Synthesis of Functionalized Biaryls, Benzophenones, Phenols, Fluorenones, Fluoroarenes, and Chloroarenes based on formal [3+3]
 Cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes and 1,3,5-tris(silyloxy)-1,3,5-hexatrienes.

Inauguraldissertation

Zur
Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät

Rostock 25-03-2009

```
urn:nbn:de:gbv:28-diss2009-0116-0
```


Dekan :Prof. Dr. Hendrik Schubert.
 \qquad
 1. Gutachter:Prof. Dr. Peter Langer Institue of Chemistry University of Rostock.

2. Gutachter :Prof. Dr. Torsten Linker Institute of Chemistry University of Potsdam

Tag der Promotion : $16^{\text {th }}$ June 2009 \qquad

To Ammi

Acknowledgement

With genuine humility, I acknowledge Allah our Creator who bestowed me the shower of His blessings and selected me in the Ummah of Holy Prophet Muhammad (S.A.W) Without Allah's help this humble writing of mine would have never become a reality.
I pay my gratitude to my Supervisor Prof. Dr. Peter Langer, who has become a candle in darkness for me, due to his constant guidance, encouragement, support and valuable discussions I have become able to surpass this tedious barrier.
Special thanks are due to my special friends Dr. Benard Juma, Dr. Muhammad Abid Rashid, Dr. Stefanie Reim and Qamar Ali (H.E.J Research Institute of Chemistry, Karachi Pakistan) for their help, support, teaching and guidance in different matters.

The unforgettable company and gossips during free time in Rostock with Dr. Nasir Rasool, Kamran Ali, Muhammad Nawaz and Muhammad Farooq Ibad are gratefully acknowledged.
I will not forget the help of Muhammad Sharif Akbar and Sebastian Schaffer during my early days in Germany, so I acknowledge them.
I am thankful to the past and present members of group Dr. Gerson Mroß, Tiana Thrabardt, Jenifer Heffner, Mathias Lau, Ihsanullah Marwat, Jope, Munawar Hussain, Majid Riahi, Dr. Sven Rotzol, Muhammad Imran, Dr. Stefanie Libnow, Renske Klassen, Rasheed Ahmad Khera, Olumide Fatunsin, Imran Malik, Obaid-ur-rehman Abid, Rasheed Ahmad, Inam Iqbal and Tung Dang for their nice behavior and help in need. This page will not complete, if I will not acknowledge Prof Dr. Helmut Reinke and Dr. Alexander Villinger for their help and support in X-ray measurements of crystalline compounds.

NMR, Mass, IR and E.A sections of University of Rostock have equal right to be acknowledged.

I have dedicated this little effort of my life to my mother (Late), due to her prayers I am able to write these words. I have great debt on my life due to tremendous sacrifices of my father for my better future.

Contents

Abbreviations 1
Summary 2

1. Synthesis of Polyketide-Type Phenols by Domino 'Michael / Retro-Michael / Aldol' Reactions of 3-Formylchromones with Silyl Enol Ethers derived from Ethyl 3,5- Dioxohexanoate 4
1.1 Introduction 4
1.2 Results and Discussion 4
1.3 Conclusion 11
2. Regioselective Synthesis of Functionalized Biaryls based on the First [3+3] Cyclocondensations of 4-Aryl-1,3-bis(trimethylsilyloxy)-1,3-butadienes. 12
2.1 Introduction 12
2.2 Results and Discussion 13
2.3 Conclusion 21
3. Synthesis of Functionalized Fluorenones based on the Combination of Formal
[3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with Intramolecular
Friedel-Crafts-Acylations. 22
3.1 Introduction 22
3.2 Results and Discussion 24
3.3 Conclusion 26
4. Synthesis and Reactions of the First Fluorine-Containing 1,3-
Bis(trimethylsilyloxy) -1,3-butadienes. 27
4.1 Introduction 28
4.2 Results and Discussion 24
4.3 Conclusion 33
4.4 Summary 34
5. Synthesis and Reactions of the First 2-Chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienes:35
5.1 Introduction 35
5.2 Results and Discussion 35
5.3 Conclusion 42
5.4 Summary 43
6. Synthesis of Chlorinated Arenes and Hetarenes based on One-Pot
Cyclocondensations of 1-Alkoxy-4-chloro-1,3-bis(trimethylsilyloxy) -1,3-butadienes.44
6.1 Introduction 44
6.2 Results and Discussion 45
6.3 Conclusion 54
6.4 Summary 55
7. Synthesis of 2,6-Dioxo-1,2,3,4,5,6-hexahydroindoles by Acid-Catalyzed
Cyclization of Acetal-Protected (2,4-Dioxocyclohex-1-yl)acetamides and theirTransformation into 5,8,9,10-Tetrahydro-6H-indolo[2,1-a] isoquinolin -9- ones. 56
7.1 Introduction 56
7.2 Results and Discussion 57
7.3 Conclusion 67
8. Experimental Section 68
8.1 General: Equipments, chemicals and work techniques 68
8.2 Procedures and spectroscopic data 70
References 128
Data of Crystals from X-ray Measurements 139
Curriculum Vitae 158
Declaration 162

	Abbreviations
Ar	Aromatic
$n \mathrm{BuLi}$	n-Butylithium
DEPT	Distortionless Enhancement by Polarisation
	Transfer
EI	Electronic Impact
ESI	Electrospray Ionization
EtOAc	Ethylacetate
HRMS	High Resolution Mass Spectroscopy
IR	Infrared Spectroscopy
LDA	Lithium Diisopropylamide
MS	Mass Spectrometry
Ph	Phenyl
NEt_{3}	Triethylamine
NMR	Nuclear Magnetic Resonance
HMQC	Heteronuclear Multiple Quantum Coherence
HMBC	Heteronuclear Multiple Bond Correlation
COSY	Correlated Spectroscopy
NOESY	Nuclear Overhauser and Exchange Spectroscopy
$\mathrm{Me}_{3} \mathrm{SiOTf}$	Trimethylsilyl-trifluoromethanesulfonate
$\mathrm{Me}_{3} \mathrm{SiCl}$	Trimethylsilylchloride
mp .	Melting Point
TFA	Trifluoroacetic Acid
Tf2O	Trifluoromethanesulfonic Anhydride
THF	Tetrahydrofurane
TLC	Thin Layer Chromatography
TMS	Trimethylsilane
UV	Ultraviolet Spectroscopy
TfOH	Trifluoromethanesulfonic Acid

Summary

A significant part of this dissertation has recently been published (see list of publications at the end). The work in this dissertation is mainly concerned with Synthesis of functionalized biaryls, benzophenones, phenols, fluorenones, fluoroarenes, and chloroarenes based on formal [3+3] cyclocondensations of 1,3-bis(silyloxy)-1,3butadienes and 1,3,5-tris(silyloxy)-1,3,5-hexatrienes.

1. This Chapter contains the synthesis of Highly functionalized polyketide-type phenols (5a-j) and (6a-j) which were prepared by domino 'Michael / retro-Michael / aldol' reactions of 3 -formylchromones ($\mathbf{4 a - j}$) with 1-ethoxy-1,3,5-tris(trimethylsilyloxy)-1,3,5-hexatriene (2) and its synthetic precursor, ethyl 3,5-bis(trimethylsilyloxy)-2,4hexadienoate (3).
2. This cahapter includes the synthesis of Sterically encumbered biaryls (11a-e) and (13a-j) which were regioselectively prepared based on formal [3+3] cyclocondensations of novel 4-aryl-1,3-bis(trimethylsilyloxy)-1,3-dienes.
3. This chapter contains the synthesis of Functionalized fluorenones (24) which were efficiently prepared in four steps. 1-hydroxyfluorenones (24) were prepared by [3+3] cyclization of 3-aryl-3-(silyloxy)-2-en-1-ones with 1,3-bis(silyloxy)buta-1,3-dienes and subsequent intramolecular Friedel-Crafts acylation of the 6-arylsalicylates (23).
4. This chapter contains the reactions of first fluorine containing 1,3-bis(silyl enol ether) 27, the reactions of 27 with epichlohydrin, 2,3butenoxide, cyanochromones and phathaloyl dichloride resulted in several novel fluorinated compounds 28, 32, 33 and 35a-e which are not readily available by other methods.
5. This chapter is concerned with reactions of 2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienes (38) with epibromo and epichlorohydrin, 2,3butenoxide, cyanochromones and DMAD allow a convenient synthesis of chlorinated molecules such as 47, 48, 51a-d, and $\mathbf{5 2}$ which are not readily available by other methods.
6. This chapter includes the synthesis of chlorinated biaryls (62a-f), azaxanthones (60a-d), benzotropones (66), and isobenzofurans which were prepared by one-pot cyclizations 1 -alkoxy-4-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienes (55a-b) with various dielectrophiles.
7. Acetal-protected (2,4-dioxocyclohex-1-yl)-acetic acids (73a,b) were prepared by allylation of dilithiated 1,3-cyclohexane-1,3-diones ($67 \mathbf{a}, \mathbf{b}$), protection of the carbonyl groups and oxidation of the alkene moiety. Their reaction with amines afforded the corresponding amides (76a-v) which were transformed, by acid-catalyzed cyclization, into various 2,6-dioxo-1,2,3,4,5,6-hexahydroindoles (77a-v). The reaction of the corresponding amides (76a-v) with triflic acid resulted in the formation of novel 5,8,9,10-tetrahydro-6H-indolo [2,1-a]isoquinolin-9-ones (80a-c).

1. Synthesis of Polyketide-Type Phenols by Domino 'Michael / Retro-Michael / Aldol' Reactions of 3-Formylchromones with Silyl Enol Ethers derived from Ethyl 3,5-Dioxohexanoate.

1.1 Introduction

In recent years, several one-pot cyclization reactions of 1,3-bis(silyloxy)-1,3-butadienes, such as $\mathbf{A},{ }^{1}$ have been reported (Scheme 1). This includes, for example, cyclizations with oxalyl chloride to give butenolides, ${ }^{2}$ formal [3+3] cyclocondensations to give salicylates, ${ }^{3}$ syntheses of 2-alkylidenetetrahydrofurans, ${ }^{4}$ reactions with iminium salts, ${ }^{5}$ and domino reactions with benzopyrylium triflates. ${ }^{6}$ In contrast, reactions of $1,3,5-$ tris(silyloxy)-1,3,5hexatrienes, such as B, have only scarcely been reported to date. Trienes B contain three rather than only two masked carbonyl groups. Chan and coworkers studied their reaction with acid chlorides to give polyketides which spontaneously underwent an intramolecular aldol reaction to give hydroxylated arenes. ${ }^{7}$ The cyclization of \mathbf{B} with oxalyl chloride has also been reported. ${ }^{8}$ Recently, we developed a new synthesis of 4-(2hydroxybenzoyl)phenols by domino reaction of 1,3-bis(silyloxy)-1,3-butadienes with 3formylchromones. ${ }^{9}$ Herein, we report for the first time the application of this methodology to 1 -ethoxy-1,3,5-tris(trimethylsilyloxy)-1,3,5-hexatriene and its synthetic precursor, ethyl 3,5-bis(trimethylsilyloxy)-2,4-hexadienoate. The domino reactions reported herein provide a convenient access to highly functionalized polyketide-type phenols which are not readily available by other methods.

A

Scheme 1: Structure of 1,3-bis(silyloxy)-1,3-butadiene A and of 1,3,5-tris(silyloxy)-1,3,5-hexatriene B.

1.2 Results and Discussion

1,3,5-Tris(silyloxy)-1,3,5-hexatriene 3 was prepared, following the procedure reported for the synthesis of the methoxy derivative, ${ }^{7}$ in two steps (Scheme 1). The silylation of
ethyl 3,5-dioxohexanoate (1) gave ethyl 3,5-bis(trimethylsilyloxy)-2,4-hexadienoate (2). Deprotonation of the latter with LDA and subsequent addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ gave $\mathbf{3}$ in 80% overall yield. The reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadiene 2 with 3formylchromones 4a-j afforded the functionalized 4-(2-hydroxybenzoyl)phenols 5a-j (Scheme 3, Table 1). The formation of the products can be explained by a domino 'Michael / retro-Michael / aldol' reaction: the reaction of $\mathbf{4 a} \mathbf{a} \mathbf{j}$ with $\mathrm{Me}_{3} \mathrm{SiOTf}$ gave pyrylium triflate \mathbf{A}. The conjugate addition of the diene onto \mathbf{A} afforded intermediate \mathbf{B} which underwent a retro-Michael reaction to give intermediate \mathbf{C}. An aldol reaction of the latter gave intermediate \mathbf{D} which underwent an elimination of silanolate and aromatization (before or during the aqueous work-up) to give the final product. The best yields were obtained for products $\mathbf{5 a}, \mathbf{b}, \mathbf{h} \mathbf{- j}$ which are derived from the chlorinated and fluorinated chromones $\mathbf{4 h} \mathbf{h} \mathbf{j}$, from parent formylchromone $\mathbf{4 a}$ and from $\mathbf{4 b}$.

Scheme 2. Synthesis of 3; i : $\mathrm{Me}_{3} \mathrm{SiCl}$ (3.6 equiv.), NEt_{3} (3 equiv.), $\mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$; $i i$:

1) LDA (1.5 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) $\mathrm{Me}_{3} \mathrm{SiCl}$ (2.5 equiv.), $20^{\circ} \mathrm{C},-78 \rightarrow 20^{\circ} \mathrm{C}$

5a-j
2
$+\mathrm{H}_{2} \mathrm{O} \uparrow$
$\mathrm{Me}_{3} \mathrm{SiOTf}$

A

$\downarrow 1 \mathrm{a}$

D

$$
-\mathrm{Me}_{3} \mathrm{SiOTf} \uparrow
$$

B
C

Scheme 3. Synthesis of 5a-j. Reagents and conditions: $i, 1$) 4a-j (1.0 equiv.), Me $\mathbf{H e}_{3} \operatorname{SiOTf}$ (0.3 equiv), $20^{\circ} \mathrm{C}, 10 \mathrm{~min}$; 2) $\mathbf{2}$ (1.3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 3$) $\mathrm{HCl}(10 \%)$.

Table 1. Synthesis of 5a-j

$\mathbf{5}$	R^{1}	R^{2}	Yield $(\%)^{a}$	$\delta(\mathrm{O}-\mathrm{H})^{b}$
\mathbf{a}	H	H	79	$11.67,12.62$
\mathbf{b}	Me	H	88	$11.47,12.62$
\mathbf{c}	Et	H	63	$11.48,12.64$
\mathbf{d}	$i \mathrm{Pr}$	H	52	$11.47,12.65$
\mathbf{e}	NO_{2}	H	43	$12.28,12.70$
\mathbf{f}	Br	H	54	$11.55,12.66$
\mathbf{g}	Br	Br	56	$12.10,12.68$
\mathbf{h}	Cl	H	76	$11.54,12.65$
\mathbf{i}	Cl	Cl	80^{c}	$11.93,12.67$
\mathbf{j}	F	H	79	$11.36,12.63$

${ }^{a}$ Yields of isolated products
${ }^{\mathrm{b}} 1 \mathrm{H}$ NMR shifts of OH protons.
${ }^{c}$ Synthesized by Muhammad Nawaz
The structures of all products were established by spectroscopic methods. The structures of $\mathbf{5 e}, \mathbf{5 h}$ and $\mathbf{5 j}$ were independently confirmed by X-ray crystal structure analyses (Figures 1 and 2). ${ }^{10}$ All products possess two low field signals (${ }^{1} \mathrm{H}$ NMR, CDCl_{3}) for the protons involved in intramolecular hydrogen bonds $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$. The chemical shifts of the hydroxyl proton derived from the chromone moiety are found in the range of $\delta=11.36$ 12.10 ppm and strongly depend on the substitution pattern (Table 1). The most extreme downfield shift is observed for derivative $\mathbf{5 e}(\delta=12.28)$, due to the electron-withdrawing effect of the nitro group. Extreme low field shifts are observed also for compounds $\mathbf{5 g}$ and $\mathbf{5 i}$ containing two halogen atoms.
The signals of the hydroxyl protons of the second phenol moiety (which is derived from the diene 2) are located in a rather narrow chemical shift range ($\delta=12.62-12.70 \mathrm{ppm}$). This can be explained by the fact that the substitution pattern of this phenol moiety is the same for all derivatives $\mathbf{5 a} \mathbf{- j}$. The chemical shifts of the hydroxyl protons appear in the same range as earlier reported ${ }^{9}$ for derivatives $\mathbf{5 k}$ and $\mathbf{5 1}$ (Scheme 4). It is worth to be noted that the hydroxyl proton may participate in a hydrogen bond either to the acetyl or the ester oxygen atom. In the solid state structures of $\mathbf{5 e}, \mathbf{5} \mathbf{h}$ and $\mathbf{5 j}$, the hydrogen bonds involve the ester group. However, the solution structures might be different. The comparison of the chemical shifts of the low field signals of $\mathbf{5 a - j}$ with those of
derivatives $\mathbf{5 k}$ and $\mathbf{5 l}$, containing an acetyl and an ester group, do not allow to clearly distinguish the solution structure. However, the ester group is expected to be a better hydrogen bond acceptor than the keto group which is in accordance with the structures observed in the solid state.

5a

Scheme 4. Chemical shifts ($\left.{ }^{1} \mathrm{H} N M R\right)$ of OH protons of $\mathbf{5 a}, \mathbf{5 k}$ and $\mathbf{5 l}$

Figure 1. Ortep plot of $\mathbf{5 e}$

Figure 2. Ortep plot of $\mathbf{5 h}$

Figure 3. Ortep plot of $\mathbf{5 j}$

The cyclization of 3-formylchromones 4a-j with 1,3,5-tris(silyloxy)-1,3,5-hexatriene $\mathbf{3}$ afforded the 4-(2-hydroxybenzoyl)phenols 6a-j which represent regioisomers of 5a-j (Scheme 5, Table 2). The cyclizations involve, as expected, the terminal carbon atom of the triene. Phenols 6a-j can be regarded as masked polyketides. All products exist in their keto tautomeric form. The yields of $\mathbf{6 a - j}$ are generally lower than the yields of $\mathbf{5 a} \mathbf{a} \mathbf{j}$. This can be explained by the unstable nature of triene $\mathbf{3}$ which results in some decomposition and hydrolysis under the reaction conditions. In fact, a small amount of 3,5-dioxoester $\mathbf{1}$
was isolated as side-product in all reactions. Similar to products 5a and 5i, relatively good yields are obtained for $\mathbf{6 a}$ and $\mathbf{6 i}$ which are derived from parent formylchromone $\mathbf{4 a}$ and from dichlorinated formylchromone 4i, respectively. Besides, the trends of the yields of products 5 and $\mathbf{6}$ are quite different from each other.

Scheme 5. Synthesis of $\mathbf{6 a - j}$. Reagents and conditions: $i, 1$) $\mathbf{4 a - j}$ (1.0 equiv.), $\mathrm{Me}_{3} \mathrm{SiOTf}$ (0.3 equiv), $20^{\circ} \mathrm{C}, 10 \mathrm{~min} ; 2$) $\mathbf{3}$ (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 3$) $\mathrm{HCl}(10 \%)$.

Table 2. Synthesis of 6a-j

$\mathbf{6}$	R^{1}	R^{2}	$\mathrm{Yield}^{(\%)}$ $(\%)^{a}$	$\delta(\mathrm{O}-\mathrm{H})^{b}$
\mathbf{a}	H	H	43^{c}	$11.63,12.14$
\mathbf{b}	Me	H	36	$11.60,12.29$
\mathbf{c}	Et	H	45	$11.60,12.30$
\mathbf{d}	${ }_{\mathrm{Pr}}$	H	47	$11.59,12.30$
\mathbf{e}	NO_{2}	H	30	12.30
\mathbf{f}	Br	H	31	$11.56,12.24$
\mathbf{g}	Br	Br	33	$12.13,12.27$
\mathbf{h}	Cl	H	37	$11.63,12.33$
\mathbf{i}	Cl	Cl	59^{c}	$12.13,12.27$
\mathbf{j}	F	H	34	$11.39,12.23$

${ }^{a}$ Yields of isolated products
${ }^{\mathrm{b}} 1 \mathrm{H}$ NMR shifts of OH protons.
${ }^{\text {C }}$ Synthesized by Muhammad Nawaz
Two low field signals, assigned to hydroxyl protons, are observed also for products 6a-j (Table 2). The signals assigned to the chromone-derived hydroxyl protons are in the
range of $\delta=11.39-12.20 \mathrm{ppm}$ and again depend on the substitution pattern. In contrast, the signals of the other hydroxyl protons are found in a rather narrow range.

1.3 Conclusion:

In conclusion, we have reported the synthesis of highly functionalized polyketide-type phenols by domino 'Michael / retro-Michael / aldol' reactions of 3-formylchromones with 1-ethoxy-1,3,5-tris(trimethylsilyloxy)-1,3,5-hexatriene and its synthetic precursor, ethyl 3,5-bis(trimethylsilyloxy)-2,4-hexadienoate. These products are not readily available by other methods.

2 Regioselective Synthesis of Functionalized Biaryls based on the First [3+3] Cyclocondensations of 4-Aryl-1,3-bis(trimethylsilyloxy)-1,3butadienes

2.1 Introduction:

Functionalized biaryls containing a 3-arylsalicylate substructure occur in a variety of pharmacologically relevant natural products. The simple biaryls cynandione A-C have been isolated from many plant sources and show a considerable in vitro activity against hepatocytes, human bladder carcinoma T-24 cells, epidermoid carcinoma KB cells, and human hepatoma PLC/PRF/5 cells. ${ }^{11}$ A number of natural products, such as knipholone, 6'-O-methylknipholone or (+)-asphodelin, contain an anthraquinone moiety. ${ }^{12}$ Other compounds, e. g. secalonic acid A or globulixanthone E, contain a bixanthenyl substructure. ${ }^{13}$ 3-Arylsalicylates are also present in many flavones (e. g. 2,3dihydroamentoflavone, ${ }^{14 \mathrm{a}}$ bartramiaflavone, ${ }^{14 \mathrm{~b}}$ robustaflavone, ${ }^{14 \mathrm{c}}$ dichamanetin). ${ }^{14 \mathrm{~d}, \mathrm{e}}$ For some derivatives, inhibition of the human liver cathepsin B and K has been reported. ${ }^{14 f, g}$ The natural product anastatin A , which contains a hydroxylated dibenzofuran moiety, shows hepatoprotective activity. ${ }^{15}$

The most important synthetic approach to biaryls relies on palladium(0)-catalyzed crosscoupling reactions. ${ }^{16}$ Although these reactions are broadly applicable, the synthesis of sterically encumbered products can be difficult or not possible at all. In addition, the regioselective synthesis of the required aryl halides or triflates can be a very difficult task. Some years ago, Chan et al. developed ${ }^{17}$ a convenient approach to salicylates by formal $[3+3]$ cyclizations ${ }^{18}$ of 1,3 -bis(trimethylsilyloxy)-1,3-dienes ${ }^{19}$ with 3-trimethylsilyloxy-2-en-1-ones. Recently, we developed a catalytic variant of this transformation. ${ }^{10}$ Herein, we report, for the first time, the synthesis of 4-aryl-1,3-bis(trimethylsilyloxy)-1,3-butadienes and their application to the synthesis of functionalized biaryls. The sterically encumbered and functionalized biaryls reported herein are not readily available by other methods.

2.2 Results and Discussion

The 4-arylacetoacetates $\mathbf{8 a}$-e were prepared by LDA-mediated reaction of methyl acetate with the α-arylacetyl chlorides 7a-e (Scheme 1, Table 1). The silylation of 8a-e afforded the 3 -silyloxy-2-en-1-ones 9a-e. The novel 4-aryl-1,3-bis(silyloxy)-1,3-dienes 10a-e were prepared by deprotonation (LDA) of 9a-e at $-78{ }^{\circ} \mathrm{C}$ and subsequent addition of trimethylchlorosilane. The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed cyclization of 4-aryl-1,3-bis(silyloxy)-1,3-dienes 10a-e with 1,1,3,3-tetramethoxypropane, afforded the 3-arylsalicylates 11a-e. During the optimization of this reaction, we had to modify the protocol recently reported by us. ${ }^{20}$ Noteworthy, the best yields were obtained when the cyclizations were carried out in a highly concentrated rather than in dilute solution.

The structures of all products were established by spectroscopic methods. The structures of $\mathbf{1 1 b}, 11 \mathbf{c}^{21} \mathbf{1 3 e}, \mathbf{1 3 h}$ and $\mathbf{1 3 i}$ were independently confirmed by X-ray crystal structure analysis (Figures 1-5).

Scheme 6. Synthesis of 11a-e; i : LDA, THF, $-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h} ;$ ii: $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NEt}_{3}$, $\mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$; iii: LDA, THF, $-78 \rightarrow 20^{\circ} \mathrm{C}$; iv: $\mathrm{Me}_{3} \operatorname{SiOTf}$ (0.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ $\rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$

Table 3. Synthesis of biaryls 11a-e

$\mathbf{8 - 1 1}$	R^{1}	R^{2}	$\%$	$\%$	$\%$	$\%$
			$(\mathbf{2})^{\mathrm{a}}$	$(\mathbf{3})^{\mathrm{a}}$	$(\mathbf{4})^{\mathrm{a}}$	$(\mathbf{5})^{\mathrm{a}}$
\mathbf{a}	H	H	60	82	80	44
\mathbf{b}	H	OMe	56	80	84	50
\mathbf{c}	OMe	H	48	75	82	34^{b}
\mathbf{d}	H	Cl	34	77	85	43
\mathbf{e}	H	Me	45	81	86	36^{C}

${ }^{a}$ Isolated yields
${ }^{b}$ Synthesized by M.Abid Rashid
${ }^{c}$ Synthesized by Rasheed Ahmad

The TiCl_{4}-mediated $[3+3]$ cyclization of 1,3 -bis(silyloxy)-1,3-dienes 10a-e with 3-silyloxy-2-en-1-ones 12a-c afforded the 3-arylsalicylates 13a-j (Scheme 2, Table 2). During the optimization, it proved to be important to carry out the reactions in a highly concentrated solution.

Scheme 7. Synthesis of 13a-j; i : $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$

Table 4. Synthesis of biaryls 13a-j

$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 3}$	R^{l}	R^{2}	R^{3}	$\%(\mathbf{1 3})^{\mathbf{a}}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	H	H	H	41
\mathbf{a}	\mathbf{b}	\mathbf{b}	H	H	Cl	40
\mathbf{c}	\mathbf{a}	\mathbf{c}	OMe	H	H	26^{b}
\mathbf{c}	\mathbf{b}	\mathbf{d}	OMe	H	Cl	30^{b}
\mathbf{b}	\mathbf{b}	\mathbf{e}	H	OMe	Cl	38
\mathbf{b}	\mathbf{a}	\mathbf{f}	H	OMe	H	37
\mathbf{b}	\mathbf{c}	\mathbf{g}	H	OMe	Me	38
\mathbf{a}	\mathbf{c}	\mathbf{h}	H	H	Me	35
\mathbf{d}	\mathbf{b}	\mathbf{i}	H	Cl	Cl	40
\mathbf{e}	\mathbf{b}	\mathbf{j}	H	Me	Cl	30^{c}

${ }^{a}$ Isolated yields
${ }^{b}$ Synthesized by M.Abid Rashid
${ }^{c}$ Synthesized by Rasheed Ahmad

Figure 4. Ortep plot of $\mathbf{1 1 b}$

Figure 5. Ortep plot of 11c

Figure 6. Ortep plot of 13e

Figure 7. Ortep plot of $\mathbf{1 3 h}$

Figure 8. Ortep plot of $\mathbf{1 3 i}$

The TiCl_{4}-mediated reaction of 1,3 -bis(silyloxy)-1,3-dienes $\mathbf{1 0 a}$ and $\mathbf{1 0 d}$ with $1,1-$ diacetylcyclopropane (14) gave the 3 -arylsalicylates $\mathbf{1 5 a}$ and 15b, respectively (Scheme 3). Products $\mathbf{1 5 a}, \mathbf{b}$ are formed by a domino '[3+3]-cyclization-homo-Michael' reaction. ${ }^{22}$

Scheme 8. Synthesis of 15a,b; i : $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$
The TMSOTf-mediated reaction of 3-cyanochromone (16) with 1,3-bis(trimethylsilyloxy)-1,3-butadiene 10a, d, e, afforded the condensation product $\mathbf{1 7}$ by regioselective attack of the terminal carbon atom of 10a, \mathbf{d}, \mathbf{e} onto carbon atom C-2 of $\mathbf{1 6}$ and subsequent hydrolysis. Treatment of an ethanol solution of crude $\mathbf{1 7}$ with triethylamine afforded 1-azaxanthone $\mathbf{1 8}$ (Scheme 1). The formation of $\mathbf{1 8}$ can be explained by a domino 'retro-Michael-lactonization-aldol' reaction. The base-mediated retro-Michael reaction of $\mathbf{1 7}$ gave open-chained intermediate \mathbf{B}. The attack of the hydroxy group onto the nitrile gave intermediate \mathbf{C}. The attack of the imino nitrogen atom onto the carbonyl group (intermediate D) and subsequent aromatization by extrusion of water afforded 18. The transformation of $\mathbf{1 7}$ into $\mathbf{1 8}$ can be regarded as a domino 'retro-Michael / nitrile-addition / heterocyclization' reaction. ${ }^{23}$

Scheme 9. Synthesis of 3-aryl-1-azaxanthone 18a-c: i : 1) 16, Me $\mathrm{H}_{3} \mathrm{SiOTf}, 1 \mathrm{~h}, 20^{\circ} \mathrm{C}, 2$) 10a, d, e, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 3\right) \mathrm{HCl}(10 \%)$; ii: 1) $\left.\mathrm{NEt}_{3}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 2\right) \mathrm{HCl}$ (1 M)
Table 5. Synthesis of 1-azaxanthones 18a-c.

17,18	R	$18^{\mathrm{a}}(\%)$
a	H	62
b	Me	63
c	Cl	50

${ }^{2}$ Yield of isolated products.

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed reaction of 1,3 -bis(silyloxy)-1,3-butadiene 10e with 3formylchromone (19) afforded the highly functionalized biaryl 20 (Scheme 5). This product is formed by a domino 'Michael-retro-Michael-Mukaiyama-Aldol' reaction. ${ }^{24}$

Scheme 10. Synthesis of 20; i : $\mathrm{Me}_{3} \operatorname{SiOTf}\left(0.3\right.$ equiv), $20^{\circ} \mathrm{C}, 10 \mathrm{~min}$; ii: 1) 10e (1.3 equiv), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 2\right) \mathrm{HCl}(10 \%)$

2.3 Conclusions

In conclusion, we have reported, for the first time, a new and regioselective approach to a variety of sterically encumbered biaryls based on formal [3+3] cyclizations of novel 4-aryl-1,3-bis(trimethylsilyloxy)-1,3-dienes. The products are not readily available by other methods.

3. Synthesis of Functionalized Fluorenones based on the

 Combination of Formal [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-
1,3-butadienes with Intramolecular Friedel-Crafts-Acylations

3.1 Introduction

Fluorenones occur in a number of natural products. This includes various highly hydroxylated derivatives, such as dengibsin, dengibsinin, or dendroflorin (Scheme 11). ${ }^{25}$ The first two fluorenone natural products, dengibsin und dengibsinin, were isolated 1985 by Talapatra et al. from the Orchidee Dendrobium gibsonii Lindl. ${ }^{25 \mathrm{a}}$ These products were first prepared by Sargent and coworkers. ${ }^{25 b}$ Fluorenones are of considerable pharmacological relevance. ${ }^{26}$ They have been used as probes for the redox activity of DNA. ${ }^{27}$ Amidofluorenone derivatives have been shown to be telomerase inhibitors which is important for the development of anti-cancer agents. ${ }^{28}$ In addition, fluorenones represent versatile synthetic intermediates. They have been used, for example, during the synthesis of the antibiotic kinamycin D. ${ }^{29}$ Fluorenones are also important compounds in photochemistry. ${ }^{30}$

The most important synthetic approach to fluorenones includes intramolecular FriedelCrafts acylations of appropriate biaryls. ${ }^{31}$ Other syntheses rely on [4+2]-cycloadditions of conjugated enynes ${ }^{32}$ and on the oxidation of fluorenes. ${ }^{33}$ Snieckus and coworkers reported the synthesis of fluorenones based on remote aromatic metalation. ${ }^{34}$ Larock and coworkers reported the synthesis of fluorenones by palladium-catalyzed cyclocarbonylation of 2-halobiaryls. ${ }^{26}$ Valesco and Yu reported the synthesis of fluorenones based on the reaction of malonic acid dinitrile with aromatic aldehydes and methylketones. ${ }^{35}$ Ciske and Jones prepared fluorenones by Suzuki reaction of boronic acids, generated in situ from benzoic acid amides, with aryl triflates and subsequent cyclization by remote metalation. ${ }^{36}$ Fluorenones have been prepared by acid-mediated intramolecular Friedel-Crafts cyclation of 2-methoxycarbonyl-biaryls. Recently, the synthesis of the latter by Suzuki reactions of salicylate-derived enol triflates has been reported. ${ }^{37}$

Salicylates are available by various synthetic strategies. An important approach to salicylates, first reported by Chan and coworkers, ${ }^{38}$ relies on the formal [3+3] cyclization of 1,3-bis(silyloxy)-1,3-butadienes ${ }^{39}$ with 3 -silyloxy-2-en-1-ones. In recent years, we have reported the application of this methodology to the synthesis of a variety of functionalized arenes. ${ }^{40}$ Recently, we have reported ${ }^{41}$ a convenient four-step synthesis of fluorenones: The [3+3] cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 3-silyloxy-2-en-1-ones afforded salicylates which were transformed into their enol triflates. The Suzuki cross-coupling reaction of the latter with arylboronic acids afforded 2-methoxycarbonyl-biaryls which were subsequently transformed into the target molecules by intramolecular Friedel-Crafts acylation. Herein, we report full details of these studies. In addition, we report the synthesis of 1-hydroxyfluorenones by cyclization of 3-aryl-3-silyloxy-2-en-1-ones with 1,3-bis(silyloxy)-1,3-butadienes and subsequent intramolecular Friedel-Crafts acylation of the 6 -arylsalicylates thus formed. ${ }^{42}$ In this context, the synthesis of novel cyclopenta[def]phenanthren-4-ones is reported. The advantage of the two synthetic strategies outlined herein relies on the fact that various substitution patterns are readily available based on a building-block strategy. The products are not readily available by other methods.

Dengibsin

Dengibsinin

Dendroflorin

Scheme 11. Fluorenone natural products

3.2 Results and Discussion

The reaction of 1,3-bis(silyl enol ether) 21a,c with 3-silyloxy-2-en-1-one 22h-k, prepared from arylketones, resulted in regioselective formation of salicylates 23i-m, which were transformed into fluorenones $\mathbf{2 4 y}$-ac (Scheme 2, Table 3). The regioselective formation of $\mathbf{2 3 i} \mathbf{i}-\mathrm{m}$ can be explained by isomerization of $\mathbf{2 2 h} \mathbf{- k}$ into iso- $\mathbf{2 2 h} \mathbf{- k}$ and subsequent cyclization as described above.

The structure of all products was established by spectroscopic methods. The structures of 23j and 24ab were independently confirmed by an X-ray crystal structure analysis (Figures 9 and 10). The fluorenone is, as expected, a flat molecules. An intramolecular hydrogen bond is present.

Figure 9: Crystal Structure of 23j

Figure 10. Ortep-Plot of 24ab (50\% probability level)

Scheme 12. Synthesis of fluorenones $\mathbf{2 4 y}$-ah, i : $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$; ii: conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 1 \mathrm{~h}$

Table 6. Products and yields

$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	R^{1}	R^{2}	R^{3}	R^{4}	$\%$ $(\mathbf{2 3})^{a}$	$\%$ $(\mathbf{2 4})^{a}$
\mathbf{a}	\mathbf{h}	\mathbf{i}	\mathbf{y}	H	Me	Me	H	43	68
\mathbf{a}	\mathbf{i}	\mathbf{j}	\mathbf{z}	H	Me	H	Cl	40	83
\mathbf{c}	\mathbf{i}	\mathbf{k}	$\mathbf{a a}$	$n \mathrm{Hex}$	Me	H	Cl	34	65
\mathbf{a}	\mathbf{j}	\mathbf{l}	$\mathbf{a b}$	H	Me	Cl	H	37	75
\mathbf{d}	\mathbf{j}	\mathbf{m}	$\mathbf{a c}$	Me	Me	Cl	H	32^{b}	80^{b}
\mathbf{e}	\mathbf{j}	\mathbf{n}	$\mathbf{a d}$	Et	Et	Cl	H	35^{b}	60^{b}
\mathbf{a}	\mathbf{k}	$\mathbf{0}$	$\mathbf{a e}$	H	Me	F	H	44	75
\mathbf{d}	\mathbf{k}	\mathbf{p}	$\mathbf{a f}$	Me	Me	F	H	32^{b}	51^{b}
\mathbf{a}	\mathbf{l}	\mathbf{q}	$\mathbf{a g}$	H	Me	H	F	44^{b}	68^{b}
\mathbf{e}	\mathbf{l}	\mathbf{r}	$\mathbf{a h}$	Et	Et	H	F	44^{b}	76^{b}

${ }^{a}$ Yields of isolated products
${ }^{\mathrm{b}}$ Synthesized by M.A. Yawer and I. Hussain

3.3 Conclusion:

In conclusion, a method for the synthesis of functionalized fluorenones was developed. The approach relies on the [3+3] cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 3-silyloxy-2-en-1-ones to give salicylates. The cyclization of 3-aryl-3-silyloxy-2-en-1-ones with 1,3-bis(silyloxy)-1,3-butadienes afforded 6-arylsalicylates which were subsequently transformed into the products by intramolecular Friedel-Crafts acylation. In this context, the synthesis of novel cyclopenta[def]phenanthren-4-ones is reported. The advantage of the synthetic strategy outlined herein relies on the fact that various substitution patterns are readily available based on a building-block strategy. The products are not readily available by other methods.

4 Synthesis and Reactions of the First Fluorine-Containing 1,3-Bis(trimethylsilyloxy)-1,3-butadienes:

4.1 Introduction:

Organofluorine compounds play an important role in drug discovery ${ }^{43}$. They exhibit unique stereoelectronic properties: on the one hand the fluorine atom is fairly small, on the other hand its high electronegativity often results in a great improvement of drugreceptor interactions. The carbon-fluorine bond is chemically and biologically stable which avoids undesired metabolic transformations. In addition, the high lipophilicity of organofluorine compounds improves their in vivo transport. They also show a very good solubility in fluorophilic solvents. Therefore, organo-fluorine compounds are used as ligands ${ }^{44}$ for catalytic reactions in fluorous biphase systems and supercritical carbon dioxide. ${ }^{45}$ The unique electronic properties of fluorinated arenes are widely used for applications in organocatalysis. ${ }^{46}$ Last but not least, fluorinated arenes and heteroarenes are versatile building blocks in transition metal-catalyzed cross coupling reactions. ${ }^{47}$
The direct fluorination of arenes, heteroarenes and several open-chained molecules often suffers from several drawbacks, such as low chemo- and regioselectivity or multiple fluorination. An alternative strategy for the regioselective synthesis of organofluorine compounds relies on the use of appropriate fluorine-containing building blocks in condensation and cyclization reactions. For example, aryl fluorides have been prepared by $[4+2]$ cycloaddition reactions of 2-fluoro-1-methoxy-3-trimethylsilyloxy-buta-1,3diene, 2-fluoro-3-methoxy-buta-1,3-diene and related dienes with alkenes or alkynes. ${ }^{48}$ Portella et al. reported the synthesis of fluorophenols by annulation reactions of 2,2-difluoro-1,5-diketones which were prepared from trifluoromethyltrimethylsilane, acylsilanes and enones. ${ }^{49}$
1,3-Bis(trimethylsilyloxy)-1,3-butadienes (e. g., Chan's diene) ${ }^{50,51}$ represent important synthetic building blocks which have been used in formal [3+2], [3+3], [4+2] and [4+3] cyclizations and other transformations. ${ }^{52}$ Herein, we report the synthesis and reactions of 2-fluoro-1,3-bis(silyloxy)-1,3-butadienes which represent, to the best of our knowledge, the first fluorine-containing 1,3-bis(silyl enol ethers). ${ }^{53}$ Their reactions with electrophiles
provide a convenient and regioselective approach to a variety of organofluorine compounds which are not readily available by other methods.

