSM
(target model)

Target
metamodel

Figure 3.20: Meta model based transformation (from [PM06])

in the target model, which is the result of the transformation of the source model element.
If a transformation is defined on each element of the source model then the function is also
total. If the transformation is functional in the reverse direction then the transformation
function is injective. If the reverse is total then the transformation function is bijective. These
properties of a transformation are used in a well-known criterion for checking the correctness
of the transformation in database design - the information capacity preservation [Hul86]. This
criterion is applied for the design of relational database systems as shown in Figure 3.21. The
transformation rules in this design approach are defined for mapping the concepts of an Entity-
Relationship Model (ERM) onto concepts of the Relational Database Model (RDM). This level
corresponds to the Metamodel Level of the model-driven development approach depicted in
Figure 3.25. Each of these models can be used to define multiple schemas, corresponding
to the model level in Figure 3.25. Schemas can have different states, which correspond to
the different model instances in MDSD. In the database design approach, the transformation
is considered as information capacity preserving if it is a bijection between the instances of
the models. This is measured by checking whether the information represented in the ERM
instance can be found again in the RDM instance through analyzing the results of queries
against the RDM instance. This approach, however, requires the presence of instances of
both models and corresponding query languages. In order to use the information capacity
preservation criterion for the MDSD transformation some adaptations of the above approach
are made.
First, the requirements towards the transformation function are defined for the Metamodel
level, corresponding to the Model level in the previous case. The transformation should
be functional in the direction from PIM-to-PSM, so that for a PIM concept exactly one
corresponding PSM concept should exist. It should be also total to assure that all PIM
concepts are mapped to the PSM. In the reverse direction the transformation should be also
functional in order to assure that it is possible to differentiate between the PSM concepts in
the same manner as in the PIM. The total property of the function in the reverse direction is
not necessary, because at the implementation level there are concept which are not mappable

80 Chapter 3. Requirements Analysis and Conceptual Design

Relational
Database Model

(RDM)

Entity-Relationship
Model
(ERM)

Schema Level
Transformation

Model Level
Transformation

ERM Shema n RDM Shema n

Instance Level
TransformationERM Shema n

Instance
RDM Shema n

Instance(bijective)

Figure 3.21: Transformation levels in the database design

to the conceptual model. It would be important to have this property if reverse engineering
should be possible. However, the idea behind MDSD is to propagate the implementation
changes through the conceptual model, rather than make changes in the implementation and
send them to the conceptual model. The following requirements towards the transformation
rules at the Metamodels Level, can thus be defined:

• In order to assure that each PIM concept can be mapped to a PSM concept, a mapping
rule for each PIM meta model concepts has to be defined. This means that no PIM
meta model concepts, which are not mappable to the PSM meta model as shown in
Figure 3.22, should exist. In order to achieve this, sometimes workarounds in the PSM
level can be expected.

PIM PSM

Figure 3.22: Transformation rule requirements: not-mappable concepts are not allowed in the
PIM

• If there is more than one possibility to map a PIM meta model concept to the PSM meta
model domain, one of these possibilities should be chosen for a given transformation.
The choice can be made based on heuristics or cost-based rules.

3.3. Summary 81

PIM PSM

Figure 3.23: Transformation rule requirements: only one of multiple mapping possibilities
should be applied in a transformation

• If two different concepts from the PIM meta model are mapped to the same concept in
the PSM, differentiating information could be lost. Therefore, these kinds of mappings
should be avoided. One of the problems which arises when such mappings are used
is loosing the possibility for reverse engineering, since there might be minimum two
different sources of one and the same concept. An even more undesirable effect is that
by mapping two different PIM concepts, which do not have an equivalent meaning in
the PIM, onto the same PSM concept the differentiating information between the PIM
concepts will get lost, which might be an important factor for the application.

PIM PSM

Figure 3.24: Transformation rule requirements: two different PIM concepts should not be
mapped to the same PSM concept

Consequently, it can be summarized that the transformation at the Metmodel level of MDSD
has to be a total injection, as illustrated in Figure 3.25. Since, the transformation rules at
the instance level are derived from these at the Metamodel level, it can be assumed that they
have similar properties.
The domain-specific PIM of a CBIRS proposed in this thesis is a UML-based model consisting
mostly of structural diagram concepts. Therefore, the mapping rules are defined for this
subset of UML concepts which are needed to model the CBIRS application. In Chapter 5
the transformation of this model onto an object-relational model, represented in terms of an
UML Profile is described.

3.3 Summary

In this chapter, the components of a CBIR system, which have to be modeled in order to gen-
erate a CBIR system, were identified and their generic and variable features were determined.

82 Chapter 3. Requirements Analysis and Conceptual Design

Object-relational
Database Model

Unified Modeling
Language

Model Level
Transformation

Metamodel Level
Transformation

PIM n PSM n

Instance Level
TransformationPIM n

Instance
PSM n

Instance

(total, injective)

Figure 3.25: Transformation levels in MDSD

Thus, the requirements towards a modeling approach for CBIR systems were set. Existing
modeling paradigms for image retrieval systems were surveyed based on these requirements
and the eNoteHistory example application. This survey, justifies the development of a new
generic and adaptable model with the recognition that current modeling techniques do not
offer enough flexibility in order to support different application requirements, in particular
with respect to modeling functionality.
Transformation techniques for generating a platform specific model of the CBIR application
were discussed in the second half of this chapter. The choice of these techniques is influenced
mainly by the choice of a software architecture and an implementation platform. The applica-
tion logic and persistence layer of a 2-tier client/server were chosen for the target architectural
components of the implementation. An ORDBMS was chosen as a target platform for both
architecture layers. The requirements towards the transformation techniques are, therefore,
dictated by the target software architecture and platform and the modeling approach. Exist-
ing UML Profiles for modeling ORDBMSs were analyzed, and it was found that none of them
provides a full representation of the latest SQL standard, describing ORDBMS concepts. An
exhaustive transformation methodology for generating an ORDBMS PSM from a given OO
PIM is also not available. Finally, different correctness criteria for transformation rules, which
have to describe the transformation methodology were formulated.
In the following two chapters, concrete CBIR development techniques for both modeling and
transformation phases are elaborated in detail.

Chapter 4

GiACoMo–IRS – A Generic and
Adaptable Conceptual Model for
Image Retrieval Systems

The aim of the development approach presented in this thesis is to provide extensibility and
adaptability at the conceptual level of the development of CBIR systems. Therefore, a general
conceptual model is required which represents universal structures and functionality of CBIR
systems and at the same time provides a possibility to adapt and/or extend these structures
and functionality depending on the specific application. In this chapter, such a model is
proposed.
Digital images and their content set certain challenges for conceptual modeling and their
mapping onto database models. These data have characteristics with complex, composite
values, which are often not directly interpretable. The definition of appropriate functions
is required in order to compare, classify or manipulate these values. Furthermore, different
semantic interpretations or views on the image data are possible, depending on the application
context. Different levels of abstraction and semantically rich relationship hierarchies are
further characteristics of digital image content. All these factors make the creation of a
universal conceptual image model a challenging task and convey special requirements also to
the implementation level. Contemporary relational database systems as an implementation
platform do not provide facilities for the storage of these kinds of data. Object-relational
databases offer better techniques to support these applications. User-defined types, user-
defined functions and indexing mechanisms, and binary large objects make it possible to
accommodate complex data structures.
General conceptual models for images have been continuously proposed since the very begin-
ning of image retrieval systems. In the field of multimedia information systems conceptual
models have been designed which also cover images as one type of media. However, the main
drawback of existing models is that they seldom provide a concrete modeling methodology
with well-defined extensibility and adaptability interfaces. They rather focus on describing
an overall architecture of a model, but not on how it can be used for deriving domain-specific
models. A detailed survey and evaluation of existing models with respect to the predefined
requirements is represented in the previous chapter.
Abstracting from the common characteristics of an image data model to provide a general

83

84 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

image model is not enough to support the development of domain-specific CBIR applications.
In addition to such a generic image model, appropriate mechanisms and structures should
be defined, which will allow the extension and adaptation of the model for the concrete
application. In this chapter, an extensible conceptual image model is represented as a UML
framework, which can be adapted for domain-specific applications.

4.1 The Modeling Approach

For the representation of the Generic and Adaptable Conceptual Model for Image Retrieval
Systems (GiACoMo–IRS), at first an adequate modeling approach had to be selected accord-
ing to the requirements and quality goals defined in the previous chapter. In this section, the
chosen modeling approach is described.

4.1.1 Framework Model

GiACoMo–IRS is designed as a framework model, which can be extended and customized for
the particular requirements of domain-specific applications. A framework in the context of
object-oriented programming languages [GVJH98] and UML [BRJ99] refers to a customizable,
extendable skeleton of a software architecture, which can be used for subclassing domain-
specific applications. Reusing a framework for building specific applications is referred to as
framework specialization, framework adaptation, or framework instantiation as pointed out
in [Vil06]. In [IB05] the concept of a framework model was introduced as a generic model
for the design of multimedia databases, where still images are only one type of a multimedia
component. Based on this work the framework model GiACoMo–IRS for the design of image
retrieval systems has emerged. In Figure 4.1 the different abstraction levels for the application
of this modeling approach are shown. The framework level represents the framework model,
which instantiates the concepts of the UML meta model. At the application level a concrete
application-specific model for the eNoteHistory Image Retrieval System (IRS), which is used
as an example for formulating the requirements towards the modeling techniques in Chapter
3, is represented. The eNoteHistory-IRS model is derived by adapting and/or extending
the abstract and adaptable classes and interfaces from the framework model. The concrete
application model should be used as the basis for generating the implementation. The Meta
Model Level corresponds to the M2 level in the meta level of MDA, depicted in Figure 2.4.
Both Framework and Application Level belong to the M1 meta level of MDA.
The UML modeling paradigm is chosen for the design of GiACoMo–IRS. The main reasons
for making this choice are: the extensibility of the meta model, integration possibilities with
other models of components of the application, the support for functionality design, the fact
that UML is used as the basis of the model-driven architecture and thus MDA-tools for
modeling and for generating implementation models from UML are available, and last but
not least its broad usage. Although the basic concepts of the UML model do not have an
extensive support and notations for adaptability and extensibility interfaces, extensions of the
UML model, which aim at providing adaptability and extensibility patterns for the design of
frameworks are proposed in [FPR00] and in [OAF+04].

4.1. The Modeling Approach 85

UML

<<is instance of>>

<<adaptation / extension>>

Metamodel Level

Framework Level

Application Level

GiACoMo - IRS

eNoteHistory - IRS

Figure 4.1: Modeling approach

4.1.2 UML for Frameworks

The UML-F profile from [FPR00] is used to represent adaptability and extensibility interfaces
in GiACoMo–IRS. It can represent framework design concepts, such as hot spots and frozen
spots. In [Pre95] the parts of the framework which represent adaptability and extensibility
interfaces are named hot spots. The parts which should remain unchanged in the derived
application are called frozen spots. The hot spots of a framework can be implemented by means
of white boxes and black boxes. White boxes provide the possibility to adapt the framework by
making use of inheritance and dynamic binding, where black boxes employ predefined classes
from the framework which can be used through the composition and delegation concepts.
Gray box frameworks combine both possibilities, by letting the developer decide whether to
use the predefined classes or implement own ones. Furthermore, GiACoMo–IRS makes use
of the so called cookbook approach [Pre95] by providing recipes (examples) for making use of
particular adaptability/extensibility interfaces during the framework instantiation.

In the next two sections, the framework model with regard to representing the components
of a CBIRS in terms of data structures and functionality is described. UML class diagrams
are used for the design of the structure of the GiACoMo–IRS. Functionality is designed using
use-case and activity diagrams to outline the main functions of the system and to represent
the details of the single use cases, respectively. Each activity has then been mapped onto
operations and classes in the UML class diagram.
In the first section the part of the model which covers mainly the “Image Store” and “Feature
Store” storage components is represented. These components require the definition of a data
structure for representing content-dependent and content-independent image data. Similar
structural concepts can be used to represent data structures for the “Retrieval” and “Feature
Extraction” components. However, these components are more functional, i.e. they do not
have a generic data structure, but rather a generic functionality. Thus, in the GiACoMo–IRS
framework model they play an important role in the the design of the functionality of the

86 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

system, described in the second section. On the other hand, the functionality of the storage
components is relatively generic, but it is not always necessary to be modeled because many
target platforms, e.g. DBMSs, already implement a persistence storage mechanism.

4.2 Modeling the Data Structure of CBIRS Components

In Figure 4.2, a UML class diagram of the generic image model that was defined in [IB05]
to represent the still image component of a multimedia document is shown. This part of the
multimedia database framework model is used to design the basic data structure of GiACoMo–
IRS, shown in Figure 4.3. A redesign of the model defined in [IB05] was necessary on one
side in the structural part in order, for example, to allow omitting certain concepts of the
generic model, if they are not needed in the concrete application model. This is achieved by
redefining class attributes as associated classes, and assigning the optional multiplicities to the
associations. On the other side, the functional part in the model represented in [IB05] is not
systematically derived from the functional requirements of the system. Thus, it is difficult for
the developer to understand the meaning of the different class operations and how to use them
to derive own applications. Moreover, the predecessor model did not consider modeling other
retrieval mechanisms except the metric approach. The extended image model GiACoMo–IRS
is published in [IH08]. In the following section, the main parts of the structure of GiACoMo–
IRS are described as extensions of the multimedia model in Figure 4.2. Section 4.3 explains
the functional part of GiACoMo–IRS which is the main extension of the predecessor model.

4.2.1 StillImage

The class Image Component, derived from the abstract class Component (component of
a multimedia document) allows the representation of the raw image data. In GiACoMo–IRS
this class is renamed to StillImage and is defined as an abstract class, which should be used
to derive concrete classes for each application-specific model. The Image Component class
has attributes, which represent the raw image as a binary sequence and/or a reference to
a file through a path description. Other representations of the raw image such as a matrix
of pixel values or a fourier transformation could also be added to the class by deriving an
application-dependent specialization of this abstract class. Additionally, an optional thumb-
nail representation of the image can be used in the class. The problem which has to be solved
in GiACoMo–IRS is to make the proposed attributes of the class optional and adaptable, so
that they can be freely included or omitted and changed in the domain-specific spcialization
of the abstract class. Normally the implementation is realized by directly inheriting from the
abstract class, which does not allow any changes on the inherited structure of the derived
class. Therefore, since the representation of the raw image of some type is an obligatory
attribute of StillImage an abstract class RawImageRep is defined and associated with the
StillImage class through a mandatory association. Different types of image representations
can be defined for a particular application. The optional attribute Thumbnail can also be
regarded as a type of representation of the image. An image can be composed of multiple
images, which are interrelated through the “consists of” aggregation association. This associ-
ation is optional, which is represented by the multiplicities at its both ends. At this stage no
explicit methods will be included in GiACoMo–IRS. The representation of object behavior is
described in the following section.

4.2. Modeling the Data Structure of CBIRS Components 87

Figure 4.2: Generic Image Database Model (from [IB05])

4.2.2 Metadata

Content-independent information, such as creator, creation data etc., is represented by the
class Image Technical Metadata which is derived from the multimedia document class
Metadata. In GiACoMo–IRS, the abstract class Metadata is associated directly to the StillIm-
age class to provide means to represent different types of content-independent data. Image
Technical Metadata can be regarded as an specialization of this class, which is application
dependent.

4.2.3 Region

The representation of the content of an image is based on spatial abstractions which are
derived from the segmentation of the image. Thereby, the content of an image is interpreted
as a set of regions. These regions are represented by the abstract class Region. Each image
can contain regions or segments of an image. These containment relationships are modeled
as an aggregation association. The relationship allows building a hierarchy of regions of an
image. Each region can be characterized by its type (circle, ellipse etc.). In GiACoMo–IRS

88 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

again a decision has to be made which attributes are mandatory and which are optional. The
type of a region can be regarded as a kind of feature associated with the region. However, for
most applications it is necessary to assign some kind of localization information to a region,
such as centroid coordinates, bounding box etc. This data is represented as an abstract
class RegionLocalization which is associated with the class Region by an optional association.
Application specific regions can be defined by the developer by deriving concrete classes
from the abstract class Region. In GiACoMo–IRS, the association between regions is not
restricted to an aggregation, so that other than hierarchical organization of regions are possible
as well. An association class Relationship is defined, which can be used to assign the
appropriate type of relationship. Application-specific specializations for different kinds of
spatial relationships is given below.

4.2.4 Feature

A feature can be assigned to each region of an image, whereby the whole image can also be
described as a region. Various features can be defined to describe the content of images, by
inheriting from the abstract class Feature. These can be low-level features such as height,
width, dominant color or color histogram, shape, as well as high-level features, such as names
of objects or concepts. Therefore, relationships between features have been defined with an
association. These relationships can be used to link low-level features with high-level features
for example, when the latter are derived from the first.

4.2.5 Key Attributes and OIDs

In relational databases the concept of keys is used in order to provide a way of identifying
data objects. Object-oriented databases bring with them the concept of an object identity,
represented by an object identifier (OID) independent of the values of its attributes. OIDs
are not explicitly modeled as attributes of the classes. In ODMG 2.0, it is stated that the
OID is separate from the state and invisible to the user. As mentioned in [ST93], OIDs are
useful for implementing sharing, mutability of values and representing cyclic structures, but
they do not carry any meaning for the user and should, therefore, remain hidden. OIDs are
implicit (existence-based). The identification of an object can also be explicit (value-based).
In the latter, the object is identified with the values of one or more of its attributes. Muller
[Mul99], however, uses OID to identify any kind of key that uniquely identifies an object.
The explicit approach has the benefit of keeping all your attributes clear and open in your
design. This makes the connection between the conceptual model and database schema more
direct. In ORDBMSs the instances of structured types do not have the notion of existence on
their own. The OIDs are generated in a self-referencing column of the typed table (structured
types stored in columns do not have any OID). In the conceptual model GiACoMo–IRS OIDs
are implicit, since the model is purely object-oriented and independent of an implementation
platform.

4.2.6 Application-specific Classes

The predecessor of GiACoMo–IRS shown in Figure 4.2 determines only the overall structure
of the data, but does not give any concrete suggestions for the possible specializations of
the abstract classes. Since the role of the framework model is to support the developer

4.2. Modeling the Data Structure of CBIRS Components 89

<<framework>>
StillImage

<<framework>>
Region

<<framework>>
Feature

<<framework>>
Metadata

<<framework>>
Relationship

<<application>>
TechnicalMetadata

<<application>>
DublinCoreMetadata

<<application>>
ColorDescriptor

<<application>>
TextureDescriptor

<<application>>
ShapeDescriptor

<<application>>
TopologicalRelationship

<<application>>
DirectionalRelationship

<<framework>>
RawImageRep

<<framework>>
RegionLocalization

<<application>>
BoundingBox

<<application>>
URI

das brauche ich nicht

0..*

0..*

0..*

0..1

0..*

0..*

0..*

0..*0..*

1

1..*1

1

0..*

0..*

1

0..*

1 <<adapt-static>>

<<adapt-static>> <<adapt-static>>

<<adapt-static>>

<<adapt-static>>

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.3: Main framework classes and application specific black box classes of GiACoMo–IRS

of domain-specific applications not only by providing a reusable architecture, but also by
predefining reusable building blocks, the usage of concrete derived classes of the abstract
classes, which can be needed in a broad range of CBIR applications should be considered.
These derived classes are defined as black boxes of the framework, in terms of the definition
found in [FPR00], which can be used by the developer later on. These black boxes represent
examples of application-specific specializations of the abstract classes, which can be used in
an application-specific model. The stereotype �adapt-static� of the realization association
according to the UML-F Profile shows that the abstract classes can be furthermore adapted
through subclassing at design-time. In Figure 4.3 the basic framework classes and predefined
types of features, image meta data and region relationships of the framework model are shown.
In order to keep the resulting model as compact as possible it should be possible to freely omit
or exchange the black boxes. Therefore, in the current framework model the �adapt-static�
stereotype means that the examples for the realization of the abstract class are optional for
the application-specific model.

4.2.7 CBIRS Data Types

UML does not predefine basic data types, which can be used in application specific models.
Only four primitive types have been defined in the standard, which are used only in the meta
model itself: Integer, Boolean, String and UnlimitedNatural. Depending on the platform
which has to be modeled different basic data types or type systems can be used. Therefore,
the standard suggests that for each modeled platform the needed types have to be predefined
by specializing and/or instantiating the UML element dataType. Since UML is used in this
thesis to model a platform independent model, it is not possible to use a platform specific
type system. A possible domain specific type system which can be used to model CBIRSs
has been defined in the diploma thesis [Czy05]. In [Czy05] the following CBIRS specific
data types were suggested: simple data types: CharacterType, IntegerType, FloatType, Bi-
naryType, BooleanType, EnumType and complex data types: BagType, SetType, MatrixType,

90 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

VectorType, StructType. The simple data types can be used, for example, for the representa-
tion of image format data with the EnumType or raw image data with the BinaryType. Some
of the complex types can be represented through the multiplicity characteristic of a Property
in UML. BagType, SetType and VectorType correspond to a multiplicity greater than 1, and
the different combinations of isUnique:false, isOrdered:false; isUnique:true, isOrdered:false
and isUnique:false, isOrdered:true, respectively. The complex data types StructType and
MatrixType, where the latter represents a multidimensional VectorType have no correspond-
ing presentations in UML. It is possible to represent each StructType as Class, but this will
not fully correspond to the semantics of a structured type, since data types are not identi-
fied through their OIDs, but through their values. Therefore, for modeling GiACoMo–IRS
these complex types are defined as stereotyped dataType elements �CBIRSComplexType�
�CBIRSStructType�, �CBIRSArrayType� and �CBIRSEnumType�. The simple types are
defined analogously as �CBIRSSimpleType�. These stereotypes are added as extensions to
UML. In GiACoMo–IRS �CBIRSCharacterType�, �CBIRSIntegerType� etc. are defined as
instances of �CBIRSSimpleType�.
For modeling CBIRS in [Czy05] also some concrete complex data types were instantiated:
Date as StructType, MonthType as EnumType, Time as StructType, Timestamp as Struct-
Type, Point and RGBColorType as StructType. These would be represented as instances of
�CBIRSStructType� and �CBIRSArrayType� in the GiACoMo–IRS model. The question
arises again if it is not better to represent these data types as classes in the model with
corresponding methods. From a conceptual model point of view it would make more sense
to represent these data types which we need in our model as classes, because we cannot be
sure whether the target implementation platform would support the needed functionality for
managing these data types. If we take a look at the platforms available for implementing
the system it is most likely that these have support for DateType, but we cannot be sure
that they would support PointType or RGBColorType. Therefore, in GiACoMo–IRS only
the most common complex data types should be represented as data types. The rest have to
be added for a specific application.
A complete list of the domain specific data types included in the GiACoMo–IRS model is
shown in Appendix A.

4.2.8 Instantiating the Framework

The specialization of the framework requires the following steps to be undertaken after the
requirements to the application model are determined:

• Define a specialization for the StillImage class and one or more specilizations for the
RawImageRep class

• Redefine the association between StillImage and RawImageRep class for their special-
izations

• Optionally, redefine the self-association of the StillImage class in its specialization class

• Optionally, define one or more specializations of the Metadata class and redefine the
association between Metadata and StillImage for their specializations

4.2. Modeling the Data Structure of CBIRS Components 91

<<framework>>
StillImage

<<framework>>
RawImageRep

<<application>>
ARGImage

<<application>>
ARGURI

<<application>>
ImageMatrix

<<application>>
MatrixImage

halloooooo

argimage
{redefines still_image}

arguri
{redefines rawimage_rep}

rawimage_repstill_image

1..*1

imagematrix
{redefines rawimage_rep}

matriximage
{redefines still_image}

0..*
0..1

1 1..*

1..*1

has_rep

has_rep

has_rep

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.4: Association redefinition example

• If required one or more specializations for the abstract class Region should be defined. In
this case, the association between the specializations of the classes Region and StillImage
must be redefined.

• Optionally, specializations for the associated classes RegionLocalization and Relationship
can be defined and their associations with the specializations of the class Region must
be redefined.

• Finally, specialization classes for the abstract class Feature can be defined and the
self-association can be redefined where necessary.

The associations between the abstract classes have to be redefined in their specializations
using the association redefinition capabilities of UML. Association redefinition is a relatively
new concept in UML. A detailed discussion on association redefinition is given in [CG06].
Redefinition is more similar to method overriding than to specialization. It is necessary to
use this concept because an abstract class is generally a class which is not instantiated and thus
no objects of this class and its associations can be created, which can be further specialized.
Moreover, in the case of complex abstract class hierarchy it is not straightforward to derive
the associations between their subclasses automatically. It depends on the semantics of the
subclasses whether and how they can be associated to each other. An example for using
association redefinition is given in Figure 4.4.
Two examples for applying the structural framework model for deriving application specific
models are represented. The spatial structure of image is represented by Attributed Relational
Graphs and 2D-Strings, respectively, which are two of the most common spatial structure
representations for images. In Figure 4.5 the representation of Attributed Relational Graphs
(ARGs) is shown. In Figure 4.6 the representation of 2D-Strings is illustrated. In these
diagrams the UML notations for association redefinitions are left out to avoid overloading the
diagram.

92 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

<<framework>>
StillImage

<<framework>>
Region

<<framework>>
Feature

<<framework>>
Relationship

<<application>>
ARGRegion

<<application>>
ARGRelation

<<application>>
ARGAttribute

<<application>>
ARGImage

<<framework>>
RawImageRep

<<application>>
ARGURI

blabla

0..* 1

0..*1

1..* 1
0..*1

0..*1

11..*

0..*
1

0..*

1

0..*

0..*

0..*

1
contains

is described by

contains

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.5: Modeling Attributed Relational Graphs Image Representations

<<framework>>
StillImage

<<framework>>
Region

<<framework>>
Feature

<<framework>>
Relationship

<<framework>>
RawImageRep

<<application>>
2DStringImage

<<application>>
2DStringURI

<<application>>
2DStringRegion

<<application>>
2DStringRelationship

<<application>>
2DString Feature

hallooooo

0..*1 0..*

0..*

0..*

1

0..*
1

1..* 1

0..*
1

11..*

0..*
1

0..*1

0..*1

is described bycontains

is described by

contains

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.6: Modeling 2D-Strings Image Representation

4.3 Modeling Functionality of CBIRS Components

Integrating retrieval functionality is the second group of requirements of the conceptual image
retrieval model. In this section, the functionality groups from a level-of-design point of view
are defined, and a general design approach for integrating extensible and adaptable function-
ality in the model is described. In the design of a CBIR system two kinds of functionality
can be distinguished:

• from the view point of a system user there is the application (system) functionality
which is represented by the user interfaces;

• from the view point of the system developer there is the object functionality, which has
to implement or provide the system functionality.

4.3. Modeling Functionality of CBIRS Components 93

The application functionality is modeled at first by means of UML use cases and activity
diagrams in order to define the functionality of the application as a whole, which is required
by the users. The two groups of operations, which a CBIR system has to support from
the view point of a user, are Updates (Insert, Delete, Update) and Queries on images and
their content. From the view point of a system developer each of these functions has to
be integrated into the building blocks of the application. This is achieved by mapping the
activities from the detailed activity diagrams onto classes and methods in the class diagram.

4.3.1 Updates

The operations from the first group have very similar behavior, that is why only the Insert
operation is considered as an example. In Figure 4.7 the use case diagram of the Insert
operation is shown. Analogously, the use cases of the other update operations are defined.
For each class in the current class diagram of the framework, which has to be made persistent
in the system, there is a corresponding use case in the Insert use case diagram. Each of these
use cases are complete by themselves and so can also be performed separately from the others.
The integrity constraints for inserting dependent objects, such as Metadata, which have to
be assigned to a particular Image and cannot exist alone, are not represented through the
use case diagram, but through the mandatory association with an image object shown in the
class diagram. Some use cases may extend others if certain conditions are met. This means
that the extending use cases are inserted in a specific point of the extended use case if the
condition is true. For example, the regions of an image can be inserted during the insertion
of an image object if a variable for segmenting the image {Segment Image} is set to true. An
image must have at least one image representation, therefore, the Insert RawImageRep use
case is mandatory included in the Insert Image use case through the �include� dependency.
The �include� stereotype of the dependency means that the included use case is always
included at a certain point of the including use case. An extending or included use case can
be invoked more than one time from an extended or including use case, respectively.
In order to provide a more detailed description for the use cases shown in the use case diagram,
an activity diagram for each use case of an operation is designed. In Figure 4.8 the activity
diagrams for the Insert Image use cases is shown. This activity diagram includes anchors to
the activity diagrams representing the included or extending use cases - Insert RawImageRep,
Insert Metadata and Insert Region. From the defined concrete activities (not anchors to other
activity diagrams) it is now possible to identify the single methods which have to be supported
by the classes in the class diagram in order to integrate the Insert Image functionality in
the model. These methods determine the object behavior. In some cases new classes have
to be added to the class diagram of the framework, such as the ImageStorageMechanism,
the SegmentationAlgorithm classes to represent an interface for certain functionality which
can have different interchangable implementations in an application. These classes are used
to provide the possibility to redefine and dynamically bind different implementations for a
particular functionality.
In order to enable the integration of different specializations for the segmentation of images
depending on the application requirements, the concept of template and hook methods is
adopted in the class diagram. The same kind of template-hook combination can be used for
the extraction of features in order to provide adaptation possibilities for these methods as well.
The usage of template and hook methods in framework architectures is described in [FPR00].

94 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

hallloooo

Condition: {Extract Features}
extension point: ExtractFeatures

Condition: {Segment Image}
extension point: SegmentImage

Condition: {Metadata}
extension point: Metadata

Condition: {Spatial Relationships}
extension point: SpatialRelationships

Condition: {Region Localization}
extension point: RegionLocalization

<<Extend>>
Insert RegionLocalization

<<Extend>>

<<Extend>>

<<Extend>>

<<Include>>

<<Extend>>

Insert RawImageRep

Insert Metadata

Insert Spatial Relationship

Insert Feature

Insert Region

Insert Image

CBIR User

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.7: Use Cases for the Insert operation

Figure 4.8: Activity diagram for the Insert operation

4.3. Modeling Functionality of CBIRS Components 95

Figure 4.9: Example of a separation pattern for the template and hook methods (from
[FPR00])

+storeImage()
+segmentImage()

<<framework>>
StillImage

+storeRegion()

<<framework>>
Region

+storeFeature()
+extractFeature()

<<framework>>
Feature

+storeRelationship()

<<framework>>
Relationship

+extractFeature()

<<framework>>
FeatureExtractionAlgorithm

+storeMetadata()

<<framework>>
Metadata

+storeRawImageRep()

<<framework>>
RawImageRep

+storeRegionLocalization()

<<framework>>
RegionLocalization

+storeImage()

<<framework>>
ImageStorageMechanism

+storeFeature()

<<framework>>
FeatureStorageMechanism

+storeRegion()

<<framework>>
RegionStorageMechanism

+storeMetadata()

<<framework>>
MetadataStorageMechanism

+storeRawImageRep()

<<framework>>
RawImageRepStorageMechanism

+storeRelationship()

<<framework>>
RelationshipStorageMechanism

+storeRegionLocalization()

<<framework>>
RegionLocalizationStorageMechanism

jkhfsdfhiweohf

0..*

0..*

0..*
1

0..*

1
1

0..*

1..*

1

is described by

contains

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.10: Integration of the insert functionality in the framework model

There are two possible construction principles, which can be applied for the template-hook
concept. The first is called the principle of Unification. In this case, the template and
hook methods reside in the same class and the adaptation of this construct is performed
by subclassing the template-hook class and overriding the hook method. In GiACoMo–
IRS, however, it is also possible to have different specializations (concrete subclasses) of a
segmentation algorithm for the same types of images. Therefore, the separation construction
principle is also adopted in the model, where the hook method, which needs to be adapted,
resides in a different class. The class containing the template method is associated to the
class containing the hook method. Through this directed association the template method
invokes the hook method. In Figure 4.9 an example of a separation pattern for template and
hook methods is shown.
The framework model classes with the integrated functionality for the Insert operation are
represented in Figure 4.10.
The behavior of the objects in the current context refers to the implementation of the func-

96 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

tionality of the system. It is expressed through the operations of classes. However, there are
no means to insure the consistence of the two behavior models automatically, because there
are (too many) possible ways to realize the behavior of the system. So this mapping has to be
done manually if new system functionality has to be added to the model. In the framework
model the workflow of the system operations as represented by the activity diagram is not
included. The system behavior shall be introduced in the platform specific model, because the
system functionality depends strongly on the implementation platform. Database systems,
for example, already support generic update and query functionality which does not have to
be implemented separately.

4.3.2 Queries

The Query operations are the part of the framework model where most variation points exist.
This is due to the fact that there are a lot of possibilities to model the retrieval functionality
of a system. The query model, also referred to as retrieval model, is created depending on the
retrieval task, which has to be realized. Different retrieval models can be defined for the same
data model in the same CBIR System. The retrieval models palette is quite rich, therefore,
some restrictions for the framework model had to be met in this thesis. First of all, the kinds
of query tasks supported by the framework model are determined as shown in Figure 4.11.
The model supports similarity queries, based on global features, local features, meta data and
structure of the images and the combination of these, as well as exact match queries on the
latter. Furthermore, the metric and data mining approaches for image similarity retrieval are
chosen to be supported by the model. The metric retrieval approach is one of the most used
in the practice. The data mining approach, such as the classification of images, is especially
useful to derive high-level information from the low-level features. It should be mentioned
that these two approaches are represented in the model independently. This means that
combined queries using both retrieval approaches are not yet considered. The problem which
has to be solved before modeling combined queries is how to combine the different results. In
the case of information retrieval the result of the query is a ranked list of similar images and
in the case of a classification query, the result contains one or more names of categories, to
which the query image might adhere.
The representation of the information retrieval and data mining query operations in GiACoMo–
IRS is discussed below in more detail.

4.3.3 Modeling Retrieval Functionality

The main purpose of a content-based image retrieval application is to provide mechanisms
for accessing images based on a similarity evaluation. Therefore, part of the design process
of image retrieval systems is the design of the retrieval model, where the possible queries are
specified and the algorithms and data structures for processing these queries are determined.
These access mechanisms depend to a great extent on the application domain and the retrieval
tasks and thus they are part of the system with most variation points. In other words,
there are numerous ways to provide access possibilities to images, depending on the types of
queries, which have to be answered, the information retrieval approaches and the image data
abstractions (features) which have to be used. How these factors influence the design of the
retrieval model is shown in Figure 4.12. Existing similarity models for the visual information

4.3. Modeling Functionality of CBIRS Components 97

Query images
by metadata

U
se

r I
nt

er
fa

ce

Query images
by structure

Query images
by local feature

Query images
by global feature

k-nearest
neighbor

query

range
query

exact match
query

Figure 4.11: Query tasks supported by the framework model

retrieval have been summarized in [Bim99, VC02].
The image data abstractions and the retrieval tasks for the GiACoMo–IRS model are de-
termined in the previous section. At this point, another restriction has to be made for the
retrieval model design by choosing two concrete information retrieval approaches for the re-
trieval: the metric information retrieval approach and classification as a representative of the
data mining retrieval approaches.
In this section, extensions for the GiACoMo–IRS are defined which can support the modeling
of retrieval functionality, based on these two retrieval approaches.

4.3.3.1 Information Retrieval Approach - The Metric Model

The metric approach is based on comparing the feature representations of images in the
database with the ones of a query image, using a distance function. As a result the distances
representing the degrees of similarity for all the images in the database are returned. The
result can be assessed based on a k-nearest neighbor or range metric in order to return only
relevant images.
The modeling of Query operations is tackled analogously to the Update operations. The
query tasks from Figure 4.11 are represented as use case and activity diagrams in order
to determine the needed methods which have to be supported, and then to map them to
corresponding classes. A query is given as input for an image similarity query and is analyzed
to extract its structure in form of regions and relationships between regions, and its content
in terms of features. Additional meta data could be used to support the query processing.

98 Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

data model

retrieval
model
design

retrieval task
image

retrieval
approach

retrieval
model

Figure 4.12: Retrieval Model Design

In the framework model there are already functions defined for the extraction of the feature
representation, which have to be used during the Update/Insert of images. These can be used
to analyze the query image when formulating the similarity query.
The queries based only on global features or meta data, or only based on structure can
be processed in a relatively straightforward way using a suitable distance function for their
comparison. Thus, the framework model requires a distance calculation method in the cor-
responding classes - Feature, Metadata, Region respectively. Combined queries and local
feature queries, which require the combination of more than one feature and more than one
region in the similarity measure, need additional aggregation functions in order to combine
the distances from one or more features, or one or more regions. If we consider an image
database with a set of images, where each image I has a set of regions:

RI = {ri : i = 1..l}

Regions can be salient objects, image regions with homogeneous texture or color or simply
blobs of any shape. Each region is represented by a set of features:

Fri = {fk
ri : k = 1..n}

Different types of features can be associated with an image region, such as color histogram,
bounding box of the region, associated names of concepts etc. If we have a query image Q,
then the query would also be represented by the set of regions of the query image and their
corresponding features:

RQ = {rj : j = 1..m}, Frj = {fl
rj : l = 1..n}

In order to find all similar images of the query image in the database we have to compare the
query image to each database image and derive the similarity between the query image to the
database image. The similarity is calculated through its opposite - the distance between the
images. The distance D between the two images can be represented by the distance of the
region(s) of the images as follows:

4.3. Modeling Functionality of CBIRS Components 99

D(I, Q) = D(RI , RQ)

Where the distance between the regions can be represented by an aggregate function f on
the distances between the feature sets, representing the regions:

D(RI , RQ) = fi=1..l,j=1..m(d(Fri , Frj))

The function f has to combine the distances between multiple regions of the query and the
target image. Depending on the application this function can have different semantics, e.g.,
- it can simply check if for each region of the query image a region in the target image exists
where d(Fri , Frj) ≤ ε or - calculate the needed transformations, which need to be performed
on the query regions to receive the target regions. In this function, additional factors can be
considered, such as the weights of the regions, the number of regions in the query and in the
target image. Spatial relationships between regions, reflecting the structure of the image can
also be integrated in the similarity measure.
The distance between a region i of the query image and a region j of the target image is an
accumulating function g on the basic distances between the single features of a region:

d(Fri , Frj) = gk=1..n(δfk
(fk

ri , fk
rj))

The function g has to accumulate the distances between different types of features. If the
different types of features can be represented in the same feature space, then the function g
can be the weighted sum of all single feature distances. The function g represents the distance
between two regions in terms of their features. The basic function δ represents a distance
function for a feature space. It is defined only for feature values of the same feature type.
In Figure 4.13 the integration of the metric approach methods and classes for the “Query
images by local features” use case in the framework model is demonstrated. The class diagram
also depicts the classes and methods responsible for the image segmentation and feature
extraction.
The feature specific distance functions are defined as methods of the Feature classes, on which
they are applied. The aggregate distance functions for combining the distance measures of
different features or regions are defined in the parent class in the image data structure hierar-
chy. Since different kinds of distance functions exist, e.g., Manhattan, Euclidean, Hamming
distance etc., in this case, we also choose the template-hook method combination approach to
define the distance measure functions. This approach requires overriding the hook methods
or deriving their classes to provide adaptation possibilities. The combination of features or
other characteristics of the images to perform a query requires the introduction of weights for
the participating partial queries. In many applications these weights are empirically prede-
termined, but they can also be acquired from the user during the query formulation process.
Therefore, we leave these outside the framework model.
The same adaptation mechanism as the one for the adaptation of the insert functionality can
be applied.

4.3.3.2 Data Mining Approach - Classification

Another approach for retrieving image data offer data mining methods. There are numerous
definitions for Data Mining in the literature, which describe it as the process of finding

100Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

+storeImage()
+segmentImage()
+compareByLocalFeaturesWithAnotherImage() : CBIRSFloatType

<<framework>>
StillImage

+storeRegion()
+compareByFeaturesWithAnotherRegion() : CBIRSFloatType

<<framework>>
Region

+storeFeature()
+extractFeature()
+compareWithAnotherFeature() : CBIRSFloatType

<<framework>>
Feature

+storeRelationship()

<<framework>>
Relationship

+segmentImage()

<<framework>>
SegmentationAlgorithm

+getDistance() : CBIRSFloatType

<<framework>>
FeatureDistanceMetric

+getAggrFeatureDistance() : CBIRSFloatType

<<framework>>
FeatureDistanceCombiner

+getAggrRegionDistance() : CBIRSFloatType

<<framework>>
RegionDistanceCombiner

+storeRegionLocalization()

<<framework>>
RegionLocalization

+extractFeature()

<<framework>>
FeatureExtractionAlgorithm

+storeRawImageRep()

<<framework>>
RawImageRep

+storeMetadata()

<<framework>>
Metadata

efhefhewlsnfwökljw

0..*

1

1..*
1

0..*

1 0..*
0..*

1

0..*

is described by

contains

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.13: Class diagram of the “image insertion” and “query by local features” classes and
methods

Figure 4.14: Phases of the KDD process (from [FPSS96])

patterns in data sets and dependencies between these data. In [FPSS96], Data Mining is
defined as one of the phases of the KDD (Knowledge Discovery in Databases) process. The
KDD process is the discovery of new knowledge based on the stored information. The phases
of this process comprise of the choice and cleaning of data, the application of Data Mining
algorithms and finally the interpretation and application of the knowledge (see Figure 4.14).
The KDD process can be applied for the classification of images. The data in this case is
represented by the extracted content abstractions from the images (in form of feature vectors).
The aim of the KDD process is to find some kind of feature vector patterns, which can be
used to assign the feature vectors and respectively the images to related classes.
The input parameters of the data mining algorithms are the data to be analyzed and the out-

4.3. Modeling Functionality of CBIRS Components 101

Settings

a) Training phase

b) Test phase

c) Application phase

Data

Model

Model Data

Test results

Model Row data

Results

Figure 4.15: Phases of the classification process (based on [SQL00])

put is a model for representing the found patterns in the data. The input data is represented
as a set of instances. Each instance is described by the values of its set of attributes. Each
attribute can have a different type, e.g. we can distinguish between continuous and discrete
types of attributes. Furthermore, the continuous attributes can be divided into interval and
ratio types, where ratio types have a fixed null point and interval attributes do not have any.
Discrete attributes can have only one value from a specified value set. Nominal and ordinal
attributes can be distinguished, where nominal attributes do not have an order set of values
(e.g., red, brown, yellow) and ordinal attributes do (e.g., 1<2<3<4).
There are basically two types of models for the representation of patterns, predicative and
descriptive. Descriptive models describe common characteristics of the data, whereas pred-
icative models allow conclusions and predict future developments. Examples of descriptive
Data Mining techniques are association rules and clustering, and for predicative techniques
examples are classification and regression.
Classification enables the assignment of objects (e.g.images), respectively instances (features)
to different predefined classes. Thereby the input instances have to be already assigned to
specific classes, which is represented by a special nominal attribute of the instances, called
the class attribute. The aim of the Data Mining algorithm in this case is the development of a
model, which can be used to assign a value to the class attribute of a new instance. According
to [HK00] the classification process can be split in two phases: training and testing. The
SQL/MM Standard part for data mining also introduces an application phase as shown in
Figure 4.15.
A generic classifier, which can be adapted for different classification algorithms, is provided
in GiACoMo–IRS using the concepts suggested in the work of Henning Masuch [Mas05].

102Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

<<framework>>
StillImage

<<framework>>
DMModel

<<framework>>
TestStatistics

+Class : CBIRSStringType

<<framework>>
TrainingInstance

+Class : CBIRSStringType

<<framework>>
TestInstance

+ModelClass : CBIRSStringType
+ModelOptions : CBIRSStringType
+Comment : CBIRSStringType
+Built : CBIRSDateType
+Created : CBIRSDateType
+Tested : CBIRSDateType
+Accuracy : CBIRSFloatType

+classify() : CBIRSStringType
+addTrainingInstance()
+addTestInstance()
+buildModel() : CBIRSBooleanType
+dropModel() : CBIRSBooleanType
+resetModel() : CBIRSBooleanType
+testModel() : CBIRSBooleanType

<<framework>>
CBIRClassifier

kjhfkjeshfhew

1

0..*

1

0..1

0..*

1

0..*

1

1

0..1

1

0..*

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.16: Generic classes for the classification of images

The aim of the classifier in [Mas05] is to integrate a classification application for identifying
scribes of music note images implemented in Java into the ORDBMS DB2. This classifier uses
the SQL/MM standard as a basis. The generic classifier provides operations corresponding to
each of the phases of the classification process as shown in Figure 4.16. Thus, these operations
have to be applied in a specific order in the application.
The attribute ModelClass of the framework class CBIRClassifier provides the possibility to
define the type of the classifier, for example decision tree, artificial neuronal network etc. Pa-
rameters for the classification process can be provided through the ModelOptions attribute.
The Comment attribute can be used to store any additional information useful for the user
of the classifier. The three timestamp attributes can be used to check if the classifer has been
trained and tested. The instances or the objects used for training and testing the classifier
are represented through associated classes, which are themselves associated to corresponding
StillImage objects. The developer should provide one additional attribute for each instance,
which shows the belonging of the instance to a specific class. After the test phase the accu-
racy of the model and test statistics are determined. They can be stored in the corresponding
attributes of the class. The classification model itself can have different structure depending
on the classifier type used and thus has to be subclassed from the developer. Analogously the
test statistics can have varying data structure.
The operations of the generic classifier include getter and setter methods for the attributes
as well as methods corresponding to the different classification phases as follows.

• initialization: The implicit constructor of the CBIRClassifier class has to provide values
for all the attributes needed to build a classification model, such as the TrainingIn-
stances, ClassType etc. The addTrainingInstance() and addTestInstance() methods
can be used to construct the set of instances from images in the collection.

• training: The operation buildModel() is called once for a certain set of training data.
It has to be repeated if the data has changed. It initializes the DMModel attribute of
the generic classifier.

• testing: The operation testModel() is used to determine the accuracy of the model. It

4.3. Modeling Functionality of CBIRS Components 103

+storeImage()
+segmentImage()

<<framework>>
StillImage

+storeRawImageRep()

<<framework>>
RawImageRep

+storeImage()

<<framework>>
ImageStorageMechanism

+storeRawImageRep()

<<framework>>
RawImageRepStorageMechanism

+segmentImage()

<<framework>>
SegmentationAlgorithm

+storeImage()
+segmentImage()

<<application>>
AppImage

+storeImage()

<<application>>
AppImageStorageMechanism

+storeImage()

<<application>>
AppImageDB2StorageMechanism

+storeImage()

<<application>>
AppImageOracleStorageMechanism

+storeRawImageRep()

<<application>>
URI

+storeRawImageRep()

<<application>>
URIStorageMechanism

+storeRawImageRep()

<<application>>
URIDB2StorageMechanism

+storeRawImageRep()

<<application>>
URIOracleStorageMechanism

rgregerg

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 4.17: Modeling functionality with the GiACoMo–IRS framework

makes use of the TestInstance attributes of the generic classifier.

• application: To classify new image instances the classify() operation has to be imple-
mented. The operation has to take care of the conversion of the StillImage object into
an instance for the classifier. Therefore, the structure of the TestInstance class can be
used.

It is assumed that each classifier requires a combination of attributes and operations which
strongly depend from each other. Therefore, all methods of the classifier have to be adapted
using the Unification pattern. If a new classification algorithm has to be modeled it should
be created in a new type of classifier, i.e. a new classifier class.

4.3.4 Implicit Object Behavior

Apart from application specific functionality, objects need to implement some implicit behav-
ior, which determines their life-cycle. Generally these methods comprise of (see also [Heu97]
Chapter 6): constructor/destructor, identity, equality(shallow, deep), assignment, copy (shal-
low, deep), equals. For each class in GiACoMo–IRS these operations are defined implicitly.

4.3.5 Instantiating the Framework

There are two mechanisms to adapt the functionality of the framework. First, the methods
of the abstract classes can be redefined in their subclasses and, second, the hook methods can
be redefined (implemented) by subclassing the hook classes. The first method is carried out
on the result of the data structure adaptation - the derived concrete classes can override the
abstract methods, and the second method requires deriving new classes from the hook classes
and redefining the required methods. Which one of the methods should be used depends on
whether the application should support different algorithms for the same functionality which
should be interchangeable in the application. In Figure 4.17 the adaptation of the framework

104Chapter 4. A Generic and Adaptable Conceptual Model for Image Retrieval

to support a concrete Insert Image functionality is shown. Only one segmentation algorithm
should be defined in the application. Therefore, the adaptation of the segmentImage() func-
tion is done by overriding the method segmentImage() in the subclass of StillImage. The
Unification pattern is applied in this case for adapting the functionality. The adaptation
of the storeImage() and storeRawImageRep() is done based on the Separation pattern. For
each hook class a specialization in the application domain is defined and the association be-
tween the hook-class and the template class is redefined in the application domain. Different
specializations of the hook-method for storing are provided by subclassing the hook class.

4.4 Summary

In this chapter, a modeling approach for creating application-specific CBIR models was pro-
posed. The chosen modeling strategy uses the UML framework model GiACoMo–IRS as a
starting point for deriving application-specific models. Both the structural and the functional
aspects of a CBIR system were reflected in the framework model. Guidelines and examples
for the instantiation of the different parts of the framework model were described. In com-
parison to existing CBIR system models, in this thesis not only an abstraction of generic
CBIR features was represented, but also a methodology for using these abstractions to create
user-defined models was described. A generation mechanism for the implementation of the
instantiated GiACoMo–IRS models is discussed in the following chapter.

Chapter 5

Mapping Rules for Generating
CBIRSs on Top of ORDBMSs

The implementation of the application on a specific platform is the next step for the devel-
oper after the conceptual modeling step. The automation of this step is the main topic of
this chapter. More specifically, the mapping of the PIM onto an implementation model is
discussed. The mapping of the model follows the meta model-based approach described in
Chapter 3. The mapping rules are defined based on the meta models and have to be applied
on the concrete domain specific models.
In this chapter, first, the meta models of the PIM and PSM are revisited. Both meta models
use extensions of UML to represent domain-specific or platform-specific concepts. These
concepts have to be defined clearly before the transformation rules can be elaborated. The
transformation rules for each of the PIM concepts are then represented. To what extent these
mapping rules can assure a correct transformation of the concrete models, i.e. preserve the
information represented in the PIM in the transformed PSM, is also examined. Therefore,
the mapping rules defined in this chapter are grouped according to their characteristics, such
as if the rule can be defined as a direct mapping or if there is more than one possibility for
mapping a PIM concept onto the PSM.

5.1 Modeling Deployment

The GiACoMo-IRS model employs only domain-specific concepts. No specific software archi-
tecture is considered. In model-driven development at this point, after the domain-specific
model has been defined and before it can be transformed into an application, a decision about
this architecture has to be made. This step resembles a kind of deployment step at which
the elements of the model have to be transformed or grouped into architectural components
(tiers). Since the choice of supporting one specific architecture consisting of two tiers is made
in Chapter 3, two new stereotypes have to be introduced in the model at this stage. The
stereotypes �persistent� and �application logic� have to be applied to classes in the model
in order to associate them to the specific tier. A class can be at the same time a �persistent�
and an �application logic� class. This would lead to the multiple participation of the class
in the transformation. An example of the deployment annotation of the model is shown in
Figure 5.1.

105

106 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

+ImageID : CBIRSIntegerType

+segmentImage()
+storeImage()
+compareByLocalFeaturesWithAnotherImage() : CBIRSFloatType

<<application>>
<<persistent>>

<<application-logic>>
eNoteImage

+RawImageID : CBIRSIntegerType
+ImageData : CBIRSBinaryType

+resizeImage()
+storeRawImageRep()

<<application>>
<<persistent>>

<<application-logic>>
eNoteRawImage+segmentImage()

<<application>>
<<application-logic>>

SegmentationAlgorithm1

dgdfgdfg

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 5.1: Example for the deployment annotation

These extensions do not convey domain-specific information to the PIM. Their role is to
support the transformation process. Therefore, the deployment model can be considered as
partly platform specific. In this way, the first step of the transformation process is undertaken.
In the annotated model it is now possible to identify which parts of the model have to mapped
to the platform for the persistence and which to the application logic platform. Before we
can define how these mappings have to look like, in the following section, the meta model
elements of the PIM which have to be mapped and the needed concepts of the PSM meta
model are reviewed.

5.2 Meta Models

5.2.1 PIM Meta Model

GiACoMo-IRS and its derivatives (application-specific models) are represented as UML class
diagrams, using some additional domain-specific stereotypes and data types. Therefore, the
meta model of the PIM can be regarded as an extended subset of UML. In this section, the
PIM meta model is summarized. A full list of the PIM meta model can be found in Appendix
A.

5.2.1.1 UML2.0 meta model

The UML meta model is defined in the UML2.0 Standard [UML07]. The standards consists
of two parts:

• UML2.0 Infrastructure: describes the architectural foundation of the UML2.0 Super-
structure. It consists of two basic packages Core and Profiles. Core consists of Basic,
Abstractions, PrimitiveTypes and Constructs packages and defines a library of meta-
classes which can be imported or specialized to define other meta models. The In-
frastructureLibrary is used to define meta meta models such as MOF as well as meta
models such as UML. In fact UML is an instance of MOF, so each UML metaclass is
an instance of an element in the InfrastructureLibrary. The package Profiles provides
means to adapt the meta models to particular platforms, such as EJB for example, or
domains, such as software modeling.

• UML2.0 Superstructure: defines the user-level constructs of UML, based on the foun-
dation language constructs, defined in UML2.0 Infrastructure.

Additionally, two auxiliary parts have been defined:

5.2. Meta Models 107

• Interchange: defines a format and methodology for transforming, storing, and exchang-
ing between applications of UML models. It defines the XML Schema for XMI.

• OCL: can be used to represent class invariants, pre- and post- conditions of operations
etc. It cannot be used to represent flow control or program logic.

UML2.0 concepts used for the modeling of user applications are defined in the part Super-
structure. For modeling an image database application, of main importance are the concepts
used for building structural diagrams, such as class and package diagrams. Some of these
concepts are:

• Class: A class describes a set of objects that share the same specifications of features,
constraints, and semantics. The features of a class are its attributes and operations.
Classes are used to represent the main elements of the digital image object types, their
attributes and their behavior. The behavior of the class also defines operations for the
creation, storing and deletion of objects. A class can also implement a global behavior,
available to the whole system.