4.2 Results and Discussion:

The silylation of commercially available ethyl 2-fluoroacetoacetate (25) afforded silyl enol ether 26. The latter was transformed, by deprotonation (LDA) at $-78{ }^{\circ} \mathrm{C}$ and subsequent addition of trimethylchlorosilane, into novel 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-butadiene (27) (Scheme 13). Diene 27a can be stored at -20 ${ }^{\circ} \mathrm{C}$ under inert atmosphere for several weeks.

Scheme 13. Synthesis of diene 27: $i: \mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NEt}_{3}$, benzene, $20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; $\left.i i: 1\right)$ LDA, THF, $\left.-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) \mathrm{Me}_{3} \mathrm{SiCl},-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

The TiCl_{4}-mediated cyclization of $\mathbf{2 7}$ with epichlorohydrin, following our recently reported protocol, ${ }^{54}$ afforded the halogenated 2-alkylidenetetrahydrofuran 28 (Scheme 14). The exocyclic double bond was formed with excellent Z-diastereoselectivity.

Scheme 14. Synthesis of 2-alkylidenetetrahydrofuran 28: i : TiCl_{4} (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78 \rightarrow 20^{\circ} \mathrm{C}$.

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed condensation of 27 with 1-chloro-2,2-dimethoxyethane gave the 2-fluoro-6-chloro-5-methoxy-3-oxo-hexanoate 29 (Scheme 15). The DBU-mediated cyclization ${ }^{55}$ of $\mathbf{2 9}$ afforded the E-configured 4-methoxy-2-alkylidenetetrahydrofuran $\mathbf{3 0}$.

Scheme 15 Synthesis of 30: i : $\mathrm{Me}_{3} \operatorname{SiOTf}$ (0.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20{ }^{\circ} \mathrm{C}$; ii: 2.0 equiv. DBU, THF, $20^{\circ} \mathrm{C}$.

The treatment of $\mathbf{2 5}$ with trans-1, 4-dibromobutene gave Z-configured Ethyl 2-fluoro-2-(5-vinyldihydrofuran-2(3H)-ylidene) acetate 31 (Scheme 16) ${ }^{56}$.

Scheme 16. Synthesis of 31. i : LDA (2.5 Equiv.), THF, 25 (1 Equiv.), $\mathrm{BrCH}_{2} \mathrm{CH}=$ $\mathrm{CHCH}_{2} \mathrm{Br}$ (1.2 Equiv.), $-78 \rightarrow 20^{\circ} \mathrm{C}$.

The reaction of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-butadiene (27) with 2,3butenoxide ${ }^{57}$ afforded Z -configured $\mathbf{3 2}$ in good yield (Scheme17).

Scheme 17. Synthesis of 32. (i) 27 (1 equiv.), 2,3-butenoxide (1 equiv.), TiCl_{4} (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Molecular Sieves ($4 \AA$), $-78^{\circ} \mathrm{C}(5 \mathrm{~h})-20^{\circ} \mathrm{C}(12 \mathrm{~h})$.

The reaction of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-butadiene (27) with phthaloyl dichloride, following our recently reported protocol, ${ }^{58}$ afforded product 33 (Scheme 18). The best yield was obtained in the presence of any Lewis acid $\left(\mathrm{TiCl}_{4}\right)$. An unexpected product was formed which was never observed from our previous studies. The structure of $\mathbf{3 3}$ was independently confirmed by X-ray crystal structure analysis (Figure 11).

Scheme 18. Synthesis of 33. $i: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TiCl}_{4},-78 \rightarrow 20^{\circ} \mathrm{C}, \mathrm{HCl}(10 \%)$.

Figure 11: Crystal Structure of $\mathbf{3 3}$

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-mediated reaction of 27 with 3-cyanochromones (33a-e) gave condensation products 34a-e. The latter was formed by regioselective attack of the terminal carbon atom of the diene onto $\mathrm{C}-2$ of the cyanochromone and subsequent hydrolysis upon aqueous work-up. Treatment of an ethanol solution of crude 34a-e with triethylamine afforded the novel fluorinated 1-azaxanthones 35a-e (Scheme 19). These types of products are again not available by direct fluorination. The transformation of 33a-e into 35a-e can be explained by a domino 'retro-Michael / nitrile-addition / heterocyclization' reaction. ${ }^{23}$

Scheme 19. Synthesis of 1-azaxanthones 35a-e: (i) (1) 33a-e, $\mathrm{Me}_{3} \operatorname{SiOTf}, 1 \mathrm{~h}, 20^{\circ} \mathrm{C}$, (2) 34a-e, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$, (3) HCl (10\%); (ii) (1) $\mathrm{NEt}_{3}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$, (2) HCl (10 \%).

Table 7. Synthesis of 1-azaxanthones 35a-e.

$33,34,35($ a-e $)$	R^{1}	R^{2}	R^{3}	$35^{\mathrm{a}}(\%)$
a	H	H	H	56
b	Me	Me	H	46
c	Cl	H	H	41
d	Cl	H	Cl	35
e	F	H	H	33

${ }^{\text {a }}$ Yield of isolated products.

Figure 12: ORTEP-plot of 35 e ($\mathbf{5 0 \%}$ level)

4.3 Conclusion:

In conclusion, we have reported a building block strategy for the synthesis of novel organofluorine compounds based on reactions of 2-fluoro-1,3-bis(trimethylsilyloxy)-1,3butadienes - the first fluorinated 1,3-bis(silyl enol ethers). The products are not available by direct fluorination reactions.

4.4 Summary:

Scheme 20: Schematic Representation of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-butadiene (27).

5 Synthesis and Reactions of the First 2-Chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienes:

5.1 Introduction:

Chlorinated molecules are of considerable pharmacological relevance and occur in a number of natural products. ${ }^{59}$ In fact, arenes and hetarenes containing a chloride group often show a better pharmacological activity compared to their non-halogenated analogues. ${ }^{60}$ Chlorinated arenes and hetarenes also represent versatile building blocks in transition metal-catalyzed cross coupling reactions. ${ }^{61}$ However, the direct chlorination of arenes, hetarenes and open-chained molecules often suffers from several drawbacks, such as low regioselectivity or multiple chlorination. An alternative strategy for the regioselective synthesis of organochlorine compounds relies on the use of appropriate chlorine-containing building blocks in condensation and cyclization reactions. For example, Manzanares and coworkers reported the synthesis of a 4-chlorophenol by [4+2] cycloaddition of a chlorinated thiophene with dimethyl acetylenedicarboxylate. ${ }^{62}$

1,3-Bis(trimethylsilyloxy)-1,3-butadienes (e. g. Chan's diene) ${ }^{63,64}$ represent important synthetic building blocks which have been used in formal [3+2], [3+3], [4+2] and [4+3] cyclizations and other transformations. ${ }^{65}$ Herein, we report what are, to the best of our knowledge, the first 2-chloro-1,3-bis(silyloxy)-1,3-butadienes. ${ }^{66}$ Their reactions with various electrophiles provide a convenient and regioselective approach to a variety of organochlorine compounds which are not readily available by other methods.

5.2 Results and Discussion:

The reaction of commercially available ethyl 2 -chloroacetoacetate (36) with $\mathrm{Me}_{3} \mathrm{SiCl}$ and triethylamine afforded the silyl enol ether 37 (Scheme 21). The novel 2-chloro-1-ethoxy-1,3-bis(silyloxy)-1,3-butadiene $\mathbf{3 8}$ were prepared by deprotonation (LDA) of $\mathbf{3 7}$ at $-78^{\circ} \mathrm{C}$ and subsequent addition of trimethylchlorosilane. Noteworthy, the chloride group proved to be compatible with the reaction conditions.

38 (95\%)
Scheme 21. Synthesis of dienes 36: i : $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NEt}_{3}$, benzene, $20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; $\left.i i: 1\right) \mathrm{LDA}$, THF, $-78,1 \mathrm{~h}, 2) \mathrm{Me}_{3} \mathrm{SiCl},-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

Treatment of $\mathbf{3 6}$ and 39 with ethylchloroformate in LDA (2.2Eq) afforded novel tricarbonyl compounds 40 and 41 (Scheme 22$)^{67}$. Which can be further used to get variety of novel chlorinated compounds.

Scheme 22. Synthesis of $\mathbf{4 0}$ and 41. i: 36, 39 (1 equiv.), LDA (2.2 Equvi), THF, Ethyl Chloroformate (1.1 Equiv.), $-78 \rightarrow 20^{\circ} \mathrm{C}$, Acetic Acid.

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed condensation of 38 with 1-chloro-2,2-dimethoxyethane gave ethyl 2,6-dichloro-5-methoxy-3-oxohexanoate (42) in good yield (Scheme 23). The DBU-mediated cyclization ${ }^{55}$ of 42 afforded the Z-configured 4-methoxy-2alkylidenetetrahydrofuran 43.

Scheme 23. Synthesis of furan 43: i : 38 (1Equiv.), $\mathrm{Me}_{3} \operatorname{SiOTf}$ (0.5 equiv.), 1-Chloro-2,2dimethoxy ethane (1 Equiv.). $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$; ii: 42 DBU , (2.0 equiv). THF, 20 ${ }^{\circ} \mathrm{C}$.

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-mediated reaction of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3butadiene (38) with 1-azido-2,2-dimehtoxy ethane afforded the desired condensation product ${ }^{68}$ (44) with good regio- and chemoselectivity (Scheme 24). Several attempts to get the cyclized pyrolidene derivative by treatment of a THF solution of $\mathbf{4 4}$ at $45^{\circ} \mathrm{C}$ with PPh_{3} were not successful.

Scheme 24. Synthesis of 13: i : $\mathrm{Me}_{3} \operatorname{SiOTf}\left(0.5\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$.

The treatment of $\mathbf{3 6}$ with trans-1, 4-dibromobutene gave Z-configured Ethyl 2-chloro-2-(5-vinyldihydrofuran-2(3H)-ylidene)acetate 45 (Scheme 25) ${ }^{56}$.

Scheme 25. Synthesis of 45: i : LDA (2.5 Equiv.), THF, 36 (1 Equiv.), $\mathrm{BrCH}_{2} \mathrm{CH}_{2}=$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ (1.2 Equiv.), $-78 \rightarrow 20^{\circ} \mathrm{C}$.

The reaction of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadiene (38) with 2,3butenoxide ${ }^{57}$ afforded Z-configured 46 in good yield (Scheme 26).

Scheme 26. Synthesis of 46. (i) 38 (1 equiv.), 2,3-butenoxide (1 equiv.), TiCl_{4} (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Molecular Sieves ($4 \AA$), $-78^{\circ} \mathrm{C}(5 \mathrm{~h})-20^{\circ} \mathrm{C}(12 \mathrm{~h})$.

The TiCl_{4}-mediated cyclization of $\mathbf{3 8}$ with epibromohydrin, following our recently reported protocol, ${ }^{54}$ afforded the halogenated 2-alkylidenetetrahydrofuran 47 (Scheme 27). The exocyclic double bond was again formed with excellent Z-diastereoselectivity.

Scheme 27. Synthesis of 47. (i) 3 b (1 equiv.), Epibromohyrin (1 equiv.), TiCl_{4} (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Molecular Sieves ($4 \AA$), $-78^{\circ} \mathrm{C}(5 \mathrm{~h})-20^{\circ} \mathrm{C}(12 \mathrm{~h})$.

The TiCl_{4}-mediated cyclization of $\mathbf{3 8}$ with epichlrohydrin, following our recently reported protocol, ${ }^{54}$ afforded the halogenated 2-alkylidenetetrahydrofuran 48 (Scheme 28). The exocyclic double bond was again formed with excellent Z-and E diastereoselectivity. The configuration of $48 E$ and Z isomers was confirmed by 2D-NMR studies.

Scheme 28. Synthesis of $\mathbf{4 8} E$ and Z. (i) $\mathbf{3 8}$ (1 equiv.), Epichlorohydrin (1 equiv.), TiCl_{4} (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Molecular Sieves ($4 \AA$), $-78^{\circ} \mathrm{C}(5 \mathrm{~h})-20^{\circ} \mathrm{C}(12 \mathrm{~h})$.

The Me_{3} SiOTf-mediated reaction of 38 with 3-cyanochromones (49a-d) gave condensation products 50a-d. The latter was formed by regioselective attack of the terminal carbon atom of the diene onto $\mathrm{C}-2$ of the cyanochromone and subsequent hydrolysis upon aqueous work-up. Treatment of an ethanol solution of crude 49a-d with triethylamine afforded the novel fluorinated 1-azaxanthones 51a-d (Scheme 29). These types of products are again not available by direct fluorination. The transformation of 49a-d into 51a-d can be explained by a domino 'retro-Michael / nitrile-addition / heterocyclization' reaction. ${ }^{23}$

Scheme 29. Synthesis of 1-azaxanthones 51a-d: (i) (1) 49a-d, $\mathrm{Me}_{3} \mathrm{SiOTf}, 1 \mathrm{~h}, 2{ }^{\circ} \mathrm{C}$, (2) 38, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$, (3) $\mathrm{HCl}\left(10 \%\right.$); (ii) 50a-d: $\mathrm{NEt}_{3}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$, (2) HCl (10 \%).

Table 8. Synthesis of 1-azaxanthones 51a-d.

$49,50,51 \mathrm{a}-\mathrm{d}$	R^{1}	R^{2}	$51^{\mathrm{a}}(\%)$
a	H	H	58
b	Cl	H	60
c	F	H	60
d	Cl	Cl	39

[^0]The solvent free reaction of $\mathbf{3 8}$ with DMAD at $-78^{\circ} \mathrm{C}$ afforded highly functionalized chlorinated arene 52 in good yield and its structure was independently confirmed by Xray crystal analysis. 52 will be used for further studies.

Scheme 30. Synthesis of $\mathbf{5 2} i$: $\mathbf{3 8}$ (1 equiv.), DMAD (1.5 Equiv.), $-78 \rightarrow 20^{\circ} \mathrm{C}(20 h)$, HCl (10\%).

Figure 13: Crystal Structure of 52

5.3 Conclusion:

In conclusion, we reported a building block strategy for the regioselective synthesis of a variety of chlorinated carba- and heterocycles and of chlorinated dicarbonyl compounds. Novel 2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienes were prepared and reacted with various electrophiles. The products are not available by direct chlorination reactions.

5.4 Summary:

Scheme 31: Schematic representation for reactions 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadiene (38).

6. Synthesis of Chlorinated Arenes and Hetarenes based on

One-Pot Cyclocondensations of 1-Alkoxy-4-chloro-1,3-

 bis(trimethylsilyloxy) -1,3-butadienes.
6.1 Introduction:

Functionalized chloroarenes are of considerable pharmacological relevance ${ }^{69}$ and represent increasingly important building blocks for transition metal-catalyzed crosscoupling reactions. ${ }^{70} 3$-Chlorosalicylates and related compounds are present in a variety of natural products. This includes, for example, dihydronidulin. ${ }^{71}$ The spirocyclic griseofulvin ${ }^{72}$ and epigriseofulvin ${ }^{73}$ have been reported to show clastogenic, cytotoxic and antifungal activity. Polyketide-derived xanthones, ${ }^{74}$ geodin ${ }^{75}$ and geodinhydratemethyl ester ${ }^{76}$ show, for example, antibacterial and antifungal activity. 7-Chlor-1-Omethylemodin has been reported to exhibit antiviral activity. ${ }^{77}$ 3-Chlorosalicylates and related compounds are also present in simple arenes, acetophenones (longissiminone B), benzophenones (chloroisosulochrin, pestalone) and diaryl ethers (methyl chloroasterrate), ${ }^{78}$ falconensin B, ${ }^{79}$ natural chromones, ${ }^{80}$ and in 7-chloro-8-hydroxy-6-methoxy-3-methyl-isochroman-1-one. ${ }^{81}$
1,3-Bis(trimethylsilyloxy)-1,3-butadienes (e. g. Chan's diene) ${ }^{82}$ represent important synthetic building blocks which have been used in formal [3+2], [3+3], [4+2] and [4+3] cyclizations and various other transformations. ${ }^{83,84}$ We have recently reported the synthesis of 4-chlorophenols by cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 2-chloro-3-silyloxy-2-en-1-ones ${ }^{85}$ and the synthesis of chlorinated hetero- and carbacycles by cyclization reactions of 2-chloro-1,3-bis(silyloxy)-1,3-butadienes. ${ }^{86}$ Recently, we have reported ${ }^{87}$ the synthesis of 4-chloro-1,3-bis(silyloxy)-1,3-butadienes and their application to the synthesis of chlorinated arenes and hetarenes. Herein, we report full details of these studies and studies related to the scope and limitations.

The one-pot cyclizations reported herein provide a convenient and regioselective approach to various sterically encumbered, heavily substituted chlorinated products which are not readily available by other methods. Classic syntheses of chloroarenes, based on direct chlorinations, suffer from many drawbacks, such as low regioselectivities
and yields. In addition, the synthesis of the required starting materials, highly substituted and functionalized arenes, can be a difficult and tedious task

6.2 Results and Discussion:

The silylation of commercially available ethyl and methyl 4-chloroacetoacetate (53a,b) gave 3-silyloxy-2-en-1-one 54a,b (Scheme 32). 4-Chloro-1-alkoxy-1,3-bis(silyloxy)-1,3butadiene (55a,b) were prepared by the deprotonation (LDA) of 54 at $-78^{\circ} \mathrm{C}$ and subsequent addition of trimethylchlorosilane. Noteworthy, the chloro group proved to be compatible with the reaction conditions. Diene 55a,b can be stored at $-20^{\circ} \mathrm{C}$ under inert atmosphere for several weeks.

55a ($\mathrm{R}=\mathrm{Me}$): 82\%
55b ($\mathrm{R}=\mathrm{Et}$): 95%

Scheme 32. Synthesis of dienes 55a, b: i : $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NEt}_{3}$, benzene, $20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; ii: 1) LDA, THF, $-78,1 \mathrm{~h}, 2) \mathrm{Me}_{3} \mathrm{SiCl},-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed reaction of 1,3-bis(silyloxy)-1,3-dienes 55a,b with 3formylchromones 57 a-e afforded the chlorinated 2,4'-dihydroxybenzophenones 57a-e in good yields (Scheme 32, Table 9). The products are formed by a domino 'Michael-retro-Michael-Mukaiyama-Aldol' reaction. ${ }^{88}$

The structures of all products were confirmed by spectroscopic studies. The structure of 57a was independently confirmed by X-ray crystal structure analysis (Figure 14).

Scheme 32. Synthesis of 57a-e. Reagents and conditions: (i) 56a-e, Me ${ }_{3} \operatorname{SiOTf}(0.3$ equiv), $20^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (ii) (1) 55a, b (1.3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (2) $\mathrm{HCl}(10 \%)$.

Table 9. Synthesis of 3-chlorosalicylates 57a-e

$\mathbf{5 6 , 5 7}$	R^{l}	R^{2}	R^{3}	$\mathbf{\%}(\mathbf{5 7})^{a}$
\mathbf{a}	H	H	OEt	42
\mathbf{b}	Me	H	OEt	40
\mathbf{c}	NO_{2}	H	OEt	40
\mathbf{d}	Br	H	OEt	36
\mathbf{e}	Cl	H	OEt	36^{b}
${ }^{\text {a }} \mathrm{H}$				

[^1]

Figure 14. Ortep plot of 57a (50\% probability level)

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed reaction of 1,3-bis(silyloxy)-1,3-diene 55b with 3cyanochromones 58a-d afforded products 59a-d which were transformed, by treatment with triethylamine, into the chlorinated azaxanthones 60a-d (Scheme 33, Table 10). The formation of the products can be explained that products are formed by a domino 'RetroMichael / nitrile-addition / heterocyclization' reaction. ${ }^{89}$ The structure of 60c was independently confirmed by X-ray crystal structure analysis (Figure 15).

Scheme 33. Synthesis of 1-azaxanthones 60a-d: (i) (1) 58a-d, $\mathrm{Me}_{3} \mathrm{SiOTf}, 1 \mathrm{~h}, 2{ }^{\circ} \mathrm{C}$, (2) 59a-d, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$, (3) $\mathrm{HCl}\left(10 \%\right.$); (ii) (1) $\mathrm{NEt}_{3}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$, (2) HCl (10\%).

Figure 15. Ortep plot of $\mathbf{6 0 c}$ (50% probability level)

Table 10. Synthesis of 1-azaxanthones 60a-d

$\mathbf{5 8 , 5 9 , 6 0}$	R^{1}	R^{2}	$\%(\mathbf{6 0})^{a}$
\mathbf{a}	H	H	58
\mathbf{b}	Me	Me	34
\mathbf{c}	F	H	37
\mathbf{d}	Cl	H	40

${ }^{a}$ Yields of isolated products (from 58)

The TiCl_{4}-mediated [3+3] cyclization of 4-chloro-1,3-bis(silyloxy)-1,3-dienes $\mathbf{5 5 a}, \mathbf{b}$ with 3-aryl-3-silyloxy-2-en-1-ones 61a-e, prepared by silylation of the corresponding benzoylacetones, afforded the chlorinated biaryls 62a-e (Scheme 34, Table 11). During the optimization, it proved to be important to carry out the reactions in a highly concentrated solution. All products were formed with very good regioselectivity which can be explained, following a mechanism first suggested by Chan et al., ${ }^{82 a,} 84$ by TiCl T_{4} mediated isomerization of 61a-e, conjugate addition by attack of carbon atom C-4 of $\mathbf{5 5}$ onto 61 and subsequent cyclization.
The structures of all products were confirmed by spectroscopic studies. The structures of 62b, 62c, 62d, and 62 f were independently confirmed by X-ray crystal structure analysis (Figures 16-19).

Scheme 34. Synthesis of 62a-f. Reagents and conditions: (i) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \rightarrow 20^{\circ} \mathrm{C}$, 20 h .

Table 11. Synthesis of 4-chlorobiphenyls 62a-f

61,62	R ${ }^{1}$	R^{2}	R^{3}	\% (62) ${ }^{\text {a }}$
a	H	H	Me	42
b	H	H	Et	41
c	H	F	Et	48
d	Cl	H	Et	50
e	Me	H	Et	40
f	F	H	Et	45

${ }^{\mathrm{a}}$ Yields of isolated products.

Figure 16. Ortep plot of 62b (50\% probability level)

Figure 17. Ortep plot of 62c (50\% probability level)

Figure 18. Ortep plot of 62d (50\% probability level)

Figure 19. Ortep plot of $\mathbf{6 2 f}$ (50% probability level)

The reaction of 4-chloro-1,3-bis(silyloxy)-1,3-diene 55b with phthaloyl dichloride (63), following our recently reported protocol, ${ }^{90}$ afforded product 64 (Scheme 35). The best yield was obtained in the absence of any Lewis acid. Unexpectedly, the regioisomer derived from attack of the central, rather than the terminal carbon atom of the diene onto 63 was formed. In our previous studies, ${ }^{90}$ we have observed this irregular reaction pattern for 1,3-diketone-derived 1,3-bis(silyloxy)-1,3-butadienes. For β-ketoester-derived dienes, those regioisomers derived from attack of the terminal carbon atom onto 63 was usually observed.

The structure of 64 was independently confirmed by X-ray crystal structure analysis (Figure 20).

Scheme 35. Synthesis of 64. i : $\mathrm{CH}_{2} \mathrm{Cl}_{2,}-78 \rightarrow 20^{\circ} \mathrm{C}$.

Figure 20. Ortep plot of 64 (50\% probability level)
The TiCl_{4}-mediated cyclization of 4-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadiene 55b with phthalic aldehyde (65), following our recently reported procedure, ${ }^{91}$ afforded the chlorinated benzotropone 66 (Scheme 36). The structure of 66 was independently confirmed by X-ray crystal structure analysis (Figure 21).

Scheme 36. Synthesis of benzotropone 66, $i: \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$.

Figure 21. Ortep plot of 66 (50\% probability level)

6.3 Conclusion:

In conclusion, a variety of highly substituted chlorinated arenes and hetarenes were regioselectively prepared by one-pot cyclizations of 4-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienes with various dielectrophiles. The products are not readily available by other methods.

6.4 Summary:

Scheme 37: Schematic representation of reaction of 4-Chloro-1-alkoxy-1,3-bis(silyloxy)-1,3-butadiene (55a,b).

7. Synthesis of 2,6-Dioxo-1,2,3,4,5,6-hexahydroindoles by AcidCatalyzed Cyclization of Acetal-Protected (2,4-Dioxocyclohex-1yl)acetamides and their Transformation into 5,8,9,10-Tetrahydro-6H-indolo[2,1-a] isoquinolin -9- ones.

7.1 Introduction

Erythrina alkaloids occur in various tropical and subtropical plants ${ }^{92}$ and show a wide range of interesting biological properties. ${ }^{93}$ This includes, for example, curare-like, hypotensive, sedative, anticonvulsive, and CNS-depressive activity. ${ }^{94}$ Erythrina alkaloids have been prepared, for example, using photochemical [2+2] cycloadditions or DielsAlder reactions as the key steps. ${ }^{95}$ An important strategy for the synthesis of erythrina alkaloids relies on the acid-mediated domino reaction of (2-oxocyclohex-1-yl)acetic amides. ${ }^{95-97}$ This transformation proceeds by acid-mediated cyclization of the amide to give a N-(2-arylethyl)-2-oxo-1,2,3,4,5,6-hexahydroindole which is transformed in situ into the erythrina-type spirocyclic product by a Pictet-Spengler reaction. For example, spirocycle I has been directly prepared from the amide II under various conditions (Scheme xxx). However, the preparative scope of this reaction is very narrow and its success strongly depends on the structure of the substrate (substitution pattern of the aryl group, length of the linker between the aryl group and the nitrogen atom etc.). This is a severe limitation because the synthesis of specific target molecules heavily relies on functional group transformations of the spiro-compounds obtained by the domino process.
To address this problem, we planned to prepare the unknown erythrina derivative III, which contains an additional carbonyl group, from the corresponding amide IV (Scheme 38). The carbonyl group of III was expected to be a useful tool for the synthesis of erythrina-type natural products and their non-natural analogues. It was planned to prepare the required starting material IV from (2,4-dioxocyclohex-1-yl)acetic acid which, therefore, represents an important key intermediate of the present study.

Scheme 38. Strategy for the synthesis of the novel erythrina-type spiro-compound III containing an additional carbonyl group

Recently, we have reported ${ }^{98}$ our preliminary results related to the synthesis of (2,4-dioxocyclohex-1-yl)acetic amides, such as IV. Their reaction with para-toluenesulfonic acid (PTSA) resulted in the formation of 2,6-dioxo-1,2,3,4,5,6-hexahydroindoles rather than the expected erythrina-type spiro-compounds. Herein, we report a full account of the preparative scope of this methodology which provides, to the best of our knowledge, the yet most general approach to 2,6 -dioxo- $1,2,3,4,5,6$-hexahydroindoles. ${ }^{99}$ In addition, we report for the first time the reaction of 2,6-dioxo-1,2,3,4,5,6-hexahydroindoles with triflic acid which results in the formation of novel 5,8,9,10-tetrahydro- 6 H -indolo[2,1-a]isoquinolin-9-ones.

7.2 Results and Discussion

The synthesis of (2,4-dioxocyclohex-1-yl)acetic acid (70) has, to the best of our knowledge, not been reported to date. The synthesis of $\mathbf{7 0}$ proved to be very difficult in our hands, despite its structural simplicity. The reaction of the dianion ${ }^{100,101}$ of cyclohexane-1,3-dione (67) with 1-bromo-2,2-diethoxyethane and epibromohydrin afforded products $\mathbf{6 8}$ and 69 , respectively (Scheme 39). The low yield of $\mathbf{6 8}$ and $\mathbf{6 9}$ can
be explained by the β-oxygen effect. However, all attempts to prepare 70 by oxidation of 68 and 69 failed.

Deslongchamps and Guay reported the synthesis of 4-(3-oxopropyl)cyclopentane-1,3dione by ozonolysis of 4-(homoallyl)cyclopentane-1,3-dione. ${ }^{102}$ However, the ozonolysis of 4-allylcyclohexane-1,3-dione (71a), prepared by reaction of the dianion of 66a with allylbromide, ${ }^{103}$ afforded the triacid 75 rather than the desired aldehyde 74 (Scheme 40). The triacid 75 was also isolated when the oxidation was carried out using KMnO_{4}, $\mathrm{KMnO}_{4} / \mathrm{NaIO}_{4}$ in acetone, or $\mathrm{KMnO}_{4} / \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$. The formation of $\mathbf{7 5}$ can be explained by oxidative cleavage of the enolic double bond. The problem was solved by protection of the carbonyl groups of 71a to give the bis(acetal) 72a. The oxidation of 72a by $\mathrm{KMnO}_{4} / \mathrm{NaIO}_{4}$ (in acetone) afforded the acid 63a. Likewise, derivative 63b was prepared in three steps from 67b. The bis(acetal) 63a can be deprotected to give the desired (2,4-dioxocyclohex-1-yl)acetic acid (70) which, however, proved to be unstable. Therefore, bis(acetals) 73a,b were directly used for all further transformations.

Scheme 39. Attempted synthesis of 70; i, 1) 2.5 LDA, HMPTA, THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2$) electrophile, $-40 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$

The DCC-mediated reaction of 73a,b with various amines afforded the amides 76a-v (Table 1). Reflux of an acetone solution of 76a-v in the presence of para-toluenesulfonic acid (PTSA) afforded the 2,6-dioxo-1,2,3,3a,4,5-tetrahydroindoles 77a-v. The formation of an erythrina-type spiro-compound, such as III (see Scheme 38), was not observed. Products $\mathbf{7 7 e} \mathbf{e} \mathbf{m}, \mathbf{v}$ were prepared from the mono-acetals mono-76e,m,v. The latter were prepared from the mono-acetals mono-73a,b which are available by acetalization of 71a,b using only one (rather than two) equivalents of glycol.

67a ($\mathrm{R}=\mathrm{H}$)
$67 \mathrm{~b}(\mathrm{R}=\mathrm{Me})$

71a (R = H): 72\%
71b ($\mathrm{R}=\mathrm{Me}$): 95%

74
iv

73a ($\mathrm{R}=\mathrm{H}$): 65\%
73b ($\mathrm{R}=\mathrm{Me}$): 98%

ii

72a ($\mathrm{R}=\mathrm{H}$): 90%
72b ($\mathrm{R}=\mathrm{Me}$): 40\%

75

Scheme 40. Synthesis of 73a,b; i, 1) 2.5 LDA, HMPTA, THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2$) allylbromide, $-40 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; i i, \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, toluene, PTSA; iii, $\mathrm{NaIO}_{4}, \mathrm{KMnO}_{4}$, acetone; $\left.i v, 1) \mathrm{O}_{3}, 2\right) \mathrm{Me}_{2} \mathrm{~S}$ or other conditions (see text)

Conditions: i, 1) DCC, N-hydroxysuccinimide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 0^{\circ} \mathrm{C}$, then $12 \mathrm{~h}, 20^{\circ} \mathrm{C}, 2$) $\mathrm{R}^{2} \mathrm{NH}_{2}, 2 \mathrm{~h}, 20^{\circ} \mathrm{C}$; $i i$, PTSA, acetone, 6 h , reflux

Table 12: Synthesis of 77 a-v.

	 mono-73a,b		 mono-76e,m,v	
76,77	R^{1}	R^{2}	\% (76) ${ }^{\text {a }}$	\% (77) ${ }^{\text {a }}$
a	H	H	62	90
b	H	n Hept	57	64
c	H	$i \mathrm{Bu}$	76	81
d	H	${ }_{c} \mathrm{Pr}$	65	51
e	H	c Pent	$86^{\text {b }}$	91
f	H	$c \mathrm{Hex}$	46	73
g	H	Allyl	65	93
h	H	PhCH_{2}	67	86
i	H	$\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2}$	79	71
j	H	$\mathrm{Ph}(\mathrm{Me}) \mathrm{CH}$		$49^{\text {c }}$
k	H	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	64	85
1	H	[2-(MeO) $\mathrm{C}_{6} \mathrm{H}_{4}$] $\left(\mathrm{CH}_{2}\right)_{2}$		$45^{\text {c }}$
m	H	$\left[3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}\right]\left(\mathrm{CH}_{2}\right)_{2}$	$89^{\text {b }}$	53
n	H	[4-(MeO) $\mathrm{C}_{6} \mathrm{H}_{4}$] $\left.\mathrm{CH}_{2}\right)_{2}$	85	72
0	H	$\left[3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]\left(\mathrm{CH}_{2}\right)_{2}$	64	65

\mathbf{p}	H	$\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2}$	73	83
\mathbf{q}	H	Ph	70	78
\mathbf{r}	Me	$\left[3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{CH}_{2}$		43^{c}
\mathbf{s}	Me	$\left[3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right] \mathrm{CH}_{2}$		86^{c}
\mathbf{t}	Me	$\left[2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}\right]\left(\mathrm{CH}_{2}\right)_{2}$		58^{c}
\mathbf{u}	Me	$\left[4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}\right]\left(\mathrm{CH}_{2}\right)_{2}$	90	84
\mathbf{v}	Me	$\left[3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]\left(\mathrm{CH}_{2}\right)_{2}$	74^{b}	65

${ }^{\text {a }}$ Yields of isolated products;
${ }^{\mathrm{b}}$ these products were prepared from mono-76a,b and were isolated in the form of mono76e,m,v (structures see above);
${ }^{\text {c }}$ overall yield based on 73a,b
The structures of all products were established by spectroscopic methods. The structures of $76 \mathbf{0}, 77 \mathbf{0}$, and $77 \mathbf{e}$ were independently confirmed by X-ray crystal structure analyses (Figures 22-24). ${ }^{104}$

Figure 22. Ortep plot of 760 (50% probability level)

Figure 23. Ortep plot of 770 (50\% probability level)

Figure 24. Ortep plot of 77e (50\% probability level)

The reaction of 73a with 1,4 -bis(aminomethyl)benzene afforded the bis(amide) 77w which was transformed into the bis(2,6-dioxo-1,2,3,3a,4,5-tetrahydroindole) 77v (Scheme 41).
$73 a+$

Scheme 41. Synthesis of $77 \mathbf{w}: i, 1) \mathrm{DCC}, N$-hydroxysuccinimide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 0{ }^{\circ} \mathrm{C}$, then $\left.12 \mathrm{~h}, 20^{\circ} \mathrm{C}, 2\right) \mathrm{RNH}_{2}, 2 \mathrm{~h}, 20^{\circ} \mathrm{C}$; ii, PTSA, acetone, 6 h , reflux.

For comparison, we studied the reaction of PTSA with amide 76x which contains one free carbonyl group (Scheme 42). The amide 76x was prepared by DCC-mediated reaction of 2-(3,4-dimethoxyphenyl)ethylamine with the known acid 73c. ${ }^{105}$ The reaction of 76x with PTSA afforded the erythrina-type spiro-compound 78 in excellent yield. Tietze and coworkers recently reported the synthesis of $\mathbf{7 8}$ by $\mathrm{AlMe}_{3} / \mathrm{In}(\mathrm{OTf})_{3}$-mediated reaction of 2-(3,4-dimethoxyphenyl)ethylamine with the ethyl ester of 73c. ${ }^{106}$ The formation of 78 can be explained, as outlined in the introduction, by acid-mediated reaction of the keto group with the electron-rich phenyl group to give intermediate \mathbf{A}, protonation of the enamine moiety to give iminium salt \mathbf{B}, and subsequent Pictet-

Spengler reaction. It is important to be noted that this reaction is not general: The reaction of PTSA with amides $\mathbf{7 6 y}, \mathbf{z}$, again prepared from $\mathbf{7 3 c}$ in good yields, afforded the 2-oxo-$1,2,3,4,5,6$-hexahydroindoles $\mathbf{7 7} \mathbf{y}, \mathbf{z}$ rather than the expected spirocyclic products (Scheme 42). This can be explained by the higher strain of a $5,5,6$ - compared to a $5,6,6-$ spirocyclic system.

78 (86\%)
Scheme 42. Synthesis of 78: $i, 1$) DCC, N-hydroxysuccinimide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 0^{\circ} \mathrm{C}$, then $\left.12 \mathrm{~h}, 20^{\circ} \mathrm{C}, 2\right) \mathrm{RNH}_{2}, 2 \mathrm{~h}, 20^{\circ} \mathrm{C}$; ii, PTSA, acetone, 6 h , reflux

Our next plan was to study the transformation of 2,6-dioxo-1,2,3,4,5,6-hexahydroindoles 77 into erythrina-type spirocycles, such as III, under more forcing conditions. 2,6-Dioxo-1,2,3,4,5,6-hexahydroindoles 77 represent poly-functionalized heterocycles containing an enone, enamine, and lactam moiety. In principle, a nucleophilic attack might occur at the enone moiety (1,2 - or 1,4 -addition) or at the amide group. Protonation of the enamine moiety might result in the formation of an iminium ion which might be subsequently attacked by a nucleophile.

Scheme 43. Synthesis of 77y,z: $i, 1$) DCC, N-hydroxysuccinimide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 0{ }^{\circ} \mathrm{C}$, then $12 \mathrm{~h}, 20^{\circ} \mathrm{C}$, 2) $\mathrm{RNH}_{2}, 2 \mathrm{~h}, 20^{\circ} \mathrm{C}$; ii, PTSA, acetone, 6 h , reflux

Heating of 2,6-dioxo-1,2,3,4,5,6-hexahydroindole 77 o in the presence of PTSA for an extended period of time (48 h) did not result in any conversion. Therefore, we have choosed triflic acid (TfOH) as a more reactive reagent. The reaction of $\mathbf{7 7 0}$ with triflic acid (TfOH) afforded the 5,8,9,10-tetrahydro- 6 H -indolo[2,1-a]isoquinolin-9-one 80a (84% yield) rather than the erythrina-type spirocycle 79 (Scheme 44, Table 13). The formation of $\mathbf{8 0 a}$ can be explained by protonation of the amide oxygen atom to give the
cationic intermediate \mathbf{C}, cyclization via the electron-rich aryl group (intermediate \mathbf{D}), and subsequent extrusion of water and double bond migration.

Scheme 44. Possible mechanism of the formation of $\mathbf{8 0 a}: i, \mathrm{TfOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 4 h

Conditions: i, TfOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 4 h

Table 13. Synthesis of 5,8,9,10-tetrahydro- $6 H$-indolo $[2,1-a]$ isoquinolin- 9 -ones 80a-c

$\mathbf{7 7}$	$\mathbf{8 0}$	R^{1}	R^{2}	R^{3}	$\%$ $(\mathbf{8 0})^{\mathrm{a}}$
$\mathbf{0}$	\mathbf{a}	H	H	OMe	84
\mathbf{l}	\mathbf{b}	H	OMe	H	32
\mathbf{v}	\mathbf{c}	Me	H	OMe	57
${ }^{\mathrm{a}}$ Yields of isolated products					

The reaction of TfOH with 2,6-dioxo-1,2,3,4,5,6-hexahydroindoles $77 \mathbf{l}$ and $77 \mathbf{v}$ afforded the 5,8,9,10-tetrahydro- $6 H$-indolo $[2,1-a]$ isoquinolin- 9 -ones $\mathbf{8 0 b}$ and 80c, respectively (Table 13). In contrast, the reaction of TfOH with $77 \mathbf{k}$ resulted in the formation of a complex mixture. This result suggests that the cyclization is only possible for substrates containing an electron-rich phenyl group. This can be explained by the high reactivity of activated, electron-rich arenes in electrophilic substitution reactions. The reaction of TfOH with 77s also gave a complex mixture. This can be explained by the higher strain of 5,5,6- compared to 5,6,6-tricyclic products.
Padwa and Wang have recently reported the TfOH-mediated transformation of a 2,6-dioxo-1,2,3,4,5,6-hexahydroindole into a 5,6-dihydroindolo[2,1-a]isoquinolin-9-ol. ${ }^{97,106}$ This reaction, which involves a cyclization, decarboxylation and an aromatization step, presumably proceeds by a mechanism similar to that suggested for the formation of $5,8,9,10$-tetrahydro- 6 H -indolo[2,1-a]isoquinolin-9-ones $\mathbf{8 0 a}-\mathbf{c}$. The synthesis of 5,8,9,10-tetrahydro- 6 H -indolo[2,1- a]isoquinolin- 9 -ones has, to the best of our knowledge, not been reported to date. ${ }^{107}$

7.3 Conclusion:

In conclusion, we have reported the synthesis of the first (2,4-dioxocyclohex-1-yl)acetic amides. Their reaction with PTSA provides a general method for the synthesis of 2,6-dioxo-1,2,3,4,5,6-hexahydroindoles. The reaction of the latter with triflic acid afforded 5,8,9,10-tetrahydro-6H-indolo[2,1-a]isoquinolin-9-ones rather than erythrina-type spirocycles.