• Associations: An association specifies a semantic relationship between instances of clas-
sifiers. The instances of an association are called links. It has at least two ends rep-
resented by properties, each of which is connected to the classifier of the end. An
association may represent a composite aggregation (i.e., a whole/part relationship). In
GiACoMo-IRS associations are used to represent different kinds of dependencies between
the classes composing a digital image type, such as part-of relationships, hierarchical
organizations or derivation.

• Generalization: A generalization is a taxonomic relationship between a more general
classifier and a more specific classifier. Each instance of the specific classifier is also
an indirect instance of the general classifier. Thus, the specific classifier inherits the
features of the more general classifier. Generalization plays an important role in the
GiACoMo-IRS model especially if it is used to derive the application model, because
the derivation process uses mainly Generalization for creating application specific classes
and associations.

• Interface: An interface is a kind of classifier that specifies a set of operations and con-
straints, which have to be implemented and fulfilled, respectively by each class imple-
menting the interface. Interfaces themselves are not instantiable. They are instantiated
indirectly by an instantiable classifier, which implements the interface. Although in-
terfaces are not used in the GiACoMo-IRS model, they should be considered in the
mapping rules because application specific models might consider using this concept,
for example in order to model multiple inheritance.

• Package: A package is used to group elements, and provides a namespace for the grouped
elements. GiACoMo-IRS is defined as a package in UML and thus can be imported or
merged with other UML packages. For example when deriving an application specific
model the GiACoMo-IRS package is imported into the new application specific package.

108 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

Figure 5.2: UML meta model part for Profiles (from [UML07])

5.2.1.2 UML Profiles

Tagged values, stereotypes and profiles represent an extension mechanism to the UML stan-
dard. They can be used to define specific domain dependent meta models. Stereotypes are
specific meta classes, tagged values are standard meta attributes, and profiles are specific
kinds of packages. In Figure 5.2 the UML meta model parts for UML profiles are depicted.

5.2.1.3 UML-F Profile

Since the GiACoMo-IRS model is a framework model it has to provide information about
how it can be used to derive application specific models. The UML-F Profile is used for
that. The UML-F Profile introduces the notion of tags, where no differentiation between
stereotypes and tagged values is made. In Figure 5.3 the different layers of tags are shown.
In GiACoMo-IRS and its derivatives the following tags are used:

• �framework�: applies to Class, Package, Interface and means that the element belongs
to the framework model

• �application�: applies to Class, Package, Interface and means that the element belongs
to the application-specific model

• �adapt-static�: applies to Interface, Class, Method, Generalization and shows that the
element can be adapted during design-time through subclassing.

• �template�, �hook�: apply to Class and Method and show which functionality has to
be adapted by subclassing the classes and redefining the methods. For more specificity
higher abstract-level tags such as �Unification-template� and �Unification-hook� or
�Separation-template� and �Separation-hook� can be used.

5.2. Meta Models 109

Figure 5.3: Layers of UML-F tag sets (from [PFR02])

These stereotypes, however, have no influence on the mapping process. They are used to
support the adaptation of the framework model to the needs of a specific application. Other
stereotypes of the UML-F Profile are not included in the model. The user could choose to
generate only the application classes without using the framework classes. This would require
that the mapping omits the classes with the stereotype �framework�.

5.2.1.4 Deployment stereotypes

Two new stereotypes �persistent� and �application-logic�, introduced in the beginning of
this chapter, tell the transformation algorithm to which kind of platform each element of the
PIM should be mapped. Thus, the algorithm can decide if a class has to be mapped to a
user-defined type and a typed table in the database or to a Java class, used for providing
application logic.

5.2.1.5 Domain Specific Stereotypes

UML extensions for a specific application domain can be defined in order to represent domain
concepts which have a fixed structure and can be parametrized in the concrete model. In
fact it can be argued that it makes more sense to define the GiACoMo-IRS model as UML
extensions. However, the structure of GiACoMo-IRS concepts, such as a digital image can
vary a lot depending on the application. Therefore, it is difficult to define a parameterizable

110 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

meta modeling concept for a digital image.
There are data structures in the GiACoMo-IRS model, which have a relatively clear and simple
structure and can be included as domain-specific extensions in the meta model. These are
basic data types, such as integer, float, boolean and complex data types, such as arrays. For
the definition of the UML Superstructure only four basic types have been defined: Boolean,
Integer, UnlimitedNatural, and String. New data types can be defined for a particular domain
based on the dataType classifier. The dataType classifier allows defining data types, which
are identified only by their value. For the image domain a set of domain specific data types
is defined, which can be used to represent the value ranges of attributes used to describe
the elements of a digital image object. The question arises if it is not better to model these
data structures as classifiers. However, the data types discussed in this chapter are uniquely
identified by their values and do not need to be represented as objects of a class, identified
by an OID.
The following stereotypes are used to make these data types part of the UML meta model.
�CBIRSDataType� is a stereotyped UML dataType. �CBIRSSimpleType� and �CBIRS-
ComplexType� are stereotyped �CBIRSDataType� elements. As specializations of the
�CBIRSComplexType�, �CBIRSStructType�, �CBIRSArrayType� and �CBIRSEnumTy-
pe� are defined and a corresponding notation (syntax) is given in Appendix A.2. Some of the
derived simple data types from �CBIRSSimpleType� are �CBIRSIntegerType�, �CBIRS-
FloatType�, �CBIRSBinaryType�. Derivates of the GiACoMo-IRS model can define addi-
tional data types, by deriving from �CBIRSSimpleType� or �CBIRSComplexType�. How-
ever, also new rules for the mapping of these data types have to be defined. A better way is
to derive user-defined types from �CBIRSStructType� if possible, because there is a corre-
sponding mapping rule predefined for these types.

The mapping rules have to be defined only for these UML elements and extensions used to
model the CBIRS, which are part of the GiACoMo-IRS model instances.

5.2.2 PSM Meta Model

The chosen architecture for the generated application consists of two tiers (persistence and
application logic), which can be implemented on different platforms. ORDBMSs as imple-
mentation platform offer the possibility to integrate both of these architecture tiers. This
platform can accommodate the persistence tier directly. In order to support the application
logic different than persistence management and exact-match queries, ORDBMSs rely on host
programming languages, such as Java and C. Therefore, the application logic elements of the
model should be mapped to the platform specific model for these languages. Mapping UML
concepts to Java is a relatively straightforward process, supported by most UML modeling
and code generation tools. This transformation is, therefore, not the focus of the current
discussion. In an ORDBMS environment the functionality implemented in a host language
is invoked from the database query language, and therefore, the interfaces of the application
logic have to be registered as stored procedures or user-defined functions. The latter represent
the bridge between the persistence tier and the application logic tier PSMs.
The platform specific meta model is in the current case predetermined by the SQL standard.
In order to allow the adaptation of the implementation on a modeling level this meta model
has to be represented in a form, which can be used by the developer for modeling. Therefore,

5.2. Meta Models 111

a UML-Profile for SQL is needed. As mentioned in Chapter 3 there is still no standard
UML profile for SQL databases. Therefore, a compilation of the Rational’s Data Modeling
Profile and Scott Ambler’s UML extensions is proposed in this thesis for the purely relational
parts of the SQL:2003 standard. For the required object-relational SQL:2003 concepts UML
extensions have been defined using partially the work of Marcos et al. [MVC04, VVCM07].
These UML extensions are based on a subset of the class diagram UML concepts, such as
Class, Package, Association etc. The aim of the current thesis, however, is not to define an
exhaustive UML-Profile for SQL, which can quickly become a very time-consuming task, but
to represent the concepts needed to implement the GiACoMo-IRS instances in a UML-Profile
for SQL. A full specification of the extensions is given in Appendix B.
The SQL:2003 standard remains mainly relational, although also object-oriented concepts
have been integrated to support more complex database applications, such as multimedia
databases. It is possible to combine both relational and object-oriented concepts in a database
schema. Therefore, both groups of concepts are included in the UML extensions for SQL,
proposed here.

5.2.2.1 SQL:2003 Relational Concepts

The following SQL concepts fall into this category: Schema, Table, Column, View, Table
Constraint, Relationship, Stored Procedure, Trigger. The relational concepts are almost
exhaustively covered by Rational’s and Scott Ambler’s UML Profiles for SQL. In Appendix
B these two Profiles are easily merged, because of their very slight differences. Deficiencies
of both profiles, such as the exact notations for Column, Table Constraint, Stored Procedure
and Trigger are compensated in the compilation represented in Appendix B.

5.2.2.2 SQL:2003 Object-Relational Concepts

Although the latest SQL standard has developed in the direction of object-orientation, which
should allow a direct representation of the SQL concepts in terms of the object-oriented mod-
eling language UML, there are still a lot of discrepancies between the two models. Therefore,
additional properties have to be added to the UML elements in order to represent the SQL
object-relational concepts. For example, the SQL standard differentiates between different
types of routines. A user-defined type has methods, which can be implemented in SQL or a
host language. There are system routines, such as stored procedures and user-defined func-
tions etc. The following object-relational concepts are included in the UML extensions of the
PSM:

• Structured Types, Typed Table: The concepts of Structured Types and Typed
Tables form the basis of the object-relational model. Structured Types have different
usage in the model and thus can be regarded as different concepts depending on the
role they play.

On the one side Structured Types can be used to define value types, which are
identified only by their value. They are used as data types for tuple table attributes
or for attributes of other Structured Types. Although using tuple tables in object-
relational design is not appropriate it is often used for workarounds. Marcos et al.
suggest to represent value-identified Structured Types as a stereotyped class �UDT�.

112 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

It can only be used to define value types (not classes). Value types are identified by the
values of their attributes. In this thesis, it is argued that for representing value identified
types it is more appropriate to use the dataType UML meta class (see SQL:2003 Data
Types below).

On the other side Structured Types can be used to define classes of objects identified
by their object IDs (OIDs). In this role, Structured Types can be used to define
Typed Tables. Marcos et. al suggest that both these concepts can be regarded as
one and use the �ObjectType� stereotyped UML class to represent the concept in the
profile. One problem of this generalization is that there also exist abstract Structured
Types, referred to as not instantiable, which cannot be used to build a Typed Table.
In order to distinguish between these two kinds of Structured Types, two specializa-
tions of the stereotyped class �ObjectType�, namely �NonInstantiableObjectType�
and �InstantiableObjectType� are introduced. The last two are the stereotypes which
can be used for representing an abstract Structured Type or a Structured Type in
combination with a Typed Table as one concept, respectively.

If an attribute of a Structured Type is also a Structured Type (analogously to an
“inline class”), which is not value-identified there are two possibilities for representation.
One possibility is to represent the attribute as a reference to an object of the Structured
Type, stored in another Typed Table. And the other possibility is to create the
Structured Type as an inline object of the parent Structured Type. The second
possibility can lead to redundancies, therefore, it is more appropriate to use references.

• Structured Type Attributes: OID-identified Structured Types correspond to the
concept of Classes in UML. Therefore, the Attributes of a Structured Type can
be represented as Properties of the corresponding stereotyped Class �ObjectType�.
As data types, all SQL specific stereotyped dataType Classifiers can be used (see
SQL:2003 Data Types below). A stereotyped Property �Attribute� can be used to
represent the Attributes, whereby the explicit notation in the graphical representation
of this stereotype can be omitted.

Marcos et. al suggest to represent the REF, ARRAY and ROW type constructors (com-
plex data types) as stereotyped Properties. In this thesis, it is argued that these should
be represented as data types, so that it can be possible to nest them in one another, for
example, to define an ARRAY of REFs.

If the Structured Type is instantiable (used in combination with a Typed Table)
additional options and integrity constraints for Attributes can be defined. These
correspond to the Column Constraints defined in the relational concept Column.

Instantiable Structured Types can also assign constraints for the whole Typed Ta-
ble. These correspond to the relational concept Table Constraint.

• Structured Type Methods: A Method of a Structured Type is an SQL-invoked
routine. There are three kinds of Methods: SQL-invoked constructor Methods, in-
stance SQL-invoked Methods and static SQL-invoked Methods. All SQL-invoked
Methods are associated with a Structured Type, also known as the type of the
Method. Therefore, they are represented as operations of an �ObjectType� class of
a stereotype �Method� and have an attribute of type : enum {constructor, instance,
static}.

5.3. Mapping PIM onto PSM 113

• User-Defined Functions: A User-Defined Function is an SQL-invoked routine
whose invocation returns a value. Every parameter of a User-Defined Function is an
input SQL parameter, one of which may be designated as the result SQL parameter.

An SQL-invoked routine can be an SQL routine or an external routine. An SQL routine
is an SQL-invoked routine whose language clause specifies SQL. An external routine is
one whose language clause does not specify SQL. The routine body of an external routine
is an external body reference whose external routine name identifies a program written
in some standard programming language other than SQL.

Different SQL-invoked routines can have equivalent routine names. Two SQL-invoked
functions in the same schema are not allowed to have the same signature. Two SQL-
invoked procedures in the same schema are not allowed to have the same name and the
same number of parameters.

None of the existing UML Profiles for SQL consider the modeling of User-Defined
Functions. They can be represented similarly as Stored Procedures as a stereotyped
class �User-Defined Functions� containing only operations, corresponding to the User-
Defined Functions.

The type (SQL or external) of the routine is represented by an additional stereotyped
attribute of the operation.

• Structured Type, Typed View: A Typed View is based as a Typed Table on
an instantiable Structured Type. Therefore, it is represented as a stereotyped class
�TypedView�.

• Inheritance: Structured Types can be used to derive other more specific Struc-
tured Types in SQL:2003. Such derivation relationships can be represented as �Inhe-
ritance� associations.

• References: Relationships between different Structured Types are represented as
Attributes of type reference (�SQLRefType�) in SQL:2003. In the UML-based SQL
meta model a stereotyped Dependency �References� is used in addition to these
reference Attributes for better readability of the model.

5.2.2.3 SQL:2003 Data Types

In addition to the main modeling concepts of SQL, the SQL basic and complex data types
are defined as specializations of the UML dataType. These are listed in Appendix B.3. User-
defined types identified by their value can be derived from �SQLStructType�.

5.3 Mapping PIM onto PSM

In section 2.2.3 different approaches for representing the mappings between the PIM and PSM
are described. In this thesis, a textual description of the mappings is used in order to provide
a more exhaustive description of the transformation possibilities. This textual description
can be later formalized to be implemented as a transformation algorithm using the relational,
graph-based or structure based approaches, for example.

114 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

The UML class diagram of a CBIR system reflects the persistence and application logic levels
of the system. The persistence level classes are marked with the stereotype �persistent� and
the application logic classes and interfaces with the stereotype �application-logic�. Both
persistence and application levels of the system have to be integrated into an ORDBMS en-
vironment. Therefore, persistent classes have to be mapped onto database schema concepts,
whereas application logic classes onto host language (e.g., Java) concepts which encapsulate
user-defined functions or stored procedures. These user-defined functions and stored proce-
dures have to be at the same time registered in the database schema in order to be used in
SQL statements. Therefore, the operations of the application-logic classes directly associated
with �persistent� classes have to be mapped to the ORDBMS schema, as well. The mapping
rules defined in this chapter are only for the persistence classes. The application logic classes
shall be mapped to the corresponding programming language classes.
The classes having the stereotype �framework� in the CBIR PIM should not be mapped,
since they are only abstract classes helping the derivation of application specific classes. Only
�application� classes have to be implemented.
Database management systems based on the SQL:2003 standard support pure relational as
well as object-relational concepts which can be used separately, but also mixed to provide a
database implementation. In the mapping rules defined below the usage of object-relational
concepts for the implementation of the object-oriented conceptual model is pursued in order
to provide a more direct representation of the object-oriented concepts. There are, however,
cases where purely relational concepts have to be used in order to provide a workaround for
mapping object-oriented concepts, which are not directly representable in object-relational
databases, e.g., visibility of attributes, and overlapping generalization set classes.
The starting point of the mappings is the PIM meta model. Therefore, the mapping rules are
organized according to the extended UML meta model for CBIRSs.

5.3.1 Class

Two types of classes in the CBIR model, which have to be mapped to the SQL model can be
distinguished, persistent and application logic classes.
Persistent classes represent classes, the instances of which have to be stored persistently in
the database. Such classes correspond to the Structured Types in SQL:2003. In order to
be able to create objects of a class and make them persistent in the database we need to define
an extension of the Structured Type in form of a Typed Table. Therefore, the default
mapping of a UML class in SQL:2003 is an �InstantiableObjectType�. Abstract classes
cannot be used to create instances of these classes, so they cannot be associated to a table or
be used to create a typed table. Their purpose is to enable the specialization of other classes
through inheritance. These classes also have a counterpart in the SQL:2003 model. They
can be represented as �NonInstantiableObjectType� classes in the SQL:2003 meta model.
The problem of non-instantiable Structured Types in SQL, mentioned in [CT06], is that
they cannot be used to construct Typed Tables or Typed Views. Therefore, it is also
not possible to represent the concrete subclasses of an abstract class through the view of an
abstract type. In [CT06] it is suggested that an abstract class is mapped onto an instantiable
type with an associated type view. If a Typed Table is used to represent the abstract
type a special integrity constraint must assure that the objects of the view are only objects
of the subclasses. However, it should be considered that the purpose of abstract classes is

5.3. Mapping PIM onto PSM 115

not to be used instead of their subclasses, but to facilitate the definition of special classes.
Therefore, the mapping of the abstract classes onto a non-instantiable Structured Type
�NonInstantiableObjectType� is more appropriate.
Application logic classes, which have a direct association with a �persistent� class have
to be represented in terms of routine containers, i.e. as User-defined Functions or Stored
Procedures in the SQL:2003 Profile. Thus, each class should be mapped onto a routine
container class: �Stored Procedures� or �User-Defined Functions�. The attributes of the
class are left out, since they do not play any role for the registration of the routines in
the database. Only the operations which correspond to the single routines are mapped.
By default, the �application logic� class is mapped onto a �User-Defined Functions� class
because it is closer to the semantics of an operation than stored procedures, so almost no
restructuring of the operation is required. Each of the operations is represented by default
as an �external routine�. The developer can change the mapping to a �Stored Procedures�
class and assign �SQL routine� for the type of the routines, instead of �external routine�.

5.3.1.1 Property (Attribute)

A persistence class property is mapped to an �Attribute� of an �InstantiableObject-
Type� or a �NonInstantiableObjectType� class. The modifiers of a property have also to
be mapped to the modifiers of �Attribute�. Not all of these can be mapped directly to
corresponding concepts in the SQL:2003 model. Below some suggestions for workarounds are
discussed.

• Visibility (public, private, protected): In the object-relational model all attributes of
a Structured Type are public, therefore, an additional concept is needed in order to
preserve this information coming from the PIM. The workaround suggested in [CT06]
is to use different Typed Views for the Typed Table corresponding to the different
visibility types of attributes. Corresponding Structured Types for each Typed View
have to be defined. Integrity constraint have to be defined to assure that the objects in
the views are only objects from the Typed Table and that the changes of the objects
in the view are propagated to the Typed Table.

• Derived: The presentation of derived attributes in SQL:2003 is possible through Meth-
ods, which can be invoked in SQL for on-the-fly calculation of the derived attributes
or through Triggers in case that the attributes need to be stored in the database and
changed automatically upon changing their source attributes. Thus, there are two op-
tions for mapping derived attributes. The default option is mapping the attribute to
a method of the class representing the Structured Type. If the developer decides to
store the attributes, these have to be mapped to attributes of the Structured Type,
in combination with a method to calculate the attribute and an update Trigger for
the table containing the instances of the given type. If the derivation function is more
complex and requires to be implemented in a host language additionally a Stored Pro-
cedure or a User-Defined Function may need to be defined which can be invoked
from the Trigger.

• Name: The name of the property is simply mapped to a name of the �Attribute�.

116 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

• Property type: In case that the property type is a �CBIRSDataType� a property type
is mapped to a corresponding �SQLDataType�. If the property type corresponds to a
class then it is mapped to a �SQLRefType� of an existing �InstantiableObjectType�.

• Multiplicity: If the multiplicity value is bigger than 1 the set property modifiers (or-
dered, unique) have to be interpreted. Combining these characteristics different col-
lection types can be defined: Set (isOrdered=false, isUnique=true), OrderedSet (isOr-
dered=true, isUnique=true), Bag (isOrdered=false, isUnique=false) and Sequence (isOr-
dered=true, isUnique=false). In SQL:2003 there are only two collection types to map
the above: ARRAY and MULTISET. Set and OrderedSet do not have a direct cor-
respondent collection type in SQL since both collection types do not allow duplicate
values. Therefore, the relational concept Table has to be used. Set and OrderedSet
can be mapped to Tables with unique values of the Columns corresponding to the
attributes. An OrderedSet would require an additional index attribute in the table,
to store the order of the values. These tables have to contain an additional column
with a reference to the Structured Type instances stored in the Typed Table rep-
resenting the class. Bag can be mapped to a �SQLMultisetType� and Sequence to an
�SQLArrayType�.

• Default: An attribute of a Structured Type can have a default value, which is assigned
to the attribute if no other value is assigned to it during the instantiation of the class.
Therefore, this mapping is a direct mapping.

• readOnly: In order to represent readOnly attributes Read only views can be used,
analogously to the mapping of the Visibility modifier.

• union: Attributes whose values are built from the union of other attributes can be
represented as a derived attribute, i.e. through a Method or/and a Trigger.

• subsets property name: Attributes whose values are built as a subset of other attributes
can be represented as a derived attribute, i.e. through a Method or/and a Trigger.

• redefines property name: Redefined attributes have to be defined as new attributes, the
inherited attributes corresponding to these have to be updated, when these attributes
are updated by a Trigger.

• constraint: Constraints are mapped to �ObjectType� Class Operations, used to repre-
sent Table Constraints or Column Constraints. If the constraints are none of the
above, they can be mapped to a combination of a trigger and function.

In the case of database design it is important to be able to define attributes used for the
identification of the instances of a class (Keys, OIDs etc.). In the standard UML conceptual
model we have no direct means of achieving this. OIDs are implicit in the conceptual model.
Therefore, the default mapping is also implicit, i.e the OIDs are system generated.

application logic class properties: The properties of �application logic� classes are
mapped onto Java class attributes, retaining the visibility modifier and mapping to the host
language (Java) data type system. Application logic classes, which are mapped to routine
containers, e.g. Stored Procedures do not have any attributes.

5.3. Mapping PIM onto PSM 117

5.3.1.2 Operation

Persistence class operations are mapped to stereotyped operations of �InstantiableOb-
jectType� or �NonInstantiableObjectType�, i.e. �Method�. Class operations also have
modifiers, similarly to properties, which have to be mapped correspondingly in the SQL:2003
model.

• Visibility (public, private, protected): In SQL:2003 all methods of a Structured Type
are public. Therefore, a solution with the help of views, similar to the same modifier
for properties has to be used.

• Name: The name of the operation is mapped directly to the name of a �Method�.

• Return type: The return type of the operation is mapped to a return type of the
�Method�. It can be an existing �SQLDataType�, or an �ObjectType�. The return
type can also have different multiplicity. In this case, the modifiers (ordered, unique)
have to be evaluated and the returned type has to be mapped to the corresponding
complex type or table.

• Redefines oper name: The operation name which is redefined by this operation can be
given directly as a modifier of the �Method�

• Query: This operation modifier can be mapped directly to the ‘reads sql data’ modifier
of a Method.

• Operation constraint: Operation constraints are pre- and postconditions for the oper-
ation. Postconditions can be mapped to CHECK Constraints of the �ObjectType�,
i.e. to �Check� operations of �ObjectType� - perhaps this can be used as a criteria
to choose between the two mapping possibilities. Preconditions, however, do not have
a direct counterpart in SQL:2003, and therefore, have to be implemented as part of the
Method.

• Parameter list: These are mapped directly to parameters of the operations of the �Me-
thod� of an �ObjectType� class.

Application logic class operations, which are associated directly with �persistent� classes
are mapped to operations of �Stored Procedures� or �User-Defined Operations� classes,
respectively.

5.3.2 Associations

Different types of associations between �persistent� classes have to be considered in the
mapping. In [DU04], [CT06] and [MVC04] the possibilities for mapping associations to object-
relational models have been described extensively. These mappings are summarized in the
following paragraphs.
The REF (Reference) data type in SQL:2003 is the main concept used for representing as-
sociations between objects in an ORDBMS. However, some additional concepts have to be
used in order to represent different kinds of associations. A reference type can have properties
specifying its scope (to which table it refers), and referential integrity constraints: references

118 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

are [not] checked, on delete (no action, set null, cascade). Currently we have defined the
possibility to define only one table per structured-typed, so the scope value does not have to
be set explicitly.

5.3.2.1 Unidirectional, Bidirectional Associations

In the CBIR meta model used in this thesis, associations between classes can be represented
as uni- or bidirectional. By default, bidirectional associations are used.

• bidirectional associations: Reference types in the classes on both ends of the association
are used to represent the bidirectional association in ORDBMSs. In order to preserve
the consistency of the reverse relation, each time one of the relations is changed its
reverse has to be updated. Therefore, Triggers and optionally Stored Procedures
can be used. Triggers and Stored Procedures can be used as integrity preserving
mechanisms as well. Referential Integrity has to assure that an instance which is ref-
erenced by another one is not deleted or that an instance cannot reference an instance
which does not exist.

• unidirectional associations: In order to represent unidirectional relationships it is enough
to include a reference in the class which has to be used as a starting point to traverse
the relation. Referential integrity can be enforced with the same mechanisms.

5.3.2.2 Different Cardinalities of Associations

• Max = 1 - A single reference type is sufficient.

• Max > 1 - A collection type, such as an �SQLArrayType� of a �SQLRefType� can
be used.

• Min = 0 - In this case additional mechanisms for preserving the cardinality constraint
are not required.

• Min > 0 - A not null constraint for the reference type in the typed table has to be
introduced if the reference is not a collection. Respectively, in the UML Profile an
attribute Nullable:boolean has to be set to false for the reference type property. In case
that the reference is a collection, a Trigger has to be used to assure that the elements
of the collection of references is not NULL and a CHECK constraint, �Check�, can be
used to prove that the collection is not empty (as suggested in [CT06]).

5.3.2.3 Recursive, N-ary Associations

Recursive associations are mapped as the above, only in this case the references are represented
in the same class which is referenced.
An N-ary association is represented similarly as an association class as suggested by [DU04].
An association table is used, which includes the references to all the structured types partici-
pating in the N-ary relationship. And in each of the participating structured types a reference,
or a collection of references to the association table have to be defined.

5.3. Mapping PIM onto PSM 119

5.3.2.4 Aggregation, Composition

In [MVC04] these association kinds are represented by an array of references in the Struc-
tured Type, representing the whole, which contains different parts. To assure that the
components of the whole are also deleted upon deletion of the whole, in the case of a compo-
sition Triggers can be used.

5.3.2.5 Association Class

An Association Class can be seen as an association that also has class properties, or as a
class that also has association properties. It not only connects a set of classes but also defines
a set of features that belong to the relationship itself and not to any of the classes. The
specialization and refinement rules defined for class and association are also applicable to an
association class. It should be noted that in an instance of an association class, there is only
one instance of the associated classifiers at each end, i.e. from the instance point of view, the
multiplicity of the associations ends are 1.
There are different possibilities to represent association classes.

• ROW type: The reference and the association class attributes are represented as a
�SQLRowType� attribute of the �ObjectType� class.

• Structured type: The references and the association class attributes and methods are
represented as a Structured Type and a Typed Table, which serves as a reference
table.

Attributes of an association are represented through an association typed table according to
[DU04]. The Structured Type of the table consists of two attributes for each referenced
structured type and the attributes of the association. In this way, also operations of the
association class can be represented.

5.3.2.6 Association Qualifier

An attribute related to an association represents an end of the association. The type of
attribute is the type of the end of the association. When an attribute is an association end,
its value or values are related to the instance or instances at the other end(s) of the association.
The association type is represented as a typed table. This Typed Table includes then the
association attributes and two reference types corresponding to references to the typed tables
objects participating in the association.
Qualified associations represent a concept similar to weak entities in the Entity-Relationship
model. In [DU04] it is suggested to represent weak entities by including the identifying
attributes from the parent class in the attributes of the child class as primary keys.

5.3.3 Dependency

In the object-relational model there is no counterpart concept for this kind of relationship.
And since it does not have any runtime impact and does not concern the instances of the
model elements it does not have to be mapped to the implementation-specific model. The

120 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

same holds for the two subtypes of Dependency, Usage and Realization. These are concepts
which have impact only on the model, but not on the application. They can be used for better
understanding of the implementation, but do not influence its execution.

5.3.4 Generalization, GeneralizationSet

SQL:2003 support inheritance of user-defined types and of typed tables. So these kind of as-
sociations can be mapped directly as inheritance associations between �ObjectType� classes.
Whereas an inheritance association between �InstantiableObjectType� implies an inheritance
association between the typed tables if the user-defined types are instantiable.
The different constraints of a GeneralizationSet can be represented as follows:

• disjoint: The standard inheritance in SQL results in disjoint sets.

• overlapping: The object-relational model does not provide a direct representation for
overlapping specialization of classes. A specialization in an object-relational schema is
always disjoint. In order to represent these classes, a general solution to the problem is
suggested in [CT06]. The intensions of the classes of the class hierarchy can be directly
mapped to ObjectTypes. The extensional specialization has to be resolved by using
a help Table, in which the OIDs of objects from the overlapping classes, representing
the same object in the real world are stored correspondingly.

• complete: This condition has to be realized with workarounds for a hierarchy of typed
tables. For example, as suggested in [CT06] the insertion of objects in the superclass
can be forbidden by a View or access rights. Another possibility is to use a Trigger
to assure the consistency between the super and subclasses.

• incomplete: In this case no additional workarounds are needed.

The concepts difficult to map are shown in Figure 5.4 in italic. The example shows an
inheritance hierarchy for the eNoteHistory application. Two types of images are used in the
application, the IncipitImage which represents the opening notes of a music piece in a standard
contemporary notation, and the ManuscriptImage which represents a scanned page of a music
manuscript. Each of these different image types has different meta data assigned to it. In
order to map the overlapping and complete generalization set the workarounds mentioned
above have to be applied.
Multiple inheritance is also a concept which is not supported in ORDBMS. In [CT06], the
authors propose an approach to transform multiple inheritance, which can be used in UML
models, into simple inheritance. The approach is based on redefining one of the superclasses of
the multiple inheritance as the complement of the subclass with respect to the superclass. The
subclass thus becomes independent of the redefined superclass. If the redefined superclass has
other subclasses, these have to be redefined also. The complements of these subclasses have
to be respectively defined as subclasses of the detached subclass of the multiple inheritance.
The simple inheritance hierarchy can be mapped to ObjectTypes. The original classes can
be represented by Typed Views.

5.3. Mapping PIM onto PSM 121

eNoteMetadata eNoteImage

IncipitImage

ManuscriptImage

IncipitMetadata

ManuscriptMetadata

sdfsf

{disjoint, partial}{overlapping, total}

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 5.4: Mapping problems with inheritance hierarchies

5.3.5 Interface

An interface is a kind of class that represents a declaration of a set of coherent public features
and obligations. The obligations that may be associated with an interface are in form of
various kinds of constraints (such as pre- and post-conditions) or protocol specifications, which
may impose ordering restrictions on interactions through the interface. Since interfaces are
declarations, they are not instantiable. Instead, an interface specification is implemented by
an instance of an instantiable class. Note that a given class may implement more than one
interface and that an interface may be implemented by a number of different classes. Interfaces
can be used to specify behavior global to the system. They need to be implemented by classes
in order to become instantiable. An important feature is that a class may implement more
than one interface, so multiple inheritance is allowed.
Interfaces are not part of the current model. If they are used in any instances of GiACoMo-IRS
they can be mapped to �NonInstantiableObjectType� classes.

5.3.5.1 InterfaceRealization

An InterfaceRealization is a specialized Realization relationship between a Class and an In-
terface. This relationship signifies that the realizing class conforms to the contract specified
by the Interface.
If used in an instance of the GiACoMo-IRS model it can be mapped as an inheritance asso-
ciation in the SQL:2003 model.

5.3.6 Package

A package groups other elements logically, therefore, it corresponds to the SQL notion of a
database schema. It is, thereafter, mapped to a stereotyped package �Schema�.
However, Relationships between schemata cannot be represented directly in SQL. Schemas in
SQL can always access other Schemas when the corresponding right are set. Therefore, the
Package Merge and Package Import relationship types can be mapped to access privileges
for schemas.

122 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

5.3.7 DataType

There are two types of CBIRS data types which have to be considered in the mapping. The
�CBIRSSimpleType� can be mapped almost directly to corresponding �SQLBasicDataTy-
pe� derivatives as shown in Table 5.1. The derivatives of �CBIRSComplexType� which at
the moment are only two can be also mapped relatively straightforward. The �CBIRSArray-
Type� can be mapped to an �SQLArrayType�, and any derivative of �CBIRSStructType�
defined in an instance of the GiACoMo-IRS model can be mapped to a derivative of a �SQL-
StructType�.

CBIRS Simple Data Type SQL:2003 Data Type

�CBIRSIntegerType� �SQLSmallIntType� or �SQLBigIntType� or
�SQLIntegerType�

�CBIRSBooleanType� �SQLBooleanType�

�CBIRSCharacterType� �SQLCharType� or �SQLVarCharType�

�CBIRSStringType� �SQLVarCharType� or �SQLClobType�

�CBIRSFloatType� �SQLFloatType� or �SQLNumericType� or
�SQLDecimalType�

�CBIRSBinaryType� �SQLBitType� or �SQLVarBitType� or
�SQLBlobType�

�CBIRSEnumType� �SQLDomainType�

Table 5.1: Mapping of �CBIRSSimpleData� derivatives to SQL:2003

5.3.8 Applying the Mapping Rules

The mapping rules have to be applied in a specific order in an algorithm to assure the
existence of elements needed for the creation of others. The sequence of applying these rules
is as follows.

1. At first all Data Types used in the conceptual model should be mapped to their coun-
terparts in the SQL:2003 model. Thereby, derivatives of �CBIRSStructType� would
require the creation of new �SQLStructType� subclasses.

2. Subsequently, all �persistent� classes, which are not subclasses of other classes should
be mapped to �InstantiableObjectType� and �NonInstantiableObjectType�, respec-
tively. The properties and operations of these classes should be mapped simultaneously.

3. The different kinds of associations between these first level classes should be mapped
to reference attributes of the existing �InstantiableObjectType� and �NonInstantia-
bleObjectType� classes.

4. For each class which has subclasses, the whole subclass hierarchy should be mapped one
after the other.

5.4. Quality of the Transformation 123

5. Next, the new associations created by the mapping of the subclasses should be mapped
to additional attributes of the �InstantiableObjectType� and �NonInstantiableObject-
Type� classes.

6. The �application-logic� classes directly connected to �persistent� classes should be
mapped to �User-Defined Functions� classes and their operations to �User-Defined
Function� operations of these classes.

7. Finally, all �application-logic� classes can be transformed in the host language meta
model.

This sequence for applying the transformation rules reflects the specifics of the SQL data
definition language.

5.4 Quality of the Transformation

The requirements towards the transformation rules are defined in section 3.2.3.2. It is induced
that in order to achieve a good quality of the transformation for each concept of the conceptual
model a suitable mapping onto the platform specific model should be found. Mappings, which
lead to the presentation of different conceptual model elements as one and the same target
model element should be avoided. In order to evaluate the quality of a transformation, based
on the mapping rules defined in the previous section the rules are classified in the following
groups, which are used to qualify the result of the transformation.

5.4.1 Direct mappings

These mappings, illustrated with the dotted lines in Figure 5.5, represent trivial mapping
rules, which have been also discussed by existing mapping approaches [CT06, DU04].
A �persistent� UML Class has to be transformed into a Structured Type and a corre-
sponding Typed Table in the terms of the SQL:2003 standard. Although the result of the
mapping comprises of two object-relational concepts, they can be regarded as one complex
concept, therefore, the mapping is considered as a direct mapping.
The mapping of Classes does not conclude with the transformation of the Class concept.
A Class is represented through its Properties and Operations. These can be mapped di-
rectly to Attributes and Methods of the Structured Type, respectively. These features in
both PIM and PSM models have additional characteristics which have to be specified. These
details can also be partially directly mapped, such as mapping a Property of a �CBIRS-
BooleanType� to an Attribute of a �SQLBooleanType�. Some of these characteristics in
the PIM, however, do not have direct counterparts in the PSM, and therefore, workarounds
have to be used in order to provide a suitable mapping.

5.4.2 Not-directly-mappable concepts

As mentioned above not all of the concepts defined in the conceptual model can be mapped
directly onto the object-relational model (e.g. property modifiers, such as private and public).
These elements cannot be omitted during the mapping if it has to be made sure that each

124 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

PIM metamodel PSM metamodel

Figure 5.5: Metamodel mappings: direct mappings

PIM concept can be represented in the PSM. This is one of the requirements for preserving
the information capacity of the model discussed in section 3.2.3.2. A workaround based
on using Views has been suggested in the mapping rules to make the mappings of private
Properties of a Class possible. Applying workarounds, illustrated with the waved lines in
Figure 5.6, leads inevitably to two other classes of transformation rules listed below, multiple
transformation possibilities and transformation rules mapping different PIM concepts to the
same PSM concept.

PIM metamodel PSM metamodel

Figure 5.6: Metamodel mappings: not-directly-mappable PIM metamodel concepts

5.4.3 Multiple mapping possibilities

Sometimes there are multiple ways to represent conceptual elements in the logical model as
illustrated in Figure 5.7. For example, an Association Class can be represented as an at-
tribute of �SQLRowType� or as an �InstantiableObjectType�. This requires the developer’s
decision and/or the usage of default values during the automatic mapping process. A decision
can also be made by the mapping algorithm if optimal mapping rules, based on heuristics or
costs, can be identified. Multiple mapping possibilities would not lead to loss of information
during the transformation. During one transformation process only one of these possibilities
is used. The challenging question is which criteria can be used to decide which one of the
transformations will lead to a more efficient application.

5.4.4 Mappings resulting in the same PSM Concept

This type of transformation rules, illustrated with the dotted lines in Figure 5.8, results mostly
from the usage of workarounds for mapping PIM concepts which do not have direct counter-
parts in the PSM. In workarounds, PSM concepts which are already used to map a certain

5.4. Quality of the Transformation 125

PIM metamodel PSM metamodel

Figure 5.7: Metamodel mappings: multiple mapping possibilities

PIM concept in a direct mapping are used again to represent other PIM concepts, which are
not directly mappable. One example of such a mapping is the mapping of Abstract Classes
and Interfaces. Both of these concepts are mapped to a �NonInstantiableObjectType�.
Another example is the creation of �Methods� for representing Class Operations and for
Derived Attributes.

PIM metamodel PSM metamodel

Figure 5.8: Metamodel mappings: mappings resuting in the same PSM metamodel concept

The problem which arises from such kind of mappings is that it is most likely that the
differentiation between two different PIM concepts will be lost if they are represented by the
same PSM concept. This makes the reverse design step, i.e. the derivation of the PIM from the
PSM model, difficult. Reverse engineering is, however, not required by the MDSD paradigm.
The main principle in this development approach is that the changes in the implementation
should be made in the model and propagated through model-to-model and model-to-code
transformations to the implementation. A more important undesirable consequence is that
there is a possibility that some of the semantics of the mapped concepts might be lost.
This will be the case if different PIM concepts cannot be used interchangeably, i.e. do not
have an equivalent semantics, in the conceptual model but at the same time are represented
as the same concept in the PSM. In order to prove if the suggested mapping rules which
transform different PIM concepts to the same PSM concepts lead to such problems, the
semantic equivalence of the transformed PIM concepts is analyzed below. The PIM concepts
are grouped according to the PSM concepts to which they are mapped.

5.4.4.1 Instantiable Structured Type + Typed Table

Structured Types are the direct counterpart of Classes in SQL. Association Classes
and Association Qualifiers can be represented through the same PSM concept as well.
Association Classes are used to assign properties and operations to an Association, which

126 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

cannot be assigned to any of the Classes participating in the Association. In [GR98] the
authors also give a semantically equivalent presentation of an Association Class using a
Class and a ternary Association, as shown in Figure 5.9 with the following constraint:

C->forAll(c |
c.ra->size=1 and c.rb->size=1 and
C->forAll(c | (c.ra=c.ra and c.rb=c.rb) implies c=c))

Figure 5.9: Equivalence rule for association class (from [GR98])

This constraint can also be represented as cardinality of 1 on the side of C. The cardinality of
1 means that each object of C is assigned to a unique pair of A and B objects. An equivalent
representation of an Association Qualifier is created using an Association Class as shown
in Figure 5.10.

Figure 5.10: Equivalence rule for association qualifier (from [GR98])

The corresponding constraint is:

A->forAll(a |
a.ac->forALL(ac |

a.rb->select(b |
b.ac->exists(ac| ac.q=ac.q and ac.ra=a))->size>=l

and
a.rb->select(b |

b.ac->exists(ac| ac.q=ac.q and ac.ra=a))->size<=h))

This constraint can also be replaced by cardinalities at the side of the dependent Class, in
this case B.
Thus, Classes, Association Qualifiers and Association Classes can be used interchange-
ably in the conceptual model, and therefore, their mapping onto the same PSM concept will
not lead to loss of semantical information as long as the respective constraints are also im-
plemented.

5.4. Quality of the Transformation 127

5.4.4.2 Non-instantiable Structured Type

This PSM concept is used to represent an Abstract Class and an Interface from the PIM
model. An Interface, however, can also be represented by an Abstract Class containing
only abstract operations in the conceptual model.

5.4.4.3 Typed View

Typed Views are used to encapsulate private, protected Attributes and Methods of
Classes and to represent readOnly Attributes of Classes. Additionally, Typed Views
are used to represent overlapping and complete GeneralizationSets. In the last case the
Typed Views are defined over more than one Structured Type, whereas in the first case
these are defined over only one Structured Type. Therefore, although both PIM concepts
have completely different semantics, it is possible to differentiate between the mappings of
these two different concepts in the implementation model at an instance level, in an instance
of the PSM. The properties of the Typed View instances, such as the number of Struc-
tured Types used for constructing the Typed View allow to unambiguously distinguish
the Typed Views representing public and readOnly Attributes and Methods from the
Typed Views representing a GeneralizationSet.

5.4.4.4 Method

The counterpart of Methods in the PIM are Operations of Classes. However, they are
one of the ways to represent also Derived Attributes, Union Attributes and Subset
Attributes. In UML, Operations can also be used to model such kind of calculated At-
tributes.

5.4.4.5 Trigger

Triggers in combination with Attributes and optionally with a User-Defined Function
or Stored Procedure are an alternative way to represent Derived Attributes, Union
Attributes and Subset Attributes. This combination is also used to represent Redefined
Attributes. Additionally, Triggers have to be defined for representing Property Con-
straints, which are not Check, Primary Key, Foreign Key or Unique constraints. Finally,
Triggers are also used to express consistency and referential integrity rules when mapping
different kinds of Associations. Thus, there are four groups of PIM concepts which are se-
mantically completely different, and therefore, a way to distinguish them in the PSM should
be sought. Here, the properties and structure of the Triggers are used to differentiate be-
tween them. Examples for concrete Triggers, i.e. patterns of Triggers, for each of the PIM
concepts are given below.

Derived Attributes, Union Attributes and Subset Attributes:

These Triggers are invoked when an Update operation on an attribute of a table takes
place and their action changes the value of another attribute of this table using the updated
attribute in the calculation.

128 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

+Name : string
+BirthDate : Date
+ / Age : int

Person

Date

CREATE TRIGGER SetAge
AFTER UPDATE OF BirthDate
ON Person
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Person SET Age = CURRENT_Date() - n.Birthdate WHERE n.Name=o.Name
END ATOMIC;

+attribute : int

Class7

+attribute1 : int {redefines attribute}

Class8

CREATE TRIGGER UpdateAttribute
AFTER UPDATE OF attribute1
ON Class8
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Class7 SET attribute = attribute1 WHERE ...
END ATOMIC;

CREATE TRIGGER CheckAttribute
AFTER UPDATE OF attribute
ON Class9
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
IF constraint THEN
UPDATE Class9 SET n.attribute = o.attribute WHERE ...
END IF
END ATOMIC;

CREATE TRIGGER ConsistencyRef
AFTER UPDATE OF RefB
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = n.OID WHERE OID=RefB
END ATOMIC;

CREATE TRIGGER IntegrityRef
AFTER DELETE
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = NULL WHERE OID=o.RefB
END ATOMIC;

TableA TableB

+attribute : int {constraint}

Class9

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 5.11: Example of a Trigger for a Derived Attribute

+Name : string
+BirthDate : Date
+ / Age : int

Person

Date

CREATE TRIGGER SetAge
AFTER UPDATE OF BirthDate
ON Person
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Person SET Age = CURRENT_Date() - n.Birthdate WHERE n.Name=o.Name
END ATOMIC;

+attribute : int

Class7

+attribute1 : int {redefines attribute}

Class8

CREATE TRIGGER UpdateAttribute
AFTER UPDATE OF attribute1
ON Class8
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Class7 SET attribute = attribute1 WHERE ...
END ATOMIC;

CREATE TRIGGER CheckAttribute
AFTER UPDATE OF attribute
ON Class9
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
IF constraint THEN
UPDATE Class9 SET n.attribute = o.attribute WHERE ...
END IF
END ATOMIC;

CREATE TRIGGER ConsistencyRef
AFTER UPDATE OF RefB
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = n.OID WHERE OID=RefB
END ATOMIC;

CREATE TRIGGER IntegrityRef
AFTER DELETE
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = NULL WHERE OID=o.RefB
END ATOMIC;

TableA TableB

+attribute : int {constraint}

Class9

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 5.12: Example of a Trigger for Redefined Attributes.

Redefined Attributes:

This Trigger also shows a regular pattern. It is always issued when updates to an attribute
of a super- or sub table take place and changes an attribute in the corresponding sub- or
super table respectively with the same value as the updated value.

+Name : string
+BirthDate : Date
+ / Age : int

Person

Date

CREATE TRIGGER SetAge
AFTER UPDATE OF BirthDate
ON Person
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Person SET Age = CURRENT_Date() - n.Birthdate WHERE n.Name=o.Name
END ATOMIC;

+attribute : int

Class7

+attribute1 : int {redefines attribute}

Class8

CREATE TRIGGER UpdateAttribute
AFTER UPDATE OF attribute1
ON Class8
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Class7 SET attribute = attribute1 WHERE ...
END ATOMIC;

CREATE TRIGGER CheckAttribute
AFTER UPDATE OF attribute
ON Class9
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
IF constraint THEN
UPDATE Class9 SET n.attribute = o.attribute WHERE ...
END IF
END ATOMIC;

CREATE TRIGGER ConsistencyRef
AFTER UPDATE OF RefB
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = n.OID WHERE OID=RefB
END ATOMIC;

CREATE TRIGGER IntegrityRef
AFTER DELETE
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = NULL WHERE OID=o.RefB
END ATOMIC;

TableA TableB

+attribute : int {constraint}

Class9

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 5.13: Example of a Trigger for a Property Constraint

Property Constraints:

These Triggers are issued upon update of an attribute and after evaluating a predicate
they either revoke the update or do nothing.

Associations:

These two examples of Triggers show that in the case of association mapping, Triggers
are used on reference types.

5.4. Quality of the Transformation 129

+Name : string
+BirthDate : Date
+ / Age : int

Person

Date

CREATE TRIGGER SetAge
AFTER UPDATE OF BirthDate
ON Person
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Person SET Age = CURRENT_Date() - n.Birthdate WHERE n.Name=o.Name
END ATOMIC;

+attribute : int

Class7

+attribute1 : int {redefines attribute}

Class8

CREATE TRIGGER UpdateAttribute
AFTER UPDATE OF attribute1
ON Class8
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE Class7 SET attribute = attribute1 WHERE ...
END ATOMIC;

CREATE TRIGGER CheckAttribute
AFTER UPDATE OF attribute
ON Class9
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
IF constraint THEN
UPDATE Class9 SET n.attribute = o.attribute WHERE ...
END IF
END ATOMIC;

CREATE TRIGGER ConsistencyRef
AFTER UPDATE OF RefB
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = n.OID WHERE OID=RefB
END ATOMIC;

CREATE TRIGGER IntegrityRef
AFTER DELETE
ON TableA
REFERENCING OLD AS o NEW AS n
BEGIN ATOMIC
UPDATE TableB SET RefA = NULL WHERE OID=o.RefB
END ATOMIC;

TableA TableB

+attribute : int {constraint}

Class9

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 5.14: Examples of Triggers for consistency and integrity constraints in mapping of
Associations

In order to identify the corresponding PIM concepts in the PSM based on their structure and
properties, these Trigger patterns can be used.

5.4.4.6 Table

The relational concept Table is used for representing a help table for overlapping Generaliza-
tionSet Classes and for representing the Set and the OrderedSet collection types. In the first
case the Table always contains exactly two Attributes corresponding to the two OIDs of the
matching objects. In the second case an Attribute and a reference to the object containing
this Attribute are the Columns of the Table. In the case of an OrderedSet additionally an
index Attribute is defined. Therefore, analogously to Typed Views, the two PIM concepts
are distinguishable at an instance level of the PSM.

5.4.5 Implementation specific concepts

Some concepts from the logical model cannot be represented in the conceptual model, as
illustrated with the filled elements of the PSM metamodel in Figure 5.15. This requires
further adaptation of the logical model by the developer. Modifiers of methods and user-
defined function, such as LANGUAGE, PARAMETER STYLE have to be added if not set
with default values. This additional information would not lead to loss of conceptual model
information. It does not also influence the reverse engineering step, because the additional
concept can be simply omitted in the transformation.

To conclude, it can be summarized that not-mappable concepts do not exist in the PIM
which guarantees the preservation of the information capacity in the PSM to some extent,
i.e. the information representable in the PIM should be representable in the PSM. Through
the workarounds used in order to provide mapping rules for all PIM concepts other problems
have raised. Especially, mapping different PIM concepts to one and the same PSM concepts
leads to the fact that the reverse engineering step will not be possible. As shown above, the
differentiating semantics of the mapped concepts, however, remains preserved at the instance

130 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

PIM metamodel PSM metamodel

Figure 5.15: Metamodel mappings: implementation specific concepts

level of PSM. Hence, the mapping rules defined in the previous section should be able to
produce an instance of a PSM, which can represent all the information that an instance of
the PIM can, i.e. the transformation is a total and injective function.

5.5 Implementation of an Image Database Generator

The model-driven development techniques represented in this and the previous chapter are
implemented as a prototype of an integrated modeling and code generation tool for CBIR-
Systems. The task of the so called Image Database Generator (IDBG) is to support the
modeling and generation of a three-tier CBIR application. As illustrated in Figure 5.16,
the generated CBIR application consists of a persistence management layer, an application
layer, and a user interface layer. The persistence and application layer are implemented
on an ORDBMS platform. The user interface layer is implemented as a web application.
The prototypical implementation of IDBG is the result of different student projects [Sch07,
KSW07]. The tool is built as a plug-in for the Eclipse integrated development environment.
It makes use of the Eclipse Modeling Framework libraries. It consists of two main plug-ins, a
Modeling plug-in and a Generator plug-in.
The Modeling plug-in is responsible for the creation of an Image Database Generator (IDBG)
project. It supports the derivation of a conceptual model of the CBIRS from the integrated
framework model and transforms the conceptual model into a PSM, based on a SQL:2003
UML Profile. The plug-in provides a graphical modeling user interface for both PIM and PSM.
The implemented transformation algorithm currently supports only basic mapping rules. The
plug-in provides a dialog for the developer to refine the mapping in cases where multiple
mappings are possible, or where more platform specific information has to be provided. It can
be further developed to support all mapping rules defined in this chapter. The employment
of a transformation engine, such as the ATLAS Transformation Language [ATL07], should
be considered for the implementation of transformation rules.
The Generator plug-in is responsible for converting the PSM into DDL scrips and executable
source code, for each target platform, respectively. Different generators can be created for
different ORDBMSs. At this point, it should be mentioned that for the final implementation
of the SQL:2003 concepts a direct conversion to a concrete ORDBMS SQL dialect cannot
always take place. Existing ORDBMSs do not fully support the standard. Therefore, for
each generator a mapping from SQL:2003 to a concrete database model, for example for
IBM DB2, has to be implemented. In the IDBG, IBM DB2 is used as a target ORDBMS.
The main differences between the SQL:2003 standard and the IBM DB2 ORDBMS are the

5.5. Implementation of an Image Database Generator 131

 CBIR Modeling Plugin

 CBIR Generator Plugin

CBIRS developer

Eclipse

W
or

kb
en

ch

Client Webapp

UDFs, SPs

image
database

ORDBMS

C
B

IR
S

CBIRS user

Figure 5.16: Architectures of the Image Database Generator and the resulting CBIRS

missing concepts for ARRAYS, MULTISET and ROW in DB2. For each of these discrepancies
a workaround has to be found for the Generator plug-in.
The user interface of the system is not part of the conceptual model and thus it cannot be
generated from the model. In Chapter 3 it is mentioned that there are special modeling
techniques, such as task models [WFDR05], for designing graphical user interfaces, which can
be considered for this task. In order to facilitate the creation of a user interface the IDBG
generates the basic structure of a JSP application. This structure is determined by predefined
building blocks, such as feature class or a search query class. These building blocks use
information from the conceptual model in order to create specific classes during the generation
process. Fore example, for a specific “average color” feature of the conceptual model a
corresponding feature class in the web application will be generated. Further adaptations
of the classes have to be made by the developer by hand. Thanks to the fact that the
IDBG is implemented as a plug-in in the Eclipse IDE, a seamless transition from a design to
implementation perspective is possible.
Screenshots of the Image database Generator plug-in can be found in Appendix D.

132 Chapter 5. Mapping Rules for Generating CBIRSs on Top of ORDBMSs

5.6 Summary

This chapter defines the transformation mechanisms which have to applied on the PIM in
order to derive a PSM. In Chapter 3 it is stated that, therefore, a model-to-model mapping
has to be defined. Model-to-model mappings are defined for the meta-model elements of both
models and applied on the instance of the meta-models. Therefore, at first a detailed summary
of both meta-models was provided. Following, the mapping rules for each of the PIM meta-
model concepts, more specifically for each of the UML structure diagram concepts, one or
more translation possibilities to the PSM meta-model concepts were defined. In some cases,
where direct counterparts in the PSM were missing, such as in the case of the visibility of class
properties, workarounds had to be introduced. It was important to give a suitable mapping for
each PIM concept in order to avoid not-mappable concepts. Not-mappable concepts can lead
to loss of information in the PSM. The workaround brings, however, other mapping problems,
as shown in the analysis of the quality of the transformation. Especially mappings which lead
to the representation of different PIM concepts as the same PSM concepts could lead to lost
of distinguishable information. However, the detailed analysis of the concrete cases showed
that either the PIM concepts can be used interchangeably in the conceptual model, which
makes them semantically equivalent, or the differentiation of the PSM concepts can be made
on an instance level. Thus, these mappings still preserve the information capacity of the
transformed model.
Finally, a prototypical implementation of the modeling and transformation mechanisms as an
Eclipse plug-in was described.

Chapter 6

Evaluation of the Model-Driven
Development Methodology for
CBIRSs

There are different aspects which can be considered in order to evaluate a model-driven
development approach. An important criterion for evaluating the quality of MDSD is the
quality of the models used to derive the applications. The factors influencing the quality
of the models in model-driven software development have been studied in different works
summarized in [MA07]. The main factors are the quality of the modeling language and the
modeling process, the combination of which is referred to as the modeling approach in this
chapter. The quality of the modeling approach has to be evaluated in order to prove if it is
sufficient to represent all the information for the modeled domain, if it is compact enough in
order to avoid ambiguity and complexity, if it is easy to understand and apply etc. According
to [MA07] apart from the quality of the modeling approach other factors, such as modeling
tools, required knowledge and expertise of the modeler, and the usage of quality assurance
techniques influence the quality of the resulting models. At this stage of the current work it
is possible to consider only the quality of the modeling approach for the evaluation. For the
evaluation of the modeling approach the set of criteria introduced in Chapter 3 are used.

• Syntactic correctness: Since the meta model used to create the framework model
as well as the derived application specific model is UML, all resulting models should
comply with the UML 2.0 standard. The framework model is designed so as to comply
with the standard and the derived models can achieve this if adequate modeling tools
are used, which can perform syntactical checks during the modeling process.

• Validity: Validity ensures that only concepts relevant to the problem are included in
the model. The framework model is designed to include only relevant concepts. Its
derivations, however, may be freely extended as far as the meta model allows. Thus,
the transformation rules cannot be influenced.

• Completeness: Completeness requires that the model contains all the statements
about the domain. The framework model is a generic model and thus cannot contain
all the variations of concepts needed for different applications. However, it should
be possible to derive as much as possible application specific concepts from the generic

133

134 Chapter 6. Evaluation

concepts. This criterion is measured below by deriving three different CBIR applications
from the generic model.

• Understandability: The evaluation of this criterion requires the involvement of ex-
perienced developers in order to measure the time needed for applying the modeling
approach objectively. This can be done after the approach is implemented completely
in a tool. It is important to mention that the provided cookbooks in Chapter 4 and the
examples in this chapter provide a helpful introduction in the modeling approach.

• Implementability: The transformation rules showed that all the concept of the PIM
meta model can be transformed into the meta model of the implementation. And thus
this criterion is considered as fulfilled.

Another aspect of the evaluation is to prove whether the result of the transformation approach
does not deteriorate the conceptual design. The quality of the transformation approach is
evaluated in the previous chapter. Therefore, in this chapter the focus of the evaluation lies
on the first aspect. Some further discussion of metrics for the quality of the transformation
is given in [MD07].
Finally, the gain from the usage of this development approach has to be estimated, based on
the amount of implementation, which still has to be done manually in order to produce a full
fledged CBIRS. Therefore, three test case applications are used in this chapter, the eNote-
History application, a 2D-Gel application, and a Photo Annotation application. The first
two of them have been already implemented as a CBIRS on top of an ORDBMS. The Photo
Annotation application has been implemented based on the MetaXa framework, introduced
in Chapter 1. This fact provides the possibility to verify which part of the application can
or cannot be generated by the model-driven approach, or has to be implemented by hand.
All criteria which require a cost or an effort to be estimated do not consider time, since this
metric requires the implementation of the approach in a model-driven development tool and
the participation of developers with good programming skills. Since the existing prototype
does not implement fully the development approach it cannot be yet used for the evaluation.
In this chapter, on first place the completeness of the framework model, i.e. how far do the
derived models for the example applications fit in the generic model, is estimated. Second, the
amount of implementation, which still has to be done by the developer after the transformation
of the model is estimated.

6.1 Test Case eNoteHistory

The eNoteHistory scribe recognition system is introduced as a case study in the beginning
of this thesis. In fact, the eNoteHistory project was the inspiration for the model-driven
development approach for CBIRSs. The functionality and structural requirements for CBIRSs
in Chapter 3 are explained with the help of examples from the scribe recognition application.
In this section, the eNoteHistory projects and in particular the image retrieval functionality
implemented for the recognition of music manuscript scribes are described in more detail in
order to show how the modeling framework can be applied for this application.

6.1. Test Case eNoteHistory 135

Figure 6.1: Examples of music manuscripts written by different scribes

6.1.1 Requirements Analysis

The project eNoteHistory1 is a cross disciplinary pilot project in which a digital archive of
historical music manuscripts was developed. The participating parties comprised database
experts and music scientist from the University of Rostock and image processing experts
from the Fraunhofer Center in Rostock. The project had a duration of 3 years and was
completed in February 2006. In addition to the common digital catalog search functionality,
the eNoteHistory digital archive provides a special similarity search functionality for music
experts to identify unknown scribes of music manuscripts. The common usage scenarios
supported by the digital archive system are full text search and browsing through the catalog
metadata, as well as visualization of the scanned pages of music manuscripts. In order to
support this functionality, a database model was defined to store the catalog data and the
digitized music manuscripts. The database search functionality provided by the IBM DB2
UDB and the IBM Net Search Extender are used in a relatively straightforward way to query
and browse these data.
However, the main challenge of the application was to support the scribe identification sce-

1www.enotehistory.de

136 Chapter 6. Evaluation

Figure 6.2: Excerpt from the feature dictionary

nario. Figure 6.1 shows two manuscripts written by different scribes. The identification of
scribes is based on the comparison of the handwriting characteristics, represented in terms
of features, of a manuscript whose scribe is not known with those of the manuscripts in the
database with already identified scribes. Therefore, two different techniques for extracting and
comparing the handwriting characteristics were developed in the project. These techniques
will be further on referred to as the semi-automatic and the automatic techniques.

6.1.1.1 The Semi-Automatic Scribe Identification Technique

The first technique, elaborated to a great extent in the diploma work of Lars Milewski [Mil04]
and published in [BIM04], uses a so called feature dictionary, specified by the music scientists
participating in the project, to represent the handwriting characteristics of music manuscripts.

Data Structure: The feature dictionary comprises 13 feature categories corresponding to
objects in the music manuscript identifiable by music experts, e.g., clef, note head, note stem,
note flag etc. Each of these categories is further specified by more detailed categories, e.g., G
clef, white note head, half note stem, eight note stem etc., and/or concrete values for these
categories. The categories and their values are partially represented as small images as shown
in Figure 6.2 and/or textual descriptions.
A feature in this tree is the last node before a value node appears. All nodes before the feature
node are considered as prefix for that feature, i.e., they describe the feature. The number of

6.1. Test Case eNoteHistory 137

features for all categories in the feature dictionary is about 80. Thus, a feature vector for a
music manuscript can contain up to 80 features, whereas for a specific feature more than one
value can be assigned. The description of a handwriting found in a manuscript in terms of
these features is very detailed and extensive. However, it has to be done manually, because
of the difficulties posed to image processing algorithms described in [Göc03]. Therefore, a
supporting tool for browsing through the feature dictionary was implemented, in order to
help assigning features to the database manuscripts with known scribes. It can also be used
as help to formulate a query for identifying the scribe of manuscript outside the database.

Retrieval Mechanism: The identification process requires that for all manuscripts in the
database with known scribes a representative feature vector is created by music experts. The
first step towards identifying the scribe of a new manuscript is the creation of a query feature
vector by browsing through the feature dictionary and choosing appropriate feature values for
the manuscript at hand. The query feature is then send to the database and is compared with
the feature vectors of the database manuscripts using the k-nearest neighbor algorithm, where
the overall distance between two music manuscripts is calculated as the Hamming distance
between the two feature vectors γa = (va

1 , ..., va
n)T and γb = (vb

1, ..., v
b
n)T as follows:

dΓ = df1
+...+dfn

n

where dfi
is the distance between the single features va

i and vb
i . The distance function is not

applied on the pictorial or textual representation of the feature values which can change to
make the features more understandable to the users. It uses the point notation of the node in
the feature dictionary. In the above example a value for the ascending flag would be 4.1.1.3.
This notation corresponds to the path in the tree structure leading to this node. Thus, the
distance between the different features can be partially calculated using the structure of the
feature dictionary. However, for most features the distances have to be predefined in a so
called similarity matrix, where similarity values for the feature values are assigned by music
experts. The k-nearest neighbor algorithm is then applied to decide in which cluster of scribes
does the query scribe fall.

Application Model: To give a better idea about the data needed to be stored to support
this application scenario, the conceptual data model of the database is depicted in Figure
6.3. It should be noted that the functionality of the database application was not completely
explicitly included in the database conceptual model during the project. The functionality
was designed and implemented separately, thus, it has to be described additionally. The
function responsible for retrieving the similar scribes from the database is implemented as
a user-defined function which encapsulates the calculation or retrieval of distances between
single features and the calculation of the overall similarity between the query vector and the
database vectors. The query vector is given as an input parameter and the result is a list of
scribes whose handwriting vectors have a distance smaller than a predefined threshold to the
query vector.

6.1.1.2 The Automatic Scribe Identification Technique

The evaluation of this semi-automatic scribe identification approach provided important infor-
mation for the second identification approach, developed in the eNoteHistory project, which

138 Chapter 6. Evaluation

<<weak entity>>
Music_Manuscript_Section

<<PK>> Section_Number : STRING
Provenance : STRING
Section_Description : CLOB

<<weak entity>>
Music_Manuscript

<<PK>> Shelf_Mark : STRING
RISM_Shelf_Mark : STRING
Old_Shelf_Mark : STRING
Literature : CLOB
Edition : CLOB
Dedication_Text : CLOB
Manuscript_Comment : CLOB
Manuscript_Section_Comment : CLOB

has_Parent

[0..*] Child

ha
s_D

ist
an

ce

has_Parent

has_Nodes

consist_of

contains

composed_by

has_Type

consist_of con
tain

s

[0..*] [0..*]

[1..1]

[0..1]

[0..*]

has_Type

[1..*] [0..*]

[0..*]

[1..*] [1..*]

[1..*]

[1..*]

[1..*]

lyrics_by

[1..*]

[1..*]

[0..*] [0..1]

[0..1]

<<entity>>
Role

<<K>> Role_ID : INTEGER
Role : STRING

<<entity>>
Tone

<<K>> Tone_ID : INTEGER
Tone : STRING

<<entity>>
Incipit_Type

<<K>> Incipit_Type_ID : INTEGER
Incipit_Type : STRING

<<weak entity>>
Incipit

<<PK>> Incipit_Number : INTEGER
Text_Incipit : STRING
Image_Incipit_JPEGImg : BLOB
Image_Incipit_EPSImg : BLOB
Midi_Incipit : CLOB
Image_Incipit_File : STRING
Incipit_Comment : STRING

<<entity>>
Library

<<K>> Library_Code : STRING
Library_ID : INTEGER

<<entity>>
Music_Score_Collection

<<K>> Collection_Node_ID : INTEGER
Collection_Node_Number: INTEGER
Collection_Name : STRING
Collection_Description : CLOB

<<entity>>
Composer

<<K>> Composer_ID : INTEGER
Composer_Name : STRING
Composer_Time_Places : STRING

composed_by
Composer_Comment : CLOB

Music_Work
<<K>> Work_ID : INTEGER

Uniform_Title : STRING
GVK_Number : STRING
WV_Number : STRING
Roles : STRING
Tone : STRING

lyrics_by
Text_Author_Comment : CLOB

<<entity>>
Text_Author

<<K>> Text_Author _ID : INTEGER
Text_Author_Name : STRING
Text_Author_Time_Places : STRING

contains
Written_Title : CLOB
Work_Comment : CLOB
Concordance : CLOB

[1..*]

<<weak entity>>
Music_Manuscript_Page

<<PK>> Page_Number : STRING
Paper_Description : CLOB
Page_Width : DECIMAL
Page_Lenght : DECIMAL
Page_Comment : CLOB

<<entity>>
Scribe

<<K>> Scribe_ID : INTEGER
Scribe_Identifier : STRING
Scribe_Name : STRING
Working_Time : STRING
Related_Places : STRING
Related_Names : STRING
Scribe_Comment : CLOB

written_by
Scribe_Comment : CLOB

<<entity>>
Section_Type

<<K>> Section_Type _ID : INTEGER
Section_Type : STRING

<<Conceptual Data Model>>

<<entity>>
Feature_Vector

<<K>> ID : INTEGER
Description : STRING

Distance(v1 : Feature_Vector, v2 : Feature_Vector) : Float

[1..*]

[1..*]

[1..*]

written_by

<<entity>>
Node_Type

<<K>> Type_ID : INTEGER
TypeName : STRING
Type_Description : STRING

<<entity>>
Node

<<K>> ID : INTEGER
Node_Code : STRING
Node_No : STRING
Node_Descr : STRING
Weight : DECIMAL
Pic : BLOB
Level_Descr : STRING
Level_Depth : INTEGER

has_Type[0..1] [1..*]

[0..1][0..*]

has_Distance
Distance : DECIMAL

[0..*]

[0..*]

Parent

Parent Child

consist_of

consist_of

<<entity>>
Page_Image

HQPageImage : BLOB
LQPageImage : BLOB
ThmbPageImage : BLOB
Updated : TIMESTAMP
Created : TIMESTAMP
Height : INTEGER
Width : INTEGER

hasImages[1..1] [1..1]

hasFeature

[0..1]

[0..*]
Value

Feature

Figure 6.3: Conceptual data model of the digital archive for music manuscripts (from [Dol04])

6.1. Test Case eNoteHistory 139

relies on fully automatic feature extraction.

Data Structure: The evaluation experiments helped weighting the features used for the
identification of scribes in the semi-automatic approach and thus minimizing the requirements
towards the automatic extraction algorithms. Finally, only three feature categories, i.e. music
objects, could be automatically recognized by the image processing algorithms, namely, note
heads, note stems and bar lines. Each of these objects could be described with high precision
by measuring the bounding box and the bounding ellipse parameters. Thus, the handwriting
features could be represented by numeric parameters of all the note heads, note stems and
bar lines found on the pages of a manuscript.

Retrieval Mechanism: The application steps involved in the automatic handwriting anal-
ysis and content-based retrieval are carried out in the following order. At first, for all digital
scores in the database, for which information about the scribe (e.g., name of scribe) exists,
image processing algorithms are applied to extract the visual features of the images, repre-
senting the handwriting characteristics. Figure 3.3 in Chapter 3 shows the recognized objects
in the manuscript. For each recognized object: note heads, note stems, and bar lines, a set
of geometrical features is extracted, such as: height and width of the bounding box, radius
of the bounding ellipse, x, y coordinates of the centroids, orientation etc. In order to iden-
tify the unknown scribe of a manuscript two different retrieval techniques can be used. If
the metric approach, also used for the semi-automatic analysis is applied, the handwriting
characteristics of scores with unknown scribes can subsequently be compared with the set
of extracted features in the database. Using distance metrics for calculating the similarity
between features, a query result of the type: a list of k-most similar scores with associated
scribes can be generated. A data mining retrieval approach can also be applied for the au-
tomatically extracted features. In this case, the classifier has to be trained and tested with
the features of known scribes classes from the database and thus constructed tree can be
consequently employed to classify unknown scribes. For the identification procedure in this
case the data mining technique of decision trees was employed, in particular a Logistic Model
Tree, since it returned better results that other techniques tested. The feature extraction and
data mining functionality was developed by the image processing experts from the Fraunhofer
Center as a stand alone application separately from the digital archive application until the
algorithms were tested and refined enough. Consequently, this functionality was integrated
in the digital archive system by the database experts by extending the data model to support
the storage of automatically extracted features and to leverage the data mining functionality
in the database.

Application Model: A simplified representation of the data types, proposed in the stu-
dents work of Henning Masuch [Mas05] which defines these data structures and data mining
functionality, are represented in Figures 6.4 and 6.5, respectively.

The automatic scribe identification is the one which is modeled for the evaluation of the
GiACoMo model, since it does not require the modeling of a user interface for extracting
the music features. Modeling user interfaces is out of the scope of the framework model for
CBIRSs. Both retrieval approaches, discussed above are integrated in the model in order to
demonstrate that these can be used interchangeably or in combination in the application.

140 Chapter 6. Evaluation

Figure 6.4: Simplified representation of the data type for storing the automatically extracted
features (from [Mas05])

Figure 6.5: Simplified representation of the data type used for the classification of scribes
(from [Mas05])

6.1.2 Modeling the eNoteHistory CBIRS

For this CBIRS the platform independent model shown in Figures 6.6 and 6.7 is derived from
the framework model. The eNoteImage class represents the set of scanned page images of
music manuscripts. In addition to TechnicalMetadata, which is predefined as a reusable
application-specific class in the framework model, a class LibraryMetadata is defined, which
is derived from the abstract class Metadata. The associations between the eNoteImage and
LibraryMetadata and TechnicalMetadata, respectively, have been redefined. The names
of the redefined associations, such as has metadata are left unchanged in order to recognize
easier that they are redefined. Two classes of raw image representations are defined for the
eNoteImage. The multiplicities of the associations has rawimagerep can be redefined to
allow only one eNoteRawImage for an eNoteImage. Two types of regions are derived from

6.1. Test Case eNoteHistory 141

the class Region, ROI (Region of Interest) and MusicObject, which is further specialized in
NoteStem, NoteHead, and Clef. The latter represent regions, which have been identified
as the corresponding music elements. Unidentified regions can be stored as MusicObjects.
A ROI is the region of the digital image which contains only the relevant information - the
staff lines without the edge of the paper and notes at the corners of the page, such as page
number. A ROI contains the music objects as shown by the redefined related to association.
Furthermore, music elements can have directional relationships, which can be used for example
to identify if a note head belongs to a note stem. The localization information for a ROI
is represented in a separate class and the one for a music element inside the MusicObject
class. The class eNoteFeature represents the set of features used to describe the regions
of an eNoteImage. For the current application only a shape descriptor as a feature of the
regions of music elements is applied to compare their similarity.
The operations, defined in the model, are used on one side to create the data which has to
be derived from the image by segmentation or feature extraction. On the other side, they
are used to support similarity queries on the images, by providing a distance function for
the features representing the content of the images. The store operations should implement
a storage mechanism for making the corresponding instance persistent if no such mechanism
is provided by the platform. The operation segmentImage() can be used to create the
instances of regions for a specific image. For extracting the features of a region the cor-
responding feature extraction function of a feature should be implemented. The retrieval
functionality based on the metric approach is carried out based on the comparison of local
features. Therefore, for each feature type a compareWithAnotherFeature() operation
should be implemented. The accumulated distance function of the feature distances should
be calculated by the compareByFeaturesWithAnotherRegion() operation. And finally,
the aggregation operation for calculating the similarity between the whole images should
be provided in the compareByLocalFeaturesWithAnotherImage() function. The data
mining approach for retrieving the scribes of a manuscript is modeled with the help of the
GiACoMo CBIRClassifier. The eNote specific classifier for a Logical Model Tree (LMT)
LMTClasifier is derived from the generic classifier class. The implemetation of the opera-
tions addTrainingInstance() and addTestInstance() creates the eNoteTrainInstance
and eNoteTestInstance objects from the information of the eNoteImage. The decision
tree can be built using the build() operation and the result is stored as an eNoteDMModel.
The query is processed by the classify() operation which requires either an image or a query
instance as input.
In conclusion, it can be stated that the application specific model fits well in the generic
framework model, since all required data structures and functionality could be derived from
GiACoMo-IRS. This particular CBIR application is also a good example for the need of
diverse multiple user interfaces of such systems. Music scientists are one type of user for the
system. They require the scribe identification functionality in order to derive or prove theories
about the origin of historical manuscripts. On the other hand there are the librarians, who
require the possibility to view and edit the bibliographical or physical meta data of the digital
manuscripts. A third group of users are musicians, who need the music manuscripts to adapt
them for a performance. In order to satisfy these needs a web-based client application for the
eNoteHistory CBIR system was implemented, which offers different functionality for different
user groups. The model-driven development of these CBIR graphical user-interfaces would
require additional models to be integrated into the GiACoMo framework model.

142 Chapter 6. Evaluation

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

<
<

fr
am

ew
or

k>
>

R
eg

io
n <
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

+
Im

ag
eI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
se

gm
en

tIm
ag

e(
)

+
st

or
eI

m
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
Im

ag
e

+
R

aw
Im

ag
eI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
Im

ag
eD

at
a

: C
B

IR
S

B
in

ar
yT

yp
e

+
re

si
ze

Im
ag

e(
)

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

eN
o

te
R

aw
Im

ag
e

+
T

hu
m

bn
ai

lID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
Im

ag
eD

at
a

: C
B

IR
S

B
in

ar
yT

yp
e

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
T

h
u

m
b

n
ai

l

+
T

ec
hD

at
aI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
D

at
eC

re
at

ed
 :

C
B

IR
S

D
at

eT
yp

e
+

B
its

P
er

P
ix

el
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

T
ec

h
n

ic
al

M
et

ad
at

a

+
Li

br
ar

yC
od

e
: C

B
IR

S
S

tr
in

gT
yp

e
+

S
he

lfM
ar

k
: C

B
IR

S
S

tr
in

gT
yp

e
+

P
ag

eN
um

be
r

: C
B

IR
S

S
tr

in
gT

yp
e

+
st

or
eM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

L
ib

ra
ry

M
et

ad
at

a

+
R

O
IID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

R
ot

at
io

n
: C

B
IR

S
F

lo
at

T
yp

e
+

T
hr

es
ho

ld
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
S

ta
ve

sI
nt

er
sp

ac
e

: C
B

IR
S

In
te

ge
rT

yp
e

+
Is

M
an

ua
lly

D
ef

in
ed

 :
C

B
IR

S
B

oo
le

an
T

yp
e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
B

yF
ea

tu
re

sW
ith

A
no

th
er

R
eg

io
n(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

R
O

I

+
M

us
ic

O
bj

ec
tID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

U
pp

er
Le

ft
: C

B
IR

S
P

oi
nt

T
yp

e
+

Lo
w

er
R

ig
ht

 :
C

B
IR

S
P

oi
nt

T
yp

e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
B

yF
ea

tu
re

sW
ith

A
no

th
er

R
eg

io
n(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

M
u

si
cO

b
je

ct

+
Lo

ca
liz

at
io

nI
D

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

U
pp

er
Le

ft
: C

B
IR

S
P

oi
nt

T
yp

e
+

Lo
w

er
R

ig
ht

 :
C

B
IR

S
P

oi
nt

T
yp

e

+
st

or
eR

eg
io

nL
oc

al
iz

ai
on

()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

R
O

IL
o

ca
liz

at
io

n

+
di

re
ct

io
n

: e
nu

m
 {

le
ft,

 r
ig

ht
, u

p,
 d

ow
n}

+
st

or
eR

el
at

io
ns

hi
p(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

D
ir

ec
ti

o
n

al
R

el
at

io
n

sh
ip

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()
 :

C
B

IR
S

F
lo

at
T

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

S
h

ap
eD

es
cr

ip
to

r

+
R

ot
at

io
n

: C
B

IR
S

F
lo

at
T

yp
e

+
F

la
gC

ou
nt

 :
C

B
IR

S
In

te
ge

rT
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

N
o

te
S

te
m

+
R

ot
at

io
n

: C
B

IR
S

F
lo

at
T

yp
e

+
Is

F
ill

ed
 :

C
B

IR
S

B
oo

le
an

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

N
o

te
H

ea
d

+
T

yp
e

: C
B

IR
S

E
nu

m
T

yp
e

{F
, G

, C
}

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

C
le

f

0.
.*

0.
.*

0.
.*

0.
.1

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1

1.
.*

1

1

0.
.*

0.
.*

1

re
la

te
d

to

is
 d

es
cr

ib
ed

 b
y

re
la

te
d

to

co
nt

ai
ns

co
nt

ai
ns

ha
s

lo
ca

liz
at

io
n

ha
s

m
et

ad
at

a

ha
s

m
et

ad
at

a

ha
s

ra
w

im
ag

er
ep

ha
s

ra
w

im
ag

er
ep

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

6.
6:

eN
ot

eH
is

to
ry

C
B

IR
P

IM

6.2. Test Case 2D-Gel Electrophoresis Images 143

+Class : CBIRSStringType

<<framework>>
TestInstance

<<framework>>
StillImage

+Class : CBIRSStringType

<<framework>>
TrainingInstance

<<framework>>
DMModel

<<framework>>
CBIRClassifier

<<framework>>
TestStatistics

<<application>>
<<application-logic>>

<<persistent>>
eNoteImage+eNoteTestInstanceID : CBIRSIntegerType

<<application>>
<<persistent>>

eNoteTestInstance

+eNoteTrainInstanceID : CBIRSIntegerType

<<application>>
<<persistent>>

eNoteTrainInstance

+eNoteTestStatisticsID : CBIRSIntegerType

<<application>>
<<persistent>>

eNoteTestStatistics

+eNoteDMModelID : CBIRSIntegerType

<<application>>
<<persistent>>
eNoteDMModel

+LMTClassifierID : CBIRSIntegerType

+classify()
+addTrainingInstance()
+addTestInstance()
+buildModel()
+dropModel()
+resetModel()
+testModel()

<<application>>
<<persistent>>

<<application-logic>>
LMTClassifier

dfsdfsefesf

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 6.7: eNoteHistory CBIR PIM - data mining part

6.2 Test Case 2D-Gel Electrophoresis Images

In [Ign03] the implementation of a CBIRS on top of an ORDBMS for storing and retrieving
2D-Gel images along with other proteome laboratory data is described. Proteomics is a
research field in molecular biology which is involved in the quantitative description of all
proteins present in organic tissues and/or in body fluids. This study should help the process
of developing new target compounds for new pharmaceuticals or new therapeutic approaches
for treating autoimmune diseases. An essential part of a proteomics laboratory data are
the 2D-Gel images, derived from the electrophoresis of body tissue and fluid samples. The
CBIRS is designed to support the visual analysis of the 2D-Gel images. In order to identify
the proteins in a new 2D-Gel image, this image is matched with already analyzed images,
whose proteins have been identified. If an image is found which contains visually similar
protein patterns it is presented to the scientist who decides if the match is correct and marks
the matching proteins in the new image as identified. The final aim of the image analysis
pursued by the scientists is to determine proteome differences between healthy and ill identical
organisms.

6.2.1 Requirements Analysis

The input of a proteome experiment is a tissue or a body fluid from a living organism. This
material is divided into small portions, which are prepared to be analyzed with different meth-
ods and in different conditions. Such a method is also the“2-dimensional gel electrophoresis”.
A 2D-gel is the product of two separations performed sequentially in anacrylamide gel media.
Isoelectric focusing as the first dimension and a separation by a molecular size as the second

144 Chapter 6. Evaluation

Figure 6.8: 2D-Gel electrophoresis image

dimension. A 2D pattern of spots, each representing a protein is the result of this process.
Eventually spots are detected by staining or radiographic methods. After a scanning proce-
dure of the gel media the so called 2D electrophoresis gel images are produced. An example
of a 2D-gel image is given in Figure 6.8.

Data Structure: The produced gel images are most often stored as gray level, 8-bit digital
images in TIFF files with a resolution of 200dpi. Their width is about 1000 pixels and the
height is 2000 pixels. These characteristics lead to an average size of a gel image file without
compression of about 2 MB - 3 MB. The images contain a certain number of dark gray spots
with different shape, location and intensity on a light-gray background. Some of the spots
represent proteins and others are just noise in the image. The x,y coordinates of each spot
specify the Molecular Weight and Isoelectric Point of a protein spot in a calibrated image.
The volume of the protein can be calculated by measuring the area, circularity and radius of
the spot. The term “calibrated image” implies that the gel image is associated with a two-
dimensional coordinate system, which provides a scale for calculating the Molecular Weight
and Isoelectric Point, corresponding to the values of the x,y coordinates of a spot in this
system.
The images are matched using the coordinates of the spots and their intensities as features.
Thus, a content descriptor of a 2D-Gel image is a vector x,y,i, where x and y are non negative
point coordinates of the centers of the spots in the Euclidean plane and i is a positive number,
describing the intensity of the spots. The coordinates express the spatial characteristics of
the objects on the image, which have to be compared. The additional information about the
intensity of the spots can optimize the comparison function, since it sets more restrictions

6.2. Test Case 2D-Gel Electrophoresis Images 145

Figure 6.9: Results from the feature extraction algorithm

for the matching spots. In order to automatically extract this information from an image,
several steps in an image-processing algorithm are performed.

• An automatic threshold of the image is performed in order to generate a binary image
with segmented areas, which belong to the objects in the image. This operator is imple-
mented using the local adaptive threshold algorithm of Otsu, which sets automatically
the threshold value for local areas, defined by a sliding window, moving through the
whole image.

• A morphological opening operator is applied on the binary image in order to separate
the merged spots if there are any. It is preceded with one step skeletonization for better
results and avoiding small noise in the image.

• The segmentation of the spots is performed by a labeling procedure with which the
centroids of the detected spots are extracted and represented as a list of 2D coordinates
of points and intensity values, taken from the original image. The intensity of each
spot is calculated as the average intensity of the pixels of the original image in a given
segment.

The results from executing these image processing steps are represented in Figure 6.9.
The considerable differences between images of the same cell, caused by inaccuracies in the
staining procedure and scanning procedure etc. lead to different locations of the spots. This
fact implies that a perfect match between two such images from an identical source is very
improbable. The similarity between the images, however, still exists and it can be evaluated
by applying metrics, which can represent the similarity between patterns (topologies) of points
in the euclidean space, invariant to scaling, rotation, translation etc.

Retrieval Mechanism: The retrieval task which is supported by the CBIRS is to compare
a 2D-gel image against a database of formerly analyzed images with identified protein spots,
and return all images expressing the same patter of protein spots. If a match is found, the
protein spots in the new image can be identified, otherwise they are marked as unidentified
proteins and will wait for the expansion of the protein database to be identified. All images

146 Chapter 6. Evaluation

from the experiments have to be stored and made available for later use for comparison with
new images and identification of new proteins.
The spatial similarity quantification is done by comparing the locations of each of the spots
in one of the images with the locations of all the spots in the other and the minimum of the
maximum of all measured distances is considered to be the distance between the two images.
For the implementation of this functionality a method for measuring the Hausdorff distance
between point sets is used. The Hausdorff distance is a standard metric for determining the
distance between two point sets by measuring the largest distance between a point in one set
and its nearest neighbor in the other.

6.2.2 Modeling the 2D-Gel Electrophoresis CBIRS

In Figure 6.10 the derived PIM for the 2D-gel image CBIRS is represented. The 2D-gel images
are represented by the 2DGelImage class. The class implements the derived abstract oper-
ations for storing the images, for segmentation and for their comparison with other images
based on local features. The raw image data is represented by the 2DGelRawImageRep
class. This class defined apart from the implemented inherited operations an operation for
the manipulation of the image data scale(). Since this operation has to be implemented in
the application-logic layer of the system, the class 2DGelRawImageRep is marked as an
�application-logic� class. Meta data, including technical meta data and data describing the
experiment from which the images originate are represented through the reused black box
class TechnicalMetadata and the derived class LabMetadata. The features of the image
required for the content-based comparison are represented as a specialization of regions Pro-
teinSpot, which resembles an area of the image identified as a protein. Each ProteinSpot
is described on one side by it location SpotCoord and on the other by its Intensity. The
calculation of the distance or similarity between between single spots is assigned to the oper-
ation compareWithAnotherRegion(). This operation should use the operation provided
by the intensity class compareWithAnotherFeature().
Analogously to the first test case, new data types had to be defined, CBIRSDateType and
CBIRSPointType, corresponding to a data type representing a date and two dimensional
point coordinates, respectively.
All inherited associations between the derived classes have been redefined. The cardinalities
of the redefined associations have been also adapted where necessary.
Hence, the conclusion can be made that this CBIR application can also be derived from the
GiACoMo-IRS model almost completely.

6.2. Test Case 2D-Gel Electrophoresis Images 147

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

<
<

fr
am

ew
or

k>
>

R
eg

io
n

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

+
2D

G
el

Im
ag

eI
D

 :
C

B
IR

S
In

te
ge

rT
yp

e

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

2D
G

el
Im

ag
e

+
T

ec
hD

at
aI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
D

at
eC

re
at

ed
 :

C
B

IR
S

D
at

eT
yp

e
+

B
its

P
er

P
ix

el
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

T
ec

h
n

ic
al

M
et

ad
at

a

+
E

xp
er

im
en

tID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
E

xp
D

at
e

: C
B

IR
S

D
at

eT
yp

e

+
st

or
eM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

L
ab

M
et

ad
at

a

+
st

or
eR

aw
Im

ag
eR

ep
()

+
sc

al
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

2D
G

el
R

aw
Im

ag
eR

ep

+
P

ro
te

in
N

am
e

: C
B

IR
S

S
tr

in
gT

yp
e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
W

ith
A

no
th

er
R

eg
io

n(
)

: C
B

IR
S

F
lo

at
T

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
ro

te
in

S
p

o
t

+
X

Y
C

oo
rd

in
at

es
 :

C
B

IR
S

P
oi

nt
T

yp
e

+
st

or
eR

eg
io

nL
oc

al
iz

at
io

n(
)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

C
en

tr
o

id

+
S

po
tIn

te
ns

ity
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()
 :

C
B

IR
S

F
lo

at
T

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

S
p

o
tI

n
te

n
si

ty

er
gw

er
gf

te
rg

tg
er

10.
.1

1

1

0.
.*

0.
.*

0.
.*

1

1

0.
.*

0.
.*

1

0.
.*

1

0.
.*

0.
.1

1

0.
.1

1

1

1.
.*

1

1

1.
.*

is
 d

es
cr

ib
ed

 b
y

ha
s

ce
nt

ro
id

co
nt

ai
ns

 p
ro

te
in

 s
po

ts

ha
s

te
ch

m
et

ad
at

a
ha

s
la

bm
et

ad
at

a
ha

s
ra

w
im

ag
er

ep

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

6.
10

:
C

B
IR

S
P

IM
fo

r
2D

-g
el

el
ec

tr
op

ho
re

si
s

im
ag

es

148 Chapter 6. Evaluation

6.3 Test Case Photo Album

In Chapter 1 an extendable framework MetaXa for the automatic annotation of photos us-
ing context and content based information was described. The extracted information can
furtheron be used to create a photo album according to specific criteria. In this section the
requirements of such an photo annotation system are described based on the example ap-
plication from the MetaXa framework, represented in [BSST07], and a model for such an
application is derived from the GiACoMo framework model.

6.3.1 Requirements Analysis

The main functionality of the photo annotation system is to extract content and context
related data from the photos and, if possible, use these data to derive a higher level description
for these. Therefore, the following content extraction algorithms have been implemented as
components of the MetaXa framework:

• Histogram generation: This algorithm extracts four histograms from a photo. One
histogram for each of the color channels RGB and a brightness histogram derived from
the other three.

• Edge detection: Using the Sobel operator with two different kernels this edge detection
algorithm produces two images with marked edges. The resulting information can be
stored either as the images themselves or by some kind of an edge histogram descriptor,
similar to the defined in the MPEG-7 standard.

• Face detection: This algorithm detects the number of faces in an image. It could be
used to detect the bounding boxes of these faces also.

The context data extraction algorithms are defined with the aim to retrieve the general image
information, which corresponds to content-independent image data in the sense described in
Chapter 3, e.g. height, width, creation date etc. Furthermore, EXIF data is extracted by
these algorithms, such as, exposure time, aperture, flash on/off, orientation of the camera,
and even GPS coordinates if present.
From the data, which can be more or less directly extracted from the photos so called en-
hancement components derive higher level information, i.e. enhance the previously extracted
data. The content-based data can be enhanced with algorithms for:

• Sharpness analysis: The good quality of a photo is considered to correlate to its sharp-
ness. The sharpness of a photo, therefore, is proved by analyzing the brightness his-
togram in the center of the photo.

• Exposure analysis: Another criterion for a good quality of a photo is its good expo-
sure. To prove that a photo is not underexposed or overexposed again the brightness
histogram can be used.

The context-based data can be enhanced with the following algorithms:

• Light conditions determination: The exposure value which correlates to the brightness
of the scene can be derived from the aperture and exposure time values found in the
EXIF header.

6.3. Test Case Photo Album 149

• Calender event enhancement: By combining the photos date and time information with
a personal calender application information about the event place and duration, and
with less confidence names of participators can be associated to the photo.

Additionally, a component for In/Outdoor classification combining the content and context-
based data in order to derive new information about the images has been implemented. It
uses the light condition information extracted from the content of the photo and daytime
information, flash on/off, and exposure from the context data in combination with rules to
decide whether the photo was made in or outside.
Another component aims at harvesting the Web based on previously extracted data such as
GPS coordinates and image similarity, to associate more relevant content from the Web. A
component aiming at identifying similar photos of the same motif, taken one after the other
has been also implemented using a kind of local color feature matching.
The data model which is used in MetaXa to represent the extracted metadata is a very generic
model which allows building data types corresponding to the different metadata. However,
it does not reflect the relationships between this data. These are defined as dependencies
between the extraction and enhancement algorithms and are represented in a workflow com-
ponent of the architecture. The architecture of the MetaXa application is built around the
requirements for the functionality of the components. Less attention is paid to the data
structures representing the extracted information, and how they can be organized in order
to support the desired photo album creation scenario. Thus, when applying the GiACoMo
model for modeling such an application, which is a data-centered rather than a functionality-
centered approach, the features of the application have to be considered from a data-centric
perspective. For example, for modeling the histogram extraction components not the ex-
traction algorithm itself should be considered first, but the result of this algorithm, i.e. the
histograms. Moreover, the dependencies between the different algorithms can be represented
as dependencies between the resulting data structures.

6.3.2 Modeling the Image Annotation Application

In Figures 6.11, 6.12 the derived model for the photo annotation application is shown. The
components of a CBIRS which have to be modeled in order to cover the requirements of the
application are the “Image Store” and “Feature Store” storage components and the “Feature
Extraction” component. The “Retrieval Component” can be designed to serve for benchmark
purposes or for the photo album scenario. In this case, the benchmark scenario is considered.
All extraction and enhancement components of the MetaXa architecture can be modeled
as the “Feature Extraction” component of the CBIRS. The results of this functionality are
reflected in the structural part of the derived CBIRS model. As already mentioned, since
GiACoMo is a data-centered model the first parts of the model which are derived are the
structural parts representing the images and their extracted content and context. On one
side there are the content-based feature classes PhotoHistograms, PhotoFaces and Pho-
toEdges. On the other side, content-independent information are modeled as metadata
classes EXIFData, CalenderEvent etc. The content extraction functionality is modeled
as overridden methods of the respective feature classes extractFeature(). The context extrac-
tion functionality is represented analogously through the methods of the respective Metadata
classes. The difference is that the GiACoMo model does not offer a generic method in the
superclass Metadata for extracting these. Thus, the method had to be added additionally.

150 Chapter 6. Evaluation

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

fr
am

ew
or

k>
>

R
eg

io
n

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

+
P

ho
to

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

+
T

ec
hD

at
aI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
D

at
eC

re
at

ed
 :

C
B

IR
S

D
at

eT
yp

e
+

B
its

P
er

P
ix

el
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

T
ec

h
n

ic
al

M
et

ad
at

a

+
E

X
IF

D
at

aI
D

 :
C

B
IR

S
In

te
ge

rT
yp

e
-A

pe
rt

ur
e

: C
B

IR
S

F
lo

at
T

yp
e

+
F

la
sh

 :
C

B
IR

S
B

oo
le

an
T

yp
e

+
G

P
S

C
oo

rd
 :

C
B

IR
S

G
P

S
T

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ge
tL

ig
ht

C
on

di
tio

ns
()

 :
C

B
IR

S
F

lo
at

T
yp

e
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

E
X

IF
D

at
a

+
P

ho
to

R
eg

io
nI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
B

yF
ea

tu
re

sW
ith

A
no

th
er

R
eg

io
n(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

R
eg

io
n

+
P

ho
to

R
eg

io
nL

oc
al

iz
at

io
nI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eR

eg
io

nL
oc

al
iz

at
io

n(
)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

R
eg

io
n

L
o

ca
liz

at
io

n

+
P

ho
to

R
aw

Im
ag

eR
ep

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
Im

ag
eD

at
a

: C
B

IR
S

B
in

ar
yT

yp
e

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

P
h

o
to

R
aw

Im
ag

eR
ep

+
P

ho
to

H
is

to
gr

am
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

P
ho

to
H

is
to

gr
am

 :
C

B
IR

S
A

rr
ay

T
yp

e[
4]

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()
 :

C
B

IR
S

F
lo

at
T

yp
e

+
ge

tS
ha

rp
ne

ss
()

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

ge
tE

xp
os

ur
e(

)
: C

B
IR

S
In

te
ge

rT
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

H
is

to
g

ra
m

+
P

ho
to

E
dg

es
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

E
d

g
es

+
P

ho
to

F
ac

es
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

P
h

o
to

F
ac

es

+
C

al
en

de
rE

ve
nt

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
E

ve
nt

N
am

e
: C

B
IR

S
S

tr
in

gT
yp

e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

C
al

en
d

er
E

ve
n

t

+
E

xt
re

na
lW

eb
In

fo
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

E
xt

er
na

lW
eb

In
fo

 :
C

B
IR

S
S

tr
in

gT
yp

e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

E
xt

er
n

al
W

eb
In

fo

rg
re

ga
er

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

6.
11

:
C

B
IR

S
P

IM
fo

r
a

ph
ot

o
an

no
ta

ti
on

ap
pl

ic
at

io
n

6.4. Estimating the Gain From the Result of the Transformation 151

For modeling the enhancement components for deriving higher-level image descriptions meth-
ods for calculating derived values as in the case of calculating the light conditions from the
EXIF data, e.g. getLightConditions(), are used. The more complex derivation algorithm
for In/OutDoor classification is modeled as a CBIRClassifier. The question which arises when
modeling the enhancement components is if their results have to be treated as persistent fea-
tures or metadata, or if they should be calculated on the fly when needed. The choice can
be made in favor of the first approach if the required algorithms are very complex and time
consuming, as well as in the case that more than one feature and/or metadata are used to
derive the new data. Otherwise, the representation of the components as methods should be
used.
The similarity functionality for finding images of the same motif is represented through the
metric model similarity methods in the features, regions and image classes. If different combi-
nations of features have to be used for selecting different image sets corresponding similarity
methods have to be defined in the Photo class.
Consequently, the photo annotation application, which was not known before the creation of
the GiACoMo-IRS, can be considered derivable from this model.

6.4 Estimating the Gain From the Result of the Transforma-
tion

As stated in the beginning of this chapter, in order to estimate the gain from the exploited
development technique, an analysis of the effort, needed additionally to complete the appli-
cation implementation is needed. Therefore, the results of a transformation of an arbitrary
PIM are described and the required adaptations, i.e. enhancements to the implementation
are identified.

6.4.1 Mapping Data Structure

Structural concepts, such as classes, data types, references etc. are mapped completely to
corresponding concepts in the platform-specific model. The developer has to add code to
the generated implementation only in cases where the PSM requires more specification data,
which is not delivered by the conceptual model. In the case of mapping onto SQL:2003 these
could be additional specifications of the Structured Type, such as FINAL or NOT FINAL.

6.4.2 Mapping Functionality

The mapping of functionality is divided into mapping of system functionality and mapping of
object functionality. The object behavior is represented in SQL:2003 through the methods of
user-defined types. The signature and body of these methods are separated in SQL:2003. In
UML only the signature of an operation is given in a class diagram. The implementation of
the methods must be provided directly in the programming language of the implementation,
e.g. Java. In Figure 6.13 on the left side the UML diagram class and method are shown and
on the right side the translation into SQL:2003. During the mapping process the declaration
of the method in the relational model is based on the signature of the method in the UML
class diagram. The implementation of the method can be added to the database user-defined

152 Chapter 6. Evaluation

+Class : CBIRSStringType

<<framework>>
TestInstance

<<framework>>
StillImage

<<framework>>
DMModel

<<framework>>
CBIRClassifier

<<framework>>
TestStatistics

+Class : CBIRSStringType

<<framework>>
TrainingInstance

<<application>>
<<persistent>>

<<application-logic>>
Photo

+InOutDoorClassifierID : CBIRSIntegerType

+classify()
+addTrainingInstance()
+addTestInstance()
+buildModel()
+dropModel()
+resetModel()
+testModel()

<<application>>
<<persistent>>

<<application-logic>>
InOutdoorClassifier

+InOutDoorModelID : CBIRSIntegerType

<<application>>
<<persistent>>

InOutDoorModel

+InOutDoorTestStatisticsID : CBIRSIntegerType

<<application>>
<<persistent>>

InOutDoorTestStatistics

+InOutDoorTrainingInstID : CBIRSIntegerType
+Class : CBIRSStringType

<<application>>
<<persistent>>

InOutDoorTrainingInst

+InOutDoortestInstID : CBIRSIntegerType
+Class : CBIRSStringType

<<application>>
<<persistent>>

InOutDoorTestInst

ewrfwerwe

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure 6.12: CBIRS PIM for a photo annotation application - data mining part

functions either from a predefined library of the framework model or from a customized
implementation of the developer. One possible mechanism for facilitating the process of
assigning implementations to the modeled methods is the MView plugin described in [Sch07].
This plugin is designed to help the developer to assign implementation packages to the model
elements. The plugin offers a tree view of the model and the package structure and a drag
and drop mechanism for associating the package structure elements with those of the model
structure.
For mapping the system functionality the interface provided by the ORDBMS in terms of
SQL data manipulation and data query language and the extensibility options in terms of
user-defined functions and stored procedures are used. There is more than one possibility
to realize the Insert operation for images between which the developer can choose. One
possibility is to encapsulate the extraction of the regions and features and their insertion into
the database in a user-defined function, representing the constructor of a StillImage object.
Another possibility is to make use of the TRIGGER object in an ORDBMS to invoke the

6.4. Estimating the Gain From the Result of the Transformation 153

Figure 6.13: Mapping of methods onto user-defined functions

region and feature constructors for extracting the regions and features of an inserted image.
In both cases the following SQL statement should be issued to insert an object of the type
StillImage into the database:
[Oracle syntax:]

INSERT INTO SCHEMA.IMAGE
VALUES (StillImage(URL))

The efficient processing of queries is one of the main advantages of database management
systems. The query processing operations supported by the DBMS are generic, and therefore,
domain independent. They are global for the whole system. However, they have been defined
to apply them on standard basic data types (alphanumeric data types). In order to support
application specific queries such as the similarity queries on the StillImage data type we have
to provide special operations for comparing object of this type. These operations realizing the
query operation from the UML class diagram are mapped onto methods of user-defined types
in the database. The possible usage of these methods in the SQL query can be as follows:
[SQL:2003 syntax:]

SELECT *
FROM getSimilarImages(URL, threshold)

With this implementation the whole query processing algorithm is encapsulated into the user-
defined function getSimilarImages(...). The main disadvantage of this approach is that it does
not allow for any query optimization on behalf of the DBMS. Therefore, clustering methods
for building predefined clusters of similar images by specific features or a combination of
those should be used. Hence, the user-defined function for comparing the query image with
the ones in the database would have to be applied on the first place only onto the cluster
representatives of the images. In this way, we can improve the efficiency for the processing of
the similarity queries.

154 Chapter 6. Evaluation

The implementation of the functionality of the model requires more additional effort from the
developer than the implementation of the structural part. Since the model does not provide
a representation of the complex image processing or distance measure algorithms, these have
to be implemented additionally. Different solutions can be suggested to facilitated this task.
These algorithms can also be provided as part of the model (sequence diagrams, OCL etc.) or
their implementations can be associated to the corresponding operation signatures in the class
diagram before the transformation step takes place. The first approach could lead to very
complex models, difficult to handle and to transform into an implementation. The second
approach has the advantage that specific libraries or packages can be reused by the developer.
It should be mentioned that in order to be able to use the system the developer should
implement the needed user interface layer of the system, which is not part of the conceptual
model. As pointed out in the previous chapter this task can be facilitated with a modular
implementation of the user-interface, which can be parametrized using information from the
conceptual model. This approach has been prototypically implemented in the Image Database
Generator Eclipse Plug-In, described in Chapter 5.

6.5 Summary

In this chapter, the exploited development methodology for content-based image retrieval
systems was evaluated, based on two main criteria. On one side the quality of the modeling
approach was evaluated using three formerly implemented applications, by deriving their
conceptual models from the GiACoMo-IRS. These tests showed that the applications are
almost completely covered by the generic adaptable model, and therefore, it can be concluded
that the GiACoMo-IRS model is complete for a certain class of CBIRSs. The possibilities to
extend and adapt the model with further data types and special associations found also their
application in the instantiated models.
The second part of the evaluation dealt with estimating the gain of the development approach
by identifying the additional effort needed to finalize the implementation of the systems. The
analysis showed that most of the additional implementation work which has to be done
by the developer is for the implementation of the functionality of the system. As a way to
facilitate this task, the usage of class libraries and/or packages with standard image-processing
algorithms and distance metrics was suggested.

Chapter 7

Conclusions and Prospective
Research Directions

Developing a universal CBIRS which can solve all past, present and future image retrieval
tasks emerging from various domains is still a challenging task. Each different application field
requires the adoption of often a few, but well chosen techniques for feature extraction, simi-
larity matching etc. Although such specialized applications apply different sets of techniques,
their overall architectures comprise of the same components. There is also a broad range of
techniques, which can be reused to implement the components of new CBIRSs. Approaches
for how to make use of this know-how, gathered through the almost 20 years developments
in this field, in order to facilitate the development of tailor-made CBIRSs have been pro-
posed recently. These approaches involve software engineering technologies, such as, software
frameworks and code libraries, as well as DBMS implementation techniques, such as, database
extensions. Software frameworks, however, are developed for a specific platform. They offer a
reusable architecture but almost no reusable components. Thus each of the components has
to be completely implemented by the developer for a specialized application. The resulting
applications are not compact, but are more like an extension of the framework. Code libraries
are also platform dependent and do not provide a reusable architecture. Their combination
with the framework approach should be considered. Database extensions for image data de-
fine a reusable image data type in combination with some content-based retrieval functions.
These data types and functionality are, however, very generic and cannot be adapted to the
needs of a special application. This might be the reason why these extensions are not enough
exploited in current DBMSs.
Applying the model-driven software development approach for the implementation of CBIRSs
can considerably facilitate the development process and consequently improve the quality of
the resulting software. This development approach shifts the development process on an
abstract level, thus it guarantees platform independence of the resulting application. The
reuse of a software architecture is provided at the modeling level by a generic framework
model of the application. The reuse of particular techniques or algorithms is possible at both
the modeling and the implementation level, either by pattern-like constructs or black box
components in the framework model, or by code libraries, respectively. Another advantage of
this approach is that the final implementation of the application in terms of a programming
language is generated as far as possible automatically from the model, in order to reduce

155

156 Chapter 7. Conclusions and Prospective Research Directions

the effort for typing source code for the developer. In order to apply this development
approach for the implementation of CBIRSs, adequate domain-specific techniques for each of
the processes in model-driven development, i.e. conceptual modeling, model transformation,
were elaborated in this thesis. The techniques were elaborated based on a requirements
analysis, which determined the parts of the CBIRS which have to be modeled and generated
by the development approach, as well as the target software architecture of the application.
The results of the analysis of these aspects and the corresponding model-driven techniques are
summarized in the paragraphs below. For each of these techniques, open issues are pointed
out.

A Generic Software Architecture of CBIRSs.

CBIRSs have been described using a generic system architecture in numerous books and
articles on the topic. These architectures claim to cover a broad range of existing systems.
Thus, an integrated view of a generic architecture of a CBIRS can be constructed, which
depicts all common components of such systems. To answer the first question posed in the
beginning of this thesis “What should be modeled?” an analysis of the generic architecture
and components of CBIR systems was carried out. Three groups of generic components were
identified: user interface, compensator and core CBIRS components. The development of the
core CBIRS components was chosen as the aim of the model-driven approach. User interfaces
were left out of the requirements analysis because on the one hand there are already methods
dealing with the model-driven development of user interfaces, e.g. task models, and on the
other hand the development of user interfaces for different types of users, different types of
terminal devices, can be done independently of the CBIR core components. Compensator
components are needed in cases where the user interfaces have higher requirements towards
the core CBIRS components, which cannot be implemented directly in the core. Thus, these
components can be regarded as belonging more to the user interface and are left out of the
requirements analysis. Consequently, the CBIRS components which can be designed with
the help of the model-driven techniques are the components for extracting and storing im-
age content and those for retrieving images by their content. The different implementation
possibilities for these components were used to set the requirements towards the modeling
technique.
The first group of components requires the possibility to model different representations of
image content in terms of low- or high-level features, structure, objects etc., as well as content-
independent image data, such as technical data. The possibility for modeling functionality
is also required in order to represent the operations needed to extract the image content.
Retrieval components set high requirements for the modeling approach. The large number of
image retrieval mechanisms makes it difficult to generalize the requirements towards a model.
Therefore, in this thesis two retrieval approaches: the metric the classification approach are
included in the requirements for the modeling technique.

Implementation Paradigms for CBIRSs.

A model-driven transformation technique can be defined only if a concrete software archi-
tecture and implementation platform are determined. An analysis of the currently applied
implementation paradigms of CBIRSs was carried out in order to choose one of these for the

157

elaboration of the transformation technique. Most existing CBIRSs have been developed as
centralized CBIRSs. Distributed CBIRSs are still in the research stage. In order to have more
reference application the choice in this thesis was made in favor of the centralized CBIRSs.
Using DBMSs as a basis for developing CBIRSs is one possible approach for this task. DBMSs
have been especially extended to support image data types and corresponding content-based
image retrieval functionality. These extensions have not received the expected popularity in
the practice. They have been developed, to be reused in different applications, building on
top of the DBMS. However, the data structures and the functionality is very rudimentary so
no real CBIR applications can use them. Furthermore, these extensions cannot be adapted
for the particular requirements of a CBIR application. Therefore, developers of CBIR sys-
tems either implement their own database extensions from scratch or even shift the CBIR
part of the application out of the database. This problem can be alleviated by facilitating
the development process for own database extensions, which can profit from the useful fea-
tures of the DBMS platform. Therefore, it is a challenging application for the model-driven
development approach of CBIRSs. Thus, extendable DBMSs (ORDBMSs) were used as the
target platform of the model-driven transformation techniques.
Meeting the above decisions leaves out a number of other possible implementation paradigms
for CBIRSs out of the scope of this thesis. These can be the focus of further research.
Especially, the development of distributed CBIRSs might become of bigger interest in the
future.