8 Experimental Section:

8.1 General: Equipments, chemicals and work techniques

${ }^{1}$ H NMR Spectroscopy: Bruker: AM 250, Avance 250, AC 250 (250 MHz); ARX 300, Avance 300 (300 MHz); Varian VXR 500 S , Avance $500(500 \mathrm{MHz}) ; \delta=0.00 \mathrm{ppm}$ for Tetramethylsilane; $\delta=2.04 \mathrm{ppm}$ for Acetone d-6; $\delta=7.26 \mathrm{ppm}$ for Deuterochloroform (CDCl3); Characterization of the signal fragmentations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double of doublet, $\mathrm{ddd}=$ doublet of a double doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet; sext $=$ Sextet, sept $=$ Septet, $m=$ multiplet, $\mathrm{br}=$ broadly. Spectra were evaluated according to first order rule. All coupling constants are indicated as (J).
${ }^{13}$ C NMR Spectroscopy: Bruker: AM 250, Avance 250, AC 250 (62.9 MHz); ARX 300, Avance $300(75 \mathrm{MHz})$; Varian VXR 500 S , Avance $500(125 \mathrm{MHz}) ; \delta=128.00 \mathrm{ppm}$ for Acetone $\mathrm{d}-6 ; \delta=77.00 \mathrm{ppm}$ for CDCl 3 . The multiplicity of the carbon atoms was determined by the DEPT 135 and APT technique (APT = Attached Proton Test) and quoted as $\mathrm{CH} 3, \mathrm{CH} 2, \mathrm{CH}$ and C for primary, secondary, tertiary and quaternary carbon atoms. Characterization of the signal fragmentations: quart = quartet the multiplicity of the signals was determined by the DEPT recording technology and/or the APT recording technology.

Mass Spectroscopy: AMD MS40, AMD 402 (AMD Intectra), Varian MAT CH 7, MAT 731.

High Resolution mass spectroscopy: Finnigan MAT 95 or Varian MAT 311; Bruker FT CIR, AMD 402 (AMD Intectra).

Infrared spectroscopy (IR): Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit (ATR); KBr, KAP, Nujol, and ATR; Abbreviations for signal allocations: $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad.

Elementary analysis: LECO CHNS-932, Thermoquest Flash EA 1112.

X-ray crystal structure analysis: Bruker X8Apex Diffractometer with CCD-Kamera (Mo-Ka und Graphit Monochromator, $\lambda=0.71073 \AA$). 56

Melting points: Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); Melting points are uncorrected.

Column chromatography: Chromatography was performed over Merck silica gel 60 ($0,063-0,200 \mathrm{~mm}, 70-230 \mathrm{mesh}$) as normal and/or over mesh silica gel $60(0,040-$ $0,063 \mathrm{~mm}, 200-400 \mathrm{mesh})$ as Flash Chromatography. All solvent were distilled before use.

TLC: Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished foils Alugram® Sil G/UV254. Detection under UV light with 254 nm and/or 366 nm without dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid).

Chemicals and work technique: All solvents used, were distilled by standard methods. All reactions were carried out under an inert atmosphere, oxygen and humidity exclusion. All of the chemicals are standard, commercially available from Merck®, Aldrich®, Arcos® and others. The order of the characterized connections effected numerically, but does not correspond to the order in the main part of dissertation.

8.2 Procedures and spectroscopic data:

Ethyl 3,5-Bis(trimethylsiloxy)hexa-2,4-dienoate (2). To a stirred benzene solution (95 ml) of $\mathbf{1}(5.36 \mathrm{~g}, 31.16 \mathrm{mmol})$, was added triethylamine ($13 \mathrm{ml}, 93.6 \mathrm{mmol}$), After stirring for 2 h TMSCl $(14.18 \mathrm{ml}, 112.32 \mathrm{mmol})$ was added. After stirring for 72 h , the solvent was removed in vacuo and to the residue was added Hexane (50 ml) to give a suspension. The latter was filtered under Argon atmosphere. The filtrate was distilled in vacuo to give $\mathbf{2}$ as yellow oil ($8.10 \mathrm{~g}, 82 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.14-0.21$ (brs, $18 \mathrm{H}, \mathrm{CH}_{3}$), $1.16\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.01(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$, OCH_{2}), $5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}),{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.02-$ $1.17\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 21.57\left(\mathrm{CH}_{3}\right), 60.9\left(\mathrm{OCH}_{2}\right), 96.6,103.5(\mathrm{CH}), 160.6,165.0$ $\left(\mathrm{COSi}\left(\mathrm{CH}_{3}\right)_{3}\right), 167.3(\mathrm{C}=\mathrm{O})$.

1,3,5-Tris (trimethylsiloxy)-1-ethoxyhexa-1,3,5-triene (3).
Starting with LDA ($38 \mathrm{mmol}, 1.5$ equiv.), $2(8 \mathrm{~g}, 25.30 \mathrm{mmol}$), TMSCl ($8.0 \mathrm{ml}, 63.25 \mathrm{mmol}$) and THF (45 ml), $\mathbf{3}$ was isolated as a yellow oil ($7.80 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=0.11-0.43$ (brs, $27 \mathrm{H}, \mathrm{CH}_{3}$), $1.14\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.11(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, OCH_{2}), 4.20 (s, 1H, CH), 4.51 (d, 1H, $\left.J=2 \mathrm{~Hz}, \mathrm{CH}\right), 4.82$ (s, 1H, CH), 5.57 (d, 1H, $J=2$ $\mathrm{Hz}, \mathrm{CH}),{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.05-1.23\left(9 \mathrm{C}, \mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 62.9$ $\left(\mathrm{OCH}_{2}\right), 78.4(\mathrm{CH}), 92.1\left(\mathrm{CH}_{2}\right), 105.4(\mathrm{CH}), 153.0,155.0,158.7\left(\mathrm{COSi}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

General procedure for the synthesis of 5: To 3-formylchromone 4 (1.0 equiv.) was added $\mathrm{Me}_{3} \mathrm{SiOTf}\left(0.3\right.$ equiv.) at $20^{\circ} \mathrm{C}$. After stirring for $10 \mathrm{~min} \mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL} / \mathrm{m} . m o l e)$ was added, the solution was cooled to $0^{\circ} \mathrm{C}$ and the Ethyl 3,5 -Bis(trimethylsiloxy)hexa-2,4-dienoate 2 (1.1 equiv.) was added. The mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ and was subsequently poured into an aqueous solution of hydrochloric acid (10\%). The organic and the aqueous layer were separated and the latter was extracted with CH2Cl2 (3×80 $\mathrm{mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and
the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n heptane $/ E t O A c=10: 1$).

Ethyl 3-acetyl-2-hydroxy-5-(2-hydroxybenzoyl)benzoate (5a): Starting with 3 -formylchromone 4 a ($261 \mathrm{mg}, 1.5$ mmol), 3,5-bis(silyl enol ether) 2 ($521 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol})$, $\mathbf{5 a}$ was isolated as a yellowish crystalline solid ($390 \mathrm{mg}, 79 \%$), mp. $=111-113^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.35\left(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.35$ (q, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $6.80(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{ArH})$, 7.42-7.48 (m, 2 H, ArH), 8.26 (d, $1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{ArH}$), 8.37 (d, $1 \mathrm{H}, J=3.4 \mathrm{~Hz}, \mathrm{ArH}$), $11.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,30.6$ $\left(\mathrm{CH}_{3}\right), 62.3\left(\mathrm{OCH}_{2}\right), 115.6(\mathrm{C}), 118.6(\mathrm{CH}), 118.7(\mathrm{C}), 118.9(\mathrm{CH}), 125.3,128.4(\mathrm{C})$, 132.7, 136.5, 136.6, 137.3 (CH), $163.0(\mathrm{C}-\mathrm{OH}), 164.2(\mathrm{C}=\mathrm{O}), 168.3(\mathrm{C}-\mathrm{OH}) 198.3,199.0$ (C=O); IR (neat): $\tilde{v}=3066(\mathrm{w}), 2985(\mathrm{w}), 2850(\mathrm{w}), 1737(\mathrm{w}), 1677$ (s), 1624 (s), 1586 (s), 1483 (m), 1454 (m), 1174 (s), 760 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): $328\left(\mathrm{M}^{+}\right.$, 86), 282 (100), 254 (47), 239 (49), 211 (20), 121 (67); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$ $\left[\mathrm{M}^{+}\right]: 328.09414$, found 328.093983 .

Ethyl 3-acetyl-2-hydroxy-5-(2-hydroxy-5-methylbenzoyl)benzoate (5b): Starting with 6-methyl-3formylchromone 4b ($282 \mathrm{mg}, 1.5 \mathrm{mmol}$), 3,5 -bis(silyl enol ether) 2 ($521 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}$), $\mathbf{5 b}$ was isolated as a yellow crystalline solid ($450 \mathrm{mg}, 88 \%$), mp. $=124-126^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.35$ (t, $3 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}$), $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.35(\mathrm{q}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}$, CH_{2}), $6.89(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.19-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.26(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}$, $\mathrm{ArH}), 8.36(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{ArH}), 11.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,20.4,30.6\left(\mathrm{CH}_{3}\right), 62.3\left(\mathrm{OCH}_{2}\right), 115.6(\mathrm{C}), 118.3(\mathrm{CH})$, 118.4, 125.2, 128.1, 128.5 (C), 132.3, 136.9, 137.3, 137.6 (CH), 161.0 (C-OH), 164.2
(C=O), 168.3 (C-OH) 198.2, 199.1 (C=O); IR (neat): $\tilde{v}=2983(\mathrm{w}), 2992(\mathrm{w}), 2855(\mathrm{w})$, 1737 (w), 1682 (s), 1662 (s), 1628 (s), 1583 (s), 1480 (m), 1455 (m), 1170 (s), 784 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 342 ($\mathrm{M}^{+}, 77$), 296 (100), 281 (18), 253 (41), 225 (17), 134 (48); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]: 342.10979$, found 342.109773.

Ethyl 3-acetyl-5-(5-ethyl-2-hydroxybenzoyl)-2-hydroxy-benzoate (5c): Starting with 6-ethyl-3formylchromone $\mathbf{4 c}$ ($303 \mathrm{mg}, 1.5 \mathrm{mmol}$), 3 ,5-bis(silyl enol ether) $2(521 \mathrm{mg}, 1.65 \mathrm{mmol})$, and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08$ $\mathrm{mL}, 0.45 \mathrm{mmol}$), $\mathbf{5 c}$ was isolated as yellowish oil (337 $\mathrm{mg}, 63 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{CH}_{3}\right), 1.35(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.456\left(\mathrm{q}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.35(\mathrm{q}, 2 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $6.92(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.30(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.3 \mathrm{~Hz}, \mathrm{ArH}), 8.39(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{ArH}), 11.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1,15.7\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{3}\right), 62.3\left(\mathrm{OCH}_{2}\right)$, 115.5 (C), 118.4 (CH), 125.3, 128.4, 128.5 (C), 131.2 (CH), 134.6 (C), 136.5, 136.8, $137.5(\mathrm{CH}), 161.1(\mathrm{C}-\mathrm{OH}), 164.2(\mathrm{C}=\mathrm{O}), 168.2(\mathrm{C}-\mathrm{OH})$ 198.1, 199.1 (C=O); IR (neat): $\tilde{v}=2993$ (w), 2966 (w), 2929 (w), 1737 (w), 1626 (m), 1584 (s), 1479 (m), 1322 (m), 1245 (s), 1169 (s), 1020 (s), 789 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 356 ($\mathrm{M}^{+}, 74$), 310 (100), 282 (22), 267 (37), 239 (15), 148 (49); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]$: 356.12544 , found 356.125099 .

Ethyl 3-acetyl-2-hydroxy-5-(2-hydroxy-5-isopropyl-benzoyl)benzoate (5d): Starting with 6-isopropyl-3-formylchromone 4 d ($324 \mathrm{mg}, 1.5$ mmol), 3,5-bis(silyl enol ether) 2 ($521 \mathrm{mg}, 1.65$ mmol), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol})$, 5d was isolated as a yellowish oil ($329 \mathrm{mg}, 59 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11$ (d, $6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{CH}_{3}$), $1.31\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.78(\mathrm{~m}, 1 \mathrm{H}$, CH), $4.34\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.30-7.36(\mathrm{~m}, 2 \mathrm{H}$, ArH), $8.32(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{ArH}), 8.40(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{ArH}), 11.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$,
$12.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(\mathrm{CH}_{3}\right), 23.9\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 30.4$ $\left(\mathrm{CH}_{3}\right), 33.14(\mathrm{CH}), 62.3\left(\mathrm{OCH}_{2}\right), 115.6(\mathrm{C}), 118.3(\mathrm{CH}), 125.3,128.3,128.4(\mathrm{C}), 129.8$, 135.2, 136.9, $137.6(\mathrm{CH}), 139.2(\mathrm{C}), 161.1(\mathrm{C}-\mathrm{OH}), 164.3(\mathrm{C}=\mathrm{O}), 168.2(\mathrm{C}-\mathrm{OH}) 198.0$, 199.1 (C=O); IR (neat): $\tilde{v}=3067$ (w), 2960 (w), 2928 (w), 2871 (w), 1731 (w), 1674 (s), 1628 (s), 1584 (s), 1480 (m), 1453 (m), 1176 (s), 788 (s$) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 370 ($\mathrm{M}^{+}, 81$), 324 (100), 309 (90), 281 (26), 162 (26), 147 (93); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]: 370.14109$, found 370.140795 .

Ethyl 3-acetyl-5-(5-nitro-2-hydroxybenzoyl)-2-hydroxy-benzoate (5e): Starting with 6-nitro-3formylchromone $\mathbf{4 e}$ ($138 \mathrm{mg}, 0.63 \mathrm{mmol}$), 3,5 -bis(silyl enol ether) 2 ($218 \mathrm{mg}, 0.69 \mathrm{mmol}$), and $\mathrm{Me}_{3} \mathrm{SiOTf}$ $(0.03 \mathrm{~mL}, 0.18 \mathrm{mmol}), \mathbf{5 e}$ was isolated as a crystalline solid ($100 \mathrm{mg}, 43 \%$), mp. $=107-109^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.36(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=8.9$ $\mathrm{Hz}, \mathrm{ArH}$), $8.31-8.35$ (m, $2 \mathrm{H}, \mathrm{ArH}$), $8.40(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{ArH}), 8.45(\mathrm{~d}, 1 \mathrm{H}, J=2.6$ $\mathrm{Hz}, \mathrm{ArH}), 12.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 14.1, $30.7\left(\mathrm{CH}_{3}\right), 62.6\left(\mathrm{OCH}_{2}\right), 115.8,117.6(\mathrm{C}), 119.7(\mathrm{CH}) 126.1,126.9(\mathrm{C}), 128.7$, 131.0, 136.4, 137.4 (CH), 139.58 (C), $164.9(\mathrm{C}-\mathrm{OH}), 167.7(\mathrm{C}=\mathrm{O}), 168.2(\mathrm{C}-\mathrm{OH}) 197.2$, 198.4 (C=O); IR (neat): $\tilde{v}=3074$ (w), 2990 (w), 2914 (m), 1731 (m), 1667 (s), 1620 (s), 1446 (s), 1331 (s), 1175 (s), 749 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 373 ($\mathrm{M}^{+}, 35$), 327 (82), 312 (100), 299 (43), 189 (16), 166 (20), 135 (41); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{8}\left[\mathrm{M}^{+}\right]: 373.07922$, found 373.078896 .

Ethyl 3-acetyl-5-(5-bromo-2-hydroxybenzoyl)-2hydroxybenzoate (5f): Starting with 6-bromo-3formylchromone $\mathbf{4 f}(253 \mathrm{mg}, 1.0 \mathrm{mmol}), 3,5-\mathrm{bis}($ silyl enol ether) 2 ($348 \mathrm{mg}, 1.1 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.05$ $\mathrm{mL}, 0.3 \mathrm{mmol}$), $\mathbf{5 f}$ was isolated as a crystalline solid (219 mg, 54\%), mp. $=118-120^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$,

ArH), 7.51-7.57 (m, 2 H, ArH), $8.27(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{ArH}), 8.36(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}$, ArH), $11.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1$, $30.6\left(\mathrm{CH}_{3}\right), 62.4\left(\mathrm{OCH}_{2}\right), 110.5,115.7,120.0(\mathrm{C}), 120.7(\mathrm{CH}), 125.6,127.7(\mathrm{C}), 134.6$, 136.6, 137.3, $139.1(\mathrm{CH}), 161.9(\mathrm{C}-\mathrm{OH}), 164.5(\mathrm{C}=\mathrm{O}), 168.2(\mathrm{C}-\mathrm{OH}) 197.2,198.8$ (C=O); IR (neat): $\tilde{v}=3072$ (w), 2942 (w), 2929 (w), 1731 (w), 1673 (s), 1627 (s), 1586 (s), 1462 (m), 1446 (s), 1407 (s), 1316 (s), 1174 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%)$: $408\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 48\right), 406\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 46\right), 362(98), 360(100), 345$ (22), 334 (28), 332 (24), 317 (30), 201 (43); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{6}\left[\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right]$: 406.00465, found 406.003581 .

Ethyl 3-acetyl-5-(3,5-dibromo-2-hydroxybenzoyl)-2hydroxybenzoate (5g): Starting with 6,8-dibromo-3formylchromone 4 g ($331 \mathrm{mg}, 1.0 \mathrm{mmol}$), $3,5-\mathrm{bis}($ silyl enol ether) 2 ($348 \mathrm{mg}, 1.1 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.05$ $\mathrm{mL}, 0.3 \mathrm{mmol}$), $\mathbf{5 g}$ was isolated as a crystalline solid (219 mg, 56\%), mp. $=139-141^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $2.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}$, ArH), 7.83 (d, $1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{ArH}), 8.27$ (d, $1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{ArH}$), 8.36 (d, $1 \mathrm{H}, J=2$ $\mathrm{Hz}, \mathrm{ArH}$), $12.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 14.1, $30.6\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{OCH}_{2}\right), 110.5,113.5,115.7,120.5,125.8,127.2(\mathrm{C}), 133.8$, 136.6, 137.4, $141.4(\mathrm{CH}), 158.4(\mathrm{C}-\mathrm{OH}), 164.8(\mathrm{C}=\mathrm{O}), 168.2(\mathrm{C}-\mathrm{OH}) 196.8,198.5$ (C=O); IR (neat): $\tilde{v}=3079$ (w), 3062 (w), 2994 (w), 1731 (w), 1669 (s), 1622 (s), 1587 (s), 1434 (m), 1414 (s), 1247 (s), 1159 (s), 787 (s) cm${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): $\left.488\left(\mathrm{M}^{+},\left[2 \times{ }^{81} \mathrm{Br}\right], 12\right), 486\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}^{79} \mathrm{Br}\right], 25\right), 484\left(\mathrm{M}^{+},\left[2 \times{ }^{79} \mathrm{Br}\right], 12\right), 442(48), 440$ (100), 412 (23), 279 (18), 189 (36). HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{6}\left[\mathrm{M}^{+}, 2 \mathrm{X}^{79} \mathrm{Br}\right]$: 483.91516, found 483.915551 .

Ethyl 3-acetyl-5-(5-chloro-2-hydroxybenzoyl)-2hydroxybenzoate (5h): Starting with 6-chloro-3formylchromone $4 \mathbf{h}(208 \mathrm{mg}, 1.0 \mathrm{mmol}), 3,5-\mathrm{bis}($ silyl enol ether) 2 ($348 \mathrm{mg}, 1.1 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.05$ $\mathrm{mL}, 0.3 \mathrm{mmol}$), $\mathbf{5 h}$ was isolated as a crystalline solid $(279 \mathrm{mg}, 76 \%), \mathrm{mp} .=124-125^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}$, ArH), 7.39-7.42 (m, $2 \mathrm{H}, \mathrm{ArH}$), 8.27 (d, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}$), 8.36 (d, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}$, ArH), $11.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1$, $30.7\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{OCH}_{2}\right), 115.3,119.4(\mathrm{C}), 120.3(\mathrm{CH}) 123.7,127.8,127.9(\mathrm{C}), 131.5$, 136.4, 136.5, $137.2(\mathrm{CH}), 161.5(\mathrm{C}-\mathrm{OH}), 164.5(\mathrm{C}=\mathrm{O})$, $168.2(\mathrm{C}-\mathrm{OH}) 197.3,198.3$ (C=O); IR (neat): $\tilde{v}=3077$ (w), 3005 (w), 2938 (w), 1738 (w), 1672 (s), 1622 (s), 1587 (s), 1455 (s), 1409 (s$), 1318$ (s), 1175 (s$), 780$ (s$) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m / z (\%): 364 $\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 17\right), 362\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 54\right), 316$ (100), 301 (26), 273 (28), 245 (13), 189 (16), 155 (31); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{6}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 362.05517$, found 362.054803.

Ethyl 3-acetyl-5-(5-fluoro-2-hydroxybenzoyl)-2hydroxybenzoate (5j): Starting with 6-fluoro-3formylchromone $\mathbf{4 j}$ ($192 \mathrm{mg}, 1.0 \mathrm{mmol}$), 3,5-bis(silyl enol ether) $2(348 \mathrm{mg}, 1.1 \mathrm{mmol})$, and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.05$ $\mathrm{mL}, 0.3 \mathrm{mmol}$), $\mathbf{5 j}$ was isolated as a crystalline solid (270 $\mathrm{mg}, 79 \%), \mathrm{mp} .=111-112^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.36(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}$, CH_{3}), $2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.95-7.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.10-$ 7.24 (m, $2 \mathrm{H}, \mathrm{ArH}$), 8.26 (d, $1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \operatorname{ArH}$), 8.35 (d, $1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{ArH}$), 11.36 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 12.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,30.7\left(\mathrm{CH}_{3}\right)$, $62.4\left(\mathrm{OCH}_{2}\right), 115.6(\mathrm{C}), 117.2,119.9,123.9(\mathrm{CH}), 125.6,127.9(\mathrm{C}), 136.4,137.2(\mathrm{CH})$, 152.7, 156.5, (C) 159.1 (C-OH), 164.4 (C=O), 168.3 (C-OH) 197.3, 198.7 (C=O); IR (neat): $\tilde{v}=3078$ (w), 3008 (w), 2928 (w), 1737 (w), 1668 (s), 1591 (s), 1468 (s), 1420 (s), 1318 (s), 1241 (s), 783 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 346\left(\mathrm{M}^{+}, 56\right), 300$ (100), 272 (32), 257 (37), 229 (16), 189 (13); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FO}_{6}\left[\mathrm{M}^{+}\right]: 346.08471$, found 346.0084999 .

General procedure for the synthesis of 6: To 3-formylchromone 4 (1.0 equiv.) was added Me3SiOTf (0.3 equiv.) at $20^{\circ} \mathrm{C}$. After stirring for $10 \mathrm{~min} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($8 \mathrm{~mL} / \mathrm{m} . \mathrm{mole}$) was added, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and the $1,3,5$-Tris (trimethylsiloxy)-1-ethoxyhexa-1,3,5-triene 3 (1.1 equiv.) was added. The mixture was stirred for 12 h at 20 ${ }^{\circ} \mathrm{C}$ and was subsequently poured into an aqueous solution of hydrochloric acid (10%). The organic and the aqueous layer were separated and the latter was extracted with CH2Cl2 (3 x 80 mL). The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n heptane $/$ EtOAc $=10: 1$).

Ethyl
3-(2-hydroxy-5-(2-hydroxy-5-methylbenzoyl)-phenyl)-3-oxopropanoate (6b):

Starting with 6-methyl-3-formylchromone 4b (282 $\mathrm{mg}, 1.5 \mathrm{mmol}$), 1,3,5-tris(silyl enol ether) 3 (641 $\mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45$ mmol), $\mathbf{6 b}$ was isolated as a yellow solid ($186 \mathrm{mg}, 36 \%$), mp. $=81-84^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.31\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.25\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, ArH), $7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.89(\mathrm{dd}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}, \mathrm{ArH}$), $11.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=14.0,20.4\left(\mathrm{CH}_{3}\right), 45.7\left(\mathrm{CH}_{2}\right), 61.9\left(\mathrm{OCH}_{2}\right), 118.3(\mathrm{CH}), 118.4,118.5(\mathrm{C}), 118.7(\mathrm{CH})$, 128.0, 129.2 (C), 132.4, 132.9 (CH), 136.7, 137.8 (CH), 161.0, 165.6 (COH), 166.4, 198.3, 198.5 (C=O); IR (neat): $\tilde{v}=2970$ (w), 2930 (w), 2859 (w), 1726 (s), 1630 (s), 1587 (s), 1479 (s), 1324 (s), 1207 (s), 1170 (s), 785 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 342 ($\mathrm{M}^{+}, 86$), 296 (100), 281 (23), 268 (31), 253 (48), 225 (19), 189 (12), 134 (45); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]: 342.10979$, found 342.109866 .

Ethyl 3-(5-(5-ethyl-2-hydroxybenzoyl)-2-hydroxy-phenyl)-3-oxopropanoate (6c): Starting with 6-ethyl-3-formylchromone $\mathbf{4 c}(303 \mathrm{mg}, 1.5 \mathrm{mmol})$, $1,3,5$-tris(silyl enol ether) 3 ($641 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}$ ($0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}$), $\mathbf{6 c}$ was isolated as a yellowish brown solid ($240 \mathrm{mg}, 45 \%$), $\mathrm{mp} .=55-58^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, CDCl_{3}): $\delta=1.22\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz} \mathrm{CH}_{3}\right), 1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz} \mathrm{CH}_{3}\right), 2.456(\mathrm{q}, 2 \mathrm{H}, J$ $\left.=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.12\left(\mathrm{q}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=8.3$ $\mathrm{Hz}, \mathrm{ArH}$), 7.13 (d, 1H, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}$), 7.39-7.7.43 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.90 (dd, $1 \mathrm{H}, J=$ $1.9 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}$), 8.16 (d, 1H, $J=1.95 \mathrm{~Hz}, \mathrm{ArH}$), $11.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.30(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,15.7\left(\mathrm{CH}_{3}\right), 27.9,45.6\left(\mathrm{CH}_{2}\right), 61.9$ $\left(\mathrm{OCH}_{2}\right), 118.4(\mathrm{CH}), 118.4,118.5(\mathrm{C}), 118.7(\mathrm{CH}), 129.2(\mathrm{C}), 131.3,132.9(\mathrm{CH}), 134.6$ (C), 136.3, $137.8(\mathrm{CH}), 161.1,165.6(\mathrm{COH}), 166.4,198.1,198.5(\mathrm{C}=\mathrm{O})$; IR (neat): $\tilde{v}=$ 2963 (m), 2930 (m), 1735 (m), 1680 (w), 1628 (s), 1583 (s), 1479 (s), 1352 (m), 1285 (s), 1201 (s), $832(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 356\left(\mathrm{M}^{+}, 30\right), 310(75), 267$ (17), 241 (12), 148 (100), 133 (62), 84 (23); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]$: 356.12544 , found 356.125284 .

Ethyl
3-(2-hydroxy-5-(2-hydroxy-5 isopropylbenzoyl)-phenyl)-3-oxopropanoate (6d). Starting with 6-isopropyl-3formylchromone $\mathbf{4 d}$ ($324 \mathrm{mg}, 1.5 \mathrm{mmol}$), $1,3,5-$ tris(silyl enol ether) 3 ($641 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}), \mathbf{6 d}$ was isolated as a yellow solid ($260 \mathrm{mg}, 47 \%$), mp . $=60-63^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22-1.32\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 2.88(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH})$, 7.14 (d, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.40-7.48$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.90 (dd, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=$ $8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{ArH}), 11.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,23.9,24.0\left(\mathrm{CH}_{3}\right), 33.1(\mathrm{CH}), 45.7\left(\mathrm{CH}_{2}\right), 61.9$ $\left(\mathrm{OCH}_{2}\right), 118.3(\mathrm{C}), 118.4(\mathrm{CH}), 118.5(\mathrm{C}), 118.7(\mathrm{CH}), 129.2(\mathrm{C}), 129.9,132.9,134.9$, $137.8(\mathrm{CH}), 139.2(\mathrm{C}), 161.1,165.6(\mathrm{COH}), 166.3,198.5,198.5(\mathrm{C}=\mathrm{O})$; IR (neat): $\tilde{v}=$

3058 (w), 2956 (m), 2924 (m), 1744 (s), 1681 (w), 1653 (m), 1628 (s), 1583 (s), 1480 (s), 1343 (m), 1207 (s), 1181 (s), 832 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): $370\left(\mathrm{M}^{+}\right.$, 77), 324 (53), 309 (78), 283 (17), 267 (23), 162 (46), 147 (100), 44 (37); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]: 370.14109$, found 370.140462.

Ethyl
3-(2-hydroxy-5-(2-hydroxy-5-nitrobenzoyl)-phenyl)-3-oxopropanoate (6e): Starting with 6-nitro-3-formylchromone 4 e (328 $\mathrm{mg}, 1.5 \mathrm{mmol}$), 1,3,5-tris(silyl enol ether) 3 (641 $\mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45$ mmol), 6e was isolated as a yellow solid ($160 \mathrm{mg}, 29 \%$), mp. $=130-133^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.19\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $3.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25(\mathrm{q}, 2 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.84(\mathrm{dd}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 8.14$ (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 8.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.55(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 12.30(\mathrm{~s}, 2$ $\mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 45.9\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{OCH}_{2}\right)$, 117.6, 118.7 (C), 119.5, 119.7, 128.8, 129.4, 130.8, 133.5 (CH), 137.5, 139.5 (C), 166.1, $166.5(\mathrm{COH}), 167.7,197.3,198.3(\mathrm{C}=0$); IR (neat): $\tilde{v}=3088$ (w), 2969 (w), 2849 (w), 1726 (s), 1628 (s), 1593 (s), 1519 (m), 1470 (s), 1338 (s), 1209 (s), 742 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 373 ($\mathrm{M}^{+}, 37$), 327 (100), 310 (23), 286 (64), 258 (40), 166 (40), 147 (25), 120 (60); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{8}$ [M $\left.\mathrm{M}^{+}\right]: 373.07922$, found 373.078728 .

Ethyl 3-(5-(5-bromo-2-hydroxybenzoyl)-2-hydroxy-phenyl)-3-oxopropanoate (6f): Starting with 6-bromo-3-formylchromone $\mathbf{4 f}$ ($379 \mathrm{mg}, 1.5$ mmol), $1,3,5$-tris(silyl enol ether) $3(641 \mathrm{mg}, 1.65$ mmol), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}), 6 \mathbf{f}$ was isolated as a yellow solid ($190 \mathrm{mg}, 31 \%$), mp. $=117-120^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.21\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.23(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, OCH_{2}), $6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.85 \mathrm{ArH}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=8.75 \mathrm{ArH}), 7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.79 (d, $1 \mathrm{H}, J=1.75 \mathrm{~Hz}, \operatorname{ArH}), 7.83$ (d, $J=1.75 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.06$ (d, $J=1.8 \mathrm{~Hz}, 1$ H, ArH), $11.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
$14.0\left(\mathrm{CH}_{3}\right), 45.7\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{OCH}_{2}\right), 110.4,118.6(\mathrm{C}), 119.1(\mathrm{CH}), 120.1(\mathrm{C}), 120.6$ $(\mathrm{CH}), 128.3(\mathrm{C}), 133.0,134.5,137.3,138.9(\mathrm{CH}), 161.8,166.0(\mathrm{COH}), 166.3,197.2$, 198.5 (C=O); IR (neat): $\tilde{v}=3073$ (w), 3002 (w), 2966 (m), 1728 (s), 1680 (s), 1643 (s$)$, $1626(\mathrm{~m}), 1447$ (s), 1462 (s), 1422 (s), 786 (s) cm^{-1}; GC-MS (EI, 70 eV): $m / z(\%): 408$ $\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 47\right), 406\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 47\right), 362(78), 360(75), 291$ (28), 200 (100), 147 (30), 120 (41), 92 (14); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{6}\left[\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right]: 406.00465$, found 406.004404 .

Ethyl 3-(5-(3,5-dibromo-2-hydroxybenzoyl)-2-hydroxyphenyl)-3-oxopropanoate (6g). Starting with 6,8 -dibromo-3-formylchromone $\mathbf{4 g}$ (331 mg , 1.0 mmol), 1,3,5-tris(silyl enol ether) 3 ($427 \mathrm{mg}, 1.1$ mmol), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.05 \mathrm{~mL}, 0.3 \mathrm{mmol}), \mathbf{6 g}$ was isolated as a light brown solid ($159 \mathrm{mg}, 33 \%$), mp. $=$ $101-103^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.97(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.14\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{ArH}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=2.3$ ArH), 7.78-7.84 (m, 2H, ArH), 8.07 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 12.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 12.27$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$) ${ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 45.7\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{OCH}_{2}\right)$, 110.4, 113.5, 118.7 (C), 119.2 (CH), 120.6, 128.3 (C), 133.3, 133.8, 137.6, 141.3 (CH), 158.4, 166.2 (COH), 166.3, 197.0, 198.4 (C=O); IR (neat): $\tilde{v}=3067$ (w), 3002 (w), 2974 (m), 2919 (m), 1735 (s), 1694 (w), 1651 (s), 1626 ($), 1583$ (s), 1214 (s), 1159 (s), 771 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): $488\left(\mathrm{M}^{+},\left[2 \times{ }^{81} \mathrm{Br}\right], 13\right), 486\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br}^{79} \mathrm{Br}\right], 27\right)$, $484\left(\mathrm{M}^{+},\left[2 \times{ }^{79} \mathrm{Br}\right], 13\right), 442(23), 440(47), 399(29), 371$ (34), 278 (100), 147 (32), 120 (40). HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{6}\left[\mathrm{M}^{+}, 2 \mathrm{X}^{79} \mathrm{Br}\right]: 483.91516$, found 483.915113.

3-(5-(5-chloro-2-hydroxybenzoyl)-2-hydroxy-phenyl)-3-oxopropanoate (6h): Starting with 6,8 -dibromo- 3 -formylchromone 4 h (312 mg , 1.5 mmol), $1,3,5$-tris(silyl enol ether) 3 ($641 \mathrm{mg}, 1.65$ mmol), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol})$, $\mathbf{6 h}$ was isolated as a reddish brown solid ($203 \mathrm{mg}, 37 \%$), mp. $=98-99^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz} \mathrm{CH}_{3}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7.1$ $\mathrm{Hz}, \mathrm{OCH}_{2}$), $7.07(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.48-7.52(\mathrm{~m}, 1$ H, ArH), 7.56 (d, 1H, $J=2.5 \mathrm{~Hz}, \mathrm{ArH}$), 7.90 (dd, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 8.16$ (d, 1H, $J=1.95 \mathrm{~Hz}, \mathrm{ArH}$), 11.63 (s, $1 \mathrm{H}, \mathrm{OH}$), 12.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR (75.46 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 45.7\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{OCH}_{2}\right), 118.6(\mathrm{C}), 119.1(\mathrm{CH}), 119.4$, (C), $120.3(\mathrm{CH}), 123.6,128.3(\mathrm{C}), 131.5,133.0,136.2,137.6(\mathrm{CH}), 161.4,164.5(\mathrm{COH})$, 166.3, 197.5, 198.4 (C=O); IR (neat): $\tilde{v}=3074$ (w), 2978 (m), 2932 (w), 1728 (m), 1668 (s), 1626 (s), 1587 (s), 1459 (s$), 1274$ (s$), 1173$ (s$), 1095$ (s$), 834$ (m) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 364\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 20\right), 362\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 47\right), 316$ (100), 301 (25), 273 (34), 245 (15), 207 (14), 155 (35), 44 (29); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 362.05517 , found 362.054802 .

Ethyl 3-(5-(5-fluoro-2-hydroxybenzoyl)-2-hydroxy-phenyl)-3-oxopropanoate (6j): Starting with 6,8-dibromo-3-formylchromone $\mathbf{4 j}$ ($288 \mathrm{mg}, 1.5 \mathrm{mmol}$), 1,3,5-tris(silyl enol ether) $\mathbf{3}$ ($641 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}), \mathbf{6 j}$ was isolated as a light yellow solid ($179 \mathrm{mg}, 34 \%$), mp. $=72-74^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.22$ (t, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$), $3.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.22\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.96-6.99$ (m, 1H, ArH), 7.08 (d, $1 \mathrm{H}, J=8.75, \mathrm{ArH}$), $7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, ArH), 7.85 (d, $1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{ArH}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 11.39$ (s, $1 \mathrm{H}, \mathrm{OH})$, 12.23 (s, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(\mathrm{CH}_{3}\right), 45.7\left(\mathrm{CH}_{2}\right), 62.0$ $\left(\mathrm{OCH}_{2}\right), 118.6(\mathrm{C}), 119.1(\mathrm{CH}), 119.4,(\mathrm{C}), 120.3(\mathrm{CH}), 123.6,128.3(\mathrm{C}), 131.5,133.0$, 136.2, $137.6(\mathrm{CH}), 161.4,164.5(\mathrm{COH}), 166.3,197.5,198.4(\mathrm{C}=\mathrm{O})$; IR (neat): $\tilde{v}=3069$
(w), 2998 (w), 2974 (w), 1726 (s), 1655 (s), 1634 (s), 1622 (m), 1470 (s), 1598 (s), 1469 (s), $987(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m/z (\%): $346\left(\mathrm{M}^{+}, 50\right), 326$ (18), 300 (44), 259 (50), 231 (70), 139 (100), 120 (31), HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FO}_{6}\left[\mathrm{M}^{+}\right]: 346.08472$, found 346.084658 .

General procedure for the synthesis of methyl 3-arylacetoacetates 8a,b and d : A THF solution of LDA (2.3 equiv.) was prepared by addition of $n \mathrm{BuLi}(0.93 \mathrm{~mL}, 2.3$ mmol, 2.5 M in hexane) to a THF solution (6 mL) of diisopropylamine ($0.32 \mathrm{~mL}, 2.3$ $\mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the solution was stirred for 30 min , methyl acetate $(0.09 \mathrm{~mL}, 1.1$ mmol) was added at $0{ }^{\circ} \mathrm{C}$. After stirring for $45-60 \mathrm{~min}$, to the solution was added a THF solution $(4 \mathrm{~mL})$ of the acid chloride $(205 \mathrm{mg}, 1.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The temperature was allowed to rise to ambient during 5-6 h and the solution was stirred at $20^{\circ} \mathrm{C}$ for 10 h . To the solution was added a diluted aqueous solution of HCl and the mixture was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvent of the filtrate was removed in vacuo and the residue was purified by chromatography (silica gel, EtOAc / n-heptane).

Methyl 4-phenylacetoacetate (8a): Starting with 2-phenylacetyl chloride $(5.00 \mathrm{~g}, 32.3 \mathrm{mmol})$ and methyl acetate $(2.83 \mathrm{~mL}, 35.6$ $\mathrm{mmol}), 8 \mathbf{a}$ was isolated as a yellowish oil ($4.90 \mathrm{~g}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=47.9,49.5\left(\mathrm{CH}_{2}\right), 52.2,\left(\mathrm{OCH}_{3}\right), 126.9(\mathrm{CH}), 127.3(2 \mathrm{C}, \mathrm{CH})$, 128.6 (2C, CH), 130.7 (C), 167.5, 200.7 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3087$ (w), $3030(\mathrm{w})$, 3006 (m), 2954 (m), 1713 (s), 1602 (w), 1496 (w), 1437 (m), 1316 (m), 1301 (m), 1203 (m), 1115 (m), 1012 (m), 848 (m), 799 (m), 698 (s). MS (EI, 70 eV): m/z (\%): 192 (M ${ }^{+}$, 35), 160 (6), 118 (47), 101 (37), 91 (100), 65(20), 59 (21). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$192.07810; found 192.07829 .