A Conceptual Modeling Approach for CBIRSs.

The conceptual modeling techniques are the first group of techniques which was elaborated
for the model-driven development of CBIRSs. A framework model approach using UML as a
modeling language was proposed. This modeling approach uses a so called framework model -
GiACoMo-IRS, which represents the generic parts of a CBIRS model as abstract constructs,
as a starting point for the development of each CBIRS. The developer has to model the
concrete CBIRS by deriving the needed constructs from GiACoMo-IRS. Structural and func-
tional aspects have been integrated into the framework model which is represented by a UML
class diagram. For each of these aspects examples for the instantiation of application specific
models and “cookbooks” were provided.
The structural part of the framework model allows the instantiation of images, their raw repre-
sentations, their structural semantics, their content characteristics and content-independent
data. The developer has the possibility to reuse not only the whole architecture of the
framework model but also some concrete “black box” constructs. The functionality which is
represented in the model reflects the storage and the retrieval functionality of the CBIRS.
It is represented in terms of operations of the abstract classes. These operations have been
induced by stepwise modeling the system functionality with the help of use case and activ-
ity diagramming. Each detailed activity was mapped to a class operation in the framework
model. For modeling the retrieval functionality the metric and the classification retrieval
approaches were considered. Developers of CBIRSs who need to implement other retrieval
approaches can follow the same stepwise induction method for defining the needed operations
in the framework model. However, it is assumed that a large number of CBIRSs can be
implemented with the predefined retrieval methods.
For the purpose of model-driven development of CBIRSs this modeling approach has the

158 Chapter 7. Conclusions and Prospective Research Directions

advantage that it uses UML as a modeling language, which is widely used in the practice for
conceptual modeling of software applications. Thus, it is expected that experienced developers
do not need to learn a new modeling language and can quickly grasp the basics of the model.
The framework model, which is represented in terms of a class diagram, introduces some small
extensions to the UML, such as domain-specific data types. This idea can be further followed
in a future work to define a set of UML extensions for modeling CBIRSs in form of an UML
Profile. The current framework model includes only domain-concepts which are common
for most CBIR applications. Instantiation guidelines and application examples have been
provided along with the framework model in order to make its usage clearer. The developer
also has the possibility to adapt and extend the derived model using the UML constructs.
The evaluation of this modeling approach was carried out using three CBIR applications from
different application domains, which had been formerly implemented on top of ORDBMSs.
All applications required the modeling of a complex image data structure and retrieval func-
tionality. Despite their unique requirements their conceptual models could be derived almost
completely from the framework model GiACoMo-IRS which showed that special CBIR ap-
plications fit well in the generic model. Only some additional data types had to be defined,
such as Point, which can be considered to be included in the framework model. In order to
make more credible assertions from the evaluation of the modeling approach a broader range
of application domains must be considered. A usability study with expert developers can also
be performed in order to measure the gain from using this modeling approach.

Transformation of the Conceptual CBIRS Model onto an ORDBMS Model.

The transformation techniques in the model-driven development process depend on the meta
models used to represent the conceptual model and the implementation. Since the CBIRS may
need to be implemented onto more than one platform, as in the current case, the constructs
of the conceptual model were marked according to predefined stereotypes corresponding to
the different tiers of an architecture. The ORDBMS meta model was represented in terms of
extensions of UML in order to enable the developer to add some platform specific features
to the implementation on a modeling level. For the transformation of the CBIRS model into
an ORDBMS mapping rules for each of the platform independent meta model concept of
the conceptual model were defined. The problems when defining such mappings arise from
the discrepancies between the two models: object-oriented and object-relational. Therefore,
direct mappings of the PIM to PSM concepts are not always possible and workarounds for
missing PSM counterparts had to be defined. The defined transformation rules preserve the
information capacity of the model in the implementation model by assuring that each con-
ceptual concept has a corresponding mapping in the implementation model. Although some
of the PIM concepts are mapped to the same PSM concept this does not lead to loss of in-
formation, because in these cases either the conceptual concepts have an equivalent meaning
in the conceptual model, or the implementation concepts can be on an instance level. In
some cases there is more than one possibility for transformation. In order to make the right
choice between these, their efficiency has to be estimated by applying heuristic or cost-based
methods. Such an optimization analysis can be the topic of a further research in the area.
Only the standard SQL:2003 concepts were considered in the mapping rules. A further
research can exploit the mapping onto extended SQL concepts, such as SQL/MM concepts.
An analysis of the gain of the final result of the transformation for the developer was estimated.

159

Additional effort is mostly required in order to implement concrete algorithms for feature
extraction or similarity measures. This effort can be reduced by combining the model-driven
development approach with the reuse of code libraries, in which frequently applied algorithms
are implemented.

It can be further investigated if this development approach can be extended to support also
the model-driven development of multimedia information systems. The generic multimedia
model, represented in [IB05] gives some ideas about how this can be achieved. Further research
on the problem is currently carried out by Ilvio Bruder in his dissertation thesis “Structural
and Knowledge-based Modeling of Multimedia Information Systems”.
Both the modeling and the transformation techniques for CBIRSs have been implemented
in a prototype of a development environment as a Plugin for Eclipse. This tool has to be
further developed to meet all the requirements of the model-driven techniques elaborated in
this thesis. Its employment in the practice can help developers of CBIRSs in creating efficient
domain-specific CBIR application, by reusing current know-how in CBIR development and
benefiting from the features of DBMSs.

160 Chapter 7. Conclusions and Prospective Research Directions

Bibliography

[ABH97] Peter M. G. Apers, Henk M. Blanken, and Maurice A. W. Houtsma, editors.
Multimedia Databases in Perspective. Springer, 1997.

[ABK01] Solomon Atnafu, Lionel Brunie, and Harald Kosch. Similarity-Based Algebra
for Multimedia Database Systems. In Proc. of the 12th Australasian Database
Conference (ADC), pages 115–122, 2001.

[ABSS98] S. Adali, P. Bonatti, M. L. Sapino, and V. S. Subrahmanian. A Multi-Similarity
Algebra. In Proc. of the 1998 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pages 402–413, 1998.

[ACB02] Solomon Atnafu, Richard Chbeir, and Lionel Brunie. Content-Based and Meta-
data Retrieval in Medical Image Database. In Proc. of the 15th IEEE Symposium
on Computer-Based Medical Systems (CBMS), page 327, 2002.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Ser-
vices: Concepts, Architecture and Applications. Springer Verlag, 2004.

[AG01] Laurent Amsaleg and Patrick Gros. Content-based Retrieval Using Local De-
scriptors: Problems and Issues from a Database Perspective. Pattern Anal. Appl.,
4(2-3):108–124, 2001.

[AHF+88] R. D. Appel, D. F. Hochstrasser, M. Funk, C. Roch, Thierry Pun, and Christian
Pellegrini. Automatic Classification of Two-dimensional Gel Electrophoresis Pic-
tures by Heuristic Clustering. In Proc. of the Sixth Meeting of The International
Electrophoresis Society Electrophoresis’88, July 1988.

[AJO04] Laurent Amsaleg, Björn Thór Jónsson, and Vincent Oria, editors. Proceedings of
the First International Workshop on Computer Vision meets Databases, CVDB
2004, June 13, 2004, Paris, France. ACM, 2004.

[Amb03] Scott Ambler. Agile Database Techniques: Effective Strategies for the Agile Soft-
ware Developer. John Wiley & Sons, Inc., New York, NY, USA, 2003.

161

162 BIBLIOGRAPHY

[ATL07] The ATLAS Transformation Language. Website, 2007. Available online at http:
//www.eclipse.org/m2m/atl/; visited on Februar 25th 2008.

[BFG+96] Jeffrey R. Bach, Charles Fuller, Amarnath Gupta, Arun Hampapur, Bradley
Horowitz, Rich Humphrey, Ramesh Jain, and Chiao-Fe Shu. Virage Image Search
Engine: An Open Framework for Image Management. In Proc. of the SPIE
Conference on Storage and Retrieval for Image and Video Databases, pages 76–
87, 1996.

[BFHI03] I. Bruder, A. Finger, A. Heuer, and T. Ignatova. Towards a Digital Document
Archive for Historical Handwritten Music Scores. In Proc. of the 6th International
Conference of Asian Digital Libraries ICADL, Kuala Lampur, Malaysia, 2003.

[Bim99] Alberto Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1999.

[BIM04] I. Bruder, T. Ignatova, and L. Milewski. Knowledge-Based Scribe Recognition
in Historical Music Archives. In Proc. of the 8th European Conference of Digital
Libraries ECDL 2004, Bath, UK, 2004.

[BK01] Susanne Boll and Wolfgang Klas. ZYX-A Multimedia Document Model for Reuse
and Adaptation of Multimedia Content. IEEE Transactions on Knowledge and
Data Engineering, 13(3):361–382, 2001.

[BKPS03] C. Bauckhage, T. Käster, M. Pfeiffer, and G. Sagerer. Content-Based Image
Retrieval by Multimodal Interaction. In Proc. of the 29th Annual Conference of
the IEEE Industrial Electronics Society, pages 1865–1870, 2003.

[BLPR07] Bernhard Bauer, Florian Lautenbacher, Günther Palfinger, and Stephan Roser.
“AgilPro”: Modellierung, Simulation und Ausführung agiler Prozesse. OBJEK-
Tspektrum - Die Zeitschrift für Software-Engineering und Management, Jan-
uar/Februar 2007.

[BMSW01] Klemens Böhm, Michael Mlivoncic, Hans-Jörg Schek, and Roger Weber. Fast
Evaluation Techniques for Complex Similarity Queries. In Proc. of the 27th
International Conference on Very Large Data Bases (VLDB), pages 211–220,
2001.

[BPC+00] Ana B. Benitez, Seungyup Paek, Shih-Fu Chang, Qian Huang, Atul Puri, Chung-
Sheng Li, John R. Smith, Lawrence D. Bergman, and Charles N. Judice. Object-
Based Multimedia Content Description Schemes and Applications for MPEG-
7. Image Communication Journal (ICJ), Invited Paper on a Special Issue on
MPEG-7, 16(1):235–269, September 2000.

http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/

BIBLIOGRAPHY 163

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison Wesley, Redwood City, USA, 1999.

[BSST07] Susanne Boll, Philipp Sandhaus, Ansgar Scherp, and Sabine Thieme. MetaXa -
Context- and Content-Driven Metadata Enhancement for Personal Photo Books.
In Proc. of the International conference on MultiMedia Modeling (MMM), pages
332–343, 2007.

[CG06] Dolors Costal and Cristina Gómez. On the Use of Association Redefinition in
UML Class Diagrams. In Proc. of the 25th International Conference on Concep-
tual Modeling (ER), pages 513–527, 2006.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation
Approaches. In Proc. of the Workshop on Generative Techniques in the context
of Model Driven Architecture (OOPSLA), October 2003.

[CH06] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation
Approaches. IBM Syst. J., 45(3):621–645, 2006.

[Che75] Peter P. Chen. The Enity-Relationship Model: Toward a Unified View of Data.
In Proc. of the International Conference on Very Large Data Bases (VLDB),
1975.

[CI03] Kent K. T. Cheung and Horace H. S. Ip. Developing an Object-oriented Frame-
work for Content-based Image Retrieval. Softw. Pract. Exper., 33(6):523–565,
2003.

[CMF96] Y. Chiaramella, P. Mulhem, and F. Fourel. A Model for Multimedia Information
Retrieval. Technical report, 1996. FERMI ESPRIT BRA 8134.

[CSY87] S. K. Chang, Q. Y. Shi, and C. W. Yan. Iconic Indexing by 2-D Strings. IEEE
Trans. Pattern Anal. Mach. Intell., 9(3):413–428, 1987.

[CT06] Gunter Saake Can Türker. Objektrelationale Datenbanken. Ein Lehrbuch.
dpunkt.verlag GmbH, Heidelberg, 2006.

[Czy05] Sebastian Czymaj. Konzeptuelle Datenmodellierung für die inhaltsbasierte Suche
in Kollektionen von digitalen Bildern. Diplomarbeit, 2005. Universität Rostock,
Institut für Informatik.

[DB07] Jürgen Dunkel and Ralf Bruns. Model-Driven Architecture for Mobile Applica-
tions. In Proc. of the 10th International Conference on Business Information
Systems (BIS), pages 464–477, 2007.

164 BIBLIOGRAPHY

[DDL+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by Latent Semantic Analysis. Journal of
the American Society of Information Science, 41(6):391–407, 1990.

[Dol04] Sebastian Dolke. Umsetzung von Modellen und Methoden bei der Integration
spezieller Dokumentenserver in eine IBM Content Manager Umgebung. Diplo-
marbeit, 2004. Universität Rostock, Institut für Informatik.

[DU04] Suzanne W Dietrich and Susan D. Urban. An Advanced Course in Database
Systems: Beyond Relational Databases. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2004.

[EB03] Horst Eidenberger and Christian Breiteneder. VizIR - A Framework for Visual
Information Retrieval. J. Vis. Lang. Comput., 14(5):443–469, 2003.

[FBF+94] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and
W. Equitz. Efficient and Effective Querying by Image Content. J. Intell. Inf.
Syst., 3(3-4):231–262, 1994.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms
for Middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[FPR00] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The UML Profile
for Framework Architectures. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[FPSS96] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge
Discovery in Databases. AI Magazine, 17:37–54, 1996.

[FSJ99] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Building Ap-
plication Frameworks: Object-oriented Foundations of Framework Design. John
Wiley & Sons, Inc., New York, NY, USA, 1999.

[GCR06] Emanuel S. Grant, Rajani Chennamaneni, and Hassan Reza. Towards analyzing
UML class diagram models to object-relational database systems transforma-
tions. In Proc. of the 24th IASTED international conference on Database and
applications (DBA), pages 129–134, 2006.

[GGKH03] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of OMG MOF 2.0
Query / Views / Transformations Submissions and Recommendations towards
the final Standard. In Proc. of the Metamodelling for MDA Workshop, York,
November 2003.

[Gha95] Arif Ghafoor. Multimedia Database Management Systems. ACM Comput. Surv.,
27(4):593–598, 1995.

BIBLIOGRAPHY 165

[GMY93a] J. Griffioen, R. Mehrotra, and R. Yavatkar. A Semantic Data Model for Em-
bedded Image Information. In Proc. of the Second International Conference on
Information and Knowledge Management, pages 393–402, 1993.

[GMY93b] Jim Griffioen, Rajiv Mehrotra, and Rajendra Yavatkar. An Object-Oriented
Model for Image Information Representation. In Proc. of the second international
conference on Information and knowledge management (CIKM), pages 393–402,
1993.

[Göc03] Roland Göcke. Building a System for Writer Identification on Handwritten Music
Scores. In Proc. of the International Conference on Signal Processing, Pattern
Recognition and Applications (IASTED), 2003.

[Gor02] Davor Gornik. UML Data Modeling Profile, White Paper, 2002.

[GR98] Martin Gogolla and Mark Richters. Equivalence Rules for UML Class Diagrams.
In The Unified Modeling Language, UML’98 - Beyond the Notation. First Inter-
national Workshop, Mulhouse, France, June 1998, pages 87–96, 1998.

[GRV96] Venkat N. Gudivada, Vijay V. Raghavan, and Kanonluk Vanapipat. A Unified
Approach to Data Modeling and Retrieval for a Class of Image Database Ap-
plications. Multimedia database systems: issues and research directions, pages
37–78, 1996.

[GS00a] William I. Grosky and Peter L. Stanchev. An Image Data Model. In Proc.
of the 4th International Conference on Advances in Visual Information Systems
(VISUAL), pages 14–25, 2000.

[GS00b] Amarnath Gupta and Simone Santini. Toward Feature Algebras in Visual
Databases: The Case for a Histogram Algebra. In Proc. of the Fifth Working
Conference on Visual Database Systems (VDB), page 177, 2000.

[Gud93] V. N. Gudivada. A Unified Framework for Retrieval in Image Databases. PhD
thesis, 1993. University of Southwestern Louisiana, Lafayette, LA, USA.

[GVJH98] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. Design Pat-
terns CD: Elements of Reusable Object-Oriented Software. Addison Wesley,
Boston, USA, 1998.

[GWJ91] Amarnath Gupta, Terry E. Weymouth, and Ramesh Jain. Semantic Queries with
Pictures: The VIMSYS Model. In Proc. of the 17th International Conference on
Very Large Data Bases (VLDB), 1991.

166 BIBLIOGRAPHY

[GY00] Sahudy Montenegro González and Akebo Yamakami. A general purpose architec-
ture for image retrieval in databases. In Proc. of the 11th International Workshop
on Database and Expert Systems Applications (DEXA), page 686, 2000.

[Heu97] Andreas Heuer. Objektorientierte Datenbanken: Konzepte, Modelle, Standards
und Systeme. Addison-Wesley, 1997.

[HK00] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 1st edition, 2000.

[HKRR93] D. P. Huttenlocher, G. A. Klanderman, W. A. Rucklidge, and W. A. Rucklidge.
Comparing Images Using the Hausdorff Distance. IEEE Trans. Pattern Anal.
Mach. Intell., 15(9):850–863, 1993.

[HNP95] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized Search
Trees for Database Systems. In Proc. of 21th International Conference on Very
Large Data Bases (VLDB), pages 562–573, Zurich, Switzerland, 1995.

[HR03] Andreas Henrich and Günter Robbert. RSV-Transfer: An Algorithm for Sim-
ilarity Queries on Structured Documents. In Multimedia Information Systems,
pages 65–74, 2003.

[Hul86] Richard Hull. Relative Information Capacity of Simple Relational Database
Schemata. SIAM J. Comput., 15(3):856–886, 1986.

[HZdVB07] Sándor Héman, Marcin Zukowski, Arjen P. de Vries, and Peter A. Boncz. Efficient
and Flexible Information Retrieval using MonetDB/X100. In Proc. of the Third
Biennial Conference on Inovative Data Systems Research (CIDR), pages 96–101,
2007.

[IB03] Temenushka Ignatova and Ilvio Bruder. Utilizing Relations in Multimedia Doc-
ument Models for Multimedia Information Retrieval. In Proc. of the Int. Conf. -
Information, Communication Technologies, and Programming, Varna, Bulgaria,
2003.

[IB05] Temenushka Ignatova and Ilvio Bruder. Utilizing a Multimedia UML Framework
for an Image Database Application. In Proc. of the ER2005 Workshops: 1st
International Workshop on Best Practices of UML (BP-UML 2005), 2005.

[Ign03] Temenushka Ignatova. 2D-Gel Electrophoresis Image Database. In Rostocker
Informatik-Berichte (RIB-03), Rostock, 2003.

[Ign06] Temenushka Ignatova. Model-Driven Development of Content-Based Image Re-
trieval Systems. In Proc. of the 1st International Conference on Digital Infor-
mation Management (ICDIM), pages 137–144, 2006.

BIBLIOGRAPHY 167

[IH08] Temenushka Ignatova and Andreas Heuer. Model-Driven Development of
Content-Based Image Retrieval Systems. Special issue on Digital Information
Management of the International Journal of Digital Information Management
(JDIM), 6(1), 2008.

[IMa06] Website: IMatch. Website, 2006. Available online at http://www.photools.

com/; visited on August 23rd 2007.

[img06] imgSeek. Website, 2006. Available online at http://www.imgseek.net/; visited
on August 23rd 2007.

[ISO91] ISO/IEC. Software Product Evaluation–Quality Characteristics and Guidelines
for Their Use. Technical Report 9126, ISO/IEC, 1991.

[JMM95] H. V. Jagadish, Alberto O. Mendelzon, and Tova Milo. Similarity-Based Queries.
In Proc. of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pages 36–45, 1995.

[Jon02] Jon Siegel. OMG’s Model Driven Architecture. EURESCOM mess@ge, 2, 2002.

[JV03] M. Jones and P. Viola. Face Recognition Using Boosted Local Features, 2003.

[JWY+06] Feng Jing, Changhu Wang, Yuhuan Yao, Kefeng Deng, Lei Zhang, and Wei-Ying
Ma. IGroup: Web Image Search Results Clustering. In Proc. of the 14th annual
ACM International Conference on Multimedia, pages 377–384, 2006.

[KB94] Setrag Khoshfian and A. Brad Baker. Multimedia and Imaging Databases. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

[KD05] Harald Kosch and Mario Döller. Multimedia Database Systems: Where are
we now? In Proc. of the IASTED International Conference on Databases and
Applications, Innsbruck, Austria, 2005.

[KKYL04] Duck Hoon Kim, Duck Hoon Kim, Il Dong Yun, and Sang Uk Lee. A New
Attributed Relational Graph Matching Algorithm Using the Nested Structure of
Earth Mover’s Distance. In Proc. of the Pattern Recognition, 17th International
Conference on (ICPR’04), pages 48–51, 2004.

[KNS04] Irwin King, Cheuk H. Ng, and Ka C. Sia. Distributed Content-based Visual
Information Retrieval System on Peer-to-Peer Networks. ACM Trans. Inf. Syst.,
22(3):477–501, 2004.

[Kos02] Harald Kosch. MPEG-7 and Multimedia Database Systems. SIGMOD Rec.,
31(2):34–39, 2002.

http://www.photools.com/
http://www.photools.com/
http://www.imgseek.net/

168 BIBLIOGRAPHY

[KPPS03] Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, and Thomas Seidl. The
Paradigm of Relational Indexing: a Survey. In Proc. of the German Database
Conference “Datenbanksysteme fr Business, Technologie und Web” (BTW),
pages 285–304, 2003.

[KSW07] Komplexe Software Systeme Projekt - Image Database generator II. KSWS
Projektbericht, 2007. Universität Rostock, Institut für Informatik.

[Kuz05] Mikhail Kuznetsov. Automated Model Transformation in MDA. In Proceedings of
the Spring Young Researcher’s Colloquium on Database and Information Systems
SYRCoDIS, St.-Petersburg, Russia, 2005, 2005.

[KZB04] M. L. Kherfi, D. Ziou, and A. Bernardi. Image Retrieval from the World Wide
Web: Issues, Techniques, and Systems. ACM Comput. Surv., 36(1):35–67, 2004.

[LC03] Anthony J. T. Lee and Han-Pang Chiu. 2D Z-string: A New Spatial Knowledge
Representation for Image Databases. Pattern Recogn. Lett., 24(16):3015–3026,
2003.

[Lew01] Michael S. Lew, editor. Principles of Visual Information Retrieval. Springer-
Verlag, London, UK, 2001.

[Li05] Xin Li. Negotiating the Semantic Gap in an MPEG-7 Aerial Image Database.
Dissertation, 2005. Wayne State University, USA.

[LKO02] J. Laaksonen, M. Koselka, and E. Oja. PicSOM - Self-Organising Image Retrieval
with MPEG-7 Content Descriptions. IEEE Transactions on Neural Networks,
Special Issue on Intelligent Multimedia Processing 13, 13(4):841–853, 2002.

[LPS+04] Thomas M. Lehmann, Bartosz Plodowski, Klaus Spitzer, Berthold B. Wein, Her-
mann Ney, and Thomas Seidl. Extended Query Refinement for content-Based
Access to Large Medical Image Databases. In Proc. of SPIE Symposium on Med-
ical Imaging: PACS and imaging informatics, volume 5371, pages 90–98, 2004.

[LSDJ06] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based
Multimedia Information Retrieval: State of the Art and Challenges. ACM Trans.
Multimedia Comput. Commun. Appl., 2(1):1–19, 2006.

[LSS94] Odd Ivar Lindland, Guttorm Sindre, and Arne Sølvberg. Understanding Quality
in Conceptual Modeling. IEEE Softw., 11(2):42–49, 1994.

[LZLM07] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A Survey of Content-
based Image Retrieval with High-level Semantics. Pattern Recogn., 40(1):262–
282, 2007.

BIBLIOGRAPHY 169

[MA07] Parastoo Mohagheghi and Jan Aagedal. Evaluating Quality in Model-Driven
Engineering. In Proc. of the International Workshop on Modeling in Software
Engineering (MISE), page 6, 2007.

[Mas05] Henning Masuch. Entwurf und Implementierung einer objektrelationalen Daten-
bankerweiterung für die automatische Schreiberklassifikation in historischen
Notenhandschriften. Projektarbeit, 2005. Universität Rostock, Institut für In-
formatik.

[MBC95] M. Mechkour, C. Berrut, and Y. Chiaramella. Using Conceptual Graph Frame-
work for Image Retrieval. In Proc. of the International conference on MultiMedia
Modeling (MMM), pages 127–142, 1995.

[MC07] Jennifer Munnelly and Siobhán Clarke. ALPH: A Domain-specific Language for
Crosscutting Pervasive Healthcare Concerns. In Proc. of the 2nd workshop on
Domain specific aspect languages (DSAL), page 4, 2007.

[MD07] P. Mohagheghi and V. Dehlen. An Overview of Quality Frameworks in Model-
Driven Engineering and Observations on Transformation Quality. In Proc. of the
2nd Workshop on Quality in Modeling, 2007.

[Mec95a] Mourad Mechkour. EMIR2: An Extended Model for Image Representation and
Retrieval. In Proc. of the 6th International Conference on Database and Expert
Systems Applications (DEXA), pages 395–404, 1995.

[Mec95b] Mourad Mechkour. EMIR2: An Extended Model for Image Representation and
Retrieval. In Proc. of the 6th International Workshop on Database and Expert
Systems Applications (DEXA), pages 395–404, 1995.

[Mel02] Jim Melton. Advanced SQL 1999: Understanding Object-Relational, and Other
Advanced Features. Elsevier Science Inc., New York, NY, USA, 2002.

[MF02] Oge Marques and Borko Furht. Content-based Visual Information Retrieval.
Distributed multimedia databases: techniques & applications, pages 37–57, 2002.

[MG06] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. In Elec-
tronic Notes in Theoretical Computer Science, Volume 152, Proceedings of the
International Workshop on Graph and Model Transformation (GraMoT 2005),
pages 125–142, 2006.

[MGP03] F. Monay and D. Gatica-Perez. On Image Auto-Annotation with Latent Space
Models. In Proc. of the ACM International Conference on Multimedia (ACM
MM), 2003.

170 BIBLIOGRAPHY

[Mil04] Lars Milewski. Integration von Clustering/Classification-Techniken in eine ob-
jektrelationale Datenbankumgebung. Diplomarbeit, 2004. Universität Rostock,
Institut für Informatik.

[MIR93] Renée J. Miller, Yannis E. Ioannidis, and Raghu Ramakrishnan. The Use of
Information Capacity in Schema Integration and Translation. In Proc. of the
19th International Conference on Very Large Data Bases (VLDB), pages 120–
133, 1993.

[Mon05] MonetDB. Website, 2005. Available online at http://monetdb.cwi.nl/

projects/monetdb//Home/; visited on August 23rd 2007.

[Moo98] Daniel L. Moody. Metrics for Evaluating the Quality of Entity Relationship
Models. In Proc. of the 17th International Conference on Conceptual Modeling
(ER), pages 211–225, 1998.

[MP01] W. Mok and D. Paper. On Transformations from UML Models to Object-
Relational Databases. In Proc. of the 34th Annual Hawaii International Con-
ference on System Sciences (HICSS), page 3046, 2001.

[MS93] S. Marcus and V. Subrahmanian. Multimedia Database Systems, 1993.

[MS96] Sherry Marcus and V. S. Subrahmanian. Foundations of Multimedia Database
Systems. J. ACM, 43(3):474–523, 1996.

[MSBS03] Daniel L. Moody, Guttorm Sindre, Terje Brasethvik, and Arne Sølvberg. Evalu-
ating the quality of information models: empirical testing of a conceptual model
quality framework. In Proc. of the 25th International Conference on Software
Engineering (ICSE), pages 295–305, 2003.

[MSMP99] Henning Müller, David McG. Squire, Wolfgang Müller, and Thierry Pun. Efficient
Access Methods for Content-Based Image Retrieval With Inverted Files. In Proc.
of the Multimedia Storage and Archiving Systems IV (VV02), 1999.

[MSS97] Carlo Meghini, Fabrizio Sebastiani, and Umberto Straccia. The Terminological
Image Retrieval Model. In Proc. of the 9th International Conference on Image
Analysis and Processing (ICIAP), pages 156–163, 1997.

[MSS01] Carlo Meghini, Fabrizio Sebastiani, and Umberto Straccia. A model of Multime-
dia Information Retrieval. J. ACM, 48(5):909–970, 2001.

[Mul99] Robert J. Muller. Database Design for Smarties: Using UML for Data Modeling.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

http://monetdb.cwi.nl/projects/monetdb//Home/
http://monetdb.cwi.nl/projects/monetdb//Home/

BIBLIOGRAPHY 171

[MVC04] Esperanza Marcos, Belén Vela, and José Maŕıa Cavero. A Methodological Ap-
proach for Object-Relational Database Design Using UML. Inform., Forsch. &
Entwickl., 18(3-4):152–164, 2004.

[MW03] Klaus Meyer-Wegener. Multimediale Datenbanken : Einsatz von Datenbanktech-
nik in Multimedia-Systemen. Leitfäden der Informatik. B.G. Teubner, Wies-
baden, 2. überarb. und erw. edition, 2003.

[Nes00] Niels Nes. Image Database Management System Design Considerations, Algo-
rithms and Architecture. PhD thesis, 2000.

[NFG06] Martin Nussbaumer, Patrick Freudenstein, and Martin Gaedke. Web Applica-
tion Development Employing Domain-Specific Languages. In IASTED Conf. on
Software Engineering, pages 13–18, 2006.

[NMH03] Munehiro Nakazato, Ljubomir Manola, and Thomas S. Huang. ImageGrouper:
A Group-oriented User Interface for Content-based Image Retrieval and Digital
Image Arrangement. J. Vis. Lang. Comput., 14(4):363–386, 2003.

[OAF+04] Toacy C. Oliveira, Paulo S.C. Alencar, Ivan M. Filho, Carlos J.P. de Lucena, and
Donald D. Cowan. Software Process Representation and Analysis for Framework
Instantiation. IEEE Transactions on Software Engineering, 30(3):145–159, 2004.

[OMG03] OMG. MDA Guide Version 1.0.1, 2003.

[OMG05] OMG. MOF QVT Final Adopted Specification, OMG Adopted Specification
ptc/05-11-01, 2005.

[OÖ03] Vincent Oria and M. Tamer Özsu. Views or Points of View on Images. Int. J.
Image Graphics, 3(1):55–80, 2003.

[OÖL+97] V. Oria, M. Özsu, X. Li, L. Liu, J. Li, Y. Niu, and P. Iglinski. Modeling Images
for Content-based Queries: The DISIMA Approach. In Proc. of 2nd DEFINING
VIEWS IN AN IMAGE DATABASE SYSTEM 19 International Conference of
Visual Information Systems, pages 339–346, 1997.

[PF95] Ulrich Pfeifer and Norbert Fuhr. Efficient Processing of Vague Queries Using
a Data Stream Approach. In Proc. of the 18th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval (SIGIR),
pages 189–197, 1995.

[PF97] Euripides G. M. Petrakis and Christos Faloutsos. Similarity Searching in Medical
Image Databases. IEEE Trans. on Knowl. and Data Eng., 9(3):435–447, 1997.

172 BIBLIOGRAPHY

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annota-
tions with UML-F. In Proc. of the Second International Conference on Software
Product Lines (SPLC), pages 188–197, 2002.

[PM06] Roland Petrasch and Oliver Meimberg. Model Driven Architecture Eine prax-
isorientierte Einfhrung in die MDA. dpunkt.verlag, 2006.

[Pre95] Wolfgang Pree. Design Patterns for Object-oriented Software Development. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[Rat03] The UML and Data Modeling, White Paper, 2003.

[RB01] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. The VLDB Journal, 10(4):334–350, 2001.

[RBPR06] Oscar David Robles, José Luis Bosque, Luis Pastor, and Angel Rodŕıguez. CBIR
on Grids. In OTM Conferences (2), pages 1412–1421, 2006.

[RHC99] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image Retrieval: Current
Techniques, Promising Directions, and Open Issues. Journal of Visual Commu-
nication and Image Representation, 10(1):39–62, March 1999.

[SB00] John R. Smith and Ana B. Benitez. Conceptual Modeling of Audio-Visual Con-
tent. In Proc. of the IEEE International Conference on Multimedia and Expo
(ICME), New York, NY, July 2000.

[Sch04] Ingo Schmitt. Multimedia-Datenbanken: Retrieval, Suchalgorithmen und
Anfragebearbeitung, Habilitationsschrift. Fakultät für Informatik, Otto-von-
Guericke-Universität, Magdeburg, 2004.

[Sch07] Andre Schefe. Entwurf und Integration eines Plugins zur Anpassung und Erzeu-
gen eines Bilddatenbank-Generatos in eine Rich-Client-Anwendung zur Modell-
getriebene Entwicklung von Bilddatenbanken. Studienarbeit, 2007. Universität
Rostock, Institut für Informatik.

[SG01] Simone Santini and Amarnath Gupta. A Wavelet Data Model For Image
Databases. In Proc. of the IEEE International Conference on Multimedia and
Expo (ICME), 2001.

[SG02a] S. Santini and A. Gupta. An Extensible Feature Management Engine for Image
Retrieval. In Proc. of SPIE Storage and Retrieval for Media Databases, volume
4676, San Jose, 2002.

BIBLIOGRAPHY 173

[SG02b] Simone Santini and Amarnath Gupta. An Extensible Feature Management En-
gine for Image Retrieval. In Proc. of SPIE: Storage and Retrieval for Media
Databases, volume 4676, pages 86–97, 2002.

[Söl07a] Gunnar Söllig. Integration von nutzerdefinierten hochdimensionalen Indexstruk-
turen in Oracle für das inhaltsbasierte Retrieval digitaler Bilder. Diplomarbeit,
2007. Universität Rostock, Institut für Informatik.

[Söl07b] Gunnar Söllig. Multidimensionale indexierung in ordbms. In BTW Studieren-
denprogramm, pages 37–38, 2007.

[Spi06] Ralph Spickermann. Konzeption eines Multimedia Dokumenten Repositories auf
Basis von DB2, JSR-170 und einem MM Datenmodell. Diplomarbeit, 2006.
Universität Rostock, Institut für Informatik.

[SQL00] SQL Multimedia and Application Packages - Part 6: Data Mining. Working
Draft, 2000. ISO/IEC.

[SR96] U. Shaft and R. Ramakrishnan. Data Modeling and Feature Extraction for Image
Databases. In Proc. of SPIE Multimedia Storage and Archiving Systems, volume
2916, pages 90–102, 1996.

[SS02] Phillipe Salembier and Thomas Sikora. Introduction to MPEG-7: Multimedia
Content Description Interface. John Wiley & Sons, Inc., New York, NY, USA,
2002.

[SSH05] Ingo Schmitt, Nadine Schulz, and Thomas Herstel. WS-QBE: A QBE-Like Query
Language for Complex Multimedia Queries. In Proc. of the International confer-
ence on MultiMedia Modeling (MMM), pages 222–229, 2005.

[ST93] Klaus-Dieter Schewe and Bernhard Thalheim. Fundamental Concepts of Object
Oriented Databases. Acta Cybern., 11(1-2):49–84, 1993.

[Sto01] Knut Stolze. SQL/MM Part 5: Still Image - The Standard and Implementation
Aspects. In BTW, pages 345–363, 2001.

[Sto02] Knut Stolze. Still Image Extensions in Database Systems - A Product Overview.
Datenbank-Spektrum, 2(20):40–47, 2002.

[Sto05] Knut Stolze. A DB2 UDB still image extender, IBM developerWorks. Website,
2005. Available online at http://www.ibm.com/developerworks/db2/library/
techarticle/dm-0504stolze/; visited on August 23rd 2007.

[Sub98] V. S. Subrahmanian. Principles of Multimedia Database Systems. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1998.

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0504stolze/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0504stolze/

174 BIBLIOGRAPHY

[SVEH07] Thomas Stahl, Markus Völter, Sven Efftinge, and Arno Haase. Modellgetriebene
Softwareentwicklung. Dpunkt Verlag, 2007.

[SWS+00] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta,
and Ramesh Jain. Content-Based Image Retrieval at the End of the Early Years.
IEEE Trans. Pattern Anal. Mach. Intell., 22(12):1349–1380, 2000.

[TB04] Avinash Tiwari and Veena Bansal. PATSEEK: Content Based Image Retrieval
System for Patent Database. In Proc. of the International Conference on Elec-
tronic Business ICEB, pages 1167–1171, 2004.

[TCLP04] R. Troncy, J. Carrive, S. Lalande, and J-P. Poli. A Motivating Scenario for
Designing an Extensible Audio-visual Description Language. In Proc. of the
International Workshop on Multidisciolinary Image, Video, and Audio Retrieval
and Mining (CORIMEDIA), Sherbrooke, Canada, Octobre 2004.

[Thi08] Torsten Thierbach. Anforderungsanalyse und Vergleich von Software-
Frameworks für Content-Based Image Retrieval. Studienarbeit, 2008. Universität
Rostock, Institut für Informatik.

[TSMR03] Ricardo S. Torres, Celmar G. Silva, Claudia B. Medeiros, and Heloisa V. Rocha.
Visual Structures for Image Browsing. In Proc. of the twelfth International Con-
ference on Information and Knowledge Management CIKM, pages 49–55, 2003.

[Tür03] Can Türker. SQL:1999 & SQL:2003 - Objektrelationales SQL, SQLJ &
SQL/XML. dpunkt-Verlag, Heidelberg, 2003.

[TXRN06] Kazem Taghva, Min Xu, Emma Regentova, and Tom Nartker. Utilizing XML
Schema for Describing and Querying Still Image Databases. In ITNG ’06: Pro-
ceedings of the Third International Conference on Information Technology: New
Generations, pages 695–700, 2006.

[UML07] Unified Modeling Language (UML), Version 2.1.2, OMG. Website, 2007. Avail-
able online at http://www.omg.org/spec/UML/2.1.2/; visited on Mai 6th 2008.

[Urb87] Susan Darling Urban. Constraint Analysis for the Design of Semantic Database
Update Operations. PhD thesis, 1987. University of Southwestern Louisiana,
Lafayette, LA, USA.

[VC02] Lawrence D. Bergman Vittorio Castelli. Image Databases Search and Retrieval
of Digital Imagery. John Wiley & Sons, Inc., New York, 2002.

[vdBKV04] Egon L. van den Broek, Peter M. F. Kisters, and Louis G. Vuurpijl. Design
Guidelines for a Content-Based Image Retrieval Color-Selection Interface. In
Proc. of the Conference on Dutch Directions in HCI, page 14, 2004.

http://www.omg.org/spec/UML/2.1.2/

BIBLIOGRAPHY 175

[Vil06] Antti Viljamaa. Specifying Reuse Interfaces for Task-Oriented Framework Spe-
cialization. PhD thesis, 2006. University of Helsinki, Finland.

[Viz06] Website: VizIR project webserver. Website, 2006. Available online at http:

//cbvr.ims.tuwien.ac.at; visited on August 23rd 2007.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development. Wiley,
2006.

[VT02] R. Veltkamp and M. Tanase. Content-Based Image Retrieval Systems: A Survey,
October 2002.

[VVCM07] Juan M. Vara, Belen Vela, Jose Maria Cavero, and Esperanza Marcos. Model
Transformation for Object-relational Database Development. In Proc. of the 2007
ACM Symposium on Applied Computing (SAC), pages 1012–1019, 2007.

[Wes04] Gerd Utz Westermann. A Persistent Typed Document Object Model for the
Management of MPEG-7 Media Descriptions. Dissertation, 2004. Techn. Uni-
versität Wien, Austria.

[WFDR05] Andreas Wolff, Peter Forbrig, Anke Dittmar, and Daniel Reichart. Linking GUI
Elements to Tasks: Supporting an Evolutionary Design Process. In Proc. of the
4th international workshop on Task models and diagrams (TAMODIA), pages
27–34, 2005.

[WHKL00] Jian-Kang Kang Wu, Dezhong Hong, Mohan S. Kankanhalli, and Joo-Hwee Lim.
Perspectives on Content-Based Multimedia Systems. Kluwer Academic Publish-
ers, Norwell, MA, USA, 2000.

[WK03] Utz Westermann and Wolfgang Klas. An Analysis of XML Database Solutions
for the Management of MPEG-7 Media Descriptions. ACM Comput. Surv.,
35(4):331–373, 2003.

[YTD04] Tom Yeh, Konrad Tollmar, and Trevor Darrell. Searching the Web with Mobile
Images for Location Recognition. Computer Vision and Pattern Recognition
(CVPR), 02:76–81, 2004.

[ZG02] R. Zhao and W. Grosky. Narrowing the Semantic Gap - Improved Text-Based
Web Document Retrieval Using Visual Features. IEEE Trans. on Multim.,
4(2):189–200, 2002.

http://cbvr.ims.tuwien.ac.at
http://cbvr.ims.tuwien.ac.at

176 BIBLIOGRAPHY

List of Figures

1.1 MDSD techniques for the development of CBIRSs 8

2.1 Levels of abstraction of visual content . 12

2.2 An integrated view of a CBIR system . 14

2.3 Basic structure of OMG’s Model Driven Architecture (based on [Jon02]) . . . 23

2.4 Meta levels in MDA (based on [SVEH07]) . 24

2.5 UML PIM and PSM meta models (based on [SVEH07]) 24

2.6 Transforming PIM to PSM (based on [PM06]) 26

3.1 MDSD techniques for the development of CBIRSs - Modeling 32

3.2 Core CBIR components to be modeled by the CBIRS Generator 33

3.3 A Region of Interest (ROI) from a music manuscript image and MBRs of the
detected music objects . 36

3.4 Example queries for the six query types and possible results from the Corel
image database (from [SWS+00]) . 39

3.5 AIR Data Model (based on [GRV96]) . 44

3.6 Layers of the VIMSYS image model (based on [GWJ91]) 46

3.7 Example of describing an image with the EMIR2 model (from [Mec95a]) . . . 48

3.8 Image description example in EMIR2-CG (from [MBC95]) 49

3.9 Example of a simple schema and an image (from [SR96]) 52

3.10 A summary tree of the example image from Figure 3.9(from [SR96]) 53

3.11 Example PIQ schema for music manuscripts 53

3.12 The DISIMA image model (from [OÖL+97]) 55

3.13 Image and Salient Object type classification for music manuscripts 55

3.14 MOODS image information processing system (based on [GMY93b]) 57

3.15 MOODS semantic model for music manuscript recognition (from [GMY93a]) 58

3.16 UML representation of the image description scheme (from [BPC+00]) 61

177

178 LIST OF FIGURES

3.17 MDSD techniques for the development of CBIRSs - Mapping 68

3.18 Transforming a CBIR System PIM to a Database Schema (based on [PM06]) 69

3.19 Client/Server architectures for information systems (based on [ACKM04]) . . 71

3.20 Meta model based transformation (from [PM06]) 79

3.21 Transformation levels in the database design 80

3.22 Transformation rule requirements: not-mappable concepts are not allowed in
the PIM . 80

3.23 Transformation rule requirements: only one of multiple mapping possibilities
should be applied in a transformation . 81

3.24 Transformation rule requirements: two different PIM concepts should not be
mapped to the same PSM concept . 81

3.25 Transformation levels in MDSD . 82

4.1 Modeling approach . 85

4.2 Generic Image Database Model (from [IB05]) 87

4.3 Main framework classes and application specific black box classes of GiACoMo–
IRS . 89

4.4 Association redefinition example . 91

4.5 Modeling Attributed Relational Graphs Image Representations 92

4.6 Modeling 2D-Strings Image Representation 92

4.7 Use Cases for the Insert operation . 94

4.8 Activity diagram for the Insert operation . 94

4.9 Example of a separation pattern for the template and hook methods (from
[FPR00]) . 95

4.10 Integration of the insert functionality in the framework model 95

4.11 Query tasks supported by the framework model 97

4.12 Retrieval Model Design . 98

4.13 Class diagram of the “image insertion” and “query by local features” classes
and methods . 100

4.14 Phases of the KDD process (from [FPSS96]) 100

4.15 Phases of the classification process (based on [SQL00]) 101

4.16 Generic classes for the classification of images 102

4.17 Modeling functionality with the GiACoMo–IRS framework 103

5.1 Example for the deployment annotation . 106

5.2 UML meta model part for Profiles (from [UML07]) 108

LIST OF FIGURES 179

5.3 Layers of UML-F tag sets (from [PFR02]) . 109

5.4 Mapping problems with inheritance hierarchies 121

5.5 Metamodel mappings: direct mappings . 124

5.6 Metamodel mappings: not-directly-mappable PIM metamodel concepts . . . 124

5.7 Metamodel mappings: multiple mapping possibilities 125

5.8 Metamodel mappings: mappings resuting in the same PSM metamodel concept 125

5.9 Equivalence rule for association class (from [GR98]) 126

5.10 Equivalence rule for association qualifier (from [GR98]) 126

5.11 Example of a Trigger for a Derived Attribute 128

5.12 Example of a Trigger for Redefined Attributes. 128

5.13 Example of a Trigger for a Property Constraint 128

5.14 Examples of Triggers for consistency and integrity constraints in mapping of
Associations . 129

5.15 Metamodel mappings: implementation specific concepts 130

5.16 Architectures of the Image Database Generator and the resulting CBIRS . . 131

6.1 Examples of music manuscripts written by different scribes 135

6.2 Excerpt from the feature dictionary . 136

6.3 Conceptual data model of the digital archive for music manuscripts (from [Dol04])138

6.4 Simplified representation of the data type for storing the automatically ex-
tracted features (from [Mas05]) . 140

6.5 Simplified representation of the data type used for the classification of scribes
(from [Mas05]) . 140

6.6 eNoteHistory CBIR PIM . 142

6.7 eNoteHistory CBIR PIM - data mining part 143

6.8 2D-Gel electrophoresis image . 144

6.9 Results from the feature extraction algorithm 145

6.10 CBIRS PIM for 2D-gel electrophoresis images 147

6.11 CBIRS PIM for a photo annotation application 150

6.12 CBIRS PIM for a photo annotation application - data mining part 152

6.13 Mapping of methods onto user-defined functions 153

C.1 MOODS image information processing system (based on [GMY93b]) 236

C.2 Generic Image Database Model (from [IB05]) 237

180 LIST OF FIGURES

C.3 Main framework classes and application specific black box classes of GiACoMo-
IRS . 238

C.4 Modeling Attribute Relational Graphs Image Representations 239

C.5 Modeling 2D-Strings Image Representation 240

C.6 Use Cases for the Insert operation . 241

C.7 Activity diagram for the Insert operation . 242

C.8 Integration of the insert functionality in the framework model 243

C.9 Modeling functionality with the GiACoMo-IRS framework 244

C.10 Class diagram of the “image insertion” and “query by local features” classes
and methods . 245

C.11 Generic classes for the classification of images 246

C.12 Example for the deployment annotation . 247

C.13 eNoteHistory CBIR PIM . 248

C.14 eNoteHistory CBIR PIM - data mining part 249

C.15 CBIRS PIM for 2D-gel electrophoresis images 250

C.16 CBIRS PIM for a photo annotation application 251

C.17 CBIRS PIM for a photo annotation application - data mining part 252

D.1 Project Wizard for creating an IDBG project 253

D.2 Modeling environment and Generation Wizards 254

D.3 Transformation options dialog . 255

List of Tables

3.1 Evaluation of the Image Retrieval Models . 66

3.2 UML Extensions for modeling DBMSs by Rational (based on [Rat03, Gor02]) 73

3.3 UML Extensions for modeling DBMSs by Scott Ambler (based on [Amb03]) . 74

3.4 UML Extensions for modeling ORDBMSs by Marcos et al. (based on [VVCM07]) 75

3.5 Mapping of UML PIM onto OR PSM by Marcos et al. (based on [VVCM07]) 77

5.1 Mapping of �CBIRSSimpleData� derivatives to SQL:2003 122

A.1 UML Metamodel for Structural Diagrams . 188

A.2 UML Metamodel Extensions for CBIRS . 205

B.1 Relational Concepts in UML . 208

B.2 Object-relational Concepts in UML . 221

B.3 SQL Data Types in UML . 229

181

182 LIST OF TABLES

List of Abbreviations

API Application Programming Interface
ARG Attributed Relational Graph
CBIRS Content-Based Image Retrieval System
CDBMS Conventional Database Management System
DBMS Database Management System
DDL Data Description Language
EMOF Essential Meta Object Facility
ERM Entity-Relationship Model
EXIF Exchangeable Image File Format
GiACoMo-IRS . . . Generic and Adaptable Conceptual Model for Image Retrieval Systems
GPS Global Positioning System
HTML HyperText Markup Language
HyTime Hypermedia/Time-based Structuring Language
IDBG Image Database Generator
IDE Integrated Development Environment
IRS Image Retrieval System
KDD Knowledge Discovery in Databases
LHS Left Hand Side
MBE Minimum Bounding Ellipse
MBR Minimum Bounding Rectangle
MDA Model-Driven Architecture
MDSD Model-Driven Software Development
MHEG Multimedia and Hypermedia information coding Expert Group
MMDBMS Multimedia Database Management System
MOF Meta Object Facility
MPEG Moving Picture Experts Group
OCL Object Constraint Language
OID Object Identifier
OMDL Object Modeling Description Language
OMG Object Management Group

183

184 LIST OF ABBREVIATIONS

OODBMS Object-Oriented Database Management System
ORDBMS Object-Relational Database Management System
PIM Platform Independent Model
PM Platform Model
PSM Platform Specific Model
QVT Query/Views/Transformations
RHS Right Hand Side
ROI Region Of Interest
SMIL Synchronized Multimedia Integration Language
SP Stored Procedure
SQL Structured Query Language
UDF User-Defined Function
UDT User-Defined Type
UML Unified Modeling Language
XMI MXL Metadata Exchange
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformation

Appendix

185

Appendix A

PIM Metamodel

In the first part of this appendix the UML concepts used for modeling structural diagrams are
listed. The source used for this summary is the UML Standard Superstructure documentation
version 2.1.1 formal/2007-02-03. The second part describes the UML extensions used for
modeling the GiACoMo-IRS framework-model. And finally, the new data types, needed to
model CBIR applications are listed.

187

188 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

C
la

ss
D

es
cr

ip
ti
on

:
A

C
la

ss
de

sc
ri

be
s

a
se

t
of

ob
je

ct
s

th
at

sh
ar

e
th

e
sa

m
e

sp
ec

ifi
ca

ti
on

s
of

fe
at

ur
es

,
co

ns
tr

ai
nt

s,
an

d
se

m
an

ti
cs

.
It

is
a

ki
nd

of
C

la
ss

ifi
er

w
ho

se
fe

at
ur

es
ar

e
P

ro
p
er

ti
es

an
d

O
p
er

at
io

n
s.

T
he

se
fe

at
ur

es
ca

n
be

de
cl

ar
ed

as
pr

iv
at

e,
pr

ot
ec

te
d

or
pu

bl
ic

.
A

C
la

ss
ca

nn
ot

ac
ce

ss
pr

iv
at

e
fe

at
ur

es
of

an
ot

he
r

C
la

ss
,

or
pr

ot
ec

te
d

fe
at

ur
es

of
an

ot
he

r
C

la
ss

th
at

is
no

t
it

s
su

pe
r

ty
pe

.
A

C
la

ss
m

ay
be

de
cl

ar
ed

as
ab

st
ra

ct
.

In
th

is
ca

se
it

ca
nn

ot
ha

ve
an

y
in

st
an

ce
s.

T
he

P
ro

p
er

ty
is

A
bs

tr
ac

t:
B

oo
le

an
in

he
ri

te
d

fr
om

C
la

ss
ifi

er
in

di
ca

te
s

th
at

.

N
ot

at
io

n
:

M
et

am
o
d
el

:

Appendix A. PIM Metamodel 189
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

P
ro

p
er

ty
D

es
cr

ip
ti
on

:
A

P
ro

p
er

ty
is

a
st

ru
ct

ur
al

fe
at

ur
e

of
a

C
la

ss
.

A
P

ro
p
er

ty
re

la
te

d
to

a
C

la
ss

by
th

e
as

so
ci

at
io

n
ow

ne
dA

tt
ri

bu
te

re
pr

es
en

ts
an

at
tr

ib
ut

e.
It

re
la

te
s

an
in

st
an

ce
of

th
e

C
la

ss
to

a
va

lu
e

or
co

lle
ct

io
n

of
va

lu
es

of
th

e
ty

pe
of

th
e

at
tr

ib
ut

e.
A

P
ro

p
er

ty
re

la
te

d
to

an
A

ss
o
ci

at
io

n
by

th
e

as
so

ci
at

io
n

m
em

be
rE

nd
or

it
s

sp
ec

ia
liz

at
io

ns
re

pr
es

en
ts

an
en

d
of

th
e

as
so

ci
at

io
n.

T
he

ty
pe

of
P

ro
p
er

ty
is

th
e

ty
pe

of
th

e
en

d
of

th
e

A
ss

o
ci

at
io

n
.

N
ot

at
io

n
:

<
p
ro

p
e
rt

y
>

::
=

[<
v
is

ib
il
it
y
>

]
[‘
/
’]

<
n
a
m

e
>

[‘
:’

<
p
ro

p
-t
y
p
e
>

]
[‘
[’

<
m

u
lt
ip

li
c
it
y
>

‘]
’]

[‘
=

’
<

d
e
fa

u
lt

>
]
[‘
{’

<
p
ro

p
-m

o
d
ifi

e
r>

[‘
,’

<
p
ro

p
-m

o
d
ifi

e
r
>

]*
‘}

’]
w

h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f

th
e

P
r
o
p
e
r
t
y
.

(V
is

ib
il
it
y
K

in
d

is
a
n

E
n
u
m

e
r
a
t
io

n
w

it
h

th
e

fo
ll
o
w

in
g

v
a
lu

e
s:

p
u
b
li
c
,

p
ri

v
a
te

,
p
ro

te
c
te

d
,

p
a
c
k
a
g
e
)

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’.
-
‘/

’
si

g
n
ifi

e
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
d
e
ri

v
e
d
.

-
<

n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
P

r
o
p
e
r
t
y
.

-
<

p
ro

p
-t
y
p
e
>

is
th

e
n
a
m

e
o
f
th

e
C

la
s
s
ifi

e
r

th
a
t

is
th

e
ty

p
e

o
f
th

e
P

r
o
p
e
r
t
y
.

-
<

m
u
lt
ip

li
c
it
y
>

is
th

e
m

u
lt

ip
li
c
it
y

o
f
th

e
P

r
o
p
e
r
t
y
.

If
th

is
te

rm
is

o
m

it
te

d
,
it

im
p
li
e
s

a
m

u
lt

ip
li
c
it
y

o
f
1
.

-
<

d
e
fa

u
lt

>
is

a
n

e
x
p
re

ss
io

n
th

a
t

e
v
a
lu

a
te

s
to

th
e

d
e
fa

u
lt

v
a
lu

e
o
r

v
a
lu

e
s

o
f
th

e
P

r
o
p
e
r
t
y
.

-
<

p
ro

p
-m

o
d
ifi

e
r>

in
d
ic

a
te

s
a

m
o
d
ifi

e
r

th
a
t

a
p
p
li
e
s

to
th

e
P

r
o
p
e
r
t
y
.

<
p
ro

p
-m

o
d
ifi

e
r
>

::
=

‘r
ea

d
O

n
ly

’
|
‘u

n
io

n
’
|
‘s

u
b
se

ts
’

<
p
ro

p
e
rt

y
-n

a
m

e
>
|
‘r
ed

e
fi
n
e
s’

<
p
ro

p
e
rt

y
-n

a
m

e
>
|
‘o

rd
e
re

d
’
|
‘u

n
iq

u
e
’
|
‘n

o
n
u
n
iq

u
e
’
|

<
p
ro

p
-c

o
n
st

ra
in

t>
w

h
e
re

:
*

re
a
d
O

n
ly

m
e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
re

a
d

o
n
ly

.
*

u
n
io

n
m

e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
a

d
e
ri

v
e
d

u
n
io

n
o
f
it

s
su

b
se

ts
.

*
su

b
se

ts
<

p
ro

p
e
rt

y
-n

a
m

e
>

m
e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
a

p
ro

p
e
r

su
b
se

t
o
f
th

e
P

r
o
p
e
r
t
y

id
e
n
ti

fi
e
d

b
y

<
p
ro

p
e
r
ty

n
a
m

e
>

.
*

re
d
e
fi
n
e
s

<
p
ro

p
e
rt

y
-n

a
m

e
>

m
e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

re
d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

P
r
o
p
e
r
t
y

id
e
n
ti

fi
e
d

b
y

<
p
ro

p
e
r
ty

n
a
m

e
>

.
*

o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
o
rd

e
re

d
.

*
u
n
iq

u
e

m
e
a
n
s

th
a
t

th
e
re

a
re

n
o

d
u
p
li
c
a
te

s
in

a
m

u
lt

i-
v
a
lu

e
d

P
r
o
p
e
r
t
y
.

*
<

p
ro

p
-c

o
n
st

ra
in

t>
is

a
n

e
x
p
re

ss
io

n
th

a
t

sp
e
c
ifi

e
s

a
C

o
n
s
t
r
a
in

t
th

a
t

a
p
p
li
e
s

to
th

e
P

r
o
p
e
r
t
y
.

M
et

am
o
d
el

:
se

e
C

la
ss

190 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

O
p
er

at
io

n
D

es
cr

ip
ti
on

:
A

n
O

p
er

at
io

n
is

a
be

ha
vi

or
al

fe
at

ur
e

of
a

C
la

ss
ifi

er
th

at
sp

ec
ifi

es
th

e
na

m
e,

ty
pe

,
pa

ra
m

et
er

s,
an

d
co

ns
tr

ai
nt

s
fo

r
in

vo
ki

ng
an

as
so

ci
at

ed
be

ha
vi

or
.

N
ot

at
io

n
:

<
o
p
e
ra

ti
o
n
>

::
=

[<
v
is

ib
il
it
y
>

]
<

n
a
m

e
>

‘(
’
[<

p
a
ra

m
e
te

r
-l
is

t>
]
‘)

’
[‘
:’

[<
re

tu
rn

-t
y
p
e
>

]
[‘
{’

<
o
p
e
r-

p
ro

p
e
rt

y
>

[‘
,’

<
o
p
e
r
-p

ro
p
e
r
ty

>
]*

‘}
’]
]

w
h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f
th

e
O

p
e
r
a
t
io

n
.

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’
-

<
n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
O

p
e
r
a
t
io

n
.

-
<

re
tu

r
n
-t
y
p
e
>

is
th

e
ty

p
e

o
f
th

e
re

tu
rn

re
su

lt
p
a
ra

m
e
te

r
if

th
e

O
p
e
r
a
t
io

n
h
a
s

o
n
e

d
e
fi
n
e
d
.

-
<

o
p
e
r-

p
ro

p
e
rt

y
>

in
d
ic

a
te

s
th

e
p
ro

p
e
rt

ie
s

o
f
th

e
O

p
e
r
a
t
io

n
.

<
o
p
e
r-

p
ro

p
e
rt

y
>

::
=

‘r
ed

e
fi
n
e
s’

<
o
p
e
r-

n
a
m

e
>
|
‘q

u
e
ry

’
|
‘o

rd
e
re

d
’
|
‘u

n
iq

u
e
’
|

<
o
p
e
r-

co
n
st

ra
in

t>
w

h
e
re

:
*

re
d
e
fi
n
e
s

<
o
p
e
r-

n
a
m

e
>

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
re

d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

O
p
e
r
a
t
io

n
id

e
n
ti

fi
e
d

b
y

<
o
p
e
r-

n
a
m

e
>

.
*

q
u
e
ry

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
d
o
e
s

n
o
t

c
h
a
n
g
e

th
e

st
a
te

o
f
th

e
sy

st
e
m

.
*

o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

v
a
lu

e
s

o
f
th

e
re

tu
rn

p
a
ra

m
e
te

r
a
re

o
rd

e
re

d
.

*
u
n
iq

u
e

m
e
a
n
s

th
a
t

th
e

v
a
lu

e
s

re
tu

rn
e
d

b
y

th
e

p
a
ra

m
e
te

r
h
a
v
e

n
o

d
u
p
li
c
a
te

s.
*

<
o
p
e
r-

co
n
st

ra
in

t>
is

a
c
o
n
st

ra
in

t
th

a
t

a
p
p
li
e
s

to
th

e
O

p
e
r
a
t
io

n
.

*
<

p
a
ra

m
e
te

r
-l
is

t>
is

a
li
st

o
f
p
a
ra

m
e
te

rs
o
f
th

e
O

p
e
r
a
t
io

n
in

th
e

fo
ll
o
w

in
g

fo
rm

a
t:

<
p
a
ra

m
e
te

r
-l
is

t>
::
=

<
p
a
ra

m
e
te

r
>

[‘
,’

<
p
a
ra

m
e
te

r
>

]*
<

p
a
ra

m
e
te

r
>

::
=

[<
d
ir
ec

ti
o
n
>

]
<

p
a
ra

m
e
te

r
-n

a
m

e
>

‘:
’

<
ty

p
e
-e

x
p
re

ss
io

n
>

[‘
[’

<
m

u
lt
ip

li
c
it
y
>

‘]
’]

[‘
=

’
<

d
e
fa

u
lt

>
]

[‘
{’

<
p
a
r
m

-p
ro

p
e
r
ty

>
[‘
,’

<
p
a
r
m

-
p
ro

p
e
rt

y
>

]*
‘}

’]
w

h
e
re

:
-

<
d
ir
ec

ti
o
n
>

::
=

‘i
n
’
|
‘o

u
t’
|
‘i
n
o
u
t’

(d
e
fa

u
lt

s
to

‘i
n
’

if
o
m

it
te

d
).

-
<

p
a
ra

m
e
te

r
-n

a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
p
a
ra

m
e
te

r.
-

<
ty

p
e
-e

x
p
re

ss
io

n
>

is
a
n

e
x
p
re

ss
io

n
th

a
t

sp
e
c
ifi

e
s

th
e

ty
p
e

o
f
th

e
p
a
ra

m
e
te

r.
-

<
m

u
lt
ip

li
c
it
y
>

is
th

e
m

u
lt

ip
li
c
it
y

o
f
th

e
p
a
ra

m
e
te

r.
-

<
d
e
fa

u
lt

>
is

a
n

e
x
p
re

ss
io

n
th

a
t

d
e
fi
n
e
s

th
e

v
a
lu

e
sp

e
c
ifi

c
a
ti

o
n

fo
r

th
e

d
e
fa

u
lt

v
a
lu

e
o
f
th

e
p
a
ra

m
e
te

r.

-
<

p
a
rm

-p
ro

p
e
r
ty

>
in

d
ic

a
te

s
a
d
d
it

io
n
a
l
p
ro

p
e
rt

y
v
a
lu

e
s

th
a
t

a
p
p
ly

to
th

e
p
a
ra

m
e
te

r.

Appendix A. PIM Metamodel 191
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

O
p
er

at
io

n
M

et
am

o
d
el

:

192 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

A
ss

o
ci

at
io

n
,

A
gg

re
ga

ti
on

,
C

om
p
os

it
io

n

D
es

cr
ip

ti
on

:
A

n
A

ss
o
ci

at
io

n
sp

ec
ifi

es
a

se
m

an
ti

c
re

la
ti

on
sh

ip
th

at
ca

n
oc

cu
r

be
tw

ee
n

ty
pe

d
in

st
an

ce
s.

It
ha

s
at

le
as

t
tw

o
en

ds
re

pr
es

en
te

d
by

P
ro

p
er

ti
es

,
ea

ch
of

w
hi

ch
is

co
nn

ec
te

d
to

th
e

ty
pe

of
th

e
en

d.
A

n
A

ss
o
ci

at
io

n
is

de
ri

ve
d

fr
om

C
la

ss
ifi

er
an

d
R

el
at

io
n
sh

ip
in

th
e

U
M

L
m

et
am

od
el

.
T

he
in

st
an

ce
s

of
an

A
ss

o
ci

at
io

n
ar

e
ca

lle
d

L
in

ks
.

T
he

co
lle

ct
io

n
of

lin
ks

of
an

A
ss

o
ci

at
io

n
w

it
h

N
en

ds
th

at
re

fe
r

to
pa

rt
ic

ul
ar

in
st

an
ce

s
of

an
y

N
-1

en
ds

w
ill

id
en

ti
fy

a
co

lle
ct

io
n

of
in

st
an

ce
s

at
th

e
N

th
en

d.
T

he
m

ul
ti

pl
ic

it
y

of
th

e
as

so
ci

at
io

n
en

d
co

ns
tr

ai
nt

s
th

e
si

ze
of

th
is

co
lle

ct
io

n.
If

th
e

en
d

is
m

ar
ke

d
as

or
de

re
d,

th
is

co
lle

ct
io

n
w

ill
be

or
de

re
d.

If
th

e
en

d
is

m
ar

ke
d

as
un

iq
ue

,
th

is
co

lle
ct

io
n

is
a

se
t;

ot
he

rw
is

e,
it

al
lo

w
s

du
pl

ic
at

e
el

em
en

ts
.

A
n

A
ss

o
ci

at
io

n
m

ay
re

pr
es

en
t

an
A

gg
re

ga
ti

on
(i

.e
.,

a
w

ho
le

/p
ar

t
re

la
ti

on
sh

ip
).

O
nl

y
bi

na
ry

as
so

ci
at

io
ns

ca
n

be
A

gg
re

ga
ti

on
s.

C
om

p
os

it
io

n
is

a
st

ro
ng

fo
rm

of
A

gg
re

ga
ti

on
th

at
re

qu
ir

es
th

at
a

pa
rt

in
st

an
ce

be
in

cl
ud

ed
in

at
m

os
t

on
e

co
m

po
si

te
at

a
ti

m
e.

If
a

co
m

po
si

te
is

de
le

te
d,

al
l
of

it
s

pa
rt

s
ar

e
no

rm
al

ly
de

le
te

d
w

it
h

it
.

N
ot

at
io

n
:

A
n

A
s
s
o
c
ia

t
io

n
m

a
y

b
e

d
ra

w
n

a
s

a
d
ia

m
o
n
d

(l
a
rg

e
r

th
a
n

a
te

rm
in

a
to

r
o
n

a
li
n
e
)

w
it

h
a

so
li
d

li
n
e

fo
r

e
a
c
h

a
ss

o
c
ia

ti
o
n

e
n
d

c
o
n
n
e
c
ti

n
g

th
e

d
ia

m
o
n
d

to
th

e
C

la
s
s
ifi

e
r

th
a
t

is
th

e
e
n
d
’s

ty
p
e
.

A
n

A
s
s
o
c
ia

t
io

n
w

it
h

m
o
re

th
a
n

tw
o

e
n
d
s

c
a
n

o
n
ly

b
e

d
ra

w
n

th
is

w
a
y
.

A
b
in

a
ry

A
s
s
o
c
ia

t
io

n
is

d
ra

w
n

a
s

a
so

li
d

li
n
e

c
o
n
n
e
c
ti

n
g

tw
o

C
la

s
s
ifi

e
r
s
,
o
r

a
so

li
d

li
n
e

c
o
n
n
e
c
ti

n
g

a
si

n
g
le

C
la

s
s
ifi

e
r

to
it

se
lf
.

T
h
e

so
li
d

a
rr

o
w

o
f
th

e
b
in

a
ry

A
s
s
o
c
ia

t
io

n
in

d
ic

a
te

s
th

a
t

th
e

A
s
s
o
c
ia

t
io

n
is

to
b
e

re
a
d

a
s

a
ss

o
c
ia

ti
n
g

th
e

e
n
d

a
w

a
y

fr
o
m

th
e

d
ir

e
c
ti

o
n

o
f
th

e
a
rr

o
w

w
it

h
th

e
e
n
d

to
w

h
ic

h
th

e
a
rr

o
w

is
p
o
in

ti
n
g
.

T
h
is

n
o
ta

ti
o
n

is
fo

r
d
o
c
u
m

e
n
ta

ti
o
n

p
u
rp

o
se

s
o
n
ly

a
n
d

h
a
s

n
o

g
e
n
e
ra

l
se

m
a
n
ti

c
in

te
rp

re
ta

ti
o
n
.

A
sl

a
sh

a
p
p
e
a
ri

n
g

in
fr

o
n
t

o
f

th
e

n
a
m

e
o
f

a
n

A
s
s
o
c
ia

t
io

n
,

o
r

in
p
la

c
e

o
f

th
e

n
a
m

e
if

n
o

n
a
m

e
is

sh
o
w

n
,

m
a
rk

s
th

e
A

s
s
o
c
ia

t
io

n
a
s

b
e
in

g
d
e
ri

v
e
d

fr
o
m

a
n
o
th

e
r

a
ss

o
c
ia

ti
o
n

o
r

c
o
n
st

ra
in

t.
G

e
n
e
ra

li
z
a
ti

o
n
s

b
e
tw

e
e
n

A
s
s
o
c
ia

t
io

n
s

c
a
n

b
e

sh
o
w

n
u
si

n
g

a
g
e
n
e
ra

li
z
a
ti

o
n

a
rr

o
w

b
e
tw

e
e
n

th
e

A
s
s
o
c
ia

t
io

n
sy

m
b
o
ls

.
V
a
ri

o
u
s

o
th

e
r

n
o
ta

ti
o
n
s

c
a
n

b
e

p
la

c
e
d

n
e
a
r

th
e

e
n
d

o
f
th

e
A

s
s
o
c
ia

t
io

n
li
n
e

a
s

fo
ll
o
w

s:
-

A
m

u
lt

ip
li
c
it
y

-
A

p
ro

p
e
rt

y
st

ri
n
g

e
n
c
lo

se
d

in
c
u
rl

y
b
ra

c
e
s.

T
h
e

fo
ll
o
w

in
g

p
ro

p
e
rt

y
st

ri
n
g
s

c
a
n

b
e

a
p
p
li
e
d

to
a
n

a
ss

o
c
ia

ti
o
n

e
n
d
:

*
{s

u
b
se

ts
<

p
ro

p
e
rt

y
-n

a
m

e
>
}

to
sh

o
w

th
a
t

th
e

e
n
d

is
a

su
b
se

t
o
f
th

e
p
ro

p
e
rt

y
c
a
ll
e
d

<
p
ro

p
e
rt

y
-n

a
m

e
>

.
*
{r

e
d
e
fi
n
e
s

<
e
n
d
-n

a
m

e
>
}

to
sh

o
w

th
a
t

th
e

e
n
d

re
d
e
fi
n
e
s

th
e

o
n
e

n
a
m

e
d

<
e
n
d
-n

a
m

e
>

.
*
{u

n
io

n
}

to
sh

o
w

th
a
t

th
e

e
n
d

is
d
e
ri

v
e
d

b
y

b
e
in

g
th

e
u
n
io

n
o
f
it

s
su

b
se

ts
.

*
{o

rd
e
re

d
}

to
sh

o
w

th
a
t

th
e

e
n
d

re
p
re

se
n
ts

a
n

o
rd

e
re

d
se

t.
*
{b

a
g
}

to
sh

o
w

th
a
t

th
e

e
n
d

re
p
re

se
n
ts

a
c
o
ll
e
c
ti

o
n

th
a
t

p
e
rm

it
s

th
e

sa
m

e
e
le

m
e
n
t

to
a
p
p
e
a
r

m
o
re

th
a
n

o
n
c
e
.

*
{s

e
q
u
e
n
c
e
}

o
r
{s

e
q
}

to
sh

o
w

th
a
t

th
e

e
n
d

re
p
re

se
n
ts

a
se

q
u
e
n
c
e

(a
n

o
rd

e
re

d
b
a
g
).

*
If

th
e

e
n
d

is
n
a
v
ig

a
b
le

,
a
n
y

p
ro

p
e
rt

y
st

ri
n
g
s

th
a
t

a
p
p
ly

to
a
n

a
tt

ri
b
u
te

.

Appendix A. PIM Metamodel 193
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

A
ss

o
ci

at
io

n
,

A
gg

re
ga

ti
on

,
C

om
p
os

it
io

n

B
y

d
e
fa

u
lt

a
n

a
ss

o
c
ia

ti
o
n

e
n
d

re
p
re

se
n
ts

a
se

t.
A

n
o
p
e
n

a
rr

o
w

h
e
a
d

o
n

th
e

e
n
d

o
f
a
n

A
s
s
o
c
ia

t
io

n
in

d
ic

a
te

s
th

e
e
n
d

is
n
a
v
ig

a
b
le

.
A

sm
a
ll

x
o
n

th
e

e
n
d

o
f

a
n

A
s
s
o
c
ia

t
io

n
in

d
ic

a
te

s
th

e
e
n
d

is
n
o
t

n
a
v
ig

a
b
le

.
A

n
A

s
s
o
c
ia

t
io

n
w

it
h

a
g
g
re

g
a
ti

o
n
K

in
d

=
sh

a
re

d
d
iff

e
rs

in
n
o
ta

ti
o
n

fr
o
m

b
in

a
ry

A
s
s
o
c
ia

t
io

n
s

in
a
d
d
in

g
a

h
o
ll
o
w

d
ia

m
o
n
d

a
s

a
te

rm
in

a
l

a
d
o
rn

m
e
n
t

a
t

th
e

a
g
g
re

g
a
te

e
n
d

o
f
th

e
a
ss

o
c
ia

ti
o
n

li
n
e
.

A
n

A
s
s
o
c
ia

t
io

n
w

it
h

a
g
g
re

g
a
ti

o
n
K

in
d

=
c
o
m

p
o
si

te
li
k
e
w

is
e

h
a
s

a
d
ia

m
o
n
d

a
t

th
e

a
g
g
re

g
a
te

e
n
d
,
b
u
t

d
iff

e
rs

in
h
a
v
in

g
th

e
d
ia

m
o
n
d

fi
ll
e
d

in
.

a
g
g
re

g
a
ti

o
n
K

in
d

=
n
o
n
e

sh
o
w

s
th

a
t

th
e

A
s
s
o
c
ia

t
io

n
is

n
o
t

a
n

A
g
g
r
e
g
a
t
io

n
o
r

a
C

o
m

p
o
s
it

io
n
.

M
et

am
o
d
el

:
se

e
C

la
ss

A
ss

o
ci

at
io

n
C

la
ss

D
es

cr
ip

ti
on

:
In

th
e

U
M

L
m

et
am

od
el

,
an

A
ss

o
ci

at
io

n
C

la
ss

is
a

de
cl

ar
at

io
n

of
a

se
m

an
ti

c
re

la
ti

on
sh

ip
be

tw
ee

n
C

la
ss

ifi
er

s,
w

hi
ch

ha
s

a
se

t
of

fe
at

ur
es

of
it

s
ow

n.
A

ss
o
ci

at
io

n
C

la
ss

is
bo

th
an

A
ss

o
ci

at
io

n
an

d
a

C
la

ss
.

N
ot

at
io

n
:

194 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

P
ro

p
er

ty
-

A
ss

o
ci

at
io

n
Q

u
al

ifi
er

D
es

cr
ip

ti
on

:
P

ro
p
er

ti
es

ca
n

be
as

si
gn

ed
to

A
ss

o
ci

at
io

n
s

as
A

ss
o
ci

at
io

n
Q

u
al

ifi
er

s.
A

n
A

ss
o
ci

at
io

n
Q

u
al

ifi
er

de
cl

ar
es

a
pa

rt
it

io
n

of
th

e
se

t
of

as
so

ci
at

ed
in

st
an

ce
s

w
it

h
re

sp
ec

t
to

an
in

st
an

ce
at

th
e

qu
al

ifi
ed

en
d

(t
he

qu
al

ifi
ed

in
st

an
ce

is
at

th
e

en
d

to
w

hi
ch

th
e

Q
u
al

ifi
er

is
at

ta
ch

ed
).

A
Q

u
al

ifi
er

in
st

an
ce

co
m

pr
is

es
on

e
va

lu
e

fo
r

ea
ch

Q
u
al

ifi
er

at
tr

ib
ut

e.
G

iv
en

a
qu

al
ifi

ed
ob

je
ct

an
d

a
Q

u
al

ifi
er

in
st

an
ce

,
th

e
nu

m
be

r
of

ob
je

ct
s

at
th

e
ot

he
r

en
d

of
th

e
as

so
ci

at
io

n
is

co
ns

tr
ai

ne
d

by
th

e
de

cl
ar

ed
m

ul
ti

pl
ic

it
y.

In
th

e
co

m
m

on
ca

se
in

w
hi

ch
th

e
m

ul
ti

pl
ic

it
y

is
0.

.1
,

th
e

Q
u
al

ifi
er

va
lu

e
is

un
iq

ue
w

it
h

re
sp

ec
t

to
th

e
qu

al
ifi

ed
ob

je
ct

,a
nd

de
si

gn
at

es
at

m
os

t
on

e
as

so
ci

at
ed

ob
je

ct
.

In
th

e
ge

ne
ra

lc
as

e
of

m
ul

ti
pl

ic
it
y

0.
.*

,t
he

se
t

of
as

so
ci

at
ed

in
st

an
ce

s
is

pa
rt

it
io

ne
d

in
to

su
bs

et
s,

ea
ch

se
le

ct
ed

by
a

gi
ve

n
Q

u
al

ifi
er

in
st

an
ce

.
In

th
e

ca
se

of
m

ul
ti

pl
ic

it
y

1
or

0.
.1

,
th

e
Q

u
al

ifi
er

ha
s

bo
th

se
m

an
ti

c
an

d
im

pl
em

en
ta

ti
on

co
ns

eq
ue

nc
es

.
In

th
e

ca
se

of
m

ul
ti

pl
ic

it
y

0.
.*

,i
t

ha
s

no
re

al
se

m
an

ti
c

co
ns

eq
ue

nc
es

bu
t

su
gg

es
ts

an
im

pl
em

en
ta

ti
on

th
at

fa
ci

lit
at

es
ea

sy
ac

ce
ss

of
se

ts
of

as
so

ci
at

ed
in

st
an

ce
s

lin
ke

d
by

a
gi

ve
n

qu
al

ifi
er

va
lu

e.

N
ot

at
io

n
:

A
Q

u
a
li
fi
e
r

is
sh

o
w

n
a
s

a
sm

a
ll

re
c
ta

n
g
le

a
tt

a
c
h
e
d

to
th

e
e
n
d

o
f
a
n

a
ss

o
c
ia

ti
o
n

p
a
th

b
e
tw

e
e
n

th
e

fi
n
a
l
p
a
th

se
g
m

e
n
t

a
n
d

th
e

sy
m

b
o
l
o
f
th

e
c
la

ss
ifi

e
r

th
a
t

it
c
o
n
n
e
c
ts

to
a
s

sh
o
w

n
in

th
e

F
ig

u
re

b
e
lo

w
.

T
h
e

Q
u
a
li
fi
e
r

re
c
ta

n
g
le

is
p
a
rt

o
f
th

e
a
ss

o
c
ia

ti
o
n

p
a
th

,
n
o
t

p
a
rt

o
f
th

e
c
la

ss
ifi

e
r.

T
h
e

Q
u
a
li
fi
e
r

is
a
tt

a
c
h
e
d

to
th

e
so

u
rc

e
e
n
d

o
f
th

e
a
ss

o
c
ia

ti
o
n
.

T
h
e

m
u
lt

ip
li
c
it
y

a
tt

a
c
h
e
d

to
th

e
ta

rg
e
t

e
n
d

d
e
n
o
te

s
th

e
p
o
ss

ib
le

c
a
rd

in
a
li
ti

e
s

o
f
th

e
se

t
o
f
ta

rg
e
t

in
st

a
n
c
e
s

se
le

c
te

d
b
y

th
e

p
a
ir

in
g

o
f
a

so
u
rc

e
in

st
a
n
c
e

a
n
d

a
Q

u
a
li
fi
e
r

v
a
lu

e
.

T
h
e
Q

u
a
li
fi
e
r

a
tt

ri
b
u
te

s
a
re

d
ra

w
n

w
it

h
in

th
e
Q

u
a
li
fi
e
r

b
o
x
.

T
h
e
re

m
a
y

b
e

o
n
e

o
r

m
o
re

a
tt

ri
b
u
te

s
sh

o
w

n
o
n
e

to
a

li
n
e
.

Q
u
a
li
fi
e
r

a
tt

ri
b
u
te

s
h
a
v
e

th
e

sa
m

e
n
o
ta

ti
o
n

a
s

c
la

ss
ifi

e
r

a
tt

ri
b
u
te

s,
e
x
c
e
p
t

th
a
t

in
it

ia
l

v
a
lu

e
e
x
p
re

ss
io

n
s

a
re

n
o
t

m
e
a
n
in

g
fu

l.
It

is
p
e
rm

is
si

b
le

(a
lt

h
o
u
g
h

so
m

e
w

h
a
t

ra
re

),
to

h
a
v
e

a
Q

u
a
li
fi
e
r

o
n

e
a
c
h

e
n
d

o
f
a

si
n
g
le

a
ss

o
c
ia

ti
o
n
.

A
Q

u
a
li
fi
e
r

m
a
y

n
o
t

b
e

su
p
p
re

ss
e
d
.

Appendix A. PIM Metamodel 195
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

G
en

er
al

iz
at

io
n
,

G
en

er
al

iz
at

io
n
S
et

D
es

cr
ip

ti
on

:
A

G
en

er
al

iz
at

io
n

is
a

ta
xo

no
m

ic
R

el
at

io
n
sh

ip
be

tw
ee

n
a

m
or

e
ge

ne
ra

l
C

la
ss

ifi
er

an
d

a
m

or
e

sp
ec

ifi
c

C
la

s-
si

fi
er

.
E

ac
h

in
st

an
ce

of
th

e
sp

ec
ifi

c
C

la
ss

ifi
er

is
al

so
an

in
di

re
ct

in
st

an
ce

of
th

e
ge

ne
ra

l
C

la
ss

ifi
er

.
T

hu
s,

th
e

sp
ec

ifi
c
C

la
ss

ifi
er

in
he

ri
ts

th
e

fe
at

ur
es

of
th

e
m

or
e

ge
ne

ra
lC

la
ss

ifi
er

.
A

G
en

er
al

iz
at

io
n

ha
s
th

e
at

tr
ib

ut
e

is
Su

b-
st

it
ut

ab
le

:B
oo

le
an

,w
hi

ch
in

di
ca

te
s

w
he

th
er

th
e

sp
ec

ifi
c
C

la
ss

ifi
er

ca
n

be
us

ed
w

he
re

ve
r

th
e

ge
ne

ra
lC

la
ss

ifi
er

is
us

ed
.

A
G

en
er

al
iz

at
io

n
S
et

de
fin

es
a

pa
rt

ic
ul

ar
se

t
of

G
en

er
al

iz
at

io
n

re
la

ti
on

sh
ip

s
th

at
de

sc
ri

be
th

e
w

ay
in

w
hi

ch
a

ge
ne

ra
l
C

la
ss

ifi
er

(o
r

su
pe

rc
la

ss
)

m
ay

be
di

vi
de

d
us

in
g

sp
ec

ifi
c

su
bt

yp
es

.
Fo

r
ex

am
pl

e,
a

G
en

er
al

iz
at

io
n
S
et

co
ul

d
de

fin
e

a
pa

rt
it

io
ni

ng
of

th
e

cl
as

s
P
er

so
n

in
to

tw
o

su
bc

la
ss

es
:

M
al

e
P
er

so
n

an
d

Fe
m

al
e

P
er

so
n.

A
G

en
er

al
-

iz
at

io
n
S
et

ha
s

tw
o

at
tr

ib
ut

es
:

is
C

ov
er

in
g:

B
oo

le
an

,
w

hi
ch

in
di

ca
te

s
w

he
th

er
or

no
t

th
e

se
t

of
sp

ec
ifi

c
C

la
ss

ifi
er

s
ar

e
co

ve
ri

ng
fo

r
a

pa
rt

ic
ul

ar
ge

ne
ra

lc
la

ss
ifi

er
.

W
he

n
is

C
ov

er
in

g
is

tr
ue

,e
ve

ry
in

st
an

ce
of

a
pa

rt
ic

ul
ar

ge
ne

ra
lC

la
s-

si
fi
er

is
al

so
an

in
st

an
ce

of
at

le
as

t
on

e
of

it
s

sp
ec

ifi
c
C

la
ss

ifi
er

s
fo

r
th

e
G

en
er

al
iz

at
io

n
S
et

.
W

he
n

is
C

ov
er

in
g

is
fa

ls
e,

th
er

e
ar

e
on

e
or

m
or

e
in

st
an

ce
s

of
th

e
pa

rt
ic

ul
ar

ge
ne

ra
l
C

la
ss

ifi
er

th
at

ar
e

no
t

in
st

an
ce

s
of

at
le

as
t

on
e

of
it

s
sp

ec
ifi

c
C

la
ss

ifi
er

s
de

fin
ed

fo
r

th
e

G
en

er
al

iz
at

io
n
S
et

.
T

he
at

tr
ib

ut
e

is
D

is
jo

in
t:

B
oo

le
an

in
di

ca
te

s
w

he
th

er
or

no
t

th
e

se
t

of
sp

ec
ifi

c
C

la
ss

ifi
er

s
in

a
G

en
er

al
iz

at
io

n
re

la
ti

on
sh

ip
ha

ve
in

st
an

ce
in

co
m

m
on

.
If

is
D

is
jo

in
t

is
tr

ue
,
th

e
sp

ec
ifi

c
C

la
ss

ifi
er

s
fo

r
a

pa
rt

ic
ul

ar
G

en
er

al
iz

at
io

n
S
et

ha
ve

no
m

em
be

rs
in

co
m

m
on

;
th

at
is

,
th

ei
r

in
te

rs
ec

ti
on

is
em

pt
y.

If
is

D
is

jo
in

t
is

fa
ls

e,
th

e
sp

ec
ifi

c
C

la
ss

ifi
er

s
in

a
pa

rt
ic

ul
ar

G
en

er
al

iz
at

io
n
S
et

ha
ve

on
e

or
m

or
e

m
em

be
rs

in
co

m
m

on
;
th

at
is

,
th

ei
r

in
te

rs
ec

ti
on

is
no

t
em

pt
y.

N
ot

at
io

n
:

T
h
e

n
o
ta

ti
o
n
s

fo
r

th
e
se

a
tt

ri
b
u
te

s
a
re

a
s

fo
ll
o
w

s:
-

c
o
m

p
le

te
,
d
is

jo
in

t
-

In
d
ic

a
te

s
th

e
g
e
n
e
ra

li
z
a
ti

o
n

se
t

is
c
o
v
e
ri

n
g

a
n
d

it
s

sp
e
c
ifi

c
C

la
s
s
ifi

e
r
s

h
a
v
e

n
o

c
o
m

m
o
n

in
st

a
n
c
e
s.

-
in

c
o
m

p
le

te
,
d
is

jo
in

t
-

In
d
ic

a
te

s
th

e
g
e
n
e
ra

li
z
a
ti

o
n

se
t

is
n
o
t

c
o
v
e
ri

n
g

a
n
d

it
s

sp
e
c
ifi

c
C

la
s
s
ifi

e
r
s

h
a
v
e

n
o

c
o
m

m
o
n

in
st

a
n
c
e
s.

(d
e
fa

u
lt

)
-

c
o
m

p
le

te
,
o
v
e
rl

a
p
p
in

g
-

In
d
ic

a
te

s
th

e
g
e
n
e
ra

li
z
a
ti

o
n

se
t

is
c
o
v
e
ri

n
g

a
n
d

it
s

sp
e
c
ifi

c
C

la
s
s
ifi

e
r
s

d
o

sh
a
re

c
o
m

m
o
n

in
st

a
n
c
e
s.

-
in

c
o
m

p
le

te
,
o
v
e
rl

a
p
p
in

g
-

In
d
ic

a
te

s
th

e
g
e
n
e
ra

li
z
a
ti

o
n

se
t

is
n
o
t

c
o
v
e
ri

n
g

a
n
d

it
s

sp
e
c
ifi

c
C

la
s
s
ifi

e
r
s

d
o

sh
a
re

c
o
m

m
o
n

in
st

a
n
c
e
s.

196 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

D
ep

en
d
en

cy
D

es
cr

ip
ti
on

:
A

D
ep

en
d
en

cy
is

a
R

el
at

io
n
sh

ip
th

at
si

gn
ifi

es
th

at
a

si
ng

le
or

a
se

t
of

m
od

el
el

em
en

ts
re

qu
ir

es
ot

he
r

m
od

el
el

em
en

ts
fo

r
th

ei
r

sp
ec

ifi
ca

ti
on

or
im

pl
em

en
ta

ti
on

.
T

hi
s

m
ea

ns
th

at
th

e
co

m
pl

et
e

se
m

an
ti

cs
of

th
e

de
pe

nd
in

g
el

em
en

ts
is

ei
th

er
se

m
an

ti
ca

lly
or

st
ru

ct
ur

al
ly

de
pe

nd
en

t
on

th
e

de
fin

it
io

n
of

th
e

su
pp

lie
r

el
em

en
t(

s)
.

D
iff

er
en

t
ki

nd
s

of
D

ep
en

d
en

cy
ha

ve
be

en
sp

ec
ifi

ed
by

th
e

U
M

L
m

et
am

od
el

.
U

sa
ge

is
a

ki
nd

of
D

ep
en

d
en

cy
in

w
hi

ch
on

e
el

em
en

t
re

qu
ir

es
an

ot
he

r
el

em
en

t
(o

r
a

se
t

of
el

em
en

ts
)

fo
r

it
s

fu
ll

im
pl

em
en

ta
ti

on
or

op
er

at
io

n.
A

n
A

b
st

ra
ct

io
n

is
a
R

el
at

io
n
sh

ip
th

at
re

la
te

s
tw

o
el

em
en

ts
or

se
ts

of
el

em
en

ts
th

at
re

pr
es

en
t
th

e
sa

m
e

co
nc

ep
t
at

di
ffe

re
nt

le
ve

ls
of

ab
st

ra
ct

io
n

or
fr

om
di

ffe
re

nt
vi

ew
po

in
ts

.
In

th
e

m
et

am
od

el
,a

n
A

b
st

ra
ct

io
n

is
a

D
ep

en
d
en

cy
in

w
hi

ch
th

er
e

is
a

m
ap

pi
ng

be
tw

ee
n

th
e

su
pp

lie
r

an
d

th
e

cl
ie

nt
.

R
ea

li
za

ti
on

is
a

sp
ec

ia
liz

ed
ab

st
ra

ct
io

n
re

la
ti

on
sh

ip
be

tw
ee

n
tw

o
se

ts
of

m
od

el
el

em
en

ts
,

on
e

re
pr

es
en

ti
ng

a
sp

ec
ifi

ca
ti

on
(t

he
su

pp
lie

r)
an

d
th

e
ot

he
r

re
pr

es
en

ts
an

im
pl

em
en

ta
ti

on
of

th
e

la
tt

er
(t

he
cl

ie
nt

).
R

ea
li
za

ti
on

ca
n

be
us

ed
to

m
od

el
st

ep
w

is
e

re
fin

em
en

t,
op

ti
m

iz
at

io
ns

,
tr

an
sf

or
m

at
io

ns
,
te

m
pl

at
es

,
m

od
el

sy
nt

he
si

s,
fr

am
ew

or
k

co
m

po
si

ti
on

,
et

c.
A

S
u
b
st

it
u
ti

on
is

a
re

la
ti

on
sh

ip
be

tw
ee

n
tw

o
C

la
ss

ifi
er

s
w

hi
ch

si
gn

ifi
es

th
at

th
e

su
bs

ti
tu

ti
ng

C
la

ss
ifi

er
co

m
pl

ie
s

w
it

h
th

e
co

nt
ra

ct
sp

ec
ifi

ed
by

th
e

co
nt

ra
ct

cl
as

si
fie

r.
T

hi
s

im
pl

ie
s

th
at

in
st

an
ce

s
of

th
e

su
bs

ti
tu

ti
ng

C
la

ss
ifi

er
ar

e
ru

nt
im

e
su

bs
ti

tu
ta

bl
e

w
he

re
in

st
an

ce
s

of
th

e
co

nt
ra

ct
C

la
ss

ifi
er

ar
e

ex
pe

ct
ed

.
T

he
pr

es
en

ce
of

D
ep

en
d
en

cy
re

la
ti

on
sh

ip
s

in
a

m
od

el
do

es
no

t
ha

ve
an

y
ru

nt
im

e
se

m
an

ti
cs

im
pl

ic
at

io
ns

,i
t

is
al

l
gi

ve
n

in
te

rm
s

of
th

e
m

od
el

-e
le

m
en

ts
th

at
pa

rt
ic

ip
at

e
in

th
e

re
la

ti
on

sh
ip

,
no

t
in

te
rm

s
of

th
ei

r
in

st
an

ce
s.

N
ot

at
io

n
:

A
D

e
p
e
n
d
e
n
c
y

is
sh

o
w

n
a
s

a
d
a
sh

e
d

a
rr

o
w

b
e
tw

e
e
n

tw
o

m
o
d
e
l
e
le

m
e
n
ts

.
T

h
e

m
o
d
e
l
e
le

m
e
n
t

a
t

th
e

ta
il

o
f

th
e

a
rr

o
w

(t
h
e

c
li
e
n
t)

d
e
p
e
n
d
s

o
n

th
e

m
o
d
e
l

e
le

m
e
n
t

a
t

th
e

a
rr

o
w

h
e
a
d

(t
h
e

su
p
p
li
e
r)

.
T

h
e

a
rr

o
w

m
a
y

b
e

la
b
e
le

d
w

it
h

a
n

o
p
ti

o
n
a
l
st

e
re

o
ty

p
e

c
o
rr

e
sp

o
n
d
in

g
to

th
e

th
e

ty
p
e

o
f

th
e

D
e
p
e
n
d
e
n
c
y
,
e
.g

.
�

u
se
�

,
a
n
d

a
n

o
p
ti

o
n
a
l
n
a
m

e
.

Appendix A. PIM Metamodel 197
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

D
ep

en
d
en

cy
M

et
am

o
d
el

:

198 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

In
te

rf
ac

e
In

te
rf

ac
eR

ea
li
za

ti
on

D
es

cr
ip

ti
on

:
A

n
In

te
rf

ac
e

is
a

ki
nd

of
C

la
ss

ifi
er

th
at

re
pr

es
en

ts
a

de
cl

ar
at

io
n

of
a

se
t

of
co

he
re

nt
pu

bl
ic

fe
at

ur
es

an
d

ob
lig

a-
ti

on
s.

A
n

In
te

rf
ac

e
sp

ec
ifi

es
a

co
nt

ra
ct

;a
ny

in
st

an
ce

of
a

C
la

ss
ifi

er
th

at
re

al
iz

es
th

e
In

te
rf

ac
e

m
us

t
fu

lfi
ll

th
at

co
nt

ra
ct

.
T

he
ob

lig
at

io
ns

th
at

m
ay

be
as

so
ci

at
ed

w
it

h
an

In
te

rf
ac

e
ar

e
in

th
e

fo
rm

of
va

ri
ou

s
ki

nd
s

of
co

ns
tr

ai
nt

s
(s

uc
h

as
pr

e-
an

d
po

st
co

nd
it

io
ns

)
or

pr
ot

oc
ol

sp
ec

ifi
ca

ti
on

s,
w

hi
ch

m
ay

im
po

se
or

de
ri

ng
re

st
ri

ct
io

ns
on

in
te

ra
ct

io
ns

th
ro

ug
h

th
e

In
te

rf
ac

e.
Si

nc
e

In
te

rf
ac

es
ar

e
de

cl
ar

at
io

ns
,
th

ey
ar

e
no

t
in

st
an

ti
ab

le
.

In
st

ea
d,

an
in

te
rf

ac
e

sp
ec

ifi
-

ca
ti

on
is

im
pl

em
en

te
d

by
an

in
st

an
ce

of
an

in
st

an
ti

ab
le

C
la

ss
ifi

er
,
w

hi
ch

m
ea

ns
th

at
th

e
in

st
an

ti
ab

le
C

la
ss

ifi
er

pr
es

en
ts

a
pu

bl
ic

fa
ca

de
th

at
co

nf
or

m
s

to
th

e
in

te
rf

ac
e

sp
ec

ifi
ca

ti
on

.
N

ot
e

th
at

a
gi

ve
n

C
la

ss
ifi

er
m

ay
im

pl
em

en
t

m
or

e
th

an
on

e
In

te
rf

ac
e

an
d

th
at

an
in

te
rf

ac
e

m
ay

be
im

pl
em

en
te

d
by

a
nu

m
be

r
of

di
ffe

re
nt

C
la

ss
ifi

er
s.

A
n

In
te

rf
ac

eR
ea

li
za

ti
on

is
a

sp
ec

ia
liz

ed
R

ea
li
za

ti
on

de
pe

nd
en

cy
be

tw
ee

n
a

C
la

ss
ifi

er
an

d
an

In
te

rf
ac

e.
T

hi
s

de
pe

nd
en

cy
si

gn
ifi

es
th

at
th

e
re

al
iz

in
g

C
la

ss
ifi

er
co

nf
or

m
s

to
th

e
co

nt
ra

ct
sp

ec
ifi

ed
by

th
e

In
te

rf
ac

e.

N
ot

at
io

n
:

In
c
a
se

s
w

h
e
re

I
n
t
e
r
fa

c
e
s

a
re

re
p
re

se
n
te

d
u
si

n
g

th
e

re
c
ta

n
g
le

n
o
ta

ti
o
n
,

in
te

rf
a
c
e

re
a
li
z
a
ti

o
n

a
n
d

u
sa

g
e

D
e
p
e
n
d
e
n
c
ie

s
a
re

d
e
n
o
te

d
w

it
h

a
p
p
ro

p
ri

a
te

d
e
p
e
n
d
e
n
c
y

a
rr

o
w

s
a
s

sh
o
w

n
in

th
e

fo
ll
o
w

in
g

fi
g
u
re

.
T

h
e

c
la

ss
ifi

e
r

a
t

th
e

ta
il

o
f
th

e
a
rr

o
w

im
p
le

m
e
n
ts

th
e

in
te

rf
a
c
e

a
t

th
e

h
e
a
d

o
f
th

e
a
rr

o
w

o
r

u
se

s
th

a
t

in
te

rf
a
c
e
,
re

sp
e
c
ti

v
e
ly

.

A
lt

e
rn

a
ti

v
e
ly

th
e
se

D
e
p
e
n
d
e
n
c
ie

s
c
a
n

b
e

n
o
ta

te
d

a
s

sh
o
w

n
in

th
e

fo
ll
o
w

in
g

fi
g
u
re

s.

Appendix A. PIM Metamodel 199
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

In
te

rf
ac

e
In

te
rf

ac
eR

ea
li
za

ti
on

M
et

am
o
d
el

:

200 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

P
ac

ka
ge

D
es

cr
ip

ti
on

:
A

P
ac

ka
ge

is
us

ed
to

gr
ou

p
el

em
en

ts
,

an
d

pr
ov

id
es

a
na

m
es

pa
ce

fo
r

th
e

gr
ou

pe
d

el
em

en
ts

.
It

ca
n

co
nt

ai
n

al
so

ot
he

r
pa

ck
ag

es
.

A
P
ac

ka
ge

ca
n

im
po

rt
ei

th
er

in
di

vi
du

al
m

em
be

rs
of

ot
he

r
pa

ck
ag

es
,
or

al
l
th

e
m

em
be

rs
of

ot
he

r
pa

ck
ag

es
.

In
ad

di
ti

on
a

P
ac

ka
ge

ca
n

be
m

er
ge

d
w

it
h

ot
he

r
pa

ck
ag

es
.

A
P
ac

ka
ge

ow
ns

it
s

ow
ne

d
m

em
be

rs
,
w

it
h

th
e

im
pl

ic
at

io
n

th
at

if
a

P
ac

ka
ge

is
re

m
ov

ed
fr

om
a

m
od

el
,

so
ar

e
th

e
el

em
en

ts
ow

ne
d

by
th

e
P
ac

ka
ge

.
T

he
pu

bl
ic

co
nt

en
ts

of
a

P
ac

ka
ge

is
al

w
ay

s
ac

ce
ss

ib
le

ou
ts

id
e

th
e

P
ac

ka
ge

th
ro

ug
h

th
e

us
e

of
qu

al
ifi

ed
na

m
es

.
It

ca
n

be
us

ed
to

de
fin

e
di

ffe
re

nt
na

m
e

sp
ac

es
in

th
e

m
od

el
an

d
gr

ou
p

el
em

en
ts

ac
co

rd
in

g
to

th
ei

r
le

ve
l
of

ab
st

ra
ct

io
n.

M
et

am
o
d
el

:

Appendix A. PIM Metamodel 201
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

P
ac

ka
ge

M
er

ge
P
ac

ka
ge

Im
p
or

t
(p

ri
-

va
te

,
p
u
b
li
c)

D
es

cr
ip

ti
on

:
A

P
ac

ka
ge

M
er

ge
is

a
di

re
ct

ed
re

la
ti

on
sh

ip
be

tw
ee

n
tw

o
pa

ck
ag

es
,

th
at

in
di

ca
te

s
th

at
th

e
co

nt
en

ts
of

th
e

tw
o

pa
ck

ag
es

ar
e

to
be

co
m

bi
ne

d.
It

is
ve

ry
si

m
ila

r
to

G
en

er
al

iz
at

io
n

in
th

e
se

ns
e

th
at

th
e

so
ur

ce
el

em
en

t
co

nc
ep

tu
al

ly
ad

ds
th

e
ch

ar
ac

te
ri

st
ic

s
of

th
e

ta
rg

et
el

em
en

t
to

it
s

ow
n

ch
ar

ac
te

ri
st

ic
s

re
su

lt
in

g
in

an
el

em
en

t
th

at
co

m
bi

ne
s

th
e

ch
ar

ac
te

ri
st

ic
s

of
bo

th
.

P
ac

ka
ge

M
er

ge
is

pa
rt

ic
ul

ar
ly

us
ef

ul
in

m
et

a-
m

od
el

in
g

an
d

is
ex

te
ns

iv
el

y
us

ed
in

th
e

de
fin

it
io

n
of

th
e

U
M

L
m

et
am

od
el

.
In

te
rm

s
of

m
od

el
se

m
an

ti
cs

,t
he

re
is

no
di

ffe
re

nc
e

be
tw

ee
n

a
m

od
el

w
it

h
ex

pl
ic

it
pa

ck
ag

e
m

er
ge

s,
an

d
a

m
od

el
in

w
hi

ch
al

l
th

e
m

er
ge

s
ha

ve
be

en
pe

rf
or

m
ed

.

A
P
ac

ka
ge

Im
p
or

t
is

a
re

la
ti

on
sh

ip
th

at
al

lo
w

s
th

e
us

e
of

un
qu

al
ifi

ed
na

m
es

to
re

fe
r

to
pa

ck
ag

e
m

em
be

rs
fr

om
ot

he
r
na

m
es

pa
ce

s.
A

P
ac

ka
ge

Im
p
or

t
is

a
re

la
ti

on
sh

ip
be

tw
ee

n
an

im
po

rt
in

g
na

m
es

pa
ce

an
d

a
pa

ck
ag

e,
in

di
ca

ti
ng

th
at

th
e

im
po

rt
in

g
na

m
es

pa
ce

ad
ds

th
e

na
m

es
of

th
e

m
em

be
rs

of
th

e
pa

ck
ag

e
to

it
s
ow

n
na

m
es

pa
ce

.
C

on
ce

pt
ua

lly
,a

P
ac

ka
ge

Im
p
or

t
is

eq
ui

va
le

nt
to

ha
vi

ng
an

el
em

en
t
im

po
rt

to
ea

ch
in

di
vi

du
al

m
em

be
r
of

th
e

im
po

rt
ed

na
m

es
pa

ce
,

un
le

ss
th

er
e

is
al

re
ad

y
a

se
pa

ra
te

ly
-d

efi
ne

d
el

em
en

t
im

po
rt

.

202 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

D
at

aT
y
p
e

E
n
u
m

er
at

io
n

E
n
u
m

er
at

io
n
L
it

er
al

D
es

cr
ip

ti
on

:
A

D
at

aT
y
p
e

is
a

ty
pe

w
ho

se
in

st
an

ce
s

ar
e

id
en

ti
fie

d
on

ly
by

th
ei

r
va

lu
e.

A
D

at
aT

y
p
e

m
ay

co
nt

ai
n

at
tr

ib
ut

es
to

su
pp

or
t

th
e

m
od

el
in

g
of

st
ru

ct
ur

ed
da

ta
ty

pe
s.

T
he

U
M

L
m

et
am

od
el

us
es

tw
o

D
at

aT
y
p
e

sp
ec

ia
liz

at
io

ns
:

P
ri

m
it

iv
eT

y
p
e

an
d

E
n
u
m

er
at

io
n
.

Fo
ur

co
nc

re
te

P
ri

m
it

iv
eT

y
p
es

ar
e

al
so

de
fin

ed
:

In
te

ge
r,

B
oo

le
an

,
St

ri
ng

an
d

U
nl

im
it

ed
N

at
ur

al
.

A
ty

pi
ca

l
us

e
of

da
ta

ty
pe

s
w

ou
ld

be
to

re
pr

es
en

t
pr

og
ra

m
m

in
g

la
ng

ua
ge

pr
im

it
iv

e
ty

pe
s

or
C

O
R

B
A

ba
si

c
ty

pe
s.

Fo
r

ex
am

pl
e,

in
te

ge
r

an
d

st
ri

ng
ty

pe
s

ar
e

of
te

n
tr

ea
te

d
as

da
ta

ty
pe

s.
E
n
u
m

er
at

io
n

is
a

ki
nd

of
da

ta
ty

pe
,w

ho
se

in
st

an
ce

s
m

ay
be

an
y

of
a

nu
m

be
r

of
us

er
-d

efi
ne

d
en

um
er

at
io

n
lit

er
al

s.
It

is
po

ss
ib

le
to

ex
te

nd
th

e
se

t
of

ap
pl

ic
ab

le
en

um
er

at
io

n
lit

er
al

s
in

ot
he

r
pa

ck
ag

es
or

pr
ofi

le
s.

A
n

E
n
u
m

er
at

io
n
L
it

er
al

is
a

us
er

-d
efi

ne
d

da
ta

va
lu

e
fo

r
an

en
um

er
at

io
n.

N
ot

at
io

n
:

A
D

a
t
a
T
y
p
e

is
d
e
n
o
ta

te
d

u
si

n
g

th
e

re
c
ta

n
g
le

sy
m

b
o
l

w
it

h
k
e
y
w

o
rd
�

d
a
ta

T
y
p
e
�

o
r,

w
h
e
n

it
is

re
fe

re
n
c
e
d

b
y

(e
.g

.,
a
n

a
tt

ri
b
u
te

)
d
e
n
o
te

d
b
y

a
st

ri
n
g

c
o
n
ta

in
in

g
th

e
n
a
m

e
o
f
th

e
D

a
t
a
T
y
p
e
.

A
n

E
n
u
m

e
r
a
t
io

n
m

a
y

b
e

sh
o
w

n
u
si

n
g

th
e

c
la

ss
ifi

e
r

n
o
ta

ti
o
n

(a
re

c
ta

n
g
le

)
w

it
h

th
e

k
e
y
w

o
rd
�

e
n
u
m

e
ra

ti
o
n
�

.
A

n
E
n
u
m

e
r
a
t
io

n
L
it

e
r
a
l
is

ty
p
ic

a
ll
y

sh
o
w

n
a
s

a
n
a
m

e
,
o
n
e

to
a

li
n
e
,
in

th
e

c
o
m

p
a
rt

m
e
n
t

o
f
th

e
e
n
u
m

e
ra

ti
o
n

n
o
ta

ti
o
n
.

M
et

am
o
d
el

:

Appendix A. PIM Metamodel 203
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

C
om

m
en

t
D

es
cr

ip
ti
on

:
A

C
om

m
en

t
is

a
te

xt
ua

l
an

no
ta

ti
on

th
at

ca
n

be
at

ta
ch

ed
to

a
se

t
of

el
em

en
ts

.
A

C
om

m
en

t
gi

ve
s

th
e

ab
ili

ty
to

at
ta

ch
va

ri
ou

s
re

m
ar

ks
to

el
em

en
ts

.
A

C
om

m
en

t
ca

rr
ie

s
no

se
m

an
ti

c
fo

rc
e,

bu
t

m
ay

co
nt

ai
n

in
fo

rm
at

io
n

th
at

is
us

ef
ul

to
a

m
od

el
er

.
A

C
om

m
en

t
ca

n
be

ow
ne

d
by

an
y

el
em

en
t.