Methyl 4-(4-methoxyphenyl)acetoacetate (8b): Starting with 2-(4-methoxyphenyl)acetyl chloride $(5.00 \mathrm{~g}, 27.1 \mathrm{mmol}$) and methyl acetate ($2.21 \mathrm{~mL}, 29.9 \mathrm{mmol}$), $\mathbf{8 b}$ was isolated as a yellowish oil (3.38 g, 56\%). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.37(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.77 (d, 2H, $J=8.6 \mathrm{~Hz}, \operatorname{ArH}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=47.7,49.1\left(\mathrm{CH}_{2}\right), 52.2,55.1\left(\mathrm{OCH}_{3}\right), 114.0(2 \mathrm{C}, \mathrm{CH}), 125.1$ (C), 130.8 (2C, CH), 158.6 (C), 167.5, 200.7 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3000$ (w), 2954 (m), 2837 (w), 1738 (s), 1713 (s), 1608 (m), 1510 (s), 1437 (m), 1317 (m), 1301 (m), 1244 (s), 1176 (s), 1028 (s), 829 (m), 773 (w). MS (EI, 70 eV): m/z (\%): 222 ($\mathrm{M}^{+}, 55$), 180 (15), 164 (9), 148 (25), 121 (100), 101(15), 91 (12). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 222.08866$; found 222.08867 .

Methyl 4-(4-chlorophenyl)acetoacetate (8d): Starting with 2-(4chlorophenyl)acetyl chloride $(5.00 \mathrm{~g}, 26.4 \mathrm{mmol})$ and methyl acetate ($2.31 \mathrm{~mL}, 29.1 \mathrm{mmol}$), 8d was isolated as a brownish oil ($2.22 \mathrm{~g}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.64 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.04 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, ArH), 7.19 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=48.1,49.0\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{OCH}_{3}\right), 129.9(2 \mathrm{C}, \mathrm{CH}), 130.9(2 \mathrm{C}, \mathrm{CH}), 134.2,132.3(\mathrm{C})$, 167.3, 199.7 (C=O). IR (neat, cm^{-1}): $\tilde{v}=2999$ (w), 2966 (m), 2932 (w), 2873 (w), 1721 (m), 1631 (m), 1491 (s), 1437 (m), 1370 (m), 1336 (m), 1205 (m), 1088 (s), 1014 (s), 805 (m), 756 (m), $593(\mathrm{~m})$. MS (EI, 70 eV$): m / z(\%): 228\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 22\right), 226\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 51\right)$, 210 (5), 128 (42), 99 (4), 86 (100), 43 (51). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Cl}$ [$\left.\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 226.03912$; found 226.03935.

General procedure for the synthesis of biaryls $\mathbf{1 1 a}, \mathbf{b}$ and \mathbf{d} : To a dichloromethane solution ($2 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1 0}$) of $\mathbf{1 0}(1.0 \mathrm{mmol})$ and of $1,1,3,3$-tetramethoxypropane was added TMSOTf $(0.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm to $20^{\circ} \mathrm{C}$ within 20 h . To the solution was added a diluted aqueous solution of $\mathrm{HCl}(15 \mathrm{~mL})$. The organic and the aqueous layer were separated and the latter was extracted with dichloromethane
($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was concentrated in vacuo and the residue was purified by chromatography.

Methyl 3-phenylsalicylate (11a): Starting with 1,1,3,3tetramethoxypropane $(0.27 \mathrm{~mL}, 1.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3$ mL), 1,3-bis(silyl enol ether) 10a ($555 \mathrm{mg}, 1.65 \mathrm{mmol}$), and TMSOTf ($0.03 \mathrm{~mL}, 0.16 \mathrm{mmol}$), 11a was isolated as a highly viscous colourless oil ($156 \mathrm{mg}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.88$ (s, 3 $\mathrm{H}, \mathrm{OCH}_{3}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.84(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.35$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.76(\mathrm{dd}, 1 \mathrm{H}, J=6.1,1.7 \mathrm{~Hz}$, $\mathrm{ArH}), 11.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.4\left(\mathrm{OCH}_{3}\right), 111.5(\mathrm{C})$, 118.0 (C, CH), 125.4 (CH), 126.3 (2C, CH), 128.3 (2C, CH), 129.8 (C), 135.5 (CH), 136.1 (C), 157.9 (C), 169.9 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3085$ (w), 3059 (w), 3031 (w), 2953 (m), 1669 (s , , 1636 (w), 1427 (s$), 1325$ (s$), 1283$ (m), 1244 (s$), 1197$ (m), 1146 (s$)$, 1065 (m), 968 (m), 833 (m), 753 (s$), 695$ (s$).$ GC-MS (EI, 70 eV): m/z (\%): 228 ($\mathrm{M}^{+}, 67$), 196 (100), 168 (95), 139 (55), 115 (13), 98 (7), 70 (7). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 228.07810 ; found 228.07832 .

Methyl 3-(4-methoxyphenyl)salicylate (11b):
Starting with 1,1,3,3-tetramethoxypropane (0.27 mL ,
1.65 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.3 mL), 1,3-bis(silyl enol ether) 10b ($604 \mathrm{mg}, 1.65 \mathrm{mmol}$), and TMSOTf (0.03 $\mathrm{mL}, 0.16 \mathrm{mmol}$), 11b was isolated as a colourless solid ($189 \mathrm{mg}, 50 \%$), mp. $=93^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}, \mathrm{ArH}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $7.38(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, \mathrm{ArH}), 7.42(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8, \mathrm{ArH}$), $7.71(\mathrm{dd}, 1 \mathrm{H}, J=6.1,1.7 \mathrm{~Hz}, \mathrm{ArH}), 11.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (62 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=51.3,54.2\left(\mathrm{CH}_{3}\right), 111.4(\mathrm{C}), 112.6(2 \mathrm{C}, \mathrm{CH}), 117.9(\mathrm{CH}), 127.7(\mathrm{CH})$, 128.5 (C), 129.0 (C), 129.4 (2C, CH), 135.2 (C), 142.6, 157.8 (C), 170.0 (C=O). IR (neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3188(\mathrm{~m}), 3077(\mathrm{w}), 3004(\mathrm{w}), 2953(\mathrm{~m}), 1668(\mathrm{~s}), 1604(\mathrm{~m}), 1512(\mathrm{~m}), 1473$ (w), 1434 (m), 1334 (s), 1286 (s$), 1249$ (s$), 1149$ (m), 1062 (s$), 749$ (s), 695 (m), 586 (m)
cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%): 258$ ($\mathrm{M}^{+}, 58$), 226 (100), 211 (6), 198 (16), 183 (40), 155 (11), 127 (12). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 258.08866$; found 258.08877.

Methyl-3-(4-chlorophenyl)salicylate (11d): Starting with 1,1,3,3-tetramethoxypropane ($0.27 \mathrm{~mL}, 1.65$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.3 mL), 1,3-bis(silyl enol ether) $\mathbf{1 0 d}$ ($612 \mathrm{mg}, 1.65 \mathrm{mmol}$), and TMSOTf ($0.03 \mathrm{~mL}, 0.16$ mmol), 11d was isolated as a colourless solid ($170 \mathrm{mg}, 43 \%$), mp. $=113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.82(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.28(\mathrm{~d}, 2 \mathrm{H}$, $J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), $7.38(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, \mathrm{ArH}), 7.41(\mathrm{~d}, 2 \mathrm{H}, J=8.8, \mathrm{ArH}), 7.75(\mathrm{dd}$, $1 \mathrm{H}, J=8.0,1.7 \mathrm{~Hz}, \mathrm{ArH}), 11.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.5$ $\left(\mathrm{OCH}_{3}\right), 111.6(\mathrm{C}), 118.0(\mathrm{CH}), 127.2(2 \mathrm{C}, \mathrm{CH}), 128.0(\mathrm{C}), 128.5(\mathrm{CH}), 129.6(2 \mathrm{C}, \mathrm{CH})$, 132.3, 134.5 (C), 135.3 (CH), 157.7 (C), 169.8 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3123$ (m), 2962 (w), 2852 (w), 1677 (s), 1610 (m), 1594 (m), 1434 (s), 1344 (m), 1327 (m), 1245 (m), 1195 (m), 1051 (m), 1061 (m), 964 (m), 826 (s$), 747$ (s$), 583(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, $70 \mathrm{eV}): m / z(\%): 264\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 29\right), 262\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 89\right), 230(100), 202(34), 167(13)$, 149 (9), 139 (98), 97 (57). Anal.: calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Cl}$: C 64.01, H 4.22; found: C 63.97, H 4.28.

General procedure for the synthesis of biaryls 13a,b and e-i: To a dichloromethane solution ($2 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1 0}$) of $\mathbf{1 0}(1.0 \mathrm{mmol})$ and of $\mathbf{1 2}(1.0 \mathrm{mmol})$ was added TiCl_{4} $(1.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to ambient temperature within 20 h . To the solution was added a saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The organic and the aqueous layers were separated and the latter was extracted with diethyl ether (3 x 20 mL). The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, EtOAc $/ n$-heptane $=1: 4$).

Methyl 4,6-dimethyl-3-phenylsalicylate (13a): Starting with 3-(siloxy)alk-2-en-1-one 12a ($284 \mathrm{mg}, 1.65 \mathrm{mmol}$), 1,3-bis(silyl enol ether) $\mathbf{1 0 a}$ ($555 \mathrm{mg}, 1.65 \mathrm{mmol}$), and TiCl_{4} $(0.18 \mathrm{~mL}, 1.65 \mathrm{mmol})$, 13a was isolated as colourless solid $(172 \mathrm{mg}, 41 \%), \mathrm{mp} .=123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.26(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.33 (m, $2 \mathrm{H}, \mathrm{ArH}$), $11.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.7$, $22.7\left(\mathrm{CH}_{3}\right), 51.0\left(\mathrm{OCH}_{3}\right), 108.8(\mathrm{C}), 123.5,126.0(\mathrm{CH}), 127.2(2 \mathrm{C}, \mathrm{CH}), 128.9(2 \mathrm{C}, \mathrm{CH})$, 135.8, 138.7, 142.2, 159.3 (C), 171.4 (C=O). IR (neat, cm^{-1}): $\tilde{v}=2955(\mathrm{~m}), 2930(\mathrm{~m})$, 2871 (w), 2835 (w), 1725 (w), 1652 (s), 1607 (m), 1556 (w), 1512 (m), 1430 (m), 1369 (s), 1297 (s), 1257 (s), 1240 (s), 1172 (m), 1203 (s), 1172 (s), 1070 (m), 1022 (s), 987 (m), $955(\mathrm{~m}), 810(\mathrm{~s}), 750(\mathrm{~m}) . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%): 256\left(\mathrm{M}^{+}, 73\right), 224$ (100), 196 (46), 181 (64), 165 (37), 152 (25), 128 (16). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}$ $\left(\mathrm{M}^{+}\right): 256.10940$; found 256.10992 .

Methyl 4,6-dimethyl-5-chloro-3-phenylsalicylate (13b):
Starting with 3 -(siloxy)alk-2-en-1-one 12b ($455 \mathrm{mg}, 2.2$ mmol), 1,3 -bis(silyl enol ether) $\mathbf{1 0 b}$ ($740 \mathrm{mg}, 2.2 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.24 \mathrm{~mL}, 2.2 \mathrm{mmol}), \mathbf{1 3 b}$ was isolated as a yellow oil ($252 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.08$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.29(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.34 (m, $2 \mathrm{H}, \mathrm{ArH}$), $10.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.7$, $19.0\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{OCH}_{3}\right), 111.4(\mathrm{C}), 112.9(2 \mathrm{C}, \mathrm{CH}), 125.4(\mathrm{CH}), 127.2(2 \mathrm{C}, \mathrm{CH}), 128.7$ (2C, CH), 135.6, 140.5 (C), 170.4 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3081$ (w), 3058 (m), 3025 (m), 3003 (w), 2959 (m), 2954 (s), 2929 (s), 1731 (m), 1660 (s), 1604 (s), 1550 (w), 1497 (w), 1441 (s), 1388 (s), 1354 (s), 1295 (s), 1253 (w), 1212 (s), 1093 (m), 1067 (m), 1009 (m), 807 (s), 704 (s), 604 (m). GC-MS (EI, 70 eV): $m / z(\%): 292\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 19\right), 290$ ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 58$), 258 (100), 230 (24), 195 (79), 165 (41), 152 (25), 111 (16). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 290.07127; found 290.070944.

Methyl
4,6-dimethyl-5-chloro-3-(4methoxyphenyl)salicylate (13e): Starting with 3-(siloxy)alk-2-en-1-one 12b ($450 \mathrm{mg}, 2.2 \mathrm{mmol}$), 1,3bis(silyl enol ether) $\mathbf{1 0 b}$ ($806 \mathrm{mg}, 2.2 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.241 \mathrm{~mL}, 2.2 \mathrm{mmol}), \mathbf{1 3 e}$ was isolated as a colourless solid ($241 \mathrm{mg}, 38 \%$), mp. $=94^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.10(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}, \mathrm{ArH}$), $7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 10.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=19.0,19.4\left(\mathrm{CH}_{3}\right), 51.4,54.2\left(\mathrm{OCH}_{3}\right), 111.5(\mathrm{C}), 112.9(2 \mathrm{C}, \mathrm{CH}), 126.8$, 127.6, 128.3 (C), 129.9 (2C, CH), 135.3, 140.8, 156.1, 157.8 (C), 170.5 (C=O). IR (KBr, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3430(\mathrm{~m}), 3050(\mathrm{w}), 3002(\mathrm{w}), 2959(\mathrm{~m}), 2931(\mathrm{~m}), 2837(\mathrm{~m}), 1653(\mathrm{~s}), 1607$ (m), 1572 (w), 1514 (s), 1444 (s), 1373 (m), 1361 (s), 1297 (s), 1253 (s), 1220 (s), 1176 (m), 1092 (m), 1036 (m) $810(\mathrm{~m}), 686(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%): 322\left(\mathrm{M}^{+}\right.$, $\left.{ }^{37} \mathrm{Cl}, 16\right), 320\left(\mathrm{M}^{+}, 47\right), 288$ (100), 260 (11), 245 (27), 225 (29), 181 (7), 152 (12). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Cl}\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]: 320.08099$; found 320.08088 .

Methyl 4,6-dimethyl-3-(4-
methoxyphenyl)salicylate (13f): Starting with 3-(siloxy)alk-2-en-1-one 12a ($284 \mathrm{mg}, 1.65 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 10b ($604 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.18 \mathrm{~mL}, 1.65 \mathrm{mmol}), \mathbf{1 3 f}$ was isolated colourless solid ($173 \mathrm{mg}, 37 \%$), $\mathrm{mp} .=$ $66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OCH}_{3}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.06$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $11.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.7$, 22.9 $\left(\mathrm{CH}_{3}\right), 51.0,54.1\left(\mathrm{OCH}_{3}\right), 108.7(\mathrm{C}), 112.7(2 \mathrm{C}, \mathrm{CH}), 123.5(\mathrm{CH}), 126.9(\mathrm{C}), 127.8(\mathrm{C})$, 129.9 (2C, CH), 138.5, 142.6, 157.5, 159.5 (C), 171.5 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3080$ (w), 3061 (w), 3023 (w), 2957 (m), 1725 (w), 1650 (s), 1613 (m), 1558 (w), 1430 (m), 1392 (m), 1360 (m), 1295 (s), 1255 (s), 1197 (s), 1087 (m), 1066 (m), 955 (m), 807(s), $767(\mathrm{~s}), 700(\mathrm{~s}), 570(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%): 286\left(\mathrm{M}^{+}, 55\right), 254(100)$,

226 (11), 211 (55), 153 (8), 127 (11). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 286.11996; found: 286.11977.

Methyl

4,5,6-trimethyl-3-(4-
methoxyphenyl)salicylate (13g): Starting with 3-(siloxy)alk-2-en-1-one 12c (184 mg , 1.65 mmol), 1,3-bis(silyl enol ether) 10b ($604 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.18 \mathrm{~mL}, 1.65 \mathrm{mmol}), \mathbf{1 3 g}$ was isolated as a colourless solid ($170 \mathrm{mg}, 38 \%$), mp. $=108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.96$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 9.97(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.0,17.8,18.1\left(\mathrm{CH}_{3}\right), 51.0,54.2\left(\mathrm{OCH}_{3}\right)$, 111.2 (C), 112.9 (2C, CH), 126.4, 126.8, 128.7 (C), 130.2 (2C, CH), 135.4, 140.7, 154.8, 157.6 (C), 171.1 (C=O). IR (neat, cm^{-1}): $\tilde{v}=2996$ (w), 2953 (w), 2939 (w), 2839 (w), 1650 (m), 1598 (m), 1514 (m), 1434 (m), 1393 (m), 1318 (m), 1215 (s), 1295 (s , 1175 (m), 1030 (m), 804 (s$), 762(\mathrm{~m}), 696(\mathrm{~m}), 562(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%): 300\left(\mathrm{M}^{+}, 39\right), 268$ (100), 240 (31), 225 (47), 197 (6), 134 (9) 69 (25). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 300.13561 ; found 300.13568 .

Methyl 4,5,6-trimethyl-3-phenylsalicylate (13h): Starting with 3-(siloxy)alk-2-en-1-one 12c ($308 \mathrm{mg}, 1.65 \mathrm{mmol}$), 1,3bis(silyl enol ether) 10a ($555 \mathrm{mg}, 1.65 \mathrm{mmol}$), and TiCl_{4} $(0.180 \mathrm{~mL}, 1.65 \mathrm{mmol}), \mathbf{1 3 h}$ was isolated as a colourless solid ($140 \mathrm{mg}, 35 \%$), mp. $=65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 7.06-7.12 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.22-7.32 (m, $3 \mathrm{H}, \mathrm{ArH}$), $10.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.5,19.3,19.8\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{OCH}_{3}\right), 112.6(\mathrm{C}), 127.5(\mathrm{CH})$ 127.9 (C), 128.8 (2C, CH), 130.6 (2C, CH), 137.2, 138.2, 142.0, 156.2 (C), 172.6 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3022$ (w), 2953 (w), 2922 (m), 2853 (w), 1727 (w), 1650 (m), 1604 (m), 1557 (w), 1427 (m), 1392 (m), 1316 (s), 1215 (s), 1068 (m), 961 (w), 807 (m), 773
(m), $722(\mathrm{~m}), 699(\mathrm{~m}) . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%): 270\left(\mathrm{M}^{+}, 46\right), 238(100), 210(45)$, 195 (52), 165 (21), 97 (23), 83(34), 69 (34), 57 (49). Anal.: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$: C 75.53, H 6.71; found: C 73.84, H 7.03.

Methyl
4,6-dimethyl-5-chloro-3-(4chlorophenyl)salicylate (13i): Starting with 3-(siloxy)alk-2-en-1-one 12b ($332 \mathrm{mg}, 1.65 \mathrm{mmol}$), 1,3bis(silyl enol ether) $\mathbf{1 0 d}$ ($612 \mathrm{mg}, 1.65 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.18 \mathrm{~mL}, 1.65 \mathrm{mmol}), \mathbf{1 3 i}$ was isolated as a colourless solid ($190 \mathrm{mg}, 40 \%$), mp. $=96^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.07(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.31(\mathrm{~d}$, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 10.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.7,19.44$ $\left(\mathrm{CH}_{3}\right), 51.52\left(\mathrm{OCH}_{3}\right), 111.2,126.4,127.5(\mathrm{C}), 127.6(2 \mathrm{C}, \mathrm{CH}), 130.3(2 \mathrm{C}, \mathrm{CH}), 132.4$, 134.0, 136.1, 140.5, 156.2(C), $170.5(\mathrm{C}=\mathrm{O})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\tilde{v}=3029$ (w), $2950(\mathrm{~m})$, 2925 (w), 2849 (w), 1658 (s), 1591 (m), 1493 (m), 1434 (m), 1355 (s), 1288 (s), 1207 (s), $1082(\mathrm{~m}), 1068(\mathrm{~m}), 1008(\mathrm{~s}), 980(\mathrm{~m}), 956(\mathrm{~m}), 824(\mathrm{~m}), 802(\mathrm{~s}), 727(\mathrm{~s}), 607(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%): 326\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}, 29\right), 324\left(\mathrm{M}^{+}, 2 \mathrm{x}{ }^{35} \mathrm{Cl}, 44\right), 299$ (100), 264 (10), 257 (28), 229 (45), 165 (45), 128 (10), 82 (22). Anal.: calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Cl}_{2}$: C 63.65, H 5.34; found: C 63.45, H 5.67.

Ethyl 2-(5-oxo-3-phenyl-5H-chromeno[2,3-b]pyrid-2-
yl)acetate (18a): Starting with 3-cynochromone 16 (256 $\mathrm{mg}, 1.5 \mathrm{mmol}$), 10a ($656 \mathrm{mg}, 1.95 \mathrm{mmol}$), Me_{3} SiOTf ($0.35 \mathrm{~mL}, 1.95 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{~mL}, 3.0 \mathrm{mmol})$, 18a was isolated as a colourless solid ($320 \mathrm{mg}, 62 \%$), $\mathrm{mp} .=$ $152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.11-7.27 (m, 5H, ArH), 7.38 (m, 2 H, ArH), 7.54 (m, 1 H, ArH), 7.72 (m, 1 H, 7-H), 8.21 (dd, $\left.{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 9.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=42.5\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{2}\right), 114.3(\mathrm{C}), 118.6(\mathrm{CH}), 121.6,123.2(\mathrm{C}), 125.1$, 126.5, $126.8(\mathrm{CH}), 128.4,129.2(2 \mathrm{C}, \mathrm{CH}), 135.9(\mathrm{CH}), 138.1(\mathrm{C}), 141.1(\mathrm{CH}), 155.5$, 160.5, 165.1 (C), 167.7, 176.8 (C=O). IR (neat, cm^{-1}): $\widetilde{v}=3048$ (w), 3061 (w), 3028 (w), 3007 (w), 2948 (w), 2929 (w), 1725 (s), 1669 (s), 1595 (s), 1547 (m), 1466 (s), 1413
(s), 1314 (m), 1270 (s), 1214 (s), 1069 (m), 968 (m), 765 (s), 742 (s), 690 (s). GC-MS (EI, 70 eV): $m / z(\%)=345\left(\mathrm{M}^{+}, 100\right), 313$ (56), 286 (28), 256 (8), 228 (12). HRMS (EI): calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 345.09956 , found 345.09971.

Synthesis of 3-aryl-1-azaxanthone (18b): To neat 3-cyanochromone 16 ($256 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added $\mathrm{Me}_{3} \operatorname{SiOTf}(433 \mathrm{mg}, 0.35 \mathrm{~mL}, 1 . .95 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13.5 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. After stirring for 1 h, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1,3-bis(trimethylsilyloxy)-1,3butadiene $\mathbf{1 0 e}(683 \mathrm{mg}, 1.95 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 12 h at $20{ }^{\circ} \mathrm{C}$ and subsequently poured into hydrochloric acid (10%). The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was filtered through a pad of silica gel $($ EtOAc/hexane $=5: 1)$ to give crude 17. To an ethanol solution $(15 \mathrm{~mL})$ of $\mathbf{1 7}$ was added $\mathrm{NEt}_{3}(326 \mathrm{mg}, 0.44 \mathrm{~mL}, 3.0 \mathrm{mmol})$ and the solution was stirred for 12 h at $20^{\circ} \mathrm{C}$. To the solution were subsequently added an aqueous solution of hydrochloric acid (1 M) and ether (50 mL). The organic and the aqueous layer were separated and the latter was extracted with ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexane) to give 18b as a yellow solid ($333 \mathrm{mg}, 63 \%$), mp. $=173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=2.23(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~d}, 2 \mathrm{H}$, ArH), 7.33-7.39 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.53 (d, $J=7.87 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.67-7.74 (m, 1H, ArH), $8.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 9.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.0\left(\mathrm{CH}_{3}\right), 42.1$ $\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{OCH}_{3}\right), 114.3(\mathrm{C}), 118.6(\mathrm{CH}), 121.6,123.2(\mathrm{C}), 125.1,126.8(\mathrm{CH}), 129.0$ $(2 \mathrm{C}, \mathrm{CH}), 129.1(2 \mathrm{C}, \mathrm{CH}), 135.0(\mathrm{C}), 135.8(\mathrm{CH}), 136.1(\mathrm{C}), 141.1(\mathrm{CH}), 155.6,160.5$, 165.3 (C), 168.0, 176.8 (C=O). IR (KBr, cm ${ }^{-1}$): $\tilde{v}=3084$ (w), 3058 (w), 3009 (w), 2948 (w), 1720 (s), 1671 (s), 1613 (m), 1600 (s), 1597 (s), 1548 (m), 1467 (s), 1442 (m), 1412 (s), 1314 (m), 1271 (s), 1253 (s), 1216 (s), 1150 (s), 1069 (s), 793 (m), 755 (s), 615 (m).

GC-MS (EI, 70 eV): $m / z(\%): 359\left(\mathrm{M}^{+}, 100\right), 327\left(\mathrm{M}^{+}, 70\right), 298$ (17), 285 (5), 256 (5), 228(4), 150 (7); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 359.114605 ; found 359.11521.

2-[3-(4-chlorophenyl)-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl]acetate (18c): Starting with 16 ($256 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathbf{1 0 d}(723 \mathrm{mg}, 1.95$ mmol), $\mathrm{Me}_{3} \mathrm{SiOTf}(0.36 \mathrm{~mL}, 1.95 \mathrm{mmol})$, and NEt_{3} $(0.45 \mathrm{~mL}, 3.0 \mathrm{mmol}), \mathbf{1 8 c}$ was isolated as a colourless solid ($284 \mathrm{mg}, 50 \%$), mp. $=182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 250 \mathrm{MHz}$): $\delta=3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.06-7.17(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, $7.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.13\left(\mathrm{dd},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 9.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$. ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=41.8\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{2}\right), 114.5(\mathrm{C}), 118.6(\mathrm{CH}), 121.6$, 123.0 (C), 125.8, 126.8 (CH), 128.5, 130.6 (2C, CH), 132.4 (C), 135.9 (CH), 136.5 (C), 141.3 (CH), $155.5,160.5,165.1(\mathrm{C}), 167.2,177.3(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \widetilde{v}=3076(\mathrm{w})$, 3048 (w), 2952 (w), 2918 (w), 1729 (s), 1664 (s), 1613 (m), 1600 (s), 1547 (m), 1492 (w), 1483 (s), 1414 (s), 1338 (w), 1310 (m), 1271 (s), 1247 (s), 1216 (s), 1139 (m), 1065 (m), 943 (m), 765 (s). GC-MS (EI, 70 eV): $m / z(\%)=381\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 34\right), 379\left(\mathrm{M}^{+35} \mathrm{Cl}\right.$, 100), 347 (46), 320 (15), 312 (59), 284 (13), 256 (14), 228 (9). HRMS (EI): calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{NCl}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 379.06059 , found 379.06052.

Synthesis of methyl 5-(2-hydroxy-3-bromobenzoyl)-3-(4-tolyl)salicylate (20): To 6-bromo-3-formylchromone 19 ($379 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added $\mathrm{Me}_{3} \operatorname{SiOTf}(0.355 \mathrm{~mL}, 1.95 \mathrm{mmol})$ at 20 ${ }^{\circ} \mathrm{C}$. After stirring for $10 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(13.5 \mathrm{~mL})$ was added, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $1,3-$ bis(silyl enol ether) 10e ($683 \mathrm{mg}, 1.95 \mathrm{mmol}$) was added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h and was subsequently poured into an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were
washed with brine (25 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent of the filtrate was removed under reduced pressure. The crude product was purified by chromatography (silica gel, EtOAc / n-heptane) to give $\mathbf{2 0}$ as a yellow solid ($310 \mathrm{mg}, 47 \%$), mp. $=173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.94 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.90 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.18-7.22 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.40-7.44 (m, $2 \mathrm{H}, \mathrm{ArH}$), $7.49-7.54$ (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.68 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.81 (d, $J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.15(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 11.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.2\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 110.3,112.3,120.3(\mathrm{C}), 120.5$ (CH), 128.1 (C), 129.11 (2C, CH), 129.17 (2C, CH), 131.1(CH), 131.2, 132.8 (C), 134.9 (CH), $136.8(\mathrm{CH}), 137.9(\mathrm{C}), 138.7(\mathrm{CH}), 161.8,162.4$ (C), 170.4, 198.0 (C=O). IR (neat): $\tilde{v}=3104$ (w), 2961(m), 2920 (m), 2857 (w), 1783 (w), 1678 (s), 1629 (s), 1588 (s), 1565 (m), 1467 (m), 1437 (s), 1362 (s), 1332 (m), 1286 (s$), 1255$ (s), 1225 (m), 1198 (s), 1086 (s), 1022 (w), 958 (s$), 889$ (m), 814 (s$), 683$ (s$), 646(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%): 440\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 90\right), 411$ (24), 408 (93), 242 (19), 210 (65), 182 (30), 153 (34). Anal.: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrO}_{5}$: C 59.88, H 3.88; found: C 59.48, H 4.11.

General procedure for the synthesis of salicylates 23: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 3-silyloxy-2-en-1-ones 21 (1.0 equiv.) and of 1,3 -bis(silyl enol ethers) 22 (1.0 equiv.), TiCl_{4} (1.0 equiv.) was added dropwise at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and was then allowed to warm to $20^{\circ} \mathrm{C}$ during 18 h . To the reaction mixture was added an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic layer was separated and the aqueous layer was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, n-heptane/EtOAc) to gave salicylates 23.

3-Hydroxy-5,2'-dimethyl-biphenyl-2-carboxylic acid methyl ester (23i): Starting with 1,3-bis(silyl enol ether) 21a (0.287 g, 1.10 mmol , 4-o-tolyl-4-trimethylsilyloxy-but-3-en-2-one 22i $(0.273 \mathrm{~g}, 1.10 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.1 \mathrm{~mL}, 1.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL}), \mathbf{2 3 i}$ was isolated as a yellow oil $(0.120 \mathrm{~g}, 43 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.99-7.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.15-7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 11.11$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.8,20.6\left(\mathrm{CH}_{3}\right), 50.6\left(\mathrm{OCH}_{3}\right), 108.3(\mathrm{C})$, $115.8,122.5,123.9,125.7,128.4,132.3(\mathrm{CH}), 133.7,141.7,143.2,144.2(\mathrm{C}), 161.0$ $(\mathrm{COH}), 170.3\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3069(\mathrm{w}) 3015$ (w), $2954(\mathrm{~m}), 2853(\mathrm{w})$, 1661 (s), 1612 (m), 1572 (m), 1438 (m), 1353 (m), 1259 (s), 1215 (s$), 1123$ (m), 1013 (s). MS (EI, 70 eV$): m / z(\%)=256\left(\mathrm{M}^{+}, 28\right), 225(19), 224$ (100), 181 (19), 153 (26). HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 256.10940$, found 256.110114 .

4'-Chloro-3-hydroxy-5-methyl-biphenyl-2-carboxylic acid methyl ester (23j): Starting with 1,3 -bis(silyl enol ether) 21a ($0.573 \mathrm{~g}, 2.20 \mathrm{mmol}$), 4-(4-chlorophenyl)-4-trimethylsilyloxy-but-3-en-2-one $\mathbf{2 2 i}(0.591 \mathrm{~g}, 2.20 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.2 \mathrm{~mL}, 2.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}), \mathbf{2 3 j}$ was isolated as a colourless solid ($0.242 \mathrm{~g}, 40 \%$); mp $94-96^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, CH), 6.82 (br s, $1 \mathrm{H}, \mathrm{CH}$), 7.11-7.16 (m, $2 \mathrm{H}, \mathrm{CH}$), 7.29-7.34 (m, $2 \mathrm{H}, \mathrm{CH}$), $10.83(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.6\left(\mathrm{CH}_{3}\right), 51.6\left(\mathrm{OCH}_{3}\right), 109.0(\mathrm{C}), 117.3,123.9$, 127.7, $129.4(\mathrm{CH}), 132.7,141.4,143.4,145.0(\mathrm{C}), 161.9(\mathrm{COH}), 171.1\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. IR (neat, cm^{-1}): $\tilde{v}=3060(\mathrm{w}) 3020(\mathrm{w}), 2960(\mathrm{~m}), 2848(\mathrm{w}), 1664(\mathrm{~s}), 1612(\mathrm{~m}), 1572(\mathrm{~m})$, 1438 (m), 1353 (m), 1259 (s), 1215 (s), 1123 (m), 1013 (s). MS (EI, 70 eV): m/z $(\%)=278\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 10\right), 276\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 30\right), 246$ (33), 244 (100), 216 (26), 152 (27). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 276.05477 , found 276.05567 .

4'-Chloro-4-hexyl-3-hydroxy-5-methyl-
biphenyl-2-carboxylic acid methyl ester
($\mathbf{2 3 k}$): Starting with 1,3-bis(silyl enol ether) 21c
($0.758 \mathrm{~g}, \quad 2.20$ mmol), 4-(4-chlorophenyl)-4-
trimethylsilyloxy-but-3-en-2-one 22i $(0.591 \mathrm{~g}$, $2.20 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.2 \mathrm{~mL}, 2.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}), \mathbf{2 3 k}$ was isolated as a yellow oil $(0.273 \mathrm{~g}, 34 \%)$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.76-0.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.19\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.72(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}$), 7.34 (d, 2H, $J=8.6 \mathrm{~Hz}, \mathrm{CH}$), 7.76 (d, 2H, $J=8.6 \mathrm{~Hz}, \mathrm{CH}), 11.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,17.6\left(\mathrm{CH}_{3}\right), 19.2,27.3,28.8,31.7,48.1\left(\mathrm{CH}_{2}\right)$, $52.3\left(\mathrm{OCH}_{3}\right), 124.2,128.7,128.9(\mathrm{CH}), 137.2,139.1,154.5,166.9,189.6$ (C), 200.8 ($\mathrm{CO}_{2} \mathrm{Me}$). IR (neat, cm^{-1}): $\tilde{v}=3074$ (w) 3022 (w), 2955 (m), 2860 (w), 1665 (s), 1617 (m), 1568 (m), 1429 (m), 1353 (m), 1259 (s), 1215 (s), 1123 (m), 1013 (s). MS (EI, $70 \mathrm{eV}): m / z(\%)=362\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 16\right), 360\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 49\right), 313$ (67), 311 (28), 257 (68), 223 (100), 165 (46). HRMS (EI): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClO}_{3}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right): 360.14867$, found 360.147678.

2'-Chloro-3-hydroxy-5-methyl-biphenyl-2-carboxylic acid methyl ester (231): Starting with 1,3-bis(silyl enol ether) 21a ($0.537 \mathrm{~g}, 2.20 \mathrm{mmol}$), 4-(2-chlorophenyl)-4-trimethylsilyloxy-but-3-en-2-one $\mathbf{2 2 j}(0.591 \mathrm{~g}, 2.20 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.2 \mathrm{~mL}$, $2.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}), 231$ was isolated as a colourless solid ($0.226 \mathrm{~g}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.39(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.08-7.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.14-7.20(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 11.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.6$ $\left(\mathrm{CH}_{3}\right), 50.8\left(\mathrm{OCH}_{3}\right), 108.4(\mathrm{C}), 116.7,122.6,125.8,127.5,128.9,130.6(\mathrm{CH}), 134.5$, $140.3,140.7,144.3(\mathrm{C}), 160.9(\mathrm{COH}), 169.9\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3070(\mathrm{w})$ 3017 (w), 2952 (m), 2857 (w), 1660 (s), 1612 (m), 1572 (m), 1433 (m), 1353 (m), 1259 (s), 1215 (s , 1123 (m), 1013 (s). MS (EI, 70 eV): $m / z(\%)=278\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 10\right), 276\left(\mathrm{M}^{+}\right.$, ${ }^{35} \mathrm{Cl}, 30$), 244 (29), 241 (100), 152 (21). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 276.05477, found 276.054962 .

2'-Fluoro-3-hydroxy-5-methyl-biphenyl-2-carboxylic acid methyl ester (230). Starting with 1,3-bis(silyl enol ether) 21a ($0.287 \mathrm{~g}, 1.10 \mathrm{mmol}$), 4-(2-fluorophenyl)-4-trimethylsilyloxy-but-3-en-2-one $\mathbf{2 2 k}(0.278 \mathrm{~g}, 1.10 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.1 \mathrm{~mL}$, $1.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}), \mathbf{2 3 o}$ was isolated as a yellowish oil $(0.127 \mathrm{~g}, 44 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.51(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.03(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.12-7.17$ (m, $1 \mathrm{H}, \mathrm{CH}), 7.20-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 11.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.6\left(\mathrm{CH}_{3}\right)$, $51.7\left(\mathrm{OCH}_{3}\right), 109.7(\mathrm{C}), 114.4,114.6,117.8,123.7$, 124.3, 128.7, 128.8, 130.0 (CH), 130.4, 130.6, 137.7, 145.3, 157.7, 161.0, 161.9 (C), $171.0\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $\tilde{v}=3060$ (w) 3025 (w), 2960 (m), 2851 (w), 1653 (s), 1612 (m), 1572 (m), 1438 (m), 1353 (m), 1259 (s), 1215 (s), 1112 (m), 1013 (s). MS (EI, $70 \mathrm{eV}): m / z(\%)=260\left(\mathrm{M}^{+}, 37\right), 229(18), 228$ (100), 200 (42), 171 (17). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3}\left(\mathrm{M}^{+}\right) 260.08432$, found 260.083875 .

General procedure for the synthesis of fluorenones 24. Compound $\mathbf{2 3}$ was dissolved in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. After stirring for 1 h , the solution was poured into ice water and extracted (3x) with diethyl ether. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo to give 24.

1-Hydroxy-3,5-dimethyl-fluoren-9-one (24y). Starting with 23i $(0.118 \mathrm{~g}, 0.46 \mathrm{mmol})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(5.7 \mathrm{~mL}), \mathbf{2 4 y}$ was isolated as a yellow solid ($0.070 \mathrm{mg}, 68 \%$) , mp $140-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.54$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 6.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.13-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 7.46(\mathrm{~d}$, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.1,22.6$ $\left(\mathrm{CH}_{3}\right), 115.5(\mathrm{C}), 117.5,121.5,128.7(\mathrm{CH}), 134.1,135.1(\mathrm{C}), 137.0(\mathrm{CH}), 141.6,144.7$, 149.1 (C), $157.5(\mathrm{COH}), 196.1(\mathrm{C}=\mathrm{O})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3339(\mathrm{~s}), 2355(\mathrm{~m}), 2923(\mathrm{~m})$, 1675 (s), 1627 (s), 1602 (s), 1587 (m), 1457 (m), 1334 (m), 1295 (m), 1238 (m), 1207
(m), 1172 (m). MS (EI, 70 eV$): m / z(\%)=224\left(\mathrm{M}^{+}, 100\right), 195(17), 181$ (37), 165 (16), 152 (20). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 224.08318$, found 224.083191 .
 7-Chloro-1-hydroxy-3-methyl-fluoren-9-one (24z). Starting with $\mathbf{2 3 j}$ ($0.199 \mathrm{~g}, 0.72 \mathrm{mmol}$) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(8.9 \mathrm{~mL}), \mathbf{2 4 z}$ was isolated as a yellow solid $(0.146 \mathrm{~g}, 83 \%)$, mp $165-167^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.58 (br s, 1H, CH), 6.84 (br s, $1 \mathrm{H}, \mathrm{CH}$), 7.40-7.41 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}), 7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.4\left(\mathrm{CH}_{3}\right), 114.4(\mathrm{CH}), 115.3(\mathrm{C}), 118.2,121.7,124.2,133.8(\mathrm{CH}), 135.0,136.4$, 142.0, 143.0, $149.8(\mathrm{C}), 157.4(\mathrm{COH}), 194.0(\mathrm{C}=\mathrm{O})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3402(\mathrm{~s}), 2917$ (w), 1680 (s), 1624 (s), 1604 (s), 1445 (m), 1391 (w), 1309 (s), 1257 (m), 1217 (m), 1190 (s), $1160(\mathrm{~m}), 1098(\mathrm{~m})$. MS (EI, 70 eV$): m / z(\%)=246\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 34\right), 244\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$, 100), 181 (17), 152 (30). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClO}_{2}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 244.02856 , found 244.028552.