N
ot

at
io

n
:

A
C

o
m

m
e
n
t

is
sh

o
w

n
a
s

a
re

c
ta

n
g
le

w
it

h
th

e
u
p
p
e
r

ri
g
h
t

c
o
rn

e
r

b
e
n
t

(t
h
is

is
a
ls

o
k
n
o
w

n
a
s

a
“
n
o
te

sy
m

b
o
l”

).
T

h
e

re
c
ta

n
g
le

c
o
n
ta

in
s

th
e

b
o
d
y

o
f

th
e

C
o
m

m
e
n
t
.

T
h
e

c
o
n
n
e
c
ti

o
n

to
e
a
c
h

a
n
n
o
ta

te
d

e
le

m
e
n
t

is
sh

o
w

n
b
y

a
se

p
a
ra

te
d
a
sh

e
d

li
n
e
.

C
on

st
ra

in
t

D
es

cr
ip

ti
on

:
C

on
st

ra
in

t
co

nt
ai

ns
a

V
al

ue
Sp

ec
ifi

ca
ti

on
th

at
sp

ec
ifi

es
ad

di
ti

on
al

se
m

an
ti

cs
fo

r
on

e
or

m
or

e
el

em
en

ts
.

C
er

ta
in

ki
nd

s
of

C
on

st
ra

in
ts

(s
uc

h
as

an
as

so
ci

at
io

n
“x

or
”

co
ns

tr
ai

nt
)

ar
e

pr
ed

efi
ne

d
in

U
M

L
,

ot
he

rs
m

ay
be

us
er

-
de

fin
ed

.
A

us
er

-d
efi

ne
d

C
on

st
ra

in
t

is
de

sc
ri

be
d

us
in

g
a

sp
ec

ifi
ed

la
ng

ua
ge

,
w

ho
se

sy
nt

ax
an

d
in

te
rp

re
ta

ti
on

is
a

to
ol

re
sp

on
si

bi
lit

y.
O

ne
pr

ed
efi

ne
d

la
ng

ua
ge

fo
r

w
ri

ti
ng

co
ns

tr
ai

nt
s

is
O

C
L
.

In
so

m
e

si
tu

at
io

ns
,

a
pr

og
ra

m
m

in
g

la
ng

ua
ge

su
ch

as
Ja

va
m

ay
be

ap
pr

op
ri

at
e

fo
r

ex
pr

es
si

ng
a

C
on

st
ra

in
t.

In
ot

he
r

si
tu

at
io

ns
na

tu
ra

l
la

ng
ua

ge
m

ay
be

us
ed

.
C

on
st

ra
in

t
is

a
co

nd
it

io
n

(a
B

oo
le

an
ex

pr
es

si
on

)
th

at
re

st
ri

ct
s

th
e

ex
te

ns
io

n
of

th
e

as
so

ci
at

ed
el

em
en

t
be

yo
nd

w
ha

t
is

im
po

se
d

by
th

e
ot

he
r

la
ng

ua
ge

co
ns

tr
uc

ts
ap

pl
ie

d
to

th
at

el
em

en
t.

C
on

st
ra

in
t

co
nt

ai
ns

an
op

ti
on

al
na

m
e,

al
th

ou
gh

th
ey

ar
e

co
m

m
on

ly
un

na
m

ed
.

N
ot

at
io

n
:

A
C

o
n
s
t
r
a
in

t
is

sh
o
w

n
a
s

a
te

x
t

st
ri

n
g

in
b
ra

c
e
s

()
a
c
c
o
rd

in
g

to
th

e
fo

ll
o
w

in
g

B
N

F
:

<
co

n
st

ra
in

t>
::
=

‘{
’
[

<
n
a
m

e
>

‘:
’

]
<

B
o
o
le
a
n
-e

x
p
re

ss
io

n
>

‘}
’

F
o
r

a
n

e
le

m
e
n
t

w
h
o
se

n
o
ta

ti
o
n

is
a

te
x
t

st
ri

n
g

(s
u
c
h

a
s

a
n

a
tt

ri
b
u
te

,
e
tc

.)
,

th
e

c
o
n
st

ra
in

t
st

ri
n
g

m
a
y

fo
ll
o
w

th
e

e
le

m
e
n
t

te
x
t

st
ri

n
g

in
b
ra

c
e
s.

F
o
r

a
C

o
n
s
t
r
a
in

t
th

a
t

a
p
p
li
e
s

to
a

si
n
g
le

e
le

m
e
n
t

(s
u
c
h

a
s

a
c
la

ss
o
r

a
n

a
ss

o
c
ia

ti
o
n

p
a
th

),
th

e
C

o
n
s
t
r
a
in

t
st

ri
n
g

m
a
y

b
e

p
la

c
e
d

n
e
a
r

th
e

sy
m

b
o
l
fo

r
th

e
e
le

m
e
n
t,

p
re

fe
ra

b
ly

n
e
a
r

th
e

n
a
m

e
,
if

a
n
y
.

A
to

o
l
m

u
st

m
a
k
e

it
p
o
ss

ib
le

to
d
e
te

rm
in

e
th

e
c
o
n
st

ra
in

e
d

e
le

m
e
n
t.

F
o
r

a
C

o
n
s
t
r
a
in

t
th

a
t

a
p
p
li
e
s

to
tw

o
e
le

m
e
n
ts

(s
u
c
h

a
s

tw
o

c
la

ss
e
s

o
r

tw
o

a
ss

o
c
ia

ti
o
n
s)

,
th

e
C

o
n
s
t
r
a
in

t
m

a
y

b
e

sh
o
w

n
a
s

a
d
a
sh

e
d

li
n
e

b
e
tw

e
e
n

th
e

e
le

m
e
n
ts

la
b
e
le

d
b
y

th
e

C
o
n
s
t
r
a
in

t
st

ri
n
g

(i
n

b
ra

c
e
s)

.

204 Appendix A. PIM Metamodel
T
ab

le
A

.1
:

U
M

L
M

et
am

od
el

fo
r

St
ru

ct
ur

al
D

ia
gr

am
s

U
M

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
N

ot
at

io
n
,
M

et
am

o
d
el

P
ro

fi
le

s
D

es
cr

ip
ti
on

:
P

ro
fil

es
ar

e
de

fin
ed

as
a

m
et

a-
m

od
el

in
g

te
ch

ni
qu

e
in

or
de

r
to

al
lo

w
th

e
co

ns
is

te
nt

ex
te

ns
io

n
of

U
M

L
.
St

er
eo

ty
pe

s
ar

e
sp

ec
ifi

c
m

et
ac

la
ss

es
,
ta

gg
ed

va
lu

es
ar

e
st

an
da

rd
m

et
aa

tt
ri

bu
te

s,
an

d
pr

ofi
le

s
ar

e
sp

ec
ifi

c
ki

nd
s

of
pa

ck
ag

es
.

M
et

am
o
d
el

:

Appendix A. PIM Metamodel 205
T
ab

le
A

.2
:

C
B

IR
S

E
xt

en
si

on
s

to
th

e
U

M
L

M
et

am
od

el

S
te

re
ot

y
p
e

D
es

cr
ip

ti
on

F
ra

m
ew

or
k

S
te

re
ot

y
p
es

�
fr

am
ew

or
k
�

A
pp

lie
s

to
C

la
ss

,
P
ac

ka
ge

,
In

te
rf

ac
e

an
d

m
ea

ns
th

at
th

e
el

em
en

t
be

lo
ng

s
to

th
e

fr
am

ew
or

k
m

od
el

.
T

he
se

el
em

en
ts

ar
e

us
ed

to
de

ri
ve

ap
pl

ic
at

io
n-

sp
ec

ifi
c

el
em

en
ts

.
T

he
y

ar
e

no
t

m
ap

pe
d

to
th

e
im

pl
em

en
ta

ti
on

pl
at

fo
rm

.
�
ap

p
li
ca

ti
on
�

A
pp

lie
s

to
C

la
ss

,P
ac

ka
ge

,I
n
te

rf
ac

e
an

d
m

ea
ns

th
at

th
e

el
em

en
t

be
lo

ng
s

to
th

e
ap

pl
ic

at
io

n-
sp

ec
ifi

c
m

od
el

.
T

he
se

el
em

en
ts

ar
e

to
be

m
ap

pe
d

to
th

e
im

pl
em

en
ta

ti
on

sp
ec

ifi
c

m
od

el
.

�
ad

ap
t-

st
at

ic
�

A
pp

lie
s

to
In

te
rf

ac
e,

C
la

ss
,
M

et
h
o
d
,
G

en
er

al
iz

at
io

n
an

d
sh

ow
s

th
at

th
e

el
em

en
t

ca
n

be
ad

ap
te

d
du

ri
ng

de
si

gn
-t

im
e

th
ro

ug
h

su
bc

la
ss

in
g.

�
te

m
p
la

te
�

�
h
o
ok
�

A
pp

ly
to

C
la

ss
an

d
M

et
h
o
d

an
d

sh
ow

w
hi

ch
fu

nc
ti

on
al

it
y

ha
s

to
be

ad
ap

te
d

by
su

bc
la

ss
in

g
th

e
cl

as
se

s
an

d
re

de
fin

in
g

th
e

m
et

ho
ds

.
Fo

r
m

or
e

sp
ec

ifi
ci

ty
hi

gh
er

ab
st

ra
ct

-l
ev

el
ta

gs
su

ch
as

�
U

ni
fic

at
io

n-
te

m
pl

at
e�

an
d
�

U
ni

fic
at

io
n-

ho
ok
�

or
�

Se
pa

ra
ti

on
-t

em
pl

at
e�

an
d
�

Se
pa

ra
ti

on
-

ho
ok
�

ca
n

be
us

ed
.

D
ep

lo
y
m

en
t

S
te

re
ot

y
p
es

�
p
er

si
st

en
t�

H
as

to
be

ap
pl

ie
d

to
C

la
ss

es
in

th
e

P
IM

,
w

hi
ch

sh
ou

ld
be

m
ap

pe
d

to
th

e
pe

rs
is

te
nc

e
la

ye
r

of
an

ap
pl

ic
at

io
n.

T
he

se
st

er
eo

ty
pe

is
us

ed
as

a
m

ar
ku

p
or

gu
id

el
in

es
fo

r
th

e
m

ap
pi

ng
pr

oc
es

s.
It

do
es

no
t

ca
rr

y
do

m
ai

n
sp

ec
ifi

c
in

fo
rm

at
io

n.

�
ap

p
li
ca

ti
on

-l
og

ic
�

H
as

to
be

ap
pl

ie
d

to
C

la
ss

es
or

In
te

rf
ac

es
in

th
e

P
IM

,
w

hi
ch

sh
ou

ld
be

m
ap

pe
d

to
th

e
ap

pl
ic

at
io

n-
lo

gi
c

la
ye

r
of

an
ap

pl
ic

at
io

n.
T

he
se

st
er

eo
ty

pe
is

us
ed

as
a

m
ar

ku
p

or
gu

id
el

in
es

fo
r

th
e

m
ap

pi
ng

pr
oc

es
s.

It
do

es
no

t
ca

rr
y

do
m

ai
n

sp
ec

ifi
c

in
fo

rm
at

io
n.

D
om

ai
n
-S

p
ec

ifi
c

S
te

re
ot

y
p
es

�
C

B
IR

S
D

at
aT

y
p
e�

A
sp

ec
ia

liz
at

io
n

of
D

at
aT

y
p
e

fo
r

de
ri

vi
ng

C
B

IR
S

sp
ec

ifi
c

da
ta

ty
pe

s.

�
C

B
IR

S
S
im

p
le

T
y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
D

at
aT

y
p
e

fo
r

de
ri

vi
ng

C
B

IR
S

sp
ec

ifi
c

da
ta

ty
pe

s.

�
C

B
IR

S
C

om
p
le

x
T

y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
D

at
aT

y
p
e

fo
r

de
ri

vi
ng

C
B

IR
S

sp
ec

ifi
c

da
ta

ty
pe

s.

�
C

B
IR

S
S
tr

u
ct

T
y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
C

om
p
le

x
T

y
p
e

fo
r

de
ri

vi
ng

C
B

IR
S

sp
ec

ifi
c

da
ta

ty
pe

s.

206 Appendix A. PIM Metamodel
T
ab

le
A

.2
:

E
xt

en
si

on
s

to
th

e
U

M
L

M
et

am
od

el
S
te

re
ot

y
p
e

D
es

cr
ip

ti
on

�
C

B
IR

S
A

rr
ay

T
y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
C

om
p
le

x
T

y
p
e

fo
r

re
pr

es
en

ti
ng

ar
ra

ys
.

T
he

fo
llo

w
in

g
pr

op
er

ti
es

ar
e

sp
ec

ifi
ed

fo
r

th
is

st
er

eo
ty

pe
:

-
di

m
en

si
on

m
ul

ti
pl

ic
it
y:

C
B

IR
In

te
ge

rT
yp

e[
1.

.*
]

-
da

ta
ty

pe
:

C
B

IR
SS

tr
in

gT
yp

e

N
ot

at
io

n
:

C
B
IR

SA
rr

ay
T
yp

e
::
=

‘C
B
IR

SA
rr

ay
T
yp

e
[’
<

nu
m

be
r>

‘]
’
[
‘[
’<

nu
m

be
r>

‘]
’
]*

‘:
’<

da
ta

ty
pe

>
w

he
re

:
-

<
nu

m
be

r>
is

a
va

lu
e

of
ty

pe
C

B
IR

In
te

ge
rT

yp
e

-
<

da
ta

ty
pe

>
is

a
na

m
e

of
a

pr
ed

efi
ne

d
da

ta
T

yp
e

or
a

C
la

ss

�
C

B
IR

S
In

te
ge

rT
y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
S
im

p
le

D
at

aT
y
p
e

fo
r

re
pr

es
en

ti
ng

in
te

ge
r

va
lu

es
.

�
C

B
IR

S
B

o
ol

ea
n
T

y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
S
im

p
le

D
at

aT
y
p
e

fo
r

re
pr

es
en

ti
ng

bo
ol

ea
n

va
lu

es
.

�
C

B
IR

S
C

h
ar

ac
te

rT
y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
S
im

p
le

D
at

aT
y
p
e

fo
r

re
pr

es
en

ti
ng

ch
ar

ac
te

r
va

lu
es

.
�
C

B
IR

S
S
tr

in
gT

y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
S
im

p
le

D
at

aT
y
p
e

fo
r

re
pr

es
en

ti
ng

st
ri

ng
va

lu
es

.
�
C

B
IR

S
F
lo

at
T

y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
S
im

p
le

D
at

aT
y
p
e

fo
r

re
pr

es
en

ti
ng

flo
at

va
lu

es
.

�
C

B
IR

S
B

in
ar

y
T

y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
S
im

p
le

D
at

aT
y
p
e

fo
r

re
pr

es
en

ti
ng

bi
na

ry
va

lu
es

.
�
C

B
IR

S
E
n
u
m

T
y
p
e�

A
sp

ec
ia

liz
at

io
n

of
C

B
IR

S
C

om
p
le

x
D

at
aT

y
p
e

fo
r

re
pr

es
en

ti
ng

en
um

er
at

io
n

da
ta

ty
pe

s.

Appendix B

PSM Metamodel

In this appendix the UML extensions for representing SQL:2003 specific concepts are defined.
The descriptions of the SQL:2003 concepts are taken from the Working Draft of the Standard:
“Information technology Database languages SQL Part 2: Foundation (SQL/Foundation)”,
ISO/IEC 9075-2:2003 (E) and [Tür03]. The first part of the appendix defines the UML
extension for representing purely relational concepts. In the second part the object-relational
metamodeling features are introduced and finally, in the third part, the needed basic and
complex SQL data types are listed.

207

208 Appendix B. PSM Metamodel
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
ch

em
a

D
es

cr
ip

ti
on

:
A

ll
ob

je
ct

s
w

hi
ch

fo
rm

th
e

da
ta

ba
se

ar
e

gr
ou

pe
d

lo
gi

ca
lly

in
so

ca
lle

d
S
ch

em
as

.
T

hu
s

a
S
ch

em
a

co
rr

es
po

nd
s

to
a

ki
nd

of
na

m
es

pa
ce

.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

A
cc

or
di

ng
to

R
at

io
na

l’s
D

at
a

M
od

el
in

g
P

ro
fil

e
a

S
ch

em
a

is
re

pr
es

en
te

d
by

a
P
ac

ka
ge

in
U

M
L
,

w
hi

ch
is

th
e

or
ga

ni
za

ti
on

al
un

it
of

U
M

L
.
T

hu
s,

a
S
ch

em
a

is
a

st
er

eo
ty

pe
d

P
ac

ka
ge

�
Sc

he
m

a�
an

d
a

pa
rt

of
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

S
te

re
ot

y
p
es

:
T

he
st

er
eo

ty
pe

�
Sc

he
m

a�
is

us
ed

.

C
on

st
ra

in
ts

:
no

ne

N
ot

at
io

n
:

Appendix B. PSM Metamodel 209
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

T
ab

le
D

es
cr

ip
ti
on

:
A

T
ab

le
is

a
co

lle
ct

io
n

of
ro

w
s

ha
vi

ng
on

e
or

m
or

e
co

lu
m

ns
.

A
ro

w
is

a
va

lu
e

of
a

ro
w

ty
pe

.
E

ve
ry

ro
w

of
th

e
sa

m
e

T
ab

le
ha

s
th

e
sa

m
e

ro
w

ty
pe

.
T

he
va

lu
e

of
th

e
i-
th

fie
ld

of
ev

er
y

ro
w

in
a

T
ab

le
is

th
e

va
lu

e
of

th
e

i-
th

co
lu

m
n

of
th

at
ro

w
in

th
e
T
ab

le
.

T
he

ro
w

is
th

e
sm

al
le

st
un

it
of

da
ta

th
at

ca
n

be
in

se
rt

ed
in

to
a

T
ab

le
an

d
de

le
te

d
fr

om
a

T
ab

le
.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

A
cc

or
di

ng
to

R
at

io
na

l’s
D

at
a

M
od

el
in

g
P

ro
fil

e
a

T
ab

le
is

a
st

er
eo

ty
pe

d
C

la
ss
�

T
ab

le
�

an
d

pa
rt

of
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

S
te

re
ot

y
p
es

:
T

he
st

er
eo

ty
pe

�
T
ab

le
�

is
us

ed
.

C
on

st
ra

in
ts

:
-
T

he
op

er
at

io
ns

of
a
�

T
ab

le
�

C
la

ss
ca

n
be

on
ly

st
er

eo
ty

pe
d

op
er

at
io

ns
,c

or
re

sp
on

di
ng

to
th

e
T
ab

le
C

on
st

ra
in

t
co

nc
ep

t.
-

A
�

T
ab

le
�

C
la

ss
m

us
t

ha
ve

at
le

as
t

on
e
�

P
K
�

A
tt

ri
b
u
te

.
-

A
ll

A
tt

ri
b
u
te

s
an

d
O

p
er

at
io

n
s

of
a
�

T
ab

le
�

C
la

ss
ar

e
pu

bl
ic

.

N
ot

at
io

n
:

210 Appendix B. PSM Metamodel
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

V
ie

w
D

es
cr

ip
ti
on

:
A

V
ie

w
is

a
na

m
ed

,d
er

iv
ed

T
ab

le
fr

om
on

e
or

m
or

e
ot

he
r
T
ab

le
s,

qu
er

ie
d

by
a

qu
er

y
re

tu
rn

in
g

a
ro

w
as

a
re

su
lt

.
T

he
va

lu
es

of
it

s
at

tr
ib

ut
es

ar
e

ga
th

er
ed

fr
om

th
e

ot
he

r
T
ab

le
s

by
ev

al
ua

ti
ng

th
e

qu
er

y.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

A
V

ie
w

is
a

st
er

eo
ty

pe
d

C
la

ss
�

V
ie

w
�

an
d

pa
rt

of
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

T
he

de
pe

nd
en

cy
to

ea
ch

T
ab

le
in

vo
lv

ed
in

th
e

de
fin

it
io

n
of

th
e

V
ie

w
is

in
di

ca
te

d
w

it
h

a
st

er
eo

ty
pe

d
de

pe
nd

en
cy
�

D
er

iv
e�

.

S
te

re
ot

y
p
es

:
T

he
st

er
eo

ty
pe

s
�

V
ie

w
�

an
d
�

D
er

iv
e�

ar
e

us
ed

.

C
on

st
ra

in
ts

:
-

A
�

V
ie

w
�

C
la

ss
ca

nn
ot

ha
ve
�

P
K
�

an
d
�

F
K
�

or
�

P
F
K
�

A
tt

ri
b
u
te

s.
-

T
he

A
tt

ri
b
u
te

s
of

a
�

V
ie

w
�

ar
e

de
ri

ve
d

fr
om

on
e

of
th

e
�

T
ab

le
�

C
la

ss
es

pa
rt

ic
ip

at
in

g
in

th
e
�

V
ie

w
�

.
-

T
he

na
m

e
of

th
e
�

T
ab

le
�

in
fr

on
t

of
th

e
A

tt
ri

b
u
te

s
na

m
e

ca
n

sp
ec

ify
th

e
A

tt
ri

b
u
te

.
-

A
�

V
ie

w
�

m
ay

co
nt

ai
n

on
ly

on
e

O
p
er

at
io

n
re

pr
es

en
ti

ng
th

e
qu

er
y

fo
r

th
e

V
ie

w
.

T
he

qu
er

y
it

se
lf

ca
n

be
sp

ec
ifi

ed
as

a
C

on
st

ra
in

t
of

th
e

O
p
er

at
io

n
.

N
ot

at
io

n
:

Appendix B. PSM Metamodel 211
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

C
ol

u
m

n
D

es
cr

ip
ti
on

:
A

T
ab

le
co

ns
is

ts
of

on
e

or
m

or
e
C

ol
u
m

n
s.

E
ac

h
C

ol
u
m

n
ha

s
a

na
m

e
an

d
a

da
ta

ty
pe

re
la

te
d

to
it

.
A

C
ol

u
m

n
ca

n
ha

ve
a

de
fa

ul
t

va
lu

e.
T

he
fo

llo
w

in
g

in
te

gr
it
y

co
ns

tr
ai

nt
s

ca
n

be
as

si
gn

ed
to

a
co

lu
m

n:
-E

ve
ry

C
ol

u
m

n
ha

s
a

nu
lla

bi
lit

y
ch

ar
ac

te
ri

st
ic

th
at

in
di

ca
te

s
w

he
th

er
th

e
va

lu
e

fr
om

th
at

C
ol

u
m

n
ca

n
be

N
U

L
L
.

-
A

C
ol

u
m

n
ha

s
a

un
iq

ue
ch

ar
ac

te
ri

st
ic

th
at

in
di

ca
te

s
w

he
th

er
it

is
po

ss
ib

le
to

ha
ve

di
ffe

re
nt

ro
w

s
in

th
e

sa
m

e
ta

bl
e

w
it

h
th

e
sa

m
e

va
lu

e
fo

r
th

at
co

lu
m

n.
-
If

th
e

C
ol

u
m

n
is

de
fin

ed
as

un
iq

ue
an

d
no

t
nu

lla
bl

e
th

en
it

ca
n

be
ch

os
en

as
th

e
P

ri
m

ar
y

K
ey

fo
r

th
e

T
ab

le
.

-
A

C
ol

u
m

n
m

ay
pl

ay
th

e
ro

le
of

a
F
or

ei
gn

K
ey

in
a

T
ab

le
,

de
fin

in
g

a
re

fe
re

nc
e

to
an

ot
he

r
T
ab

le
.

Su
ch

a
co

lu
m

n
m

ay
co

nt
ai

n
N

U
L
L

va
lu

es
or

va
lu

es
m

at
ch

in
g

th
e

va
lu

es
of

a
C

ol
u
m

n
in

th
e

re
fe

re
nc

ed
T
ab

le
.

E
ac

h
F
or

ei
gn

K
ey

co
ns

tr
ai

nt
is

as
so

ci
at

ed
im

pl
ic

it
ly

or
ex

pl
ic

it
ly

w
it

h
an

ac
ti

on
,
w

hi
ch

sh
ou

ld
re

so
lv

e
an

y
re

fe
re

nt
ia

l
in

te
gr

it
y

pr
ob

le
m

s.
E

xp
lic

it
ac

ti
on

s
ar

e:
O

N
[D

E
L
E

T
E
|U

P
D

A
T

E
]

[N
O

A
C

T
IO

N
|C

A
SC

A
D

E
|S

E
T

N
U

L
L
|

SE
T

D
E

FA
U

LT
|R

E
ST

R
IC

T
].

-
A

C
H

E
C

K
co

ns
tr

ai
nt

ca
n

be
as

so
ci

at
ed

to
a

C
ol

u
m

n
.

It
is

us
ed

to
lim

it
th

e
ra

ng
e

of
po

ss
ib

le
va

lu
es

fo
r

th
e

C
ol

u
m

n
th

ro
ug

h
a

bo
ol

ea
n

pr
ed

ic
at

e.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

A
ll

A
tt

ri
b
u
te

s
of

a
�

T
ab

le
�

C
la

ss
ar

e
C

ol
u
m

n
s

of
th

e
T
ab

le
.

T
he

C
ol

u
m

n
s

ar
e

pa
rt

of
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e

as
st

er
eo

ty
pe

d
P

ro
p
er

ti
es
�

C
ol

um
n�

.
A
�

C
ol

um
n�

A
tt

ri
b
u
te

de
fin

es
th

e
da

ta
ty

pe
to

w
hi

ch
it

be
lo

ng
s,

if
it

is
a

de
ri

ve
d

A
tt

ri
b
u
te

,i
f
it

s
va

lu
e

ca
n

be
N

U
L
L

an
d

if
th

e
va

lu
es

of
th

is
C

ol
u
m

n
ha

ve
to

be
un

iq
ue

.
In

R
at

io
na

l’s
D

at
a

M
od

el
�

C
ol

um
n�

at
tr

ib
ut

e
ca

n
be

a
pr

im
ar

y
ke

y
�

P
K
�

or
a

fo
re

ig
n

ke
y
�

F
K
�

at
tr

ib
ut

e,
or

al
so

at
th

e
sa

m
e

ti
m

e
a

pr
im

ar
y

an
d

a
fo

re
ig

n
ke

y
�

P
F
K
�

.
A
�

C
ol

um
n�

ca
n

ha
ve

a
C

he
ck

co
ns

tr
ai

nt
as

so
ci

at
ed

to
it

in
or

de
r

to
lim

it
th

e
ra

ng
e

of
po

ss
ib

le
va

lu
es

.

S
te

re
ot

y
p
es

:
T

he
st

er
eo

ty
pe
�

C
ol

um
n�

do
es

no
t

ha
ve

to
be

sh
ow

n
in

th
e

di
ag

ra
m

si
nc

e
al

la
tt

ri
bu

te
s

of
th

e
�

T
ab

le
�

cl
as

s
ar

e
of

th
is

st
er

eo
ty

pe
.

�
P

K
�

,
�

F
K
�

an
d
�

P
F
K
�

ar
e

sp
ec

ia
liz

at
io

ns
of

th
e
�

C
ol

um
n�

P
ro

p
er

ty
an

d
re

pr
es

en
ts

a
co

lu
m

n,
w

hi
ch

is
de

fin
ed

as
a

P
ri

m
ar

y
K

ey
or

a
F
or

ei
gn

K
ey

,
re

sp
ec

ti
ve

ly
.

C
on

st
ra

in
ts

:
-

T
he

da
ta

ty
pe

s
w

hi
ch

ca
n

be
us

ed
fo

r
co

lu
m

ns
ar

e
on

ly
da

ta
ty

pe
s

de
ri

ve
d

fr
om

�
SQ

L
D

at
aT

yp
e�

or
�

O
b
je

ct
-

T
yp

e�
.

-
A
�

P
K
�

or
a
�

P
F
K
�

ca
nn

ot
be

nu
lla

bl
e

an
d

m
us

t
be

un
iq

ue
.

212 Appendix B. PSM Metamodel
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

C
ol

u
m

n
N

ot
at

io
n
:

<
p
ro

p
e
rt

y
>

::
=

[<
v
is

ib
il
it
y
>

]
[‘
/
’]

<
n
a
m

e
>

[‘
:’

<
p
ro

p
-t
y
p
e
>

]
[‘
[’

<
m

u
lt
ip

li
c
it
y
>

‘]
’]

[‘
=

’
<

d
e
fa

u
lt

>
]
[‘
{’

<
p
ro

p
-m

o
d
ifi

e
r>

[‘
,’

<
p
ro

p
-m

o
d
ifi

e
r
>

]*
‘}

’]
w

h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f

th
e

P
r
o
p
e
r
t
y
.

(V
is

ib
il
it
y
K

in
d

is
a
n

E
n
u
m

e
r
a
t
io

n
w

it
h

th
e

fo
ll
o
w

in
g

v
a
lu

e
s:

p
u
b
li
c
,

p
ri

v
a
te

,
p
ro

te
c
te

d
,

p
a
c
k
a
g
e
)

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

C
o
lu

m
n
�

.
-
‘/

’
si

g
n
ifi

e
s

th
a
t

th
e

p
ro

p
e
rt

y
is

d
e
ri

v
e
d
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

C
o
lu

m
n
�

.
-

<
n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
p
ro

p
e
rt

y
.

-
<

p
ro

p
-t
y
p
e
>

is
th

e
n
a
m

e
o
f
th

e
D

a
ta

T
y
p
e

th
a
t

is
th

e
ty

p
e

o
f
th

e
p
ro

p
e
rt

y
.

-
<

m
u
lt
ip

li
c
it
y
>

is
th

e
m

u
lt

ip
li
c
it
y

o
f
th

e
P

r
o
p
e
r
t
y
.

T
h
is

te
rm

is
n
o
t

u
se

d
fo

r
�

C
o
lu

m
n
�

A
t
t
r
ib

u
t
e
s
.

In
o
rd

e
r

to
d
e
fi
n
e

se
ts

o
r

a
rr

a
y
s

o
f
�

C
o
lu

m
n
�

A
t
t
r
ib

u
t
e
s

th
e

c
o
rr

e
sp

o
n
d
in

g
c
o
m

p
le

x
S
Q

L
d
a
ta

ty
p
e
s

sh
o
u
ld

b
e

u
se

d
(s

e
e

T
a
b
le

S
Q

L
D

a
ta

T
y
p
e
s

b
e
lo

w
).

-
<

d
e
fa

u
lt

>
is

a
n

e
x
p
re

ss
io

n
th

a
t

e
v
a
lu

a
te

s
to

th
e

d
e
fa

u
lt

v
a
lu

e
o
r

v
a
lu

e
s

o
f
th

e
p
ro

p
e
rt

y
.

-
<

p
ro

p
-m

o
d
ifi

e
r>

in
d
ic

a
te

s
a

m
o
d
ifi

e
r

th
a
t

a
p
p
li
e
s

to
th

e
p
ro

p
e
rt

y
.

<
p
ro

p
-m

o
d
ifi

e
r
>

::
=

‘r
ea

d
O

n
ly

’
|

‘u
n
io

n
’
|

‘s
u
b
se

ts
’

<
p
ro

p
e
rt

y
-n

a
m

e
>
|

‘r
ed

e
fi
n
e
s’

<
p
ro

p
e
rt

y
-n

a
m

e
>
|

‘o
rd

e
re

d
’
|

‘u
n
iq

u
e
’
|

‘n
o
n
u
n
iq

u
e
’
|

‘n
o
tn

u
ll
’
|

<
p
ro

p
-

co
n
st

ra
in

t>
w

h
e
re

:
*

re
a
d
O

n
ly

m
e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
re

a
d

o
n
ly

.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

C
o
lu

m
n
�

.
*

u
n
io

n
m

e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
a

d
e
ri

v
e
d

u
n
io

n
o
f
it

s
su

b
se

ts
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

C
o
lu

m
n
�

.
*

su
b
se

ts
<

p
ro

p
e
rt

y
-n

a
m

e
>

m
e
a
n
s

th
a
t
th

e
P

r
o
p
e
r
t
y

is
a

p
ro

p
e
r
su

b
se

t
o
f
th

e
P

r
o
p
e
r
t
y

id
e
n
ti

fi
e
d

b
y

<
p
ro

p
e
r
ty

n
a
m

e
>

.
D

o
e
s

n
o
t
a
p
p
ly

fo
r
�

C
o
lu

m
n
�

.
*

re
d
e
fi
n
e
s

<
p
ro

p
e
rt

y
-n

a
m

e
>

m
e
a
n
s

th
a
t

th
e
P

r
o
p
e
r
t
y

re
d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

P
r
o
p
e
r
t
y

id
e
n
ti

fi
e
d

b
y

<
p
ro

p
e
r
ty

n
a
m

e
>

.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

C
o
lu

m
n
�

.
*

o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

P
r
o
p
e
r
t
y

is
o
rd

e
re

d
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

C
o
lu

m
n
�

.
*

‘u
n
iq

u
e
’

th
e

p
ro

p
e
rt

y
c
a
n
n
o
t

h
a
v
e

d
u
p
li
c
a
te

v
a
lu

e
s

in
th

e
ta

b
le

.
T

h
e

m
e
a
n
in

g
o
f
th

is
m

o
d
ifi

e
r

is
o
v
e
rr

id
e
n

fo
r
�

C
o
lu

m
n
�

A
tt

ri
b
u
te

s.
It

d
o
e
s

n
o
t

re
fe

r
to

th
e

u
n
iq

u
e

m
o
d
ifi

e
r

fo
r

m
u
lt

ip
le

p
ro

p
e
rt

ie
s.

*
‘n

o
tn

u
ll
’

th
e

p
ro

p
e
rt

y
c
a
n
n
o
t

h
a
v
e

N
U

L
L

v
a
lu

e
s

in
th

e
ta

b
le

.
If

th
is

m
o
d
ifi

e
r

is
n
o
t

u
se

d
,
th

e
p
ro

p
e
rt

y
c
a
n

h
a
v
e

n
u
ll

v
a
lu

e
s.

T
h
is

m
o
d
ifi

e
r

is
in

tr
o
d
u
c
e
d

e
sp

e
c
ia

ll
y

fo
r
�

C
o
lu

m
n
�

A
tt

ri
b
u
te

s.
*

<
p
ro

p
-c

o
n
st

ra
in

t>
is

a
n

e
x
p
re

ss
io

n
th

a
t

sp
e
c
ifi

e
s

a
c
h
e
c
k

c
o
n
st

ra
in

t
th

a
t

a
p
p
li
e
s

to
th

e
p
ro

p
e
rt

y
.

�
F
K
�

a
n
d
�

P
F
K
�

h
a
v
e

a
d
d
it

io
n
a
ll
y

th
e

fo
ll
o
w

in
g

p
ro

p
e
rt

y
m

o
d
ifi

e
r:

re
fe

re
n
ce

s
<

co
lu

m
n

n
a
m

e
>

<
ta

b
le

n
a
m

e
>

d
e
te

rm
in

e
s

th
e

n
a
m

e
o
f
th

e
re

fe
re

n
c
e
d

ta
b
le

a
n
d

th
e

c
o
rr

e
sp

o
n
d
in

g
c
o
lu

m
n
.

Appendix B. PSM Metamodel 213
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

T
ab

le
C

on
st

ra
in

t
D

es
cr

ip
ti
on

:
T

he
fo

llo
w

in
g

C
on

st
ra

in
ts

ca
n

be
de

fin
ed

fo
r

a
T
ab

le
:

-
U

n
iq

u
e

(A
1.

..A
n)

co
ns

tr
ai

nt
:

as
su

re
s

th
at

no
tw

o
ro

w
s

of
th

e
ta

bl
e

ca
n

co
nt

ai
n

th
e

sa
m

e
va

lu
es

fo
r

th
e

gi
ve

n
A

tt
ri

b
u
te

s:
A

1.
..A

n.
-
P

ri
m

ar
y

K
ey

(A
1.

..A
n)

co
ns

tr
ai

nt
:

de
fin

es
th

e
co

m
bi

na
ti

on
of

C
ol

u
m

n
s

as
a

P
ri

m
ar

y
K

ey
fo

r
th

e
T
ab

le
.

T
he

co
m

bi
na

ti
on

of
th

es
e

va
lu

es
m

us
t

be
un

iq
ue

.
-
F
or

ei
gn

K
ey

(A
1.

..A
n)

R
E

F
E

R
E

N
C

E
S

T
ab

le
(B

1.
..B

n)
co

ns
tr

ai
nt

:
de

fin
es

th
e

co
m

bi
na

ti
on

of
C

ol
u
m

n
s

as
a

F
or

ei
gn

K
ey

fo
r

th
e

T
ab

le
.

In
ad

di
ti

on
th

e
F
or

ei
gn

K
ey

C
on

st
ra

in
t

m
ay

co
nt

ai
n

an
ex

pl
ic

it
M

A
T

C
H

co
nd

it
io

n:
M

A
T

C
H

[S
IM

P
L
E
|P

A
R
T

IA
L
|F

U
L
L
]a

nd
a

re
fe

re
nt

ia
li

nt
eg

ri
ty

pr
es

er
vi

ng
ac

ti
on

(s
ee

co
ns

tr
ai

nt
s

of
C

ol
u
m

n
s)

-
C

H
E
C

K
<

pr
ed

ic
at

e>
co

ns
tr

ai
nt

:
se

e
C

ol
u
m

n
.

T
he

pr
ed

ic
at

e
m

ay
co

nt
ai

n
al

so
su

bq
ue

ri
es

.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

Se
ve

ra
lt

yp
es

of
T
ab

le
C

on
st

ra
in

ts
ar

e
de

fin
ed

in
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

A
ll

of
th

em
ar

e
im

pl
em

en
te

d
as

st
er

eo
ty

pe
d

O
p
er

at
io

n
s

of
�

T
ab

le
�

.
A

m
bl

er
su

gg
es

t
to

m
od

el
co

ns
tr

ai
nt

s
w

it
h

U
M

L
’s

O
b
je

ct
C

on
st

ra
in

t
L
an

gu
ag

e
(O

C
L
).

T
he

ad
va

nt
ag

e
of

hi
s

ap
-

pr
oa

ch
is

th
at

w
it

h
O

C
L

co
ns

tr
ai

nt
s

ca
n

be
as

si
gn

ed
al

so
to

re
la

ti
on

sh
ip

s
w

he
re

as
op

er
at

io
ns

ca
nn

ot
be

as
si

gn
ed

to
re

la
ti

on
sh

ip
s.

H
ow

ev
er

,
th

is
is

no
t

ne
ed

ed
in

th
e

lo
gi

ca
l
de

si
gn

.

S
te

re
ot

y
p
es

:
T

he
U

n
iq

u
e

C
on

st
ra

in
t

us
es

th
e

st
er

eo
ty

pe
d

O
p
er

at
io

n
�

U
ni

qu
e�

in
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

T
he

P
ri

m
ar

y
K

ey
C

on
st

ra
in

t
us

es
th

e
st

er
eo

ty
pe

d
O

p
er

at
io

n
�

P
K
�

in
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

T
he

F
or

ei
gn

K
ey

C
on

st
ra

in
t

us
es

th
e

st
er

eo
ty

pe
d

O
p
er

at
io

n
�

F
K
�

in
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

T
he

C
h
ec

k
C

on
st

ra
in

t
us

es
th

e
st

er
eo

ty
pe

d
O

p
er

at
io

n
�

C
he

ck
�

in
th

e
U

M
L

D
at

a
M

od
el

in
g

P
ro

fil
e.

C
on

st
ra

in
t:

-
O

nl
y

on
e

P
ri

m
ar

y
K

ey
C

on
st

ra
in

t
is

al
lo

w
ed

pe
r
�

T
ab

le
�

.

214 Appendix B. PSM Metamodel
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

T
ab

le
C

on
st

ra
in

t
N

ot
at

io
n
:

[<
v
is

ib
il
it
y
>

]
<

n
a
m

e
>

‘(
’
[<

p
a
ra

m
e
te

r
-l
is

t>
]
‘)

’
[‘
:’

[<
re

tu
rn

-t
y
p
e
>

]
[‘
{’

<
o
p
e
r-

p
ro

p
e
rt

y
>

[‘
,’

<
o
p
e
r-

p
ro

p
e
rt

y
>

]*
‘}

’]
]

w
h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f
th

e
O

p
e
r
a
t
io

n
.

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’.
It

d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

-
<

n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
O

p
e
r
a
t
io

n
.

-
<

re
tu

r
n
-t
y
p
e
>

is
th

e
ty

p
e

o
f
th

e
re

tu
rn

re
su

lt
p
a
ra

m
e
te

r
if

th
e

O
p
e
r
a
t
io

n
h
a
s

o
n
e

d
e
fi
n
e
d
.

It
d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

-
<

o
p
e
r-

p
ro

p
e
rt

y
>

in
d
ic

a
te

s
th

e
p
ro

p
e
rt

ie
s
o
f
th

e
O

p
e
r
a
t
io

n
.

<
o
p
e
r-

p
ro

p
e
rt

y
>

::
=

‘r
ed

e
fi
n
e
s’

<
o
p
e
r-

n
a
m

e
>
|
‘q

u
e
r
y
’
|
‘o

rd
e
re

d
’
|
‘u

n
iq

u
e
’
|

<
o
p
e
r
-c

o
n
st

ra
in

t>
w

h
e
re

:
*

re
d
e
fi
n
e
s

<
o
p
e
r-

n
a
m

e
>

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
re

d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

O
p
e
r
a
t
io

n
id

e
n
ti

fi
e
d

b
y

<
o
p
e
r
-n

a
m

e
>

.
It

d
o
e
s

n
o
t

a
p
p
ly

fo
r

T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

*
q
u
e
ry

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
d
o
e
s

n
o
t

c
h
a
n
g
e

th
e

st
a
te

o
f
th

e
sy

st
e
m

.
It

d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

*
o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

v
a
lu

e
s

o
f
th

e
re

tu
rn

p
a
ra

m
e
te

r
a
re

o
rd

e
re

d
.

It
d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

*
u
n
iq

u
e

m
e
a
n
s

th
a
t

th
e

v
a
lu

e
s

re
tu

rn
e
d

b
y

th
e

p
a
ra

m
e
te

r
h
a
v
e

n
o

d
u
p
li
c
a
te

s.
It

d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

*
<

o
p
e
r-

co
n
st

ra
in

t>
is

a
c
o
n
st

ra
in

t
th

a
t

a
p
p
li
e
s

to
th

e
O

p
e
r
a
t
io

n
.

It
d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

*
<

p
a
ra

m
e
te

r
-l
is

t>
is

a
li
st

o
f
p
a
ra

m
e
te

rs
o
f
th

e
O

p
e
r
a
t
io

n
in

th
e

fo
ll
o
w

in
g

fo
rm

a
t:

<
p
a
ra

m
e
te

r
-l
is

t>
::
=

<
p
a
ra

m
e
te

r
>

[‘
,’

<
p
a
ra

m
e
te

r
>

]*
*

<
p
a
ra

m
e
te

r
>

::
=

[<
d
ir
ec

ti
o
n
>

]
<

p
a
ra

m
e
te

r
-n

a
m

e
>

‘:
’

<
ty

p
e
-e

x
p
re

ss
io

n
>

[‘
[’

<
m

u
lt
ip

li
c
it
y
>

‘]
’]

[‘
=

’
<

d
e
fa

u
lt

>
]

[‘
{’

<
p
a
r
m

-p
ro

p
e
r
ty

>
[‘
,’

<
p
a
r
m

-
p
ro

p
e
rt

y
>

]*
‘}

’]
T

h
e

p
a
ra

m
e
te

rs
o
f
a
�

U
n
iq

u
e
�

a
n
d
�

P
K
�

O
p
e
r
a
t
io

n
s

a
re

th
e

n
a
m

e
s

a
n
d

d
a
ta

ty
p
e
s

o
f
th

e
a
tt

ri
b
u
te

s
o
f
th

e
ta

b
le

o
n

w
h
ic

h
th

is
c
o
n
st

ra
in

t
is

a
p
p
li
e
d
.

T
h
e

n
a
m

e
s

o
f
th

e
p
a
ra

m
e
te

rs
o
f
a
�

F
K
�

a
re

a
c
o
m

p
o
si

ti
o
n

o
f
th

e
re

fe
re

n
c
e
d

ta
b
le

n
a
m

e
a
n
d

th
e

n
a
m

e
o
f
th

e
re

fe
re

n
c
e
d

a
tt

ri
b
u
te

in
th

is
ta

b
le

.
T

h
e
�

C
h
e
c
k
�

o
p
e
ra

ti
o
n

d
o
e
s

n
o
t

h
a
v
e

a
n
y

p
a
ra

m
e
te

rs
.

T
h
e

p
re

d
ic

a
te

,
w

h
ic

h
h
a
s

to
b
e

e
v
a
lu

a
te

d
is

re
p
re

se
n
te

d
b
y

a
n

O
C

L
e
x
p
re

ss
io

n
.

w
h
e
re

: -
<

d
ir
ec

ti
o
n
>

::
=

‘i
n
’
|
‘o

u
t’
|
‘i
n
o
u
t’

(d
e
fa

u
lt

s
to

‘i
n
’

if
o
m

it
te

d
).

It
d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

-
<

p
a
ra

m
e
te

r
-n

a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
p
a
ra

m
e
te

r.
-

<
ty

p
e
-e

x
p
re

ss
io

n
>

is
a
n

e
x
p
re

ss
io

n
th

a
t

sp
e
c
ifi

e
s

th
e

ty
p
e

o
f
th

e
p
a
ra

m
e
te

r.
-

<
m

u
lt
ip

li
c
it
y
>

is
th

e
m

u
lt

ip
li
c
it
y

o
f
th

e
p
a
ra

m
e
te

r.
It

d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

-
<

d
e
fa

u
lt

>
is

a
n

e
x
p
re

ss
io

n
th

a
t

d
e
fi
n
e
s

th
e

v
a
lu

e
sp

e
c
ifi

c
a
ti

o
n

fo
r

th
e

d
e
fa

u
lt

v
a
lu

e
o
f
th

e
p
a
ra

m
e
te

r.
It

d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

-
<

p
a
rm

-p
ro

p
e
r
ty

>
in

d
ic

a
te

s
a
d
d
it

io
n
a
l
p
ro

p
e
rt

y
v
a
lu

e
s

th
a
t

a
p
p
ly

to
th

e
p
a
ra

m
e
te

r.
It

d
o
e
s

n
o
t

a
p
p
ly

fo
r
T
a
b
le

C
o
n
s
t
r
a
in

t
s
.

Appendix B. PSM Metamodel 215
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

R
el

at
io

n
sh

ip
D

es
cr

ip
ti
on

:
A

de
pe

nd
en

cy
of

an
y

ki
nd

be
tw

ee
n

T
ab

le
s

in
a

da
ta

m
od

el
is

ca
lle

d
a

R
el

at
io

n
sh

ip
.

A
R

el
at

io
n
sh

ip
in

th
e

re
la

ti
on

al
m

od
el

is
re

pr
es

en
te

d
as

a
se

t
of

pr
im

ar
y

an
d

fo
re

ig
n

ke
y

A
tt

ri
b
u
te

s
an

d/
or

T
ab

le
C

on
st

ra
in

ts
of

th
e

re
la

te
d

T
ab

le
s.

E
ve

ry
re

la
ti

on
sh

ip
is

be
tw

ee
n

a
pa

re
nt

an
d

a
ch

ild
ta

bl
e,

w
he

re
a

pa
re

nt
ta

bl
e

m
us

t
ha

ve
a

pr
im

ar
y

ke
y

de
fin

ed
.

T
he

ch
ild

ta
bl

e
cr

ea
te

s
a

fo
re

ig
n

ke
y

co
lu

m
n

an
d

fo
re

ig
n

ke
y

co
ns

tr
ai

nt
to

ad
dr

es
s

th
e

pa
re

nt
ta

bl
e.

T
hu

s,
ea

ch
R

el
at

io
n
sh

ip
is

an
un

i-
di

re
ct

io
na

l
re

la
ti

on
sh

ip
in

th
e

re
la

ti
on

al
m

od
el

.
A

no
n-

id
en

ti
fy

in
g

R
el

at
io

n
sh

ip
is

a
R

el
at

io
n
sh

ip
be

tw
ee

n
tw

o
in

de
pe

nd
en

t
T
ab

le
s.

T
he

fo
re

ig
n

ke
y

of
th

e
ch

ild
T
ab

le
do

es
no

t
co

nt
ai

n
al

l
of

th
e

pr
im

ar
y

ke
y

co
lu

m
ns

of
th

e
pa

re
nt

T
ab

le
.

A
n

id
en

ti
fy

in
g

R
el

at
io

n
sh

ip
is

a
R

el
at

io
n
sh

ip
be

tw
ee

n
tw

o
de

pe
nd

en
t
T
ab

le
s,

w
he

re
th

e
ch

ild
T
ab

le
ca

nn
ot

ex
is

t
w

it
ho

ut
th

e
pa

re
nt

T
ab

le
.

A
ll

of
th

e
pr

im
ar

y
ke

ys
of

th
e

pa
re

nt
T
ab

le
be

co
m

e
bo

th
pr

im
ar

y
an

d
fo

re
ig

n
ke

y
C

ol
um

ns
in

th
e

ch
ild

T
ab

le
.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

R
el

at
io

ns
hi

ps
ar

e
re

pr
es

en
te

d
in

th
e

U
M

L
D

at
a

P
ro

fil
e

as
a

co
m

bi
na

ti
on

of
st

er
eo

ty
pe

d
A

ss
o
ci

at
io

n
s

an
d

fo
re

ig
n

an
d

pr
im

ar
y

ke
y

A
tt

ri
b
u
te

s
an

d/
or

T
ab

le
C

on
st

ra
in

ts
.

In
th

e
re

la
ti

on
al

m
od

el
as

so
ci

at
io

ns
ar

e
no

t
re

al
iz

ed
as

in
st

an
ce

s
of

as
so

ci
at

io
ns

,
bu

t
ar

e
re

pr
es

en
te

d
by

th
e

P
K

an
d

F
K

co
ns

tr
ai

nt
s

in
th

e
re

la
te

d
ta

bl
es

.
T

he
re

fo
re

,
th

e
A

ss
o
ci

at
io

n
s

in
th

e
U

M
L

D
at

a
P

ro
fil

e
ar

e
us

ed
on

ly
fo

r
be

tt
er

re
ad

ab
ili

ty
of

th
e

m
od

el
.

A
cc

or
di

ng
to

A
m

bl
er

th
e

fo
llo

w
in

g
st

er
eo

ty
pe

s
fo

r
as

so
ci

at
io

ns
ca

n
be

us
ed

fo
r

th
e

ph
ys

ic
al

le
ve

l:
�

Id
en

ti
fy

in
g�

an
d
�

N
on

-I
de

nt
ify

in
g�

.
�

A
gg

re
ga

ti
on
�

an
d
�

C
om

po
si

ti
on
�

an
d
�

U
ni

-d
ir

ec
ti

on
al
�

ar
e

al
so

pr
op

os
ed

by
A

m
bl

er
as

st
er

eo
ty

pe
s

fo
r

th
e

ph
ys

ic
al

m
od

el
re

la
ti

on
sh

ip
s.

Si
nc

e
in

th
e

re
la

ti
on

al
m

od
el

a
re

la
ti

on
sh

ip
is

im
pl

em
en

te
d

al
w

ay
s
as

a
un

i-
di

re
ct

io
na

l
re

la
ti

on
sh

ip
th

er
e

is
no

ne
ed

of
th

e
�

U
ni

-d
ir

ec
ti

on
al
�

st
er

eo
ty

pe
d

A
ss

o
ci

at
io

n
.

�
Su

bt
yp

e�
is

a
fu

rt
he

r
st

er
eo

ty
pe

fr
om

A
m

bl
er

w
hi

ch
is

ho
w

ev
er

m
or

e
su

it
ab

le
fo

r
th

e
co

nc
ep

tu
al

m
od

el
.

In
th

e
ph

ys
ic

al
m

od
el

w
e

ha
ve

to
di

st
in

gu
is

h
be

tw
ee

n
su

bt
yp

es
an

d
su

bt
ab

le
s.

A
ll

of
th

es
e

st
er

eo
ty

pe
d

A
ss

o
ci

at
io

n
s

ca
n

be
us

ed
.

H
ow

ev
er

,
th

ey
do

no
t

ca
rr

y
an

y
in

fo
rm

at
io

n
fo

r
th

e
im

pl
e-

m
en

ta
ti

on
.

T
he

y
ar

e
us

ed
on

ly
fo

r
be

tt
er

re
ad

ab
ili

ty
of

th
e

m
od

el
.

T
he

im
pl

em
en

ta
ti

on
sp

ec
ifi

cs
of

ea
ch

of
th

es
e

ki
nd

s
of

re
la

ti
on

s
ar

e
re

pr
es

en
te

d
as

fo
re

ig
n

ke
y

T
ab

le
C

on
st

ra
in

ts
.

216 Appendix B. PSM Metamodel
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

R
el

at
io

n
sh

ip
S
te

re
ot

y
p
es

:
�

Id
en

ti
fy

in
g�

,
�

N
on

-I
de

nt
ify

in
g�

A
ss

o
ci

at
io

n
s

�
A

gg
re

ga
ti

on
�

an
d
�

C
om

po
si

ti
on
�

A
ss

o
ci

at
io

n
s

C
on

st
ra

in
t:

no
ne

N
ot

at
io

n
:

Appendix B. PSM Metamodel 217
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
to

re
d

P
ro

ce
d
u
re

D
es

cr
ip

ti
on

:
S
to

re
d

P
ro

ce
d
u
re

s
ar

e
us

er
-d

efi
ne

d
ro

ut
in

es
,

w
hi

ch
ca

n
be

in
vo

ke
d

to
pe

rf
or

m
so

m
e

pr
ed

efi
ne

d
se

qu
en

ce
of

op
er

at
io

ns
in

th
e

da
ta

ba
se

.
A

S
to

re
d

P
ro

ce
d
u
re

co
ns

is
ts

of
a

si
gn

at
ur

e
an

d
a

bo
dy

.
T

he
si

gn
at

ur
e

de
te

rm
in

es
th

e
pa

ra
m

et
er

s
of

a
S
to

re
d

P
ro

ce
d
u
re

.
A

S
to

re
d

P
ro

ce
d
u
re

do
es

no
t
ha

ve
a

re
tu

rn
va

lu
e.