7-Chloro-2-hexyl-1-hydroxy-3-methyl-fluoren-9-one (24aa). Starting with 23k $(0.249 \mathrm{~g}, 0.69 \mathrm{mmol})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(8.5 \mathrm{~mL})$, 24aa was isolated as a yellowish solid $(0.147 \mathrm{~g}$, 65%), mp $73-75^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=0.86-0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.33\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32\left(\mathrm{~s} .3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56-$ $2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.35-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 7.53\left(\mathrm{dd},{ }^{3} J=1.7 \mathrm{~Hz}\right.$, $\left.{ }^{5} J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,20.5$ $\left(\mathrm{CH}_{3}\right), 22.6,25.4,28.9,29.5,31.7\left(\mathrm{CH}_{2}\right), 115.4,121.5,124.2(\mathrm{CH}), 127.6,131.1(\mathrm{C})$, 133.7 (CH), 134.4, 136.4, 139.7, 142.4, 146.9 (C), 156.1 (COH), 194.8 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3349(\mathrm{w}), 2949(\mathrm{~m}), 2918(\mathrm{~s}), 2851(\mathrm{~m}), 1676(\mathrm{~s}), 1624(\mathrm{~m}), 1596(\mathrm{~m})$, 1451 (m), 1384 (w), 1298 (m), 1258 (m), 1168 (s), 1115 (m), 1094 (m), 1031 (w). MS (EI, 70 eV): $m / z(\%)=330\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 7\right), 328\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 21\right), 260$ (18), 258 (55), 257 (100), 165 (19). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClO}_{2}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 328.12246, found 328.122093 .

5-Chloro-1-hydroxy-3-methyl-fluoren-9-one (24ab). Starting with $231(0.219 \mathrm{~g}, 0.79 \mathrm{mmol})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(9.7 \mathrm{~mL}), 24 \mathbf{a b}$ was isolated as a colourless solid ($0.145 \mathrm{~g}, 75 \%$), mp $145-150{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 7.19\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 7.36-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 7.50$ $\left(\mathrm{d},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 8.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.7\left(\mathrm{CH}_{3}\right)$, $115.2(\mathrm{C}), 118.3(\mathrm{CH}), 118.4(\mathrm{C}), 118.5,122.1,129.8,135.7(\mathrm{CH}), 137.1,140.1,142.2$, $149.7(\mathrm{C}), 157.5(\mathrm{COH}), 194.2(\mathrm{C}=\mathrm{O})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3345(\mathrm{~s}), 2918(\mathrm{~m}), 1694(\mathrm{~s})$, 1619 (s), 1592 (s), 1445 (m), 1412 (w), 1377 (w), 1316 (m), 1296 (s), 1239 (m), 1168 (s). MS (EI, 70 eV$): m / z(\%)=246\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 38\right), 244\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 100\right), 216$ (17), 181 (32), 152 (31). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClO}_{2}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 244.02856, found 244.028810.

5-Fluoro-1-hydroxy-3-methyl-fluoren-9-one (24ae). Starting with $23 \mathrm{o}(0.120 \mathrm{~g}, 0.46 \mathrm{mmol})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(5.7 \mathrm{~mL})$, 24ae was isolated as a colourless solid $(0.079 \mathrm{~g}, 75 \%), \mathrm{mp} 113-118{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.13-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.23-7.29(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 7.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=22.9\left(\mathrm{CH}_{3}\right), 113.9(\mathrm{C}), 117.1,118.8,121.2(\mathrm{CH}), 128.3(\mathrm{C}), 129.7(\mathrm{CH}), 136.4,139.7$, 148.9, 155.2, 156.4, 158.5 (C), 193.3 (C=O). IR (neat, cm^{-1}): $\tilde{v}=3341$ (s), 2923 (s), 2853 (m), 1649 (s), 1620 (s), 1585 (s), 1455 (m), 1305 (m), 1240 (s), 1199 (s), 1144 (s), 1113 (m). MS (EI, 70 eV$): m / z(\%)=228\left(\mathrm{M}^{+}, 100\right), 200(15), 199(41), 171$ (12), 170 (22). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FO}_{2}\left(\mathrm{M}^{+}\right): 228.05811$, found 228.0577962 .

(Z)-ethyl

2-(5-(chloromethyl)dihydrofuran-2(3H)-ylidene)-2-fluoroacetate (28) : Starting with 1,3-Bis-silyl Enol Ether 27 ($748 \mathrm{mg}, 2.5 \mathrm{mmoles}$), epichlorohydrin ($277 \mathrm{mg}, 0.23 \mathrm{~mL}, 3 \mathrm{mmole}$), $\mathrm{TiCl}_{4}(948 \mathrm{mg}, 1.09 \mathrm{~mL}, 5 \mathrm{mmole}$) and molecular sieves $(3 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL}) 28$ was obtained as yellow oil ($320 \mathrm{mg}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.32(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH} 3), 2.02-2.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} 2), 2.26-2.40(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), 2.96-3.28 (m, 2H, CH2), 3.63-3.71 (m, 2H, CH2), $4.24\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 4.71-4.81 (m, 1H, CH); ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.3\left(\mathrm{CH}_{3}\right), 27.1,29.0,45.1$ (CH 2), $60.7\left(\mathrm{OCH}_{2}\right), 83.3(\mathrm{CH}), 132.8(\mathrm{C}), 155.4(\mathrm{~d}, ~ J=10.59 \mathrm{~Hz}, \mathrm{CF}), 169.0(\mathrm{~d}, J=$ $31.80 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$); ${ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-160.61$ (CF). IR (ATR): $\tilde{v}=3430$ (w), 2983 (w), 2942 (w), 1739 (m), 1693 (m), 1620 (s), 1372 (w), 1282 (s), 1189 (w), 1074 (s), $944(\mathrm{~m}) \mathrm{cm}^{-1}$; MS (GC, 70 eV$): m / z(\%): 224\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 31\right), 222\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 85\right)$, 194 (61), 179 (20), 176 (100), 159 (44), 141 (42), 132 (25), 104 (36); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{ClF}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 222.04535$ found 222.044988 .

Ethyl 6-chloro-2-fluoro-5-methoxy-3-oxohexanoate (29): Starting with 1,3-Bis-silyl Enol Ether 27 ($0.731 \mathrm{~g}, 2.5$ mmoles), 1-chloro-2,2-dimethoxyethane $(0.311 \mathrm{~g}, 0.28 \mathrm{~mL}$, 2.5 mmole) and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.270 \mathrm{~g}, 0.22 \mathrm{~mL}, 1.25 \mathrm{mmole})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml), 29 was isolated as yellow oil ($501 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.23(\mathrm{t}, 3 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$), 2.84-3.09 (m, 2H, CH2 $), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.57\left(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 3.88-3.98 (m, 1H, CH), $4.23\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{F}, \mathrm{H}}=44.3 \mathrm{~Hz}, J_{\mathrm{F}}\right.$, $\mathrm{H}=5.62 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8\left(\mathrm{CH}_{3}\right), 41.1(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 44.3\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 57.5\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 62.6\left(\mathrm{OCH}_{2}\right), 75.5\left(\mathrm{~d},{ }^{1} J=\right.$ $19.2 \mathrm{~Hz}, \mathrm{CH}$), 90.1 (d, $J=198 \mathrm{~Hz}, \mathrm{CF}$), 163.4 (d, $J=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), 198.4 (dd, $J=18.9$ $\mathrm{Hz}, J=4.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-187.79$ (CF). IR (ATR, cm^{-1}): $\widetilde{v}=2958$ (w), 2938 (w), 2832 (w), 1758 (s), 1732 (s), 1462 (w), 1370 (m), 1263 (m), 1094 (s), 1014 (s). MS (GC, 70 eV): m/z (\%): 240 (M ${ }^{+}$, 2), 191 (53), 135 (41), 93 (100), 85 (69); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{FClO}_{4}\left[\mathrm{M}^{+}\right]: 240.05592$, found 240.056012.

(Z)-ethyl 2-fluoro-2-(4-methoxydihydrofuran-2(3H)ylidene)acetate (30): Starting with 29 ($420 \mathrm{mg}, 1.74 \mathrm{mmole}$) and DBU ($530 \mathrm{mg}, 0.52 \mathrm{ml}, 3.48 \mathrm{mmole}$) in 4 ml of THF, 30 was isolated as yellow oil ($286 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.29(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$), 2.92-3.04 (m, 1H, CH2), 3.29-3.36 (m, 1H, CH), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.13-4.17 (m, 1H, CH 2), 4.19-4.27 (m, 1H, CH 2), 4.21-4.27 (m, 2H, OCH 2), $4.40(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.7\left(\mathrm{CH}_{3}\right), 35.1\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{OCH}_{3}\right), 60.0$ $\left(\mathrm{CH}_{2}\right), 75.9(\mathrm{CH}), 129.1$ (C), 132.8 (C), 154.2 (d, $\left.J=10.5 \mathrm{~Hz}, \mathrm{C}\right), 161.5$ (d, $J=31.5 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-161.27$ (CF). IR (ATR, cm^{-1}): $\widetilde{v}=3467(\mathrm{w})$, 2922 (m), 2851 (w), 1732 (s), 1443 (w), 1371 (m), 1023 (s). MS (GC, 70 eV): m/z (\%): 204 ($\mathrm{M}^{+}, 55$), 172 (65), 159 (47), 145 (100), 127 (43), 99 (74), 74 (67); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{FO}_{4}\left[\mathrm{M}^{+}\right]:$204.07924, found 204.079401.

(Z)-ethyl

2-fluoro-2-(5-vinyldihydrofuran-2(3H)ylidene)acetate (31): Starting with LDA (12.5 mmoles), 25 ($748 \mathrm{mg}, 0.62 \mathrm{~mL}, 5 \mathrm{mmole}$) and trans-1,2-dibromo butene ($1.27 \mathrm{~g}, 30 \mathrm{mmole}$) at $-78^{\circ} \mathrm{C}$, $\mathbf{3 1}$ was isolated as light yellow oil ($441 \mathrm{mg}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24\left(\mathrm{t}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 1.76-1.91 (m, 1H, CH2), 2.16-2.30 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.84-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.13\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.80(\mathrm{q}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{CH})$, $5.15-5.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.74-5.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}),{ }^{13} \mathrm{C}$ NMR (75.47 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{CH}_{3}\right), 29.0,29.9\left(\mathrm{CH}_{2}\right), 60.4\left(\mathrm{OCH}_{2}\right), 85.1(\mathrm{CH}), 117.7\left(\mathrm{CH}_{2}\right), 132.3$ (C), $135.2(\mathrm{CH}), 155.7(\mathrm{~d}, J=8.66 \mathrm{~Hz}, \mathrm{CF}), 162.2(\mathrm{~d}, J=27.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (235 MHz, CDCl3): $\delta=-161.67$ (CF). IR (ATR): $\tilde{v}=3467$ (w), 2983 (w), 2907 (w), 1747 (m), 1712 (s), 1665 (s), 1372 (m), 1320 (s), 1187 (s), 1135 (s), 1059 (s), 929 (s), 760 (m) cm^{-1}; GC-MS (EI, 70 eV): $m / z(\%): 200\left(\mathrm{M}^{+}, 44\right), 155\left(\mathrm{M}^{+}, 21\right), 134$ (40), 105 (100), 87 (23), 67 (44); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F}\left[\mathrm{M}^{+}\right]: 200.08432$ found 216.084561.

(Z)-ethyl 2-(4,5-dimethyldihydrofuran-2(3H)-ylidene)-2fluoroacetate (32): Starting with 1,3-Bis-silyl Enol Ether 27 ($890 \mathrm{mg}, 3 \mathrm{mmole}$), 2,3-butenoxide $(210 \mathrm{mg}, 0.260 \mathrm{~mL}, 3$ mmole), $\mathrm{TiCl}_{4}(1.13 \mathrm{~g}, 0.65 \mathrm{~mL}, 6 \mathrm{mmole})$ and molecular sieves $(3 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ 32 was obtained as yellow oil ($156 \mathrm{mg}, 27 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.47 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.65\left(\mathrm{t}, 3 \mathrm{H}, J=7.12 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.72\left(\mathrm{~d}, 3 \mathrm{H}, J=6.17 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 2.28-2.38 (m, 1H, CH2 $), 2.64-2.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.64-3.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.35-4.46(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 4.57\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3,15.9$, $18.6\left(\mathrm{CH}_{3}\right), 37.7\left(\mathrm{CH}_{2}\right), 39.4(\mathrm{CH}), 60.4\left(\mathrm{OCH}_{2}\right), 87.3(\mathrm{CH}), 129.2(\mathrm{C}), 155.6(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, \mathrm{CF}), 162.5(\mathrm{~d}, J=27.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (235 MHz, CDCl3): $\delta=-163.01(\mathrm{CF})$. IR (ATR, cm^{-1}): $\widetilde{v}=3435$ (w), 2972 (w), 2875 (w), 1739 (s), 1448 (w), 1372 (m), 1297 (s), 1012 (s), MS (GC, 70 eV): m/z (\%): $202\left(\mathrm{M}^{+}, 98\right), 157$ (59), 136 (48), 108 (100), 87 (30), 55 (97); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{FO}_{3}\left[\mathrm{M}^{+}\right]: 202.09997$, found 202.100294.

(E)-ethyl 2-fluoro-2-(3-oxoisobenzofuran-1(3H)-ylidene)acetate (33): Starting with phthalyl dichloride $(500 \mathrm{mg}, 0.35 \mathrm{ml}, 2.5$ mmole), 1,3-Bissilylenol Ether 27 ($1.12 \mathrm{~g}, 3.75 \mathrm{mmole}$), TiCl_{4} (270mg, $0.158 \mathrm{ml}, 2.5 \mathrm{mmole})$, Molecular Sieves $4 \AA(2.5 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml}) 33$ was obtained ad crystalline solid (330mg, 57\%) $\mathrm{mp} .=96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.41\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.40(\mathrm{q}$, $\left.2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.67-7.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.79-7.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.89-7.92(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}), 7.98-8.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 62.2$ $\left(\mathrm{OCH}_{2}\right), 124.1(\mathrm{C}), 125.6,126.1(\mathrm{CH}), 131.2(\mathrm{C}), 135.5,136.0(\mathrm{CH}), 142.7(\mathrm{C}), 159.1(\mathrm{~d}$, $J=30.9 \mathrm{~Hz}, \mathrm{CF}), 162.7,165.0(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-153.78(\mathrm{CF})$. IR (ATR, cm^{-1}): $\widetilde{\boldsymbol{v}}=3098$ (w), 2992 (m), 2931 (w), 1850 (m), 1788 (s), 1758 (s), 1673 (m), 1469 (m), 1285 (m), 1254 (s), 1108 (s), 1006 (s), 901 (s), 710 (s). MS (GC, 70 eV): $m / z(\%): 236\left(\mathrm{M}^{+}, 45\right), 208(12), 191$ (12), 164 (100), 135 (14), 107 (37), 76 (17); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{FO}_{4}\left[\mathrm{M}^{+}\right]: 236.04794$, found 236.047639 .

General Procedure for the synthesis of Azaxanthones 35a-e.

General procedure for Azaxanthones 35a-e is same as 18.

Ethyl 2-fluoro-2-(5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate (35a): Starting with 3-cyanochromone 33a ($256 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(433 \mathrm{mg}, 0.35 \mathrm{~mL}$, $1.95 \mathrm{mmol}), \quad 27(602 \mathrm{mg}, \quad 1.95 \mathrm{mmol}), \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13.5 mL), EtOH (15 mL), and triethylamine ($303 \mathrm{mg}, 0.42 \mathrm{~mL}, 3 \mathrm{mmol}$), $\mathbf{3 5 a}$ was isolated as a white solid ($253 \mathrm{mg}, 56 \%$), mp. $=147-148^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, CDCl_{3}): $\delta=1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.18-4.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{F}, \mathrm{H}}=\right.$ $47.5 \mathrm{~Hz}, \mathrm{CH}$), 7.35-7.41 (m, 1H, ArH), 7.54-7.63 (m, 2H, ArH), 7.70-7.77 (m, 1H, ArH), $8.22(\mathrm{dd}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, \mathrm{ArH}), 8.72(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 63.1\left(\mathrm{OCH}_{2}\right), 88.1-90.6(\mathrm{~d}, J=187 \mathrm{~Hz}, \mathrm{CF}), 116.9$ (C), $118.0\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=5.28 \mathrm{~Hz}, \mathrm{CH}\right), 118.5(\mathrm{CH}), 121.5(\mathrm{C}), 124.9,126.7,135.9,138.9$ $(\mathrm{CH}), 155.6(\mathrm{C}), 158.2\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=25.0 \mathrm{~Hz}, \mathrm{C}\right), 159.6(\mathrm{C}), 166.1\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$, $177.0(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-187.79$ (CF). IR (ATR, cm^{-1}): $\widetilde{v}=3071$ (w), 2980 (w), 2868 (w), 1757 (s), 1669 (s), 1600 (m), 1397 (s), 1205 (s), 1087 (s), 753 (s). MS (GC, 70 eV): $m / z(\%): 301$ (${ }^{+}$, 41), 229 (100), 200 (31), 146 (8); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]: 301.07449$, found 301.074205 .

$0.35 \mathrm{~mL}, 1.95 \mathrm{mmol}), 27(602 \mathrm{mg}, 1.95 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(13.5 \mathrm{~mL})$, EtOH (15 mL), and triethylamine ($303 \mathrm{mg}, 0.42 \mathrm{~mL}, 3 \mathrm{mmol}$), 35b was isolated as a yellow solid (227 mg , 46%), mp. $=134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$, CH_{3}), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.19-4.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.87\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{F}}\right.$, H= $46.9 \mathrm{~Hz}, \mathrm{CH}), 7.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.63-7.60(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.97(\mathrm{~s}, 1 \mathrm{H}$, ArH), 8.73 (d, $1 \mathrm{H}, J=7.82 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,19.1$, $20.6\left(\mathrm{CH}_{3}\right), 62.4\left(\mathrm{OCH}_{2}\right), 87.9-90.9(\mathrm{~d}, J=225.9 \mathrm{~Hz}, \mathrm{CF}), 116.9(\mathrm{C}), 117.7,118.5,119.2$
$(\mathrm{CH}), 126.2(\mathrm{CH}), 134.2(\mathrm{C}), 138.8(\mathrm{CH}), 146.8(\mathrm{C}), 154.1(\mathrm{C}), 157.7\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=25.1 \mathrm{~Hz}\right.$, C), 159.5 (C), $166.2(\mathrm{~d}, J=30.12 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}), 176.7(\mathrm{C}=\mathrm{O}),{ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl3}$): $\delta=-187.93$ (CF). IR (ATR, cm^{-1}): $\widetilde{v}=3067$ (w), 2958 (w), 2920 (w), 1745 (s), 1658 (s), 1625 (s), 1602 (s), 1398 (s), 1207 (s), 1089 (s), 761 (m); MS (GC, 70 eV): m/z (\%): 329 $\left(\mathrm{M}^{+}, 65\right), 257$ (100), 228 (42), 213 (9); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NFO}_{4}\left[\mathrm{M}^{+}\right]$: 329.10579, found 329.105736 .

Ethyl 2-(7-chloro-5-oxo-5H-chromeno[2,3-blpyridin-2-yl)-2-fluoroacetate (35c): Starting with 6-chloro-3-cyanochromone 33c (205 mg , $1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), 27(380 \mathrm{mg}, \quad 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$, EtOH $(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{3 5 c}$ was isolated as a yellow solid ($137 \mathrm{mg}, 41$ $\%$), mp. $=135-137^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $4.23-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{F}, \mathrm{H}}=47.8 \mathrm{~Hz}, \mathrm{CH}\right), 7.54(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, ArH), 7.67-7.74 (m, 2H, ArH), 8.23 (d, 1H, $J=2.7 \mathrm{~Hz}, \mathrm{ArH}$), 8.75 (d, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{OCH}_{2}\right), 88.0-90.5(\mathrm{~d}, J=$ $187.8 \mathrm{~Hz}, \mathrm{CF}), 116.5(\mathrm{C}), 118.0\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=5.23 \mathrm{~Hz}, \mathrm{CH}\right), 120.2(\mathrm{CH}), 122.3(\mathrm{C}) .126 .0$ $(\mathrm{CH}), 130.8(\mathrm{C}), 135.6,139.0(\mathrm{CH}), 153.9(\mathrm{C}), 158.2\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=24.4 \mathrm{~Hz}, \mathrm{C}\right), 159.4(\mathrm{C})$, $166.1\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=26.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$, $176.0(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-187.93$ (CF). IR (ATR, cm^{-1}): $\widetilde{v}=3081$ (w), 2985 (w), 2941 (w), 1756 (s), 1667 (s), 1601 (s), 1470 (s), 1434 (s), 1392 (s), 1202 (s), 1086 (s), 825 (m). MS (GC, 70 eV): m/z (\%): 337 $\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 17\right), 335\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 52\right), 263$ (100), 234 (24), 180 (5); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClNFO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 335.03552$, found 335.035272 .

Ethyl 2-(7,9-dichloro-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (35d): Starting with 6,8-dichloro-3-cyanochromone 33d (240 mg , $1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), 27(380 \mathrm{mg}, \quad 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 35d was isolated as a yellow solid (130 mg , 35%), mp. $=164-166^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.29\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 4.20-4.39 (m, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.90\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{F}, \mathrm{H}}=47.6 \mathrm{~Hz}, \mathrm{CH}\right), 7.73(\mathrm{~d}, 1 \mathrm{H}, J=8.25 \mathrm{~Hz}$, ArH), $7.81(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \mathrm{ArH}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \mathrm{ArH}), 8.74(\mathrm{~d}, 1 \mathrm{H}, J=8.25 \mathrm{~Hz}$, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9\left(\mathrm{CH}_{3}\right), 62.6\left(\mathrm{OCH}_{2}\right), 88.0-90.5(\mathrm{~d}, J=$ $188.5 \mathrm{~Hz}, \mathrm{CF}), 116.2(\mathrm{C}), 118.8(\mathrm{CH}), 123.2(\mathrm{C}), 124.6(\mathrm{CH}), 130.5(2 \mathrm{C}), 135.7,139.0$ $(\mathrm{CH}), 150.0(\mathrm{C}), 159.0\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=10.2 \mathrm{~Hz}, \mathrm{C}\right), 159.5(\mathrm{C}), 165.9(\mathrm{~d}, J=26.40 \mathrm{~Hz}, \mathrm{C}=\mathrm{O})$, $175.4(\mathrm{C}=\mathrm{O}),{ }^{19} \mathrm{~F}$ NMR (235 MHz, CDC13): $\delta=-187.54(\mathrm{CF}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=3082$ (w), 2987 (w), 2872 (w), 1745 (s), 1668 (s), 1608 (s), 1444 (s), 1238 (s), 1086 (s), 776 (s); MS (GC, 70 eV$): m / z(\%): 373\left(\mathrm{M}^{+}, 2 \times{ }^{37} \mathrm{Cl}, 4\right), 371\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}, 25\right), 369\left(\mathrm{M}^{+}, 2\right.$ $\times{ }^{35} \mathrm{Cl}, 39$), 297 (100), 268 (17); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{NCl}_{2} \mathrm{~F}\left[\mathrm{M}^{+}, 2 \times{ }^{35} \mathrm{Cl}\right]$: 368.99654 found 368.995651 .

Ethyl

2-fluoro-2-(7-fluoro-5-0xo-5H-chromeno[2,3-b]pyridin-2-yl)acetate
(35e):
Starting with 6-flouro-3-cyanochromone 33e $(184 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), 27(380 \mathrm{mg}, \quad 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine $(202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}), 35 \mathrm{e}$ was isolated as a crystalline solid $(105 \mathrm{mg}, 33 \%), \mathrm{mp} .=134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 4.20-4.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.87\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{F}, \mathrm{H}}=47.1 \mathrm{~Hz}, \mathrm{CH}\right), 7.47-7.54(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.59-7.69 (m, 2H, ArH), 7.89-7.94 (m, 1H, ArH), 8.76 (d, 1H, $J=8.0 \mathrm{~Hz}, \mathrm{ArH})$. ${ }^{13} \mathrm{C}$ NMR $\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.9\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{OCH}_{2}\right), 88.0-90.5(\mathrm{~d}, J=189.3 \mathrm{~Hz}$, CF), $111.4(\mathrm{~d}, J=24.1 \mathrm{~Hz}, \mathrm{CH}), 116.5(\mathrm{C}), 118.1\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=5.0 \mathrm{~Hz}, \mathrm{CH}\right), 120.5\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=\right.$ $5.0 \mathrm{~Hz}, \mathrm{CH}), 122.4\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=7.5 \mathrm{~Hz}, \mathrm{C}\right), 123.7\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=25.2 \mathrm{~Hz}, \mathrm{CH}\right), 138.9(\mathrm{CH}), 151.7$ (C), $157.5(\mathrm{C}), 158.5\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}}=24.4 \mathrm{~Hz}, \mathrm{C}\right), 159.3(\mathrm{C}), 160.7(\mathrm{C}=\mathrm{O}), 165.0(\mathrm{~d}, J=27.9$
$\mathrm{Hz}, \mathrm{C}=\mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-115.30,-187.93$ (CF). IR (ATR, cm^{-1}): $\widetilde{v}=3072(\mathrm{w}), 2978(\mathrm{w}), 2926(\mathrm{w}), 1752$ (s), 1672 (s$), 1592$ (s$), 1566$ (m), 1484 (s$), 1447$ (s), 1395 (s$), 1243$ (m), 1208 (s), 1140 (s), 888 (m) MS (GC, 70 eV): m/z (\%): $319\left(\mathrm{M}^{+}\right.$, 42), 247 (52), 218 (26), 164 (7); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NF}_{2} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 319.06507$, found 319.065232.

Diethyl 2-chloro-3-oxopentanedioate (40): Starting with LDA (22 mmole), $36(1.64 \mathrm{~g}, 0.91 \mathrm{~mL}, 10 \mathrm{mmoles}$) and ethylchloroformate ($1.19 \mathrm{~g}, 1.05 \mathrm{~mL}, 11 \mathrm{mmole}$) at $-78^{\circ} \mathrm{C}, 40$ was obtained as yellow oil ($639 \mathrm{mg}, 27 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20-1.34$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.50-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.12-4.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$. ${ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.6\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 45.1\left(\mathrm{CH}_{2}\right), 60.4(\mathrm{CH}), 61.6\left(\mathrm{OCH}_{2}\right)$, $63.0\left(\mathrm{OCH}_{2}\right), 164.1,165.7,191.4(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2984(\mathrm{~m}), 2940(\mathrm{w}), 2875$ (w), 1727 (s), 1651 (w), 1446 (w), 1369 (m), 1245 (s), 1019 (s). MS (ESI-TOF/MS): (ESI+) $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$259.03463. (ESI-) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClO}_{5}(\mathrm{M}-\mathrm{H})^{-}$235.03787.

(E)-ethyl 4-chloro-5-hydroxy-3-oxohex-4-enoate (41): Starting with LDA (110 mmole), $39(6.72 \mathrm{~g}, 5.56 \mathrm{~mL}, 50 \mathrm{mmoles})$ and ethylchloroformate $(2.7 \mathrm{~g}, 2.40 \mathrm{~mL}, 25 \mathrm{mmole})$ at $-78^{\circ} \mathrm{C}, 41$ was obtained as yellow oil ($3.82 \mathrm{~g}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.26(\mathrm{t}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.12\left(\mathrm{q}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 14.99$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,23.4\left(\mathrm{CH}_{3}\right), 43.4\left(\mathrm{CH}_{2}\right), 61.7$ $\left(\mathrm{OCH}_{2}\right), 108.2(\mathrm{C}), 166.8(\mathrm{CO}), 184.5,188.4(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2978(\mathrm{~m})$, 2936 (w), 2874 (w), 1739 (s), 1687 (m), 1590 (m), 1367 (m), 1253 (s), 1146 (s), 1029 (s), 903 (M). MS (GC, 70 eV): m/z (\%): $208\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 5\right), 206\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 11\right), 164$ (28), 160 (49), 132 (72), 119 (62), 43 (100); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 206.03404, found 256.034290 .

Ethyl 2,6-dichloro-5-methoxy-3-oxohexanoate (42): Starting with 1,3-Bis-silyl Enol Ether 38 (0.772 g, 2.5 mmoles), 1-chloro-2,2-dimethoxyethane ($0.28 \mathrm{~mL}, 2.5$ mmole) and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.22 \mathrm{~mL}, 1.25 \mathrm{mmole})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, $\mathbf{4 2}$ was isolated as yellow oil ($460 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$, CH_{3}), 2.94-3.04 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.55-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84-3.92$ (m, 1H, CH), $4.21\left(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7\left(\mathrm{CH}_{3}\right), 41.4,44.4\left(\mathrm{CH}_{2}\right), 57.5\left(\mathrm{OCH}_{3}\right), 61.3(\mathrm{CH}), 63.0$ $\left(\mathrm{OCH}_{2}\right), 75.9(\mathrm{CH}), 164.4,196.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2984(\mathrm{w}), 2938(\mathrm{w}), 2831$ (w), 1727 (s), 1446 (s), 1369 (m), 1117 (m), 1095 (s), 1017 (s), 748 (m). MS (GC, 70 $\mathrm{eV}): m / z(\%): 258\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 5\right), 256\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 4\right), 207(21), 135$ (50), 93 (100), 85 (43), 71 (16); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 256.02637$, found 256.026928.

(Z)-ethyl 2-chloro-2-(4-methoxydihydrofuran-2(3H)ylidene)acetate (43): Starting with $\mathbf{4 2}$ ($300 \mathrm{mg}, 1.16 \mathrm{mmole}$) and DBU ($0.35 \mathrm{ml}, 2.32 \mathrm{mmole}$) in 4 ml of THF, 43 was isolated as yellow oil ($188 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32(\mathrm{t}, 3 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}, \mathrm{CH}_{3}$), 3.02-3.12 (m, 1H, CH2), $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49-3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.19$ (q, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 4.25-4.33 (m, 2H, CH2), 4.48-4.52 (m, 1H, CH). ${ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 56.2\left(\mathrm{OCH}_{3}\right), 60.9\left(\mathrm{OCH}_{2}\right), 76.6$ $\left(\mathrm{CH}_{2}\right), 78.2(\mathrm{CH}), 96.2,164.0(\mathrm{C}), 168.0(\mathrm{C}=\mathrm{O})$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=2922(\mathrm{~m}), 2852$ (w), 1737 (w), 1697 (m), 1623 (s), 1461 (m), 1367 (m), 1280 (s), 1214 (s), 1077 (s), 950 (m). MS (GC, 70 eV): $m / z(\%): 222\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 16\right), 220\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 46\right), 188$ (84), 175 (52), 161 (100), 143 (62), 125 (40); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 220.04969$, found 220.050278 .

Ethyl 6-azido-2-chloro-5-methoxy-3-oxohexanoate (44): Starting with 1,3-Bis-silyl Enol Ether 38 (0.772 g, 2.5 mmoles), 1 -azido-2,2-dimethoxyethane $(420 \mathrm{mg}, \quad 3.25$ mmole) and $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($0.14 \mathrm{~mL}, 0.38 \mathrm{mmole}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, 44 was isolated as yellow oil ($690 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$, CH_{3}), 2.73-2.84 (m, 1H, CH2 $), 2.92-3.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.16-3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37-3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.76-3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 4.81(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7\left(\mathrm{CH}_{3}\right)$, 41.0, $52.5\left(\mathrm{CH}_{2}\right), 57.5\left(\mathrm{OCH}_{3}\right), 61.2(\mathrm{CH}), 63.0\left(\mathrm{OCH}_{2}\right), 75.7(\mathrm{CH}), 164.4,196.2(\mathrm{C}=\mathrm{O})$. IR (ATR, cm^{-1}): $\widetilde{v}=2983$ (w), 2932 (w), 2833 (w), 2098 (s), 1726 (s), 1643 (w), 1607 (w), 1369 (w), 1250 (s), 1019 (s). MS (EI, 70 eV): m/z (\%): 265 (M ${ }^{+},{ }^{37} \mathrm{Cl}, 2$), 263 (M^{+}, ${ }^{35} \mathrm{Cl}, 4$), 207 (33), 85 (100). HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 263.06674$, found 263.066749 .

(Z)-ethyl

2-chloro-2-(5-vinyldihydrofuran-2(3H)ylidene)acetate (45): Starting with LDA (62.5 mmoles), 36 ($3.51 \mathrm{~mL}, 25 \mathrm{mmole}$) and trans-1,2-dibromo butene (6.41 g , 30 mmole) at $\quad-78^{\circ} \mathrm{C} 45$ was isolated as light yellow oil ($3.5 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.77-1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.18-2.32(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.92-3.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.12-3.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.34(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 4.84(\mathrm{q}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}), 5.13-5.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.72-5.85(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}),{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(\mathrm{CH}_{3}\right), 30.1,31.6\left(\mathrm{CH}_{2}\right), 60.8\left(\mathrm{CH}_{2}\right), 85.2$ (CH), $95.4(\mathrm{C}), 117.9\left(\mathrm{CH}_{2}\right), 135.0(\mathrm{CH}), 164.15(\mathrm{C}), 169.4(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3087$ (w), 2982 (w), 2905 (w), 1744 (w), 1695 (s), 1614 (s), 1367 (m), 1275 (s), 1225 (s), 1059 (s), 936 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): $218\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 16\right), 216\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 49\right)$, 171 (31), 149 (35), 135 (69), 121 (100), 103 (34); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Cl}$ [$\left.\mathrm{M}^{+}\right]: 216.05477$ found 216.054810.

(Z)-ethyl

2-chloro-2-(4,5-dimethyldihydrofuran-2(3H)-
ylidene)acetate (46): Starting with 1,3-Bis-silyl Enol Ether 38 ($926 \mathrm{mg}, 3 \mathrm{mmoles}$), 2,3-butenoxide ($210 \mathrm{mg}, 0.260 \mathrm{~mL}, 3 \mathrm{mmole}$),
$\mathrm{TiCl}_{4}(1.13 \mathrm{~g}, 0.65 \mathrm{~mL}, 6 \mathrm{mmole})$ and molecular sieves (3 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL}) 46$ was obtained as yellow oil ($237 \mathrm{mg}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.03(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~d}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.93-2.06(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 2.52-2.63 (m, 1H, CH), 3.42-3.52 (m, 1H, CH2), 4.03-4.11 (m, 1H, CH), 4.12 $\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2,16.0,18.6\left(\mathrm{CH}_{3}\right)$, $39.8(\mathrm{CH}), 40.55\left(\mathrm{CH}_{2}\right), 60.9\left(\mathrm{OCH}_{2}\right), 87.3(\mathrm{CH}), 94.9,164.5(\mathrm{C}), 169.2(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=2974$ (w), 2933 (w), 1743 (w), 1695 (m), 1615 (s), 1386 (m), 1277 (s), 1232 (s), 1061 (s), $958(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 220\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 31\right), 218\left(\mathrm{M}^{+}\right.$, ${ }^{35} \mathrm{Cl}, 97$), 203 (30), 173 (62), 157 (37), 137 (55), 55 (100); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Cl}\left[\mathrm{M}^{+}\right]: 218.07042$ found 218.070647.

(Z)-ethyl

2-(5-(bromomethyl)dihydrofuran-2(3H)-ylidene)-2-chloroacetate (47): Starting with 1,3-Bis-silyl Enol Ether 38 ($772 \mathrm{mg}, 2.5 \mathrm{mmoles}$), epibromohydrin ($342 \mathrm{mg}, 0.200 \mathrm{~mL}, 2.5 \mathrm{mmole}$), TiCl_{4} ($948 \mathrm{mg}, 0.54 \mathrm{~mL}, 5 \mathrm{mmole}$) and molecular sieves $(3 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL}) 47$ was obtained as yellow oil ($335 \mathrm{mg}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3), 1.97-2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} 2), 2.29-2.42(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 3.01-3.15 (m, 1H, CH2), 3.24-3.35 (m, 1H, CH2), 3.47-3.52 (m, 1H, CH2), 3.24-3.35 (m, 1H, CH2), 3.83-3.94 (m, 1H, CH), $4.14\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 4.70$4.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4\left(\mathrm{CH}_{3}\right), 28.8,32.0,33.2\left(\mathrm{CH}_{2}\right)$, $61.5\left(\mathrm{OCH}_{2}\right), 83.1(\mathrm{CH}), 96.3,164.4(\mathrm{C}), 169.4(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3435(\mathrm{w}), 2979$ (w), 2936 (w), 1737 (m), 1618 (m), 1279 (m), 1282 (s), 1067 (s), 1232 (s), 1067 (s), 940 (m) cm^{-1}; GC-MS (GC, 70 eV): $m / z(\%): 286\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl},{ }^{81} \mathrm{Br}, 18\right), 284\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl},{ }^{81} \mathrm{Br}\right.$, 71), $282\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl},{ }^{79} \mathrm{Br}, 51\right), 218\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 97\right), 238$ (100), 203 (22), 175 (45), 157 (55), 121 (58), 103(48); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{BrCl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl},{ }^{81} \mathrm{Br}\right]: 283.96324$ found 283.963505.

(E)-ethyl2-chloro-2-(5-(chloromethyl)dihydrofuran-2(3H)ylidene)acetate (48): Starting with 1,3-Bis-silyl Enol Ether 38 $(1.54 \mathrm{~g}, 5 \mathrm{mmoles})$, epichlorohydrin ($550 \mathrm{mg}, 0.47 \mathrm{~mL}, 6$ mmole), $\mathrm{TiCl}_{4}(1.89 \mathrm{~g}, 1.09 \mathrm{~mL}, 10 \mathrm{mmole})$ and molecular sieves $(5 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL})$ 48 was obtained as yellow oil ($72 \mathrm{mg}, 17 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3), 1.91-2.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16-2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.18-3.03(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 3.59-3.72 (m, 2H, CH2), 4.17 (q, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 4.82-4.93 (m, 1H, CH); ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.6\left(\mathrm{CH}_{3}\right), 25.9,32.9,45.5\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{OCH}_{2}\right), 86.1$ (CH), 98.2, 162.6 (C), 168.4 (C=O); IR (ATR): $\tilde{v}=2981$ (w), 2938 (w), 1740 (m), 1698 (m), 1618 (m), 1369 (w), 1280 (s), 1183 (s), 1068 (s), 940 (m) cm ${ }^{-1}$; MS (GC, 70 eV): $m / z(\%): 242\left(\mathrm{M}^{+}, 2 \times{ }^{37} \mathrm{Cl}, 5\right), 240\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}, 28\right), 238\left(\mathrm{M}^{+}, 2 \times{ }^{35} \mathrm{Cl}, 46\right), 210(10)$, 194 (68), 192 (100), 175 (15), 157 (35), 147 (19), 103 (35); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Cl}_{2}\left[\mathrm{M}^{+}, 2 \times{ }^{35} \mathrm{Cl}\right]: 238.01580$ found 238.015571 .

(Z)-ethyl 2-chloro-2-(5-(chloromethyl)dihydrofuran-2(3H)-ylidene)acetate (48): Starting with 1,3-Bis-silyl Enol Ether 38 ($1.54 \mathrm{~g}, 5 \mathrm{mmoles}$), epichlorohydrin (550 mg , $0.47 \mathrm{~mL}, 6 \mathrm{mmole}), \mathrm{TiCl}_{4}(1.89 \mathrm{~g}, 1.09 \mathrm{~mL}, 10 \mathrm{mmole})$ and molecular sieves $(5 \mathrm{~g}) \mathrm{in}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL}) 48$ was obtained as yellow oil ($136 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.00-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.25-2.39(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), 3.02-3.30 (m, 2H, CH2), 3.65-3.67 (m, 2H, CH2), $4.14\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 4.72-4.82 (m, 1H, CH); ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.3(\mathrm{CH} 3), 27.4,31.8,45.2$ $\left(\mathrm{CH}_{2}\right), 61.1\left(\mathrm{OCH}_{2}\right), 82.9(\mathrm{CH}), 95.8,164.3(\mathrm{C}), 169.0(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3434(\mathrm{w})$, 2981 (w), 2939 (w), 1742 (m), 1697 (m), 1618 (s), 1368 (w), 1279 (s), 1185 (w), 1067 (s), $940(\mathrm{~m}) \mathrm{cm}^{-1}$; MS (GC, 70 eV$): m / z(\%): 242\left(\mathrm{M}^{+}, 2 \times{ }^{37} \mathrm{Cl}, 5\right), 240\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right.$, 29), $238\left(\mathrm{M}^{+}, 2 \times{ }^{35} \mathrm{Cl}, 45\right), 210$ (12), 194 (69), 192 (100), 175 (13), 157 (33), 147 (18), 103 (31); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Cl}_{2}\left[\mathrm{M}^{+}, 2 \times{ }^{35} \mathrm{Cl}\right]: 238.01580$ found 238.016442.