T
he

pa
ra

m
et

er
s

of
a

S
to

re
d

P
ro

ce
d
u
re

ca
n

be
O

U
T

,I
N

or
IN

O
U

T
.T

he
bo

dy
co

nt
ai

ns
th

e
im

pl
em

en
ta

ti
on

s
of

a
S
to

re
d

P
ro

ce
d
u
re

.
T

he
im

pl
em

en
ta

ti
on

ca
n

be
gi

ve
n

in
SQ

L
or

in
an

ot
he

r
pr

og
ra

m
m

in
g

la
ng

ua
ge

,c
al

le
d

a
ho

st
la

ng
ua

ge
.

T
he

re
fo

re
,

w
e

ca
n

di
st

in
gu

is
h

be
tw

ee
n

SQ
L

an
d

ex
te

rn
al

S
to

re
d

P
ro

ce
d
u
re

s.
T

he
de

fin
it

io
n

of
a

S
to

re
d

P
ro

ce
d
u
re

re
qu

ir
es

th
e

in
pu

t
of

fu
rt

he
r

ch
ar

ac
te

ri
st

ic
s,

su
ch

as
:

-
L
A

N
G

U
A

G
E

(A
D

A
|C

|C
O

B
O

L
|S

Q
L
|J

A
V
A
|P

A
SC

A
L
|F

O
R
T

R
A

N
|M

U
M

P
S)

-
PA

R
A

M
E

T
E

R
ST

Y
L
E

(S
Q

L
|G

E
N

E
R

A
L
|J

A
V
A

)
-

SP
E

C
IF

IC
(N

am
e

of
th

e
R

ou
ti

ne
)

-
N

O
T

D
E

T
E

R
M

IN
IS

T
IC

|D
E

T
E

R
M

IN
IS

T
IC

et
c.

se
e

St
an

da
rd

fo
r

m
or

e
de

ta
ile

d
de

sc
ri

pt
io

n.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

R
at

io
na

l’s
P

ro
fil

e
do

es
no

t
m

od
el

st
or

ed
pr

oc
ed

ur
es

.
Sc

ot
t
A

m
bl

er
su

gg
es

ts
th

e
re

pr
es

en
ta

ti
on

of
St

or
ed

P
ro

ce
du

re
s

as
op

er
at

io
ns

of
a

st
er

eo
ty

pe
d

cl
as

s
�

St
or

ed
P

ro
ce

du
re

s�
.

T
he

si
gn

at
ur

es
of

al
ls

to
re

d
pr

oc
ed

ur
es

of
a

da
ta

ba
se

(o
r

a
sc

he
m

a)
ar

e
re

pr
es

en
te

d
in

th
is

cl
as

s.
A

no
th

er
va

ri
an

t
al

so
pr

op
os

ed
by

A
m

bl
er

is
to

us
e

th
e

st
er

eo
ty

pe
�

St
or

ed
P

ro
ce

du
re
�

fo
r

th
e

de
fin

it
io

n
of

ea
ch

st
or

ed
pr

oc
ed

ur
e,

de
fin

ed
in

a
cl

as
s

re
pr

es
en

ti
ng

th
e

da
ta

ba
se

.

S
te

re
ot

y
p
es

:
�

St
or

ed
P

ro
ce

du
re

s�
C

la
ss

�
St

or
ed

P
ro

ce
du

re
�

O
p
er

at
io

n

C
on

st
ra

in
ts

:
-

T
he
�

St
or

ed
P

ro
ce

du
re

s�
C

la
ss

do
es

no
t

ha
ve

an
y

at
tr

ib
ut

es
.

-
A

ll
op

er
at

io
ns

of
th

e
�

St
or

ed
P

ro
ce

du
re

s�
C

la
ss

ar
e
�

St
or

ed
P

ro
ce

du
re
�

op
er

at
io

ns
.

-
�

St
or

ed
P

ro
ce

du
re

s�
ca

nn
ot

be
re

de
fin

ed
.

218 Appendix B. PSM Metamodel
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
to

re
d

P
ro

ce
d
u
re

N
ot

at
io

n
:

�
St

or
ed

P
ro

ce
du

re
s�

C
la

ss
:

he
re

co
m

es
an

im
ag

e
�

St
or

ed
P

ro
ce

du
re
�

O
p
er

at
io

n
s

ha
ve

th
e

fo
llo

w
in

g
no

ta
ti

on
:

[<
v
is

ib
il
it
y
>

]
<

n
a
m

e
>

‘(
’
[<

p
a
ra

m
e
te

r
-l
is

t>
]
‘)

’
[‘
:’

[<
re

tu
rn

-t
y
p
e
>

]
[‘
{’

<
o
p
e
r-

p
ro

p
e
rt

y
>

[‘
,’

<
o
p
e
r-

p
ro

p
e
rt

y
>

]*
‘}

’]
]

w
h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f
th

e
O

p
e
r
a
t
io

n
.

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’.
F
o
r
�

S
to

re
d
P
ro

c
e
d
u
re

s�
it

is
a
lw

a
y
s

p
u
b
li
c
.

-
<

n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
�

S
to

re
d
P
ro

c
e
d
u
re
�

O
p
e
r
a
t
io

n
.

-
<

re
tu

r
n
-t
y
p
e
>

is
th

e
ty

p
e

o
f
th

e
re

tu
rn

re
su

lt
p
a
ra

m
e
te

r
if

th
e

O
p
e
r
a
t
io

n
h
a
s

o
n
e

d
e
fi
n
e
d
.

F
o
r
�

S
to

re
d
P
ro

c
e
d
u
re

s�
it

is
a
lw

a
y
s

v
o
id

.
-

<
o
p
e
r-

p
ro

p
e
rt

y
>

in
d
ic

a
te

s
th

e
p
ro

p
e
rt

ie
s
o
f
th

e
O

p
e
r
a
t
io

n
.

<
o
p
e
r-

p
ro

p
e
rt

y
>

::
=

‘r
ed

e
fi
n
e
s’

<
o
p
e
r-

n
a
m

e
>
|
‘q

u
e
r
y
’
|
‘o

rd
e
re

d
’
|
‘u

n
iq

u
e
’
|

<
o
p
e
r
-c

o
n
st

ra
in

t>
|

la
n
g
u
a
g
e
’

<
la

n
g
u
a
g
e

n
a
m

e
>
|

p
a
ra

m
e
te

r
st

y
le

’
(S

Q
L
|

G
E
N

E
R

A
L
|

J
A
V
A

)
|

sp
ec

ifi
c
’

<
ro

u
ti
n
e

n
a
m

e
>
|

(d
e
te

r
m

in
is

ti
c
’
|

n
o
t

d
e
te

r
m

in
is

ti
c
’)
|

(n
o

S
Q

L
’
|

co
n
ta

in
s

S
Q

L
’
|
re

a
d
s

S
Q

L
d
a
ta

’
|
m

o
d
ifi

e
s

S
Q

L
’)
|
(r

e
tu

rn
s

n
u
ll

o
n

n
u
ll

in
p
u
t’
|
‘c

a
ll
ed

o
n

n
u
ll

in
p
u
t’
)
|
tr
a
n
sf

o
r
m

g
ro

u
p
’
(<

g
ro

u
p

n
a
m

e
>
|

<
g
ro

u
p

sp
ec

ifi
ca

ti
o
n

li
st

>
)
|
st

a
ti
c

d
is

p
a
tc

h
’
|
e
x
te

rn
a
l

<
e
x
te

rn
a
l
p
ro

ce
d
u
re

n
a
m

e
>

w
h
e
re

:
*

re
d
e
fi
n
e
s

<
o
p
e
r-

n
a
m

e
>

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
re

d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

O
p
e
r
a
t
io

n
id

e
n
ti

fi
e
d

b
y

<
o
p
e
r-

n
a
m

e
>

.
It

is
n
o
t

u
se

d
fo

r
�

S
to

re
d
P
ro

c
e
d
u
-

re
s�

.
*

q
u
e
ry

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
d
o
e
s

n
o
t

c
h
a
n
g
e

th
e

st
a
te

o
f
th

e
sy

st
e
m

.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

S
to

re
d
P
ro

c
e
d
u
re

s�
.

*
o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

v
a
lu

e
s

o
f
th

e
re

tu
rn

p
a
ra

m
e
te

r
a
re

o
rd

e
re

d
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

S
to

re
d
P
ro

c
e
d
u
re

s�
.

*
u
n
iq

u
e

m
e
a
n
s

th
a
t

th
e

v
a
lu

e
s

re
tu

rn
e
d

b
y

th
e

p
a
ra

m
e
te

r
h
a
v
e

n
o

d
u
p
li
c
a
te

s.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

S
to

re
d
P
ro

c
e
d
u
re

s�
.

*
<

o
p
e
r-

co
n
st

ra
in

t>
is

a
c
o
n
st

ra
in

t
th

a
t

a
p
p
li
e
s

to
th

e
O

p
e
r
a
t
io

n
.

It
is

n
o
t

u
se

d
fo

r
�

S
to

re
d
P
ro

c
e
d
u
re

s�
.

*
la

n
g
u
a
g
e

<
la

n
g
u
a
g
e

n
a
m

e
>

*
p
a
ra

m
e
te

r
st

y
le

(S
Q

L
|
G

E
N

E
R

A
L
|
J
A
V
A

)
*

sp
e
c
ifi

c
<

ro
u
ti

n
e

n
a
m

e
>

*
d
e
te

rm
in

is
ti

c
|
n
o
t

d
e
te

rm
in

is
ti

c
*

n
o

S
Q

L
|
c
o
n
ta

in
s

S
Q

L
|
re

a
d
s

S
Q

L
d
a
ta
|
m

o
d
ifi

e
s

S
Q

L
*

re
tu

rn
s

n
u
ll

o
n

n
u
ll

in
p
u
t
|
c
a
ll
e
d

o
n

n
u
ll

in
p
u
t

*
tr

a
n
sf

o
rm

g
ro

u
p

(<
g
ro

u
p

n
a
m

e
>
|

<
g
ro

u
p

sp
e
c
ifi

c
a
ti

o
n

li
st

>
)

*
st

a
ti

c
d
is

p
a
tc

h
*

e
x
te

rn
a
l

<
e
x
te

rn
a
l
p
ro

c
e
d
u
re

n
a
m

e
>

*
<

p
a
ra

m
e
te

r
-l
is

t>
is

a
li
st

o
f
p
a
ra

m
e
te

rs
o
f
th

e
O

p
e
r
a
t
io

n
in

th
e

fo
ll
o
w

in
g

fo
rm

a
t:

<
p
a
ra

m
e
te

r
-l
is

t>
::
=

<
p
a
ra

m
e
te

r
>

[‘
,’

<
p
a
ra

m
e
te

r
>

]*
*

<
p
a
ra

m
e
te

r
>

::
=

[<
d
ir
ec

ti
o
n
>

]
<

p
a
ra

m
e
te

r
-n

a
m

e
>

‘:
’

<
ty

p
e
-e

x
p
re

ss
io

n
>

[‘
[’

<
m

u
lt
ip

li
c
it
y
>

‘]
’]

[‘
=

’
<

d
e
fa

u
lt

>
]

[‘
{’

<
p
a
r
m

-p
ro

p
e
r
ty

>
[‘
,’

<
p
a
r
m

-
p
ro

p
e
rt

y
>

]*
‘}

’]

Appendix B. PSM Metamodel 219
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

T
ri

gg
er

s
D

es
cr

ip
ti
on

:
T
ri

gg
er

s
re

pr
es

en
t

a
co

m
bi

na
ti

on
of

so
m

e
ki

nd
of

lis
te

ne
r

fu
nc

ti
on

an
d

a
re

sp
on

se
ac

ti
on

.
T

he
lis

te
ne

r
aw

ai
ts

th
at

a
ce

rt
ai

n
ev

en
t

in
th

e
da

ta
ba

se
ta

ke
s

pl
ac

e
(f

or
ex

am
pl

e,
th

at
a

ta
bl

e
is

m
an

ip
ul

at
ed

).
A

nd
th

e
ac

ti
on

pe
rf

or
m

s
so

m
e

ki
nd

of
da

ta
ba

se
op

er
at

io
ns

be
fo

re
or

af
te

r
th

e
ev

en
t

ha
s

ta
ke

n
pl

ac
e.

A
T
ri

gg
er

co
m

pr
is

es
th

e
fo

llo
w

in
g

bu
ild

in
g

bl
oc

ks
:

-
A

ct
iv

at
io

n
ti

m
e:

B
E

F
O

R
E

,
A

F
T

E
R

;
Sh

ow
s

if
th

e
tr

ig
ge

r
fu

nc
ti

on
ha

s
to

be
ex

ec
ut

ed
be

fo
re

or
af

te
r

th
e

tr
ig

ge
r

ev
en

t
ta

ke
s

pl
ac

e.
-
A

ct
iv

at
io

n
ev

en
t:

A
tr

ig
ge

r
ev

en
t

w
hi

ch
ca

us
es

th
e

tr
ig

ge
r

fu
nc

ti
on

to
be

ex
ec

ut
ed

ca
n

be
an

IN
SE

R
T

,U
P

D
A

T
E

,
D

E
L
E

T
E

on
a

ba
si

c
ta

bl
e.

-
G

ra
nu

la
ri

ty
:

A
tr

ig
ge

r
fu

nc
ti

on
ca

n
be

ac
ti

va
te

d
fo

r
ea

ch
ro

w
in

m
an

ip
ul

at
io

n
SQ

L
st

at
em

en
t

or
fo

r
ea

ch
SQ

L
st

at
em

en
t.

F
O

R
E

A
C

H
R

O
W

,
F
O

R
E

A
C

H
ST

A
T

E
M

E
N

T
-

C
on

di
ti

on
:

A
n

ad
di

ti
on

al
co

nd
it

io
n

fo
r

th
e

ex
ec

ut
io

n
of

a
tr

ig
ge

r
fu

nc
ti

on
ca

n
be

sp
ec

ifi
ed

w
it

h
a

W
H

E
R

E
C

L
A

U
SE

.
-

A
ct

io
n:

T
hi

s
re

pr
es

en
ts

th
e

bo
dy

of
th

e
tr

ig
ge

re
d

fu
nc

ti
on

,
w

hi
ch

ca
n

co
ns

is
t

of
on

e
or

m
or

e
SQ

L
co

m
m

an
ds

.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

R
at

io
na

l’s
P

ro
fil

e
de

al
s
w

it
h

tr
ig

ge
rs

as
w

it
h

T
ab

le
C

on
st

ra
in

ts
.

T
he

y
ar

e
re

pr
es

en
te

d
as

st
er

eo
ty

pe
d

O
p
er

at
io

n
s

of
a
�

T
ab

le
�

.
A

m
bl

er
su

gg
es

ts
al

so
th

e
m

od
el

in
g

of
tr

ig
ge

rs
as

O
p
er

at
io

n
s

w
it

h
th

e
st

er
eo

ty
pe

�
T
ri

gg
er
�

.
T

he
re

st
of

th
e

pa
ra

m
et

er
s

ar
e

re
pr

es
en

te
d

as
m

od
ifi

er
s.

S
te

re
ot

y
p
es

:
�

T
ri

gg
er
�

O
p
er

at
io

n

C
on

st
ra

in
ts

:
no

ne

220 Appendix B. PSM Metamodel
T
ab

le
B

.1
:

R
el

at
io

na
l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

T
ri

gg
er

s
N

ot
at

io
n
:

[<
v
is

ib
il
it
y
>

]
<

n
a
m

e
>

‘(
’
[<

p
a
ra

m
e
te

r
-l
is

t>
]
‘)

’
[‘
:’

[<
re

tu
rn

-t
y
p
e
>

]
[‘
{’

<
o
p
e
r-

p
ro

p
e
rt

y
>

[‘
,’

<
o
p
e
r-

p
ro

p
e
rt

y
>

]*
‘}

’]
]

w
h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f
th

e
O

p
e
r
a
t
io

n
.

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’.
F
o
r
�

T
ri

g
g
e
r�

it
is

a
lw

a
y
s

p
u
b
li
c
.

-
<

n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
�

T
ri

g
g
e
r�

O
p
e
r
a
t
io

n
.

-
<

re
tu

r
n
-t
y
p
e
>

d
o
e
s

n
o
t

a
p
p
ly

fo
r
�

T
ri

g
g
e
r�

.
-

<
o
p
e
r-

p
ro

p
e
rt

y
>

in
d
ic

a
te

s
th

e
p
ro

p
e
rt

ie
s

o
f

th
e
�

T
ri

g
g
e
r�

O
p
e
r
a
t
io

n
.

<
o
p
e
r-

p
ro

p
e
rt

y
>

::
=

‘r
ed

e
fi
n
e
s’

<
o
p
e
r
-n

a
m

e
>
|

‘q
u
e
r
y
’
|

‘o
rd

e
re

d
’
|

‘u
n
iq

u
e
’
|

<
o
p
e
r-

co
n
st

ra
in

t>
|
(b

e
fo

re
’
|
a
ft
e
r
’)
|
(o

n
in

se
rt

’
|
o
n

d
e
le

te
’
|
o
n

u
p
d
a
te

’)
|
(f

o
r

ea
c
h

ro
w
’
|
fo

r
ea

c
h

ta
b
le

’)
|

<
a
c
ti
o
n
>

w
h
e
re

:
*

re
d
e
fi
n
e
s

<
o
p
e
r-

n
a
m

e
>

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
re

d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

O
p
e
r
a
t
io

n
id

e
n
ti

fi
e
d

b
y

<
o
p
e
r-

n
a
m

e
>

.
It

is
n
o
t

u
se

d
fo

r
�

T
ri

g
g
e
rs
�

.
*

q
u
e
ry

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
d
o
e
s

n
o
t

c
h
a
n
g
e

th
e

st
a
te

o
f
th

e
sy

st
e
m

.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

T
ri

g
g
e
rs
�

.
*

o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

v
a
lu

e
s

o
f
th

e
re

tu
rn

p
a
ra

m
e
te

r
a
re

o
rd

e
re

d
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

T
ri

g
g
e
rs
�

.
*

u
n
iq

u
e

m
e
a
n
s

th
a
t

th
e

v
a
lu

e
s

re
tu

rn
e
d

b
y

th
e

p
a
ra

m
e
te

r
h
a
v
e

n
o

d
u
p
li
c
a
te

s.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

T
ri

g
g
e
rs
�

.
*

<
o
p
e
r-

co
n
st

ra
in

t>
is

a
c
o
n
st

ra
in

t
th

a
t

a
p
p
li
e
s

to
th

e
O

p
e
r
a
t
io

n
.

It
c
a
n

b
e

u
se

d
to

fo
rm

u
la

te
a
n

a
d
d
it

io
n
a
l
c
o
n
d
it

io
n

fo
r

th
e

tr
ig

g
e
r.

T
h
e

c
o
n
d
it

io
n

is
re

p
re

se
n
te

d
in

S
Q

L
.

*
b
e
fo

re
|
a
ft

e
r

*
o
n

in
se

rt
|
o
n

d
e
le

te
|
o
n

u
p
d
a
te

*
fo

r
e
a
c
h

ro
w
|
fo

r
e
a
c
h

ta
b
le

*
<

a
c
ti
o
n
>

is
re

p
re

se
n
te

d
in

S
Q

L
.

*
<

p
a
ra

m
e
te

r
-l
is

t>
is

a
li
st

o
f
p
a
ra

m
e
te

rs
o
f
th

e
O

p
e
r
a
t
io

n
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

T
ri

g
g
e
rs
�

.

Appendix B. PSM Metamodel 221
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
tr

u
ct

u
re

d
T

y
p
es

,
T

y
p
ed

T
ab

le
D

es
cr

ip
ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
:

T
he

ba
si

c
co

nc
ep

ts
of

th
e

SQ
L

ob
je

ct
m

od
el

ar
e:

•
st

ru
ct

ur
ed

us
er

-d
efi

ne
d

ty
pe

s:
en

ca
ps

ul
at

e
th

e
el

em
en

ts
of

a
co

m
pl

ex
da

ta
ty

pe
as

w
el

l
as

it
s

se
m

an
ti

cs
in

th
e

fo
rm

of
be

ha
vi

or
(m

et
ho

ds
of

th
e

da
ta

ty
pe

)

•
ty

pe
d

ta
bl

es
:

pr
ov

id
e

a
m

ec
ha

ni
sm

to
st

or
e

va
lu

es
(i

ns
ta

nc
es

)
of

us
er

-d
efi

ne
d

ty
pe

s,
an

d
re

pr
es

en
t

re
la

ti
on

-
sh

ip
s

be
tw

ee
n

da
ta

ty
pe

s
an

d
th

ei
r

in
st

an
ce

s.

•
ro

ut
in

es
:

en
ab

le
th

e
in

te
gr

at
io

n
of

m
et

ho
ds

fo
r

re
pr

es
en

ti
ng

th
e

be
ha

vi
or

of
th

e
da

ta
ty

pe
s.

S
tr

u
ct

u
re

d
T

y
p
es

us
ed

to
de

fin
e

va
lu

e
ty

pe
s

ar
e

re
pr

es
en

te
d

as
sp

ec
ia

liz
at

io
ns

of
th

e
da

ta
T

yp
e

U
M

L
m

et
ac

la
ss

(s
ee

SQ
L

D
at

a
T

yp
es

be
lo

w
).

S
tr

u
ct

u
re

d
T

y
p
es

us
ed

to
de

fin
e

cl
as

se
s

of
ob

je
ct

s
id

en
ti

fie
d

by
th

ei
r

ob
je

ct
ID

s
(O

ID
s)

ar
e

re
pr

es
en

te
d

in
ge

ne
ra

l
as
�

O
b
je

ct
T

yp
e�

st
er

eo
ty

pe
d

U
M

L
cl

as
s.

In
or

de
r

to
di

ffe
re

nt
ia

te
be

tw
ee

n
ab

st
ra

ct
(n

ot
in

st
an

ti
ab

le
)

S
tr

u
ct

u
re

d
T

y
p
es

an
d

in
st

an
ti

ab
le

(c
om

bi
ne

d
w

it
h

a
T

y
p
ed

T
ab

le
)
S
tr

u
ct

u
re

d
T

y
p
es

th
e

sp
ec

ia
liz

at
io

ns
of

�
O

b
je

ct
T

yp
e�

,
�

N
on

In
st

an
ti

ab
le

O
b
je

ct
T

yp
e�

an
d
�

In
st

an
ti

ab
le

O
b
je

ct
T

yp
e�

ar
e

us
ed

,
re

sp
ec

ti
ve

ly
.

A
st

ru
ct

ur
ed

ty
pe

ca
n

be
de

fin
ed

as
fin

al
or

no
t

fin
al

.
T

hi
s

ch
ar

ac
te

ri
st

ic
ca

n
be

re
pr

es
en

te
d

as
a

pr
op

er
ty

of
th

e
�

O
b
je

ct
T

yp
e�

cl
as

s.
A

T
y
p
ed

T
ab

le
,
w

hi
ch

is
de

fin
ed

as
a

ro
ot

ta
bl

e
in

an
in

he
ri

ta
nc

e
hi

er
ar

ch
y

ca
n

ha
ve

al
l
co

ns
tr

ai
nt

s
de

fin
ed

fo
r

a
�

T
ab

le
�

.
Su

bt
ab

le
ar

e
no

t
al

lo
w

ed
to

ha
ve

a
P

ri
m

ar
y

K
ey

C
on

st
ra

in
t.

222 Appendix B. PSM Metamodel
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
tr

u
ct

u
re

d
T

y
p
es

,
T

y
p
ed

T
ab

le
S
te

re
ot

y
p
es

:
�

In
st

an
ti

ab
le

O
b
je

ct
T

yp
e�

:
St

ru
ct

ur
ed

T
yp

e
In

st
an

ti
ab

le
+

T
yp

ed
T
ab

le
�

N
on

In
st

an
ti

ab
le

O
b
je

ct
T

yp
e�

:
St

ru
ct

ur
ed

T
yp

e
N

ot
In

st
an

ti
ab

le

C
on

st
ra

in
ts

:
-

Su
bt

ab
le

ar
e

no
t

al
lo

w
ed

to
ha

ve
a

P
ri

m
ar

y
K

ey
C

on
st

ra
in

t.
-

T
he

op
er

at
io

ns
of

an
�

O
b
je

ct
T

yp
e�

C
la

ss
ca

n
be

on
ly

st
er

eo
ty

pe
d

op
er

at
io

ns
,

co
rr

es
po

nd
in

g
to

th
e

T
ab

le
C

on
st

ra
in

t,
M

et
h
o
d

or
T
ri

gg
er

co
nc

ep
t.

N
ot

at
io

n
:

Appendix B. PSM Metamodel 223
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
tr

u
ct

u
re

d
T

y
p
e

A
tt

ri
b
u
te

s
D

es
cr

ip
ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
:

T
he

A
tt

ri
b
u
te

s
of

a
S
tr

u
ct

u
re

d
T

y
p
e

ar
e

re
pr

es
en

te
d

as
P

ro
p
er

ti
es

of
th

e
co

rr
es

po
nd

in
g

st
er

eo
ty

pe
d

C
la

ss
�

O
b
je

ct
T

yp
e�

.
A

s
da

ta
ty

pe
s,

al
l

SQ
L

sp
ec

ifi
c

st
er

eo
ty

pe
d

da
ta

T
yp

e
C

la
ss

ifi
er

s
ca

n
be

us
ed

(s
ee

da
ta

T
yp

e
be

lo
w

).
A

st
er

eo
ty

pe
d

P
ro

pe
rt

y
�

A
tt

ri
bu

te
�

ca
n

be
us

ed
to

re
pr

es
en

t
th

e
at

tr
ib

ut
es

,w
he

re
by

th
e

ex
pl

ic
it

no
ta

ti
on

in
th

e
gr

ap
hi

ca
l
re

pr
es

en
ta

ti
on

of
th

is
st

er
eo

ty
pe

ca
n

be
om

it
te

d.
If

th
e
S
tr

u
ct

u
re

d
T

y
p
e

is
in

st
an

ti
ab

le
(u

se
d

in
co

m
bi

na
ti

on
w

it
h

a
T

y
p
ed

T
ab

le
)
ad

di
ti

on
al

op
ti

on
s
an

d
in

te
gr

it
y

co
ns

tr
ai

nt
s

fo
r

at
tr

ib
ut

es
ca

n
be

de
fin

ed
.

T
he

se
co

rr
es

po
nd

to
th

e
C

ol
um

n
C

on
st

ra
in

ts
de

fin
ed

in
th

e
re

la
ti

on
al

co
nc

ep
t
C

ol
u
m

n
ab

ov
e.

If
th

e
st

ru
ct

ur
ed

ty
pe

is
a

su
bt

yp
e

th
en

no
P

ri
m

ar
y

K
ey

A
tt

ri
bu

te
s

ar
e

al
lo

w
ed

.
In

st
an

ti
ab

le
S
tr

u
ct

u
re

d
T

y
p
e

ca
n

as
si

gn
al

so
co

ns
tr

ai
nt

s
fo

r
th

e
w

ho
le

T
y
p
ed

T
ab

le
.

T
he

se
co

rr
es

po
nd

to
th

e
T
ab

le
C

on
st

ra
in

ts
de

fin
ed

ab
ov

e.

S
te

re
ot

y
p
es

:
�

A
tt

ri
bu

te
�

C
on

st
ra

in
ts

:
-

If
th

e
C

la
ss

of
th

e
A

tt
ri

bu
te

s
is

a
Su

bc
la

ss
th

e
at

tr
ib

ut
e

ca
nn

ot
be

a
P

ri
m

ar
y

ke
y.

N
ot

at
io

n
:

se
e

S
tr

u
ct

u
re

d
T

y
p
es

224 Appendix B. PSM Metamodel
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
tr

u
ct

u
re

d
T

y
p
e

M
et

h
o
d

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
:

T
he

at
tr

ib
ut

es
an

d
op

er
at

io
ns

of
th

e
C

la
ss

co
rr

es
po

nd
to

at
tr

ib
ut

es
an

d
m

et
ho

ds
of

th
e

S
tr

u
ct

u
re

d
T

y
p
e.

A
m

et
ho

d
of

a
S
tr

u
ct

u
re

d
T

y
p
e

is
an

SQ
L
-i
nv

ok
ed

ro
ut

in
e.

T
he

re
ar

e
th

re
e

ki
nd

s
of

m
et

ho
ds

:
SQ

L
-i
nv

ok
ed

co
ns

tr
uc

to
r

m
et

ho
ds

,
in

st
an

ce
SQ

L
-i
nv

ok
ed

m
et

ho
ds

an
d

st
at

ic
SQ

L
-i
nv

ok
ed

m
et

ho
ds

.
A

ll
SQ

L
-i
nv

ok
ed

m
et

ho
ds

ar
e

as
so

ci
at

ed
w

it
h

a
S
tr

u
ct

u
re

d
T

y
p
e,

al
so

kn
ow

n
as

th
e

ty
pe

of
th

e
m

et
ho

d.
T

he
re

fo
re

,t
he

y
ar

e
re

pr
es

en
te

d
as

op
er

at
io

ns
of

an
�

O
b
je

ct
T

yp
e�

cl
as

s
of

a
st

er
eo

ty
pe

�
M

et
ho

d�
an

d
ha

ve
an

at
tr

ib
ut

e
ty

pe
:

en
um

{c
on

st
ru

ct
or

,
in

st
an

ce
,
st

at
ic
}.

S
te

re
ot

y
p
es

:
�

M
et

ho
d�

O
p
er

at
io

n
.

C
on

st
ra

in
ts

:

N
ot

at
io

n
:

�
M

et
ho

d�
O

p
er

at
io

n
s

ha
ve

th
e

fo
llo

w
in

g
no

ta
ti

on
.

[<
v
is

ib
il
it
y
>

]
<

n
a
m

e
>

‘(
’
[<

p
a
ra

m
e
te

r
-l
is

t>
]
‘)

’
[‘
:’

[<
re

tu
rn

-t
y
p
e
>

]
[‘
{’

<
o
p
e
r-

p
ro

p
e
rt

y
>

[‘
,’

<
o
p
e
r-

p
ro

p
e
rt

y
>

]*
‘}

’]
]

w
h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f
th

e
O

p
e
r
a
t
io

n
.

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’.
F
o
r
�

M
e
th

o
d
�

it
is

a
lw

a
y
s

p
u
b
li
c
.

-
<

n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
�

M
e
th

o
d
�

O
p
e
r
a
t
io

n
.

-
<

re
tu

r
n
-t
y
p
e
>

is
th

e
ty

p
e

o
f
th

e
re

tu
rn

re
su

lt
p
a
ra

m
e
te

r
if

th
e

O
p
e
r
a
t
io

n
h
a
s

o
n
e

d
e
fi
n
e
d
.

-
<

o
p
e
r-

p
ro

p
e
rt

y
>

in
d
ic

a
te

s
th

e
p
ro

p
e
rt

ie
s
o
f
th

e
O

p
e
r
a
t
io

n
.

<
o
p
e
r-

p
ro

p
e
rt

y
>

::
=

‘r
ed

e
fi
n
e
s’

<
o
p
e
r-

n
a
m

e
>
|
‘q

u
e
r
y
’
|
‘o

rd
e
re

d
’
|
‘u

n
iq

u
e
’
|

<
o
p
e
r
-c

o
n
st

ra
in

t>
|

(c
o
n
st

ru
c
to

r’
|

in
st

a
n
ce

’
|

st
a
ti
c
’)
|

la
n
g
u
a
g
e
’

<
la

n
g
u
a
g
e

n
a
m

e
>
|

p
a
ra

m
e
te

r
st

y
le

’
(S

Q
L
|

G
E
N

E
R

A
L
|

J
A
V
A

)
|

sp
ec

ifi
c
’

<
ro

u
ti
n
e

n
a
m

e
>
|

(d
e
te

r
m

in
is

ti
c
’

|
n
o
t

d
e
te

rm
in

is
ti
c
’)
|

(n
o

S
Q

L
’
|

co
n
ta

in
s

S
Q

L
’
|

re
a
d
s

S
Q

L
d
a
ta

’
|

m
o
d
ifi

e
s

S
Q

L
’)
|

(r
e
tu

rn
s

n
u
ll

o
n

n
u
l
in

p
u
t’
|

‘c
a
ll
ed

o
n

n
u
ll

in
p
u
t’
)
|

tr
a
n
sf

o
r
m

g
ro

u
p
’

(<
g
ro

u
p

n
a
m

e
>
|

<
g
ro

u
p

sp
ec

ifi
ca

ti
o
n

li
st

>
)
|
st

a
ti
c

d
is

p
a
tc

h
’
|
e
x
te

rn
a
l

<
e
x
te

rn
a
l
p
ro

ce
d
u
re

n
a
m

e
>

w
h
e
re

:
*

re
d
e
fi
n
e
s

<
o
p
e
r-

n
a
m

e
>

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
re

d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

O
p
e
r
a
t
io

n
id

e
n
ti

fi
e
d

b
y

<
o
p
e
r-

n
a
m

e
>

.
*

q
u
e
ry

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
d
o
e
s

n
o
t

c
h
a
n
g
e

th
e

st
a
te

o
f
th

e
sy

st
e
m

.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

M
e
th

o
d
�

.
*

o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

v
a
lu

e
s

o
f
th

e
re

tu
rn

p
a
ra

m
e
te

r
a
re

o
rd

e
re

d
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

M
e
th

o
d
�

.
*

u
n
iq

u
e

m
e
a
n
s

th
a
t

th
e

v
a
lu

e
s

re
tu

rn
e
d

b
y

th
e

p
a
ra

m
e
te

r
h
a
v
e

n
o

d
u
p
li
c
a
te

s.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

M
e
th

o
d
�

.
*

<
o
p
e
r-

co
n
st

ra
in

t>
is

a
c
o
n
st

ra
in

t
th

a
t

a
p
p
li
e
s

to
th

e
O

p
e
r
a
t
io

n
.

It
is

n
o
t

u
se

d
fo

r
�

M
e
th

o
d
�

.
*

c
o
n
st

ru
c
to

r
|
in

st
a
n
c
e
|
st

a
ti

c
*

la
n
g
u
a
g
e

<
la

n
g
u
a
g
e

n
a
m

e
>

*
p
a
ra

m
e
te

r
st

y
le

(S
Q

L
|
G

E
N

E
R

A
L
|
J
A
V
A

)
*

sp
e
c
ifi

c
<

ro
u
ti

n
e

n
a
m

e
>

*
d
e
te

rm
in

is
ti

c
|
n
o
t

d
e
te

rm
in

is
ti

c
*

n
o

S
Q

L
|
c
o
n
ta

in
s

S
Q

L
|
re

a
d
s

S
Q

L
d
a
ta
|
m

o
d
ifi

e
s

S
Q

L
*

re
tu

rn
s

n
u
ll

o
n

n
u
ll

in
p
u
t
|
c
a
ll
e
d

o
n

n
u
ll

in
p
u
t

*
tr

a
n
sf

o
rm

g
ro

u
p

(<
g
ro

u
p

n
a
m

e
>
|

<
g
ro

u
p

sp
e
c
ifi

c
a
ti

o
n

li
st

>
)

*
st

a
ti

c
d
is

p
a
tc

h
*

e
x
te

rn
a
l

<
e
x
te

rn
a
l
p
ro

c
e
d
u
re

n
a
m

e
>

*
<

p
a
ra

m
e
te

r
-l
is

t>
is

a
li
st

o
f
p
a
ra

m
e
te

rs
o
f
th

e
O

p
e
r
a
t
io

n
in

th
e

fo
ll
o
w

in
g

fo
rm

a
t:

<
p
a
ra

m
e
te

r
-l
is

t>
::
=

<
p
a
ra

m
e
te

r
>

[‘
,’

<
p
a
ra

m
e
te

r
>

]*
*

<
p
a
ra

m
e
te

r
>

::
=

[<
d
ir
ec

ti
o
n
>

]
<

p
a
ra

m
e
te

r
-n

a
m

e
>

‘:
’

<
ty

p
e
-e

x
p
re

ss
io

n
>

[‘
[’

<
m

u
lt
ip

li
c
it
y
>

‘]
’]

[‘
=

’
<

d
e
fa

u
lt

>
]

[‘
{’

<
p
a
r
m

-p
ro

p
e
r
ty

>
[‘
,’

<
p
a
r
m

-
p
ro

p
e
rt

y
>

]*
‘}

’]

Appendix B. PSM Metamodel 225
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

U
se

r-
D

efi
n
ed

F
u
n
ct

io
n

D
es

cr
ip

ti
on

:
A

U
se

r-
D

efi
n
ed

F
u
n
ct

io
n

fu
nc

ti
on

is
an

SQ
L
-i
nv

ok
ed

ro
ut

in
e

w
ho

se
in

vo
ca

ti
on

re
tu

rn
s
a

va
lu

e.
E

ve
ry

pa
ra

m
et

er
of

a
U

se
r-

D
efi

n
ed

F
u
n
ct

io
n

is
an

in
pu

t
SQ

L
pa

ra
m

et
er

,
on

e
of

w
hi

ch
m

ay
be

de
si

gn
at

ed
as

th
e

re
su

lt
SQ

L
pa

ra
m

et
er

.
A

n
SQ

L
-i
nv

ok
ed

ro
ut

in
e

ca
n

be
an

SQ
L

ro
ut

in
e

or
an

ex
te

rn
al

ro
ut

in
e.

A
n

SQ
L

ro
ut

in
e

is
an

SQ
L
-i
nv

ok
ed

ro
ut

in
e

w
ho

se
la

ng
ua

ge
cl

au
se

sp
ec

ifi
es

SQ
L
.A

n
ex

te
rn

al
ro

ut
in

e
is

on
e

w
ho

se
la

ng
ua

ge
cl

au
se

do
es

no
t

sp
ec

ify
SQ

L
.T

he
ro

ut
in

e
bo

dy
of

an
ex

te
rn

al
ro

ut
in

e
is

an
ex

te
rn

al
bo

dy
re

fe
re

nc
e

w
ho

se
ex

te
rn

al
ro

ut
in

e
na

m
e

id
en

ti
fie

s
a

pr
og

ra
m

w
ri

tt
en

in
so

m
e

st
an

da
rd

pr
og

ra
m

m
in

g
la

ng
ua

ge
ot

he
r

th
an

SQ
L
.

D
iff

er
en

t
SQ

L
-i
nv

ok
ed

ro
ut

in
es

ca
n

ha
ve

eq
ui

va
le

nt
ro

ut
in

e
na

m
es

.
N

o
tw

o
SQ

L
-i
nv

ok
ed

fu
nc

ti
on

s
in

th
e

sa
m

e
sc

he
m

a
ar

e
al

lo
w

ed
to

ha
ve

th
e

sa
m

e
si

gn
at

ur
e.

N
o

tw
o

SQ
L
-i
nv

ok
ed

pr
oc

ed
ur

es
in

th
e

sa
m

e
sc

he
m

a
ar

e
al

lo
w

ed
to

ha
ve

th
e

sa
m

e
na

m
e

an
d

th
e

sa
m

e
nu

m
be

r
of

pa
ra

m
et

er
s.

T
he

de
fin

it
io

n
of

a
U

se
r-

d
efi

n
ed

F
u
n
ct

io
n

re
qu

ir
es

th
e

in
pu

t
of

fu
rt

he
r

ch
ar

ac
te

ri
st

ic
s:

-
L
A

N
G

U
A

G
E

(A
D

A
|C

|C
O

B
O

L
|S

Q
L
|J

A
V
A
|P

A
SC

A
L
|F

O
R
T

R
A

N
|M

U
M

P
S)

-
PA

R
A

M
E

T
E

R
ST

Y
L
E

(S
Q

L
|G

E
N

E
R

A
L
|J

A
V
A

)
-

SP
E

C
IF

IC
(N

am
e

of
th

e
R

ou
ti

ne
)

-
N

O
T

D
E

T
E

R
M

IN
IS

T
IC

|D
E

T
E

R
M

IN
IS

T
IC

-
N

O
SQ

L
|C

O
N

T
A

IN
S

SQ
L
|R

E
A

D
S

SQ
L

D
A

T
A
|M

O
D

IF
IE

S
SQ

L
D

A
T
A

-
R

E
T

U
R

N
S

N
U

L
L

O
N

N
U

L
L

IN
P

U
T
|C

A
L
L
E

D
O

N
N

U
L
L

IN
P

U
T

-
T

R
A

N
SF

O
R

M
G

R
O

U
P

F
O

R
T

Y
P

E
-

ST
A

T
IC

D
IS

PA
T

C
H

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

N
on

e
of

th
e

ex
is

ti
ng

U
M

L
P

ro
fil

es
fo

r
SQ

L
co

ns
id

er
th

e
m

od
el

in
g

of
U

se
r-

D
efi

n
ed

F
u
n
ct

io
n
s.

T
he

y
ca

n
be

re
pr

es
en

te
d

si
m

ila
rl

y
as

S
to

re
d

P
ro

ce
d
u
re

s
as

a
st

er
eo

ty
pe

d
cl

as
s
�

U
se

r-
D

efi
ne

d
Fu

nc
ti

on
s�

co
nt

ai
ni

ng
on

ly
op

er
at

io
ns

,
co

rr
es

po
nd

in
g

to
th

e
us

er
-d

efi
ne

d
fu

nc
ti

on
s.

T
he

ty
pe

(S
Q

L
or

ex
te

rn
al

)
of

th
e

ro
ut

in
e

is
re

pr
es

en
te

d
by

an
ad

di
ti

on
al

st
er

eo
ty

pe
d

at
tr

ib
ut

e
of

th
e

op
er

at
io

n.

S
te

re
ot

y
p
es

:
�

U
se

r-
D

efi
ne

d
Fu

nc
ti

on
s�

C
la

ss
.

�
U

se
r-

D
efi

ne
d

Fu
nc

ti
on
�

O
p
er

at
io

n
.

C
on

st
ra

in
t:

-
T

he
�

U
se

r-
D

efi
ne

d
Fu

nc
ti

on
s�

C
la

ss
do

es
no

t
ha

ve
an

y
at

tr
ib

ut
es

.
-

A
ll

op
er

at
io

ns
of

th
e
�

U
se

r-
D

efi
ne

d
Fu

nc
ti

on
s�

C
la

ss
ar

e
�

U
se

r-
D

efi
ne

d
Fu

nc
ti

on
s�

.

226 Appendix B. PSM Metamodel
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

U
se

r-
D

efi
n
ed

F
u
n
ct

io
n

N
ot

at
io

n
:

�
U

se
r-

D
efi

ne
d

Fu
nc

ti
on
�

O
p
er

at
io

n
s

ha
ve

th
e

fo
llo

w
in

g
no

ta
ti

on
.

[<
v
is

ib
il
it
y
>

]
<

n
a
m

e
>

‘(
’
[<

p
a
ra

m
e
te

r
-l
is

t>
]
‘)

’
[‘
:’

[<
re

tu
rn

-t
y
p
e
>

]
[‘
{’

<
o
p
e
r-

p
ro

p
e
rt

y
>

[‘
,’

<
o
p
e
r-

p
ro

p
e
rt

y
>

]*
‘}

’]
]

w
h
e
re

:
-

<
v
is

ib
il
it
y
>

is
th

e
v
is

ib
il
it
y

o
f
th

e
O

p
e
r
a
t
io

n
.

<
v
is

ib
il
it
y
>

::
=

‘+
’
|
‘−

’
|
‘#

’
|
‘∼

’.
F
o
r
�

S
to

re
d
P
ro

c
e
d
u
re

s�
it

is
a
lw

a
y
s

p
u
b
li
c
.

-
<

n
a
m

e
>

is
th

e
n
a
m

e
o
f
th

e
�

U
se

r-
D

e
fi
n
e
d

F
u
n
c
ti

o
n
�

O
p
e
r
a
t
io

n
.

-
<

re
tu

r
n
-t
y
p
e
>

is
th

e
ty

p
e

o
f
th

e
re

tu
rn

re
su

lt
p
a
ra

m
e
te

r
if

th
e

O
p
e
r
a
t
io

n
h
a
s

o
n
e

d
e
fi
n
e
d
.

-
<

o
p
e
r-

p
ro

p
e
rt

y
>

in
d
ic

a
te

s
th

e
p
ro

p
e
rt

ie
s
o
f
th

e
O

p
e
r
a
t
io

n
.

<
o
p
e
r-

p
ro

p
e
rt

y
>

::
=

‘r
ed

e
fi
n
e
s’

<
o
p
e
r-

n
a
m

e
>
|
‘q

u
e
r
y
’
|
‘o

rd
e
re

d
’
|
‘u

n
iq

u
e
’
|

<
o
p
e
r
-c

o
n
st

ra
in

t>
|

la
n
g
u
a
g
e
’

<
la

n
g
u
a
g
e

n
a
m

e
>
|

p
a
ra

m
e
te

r
st

y
le

’
(S

Q
L
|

G
E
N

E
R

A
L
|

J
A
V
A

)
|

sp
ec

ifi
c
’

<
ro

u
ti
n
e

n
a
m

e
>
|

(d
e
te

r
m

in
is

ti
c
’
|

n
o
t

d
e
te

r
m

in
is

ti
c
’)
|

(n
o

S
Q

L
’
|

co
n
ta

in
s

S
Q

L
’
|
re

a
d
s

S
Q

L
d
a
ta

’
|
m

o
d
ifi

e
s

S
Q

L
’)
|
(r

e
tu

rn
s

n
u
ll

o
n

n
u
l
in

p
u
t’
|
‘c

a
ll
ed

o
n

n
u
ll

in
p
u
t’
)
|
tr
a
n
sf

o
r
m

g
ro

u
p
’
(<

g
ro

u
p

n
a
m

e
>
|

<
g
ro

u
p

sp
ec

ifi
ca

ti
o
n

li
st

>
)
|
st

a
ti
c

d
is

p
a
tc

h
’
|
e
x
te

rn
a
l

<
e
x
te

rn
a
l
p
ro

ce
d
u
re

n
a
m

e
>

w
h
e
re

:
*

re
d
e
fi
n
e
s

<
o
p
e
r-

n
a
m

e
>

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
re

d
e
fi
n
e
s

a
n

in
h
e
ri

te
d

O
p
e
r
a
t
io

n
id

e
n
ti

fi
e
d

b
y

<
o
p
e
r-

n
a
m

e
>

.
*

q
u
e
ry

m
e
a
n
s

th
a
t

th
e

O
p
e
r
a
t
io

n
d
o
e
s

n
o
t

c
h
a
n
g
e

th
e

st
a
te

o
f
th

e
sy

st
e
m

.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

U
se

r-
D

e
fi
n
e
d

F
u
n
c
ti

o
n
�

.
*

o
rd

e
re

d
m

e
a
n
s

th
a
t

th
e

v
a
lu

e
s

o
f
th

e
re

tu
rn

p
a
ra

m
e
te

r
a
re

o
rd

e
re

d
.

D
o
e
s

n
o
t

a
p
p
ly

fo
r
�

U
se

r-
D

e
fi
n
e
d

F
u
n
c
ti

o
n
�

.
*

u
n
iq

u
e

m
e
a
n
s

th
a
t

th
e

v
a
lu

e
s

re
tu

rn
e
d

b
y

th
e

p
a
ra

m
e
te

r
h
a
v
e

n
o

d
u
p
li
c
a
te

s.
D

o
e
s

n
o
t

a
p
p
ly

fo
r
�

U
se

r-
D

e
fi
n
e
d

F
u
n
c
ti

o
n
�

.
*

<
o
p
e
r-

co
n
st

ra
in

t>
is

a
c
o
n
st

ra
in

t
th

a
t

a
p
p
li
e
s

to
th

e
O

p
e
r
a
t
io

n
.

It
is

n
o
t

u
se

d
fo

r
�

U
se

r-
D

e
fi
n
e
d

F
u
n
c
ti

o
n
�

.
*

la
n
g
u
a
g
e

<
la

n
g
u
a
g
e

n
a
m

e
>

*
p
a
ra

m
e
te

r
st

y
le

(S
Q

L
|
G

E
N

E
R

A
L
|
J
A
V
A

)
*

sp
e
c
ifi

c
<

ro
u
ti

n
e

n
a
m

e
>

*
d
e
te

rm
in

is
ti

c
|
n
o
t

d
e
te

rm
in

is
ti

c
*

n
o

S
Q

L
|
c
o
n
ta

in
s

S
Q

L
|
re

a
d
s

S
Q

L
d
a
ta
|
m

o
d
ifi

e
s

S
Q

L
*

re
tu

rn
s

n
u
ll

o
n

n
u
ll

in
p
u
t
|
c
a
ll
e
d

o
n

n
u
ll

in
p
u
t

*
tr

a
n
sf

o
rm

g
ro

u
p

(<
g
ro

u
p

n
a
m

e
>
|

<
g
ro

u
p

sp
e
c
ifi

c
a
ti

o
n

li
st

>
)

*
st

a
ti

c
d
is

p
a
tc

h
*

e
x
te

rn
a
l

<
e
x
te

rn
a
l
p
ro

c
e
d
u
re

n
a
m

e
>

*
<

p
a
ra

m
e
te

r
-l
is

t>
is

a
li
st

o
f
p
a
ra

m
e
te

rs
o
f
th

e
O

p
e
r
a
t
io

n
in

th
e

fo
ll
o
w

in
g

fo
rm

a
t:

<
p
a
ra

m
e
te

r
-l
is

t>
::
=

<
p
a
ra

m
e
te

r
>

[‘
,’

<
p
a
ra

m
e
te

r
>

]*
*

<
p
a
ra

m
e
te

r
>

::
=

[<
d
ir
ec

ti
o
n
>

]
<

p
a
ra

m
e
te

r
-n

a
m

e
>

‘:
’

<
ty

p
e
-e

x
p
re

ss
io

n
>

[‘
[’

<
m

u
lt
ip

li
c
it
y
>

‘]
’]

[‘
=

’
<

d
e
fa

u
lt

>
]

[‘
{’

<
p
a
r
m

-p
ro

p
e
r
ty

>
[‘
,’

<
p
a
r
m

-
p
ro

p
e
rt

y
>

]*
‘}

’]

Appendix B. PSM Metamodel 227
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

S
tr

u
ct

u
re

d
T

y
p
e,

T
y
p
ed

V
ie

w
D

es
cr

ip
ti
on

:
In

ob
je

ct
-r

el
at

io
na

l
da

ta
ba

se
s

T
y
p
ed

V
ie

w
s

ca
n

be
de

fin
ed

w
hi

ch
ca

n
be

re
ga

rd
ed

as
V

ie
w

s
fo

r
ob

je
ct

s
of

T
ab

ed
T

y
b
le

s
in

st
ea

d
of

tu
pl

es
of

T
ab

le
s.

A
T

y
p
ed

V
ie

w
is

ba
se

d
on

a
pr

ed
efi

ne
d

S
tr

u
ct

u
re

d
T

y
p
ed

.
T

he
S
tr

u
ct

u
re

d
T

y
p
es

us
ed

to
de

fin
e

T
y
p
ed

V
ie

w
s

ha
ve

to
be

in
st

an
ti

ab
le

.
In

co
nt

ra
st

to
V

ie
w

s
T

y
p
ed

V
ie

w
s

ca
n

ha
ve

m
et

ho
ds

,
th

ei
r

ob
je

ct
s

ar
e

id
en

ti
fie

d
w

it
h

an
O

ID
an

d
a

T
y
p
ed

V
ie

w
ca

n
be

de
fin

ed
as

a
su

bv
ie

w
of

an
ot

he
r
T

y
p
ed

V
ie

w
.

In
te

gr
it
y

co
ns

tr
ai

nt
s

fo
r

th
e

T
y
p
ed

V
ie

w
ca

n
be

de
fin

ed
th

ro
ug

h
th

e
C

H
E

C
K

cl
au

se
,t

he
C

A
SC

A
D

E
cl

au
se

an
d

th
e

L
O

C
A

L
cl

au
se

.
T

he
C

H
E

C
K

cl
au

se
as

su
re

s
th

at
al

lc
ha

ng
es

ca
rr

ie
d

ou
t

on
th

e
T

y
p
ed

V
ie

w
ha

ve
to

in
cl

ud
e

th
e

W
H

E
R

E
cl

au
se

of
th

e
qu

er
y

us
ed

fo
r

cr
ea

ti
ng

th
e

vi
ew

.
C

A
SC

A
D

E
D

or
L
O

C
A

L
ca

n
be

us
ed

in
or

de
r

to
de

te
rm

in
e

th
e

sc
op

e
of

th
e

qu
er

y
co

ns
tr

uc
ti

ng
th

e
T

y
p
ed

V
ie

w
in

ca
se

th
at

th
e

ba
se

ta
bl

e
of

th
e

vi
ew

ha
s

ot
he

r
su

bt
ab

le
s.

T
he

O
ID

of
a

T
y
p
ed

V
ie

w
ca

nn
ot

be
sy

st
em

ge
ne

ra
te

d.
It

is
ge

ne
ra

te
d

in
th

e
qu

er
y

co
ns

tr
uc

ti
ng

th
e

vi
ew

,
th

us
it

ca
n

be
us

er
ge

ne
ra

te
d

or
de

ri
ve

d.
T

he
qu

er
y

re
sp

on
si

bl
e

fo
r

co
ns

tr
uc

ti
ng

th
e

T
y
p
ed

V
ie

w
m

us
t

re
tu

rn
a

S
tr

u
ct

u
re

d
T

y
p
e

co
rr

es
po

nd
in

g
to

th
e

S
tr

u
ct

u
re

d
T

y
p
e

of
th

e
T

y
p
ed

V
ie

w
.

T
he

lis
t

of
at

tr
ib

ut
es

in
th

e
SE

L
E

C
T

cl
au

se
of

th
e

qu
er

y
ha

s
to

be
gi

n
w

it
h

a
co

ns
tr

uc
to

r
of

th
e

O
ID

.
T

he
F
R

O
M

cl
au

se
of

th
e

qu
er

y
ca

n
co

nt
ai

n
on

ly
on

e
ta

bl
e

or
vi

ew
,
i.e

.
no

jo
in

s
an

d
gr

ou
pi

ng
s

ar
e

al
lo

w
ed

.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

T
he

co
m

bi
na

ti
on

of
a

S
tr

u
ct

u
re

d
T

y
p
e

an
d

a
T

y
p
ed

V
ie

w
sh

al
l

be
re

pr
es

en
te

d
as

a
�

T
yp

ed
V

ie
w
�

cl
as

s
in

th
e

SQ
L
:2

00
3

pr
ofi

le
.