Ethyl 2-chloro-2-(9-oxo-9H-xanthen-3-yl)acetate (51a): Starting with 3 -cyanochromone 49a (256 mg , 1.5 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(433 \mathrm{mg}, 0.35 \mathrm{~mL}, 1.95 \mathrm{mmol}$), 38 ($602 \mathrm{mg}, 1.95 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13.5 mL), EtOH $(15 \mathrm{~mL})$, and triethylamine ($303 \mathrm{mg}, 0.42 \mathrm{~mL}, 3 \mathrm{mmol}$), 51a was isolated as a yellow solid ($276 \mathrm{mg}, 58 \%$), mp. $=91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.25\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.41(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}$, ArH), 7.59 (d, $1 \mathrm{H}, \mathrm{ArH}$), $7.73-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.34(\mathrm{dd}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, ArH), $8.76(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9\left(\mathrm{CH}_{3}\right)$, $58.9(\mathrm{CH}), 63.1\left(\mathrm{OCH}_{2}\right), 116.5(\mathrm{C}), 118.5,119.8(\mathrm{CH}), 121.5(\mathrm{C}), 124.9,126.7135 .8$, 138.9 (CH), 155.6, 159.3, 159.8 (C), 166.6, 176.9 (C=O). IR (ATR, cm^{-1}): $\widetilde{v}=2962(\mathrm{w})$, 2925 (w), 2853 (w), 1747 (m), 1664 (s), 1598 (s), 1462 (m), 1403 (s), 1317 (m), 1182 (s), 1022 (s), $805(\mathrm{~m}), 750(\mathrm{~s}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 319\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 11\right), 317\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$, 32), 283 (11), 245 (100), 211 (27), 182 (11), 126 (8); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{4}$ $\left[\mathrm{M}^{+}{ }^{35} \mathrm{Cl}\right]: 317.04494$, found 317.045352 .

Ethyl 2-chloro-2-(7-chloro-9-oxo-9H-xanthen-3-
yl)acetate (51b): Starting with 6-chloro-3cyanochromone 51b ($205 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.3 \mathrm{mmol}$), $38(400 \mathrm{mg}$, $1.3 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine $(202 \mathrm{mg}, 0.28 \mathrm{~mL}$, 2 mmol), 51b was isolated as a yellow solid ($210 \mathrm{mg}, 60 \%$), mp. $=89-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $4.21\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $5.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.68-7.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.22(\mathrm{~d}, 1 \mathrm{H}$, $J=2.6 \mathrm{~Hz}, \mathrm{ArH}), 8.72(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0$ $\left(\mathrm{CH}_{3}\right), 58.8(\mathrm{CH}), 63.1\left(\mathrm{OCH}_{2}\right), 116.1(\mathrm{C}), 120.1(\mathrm{CH}), 122.5(\mathrm{C}), 126.1(\mathrm{CH}), 130.8(\mathrm{C})$, 135.8, $138.9(\mathrm{CH}), 154.0,159.2,160.2$ (C), 166.6, 175.9 (C=O). IR (ATR, cm^{-1}): $\widetilde{v}=3076$ (w), 2982 (w), 2929 (w), 1728 (s), 1662 (s), 1600 (s), 1466 (m), 1432 (s), 1392 (s), 1186 (s), 1019 (m), 752 (s). MS (EI, 70 eV): m/z (\%): 353 (M, ${ }^{+}{ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}, 7$), 351 $\left(\mathrm{M}^{+}, 2 \times{ }^{35} \mathrm{Cl}, 32\right.$), 317 (33), 279 (47), 245 (100), 216 (20), 69 (16); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 351.00596$, found 351.006048 .

Ethyl 2-chloro-2-(7-fluoro-9-oxo-9H-xanthen-3yl)acetate (51c): Starting with 6-fluoro-3cyanochromone 49 c ($189 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.3 \mathrm{mmol}$), $38 \quad(400 \mathrm{mg}$, $1.3 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}$, 2 mmol), 51 c was isolated as a yellow solid ($200 \mathrm{mg}, 60 \%$), $\mathrm{mp} .=113-116^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.23\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 5.54 (s, 1H, CH), 7.46-7.63 (m, 2H, ArH), 7.74 (d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}$), 8.34 (dd, 1 H , $J=6.9 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, \mathrm{ArH}$), $8.72(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.9\left(\mathrm{CH}_{3}\right), 58.9(\mathrm{CH}), 63.2\left(\mathrm{OCH}_{2}\right), 111.4(\mathrm{CH}), 115.6(\mathrm{C}), 119.9,120.5$ (CH) $122.5(\mathrm{C}), 123.7,138.8(\mathrm{CH}), 151.7,157.4,159.1,160.0(\mathrm{C}), 166.4,176.3(\mathrm{C}=\mathrm{O})$. IR (ATR, cm^{-1}): $\widetilde{v}=3053$ (w), 2982 (w), 2943 (w), 1729 (s), 1663 (s), 1604 (m), 1486 (s), 1448 (s), 1299 (s), 1190 (s), 1021 (m), 832 (s). MS (EI, 70 eV): m/z (\%): 337 (M^{+}, $\left.{ }^{37} \mathrm{Cl}, 7\right), 335\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 11\right), 301$ (34), 263 (40), 229 (100), 200 (21), 69 (36); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClNFO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 335.03552$, found 335.035168 .

Ethyl 2-chloro-2-(5,7-dichloro-9-0x0-9H-

xanthen-3-yl)acetate (51d): Starting with 6,8-dichloro-3-cyanochromone (49d) (240 mg, $\quad 1$ mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.3 \mathrm{mmol}$), $38(400 \mathrm{mg}, 1.3 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine (202 mg , $0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 1 d}$ was isolated as a yellow solid ($149 \mathrm{mg}, 39 \%$), mp. $=103-106^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.23(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, OCH_{2}), $5.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.79-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{ArH}), 8.71$ $(\mathrm{d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9\left(\mathrm{CH}_{3}\right), 58.7(\mathrm{CH})$, $63.2\left(\mathrm{OCH}_{2}\right), 115.7(\mathrm{C}), 120.7(\mathrm{CH}) 123.5(\mathrm{C}), 124.7(\mathrm{CH}), 130.5(\mathrm{C}), 135.7,138.9$ (CH), 150.1, 158.7, 160.7, (C), 166.6, 175.5 (C=O). IR (ATR, cm^{-1}): $\widetilde{v}=3076(\mathrm{w}), 2979$ (w), 2914 (w), 1722 (s), 1662 (s), 1607 (s), 1558 (m), 1386 (s), 1301 (m), 1180 (s), 1019 (m), 727 (s). MS (EI, 70 eV): m/z (\%): 387 ($\left.\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 5\right), 385\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 5\right), 353(21), 313$ (20), 279 (100), 250 (12), 97 (18); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{NO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 384.96699 , found 384.966901 .

Dimethyl 4-chloro-3,5-dihydroxyphthalate (52): Starting with $38(463 \mathrm{mg}, 1.5 \mathrm{mmol}$ and $\mathrm{DMAD}(319 \mathrm{mg}, 0.27 \mathrm{~mL}, 2.25$ $\mathrm{mmol}) 52$ was isolated as crystalline solid ($460,54 \%$), mp. $=$ $127-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.82(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 11.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR $\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.8\left(\mathrm{OCH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 103.5(\mathrm{C}), 107.5(\mathrm{CH})$, 109.3, 135.0 (C), 156.6, 158.7 (C-OH), 168.6, 169.0 (C=O). IR (ATR, cm^{-1}): $\widetilde{v}=2984$ (w), 2954 (w), 2905 (w), 2847 (w), 1792 (w), 1722 (s), 1668 (m), 1435 (m), 1328 (m), 1243 (s), 1067 (s), 844 (m). MS (EI, 70 eV): m/z (\%): $262\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 9\right), 260\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$, 15), 228 (53), 198 (23), 170 (100), 153 (23), 89 (25); Anal.: calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{6}$: C 46.08, H 3.48; found: C 46.21, H 3.31 .

Ethyl-3-chloro-2-hydroxy-5-(2hydroxybenzoyl)benzoate (57a): Starting with 3formylchromone 56 ($261 \mathrm{mg}, 1.5 \mathrm{mmol}$), 1,3bis(silyl enol ether) 55b ($602 \mathrm{mg}, 1.95 \mathrm{mmol}$), and $\mathrm{Me}_{3} \mathrm{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}$), 57a was isolated as a colourless crystalline solid (200 $\mathrm{mg}, 42 \%$), mp. $=117-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=8.3$ Hz, ArH), 7.40-7.47 (m, 2 H, ArH), 7.82 (d, $1 \mathrm{H}, J=2.25 \mathrm{~Hz}, \mathrm{ArH}$), 7.68 (d, $J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 8.08(\mathrm{~d}, J=2.43 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 11.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 62.6\left(\mathrm{OCH}_{2}\right), 113.4,118.6(\mathrm{C}), 118.6,118.9$ (CH), 122.7, 129.0 (C), 130.2, 132.7, 136.2, 136.5(CH), 160.3, $163.0(\mathrm{C}-\mathrm{OH}), 169.3$, 197.8 (C=O); IR (neat): $\widetilde{v}=3086$ (w), 2991(m), 2962 (w), 1720 (w), 1680 (s), 1622 (s), 1567 (m), 1444 (m), 1374 (m), 1337 (s), 1239 (s), 1014 (m) cm ${ }^{-1}$; MS (GC, 70 eV): m/z (\%): $322\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 26\right), 320\left(\mathrm{M}^{+}, 75\right), 274$ (34), 181 (21), 154 (39), 121 (100); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}_{5}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 320.04460$, found 320.044647 .

Ethyl-3-chloro-2-hydroxy-5-(2-hydroxy-5methylbenzoyl)benzoate (57b): Starting with 6-methyl-3-formylchromone 56b ($282 \mathrm{mg}, 1.5 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 55b ($602 \mathrm{mg}, 1.95 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}), \mathbf{5 7 b}$ was isolated as a colourless crystalline solid (201 mg, 40%), mp. $=142-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.96$ (d, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.24-7.29$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.85 (d, $1 \mathrm{H}, J=$ $2.1 \mathrm{~Hz}, \mathrm{ArH}), 8.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 11.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 62.6\left(\mathrm{OCH}_{2}\right), 113.4,118.0(\mathrm{C})$, 118.4 (CH), 122.7, 128.0, 129.2 (C), 130.2, 132.3, 136.1, 137.5 (CH), 160.2, 160.9 (COH), 169.3, 197.7 (C=O); IR (neat): $\widetilde{v}=3065$ (w), 2993 (w), 2856 (w), 1679 (s), 1627 (s), 1581 (s$), 1482$ (m), 1375 (m), 1338 (s), 1288 (s$), 1210$ (s$), 786$ (s$) \mathrm{cm}^{-1} ; \mathrm{MS}(\mathrm{GC}, 70$ $\mathrm{eV}): m / z(\%): 336\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 13\right), 334\left(\mathrm{M}^{+}, 37\right), 288$ (11), 181 (9), 134 (100), 77 (11); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{5}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 334.06025$, found 334.060293.

$\mathrm{Me}_{3} \operatorname{SiOTf}(0.05 \mathrm{~mL}, 0.3 \mathrm{mmol}), \mathbf{5 7 c}$ was isolated as a yellowish solid ($141 \mathrm{mg}, 39 \%$), $\mathrm{mp} .=159-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.36$ (q, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $7.12(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{ArH}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.62 \mathrm{~Hz}, \mathrm{ArH}$), 8.14 (d, $1 \mathrm{H}, J=2.35 \mathrm{~Hz}, \mathrm{ArH}$), 8.32 (dd, $1 \mathrm{H}, J=3.0,9.3 \mathrm{~Hz}, \mathrm{ArH}$), 8.50 (d, 1 H, J = 2.5 Hz, ArH), $11.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 62.9\left(\mathrm{OCH}_{2}\right), 113.6,117.5(\mathrm{C}), 119.7(\mathrm{CH}), 123.8,127.4(\mathrm{C})$, 128.7, 130.5, 131.0, 136.0 (CH), 139.5 (C), 161.3, 167.7 (C-OH), 169.1, 196.6 (C=O); IR (neat, cm^{-1}): $\widetilde{v}=2919(\mathrm{~m}), 2850(\mathrm{w}), 1682(\mathrm{~m}), 1632(\mathrm{~m}), 1460(\mathrm{~m}), 1336(\mathrm{~s}) ;$ MS (GC, $70 \mathrm{eV}): m / z(\%): 367\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 21\right), 365\left(\mathrm{M}^{+}, 77\right), 329$ (7), 319 (100), 283 (16), 154 (58); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NClO}_{7}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 365.02919$, found 365.029150 .

Ethyl-5-(5-bromo-2-hydroxybenzoyl)-3-chloro-2hydroxybenzoate (57d): Starting with 6-bromo-3formylchromone 56d ($253 \mathrm{mg}, 1 \mathrm{mmol}$), 1,3-bis(silyl enol ether) $\mathbf{5 5 b}$ ($401 \mathrm{mg}, 1.3 \mathrm{mmol}$), and $\mathrm{Me}_{3} \mathrm{SiOTf}$ $(0.05 \mathrm{~mL}, 0.3 \mathrm{mmol}), 57 \mathrm{~d}$ was isolated as a yellowish solid ($140 \mathrm{mg}, 36 \%), \mathrm{mp} .=133-$ $135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.36\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.37(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.7.2 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.51-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.8(\mathrm{~d}$, $1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{ArH}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{ArH}), 11.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 11.88(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 62.7\left(\mathrm{OCH}_{2}\right), 110.4,113.5,119.8,(\mathrm{C})$, $120.7(\mathrm{CH}), 123.2,128.3(\mathrm{C}), 130.4,134.5,136.0,139.1(\mathrm{CH}), 160.8,161.9(\mathrm{C}-\mathrm{OH})$, 169.2, 196.6 (C=O); IR (neat, cm^{-1}): $\widetilde{v}=3068$ (w), 2917 (w), 1686 (s), 1625 (s), 1595 (s), 1567 (s), 1343 (s), 1164 (s), 681 (s); MS (GC, 70 eV): m/z (\%): $401\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 12\right)$, $399\left(\mathrm{M}^{+}, 77\right), 354$ (33), 200 (100), 198 (75), 154 (67); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrClO}_{5}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl},{ }^{81} \mathrm{Br}\right]: 399.95307$, found 399.952332.

3-chloro-2-(2-oxobutyl)-5H-chromeno[2,3-b]pyridin-5-one (60a): Starting with 3-cyanochromone (58a) $(256 \mathrm{mg}, \quad 1.5 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(433 \mathrm{mg}, \quad 0.35 \mathrm{~mL}$, $1.95 \mathrm{mmol}), \quad \mathbf{5 5 b} \quad(602 \mathrm{mg}, \quad 1.95 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(13.5 \mathrm{~mL}), \mathrm{EtOH}(15 \mathrm{~mL})$, and triethylamine $(303 \mathrm{mg}, 0.42 \mathrm{~mL}, 3 \mathrm{mmol}), 60 \mathrm{a}$ was isolated as a yellow solid (276 mg, 58 \%) , mp. $=110-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.40\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.40\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.14(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 7.38-7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.34(\mathrm{dd}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, J=$ $1.4 \mathrm{~Hz}, \mathrm{ArH}), 9.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{CH}_{3}\right), 44.6$ $\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{OCH}_{2}\right), 115.7(\mathrm{C}), 118.6(\mathrm{CH}), 121.6,123.0(\mathrm{C}), 125.4,126.9,141.6,(\mathrm{CH})$, $155.5,162.4(\mathrm{C}), 164.0,176.5(\mathrm{C}=\mathrm{O})$. IR (neat, cm^{-1}): $\widetilde{v}=2979(\mathrm{w}), 1715(\mathrm{~m}), 1673$ (m), 1596 (s), 1425 (m), 1308 (w), 1262 (s), 1213 (m), 1067 (m), 763 (m). MS (GC, 70 $\mathrm{eV}): m / z(\%): 319\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 34\right), 317\left(\mathrm{M}^{+}, 100\right), 289(49), 283$ (14), 274 (25), 272 (58), 254 (89); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 317.04579$, found 317.045442.

3-chloro-7,8-dimethyl-2-(2-oxobutyl)-5H-chromeno[2,3-b]pyridin-5-one (60b): Starting with 6,7-dimethyl-3-cyanochromone (58b) ($290 \mathrm{mg}, \quad 1.5 \mathrm{mmol}$), $\quad \mathrm{Me}_{3} \mathrm{SiOTf} \quad(433 \mathrm{mg}$, $0.350 \mathrm{~mL}, 1.95 \mathrm{mmol})$, 55b ($602 \mathrm{mg}, 1.95 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13.5 mL), EtOH (15 mL), and triethylamine ($303 \mathrm{mg}, 0.42 \mathrm{~mL}, 3 \mathrm{mmol}$), 60b was isolated as a yellow solid $(170 \mathrm{mg}, 34 \%), \mathrm{mp} .=148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.20(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, CH_{3}), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.14(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, OCH_{2}), $7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75.47 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 42.2\left(\mathrm{CH}_{2}\right), 61.5\left(\mathrm{OCH}_{2}\right), 116.5,117.5$ (C), $117.5(\mathrm{CH}), 123.4,125.3(\mathrm{C}), 126.3(\mathrm{CH}), 134.3(\mathrm{C}), 137.1(\mathrm{CH}), 146.9,154.2$, 157.5 (C), 168.5, 176.7 (C=O). IR (neat, cm^{-1}): $\widetilde{v}=2979(\mathrm{w}), 1715(\mathrm{~m}), 1673(\mathrm{~m}), 1596$ (s), 1425 (m), 1308 (w), 1262 (s), 1213 (m), 1067 (m), 763 (m). MS (GC, 70 eV): m/z (\%): 347 ($\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 25$), 345 ($\mathrm{M}^{+}, 74$), 311 (16), 301 (11), 273 (100), 244 (26); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 345.07624 , found 345.076341 .

$1.95 \mathrm{mmol})$, 55b ($602 \mathrm{mg}, 1.95 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13.5 mL), EtOH (15 mL), and triethylamine ($303 \mathrm{mg}, 0.42 \mathrm{~mL}, 3 \mathrm{mmol}$), $\mathbf{6 0 c}$ was isolated as a yellow solid $(.180 \mathrm{mg}$, 37%), mp. $=126-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}$, CH_{3}), 4.06 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $4.14\left(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), 7.41-7.49 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.527.57 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.83 (dd, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}, \operatorname{ArH}$), 8.57 (s, $1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 42.2\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{OCH}_{2}\right), 111.4(\mathrm{CH})$, 115.6 (C), $120.5(\mathrm{CH}), 122.1$ (C), $123.8(\mathrm{CH}), 128.8$ (C), 137.1, 141.6 (CH), 151.7, 157.2, 158.1 (C), 166.1, 175.9 (C=O). IR (neat, cm^{-1}): $\widetilde{v}=3056$ (w), 2981 (w), 2925 (w), 1727 (s), 1658 (s), 1593 (w), 1480 (s), 1397 (s), 1259 (s), 1193 (s), 791 (s). MS (GC, $70 \mathrm{eV}): m / z(\%): 337\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 19\right), 335\left(\mathrm{M}^{+}, 68\right), 300(27), 290(14), 272$ (18), 263
(100), 234 (17); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClFNO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 335.03522, found 335.035008 .

3,7-dichloro-2-(2-oxobutyl)-5H-chromeno [2,3-blpyridin-5-one (60d): Starting with 6-chloro-3cyanochromone $\quad(\mathbf{6 0 d}) \quad(300 \mathrm{mg}, \quad 1.5 \mathrm{mmol})$, Me_{3} SiOTf ($433 \mathrm{mg}, ~ 0.35 \mathrm{~mL}, 1.95 \mathrm{mmol}$), 55b ($602 \mathrm{mg}, 1.95 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13.5 mL), $\mathrm{EtOH}(15 \mathrm{~mL}$), and triethylamine (303 mg , $0.42 \mathrm{~mL}, 3 \mathrm{mmol}$), $\mathbf{6 0 d}$ was isolated as a yellow solid ($199 \mathrm{mg}, 39 \%$), mp. $=154-157^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.12$ (q, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $7.48(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.34(\mathrm{dd}, 1 \mathrm{H}, J=9.22 \mathrm{~Hz}, J=$ $2.3 \mathrm{~Hz}, \mathrm{ArH}$), 8.19 (d, $1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{ArH}$), $8.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 42.5\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{OCH}_{2}\right), 116.1(\mathrm{C}), 120.2(\mathrm{CH}), 122.1(\mathrm{C})$, $126.0(\mathrm{CH}), 128.9,130.9$ (C), 136.0, 137.2 (CH), 153.9, 157.5, 158.1 (C), 168.1, 175.5 (C=O). IR (neat, cm^{-1}): $\widetilde{v}=2979(\mathrm{w}), 1715(\mathrm{~m}), 1673(\mathrm{~m}), 1596(\mathrm{~s}), 1425(\mathrm{~m}), 1308(\mathrm{w})$, $1262(\mathrm{~s}), 1213(\mathrm{~m}), 1067(\mathrm{~m}), 763(\mathrm{~m}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 353\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 26\right)$, $351\left(\mathrm{M}^{+}, 41\right), 316$ (28), 288 (21), 279 (100), 250 (17), 139 (11); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 351.00596$, found 351.006388 .

Methyl 4-chloro-3-hydroxy-5-methylbiphenyl-2-carboxylate (62a): Starting with monosilylenolether $\mathbf{6 0 a}$ ($234 \mathrm{mg}, 1 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 55a ($324 \mathrm{mg}, 1.1 \mathrm{mmol}$), and TiCl_{4} ($208 \mathrm{mg}, 0.12 \mathrm{~mL}, 0.58 \mathrm{mmol}$), 62a was isolated as a white solid ($119 \mathrm{mg}, 42 \%$), mp. $=94-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.31-7.37 (m, 3H, ArH), $11.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.7$ $\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{OCH}_{3}\right), 110.8,121.4(\mathrm{C}), 124.2,127.0(\mathrm{CH}), 127.4,128.0(2 \mathrm{C}, \mathrm{CH}), 142.0$, 142.38, 142.47, 157.0 (C), 171.1 (C=O). IR (neat): $\widetilde{v}=3369$ (w), 2951 (w), 2918 (w), 1664 (s), 1596 (w), 1435 (s), 1347 (m), 1050 (m), 771 (s); MS (GC, 70 eV): m/z (\%): 278 ($\left.\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 7\right), 276\left(\mathrm{M}^{+}, 20\right), 244$ (100), 216 (9), 181 (9), 152 (24); HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 276.05477$, found 276.054965 .

Ethyl 4-chloro-3-hydroxy-5-methylbiphenyl-2-carboxylate (62b): Starting with monosilylenolether 61b ($234 \mathrm{mg}, 1 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 55b ($330 \mathrm{mg}, 1.1 \mathrm{mmol}$), and TiCl_{4} ($208 \mathrm{mg}, 0.12 \mathrm{~mL}, 0.58 \mathrm{mmol}$), $\mathbf{6 2 b}$ was isolated as a crystalline solid (112 mg, 41\%), mp. $=94-96{ }^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.74\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.95(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, OCH_{2}), 6.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.17-7.20 (m, 2H, ArH), 7.31-7.36 (m, 3H, ArH), 11.53 (s, 1 $\mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 61.3\left(\mathrm{OCH}_{2}\right), 110.8$, 121.4 (C), 124.1, 126.8 (CH), 127.6, 128.0 (2C, CH), 142.32, 142.36, 142.5, 157.2 (C), 170.7 (C=O). IR (neat): $\widetilde{v}=3063$ (s), 2988 (m), 2921 (m), 2881 (w), 1651 (m), 1599 (m), 1440 (m), 1375 (s), 1266 (s), 1216 (s); MS (GC, 70 eV): m/z (\%): 292 ($\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 7$), 290 ($\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 18$), 244 (100), 216 (7), 181 (9), 152 (21); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}$ [$\left.\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 290.07042$, found 290.070573 .

Ethyl 4-chloro-4'-fluoro-3-hydroxy-5-methyl[1,1'-biphenyl]-2-carboxylate (62c): Starting with monosilylenolether 61c ($101 \mathrm{mg}, 0.4 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 55b ($135 \mathrm{mg}, 0.44 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.05 \mathrm{~mL}$, 0.44 mmol), 62c was isolated as a crystalline solid ($59 \mathrm{mg}, 48$ \%), mp. $=140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.75\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 2.35 (s, 3H, CH 3), 3.94 ($\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 6.60 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 6.94-7.01 (m, 2H, ArH), 7.06-7.12 (m, 2H, ArH), $11.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $13.06\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 61.4\left(\mathrm{OCH}_{2}\right), 110.7(\mathrm{C}), 114.2,114.6(\mathrm{CH}), 121.7(\mathrm{C}), 124.2$, 129.6, 129.7 (CH), 138.3, 141.3, 142.4, 157.4, 160.1 (C), 170.5 (C=O). IR (neat): $\widetilde{v}=$ 3076 (w), 2917 (s), 2837 (m), 1656 (m), 1602 (s), 1504 (m), 1453 (m), 1375 (s), 1221 (m), $1155(\mathrm{~s}), 777(\mathrm{~m}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 310\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 6\right), 308\left(\mathrm{M}^{+}, 19\right), 262$ (100), 234 (9), 199 (9), 170 (22); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClFO}_{3}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 308.06100 , found 308.060716 .

Ethyl 2',4-dichloro-3-hydroxy-5-methyl[1,1'-biphenyl]-2carboxylate (62d): Starting with monosilylenolether 61d (140 $\mathrm{mg}, 0.53 \mathrm{mmol}$), 1,3 -bis(silyl enol ether) 55b ($179 \mathrm{mg}, 0.58$ $\mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.06 \mathrm{~mL}, 0.58 \mathrm{mmol}), \mathbf{6 2 d}$ was isolated as a crystalline solid ($85 \mathrm{mg}, 49 \%$), mp. $=85-88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.69\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.92(\mathrm{q}, 2 \mathrm{H}, J=7.4$ $\mathrm{Hz}, \mathrm{OCH}_{2}$), $6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.07-7.11$ (m, 1H, ArH), 7.18-7.20 (m, 2H, ArH), 7.21$7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 11.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8\left(\mathrm{CH}_{3}\right)$, $20.7\left(\mathrm{CH}_{3}\right), 61.5\left(\mathrm{OCH}_{2}\right), 110.8,112.2(\mathrm{C}), 123.8,126.2,128.3,128.6,129.6(\mathrm{CH}), 132.3$, 139.1, 141.3, 142.9, 157.7 (C), 170.3 (C=O). IR (neat): $\widetilde{v}=3305$ (br), 2986 (m), 2855 (w), 1731 (w), 1651 (s), 1435 (w), 1374 (s), 1214 (s), 1011 (m), 753 (s); MS (GC, 70 $\mathrm{eV}): m / z(\%): 326\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 2\right), 324\left(\mathrm{M}^{+}, 4\right), 289$ (98), 280 (65), 278 (100), 261 (67); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 324.03145$, found 324.030996 .

Ethyl 4-chloro-3-hydroxy-2',5-dimethyl[1,1'-biphenyl]-2carboxylate (62e): Starting with monosilylenolether 61e (248 $\mathrm{mg}, 1 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 55b ($339 \mathrm{mg}, 1.1 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.12 \mathrm{~mL}, 1.1 \mathrm{mmol}), 62 \mathrm{e}$ was isolated as a crystalline solid ($120 \mathrm{mg}, 40 \%$), mp. $=77-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=0.69\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87(\mathrm{q}, 2$ $\left.\mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.90-6.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.07-7.10(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.15-7.21 (m, $1 \mathrm{H}, \mathrm{ArH}$), $11.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $12.8\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 61.3\left(\mathrm{OCH}_{2}\right), 110.7,121.3(\mathrm{C}), 123.7,125.0,127.0$, 128.4, 129.1 (CH), 134.9, 141.9, 142.2, 142.8, 157.7 (C), 170.7 (C=O). IR (neat): $\widetilde{v}=$ 2985 (w), 2922 (m), 2853 (w), 1650 (s), 1600 (m), 1373 (s), 1294 (s), 1213 (m), 727 (s); MS (GC, 70 eV): $m / z(\%): 306\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 4\right), 304\left(\mathrm{M}^{+}, 13\right), 260(35), 258$ (100), 195 (21), 165 (24); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 304.08607$, found 304.0086736 .

Ethyl 4-chloro-2'-fluoro-3-hydroxy-5-methyl[1,1'-biphenyl]-2carboxylate (62f): Starting with monosilylenolether $\mathbf{6 1 f}$ (720 mg , 2.85 mmol), 1,3-bis(silyl enol ether) 55b ($970 \mathrm{mg}, 3.14 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.34 \mathrm{~mL}, 3.14 \mathrm{mmol}), 61 \mathbf{f}$ was isolated as a crystalline solid (390 mg, 45%), mp. $=76-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.75\left(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.91-6.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.06-7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.22(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArH}), 11.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$, $61.5\left(\mathrm{OCH}_{2}\right), 111.0(\mathrm{C}), 114.4,114.8(\mathrm{CH}), 122.3(\mathrm{C}), 123.7,124.4,129.0(\mathrm{CH}), 135.4$, 142.9, 142.4, 157.7, $161.0(\mathrm{C}), 170.5(\mathrm{C}=\mathrm{O})$. IR (neat): $\widetilde{\boldsymbol{v}}=3040(\mathrm{w}), 2979(\mathrm{~m}), 1657$ (m), 1604 (m), 1495 (m), 1440 (m), 1374 (s), 1260 (s), 1215 (s), 759 (s); MS (GC, 70 $\mathrm{eV}): m / z(\%): 310\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 8\right), 308\left(\mathrm{M}^{+}, 24\right), 262(100), 234(12), 199$ (11), 170 (24); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClFO}_{3}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 308.06100$, found 308.060555 .

4-Chloro-3-0xo-2-[3-0xo-3H-isobenzofuran-(1E)-ylidene]butyric acid ethyl ester (64): $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (10 ml) of the 1,3-bis(silyl enol ether) 55b (1.85g, 6mmol) was added phthaloyl dichloride $63(0.81 \mathrm{~g}, 4 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The solution was allowed to warm to $20^{\circ} \mathrm{C}$ within 6 h and was stirred at this temperature for $6-8 \mathrm{hrs}$. To the solution was added a sat. aq solution of $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, the organic and aqueous layers were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$. The combined organic layers were purified by chromatography (silica gel, heptane/EtOAc 9: 1) to give the 64 as crystaline solid (360 $\mathrm{mg}, 36 \%), \mathrm{m} . \mathrm{p}=111-113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 4.32\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, 14.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.67-7.80(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.94(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{ArH}), 7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=14.0\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{2}\right), 62.5\left(\mathrm{OCH}_{2}\right), 113.4,125.4(\mathrm{C}), 126.2,127.0,133.4,135.7$ $(\mathrm{CH}), 137.3,154.3(\mathrm{C}), 163.1,163.4,189.9(\mathrm{C}=\mathrm{O})$; IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2919(\mathrm{~m}), 2850$ (w), 1682 (m), 1632 (m), $1460(\mathrm{~m}), 1336(\mathrm{~s}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 296\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}\right.$, 1), $294\left(\mathrm{M}^{+}, 1\right), 245$ (88), 173 (100), 104 (14), 76 (19); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{5}$ $\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 294.02895$, found 294.028548.

Ethyl 8-chloro-7-oxo-7H-benzo[a]cycloheptene-6-carboxylate
(66): $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(140 \mathrm{~mL})$ of phthalic dialdehyde $\mathbf{6 5}$ (2.0 $\mathrm{m} . \mathrm{mol}, 268 \mathrm{mg})$ and molecular sieves $(4 \AA, 1.0 \mathrm{~g})$ was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$. $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 ml) each of 1,3 -bis(silyl enol ether) 55b ($1.1 \mathrm{~m} . \mathrm{mol}, 339 \mathrm{mg}$) and of $\mathrm{TiCl}_{4}(2.2 \mathrm{~m} . \mathrm{mol}, 0.417 \mathrm{~g}, 0.24 \mathrm{ml})$ was added at $-78^{\circ} \mathrm{C}$. The temperature of reaction mixture was allowed to rise to 20 C during 12 h . After the mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$, an aqueous solution of hydrochloric acid ($100 \mathrm{ml}, 10 \%$) was added. The organic layer was separated, and aqueous layer was extracted three times with dichloromethane $(100 \mathrm{ml})$. The combined organic layers were extracted with brine, dried with $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. The filtrate was removed in vacuo. The residue was purified by column chromatography (silica gel, Heptane/EtOAc 9:1) to give 66 as crystalline solid ($257 \mathrm{mg}, 51 \%$) m.p. $=102-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.32(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, 14.3 \mathrm{~Hz}$, OCH_{2}), 7.58-7.64 (brs, $3 \mathrm{H}, \mathrm{ArH}$), $7.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 8.01(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2\left(\mathrm{CH}_{3}\right), 62.2\left(\mathrm{OCH}_{2}\right), 130.8,132.1(\mathrm{C})$, 133.1, 133.4 (C), 133.6, 134.9 (CH), 135.2 (C), 139.4 (CH), 139.9 (C), 141.4 (CH), 167.4, 177.5 (C=O); IR (neat, cm^{-1}): $\widetilde{v}=2919(\mathrm{~m}), 2850(\mathrm{w}), 1682(\mathrm{~m}), 1632(\mathrm{~m}), 1460$ (m), 1336 (s); MS (GC, 70 eV): m/z (\%): $264\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 6\right), 262\left(\mathrm{M}^{+}, 17\right), 234(45), 219$ (12), 217 (24), 189 (100), 161 (36), 126 (64); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}\left[\mathrm{M}^{+}\right.$, $\left.{ }^{35} \mathrm{Cl}\right]: 262.03912$, found 262.038666 .

4-Allylcyclohexane-1,3-dione (71a). To a THF solution (98 ml) of 1,3-cyclohexanedione $67 \mathrm{a}(5.0 \mathrm{~g}, 44.6 \mathrm{mmol}$) and of anhydrous HMPA (20 ml) was added a THF solution of LDA which was prepared from $n \mathrm{BuLi}$ (2.5 M solution in hexane, 40 $\mathrm{ml}, 98.2 \mathrm{mmol}$) and diisopropylamine at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was allowed to warm to $-40^{\circ} \mathrm{C}$ and 2-methylallyl bromide ($4.1 \mathrm{ml}, 44.6 \mathrm{mmol}$) was added rapidly. The mixture was slowly warmed to room temperature and stirred for additional 10 h at $20{ }^{\circ} \mathrm{C}$. The reaction mixture was concentrated, diluted with hydrochloric acid (5\%), and extracted with diethyl ether ($3 \times 100 \mathrm{ml}$). The organic layer was washed with hydrochloric acid (3%) and with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and
concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, heptanes/EtOAc $=1: 1$) to give 71a as a pale yellow oil $(5.90 \mathrm{~g}, 87 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.03(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 2.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.7(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.7(\mathrm{C}=\mathrm{O}), 189.5(\mathrm{C}=\mathrm{COH}), 136.2(\mathrm{C}=\mathrm{CH})$, $117.9\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, $104.3(\mathrm{CH}), 41.9(\mathrm{CH}), 34.8\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right)$. IR (neat, cm^{-1}): $\widetilde{v}=3076(\mathrm{~m}), 2934(\mathrm{w}), 2664(\mathrm{w}), 1598(\mathrm{~s}, \mathrm{br}), 1413(\mathrm{~m}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ (\%) $152[\mathrm{M}]^{+}$(13), 124 (16), 123 (27), 110 (46), 109 (24), 96 (26), 95 (52), 92 (10), 83 (42), 82 (62), 81 (33), 79 (15), 69 (22), 68 (56), 67 (100). HRMS (EI, $70 \mathrm{eV):} \mathrm{calcd}$. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: m / z=152.083669$; found: 152.08318 .
 12-Allyl-1,4,8,11-tetraoxadispiro[4.1.4.3]tetradecane (72a). A mixture of 71a ($6.08 \mathrm{~g}, 40.0 \mathrm{mmol}$), ethylene glycol ($5.0 \mathrm{ml}, 85.0$ mmol) and p-toluenesulfonic acid monohydrate $(50 \mathrm{mg}, 2.6$ mmol) in toluene (300 ml) was stirred under reflux for 4 h using Dean-Stark conditions. Approximately 1.6 ml of water was collected in the Dean-Stark trap. The toluene solution was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40$ $\mathrm{ml})$ and with brine $(60 \mathrm{ml})$. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent of the filtrate was removed in vacuo. The residue was purified by chromatography (silica gel) to give $\mathbf{6 a}(3.65 \mathrm{~g}, 18.6 \mathrm{mmol}, 90 \%)$ as a colourless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta=5.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 2.18-1.86(m, 6H, CH2 $), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right): \delta_{\mathrm{C}}=137.8$ $(\mathrm{C}=\mathrm{CH}), 116.1\left(\mathrm{C}=\mathrm{CH}_{2}\right), 110.5(\mathrm{C}), 109.3(\mathrm{C}), 65.6\left(\mathrm{OCH}_{2}\right), 65.0\left(\mathrm{OCH}_{2}\right), 64.9\left(\mathrm{OCH}_{2}\right)$, $64.2\left(\mathrm{OCH}_{2}\right), 43.8(\mathrm{CH}), 43.1\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right)$. MS $(\mathrm{GC}, 70$ $\mathrm{eV}): m / z(\%)=240\left([\mathrm{M}+1]^{+}, 1\right), 157(35), 154$ (22), 139 (15), 138 (10), 126 (26), 125 (14), 113 (5), 99 (35), 87 (12), 86 (100), 55 (11), 42 (10). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+1]^{+}: m / z=240.13561$; found: 240.13589 .

2-(1,4,8,11-Tetraoxadispiro[4.1.4.3]tetradec-12-yl)acetic

 acid (73a). To a stirred water solution (250 ml) of NaIO_{4} $(15.00 \mathrm{~g}, 196.0 \mathrm{mmol})$ and $\mathrm{KMnO}_{4}(0.63 \mathrm{~g}, 3.9 \mathrm{mmol})$ was added an acetone solution (39 ml) of $\mathbf{7 2 a}(2.30 \mathrm{~g}, 11.7 \mathrm{mmol})$. The solution was stirred at room temperature until a colour change from violet to red was observed. The solution was then extracted with EtOAc ($3 \times 100 \mathrm{ml}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was filtered and the filtrate was concentrated in vacuo to give $\mathbf{7 2 a}(1.61 \mathrm{~g}, 65 \%)$ as a light brown gummy substance which required no further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.09$ (brs, 1 H , COOH), 3.86 (m, 8H, OCH_{2}), 2.51 (dd, $\left.J=15.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.21$ (m, 1H), 2.05 (dd, $J=$ $14.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=12.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{brd}, \mathrm{d}, J=8.7$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 178.7(\mathrm{C}=\mathrm{O}), 109.7(\mathrm{C}), 109.0(\mathrm{C}), 65.5\left(\mathrm{OCH}_{2}\right), 65.4$ $\left(\mathrm{OCH}_{2}\right), 64.9\left(\mathrm{OCH}_{2}\right), 64.1\left(\mathrm{OCH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right), 40.9(\mathrm{CH}), 33.8\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 26.0$ $\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%) 258[\mathrm{M}]^{+}(2), 215$ (8), 172 (18), 157 (87), 152 (6), 144 (32), 128 (8), 113 (32), 100 (9), 99 (93), 87 (20), 86 (100), 85 (15), 83 (22). HRMS (EI, $70 \mathrm{eV})$: calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{6}[\mathrm{M}]^{+}: m / z=258.10979$; found: 258.109219 .Typical procedure for the synthesis of amides 76: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 mL) of 73a (1 equiv.) was added N-hydroxysuccinimide (1.1 equiv.) and dicyclohexylcarbodiimide (1.1 equiv.) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at the same temperature. After stirring for 12 h , the mixture was filtered, amine (1equiv.) was added to the filtrate and the mixture was stirred for 2 h . The mixture was filtered and washed for several times with water (50 mL for each washing). The organic layer was dried $\left(\mathrm{NaSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptanes/EtOAc) to give 77 .

2-(1,4,8,11-Tetraoxadispiro[4.1.4.3]tetradec-12yl)acetamide (76a). Starting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, 73a (340 $\mathrm{mg}, 1.3 \mathrm{mmol}), N$-hydroxysuccinimide $(178.4 \mathrm{mg}, 1.6 \mathrm{mmol})$, dicyclohexylcarbodiimide ($328.8 \mathrm{mg}, 1.6 \mathrm{mmol}$) and ammonia (25% aqueous solution, $0.12 \mathrm{ml}, 1.6 \mathrm{mmol}$), $76 \mathbf{a}(210 \mathrm{mg}, 62 \%)$ was isolated as a white solid, mp. $=149-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=5.81$ (brs, $\left.1 \mathrm{H}, \mathrm{NH}\right), 5.69$ (brs, 1H, NH), $3.89\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.46\left(\mathrm{dd}, J=14.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16(\mathrm{~m}, 1 \mathrm{H}$, CH), $1.98\left(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92\left(\mathrm{dd}, J=7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.77(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70\left(\mathrm{br}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53$, $\left(\mathrm{dd}, J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49$ $\left(\mathrm{dd}, J=11.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta_{\mathrm{C}}=175.4(\mathrm{NC}=\mathrm{O})$, $109.7(\mathrm{C}), 108.6(\mathrm{C}), 65.0\left(\mathrm{OCH}_{2}\right), 64.7\left(\mathrm{OCH}_{2}\right), 64.6\left(\mathrm{OCH}_{2}\right), 63.9\left(\mathrm{OCH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right)$, $40.6(\mathrm{CH}), 35.0\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{\boldsymbol{v}}=3411(\mathrm{w}), 3175(\mathrm{w})$, 2946 (w), 2966 (w), 2946 (w), 2880 (w), 1669 (s, br), 1625 (m). MS (GC, 70 eV): m/z (\%) $257\left([\mathrm{M}]^{+}, 2\right), 214$ (5), 212 (5), 199 (9), 171 (19), 157 (69), 143 (16), 127 (6), 113 (13), 99 (67), 87 (14), 86 (100). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}]^{+}: m / z=$ 257.125885; found: 257.12577 .

N-Heptyl-2-(1,4,8,11-tetraoxadispiro

[4.1.4.3]tetradec-12-yl)acetamide (76b). Starting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 73 \mathrm{a}(200 \mathrm{mg}, 0.8 \mathrm{mmol}), \mathrm{N}-$ hydroxysuccinimide $(97 \mathrm{mg}, 0.9 \mathrm{mmol})$, dicyclohexylcarbodiimide $(175 \mathrm{mg}, 0.9 \mathrm{mmol})$ and n heptylamine $(0.1 \mathrm{ml}, 0.8 \mathrm{mmol}), 76 \mathrm{~b}(153 \mathrm{mg}, 57 \%)$ was isolated as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=5.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.80-3.96\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.11(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.1.9, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.38\left(\mathrm{dd}, 1 \mathrm{H}, J=4.4, J=14.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.13-2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.67-1.97 (m, 6H, CH2 $), 1.38-1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.20\left(\mathrm{br}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 0.80(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta=172.2(\mathrm{C}=\mathrm{O}), 109.8(\mathrm{C}-\mathrm{O}), 108.7(\mathrm{C}-\mathrm{O})$, $65.0\left(\mathrm{CH}_{2}\right), 64.6\left(2 \mathrm{C}, \mathrm{CH}_{2}\right), 63.8\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 40.7(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right)$, $31.6\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0$ $\left(\mathrm{CH}_{3}\right)$. IR (neat, cm^{-1}): $\widetilde{v}=3268$ (m), 2924 (s), 1626 (br), 1549 (br) 947 (s). MS (GC, 70 $\mathrm{eV}): m / z(\%)=355\left(\mathrm{M}^{+}, 3\right), 310(17), 296(9), 199(10), 157(100), 113(19), 99(58), 86$
(116), 55 (21). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{~N}\left[\mathrm{M}^{+}\right]: m / z=355.23532$; found: 355.23558 .

N-Isobutyl-2-(1,4,8,11-tetraoxadispiro[4.1.4.3]tetradec-12-yl)acetamide (76c). Starting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, 73a ($200 \mathrm{mg}, 0.8 \mathrm{mmol}$), N-hydroxysuccinimide (97.0 $\mathrm{mg}, 0.9 \mathrm{mmol}$), dicyclohexylcarbodiimide ($175.0 \mathrm{mg}, 0.9$ mmol) and isopropylamine ($0.08 \mathrm{ml}, 0.8 \mathrm{mmol}$), 76c (170 $\mathrm{mg}, 76 \%$) was isolated as a white solid. Although a small amount of impurity could not be removed, the product was used for the next reaction.

N-Cyclopropyl-2-(1,4,8,11-tetraoxadispiro
[4.1.4.3]tetradec-12-yl)acetamide (76d). Starting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 73 \mathrm{a}(200 \mathrm{mg}, 0.8 \mathrm{mmol}), \mathrm{N}$ hydroxysuccinimide ($106 \mathrm{mg}, \quad 0.9 \mathrm{mmol})$, dicyclohexylcarbodiimide ($195 \mathrm{mg}, 0.9 \mathrm{mmol}$) and cyclopropylamine ($0.1 \mathrm{ml}, 0.9 \mathrm{mmol}$), 76d ($150 \mathrm{mg}, 65 \%$) was isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=6.08$ (br, $1 \mathrm{H}, \mathrm{NH}$), $3.92\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.64\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.39(\mathrm{dd}, J=$ $14.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.95\left(\mathrm{dd}, J=14.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.83(\mathrm{dd}$, $\left.J=14.5,8.8,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66\left(\mathrm{~d}, J=14.0,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 0.67$ (ddd, $\left.J=12.3,5.1,1.9,2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9\right.$ $\mathrm{MHz}): \delta_{\mathrm{C}}=174.2(\mathrm{C}=\mathrm{O}), 109.7(\mathrm{C}), 108.6(\mathrm{C}), 64.9\left(\mathrm{OCH}_{2}\right), 64.6\left(\mathrm{OCH}_{2}\right), 63.8\left(\mathrm{OCH}_{2}\right)$, $63.7\left(\mathrm{OCH}_{2}\right), 42.2\left(\mathrm{NCH}_{2}\right), 40.6(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right)$, $22.5(\mathrm{CH}), 6.51\left(\mathrm{CH}_{2}\right), 6.44\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3338(\mathrm{w}), 2944(\mathrm{w}), 2925(\mathrm{w})$, 2892 (w), 1720 (s), 1640 (s, br), 11517 (s, br). MS (EI, 70 eV): m/z (\%) 297 (M+, 5), 252 (14), 241 (35), 213 (54), 211 (14), 199 (9), 195 (11), 157 (85), 151 (17) 127 (9), 113 (99), 99 (100), 97 (11), 87 (28), 86 (91), 83 (15). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5}$ $\left[\mathrm{M}^{+}\right]: m / z=297.157256$; found: 297.15707.

N-Cyclopentyl-2-(7-oxo-1,4-dioxaspiro[4.5]dec-8-yl) acetamide (mono-76e). Starting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, mono-73a (monoacetal, $200 \mathrm{mg}, 0.8 \mathrm{mmol}$), N hydroxysuccinimide $(97 \mathrm{mg}, 0.9 \mathrm{mmol})$, dicyclohexylcarbodiimide $(175 \mathrm{mg}, 0.9 \mathrm{mmol})$ and cyclopentylamine $(0.1 \mathrm{ml}, 0.8 \mathrm{mmol})$, mono-76e ($180 \mathrm{mg}, 86 \%$) was isolated as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta$ $5.52(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{NH}), 4.13(\mathrm{q}, 1 \mathrm{H}, J=6.9, J=13.7 \mathrm{~Hz}, \mathrm{CH}), 3.83-3.97(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.43-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28-2.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.83-2.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52-1.63$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.18-1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta 207.1(\mathrm{C}=\mathrm{O})$, $171.2(\mathrm{C}=\mathrm{O}), 110.6(\mathrm{C}), 65.2\left(\mathrm{CH}_{2}\right), 64.7\left(\mathrm{CH}_{2}\right), 51.2(\mathrm{C}), 50.6\left(\mathrm{CH}_{2}\right), 40.6(\mathrm{CH}), 39.7$ $\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 33.1\left(2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 23.6\left(2 \mathrm{C}, \mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3260$ (m), 2930 (s), 1620 (br), 1552 (br) 942 (s). MS (GC, 70 eV): $m / z(\%)=281\left(\mathrm{M}^{+}, 3\right), 236$ (19), 224 (16), 169 (18), 128 (100), 113 (24), 99 (16), 86 (35), 55 (31). HRMS (EI, 70 $\mathrm{eV})$: calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}\left[\mathrm{M}^{+}\right]: m / z=281.16216$; found: 281.162100 .

N-Cyclohexyl-2-(1,4,8,11-tetraoxadispiro[4.1.4.3] tetradec-12-yl)acetamide (76f). Starting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL}), \quad 73 \mathrm{a} \quad(200 \mathrm{mg}, \quad 0.8 \mathrm{mmol}), \quad \mathrm{N}$ hydroxysuccinimide (106 mg, 0.9 mmol$)$, dicyclohexylcarbodiimide $(195 \mathrm{mg}, 0.9 \mathrm{mmol})$ and cyclohexylamine $(0.1 \mathrm{ml}, 0.9 \mathrm{mmol})$, $76 f(120 \mathrm{mg}, 46 \%)$ was isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=5.45$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.92\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.71(\mathrm{dd}, J=14.3,4.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.18\left(\mathrm{dd}, J=14.0,2.5,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.88-1.05(\mathrm{~m}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta_{\mathrm{C}}=171.3(\mathrm{C}=\mathrm{O}), 109.8(\mathrm{C}), 108.7(\mathrm{C}), 65.0$ $\left(\mathrm{OCH}_{2}\right), 64.6\left(\mathrm{OCH}_{2}\right), 64.6\left(\mathrm{OCH}_{2}\right), 63.9\left(\mathrm{OCH}_{2}\right), 48.0(\mathrm{NCH}), 42.3\left(\mathrm{CH}_{2}\right), 40.7(\mathrm{CH})$, $36.0\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $\widetilde{v}=3325(\mathrm{w}), 2930(\mathrm{w}), 2861$ (w), 1731 (w), 1636 (s, br), 1531 (s). MS (EI, 70 eV): m/z $(\%)=339\left(\mathrm{M}^{+}, 9\right), 294(44), 256(12), 253(14), 213(21), 199(16), 195(14), 158(11)$, 157 (100) 153 (10), 141 (25), 128 (10), 127 (14), 125 (10), 113 (52), 112 (10), 111 (14), 102 (11), 99 (87), 86 (97). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{5}\left[\mathrm{M}^{+}\right]: m / z=$ 339.204629; found: 339.20402.
 tetraoxadispiro[4.1.4.3]tetradec-12-yl)acetamide Starting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 73 \mathrm{a}$ ($200 \mathrm{mg}, 0.8 \mathrm{mmol}$), $N-$ hydroxysuccinimide $\quad(97 \quad \mathrm{mg}, \quad 0.9 \mathrm{mmol})$, dicyclohexylcarbodiimide ($175 \mathrm{mg}, 0.9 \mathrm{mmol}$) and 4chlorobenzylamine ($0.1 \mathrm{ml}, 0.8 \mathrm{mmol}$), $76 \mathbf{i}(170 \mathrm{mg}, 79 \%)$ was isolated as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=7.20$ (d, 2H, $J=8.5 \mathrm{~Hz}, \mathrm{ArH}$), 8.67 (d, 2H, $J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), 6.03 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.31$ (q, 2H, J $\left.=1.9, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.70-3.90\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.44-2.62(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.10-2.27 (m, 1H, CH2 $), 1.89-2.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67-1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-$ $1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.21\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta=$ $172.6(\mathrm{C}=\mathrm{O})$, $133.2(\mathrm{C}), 129.1(2 \mathrm{CH}), 128.7(2 \mathrm{CH}), 109.7(\mathrm{C}), 108.69(\mathrm{C}), 65.0\left(\mathrm{CH}_{2}\right)$, $64.6\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 63.9\left(\mathrm{CH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right), 40.6(\mathrm{CH}), 35.8$ $\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3268(\mathrm{~m}), 2924(\mathrm{~s}), 1626(\mathrm{br}), 1549$ (br) 947 (s). MS (EI, 70 eV): $m / z(\%)=383\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 15\right) 381\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 51\right), 336$ (25), 295 (13), 267 (15), 213 (45), 157 (100), 125 (72), 86 (99). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{NCl}\left[\mathrm{M}^{+}\right]: m / z=381.13460$; found: 381.134472.

General procedure for the synthesis of 77: An acetone solution of amide 76 and of a catalytic amount of p-toluenesulfonic acid (PTSA) was heated under reflux for 6 h . The solution was cooled to $20^{\circ} \mathrm{C}$ and concentrated in vacuo to give a solid residue which was purified by column chromatography (silica gel, heptanes/EtOAc).

3,3a,4,5-Tetrahydro-1 \boldsymbol{H}-indole-2,6-dione (77a). Starting with 76a (70 $\mathrm{mg}, 0.27 \mathrm{mmol}$), PTSA ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) and dry acetone (40 mL), $77 \mathbf{a}$ was isolated ($31 \mathrm{mg}, 90 \%$) as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250\right.$ $\mathrm{MHz}): \delta=9.05(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.14(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 2.66\left(\mathrm{dd}, J=17.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.49(\mathrm{ddd}, J=17.3,6.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $2.38\left(\mathrm{dd}, J=13.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.26\left(\mathrm{dd}, J=17.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.24(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 1.77 (ddd, $\left.J=27.3,14.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta_{\mathrm{C}}$ $=197.8(\mathrm{C}=\mathrm{O}), 177.0(\mathrm{NC}=\mathrm{O}), 165.3(\mathrm{NC}=\mathrm{C}), 103.1(\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right), 36.2(\mathrm{CH}), 35.4$ $\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right)$. IR (neat, cm^{-1}): $\widetilde{\boldsymbol{v}}=3098$ (w), 2991 (w), 2950 (w), 2799 (w), 1746 (s, br), 1574 (a, br). MS (GC, 70 eV): $m / z(\%)=151\left([\mathrm{M}]^{+}, 51\right), 124$ (7), 123 (100), 122 (7), 95 (35), 68 (16), 67 (21). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}]^{+}: m / z=151.063012$; found: 151.06278 .

1-Heptyl-3,3a,4,5-tetrahydro-1 H-indole-2,6-dione (77b). Starting with 76b ($150 \mathrm{mg}, 0.4 \mathrm{mmol}$), PTSA ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) and dry acetone (40 mL), 77b was isolated ($67 \mathrm{mg}, 64 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 250 \mathrm{MHz}$): $\delta=5.41(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH})$, 3.25-3.63 (m, 2H, CH 2), 2.94-3.09 (m, 1H, CH), 2.10-2.76 (m, 6H, CH ${ }_{2}$), $1.21(\mathrm{~m}, 10 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 0.80\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta=197.0(\mathrm{C}=\mathrm{O})$, $175.3(\mathrm{C}=\mathrm{O}), 166.2(\mathrm{C}), 101.9(\mathrm{CH}), 40.4\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 34.9\left(\mathrm{CH}_{2}\right), 34.7(\mathrm{CH}), 31.6$ $\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 26.7\left(2 \mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=$ 2926 (m), 1739 (m), 1608 (br). MS (GC, 70 eV): $m / z(\%)=249\left(\mathrm{M}^{+}, 72\right), 220(43), 206$ (18), 192 (79), 178 (32), 165 (100), 150 (56), 137 (53), 108 (36). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}\right]: m / z=249.17233$; found: 249.172014.

1-Isobutyl-3,3a,4,5-tetrahydro-1H-indole-2,6-dione (77c). Starting with 76c $(150 \mathrm{mg}, 0.5 \mathrm{mmol})$, PTSA ($5 \mathrm{mg}, 0.02 \mathrm{mmol})$ and dry acetone $(40 \mathrm{~mL}), 77 \mathrm{c}$ was isolated $(80 \mathrm{mg}, 81 \%)$ as a highly viscous yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=5.43(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{CH}), 3.34-3.43\left(\mathrm{dd}, 1 \mathrm{H}, J=8.3,13.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.96-3.17(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.68\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.34-2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.18-2.29 (m, 2H, CH2 $), 1.89-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.83\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta=197.2(\mathrm{C}=\mathrm{O}), 175.6(\mathrm{C}=\mathrm{O}), 166.6(\mathrm{C}), 102.2(\mathrm{CH}), 47.6\left(\mathrm{CH}_{2}\right)$, $37.4\left(\mathrm{CH}_{2}\right), 34.9(\mathrm{CH} 2), 34.7(\mathrm{CH}), 28.0\left(\mathrm{CH}_{2}\right), 26.4(\mathrm{CH}) 20.1\left(2 \mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $\widetilde{v}=2957(\mathrm{~m}), 1735(\mathrm{~m}), 1597(\mathrm{br}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%)=207\left(\mathrm{M}^{+}, 37\right), 179(22)$, 152 (100), 136 (47), 123 (30), 108 (35). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}\right]$: $m / z=207.12538 ;$ found: 207.125713

1-Cyclopropyl-3,3a,4,5-tetrahydro-1H-indole-2,6-dione
(77d).
Starting with $76 \mathbf{d}$ ($120 \mathrm{mg}, 0.3 \mathrm{mmol}$), PTSA ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) and dry acetone (40 mL), 77d was isolated ($40 \mathrm{mg}, 51 \%$) as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=5.72(\mathrm{~d}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}$, $1 \mathrm{H}), 2.57$ (ddd, 1H), 2.39 (dd, 1H), 2.35 (dd, 1H), 2.23 (dd, 1H), 2.20 $(\mathrm{m}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, 1 \mathrm{H}), 1.02(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~m}, 2 \mathrm{H}), 0.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 62.9 MHz): $\delta_{\mathrm{C}}=198.2(\mathrm{C}=\mathrm{O}), 1759(\mathrm{NC}=\mathrm{O}), 168.1(\mathrm{NC}=\mathrm{C}), 103.2(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right)$, $35.5\left(\mathrm{CH}_{2}\right), 34.1(\mathrm{CH}), 28.1\left(\mathrm{CH}_{2}\right), 22.5(\mathrm{NCH}), 6.9\left(\mathrm{CH}_{2}\right), 5.1\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{\boldsymbol{v}}$ $=2945$ (m), 2862 (s), 1702 (br), 1589 (br), 1413 (m), 1196 (br). MS (GC, 70 eV): m/z (\%) $191\left(\mathrm{M}^{+}, 78\right), 163$ (28), 162 (7), 149 (12), 136 (10), 135 (100), 134 (74), 121 (31), 120 (40), 108 (23), 107 (84), 106 (65), 81 (11), 80 (19). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]: m / z=191.093697$; found: 191.09408 .

Synthesis of 1-cyclopentyl-3,3a,4,5-tetrahydro-1H-indole-2,6-dione
(77e). Starting with mono-76e (150 mg, 0.5 mmol$)$, PTSA ($5 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ and dry acetone $(40 \mathrm{~mL})$, 77 e was isolated $(100 \mathrm{mg}, 91 \%)$ as white crystals. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=5.47(\mathrm{~d}, 1 \mathrm{H}, J=1.7$ $\mathrm{Hz}, \mathrm{C}=\mathrm{CH}), 4.46\left(\mathrm{q}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.89-3.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.63$ $\left(\mathrm{d}, 1 \mathrm{H}, J=8.82,17.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.48-2.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31-2.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.15-$ $2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70-1.89\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta=197.3(\mathrm{C}=\mathrm{O}), 175.5(\mathrm{C}), 165.3(\mathrm{C}=\mathrm{O}), 103.4(\mathrm{CH})$, $53.0(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 34.6(\mathrm{CH}), 27.9\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 25.1$ $\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2953(\mathrm{~m}), 1731(\mathrm{~m}), 1638(\mathrm{~m}), 1595(\mathrm{br}) . \mathrm{MS}$ $(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%)=219\left(\mathrm{M}^{+}, 20\right), 191(6), 152(100), 123$ (5). HRMS (EI, 70 eV$)$: calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}\right]: m / z=219.12538$; found: 219.125710 .

1-Cyclohexyl-3,3a,4,5-tetrahydro-1H-indole-2,6-dione (77f).
Starting with $76 \mathbf{f}(100 \mathrm{mg}, 0.3 \mathrm{mmol})$, PTSA ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) and dry acetone (40 mL), 77 f was isolated $(50 \mathrm{mg}, 73 \%)$ as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=5.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.83(\mathrm{tt}$, $J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.68(\mathrm{dd}, J=17.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.52 (ddd, $\left.J=17.3,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33(\mathrm{dd}, J=$ $\left.13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.21\left(\mathrm{dd}, J=17.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.28-1.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta_{\mathrm{C}}=197.3(\mathrm{C}=\mathrm{O}), 1753(\mathrm{NC}=\mathrm{O}), 165.8(\mathrm{NC}=\mathrm{C}), 103.5(\mathrm{CH}), 53.4$ $(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 34.8(\mathrm{CH}), 29.0\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.7$ $\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{\boldsymbol{v}}=2921(\mathrm{w}), 2850(\mathrm{w}), 1730(\mathrm{~s}), 1586(\mathrm{~s}, \mathrm{br}), 1387$ (m). MS (GC, 70 eV$): m / z(\%)=233\left(\mathrm{M}^{+}, 19\right), 205(9), 177(12), 176$ (17), 152 (100), 123 (41), 98 (9), 95 (8). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]: m / z=$ 233.140814; found: 233.14103.

1-(4-Chlorobenzyl)-3,3a,4,5-tetrahydro-1 \mathbf{H}-indole-2,6-dione
(77i).
Starting with $76 \mathbf{i}(200 \mathrm{mg}, 0.5 \mathrm{mmol})$, PTSA ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) and dry acetone (40 mL), $77 \mathbf{i}$ was isolated ($102 \mathrm{mg}, 71 \%$) as highly viscous brownish oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=7.19(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, ArH), 7.08 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), $5.43(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH})$, 4.42-4.7 (m, 2H, CH2), 2.96-3.10 (m, 1H, CH), 2.46-2.82 (m, 2H, CH ${ }_{2}$), 2.17-2.36 (m, 2H, CH2 $)$, 1.65-1.98 (m, 2H, CH CH_{2}. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 62.9 MHz): $\delta=197.0$ (C=O), 175.3 (C=O), 165.4 (C), 133.9 (C), 133.6 (C), 129.1 $(4 \mathrm{CH}), 102.7(\mathrm{CH}), 43.3\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 34.8(\mathrm{CH} 2), 34.8(\mathrm{CH}), 27.9\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2934(\mathrm{~m}), 2908(\mathrm{~m}), 1731(\mathrm{~m}), 1606(\mathrm{br}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%)=277$ ($\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 17$), 275 ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 50$), 247 (37), 218 (11), 125 (100), 89 (16). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NCl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: m / z=275.07076$; found: 275.070624 .

References:

(1) Review: For a review of 1,3-bis(silyloxy)-1,3-butadienes, see: Langer, P. Synthesis 2002, 441.
(2) Review: Langer, P. Synlett 2006, 3369.
(3) Review: Feist, H.; Langer, P. Synthesis 2007, 327.
(4) Review: Bellur, E.; Feist, H.; Langer, P. Tetrahedron 2007, 63, 10865.
(5) Review: Langer, P. Eur. J. Org. Chem. 2007, 2233.
(6) Review: Langer, P. Synlett 2007, 1016.
(7) (a) Chan, T.-H.; Stössel, D. J. Org. Chem. 1988, 53, 4901. (b) Chan, T.-H.; Stössel, D. J. Org. Chem. 1986, 51, 2423.
(8) Freifeld, I.; Bose, G.; Eckardt, T.; Langer, P. Eur. J. Org. Chem. 2007, 351.
(9) Appel, B.; Rotzoll, S.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 3638.
(10) CCDC-xxx contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; Fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
(11) Cynandiones A-C : (a) Lin, Y.-L.; Wu, Y.-M.; Kuo, Y.-H. Phytochemistry 1997, 45, 1057. (b) Huang, P.-L.; Won, S.-J.; Day, S.-H.; Lin, C.-N. Helv. Chim. Acta 1999, 82, 1716. (c) Lin, Y.-L.; Lin, T.-C.; Kuo, Y.-H. J. Nat. Prod. 1997, 60, 368. (d) Buchanan, M. S.; Gill, M.; Yu, J. J. Chem. Soc., Perkin Trans. 1 1997, 919.
(12) Knipholone: (a) van Staden, L. F.; Drewes, S. E. Phytochemistry 1994, 35, 685. 6'-O-Methylknipholone: (b) Bezabih, M.; Motlhagodi, S.; Abegaz, B. M. Phytochemistry 1997, 46, 1063. (+)-Asphodelin: (c) Adinolfi, M.; Lanzetta, R.; Marciano, C. E.; Parrilli, M.; De Giulio, A. Tetrahedron 1991, 47, 4435.
(13) Secalonic acid A: (a) Pettit, G. R.; Meng, Y.; Herald, D. L.; Graham, K. A. N.; Pettit, R. K.; Doubek, D. L. J. Nat. Prod. 2003, 66, 1065. Globulixanthone E: (b) Nkengfack, A. E.; Mkounga, P.; Meyer, M.; Fomum, Z. T.; Bodo, B. Phytochemistry 2002, 61, 181.
(14) 2,3-Dihydroamentoflavone: (a) Das, B.; Mahender, G.; Rao, Y. K.; Prabhakar, A.; Jagadeesh, B. Chem. Pharm. Bull. 2005, 53, 135. Bartramiaflavone: (b) Basile, A.; Sorbo, S.; Lopez-Saez, J. A.; Cobianchi, R. C. Phytochemistry 2003, 62, 1145. Robustaflavone: (c) Chen, J.-J.; Duh, C.-Y.; Chen, J.-F. Planta Med. 2005, 71, 659. Dichamanetin: (d) Anam, E. M.; Ekpa, O. D.; Gariboldi, P. V.; Morah, F. N. I.; Dosunmu, M. I. Indian J. Chem. Sect. B 1993, 32, 1051. (e) Dasgupta, Binayak; Burke, Basil A.; Stuart, Kenneth L. Phytochemistry 1981, 20, 153. (f) Zeng, G.-Z.; Tan, N.-H.; Hao, X.-J.; Mu, Q.-Z.; Li, R.-T. Bioorg. Med. Chem. Lett. 2006, 16, 6178. (g) Zeng, G.-Z.; Pan, X.-L.; Tan, N.-H.; Xiong, J.; Zhang, Y.-M. Eur. J. Med. Chem. Chim. Ther. 2006, 41, 1247.
(15) Anastatin A.; Yoshikawa, M.; Xu, F.; Morikawa, T.; Ninomiya, K.; Matsuda, H. Bioorg. Med. Chem. Lett. 2003, 13, 1045.
(16) Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim 2004.
(17) (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534. (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688.
(18) Review of [3+3] cyclizations: Feist, H.; Langer, P. Synthesis 2007, 327.
(19) Review of 1,3-bis(trimethylsilyloxy)-1,3-dienes: Langer, P. Synthesis 2002, 441.
(20) Sher, M.; Ahmed, Z.; Rashid, M. A.; Fischer, C.; Langer, P. J. Org. Chem. 2007, 72, 6284.
(21) CCDC-xxx (5b) and CCDC-665870 (5c) contain all crystallographic details of this publication which are available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GBCambridge CB21EZ; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk.
(22) Bose, G.; Nguyen, V. T. H.; Ullah, E.; Lahiri, S.; Görls, H.; Langer, P. J. Org. Chem. 2004, 69, 9128.
(23) Langer, P.; Appel, B. Tetrahedron Lett. 2003, 5133.
(24) Appel, B.; Rotzoll, S.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 3638.
(25) a) Talapatra, S. K.; Bose, S.; Mallik, Asok K.; Talapatra, B. Tetrahedron 1985, 41, 2765; b) Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1987, 2553; c) Fan, C.; Wang, W.; Wang, Y.; Qin, G.; Zhao, W. Phytochemistry 2001, 57, 1255; d) Wu, X. Y.; Qin, G. W.; Fan, D. J.; Xu, R. S. Phytochemistry 1994, 36, 477.
(26) Campo, M. A.; Larock, R. C. J. Org. Chem. 2002, 67, 5616, and references cited therein.
(27) Tierney, M. T.; Grinstaff, M. W. J. Org. Chem. 2000, 65, 5355.
(28) Perry, P. J.; Read, M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A. P.; Wood, A. A.; Kelland, L. R.; Neidle, S. J. Med. Chem. 1999, 42, 2679.
(29) Gould, S. J.; Melville, C. R.; Cone, M. C.; Chen, J.; Carney, J. R. J. Org. Chem. 1997, 62, 320.
(30) Tilly, D.; Samanta, S. S.; Faigl, F.; Mortier, J. Tetrahedron Lett. 2002, 43, 8347.
(31) Underwood, H. W.; Kochmann, E. L. J. Am. Chem. Soc. 1924, 46, 2073; b) Lemal, D. M.; Gosselink, E. P.; McGregor, S. D. J. Am. Chem. Soc. 1966, 88, 582; c) Bandyopadhyay, T. K.; Bhattacharya, A. J. Indian J. Chem. Sect. B 1980, 19, 439; d) Kym, P. R.; Hummert, K. L.; Nilsson, A. G.; Lubin, M.; Katzenellenbogen, J. A. J. Med. Chem. 1996, 39, 4897; e) Gruber, J.; Li, R. W. C.; Aguiar, L. H.; Benvenho, J. M. C.; Adriano R. V.; Lessmann, R.; Huemmelgen, I. A. J. Mater. Chem. 2005, 15, 517; F) Olah, G. A.; Mathew, T.; Farnia, M.; Prakash, S. Synlett 1999, 1067.
(32) Danheiser, L. R.; Gould, E. A.; Pradilla, F. R.; Helgason, L. A. J. Org. Chem. 1994, 59, 5514.
(33) a) Murahashi, S.-I.; Komiya, N.; Oda, Y.; Kuwabara, T.; Naota, T. J. Org. Chem. 2000, 65, 9186; b) Lippert, E.; Walter, H. Angew. Chem. 1959, 71, 429.
(34) Fu, J.-m.; Zhao, B.-p.; Sharp, M. J.; Snieckus, V. J. Org. Chem. 1991, 56, 1683.
(35) Yu, Z.; Velasco, D. Tetrahedron Lett. 1999, 40, 3229.
(36) Ciske, F. L.; Jones Jr., W. D. Synthesis 1998, 1195.
(37) Schmidt, J. M.; Tremblay, G. B.; Page, M.; Mercure, J.; Feher, M.; Dunn-Dufault, R.; Peter, M. G.; Redden, P. R. J. Med. Chem. 2003, 46, 1289.
(38) a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534; b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688.
(39) For a review of 1,3-bis(silyl enol ethers), see: Langer, P. Synthesis 2002, 441.
(40) For a review of [3+3] cyclizations, see: Feist, H.; Langer, P. Synthesis 2007, 327.
(41) Reim, S.; Lau, M.; Langer, P. Tetrahedron Lett. 2006, 47, 6903.
(42) An isolated example of this method has been previously reported by Chan: see ref. 14a. During the synthesis of chlorinated and fluorinated arenes, we have recently reported the synthesis of fluorenones: a) Hussain, I.; Yawer, M. A.; Lau, M.; Pundt, T.; Fischer, C.; Reinke, H.; Görls, H.; Langer, P. Eur. J. Org. Chem. 2008, 503; b) Yawer, M. A.; Hussain, I.; Reim, S.; Ahmed, Z.; Ullah, E.; Iqbal, I.; Fischer, C.; Reinke, H.; Görls, H.; Langer, P. Tetrahedron 2007, 63, 12562.
(a) Fluorine in Bioorganic Chemistry, Filler, R.; Kobayasi, Y.; Yagupolskii, L. M., eds., Elsevier: Amsterdam, 1993. (b) Filler, R. Fluorine Containing Drugs in Organofluorine Chemicals and their Industrial Application; Pergamon: New York, 1979, chapter 6. (c) Hudlicky, M. Chemistry of Organic Compounds; Ellis Horwood: Chichester, 1992. (d) Kirsch, P. Modern Fluoroorganic Chemistry, VCH, Weinheim, 2004. (e) Chambers, R. D. Fluorine in Organic Chemistry, Blackwell Publishing CRC Press, 2004. See also: (f) Ryckmanns, T.; Balancon, L.; Berton, O.; Genicot, C.; Lamberty, Y.; Lallemand, B.; Passau, P.; Pirlot, N.; Quéré, L.; Talaga, P. Bioorg. Med. Chem. Lett. 2002, 12, 261. (e) Malamas, M. S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; McDevitt, R.; Adebayo, F. O.; Sawicki, D. R.; Seestaller, L.; Sullivan, D.; Taylor, J. R. J. Med. Chem. 2000, 43, 1293. (f) Ciha, A. J.; Ruminski, P. G. J. Agric. Food Chem. 1991, 39, 2072. (g) Albrecht, H. A.; Beskid, G.; Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.; Pruess, D. L.; Rossman, P. L.; Wei, C. C.; Christenson, J. G. J. Med. Chem. 1991, 34, 2857. (h) Albrecht, H. A.; Beskid, G.; Christenson, J. G.; Deitcher, K. H.; Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.; Pruess, D. L.; Wie, C. C. J. Med. Chem. 1994, 37, 400. (i) Song, C. W.; Lee, K. Y.; Kim, C. D.; Chang, T-M.; Chey, W. Y. J. Pharmacol. Exp. Ther. 1997, 281, 1312. (j) De Voss, J. J.; Sui, Z.; DeCamp, D. L.; Salto, R.; Babe, L. M.; Craik, C.
S.; Ortiz de Montellano, P. R. J. Med. Chem. 1994, 37, 665. (k) Anjaiah, S.; Chandrasekhar, S.; Gree, R. Adv. Synth. Catal. 2004, 346, 1329. (1) Iorio, M. A.; Paszkowska, R. T.; Frigeni, V. J. Med. Chem. 1987, 30, 1906. (m) Popp, J. L.; Musza, L. L.; Barrow, C. J.; Rudewicz, P. J.; Houck, D. R. J. Antibiot. 1994, 47, 411. (n) Chen, T. S.; Petuch, B.; MacConnell, J.; White, R.; Dezeny, G. J. Antibiot. 1994, 47, 1290. (o) Lam, K. S.; Schroeder, D. R.; Veitch, J. M. J. M.; Colson, K. L.; Matson, J. A.; Rose, W. C.; Doyle, T. W.; Forenza, S. J. Antibiot. 2001, 54, 1.
(a) Schmidbaur, H.; Kumberger, O. Chem. Ber. 1993, 126, 3. (b) Dinger, M. B.; Henderson, W. J. Organomet. Chem. 1998, 560, 233. (c) Liedtke, J.; Loss, S.; Widauer, C.; Grützmacher, H. Tetrahedron 2000, 56, 143.