A
na

lo
gu

os
ly

to
V

ie
w

a
�

D
er

iv
e�

de
pe

nd
en

cy
be

tw
ee

n
th

e
�

T
yp

ed
V

ie
w
�

an
d

th
e

�
In

st
an

ti
ab

le
O

b
je

ct
T

yp
e�

,
�

T
ab

le
�

or
�

T
yp

ed
V

ie
w
�

us
ed

to
cr

ea
te

th
e

vi
ew

.

S
te

re
ot

y
p
es

:
�

T
yp

ed
V

ie
w
�

�
D

er
iv

e�

C
on

st
ra

in
ts

:
no

ne

N
ot

at
io

n
:

an
al

og
ou

s
to

V
ie

w

228 Appendix B. PSM Metamodel
T
ab

le
B

.2
:

O
b
je

ct
-r

el
at

io
na

l
C

on
ce

pt
s

S
Q

L
C

on
ce

p
t

D
es

cr
ip

ti
on

,
U

M
L

S
ta

n
d
ar

d
E
le

m
en

ts
,
S
te

re
ot

y
p
es

,
C

on
st

ra
in

ts
,
N

ot
at

io
n

In
h
er

it
an

ce
D

es
cr

ip
ti
on

:
In

he
ri

ta
nc

e
ca

n
be

de
fin

ed
in

th
e

ob
je

ct
-r

el
at

io
na

l
m

od
el

fo
r

us
er

-d
efi

ne
d

ty
pe

s
an

d
fo

r
ty

pe
d

ta
bl

es
.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

S
te

re
ot

y
p
es

:
G

en
er

al
iz

at
io

n

C
on

st
ra

in
t:

no
ne

N
ot

at
io

n
:

an
al

og
ou

s
to

G
en

er
al

iz
at

io
n

in
P

IM

R
ef

er
en

ce
s

D
es

cr
ip

ti
on

:
R

ef
er

en
ce

be
tw

ee
n

ob
je

ct
s
of

on
e
S
tr

u
ct

u
re

d
T

y
p
e

w
it

h
ob

je
ct

s
of

an
ot

he
r
ar

e
re

pr
es

en
te

d
in

th
e

ob
je

ct
-r

el
at

io
na

l
m

od
el

as
at

tr
ib

ut
es

of
ty

pe
R

E
F

of
th

e
S
tr

u
ct

u
re

d
T

y
p
e.

A
dd

it
io

na
lly

in
th

e
U

M
L

pr
ofi

le
as

so
ci

at
io

ns
ca

n
be

us
ed

fo
r
be

tt
er

re
ad

ab
ili

ty
of

th
e

m
od

el
,a

na
lo

go
us

ly
to

th
e
R

el
at

io
n
sh

ip
co

nc
ep

t
in

th
e

re
la

ti
on

al
m

od
el

de
sc

ri
be

d
ab

ov
e.

U
M

L
S
ta

n
d
ar

d
E
le

m
en

ts
:

D
ep

en
de

nc
y

S
te

re
ot

y
p
es

:
�

R
ef

er
en

ce
s�

C
on

st
ra

in
ts

:
no

ne

N
ot

at
io

n
:

Appendix B. PSM Metamodel 229
T
ab

le
B

.3
:

SQ
L

D
at

a
T

yp
es

in
U

M
L

D
at

a
T

y
p
e

D
es

cr
ip

ti
on

S
Q

L
D

at
aT

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
D

at
aT

yp
e�

is
de

ri
ve

d
fr

om
�

da
ta

T
yp

e�
.

S
Q

L
B

as
ic

D
at

aT
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
B

as
ic

D
at

aT
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
D

at
aT

yp
e�

.
S
Q

L
C

om
p
le

x
D

at
aT

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
C

om
pl

ex
D

at
aT

yp
e�

is
de

ri
ve

d
fr

om
�

da
ta

T
yp

e�
.

S
Q

L
B

o
ol

ea
n
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
B

oo
le

an
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
S
m

al
lI
n
tT

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
Sm

al
lI
nt

T
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
In

te
ge

rT
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
In

te
ge

rT
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
B

ig
In

tT
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
B

ig
In

tT
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
D

ec
im

al
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
D

ec
im

al
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
tw

o
at

tr
ib

ut
es

:
-

pr
ec

is
io

n:
SQ

L
In

te
ge

rT
yp

e
-

sc
al

e:
SQ

L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
D

ec
im

al
T
yp

e
::
=

‘S
Q

L
D

ec
im

al
T
yp

e
{p

re
ci

si
on

:’
<

nu
m

be
r>

‘,
sc

al
e:

’
<

nu
m

be
r>

‘}
’

w
he

re
:

-
<

nu
m

be
r>

is
a

va
lu

e
of

ty
pe

SQ
L
In

te
ge

rT
yp

e

S
Q

L
N

u
m

er
ic

T
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
N

um
er

ic
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
tw

o
at

tr
ib

ut
es

:
-

pr
ec

is
io

n:
SQ

L
In

te
ge

rT
yp

e
-

sc
al

e:
SQ

L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
N

um
er

ic
T
yp

e
::
=

‘S
Q

L
N

um
er

ic
T
yp

e
{p

re
ci

si
on

:’
<

nu
m

be
r>

‘,
sc

al
e:

’
<

nu
m

be
r>

‘}
’

w
he

re
:

-
<

nu
m

be
r>

is
a

va
lu

e
of

ty
pe

SQ
L
In

te
ge

rT
yp

e

S
Q

L
F
lo

at
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
F
lo

at
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
on

e
at

tr
ib

ut
e:

-
pr

ec
is

io
n:

SQ
L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
F
lo

at
T
yp

e
::
=

‘S
Q

L
F
lo

at
T
yp

e
{p

re
ci

si
on

:’
<

nu
m

be
r>

‘}
’

w
he

re
:

-
<

nu
m

be
r>

is
a

va
lu

e
of

ty
pe

SQ
L
In

te
ge

rT
yp

e

230 Appendix B. PSM Metamodel
T
ab

le
B

.3
:

SQ
L

D
at

a
T

yp
es

D
at

a
T

y
p
e

D
es

cr
ip

ti
on

S
Q

L
R

ea
lT

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
R

ea
lT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
D

ou
b
le

T
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
D

ou
bl

eT
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
C

h
ar

T
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
C

ha
rT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
on

e
at

tr
ib

ut
e:

-
le

ng
th

:
SQ

L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
C

ha
rT

yp
e

::
=

‘S
Q

L
C

ha
rT

yp
e
{l

en
gt

h:
’

<
nu

m
be

r>
‘}

’
w

he
re

:
-

<
nu

m
be

r>
is

a
va

lu
e

of
ty

pe
SQ

L
In

te
ge

rT
yp

e

S
Q

LV
ar

C
h
ar

T
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
LV

ar
C

ha
rT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
on

e
at

tr
ib

ut
e:

-
le

ng
th

:
SQ

L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
C

ha
rT

yp
e

::
=

‘S
Q

L
C

ha
rT

yp
e
{l

en
gt

h:
’

<
nu

m
be

r>
‘}

’
w

he
re

:
-

<
nu

m
be

r>
is

a
va

lu
e

of
ty

pe
SQ

L
In

te
ge

rT
yp

e

S
Q

L
C

lo
b
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
C

lo
bT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
on

e
at

tr
ib

ut
e:

-
si

ze
:

SQ
L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
C

lo
bT

yp
e

::
=

‘S
Q

L
C

lo
bT

yp
e
{s

iz
e:

’
<

nu
m

be
r>

‘}
’

w
he

re
:

-
<

nu
m

be
r>

is
a

va
lu

e
of

ty
pe

SQ
L
In

te
ge

rT
yp

e

S
Q

L
B

it
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
B

it
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
on

e
at

tr
ib

ut
e:

-
le

ng
th

:
SQ

L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
B
it
T
yp

e
::
=

‘S
Q

L
B
it
T
yp

e
{l

en
gt

h:
’

<
nu

m
be

r>
‘}

’
w

he
re

:
-

<
nu

m
be

r>
is

a
va

lu
e

of
ty

pe
SQ

L
In

te
ge

rT
yp

e

Appendix B. PSM Metamodel 231
T
ab

le
B

.3
:

SQ
L

D
at

a
T

yp
es

D
at

a
T

y
p
e

D
es

cr
ip

ti
on

S
Q

LV
ar

B
it
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
LV

ar
B

it
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
on

e
at

tr
ib

ut
e:

-
le

ng
th

:
SQ

L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
LV

ar
B
it
T
yp

e
::
=

‘S
Q

LV
ar

B
it
T
yp

e
{l

en
gt

h:
’

<
nu

m
be

r>
‘}

’
w

he
re

:
-

<
nu

m
be

r>
is

a
va

lu
e

of
ty

pe
SQ

L
In

te
ge

rT
yp

e

S
Q

L
B

lo
b
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
B

lo
bT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

It
ha

s
on

e
at

tr
ib

ut
e:

-
si

ze
:

SQ
L
In

te
ge

rT
yp

e
N

ot
at

io
n
:

SQ
L
B
lo

bT
yp

e
::
=

‘S
Q

L
B
lo

bT
yp

e
{s

iz
e:

’
<

nu
m

be
r>

‘}
’

w
he

re
:

-
<

nu
m

be
r>

is
a

va
lu

e
of

ty
pe

SQ
L
In

te
ge

rT
yp

e

S
Q

L
D

at
eT

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
D

at
eT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

S
Q

LT
im

eT
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
LT

im
eT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

S
Q

LT
im

eS
ta

m
p
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
LT

im
eS

ta
m

pT
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
In

te
rv

al
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
In

te
rv

al
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
X

M
LT

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
X

M
LT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
B

as
ic

D
at

aT
yp

e�
.

S
Q

L
R

ow
T

y
p
e

D
es

cr
ip

ti
on

:
A

R
O

W
ty

pe
re

pr
es

en
ts

a
co

m
po

se
d

at
tr

ib
ut

e
w

it
h

a
fix

ed
nu

m
be

r
of

el
em

en
ts

,e
ac

h
of

th
em

ca
n

be
of

di
ffe

re
nt

da
ta

ty
pe

.
�

SQ
L
R

ow
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
C

om
pl

ex
D

at
aT

yp
e�

.
T

he
fo

llo
w

in
g

pr
op

er
ti

es
ar

e
sp

ec
ifi

ed
fo

r
th

is
st

er
eo

ty
pe

:
-

fie
ld

:
SQ

L
F
ie

ld
T

yp
e[

1.
.*

]
N

ot
at

io
n
:

SQ
L
R
ow

T
yp

e
::
=

‘S
Q

L
R
ow

T
yp

e
{’

<
fie

ld
>

[
‘,
’<

fie
ld

>
]*

‘
}’

w
he

re
:

-
<

fie
ld

>
is

a
va

lu
e

of
ty

pe
SQ

L
F
ie

ld
T

yp
e

232 Appendix B. PSM Metamodel
T
ab

le
B

.3
:

SQ
L

D
at

a
T

yp
es

D
at

a
T

y
p
e

D
es

cr
ip

ti
on

S
Q

L
F
ie

ld
T

y
p
e

D
es

cr
ip

ti
on

:
A

S
Q

L
F
ie

ld
T

y
p
e

re
pr

es
en

ts
a

fie
ld

of
an

S
Q

L
R

ow
T

y
p
e.
�

SQ
L
F
ie

ld
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
C

om
pl

ex
-

D
at

aT
yp

e�
.

T
he

fo
llo

w
in

g
pr

op
er

ti
es

ar
e

sp
ec

ifi
ed

fo
r

th
is

st
er

eo
ty

pe
:

-
na

m
e:

SQ
LV

ar
C

ha
rT

yp
e{

le
ng

th
:

20
}

-
ty

pe
:

SQ
LV

ar
C

ha
rT

yp
e{

le
ng

th
:

20
}

N
ot

at
io

n
:

SQ
L
F
ie

ld
T
yp

e
::
=

‘S
Q

L
F
ie

ld
T
yp

e
{’

<
na

m
e>

‘:
’<

da
ta

ty
pe

>
‘}

’
w

he
re

:
-

<
na

m
e>

is
th

e
na

m
e

of
th

e
fie

ld
,
a

va
lu

e
of

ty
pe

SQ
LV

ar
C

ha
rT

yp
e

-
<

da
ta

ty
pe

>
is

a
na

m
e

of
a

pr
ed

efi
ne

d
da

ta
T

yp
e

S
Q

L
A

rr
ay

T
y
p
e

D
es

cr
ip

ti
on

:
A

n
A

rr
ay

re
pr

es
en

ts
an

in
de

xe
d

an
d

bo
un

de
d

co
lle

ct
io

n
ty

pe
(u

nb
ou

nd
ed

si
nc

e
SQ

L
:2

00
3)

.
T

he
el

em
en

ts
of

an
A

rr
ay

ca
n

be
of

an
y

da
ta

ty
pe

ex
ce

pt
th

e
A

rr
ay

ty
pe

.
It

ha
s

a
ty

pe
of

it
s

el
em

en
ts

an
d

a
nu

m
be

r
of

el
em

en
ts

.
�

SQ
L
A

rr
ay

T
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
C

om
pl

ex
D

at
aT

yp
e�

.
A

lt
er

na
ti

ve
ly

in
th

is
ca

se
al

so
th

e
m

ul
ti

pl
ic

it
y

of
th

e
cl

as
s

at
tr

ib
ut

es
ca

n
be

us
ed

,
si

nc
e

A
R

R
A

Y
ca

n
ha

ve
on

ly
on

e
di

m
en

si
on

in
SQ

L
.

T
he

fo
llo

w
in

g
pr

op
er

ti
es

ar
e

sp
ec

ifi
ed

fo
r

th
is

st
er

eo
ty

pe
:

-
di

m
en

si
on

:
SQ

L
In

te
ge

rT
yp

e
-

da
ta

ty
pe

:
SQ

LV
ar

C
ha

rT
yp

e{
le

ng
th

:
20
}

N
ot

at
io

n
:

SQ
L
A

rr
ay

T
yp

e
::
=

‘S
Q

L
A

rr
ay

T
yp

e
[’
<

nu
m

be
r>

‘]
’‘
:’
<

da
ta

ty
pe

>
w

he
re

:
-

<
nu

m
be

r>
is

a
va

lu
e

of
ty

pe
SQ

L
In

te
ge

rT
yp

e
-

<
da

ta
ty

pe
>

is
a

na
m

e
of

a
pr

ed
efi

ne
d

da
ta

T
yp

e
ex

ce
pt

SQ
L
A

rr
ay

T
yp

e

Appendix B. PSM Metamodel 233
T
ab

le
B

.3
:

SQ
L

D
at

a
T

yp
es

D
at

a
T

y
p
e

D
es

cr
ip

ti
on

S
Q

L
M

u
lt
is

et
T

y
p
e

D
es

cr
ip

ti
on

:
Si

nc
e

SQ
L
:2

00
3

it
is

po
ss

ib
le

to
de

fin
e

al
so

th
is

ty
pe

of
co

lle
ct

io
ns

in
or

de
r

to
av

oi
d

th
e

lim
it

s
of

ar
ra

ys
.

�
SQ

L
M

ul
ti

se
tT

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
C

om
pl

ex
D

at
aT

yp
e�

.
A

lt
er

na
ti

ve
ly

in
th

is
ca

se
al

so
th

e
m

ul
ti

pl
ic

it
y

of
th

e
cl

as
s

at
tr

ib
ut

es
ca

n
be

us
ed

.
T

he
fo

llo
w

in
g

pr
op

er
ti

es
ar

e
sp

ec
ifi

ed
fo

r
th

is
st

er
eo

ty
pe

:
-

di
m

en
si

on
:

SQ
L
In

te
ge

rT
yp

e
-

da
ta

ty
pe

:
SQ

LV
ar

C
ha

rT
yp

e{
le

ng
th

:
20
}

N
ot

at
io

n
:

SQ
L
M

ul
ti
se

tT
yp

e
::
=

‘S
Q

L
M

ul
ti
se

tT
yp

e:
’<

da
ta

ty
pe

>
w

he
re

:
<

da
ta

ty
pe

>
is

a
na

m
e

of
a

pr
ed

efi
ne

d
da

ta
T

yp
e

234 Appendix B. PSM Metamodel
T
ab

le
B

.3
:

SQ
L

D
at

a
T

yp
es

D
at

a
T

y
p
e

D
es

cr
ip

ti
on

S
Q

L
R

ef
T

y
p
e

D
es

cr
ip

ti
on

:
A

R
E
F

re
pr

es
en

ts
a

re
fe

re
nc

e
to

an
in

st
an

ce
of

a
S
tr

u
ct

u
re

d
ty

p
e

st
or

ed
in

a
pa

rt
ic

ul
ar

T
y
p
ed

ta
b
le

.
A

n
in

st
an

ce
of

a
R

E
F

is
th

us
an

ob
je

ct
id

en
ti

fie
r

O
ID

.
A

re
fe

re
nc

e
ca

n
be

de
fin

ed
as

ch
ec

ke
d,

w
hi

ch
in

di
ca

te
s

th
at

th
e

ex
is

te
nc

e
of

an
ob

je
ct

re
fe

rr
ed

by
th

is
re

fe
re

nc
e

sh
ou

ld
be

ch
ec

ke
d

be
fo

re
in

se
rt

in
g

th
e

re
fe

re
nc

e
in

or
de

r
to

m
ai

nt
ai

n
re

fe
re

nt
ia

l
in

te
gr

it
y.

W
it

h
th

e
on

de
le

te
se

t
nu

ll
cl

au
se

fo
r

a
re

fe
re

nc
e

th
e

re
fe

re
nt

ia
l

in
te

gr
it
y

fo
r

de
le

te
d

re
fe

re
nc

ed
ob

je
ct

is
m

ai
nt

ai
ne

d.
T

he
sc

op
e

cl
au

se
de

te
rm

in
es

th
e

ty
pe

d
ta

bl
e

fr
om

w
hi

ch
th

e
ob

je
ct

s
ca

n
be

re
fe

rr
ed

by
th

e
re

fe
re

nc
e.

In
th

e
m

od
el

de
fin

ed
he

re
ea

ch
ob

je
ct

ty
pe

de
fin

ed
as

a
�

In
st

an
ti

ab
le

O
b
je

ct
T

yp
e�

co
rr

es
po

nd
s
to

ex
ac

tl
y

on
e
T

y
p
ed

T
ab

le
.

T
he

re
fo

re
th

e
sc

op
e

of
th

e
re

fe
re

nc
e

is
un

iq
ue

ly
id

en
ti

fie
d

th
ro

ug
h

th
e

na
m

e
of

th
e
�

In
st

an
ti

ab
le

O
b
je

ct
T

yp
e�

cl
as

s
w

hi
ch

it
re

fe
re

nc
es

.
T

he
at

tr
ib

ut
es

is
C

he
ck

ed
:b

oo
le

an
,
on

D
el

et
e:

bo
ol

ea
n

ar
e

th
er

ef
or

e
in

tr
od

uc
ed

fo
r

th
e

st
er

eo
ty

pe
�

R
E

F
�

.
�

SQ
L
R

ef
T

yp
e�

is
de

ri
ve

d
fr

om
�

SQ
L
C

om
pl

ex
D

at
aT

yp
e�

.
T

he
fo

llo
w

in
g

pr
op

er
ti

es
ar

e
sp

ec
ifi

ed
fo

r
th

is
st

er
eo

ty
pe

:
-

is
ch

ec
ke

d:
SQ

L
B

oo
le

an
T

yp
e

-
on

de
le

te
:

SQ
L
B

oo
le

an
T

yp
e

-
cl

as
s:

SQ
LV

ar
C

ha
rT

yp
e{

le
ng

th
:

20
}

N
ot

at
io

n
:

SQ
L
R
ef

T
yp

e
::
=

‘S
Q

L
R
ef

T
yp

e:
’<

cl
as

s>
‘{

is
ch

ec
ke

d=
’
<

bo
ol

va
lu

e>
‘,

on
de

le
te

=
’
<

bo
ol

va
lu

e>
‘}

’
w

he
re

:
<

bo
ol

va
lu

e>
::=

tr
ue

’
|f

al
se

’
<

cl
as

s>
is

a
na

m
e

of
a

pr
ed

efi
ne

d
In

st
an

ti
ab

le
O

bj
ec

tT
yp

e

S
Q

L
S
tr

u
ct

T
y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
St

ru
ct

T
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
C

om
pl

ex
D

at
aT

yp
e�

.
C

an
be

us
ed

to
de

fin
e

U
D

T
s

id
en

ti
fie

d
by

va
lu

e.
S
Q

L
D

om
ai

n
T

y
p
e

D
es

cr
ip

ti
on

:
�

SQ
L
D

om
ai

nT
yp

e�
is

de
ri

ve
d

fr
om

�
SQ

L
C

om
pl

ex
D

at
aT

yp
e�

.
C

an
be

us
ed

to
de

fin
e

se
ts

of
al

lo
w

ed
va

lu
es

,
si

m
ila

rl
y

to
en

um
er

at
io

n.

Appendix C

Large Versions of Selected Figures

235

236 Appendix C. Large Versions of Selected Figures

In
iti

al
 Im

ag
e

E
nh

an
ce

d
Im

ag
e

R
eg

io
n

Se
gm

en
ta

tio
n

Im
ag

e

O
ut

lin
e

Im
ag

eEc
ho

ca
rd

io
gr

am
M

ac
hi

ne
ry

 P
ic

tu
re

Ex
am

pl
e

1
Ex

am
pl

e
2

C
irc

le
C

om
po

ne
nt

s
S

qu
ar

e
C

om
po

ne
nt

s
P

ol
yg

on
al

C
on

to
ur

E
lli

ps
e/

C
irc

le
C

om
po

ne
nt

s
Li

ne
C

om
po

ne
nt

s

La
be

le
d

Sq
ua

re
s

P
ol

yg
on

al
La

be
ls

En
ha

nc
ed

M
ac

hi
ne

ry
 P

ic
tu

re
En

ha
nc

ed
Ec

ho
ca

rd
io

gr
am O
ut

lin
ed

 im
ag

e
Se

gm
en

te
d

Im
ag

e

To
 L

ab
el

ed
C

om
po

ne
nt

s
To

 L
ab

el
ed

C
om

po
ne

nt
s

Le
ft

Ve
nt

ric
le

R
ig

ht
 V

en
tr

ic
le

U
se

r’s
 V

ie
w

Pa
ne

l
C

on
tr

ol
 b

ut
on

B
ol

t

Id
en

tif
ie

d
Sq

ua
re

R

eg
io

ns
Id

en
tif

ie
d

C
on

to
ur

La
be

le
d

Fe
at

ur
e

Ph
as

e

Id
en

tif
ie

d
Fe

at
ur

e
Ph

as
e

Fe
at

ur
e

Im
ag

e
Ph

as
e

En
ha

nc
ed

 Im
ag

e
Ph

as
e

R
aw

 Im
ag

e
Ph

as
e

F
ig

ur
e

C
.1

:
M

O
O

D
S

im
ag

e
in

fo
rm

at
io

n
pr

oc
es

si
ng

sy
st

em
(b

as
ed

on
[G

M
Y

93
b]

)

Appendix C. Large Versions of Selected Figures 237

Figure C.2: Generic Image Database Model (from [IB05])

238 Appendix C. Large Versions of Selected Figures

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

<
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip

<
<

ap
pl

ic
at

io
n>

>
T

ec
h

n
ic

al
M

et
ad

at
a

<
<

ap
pl

ic
at

io
n>

>
D

u
b

lin
C

o
re

M
et

ad
at

a

<
<

ap
pl

ic
at

io
n>

>
C

o
lo

rD
es

cr
ip

to
r

<
<

ap
pl

ic
at

io
n>

>
T

ex
tu

re
D

es
cr

ip
to

r
<

<
ap

pl
ic

at
io

n>
>

S
h

ap
eD

es
cr

ip
to

r

<
<

ap
pl

ic
at

io
n>

>
T

o
p

o
lo

g
ic

al
R

el
at

io
n

sh
ip

<
<

ap
pl

ic
at

io
n>

>
D

ir
ec

ti
o

n
al

R
el

at
io

n
sh

ip

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

<
<

ap
pl

ic
at

io
n>

>
B

o
u

n
d

in
g

B
o

x

<
<

ap
pl

ic
at

io
n>

>
U

R
I

da
s

br
au

ch
e

ic
h

ni
ch

t

0.
.*

0.
.*

0.
.*

0.
.1

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*1

1.
.*

1

1

0.
.*

0.
.*

1

0.
.*1

<
<

ad
ap

t-
st

at
ic

>
>

<
<

ad
ap

t-
st

at
ic

>
>

<
<

ad
ap

t-
st

at
ic

>
>

<
<

ad
ap

t-
st

at
ic

>
>

<
<

ad
ap

t-
st

at
ic

>
>

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.3

:
M

ai
n

fr
am

ew
or

k
cl

as
se

s
an

d
ap

pl
ic

at
io

n
sp

ec
ifi

c
bl

ac
k

bo
x

cl
as

se
s

of
G

iA
C

oM
o-

IR
S

Appendix C. Large Versions of Selected Figures 239

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

<
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip

<
<

ap
pl

ic
at

io
n>

>
A

R
G

R
eg

io
n

<
<

ap
pl

ic
at

io
n>

>
A

R
G

R
el

at
io

n

<
<

ap
pl

ic
at

io
n>

>
A

R
G

A
tt

ri
b

u
te

<
<

ap
pl

ic
at

io
n>

>
A

R
G

Im
ag

e

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

ap
pl

ic
at

io
n>

>
A

R
G

U
R

I

bl
ab

la

0.
.*

1

0.
.*

1

1.
.*

1
0.

.*
1

0.
.*

1

1
1.

.*

0.
.*

1

0.
.*

1

0.
.*

0.
.*

0.
.*

1
co

nt
ai

ns

is
 d

es
cr

ib
ed

 b
y

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.4

:
M

od
el

in
g

A
tt

ri
bu

te
R

el
at

io
na

l
G

ra
ph

s
Im

ag
e

R
ep

re
se

nt
at

io
ns

240 Appendix C. Large Versions of Selected Figures

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

<
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

ap
pl

ic
at

io
n>

>
2D

S
tr

in
g

Im
ag

e
<

<
ap

pl
ic

at
io

n>
>

2D
S

tr
in

g
U

R
I

<
<

ap
pl

ic
at

io
n>

>
2D

S
tr

in
g

R
eg

io
n

<
<

ap
pl

ic
at

io
n>

>
2D

S
tr

in
g

R
el

at
io

n
sh

ip

<
<

ap
pl

ic
at

io
n>

>
2D

S
tr

in
g

 F
ea

tu
re

ha
llo

oo
oo

0.
.*

1
0.

.*

0.
.*

0.
.*

1

0.
.*

1

1.
.*

1

0.
.*

1

1
1.

.*

0.
.*

1

0.
.*

1

0.
.*

1

is
 d

es
cr

ib
ed

 b
y

co
nt

ai
ns

is
 d

es
cr

ib
ed

 b
y

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.5

:
M

od
el

in
g

2D
-S

tr
in

gs
Im

ag
e

R
ep

re
se

nt
at

io
n

Appendix C. Large Versions of Selected Figures 241

ha
lll

oo
oo

C
on

di
tio

n:
 {

E
xt

ra
ct

 F
ea

tu
re

s}
ex

te
ns

io
n

po
in

t:
E

xt
ra

ct
F

ea
tu

re
s

C
on

di
tio

n:
 {

S
eg

m
en

t I
m

ag
e}

ex
te

ns
io

n
po

in
t:

S
eg

m
en

tIm
ag

e
C

on
di

tio
n:

 {
M

et
ad

at
a}

ex
te

ns
io

n
po

in
t:

M
et

ad
at

a

C
on

di
tio

n:
 {

S
pa

tia
l R

el
at

io
ns

hi
ps

}
ex

te
ns

io
n

po
in

t:
S

pa
tia

lR
el

at
io

ns
hi

ps

C
on

di
tio

n:
 {

R
eg

io
n

Lo
ca

liz
at

io
n}

ex
te

ns
io

n
po

in
t:

R
eg

io
nL

oc
al

iz
at

io
n

<
<

E
xt

en
d>

>
In

se
rt

 R
eg

io
nL

oc
al

iz
at

io
n

<
<

E
xt

en
d>

>

<
<

E
xt

en
d>

>

<
<

E
xt

en
d>

>

<
<

In
cl

ud
e>

>

<
<

E
xt

en
d>

>

In
se

rt
 R

aw
Im

ag
eR

ep

In
se

rt
 M

et
ad

at
a

In
se

rt
 S

pa
tia

l R
el

at
io

ns
hi

p

In
se

rt
 F

ea
tu

re

In
se

rt
 R

eg
io

n

In
se

rt
 Im

ag
e

C
B

IR
 U

se
r

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.6

:
U

se
C

as
es

fo
r

th
e

In
se

rt
op

er
at

io
n

242 Appendix C. Large Versions of Selected Figures

F
ig

ur
e

C
.7

:
A

ct
iv

it
y

di
ag

ra
m

fo
r

th
e

In
se

rt
op

er
at

io
n

Appendix C. Large Versions of Selected Figures 243

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

+
st

or
eR

eg
io

n(
)

<
<

fr
am

ew
or

k>
>

R
eg

io
n

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

+
st

or
eR

el
at

io
ns

hi
p(

)

<
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip

+
ex

tr
ac

tF
ea

tu
re

()

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

E
xt

ra
ct

io
n

A
lg

o
ri

th
m

+
st

or
eM

et
ad

at
a(

)

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

+
st

or
eR

eg
io

nL
oc

al
iz

at
io

n(
)

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

+
st

or
eI

m
ag

e(
)

<
<

fr
am

ew
or

k>
>

Im
ag

eS
to

ra
g

eM
ec

h
an

is
m

+
st

or
eF

ea
tu

re
()

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

S
to

ra
g

eM
ec

h
an

is
m

+
st

or
eR

eg
io

n(
)

<
<

fr
am

ew
or

k>
>

R
eg

io
n

S
to

ra
g

eM
ec

h
an

is
m

+
st

or
eM

et
ad

at
a(

)

<
<

fr
am

ew
or

k>
>

M
et

ad
at

aS
to

ra
g

eM
ec

h
an

is
m

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

S
to

ra
g

eM
ec

h
an

is
m

+
st

or
eR

el
at

io
ns

hi
p(

)

<
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip
S

to
ra

g
eM

ec
h

an
is

m

+
st

or
eR

eg
io

nL
oc

al
iz

at
io

n(
)

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n
S

to
ra

g
eM

ec
h

an
is

m

jk
hf

sd
fh

iw
eo

hf

0.
.*

0.
.*

0.
.*

1

0.
.*

1
1

0.
.*

1.
.*

1

is
 d

es
cr

ib
ed

 b
y

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.8

:
In

te
gr

at
io

n
of

th
e

in
se

rt
fu

nc
ti

on
al

it
y

in
th

e
fr

am
ew

or
k

m
od

el

244 Appendix C. Large Versions of Selected Figures

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

+
st

or
eI

m
ag

e(
)

<
<

fr
am

ew
or

k>
>

Im
ag

eS
to

ra
g

eM
ec

h
an

is
m

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

S
to

ra
g

eM
ec

h
an

is
m

+
se

gm
en

tIm
ag

e(
)

<
<

fr
am

ew
or

k>
>

S
eg

m
en

ta
ti

o
n

A
lg

o
ri

th
m

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

<
<

ap
pl

ic
at

io
n>

>
A

p
p

Im
ag

e

+
st

or
eI

m
ag

e(
)

<
<

ap
pl

ic
at

io
n>

>
A

p
p

Im
ag

eS
to

ra
g

eM
ec

h
an

is
m

+
st

or
eI

m
ag

e(
)<
<

ap
pl

ic
at

io
n>

>
A

p
p

Im
ag

eD
B

2S
to

ra
g

eM
ec

h
an

is
m

+
st

or
eI

m
ag

e(
)<
<

ap
pl

ic
at

io
n>

>
A

p
p

Im
ag

eO
ra

cl
eS

to
ra

g
eM

ec
h

an
is

m

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
U

R
I

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
U

R
IS

to
ra

g
eM

ec
h

an
is

m

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
U

R
ID

B
2S

to
ra

g
eM

ec
h

an
is

m

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
U

R
IO

ra
cl

eS
to

ra
g

eM
ec

h
an

is
m

rg
re

ge
rg

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.9

:
M

od
el

in
g

fu
nc

ti
on

al
it
y

w
it

h
th

e
G

iA
C

oM
o-

IR
S

fr
am

ew
or

k

Appendix C. Large Versions of Selected Figures 245

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
B

yF
ea

tu
re

sW
ith

A
no

th
er

R
eg

io
n(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()
 :

C
B

IR
S

F
lo

at
T

yp
e

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

+
st

or
eR

el
at

io
ns

hi
p(

)

<
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip

+
se

gm
en

tIm
ag

e(
)

<
<

fr
am

ew
or

k>
>

S
eg

m
en

ta
ti

o
n

A
lg

o
ri

th
m

+
ge

tD
is

ta
nc

e(
)

: C
B

IR
S

F
lo

at
T

yp
e

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

D
is

ta
n

ce
M

et
ri

c

+
ge

tA
gg

rF
ea

tu
re

D
is

ta
nc

e(
)

: C
B

IR
S

F
lo

at
T

yp
e

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

D
is

ta
n

ce
C

o
m

b
in

er

+
ge

tA
gg

rR
eg

io
nD

is
ta

nc
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

D
is

ta
n

ce
C

o
m

b
in

er

+
st

or
eR

eg
io

nL
oc

al
iz

at
io

n(
)

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

+
ex

tr
ac

tF
ea

tu
re

()

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

E
xt

ra
ct

io
n

A
lg

o
ri

th
m

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

+
st

or
eM

et
ad

at
a(

)

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

ef
he

fh
ew

ls
nf

w
ök

ljw

0.
.*

1

1.
.*

1

0.
.*

1
0.

.*
0.

.*

1

0.
.*

is
 d

es
cr

ib
ed

 b
y

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.1

0:
C

la
ss

di
ag

ra
m

of
th

e
“i

m
ag

e
in

se
rt

io
n”

an
d

“q
ue

ry
by

lo
ca

l
fe

at
ur

es
”

cl
as

se
s

an
d

m
et

ho
ds

246 Appendix C. Large Versions of Selected Figures

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

D
M

M
o

d
el

<
<

fr
am

ew
or

k>
>

T
es

tS
ta

ti
st

ic
s

+
C

la
ss

 :
C

B
IR

S
S

tr
in

gT
yp

e

<
<

fr
am

ew
or

k>
>

T
ra

in
in

g
In

st
an

ce

+
C

la
ss

 :
C

B
IR

S
S

tr
in

gT
yp

e

<
<

fr
am

ew
or

k>
>

T
es

tI
n

st
an

ce

+
M

od
el

C
la

ss
 :

C
B

IR
S

S
tr

in
gT

yp
e

+
M

od
el

O
pt

io
ns

 :
C

B
IR

S
S

tr
in

gT
yp

e
+

C
om

m
en

t :
 C

B
IR

S
S

tr
in

gT
yp

e
+

B
ui

lt
: C

B
IR

S
D

at
eT

yp
e

+
C

re
at

ed
 :

C
B

IR
S

D
at

eT
yp

e
+

T
es

te
d

: C
B

IR
S

D
at

eT
yp

e
+

A
cc

ur
ac

y
: C

B
IR

S
F

lo
at

T
yp

e

+
cl

as
si

fy
()

 :
C

B
IR

S
S

tr
in

gT
yp

e
+

ad
dT

ra
in

in
gI

ns
ta

nc
e(

)
+

ad
dT

es
tIn

st
an

ce
()

+
bu

ild
M

od
el

()
 :

C
B

IR
S

B
oo

le
an

T
yp

e
+

dr
op

M
od

el
()

 :
C

B
IR

S
B

oo
le

an
T

yp
e

+
re

se
tM

od
el

()
 :

C
B

IR
S

B
oo

le
an

T
yp

e
+

te
st

M
od

el
()

 :
C

B
IR

S
B

oo
le

an
T

yp
e

<
<

fr
am

ew
or

k>
>

C
B

IR
C

la
ss

if
ie

r

kj
hf

kj
es

hf
he

w

1

0.
.*

1

0.
.1

0.
.*

1

0.
.*

1

1

0.
.1

1

0.
.*

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.1

1:
G

en
er

ic
cl

as
se

s
fo

r
th

e
cl

as
si

fic
at

io
n

of
im

ag
es

Appendix C. Large Versions of Selected Figures 247

+
Im

ag
eI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
se

gm
en

tIm
ag

e(
)

+
st

or
eI

m
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

eN
o

te
Im

ag
e

+
R

aw
Im

ag
eI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
Im

ag
eD

at
a

: C
B

IR
S

B
in

ar
yT

yp
e

+
re

si
ze

Im
ag

e(
)

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

eN
o

te
R

aw
Im

ag
e

+
se

gm
en

tIm
ag

e(
)

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
S

eg
m

en
ta

ti
o

n
A

lg
o

ri
th

m
1

dg
df

gd
fg

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.1

2:
E

xa
m

pl
e

fo
r

th
e

de
pl

oy
m

en
t

an
no

ta
ti

on

248 Appendix C. Large Versions of Selected Figures

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

<
<

fr
am

ew
or

k>
>

R
eg

io
n <
<

fr
am

ew
or

k>
>

R
el

at
io

n
sh

ip

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

+
Im

ag
eI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
se

gm
en

tIm
ag

e(
)

+
st

or
eI

m
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
Im

ag
e

+
R

aw
Im

ag
eI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
Im

ag
eD

at
a

: C
B

IR
S

B
in

ar
yT

yp
e

+
re

si
ze

Im
ag

e(
)

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

eN
o

te
R

aw
Im

ag
e

+
T

hu
m

bn
ai

lID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
Im

ag
eD

at
a

: C
B

IR
S

B
in

ar
yT

yp
e

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
T

h
u

m
b

n
ai

l

+
T

ec
hD

at
aI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
D

at
eC

re
at

ed
 :

C
B

IR
S

D
at

eT
yp

e
+

B
its

P
er

P
ix

el
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

T
ec

h
n

ic
al

M
et

ad
at

a

+
Li

br
ar

yC
od

e
: C

B
IR

S
S

tr
in

gT
yp

e
+

S
he

lfM
ar

k
: C

B
IR

S
S

tr
in

gT
yp

e
+

P
ag

eN
um

be
r

: C
B

IR
S

S
tr

in
gT

yp
e

+
st

or
eM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

L
ib

ra
ry

M
et

ad
at

a

+
R

O
IID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

R
ot

at
io

n
: C

B
IR

S
F

lo
at

T
yp

e
+

T
hr

es
ho

ld
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
S

ta
ve

sI
nt

er
sp

ac
e

: C
B

IR
S

In
te

ge
rT

yp
e

+
Is

M
an

ua
lly

D
ef

in
ed

 :
C

B
IR

S
B

oo
le

an
T

yp
e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
B

yF
ea

tu
re

sW
ith

A
no

th
er

R
eg

io
n(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

R
O

I

+
M

us
ic

O
bj

ec
tID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

U
pp

er
Le

ft
: C

B
IR

S
P

oi
nt

T
yp

e
+

Lo
w

er
R

ig
ht

 :
C

B
IR

S
P

oi
nt

T
yp

e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
B

yF
ea

tu
re

sW
ith

A
no

th
er

R
eg

io
n(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

M
u

si
cO

b
je

ct

+
Lo

ca
liz

at
io

nI
D

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

U
pp

er
Le

ft
: C

B
IR

S
P

oi
nt

T
yp

e
+

Lo
w

er
R

ig
ht

 :
C

B
IR

S
P

oi
nt

T
yp

e

+
st

or
eR

eg
io

nL
oc

al
iz

ai
on

()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

R
O

IL
o

ca
liz

at
io

n

+
di

re
ct

io
n

: e
nu

m
 {

le
ft,

 r
ig

ht
, u

p,
 d

ow
n}

+
st

or
eR

el
at

io
ns

hi
p(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

D
ir

ec
ti

o
n

al
R

el
at

io
n

sh
ip

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()
 :

C
B

IR
S

F
lo

at
T

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

S
h

ap
eD

es
cr

ip
to

r

+
R

ot
at

io
n

: C
B

IR
S

F
lo

at
T

yp
e

+
F

la
gC

ou
nt

 :
C

B
IR

S
In

te
ge

rT
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

N
o

te
S

te
m

+
R

ot
at

io
n

: C
B

IR
S

F
lo

at
T

yp
e

+
Is

F
ill

ed
 :

C
B

IR
S

B
oo

le
an

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

N
o

te
H

ea
d

+
T

yp
e

: C
B

IR
S

E
nu

m
T

yp
e

{F
, G

, C
}

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

C
le

f

0.
.*

0.
.*

0.
.*

0.
.1

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1

1.
.*

1

1

0.
.*

0.
.*

1

re
la

te
d

to

is
 d

es
cr

ib
ed

 b
y

re
la

te
d

to

co
nt

ai
ns

co
nt

ai
ns

ha
s

lo
ca

liz
at

io
n

ha
s

m
et

ad
at

a

ha
s

m
et

ad
at

a

ha
s

ra
w

im
ag

er
ep

ha
s

ra
w

im
ag

er
ep

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.1

3:
eN

ot
eH

is
to

ry
C

B
IR

P
IM

Appendix C. Large Versions of Selected Figures 249

+
C

la
ss

 :
C

B
IR

S
S

tr
in

gT
yp

e

<
<

fr
am

ew
or

k>
>

T
es

tI
n

st
an

ce
<

<
fr

am
ew

or
k>

>
S

ti
llI

m
ag

e

+
C

la
ss

 :
C

B
IR

S
S

tr
in

gT
yp

e

<
<

fr
am

ew
or

k>
>

T
ra

in
in

g
In

st
an

ce

<
<

fr
am

ew
or

k>
>

D
M

M
o

d
el

<
<

fr
am

ew
or

k>
>

C
B

IR
C

la
ss

if
ie

r
<

<
fr

am
ew

or
k>

>
T

es
tS

ta
ti

st
ic

s

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
Im

ag
e

+
eN

ot
eT

es
tIn

st
an

ce
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
T

es
tI

n
st

an
ce

+
eN

ot
eT

ra
in

In
st

an
ce

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
T

ra
in

In
st

an
ce

+
eN

ot
eT

es
tS

ta
tis

tic
sI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
T

es
tS

ta
ti

st
ic

s

+
eN

ot
eD

M
M

od
el

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

eN
o

te
D

M
M

o
d

el

+
LM

T
C

la
ss

ifi
er

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
cl

as
si

fy
()

+
ad

dT
ra

in
in

gI
ns

ta
nc

e(
)

+
ad

dT
es

tIn
st

an
ce

()
+

bu
ild

M
od

el
()

+
dr

op
M

od
el

()
+

re
se

tM
od

el
()

+
te

st
M

od
el

()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

L
M

T
C

la
ss

if
ie

r

df
sd

fs
ef

es
f

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.1

4:
eN

ot
eH

is
to

ry
C

B
IR

P
IM

-
da

ta
m

in
in

g
pa

rt

250 Appendix C. Large Versions of Selected Figures

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

<
<

fr
am

ew
or

k>
>

R
eg

io
n

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

+
2D

G
el

Im
ag

eI
D

 :
C

B
IR

S
In

te
ge

rT
yp

e

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

2D
G

el
Im

ag
e

+
T

ec
hD

at
aI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
D

at
eC

re
at

ed
 :

C
B

IR
S

D
at

eT
yp

e
+

B
its

P
er

P
ix

el
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

T
ec

h
n

ic
al

M
et

ad
at

a

+
E

xp
er

im
en

tID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
E

xp
D

at
e

: C
B

IR
S

D
at

eT
yp

e

+
st

or
eM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

L
ab

M
et

ad
at

a

+
st

or
eR

aw
Im

ag
eR

ep
()

+
sc

al
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

2D
G

el
R

aw
Im

ag
eR

ep

+
P

ro
te

in
N

am
e

: C
B

IR
S

S
tr

in
gT

yp
e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
W

ith
A

no
th

er
R

eg
io

n(
)

: C
B

IR
S

F
lo

at
T

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
ro

te
in

S
p

o
t

+
X

Y
C

oo
rd

in
at

es
 :

C
B

IR
S

P
oi

nt
T

yp
e

+
st

or
eR

eg
io

nL
oc

al
iz

at
io

n(
)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

C
en

tr
o

id

+
S

po
tIn

te
ns

ity
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()
 :

C
B

IR
S

F
lo

at
T

yp
e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

S
p

o
tI

n
te

n
si

ty

er
gw

er
gf

te
rg

tg
er

10.
.1

1

1

0.
.*

0.
.*

0.
.*

1

1

0.
.*

0.
.*

1

0.
.*

1

0.
.*

0.
.1

1

0.
.1

1

1

1.
.*

1

1

1.
.*

is
 d

es
cr

ib
ed

 b
y

ha
s

ce
nt

ro
id

co
nt

ai
ns

 p
ro

te
in

 s
po

ts

ha
s

te
ch

m
et

ad
at

a
ha

s
la

bm
et

ad
at

a
ha

s
ra

w
im

ag
er

ep

co
nt

ai
ns

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.1

5:
C

B
IR

S
P

IM
fo

r
2D

-g
el

el
ec

tr
op

ho
re

si
s

im
ag

es

Appendix C. Large Versions of Selected Figures 251

<
<

fr
am

ew
or

k>
>

S
ti

llI
m

ag
e

<
<

fr
am

ew
or

k>
>

R
aw

Im
ag

eR
ep

<
<

fr
am

ew
or

k>
>

R
eg

io
n

<
<

fr
am

ew
or

k>
>

R
eg

io
n

L
o

ca
liz

at
io

n

<
<

fr
am

ew
or

k>
>

F
ea

tu
re

<
<

fr
am

ew
or

k>
>

M
et

ad
at

a

+
P

ho
to

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eI

m
ag

e(
)

+
se

gm
en

tIm
ag

e(
)

+
co

m
pa

re
B

yL
oc

al
F

ea
tu

re
sW

ith
A

no
th

er
Im

ag
e(

)
: C

B
IR

S
F

lo
at

T
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

+
T

ec
hD

at
aI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
D

at
eC

re
at

ed
 :

C
B

IR
S

D
at

eT
yp

e
+

B
its

P
er

P
ix

el
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
ap

pl
ic

at
io

n-
lo

gi
c>

>
<

<
pe

rs
is

te
nt

>
>

T
ec

h
n

ic
al

M
et

ad
at

a

+
E

X
IF

D
at

aI
D

 :
C

B
IR

S
In

te
ge

rT
yp

e
-A

pe
rt

ur
e

: C
B

IR
S

F
lo

at
T

yp
e

+
F

la
sh

 :
C

B
IR

S
B

oo
le

an
T

yp
e

+
G

P
S

C
oo

rd
 :

C
B

IR
S

G
P

S
T

yp
e

+
st

or
eM

et
ad

at
a(

)
+

ge
tL

ig
ht

C
on

di
tio

ns
()

 :
C

B
IR

S
F

lo
at

T
yp

e
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

E
X

IF
D

at
a

+
P

ho
to

R
eg

io
nI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eR

eg
io

n(
)

+
co

m
pa

re
B

yF
ea

tu
re

sW
ith

A
no

th
er

R
eg

io
n(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

R
eg

io
n

+
P

ho
to

R
eg

io
nL

oc
al

iz
at

io
nI

D
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
st

or
eR

eg
io

nL
oc

al
iz

at
io

n(
)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

R
eg

io
n

L
o

ca
liz

at
io

n

+
P

ho
to

R
aw

Im
ag

eR
ep

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
Im

ag
eD

at
a

: C
B

IR
S

B
in

ar
yT

yp
e

+
st

or
eR

aw
Im

ag
eR

ep
()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

P
h

o
to

R
aw

Im
ag

eR
ep

+
P

ho
to

H
is

to
gr

am
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

P
ho

to
H

is
to

gr
am

 :
C

B
IR

S
A

rr
ay

T
yp

e[
4]

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()
 :

C
B

IR
S

F
lo

at
T

yp
e

+
ge

tS
ha

rp
ne

ss
()

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

ge
tE

xp
os

ur
e(

)
: C

B
IR

S
In

te
ge

rT
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

H
is

to
g

ra
m

+
P

ho
to

E
dg

es
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e

+
st

or
eF

ea
tu

re
()

+
ex

tr
ac

tF
ea

tu
re

()
+

co
m

pa
re

W
ith

A
no

th
er

F
ea

tu
re

()

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

P
h

o
to

E
d

g
es

+
P

ho
to

F
ac

es
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

P
h

o
to

F
ac

es

+
C

al
en

de
rE

ve
nt

ID
 :

C
B

IR
S

In
te

ge
rT

yp
e

+
E

ve
nt

N
am

e
: C

B
IR

S
S

tr
in

gT
yp

e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

C
al

en
d

er
E

ve
n

t

+
E

xt
re

na
lW

eb
In

fo
ID

 :
C

B
IR

S
In

te
ge

rT
yp

e
+

E
xt

er
na

lW
eb

In
fo

 :
C

B
IR

S
S

tr
in

gT
yp

e

+
st

or
eM

et
ad

at
a(

)
+

ex
tr

ac
tM

et
ad

at
a(

)

<
<

ap
pl

ic
at

io
n>

>
<

<
pe

rs
is

te
nt

>
>

<
<

ap
pl

ic
at

io
n-

lo
gi

c>
>

E
xt

er
n

al
W

eb
In

fo

rg
re

ga
er

V
is

ua
l P

ar
ad

ig
m

 fo
r

U
M

L
S

ta
nd

ar
d

E
di

tio
n(

U
ni

ve
rs

ity
 o

f R
os

to
ck

)

F
ig

ur
e

C
.1

6:
C

B
IR

S
P

IM
fo

r
a

ph
ot

o
an

no
ta

ti
on

ap
pl

ic
at

io
n

252 Appendix C. Large Versions of Selected Figures

+Class : CBIRSStringType

<<framework>>
TestInstance

<<framework>>
StillImage

<<framework>>
DMModel

<<framework>>
CBIRClassifier

<<framework>>
TestStatistics

+Class : CBIRSStringType

<<framework>>
TrainingInstance

<<application>>
<<persistent>>

<<application-logic>>
Photo

+InOutDoorClassifierID : CBIRSIntegerType

+classify()
+addTrainingInstance()
+addTestInstance()
+buildModel()
+dropModel()
+resetModel()
+testModel()

<<application>>
<<persistent>>

<<application-logic>>
InOutdoorClassifier

+InOutDoorModelID : CBIRSIntegerType

<<application>>
<<persistent>>

InOutDoorModel

+InOutDoorTestStatisticsID : CBIRSIntegerType

<<application>>
<<persistent>>

InOutDoorTestStatistics

+InOutDoorTrainingInstID : CBIRSIntegerType
+Class : CBIRSStringType

<<application>>
<<persistent>>

InOutDoorTrainingInst

+InOutDoortestInstID : CBIRSIntegerType
+Class : CBIRSStringType

<<application>>
<<persistent>>

InOutDoorTestInst

ewrfwerwe

Visual Paradigm for UML Standard Edition(University of Rostock)

Figure C.17: CBIRS PIM for a photo annotation application - data mining part

Appendix D

Screenshots of the Image Database
Generator Plug-In

Figure D.1: Project Wizard for creating an IDBG project

253

254 Appendix D. Screenshots of the Image Database Generator Plug-In

Figure D.2: Modeling environment and Generation Wizards

Appendix D. Screenshots of the Image Database Generator Plug-In 255

Figure D.3: Transformation options dialog

	Abstract
	Kurzfassung
	Acknowledgments
	Table of Contents
	Introduction
	Motivation
	Underlying Problems
	Existing Solutions for CBIRS Development Support
	Software Frameworks for CBIRSs
	Alternative Support for the Development of CBIRSs
	Conclusions

	Employing the MDSD Paradigm for the Development of CBIRSs
	Modeling Techniques
	Generation Techniques

	Structure of the Thesis

	Basic Principles and State of the Art of Used Technologies
	CBIR Systems - State of the Art
	CBIR Systems Architecture
	Implementation Paradigms for CBIR Systems
	Building CBIR Systems on Top of Extendable DBMSs
	Summary of CBIRS Technologies

	Model-Driven Software Development - Basic Principles
	Characteristics and Aims
	Models for Model-Driven Software Development
	Model Transformations and Code Generation
	Summary of MDSD Technology

	Requirements Analysis and Conceptual Design
	Domain-Specific Modeling for CBIRSs
	Requirements for a Domain-Specific Model for CBIRSs
	Requirements Towards the Quality of the Model
	Evaluation of Existing Conceptual Image Models
	Conclusions

	Transforming the CBIRS PIM to a PSM
	Choosing a Software Architecture and an Implementation Platform for CBIRSs
	A Platform Specific Model for ORDBMSs
	Model-to-Model Transformation

	Summary

	A Generic and Adaptable Conceptual Model for Image Retrieval
	The Modeling Approach
	Framework Model
	UML for Frameworks

	Modeling the Data Structure of CBIRS Components
	StillImage
	Metadata
	Region
	Feature
	Key Attributes and OIDs
	Application-specific Classes
	CBIRS Data Types
	Instantiating the Framework

	Modeling Functionality of CBIRS Components
	Updates
	Queries
	Modeling Retrieval Functionality
	Implicit Object Behavior
	Instantiating the Framework

	Summary

	Mapping Rules for Generating CBIRSs on Top of ORDBMSs
	Modeling Deployment
	Meta Models
	PIM Meta Model
	PSM Meta Model

	Mapping PIM onto PSM
	Class
	Associations
	Dependency
	Generalization, GeneralizationSet
	Interface
	Package
	DataType
	Applying the Mapping Rules

	Quality of the Transformation
	Direct mappings
	Not-directly-mappable concepts
	Multiple mapping possibilities
	Mappings resulting in the same PSM Concept
	Implementation specific concepts

	Implementation of an Image Database Generator
	Summary

	Evaluation
	Test Case eNoteHistory
	Requirements Analysis
	Modeling the eNoteHistory CBIRS

	Test Case 2D-Gel Electrophoresis Images
	Requirements Analysis
	Modeling the 2D-Gel Electrophoresis CBIRS

	Test Case Photo Album
	Requirements Analysis
	Modeling the Image Annotation Application

	Estimating the Gain From the Result of the Transformation
	Mapping Data Structure
	Mapping Functionality

	Summary

	Conclusions and Prospective Research Directions
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix
	PIM Metamodel
	PSM Metamodel
	Large Versions of Selected Figures
	Screenshots of the Image Database Generator Plug-In