See for example: (a) Schneider, S.; Tzschucke, C. C.; Bannwarth, W. Multiphase Homogeneous Catalysis (Cornils, B.; Herrmann, W. A.; Horvath, I. T.; Leitner, W.; Mecking, S.; Olivier-Booubigou, H.; Vogt, D., ed.), Wiley VCH, 2005, Chapter 4, p. 346. (b) Clarke, D.; Ali, M. A.; Clifford, A. A.; Parratt, A.; Rose, P.; Schwinn, D.; Bannwarth, W.; Rayner, C. M. Current Topics in Medicinal Chemistry 2004, 7, 729.
(46) Reviews: (a) Wittkopp, A.; Schreiner, P. R. The chemistry of diens and polyenes, Vol. 2; John Wiley \& Sons Ltd, 2000. (b) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. See also: (c) Wittkopp, A.; Schreiner, P. R. Chem. Eur. J. 2003, 9, 407. (d) Kleiner, C. M.; Schreiner, P. R. Chem. Commun. 2006, 4315. (e) Kotke, M.; Schreiner, P. R. Synthesis 2007, 5, 779. Review: Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
(47) Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim 2004.
(a) Shi, G.-q.; Cottens, S.; Shiba, S. A.; Schlosser, M. A. Tetrahedron 1992, 48, 10569. (b) Shi, G.-q.; Schlosser, M. Tetrahedron 1993, 49, 1445. (c) Patrick, T. B.; Rogers, J.; Gorrell, K. Org. Lett. 2002, 4, 3155.
(49) Lefebvre, O.; Brigaud, T.; Portella, C. Tetrahedron 1998, 54, 5939.
(50) For a review of 1,3-bis(silyl enol ethers), see: Langer, P. Synthesis 2002, 441.
(51) Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem. Commun. 1979, 578.
(52) For a review of [3+3] cyclizations, see: Feist, H.; Langer, P. Synthesis 2007, 327.
(53) For [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-dienes with 2-fluoro-3-silyloxy-2-en-1 ones, see: Hussain, I.; Yawer, M. A.; Lau, M.; Pundt, T.; Fischer, C.; Reinke, H.; Görls, H.; Langer, P. Eur. J. Org. Chem. 2008, 503.
(54) Langer, P.; Stoll, M.; Schneider, S. Chem. Eur. J. 2000, 6, 3204.
(a) Bellur, E.; Görls, H.; Langer, P. Eur. J. Org. Chem. 2005, 2074. See also: (b) Langer, P.; Krummel, T. Chem. Eur. J. 2001, 7, 1720.
(56) Bellur, E., Langer, P. J. Org. Chem. 2005, 70, 10017.
(57) Langer, P.; Ambrust, H, Eckardt, T, Magull, J. Chem. Eur. J. 2002, 6, 1446.
(58) Albrecht, U.; Nguyen, V. T. H.; Langer, P. Synthesis 2006, 1111.
(59) For pharmacologically active chlorinated natural products and drugs: Griseofulvin: (a) Osborne, C. S.; Leitner, I.; Hofbauer, B.; Fielding, C. A.; Favre, B.; Ryder, N. S. Antimicrob. Agents Chemother 2006, 50, 2234. (b) Takano, R.; Sugano, K.; Higashida, A.; Hayashi, Y.; Machida, M.; Aso, Y.; Yamashita, S. Pharm. Res. 2006, 23, 1144. (c) Xue, C.; Li, T.; Deng, Z.; Fu, H.; Lin, W. Pharmazie 2006, 61, 1041. (d) Phelps, J. B.; Hoffman, W. P.; Lee, C.; Murphy, G. P.; Garriott, M. L. Mutat. Res. 2004, 561, 153. (e) Rosefort, C.; Fauth, E.; Zankl, H. Mutagenesis 2004, 19, 277. (f) Kinobe, R. T.; Dercho, R. A.; Vlahakis, J. Z.; Brien, J. F.; Szarek, W. A.; Nakatsu, K. J. Pharmacol. Exp. Ther. 2006, 319, 277. (g) Albaugh, D.; Albert, G.; Bradford, P.; Cotter, V.; Froyd, J. J. Antibiot. 1998, 51, 317. Dihydronidulin: Finlay-Jones, P. F.; Sala, T.; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1981, 874.
(60) For an example from our laboratory, see: (a) Albrecht, U.; Lalk, M.; Langer, P. Bioorg. Med. Chem. 2005, 13, 1531. (b) Nguyen, V. D.; Wolf, C.; Mäder, U.; Lalk, M.; Langer, P.; Lindequist, U.; Hecker, M.; Antelmann, H. Proteomics 2007, 7, 1391.
(61) Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim 2004.
(62) Corral, C.; Lissavetzky, J.; Manzanares, I. Synthesis 1997, 29.
(63) For a review of 1,3-bis(silyl enol ethers), see: Langer, P. Synthesis 2002, 441.
(64) Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem. Commun. 1979, 578.
(65) For a review of [3+3] cyclizations, see: Feist, H.; Langer, P. Synthesis 2007, 327.
(66) For the synthesis and reactions of 4-chloro-1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene, see: (a) Reim, S.; Langer, P. Tetrahedron Lett. 2008, 49, 2329. For an isolated example of a 2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadiene, see: (b) Savard, J.; Brassard, P. Tetrahedron Lett. 1979, 20, 4911. For [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-dienes with 2-chloro-3-silyloxy-2-en-1-ones, see: (c) Yawer, M. A.; Hussain, I.; Reim, S.; Ahmed, Z.; Ullah, E.; Iqbal, I.; Fischer, C.; Reinke, H.; Görls, H.; Langer, P. Tetrahedron 2007, 63, 12562.
(67) Anthony G.; Barret M.; Robin A.E. Carr. J. Org. Chem. 1986, 51, 4258.
(68) Bellur, E.; Görls, H.; Langer, P. J. Org. Chem. 2005, 70, 4753.
(69) Römpp Lexikon Naturstoffe (Steglich, W.; Fugmann, B.; Lang-Fugmann, S., eds.), Thieme, Stuttgart: 1997.
(70) Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim 2004.
(71) Dihydronidulin: Finlay-Jones, P. F.; Sala, T.; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1981, 874.
(72) Griseofulvin: (a) Osborne, C. S.; Leitner, I.; Hofbauer, B.; Fielding, C. A.; Favre, B.; Ryder, N. S. Antimicrob. Agents Chemother 2006, 50, 2234. (b) Takano, R.; Sugano, K.; Higashida, A.; Hayashi, Y.; Machida, M.; Aso, Y.; Yamashita, S. Pharm. Res. 2006, 23, 1144. (c) Xue, C.; Li, T.; Deng, Z.; Fu, H.; Lin, W. Pharmazie 2006, 61, 1041. (d) Phelps, J. B.; Hoffman, W. P.; Lee, C.; Murphy, G. P.; Garriott, M. L. Mutat. Res. 2004, 561, 153. (e) Rosefort, C.; Fauth, E.; Zankl, H. Mutagenesis 2004, 19, 277. (f) Kinobe, R. T.; Dercho, R. A.; Vlahakis, J. Z.; Brien, J. F.; Szarek, W. A.; Nakatsu, K. J. Pharmacol. Exp. Ther. 2006, 319, 277. (g) Albaugh, D.; Albert, G.; Bradford, P.; Cotter, V.; Froyd, J. J. Antibiot. 1998, 51, 317.
(73) Epigriseofulvin: Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S.; Akano, K. Chem. Pharm. Bull. 2000, 48, 1452.
(74) Belofsky, G. N.; Gloer, K. B.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Nat. Prod. 1998, 61, 1115.
(75) Geodin: (a) Katoh, T.; Ohmori, O. Tetrahedron Lett. 2000, 41, 465. (b) Fujii, I.; Iijima, H.; Ebizuka, Y.; Sankawa, U. Chem. Pharm. Bull. 1983, 31, 337. (c) Katoh, T.; Ohmori, O.; Iwasaki, K; Inoue, M. Tetrahedron 2002, 58, 1289.
(76) Geodinhydrate methyl ester: (a) Hargreaves, J.; Park, J.-o.; Ghisalberti, E. L.; Sivasithamparam, K.; Skelton, B. W.; White, A. H. J. Nat. Prod. 2002, 65, 7.
(77) 7-Chloro-1-O-methylemodin: (a) Cohen, P. A.; Towers, G. H. N. Phytochemistry 1996, 42, 1325. (b) Shu, Y.-Z.; Arcuri, M.; Kozlowski, M. R.; Wang, R. R.; Lam, K. S. J. Antibiot. 1994, 47, 1328. (c) Cohen, P. A.; Hudson, J. B.; Towers, G. H. N. Experientia 1996, 52, 180.
(78) (a) Ahad, A. M.; Goto, Y.; Kiuchi, F.; Tsuda, Y.; Kondo, K.; Sato, T. Chem. Pharm. Bull. 1991, 39, 1043. (b) Kim, Y.-J.; Nishida, H.; Pang, C.-H.; Saito, T.; Shinichi, S.; Tonai-Kachi, H.; Yoshikawa, N.; Vanvolkenburg, M. A.; Parkerf, J. C.; Kojima, Y. J. Antibiot. 2002, 55, 121. Longissiminone B: (c) Choudhary, M. I.; Azizuddin, M.; Jalil, S.; Atta-ur-Rahman Phytochemistry 2005, 66, 2346. Chloroisosulochrin: (d) Shimada, A.; Takahashi, I.; Kawano, T.; Kimura, Y. Z. Naturforsch. B 2001, 56, 797. Pestalone: (e) Cueto, M.; Jensen, P. R.; Kauffman, C.; Fenical, W.; Lobkovsky, E.; Clardy, J. J. Nat. Prod. 2001, 64, 1444. (f) Iijima, D.; Tanaka, D.; Hamada, M.; Ogamino, T.; Ishikawa, Y.; Nishiyama, S.; Tetrahedron Lett. 2004, 45, 5469. Methyl chloroasterrate: (g) Hargreaves, J.; Park, J.-o.; Ghisalberti, E. L.; Sivasithamparam, K.; Skelton, B. W.; White, A. H. J. Nat. Prod. 2002, 65, 7. (h) Lee, H. J.; Lee, J. H.; Hwang, B. Y.; Kim, H. S.; Lee, J. J. J. Antibiot. 2002, 55, 552.
(79) Falconensin B: Itabashi, T.; Nozawa, K.; Miyaji, M.; Udagawa, S.-i.; Nakajima, S.; Kawai, K.-i. Chem. Pharm. Bull. 1992, 40, 3142.
(80) Chromones: Kawamura, N.; Sawa, R.; Takahashi, Y.; Issiki, K.; Sawa, T. J. Antibiot. 1995, 48, 435.
(81) Hoeller, U.; Koening, G.; Wright, A. D. J. Nat. Prod. 1999, 62, 114.
(82) (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534. (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688.
(83) For a review of 1,3-bis(trimethylsilyloxy)-1,3-dienes in general, see: Langer, P. Synthesis 2002, 441.
(84) For a review of [3+3] cyclizations, see: Feist, H.; Langer, P. Synthesis 2007, 327.
(85) M. A. Yawer, I. Hussain, S. Reim, Z. Ahmed, E. Ullah, I. Iqbal, C. Fischer, H. Reinke, H. Görls, P. Langer, Tetrahedron 2007, 63, 12562.
(86) S. Reim, I. Hussain, M. Adeel, M. A. Yawer, A. Villinger, P. Langer, Tetrahedron Lett. 2008, 49, 4901.
(87) S. Reim, P. Langer, Tetrahedron Lett. 2008, 49, 2329.
(88) Appel, B.; Rotzoll, S.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 3638.
(89) (a) Ruegg, R.; Lindlar, H.; Montavon, M.; Savey, G.; Schaeren, S. T.; Schwieter, U.; Isler, O. Helv. Chim. Acta 1959, 42, 844. (b) Ruegg, R.; Lindlar, H.; Montavon, M.; Savey, G.; Schaeren, S. T.; Schwieter, U.; Isler, O. Helv. Chim. Acta 1959, 42, 859.
(90) Albrecht, U.; Nguyen, V. T. H.; Langer, P. Synthesis 2006, 1111.
(91) Albrecht, U.; Nguyen, V. T. H.; Langer, P. J. Org. Chem. 2004, 69, 3417.
(92) B. A. Krukoff, R. C. Barneby, Mem. New York Bot. Gard. 1970, 20, 1.
(93) a) A. S. Chawla, V. K. Kapor, in Handbook of Plant andFungal Toxicants, J. F. D’Mello (ed.), CRC Press: New York, 1997, 37; b) D. S. Bhakuni, J. Indian Chem. Soc. 2002, 203; c) A. J. Lehman, J. Pharmacol. 1937, 69; d) M. Williams, J. L. Robinson, J. Neurosci. 1984, 2906; e) M. W. Decker, D. J. Anderson, J. D. Brioni, D. L. Donnelly-Roberts, C. H. Kang, A. B. O’Neil, M. Piattoni-Kaplan, S. Swanson, J. P. Sullivan, Eur. J. Pharmacol. 1995, 79.
(94) For reviews, see: a) V. Boekelheide, in The Alkaloids, Vol. 7, R. H. F. Manske (ed.), Academic Press: New York, 1960, 201; b) R. K. Hill, in The Alkaloids, Vol. 9, R. H. F. Manske (ed.), Academic Press: New York, 1967, 483; c) S. F. Dyke, S. N. Quessy, in The Alkaloids, Vol. 18, R. G. A. Rodrigo (ed.), Academic Press: New York, 1981, 1; d) A. H. Jackson, in Chemistry and Biology of Isoquinoline Alkaloids, J. D. Phillipson, M. F. Margaret, M. H. Zenk (eds.), Springer: Berlin, 1985, 62; e) A. S. Chawla, A. H. Jackson, Nat. Prod. Rep. 1984, 1, 371; for early original reports, see: f) K. Wiesner, Z. Valenta, A. J. Manson, F. W. Stonner, J. Am. Chem. Soc. 1955, 77, 675; g) V. Prelog, Angew. Chem. 1957, 69, 33; h) V.

Prelog, A. Langemann, O. Rodig, M. Ternbah, Helv. Chim. Acta 1959, 42, 1301; i) A. Mondon, H. J. Nestler, Angew. Chem. 1964, 76, 651; j) R. V. Stevens, M. P. Wentland, J. Chem. Soc., Chem. Commun. 1968, 1104.
(95) a) P. C. Stanislawski, A. C. Willis, M. G. Banwell, Org. Lett. 2006, 8, 2143; b) A. Padwa, Q. Wang, J. Org. Chem. 2006, 71, 7391; c) A. K. Ganguly, C. H. Wang, D. Biswas, J. Misiaszek, A. Micula, Tetrahedron Lett. 2006, 47, 5539; d) S. Gao, Y. Q. Tu, X. Hu, S. Wang, R. Hua, Y. Jiang, Y. Zhao, X. Fan, S. Zhang, Org. Lett. 2006, 8, 2373; e) H. Fukumoto, K. Takahashi, J. Ishihara, S. Hatakeyama, Angew. Chem. Int. Ed. 2006, 45, 2731; f) J. H. Rigby, J. H.; Cavezza, A.; Heeg, M. J. J. Am. Chem. Soc. 1998, 120, 3664.
(96) L. F. Tietze, N. Tölle, C. Noll Synlett 2008, 525.
(97) A. Padwa, Q. Wang, J. Org. Chem. 2006, 71, 7391.
(98) B. Juma, M. Adeel, A. Villinger, P. Langer, Tetrahedron Lett. 2008, 49, 2272.
(99) For other syntheses of 2,6-dioxo-1,2,3,4,5,6-hexahydroindoles, see: a) Birch reaction: K. Ito, M. Haruna, H. Furukawa, J. Chem. Soc., Chem. Commun. 1975, 681; b) aza-Claisen rearrangement of isoquinuclidines: Y. Chen, P. L. Huesmann, P. S. Mariano, Tetrahedron Lett. 1983, 24, 1021; Diels-Alder reaction of 2imidofurans: c) A. Padwa, J. D. Ginn, J. Org. Chem. 2005, 70, 5197; d) A. Padwa, S. K. Bur, H. Zhang, J. Org. Chem. 2005, 70, 6833.
(100) (a) N. M. Berry, M. C. P. Darey, L. M. Harwood, Synthesis 1986, 476; see also: b) G. Vassilikogiannakis, I. Margaros, M. Tofi, Org. Lett. 2004, 6, 205.
(101) For a recent review of dianions, see: P. Langer, W. Freiberg, Chem. Rev. 2004, 104, 4125, and references cited therein.
(102) B. Guay, P. Deslongchamps, J. Org. Chem. 2003, 68, 6140.
(103) W. Zhang, G. Pugh, Tetrahedron 2003, 59, 4237.
(104) CCDC 716534, CCDC 670738, and CCDC 716346 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
(105) We have prepared $\mathbf{7 c}$ by oxidation of 2-allylcyclohexanone ($\mathbf{5 c}$) which is readily available from cyclohexanone (see below). This approach to $7 \mathbf{c}$ has, to the best of
our knowledge, not yet been reported. For a different synthesis of $7 \mathbf{c}$, see for example: S. M. Allin, S. L. James, M. R. Elsegood, W. P. Martin, J. Org. Chem. 2002, 67, 9464.

Conditions: i, 1) LDA, HMPTA, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2$) allylbromide, $-40 \rightarrow 20$ ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h} ; i \mathrm{i}, \mathrm{NaIO}_{4}, \mathrm{KMnO}_{4}$, acetone
(106) The following reaction has been reported by Padwa and Wang (ref. 6):

(107) For related heterocycles, such as 5,8,9,10-tetrahydro- 6 H -indolo[2,1- a]isoquinolin-11-ones, see: a) H. Meyer, Liebigs Ann. Chem. 1981, 1534; b) Z. Vincze, P.

Nemes, 'B. Balazs, G. Toth, P. Scheiber, Synlett 2004, 1023; c) M. Menes-Arzate, R. Martinez, R. Cruz-Almanza, J. M. Muchowski, Y. M. Osornio, L. D. Miranda, J. Org. Chem. 2004, 69, 4001.

Data of Crystals from X-ray Measurements:

Crystal data and structure refinement for 11b (Fig. 4):

Identification code	av_ma89
Empirical formula	C15 H14 O4'
Formula weight	258.26
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	orthorhombic
Space group (H.-M.)	'Pna21'
Space group (Hall)	'P 2c-2n'
Unit cell dimensions	$a=26.312(5) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=3.8740(8) \AA \quad \beta=90.00^{\circ}$.
	c $=11.824(2) \AA \quad \gamma=90.00^{\circ}$
Volume	1205.3(4) \AA^{3}
Z	4
Density (calculated)	$1.423 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.103 \mathrm{~mm}^{-1}$
F(000)	544
Crystal size	$0.52 \times 0.51 \times 0.05 \mathrm{~mm}^{3}$
Θ range for data collection	3.10 to 29.99°.
Index ranges	$-37 \leq h \leq 37,-4 \leq k \leq 5,-14 \leq 1 \leq 14$
Reflections collected	14947
Independent reflections	$3964[\mathrm{R}(\mathrm{int})=0.0239]$
Completeness to $\Theta=29.82^{\circ}$	97.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9949 and 0.9482
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2943 / 1 / 178
Goodness-of-fit on F^{2}	1.026
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0426, \mathrm{wR} 2=0.0870$
R indices (all data)	$\mathrm{R} 1=0.0346, \mathrm{wR} 2=0.0839$
Largest diff. peak and hole	0.251 and -0.178e. A $^{-3}$

Crystal data and structure refinement for 13i (Fig 8).	
Identification code	ma93
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O} 3$
Formula weight	325.17
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	$\mathrm{P} 2_{1}$
Space group (Hall)	P 2 yb
Unit cell dimensions	$\mathrm{a}=4.0956(5) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=13.3066(17) \AA \quad \beta=92.711(7)^{\circ}$.
	$\mathrm{c}=13.3656(16) \AA \quad \gamma=90^{\circ}$.
Volume	$727.59(16) \AA^{3}$
Z	2
Density (calculated)	$1.484 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.453 \mathrm{~mm}^{-1}$
F(000)	336
Crystal size	$0.65 \times 0.50 \times 0.06 \mathrm{~mm}^{3}$
Θ range for data collection	3.05 to 29.88°.
Index ranges	$-5 \leq h \leq 5,-18 \leq k \leq 15,-17 \leq 1 \leq 18$
Reflections collected	9311
Independent reflections	$3754[\mathrm{R}(\mathrm{int})=0.0217]$
Completeness to $\Theta=29.88^{\circ}$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9734 and 0.7575
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3754 / 1/197
Goodness-of-fit on F^{2}	1.041
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0302, \mathrm{wR} 2=0.0700$
R indices (all data)	$\mathrm{R} 1=0.0385, \mathrm{wR} 2=0.0742$
Absolute structure parameter	0.05(5)
Largest diff. peak and hole	0.324 and -0.179 e. \AA^{-3}

Crystal data and structure refinement for 23j (Fig 9).	
Identification code	ma10
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$
Formula weight	276.70
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group (H.-M.)	Pna21
Space group (Hall)	P 2c-2n
Unit cell dimensions	$\mathrm{a}=15.1424(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.2046(3) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=21.5336(6) \AA \quad \gamma=90^{\circ}$.
Volume	$2675.28(14) \AA^{3}$
Z	8
Density (calculated)	$1.374 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.286 \mathrm{~mm}^{-1}$
F(000)	1152
Crystal size	$0.90 \times 0.56 \times 0.12 \mathrm{~mm}^{3}$
Θ range for data collection	2.66 to 30.00°.
Index ranges	$-21 \leq h \leq 19,-11 \leq k \leq 11,-30 \leq 1 \leq 30$
Reflections collected	33153
Independent reflections	7807 [$\mathrm{R}(\mathrm{int})=0.0296]$
Completeness to $\Theta=30.00^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9665 and 0.7829
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7807 / 1/355
Goodness-of-fit on F^{2}	1.013
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0381, \mathrm{wR} 2=0.0952$
R indices (all data)	$\mathrm{R} 1=0.0462, \mathrm{wR} 2=0.1011$
Absolute structure parameter	0.06(4)
Largest diff. peak and hole	0.320 and -0.219 e. \AA^{-3}

Crystal data and structure refinement for 24ab (Fig 10).	
Identification code	ma32
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClO}_{2}$
Formula weight	244.66
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group (H.-M.)	$\mathrm{P} 2_{1}$
Space group (Hall)	P 2 yb
Unit cell dimensions	$\mathrm{a}=9.7610(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=5.02930(10) \AA \quad \beta=96.0950(10)^{\circ}$.
	$\mathrm{c}=11.3448(2) \AA \quad \gamma=90^{\circ}$.
Volume	$553.779(19) \AA^{3}$
Z	2
Density (calculated)	$1.467 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.329 \mathrm{~mm}^{-1}$
F(000)	252
Crystal size	$0.67 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$
Θ range for data collection	2.62 to 29.99°.
Index ranges	$-13 \leq h \leq 13,-7 \leq k \leq 7,-13 \leq 1 \leq 15$
Reflections collected	8643
Independent reflections	$3164[\mathrm{R}(\mathrm{int})=0.0346]$
Completeness to $\Theta=29.99^{\circ}$	98.2 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9742 and 0.8099
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3164/1/158
Goodness-of-fit on F^{2}	1.026
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0398, \mathrm{wR} 2=0.0840$
R indices (all data)	$\mathrm{R} 1=0.0558, \mathrm{wR} 2=0.0911$
Absolute structure parameter	0.02(6)
Largest diff. peak and hole	0.320 and -0.208 e. \AA^{-3}

Crystal data and structure r	35e (Fig 12).
Identification code	ma233
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{~N} \mathrm{O}_{4}$
Formula weight	319.26
Temperature	103(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group (H.-M.)	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
Space group (Hall)	P 2ac 2ab
Unit cell dimensions	$a=4.7205(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=11.9607(7) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=24.1144(12) \AA \quad \gamma=90^{\circ}$.
Volume	1361.51(14) \AA^{3}
Z	4
Density (calculated)	$1.558 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.130 \mathrm{~mm}^{-1}$
F(000)	656
Crystal size	$0.58 \times 0.18 \times 0.06 \mathrm{~mm}^{3}$
Θ range for data collection	2.40 to 30.00°.
Index ranges	$-6 \leq h \leq 6,-16 \leq k \leq 15,-33 \leq 1 \leq 30$
Reflections collected	13914
Independent reflections	$2302[\mathrm{R}(\mathrm{int})=0.0941]$
Completeness to $\Theta=30.00^{\circ}$	98.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9922 and 0.9283
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2302 / 0 / 209
Goodness-of-fit on F^{2}	1.046
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0654, \mathrm{wR} 2=0.1044$
R indices (all data)	$\mathrm{R} 1=0.1035, \mathrm{wR} 2=0.1132$
Absolute structure parameter	0 (10)
Largest diff. peak and hole	0.341 and -0.330 e. \AA^{-3}

Crystal data and structure refinement for 52 (Fig 13).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=30.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
av_ma254
'C10 H9 Cl O6'
260.62

103(2) K
$0.71073 \AA$
Orthorhombic
'Pbca'
'-P 2ac 2ab'
$a=8.326(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=14.430(6) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=17.680(7) \AA \quad \gamma=90^{\circ}$.
2124.1(15) \AA^{3}

8
$1.630 \mathrm{Mg} / \mathrm{m}^{3}$
$0.374 \mathrm{~mm}^{-1}$
1072
$0.63 \times 0.38 \times 0.33 \mathrm{~mm}^{3}$
4.47 to 30.00°.
$-7 \leq h \leq 11,-19 \leq k \leq 20,-24 \leq 1 \leq 24$
13973
$2741[\mathrm{R}(\mathrm{int})=0.0941]$
99.4 \%

Semi-empirical from equivalents
0.8865 and 0.7984

Full-matrix least-squares on F^{2}
3079 / 0 / 164
1.079
$\mathrm{R} 1=0.0324, \mathrm{wR} 2=0.0823$
$\mathrm{R} 1=0.0282, \mathrm{wR} 2=0.0795$
0.458 and -0.274 e. \AA^{-3}

Crystal data and structure refinement for 60c (Fig 15).	
Identification code	av_ma211
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClFNO}{ }_{4}$
Formula weight	335.71
Temperature	173(2)K
Wavelength	0.71073 A
Crystal system	triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	
	$b=10.824(6) \AA \quad \beta=91.31(4)^{\circ}$.
	$\mathrm{c}=14.809(9) \AA \quad \gamma=92.29(3)^{\circ}$.
Volume	766.6 (7) \AA^{3}
Z	2
Density (calculated)	$1.454 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.279 \mathrm{~mm}^{-1}$
F(000)	344
Crystal size	$0.83 \times 0.14 \times 0.05 \mathrm{~mm}^{3}$
Θ range for data collection	4.17° to 27.50°.
Index ranges	$-3 \leq h \leq 6,-14 \leq k \leq 14,-19 \leq 1 \leq 19$
Reflections collected	9597
Independent reflections	1845 [$\mathrm{R}(\mathrm{int}$) $=0.0239]$
Completeness to $\Theta=29.82^{\circ}$	92.7\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9862 and 0.8014
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3275 / 0 / 238
Goodness-of-fit on F^{2}	1.074
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.1195, \mathrm{wR} 2=0.1569$
R indices (all data)	$\mathrm{R} 1=0.0539, \mathrm{wR} 2=0.1371$
Largest diff. peak and hole	0.560 and -0.355e. $\AA^{\AA}-3$

Crystal data and structure refinement for 62b (Fig 16).	
Identification code	av_ma258B
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl} \mathrm{O}_{3}$
Formula weight	290.73
Temperature	173(2)K
Wavelength	0.71073 A
Crystal system	triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=8.243(2) \AA \quad \alpha=75.67(2)^{\circ}$.
	$b=9.084(3) \AA$ 成 $\quad \beta=68.683(16)^{\circ}$.
	$\mathrm{c}=10.418(3) \AA \quad \gamma=86.17(2)^{\circ}$.
Volume	$703.9(4) \AA^{3}$
Z	2
Density (calculated)	$1.372 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.275 \mathrm{~mm}^{-1}$
F(000)	304
Crystal size	$0.19 \times 0.16 \times 0.10 \mathrm{~mm}^{3}$
Θ range for data collection	4.30° to 27.50°.
Index ranges	$-10 \leq h \leq 10,-11 \leq k \leq 11,-13 \leq 1 \leq 13$
Reflections collected	11010
Independent reflections	2339 [$\mathrm{R}(\mathrm{int})=0.0239]$
Completeness to $\Theta=29.82^{\circ}$	98.5\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9730 and 0.9496
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3187/0/187
Goodness-of-fit on F^{2}	1.054
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0616, \mathrm{wR} 2=0.1206$
R indices (all data)	$\mathrm{R} 1=0.0407, \mathrm{wR} 2=0.1119$
Largest diff. peak and hole	0.393 and -0.258e. \AA^{-3}

Crystal data and structure refinement for 62c (Fig 17).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=28.62^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
ma223
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClFO}_{3}$
308.72

298(2) K
$0.71073 \AA$
Monoclinic
$\mathrm{P} 2{ }_{1} / \mathrm{m}$
-P 2yb
$a=8.1793(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=6.9958(2) \AA \quad \beta=105.7850(10)^{\circ}$.
$\mathrm{c}=13.4427(3) \AA \quad \gamma=90^{\circ}$.
740.19(3) \AA^{3}

2
$1.385 \mathrm{Mg} / \mathrm{m}^{3}$
$0.276 \mathrm{~mm}^{-1}$
320
$0.53 \times 0.21 \times 0.12 \mathrm{~mm}^{3}$
2.59 to 28.62°.
$-11 \leq \mathrm{h} \leq 11,-9 \leq \mathrm{k} \leq 9,-18 \leq 1 \leq 16$
15329
$2029[\mathrm{R}(\mathrm{int})=0.0273]$
98.8 \%

Semi-empirical from equivalents
0.9677 and 0.8677

Full-matrix least-squares on F^{2}
2029 / 0 / 127
1.018
$\mathrm{R} 1=0.0381, \mathrm{wR} 2=0.1068$
$\mathrm{R} 1=0.0533, w R 2=0.1184$
0.018(4)
0.157 and -0.226 e. \AA^{-3}

Identification code	av_ma210
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClF} \mathrm{O}{ }_{3}$
Formula weight	308.72
Temperature	173(2)K
Wavelength	0.71073 A
Crystal system	triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$a=8.212(4) \AA \quad \alpha=71.18(3)^{\circ}$.
	$\mathrm{b}=9.780(3) \AA$ 成 $\quad \beta=76.41(2)^{\circ}$.
	$\mathrm{c}=10.156(3) \AA$ 仡 $\quad \gamma=71.34(2)^{\circ}$.
Volume	$723.5(5) \AA^{3}$
Z	2
Density (calculated)	$1.417 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.282 \mathrm{~mm}^{-1}$
F(000)	320
Crystal size	$0.31 \times 0.18 \times 0.08 \mathrm{~mm}^{3}$
Θ range for data collection	4.57° to 29.00°.
Index ranges	$-11 \leq \mathrm{h} \leq 11,-10 \leq \mathrm{k} \leq 13,-13 \leq 1 \leq 13$
Reflections collected	12813
Independent reflections	$2902[\mathrm{R}(\mathrm{int})=0.0239]$
Completeness to $\Theta=29.82^{\circ}$	98.2\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9177 and 0.9778
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3773 / 0 / 195
Goodness-of-fit on F^{2}	1.067
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0647, \mathrm{wR} 2=0.1393$
R indices (all data)	$\mathrm{R} 1=0.0472, \mathrm{wR} 2=0.1318$
Largest diff. peak and hole	0.869 and -0.243e. A $^{-3}$

Crystal data and structure refinement for ma64 (Fig 20).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=30.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
ma192
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{5}$
294.68

173(2) K
$0.71073 \AA$
Triclinic
P1
-P 1
$a=8.3207(3) \AA \quad \alpha=69.638(2)^{\circ}$.
$\mathrm{b}=8.3976(3) \AA \quad \beta=79.963(2)^{\circ}$.
$\mathrm{c}=11.2648(4) \AA \quad \gamma=61.383(2)^{\circ}$.
$647.76(4) \AA^{3}$
2
$1.511 \mathrm{Mg} / \mathrm{m}^{3}$
$0.311 \mathrm{~mm}^{-1}$
304
$0.81 \times 0.57 \times 0.22 \mathrm{~mm}^{3}$
2.79 to 30.00°.
$-11 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 11,-15 \leq 1 \leq 15$
15827
$3732[\mathrm{R}(\mathrm{int})=0.0428]$
99.0 \%

Semi-empirical from equivalents
0.9347 and 0.7866

Full-matrix least-squares on F^{2}
3732 / 0 / 182
1.054
$\mathrm{R} 1=0.0339, \mathrm{wR} 2=0.0912$
$\mathrm{R} 1=0.0383, \mathrm{wR} 2=0.0949$
0.379 and -0.637 e. \AA^{-3}

Crystal data and structure refinement for 66 (Fig 21).	
Identification code	av_ma194
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl} \mathrm{O}_{3}$
Formula weight	262.68
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	triclinic
Space group (H.-M.)	P -1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=7.964(5) \AA \quad \alpha=102.460(10)^{\circ}$.
	$b=9.959(6) \AA \quad \beta=94.583(16)^{\circ}$.
	$\mathrm{c}=15.587(9) \AA \quad \gamma=96.925(14)^{\circ}$.
Volume	$1191.2(13) \AA^{3}$
Z	4
Density (calculated)	$1.465 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.317 \mathrm{~mm}^{-1}$
F(000)	544
Crystal size	$0.39 \times 0.18 \times 0.14 \mathrm{~mm}^{3}$
Θ range for data collection	2.23° to 32.57°.
Index ranges	$-11 \leq \mathrm{h} \leq 12,-15 \leq \mathrm{k} \leq 15,-23 \leq 1 \leq 23$
Reflections collected	29864
Independent reflections	$7110[\mathrm{R}(\mathrm{int})=0.0239]$
Completeness to $\Theta=29.82^{\circ}$	96.9\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9974 and 0.8683
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8388 / 0 / 327
Goodness-of-fit on F^{2}	1.031
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0420, \mathrm{wR} 2=0.0910$
R indices (all data)	$\mathrm{R} 1=0.0330, \mathrm{wR} 2=0.0855$
Largest diff. peak and hole	0.518 and -0.230e. \AA^{-3}

Crystal data and structure refinement for 77e (Fig 24).	
Identification code	av_mal39
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{2}$
Formula weight	219.28
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$a=8.6600(17) \AA \quad \alpha=90.00^{\circ}$.
	$b=9.800(2) \AA \quad \beta=116.74(2)^{\circ}$.
	$\mathrm{c}=14.801(5) \AA \quad \gamma=90.00^{\circ}$.
Volume	$1121.8(5) \AA^{3}$
Z	4
Density (calculated)	$1.388 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.264 \mathrm{~mm}^{-1}$
F(000)	336
Crystal size	$0.55 \times 0.27 \times 0.01 \mathrm{~mm}^{3}$
Θ range for data collection	4.40 to 29.00°.
Index ranges	$-8 \leq h \leq 8,-13 \leq k \leq 13,-17 \leq 1 \leq 17$
Reflections collected	12323
Independent reflections	$3964[\mathrm{R}(\mathrm{int})=0.0239]$
Completeness to $\Theta=29.82^{\circ}$	97.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9726 and 0.9931
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2517/0/176
Goodness-of-fit on F^{2}	1.057
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0567, \mathrm{wR} 2=0.1081$
R indices (all data)	$\mathrm{R} 1=0.0413, \mathrm{wR} 2=0.1026$
Largest diff. peak and hole	0.219 and -0.174e. \AA^{-3}

Curriculum Vitae

Muhammad Adeel

Muhammad_adeel2000@yahoo.com
Contact: $\quad 004917664083126,00923003941320$

Personal:

Current Address

Room Number 1.4.10.1
Albert Einstein Str. 28
18059-Rostock

Permanent Address

H.No 527/B Chowk Seith Ashraf

Dera Ismail Khan (N.W.F.P)
Pakistan.

Marital Status	Single
Nationality	Pakistan
Date of Birth	$31^{\text {st }}$ March 1978
Place of Birth	Dera Ismail Khan (N.W.F.P) Pakistan
Language Skills	English (TOEFL 220/300), Graduate Degree in English Literature,
	Deutsch (Basic Knowledge), Urdu.

Education:

2007-2009 Ph.D. (Dr. rer. Nat) Synthetic Organic Chemistry (Group of Prof Dr. Peter Langer). Institute of Chemistry. University of Rostock.
2004-2006 M.phil leading to Ph.D. Supramolecular Chemistry. H.E.J Research Institute of Chemistry University of Karachi Pakistan.
2001-2004 M.Sc. in Organic Chemistry Gomal University Dera Ismail Khan (N.W.F.P) Pakistan

1998-2000 B.Sc. in Chemistry Gomal University Dera Ismail Khan (N.W.F.P) Pakistan.

Research Experience:

> 2007-2009. Scientific Co-worker (Wissenschaftlicher Mitarbeiter) at Institute of Chemistry University of Rostock.
> 2004-2006. Junior Reserch Fellow at H.E.J Research Institute of Chemistry University of Karachi, Karachi Pakistan.
> 2003-2004. M.Sc. thesis titled "Phyto-chemical Studies on Biologically Active Diterpenes of Euphorbia Peplus" at Department of Chemistry Gomal University, Dera Ismail Khan (N.W.F.P) Pakistan.

Technical Skills:

$>$ Excellent handling in Vacuum and Schlenck techniques for oxygen and moisture sensitive reactions.
> Working experience with 1D and 2D NMR technique.
> Working experience in MS Office, Chem. Office, Sci-finder, Crossfire and other computer utilities.

Conferences and Poster Presentations:

> Poster titled "Octacyclodextrin- p-octiphenyls into Hydrophilic, Hydrophobic Barrel Stave Pores Having Practical Applications in Drug Designing" $10^{\text {th }}$ International Symposium on Natural Product Chemistry. January 6-9, 2006, Karachi, Pakistan at International Center for Chemical Sciences University of Karachi.
> Poster titled "Octacyclodextrin-p-octiphenyls into Hydrophilic, Hydrophobic Barrel Stave Pores Having Practical Applications in Drug Designing" Presented at $6^{\text {th }}$ International and $16^{\text {th }}$ National Chemistry Conference Multan Pakistan. (Awarded by IUPAC Best Poster Prize)

List of Publications:

1. Verena Wolf, Muhammad Adeel, Stefanie Reim, Alexander Villinger, Helmut Reinke, and Peter Langer. Synthesis Submitted "Synthesis of 3-Chlorosalicylates by Formal [3+3] Cyclocondensations of 4-Chloro-1,3-bis(trimethylsilyloxy)-1,3butadienes".
2. Muhammad Nawaz, Muhammad Adeel, Muhammad Farooq Ibad, Peter Langer. Synlett 2009 Accepted "Synthesis of functionalized 2',4-diarylbenzophenones based on site-selective Suzuki cross-coupling reactions".
3. Muhammad Adeel, Stefanie Reim, Verena Wolf, Alexander Villinger, Christine Fischer, Peter Langer. Mnauscript in Preparation "The first 4-chloro-1.3-bis(trimethylsiloxy)-1,3-diene and its applications to the regioselective synthesis of chlorinated arenes".
4. Muhammad Adeel, Muhammad Nawaz, Alexander Villinger, Helmut Reinke, Christine Fischer, Peter Langer. Tetrahedron 65, 2009, 4099-4105. Synthesis of Polyketide-Type Phenols by Domino 'Michael / Retro-Michael / Aldol Reactions of 3Formylchromones with Silyl Enol Ethers derived from Ethyl 3,5-Dioxohexanoate.
5. Benard Juma, Muhammad Adeel, Alexander Villinger, Anke Spannenberg, Christine Fischer, Peter Langer* Advanced Synthesis \& Catalysis 2009 In print "Synthesis of 2,6-Dioxo-1,2,3,4,5,6-hexahydroindoles by Acid-Catalyzed Cyclization of Acetal-Protected (2,4-Dioxocyclohex-1-yl) acetamides and their Transformation into 5,8,9,10-Tetrahydro-6H-indolo[2,1-a]isoquinolin-9-ones".
6. Stefanie Reim, Matthias Lau, Muhammad Adeel, Ibrar Hussain, Mirza A. Yawer, Abdolmajid Riahi, Christine Fischer, Helmut Reinke, and Peter Langer* Synthesis 2009, No. 3, pp 0445-0463 "Synthesis of Functionalized Fluorenones based on the Combination of Formal [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3butadienes with Intramolecular Friedel-Crafts-Acylations".
7. Muhammad Adeel, Muhammad A. Rashid, Nasir Rasool, Rasheed Ahmad, Helmut Reinke, Christine Fischer and Peter Langer* Synthesis 2009, No. 2, 243-250, "Regioselective Synthesis of Functionalized Biaryls based on Cyclizations of 4-Aryl-1,3-bis(trimethylsilyloxy)-1,3-butadienes".
8. Muhammad Adeel, Stefanie Reim, Verena Wolf, Mirza A. Yawer, Ibrar Hussain, Alexander Villinger, Peter Langer*, Synlett 2008, 2629-2632. "Synthesis and Reactions of the First Fluorine-Containing 1,3-Bis(trimethylsilyloxy)-1,3-butadienes".
9. Stefanie Reim, Muhammad Adeel, Ibrar Hussain, Mirza A. Yawer, Alexander Villinger, Peter Langer*, Tetrahedron Lett. 2008, 49, 4901-4904. "Synthesis and Reactions of the First 2-Chloro-1,3-bis(trimethylsilyloxy)-1,3butadienes".
10. Muhammad A. Rashid, Nasir Rasool, Muhammad Adeel, Christine Fischer, Helmut Reinke, Peter Langer* Tetrahedron 2008, 64, 529-535. "Regioselective Synthesis of Diaryl Ethers based on One-Pot Cyclizations of 4-Aryloxy-1,3-bis(trimethylsilyloxy)-1,3-dienes".
11. Mirza A. Yawer, Abdolmajid Riahi, Muhammad Adeel, Ibrar Hussain, Christine Fischer Peter Langer*, Synthesis 2008, 1276-1282. "One-pot synthesis of 6(pyridyl)salicylates by formal [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 3-pyridyl-3-silyloxy-2-en-1-ones".
12. Benard Juma, Muhammad Adeel, Alexander Villinger and Peter Langer*, Tetrahedron Lett. 2008, 49, 2272-2274. "Efficient synthesis of 2,6-dioxo-1,2,3,4,5,6-hexahydro-indoles based on the synthesis and reactions of (2,4-dioxocyclohex-1-yl)acetic acid derivatives".
13. Nasir Rasool, Muhammad A. Rashid, Muhammad Adeel, Helmut Reinke and Peter Langer*, Tetrahedron Lett. 2008, 49, 2254-2257. "Synthesis and Reactions of Hydroxyspiro[5.2]cyclo-octenones based on the Cyclization of the Dianions of Acetone and Diethyl 2-Oxopropylphosphonate with 1,1-Diacylcyclopropanes".
14. Muhammad A. Rashid, Nasir Rasool, Muhammad Adeel, Helmut Reinke, Christine Fischer and Peter Langer* Tetrahedron, 2008, 64, 3782-3793. "Synthesis of Functionalized Diarylsulfides based on Regioselective One-Pot Cyclizations of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes".
15. Muhammad A. Rashid, Nasir Rasool, Bettina Appel, Muhammad Adeel, Vahuni Karapetyan, Satenik Mkrtchyan, Helmut Reinke, Christine Fischer, and Peter Langer* Tetrahedron 2008, 64, 5416-5425 "Synthesis of 1-Azaxanthones by Condensation of 1,3-

Bis(trimethylsilyloxy)-1,3-butadienes with 3-(Cyano)-benzopyrylium Triflates and Subsequent Domino 'Retro-Michael / Nitrile-Addition / Heterocyclization' Reaction".

Declaration/Erklärung

Here by I declare that this work has so for neither submitted to the Faculty of Mathematics and Natural Sciences at the University of Rostock nor to any other scientific Institution for the purpose of doctorate. Further more, I declare that I have written this work by myself and that I have not used any other sources, other than mentioned earlier in this work.

Hiermit erkläre ich, daß diese Arbeit bisher von mir weder an der MathematischNaturwissenschaftlichen Fakultät der Universität Rostock noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion Eingereicht wurde.

Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel benutzt habe

I hereby apply irrevocably to take oral examination if the form of a private viva voce and a public presentation.

[^0]: ${ }^{a}$ Yield of isolated products.

[^1]: ${ }^{\text {a }}$ Yields of isolated products.
 b From Stefanie Reim

